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Abstract: We investigate the properties of the least-squares solution of
the system of equations with a matrix being the incidence matrix of a given
undirected connected graph G and we propose an algorithm that uses this
solution for finding a vertex-disjoint cycle cover (2-factor) of the graph G.
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1. Introduction

Finding a vertex-disjoint cycle cover (called a 2-factor) of a given undirected
graph G consists in finding a set of disjoint cycles which are subgraphs of G and
contain all vertices of G (see Figure 1). It is well known that a 2-factor of an
undirected 2-factorable graph can be found in polynomial time by finding a perfect
matching in some larger graph (cf. [10]). When we prescribe further conditions
(e.g. number of components, minimal cycle length) the problem of finding a 2-factor
becomes NP-hard (cf. [4]). This includes a 2-factor formed by one component only,
i.e. the Hamiltonian cycle of the graph G.

In this paper we investigate the properties of the least-squares solution of the
system of equations with a matrix being the incidence matrix of the given undirected
connected1 graph G and propose an algorithm that uses this solution for finding
a 2-factor of the graph G. In this algorithm we successively erase the edges from the
graph until we obtain the desired 2-factor of the graph. For determination of which
edge will be erased we employ and test three strategies: S1, S2 and S3.

DOI: 10.21136/panm.2022.10
1All the strategies considered can be easily extended to disconnected graphs.
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Figure 1: Graph G (left) and its vertex-disjoint cycle covers (2-factors). The last
one is the Hamiltonian cycle of the graph G.

2. Graph, its representation and notation

By graph G we consider an ordered pair G = (V,E), where

V = V (G) = {v1, v2, . . . , vn}
is a set of vertices of graph G and

E = E(G) = {e1, e2, . . . , em} ⊆
(
V

2

)
, ej = {vk, vl}, k 6= l,

is a set of edges of the graph G.

We denote by B ∈ {0, 1}n×m the incidence matrix of G satisfying Bij = 1 if vi ∈ ej
and Bij = 0 if vi 6∈ ej. Arbitrary set of edges can be represented by the vector x ∈
{0, 1}m×1, which is a characteristic vector of the set X ⊆ E satisfying xi = 1 if ei ∈ X
and xi = 0 otherwise. If we want to refer to a particular edge e ∈ X we also use
a notation [x]e (instead of xi). Further, we denote by Be ∈ {0, 1}n×(m−1) the matrix
obtained from B by deleting the column corresponding to the edge e. Similarly, we
denote by xe the vector that we obtain from x by deleting [x]e. Finally, 1k stands
for a column vector formed by k ones.

Using this notation we may define the vertex-disjoint cycle cover x of the graph G
being any set of edges satisfying

x ∈ {0, 1}m×1 & 1T
mx = n & Bx = 2 · 1n. (1)

While the second condition ensures the cycle cover contains n edges, the third one
guarantees that each vertex coincides with exactly 2 edges.

3. Basic properties of the vector xLS

The least-square solution of the system Bx = 2 · 1n is defined using the Moore–
Penrose pseudo-inverse of the matrix B (see e.g. [8]) as follows

xLS = B†(2 · 1n) = 2 ·B†1n. (2)

In this section we investigate the properties of the vector xLS.
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Lemma 1. Let the graph G be non-bipartite, then the least-square solution xLS of
the system of equations Bx = 2 · 1n satisfies

1T
mxLS = n. (3)

For bipartite graph G = (V1 ∪ V2, E) with |V1| = n1 and |V2| = n2 there holds

1T
mxLS =

4n1n2

n
. (4)

Proof. Since the rows of the incidence matrix B are linearly independent for non-
bipartite connected graphs (cf. [11]), the pseudo-inverse of the matrix B satis-
fies B† = BT (BBT )−1 and, thus, the least-square solution xLS satisfies BxLS =
BBT (BBT )−1(2 · 1n) = 2 · 1n. Consequently, there holds

2 · n = 2 · 1T
n1n = 1T

n (2 · 1n) = 1T
n (BxLS) = (BT1n)TxLS = 2 · 1T

mxLS. (5)

If G is bipartite (and connected), then the rank of B is n− 1 (cf. [11]) and its rows
are linearly dependent. Hence, one can order columns of BT (i.e. vertices of G) so
that

