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Děkuji všem, kteří mi pomáhali při uskutečňování soutěže šestého
ročníku MO, zvláště pak těm, kteří přispěli tématy nebo pomáhali tato
témata zpracovat. Především děkuji svým spolupracovníkům z Matema-
tického ústavu ČSAV soudruhům dr. M. Fiedlerovi, doc. Jos. Holubá-
řovi a Jiřímu Sedláčkovi; bez nich by se celá práce dala těžko uskutečnit.
Poslední dva soudruzi spolu s dr. Zbyňkem "Nádeníkem a se s. VI. Ma-
cháěkem prováděli velmi pečlivě a uvážlivě všechny recensní práce
a přispěli tak ke zlepšení rukopisu. Rovněž patří můj vřelý dík doc. dr.
Milanu Kolibiarovi z Bratislavy, který už tradičně provádí nejen po-
slovenštění textu, ale přispívá i ke zlepšení kvality řešení. Redaktoru
SPN v Praze s. Jaromíru Dubskému děkuji za vzornou pomoc při re-
censích a při provádění korektur.

Je mou milou povinností poděkovat všem těm, kteří mi zaslali žákovská
řešení vhodná k uveřejněni. Platí to zejména o s. Jos. Stehlíkovi, učiteli
střední školy v Turnově, a dále o zesnulém zasloužilém učiteli Phdr.
Jos. Honzákovi z Pardubic, který ještě nedlouho před smrtí mi zaslal
velmi zajímavá žákovská řešení z Pardubického kraje.

Nemalé nesnáze se musely překonávat i na poli organizačním; tu
zároveň vyslovuji dík všech, kteří mají o MO zájem, s. M. Jelínkovi
z MŠK; s jeho pomocí se nám podařilo většinu nesnází hladce překonat.

Na závěr omlouvám skoro o rok opožděné vyjiti brožury; tiskárna
musila věnovat i tentokrát nejprve své síly tisku učebnic.

Rud. Zelinka.V Praze dne 6. října 1958.

Za přispění spolupracovníků zpracoval Rud. Zelinka
Recensovali doc. Josef Holubář, Vlastimil Macháček,

dr. Zbyněk Nádeník a Jiří Sedláček



I. O PRŮBĚHU VI. ROČNÍKU
MATEMATICKÉ OLYMPIÁDY

1. Ve školním roce 1956/57 probíhal na našich všeobecně
vzdělávacích školách a na výběrových odborných školách VI.
ročník matematické olympiády (zkratka pro soutěže je MO).

Rozdělení žáků podle jednotlivých ročníků do jednotlivých
kategorií je patrno z tabulky:

Účast žáků

Kategorie
z výběrových

odborných škol
z jedenáctiletek

A 11 3; 4
В 10 2
C 9 1
D 8

2. Soutěž pořádalo ministerstvo školství a kultury ve spolu-
práci s Matematickým ústavem Československé akademie věd
(MÚ ČSAV) a s ústředním výborem Československého svazu
mládeže (ÚV ČSM). V čele soutěže stál ústřední výbor mate-
matické olympiády (ÚVMO), jehož členy jmenovalo minister-
stvo školství a kultury. V krajích zajišťovaly soutěž krajské
výbory matematické olympiády (KVMO) a v okresech okresní
výbory matematické olympiády (OVMO); první jsou určeny
pro kategorie А, В, C, druhé pro kategorii D.

Ústřední výbor MO (adresa: Praha II, Žitná 25, tel.
22 72 23; 22 72 17) byl složen takto:
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Předseda: Akademik Josef Novák.

Místopředseda: Akademik SAV Jur Hronec, profesor přírodo-
vědecké fakulty university J. A. Komenského v Bratislavě.

Jednatel: Rudolf Zelinka, vědecký pracovník MÚ ČSAV
v Praze.

Členové:
Anton Dubec, docent Vysoké školy pedagogické v Bratislavě.
Ludmila Frantíkové, učitelka jedenáctileté střední školy

ve Vítkově u Opavy.
Dr. Karel Havlíček, docent matematicko-fysikální fakulty

Karlovy university v Praze.
Docent Josef Holubář, vědecký pracovník MÚ ČSAV v Praze.
František Hradecký, odborný asistent Vysoké školy pedago-

gické v Praze.
Dr. Karel Hruša, docent Vysoké školy pedagogické v Praze.
Miloš Jelínek, ústřední inspektor ministerstva školství a kultury

v Praze.
Dr. Milan Kolibiar, docent přírodovědecké fakulty university

J. A. Komenského v Bratislavě.
Jozef Krchňavý, učitel jedenáctileté střední školy v Košicích.
Dr. Josef Pírek, učitel osmileté střední školy v Brně, Křídlo-

vická ul.
Víťazoslav Repáš, pracovník poverenictva školství a kultury

v Bratislavě.
Miroslav Šmidák, referent oddčlení studující mládeže v ústřed-

ním výboru ČSM v Praze.
Dr. Miloslav Zedek, odborný asistent Vysoké školy pedagogické

v Olomouci.

Předsedy krajských výborů matematické olympiády byli:
Dr. Josef Korous, docent Vysoké školy železniční v Praze

(město Praha).
Dr. Alfons Hyška, docent ČVUT v Praze (kraj Pražský).
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František Vejsada, učitel 2. jedcnáctilcté střední školy v Českých
Budějovicích (kraj Budějovický).

Stanislav Kopellent, vedoucí kabinetu matematiky Krajského
ústavu pro další vzdělání učitelů v Plzni (kraj Plzeňský).

František Jenšík, vedoucí školského odboru rady KNV v Kar-
lových Varech (kraj Karlovarský).

JosefPorcal, učitel pedagogické školy v Teplicích (kraj Ústecký).
Zdeněk Kalousek, učitel pedagogické školy v Liberci (kraj

Liberecký).
Josef Mencl, učitel pedagogické školy v Hradci Králové (kraj

Hradecký).
Dr. Josef Honzák, učitel jedenáctileté střední školy v Pardu-

bicích; později Ludvík Kapička, učitel jedenáctileté střední
školy v Pardubicích (kraj Pardubický).

Josef Svoboda, učitel jedenáctileté střední školy v Třebíči
(kraj Jihlavský).

Josef Holčík, odborný asistent Vyšší pedagogické školy v Brně
(kraj Brněnský).

Dr. Josef Široký, docent Vysoké školy pedagogické v Olomouci
(kraj Olomoucký).

Leo Krakówka, učitel průmyslové školy strojnické v Gott-
waldově (kraj Gottwaldovský).

Josef Andrys, vedoucí kabinetu matematiky Krajského ústavu
pro další vzdělání učitelů v Ostravě (kraj Ostravský).

Jozef Kroupa, učitel 2. jedenáctileté střední školy v Bratislavě
(město Bratislava).

Dr. Milan Kolibiar, docent přírodovědecké fakulty university
J. A. Komenského v Bratislavě (kraj Bratislavský).

Jozef Drábik, učitel 2. jedenáctileté střední školy v Nitře
(kraj Nitranský).

Dr. Cyril Palaj, profesor Vysoké školy lesní a dřevařské ve
Zvoleni (kraj Banskobystrický).

Ladislav Berger, učitel 1. jedenáctileté střední školy v Žilině
(kraj Žilinský).
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Dr. Ján Jakubík, docent Vysoké školy technické v Košicích
(kraj Košický).

Dr. Ernest Jucovič, odborný asistent Vyšší pedagogické školy
v Prešově (kraj Prešovský).

3. Soutěž v kategorii A měla tři kola a v kategoriích В, C, D
dvě kola.

Soutěž I. kola probíhala v době od října 1956 do konce
února 1957. V I. kole měli žáci za domácí práci písemně vy-
řešit alespoň sedm ze zadaných dvanácti úloh, a to s prospěchem
alespoň dobrým. Úlohy I. kola byly vytištěny ve dvou letácích,
které zaslal ústřední výbor matematické olympiády na jed-
notlivé školy. Na školách se o soutěž starali školní referenti
soutěže.

4. Úspěšní řešitelé I. kola se pak mohli účastnit II. kola,
které je závěrečné pro kategorie В, C, D. Úkolem II. kola pro
kategorii A bylo zjistit nejlepší účastníky, kteří přicházeli
v úvahu pro účast v III. celostátním kole soutěže.

Účastníci II. kola měli rozřešit alespoň dobře nejméně dvě
ze zadaných čtyř úloh, a to během čtyř hodin. Soutěž II. kola
v kategorii D se konala v okresech, v ostatních kategoriích
v krajích.

V kategorii D‘ se soutěž II. kola konala v neděli 7. dubna
1957, v ostatních kategoriích v neděli 14. dubna 1957.

Při této příležitosti se konaly se žáky besedy o významu
studia matematiky, zvláště se zřetelem к rozvoji naší techniky.
Přitom byli žáci seznamováni s typickými nedostatky, jež se

• objevily v jejich řešeních úloh I. kola. Účastníci II. kola soutěže
navštívili také různé kulturní podniky, konali exkurse do
průmyslových podniků apod.

Pedagogický dozor a hostitelské úkoly jsou přitom zpravidla
svěřeny školským odborům rad ONV a KNV, popřípadě
zástupcům okresních a krajských výborů ČSM.
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5. III. kolo soutěže je celostátní; je určeno pro nejlepší
z úspěšných řešitelů II. kola kategorie A. Konalo se od 8 hod.
do 13 hod. v sobotu 25. května 1957 v budově matematicko-fysi-
kální fakulty Karlovy university v Praze II, Ke Karlovu 3.
Z přihlášených 125 úspěšných řešitelů II. kola bylo podle
organizačního řádu soutěže vybráno nejlepších 80; z nich se
dostavilo 79 žáků, z toho 5 dívek. Mezi účastníky III. kola
byli tři žáci průmyslových škol, jeden ze školy pedagogické
a všichni ostatní z jedenáctiletých středních škol.

Úspěšným řešitelem III. kola se stejně jako ve druhém kole
stává žák, který ze čtyř zadaných úloh rozřeší aspoň dvě úlohy
s prospěchem nejméně dobrým. Dvacet nejlepších úspěšných
řešitelů III. kola se podle organisačního řádu stává vítězi
(olympioniky) příslušného ročníku soutěže.

Odpoledne téhož dne, kdy se konala soutěž, byla uspořádána
beseda s účastníky III. kola. Zúčastnili se jí zástupci učitelů
i žáků pražských středních a výběrových odborných škol,
zástupci školské správy, učitelů vysokých škol a konečně
zástupci vědeckých institucí. Byl přítomen také náměstek
ministra školství a kultury profesor inž. dr. Josef Trnka.

Besedu řídil předseda ÚVMO 'akademik Josef Novák,
který po zahájení uvedl některé údaje o rozsahu a výsledcích
soutěže. Naznačil, že bude nutno uvažovat o jistých omezeních
soutěže, zvláště v kategorii D. Tato kategorie má na některých
školách přímo masovou účast, přitom však není dostatečně
zajištěna úroveň účastníků.

К olympionikům promluvil dr. František Kadeřávek, pro-
fesor Českého vysokého učení technického v Praze, na téma
,,250 let inženýrských škol v Praze“. Jeho poutavá přednáška
byla odměněna srdečným potleskem. (Obsáhlý výtah z této
přednášky autor na přání účastníků besedy písemně zpracoval
a uveřejnil v 10. čísle časopisu Matematika ve škole, 1957.)
Potom podal dr. Milan Kolibiar, docent přírodovědecké fa-
kulty university J. A. Komenského v Bratislavě, zevrubné
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informace o studiu přírodních a technických věd na vysokých’
školách na Slovensku.

S mimořádným úspěchem se setkala přednáška o topologii,
kterou poutavým, popularisujícím způsobem přednesl akademik
Eduard Čech. Ocenil v ní historický význam geniálního mate-
matika Leonharda Eulcra, jehož 250. výročí narození právě
kulturní svět vzpomínal, a připomněl, že tento všestranný
vědec prožil značnou část svého života v Petrohradě a stál
u kolébky dnes tak mohutně se rozvíjející sovětské vědy.

Zbývající část besedy byla věnována diskusi, při níž vysoko-
školští učitelé a zástupci školské správy odpovídali na dotazy
účastníků soutěže.

V závěru besedy poděkoval akademik Josef Novák jménem
ústředního výboru matematické olympiády všem, kdo se za-
sloužili o zdařilý průběh soutěže, především učitelům mate-
matiky a školním referentům MO, dále členům výboru MO
a zvláště ministerstvu školství a kultury za zajištění soutěže.
Nakonec blahopřál všem úspěšným účastníkům soutěže, pře-
devším přítomným olympionikům.

Po besedě navštívili účastníci soutěže divadelní představení
hry Maxima Gorkého „Barbaři“ v Ústředním divadle česko-
slovenské armády v Praze XII.

V neděli 26. května 1957 se olympionici účastnili oslav
250. výročí založení technických škol pražských. Hostitelské
úkoly i pedagogický dozor převzal školský odbor rady ÚNV
v Praze.
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II. ZPRÁVA O VÝSLEDCÍCH

JEDNOTLIVÝCH KOL

A. Soutěž I. kola

O počtu účastníků a o počtu úspěšných řešitelů soutěže
I. kola v kategoriích А, В, C informuje tabulka č. 1, o účasti -
v kategorii D tabulka č. 2. (Viz tab. na str. 10 a 11.)

Při srovnání s minulým ročníkem se v počtu účastníků
v kategoriích А, В, C jeví úbytky o 32 %, 43 % a 20 %.
Naproti tomu v kategorii D je přírůstek o 40 %.

Úbytek v kategoriích А, В, C lze vysvětlit tím, že loňského
roku se někde prováděl hromadný nábor účastníků bez ohledu
na kvalitu žáků, ačkoliv je soutěž výběrová. V několika pří-
pádech musil proto zasáhnout ústřední výbor MO. Tomu mají
zabránit opatření, která budou uplatněna v VII. ročníku soutěže.

Zvláště častým předmětem jednání ústředního výboru MO
je otázka kategorie D. Tato kategorie má příznivý vliv nejen
na žactvo našich středních škol, ale i na učitele. Má význam
propagační jak ve škole, tak i v rodičovské veřejnosti, a značně
přispívá ke zvýšení úrovně vyučování matematice. Avšak
vyskytují se řešení, která svědčí o cizí pomoci nebo o tom, že
byla pracována hromadně.

Pokud jde o účast žáků výběrových odborných škol, tu se
situace nemění a účast je slabá. Je třeba si uvědomit, že soutěž
je zaměřena na všeobecně vzdělávací školu a že svou náplní
nemůže plně vyhovět posláním různých typů škol.

Účast dívek v kategoriích А, В, C v I. kole soutěže je asi
31 %, tedy přibližně stejná jako loni. Totéž platí i o kategorii D,
kde je účast dívek o něco větší než 50 %.
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Tabulka č. 1

Přehled o počtu účastníků I. kola podle krajů
v kategoriích А, В, C*)

i Kat. A i Kat. В Kat. C Celkem
Kraj

I P | U P I u P I и p и

Praha-venkov
Praha-město
České Budějovice
Plzeň ....

Karlovy Vary
Liberec ....

Hradec Králové
Ústí n. L. ...

Pardubice . . .

Jihlava
Brno
Olomouc . . .

Gottwaldov. . .

Ostrava . . .

Bratislava-venkov
Bratislava-město
Nitra ....

Banská Bystrica .

Žilina
Košice ....

Prešov ....

35 7 31 7 71 17 137 31
86 35 71 20 169 24 326 79
65 14 95 32 200 21 360 67

1339 22 7 60 17 121 37
28 10 14 4 66 12 108 26
38 5 45 8 86 13 169 26

2666 76 25 100 27 242 78
55 12 33 6 55 6 143 24

4037 13 23 12 107 15 167
76 13 85 35 169 27 330 75
94 35 83 37 120 42 297 114
75 34 62 33 125 41 262 108
77 17 31 8 150 11 258 36
66 17 90 26 164 33 320 76 i

28 6 16 2 59 8 103 16
84 6 88 13 158 19 330 38
42 6 35 6 101 8 178 20

188 12258 31 256 40 566 129
98 41 83 29 214 23 395 93
26 1 25 2 41 3 92 6
10 264 0 233 69 6

Celkem 1313 373 11156 343 2504! 409 4973 4125
„ J i L [ L L L

Krajské výbory MO v I. kole zrecensovaly přes 30 000 žá-
kovských řešení. Z nich bylo přes 19 000 úspěšných, tj. víc
než 63 %, což je výsledek o málo lepší než loňského roku.
V kategorii D bylo recensováno na 120 000 žákovských řešení.
Z nich bylo na 90 000 úspěšných, tj. asi 75 %, což je asi o 6 %
méně než loni. Svědčí to o přiměřenější klasifikaci.

*) P — celkový počet účastníků; U = počet úspěšných řešitelů.
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Tabulka í. 2

Přehled o počtu účastníků I. kola podle krajů
v kategorii D

Kategorie D
Kraj

UP

381Praha-venkov . .

Praha-město . . .

České Budějovice
Plzeň
Karlovy Vary . .

Liberec
Hradec Králové
Ústí n. L
Pardubice
Jihlava
Brno
Olomouc
Gottwaldov . . . .

Ostrava
Bratislava-venkov
Bratislava-město
Nitra
Banská Bystrica . .

Žilina . .

Košice
Prešov

865
7701 574

1 234 613
479739
149403
302676
211365
206648

1 2784 554
352640
4931 006

1 147
1 064
1 672

522
518
614

57132
152554
168391
222508

36114
59174
52227

Celkem 7 63418 687

B. Soutěž II. kola

Informaci o výsledcích II. kola v kategoriích A až C podává
tabulka č. 3 a o kategorii D tabulka č. 4. (Viz tab. na str. 12
a 13.)

V kategoriích А, В, C je asi 58 % úspěšných řešitelů
II. kola, přitom v kategorii A je jich asi 48 %. Rešitelek je z cel-
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Tabulka č. 3

Přehled o počtu účastníků II. kola podle krajů
v kategoriích А, В, C

Kat. C I CelkemKat. A Kat. В
Kraj

P U P u P U P и

Praha-venkov . . I
Praha-město . . j
České Budějovice . i
Plzeň |
Karlovy Vary . . I
Liberec ....

Hradec Králové
Ústí n. L
Pardubice ....

Jihlava
Brno
Olomouc ....

Gottwaldov. . . .

Ostrava ....

Bratislava-venkov
Bratislava-město .

Nitra
Banská Bystrica . .

Žilina
Košice
Prešov

7 2 2 17 196 15 I 30
19 | 7334 23 18 219 51

15 6 30 6 19 6 1864
13 8 6 3 17 2716 36

510 , 14 9 8 23 14
5 4 7 3 12 5 24 12

26 : 19 25 19 24 21 75 59
12 5 4 1 6 6 22 12
12 : 116 2 14 9 1737

2811 8 20 26
22 ] 37
14 | 35

2 11
9 32

26 65 54
33 11 35 32 105 65

33 100
6 i 34

28 i 74
7 1 16
8 34

33 11 32 58
16 76 14

12 2616 49
6 I 1 2 0 8 8

126 2 3 16 13
5 0 7 1 2 35 17

26 8 5 6 6 20 13
37 . 14 24 22 187 83 39

1 1 2 0 13 6 2
4 0 0 0 2 1 6 1

308 1146 I 294 I 129 342 i 273 i 944 548Celkem

kového počtu účastníků asi 28 %, úspěšných řešitelek je asi
56 % z celkového počtu řešitelek. V kategorii D je 84 %
úspěšných řešitelů. Řešitelek je 50 %; úspěšných řešitelek je
rovněž 50 %.

V kategoriích А, В, C bylo podáno přes 3200 žákovských
řešení, z toho přes 1800 úspěšných, tj. asi 56 %. Tento stav
je přibližně o 12 % příznivější než loňského roku. V kategorii
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Tabulka Č. 4

Přehled o počtu účastníků podle krajů
v kategorii D

Kategorie D
Kraj

UP

Praha-venkov
Praha-město
České Budějovice
Plzeň ....

Karlovy Vary
Liberec . . .

Hradec Králové
Ústí n. L. . . .

Pardubice . . .

Jihlava ....

Brno ....

Olomouc . . .

Gottwaldov . .

Ostrava . . .

Bratislava-venkov
Bratislava-město

i Nitra ....

Banská Bystrica
Žilina
Košice ť . . .

Prešov . . .

316 297
653 586
508 294
420 358

127137
238265
172204

I

128176
217236
236247

407 378
455 369
450 413

423539
2944
5256

131172
194 159

134146
5460

161 140

Celkem 5 846 4 935i

D bylo podáno asi 17 500 řešení, z toho bylo asi 12 000 úspěš-
ných, tj. asi 74 %.

Deset nejlepších úspěšných řešitelů II. kola v každé z ka-
tegorií А, В, C obdrželo cenu v rámci kraje, v kategorii D
v rámci okresu. Úspěšní řešitelé dostali pochvalná uznání.
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Pořadí úspěšných řešitelů II. kola v kategoriích В, C
{podle krajů)

(J == jedenáctiletá střední škola, P = průmyslová škola)

Praha-venkov

B. Vašíček Oldřich, J, Radotín; Mída Jiří, J, Brandýs n. L.
C. Kang Ge Sun, J, Brandýs n. L.; Lauterbach Luboš, J,

Brandýs n. L.; Konečná Zdeňka, J, Brandýs n. L.; Ri Son
Thák, J, Brandýs n. L.; Čaloud B., J, Mladá Boleslav; Grunt
Jiří, J, Benešov; Hlinka T., J, Slaný; Kim Ge Gju, J, Brandýs
n. L.; Stehlíček Ladislav, J, Ml. Boleslav; Džon Čon Su, J.
Brandýs n. L.

Praha-město

B. Wichterle Kamil, J, Praha 6, Bílá ul.; Kazdová Jitka,
J, Praha 14, Křesomyslova ul.; Sladký Karel, J, Praha 14,
Ohradní ul.; Rohlena Karel, J, Praha 6, Bílá ul.; Krautstengl
Rudolf, J, Praha 6, Bílá ul.; Panenka Pavel, J, Praha 4, Nad
Kavalírkou; Baštecká Juliána, J, Praha 16, Belojanisova ul.;
Hostomský Jiří, J, Praha 14, Křesomyslova ul.; Jersák Jiří,
J, Praha 14, Křesomyslova ul.

C. Ullschmied Jiří, J, Praha 1, Hellichova ul.; Ježek Jan,
J, Praha 13, Kodaňská ul.; Halásek Jiří, J, Praha 14, Křeso-
myslova ul.; Segeth Karel, J, Praha 6, Bílá ul.; John Kamil,
J, Praha 12, tř. W. Piecka; Klánská Jitka, J, Praha 13, Ко-
daňská ul.; Bican Ladislav, J, Praha 16, U Santošky; Nevoral
Jiří, J, Praha 15 — Bráník; Pavel Jiří, J, Praha 7, Strossmaye-
rovo nám.; Krolluper Jaroslav, J, Praha 7, Strossmayerovo n.

České Budějovice
B. Fidlerová Jiřina, 2.J, Č. Budějovice, Nová ul.; Král

Josef, 2.J, Č. Budějovice, Nová ul.; Pudil Pavel, 10.J,
Jindřichův Hradec; Struska Václav, 2.J, Č. Budějovice,
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Nová ul.; Melzer Jiří, 2.J, Č. Budčjovice, Nová ul.; Severa
Vladimír, 1J, Č. Budčjovice, Česká ul.

C. Gottwaldová Jana, 2.J, Č. Budějovice, Nová ul.;
Plechatý Ladislav, 9.J, Strakonice; Weber Giinter, 9.J,
Vimperk; Navara František, l.J, Č. Budějovice, Česká ul.;
Jerie Milan, 9.J, Písek; Souček Karel, 2.J, Č. Budějovice,
Nová ul.

Plzeň

B. Řezáč Karel, J, Klatovy; Komorous Václav, J, Nepomuk;
Ližan Ladislav, 2.J, Plzeň, ul. Pionýrů.

C. Henig Jan, 2.J, Plzeň; Novák Pavel, 2.J, Plzeň, ul.
Pionýrů; Kropáček Jan, 2.J, Plzeň, ul. Pionýrů; Dusík Jiří,
J, Domažlice; Tomášek Jiří, 3.J, Plzeň-Doubravka; Karlach
Jiří, 3.J, Plzeň-Doubravka; Pivoňková Marie, J, Domažlice;
Hajšmanová Olga, 3.J, Plzeň-Doubravka; Šimrová Blanka,
J, Domažlice; Brejchová Milena, l.J, Plzeň, nám. Odborářů.

Karlovy Vary
B. Hanuš Vlastimil, J, Cheb.
C. Mainzer Miloslav, J, Cheb; Pelouch Jiří, J, Planá u M.

Lázní; Ledlová Vlastimila, J, Cheb; Štočková Jarmila, J,
Karlovy Vary; Kubová Eva, J, Cheb; Kašpárková Eva, J,
Cheb; Čechurová Jana, J, Karlovy Vary; Ceplová Jana, J,
Karlovy Vary.

Liberec

B. Dadourek Karel, 2. J, Horní Růžodol-Liberec; Jon Jan,
VPŠ, Liberec, Leninova; Kopal Antonín, J, Turnov.

C. Roslerová Jana, J, Tanvald; Rolenec Jan, J, Tanvald;
Plaček Bohumír, J, Tanvald; Kutina Zdeněk, J, Tanvald;
Fiferna Jaroslav, J, Česká Lípa.
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Hradec Králové

B. Fiala Petr, J, Kostelec n. Orlicí; Jaroš Milan, J, Kostelec
n. Orlicí; Novák Pavel, J, Broumov; Vobořil Zbyněk, J, Dvůr
Králové n. L.; Šmoková Anna, P. stroj., Rychnov n. Kněžnou;
Carda Vladimír, J, Jičín; Chlumský František, J, Jičín;
Rezková Ida, J, Náchod; Višňáková Hana, J, Náchod; Vlášek
Zdeněk, J, Hradec Králové.

C. Novotný Oldřich, J, Dobruška; Rydlo Pavel, J, Kostelec
n. Orlicí; Janouchová Eva, J, Jičín; Němeček Jaromír, J,
Trutnov; Krčálová Marie, J. Hradec Králové; Melicharová
Marie, J, Hradec Králové; Špička Václav, P. stroj., Dobruška;
Krb Václav, P. stroj., Dobruška; Tykal Pavel, J, Dvůr Krá-
lové n. L.; Cerman Jaroslav, J, Dvůr Král. n. L.

