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Abstract: Perturbed parameters are considered in a hypoplastic model of
granular materials. For fixed parameters, the model response to a periodic
stress loading and unloading converges to a limit state of strain. The focus of
this contribution is the assessment of the change in the limit strain caused by
varying model parameters.
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1. Introduction

In this contribution, the hypoplastic model [6] of granular materials is considered
together with uncertain input parameters. The focus is concentrated on the influence
the uncertainty in inputs has on the limit state of ratchetting. The limit state is,
of course, determined only approximately through a numerical modeling of a finite
number of cyclic loading and unloading steps.

Let us imagine a cohesionless granular material such as soil, sand, or gravel. Its
behavior is different from common solid materials and cannot be modeled by com-
mon models widely used in elasticity and plasticity. Various models of hypoplastic
granular materials have been proposed, see, for instance, a micromechanical ap-
proach [1, 3], a macromechanical approach [4], or a survey in [2] or [6]. As already
indicated, we will use the model presented in the paper [6] that is a continuation
of [2], and both follow the hypoplastic concept proposed in [5].

Unlike in common elasticity models where a body is loaded by forces that, through
a strain, produce a stress, loading by stress is considered and strain inferred in hy-
poplastic models. An effect called ratchetting is then observed. It can be briefly
characterized as a behavior in which deformation accumulates due to cyclic mechan-
ical stress. As a consequence, the hypoplastic material is made denser and more
compacted than the material before cycles of loading and unloading. The material
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in an initial state is looser and has a greater void ratio (imagine a pile of fluffy soil
under a cyclic loading). The material response to the cyclic loading is more and
more stable. Finally, a limit state both in the strain and the void ratio is reached. In
the limit, the void ratio takes its minimum that is given by the parameter ed in our
model, see (9) in Section 2. Our contribution is concerned with an arising question:
How strongly is the limit strain influenced by the uncertainty in parameters that
enter the model?

2. The hypoplastic model

The model whose response will be investigated is introduced in this section. We
follow [6] but make the presentation significantly condensed. The reader can also get
an idea of the model in [2] where, however, the exposition is not as straightforward
as in [6].

The model [6] in a general form is given by

σ̇(t) = c1(t)
(
L(σ(t)) : ε̇+ f(t)N(σ(t))‖ε̇(t)‖

)
, (1)

where σ is the stress tensor, ε is the strain tensor, c1(t) and f(t) are “time” de-
pendent quantities, see (6) and (9), and L(σ(t)) and N(σ(t)) are tensors, see the
next paragraph. The canonical scalar product is denoted by : and the dot stands
for the derivative with respect to t, a time-like parameter on which the evolution
of the loading process depends. Since a stress-controlled loading is considered, the
stress σ(t) is given and the strain ε(t) is to be determined.

Let us particularize (1) in terms of matrices and scalar functions. The loading
is specified as proportional to a given 3× 3 symmetric matrix S = (sij)i,j=1,2,3, that
is, σ(t) = σ(t)S, where σ : [b, b + T ] → (0,∞) is a given monotone scalar function
defined on an interval [b, b+T ] of the length T . The proportional loading or unloading
is determined by the increasing or decreasing function σ, respectively.

Let us consider matrices A,B ∈ R3×3, and introduce

〈A,B〉 = A : B = tr(BTA) =
∑

1≤j,k≤3

ajkbjk,

the Frobenius norm
‖A‖ = 〈A,A〉1/2

as well as the identity matrix I ∈ R3×3.
Then the detailed form of the model (1) is as follows:

σ̇(t)S = c1(t)σ(t)

(
a2〈S, I〉ε̇(t)+

1

〈S, I〉
〈S, ε̇(t)〉S+af(t)‖ε̇(t)‖

(
2S− 1

3
〈S, I〉I

))
, (2)

where a > 0 is a real parameter and f is a positive t-dependent function. Both
quantities will be considered uncertain.
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Let us assume σ̇(t) 6= 0 and define a matrix-valued function X as well as a con-
stant matrix A

X(t) = c1(t)
σ(t)

σ̇(t)
ε̇(t), A =

Q

a2 + ‖Q‖2
, (3)

where

Q =
S

〈S, I〉
.

