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Abstract: In nonlinear dynamical systems, strong quasiperiodic beating
effects appear due to combination of self-excited and forced vibration. The
presence of symmetric or asymmetric beatings indicates an exchange of en-
ergy between individual degrees of freedom of the model or by multiple close
dominant frequencies. This effect is illustrated by the case of the van der Pol
equation in the vicinity of resonance. The approximate analysis of these non-
linear effects uses the harmonic balance method and the multiple scale method.

Keywords: dynamical systems, quasiperiodic response, van der Pol equation

MSC: 37C60, 37N05, 70G60, 34A12

1. Introduction

The frequency lock-in effect occurs, e.g., when an elastic profile vibrates in buffet-
ing flow. It is characterised by the fact that the vibration frequency does not follow
the vortex shedding frequency but locks onto the natural frequency of the profile.
Such behaviour is illustrated in Fig. 1a, see [6], where the linear dependence of the
frequency ratio on the stream velocity (which directly relates to the vortex shedding
frequency) is interrupted at the ratio 1 for a non-negligible wind velocity interval.

This lock-in effect is usually modelled using the van der Pol equation, which corre-
sponds to a single-degree-of-freedom (SDOF) physical system representing a circular
bar in an air flow, see Fig. 1b. The spring in the SDOF model is considered linear,
the damping term has the (quadratic) van der Pol character. The flow around the
body induces a regular vortex shedding that is, in general, perturbed by a random
pressure fluctuations.

The measured response in the lock-in region and its neighbourhood consists of the
following cases, cf. also Fig. 1a: (a) small stationary amplitudes; the velocity is lower
than the critical velocity and the vortex-shedding frequency is lower that the natural
frequency; (b) the lock-in regime, a stationary vortex-induced resonance, maximal
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Figure 1: a) frequency ratio vs. the flow velocity and the lock-in domain; b) scheme
of the SDOF model, [6]

amplitudes; (c) large beating amplitudes, caused by a small detuning of the forcing
and natural frequencies outside the lock-in region; (d) small non-stationary post-
critical vibrations of forced (non-resonant) vibrations caused by vortex shedding with
a frequency larger than the natural frequency. The transition between regions (c)
and (d) is not sharp; the influence of the natural frequency decays exponentially
with increasing distance from the boundary of the lock-in region (b).

The case (c), i.e., the regime in the neighbourhood of the stationary lock-in, is
studied in this contribution. The beating effect is caused by multiple close dominant
frequencies which are present in the response. When a small random component is
also present, the response has a character of a cyclostationary process [2].

This paper, as part of a larger project, restricts itself to the behaviour of the van
der Pol equation solution under deterministic harmonic excitation in a region that is
closely adjacent to the lock-in region. The general mathematical model presented in
Section 2 is further studied numerically in Sect. 2.1, using the “harmonic balance”
method (Sect. 2.2) and the “multiple scales” method (2.3).

2. Mathematical model

Vibration of a slender structure in an airflow is usually modelled using the van
der Pol equation with a harmonic right hand side:

ü− (η − νu2)u̇+ ω2
0u = Pω2 cosωt+ h · ξ(t) . (1)

In Eq. (1), u(t) – displacement [m], u̇(t) – velocity [ms−1], η, ν – parameters of the
damping [s−1, s−1m−2], ω0– eigen-frequency of the adjoint linear SDOF system, ω –
excitation frequency of the vortex shedding [s−1], Pω2 – amplitude of the harmonic
excitation (acceleration) [ms−2], h – multiplicative constant [ms−2], ξ(t) – stationary
Gaussian random process [1]. In the rest of the paper, h = 0 is assumed.

