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Abstract: In the present contribution we discuss mathematical homoge-
nization and numerical solution of the elliptic problem describing convection-
diffusion processes in a material with fine periodic structure. Transport pro-
cesses such as heat conduction or transport of contaminants through porous
media are typically associated with convection-diffusion equations. It is well
known that the application of the classical Galerkin finite element method is in-
appropriate in this case since the discrete solution is usually globally affected
by spurious oscillations. Therefore, great care should be taken in develop-
ing stable numerical formulations. We describe a variational principle for the
convection-diffusion problem with rapidly oscillating coefficients and formulate
the corresponding homogenization results. Further, based on the variational
principle, we derive a stable numerical scheme for the corresponding homog-
enized problem. A numerical example will be solved to illustrate the overall
performance of the proposed method.
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1. Introduction

Let Ω be a bounded domain in Rd, d = 1, 2, 3. In particular, we assume that Ω
is a domain with Lipschitz boundary ∂Ω (in case d = 2, 3). Further, ΓD and ΓN are
open disjoint subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN , ΓD 6= ∅. We use the standard
function spaces W 1,2(Ω), W 1,∞(Ω), L2(Ω), L∞(Ω), L2(ΓN). These function spaces
we use are rather familiar and we omit the precise definitions, see e.g. [9] for details.
Further, define the space V by V := {v ∈ W 1,2(Ω); v = 0 on ΓD} (more precisely,
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v = 0 on ΓD means that the trace of v is vanishing on ΓD). We study the family of
boundary-value problems

−∇ ·
(
a
(x
ε

)
∇uε(x)

)
+ b

(x
ε

)
· ∇uε(x) = f(x) in Ω, (1)

uε(x) = 0 on ΓD, (2)

−n · a
(x
ε

)
∇uε(x) = αuε(x) + γN(x) on ΓN . (3)

Here, n denotes the unit exterior normal vector to the boundary ∂Ω. We assume
that the transport coefficients a and b periodically depend on a fine scale x/ε (ε > 0
being a small scalar parameter). We then let ε → 0+ and study the asymptotic
behavior of the problem. In particular, our aim is to formulate a variational prin-
ciple for (1)–(3). Note that, in general, (1) is not in a divergence form, however,
under the assumptions below, there exists a functional Iε on V whose minimizers
are solutions of (1)–(3). Then the Γ-convergence of Iε (as ε → 0+) is equivalent to
the homogenization of (1)–(3).

The following assumptions will be needed throughout the paper.

• α > 0 is a real positive parameter, fixed throughout the paper, f ∈ L2(Ω) and
γN ∈ L2(ΓN).

• a : Rd × R is given by a strictly positive and bounded function, such that

0 < a1 ≤ a(ξ) ≤ a2 < +∞ for all ξ ∈ Rd (a1, a2 = const).

• The coefficient functions are rapidly oscillating , i.e. of the form

aε(x) := a
(x
ε

)
,

bε(x) := b
(x
ε

)
for all x ∈ Ω, where the functions a, b1, . . . bd are Y -periodic in Rd with
periodicity cell

Y = {y = (y1, . . . , yd : 0 < yi < 1) for i = 1, . . . , d}

and ε is a scale parameter.

• The coefficient functions are taken to be a gradient field in the sense that

−∇ϕε(x) =
bε(x)

aε(x)

with potential ϕε.
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• The potential ϕε is a Lipschitz function, ϕε ∈ W 1,∞(Ω) such that

ϕε(x) = R0 · x+ εψ
(x
ε

)
with some R0 ∈ Rd and ψ ∈ W 1,∞(Ω) Y -periodic in Rd.

For smaller and smaller ε, the coefficients aε and bε oscillate more and more
rapidly and it is natural to study the limit of uε in (1)–(3) as ε→ 0.

