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Abstract: This paper focuses on mathematical modeling and finite element
simulation of fluid-structure interaction problems. A simplified problem of two-
dimensional incompressible fluid flow interacting with a rigid structure, whose
motion is described with one degree of freedom, is considered. The problem
is mathematically described and numerically approximated using the finite
element method. Two possibilities, namely Taylor-Hood and Scott-Vogelius
elements are presented and implemented. Finally, numerical results of the flow
around the cylinder are shown and compared with the reference data.
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1. Introduction

The numerical approximations of the fluid-structure interaction play an impor-
tant role in many areas of science and engineering, such as the flutter of aircraft
wings, flow around wind turbine blades and hydrodynamics compressors. Although
in this contribution simpler case of incompressible fluid flow is considered, there are
a lot of numerical difficulties to be addressed as treatment of the incompressibility
constraint, treatment of the nonlinear convective term, dominating convective term,
etc., see e.g. [13], [12], [2]. Moreover, the time change of the computational fluid
domain needs to be included. Here we use the well-known arbitrary Lagrangian-
Eulerian (ALE) method due to it straightforward manner.

This paper focuses on the finite element method approximation of the Navier-
Stokes equations. There are many available strategies, see e.g. [7], [6], but we will
further deal only with finite elements which satisfy the Babuška-Brezzi (BB) inf-
sup condition. The fulfillment of BB condition guarantees stability of the numerical
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scheme, for an overview of such elements, see [7]. Here, we compare two of them. The
first one is the well-known Taylor-Hood (TH) finite element (continuous piecewise
quadratic velocities and continuous piecewise linear pressures) which satisfies the inf-
sup condition only discretely. The second element is the Scott-Vogelius (SV) finite
element, i.e. continuous piecewise quadratic velocities and discontinuous piecewise
linear pressures, see [3], [6]. In order to satisfy the BB condition, the finite ele-
ment (FE) approximation space is constructed over a barycentric refinement of an
admissible triangulation, see [4]. By choosing this element, the divergence constraint
on each element of the mesh is strongly guaranteed, see [6]. This provides us better
theoretical convergence of the method.

This paper presents the numerical realization and comparison of numerical results
for both TH and SV finite elements by using an in-house solver written in C language.
The benchmark problem of nonstationary flow around the vibrating cylinder is chosen
and the numerical results are compared with the reference data [1].

2. Governing equation

The mathematical model that describes the fluid-structure interaction consists
of movement of the rigid structure (i.e. described by ordinary differential equations)
and incompressible Navier-Stokes equations in the Eulerian-Lagrangian (ALE) for-
mulation.

2.1. Incompressible fluid flow

Let us assume a computation fluid domain Ωt ⊂ R2 to be bounded and polygonal
at any time t ∈ (0, T ). Furthermore, its boundary ∂Ω is assumed to be continuous
Lipschitz boundary formed of three disjoint parts ΓD, ΓO and ΓWt (i.e. ∂Ω = ΓD ∪
ΓO ∪ ΓWt). Flow in the domain Ωt is described by incompressible Navier-Stokes
equations in the ALE formulation. The ALE method is based on ALE mapping At
which maps the reference domain configuration Ω0 into the actual domain Ωt

At : Ωref → Ωt, X 7→ x(X, t) = At(X), x ∈ Ωref , t ∈ (0, T ).

The ALE mapping is chosen in order to map reference position of the interface ΓW0

into ΓWt whose position is defined by the motion of the cylinder, and the positions
of boundaries ΓD and ΓO are static and they are not dependent on time, for more
information see [13].

The Navier-Stokes equations in the ALE formulation for unknown velocity u(x, t) :
Ωt → R2 with components u = (u, v)T and the kinematic pressure p(x, t) : Ωt → R
read

DA

Dt
u + [(u−w) ·∇]u− ν∆u + ∇p = 0 in Ωt, t ∈ (0, T ], (1)

∇ · u = 0 in Ωt, t ∈ (0, T ],
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where DA

Dt
is the ALE derivative, w = ∂At/∂t is the domain velocity, see [13] and ν

means the kinematic viscosity. We consider the following boundary conditions

u(x, t) = g(x, t) on ΓD × (0, T ], (2)

u(x, t) = w(x, t) on ΓWt , t ∈ (0, T ], (3)

−(p− pref)n + ν
∂u

∂n
= 0 on ΓO × (0, T ], (4)

where n is the unit outward normal vector to ∂Ω and pref is a reference pressure value
at the outlet. Condition (2) is used at the inlet. Furthermore, on the surface of the
cylinder, the continuity of velocities is prescribed between the cylinder motion and
the airflow. At the outlet, there is the condition (4) which is the so-called do-nothing
condition, for more information see [5]. Furthermore, the equations are supplied by
an initial condition

u(x, 0) = u0(x) in Ω0.