When regarded as a dynamical system, the solution exhibits one stable limit
cycle, the rest position u(t) = 0 is unstable.
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2.1. Numerical analysis

For the first view, the stationary/non-stationary character of the solution to (1)
can be analysed numerically in the frequency domain. Figure 2 shows the Fourier
analysis of the set of responses obtained for the frequency range near the resonance
frequency ω0 = 1. The dominant peaks of the periodogram for each value of ω are
plotted vertically. This way, the ordinate represents the Fourier frequency coefficients
present in the response. The color intensity shows the absolute values of the dominant
Fourier coefficients on a logarithmic scale. The detuning on the abscissa is defined

as ∆ =
ω2
0−ω2

2ω
. The stationary lock-in interval of the harmonic response appears

for −0.1 . ∆ . 0.12, although there are clearly two superharmonic components
(ω = 3ω0, 5ω0). The complex behaviour of the nonlinear response is evident from
the existence of a subharmonic resonance interval for negative ∆ (i.e., for ω ≈ 1/3).

The most important aspect for this work is the behaviour at the boundaries of
the lock-in intervals. There the dominant frequencies divide into a series of close
but distinct frequencies that cause the beating character of the response. Their
mutual distances increase rapidly with increasing distance from the lock-in region
and cause shortening of the beating periods in the response. It is clear from this
that the monochromatic representation of the solution used in the remaining text is
only approximate and more accurate estimates will need to be used in the future.

2.2. Analysis based on the harmonic balance

Following the more general approach by the authors in [5], for a weak excitation
force and a small detunig, the response can be expected to have an approximately
harmonic form with slowly varying amplitude U(τ) and phase ϕ(τ), τ = εt, ε� 1:

u→ U(τ) cos(ωt+ ϕ(τ)) . (2)

The harmonic balance procedure consists in multiplying Eq. (1) by sinωt or cosωt
and subsequent integration over one period t ∈ (0, 2π/ω). Since (τ) is “slow time”,
the variability of U and ϕ within one period can be neglected and both functions
can be treated as constants. Then:

U̇ =
1

2
U

(
η − 1

4
νU2

)
− 1

2
Pω sinϕ , (3a)

ϕ̇ = ∆− 1

2U
Pω cosϕ , (3b)

where ∆ =
ω2
0−ω2

2ω
≈ ω0 − ω and the derivative U̇ , ϕ̇ is taken with respect to τ . The

stationary amplitude for U̇ = 0, ϕ̇ = 0 is given by

U2

(
4∆2 +

(
η − ν

4
U2
)2
)

= ω2P 2 . (4)

Stability of admissible solutions can be assessed using two Routh-Hurwitz conditions

64∆2 +
(
4η − 3νU2

) (
4η − νU2

)
≥ 0 , (5a)

νU2 − 2η ≥ 0 . (5b)
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Amplitudes of possible stationary solutions following Eq. (4), depending on the
value of detuning ∆, are shown in Fig. 3. The stable solutions according to the
Routh-Hurwitz conditions are shown in solid lines, the unstable parts are dashed.
The greyed areas denote negative values of conditions (5a,5b), respectively, i.e., the
unstable regions. To complete the picture, the results from numerical simulations of
the original Eq. (1) are shown in Fig. 5b. The stationary amplitudes are numerically
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Figure 2: Frequency response characteristics of Eq. (1). The nonzero coefficients of
the angular frequency are plotted versus detuning ∆, the colour scale corresponds
to the absolute values of the respective Fourier coefficients. Values used: η = 1,
ν = 0.5, ω0 = 1, P = 1.
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Figure 3: Theoretical amplitudes U of the harmonic solution given by Eq. (4) depend-
ing on detuning ∆. Left: stationary amplitudes for different values of the excitation
parameter P ; right: detailed view together with results from numerical simulations,
indicated as colour dots. Values used: η = 1, ν = 0.5, ω = 1.
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identified as those, where the variance of local maxima of the response for fixed values
of ∆, P is lower than certain threshold. The numerical results appear to incline to the
positive values of detuning ∆, however, the global tendency respects the theoretical
mono-harmonic results.

The stationarity condition for the phase shift, ϕ̇ = 0 in Eq. (3b), introduces
a limit value of detuning

∆0 =
ωP

2U0

, such that cosϕ0 =
∆

∆0

, (6)

which indicates the state when the phase shift in Eq. (3b) vanishes for U2
0 = 4 ν

η
.

