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Děkuji všem, kteří svýmz· náměty nebo radou přispěli při

zadávání themat úloh a při zpracování řešení úloh V. ročníku

matematické olympiady. Především děkuji dr M. Fiedlerovi, doc.

Jos. Holubářovi a Jiřímu Sedláčkovi, vědeckým pracovníkům

MÚČSAV. Poslední dva spolu s dr Zbyňkem Nádenikem

provedli pečlivě recensi a nemálo přispěli ke zlepšení textu
rukopisu. Dále ," děkuji svým přátelům doc. dr K. Hrušovi,

doc. Janu Vyšínovi, Fr. Veselému, prof. dr Jos. Metelkooi,
Jos. Filipovi za některá themata a podněty. Obrázky pečlivě

proo.dl Vl. Macháček, Poslovenštění části textu provedl doc.

dr Milan Kolibiar z Bratislavy, který také obětavě provedl
jazykovou korekturu slovenské části.

Zároveň omlouvám, že brožura vychází opožděně; tisk bylo nut­
no odložit, aby tiskárna mohla včas vytisknout pokusné učebnice.

Ruá. Zelinka.

Za přispění spolupracovníků zpracoval Rud. Zelinka.



Ústřední výbor
Ш’и:: i civ::
115 67 Proha 1, Žitná 25

telefon 22 6ó 01-3

*3Y

I. К PRŮBĚHU V. ROČNÍKU MATEMATICKÉ
OLYMPIÁDY

1. Soutěž matematická olympiáda se konala ve školním
roce 1955/56 na našich všeobecně vzdělávacích a výběrových
odborných školách již po páté.

Byla opět rozdělena podle připravenosti žáků do čtyř kate-
gorií А, В, C, D. V kategorii A soutěžili žáci 11. ročníků vše-
obecně vzdělávacích škol a žáci 3. a 4. ročníků výběrových
škol odborných. V kategorii В soutěžili žáci 10. ročníků vše-
obecně vzdělávacích škol a žáci 2. ročníků výběrových odbor-
ných škol. V kategorii C soutěžili žáci 9. ročníků všeobecně
vzdělávacích škol a žáci 1. ročníků výběrových škol odborných.
V kategorii D soutěžili žáci 8. ročníků všeobecně vzdělávacích
škol.

2. Pořadatelem soutěže bylo ministerstvo školství a kultury
ve spolupráci s matematickým ústavem Československé aka-
demie věd (MÚČSAV) a s Ústředním výborem Českosloven-
ského svazu mládeže (ČSM). Soutěž řídil Ústřední výbor ma-
tematické olympiády (ÚVMO) spolu s Krajskými a Okresními
výbory matematické olympiády (KVMO, OVMO). Krajské
výbory MO v jednotlivých krajích obstarávaly záležitosti kate-
gorií А, В, C. Okresní výbory MO se staraly ve svých okresech
o kategorii D, při čemž v rámci kraje o tuto soutěž pečoval
příslušný Krajský výbor MO.
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Ústřední výbor МО (adresa: Praha II, Žitná 25, tel.
24-11-93) byl složen takto:

Předseda: Akademik Josef Novák.
Místopředseda: Akademik SAV Jur Hronec, profesor přírodo-

vědecké fakulty university J. A. Komenského v Bra-
tislavě.

Jednatel: RudolfZelinka, vědecký pracovník MÚČSAV v Praze.

Členové:
Anton Dubec, docent vysoké školy pedagogické v Brati-

slavě.
Ludmila Frantíkové, učitelka jedenáctileté střední školy

v Dačicích.
Dr Karel Havlíček, docent matematicko-fysikální fakulty

Karlovy university v Praze.
Doc. Josef Holubář, vědecký pracovník MÚČSAV v Praze.
František Hradecký, odborný asistent vysoké školy peda-

gogické v Praze.
Dr Karel Hruša, docent vysoké školy pedagogické v Praze.
Miloš Jelínek, ústřední inspektor ministerstva školství

a kultury v Praze.
Dr Milan Kolibiar, docent přírodovědecké fakulty uni-

versity J. A. Komenského v Bratislavě.
Josef Krchňavý, učitel 2. jedenáctileté střední školy v Ко-

šicích.
Dr Josef Pírek, učitel osmileté střední školy v Brně,

Křídlovická id.
Viťazoslav Repáš, pracovník poverenictva školství v Bra-

tislavě.
Miroslav Šmidák, referent oddělení studující mládeže

v Ústředním výboru ČSM v Praze.
Dr Miloslav Zedek, odborný asistent vysoké školy pedago-

gické v Olomouci.
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Předsedy krajských výborů matematické olympiády byli:

Dr Josef Korous, docent vysoké školy železniční v Praze
(město Praha).

Ema Kasková, učitelka jedenáctileté střední školy v Bran-
dýse n. Labem (kraj Pražský)/

František Vejsada, učitel 2. jedenáctileté střední školy
v Českých Budějovicích (kraj Budějovický).

Stanislav Koppellent, vedoucí kabinetu matematiky Kraj-
ského ústavu pro další vzdělání učitelů v Plzni (kraj
Plzeňský).

František Jenšík, vedoucí školského odboru rady KNV
v Karlových Varech (kraj Karlovarský).

Josef Porcal} učitel pedagogické školy
Ústecký).

Zdeněk Kalousek, učitel pedagogické školy v Liberci (kraj
Liberecký).

Josef Mencl, učitel pedagogické školy v Hradci Králové
(kraj Hradecký).

Dr Josef Honzák, učitel jedenáctileté střední školy v Par-
dubicích (kraj Pardubický).

Josef Svoboda, učitel jedenáctileté střední školy v Třebíči
(kraj Jihlavský).

Vladimír Štefl, krajský školní inspektor v Brně (kraj
Brněnsky).

Dr Josef Široký,
gické v Olomouci (kraj Olomoucký).

Leo Krakówka, učitel průmyslové školy strojnické v Gott-
waldově (kraj Gottwaldovský).

Dr Alfons Hyška, docent vysoké školy báňské v Ostravě
(kraj Ostravský).

Josef Kroupa, učitel 2. jedenáctileté střední školy v Brati-
slavě (město Bratislava).

Dr Milan Kolibiar3 docent přírodovědecké fakulty uni-
versity J. A. Komenského v Bratislavě (kraj Bratislavský).

v Teplicích (kraj

odborný asistent vysoké školy pedago-
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Josef Drábik, učitel jedenáctileté střední školy v Nitře
(kraj Nitranský).

Dr Cyril Palaj, profesor vysoké lesní a dřevařské školy
ve Zvolenu (kraj Banskobystrický).

Ladislav Berger, učitel jedenáctileté střední školy v Žilině
(kraj Žilinský).

Dr Ján Jakubík, docent vysoké školy strojní v Košicích
(kraj Košický).

Dr Ernest Jucovič, odborný asistent vyšší pedagogické
školy v Prešově (kraj Prešovský); později Andrej Strečko,
odborný asistent téže školy.

3. Soutěž v kategoriích В, C, D měla kola I a II a v kategorii
A kola I, II a III.

Soutěž I. kola probíhala v době od listopadu 1955 do po-
čátku března 1956; měla úkol přípravný a studijní. Podle orga-
nisačního řádu musil řešitel rozřešit alespoň dobře sedm
z dvanácti zadaných úloh, aby mohl dále soutěžit ve II. kole.
Úlohy byly otištěny na zvláštních letácích; pro slovenské
kraje měly letáky slovenský text. O propagaci soutěže a o od-
bornou pomoc žákům se starali školní referenti matematické
olympiády z řad učitelů matematiky.

4. Úspěšní řešitelé I. kola postoupili do II. kola soutěže;
toto kolo je závěrečné pro kategorie B, C a D. Úspěšným ře-
šitelem II. kola se stává ve všech kategoriích žák, který během
čtyř hodin rozřeší alespoň dobře nejméně dvě ze čtyř zadaných
úloh. Při tom se soutěž II. kola v kategoriích А, В a C konala
v krajských městech, kdežto soutěž v kategorii D v městech
okresních.

Soutěž II. kola se konala v neděli 15. dubna 1956. Při této

příležitosti uspořádaly výbory matematické olympiády pro
účastníky soutěže besedy a navštívili s nimi různé kulturní
podniky, továrny a podobně. Na besedách zpravidla seznámili
žáky s nejzávažnějšími nedostatky v žákovských řešeních
I. kola. Hostitelské úkoly a pedagogický dozor vykonávali vedle
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členů výborů МО zástupci školských odborů rad KNV a ONV
a dále zástupci krajských a okresních výborů ČSM.

5. Celostátní III. kolo soutěže určené pro úspěšné řešitele
II. kola kategorie A se konalo dopoledne v sobotu 2. června
1956 v matematickém ústavu matematicko-fysikální fakulty
Karlovy university v Praze II, Ke Karlovu 3. Soutěže se
účastnilo 77 nejlepších řešitelů II. kola; z 80 vybraných ře-
šitelů se nedostavily 3 žákyně. Mezi účastníky byl výjimečně f
též žák z 10. ročníku jedenáctileté střední školy, který se účastnil
soutěže v obou kategoriích A, B. Úspěšným řešitelem III. kola
stejně jako ve II. kole se stává žák, který během čtyř hodin
rozřeší alespoň dobře nejméně dvě ze čtyř zadaných úloh.
Dvacet nejlepších úspěšných řešitelů III. kola je podle organi-
sačního řádu soutěže prohlášeno za vítěze příslušného ročníku
soutěže.

Po provedení soutěže III. kola se téhož dne o 15. hodině ve
velké posluchárně matematického ústavu matematicko-fysi-
kální fakulty Karlovy university konala beseda s účastníky sou-
těže. Besedy se též účastnili zástupci středních a vysokých
škol a dále žáci těchto škol.

Předseda akademik Novák zahájil besedu stručným zhodno-
cením jubilejního V. ročníku soutěže. Konstatoval, že Ústřední
výbor matematické olympiády, aby zabránil přetěžování účast-
níků soutěže, rozhodl, že od V. ročníku soutěže počínajíc, bude
v I. kole zadáváno jen 12 úloh místo dosavadních šestnácti;
řešitel jich pro postup do II. kola musí rozřešit alespoň dobře
nejméně sedm místo dosavadních devíti. Potom akademik
Novák uvedl některé statistické údaje a porovnání s předchozím
IV. ročníkem MO. Počet účastníků v I. kole soutěže v kategoriích
A až C vzrostl skoro na 7000 proti 4500 účastníků ve IV. ročníku,
což je přírůstek o 54 %; tento přírůstek se týká zvláště kategorií A •

a C, ačkoliv již v ročníku IV. přibylo značné procento (25,5 %)
účastníků v kategorii В a právě tito účastníci v V. ročníku
soutěžili v kategorii A. Počet účastníků I. kola v kategorii D
vzrostl z 9000 ve IV. ročníku na 13 000 v V. ročníku, což je
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přírůstek asi o 47 %. Tato čísla svědčí o tom, že se soutěž
vžívá a získává tradici. Přitom Ústřední výbor spolu se škol-
skými pracovníky vždycky upozorňují, že soutěž je výběrová
a dobrovolná a účast v ní musí být pro žáka vyznamenáním.
Předseda akademik Novák pak poděkoval všem žákům za vy-
trvalou práci v soutěži a svůj dík jménem Ústředního výboru
MO vyslovil všem pracovníkům v Krajských a Okresních vý-
borech MO a zvláště pak učitelům matematiky a školním refe-
rentům MO.

V dalším programu promluvil s. Anton Dubec, docent
Vysoké školy pedagogické v Bratislavě. Ukázal, jakým způ-
sobem pomáhal organisovat soutěž, jak vychovával své žáky a
informoval přítomné o tom, jak olympiádu oceňují někteří její
někdejší účastníci, nynější posluchači vysokých škol.

Dále promluvil s. Josef Andrys, vedoucí kabinetu matema-
tiky Krajského ústavu pro další vzdělávání učitelův Ostravě.
Referoval jako jednatel Krajského výboru MO v Ostravě
o způsobech, jak tento Krajský výbor MO informoval a po-
učoval účastníky soutěže o chybách, jež se vyskytly v jejich
řešeních. Protože počet účastníků proti minulým letům velmi
vzrostl, nebylo dobře možné žáky svolávat na instruktáže.
Proto ostravský Krajský výbor shromáždil po recensi každé
úlohy všechny připomínky recensentů, roztřídil je a sestavil
instrukce pro žáky; tyto instrukce byly cyklostylem rozmno-
ženy a zaslány na školy s žádostí, aby o nich učitelé s účastníky
soutěže uspořádali besedu.*)

O žákovských řešeních úloh II. a III. kola kategorie A pro-
mluvil s. Rudolf Zelinka, jednatel Ústředního výboru MO.
Zabýval se zvláště typickými chybami a poukázal na to, že
velké nedostatky jsou v řešeních geometrických úloh; ukazuje
se, že tu žáci vůbec nezachovávají obvyklý postup řešení, takže
tato řešení jsou hrubě neúplná.

*) Rozšířený úsek z tohoto projevu vyšel v čísle 1, časopisu Mate-
matika ve škole, roč. 1957, str. 38.
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Za České vysoké učení technické v Praze na thema „Význam
a cíle výuky matematiky v inženýrském studiu" pronesl projev
s. profesor Dr Václav Pleskot.*) Vysvětlil, proč se na některých
fakultách vysokých škol technických vyučuje matematice ve
dvou etapách. První etapa je základní kurs na počátku inže-
nýrského studia; druhá etapa je nástavbová a patří do závěreč-
ných semestrů inženýrského studia. V základním studiu se
student seznamuje s přesnou formulací matematických pojmů
a matematických výroků, aby pochopil důkazy a rozvíjel své
logické myšlení. Dále se tu posluchač učí matematicky myslet,
aby uměl matematicky formulovat přírodovědecké a technické
problémy, a to v souvislosti s ostatními vědeckými disciplinami,
s nimiž se seznamuje. Při tom znalost matematiky ovlivňuje
u posluchačů při studiu technických věd pracovní metody a
nemálo přispívá к vytváření vědeckého světového názoru
posluchačů.

Ke konci svého výkladu vyzval profesor Pleskot přítomné
olympioniky, aby přišli studovat technické vědy a svým na-
dáním a zdatností pomáhali zlepšovat díla našeho průmyslu.

Na závěr besedy se konala diskuse, při níž promluvila jednak
řada olympioniků a jednak akademici a profesoři vysokých škol,
na besedě přítomní. Mluvilo se o významu studia deskriptivní
geometrie na střední škole pro rozvoj prostorové představivosti
a pro hlubší studium stereometrie vůbec. Olympionici oceňovali
zvláště to, že se v průběhu olympiády hlouběji seznámili nejen
s prováděním důkazů v matematice, ale i s významem diskuse
řešitelnosti úloh; jeden konstatoval, že se s řadou těchto pojmů
seznámil teprve v průběhu soutěže.

Dále se diskutovalo o tom, jakým způsobem by měli být
řešitelé seznamováni se správnými řešeními a jak je informo-
vat o nedostatcích'řešení. Pak poděkoval akademik Josef Novák
ministerstvu školství a kultury za všechnu pomoc při uskuteč-

*) Úplné znění tohoto projevu najdete v 9. čísle časopisu Matema-
tiká ve škole, roč. 1956, str. 557.
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ňování soutěže, zvláště s. Miloši Jelínkovi, ústřednímu in-
spektoru MŠK; dále děkoval všem, kteří se o zdar soutěže
přičinili. Svůj dík pak adresoval též do řad olympioniků a to
i těm, kteří nebyli na besedě přítomni.

Beseda byla velmi zdařilá, zvláště ve své poslední části.
^ Po besedě navštívili olympionici některá pražská divadla.

Ústřední výbor ČSM umožnil mimopražským olympionikům
prohlídku hlavního města Prahy a jeho památek. Vedle zá-
stupců Ústředního výboru ČSM, hostitelské úkoly a organi-

Tabulka č. 1.

Přehled účastníků I. kola podle krajů v kategoriích А, В, C.*)

Kat. A Kat. В Kat. C Celkem
Kraj

P U P U P u P и

Praha
České Budějo-

více
Plzeň
Karlovy Vary
Ústí n. L.
Liberec
Hradec Králové
Pardubice
Jihlava
Brno
Olomouc
Gottwaldov
Ostrava
Bratislava
Nitra
Banská Bystrica
Žilina
Košice
Prešov

168 47 44 596 139161 26748

116 42 526 7514 25519 155
201 6356 19 85 1925 60

30 13 36 7 95 3313 29
38 60 7 143 2945 166
41 11 11 137 286 5145
91 25 302 8636 14325 68

177 3132 10 108 156 37
83 111 39 332 6511 138 15

73 614 176162 187 57 26546
399 13491 26 132 49 176 59

91305 21 611124 16 182 54
567 185279 86151 53 137 46

406 23 816 58246 26 164 9
7 252 2414 7369 3 110

31120 19 4986 10 14976
152 27 432 92121 159 3728
73 4 181 71 242 66

13 265 2113134 3 100 5

Celkem 1781 376 2051 469 3125 j 541 6957 1386

*) P = celkový počet účastníků, U = počet úspěšných řešitelů.
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sační záležitosti obětavě konala s. Dr Ludmila Městková ze

školského odboru rady ÚNV v Praze.

П. ZPRÁVA O VÝSLEDCÍCH JEDNOTLIVÝCH
KOL SOUTĚŽE

A. Soutěž I. kola.

O počtu účastníků a o počtu úspěšných řešitelů soutěže
I. kola v kategoriích А, В, C informuje tabulka č. 1, o účasti
v kategorii D pak tabulka č. 2.

Tabulka č. 2.

Přehled účastníků I. kola podle krajů v kategorii D.

Kategorie D
Kraj

UP

Praha
České Budějovice
Plzeň
Karlovy Vary
Ostí nad Labem
Liberec
Hradec Králové
Pardubice
Jihlava
Brno
Olomouc
Gottwaldov
Ostrava
Bratislava
Nitra
Banská Bystrica
Žilina
Košice
Prešov

1851 998
6831459
362640

359 146
600 184
707 429
329 172
429 251
605 345

1087 552
802 403
952 593

1449 615
381 191
228 50
499 209
501 224
182 86
263 167

Celkem 13 323 6660
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Značný přírůstek v počtu účastníků I. kola v kategoriích
А, В, C proti IV. ročníku MO se jeví v krajích Budějovickém,
Libereckém, Brněnském, Olomouckém, Gottwaldovském,
Ostravském, Bratislavském, Banskobystrickém, Žilinském a
Prešovském. To se jeví i v počtu úspěšných řešitelů I. kola.
Procento počtu úspěšných řešitelů vzhledem к počtu všech
účastníků I. kola kategorií А, В, C je v obou ročnících 20 %,
kdežto v kategorii D stoupl z 31 % na 50 %; tento značný pří-
růstek dlužno též hledat v tom, že požadavky na tuto kategorii
byly tentokrát menší.

V jednotlivých kategoriích se jeví tyto přírůstky v počtu
řešitelů proti předchozímu ročníku: kategorie A o 103 %,
kategorie В o 6 % (zde byl v předchozím ročníku mimořádně
velký přírůstek 255 %), kategorie C o 85 % a kategorie D
o 47 %. Při tom však úspěšných řešitelů I. kola je v některých
krajích dosud stále málo.

Dosud je stále slabá účast žáků průmyslových škol. Přesto
z devíti řešitelů III. kola, studujících na těchto školách, je
sedm úspěšných; žádný se však tentokrát nezařadil mezi ví-
těže.

Počet dívek mezi účastníky I. kola v kategoriích А, В, C
je asi 30 %, v kategorii D asi 50 %, tedy týž jako v předchozím
ročníku. Stejná jsou i procenta úspěšných řešitelek I. kola
vzhledem к celkovému počtu úspěšných řešitelů I. kola.

Krajské výbory MO zrecensovaly v I. kole celkem 40 000
žákovských řešení z kategorií А, В, C, z čehož bylo asi 24 000
řešení úspěšných, t. j. 60 %. Okresní výbory MO zrencenso-
vály asi 96 000 řešení I: kola kategorie D, z čehož bylo asi
78 000 řešení úspěšných, t. j. 81 %.

B. Soutěž П. kola.

Tabulka č. 3 podává informaci o kategoriích А, В, C a ta-
bulka č. 4 o kategorii D.
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Tabulka č. 3.

Přehled účastníků II. kola podle krajů v kategoriích А, В, C.*)

Kat. C CelkemKat. ВKat. A
Kraj

Uu p и pи pp

13 42 15 126 5426 39Praha
české

Budějovice
Plzeň
Karlovy Vary
Ústí n. L.
Liberec
Hradec Králové
Pardubice
Jihlava
Brno
Olomouc
Gottwaldov
Ostrava
Bratislava
Nitra
Banská

Bystrica
Žilina
Košice
Prešov

45

2039 11 70318 136
3 56 238 1622 1812

20312 7 613 1112
41 291 72 166

11 2 28 911 364
17 5321 25 863625 15

1611 * 292 14105 3
23 3826 466119 9

167 6715 2441 28 6957
431411 57 1274426 18
232 8216 184816 5
8014 78 31 17535 4552

1 53 1210 1 221021
24 85 7 21 143

174317 710 1610
80 311531 8 2425 8

072 41
2 19 41 1252 1

130 187 1278 522Celkem 351 205 432 495

*) P = celkový počet účastníků, U = počet úspěšných řešitelů.

V kategoriích А, В, C je asi 41 % úspěšných řešitelů II. kola,
při čemž v kategorii A je 58 % úspěšných řešitelů. Tato čísla
jsou nižší než v předchozím ročníku, zvláště v kategorii B;
to lze částečně vysvětlit zvětšením počtu účastníků při nižší
jejich vyspělosti a snad i tím, že některé úlohy byly obtížnější.
Úspěšných řešitelek v kategoriích А, В, C je asi 20 % z celko-
vého počtu úspěšných řešitelů.
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Tabulka č. 4.

Přehled účastníků II. kola podle krajů v kategorii D.

Kategorie D
Kraj

P U

Praha
České Budějovice
Plzeň
Karlovy Vary
Ústí nad Labem
Liberec
Hradec Králové
Pardubice
Jihlava
Brno
Olomouc
Gottwaldov
Ostrava
Bratislava
Nitra
Banská Bystrica
Žilina
Košice
Prešov

840 762
546 399
317 239
130 118

113165
390 317
148 96
215 182
296 246
498 424
368 271
530 455

379539
160 134
129 93
184 155
222 175

63 49
130 104

Celkem 5870 4711

V kategorii D je asi 80 % úspěšných řešitelů (o 7 % více než
v předchozím ročníku). Zdá se, že by v této kategorii při po-
měrně snadných úlohách mělo být vzato ostřejší měřítko při
jejich klasifikaci. Je tu možno pozorovat značné rozdíly v pro-
centech úspěšných řešitelů mezi jednotlivými kraji. Úspěšných
řešitel *k tu je skoro 50 % z celkového počtu úspěšných řešitelů.
Procenta úspěšných řešitelek jsou táž jako v předchozím roč-
niku.

V kategoriích А, В, C bylo podáno v II. kole asi 3900 řeše-
ných úloh, z nichž bylo 1700 úspěšných (t. j. 44 %); v kategorii
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D bylo podáno asi 21 000 řešených úloh, z čehož bylo přes
15 000 úspěšných (t. j. 73 %).

Podle organisačního řádu soutěže dostalo 10 nejlepších
řešitelů v kraji v každé z kategorií А, В, C věcnou i peněžitou
cenu. V každém okrese bylo odměněno 10 nejlepších řešitelů
kategorie D věcnou cenou. Všichni úspěšní řešitelé obdrželi
od svého výboru MO zvláštní pochvalné uznání.

Pořadí úspěšných řešitelů II. kola v kategoriích B3 C

J = jedenáctiletá střední škola, kterou zpravidla neuvádíme;
P = průmyslová škola; Pg = pedagogická škola*)

Praha město

B. Fr. Kobliha, l.J, Praha 1; Jaroslav Jeřábek, 7.J, Praha 7;
Karel Kosman, 7.J, Praha 7; Petr Adámek, 7.J, Praha 7; Ja-
roslav Lukeš, 2l.J, Praha 16; Jindřich Bůcha, 2l.J, Praha 16;
Blahoslav Čermák, 7.J, Praha 7; Josef Novák, 14.J, Praha 12;
Věra Folcová, 17.J, Praha 14; Slavomír Černý, 12.J, Praha 11.

C. Jiří Hostomský, 17.J, Praha 14; Kamil Wichterle, 6.J,
Praha 6; Julie Baštecká, 20.J, Praha 16; J. Jersák, 17.J, Praha 14;
Karel Rohlena, 6.J, Praha 6; Josef Šedivý, 6.J, Praha 6; Jana
Křivková, 18.J, Praha 14; Jiří Míček, 8.J, Praha 7; Viktor
Konopásek, 13.J, Praha 11; Rud. Krautstengl, 6.J, Praha 6.

Pražský kraj
B. Vratislav Šteiner, Brandýs n. L.; V. Postřihač, Vlašim;

V. Eliáš, Brandýs n. L.
C. Oldřich Vašíček, Radotín.

Kraj Budějovický
B. Fr. Tydlitát, Písek; Václav Panuška, 2.J, České Budějo-

vice; Marie Švábová, Tábor.

*) Uvádíme nejvýše prvních 10 jmen.

15



C. Jiřina Fidlerová, 2.J, České Budějovice; Václav Struska,
2.J, České Budějovice; Josef Houška, 2.J, České Budějovice;
Emil Linhart, Tábor; Jana Janů, Tábor; Jan Fiala, 2.J, České
Budějovice; V. Fišer, Strakonice; Pavel Pudil, Jindřichův
Hradec; M. Marek, Písek; Zdeněk Valeš, l.J, České Budějo-
vice.

Kraj Plzeňský
B. Milan Brejcha, l.J, Plzeň; Štěpán Rusňák, 2.J, Plzeň;

Josef Rosenberg, 2.J, Plzeň; Jiří Veselý, l.J, Plzeň; Eva Zá-
vodská, Domažlice; Václav Klíma, l.J, Plzeň; Jiří Ruml,
2.J, Plzeň; Václav Hajšman, 3.J, Plzeň.

C. Ladislav Ližan, 2.J, Plzeň; Miroslava Hajšmanová, 2.J,
Plzeň; Václav Krýsl, Pg, Plzeň.

Kraj Karlovarský
B. Ivan Santar, Karlovy Vary; Jan Vebr, Karlovy Vary.
C. Vlastimil Hanuš, Cheb; Jana Žáčková, Karlovy Vary;

Jaroslav Vacík, Kraslice; Julius Kolář, Cheb; Jan Jelínek,
Sokolov; Jaroslav Kohout, Cheb.

Kraj Ústecký
B. Pavel Kučera, l.J, Teplice.
C. Michal Štelmák, 2.J, Teplice.

Kraj Liberecký
B. Bohumil Lněnička, Mimoň; Karel Žižka, l.J, Liberec;

Karel Záleský, 2.J, Liberec-Růžodol.
C. Fr. Hanitz, Doksy; Josef Pomrhonc, Turnov.

Kraj Hradecký
B. Ladislav Mikysa, Kostelec n. O.; Josef Sršeň, Králíky;

Václav Černý, Králíky; Josef Hakl, Jičín; Manfred John,
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Trutnov; Petr Zimmel, Trutnov; Václav Žalský, Jičín; Irena
Hampelová, Trutnov; Jaroslava Nováková, Jičín; Stanislav
Hackl, Jičín.

C. Zdeněk Vobořil, Dvůr Králové; Pavel Novák, Broumov;
Zdeněk Vlásek, Hradec Králové; Karel Šípek, Trutnov; Petr
Šolta, Broumov; Josef Novotný, Trutnov; Jaroslav Toman,
Trutnov; Jaroslav Střítecký, Dobruška; Emil Matýska, Trut-
nov; Josef Šejnoha, Nová Рака.

Kraj Pardubický
B. Jiří Pochobradský, Pardubice; Drahomíra Chládková,

Polička.
C. Břetislav Fiala, Česká Třebová; Pavel Aksamit, Pardubice;

Josef Jinoch, Vysoké Mýto; Bohumil Skalický, Ústí n. O.;
Jiří Erbes, Polička; Stanislav Uher, Lanškroun; Jiří Moser,
Lanškroun; Jiří Kašpar, Pardubice; Božena Radová, Čáslav;
Jindřich Kind, Polička.

Kraj Jihlavský
B. Gabriela Pospichalová, Telč; Bohumil Kejnovský, Třebíč;

Pavla Kunderová, Třebíč; VI. Štěpánková, Pacov; Karel Mikeš,
Telč; Eva Mikulová, Třebíč.

C. Leopold Kroupa, Třebíč; Hana Kršková, Třebíč; Kamil
Levý, Telč; Milan Růžička, Třebíč; Marie Kadaňková, Třebíč;
Jan Zahrádka, Třebíč; Jiljí Lorenc, Třebíč; Jan Přenosil, Pel-
hřimov; Jiří Herman, Ledeč n. S.; Pavel Воск, Třebíč.

Kraj Brněnský
B. Petr Hájíček, Brno, Mendlovo nám.; Jan Florian, Bu-

čovice; Karel Handlíř, Bučovice; Josef Staněk, Boskovice;
Jaromír Jun, Hustopeče; Marie Kolářová, Hustopeče; Jar-
milá Mazlová, Hustopeče; Jan Hlavoň, Hustopeče; Marie Pro-
kešová, Hustopeče; Miloslav Němec, Mikulov.
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C. Jaroslav Petrů), Brno; Petr Páč, Brno, tř. kpt. Jaroše;
Jiří Jančařík, Boskovice; Bohumil Vkch, Brno, Antcnínská;
Jan Zezula, Brno, tř. kpt. Jaroše; Václav Dvořák, Brno, Tábor;
Bořivoj Milion, Brno, Královo Pole; Libor Jetelinka, Břeclav;
Vojtěch Bartík, Znojmo; Alexandr Siňavský, Blansko.

Kraj Olomoucký
B. Adolf Karger, Šumperk; Dana Hrdličková, Hranice;

Jarmila Cenklová, Litovel; Bohumír Zdražil, P, Prostějov;
Alois Kučera, l.J, Olomouc; Josef Vavrouch, l.J, Olomouc;
Svatava Slezáková, l.J, Olomouc; Jana Hradilová, l.J, Olo-
mouč; Eva Jirásková, l.J, Olomouc; Vítek Losenický, l.J,
Olomouc.

C. Jan Pospíšil, Litovel; Jaroslav Střeštík, Litovel; Andělo-
slav Srovnal, Zábřeh; Pavel Sedláček, l.J, Olomouc; Stanislav
Sýkora, Bruntál; Jan Batěk, Prostějov; Václav Jelínek, l.J,
Olomouc; Jiří Hrabal, l.J, Olomouc; Vladimír Znojil, Prostě-
jov; Jan Šimánek, l.J, Olomouc.

Kraj Gottwaldovský
B. Vladislav Svačina, Vsetín; Zdeněk Motyčka, Gottwaldov;

Jaroslav Tomčík, P elektrotechnická, Rožnov p. R.; Jarmila
Hábová, Strážnice; Jiří Maláč, Gottwaldov; Jan Jiřička,
Uherské Hradiště; František Žůrek, Pg, Kroměříž; Jiří Vlček,
Gottwaldov; Jaroslav Janota, Uherský Brod; Antonín Valenta,
Gottwaldov.

C. Zdislav Kovařík, 8. roč. osmiletky, Hodonín; Pavel
Šmerk, Kyjov.

Kraj Ostravský
B. Petr Vicherek, Ostrava VIII; Jan Kořenovský, Nový

Jičín; Tomáš Skotnica, Ostrava VIII; Karel Najzar, Ostrava
VII; Alois Nečas, P, Ostrava VII; Jiří Doležal, Ostrava I;
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Jiří Prokop, Ostrava VIII; Petr Králíček, Ostrava I; Miroslav
Kubičík, Bílovec; Jaromír Jandl, Ostrava I.

C. Marie Snovnalová, Ostrava I; Jan Urban, Opava; Miroslav
Klvaňa, Ostrava II; Jiří Rašner, Místek; Jitka Nekolová,
Ostrava I; Jana Hennerová, Bohumín; Alena Klabanová,
Bohumín; Krista Žáčkové, Nový Jičín; Josef Novák, Opava;
Věra Juchelková, Bohumín.

Bratislava město

B. Ludovít Fischer, Bratislava.
C. Ivan Lexa, Bratislava.

Kraj Nitranský
B. Július Hlaváčka, Nitra; Jozef Čavojec, Prievidza; Ján

Havránek, Nitra; Arpád Kečkéš, Levice; Tibor Polák, Nové
Zámky.

C. Pavol Baláž, Levice; Gizela Raczová, Levice.

Kraj Banskobystrický
C. Greta Lakatová, B. Štiavnica; Marta Bukovinská, Ban.

Štiavnica; Marcela Toroková, B. Štiavnica; Kartusek Slávo-
mír, B. Štiavnica; Ján Krajcer, Zvolen; Arpád Cudor, Lu-
čenec; Štefan Lakatos, Lučenec.

Kraj Žilinský
B. Janka Krivošová, Ružomberok; Stanislav Kuchyňa, Ru-

žomberok; Jindřich Loňský, Ružomberok; Štef. Paullová,
Kláštor p. Z.; Jaroslav Lettrich, Kláštor p. Z.; Milan Matuška,
Ružomberok; Lúdovít Molnár, Ružomberok.

C. Fero Turanský, L. Mikuláš; Jozef Zelenka, Martin;
Margita Bergerová, Žilina; Bohuš Jurkovič, Mikuláš; Ján
Dragula, Ružomberok; Jozef Špánik, L. Mikuláš; Ludmila
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Kubišová, Kláštor p. Zn.; Rastislav Kubiš, Kláštor p. Zn.;
Michal Jánošík, Bytča; Peter Krivoš, L. Mikuláš.

Kraj Prešovský
B. Jozef Bárdoš, Sabinov.
C. Hedviga Straková, Prešov; Miloš Liberko, Vranov.

C. Soutěž 1П. kola.

Do III. kola bylo přihlášeno 185 úspěšných řešitelů II.
kola kategorie A; jeden z nich byl z 10. ročníku jedenáctileté
střední školy. Po výběrovém řízení, které provedla zvláštní
komise ÚVMO, bylo podle organisačního řádu soutěže vy-
bráno 80 žáků pro soutěž III. kola; mezi nimi bylo devět dívek,
z nichž se 3 к soutěži nedostavily. Soutěže se tedy účastnilo
77 žáků.

Podmínkám soutěže vyhovělo 34 účastníků; mezi nimi jsou
2 dívky. Bylo odevzdáno 185 úspěšných řešení (tedy asi 60 %
z celkového počtu). Nejlepších 20 řešitelů podle organisačního
řádu soutěže bylo prohlášeno za vítěze V. ročníku matematické
olympiády. Jejich jmenný seznam uvádíme. (Jde vesměs o žáky
jedenáctiletých středních škol.)

Vítězové V. ročníku MO.

1. Břetislav Novák, 11b tř.
2. Pavel Doktor, 11. tř. 4. JSS, Praha 4, Nad Kavalírkou 100.
3. Lumír Forejt, 11. tř. J., Radotín u Prahy.
4. Jiří Kadlec, 11. tř. J., Bystřice nad Pern.
5. Leo Bukovský, lid tř. J., Lučenec.
6. Lubomír Ohera, 11b tř. J., Znojmo.
7. Jaroslav Nadrchal, 11b tř. J., Telč IV.
8. Aleš Pultr, lid tř. 6. J, Praha 6 — Bílá ul. 1.
9. Jaroslav Polák3 11a tř. J., Blansko (narozen 29. X. 1938).10.Otto Leminger3 11. tř. 1. J., Ústí nad Labem-Střekov.

., Chrudim.Js
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11. Vladimir Hnatowitz, 11a tř. 16. J, Praha 13, Kodaňská 16.
12. Miroslav Chlumský, 10a tř. J., Třebíč.
13. Zdeněk Brandi, 11a tř. J., Benešov u Prahy.

'

14. Miloš Dostál, 11a tř. 20. J., Praha XVL, N. Belojanise 3.
15. Ladislav Beran, 11 tř. J., Radotín u Prahy.
16. Karel Maěák, lib tř. 2. J., Liberec, Jeronýmova ni.
17. Viktor Martišovitš', 11b tř. J. 2. J, Bratislava, Kulíš-

ková 8.
18. Jiří Anděl, 11. tř. J., Turnov.
19. Miloslava Jakešová, 11c tř. 4. J, Brno Královo Pole,

Slovanské n.

