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Abstract: We present an improvement to the direct flux reconstruction
technique for equilibrated flux a posteriori error estimates for one-dimensional
problems. The verification of the suggested reconstruction is provided by nu-
merical experiments.
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1. Introduction

A posteriori error estimates play an important role in the numerical solution of
PDEs. They enable to provide the information about the discretization error for
the current choice of discretization parameters and also enable localization of the
sources of errors that can be exploited in possible adaptive strategies. For the survey
of main a posteriori techniques for PDE discretizations see e.g.[1], [3], [7], [12], [14]
and references cited therein.

Important class of approaches for deriving guaranteed a posteriori upper bounds
is based on the Hyper-circle theorem, see [11]. This theorem assumes the recon-
struction of the fluxes to be in H(div). Such a property can be gained by global
procedures that are very accurate but also very expensive, see e.g. [12]. Among the
local procedures, the local mixed finite element technique is very popular, since it
enables to reconstruct the fluxes based on local, relatively cheap problems. The the-
oretical results devoted to these mixed finite element reconstructions can be found
in [5] and [9]. The paper [15] presents even more simple, more direct and cheaper
reconstructions based on the natural degrees of freedom for the Raviart-Thomas
spaces inspired by [8], where a similar idea is applied to the discontinuous Galerkin
discretizations.

Although a posteriori error estimates based on the direct evaluation presented
in [15] are reliable and robust, their accuracy gets slightly worse in some situa-
tions, especially for even degree polynomial approximations. The reason behind this
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behavior may possibly come from a rather naive choice how to define the flux re-
constructions on the boundary of elements. Therefore, we present a suggestion for
an improvement of the definition of the flux reconstruction on the boundary of el-
ements for one-dimensional problems. Our suggestion is supported with numerical
experiments.

2. Continuous problem and its discretization

2.1. Continuous problem

Let Ω ⊂ Rd be a bounded polyhedral domain with Lipschitz continuous bound-
ary ∂Ω. Most of the presented results hold true in any dimension. Nevertheless, the
final result will be presented for one-dimensional problems only, i.e. d = 1. We use
standard notation for Lebesque and Sobolev spaces, respectively. Let us consider the
following boundary value problem: find u : Ω→ R such that

−∇ · (∇u− bu) = f in Ω, (1)

u = 0 in ∂Ω,

where f ∈ L2(Ω) and b ∈ W 1,∞(Ω)d such that ∇ · b = 0. Let us denote weak
derivative of u by u′ for d = 1.

Let (., .) and ‖.‖ be the L2(Ω) scalar product and norm, respectively.

Definition 1. We say that a function u ∈ H1
0 (Ω) is a weak solution of (1), if

(∇u− bu,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (2)

According to the Lax-Milgram lemma, there exists a unique solution of prob-
lem (2).

2.2. Discrete problem

We consider a space partition Th consisting of a finite number of closed, d-
dimensional simplices K with mutually disjoint interiors and covering Ω, i.e., Ω =
∪K∈ThK. We denote the edges (or faces) by e. In the rest of the paper we speak
about boundary objects of co-dimension 1 as about edges, but we mean vertices,
edges or faces depending on the dimension d. For each edge e, let n = ne denote
a unit normal vector to e with arbitrary but fixed direction for the inner edges and
with outer direction on ∂Ω. The unit outward normal to K will be denoted by nK .
We assume conforming properties of the mesh, i.e., neighbouring elements share an
entire edge. We set hK = diam(K) and h = maxKhK . We assume shape regu-
larity of elements, i.e., hK/ρK ≤ C for all K ∈ Th, where ρK is the radius of the
largest d-dimensional ball inscribed into K and constant C does not depend on Th
for h ∈ (0, h0). Moreover, we assume the local quasi-uniformity of the mesh, i.e. we
assume hK ≤ ChK′ for neighbouring elements K and K ′ and constant C does not
depend on Th for h ∈ (0, h0) again.
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In order to simplify the notation, we set (., .)M and ‖.‖M to be the local L2(M)-
scalar products and norms, respectively, where M ⊂ Ω is some union of elements K
or edges e. We denote a sum over all elements as

∑
K .

We define classical finite element space

Vh = {v ∈ H1
0 (Ω) : v|K ∈ P p(K)}, (3)

where the space P p(K) denotes the space of polynomials on K up to the degree p ≥ 1.
Although the functions from Vh are globally continuous, we will need to work

with piece-wise continuous functions as well. We define one-sided values, jumps and
mean values on the inner edges

v(x−) = lim
s→0+

v(x− ns), v(x+) = lim
s→0+

v(x+ ns),

[v](x) = v(x−)− v(x+), 〈v〉(x) =
1

2
(v(x−) + v(x+)). (4)

For the boundary edges we define

v(x−) = 〈v〉(x) = lim
s→0+

v(x− ns), [v](x) = 0. (5)

Finally, we define the finite element solution of problem (2).