Pardubice

B. Aksamit Pavel, J, Pardubice; Fiala Břetislav, J, Česká
Třebová.

C. Moudrý Jiří, J, Pardubice; Fesenko Petr, J, Chrudim;
John Josef, J, Chrudim; Pešlová Iva, J, Hlinsko; Gregorová
Libuše, vyšší hospod, škola, Chrudim; Jeništa Václav, J,
Česká Třebová; Kosařová Božena, J, Hlinsko; Kainová Marie,
J, Pardubice; Kubát Josef, J, Chrudim.

Jihlava
B. Hurych Zdeněk, J, Jihlava; Lorenc Jiljí, J, Třebíč;

Kršková Hana, J, Třebíč; Kouba Václav, J, Telč; Bělíková
Dob., J, Třebíč; Levý Kamil, J, Telč; Воск Pavel, J, Třebíč;
Kroupa Leop., J, Třebíč; Zahrádka Jan, J, Třebíč; Strnadová
Marie, J, Pelhřimov.

C. Kloudová Mil., J, Třebíč; Šedo Ivan, J, Jihlava;
Jaksch Ivan, J, Ždár n. S.; Douša Jiří, J, Pacov; Choutková
Eva, J, Třebíč; Uhlířová Anna, J, Telč; Svoboda Marius, J,
Třebíč; Holubová Iv., J, Pelhřimov; Králová Růžena, J, Pel-
hřimov; Krulová Božena, J, Třebíč.
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Brno

B. Kunc Karel, J, Znojmo; Jančařík Jiří, J, Boskovice;
Bartík Vojtěch, J, Znojmo; Kožíšek Jan, J, Znojmo; Petrůj
Jaroslav, J, Brno, Antonínská; Páč Petr, J, Brno, tř. kap.
Jaroše; Otřísal Karel, J, Hustopeče; Ševčíková Anežka, J,
Blansko; Kučera Jan, P. elektrotechn., Brno, Leninova;
Zdeněk Kolomazník, J, Vyškov; Vanýsek Jan, J, Brno, tř. kpt.
Jaroše.

C. Kunderová Zdena, J, Znojmo; Denemarková Marie,
J, Znojmo; Javora Jan, J, Brno, Křenová; Zapletal Karel,
J, Brno—Tábor; Hanák Jan, J, Brno-Husovice; Vančura
Drahomír, J, Blansko; Hladká Helena, J, Brno, tř. kpt.
Jaroše; Suchomelová Hana, J, Břeclav; Dunděrová Štěpánka,
J, Bučovice; Břeň Vlastimil, J, Svitavy.

Olomouc

B. Střeštík Jaroslav, J, Litovel; Sýkora Stanislav, J, Brun-
tál; Koutný Josef, 3. J, Olomouc; Znojil Vladimír, J, Prostějov;
Lukášková Věra, 1. J, Olomouc; Hrabal Jiří, 1. J, Olomouc;
Leznarová Jitka, 1. J, Olomouc; Pimr Oldřich, 1. J, Olomouc;
Batěk Jan, J, Prostějov; Prause Josef, 1. J, Olomouc.

C. Hýblová Daniela, 2. J, Olomouc; Mráz Jan, J, Přerov;
Novotný Zdeněk, J, Přerov; Pospíšil Stanislav, J, Přerov;
Menšík František, J, Přerov; Losenická Blanka, 1. J, Olomouc;
Smejkal Otakar, J, Přerov; Tomášek Michal, J, Zábřeh;
Brachtl Ivo, J, Litovel; Kučová Zdenka, J, Litovel.

Gottwaldov

B. Kovařík Zdislav, J, Hodonín; Sýkora Rudolf, P vak.
elektr., Rožnov p. R.

C. Vaculín Jaroslav, P šk. vak. elektr., Rožnov p. R.;
Vrecion Tomislav, J, Vsetín; Fribert Miroslav, J, Hodonín;
Horák Ota, J, Kyjov; Vrecion Vladimír, J, Vsetín; Kuna Ivan,
J, Hodonín.
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Ostrava

^ В. Urban Jan, J, Opava; Žáčková Krista, J, Nový Jičín;
Palisa Jan, J, Opava; Srovnalová Marie, J, Ostrava I; Gucký
Tomáš, J, Nový Jičín; Vrkoslavová Daniela, J, Č. Těšín;
Horáková Jana, J, Nový Jičín; Dzida Piotr, J, Orlová pol.;
Štěpánská Jarmila, J, Ostrava I.

C. Tomšů Petr, P, Kopřivnice; Jiříček Petr, J, Ostrava I;
Hrdina Miroslav, J, Opava; Dubová Jarmila, J, Krnov;
Drbal Pavel, J, Č. Těšín; Kubela Frant., J, Opava; Gebauer
Karel, J, Ostrava VIII; Pospěchová Iva, J, Opava; Bortlová
Dagmar, J, Bílovec; Ošmera Bohumil, J, Příbor.

Bratis lava-venkov

C. Vojtko Ján, J, Holič; Lehuta Rudolf, l.J, Trenčín;
Václavíková Eva, l.J, Trenčín; Masaryk Milan, l.J, Trenčín;
Tiso Petr, l.J, Trenčín; Preisler Petr, l.J, Trenčín; Piknová
Slávka, l.J, Trenčín.

Bratislava-město

B. Leza Ivan, J, Bratislava, Jelenia ul.; Pinkava Zdeno,
J, Bratislava-Palisády; Fodor Robert, J, Bratislava, Jelenia ul.

C. Štefan Peter, J, Bratislava, Kulíškova ul.; Dubec Dušan,
J, Bratislava-Palisády; Imhofová Sylvie, J, Bratislava, Kulíš-
ková ul.; Pákh Mikuláš, J, Bratislava, Česká ul.; Cibulka
Vladimír, J, Bratislava, Česká ul.; Kosáková Elena, J, Bra-
tislava, Kulíškova ul.; Vyhnanovská Romana, J, Bratislava,
Kulíškova ul.; Sokolová Magda, Bratislava, Kulíškova ul.

Nitra

B. Baláž Pavel, J, Levice.
C. Šaling Henrich, J, Levice; Števulová Mária, J, Zlaté

Moravce.
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Banská Bystrica
B. Lakatos Štefan, PŠSt., Lučenec; Belčák Ladislav, J,

Lučenec; Cudor Arpád, PŠSt, Lučenec; Ďuriš Igor, J, B.
Štiavnica; Bukovinská Marta, J, B. Štiavnica.

C. Lukáč Ivan, J, Lučenec; Priadka Stanislav, J, Zvolen;
Štole Milan, J, Zvolen; Bayerová Agata, J, Lučenec; Gajdoš
L., PŠSS, Zvolen; Anner Otto, J, Kremnica.

Žilina

B. Horniš J., J, Žilina; Dragula Ján, J, Ružomberok;
Zelenka Jozef, J, Martin; Bergerová Marg., J, Žilina; Štefřko
Ladislav, J, Kláštor p. Zn.; Krivoš Vladimír, J, Ružomberok;
Gajdoš Fr., J, Ružomberok; Venclová Ivana, J, Ružomberok;
Singer Ivan, J, Martin; Boroška Fedor, J, Ružomberok.

C. Franěk Ladislav, l.J, Žilina; Berger Ladislav, l.J,
Žilina; Bárta Ján, J, Púchov; Kapolka Dušan, J, Ružomberok;
Dutková Irena, J, Ružomberok; Sigmund František, J, Ru-
žomberok; Valter J., J, Ružomberok; Kulichová Viera,
l.J, Žilina; Černuchová, J, Púchov; Pažický Ján, l.J, Žilina.

Košice

C. Schwábik Štefan, 2. J, Košice.

Prešov

C. Martinček Mikuláš, 1. J, Prešov, Konštantincva ul. -

C. Soutěž III. kola

К soutěži III. kola bylo přihlášeno 125 úspěšných řešitelů
II. kola kategorie A. Z nich bylo vybráno podle organisač-
ního řádu 80 žáků к závěrečné soutěži. Dostavilo se 79 ře-
šitelů, z toho 5 dívek. Z pozvaných žáků byli tři z průmyslo-
vých škol a jeden z pedagogické školy.

Požadavkům soutěže vyhovělo 43 účastníků.
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Dvacet nej lepších úspěšných řešitelů III. kola bylo pak
prohlášeno vítězi VI. ročníku soutěže (mezi nimi je jeden žák
průmyslové školy). Vítězové byli odměněni věcnými čestnými
cenami ministerstva školství a kultury, které jim byly uděleny
ve stejné hodnotě jako v minulém ročníku a jejichž výběr se
řídil přáním odměňovaného. Každému z vítězů byl kromě
věcné ceny předán umělecky provedený diplom, který po-
depsal ministr školství a kultury a předseda ÚVMO.

Pořadí vítězů. VI. ročníku matematické olympiády
(Jméno a příjmení, třída, škola, adresa školy)

1. Jaroslav Lukeš, 11.a, 21. jsš, U Santošky 1, Praha XVI.
2. Jaroslav Morávek, ll.b, jsš, tř. Čs. armády 585, Chrudim.
3. Karel Najzar, ll.b, jsš, Paskovská ul. 64, Ostrava VII-

-Vítkovice.
4. Josef Musil, ll.b, jsš, Ledeč nad Sázavou.
5. Miroslav Hušek, 11.a, 21. jsš, U Santošky 1, Praha XVI.
6. Bohdan Zelinka, ll.b, 1. jsš, Husova 44, Liberec.
7. Karel Záleský, ll.b, 2. jsš, Liberec-Horní Růžodol.
8. Jan Zitko, ll.b, jsš, Chrudim.
9. Jiří Turek, ll.c, 9. jsš, U libeňského gymnasia 1, Praha 8.

10. Petr Hájíček, 11.a, jsš, Mendlovo nám., Brno.
11. Tomáš Skotnica, 11.a, jsš, Ostrava VIII — Hladnov.
12. Ivan Santar, 11.a, jsš Ant. Zápotockého, Karlovy Vary.
13. Václav Panuška, 11 .b, jsš, Nová ulice 7, České Budějovice.
14. František Kobliha, ll.b, 1. jsš, Hellichova ul. 3, Praha 1-

-Malá Strana.
15. Adolf Karger, ll.b, jsš, Šumperk.
16. Jiří Šmíd, ll.b, jsš, Ostrava VII — Vítkovice.
17. Antonín Postřihač, 11, jsš, Vlašim.
18. Jaromír Hrdý, 4.a, průmyslová škola elektrotechnická,

Pod Kuželuhy 100, Jičín.
19. Jaroslav Novák, 11.a, jsš, Litoměřice.
20. Milan Hamala, ll.c, 2. jsš, Šrobárova 46, Košice.
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III. К VÝSLEDKŮM SOUTĚŽE

A. Ke kategoriím А, В, C

Ze zpráv výborů МО a z diskusí ve schůzích ústředního
výboru MO konaných za přítomnosti předsedů KVMO vy-
plývá, že se v žákovských řešeních opět vyskytují podobné
nedostatky jako v minulých ročnících. Při řešení rovnic a ne-
rovností se stále zapomíná na to, že postup vedoucí k stanovení
kořenů je třeba buď obrátit, nebo provést zkoušku dosazením.
Teoretické úlohy nebyly číselně řešeny dosti obratné a pře-
hlednč; přitom si řešení zpravidla nevyžadovalo žádných
zvláštních znalostí z matematiky, spíše vtipného usuzování.
Řešení geometrických úloh, zvláště konstruktivních, trpí ne-
dostatky v provádění důkazu a diskuse. Rovněž slovní výklad
je mnohdy neúplný, i když terminologické nedostatky jsou
řidší než v předchozích ročnících.

V řešeních se opět vyskytují jakési „limitní” úvahy a nejasné
výroky, které svou povahou patří do afinní nebo projektivní
geometrie. Žák se jim naučil od učitele, ale nepochopil jejich
význam, a proto jich užívá nesprávně, zvláště při důkazech.
Bylo by užitečné, kdyby se na střední škole žáci v geometrii
omezili jen na útvary vlastní a kdyby nebyli vedeni k ne-
správnému užívání „limitních” úvah, pro něž většinou nemají
dostatečný analytický aparát a nemohou je tudíž vůbec odů-
vodnit. Žáci nevěnují většinou patřičnou pozornost přesnému
rýsování, což by nemělo být přehlíženo ani v I. kole. Rovněž
vnější úpravě by měla být věnována větší péče.

Z článků a připomínek organizátorů soutěže uvádíme některé,
které byly otištěny v časopise „Matematika ve škole”, roč. 1957:
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1. Fr. Živný, O jedné úloze letošní matematické olympiády,
roč. VII, č. 3, str. 144..

2. Rz, Řešení úloh I. kola MO kategorie D, roč. VII, č. 3,
str. 149, roč. VII, č. 4, str. 231 a roč. VII, č. 5, str. 293.

3. Rz, Řešení úloh II. kola MO, kat. D, roč. VII, č. 7, str. 419.
4. Rz, Témata úloh II. a III. kola VI. ročníku MO, roč. VII,

č. 7, str. 423.
5. Rz, Zpráva o průběhu a výsledcích VI. ročníku matematické

olympiády, roč. VII, č. 8, str. 485.
6. Jiří Sedláček, Jak hodnotily okresní výbory MO šestý

ročník matematické olympiády, roč. VII, č. 8, str. 490.
7. Alois Terč, Zkušenosti z matematické olympiády, roč. VII,

č. 8, str. 495.
8. Karel Jakoubek, Statistické hodnocení matematické olym-

piády kategorie D (ročník VI), roč. VII, č. 8, str. 498.
Žákům by jisté nemálo prospělo, kdyby se s nejzávažnějšími

z těchto připomínek alespoň zhruba seznámili.

B. jak probíhala kategorie D

I. Kategorie D, určená žákům osmých tříd, má v naší soutěži
zvláštní postavení. Každoročně se jí účastní poměrně velký
počet žactva z celé republiky, a to je možné jen díky obětavé
spolupráci učitelů osmých tříd a pracovníků okresních vý-
borů MO. Organisace a problematika kategorie D bývá ná-
mětem mnoha učitelských shromáždění a ústřednímu výboru
MO se každoročně schází velká řada připomínek a kritik
z různých krajů i okresů celé republiky. Chceme si zde jen
ve stručnosti všimnout některých připomínek, které došly
ústřednímu výboru MO v šestém ročníku soutěže.

Matematická olympiáda se musí stát soutěží opravdu nej-
lepších matematiků na našich školách. Bylo proto velikou
chybou, když někteří učitelé nutili žáky к účasti v soutěži tím,
že lepší známky slibovali jen řešitelům MO. Takový postup
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nemůže u naší mladé generace ani vzbudit zájem o mate-
matiku, ani nezíská soutěži kvalitní okruh řešitelů. Kromě *
toho tento postup hrubě porušuje klasifikační řád soutěže.

Jaký byl ve školním roce 1956—57 zájem o matematickou
olympiádu ? Na tuto otázku nelze dát odpověď jedním slovem.
V některých dopisech se konstatuje stoupající zájem žáků
o MO (např. z okresů Český Těšín, Dvůr Králové nad Labem,
Kojetín, Polička a Žatec), jinde hodnotí kvalitu prací a zájem
žáků ve srovnání s minulým ročníkem stejně (např. Nový
Jičín a Prostějov). Avšak v několika dopisech, zvláště ze Slo-
venska, je hlášen pokles zájmu řešitelů. Tato různorodá hlášení
jsou celkem pochopitelná, neboť v každém okrese jsou poměry
na školách jiné a nestejný zájem projevují o soutěž i sami učitelé
osmých tříd. Nechceme ovšem říci, že by malý zájem o MO
byl charakteristický pro celé Slovensko. Máme např. zprávu,
že soutěž dobře probíhala na JSŠ v Komárně.

Zvláštní pozornosti si zásluhou svého předsedy zaslouží
OVMO v Lučenci, který pro vnitřní potřebu učitelů vydal
cyklostylované „Zprávy OPS“. Sešit, který nám z Lučence
zaslali, je věnován celý matematické olympiádě. Obsahuje
výtah ze směrnic, kterými se řídí MO v kategorii D, tabulky
o účastnících a o řešeních jednotlivých úloh, přehled hlavních

• nedostatků, jež se objevily v I. kole, jména recensentů jednotli-
vých příkladů a konečně pořadí žáků a škol v I. i v II. kole
soutěže. Tato informační brožurka ukazuje, že jí autoři věnovali
velkou péči. Podobný „Zpravodaj MO“ připravil také OVMO
ve Stodu (předseda G. Vavřík). Zasílal jej jednak všem řeši-
tělům, jednak všem vyučujícím matematikům, aby mohli i v niž-
ších třídách využít některých příkladů pro zpestření hodiny
а к výchově příštích účastníků MO.

O tom, jak organisátoři MO v okresech vedli žáky к samo-
statné a cílevědomé práci v této obtížné soutěži, se dočítáme
v řadě dopisů. Besedy a matematické kroužky žáků jistě zvýší
úroveň žákovských prací, je ovšem nutná kontrola nad samo-
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statností řešení. Dovídali jsme se však i o případech, kdy žáci
z jedné třídy nebo z jedné školy podali řešení, která se lišila
jen v nepodstatných detailech, takže šlo zřejmě o nesamostatné
práce. Takové řešitele není ovšem možno považovat za úspěšné
účastníky MO, i když jejich elaboráty povšechně odpovídají
klasifikační stupnici, a jsou proto z další soutěže vyřazeni.

V matematických kroužcích, které by měly mít studijní
charakter, by se mělo jen upozorňovat na látku, kterou úspěšný
řešitel musí pro soutěž znát, nebo by se v nich mohly rozbírat
chyby, jichž se v odevzdaném řešení žák dopustil.

Dobrou úroveň má naše soutěž v okrese Praha 14. Ředitel
OSŠ Josef Šmejc, který je tam předsedou OVMO, nám napsal
o organizování soutěže toto:

„Ve školním roce 1956 —57 byla MO v kategorii D zahájena
24. října 1956 celookresnč besedou žáků osmých tříd, na které
byli také přítomni učitelé z osmých tříd. Na besedě bylo deset
nejlepších účastníků minulého ročníku MO odměněno kniž-
nimi cenami. Tito vítězové hovořili o svých zkušenostech
z absolvované MO, o řešení úloh a o nově získaných vědo-
mostech. V sobotu 6. dubna 1957 jsme konali na ukončení
I. kola besedu, na níž jsme řešitele informovali o průběhu
tohoto kola a o chybách a nedostatcích, jichž se mají uvarovat
ve II. kole.“

II. Věnujme nyní pozornost úlohám I. kola.
V uplynulém ročníku byla v tomto kole zastoupena geometrie

i aritmetika. Byly tu dokonce i úlohy, které nevyžadovaly prak-
ticky žádných školských vědomostí, nýbrž jen samostatnou
úvahu. Tak v 7. úloze se mělo určit, kolik tahů může vykonat
na prázdné šachovnici dáma (královna). Předpokládalo se
ovšem, že žák jé aspoň ve velmi hrubých rysech obeznámen
s hrou v šachy. Podle ohlasu, jaký tato úloha v mnoha okresech
vyvolala, se zdá, že tento předpoklad nebyl správný. Jen
ojediněle je v dopisech 7. příklad označen jako zajímavý.
Většina okresních výborů nám však napsala, že příklad s ša-
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chovnicí byl úzce specializovaný, neboť žáci většinou nejsou
šachisté. Tak na př. s. Josef Vlk, předseda OVMO z Poličky,
píše: „Nechceme podceňovat význam 7. příkladu, avšak tento
příklad působil nesnáze žákům, kteří nebyli seznámeni s hrou
v šachy, zatím co žákům, kteří v rodině měli nějakého šachistu,
byl tento úkol usnadněn.” Z dopisů je vidět, že řada řešitelů
nepochopila, co se od nich žádá. Ve skutečnosti však šlo o věc
zcela konkrétní a jednoduchou: Napsat na každé políčko
šachovnice číslo, které znamená počet tahů, jež z tohoto pole
může dáma provést, a nakonec všechna tato čísla sečíst.
Nebyl zde tedy ani žádný důkaz, ani abstraktní úvaha, šlo jen
o správnou volbu metody.

Jinak lze říci, že úlohy matematické olympiády byly hod-
noceny jako přiměřené. Vyskytují se ovšem opět stesky, žc
žáci jsou slabí v geometrii a že důkazové úlohy jim dělají potíže.
Některé okresy sestavily stupnici obtížnosti příkladů v VI.
ročníku MO, avšak toto hodnocení nelze shrnout do jednoho
celostátního přehledu (s uvedenou už výjimkou 7. příkladu).
Tak např. inž. Karel Plešek, předseda OVMO v Hranicích,
označuje za obtížné úlohy 10, 11,4,6, 7, kdežto s. Fr. Procházka,
předseda OVMO v Litovli, zaslal tuto stupnici: 9, 10, 11.

V 9. úloze řada žáků (zvláště prý dívky) považovala jedno
šlápnutí na bicyklu za celou otočku pedálového kolečka a do-
spěla tak к nesprávnému výsledku. O tomto nepochopení
úkolu píše též František Diessl z Karlových Var a dr. Josef
Pírek z Brna. Avšak právě 9. příklad měl polytechnický námět
a úlohám tohoto typu je v hodnocení mnohých okresních vý-
borů MO dávána přednost před problémy čistě teoretickými.

Pro opravu a klasifikaci úloh matematické olympiády jsou
vydány obecné zásady, aby známkování bylo pokud možno
v celé republice rovnoměrné. Je ovšem pochopitelné, že klasi-
fikaci opravdu jednotnou nelze zaručit. Referenti krajských
výborů MO, kteří organizují kategorii D, se obvykle s tímto
problémem vyrovnávají svědomitou revizí úloh. Tak např.
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v Budějovickém kraji provedli někteří pracovníci zdarma ještě
třetí — srovnávací — recensi opravených úloh, aby se tím
vyrovnaly rozdíly ve známkování okresů.

III. Úspěšní řešitelé I. kola kategorie D byli pozváni к II.
kolu, které se konalo v jednotlivých okresech v neděli 7. dubna
1957. Je zajímavé, že jak v I., tak v II. kole bylo velké procento
děvčat. Z Jičína nám o tom napsala s. M. Šulcová: „Matematické
olympiády se u nás účastnilo více děvčat než chlapců. Chlapci
mají dobrý prospěch v matematice, jsou pohotoví, ale chybí
jim trpělivost při řešení složitějších příkladů.“ To se však týká
převážně právě kategorie D, neboť ve vyšších třídách se MO
účastní převážně právě chlapci.

Několik okresních výborů nám napsalo, že pořádání II. kola
soutěže v neděli je vzhledem к místním poměrům velmi ne-
vhodné. OVMO Prachatice např. uvádí, že žáci ze vzdálenějších
obcí nemají v neděli do Prachatic autobusové spojení. Nepo-
mohlo by ani zvolit pro II. kolo jiné místo než Prachatice, neboť
jde o pohraniční okres bez komunikačních spojů. O špatném
nedělním spojení mluví také s. Josef Mikš, předseda OVMO
v Kamenici nad Lipou, a Eva Charamzová, předsedkyně
OVMO v Havlíčkově Brodě. Na vysvětlenou к těmto steskům
uvádíme, že ústřední výbor MO zvolil pro II. kolo neděli
proto, aby se co nejméně narušoval pravidelný chod školy.
I když toto narušování souvisí velmi úzce s vyučováním, za-
vdálo by pravděpodobně u řady učitelů-nematematiků
podnět к negativnímu postoji к naší soutěži, neboť bychom
přispěli к přemíře různých mimoškolních akcí, jimiž bývá
škola zvláště ke konci školního roku zaplavována.

Ve II. kole řešili žáci celkem 4 úlohy. Porovnáme-li je s před-
cházejícím ročníkem soutěže, je patrný úspěch v tom, že po-
měrně velké procento účastníků II. kola vyřešilo všechny
čtyři úlohy (potvrzuje to např. Blažena Plzáková ze Žatce
a Josef Šmejc z Prahy 14). Příčinu je nutno spatřovat v terna-
tické souvislosti mezi I. а II. kolem soutěže (srovnej 8. úlohu
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I. kola a 3. úlohu II. kola). O přístupnosti příkladů svědčí i ta
okolnost, že žáci většinou nepotřebovali pracovat ani stanovené
čtyři hodiny (jak píše např. dr. J. Pírek z Brna a Josef Šindelář
z Českého Brodu). Jedině 4. úloha II. kola (úprava zlomků
a vyšetřování, kdy úvaha má smysl) činila žákům obtíže, jak
píše např. s. K. Brtek z Šumperku, dr. B. Hustý z Českého
Těšína, Mojmír Nohejl z Olomouce a s. B. Plzáková z Žatce.
Je to opravdu velmi paradoxní případ, neboť ve 4. úloze šlo
skutečně jen o běžné, i když náročnější učivo z 8. třídy.

Druhé kolo soutěže zajistily okresní výbory většinou velmi
pečlivě. Řešitelé byli rozsazeni do lavic podle předem sta-
noveného pořádku (v kreslírnách nebo větších posluchárnách).
Tím byla zaručena kontrola nad samostatností práce. Tu se
ovšem také ukázalo, zda úspěch z I. kola byl skutečně zásluhou
řešitele samého nebo zda dobré výsledky vznikly ve „spolu-
práci“ s jinými osobami.

V mnoha případech dostali účastníci II. kola zdarma oběd
ve školních stravovnách, pořádaly se besedy nebo exkurse.
V některých dopisech čteme připomínku, že by při této orga-
nisační práci mohly pomoci skupiny ČSM, jejichž spolupráce
s výbory MO je dosud stále nepatrná.

IV. Závěrem chceme poděkovat všem pořadatelům soutěže
v krajích a okresech za jejich obětavou práci. Ústřední výbor
MO je zavázán díky také za všechny připomínky a náměty,
kterých se v uplynulém ročníku sešel skutečně velký počet.
Je potěšitelné, že o naši soutěž jeví zájem také širší veřejnost
školská i mimoškolská. Vždyť ve školním roce 1956—57 psala
o MO řada našich deníků i týdeníků, např. časopis Květy
přinesl 1. června 1957 obsáhlou reportáž o MO a jména vítězů
III. kola oznámil také Československý rozhlas. Došla nám též
připomínka, že by naší soutěži měly věnovat pozornost i Pio-
nýrské noviny, neboť ty mají poměrně široký okruh čtenářů
právě mezi žáky osmých tříd. Podotýkáme, že v předcházejících
ročnících Pionýrské noviny skutečně spolupracovaly s ústřed-
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ním výborem МО, avšak v VI. ročníku soutěže к takové spolu-
práci nedošlo.

