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Abstract: Solving systems of non-autonomous ordinary differential equa-
tions (ODE) is a crucial and often challenging problem. Recently a new ap-
proach was introduced based on a generalization of the Volterra composition.
In this work, we explain the main ideas at the core of this approach in the
simpler setting of a scalar ODE. Understanding the scalar case is fundamental
since the method can be straightforwardly extended to the more challenging
problem of systems of ODEs. Numerical examples illustrate the method’s
efficacy and properties in the scalar case.
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1. Introduction

Systems of non-autonomous linear ordinary differential equations arise in a variety
of contexts [1–3,10,11,13]. Yet, their solution remains surprisingly difficult to obtain,
both formally and numerically, especially when dealing with systems of large-to-huge
size. Consider an N × N matrix Ã(t) depending on the variable t ∈ I ⊆ R. The
unique solution Us(t) of the system

Ã(t)Us(t) =
d

dt
Us(t), Us(s) = IN , for t ≥ s, t, s ∈ I, (1)

with IN the N × N identity matrix, is an N × N matrix-valued function known as
the time-ordered exponential of Ã(t). If Ã(τ1)Ã(τ2) = Ã(τ2)Ã(τ1) for all τ1, τ2 ∈ I,
then the time-ordered exponential can be expressed as

Us(t) = exp

(∫ t

s

Ã(τ) dτ

)
.

In general, however, Us(t) has no known simple expression in terms of Ã(t).
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In [5, 6], a new expression for the solution is given using the path-sum approach,
a method able to express each element of Us(t) as a finite sequence of integral equa-
tions. However, this requires solving an NP-hard problem. In [7–9], the NP-hard
problem is overcome by introducing the ?-Lanczos method, a constructive method
able to tridiagonalize Ã(t). At the heart of both the path-sum and ?-Lanczos method
is a non-commutative convolution-like product, denoted by ?, defined between cer-
tain distributions [12]. Thanks to this product, the solution of (1) can be expressed
through the ?-product inverse [7].

In this work, we aim to illustrate to the numerical mathematics community the
?-product and how it can be used to solve an ODE numerically. For this reason,
we restrict the presentation to the simpler case in which the ODE (1) is a scalar
equation. While this framework may look too simple to show the potential of the
newly introduced technique, the reader should keep in mind that the results and
construction we illustrate for the scalar case can be straightforwardly extended to
the matrix case in full generality.

In Section 2, we give an introduction to the ?-product and the related expression
for the solution of a scalar ODE. Section 3 discretizes the ?-product. As a con-
sequence, the ODE solution can be obtained by solving a linear system. Several
properties of the linear system are numerically investigated in Section 4. The nu-
merical experiments in Section 5 show that the presented strategy can compute the
solution up to machine precision. Section 6 concludes the presentation.

2. ODE solution by the ?-product approach

Given two appropriate bivariate functions f̃1(t, s), f̃2(t, s), the Volterra composi-
tion, introduced by Vito Volterra (e.g., [16]), is defined as(

f̃2 ?v f̃1

)
(t, s) :=

∫ t

s

f̃2(t, τ)f̃1(τ, s) dτ.

For our purposes, it suffices to assume f̃1 and f̃2 to be smooth (i.e., infinitely differ-
entiable) on both variables over a bounded interval I = [0, T ] to have a well-defined
operation for every t, s ∈ I. Therefore, from now on, a function marked with a tilde
will stand for a smooth function in both t and s over I. Since the Volterra com-
position is closed for such functions, we are allowed to define the kth ?v-power of
a function f̃ , that is, f̃ ?v1 = f̃ , and

f̃ ?vk := f̃ ?v f̃ · · · ?v f̃ =

=

∫ t

s

f̃(t, τ1)

∫ τ1

s

f̃(τ1, τ2) · · ·
∫ τk−2

s

f̃(τk−2, τk−1)f̃(τk−1, s) dτk−1 · · · dτ2 dτ1

for k > 1 with the convention τ0 = t. Moreover, the operation is also defined for
univariate functions f̃2(t):(

f̃2(t) ?v f̃1(t, s)
)
(t, s) :=

∫ t

s

f̃2(t)f̃1(τ, s) dτ = f̃2(t)

