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Abstract: The contribution deals with the remeshing procedure between two
computational finite element meshes. The remeshing represented by the in-
terpolation of an approximate solution onto a new mesh is needed in many
applications like e.g. in aeroacoustics, here we are particularly interested in
the numerical flow simulation of a gradual channel collapse connected with
a severe deterioration of the computational mesh quality.
Since the classical Lagrangian projection from one mesh to another is a dissi-
pative method not respecting conservation laws, a conservative interpolation
method introducing constraints is described. The constraints have form of
Lagrange multipliers enforcing conservation of desired flow quantities, like e.g.
total fluid mass, flow kinetic energy or flow potential energy. Then the in-
terpolation problem turns into an error minimization problem, such that the
resulting quantities of proposed interpolation satisfy these physical properties
while staying as close as possible to the results of Lagrangian interpolation in
the L2 norm. The proposed interpolation scheme does not impose any restric-
tions on mesh generation process and it has a relatively low computational
cost. The implementation details are discussed and test cases are shown.
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1. Introduction

Interpolation is one of the basic mathematical problems and therefore there are
plenty of available methods. Here we consider an interpolation procedure between
two 2D computational finite element meshes involved during the remeshing step.
This is a typical task in engineering simulations of cutting, forging, casting, welding,
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(see e.g. [1]), where material is processed and reshaped, or in multiphysics simula-
tions like geophysics, aeroacoustics or fluid-structure interaction (FSI), see e.g. [7].
Particularly, motivation for this paper is provided by the FSI problem of flow-induced
vibrations of vocal folds studied in [9, 8]. The implemented ALE method during large
vibrations was not able to provide a computational flow mesh of sufficient quality
and thus the remeshing is needed, see [9].

As the base of the available interpolation methods the scattered data interpo-
lations can be regarded. Such approaches are realized in many packages as e.g.
Matlab, SciPy. Another possibility available also for higher dimensional cases and
unstructed grids is the use of the radial basis function approach, see e.g. [6]. Fur-
ther, there are methods specially suited for ALE methods, see e.g. [4]. However,
they are designed for meshes with the same topology based on the computation of
the local fluxes. Another approach is represented by so called supermesh approach,
see e.g. [2], where a superior mesh given by mesh intersections is constructed what
results in a high computational cost albeit it guarantees a L2 accurate projection.
More computationally favourable approach of [1] replaces supermesh approach used
together with Galerkin projection by an approximate evaluation of involved integrals,
where a relative lack of precise intersection information should be compensated by
increase of number of quadrature points. Nevertheless the most suitable method for
our purpose is the idea of [5] to combine a cheap interpolation with supplementary
restrictions typically chosen such that conservation of quantities from the physical
nature of investigated problem is required. Let us call this approach as interpolation
with restrictions or Codina & Pont interpolation (CPI). This method has a great
advantage of satisfying physical laws (in global meaning) what is a typical disadvan-
tage of other methods which results do not respect physical laws. Disadvantage is
that restrictions, i.e. conservation of selected quantities, are not valid locally.

Thus we will further deal only with the interpolation with restrictions, see [5],
and we will focus on behaviour of this method near domain boundaries. Our aim
is to improve CPI by using further information from boundaries, i.e. we assume
that new target FE mesh occupies the same space as the old donor FE mesh and
further that the vertex locations of the old and the new mesh on the mesh boundaries
are identical. This assumption is motivated by implementation of our in-house FSI
solver, [9, 8]. Then two methods of boundaries values treatment are compared and
the interpolation error for case of small highly distorted domain contrary to case of
larger domain with smaller distortion is calculated (motivated by different settings
during construction of ALE mapping).