This amplitude corresponds to the horizontal tangent at the top of the region defined
by condition (5a). When ∆ value varies, the sign of the phase shift changes when
crossing ∆0 = ± 1

4
Pω
√
ν/η.

The stationary solution exists for the detunig up to value ∆s, which is given by
the condition of existence of a real solution of Eq. (4). The discriminant of Eq. (4)
represents a cubic polynomial equation in ∆2:(

64
(
12∆2 − η2

)3
+
(
288∆2η + 8η3 − 27νP 2ω2

)2
)

= 0 , (7)

which can have up to three real roots. The largest of these, if it exists, defines
the boundary detuning of ∆s, depending on the system and excitation parameters.
Unfortunately, there is no simple expression for ∆s. From the root of the discriminant
with respect to P 2ω2 of Eq. (7), it is possible to find the limiting excitation value
for which Eq. (7) is applicable, i.e.,

Pω ≥ 4η
√

2

3
√

3

√
η

ν
. (8)

The limiting amplitude for the values used in Fig. 3 would be P = 1.53. For larger
values of excitation Pω, the existence of a stable stationary solution is governed only
by the RH condition (5b). In such a case, the “ultimate” limit ∆s2 follows from
Eqs. (4,5b):

∆s2 =
1

2
√

2

√
ν

η

√
P 2ω2 − η3

2ν
. (9)

The role of the detuning limit value ∆s becomes apparent also when a general
non-stationary solution to Eq. (3) is assumed. In such a case, after integration

∆2 > ∆2
s , ϕ = 2 arctan

(
∆−∆s

D
tan

1

2
Dt

)
, (10a)

∆2 < ∆2
s , ϕ = 2 arctan

(
D(1− eDt)

2∆

)
, (10b)

where D =
√
|∆2

s −∆2| and (without loss of generality) t0 = 0 has been assumed.
The phases in Eqs. (10) represent the asymptotically constant (10b) and periodic
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Figure 4: Time plot of numerical solution u(t) and analytical amplitude U(τ)
calculated from Eqs. (10b).

solutions (10a), which represent the stationary and nonstationary amplitudes, re-
spectively. The amplitude can be finally enumerated from Eq. (3).

Figure 4 shows the agreement between numerical and analytical solutions that can
be achieved when the initial conditions are carefully matched. In general, however,
the agreement is not so good, as it was shown in Fig. 3b. This implies that, if
necessary, a multi-harmonic Ansatz for the harmonic balance method or different
levels of the perturbation method must be used to obtain more accurate results.

2.3. Analysis based on the multiple scales method

An alternative analytic approach is based on the multiple scales method, [1, 4, 3].
For this purpose, Eq. (1) will be rewritten so that its nonlinear term can be treated
as a small quantity

ü− ε (η − νu2)u̇+ ω2
0u = Pω2 cosωt , (11)

where ε is assumed to be a small parameter, ε� 1. The solution will then be sought
in the form of an expansion combining the slow and fast time scale:

u(t)→ u0 (T0, T1) + ε u1 (T0, T1) , Tk → εkt. (12)

Substituting Eq. (12) into (11) and comparing coefficients of similar powers of ε:

ε0 :
d2u0

dT 2
0

+ ω2
0u0 = Pω2 cos(tω) (13a)

ε1 :
d2u1

dT 2
0

+ ω2
0u1 =

du0

dT0

(
νu2

0 − η
)
− 2

d2u0

dT0dT1

. (13b)

For the homogeneous case (P = 0), u0 satisfying Eq. (13a) can be written as

u0 = A(T1)eiω0T0 + A(T1)eiω0T0 , (14)
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where A is the function to be determined. The condition of avoiding secular terms
in u1 yields

A (T1)
(
νA (T1) Ā (T1)− η

)
+ 2A′ (T1) = 0 . (15)