20. Josef Popelář, 11c tř. J., Opava, Komenského n. 5.
Tito vítězové byli odměněni ministerstvem školství a

kultury. Každý dostal zvláštní čestné uznání, podepsané
ministrem školství a kultury a dále předsedou Ústředního
výboru MO. Byly uděleny ceny věcné a peněžité. Pěně-
žité ceny byly odstupňovány od 1000 Kčs do 250 Kčs. Dále
obdrželi některé z těchto knih:

1. Grebeněa—Novoselov: Učebnice matematické analysy, díl
I, II.

2. V. Jarník: Diferenciální počet, díl I, II.
. 3. VI. Kořínek: Základy algebry.

4. Kounovský—Vyěichlo: Deskriptivní geometrie pro samo-
uky.

Ш. STRUČNĚ ZHODNOCENÍ VÝSLEDKŮ SOUTĚŽE

А. К soutěži kategorií А, В, C.
S výsledky soutěže, s jejím významem a s řešeními některých

úloh ze soutěže (i z kategorie D) se zabývala řada článků,
které byly pro informaci učitelů matematiky uveřejněny v časo-
pise Matematika ve škole. Jsou to tyto články:
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1. Rz, Řešení úloh I. kola MO, kat. D. č. 2, str. 76 a č. 4, str. 236,
roč. VI.

2. Rz, Řešení úloh II. kola MO, kat. D. č. 7, str. 409, roč. VI.
3. Josef Stehlík, V. ročník MO (kat. D). č. 5, str. 282, roč. VI.
4. Alois Terš-Mj, Matematická olympiáda v Českých Budějovicích,

č. 5, str. 290, roč. VI.
5. Rz, К závěru V. ročníku MO. č. 7, str. 406, roč. VI.
6. Josef Svoboda, Matematická olympiáda v kraji Jihlavském,

č. 8, str. 474, roč. VI.
7. St. Kopellent, O některých nedostatcích žákovských řešení

úloh MO. č. 9, str. 562, roč. VI.
8. St. Kopellent, Význam matematické olympiády v kat. D. č. 9,

str. 559, roč. VI.
9. Ema Kasková, Dvě řešení jedné úlohy MO, č. 6, str. 341, roč. VI.
10. Fr. Krňan, Ešte jedno riešenie jednej úlohy MO.Č. 1, str. 52,

roč. VII.
11. Fr. Krňan, К úlohe 11, kat. A pátého ročníku MO. č. 8,

str. 477, roč. VI.
12. Jiří Sedláček, O jednom příkladu MO z kat. B. č. 6, str. 338,

roč. VI.
13. Jiří Sedláček, O chybách v řešeních úloh III. kola MO, č. 2,

str. 106, roč. VII. (Referát o chybách v žákovských řešeních v arit-
metických úlohách III. kola MO.)

14. Josef Holubář, O řešeních jedné úlohy MO. č. 1, str. 45,
roč. VII.

15. Rud. Zelinka, К řešení dvou geometrických úloh MO. č. 8,
str. 480, roč. VI.

Poslední tři články se zabývají podrobněji rozborem žákov-
ských řešení II. а III. kola kategorie A.

Ze všech těchto příspěvků a ze zpráv některých výborů MO
vyplývá, že na našich školách vyrůstá řada žáků s velkým mate-
matickým nadáním, které se mimo jiné projevuje v osobitém
způsobu řešení úloh MO. Avšak ve velmi pěkných řešeních se
často vyskytne řada typických nedostatků a to i jiných než jen
matematických.

Z odborných nedostatků se neustále vyskytují chyby, které
svědčí o tom, že někteří žáci ještě plně nechápou význam a dů-
ležitost rozboru úlohy; to platí o řešeních úloh algebraických
i geometrických. V úzké souvislosti s tím je i to, že někteří

d
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žáci neobracejí postup a nechápou, že v podaném řešení stáno-
vili podmínky nutné a že musí vyšetřit, zda tyto podmínky jsou
i postačující. Některá řešení nejsou úplná. To platí zvláště
o otázkách existenčních. Jindy žák užije nesprávně některých
vět; tak na př. užije určité věty a správně by měl užít věty
obrácené. Také otázka vyšetřování množin všech bodů dané
vlastnosti není u některých řešitelů po pojmové stránce dosud
plně pochopena. Někteří řešitelé neužívají běžných a účelných
postupů řešení, jiní nevěnují grafickému provedeni konstrukce
náležitou péči.

Stránka matematická souvisí těsně s některými dalšími otáz-
kami. Tu vedle vnější úpravy prací, která není vždy na výši,
je i otázka správného a přesného vyjadřování. Nejedná se tu
jen o terminologii, ale i o formulaci myšlenek, jejich logické
skloubení a na neposledním místě i o pravopis. Bylo by žádoucí,
aby žáci ve svých písemných úkolech někdy doprovodili své
řešení úlohy stručným nebo alespoň heslovitým záznamem,
který obsahuje odůvodnění provedených úsudků a operací.

Je nepochybné, že všechny nedostatky, o nichž jsme zde
mluvili, je možno odstranit. O tom svědčí řada vzorně provede-
ných prací úspěšných řešitelů MO ve všech kategoriích; jejich
práce jsou většinou po všech stránkách správné a některé tak
dokonalé, že jsme je mohli přímo otisknout. Je nesporné, že
vedle nadání a pracovní morálky žáka se o tyto úspěchy nejvíce
zasloužil obětavý a zkušený žákův učitel.

В. К soutěži kategorie D.
Od svého třetího ročníku (od školního roku 1953—54) roz-

šířila naše soutěž okruh své působnosti i na osmé ročníky
osmiletek a jedenáctiletek.

Kategorie D, ve které soutěží žáci těchto tříd, má poněkud
jiný charakter než ostatní tři kategorie, jak ukazují už statistiky
účastníků a úspěšných řešitelů. Okresní výbory MO ve všech
krajích vykonaly v uplynulých třech školních letech pěkný
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kus práce, když měly zvládnout mnohde masovou účast žactva
v soutěži. Stoupá počet účastníků i počet zúčastněných škol;
tak na př. v Libereckém kraji se v V. ročníku účastnilo v kate-
gorii D olympiády o 35 % škol více než ve IV. ročníku. Horlivá
propagace soutěže je jistě chvályhodná; musíme však být
opatrní, neboť přílišná masovost skrývá v sobě různá nebez-
péčí. Tak jsme byli upozorněni na to, že na některých školách
byla odevzdána řešení zřejmě opsaná. Jaký prospěch pak může
vzniknout z takové účasti?

Je jistě přáním všech svědomitých učitelů matematiky, aby
jejich vyučovací výsledky byly co nejlepší a v tom jim může
MO vydatně pomáhat. Od žáků s nejlepším prospěchem v ma-
tematice se dá očekávat, že se většinou naší soutěže účastní
(a skutečně jsme viděli mezi našimi olympioniky takové vy-
trvalce, kteří se po sobě účastnili i tří ročníků). Rozhodně však
nesmíme činit školskou klasifikaci závislou na účasti nebo ne-

účasti v MO. Tak na některých školách nemohl prý žák dostat
výbornou a chvalitebnou známku z matematiky (ba dokonce
ani dobrou), jestliže se neúčastnil olympiády. Správný postoj
v tomto ohledu zaujali pracovníci OPS v Českých Budějovi-
cích; došli к závěru, že průměrní žáci do olympiády nepatří
a že se tam také neudrží; právě tito žáci pak šíří škodlivé ná-
vyky nesamostatné práce a tím ovlivňují i poctivé účastníky.

Pokud se týče výběru úloh, dá Ústřednímu výboru MO nej-
více práce právě kategorie D. Thematika je zde totiž nejužší
a při tom ještě chceme, aby příklady byly zajímavé a lišily se
od běžných školských úloh. Zařazují se proto i příklady s póly-
technickou thematikou nebo úlohy vyžadující numerických vý-
počtů nebo narýsování obrazce. Tak v V. ročníku jsme měli
úlohu o hodinách (úloha č. 2), která vyžadovala numerické
počítání a pracovalo se s pojmenovanými čísly (jednotkami
času). Příklad o brouku na gramofonové desce (úloha č. 5) měl
vlastně jen ukázat, jak žáci ovládají rýsovací techniku. Dopis
s. Josefa Stehlíka, pracovníka libereckého Krajského výboru
MO, označuje úlohu jako zajímavou a žákům přístupnou.
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V úloze č. 9 (jejíž první část byla důkazová) šlo v podstatě
také o technickou záležitost: rozstříhat vypuklý pětiúhelník
podél jeho úhlopříček a popsat vzniklé útvary.

Některé úlohy V. ročníku se ukázaly méně vhodné. Tak
podle zpráv z okresů špatně dopadla úloha č. 4 o páté mocnině
přirozeného čísla. Přes to, že byl v textu úlohy dán návod,
ukázal se požadovaný důkaz jako příliš obtížný pro žáky 8. tříd.

Nyní ještě několik slov o nedostatcích, které se projevily
v žákovských pracích kategorie D. Podle zpráv z okresů asi
třetina žáků neumí dobře rýsovat. Rysy byly neúplné nebo
neměly žádný popis a kótování; budily vůbec dojem, že byly
prováděny ve spěchu.

Pokud se týče numerického počítání, upozorňují České
Budějovice, že nejvíce chyb nadělají žáci při dělení. Logický
úsudek ustupuje u mnoha řešitelů často do pozadí před šablo- .

novitým počítáním; žák se hlavně zajímá „kolik vyšlo", místo
aby si kladl otázky „proč" a „jak". Doufáme, že nedostatky,
které se takto prostřednictvím matematické olympiády dostaly
na program širších učitelských shromáždění, se našim učitelům
podaří postupně odstranit.

Závěrem děkujeme všem pracovníkům okresních výborů
МО a všem učitelům matematiky, kteří se o zdar soutěže při-
činili za jejich obětavou práci, a úspěšným řešitelům v katego-
rii D přejeme, aby se dobře umístili i v následujících ročnících
naší soutěže.

IV. ŘEŠENÍ ÚLOH ZE SOUTĚŽE

1. Úlohy I. kola kategorie A.

1. Nazveme střední příčkou čtyřstěnu ABCD úsečku, která
spojuje středy dvou protějších hran čtyřstěnu (tedy na př.
hran AB a CD).
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Dokažte:

a) Všechny tři střední příčky čtyřstěnu se navzájem půlí.
b) Jestliže o hranách čtyřstěnu ABCD platí

AB = CD, AC = BD, AD = BC,

potom jsou jeho střední příčky navzájem kolmé.
c) Jestliže střední příčky čtyřstěnu ABCD jsou navzájem

kolmé, potom platí
v

AB = CD, AC = BD, AD = BC.
Řešeni. Užijeme označení z obr. 1, kde M, N, P, Qí3 Q2, Q3

jsou středy hran čtyřstěnu ABCD.
a) Dokážeme, že úsečky MQl3 NQZ mají společný bod S,

který je středem každé z nich.
Důkaz. Úsečka MN je střední příčkou trojúhelníka ABC a

přísluší ke straně AB; proto platí
MN || AB, MN = \ . AB.

Podobně úsečka QXQ2 je střední příčkou trojúhelníka ABD a
přísluší ke straně AB; proto platí

QiQ* \\AB, QxQ2 = \ • AB.

(1)

(2)

Je tedy podle (1), (2)
MN\\ QXQ„ MN = <2i<22; (3)
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přitom body N, Qx leží v poloprostoru BCDA. Proto jsou polo-
přímky MN, Q2QX souhlasných smyslů a neleží v téže přímce.
Odtud a ze vztahu (3) plyne podle známé věty z planimetrie
(viz učebnice Geometrie pro 8. roč., str. 167), že čtyřúhelník
MNQiQi je rovnoběžník; jeho úhlopříčky MQX,NQ2 se na-
vzájem půlí v bodě, který označíme S. Tím je naše tvrzení
dokázáno.

Stejně se dokáže, že i úsečky NQ2, PQ3 se navzájem půlí;
jejich společný bod je však střed úsečky NQ0, který jsme ozna-
čili

Odtud plyne, že bod S je společným středem všech tří
středních příček MQx, NQ2, PQ3, což jsme měli dokázat.

Protože body M, N, P jsou vrcholy trojúhelníka v rovině
ABC, která neobsahuje bod S, neleží přímky SM, SN, SP
v téže rovině.

b) Dokážeme, že přímky MQX, NQ2 jsou navzájem kolmé.
Důkaz. Podle výsledku úlohy a) je MNQXQ2 rovnoběžník

se středem S. Přitom platí

(4)MN = \ . AB, NQX — \ . CD
(MN || AB je střední příčkou v trojúhelníku ABC, NQX || CD
je střední příčkou v trojúhelníku A CD); podle předpokladu
však je AB = CD, proto ze vztahu (4) plyne MN = NQX.
Je tedy MNQXQ2 kosočtverec; avšak úhlopříčky kosočtverce
stojí na sobě kolmo, proto je MQX J_ NQ2, což jsme měli
dokázat. Stejně se dokáže, že platí MQX J_ PQ3, NQ2 _[_ PQ^.

c) Nechť každé dvě ze středních příček MQX, NQ2, PQ3
čtyřstěnu ABCD (viz obr. 1) stojí na sobě kolmo; z výsledku a)
víme, že tyto tři úsečky mají společný bod S, který je středem
každé z nich. Máme dokázat, že protější hrany čtyřstěnu
ABCD jsou shodné.

Důkaz. Podle výsledku úlohy a) je čtyřúhelník MNQXQ2
rovnoběžník. Podle předpokladu úlohy je MQX _j_ NQ2; podle
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známé věty z planimetrie rovnoběžník, který má kolmé úhlo-
příčky, je kosočtverec. Je tedy

MN = NQV
Stejně jako v úloze b) platí vztahy (4); protože je MN — NQV
plyne ze vztahů (4), že AB — CD, což jsme měli dokázat.

Stejně se dokáže, že platí AC — BD, AD = BC; tím je
důkaz tvrzení úlohy c) proveden.

2. V rovině pravoúhlých súradníc zostrojte graf funkcie
2

У
x.+ | x\ — 2

Odovodnite urobenú konštrukciu.

Л-

2—

1

«-i Г ^ yo

'3

Obr. 2.

Riešenie. 1. Ak je x ^ 0, je |jc] = x, teda x -f- |дс| — 2 =
— 2x — 2 = 2(x — 1). Ak je okrem toho x Ф 1, je f(x) =

- ; pre x — 1 nie je funkcia definovaná.
12

2(x - 1)
2. Ak je x < 0, je |я| — — x, teda x-\-\x\ — 2 = x — x —

2
— 2 Ф 0. V tomto případe je teda f(x) —

л: — 1

-2 = = — 1.
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Graf funkcie je na pripojenom obrázku 2. Podlá predošlého
sa skládá z grafov funkcií у = — 1 pre x ^ 0, у = —

t x

pre 0 5S x < 1 a pre x > 1. Pre x — 1 nie je funkcia f(x)
definovaná.

1
- 1

3. Dokažte:

a) Jestliže obrazy komplexních jednotek a, b, c jsou vrcholy
rovnostranného trojúhelníka, potom platí

я + b -f- c — 0.

b) Jestliže o komplexních jednotkách a, 6, c platí vztah
a -f 6 + c = 0,

potom obrazy čísel a, 6, c jsou vrcholy rovnostranného troj-
úhelníka.

я--—-
✓

✓

a*-''' \
I \ : "nu

О I\^ I

/

\

I\

A\ч

Obr. 3.

Řešeni, a) Nechť daný rovnostranný trojúhelník ABC má
polohu jako v obr. 3. Potom o komplexních jednotkách a, b3 c
platí
a = 1, b = cos 120° -f i sin 120°, c — cos 240° -f- i sin 240°
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neboli
a — 1} b — \ (— 1 -j- i ][$)> c — — \ (1 + ij^)-

Pak zřejmě platí
CL -(- b -J- c — 0.

Každý jiný rovnostranný trojúhelník A'B'C, vyhovující pcd-
mínkám úlohy, dostaneme z trojúhelníka ABC rotací o úhel
velikosti cp okolo počátku O; při tom body А', В', C vznikly
po řadě rotací bodů A, В, C. Při této rotaci přechází bod Z,
který je obrazem komplexního čísla z v bod Z', který je obrazem
čísla

(1)

z' — z (cos cp -f- i sin cp).
Proto body A'} B', C jsou obrazy čísel

a' = a(cos cp + i sin cp), b' = 6(cos cp + i sin cp\
c' = c(cos cp + i sin cp). (2)

Ж

Tu platí
a' + b' + c' = (a + b + c) . (cos cp + i sin cp\

takže vzhledem к (1) je
(3)a' + V + c' = 0,

což jsme měli dokázat. Vztahy (1), (3) potvrzují správnost
tvrzení úlohy.

b) Nechť o obrazech А, В, C komplexních jednotek a, b, c
platí vztah (4)a + b + c = 0;
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přitom body А, В, C leží na jednotkové kružnici (obr. 4)
k = (O, 1). Alespoň dvě z čísel a, b, c jscu různá, neboť pro
a — b — c ze vztahu (4) dostaneme 3a = 0, t. j. a — 0, což
je proti předpokladu. Nechť je na př. а Ф b, t. j. A^B.
Čísla a, b nemohou být opačná; kdyby totiž platilo a = — b
neboli a + b = 0, potom bychom ze vztahu (4) dostali c —
— — (a + b), t. j. c = 0, což je proti předpokladu. Nejsou
tedy body A, B, krajními body průměru kružnice k; proto
je úhel <£ AOB dutý. Uvažujme kosočtverec AOBD; bod D
je obrazem komplexního čísla d — a + b. Protože podle (4)
je c = — {a + b), jsou c, d opačná čísla; protože bod C leží
na kružnici k, leží i bod D na této kružnici. Bod D je tedy
společným bodem osy p úsečky AB a kružnice k; označme S
střed kosočtverce AOBD. Platí OS = \ r, OB — r, takže právo-
úhlý trojúhelník OBS je známý trojúhelník, v němž je
<£ OBS = 30°, < BOS = 60°. Odtud plyne, že <£ AOB =
= 120°. Ze souměrnosti podle přímky p snadno dokážeme, že

BOC = 120°, <£ COA = 120°, při čemž oba tyto úhly
leží v opačných polorovinách vyťatých přímkou p. Z toho plyne,
že AB — BC — CA (souměrnost podle přímky p), což jsme
měli dokázat.

Jiné řešeni.
a) Obrazy čísel a, b, c označme А, В, C. Protože ABC je

rovnostranný trojúhelník, jsou nejen body А, В, C, ale i čísla
a, b, c vesměs různá. Ze vztahů AB — BC = CA plyne (viz
učebnice Trigonometrie pro 10. a 11. post. ročník, str. 20)

(1)\a — b\ — \b — c\ = \c — a\ .

Proto platí též
\a — b\2 = | b — c\2 = | c — a|2

neboli

(a — b)(a — b) — (b — c)(b — c) — (c — a)(Č — a). (2)
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Přitom jsme užili jednak vztahu zz — \z\2, jednak na př. vztahu
(a — b) — a — b.

Ze vztahů (2) vynásobením dostaneme
aá -f bb — (ab + ab) =• bb cc — (bc -j- bc) = cc + aá —

— (ca + ca).
Protože vsak je |a| = |6| = \c\ = 1, je též

aá — bb — cc — \

a z předchozích vztahů dostaneme
ab + ab = bc + bc — ca + ca.

Odtud dostaneme tyto tři vztahy
a(b — c) — á(c — b),
b(č —á) = b(a — c),
c(á — b) — c(b — a).

Dosaďme sem za á, b, c ze vztahů (3); dostaneme

. -2-(c - 6) = -(c-6) aid.bc a

a protože platí c — Ъ Ф 0 atd., plyne z předchozího

(3)

1a

atd.,bc a

t. ).
á2 = 6c, 62 = ca3 с2 = a6.

Odečtením levých i pravých stran každých dvou těchto rov-
ností, dostaneme

a2 — b2 — — c(a — 6) atd.
neboli

(a + b)(a — b) = — c(a — b) atd.,
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a protože je a — b Ф 0 atd., obdržíme dále
a -f b — — c atd.

Každý z posledních vztahů vede к výsledku
a -f- b -f- c — O, (4)

který jsme měli dokázat.

b) Podle předpokladu platí
W = 1*1 = W = 1 (5)

a tím i vztahy (3) a dále platí vztah (4). Přitom každá dvě
z čísel a, b, c jsou od sebe různá (i různá od nuly). To doká-
žeme nepřímo: Nechť je a = b. Potom ze vztahu (4) plyne
2a + c = 0 neboli c = — 2a a tedy |c| = 2 . |a| čili |c| = 2,
což je spor vzhledem ke vztahu (5). Proto je

a — Ьф 0, a podobně b — с Ф 0, c — а Ф 0.
Z těchto výsledků a ze vztahů (3) snadno usoudíme, že celý

postup v předchozí úloze a) lze obrátit až dospějeme ke vzta-
hům (1). Ty však říkají, že o obrazech A, В, C čísel a, b, c
platí

AB — BC = CA,

při čemž body А, В, C jsou vesměs různé. Tím je důkaz
tvrzení úlohy b) proveden.

4. Je daná postupnosť {a„}, kde
n2

a« 2n ‘

Dokážte, že táto postupnosť má najváčší člen a určte ho.

Riešenie. Pre všetky prirodzené čísla n platí zrejme an > 0.
Přitom je

251
_ i _ 9

—, a2 — 1, Од- a4 — 1, ab —«i = 8 ’ 32 5 ‘ *
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Pokúsime sa dokázat’, že sa členy danej postupnosti {an} od
člena az zmenšujú, t. j. že platí

an > an+1 alebo an - <*n+1 > 0
pre všetky prirodzené čísla те ^ 3.

Označme d = an — a„+1; tu platí postupné
и2 («+ l)2d= —

2«+i2"

2n2 - (n2 + 2n + 1)á =
2«+i

w2 — 2n — 1
d =

2n+1

Chceme dokázat’, že platí d > 0. To bude platit’, keď dokážeme,
že čitatel x — n2 — 2n — l posledného zlomku je kladné číslo
pre všetky n> 3.

Platí
x = n2 — 2я+1 — 2

alebo
x = (n — l)2 — 2.

Avšak pre n ^ 3 je и — 1
čísel váčších než 1 sú váčšie než 2 a preto je číslo x skutočne
kladné pre všetky prirodzené čísla те ^ 3. Teda je aj x > 0
pre n^3 a skutočne platí > aw+i pre и ^ 3.

„ 9
Clen a3 = — danej postupnosti je teda jej najváčším členom,

2. Druhé mocniny prirodzených

8
čo sme mali dokázat’.

5. V rovině pravoúhlých súradníc preskúmajte množinu
všetkých bodov [#,j>], ktoré vyhovujú vzťahu

cos 2ax — sin 2by, (1)
kde a, b sú dané reálne čísla.
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Urobte diskusiu vzhladom na dané čísla a, b.

Riešenie. Daný vzťah možno písať v ekvivalentnom tvare
sin (\ 7Г — 2ax) — sin 2by — 0.

Davů stranu upravíme pomocou známého vzorca pre
sin a — sin /5; dostaneme rovnicu

2 sin [i 7T — (ax + by)]. cos [i tz — (ax — by)] = 0. (2)
Aby tento vzťah platil, je nutné a stačí, aby sa druhý alebo

třetí činitel na lávej straně rovnal nule; rozlišíme obidve
možnosti.

(1’)

Případ [1]. Nech je
sin [i 7Г — (ax -f- by)] = 0.

Tento vzťah platí právě vtedy, ak je

\ n — (ax + by) — &7Г,

(3)

kde k je lubovohié celé číslo. OdtiaT vyplývá
ax + by = тс (n + i) , (4)

kde n je lubovolné celé číslo.

Diskusia výsledku (4):
a) Ak je a — b = 0, Tavá strana rovnice (1) sa rovná jedneí

pre každé x, kdežto pravá strana sa rovná nule pre každé у
V tomto případe rovnica (1) nemá riešenie.

b) Ak neplatí súčasne a = 0, b = 0, uvažujme dve možnosti:
a) Nech b = 0, a Ф 0. Potom všetky riešenia x, у vztahu (4)

sú dané takto:

TC
— (n + I), kde n je lubovolné celé číslo, у je Tubo-x =

volné reálne číslo.
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Pře dané celé číslo n obrazom dvojícx, у vyhovujúcich rovnici
(4) v pravoúhlých súradniciach x, у je priamka rn _L x. Pre vset-
ky celé čísla n dostaneme teda sústavu rovnobežiek, kolmých

na os x, prechádzajúcich bodmi J^jc =
na osi x. Příslušný graf pre a > 0 je na obr. 5.

■J (» + ?) i У

t

i

12£É t

o

1 k
pro o>0

Obr. 5.

(3) Nech b Ф 0. Potom všetky riešenia x, у vzťahu (4) sú
dané takto:

x je lubovorné reálne číslo, у

n je Tubovolné celé číslo.
Pre dané celé číslo n je obrazom rovnice (4) priamka r„,

a prechádza bodom =

. Pre všetky celé čísla n dostaneme teda sú-

4[4+!)-“] , kde

ktorá má smernicu — О, у =

-í(-4)]
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stavu rovnobežiek so smemicou . Příslušný graf pre

a 2
— = — je na obr. 6.
o 3 ,

Tým je případ [1] vybavený.

Případ [2]. Nech je
cos [£ 7t— (ax — bý)\ — 0. (5)

Tento vzťah platí právě vtedy, ak je

тс — {ax — by) = у + k-к,
kde k je lubovolné celé číslo. Stade dostáváme

ax — by = 7Г (« — I), (6)
kde n je lubovolné celé číslo.

Diskusia výsledku (6):

a) Ak a = b = 0, nemá rovnica (1) riešenie.

b) Ak neplatí súčasne a = b = 0, uvažujme o dvoch mož-
nostiach:

a) Nech b — 0, teda аф 0. Potom všetky riešenia vzťahu
(6) sú dané takto:

7U
— (n — I), kde n je lubovolné celé číslo, у je Tubo-x =

volné reálne číslo.
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Pre dané celé číslo n je obrazom dvojíc x3y vyhovujúcich
rovnici (6) priamka sn J_ x. Pre vseti у celé čísla n dostaneme
sústavu rovnobežiek kolmých na os x, prechádzajú bodmi

na osi x (pře a > 0 pozři obr. 5).b -]у (»-*);*a

(i) Nech b Ф 0. Potom všetky riešenia x, у vzťahu (6) sú
dané takto:

=

у - * (n ~ l) ]x jelubovorné reálne číslo,у , kde и

je lubovolné celé číslo.
Pre dané celé číslo n je obrazom rovnice (6) priamka sn3

а Г
ktorá má smernicu — a prechádza bodom I x = 0; у =

4
Pre všetky celé čísla n dostaneme tedy sústavu rovnobežiek

-- (pre pozři obr. 6).b b 2
so smernicou

Tým je případ [2] vybavený.

Závěr. Rovnica (1) nemá v případe a = b = 0 riešenie.
Inak má nekonečne mnoho nesení. Ak а Ф 0, b = 0, sú
riešenia znázorněné dvorná sústavami rovnobežiek kolmých
na os x. Ak b Ф 0, sú riešenia znázorněné dvorná sústavami

rovnobežiek so smernicami , . Rovnoběžky sústav de-
b b

lia rovinu na pásy rovnobežiek s rovnakými vzdialenosťami.
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6. Buďte dány dva střídavé úhly <£ BAK = a, <£ ABL = {3,
při čemž je a Ф (3. Uvnitř úsečky AB je dán bod O; označte
a = OA, b = OB.

Sestrojte na přímce AK bod X různý od bodu A a na
přímce BL bod Y tak, aby bod X, O, Y ležely v přímce
a aby platilo AX = BY.

Proveďte diskusi řešitelnosti úlohy.

Řešení. Rozbor (obr. 7,8,9). Předpokládejme, že úloha má
řešení, t. j. že existuje přímka p, která prochází bodem O a
přímky AK, BL protíná po řadě v bodech X^ÉA,Y tak, že
platí AX — BY. Označme

(1)OA = a, OB = b;
dále buďte AK, AK' a BL, BL' dvojice opačných polopřímek.
Konečně označme

<£ BAK = a, <£ BAK' = a' = 180° - a,
<£ ABL = p, ABL' =

Vzhledem к tomu, že je a ф (3, je a' + /? ф 180°. Proto
můžeme předpokládat, že platí

a' + p < 180°;
jinak bychom zaměnili navzájem tyto dvojice názvů prvků:
a, a'; P, f3'; L, Z/; К, K'. Ze vztahu (3) podle Eukleidova
postulátu plyne, že polopřímky AK', BL mají uvnitř poloro-
viny ABL společný bod C, takže existuje trojúhelník ABC
(viz obr. 7 až 10).

Bodem В veďme přímku BM || AK, kde M je bod ležící
uvnitř poloroviny ABL; označme BM' polopřímku opačnou
к polopřímce BM. Protože je ссф P, jsou BM, BL různé
přímky.

Uvažujme stejnolehlost o středu O, která převádí bod A
v bod B; její koeficient je záporné číslo. Přímce AK v ní pří-
sluší přímka BM a bodu X bod Z, který leží na přímce
BM || AK. Protože je X=é A, je Z^B. Ze stejnolehlosti

(2)

(3)
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AX OA
Odtud vzhledem к (1) dostanemeplyne Bž” OB-

BY a

(4)BZ b'

Na polopřímce BM sestrojme úsečku BQ — b a uvažujme
stejnolehlost o středu B, v níž bodu Z přísluší bod Q. V této
stejnolehlosti přímce p přísluší přímka q \\p, při čemž q
prochází bodem Q; na přímce q leží obraz P bodu Y v této
stejnolehlosti. Z této stejnolehlosti plyne

BY BP

BZ ~ BQ '
Ze vztahů (4), (5) а ВО — b dostaneme BP = a. Platí tedy
nutně BP = a, BQ = b, p \\ PQ. Odtud plyne konstrukce.

Konstrukce (obr. 7 až 10). Sestrojme přímku MBM' || AK,
kde M leží uvnitř poloroviny ABL; při tom je BM^ BL.
Na polopřímkách BL, BL' sestrojme po řadě úsečky BP = a
(viz obr. 7, 8), BP' = a (viz obr. 10). Tu jistě platí Q^£ P\
takže existují přímky q = PQ, q' == P'Q, které jsou různo-
běžné.

Bodem O veďme dále přímky p || q, p' || q', které jsou různo-
běžné. Označme X, Y, Z průsečíky přímky p po řadě s přím-

(5)
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fcami AК, BL, ВМ a dále po řadě X', Y', Z' průsečíky přímky
/ s přímkami AK, BL, BM. Jestliže je А, X' e^é A, potom
jsou X, Y а X', Y' liledané body, pro něž platí AX — BY,
AX' = BY'.

/гл
T

Důkaz provedeme společně s diskusí, abychom mohli roz-
lišit jednotlivé možnosti.

Důkaz. Naznačenou konstrukci přímek q, q' lze vždy pro-
vést. Uvidíme, že pro diskusi je podstatný fakt, že úsečka PQ
leží celá uvnitř poloroviny ABL, kdežto body P’, Q úsečky
P'Q jsou přímkou AB odděleny. V částech I, II probereme
každý z těchto případů zvlášť.

Poznámka 1. Všimněme si toho, že trojúhelníky BPQ,
BP'Q, právě sestrojené, vždycky existují, takže žádná z přímek
q, q' neprochází bodem B.

Poznámka 2. Jestliže jsou dány přímky m || n a bod S,
který na žádné z těchto přímek neleží, potom existuje jediná
stejnolehlost o středu S, která převádí přímku m v přímku n.
Jestliže je m = n, potom je tato stejnolehlost identitou.

Část I. Uvažujme stejnolehlost В o středu B, která přímce
q == PQ (kde P, Q jsou body ležící uvnitř poloroviny ABL)
přiřazuje přímku p \\q, kde p prochází bodem O. Protože
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přímka q bodem В neprochází, existuje tato stejnolehlost právě
tehdy, jestliže přímka p bodem В rovněž neprochází. Musíme
proto rozeznávat dvě možnosti: [1] Nechť je р=вОВ,
[2] nechť je p OB.

V případě [1] je p = OB, takže je X = A, Y = В a úloha
vzhledem к požadavkům vysloveným v textu nemá řešení.
Dokážeme, že tento případ nastane právě tehdy, jestliže platí
(obr. 9)

sin a

sin p b '

a) Nechť je p = OB, t. j. nechť je PQ || AB. Protože platí
vztah (3), je a vnějším úhlem v trojúhelníku ABC a proto platí
a > p. Proto polopřímka BL leží v úhlu <£ ABM a máme
situaci jako na obr. 9. Užitím vět o střídavých a přilehlých
úhlech vzhledem к tomu, že je PQ || AB, platí o úhlech troj-
úhelníka BPQ (obr. 9)

^P = P, < Q= 180° - a. (6)

Užijme nyní na trojúhelník BPQ sinové věty; dostáváme
sin <£ Q

_ BP
sin <£ P BQ

(7)
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Vzhledem к tomu, že BP = a, BQ = b, a vzhledem ke vzta-
hům (6), odtud dostaneme

sin a a

sin /3 b
b) Nechť obráceně o číslech a, b, a, /3, příslušných к daným

útvarům, platí vztah (8); potom o bodech P, Q, sestrojených
dříve uvedeným postupem, platí PQ || OB, t. j. úloha nemá
řešení, které by příslušelo přímce q = PQ. To dokážeme
takto: Vedme bodem Q přímku q0 || AB; přímka q0 leží celá
uvnitř poloroviny ABL a protože je stejně jako přímka AB
různoběžná s přímkou BL, protne ji v bodě P0, který nutně
leží uvnitř poloroviny ABL. Proto o úhlech <£ P0, <£ Q
v trojúhelníku BP0Q platí vztahy obdobné ke vztahům (6),
v nichž místo P nutno psát P0. Použijeme-li na trojúhelník
BP0Q sinovou větu, dostaneme

(8)

BP0
_ sin < Q

BQ sin <£ P0
neboli

sin a

(9)BP0 =

Z daného vztahu (8) vzhledem к tomu, že BQ = b, vypočteme
sin a

(10)sin /3
BP =

Porovnáním vztahů (9), (10) dostaneme BP — BP0; protože
body P, P0 leží na polopřímce BL, plyne odtud P = P0 a tedy
PQ || OB. Úloha tedy nemá řešení.

Tím je důkaz tvrzení vysloveného na počátku případu [1]
proveden.

V případě [2] je p^ OB. Stejnolehlost В bodům P^É Q
přímky q po řadě přiřazuje body 7^Z na přímce p\\q
(viz obr. 7 a 8).
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Body P, Q leží uvnitř poloroviny ABL. Ze stejnolehlosti В
plyne, že i oba body Y, Z leží současně buď v polorovině ABL
nebo v polorovině ABK. Dále z této stejnolehlosti plyne, že

BY PB

BZ BQ
neboli

BY — — . BZ.
b

Nyní uvažujme stejnolehlost O o středu O, která převádí
bod В v bod A. Její koeficient je záporný, a proto bodu Z
přímky BM v ní přísluší bod X přímky AK || BM; je tedy bod
X od bodu Z a tím i od bodu Y oddělen bodem O, takže OX,
OY jsou opačné polopřímky. Ze stejnolehlosti O plyne

АХ
__ OA

BZ ~ OB

AX = ~ . BZ.
b

Porovnáním vztahů (11), (12) dostaneme AX = BY.
Protože přímka PQ existuje jediná a protože existují stejno-

lehlosti B, O, plyne z celého postupu, že úloha má jediné
řešení. Tím je provedeno řešení případu [2].

Z výsledku části I [1] plyne: Bodem O lže sestrojit jedinou
přímku p = XOY, kde X, Y jsou body požadované úlohou,
právě tehdy, jestliže platí vztah

sin a

sin jS
Tím jsme provedli řešení části I.

