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Abstract: This paper addresses the two-asset Merton model for option pric-
ing represented by non-stationary integro-differential equations with two state
variables. The drawback of most classical methods for solving these types
of equations is that the matrices arising from discretization are full and ill-
conditioned. In this paper, we first transform the equation using logarithmic
prices, drift removal, and localization. Then, we apply the Galerkin method
with a recently proposed orthogonal cubic spline-wavelet basis combined with
the Crank–Nicolson scheme. We show that the proposed method has many
benefits. First, as is well-known, the wavelet-Galerkin method leads to sparse
matrices, which can be solved efficiently using iterative methods. Further-
more, since the basis functions are cubic splines, the method is higher-order
convergent. Due to the orthogonality of the basis functions, the matrices
are well-conditioned even without preconditioning, computation is simplified,
and the required number of iterations is less than for non-orthogonal cubic
spline-wavelet bases. Numerical experiments are presented for European-style
options on the maximum of two assets.

Keywords: wavelet-Galerkin method, Crank–Nicolson scheme, orthogonal
spline wavelets

MSC: 65T60, 65M60, 47G20, 60G51

1. Introduction

Numerous models have been developed for the fair pricing of options. These mo-
dels include the famous Black–Scholes and stochastic volatility models, which assume
that the underlying asset price is a continuous function of time. This assumption,
however, is not always consistent with the behavior of real market prices. Therefore,
several models have been developed which allow for jumps in the price of the under-
lying. This paper focuses on one of these models, the Merton jump-diffusion model

DOI: 10.21136/panm.2022.05

47

http://dx.doi.org/10.21136/panm.2022.05


with two assets, represented by a nonstationary partial integro-differential equation
(PIDE) with two state variables. From the mathematical point of view, it is not
straightforward to solve this model numerically due to several difficulties. First, the
integral term results in linear systems with full matrices for many standard methods,
such as the finite difference and finite element methods. Moreover, the integral term
requires the computation of four-dimensional integrals. Furthermore, the differential
operator is degenerate, and functions representing the initial conditions are typically
not smooth.

Option pricing is a central topic in financial mathematics, and there is a vast
amount of literature concerning the numerical valuation of options. However, when
it comes to multi-dimensional jump-diffusion models, due to the difficulties men-
tioned above, there are only a few studies on numerical methods for their solution.
Thus, this remains an important and active field of research. An implicit finite
difference scheme combined with fixed-point iterations was proposed for two-asset
jump-diffusion models in [9]. Operator-splitting methods and various-time stepping
schemes were studied in [4]. Wavelet-based methods have also been employed for
multi-dimensional models, for example, in [7, 11, 13]. In [7], the wavelet-Galerkin
method was used for the two-asset Merton model. Compared with [7], the method
proposed in this article uses orthogonal wavelet bases and includes transformation
into logarithmic prices and drift removal, resulting in a different variational problem.

As already mentioned, the standard methods used for PIDEs typically lead to full
matrices. In contrast, the Galerkin method with a wavelet basis leads to matrices
that can be closely approximated by sparse matrices, as discussed in [2, 6, 11]. This
paper uses the Galerkin method with orthogonal cubic spline wavelets combined
with the Crank–Nicolson scheme. The aim is to show that this method is suitable
and efficient for the two-asset Merton model. Its advantages are that the resulting
system’s matrices are sparse and uniformly conditioned, higher-order convergence
is achieved, and a small number of iterations is needed to solve the system to the
required accuracy.