Je běžným zjevem, že se žáci účastní MO po několik ročníků
za sebou a není divu, že právě tito vytrvalí řešitelé dosahují
potom ve vyšších kategoriích pěkných úspěchů. Těšíme se
proto, že se s řadou účastníků kategorie D sejdeme opět
v VII. ročníku MO jako s řešiteli kategorie C. Přejeme jim
hodně úspěchů v dalším studiu.
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IV. ŘEŠENÍ ÚLOH ZE SOUTĚŽE

1. Úlohy I. kola kategorie A

1. Kolkými róznymi spósobmi možno vyplatit’ čiastku
Kčs 2000 páťkorunovými, desaťkorunovými a dvadsaťpáť-
korunovými bankovkami?

Riešenie. Číslom v tomto riešení rozumieme celé nezá-

porné číslo. Ak označíme po radě x, y, z počet bankoviek po
5 Kčs, 10 Kčs, 25 Kčs, má platit’ 5x + \0y + 25z = 2000,
čiže

(1)x + 2у 5z = 400.

Tým sme úlohu previedli na problém určit’ počet trojíc čísel
x, у i z, vyhovujúcich rovnici (1).

Najprv odpovedzme na túto otázku: Nech trojica x0, y0, z0
vyhovuje rovnici (1). Kol’ko dvojíc vyhovuje rovnici

x T 2jy = 400 — 5z0.
Budeme tu rozlišovať dva případy:
Případ [1]. Ak je z0 párne, je 400 5£0 párne. Hladaný

počet dvojíc x, у sa potom rovná počtu spósobov, ktorými
možno (párne) číslo 400 — 5z0 napísať ako súčet dvoch
párnych sčítancov x a 2y. Tento počet je

400 - 5z0 201 -4-,0.22

Případ [2]. Ak je z„ nepárne, je 400 — 5z0 nepárne.
Híadaný počet dvojíc x, у sa potom rovná počtu spósobov,
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ktorými možno (nepárne) číslo 400 — 5z0 napísať ako súčet
nepárneho a pámeho čísla. Tento počet je

1 1 5
— (400 — 5z0 + 1) — 200 + — — zo •

Tým sme pomocnú otázku zodpovedali.
Ak x, y, z vyhovuje rovnici (1), je 2 ^ 80 a obrátene, ku

každému nezápornému celému číslu z splňujúcemu vztah
z 80 možno udať trojicu x, y, z, vyhovujúcu rovnici (1),
napr. x — 400 — 5z, у = 0, z.

Celkový počet trojíc teda bude

201 -i--o)+(201 -i- .2)+(201-|-.4)+...+
J) ++ (201 —~ • 80 j + (2OO+ ý

I" • З) + (200 + i T'5) +••• ++ (200 + I
(200 +Ý))+ /200 + ý 5

41 • 201 + 40 •— • 79
2

Y (0 + 1 + 2 + 3 + . . . + 80) =
5 81-80

2 2 "
= 201 + 40 |201 + 200 4- у)

(401 + т) - 5 • 81 • 20 == 201 + 40 •

= 201 + 16 060 - 8100 - 8161.

Tým je riešenie ukončené.
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2. Řešte rovnici

2 |/а2 + x — а J/oM-x - 1 (1)
j/а2 -f x + 1

kde dané reálné číslo а ф 0. Proveďte diskusi řešitelnosti
vzhledem к danému číslu a.

Řešení. Nechť je reálné číslo x řešením rovnice (1). Tu
musí platit

a2 -f x 0;

jinak by neměl výraz j/а2 -f- л: smysl. Dále musí být
а Ф 0;

jinak by neměl zlomek na pravé straně rovnice (1) význam.
Protože podle (2) je ]/a2 -j- x 2> 0, platí

]/a2 + x + 1 > 0,

(2)

(3)

(4)

takže za předpokladu (2) má zlomek na levé-straně rovnice (1)
význam.

Nyní přistupme к vlastnímu řešení rovnice (1). Znásobme
obě její strany číslem a (|/а2 + jc + l); to je podle (3), (4)
různé od nuly; dostaneme

2a]ja2, -b x = x — (1 — 2a2).

Nyní umocněme obě strany této rovnice na druhou; dostaneme
rovnici

x2 - 2x + (1 - 4a2) = 0. (5)

Diskriminant této rovnice je Л = 4- (l — 1 + 4 a2) neboli
A — 16 a2, což je vzhledem к předpokladu (3) číslo kladné;
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platí j/zl = 4 • | a |. Kořeny x = xlt x = x2 rovnice (5) jsou
reálná čísla 1 ф 2 • | a j, 1 — 2 • | a | $ můžeme položit

Xi = 1 4- 2a, x2 = 1 — 2a.

Protože je Л > 0, je xx Ф x2. Platí (znaménko plus přísluší
к znaménko minus к x2)

а2 ф x = а2 ф 1 ф 2a = (a ± l)2 2> 0,
takže pro každé reálné a platí požadavek (2).

Jestliže má rovnice (1) kořeny, pak jsou to nutně čísla (6),
přičemž musí platit požadavek (3).

Proveďme ještě zkoušku, že čísla (6) skutečně vyhovují
rovnici (1); vzhledem ke vztahu (7) po dosazení do levé strany
rovnice (1) dostaneme výraz L a po dosazení do pravé strany
rovnice (1) dostaneme výraz P:

(6)

(7)

L 2 ]/(a Ф l)2 a _ 2 • | а ф 1
УO2 i l)2 "h 1 |
Vii±iý

— a

a ± 1 | + 1
a i 1 | — 1- 1

Nyní rozlišme oba kořeny xv x2:

Případ [1] kořene xv Jsou dvě možnosti:
a) Nechť je a ф 1 i> 0 neboli a >

Pak je:
1 (a zároveň а ф 0).

2a ф 2 — a аф2
a + 1 ф 1" " а ф 2’

L =

kde je а ф — 2; proto je L = 1.
а ф 1 - 1

P

Je tedy L = P; číslo x, je kořenem rovnice (1).
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(i) Nechť je a ф 1 < O neboli а < 1. Рак je:
— 2 (a -f 1) — а За — 2 За ф 2

L =
- (а + 1) + 1 — а а

(а -(- 1) — 1 а ф 2
Р =

а а
s\

Pro а < — 1 se snadno přesvědčíme, že je ЬфР, takže číslo
x, není kořenem rovnice (1).

Případ [2] kořene x2. Jsou dvě možnosti:
a) Nechť je a — 1 0 neboli a 1. Pak je:

2(а - 1) - а

а - 1 - 1

a — 2

а

а — 2
P =

а а

Protože je а ^ 1, mají výrazy L, P smysl a platí L — P-, číslo
x2 je kořenem rovnice (1).

(i) Nechť je а
Pak je:

1 < 0 neboli а < 1 (a zároveň а ф 0).

— 2(а — 1) — а За — 2L =
- О 1) ф 1 а — 2

(tu je jistě а — 2 Ф 0);

(а 1) -1 — а
Р =

а а

За - 2
Rovnost = — 1 platí pouze pro а = 1, což není

а — 2
náš případ. Je tedy pro а < 1 vždy L Ф P a číslo x.> není
kořenem rovnice (1).
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Závěr. Shrňme výsledky pro reálné číslo а ф 0. Jestliže je:
a) a 1, potom rovnice (1) má kořeny x:, x2 dané vztahy (6).
b) 1 > a — 1 a zároveň а Ф 0, potom rovnice (1) má

jediný kořen x, daný vztahem (6).
c) Pro a < — 1 nemá rovnice řešení.
Přehled těchto výsledků snadno uvidíme z tabulky:

ŘešeníParametr a + 0

žádné«<- 1
- 1 ^ a < 1

a 1

1 + 2 a

1 + 2 a, 1-2 a

3. Nech štvorsten ABCD má všetky steny pravoúhlé troj-
uholníky.

Dokážte, že:
a) tento štvorsten má jedinú najváčšiu hranu;
b) střed gul’ovej plochy opísanej štvorstenu leží v střede

jeho najváčšej hrany;
c) možno zostrojiť taký kváder, že štyri z jeho vrcholov

splývajú s vrcholmi uvažovaného štvorstena.
Riešenie. Ak existuje štvorsten ABCD, ktorého všetky štyri

steny sú pravoúhlé trojuholníky, potom tento štvorsten musí
mať právě jednu z týchto troch vlastností:

[1] Existuje jeden vrchol (nech je to vrchol D) štvorstena
ABCD taký, že každé dve hrany vychádzajúce z tohto vrchola
sú navzájom kolmé (pozři obr. 1).

[2] Neexistuje-ani jeden vrchol štvorstena ABCD, ktorý
by mal vlastnost’ [1], ale existuje taký vrchol (nech je to vrchol
D), že právě dve dvojice hrán, z tohto vrchola vychádzajúci,
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sú na seba kolmé (nech teda platí DB J_ DA, DC i. DA),
kdežto tretia dvojica hrán (t. j. hrany DB, DC) sú navzájom
kosé. (Potom je uhol <£ BDC nevyhnutné ostrý, lebo v troj-
uholníku BCD je podlá požiadavky úlohy jeden uhol pravý
a ostatně uhly musia byť ostré.) Pozři obr. 5.

[3] Štvorsten ABCD nemá žiadnu z vlastností [1], [2],
to znamená, že pri každom z jeho vrcholov je nanajvýš jeden
uhol pravý. Pretože sa však musia vyskytnúť 4 pravoúhlé
trojuholníky a tým aj 4 pravé uhly, je pri každom vrchole právě
jeden uhol pravý. Pozři obr. 3, 4.

Žiadnej inej možnosti, než uvedené tri, niet. Dokážeme, že
štvorsten s vlastnosťami [1] alebo [3] neexistuje; dalej do-
kážeme, že existuje štvorsten s vlastnosťou [2]. Každý případ
preberieme zvlášť.

Případ [1]. Nech štvorsten ABCD má vlastnosť [1] (pozři
obr. 1). Potom v trojuholníku ABC musí byť jeden uhol pravý;
nech je to napr. uhol <£ BCA. Dokážeme, že taký štvorsten
neexistuje.

Zvolme polpriamky DA, DM, DC tak, že každé dve sú
navzájom kolmé. Na polpriamke DM máme určiť bod В tak,
aby platilo <£ BCA — 90° alebo aby o priamke p = BC platilo
p ±AC.

Předpokládájme, že taká priamka p v rovině CDM existuje
(dokážeme, že to nie je možné). Zrejme je DA JL CDM (lebo
je DA J_ DC, DA _|_ DM) a teda p _L DA. Zo vzťahov p J_ DA,
p _LAC vyplývá, že je tiež

(1)p _L ACD.
Pretože podlá předpokladu je DM J_ DA, DM J_ DC, je tiež

DM _L ACD.

Zo vzťahov (1), (2) vyplývá p || DM a pretože je p ф DM,
bod В neexistuje a preto neexistuje ani štvorsten s vlast-
nosťou [1].

(2)
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Poznámka. Dókaz, že neexistuje štvorsten s vlastnosťou [1],
možno urobit’ aj t.akto (obr. 2): V štvorstene ABCD, v ktorom
sú každé dve hrany vychádzajúce z bodu D navzájom kolmé,
označme DA = a, DB = b, DC = с, BC = dx, CA - d2,
AB = d2, pričom možno předpokládat’, že platí

0 < a < b < c.

Obr. 1.

Potom použime Pythagorovu vetu na pravoúhlé trojuholníky
BCD, CAD, ABD; dostaneme

(4)d\ = b2 + c2,
d\ = c2 + a1,
dl = a2 + b2.

(5)
(6)

Vzhladom na (3) zrejme platí

dl <L dl £ df
alebo

dz ^ d^t

Pretože trojuholník ABC je tiež pravoúhlý, musí v ňom byť
strana dv přeponou a podlá Pythagorovej vety musí platit’
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(7)dl - {dl + dl) = 0.
Dosaďme sem z (4), (5), (6); dostaneme na lávej straně

b2 + c2 — (c2 a2 a2 -(- b2) = — 2a2 ф 0.
To je spor s požiadavkou (7). Tým je dokaž ukončený.

Případ [3]. Nech štvorsten má vlastnost’ [3]. Nech v troj-
uholníku BCD je ф D = R (pozři obr. 3 a 4); to možno vhod-
nou záměnou označenia dosiahnuť. Potom v trojuholníku ABC
móže byť pravý buď uhol ф BAC, buď jeden z uhlov ф ABC,
Ф ВCA. V druhom případe sa pre určitost’ rozhodnime, že je^
Ф BCA = R (inak by sme u štvorstena vyměnili označenie
vrcholov В, C). Každý případ preberieme zvlášť.

a) Nech je <£ BAC = R (pozři obr. 3). Označme Sr ф S2
po radě středy hrán BC, DA a zostrojme gulové plochy =
= (Sly SyB), k2 = {S2, SoA). Dokážeme, že plochy x>
prechádzajú všetkými vrcholmi štvorstena ABCD. Dókaz
urobíme pre plochu : Plocha xl podlá konštrukcie obsahuje
body В, C. Rovina BCA přetne plochu щ v hlavnej kružnici k,
pričom je úsečka BC priemerom tejto kružnice. Podlá Thale-
tovej vety leží vrchol A pravého uhla <£ CAB na kružnici k.
Rovnako sa dokáže, že aj bod D leží na ploché xv
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Z nasej úvahy vyplývá, že štvorstenu ABCD možno opísať
dve rožne gulové plochy yn, x2>t0 )e sPor s0 známou větou, že
štvorstenu možno opísať právě jednu gulovú plochu. Tým sme
případ a) vylúčili.

/?) Nech je <£ BCA — R (pozři obr. 4). Potom sú nevyhnutné
v pravoúhlých trojuholníkoch BCD, BAC oba uhly pri vrchole
В ostré. Pretože pri vrchole В musí jedna dvojica hrán
určovat’ pravý uhol, je to nevyhnutné uhol <£ ABD. Teraz
sa už 1’ahko usúdi, že musí byť <£ CAD = R.

Vieme, že odvěsna pravoúhlého trojuholníka je menšia než
jeho přepona; preto platí postupné

CD < BC (pozři Д BCD),
ВС < AB (pozři Д ABC),
AB < AD (pozři Д ABD),
AD < CD (pozři Д ACD).

Z týchto nerovností dostaneme CD < CD, čo je spor. Preto
je případ fi) vylúčený.

Neexistuje teda štvorsten s vlastnosťou [3].
Případ [2]. Nech štvorsten ABCD má vlastnost’ [2] (pozři

obr. 5). Pre určitost’ nech je

<£ ADB - Д ADC = R, <£ BDC < R.

V trojuholníku BCD musí byť podlá požiadavky úlohy jeden
uhol pravý. Vzhladom na posledný vztah (8) musí byť jeden
z uhlov <£ BCD, <£ CBD pravý; nech pre určitost’ je

< BCD = R

(inak stačí vyměnit’ označenia vrcholov В, С). V trojuholníku
BCD sú teda uhly pri vrcholoch B, D ostré.

Z prvých dvoch vzťahov (8) vyplývá
AD _L BCD,

AD _L BC.

(8)

(9)

t. ).
(10)
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Pretože platí (9), t. j. DC JL BC, je vzhl’adom na (10)
BC _]_ ADC (11)

(priamka BC je kolmá к róznobežkám AD, DC roviny ADC).
Zo vztahu (11) vyplývá

BC _L AC,

чi

■ÁcD"*A
/

/

■

■re'AT

D, L

/ i f
/ i

✓

Ат в

bp

Obr. 6.

lebo AC je priamka roviny ADC. Je teda v trojuholníku ABC
uhol <£ BCA = R. Tým je daná konštrukcia (a tým aj
existencia) požadovaného štvorstena.

Konštrukcia štvorstena ABCD (obr. 5). Zvolíme pravoúhlý
trojuholník BDC s přeponou BD. К rovině BCD zostrojme
v bode D kolmicu a na nej zvolíme bod А ф D. Potom je
zrejme ABCD štvorsten s vlastnosťou [2]. Dokaž vyplývá
z predošlého. Takto zostrojený štvorsten ABCD teraz použijeme.

Zostrojme v predošlej konštrukcii obdížnik A BCD (obr. 6);
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v jeho vrcholoch zostrojme po radě kolmice a, b, c, d к rovině
ABCD. Bodom A veďme rovinu n\\A'BCD; označme A",
В", C", D" =A po radě priesečníky priamok a, b, c, d s ro-
vinou o. Potom je A'BCDA"В"C"D" kváder tej vlastnosti, že
štyri z jeho vrcholov (totiž B, C, D, D" == A) splývajú s vrcholmi
štvorstena ABCD. Tým sme rozriešili úlohu c).

Úsečka AB je v tomto kvádri tělesovou uhlopriečkou. Platí:

AB > BD, AB > AD

(.AB je přepona, BD, AD sú odvěsny v trojuholníku ABD);

AB > BC, AB > AC

(AB je přepona, ВС, AC sú odvěsny v trojuholníku ABC);

AB > DC,

lebo podlá (12) je AB > BD a ďalej je BD > DC (BD je pre-
pona, DC je odvěsna v trojuholníku BCD). Spojením oboch
posledných nerovností dostaneme (14). Tým sme rozriešili
úlohu a).

Označme S střed úsečky AB v uvažovanom kvádri
A'BCDA"В"C'D". Podlá známých vlastností kvádra pre-

. chádza gulová plocha v, == (S, SA) všetkými vrcholmi tohto
kvádra, t. j. к je gulovou plochou opísanou uvažovanému
štvorstenu ABCD. Pretože štvorstenu možno opísať ien jedinú
gulovú plochu, je ňou právě plocha x, zostrojená nad hranou
AB (štvorstena ABCD) ako priemerom. Tým sme rozriešili
úlohu b).

(12)

(13)

(14)

4. V rovině buď ďán svou polohou trojúhelník ABC tak, že
AB je jeho nejmenší strana.

Uvnitř strany AC sestrojte bod M a uvnitř strany BC se-
strojte bod N tak, aby platilo AM = MN — NB.

Proveďte diskusi řešitelnosti úlohy.
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Řešení (viz obr. 7 až 10). O stranách
a — BC, b — C/l, c ■ ЛВ

trojúhelníka /1FC můžeme předpokládat
c < b ^ a.

Strana c je totiž ze stran nejmenší; kdyby platilo b > a, vy-
měnili bychom názvy vrcholů А, В a tím i stran a, b. Odtud
plyne, že je úhel <^ABC ostrý a proto pata E výšky vedené
vrcholem C trojúhelníka ABC padne dovnitř polopřímky BA.

Nejprve vyslovíme po-
mocnou větu V: „Bud
dán pravý úhel CFD.
Platí-li vztah b > CD,
potom se dá na pro-
dloužení úsečky FD za
bod D sestrojit právě
jeden bod N' takový, že
platí CAT = b“

Důkaz (viz obr. 9).
V pravoúhlém trojúhel-
niku CDF je CD pře-
pona a proto je CF < CD, dále je CD < b, tj. CF < b.
Ale CF udává vzdálenost bodu C od přímky FD; proto je
přímka FD sečnou kružnice k = (C, b), přičemž bod D leží
uvnitř této kružnice. Na polopřímce FD pak leží právě jeden
bod N' kružnice k (druhý bod leží na polopřímce opačné
к polopřímce FD, jak vyplývá ze souměrnosti přímky FD
a kružnice k podle přímky CF). Tím je důkaz proveden.

Nyní provedeme řešení dané úlohy (obr. 7 — 10). Před-
pokládejme, že jsme řešení našli; tu bod M leží uvnitř úsečky
AC a bod N uvnitř úsečky BC. Uvažujme stejnolehlost A
o středu A stejnolehlosti, ve které bodu M přísluší bod

(1)

(2)
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AM'
M' = C; protože je AM < AM', je koeficient Я = > 1.

AM
Označme В', N' body, které ve stejnolehlosti A příslušejí po-
řadě bodům B, N; tu bod В' leží na prodloužení úsečky AB
za bod В a bod N leží uvnitř úsečky AN'. O bodech A, M,
N, В podle požadavku úlohy platí

AM = MN == NB; (3)

proto o bodech A, M' = C, N', B', které к předchozím bodům
příslušejí ve stejnolehlosti
A, pořade platí4

-7ř,
Г b =AC = CN' = N B',

NB || N'B', MN || CN' (4)
\

p\ (přímky sobě příslušné
ve stejnolehlosti A). —

_\ _ Všimněme si některých
B‘ \ vlastností čtyřúhelníka

ACN'B'. Veďme bodem
N' přímku n |) AB a
označme D průsečík pří-

mek ВС, {и (ten jistě existuje); protože je BB ND rovnoběž-
nik, je BD — B'N' = b. Z druhého vztahu (2) plyne, že bodD
buď padne dovnitř úsečky BC = a anebo je D == C. Toho
užijeme ke konstrukci bodu N'.

/
1 I

E:-
к

у

ВА

Obr. 8.

Konstrukce. Předpokládejme platnost vztahů (2). Na polo-
přímce BC sestrojme úsečku BD = b. Bodem D sestrojme
přímku n || AB a dále opišme kružnici k = (C,b); označme N'
společný bod přímky n a kružnice k, a to ten, který padne
dovnitř poloroviny q opačné к polorovině BCA. Dále sestrojme
bodem N' přímku p |j BC a označme B1 průsečík různoběžek
AB, p a konečně С = M'. Uvažujme nyní stejnolehlost A
o středu A, v níž bodu N' přísluší průsečík N přímek AN',
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BC. Označme М bod příslušný bodu M' = C ve stejnolehlosti
A'; bodu B' zřejmě přísluší bod B. Potom jsou M, N body
požadované v textu úlohy.

Důkaz. Podle konstrukce je CN' — b. Jestliže bod N' je od
bodu A oddělen přímkou BC (to dokážeme v diskusi), existuje
rovnoběžník BB N D, takže je NB’ = BD — b', podle kon-
strukce je BD — ba tedy N'B' — b. Platí tedy vztahy (4).
Ze stejnolehlosti A' plyne, že platí i vztahy (3). Důkaz, že body
M, N leží pořařdě uvnitř úseček АС, BC, provedeme v diskusi.

Diskuse. Dokážeme, že úloha má právě jedno řešení.
Správnost tohoto tvrzení je zřejmá z obr. 7 v případě, že

а = b; to plyne z existen-
ce kosočtverce BB'N C
v polorovině q, jehož
strana je b.

Nechť nadále je b < а

(obr. 8 — 10). O stranách
daného trojúhelníka ABC
platí
а < b + c (trojúhelníko-

vá nerovnost),
b + c < 2b [viz (2)].

Odtud dostáváme а < 2b
neboli

(5)а — b < b.

Podle konstrukce bodu D
vzhledem к (2) padne
tento bod dovnitř úsečky
BC; proto je CD = a—b.
Ze vztahu (5) pak plyne

CD < b.
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Označme E patu kolmice vedené bodem С к přímce AB; protože
podle (2) je АС < BC, je úhel <£ ABC ostrý a bod E leží
uvnitř polopřímky BA (viz obr. 8 — 10 pro různé případy dutého
úhlu <£ CAB). Označme F průsečík přímek CE, n. Protože
bod D leží uvnitř úsečky BC, leží bod F uvnitř úsečky CE,
neboť pravoúhlý trojúhelník ВСЕ o přeponě BC vždy existuje.
Podle pomocné věty V, užité na pravý úhel <£ CFD, leží na
prodloužení úsečky FD za bod D jediný bod N' takový, že
CN' = b. Odtud se snadno usoudí, že přímka BC odděluje
body A, N', takže ABN D je lichoběžník nebo rovnoběžník
(/Jfí||ATD); jeho úhlopříčky AN’, BD mají společný bod N,
který leží uvnitř úsečky BD a tedy i uvnitř úsečky BC. Protože
bod N leží uvnitř úsečky AN', je kladný koeficient stejno-
lehlosti A' menší než číslo 1, a proto bod M padne dovnitř
úsečky AC.

Úloha má tedy v obou případech (a = b, a > b)t právě
jedno řešení, které je tím provedeno.

5. V prostoru buďte dány tři kružnice kt = (5IS ry), k2 =
e= (S2, r2), k3 = (S3, r3), které leží pořadě v rovinách ov q2, о.л,
majících jediný společný bod P, přičemž každá z kružnic se
dotýká obou kružnic zbývajících.

Potom existuje jediná kulová plocha x = (S, r), na níž tyto
kružnice leží. Dokažte a udejte konstrukci této plochy x.

Poznámka. Říkáme, že se kružnice kx, k2, které leží v růz-
ných rovinách o15 q2, navzájem dotýkají, jestliže průsečnice ps
obou rovin Qu q2 je tečnou každé z těchto kružnic v jejich
společném bodě T3.

Řešení (viz obr. 11). Poznámka. Průběhem úvah dokážeme,
že existuje jediná kulová plocha, která splňuje požadavky
úlohy.

Rozbor. Dané roviny gls o2, q3, ve kterých pořadě leží dané
kružnice kx, k2, k.A, mají podle textu úlohy jediný společný
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bod P. Každé dvě z těchto rovin jsou různoběžné; jejich
průsečnice označme pořadě py = (o2, £>3), p2 = ({?3, Qi), p3 =
== (o13 q2). Přímky pv p2, p.A mají tedy společný právě bod P
a neleží v téže rovině (tvoří hrany trojbokého jehlanového
prostoru o vrcholu P).

v

Označme pořadě 7\, T2, Г3 dotykové body dvojic (Jk2i k3),
(&3, &j), (&15 &2) daných kružnic; tyto body jsou nutně různé
oď bodu P a úhly T2PT2, T3PTX, TXPT2, ve kterých kružnice

&2> *3 pořadě leží, jsou duté, což plyne z definice jehlanové
plochy. Z vlastnosti délek PTX, PT2, PT3 tečen vedených
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z bodu P к daným kružnicím plyne, že je PTo = PT3, PT3 =
= PTX=PT2, tj.

P7\ - PT2 = РГ3.
Protože přímky рх, p2, p3 neleží v téže rovině, existuje troj-
úhelník TXT2T3, jehož rovina x neprochází bodem P.

Různoběžky T^S2, TXS3 stojí kolmo к přímce px (jsou to
kolmice ke společné tečně px kružnic k2, k3 ve společném
dotykovém bodě TJ", je tedy rovina oL = (Tv S2, SJ kolmá
к přímce pv Podobně je o2 J_ p2, kde a2 == (T2, S3, SJ, o3 =
= (T3, 51} 52). Každé dvě z rovin o-,, a2, o3 jsou různoběžné;
kdyby totiž např. platilo crx |J a2, potom by o přímkách pl J_ ol3
p2 JL a2 platilo || p2, což je spor s předpokladem úlohy. Při-
tom tyto roviny nemohou obsahovat touž přímku x; jinak by
totiž byly přímky px, p2, p3 vesměs rovnoběžné s jistou rovinou
£ _L x, a to je spor s textem úlohy. Proto mají roviny a1, a2, a3
společný jediný bod, který označíme 5".