Část II (obr. 10). Uvažujme stejnolehlost В' o středu B,
která přímce q' = P'Q přiřazuje přímku p' || q, kde p' pro-
chází bodem O. Při tom přímka P'Q neprochází bodem В

(И)

neboli

(12)

a

(13)

44



a body P', <2 jsou přímkou AB odděleny (viz Poznámku 1);
z toho plyne, že stejnolehlost B' existuje. Tato stejnolehlost
bodům P'^Q přímky q' přiřazuje po řadě body Y'^ Z'
na přímce p' || q\ při tom jsou body Y', Z' rovněž přímkou AB
odděleny. Úsečka P'Q leží v úhlu <£ MBL’ a přímka VZ’
prochází bodem O, který leží v úhlu <£ M'BL к předchozímu
vrcholovém; proto úsečka Y'Z' leží v úhlu <£ M'BL, takže
bod Y' padne do poloroviny ABL a bod Z' do poloroviny

ABK. Ze stejnolehlosti B' plyne neboli

BY' = -r- (14)

Uvažujme nyní stejnolehlost O' o středu O, která převádí
bod В v bod A; její koeficient je záporný a proto bodu Z'
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přímky BM přísluší bod X' přímky AK || BM, který je od
bodu Z' oddělen bodem O. Leží proto bod X' uvnitř poloro-
viny ABL zároveň s bodem Y'; z toho plyne, že body X', Y'
leží v polorovině ABC a polopřímky OX', OY' splývají. Ze

AX' OA
stejnolehlosti O' pak plyne = - neboliBZ UB

AX'=4-’ BZ'.
0

Porovnáním vztahů (14), (15) dostáváme AX' = BY'.
Protože přímka P'0 existuje jediná a protože existují stejno-

lehlosti B', O, O' plyne z celého postupu, že úloha má jediné
řešení. Tím je provedeno řešení části II.

Závěr řešení. Úloha má dvě řešení, jestliže platí vztah
(13) j jestliže tento vztah neplatí, má jediné řešení.

(15)

7. Jestliže ve čtyřstěnu ABCD je
AB = CD, AC = BD, AD = BC,

dokažte, že potom platí:
a) Lze sestrojit kvádr tak, že v každé stěně tohoto kvádru

právě jedna ze stěnových úhlopříček splývá s jednou hranou
čtyřstěnu.

b) Střed kulové plochy opsané čtyřstěnu ABCD splývá se
středem kulové plochy čtyřstěnu vepsané (t. j. ležící uvnitř
čtyřstěnu a dotýkající se rovin jeho stěn).

Řešení (obr. 11). a) Nejprve dokážeme pomocnou větu:
„Jestliže ve čtyřstěnu ABCD platí AB = CD, AC = BD,
AD — BC, potom každá ze středních příček čtyřstěnu je kolmá
к těm jeho hranám, které půlí.“ Při tom na př. střední příčka
XY spojuje středy protějších hran AB, CD.
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Důkaz. Platí
Д BCD ^ Д ADC (sss);

proto je též В Y = AY (to jsou těžnice v těchto trojúhelnících,
které příslušejí ke společné straně CD). Je tedy trojúhelník
YAB rovnoramenný a AB je jeho základna. Přímka XY je
osou souměrností tohoto trojúhelníka, a proto platí XY _]_ AB.
Stejně se dokáže, že platí XY _L CD. Tím je pomocná věta
dokázána.

Obr. 11.

Nyní provedeme řešení úlohy a) tak, že sestrojíme kvádr,
o němž se mluví v textu úlohy. Podle pomocné věty o střední
příčce XY čtyřstěnu ABCD platí AB _L XY, CD J_ XY.
V rovinách ABY, CDX sestrojme postupně obdélníky ABB'A',
CDD'C', které mají střední příčku XY; protože je AB — CD,
BB' = XY = DD', jsou tyto obdélníky shodné. Při tom jsou
přímky AB, C'D' různoběžné (jinak by přímky AB, CD ne-
byly mimoběžné). Proto platí

XA=XB = XC — XD’ = \ AB = \ CD = YA' =
= YB’ — YC = YD,

takže čtyřúhelníky ACBD', A’CB’D mají vesměs shodné
úhlopříčky a body X, Y jsou po řadě středy těchto úhlopříček.
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Z toho plyne, že tyto čtyřúhelníky jsou obdélníky. Ale podle
konstrukce je

AX || A'Y, D'X |1 DY;
proto o rovinách g = ACBD', a == A'CB'D platí o || a. Ze
vztahů (1) dále snadno plyne <£ AXC = <£ A'YC a tedy
Д AXCДЛ'УС (sws) a tím ^C' = /ТС; stejně se dokáže,
že je /ID' = A'D. Odtud plyne, že obdélníky ACBD',
A'CB'D jsou shodné.

Podle konstrukce platí XY _|_ AB, XY ± CD' (neboť je
XY _L CD, CD' || CD); je tedy XY 1^ a protože je g || cr,
je též XY J_ a. Odtud plyne, že obdélníky ACBD', A'CB'D
jsou protějšími stěnami kvádru ACBD'A'CB'D, v němž je
AA' || C'C || ВВ || D'D. Vrcholy daného čtyřstěnu ABCD
leží skutečně ve vrcholech právě sestrojeného kvádru. Tím je
úloha a) rozřešena.

Poznámka. Všimněme si, že z vlastnosti právě sestrojeného
kvádru vyplývá, že střed 5 střední příčky XY je středem to-
hoto kvá-íru a tím i středem kulové plochy opsané kvádru
i čtyřstěnu. Při tom bod S je vnitřním bodem úsečky XY a
tím i vnitřním bodem každého z poloprostorů ABCD, ABDC,
ACDB, BCDA; avšak průnik vnitřků těchto poloprostorů je
vnitřek čtyřstěnu ABCD. Leží tedy bod é> uvnitř čtyřstěnu
ABCD. Tohoto výsledku užijeme v úloze b).

(1)

b) Dokážeme pomocnou větu (obr. 12): „Bud dán čtyř-
stěn SABC, o němž platí

(2)SA = SB = SC = r.

Označme P patu kolmice vedené bodem S к rovině ABC,
takže v — SP > 0 je výška čtyřstěnu příslušná к bodu S.

Potom platí
V2 = r2 — o2

kde g je poloměr kružnice k opsané trojúhelníku ABC ze
středu P.“

(3)
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Důkaz. Ze stereometric je známo, že pata P kolmice vedené
bodem S к rovině ABC je ze všech bodů této roviny nejbližší
к bodu S. Protože v našem případě je ABC trojúhelník, jsou
body А, В, C vesměs různé; protože platí (2), je nutně každý
z nich různý od bodu P, takže platí r > v. Protože je

SP _L ABC, mají trojúhelníky SAP, SBP, SCP (které jistě
existují) při bodu P pravé úhly; dále mají společnou odvěsnu
SP a podle (2) se shodují v přeponách. Jsou tedy shodné
podle věty (Ssu). Odtud plyne, že platí

PA — PB = PC = q.

Je tedy P středem kružnice k opsané trojúhelníku ABC.
Užijeme-li Pythagorovy věty na trojúhelník SAP, dostaneme

v2 = r2 - o2.

Tím je pomocná věta dokázána.

Nyní provedeme řešení úlohy b). Je známo, že čtyřstěnu
lze opsat jedinou kulovou plochu, a dále, že čtyřstěnu lze vepsat
jedinou kulovou plochu, jejíž střed leží uvnitř čtyřstěnu.
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Označme x = (S, r) kulovou plochu opsanou danému čtyř-
stěnu ABCD, takže platí vztahy (2). Máme dokázat, že bod 5
je zároveň středem kulové plochy tomuto čtyřstěnu vepsané.
Stačí tedy dokázat, že bod 5 leží uvnitř čtyřstěnu, a dále, že
má od čtyř rovin stěn čtyřstěnu sobě rovné vzdálenosti.

Důkaz. Že bod 5 leží uvnitř čtyřstěnu plyne z „Poznámky"
připojené к řešení úlohy a). Dokážeme tedy pouze, že bod 5
má od rovin

(4)ABC, ABD, ACD, BCD
sobě rovné vzdálenosti.

Protože o čtyřstěnu ABCD platí AB = CD, AC — BD,
AD — BC, jsou trojúhelníky (4) vesměs shodné. Proto jsou
shodné i kružnice těmto trojúhelníkům opsané; označme q
jejich poloměry. Podle pomocné věty platí pro vzdálenost
bodu S’ od rovin (4) vztahy (3), z nichž vzhledem ke vztahům
(2) plyne, že bod 5 má od rovin (4) vesměs sobě rovné vzdále-
nosti, což jsme měli dokázat. Tím je proveden důkaz a úloha
b) řešena.

Podle řešení prvního vítěze V. ročníku MO
s. Břetislava Nováka, žáka 11b JSŠ

v Chrudimi.

8. Ktoré tri navzájom rožne (celé) nesúdelitefrié čísla mó-
žeme pokladať za prvé tri členy aritmetickej postupnosti a zá-
roveň (v inom poradí) za prvé tri členy inej, geometrickej
postupnosti ?

Riešenie. Označme hladané čísla po radě
(1)Ьц ^2> ^3 •

Položme bz — a a označme d diferenciu aritmetickej postup-
nosti. Pretože čísla bx, bz, b3 májů tvoriť aritmetickú postup-
nosť, musí platiť

bx = a — d, b2 = a, b3 — a -j- d.
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Aby čísla (l)bolinesúdeliteTné,musia byť čísla а, <1ф O nesú-
dělitelné.

Při vhodnom poriadku indexov čísel (1) má platiť

kde i, j, k sú navzájom rožne čísla a rovnajú sa niektorému
z čísel 1, 2, 3.

Přitom nemože byť i = 2, lebo potom by bolo b\ = a2,
b1b) = a2 — d2 a teda a2 = л2 — if2, čo možno splnit’ len pre
d2 = 0 alebo d = 0, čo je proti předpokladu.

Teraz uvažujme o dvoch možnostiach.

(2)

Případ [1]. Nech i — 1. Zo vzťahu (2) dostaneme
(a — d)2 = a(a + d)

a teda d2 = Zad a pretože d Ф 0, dostaneme
d = Za.

Túto rovnicu má splňovať nesúdeliterná dvojica čísel a, d.
Tu je

a) buď a = 1 a tým d — Z,
b) buď a = — 1 a tým d — — 3.

Hladané čísla sú

a) buď b1 = — 2, b2 = 1, 63 = 4,
b) buď bi = 2, b2 — — l, b3 = — 4.

V případe a) dostaneme:
aritmetickú postupnosť: —2, 1, 4, 7, 10,... ;
geometrické postupnosti: a) 1, — 2, 4, — 8, 16,... (kvocient

9 = - 2);
P) 4, -2, 1, - • . . (í = - I).
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V případe b) dostaneme:
aritmetickú postupnosť: 2, —1, —4, —7, —10,...
geometrické postupnosti: a) — 1, 2, — 4, 8, —16,...
(í = - 2);

■ ••(? = — D •

Případ [2]. Nech je i = 3. Zo vzťahu (2) dostaneme
(a + ď)2 — a(a — d)

a teda d2 = — 3ad a pretože d Ф 0, dostaneme
d = — 3a.

P) -4,2, - 1,£, _ i
4 >

Túto rovnicu má splňovať dvojica nesúdelitelných čísel a,
d. Tu je

a) bud a = 1 a tým d = — 3,
b) bud a = — 1 a tým d = 3.

HTadané čísla sú

a) bud = 4, 62 = 1, b3 = — 2,
b) bud = — 4, b2 = — 1, = 2.

V případe a) dostaneme:
aritmetickú postupnosť: 4, 1, —2, —5, —8,... ;
geometrické postupnosti:

a) 4, —2,1, Ь Ь ■ ■ • (í = !)>
P) 1, -2, 4, -8, 16,... (5 = - 2).

V případe b) dostaneme:
aritmetickú postupnosť: —4, — 1, 2, 5, 8,... ;
geometrické postupnosti:

a) —4, 2, — 1, 5 ,

(3) -1,2, -4,8,-16,... (í = - 2).
Tým je úloha rozriešená.

• •(? = -1);_ 1
4» •
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9. Je dán výraz
z — 1 — sin2* — sin2)',

kde *, у jsou reálná čísla; dále je dáno reálné číslo a.
Určete všechny dvojice čísel *, y, pro něž platí

(1)

(2)* + у = a

a pro něž výraz z nabývá hodnoty: a) maximální, b) minimální.*)
Proveďte diskusi vzhledem к číslu a.

Řešení. Postupně platí identicky (při jedné úpravě užíváme
vzorce 2 sin a cos a = sin 2 a):

z = 1 — sin2* — sin2)' = cos2* — sin2)» =

= (cos * + sinj') (cos * — sinjy) =

= |sin — *J + sinJ'j . j^sin ~ x) ~ sin:v] =

-Чт-ч4”(т-ч4
ИЧ-ьч-’)-
^)] • sin ^ - (* + 3>)j =

• 2Sm(~-
= sin [|

= cos (* — y). cos (* 4- 4).
Vzhledem ke (2) tedy platí

z — cos (* — y). cos a.

Nyní se jedná o stanovení maximální a minimální hodnoty
pravé strany vztahu (3). Rozlišujeme dvě možnosti.

(3)

*) Maximem a minimem tu rozumíme ostré maximum a ostré
minimum.
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2я + 1
Případ [1]. Nechť je cos a = 0 neboli a =

kde я je celé číslo. Pak je z — 0 a nelze mluvit ani o maximu,
ani o minimu.

Skutečně pro tento případ čísla a je у = a — x a

. 7C,
2

Г 2я + 1 1 . /
Н-*-*г5т i i

— + пп — xj =sin_y = sin

= cos (x — n 7i);
pro n sudá je sin у = cos x, pro n lichá je |sin у| = |cos л|,
takže sin2_y = cos2x. Pak podle (1) je

z = 1 — sin2* — cos2jc = cos2x — cos2* = 0

a pro každé * úloha nemá řešení.

Případ [2]. Nechť je číslo a takové, že pro kterékoli celé
číslo n platí

2n + 1
(4)а ф . 71 .

2

Potom je cos а Ф 0 a v podstatě jde o vyšetření maxima a mi-
nima výrazu

cos (x — y)
za současné platnosti podmínky (2), tedy o maximum a mini-
mum výrazu

£ = cos (2.x — a).
Tento výraz má maximum právě tehdy, jestliže je

(5)2x — a — 2kiz>
kde k je libovolné celé číslo; minimum má právě tehdy,
jestliže je

(6)2x — a = (2k' + 1)7T,
kde k' je libovolné celé číslo.
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Ze vztahu (5) plyne

т+кк> (5')x =

ze vztahu (6) plyne

(*'+4-)71 •T + (6')X =

Pro čísla x daná vztahem (5') je £ = 1, pro čísla x daná
vztahem (6') je £ = — 1.

Nyní se vraťme к vyšetření maxima a minima výrazu z =
= £ . cos a. Rozeznávejme dva případy [a] a [b].

Případ [a]. Nechť je cos a > 0. Tento vztah platí právě
tehdy, jestliže číslo a leží v otevřeném intervalu

— |)тг,(2m +|(2w (7)

kde m je jisté celé číslo. /
Pak pro čísla x ze vztahu (5') nastává maximum rovné číslu

cos a > 0 výrazu z a pro hodnoty x ze vztahu (6') minimum
rovné číslu — cos a < 0.

Případ [b]. Nechť je cos a < 0. Tento vztah platí právě
tehdy, jestliže číslo a leží v otevřeném intervalu

|(2rň+ |)tc, (2m + |)tc| ,
kde m je jisté celé číslo.

Pak pro čísla x ze vztahu (6') nastává maximum rovné číslu
|cos a\ > 0, pro čísla x ze vztahu (5') nastává minimum
— |cos a\ < 0.

Závěr. Výraz z daný vztahem (1) za současné platnosti
vztahu (2) má:

a) maximum |cos a\ > 0 (je to číslo kladné) pro čísla л: daná:
a) vztahem (5'), jestliže číslo a je z otevřeného intervalu

(7);
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(3) vztahem (6'), jestliže číslo a je z otevřeného intervalu
(8);

b) minimum — |cos a\ <0 pro čísla x daná:
a) vztahem (6'), jestliže číslo a je z otevřeného intervalu

(7);
(3) vztahem (5'), jestliže číslo a je z otevřeného intervalu

(8).
Při tom čísla k,k! ve vztazích (5'), (6') jsou libovolná celá čísla;
rovněž m v otevřených intervalech (7), (8) je jisté celé číslo.

10. Určete všechna komplexní čísla и, která vyhovují rovnici
и = a .u,

kde a je dané komplexní číslo а й je komplexní číslo sdružené
s číslem u.

(1)

Řešení. Položme
(2)и — re,

kde r ^ 0 je reálné číslo а e Ф 0 je komplexní jednotka, kterou
lze psát

e = cos <p + i sin (p. (3)
Potom je

и —r. e

neboli
1

и = r . ,

e

Dosadme tento výsledek do dané rovnice (1); dostaneme
ar

re = —

e

neboli
a

(4)r \ e 1 = 0.
E

A
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Bud musí být r — O, t. j. и = й = O, anebo je г Ф 0.
Předpokládejme nadále, že г ф 0. Potom ze vztahu (4) plyne,
že musí platit

£2 = a.

Ze vztahu (3) podle Moivreovy věty dostaneme pro £2
cos2<p + i. sin2cp = a; (5)

to znamená, že dané číslo a musí být komplexní jednotkou.
Označíme-li a amplitudu čísla a — cosa + i • siná, potom
vzhledem к (5) musí zřejmě platit

2cp = a + 2kiz,
kde k je jisté celé číslo, neboli

(6)cp = \ a + for.
Stačí uvažovat dva případy, a to k = 0, k = 1; musí tedy
podle (2), (3) a (6) být buď и = anebo и = «2, kde

= r (cos £ а + i. sin \ a),
w2 = r Lcos (I a + 7r) + i. sin (| a -f- 7l)] ,

kde r > 0 je libovolné reálné číslo. Zřejmě je u2 = — uv
Obráceně čísla и = щ, и = u2, kde r 0/ jsou řešením rov-

nice (1). Jestliže je и — 0, je to zřejmé. Jestliže je и Ф 0, jsou
rovnice и = au, u2 — auii ekvivalentní. Snadno dokážeme, že
čísla (7'), (7) pro г ф 0 tuto poslední rovnici splňují.

(7)
(7')

Důkaz. Podle Moivreovy věty platí

u\ = r2 (cos а + i sin a), u2 = r2 (cos a + i sin a)
neboli

u\ — ar2, и2 = ar2. *
Dále je аи^йх = а . (w1w1) = а?*2 a podobně а«2м2 = ar2. Tím
je důkaz proveden.
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Závěr. Jestliže je |a| Ф 1, pak rovnice (1) má jediný kořen
и — 0. Jestliže je |a| = 1, potom má rovnice (1) nekonečně
mnoho řešení, daných vztahy (7), (7'), kde r ^ 0 je libovolné
reálné číslo a a amplituda čísla a.

Geometrický význam. Jestliže je |a| Ф 1, pak obrazem
kořenu и = 0 je počátek O Gaussovy roviny.

Jestliže je |a| = 1, pak obrazy všech čísel и = ux ze vztahu
(7) vyplňují polopřímku OUv kde Ux = [cos \ a, sin \ a],
a obrazy všech čísel и = u2 ze vztahu (7') vyplňují polopřímku
Oč/2, kde U2 = [ — cos \ a, — sin \ a]. Příslušné obrazy
tedy vyplňují přímku UxOU2.

11. Buďte a, b daná reálná čísla, která nejsou současně rovna
nule. Pro která x3 kde 0 ^ x ^ \ 7t, má výraz

у = a cos x + b sin x

největší hodnotu. (Všimněte si řešení rovnice (1) na str. 76
v učebnici Trigonometrie pro 10. a 11. ročník středních škol.)

Řešeni. Protože je vyloučen případ a — b = 0, budeme roz-
lišovat těchto osm možností:

(1) a — 0, b > 0;
(2) a > 0, b>0;
(3) a > 0, b = 0;
(4) a > 0, b < 0;
(5) a = 0, b < 0;
(6) a < 0, b < 0;
(7) a < 0, b = 0;
(8) a < 0, b > 0.

Označení nyní r = ]/a2 + b2. Je tedy r > 0. Podmínkám
0 ^ 99 < 27Гa = r sin <p,

vyhovuje jediný úhel q>. Náš výraz můžeme pak psát takto
b —r cos <p,

у = a cos x + b sin jc = r (sin <p cos x + cos cp sin x) =
= r sin {fp + x).
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(1)Je-li a = O, 6 > О, je г = 6, cp = О a daný výraz má
tvar у — r sin х. Největší hodnotu dostáváme pak pro x —
= \tz a příslušné maximum je у

(2) Je-li a > 0, 6 > 0, je 0 < cp < \iz. Protože
sin (x + у) — 1 právě tehdy, je-li x + cp = \ n + 2kiz (kde
k je vhodné celé číslo), dostáváme pro x = — cp maximální
hodnotu jymax — r = ]/a2 + ž>2. (Na obr. 13 je pro určitost
znázorněna situace, kdy a = 1, 6 = j/з. V obrázku je úhel
<£ pravý. Platí r = 2, (p — \iz a největší hodnoty je
dosaženo pro x = 7c.)

(3) Je-li a > 0, 6 = 0, má náš výraz tvar у = a cos x.
Největší hodnotu dostáváme pro x = 0 a příslušné maximum
je у

\

= a — r.max

(4) Je-li a > 0, 6 < 0, je ^тг < cp < 7C. Zde maximální hod-
noty je dosaženo pro x = 0 a toto maximum je у
= r sin (p = a.

(5) Je-li a = 0, 6 < 0, pracujeme s výrazem у = 6 sin x.
Největší hodnoty dosáhneme pro x = 0; hodnota у

(6) Je-li a < 0, 6 < 0, je тс < 9? < 17i. Budeme zde ještě

max

= o.max
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rozlišovat tři případy:
a) тс < op < 17c, t. j. a > 6;
b) 9? = |7r, t. j. a = b;
c) fn < cp < §7T, t. j. a <
V případě a) dostáváme největší hodnotu pro x = 0a toto

maximum je ymax = r sin (p = a. (Na obr. 14 je narýsován
případ a = — 1, b — — |/3; pak cp = ^n.)

V případě b) dostáváme pro x = 0 i pro x = \ n stejné
hodnoty y. Tato společná hodnota je hledané maximum;
platí у = a = b. (Viz obr. 15.)шах
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V případě c) se dosáhne největší hodnoty pro x — |-7r.
Toto maximum je jymax = r cos cp = b. (Na obr. 16 je znázor-
něna situace a = — }/3, b = — 1, tedy cp = | n.)

(7) Je-li a < 0, 6 = 0, pracujeme s výrazem у — a cos x.
Největší hodnoty se dosáhne pro x = \ тс a bude ymax = 0.

(8) Konečně je-li a < 0, b > 0, platí § 7r < cp < 2 тс. Ma-
xima se dosáhne pro x = \ it a bude j>max = r cos cp — b.
(Potřebný obrázek si načrtne už čtenář sám.)

12. Nech je daný štvorsten ABCD, v ktorom splývá střed S
gulovej plochy tomuto štvorstenu opísanej so stredom gulovej
plochy štvorstenu vpísanej.

a) Dokážte, že každá trojúhelníková stená tohto štvorstena
má tú vlastnost’, že střed kružnice tomuto trojuholníku opísa-
nej je vnútorným bodom tohto trojúhelníka. Ďalej dokážte,
že tieto kružnice sú pre všetky štyri steny štvorstena navzájom
zhodné.

b) Dokážte, že v trojuholníkoch ABC, ABD sú uhly při
vrcholoch C, D zhodné.

c) Dokážte, že všetky steny štvorstena sú zhodné.
d) Dokážte, že o hranách štvorstena platí

AB = CD, AC = BD, AD = BC.

Riešenie. Poznámka. Dotyková rovina r v bode T gulovej
plochy x = (S, r) so stredom S a polomerom r stojí kolmo
na priamku ST. Okrem bodu T nemajú plochy r, x žiadny
iný spoločný bod (obr. 17).

Nech r, t' sú dve róznobežné dotykové roviny guTovej
plochy x; označme T, T' (v tomto poradí) ich dotykové body.
Priesečnicu rovin t, r' označme p. Pretože ST J_ r, ST' _L r',
sú priamky ST, ST' róznobežné (keby splývali, platilo by
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т || т') a určujú rovinu a р. Rovina a přetíná roviny г, т'
v priamkach ř, ť a plochu x v kružnici & = {S, r); označme P

• priesečník priamok t, ť (je to priesečník priamky p s rovinou a).
Potom t, ť sú dotyčnice vedené z bodu P ku kružnici k, ktorá
sa ich dotýká v bodoch T, T'. Teda: Ak sú r, x dve rózno-
běžné dotykové roviny gulbvej plochy x, sú ich příslušné do-
týkové body T} T' rožne a ležia mimo priesečnice p rovin r,

Riešenie úlohy, a) Gulová plocha x so stredom 5 vpísaná
danému štvorstenu ABCD leží celá v spoločnej časti pol-
priestorov

O)ABCD, BCDA, CADB, ABDC;
štvorsten ABCD je právě definovaný ako spoločná časť pol-
priestorov (1). Dotykový bod D' plochy x s rovinou ABC leží
jednak v tejto rovině a jednak v prvých troch polpriestoroch
(1), t. j. leží v trojuholníku ABC. Avšak bod D' neleží na
obvode trojuholníka ABC, lebo napr. priamka AB je prieseč-
nicou róznobežných dotykových rovin ABC, ABD gulovej
plochy x a na nej neleží žiadny bod plochy x (pozři úvodnú
poznámku). Z toho vyplývá, že bod D' leží vnútri trojúholníka
ABC. Přitom je

(2)SD' J_ ABC.
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Označme Я = (S, SA) gulovú plochu opísanú štvorstenu
ABCD. Rovina ABC přetne túto plochu v kružnici /4; jej
stredom je pata kolmice vedenej bodom S к rovině ABC.
Podlá vztahu (2) je teda bod D' zrejme stredom kružnice /4.
Pretože bod D' leží vnútri trojuholníka ABC a pretože /4 je
kružnica tomuto trojuholníku opísaná, preto je trojuholník
ABC ostrouhlý. (Dokážme, že napr. uhol <£ BCA = у v troj-
uholníku ABC je ostrý (obr. 18): Bod D' leží vnútri trojuhol-
nika ABC; preto sú body С, В oddělené priamkou AD' a
body C, A priamkou BD'. Bod C neleží teda v uhle <£ AD'B,
ktorý je preto středovým uhlom к obvodovému uhlu у kruž-
nice /4. Pretože sa uhol у rovná polovici středového dutého
uhla AD’В, je uhol у ostrý.)

''Č

obr. is.;

Rovnako sa dokáže, že aj ostatně trojuholníky stien štvor-
stená ABCD sú ostrouhlé.

Gulová plocha x sa dotýká všetkých štyroch rovin stien
štvorstena ABCD; preto má bod 5 od všetkých štyroch rovin
rovnaké vzdialenosti. Preto priesečné kružnice lv /2, /3, /4
plochy Я s rovinami BCD, ACD, ABD, ABC (v tomto poradí)
sú zhodné. Ich poloměr označme r.

Tým sme časť a) rozriešili.
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b) Označme a = <£ А, /?=<£Б, у = <£ C uhly v troj-
uholníku ABC.

Dokážeme teraz, že napr. uhly y, y' protilahlé к straně
AB v trojuholníkoch ABC, ABD (v tomto poradí) sú zhodné
(pozři obr. 19 siete štvorstena, kde je AD2 = AD3, BD3 = BDV
CDX = CDo, a v nej trojuholníky ABC, ABD3). Kružnice
/4, /3 opísané týmto trojuholníkom majú po radě středy D', C,
pričom C leží vnútri trojuholníka ABD a uhol y' je obvodový
uhol v kružnici /3 а к němu prislúcha středový uhol <£ AC'B,
kdežto uhlu y, obvodovému v kružnici /4, prislúcha středový
uhol <£ AD'В (pozři časť riešenia a)).

Tu platí
Д ABD' ^ Д Л5С' (sss);

uvažované trojuholníky majú stranu AB spoločnú a ďalej
platí AD' = BD' = АС = ЯС' = r. Preto je <£ -
< ЛС'Я a teda titi у = \ ^ AD'В = £ <£ ЛС'В = у', t. j.

У = /»
čo sme mali dokázať. Rovnako dokážeme ďalšie vzťahy (celkom
6, lebo štvorsten má 6 hrán); pri označení z obr. 19 sú to
vzťahy:

a = a', ft = $' у =/, 1
e — e', (p — <p', cd — oj'. I (3)

c) Vyjádříme fakt, že súčet uhlov v trojuholníkoch ABC,
BCD, ACD, ABD sa rovná 180°; přitom použijeme hned
vzťahy (3).

Dostaneme
a + P + у = 180°,
a + 9? -{- co = 180°,
£ + /? + &> = 180°,
£ + + У = 180°.

Sčítáme příslušné strany rovnic (6), (7) a odčítáme od nich

(4)
(5)
(6)
(7)
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příslušné strany rovnic (4), (5); dostaneme 2e — 2a = 0 alebo
e = a.

Rovnakým spósobom odvodíme, že
<? = /?>
co — y.

Výsledky (8), (9), (10) splňujú vztahy (5), (6), (7) za predpo-
kladu, že platí (4).

Trojuholníky BCD, ACD, ABD majú s trojuholníkom ABC
vždy jednu spoločnú stranu a zhodujú sa s ním v uhloch
к tejto straně prllahlých. Preto podlá vety usu platí

Л DCB gí Д ABC, Д BAD ^ Д ABC,
Д CDА Д ABC,

(8)

(9)
(10)

(11)
čo sme malí dokázať.

d) Zo vzťahov (11) vyplývá
AB = CD, AC - BD, AD = SC,

čo sme malí dokázať.
Tým sme celú úlohu rozriešili.

2. Úlohy П. kola kategorie A.

1. Řešte rovnici

a(x2 - a2) = b(x2 - 62),
kde a, b jsou daná reálná čísla.

Má tato rovnice vždycky reálná řešení?

(1)

Řešeni. Rovnici (1) postupně upravíme takto
ax2 - a3 = bx2 - b3,
x2(a — b) — a3 — b3.

Protože bylo použito pouze ekvivalentních úprav, je rovnice (2)
ekvivalentní s rovnicí (1).

(2)
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Při řešení rovnice (2) rozlišíme dva případy:

Případ [1]. Nechť je a — b — 0, t. j. a = b. Označme P
pravou a L levou stranu rovnice (2); dostáváme

Z, = 0 . x2 = 0, Z> = a3-ť>3 = 0.

Je tedy L = P pro každé číslo x.

Případ [2]. Nechť je a — b Ф 0, t. j. а Ф b. Potom z rovnice
(2) plyne

a3 — b3
x2

a — b
neboli

x2 = a2 + ab + b2.
Odtud (pokud je a2 + ab + b2 ^ 0) pro x plyne

Xi = 1/a2 + ab + b2, x2 = — ]/a2 + ab -f- b2.
Dokážeme, že výraz pod odmocnítkem je nezáporný pro

každou dvojici reálných čísel a, b.

(3)

Důkaz. Pro libovolná reálná čísla a, b platí
(a + \ b)2 ^ 0

(rovnost platí právě tehdy, je-li a + \ b = 0); dále platí
|i2S0

(rovnost platí právě pro b = 0).
Sečtením obou vztahů (4), (5) dostáváme

(4)

(5)

(6)
Odtud dostáváme

a2 + ab + i b2 + f b2 ^ 0

a2 + ab + b2 ^ 0,
neboli

(7)
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což jsme měli dokázat. Přitom rovnost vzhledem ke (4), (5)
platí právě tehdy, je-li a -f \b = 0, b = 0 neboli a = b = 0,
což je řešeno v případě [1].

V případě [2] je а Ф b a proto platí ar + ab -f- b2 > 0, takže
ve vztazích (3) je хг = — xx Ф 0.

Závěr. Je-li a — b = 0, je řešením rovnice (1) každé reálné
číslo x. Je-li а Ф b, jsou řešením rovnice (1) různá reálná čísla
x = xv x = x2 daná vztahy (3). Má tedy rovnice (1) vždycky
reálné řešení.

Podle řešení s. Lad. Berana,
žáka 11. tř. JSŠ v Radotíně.

Jiné řešení. Po úpravě rovnice (1) dostaneme
{a - Ъ)хг = a3 - 63.

Rozeznávejme dva případy:
Případ [1]. Nechť je a — b = 0 neboli a = b. Pak je též

a3 = b3 neboli a3 — 63 = 0. Rovnice (2) a tedy i rovnice (1)
je zřejmě splněna pro každé číslo x a má tedy nekonečně
mnoho řešení.

(2)

Případ [2]. Nechť je a — b Ф 0. Potom můžeme před-
pokládat, že je a — b > 0 neboli

a>b;

kdyby tomu tak nebylo, potom bychom zaměnili označení
čísel a, b. Z rovnice (2) pak dostaneme

x* = k,

(7)

(8)
kde

a3 - b3
k =

a — b

O čísle k dokážeme, že za předpokladu platnosti vztahu (7) je
kladné.
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Důkaz. Stačí dokázat, že platí a3 — b3 > 0 neboli
a3 > b3.

Rozeznávejme tyto případy:
a) Nechť je b^O, takže platí a> Ы2: 0. Potom podle

známé poučky ze vztahu a > b plyne a3 > b3 (viz učebnici
Algebra pro 10. ročník, str. 6), takže platí vztah (9).

b) Nechť je a ^ 0, b < 0. Potom je a3 ^ 0, b3 < 0 a tudíž
platí vztah (9).

c) Nechť je a < 0, b < 0. Ze vztahu a > b plyne — a <
< — 6, kde — a > 0, — b > 0; ze vztahu — a < — b podle
prve uvažovaného případu a) plyne (— a)3 < (— b)3 neboli
— a3 < — b3, t. j. a3 > 63, což je vztah (9).

Protože za předpokladu platnosti vztahu (7) není jiné mož-
nosti než uvedené (t. j. a) až c)), je platnost vztahu (9) do-
kázána a vskutku platí k > 0.

Rovnice (8) je ryze kvadratická, dále je ]/k > 0 a tudíž
rovnice (8) má dvě různá řešení x = xv x — x2, kde

*i = Щ x2 — —

Tyto kořeny zřejmě vyhovují dané rovnici (1).

(9)

2. Štvorsten VABC má tieto vlastnosti:

(1) Stená ABC je pravoúhlý rovnoramenný trojuholník s pre-
ponou BC = 2a, kde a je dané kladné číslo.

(2) Stená VBC je rovnostranný trojuholník, ktorého rovina
je kolmá к rovině ABC.

Označme O střed hrany BC a dalej označme po radě B', O',
C body vnútri úsečiek VB, VO, VC, pričom body B', O', C
ležia na priamke rovnobežnej s priamkou BC. Uhol <£ ОАО'
označme x.

a) Vyjádříte velkosti stráň trojuholníka/íB'C' pomocou a, x.
b) Vypočítajte, pre ktoré x je trojuholník AB'C rovnostranný.
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Riešenie (obr. 20). a) Z textu úlohy vyplývá
OB = OC — a,
VB =VC = 2a,

<£ ABC = 45°
(trojuholník ABC je rovnoramenný a pravoúhlý),

< AOB = 90°,
takže trojuholník ABO je rovnoramenný a pravoúhlý a preto

OA = a.

V trojuholníku AVO je <£ O = 90° a
TO =4/3

(výška rovnostranného trojuholníka VBC); preto platí

tg < VАО = OA

(1)

(2)

OV
= Уз,

alebo
(3)<£ ТЛО = 60°.

Teda je vždy
0 < x < 60°. (3')

Z trojuholníka АО'O (kde <£ O — 90°) vyplývá vzhladom
OO' = 0/í. tg * = a . tg x,

АО' =

па (1) (4)
ОЛ a

(5)
COS X COS X
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preto je podia (2) a (4)
VO' = VO- 00' = а(\/ 3 - tg x).

