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Abstract: With the emergence of mixed precision hardware, mixed pre-
cision GMRES-based iterative refinement schemes for solving linear systems
Ax = b have recently been developed. However, in certain settings, GMRES
may require too many iterations per refinement step, making it potentially
more expensive than the alternative of recomputing the LU factors in a higher
precision. In this work, we incorporate the idea of Krylov subspace recycling,
a well-known technique for reusing information across sequential invocations,
of a Krylov subspace method into a mixed precision GMRES-based iterative
refinement solver. The insight is that in each refinement step, we call precon-
ditioned GMRES on a linear system with the same coefficient matrix A. In
this way, the GMRES solves in subsequent refinement steps can be accelerated
by recycling information obtained from previous steps. We perform numer-
ical experiments on various random dense problems, Toeplitz problems, and
problems from real applications, which confirm the benefits of the recycling
approach.
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1. Introduction and background

There are various algorithms for solving linear systems of equations Ax = b,
where A ∈ Rn×n and x, b ∈ Rn. One approach is iterative refinement (IR) which
is based on improving the approximate solution in each refinement step [23]. Itera-
tive refinement typically starts with using Gaussian elimination with partial pivot-
ing (GEPP) to compute an initial approximate solution. Then using the L and U
factors of A and the residual ri, the system Adi+1 = ri is solved for the correction
term di to improve the approximate solution via xi+1 = xi + di+1. A general IR
scheme is shown in Algorithm 1.

Recently, mixed-precision capabilities have become available in hardware, which
can have significant performance benefits [4, 1]. In Algorithm 1, the authors in [6]
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used three hardware precisions: ur for computing the residual, uf for the LU factor-
ization, and working precision u for the remaining calculations. There is also a fourth
“effective solve precision” us, which depends on the particular solver and precisions
used in line 5. The idea is that low precision can be used for the LU factorization,
which is the most expensive part of the computation, and accuracy can be recovered
through use of higher precisions in other parts of the computation. Indeed, it has
been shown that on NVIDIA V100 GPUs, using half precision instead of double
precision for the LU factorization can give over 4× speedups; see [12, Figure 3(b)].
Throughout this work we assume that uf ≥ u ≥ ur e.g., (uf , u, ur)= (half, single,
double).

Algorithm 1 General Iterative Refinement Scheme

Input: n× n matrix A; right-hand side b; max. number of refinement steps imax.
Output: Approximate solution xi+1 to Ax = b.

1: Compute LU factorization A ≈ LU in precision uf .
2: Solve Ax0 = b by substitution in precision uf ; store x0 in precision u.
3: for i = 0 : imax − 1 do
4: Compute ri = b− Axi in precision ur; store in precision u.
5: Solve Adi+1 = ri in precision us; store di+1 in precision u.
6: Compute xi+1 = xi + di+1 in precision u.
7: if converged then return xi+1 in precision u. end if

For a given combination of precisions and choice of solver, it is well-understood
under which conditions Algorithm 1 will converge and what the limiting accuracy
will be. The constraint for convergence in line 7 is usually stated via a constraint on
the infinity-norm condition number of the matrix A. Table 1 shows the constraints
on κ∞(A) required for convergence of the normwise relative backward and forward
errors to the level of the working precision for various precision combinations and
solvers used in this study. For further information, see, e.g., [6, 3]. For a description
of stopping criteria used for detecting convergence within iterative refinement in
practice, see, e.g., [9], [19].

From Table 1, we see that if the computed LU factors are used to solve for
the correction in line 5, often referred to as “standard IR” (SIR), then κ∞(A) =
‖A‖∞‖A−1‖∞ must be less than u−1

f in order for convergence to be guaranteed. To
relax this constraint on condition number, the authors of [5] and [6] devised a mixed
precision GMRES-based iterative refinement scheme (GMRES-IR). In GMRES-IR,
the correction equation in line 5 is solved via left-preconditioned GMRES, where
the computed LU factors of A are used as preconditioners. This results in a looser
constraint on condition number in order to guarantee the convergence of forward and
backward errors; in the case that the preconditioned matrix is applied to a vector
in each iteration of GMRES in double the working precision, we require κ∞(A) ≤
u−1/2u−1

f , and in the case that a uniform precision is used within GMRES (a variant
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uf u ur SIR GMRES-IR SGMRES-IR
half single double 2 · 103 8 · 106 4 · 104

half double quad 2 · 103 2 · 1011 3 · 107

single double quad 2 · 107 2 · 1015 1 · 1010

Table 1: Constraints on κ∞(A) for which the relative forward and normwise back-
ward errors are guarantee to converge to the level u for a given combination of
precisions for SIR, GMRES-IR (which uses double the working precision in applying
the preconditioned matrix to a vector) and SGMRES-IR (which uses the working
precision throughout).