2.2. Motion of cylinder

We consider the motion of the rigid cylinder with one degree of freedom. This
means that the cylinder can move only in vertical directions, as in [1]. Its motion is
described using the nondimensionless displacement Y governed by

Ÿ +

(
4πξ

Ur

)
Ẏ +

(
4π2

U2
r

)
Y =

Cl
2M∗ , (5)

where Ÿ , Ẏ are the vertical acceleration and velocity of the rigid cylinder, ξ means
the structural damping ratio, Ur = U∞

fD
represents the reduced velocity of the cylinder

(where f denotes the natural frequency of the cylinder) and M∗ is the reduced mass
of the rigid cylinder (M∗ = m

ρD2 ). The lift coefficient Cl is computed by

Cl =
2

ρU2
∞bD

Fl,

where b is the depth of the cylinder, U∞ means free velocity, ρ expresses the density
and Fl is the lift force acting on the cylinder of diameter D.

3. Numerical approximation of the Navier-Stokes equations

In order to approximate the problem (1), we start with time discretization. Here,
the equidistant division tn = n∆t of the time interval (0, T ) is employed with a con-
stant time step ∆t > 0. Further, the velocity approximations at time step tn ∈ (0, T ]
are denoted by

un(x) ≈ u(x, tn) for x ∈ Ωtn ,

and similarly the pressure approximations are denoted as

pn(x) ≈ p(x, tn) for x ∈ Ωtn .
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The domain velocity is at the time instant tn+1 approximated by wn+1(x) ≈ w(x, tn+1).
The ALE derivative is approximated by implicit Euler (BDF) and we get

un+1 − ũn

∆t
+ ((un+1 −wn+1) ·∇)un+1 − ν∆un+1 + ∇pn+1 = 0, (6)

∇ · un+1 = 0,

where by ũn we denote the velocity from time level tn defined in Ωtn transformed
to Ωtn+1 , that is ũi := ui ◦ Ati ◦ A−1

tn+1
. Equations (6) are equipped with boundary

conditions (2–4).

3.1. Space discretization

For the discretization of problem (6) by using the finite element method, a weak
formulation of problem (6) is introduced. First, assuming the fixed time instant tn+1,
the simplified notation u := un+1, w := wn+1, p := pn+1 and Ω := Ωtn+1 are
considered. Then we define the velocity test space V and the pressure test space Q as

V =
{
ϕ ∈ H1(Ω) : ϕ(x) = 0 ∀x ∈ ΓD ∪ ΓW

}
,

Q = L2(Ω),

where H1(Ω) = [H1(Ω)]2 is the vector Sobolev space and L2(Ω) is the Lebesgue
space, see [10].

Now, we take a function v ∈ V , multiply first of equations (6) and take an
arbitrary q ∈ Q, multiply second of equations (6) by it, integrate over the domain Ω
and apply Green’s theorem to the pressure gradient (∇p) and the viscous term
(−ν∆u). Further, the boundary conditions are used. Then the weak formulation
reads: Find u ∈ g + V and p ∈ Q such that the equations

1

∆t
(u,v)Ω + ν(∇u,∇v)Ωc(u−w,u,v)− (p,∇ · v)Ω =

1

∆t
(ũn,v)Ω, (7)

(∇ · u, q)Ω = 0, (8)

hold for any v ∈ V and q ∈ Q. In these equations, (u,v)Ω =
∫

Ω
u · vdx means

the scalar product in L2(Ω) and c(u,v, z) denotes the trilinear form. This form is
defined by c(u,v, z) =