After some manipulation, see [6], the model (2) takes the following form

X(t) = A + af(t)‖X‖B for σ̇(t) > 0, (4)

X(t) = A− af(t)‖X‖B for σ̇(t) < 0, (5)

where

B =

(
2 +

1

3a2

)
A− 1

3a2
I, f(t) = F (e(t)) = f0

(
e(t)− ed
ec − ed

)α
, (6)

e(t) is the void ratio and α, ec > ed are positive constants that will be considered
uncertain. Instead of f0, a fixed value of 1 is used in [6]. Since we wish to perturb
this value too, we introduce a parameter f0 and consider it uncertain.

The mass balance equation implies a differential equation for the void ratio e(t),
namely,

ė(t) = (1 + e(t))〈ε̇(t), I〉. (7)

Recall X(t) = c1(t)
σ(t)

σ̇(t)
ε̇(t), then, with the help of (7)

〈X(t), I〉 = c1(t)
σ(t)

σ̇(t)
〈ε̇(t), I〉 = c1(t)

σ(t)

σ̇(t)

ė(t)

1 + e(t)
. (8)

Now, it is the right time to reveal that the function c1 is also e dependent. Indeed,

c1(t) = −c̄(e(t)− ed)−β, (9)

where the constants c̄, β, and ed will be considered uncertain but constrained by
0 < c̄, 1 ≤ β, and ed ∈ (0, 1). The meaning of (9) is that the material becomes rigid
when e(t) asymptotically converges (decreases) to ed, see [6]. The parameter ed rep-
resents the minimum void ratio of the granular material. It is one of the model input
parameters and its physically realistic value can be obtained from measurements.

Remark 1: Unlike [6], where 1 < β is considered, we allow for β = 1 to represent
uncertainty in β by a closed interval, see Section 3. The value β = 1 does not cause
any singularity or discontinuity in the model behavior.
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Let us choose a special sort of loading and unloading. In particular, let σ be
continuous, piecewise exponential, and periodic with the period equal to 2T . More-

over, let
σ(t)

σ̇(t)
be alternately equal to 1 if σ̇(t) > 0, and −1 if σ̇(t) < 0. This choice

simplifies (8) and (3) to

〈X(t), I〉 = ηc1(t)
ė(t)

1 + e(t)
and X(t) = ηc1(t)ε̇(t), (10)

where η = 1 if σ̇(t) > 0, and η = −1 if σ̇(t) < 0.
The left equality in (10) and the equalities (4)–(5) lead, after a clever manipula-

tion, see [6, Section 4], to

ė(t)
ĉ1(e(t))

1 + e(t)

(
h(F (e(t)))− g(F (e(t)))

)
= 1 for σ̇ > 0, (11)

ė(t)
ĉ1(e(t))

1 + e(t)

(
h(F (e(t)))− g(F (e(t)))

)
= −1 for σ̇ < 0, (12)

where ĉ1(e(t)) = c1(t) and

h(f) =
〈A, I〉+ (〈B, I〉〈A,B〉 − 〈A, I〉‖B‖2) a2f 2

〈A, I〉2 − ‖〈A, I〉B− 〈B, I〉A‖2a2f 2
,

g(f) =
〈B, I〉

√
‖A‖2 − a2f 2 (‖A‖2‖B‖2 − 〈A,B〉2) af

〈A, I〉2 − ‖〈A, I〉B− 〈B, I〉A‖2a2f 2
.

In (11)–(12), the functions ĉ1 and F are used instead of c1 and f to emphasize
the dependence on the function e, which is the unknown function in the ordinary
differential equation (11)–(12).

The matrix function X(t) can be expressed through A, B, a, and F (e(t)), see [6,
Section 4]. As a consequence, if e(t) is known by solving (11)–(12), then X(t) is
known too, and ε(t) can be determined from the right equality in (10).