Z rovnolahlosti trojuholníkov F5C, VB'C', ktoré sú rovno-
stranně, dostaneme podlá (6) a (2)

(6)

=a.«b^ = 4(l/3-,g*).(7)a [/ 3
Pretože je B'C' = 2.5'O', dostaneme zo vzťahu (7)

VO'
B'0'=B0.^

VO P

2a
BC “

уз (P ~ ^ *) • (8)

Pretože je АО J_ БС, VO J_ 5C, je rovina AVO rovinou
súmernosti daného štvorstena VABC a z toho vyplývá, že
aj body B', C sú súmerne zdražené podra tejto roviny, takže
AB’ = АС', О'В' = O'C, <£ AO'B' = 90°; preto z trojuhol-
nika AB'0' dostaneme podlá Pythagorovej vety použitím (5)
a (7)

a2a2
+ -j- (V3 -tg *)2AB'2 = АО'2 + В'O'2 = cos2 x

alebo

(Уз - tgx)2j-4 1 1
(9)AB'2

cos2 x 3

Vztahy (8), (9) dávajú riešenie úlohy a).
b) Máme stanovit’ .v, pre ktoré je AB' = B'C alebo AB'2 =

= B'C'2; zo vzťahov (8), (9) vyplývá, že musí platit’

(l/3-tgx)4 = ^(p-tg^. (9')[ 11
a2 + Tcos2x

Pretože je а Ф 0, dostaneme stade ekvivalentný vztah
1

= (V 3 - tg x)2 •cos2x
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Vzhladom na (3') je cos x > 0, ]/ 3 > tg x > 0 alebo ]] 3 —
— tg x > 0 a preto je posledná rovnica (vzhladom na danú
úlohu) ekvivalentná s rovnicou

1
= ]/3 — tg x

COS X

alebo

\ У 3 . cos x — £ . sin X =

avšak sin 60° = \ У 3, cos 60° = \ a tým nadobudne po-
sledná rovnica postupné tvary

sin 60° cos x — cos 60° sin x = sin (co + 2k7i),
sin (60° — x) = sin (co + 2&7r),

i •
2 9

(10)
kde k je celé číslo a oj = 30° alebo oj = 150°. Z rovnice
(10) dostaneme

60° — x = co -f- 2ктс
alebo

x = 60° — oj — 2kn.

Podmienku (3') pre x možno zrejme splnit’ len číslami co = 30°,
k = 0, t. j.

x - 30°.

Tento uhol zrejme vyhovuje požiadavkám úlohy, ako vyplývá
napr. z obráteného postupu alebo z dosadenia do (9'). Tým
sme úlohu rozriešili.

Podra riešenia s. Leo Bukovského,
žiaka lid JSŠ v Lučenci.

3. Je dáno kladné číslo k. Uvažujme kruhovou výseč, jejíž
obvod je roven číslu k a jejíž poloměr označíme x.

Vyjádřete obsah p této výseče jako funkci poloměru x.
Dále určete, pro která x nabývá obsah p největší hodnoty.
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Řešení. Označme a velikost příslušného středového úhlu vý-
seče v obloukové míře. Pak pro obvod a obsah výseče platí

k = xoc + 2jc,

p — \ x2 a..

Protože musí být x > 0, plyne z (1)

0)

(2)

k
(3)a = 2

x

a po dosazení tohoto výsledku do (2) dostaneme

p = \ kx — x2.
Výsledku (4) lze dát tento tvar

P = ň&-(\k-x)\

(4)

kde (i k — x)2 ^ 0; proto číslo/) je největší právě tehdy,
je-li

\k-x=0
neboli

x = \k.
Pro x = \ k podle (3) je a = 2, tedy 0 < a < 27i, takže

příslušná kruhová výseč skutečně existuje. Nabývá tedy pro
x — \ k obsah p největší hodnoty fa ^2- Tím je úloha řešena.

4. V rovině budte dány tři vesměs různé přímky MSM',
NSNPSP', které tedy procházejí bodem S. Na polopřímce
SM buď dán bod A různý od bodu S.

Na přímkách NSN', PSP' sestrojte po řadě body В, C tak,
aby bod 5 byl středem kružnice trojúhelníka ABC vepsané.

(Pokyn. Vyjádřete nejprve velikost úhlu <£ BSC pomocí
úhlu <£ CAB hledaného trojúhelníka ABC).
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Řešeni (obr. 21). O úhlech a, у hledaného trojúhelníka
ABC platí (I + у = 2R — oc; z trojúhelníka SBC, kde 5 je
středem kružnice trojúhelníku ABC vepsané, snadno dosta-
neme vztah

< BSC = 2R — HP + y)
neboli

< BSC = i? + £a.
Záměnou vrcholů odtud dostaneme dva další vztahy, takže
celkem platí

<$BSC = R+ \ a, <£CSA=R+ % P,
< = Я + £ у .

Je tedy každý z úhlů < BSC, С5Л a <£ tupý. (Uvi-
dime, že tato nutná podmínka je i podmínkou postačující pro
řešitelnost úlohy.)

(1)

Protože přímka AS má s úsečkou BC společný bod U, který
leží uvnitř této úsečky, leží i polopřímka SU (až na bod S)
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uvnitř úhlu «£ BSC; proto bod A^á S leží nutně uvnitř úhlu,
který je к úhlu <£ BSC vrcholový, a pořádek bodů na přímce
AS je tedy A, S, U.

Obraťme se nyní к vlastnímu řešení úlohy. Vhodnou volbou
označení bodů na daných přímkách NSN', PSP' snadno do-
sáhneme toho, že bod A padne dovnitř úhlu <£ N'SP' a že
pak bod M' padne dovnitř úhlu NSP. Společný bod U
hledané úsečky BC s přímkou AS leží podle předchozího od-
stávce nutně uvnitř polopřímky SM' a tedy uvnitř úhlu
<£ NSP; odtud plyne, že bod В musí ležet uvnitř polopřímky
SN a bod C uvnitř polopřímky SP. Proto je nutně <£ NSP =
=s <£ BSC a tedy NSP = R -f \<x, kde a je úhel hledaného
trojúhelníka ABC při vrcholu A. Pak již musí být <£ PSM =
= R + l /?, <£ MSN = R -j- \ y, jak se snadno zjistí.

Konstrukce. Sestrojme úhel <£ NSP — Я = <£ PSJ a
označme jeho velikost \cc. Přenesme tento úhel к polopřímce
AS do obou polorovin vyťatých přímkou AS; dostaneme úhly
<£ SAK = \ a (v polorovině ASN), <£ SAL — \<x (v polo-
rovině ASP). Společný bod polopřímek SN, AK označme В
a společný bod polopřímek SP, AL označme C. Pak je ACB
hledaný trojúhelník.

Důkaz konstrukce. Dokážeme, že trojúhelník ABC sku-
tečně existuje a že bod S je středem kružnice tomuto troj-
úhelníku vepsané. Předpokládáme, že úhly <£ MSN, <£ NSP,

PSM jsou tupé; jejich velikosti po řadě označme R + \ y,
R -f \ol, R -f Protože je MSN + < NSP +
-f < PSM — 4R, dostaneme odtud po dosazení vztah

2a + + \y — R-
Společný bod В polopřímek SN, AK existuje, neboť je (jak

ihned dokážeme)

(2)

£ = <£ KAS + < NSA < 2R, (3)
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takže je splněn požadavek Eukleidova postulátu. Důkaz vztahu
(3) provedeme takto: Podle konstrukce je <£ KAS = \a, dále
je <£ NSA = R 4- \y a součet obou těchto úhlů je R -f-
-f- £a + \y — e- Avšak podle vztahu (2) je \cc 4* \y < R
a proto skutečně je e < 2R. Tím je vztah (3) dokázán a bod В
existuje. Stejně se dokáže, že existuje bod C.

Nyní dokážeme, že bod je středem kružnice trojúhelníku
ABC vepsané. Označili jsme <£ NSP = R + |a; podle kon-
strukce je <£ CAB = cc. Přitom bod 5 leží na ose úhlu <£ CAB
a platí <£ BSC = R + |a. Ale takový bod je v polorovině
BCA jediný; proveďme důkaz tohoto tvrzení: Polopřímka AS
leží v úhlu <£ BAC a proto má s úsečkou BC společný bod U,
ležící uvnitř této úsečky. Množinou všech bodů v polorovině
BCA, z nichž je úsečka BC vidět pod daným tupým úhlem
R + \x = '<£ NSP, je vnitřek oblouku k, jehož krajními body
jsou body В, C. Přitom bod 5 na tomto oblouku k nutně
leží a bod U leží uvnitř kružnice, jejíž částí je uvažo-
váný oblouk k. Proto uvnitř úsečky UA leží jediný bod 5 této
kružnice, který je zároveň vnitřním bodem oblouku k i troj-
úhelníka ABC. Protože střed O kružnice trojúhelníku ABC
vepsané musí ležet na polopřímce AS v polorovině BCA a musí
o něm platit <£ BOC = R + \ <}; CAB neboli R + \ol, je
O = 5 a bod 5 je středem kružnice trojúhelníku ABC vepsané,
což jsme měli dokázat.

Diskuse. Řešitelnost úlohy závisí (při našem vhodném
označení daných přímek MSM', NSN', PSP') na tom, zda
každý z úhlů <£ MSN, <£ NSP, <£ PSM je tupý, což vyply-
nulo jako nutná podmínka z rozboru; její postačitelnost plyne
z důkazu konstrukce. Není-li tato podmínka splněna, nemá
úloha řešení. Tím je řešení dané úlohy provedeno.
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3. Úlohy Ш. kola kategorie A.
1. Určte všetky dvojice ostrých uhlov x, y, ktoré vyhovujú

sústave rovnic

cos x
— 2 cos2y, (1)

cosy

sin X
— 2 sin2y. (2)siny

Riešenie. Předpokládá]me, že daná sústava má riešenie x, y,
o ktorom platí

0 < я < 90°, 0 < у < 90°. (3)
Z rovnice (1) vyplývá

cos x
— 2 — 2 sin2y.

cosy

Dosaďme do tejto rovnice za 2 sin2y z rovnice (2); dostaneme
sin xcos x

= 2 —

sinycosy

Znásobme obe strany tejto rovnice číslom cosy .siny; dosta-
neme

cos x siny = 2 cosy siny — sin x cos у

cos x siny + sin X cos у = 2 cosy siny
alebo

alebo
sin (x + y) = sin 2y.

Porovnáním argumentov dostaneme, že musí platiť jeden
zo vzťahov (přitom je k celé číslo):

(4)x + У = 2y + k . 360°,
x + у = 180° -2y + k. 360°.

[1]

(5)[2]
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Případ [1]. Z rovnice (4) dostaneme
x = у -f- k . 360°.

Pretože x, у sú velkosti ostrých uhlov, je nevyhnutné k — 0.
Hladané čísla musia teda splňovat vzťah

X =y.

Po dosadení do rovnice (1) dostaneme
(6)

cosy
= 2 cos2 у ;

cosy

zlomok na lávej straně sa rovná číslu 1 (lebo předpokládáme,
že platia vztahy (3) a teda je cosy Ф 0). Je teda

2 cos2 у = 1
alebo

cos2y = \
a vzhladom na požiadavku (3) je nevyhnutné

cosy 2 '

Z toho dostáváme, že musí byť у = 45° a vzhladom na (6) aj
* = 45°.

Dvojica čísel
x = 45°, у = 45°

je skutočne riešením sústavy rovnic (1), (2); o tom sa pre-
svědčíme dosadením:

^Pre rovnice (1) platí skutočne
cos 45° 2

COS X
= 1 a 2 cos2y = 2 cos245° = 2 .

= 1.
cos 45°cosy

Podobné zistíme pre rovnicu (2), že po dosadení x = у = 45°
sa každá jej strana rovná číslu 1.
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Případ [2]. Z rovnice (5) dostaneme
* + у = (180° -2y) + k. 360°.

Podlá požiadaviek (3) je 0 < x -f- у < 180° a 0 < 2у < 180°,
preto pre výraz v zátvorke na právej straně rovnice (7) platí

0 < 180° - 2y < 180°.

Keby bolo k ^ 1, dostali by sme, že x + у > 360°; keby bolo
k <2 — 1, dostali by sme x + у < 0. Preto móže byť jedine
k = 0 a teda musí platit’

(7)

x + у = 180° — 2jy.
Z toho vyplývá

x = 180° - 3j>.
Po dosadení do rovnice (2) dostáváme

Г7')

sin (180° — 3y)
= 2 sin2jysinjy

a vzhladom na (3') po znásobení oboch stráň tejto rovnice
číslom sin у Ф 0

sin (180° — Ъу) = 2sin3jy.
Ale sin (180° — Ъу) — sin3j? a rovnici (8) možno dať tvar

(8)

sin Ъу = 2 sin3jy.
Eahko odvodíme vzťah sin3j> = 3 cos2jy . sin jy — sin3^; po do-
sadení do rovnice (9) dostaneme

3 cos23>. sin j; = 3 sin3jy. •

(9)

1
Ak násobíme obe strany tejto rovnice číslom

vztahy (3)), dostaneme

(pozři3 sinjy

cos2jy = sin2j>
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a pretože у je velkost’ ostrého uhla, vyplývá z predošlej rovnice
cosy = sinj>

alebo (pozři napr. grafy funkcií sinus a kosinus)
у = 45°.

Po dosadení do (7') dostaneme .v — 45°. Dospievame teda
к výsledku případu [1].

Jediná dvojica ostrých uhlov x, y, ktorá vyhovuje danej
sústave, je [jc = 45°, у = 45°]. Tým sme úlohu rozriešili.

Podra riešenia s. Leo Bukovského,
žiaka lid JSŠ v Lučenci.

2. V dané rovině q bud dán vypuklý čtyřúhelník ABCD,
jehož úhlopříčky se protínají v bodě E. Mimo rovinu q bud
dán bod V.

Uvnitř polopřímek VA, VB, VC, VD sestrojte po řadě
body А', В', C, D' tak, aby ležely s bodem E v téže rovině a
a aby čtyřúhelník A'B'C'D' byl rovnoběžník. Rozhodněte
o řešitelnosti úlohy. Náčrt konstrukce proveďte ve volném
rovnoběžném promítání.

Řešeni (obr. 22). Jestliže rovnoběžník A'B'C'D' existuje,
pak se jeho úhlopříčky A'C, B'D' musí protnout v bodě E',
který leží uvnitř polopřímky VE\ protože však rovina a, která
zřejmě nemůže obsahovat přímku VE, prochází bodem E, je
nutně E' ~ E, t. j. bod E musí být středem hledaného rovno-
běžníka. Bod E musí tedy být středem souměrnosti rovno-
běžníka A'B'C'D'. Na základě toho provedeme konstrukci.

Konstrukce. Sestrojme obraz Aí bodu A v souměrnosti
podle bodu E, veďme jím přímku a || VA a označme C prů-
sečík přímek a, VC. Dále označme A' průsečík přímek ЕС,
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VA. Podobně sestrojme obraz Dx bodu D v souměrnosti podle
bodu E, veďme jím přímku d || VD a označme B' průsečík
přímek d, VB. Dále označme D' průsečík přímek EB', VD.
Potom je čtyřúhelník A'B'C'D' hledaný rovnoběžník.

Důkaz. Bod E leží uvnitř poloroviny VAC a s ním tedy
i bod Ax\ proto uvnitř této poloroviny leží i přímka a || VA
a tedy i bod C, který proto leží uvnitř polopřímky VC. Při
tom bod C existuje, neboť přímka VC protíná první z rovno-
běžek VA, a a tudíž protíná i druhou. Bod A' je zřejmě obra-
zem bodu C v souměrnosti podle bodu E, neboť leží na přímce
ЕС a na přímce VA, která je obrazem přímky a v souměr-
nosti podle bodu E. Stejně jako pro bod C se dokáže,
že bod A' leží uvnitř polopřímky VA. Je tedy

EA' = ЕС. (1)
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Právě tak se dokáže, že body B', D' leží po řadě uvnitř polo-
přímek VB, VD a že platí

(2)EB' = ED'.

Ze vztahů (1), (2) plyne, že A'B'C'D' je hledaný rovno-
běžník.
■ Protože provedené konstrukce lze provést s jediným výsled-
kem, má úloha vždy právě jedno řešení. Jestliže platí EA — ЕС,
EB = ED, potom je daný čtyřúhelník ABCD hledaným čtyř-
úhelníkem A'B'C'D'.

Popsanou konstrukci lze provést v rovnoběžném promítání,
neboť obrazem středu úsečky je střed úsečky, která je obrazem
dané úsečky; obrazy rovnoběžek jsou rovnoběžné přímky.

Tím je řešení úlohy provedeno.

Podle řešení s. Lubomíra Ohery,
žáka 11b JSŠ ve Znojmě.

3. Určete všechna reálná řešení soustavy rovnic
х — \У+ 1| = 1>

x2 + у = 10.

Řešeni. Předpokládejme, že daná soustava má řešení. Rozezná-
vejme dvě možnosti: [1] Nechť je у -f 1 ^ 0; [2] nechť je
У + 1 < 0.

Případ [1]. Tu platí 1.У + 1| — :y + 1, a proto je daná sou-
stava ekvivalentní se soustavou

* - Су + i) = i.
x2+;y = 10

neboli se soustavou

x — у — 2,
x2 -Vy = 10. (1)
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Sečteme-li obě poslední rovnice, obdržíme rovnici
x2 + x — 12 = 0.

Kořeny této rovnice jsou xl3 x2, kde
= 3, x2 = — 4.

К číslům л: = лг1э x = x2 z první rovnice (1) dostaneme po
řadě příslušná čísla у = y13 у = y23 kde

Уг = 1j Уъ = — 6.
Vzhledem к požadavku у + 1 ^ 0 vyhovuje dané soustavě
pouze dvojice

x = 3, у = 1.

Případ [2]. Z předpokladu у + 1 < 0 plyne \y + 1| —
= — (y + 1). Z dané soustavy pak dostaneme ekvivalentní
soustavu

*-[-& +1)]= i.
x2 + у — 10

neboli soustavu

* + у = o,
r2 + у = 10. (2)

Odečtením první rovnice (2) od druhé rovnice (2) obdržíme
x2 — x — 10 = 0.

Její řešení x13 xz jsou
*! = }(! + l/l - (- 40) = H1 + 1/41).
*« = i(l-Vl-(-40) = J(l-V«)-

К nim z první rovnice (2) příslušejí po řadě čísla у = y13
у =y23 kde

1(1 + 1/41), Л = Н- 1 + Ví')-У1 = -

Nyní dokážeme, že dvojice x — x13 у = yx je řešením dané
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soustavy, kdežto dvojice x = x2) у =y2 není řešením dané
soustavy.

Stačí dokázat, že platí yx < — 1, kdežto y2 > — 1. Zde
platí У^Т > У 36 = 6. Proto je \ (1 + У41) > 1 a tedy y1 <
< - 1. Dále je \(- 1 + 1^1) > - 1, t.j.^2 > - 1. Tím
je důkaz proveden.

Závěr. Daná soustava má právě tato dvě řešení:
x = 3, у = 1; ж = HI + pl)> У = — HI + pí)-

Podle řešení s. Miloše Dostála,
žáka 11a tř. 20. JSŠ v Praze XVI.

4. Je dána polokružnice AB. Označme X vnitřní bod této
polokružnice. Na polopřímce XA, sestrojme bod Y tak, aby
platilo XY = XB. Jaký útvar vyplní bod У, jestliže bod X
probíhá všechny vnitřní body dané polokružnice AB ?

Řešeni (obr. 23, 24). Označme k = (5, SA) kružnici, jejíž
částí je daná polokružnice AB. Dále buď CD J_ AB průměr
této kružnice, při čemž je C vnitřním bodem polokružnice
AB; tuto polokružnici budeme v dalším značit také polokruž-
nice ACB.

Podle textu úlohy leží bod Y uvnitř polopřímky XA, při
čemž platí

(1)XY =* XB.

Přitom podle Thaletovy věty platí
<£ AXB = 90°.

Trojúhelník BYX je proto pravoúhlý a rovnoramenný s pře-
ponou BY a platí

(2)

< XYB = <£ YBX = 45°. (3)
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Označme M střed úsečky BY', pak polopřímka XM leží
v obvodovém úhlu <£ AXB — 90° a dělí jej ve dva shodné
styčné úhly o velikostech 45°. V tomto obvodovém úhlu <£ AXB
leží к němu příslušný oblouk ADB kružnice k a přímka
p = XM dělí polokružnici ADB ve dva oblouky AD', D’B,
z nichž každý přísluší ke středovému úhlu velikosti 45°. 2 =
= 90°. Proto je ASD' = <)C BSD' = 90°. Odtud plyne, že
je D = D', a proto osa p úsečky BY prochází bodem D pro
každou polohu bodu X. Při tom je DB — DY, neboť přímka p
je množinou všech bodů, které mají od bodů B, Y sobě rovné
vzdálenosti. Odtud plyne, že každý bod Y leží na kružnici
m == (D, DB); tato kružnice prochází zřejmě bodenwl == Y',

který přísluší к bodu X' = C dané polokružnice ACB. Označ-
me BE průměr kružnice m; snadno zjistíme, že platí

AE _L AB, AE = AB.

84



Zkoumejme nyní podrobněji množinu bodů Y. Úhel <£ BDX
je obvodovým úhlem nad obloukem BX dané polokružnice
ACB. O příslušném středovém úhlu BSX podle textu
úlohy platí

0< < BSX< 180°,
neboť bod X leží uvnitř polokružnice ACB. Proto o příslušném
obvodovém úhlu <£ BDX platí

(4)0 < <£ BDX < 90°.
Ze souměrnosti podle osy p dostáváme vztah

XD Y = <£ BDX. (5)
Protože je <£ BDY = <£ BDX -f <£ XDY, plyne z před-
chozího vztahu, že <£ BD Y = 2 . <£ BDX. Odtud a ze (4)
dostaneme vztahy

(6)0 < <£ BDY < 180°,
které platí pro každý bod Y a tedy i pro bod Y' = A.

Padne tedy nutně každý bod Y dovnitř poloroviny BEA
na kružnici m neboli dovnitř polokružnice BAE. Nyní doká-
žeme, že ke každému bodu Yt, který leží uvnitř této polokruž-
nice, dovedeme sestrojit uvnitř dané polokružnice ACB bod X0
takový, že sestrojíme-li к němu jako к bodu X = X0 bod Y
podle textu úlohy, dostaneme bod Y = Y0.

Důkaz. Protože je Y0 vnitřní bod polokružnice BAE, platí
(srovnej s (6))

0 < <£ BDY0 < 180°.
Označme DN osu tohoto úhlu*); ta leží zřejmě v úhlu<£ ADВ =

= 90°, který je obvodovým úhlem nad polokružnicí ACB.
Proto má polopřímka DN s touto polokružnicí nutně společný

*) Srovnej s obr. 23, který je třeba vhodně upravit (písmena X, Y
nahradit písmeny X0, Y0).
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bod Х0, různý od bodů A, B. Při tom je DX0 osou souměrnosti
trojúhelníka DB F0, takže je DX0 J_ В У0. Sestrojme nyní podle
textu úlohy к bodu X = X0 příslušný bod Y. Podle (5) padne
Y na polopřímku DY0, neboť podle předchozí konstrukce
bodu X0 je <£ BDXq = <£ X0D Y0. Avšak na tuto polopřímku
padne jediný bod kružnice m a tím je bod F0; proto je Y = Y0,
což jsme měh dokázat.

Tím je řešení dané úlohy provedeno; hledanou množinou
všech bodů Y je vnitřek polokružnice BAE, kterou jsme výše
sestrojili.

Jiné řešení. Označme CD průměr kružnice k = (S, SA)
kolmý к přímce AB, při čemž bod C leží na dané polokruž-
nici AB (polokružnici ACB). Jako při 1. řešení dospějeme
ke vztahu

<$BYX = 45°.

Nyní rozeznávejme tři možnosti pro polohu bodu X na

dané polokružnici ACB:

(3)

Případ [1]. Nechť je X = C; pak příslušným bodem Y je
bod A.

Případ [2] (viz obr. 23). Nechť je X vnitřním bodem
čtvrtkružnice AC, takže leží uvnitř pravého úhlu <£ ASC
a platí

< ASX < 90°. (7)

Odtud snadno usoudíme, že bod X leží uvnitř úhlu <£ CAP =
— 45°, kde AP _L AB je polopřímka poloroviny ABC. Na
přímce AP v polorovině ABD sestrojme bod E tak, aby AEB
byl pravoúhlý rovnoramenný trojúhelník o přeponě EB; bod D
je zřejmě středem kružnice m tomuto trojúhelníku opsané.
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Tečna kružnice m v bodě A je přímka CAC, kde O je bod
ležící uvnitř poloroviny ABD.

Trojúhelník ABX má podle Thaletovy věty při vrcholu X
pravý úhel. Jeho ostrý úhel <£ ABX je obvodový úhel v kruž-
nici k a přísluší ke středovému úhlu <£ ASX < 90°. Proto je

ABX < 45°.

Druhý ostrý úhel <£ BAX tohoto trojúhelníka je proto větší
než 45°, takže platí <£ ABX < <£ BAX. Proto o odvěsnách
tohoto trojúhelníka platí AX < BX. Bod Y, který sestrojíme
podle textu úlohy ke zvolenému bodu X, padne na prodloužení
úsečky XA za bod A a tedy dovnitř poloroviny ABD. Protože
bod X leží uvnitř úhlu <£ CAP, leží bod Y uvnitř úhlu <£ C'AE
к němu vrcholového. O bodu Y platí vztah (3). Proto podle
známé věty o množině všech bodů, z nichž je daná úsečka vidět
pod daným úhlem, snadno usoudíme, že bod Y leží na jistém
oblouku AB v polorovině ABD. Protože je též <£ AEB = 45°,
prochází tento oblouk též bodem E, takže je částí kružnice m
opsané trojúhelníku BAE. Avšak bod Y musí ležet uvnitř
úhlu < C'AE; proto leží bod Y uvnitř oblouku AE kružnice m.

Víme, že je <£ EDA = 90°, proto je oblouk AE čtvrtkružnice.
Jestliže obráceně je Y0 bodem, který leží uvnitř této čtvrt-

kružnice AE (v obr. 23. nechť si čtenář myslí, že je Y0 = Y),
potom dokážeme, že lze na čtvrtkružnici AC najít bod X
takový, že bod Y, který к němu podle textu úlohy přísluší,
nutně splyne s bodem Y0. Důkaz provedeme takto: Označme
AQ polopřímkou opačnou к polopřímce AY0. Protože přímka
Y0AQ není kolmá к přímce AB, je nutně sečnou kružnice k
a společné jejich body jsou А ^ X. Přitom bod X musí ležet
uvnitř polopřímky AQ, neboť polopřímka A Y0 leží v poloro-
vině AEB' opačné к polorovině AES, která je vyťata tečnou
AE kružnice k (a kružnice k nutně tedy leží v polorovině
AES). Podle textu úlohy sestrojíme к bodu X příslušný bod

(8)
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Y. Ten podle předchozího výsledku nutně leží uvnitř polo-
přímky AY0 a na čtvrtkružnici AE; z toho přímo vyplývá,
že je Y = У0. Tím je důkaz proveden.

Odtud plyne, že vnitřek čtvrtkružnice AE patří к hledané
množině všech bodů Y.

Případ [3] (viz obr. 24). Nechť je X bodem čtvrtkružnice
CB, takže leží uvnitř pravého úhlu <£ CSB a platí *$.XSB <
<90°.

Snadno dokážeme jako v případě [2], že pak je <£ ABX >
> < ВАХ, a proto též АХ > BX. Proto bod У, příslušný
podle textu úlohy к bodu X je vnitřním bodem úsečky AX
a leží tedy uvnitř poloroviny ABC. Úhel <£ A YB je vnějším
úhlem trojúhelníka BYX, který je pravoúhlý a rovnoramenný,
takže je 4; AYB = 135°. Množinou všech bodů uvnitř polo-
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roviny ABC, z nichž je úsečka AB vidět pod úhlem 135°,
je oblouk AB již dříve uvažované kružnice m = (D, DB),
jak plyne na př. i z toho, že <£ ADВ — 90°; proto je tento
oblouk AB rovněž čtvrtkružnice.

Stejně jako v případě [2] se snadno dokáže, že každý vnitřní
bod čtvrtkružnice AB lze považovat za bod Y sestrojený
к jistému bodu X, který leží uvnitř čtvrtkružnice CB.

Z toho plyne, že vnitřek čtvrtkružnice AB patří rovněž
к hledané množině všech bodů Y.

Závěr. Spojíme-li nyní výsledky případů [1] až [3], vidíme,
že hledanou množinou všech bodů Y je vnitřek polokružnice
EAB, která leží* uvnitř poloroviny ЕВА a je částí kružnice
m = (D, DB). Tím je řešení úlohy provedeno.

Poznámka. Naznačíme ještě jeden způsob řešení (obr.25):
Podle vztahu (3) je <£ XBY = 45° a dále je BY = ]/2 . BX,
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jak plyne z pravoúhlého rovnoramenného trojúhelníka BYX.
К danému bodu X tedy sestrojíme příslušný bod Y tak, že
sestrojíme obraz X' bodu X ve stejnolehlosti o středu В a

koeficientu j/2, načež к bodu X' sestrojíme obraz Y v otáčení
kolem bodu S o úhel 45° (ve vhodném smyslu). Odtud plyne,
že hledanou množinou všech bodů Y je vnitřek polokružnice
EAB; rovněž obrácení je bezprostřední. (V obr. 25 je BS = r,
BC = r^2; o bodu Sx polopřímky BS platí BSX = ВС a dále
je || SX; nakonec opíšeme kružnici p = (В, BX'), na
níž leží hledaný bod Y.)

4. Úlohy I. kola kategorie B.

1. V rovině pravoúhlých souřadnic sestrojte graf funkce
y=*\x — a\ + |* —&|,

kde a ^ b jsou daná reálná čísla.
Provedenou konstrukci odůvodněte.
Řešení. Rozeznávejme tři možnosti: [1] Nechť je a<x;

[2] nechť je b ^ x ^ a; [3] nechť je x < b.
Případ [1]. Pro x > a je \x — a\ = x — a,\x — b\ — x — b

a vztah (1) lze psát у — x — a -\- x — b neboli
у =2x-(a + b).

(1)

Obr. 26. Obr. 27.
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Grafem této funkce v rovině pravoúhlých souřadnic x, у při
podmínce x > a je vnitřek polopřímky AM; při tom je A =
i=[x = а; у — a — b] a směrnice přímky AM je 2. Jsou tu
dvě možnosti: Je-li a > b, máme graf na obr. 26; je-li a — b
máme graf na obr. 27.

Případ [2]. Pro bf^xl=La je \x — a\ = a — x3\x — b\ —
= x — b a vztah (1) lze psát у = a — x x — b neboli

у = a — b.
Jsou opět dvě možnosti: Je-li a > b, je grafem úsečka AB,

kde A = [x = а, у = a — b\, В = [x = b, у — a — b], rovno-
běžná s osou x; je-li a = b, je grafem bod A = В =
= [x = а, у = 0].

Případ [3]. Pro x < b je \x — a\ — a — x, |л — b\ = b — x
a vztah (1) lze psát у = a — x b — x neboli

у = — 2.x -}- (cl -}- b).
Grafem této funkce při podmínce x < b je vnitřek polopřímky
BN; při tom je В = [x = b, у = a — b\ a směrnice přímky BN
je —2. Jsou tu dvě možnosti: Je-li a > b, máme graf na obr. 26;
je-li a — b, máme graf na obr. 27.

2. Nech sú dané dve rožne rovnoběžky u, v; ďalej nech je
daný na priamke и bod M a na priamke v bod N.

Zostrojte dve zhodné, navzájom sa dotýkajúce kružnice kí3k2i
z ktorých kx sa dotýká priamky и v bode M a kz sa dotýká
priamky v v bode N.

Urobte diskusiu riešenia úlohy.

Riešenie (obr. 28, 29). Predpokladajme, že daná úloha má
riešenie. Obe hladané kružnice kx = (51} r), k2 = (S2, r) sú
zhodné a preto sa musia dotýkat’ zvonku. Označme q2 pol-
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roviny vyťaté priamkou u, pričom q1 obsahuje priamku v‘s
dalej označme av a2 polroviny vyťaté priamkou v, pričom
ax obsahuje priamku u. Kružnica kx sa dotýká priamky и v bode
M a preto leží celá v jednej z polrovín qx, q23 rovnako usúdime,
že kružnica k2 leží celá v jednej z polrovín av a2. Kombinu-
jeme každú z polrovín gx, q2 s každou z polrovín aXi a2; tak
dostaneme štyri možnosti pre polohu hladaných kružnic. Pri-
tom případ (g2, a2) musíme vylúčiť, lebo tieto polroviny nemajú
spoločný bod, kdežto kružnice kx, k2 majú spoločný bod do-
tyku. Zostávajú teda tieto tri kombinácie polrovín: (gx, ax),

- (qi, cr2), (o2, (Tj). Tretiu možnosť možno previesť na druhů
súmemosťou podlá středu T úsečky MN. Budeme preto skú-
mať len prvé dve možnosti.

I /

,-ř
> V ///////?,

k2

Případ [1] (obr. 28). Nech kružnice kx, k2 ležia v polrovi-
nách gls ax\ zo vzájomnej polohy polrovín qx, ox vyplývá, že
polpriamky SXM, S2N (ktoré sú kolmé na rovnoběžné dotyč-
nice u3 v) sú navzájom nesúhlase rovnoběžné. Označme T
dotykový bod oboch kružnic kv k2. (Je známe, že dve zhodné
dotýkajúce sa kružnice kx, k2 majú dotykový bod T za střed
súmemosti, pri ktorej kružnica kx prechádza v k2 a k2 v kx.
V stredovej súmemosti sú příslušné polpriamky nesúhlasne
rovnoběžné.) V súmemosti podlá bodu T prechádza kružnica
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kx v k2 a k2 v kv ďalej bod St v S2 a 52 v Sx a konečne bod
M v N a N v M. Z toho vyplývá, že bod Г je stredom úsečky
AÍN a úsečky TM, TN si navzájom odpovedajú v stredovej
súmernosti podlá bodu Г; to sú však tětivy kružnic kv k2
(v tomto poradí). Preto body Sv S2 ležia na osách ov o2 (v tomto
poradí) úsečiek TM, TN a ďalej po radě na priamkach m _]_ u,
n ± v, vedených bodmi M, N (v tomto poradí).

Z toho bezprostredne vyplývá konštrukcia (pozři obr. 28);
jej odóvodnenie sme už urobili.

Pretože priamky и, MN sú pri každej polohe priamok
и v a bodov M, N navzájom róznobežné, sú aj dvojica pria-
mok (m, ox) a dvojica priamok («, o2) vždy róznobežné. Preto
vždy existujú body Sv S2 a úloha má v tomto případe právě
jedno riešenie.

Případ [2] (obr. 29). Nech kružnice kv k2 ležia po řade
v polrovinách qx, a2; zo vzájomnej polohy týchto polrovín
vyplývá, že polpriamky 5XAÍ, S2N (ktoré sú kolmé к rovno-
běžným dotyčniciam и, v) sú navzájom súhlasne rovnoběžné.
Označme T dotykový bod oboch kružnic k13 k2. (Je známa táto
veta: Ak sú kx = (Sx, r), k2 = (S^ r) dve zhodné kružnice,

КШ7Т

ktoré sa dotýkajú v bode Г, potom možno posunutím previesť
kružnicu kx v kružnicu k2; velkost' posunutia je 2r, jeho zmysel
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je udaný polpriamkou SjSg-) V posunutí, v ktorom bod Sx
prechádza v bod S2, prechádza polpriamka v polpriamku
S2N a pretože je — ,S2N = r, přejde v tomto posunutí
bod M v bod N. Z toho vyplývá, že MN sú zhodné
úsečky, pričom je S1S2 = 2r; je teda 2r = MN alebo r =
= l MN.

Z toho bezprostředné vyplývá konštrukcia, ktorú vidíme na
obr. 29; jej správnost’ sme v predošlom už dokázali.

Pretože M, N sú rózne body, úsečka r vždy existuje a úloha
má právě jedno riešenie.

Závěr. Celkom možno zostrojiť tri dvojice kružnic kv k2.
Prvá dvojica odpovedá případu [1]; dve dvojice odpovedajú
případu [2], jedna totiž dvojici polrovín (g1} a2), druhá dvojici
polrovín

ri Д

& № }S, y.

N

fS2 {S? P

v

Obr. 31.Obr. 30.

Poznámka. Ak je MN J_ u, zostáva podané riešenie v plat-
nosti (pozři obr. 30, 31).

3. Riešte sústavu rovnic
ax + (1 — a)y = 2,
(2 — a)x + 3ay — 1

o neznámých x} y3 kde a je dané reálne číslo.

