
PANM 21

Lukáš Vacek; Václav Kučera
Godunov-like numerical fluxes for conservation laws on networks

In: Jan Chleboun and Pavel Kůs and Jan Papež and Miroslav Rozložník and Karel Segeth and Jakub Šístek (eds.):
Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Jablonec nad Nisou, June 19-24,
2022. Institute of Mathematics CAS, Prague, 2023. pp. 249–258.

Persistent URL: http://dml.cz/dmlcz/703205

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/703205
http://dml.cz


Programs and Algorithms of Numerical Mathematics 21
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Abstract: We describe a numerical technique for the solution of macroscopic
traffic flow models on networks of roads. On individual roads, we consider
the standard Lighthill-Whitham-Richards model which is discretized using the
discontinuous Galerkin method along with suitable limiters. In order to solve
traffic flows on networks, we construct suitable numerical fluxes at junctions
based on preferences of the drivers. Numerical experiment comparing different
approaches is presented.
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1. Introduction

Let us have a road and an arbitrary number of cars. We would like to model
the movement of cars on our road. We call this model a traffic flow model. We use
macroscopic models, where we view our traffic situation as a continuum and study
the density of cars in every point of the road. This model is described by partial
differential equations.

Our aim is to numerically solve macroscopic models of traffic flow. Our unknown
is density at point x and time t. As we shall see later, the solution can be dis-
continuous. Due to the need for discontinuous approximation of density, we use
the discontinuous Galerkin method. The aim of modelling is understanding traffic
dynamics and deriving possible control mechanisms for traffic.

1.1. Macroscopic traffic flow models

We begin with the mathematical description of macroscopic vehicular traffic,
cf. [4] and [6] for details. First, we consider a single road described mathematically as
a one-dimensional interval. In the basic macroscopic models, traffic flow is described
by two basic fundamental quantities – traffic flow Q and traffic density ρ.
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In article [3], Greenshields realized that traffic flow is a function which depends
only on traffic density in homogeneous traffic. The relationship between the ρ and Q
is described by the fundamental diagram. There are many different proposals for the
traffic flow Q derived from real traffic data, cf. [4]. Here we present only Greenshields
model, which define traffic flow as Q(ρ) = vmaxρ(1− ρ

ρmax
), where vmax is the maximal

velocity and ρmax is the maximal density.
Since the number of cars is conserved, the basic governing equation is a nonlinear

first order hyperbolic partial differential equation, cf.

ρt + (Q(ρ))x = 0, x ∈ R, t > 0. (1)

Equation (1) must be supplemented by the initial condition ρ(x, 0) = ρ0(x), x ∈ R
and an inflow boundary condition.

Following [2], we consider a complex network represented by a directed graph.
Each vertex (junction) has a finite set of incoming and outgoing edges (roads). In
our case it is sufficient to study our problem only on a simple network with one
vertex J and its n incoming and m outgoing adjacent edges. On each road we
consider equation (1), while at the vertex we consider a Riemann solver.

It is also necessary to take into account the preferences of drivers how the traffic
from incoming roads is distributed to outgoing roads according to some predeter-
mined coefficients. There is a traffic–distribution matrix A describing the distribution
of traffic among outgoing roads, i.e.

A =

αn+1,1 · · · αn+1,n
...

...
...

αn+m,1 · · · αn+m,n

 , (2)

where for all i ∈ {1, . . . , n}, j ∈ {n + 1, . . . , n + m}: αj,i ∈ [0, 1] and for all
i ∈ {1, . . . , n}:

∑n+m
j=n+1 αj,i = 1. The ith column of A describes how the traffic

from the incoming road Ii distributes to the outgoing roads at J .
We denote the endpoints of road Ii as ai, bi. We introduce the notation of spatial

limits ρ
(L)
i (bi, t) := limx→bi− ρi(x, t) and ρ

(R)
i (ai, t) := limx→ai+ ρi(x, t).