Definition 2. We say that a function uh ∈ Vh is a discrete solution of (2), if

(∇uh − buh,∇vh) = (f, vh) ∀vh ∈ Vh. (6)

The existence and uniqueness of the discrete solution follows again from the Lax-
Milgram lemma.

2.3. Discontinuous Galerkin method

The justification of the presented result is based on the discontinuous Galerkin
method. Therefore, we briefly define the interior penalty discontinuous Galerkin
discretization of problem (2) using the same notation as in Section 2.2. In order
to simplify forthcoming considerations, we assume here purely diffusion problems,
i.e. b = 0, only. Then the interior penalty discontinuous Galerkin method reads: find
uh ∈ Xh such that∑

K

(∇uh,∇vh)K −
∑
e

(〈∇uh〉 · n, [vh])e + θ(〈∇vh〉 · n, [uh])e

+
∑
e

(α[uh], [vh])e = (f, vh) ∀vh ∈ Xh, (7)

where α > 0 is penalization parameter that should be chosen large enough to ensure
positivity of the resulting problem and the space Xh is defined as

Xh = {v ∈ L2(Ω) : v|K ∈ P p(K)}. (8)
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Parameter θ distinguishes different variants, where the most common variants are
symmetric (SIPG, θ = 1), nonsymmetric (NIPG, θ = −1) and incomplete (IIPG,
θ = 0). For more details about the discontinuous Galerkin method and its properties
see e.g. [6].

The same discretization can be denoted with the aid of the numerical fluxes
similarly as in the finite volume method. Then the general discontinuous Galerkin
discretization can be expressed as∑

K

(∇uh,∇vh)K − (σ̂ · nK , vh)∂K + (û− uh,∇vh · nK)∂K = (f, vh) ∀vh ∈ Xh, (9)

where the numerical fluxes σ̂ and û approximate ∇uh and uh on the edges, respec-
tively. For example, the choice for the numerical fluxes corresponding to IIPG is

û = uh, σ̂ = 〈∇uh〉 − α[uh]n. (10)

The connection between the primal discontinuous Galerkin formulations and the
formulations with the numerical fluxes is described in [2].

3. A posteriori error bound

3.1. Flux reconstruction

Since the discretization by the finite element method is conforming, the exact so-
lution u as well as the discrete solution uh belong to common space H1

0 (Ω). This qual-
ity no longer holds for the flux of the solution σ(u) = ∇u−bu, since σ(u) ∈ H(div,Ω)
and σ(uh) /∈ H(div,Ω) in general. Our aim is to find a suitable reconstruction
σh = σh(uh) ∈ H(div,Ω) such that σh ≈ σ(uh).

Let RTp(K) be the local Raviart-Thomas space of order p for element K ∈ Th,
i.e. RTp(K) = Pp(K)d + xPp(K). For the details about Raviar-Thomas spaces and
about FEM-like spaces for approximation H(div,Ω) in general see e.g. [4]. We define
the reconstruction σh element-wise. We seek σh|K ∈ RTp(K) such that

σh|e · n = φe ∀e ⊂ K,

(σh, zh)K = (∇uh − buh, zh)K ∀zh ∈ Pp−1(K)d, (11)

where φe ∈ Pp(e) is a suitable function. The conditions in (11) represent the natural
degrees of freedom for RTp(K), see [4, Proposition 2.3.4]. Applying the basis cor-
responding to these degrees of freedom enables to assemble σh directly without the
necessity to solve any local linear problems which results in extremely cheap eval-
uation of the reconstruction σh. This property is demonstrated in [15, Lemma 5.1]
for d = 1.

We point out that the resulting function σh has globally continuous normal com-
ponents and therefore the sum of local contributions of σh is globally in H(div,Ω).
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Important property of σh is the orthogonality of f +∇ · σh to functions from Vh
that follows from the discrete problem formulation (6) and from (11)

(f +∇ · σh, vh) =(f, vh)− (σh,∇vh)

=(f, vh)− (∇uh − buh,∇vh) = 0 ∀vh ∈ Vh. (12)

3.2. Upper bound

We define the error measure as the dual norm of residual

Err(w) = sup
06=v∈H1

0 (Ω)

(f, v)− (∇w − bw,∇v)

‖∇v‖
. (13)

For the most simple case b = 0, the error measure is equivalent to H1-seminorm, i.e.
Err(w) = ‖∇u−∇w‖.

