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Abstract: This work deals with the flow of incompressible viscous fluids in
a two-dimensional branching channel. Using the immersed boundary method,
a new finite difference solver was developed to interpret the channel geometry.
The numerical results obtained by this new solver are compared with the
numerical simulations of the older finite volume method code and with the
results obtained with OpenFOAM. The aim of this work is to verify whether
the immersed boundary method is suitable for fluid flow in channels with more
complex geometries with difficult grid generation.
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1. Introduction

Fluid flow in the system of branching channels is a part of many technical or
biological applications, for example blood flow in the fine and complex branching of
the cardiovascular system. This work is focused on the flow of blood in the venous
system, for simplification it is possible to consider blood flow as flow of incompressible
viscous fluid in branching channels.

The network of such a branching system can be imagined as a main channel
followed by multilevel branching, and each of these new branches can have a different
diameter and can be connected to the main channel at a different angle.

Complex formation of the channel system causes problems related to the descrip-
tion of the geometry, its mesh generation, and the mathematical formulation of the
related problem, including appropriate boundary conditions. The description of the
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channel geometry can be done using the standard grid generation inside the channel.
A grid can be either structured or unstructured. This approach is quite common,
but it is associated with certain disadvantages. This includes the difficulty of mesh
generation and the need to re-generate the mesh in case of even small geometric
modifications. Also, CFD solvers for general unstructured grids are more complex,
making it difficult to implement any non-standard mathematical models or boundary
conditions.

Some problems that arise when using classical methods on grids inside the area
(limited by the channel boundary) can be avoided by adopting the immersed bound-
ary method. In this case a larger area of space is discretized, e.g. the rectangle
enclosing the tested branch channel. A grid (Cartesian grid) is constructed through-
out such a domain, where model equations are also solved. The specific geometry
of the channel is represented only at the level of the mathematical model used, one
model in the region occupied by the fluid and another elsewhere. Switching between
models is simply implemented using a characteristic function specifying the inner
and outer parts of the considered channel. In this case, due to the very simple grid
structure and domain shape, the CFD solver can be very simple. Any changes in
the geometry of the channel are easily solved, it is only necessary to redefine the
characteristic function describing the fluid region.

The aim of this work is to compare the results of a standard method based on
finite volumes, which uses the grid built inside the channel, i.e. the grid bounded by
the channel edges, with a much simpler finite difference code working on the regular
Cartesian grid using a general implementation of the immersed boundary method.
A simple straight channel with one branch inclined at different angles was chosen as
the test case.

2. Mathematical model

The fundamental system of equations is the system of Navier–Stokes equations
for incompressible Newtonian fluids. This system is based on the balance laws of
mass and momentum for incompressible fluids

div u =0 (1)

ρ

(
∂u

∂t
+ div(u⊗ u)

)
=−∇P + µ∆u, (2)

where P is the pressure, ρ is the constant density, u is the velocity vector and µ
represents the constant dynamic viscosity.

3. Numerical methods

The numerical methods which solve the system of incompressible Navier-Stokes
equations can be divided according to velocity-pressure coupling stategy into two
main groups, coupled methods (e.g. artificial compressibility and dual time-stepping
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methods) and pressure correction methods (including e.g. SIMPLE or PISO algo-
rithms). The SIMPLE algorithm [11, 12] is the main method used for the numerical
solution of incompressible fluid flow problems (also due to its ability to treat unsteady
flows). This algorithm is included in Open source Field Operation And Manipulation
(OpenFOAM) and is described in detail in [7, 14].

The artificial compressibility method (designed to treat steady flows) was used
in our in-house built FDM and FVM codes. This method [4, 6] is used to obtain
equation for pressure. It means that the continuity equation is completed by a pres-
sure time derivative term ∂p

β2∂t
, where β is a positive parameter, making the inviscid

part of the system of equations hyperbolic. The parameter β for the steady case is
chosen approximately equal to the maximum velocity in the domain.

3.1. Finite difference method

The finite difference approximation of the governing system of equations (1)
and (2) is a natural choice because of the use of immersed boundary method on
Cartesian grids. In such case the discretization is simple, allowing for easy imple-
mentation and modification of various numerical methods and algorithms.