which we call SGMRES-IR), we require κ∞(A) ≤ u−1/3u
−2/3
f ; see [3]. If these con-

straints are met, preconditioned GMRES is guaranteed to converge to a backward
stable solution after n iterations and the iterative refinement scheme will converge
to its limiting accuracy. We note that to guarantee backward stability, all existing
analyses (e.g., [5, 6, 3]) assume that unrestarted GMRES is used within GMRES-IR.

We also note that existing analyses do not guarantee how fast GMRES will con-
verge in each refinement step, only that it will do so within n iterations. However,
if indeed n iterations are required to converge in each GMRES solve, this can make
GMRES-IR more expensive than simply computing the LU factorization in higher
precision and using SIR. Indeed, high-performance experiments show that slow GM-
RES convergence can negatively impact the achievable performance; see [12, Fig-
ure 7 (b)]. To make more precise the relative costs of each step of SIR and GMRES-
IR, we list their costs in terms of asymptotic computational complexity in Table 2.

Unfortunately, GMRES convergence speed is difficult to predict. In fact, for any
set of prescribed eigenvalues, one can construct a linear system for which GMRES
will stagnate entirely until the nth iteration [11]. The situation is better understood
at least in the case of normal matrices; see, e.g., [15]. The worst-case scenario in the
case of normal A is when eigenvalues are clustered near the origin, which can cause
complete stagnation of GMRES [15]. After the preconditioning step in GMRES-
IR, all eigenvalues of the preconditioned matrix (U−1L−1A) ideally become 1 in the
absence of finite precision error in computing LU and within GMRES. However, in
practice, since we have inexact LU factors, if A has a cluster of eigenvalues near
the origin, this imperfect preconditioner may fail to shift some of them away from
the origin, which can cause GMRES to stagnate. For instance, when random dense
matrices having geometrically distributed singular values are used in the multistage
iterative refinement algorithm devised in [19], the authors showed that for relatively
large condition numbers relative to precision uf , GMRES tends to perform n itera-
tions in each refinement step.

Figure 1 shows the eigenvalue distribution of a double-precision 100×100 random
dense matrix having geometrically distributed singular values with condition number
κ2(A) = 1012, generated via the command gallery(’randsvd’,100,1e12,3) in
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Once per IR solve
(both variants)

O(n3) in precision uf (LU fact.)

SIR step O(n2) in precision uf (tri. solves)

GMRES-IR step
(k GMRES iterations)

O(nk2) in precision u (orthog.)
O(nnz · k) in precision u or u2 (SpMV)
O(n2k) in precision u or u2 (precond.)

Once per refinement step
(both variants)

O(nnz) in precision ur (residual comp.)
O(n) in precision u (sol. update)

Table 2: Asymptotic computational complexity of operations in each refinement step
for SIR and GMRES-IR.

MATLAB. In the unpreconditioned case (left), the eigenvalues are clustered around
the origin, a known difficult case for GMRES. When double-precision LU factors
are used for preconditioning (middle), the eigenvalues of the preconditioned system
are now clustered around 1. On the other hand, using half-precision LU factors
as preconditioners (right) causes a cluster of eigenvalues to remain near the origin,
indicating that GMRES convergence will likely be slow (we note that these are
nonnormal matrices and so the theory of [15] does not apply, but our experimental
evidence indicates that this is the case).

Thus, even when low-precision LU factors can theoretically be used in GMRES-
IR, they may not be the best choice from a performance perspective. In this scenario,
we are left with two options: either increase the precision in which the LU factors
are computed, or seek to improve the convergence behavior of GMRES through
other means. It is the latter approach that we take in this work. In particular, we
investigate the use of Krylov subspace recycling.