2. The two-asset Merton model

The two-asset Merton model is a generalization of the original Merton jump-
diffusion model developed in [12]. The model assumes that the price Siτ of the asset i
at time τ follows the jump-diffusion process

ln

(
Siτ
Si0

)
=

(
r − σ2

i

2
− λκi

)
τ + σiW

i
τ +

Nτ∑
k=1

Y i
k , i = 1, 2, (1)

see [3, 4]. The parameters in the model have the following interpretation. The
parameter r represents the risk-free interest rate, and σi is the volatility of asset i
corresponding to the diffusion part of the process. The processes W 1

τ and W 2
τ are

Wiener processes with correlation coefficient ρ. The number of price jumps is rep-
resented by the Poisson process Nτ with intensity λ. The random variables Y i

k are
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independent and identically distributed for a given i. The parameter κi is the ex-
pected relative jump size, κi = E( eY

i
k − 1).

The process represented by (1) is a general jump-diffusion process. The Merton
model further assumes that eY

1
k and eY

2
k have the bivariate log-normal distribution

with density

f (y1, y2) =
K

y1y2

exp

−
(

ln y1−γ1
δ1

)2

+
(

ln y2−γ2
δ2

)2

− 2ρ̂
(

ln y1−γ1
δ1

)(
ln y2−γ2

δ2

)
2 (1− ρ̂2)

 , (2)

where K = 1/2πδ1δ2

√
1− ρ̂2. Let T be the maturity date, and let Si be the price of

asset i. Then, t = T − τ is the time to maturity and the option value V (S1, S2, t)
satisfies [4, 9, 12]

∂V

∂t
− LD (V )− LI (V ) = 0, S1, S2 ∈ (0,∞) , t ∈ (0, T ) , (3)

where LD is a degenerate differential operator defined as

LD (V ) =
σ2

1S
2
1

2

∂2V

∂S2
1

+ ρσ1σ2S1S2
∂2V

∂S1∂S2

+
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∂2V

∂S2
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(4)

+ (r − λκ1)S1
∂V

∂S1

+ (r − λκ2)S2
∂V

∂S2

− (r + λ)V

and LI is an integral operator given by

LI (U) = λ

∞∫
0

∞∫
0

V (S1y1, S2y2, t) f (y1, y2) dy1 dy2. (5)

The degeneracy means that for S1 = 0 and S2 = 0, some second-order terms of the
differential operator LD vanish. The first-order terms of LD represent drift.

The initial and boundary conditions depend on the type of option. We consider
a European option on the maximum of two assets as an example. This option gives
its holder the right, but not the obligation, to sell (for a put option) or buy (for
a call option) the most expensive of two underlying assets at the strike price K at
maturity T . In this case, the initial condition representing the value of an option at
maturity is

V (S1, S2, 0) =

{
max (K −max (S1, S2) , 0) for a put option,

max (max (S1, S2)−K, 0) for a call option.
(6)

3. Transformation and variational formulation

Two main approaches are typically employed for the numerical solution of PDEs
and PIDEs representing option-pricing problems. The first approach moves directly
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to a variational formulation of the equation with the degenerate differential operator.
In this case, the analysis has to be carried out using weighted Sobolev spaces, and
error estimates are available only in the norms of these spaces. This approach has
been studied for PDE models, for example, in [1], and for the Merton model in [7].

This paper focuses on the second approach, which is based on transformation
into logarithmic prices. This has the advantage that it removes the degeneracy of
the differential operator. Therefore, standard Sobolev spaces are used for the analysis
and error estimates. Various papers have studied this approach, but mainly for PDE
models. For PIDEs, we refer to [11, 13].

Hence, we first adjust (3). The degeneracy and drifts are removed using the
substitution U (x1, x2, t) = V (S1, S2, t), where xi = logSi − (σ2

i /2 + λκi − r) t for
i = 1, 2. Then, the unbounded domain R2 for (x1, x2) is approximated by a bounded
domain Ω = I × I, where I is a chosen finite interval. Finally, as in [11], we set U to
zero outside Ω, that is,

U (x1, x2, t) = 0, (x1, x2) ∈ R2\Ω, t ∈ (0, T ) . (7)

Note that this homogeneous Dirichlet boundary condition is artificial and does not
describe the actual situation. However, setting this condition simplifies the method
and does not affect the solution significantly in the parts of Ω which are not close to
the boundary, when Ω is large enough, see [11].