∫ t

s

f̃1(τ, s) dτ.
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It is possible to use the Volterra composition to express the solution of the fol-
lowing differential equation for every initial time s ∈ I.

d

dt
ys(t) = f̃(t)ys(t), ys(s) = 1, t ∈ [s, T ] ⊆ R; (2)

see, e.g., [5]. In fact, using Picard iterations, we get

d

dt
ys(t) = f̃(t)ys(t), ys(s) = 1

↓ integration

ys(t) = 1 +

∫ t

s

f̃(τ)ys(τ)dτ

↓ integration

ys(t) = 1 +

∫ t

s

f̃(τ)

(
1 +

∫ τ

s

f̃(ρ)ys(ρ)dρ

)
dτ

= 1 +

∫ t

s

f̃(τ) +

∫ τ

s

f̃(τ)f̃(ρ)ys(ρ) dρ dτ

↓ . . .

ys(t) = 1 +

∫ t

s

f̃(τ)dτ +

∫ t

s

f̃ ?v2(τ)dτ + . . . ,

from which we obtain the expression

ys(t) = 1 +

∫ t

s

∞∑
k=1

f̃ ?vk(τ) dτ. (3)

The Volterra composition is not a product and lacks essential features, for in-
stance, the identity. For this reason, the Volterra composition has been extended,
obtaining the so-called ?-product [7] that we briefly introduce in the following. Con-
sider the class D(I) of all the distributions d that can be written as

d(t, s) = d̃(t, s)Θ(t− s) +
N∑
i=0

d̃i(t, s)δ
(i)(t− s),

where N is a finite integer, d̃, d̃i are smooth bivariate functions over I×I, Θ(·) stands
for the Heaviside theta function

Θ(t− s) =

{
1, t ≥ s,

0, t < s
,

and δ(i)(·) is the ith derivative of the Dirac delta distribution δ(·) = δ(0)(·). We can
endow the class D(I) with a non-commutative algebraic structure by defining the
?-product as (

f2 ? f1

)
(t, s) :=

∫
I

f2(t, τ)f1(τ, s) dτ, f1, f2 ∈ D(I). (4)
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The ?-product is associative over D(I), D(I) is closed under ?-multiplication, and
the identity element with respect to the ?-product is the Dirac delta distribution,
1? := δ(t− s), see, e.g., [7].

Consider the subclass C∞Θ (I) ⊂ D(I) comprising those distributions of the form

f(t, s) = f̃(t, s)Θ(t− s).

Then, the ?-product between f1, f2 ∈ C∞Θ (I) reduces to the Volterra composition(
f2 ? f1

)
(t, s) =

∫
I

f̃2(t, τ)f̃1(τ, s)Θ(t− τ)Θ(τ − s) dτ,

= Θ(t− s)
∫ t

s

f̃2(t, τ)f̃1(τ, s) dτ = Θ(t− s)(f̃2 ?v f̃1)(t, s).

As a consequence, using (3), we can express the solution of (2) for every s ∈ I as

ys(t) = u(t, s) = Θ(t− s) ? R?(f), (5)

where f(t, s) = f̃(t)Θ(t− s) and R?(f) is the ?-resolvent of f , i.e.,

R?(f) = δ(t− s) +
∞∑
k=1

f(t, s)?k,

with f(t, s)?k = Θ(t − s)f̃(t)?vk. Note that the series
∑∞

k=1 f(t, s)?k converges for
every f ∈ C∞Θ (I). The ?-product easily extends to matrices composed of elements
from D(I) by extending the scalar multiplication appearing in the integrand in (4)
to the usual matrix-matrix multiplication; see [9] for more details.

While expression (5) is compact, the ?-resolvent definition hides an infinite series
of nested integrals. Therefore, at first sight, it does not seem like a convenient
expression. In the next section, we effectively solve this problem by showing that it is
possible to approximate the ?-product by the usual matrix-matrix product between
(time-independent) matrices. Consequently, for a fixed s, expression (5) can be
approximated relatively cheaply by solving a linear system.

