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Abstract: The assessment of vibration characteristics in slender engineering
structures, influenced by both deterministic harmonic and stochastic excita-
tion, poses a challenging problem. Due to its complexity, transverse vibration
of the structure (relative to the wind direction) is typically modelled using the
single-degree-of-freedom van der Pol-type equation. Determining the response
probability density function comprises solving the Fokker-Planck equation,
a task that generally necessitates the use of approximate numerical methods.
Some of these methods rely on Galerkin-type approximation employing orthog-
onal polynomial or exponential-polynomial basis functions. This contribution
reviews available techniques for stationary and non-stationary cases and pro-
poses some modifications while highlighting unresolved questions in the field.
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1. Introduction

Exploring the nonlinear dynamic response on random excitation is an important
research subject. There are many analytical, semi-analytical, and numerical meth-
ods available to obtain stationary probability density functions (PDF) or statistical
moments, particularly focusing on systems influenced by Gaussian white noise. How-
ever, the non-stationary case remains the subject of intensive research.

The non-linear van der Pol type single-degree-of-freedom (SDOF) oscillator is
often used to represent transverse wind-induced vibrations under additive excitation,
including deterministic and random components. This particular type of an oscillator
is known and used for the so called lock-in or frequency entrainment effect, where
the response frequency, i.e., vibration frequency of the structure, does not follow the
dominant frequency present in the excitation but locks onto the natural frequency
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of the system. This effect appears in a certain neighbourhood of the frequency of
the stable limit cycle. Consequently, the oscillator produces very stable frequency
output even with noisy harmonic input, provided the driving frequency remains
within a certain proximity to the limit cycle frequency. Conversely, the response
may attain various types of non-stationary response, including the cyclo-stationary
or chaotic type when the driving frequency is far from the natural one.

The literature rarely addresses the van der Pol oscillator subjected to combined
harmonic and random excitations. The stationary response case has been explored
in [2], where the stochastic averaging method [5] and the equivalent linearization
method are used in conjunction. The authors in [7] investigated a similar scenario,
providing an explicit solution for the averaged equations in the resonant case. A more
general yet stationary case has been outlined by the authors using the Galerkin
method [6] to solve the nonlinear Fokker-Planck equation (FPE). The non-stationary
case has been presented only recently, [11], where the probabilistic solution of the
non-stationary responses is expressed as an exponential function of polynomial with
time-variant coefficients and then the FPE is solved approximately.

This contribution reviews several approaches for determining both stationary
and non-stationary response characteristics. For the stationary case, a method that
refines the analytical solution available under exact resonance conditions is outlined,
with a focus on the numerical integration procedure. In the non-stationary case,
two approaches based on the Galerkin method are discussed: one utilizes a time-
dependent linear combination of Hermite polynomials, while the other is based on
exponential polynomials.

2. Mathematical model

Wind-induced vibration due to vortex shedding in slender engineering structures,
such as bridge decks, towers, masts, high-rise buildings, or cables, is usually mod-
elled using van der Pol equation. Its self-excitation due to the negative damping
closely describes the state when the structure draws energy from the ambient flow.
Mathematically,

u̇ = v ,

v̇ = (η − νu2)v − ω2
0u+Pω2 cosωt+ hξ(t) ,

(1)

where time differentiation is indicated by a dot above the symbol and the system
parameters are:
u, v – the displacement [m] and velocity [ms−1];
η, ν – the linear and quadratic damping [s−1, s−1m−2];
ω0, ω – the eigen-frequency of the linear SDOF system and frequency of the vortex

shedding [s−1];
and the external excitation is described with: f(t) = Pω2 cosωt+hξ(t), where:
Pω2 – amplitude of the harmonic excitation [ms−2];
ξ(t) – the non-dimensional broadband Gaussian random process;
h – multiplicative constant [ms−2].
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In the deterministic case, there are four basic configurations that characterize the
solution in terms of frequency content and system solvability:

(i) The resonant case, where the excitation frequency is equal to the natural
frequency ω0 = ω. In this case the response of the model is periodic and, with
random additive excitation, there exists an explicit expression for the stationary
probability density of the response amplitude and phase shift [7].

