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Abstract: The widely used method for solution of impacts of bodies, called
the penalty method, is based on the contact force proportional to the length
of the interpenetration of bodies. This method is regarded as unsatisfactory
by the authors of this contribution, because of an inaccurate fulfillment of the
energy conservation law and violation of the natural demand of impenetrability
of bodies. Two non-traditional methods for the solution of impacts of bodies
satisfy these demands exactly, or approximately, but much better than the
penalty method. Namely the energy method exactly satisfies the conservation
of energy law, whereas the kinematic method exactly satisfies the condition of
impenetrability of bodies. Both these methods are superior in comparison with
the penalty method, which is demonstrated by the results of several numerical
examples.

Keywords: contact / impact of elastic bodies, finite element method, method
of dicretization in time, energy and kinematic approaches.
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1. Introduction

Robust, reliable and effective computational analysis of collision of deformable
bodies belongs to the important tasks of engineering mechanics, conditioned by the
successful cooperation in formulation of physical models with reasonable parameters,
evaluable from rather simple experiments, in mathematical and numerical analysis
and in software development. Models based on the conservation principles of clas-
sical thermomechanics by [4], supplied by appropriate constitutive relations, lead
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to partial differential equations or even to their systems of hyperbolic type, sup-
plied with the pair of Cauchy initial conditions for displacements and their rates,
with the Dirichlet boundary conditions for prescribed supports and with the Neu-
mann boundary conditions for exterior loads, together with the contacts / impacts
of colliding deformable bodies. This brings substantial nonlinearities to the system,
even under the hypothetical, not very realistic assumptions on both the geomet-
rical linearity (small strains) and the physical one (linear reversible strain - stress
relations). Theoretical formulations containing variational inequalities, after the dis-
cretisation both in the time and in the Euclidean space, 3-dimensional in general,
replace their exact fulfilment by the introduction of some additional penalty terms,
as introduced by [23]. Other serious problems are the incorporation of contact fric-
tion, non-expensive search for potential contacts – cf. the distributed and parallel
computations required by [6] and [17], as well as the description of contact geometry,
characterized as node-to-node, node-to-segment or segment-to-segment approaches.

The progress in this research area in more than last 3 decades can be traced from
the review articles [2], [7], [10] and [18]. When treating contact problems within the
finite element method, 7 steps of analysis should be followed by [22]: i) continuum
based contact kinematics, ii) constitutive equations for contact interfaces, iii) weak
form of contact contributions and overall solution strategies for contact problems,
iv) discretisation of contact surfaces, v) algorithms for the integration of constitutive
equations in the contact area, vi) contact search algorithms, vii) adaptive meth-
ods for contact problems. The detailed primal and dual variational formulations of
contact problems are demonstrated by [15]. The comparison of classical Lagrange
multiplier and penalty computational approaches is presented by [20]. The classical
recommendations for the choice of penalty stiffness, needed for the evaluation of the
contact force proportional to the length of the interpenetration of bodies, are pre-
sented in [3]; the so-called exact penalty improvement, working with the updated
penalty stiffness, was suggested by [13].

Other alternatives can be found in literature, too, as i) energy conserving algo-
rithms, introduced by [9], revisited by [24], applying certain penalty-based regular-
ization, or ii) perturbed Lagrangian formulations, stemming from [14], working with
certain kinematic conditions, developed by [12]. The implementation of b) by [1]
utilizes augmented Lagrange multipliers to force all prescribed kinematic conditions,
which requires an additional iterative solutions of systems of algebraic equations,
unwelcome for explicit time discretisation. Another implementation of b) by [21]
avoids such iterative process, but leads to a non-physical increase of energy at con-
tact / impact interfaces typically, which must be suppressed by some artificial com-
putational reduction of contact forces.

Two promising computational methods, presented in this paper, can be seen as
certain variants of i) and ii). We shall refer to them as to i) the energy method and
to ii) the kinematic method, although such nomenclature is not quite unified in the
literature, to highlight i) the exact energy conservation, or ii) the exact fulfillment
of kinematic conditions, involved in any space- and time-discretised computational
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scheme. Assuming the space discretisation using the finite element technique, we
shall work with the explicit time integration, due to the need of short time steps,
forced by collision phenomena. The approach i) generalizes the 2-dimensional for-
mulation of [16] naturally. The approach ii) here does not evaluate any contact
forces as separate variables, but its specific use in the explicit time stepping forces
the correction of nodal displacement at all potential interfaces under the assump-
tions of a) impenetrability of colliding bodies, b) evaluation of exact collision time tc,
c) decomposition of any time step of length Dt, considered as [0,Dt] for simplicity,
to [0, tc] and [tc,Dt], d) conservation of momentum of contact entities and e) perfectly
inelastic collision.