(1)
(2)
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Urobte diskusiu riešiternosti sústavy vzhladom na číslo a.

Riešenie. Znásobme obe strany rovnice (1) číslom —(2 — a)
a obe strany rovnice (2) číslom a; sčítajme dalej lavé a pravé
strany rovnic, ktoré tak dostaneme. Výsledkom bude rovnica

— (1 — a)(2 — a)y + 3a?y = — 2(2 — a) + a
alebo

у(2а2 + За — 2) = За — 4. (3)
To je lineárna rovnica pre neznámu у. O jej riešitelnosti roz-
hoduje predovšetkým koeficient 2a2 + За — 2. Vypočítajme,
pre ktoré čísla a sa tento trojčlen rovná nule. Za tým účelom
riešme rovnicu

2а2 + 3a - 2 = 0.

Tá má kořene a = als a = a2, kde
= \ 3 ^2 — 2,

ako sa lahko vypočítá.
Při riesení rovnice (3) móžu nastať tieto možnosti:

Případ [1]. Nech je 2a2 + За — 2 Ф 0. To nastane podlá
predošlého pre každé a, ktoré je rožne od čísel — 2. V tomto
případe vypočítáme z rovnice (3)

За - 4 (4)У = 2а2 + За-2 '
Z rovnice (1) dostaneme po dosadení zo vzťahu (4)

(За - 4)(1 - q)
2а2 + 3a - 2

ax +

alebo

4a2 + 6a - 4 - (-'3a2 + 7a - 4)
ax =

2a2 + 3a - 2
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a teda

7a2 — a

2a2 + За-2 ‘
Teraz musíme rozlišovať dva případy:

[a] Nech je а Ф 0. Potom z rovnice (5) dostaneme

(5)ax =

7а- 1
(6)x =

2a2 + 3a-2 '

Dvojica čísel (x, 3;) daných vzťahmi (6), (4) zrejme vyhovuje
danej sústave rovnic (1), (2), ako sa lahko přesvědčíme dosa-
děním.

[6]. Nech а = 0. V tomto případe daná sústava rovnic (1),
(2) znie

у = 2, 2x = 1.
Jej riešenie je (x = J , у — 2).

Případ [2]. Nech je 2a2 -f 3a — 2 = 0. Vieme, že to na-
stane jednak prea — — 2, jednak pre а = Uvažujme o kaž-
dom z týchto prípadov zvlášť.

[a] Nech а = — 2. Daná sústava znie
2x — Ъу = — 2,
4x — 6jy = 1.

Lává strana druhej rovnice je dvojnásobkom lávej strany prvej
rovnice. Avšak pravú stranu druhej rovnice dostaneme z právej
strany prvej rovnice násobením číslom — \. Rovnice sú zrejme
sporné a daná sústava nemá riešenie.

[b] Nech a—\. Daná sústava znie v tomto případe
\ x + \y — 2 j

I x + § У — 1 •

Rovnako ako v predošlom případe usúdime, že rovnice sú
sporné a sústava nemá riešenie.
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Závěr. Daná sústava má jediné riešenie pre čísla a rožne
od čísel — 2, \ . Avšak ak sa a rovná niektorému z čísel —2, |,
potom nemá sústava riešenie.

4. Je dán trojúhelník ABC; jeho úhly označme po řadě
a, /3, y. Sestrojte čtyři shodné kružnice k, kl3 k2, k3, z nichž
k13 К h leží v daném trojúhelníku a které mají tyto vlastnosti:

(1) Kružnice k má s kružnicemi kl3 k2, k3 vnější dotyk.
(2) Kružnice kx se dotýká ramen úhlu a, kružnice k2 ramen

úhlu /3 a kružnice k3 ramen úhlu y.
Dokažte, že úloha má vždycky řešení.

Řešení (obr. 32). Předpokládejme, že jsme sestrojili shodné
kružnice

k — (S, v), = («Sj, r), k% = (*^<y h = (5д, r),
které vyhovují těmto požadavkům:

a) Kružnice kv k2, k3 leží v trojúhelníku ABC, při čemž
se dotýká ramen jeho úhlu a, k2 ramen jeho úhlu /3 a k3 ramen
jeho úhlu y.

b) Kružnice k se dotýká vně kružnic k13 k2, k3. Má-li úloha
řešení, pak ze shodnosti kružnic k13 k2, k3 plyne, že body S13
S2, S3 nesmějí ležet v jedné přímce, t. j. musí existovat troj-
úhelník Označme Tí3 T2, T3 po řadě dotykové body
dvojic kružme (k, кг), (k, k2), (k, &3); tyto body podle poža-
davků úlohy jsou středy úseček SSV SS2, SS3. Tu platí

ST^ — ST2 — ST3 — T-y — ^2^2 — ЗД — r'

Platí tedy
SS1 = SS2 = SS3 - 2r. (1)

Je tedy 5 středem kružnice opsané trojúhelníku SXS2S3.
Body S13 S2 leží uvnitř poloroviny ABC, při čemž vzdálenost
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každého z bodů Sv S2 od přímky AB je r. Proto je 5X52 || AB;
stejně se dokáže S2S3 Ц BC, S3SX || CA. Platí tedy

«^1^2 II AB, S2S3 || ВС, ЗД II CA.
Označme U průsečík os vnitřních úhlů trojúhelníka ABC;

lze předpokládat, že bod U je různý od bodu jinak by byla
kružnice kx trojúhelníku ABC vepsána a kružnice k2, k3 by
s ní nutně splývaly.

(2)

Á

Obr. 32.

f "Uvažujme nyní stejnolehlost U o středu U, v níž bodu č>\
přísluší bod A. Přímkám ve stejnolehlosti U pří-
slušejí po řadě přímky AB || SXS2, AC || S1S3, jak plyne ze
vztahů (2). Odtud plyne, že ve stejnolehlosti U přísluší bodu
S2 bod В a bodu S3 bod C. Jsou tedy S1S2S3, ABC trojúhel-
niky, které si příslušejí ve stejnolehlosti U v napsaném pořadí
vrcholů.
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Nechť ve stejnolehlosti U příslušejí kružnicím k, k13 k2, k3
kružnice k' = (S', r'), k\ = (A, r'), k'2 = (Б, r'), = (C, r').
Při tom se kružnice k' dotýká kružnic k[ , k2 , k3 . Protože č> je
středem kružnice opsané trojúhelníku SXS2S3, Iе středem
kružnice opsané trojúhelníku ЛБС, která má tedy poloměr 2r\

Dále označme A'B'C trojúhelník, který ve stejnolehlosti U
přísluší trojúhelníku ABC. Kružnice k[ se dotýká ramen úhlu
<£ A' a má poloměr r'; podobné vlastnosti mají kružnice k2 , k'3 .

Je tedy r' vzdálenost obou přímek A'B' || AB, při čemž přímka
A'B' leží uvnitř poloroviny opačné к polorovině ABC. Po-
dobné vlastnosti mají strany B'C', C'A'. Dovedeme tedy
trojúhelník ^'B'C'i'sestrojit. Označme q poloměr kružnice
vepsané trojúhelníku ABC. Pak q je vzdálenost bodu U od
přímek AB, BC, CA. Protože bod U leží uvnitř trojúhelníků
ABC, A’B'C (který má bod U rovněž za střed vepsané kruž-
nice o poloměru q + r), je koeficient stejnolehlosti U roven

A = -i±tl
Q

Stejnolehlost U' o středu U a o koeficientu stejnolehlosti

Я' = -j- (tedy stejnolehlost obrácená к stejnolehlosti U) pře-
vádí trojúhelník A'B'C v trojúhelník ABC, trojúhelník ABC
v trojúhelník 51525’3, bod S’ v bod a kružnice k', k[ ,k'2,k'3
v kružnice k, kx, k2, k3.

Na základě toho provedeme konstrukci.

Konstrukce. V trojúhelníku ABC sestrojme střed U kruž-
nice trojúhelníku vepsané a dále střed S' knižnice trojúhelníku
opsané; označme S'A — 2r' a q poloměr kružnice trojúhelníku
ABC vepsané. Sestrojme patu P kolmice vedené bodem U
к přímce AB a na prodloužení úsečky UP za bod P sestrojme
bod P' tak, aby platilo PP' = r'. Uvažujme stejnolehlost U'
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o středu U, ve které bodu P' přísluší bod P; její koeficient je
zřejmě

в

Q + r'
Sestrojme trojúhelník který ve stejnolehlosti LT pří-

sluší trojúhelníku ABC a bod .S příslušný bodu S'. To provede-
me takto: Bod Sx leží na polopřímce UA, při čemž je SXP || AP’;
podobně sestrojíme body S2, S3. Bod S (pokud je S'^ U)
sestrojíme na polopřímce US' tak, že je na př. SXS || AS' nebo
SP || S’P’. Jestliže je S' = U (trojúhelník ABC je rovno-
stranný), pak je také 5 = U.

Diskuse. Podle popsané konstrukce lze kružnice k', k\ , k'2,
k’3 vždy sestrojit, ato s jediným výsledkem. Protože stejnolehlost
U' o středu U, v níž bodu A' přísluší bod A, vždy existuje, lze
i kružnice k, k13 k2, k3 sestrojit s jediným výsledkem. Tím je
řešení provedeno.

Poznámka. Dokažme ještě, že na př. kružnice leží
v trojúhelníku ABC. Stačí dokázat, že kružnice k'x leží v troj-
úhelníku A'B'C: Podle konstrukce přímky B'C' je šířka pásu
rovnoběžek ВС || B'C' rovna r', při čemž bod A a body
přímky B'C jsou přímkou BC odděleny; je tedy vzdálenost
bodu A od přímky B'C větší než /. Leží tedy všechny body
kružnice k'x v úhlu <£ C'A'B' (podle konstrukce) a uvnitř
poloroviny B'C'A a tedy celá tato kružnice leží v trojúhelníku
A'B'C', což jsme měli dokázat.

5. Nechť o daných kladných číslech a, b, s platí vztah
a -f- b 5^ s.

Potom platí vztah
1

ab<,—s2;

dokažte.
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Tento výsledek objasněte na obdélníku o rozměrech a, b.

Řešení. O číslech a, b platí
(1)a + b ^ s;

máme dokázat, že platí též
ab ^ .

Ze vztahu (1) plyne
a + b <

2 — 2 5

a poněvadž čísla na obou stranách tohoto vztahu jsou kladná,
proto platí též

m S2
-

4 *

-) ^0 neboh

(2)

Zřejmě je správná nerovnost I——

^0. (3)

Sečtěme levé i pravé strany vztahů (2), (3); dostaneme
52

(4)
což jsme měli dokázat.

Geometrický význam. Jsou-li a, b rozměry obdélníka,
pak předpoklad (1) značí, že poloviční obvod tohoto obdélníka
je menší nebo roven danému číslu s. Výsledný vztah (4) pak
značí, že obsah tohoto obdélníka je menší nebo roven obsahu
čtverce o straně \ s\ strany a! = b' — \ s tohoto čtverce splňují
též vztah (1) a tím i vztah (4).
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Jiné řešení. O číslech a, b podle předpokladu platí
a + b ^ s. (1)

Položme
a + b = k, (5)

kde
k ^ 5

je kladné číslo. Je tedy b = k — a a platí postupně
ab = a(k — a) = ak — a2 = (— i k2 + ak — a2) -j- \ hr =

= l k2 — k2 — ak + a2) = \ k2 — (i jfe - a)2;

(6)

je tedy
ab = \k2- (\k- a)2

Protože vždy je Q& — л)2 ^ 0, plyne z předchozí rovnosti
ab ^ i/e2.

Ze vztahu (6) plyne k2 ^ s2 neboli
i A2 g 1 s2;

spojením vztahů (8), (9) dostaneme
ab ^ \s2.

(7)

(8)

(9)

(10)

Poznámka. Vztah (7) ukazuje, že obsah obdélníka o roz-
měrech a, b je největší, když je a = \k = b. Ze všech obdél-
níků, jejichž rozměry splňují požadavek (1), má tedy největší
obsah (viz (6), (7)) právě čtverec o straně \ s.

6. Ak připočítáme к súčinu štyroch bezprostředné za sebou
nasledujúcich prirodzených čísel číslo 1, dostaneme číslo,
ktoré je druhou mocninou prirodzeného čísla. Dokážte to.

Riešenie. Nech a je najmenšie z uvažovaných štyroch bez-
prostredne za sebou nasledujúcich prirodzených čísel. Máme
dokázat’, že N + 1, kde N — a (a + l)(a + 2)(a + 3), je
druhou mocninou prirodzeného čísla.
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Po:tupne platí

т)Ы3 1N == а 4̂
2 2 Г

•(‘, + т+т)(а + т+4)_
-М~1)И*4)-

•(а + т“т)(а + т + т)==
= [а2 -f За]. [а2 + За + 2] = [а2 -f За]2 -f 2 [а2 + За].

Z tohto výsledku vyplývá
N + 1 = [а2 + За]2 + 2 . [а2 + За] + 1 = (а2 + За + I)2. -

Číslo N 4- 1 je skutočne druhou mocninou čísla а2 + 3a + 1>
ktoré je zrejme prirodzené pre každé prirodzené číslo a.

Iné riešenie. Označme а < b < c < d hladané čísla. Položme
M = abcd + 1. Máme dokázat’, že M je druhá mocnina pri-
rodzeného čísla. Zrejme je c ^ 3. Potom

a = c — 2, b = c — 1, á = c+ 1.
Platí

M = (c — 2)(c - 1) . c . (c + 1) + 1
a postupné ďalej

M = (c2 - 2c)(c2 - 1) + 1,
Aí = c4 - 2c3 - c2 + 2c + 1.

Z toho
M = (cz — c — l)2.
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ч

Pretože с je prirodzené číslo, je c2 — c — 1 iste celé číslo.
Dokážeme, že je kladné. Platí í^3a teda c — 1^2. Preto

c2 - c - 1 = c(c - 1) - 1 ^ 3.2 - 1 = 5,
takže c2 — c — 1 je celé kladné číslo, t. j. prirodzené číslo.

Tým sme vetu dokázali.

7. Jsou dána celá čísla a, b Ф 0.
Určete všechny dvojice celých čísel m, n, pro něž platí

a + ma

(1)b b + n

Řešeni. Podle požadavku úlohy má platit vztah (1) neboli
vztah

a + ma
= 0,b b + n

t. j. vztah
ab + an — ab — bm

= 0
b{b + я)

a tedy vztahy
an — bm = 0,

b + n Ф 0.
(2)

Rozeznávejme dva případy.

Případ [1]. Nechť je n = 0. Potom ze (2) pijme, že m — 0
(neboť je b Ф 0). Tedy m = n — 0, což je jedna dvojice čísel m,
n řešící úlohu.

Případ [2]. Nechť je n Ф 0. Potom ze vztahu (2) plyne
am

(3)b *n
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Označme cp > 0 největšího společného dělitele čísel a, b;
pak je

a = a' .cp, b — b' .cp,

kde a't b'3 jsou nesoudělná čísla. Podle (3) potom platí

a'm

b' 5n

a'
kde zlomek — je v základním tvaru; proto o číslech m, nb
musí platit

m = Qa'3 n — Qb'3
kde q Ф 0 je celé číslo.

Obráceně utvořme celá čísla

ba
(4)m0 = O. , П0 = Q .

4> V

kde cp > 0 je největší společný dělitel čísel a, b a kde q Ф 0
a q Ф — cp je libovolné celé číslo. Potom platí b + n0 —

= b . Ф 0 a tedy
V

a (p + ?>)а + m0

Ke + <ř)6 + n0 b{1 + f)
proto je

a + m0
_

b + n0 b

Čísla (4) s příslušnými podmínkami jsou proto všechna čísla,
která vyhovují úloze.

a
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8. V rovině nad danou úsečkou AB jako průměrem sestrojte
kružnici k = (S3 r). Nad každou z úseček SA, SB jako prů-
měrem sestrojte kružnice kv (513 \ r), k2 == (S2, \ r).

Sestrojte všechny kružnice, které se dotýkají všech tří
kružnic k}kí3k2. (Vypočtěte nejprve poloměry hledaných kruž-
nic a pak proveďte konstrukci.)

Řešení (obr. 33). Kružnice k, kv k2 vždy existují. Kružnice
klf k2 se dotýkají zevnitř kružnice k po řadě v bodech А, В
a jedna druhé se dotýkají vně v bodě S; leží tedy každá z kruž-
nic kx, k2 uvnitř kružnice k (až na bod A a B). Proto hledaná
kružnice &0 = (O, q) se musí dotýkat kružnic kv k2 vně a
kružnice k zevnitř (měla-li by se k0 dotýkat k vně, pak by pro
dotyk s kružnicemi kl} k9 přicházely v úvahu jen body А, В
a pak by kružnice k0 nutně splývala s kružnicí k). Bod O proto
leží uvnitř kružnice k a vně kružnic k2. To znamená, že
body S13 O tvoří vrcholy trojúhelníka 515,20, o němž
platí

S±S2 = r, 5xO = r + Q — S2O;
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je to tedy trojúhelník rovnoramenný o základně a přímka
OS je zřejmě jeho osou souměrnosti. Proto je trojúhelník
OSrS pravoúhlý s pravým úhlem při vrcholu S. O jeho stra-
nách podle Pythagorovy věty platí

+ x2, (1)

kde * = SO. Celý útvar je zřejmě souměrný podle přímky SO
(kružnice kXi k2 přecházejí jedna v druhou, každá z kružnic
k, k0 přechází sama v sebe). Proto dotykový bod T kružnic
k, k0 musí padnout na přímku SO. Platí tedy ST = SO + ОТ
neboli

(2)* + Q = Г.
Po úpravě rovnic (2), (1), které nutně musí platit o neznámých
q, x, dostaneme

X — Г Qy
x2 = rg + q2.

Po vyloučení neznámé x z druhé rovnice dostaneme
(r - 6)2 = ro + Q2

neboli
r2 — 3rq = 0,

t. j.
r(r — 3o) = 0.

Protože je г ф 0, je nutně
r — 3q = 0

a tedy
Q = \r.

x = | r .

Čísla (3), (4) zřejmě splňují vztah (2) i vztah (1), neboť do-
sadíme-li ze (3), (4) do obou stran vztahu (1), dostaneme jednak

(3)
Pak je

(4)

= 1б(9 + 1б>=1тГ-r2
, jednak í-^- + Tř
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Odtud plyne konstrukce. V bodě 5 sestrojíme kolmici p
к přímce ASB a označíme T jeden z jejích průsečíků s kružnicí^.
Rozdělíme úsečku ST na tři shodné úsečky; při tom dostaneme
bod O takový, že OS = § r. Kružnice opsaná z bodu O polo-
měrem О Г je hledaná kružnice, jak plyne ze zkoušky prove-
děné na závěr rozboru.

Protože přímka p protne kružnici k vedle bodu T v dalším
bodu T'^ Г, dostaneme ještě druhou kružnici k’Q == (O', q).
Obě kružnice k0, k'0 (i celý obrazec) jsou souměrně sdružené
podle přímky AB. Tím jsou všechna řešení úlohy nalezena;
existují tedy vždy dvě řešení.

Jiné řešení. Rozbor (obr. 34). Stejně jako v předchozím
řešení usoudíme, že hledaná kružnice k0 == (O, q) musí ležet
uvnitř dané kružnice k (až na bod T) a vně každé z obou da-
ných kružnic kxs k2 (až na dotykové body). Platí tedy nutně

OSx - OS2 = \ r + q (1)
(podmínka pro vnější dotyk dvojice kružnic kx, k0 a dvojice
k2, k0). Proto bod O leží na ose p úsečky SXS2. Hledaná kruž-
nice k0 má přímku p za osu souměrnosti stejně jako kružnice k.
Proto dotykový bod T kružnic k, kQ je jedním ze společných
bodů přímky p a kružnice k (druhý společný bod označme
T’^á T). Je tedy

(2)OT = q,

při čemž bod O leží uvnitř kružnice k a vně každé z kružnic
^1» ^2"

Uvažujme nyní kružnici m = (O, \ r -f q) , která vzhledem
к (1) nutně prochází oběma body Sv S2, při čemž s polopřím-
kou ОТ (o. tedy s polopřímkou ST) má společný bod M,
o němž platí ОМ = ОТ + TM neboli

OM = \r + q, TM — |r. (3)
Bod M tedy dovedeme sestrojit; při tom je O zřejmě středem
kružnice m opsané rovnoramennému trojúhelníku MSXS2.
Těchto výsledků užijeme ke konstrukci.

108



Konstrukce (obr. 34). Sestrojíme bodem 5 přímku
P _L a )e)í průsečíky s kružnicí k označíme T^ T'. Kon-
strukci provedeme pro bod T (konstrukci pro bod T dosta-
neme z konstrukce pro bod T pomocí souměrností podle osy
S-lS.J. Na prodloužení úsečky ST za bod T sestrojíme bod M
tak, aby platilo

TM = l r .

Pak sestrojíme střed O kružnice opsané rovnoramennému troj-
úhelníku MS1S2 se základnou ŠltS2. Potom kružnice k0 =
= (О, ОТ) vyhovuje úloze.

Důkaz. V rovnoramenném trojúhelníku MS^, je MSX >
> MS, MS = | r a tedy > § r, t. j. MS, > Sj.S2; proto
v tomto trojúhelníku o úhlech к těmto stranám protějších platí

S2 > *£ M. Avšak úhly St — S, jsou ostré (úhly při
základně rovnoramenného trojúhelníka); proto je <£ M také
ostrý. Je tedy MSXS2 ostroúhlý trojúhelník a proto střed O
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kružnice m jemu opsané podle známé věty padne dovnitř
trojúhelníka, t. j. v našem případě dovnitř úsečky SM. Proto
je průměr 2 . OM kružnice m větší než úsečka SM = | r
neboli OM > | r. Protože OS = SM — OM, je OS < f r;
z toho plyne, že bod O, padne dovnitř kružnice k = (S, r),
t. j. dovnitř úsečky ST. Protože je přímka ST tečnou kružnic
kx, k2 v bodě S, leží bod O vně každé z kružnic kv k2 a úsečky
OS! = OS2 jsou větší než \r.

Sestrojená kružnice k0 se zřejmě v bodě T dotýká kružnice k
a má poloměr q = OM — \r, takže platí

OM = \r + o.

Protože podle konstrukce je OM = OSv — OS2 (poloměry
kružnice opsané trojúhelníku MS^^, platí na př. =
= \r + Ql je tedy středná kružnic kx, k0 rovna součtu
jejich poloměrů, takže se tyto kružnice dotýkají vně, což
zřejmě platí také o kružnicích k2, kQ.

Tím je důkaz proveden.
Diskuse. Ve zvolené polorovině SXS2T lze sestrojit jediný

bod M, popsaný v konstrukci; jemu podle provedeného dů-
kazu přísluší jediná kružnice k0 vyhovující úloze. К bodu T'
přísluší druhá taková kružnice k"0 , souměrně sdružená ke kQ
podle přímky 5X52. Protože přímka SXS2 středy O, O' těchto
kružnic odděluje, jsou obě kružnice různé a úloha má dvě
řešení. Tím je řešení úlohy provedeno.

(4)

Podle řešení s. Drahomíry Chládkové,
žákyně 10a JSŠ v Poličce.

9. V rovině bud dána kružnice k = (5, r). Dále bud dán
bod P, který neleží na této kružnici.

Bodem P veďte sečnu p kružnice k, která protíná tuto kruž-
nici v různých bodech А, В, a to tak, že jeden z bodů А, В, P
je středem úsečky, jejímiž krajními body jsou oba body zbý-
vající.
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Proveďte diskusi řešitelnosti úlohy vzhledem к číslům r, v,
kde v je vzdálenost bodů S, P.

Řešení. Rozeznávejme dvě možnosti.
Případ [1]. Nechť daný bod P leží uvnitř dané kružnice

k = (S, r). Tu jsou dvě možnosti: a) je P = S‘, b) je P ^ S.
[a] Nechť je P = S. Potom každá sečna kružnice k, vedená

bodem P, obsahuje jeden průměr AB této kružnice a platí
PA = PB. V tomto případě má úloha nekonečně mnoho
řešení.

[b] Nechť je P ^ S. Sečna AB, která vyhovuje úloze a která
tedy prochází bodem P, ležícím uvnitř kružnice, obsahuje
tětivu AB kružnice k a jen uvnitř této tětivy leží body sečny AB,
kteří zároveň leží uvnitř kružnice. Proto je P vnitřním bodem
tětivy AB, a protože má platit PA — PB, je bod P středem
této tětivy. Pak ovšem osa tětivy AB prochází středem 5 kruž-
nice k. Musí tedy platit AB PS. Odtud plyne konstrukce
(viz obr. 35):

Sestrojme přímku PS a v bodě P к ní sestrojme kolmici p.
Protože je PS < r, je přímka p sečnou kružnice k a vytíná na
k tětivu AB. Podle známé věty z planimetrie je bod P sku-
tečně středem této tětivy AB.
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Z provedeného rozboru a konstrukce vyplývá, že v tomto
případě má úloha vždy jediné řešení.

Případ [2]. Nechť daný bod P leží vně dané kružnice, t. j.
platí (obr. 36)

v = PS > r.

Předpokládejme, že přímka p vedená bodem P protíná kruž-
nici k v bodech B, které vyhovují úloze. Protože bod P
leží vně kružnice k (a je různý od bodů А, В), nemůže ležet
uvnitř tětivy AB; jinak by byl bodem ležícím uvnitř kružnice.
Leží tedy P na prodloužení úsečky AB. Označení bodů А, В
můžeme (bez újmy obecnosti řešení úlohy) zvolit tak, že bod P
leží na prodloužení úsečky AB za bod A, neboli že bod A leží
uvnitř úsečky BP. Protože přímka p vyhovuje požadavkům
úlohy, musí platit

AB = AP.

PA
Proto platí = —. Uvažujme stejnolehlost P o středu P,PB 2

ve které bodu В přísluší bod A, tedy stejnolehlost o koefi-
cientu V této stejnolehlosti P přísluší kružnici k kružnice

O, , kde O je středem úsečky PS. Na této kružnici

k0 leží nutně bod A jako bod příslušný bodu В v této stejno-
lehlosti. Odtud plyne konstrukce.

Konstrukce. Sestrojme střed O úsečky PS a opišme kruž-

. Označme písmenem A jeden společný bod
kružnic k, &0. Potom přímka PA (pokud existuje) vyhovuje
požadavkům úlohy.

Důkaz. Body P, A jsou jistě různé; kdyby splynuly, potom
by bod P ležel na kružnici k, což je proti předpokladu. Uva-
žujme stejnolehlost P', která má střed P a koeficient stejno-

*o —

4nici k0 =
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lehlosti roven číslu 2 (t. j. stejnolehlost obrácená ke stejno-
lehlosti P). V ní zřejmě kružnici k0 přísluší kružnice k a bodu A
určitý bod В polopřímky PA, takže platí PB = 2 . PA neboli
AB = AP. Tím je důkaz proveden.

Diskuse. Úloha má řešení, jestliže o kružnicích k, k0 platí

r —

1
protože je SO = —v, lze předchozí podmínce dát tvar

r Ф v ^ 3r.

Přitom v případě, že platí v — r anebo v = 3r (dotyk vnitř-
nich nebo vnějších kružnic k, &0), je řešení jediné. V případě, že
platí r < v < 3r jsou dvě řešení (když se totiž kružnice k,
kQ protínají — viz obr. 36 a v něm různé přímky PAB, PA'B',
které jsou souměrně sdružené podle přímky PS).

Tím je řešení úlohy provedeno.
Několik dalších řešeni případu [2] předchozí úlohy.
Řešení 1 (obr. 37). Nechť je

(1)v > r

a nechť přímka p = PBA je řešením úlohy; při tom nechť je
p ф PS. Sestrojme průměr AR kružnice k a všimněme si troj-
úhelníka PAR. Protože platí SA = SR, AB — BP, je SB = r
střední příčkou tohoto trojúhelníka; proto je PR = 2r, takže
bod R leží na kružnici k a na kružnici k' = (P, 2r). Odtud
konstrukce.

Konstrukce (viz obr. 37). Sestrojíme kružnici k' = (P, 2ř)
a označíme R jeden ze společných bodů kružnic k, k'. Dále
sestrojíme průsečík А Ф R kružnice k a přímky SR; potom
je p = AP jedna z hledaných přímek.
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Důkaz. Označme В střed úsečky AP. Potom je SB střední
příčka trojúhelníka PAR příslušná ke stran! PR — 2r; je
tedy SB = \ PR = r a bod В skutečně leží na kružnici k.
Tím je důkaz proveden.

Diskuse. Řešitelnost úlohy závisí na tom, zda kružnice k, k'
mají společný bod R. Tento bod existuje právě tehdy, jestliže
o středné SP — v a poloměrech 2r, r platí nerovnosti 2r — r ^

v ^ 2r -(- r neboli
r ^ v ^ 3r.

Vztah r 5^ je vzhledem к (1) splněn, při čemž je vnitřní
dotyk obou kružnic vyloučen vztahem (1).

Jestliže platí v < 3r, mají kružnice dva různé společné body
R,R' а к nim příslušejí i dva různé body A, A' a tím dvě přímky
p = PA, p' = РЛ', které jsou souměrně sdružené podle
přímky PS; úloha má dvě řešení.

Jestliže platí v — 3r, je bod = В bližším z obou průsečíků
přímky PS s kružnicí k vzhledem к bodu P; bod A je vzdále-
nějším z obou průsečíků (je AP — 4r). Tu má úloha jediné
řešení.
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Jestliže platí v > 3r, je vzdálenost nejbližšího bodu kružnice
k od bodu P větší než 2r; protože tětiva kružnice k má velikost
rovnu nejvýše 2r, nelze najít přímku p, která by vyhovovala
úloze. V tomto případě nemá úloha řešení.

Tím je případ [2] rozřešen.

Podle řešení s. Miroslava Žáby,
žáka 10b JSŠ ve Vysokém Mýtě.

Řešení 2 (obr. 38). Nechť je
(1)v>r;

nechť přímka p = PBA je řešením úlohy. Uvažujme středovou
souměrnost se středem В; tím přejde daná kružnice k v kruž-
nici k! = (S', r), která se v bodě В dotýká vně kružnice k.
V této souměrnosti přejde bod A v bod P. Úlohu tedy můžeme
převést na úlohu sestrojit kružnici k' o poloměru r, která se

dotýká vně kružnice k a která prochází bodem P. Množinou
středů všech kružnic o poloměru r, které se kružnice k dotý-
kají vně, je kružnice s ~ (S, 2r). Na základě toho provedeme
konstrukci.
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Konstrukce (obr. 38). Opišme kružnici í = (S, 2r); dále
sestrojme kružnici m = (P, r) a označme S' jeden ze společ-
ných bodů kružnic m, s. Potom kružnice k' = (5', r) prochází
bodem P a dotýká se kružnice k vně; příslušný dotykový bod В
kružnic k, k' leží na úsečce SS' a na kružnici k. Potom je přímka
p == PB řešením úlohy.

Důkaz. Správnost konstrukce bodu В je zřejmá. Protože
je В Ф P, přísluší v souměrnosti o středu В kružnici k' kruž-
nice k a bodu P bod А ф В, který skutečně leží na přímce/),
takže pořádek bodů na této přímce je P, В, A a platí BP = BA.
Tím je důkaz proveden.

Diskuse. Řešitelnost úlohy závisí na tom, zda lze sestrojit
bod В neboli sestrojit bod S'; to závisí na tom, zda kružnice
m, s mají společný bod. Středná těchto kružnic má podle (1)
velikost v — SP, poloměry jsou 2r, r. Kružnice m, s mají
společný bod, jestliže platí 2r — r ^ v ^2r -\- r neboli r ^
^ v ^ 3r. Vztah r ^ v je vzhledem к (1) splněn, při čemž
nemůže nastat vnitřní dotyk.

Jestliže platí v < 3r, mají kružnice m, s dva různé společné
body S’, S" a protože středy В, B’ úseček SS', SS" jsou různé,
má úloha dvě řešení p = PB, />' = PB', což jsou zřejmě dvě
různoběžky souměrné podle přímky PS.

Jestliže platí v = 3r, je zřejmě přímka PS řešením úlohy.
Jestliže platí v > 3r, nemá úloha řešení (viz Řešení 1).
Tím je řešení případu (2) provedeno.

Podle řešení s. Jana Zitka,
žáka 10b JSŠ v Chrudimi.

Řešení 3 (obr. 39). Nechť platí

0)v > r

a nechť přímka p = PBA je řešením úlohy, takže platí
AP = 2 . BP. (2)
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Mocnost bodu P ke kružnici k je číslo AP. BP, které je rovno
číslu PT2, kde T je dotykový bod tečny vedené z bodu P ke
kružnici k, t. j. platí

PT2 = AP . BP.

Dosaďme sem ze vztahu (2); dostaneme po úpravě

BP ]/2 = PT.

Je tedy velikost úsečky BP rovna velikosti strany čtverce
sestrojeného nad úsečkou PT jako úhlopříčkou. Na základě
toho provedeme konstrukci.

Konstrukce. Z bodu P sestrojíme tečnu PT ke kružnici k
(viz obr. 39); nad úsečkou PT jako přeponou sestrojíme právo-
úhlý rovnoramenný trojúhelník PTM. Dále opíšeme kružnici
k! = (P, PM) a označíme písmenem В jeden ze společných
bodů kružnic k, k'. Potom přímka p = PB je hledané řešení.
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Důkaz. Podle konstrukce je
1

BP = PT. (3)n
Pro mocnost bodu P ke kružnici platí

BP. AP = PT2,

při čemž А, В jsou společné body přímky PB s kružnicí k.
Po dosazení za PT ze (3) do (4) a po úpravě dostaneme AP =
— 2 . BP; vzhledem к tomu, že bod P leží vně kružnice k,
plyne odtud, že pořádek bodů na přímce p je P, B, A. Tím je
důkaz proveden. v

Diskuse se provede stejně jako v předchozích řešeních, jen
je při tom třeba užít vztahu PT2 = v2 — r2.

(4)

Podle řešení s. Drahomíry Chládkové,
žákyně 10a JSŠ v Poličce.

10. Mezi místy А, В jezdí dva autobusy, které mají jedinou
zastávku v místě C; poměr vzdáleností míst A, C a míst В, C
(v tomto pořadí) je roven danému číslu p.

Oba autobusy vyjedou současně z míst А, В proti sobě a
do konečných stanic dorazí rovněž současně po době T minut;
při tom oba stojí po dobu t minut v místě C.

Při kterých hodnotách čísla p (v závislosti na dobách T, t)
se oba autobusy setkají:

a) mezi místy A, C,
b) mezi místy В, C,
c) právě v místě C (to neznamená, že autobusy musí přijet

do místa C současně).
(Předpokládá se, že rychlost obou autobusů za jízdy je kon-

stantní.)
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Řešeni. Označme d Ф 0 vzdálenost míst A, B. Pak vzdále-

a míst С, В je —

úlohy je Г > t > 0. .Rychlost autobusu za jízdy je
Autobus jedoucí z Л dojede do C za dobu

dp d
p + 1 ^ — t

a po zastávce v C další cesta do £ mu trvá dobu
T-t

P+ 1 ' T-t ~ p + 1
Protože druhý autobus má stejnou rychlost, trvá mu cesta

z В do C dobu j>, cesta z C do A dobu x.
a) Jestliže doba jízdy prvního autobusu mezi místy A, C

trvá déle než jízda druhého autobusu mezi В, C zvětšená o dobu
zastávky v C, setkají se autobusy mezi A, C. Je-li tedy

* > у + t,

. Podle textunost míst A, C je
P+ 1

p(T-t) (1)x =

P + 1

dd
(2)У —

(3)

setkají se autobusy mezi A, C.
b) Je-li doba jízdy druhého autobusu mezi místy В, C delší

než doba jízdy prvního autobusu mezi A, C zvětšená o dobu
zastávky v C, setkají se autobusy mezi £, C. Je-li tedy

У > x + ty (4)
nastane setkání mezi В, C.

c) Je-li doba jízdy prvního autobusu mezi A, C nejvýše
rovna době jízdy druhého autobusu mezi В, C zvětšené o dobu
zastávky v C, nepotkají se autobusy mezi A, C.