(ii) When the frequency of the harmonic part of the right-hand side is close
to the model’s natural frequency, a lock-in effect occurs. The amplitudes of the
deterministic solution are constant, and the response in the presence of stationary
random disturbance remains stationary, [2, 6]. The width of the lock-in interval
depends on system parameters.

(iii) Just beyond the boundary of the lock-in interval, in the deterministic case,
a series of frequencies ωi emerge in the frequency content of the response in addi-
tion to the natural frequency ω0. The new frequencies move away from the natu-
ral frequency ω0, depending on the distance of the excitation frequency from the
boundary of the lock-in interval, approximately following the relationship ωi = ω0±
βi (ω − γ+)

di where γ+ is the upper boundary of the lock-in interval, and βi, di are
coefficients characteristic to the new frequencies. The presence of nearby frequencies
in the response process results in the emergence of long-period beats at a frequency
|ωi − ω0|, which give the response a quasiperiodic character. The analytic examina-
tion of this effect using the multiple scales method was recently published, [1].

This phenomenon causes ill conditioning of the behaviour of the van der Pol
equation, where small errors in the excitation frequency lead to large changes in the
nature of the solution. This effect is amplified in the presence of stochastic noise.

(iv) When the frequency of beats and the excitation frequency are comparable
and/or the influence of self-excitation diminishes, the system’s response is primarily
characterized by the harmonic component of the excitation (forced vibrations). The
response is periodic in the deterministic case and stationary in the stochastic case.

3. Stationary case

For weakly nonlinear systems subjected to weak excitations, the stochastic aver-
aging method [9] is commonly employed. This method involves replacing fast vari-
ables with statistically equivalent stochastic processes to analyse variables evolving
on a slower time-scale. The underlying assumption is that the response process can
be uniformly approximated over a given time interval.

Using the Itô stochastic calculus, the response PDF of the original differential
system Eq. (1) is governed by the Fokker-Planck Equation:

∂p(x, t)

∂t
= −

N∑
j=1

∂

∂xj
(κj(x, t)p(x, t)) +

1

2

N∑
j,k=1

∂2

∂xj∂xk
(κjk(x, t)p(x, t)), (2)

where x = (x1, x2) = (u, v), N = 2. The drift coefficients κj(x, t) correspond to the
first moment of the derivative, while the diffusion coefficients κjk(x, t) correspond to
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the second moment. In the case of a stationary response process, p(x, t) = p(x) and
the left-hand side of Eq. (1) vanishes. The resulting equation is referred to as the
reduced Fokker-Planck equation.

In the stochastic average method, the expressions for the displacement and ve-
locity u(t), v(t) are written in trigonometric form:

u(t) = ac cosωt+ as sinωt, v(t) = −acω sinωt+ asω cosωt, (3a)

where partial amplitudes ac, as comply with the additional condition

ȧc cosωt+ ȧs sinωt = 0. (3b)

In the general case, ac(τ), as(τ) are functions of the slow time τ = εt, where ε
is a small parameter, and may represent non-stationary processes. In the lock-in
region (i.e., in cases (i) and (ii) in the previous section), the response process is
stationary, and the partial amplitudes ac and as can be assumed stationary.

Based on the approximation Eq. (3), the original stochastic system Eq. (1) can
be transformed using the time-averaging operator into the averaged Itô system:

dac =
π

ω

[
ηac + 2∆as −

1

4
ν · ac(a2

c + a2
s)

]
dt+

(π
ω

Φξξ

) 1
2
dBc, (4a)

das =
π

ω

[
−2∆ac + ηas −

1

4
ν · as(a2

c + a2
s)

]
dt+

π

ω
Pω dt+

(π
ω

Φξξ

) 1
2
dBs. (4b)

Here Φξξ(ω) is the spectral density of the process ξ(t) at frequency ω, Bc,s(t) stands
for the Wiener process corresponding to input excitation ξ(t) and ∆ = (ω2

0−ω2)/(2ω)
is the frequency detuning.