2. Standard weighted residual method and the Galerkin formulation

A weak formulation of the problem is to find u ∈ V satisfying∫
Ω

aε(x)∇uε · ∇v dΩ +

∫
Ω

bε(x) · ∇uεv dΩ + α

∫
ΓN

uεv dσ

=

∫
Ω

fv dΩ +

∫
ΓN

γNv dσ

for all v ∈ V . Here dΩ denotes Lebesgue measure and dσ is the surface area measure
on the boundary ∂Ω. By Th we denote an admissible partition of Ω with mesh
size h with standard properties from the finite element theory (see e.g. [4]). Let
Vh ⊂ C(Ω) ∩ V be the standard conforming linear finite element space over Th.
A finite element formulation corresponding to the problem can be written as follows:
find uh ∈ Vh satisfying∫

Ω

aε(x)∇uεh · ∇vh dΩ +

∫
Ω

bε(x) · ∇uεh vh dΩ + α

∫
ΓN

uεhvh dσ

=

∫
Ω

fvh dΩ +

∫
ΓN

γNvh dσ (4)

for all vh ∈ Vh.
It is well-known that, as the convective term represents a nonsymmetric operator,

the standard Galerkin finite element method loses the best approximation property.
As a consequence, when the convective term is significant, the Galerkin formulation
produces node-to-node spurious oscillations. One possible way is to choose a suffi-
ciently fine grid such that the element Péclet number is less than one. However, this
approach may not always be practical from the computational point of view. There-
fore, several stabilized methods have been developed to avoid unphysical spurious
oscillations on coarse grids, see e.g. [6] and the references given there. In particular,
the authors in [11] have shown a variational basis for the optimal artificial diffu-
sion method. Following this observation, we provide a variational principle for the
problem (1)–(3) such that the solution uε minimizes a certain functional Iε over
the appropriate solution space V . Using the theory of Γ-convergence, we identify
the limit Ihom of Iε as ε goes to 0, such that the minima of Iε converge to the
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minimum of the homogenized functional Ihom. Based on the variational structure of
this problem, i.e. from the fact that the homogenized solution minimizes a certain
homogenized functional, the finite element solution possesses the best approximation
property. Namely, the finite element approximation of the homogenized solution (the
solution of the problem with the constant homogenized coefficients) gives nodally ex-
act solutions for 1D problems with constant coefficients.

3. A variational principle for the advection-diffusion problems

Define χε(x) := exp[ϕε(x)]. Then χε ∈ W 1,∞(Ω) and χε(x) ≥ c > 0 on Ω. The
function χε will be called a multiplier for this variational problem. It is easily verified
that sufficiently smooth function uε solves (1) provided

−∇ · (χε(x)aε(x)∇uε) = χε(x)f(x) in Ω.

This equation is in divergence form so there is a variational principle for its solutions.
Consider the problem of minimizing Iε on V , where Iε : V → R is defined by, w ∈ V ,

Iε(w) :=

∫
Ω

χε(x)

(
aε(x)

2
|∇w|2 − f(x)w

)
dΩ +

∫
ΓN

χε(x)
(α

2
w2 − γNw

)
dσ. (5)

Note that this functional involves the advection field solely through the multi-
plier χε(x). Using the theory in [13], there will be a minimizer of Iε. When
v ∈ V ∩ C(Ω), the first variation of Iε at uε ∈ V ,

δIε(uε, v) = lim
t→0

1

t
[Iε(uε + tv)− Iε(uε)] ,

exists and is given by

δIε(uε, v) =

∫
Ω

χε(x) (aε(x)∇uε · ∇v − f(x)v) dΩ

+

∫
ΓN

χε(x) (αuεv − γNuεv) dσ. (6)

At the minimizer uε ∈ V , (6) will be zero. Hence, we have∫
Ω

χε(x)aε(x)∇uε · ∇v dΩ +

∫
ΓN

χε(x)αuεv dσ

=

∫
Ω

χε(x)f(x)v dΩ +

∫
ΓN

χε(x)γNu
εv dσ (7)

for all v ∈ V . It is easy to see that (7) is the weak formulation for the boundary
value problem

−∇ · (χε(x)aε(x)∇uε) = χε(x)f(x) in Ω, (8)

uε(x) = 0 on ΓD, (9)

−n · aε(x)∇uε(x) = αuε(x) + γN(x) on ΓN . (10)
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A corresponding finite element formulation for the problem (8)–(10) reads as follows:
find uh ∈ Vh such that∫

Ω

χε(x)aε(x)∇uεh · ∇vh dΩ +

∫
ΓN

χε(x)αuεhvh dσ

=

∫
Ω

χε(x)f(x)vh dΩ +

∫
ΓN

χε(x)γNu
ε
hvh dσ

for all vh ∈ Vh.