In Section 2, we give a background on the use of recycling in Krylov subspace
methods and describe our approach. Extensive numerical experiments that demon-
strate the potential benefit of recycling within GMRES-based iterative refinement
are presented in Section 3. We outline open problems in Section 4.

2. Iterative refinement with Krylov subspace recycling

One way to speed up the convergence of GMRES is using recycling [20, 21]. The
idea of recycling is that if we have a sequence of linear systems (Ax1 = b1, Ax2 =
b2, . . .) to solve involving the same (or a similar) coefficient matrix A, then we can
reuse the Krylov subspace information generated in solving Ax1 = b1 to speed up
converge of the method in solving Ax2 = b2, etc. This is exactly the situation we
have in GMRES-IR: within the iterative refinement loop, we call GMRES on the
matrix A many times, and only the right-hand side changes between refinement
steps. Thus we can use Krylov subspace recycling within GMRES across iterative
refinement steps, and theoretically the convergence of GMRES should improve as
the refinement proceeds.
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Figure 1: Eigenvalue distribution of a double-precision random dense matrix with
κ2(A) = 1012 without preconditioner (left), with a double-precision LU precondi-
tioner (middle), and with a half-precision LU preconditioner (right).

GMRES-DR [17] is a truncated and restarted solver developed for solving sin-
gle nonsymmetric linear systems. The method deflates small eigenvalues for the
new subspace to improve the convergence of restarted GMRES. Another truncated
solver used for recycling is called GCROT [8]. The method recycles a subspace that
minimizes the loss of orthogonality with Krylov subspace from the previous system.

By far the most popular Krylov subspace method implementing recycling is
GCRO-DR [20]. GCRO-DR can be seen as a combination of GMRES-DR and a mod-
ified GCROT. In GCRO-DR, the residual minimization and orthogonalization are
performed over the recycled subspace, leading to an adaptive truncated recycling
method. GCRO-DR uses the deflated restarting idea in GMRES-DR in the same
manner as GCROT. Let m denote the maximum size of the Krylov subspace and
let k denote the number of vectors to recycle. In one cycle of GCRO-DR(m, k), first,
using the k harmonic Ritz vectors corresponding to the k smallest harmonic Ritz
values, the solution space is constructed. After finding the optimal solution over
the solution space and computing the residual, GCRO-DR constructs the Arnoldi
relation by generating a Krylov subspace of dimension m− k + 1. After completing
the Arnoldi process, the algorithm solves a minimization problem at the end of each
cycle, which reduces to an (m + 1) × m least-squares problem. After solving the
least-squares problem and computing the residual, a generalized eigenvalue problem
is solved, and harmonic Ritz vectors are recovered. Since harmonic Ritz vectors
are constructed differently than in GMRES-DR, GCRO-DR is suitable for solving
individual linear systems and sequences of them. See [20] for further details.

The use of recycling may also be favorable from a performance perspective.
GCRO-DR performs only m − k Arnoldi steps implying that it performs m − k
matrix-vector multiplications per cycle, whereas GMRES(m) performs m matrix-
vector multiplications. It is also mentioned in [20] that since GCRO-DR stores Uk

and Ck, it performs 2kn(1 + k) fewer operations during the Arnoldi process. On the
other hand, since we are using k eigenvectors, GCRO-DR(m, k) requires storing k
more vectors than GMRES(m).
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In an effort to reduce the overall computational cost of the GMRES solves within
GMRES-IR, we develop a recycled GMRES-based iterative refinement algorithm,
called RGMRES-IR. In line 5 of Algorithm 1, RGMRES-IR uses preconditioned
GCRO-DR(m, k) instead of preconditioned GMRES to solve the correction equation.
As in GMRES-IR, RGMRES-IR will use three precisions: uf , u, and ur. Again
we note that we assume ur ≤ u ≤ uf . Using different precision settings results
in different constraints on the condition number to guarantee convergence of the
forward and backward errors. Although our experiments here will use three different
precisions, two precisions (only computing residuals in higher precision) or fixed
(uniform) precision can also be used in the RGMRES-IR algorithm.

