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Abstract: The real options approach interprets a flexibility value, embedded
in a project, as an option premium. The object of interest is to valuate real
options to change operating scale, typical for natural resources industry. The
evolution of the project as well as option prices is decribed by partial differen-
tial equations of the Black-Scholes type, linked through a payoff function given
by a type of the flexibility provided. The governing equations are discretized
by the discontinuous Galerkin method over a finite element mesh and they
are integrated in temporal variable by an implicit Euler scheme. The special
attention is paid to the treatment of early exercise feature that is handled by
additional penalty term. The capabilities of the approach presented are docu-
mented on the selected individual real options from the reference experiments
using real market data.
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1. Introduction

The real options approach plays an important role in the decision making pro-
cess, because it provides a solution to the optimal investment decision that captures
the flexibility value embedded in a project. As a result, this methodology enables
to recognize the important qualitative and quantitative characteristic of some of the
intrinsic attributes of the investment opportunities, namely, irreversibility of invest-
ments, choice of timing and last but not least uncertainty of the future rewards from
investments, see [3]. The foundations of this modern investment theory were laid
more than four decades ago by linking valuation of investment opportunities as pric-
ing of financial options on real assets, see the pioneering paper by Myers [12]. Due to
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the analogy with an option on financial asset, the methodology has become known
as real options approach that interprets the flexibility value as the option premium.
Since then, a large number of various solution techniques have been developed, from
a simulation approach, over dynamic programming to contingent claims analysis,
see [11] for a brief overview.

In this contribution we deal with real options valuation arising in natural re-
sources industry, especially options to change operating scale. Following a contingent
claim analysis [3] the values of both the project and the embedded flexibility, ex-
pressed as functions of time and underlying output price (following a stochastic pro-
cess), can be identified as solutions of relevant partial differential equations (PDEs) of
the Black-Scholes type. More precisely, the link between project and flexibility values
is realized through a payoff function, which is enforced with respect to the flexibility
type at any time prior to or at expiration date. Taking into account our recent re-
sults on pricing of conventional financial options, see, e.g., [5] and [6], a discontinuous
Galerkin method (DGM) with an implicit time stepping scheme is applied to solve
the relevant governing equations and to improve the numerical pricing valuation as
a whole.

The concept of the paper is based on the contributions in proceedings [7] and [8],
where options to expand and options to contract were studied in a separate way.
The aim is to provide readers the methodological insight to real options pricing
issues, documented on simplified case studies. First, the relevant PDE models are
formulated, describing a value of the project as well as the option as the solution
of the terminal-boundary value problem. Next, a numerical valuation scheme is
presented. Finally, a simple numerical experiment, arising from an iron ore mining
industry and related to reference data [9] and [10], is provided.

2. PDE models

Consider a one-stage investment project to change (i.e., expand or contract) the
production of some output commodity. More precisely, such an investment project
has an embedded option to expand the production rate or an embedded option
to contract the production rate, exercisable any time prior to or at prespecified
time T > 0 and requiring the additional implementation cost K > 0. In terms
of conventional financial options, the situation is described by a call option (on
expansion) or a put option (on contraction) under American exercise right with
strike K and maturity date T .

Next, we recall valuation models from [9] and [10] to price the embedded option
as well as the project itself. We assume that project/option values can be expressed
as functions of the actual time t and the output commodity price P following a ge-
ometric Brownian motion (proposed in [2]):

dP (t) = (r − δ)P (t)dt+ σP (t)dW (t), P (0) > 0, (1)

where r > 0 is the risk-free interest rate, δ > 0 is the mean convenience yield on
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holding one unit of the commodity, W (t) is a standard Brownian motion and σ > 0
is the volatility of the commodity price.

Further, we denote by V0(P, t) the value of the project, which does not have any
options to change operating scale. In contrast, the function V1(P, t) stands for the
value of an investment project with the embedded option to expand (or contract) the
production rate. Let T ∗ > T be the maximum lifetime of both projects and ϕ0(P, t)
and ϕ1(P, t) represent (after-tax) cash flow rates associated with the given project.
Intuitively, from the definitions above we expect that

V1(P, T ∗) = V0(P, T ∗) = 0, P ≥ 0, (2)

ϕ1(P, t) = ϕ0(P, t), P ≥ 0, t ∈ [0, T ). (3)

Following [1] one can characterize value functions V0 and V1 between expiry date T
and project lifetime T ∗ as solutions of a couple of deterministic backward PDEs:

∂Vi
∂t

+
1

2
σ2P 2∂

2Vi
∂P 2

+ (r − δ)P ∂Vi
∂P
− rVi︸ ︷︷ ︸

LBS(Vi)