Let ρ = (ρ1, . . . , ρn+m)T be a weak solution at J , see [2, Definition 5.1.8], where ρ has
bounded variation in space. Then ρ satisfies the Rankine–Hugoniot condition, which
represents the conservation of cars at J :

n∑
i=1

Q(ρ
(L)
i (bi, t)) =

n+m∑
j=n+1

Q(ρ
(R)
j (aj, t)) (3)

for almost every t > 0, cf. [2, Lemma 5.1.9].

1.2. Discontinuous Galerkin method

As an appropriate method for the numerical solution of (1), we choose the discon-
tinuous Galerkin (DG) method, which is essentially a combination of finite volume
and finite element techniques, cf. [1].
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Consider an interval Ω = (a, b). Let Th be a partition of Ω into a finite number
of intervals (elements) K = [aK , bK ]. We denote the set of all boundary points of
all elements by Fh. We seek the numerical solution in the space of discontinuous
piecewise polynomial functions Sh = {v; v|K ∈ P p(K), ∀K ∈ Th}, where p ∈ N0

and P p(K) denotes the space of all polynomials on K of degree at most p. For
a function v ∈ Sh we denote the jump in the point s ∈ Fh as [v]s = v(L)(s)− v(R)(s).

We formulate the DG method for the general first order hyperbolic problem
ut + f(u)x = g, x ∈ Ω, t ∈ (0, T ), which is supplemented by the initial and boundary
condition. The DG formulation then reads, cf. [1]: Find uh : [0, T ]→ Sh such that∫

Ω

(uh)tϕ dx−
∑
K∈Th

∫
K

f(uh)ϕx dx+
∑
s∈Fh

H(u
(L)
h , u

(R)
h ) [ϕ]s =

∫
Ω

gϕ dx,

for all ϕ ∈ Sh. On Fh we use the approximation f(uh) ≈ H(u
(L)
h , u

(R)
h ), where H is

a numerical flux. We use the Godunov numerical flux, which is defined as the flux
at the exact solution of the Riemann problem with u

(L)
i and u

(R)
i , cf. [5]. It can be

expressed as

HGod
orig

(
u(L), u(R)

)
=

{
minu(L)≤u≤u(R) f(u), if u(L) < u(R),

maxu(R)≤u≤u(L) f(u), if u(L) ≥ u(R).
(4)

For our purpose, we derive alternative form, which is inspired by maximum pos-
sible traffic flow (see Section 2) in case with one incoming and one outgoing road.

Definition 1 (Alternative form of Godunov numerical flux). Let the Greenshields
traffic flow f have global maximum at u∗. Then the Godunov numerical flux is defined
as

HGod
(
u(L), u(R)

)
= min

{
fin(u(L)), fout(u

(R))
}
, (5)

where

fin(u(L)) =

{
f(u(L)), if u(L) < u∗,

f(u∗), if u(L) ≥ u∗,
fout(u

(R)) =

{
f(u∗), if u(R) ≤ u∗,

f(u(R)), if u(R) > u∗.

Definition 1 can be interpreted as the maximum possible flow through the bound-
ary, where fin is the maximum possible inflow from the left element and fout is
maximum possible outflow to the right element. The expressions (4) and (5) are
equivalent in case of Greenshields traffic flow. For simplicity, by H(· , · ) we mean
the Godunov numerical flux in the alternative form (5) in the rest of this paper.

For time discretization of the DG method we use the explicit Euler method. As
a basis for Sh, we use Legendre polynomials. We use Gauss–Legendre quadrature to
evaluate integrals over elements. Because we calculate physical quantity, the result
must be in some interval, e.g. ρ ∈ [0, ρmax]. Thus, we use limiters in each time step
to obtain the solution in the admissible interval. Following [5], we also apply limiting
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to treat spurious oscillations near discontinuities. From the definition of limiters, the
average value of the solution doesn’t change, i.e. the number of vehicle is conserved.
Limiters are necessary in the case of an oscillating solution in a sufficiently small
neighborhood of one of the limit values.

2. Maximum possible traffic flow

Based on the traffic distribution matrix, the authors of [2] define an admissible
weak solution of (1) at the junction J as ρ = (ρ1, . . . , ρn+m)T satisfying

1) ρ is a weak solution at J such that ρ has bounded variation in space, i.e. the
Rankine–Hugoniot condition holds.

