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Abstract: This paper deals with wildfire identification in the Alaska regions
as a semantic segmentation task using support vector machine classifiers. In-
stead of colour information represented by means of BGR channels, we proceed
with a normalized reflectance over 152 days so that such time series is assigned
to each pixel. We compare models associated with l1-loss and l2-loss func-
tions and stopping criteria based on a projected gradient and duality gap in
the presented benchmarks.
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1. Introduction

Global climate change is increasing the frequency and intensity of ecological dis-
turbance; this is particularly true in high latitudes, where projects such as the NASA
ABoVE project (https://above.nasa.gov) are working to understand the effects of
increased climate-driven disturbances. Wildfires are one important source of distur-
bance, and can significantly affect forest carbon balance. Despite their importance,
however, it can be difficult to accurately quantify the effects of wildfire in places such
as boreal forests that are far from human habitation and infrastructure. Data from
remote sensing platforms and observatory networks can be of great use of this task,
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but these data sets can be vast, and analyzing them can require powerful computing
resources and tools that are designed to fully utilize them.

Popular methods are based on machine learning approaches including deep learn-
ing [8], where U-Net architecture or inception networks are typically used. In this
paper, we discuss an alternative approach for wildfire identification in the Alaska
regions using semantic segmentation that support vector machine classifiers are ex-
ploited. Instead of colour information, we assign changes of normalized reflectance
over time to each pixel so that corresponding attributes are represented by time se-
ries with 8-day period. Pixels are then categorized using the Monitoring Trends in
Burn Severity product. Additionally, we study the influence of stopping criteria on
model performance and training time on benchmarks presented in Section 3.2.

2. Support Vector Machines

Support Vector Machines is a set of methods belonging to supervised learning
algorithms used for classification, regression, or outliers detection. Since wildfire
identification is essentially a binary classification task, i.e. we have to decide if an area
is affected by fire or not, we will focus on formulations associated with classification
approaches employing SVMs in this paper. Considering underlying structures related
to SVMs, we can see them as a single perceptron that finds a learning function (called
model in the machine learning community) maximizing a geometric margin between
(training) samples and a discriminant hyperplane. This implicit ability guarantees
a generalization performance of the model, which can be described by means of
a particular case of the Tikhonov regularization in the following form:

arg min
f∈H

m−1

m∑
i=1

V (yi, f (xi))
2 + λ‖f‖2

H, (1)

where H is a hypothesis space of functions, ‖ · ‖H is a norm on the hypothesis space,
f : Rn → Y denotes mapping data (m training samples) to a label space, V : Y → Y
is a loss function, and λ ∈ R is a regularization parameter such that λ = 1

2C
.

Moreover, this theoretical framework provides us with an explanation related to the
regularization perspective of the SVM models so that a trade-off between bias and
variance is driven by parameter C.

In the following part of this paper, we introduce certain C-SVM formulations that
are associated with classification tasks concerning non-linearly separable (training)
samples and their relaxed-bias versions, where a bias term is considered as a scaled
parameter and included in an optimization problem by means of augmenting the
normal vector of a hyperplane w and samples with an additional dimension.

2.1. Soft maximum-margin classifier

Let us start with a standard SVM formulation introduced by Vapnik et al. in [3].
It was initially developed as a supervised binary classifier, i.e. an algorithm that
determines a function (model), which maps a training sample to a label (related
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to 2 categories in this case) such that it adapts itself to unseen data drawn from
the same distribution as the training ones. This essential model ability is called
generalization.

To describe the training phase of the SVM classifier more in detail, let us firstly
denote the training data set as follows:

T := {(x1, y1) , (x2, y2) , . . . , (xm, ym)}, (2)

where xi ∈ Rn (n ∈ N) is an i-th sample and yi ∈ {−1, 1} is its label, m is a number
of training samples. Further, let us consider that the samples are linearly separable,
i.e. it exists a separating hyperplane between the clusters of samples belonging to
these two categories. A model of a linear SVM is then represented in the form of
a maximum-margin hyperplane H so that:

H = 〈w,x〉 − b̂, (3)

where w is a normal vector of the hyperplane H, and b̂ = b
‖w‖ is a scalar called

a bias term that determines an offset in a direction of w, or −w in a case when b̂
is negative. Let us denote a bias b̂ as b for a more convenient notation in equations
in the following text. Remark that the maximum margins are defined by means of
locations associated with support vectors, and the width between these margins is
equal to 2

‖w‖ .
Maximizing the distance d corresponds to regularization of the weights w, which

is basically the prevention of overfitting a model to the training data set T . Regarding
the constraints arising from geometric margins, we can write an optimization problem
for finding a normal vector w and a bias b as follows:

arg min
w, b

1

2
〈w,w〉 s.t.

