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Abstract: This contribution is devoted to modeling damage zones caused by
the excavation of tunnels and boreholes (EDZ zones) in connection with the
issue of deep storage of spent nuclear fuel in crystalline rocks. In particular,
elastic-plastic models with Mohr-Coulomb or Hoek-Brown yield criteria are
considered. Selected details of the numerical solution to the corresponding
problems are mentioned. Possibilities of elastic and elastic-plastic approaches
are illustrated by a numerical example.
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1. Introduction

Zones with higher stress concentrations, formation and joining of cracks of various
sizes or with V-shaped notches can be observed on tunnel walls and in their vicinity
as a consequence of excavation and other effects. Such zones are usually called as ex-
cavation damage zones (EDZ). Prediction of EDZ is important for safety assessment
in many applications. Our particular motivation is related to deep storage of spent
nuclear fuel in crystalline rocks where EDZ can simplify transport of radionuclides.
In order to predict EDZ and analyze coupled processes in these zones, various in-situ
experiments have been carried out in underground research laboratories around the
world. For example, we mention the Äspö pillar stability experiment carried out in
Sweden [1] or the Tunnel Sealing Experiment (TSX) in Canada [8].

The most important factor that causes the formation of EDZ is the initial stress
state in the rock mass. EDZ may depend on its magnitude, the ratios between the
principal stresses and on the orientation of the principal stress directions with respect
to the tunnel. EDZ also depends on the shape of the tunnel and its dimensions,
the method of excavation, mechanical properties of the rock mass or its geological
structure. EDZ can also expand after the excavation due to surrounding sites or
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thermal heating [1]. On the contrary, bentonite barriers of a deep repository [1] can
contribute to the stabilization of EDZ zones.

Mathematical modeling of EDZ can be based on continuum mechanics, fracture
mechanics or on multiscale approaches. In this contribution, we focus on the con-
tinuum models, namely on elastic and elastic-plastic models. The elastic models
are usually combined with a failure criterion to detect zones with high stress con-
centrations. Such a treatment is the simplest one and is convenient for large-scale
3D geometries. Next, one can consider elastic-plastic models where the failure cri-
terion is directly a part of the model and admissible stress fields must satisfy the
criterion. These models can be enriched with internal variables representing soft-
ening/hardening variable or damage variable. In the article [7] and related papers,
different types of damage zones were classified based on elastic-plastic models, the
so-called DISL approach.

This contribution consists of the following parts. Section 2 contains selected
details to an abstract elastic-perfectly plastic problem and its solution scheme. Sec-
tion 3 is devoted to the Mohr-Coulomb and Hoek-Brown constitutive models and
their solution. Section 4 contains a numerical example illustrating possibilities of
elastic and elastic-plastic approaches of modeling EDZ zones. Concluding remarks
can be found in Section 5.

2. Numerical scheme of the elastic-perfectly plastic model

We consider a simplified 2D geometry of the rock mass around the tunnel depicted
in Figure 1. The square domain and its subdomain without the tunnel will be denoted
as Ω̂ and Ω, respectively. We prescribe zero normal displacements on the outer
boundary ∂Ω̂ (far the from tunnel) and zero normal stress on the inner boundary Γ,

that is, u·n = 0 on ∂Ω̂ and σn = 0 on Γ, where u, σ, and n denote the displacement
field, the Cauchy stress field, and the outward unit normal vector to Ω, respectively.
We prescribe the initial stress field σ0 defined in Ω. For the sake of simplicity, we
simulate the tunnel excavation by the load history tσ0/tmax, where t ∈ [0, tmax].
Next ingredients of the elastic and elastic-plastic models are the infinitesimally small
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Figure 1: 2D geometry of the rock mass around the tunnel.
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strain tensor

ε := ε(u) =
1

2
(∇u+ (∇u)T )

and the fourth-order elastic tensor C,

Cε =
E

1 + ν

{
ν

1− 2ν
(tr ε)I + ε

}
,

C−1σ = − ν
E

(tr σ)I +
1 + ν

E
σ,

where E > 0, ν ∈ (0, 1/2) denote Young’s modulus and Poisson’s ratio, respec-
tively, I is the unit second-order tensor and tr ε = ε : I = ε11 + ε22 + ε33 is the trace
of ε.

In case of linear elasticity, we have the following constitutive (Hook’s) law between
the stress and strain tensors:

σ = Cε+ σ0 or σ = C[ε+ ε0], ε0 = C−1σ0.

