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Abstract: The paper deals with the analysis and numerical study of the
domain decomposition based preconditioner for algebraic systems arising from
the discontinuous Galerkin (DG) discretization of the linear elliptic problems.
We introduce the DG discretization of the model problem and present the
spectral hp-bound of the corresponding linear algebraic systems. Moreover,
we present the two-level additive Schwarz preconditioner together with the
theoretical result related to the estimate of the condition number. Finally,
we present the numerical experiments supporting the theoretical results and
demonstrate the efficiency of this approach for the solution of nonlinear prob-
lems.
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1. Introduction

Discontinuous Galerkin method (DGM) became a very popular method for solv-
ing partial differential equations, cf. [5]. DGM is based on a piecewise polynomial
but discontinuous approximation where the inter-element continuity is replaced by
special terms. The DGM exhibits a very robust, accurate, and efficient technique
for various problems. On the other side the DG discretization leads to large sparse
algebraic systems, whose solution usually exhibits the most time-consuming part of
the whole computational process.

The domain decomposition techniques exhibit a powerful strategy, which allows
to split the computational work and employ the parallel power of modern supercom-
puters. One possibility is to split the given problem in several smaller sub-problems
with suitably chosen interface conditions, and solve them iteratively to coordinate
the solution between neighbouring subdomains, cf. monographs [3, 11]. However,
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more frequent is to use the domain decomposition methods as preconditioners for
Krylov subspace iterative methods, such as the conjugate gradient method. In this
paper, we focus on the two-level additive Schwarz (AS) preconditioner (cf. [2, 9]).
In particular, we present theoretical results related to the condition number of the
preconditioned system and several numerical examples demonstrating the efficiency
of this technique.

In Section 2, we introduce the discretization of the linear model problem by
hp-variant of the discontinuous Galerkin method (DGM), and present the hp-bound
of the condition number of the corresponding algebraic system. In Section 3, we
formulate the two-level additive Schwarz preconditioner and present the bounds of
the condition number of the preconditioned system arising from DGM. In Section 4,
we introduce the results of numerical experiments performed to support the analysis.
These experiments are the main contribution since they show that the approach also
works for nonlinear cases and leads to improved computational time when used with
the parallel computations. Several concluding remarks are given in Section 5.

2. Discontinuous Galerkin method

We are dealing with the following symmetric linear elliptic problem

−div(K∇u) = f in Ω

u = 0 on ∂Ω,
(1)

where Ω ∈ Rd, d = 2, 3 is a bounded domain with polygonal Lipschitz bound-
ary ∂Ω and K = K(x) is a symmetric positive definite matrix in Rd×d. We assume
that ∃k0, k1 > 0, independent of x ∈ Ω, such that k0|ξ| ≤ |Kξ| ≤ k1|ξ| ∀ξ ∈ Rd.
For simplicity, we assume the homogeneous Dirichlet boundary condition, however
the results can be easily extended to other boundary conditions. Finally, we use the
notation L2(M) for the Lebesgue space of square-integrable functions over M ⊂ Rd,
d = 2, 3 and we denote by (·, ·)Ω the standard inner product in L2(Ω).

2.1. Discretization of domain Ω

Let Th, h > 0 be a partition of the domain Ω̄ into non-overlapping triangles K
such that

⋃
K∈Th K = Ω. We set h = maxK∈Th hK , where hK is the diameter of the

element K, K ∈ Th, and we denote by ∂K the boundary of K ∈ Th.
In addition, let Fh be the set of all faces γ of Th and we put

FBh = {γ ∈ Fh : γ ⊂ ∂Ω} and F Ih = Fh \ FBh

for boundary and interior edges, respectively. For each γ ∈ F Ih we consider a unit
normal vector nγ whose orientation can be arbitrarily chosen. If γ ∈ FBh , the unit
normal nγ is outer to ∂Ω.