The stationary PDF of ac, as follows from the reduced FPE:

∂

∂ac

([
ηac + 2∆as −

1

4
ν · ac(a2

c + a2
s)

]
p

)
− 1

2ω
Φξξ(ω)

∂2p

∂a2
c

+
∂

∂as

([
ηas − 2∆ac −

1

4
ν · as(a2

c + a2
s) + Pω

]
p

)
− 1

2ω
Φξξ(ω)

∂2p

∂a2
s

= 0,

(5)

with boundary conditions assuring vanishing p(ac, as) for |ac|+ |as| → ∞. The differ-
ential system Eq. (5) admits a closed-form solution under zero detuning (see [6] and
Eq. (7)). The existence of such a solution depends on the existence of a probability
density potential, which occurs only when ∆ = 0.

3.1. Galerkin method

For non-zero detuning, but with a stationary response within the lock-in fre-
quency range, a solution to the reduced, stationary Fokker-Planck equation for par-
tial amplitudes can be sought in the form of a Galerkin approximation:

p(ac, as) = p0(ac, as)

M,k∑
k,l=0

qkla
k−l
c als, (6)
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where M is the upper limit of stochastic moments included into the analysis. In
Eq. (6), p0(ac, as) represents the weight function and is selected in the form of the
solution to the stationary FPE when ∆ = 0:

p0(ac, as) = C · exp

(
η

2S

[(
as +

Pω

η

)2

+ a2
c −

ν

8η

(
a2
c + a2

s

)2

])
, (7)

where S = Φξξ(ω)/(2ω) and the normalizing factor C is to be determined numerically.

When a harmonic component is present in the excitation, P 6= 0, the unsymmetric
weight function fails to ensure the orthogonality of Hermite polynomials. Thus, for
simplicity, standard polynomial basis and test functions are used, which, by virtue of
the weight function p0, satisfy the zero boundary conditions at infinity. For individual
values of k, the terms in the sum in Eq. (6) represent the k-th stochastic moment
and act as correction terms to the analytic solution for ∆ = 0.

3.2. Numerical integration

Integration in the Galerkin method takes place over the entire space R2, and
the coefficients qk,l for k, l = 0, . . . ,M ; k + l ≤ M are determined from the linear
system obtained by substituting Eq. (6) into the FPE (5), followed by several steps
of integration by parts and the application of homogeneous boundary conditions,
where the specific forms of the partial derivatives of p0(ac, as) were also taken into
account:

0 =

∫∫
R×R

{[
aσ−2
c as−2

s

(
σ(σ−1)a2

s − s(s−1)a2
c

)
S + ∆acas

(
σa2

s−sa2
c

)] M,k∑
k,l=0

qkla
k−l
c als

− S

[
s

d

das

(
aσc a

s−1
s

M,k∑
k,l=0

qkla
k−l
c als

)
−σ d

dac

(
aσ−1
c ass

M,k∑
k,l=0

qkla
k−l
c als

)]}
p0 dacdas.

(8)

where σ = (r − s), p0 = p0(ac, as).

Basis functions in the form of polynomials have poor numerical properties because
the corresponding Gram matrix is usually ill-conditioned. However, for low values of
M and with careful handling of the numerical integration, constructing the system
matrix is feasible, especially when the following considerations are taken into account:
Due to symmetry properties, terms involving odd powers of ac do not contribute to
the total value of the integral and should be skipped during integration to avoid
numerical cancellation. Additionally, the integral should be computed over the half-
plane ac > 0, with the result doubled. It is also convenient to transform the variables
into polar coordinates centred at the maximum value of the weight function. In this
way, the decrease of the integrand in the radial direction becomes roughly uniform.

The numerical integration in Eq. (6) involves a large number of terms of the form
zkl = p0(ac, as)a

k
ca

l
s; each of them approximately bounded from above on a logarith-
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Figure 1: The Galerkin approximation of the stationary PDF for M = 2 and
detuning value ∆ = 0.10. a) Contour plot of the PDF. b) “Vertical” sections of the
PDF; as = {2, 3, 4}. c) “Horizontal” sections of the PDF; ac = {−3/2, 0, 3/2}. In
plots b,c: dashed is analytical solution p0(ac, as), solid is Galerkin solution p(ac, as).

mic scale by the following estimate

log |zkl| ≤
1

2S

(
η%2 − ν

8

(
Pω

η
− %
)4)

+ l log

(
%− Pω

η

)
+ k log(%);

ac =% cosϕ, ac = % sinϕ− Pω

η
.

