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Abstract: We present results on the estimation of unknown parameters in
systems of ordinary differential equations in order to fit the output of models
to real data. The numerical method is based on the nonlinear least squares
problem along with the solution of sensitivity equations corresponding to the
differential equations. We will present the performance of the method on the
problem of fitting the output of basic compartmental epidemic models to data
from the Covid-19 epidemic. This allows us to draw several conclusions on the
natural limitations of these models and their validity.
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1. Introduction

Ordinary differential equations (ODEs) are one of the most common mathemati-
cal tools to describe natural phenomena. Extensive literature exists on how to build
more or less sophisticated mathematical models leading to ODEs. Typically the re-
sulting equations contain unknown parameters (constants) which must be tailored
to the specific application. These can be obtained by measurement, theoretical con-
siderations, etc., but in certain situations it is difficult to come up even with a rough
estimate of the real-life parameters of the model. One possibility then is to tune the
parameters of the model so that its output agrees best with measured data. There
are many approaches to solve such a data-fitting problem, cf. [6]. Here we build on
the approach of [2] which uses so-called sensitivity equations to obtain the depen-
dence of the solution of the ODEs on the considered parameters (Section 2). This is
then used in a gradient-based Levenberg-Marquardt optimization algorithm which
solves a nonlinear least-squares problem of fitting the output to the data (Section 3).
We test the data-fitting algorithm on compartmental models from epidemiology (Sec-
tion 4), specifically we take data from the COVID-19 epidemic in the Czech Republic
(Section 5) and discuss the validity of such simple models.
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2. Ordinary differential equations and sensitivity equations

We use the notion of a system of ODEs in the following way:

Definition 1. Let n ∈ N, and fi : R × Rn → R for i ∈ {1, . . . , n}. By a system of
differential equations we mean a system of the form

y′1 = f1(y1, . . . , yn, t),

y′2 = f2(y1, . . . , yn, t),

... (1)

y′n = fn(y1, . . . , yn, t).

We use vector notation y′ = f(t, y(t)) for brevity. By an initial value problem we
mean the system (1) along with a point (t0, y

0) ∈ R×Rn called the initial condition.
We seek a solution of the system of differential equations such that y(t0) = y0.

Throughout this contribution, we consider the case when the system of ODEs (1)
contains some known or unknown parameters, in which case the resulting solution
also depends on the choice of the parameter. Specifically, instead of y being only
a function of t, i.e. y(t), we will have also the dependence on some parameter(s) c:
hence we write y(t, c). To simplify the notation, for some fixed value of the parameter
c we will sometimes omit the second argument and write y(t, c) = y(t). Similarly,
we write y′(t, c) = y′(t) = ∂y

∂t
(t, c) if the right-hand side is defined. This will simplify

the notation for ODEs, where t is the relevant variable and c is only a parameter.
Now we follow the paper of Dickinson and Gelinas [2] and the monograph [6] by

Schittkowski. Let us consider an initial value problem

y′(t, c) = f
(
y(t, c), t, c

)
, y(0, c) = y0, (2)

which depends on a real parameter c. For now we assume that the initial condition y0

does not depend on c. In order to optimize the parameters in our models we need
to determine the so called sensitivity of the system with respect to c.

Definition 2. Let i ∈ {1, . . . , n}. We define the sensitivity of the i-th variable with
respect to the parameter c by

zi(t, c) =
∂yi
∂c

(t, c).

The sensitivities defined above can be obtained as a solution of a system of ODEs
called the sensitivity equations which we derive now. Let i ∈ {1, . . . , n}. We assume
that all functions involved are sufficiently smooth. Then we obtain by Definition 2
and the rule for interchanging the order of differentiation

∂zi
∂t

(t, c) =
∂

∂t

(
∂yi
∂c

(t, c)

)
=

∂

∂c

(
∂yi
∂t

(t, c)

)
. (3)
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By using (2), the chain rule for differentiation and Definition 2, we have

∂zi
∂t

(t, c) =
∂

∂c

[
fi
(
y1(t, c), . . . , yn(t, c), t, c

)]
=
∂fi
∂c

(
y1, . . . , yn, t, c

)
+

n∑
j=1

∂fi
∂yj

(
y1, . . . , yn, t, c

)∂yj
∂c

(t, c)

=
∂fi
∂c

(
y1, . . . , yn, t, c

)
+

n∑
j=1

∂fi
∂yj

(
y1, . . . , yn, t, c

)
zj(t, c).