3. Numerical experiments

In this section, we compare GMRES-IR and RGMRES-IR for solving Ax = b.
We adapted MATLAB implementations of the GMRES-IR method from [6], and the
GCRO-DR method from [20]. To simulate half-precision, we use the chop library
and associated functions from [13], available at https://github.com/higham/chop
and https://github.com/SrikaraPranesh/LowPrecision Simulation. For sin-
gle and double precision, we use the MATLAB built-in data types and to simu-
late quadruple precision we use the Advanpix multiprecision computing toolbox,
see [2]. We restrict ourselves to IEEE precisions, although we note that one could
also use formats like bfloat16 [14]. The experiments are performed on a com-
puter with Intel Core i7-9750H having 12 CPUs and 16 GB RAM with OS system
Ubuntu 20.04.1. Our RGMRES-IR algorithm and associated functions are available
at https://github.com/edoktay/rgmresir, which includes scripts for generating
the data and plots in this work.

The GMRES convergence tolerance τ dictates the stopping criterion for the inner
GMRES iterations. GMRES is considered converged if the relative (preconditioned)
residual norm drops below τ . In tests here with single working precision, we use
τ = 10−4. For double working precision, we use τ = 10−8. Note that for the outer
iterative refinement scheme, we explicitly compute the true solution x and stop the
iterations if the forward and backward errors are less than u. For practical stopping
criteria relevant to GMRES-IR schemes, see [19]. To ensure that we fully exhibit
the behavior of the methods, we set the maximum number of refinement steps to
imax = 10000, which is large enough to allow all approaches that eventually converge
sufficient time to do so.

The results are compared in two different metrics: the number of GMRES it-
erations per refinement step and the total number of GMRES iterations. For sim-
plicity, b is chosen to be the vector of ones for all matrices, and the precisions are
chosen such that u ≤ u2

f , and ur ≤ u2. We compare GMRES-IR and RGMRES-IR
in the setting where precision u2 is used for preconditioning, except for the experi-
ments in Section 3.3.1 where we investigate the use of uniform precision within the
solver.
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For a fair comparison between GMRES-IR and RGMRES-IR, GMRES-IR is used
with restart value m, which is the maximum size of the subspace used in RGMRES-
IR. Since the first refinement step of RGMRES-IR does not have a recycled subspace,
it is the same as the first step of GMRES-IR. We thus expect a decrease in the number
of GMRES iterations per refinement step starting from the second refinement step.
For RGMRES-IR, the optimal number k < m of harmonic Ritz vectors is chosen for
each group of matrices with the desired precision settings after several experiments
on various (m, k) scenarios. The optimum k differs for each matrix. The least total
number of GMRES iterations is obtained for k = (# of GMRES iterations in the first
refinement step)−1 since, in this case, we are recycling the whole generated subspace,
which is expensive. Thus one should choose a k value as small as possible to reduce
computational cost while benefiting from recycling. Figure 2 shows the change in
the total GMRES iterations according to the given k values for two matrices. From
the plots, one can easily find the knee, i.e., find the smallest k value that gives
a reasonably small number of GMRES iterations.
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Figure 2: Total GMRES iterations for various k for a randsvd matrix with
κ2(A) = 1013 (left) and a prolate matrix with α = 0.434 (right) for (uf , u, ur) =
(single, double, quad).

In the tables we will present, the first number shows the total number of GM-
RES iterations. The numbers in the parentheses indicate the number of GMRES
iterations performed in each refinement step. For instance, 5(2,3) implies that there
are 2 refinement steps, the first of which performs 2 GMRES iterations and the sec-
ond of which performs 3, giving a total of 5 GMRES iterations. We note that we
use the GMRES iteration count as a proxy for performance, although this is not
a perfect measure; for recent results on mixed precision GMRES-IR with restarting
see [16]. We also note that additional numerical experiments for RGMRES-IR can
be found in the associated technical report [18].

3.1. Prolate matrices

We first test our algorithm on prolate (symmetric, ill-conditioned Toeplitz ma-
trices whose eigenvalues are distinct, lie in the interval (0, 1), and tend to cluster
around 0 and 1) matrices [22] of dimension n = 100, generated using the MATLAB
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command gallery(’prolate’,n,alpha), where alpha is the array of the desired
parameters α ={0.475, 0.47, 0.467, 0.455, 0.45, 0.4468, 0.44, 0.434}. When α < 0.5,
it becomes difficult for GMRES-IR to solve the system since the eigenvalues skew
more towards zero. Table 3 shows the number of GMRES iterations performed by
GMRES-IR and RGMRES-IR for the setting (uf , u, ur) = (half, single, double).

