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Abstract: Hybrid LSQR represents a powerful method for regularization of
large-scale discrete inverse problems, where ill-conditioning of the model ma-
trix and ill-posedness of the problem make the solutions seriously sensitive to
the unknown noise in the data. Hybrid LSQR combines the iterative Golub-
Kahan bidiagonalization with the Tikhonov regularization of the projected
problem. While the behavior of the residual norm for the pure LSQR is well
understood and can be used to construct a stopping criterion, this is not the
case for the hybrid method. Here we analyze the behavior of norms of approx-
imate solutions and the corresponding residuals in Hybrid LSQR with respect
to the Tikhonov regularization parameter. This helps to understand conver-
gence properties of the hybrid approach. Numerical experiments demonstrate
the results in finite precision arithmetic.
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1. Introduction

We are concerned with an ill-posed inverse linear approximation problem

Ax ≈ b, A ∈ Rm×n, b ∈ Rm, (1)

where m ≥ n, m,n ∈ N. The matrix A represents a (possibly large-scale) discretized
smoothing operator, b stands for the data typically polluted by unknown additive
noise e. Formally,

b = bexact + e,

where bexact denotes noise-free data. Further, denote η = ‖e‖/‖b‖ the noise level,
with ‖.‖ being the standard Euclidean norm. Problems of the form (1) arise in many
applications such as medical imaging or gravity surveying, see for example [4, 6].
Since the approximate solution is here seriously sensitive to the noise in b, regular-
ization needs to be applied in order to obtain a meaningful solution. A wide variety
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of regularization techniques have been developed, where for large-scale problems, it-
erative schemas are often the methods of choice. Here regularization is achieved by
early termination of the process. Determining a reliable stopping criteria is crucial,
because iterative methods applied on (1) typically exhibit semiconvergence. Alter-
natively, iterations can be further combined with direct regularization yielding the
so-called hybrid methods such as Hybrid LSQR or Hybrid GMRES, see [1] for an
overview. Hybrid methods are known for their ability to stabilize the computation
and making it less sensitive to stopping criteria. Analysis of the properties of hybrid
methods is, however, significantly more complicated.

In this paper we focus on Hybrid LSQR combining iterative projection on a Krylov
subspace with the Tikhonov regularization of the projected small problem. We ana-
lyze residual norm behavior, since its stagnation indicates stabilization of the method
and is thus used in stopping criteria when solving ill-posed problems. While prop-
erties of the residuals for standard LSQR regularization have already been analyzed
(see, e.g, [2, 8]), this is not the case for Hybrid LSQR, where the behavior is highly
dependent on the inner Tikhonov regularization parameter λk that changes in each
outer iterative step k. Note that some analysis of LSQR combined with Tikhonov
regularization for constant λk was provided already in [10]. A variety of parameter-
choice methods have been introduced for selecting λk, e.g., the Discrepancy principle,
L-curve or Generalized Cross Validation, see [4, 9, 12]. Their suitability for hybrid
framework was studied in [3]. Here we, however, do not restrict ourselves to a partic-
ular parameter-choice strategy. We provide conditions on parameters λk to guarantee
a decrease of the residual norm in hybrid LSQR and discuss its meaning in regu-
larization process. Throughout the paper we assume exact arithmetic. Numerical
experiments then demonstrate the presented properties in finite precision arithmetic.

2. Krylov projection and Tikhonov regularization

Hybrid LSQR represents a combination of the well known Golub-Kahan iterative
bidiagonalization [10, 11] with the Tikhonov regularization. The Golub-Kahan bidi-
agonalization starting with s1 = b/ ‖b‖ produces after k iterations the matrices Wk

and Sk+1, having orthogonal basis of Kk(ATA,AT b) and Kk(AAT , b) in their columns,
respectively. Assuming that the algorithm does not stop early, bidiagonalization co-
efficients αi > 0, βi > are stored in a lower bidiagonal matrix Lk,

Lk =


α1

β2 α2

. . . . . .

βk αk

 ∈ Rk×k, and we denote Lk+ =

[
Lk

eTk βk+1

]
∈ R(k+1)×k,

where ek is the k-th Euclidean vector of an appropriate size. Then it holds that

AWk = Sk+1Lk+, ATSk = WkL
T
k . (2)
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In the standard LSQR, the original problem (1) is replaced by the problem

min
y∈Rk

{‖AWky − b‖}. (3)