Writing A (T1) = α(T1)eiβ(T1) for real functions α, β, the stationary (A′ (T1) = 0)
response amplitude agrees for η > 0 with the parallel solution to Eq. (4):

u0(t) = 2

√
η

ν
cos (ω0t) and u1(t) = −

√
η

ν

η

4ω0

sin (3ω0t) . (16)

For P > 0, the analogy of Eq. (14) reads

u0 = iΩpe
iωT0 − iΩpe

−iωT0 + A(T1)eiω0T0 + A(T1)e−iω0T0 ; Ωp =
P

2 (ω2 − ω2
0)

(17)

Then, the RHS in Eq. (13b) for u1 comprise the following components

κ1e
iT0ω + κ2e

iT0ω0 + κ3e
iT0(2ω+ω0) + κ4e

iT0(ω+2ω0)+

+ κ5e
iT0(2ω−ω0) + κ6e

iT0(ω−2ω0) + κ7e
3iT0ω0 + κ8e

3iT0ω+ (18)

+ complex conj. terms

where it has been denoted

κ1 = ωΩp

(
ν
(
2 |A (T1)|2 + Ω2

p

)
− η
)
,

κ2 = −iω0

(
2A′ (T1) + A (T1)

(
ν |A (T1)|2 − η + 2νΩ2

p

))
,

κ3 = iνΩ2
p (2ω + ω0)A (T1) , κ4 = νΩp (ω + 2ω0)A (T1)2 ,

κ5 = iνΩ2
p (2ω − ω0) Ā (T1) , κ6 = νΩp (ω − 2ω0)A (T1)

2
,

κ7 = −iνω0A (T1)3 , κ8 = −νωΩ3
p .

For the non-resonant solution in the first approximation, the elimination of secular
terms reduces to the condition

κ2 = 0 . (19)

Assuming again A = αeiβ and expanding real and imaginary parts of Eq. (19) one
obtains

α = 0, ±
√
η

ν
− Ω2

p , β = kπ , k ∈ Z . (20)

The solution α = 0 is stable in the vicinity of the resonance, but is not applica-
ble there due to the unmet assumptions. The non-zero value of α applies only at
some distance from the eigenfrequency, where the expression below the square root
becomes positive. This later case, when substituted into Eq. (17), gives

u0 = − Pω2

ω2 − ω2
0

sin(tω)− 2

ω2 − ω2
0

√
η

ν
(ω2 − ω2

0) 2 − 1

2
P 2ω4 cos (tω0) . (21)
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The other option, α = 0, would nullify the coefficient sin(ω0t) in Eq. (21). This way
the quasiperiodic character of u0 will appear only when the non-zero α attains the
real value, i.e., for η/ν > Ω2

p. Due to different assumptions used in the multiple scales
method, this condition does not correspond exactly to ∆s defined above, however,
except for a factor of 2−1/2, it captures ∆0 defined in Eq. (6).

The correction term u1 would involve elimination of more secular terms originat-
ing from sub-/super-harmonic cases when ω ≈ 1/3ω0, 1/2ω0, 2ω0, 3ω0, etc., and their
combinations; this is, however, out of scope of the current work.

3. Conclusions

A simple van der Pol deterministic system with a harmonic right-hand side was
studied in the vicinity of the resonance. In addition to the previously reported results,
the boundaries of the lock-in region due to the primary resonance were derived
using the harmonic balance method. A limited complementary analysis based on
the multiple scales method was also presented. It turns out that the weakness of the
harmonic balance method is its link to the specific frequency that is assumed in the
solution. In this respect is the multiple scales method more flexible because it allows
more resonant frequencies to be identified in the solution. On the other hand, the
use of the multiple scales method is limited to the assumption of small nonlinearity,
which can be limiting in some cases. In both approaches, a more detailed analysis will
have to be adopted in order to qualitatively assess the fine details of the quasiperiodic
processes surrounding the resonance region.
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[5] Náprstek, J. and Fischer, C.: Analysis of the quasiperiodic response of a general-
ized van der Pol nonlinear system in the resonance zone. Computers & Structures
207 (2018), 59–74.
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