= −ϕi, (4)

for P ∈ (0,∞), t ∈ [T, T ∗) with the terminal conditions (2).
In what follows we present the governing equation for the embedded flexibility

representing the value added to the project function, i.e., V1(P, t) ≥ V0(P, t) for
all P ≥ 0 and t ∈ [0, T ). More precisely, we set F (P, t) = V1(P, t) − V0(P, t) as the
option value at the current price P and actual time t ∈ [0, T ). In view of the notation
above, it is possible to track values of both projects and the embedded option value
simultaneously within one timeline on [0, T ), that are linked at the expiry date T
through the function

Π(P ) ≡ max(V1(P, T )− V0(P, T )−K, 0) = Π(V1(P, T ), V0(P, T )), P ≥ 0, (5)

which plays the role equivalent to a payoff function with strike K, well-known from
financial options pricing.

Further, taking into account an equivalence of cash flow rates (3) and encompass-
ing the early exercise constraint of American options, i.e.,

F (P, t) ≥ Π(V1(P, T ), V0(P, T )), P ≥ 0, t ∈ [0, T ), (6)

the value function F satisfies the so-called moving-boundary problem, where it is
also necessary to determine exercise and continuation regions separated by a free
boundary driven by the optimal exercise price P ∗(t), see [13].

There are several approaches how to handle the early exercise feature, among
the widely used ones, just penalty techniques [14] allow us to reformulate moving-
boundary problem as follows

∂F

∂t
+ LBS(F ) + qF = 0, P ∈ (0,∞), t ∈ [0, T ), (7)
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where an additional nonlinear source term qF is defined to ensure American con-
straint (6) and satisfy the conditions:

qF (P, t) = 0, if F (P, t) > Π(P ), qF (P, t) > 0, if F (P, t) = Π(P ). (8)

Note that the penalty approach can be unified for both European and American
exercise features, if we put qF (P, t) = 0 in (7) for all P > 0 and t ∈ [0, T ) in the case
of a European exercise right.

3. DG approach

In order to determine the present value of flexibility to expand/contract the
production rate, it is necessary to proceed in backward induction, from a pair of
project value functions V0 and V1, over a construction of the payoff function Π,
to the real option value function F . Since there are no analytical formulae for
finite maturity American options in general, the valuation should rely on numerical
approaches. The proposed valuation methodology is based on DGM, successfully
used in the field of financial option pricing, see, e.g., [5] and [6].

At first, we localize the governing equations to a bounded interval Ω = (0, Pmax),
where maximal commodity price satisfies Pmax > P ∗(t) for all t ∈ [0, T ). Then,
we have to impose project as well as option values at both endpoints P = 0
and P = Pmax. The project values are estimated by the net present value approach
for the given cash flow rates as follows

Vi(z, t) =

∫ T ∗

t

ϕi(z, ξ)e
−r(ξ−t)dξ, z ∈ {0, Pmax}, t ∈ [T, T ∗), i = 0, 1. (9)

The real option value has to reflect the type of flexibility that this option provides.
In accordance with the European exercise right, we prescribe a couple of Dirichlet
boundary conditions in the form

F (0, t) = 0, F (Pmax, t) = e−r(T−t)Π(Pmax), (expansion)

F (0, t) = e−r(T−t)Π(0), F (Pmax, t) = 0, t ∈ [0, T ). (contraction)
(10)

Moreover, in the case of American options, boundary conditions (10) have to be set
in the accordance with the early exercise feature which leads to the elimination of
the discounted factor e−r(T−t) in (10).

Secondly, to handle the American early exercise feature and force the solution
of (7) not to fall below its payoff function at any time t ∈ [0, T ), we introduce (as
in [6]), for a sufficiently regular function v, the variational form of penalty term qF as

(qF (t), v) = cp

∫
Ω

χexe(t)
(

Π(P )− F (P, t)
)
v dP, (11)

where (·, ·) denotes in fact the inner product in L2(Ω). The function χexe(t) in (11)
is defined as an indicator function of the exercise region at time instant t and cp > 0
represents a weight to enforce the early exercise.
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The cornerstone of the method applied is to construct a numerical solution as
a composition of piecewise polynomial, generally discontinuous, functions on a spatial
mesh without any requirements on the continuity of the solution across the partition
nodes. We introduce the finite dimensional space