Jestliže existuje plocha kulová, o které se mluví v textu
úlohy, jsou přímky pl3 p2, p3 tečnami této plochy a roviny
oy _L Pd 02 JL Pd аз _L Рз) sestrojené pořadě v bodech 7\,
T2, T3, nutně procházejí středem této plochy; podle předcho-
zího je to právě bod 5. Tím je dána konstrukce.

Konstrukce. Sestrojme roviny oy J_ pi, o2 _L p2, a3 J_ p3 po-
řadě v bodech 7\, T2, T3 a označme S společný bod těchto
rovin. Potom je к == (č>, r — STJ kulová plocha, o níž mluví
text úlohy.

Důkaz. Označme pořadě sx = (o2, cr3), s2 = (o-,, oj, s3 =
== (ov oj, kde přímky í1} s2, s3 procházejí pořadě body Sl3
S2, S3 a přitom dále všechny tři procházejí bodem S. Protože
je o2 J_ p2, o3 _L p3, Qi = lp2, Рз\ )e Si _L Qv Bud nyní Хг
libovolným bodem kružnice protože bod S leží na přímce
5i -L Qd přičemž s1 prochází bodem 5X, je

SXx = ST2 = ST3

(1)

(2)
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pro každou polohu bodu Xv Buďte X2, X3 pořadě body kružnic
k2, k3; podobně jako výše se dokáže, že platí

(3)SX2 = ST3 = STV
SX3 = ST, = ST2. (4)

Ze (2) až (4) plyne

SXt = SX, = SX3 = r,

takže všechny body kružnic &L, k2) k3 leží na sestrojené kulové
ploše x = (S, r). Protože bod S existuje a je jediný (viz roz-
bor), přičemž zřejmě je S ф Г„ existuje i plocha x,a to jediná.

Tím je řešení úlohy provedeno.

6. Pro žádné celé číslo x neplatí vztah
x2 -- 12я + 5, (O

kde n je celé číslo. Dokažte.
Řešení. Nechť existuje celé číslo x, o němž platí vztah (1).

(Dokážeme, že to není možné.)
Ze vztahu (1) plyne

(2)x2 — 5 = \2n.

Přitom číslo 12 n je zřejmě dělitelné třemi; ze vztahu (2)
pak plyne, že i číslo x2 — 5 je nutně dělitelné třemi, tj. má
platit

(3)x2 - 5 = 3k,

kde k je vhodné celé číslo. Ze vztahu (3) plyne
*2 = 3 (k + 1) + 2.

To značí, že při dělení čísla x2 číslem 3 má být zbytek roven
číslu 2.

Dokážeme, že to není možné, neboť platí věta P: „Druhá

(4)
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mocnina у- celého čísla у má při dělení třemi za zbytek právě
jedno z čísel 0, l.“

Provedením důkazu této věty bude prokázáno, že vztah (4)
nemůže platit, tj., že dospíváme ke sporu.

Důkaz věty P. Číslo у má při dělení číslem 3 jeden ze zbytků
0, 1, 2, takže platí právě jeden ze vztahů

(5)У = 3 m,
у = 3 m -f lj
У = 3 m + 2,

(6)
(7)

kde m je vhodné celé číslo. Umocněním obou stran těchto
vztahů na druhou pořadě dostaneme

y2 — 3 (3 m2),
y2 = 3(3 m2 + 2 m) + 1,

• jy2 = 3 (3 m2 -f- 4 m -j- 1) + 1.

Ze vztahů (5') až (7') plyne, že číslo y2 má při dělení třemi
za zbytek buď číslo 0 nebo číslo 1. Tím jsme provedli důkaz
věty P, takže vztah (4) je s dokázanou větou P ve sporu, čímž
je důkaz tvrzení dané úlohy proveden.

Jiné řešení. Předpokládejme, že existuje celé číslo x, o němž
platí vztah (1). Dokážeme, že tento předpoklad vede ke sporu.

Protože 12и + 5 = 2(6и + 2) + 1, je toto číslo liché
a podle (1) je i číslo x2 liché. Proto musí být i číslo x liché.
Platí totiž věta: „Druhá mocnina lichého čísla je číslo liché,
druhá mocnina čísla sudého je číslo sudé.“

Důkaz. Sudé číslo lze psát ve tvaru 2 p, kde p je vhodné
celé číslo. Tu platí (2p)2 = 2 (2 p2), což je číslo sudé.

Liché číslo lze psát ve tvaru 2^ + 1, kde q je vhodné celé
číslo. Tu platí (2 q -f l)2 = 2 (2 q2 + 2 q) -f 1, a to je číslo
liché.

Tím je věta dokázána.

(5')
(6')
(7')
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Je tedy x číslo liché a lze je psát ve tvaru x = 2 k -f 1?
kde k je celé číslo. Po dosazení do vztahu (1) dostaneme

(2k + l)2 = 12 n + 5
neboli

4£2*+ \k + 1 = 12 и + 5
a po úpravě

\k{k + 1) = 4(3 и + 1);

po znásobení obou stran této rovnosti číslem [ dostaneme

(8)k(k + 1)=3я + 1:

Zbytek po dělení čísla 3 n + 1 číslem 3 je 1, tj. toto číslo
není dělitelno třemi, a proto žádné z čísel k, k + 1 není dě-
litelné 3; musí tedy platit k = 3 m + 15 kde m je celé číslo.
Po dosazení do vztahu (8) obdržíme

(3 m -j- 1) (3 m -f- 2) = 3 n + 1
neboli

9 rri1 -f 9 m -J- 2 = 3 n -f 1;

odtud po snadné úpravě dostaneme

1 = 3 (n — 3 rrr — 3 w).

Na pravé straně poslední rovnosti je číslo dělitelné třemi, na
levé číslo 1, což je spor.

Tím je úloha rozřešena.
Poznámka. Závěrečnou úvahu od vztahu (8) lze provést též

takto:

Číslo k má po dělení číslem 3 právě jeden ze zbytků a) 0;
b) 1; c) 2. Nechť v dalším m značí vhodné celé číslo.

Případ (a) nemůže nastat, neboť číslo Зп + 1 ve vztahu
(8) má zbytek 1.

4 85-0-01
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Případ (b) nemůže nastat, neboť & = 3 m -f 1, k 1 =
= 3 m + 2 a tedy

k (k + 1) = 9 wr -f 9 m + 2 = 3 (3 ni1 + 3 m) + 2
a tudíž má tento součin po dělení třemi zbytek 2, kdežto
číslo 3 « + 1 má zbytek 1.

Případ (c) nemůže nastat, neboť k — 3 m -\- 2, k -\- \ =
= 3 m + 3 = 3 (w -f 1), takže poslední číslo dělitelné třemi
a tím současně je třemi dělitelné i číslo k {k + 1), kdežto
číslo 3 n + 1 ze vztahu (8) není třemi dělitelné.

Tím je závěrečná úvaha ke vztahu (8) provedena a dokázáno,;
že vztah (8) je sporný.

7. Nech je daná gufová plocha v. = (S,r) a jej určitý priemer
/í.B. Ďalej nech je daná rovina о IAB, ktorá přetíná plochu z
v kružnici k = (O, q), pričom je О ф S'. Označme X 1’ubovorný
bod kružnice k a nech XM je os uhla <£ AXB; ďalej označme
Y ф X spoločný bod polpriamky XM s plochou x.

Čo vyplní bod Y, keď bod X prebieha všetky body kružnice k ?
Riešenie (obr. 12). Časť I. Nech X je 1’ubovol’ný bod

vedlajšej kružnice k = (O, o) plochy gulovej x = (5, r); přitom
rovina a kružnice k je rovnoběžná s priamkou AB. Rovinu
ABX označme rovina | přetne plochu x v hlavnej kružnici
x = (5, r), pričom je <£ AXB — 90° (obvodový uhol nad
priemerom AB kružnice x). Preto os XM uhla AXB dělí
uhol <£AXB na dva zhodné styčné uhly <£ AXM, <); MXB
(pozři obr. 13) a každý z nich je 45°. Polpriamka XM má
s kružnicou x spoločný bod lebo jej časť leží vnútri
kružnice x. Ale к zhodným styčným obvodovým uhlom
<£ AXM = <£ AXY, <£ MXB = <£ YXB prislúchajú zhodné
středové uhly <X ASY, <)c YSB, z ktorých každý je 45° • 2 =
= 90°; preto je AS J_ SY. Bod Y teda leží vnútri polroviny
opačnej к polrovine ABX, a to na polpriamkc SY _L AB. To
znamená, že Y leží v rovině rj _L AB, vedenej bodom 5.
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Rovina г] přetne plochu x v hlavnej kružniciу = (S, r) a pretože
У leží na ploché x, leží bod Y nutné na kružnici y.

Zostrojme ku kružnici k dotyčnice jc0 j| AB, x'01| AB a označme
X0, Xq příslušné dotykové body. Potom kružnica k leží celá
v páse rovnobežiek x0 j| x'0. Uvažujme o priemeroch X05F0,
XqSY'0 kružnice y. Eahko usúdime, že všetky body Y, ktoré

zostrojíme, musia ležať v uhle <£ F05FÓ» ktorý je vrcholový
к uhlu <£ X()SX'0; ležia teda všetky body Y na oblúku F0^ó
kružnice y, ktorého středovým uhlom je uhol <£ У0 SY.
Přitom body У0, Y’0 majú tú vlastnost’, že polpriamky X0Y0,
XqYq sú po radě osami uhlov <£ AX0B, <$; AXýB, lebo
rovina rj je kolmá na roviny trojuholníkov AX0B, AX'0B,
ktoré sú rovnoramenné.

Časť II. Teraz musíme ešte dokázať: Ku každému bodu У

právě uvažovaného oblúka Y0Yq prislúcha určitý bod X
kružnice k tak, že polpriamka XY je osou uhla <Z£ AXB.
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O bodoch F0, У,', je to zřejmé. Nech bod F je rózny od F0,
Fý. Zostrojme rovinu £ = ABY a označme p jej priesečnicu
s rovinou-a. Dokážeme, že priamka p existuje.

Dokaž. Polpriamka SY leží v uhle <£ Y0SY^ a preto pol-
priamka SP, opačná к nej, leží v uhle X0SXÚ, ktorý je
к predošlému vrcholový. Označme P spoločný bod polpriamky

SP s úsečkou X0Xý. Bodom P právě prechádza priamka
p\AB. Tým je dokázaná existencia priamky p.

Pretože P leží vnútri kružnice k, je priamka p sečnicou
tejto kružnice; označme X, X' ich priesečníky. Dokážeme, že
osou uhla <£ ABX, ležiaceho v rovině £ = ABY, je polpriamka
XY. Podlá časti I tohto riešenia prechádza os XM uhla <£ AXB
spoločným bodom roviny £ = ABX a oblúka F0FÓ kružnice y,
ktorý leží v uhle F05FÓ; týmto bodom je však daný bod F,
od ktorého sme v tejto úvahe vyšli. Ten istý dokaž móžeme
urobit’ aj pre bod X'. Tým je dokaž ukončený.

Závěr. Množinou všetkých hladaných bodov je oblúk Y0Y'0,
o ktorom sme uvažovali v časti I.

52



8. Množina všetkých komplexných čísel z, pre ktoré platí
vztah

11
(1) \h < 2,

z

je totožná s množinou všetkých komplexných čísel z, prc
ktoré platí

1 1
(2)> —z —

2 ‘2

Dokážte to a potom preskúmajte, akú časť roviny vyplnia
obrazy komplexných čísel z, prc ktoré platia súčasne oba
vztahy

11
i—~ ^ 2, (3)

z z

z + z <L 2. (4)

(Poznámka. Číslo я je komplexné číslo združené к číslu z.

Riešenie. Nerovnosti (1), (3), (4) majú pre гфО zmysel,
pretože l’avé strany sú reálnc čísla (súčet komplexných čísel
združených). Najprv dokážeme, že zo vztahu (2) vyplývá
vztah (1).

Platí postupné

г~4Г=(г-т) (2_ť)=“ i i
— (z + z) -ь — ;

teda
1 2 11

= ZZ — — (z + z) + —. (5)г
2

1 21 Л 1
Pre \ z —

I 2
potom vyplývá

>Tie «--j
— a zo vztahu (5)
4

>
.

53



1
zz — — (z + z) > O,

čižc
z + z <2 z~z

a pretože je 2 ф O, vyplývá z posledného vztahu po znásobení
oboch jeho stráň číslom —L- > 0

zz

11
+ -=- < 2,

z z

čo je vzťah (1).
Obrátene, ak platí vzťah (1), dokážeme platnost vztahu (2).
Zo vztahu (1) vyplývá po znásobení oboch jeho stráň číslom

zz >■ 0, že postupné platí

z + z < 2 zz,

1

у O + z) > 0,
1

/ -X 1
у (z + z) + -—

20 —

1
> —2# —

4 ’

(2 - Ť) (ž ' t) 1
> —

4
a teda

1 2 1

2 >Tz —

alebo
1 1

> —z —

2 ’2:
čo je vzťah (2).

Tým sme dokázali ekvivalentnosť vzťahov (1), (2).
Ak nerovnosti (1), (2) nahradíme rovnosťami, dokážeme tým
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istým spósobom, že za podmienky я Ф 0 sú oba vztahy ekvi-
valentné. Označme [2] obraz komplexného čísla г v Gaussovej
rovině.

Je známe, že vztah я —

1 1
= — značí, že obrazy [я],

čísel я, v Gaussovej rovině majú vzdialenosť alebo,

2
1 1

— ss

У

[1]I[0]

z+1=2

Obr. 14.

([y]’ T")’at0že body [я] pre яфОvyplňujú kružnicu k =

s vylúčením počiatku [0] súradníc.
Všetky body [я] (pri я ф 0), pre ktoré platí (3) vzhfadom

— 2, ležia zrejme
zvonku kružnice k, popřípadě na kružnici k (s výnimkou
bodu [0]). Body [я], pre ktoré platí (4), ležia v polrovine
Q = pO, kde O je počiatok súradníc a p\\y je priamka, ktorá
prechádza bodom [1]. To vyplývá z toho, že číslo я + я má
reálnu časť rovnajúcu sa dvojnásobku rcálnej časti čísla я.

Spojením oboch výsledkov dostáváme tento závěr: Všetky

na ekvivalentnosť so vzťahom я —

*
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čísla z, pre ktoré platí (3) a (4), ležia v spoločnej časti pol-

roviny q na vonkajšku kružnice k = Ш). doplněného
o body tejto kružnice s výnimkou bodu [0 . (Pozři vyšrafovanú
časť v obr. 14.)

9. Nechť daná přirozená čísla А, В, C (zapsaná v dekadické
soustavě) mají pořadč a, b, c cifer. Potom platí

AB \"Ю" (a + b — c — 2) < 10" (« + b — c + 1)
c

kde n je dané přirozené číslo.
Dokažte a na základě toho rozhodněte, které vztahy platí

o počtu cifer čísla > jestliže AB je dělitelné číslem C.

Řešení. Podle textu úlohy platí

1 <; a < ic",
ío*-1 £B < ioé,
\o< - 1 < C < 10c .

(1)10"

(2)
(3)

Po umocnění na /z-tou jednotlivých stran v nerovnostech (1),
(2) a (3) dostaneme

10" (" — D <£ An < 10"",
10* (* — i) <C Bn < 10"*,
10" (í —i) <; C" < 10"c.

щ,
Znásobením příslušných stran ze (4) a (5) dostaneme

Ю” (a + ь — 2) AnBn < 10” (a + *).

(4)
(5)
(6)

O)
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Ze vztahu (6) dostaneme \

1 ] 1
"

C" — 10" b-W (8)10”ť

Znásobením příslušných stran v (7) a (8) dostaneme dále

(a + b — 2) (« + b)

10" (c — ^
A"Bn

<
C"10"c

neboli

ABY
<■-■ ] Q)2 (а -I- b — c + 1)10)i (a + b — c — 2) (9)C

přirozenéJestliže
číslo. Čísla

je přirozené číslo, je též O =C

W = 10" (a + b — c — 2) }

mají po řadč tyto počty cifer:

x = n (a + b
у — n(a -\- b

Označme q počet cifer čísla Q. Ze vztahu (9) plyne, že pro q

x <L q <y,

vztah (9) připouští, aby čísla m, Q měla týž počet cifer, naproti
tomu z něho plyne, že Q má alespoň o jednu cifru méně než
číslo M.

Vztahy (9) a (10) je řešení úlohy provedeno.

10)i (a H- b — c. + 1)M

c- 2) + l,
c -f 1) 1.

platí
(10)

10. Nech sú dané dve mimobežky AMB, CND, pričom
MN je najkratšia priečka týchto mimobežiek; ďalej nech platí
MA — MB = NC = ND = x, kde x > 0 je dané číslo.
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a) Potom platí AD = ВС, АС == RD; dokážte to.
b) Preskúmajtc množinu stredov úsečiek AD, ВС, AC, BD,

keď x prebieha všetky kladné čísla.
c) Vypočítajte objem štvorstena ABCD, ak sú dané čísla

x, у — MN a co, kde je co odchýlka mimobežiek AMB, CND.
Řešení (obr. 15). O příčce MN, jak známo, platí

MN _L AB, MN J_ CD.

Sestrojme v rovině MCD obdélník CDD'C', který má úsečku
MN za střední příčku, takže je

x = MC = MD' = NC = ND, C'D' || CD,
CC II MN\\DD'.

(O

(2)
(3)

Dále v rovině NAB sestrojme obdélník ABB'A’, který má
úsečku MN za střední příčku, takže je

x = NA' NB' = MA = MB, A'B' || AB,
AA'\\ MN || BB'.

Dokážeme, že AC'BD'A'CB D je kvádr: Podle vztahu (2) je
AC'BD' obdélník, neboť je to rovnoběžník [úhlopříčky se podle
(2) navzájem půlí] a jeho úhlopříčky jsou shodné (viz Geo-
metrie 8, str. 176, příklad 6).

Dále podle (3), (3') jsou úsečky AÁ, C'C,BB',D'D rovno-
běžné a shodné s úsečkou MN; protože platí (1), je MN± MAC'
(je totiž C'D'\CD). Jsou tedy úsečky AA', C'C, BB', D'D
kolmé к rovině obdélníka AC'BD'. Tím je proveden důkaz
vysloveného tvrzení, že AC'BD A'CB'D je kvádr.

a) Protější hrany daného čtyřstěnu ABCD jsou stěnovými
úhlopříčkami v protějších stěnách právě sestrojeného kvádru;
tyto úhlopříčky v kvádru jsou shodné. Tím je dokázáno tvrzení
úlohy a), že totiž platí

(2')
(3')

AD = BC, AC = BD.
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b) Označme pořadě X, X' středy protějších hran AD, BC
daného čtyřstěnu ABCD‘, podobně označme pořadě Y, Y'
středy protějších hran AC, BD téhož čtyřstěnu. Body X, X',
Y, Y' jsou však středy stěn sestrojeného kvádru. Přímky MN,
p = XX', q = YY' procházejí středem 51 kvádru a jsou к sobě
kolmé. Je známo, že platí p || MX0, q j| MY0, kde MX0 || AC'

&
i Dt

A
'Ж //I/

11
/

/.

T f
I Jt

s\//
•7Í7‘“

/■iCl / /I
//I

/ I

/

W~T""pI
/

1
. /

/I 1 /

ÍAi /N. /
■

B) у/
/I

У 01^4kiA
I14-

Xo/:

c

Obr. 15.

a MYq\\AD' jsou střední příčky obdélníka AC'BD'. Ale MX0,
MY() jsou přímky, které půlí duté úhly, v něž rovinu MAC'
rozdělují obě různoběžky AMB, C'MD'", první z různoběžek
je dána, druhá C'D' je rovnoběžná s danou přímkou CD,
tj. je rovněž dána. Proto přímky MX0, MY0 lze sestrojit
s jediným výsledkem, nezávisle na čísle x, při konstrukci
zmíněného pomocného kvádru. Leží tedy středy X, X' na přím-
cep a středy Y, Y' na přímce q. Proto i přímky p, q mají polohu
zcela určitou, nezávislou na čísle x.
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Obráceně kterýkoli bod X ф S přímky p spolu s kterýmkoli
bodem přímky q určují jediný kvádr, který má tyto
vlastnosti:

1. Dvě stěny [x, v kvádru procházejí pořadě přímkami AB,
CD, přičemž je /x [| CD, v |j AB.

2. Bod S je středem kvádru.
3. Rovina £ jedné stěny prochází bodem X a platí £ || qM.
4. Rovina rj jedné stěny prochází bodem Y a platí rj j pM.

Tomuto kvádru lze vepsat čtyřstěn typu námi uvažovaného
čtyřstěnu ABCD; přitom M, N, X, Y jsou středy hran tohoto
čtyřstěnu, přičemž jeho střední příčky jsou к sobě kolmé a na-
vzájem se půlí v bodě 5.

Závěr. Množinou všech středů v úloze b) jmenovaných úseček
jsou dvě kolmice p, q výše popsané, přičemž musíme vyloučit
jejich společný bod S.

c) Daný čtyřstěn dostaneme z pomocného kvádru
AC'BD'A'CB'D, když od kvádru oddělíme čtyři čtyřstěny

ABCC', BCDB', ABDD', ACDA'.

Je-li P obsah podstavné stěny AC'BD' pomocného kvádru, je
objem každého z těchto čtyřstěnů roven \ • l2 Py neboli

1
--Py.

Objem O všech čtyř čtyřstěnů pak je

O = l Py.
Objem pomocného kvádru je Py a tedy objem V daného čtyř-
stěnu ABCD je

1
(4)V - jPy.
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Podle 2námého vzorce je obsah P obdélníka s úhlopříčkami
velikosti 2x a-s odchylkou co úhlopříček roven

P — | • (2x)2 sin co

Dosaďme za P do vztahu (4); dostaneme

2x2 sin co.

\

у X2 у sin CO,v —

což jsme měli vypočítat.

11. Nájdite všetky reálne čísla x, pre ktoré platí

| tg 2x | = tg | * |. (1)

Riešenie. Ak pre nějaké číslo x0 platí j tg 2 x01 — tg | x0 |,
platí aj | tg 2 (—x0) | = tg | — x0 |. Ak je teda x0 riešením
rovnice (1), je aj číslo — x0 jej riešením. Ak vyhladáme teda
všetky nezáporné riešenia, budú tým známe aj vóbec všetky
reálne riešenia danej rovnice.

I. Vyhl’adajme teraz všetky riešenia rovnice (1), ktoré
spíňajú nerovnost

0 < X < 7Г. (2)

a) Pre x — nie je pravá strana rovnice definovaná. Preto
x — \ 7c nie je riešením tejto rovnice.

b) Pre \ r. < x < t; platí
tg | * | = tg* < 0,

avšak 1’avá strana rovnice (1) je nezáporné číslo. Teda ani
medzi právě uvedenými číslami x nenájdeme riešenie danej
rovnice.

c) Zostáva nám preskúmať tie čísla x, pre ktoré je

0 <1 л: < J тс. (2')
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Ak rovnica (1) "má nějaké riešenie x, platí podfa známého
vzorca

2 tgx ! ^

- tg2X I gX■
Budeme teraz riešiť rovnicu (3). Rozoznávajme dva případy.

Případ [1]. Hladajme také riešenia x, pre ktoré je

(3)1

2 tg* >0.
1 — tg-v —

Potom rovnica (3) znie
2 tgx

(4)= tgx.1 — tg2X
Rovnici zrejme vyhovuje tgx = 0 a vzhladom na předpoklad
(2') dostáváme

X = 0,

čo zrejme vyhovuje rovnici (1).
Ak rovnica (4) má ďalšie riešenie x Ф 0 z intervalu (2'),

pre toto číslo x je tgx ф 0. Delme obe strany rovnice (4)
číslom tgx; dostaneme

2
= 1

1 — tg2x

a stade 2 = 1— tg2x alebo

tg2x = — 1,
čo nemožno splnit’ pre žiadne uvažované číslo x.

Případ [2]. Hladajme ďalej také riešenia x z intervalu (2'),
pre ktoré je

2 tgx
(5)< 0.

1 — tg2x
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Potom rovnica (3) znič
2 tgx

(6)= tgx.1 — tg‘2X
Tu nemóže byť tgx
Delme preto obidve strany rovnice (6) číslom tgx ф 0, čím
dostaneme

0, lebo by neplatila nerovnosť (5).

2
= 1.

1 — tg2x

Z tejto rovnice vyplývá —2 = 1— tg2x alebo tg2x = 3
a teda musí byť bud

tgx = 1/3,

tgx = -]/3.
Zo vztahu (7) dostáváme vzhladom na předpoklad (2')

(7)
buď

(?')

X — ^ 7Tj

kdežto vztah (7') nemá za předpokladu (2') riešenie. Skúškou
sa Iahko přesvědčíme, že číslo x = |тс je riešením rovnice (1).

II. Zatial sme skúmali čísla intervalu 0 </ x < 7r [pozři (2)].
Pretože funkcia tangens je periodická s periodou тс, t. j. platí
tg (x + тс) = tgx pre každé číslo x z oboru definície funkcie
tangens, možno každé kladné riešenie rovnice (1) vypočítat’
tak, že к číslam 0, t тс připočítáme vhodný (prirodzený) náso-
bok čísla тс.

Závěr. Riešením rovnice (1) je každé číslo x, ktoré splňuje
vztah

X = I + &TC,

kde k je lubovolné nezáporné celé číslo a £ je niektoré z čísel
0, ítc a dálej každé číslo x, ktoré je opačné к niektorému
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z uvedených čísel (t. j. každé číslo x tvaru x = — £ — k r,
kde £ má význam ako vyššie a k je 1’ubovolné nezáporné celé
číslo).

Pozři tiež obrázok 16, kde je znázorněné grafické riešenie
rovnice (1) pre nezáporné x.

12. Elektromotorická síla baterie je E voltů, její vnitřní
odpor Ri ohmů.

a) Jak velký musí být odpor spotřebiče, aby jeho výkon
byl P wattů? Proveďte diskusi.

b) Jaký může být maximální výkon spotřebiče?
Řešení. Z fysiky je známo, že pro výkon P spotřebiče platí

P — RXI2, kde Rx značí odpor spotřebiče a / proud, který jím
protéká. Dále víme, že uvažovaná baterie protlačí spotřebičem

takže pro výkon platí

P E2R*
CRi + Rx)2'

E
proud I = Ri 4* Rx

(1)
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Fysikální smysl mají jen ty případy, ve kterých E > O,
Ri > O, P > O a zejména Rx > 0.

Možno tedy matematicky formulovat danou úlohu takto:
К předepsaným číslům E, Ri, P máme určit kladné číslo Rx
tak, aby platil vztah (1).