Using relations (2) and the orthogonality of Sk, we have

‖AWky − b‖ = ‖Sk+1Lk+y − b‖ =
∥∥ST

k+1Sk+1Lk+y − ST
k+1b

∥∥ = ‖Lk+y − β1e1‖ (4)

for any y ∈ Rk. The projected problem (3) thus translates to

min
y∈Rk

{‖Lk+y − β1e1‖}, where β1 = ‖b‖ ,

having a unique solution yk.
For inverse problems, however, the projected problem subsequently inherits their

ill-posedness and noise gradually propagates to the projections, see [7]. Thus, Hybrid
LSQR further applies Tikhonov regularization on the projected problem and solves

min
y∈Rk
{‖Lk+y − β1e1‖2 + λ2

k ‖y‖
2}, (5)

for some regularization parameter λk > 0, λk ∈ R. The obtained minimization prob-
lem has also a unique solution, further denoted yk. Putting the initial approximation
x0 = 0, the approximate solution to the original problem (1) is then obtained by

xk = Wkyk and xk = Wkyk (6)

for LSQR and Hybrid LSQR, respectively.
Let us further clarify some notation. Denote the residuals corresponding to LSQR

and Hybrid LSQR in the iteration k as follows

rk(x) = b− Ax, pk(y) = β1e1 − Lk+y,

r̄k(x) =

(
b
0

)
−
(
A
λkI

)
x, p̄k(y) =

(
β1e1

0

)
−
(
Lk+

λkI

)
y,

where for each k we have x = Wky, y ∈ Rk. We deliberately include the index k in
the notation of the residuals for clarity when discussing their properties throughout
iterations. Using (4), we get

‖rk(x)‖ = ‖pk(y)‖ , ‖rk(x)‖ = ‖pk(y)‖ (7)

for any x = Wky, y ∈ Rk. Moreover, clearly it holds

‖rk(x)‖2 = ‖rk(x)‖2 + λ2
k ‖x‖

2 ,

‖pk(y)‖2 = ‖pk(y)‖2 + λ2
k ‖y‖

2 . (8)
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2.1. Interchangeability of projection and regularization

The above presented Hybrid LSQR applies the so called first project then regu-
larize approach. It is well known that for selected hybrid methods this is equivalent
to the first regularize then project approach, see [4, Chap. 6], even though the
meaning of the equivalency is for various methods slightly different. Here, we briefly
explain why for Hybrid LSQR the two approaches are fully interchangeable. The
important consequence of this relationship is that many properties of LSQR hold
also for Hybrid LSQR with a constant λk.

The first regularize then project approach starts with an application of the
Tikhonov regularization to the original problem, schematically

min
x
{‖Ax− b‖} → min

x

{∥∥∥∥(b0
)
−
(
A
λI

)
x

∥∥∥∥} .
Subsequently, k iterations of the Golub-Kahan bidiagonalization are computed for
the extented problem above yielding the projected problem

min
y∈Rk

{∥∥∥∥(b0
)
−
(
A
λI

)
W ky

∥∥∥∥} , (9)

where W k is an orthogonal basis of Kk

((
A
λI

)T (
A
λI

)
,

(
A
λI

)T (
b
0

))
. This shows the

main disadvantage of the first regularize strategy - the parameter λ must be selected
apriori based on the large problem (1). However, the obtained minimization (9) is
clearly equivalent to

min
y∈Rk

{
∥∥AW ky − b

∥∥2
+ λ2 ‖y‖2}, (10)

thanks to the orthogonality of W k. It remains to show that W k = Wk. From a simple
multiplication and application of shift invariance of Krylov subspaces it follows that

Kk

((
A
λI

)T (
A
λI

)
,

(
A
λI

)T (
b
0

))
= Kk(ATA,AT b).

Thus, the first column of orthogonal matrices Wk and W k is the same and their first
i columns span the same subspace for any admissible i. It follows from the sequential
form of the bidiagonalization process that in such a case Wk = W k. Using (4), the
minimization problem (10) (first regularize then project approach) is equivalent to

min
y∈Rk
{‖Lk+y − β1e1‖2 + λ2 ‖y‖2}.

Consequently, provided λ is the same, the minimization problem is identical to the
one in Hybrid LSQR (5) (first project then regularize approach).

Some further relations can be derived. Similarly to (2) we have(
A
λI

)
Wk = Sk+1Lk+,

(
A
λI

)T

Sk = WkL
T

k ,
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and therefore similarly to (4) we obtain∥∥∥∥(AλI
)
−
(
b
0

)
Wky

∥∥∥∥ =
∥∥Sk+1Lk+y − b

∥∥ =
∥∥Lk+y − β1e1

∥∥ .
The Hybrid LSQR minimization (5) can be thus equivalently written as

min
y∈Rk

{
∥∥Lk+y − β1e1

∥∥}, (11)

where Lk+ has the same properties as Lk+, but its entries depend on λ (unlike
for Lk+). Clearly, for λ = 0 it holds that Lk+ = Lk+.

