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Abstract: The focus is put on the application of fuzzy sets and Dempster-
Shafer theory in assessing the nature and extent of uncertainty in the response
of M models that model the same phenomenon and depend on fuzzy input
data. Dempster-Shafer theory uses a weighted family of fixed sets called the
focal elements to evaluate the relationship between an arbitrarily chosen set
and the focal elements. It is proposed to create at least M weighted focal
elements on the basis of 1) the responses to fuzzy inputs to the models, and
2) the weights associated with the models. Four variants of this approach are
illustrated by academic examples.
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1. Introduction

In this contribution, the following situation is addressed: Let one phenomenon
be modeled by several models whose input parameters are uncertain. How can the
combined responses of the individual models be assessed and their trustworthiness
evaluated? In other words, what sort of uncertainty quantification can be applied to
the synergy of responses that originates from various models?

An uncertainty analysis applied to one model with uncertain inputs is quite com-
mon. Although the above multi-model situation is not frequent, it is not exceptional.
Take, for instance, 1D models of elastic beams. One can choose the Euler-Bernoulli
beam model, the Timoshenko(-Ehrenfest) model, or the less known nonlinear Gao
beam model [6, 8], see also [9]. The 1D models can always be confronted with 3D
models or, under special circumstances, with 2D models.

A large variety of models with uncertain input data offers the modeling of a long-
term behavior of concrete. They include a number of internationally recognized
models, national codes, and models proposed in academia, see [3].
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2. Elements of fuzzy set theory and evidence theory

Let us recall the three key concepts of fuzzy sets and their applications, namely
the membership function µA of a fuzzy interval A, the α-cut Aα of a fuzzy set A,
and Zadeh’s extension principle.

2.1. Fuzzy sets, membership functions, α-cuts

Let the membership function µA be a continuous and concave function that maps
a closed interval A = [a, b] onto the interval [0, 1]. For computational purposes, let
us limit ourselves to trapezoidal membership functions, i.e., piecewise linear func-
tions identifiable with ordered 4-tuples (a, c1, c2, b) ∈ R4, where µA(a) = 0 = µA(b),
µA(c1) = 1 = µA(c2), and R stands for the set of real numbers. A special, i.e.,
triangular case is obtained if c1 = c2.

The subsets of A defined through

Aα = {x ∈ A| µA(x) ≥ α}, (1)

where α ∈ [0, 1], are called the α-cuts of A.

Remark: The abovementioned concept of membership functions is simple and re-
strictive, but it is tailored to our future computational needs. Another advantage
lies in the fact that the existence of extremes is guaranteed, see (5) and (6), and that
we can replace suprema and infima by maxima and minima in the theory of fuzzy
sets. Nevertheless, a more general concept of fuzzy sets is common, see [5, 13], for
example.

Fuzzy intervals can easily be generalized to fuzzy n-dimensional rectangular par-
allelepiped A = A1 × A2 × · · · × An ⊂ Rn where each interval Ai is associated with
a membership function µAi and the fuzzy variables are mutually independent. Then
for each x = (x1, x2, . . . , xn) ∈ A, we can define

µA(x) = min{µA1(x1), µA2(x2), . . . , µAn(xn)}. (2)

We also observe that

∀α ∈ [0, 1] Aα = Aα1 × Aα2 × · · · × Aαn. (3)

Let g be a continuous function defined on a fuzzy set A (either A ⊂ R or a par-
allelepiped A ⊂ Rn) and mapping A to a range Rg,A. Zadeh’s extension principle
defines the way how to transfer the membership degree from x ∈ A to g(x) ∈ Rg,A.
In detail [13],

∀y ∈ Rg,A µRg,A(y) = max
{x∈A| g(x)=y}

µA(x). (4)

The original definition (4) is not computation-friendly. This is why we will use an
equivalent approach based on the fact that if the α-cuts Rα

g,A are known for all
α ∈ [0, 1] and if y ∈ Rg,A, then

µRg,A(y) = max{α ∈ [0, 1]| y ∈ Rα
g,A}. (5)
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It is not difficult to infer, see [10] or elsewhere, that

∀α ∈ [0, 1] Rα
g,A =

[
min
x∈Aα

g(x),max
x∈Aα

g(x)

]
. (6)

In other words, to obtain Rα
g,A, we have to solve worst-case and best-case scenario

problems (6).