Řešíme-li (1) podle Rx, dostaneme:

PRl + (2 PRi - E2) Rx + PRi = 0,

E- - 2 PRi ± 1/ (2 PRi - E2)2 -4 P2Rf

(2)
takže

• (2a)(•^x)b2 — 2 P

I. Aby к předepsaným hodnotám E, Ri, P existovalo reálné
číslo Rx, musí nutně platit

(2 PRi - E2)2 2> 4 P2R‘f,
tj-

| 2 PRi — E2 \^> 2 PRi.
Snadno nahlédneme, že musí být

2 PRi - E2 < 0.

Vidíme, že kdyby bylo 2 PRi — E2 ^ 0, plynulo by ze (3), že
2 PRi - E2 ^ 2 PRi,

- E2^> 0,

což je spor s předpokladem E 0. Možno tedy nerovnost (3)
psát pomocí (4) takto: E2 — 2 PRi i> 2 PRi,

F2 > 4 Pi?ř.

(3)

(4)

tj-

tj-
(5)

II. Přesvědčíme se, že nerovnost (5) je zároveň postačující
podmínkou pro to, aby obě řešení rovnice (2) byla
kladná, jak to žádá fysikální podstata úlohy.
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Vskutku, z (5) plyne (odečteme-li na obou stranách 2 PRi)

P2 - 2 PRi I> 2 PP, > 0,

a ježto při platnosti (5) je diskriminant

(2PP, -P2)2 -4P2P^0,

E2 -2 PRi + ]/(2PRi-E2)2-4P2R‘j > 0
bude

a tedy též
(Rx\ > 0.

Podobně ukážeme, že je (Px)2 > 0. К tomu cíli si všimněme,
že zřejmě platí

(.E2 - 2 PRi)2 > (2 PRi - E2)2 - 4 P2Rf.
Při platnosti (5) je pravá strana této nerovnosti nezáporná
a zároveň E2 — 2 PRi > 0, takže platí

E2 -2 PRi > 1/(2 PRi - E2)2

E2 - 2 P7?, - У (2 Pfl, - £2)2

4 ,

tj-
4 P2Rf > 0,

takže platí též (/?x)2 > 0.
Závěr. Úloha má řešení vždy, platí-li E2 4 P/?,-. Existují

dvě různá řešení, je-li P2 > 4 РР,- a jediné, je-li P2 = 4 PP(-.
Určení maximálního výkonu. Z předešlého vyplývá:

Aby existovala pro dané hodnoty P, Pí, P řešení, musí být

E2:>4PR„tj.
Jinými slovy, při pevných P, Р,- může být výkon P nejvýše

P2
roven číslu Pmax

4 ^ •
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Prostým dosazením do vzorce (2a) zjistíme, že tohoto maxi-
málního výkonu bude dosaženo pro odpor spotřebiče Rx — R{.

Závěr. Maximální výkon, který může baterie dodat do spotře-
biče, je tedy E2

P —1 max —
4 Ri '

2. Úlohy II. kola kategorie A

1. Určte všetky reálne riešenia rovnice

11 x2 — p = x — p, (1)
kde p je dané reálne číslo.

(Urobte diskusiu vzhladom na číslo p.)
Riešenie. Ak (reálne) číslo л; je riešením rovnice (1), jc

l’avá strana tejto rovnice nezáporné číslo a teda pravá strana
je tiež nezáporné číslo, t. j. platí nevyhnutné x — p 0, t. j.

x^p. (2)
Po umocnění oboch stráň rovnice (1) na druhů dostaneme
rovnicu

x2 — p = x2 — 2 px + p-
alebo

2px =p(p + 1). (3)
Sú dve možnosti:

Případ [1]. Nech je p — 0, potom rovnica (1) má tvar

]/x2 = x
alebo

I X I = X,

čo splňuje každé nezáporné číslo x.
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Případ [2]. Ncch je /> =}= 0. Po vynásobení oboch stráň
rovnice (3) číslom dostaneme2P

1
5" (P + O- (4)x =

Podlá (2) može byť takto vypočítané číslo x koreňom rovnice (1)
len vtedy, keď platí

1

2 (P + !) ^ P>

<1 >p.
čiže

(5)

Teraz sa přesvědčíme o tom, že číslo x dané vzťahom (4),
pričom platí (5), je riešením rovnice (1); dosaďme (4) do (1)
[označme znakom L 1’avú a znakom P pravú stranu rovnice (1)
po dosadení]:

ni(p2 + 2p+l)-p = Iy(l-py =L - ]j x2 — p —

1

pretože platí (5), je 1 — p 0 a teda 1 — p = I 1 — p
a preto je

1

,-(I-p). (6)

Ďalej je
1 1

P =
Y (P + l) -P = у (7)

čo je podlá (5) skutočne nezáporné číslo. Vzhladom na (6)
a (7) platí L = P a číslo x dané vzťahom (4) za podmienky (5)
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je pre p ф O riešením danej rovnice (1). Pre p > 1 nemá
rovnica riešenie.

Závěr. Rovnica (1)
[1] má nekonečné mnoho riešení prcp = 0 (každé nezáporné

číslo je riešením);
[2] má pre 0 фр ^ 1 jediné riešenie (4);
[3] nemá pre p > í žiadne riešenie.
Výsledok diskuse móžeme znázornit’ grafom v obr. 17.

Jiné řešení. Především
si musíme uvědomit, že
reálnou odmocninu máme
definovánu pouze pro nezá-
porný základ. Musí tedy
platit soustava:

x2 — p 0,
x — p ^ 0.

К této soustavě se vrátíme po rozřešení rovnice (1). Nyní
řešíme rovnici (1).

Nejprve obě strany umocníme na druhou; obdržíme
v2 — p = x2 — 2 px + p2.

Kvadratické členy se ruší a máme lineární rovnici
2 px -f- p2.

Případ [1]. Je-li p -- 0, je zřejmé, že této rovnici vyhovuje
jako x každé číslo, které splňuje soustavu (2'), tj. reálné ne-
záporné.

Případ [2]. Je-li p ф 0, je

[1,1]1

P
'

0 1

(2') Obr. 17.

{

S
P =

1 + P
X

2 *
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Získaný výraz dosadíme za x do soustavy (2'). Obdržíme

m p^o,

1 +p -p> 0.2

Ekvivalentními úpravami prvního vztahu dojdeme ke vztahu:

(p - l)2 ^ o,

který zřejmě platí pro každé reálné p.
Ekvivalentními úpravami druhého vztahu dojdeme ke vztahu

p <1 1.

Tento vztah musí tedy platit, má-li mít rovnice řešení.
O správnosti řešení bychom se přesvědčili zkouškou, kterou

neuvádíme.
Podle řešení s. Bohdana Zelinky,
1 l.b tř., 1. jsš, Liberec.

2. Buď dán trojúhelník OAC a dále bod M uvnitř úsečky
AC tak, že platí MA > MC.

Sestrojte lichoběžník ABCD o základnách AB jj CD tak, aby
bod В padl dovnitř polopřímky OC, bod D dovnitř polopřímky
OA a aby bod M byl průsečíkem úhlopříček AC, BD hledaného
lichoběžníka.

Proč je AB > CD}
(Při řešení lze použít stejnolehlosti.)

Řešení (obr. 18). Rozbor. Předpokládejme, že úloha má
řešení, takže existuje lichoběžník ABCD, který má úlohou
požadované vlastnosti. Uvažujme stejnolehlost (M) o středu M,
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vc které bodu C přísluší bod C' = A. Koeficient této stejno-
lehlosti je

MA
A = -

MC ’

podle textu úlohy je MA > AIC > 0 a tedy | A | > 1. V této
stejnolehlosti přímkám b = CB, d = AD, CD pořade příslušejí
přímky b' [|CB, ď\\AD, AB^CD. Přitom přímka b' prochází
body A, O', kde O' je obrazem bodu O ve stejnolehlosti (M),
přičemž bod O' leží na polopřímce opačné к polopřímcc
MO; přímka ď prochází obrazy bodů O, D, tj. body O', B.
Je tedy ВОАО' rovnoběž-
nik. Pomocí těchto výsledků
provedeme konstrukci:

Bodem A vedme přímku
b' [| ОС a označme O' její
společný bod s polopřímkou
OM; bodem O'pak sestrojme
přímku ď\\ OA a označme В
společný bod přímek OC, ď.
Bod D je pak společný bod
přímek OA, MB a ABCD
je hledaný lichoběžník.

Dokážeme, že úloha má
jediné řešení: Zkonstruk-
ce plyne, že rovnoběžník
ОАО'В existuje, a to jedí-
ný; proto existuje právě
jeden bod В uvnitř polo-
přímky OC; střed 5 tohoto
rovnoběžníka půlí obě úsečky
OO', AB. Ze stejnolehlosti
(M), kterou jsme zavedli,
plyne, že je MO' > MO,
a protože je SO' = SO,

[0
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Obr. 18.
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padne bod M nutně dovnitř úsečky SO; je tedy M uvnitř
trojúhelníka OAB a proto je C uvnitř úsečky OB. Ve stej-
nolehlosti (ЛТ), obrácené ke stejnolehlosti (M), příslušejí
přímkám ď = O B, a = AB pořade přímky d\\ď (d pro-
chází bodem O), a (J a (a prochází bodem C) a jejich
průsečík D je obrazem bodu B, takže leží na polopřímce
opačné к polopřímce MB. Je tedy D vskutku průsečíkem
přímek OA, MB, jak bylo provedeno v konstrukci. Bod M
leží tedy uvnitř úseček AC, BD a platí AB j| CD, takže ABCD
je lichoběžník. Protože bod C leží uvnitř úsečky OB, leží
bod D uvnitř úsečky OA. Dokázali jsme, že lichoběžník ABCD
vždy existuje, a to jediný. Ze stejnolehlosti (M') plyne, že je

AB MA

CD “ ~MC > 1

a tedy N AB > CD,

což jsme právě měli dokázat.

Jiné řešení (jen náčrtek). Rozbor. Bodem M veďme rovno-
běžku se základnou AB hledaného lichoběžníkaABCD a označme

pořadčP, Q její průsečíky s přímkami AD, BC. Nyní dokážeme,
že bod M je středem úsečky PQ (obr. 19):

Označme pořadě S, S’ středy úseček AB, CD, kdcAB > CD.
Ve stejnolehlosti o středu O, která převádí bod A v bod D,
přechází úsečka AB v úsečku DC a bod S v bod S'; leží tedy
body O, S', S (v právě napsaném pořádku) na přímce SS'.
Ve stejnolehlosti o středu M, která převádí bod A v bod C,
přejde úsečka AB v úsečku CD a bod 5 v bod S’. Leží tedy
body S, M, S' v právě napsaném pořádku na přímce SS1.
Z obou úvah plyne, že body O, S', M, S leží v právě napsaném
pořádku na přímce SS'. Stejnolehlost o středu O, která převádí
bod A v bod P, převádí úsečku AB v úsečku PQ a střed S
úsečky AB ve střed M úsečky PQ. Tím je tvrzení dokázáno.
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Sestrojme nyní rovnoběžník POQO'; v něm je bod M stře-
dem jeho úhlopříčky PQ a tím středem tohoto rovnoběžníka.

Odtud konstrukce: Na prodloužení úsečky OM za bod M
sestrojme bod O' tak, aby MO' = MO. Bodem СУ vedeme
přímky p || OC, q\\OA; označme P průsečík přímek OA, p
a dále označme Q průsečík přímek
OC, q. Potom jsou hledané základ-
ny AB, CD rovnoběžné s přímkou
PQ; tím je konstrukce provedena.

Důkaz správnosti konstrukce
i důkaz tvrzení, že úloha má jedině
řešení, přenecháváme čtenáři.

Jiné řešení. Rozbor (obr. 20).
Označme (Mj) stejnolehlost o stře-
du M, která převádí bod A v bod
С = A1; o koeficientu kt této stej-
nolehlosti platí 0 > kx > — 1.
Vdané stejnolehlosti přísluší přímce
q = CD přímka qt = kde
C13 Z)b jsou pořadě obrazy' bodů
C, D ve stejnolehlosti (Ma) a platí Obr. 19.

(1)IIЯ-

Přímce p = AD přísluší v této stejnolehlosti přímka px = AiDx,
kde Ax = C. Přímku pl dovedeme sestrojit podle údajů dané
úlohy.

Dále uvažujme stejnolehlost (M2) o středu M, která převádí
bod Cx v bod C2 = A; její koeficient je kladný. Ta převádí
přímku qí = C1Dl v přímku q2 = C2D2. Nutné je q21| q,
a vzhledem ke vztahu (1) je q2\AB; avšak přímka q2\AB
prochází bodem C2 = A a tudíž je q2 = AB. Obraz D2 bodu
bt, ležícího na přímce MD, leží proto na přímce MD i na
přímce q2 a proto je D2 = B. Přímka p, = z3,D1 přejde v uva-
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žovanč stejnolehlosti v přímku p2\\Pi a tedy je tedy
bod D2 = В společným bodem přímky p., a polopřímky OC
(přímky OD, OC a tím i přímky p2 |j OD, OC jsou různoběžné).

Konstrukce. Bodem C veďme přímku р^'ОА. Bod Q se-
strojíme např. takto: Bodem" M veďme přímku m\\p a se-

7, /

ti D i- r/\
/

.

/■

'' '4:
/7 ''í

A'í̂
s/

Obr. 20.

strojme na ní body A', C, oddělené bodem M, a to tak, že
MA' = MA, MC' — MC; bodem C veďme rovnoběžku
к přímce A'C a označme Q její společný bod s přímkou MC
(správnost konstrukce bodu Cl je zřejmá podle rozboru).

Dále na polopřímce MA' sestrojme úsečku MC" — МСг;
bodem A' veďme přímku n jj CC" a označme A" společný
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bod přímky n s polopřímkou MC. Bodem A" [který je obrazem
bodu At = C ve stejnolehlosti (M2)] veďme přímku p2\\P-
Pak p2 je hledaná přímka a její společný bod s polopřímkou
OC je hledaný bod В = Do. Další konstrukce je zřejmá.

Důkaz plyne z předchozího a přenecháme jej čtenáři. Rovněž
diskusi. Platnost vztahu CD < AB plyne ze stejnolehlosti (Mj).

Podle řešení s. Fr. Koblihy,
ll.b tř., jsš, Praha 1, Hellichova ul.

Jiné řešení (viz obr. 21). Danou úlohu můžeme formu-
lovat též takto: Buď dán dutý úhel <£ AOC a uvnitř úsečky
AC bod M, o němž platí AIA > MC.

Uvnitř úsečky OA určete bod Dana prodloužení úsečky OC
za bod C bod В tak, aby bod M padl dovnitř úsečky BD a aby

MD MC

MB ~ MA

označme k, takže je — > 1).k

Rozbor. Předpokládejme, že úloha má řešení. Potom ve

stejnolehlosti o středu Мао koeficientu — příslušejí bodůmk

D, O pořadě body В, O', přičemž bod M leží uvnitř úsečky
00' a platí MO' = — . MO. Přímce OD neboli přímce OAk

přísluší přímka у || OA, která prochází body O', B. Podle toho
provedeme konstrukci.

Konstrukce. Sestrojme obraz O' bodu O ve stejnolehlosti (M)
o středu M a koeficientu — — (viz obrázek 21). Bodem O'
veďme přímku у || OA a označme В společný bod přímek y,
OC. Konečně sestrojme společný bod D přímek MB, OA.
Potom BD je hledaná úsečka a ABCD lichoběžník požadovaný
v dané úloze.

(toto kladné číslo menší než číslo 1platilo
1
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Důkaz. Stejnolehlost (M) o středu M a koeficientu —k
převádí body А ф В pořade v body C, D. O bodu C je to
zřejmé. Bod O' přechází v bod O a tedy přímka у v přímku
OA a bod В ve společný bod přímek OA, MB, tj. v bod D.
Proto je AB |i CD a protože stejnolehlost (M) má záporný
koeficient, padne bod M dovnitř úseček AC, BD, takže ABCD
je lichoběžník.

/
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Obr. 21.

Diskuse. Dokážeme, že právě sestrojený bod В padne na
prodloužení úsečky OC za bod C a bod D dovnitř úsečky OA.

Označme A' obraz bodu A ve stejnolehlosti o středu M
—

. Tu podle úvahy provedené v rozboruk

1 . MA> MA> MCk

(podle textu úlohy), tj. MA' > MC; proto bod C leží uvnitř
úsečky MA’ a tedy uvnitř pásu rovnoběžek OA, у a tím uvnitř
úsečky OB. Ve stejnolehlosti (M) bodům B, A příslušejí po-
řadě t>ody C, D, takže přímce AB přísluší přímka CD; protože

a koeficientu

leží bod A' na přímce у a platí MA'
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bod C leží uvnitř úsečky OB, plyne ze vztahu DC |] AB, že
bod D padne dovnitř úsečky OA.

Tím je řešení úlohy provedeno.
Podle řešení s. J. Vokase,
11. tř., jsš, Česká Třebová.

3. Určte všetky čísla x, pre ktoré platí
0 < x < 360° (1) *

a ktoré splňujú vztah
cosx + | sin2x | I> 0.

Pre ktoré čísla x nastane v tomto vztahu rovnost’?

(2)

Riešenie. Předpokládá)me, že číslo x vyhovujúce vztahu (1)
je riešením nerovnosti (2). Potom z (2) vyplývá, že musí platit’
postupné

cosx + | 2 sinx • cosx | 0,
cosx + 2 | sinx | • | cosx | 0.

(3)

Rozoznáva j me případy:
Případ [1]. Nech je

(4)0 ^ x ^ 90°,

takže je sinx 0, cosx 0 a teda | sin x | = sin x, | cos x | =
= cosx. Z (3) vyplývá

cosx (1+2 sinx) 0.

Táto nerovnost’ je pre každé číslo x uvažovaného intervalu
splněná, lebo sa na 1’avej straně vyskytujú len nezáporné čísla. •

Pretože je 1 + 2 sinx > 0, rovnost v (4') nastane pre

cosx = 0,

(4')
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X - 90J,t. j. pre

čo skutočne vyhovuje vztahu (2).
Obrátene, z nerovnosti (4') vyplývá postupné vzťah (2) pre

čísla x dané vzťahom (4).
Případ [2]. Nech je

90° < x ^ 180°,
takže je

| sinx | = sinx, | cosx | = — cosx > 0. (5")

Z (3) vyplývá
cosx • (1 — 2 sinx) )> 0.

Pretože je cos x < 0, musí byť 1 — 2 sin x šs 0, čiže

(5')

1
sinx —

a teda
90° < x Šs 150". (5)

Vztahy (5'), (5”) platia pre všetky čísla x z intervalu (5).
Eahko sa usúdi, že potom pre tieto čísla platí aj (3) a tým aj
(2). Přitom rovnosť vo vztahu (2) nastane právě pre x = 150°.

Případ [3]. Nech je
180° < x < 270°,

takže je
sinx | = — sinx, | cosx j = — COS X.

Z (3) vyplývá
cosx • (1 + 2 sinx) 0

a pretože je cosx < 0, musí byť 1 + sinx šá 0, t. j.
1

sinx — —

78



210ó ^ x<270ó.a teda

Tahko usúdime, že tieto čísla splňujú (2) a že přitom rovnost’
nastane právě pre x = 210°.

Případ [4]. Nech je
270° ^ x ^ 360°, (7')

takže je
| sinx | = — sinx, | cosx | = cosx 0.

Z (3) vyplývá
cosx • (1 — 2 sinx) *> 0

a pretože je cosx ^0 a sinx ^ 0, je vztah (7) splněný pre
všetky čísla x intervalu (7').

Lahko usúdime, že vzťah (2) je pre čísla x z intervalu (7')
splněný. Přitom rovnost’ nastane právě pre x = 270° (ked
totiž je cos x = 0).

Závěr. Vzťah (2) platí za podmienky (1) pre všetky čísla x,
o ktorých platí:

(7)

bud 0 ^ x ^ 150°, buď 210° ^ x ^ 360°.

Výsledok možno znázornit’ grafom (obr. 22).

~360° ~1500 210°O

Obr. 22.

Rovnost’ vo vztahu (2) nastáva právě pre tieto čísla x:

90°; 150°; 210°; 270°.

Tým sme úlohu rozriešili.
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4. Buď dán kvádr ABCDA'B'C'D' (kde ABCD je podstava
a platí AA' |jBB' ||CC' \\DD') o rozměrech a =AB, b = AD,
c — AA', přičemž a, b, c jsou daná kladná čísla.

Dokažte, že osa (nejkratší příčka) mimobčžek AA', BD'
protíná úsečky AA', BD' v jejich vnitřních bodech; označíme-li
tyto body pořade X, Y, vypočtěte velikost úsečky XY (tj.
velikost nejkratší příčky) pomocí daných čísel a, b, c.

Řešení (obr. 23). Je známo, že osa dvou mimoběžek stojí
kolmo ke každé z obou mimoběžek a dále, že ke každé dvojici
mimoběžek existuje jediná jejich osa (nejkratší příčka).

O hledané oseXF mimoběžek AA', BD' tedy platí XYJ_AA',
XY _|_ BD' a tedy též

XY _L BDD,

neboť je AA' \\DD' a tím i XY J_ DD'; z tohoto vztahu plyne
XY || ABD.

(O

(2) IУ

D'\
Označme x = АА', у kolmice

vedené pořadě body X, Y к ro-
vině ABD a A, Z ф Y jejich
paty; protože je DD' ABD,
BDD' _L ABD, leží přímka у
v rovině BDD' a bod Z leží na

přímce BD. Přímky AZ, XY
leží v rovině obpu přímek x ||jy
a protože platí vztah (2), je
nutně

xi \i

VÁ

I' \ \ff

\

M 'v-..
AZ\\XY

a AZYX je obdélník. Ze vztahů
(1) a (3) plyne AZ \ BD'D
a tedy zvláště

(3)
c

A

в

^Z 1 BD. Obr. 23.
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Z posledního vztahu plyne, že AZ je výška v pravoúhlém troj-
úhelníku ABD (o přeponě BD).

Bod Z je tedy patou výšky v pravoúhlém trojúhelníku ABD
o přeponě BD; proto tato pata padne dovnitř přepony. Protože
je dále ZY '\DD', leží celá úsečka ZY v pravoúhlém troj-
úhelníku BDD' a bod Y padne tedy dovnitř přepony BD'
tohoto trojúhelníka. Je tedy ZY < DĎ' a protože je ZY — AX
(vždyť AZYX je obdélník), je též AX < DD'; leží tedy bod X
uvnitř úsečky AA'.

Protože je AZYX obdélník, je

ХУ = AZ. (4)

Velikost úsečky AZ — p vypočteme z pravoúhlého trojúhel-
nika ABD, v němž je AB = a, AD = b, BD — ]/ a2 + b2.
O obsahu P tohoto trojúhelníka platí

P= ~p]/^+T!, P=^ab.
Porovnáním obou výsledků dostaneme

+ b2 = у
neboli

ab
P

l/a2 + ť>2 '
Je tedy

ab
XY

[/a2 + b2 '
Tím je úloha řešena.

Podle řešení s. Jiřího Turka,
ll.c tř., jsš, Praha 8—Libeň,
a dalších řešitelů.

6 85-0-01 81



3. Úlohy III. kola kategorie A

1. Určte všetky reálne čísla p tak, aby rovnica

]/x2 — 5 p2 — px — 1
mala kořeň x — 3. Potom pre tieto čísla p danú rovnicu riešte.

Riešenie. Ak má rovnica (1) kořeň x = 3, platí

j/<T- 5p2 = 3/> - 1.

(1)

Stade postupné dostaneme
9 - 5 p2 = 9 p2 6 p + 1>

Up2 — 6p — 8 = 0,
7p2 — 3p—4 = 0.

Diskriminant tejto rovnice je
D = 9 + 4-4-7 = 9 + 112 = 121 = ll2.

Kořene rovnice sú

1
3 ± 11 /

\ 8 _ 4
7 *14

Skúška. [1]. Pre p = 1 má (1) tvar

]jx2 — 5 = x — 1. (2)
Rozriešme ju. Platí postupné

x2 — 5 = x2 — 2 jc + 1,
2x — 6,
x = 3 (jediný kořeň).
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Označme L, P Tavú a pravú stranu rovnice (2) po dosadení
čísla x — 3. Dostaneme

L = ]/9 — 5 = I/4 = 2, P = 3-1=2.
Číslo p = 1 vyhovuje teda požiadavkám úlohy.

4
[2]. Pre p — —— má rovnica (1) pravú stranu tvaru

4
— x — 1, čo je pre x — 3 záporné číslo, pri čom lává strana

4
je číslo nezáporné. Teda číslo p — — nevyhovuje úlohe.

Podlá riešenia s. Václava Panušku,
ll.b. tr., jsš, České Budějovice,
Nová ul.

2. Je dán pravidelný čtyřboký jehlan o hlavním vrcholu V
a o podstavě ABCD; označme d = \AB. Označme dále 99
odchylku rovin VAD, ABC, takže je 0 < 99 < 90°.

a) Načrtněte konstrukci nejkratší příčky XY mimoběžek
VA, BC, přičemž X je bodem přímky VA a Y bodem přímky
BC. Vypočtěte velikost příčky XY pomocí daných čísel d, 99.

b) Vypočtěte vzdálenost v bodů V, X pomocí čísel d, 99
(všimněte si, pro která 99 padne bod X dovnitř úsečky VA
a pro která 99 padne na její prodloužení za bod V).

Řešení. Nejprve uveďme tuto pomocnou včtu P: Buď
dán úhel <£ MVN = co. Označme P patu kolmice vedené
bodem N к přímce MV. Jestliže je co < 90°, padne bod P
dovnitř polopřímky VM; jestliže je co > 90°, padne bod P
dovnitř polopřímky opačné к polopřímce VM. Pro co = 90°
je P = V. (Viz učebnici Geometrie pro 7. tř. středních škol,
str. 112, příklad 17.)
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Řešení úlohy (obr. 24). Je známo, že dvě mimoběžky mají
jedinou nejkratší příčku, která stojí kolmo к oběma daným
mimoběžkám. Protože je AD \\BC, je XY _]_ AD; vedle toho je
XY _L VA. Je tedy XY J_ VAD. Proto příčka XY leží v rovině
q J_ VAD, kde rovina q obsahuje přímku BC.

vt
h\
/I \

'II, \
УI w

1Щ \/

I 1 \
/ I \

\

I I \
I \
/ .

; \
./ /
\

! \

•/ \
'

PX \I \
/ / ■■X/ 9--Ч- v -ýC:

/
Чч \

■z \

\

JĚrp N\/М \

/
/

A xВ

Obr. 24.