After this introductory remarks (Section 1) we shall come to the general discus-
sion of collision of bodies (Section 2), to the energy method (Section 3) and to the
kinematic method (Section 4), supported by some illustrative examples (Section 5).
The brief concluding remarks (Section 6) will be oriented to the need and priorities
of further research.

2. Collisions of bodies

To demonstrate the advantages of 2 announced methods, we shall consider a fi-
nite number of deformable bodies discretised into finite elements, with the surfaces
consisting of flat triangles, whereas mass is assigned to nodes. These bodies can
arbitrarily collide.

2.1. Finding the time and space coordinates of the collision

For simplicity, we shall suppose that each line consists only of straight elements
and each surface, or a boundary of a solid, is decomposed to triangles. That being the
case, following the node-to-segment approach, just two kinds of collision can occur:
collision of two line segments (element edges), or collision of a node and a triangle
surface segment, as shown by Fig. 1 schematically. All parameters of collision will
be evaluated using the explicit method, with sufficiently small time steps. In each
such time step, constant velocities and geometric linearity are assumed for finding
the time and position of the contact of discretised bodies.

Let us have a line segment with its end points A,B and another line segment with

a) b)

Figure 1: Two possibilities of collision of discretised bodies: a) edge to edge and b)
node to surface.
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its end points C,D, or, alternatively, a triangle surface element with its nodes A, B, C
and another node D. At the beginning of present time step, t = 0 for simplicity, all
these 4 points have their initial positions given by vectors xi(0), and in such time
step they move by velocities vi, assumed as constant during the whole time step.
Thus, in any positive time t we come to positions

xi(t) = xi(0) + tvi for all i ∈ {A,B,C,D} . (1)

We need to find out, whether a) the line segments AB and CD, or b) the node D
and the surface triangle ABC, will collide in the considered time step. Let P be
the point of collision in the case a) and Q such point in the case b). For b) Q
will be the point of the triangle ABC hit by the point D. At the collision time tc
all nodes A, B, C, D must lie in the same plane, thus for a known collision time
their position can be determined, It can be also detected whether the points of the
collision lie inside the pertinent segments, i. e. a) if the points P,Q lie inside the line
segments AB and CD, or b) the point Q lies inside the triangle ABC. For the sake
of brevity of the following formulae (2), (3) and (4), we shall write xi instead of xi(tc)
now.

At first let us investigate whether the point D lies in the plane given by the
points A, B, C. The symbols × and · will be reserved for the vector and scalar
products in the 3-dimensional real Euclidean space. The normal vector to this plane
can be then defined as (xB(tc)−xA(tc))× (xC(tc)−xA(tc)). If the point D lies in the
plane ABC, then the vector connecting him with an arbitrary point of this plane,
as with A in particular, must be perpendicular to the above introduced normal one;
this can be written as

(xD − xA) · ((xB − xA)× (xC − xA)) = 0 ; (2)

this cannot hold for any point D not belonging to the plane ABC for any non-
degenerated triangle ABC, i. e. a triangle with non-zero area. Rearranging (2)
formally, we obtain

xD · (xA × xB + xB × xC + xC × xA) = xA · (xB × xC) . (3)

Substituting (1) with t = tc into (3), we come to the cubic equation

C3t
3
c + C2t

2
c + C1tc + C0 = 0 , (4)

C0 = xD · (xA × xB) + xD · (xB × xC) + xD · (xC × xA)− xA · (xB × xC) ,

C1 = xD · (xA × vB) + xD · (vA × xB) + vD · (xA × xB) + xD · (xB × vC)

+ xD · (vA × xC) + vD · (xB × xC) + xD · (xC × vA) + xD · (vC × xA)

+ vD · (xC × xA)− xA · (xB × vC)− xA · (vB × xC)− vA · (xB × xC) ,

C2 = vD · (vA × xB) + vD · (xA × vB) + xD · (vA × vB) + vD · (vB × xC)

+ vD · (xA × vC) + xD · (vB × vC) + vD · (vC × xA) + vD · (xC × vA)

+ xD · (vC × vA)− vA · (vB × xC)− vA · (xB × vC)− xA · (vB × vC) ,

C3 = vD · (vA × vB) + vD · (vB × vC) + vD · (vC × vA)− vA · (vB × vC) .
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Clearly (4) can be solved analytically by the Cardano formulae, or iteratively, using
e. g. the Newton method. If its positive solution tc exists, not exceeding the time
step Dt, it refers to the collision time; in the case of multiple solutions the smallest
one corresponds to the needed first collision time.