The system including the modified (for artificial compressibility) continuity equa-
tion (1) and the momentum equation (2) can be written in vector form as [1]:

DβWt + Fx + Gy = Rx + Sy, (3)

where Dβ = diag

(
1

ρβ2
, 1, 1

)
, W = col(p, u, v) is the vector of unknowns,

F =

 u
u2 + p
vu

 , G =

 v
uv

v2 + p

 , R =

 0
νux
νvx

 , S =

 0
νuy
νvy

 (4)

where p is the kinematic pressure (p = P/ρ), u, v are velocity components and ν is
the kinematic viscosity.

3.1.1. Immersed boundary method

In computational fluid dynamics, the immersed boundary method was first used
in reference to the method developed by Charles Peskin in 1972 (see [13]) to simulate
fluid-structure interactions.

A characteristic feature of this method is that the numerical simulation of fluid
flow is performed on Cartesian grid that does not have to directly copy the geometry
of the computational (fluid) domain, see e.g. [3, 10]. The situation can be described
using the schematic sketch (shown in Fig. 1) of the grids used for Finite Volume
Method (FVM) and Finite Difference Method (FDM) in this work. The structured
grid used in FVM simulations has a simple structure with the grid lines fitted to
boundaries of the computational domain. This results in grids that are aligned to
boundaries. This situation is shown in Fig. 1 (a).
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(a) Grid for FVM (b) Grid for FDM with the immersed geometry

Figure 1: Detail of the grid for finite-volume and finite-difference simulations.

In the immersed boundary FDM method, the governing system of equations is
discretized in the whole rectangular domain and used boundary conditions are only
imposed on its boundary. The unknown values of velocity and pressure are sought in
all internal points of the domain, distinguishing the points inside of the fluid domain
(marked by white color in Fig. 1 (b)) and inside of the solid domain (marked by gray
color in Fig. 1 (b)). The velocity fields in the solid domain is set to zero, so that the
governing equations are only solved in the points in the fluid region, see e.g. [3, 8].

3.1.2. MacCormack scheme

In computational fluid dynamics, the MacCormack method is a widely used dis-
cretization method for the numerical solution of hyperbolic partial differential equa-
tions. This second-order finite difference method was introduced by Robert W. Mac-
Cormack in 1969 [9]. It is the method written in the predictor-corrector form using
asymmetric forward/backward discretization stencil to approximate spatial deriva-
tives to provide finally a central (second order) approximation.

To describe the MacCormack scheme, rearrange equation (3) to the form where
all terms except the time derivative are placed on the right hand side

Wt = D−1
β [− (Fx + Gy) + νD∆W] , νD∆W = Rx + Sy. (5)

To update in time the values of the vector Wn to Wn+1 an approximation of Wt

is constructed from (5). This approximation is built differently, asymmetrically, in
predictor (e.g. with backward differences) and in corrector (by forward differences).
The final update is performed using linear combination of the two values obtained.
The expressions for predicted and corrected values are shown in (6) and (7).

W̃i,j =Wn
i,j + ∆tD−1

β

[
−

Fn
i,j − Fn

i−1,j

∆x
−

Gn
i,j −Gn

i,j−1

∆y

+ νD

(
Wn

i+1,j − 2Wn
i,j + Wn

i−1,j

∆x2
+

Wn
i,j+1 − 2Wn

i,j + Wn
i,j−1

∆y2

)]
(6)
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Wn+1
i,j =

1

2

(
Wn

i,j + W̃i,j

)
+

∆t

2
D−1

β

[
−

F̃n
i+1,j − F̃n

i,j

∆x
−

G̃n
i,j+1 − G̃n

i,j

∆y
(7)

+ νD

(
W̃n

i+1,j − 2W̃n
i,j + W̃n

i−1,j

∆x2
+

W̃n
i,j+1 − 2W̃n

i,j + W̃n
i,j−1

∆y2

)]
. (8)

3.2. Finite volume method

In this work the finite volume discretization is used as a reference for comparison
and validation of the newly developed finite-difference solver. Within the presented
study, the finite volume method was used in two codes. First, in an in-house devel-
oped simple 2D code, and second, in OpenFOAM.