BTw = 0 for w = (1, 1, . . . , 1︸ ︷︷ ︸
n1−times

,−1,−1, . . . ,−1︸ ︷︷ ︸
n2−times

)T . (6)

Considering the singular value decomposition of B in the form B = UΣV T , the
Moore-Penrose inverse of B has a form B† = V Σ†UT with Σnn = Σ†nn = 0 being the
singular value corresponding to the left singular vector2 u = 1

‖w‖ w = 1√
n
w, i.e. to

the last column of the matrix U . Consequently, for bipartite graphs there holds

1T
mxLS =

1

2
(BT1n)TxLS =

1

2
(BT1n)T (2B†1n) = 1T

nBB†1n

= 1T
nUΣV TV Σ†UT1n = 1T

nUΣΣ†UT1n = 1T
nU(In − ene

T
n )UT1n

= 1T
n1n − (1T

nUen)2 = n− (1T
nu)2 = n− 1

n
(1T

nw)2 = n− (n1 − n2)2

n

= n− (n1 + n2)2 − 4n1n2

n
=

4n1n2

n
, (7)

where we applied the equality BT1n = 2 · 1m resulting from the fact that each row
of BT contains exactly two ones (i.e. each edge connects two vertices).

Lemma 2. Let x ∈ {0, 1}m be a vertex-disjoint cycle cover, then

‖x− xLS‖2 = n− ‖xLS‖2. (8)

2In the whole paper by the expression ‖x‖ =
√
xTx we denote the standard Euclidean norm of

the vector x.

99



Proof. Since Bx = 2 · 1n and xLS = 2B†1n, there holds

‖x− xLS‖2 = (x− 2B†1n)T (x− 2B†1n) =

= ‖x‖2 − 4xTB†1n + 4 · 1T
n (B†)TB†1n

= n− 4xTB†BB†1n + 4 · 1T
n (B†)TB†1n

= n− 4xT (B†B)TB†1n + 4 · 1T
n (B†)TB†1n

= n− 4(B†Bx)TB†1n + 4 · 1T
n (B†)TB†1n

= n− 8(B†1n)TB†1n + 4 · 1T
n (B†)TB†1n = n− ‖xLS‖2, (9)

where we applied the equalities B† = B†BB† (see e.g. [8]) and Bx = 2 · 1n.

Corollary 3. Let the graph G with the incidence matrix B contain a 2-factor. Then
the least-square solution to the system Bx = 2 · 1n satisfies

‖xLS‖2 ≤ n. (10)

When ‖xLS‖2 = n, then x = xLS is the only 2-factor of the graph G.

Proof. The inequality (10) follows from the inequality n−‖xLS‖2 = ‖x−xLS‖2 ≥ 0.
When ‖xLS‖2 = n, we obtain ‖x− xLS‖2 = n− ‖xLS‖2 = 0 for any 2-factor x. This
is possible for x = xLS only.

Corollary 4. All 2-factors x satisfy

xTxLS = ‖xLS‖2. (11)

Proof. The equality (11) results from the fact that ‖x‖2 = n and from the relation

2 · xTxLS = ‖x‖2 + ‖xLS‖2 − ‖x− xLS‖2 = ‖x‖2 + ‖xLS‖2 − n + ‖xLS‖2. (12)

Remark 5. From the equality (9) it follows that each 2-factor x lies on the m-
dimensional sphere centered in xLS with the radius

√
n− ‖xLS‖2. Thus, assuming

the graph G contains k different 2-factors xi, i = 1, 2, . . . , k, with the mean value
xk = 1

k

∑k
i=1 xi, the multi-dimensional version of the Berry–Esseen theorem gives

‖xLS − xk‖ ≤ C ·
√
n− ‖xLS‖2

√
k

k→∞−→ 0, (13)

providing xi are independent and identically distributed on the sphere (see e.g. [2]
and [3]). However, we expect that this assumption is not fulfilled in this case and
the proper formulation for 2-factors needs more investigation. Nevertheless, from the
experiments it follows that xLS is, indeed, a good approximation of x for large k and
that a result similar to (13) really holds (see Figure 2).
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Figure 2: For graphs with a large number of 2-factors the least-square solution xLS is
a good approximation of xk. Here we considered all non-isomorphic graphs (see [7])
on n = 9 vertices and m = 18 edges. Each point corresponds to a single graph. The
curve is a graph of the function 6/

√
k.