Let p := {pK : K ∈ Th} be a set of integers that assigns to each triangular element
its polynomial degree of approximation. We assume that the ratio of polynomial
approximation degrees of any two neighboring elements is bounded.
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The approximate solution is sought in the space of discontinuous piecewise poly-
nomial functions

Shp := {v ∈ L2(Ω) : v|K ∈ PpK (K)∀K ∈ Th},

where PpK (K) denotes the space of polynomials of degree less or equal than pK on K.
By v|+ and v|− we denote the traces of function v ∈ Shp on γ ∈ F Ih in the direction

of nγ and opposite the direction of nγ, respectively. Using this notation we define
the jump [·]γ and the mean value 〈·〉γ of v ∈ Shp by

[v]γ = v|+nγ − v|−nγ and 〈v〉γ =
1

2
(v|+ + v|−), γ ∈ F Ih , (2)

respectively. For γ ∈ FBh , we set [v]γ = vnγ and 〈v〉γ = v. Usually, we drop the
subscript γ.

Finally, we assume that the mesh is shape-regular and quasi-uniform. Then we
set the edge size by

hγ := max(hK , hK′) γ ⊂ ∂K ∩ ∂K ′.

More details can be found in [5, Chapter 2.3].

2.2. Primal formulation of DGM

We introduce the approximate solution of our problem, more details can be found,
e.g., in [5, Chapter 2.4]. Using (2), we define the billinear form Ah(u, v) by

Ah(u, v) :=
∑
K∈Th

∫
K

K∇u · ∇v dx−
∑
γ∈FI

h

∫
γ

(〈K∇u〉 · [v] + 〈K∇v〉 · [u]) dS

+
∑
γ∈FI

h

∫
γ

σ [u] [v] dS, u, v ∈ Shp.

The last term is called the interior penalty term and is supposed to mimic the
continuity of the approximate solution at the interior edges. The penalty parameter
σ is given by

σ|γ = σγ = α
k0p

2
γ

hγ
, γ ∈ F Ih ,

where the constant α is chosen such that we have guaranteed the coercivity of the
form Ah, see [5, Chapter 2.6.3].

Definition 1. The function uh ∈ Shp is called the approximate solution of (1) if

Ah(uh, v) = (f, v)Ω ∀v ∈ Shp. (3)

This scheme is called the symmetric interior penalty Galerkin (SIPG) method.
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The discrete problem (3) is equivalent to the system of linear algebraic equations

Au = f , (4)

where A is the matrix having the size n equal to dimension of Shp and the entries of A
are given by Ah(φj, φi), where {φi, i = 1, . . . , n} is a basis of Shp. If the size of A is
large, the use of iterative solvers is advantageous. Very efficient are methods based on
Krylov subspaces, among them the conjugate gradient (CG) method is very popular
for symmetric problems. The rate of convergence of CG can be estimated by the
condition number, cf. [10, Chapter 6.11]. In [2, Section 2.4] and [8, Section 2], the
following estimate of the condition number of A from (4) was derived

κ(A) ≤ C
k1

k0

p4h−2 (5)

for uniform grids having mesh step h and constant polynomial approximation de-
gree p. We aim to use the domain decomposition to construct suitable preconditioner
for the algebraic system (4), such that it decreases its condition number and can be
performed in parallel setting.

3. Additive Schwarz preconditioner

We start with the partition of the computational domain Ω into smaller non-
overlapping subdomains Ωi such that Ω =

⋃N
i=1 Ωi. We assume that the subdo-

mains Ωi are the union of elements of Th. We employ two-level method, hence we
define a coarse mesh TH such that K ∈ TH lies in one subdomain Ωi. We assume
that the partitions are nested, i.e. the elements from a coarser mesh are the union
of elements of finer mesh, these elements can be non-convex, see Figure 1 for two
examples.
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Figure 1: Examples of two fine meshes Th (red, thin), subdomains Ωi (blue, thick)
and coarse meshes TH (green, thin).
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In the following, we introduce the local bilinear forms corresponding to the re-
striction of Ah on the subdomains Ωi, i = 1, . . . , N and the coarse (global) form
corresponding to the restriction of Ah on the coarse mesh TH . The forms build
the projection operators which are used for the definition of the two-level additive
Schwarz preconditioner. For more details, we refer to, e.g, [1, 2].