From Table 3, we can see that GMRES-IR diverges for α < 0.45 with and without
recycling. However, when α = 0.45, we see that RGMRES-IR diverges although
GMRES-IR converges. This is because of the multiple periods of stagnation in
the second refinement step due to recycling. GCRO-DR cannot converge in the
first 16 − 5 = 11 iterations in the second step, causing an infinite restart which
results in divergence. However, for cases where both GMRES-IR and RGMRES-IR
converge, RGMRES-IR always requires fewer GMRES iterations. For α = 0.455,
GMRES restarts in the second refinement step of GMRES-IR, while recycling allows
RGMRES-IR to converges without restarting, decreasing the cost.

α κ∞(A) κ2(A) GMRES-IR (16) RGMRES-IR (16,5)
0.475 1 · 106 4 · 105 12 (6,6) 8 (6,2)
0.47 3 · 107 8 · 106 16 (8,8) 10 (8,2)
0.467 2 · 108 5 · 107 19 (9,10) 11 (9,2)
0.455 3 · 1011 8 · 1010 50 (15,25,10) 19 (15,4)
0.45 7 · 1012 2 · 1012 89 (14,43,32) -
0.4468 5 · 1013 1 · 1013 - -
0.44 3 · 1015 9 · 1014 - -
0.434 3 · 1016 9 · 1015 - -

Table 3: Number of GMRES-IR and RGMRES-IR refinement steps/GMRES itera-
tions for prolate matrices with various α values, using precisions (uf , u, ur) = (half,
single, double) and (m, k) = (16,5).

3.2. SuiteSparse matrices

We now test our algorithm on three real matrices taken from the SuiteSparse
Collection [7]. Table 4 compares the performance of GMRES-IR and RGMRES-
IR for precisions (uf , u, ur) = (half, double, quad). It is seen that RGMRES-IR
successfully reduces the total number of GMRES iterations in all cases.

3.3. Random dense matrices

Finally, we test our algorithm on random dense matrices of dimension n = 100
having geometrically distributed singular values. We generated the matrices using
the MATLAB command gallery(’randsvd’,n,kappa(i),3), where kappa is the
array of the desired 2-norm condition numbers κ2(A) ={104, 105, 106, 107, 108, 109,
1010, 1011, 1012, 1013}, and mode 3 corresponds to the matrix having geometrically
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Matrix n nnz κ∞(A) GMRES-IR (40) RGMRES-IR(40,10)
orsirr 1 1030 6858 1 · 105 22 (11,11) 20 (11,9)
comsol 1500 97645 3 · 106 52 (25,27) 34 (25,9)
circuit204 1020 5883 9 · 109 59 (18,20,21) 47 (18,14,15)

Table 4: Number of GMRES-IR and RGMRES-IR refinement steps/GMRES itera-
tions for real matrices, using precisions (uf , u, ur) = (half, double, quad) and (m, k)
= (40,10).

distributed singular values. For reproducibility, we use the MATLAB command
rng(1) each time we run the algorithm. We compare methods using precisions
(uf , u, ur) = (single, double, quad) and (uf , u, ur) = (half, double, quad). As shown
in Figure 1, these matrices have eigenvalues clustered around the origin, which can
be a difficult case for GMRES convergence. This class of problems thus represents
a good use case for the RGMRES-IR algorithm.

3.3.1. SGMRES-IR versus RSGMRES-IR

In practice, implementations often use a uniform precision within GMRES (i.e.,
applying the preconditioned matrix to a vector in precision u rather than u2). This
is beneficial from a performance perspective (in particular if precision u2 must be
implemented in software). The cost is that the constraint on condition numbers for
which the refinement scheme is guaranteed to converge becomes tighter. To illustrate
the benefit of recycling in this scenario, we first compare what we call SGMRES-IR
(GMRES-IR but with a uniform precision within GMRES) to the recycled version,
RSGMRES-IR. For a fair comparison, restarted SGMRES-IR (SGMRES-IR(m)) is
compared with recycled SGMRES-IR (RSGMRES-IR(m, k)).