{
yi (〈w,xi〉 − b) ≥ 1,

i ∈ {1, 2, . . . ,m},
(4)

the constraint yi (〈w,xi〉 − b) ≥ 1 can be interpreted so that all training categorical
samples must lie on or above corresponding margins equal to −1 and 1, respectively.
Note, a solution of the optimization problem (4) exists only when the training sam-
ples T are linearly separable. To sort out the separability issue, we can exploit the
soft-margin SVM [3]. An idea beyond the approach is based on adding an auxil-
iary (regularization) term to (4), particularly, C

∑m
i=1 ξi

1, and, also, an additional
relaxation of the constraints related to the margins such that:

arg min
w, b, ξi

1

2
〈w,w〉+ C

m∑
i=1

ξi s.t.

{
yi (〈w,xi〉 − b) ≥ 1− ξi,
ξi ≥ 0, i ∈ {1, 2, . . . ,m},

(5)

1The term C
∑m

i=1 ξi regularises misclassification errors and restricts the complexity of the clas-
sifier in sense of overfitting a classification model.

175



where ξi := max{0, 1 − [〈w,xi〉 − b]}. Essentially, the function quantifies the error
between the predicted and correct sample classification xi. If sample xi is correctly
classified, a value of the hinge loss function equals 0. In order of sample misclassi-
fication, a value of hinge loss function is proportional to the distance between the
respective margin and a misclassified sample.

The parameter C is a user-defined penalty, which determines the influence as-
sociated with the misclassification of samples on the objective function. Generally,
a higher value of C increases the importance of minimizing the hinge loss functions ξi
and also maximizing ‖w‖. This leads to minimizing the width of the margin and
may cause overfitting of a classifier to a training data set consequently. It means
a model has a high variance. A smaller value of the penalty C results in a wider mar-
gin that may cause a large number of misclassifications, i.e. a high bias of a model2.
The goal is to find a reasonable value of C such that a resulting model balances
a bias-variance tradeoff. Typically, the value is determined using hyperparameter
optimization techniques, e.g. grid-search combined with cross-validation.

To reduce the number of unknowns and employ our approach based on a deter-
ministic approach that uses the MPRPG [4] as an underlying solver, it stands for
Modified Proportioning with Reduced Gradient Projection, we can modify the pri-
mal formulation (5) so that it turns into an optimization problem with the following
structure:

α∗ = arg min
α∈Ω

1

2
αTAα− bTα, (6)

where Ω is a convex closed set defined by means of box constraints Ω := {α ∈ Rm |
u ≤ α ≤ l}. Practically, we can obtain a formulation analogous to the structure (6)
by dualizing primal formulation (5) such that:

arg min
α

1

2
αT Y TKY︸ ︷︷ ︸

G

α−αT s.t.

{
o ≤ α ≤ C,

yTα = 0,
(7)

where Y = diag(y), y = [y1, y2, . . . , ym]T , and  = [1, 1, . . . , 1] ∈ Rm. K ∈
Rm×m is the SPS (Symmetric Positive Semi-definite) matrix of inner products called
the Gram matrix such that K = XTX, where X = [x1, x2, . . . ,xm]. G denotes
the Hessian matrix, which is SPS either. Exploiting a derivative of the Lagrangian
with respect to ξ, we can determine the vector of Lagrange multipliers β so that
β = C−α, thus β does not occur in (7). This formulation is called dual l1-loss.

For obtaining a solution of the original (primal) problem, we introduce dual to
primal reconstruction formulas as follows:

w = XY α, (8)

2In this case, the term bias corresponds to a systematic error arising from wrong assumptions
that may lead to missing relevant relations between features and labels caused by means of a low
capability of a model.
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associated with the normal vector of the separating hyperplane, and the bias is
reconstructed by means of:

b =
1

card(J)

(
XT
∗J w − yJ

)
TJ , (9)

where J = {i | 0 < αi < C, i = 1, 2, . . . , k} is the support vector index set, card(J)
presents its cardinality, X∗J denotes the submatrix of the matrix X with the column
indices belonging to J ; yJ and J are subvectors of the vectors y and , respectively.
Using the reconstructed normal vector w and bias b, we set the decision rule:

sgn (〈w,xi〉+ b) =

{
+1 . . . xi ∈ Class A,

−1 . . . xi ∈ Class B.
(10)