The structure of the paper is following. First the interpolation with restrictions
is described and applied for the case of fluid flow. Further the implementaion details
are presented. Finally the errors of different interpolation settings are analyzed and
summarized in conclusion.
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2. Interpolation with restrictions

In the whole paper we consider two triangulations T o and T n of the same bounded
physical domain Ω of R2, see Figure 1, which moreover satisfy that their boundary
vertices are identical. Here, T o is called the old (donor) mesh and T n is the new
(target) mesh. By Vo

h and Vn
h the corresponding FE spaces constructed over the

triangulations T o and T n are denoted, respectively. Further, we denote a FE function
from FE space Vo

h constructed over the FE mesh T o by uo
h, i.e. uo

h(x) =
∑

j U
o
j ψ

o
j (x),

where ψo
j (x) are basis functions of the FE space Vo

h and Uo
j are corresponding nodal

values. Similarly, a function from Vn
h can be written as un

h(x) =
∑

k U
n
k ψ

n
k(x) ∈ Vn

h .

Figure 1: Illustration of interpolation from old to new FE mesh, [5].

2.1. Key idea of the method

The general procedure of interpolation with restrictions, see [5], is based on two
steps. During the first step a function uo

h ∈ Vo
h defined on the old mesh T o is

projected on the new mesh. The commonly used projections are either Lagrange
or Galerkin projections, [5]. The first one, the Lagrange projection, is based on the
evaluation of the values Un

A given by

Un
A = un

h(Xn
A) =

∑
j

Uo
j ψ

o
j (Xn

A), (1)

where Xn
A denotes the coordinates of the point associated with the nodal value Un

A.
In the second (Galerkin) case, the L2 projection is applied leading to the integral
identity ∫

Ω

un
h ψ

n dx =

∫
Ω

uo
h ψ

n dx ∀ψn ∈ Vn
h . (2)

In order to precisely fulfill (2) one needs to compute elements intersections. Such
a procedure can be computationally demanding and requires additional techniques
to be applied as e.g. supermesh approach used in [2]. High computational costs
of the Galerkin approach can be reportedly reduced by using numerical quadrature
of high orders, see [1]. As this phenomenon was not observed for the considered
numerical tests, the use of the Lagrangian interpolation is preferred.
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As one of the biggest interpolation problems is the violation of physical nature
of interpolated variable, see e.g. [4], in the second step appropriate restrictions are
applied as a correction step of the projection. The idea of imposing additional re-
strictions with the help of Lagrangian multipliers is a key how to conserve quantities
of the interest (in global sense). The presented two steps of the CPI algorithm is gen-
eral and it can be potentially used in many different scenarios, [5]. The disadvantage
of CPI is that local conservation of desired quantities is not guaranteed.

2.2. Application to fluid flow problem

The previous general concept is now applied for incompressible fluid flow problem
with the constant density ρ. In this context we will use following notation: vo ∈
Vo

h = Vo
h × Vo

h for the given velocity defined on the old mesh T o, ṽn = Πhv
o ∈ Vn

h

for the Lagrangian projection of vo on the new mesh T n and vn for the sought
interpolation with restrictions on the target mesh T n. The interpolation procedure
is now described.

Based on the nature of the problem we impose conservation of the following
quantities: 1) mass (through the conservation of the velocity divergence), 2) linear
momenta and 3) kinetic energy. This leads to the following four restrictions:

1)

∫
Ω

∇ · vo dx =

∫
Ω

∇ · vn dx, 2)

∫
Ω

ρvo · ei dx =

∫
Ω

ρvn · ei dx, i = {1, 2},

3)
1

2

∫
Ω

ρ|vo|2 dx =
1

2

∫
Ω

ρ|vn|2 dx, (3)

where vectors ei denotes standard basis. In what follows we set ρ = 1.

Then the problem of interpolation with restrictions reads: For the given velocity
vo ∈ Vo

h find

[vn,λ] = arg inf
un∈Vn

h

sup
µ∈R4

L(un,µ), (4)

where µ are Lagrangian multipliers and L(un,µ) is Lagrangian function defined as

L(un,µ) =
1

2

∫
Ω

(∑
k

(Un
k − Ũn

k )ψn
k

)2

dx− µ1

∫
Ω

∇ ·

(∑
k

Un
k ψ

n
k −

∑
j

Uo
j ψ

o
j

)
dx

−
2∑

l=1

µl

∫
Ω

(∑
k

Un
k ψ

n
k −

∑
j

Uo
j ψ

o
j

)
· el dx

− µ4

2

∫
Ω

(∑
k

Un
k ψ

n
k

)2

−

(∑
j

Uo
j ψ

o
j

)2

dx. (5)
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The differentiation of the function L with respect to all unknowns Un
i yields∫