2) Q(ρ
(R)
j (aj, ·)) =

∑n
i=1 αj,iQ(ρ

(L)
i (bi, ·)), ∀j = n+ 1, . . . , n+m.

3)
∑n

i=1Q(ρ
(L)
i (bi, ·)) is a maximum subject to 1) and 2).

Assumption 1) is the conservation of cars at the junction. Assumption 2) takes into
account the prescribed preferences of drivers. Assumption 3) postulates that drivers
choose to maximize the total flux through the junction.

One problem with the approach of [2] is that explicitly constructing the fluxes
requires the solution of a Linear Programming problem on the incoming fluxes. This
is done in [2] for the purposes of constructing a Riemann solver at the junction
and in [7] for the purposes of obtaining numerical fluxes at the junction in order to
formulate the DG scheme. Closed-form solutions are provided in [7] in the special
cases n = 1, m = 2 and n = 2, m = 1 and n = 2, m = 2.

Now, we will study the case with one incoming and two outgoing roads. This
example is important for us, because it inspires us in the construction of α-inside
Godunov flux (see Section 3.2). We use the method described in [7, Section 2.2] with
our notation. In this case, we have distribution coefficient α2,1 = α and α3,1 = 1−α.
Then we calculate maximum possible inflow to the junction from incoming road as

H1(t) = min

{
fin(ρ

(L)
1 (b1, t)),

fout(ρ
(R)
2 (a2, t))

α
,
fout(ρ

(R)
3 (a3, t))

1− α

}
. (6)

The outflow from the junction to outgoing road is calculated as H1 multiplied by the
distribution coefficient, i.e. H2(t) = αH1(t) and H3(t) = (1− α)H1(t).

Remark. We can notice, that traffic congestion on one of the outgoing road influences
the traffic flow to the second outgoing road. For example, when fout(ρ

(R)
2 ) = 0, then

H1 = H2 = H3 = 0.

3. Numerical fluxes at junctions

We take a different approach from that of [7] and [2]. Our approach has the
advantage that it is simple and explicitly constructed for all junction types. We
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shall prove the basic properties of this construction and discuss the differences with
the approach of [7] and [2].

In our previous paper [6], we used Lax-Friedrichs numerical flux. When we cal-
culate traffic distribution error, it was nearly impossible to obtain distribution error
equal to zero. This phenomenon is hard to justify in cases with low traffic. That is
the reason, why we choose Godunov numerical flux. As we show later in Section 3.3,
distribution error makes much more sense and is more justified.

3.1. α-outside Godunov flux

At the junction, we consider an incoming road Ii and an outgoing road Ij. If
these roads were the only roads at the junction, i.e. if they were directly con-
nected to each other, the (numerical) flux of traffic from Ii to Ij would simply be

H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
, where ρhi and ρhj are the DG solutions on Ii and Ij, re-

spectively. From the traffic distribution matrix, we know the ratios of the traffic flow
distribution to the outgoing roads. Thus, we take the numerical flux Hj(t) at the
left point of the outgoing road Ij, i.e. at the junction, at time t as

Hj(t) :=
n∑
i=1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
, (7)

for j = n+1, . . . , n+m. The numerical flux Hj(t) can be viewed as the DG analogue

of taking the combined traffic outflow
∑n

i=1 αj,iQ
(
ρ

(L)
i (bi, t)

)
from all incoming roads

and prescribing it as the inflow of traffic to the road Ij.
Similarly, we take the numerical flux Hi(t) at the right point of the incoming

road Ii, i.e. at the junction, at time t as

Hi(t) :=
n+m∑
j=n+1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
, (8)

for i = 1, . . . , n. Again, this can be viewed as an approximation of the traffic flow∑n+m
j=n+1 αj,iQ

(
ρ

(R)
j (aj, t)

)
being prescribed as the outflow of traffic from Ii.

3.2. α-inside Godunov flux

We find the main difference between maximum possible traffic flow and α-outside
Godunov flux is in the position of the distribution coefficient, cf. (6) and (8). That is
the reason, why we decide to insert distribution coefficient into Godunov numerical
flux.