(9)

The estimate Eq. (9) is useful for determining the required integration radius % and
identifying the terms that contribute to the total value of the integral.

3.3. Numerical example

The PDF of the stochastic van der Pol oscillator response with respect to partial
amplitudes ac, as is shown for M = 2 in Figure 1. The value of detuning δ = 0.10
still represents the lock-in response. The contour plot of the estimated cross-PDF
p(ac, as) is shown on the left. Plot b) depicts the sections of the PDF for fixed values
as = {2, 3, 4} and plot c) show sections for ac = {−3/2, 0, 3/2}. The sections and
the corresponding colors are indicated as horizontal/vertical lines in the left-hand
plots. The dashed curves show the basic analytical solution which is valid for the
case δ = 0, i.e., no detuning is assumed. The estimates including the M = 2 Galerkin
approximations are shown in solid.

4. Non-stationary response case

When studying the non-stationary case, the dependence on the original time
coordinate must be retained. The FPE reflecting the original stochastic problem
Eq. (1) in the original coordinates reads:

∂p(x, t)

∂t
= −

2∑
j=1

∂

∂xj
(κj(x, t)p(x, t)) +

1

2

2∑
j,k=1

∂2

∂xj∂xk
(κjk(x, t)p(x, t)), (10)

56



where x = (u, v); x1 = u, x2 = v. The input random process ξ(t) is considered sta-
tionary and ergodic and the drift and diffusion coefficients can be written in a form:

κj(xt, t) = fj(xt, t) , κjk(xt, t) =
2∑
r=1

gjr(xt, t)

∞∫
−∞

gkr(xt+τ , t+ τ)R(τ)dτ,

j, k = 1, 2,

(11)

where R(τ) is the auto-correlation function of ξ(t).
Assuming that the detuning ∆ ∼ ε and the terms (η − νu2)u̇ and Pω2 are of

a small order ε, and hξ(t) is of order ε1/2. In such a case the FPE can be constructed
for the SDE Eq. (1). It holds obviously:

κ1 = v , κ2 = (η − νu2)v − ω2
0u− Pω2 cosωt,

g11 = g12 = g21 = 0 , g22 = h,

κ11 = κ12 = κ21 = 0 , κ22 = g22

∞∫
−∞

g22Rvv(τ)dτ = h2σ2
ξξ = h2 S,

(12)

where S is the variance of the process ξ(t). Take a note that κ22 = h2S is valid inde-
pendently from a particular shape of the input process spectral density and formally
it corresponds to the special case of ξ, which is the white noise (δ correlated), pro-
vided the excitation is a non-modulated additive stationary ergodic process. Anyway,
the FPE can be readily written out as follows:

∂p

∂t
= − ∂

∂u
(v p)− ∂

∂v

((
(η − νu2)v − ω2

0u− Pω2 cosωt
)
p
)

+
1

2
h2S

∂2p

∂v2
, (13)

together with initial and boundary conditions:

lim
u,v→±∞

p(u, v, t) = 0, p(u, v, 0) = δ(u, v). (14)

Near the boundary of the lock-in interval, the solution exhibits a quasi-periodic
nature, which can be identified using a Galerkin-series-based solution in a form:

p(u, v, t) = p0(u, v)
M∑
k=0

k∑
l=0

qkl(u, v, t). (15)

The series Eq. (15) represents a weak solution to the FPE in the probabilistic
sense. Choices of the weight function p0(u, v) and an approximation scheme used for
terms qkl classify the available methods.

4.1. Galerkin solution based on Hermite polynomials

The challenges associated with numerical integration, discussed in the preceding
section, have motivated the use of Hermite polynomials as basis functions which
approximate the residuum between the weight function in the Galerkin method and
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the solution of the FPE. However, the weight function must be adjusted to maintain
the orthogonality property of the Hermite polynomials.