Table 5 shows the number of GMRES iterations performed by SGMRES-IR and
RSGMRES-IR in the (uf , u, ur) = (single, double, quad) setting. We observe that
recycling reduces the number of GMRES iterations in this case as well. The reason
why SGMRES-IR does not converge for κ2(A) ≥ 1014 is that in the first refinement
step, restarted SGMRES does not converge (restarting an infinite number of times).
For RSGMRES-IR, in the first GCRO-DR call, recycling after the first restart cycle
helps, allowing GCRO-DR to converge. We note that this is another benefit of the
recycling approach, as it can improve the reliability of restarted GMRES, which is
almost always used in practice.

3.3.2. GMRES-IR versus RGMRES-IR

We now return to our usual setting and compare GMRES-IR and RGMRES-IR
for random dense matrices with condition numbers κ2(A) = {104, 105, 106, 107,
108, 109, 1010, 1011, 1012, 1013, 1014, 1014}. Results using precisions (uf , u, ur)
= (half, double, quad) and two different choices of (m, k) are displayed in Ta-
ble 6.
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κ∞(A) κ2(A) SGMRES-IR (80) RSGMRES-IR (80,18)
6 · 109 109 64 (19,23,22) 34 (19,8,7)
6 · 1010 1010 120 (39,40,41) 65 (39,13,13)
6 · 1011 1011 160 (52,54,54) 94 (52,21,21)
6 · 1012 1012 196 (65,65,66) 163 (65,32,32,34)
5 · 1013 1013 301 (75,75,75,76) 199 (75,41,41,42)
5 · 1014 1014 - 493 (131,51,51,52,52,52,52,52)
5 · 1015 1015 - 2093*

Table 5: Number of SGMRES-IR and RSGMRES-IR refinement steps/GMRES it-
erations for precisions (uf , u, ur) = (single, double, quad) and (m, k) = (80,18). For
κ2(A) = 1015, RSGMRES-IR required 2093 total GMRES iterations over 37 refine-
ment steps.

κ∞(A) κ2(A) GMRES-IR (100) RGMRES-IR (100,30) GMRES-IR (90) RGMRES-IR (90,40)
9 · 104 104 33 (16,17) 33 (16,17) 33 (16,17) 33 (16,17)
8 · 105 105 85 (41,44) 71 (41,15,15) 85 (41,44) 50 (41,9)
7 · 106 106 134 (66,68) 85 (66,19) 134 (66,68) 81 (66,15)
7 · 107 107 167 (83,84) 113 (83,30) 167 (83,84) 100 (83,17)
7 · 108 108 193 (96,97) 138 (96,42) - 149 (119,30)
6 · 109 109 200 (100,100) 151 (100,51) - 179 (134,45)
6 · 1010 1010 200 (100,100) 158 (100,58) - 470 (388,41,41)
6 · 1011 1011 200 (100,100) 165 (100,65) - -
6 · 1012 1012 200 (100,100) 170 (100,70) - -
5 · 1013 1013 3954* 241 (171,70) - -

Table 6: Number of GMRES-IR and RGMRES-IR refinement steps/GMRES iter-
ations for random dense matrices having geometrically distributed singular values
(mode 3) with various condition numbers, using precisions (uf , u, ur) = (half, dou-
ble, quad) and settings (m, k) = (100,30) and (m, k)=(90,40). For m = 100 and 1013,
GMRES-IR required 3954 total GMRES iterations over 45 refinement steps.

For both choices of (m, k), when κ∞(A) > 105, recycling reduces the total number
of GMRES iterations. This class of matrices with a low-precision LU preconditioner
is a known difficult case for GMRES, and thus we can clearly see the benefits of
recycling. We see the most significant improvement for the matrix with κ2(A) = 1013,
in which RGMRES-IR requires over 16× fewer GMRES iterations than GMRES-IR
when m = 100. We note that GMRES-IR is only guaranteed to converge up to
κ2(A) < 1012 for this combination of precisions; for detailed information, see [6].