(4)

We have obtained the so-called sensitivity equations. These are a system of n ODEs
which can be solved simultaneously with the original system (2). We now determine
the initial condition of the sensitivity equations. Since the initial condition of the
original system (2) does not depend on the parameter c, we have by Definition 2:

zi(0, c) =
∂yi
∂c

(0, c) =
∂y0

i

∂c
= 0. (5)

Definition 3. Let y′(t, c) = f(y(t, c), t, c), y(0, c) = y0 be an initial value prob-
lem of the form (2) and suppose that the initial condition does not depend on the
parameter c ∈ R. We define the corresponding sensitivity equations by

z′i(t, c) =
∂fi
∂c

(
y1, . . . , yn, t, c

)
+

n∑
j=1

∂fi
∂yj

(
y1, . . . , yn, t, c

)
zj(t, c), zi(0, c) = 0,

for i ∈ {1, . . . , n}.

2.1. Multiple parameters and parameter in initial condition

The previous derivation generalizes straightforwardly to the case of multiple pa-
rameters (in the equation only), where we use the vector form c = (c1, . . . , cm)T ∈ Rm.
We define the sensitivity of the i-th variable with respect to the parameter cj by

zji (t, c) =
∂yi
∂cj

(t, c).

Proceeding similarly as in the derivation in the previous case (4) we obtain the
sensitivity equation for the sensitivity zji in the form

(zji )
′ =

∂fi
∂cj

+
n∑
k=1

∂fi
∂yk

zjk,

along with the initial conditions zji (0, c) = 0.
Until now we have discussed the case when the initial condition does not depend

on c. However, a parameter may appear both in the equation and in the initial
condition. Consider for example the following initial value problem:

y′(t, c) = f
(
y(t, c), t, c

)
, y(0, c) = (c, y0

2, . . . , y
0
n)T , (6)
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The sensitivity equations themselves are identical to those in Definition 3. As for
the initial condition, for the first variable z1 we have by Definition 2

z1(0, c) =
∂y1

∂c
(0, c) =

∂

∂c
c = 1

and for i ∈ {2, . . . , n} we get zi(0, c) = 0 as in the previous section.

3. Algorithms for parameter optimization

We now address the problem of optimizing the parameters in ODEs, i.e. finding
the set of parameters for which the solution of the ODE has the best agreement
with given data obtained e.g. from measurement or observation. There are many
possibilities how to approach this problem, see [6]. Our approach is the follow-
ing: The resulting function obtained as a solution to the considered model fits the
measured data in the least squares sense. More precisely, consider the initial value
problem (2) which depends on m parameters c = (c1, . . . , cm)T ∈ Rm. Suppose we
have a set of data points {(tj, Y j) ∈ Rn+1, j = 0, . . . ,M}. We want to find a vector
of parameters cmin ∈ Rm such that it satisfies the condition

cmin = argmin
c∈Rm

M∑
j=0

‖y(tj, c)− Y j‖2 = argmin
c∈Rm

M∑
j=0

n∑
i=1

(
rij(c)

)2
, (7)

where ‖· ‖ is the Euclidean norm in Rn and the residuals are defined by

rij(c) = yi(tj, c)− Y j
i . (8)

A minimization problem of the form (7) is called a nonlinear least squares problem.
In the case when rij(c) depend linearly on c, the problem reduces to (linear) least
squares. Since we are typically unable to find analytic solutions to our ODEs, we
cannot write the explicit formulae for rij(c). However, one can solve the equations
numerically, in our case by a fourth order Runge-Kutta method. Moreover, we can
also compute the partial derivatives of the residuals w.r.t. the parameters:

∂rij
∂ck

(c) =
∂yi
∂ck

(tj, c) = zki (tj, c), k ∈ {1, . . . ,m}.