After these adjustments, we obtain an elliptic differential operator

D (U) =
σ2

1

2

∂2U

∂x2
1

+ ρσ1σ2
∂2U

∂x1∂x2

+
σ2

2

2

∂2U

∂x2
2

− (r + λ)U (8)

and an integral operator

I (U) = λ

∫∫
Ω

U (t1, t2, t) g (t1 − x1, t2 − x2) dt1 dt2, (9)

where g (x1, x2) = f (ex1 , ex2) ex1ex2 . The transformed equation has the form

∂U

∂t
= D (U) + I (U) . (10)

Let 〈·, ·〉 denote the L2 inner product. To derive a variational formulation, we
define a bilinear form a = aD − aI , where

aD (u, v) =
σ2

1

2

〈
∂u

∂x1

,
∂v

∂x1

〉
+ ρσ1σ2

〈
∂u

∂x1

,
∂v

∂x2

〉
(11)

+
σ2

2

2

〈
∂u

∂x2

,
∂v

∂x2

〉
+ (r + λ) 〈u, v〉

and aI (u, v) = 〈I (u) , v〉. Let U0 ∈ L2 (Ω) be the transformed payoff function. The
variational formulation consists in determining the function U ∈ L2 (0, T ;H1

0 (Ω))
such that ∂U

∂t
∈ L2 (0, T ;H−1 (Ω)) and〈

∂U

∂t
, v

〉
+ a (U, v) = 0 ∀v ∈ V, a.e. in (0, T ) , U (x1, x2, 0) = U0 (x1, x2) . (12)
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4. The orthogonal cubic spline-wavelet basis

There is not a universally accepted definition of a wavelet basis in the mathe-
matical literature. Here, we consider a wavelet basis of the space L2 (I), where I is
a bounded interval, in the following sense. Let J be an index set such that λ ∈ J
takes the form λ = (j, k) and |λ| = j denotes the level. Then, Ψ = {ψλ, λ ∈ J } is
a wavelet basis of L2 (I) if it satisfies the following four conditions:

(i) The set Ψ is an orthogonal basis for L2 (I).

(ii) The basis functions are local, i.e., diam supp ψλ ≤ C2−|λ| for all λ ∈ J .

(iii) The set Ψ has a hierarchical structure,

Ψ = Φj0 ∪
∞⋃
j=j0

Ψj, Φj0 = {φj0,k, k ∈ Ij0} , Ψj = {ψj,k, k ∈ Jj} . (13)

The functions φj0,k are called scaling functions and the functions ψj,k are called
wavelets.

(iv) The wavelets have vanishing moments, that is, 〈p, ψj,k〉 = 0, k ∈ Jj, j ≥ j0, for
any polynomial p of degree less than L ≥ 1, where L depends on the wavelet
type.

The method in this paper uses orthogonal cubic spline wavelets on the interval
with four vanishing moments, recently constructed in [8] using general principles
from [10]. The scaling functions in the inner part of the interval are defined as trans-
lations and dilations of six generators, which are illustrated in Fig. 1. In addition,
boundary functions are constructed near the endpoints of the interval.

Similarly, wavelets in the inner part of the interval are constructed as translations
and dilations of six generators, and several boundary functions need to be added.
Plots of the wavelet generators are shown in Fig. 2. Since all the basis functions are
cubic splines, they are given in closed form and can be handled easily. The resulting
basis satisfies the conditions i)− iv) above.

The two-dimensional wavelet basis is constructed using so-called anisotropic ten-
sor products of these one-dimensional bases see [6, 8], that is, it contains the func-
tions ψλ = ψλ1 ⊗ ψλ2 , where ψλ1 and ψλ2 are univariate basis functions. Then
|λ| = max (λ1, λ2) is a level of ψλ. Furthermore, we denote [λ] = min (λ1, λ2).