The reason that RGMRES-IR outperforms GMRES-IR for m = 100 and
κ2(A) = 1013 is different than in the previous cases (caused by stagnation due to
restarting), and is almost accidental in this case. We investigate this more closely
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in Figure 3. In the left plot, we see the convergence trajectory of GMRES(100).
In the first restart cycle, the residual decreases from 106 to 103 after 100 GMRES
iterations. GMRES restarts and performs two more iterations, at which point it
converges to a relative residual of 10−8 (absolute residual of around 10−2). Hence,
the first refinement step of GMRES-IR does 100 + 2 = 102 iterations. The right plot
shows the residual trajectory for GCRO-DR. The first restart cycle is the same as in
GMRES; however, once the method restarts, the residual stagnates just above the
level required to declare convergence. After m− k = 70 more iterations, GCRO-DR
restarts again, and this time, the residual drops significantly lower. So while GCRO-
DR requires more iterations (171) to converge to the specified tolerance, when it
does converge, it converges to a solution with a smaller residual. This phenomenon
can in turn reduce the total number of refinement steps required. It is possible
that we could reduce the overall number of GMRES iterations within GMRES-IR
(and also RGMRES-IR) by making the GMRES convergence tolerance τ smaller.
We did not experiment with changing the GMRES tolerance within GMRES-IR or
RGMRES-IR, but this trade-off would be interesting to explore in the future.
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Figure 3: Residual trajectory of GMRES (left) and GCRO-DR (right), used within
GMRES-IR and RGMRES-IR, respectively, for a randsvd matrix with κ2(A) = 1013

and precisions (uf , u, ur) = (half, double, quad).

We stress that the convergence guarantees for GMRES-IR for various precisions
stated in [5, 6, 3] hold only for the case of unrestarted GMRES, i.e., m = n. When
m < n, there is no guarantee that GMRES converges to a backward stable solution
and thus no guarantee that GMRES-IR will converge. Choosing a restart parameter
m that allows for convergence is a difficult problem, and a full theory regarding the
behavior of restarted GMRES is lacking. The behavior of restarted GMRES is often
unintuitive; whereas one would think that a larger restart parameter is likely to be
better than a smaller one as it is closer to unrestarted GMRES, this is not always
the case. In [10], the author gives examples where a larger restart parameter causes
complete stagnation, whereas a smaller one results in fast convergence.

In Table 6 for the case m = 90, we can see that both methods converge for
κ∞(A) < 108. After this point, GMRES-IR does not converge, whereas RGMRES-
IR does. This serves as an example where the convergence guarantees given in [5, 6]
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do not hold for GMRES-IR with restarted GMRES; for unrestarted GMRES, conver-
gence is guaranteed up to κ∞(A) ≤ 1012 for this precision setting. Here, GMRES-IR
does not converge because of the stagnation caused by restarting in the first refine-
ment step. Aided by the recycling between restart cycles, RGMRES-IR does converge
up to κ2(A) = 1010, although the large number of GMRES iterations required in the
first refinement step makes this approach impractical.

4. Conclusion and future work

In this work, we have incorporated Krylov subspace recycling into mixed precision
GMRES-based iterative refinement in order to reduce the total number of GMRES
iterations required. We call our algorithm RGMRES-IR. Instead of preconditioned
GMRES, RGMRES-IR uses a preconditioned GCRO-DR algorithm to solve for the
approximate solution update in each refinement step. Our numerical experiments
on random dense matrices, prolate matrices, and matrices from SuiteSparse [7] show
the potential benefit of the recycling approach. Even in cases where the number of
GMRES iterations does not preclude the use of GMRES-based iterative refinement,
recycling can have a benefit. In particular, it can improve the reliability of restarted
GMRES, which is used in most practical scenarios.

One major caveat for GMRES-based iterative refinement schemes is that the
analysis and convergence criteria discussed in the literature all rely on the use of
unrestarted GMRES. When restarted GMRES is used, we cannot give such con-
crete guarantees, as restarted GMRES may not converge even in infinite preci-
sion. A greater understanding of the theoretical behavior of restarted GMRES (and
GCRO-DR) both in infinite and finite precision would be of great interest. Another
potential future direction is the exploration of the potential for the use of mixed
precision within GCRO-DR. We expect that it may be possible to use low precision
within GCRO-DR, for example, in the computation of harmonic Ritz pairs.
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