We can therefore evaluate the partial derivatives of rij by solving the sensitivity
equations (also using Runge-Kutta) in parallel with the original ODEs. This allows
us to apply a gradient-based optimization algorithm for the numerical solution of
problem (7). Specifically, we use the Levenberg-Marquardt method, which produces
the a sequence of approximations to cmin using the iterative process

c(l+1) = c(l) − (JTl Jl + λlI)−1JTl r(c
(l)), l = 0, . . . ,

where Jl is the Jacobi matrix of the residuals rij w.r.t. the parameter vector c
at the l-th iteration. The constant λl is a ‘damping’ parameter which interpolates
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between Gauss-Newton method (λl = 0) and steepest descent (λl → ∞). There
are various choices of λl, we adopted the simple strategy from the original paper of
Marquardt [4], which proved sufficient in our case. The more basic method, Gauss-
Newton’s method, did not converge in several of our test cases or converged very
locally probably due to the near-singularity of the Jacobi matrices. The Levenberg-
Marquardt method can be viewed as Gauss-Newton using a trust region approach.

4. Compartmental epidemiological models

We will test the performance of the parameter optimization algorithm on sys-
tems of ODEs coming from mathematical biology, namely models for the spreading
of infections diseases in a population. Mathematical models in epidemiology may be
sorted into various categories according to different criteria – discretization of time
(models with discrete intervals and continuous time models), allowing for random-
ness (stochastic and deterministic models), structure of the population etc. Here we
take into account exclusively deterministic, continuous time models where the pop-
ulation is assumed to be a homogeneous continuum. Presumably the most widely
known representatives of this kind of models are the standard compartmental mod-
els. These models are based on the principle of dividing the population into several
labeled compartments (eg. Infectious, Recovered etc.) under certain simplifying
assumptions. The development of the epidemic is then determined by relations de-
scribing the flow between compartments, namely the rate of flow between a pair of
compartments. The model is formulated mathematically as a system of ODEs.

4.1. SIR model

The SIR model is the most basic compartmental model, cf. [5]. The population
is divided into three groups, each group a function of time:

• Susceptible (S) — those who have not come across the disease and can fall ill
if they come into contact with an infectious person, thus becoming infectious.

• Infectious (I) — those who spread the disease among the susceptible popula-
tion. After recovery they move to the compartment R:

• Recovered (R) — those who are removed from the compartment I either due
to recovery or due to death.

The relations between the compartments are based on four fundamental assumptions:

1. The vital dynamics is neglected and the size of the population is supposed to
be constant, we denote it by N > 0.

2. The population is assumed to be a homogeneous continuum, i.e. all people have
an equal number of contacts, the probability of the transmission of the disease
between a susceptible and an infectious person during their contact remains
constant and the infectious are equally distributed among the population.
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Figure 1: SIR model.

3. The rate of flow between the compartments I and R is directly proportional
to the size of the compartment I.

4. The recovered acquire immunity and cannot spread the infection. Those who
fall victims to the disease are treated as recovered.

Let r be the number of contacts of a person per unit time and let p ∈ (0, 1) be the
probability of the transmission between an infectious and a susceptible person when
they meet. It is desired to find the number of people an infectious person infects per
unit time. The fraction of susceptible population within the total population is S

N
.

Therefore, the infectious person meets a total of r S
N

susceptible people per unit time.
It follows that the number of infected susceptible people per infectious person per
unit time is pr S

N
. It proves convenient to define a new constant β = pr. Because the

total number of infectious people is equal to I, it can be concluded that the total
number of people an infectious person infects per unit time is βI S

N
.