2.2. Hessian matrix regularization

The Hessian matrix G corresponding to the dual formulation (7) is SPS, which
implies the underlying optimization problem has a non-unique solution. In this
subsection, we modify the primal formulation (5) in such a way that the Hessian in
dual formulation becomes SPD (Symmetric Positive Definite) [10, 9]. It implies that
the resulting optimization problem is strictly convex, and its solution is unique. An
idea beyond the adjustment is based on substitution l1-norm of loss function by the
l2-norm, i.e. the squared loss function, in the objective function so that (7) results
into the following form:

arg min
w, b, ξi

1

2
〈w,w〉+

C

2

m∑
i=1

ξ2
i s.t.

{
yi (〈w,xi〉+ b) ≥ 1− ξi,
i ∈ {1, 2, . . . ,m}.

(11)

Analysing the formulation above, we can simply observe the term that quantifies
misclassification error

∑m
i=1 ξ

2
i ≥ 0. Therefore, we do not consider ξi ≥ 0 as a con-

straint. The formulation (11) is called the primal l2-loss SVM. As in the case of the
l1-loss SVM, we derive a dual formulation. Using the Lagrange duality and evalu-
ating the Karush–Kuhn–Tucker conditions, the primal formulation (11) transforms
into the dual one so that for any C > 0:

arg min
α

1

2
αT
(
G+ C−1I

)
α−αT s.t.

{
 ≤ α,
yTα = .

(12)

While the Hessian G is regularized by a matrix C−1I, it avoids linear dependency of
columns also arising from possible multicollinearity of the training samples. Then,
the matrix becomes full-rank SPD. The optimization problem and the quality of
its solution are practically data-driven, i.e. highly dependent on the data nature.
Therefore, we can say precisely that the associated optimization problem could be
more computationally stable, and a convergence rate of an underlying solver could
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be faster than in the case of the l1-loss SVM. On the other hand, l1-loss SVM could
produce a sparse and more robust model in the sense of performance score. Then,
we adapt the support vector index set J such that:

J = {i | 0 < αi, i = 1, 2, . . . , k} (13)

for the reconstruction formulas (8), (9) related to normal vector w of hyperplane H
and bias b, respectively.

2.3. Relaxed-bias approaches

The standard soft-margin SVM solves the problem of finding a classification
model in the form of the maximal-margin hyperplane (3). In the case of the relaxed-
bias classification [7], we do not consider the bias b in a classification model. However,
we include it into the problem by means of augmenting the vector w and each sam-

ple xi with an additional dimension so that ŵ ←
[
w
B

]
, x̂i ←

[
xi
γ

]
, where γ ∈ R+ is

a user-defined variable, which is typically set to 1. Let p ∈ {1, 2} then the problem

of finding a hyperplane Ĥ = 〈ŵ, ŵ〉 can be formulated as a constrained optimization
problem in the following primal formulation:

arg min
ŵ, ξi

1

2
〈ŵ, ŵ〉 +

C

p

n∑
i=1

ξ̂pi s.t.

{
yi 〈ŵ, x̂i〉 ≥ 1− ξ̂i,
ξ̂i ≥ 0 if p = 1, i ∈ {1, 2, . . . , n},

(14)

where ξ̂i = max{0, 1 − yi 〈ŵ, x̂i〉} is the hinge loss function related to augmented
samples x̂i. Generally, we can say the minimizer associated with formulation (14)

corresponding to a rotation of the separating hyperplane Ĥ ∈ Rn in a one-dimension
higher feature-space Rn+1 such that the maximizing of geometric margins are satis-
fied.

3. Wildfire identification as semantic segmentation task

Semantic segmentation is a computer vision task for which most recent methods
are based on deep learning approaches, where neural networks of U-Net type archi-
tectures are typically used. Actually, semantic segmentation is associated with image
classification at a pixel level. It means that every pixel is assigned to a category such
that an image segmentation mask is created. In common semantic segmentation,
labelled colour images with the BGR (blue-green-red) channel order are used as in-
puts. The pre-trained encoder of the U-Net extracts features and patterns from
spatial images, and the decoder projects these lower resolution feature onto the pixel
space in higher resolution to get a dense classification.