3. Behavior of residual and solution norms

Recall that we assume x0 = 0. It is well known [11] that then for LSQR the norm
of the solution is strictly increasing,

‖xk+1‖ > ‖xk‖ ,

and the corresponding residual norm is strictly decreasing,

‖rk+1(xk+1)‖ < ‖rk(xk)‖ .

In combination with (6), (7) and the orthogonality of Wk the same holds for the
projected problem, i.e.,

‖yk+1‖ > ‖yk‖ ,
‖pk+1(yk+1)‖ < ‖pk(yk)‖ .

Assume for a moment a constant regularization parameter, i.e., λk = λ for all it-
erations k. It follows from the equivalency between project then regularize and
regularize then project strategy (see Section 2), that the above described properties
of LSQR hold also for Hybrid LSQR. Specifically,

‖xk+1‖ > ‖xk‖ , (12)

‖rk+1(xk+1)‖ < ‖rk(xk)‖ , (13)

and similarly for the residual and solution of the projected problem∥∥yk+1

∥∥ > ‖yk‖ , (14)∥∥pk+1(yk+1)
∥∥ < ‖pk(yk)‖ . (15)

It is useful to recall some properties of the Tikhonov regularization. Consider
the minimization problem (5) for some fixed k. The corresponding solution can be
expressed as a function of the regularization parameter λk as yk(λk). Then

‖yk(λk)‖ is decreasing with increasing λk, (16)

‖pk(yk(λk))‖ is increasing with increasing λk. (17)

For the proof using the SVD decomposition see, e.g., [4].
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3.1. Hybrid LSQR residual monotonicity

Hybrid LSQR minimizes the residual norm (8) which consists of two terms, the
solution norm and the data fidelity term pk(yk). Thus (unlike LSQR) Hybrid LSQR
does not minimize the residual corresponding to the original problem (1). Further-
more, the residual norm can generally oscillate and then it is hard to design a reliable
stopping criterion for the iterations. For large-scale problems direct computation
of ‖rk(xk)‖ may be infeasible. Thus we study the projected residual norm ‖pk(yk)‖
and then take advantage of (7). Stabilization of the inner residual norm can be
used as a marker of stabilization of the method and for setting appropriate stop-
ping criteria. The behavior of ‖pk(yk)‖ for Hybrid LSQR is highly dependent on
the choice of the regularization parameter λk which is often chosen heuristically. We
now investigate the behavior of ‖pk(yk)‖ with respect to the choice of λk.

Let us start with the case of constant regularization parameter, i.e., λk = λ.

Lemma 1. Let yk be the solution of (5) with λk = λ, k = 1, 2, . . .. Then it holds∥∥pk+1(yk+1)
∥∥ < ‖pk(yk)‖ .

Proof. Combining together (15) and (8) yields∥∥pk+1(yk+1)
∥∥2

+ λ2
∥∥yk+1

∥∥2
< ‖pk(yk)‖2 + λ2 ‖yk‖

2 ,

Using (14) then gives the result.

A straightforward corollary of Lemma 1 and the property of Tikhonov regulariza-
tion (17) is that

λk+1 ≤ λk ⇒
∥∥pk+1(yk+1)

∥∥ < ‖pk(yk)‖ .

In other words, if the value of λk is non-increasing, for Hybrid LSQR both ‖pk(yk)‖
and ‖pk(yk)‖ are strictly decreasing (and thus also ‖rk(xk)‖ and ‖rk(xk)‖). Moreover,
it follows from (14) and (16) that

λk+1 ≤ λk ⇒
∥∥yk+1

∥∥ > ‖yk‖ . (18)

In practice, however, the regularization parameter λk is typically increasing rather
then decreasing, because stronger regularization is needed with increasing k as noise
subsequently propagates to the projected problem. In the paper [6], we have shown
that ∥∥yk+1

∥∥ = ‖yk‖ ⇒
∥∥pk+1(yk+1)

∥∥ ≤ ‖pk(yk)‖ .

Thus, also ‖rk+1(xk+1)‖ ≤ ‖rk(xk)‖. In words, stabilization of the inner solution
norm is a sufficient condition for the residual norm to be nonincreasing. Theorem 2
generalizes this and states our main result.
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Theorem 2. Let λk, λk+1 be such that the solutions yk, yk+1 of (5) satisfy
‖yk‖ ≤

∥∥yk+1

∥∥. Then∥∥pk+1(yk+1)
∥∥ ≤ ‖pk(yk)‖ , k = 1, 2, 3, . . . .

Given xk = Wkyk, it also holds that

‖rk+1(xk+1)‖ ≤ ‖rk(xk)‖ k = 1, 2, 3, . . . .

Proof. Denote y∗k+1 = [yTk , 0]T . Then directly
∥∥y∗k+1

∥∥ = ‖yk‖ and∥∥pk+1(y∗k+1)
∥∥ =

∥∥L(k+1)+y
∗
k+1 − β1e1

∥∥ =
∥∥L(k)+yk − β1e1

∥∥ = ‖pk(yk)‖ .