3. Discretization of the ?-product

In this section, we describe an effective strategy for approximating the ?-product.
Consider a sequence of orthonormal functions {pk}k over the bounded interval I =
[0, T ], i.e., ∫

I

pk(τ)p`(τ)dτ =

{
0, if k 6= `,

1, if k = `,

so that {pk}k is a basis for the space of smooth functions over I. Note that the
functions pk are not in D(I); hence we cannot (formally) ?-multiply them. Consider
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a distribution f ∈ C∞Θ (I). The function f(t, s) = f̃(t, s)Θ(t− s) is piecewise smooth,
therefore, we can choose the basis {pk}k so that

f(t, s) =
∞∑
k=0

∞∑
`=0

fk,` pk(t)p`(s), t 6= s, t, s ∈ I, (6)

with coefficients

fk,` =

∫
I

∫
I

f(τ, ρ)pk(τ)p`(ρ) dρ dτ.

For instance, the basis {pk}k can be set as the sequence of shifted Legendre polyno-
mials (e.g., [14, p. 55]). Defining the coefficient matrix FM and the vector φM(t) as

FM :=


f0,0 f0,1 . . . f0,M−1

f1,0 f1,1 . . . f1,M−1
...

...
...

fM−1,0 fM−1,1 . . . fM−1,M−1

 , φM(t) :=


p0(s)
p1(s)

...
pM−1(s)

 , (7)

the truncated expansion series can be written in the matrix form:

fM(t, s) :=
M−1∑
k=0

M−1∑
`=0

fk,` pk(t)p`(s) = φM(t)TFM φM(s).

Consider f, g, h ∈ C∞Θ (I) so that h = f ?g, and the related coefficient matrices (7),
respectively, FM , GM , HM . By replacing f and g with their expansion (6), it is not
difficult to show that the expansion coefficients for h are given by

hk,` =
∞∑
j=0

fk,j gj,`, (8)

assuming the latter series converges (such an assumption is grounded on the numer-
ical experiments of the next section). As a consequence, we can approximate HM by
the expression

HM ≈ ĤM := FMGM , (9)

i.e., the ?-product can be approximated by the usual matrix-matrix multiplication
of the related coefficient matrices.

The approximation (9) is affected by a truncation error. Therefore, fixing k and `,
if the magnitude of the product fk,j · gj,` in (8) does not decay quickly enough for

j → ∞, then the truncation error (HM)k,` − (ĤM)k,` can be too large for practical
purposes. Luckily, since f ∈ C∞Θ , numerical considerations illustrate that FM and GM

are numerically banded for a certain choice of {pk}k; for instance, see Section 4 where
we choose the shifted Legendre polynomials. Therefore, M does not need to be too
large to reach a small truncation error in the approximation (9), excluding the last
rows of the matrix ĤM where the truncation error can still be significant. Further
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details and explanations on this matter are being developed and will be presented in
future work. For the moment, in Section 4, we provide numerical evidence of these
claims.

To conclude the presentation, we must discuss the convergence behavior of ex-
pansion (6). Indeed, since f is discontinuous for t = s, the expansion may not
converge quickly (or may not converge) to f(t, s) for every t, s ∈ I; see, e.g., [14, 15]
for the polynomial case. Nevertheless, fixing s = 0, the univariate function f(t, 0) =
f̃(t, 0)Θ(t− 0) = f̃(t, 0) is smooth over I = [0, T ]. Therefore

f(t, 0) =
∞∑
k=0

akpk(t) =
∞∑
k=0

pk(t)
∞∑
`=0

fk,` p`(0),

with ak =
∑∞

`=0(fk,` p`(0)). As a consequence, we can approximate the function
f(t, 0) by the expression

f(t, 0) ≈ φM(t)TFM φM(0),

and expect to reach a small enough accuracy for a (relatively) small M . Section 5
illustrates with several numerical examples that it is possible to achieve machine
precision accuracy for a small value of M .