Its smallest positive solution tc (if exists, not exceeding the time step Dt) refers
to the first collision time. Consequently, all position vectors xi(tc) for the points
i ∈ {A,B,C,D} can be evaluated by (1).

Figure 2: Definition of the contact plane by the nodes A,B,C.

2.2. Determination of the contact plane and its properties

Let us notice that the determination of contact time and location is based on
the existence of a plane containing all points A,B,C,D. Such plane, as sketched
by Fig. 2, is determined by an arbitrary triple selected from these 3 points, e. g.
A,B,C for simplicity. Let us introduce a local coordinate system, whose 2 basis
vectors e1, e2 can be chosen as arbitrary orthogonal vectors in this plane, whereas
the remaining basis vector e3 is normal to this plane, with an appropriate orientation
to satisfy e1 · (e2 × e3) > 0; thus we have a new coordinate system x∗ = x∗1e1 +
x∗2e2+x∗3e3. In particular, we can introduce the unit vectors e∗

1 = (xC−xB)/|xC−xB|,
b = (xA − xC)/|xA − xC |, e3 = b × e∗

1 and e∗
2 = e∗

3 × e∗
1. Thus we can work

the local transform of coordinates x∗ = Rx, containing certain rotation matrix
R = (e∗T

1 , e∗T
2 , e∗T

3 )T. Clearly x∗3 = 0 only for all points lying in the contact plane,
whereas 2 remaining axes create a contact plane coordinate system, needed in our
following considerations.

The contact plane can be used for definition of arbitrary friction models. Here,
due to the limited extent of this paper, let us introduce a very simple property of
such contact plane, which can be characterized as “the elastic friction”, based on
the introduction of 2 limit cases. The 1st one can be called “the zero friction”,
which means that both surfaces of elastic bodies are perfectly slippery, so no in-
plane contact force and no friction dissipation can occur. The 2nd one can be called
“the absolute friction”, which means that no mutual sliding can occur during the
collision, thus, no dissipation occurs in this case as well. More general cases of the
elastic friction can be received as linear combinations of these 2 limit cases. Potential
dissipation could be easily put into the energy balance in the energy method.
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a) b)

Figure 3: Collision of: a) two line segments or edges, or b) a node and a triangle
surface.

2.3. Determination of the positions and velocities of the colliding points

To be able to determine the positions and velocities of all colliding points, we
shall discuss only collisions of a) two segments or edges and b) a node and a triangle
surface, as sketched by Fig. 3, in details. Collisions of the types node-to-node, or
segment-to-segment (rarely exact) can be derived from a), b) using the limit passage.
For the evaluation of the contact force direction, it is necessary to accept a suitable
hypothesis. Let P,Q be the colliding points; thus, for the case of a collision of a node
and a general point of a surface segment let us assume Q ≡ D.

2.4. Collision of two segments or edges

In the case a) positions of the colliding points P,Q can be determined as the
intersection points of 2 lines, whose equations for real parameters s1, s2 are xP (s1) =
xA + s1(xB − xA), xQ(s2) = xC + s2(xD − xC), and, moreover, xP (s1) = xQ(s2) is
required, thus

xA + s1(xB − xA) = xC + s2(xD − xC) . (5)

For the evaluation of 2 parameters s1, s2 we have 3 equations (5) now; arbitrary 2 of
them are sufficient for practical computations. Taking only the line segmentsAB,CD
into account, unlike the whole lines, we have s1 ∈ [0, 1] ⇒ P ∈ AB, s2 ∈ [0, 1] ⇒
Q ∈ CD evidently. Consequently, we can write xP (tc) = xQ(tc) and

xP = xANA + xBNB , xQ = xCNC + xDND , (6)

vP = vANA + vBNB , vQ = vCNC + vDND ,

taking NA = s1, NB = 1− s1, NC = s2, ND = 1− s2.