Odtud konstrukce: Středem N hrany BC sestrojme kolmici
NP к rovině VAD, kde P je pata této kolmice. Avšak rovina
VMN (kde M je střed úsečky AD), jak známo, stojí kolmo
к rovině VAD', proto rovina VMN obsahuje přímku NP.
Je tedy NP \_ AD', podle konstrukce bodu P je NP _[_ VM.
Proto je NP L VAD, takže XY je nutně rovnoběžka к přímce
NP. Přímka XY leží proto v rovině BNP, která protíná rovinu
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VAD v přímce p, která nutně prochází bodem P; protože je
BN || AD, je průsečnice p rovin BNP, ADV rovnoběžná s přím-
kou AD. Průsečík přímek p, VA je hledaný bod X; bod Y je
průsečíkem přímek x |] NP, BN. Tím je konstrukce provedena.

Jestliže je X = P, pak je nutně Y = N. Jestliže je X ф P,
je XYNP rovnoběžník. V obou případech je tedy XY = NP.
Stačí tedy vypočítat velikost úsečky NP, a to z trojúhelníka
MNP, kde <£ P = 90° a <£ NMP = (p. Pak je

NP = MN • sin <£ VMN

V
У

Vbp px
LU

Tú
\

L \f
N MM

Obr. 25 a, b, c.

neboli
PN = 2d ■ sin<p = XY.

Pro výpočet vzdálenosti v bodů V, X bude účelné určit
velikost co úhlu <£ MVN v rovnoramenném trojúhelníku
VMN o hlavním vrcholu V. Platí

co = 2 (R — (p).

Případ [1]. Pro cp — 45° je co = 90° a pak je P = V, takže
v — 0 (obr. 25a).

Případ [2]. Prd (p < 45° je co > 2 • 45°, tj. co > 90° (viz
obr. 25b). V trojúhelníku VMN je úhel <£ M — cp ostrý,
proto podle věty P padne bod P dovnitř polopřímky MV;
úhel <£ V — co je tupý, proto bod P padne dovnitř polopřímky
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VM' opačné к polopřímce VM. Padne tedy bod P na prodlou-
žení úsečky MV za bod V. Piatí

VP = MP - VM. (1)
Potom (obr. 24)

d
(2)VM =

cos у

(z trojúhelníka VMS, kde S je středem čtverce ABCD a úhel
<£ MSV = 90°); dále je MP = MN • cosy neboli

MP = 2d cos y.

Po dosazení ze (2), (3) do (1) dostaneme

(3)

-—
• (2 cos2y — 1)VP =

cosy
neboli

d cos2у (4)FP =

cosy

Ze stejnolehlých trojúhelníků FXP, VAM plyne (viz obr. 26a)

VX VP

VA ~ VM ..

(5)

neboli
VA

(6)VX = VPVM’
kde

= + vm2 - |/J2 +VA
cos2 у

neboli

— У1 + cos2y. (7)VA =
cosу
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Dosaďme do (6) ze (4), (7), (2); obdržíme

d cos2 <p |/l + cos2<p. (8)VX =
cos <p

Případ [3]. Pro 90° > op > 45° je oj < 90°; bod P podle
věty P padne zřejmě dovnitř úsečky VP. Tu platí (obr. 25c)

VP - VM -- MP.

Vi

X, p_
p

v

A
A Dti

Obr. 26 a, b.

Platí zřejmě i zde vztahy (2), (3), takže

—-— (1—2 cos2g;)
COS99

VP - (4')
neboli

d I cos2(p IVP =
COS (p

[pro uvažované q> je totiž
— (2 cos2(p — 1) = — cos2<p = I cos2<p | > 0].
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Protože platí též (6), dostaneme (viz obr. 26b) po dosazení
do (6) ze (4'), (7) a (2)

d | cos2<p У1 + cos2<p.VX = (S')
cos 9?

Dosadíme-li (p = 45° do pravé strany (8), (8'), dostaneme
nulu, což se shoduje s výsledkem případu [1].

Závěr. Ie tedy
d j cos2 (p I ]/1 + cos2(pv =

cos (p

pro všechna cp, pro něž je
0 < (p < 90°.

Tím je úloha řešena.
Podle řešení s. Karla Najzara,
ll.b tř., jsš, Ostrava-Vítkovice.

3. Určete všechny úhly a, pro něž jak cotg a, tak cotg 2 a
jsou čísla celá.

Řešení. Při řešení užijeme této věty: Jsou-li celá čísla
a, a + b dělitelná prvočíslem p, je i číslo b dělitelné prvo-
číslem p.

Vyjdeme ze vzorce
cotg2a — 1

2cotga ’ 0)cotg2a =

který platí pro а ф m • R, kde m je celé číslo.
Položme cotg a = q; po dosazení do pravé strany (1) ob-

držíme

(2)

88



Ptáme se tedy, pro která celá čísla q je zlomek (2) rovněž
celé číslo.

Zřejmě pro | q | = 1 je —

- 1
= 0.

2 q '
Pro | q 1 > 1 je zlomek (2) různý od nuly. Nechť p je prvo-

číslo, které dělí číslo q; potom musí být i q2 — 1 dělitelné
číslem p. Musí tedy p dělit alespoň jedno z čísel q — 1, q -f- 1.

Jestliže p je dělitelem čísla q — 1, pak p musí dělit číslo — 1
(číslo q totiž je číslem p dělitelné); to však je spor, neboť
prvočíslo p číslo — 1 nedělí.

Stejně se dokáže, že není možné, aby p bylo dělitelem čísla
Я. + 1-

Proto předpoklad | q | > 1 není možný, takže zbývá jedině
možnost | q | = 1, tj.

buď q — 1 nebo q = — 1.
číslo a musí tedy být buď

a = 45° + k ■ 2 R (3)
nebo

a = 135° + k • 2 R, (4)
■kde k je celé číslo.

Dosazením do (1) se snadno přesvědčíme, že oba úhly (3),
(4) vyhovují vztahu (1). Tím jsou určeny všechny úhly a,
které splňují požadavky úlohy.

Výsledky (3) a (4) lze shrnout do jediného zápisu
a = 45° -f- n ' R,

kde n je celé číslo.
Jiné řešení. Pro | q | > 1, kde q je celé číslo, není zlomek

(2) číslo celé; to dokážeme takto: Dělme čitatele i jmenovatele
zlomku (2) číslem q (které je nutně různé od nuly); dostaneme
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1
Avšak číslo q není celé pro žádné celé q, o němž platí

Я
j q | > 1. Proto není (2) pro | q \ > 1 celé číslo atd.

Podle řešení s. Bohdana Zelinky,
ll.b. tř., l.jsš, Liberec.

Jiné řešení. Nechť

(3')cotg a = m, cotg 2a = n

jsou obě celá čísla. Potom místo (1) lze psát

m- — 1
= n

2m

a tedy
m2 — 1 = 2mn

neboli
m (m — 2n) — 1,

kde m, m — 2 n jsou celá čísla; zřejmě musí platit
bud

m = —1,
m — 2n — — 1.

m — 1,
m — 2n — \

anebo

Musí tedy platit
bud

m — 1, n — 0 anebo m — — 1, n = 0.

Ze vztahů (3') dostáváme cotg a = ± 1, cotg 2a = 0; musí
tedy být a = 45° -f ^R, kde k je celé číslo. Toto číslo skutečně
vztahu (1) vyhovuje.

Podle řešení s. Jindřicha Bůchy,
11.tř., 21 .jsš, Praha XVI,
U Santošky 1.
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4. Je daný dutý uhol <£ POQ a vnútri tohto uhla bod Aí;
dalej nech je dané kladné číslo m. Zostrojte lichoběžník ABCD,
ktorý má tieto tri vlastnosti:

1. Vrcholy A, D ležia na polpriamke OP a vrcholy В, C
ležia na polpriamke OQ.

2. Bod Aí je priesečníkom uhlopriečok AB, BD.
3. Platí AB = m.

Dokážte správnosť urobencj konštrukcie a urobte diskusiu
riešitelnosti úlohy.

Riešenie. Najprv dokážeme pomocnú vetu P (pozři
obr. 27): Označme Aí spoločný bod uhlopriečok AC, BD
v lichoběžníku ABCD, v ktorom je AB [| CD. Ďalej označme O
spoločný bod priamok AD, £C a č>, S' po radě středy základní
AB, CD lichoběžníka.

Potom body Aí, O, S, S' ležia v tejže priamke.
Dokaž. Rovnolahlosť (O) o střede O, ktorá prevádza úsečku

AB v DC\\AB, prevádza body А, В v body D, C (v tomto
poradí). Pretože v rovnolahlosti sa zachovává deliaci poměr,
prislúcha v rovnolahlosti (O) středu 5 úsečky AB střed S'
úsečky CD. Teda bod O leží na priamke SS'.

Rovnolahlosť (Aí) o střede Aí, ktorá prevádza úsečku AB
v úsečku CD || AB, prevádza body А, В v body C, D (v tomto
poradí). Z toho istého dóvodu, ako v predošlom případe, pri-
slúcha v rovnolahlosti (Aí) středu 5 úsečky AB střed S' úsečky
CD. Leží teda bod Aí na priamke SS'.

Z oboch výsledkov vyplývá, že body O, Aí ležia na priamke
SS', takže všetky štyri body Aí, O, S, S' ležia v tej istej priamke.
Tým sme vetu P dokázali.

Dodatok к vete P. Označme n j AB priamku vedenú
bodom Aí; dalej označme P', Q' (v tomto poradí) spoločné
body priamky n s polpriamkami OP, OQ (zrejme je P' ф O,
Q' ф O). Potom je bod Aí stredom úsečky P'0'. To vy-
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plýva z rovnol’ahlosti úsečiek AB, P'Q' a ich stredov S, M
vzhladom na bod O ako střed rovnolahlosti.

Riešenie danej úlohy (pozři obr. 27). Rozbor. Ak budeme
vedieť zostrojiť právě popísanú úsečku P’Q’ v hladanom licho-
bežníku, potom v rovnoběžníku P'ABK je BK\\AP' (alebo
BK || OP) a ďalej P'K = AB alebo P'K = m. Avšak úsečku
P'Q', ktorá má bod M za střed (pozři obr. 27), vieme podlá
známej konštrukcie zostrojiť. Stačí uvažovat’ o stredovej sú-
mernosti so stredom Aí; tá prevádza priamky OP, OQ v priamky
O Px I OP, 0'Ql || OQ, kde O' je obraz bodu O v uvažovanéj
súmernosti. Právě zmienenč priamky obmedzujú rovnoběžník,
v ktorom je 00' jednou uhlopriečkou a hladaná úsečka P'Q'

druhou uhlopriečkou, ktorá
je bodom M pólená. Z kon-
štrukcie vidieť, že polpriamky
OP, OQ vytínajú na priam-
kach směru P'Q (s výnim-
kou tej, ktorá prechádza
bodom O) úsečky, ktorých
středy ležia na priamke Ó\í;
okrem priamok směru P'Q'
žiadna iná priamka nemá
túto vlastnost’.

Podlá toho urobíme kon-
štrukciu hladaného licho-
bežníka.

Konštrukcia (obr. 27). Zo-
strojme obraz O' bodu O
v súmernosti so stredom M.

Ďalej zostrojme priamky
O'Q, I OQ, O P, || OP a
označme P', Q' (v tomto po-
radí) priesečníky dvojíc pria-
mok OP, 0'0{ a OQ, 0’PV



Potom je P'Q hladaná pomocná priečka.
Na polpriamke P'Q zostrojme úsečku P’K — m a bodom К

veďme priamku k jj OP. Priesečník priamok OQ, k označme
В a veďme ním priamku a\\P'Q'; dalej označme A spoločný
bod priamok a, OP. Konečne označme C spoločný bod pol-
priamky OQ a priamky MA a D spoločný bod priamok MB,
c\AB, kde c prechádza bodom C. Potom je ABCD hladaný
lichoběžník.

Dokaž. Podlá konštrukcie úsečky AB je AB = m, pričom
spoločný bod 5 priamok a = AB, OM je stredom úsečky AB,
ako vyplývá z rovnolahlosti so stredom O, v ktorej bodom
P', Q' (v tomto poradí) prislúchajú body A, B.

V rovnolahlosti (M) so stredom M, v ktorej bodu A pri-
slúcha bod C, prislúcha středu 5 úsečky AB střed S' úsečky
CD, kde D je obraz bodu В v tejto rovnolahlosti; přitom bod
S' leží na priamke CD. Je teda S'C = S'D; v tej istej rovno-
1’ahlosti (Aí) je CD |j AB. Avšak v rovnolahlosti (O) so stredom
O, v ktorej bodu В prislúcha bod C, je obrazom bodu 5“ tiež
bod S'. Obrazom bodu A je taký bod D0 priamky S C, že
bod S' je stredom úsečky CD0. Takým bodom je však aj bod
D a preto je nevyhnutné D0 = D, t. j. bod D predtým zostro-
jený je spoločným bodom priamok MB, S'C, OA.

Tým sme dokázali, že zostrojený štvoruholník ABCD je
lichoběžník so základňami AB, CD, pričom body A, D ležia
na polpriamke OP a body В, C na polpriamke OQ.

Diskusia (obr. 28). Z konštrukcie a predošlých úvah vyplývá,
že v uhle <£ POQ možno zostrojiť právě jednu úsečku AB — m
takú, že jej střed 5 leží vnútri polpriamky OM a body А, В
(rožne od bodu O) padnú po radě dovnútra polpriamok OP,
OQ. Ak je P'Q' — m, nemá úloha zrejme riešenie. Ak je
P'Q' ф m, je В ф <2' a rovnoběžné úsečky AB, P'Q neležia
v tejže priamke. Riešitelnosť úlohy závisí od toho, či polpriamky
AM, OQ majú spoločný bod C, ktorý je potom iste rózny od
bodu Q. Aby sme túto otázku rozhodli, veďme priamky
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MA'1| OQ, MB' || OP, kde A', B' ležia po radě vnútri polpria-
mok OP, OQ, pričom je AB' |[ P'Q', AB' = \P’Q. Pokial’
úsečka AB náleží trojuholníku OA'B' (včítane jeho strany
A'B'), leží polpriamka MA
v uhle ОМА' a polpriamka
MA0, opačná к nej, leží v uhle
<£ A"MB", vrcholovom к uhlu
<%A'MB'; taká priamka MA
nemá zrejme s polpriamkou
OQ spoločný bod a úloha nemá
riešenie. Pretože je A'B' —

= |P'Q, nemá úloha riešenie
v případe, ked je P'Q' 2 • AB,

P'Q ^ 2m.
Ak je však P'Q' < 2m (pri-

čom je P'Q' m), má úloha
jediné riešenie.

Závěr. Úloha má jediné rie-
šenie, ak súčasne platí P'Q <
< 2m, P'Q Ф m. Inak nemá
riešenie.

t. j.

4. Úlohy I. kola kategorie В

1. Stanovte počet všetkých trojíc (a, b, c) celých navzájom
róznych čísel a, b, c, z ktorých každé je v absolútnej hodnotě
menšie než číslo 10, ak o týchto číslach platí vztah

(а ф b -f- c)3 = a3 + b3 4 c3.
/

# <

Dve trojice rovnakých čísel s róznym usporiadamm pova-
žujeme za rožne; napr. trojice (7, 3, —3), (7, —3, 3) sú rožne.

Pokyn. Daný vztah najprv vhodné upravte.

(1)

94



Riešenie. Nech čísla a, b, c tvoria hfadanú trojicu (a, b, c),
takže platí vztah (1) alebo

(a -f b -f- c)3 ~ (a3 + b3 -f- c3) = 0.

Eavú stranu L vztahu (2) upravíme; platí
L = (a + b)3 + 3 (a -j- 6)2 c + 3 (a + 6) c2 -}- c3 —

- (a3 + 63 + c3) -

= (a + 6)3 -f 3 (a + 6)2 c + 3 (a + 6) c2 — (a3 -f- b3) =
= (a + 6)3 + 3 (a + b)2 c + 3 (a + 6) c2 —

- (a + 6) (a2 - a6’+ 62) -
= (a -f i) [(a + ft)2 + 3 (a + b) c + 3 c2 —

- (a2 -ab + b2)]
= (a + b) [a2 + 2 ab + b2 + 3 ac + 3 6c + 3 c2 —

- a2 + ab - b2] =

— 3 (a -f 6) [6c + c2 + a6 + ac] —

— 3 (a -(- b) \c (b -f- c) + o. {b -f- c)] =
= 3 (a + 6) (6 + c) (c + a).

Ak teda platí (1), potom nevyhnutné platí aj

(a -f- 6) (6 -f- c) (c + a) = 0.
Vztah (3) možno splnit’ jedným z týchto spósobov:

a + 6 = 0, 6 + c = 0, c + a = 0,

(2)

(3)

t. j. jedným zo vzťahov
b — —a,

c = —6,
c = —a.

Dostaneme tak trojice, ktoré majú tvary:

(a, —a, c),

(4)
(5)
(6)

(7)
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kde a 4= О, —а Ц= с Ц= a sú lubovolne volené čísla;

(a, b', -Ъ’\
kde b' ф 0, — b' 4= а Ф b' sú lubovolne volené čísla;

i-c", b", c"),
kde с" Ф 0, — с" 4= b" Ф c" sú lubovolne volené čísla.

Trojica (7) splňuje vztah (1), lebo platí

(a ф b ф c)3 = (a — a ф c)3 - - c3,
a3 -)- b3 ф c3 = a3 ф (—a)3 ф c3 = c3.

(8)

(9)

Požiadavku а ф 0 vo vztahu (7) sme urobili preto, aby
platilo а Ф —a; požiadavky —а ф c =j= a preto, aby trojica
(а, —a, c) sa skladala z troch róznych čísel.

Každé z čísel hladanej trojice (a, b, c) má mať absolutnú
hodnotu menšiu než 10; sú to teda čísla vybrané z celých
čísel

(10)-9, -8, ..., -2, -1, 0, 1, 2, ..., 8, 9,

čo je 19 možností.
Trojicu (7) dostaneme takto: Z množiny čísel (10) vyberieme

za a lubovolné číslo s výnimkou čísla 0 (lebo inak by bolo
a =

z čísel (10) zostáva právě 17 čísel, z ktorých zvolíme číslo c.
Vznikne tak 18-17 róznych trojíc čísel, vyhovujúcich požia-
dávkám úlohy.

Rovnaký počet trojíc dostaneme pre typ (8) a ten istý počet
pre typ (9).

Ak dokážeme ešte, že každá trojica typu (7) je rózna od
ktorejkolvek trojice typu (8) alebo (9), bude dokázané, že
hladaných trojíc je 3 • 18 • 17.

Dokážeme, že íubovolná trojica (7) je rózna od lubovolnej
trojice (8). Nech to neplatí. Potom platí

a = a , —a = b', c — —b'.

a); to je 18 možností. Tým je určené aj číslo —a, takže
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Avšak z posledných dvoch vzťahov dostaneme a = c, co je
spor s tým, že čísla a, c v trojici (a, —a, c) sú rožne. Rovnako
sa dokáže, že Tubovolná trojica (9) je rózna od každej z trojíc
(7) alebo (8). Tým je dokaž ukončený a celkový počet požia-
dováných trojíc je 3 • 18* 17 = 918.

Tým sme úlohu rozriešili.

2. V rovině bud dána kružnice k = (S, r) a dále bod O,
který leží vně této kružnice. Bodem O sestrojte sečnu OXX'
kružnice k (přičemž X, X' jsou společné body sečny a kružnice
k), a to tak, aby platilo

OX' = X • OX,

kde X > 1 je dané reálné číslo.
Proveďte diskusi řešitelnosti úlohy vzhledem к daným

číslům r, X, v — OS. Potom v rovině kružnice k při daných
číslech г, X vyšetřte množinu všech bodů O, pro něž úloha:
a) má jediné řešení, b) má dvě různá řešení, c) nemá žádné
řešení.

Řešení. I. Rozbor. Předpokládejme, že jsme sestrojili přímku
OXX' požadovaných vlastností. Potom stejnolehlost [О, Я]
o středu O s koeficientem X stejnolehlosti převádí bod X
v bod X'; přitom kružnice k přechází v kružnici k' a bod X
kružnice k v bod X' kružnice k!. Ale bod X' leží podle po-
žadavku úlohy na kružnici k; je tedy X' společným bodem
kružnic k, k'. Odtud konstrukce (obr. 29):

Ve stejnolehlosti [О; X] sestrojíme obraz k' = (S', r') kruž-
nice k. Označme X' jeden ze společných bodů kružnic k, k!.
Dále sestrojme obraz X bodu X' v obrácené stejnolehlosti

y] > potom je OX hledaná přímka, přičemž pořádek
bodů na této přímce je О, X, X'.
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Důkaz. Pořádek bodů na přímce OX je skutečně О, X, X'.
Platí totiž: Bod O leží podle textu úlohy vně kružnice k a tedy
též vně kružnice k'; proto je X' ф O. Dále podle konstrukce
bodu X platí OX — ~ . OX', kde 0 < < 1, takže skutečně

A A

bod X leží uvnitř úsečky OX'. Je tedy OX' = Я • OX, jak
požaduje text dané úlohy. Tím je důkaz proveden.

Diskuse. Řešitelnost úlohy závisí na tom, zda kružnice
k, k! mají společný bod X'. Označme OS = v > r (což platí
podle textu úlohy), dále OS' = v'; podle konstrukce kružnice
k' platí v' = Я v, r' = Яг a je tedy v > r', tj. bod O leží vně
kružnice k'. Kružnice k, k' jsou zřejmě nesoustředné a podle
známé věty z planimetrie mají společný bod právě tehdy,
jestliže platí vztahy

r — r ^ SS' žrý-j-r, kde je SS' = v' — v. O)
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Po dosazení r = X r, v' = X v dostaneme

r(A — 1) ^v(X — 1) ^r(A + 1);

protože je X — 1 > 0, plyne odtud

V A
1 ^ 7Г

г X

x+ 1
- 1 ’ (1')

v
Protože je v > r, nenastane případ — = 1 a levá strana

r

vztahů (Г) podle textu úlohy je splněna. Platí-li tedy vztah

X + 1
Г="Рs (2)

r

potom mají kružnice k, k':
a) společné dva různé body X' ф X[ tehdy, je-li

A + l
X - Г

v

(3)— <
r

b) společný jediný bod X', je-li

X + 1
X - 1 ‘

v

(4)
r

Závěr. Protože z předpokladu úlohy a z platnosti jednoho ze
vztahů (3), (4) plyne platnost vztahů (1), následuje:

[1] Jestliže platí (3), má úloha dvě různá řešení.
[2] Jestliže platí (4), má úloha jediné řešení.
[3] Neplatí-li (2), nemá úloha řešení.

II. Buďte г, X daná čísla a dále nechť je v > r (jako v textu
úlohy).
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Každý bod O, jehož vzdálenost v od bodu S splňuje (viz
obr. 30 pro Я = |):a)vztah (3), vede ke dvěma řešením. Ze vztahu (3) pijme

Я + 1
Я- Г

neboli platí
Я + 1

r < v < • r.
Я - 1

Tyto body O zřejmě vy-
plní vnitřek mezikruží
omezeného kružnicemi

k ^ (S, r),

Я + 1 4Я - 1b)vztah (4) vede к je-
dinému řešení. O čísle v

platí
Я + 1

• Г.
Я- 1

г < v —

Tyto body O vyplní kružnici &0.
c)vztah

Я + 1
Я^Т’

v
— >

- r

neboli
Я + 1

v > . r
Я - 1

neposkytuje žádné řešení. Tyto body leží vně kružnice k0.
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3. Řešte nerovnost

(x + a) (x + b) ^ (x + c) (x + d) 0)

pro číslo x, přičemž a, b, c, jsou daná kladná čísla. Stanovte
též všechna x, pro něž nastává rovnost.

Řešení. Proveďme naznačené výkony na obou stranách
nerovnosti (1) a převeďme neznámou x na levou stranu;
dostaneme postupné

x (a b) ab Ss x (c -f d) + cd,
x [(a + b) — (c + J)] ^ cd — ab. (2)

Provedené úpravy jsou ekvivalentní a každé řešení nerovnosti
(1) je nejen řešením nerovnosti (2), ale i obráceně.

Rozeznávejme případy:
Případ [1]. Nechť je

a + b — {c + d) — 0.

a) Nechť je cd — ab i> 0. Potom každé číslo x je řešením
nerovnosti (2), neboť levá strana ve vztahu (2) je rovna nule
a pravá je číslo nezáporné.

Rovnost zřejmě nastane pro každé x, jestliže je cd — ab = 0.
/?) Nechť je cd — ab < 0. Potom neplatí

0 < cd — ab

a vztah (2) nemá řešení.
Případ [2]. Nechť je

a -f b — (c + d) > 0.

Znásobme obě strany nerovnosti (2) číslem
dostaneme

1
>0;

a + b — (c + d)
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cd — ab
x й (3)

а + b — (с ф d) *
Každé číslo x, o nčmž platí (3), je zřejmě řešením (2) a tím

i (1). 1
Případ [3]. Nechť je

a ф b — (c ф d) < 0.
Znásobme obě strany nerovnosti (2) číslem

1
<0,

a b — (c ф d')
dostaneme

cd — ab
x > (4)

a -f- b — (c —j— d')

Každé číslo x, o němž platí (4), je zřejmě řešením vztahu (1)-
V případech [2], [3] nastane zřejmě rovnost, jestliže x je

rovno zlomku na pravé straně vztahu (3).
Závěr. Daná nerovnost (1) v případě, že:
a) je a + b — (c + d) = 0, má za řešení libovolné číslo x,

jestliže je zároveň cd — ab > 0; neplatí-li poslední vztah,
nemá řešení.

b) je a -f b — (c -{- d) ф 0, pak řešení je dáno pořadě
vztahy (3), (4) podle toho, je-li výraz a + b — (c + d) kladný
nebo záporný.

Přehledně nás o těchto výsledcích informuje tabulka na
str. 103.

4. Řešte rovnici

a — 2x 2 — x
• (1)

1 — x2 - 2x
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Tabulka k úloze č. 3

ŘešeníParametry

cd — ab

a + b — (c + d)
x Sa + b — (c + d) > O, i

a + b — (c + d) = O,
ab < cd

každé reálné číslo jí

\

a +.b — (c + d) = O
> cd

žádné

cd —

X
~

a + b — (c + d)
a + 6 — (c + d)-<0

o neznámé л: a proveďte diskusi řešitelnosti vzhledem к danému
reálnému číslu a.