Remark 6. From the equality (11) it also follows that finding a 2-factor can be
interpreted as finding n entries of the vector xLS that sum up to ‖xLS‖2. Hence,
we obtain the so-called 0-1 knapsack problem with the prescribed number of items to
include in a collection (for more details about knapsack problems, see e.g. [5]).

Example 7. Let us consider a graph formed by 7 vertices and 9 edges depicted on the
Figure 3 (top left). It contains two 2-factors. If we compute the respective vector xLS

we realize that the values of xLS entries are significantly higher for edges belonging to
both 2-factors. This observation leads us to the strategy (S1) consisting in removing
edges with the smallest xLS-value.

4. Sufficient condition

The following theorem provides a useful tool for determining which edge can be
removed from the graph. Unfortunately, in most cases, none of the edges satisfy the
condition (14) (see Figure 5a). In that situation we remove the edge with the highest
value of the left-hand side of (14) (strategy S2).

Theorem 8. Let G be a graph with the incidence matrix B, let e ∈ E(G) be any
edge such that G\e is a connected non-bipartite graph and let xLS be the least-square
solution to the system Bx = 2 · 1n. If there is

(1− [xLS]e)
2

1− eT (BBT )−1e
> n− ‖xLS‖2, (14)

then the following implication holds

G has a 2-factor ⇒ G \ e has a 2-factor. (15)
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Figure 3: An example of a graph (top left) with two 2-factors (right). The values
of xLS entries (bottom left) are significantly higher for edges belonging to both
2-factors.

Proof. For a contradiction, let us suppose that the inequality (14) holds and all
2-factors x ∈ {0, 1}m×1 of the graph G satisfy [x]e = 1. Let us denote by Be ∈
{0, 1}n×(m−1) the matrix obtained from B by deleting the column corresponding to
the edge e. Similarly, let us denote by xLS,e the vector that we obtain from xLS by
deleting the entry corresponding to the edge e. If we choose any 2-factor x of the
graph G then the following equality holds

Bx = Bexe + e = 2 · 1n = BxLS = BexLS,e + [xLS]e · e, (16)

where xe is obtained from x by deleting the entry corresponding to the edge e.
Hence, Be(xLS,e − xe) = (1 − [xLS]e) · e and for the least-square solution zLS of

the system Bez = (1− [xLS]e) · e there holds

‖zLS‖2 = (1− [xLS]e)
2‖B†ee‖2 ≤ ‖xLS,e−xe‖2 = ‖xLS−x‖2− ([xLS]e−1)2. (17)

Thus, using the equality (9) we obtain an estimate

‖B†ee‖2 ≤ n− ‖xLS‖2

([xLS]e − 1)2
− 1. (18)

It remains to simplify the expression ‖B†ee‖2 = eT (BeB
T
e )−1e. For this purpose we

apply the Sherman-Morrison formula (see [9])

(BeB
T
e )−1 = (BBT − eT e)−1 = (BBT )−1 +

(BBT )−1eeT (BBT )−1

1− eT (BBT )−1e
(19)

and obtain

eT (BeB
T
e )−1e = eT (BBT )−1e +

eT (BBT )−1eeT (BBT )−1e

1− eT (BBT )−1e

=
eT (BBT )−1e

1− eT (BBT )−1e
=

1

1− eT (BBT )−1e
− 1. (20)
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Hence
1

1− eT (BBT )−1e
≤ n− ‖xLS‖2

([xLS]e − 1)2
, (21)

which is in contradiction with the assumption (14).

Remark 9. A similar inequality to (14) can be derived in the case when G \ e is
a bipartite graph using formulas for the Moore–Penrose inverse of modified matrices,
for more details see e.g. [1] or [6].