3.1. Local forms

We consider a restriction of the space Shp onto each sub-domain Ωi, i = 1, . . . , N ,
i.e.

Sihp = {u ∈ L2(Ωi) : u|K ∈ PpK , K ∈ Th, K ⊂ Ωi}, i = 1, . . . , N.

We define the prolongation operators RT
i : Sihp → Shp by

RT
i ui =

{
ui on Ωi,

0 on Ω \ Ωi,
ui ∈ Sihp.

The corresponding (dual) restriction operatorsRi : Shp → Sihp are given byRiu = u|Ωi
,

i = 1, . . . , N . Then, we introduce the local bilinear forms Ah,i

Ah,i(ui, vi) := Ah(RT
i ui, R

T
i vi), ui, vi ∈ Sihp, i = 1, . . . N.

Using the prolongation operators, we can express functions from the space Shp as
a linear combination of functions from the local spaces.

3.2. Coarse form

In order to increase the speed of the transfer of the information among the sub-
domains, we formulate the problem on the coarse space S0

hp corresponding to the
mesh TH . To deal with the inconsistency of the polynomial degree, we introduce the
quantity qK, K ∈ TH defined by

0 ≤ qK ≤ min
K⊂K

pK .

The definition of the coarse space S0
hp is done similary as in the local space case, i.e.

S0
Hp := {v ∈ L2(Ω) : v|K ∈ PqK(K), K ∈ TH}

Moreover, we define the prolongation operator RT
0 : S0

Hp → Shp as a classical injection
of the space S0

Hp in Shp, and restriction operator R0 : SHp → S0
hp as its dual. Then,

we set

Ah,0(u0, v0) := Ah(RT
0 u0, R

T
0 v0), u0, v0 ∈ S0

Hp.
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3.3. Projection and preconditioned operators

Finally we define the local projection operators P̃i, i = 0, . . . , N which project
the function onto the space Sihp using the local forms Ah,i. Namely,

P̃i : Shp → Sihp Ah,i(P̃iu, vi) = Ah(u,RT
i vi) ∀vi ∈ Sihp, i = 0, . . . , N.

For the projector on the space Shp we use the definition

Pi := RT
i P̃i : Shp → Shp, i = 0, . . . , N.

Finally, the two-level additive Schwarz operator reads

Pad :=
N∑
i=0

Pi. (6)

3.4. Algebraic representation

We introduce the algebraic representation of the local bilinear forms Ah,i and
the projector operators P̃i and Pi, i = 0, . . . , N from previous paragraphs. Let
n = dim(Shp), ni = dim(Sihp), i = 1, . . . , N , and n0 = dim(S0

Hp). Let RT
i ∈ Rn×ni ,

i = 0, . . . , N be the matrices corresponding to the prolongation operators RT
i with

respect to the used basis of Shp. Their construction is simple since Sihp ⊂ Shp,
i = 1, . . . , N and S0

Hp ⊂ Shp. Then the algebraic representations of the restriction
operators Ri, i = 0, . . . , N are just the transposed matrices Ri = (RT

i )T .
Moreover, the algebraic representation of the local bilinear formsAh,i are matrices

Ai = RiART
i ∈ Rni×ni , i = 0, . . . , N . Consequently, the matrix representation of

projection operators P̃i and Pi reads

P̃i = A−1
i RiA and Pi = RT

i A
−1
i RiA, i = 0, . . . , N,

respectively. Finally, the matrix representation of the additive Schwarz operator is
given by

Pad =
N∑
i=0

Pi =
N∑
i=0

RT
i A

−1
i RiA =: M−1

ad A. (7)

Hence, the matrix M−1
ad is a preconditioner of system (4) arising from DG discretiza-

tion. Therefore, we replace (4) by the equivalent problem

M−1
ad Au = M−1

ad f , (8)

where the application of M−1
ad exhibits a solution of small algebraic systems which

can be done in a parallel way. For the solution of (8), we use standard Krylov
iterative solver, namely the conjugate gradient (CG) method. More details on the
solver can be found in [10, Chapter 6].
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3.5. Analysis of the preconditioner

In this section, we present the upper bound of the condition number of the matrix
Pad = M−1

ad A using the abstract technique from [11, Chapter 2], which is based on
the following three assumptions.