Consider the function u(t, s) in (5). Using the previous construction, the related
coefficient matrix UM , i.e., such that u(t, s) ≈ φ(t)TM UM φM(s), can be approxi-
mated by

UM ≈ TM(IM − FM)−1,

where TM is the coefficient matrix of Θ(t − s), and FM is the coefficient matrix of
f̃(t)Θ(t − s), with f̃(t) from (2). Since u(t, s) ∈ C∞Θ , for s = 0 we can approximate
the solution of (2) by the formula:

y0(t) ≈ φM(t)TUM φM(0) ≈ φM(t)TTM(IM − FM)−1φM(0).

Then, the vector uM = TMx contains the approximated expansion coefficients of y0(t),
i.e.,

y0(t) ≈ φM(t)TuM , for every t ∈ I,
where x is the solution of the linear system

(IM − FM)x = φM(0). (10)

4. Properties of the coefficient matrix

In this section, we illustrate several properties of the coefficient matrices (7)
through numerical examples. We set I = [0, 1], and, as the sequence of orthonormal
functions, we choose the sequence of orthonormal shifted Legendre polynomials, i.e.,
the sequence of polynomials {pk}k such that∫ 1

0

pk(τ)p`(τ) dτ =

{
1, if k = `,

0, if k 6= `,
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Functions f̃1 = 1 f̃2 = t f̃3 = t3 f̃4 = cos(t) f̃5 = log(t+ 1)
M = 25

Num. band. 1 2 4 13 20
Spectral radius 0.0592 0.0357 0.0238 0.0480 0.0271
σmin 2.42e− 3 3.50e− 5 9.68e− 9 1.74e− 3 3.42e− 5
σmax 1.2732 0.9447 0.6864 0.9694 0.6938

M = 100
Num. band. 1 2 4 13 20
Spectral radius 0.0556 0.0296 0.0155 0.0444 0.0223
σmin 1.56e− 4 1.57e− 7 2.33e− 13 1.10e− 4 1.56e− 7
σmax 1.2732 0.9447 0.6864 0.9694 0.6938

M = 500
Num. band. 1 2 4 13 20
Spectral radius 0.0554 0.0297 0.0146 0.0458 0.0215
σmin 6.27e− 6 2.59e− 10 6.58e− 19 2.59e− 10 3.42e− 5
σmax 1.2732 0.9447 0.6864 0.9694 0.6938

Table 1: Properties of coefficient matrices F
(k)
M .

with k, ` the degree of the polynomial. In the following, we consider the functions
fk(t, s) = f̃k(t)Θ(t− s) from Table 1 and the related M ×M coefficient matrix F

(k)
M

defined in (7). The numerical experiments were performed using MatLab R2022a.

Table 1 reports the numerical bandwidth of each coefficient matrix F
(k)
M for

M = 25, 100, 500. With numerical bandwidth, we mean the bandwidth of the matrix
once all its elements with a magnitude smaller than the machine precision have been
rounded to zero. First, we observe that the numerical bandwidth is the same for
every value of M . Moreover, we note that for the polynomials f̃1, f̃2, f̃3, the corre-
sponding bandwidth is equal to the degree of the polynomial plus one. Finally, the
functions f4(t, s) = cos(t)Θ(t− s), f5(t, s) = log(t + 1)Θ(t− s) are also numerically
banded.

Table 1 also reports the spectral radius and the minimal and maximal singular
values (respectively σmin, σmax) of each F

(k)
M . While both the spectral radius and σmax

do not vary significantly for M = 25, 100, 500, σmin becomes smaller as M increases.
As the linear system (10) involves the shifted matrix IM − F (k)

M , it is important to
note that all the computed spectral radii are smaller than 1.