2.2. Evidence theory, focal elements, Belief, Plausibility

The origin of the Dempster-Shafer theory of evidence [4, 11, 1, 12] can be traced
back to considerations about lower and upper bounds of probabilities. In our ap-
proach, we interpret the weights forming the basic probability assignment as the
amounts of trustworthiness assigned to fixed significant sets called focal elements,
see the next paragraphs.

To this end, we assume that a set S of chosen intervals I1, I2, . . . , Is is given
together with the weight map w : I 7→ (0, 1] where I ∈ S and

∑s
i=1w(Ii) = 1. In

the evidence theory, the intervals and the map are called the focal elements and the
basic probability assignment, respectively.

Two values can be associated with an arbitrary subset B ⊂ R, namely Belief and
Plausibility

Bel (B) =
∑

{I∈S : I⊆B}

w(I) and Pla (B) =
∑

{I∈S : I∩B 6=∅}

w(I). (7)

We observe that Bel (B) collects the weights of those focal elements that are fully
covered by B. That is, if these focal elements are outputs of some weighted models,
then B fully represents all of these outputs. In contrast, Pla (B) is less strict as it
allows for both full (subset) and partial (nonempty intersection) representation.

3. Uncertainty quantification in multi-modeling

The background idea is not new. It associates α-cuts of a fuzzy set with focal ele-
ments [2]. A rather straightforward modification leads to an application to responses
of several models. The method will be explained and illustrated on a particular ex-
ample.

Let us consider M = 3 models represented by the following respective functions

m1(p) = 7.3 + 0.02p3(p1p2)(p3+p4), m2(p) = 7.3 + 0.02p2(p1 + p3),

m3(p) = 6 + 0.4
p2p3p4

p1

,

where Np = 4 parameters form the vector p = (p1, p2, p3, p4). If p̂ = (1.2, 2.1, 1.5, 1.2),
then the response of all three models is roughly equal to 7.5 as is also indicated in
Figure 1, the details of which will be given later.
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Figure 1: Membership functions of fuzzy responses.

Let the input parameters pi, i = 1, . . . , Np, belong to intervals Ai ≡ A0
i provided

with membership functions µi. The product of the intervals forms the set A =
A1 × · · · × ANp .

Next, let each model be associated with a positive weight wi ∈ R such that∑M
j=1wj = 1.
In the following numerical examples, we use these membership functions

µ1 = p̂1(0.95, 0.99, 1.01, 1.05), µ2 = p̂2(0.9, 0.98, 1.02, 1.1),

µ3 = p̂3(0.92, 0.97, 1.01, 1.08), µ4 = p̂4(0.93, 0.99, 1.01, 1.05);

and the basic probability assignment defined as w1 = 0.25, w2 = 0.4, and w3 = 0.35.
The partial derivatives of mi allow us to conclude that the functions mi are mono-

tone in each pj on the supports Ai of the membership functions. As a consequence,
the extremes of mi are attained at the ends of the interval Aαi , thus solving (6) for var-
ious values of α is easy. Based on (6) with α = α` = `/Nα, ` = 0, 1, . . . , Nα, Nα = 4,
the approximate piecewise linear membership functions of the ranges of the models’
responses are depicted in Figure 1. The value of the quantity of interest (QoI) is
simply the scalar response of the models to the input data p ∈ A.

We are ready to introduce Algorithm 1:

Step 1: Fix α ∈ [0, 1] and infer the α-cut Aα by using (3) and the α-cuts Aαi ,
i = 1, . . . , Np.
Step 2: By setting g = mj and using (6), calculate Rα

mj ,A
, j = 1, . . . ,M .

Step 3: Interpret the intervals Rα
mj ,A

, j = 1, . . . ,M as focal elements with the
respective weights wj.
Step 4: Choose an interval B ⊂ R and calculate Bel (B) and Pla (B) by using (7)
where S = {Rα

mj ,A
}Mj=1.

Step 5: Repeat Step 4 several times with the aim to increase Bel and Pla and to
identify a set B that satisfactorily represents the joined responses of the models on
the level α.
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The algorithm needs some comments. First, the goal of Step 2 can be quite
challenging if the models (unlike our case) are not trivial. It may happen, for in-
stance, that pi are parameters of a problem driven by differential equations whose
solution is then post-processed to obtain a value of mi(p), a quantity of interest. As
a consequence, the minimization and maximization in (6) can be a difficult task.