We show up an alternative approach that exploits a spectral reflectance cor-
rected for the atmospheric condition instead of colour information. An essential
idea of these corrections follows up simulating the propagation of electromagnetic
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waves in a geogas system to obtain surface reflectance without emission, e.g. remove
a contribution of atmospheric aerosol scattering.

To estimate a spectral surface reflectance corresponding to 500 m spatial resolu-
tion at a pixel, we use the MODIS (Moderate Resolution Imaging Spectroradiome-
ter) instrument that data was extracted by the Google Earth Engine running at
cloud https://earthengine.google.com. Essentially, the reflectance is a ratio of
reflected energy to incident radiation φr

φ
as a function of the wavelength. The MODIS

product called MOD09A1 (https://modis.gsfc.nasa.gov/data/dataprod/mod09.
php) provides 7 bands associated with this electromagnetic spectrum ranging from
459 nm to 2155 nm as an 8-day composite. To describe a region affected by fire,
we study changes in normalized reflectance over time periods so that features corre-
sponding to each pixel are represented by time series related to the 7 bands mentioned
above with an 8-day period. The pixels are then categorized using boundaries col-
lected from Monitoring Trends in Burn Severity (https://www.mtbs.gov/). Such
samples are being classified using SVM implemented in our in-house software Per-
monSVM.

3.1. PermonSVM: Classification tool based on PETSc framework

The PermonSVM package [11] is a part of the PERMON toolbox . This toolbox
is designed for usage in a distributed environment containing hundreds or thousands
of computational cores. Technically, it is an extension of the core package called
PermonQP [6], from which it inherits environment basic structures, initialization
routines, a build system, and utilizes computational routines implemented in the
core package PermonQP. Programmatically, a core functionality associated with the
PERMON toolbox is written on top of the PETSc framework [1]. It follows the same
design and coding style that makes it easy to use for anyone familiar with PETSc.

PermonSVM currently supports parallel reading of the SVMLight, HDF5, and
PETSc binary file formats, solutions of more than 4 problem formulations of the
related classification problems, k-fold and stratified k-fold cross-validation. The un-
derlying QP problem related to SVM with implicitly represented the Hessian matrix,
in which the Gram matrix XTX is not assembled, and is computed by means of
solvers provided by the PermonQP package or PETSc framework. All PERMON
modules are developed as open-source software under the BSD–2–Clause license.

3.2. Benchmarks

We present results associated with state-of-the-art investigating wildfire detec-
tion so that data was collected and processed in a way already mentioned above.
In our experiments, we study wildfires in the Alaska regions in 2004. The wildfires
across Alaska are the dominant disturbance, and creating frameworks for quantifi-
cation is important to long-term scientific projects such as the U.S. Department
of Energy project Next Generation of Arctic Ecosystem Experiments. The 2004
Alaska wildfire season was the worst on record in the U.S. state of Alaska in terms
of area burned (27,000 km2). Looking at Table 1, our toy data set used to present
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Figure 1: Areas in Alaska affected by wildfires that we model in our experiments.
Red squares represent the training data set and green ones are related to test data
set. Data are accumulated over 152 days from May to Semptember

state-of-the-art results contains 500, 000 samples split into training and test data
sets consisting of 360, 000 and 240, 000 samples, respectively. These samples are
associated with changing reflectance over 152 days from May to September.

We computed the following semantic segmentation results on KAROLINA, which
is a combination of HPE Apollo 2000 and Apollo 6500 systems used for HPC work-
loads such as AI and other data-intensive applications, for example.

mod09ak 2004 #Wildfires #Background #Attributes
Training 46, 851 (13.01%) 313, 149 (86.99%) 133
Test 28, 351 (11.81%) 211, 649 (88.19%) 133

Table 1: The mod09ak 2004 data set description related to training and test ones.
Proportions of classes in the data sets are pointed out as percents.