4. Γ-convergence

We now consider a family of functionals (5) depending on w ∈ V . Let Ihom

denote the homogenized functional defined by

Ihom(w) :=

∫
Ω

exp(R0 · x) (Whom(∇w(x))− f(x)w(x)) dΩ

+

∫
ΓN

exp(R0 · x)
(α

2
w(x)2 − γN(x)w(x)

)
dσ, (11)

where the homogenized energy Whom is given by

Whom(λ) = inf
ξ∈W 1,2

per(Y )

∫
Y

a(y)

2
|λ+∇yξ(y)|2dY, (12)

where W 1,2
per(Y ) is the space of elements of W 1,2(Y ) having the same trace on opposite

face of Y .
Applying [10, Theorem 1.5] (see also [3, 7]), the sequence Iε Γ-converges to Ihom.

This implies the following fact on the minimizers: for each value ε > 0, let uε ∈ V
be an minimizer of the functional Iε. Then, up to a subsequence, uε converges
weakly in V to a limit u which is precisely a minimizer of the homogenized func-
tional Ihom, i.e.,

uε ⇀ u weakly in V

further

Iε(uε)→ I(u), inf
v∈V
Iε(v)→ min

v∈V
I(v) and I(u) = min

v∈V
I(v).

Computing the infima in (12) and minimizers u ∈ V of (11) yields the following
homogenized problem,∫

Ω

exp(R0 · x)A∗∇u · ∇v dΩ +

∫
ΓN

exp(R0 · x)αuv dσ

=

∫
Ω

exp(R0 · x)f(x)v dΩ +

∫
ΓN

exp(R0 · x)γNuv dσ (13)
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for all v ∈ V . The homogenized diffusion tensor is given by its entries

Aij =

∫
Y

a(y) (ei +∇ywi) (ej +∇ywj) dY, (14)

where wi are defined as the unique solutions in W 1,2
per(Y ) of the cell problems:

−∇y · (a(y)(ei +∇ywi)) = 0 in Y and

∫
Y

wi dY = 0, i = 1, . . . , d. (15)

5. Application to the 1D problem

We now study a convection-diffusion process in layered medium which is described
by the following one-dimensional problem. Let Ω = (0, 1) be an interval in R, ε > 0,
and consider the problem

− du

dx

(
aε(x)

du

dx

)
+ bε(x)

du

dx
= 1 in (0, 1) (16)

u(x = 0) = u(x = 1) = 0. (17)

Here, aε(x) = a(x/ε) and bε(x) = b(x/ε) and we assume that a and b are piecewise
constant 1-periodic functions such that

a(y) =

{
a1 y ∈ (0, 1/2)
a2 y ∈ (1/2, 1)

b(y) =

{
b1 y ∈ (0, 1/2)
b2 y ∈ (1/2, 1)

(18)

where a1, a2 ∈ R+ and b1, b2 ∈ R. In the one-dimensional case, analytical solutions
to (14)–(15) are well known, see e.g. [5]. In particular, for (18) we have

A∗ =
2a1a2

a1 + a2

and R0 = −a1b2 + a2b1

2a1a2

. (19)

Given any positive integer N , let π : 0 = x0 < · · · < xN+1 = 1 denote a uniform
partition of the unit interval with nodes xi = ih, h = 1/(N + 1), 0 ≤ i ≤ N + 1.
Then Vh denotes the set of all continuous functions defined on [0, 1] which are linear
on each subinterval [xi, xi+1], 0 ≤ i ≤ N , and which vanish at the end points.