We now determine the relation between compartments I and R. As stated in
the assumption 2, the rate of flow between the compartments I and R is directly
proportional to the size of the compartment I. Denote by γ the coefficient of pro-
portionality. The rate of flow is then equal to γI. The value 1

γ
can be interpreted as

the expected time spent in the compartment I, cf. [5].
The resulting model is described mathematically by the system of ODEs

S ′ = − β
N
SI, I ′ =

β

N
SI − γI, R′ = γI. (9)

The model is shown schematically in Figure 1. The system (9) is equipped with the
following initial conditions. Let I0 > 0 and R0 ≥ 0. We set

S(0) = N −R0 − I0, I(0) = I0, R(0) = R0. (10)

There are many generalizations of the SIR model, usually based on the introduc-
tion of various other compartments. For example, the SIQR model is based on the
additional assumption that every infectious subject is quarantined after the infec-
tion is detected. In addition to S, I, and R, we define a new compartment called
Quarantined denoted Q. The infectious move from the compartment I to the com-
partment Q with a rate of flow directly proportional to the size of I. Analogously,
the quarantined leave the compartment Q and move on to the compartment R with
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Figure 2: SIQR model.

a rate of flow directly proportional to the size of Q. The coefficients of proportion-
ality are denoted by α and δ, respectively. Finally, we assume that the quarantined
are unable to interact with the rest of the population. Thus the flow rate between S
and I in the SIR model has to be modified appropriately. The model is shown
schematically in Figure 2. The resulting system of ODEs reads

S ′ = − β

N −Q
SI, I ′ =

β

N −Q
SI − αI, Q′ = αI − δQ, R′ = δQ. (11)

Apart from SIR and SIQR, we considered several other variants, such as the
SEIR and SEIQR models and a different version of the SIQR model. Here E stands
for Exposed, this compartment contains infected people who are not infectious yet,
effectively adding a latency period to the standard model. We only mention these
models in passing, since they gave us results almost identical with the basic SIR
model on the considered data and thus present no added value in our case.

5. Numerical results

The approach to parameter optimization described in Sections 2 and 3 was imple-
mented in MATLAB and tested on COVID-19 epidemiological data from the Czech
Republic using the models from Section 4. However first we have tested the algo-
rithms on artificially generated data and, more interestingly, on a standard test-case
of data from a well studied and documented local influenza epidemic.

5.1. Influenza epidemic in a boarding school

The SIR model is derived under certain assumptions on the population and the
disease. This may significantly affect the accuracy of the model in practice. We
present here one case, which is as close as possible to satisfying the assumptions, the
case of an influenza outbreak in an English boarding school from 1978, cf. [5].

In total, 763 boys were present, one boy had an influenza-like illness from the
A/USSR/90/77(H1N1) virus. Over the next two weeks, a total of 512 boys developed
similar symptoms spending between three and seven days in the college infirmary.
We want to estimate the values of parameters β and γ from the SIR model (9)
corresponding to this epidemic. The population remains constant over the whole
period, i.e. N = 763. Contacts of the pupils were limited to the people in school,
thus forming a closed community – it seems that the population is as homogeneous as
possible. The presymptomatic period is short, no deaths occurred and the recovered
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Figure 3: Measured data of the flu epidemic and the estimate of compartment I.

acquired sufficient immunity. One problem concerning the available data may occur,
since in practical cases we do not possess the data which fit into the structure of the
SIR model precisely. The data consists of the number of students confined to bed
each day. Following [5], we assume the data to be from the compartment I.

Since we have data only from compartment I, we define the optimization problem
of the form: Find βm, γm satisfying

(βm, γm)T = argmin
(β̃,γ̃)T∈R2

D∑
j=0

|Ĩ(jτ, β̃, γ̃)− Ij|2, (12)

where τ = 1 corresponds to one day, which is the period with which we know the
number of infected, Ij on the j-th day, j = 0, . . . , D with D = 13. The initial
estimate is given by (β(0), γ(0))T = (1, 1

7
)T and the stopping criterion

‖(βm, γm)T − (βm+1, γm+1)T‖∞ < 10−5, (13)

was satisfied after six iterations of the Levenberg-Marquardt algorithm. The result-
ing estimate of the parameters is (βm, γm)T ≈ (1.6998, 0.4469)T . Figure 3 shows that
the estimated values of the compartment I are in good agreement with the data.
However, after closer examination we find that the results do not quite correspond
to the available data. Namely, the SIR model with the optimized parameters shows
that the total number of people who suffered from the illness is 744, whereas the true
number was 512. In addition, the value 1