Since yk+1 is a minimizer of (5), we obtain∥∥pk+1(yk+1)
∥∥2

+ λ2
k+1

∥∥yk+1

∥∥2 ≤∥∥pk+1(y∗k+1)
∥∥2

+ λ2
k+1

∥∥y∗k+1

∥∥2
= ‖pk(yk)‖+ λ2

k+1 ‖yk‖
2 .

Because
∥∥yk+1

∥∥2 ≥ ‖yk‖
2, we get

‖pk+1(yk+1)‖2 ≤ ‖pk(yk)‖2

and thus also ‖rk+1(xk+1)‖2 ≤ ‖rk(xk)‖2, see (7).

Let us discuss how to satisfy the condition in Theorem 2. Clearly, by setting
λk+1 = λk = 0 we obtain standard LSQR for which the solution norm is increas-
ing. Generally, it is possible to select the regularization parameter λk+1 such that
‖yk‖ =

∥∥yk+1

∥∥, which also satisfies the condition. In such a case, the value of λk
must be increasing. This holds because if λk was non-increasing, ‖yk‖ would be
increasing, see (18). In summary, Theorem 2 states that in order to maintain the
residual norm ‖rk(xk)‖ decreasing, λk can be increasing but not too much. Provided
monotonicity of the residual norm can then simplify the detection of stabilization
of the regularization process. It is also important to note that the assumption in
Theorem 2 is sufficient but not necessary.

4. Numerical experiments

Now we illustrate the above presented behavior in finite precision arithmetic. We
consider two standard benchmark discrete ill-posed problems from the Regulariza-
tion toolbox in MATLAB. For simplicity, a fixed number of iterations k is computed.
The 1D problem gravity with A ∈ R50×50 and the noise level η = 10−3 is solved in 30
iterations. For the 2D problem blur with A ∈ R2500×2500, η = 10−1 and the Gaussian
blur parameter σ = 1, we compute 50 iterations. The parameter λk for the Tikhonov
regularization is chosen from 1000 samples logarithmically distributed in the inter-
val (0.0001, 10). We use the L-curve criterion [4, Chap. 5] for the gravity problem
and the prescribed norm criterion [6] for the blur problem.
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Figure 1: Comparison of approximate solutions of blur computed by Hybrid (left)
and pure (middle) LSQR in 50 iterations. Hybrid method clearly provides a better
reconstruction of the exact solution (right).

Figure 2: Regularization parameters λk computed for the two studied problems (left
and middle). As expected, λk is mostly increasing. The right image illustrates
significant loss of orthogonality among the columns of Wk for the gravity problem.

The effect of the inner regularization on improvement of the approximation is
illustrated in Figure 1 comparing Hybrid LSQR and LSQR approximations for the
problem blur. Figure 2 (left) then shows the corresponding regularization parame-
ters λk determined during Hybrid LSQR. As expected, λk is non-decreasing and in
latter iterations it stabilizes. The middle figure shows analogous behavior for the
gravity problem. The effect is present despite the serious loos of orthogonality be-
tween the constructed bidiagonalization vectors, see the figure on the right. Figure 3
provides norms of the computed approximate solutions and the corresponding resid-
uals for both testing problems. Their behavior corresponds nicely to the presented
theory. If the solution norm increases, the residual norm is decreasing. A detailed
view given in figures on the right for gravity shows, that from iterations 12 to 13
and 14 to 15 the solution norm decreases. Even though the assumption of Theorem 2
does not hold here, the corresponding residual norm still decreases from iteration 12
to 13 (but increases from iteration 14 to 15). This illustrates that the assumption is
sufficient but not necessary. Note also how small the discrepancy is between the inner
and outer residual and solution norms in finite precision, despite the severe loss of or-
thogonality. This property of Hybrid methods is explained in details in [5, Chap. 5]
and [6]. If necessary, several re-orthogonalization strategies can be applied to im-
prove orthogonality of the computed bidiagonalization vectors. For comparison, we
illustrate the behavior when full re-orthogonalization (against all previous vectors)
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Figure 3: Behavior of the norm of the computed solutions and the corresponding
residuals for the two studied problems. The right images show in detail several
iterations for the gravity problem.

Figure 4: Illustration of the effect of re-orthogonalization. Orthogonality among the
columns of Wk is at the machine precision (left). The discrepancy between the inner
and outer norms is negligible (middle and right). Compare to Figure 3.

is applied on both sets Wk and Sk, see Figure 4. The orthogonality between the
columns of Wk is at the machine precision (left figure). Consequently, the inner and
outer solution norms match and the residual norms behave similarly as we observed
in computations without re-orthogonalization.
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