Figure 1: Layered medium.
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A convenient basis on Vh can be constructed in a standard way as follows: let vi(x),
1 ≤ iN , be the element in Vh which satisfies vi(xj) = δij, 1 ≤ j ≥ N . Then the
collection {vi(x), 1 ≤ i ≤ N} constitutes a basis in Vh: any function vh(x) ∈ Vh can
be written as

vh(x) =
N∑
i=1

ζivi(x).

A finite element formulation corresponding to the problem (16)–(17) can be written
as follows: find uεh ∈ Vh, uεh(x) =

∑N
i=1 ξivi(x), such that (1 ≤ i ≤ N)

N∑
j=1

{∫ 1

0

aε(x)
dvi
dx

dvj
dx

dx

}
ξj +

N∑
j=1

{∫ 1

0

bε(x)vi
dvj
dx

dx

}
ξj =

∫ 1

0

vi dx. (20)

The results presented in this section are obtained using an in-house PYTHON
code. Recall that the standard Galerkin formulation gives node-to-node spurious
oscillations. In Figure 2, we compare the numerical solutions from the standard
Galerkin formulation for various steps h. As one can see from the figure, the Galerkin
formulation produces spurious node-to-node oscillations for high values of h (namely
h = 0.1 and h = 0.05).

We now apply the new variational formulation to the 1D problem according
to (13) (reformulated to the 1D case and Dirichlet boundary conditions). The
corresponding finite element formulation reads as follows: find uh ∈ Vh, uh(x) =∑N

i=1 ηivi(x), such that

N∑
j=1

{∫ 1

0

exp(R0x)A∗
dvi
dx

dvj
dx

dx

}
ηj =

∫ 1

0

exp(R0x)vi dx, 1 ≤ i ≤ N. (21)

According to a specific construction of the basis on Vh, it is easy to see that

uh(x) = ηj−1g−1(x) + ηjg0(x) + ηj+1g+1(x) on 〈xj−1, xj+1〉,

where

g−1(x) =

{
−x−xj

h
−h ≤ x− xj ≤ 0

0 0 < x− xj ≤ +h

g0(x) =

{
x−xj+h

h
−h ≤ x− xj ≤ 0

h−(x−xj)

h
0 < x− xj ≤ +h

g+1(x) =

{
0 −h ≤ x− xj ≤ 0
x−xj
h

0 < x− xj ≤ +h

Hence, in view of (21), (η1, η2, . . . , ηN) is a solution of the following system of equa-
tions

ηi−1ω−1 + ηiω0 + ηi+1ω+1 = 1, 1 ≤ i ≤ N, η0 = ηN+1 = 0,
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Figure 2: Comparison of Galerkin approximations for various steps h and fixed
ε = 0.1. The following values have been chosen in this example: a1 = 0.05,
a2 = 0.005, b1 = 0.8 and b2 = 1.2.

where

ω−1 =

∫ +h

−h exp(R0x)A∗g′0(x)g′−1(x) dx∫ +h

−h exp(R0x)g0(x) dx
=
R0A

∗

2h
(1− coth(R0h/2),

ω0 =

∫ +h

−h exp(R0x)A∗g′0(x)g′0(x) dx∫ +h

−h exp(R0x)g0(x) dx
=
R0A

∗

h
coth(R0h/2),

ω+1 =

∫ +h

−h exp(R0x)A∗g′0(x)g′+1(x) dx∫ +h

−h exp(R0x)g0(x) dx
=
−R0A

∗

2h
(1 + coth(R0h/2)).
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Figure 3: Comparison of the fine scale solutions and the homogenized results.

It is worth noting that the coefficients ω−1, ω0 and ω+1 are, respectively, the same
as obtained using the optimal artificial diffusion method, c.f. [11]. In Figure 3, we
compare the numerical solution uhom of (21) obtained using the stable homogenized
formulation with h = 0.05 (based on the variational principle, which gives nodally ex-
act solutions) with the solutions of (20) using the standard Galerkin approximations
with h = 5.0× 10−5 and for various values of scale parameters of ε.
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