Ω

∑
k

Un
kψ

n
kψ

n
i dx− µ1

∫
Ω

∇ ·ψn
i dx−

2∑
l=1

µl

∫
Ω

ψn
i dx

− µ4

∫
Ω

∑
k

Un
kψ

n
kψ

n
i dx =

∫
Ω

∑
k

Ũn
kψ

n
kψ

n
i dx, (6)

and by the differentiation of L with respect to µi together with the condition given
by Eq. (4) we get∫

Ω

∇ ·

(∑
k

Un
k ψ

n
k

)
dx =

∫
Ω

∇ ·

(∑
j

Uo
j ψ

o
j

)
dx,

∫
Ω

(∑
k

Un
k ψ

n
k · el

)
dx =

∫
Ω

(∑
j

Uo
j ψ

o
j · el

)
dx, l = {1, 2},

∫
Ω

(∑
k

Un
k ψ

n
k

)2

dx =

∫
Ω

(∑
j

Uo
j ψ

o
j

)2

dx. (7)

Previous equations written in the matrix notation reads
Mn −R1 −R2 −R3 −MnUn

RT
1 0 0 0 0

RT
2 0 0 0 0

RT
3 0 0 0 0

(MnUn)T 0 0 0 0




Un

µ1

µ2

µ3

µ4

 =


MnŨn

Ro
1U

o

Ro
2U

o

Ro
3U

o

(Uo)T MoUo

 , (8)

where Mn denotes mass matrix with components mn
ij =

∫
Ω
ψn

jψ
n
i dx, Mo is the mass

matrix defined on the old mesh T o and vectors R1, R2, R3 are given componentwise by

(R1)i =

∫
Ω

∇ ·ψn
i dx, (R2)i =

∫
Ω

ψn
i · e1 dx, (R3)i =

∫
Ω

ψn
i · e2 dx. (9)

Vectors Ro
i , i ∈ {1, 2, 3} are defined similarly on the old mesh. Since problem (8) is

nonlinear the Newton-Rhapson method is used for its numerical solution, see [5].

Pressure. The same concept is also used for the interpolation of the pressure
obtained by the solution of the Navier-Stokes equations. In this case only the con-
servation of its L2 norm is considered.

3. Implementation

Although problem (8) has a saddle point structure the most computationally
demanding part is the computation of the Lagrange projection. It is due to the

285



Figure 2: Illustration of Lagrange interpolation from the old FE mesh T o (blue) to
the new FE mesh T n (green) with its vertices plotted in black colour. The filled
blue triangles highlight the area, from which the final value in vertices A and B are
computed.

necessity to find locations of the vertices Xn
k from T n in terms of the old mesh T o in

order to evaluate ψo(Xn
k ) in Eq. (1). The way towards it is to determine at which

triangles from T o points Xn
k lie and to find their barycentric coordinates inside these

triangles, see Fig. 2. Then evaluation of Eq. (1) is straightforward.
There are more possible methods how to find such locations. In the work of [5]

the octree parallel algorithm was employed, another possibility offers advancing front
techniques, see e.g. [3]. Nevertheless here we adopted the procedure based on the
computation of barycentric coordinates as it is implemented in software Octave. The
algorithm is following: First prepare the list X of vertices Xn

k of T n. Then in a loop
over all triangles T o

i ∈ T o determine which points from the list X lie in T o
i :

1. Compute the barycentric coordinates αj, βj, γj for each Xn
j ∈ X by solving 3x3

matrix system with M right hand vectors, where M is the length of list X .

2. If 0 ≤ αj, βj, γj ≤ 1 and αj +βj + γj = 1 then point Xn
j belongs to triangle T o

i .
Save its barycentric coordinates and shorten list X .