Second, obtaining the weights wi is a delicate matter. Although measurement-
based approaches can be available, see [7] aiming at stochastic uncertainty, expert
opinion can often be a substantial, if not sole, source of information.

Third, the goal of Step 4 and Step 5 is to find an interval B that best characterizes
the ensemble of output intervals Rα

mj ,A
. It commonly happens that there is no such

“best” interval available. By taking a sufficiently large and appropriately positioned
interval B, we can obtain Bel (B) = 1 = Pla (B). The interval, however, might
be so large that its practical value as a representative of key models’ responses is
questionable. Although it shows the total extent of uncertain responses, it does
not indicate the subsets where the responses overlap, that is, the responses of at
least some models are not too distinct from each other. To identify such intervals,
shorter intervals B must also be tested by the focal elements. Again, the results
can prevent an unequivocal conclusion. Take, for instance, Bel (B1) < Bel (B2) and
Pla (B1) > Pla (B2) for some two intervals B1 and B2 of the same length.

If the number of the output intervals Rα
mj ,A

(i.e., output focal elements) is small,
then the analysis of their intersections and unions can lead to the sets maximizing
Belief and Plausibility. Such analysis is more and more challenging if the number
of output focal elements increases. Bel and Pla values calculated for a family of
intervals is then an option that offers both a general view and sufficiently accurate
information on the synergy of joint responses. This approach will be in the focus of
the next paragraphs.

We define intervals Bd
s,k = (a+ ks, a+ ks+ d) of the length d > 0. The position

of Bd
s,k is controlled by the fixed parameters a ∈ R and s ∈ R as well as by the

parameter k = 0, 1, . . . , K. The intervals Bd
s,k play the role of B in Algorithm 1.

Some results are depicted in Figure 2 where the points [a + ks, Y ] represent the
values Y = Bel (Bd

s,k) and Y = Pla (Bd
s,k). The parameters α and a are fixed to 0.5

and 6.8, respectively.
In the left graph, we observe that k = 15 and k = 19, 20, 21 indicate the intervals

that are worth attention. Although Pla ([7.45, 7.825]) = 1, Bel ([7.45, 7.825]) = 0
might suggests that the intervals with nonzero Belief could be a better represen-
tation of the combined responses since their Bel and Pla values are more balanced.
Similar ambiguity shows the right graph. The analyst can choose either the max-
imum of Pla with a rather low Bel value or the maximum of Bel accompanied by
a decreased Pla value. The interval Bd

s,15 = [7.5, 8.05] shows a balanced assessment
in both respects. Naturally, the use of longer intervals (d = 0.55) increases the Bel
value and increases the number of positions where Pla is equal to one.
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Figure 2: Algorithm 1. Bel (Bd
s,k) and Pla (Bd

s,k) for s = 0.05, d = 0.375 (left) and
s = 0.05, d = 0.55 (right).

3.1. Modifications of Algorithm 1

The standard definition (7) shows a shortcoming that becomes more visible es-
pecially in our application where we wish to assess the extent of joint responses of
the models. In (7), there is no difference between a very short intersection I ∩B and
a full set intersection; both cases are evaluated by the full weight w(I).

To take into account the relative extent of intersection, let us redefine Pla in (7)
as Planew

Bel (B) =
∑

{I∈S: I⊆B}

w(I) and Planew(B) =
∑

{I∈S: I∩B 6=∅}

w(I)
meas1(I ∩B)

meas1 I
(8)

where meas1 stands for the one-dimensional Lebesgue measure, which turns into the
length of intervals in our calculations.

Algorithm 2 coincides with Algorithm 1 except for
Step 4: Choose an interval B ⊂ R and calculate Bel (B) and Planew(B) by using (8)
where S = {Rα

mj ,A
}Mj=1.

We observe in Figure 3 that if d = 0.55, then the interval Bs
d,15 = [7.5, 8.05] is the

best representation of the joint model response on the uncertainty level α = 0.5. For
d = 0.375, the analyst would see the interval [7.7, 8.075] as the best representative
though its Planew does not reach the maximum. However, any increase in Planew is
paid for by the zero Bel value.