An upper bound to the error measure Err(uh) can be derived similarly as in [15].
Here, we present the final result.

Theorem 1. Let uh ∈ Vh be the discrete solution obtained by (6) and σh be the
reconstruction obtained from uh by (11). Then

Err(uh)2 ≤ η2 =
∑
K

(ηR,K + ηF,K)2, (14)

where the local error estimators are

ηR,K = CPhK‖f +∇ · σh‖K ,
ηF,K = ‖σh − σ(uh)‖K = ‖σh −∇uh + buh‖K . (15)

The constant CP is the Poincare constant and can be bounded by CP ≤ 1/π,
cf. [10]. It shall be pointed out that all the terms in (14) are cheaply computable.

3.3. Choice of φe

A posteriori error estimate (14) holds regardless of the choice of φe in (11). On
the other hand, the quality of the estimate (14), i.e. how much the estimator η
overestimates the error Err(uh), depends on the choice of φe.

The paper [15] discusses the most naive possibility φe = 〈∇uh〉 ·n and the numer-
ical experiments provided in the paper [15] show that this choice is far from optimal
in some cases, most importantly for even degree polynomial approximations.

The goal of this paper is to show a suggestion for some more accurate choice of φe.
Since we will only consider one-dimensional problems, we may simplify the domain Ω
as the interval (0, 1) and we can denote the partition nodes 0 = e0 < e1 < . . . <
eN = 1 and the corresponding elements Kk = [ek−1, ek]. Then the suggested choice
for φe is following

φeN = −(f, x)− (buh, 1) = −
∫ 1

0

xf(x) + b(x)uh(x)dx,

φek = φek+1
+ (f, 1)Kk+1

, k = N − 1, . . . , 0. (16)

297



The idea of element-wise flux reconstruction similar to (11) was already applied
with success for the interior penalty discontinuous Galerkin a posteriori error esti-
mates, see e.g. [8]. It is possible to find out by careful comparison that the choice
for boundary degrees of freedom φe in [8] corresponds to the numerical fluxes σ̂, cf.
Section 2.3.

Our idea for the choice (16) follows from imitating the discontinuous Galerkin
technique, where the finite element method is expressed as a variant of the discon-
tinuous Galerkin method. More precisely, we modify the IIPG numerical flux σ̂
from (10) in such a way that the resulting IIPG solution with this modified flux is
identical to the finite element solution.

Still, there is a work to be done concerning precise numerical analysis, e.g. IIPG
error norm justification or IIPG a posteriori error analysis including efficiency anal-
ysis.

4. Numerical experiments

The aim of this section is to show how accurate, reliable and robust are a posteriori
error estimates based on (11) and (16). The numerical experiments in paper [15],
where the naive choice of φe as φe = 〈∇uh〉 · n is discussed, show that the estimates
are slightly worse in some situations, especially for even polynomial degrees. We
want to show that the choice of φe according to (16) improves this behavior and the
resulting estimates are accurate regardless of the situation.

Although the individual error estimator can be computed directly, the evaluation
of the error measure can be difficult even in simplified situations, where the exact
solution is known, since the defining formula (13) represents the supremum over
infinite-dimensional space. Therefore, we approximate the error measure Err(w) by

Err+(w) = sup
06=v∈V +

h

(f, v)− (∇w − bw,∇v)

‖∇v‖
, (17)

where V +
h is chosen adaptively and Vh ⊂ V +

h ⊂ H1
0 (Ω). The error measure simplifies

to Err(w) = ‖∇u−∇w‖ for purely diffusion problems (b = 0) and no approximation
of the error measure is needed in these situations.

4.1. Purely diffusion problem

We study the error estimate (14) with respect to the mesh refinement and with
respect to the changing polynomial degree. We assume the purely diffusion problem
(b = 0) on the domain Ω = (0, 1) and we set the right-hand side f = π2 sin(πx).

Since the paper [15] shows that there are two different regimes for odd and even
polynomial degrees, we provide the tests with equidistant meshes for refining mesh-
size h starting at h = 1 and fixed polynomial degrees p = 2 and p = 3.

We set fixed h = 0.25 for the changing polynomial degree tests.
Tables 1–3 show that the estimate (14) provides extremely accurate upper bounds.