Finally, Figure 1 presents the spectra of the matrices F
(1)
M and F

(4)
M for M =

25, 100, 500. For both the functions, as M increases, the spectrum tends to distribute
in a circle on the right-half of the complex plane, closer and closer to the origin. We
do not report the spectrum plots of the other matrices considered above since they
display analogous behavior.
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Figure 1: Spectrum of the coefficient matrices F
(1)
M (left), F

(4)
M (right) defined in (7),

for M = 25, 100, 500.
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5. Numerical experiments

In this section, we test the numerical method explained in Section 3 on the ODE

d

dt
y(t) = f̃k(t)y(t), y(0) = 1, t ∈ I = [0, 1], (11)

for each function f̃k from Table 1. More precisely, the method works as follows:

1. We discretize fk(t, s) = f̃k(t)Θ(t − s) as described in Section 3, obtaining the

matrix F
(k)
M . We use as an orthonormal basis the shifted orthonormal Legendre

polynomials from Section 4.

2. Let b be the numerical bandwidth of F
(k)
M ; we define the matrix F̂

(k)
M by setting

the last b rows of the matrix F
(k)
M to zero. This has proven helpful in reducing

the accumulation of truncation errors in the last rows of the solution of (10).

3. We solve the (banded) linear system(
IM − F̂ (k)

M

)
x = φM(0),

using the Matlab backslash \ operation.

4. The solution of (11) is approximated by

y(t) ≈ ŷM(t) := φM(t)TuM with uM = Tm x. (12)

In Table 2, we report the maximal relative error of approximation (12) over I
for M = 25, 100. The relative errors were computed on an equispaced mesh of 100
points over [0, 1]. As a reference value for the solution, we considered the function
exp(

∫ t
0
f̃k(τ) dτ). We compare our results with the maximal relative errors obtained

using the Matlab methods ode45 and ode89 with relative and absolute tolerances set
equal to eps = 2.2204e− 16. For M = 100, Table 2 shows that approximation (12)
is always better than the others. On the other hand, for M = 25, we obtain worse
results for k = 3, 4, 5, showing that it is possible to calibrate the accuracy of the
solution by the matrix size.

With these experiments, we do not want to claim anything about the performance
of our method compared to well-established explicit methods such as ode45 and
ode89. The examples considered here are certainly not enough for drawing any
conclusion. The table aims to show that approximation (12) can compete in accuracy
with well-established approaches, a promising result for our future work.

6. Conclusion and future work

In this work, we have explained how to express the solution of a scalar linear
ODE using the so-called ?-product. Moreover, we have shown how to derive a nu-
merical method from this expression and successfully tested it on several examples.
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Functions f̃1 = 1 f̃2 = t f̃3 = t3 f̃4 = cos(t) f̃5 = log(t+ 1)
ŷ25(t) 1.20e− 15 1.11e− 15 3.36e− 14 1.37e− 09 4.04e− 04
ŷ100(t) 1.20e− 15 1.11e− 15 8.88e− 16 1.22e− 15 9.77e− 16
ode45 9.76e− 15 4.61e− 13 1.53e− 12 1.13e− 13 9.72e− 13
ode89 1.17e− 13 6.69e− 14 3.63e− 14 1.13e− 13 9.92e− 14

Table 2: Maximal relative error over I = [0, 1] of ode45, ode89 methods and of the
approximation ŷM(t) in (12) for the solution of the ODE (11).

The numerical method requires solving a linear system whose properties have also
been numerically investigated. Concerning the numerical efficiency of the introduced
method, other possible approaches in the solution of the linear system may be used
– for instance, Krylov subspace methods. Furthermore, since the solution depends
continuously on the initial time parameter s, we are also investigating the use of
acceleration methods such as the one in [4]. In addition, we are currently developing
an efficient method for computing the coefficient matrix FM .

Given a smooth matrix-valued function Ã(t) ∈ CN×N , the solution of the system

d

dt
Ys(t) = Ã(t)Ys(t), Y (s) = IN , t ≥ s, t, s ∈ I,

can also be expressed as

Ys(t) = U(t, s) = Θ(t− s) ? R?(Ã(t)Θ(t− s)), t, s ∈ I,

following the results in [5]. Therefore, the scalar method we have described can be
generalized to the more challenging problem offered by systems of non-autonomous
linear ODEs. The results discussed in this work are thus promising for developing
new efficient methods for computing Ys(t).