The spatial discretization is based on the cell-centered finite volume approxima-
tion on a multi-block structured grid. While the mesh is handled as block structured
by the in-house solver, the same grid is treated as unstructured by OpenFOAM. The
finite volumes are quadrilaterals in 2D. For the in-house code the central scheme
is used for convective terms, including the pressure gradient calculated from the
approximation. The viscous terms are also discretized in the central way on dual
quadrilateral mesh (diamond type scheme), see Fig. 2.
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Figure 2: Grid configuration for approximation of inviscid and viscous fluxes.

The resulting semi-discrete system of ODEs (based on (5)) is integrated in time
by the explicit multistage Runge–Kutta scheme:

W
(0)
i,j = Wn

i,j

W
(r+1)
i,j = W

(0)
i,j − α(r)

∆tLW
(r)
i,j r = 1, . . . , s (9)

Wn+1
i,j = W

(s)
i,j
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The three-stage explicit Runge-Kutta scheme used to obtain results presented here
had coefficients: α

(1)
= 1/2, α

(2)
= 1/2, α

(3)
= 1. More details on this type of

finite volume discretization and associated Runge-Kutta methods can be found, e.g.,
in [1, 2, 5].

OpenFOAM uses a co-located grid, i.e., the fluid dynamic quantities are all stored
at the control volumes centroids. The convective terms are discretized using the
central difference scheme and also for the viscous fluxes the central differences are
used. In this case, however, due to grid curvature an extra correction term (for
non-orthogonality) is added to the discretization, subject to certain limiter, for more
details see [11].

4. Numerical tests

The numerical results shown in this section are used to compare different nu-
merical methods to verify that the newly developed immersed boundary method
is sufficiently accurate. At the same time, the flow at the branching point of the
channel was also tested depending on the connection angle of the secondary branch.

4.1. Domain geometry

For the immersed boundary implementation of finite-difference method, the 2D
computational domain was chosen as a rectangle in x − y plane with dimensions
30D × 10D. The numerical simulations were performed on the structured (Carte-
sian) grid with different number of equidistant nodes.

The used domain is shown in Fig. 3. The diameter of the main channel is denoted
by symbol D and D = 0.006 m and the width of the branch inclined at the angle
α was chosen to be D/2. The same configuration was kept for all simulations, just
changing the angle α by setting it to values 30◦, 60◦, 90◦, 120◦ and 150◦. For finite
volume simulations, just the interior of the channel (marked by white color in Fig. 3)
was used to construct the grid.

y

x

O A

B

α

15D 15D

8D D/2

D

D

Figure 3: Computational domain of a planar branching channel.
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4.2. Boundary conditions

Boundary conditions were chosen in such a way, that the flow is driven by the
prescribed pressure drop between the inlet and outlet parts of the boundary. So only
different values of pressure were prescribed at inlet (pin = 60 Pa) and in outlet parts
(pA = pB = 0 Pa) of the boundary. Otherwise the homogeneous Neumann condition
was prescribed for velocity components on those parts of boundary to mimic a fully
developed flow. On the channel wall of course the no-slip, i.e., homogeneous Dirichlet
condition u = (0, 0) was prescribed for velocity.

4.3. Numerical results

The aim of presented numerical results is to demonstrate the applicability of the
chosen methods and their settings for the considered class of problems. The newly
developed FD method based immersed boundary code is compared with an in-house
finite volume code (both using artificial compressibility approach) and the open-
source OpenFOAM finite volume code (using a variant of SIMPLE algorithm). Both
FVM codes share the same computational grid. For the FDM method with immersed
boundary channel representation two different grids were used. The coarser grid had
resolution 1200×200 cells, while the finer grid doubled the number of cells in the
vertical y direction, i.e., having 1200×400 cells.

Figs. 4 and 5 show the comparison of pressure and velocity fields obtained using
all the considered codes for the case of oblique branching at angle α = 30◦. The
pressure fields in Fig. 4 have very similar character and except the FDM results on
coarse grid all results are almost identical. The comparison of velocity magnitude
fields in Fig. 5 reveals that the in-house FVM code and FDM code on the finer grid
provide almost identical results. The OpenFOAM results predict a bit higher velocity
in the main channel, while the FDM code on coarse grid predicts lower velocity.