Definition 2 (Godunov numerical flux with parameter). Let Greenshields traffic
flow f has global maximum at u∗. Then Godunov numerical flux with parameter is
defined as

HGod
(
u(L), u(R), α

)
= min

{
αfin(u(L)), fout(u

(R))
}
, (9)

where fin(u(L)) and fout(u
(R)) are defined as in Definition 1.
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The reason, why we put distribution coefficient in front of the fin term, is the
representation of the real supply from the incoming road. Only αj,ifin(ρ

(L)
i (bi, t))

cars per time want to go from incoming road i to outgoing road j. In case of α = 1,
the flux (9) is equivalent to the alternative form of Godunov numerical flux (5). For
simplicity, by H(· , · , · ) we mean the Godunov numerical flux with parameter in the
rest of this paper.

Now we are able to take numerical flux with α-inside Hj(t) at the left point of
the outgoing road Ij at time t as

Hj(t) :=
n∑
i=1

H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t), αj,i

)
, (10)

for j = n + 1, . . . , n + m. Similarly, we take the numerical flux with α-inside Hi(t)
at the right point of the incoming road Ii at time t as

Hi(t) :=
n+m∑
j=n+1

H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t), αj,i

)
, (11)

for i = 1, . . . , n.

3.3. Properties

It can be shown, that our choice of numerical fluxes conserves the number of
cars at junctions, similarly as in (3), see Theorem 1. However, this choice does not
distribute the traffic according to the traffic–distribution matrix (2) exactly, only
approximately, see Theorem 2.

Firstly, we show the discrete version of Rankine–Hugoniot condition.

Theorem 1 (Discrete Rankine–Hugoniot condition). The numerical flux at junc-
tion J satisfies the discrete version of the Rankine–Hugoniot condition (3):

n∑
i=1

Hi(t) =
n+m∑
j=n+1

Hj(t) (12)

whether

a) we use (7) and (8) with α-outside or

b) we use (10) and (11) with α-inside.

Proof. From the definition of Hi and Hj with α-outside, we immediately obtain:

n∑
i=1

Hi(t) =
n∑
i=1

n+m∑
j=n+1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
=

n+m∑
j=n+1

n∑
i=1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
=

n+m∑
j=n+1

Hj(t).
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Proof of the case b) is similar with the corresponding definition of Hi and Hj with
α-inside.

The second theorem is important for identifying the difference between maximum
possible traffic flow described in Section 2 and our numerical fluxes at junction.

Theorem 2 (Traffic distribution error). The numerical flux at junction satisfies

Hj(t) =
n∑
i=1

αj,iHi(t) + Ej(t) (13)

for all j = n+ 1, . . . , n+m, where

a) in case of (7) and (8) with α-outside, the error term is

Ej(t) =
n∑
i=1

n+m∑
l=n+1
l 6=j

αj,iαl,i
(
Hi,j(t)−Hi,l(t)

)
, (14)

where Hi,j(t) := H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
.

b) in case of (10) and (11) with α-inside, the error term is

Ej(t) =
n∑
i=1

n+m∑
l=n+1
l 6=j

(αl,iHi,j(t)− αj,iHi,l(t)) , (15)

where Hi,j(t) := H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t), αj,i

)
.

Proof. We prove only the case a). By definition (7),

Hj(t) =
n∑
i=1

αj,iHi,j(t) =
n∑
i=1

αj,iHi(t) +
n∑
i=1

αj,i
(
Hi,j(t)−Hi(t)

)
︸ ︷︷ ︸

Ej(t)

,

where Ej(t) is the error term which we will show has the form (14): by definition (8),
we have

Ej(t) =
n∑
i=1

αj,i

(
Hi,j(t)−

n+m∑
l=n+1

αl,iHi,l(t)
)

=
n∑
i=1

αj,i

n+m∑
l=n+1

αl,i
(
Hi,j(t)−Hi,l(t)

)
=

n∑
i=1

n+m∑
l=n+1
l 6=j

αj,iαl,i
(
Hi,j(t)−Hi,l(t)

)
,

since
∑n+m

l=n+1 αl,i = 1. The proof of case b) is similar.
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An artifact of our model is that sometimes we do not satisfy the traffic–distribution
coefficients exactly, cf. (13) and assumption 2) of maximum possible traffic flow (see
Section 2). This corresponds to the real situation where some cars decide to use
another road instead of staying in the traffic jam.