2.5. Collision of a node and a triangle surface element

Coming back to the case b), we have Q = D, thus xQ(tc) = xD(tc). Here we
need the usual area coordinates Nj = Aj/A for j ∈ {A,B,C} where the areas Aj
are evident from Fig. 3 and A is their sum. If any of Nj < 0, the pertinent point
does not lie in the triangle ABC. The vectors xQ and vQ in the plane ABC can be
obtained in the terms of coordinates Nj as

xQ = xjNj , vQ = vjNj . (7)
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3. Energy method

Let us suppose that P,Q are the colliding points, as in the case a). The similar
details of the case b) are left to the curious reader. For the simple implementation
of friction, let us consider two limit cases, announced by Section 2. We shall work
with the mutual velocity of the points P,Q, denoted as vPQ(t) = vQ(t)− vP (t), and
with the contact force fPQ in this case, which can be interpreted as an internal force,
acting by its components fP and fQ in sense of the 3rd Newton law. Their upper
indices a, z will refer to the absolute friction, or to the zero friction, respectively.

3.1. Absolute friction

At first let us assume that the friction is absolute, without any slippage between
the collision points P,Q during the contact at t = tc. Thus, these points will bounce
in the same relative direction vPQ as before the collision; faP = −faQ evidently. The
unit vector in the direction of fQ, needed in the following considerations, can be
introduced as eaQ = faQ/|faQ| = vPQ(tc)/|vPQ(tc)|.

3.2. Zero friction

In this case, the direction of the contact force is in the direction n perpendicular
to the plane given by the triangle ABC; this can be extended from b) to a) naturally,
without all details here. Thus we have n = (xB − xA)× (xD − xC). We are allowed
to introduce nQ using the relations n ·vPQ ≥ 0⇒ nQ = n, n ·vPQ ≤ 0⇒ nQ = −n.
Finally, we can evaluate, similarly to eaQ, eaQ = f zQ/|f zQ| = nQ/|nQ|.

3.3. General friction

The simplest way for the interpolation between 2 preceding cases is to consider
eQ = βeaQ + (1 − β)ezQ, working with certain friction coefficient β ∈ [0, 1]. Conse-
quently, we can write eQ = fQ/|fQ| = eQ/|eQ|, |fQ| = |fP |, fQ = −fP .

3.4. Determination of the magnitude of the contact force

The direction of the contact force is already known; its magnitude remains to
be determined. We shall assume that the above introduced forces cause such accel-
erations of the nodes A,B,C,D that the velocities and positions of these nodes at
the end of certain fictious time step Dt conserve the total potential energy Π, de-
creased by dissipation caused by plasticizing or damage due to the collision, i. e. its
new value can be expressed as Π×(fPQ,Dt) = Π−E where E denotes the dissipated
energy, coming from additional considerations about irreversible plastic strains, frac-
ture, etc. The acceleration of the point P , caused by the force fP , is aP = fP/mP

where mP is the mass assigned to the point P , which causes the velocity increment
∆vP = aPDt. For the point Q we can write aQ = fQ/mQ, ∆vQ = aQDt similarly.
Our distinguishing between the cases a) and b) will be useful in the following con-
siderations. The obvious motivation is that the points P,Q are not the nodes in the
original discretised system, therefore no discretised mass is assigned to them.
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3.5. Collision of two line segments or edges

The substitution of fP , fQ with fA, fB, fC , fD can be done by the static equivalence
of forces fP = fA+fB, fQ = fC+fD, together with fANA+fBNB = o, fCNC+fDND = o,
coming from the equivalence of moments; o denotes the 3-dimensional zero vector.
Solving this system of 4 linear algebraic equations, we obtain the formally simple
relation

fi = NifP for any i ∈ {A,B,C,D} (8)

applying the coefficients Ni stemming from (6).

3.6. Collision of a node and a triangle surface segment

Since Q = D in this case, the calculated values for the node D can be applied
to the collision point Q, too, whereas for the collision point P the needed values of
force, acceleration, velocity and position need to be expresses by the nodal values of
the triangle ABC. Let us assume that all forces fi for i ∈ {A,B,C} are parallel,
in the direction of the unit vector eQ. The static equivalence conditions then are
fP = fA + fB + fC , xP × fP = xA × fA + xB × fB + xC × fC ; moreover the identity
condition fQ = fD is valid. Consequently, expressing fQ as eQ|fQ|, we come to
|fP | = |fA|+|fB|+|fC |, xP×eQ|fP | = xA×eQ|fA|+xB×eQ|fB|+xC×eQ|fC |, |fQ| = |fD|.
This implies (8) again, using the coefficients Ni from the text preceding (7).