The elements qkl are formulated as follows:

qkl(u, v, t) = qkl(t)Lk−l(αu)Ll(βv), α2 =
ηω2

0

h2S
, β2 =

η

h2S
, (16)

where Lk(x) are Hermite polynomials.
The weight function p0(u, v) is adopted in a form of the Boltzmann’s solution to

a related problem without damping and external excitation, [3]. In particular:

p0(u, v) = C exp

(
− 2η

h2S
H(u, v)

)
, (17)

where C is the dimensionless normalizing constant, which can be put for now C = 1.
H(u, v) represents the Hamiltonian function of the basic system:

H(u, v) =
1

2
ω2

0u
2 +

1

2
v2, (18)

which implicates p0(u, v) = pu(u)pv(v), so that u, v are stochastically independent
Gaussian processes on a level of the zero-th approximation.

The unknown functions qkl(u, v, t) in Eq. (16) are determined using the general-
ized method of stochastic moments [8]. The expression from Eq. (15) is substituted
into Eq. (13), and both sides are multiplied by the test functions Φrs(u, v), which
has the same formal expression as Eq. (16):

Φrs(u, v) = Lr−s(αu)Ls(βv), r = 0, . . . ,M ; s = 0, . . . , r. (19)

Subsequently, applying the expectation operator (which, in fact, involves integration
over R2) to all permutations of the subscripts r and s establishes a sufficient number
of ordinary differential equations for the unknown functions qkl(u, v, t).

Employing Hermite polynomials reduces computational cost and associated nu-
merical errors. However, empirical evidence suggests that the convergence is rela-
tively slow and, moreover, these basis functions do not guarantee the non-negativity
of the computed PDF estimates, which can pose a substantial problem.

4.2. Exponential-polynomial-closure method

The issue of negative PDF estimates does not arise when using the exponential-
polynomial-closure method (EPC), [4]. In the original stationary setting, it assumes
the sought PDF of an approximate solution in the form of an exponential polynomial:

p̃(u, v; c) = C exp (Qn(u, v; c)) . (20)

Here, c is the unknown parameter vector, and Qn(u, v; c) is a polynomial function.
The algebraic system for unknown parameters c results from the Galerkin approxima-
tion with respect to basis functions hk(u, v) = urvsfN(u, v), where k = r+ s and fN
is the PDF solution of the linearised Eq. (1) assuming the Gaussian response.
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Multiple variants of the EPC method have been proposed for different settings
of the stationary PDF solutions of nonlinear stochastic oscillators. Modifications for
the non-linear, non-stationary case have only recently emerged, implicitly allowing
for non-Gaussian excitation, [10]. The solution is assumed in an evolutionary form:

p̃(u, v, t; c) = C exp (Qn(u, v, t; c)) , Qn(u, v, t; c) =
n∑
i=1

i∑
j=1

cij(t)u
i−jvj. (21)

Denoting by ∆(u, v, t; c) the residuum obtained by substitution Eq. (21) into the
FPE (13), a set of ODEs for unknown parameters c(t) = {cij(t)} result from∫∫

R×R
∆(u, v, t; c)hk(u, v)dudv = 0, k = 1 . . .M, (22)

where M indicates number of stochastic moments included into the solution.

5. Conclusions

The solution to the stochastic van der Pol equation is generally non-stationary
and non-Gaussian, making its characterization a significant challenge. This paper
reviews several approaches for determining both stationary and non-stationary re-
sponse characteristics.

For the stationary case, the presented method is based the stochastic averag-
ing method. The PDF for non-resonant configurations is approximated using the
Galerkin method, where improper integrals are evaluated numerically. For this case,
some new remarks regarding numerical integration were presented. However, due
to the limitations of numerical integration for higher-degree polynomials, alternative
basis functions are essential for exploiting higher stochastic moments.

Determining the non-stationary response relies on the Galerkin method, which
must account for the time-dependence of the probability density. The paper explores
two implementations. One approach utilizes a Boltzmann-type solution as the weight
function and Hermite polynomials as basis and test functions in the Galerkin approx-
imations. However, Hermite polynomials do not guarantee the non-negativity of the
estimated PDF. As an alternative, the exponential-polynomial closure method is re-
viewed. It employs a Gaussian-closure solution of the linearised system as the weight
function and exponential polynomials as basis and test functions. Based on exist-
ing literature, the EPC method is expected to outperform the previous approach.
A comparative analysis of these implementations will be addressed in future work.
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