Complexity of this approach is almost quadratic, on the other hand this procedure
can be well parallelized. Further, a division of list X in short sub-list based e.g. on
conditions x ≷ x0, y ≷ 0 can speed up the algorithm.

4. Numerical simulations

Two tests of the interpolation with restrictions are performed.

4.1. First interpolation test – question of boundary values

The modified interpolation test of [1, 5] shows how an additional information from
the boundary can improve the interpolation results. Let have a divergence-free func-
tion F(x, y) with the components f1(x, y) = 2x2(x− 1)2y(y − 1)(2y − 1), f2(x, y) =
−2y2(y− 1)2x(x− 1)(2x− 1) and the donor and the target triangular meshes of the
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domain 〈0, 1.1〉2 with identical vertices at the boundary. Both meshes has the charac-
teristic length h = 0.033 and the inner vertices of the target mesh are shifted by h/2
to the right. In total 20 pairs of interpolations between these meshes are performed
and four different interpolation variants are compared. The first two are the classical
Lagrange projection (LAG) and the interpolation with restrictions (CPI). Further
two are the CPI modifications: by CPI m the variant, where the known values at
boundary vertices are eliminated from the final matrix system (8), is denoted. The
CPI bv denotes the CPI variant, where the results of system (8) are at the positions
related to the boundary vertices overwritten by the known values.

Figure 3 shows the velocity magnitude after all 20 interpolation runs from the
original to the target mesh and back. It is evident that the Lagrange projection
performs badly and it is too diffusive. The results of the interpolations CPI m,
CPI bv (not shown) and CPI are very similar each to the other as well to the original
data. The behaviour of interpolations along two lines are shown in Figure 4. In the
case of the top domain boundary only the CPI results do not correspond to the
exact ones because other CPI variants benefit from the additional information at the
boundary. The CPI behaviour along the middle line is the same as the CPI bv and
the CPI m is even slightly closer to the exact values than CPI, the LAG results are
the worst.

From the quantitative point of view the L2 error of the Lagrange projection
is higher by 38%, while both the CPI modifications outperforms the original by
13% (CPI bv) and by 11% (CPI m), respectively, see Table 1. The L∞ error is
for the considered interpolation methods similar. Nevertheless the disadvantage of
the CPI bv method is the violation of the conservation of the kinetic energy. This
happens due to the modification of the CPI solution1 at the positions related to
the boundary vertices contrary to the CPI m variant, where the matrix system is
modified rather than the individual values of interpolation result. Consequently
the CPI m provides a very precise kinetic energy conservation. Thus better choice
appears to be the CPI m than the CPI bv, the CPI interpolation performs also
reasonably well.

method max |F| Ekin L2 error L∞ error

exact 1.650 · 10−2 6.657 · 10−5 0 0
Lagrange int. 1.650 · 10−2 5.306 · 10−5 2.343 · 10−6 3.489 · 10−3

CPI 1.848 · 10−2 6.657 · 10−5 1.697 · 10−6 3.499 · 10−3

CPI bv 1.650 · 10−2 6.592 · 10−5 1.436 · 10−6 3.211 · 10−3

CPI m 1.650 · 10−2 6.657 · 10−5 1.520 · 10−6 3.221 · 10−3

Table 1: Comparison of interpolation results of the first test.

1The CPI interpolation preserves kinetic energy.
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Figure 3: Magnitude of the interpolated vector field on the structured FE mesh after
20 runs. The exact values are shown on the left, the result of the interpolation with
restrictions in the middle and the Lagrange interpolation on the right.

Figure 4: Left: Comparison of the interpolation of the first component of the velocity
along the top boundary given by y = 1.1, x ∈ 〈0, 1.1〉. Right: Comparison of the
second component of the velocity along line given by y = 0.5, x ∈ 〈0, 1.1〉.