Now, we introduce the elastic-perfectly plastic constitutive model, which is time-
dependent. Let εe and εp denote the elastic and plastic parts of the strain tensor
and λ is the plastic multiplier. We also define yield function f := f(σ) and plastic
potential g := g(σ) and assume that these functions are convex. Then the corre-
sponding evolution problem reads: for any t ∈ (0, tmax), find σ := σ(t), ε := ε(t),
εe := εe(t), εp := εp(t), λ := λ(t) such that

• ε = εe + εp, σ = C(εe + tε0/tmax),

• ε̇p ∈ λ̇∂g(σ), εp(0) = 0,

• λ̇ ≥ 0, λ̇f(σ) = 0, f(σ) ≤ 0.

Here, the dot symbol means the time derivative and ∂g(σ) denotes the subdifferential
of g at σ. It is worth-noticing that subdifferentials are not so obvious in engineering
practice and the plastic flow rule is usually written by the derivative of g:

ε̇p = λ̇
∂g(σ)

∂σ
,

despite the fact that g is often non-differentiable. One of the aim of our work is to
show that the knowledge of an explicit form of the set ∂g(σ) can simplify analysis
and constitutive solution for various elastic-plastic models. This was shown in [9, 10].

The elastic-plastic constitutive problem is mostly discretized by the implicit Euler
method. Consider the partition 0 = t0 < t1 < . . . < tk−1 < tk < . . . < tmax of the
time interval. Then the discretized constitutive problem at the k-th step, k = 1, 2, . . .,
has the following scheme: given ε0, εk, and εpk−1, find σk and εpk such that

σk = T (εk − εpk−1 + tkε0/tmax), εpk = εk + tkε0/tmax − C−1σk.
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Here, the tensor-valued function T needs to be constructed. In general, one can
find T only in an implicit form and construct it by an iterative procedure. This con-
struction is based on the elastic prediction – plastic correction algorithm [4, 3, 9, 10].
Within the elastic prediction, we test whether the trial stress σtr

k = C(εk − εpk−1 +
tkε0/tmax) satisfies the failure criterion f(σtr

k ) ≤ 0. If it is so then σk = σtr
k and

εpk = εpk−1. Otherwise, the plastic correction is applied to be the constraint f(σk) = 0
satisfied. So we need to return the predicted stress to the failure surface and construct
the so-called return mapping. Such a mapping can be interpreted as a generalized
projection onto a convex set. It is also worth noticing that the function T is non-
differentiable, but its semismoothness is expected and can be proven just by the
subdifferential-based treatment [9, 10].

Using the function T , the overall elastic-plastic problem in terms of displacements
reads:

find uk ∈ V :

∫
Ω

T (ε(uk)− εpk−1 + tkε0/tmax) : ε(v) dx = 0 ∀v ∈ V,

where
V = {v ∈ H1(Ω;Rd) | v · n = 0 on ∂Ω̂}

is a space of admissible displacement fields. After a space discretization, we arrive at
a system of non-linear equations. Such a system is usually solved by a non-smooth
version of the Newton method. It requires to construct a generalized derivative of T .
Its construction for specific models will be briefly discussed in the next section.

3. The Mohr-Coulomb and Hoek-Brown constitutive models

The Mohr-Coulomb and Hoek-Brown constitutive models are usual in geotech-
nics. The functions f and g for these models are defined in terms of principal
stresses. Therefore, we need to introduce the spectral decomposition of the Cauchy
stress tensor:

σ =
3∑

i=1

σiei ⊗ ei, σ1 ≥ σ2 ≥ σ3.

Here, σi ∈ R, ei ∈ R3, i = 1, 2, 3, denote the eigenvalues (principle stresses), and
the eigenvectors of σ, respectively. We assume the ordering σ1 ≥ σ2 ≥ σ3 of the
eigenvalues of σ. From now on, we shall work with a mechanical sign convention
assuming positive values for a tension. (In geomechanics, opposite sign convention
is usual.)

The Mohr-Coulomb model is defined by the functions

f(σ) = (1 + sinφ)σ1 − (1− sinφ)σ3 − 2c cosφ,

g(σ) = (1 + sinψ)σ1 − (1− sinψ)σ3,

where c > 0, φ ∈ (0, π/2) and ψ ∈ (0, π/2) are given material parameters denoting
the cohesion, the friction angle and the dilatancy angle. It is expected that ψ ≤ φ.

232



The Hoek-Brown model is defined by the functions

f(σ) = σ1 − σci
(
s−mb

σ1

σci

)a
− σ3,

g(σ) = σ1 − σci
(
sg −mg

σ1

σci

)ag
− σ3,

where σci, s, sg,mb,mg > 0 and a, ag ∈ (0, 1) are given material parameters. More
details to these parameters can be found in [3, 5, 6]. Briefly speaking, they are defined
by empirical formulas containing usual material parameters for intact rock samples
and two indices, the geological strength index GSI and the disturbance index D.
GSI represents a structure of the surrounding rock mass and D characterizes a way
of the excavation. To be the model well-defined, we assume that sg/mg ≥ s/m,
although we have not found such an assumption in literature. In the limit case a =
ag = 1, one can transform the Hoek-Brown model to the Mohr-Coulomb models one.