Řešení. Předpokládejme, že rovnice (1) má nějaké řešení;
pak pro toto řešení musí platit také

a t- 2x (2 - *)2
2 (1 — x) (1 — x)2 '

Obě strany této rovnice znásobme číslem 2(1 — .v)2. Dostá-
váme (postupujeme jen jedním směrem — nevyšetřujeme
ekvivalenci)

(a — 2x) (1 — x) = 2 (2 — x)2.

Upravujeme dále; postupně dostaneme

a — ax — 2x + 2x2 8 — 8x + 2jc2,
6.v — ax = 8 — a,

x (6 — a) — 8 — a. (2)
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Nyní budeme rozlišovat dva případy: a) a — 6, /i) а Ф 6.
a) Je-li a = 6, pak rovnice (2) zní 0 • x = 2 a nemá proto

žádné řešení. Tedy ani výchozí rovnice (1) nemá žádné řešení,
/i) Je-li а =j= 6, má rovnice (2) jediný kořen

a — 8
x =

a — 6

Toto číslo tedy může být řešením rovnice (1). Abychom
zjistili, zda skutečně tímto řešením je, vykonáme zkoušku.

^ g
Dosazujeme tedy do rovnice (1) zlomek za nezná-

a — 6
a — 6 2

mou v. Napíšeme-li uvedený zlomek ve tvaru -
a

^ g
vidíme, že platí — Ф 1 pro každé а Ф 6. Jmenovatelé
zlomků, které se vyskytují v rovnici (1), jsou tedy čísla různá
od nuly (zlomky mají smysl). Protože v rovnici (1) se vyskytuje
odmocnina, uvědomíme si, že jIу je definována jen pro
у 0. Označíme pro stručnost

, T' —,
o a — o

a — 8
a — 2 •

a — *6
L -

(■ ■- й)'
Provedeme-li úpravu

a2 — 8 a -f 16
a - 4\2a — 6

L -
4 2

a — 6

(krátíme číslem různým od nuly), vidíme, že platí L )> 0.
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Pro x = 7 má tedy odmocnina na levé straně v rovnici
a — 6

(1) smysl. Položme ještě
a — 8

2 -

a — 6
- 8 5

P -

a — 6

snadno upravíme
a — 4

a — 6 a — 4
P

2 2

a — 6

^ g
Zlomek je kořenem rovnice (1) právě tehdy, když

a. — 6

platí ]/L = P, což lze napsat jako
a — 4 a — 4

5
2 2

to platí právě tehdy, když je a !> 4 (a ovšem а ф 6). Pro a < 4
nemá tedy (1) žádné řešení.

Shrnutí. Provedenou diskusi můžeme opět shrnout do této
přehledné tabulky:

ŘešeníParametr

a = 6 žádné

a<( 4 žádné

a — 8

a — 6
a ^ 4, a ф 6

105



5. V rovině nech je daný štvorec ABCD svojou polohou.
Označme T střed úsečky AB. V polrovine ABD uvažujme
o pravom uhle <£ XTY, kde X je vnútorný bod polpriamky
AD a Y vnútorný bod polpriamky BC. Označme P patu
kolmice vedenej bodom T к priamke XY.

Preskúmajte, aký geometrický útvar vyplní bod P, keď bod X
prebieha vnútro polpriamky AD.

Riešenie (pozři obr. 31). I. Vnútri polpriamky AD zvolme
bod X, takže polpriamka TX leží v polrovine q = ABD.
Pretože v trojuholníku TXA je A = 90°, je

<£ATX< 90°.

V polrovine TXB (opačnej к polrovine TXA) zostrojme pravý
uhol <£ XTQ. Vzhladom na vztah (1) platí o styčných uhloch
■Ť ATX, <£ XTQ

(1)

<£ ATX + < XTQ = ATQ > 90°

a preto druhý z vedlajších uhlov ^ATQ, <£ QTB je ostrý,
t. j.

(2)QTB < 90°.

Pretože je < TBC = 90°, platí

QTB + < TBC < 180 ',

takže podlá Euklidovho postulátu majú polpriamky TQ, BC
vnútri polroviny o spoločný bod Y. Leží teda trojuholník
XYT, kde <£ T — 90°, v polrovine q; přitom sú jeho uhly
<£ TXY, < TYX ostré a pata T5 kolmice vedenej bodom Г
к priamke XY padne dovnútra úsečky XY a teda dovnútra
polroviny g. •

Teraz dokážeme, že platí
1

(3)TP = TA - T AB>
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takže bod P leží vnútri polkružnice k opísanej v polrovine q
nad úsečkou AB ako priemerom.

Ddkaz. V súmernosti so stredom T je zrejme priamka AD
obrazom priamky ВС a preto obraz Y' bodu Y padne dovnútra
polpriamky AM opačnej к polpriamke AD. Je teda T stredom
úsečky YY', dalej je TX _L YY' a preto je trojuholník XYY'
rovnoramenný so základňou YY'
a priamka TX je osou súmer-
nosti tohto trojuholníka. V sú-
mernosti s osou TX obrazom
kolmice TP vedenej bodom T
к priamkeXF je zrejme kolmica
TA vedená bodom T к pri-
amke XAY'; z toho vyplývá, že
paty P, A zmienených kolmic
TP, TA si v tejto súmernosti
prislúchajú a úsečky TP, TA
sú súmerne združené podra osi
TX, takže platí TP = TA, čím
je vztah (3) dokázaný. Leží
teda každý bod P, zostrojený
podlá textu úlohy, vnútri pol-
kružnice k (t. j. bez krajných
bodov A, B), čo sme mali do-
kázat’. Všimnime si ešte, že priamka XPY je dotyčnicou
polkružnice k v bode P, lebo je XPY TP.

II. Teraz ešte máme dokázat’, že ku každému bodu P pol-
kružnice k (ktorý je rózny od bodov A, B) možno zostrojiť
vnútri polpriamok AD, BC po radě body X, Y také, že bod
P je pátou kolmice vedenej bodom T к priamke XY.

Dokaž. Označme TZ os dutého uhla <^c ATP, takže je zrejme
TZ _L AP (pozři obr. 31). Polovica dutého uhla je uhol ostrý;
pretože je <^ATZ = | <£ ATP, je

<£ ATZ < 90°.
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Obr. 31.
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a podia Euklidovho postulátu polpriamky AD, TZ majú vnútri
polroviny ABD spoločný bod X. V súmernosti s osou TZ sú
jednak body A, P, jednak uhly <£ATZ, <£PTZ súmerne
združené. Preto je v tejto súmernosti úsečka XP obrazom
úsečky XA.

Označme teraz Y' priesečník priamky AD a kolmice у ve-
denej bodom T к priamke TZ. Bod A je pátou výšky TA troj-
uholníka XY'T s přeponou XY'; sú tedá AY' = AM, AX
opačné polpriamky. V súmernosti so stredom T je zrejme
priamka BC obrazom priamky AD a teda obraz Y bodu Y'
v tejto súmernosti padne dovnútra polpriamky BC. Avšak podlá
konštrukcie bodu Y' je у == TY' J__ TZ a ďalej je TY' = TY',
je teda bod Y obrazom bodu Y' v súmernosti podlá osi TZ.
Pretože bod A leží vnútri úsečky XY', leží aj bod P vnútri
úsečky XY, pričom je <£ XTY = 90° a TP J_ p (kde p = XY).
Ak zostrojíme teraz patu kolmice vedenej bodom T к priamke
XY, dospejeme právě к uvažovanému bodu P. Tým je úkon-
čený dókaz tvrdenia, vysloveného na začiatku odstavca II.

Závěr. Z odstavcov I, II vyplývá, že bod P vyplní vnútro
polkružnice k, ktorcj krajnými bodmi sú body А, В a ktorá
leží v polrovine q = ABD. Tým je úloha rozriešená.

6. Zostrojte trojuholník ABC (v základnom označení), ak
je dané a — b, c, a.

Dokážte, že podmienka riešitelnosti úlohy je, aby o kladných
číslach a — b, c, a < 2 R platil vztah c > a — b, popřípadě
ešte vztah a — b > c • cos (180° — a), ak uhol a je tupý.

Riešenie. Najprv dokážeme pomocnú vetu P (obr. 32):
Nech p je os úsečky DB a A bod vnútri polroviny pD. Potom
je vzdialenosť bodu A od bodu В váčšia než vzdialenosť bodu
A od bodu D. Obrátene, акр je os úsečky DB a ak vzdialenosť
daného bodu A od bodu В je váčšia než vzdialenosť bodu A
od bodu D, leží A v polrovine pD.
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Dokaž priamej vety P. Ak bod A leží na priamke DB, je
tvrdenie vety zřejmé. Nech teda A neleží na priamke DB.
Označme P" spoločný bod priamky p a úsečky AB (bod P"
existuje, lebo body А, В sú priamkou p oddělené). Tu platí
BA = BP" + P"A alebo

(1)BA = DP" + P"A

(bod P" totiž leží na osi p úsečky DB a preto platí BP" = DP").
Podlá trojuholníkovej nerovnosti použitej na trojuholník

\

ADP" dostaneme DP" -f- P"A > DA alebo vzhladom na (1)
BA > DA. Tým je dokaž priamej vety ukončený. Dokaž
obrátenej vety urobí sa napr. nepriamo (sporom).

Vlastně riešenie danej úlohy (obr. 32 až 34). Předpokládájme,
že sme zostrojili trojuholník ABC, ktorý splňuje požiadavky
vyslovené v texte úlohy. Zostrojme na polpriamke CA úsečku
CD — CB = a. Pretože je a > b, padne bod D na predíženie
úsečky CA za bod A a platí AD — a — b, pričom je CDB
rovnoramenný trojuholník. Preto bod C leží na osi p úsečky
DB, ktorej střed označíme P. Na základe toho urobíme kon-
štrukciu (obr. 32 až 34):
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Najprv zostrojíme pomocný trojuholník ADB. Zostrojme
uhol B AC = a. Na polpriamke AB' zostrojme úsečku
AB — c a na polpriamke AČ", opačnej к polpriamke AC',
zostrojme úsečku AD — a — b. Ďalej zostrojme os p úsečky
DB a označme C spoločný bod priamky p a polpriamky AC'.
Potom je ABC hladaný trojuholník.

Dokaž. Podlá konštrukcie o trojuholníku ABC platí: AB = c,
<£ CAB — OL. Pretože o bode C osi p úsečky DB platí CD =
= CB a pretože bod A leží vnútri úsečky DC, je AD — CD —
— CA alebo AD = a — b, kde a - CB, b = CA. Tým je
dokaž ukončený.

Diskusia. Riešitelnosť úlohy závisí predovšetkým od požia-
dávku, aby daný uhol a bol dutý (iný uhol nemóže byť uhlom
trojuholníka). Dalej je nevyhnutné, aby bod C padol na pre-
díženie úsečky DA za bod A alebo dovnútra polroviny ABC'.
Preskúmame nutné a postačujúce podmienky, za ktorých to
nastane.

Trojuholník ABD možno pri dutom uhle a vždy zostrojiť.
Označme P' bod priamky p, ktorý leží vnútri polroviny DBA
a P střed úsečky DB.

Ak bod C leží vnútri polpriamky DA, potom je

<£ ADP + <£ DPP' < 180°.

Pretože je DPP' = 90°, musí byť

<£ ADP < 90°.

Pre dalšie úvahy třeba rozlišit’ dve možnosti:

[1] 0 < a ^ 90°; [2] 90° < a < 180°.

Případ [1]. Nech je 0 < a ^ 90° (obr. 32, 33). Z vety
o vonkajšom uhle trojuholníka ADB vyplývá, že <)c ADB < a
alebo <£ ADP < 90°. Je teda splněný vztah (2) a podlá Eukli-
dovho postulátu majú polpriamky DA, PP' spoločný bod C

(2)

(2')
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vnútri polroviny DBA. Ide o to, aby bod A padol dovnútra
úsečky DC, t. j. aby padol bod A dovnútra polroviny pD, čo
podlá prvej vety P vyžaduje, aby platilo DA < BA alebo
a — b < c. Podlá druhej vety P, ak o trojuholníku ADB platí

, i

\ tC \
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c \
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\
v
\
\
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A В\

■ \
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Obr. 33.

a — b < c, t. j. DA < BA, padne bod A dovnútra polroviny
DBA, teda dovnútra úsečky DC.

Závěr [1]. Ak teda o daných prvkoch platí 0 < a ^ 90°,
a — b < c, potom úloha má právě jedno riešenie.

Případ [2]. Nech je
(3)90° < a < 180°

(obr. 34); potom je
(4)<£ DAB < 90°.
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Ak platí vzťah (2'), padne pata V výšky trojuholníka ADB,
vedenej bodom В к straně AD, dovnútra úsečky AD (pozři
učebnicu Geometria pre 7. triedu, str. 112), t. j. platí AV < AD
a pretože v tomto případe je AV = AB -cos(180° — a), t. j.
AV = c -cos (180° — a), dostáváme tak nutnú podmienku

c -cos (180° — a) < a — b. (5)

Teraz obrátene, nech platia vztahy (3), (5), potom platí
vzťah (4), takže bod V padne dovnútra polpriamky AD a z (4)
vyplývá А V < AD, takže bod V padne dovnútra úsečkyAD, takže
uhol <£ ADB alebo ADP je ostrý. Platí teda vzťah (2) a podlá
Euklidovho postulátu existuje spoločný bod priamky p a pol-
priamky DA a padne dovnútra polroviny DBA. Rovnako ako
v případe [1] sa usúdi, že bod A leží vnútri úsečky DC.

Závěr [2]. Ak teda platí 90° < a < 180°, c -cos (180° — a) <
< a — b < c, má úloha právě jedno riešenie.

Závěr. Ak platia podmienky uvedené v závere [1] alebo pod-
mienky uvedené v závere [2], má úloha právě jedno riešenie.
Inak nemá úloha riešenie.

7. Určete všechna reálná řešení rovnice

1 1
= 1.

x — 1

Řešení. Úlohu si rozdělíme na dvě části.

a) Nejprve hledejme nezáporné kořeny dané rovnice. Pro
x2s0je|x| = xa danou rovnici můžeme psát i takto:

1 1
1.+

x + 1 x — 1
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Má-ii tato rovnice řešení, pak totéž řešení má také rovnice

2x
= 1,

x2 - 1

čili kvadratická rovnice

x2 — 2x — 1 = 0.

Poslední rovnice má kořeny хг = 1 -j- j/2, x2 = 1 — ]/Í,
z nichž jen první je nezáporný. Zkouškou se přesvědčíme, že
1 + j/2 je skutečně kořenem dané rovnice. Je totiž

1 1

(1 + ]/2) + 1 (1 + ]/2) - 1

__ 1 + 1 + 1/2
1/2 (1 + 1/2) j/2

1 1
= 1 .

(i + У2) Уг
b) Nyní hledejme záporné kořeny dané rovnice. Pro x < 0

je | x | = — x; danou rovnici lze tedy psát:
1 1

= 1.
x — 1— ЛГ —j- 1

Snadno nahlédneme, že tato rovnice nemá žádné řešení, neboť
ji lze psát takto:

1 1
= i;

X — 1 ' X — 1

levá strana rovnice je zřejmě rovna nule, kdežto pravá je
rovna číslu 1.

Daná rovnice nemá tedy žádný kořen záporný.
Výsledek. Jediný kořen x = 1 + j/2.
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8. V rovině nech sú dané tri rožne polpriamky TA, TN,
TP, z ktorých žiadne dve nie sú opačné.

Zostrojte trojuholník ABC, ktorý má ťažisko T, pričom
jeho vrcholy В, C ležia (v tomto poradí) vnútri polpriamok
TN, TP.

Urobte diskusiu riešitelnosti úlohy.

Riešenie (obr. 35). Rozbor. Predpokladajme, že sme zostrojili
trojuholník ABC, ktorý vyhovuje úlohe. Pretože ťažisko T
leží vždy vnútri trojuholníka ABC, sú každé dva z dutých uhlov

^ATB, <£ BTC, <£ СТА

styčné a pokrývajú celú rovinu. (Uvidíme, že táto nutná
podmienka je aj postačujúca к riešitelnosti úlohy.)

Označme A’ střed strany BC. Podlá známej vety o ťažisku
platí AT = 2 ■ TA'. Bod/Í' vieme teda zostrojiť. Potom sa úloha
redukuje na známu úlohu: Bodom A' vnútri dutého uhla
<£ NTP veďte priamku x tak, aby polpriamky TN, TP přeťala
po radě v bodoch В, C a aby platilo А'В — АС. Táto úloha,
ako vieme, má právě jedno riešenie. Z toho vyplývá kon-
štrukcia.
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Konštrukcia (obr. 35). Nech TQ, TA sú opačné polpriamky,
pričom Q leží vnútri uhla <£N7P. Na polpriamke TQ zo-
strojme úsečku TA' — \ • TA. Ďalej zostrojme rovnoběžník
TBDC so stredom A', pričom body В, C ležia (v tomto poradí)
vnútri polpriamok TN, TP (teda je AD = AT, DB\\TP,
DC || TN). Potom je ABC hladaný trojuholník.

Dokaž. Pretože TBDC je rovnoběžník, je A' skutočne stredom
strany ВС a úsečka AA' ťažnicou. Podlá konštrukcie platí
TA — 2 • TA' a preto je T ťažiskom trojuholníka ABC. Tým
je dókaz ukončený.

Diskusia. V lubovolnom trojuholníku ABC leží jeho ťažisko
T vnútri tohto trojuholníka, pričom priamky ТА, ТВ, TC
určujú duté uhly <£ ATB, BTC, <£ СТА, ktoré pokrývajú
rovinu tak, že napr. polpriamka TQ, opačná к polpriamke
TA, nutné prechádza vnútrajškom uhla <£ BTC, t. j. v našom
případe vnútrajškom uhla <£ NTP.

V danej úlohe je nevyhnutné jeden z uhlov s ramenami
TN, TP dutý (lebo dané polpriamky sú rožne a žiadne dve nie
sú opačné). Podlá predošlého musí ešte polpriamka TQ, opačná
к danej polpriamke TA, prechádzať vnútrajškom tohto dutého
uhla <£ NTP. Ak je táto požiadavka splněná, má úloha jediné
riešenie; inak nemá riešenie.

Dókaz. Za uvedeného předpokladu padnú oba body A', D
dovnútra uhla <£ NTP a teda existuje rovnoběžník TBDC,
pričom body А, В, C neležia v priamke. Existuje teda troj-
uholník ABC. Podlá dókazu konštrukcie, ktorý sme urobili,
je v ňom bod T ťažiskom. Tým je dókaz hotový.

Ak nie je uvedená požiadavka splněná, nemá zrejme úloha
riešenie.

Tým je úloha rozriešená.
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9. Dokážte, že výraz

1 1 1
V =

x — у у — z X

je kladný pre všetky reálne čísla x > у > z.

Riešenie. Pre x > у > z je

x — у > 0, у — z > 0, z — x < 0

a daný výraz má vždy zmysel. Pre také trojice čísel x, y, z platí
postupné

O)

(y — z) (z — x) + (z — x) (x — y) + (x — y) (y — z)v =

O —y)(y — z) O - *)
уz - xy - z2 + xz -f- xz —yz - X2, + xy + xy ~ xz—y1 +уz

O —y) (y — z) Сг - x)
xy + уz -f- xz — x2 — yl — z2

(x - y) (y - z) {z - x)
- \ [(* - yf + (y - Zf + {Z - x)2] (2)(x -y)(y— z) {Z - X)

Podlá předpokladu (1) je menovatel’ posledného zlomku
záporné číslo; čitatel’ tohto zlomku je súčinom záporného
a kladného čísla [pozři (2)]. Teda V je podielom dvoch zá-
porných čísel a preto je V > 0. Tým je dokaž tvrdenia úlohy
ukončený.

Jiné řešení. Místo vztahů x > у > z lze psát vztahy

X > y, X > z, у > z
1

neboli
x — у > O, x — z > 0, у — z > 0. (1)
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Protože je x > у, jex — z>y — z a vzhledem к posled-
nímu vztahu (1) tedy platí

x — z>y — z> 0.

Podle známé věty tedy platí
11

>
у — z X — z

neboli
1 1

(2)> 0.
у — z z — X

Dále z prvního vztahu (1) plyne, že
1

(3)>0.
% у

Sečtením levých a pravých stran vztahů (2) a (3) dostáváme,
že je V > 0, což jsme měli právě dokázat.

Podle řešení s. Břetislava Fialy,
žáka lO.b tř., jsš, Česká Třebová.

10. Buď dán obdélník ABCD o středu S, přičemž a =AB>
b = BC jsou daná kladná čísla. Uvnitř stran AB, BC zvolme
pořadč body M, N tak, aby platilo MN \\AC. Sestrojme rovno-
bčžník MNPQ o středu S.

a) Dokažte, že body P, Q leží pořadě uvnitř úseček CD,
DA a že platí MQ || BD.

b) Dokažte, že obvod rovnoběžníka MNPQ je roven 2 •AC.
c) Sestrojte bod M tak, aby к němu příslušný rovnoběžník

MNPQ měl maximální obsah.
Řešeni (obr. 36). a) Označme AB = CD — a, BC = DA =

= b. Obdélník ABCD má bod S za střed souměrnosti; v této

117



souměrnosti úsečkám AB, BC příslušejí pořadě souměrně
sdružené úsečky CD, DA, takže bodu M uvnitř úsečky AB
přísluší souměrně sdružený bod P uvnitř úsečky CD a bodu N
přísluší bod Q uvnitř úsečky DA. Ze souměrnosti dvojic
bodů M, P a N, Q plyne SM = SP, SN = SQ a protože
SM, SN jsou různé přímky, je MNPQ požadovaný rovno-

CP

\

z
У> N

s
X/^1/

x\

X
X / •o\

XQ X
Г/ N

VJL
A И Ho

a-xX

Obr. 36.

běžník (úhlopříčky tohoto čtyřúhelníka se totiž navzájem
půlí). Je tedy

MN\\AC, MNIPQ neboli AC || PQ

MQ IPN.
a dále je

0)

Uvažujme stejnolehlost (В) o středu B, v níž přímce AC
přísluší přímka MN; její koeficient Я splňuje vztah 0 < Я < 1.
Tu platí

BM = X BA= la, BN = Я • BC — ?,b
a tedy

AM=AB-BM = a(l -Я),
CN = BC — BN =6(1 — Я).

(2)
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Uvažujme nyní stejnolehlost (A) o středu A, v níž bodu В

přísluší bod M; její koeficient A' = -ja vzhledem ke (2)
je A' = 1 — A. Ze souměrnosti podle středu S plyne AQ —

= 1*— A = A', tj. bodu D

ve stejnolehlosti (A) přísluší bod Q; proto o příslušných
přímkách BD, MQ v této stejnolehlosti platí

AQ
— CN = b(l — A), takže AD

BD 1 MQ.
Odtud také plyne, že v přímkách AC, BD leží střední příčky

rovnoběžníka MNPQ.
Tím je důkaz tvrzení úlohy a) proveden.
b) Označme po řadě X, Y, Z, T středy úseček MN, NP,

PO, QM. Dokážeme, že

(3)TM + MX = AS,

což je čtvrtina obvodu rovnoběžníka MNPQ', tím bude do-
kázáno, že obvod tohoto rovnoběžníka je 2 ■ AC.

Důkaz. Protože v obdélníku ABCD je SA = SB, je troj-
úhelník SAB rovnoramenný a tudíž jeho úhly při základně
AB jsou shodné, tj. platí:

CAB = <g: ABD = e.

Z rovnoběžnosti přímek MQ, BD plyne, že

< ABD = 180° - <£ QMB (úhly přilehlé)
a protože vedle toho platí, že

<£AMQ = 180° — <£ QMB (úhly vedlejší),
dostaneme porovnáním obou posledních vztahů, že je

<^ABD = <£ AMQ;
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je tedy trojúhelník TAM rovnoramenný se základnou AM
a tudíž platí

TM = AT.

O čtvrtině obvodu rovnoběžníka MNPQ tedy platí TM ■

+ MX — AT + TS =AS, čímž je vztah (3) dokázán a tím
i tvrzení úlohy b).

c) Označme AM = x, CN — y, takže je MB = a — x,
BN = b — y. Označme p obsah rovnoběžníka MNPQ. Obsah
p dostaneme, když od obsahu ab obdélníka ABCD odečteme
obsahy pravoúhlých trojúhelníků MQA, PNC a MNB, PQD,
z nichž první dva a poslední dva jsou zřejmě shodně; součet
obsahů prvních dvou trojúhelníků je xy, součet obsahů posled-
nich dvou trojúhelníků je (a — x) • {b — y). Je tedy

p — ab — xy — (a — x) (b — y)
neboli

(4)P = ay + bx — 2xy.

Ze stejnolehlosti (A) podle středu A pro trojúhelníky ABD,
AMQ plyne, že

AQ AD
AM ” AB

neboli
bx

(4')У = —
a

Dosaďme odtud do vztahu (4); po úpravě obdržíme

2bx2
p = 2bx —

a

Výraz na pravé straně postupně upravíme
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2bx2b .

= — [ax — x2) =2bx —

a a

x2 - 2 • у x + (ia)2| j =
2b a2

4a

26 I" a2 2a
x —

4 2a

Je tedy

(5)

Maximum čísla (5) závisí na maximu čísla uvedeného v lo-
•

. v <22
mené závorce; jedná se tu o rozdíl konstanty — a čísla

4

které je vždy nezáporné. Tento rozdíl je zřejměМГ'
М-Г-»největší, jestliže je menšitel nula. Tu platí

neboli x —— 0 a tedy x = .
2 2

Z (4') dostaneme у — —, takže příslušný rovnoběžník

MNPQ má vrcholy ve středech stran daného obdélníka ABCD.
V souhlase s tímto výsledkem dostaneme ze vztahu (5), že
obsah p — p0 tohoto rovnoběžníka MNPQ je

2b a2 ab

4~ = T *Po = —
a

Závěr. Tím je úloha rozřešena. Maximální obsah má ten
z rovnoběžníků MNPQ, jehož vrcholy jsou středy stran obdčl-
nika ABCD.
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11. V rovině buďte dány čtyři body А, В, C, D takové, že
existují trojúhelníky ABC, BCD, CDA, z nichž žádný
není tupoúhlý.

Dokažte, že potom platí:
a) Žádný z daných bodů A, £, C, D neleží uvnitř trojúhelníka,

jehož vrcholy jsou tři zbývající z těchto bodů.
b) Body А, В, C, D jsou (v určitém pořadí) vrcholy vypuklého

čtyřúhelníka, který je nutně obdélník.

Řešení (obr. 37). Žádné tři z bodů А, В, C, D neleží v téže
přímce, jinak by neexistoval některý z trojúhelníků

ABC, BCD, CDA, DAB.