It is interesting to see that the level of agreement between the results changes for
different angles α of the secondary branch. The comparison of pressure and velocity
fields in the case of α = 60◦ is shown in Figs. 6 and 7. Here it seems that the
OpenFOAM results are closest to the FDM on the finer grid.

The comparison of results in the case of α = 90◦ (shown in Figs. 8 and 9)
shows that even the results obtained by FDM on the coarse grid are almost identical
to the other methods. The orthogonality of the grid allows for optimal use of all
computational points and leads to highest accuracy of numerical approximation.

Similar results were obtained for the remaining two tested angles, α = 120◦ and
α = 150◦ (not shown here). Also here the mutual agreement between the finer grid
of immersed boundary method and the in-house code can be seen.

Similar comparison for cases with different branching angle α is shown in pre-
sented Figs. 4-9 for finite volume method (in-house code and OpenFOAM with SIM-
PLE algorithm) and finite difference method (coarse and finer grid). The mutual
agreement between the finer grid for FDM and in-house FVM code depends on the
angle α, with best results (smallest solution differences) achieved for angles close to
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(a) α = 30◦ - FDM - coarse grid (b) α = 30◦ - FDM - finer grid

(c) α = 30◦ - FVM - in-house code (d) α = 30◦ - FVM - OpenFOAM

Figure 4: Pressure field in detail for the case α = 30◦, different solvers and grids.

(a) α = 30◦ - FDM - coarse grid (b) α = 30◦ - FDM - finer grid

(c) α = 30◦ - FVM - in-house code (d) α = 30◦ - FVM - OpenFOAM

Figure 5: Velocity magnitude in detail for the case α = 30◦, different solvers and
grids.
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(a) α = 60◦ - FDM - coarse grid (b) α = 60◦ - FDM - finer grid

(c) α = 60◦ - FVM - in-house code (d) α = 60◦ - FVM - OpenFOAM

Figure 6: Pressure field in detail for the case α = 60◦, different solvers and grids.

(a) α = 60◦ - FDM - coarse grid (b) α = 60◦ - FDM - finer grid

(c) α = 60◦ - FVM - in-house code (d) α = 60◦ - FVM - OpenFOAM

Figure 7: Velocity magnitude in detail for the case α = 60◦, different solvers and
grids.
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(a) α = 90◦ - FDM - coarse grid (b) α = 90◦ - FDM - finer grid

(c) α = 90◦ - FVM - in-house code (d) α = 90◦ - FVM - OpenFOAM

Figure 8: Pressure field in detail for the case α = 90◦, different solvers and grids.

(a) α = 90◦ - FDM - coarse grid (b) α = 90◦ - FDM - finer grid

(c) α = 90◦ - FVM - in-house code (d) α = 90◦ - FVM - OpenFOAM

Figure 9: Velocity magnitude in detail for the case α = 90◦, different solvers and
grids.
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α = 90◦, while in the case α = 30◦ (and α = 150◦, not shown here) the differences
are more pronounced.

5. Conclusions

A new numerical code was developed based on a finite difference method using
the immersed boundary approach, which was applied to the numerical simulation of
the flow of viscous incompressible fluid in planar branching channels.

The numerical results were presented in this work showed that the results ob-
tained by the newly developed code are comparable to the results provided by the
previously used code based on the finite volume method and also to the results from
the open-source package OpenFOAM.

The dependence of the immersed boundary method on the grid resolution was
found, especially during numerical simulations in channels with oblique branching.
In the case of a perpendicular connection, the differences between coarser and finer
grids were not so large. Although the results obtained on the coarse and finer grids
are qualitatively very similar (showing the same flow structure), some quantitative
parameters (such as the maximum velocity or discharge) may differ.

In the presented comparison, a simple pressure-based setup was chosen, where the
flow is controlled only by the prescribed pressure differences between the inlet/outlet
boundaries of the channel branches. Such setup is very sensitive to the numerical
method, the grid structure, and the way the boundary conditions are imposed. This
sensitivity is due to the fact that the flow in the channel branches is unknown in
advance, and the flow field develops only due to the pressure difference. In this
context, the agreement between the numerical predictions of the three considered
methods and codes can be evaluated as satisfactory.

Our future work will focus on the extension of the presented comparison for un-
steady flows and non-Newtonian fluids, which is crucial for the intended investigation
of various biomedical applications.
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