Admissible stress fields satisfy the condition f(σ) ≤ 0. For both the models,
the corresponding set is convex and aligned with the hydrostatic axis (where σ1 =
σ2 = σ3). The Mohr-Coulomb set is a hexahedral pyramid in the space of the
principle stresses with the apex at σt = c/ tanφ. For the Hoek-Brown model, the
pyramid is curved and has the apex at σt = sσci/mb, see [3]. Next, one can see that
the function g has the following structure for both the models:

g(σ) = ĝ1(σ1)− ĝ3(σ3),

where ĝ1 and ĝ3 are increasing, convex and twice differentiable functions. By extend-
ing the results from [10], it is possible to show that such functions g are convex and
they subdifferentials satisfy

∂g(σ) =
{
ν =

3∑
i=1

νiei ⊗ ei

∣∣∣ (e1, e2, e3) ∈ V (σ);

ĝ′1(σ1) ≥ ν1 ≥ ν2 ≥ ν3 ≥ −ĝ′3(σ3);
3∑

i=1

νi = ĝ′1(σ1)− ĝ′3(σ3);

(ν1 − ĝ′1(σ1))(σ1 − σ2) = 0; (ν3 + ĝ′3(σ3))(σ2 − σ3) = 0
}
,

where ĝ′1, ĝ′3 denote the derivatives of ĝ1, ĝ3 and

V (σ) = {(e1, e2, e3) ∈ [R3]3 | ei · ej = δij; σei = σiei, i, j = 1, 2, 3; σ1 ≥ σ2 ≥ σ3}.

If σ1 > σ2 > σ3 then ν1 = ĝ′1(σ1), ν2 = 0, and ν3 = −ĝ′3(σ3), and thus g is
differentiable at σ. Otherwise, g is not differentiable at σ and ν1, ν2, ν3 are not
uniquely defined.

Let us recall that the unknown stresses tensor σ := σk satisfies f(σ) = 0 if
the plastic correction (the return mapping) occurs. In such a case, σ lies on the
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surface of the Mohr-Coulomb or Hoek-Brown pyramid. With respect to the ordering
σ1 ≥ σ2 ≥ σ3, we split the pyramidal surface into four parts: smooth portion
(σ1 > σ2 > σ3), the left (curved) edge (σ1 = σ2 > σ3), the right (curved) edge
(σ1 > σ2 = σ3), and the apex (σ1 = σ2 = σ3 = σt). This terminology was introduced
in [4]. For each of these cases, one can specify the set ∂g(σ) and consequently, the
form of the return mapping. For example, if the return to the left edge occurs then
ĝ′1(σ1) ≥ ν1 ≥ ν2 ≥ 0, ν1 + ν2 = ĝ′1(σ1), ν3 = −ĝ′3(σ3) hold. These conditions are not
usual in engineering practice but they can simplify the construction of the return
mapping and help to find a correct return type.

In case of the elastic-perfectly plastic Mohr-Coulomb model, one can find deci-
sion criteria for each return type and even derive a close form of the constitutive
operator T , see e.g. [4, 10]. However, the function T is only in an implicit form
for the Hoek-Brown model. In [3], the following return-mapping scheme was pro-
posed. First, the return to the apex is tested. In this case, the solution must satisfy
σ1 = σ2 = σ3 = σt and it is possible to derive necessary and sufficient conditions for
this return type. If the return to the apex does not occur, the return to the smooth
portion of the yield surface is tested and the corresponding problem has to be solved
iteratively. After finding a solution candidate, we decide about its admissibility. If it
is not admissible, one can decide using this candidate whether the return to the left
or right curved edge occurs. We plan in our future work to complete this solution
concept by rigorous analysis based on the subdifferential-based treatment and show
that the operator T is well-defined.

In order to construct a generalized derivative of T , we use the so-called eigenpro-
jections and their derivatives, see [4]. For the sake of brevity, we introduce it only
for a tensor εtr with three different eigenvalues εtr1 > εtr2 > εtr3 . Then, the spectral
decomposition of εtr satisfies

εtr =
3∑

i=1

εtri e
tr
i ⊗ etri , etri ⊗ etri = Etr

i =
(εtr − εtrj I)(εtr − εtrk I)

(εtri − εtrj )(εtri − εtrk )
, i = 1, 2, 3.

We say that the second-order tensorsEtr
1 ,Etr

2 , andEtr
3 are the eigenprojections of εtr.