Acknowledgements

This work was supported by Charles University Research programs UNCE/SCI/
023 and PRIMUS/21/SCI/009 and by the Magica project ANR-20-CE29-0007 funded
by the French National Research Agency.

References

[1] Autler, S.H. and Townes, C.H.: Stark effect in rapidly varying fields. Phys. Rev.
100 (1955), 703–722. URL https://doi.org/10.1103/PhysRev.100.703.

[2] Benner, P., Cohen, A., Ohlberger, M., and Willcox, K.: Model reduction and ap-
proximation: Theory and algorithms. Computational Science and Engineering,
SIAM, Philadelphia, 2017.

196

https://doi.org/10.1103/PhysRev.100.703


[3] Blanes, S.: High order structure preserving explicit methods for solving linear-
quadratic optimal control problems. Numer. Algorithms 69 (2015), 271–290.
URL https://doi.org/10.1007/s11075-014-9894-0.

[4] Buoso, D., Karapiperi, A., and Pozza, S.: Generalizations of Aitken’s process
for a certain class of sequences. Appl. Numer. Math. 90 (2015), 38–54. URL
https://doi.org/10.1016/j.apnum.2014.12.002.

[5] Giscard, P.L., Lui, K., Thwaite, S.J., and Jaksch, D.: An exact formulation
of the time-ordered exponential using path-sums. J. Math. Phys. 56 (2015),
053 503. URL https://doi.org/10.1063/1.4920925.

[6] Giscard, P.L. and Bonhomme, C.: Dynamics of quantum systems driven by
time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and
applications to NMR. Phys. Rev. Research 2 (2020), 023 081. URL https:

//link.aps.org/doi/10.1103/PhysRevResearch.2.023081.

[7] Giscard, P.L. and Pozza, S.: Lanczos-like algorithm for the time-ordered ex-
ponential: the ∗-inverse problem. Appl. Math. 65 (2020), 807–827. URL
https://doi.org/10.21136/AM.2020.0342-19.

[8] Giscard, P.L. and Pozza, S.: Tridiagonalization of systems of coupled linear
differential equations with variable coefficients by a Lanczos-like method. Linear
Algebra Appl. 624 (2021), 153–173. URL https://doi.org/10.1016/j.laa.

2021.04.011.

[9] Giscard, P.L. and Pozza, S.: A lanczos-like method for non-autonomous linear
ordinary differential equations. Bol. Unione Mat. Ital. (2022). URL https:

//doi.org/10.1007/s40574-022-00328-6.

[10] Kwakernaak, H. and Sivan, R.: Linear optimal control systems, vol. 1. Wiley-
interscience, New York, 1972.

[11] Lauder, M., Knight, P., and Greenland, P.: Pulse-shape effects in intense-field
laser excitation of atoms. Opt. Acta 33 (1986), 1231–1252. URL https://doi.

org/10.1080/713821874.

[12] Schwartz, L.: Théorie des distributions. Hermann, Paris, 1978.

[13] Shirley, J.H.: Solution of the Schrödinger equation with a Hamiltonian periodic
in time. Phys. Rev. 138 (1965), B979–B987. URL https://doi.org/10.1103/

PhysRev.138.B979.

[14] Silverman, R.A. et al.: Special functions and their applications. Courier Corpo-
ration, 1972.

197

https://doi.org/10.1007/s11075-014-9894-0
https://doi.org/10.1016/j.apnum.2014.12.002
https://doi.org/10.1063/1.4920925
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023081
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023081
https://doi.org/10.21136/AM.2020.0342-19
https://doi.org/10.1016/j.laa.2021.04.011
https://doi.org/10.1016/j.laa.2021.04.011
https://doi.org/10.1007/s40574-022-00328-6
https://doi.org/10.1007/s40574-022-00328-6
https://doi.org/10.1080/713821874
https://doi.org/10.1080/713821874
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRev.138.B979


[15] Trefethen, L.N.: Approximation theory and approximation practice. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.
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