5. The orthogonal wavelet method

Let Ψk contain all basis functions up to level k and let Xk = span Ψk. Let Uk,0
be an approximation of U0 ∈ L2 (Ω) in Xk. The wavelet-Galerkin method consists in
finding a solution Uk ∈ L2 (0, T ;Xk) such that ∂Uk

∂t
∈ L2 (0, T ;X ′k) and the equation〈

∂Uk
∂t

, vk

〉
+ a (Uk, vk) = 0, Uk (x1, x2, 0) = Uk,0 (x1, x2) (14)

is satisfied for all vk ∈ Xk and almost everywhere in (0, T ).
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Figure 1: Generators of inner orthogonal cubic spline scaling functions.

The Crank–Nicolson scheme is used for temporal discretization to obtain a fully
discrete scheme. Let M ∈ N, τ = T/M , tl = lτ for l = 0, . . . ,M , and let U l

k (x1, x2) =
Uk (x1, x2, tl). The aim is to find a solution U l

k of the equation〈
U l+1
k , vk

〉
τ

−
〈
U l
k, vk

〉
τ

+
a
(
U l+1
k , vk

)
2

+
a
(
U l
k, vk

)
2

= 0, U0
k = Uk,0 (15)

for all vk ∈ Xk.
Now, we expand the solution U l

k in the basis Ψk,

U l
k =

∑
ψλ∈Ψk

(
clk
)
λ
ψλ, (16)

set vk = ψµ, and substitute it into (15).
Let Gk and Kk be matrices corresponding to the differential and integral terms,

respectively, defined as

Gk
µ,λ =

〈ψλ, ψµ〉
τ

+ aD (ψλ, ψµ) , Kk
µ,λ = aI (ψλ, ψµ) , ψλ, ψµ ∈ Ψk. (17)

Furthermore, let the vector f lk be defined as

(
f lk
)
µ

=

(
U l
k, ψµ

)
τ

−
a
(
U l
k, ψµ

)
2

, ψµ ∈ Ψk. (18)

Then, for l = 1, . . . ,M, the column vector cl+1
k of coefficients

(
cl+1
k

)
λ

is a solution of

the linear system Akcl+1
k = f lk, where Ak = Gk −Kk.
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Figure 2: Generators of inner orthogonal cubic spline wavelets.

For the numerical solution of this system, the GMRES method is used. No
preconditioning of the system is necessary because the use of orthogonal wavelets
ensures that the system is well-conditioned similarly as in [8].

Since the matrix Gk corresponds to the differential operator, it is sparse. The
GMRES method requires multiplying the matrix Gk with a vector. This can be
realized using the Kronecker product of matrices corresponding to one-dimensional
differential operators, as detailed in [8]. Due to the L2 orthogonality of the basis,
some of these matrices are identity matrices, which positively affects the resulting
condition number of the matrix Gk and greatly simplifies the computation.

The next theorem, for which a proof can be found in [6], yields a decay estimate
for the entries of the matrix Kk.

Theorem 1. Let ψλ and ψµ be wavelets with L = 4 vanishing moments, as defined
in Section 4. Then there exists a real constant C such that

|aI (ψλ, ψµ)| ≤ C2−(L+1)([λ]+[µ]). (19)

By Theorem 1, the entries of the matrix Kk decrease exponentially. Thus, many
of them are very small and can be set to zero. This process is called compression of
the matrix Kk. For the compression strategy and the effect of compression, we refer
to [6].

6. Numerical example

Numerical results are presented for a benchmark example from [4, 7]. The market
values of European put and call options on the maximum of two assets are evaluated
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using the proposed method. The advantage of considering options on the maximum
of two assets is that, in this special case, the analytic solution is known [3], which
enables us to compute the errors of the numerical solution.