Sph = {vh ∈ L2(Ω) : vh|(Pl,Pl+1) ∈ P p((Pl, Pl+1)), 0 ≤ l < N}, (12)

defined over the partition 0 = P0 < P1 < . . . < PN = Pmax of the domain Ω
with the assigned mesh size h. Similarly as in [6], we carried out the DG spatial
semi-discretization and temporal time discretization using an implicit Euler scheme.
As a result, we obtain a sequence of linear algebraic problems related to a time
partition T ∗ = t0 > t1 > · · · > tR = T > tR+1 > · · · > tM = 0 with fixed

time step τ = T ∗/M . Further, denote u
(i)
h,m ∈ Sph, i = 0, 1, the approximation of

the corresponding project value functions Vi from (4) at time level tm ∈ [T, T ∗],
m = 0, . . . , R. Similarly, we define the DG approximate solution of problem (7)
as functions wmh ≈ F (·, tm), tm ∈ [0, T ], m = R, . . . ,M . Starting from zero initial

project values u
(0)
h,0 and u

(1)
h,0, the desired value of flexibility wMh ≈ F (·, 0) is computed

in the following three steps(
u

(i)
h,m+1, vh

)
− τAh

(
u

(i)
h,m+1, vh

)
=
(
u

(i)
h,m, vh

)
− τ`(i)

h (vh)(tm+1) (13)

+τ (ϕi(tm+1), vh) ∀ vh ∈ Sph, m = 0, 1, . . . , R− 1, i = 0, 1,

(
wRh , vh

)
=
(

Π
(
u

(1)
h,R, u

(0)
h,R

)
, vh

)
∀ vh ∈ Sph, (14)

(
wm+1
h , vh

)
− τAh

(
wm+1
h , vh

)
+ τQh

(
wm+1
h , vh

)
= (wmh , vh) (15)

−τ`h(vh)(tm+1) + τqh(vh)(tm+1) ∀ vh ∈ Sph, m = R, . . . ,M − 1,

where the bilinear form Ah(·, ·) stands for the discrete variant of the operator LBS

from (4). The linear forms `
(i)
h (·)(t) and `h(·)(t) are associated with boundary

conditions (9) and (10), related to the particular project value Vi and the option
value F , respectively. Further, the treatment of the American constraint leads to
new forms Qh(·, ·) and qh(·)(t) in scheme (15), defined as discrete variants of the
bilinear and linear part of (11), respectively. For the detailed derivation of the
above-mentioned forms we refer the interested reader to [5].

Moreover, for practical purpose, to evaluate forms Qh and qh we use

χexe(tm)
∣∣
[Pl,Pl+1]

≈ χ̃exe(tm)
∣∣
[Pl,Pl+1]

:=

{
1, if wm−1

h

(
P l+1

c

)
< wRh

(
P l+1

c

)
0, if wm−1

h

(
P l+1

c

)
≥ wRh

(
P l+1

c

) (16)

for tm ∈ [0, T ), 0 ≤ l ≤ N − 1, where P l+1
c is the midpoint of the interval

[Pl, Pl+1] and wRh is given as Sph-approximation of the payoff function Π depending

on states u
(i)
h,R, i = 0, 1, see (14).
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4. Numerical experiments

In this section, we briefly illustrate the usage of the DG approach on idealized case
studies from the iron ore mining industry. The three-step valuation scheme (13)–(15)
is implemented in the solver Freefem++, incorporating GMRES as a solver for non-
symmetric sparse systems, for more details, see [4].

As in [9] and [10] we consider iron ore mine, having the value given by the
function V0(P, t), that depends on commodity price P , expressed in USD per dry
metric tonne (dmt) of iron ore. Further, we have a mining project of value V1(P, t),
adopting the embedded option F (P, t) to scale up (or down) the production rate any
time t ∈ [0, T ]. Let Q denote the total reserve of the iron ore mine (in thousands of
million dmt) and qi(t) ≥ 0, i = 0, 1, be the iron ore production rates (in thousands
of million dmt per year) associated with projects Vi, i = 0, 1. Depending on how
the mine is operated, project lifetimes are defined as minimum admissible values T0

and T1 (in years) that satisfy the relationship

Q =

∫ T ∗
0

0

q0(ξ)dξ =

∫ T ∗
1

0

q1(ξ)dξ, (17)

where

q0(t) =

{
s(t), if t ∈ [0, T ∗0 ),
0, if t ∈ [T ∗0 , T

∗],
q1(t) =


s(t), if t ∈ [0, T ),
κ · s(t), if t ∈ [T, T ∗1 ),
0, if t ∈ [T ∗1 , T

∗],
(18)

for s(t) corresponding to the production rate related to the project having no embed-
ded options and factor κ > 0 representing the extracted (κ > 1) or contracted (κ < 1)
mining production rate. Further, we define the after-tax cash flow rates of relevant
projects as follows

ϕi(P, t) = qi(t)
(

(1−D)P − c(t)
)

(1−B), i = 0, 1, (19)

for P ∈ [0, Pmax] and t ∈ [0, T ∗], where c(t) is the average cash cost rate of iron ore
production per dmt, D is the rate of state royalties and B is the income tax rate.
The numerical experiments are performed on the following (reference) project and
market data:

Q = 10, s(t) = 0.1 e0.007t, D = 0.05, B = 0.3,

c(t) = C0e
0.005t, C0 > 0, r = 0.06, δ = 0.02,

(20)

which are the representatives of parameter values of practical significance.