5. Minimizing the length of xLS

With the aid of [7] we have computed the values of ‖xLS‖ =
∥∥xG

LS

∥∥ for all con-
nected non-isomorphic graphs G on 9 vertices with a minimal vertex degree 2 (see
Figure 4) and found out that the value of

∥∥xG
LS

∥∥ is significantly smaller for graphs G
containing a large number of 2-factors. This has lead us to the strategy (strategy S3)
consisting in removing the edge e ∈ E(G) with a property

e = arg min
ê∈E(G)

∥∥xG\ê
LS

∥∥ (22)

(see Figure 5b for an example of an application of the strategy S3).

Figure 4: For graphs with a large number of 2-factors the norm of the least-square
solution xLS is significantly smaller. Thus, in order to preserve a maximum number
of 2-factors in the graph we always try to remove the edge that minimizes ‖xG\e

LS ‖
(strategy S3). Here the results for connected non-isomorphic graphs with 9 vertices
and minimal vertex degree 2 are shown (each point represents one graph).

For computing
∥∥xG\e

LS

∥∥ we use the following lemma.
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Lemma 10. Let G be a graph with the incidence matrix B and let e ∈ E(G) be any
edge such that G \ e is a connected non-bipartite graph. Further, let xG

LS be the least-

square solution to the system Bx = 2 · 1n and let x
G\e
LS be the least-square solution to

the system Bex = 2 · 1n. Then there holds

∥∥xG\e
LS

∥∥2−
∥∥xG

LS

∥∥2
=

[xG
LS]2e

1− eT (BBT )−1e
. (23)

Proof. We employ the relations from the equalities (9) and (19) and obtain∥∥xG\e
LS

∥∥2
=

∥∥2B†e1n

∥∥2
= 4 · 1T

n (BeB
T
e )−11n

= 4 · 1T
n (BBT )−11n +

4 · 1T
n (BBT )−1eeT (BBT )−11n

1− eT (BBT )−1e

=
∥∥xG

LS

∥∥2
+

(2 · eT (BBT )−11n)2

1− eT (BBT )−1e
=
∥∥xG

LS

∥∥2
+

[xG
LS]2e

1− eT (BBT )−1e
, (24)

where we used the fact that

2 · eT (BBT )−11n = [2 ·BT (BBT )−11n]e = [2 ·B†1n]e = [xG
LS]e (25)

is the entry of the vector xG
LS corresponding to the edge e.

Remark 11. As in the case of the inequality (14) similar equality to (23) can be
derived when G\e is a bipartite graph using formulas for the Moore–Penrose inverse
of modified matrices, for more details see again e.g. [1] or [6].

Figure 5: For the edges of the graph from the Example 7 we compute the values
of the left-hand side of the inequality (14) (Figure 5a). The edge with the highest
value (1.07) will be removed (strategy S2). Unfortunately, n−‖xLS‖2 = 1.07 in this
case, hence, the condition (14) is not fulfilled. Analogously, we compute the values of
the right-hand side of the equality (23) (Figure 5b). Then the edge with the smallest

value (0.82) will be removed (strategy S3) in order to minimize the norm of x
G\e
LS .

Thus, for this graph, all three strategies lead to the deletion of the same edge.
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6. Numerical experiments

We consider 10 000 randomly generated graphs with 32 vertices and 64 edges
containing a Hamiltonian cycle. For each graph we apply all three strategies and
successively remove edges. In each row of the Table 1 one can find results for each
strategy employed. The numbers of graphs for which the algorithm failed are stored
in the second column of the table. In the third to seventh column one can find the
numbers of graphs for which the algorithm succeeded and the resulting 2-factor is
formed by 1 to 5 components. In the last column an average number of components
for each successfully ended strategy is shown.

strategy failed 1 cmp 2 cmp 3 cmp 4 cmp 5 cmp avg cmp

S1 372 4498 4297 774 59 0 1.6255
S2 59 5487 3337 930 161 26 1.5818
S3 3582 2096 2816 1232 247 27 1.9550

Table 1: Numerical results for all considered strategies.

7. Conclusion

Numerical experiments show that all three strategies considered were successful
in more than 50 percent of all cases and from this point od view we shall say that
the considerations from which they were derived were justified. The best result has
been achieved by the strategy S2, which succeeded 99.41 percent of the time. The
combination of all three strategies, as well as the involvement of some properties of
the graph in the edge deletion decision, will be the subject of the future research.
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