Assumption 1 (Stable decomposition) There exists a constant C0 > 0 such that
∀u ∈ Shp we have the decomposition u =

∑N
i=0 R

T
i ui, with u0 ∈ S0

Hp, ui ∈ Sihp,

i = 1, . . . , N , that satisfies
∑N

i=0Ah,i(ui, ui) ≤ C2
0Ah(u, u).

Assumption 2 (Local stability) There exists a constant ω, 0 ≤ ω ≤ 2, such that

Ah(RT
i ui, R

T
i ui) ≤ ωAh,i(ui, ui) ∀ui ∈ Sihp, i = 1, . . . , N,

Ah(RT
0 u0, R

T
0 u0) ≤ ωAh,0(u0, u0) ∀u0 ∈ S0

Hp.

Assumption 3 (Strengthened Cauchy-Schwarz inequalities) There exist con-
stants 0 ≤ εij ≤ 1, i, j = 1, . . . , N , such that

|Ah(RT
i ui, R

T
j uj)| ≤ εijAh(RT

i ui, R
T
i ui)

1
2Ah(RT

j uj, R
T
j uj)

1
2 , i, j = 1, . . . N,

for all ui ∈ Sihp, uj ∈ S
j
hp. By ρ(ε) we denote the spectral radius of ε = {εij}Ni,j=0

Using [11, Theorem 2.7], we have the following results.

Theorem 1. Let Assumptions 1–3 be satisfied. Then the condition number of the
two-level additive Schwarz operator can be bounded by

κ(Pad) ≤ C2
0 ω (ρ(ε) + 1).

Verifying Assumptions 1–3 for the presented additive Schwarz formulation and
using Theorem 1, cf. [2, 9], we get the bound

κ(Pad) ≤ Cα
p2Hk1

qhk0

, (9)

where Pad is given by (7).

4. Numerical study

The objective of this section is to numerically compute the bounds (5) and (9)
and to demonstrate their accuracy. We focus on the experiments dealing with the
condition number of the non-preconditioned systems and also the preconditioned
systems. In the end, we show that the application of this approach can be used to
solve non-linear problems.

All experiments were performed using the ADGFEM code [4] for the generation
of the system matrices and then exported to MATLAB, where we used the func-
tion eigs to compute the approximations of the largest and smallest eigenvalues
of A and M−1

ad A. Then we set the condition number as the ratio of the largest and
smallest eigenvalues. This approach is valid since we are dealing with symmetric
positive definite matrices. We investigate the dependence of condition number κ(A)
and κ(M−1

ad A) on the parameters h, H, p and the ratio of k1/k0 as we have seen.

67



1 2 3 4 5

p

102

103

104

105

106

107

(A
)

250-ASM
125-ASM
250-NON
125-NON

4
1

1
1

0.06 0.08 0.1 0.12 0.14 0.16

h

102

103

104

105

(A
)

NON
ASM

1
1

1
2

Figure 2: The dependence of κ(A) (NON) and κ(M−1
ad A) (ASM) on the polynomial

degree p (left) and on the mesh size h using p = 1 (right).

It is important to say that similar numerical examples were performed in [8],
but there we had not quite correct implementation of system matrix generation and
the condition number was computed using the function condest, which computes
different type of condition number.

4.1. Laplace equation

We consider the problem (1) with K = I, where I is the identity matrix and with
Ω = (0, 1)2. The corresponding mesh is on the left of Figure 1. Since k0 = k1 = 1
the results (5) and (9) depend only on h, H and p. Similarly as in [2], we plot the
dependence of κ(A) in logarithmic scale to see the slope.

• First, we investigate the dependence of κ(A) and κ(M−1
ad A) on p for two

uniform meshes having (approximately) 125 and 250 elements. We set N = 12,
each Ωi is one coarse element, and the coarse polynomial degree is set q = p.