Remark 2: If S = −I, then (4)–(5) represent the case of isotropic loading. A detailed
analysis of this special case together with a convergence analysis is presented in [6,
Sections 2 and 3].

Remark 3: Let the function σ that reduces (8) to (10) be defined as in [6, Section 2].
In detail, let σ1 and σ2 be two positive real numbers such that σ1 < σ2, let T =
lnσ2 − lnσ1, and let tk = kT for k = 0, 1, 2, . . . . We define

σ(t) = σ1et−t2j for t ∈ (t2j, t2j+1), σ(t) = σ2et2j+1−t for t ∈ (t2j+1, t2j+2). (13)

3. Uncertain inputs

Before we elaborate on uncertain parameters, let us show the model response to
crisp inputs. As in [6, Section 5], we fix a = 0.4, ec = 0.8, ed = 0.4, f0 = 1, α = 0.1,
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Figure 1: Ratchetting. The cross marks the numerical limit after 50 loading-
unloading cycles. The strain evolution is fully characterized in the ε11ε22-plane be-
cause ε22 = ε33.

c̄ = 2, β = 1.03, σ1 = 10, and σ2 = 12. The initial conditions are e0 = e(0) = 0.7
and ε(0) = 0 · I. Let the matrix S be diagonal with s11 = −1.5 and s22 = s33 = −1.

Let us focus on strain as the model monitored response. We have ε22 = ε33 by
virtue of the chosen values of S. This feature allows for graphing the full strain
evolution in the ε11ε22-plane in the course of 50 loading-unloading cycles, see Fig. 1.
Although the loading and unloading are periodic, the strain cycles are not. As they
converge to an equilibrium, we observe a shift in their cycles accompanied by a de-
creasing amplitude. This phenomenon is called ratchet(t)ing, see, for example, [1, 3].

Let us define the quantity of interest (QoI) as the numerical limit (after 100
cycles) of the strain in the ε11ε22-plane, see Fig. 1. We will investigate the sensitivity
of the QoI with respect to eight parameters, namely, a, f0, ec, ed, α, c̄, β, and the
initial condition e0. The initial condition ε(0) = 0 · I and the loading parameters σ1

and σ2, see (13), remain fixed.

Let us make the listed parameters uncertain. To this end, we define the vector u =
(0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.20, 1.25) and vectors aunc = au, func

0 =
f0u, eunc

c = ecu, etc., where the nominal values from the first paragraph of this section
are used in a, f0, ec, etc. In other words, the nominal values will be decreased or
increased in 5% steps up to 25%.

The only exception is β, for which we define βunc = 0.55 + 0.6u to allow for
a significant amount of uncertainty covering also the nominal value of 1.03.

Our goal is to record the QoI (the limit of the strain) if uncertainty is considered
in one parameter and the other parameters remain fixed at their nominal values.

For s11 = −1.5 and s22 = s33 = −1, the computation shows that the influence
of the uncertainty in the parameters can be divided into two groups. One group is

41



-0.2 -0.15 -0.1

11

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

22

25%
20%
15%
10%
5%
0%

-0.25 -0.2 -0.15 -0.1 -0.05

11

-0.05

-0.04

-0.03

-0.02

-0.01

22

25%
20%
15%
10%
5%
0%

Figure 2: Response to the uncertainty in ed (left) and e0 (right). The symbol ◦
at the extreme position corresponds to the −25% change of the parameter nominal
value, the symbol + at the extreme position corresponds to the +25% change of
the parameter nominal value, the symbol × marks the QoI if the parameter has its
nominal value.

formed by func
0 , eunc

c , αunc, c̄unc, βunc and the other by aunc, eunc
d , eunc

0 . In the former
group, the uncertain input causes a response (in ε11 as well as ε22) within 0.2%–5%
of the response to the nominal values. The response is significantly stronger in the
latter group and reaches 30%–60% as we can see in Fig. 2. Regarding a, the responses
are located on a segment-like curve that starts at (−0.18,−0.1) for −25% and ends
at (−0.125,−0.036) for +25%.