3.7. Calculation of the change of the position

For any i ∈ {A,B,C,D} the increments of velocities in the considered time step
can be evaluated as ∆vi(fP ,Dt) = (fi/mi)Dt, thus, with respect to (8), we receive
v×
i (fP ,Dt) = vi + ∆vi in the form

v×
i (fP ,Dt) = vi + (Ni/mi) fPDt . (9)

Consequently, since the increments of displacements can be expressed as ∆ui(fP ,Dt) =
viDt then u×

i (fP ,Dt) = ui + ∆ui gets the form

u×
i (fP ,Dt) = ui + viDt+ (Ni/mi) fPDt2 . (10)

Both (9) and (10) will be needed in the calculation of the change of energy for the
contact forces fP , fQ during the fictious time step Dt, which consists of 3 parts: i) the
change of the kinetic energy ∆Πk, ii) the change of the elastic potential energy Πσ

and iii) the change of the potential energy of the position ∆Πp.

3.8. Calculation of the change of the kinetic energy

During the fictitious time step, only the velocities of the nodes A,B,C,D are in-
fluenced by the contact force. The kinetic energy of these mass points before and after
the collision, i. e. at the beginning and at the end of the fictitious time step, using i ∈
{A,B,C,D} as the Einstein summation index here, is Πk = (mi/2) vi ·vi, at its end
Π×
k (fP ,Dt) = (mi/2) v×

i · v×
i , thus, applying (9), for ∆Πk(fP ,Dt) = Π×

k (fP ,Dt)−Πk

we have ∆Π×
k (fP ,Dt) = (mi/2)(2vi ·∆vi + ∆vi ·∆vi), which yields

∆Πk(fP ,Dt) = NivifPNiDt+ (N2
i /(2mi)) fP · fPDt2 . (11)
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3.9. Calculation of the change of the elastic potential energy

Since only the positions of nodes A,B,C,D will be influenced by the contact
force, only the elastic energy of such j-th elements is relevant here.

∆Πσ(fP ,Dt) = f ej ∆dek ; (12)

here f ej and ∆dej form the vectors of the element nodal forces and of the element
deformation parameters, derived using (10), respectively; e must be understood as
an element index and j as an index referring to the above introduced list, both taken
as the Einstein summation indices. Let us remind that ∆ui = viδ is satisfied for
other nodes than i ∈ {A,B,C,D}, too.

3.10. Calculation of the change of the elastic potential energy

Since only the positions of the nodes will change in the (very short) fictitious
time step, the change of the elastic potential energy ∆Πσ(fP ,Dt) = −∆uif

ext
i , f ext

i

being the components of external forces, can be formulated as

∆Πp(fP ,Dt) = (Ni/mi) fP · f ext
i Dt2 . (13)

3.11. Final evaluation of the magnitude of the contact force

The aim of this method is to satisfy the energy conservation law in collisions of
bodies exactly. For all elastic bodies this means that the total energy after collision
must remain the same as before the collision. To achieve this goal, it is necessary to
adopt the equation of the energy conservation into the solution. The change of total
energy during the collision must be zero. Since we have fP = ep|fP | in all cases – cf.
the discussion on friction, in the fictious time step we are allowed to write

∆Πk(|fP |,Dt) + ∆Πσ(|fP |,Dt) + ∆Πp(|fP |,Dt) + E = 0 , (14)

replacing fP in all additive terms by (11), (12) and (13) by |fP | only; E here refers
to the eventual energy dissipation by plasticizing or damage. It is clear that we
are looking for a nontrivial solution |fP | of (14), i. e. for its non-zero root, which
can be performed e. g. using some inexact version of Newton iterations, avoiding
the evaluation of the derivatives of particular additive terms of the left-hand side
of (14). The 1st estimate for |fP | can exploit the fact that the contribution of the
elastic potential energy by (13) can be neglected for this purpose, as well as the
contribution of E, not analyzed in more details here; therefore (14) degenerates to
a quadratic equation, which can be solved analytically. Thus we have all data for
the evaluation of (9) and (10), thus all positions of the nodes A,B,C,D at the end
of the time step can be adjusted as

x×
i = xi + wtcvi + (1−w)tcv

×
i , (15)

using some appropriate weight w ∈ [0, 1], e. g. w = 1/2 (if no better arguments for
this choice are available).
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4. Kinematic method