4.2. Second interpolation test – question of interpolation domain

In the second test the interpolation results for different choices of interpolation
domain are compared using an additional assumption of the following correspondence
between the donor and the target mesh: The difference of the new target against
the original mesh is the coarsened middle part around a channel constriction, see
Figure 5, where the remaining parts of the target mesh are identical with the original
one. Such mesh coarsening is motivated by the usage of our in-house solver FSIfem
based on the ALE method (see [9]) in order to avoid deterioration of fluid mesh
quality during simulations involving (almost complete) channel closing. Since the
target domain of the ALE mapping can be chosen in the FSIfem solver we compare
CPI interpolation on the following choices of the interpolation subdomains of the
computational domain, see Fig. 5, with the aim to decrease interpolation error:

1. only the middle part of the constriction (CPI sel)

2. the whole domain, but with the coincident mesh vertices outside of the middle
part (CPI coi)

3. the whole domain (here slightly shifted mesh vertices are used) (CPI all).
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Figure 5: Meshes used in the second test together with initial and interpolated
velocity distributions. The donor (original) mesh is shown on left and the target
mesh on the right, only the middle part of both meshes differs and it is highlighted
by the red square.

Here, the considered velocity field, which is obtained by FSIfem as part of the FSI
solution, is once interpolated from the donor to the target mesh and vice versa.

Figure 6 illustrates the distribution of error after one pair of the interpolation
runs. The results of the interpolations CPI sel and CPI coi are very close, while the
error of CPI all is a little higher. Moreover the error of CPI all is distributed also
significantly in the area right from the channel constriction contrary to the CPI sel
and CPI coi results. The relative high interpolation error in the boundary layer is
caused by the coarse target mesh at the region. In the case with a similarly dense
target mesh the interpolation error can be expected to be significantly lower.

Interpolations obtained by CPI sel and CPI coi have similar L2 and L∞ errors, see
Table 2, however slightly smaller L2 error of CPI sel is redeemed by the inconsistency
in the maximal value and in the total kinetic energy. The CPI all presents the largest
L2 and L∞ errors.

method max |F| Ekin L2 error L∞ error

exact 1.142 · 102 9.644 · 10−2 0 0
Lagrange int. 1.141 · 102 9.580 · 10−2 9.914 · 10−5 3.512 · 101

CPI sel 1.184 · 102 9.646 · 10−2 9.086 · 10−5 3.369 · 101

CPI coi 1.145 · 102 9.644 · 10−2 9.838 · 10−5 3.498 · 101

CPI all 1.153 · 102 9.644 · 10−2 1.323 · 10−4 3.472 · 101

Table 2: Comparison of interpolation results of the second test.

5. Conclusion

The article presents the general concept of the interpolation between FEM meshes
based on paper [5]. The idea of the interpolation with restrictions is to improve the
commonly available interpolation procedure by a restriction of the conservation of
additional physical quantities. Such approach has the advantage of the relatively
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Figure 6: Distributions of relative error magnitudes after one pair of interpolations.
Results for CPI sel on the top, for CPI coi in the middle and error of the CPI all
interpolation on the bottom. The maximal error is located for all methods similarly
in a few elements inside boundary layer (out of color scale).

computationally cheap method which moreover respects physical nature of the prob-
lem. Here for the case of the fluid flow the conservation of the linear momenta, the
divergence and the kinetic energy is considered. Our implementation based on the
barycentric coordinates is described.

Two interpolation tests are performed in order to compare different modifications
of this method motivated by the different settings of the FSI solver based on the ALE
method. First, the different treatments of the nonzero boundary values are studied.
The interpolation results can be slightly improved by inclusion of the information
from the boundary into the resulting matrix system (variant CPI m). Second, the
interpolation error is calculated for different choices of the interpolation domain. The
best results are obtained for the interpolation in the whole domain where the mesh
distortion is highly localized around the channel constriction (variant CPI coi). The
interpolation of only the distorted part of the domain violates the conservation of
the total kinetic energy in the whole domain.

Acknowledgements

The work was supported from European Regional Development Fund – Project
“Center for Advanced Applied Science” (No.CZ.02.1.01/0.0/0.0/16-019/0000778) and
from Premium Academiae of Prof. Nečasová.
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[9] Valášek, J., Sváček, P., and Horáček, J.: On suitable inlet boundary conditions
for fluid-structure interaction problems in a channel. Appl. Math. 64 (2019),
225–251.

291



292