Both algorithms focus on uncertainty quantification in model responses restricted
to a fixed input uncertainty level, that is, α = 0.5 in our examples. By taking into
account all the α-cuts of the fuzzy inputs and by modifying the standard transfor-
mation [2] of one membership function to a set of focal elements, we arrive at an
extended set of focal elements with an associated basic probability assignment.
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Figure 3: Algorithm 2. Bel (Bd
s,k) and Planew(Bd

s,k) for s = 0.05, d = 0.375 (left)
and s = 0.05, d = 0.55 (right).

Algorithm 3:
Step 1: For α`, ` = 0, 1, . . . , Nα, infer the α`-cut Aα` by using (3) and the α`-cuts
Aα`i , ` = 0, 1, . . . , Nα.
Step 2: By setting g = mj and using (6), calculate Rα`

mj ,A
for j = 1, . . . ,M and

` = 0, 1, . . . , Nα.
Step 3: Interpret the intervals Rα`

mj ,A
as focal elements with the respective weights

wj/Nα.
Step 4: Choose an interval B ⊂ R and calculate Bel (B) and Pla (B) by using (7)
where S = {Rα`

mj ,A
}j=1,...,M ; `=0,...,Nα.

Step 5: Repeat Step 4 several times with the aim to increase Bel and Pla and to
identify an interval B that satisfactorily represents the joined responses of the models.
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Figure 4: Algorithm 3. Bel (Bd
s,k) and Pla (Bd

s,k) for s = 0.05, d = 0.375 (left) and
s = 0.05, d = 0.55 (right).

47



The output of Algorithm 3 is depicted in Figure 4. Although more information on
fuzzy inputs was taken into account, i.e., more focal elements entered the calculations,
the graphs do not offer a definite identification of the intervals that best characterize
the join models’ outputs. Owing to a rather strong gain in Bel and a not bad Pla
level, one would probably prefer [7.75, 8.125] over the other intervals in the d = 0.375
family. If d = 0.55, then [7.45, 8] and [7.5, 8.05] seem to be equal candidates because
the loss in Bel is compensated by the gain in Pla and vice versa.

Finally, we can modify Algorithm 3 to get Algorithm 4. To this end, we refer
to (8) instead to (7) in Step 4. The output of Algorithm 4 is depicted in Figure 5.
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Figure 5: Algorithm 4. Bel (Bd
s,k) and Planew(Bd

s,k) for s = 0.05, d = 0.375 (left)
and s = 0.05, d = 0.55 (right).

Now, clearer conclusions can be made than in the case of Figure 4. The intervals
[7.75, 8.125] and [7.5, 8.05] seem to guarantee the strongest combination of the Bel
and Pla assessments within the two sequences of intervals.

4. Comments and conclusions

The advantage of Algorithm 1 and Algorithm 3 is not only computational (they
use the lowest number of focal elements) but also analytical because the uncertainty
analysis is limited to a particular α-cut of input data. Although Algorithm 2 and
Algorithm 4 make use of a richer family of focal elements, the picture of a multi-model
synergy might not be clearer. Take, for instance, a high value of Bel (B) for some
interval B. Then, the questions arise: What is the cause? Does B cover a significant
number of focal elements originating in several models, or does B cover a high number
of focal elements belonging to only one model? Remember, that the focal elements
associated with one model mj, i.e., j fixed, form a chain of intervals for which
Rα1
mj ,A
⊂ Rα2

mj ,A
if α2 < α1.

The probabilistic background of the evidence theory has been neglected in our
exposition. Nevertheless, Planew in (8) could be interpreted as the probability that
the crisp model response uniformly distributed in the interval I also falls into the
interval B.
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The reader might propose a modification of Algorithm 2 and Algorithm 4: to
infer the focal elements of the models’ responses, reduce the range of alphas and use,
for instance, α = 0.5, α = 0.75, and α = 1. This would certainly be possible, but
we can get the same effect by reshaping the membership functions and considering
α = 0, α = 0.5, and α = 1. In this way, we obtain the standard Algorithm 2 and
Algorithm 4.

What final conclusions can be made? To identify the intervals that most agree
with multi-model responses, it is advisable to apply Algorithm 2 for various but
individual values of α, and then Algorithm 4. Sufficiently rich and fine sequences of
intervals determined by various values of s and d should be used in the analysis.
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