Jestliže přitom ještě doba jízdy druhého autobusu mezi
Bt C je nejvýše rovna době jízdy prvního autobusu mezi Ay C
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zvětšené o dobu čekání v C, nepotkají se autobusy ani mezi
В, C. Platí-li tedy současně

У ^ У + U У ^ * + t,

potom se autobusy setkají v C.
(5)

Shrnutí. 1. Jestliže je T — t 5^ t čili T — 2t ^ 0, nastane
zřejmě setkání v místě C. Kdyby totiž platilo x > у + t,
bylo by též x у — t>2y čili T — 2t > 2y čili 0 ^ T —
— 2ř > 2y. Odtud by plynulo 0 > 2y, tedy у < 0, ale doba у
nemůže být záporná. Podobně zamítneme předpoklad у >

x -{- ř.
2. Zkoumejme dále případ, kdy je

T-2t>0.a)Ze vztahu (3) užitím vztahů (1), (2) dostáváme vztah

p(T-t) T-t
P+1 P+1

což je možno psát ekvivalentním tvarem

+ t i

T
P ^ T — 2ť

Platí-li tento vztah, pak se autobusy setkají mezi A3 C.b)Ze vztahu (4) užitím vzorců (1), (2) dostáváme vztah
T-t p(T-t)
P+г> p+г + t

čili ekvivalentně

T — 2t
P< —f

Platí-li tento vztah, pak se autobusy setkají mezi В, C.c)Jestliže platí vztahy (5) neboli vzhledem ke vztahům (1),
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(2) vztahy
T -It - . T

T — ^ — т — 2г 5

рак se autobusy setkají v С.
Tím je řešení úlohy provedeno.
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Obr. 40b.Obr. 40a.

Poznámka. Jízdní řád obou autobusů si můžeme znázornit
graficky. Na osu л: nanášíme dobu, která uplynula od oka-
mžiku, kdy autobusy vyjely, a na osu у vzdálenost jednotlivých
autobusů třeba od místa A (je tedy počátek souřadnic totožný
s bodem A). Jízdní řád prvního autobusu (vyjíždějícího z místa/4)
je pak dán „stoupající^ lomenou čarou, druhý autobus se řídí
„klesající^ lomenou čarou. Průsečíku obou grafů odpovídá
bod У, v němž se oba autobusy setkají. Na obr. 40a je znázor-
něna situace (jedna z možných), kdy se oba autobusy setkají
mezi místy A, C; na obr. 40b je jeden z případů, kdy setkání
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nastalo mezi místy В, C. Na obr. 40c je ukázka střetnutí
právě v místě C; tento obrázek znázorňuje situaci, kdy do
místa C přijel nejprve autobus vyjíždějící z místa В a pak te-
prve autobus vyjíždějící z místa A3 při čemž v témže pořadí
autobusy odjížděly.

C-Y

A

11. Má-li desetinný zlomek a — 0,999 ... bezprostředně za
desetinnou čárkou právě n devítek, potom má jeho druhá
mocnina a2 bezprostředně za desetinnou čárkou bud n nebo
n — 1 devítek. Dokažte.

Řešení. Platí

10”+1 - 110я - 1
5S a <

10«+i10”

neboli
1 1

^ a < 1 —1 -
10”+1 '10”
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Odtud umocněním dostaneme

!L +
10” 102n —

121
< a2 < 1 - + -T1 -

ДО2(я + 1) »10я+ 1

odtud dále

102("+i) — 2.1G”+1 + 110я - 2
~<é<= 1 -

ДО2(п + 1)~10я10я

Na levo je v čitateli číslo mající n — 1 devítek, za nimiž násle-
duje osmička; na právo v čitateli zlomku je číslo, mající n
devítek, za nimiž následuje osmička, potom přijde n nul a za
nimi jednička, takže a2 má vskutku na počátku buď n — 1
nebo n devítek, což jsme měli dokázat.

12. Je dána krychle ABCDEFGH o hraně délky a. Hrany
krychle, které nemají s tělesovou úhlopříčkou BH žádný spo-
léčný bod, tvoří lomenou čáru. Všemi body této lomené čáry
vedeme kolmice к přímce BII.

Dokažte, že paty těchto kolmic vyplní jistou úsečku. Určete
její délku a vzdálenost jejích krajních bodů od vrcholů В, H.

Řešení (obr. 41a). Lomená čára, o níž se mluví v textu úlohy,
je čára AEFGCDA. Budeme se zatím zabývat jednou její
stranou, na př. úsečkou AE.

Označme X libovolný bod úsečky AE a X0 patu kolmice
XX0 vedené bodem X к přímce BH; tato kolmice leží v rovině
XBH a dále v rovině £ J_ BH vedené bodem X. Rovina £
protne rovinu BEHD v přímce x J_ BH. Na přímce x leží
pata Xx kolmice XXx vedené bodem X к rovině BFHD.

Označme po řadě A0, E0 paty kolmic vedených body A, E
к přímce BH. Dále označme po řadě Av Ex paty kolmic vedených
body A, E к rovině BFHD. Protože ABCD, EFGH jsou čtverce,
jsou body Av Ex středy těchto čtverců. Protože úsečka AE
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náleží prostorové vrstvě o hraničních rovinách AA0AX || EEqEv
náležejí všechny body Xx úsečce AXEX a všechny body X ná-
ležejí úsečce A0E0.

V obr. 41b je sestrojen obdélník B'F'H'D', který je skuteč-
nou velikostí obdélníka BFHD z obr. 41a; tu platí B'F' =
— BF, B'D' — BD. Některé další úvahy je dobré sledovat
v obr. 41b.

H G

Ej G' F'

0

X

A в в■A\ Cr
Obr. 41b.

a

Obr. 41a.

Nyní vypočteme velikost úsečky BA0; při tom je zřejmě
HE0 = BA0, jak se snadno dokáže. Označme a = DH velikost
hrany dané krychle. Pak platí

BD = a]2, BAX = i a ]/2, BH = yBD2 -f DH* = a Щ (1)
Д BHD ~ Д BAXA0 (uu),

proto platí
BA0

_ BAX
BD - BH

neboli

1
BA0 = BD . BAX . BH '
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Po dosazeni ze vztahů (1) dostaneme

BA0 — а У 2 . a
1

píp
neboli

a

p •
Obdržíme tedy výsledek

(2)BA0 — НЕ o = у 2 >
což jsme měli vypočítat.

Pak je
AoE0 — BH — БЛ0 - HE0

neboli podle (1), (2)

ДЕ0 = ар- 2a a (3-2)
]/3 Уз 1/3 ’

t. j.

AqE0 — |/ 3 ’
což jsme měli vypočítat.
Proto platí

BA0 — AqE0 = HEq
a krajní body A0, E0 hledané úsečky dělí úsečku BH na tři
shodné úsečky. Odtud plyne, že týž výsledek dostaneme pro
každou stranu uvažované lomené čáry AEFGCDA.

Že pak obráceně každý bod úsečky AqE0 je patou jedné kol-
mice vedené z jistého bodu hrany AE к přímce BH, to doká-
žeme: Nechť bod ^(viz též obr. 41b) leží na úsečce AqE0.
Určíme bod Xx na přímce AXEX takový, aby platilo XqXx J_
X AqE0; tento bod leží v pásu rovnoběžek A0AX X A0E0,
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ад _L А0Е0, v němž leží celá úsečka AXEX (pás je společná
část polorovin A0AXEX, E0ExAx a úsečka AXEX v každé z nich
leží). Je tedy Xx bodem úsečky AXEV Dále sestrojme na přímce
AE bod X tak, aby bylo XXx || AAX; bod Xx padne na úsečku
AXEV jak plyne z obdélníka AAXEXE. Platí XXx J_ BDHF,
neboť je AAX J_ BDHFy proto je též XXx J_ BH. Dále je
XxX0 _L BH (podle konstrukce) a proto je rovina XXxX0 J_ BH
a bod X0 je skutečně patou přímky XX0 _L BH. (Výjimku při
předchozí úvaze činí střed 5 úsečky BH, který je však zřejmě
patou kolmice vedené středem O úsečky AE.) Tím je důkaz
proveden a úloha rozřešena.

5. Úlohy II. kola kategorie B.

1. Riešte rovnicu

jc2 + 2|jc — 1| — 6 = 0. (1)

Riešenie. I. Hfadajme také riešenie, že x ^ 1. Potom
* jc — 1 ^ 0, teda |jc — 1| = jc — 1 a rovnica (1) znie

jc2 + 2(jc - 1) - 6 = 0

x2 + 2jc - 8 = 0.

Jej kořene sú r = 2, s = — 4. Druhý kořeň nevyhovuje rov-
nici (1).

II. Hladajme teraz také riešenie, že x < 1. Potom x — 1 < 0,
čiže |jc— 1| = — jc+la rovnica (1) znie

x2 - 2(x — 1) — 6 = 0,

x2 - 2x - 4 = 0.

Jej kořene sú r' = 1 + j/Š, s' = 1 — ]/5. Prvé číslo rov-
nici (1) nevyhovuje.

Zhrnutie. Rovnica (1) má dva kořene: 2, 1 — ]/J.

čiže

čiže
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2. Jsou dány dvě kolmé roviny g> o o průsečnici s. V rovině o
je dána kružnice k = (S, r\ kde bod S leží na přímce s. V ro-
vině a je dána přímka p, která je к přímce s kosá.

Nechť se kružnice k otáčí kolem přímky p. Vyšetřte útvar,
který vypiní body otáčející se kružnice k.

Proveďte diskusi vzhledem к vzájemné poloze dané přímky p
a dané kružnice k. (Vysvětlení. Při otáčení bodu X kolem
přímky p, která jím neprochází, vytvoří bod X kružnici, jejíž
rovina stojí kolmo na přímce p a jejíž střed leží na přímce p.)

Řešení (obr. 42). Dokážeme: Za daných podmínek je hle-
danou množinou všech bodů, která vznikne rotací kružnice k
kolem přímky p, kulový pás nebo vrchlík, který je společnou
částí jisté plochy kulové * a jisté vrstvy (/г, v) určené dvěma
různými rovinami /и \\ v. Při tom v každé z rovin /л, v leží
celá kružnice, jejíž body náleží hledané množině, nebo výji-
mečně v jedné z obou rovin /л} v leží jediný bod hledané mno-
žiny.

Označme q kolmici vedenou bodem 5 к rovině g; protože
/e q _L в, leží přímka q v rovině a, dále je q J_ s. Protože p, s
/sou kosé přímky, jsou i přímky p, q kosé, jak snadno dokážeme.

Označme M^N společné body přímky s a kružnice ky
takže úsečka MN je průměrem kružnice k. Označme dále

roviny vedené po řadě body M, N kolmo к přímce p;
protože p leží v rovině o', je /л J_ cr, v _L a. Přitom jsou roviny
/г, v různé od roviny g, která je к přímce p kosá (jinak by bylo
s _L P, což je proti předpokladu textu úlohy). Označme m\\n
po řadě průsečnice rovin /u3v s rovinou g, při čemž je m^n,
přitom bod M leží na přímce m a bod N na přímce n. Protože
je rovina o kolmá ke každé z rovin g, //, v, je rovinou souměr-
nosti každé z nich a tí n je rovinou souměrnosti každé z přímek
m, n (které jistě v o neleží); proto je m JL ст, n 1 a a proto
platí též m J_ 5, n JL s. Proto jsou m, n tečny kružnice k v kraj-
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nich bodech jejího průměru MN. Při tom všechny body
kružnice k leží v pásu rovnooěžek m, n a tím ve vrstvě (/i,
v), určené oběma rovinami ju _L p, v J_p. Libovolný bod X
kružnice k leží ve vrstvě (/u, v) a opíše při rotaci kružnici x
(pokud X neleží na p), jejíž rovina £ _L p je rovnoběžná s ro-
vinami /и, v; protože bod X leží ve vrstvě (//, v), leží v ní i kruž-
nice x. Jestliže je X bodem přímky p (pak je to průsečík pří-
mek p, s a tedy jeden z bodů M, N), pak zřejmě leží v jedné
z rovin ju, v a tím i ve vrstvě (/u, v).

Nyní dokážeme, že kružnice x leží na jisté kulové ploše
x = (O, R), kde O je společný bod kosých přímek p, q. Róze-
znávejme dvě možnosti.

Případ [1]. Nechť přímka p prochází bodem S, t. j. O = 5.
Potom je k hlavní kružnicí kulové plochy к = (S', r). Protože
rovina q neobsahuje přímku p (tu by bylo p = s), neleží žádný
z bodů M, N na přímce p; označíme-li M', N' průsečíky
rovin ji, v s přímkou p, pak je zřejmě vzdálenost bodu S od
každého z bodů M\ N' menší než r (t. j. M’, N' leží uvnitř x).
Odtud plyne, že vrstva (ju, v) má s plochou x společný kulový
pás.
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Případ [2]. Nechť přímka p neprochází bodem S, takže je
S. Označme OS = v a OX = R, kde X je libovolný

bod kružnice k, takže SX = r. Trojúhelník OXS má při
vrcholu 5 pravý úhel (je q _L (?) a podle Pythagorovy věty
je OX = jASňf2 -f OS2 neboli R = jV2 + v2 = konst. Je-li
X' nová poloha bodu X při rotaci kolem přímky p, potom
je OX' = OX — R a všechny body vzniklé při rotaci kružnice
k kolemp leží na kulové ploše x = (O, R). Protože tyto body X'
zároveň leží ve vrstvě (и, v), leží buď na kulovém pásu (když
žádný z bodů M, N nepadne na p), nebo na kulovém vrchlíku
(když právě jeden z bodů M, N padne na přímku p).

Obráceně, nechť Y' je bod právě popsaného kulového pásu
nebo vrchlíku z případů [1], [2]; pak tento bod vznikl rotací
některého bodu kružnice k.

Důkaz. Jestliže Y' leží na přímce p, je to zřejmě jeden
z bodů M, N. Nechť Y' neleží na p; označme r] _L P rovinu
vedenou bodem Y'. Protože bod V leží ve vrstvě (//, v), leží
i rovina r) v této vrstvě a protne rovinu q v přímce и || m,
která nutně leží v pásu rovnoběžek m, n; proto má přímka и
s kružnicí k společný alespoň jeden bod Y. Protože rovina rj
protne plochu x v kružnici у, musí bod Y, který leží na & i u,
ležet i na kružnici y. Bod Y' je tedy zřejmě jedním z bodů
kružnice y, která vznikla rotací bodu Y kolem p. Tím je důkaz
podán a řešení úlohy provedeno.

3. Zostrojte trojuholník ABC, ak sú dané velkosti AC = b,
AB = c jeho stráň a kladné číslo £ = <£ ABC — <£ BCA.

Urobte diskusiu riešitelnosti.

Riesenie (obr. 43). Z textu úlohy vyplývá, že v trojuholníku
ABC je ^ > у a teda aj b > c.

Ak ABC je hTadaný trojuholník, zostrojme v polrovine
BCA uhol <£ СВР — у; potom je <£ PBA — (i — у
Na polpriamku BP nanesieme úsečku b, čím dostaneme úsečku

= £.
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BD — b a platí Д CDВ ^ BCA (sus). Oba tieto trojuholníky
sú zrejme súmeme združené podlá osi p úsečky BC, takže
ABCD je rovnoramenný lichoběžník a p je tiež osou úsečky AD.
Avšak trojuholník ABD je určený stranami AB = c, BD = b
a uhlom nimi zovretým e. Z toho vyplývá konštrukcia:

Zostrojme trojuholník ABD tak, aby AB = c, BD = b,
ABD — e (veta o určenosti sus). Ďalej zostrojíme os p

úsečky AD. Pretože je b > c, leží bod В vnútri polroviny pA
a bod C súmeme zdmžený s В podia osi padne dovnútra
polroviny pD. Tým sme trojuholník ABC zostrojili.

Platí skutočne АВ = c (podlá konštrukcie), AC — b, lebo
je AC = BD — b (podlá konštrukcie). Pretože je b > c, je
/3 > у a obraz BD úsečky CA leží v uhle <£ ABC, pričom
je DBC = у (t. j. rovná sa uhlu <£ BCA) a rozdiel uhlov

ABC, < DBC, t. j. /3 — у sa rovná danému uhlu e. Tým
sme urobili dokaž správnosti konštrukcie.

Diskusia. Ak zvolíme umiestenie danej úsečky c — AB
a polrovinu s hranicou AB, do ktorej chceme umiestiť troj-
uholník ABD, potom možno trojuholník ABD zostrojiť s je-
diným výsledkom (uhol e musí byť dutý). Už sme zistili, že
bod В leží za předpokladu, že je b > c, vnútri polroviny pA
a preto existuje bod C. Má teda úloha za předpokladu, že je

130



b > с а е dutý uhol, při zvolenom umiestení jediné riešenie.
Ak jedna z uvedených podmienok neplatí, nemá úloha riešenie.

4. Budte p, q celá čísla. Potom zlomek

pbq - pqt (1)30

je rovněž celé číslo. Dokažte.

Řešeni. Označme
a = pq{p4 - g4)

a = pq(j> + q)(p - q)(p2 + ?2).
Musíme dokázat, že číslo (2) je dělitelné každým z prvočinitelů 2,
3, 5 čísla 30. Důkaz provedeme pro každé z těchto čísel od-
děleně:

neboli
(2)

a) Dokážeme, že číslo a je dělitelné dvěma.
Důkaz. To je zřejmé, je-li alespoň jedno z čísel p, q sudé.

Jestliže p, q jsou obě lichá čísla, potom je p + q sudé a tím
i číslo a podle (2). Tím je důkaz proveden.

b) Dokážeme, že číslo a je dělitelné třemi.
Důkaz. To je zřejmé, je-li alespoň jedno z čísel/>, q dělitelné

třemi.
Nechť dále žádné z čísel p, q není dělitelné třemi. Pak jsou

dvě možnosti:
[1] Obě čísla p, q dávají při dělení třemi sobě rovné nenulové

zbytky (jedno z čísel 1, 2). Pak je jistě číslo p — q dělitelné
třemi, neboť příslušný zbytek po dělení třemi bude roven nule.

[2] Každé z čísel p, q má jiný nenulový zbytek, jeden zbytek
je 1, druhý zbytek 2. Potom číslo p + q má po dělení třemi
„zbytekcc 1 + 2 neboli je dělitelné třemi.

Tím je důkaz proveden.
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c) Dokážeme, že číslo a je dělitelné pěti.
Důkaz. Je-li jedno z čísel p, q dělitelné pěti, je zřejmě a

dělitelné pěti.
Nechť dále žádné číslo p, q není dělitelné pěti; pak jsou

možné nenulové zbytky 1, 2, 3, 4 po dělení pěti. Jsou tyto
možnosti:

[1] Obě čísla p, q mají stejné nenulové zbytky.
Pak číslo p — q má zbytek 0 a je tedy dělitelné pěti a s ním

i číslo a.

[2] Jedno z čísel p, q má zbytek 1 a druhé 4 anebo jedno má
zbytek 2 a drahé 3, pak je p q dělitelné pěti.

[3] Jsou-li zbytky čísel p, q po řadě 1, 2 nebo 1, 3 nebo 2, 4
nebo 3, 4, pak je*)

l2 + 22 = 5, l2 -j- 32 = 10, 22 + 42 = 20, 32 + 42 = 25,
takže číslo p2 + q2 je dělitelné pěti.

Tím jsou všechny kombinace zbytků čísel p, q po dělení pěti
vyčerpány a důkaz části c) a tím i řešení úlohy je provedeno.

6. Úlohy I. kola kategorie C.

1. Řešte soustavu rovnic

(1)*4- у = s,
ax -f 2y = 0

o neznámých x, y, při čemž a, s jsou daná reálná čísla.
Proveďte diskusi řešitelnosti soustavy vzhledem к číslům

(2)

a, s.

Řešení. Z rovnice (1) plyne
(3)у = s — X.

Dosaďme ze vztahu (3) do rovnice (2); dostaneme
ax + 2(í — x) = 0

*) Platí totiž: Jestliže číslo a má při dělení pěti zbytek r, pak
čísla a1, r8 mají při dělení pěti zbytky sobě rovné.
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neboli
x(2 — a) = 2s.

To je lineární rovnice pro neznámou x. Rozeznávejme dvě
možnosti.

Případ [1]. Nechť je 2 — а Ф 0 neboli а Ф 2. Potom z rov-
nice (4) dostaneme

(4)

2s
X =

2 - a *

Dosaďme tento výsledek do rovnice (3); potom dostaneme
2s

у — s — 2 - a

neboli

<35

З' — — 2 - a

Dvojice čísel
2s as

(5)x =
3 У —2 — a 2- a

je řešením soustavy rovnic (1), (2), jak se ihned přesvědčíme.
Dosaďme z (5) do levé strany rovnice (1); postupně dostáváme

5(2 — a)2s as
L =

2 — a 2 — a 2-a

Protože je 2 — а Ф 0, pak po zkrácení posledního zlomku
máme L— s, takže platí L — P. Dvojice (x,y), daná vztahy (5),
je proto řešením rovnice (1).

Nyní dosaďme z (5) do levé strany rovnice (2); postupně
platí

25 2as — 2asas
2. =

2 - a
L' — a . —

2 - a
= 0.

2 — a
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To souhlasí s pravou stranou P' = 0 rovnice (2). Proto platí
L = P' a dvojice (x, y), daná vztahy (5), je řešením rovnice (2).

Jsou tedy čísla (х,у), daná vztahy (5), řešením dané soustavy.

Případ [2]. Nechť je 2 — a = 0 neboli a = 2. Pak rovnice
(2) zní 2(x + y) — 0. Uvažujme tyto dvě možnosti:

[a] Nechť je s Ф 0. Pak daná soustava zní
x + у — s, 2(x + y) = 0, kde s Ф 0.

Tyto dvě rovnice jsou sporné a soustava nemá řešení.
[b] Nechť je s = 0. Pak daná soustava zní x + у = 0,

2(x + y) — 0, kde druhá rovnice vznikne znásobením obou
stran první rovnice číslem 2. Soustavu lze tedy nahradit
rovnicí x + у = 0, t. j.

У =-x.

číslo x volíme libovolně, pro číslo у platí у = — x. Dvojice
(x,y = — x) je vždy řešením dané soustavy, která tedy má
nekonečně mnoho řešení.

Závěr. Daná soustava má jediné řešení pro аф 2. Pro
a = 2, s Ф 0 nemá soustava řešení. Pro a = 2, s — 0 má sou-
stava nekonečně mnoho řešení.

2. Kolika různými způsoby je možno v naší měně rozměnit
pětadvacetihaléř ?

Řešeni. Označíme-li x počet desetihaléřů, у pětihaléřů, z tří-
haléřů а и haléřů, máme určit, kolik řešení (v celých nezápor-
ných číslech) má rovnice

(1)10x -f 5y + З2 + и = 25.
Přitom čísla x, y, z, и jsou celá nezáporná čísla a zřejmě musí
být

0á*S2, 0SJ-S5, 0S*á8, 0S«á25.
V kolika řešeních je x = 2 ? V tolika, kolik je řešení rovnice

5y + 3z + и =* 5.
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Tato řešení jsou napsána v tabulce:

У z и

01 0
0 1 2
0 0 5

Máme tedy celkem tři případy.
V kolika řešeních je x — 1 ? V tolika, kolik je řešení rovnice

5y -f- 3z + ti = 15.
Příslušná řešení jsou v tabulce:

У иz

3 0 0
2 21

52 0
31 1

1 2 4
1 1 7
1 0 10
0 5 0
0 4 3
0 63
0 2 9
0 1 12
0 0 15

Je jich tedy celkem třináct.
V kolika řešeních je x = 0 ? V tolika, kolik řešení má rovnice

5y + 3z + и = 25.
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Řešení jsou zase v tabulce:

у | z \ и У z Уи z и

5 О О 2 2 О9 8 1
4 1 2 2 12 О1 7 4
4 О 5 2 О 15 6 7О
3 3 1 61 О 5 102
3 2 4 1 5 5 О 4 13
3 1 7 1 4 8 О 3 16
3 о 10 1 3 11 о 2 19

52 О 1 2 14 О 1 22
2 4 3 251 1 17 О О
2 3 6 1 О 20

Je jich 29.
Celkový počet tedy je 3 -f- 13 + 29 = 45.

3. Je dán rovnoramenný trojúhelník ABC o základně AB.
Na prodloužení strany AC za bod A sestrojte bod E a na pro-
dloužení strany BC za bod В sestrojte bod F tak, aby platilo

AE = EF = BF.

Proveďte diskusi řešitelnosti úlohy a dokažte, že úloha má
řešení, jestliže platí <X CAB > 60°.

Řešeni (obr. 44). Rozbor. Označme AP, BQ polopřímky
po řadě opačné к polopřímkám АС, BC. Nechť E, F jsou body
požadované úlohou, takže platí AE — EF = FB a tedy též
EF || AB. Pak je FEB rovnoramenný trojúhelník, jehož
úhly <£ E, <£ В při základně EB jsou shodné. Veďme bodem C
přímku p || EF a označme D její průsečík s přímkou EB.
O trojúhelníku CBD platí

<£ CBD = <£ FBE (vrcholové úhly),
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<£ CDB = <£ FEB (střídavé úhly mezi rovnoběžkami EF,p).
Protože však je <£ FBE — <£ FEB, platí též

<£ CBD = < CDS.
Proto o stranách protějších к těmto úhlům v trojúhelníku CBD
nutně platí

CD = CB.

Toto užijeme ke konstrukci.
Konstrukce. Bodem C sestrojíme přímku p || AB. V polo-

rovině opačné к polorovině BCA na přímce p sestrojíme bod D
tak, aby CD = CB. Dále označíme E společný bod přímky BD
a polopřímky AP. Konečně označme F společný bod polo-
přímky BQ a přímky q || CD vedené bodem E. Body E, F
jsou body požadované úlohou.

Důkaz. Podle konstrukce jsou úhly při vrcholech B, D
v trojúhelníku CBD shodné. Dále platí

<£ EBF = <£ CBD (vrcholové úhly),
< BEF — <£ BDC (střídavé úhly mezi rovnoběžkami p, q).
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Velikosti úhlů na pravé straně obou těchto rovností jsou si
však rovny a proto platí

<£ EBF = <£

Proti těmto úhlům leží tedy v trojúhelníku BEF shodné strany
BF = EF.

Dále je BF = AE, jak plyne na příklad ze souměrnosti
podle osy úsečky AB. Je tedy AE = EF = BF, což jsme měli
dokázat.

Diskuse. Označme BM polopřímku opačnou к polopřímce
BD. Řešitelnost úlohy závisí na tom, zda polopřímky AP,
BM mají společný bod. Aby tomu tak bylo, musí podle Euklei-
dova postulátu platit

< PAB + < ABM < 180°. (1)
Označme <£ CAB = <£ ABC = a; potom je též BCD = a

(úhly střídavé mezi rovnoběžkami AB, p). V trojúhelníku CBD
jsou úhly <£ B, Z) shodné; o velikosti e každého z nich platí

e = \ (180° - < BCD)
neboli

ď)e = 90° — \ a.
O úhlech vedlejších <£ ABM, <£ DBA platí <£ ABM =
= 180° - < DS/I; dále platí <£ ЛЯЛ = < CBD + <£ СВЛ
(úhly styčné), neboh <£ DBA = e -f a. Je tedy

< ЛЯМ = 180° - (e + a)
neboli vzhledem ke vztahu (Г) je

*£ ЛВМ = 90° - i a. (2)
Dále je

<£ PAB = 180° - a.

Po dosazení do (1) ze vztahů (2), (3) dostaneme podmínku pro

(3)
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velikost úhlu a, která nutně platí, když má úloha řešení, t. j.
90° < |a
a > 60°.

Jestliže obráceně o dutém úhlu a platí vztah (4), pak platí
vztah (1), jak se snadno užitím vztahů (2), (3) zjisti.

Jestliže tedy platí 90° > a > 60° má úloha jediné řešení.
Neplatí-li tato podmínka, nemá úloha řešení.

Tím je řešení úlohy provedeno.

(4)

Podle řešení s. Květy Adamcové,
žákyně 9b třídy v Chrudimi.

Jiné řešeni (obr. 45). Označme AP, BQ polopřímky po řadě
opačné к polopřímkám АС, BC. Předpokládejme, že jsme se-
strojili body E, F, které vyhovují požadavkům úlohy, t. j. platí

AE = EF = FB, EF || AB.
Uvažujme stejnolehlost o středu C, ve které bodu E

přísluší bod A a tím bodu F bod B; označme X bod,
který v této stejnolehlosti přísluší bodu A. Protože bod A
leží uvnitř úsečky CE, leží bod X uvnitř úsečky CA a platí
BX\\FA; protože je AE = EF, je též AX = AB. Odtud
plyne konstrukce.

Konstrukce. Na polopřímce AC sestrojíme bod X tak,
aby platilo AX = AB; bodem A vedeme přímku p || XB a
označíme F společný bod přímky p s polopřímkou BQ opačnou
к polopřímce BC. Konečně sestrojíme průsečík E přímky CA
s přímkou q || AB vedenou bodem F. Pak E, F jsou body po-
žadované úlohou.

Důkaz. Podle konstrukce je AB — AX. Podle konstrukce
jsou trojúhelníky ABX, EFA stejnolehlé podle bodu C. Ke
shodným úsečkám AX, AB příslušejí v této stejnolehlosti
shodné úsečky EA, EF. Protože podle konstrukce je EA = FB,
je EF — EA = FB.
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Diskuse. Označme CAB = <£ ABC = а а Я bod
přímky p, který leží v polorovině ЛВ£). Trojúhelník ABX je
rovnoramenný a úhel ЛВАГ = | <£ EAB (<£ ZL4B je vněj-
ším úhlem v trojúhelníku ABX a je roven dvojnásobku úhlu
při jeho základně BX), t. j. ABX — |(180° — a)
neboli

(1)<£ ABX = 90° - i a.

9 i .V*
Q\!p

Obr. 45.

Úhly <£ ABX, <£ BAR jsou střídavé úhly mezi rovnoběžkami
BX \\p a proto vzhledem к (1) je

< BAR = 90° - | a.

Podle Eukleidova postulátu má polopřímka B<2 s polopřímkou
AR společný bod F, jestliže platí

< ВЛЯ + < ABQ < 180°.

(2)

(3)
Po dosazení ze (2) a ze vztahu АВО = 180° — a ze (3)
dostaneme

90° — |a + 180° - a < 180°,

140



což je nutná podmínka pro úhel a. Odtud plyne
90° <|a

neboli
a > 60°. (4)

Jestliže obráceně platí tento vztah, platí i vztah (3) a společný
bod F uvnitř každé z polopřímek BQ, AR existuje. Neplatí-li
vztah (4) o dutim úhlu a, potom nemá úloha řešení.

Poznámka. Užití stejnolehlosti je v podaném řešení ne-
podstatné.

Podle řešení s. Jiřího Mosera,
žáka 9. třídy JSŠ v Lanškroune.

Jiné řešení. Rozbor. Označme a = <£ CAB = <£ ABC
(obr. 46). Předpokládejme, že jsme sestrojili body E, F podle
textu úlohy, o nichž platí že AE — EF = BF. Potom je troj-
úhelník EAF rovnoramenný o základně AF. Proto o úhlech
při této základně platí

(1)< EAF = < EFA.

Protože je AB || EF, je
(2)< EFA — <£ FAB (úhly střídavé).

Ze vztahů (1), (2) plyne
< EAF = < FAB.

Odtud plyne, že polopřímka AF je osou úhlu <£ EAB vedlej-
šího к úhlu <£ CAB. Podle tohoto výsledku provedeme kon-
strukci:

Označme AP polopřímku opačnou к polopřímce АС a dále
označme BQ polopřímku opačnou к polopřímce BC. Sestrojme
osu AR úhlu <£ PAB a označme F společný bod polopřímek
AR, BQ. Potom je F hledaným bodem. Bodem F veďme
přímku m || AB a označme E její průsečík s polopřímkou AP.
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Nyní provedeme důkaz správnosti provedené konstrukce.
Máme dokázat, že platí AE = EF — BF.

Důkaz. Podle konstrukce je EAF = FAB (neboť
polopřímka AR je osou úhlu <£ EAB) a dále je <£ FAB =

= /IFF (úhly střídavé). Odtud pijme, že <£ EAF = AFE,
takže trojúhelník EAF je rovnoramenný se základnou AF.
Proto je

AE = EF.

Nyní dokážeme, že je též AE = FF. Označme p J_ AB
osu souměrnosti trojúhelníka ABC. V této souměrnosti jsou
polopřímky CA, CB neboli polopřímky CE, CF souměrně
sdružené. Protože je AB || EF, AB _]_ p, je též EF _]_ p. Proto
na přímce EF leží souměrně sdružené body polopřímek CE,
CF, t. j. body E, F jsou též souměrně sdružené podle přímky p.
Proto jsou i obě úsečky AE, BF souměrně sdružené podle
přímky p, neboť А, В a E, F jsou dvojice souměrně sdružených
bodů. Ale souměrně sdružené úsečky jsou shodné a proto je

AE = BF.

(3)

(4)
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Ze vztahů (3), (4) plyne, že AE = EF = BF, což jsme měli
dokázat.

Diskuse. Řešitelnost úlohy závisí na tom, zda polopřímky
AR, BQ mají společný bod F, který musí ležet uvnitř každé
z nich. O tom rozhodneme podle Eukleidova postulátu. Polo-
přímky budou mít společný bod F, jestliže bude platit

< BAR + < ABQ < 180°.
Podle konstrukce je <£ BAR = \ . <£ PAB = \ (180° — a) =
= 90° - i a. Dále je <£ ABQ = 180° - < ABC = 180° - a.
Dosaďme do (5) za <£ BAR — 90° — \ a a za <£ ABQ —
= 180° — a. Dostaneme

(5)

90° - \ a + 180° - a < 180°
neboli

90° < | a,

60° < a.

Jestliže platí a > 60°, potom je <£ BAR < 90° — \ . 60°
neboli < BAR < 60° a dále je < ЛВ<2 < 180° — 60° neboli
<£ < 120°. Proto je <£ BAR + ABQ < 120° + 60°,
t. j. menší než 180° a podle Eukleidova postulátu mají polo-
přímky AR, BQ společný bod F. Úloha má proto jediné řešení,
jestliže je a > 60°, t. j. jsou-li ostré úhly při základně AB da-
ného trojúhelníku ABC větší než 60°. Jinak nemá úloha řešení.

t. j.

4. Určte prirodzené trojciferné číslo, ktorého zápis v de-
kadickej sústave má tieto vlastnosti: Súčet druhých mocnin
jeho cifier je 118. Súčet jeho cifier sa rovná číslu, ktoré dosta-
neme z daného čísla, keď v ňom vynecháme cifru stojacu na
mieste stoviek.

Riešenie. Hladané trojciferné číslo (xyz) možno zapísať v tvare
IOOjc + lOy + ar,
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kde л; ф О, jy, z sú niektoré z čísel
0,1, 2,..., 9.

Ak vynecháme v tomto čísle cifru, na mieste stoviek, dosta-
neme číslo (уz), t. j. číslo

(1)

lOy -f z.
Podlá požiadavky úlohy má platiť

x2+y2 -M2 = 118,
x + У + z = lOy + z.

(2)
(3)

Rovnicu (3) upravíme na tvar

(4)jí = 9y,
z ktorého vyplývá, že x Ф 0 je nevyhnutelné dělitelné číslom 9.
Z čísel (1) vyhovuje tejto požiadavke jedine číslo íc = 9.
К němu potom podlá (4) prislúcha у — 1. Teraz dosadme do
rovnice (2) za л: = 9, у = 1; dostaneme

92 + l2 + г2 = 118
alebo

z2 = 36

a pretože je z ^ 0, je nevyhnutné
z = 6.

Riešením úlohy može byť teda jedine číslo 916. To skutočne
vyhovuje požiadavkám úlohy (t. j. vzťahom (2), (3)), ako sa
Tahko přesvědčíme. Hladané číslo je preto 916.

5. Máme tri tenké a priehladné meradlá. Označme ich
krátko meradlá OA, O^, 02Л.г, pričom body O, 0lt 02
sú začiatky meraní (obrazy nuly). Pravítko OA je rozdělené
na milimetrové dielky. Pravítko 01Al má dielky rovnajúce sa
15 27
—- milimetra a pravítko 02A2 má dielky rovnajúce sa — mi-16 28
limetra.