The fundamental assumption for the collision of bodies Ω1 and Ω2 in this method
is the condition of their impenetrability, i. e. Ω1 ∪ Ω2 must be empty. We have the
discretised masses mi related to the points i ∈ {A,B,C,D}, as in Section 3. The
velocity vectors before the impact (a priori known) are vi, the velocity vectors after
the impact (undetermined yet) are v×

i . Altogether, four velocity vectors have to be
determined, i. e. 12 scalar unknowns. The equations for determining the components
of v×∗

i can be obtained from the law of conservation of linear and angular momentum,
then from kinematic condition, expressing the impossibility of change of shape of any
colliding line or triangle in time of the impact, and lastly from the properties of the
contact plane and the influence of friction. This approach is applicable to both cases
a) and b) from Section 2. The obvious transformation to the local coordinate system
v∗
i = Rvi is available again, as well as its inverse vi = RTv∗

i .

4.1. Absolute friction

We shall start with the choice β = 1, as introduced in Section 3.

4.2. Conservation of momentum

Generally, due to the conservation of linear momentum we can writemiv
×∗
i =miv

∗
i ,

i ∈ {A,B,C,D} being considered as the Einstein summation index again. The con-
servation of angular momentum can be related to an arbitrary point, e. g. to the
origin of coordinates; then it reads

x∗
i ×miv

×∗
i = x∗

i ×miv
∗
i . (16)

For the case a) the conservation of angular momentum can be related to the point
P ≡ Q and consequently, we can write two vector equations

mANBv×
A −mBNAv×

B =mANBvA −mBNAvB , (17)

mCNDv×
C −mDNCv×

D =mCNDvC −mDNCvD .

4.3. Kinematic conditions

For the case b) all in-planar velocity components must satisfy the condition of
rigid body motion in the element plane. It will be useful to omit all directions x3i for
both position and velocity vectors, since they have no influence on deformation of
the involved elements All upper indices ∗ will be omitted for brevity, considering the
local coordinate system in the compatible way with Section 3. Let Im be the mass
moment of inertia, related to the axis x3, in the center T of gravity of the total mass
mT = mA+mB +mC +mD, due to the absolute friction and the condition vD = vQ.
Then the angular momentum to such axis is Imω = (xi1−xT1)mivi2−(xi2−xT2)mivi1,
where ω denotes the angular velocity to the axis x3, introduced as ω = Im/I, I being
the moment of inertia to such axis. Then we have v×T1 = miv

×
i1/mT , v×T2 = miv

×
i2/mT .

Taking also the impact rigidity into account, for j ∈ {A,B,C} we can write finally

v×j1 = v×T1 − ω(xj2 − xT2) , v×j1 = v×T2 + ω(xj1 − xT1) . (18)
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4.4. Contact conditions, influence of friction

In Section 4 we have still considered, up to now, β = 1, thus v×
P = v×

Q, as ex-

plained in Section 3. Thus for the case a) we can writeNAv×
A+NBv×

B =NCv×
C+NDv×

D,
whereas for the case b) with v×

D = v×
Q we have Njv

×
j = v×

D, using the notation com-
patible with (18) and (17).

4.5. Zero friction

For β = 0 all velocity vector components parallel to the sliding plane remain the
same after impact as before, i. e. v×1 = vi1, v×2 = vi2, which decreases the number
of unknowns from 12 to 4. Due to the conservation of linear momentum we have
miv

×
i3 = mivi3. Using the same notation as in the considerations related to β = 1, the

conservation of angular momentum gives two scalar equations xi1miv
×
i3 = xi1mivi3,

xi2miv
×
i3 = xi2mivi3. The velocity vector components perpendicular to the sliding

plane at the colliding points P,Q after the impact are the same, i. e. v×Q3 = v×P3,
respecting the impenetrability assumption, which provides the last needed equation.
Then for the case a) we have NAv

×
A3 +NBv

×
B3 = NCv

×
C3 +NDv

×
D3 and for the case b)

Njv
×
j3 = v×D3 analogously.