A critical part of any data-related pipeline is associated with stopping criteria.
Choosing the right strategy to terminate an underlying optimization solver influ-
ences the quality of a resulting model. In our experiments, we explored an opti-
mization solver called MPRGP employed in our classification problems that models
were computed employing relaxed-bias formulations for l1 and l2 loss types pre-
sented in Section 2.3. An expansion of an active set was performed using a projected
conjugate (CG) gradient, and Γ = 100 was set to determine proportionality. Misclas-
sification errors were penalized with C = 1, i.e. a default value. A standard stopping
criterion used in MPRGP involves a norm of projected gradient ‖gp‖ compared with
a relative norm of a dual right-hand side bdual as follows:

‖gp‖ ≤ ε‖bdual‖. (15)

180



However, this terminating condition does not take into account model quality.
A reasonable approach could be based on monitoring a loss function and including it
in a stopping criterion. In the case of SVM, we consider a specific type of a loss func-
tion called a hinge loss function ξ := max{0, 1− [〈w,x〉 − b]} defined in Section 2.1
and this term is incorporated in a primal functional. Moreover, we can prove there
is no gap between primal and dual functional at its optimal solution for the case of
the l2-loss SVM formulation. It holds a strong duality. Regarding these properties,
we can use stopping criteria based on a duality gap for the l2-loss SVM as follows:

|p (w, b, ξ)− d(α) | ≤ ε|p (w, b, ξ) |, (16)

where

p (w, b, ξ) =
1

2
〈ŵ, ŵ〉 +

C

2

n∑
i=1

ξ̂2
i , (17)

and

d (α) =
1

2
αT
(
G+ C−1I

)
α−αT (18)

are a primal and a dual functional related to relaxed-bias l2-loss SVM formulations,
respectively; ε represents a relative tolerance. The attained results are summarized
in Table 2 and Table 3.

Dataset Loss Stop. criteria Hessian mult. Loss val. Train. time [s]

mod09ak 2004
l1 (15) 2962 2.28e4 22.67

l2
(15) 1025 3.03e4 6.96
(16) 1029 3.00e4 15.60

Table 2: Attained results using 64 MPI processes (KAROLINA). Solver: MPRGP
so that an expansion step is performed using the projected CG step, Γ = 100 in
proportion criterion, a relative tolerance ε was set to 0.1; penalty C = 1.

The overall performance of attained models does not significantly differ as mea-
sured by the F1 score, which is a harmonic mean of precision and sensitivity, as
presented in Table 3. However, we can see that some models perform slightly better
than others when we compare them using other metrics. Analyzing the influence of
the proposed stopping criteria based on the duality gap on model scores, we can see
that the l2-loss model, when the training process was terminated using the condi-
tion (16), behaves slightly better both precision and sensitivity scores on a test data
set than the l2-loss model trained employing the MPRGP solver stopped by means
of the terminate condition (15).
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Dataset Loss Stopping criteria precision [%] sensitivity [%] F1

mod09ak 2004
l1 (15) 84.12 94.58 0.89

l2
(15) 83.58 92.81 0.89
(16) 85.33 93.13 0.89

Table 3: Influence of stopping criteria on the model performance scores on the test
data set.

As we mentioned in Section 2.2, the l1-loss model could be a more robust in
the sense of its performance than the one based on the l2-loss function. It could be
ambitious to make such a conclusion merely by looking at the performance scores
since we can see that a precision score is higher for l2-loss and, on the other side,
sensitivity is higher for l1 loss. Nevertheless, it differs in the value of loss functions,
which represent overall misclassification errors, pointed out in Table 2. From this
table, we can easily see that the l1-loss-based model generalizes a training data
set better than the l2-loss-based one. Assuming the training times of each model,
we can see that evaluating the time of stopping criteria (16) is time-consuming and
almost 2 times slower than for (15), and training the l1-loss model is nearly 3.3 times
slower than for l2-loss trained to employ the MPRGP solver terminated using the
condition (15). From the observations above, it seems the l2-loss model that its
training was stopped exploiting the stopping criteria (16) could be a good trade-off
among l1-loss and l2-loss models, when the stopping condition (15) was used in
during the models training.

Dataset Loss
∑

Hes. mult. Loss val. Train. time [s]

mod09ak 2004
l1 34622 1.80e5 73.82
l2 51967 2.24e5 112.28

Table 4: Solutions related to the complete SVM formulations using SMALXE +
MPRGP. A default stopping condition is used. Results are attained using 64 MPI
processes on KAROLINA. Setting of an inner solver: Γ = 100, a relative tolerance
εinner = 0.1; εouter = 1e − 2 and divtol = 1e10 for an outer loop (SMALXE).
Misclassification penalty C = 1.