For the comparison of maximum possible traffic flow described by (6) and our
approach, we take a junction with one incoming and two outgoing roads. As it
was mentioned in Remark 2, if there is a traffic jam in one of the outgoing roads,
the maximum possible flow through the junction is 0, thus the whole junction is
blocked by a traffic jam in one of the outgoing roads. On the other hand, in our
approach the junction is not blocked by a traffic jam on one of the outgoing roads
and the cars can still go into the second outgoing road according to the traffic–
distribution coefficients. So our choice of numerical fluxes corresponds to modelling
turning lanes, which allow the cars to separate before the junction according to their
preferred turning direction. Since macroscopic models are intended for long (multi–
lane) roads with huge numbers of cars, our model makes sense in this situation. The
original approach from [2, 7] works for one–lane roads, where splitting of the traffic
according to preference is not possible.

Another difference is that we can use all varieties of traffic lights. The model
of [2, 7] can use only the so-called full green lights. Our approach gives us an
opportunity to change the lights for each direction separately.

4. Numerical results

We consider a simple network with one incoming road (Road 1) and two outgoing
roads (Road 2 and Road 3). The network will be closed at their endpoints (a1, b2

and b3). Thus, we can check the total number of cars, because we have neither inflow
nor outflow. We choose α2,1 = 0.75 and α3,1 = 0.25. The length of all roads is 1.
As we mention above, we use the combination of the explicit Euler method (step
size τ = 10−4) and DG method (number of elements N = 150 on each road). We
calculate the piecewise linear approximations of solutions and we use two Gaussian
quadrature points in each element. We use Greenshields model with vmax = 1 and
ρmax = 1. We have initial conditions

ρ0,1(x) =

{
0,

0.8,
ρ0,2(x) =

{
0.8,

0,
ρ0,3(x) =

{
0, x ∈ [0, 0.5],

0, x ∈ (0.5, 1],

cf. Figure 1a. There is 0.4 cars on Road 1. These cars are distributed into Road 2
(it has 0.4 cars already) and Road 3 by distribution coefficients. At the end, we can
expect 0.7 cars on Road 2 and 0.1 cars on Road 3.

We can see the results in Figure 1. Maximum possible flow is in the left column,
the numerical flux with α-outside is in the middle column and with α-inside is in the
right column. If we compare inflow to the Road 3 in Figure 1b between Maximum
possible flow and our numerical flux (doesn’t depend on the position of α), we can
see that our numerical flux allows more inflow. If we look at inflow to the Road 2, see
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Figures 1b and 1c, we observe similar inflow of maximum possible flow and numerical
flux with α-inside. However, the inflow in case of numerical flux with α-outside is
slightly smaller. In general, the numerical flux with α-inside is the combination of
the two other approaches. It allows as much as possible cars go to the Road 2 like
the maximum possible flow do. On the other hand, some drivers change their minds
and choose Road 3 instead of Road 2 due to the congestion on Road 2, same as in
the case of numerical flux with α-outside.

The final results are in Figure 1d. Maximum possible traffic flow has 0.7 cars on
Road 2 and 0.1 on Road 3. Numerical flux with α-outside has 0.6936 cars on Road 2
and 0.1064 on Road 3. Numerical flux with α-inside has 0.6938 cars on Road 2
and 0.1062 on Road 3.
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(a) t = 0.
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(d) t = 3.

Figure 1: Comparison of network with Road 1, Road 2 and Road 3
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We choose this congested example due to the demonstration of distribution error
from Theorem 2. In the non–congested cases, the traffic distribution error is zero.

5. Conclusion

We have demonstrated the numerical solution of macroscopic traffic flow models
using the discontinuous Galerkin method. For traffic networks, we construct special
numerical fluxes at the junctions. The use of DG methods on networks is not stan-
dard. We have described the differences between our approach and the paper [7] by
Čanić, Piccoli, Qiu and Ren, where the maximum possible flow at the junction is
used.
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