4.6. General friction

For β ∈ [0, 1] the interpolation v× = βva×∗
i + (1−β)vz×∗

i for all i ∈ {A,B,C,D}
can be recommended again, as in Section 3.

4.7. Adjustment of the coordinates of nodes

Let us remind the transformations of the type v×
i = RTv×∗

i , needed for the final
update. Thus we come back to (15). Let us also remark that it is useful to keep the
sign of the difference of velocities v×

i of the colliding points P,Q in memory until the
next time step: if the sign does not change then the contact must be still handled,
unlike the opposite case.

5. Illustrative examples

The first example is the problem of an elastic rod impacting a rigid barrier. The
input values were taken from [8]. Fig. 4 shows a model of a rod of total length
L = 1 m, cross section area A = 1 m2, Young’s modulus E = 1 MPa and mass
density ρ = 1 kg/m3, divided into 100 elements with its mass discretised to the nodes,
which is situated at distance g0 = 0 m towards the rigid barrier; its initial velocity
is v0 = 1 m/s. The time step for calculation Dt = 10−8 s is applied. Fig. 5 shows
the comparison of results obtained by the energy, kinematic and penalty method,
particularly displacement of the impacting node and the change of the components
of energy.

Figure 4: An elastic rod impacting a rigid barrier.
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Figure 5: Time distribution of displacement and energy balance for a) the penalty
method, using the penalty stiffness P = 1011 Nm−1, as introduced by [3], b) the
energy method and c) the kinematic method.

The second example presents collision of two symmetrical cylinders, described
in detail in [11], where the input data were also taken from. Fig. 6 shows two
identical cylinders with radius R = 4 m, Young’s modulus E = 1000 MPa, Poisson’s
ratio ν = 0.2 and mass density ρ = 1000 kg/m3 moving with the initial velocity
v0 = 2 m/s against each other. The time step for calculation Dt = 5 · 10−6 s is
applied. Symmetry boundary conditions are applied. Fig. 7 demonstrates the time
propagation and stress in time for the energy and kinematic methods separately,
whereas Fig. 8 shows the time distribution of energy balance.
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Figure 6: FE mesh, impact of two cylinders.
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Figure 7: Stress in the horizontal direction σx[N/m2] during the wave propagation
in times t = 0.1, 0.2, 0.3, 0.4 s.
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Figure 8: Time distribution of energy balance.
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6. Conclusions

The most commonly used method for impact of bodies, called the penalty method,
showed itself as unsatisfactory. This method is based on the idea that the contact
force is proportional to the penetration of the colliding bodies. Therefore a violation
of the principle of impenetrability of bodies is assumed and even necessary for it
to work. This method also does not satisfy the conservation of energy law with
sufficient precision and provides rather random results. Both methods introduced in
this paper validated their superiority over the penalty method. The energy method
satisfies the conservation of energy exactly, whereas the kinematic method preserves
the principle of impenetrability. In the last decades several improvement of the
penalty method and new approaches to the impact of bodies have been published,
some of them being mentioned in References.

The authors of this paper have introduced two methods for transient analysis of
impacts of bodies suitable for the explicit method. Both methods proved their good
accuracy, efficiency and robustness. The energy conservation law is fulfilled very well
without necessity of substantial shortage of the global time step of numerical inte-
gration and without necessity of introducing additional computational parameters,
understanding them and determining their values. Both methods take the exact
time of the impact for each contact into consideration. In the case of the kinematic
method, all deformations, velocities and accelerations are determined with help of
division of the time step into its substeps before and after the impact. The energy
method introduces the equation of conservation of energy in each time step when
a contact occurs, so all unwanted energy changes are eliminated.

The suggested approaches enable contacts of one surface with more nodes, as
well as of one line with more lines, in one time step, as presented by the second
numerical example. The methods do not demand any use of neither penalty method
nor Lagrangian multipliers.

As for the problem of friction, all methods of static friction, based on the idea
of pulling a burden on a surface, are problematic for the impact analysis. Unlike
them, a very general model of the impact friction, assuming the theoretically clear
limits of the friction, namely the zero friction and the absolute friction, is introduced
in this paper. Then the real friction can be seen as a linear combination of those
two limit cases. The friction coefficient, which is the relative weight factor of the
absolute friction, can be determined by simple experiments.
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