The attained models presented above can be viewed as solutions related to a spe-
cial case of the Tikhonov regularization (1) such that a bias term b is relaxed. This
approach simplifies the SVM formulations (7), (12), i.e. the complete SVM for-
mulations with bounds and equality constraints. It leads to problems that are nu-
merically cheaply to solve than the original ones. We demonstrate computational
demands on training models employing the complete SVM formulations in the follow-
ing numerical experiments. We employed the Semimonotonic augmented Lagrangian
(SMALXE) algorithm [5] that is “pass-through” solver taking care of equality con-
straints (a default stopping condition for SMALXE is used in the following numerical
experiments). By this approach, we splitted (7), or (12) for l2-loss case, into two
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sub-problems such that an equality constraint and bounds are handled separately,
one after another. An outer loop is performed using the augmented Lagrangians and
bound constrained optimization problem is computed by means of an inner solver –
MPRGP in our case. The results are summarized in Table 4 and Table 5.

Looking at elapsed times presented in Table 4, we can see that training a model
is 3.26 times slower for the complete l1-loss formulation (7) than in case of a relaxed
formulation of this problem (14) (for p = 1). Moreover, we can observe that a value
of a loss function (a quantification of misclassification error) is 7.89 times higher than
its relaxed version. It is similar to training a model employing the complete l2-loss
formulation when a default stopping condition is exploited. A training time is 16.1
times slower, and a value associated with a loss function is 7.39 times higher.

Dataset Loss precision [%] sensitivity [%] F1

mod09ak 2004
l1 82.80 96.18 0.89
l2 82.98 95.63 0.89

Table 5: The best perfomance scores of models trained employing the complete SVM
formulations (on the test data set).

The performance scores of models on the test data set are summarized in Table 5.
They do not significantly differ from the scores attained employing the relaxed ver-
sions of the SVM formulation in Table 3; however, a true positive rate (sensitivity)
is slightly higher. It means that models identify fire occurrences (true positives)
better than the ones with relaxed bias at the cost of decreasing precision, i.e. a false
positive rate.

Dataset Solver precision sensitivity F1
mod09ak 2004 XGBoost 97.05 89.00 0.93

Table 6: Results attained using the XGBoost solver.

We compared the performance scores of attained classification models employing
PermonSVM with a model trained by means of the XGBoost (eXtreme Gradient
Boosting) solver [2]. It is based on a boosted tree method. The results are presented
in Table 6. The overall scores measured by means of F1 score are higher for a model
trained by XGBoost. However, PermonSVM produces models with higher sensitivity
over precision, while the XGBoost model has a higher precision over sensitivity. This
means PermonSVM models perform better at predicting positive events (wildfires)
over determining pixel areas that are non-affected by fire. Predicting more false
negatives (FN) over false positives (FP) would be more acceptable for natural hazard
applications than the other way around.
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4. Conclusions

We studied state-of-the-art semantic segmentation for wildfire identification in
the Alaska regions so that a classification part was based on the SVM methods
implemented in the toolbox PERMON for distributed computing, specifically in
an extension called PermonSVM. Instead of BGR channels associated with pixel
colour information, we assigned time series monitoring changes in reflectance over
152 days. In the presented numerical experiments, we focused on the influence of
two stopping criteria based on a norm of projected gradient and a duality gap on
model performance for the relaxed l2-loss SVM. Attained results were compared
and discussed with the l1-loss SVM (relaxed). As an underlying solver for model
training, we employed the MPRGP solver – a deterministic active-set method.

From the qualities of models in the sense of performance scores and training times,
it seems than a terminating training process using stopping criteria based on duality
gap for l2-loss is a good trade-off between the l1-loss and the l2-loss models that
a training process stopped exploiting a terminating condition incorporating a pro-
jected gradient. Such attained model performs better than l2-loss case. However,
the training process was almost 2 times slower. Compared to the l1-loss model, it
performs worse in the sense of a hinge-loss function value even so the training process
is 1.45 times faster.

We compared the attained models employing relaxed formulations related to the
SVM problems with models trained using the complete SVM formulations for both
l1-loss and l2-loss functions as well. From the numerical experiments, we concluded
that it is suitable to use relaxed versions of the SVM formulation for training models
related to our classification problem because it takes a longer time to train models
using complete SVM formulations than in the cases of their relaxed versions and
attained models are slightly worse.

We studied qualities related to SVM models trained by means of PermonSVM
with boosted tree methods implemented in XGBoost software. We observed that
PermonSVM produces models with a higher sensitivity over precision (better at pre-
dicting positive events (wildfires) over determining pixel areas that are non-affected
by fire). In contrast, the XGBoost model has a higher precision over sensitivity. We
think predicting more false negatives (FN) over false positives (FP) would be more
acceptable for natural hazard applications than the other way around.
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