4.1. European expansion option

Referring to [9] we price an expansion option exercisable only at maturity date
T = 2 under discretization parameters p = 2, Pmax = 100, h = 1 and τ = 0.02.
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Figure 1: The approximate option values (in 109 USD) for different scenarios (top)
and the corresponding Delta values (bottom).

Further, we take C0 = 35 USD (based on prices from 2007) and the implementation
cost to double production (κ = 2) is set as K = 10, given in 109 USD. Using (17), (18)
and (20), easy calculation leads to T ∗

.
= 75.8 and T ∗1

.
= 43.6.

Consistent with the referenced experiment we investigate the behaviour of the
option values for various values of volatility. Figure 1 (top) records flexibility val-
ues at present time (t = 0) for all scenarios considered. One can easily observe
that plots are similar to the conventional financial European call options with the
relevant Black-Scholes model parameters. Moreover, piecewise quadratic DG approx-
imations match well the reference values (evaluated at underlying reference prices)
and give fairly the same results as the upwind finite difference methods from [9].
More precisely, we can deduce that option values seem to be an increasing function
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of volatility σ in the region of low commodity prices (i.e., for less than some critical
value). On the other hand, in the case of high commodity prices, the situation is
quite opposite and the most valuable option is the one with the smallest volatility
(σ = 0.2). This intuitive expectation is well illustrated in Figure 1 (bottom), where
the corresponding Delta sensitivity measures, ∆M

h ≈ ∂F
∂P

(·, 0), are depicted. At first
glance, the most sensitive flexibility value with respect to the commodity price is
related to the low volatility scenario, because in this case the commodity price has
little chance to fluctuate. From this point of view, we come to the same conclusions
as in the paper [9].

4.2. American contraction option

Secondly, we price a contraction option exercisable any time prior to or at T = 1
under discretization parameters p = 2, Pmax = 60, h = 0.6, τ = 0.01 with early
exercise weight cp = 10/τ . As in [10] we set C0 = 25 USD (prices from 1988) and
the implementation cost K = 1−κ (given in 109 USD) and investigate the behaviour
of the option values with the fixed volatility σ = 0.3 for various contraction factors
under American as well as European exercise rights. The lifetime T ∗1 is determined
in a similar way as in preceding experiment for various κ. The approximate option
values at present time for selected contraction factors are depicted in Figure 2 (top).
Analogously to the previous experiment, plots are similar to the conventional finan-
cial put options and illustrate an intuitive expectation that the value of flexibility to
contract F is a decreasing function of the factor κ in the region of low commodity
prices. Moreover, it is apparent for all cases that American options cost more than
their European counterparts, i.e., early exercise feature increases value of the project
flexibility. This distinctive feature of American options is also well resolved by Delta
measures in Figure 2 (bottom), i.e., |∆M

h (Am)| ≥ |∆M
h (Eu)| for a particular κ. Thus,

these observations are in good agreement with the expectations of practitioners.

5. Conclusion

The real options approach and especially related valuation techniques pose a very
challenging part of corporate finance. In this paper we have recalled PDE models
to valuation of investment projects together with the embedded flexibility of a one-
stage expansion or contraction of the production rate. The particular governing
equations were solved by a numerical scheme based on DGM. The presented nu-
merical experiments, arising from the iron ore mining industry, provides financially
meaningful results and thus illustrates a suitability of DGM for real options pricing
issues that take into account fluctuations in commodity prices as well as different
expansion/contraction factors. One possible future research objective should be ad-
dressed to extend the DG approach to advanced combinations of options to change
operating scale incorporated into a compound option that enables to properly cap-
ture changing investment strategies in a long time horizon.
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Figure 2: The approximate option values (in 109 USD) for different scenarios (top)
and the corresponding Delta values (bottom) under European and American con-
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[5] Hozman, J. and Tichý, T.: DG framework for pricing European options under
one-factor stochastic volatility models. J. Comput. Appl. Math. 344 (2018),
585–600.
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