∫
Ω

((u ·∇)v) ·zdx for any u,v, z ∈ V , for more details see [7].
For the reason of using the finite element method, we define an admissible tri-

angulation τh of the domain Ω, see [4]. Now, we assume that the finite element
subspaces Vh ⊂ V and Qh ⊂ Q are approximations of the spaces V and Q defined
over the triangulation τh. These spaces are formed by piecewise polynomial func-
tions. The discrete problem of problem (7) is as follows: Find uh ∈ gh + Vh and
ph ∈ Qh such that equations

1

∆t
(uh,vh)Ω + ν(∇uh,∇vh)Ω + c(uh −wh,uh,vh)− (ph,∇ · vh)Ω =

1

∆t
(ũnh,vh)Ω,

(∇ · uh, qh)Ω = 0, (9)
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hold for any vh ∈ Vh and qh ∈ Qh. To guarantee stability of the scheme, the
couple Vh, Qh should satisfy the BB condition, see [7]. In this paper, the well-
known Taylor-Hood element and Scott-Vogelius element are used.

Taylor-Hood (P2/P1) finite element uses quadratic velocities and linear pressures,
i.e. the spaces are defined by

Vh =
{
ϕ ∈ C(Ω) : (ϕ

∣∣
K
∈ P2(K), ∀K ∈ τh)

}
∩ V ,

Qh =
{
ϕ ∈ C(Ω) : (ϕ

∣∣
K
∈ P1(K),∀K ∈ τh)

}
. (10)

Velocity and pressure functions are continuous in the domain Ω, however, the element
satisfies the continuity equation only discretely. This is the reason why we use the
Scott-Vogelius P2/P

disc
1 element, which strongly guarantees divergence-free velocity

on each element, see [3].
It has the same space Vh (10) for velocity as TH element, whereas for the pres-

sure ph the linear but discontinuous functions are used, i.e.

Qdisc
h =

{
ϕ : Ω→ R : (ϕ

∣∣
K
∈ P1(K), ∀K ∈ τh)

}
.

In order to satisfy the BB condition, element is constructed over the barycentric
refined mesh created from the given regular mesh, see [3]. For both cases the velocity
and the pressure can be solved together as both couples satisfy BB condition.

So, the base Φ1, . . . ,ΦNu of the space Vh, where Nu = dim(Vh) is chosen. In
addition, a base of the pressure space Qh is defined by θ1, . . . , θNp ∈ Qh, where
Np = dim(Qh). The approximation of the velocity uh can be expressed as a combi-
nation of the basis functions of the space Vh

uh =
Nu∑
j=1

αjΦj. (11)

and approximation of pressure ph as a linear combination of the base of space Qh

ph =

Np∑
j=1

βjθj. (12)

Equations (11) and (12) are now used in equations (9). Also, the test functions vh
and qh in equation (9) are expressed as vh = Φi, for i = 1, . . . , Nu and qh = θi, for
i = 1, . . . , Np. Then the system of nonlinear equations is obtained(

1
∆t

M + A(α) B
−BT 0

)(
α
β

)
=

(
f + 1

∆t
Mũnh

0

)
, (13)

where M denotes the mass matrix (which depends on the mesh, so it is different
in each time step due to ALE formulation), A(α) represents discretization of the
nonlinear convective and the viscous terms, B corresponds to the discrete gradient
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and BT is the discrete divergence operator. Equations (13) is a system of nonlinear
equations which is further to be linearized before it can be solved, see e.g. [9]. In
this article the linearization is taken from previous time instant

c(un+1
h ,un+1

h ,vn+1
h ) ≈ c(unh,u

n+1
h ,vn+1

h ).

Due to this linearization, there is a restriction on the choice of the time step, for more
information see [9]. The linearized system of equations can be solved by some itera-
tive methods e.g. GMRES, see [8] or a direct solver such as UMFPACK, MUMPS,
MKL, see [11].

4. Numerical results

The benchmark problem of the flow around a movable cylinder [1] is regarded.
The numerical results obtained by TH and SV elements are compared to each other
and to the reference data. For the numerical solution of the cylinder motion given
by equation (5), the Runge-Kutta method of 4th order was used.