• l
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Položme meradlá na seba tak, že sa pokryjú, při čom sa kryjú
aj všetky tri body O, Ov 02. Ktorá prvá čiarka (rozdielna od
bodu O) na pravítku OA má tú vlastnost’, že sa kryje aj s čiarkou
pravítka ОхА13 aj s čiarkou pravítka 02A2?

Riešenie. Meradlá OA, OxAx sa kryjú vždy po 16 dielcoch
15

meradla OxAv t. j. po 15 milimetroch (lebo . 16 = 15).16
Meradlá OA, 02A2 sa kryjú vždy po 28 dielcoch meradla

27
OzA^ t. j. po 27 milimetroch (lebo —. 28 = 27).2o

Aby sa kryli meradlá OxA1} 02A2, musíme vziať x úsečiek
po 15 milimetroch; ich súčet musí byť ten istý, ako súčet у
úsečiek po 27 milimetroch (čísla x, у sú prirodzené a čo naj-
menšie), t. j. musí platiť

15jc = 27y,
alebo

5x = 9y.

Čísla 5, 9 sú nesúdelitelné. Z predošlého vzťahu teda vy-
plýva, že číslo 5 je nevyhnutné delitelom čísla у a číslo 9 de-
ШеГот čísla x. Najmenšie také prirodzené čísla sú x = 9,
У = 5.

Skutočne 15* = 21у = 135. Dielky všetkých troch meradiel
sa teda móžu po prvý raz kryť po 135 milimetroch v bode X
(t. j. OX =135 mm).

Na meradle OxAx tomu odpovedá
16

135. —=- = 9.16 = 144 dielkov.
15

Na meradle 02A2 tomu odpovedá
28

135 . — = 5.28 = 140 dielkov.
27

Dielky na seba přiložených meradiel sa po prvý raz kryjú
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v bode, ktorý je 135. dielkom prvého, 144. dielkom druhého
a 140. dielkom tretieho meradla.

6. Je dán ostroúhlý trojúhelník ABC. Zvolme přímky BC,
CA, AB po řadě za osy souměrnosti a sestrojme podle každé
z nich trojúhelník souměrně sdružený s daným trojúhelníkem
ABC. Takto sestrojené trojúhelníky označme po řadě A'BC,
AB'C, ABC'.

Sestrojte kružnice opsané těmto třem trojúhelníkům a do-
kažte, že procházejí týmž bodem; vyšetřte geometrický vý-
znám tohoto bodu vzhledem к trojúhelníku ABC.

Řešení (viz obr. 47, 48). Úhly trojúhelníka ABC označme
po řadě a, /?, y. Dále po řadě označme V, V13 V2, V3 prů-
sečíky výšek trojúhelníků ABC, A'BC, AB'C, ABC a

k = (<S, r), kx = (iS15 r), k2 = (S2, r), k2 = (S3, r)
kružnice opsané těmto trojúhelníkům. Protože ABC je ostro-
úhlý trojúhelník, leží body S, V uvnitř tohoto trojúhelníka;
z konstrukce trojúhelníků ABC, AB’C, ABC vyplývá ob-
dobná vlastnost bodů Síy S2, S3 a Vx, V2, V3 vzhledem
к příslušnému z těchto trojúhelníků.

Obr. 47.
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Označme К, L, M paty výšek trojúhelníka ABC po řadě
vedených body А, В, C; ty leží po řadě uvnitř stran BC, CA,
AB.

Vypočtěme na př. úhel <£ A VB:
Výpočet. Z trojúhelníka ABK, kde <£ К = 90°, plyne, že

< BAK = 90" - p.
Stejně z trojúhelníka BAL, kde <£ L = 90°, plyne, že

<£ ABL = 90" - a.

(1)

(2)
Úhel AVB vypočteme z trojúhelníka ABV pomocí vý-

sledků (1), (2). Zřejmě je
<£ AVB = a-b 0. (3)

Podobně platí
< BVC = P + Y,
<£ CF/1 = у + a.

Nyní dokážeme, že kružnice k3 prochází bodem V.
Důkaz. Body С, C jsou podle konstrukce odděleny přímkou

AB. Bod V však leží uvnitř trojúhelníka ABC a tedy i uvnitř
poloroviny ABC. Proto i body V, C jsou odděleny přímkou AB.

Označme X libovolný bod (obr. 48) v tom oblouku AB
kružnice k3, který leží v polorovině ABC; tento oblouk označme
AXB. Potom platí

< ACB + <£ AXB = 180°

(viz věta v odst. 1 na str. 21 učebnice Geometrie pro 9. ročník).
Protože je <£ AC'B = y, je <£ AXB = 180° — у neboli
<£ AXB = a -f- p.

Nyní dokážeme, že bod V leží se zvoleným bodem X na

zmíněném oblouku AXB kružnice k3. К tomu použijeme věty
(9) na str. 30 učebnice Geometrie pro 9. ročník; větu jen pro
náš úkol vhodně vyslovíme: „Buď dána polorovina ABC.
Množinu všech bodů poloroviny ABC, z nichž je úsečka AB
vidět pod daným dutým úhlem a> = <x + p, tvoří všechny
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body oblouku AB (s výjimkou bodů A, В) určité kružnice,
která prochází body A, B“

Protože úhel <£ AXB = a -f /?, patří bod X oblouku AB,
o němž tato věta mluví; proto oblouk AXB je v našem případě
obloukem z naší věty (body А, В, X, které neleží v jedné přímce,
prochází jediná kružnice a tou je podle volby bodu X kružnice
k3). Ale bod V leží v polorovině ABC a podle (3) o něm platí
vztah <£ A VB = a + /3. Proto podle vyslovené věty leží bod V
na oblouku AXB, t. j. na kružnici k3. Tím je dokázáno, že
kružnice k3 prochází bodem V. Stejně se dokáže, že i kružnice
kx, k2 procházejí bodem V. Tím je úloha rozřešena.

7. Jsou dána reálná čísla a, b, c, o nichž platí vztah
a + b + c = 0. (1)

Dokažte, že potom platí vztah (pokud ovšem jednotlivé
zlomky mají smysl)

27 (a2 + b2 + c2)
(a — b)2 + (b — c)2 + (c — a)2

-(r£-+-^- + -h)-(—\o-f-c c + a a + b/ \ a
(Čemu se rovná hodnota každé strany?)

Я-c + a

Г" +

Řešení. Označme P pravou a L levou stranu vztahu, jehož
platnost máme dokázat. Při tom čísla a, b, c musí být různá
od nuly, jinak by výraz P neměl smysl. Ze vztahu (1) plyne na
př. b + c = — a', protože je аф 0, proto je též b + с Ф 0
atd., takže výraz P má vždy smysl. Ze vztahu (1) vyplývá,
že neplatí a = b = c\ pak by totiž bylo 3a = 0 neboli a — 0.
Výraz L má vždy smysl, neboť platí alespoň jedna z těchto
nerovností (a — b)2 >0, (b — c)2 >0, (c — a)2 > 0, takže
je jmenovatel výrazu L kladné číslo.

Nyní platí
27(a2 + № + <*)

2 (a2 + b2 + c2) - 2 {ab + bc + ca) ’ { JL =
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Ze vztahu (1) plyne
(a + b + c)2 = O

a2 + b2 -f c2 + 2(ab + bc -f ca) = O
neboli

a tedy
— 2(ař> + bc + ca) = a2 + 62 + c2.

Dosaďme tento výsledek do výrazu (2); dostaneme

27 (a2 + b2 + c2)
3(a2 + b2 + c2) 5

kde jmenovatel je vskutku číslo kladné; proto platí
L — 9.

Dále podle (1) platí 6 + с = — а, с a — — b, a + b =
= — c; dosaďme tyto hodnoty do výrazu P Obdržíme

— b — c
' 4

P = (-3).(-3),

P = 9.

Vzhledem ke vztahu (3) platí L = P a proto je daný vztah (za
předpokladu, že platí vztah (1)) správný, což jsme měli dokázat.

L =

(3)

— a — b —

+ -T- + —
a b c

a
P =

— a

neboli

t. j.

8. Je dána kružnice k = (5, r) a dva body A, B, z nichž
A leží uvnitř kružnice k а В leží vně. Víme, že každá kruž-
nice m, která prochází body /1, B, protíná kružnici k ve dvou
různých bodech X, Y.

Sestrojte všechny kružnice m, pro které alespoň jeden ze
čtyř dutých úhlů přímek AB, XY je roven 45°.

Proveďte diskusi řešitelnosti úlohy.
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Řešmi. Definice. Dvě různoběžky a, b dělí rovinu na čtyři
duté úhly, z nichž alespoň jeden není tupý; jeho velikost
označme oj a nazveme ji odchylkou přímek a, b. Platí tedy
0 < oj ^ 90°.

Rozbor (obr. 49). Daná úloha vyžaduje, abychom sestrojili
dva různé body X, Y kružnice k takové, aby přímky XY, АВ
měly odchylku 45° a body A, B, X, Y ležely na kružnici.*)

Označme po řadě/), q osy úseček AB, XY a O jejich průsečík;
přitom je přímka q střednou dvojice kružnic k, m = (O, OA)
a proto prochází bodem S. Snadno se dokáže, že je-li odchylka
přímek AB, XY rovna 45°, že potom i odchylka přimele/) AB,
q _L XY je rovněž 45°. Máme tedy za úlohu sestrojit bodem S
přímku q, která má od přímky p odchylku 45°. Na základě
tohoto výsledku provedeme konstrukci.

Konstrukce. Sestrojme osu p úsečky AB a zvolme na ní
dva různé body V, P. Zvolme jednu z polorovin vyťatých
přímkou p a nanesme do ní к polopřímce VP úhel PVQ —

= 45°. Potom přímky />, VQ mají odchylku 45°. Bodem S
sestrojme přímku q || VQ; o ní se snadno dokáže, že má od
přímky p odchylku rovněž 45°. Protože p, VQ jsou různo-
běžky, jsou i p, q různoběžky; jejich průsečík označme O.
Dále sestrojme kružnici m = (O, OA). Jestliže je O^A,

S, potom kružnice m existuje a protíná kružnici k ve
dvou různých bodech X, Y. Přímka XY je řešením úlohy.

Důkaz. Podle konstrukce je odchylka přímek p, q rovna
45°; protože je p J_ AB, q _|_ XY, dokáže se odtud snadno,
že odchylka přímek AB, XY je též 45°. •

Diskuse. Podle konstrukce bod O vždy existuje, neboť
p, q jsou různoběžky. Osa p úsečky AB nikdy neprochází
bodem S'; pak by totiž bod 5 měl od bodů А, В rovné vzdále-
nosti, což není možné, neboť bod A podle předpokladu leží
uvnitř kružnice k a bod В leží vně. Proto je vždy O e^é S.

Rovněž je A, neboť bod O leží na ose p úsečky AB a ta

*) V obr. 49 označte q přímku OS.
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nikdy neprochází krajním bodem A úsečky AB. Proto existuje
kružnice m = (O, OA) nesoustředná s kružnicí k. Protože
kružnice m prochází body A, B, z nichž jeden leží uvnitř a dru-
hý vně kružnice k, proto se kružnice k, m protínají ve dvou
různých bodech X, Y. Proto к sestrojené přímce VP přísluší
jedna přímka XY J_ VQ, která vyhovuje úloze.

Úhel <£ PVQ jsme sestrojili ve zvolené polorovině vyťaté
přímkou p. Avšak v opačné polorovině к polorovině VPQ
lze sestrojit ještě úhel <£ PVQ' — 45° а к přímce VQ _]_ VQ
přísluší rovněž přímka X'Y', která vyhovuje úloze. Protože
je XY _L VQ, X'Y’ _L VQ, VQ _L VQ,je též XY JL X' Y'

a přímky XY, X'Y' jsou tedy různé. Protože vedle přímek
VQ. VQ nelze bodem V sestrojit další přímku, která by měla
s přímkou p odchylku 45°, jsou právě dvě řešení XY, X'Y'
dané úlohy.
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Tím je řešení dané úlohy provedeno.
9. Kolika nulami končí součin bezprostředně po sobě násle-

dujících přirozených čísel od 1 do 365 (včetně) ?
Řešení. Označme N přirozené číslo dané součinem bez-

prostředně následujících čísel od 1 do 365. Abychom spočítali
počet nul, jimiž v dekadickém zápisu končí číslo N, musíme
spočítat, kolik dvojic 2.5 lze vybrat z rozkladu čísla N
v prvočinitele. Uvidíme, že stačí zjistit, kohk pětek se vy-
skytuje ve zmíněném rozkladu čísla N v prvočinitele.

Především každé přirozené číslo tvaru 5 m 365, kde m
je přirozené číslo, poskytne pro rozklad čísla N jednu pětku.

365
To je celkem —— neboli 73 pětek.5

Dále po jedné další pětce dostaneme z čísel tvaru 5a. n ^

5^ 365, kde n je přirozené číslo. Pak je = 14 + , t. j.
14 takových čísel a tím i dalších 14 pětek.

Konečně po jedné pětce dostaneme z čísel tvaru 53 . p ^ 365,

kde p je přirozené číslo. Tu je = 2 + ^125

dvě taková čísla a tím i dvě další pětky.
Čísla tvaru 5k . / ^ 365, kde k > 3, / jsou přirozená čísla,

se mezi přirozenými čísly od 1 do 365 již nevyskytnou. Máme
tedy v rozkladu čísla N v prvočinitele 73 + 14 + 2 pětek,
t. j. 89 pětek. Mezi přirozenými čísly od 1 do 365 je polovina
čísel sudých, což je více než 89; každé z těchto sudých čísel
pro rozklad čísla N v prvočinitele poskytne alespoň jednu
dvojku, takže v tomto rozkladu bude dvojek více než 89. Proto
se dá z tohoto rozkladu vybrat 89 dvojic 2.5a číslo N proto
končí 89 nulami, což jsme měli vypočítat.

10. Je dán zlomek ~ v základním tvaru.
b

125 a jsou tedy
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Potom zlomek
a (b — a)

&

který je rozdílem daného zlomku a jeho druhé mocniny, je opět
zlomkem v základním tvaru; dokažte.

Řešení. Zlomek je podle předpokladu v základním tvaru,b

t. j. čísla a, b jsou nesoudělná neboli mají za společné dělitele
jen čísla 1,-1. Máme dokázat, že zlomek

a (b — a) (1)b2
je rovněž v základním tvaru.

Zlomek (1) lze psát ve tvaru
a b — a

T' b ’ (2)

Dokážeme, že žádný z obou zlomků v součinu (2) se nedá
krátit (také se nedá krátit ani „křížem“); tím dokážeme, že
ani zlomek (1) se nedá krátit.

Toto tvrzení je zřejmé pro zlomek . Musíme tedy ještěb

dokázat, že se nedá krátit zlomek
b — a

b ‘

Předpokládejme, že by existovalo celé číslo p (různé od čísel
0, 1, —1), kterým se dá zlomek (3) krátit. Pak by p bylo děli-
telem čísel b — a, b; pak by se dala tato čísla rozložit takto:

(3)

b — a = m . p,
b = n . p,

(4)
(5)

kde m3 пф 0 jsou čísla celá.
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Dosaďme ze vztahu (5) do vztahu (4). Po úpravě dostaneme
a = (n — m)p, (6)

kde n — m je číslo celé.
Vztahy (5), (6) však vyjadřují fakt, že čísla a, b mají společ-

ného činitele p a že tedy musí být soudělná. To však odporuje
předpokladu, že jsou nesoudělná. Proto se zlomek (3) krátit
nedá, tedy ani zlomek (1) se nedá krátit. Tím je proveden
důkaz pomocného tvrzení a celá úloha rozřešena.

11. Je dán pravý úhel <£ XOY. Dále buďte dána kladná
čísla a > b. Sestrojme body А, В na polopřímce OX tak, aby
platilo OA — a, OB — b.

Sestrojte uvnitř polopřímky O Y bod M tak, aby platilo
< OMB = < BMA.

Proveďte diskusi řešitelnosti úlohy vzhledem к daným čís-
lům a, b.

Řešeni (obr. 50). Rozbor. Nechť je bod M uvnitř polo-
přímky O Y řešením úlohy. Na polopřímce MO sestrojme bod
A' tak, aby MA' = MA; protože je МО < MA (odvěsna a
přepona pravoúhlého trojúhelníka AMO), padne bod A' do-
vnitř polopřímky 07' cpačné к polopřímce OY. Trojúhelník
МАЛ je rovnoramenný se základnou AA'; protože je АО J_
i 07, <): OMB = <£ BMA, je bod В průsečíkem výšek АО,
MB tohoto trojúhelníka, a protože je MB jeho osou, platí
BA' — BA. Na základě toho provedeme konstrukci.

Konstrukce. Opišme kružnici k = (В, BA = a — b) a
označme A' společný bod kružnice k a polopřímky OY'
opačné к polopřímce OY. Dále sestrojme osu p úsečky AA' a
označme M společný bod přímky p a polopřímky O Y. Potom
je M bod požadovaný úlohou.

Důkaz. V trojúhelníku MAA' podle konstrukce jsou přímky
АО, p výšky a tedy В průsečík výšek; protože je tento troj-
úhelník rovnoramenný se základnou AA', je p jeho osou a proto
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platí < ВМА' = <£ BMA, jak požaduje úloha. Tím je důkaz
proveden.

Diskuse. Řešitelnost úlohy závisí na tom, zda existuje
trojúhelník MAA' jehož vrchol A' padne dovnitř polopřímky
OY' neboli zda kružnice k a vnitřek polopřímky OY' mají

r
V

Obr 50.

společný bod A'. To znamená, že přímka OY' musí být sečnou
kružnice k = (В, a — b); při tom je a — 6 > 0, neboť podle
textu úlohy je a > b. Přímka O Y' je sečnou kružnice k právě
tehdy, jestliže platí a — b > b neboli a > 2b; přitom druhý
průsečík se neuplatní, neboť leží uvnitř polopřímky OY.

Úloha má tedy jedno řešení tehdy, platí-li a > 26, jinak
nemá řešení.

Tím je řešení úlohy provedeno.

Podle řešení s. Květy Adamcové,
žákyně 9b třídy JSŠ v Chrudimi,

a s. Stanislava Uhra,
žáka 9. tř. JSŠ v Lanškrouně.
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Jiné řešeni (obr. 51). Použijeme pomocné věty: „Jest-
liže je polopřímka MB osou úhlu <£ OMA trojúhelníka МАО,
potom platí

OB
_ OM

BA ~ AM

a obráceně". (Srovnej cvič. 5c v učebnici Geometrie pro 9. roč-
nik, str. 69.)

V našem případě je OB = b, BA = a — b. Jestliže má úloha
řešení, potom podle pomocné věty platí

b OM

a — b ~~ AM *
t. j. trojúhelník OMA je stejnolehlý s pomocným trojúhelníkem
OM'A'} kde OM' = b, A'M' = a - b, <£ A'OM' = 90°. Podle
toho provedeme konstrukci.

Konstrukce (obr. 51). Na polopřímce OY sestrojíme bod
M' tak, aby OM' — b. Dále sestrojíme kružnici k == (ЛР,
a — b) a označíme Л' její společný bod s polopřímkou OX.
Ve stejnolehlosti o středu O přiřadíme bodu Л' bod A a obraz
bodu M' označíme M. Potom je M bod, který vyhovuje poža-
davkům úlohy.

(1)

r

M

о 4;- \A X

Obr. 51.

Důkaz. Dokážeme nejprve, že pro bod В platí vztah (1).
OAÍ

= AM
OW ~AM

Podle konstrukce je při čemž je OM' — b,/ У

156



ом ом—^—r neboli
а — о

А'М' = а — b; odtud plyne AMAM

OB
—о л ’ Je tedy splněn vztah (1) a podle obrácení pomocnéJj/i

věty je MB osou úhlu <£ OMA v trojúhelníku МАО. Tím je
důkaz proveden.

Diskuse. Řešitelnost úlohy zřejmě závisí na tom, zda lze
sestrojit bod A' neboli zda lze při umístění předepsaném v kon-
strukci sestrojit trojúhelník A'M'0 o odvěsně OM' — b a pře-
poně M'A' = a — b. To lze provést s jediným výsledkem
právě tehdy, jestliže platí a — b > b neboli a>2b‘, jinak
nemá úloha řešení.

Tím je řešení provedeno.
Podle řešení s. Jiřího Kašpera,

žáka 9b třídy JSŠ v České Třebové.

Iné riešenie.*) Pomocná veta V (obr. 52): Nech je daný
ostrý uhol OAM a bod B, ktorý leží vnútri ramena АО.
Potom pata P kolmice vedenej z bodu В к priamke AM padne
dovnútra polpriamky AM (pozři učebnicu Geometria pre
7. post. roč., str. 267, příklad 17).

Rozbor. Predpokladajme, že sme našli hladaný bod M
vnútri polpriamky OY. Potom podlá požiadaviek úlohy platí
o ňom <£ OMB = <£ BMA. Přitom bod В leží medzi bodmi
O, A, lebo podlá předpokladu úlohy je a > b a teda OA > OB.

Veďme bodom В kolmicu p к priamke AM a označme P
jej patu. Dokážeme, že bod P padne dovnútra úsečky AM.
To dokážeme, ak dokážeme, že uhly <£ OAM, <$; BMA sú
ostré, lebo potom bod P podlá pomocnej vety V padne do-
vnútra každej z polpriamok AM, MA alebo dovnútra úsečky
AM. Uhol <£ OAM je ostrý uhol v pravouhlom trojuholníku
AMO, lebo O = 90°. Uhol <£ BMA je časťou uhla <£ OMA,

*) V obr. 52 doplňte písmeno M poblíž bodu Y.
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ktorý je ostrým uhlom trojuholníka AMO; preto je tiež
ostrý. Tým je tvrdenie dokázané.

Trojuholníky BMO, BMP majú spoločnú přeponu BM, zho-
dujú sa v pravých uhloch pri vrcholoch O, P a ďalej sa zhodujú
podía požiadaviek úlohy v uhloch pri vrchole M; zhodujú sa
teda vo všetkých troch uhloch a sú zhodné podTa vety (usu),
t. j. platí

Д BMO sé Д BMP (usu).
Preto je

MO = MPy
ВО = BP.

Zostrojme kružnicu k = {В, ВО); tá vzhladom na vztah (2)
prechádza bodmi O, P a pretože je OM J_ OB, PM J_ PB,
sú ОМ, PM dotyčnicami kružnice k. Přitom dotyčnica MP
prechádza bodom A. Z toho vyplývá konštrukcia.

(1)
(2)

Konštrukcia (obr. 52). Opišme kružnicu k = (В, ВО) а
určme dotykový bod P dotyčnice vedenej z bodu А к tejto
kružnici, a to ten, ktorý padne dovnútra polroviny OXY.

Konštrukciu urobíme takto: Nad úsečkou AB ako prieme-
rom opíšeme Thaletovu kružnicu l = (L, \ AB) a označme
P ten z priesečníkov kružnic k, l, ktorý leží vnútri polroviny
OXY. Potom je spoločný bod polpriamok AP, OY hladaným
bodom M.

158



Dokaž. Bod M leží vnútri polpriamky OY. Musíme doká-
zať, že platí <£ OMB — <£ BMA.

Uvažujme o súmernosti s osou BM. V nej přejde priamka
OAÍ,ktorá je dotyčnicou kružnice k vedenou bodom M, v druhů
dotyčnicu vedenu z toho istého bodu M ku kružnici k. Touto
druhou dotyčnicou je podlá konštrukcie priamka MP alebo
priamka AP. Súmernosť je však zhodnosť a pretože si v nej
prislúchajú uhly <£ OMB, <£ PMB, sú tieto uhly zhodné.
Tým sme dokaž ukončili.

Diskusia. Kružnica k vždy existuje. Dotyčnica AP vedená
z bodu A ku kružnici k existuje len vtedy, ak platí OA ^ 2 . OB
(ak A neleží vnútri kružnice k). Avšak v případe, že je OA =
— 2.OB, t. j. ked A leží na kružnici k, je dotyčnica v bode A
kolmá к priamke OX a teda rovnoběžná s priamkou O Y, takže
priesečník M neexistuje.

Avšak ak platí OA > 2.OB, možno priamku AP zostrojiť,
pričom je <£ BAP uhlom v trojuholníku BAP, kde <£ P =
= 90°; preto je <£ BAP < 90°. Podlá Euklidovho postulátu
májů polpriamky OY, AP spoločný bod M vnútri polroviny
OAY, lebo o prílahlých uhloch platí

<£ YOA = 90°, <£ BAP < 90°,
takže súčet uhlov je menší než 180°.

Závěr. Úloha má jediné riešenie, ak platí OA > 2.OB,
t. j. ak platí a > 2b. Ak platí a ^ 2b, nemá úloha riešenie.

12. Daný je rovnoběžník ABCD so stredom S. Označme
K, L, M, N (v tomto poradí) středy stráň AB, BC, CD, DA.
Ďalej označme X, Y, Z, U (v tomto poradí) priesečníky dvojíc
priamok (AL, DK), {BM, AL), {CN, BM), (DK, CN).

Dokážte:

a) Štvoruholník XYZU je rovnoběžník so stredom 5.
a) Platí

XY = | AL, YZ = § MB .
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c) Obsah rovnoběžníka XYZU sa rovná pátine obsahu
rovnoběžníka ABCD.

Riešenie (obr. 53). a) Uvažujme o súmernosti podlá středu S.
V nej si odpovedajú tieto dvojice bodov: (A, C), (B,D),
(К, M), (N, L). Pre posledné dve dvojice to vyplývá z vlast-
ností středných priečok KM, LN rovnoběžníka ABCD (pozři
učebnicu Geometria pre 8. post. roč., str. 171).

O uhlopriečkach štvoruholníka ALCN platí
AS = CS, NS = LS

a pretože priamky AC, NL sú róznobežky, je ALCN rovno-
bežník, takže je

AL || NC
a tieto priamky si odpovedajú v súmernosti podlá středu S

(1)

V/

И У /

Sis'/
X L

/

Rovnako sa dokáže, že BMDK je rovnoběžník, takže je
BM || KD

a tieto priamky si odpovedajú v súmernosti podra středu S.
V tejto súmernosti teda priamkam AL, DK odpovedajú

(2)
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(v tomto poradí) priamky CN, BM; preto bodu X = AL . KD
odpovedá súmerne združený bod Z = CN. BM. Preto úsečka
XZ má bod S za střed. Rovnako sa dokáže, že úsečka YU má
bod S za střed. V štvorouholníku XYZU sa teda uhlopriečky
navzájom rozpolťujú a je to rovnoběžník so stredom S. Tým
je úloha a) rozriešená.

b) Dokážeme platnost’ vzťahu
XY = iAL;

vztah YZ — | BM sa dokáže podobné.
V trojuholníku ABY je К stredom strany AB; podlá vzťahu

(2) je KX střednou priečkou trojúhelníka a preto platí
XY = AX.

(3)

(4)
Zo súmernosti podlá středu 5 vyplývá

AX - ZC. (5)
Zo vzťahov (4), (5) vyplývá

(6)XY = ZC.

V trojuholníku BCZ je L stredom strany BC a podia (1) je
L Y (leží v priamke AL) střednou priečkou příslušnou к straně
ZC, takže platí YL = \ ZC; vzhladom na vztah (6) je teda

YL = \ XY. (7)
O úsečke AL platí

AL = AX -f XY + YL.
Dosaďme sem za AX, YL zo vzťahov (4), (7); dostaneme

AL = £ XY
alebo

XY = IAL,
čo je vzťah (3), ktorého platnost’ sme malí dokázat’.

c) Rovnoběžník ALCN má stranu AN a príslušnú výšku v
zhodnú s výškou rovnoběžníka ABCD, ktorá prislúcha к straně
AD. Pretože je AN = \ AD, je jeho obsah AN . v alebo
\AD.v, t. j. rovná sa polovici obsahu rovnoběžníka ABCD.

Rovnoběžník XYZU má stranu XY a příslušná výška zo je

(8)
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zhodná s výškou rovnoběžníka ALCN, ktorá prislúcha к straně
AL. Preto podlá (8) je obsah rovnoběžníka XYZU

XY. w alebo § AL . zo,
t. j. rovná sa | obsahu rovnoběžníka ALCN; avšak podlá
predošlého obsah rovnoběžníka ALCN sa rovná polovici
obsahu rovnoběžníka ABCD. Obsah rovnoběžníka XYZU sa

teda rovná § . \ alebo \ obsahu rovnoběžníka ABCD, čo
sme malí dokázat’.

Tým sme úlohu rozriešili.

7. Úlohy II. kola kategórie C.
1. Riešte rovnicu

y*2 + 2x - 7 = 5 - 2*.

Riešenie. Ak existuje riešenie, je
x2 + 2x - 7 = (5 - 2xf,

číže
x2 + 2x - 7 = 25 - 20x + 4x2,

3x2 - 22x + 32 = 0. (1)
16

Rovnica (1) má kořene r í = 2. Prvý z nich nevyho-

vuje danej rovnici, lebo 5 — 2r — — У < 0. Kořeň 5 vyho-
vuje, lebo 5 — 2s = 1 a j/í2 + 2s — 7 = 1.

2. V rovině je dána kružnice k == (S, r) a kladná čísla č,
Dále bud dán bod P, o němž platí SP = v.

Sestrojte rovnoramenný lichoběžník ABCD o základně AB,
jehož vrcholy leží na kružnici k a jehož úhlopříčky se protínají
v bodě P, při čemž je AC = BD — e.

Proveďte diskusi řešitelnosti vzhledem к daným číslům
e, v, r.
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Řešeni. Předpok’ádejme, že je hledaný lichoběžník ABCD
sestrojen (obr. 54), a že bod P je průsečík úhlopříček AC, BD
tohoto lichoběžníka. Je tedy bod P nutně uvnitř kružnice k.

Úhlopříčka AC = e lichoběžníka ABCD má střed U; protože
je AC =e tětivou kružnice k, leží bod U na kružnici m opsané
kolem bodu S, kterážto kružnice je množinou středů všech tětiv
dané velikosti e v kružnici k. Totéž platí o druhé úhlopříčce
BD = e a jejím středu V. Obě přímky PA, PB jsou tedy teč-
námi kružnice m. Odtud konstrukce.

V kružnici k sestrojíme libovolnou tětivu XY = e a ozna-
číme E patu kolmice vedené bodem 5 к přímce XY. Potom
je m = (S, SE). Nyní z bodu P^ S daného uvnitř kružnice k
sestrojíme tečny ke kružnici m. Nad úsečkou PS jako prů-
měrem sestrojíme Thaletovu kružnici n a označíme U^áV
společné body kružnic m, n. Společné body polopřímek PU,
PV s kružnicí k označíme А, В г dále označíme C^A,
Z) В společné body přímek PU, PV s kružnicí k. Pak je
ABCD hledaný lichoběžník se základnami AB || CD.

Důkaz. Obě přímky PU, PV jsou navzájem souměrně
sdružené podle přímky PS, která je osou souměrnosti kružnice
k i kružnice n. Je tedy přímka PS osou úsečky AB i úsečky CD
a proto je AB J_ PS, CD _|_ PS neboli AB j| CD. Přitom
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není AD || ВС, jinak by čtyřúhelník ABCD byl obdélník,
takže by bod P splýval s bodem S; avšak podle textu úlohy
je P^ S, neboť je PS — v > 0. Sestrojený lichoběžník ABCD
má tedy osu souměrnosti, takže je rovnoramenný. Tím je
důkaz správnosti konstrukce proveden.

Diskuse. Řešitelnost úlohy především závisí na tom, zda
lze sestrojit tětivu XY = e. Proto musí být e ^ 2r. Případ
e — 2r vyloučíme, neboť pak by bylo P = S neboli v = 0, což
je proti předpokladu, že je v > 0. Jestliže je e < 2r, lze sestrojit
kružnici m\ avšak dvě různé tečny z bodu P lze к této kružnici
vést jedině v případě, že je PS = v > SE. Při tom však musí
bod P ležet uvnitř kružnice k, t. j. musí platit PS = v < r.

Závěr. Jestliže je e < 2r a bod P leží vně kružnice m, ale
uvnitř kružnice k (t. j. platí-li SE < PS — v < r), má úloha
jediné řešení (pokud nepřihlížíme к možné záměně v označení
vrcholů). Jinak nemá úloha řešení.

3. V rovině je daný pravý uhol <£ MAN a vnútri jeho osi
AU je daný bod S, ktorého vzdialenosť od priamky AN je
dané kladné číslo d.

Zostrojte dve zhodné navzájom sa dotýkajúce kružnice k,
k', pričom kružnica k má střed S' a kružnica к! sa dotýká
oboch ramien AM, AN. (Poznámka. Eahko usúdite, že střed
S' kružnice k' leží vnútri úsečky AS.)

Riešenie. Označme x velkost’ polomerov hladaných zhodných
kružnic k, k'; ich středy S, S’ ležia vnútri polpriamky AU.
Bod S' nemóže ležať na predlzení úsečkyAS za bod 5, ako ihneď
dokážeme (obr. 55).

Dokaž. Verkosť strednej SS' — 2x. Vzdialenosť bodu S'
od priamky AM je x a teda AS' — лг|/2 (lebo trojuholník
AS'P je pravoúhlý rovnoramenný, pričom je P pata kolmice
vedenej bodom S' к priamke AM). Ale 2x > x]/2 alebo
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SS' > AS'. Ak by bod S' neležal vnútri úsečky AS, musel
by vzhladom na poslednú nerovnosť padnúť na polpriamku
opačnú к polpriamke AU, čo odporuje podmienke úlohy.
Tým sme dókaz urobili.

&/v
A

5rN

4''1
j/

/

\

.vd*✓ \ i

к/ 'M m\
r 8

p Л/
:A a

Mp a

Obr. 55. Obr. 56.

Bod S' teda leží nevyhnutné vnútri úsečky AS (obr. 56).
Označme P, Q paty kolmic vedených bodmi S', S (v tomto
poradí) к priamke AM, pričom je S'P = x, SQ = d, takže
je AS' = x]/2, AS = d]l 2a ďalej je SS' = 2x; avšak SS' =
= AS — AS'. Z toho dostaneme

2x=d/2- x]/2.
Stade dostaneme postupné

x{2 + 1/2) = d]j2,

r Ф
2 + 1/2 *

= d,
2* — (У 2f 2 u
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t. ).
x = d(1/2 - 1).

Teda je x = d]/2 — d. Z toho vyplývá konštrukcia:
Pťetože je AS = d]Í2, AQ = SQ — d, prenesieme úsečku

AQ na polpriamku AU do polohy AT = d. Potom je ST =
— AS — AT = d]l2 — d = x. Z toho Tahko zostrojíme obe
hladané kružnice k, k'. Dokaž aj diskusia vyplývá bezprostředné
z predošlého. Úloha má vždy právě jedno riešenie.

?ir
s/\

Poznámka. Úlohu možno riešiť pomocou rovnolahlosti so
stredom A, ktorá priradzuje zvolenému vnútornému bodu
polpriamky A U bod S’ (obr. 57). Zostrojíme kružnicu k'Q so
tredom , ktorá sa dotýká priamky AM. Ďalej zostrojíme
kružnicu k0, ktorá je zhodná s kružnicou k'0 a ktorá sa jej do-
týká, pričom body A, , S0 ležia v právě napísanom po-
riadku na polpriamke AU. Dvojicou bodov S0, S je zmienená
rovnolahlosť so stredom A úplné určená. V nej prislúcha
kružnici k0 hladaná kružnica k.
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4. Je dán výraz
V — r3(y — zf 4- y*(z — x)3 + 2?(x — y)3.

Výraz V rozložte v součin jednoduchých činitelů.

Řešeni. Platí postupně
V = - 3y2z + 3yz2 - z3) +

+ y3(z3 - 3X22 + 3x2z - X3) +
+ ^(x3 — 3x2y + 3x_y2 — y3) =
— *3y3 — x3z3 + y3Z3 — X3Z3 + X3y3 — yPz3 +
4- 3xyz [x2z + xy2 4- уz2 — (x2y 4- y2z 4- xz2)] =
= 3xyz[x(xz — z2 — xy 4~ yz) —
— y(xz — z2 — xy 4- yz)] =*)
= 3xyz(x — y)(xz — z2 — xy + yz) =
— 3xyz(x — y)[y(z — x) — z(z — x)] =
= 3xyz (x — y){y — z){z — x),

takže
V = 3xyz(x — y){y — 2r)0 — x).

Tím je řešení úlohy provedeno.