The parameters for the options are set as in [4, 7]. The strike price is K = 100,
the risk-free interest rate is r = 0.05, the volatilities of the asset prices are σ1 = 0.12
and σ2 = 0.15, and the correlation coefficient for the asset prices is ρ = 0.3. The
parameters for the jump part of the process are λ = 0.6, γ1 = −0.1, γ2 = 0.1, ρ̂ =
−0.20, δ1 = 0.17, and δ2 = 0.13. The time to maturity is T = 1 year. A sufficiently
large domain for (S1, S2) has to be chosen, therefore we set it to be (0.1, 5K)2. Plots
of the resulting functions representing prices of put and call options are shown in
Fig. 3. Since artificial boundary conditions are used, the plot of the put option price
is shown only in the region (1, 200)2 and the plot of the call option price is shown
only in the region (1, 150)2, to avoid the area near S1 = 0 and S2 = 0.

Figure 3: The functions representing prices of European put (left) and call (right)
options at one year to maturity.

Table 1 lists the resulting values of options, errors, and numbers of iterations.
In this table, N denotes the number of basis functions and M denotes the number
of time steps. The values VP represent the computed prices of options for asset
prices (S1, S2) equal to P = (100, 100). The corresponding pointwise error is denoted
by ρP . We set a region of interest as ROI = (K/2, 3K/2)2 and compute the L∞ (ROI)
error ρ∞ and the L2 (ROI) error ρ2. For the numerical solution, the GMRES method
without restart is used. The GMRES iterations are set to stop when the relative
residual is less than 10−9. The number of iterations is denoted by it.

Conclusions

A wavelet-based method is proposed for pricing European-style two-factor options
under the Merton jump-diffusion model. The first important step of the method is
adjusting the original integro-differential equation, including transformation into log-
arithmic prices, drift removal, and localization. After these adjustments, it is possible
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type N M VP ρP ρ∞ ρ2 it
put 144 2 2.98889 -1.46e0 6.55e0 2.30e-1 7

576 8 1.30073 -1.19e-1 1.29e0 4.14e-2 7
2304 32 1.19320 -1.11e-2 2.90e-1 4.61e-3 6
9216 128 1.18752 -5.46e-3 2.67e-2 6.30e-4 6

call 144 2 20.6315 -4.23e0 2.63e1 3.37e-1 8
576 8 15.7047 6.93e-1 2.73e0 3.29e-2 7

2304 32 16.3922 5.51e-3 1.50e-1 1.30e-3 6
9216 128 16.3923 5.46e-3 6.30e-2 4.99e-4 6

Table 1: Option values VP for P = (100, 100), pointwise errors ρP , L∞ errors ρ∞,
L2 errors ρ2, and numbers of GMRES iterations it.

to remove the degeneracy of the differential operator and derive a variational for-
mulation using standard Sobolev spaces. The variational problem is solved by the
Galerkin method with an orthogonal cubic spline-wavelet basis combined with the
Crank-Nicolson scheme. It is shown that the method is suitable for the given equation
and has many advantages. Due to the vanishing moments of the wavelets, the matrix
corresponding to the integral term can be efficiently represented by a sparse matrix,
which is not the case in many standard methods. Furthermore, the L2 orthogonal-
ity of the basis results in matrices with uniformly bounded condition numbers even
without any preconditioning. Therefore, a sufficiently accurate solution can be ob-
tained using a small number of iterations. Since the basis functions are cubic splines,
the method is higher-order convergent. The proposed method could be used to price
various options and could be generalized to other jump-diffusion models and options
with more assets.
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[6] Černá, D. and Finěk, V.: Wavelet-Galerkin method for second-order integro-
differential equations on product domains. In: Singh, H., Dutta, H., and Cav-
alcanti, M.M. (Eds.), Topics in Integral and Integro-Differential Equations,
pp. 1–40. Springer, Switzerland, 2021.

[7] Černá, D.: Wavelet method for option pricing under the two-asset Merton jump-
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