The domain Ωt is shown in Fig. 1 in its initial state. The cylinder has a radius
r = 0.5 and its center is located at [x, y] = [19, 20]. The Dirichlet boundary condition
is prescribed (g = (1, 0)) at the inlet ΓD,1 and at the wall ΓD,2 zero velocity is
given. At the cylinder surface ΓWt is used Dirichlet boundary condition of the form
u = w. The problem is solved on meshes which are different for each considered
finite element. Due to the discontinuity of the SV element, the number of unknowns
is much higher than for the TH element. In order to compare both elements, meshes
providing a similar number of unknowns are used. The first mesh A for TH leads
to solving a system with 89519 unknowns, whereas the use of second mesh B for the
SV element results to the system of 90798 unknowns for the SV element.

40D Γ ΓD,2
OD,1

Γ
20D

w

60D
19D

D

Γ

t

Figure 1: Fluid domain Ωref of the considered benchmark of flow around a movable
cylinder, represented by interface ΓWt . Boundary ΓD consists of two parts ΓD,1 and
ΓD,2, where ΓD,1 represents inlet and ΓD,2 represents walls.
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Figure 2: Velocity magnitude ||u||2 (in the upper part) and the pressure p (in the
lower part), for Re = 150 and Ur = 3 obtained by TH element.

The configuration of the problem is characterized by Reynolds number

Re =
U∞D

ν
, (14)

where the free stream velocity is U∞ = 1 and ν expresses the kinematic viscosity. This
setup provides us the same Re = 150 as the reference data [1]. The computations
were done for several cases of different values of natural frequencies of the cylinder
(realized by different values of Ur), in all cases the zero damping ratio is considered
(ξ = 0) and reduced mass as M∗ = 2, as in [1].

In Fig. 2, the velocity magnitude and pressure field is shown. The Von Karman
vortex street is created behind the cylinder and the oscillations of the aerodynamic
forces appear leading to the oscillations of the cylinder. For this case of Ur = 3, the
SV and TH results are almost identical, see Fig. 3a). Further, it can be observed that
if the frequency of Von Karman vortex street differs from the natural frequency of the
cylinder, there is no resonance. On the other hand for the vortex shadding frequency
close to the natural frequency of the cylinder the amplitudes of coefficients Cl, Cd and
the amplitude of cylinder vibration are six times higher than for the previous case.
Moreover, the peaks of the amplitudes occur in the same time. This phenomenon
is called resonance. The resuts obtained by the SV element has slightly higher
amplitudes of the displacement than the TH element.

The dependence of amplitude of cylinder oscilation on reduced velocity Ur ∈ [3, 8]
are shown in Fig. 4. The interval where we can see the resonance is the same as in
the reference data [1] for both FE discretizations (i.e. Ur ∈ [4, 7]). The maximum
amplitude is obtained for the case of Ur = 4. Then the amplitude decreases with
increasing Ur, and finally for the case Ur = 8 there is no resonance.
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Figure 3: Comparison of lift CL coefficient (line with empty circle), drag CD coef-
ficient (line with full square) and position Y/D (line with empty square) over time
solved by TH element (full line) and SV element (dashed line) for a) Reynolds number
Re = 150, Ur = 3 and b) Reynolds number Re = 150, Ur = 4.

5. Conclusion

In this article, the numerical approximation of the interaction of incompressible
fluid flow with a movable rigid cylinder is performed. For the fluid flow description
the incompressible Navier-Stokes equations in the ALE formulation is used and non-
dimensional equation of cylinder motion is utilized. The coupled variables approach
is chosen where the Taylor-Hood P2/P1 element and the Scott-Vogelius P2/P

disc
1

element are compared on the benchmark of movable cylinder in cross-flow, see [1].

The obtained numerical results agree well with the reference data, especially in
the resonance occurrence for the considered interval of cylinder reduced velocity. As
the maximum amplitudes obtained by the TH and SV elements are practically the
same, it shows that the SV element performs well in this case in full agreement with
the TH element, which can be considered here as the reference choice.

Although the SV element theoretically provides better results for the considered
benchmark test, with similar number of unknowns the TH element has comparable
results. The further advantages of the SV element is expected for higher Reynolds
numbers, on what we will focus in our future work.
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Figure 4: Comparison of maximum amplitudes for different reduced velocities Ur
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