The estimator ηR converges faster to 0 than the error and the second estimator ηF
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1/h ‖u′ − u′h‖ η Eff ηR ηF
1 2.6718− 1 3.1054− 1 1.16 5.4235− 2 2.5631− 1
2 1.9719− 1 2.0686− 1 1.05 1.3166− 2 1.9369− 1
4 5.0620− 2 5.1238− 2 1.01 8.4125− 4 5.0396− 2
8 1.2739− 2 1.2778− 2 1.00 5.2868− 5 1.2724− 2
16 3.1900− 3 3.1924− 3 1.00 3.3088− 6 3.1891− 3
32 7.9783− 4 7.9787− 4 1.00 2.0687− 7 7.9777− 4
64 1.9948− 4 1.9949− 4 1.00 1.2930− 8 1.9947− 4

Table 1: Global h-performance, diffusion, p = 2

1/h ‖u′ − u′h‖ η Eff ηR ηF
1 2.6718− 1 3.1054− 1 1.16 5.4235− 2 2.5631− 1
2 2.6332− 2 2.7382− 2 1.04 1.3086− 3 2.6073− 2
4 3.3650− 3 3.3984− 3 1.01 4.1667− 5 3.3567− 3
8 4.2295− 4 4.2400− 4 1.00 1.3082− 6 4.2269− 4
16 5.2941− 5 5.2974− 8 1.00 4.0928− 8 5.2933− 5
32 6.6199− 6 6.6211− 6 1.00 1.4696− 9 6.6197− 6
64 8.2751− 7 8.2778− 7 1.00 3.3135− 10 8.2756− 7

Table 2: Global h-performance, diffusion, p = 3

as expected. On the other hand, the results show that the estimator ηF is not able
to provide upper bound without the correction from the estimator ηR. Moreover,
Tables 1–3 show that there is no longer any significant difference between odd and
even polynomial degrees, compare with [15].

4.2. Convection-diffusion problem

We study convection-diffusion equation

−εu′′ + bu′ = f, (18)

where Ω = (0, 1), b = 1, f = 1 and ε > 0 is a constant. For more information
about convection-diffusion problems see [13]. We present the performance of the
estimate (14) with respect to h for fixed ε = 0.01, p = 1 and successively refined
equidistant meshes starting with h = 0.1 and with respect to ε for the fixed equidis-
tant mesh with h = 0.025 and decreasing parameter ε.

Tables 4 and 5 show that the accuracy of the estimate is preserved either for
convection or diffusion dominated situation and the estimate is accurate and robust
with respect to h as well as ε.

Moreover, it is possible to study the local distribution of errors and corresponding
estimates. Figure 1 presents the exact solution u and the discrete solution uh for the
convection dominated situation on the equidistant mesh with h = 0.1 and ε = 0.01.
The corresponding distribution of estimates is presented in Figure 2. We can find

299



p ‖u′ − u′h‖ η Eff ηR ηF
1 4.9851− 1 5.0603− 1 1.02 1.2655− 2 4.9338− 1
2 5.0620− 2 5.1238− 2 1.01 8.4125− 4 5.0396− 2
3 3.3650− 3 3.3984− 3 1.01 4.1667− 5 3.3567− 3
4 1.6667− 4 1.6806− 4 1.01 1.6459− 6 1.6641− 4
5 6.5836− 6 6.6304− 6 1.01 5.3935− 8 6.5765− 6
6 2.1766− 7 2.1911− 7 1.01 4.2163− 9 2.1617− 7

Table 3: Global p-performance, diffusion, h = 0.25

1/h Err+(uh) η Eff
10 2.0665− 1 2.0770− 1 1.01
20 1.0155− 1 1.0206− 1 1.01
40 5.0775− 2 5.1031− 2 1.01
80 2.5388− 2 2.5516− 2 1.01
160 1.2694− 2 1.2758− 2 1.01

Table 4: Global h-performance, convection-diffusion, ε = 0.01

ε Err+(uh) η Eff
1.0− 0 7.4691− 3 7.5067− 3 1.01
1.0− 1 1.6057− 2 1.6138− 2 1.01
1.0− 2 5.0775− 2 5.1031− 2 1.00
1.0− 3 1.6159− 1 1.6164− 1 1.00
1.0− 4 9.1726− 1 9.1727− 1 1.00

Table 5: Global ε-performance, convection-diffusion, h = 0.025

Figure 1: Exact and discrete solution Figure 2: Element-wise error estimates

out comparing Figures 1 and 2 that the distribution of the error matches very well
with the distribution of the local error estimates.
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5. Conclusion

We suggested an improvement of the flux reconstruction for a posteriori error es-
timates from [15] for one-dimensional problems and provided numerical experiments
verifying the accuracy, robustness and reliability of the suggested reconstruction.
The main drawback lies in the fact that it is not obvious how to extend presented
result to multi-dimensional problems. Moreover, precise analysis is still missing as
well. These topics will be part of the future research.
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