Let us make the anisotropy stronger by setting s11 = −2.0 and s22 = s33 = −1.
The basic division into two groups of parameters has been preserved though the
response to c̄unc has increased to ±10% of the reference value in ε22, for instance.
The range of the response to aunc is larger and comprises both positive and negative
values, that is, even the sign of the ε22 strain component is uncertain if sufficient
amount of uncertainty is present in a, see Fig. 3. The responses to eunc

d and eunc
0 are

quite similar, only the latter is depicted in Fig. 3.
Since, as we observe, the anisotropy of σ has a strong influence on the range

spread of QoI, we also investigate the model response to uncertainty in s11 with
s22 = s33 fixed to −1. We choose s11 = −2 as the nominal value that will be
perturbed up to ±25%. Fig. 4 shows the model responses.

4. Observations and comments

In Fig. 4 (right), we observe that the response of ε22 = ε33 is close to zero if
s11 = −1.8 or s11 = −1.9. As a consequence, a relatively small perturbation can
cause a sign change. Negative strain means compression (in the corresponding direc-
tion), whereas positive strain means expansion. The latter phenomenon appears if
the S-anisotropy is strong enough to make the material compressed in the 1-direction
and (with a smaller magnitude) expanded in the 2- and 3-direction. This is also il-
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Figure 3: Response to the uncertainty in a (left) and e0 (right). The symbol ◦
at the extreme position corresponds to the −25% change of the parameter nominal
value, the symbol + at the extreme position corresponds to the +25% change of
the parameter nominal value, the symbol × marks the QoI if the parameter has its
nominal value.

lustrated by Fig. 2 (right) and Fig. 3 (right). In the former case (s11 = −1.5),
compression is observed in the 2-direction, whereas expansion comes in the latter
case where s11 = −2.

Nevertheless, the computation shows that the void ratio e(t) tends to its limit ed
(not depicted), that is, that the material is compacted for s11 ∈ [−2.5,−1.5].

We also observe that changes of parameter values can result in an amplified or
attenuated total effect. The latter is illustrated by Fig. 3, where an increase in a de-
creases the magnitude of both ε11 and ε22, but an increase in e0 has an opposite effect.

In some cases, a parameter-to-response mapping is nonlinear, see, for instance,
Fig. 3 (left), where the negative perturbations have significantly stronger effect than
the positive perturbations.

Although most of the graphs show points [ε11, ε22] distributed along a line, a closer
inspection would reveal a slight nonlinearity. A stronger nonlinear behaviour is
depicted in Fig. 4 (left). The question arises whether the observed tendency to form
an almost linear pattern has a deep reason rooted in the setting of the model, or
whether it is simply the consequence of a limited amount of uncertainty that prevents
nonlinearities to be fully developed; see Fig. 4 (left) where the circles form a linear
pattern for β ∈ [1, 1.12] that becomes curved if β belongs to [1.15, 1.3], that is, to
the interval relatively distant from the nominal value β = 1.03.

Readers familiar with fuzzy sets certainly noticed that relevant membership func-
tions can be constructed on the basis of Fig. 2–4. Indeed, the ε11-distance between
two marks determined by the same (except for the sign) perturbation percent is the
length of an α-cut of a membership function representing the fuzziness of ε11 induced
by the fuzziness of one input parameter. Similarly for ε22. However, a more elaborate
approach is necessary if a fuzzy set based on Fig. 4 (left) is to be inferred.
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Figure 4: Left: Response to the uncertainty in β. The symbol ◦ at the extreme
position corresponds to β = 1, whereas the symbol + at the extreme position marks
the response to β = 1.3; the β-step is equal to 0.03. Right: Response to the uncer-
tainty in s11. The symbol ◦ at the extreme position corresponds to the response to
s11 = −1.5, whereas the symbol + at the extreme position marks the response to
s11 = −2.5; the s11-step is equal to 0.1.

All the calculations were performed in the MATLAB R© environment.
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