If we consider the eigenvalues as functions depending on εtr, then their derivatives
satisfy Dεtri (εtr) = Etr

i , i = 1, 2, 3. Next, the derivative of Etr
i is the fourth-order

tensor and can be found in the following form:

DEtr
i (εtr) := Etr

i =
D((εtr)2)− (εtrj + εtrk )I− (2εtri − εtrj − εtrk )Etr

i ⊗Etr
i

(εtri − εtrj )(εtri − εtrk )

−
(εtrj − εtrk )[Etr

j ⊗Etr
j −Etr

k ⊗Etr
k ]

(εtri − εtrj )(εtri − εtrk )
,

where i 6= j 6= k 6= i.
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Setting εtr := εk − εpk−1 + tkε0/tmax and assuming that εtr1 > εtr2 > εtr3 , one can
specify the form of the constitutive function T and its generalized derivative [10]:

σk = T
(
εtr
)

=
3∑

i=1

σi(ε
tr)Etr

i , DT
(
εtr
)

=
3∑

i=1

[
σi(ε

tr)Etr
i +Etr

i ⊗Dσi(ε
tr)
]
.

Here, σ1, σ2, σ3 are eigenvalues of the unknown stress tensor σk. They depends
on εtr. Dσi denotes a generalized derivative of σi, i = 1, 2, 3. It is necessary to use
the implicit function theorem to find these derivatives.

4. Numerical example

In this section, we compare the elastic and elastic-plastic approaches to the pre-
diction of EDZ. The comparison is illustrated on a plane strain problem inspired by
a case study of the TSX experiment performed in the depth about 500 meters in
Underground Research Laboratory in Canada, see [8].

The geometry and the finite element mesh are depicted in Figure 2. In particular,
it is considered an elliptic tunnel profile with the diameters 4.375 and 3.5 meters.
The initial stress tensor σ0 is assumed to be constant in the whole domain and its
non-zero components have the following sizes: σ0,1 = −45 MPa, σ0,2 = −11 MPa,
and σ0,3 = −60 MPa. The largest principle stress σ0,3 is aligned with the tunnel axis
and it is included to the model through the Mohr-Coulomb plastic criterion. The
remaining principle stresses are depicted in Figure 2. The excavation process took
time 17 days. So we choose tmax = 17 days and consider 17 time steps. Next, we set
E = 60 GPa, ν = 0.2, c = 17 MPa, φ = ψ = 26◦. The strength parameters c and φ
were chosen much lower than in [8] in order to highlight the difference between
the elastic and elastic-plastic approaches. We use P2 finite elements and 7-point
quadrature on each triangular element. The problems were implemented within in-
house codes in Matlab. Some of them are available for download, see [2], and their
Python’s counterparts can be downloaded from [11].
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Figure 2: The geometry and the mesh for the plane strain problem. The sizes are in
meters.
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Figure 3: Comparison of failure zones for the elastic (left) and the elastic-plastic
(right) models.

Figure 4: Comparison of horizontal stresses for the elastic (left) and the elastic-plastic
(right) models. The scales are in MPa.

The comparison of failure zones computed for the elastic and elastic-plastic mod-
els are depicted in Figure 3. The zones for the elastic model are created by such ele-
ments where the Mohr-Coulomb criterion is not satisfied. They are rounded around
the tunnel wall. In case of the elastic-plastic model, the zones represent elements
with positive plastic multiplier. They have a typical V-notch shape that can be also
observed within in-situ experiments.

In Figure 4, horizontal stresses are compared for the approaches. The elastic mo-
del admit higher stress concentrations (about 100 MPa) on the tunnel top and bottom
unlike the elastic-plastic model where these concentrations are only about 50 MPa.

Figure 5 compares the total displacement and 300 times enlarged deformed shapes.
For linear elasticity, we observe the contraction of the rock mass on the top and bot-
tom of the tunnel. On the other hand, the dilatation is visible there in case of the
elastic-plastic model. For better visualization of the contraction/dilatation, we com-
pare vertical displacements on the tunnel top in Figure 6. We see that the plastic
response is strongly nonlinear from the tenth time step leading to the dilatation.
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Figure 5: Comparison of total displacements and deformed shapes for the elastic
(left) and the elastic-plastic (right) models. The scales are in meters.

0 2 4 6 8 10 12 14 16 18
day

-6

-4

-2

0

2

ve
rt

ic
al

 d
is

pl
ac

em
en

t o
n 

th
e 

tu
nn

el
 to

p

10-4

elastic
plastic

Figure 6: Evolution of the vertical displacements (in meters) on the tunnel top.

5. Conclusion

This contribution was a brief introduction to EDZ for deep tunnels in crystalline
rocks. For prediction of EDZ, the elastic and elastic-plastic models were used. A
scheme of numerical solution of the elastic-plastic problem was introduced. A par-
ticular interest was devoted to the Mohr-Coulomb and Hoek-Brown failure criteria.
The subdifferential-based treatment to their constitutive solution was recommended.
Finally, the elastic and elastic-plastic approaches to modeling of EDZ were compared
on an illustrative numerical example.
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