• Moreover, we investigate the dependence of κ(A) on h for p = 1, where we use
meshes having 128, 288, 512 and 1152 mesh elements.

Figure 2, left shows that κ(A) behaves as O(p4) and κ(M−1
ad A) behaves as O(p)

which is in agreement with (5) and (9). Moreover, Figure 2, right shows that κ(A)
behaves as O(h2) and O(h), which is again expected based on the result (5) and (9),
respectively.

4.2. Symmetric linear elliptic equation

Furthermore, we deal with a linearization of the example from [7, Section 5.4].
This corresponds to a simulation of the magnetostatic field in the alternator. Due
to symmetry, we consider only a quarter of the alternator. The domain Ω is divided
into Ωs (Stator), Ωr (Rotor), and Ωa (Air) (geometry can be seen in [8, Figure 3.6]).
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Figure 3: The dependence of the condition number of the preconditioned system
(ASM) on the coarse mesh size (left) and the dependence of the condition number of
the preconditioned and non-preconditioned system on the ration of k1/k0 for p = 1
and p = 2 (right).

The corresponding mesh can be seen on the right of Figure 1. The formulation in
terms of the magnetic potential u reads:

−div(ν(x)∇u(x)) = f in Ω, (10)

where ν is in the form ν(x) =

{
1
µ0

for x ∈ Ωa,
100
µ0

for x ∈ Ωs ∪ Ωa,
where µ0 = 1.256 · 10−6.

We use the same technique as described above to generate system matrices and
compute the condition number. We focus on the following.

• We investigate the dependence of κ(M−1
ad A) on the coarse mesh size H with

p = 1 and N = 12 and the division of the subdomains Ωi into 1,2,4,8 and
12 coarse elements.

• We investigate the dependence of κ(A) and κ(M−1
ad A) on the ratio of k1/k0

for p = 1.

Figure 3, left supports the theoretical result κ(M−1
ad A) = O(H), at least asymp-

totically. Figure 3, right gives that the dependency on the ratio of k1/k0 is also in
agreement with the result (5) and (9), in which we see that κ(M−1

ad A) and κ(A)
behaves as O(k1/k0). We can see that we are getting slightly better result for the
preconditioned system than we expected.

4.3. Symmetric nonlinear elliptic equation

Finally we present numerical result for the nonlinear variant of the alternator
equation (10), namely

−div(ν(x, |∇u(x)|2)∇u(x)) = f in Ω,
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N non-linear iter linear iter time on 1 processor theoretical time×2
#Ωi

4 81 7049 158 s 79 s
8 71 8073 158 s 39 s
16 68 8939 156 s 19 s
32 71 10493 194 s 12 s
64 70 11649 230 s 7 s

Table 1: Number of iterations and the computational time for increasing number of
subdomains.

where the function ν is a strongly nonlinear function in |∇u(x)|, see [7, Section 5.4]
for the explicit form of ν. The nonlinear problem is solved as a sequence of linear
ones, namely

−div(ν(x, |∇uk−1|)∇uk) = f in Ω, k = 1, 2, . . .

where k is the index of nonlinear iterations. In every non-linear iteration we compute
100 linear iterations. As the linear solver we used conjugate gradient method with
the two-level additive Schwarz preconditioner (7). The stopping criterion was the
ratio of algebraic residual error estimator over the space residual error estimator,
cf. [6].

We investigate the speed of convergence for increasing number of subdomains
N = #Ωi, each Ωi is just one coarse element K ∈ TH . The number of conjugate
gradient iterations and computational time in seconds (using one processor) is shown
in Table 1. Although the computations were performed using one processor, we
present in the last column of Table 1 the theoretical computational time using an
ideal parallelization, i.e., one processor for one subdomain (excluding overheads).
We observe an almost optimal speed up of the computation.

5. Conclusion

We presented the outline of the theory used for the condition number bounds of
the two-level additive Schwarz preconditioner for the solution of partial differential
equations using DGM. The main part of our work was the numerical study done on
a more complex example and also the application of the method for the non-linear
problem. We have shown that the method has potential for non-linear problems and
can be further investigated.
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