*) Jiná možnost úpravy.
x2# 4- xy2 4~ уz2 — x2j> — y2z — хл2 =

= z{x2 — у2) — xy{x — у) — л2(х — у) =
= (х — jOOax 4- -гу — xy — г2) =
= (X — >')[*0 —у) — z(z - у)] =
= (х - у)0 - у)(х - *)•

8. Úlohy I. kola kategorie D.
1. Na obrázku 58 vidíte čtverec o straně a a středu S. Dále

je tu narýsována kružnice o středu S a poloměru rovném polo-
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vině strany čtverce; z každého vrcholu čtverce jsou opsány
čtvrtkružnice o poloměru rovném rovněž polovině strany
čtverce. Kružnice a čtvrtkružnice omezují útvar, který je
v obrázku vyčárkován.

Kolik procent obsahu čtverce zaujímá vyčárkovaný obrazec?
Závisí toto číslo na velikosti strany daného čtverce ?
(Položte 7i = 2Z .)

Řešení. Strana daného čtverce má velikost a, na př. centi-
metrů. Obsahy, které budeme počítat, budou pak udány v cm2.
Kružnice v našem obrázku 58 i každá ze čtyř čtvrtkružnic
mají poloměry r a neboli

Střední příčky velkého čtverce na našem obrázku 58 roz-
dělují bílou plochu (t. j. nevyčárkovanou) kolem bodu 5 na
čtyři části. Každou z těchto částí dostaneme, když od čtverce
(malého) o straně r oddělíme čtvrtkruh o poloměru r; střed
tohoto čtvrtkruhu je v jednom z vrcholů velkého čtverce.
Rovněž bílé plošky při vrcholech velkého čtverce vzniknou
tak, že od čtverce o straně r oddělíme čtvrtkruh o poloměru r
(střed je ve středu velkého čtverce). Dostáváme tak celkem
osm bílých ploch, z nichž každá má týž obsah x. Tento obsah x
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je roven rozdílu obsahu r2 malého čtverce a čtvrtkruhu o obsahu
i кr2, tedy

X = r2 1 — 7Zr2 .

Všech osm bílých plošek má dohromady obsah

Sx = 8 (r2 — ^кг2)
neboli

8* = 8r2 - 2кг2.

Plochu, která je na obr. 58 vyčárkována, dostaneme, když
od velkého čtverce oddělíme oněch osm bílých plošek. Označme
у obsah vyčárkované plochy. Obsah velkého čtverce je a2 =
= (2r)2 neboli a2 = 4r2. Obsah у — a2 — Sx neboli

у = 4Г2 — (8r2 — 2кг2),
L J.

3? — 2кг2 — 4r2.
Označme p počet procent, když у je procentová část a když

4r2 (obsah velkého čtverce) je základ. Tu platí

У
P 4r2

. 100

neboli

2кг2 - 4r2
í = 55

Odtud úpravami postupně dostáváme

2кг2 4r2

. 100.

) . 100p = 4r2 4r2
neboli po zkrácení

.100. (1)
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у = 1,571428 a tedy у -
Protože и ==

- 1 = 0,571428.
Je tedy

р = 0,5714 . 100
neboli

р == 57,14.
Obsah čárkované části na obr. 58 je přibližně 57% obsahu

čtverce o straně a. Protože číslo py které jsme ve vztahu (1)
vypočítali, nezávisí na velikosti poloměru r a tím ani na veli-
kosti a strany velkého čtverce, dospějeme к témuž výsledku
při každém daném kladném čísle a.

Poznámka. Snadno usoudíme, že bílé plošky, o nichž jsme
mluvili (viz obr. 58), jsou shodné s bílými ploškami na obr. 59.
Proto obsah 8x těchto bílých plošek podle obr. 59 dostaneme,

když od obsahu 2a2 dvou velkých čtverců odečteme obsah
2тгг2 dvou kruhů, z nichž každý má poloměr r. Platí tedy

8x = 2 . (2r)2 - 2TO*2

8x = 8r2 - 2-r2,
čímž bychom podstatně zkrátili předchozí výpočet.

neboli
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Jiné řešení (obr. 58). Strana čtverce a = 2r, při čemž r je
poloměr vepsané kružnice. Proto obsah čtverce

P = (2rf = 4Л

což představuje 100 %; z toho 1 % je

"ЙхГ = “25” '

Obsah kruhu do čtverce vepsaného je = тгг2, což předsta-
vuje x % obsahu čtverce. Vypočteme nyní v procentech jakou
částí obsahu čtverce je obsah kruhu Pv Zjistíme to dělením:

7*2
rcr2 : = 25 тс.

25

Potom platí, že

257Г == 25 . — 78-4- •7 7

Obsah kruhu se rovná 781 % obsahu čtverce. Čtyři plošky
při vrcholech čtverce se rovnají nevyčárkovanému obrazci
uvnitř kruhu, to znamená, že jejich obsah je roven P — Plt
což v procentech činí:

100 - 78 у = 21 у- .

Obsah nevyčárkovaného obrazce uvnitř kruhu se rovná
3

21—- % obsahu čtverce.
Obsah vyčárkovaného obrazce se rovná rozdílu obsahu kruhu

a obrazce uvnitř kruhu. V procentech to znamená:

78y- - 21 f = 57} .

Vyčárkovaný obrazec zaujímá asi 57}% obsahu čtverce.
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Z výrazu
тсг2.25

= 25 тг
г2

je vidět, že počet procent je nezávislý na délce strany čtverce,
neboť se rovná 25тг (r2 se totiž zkrátí).

Podle řešení J. Stuchlíkové,
žákyně 8. tř. 2. OSŠ v Turnově.

2. V izbe je dvoje hodin. Jedny sa predbiehajú o jednu mi-
nútu za tri hodiny a druhé sa opozdujú o jednu minútu za
šesť hodin. Oboje hodin sme nariadili v sobotu presne na po-
ludnie.

Kedy sa po prvý raz budú tieto hodiny rozchádzať právě
o 20 minút 45 sekúnd? (Udajte, o kolkej hodině a ktorý deň
to nastane a kolko budú ukazovať prvé aj druhé hodiny.)

Riésenie. Prvé hodiny sa za 1 deň zrýchlia o 8 minút (lebo
24

1 . -y = 8); druhé hodiny sa opozdujú za 1 deň o 4 minúty
24

(lebo 1 . ~2- = 4). Po 24 hodinách sa oboje hodiny, povodně
o

rovnako nariadené, rozchádzajú o 12 minút; preto sa za každú
hodinu rozdiel časových údajov na obojich hodinách zváčší

12 1 •

^0
24 =T nUnUty'
Časový rozdiel 20 minút 45 sekúnd alebo 20 -^-minútynastane

za tolko hodin, kolko je

20|: 1
'

2 *
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Platí

83
л 83

= _.2=-

Hodiny sa teda budú rozchádzať o 20 minút 45 sekúnd o 41-^-
hodiny. Ale 41~ hodiny je 1 deň a 17-^- hodiny. Preto zmiene-

13 1
20- : —

4 2
- =41 — .

2 2

1

1
ný rozdiel časových údajov nastane 17— hodiny po 12. hodině

v nedelu, t. j. v pondelok o 5. hodině, 30 minúte. Hodiny sa teda
rozchádzajú o 20 minút 45 sekúnd v pondelok o 5. hodině,
30 minúte ráno.

Skúška. Prvé hodiny sa predchádzajú o 8 minút za deň,

t. j. predchádzajú sa o-^- minúty za hodinu. Za 41-^- hodiny saJ m

teda predídu o tolko minút, kolko je

6 10 6 5
1 1

-г-. 41—- =
3 2

teda o 13 minút 50 sekúnd. Prvé hodiny budú teda ukazovať
5 hod. 43 min. 50 sek.

Druhé hodiny sa spozďujú o 4 minúty za deň, t. j. o -4-mi-
o

1
núty za hodinu. Za 41— hodiny sa teda spozdia o tolko minút,
коГко je

1
„i 1 _ 83 _ a 11

6 ’41 2 12 6 12 *
teda o 6 minút 55 sekúnd. Druhé hodiny budú teda ukazovať
5 hod. 23 min. 5 sek.
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Jiné řešení. První hodiny se předcházejí za 3 hodiny o 1 min.,
t. j. za 6 hodin o 2 min.

Druhé hodiny za 6 hod. se zpožďují o 1 minutu.
Oboje hodiny se za 6 hodin budou rozcházet o 3 minuty.

3
— min. se budou rozcházet za tolikrát 6 hodin, kolikrát
4

je 20 — větší než 3; platí

»4
83 5

První hodiny si za tuto dobu nadejdou — .2 = 13 —, t. j.12 o

O 20

83 83 83

4*3” 125 12 * “
1 1

:3 = — 41t-

83
13 min. 50 vt. Druhé hodiny se za tuto dobu zpozdí o — . 1 =

= 6Í! t. j. 6 min. 55 vt.

3
Hodiny se budou rozcházet о 20-— min. v pondělí v 5 hod.

12 ’

30 min. První hodiny budou ukazovat 5 hod. 43 min. 50 vt.
Druhé hodiny budou ukazovat 5 hod. 23 min. 5 vt.

Podle řešení s. J. Stuchlíkové,
žákyně 8. tř. 2. OSŠ v Turnově.

3. Je dán kvádr o rozměrech a, b, c (viz obr. 60). Od kvádru
oddělíme tělesa rovinnými řezy tak, že zbude těleso, které
je na obrázku vyznačeno silnými čarami. Jeho vrcholy leží
ve středech hran přední a zadní stěny daného kvádru.

a) Narýsujte obrázek, z něhož je vidět, že se odříznuté části
dají složit v jiný kvádr.

b) Vypočtěte objem tělesa, které zbylo po odříznutí.
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Řešeni, a) Viz obr. 61. [Poznámka. Označme středy hran
stěny ABCD daného kvádru stejně jako na obr. 60. Střední
příčky MP, NQ tohoto obdélníka a dále úsečky MN, NP,
PQ, QM dělí obdélník ABCD na osm shodných pravoúhlých
trojúhelníků; ty jsou na obr. 60 očíslovány 1, 2, 3, 4, Г, 2',
3', 4'. Trojúhelníky se totiž shodují v odvěsnách, tedy podle
věty sus. Proto můžeme trojúhelník 3 přemístit do polohy 1',
trojúhelník 4 do polohy 2'. S trojúhelníky 3, 4, přemístíme
zároveň i odříznuté části kvádru, které к nim příslušejí.]

b) Podle výsledku úlohy a) dostaneme z odřezaných částí
kvádr, jehož přední stěnou je obdélník ABNQ (obr. 61); roz-
měry tohoto kvádru jsou a, % b, c a jeho objem V je

b
V — a . — . c

2
neboli

V = \ . abc.

jí6

яa

Obr. 60. Obr. 61.

Protože objem daného kvádru je abc, rovná se objem odřeza-
ných částí polovině objemu daného kvádru. Z toho plyne, že
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zbytek tělesa má objem rovný polovině objemu daného kvádru

neboli ~ . abc. Tím je úloha rozřešena.

4. Každé prirodzené číslo a jeho piata mocnina majú na
mieste jednotiek tú istú cifru. Dokážte to. (Uvědomte si, že
napr. súčiny 87.56 a 7.6 majú na mieste jednotiek tie isté
cifry.)

Riesenie. Každé prirodzené číslo sa končí niektorou z cifier
0, 1, 2,..., 9. Ďalej vieme, že súčin dvoch prirodzených čísel
m, n sa končí tou istou cifrou, ktorou sa končí súčin jednotiek
čísel m, n; napr. súčin 87.56 sa končí cifrou 2, teda tou istou
cifrou ako súčin 7.6.

Majme prirodzené číslo p, ktoié sa končí cifrou c. Piatu
mocninu čísla p dostaneme, keď budeme postupné číslo p ná-
sobiť tým istým číslom podlá tohto vzoru:

p .p =p2, p2 .p = p3, pz .p = p4, pi .p = p5.
Súčiny na lávej straně týchto rovností sa končia po radě tou
istou cifrou ako súčiny

c . c, c2 . cy c3. Cy c4 . Cy

takže číslo p5 sa končí tou istou cifrou ako c5. To znamená, že
číslo pb sa končí tou istou cifrou, ako piata mocnina jednotiek
čísla p. Aby sme tvrdenie danej úlohy dokázali, stačí dokázať,
že čísla O3, l5,..., 95 sa končia po radě ciframi 0, 1,..., 9.
Ak urobíme výpočet uvedených piatych mocnin, dostaneme:
O3 = 0; is = 1 • 25 = 32 ; 33 = 243; 45 = 1 024; 55 = 3 125;
65 = 7 776; 75 = 16 807 ; 85 = 32 768 ; 95 = 59 049.

Tým sme dókaz urobili.

Poznámka. Predošlý výpočet piatych mocnin sme si mohli
ušetriť; ukážeme si to na výpočte pre číslo 7:
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72 = 7.7 sa končí cifrou 9; 73 = 7.7.7 sa končí ako súčin
9.7, teda cifrou 3; 74 = 73.7 sa končí ako súčin 3.7, teda
cifrou 1; 75 = 74.7 sa končí ako súčin 1.7, teda cifrou 7,
čo sme mali dokázat’.

5. V bodě A na okraji gramofonové desky sedí brouk.
Označme 5 střed desky a AB její průměr. Brouk začne lézt
z bodu A po úsečce AB do bodu В; v okamžiku, kdy se dá
brouk do pohybu, počne se deska otáčet. Když se deska jednou
otočí, dorazí brouk právě do bodu B.

Narýsujte cestu brouka po desce, jak se jeví pozorovateli
při pohledu shora. Při tom předpokládáme, že pohyb brouka
i otáčení desky se děje rovnoměrně. Průměr AB volte 18 cm.
Pro narýsování cesty brouka sestrojte přesně body, v nichž je
brouk v jednotlivých dvanáctinách jedné otočky desky.

Obr.;62.

Řešení je pro vyznačený smysl otáčení provedeno v obr. 62.
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6. O čísle х platí
1 13

* + — =
6 *

Aniž počítáte číslo x, vypočtěte hodnoty výrazů:
11

a) * + Ti-; b) •

|Vypočtěte nejprve druhou a třetí mocninu dvojčlenu л +“ • j
Řešení. Platí postupně

1\2 1
= *2 + т + 2 , (1)x -I

x2.v

1 \21\3 1
x + — = * 4

XX X

=(*2+i+2)-(*+i)
1 1 2

— Л:3 4 h 2x + X -f -5- H =Ж3 XX

= í^ +
11

+ 3\x 4JC3 X

neboli

(x+i) =(jí3+i?)+3(x+4) (2)

a) Ze vztahu (1) plyne
1 \21

X2 + —3- = \ X -1 -2.
X2 X
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131
— ; dostaneme postupněDosaďme sem x -\ =

X

=KÍ 169 - 72 97

36 " 36 *
1691

x2 + -^r
- 2 -2 =

xr 36

t. j.

' 97

36 'x2
což jsme měli vypočítat.

b) Ze vztahu (2) plyne

~(x+t) -3(*+Ť)-1
г’ + Ч-

Dosaďme sem

1 13
* + — =

6 ’x

dostaneme postupně

-(-4M-?)- _i* + 3.131
*3 + -v

X3 63 6

13 . t- 132 + 3.62)- 133 + 3.62 . 13
63 63

13 . (- 61)13 . (- 169 + 108) 793

216 *216216

Je tedy
7931

x3 -f- —=- =
216 *x3

což jsme měli vypočítat.
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7. Do dané kružnice k = (S, r = 4 cm) vepište rovnostranný
trojúhelník ABC. Trojúhelník ABC se i s kružnicí k a polo-
přímkou AB otáčí rovnoměrně kolem bodu 5. Na polopřímce
AB se zároveň pohybuje rovnoměrně bod X tak, že jeho po-
čáteční poloha je bod A, při čemž za dobu jedné otočky (t. j.
otočení o 360°) trojúhelníka urazí dráhu o velikosti 2 . AB.

a) Narýsujte polohu bodu X v jednotlivých dvanáctinách
první otočky.

b) Nakreslete co nejpřesněji čáru, kterou bod X při svém
pohybu během první otočky opíše.

Obr/63.

Řešení je znázorněno na obr. 63. Případ opačného smyslu
otáčení neuvádíme.

8. a) Určete největší celistvý násobek čísla 0,7168, který
je menší než číslo 1000.

b) Určete nejmenší celistvý násobek čísla 0,7168, který
je větší než číslo 1000.
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Řešeni. Když dělením určíme podíl 1000 :0,7168 neboli

1000

0,7168

s přesností na jednotky, dostaneme přirozené číslo x; potom
součin 0,7168 . x je menší než 1000. Při tomto dělení dostaneme
zbytek z, který je menší než dělitel 0,7168. Naproti tomu součin
0,7168. (x -b 1) již bude větší než číslo 1000. Proveďme nyní
potřebné výpočty.

Platí

1000 10 000 000 .

(1)
0,7168 7168

dostáváme
10 000 000: 7168 |1395

2 832 0
681 60

36 480
640

Protože jsme ve vztahu (1) zlomek rozšířili číslem 10 000,

je zbytek z při dělení 1000 : 0,7168 roven 640 .

Je tedy

1

10 000 '

1000
> 1395 ;

0,7168

zbytek dělení z — 0,0640 je menší než dělitel 0,7168.
Jestliže jsme správně počítali, pak musí platit zkouška

dělení
0,7168 . 1395 + 0,0640 = 1000.
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Proveďme nyní výkony naznačené v předchozím zápisu:
0,7168 . 1395 999,9360

0,06407168
21504

64512
35840

1000,0000

999,9360

Je tedy výpočet čísla x — 1395 proveden správně.
Utvořme nyní součin

0,7168. 1396;
ten je již větší než číslo 1000, neboť platí:

0,7168 . 1395 = 0,7168 . (1395 + 1) = 0,7168 . 1395 +
+ 0,7168 = 999,9360 + 0,7168 = 1000,6528.
Dostali jsme skutečně číslo větší než 1000.
a) Je tedy 0,7168 . 1395 = 999,9360 největším celistvým

násobkem čísla 0,7168, který je menší než 1000.
b) Protože je 0,7168. 1396 prvním celistvým násobkem

čísla 0,7168, který je větší než násobek 0,7168 . 1395 (při
čemž je číslo 0,7168 . 1396 = 1000,6528 větší než 1000), proto
je 0,7168. 1395 = 1000,6528 nejmenším celistvým násobkem
čísla 0,7168, který je větší než 1000.

Odpověď. Číslo 0,7168 . 1395 = 999,9360 je největším ce-
listvým násobkem čísla 0,7168, který je menší než 1000;
0,7168. 1396 = 1000,6528 je nejmenším celistvým násobkem
čísla 0,7168, který je větší než 1000.

9. Daný je výpuklý páťuholník ABCDE.
a) Dokážte, že žiadne tri jeho uhlopriečky nemožu prechádzať

tým istým bodom.
b) Narýsujte tento páťuholník a jeho uhlopriečky. Potom ho

vystrihnite a rozstrihajte pozdíž jeho uhlopriečok.
Napište, kolko častí vzniklo a aké sú to útvary.
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Riešenie. a) Každá uhlopriečka páťuholníka je úsečka, ktorá
má za svoje krajné body vždy dva vrcholy páťuholníka. Keby
tri uhlopriečky páťuholníka prechádzali tým istým bodom X,
nebol by to predovšetkým vrchol páťuholníka; tým idú len
dve jeho uhlopriečky. Avšak bod X nemóže ležať ani vnútri
uhlopriečok páťuholníka. Takým bodom X by totiž prechádzali
tri priaraky (na ktorých ležia naše uhlopriečky), z ktorých každé
dve by boli navzájom rožne. Na každej z nich by ležali dva
vrcholy mnohouholníka, čím by sme dostali celkom 6 bodov.
To však nie je možné, lebo páťuholník má len 5 vrcholov.

Preto žiadne tri uhlopriečky páťuholníka neprechádzajú tým
istým bodom.

b) Rozstřiháním páťuholníka vzniklo 10 trojuholníkov a
jeden páťuholník.

10. Je dán výraz
630

2n - 1 5

kde n je přirozené číslo. Dosazujeme-li za n přirozená čísla
1, 2, 3, 4 atd., dostaneme řadu zlomků.

Vypočtěte všechny z těchto zlomků, které jsou rovny při-
rozeným číslům, a udejte, pro která čísla n tyto zlomky obdržíme
z daného výrazu.

Řešení. Jestliže daný zlomek
630

2n — 1 ’

kde n je přirozené číslo, má být přirozené číslo, potom se musí
dát zkrátit číslem 2n — 1; to znamená, že číslo 630 musí být
dělitelné číslem 2n — 1.

Při tom je známo, že číslo 2n — 1, kde n je přirozené číslo,
je číslem lichým. Máme tedy vlastně najít ta přirozená lichá
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čísla, která jsou děliteli čísla 630. Abychom tyto dělitele našli,
rozložíme číslo 630 v prvočinitele.

Pak platí postupně
630 = 63.10 = (9.7). (2.5) = (3.3.7). (2.5) =
= 2.3.3.5.7,

t. j.
630 = 2.3.3.5.7.

Je známo, že když postupně vybereme z prvočinitelů 2, 3,
5, 7 jednoho nebo několik a znásobíme je, dostaneme všechny
dělitele čísla 630 (s výjimkou dělitele 1). Chceme-li však dostat
všechny liché dělitele čísla 630, musíme z prvočinitelů tohoto
čísla vynechat číslo 2. Budeme tedy jen vybírat z těchto prvo-
činitelů:

3, 3, 5, 7.

Vybírejme nyní postupně a) jednoho z nich, b) po dvou,
c) po třech, d) po čtyřech; tak dostaneme všechna hledaná
čísla 2n — 1 (v závorce uvedeme hned, pro které přirozené číslo
n se číslo 2n — 1 rovná hledanému děliteli):

a) 3 (pro n = 2); 5 (pro n = 3); 7 (pro n = 4); to jsou 3 čísla.

b) 3.3 = 9 (pro n = 5); 3.5 = 15 (pro n = 8); 3.7 = 21
(pro и = 11); 5.7 = 35 (pro и = 18); to jsou čtyři čísla.

c) 3.3.5 = 45 (pro n = 23); 3.3.7 = 63 (pro n = 32);
3.5.7 = 105 (pro n = 53); to jsou 3 čísla.

d) 3.3.5.7 = 315 (pro « = 158); to je jedno číslo.
К těmto dělitelům musíme přibrat dělitele 1 (pro n = 1), takže
máme celkem 3 + 4 + 34-1 + 1 = 12 lichých dělitelů čísla
630. Více jich jistě není.

184



Jsou to skutečně dělitelé, jak je patrno z dalšího:
630 630 630

a) ~~3

b)-

c) = 14;

__ = 126; — = 90;= 210;

630 630630
- = 42;= 70; = 18;3515

630630 630
= 10; = 6;45 10563

<« 630 = 2;315

630
e) = 630.

1

11. Dané sú tri body A, B, S, ktoré neležia v tej istej priamke.
Zostrojte taký štvorec MNPQ so stredom S, že priamka MN

prechádza bodom A a priamka PQ bodom B.
Dokážte, že úloha má vždy právě jedno riešenie.

Riešenie (obr. 64). Rozbor. Predpokladajme, že daná úloha
má riešenie, t. j. že sa nám podařilo zostrojiť štvorec MNPQ,
ktorý vyhovuje požiadavkám úlohy. Tento štvorec má podlá
týchto požiadaviek bod 5 za střed súmernosti. V súmernosti
podlá středu S’ si prislúchajú protilahlé vrcholy a protiíahlé
strany štvorca MNPQ. Preto sú priamky MN, PQ súmerne
združené podlá středu S. V tejto súmernosti si prislúchajú aj
body X, X' strednej priečky XX', kde X je střed úsečky MN
a X' střed úsečky PQ\ přitom je XX' J_ MN. Bod A' sú-
merne združený s bodom A priamky MN po íla středu 5 musí
preto ležať na priamke PQ. Bod B' súmerne združený s bodom В
priamky PQ musí preto ležať na priamke MN. Priamky MN,
AB' teda splývajú; rovnako splývajú priamky PQ, BA'. Na
základe tohto výsledku urobíme konštrukciu.
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Konštrukcia. Zostrojme body A' B' súmeme združená
(v tomto poradí) s bodmi A, В podia středu S; tu platí SA' =
— SA, SB' = SB. V priamkach AB', BA ležia (v tomto poradí)
strany MN, PQ hladaného štvorca MNPQ. Zostrojme ďalej
bodom S kolmicu x к priamke AB', takže je x J_ AB' (platí

V»

Obr. 64.

aj x _L BA'). Označme X, X' priesečníky priamky x s priam-
kami AB', BA'. Úsečka XX' je střednou priečkou hladaného
štvorca a platí SX = SX'. Na obe opačné polpriamky, na
ktoré rozděluje bod X priamku AB', nanesme úsečku zhodnú
s SX-, dostaneme body M^N.V bodoch M, N zostrojme
po radě kolmice m, n к priamke AB'; označme P, Q (v tomto
poradí) priesečníky priamky BA' s priamkami n, m. Potom je
MNPQ Madaný štvorec.

Dokaž správnosti urobenej konštrukcie. Pretože priamky
m, x, n sú kolmé к priamke AB', sú navzájom rovnoběžné
(pozři Geometriu pre 7. roč., str. 276 dolu). Preto platí MQ ||
|| NP; zo súmemosti priamok AB', BA' podlá středu 5 vy-
plýva, že je aj MN || PQ. Preto je MNPQ rovnoběžník (pozři
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Geometriu pře 8 roč., str. 165, veta 4). Tento rovnoběžník má
podlá konštnikcie pri vrchole M pravý uhol, preto je to ob-
dížnik (pozři Geometriu pre 8. roč., veta na str. 174). Ale
podlá konštrukcie je MN = 2 . SX = XX'; pretože je aj
MXX'Q rovnoběžník (má protilahlé strany rovnoběžné),
platí XX' = MQ. Teda je AÍN = MQ; preto je obdížnik
MNPQ štvorcom (má dve súsedné strany zhodné).

Diskusia riešiternosti. Priamky AB', BA' sú rovno- *
běžné a rózne. Rovnobežnosť vyplývá zo súmernosti podTa
bodu S, ich róznosť vyplývá z toho, že body А, В, S neležia
v tej istej priamke. Vzdialenosť priamok AB'3 BA’ je jediná
a udává velkosť strany hladaného štvorca. Z toho vyplývá, že
úloha má vždy právě jedno riešenie.

12. Určete největší přirozené číslo, které má tyto tři vlastnosti:
(1) je dvojciferné,
(2) číslo napsané týmiž ciframi, ale v obráceném pořádku,

je také dvojciferné,
(3) součet obou předchozích čísel, t. j. hledaného čísla a čísla

s týmiž ciframi, ale v obráceném pořádku, je rovněž číslo
dvojciferné.

Řešení. Nechť x Ф 0, у Ф 0 značí cifry, pomocí nichž lze
hledané číslo zapsat v desítkové soustavě: x je cifra na místě
desítek, у je cifra na místě jednotek. Hledané číslo je pak

10x -f- y.

Číslo, které z něho dostaneme záměnou cifer, je
lOy -f x.

Součet obou těchto čísel je
(10* + y) + (lOy + x)

neboli 1 Ix + 1 l_y a tedy
H(* + JO-
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Toto číslo má být podle požadavku úlohy menší než 100, ale
přitom co možná největší. Protože se rovná součinu čísla
11 a čísla x + jy, je dělitelné jedenácti. Proto číslo 11 (jc + y)
musí být rovno jednomu z čísel

99, 88, 77,... 11.

Dokážeme, že je to číslo 99: Ze vztahu
1 1(jc + y) = 99

plyne
x+y = 9.

Tato rovnice má jediné řešení, které vyhovuje požadavkům
úlohy, a to

* = 8, у = 1.
Platí totiž 81 + 18 = 99.

Pro přirozená čísla x menší než 8 bychom zřejmě dostali
menší dvojciferná čísla než 81. Hledané číslo je 81.

9. Úlohy II. kola kategorie D.

1. Kolik násobků čísla 786 je mezi čísly 1 000 000 a 10 000 000 ?
Dále vypočtěte nejmenší a největší z těchto násobků.

Řešení. Násobek čísla 786, nejblíže větší než je 1 000 000,
určíme takto: Zjistíme částečný podíl a zbytek při dělení
1 000 000 : 786. Součin tohoto částečného podílu a čísla 786
je největší z násobků čísla 786, která jsou menší než 1 000 000.
К tomuto násobku přičteme 786; tak dostaneme násobek
čísla 786, který je nejmenším z těch násobků čísla 786, která jsou
větší než 1 000 000.

Podobným způsobem určíme i největší z násobků čísla 786,
které jsou menší než 10 000 000.

Počet násobků čísla 786 větších než 1 000 000 a menších
než 10 000 000, určíme jako rozdíl počtu násobků menších
než 10 000 000 a počtu násobků menších než 1 000 000.
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Výpočty:
1 000 000:786 |127210 000 000:786 112 722

2 140 2140
56805680
17801780

2082080
508

999 79212 722
X 786

1 272 12 722
-1 272X 786 786

1145076 332
1 017 76
8 905 4

7 632
101 76
89Q 4

1 000 578

9 999 492 999 792

Nejmenší z násobků čísla 786, které jsou větší než 1 000 000,
je 1 000 578; největší z těchto násobků, které jsou menší než
10 000 000, je 9 999 492. Počet násobků čísla 786, které jsou
větší než 1 000 000, ale menší než 10 000 000, je 11 450. Tím
je úloha rozřešena.

Podle řešení s. Jindry Hofmanové,
žákyně 8. tř. OSŠ v Městci Králové,

okres Poděbrady.

2. Sestrojte rovnoramenný lichoběžník ABCD, jsou-li dány
tyto prvky lichoběžníka: střední příčka MN = 6 cm, výška
v = 5 cm a rameno AD = 6 cm.

Odůvodněte, proč při těchto číselných údajích má úloha
řešení.

Řešeni (obr. 65). Rozbor. Mysleme si, že jsme již sestrojili
hledaný rovnoramenný lichoběžník o základně AB > CD.
Označme jako v obrázku p = AB, q = CD a m, n kolmice

189



4Š

sestrojené po řadě v bodech M, N к přímce MN; při tom jsou
M, N středy úseček AD, BC, dále P, Q průsečíky přímky m
s přímkami p, q a konečně P', Q' průsečíky přímky n s přím-
kami p, q. Zřejmě je PP'Q'Q obdélník a úsečka PQ = v. Dále
bod D leží nejen na přímce q, ale též na kružnici k = (M,
\AD — 3 cm). Ještě si všimněme toho, že osa o úsečky MN je
osou souměrnosti rovnoramenného lichoběžníka ABCD a tím
i osou každé z jeho základen AB, CD.

Nyní provedeme konstrukci.
Konstrukce. Zvolme polohu úsečky MN = 6 cm. Dále

zvolme jednu polorovinu vyťatou přímkou MN a označme
ji q. Budeme na př. požadovat, aby bod D padl do zvolené polo-
roviny q. V této polorovině sestrojíme přímku q || MN ve
vzdálenosti 2,5 cm; v polorovině opačné к o sestrojíme rovněž
ve vzdálenosti 2,5 cm přímku p Ц MN.

In

\C _! CЛ-1Qi-T f
/

/

/j
i p1

Dále opíšeme kružnici k = (M, 3 cm); označme D jeden
ze společných bodů přímky q a kružnice k (z obou možností
jsme jako D označili bod v polorovině tnN). Hledaný bod A
je průsečíkem přímek p, MD.

Označme E společný bod osy o úsečky MN a přímky MD.
Potom přímka NE protíná po řadě přímky p, q v hledaných
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vrcholech В, C lichoběžníka. Tím je lichoběžník sestrojen;
zřejmě splňuje požadavky úlohy, a proto nebudeme provádět
důkaz správnosti konstrukce.

Diskuse. Protože vzdálenost středu M kružnice k od

přímky q je menší než poloměr kružnice k (platí totiž 2,5 < 3),
je q sečnou kružnice k a dostáváme dva průsečíky D, D'.
Jeden vede к lichoběžníku ABCD, druhý к lichoběžníku
A'B'C'D'. Protože přímky p,q jsou souměrně sdružené podle
osy MN souměrnosti a protože podle této osy je souměrná
i kružnice &, jsou zřejmě oba lichoběžníky souměrně sdružené
podle přímky MN a proto tedy shodné.

Ještě musíme rozhodnout, zda bod D na našem obrázku
leží uvnitř poloroviny oM a zda bod C leží uvnitř poloroviny
oN. Oba body M, Q mají od přímky o vzdálenost 3 cm. V právo-
úhlém trojúhelníku MDQ je přepona MD = 3 cm větší než
odvěsna QD. Je tedy QD < 3 cm; proto bod D leží uvnitř
poloroviny oM. Ze souměrnosti podle přímky o vyplývá, že
bod C leží uvnitř poloroviny oN. Úloha má tedy dvě řešení.

Tím je řešení úlohy provedeno.
Y
П

Я I'M

p

§

Obr. 66.

3. Zvolte priamku p a dva body X, Y ako v pripojenom
náčrtku (pozři obr. 66).

Zostrojte rovnoramenný trojuholník ABC so základňou AB,
ktorý má tieto vlastnosti:

Priamka p je osou súmernosti trojuholníka.
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Rameno АС = 9 cm.

Polpriamka CA prechádza daným bodom X a polpriamka
CB prechádza daným bodom Y.

Odovodnite, prečo má úloha pri daných číselných údajoch
právě jedno riešenie.

Riešenie (obr. 67). Rozbor. Pretože p je osou hladaného
rovnoramenného trojnholníka ABC so základňou AB, sú body
A, В súmerne združené podia priamky p a bod C nevyhnutné
leží na priamke p. Zostrojíme к bodu X bod X' súmerne zdru-
žený podlá priamky p\ bod X' padne na polpriamku CB. Teda
BC je tá istá priamka ako priamka YX'. Na základe toho uro-
bíme konštrukciu.

Konstrukci a. Zostrojme к bodu X bod X' súmerne zdru-
žený podlá priamky p; tu platí (pozři obr. 67) XX0X' _]_ p>
X'XQ = ХХ0. Priamka YX' přetne priamku p v hladanom

bode C. Na polpriamkach CX, CY (v tomto poradí) zostro-
jíme úsečky CA = CB — 9 cm. Potom je zrejme CAB hla-
daný trojuholník; dokaž vyplývá z rozboru.
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Disku si a. PocHa zadania bodov X, Y sú obe vzdialenosti
bodov X, Y a tým aj bodov X', Y od priamky p rozdielne;
preto sú rozdielne aj body X', Y. Pretože dale) body Xw Y0
sú podl’a textu úlohy tiež rozdielne, nie je priamka X'Y na
priamku p kolmá, ani s ňou rovnoběžná. Preto priamky X' Y, p
sú kosé a majú spoločný bod C, čo je vrchol hladaného rovno-
ramenného trojuholníka CAB. Úloha má teda jediné riešenie.

4. Dvanásť nájomníkov má spoločne zaplatit’ 91,96 Kčs za
odobranú vodu. Štyria z nich (vzhladom na menšiu rozlohu
svojich bytov) platia o 25 % menší poplatok, než ostatní.

Vypočítajte, kolko činí plný poplatok nájomníka a kolko
činí znížený poplatok.

Riešenie. Znížený poplatok činí
75

t. j. | plného poplatku.100 5
Ak zvolíme plný poplatok za jeden diel, zaplatí 8 nájomníkov
celkom 8 dielov a 4 nájomníci zaplatia celkom (f . 4) dielov,
t. j. 3 diely. Preto musíme čiastku 91,96 Kčs rozdeliť na
8 + 3, t. j. 11 navzájom rovnakých dielov; platí

91,96 : 11 18,36
39

66
0

Plný poplatok teda činí 8,36 Kčs. Znížený poplatok je
(8,36 . I) Kčs; platí

8,36 . § = 2,09.3 = 6,27.
Znížený poplatok teda činí 6,27 Kčs.

Skúška. Súčet 8 plných poplatkov a 4 znížených poplatkov
musí činiť 91,96 Kčs. Platí:

8,36.8 = 66,88, 6,27.4 = 25,08
a súčet 66,88 + 25,08 = 91,96, teda skutočne sa rovná poža-
dovanej čiastke.

Odpověď. Plný poplatok je 8,36 Kčs, znížený poplatok je
6,27 Kčs.
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