γ
≈ 2.24 represents the expected time (in

days) one spends in the Infectious compartment. This value is less then the observed
value, which was three to seven days. This suggests that even in this simple case
some unexpected issues limiting the accuracy of the model occur. This is a conse-
quence of several facts. As stated above, the available data do not fit the model
precisely – a person diagnosed with the illness has limited possibilities of spreading
the disease because their contacts with the susceptible population are restricted. In
addition, the pattern of the SIR model may not be entirely convenient for this par-
ticular disease. In order to adjust the model in accordance with the disease we need
additional medical information which is not available.
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Figure 4: COVID-19, Infectious: Full population (left), effective population (right)

5.2. COVID-19 epidemic in the Czech Republic

Finally, we apply the presented numerical methods to the COVID-19 epidemi-
ological data from the Czech Republic provided by the Ministry of Health of the
Czech republic [3]. We chose the period from March 13, 2020, to May 24, 2020. The
reasons are the following: On 13 March, the key measure forbidding retail sales and
the sales of services in business premises came into effect and on 25 May the crucial
part of the restrictive measures ended. It is therefore reasonable to assume that β
and γ remain constant within this period, since adopting some restrictive measures
against the spread of the disease decreases the value of parameter β, because the
number of contacts of a person is reduced. The chosen period was the longest during
the epidemic, where external conditions remained the same.

We optimized the parameters β and γ using the data from the compartment I
only, i.e. the function to minimize is of the form (12) with D = 71 and N = 1.065·107.
The initial guess of the parameters is again given by (β(0), γ(0))T = (1, 1)T . The
stopping criterion (13) was achieved after 10 iterations. The computed estimate
is (βm, γm)T ≈ (4.6687, 4.5244)T . The results from compartment I can be seen in
Figure 4 (left). We note that the computed estimate gives the expected time a person
remains infectious 1

γm
≈ 0.22 days, which is clearly unrealistic. Moreover, the model

shows that the total number of recovered people at the and of the considered time
interval is 6.15 · 105, while the actual value was 7750.

The reason why the SIR model gives such unrealistic results for the presented data
is that the number of infected was very small in proportion to the total population
of the Czech Republic and the population was not homogeneous, since the epidemic
consisted of small local outbreaks, thus violating one of the basic assumptions of the
SIR model. This consideration leads us to the introduction of an effective population
size. The idea is to use a reduced population size which reflects the assumption of
homogeneity within that smaller sub-population. The question is how to determine
the size of the effective population. Our approach is to consider N not as a fixed
constant (as it has been until now), but to treat it as an unknown parameter. For-
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mally, the change is that instead of the parameter vector (β, γ)T for the SIR model,
we now have the extended parameter vector (β, γ,N)T . We note that N is present
not only in the equations (9), but also in the initial condition (10), thus we use the
approach from Section 2.1.

The initial guess was (β(0), γ(0), N (0))T = (1, 1, 106)T . The computed results are
(βm, γm, Nm)T ≈ (0.2587, 0.0444, 8593) and were reached after 50 iterations. Agree-
ment with measured data has improved, cf. Figure 4 (right). The estimated total
number of recovered is 7636, which is a good approximation of the true value 7750.
The expected length of the infectious period is approximately 22 days. This is close
to the length of the potential maximal infectious period of 15 to 21 days estimated
in meta-analysis [1]. The estimate of the basic reproduction number R0 = βm

γm
≈ 5.8

exceeds the values in the interval 2.4 to 3.4 estimated by meta-analysis.
To conclude, the presented method of the effective population considerably in-

creased the accuracy of the basic SIR model in the situation when the SIR model
itself failed due to high inconsistency of the measured data with the assumptions
of the model. We have also tried other compartmental models such as the SIQR
model, however not much improvement was observed over the basic SIR model with
optimization of the effective population size.
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