Dále podle textu úlohy není žádný z těchto trojúhelníků
tupoúhlý, takže kterýkoli z jejich úhlů je menší nebo roven
úhlu pravému; tohoto faktu několikrát užijeme.

Řešení úlohy a) rozdělíme na několik částí; dokážeme:
I. Bod D neleží na žádné z přímek

AB, BC, CA.

II. Bod D nepadne dovnitř žádného z úhlů, které jsou vrcho-
lové к vnitřním úhlům trojúhelníka ABC.

III. Bod D nepadne dovnitř trojúhelníka ABC.
Podobná tvrzení pro ostatní body se dokáží stejně.
Důkazy jednotlivých tvrzení I až III provedeme jen pro

jednu dvojici bodů, např. A,B; pro ostatní možnosti se důkaz
provede zcela obdobně.

Část I. Nechť bod D padne na některou z přímek (2);
padne-li např. na přímku AB, pak neexistuje trojúhelník
ABD; tím je důkaz části I proveden.

Část II. Nechť bod D padne např. dovnitř úhlu <£ A BC'
kde BA', BC jsou polopřímky opačné к polopřímkám BA,

(1)

(2)
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ВС; v tomto případě bod D označme D'. Potom jsou úhly
4 ABC', 4 CBD’ styčné, a protože je 4 ABC ^ R, je
4 ABC ^Ra tedy

< ABD' = 4 ЛВС' + 4 CBD' ^ R + 4 CBD';
je tedy

<5: ABD' > R,

takže trojúhelník ABD' je tupoúhlý. Bod D tedy nepadne
dovnitř úhlu 4 A BC, což právě jsme měli dokázat.

Část III. Nechť bod D leží uvnitř trojúhelníka ABC;
bod D v tomto případě označme D ". Potom každé dva z úhlů

4AD"B, 4BD 'C, 4 CD "A

jsou styčné a jejich součet je 4R. Kdyby každý z těchto
úhlů byl nejvýše roven R, měly by součet nejvýše 3 R, a to
je ve sporu s tím, že mají součet 4R. Proto bod D nepadne
dovnitř trojúhelníka ABC.

b) Můžeme předpokládat, že bod D leží uvnitř úhlu 4 ABC,
ale zároveň uvnitř poloroviny <5 opačné к polorovině CAB.
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Kdyby tomu tak nebylo, vyměnili bychom navzájem názvy
bodů А, В anebo bodů С, B. Body В, D jsou přímkou CA
odděleny a přímky BD, CA jsou různoběžné. Proto uvnitř
úsečky BD leží bod M, který je bodem přímky CA. Protože
úsečka BD leží v úhlu <£ ABC, padne bod M nutně na úsečku
CA, a to dovnitř této úsečky; jinak by totiž bud body С, B, D
anebo body A, B, D ležely v téže přímce. Leží tedy bod M
uvnitř každé z úseček BD, CA. Proto je ABCD konvexní
(vypuklý) čtyřúhelník (viz učebnici Geometrie pro 8. ročník,
str. 3/157).

Duté úhly < DAB, <£ ABC, <£ BCD, <f CDA
jsou úhly čtyřúhelníka ABCD, takže jejich součet je 4 R.
Protože každý z těchto úhlů je jedním z úhlů některého z troj-
úhelníků (1), je každý z nich nejvýše roven R. To však znamená,
že každý z těchto úhlů musí být pravý; kdyby jen jediný byl
ostrý, byl by jejich součet menší než 4 R. Jsou tedy všechny
úhly čtyřúhelníka ABCD pravé. Ze vztahů

<£ DAB + <£ CDA = 2R (úhly přilehlé),
<£ DAB + <£ ABC = 2R (úhly přilehlé)

plyne, že
AB || CD, AD IBC,

takže ABCD je rovnoběžník, jehož všechny úhly jsou pravé,
tj. je to obdélník (viz definici obdélníka v učebnici Geometrie
pro 8. ročník, str. 20/174). Tím je řešení úlohy b) provedeno.

12. Bud dán výraz

i fx — 2 6 i fxz
I у + 3 'у ] :

К = 4]/—I' У + зу

- 2х2- 2хг 2х

У + 3У

/ х — 2
- Зх

У + зу ’
kde х, у jsou reálná čísla.
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a) Označte [x, j>] bod v rovině pravoúhlých souřadnic, který
zobrazuje dvojici x, у reálných čísel.

Vyznačte graficky množinu M bodů roviny, která zobrazuje
všechny dvojice x, у čísel, pro která má daný výraz V smysl.

b) Ukažte, že množinu УИ bodů lze ještě rozložit na části tak,
že v každé nově vzniklé části se dá výraz V upravit na tvar

x i / x 2
a • — I/ —-py, kde a je číslo konstantní pro celou ta-

kovou část.

V =

Řešení, a) Nejprve stanovíme ty dvojice x, у reálných čísel,
pro které má výraz V smysl. Jedná se o to, že zlomky ve výraze
V musí mít smysl a dále o to, aby odmocněnci ve výraze V
byly nezáporné.

Jmenovatelé zlomků výrazu V jsou

У> У3 -i- 3y1 =y2(y + 3), у + 3;

zlomky mají tedy význam, jestliže o čísle у platí zároveň tyto
dva vztahy

(1)З'ФО,

у + з 4= о. (i')
Označme

x — 2

ТТз; (2)k =

potom lze výraz V psát ve tvaru
i

Mk +
2 x

V — 4 Tk‘ (3)
У

1
Všichni odmocněnci musí být nezáporní. Protože je —

a x2 ^ 0, jsou za předpokladu, že
k ^0,

>0

(4)
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všichni odmocněnci ve vztahu (3) nezáporní a odmocniny mají
smysl.

Výraz V má tedy smysl, jestliže o reálných číslech x, у
. platí zároveň vztahy (1), (1'), (4).

Nyní vyšetříme, kdy platí (1), (Г), (4). Je zřejmé, že musí
platit dále uvedené podmínky (5), (6); obráceně, platí-li
podmínky (5), (6), pak též platí (1), (Г), (4).

Případ [1]. Je
x — 2 ^ 0, у -}- 3 > 0, у ф 0.

Zaveďme tyto pomocné body v rovině pravoúhlých souřadnic
o počátku P (viz obr. 38):

X = [2, 0], Xl = [3, 0], X2 = [2, 1],
У - [0, — 3], Y, = [0, -4], У2 = [-1, -3],
Z » [2, -3,1, Z, = [3, -3], Z2 = [2, -41.

(5)

2^0, vyplňujíVšechny body [x,y], pro něž platí x
polorovinu XZXx \ všechny body [x,jy], pro něž platí у -f 3 >
> 0, vyplňují polorovinu YZP s výjimkou její hranice YZ.
Body, pro něž platí у — 0, leží právě na ose x.

Odtud závěr. Všechny body, pro něž platí (5), vyplňují
právě pravý úhel <£ X2ZZx, z něhož musíme vyloučit všechny
body polopřímek ZZ,, XXv

Případ [2]. Je

(6)x — 2 ^ 0, 3; + 3 < 0, jy ф 0.

Všechny body [x,jy], Pro nčž platí x — 2 ^0, vyplňují
polorovinu XZP-, všechny body, pro něž platí у + 3 < 0,
vyplňují polorovinu YZY, s výjimkou její hranice YZ.

Odtud závěr. Všechny body, pro něž platí (6), vyplňují
právě pravý úhel <£ Y»ZZ2, z něhož musíme vyloučit polo-
přímku ZYo.

Tím je úloha a) rozřešena.
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b) Pro reálné číslo a platí j/a2 = | a |. Lze tedy výraz (3)
psát [předpokládáme, že platí (1), (Г), (4)] ve tvaru

]/k - -nrr V*-F = lMp 6 I X2л:
У& + (7)

blbl 3> 3>

Nyní rozeznávejme obě možnosti z úlohy a):

Y, Y

Případ [1]. Rozlišujme:
a) Nechť je у > 0, takže se jedná o dvojice x, у, pro něž

příslušné body [x, jy} v rovině pravoúhlých souřadnic vyplňují
pravý úhel <£ XxXX2 s výjimkou polopřímky XXx (v obr. 38)
viz část [la] roviny). Tu je x > 0, у > 0 a tedy | x | = x,
| jy | = y. Výraz (7) lze pak psát

41 Vk-^]lk+ 6* ]/k - — ]jk
У

V =

У У У
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5л; 11 x — 2neboli V (8)
У + зУ

/5) Nechť je —3<j;<0; příslušné obrazy [х,У| dvojic
л:, у leží v pásu rovnoběžek XXV ZZ15 a to v polorovině XZXx,
při čemž musíme vyloučit obě polopřímky XX1} ZZV (zůstává
však vnitřek úsečky XZ; v obr. 38 viz část [1/5] roviny). Tu je
x > 0, у < 0 a tedy | x | = л:, | у | = — y. Výraz (7) lze pak
psát

4* у*
2x

]jk + — У* + X. yk,F = —

У У У

isЗх - 2
neboli V = (9)

+ 3'3>

Případ [2]. Rozlišujme:
a) Nechť je 0 x ^2, jy^-3<0 (tj. jistě у < 0). Pří-

slušné body [x, у] leží v pásu rovnoběžek УУ:, ZZ2 a uvnitř
poloroviny YZY1 (zůstávají však vnitřky polopřímek УУг,
ZZ2; v obr. 38 viz část [2a] roviny bez úsečky YZ). Tu je

| x | = x, | у | = —у; výraz (7) lze pak psát
2*

y* +j£_y* + JfLV*.— |'IF = -

3» v .v

3x | /x — 2neboli
F= - (10)

У + 3 '

/5) Nechť je x<0, jy + 3<0 (tj. jistě у < 0). Příslušné
body [x,j>] leží uvnitř pravého úhlu <£ У^Уо (v obr. 38
viz část [2/5] roviny). Tu je | x | = — x, | у | — —у a výraz
(7) lze pak psát

6* V* +JíLy*4*
y*_

2x
yjfeF =

УУ У У
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neboli * l/f
У \ У

- 2
V= - (И)

у + з'

Vztahy (8) až (11) jsou řešením úlohy.

5. Úlohy II. kola kategorie В

1. Určte všetky reálne čísla x, pre ktoré platí vztah
1 4- x2

(O2 ^ 2-(1-.V)
Znázorníte tieto čísla x v náčrtku na číselnej osi.

Riešenie. Nech číslo x vyhovuje nerovnosti (1). Potom
číslo (1 — x)2 je kladné. Móžeme ním teda násobiť obe strany
nerovnosti (1) a dostaneme

1 + x2 ^ 2 (1 - 2x + x2),
0 S; 1 — 4x + x2.

Rozložíme trojčlen v nerovnosti (2). Rovnica
x2 — 4x + 1 =0

хг = 2 4- 1/3, x2 = 2 - 1/3.
Nerovnost’ (2) možno teda napísať v tvare

2 +1/3) ^0 .

čiže (2)

má kořene

(x — 2 — "j/3 ) (x (3)

2 + 1/з, ktoré sa vyskytujúZ činitel’ov x — 2 — 1/3
na Tavej straně, je zrejme prvý menší (о 2]]ъ) než druhý,
teda

a x —

jc-2 — J/З <x — 2+1/3.
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Z toho vyplývá, že nerovnosti (3) možno vyhovieť len tak,
že musí platit’ súčasne

x-2-Мъ ŠO,
x - 2 +]/3 ^0,

x ^ 2 -)- Уз,
x ^ 2 - Уз.

čiže

To možno písať v tvare

2-1/3 ^x ^2 +|/з. (4)

Zistili sme teda zatial, že každé číslo x, ktoré vyhovuje
nerovnosti (1), vyhovuje aj nerovnostiam (4). Avšak zatial’ nie
je jasné, či platí aj obrátené tvrdenie.

Majme teraz číslo x, ktoré splňuje nerovnosti (4). Potom
platí súčasne aj

x-2-Уз ^0,
x — 2 + Уз ^0,

teda aj (x — 2 — j/3) (x — 2 -{- ]/ 3) 5=1 0,
t. ).

x2 — 4x + 1 55 0.

O A1 32

f3 Ů
Obr. 39.

Túto poslednú nerovnost’ možno upravit’ na tvar

1 + x2 ^ 2 (1 x)2. (5)
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x 4= 0. Obe strany nerovnosti (5)
— — ; tým dostaneme ne-
(1 - x)2

rovnost’ (1). Ak je však x = 1, 1’avá strana nerovnosti (1) nemá
vóbec zmysel; preto x = 1 nie je riešenie nerovnosti (1).

Ak je x ф 1, je tiež 1

vynásobíme kladným číslom
1

Závěr. Čísla x ф 1, ktoré splňujú nerovnosti (4), sú právě
všetky riešenia nerovnosti (1) (pozři obrázok 39).

2. Nech sú dané dve kružnice kl3 k23 ktoré majú spoločné
dva rožne body С, M.

Zostrojte trojuholník ABC tak, aby bod A bol bodom kruž-
nice kl3 bod В bodom kružnice k2 a bod M bol stredom strany
AB.

Dokážte, že úloha má právě jedno riešenie.
Riešenie. Rozbor (obr. 40). Nech ABC je hladaný troj-

uholník, v ktorom úsečka CM je ťažnicou, takže je

MA = MB.

Body А, В sú teda súmerne združené podlá středu M.
Označme k2 = (S'2s r2) kružnicu súmerne združenú к danej
kružnici k2 = (S2, r2) vzhladom na střed M súmernosti.
V súmernosti so stredom M přejde bod В kružnice k2 do bodu
A kružnice k'2. Pretože bod A leží na kružnici k13 je bod A
spoločným bodom kružnic kl3 k'2. Z toho vyplývá konštrukcia.

Konštrukcia. Zostrojme kružnicu k2, súmerne združenú
ku kružnici k2 vzhladom na střed M súmernosti, a označme
А ф M spoločný bod kružnic kl3 k2. Obraz bodu A v tejto
súmernosti označme B. Potom ABC je hladaný trojuholník.

Dokaž vyplývá z rozboru a konštrukcie.
Diskusia. Dokážeme, že úloha má vždy jediné riešenie.

Označme tv t2 (v tomto poradí) dotyčnice kružnic kl3 k2
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v bode M. Pretože kružnice kl3 k2 majú dva rózne spoločné
body, je tx ф t2 (inak by sa kružnice k13 k2 navzájom dotýkali,
čo odporuje textu úlohy). Kružnica k2 leží v jednej z opačných
polrovín vyťatých priamkou t2. Zo súmernosti podlá středu M
vyplývá, že kružnica k2 leží v polrovine, opačnej к predošlej

polrovine, a priamka t2 je jej dotyčnicou. Obidve rožne kruž-
nice k13 k'2 majú spoločný bod M; dokážeme, že majú spoločný
ešte právě jeden další bod А ф M.

Keby kružnice kl3 k2 nemali další spoločný bod, dotýkali
by sa v bode M a platilo by = t2, čo je však v rozpore s textom
úlohy. Preto je А ф M, čo sme mali dokázat’.

Bod A preto existuje (a to jediný); bod В je obrazom bodu A
v súmernosti so stredom M. Pretože bod A leží vnútri jednej
z polrovín vyťatých priamkou t2, leží bod В vnútri polroviny,
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ktorá je opačná к predošlej polrovine. Je teda В ф A. Pretože
body C, A ležia vnútri opačných polrovín vyťatých priamkou t2,
sú navzájom rožne a tým sú rožne aj body С, B. Tým sme
dokázali, že trojuholník ABC existuje, a to jediný.

3. Řešte rovnici

x T 11px — 2p -f- 1 —- 1, (1)

kde p je dané reálné číslo.
Proveďte diskusi řešitelnosti vzhledem к číslu p.

Řešení. Nechť číslo x je řešením rovnice (1); potom z (1)
plyne

]/px — 2p-\-l=l—x (2)

a protože levá strana je číslo nezáporné, musí o pravé straně
platit 1 — x > 0 neboli

(3)x ^ 1.

Umocněme obě strany rovnice (2) na druhou; obdržíme

px — 2p 1 — 1 — 2x -f- x2
neboli

0 = x2 — (2 + p)x + 2p.

Rozložíme-li trojčlen na pravé straně, dostaneme

(x — p) (x — 2) = 0;

kořeny této rovnice jsou

(4)X± — ft) x>2 — 2.

Jestliže tedy x je řešením dané rovnice (1), potom je nutně
rovno jednomu z čísel x,, x2. Číslo x2 vzhledem ke (3) zřejmě
nepřichází v úvahu [o tom se též lze přesvědčit dosazením
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do (1)]. Číslo xx—p musí především splňovat vztah (3) čili
musí být

p £\.
Dokážeme nyní, že číslo x = p pro p ^ 1 je kořenem

rovnice (1); označme pořadě L, P příslušná dosazení do pří-
slušných stran rovnice (1). Dostaneme postupně

L=P + }У-2р + 1 = р + У(1-р)2 =p + \\ -p\-,
vzhledem ke vztahu (5) je | 1 — p \ — 1 — p a tedy

L=p -\-l - p = l.
Pravá strana P = 1, takže skutečně je L = P a číslo x = p

je jediným řešením dané rovnice (1).
Závěr. Daná rovnice má pro p ^ 1 jediný kořen x — p',

pro p > 1 nemá řešení.

(5)

4. Buď dána polorovina ABM a kladné číslo g.
V této polorovině sestrojte pravoúhlý trojúhelník ABC

o přeponě AB, jemuž vepsaná kružnice má poloměr g.
Rozhodněte o řešitelnosti úlohy vzhledem ke kladným

číslům c — AB, g.
(Při konstrukci lze užít úhlu <£ ASB, kde 5 je středem

kružnice vepsané trojúhelníku ABC.)
Řešení (obr. 41). Předpokládejme, že jsme v polorovině

ABM sestrojili pravoúhlý trojúhelník ABC o přeponě AB
a poloměru g vepsané kružnice. Označme a, /? úhly trojúhel-
nika ABC při vrcholech A, B. Tu platí a + = 90° a tedy
\ a + \ j3 = 45°, což je součet úhlů <£ SAB, SBA; proto je

<£ASB = 135°.

Leží tedy bod 5 na oblouku k = AB o středu O, přičemž
středový úhel AOB = 270°.
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Vzdálenost bodu 5 od přímky AB je rovna o a proto bod S
leží na přímce p jj AB, která leží uvnitř poloroviny ÁBM a která
má od přímky AB vzdálenost q. Bod 5 je tedy společným
bodem oblouku k a přímky p. Na základě toho provedeme
konstrukci:

V polorovině ABM sestrojme přímku p jj AB ve vzdálenosti
q. Dále sestrojme osu q úsečky AB a dále v polorovině opačně
к polorovině ABM úhel <£ BÁN = 45°. Označme O společný

///////

bod přímek AN, q. Potom je <^AOB = 903 a úhel AOB —

= 270°. Body oblouku k = AB kružnice (0,0A), které leží
uvnitř poloroviny ABM, tvoří množinu všech bodů X, o nichž
platí <£AXB — 135°. Označme společný bod přímky p a
oblouku k. К úhlům <£ SAB, <£ SBA sestrojme styčné úhly
<£ SAK = <£ SAB, <£ SBL — <£ SBA a označme C spo-
léčný bod polopřímek AK, BL. Potom trojúhelník ABC je
hledaným trojúhelníkem.
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Důkaz. Podle konstrukce platí, že <£ASB = 135° a proto
v trojúhelníku ABS platí <£ SAB + <£ SBA — 45°, a protože

<£ KAB + <£ LBA = 2 (<£ S,4fí + < SZM),
jc

(2)

je součet obou těchto úhlů roven 90°, takže podle Eukleidova
axiómu polopřímky AK, BL mají uvnitř poloroviny ABM
společný bod C. Ze vztahu (2) o trojúhelníku ABC platí

< BCA = 90°,
což jsme měli dokázat.

Diskuse. Z předchozího důkazu plyne, že к bodu S přísluší
jediný trojúhelník ABC, který splňuje požadavky textu úlohy.
Jestliže tedy přímka p a oblouk k

[1] mají dva společné body S ф S', má úloha dvě řešení (viz
obr. 41);

[2] mají jediný společný bod P (je to zřejmě dotykový bod
tečny t\AB oblouku k, která leží uvnitř poloroviny ABM);
tu má úloha jediné řešení.

[3] nemají společný bod, úloha nemá řešení;
Jednotlivé případy podle známé věty nastanou právě tehdy,

je-li
[1] q<PQ; [2]g=PQ; [3] Q > PQ,

kde Q je středem úsečky AB a bod P je společným bodem
přímky q a oblouku k.

Je tedy třeba vypočítat číslo PQ: V trojúhelníku ABO je
<£ O = 90°, OA = OB, AB = c, AQ = OQ = \c a podle
Pythagorovy věty platí

OA1 =AQ- + OQl
neboli

OA = rrrr-

P
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с с
Protože je OP = ОА, platí PQ = OP — OQ

= {(V2- 1).
Úloha má tedy dvě řešení, je-li o < у (]/2 — l);máje-

diné řešení, je-li p = у (j/2 — l) ; nemá řešení, je-li q >

{(У2-0.
Tím je řešení úlohy provedeno.

1/2 2

>

6. Úlohy I. kola kategorie C

1. Pro všechna reálná čísla a, b, c je výraz

(1)a2 -f b2 + c2 -f- 3 — 2 (a -f b -f c)

nezáporný; dokažte.

Řešení. Výraz (1) postupně upravíme takto:

a2 4 + c2 -f 3 — 2 (a + 6 + c) —

= (a2 - 2 a + 1) + (62 - 2 b + 1) + (c2 - 2 c + 1) ?=
= (a - l)2 + (b- l)2 + (c - l)2.

Každé z čísel (a — l)2, (6 — l)2, (c — l)2 je nezáporné
a tudíž jejich součet musí být číslo nezáporné. Přitom je daný
výraz kladný pro všechny trojice čísel a, b, c s výjimkou pří-
pádu, kdy je (a — l)2 = {b — l)2 = {c — l)2 = 0, tj. jestliže
platí a = b = c — 1; v tomto případě je daný výraz roven
nule.
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2. V rovině nech je daná priamka p a vnútri jednej z pol-
rovin vyťatých priamkou p nech sú dané dva rožne body A, B.

Na priamke p zostrojte bod C tak, aby v trojuholníku ABC
os uhla <£ BCA stála kolmo na priamku p.

Urobte diskusiu riešitelnosti.

Riešenie. Pomocná veta V: Osi vedlajších uhlov stoja na
seba kolmo.

Rozbor (obr. 42). Označme CU os uhla hladaného
trojuholníka ABC. Podlá požiadavky úlohy je CU J_ p. Uva-

žujme o uhle ACD,
vedlajšom к uhlu <$:ACB;
jeho os CM ± CU (po-
dla vety V) je zrejme čas-
ťou priamky p. Přitom
bod M leží vnútri pol-
roviny CUA. Pretože je

DCM = <* MCA,
pričom tieto uhly ležia
v opačných polrovinách
vyťatých priamkou p,
obraz A' bodu A v sú-
mernosti s osou p padne

dovnútra polpriamky CD. Z toho vyplývá konštrukcia.
Konštrukcia. Zostrojme obraz A' bodu A v súmernosti

s osou p. Body А', В sú oddělené priamkou p; preto vnútri
úsečky BA' leží bod C priamky p. Ak sú АС, BC rožne priamky,
je ABC hladaný trojuholník.

Dokaž. Priamka p obsahuje os CM uhla <£ АСА'. Podlá vety
V je polpriamka CU J_ p (bod U leží v polrovine pA) osou
uhla < ACB, vedlajšieho к uhlu <£ АСА'. Tým je dokaž hotový.

Diskusia. Pretože body А ф В ležia vnútri polroviny pA,
sú body А', В oddělené priamkou p a bod C, ležiaci na priam-
kách p, A'B, existuje.
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Uhol <£ ACB existuje vtedy, ked sú priamky АС, BC na-
vzájom rózne, t. j. ked bod A neleží na priamke BA'. Ak leží
bod A na priamke BA', potom polpriamky CA, CB splývajú
a úloha nemá riešenie. Úloha má teda jediné riešenie, ak nie
je AB _L p; ak je AB _[_ p, nemá riešenie.

Tým sme úlohu rozriešili.

3. Najděte (výpočtem) všechny různé dvojice přirozených
čísel nejvýše dvojciferných, končících číslicí 6, jejichž součin
končí dvojčíslím 36.

Řešení. Buď A = 10a + 6 hledané nejvýše dvojciferné
číslo, při čemž je 0 ^ a <9 číslo celé. Dále buď В = 106 + 6
druhé takové číslo, přičemž je 0 ^ 6 ^ 9 rovněž celé číslo.
Součin čísel +, В je

AB = (10a + 6) • (106 + 6)
neboli

AB = 100a6 + 10 • [6 (a + 6)] + 36
neboli

AB = 100a6 + 10 [6 (a + 6) + 3] + 6.

Jednotky čísla 6 (a + 6) + 3 mají být rovny číslu 3 neboli
jednotky čísla 6 (a + 6) jsou rovny nule neboli 6 (a + 6) je
násobkem čísla 10, přičemž je

0 ^ 6 (a + 6) ^ 6 (9 + 9),
tj.

0 ^ 6 (a + 6) ^ 108.
Z čísel 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, která přicházejí
v úvahu jako čísla 6 (a + 6), jsou šesti dělitelná čísla:

0, 30, 60, 90.

Je tedy a + 6 podíl některého z těchto čísel a čísla 6; je to
některé z čísel:

0, 5, 10, 15.
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Uvažujme případy (přitom jsou a, b celá čísla, o nichž
platí 0 ^ a ^9, 0 ^ b á9); lze bez újmy obecnosti před-
pokládat, že platí a ^b.

Případ [1]. Nechť a -f- b = 0, tj.
a — b — 0

a dvojice čísel A — В = 6 vyhovuje úloze, neboť 6-6 — 36.

Případ [2]. Nechť je a + b = 5. Možnosti podává tabulka:%

0 1 2a

b 5 4 3

A 6 . 16 26

36В 56 46

736AB 336 936

Dostáváme tedy dvojice 6, 56; 16, 46; 26, 36.
Případ [3]. Nechť je a + b = 10. Možnosti podává tabulka:

3 4 51 2a

b 7 6 589

46 56A 2616 36

66 56В 96 86 76

/Ш 3036 31361536 27362236

Dostáváme dvojice 16, 96; 26, 86; 36, 76; 46, 66; 56, 56.
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Případ [4]. Nechť je a + b — 15. Možnosti podává tabulka:

6 7

b 89

A 7666

В 96 86

AB 6336 6536

Dostáváme dvojice 66, 96; 76, 86.
Závěr. Je celkem 11 dvojic takových čísel.

4. Nech sú dané dva rózne body S}, S2.
Zostrojte pravoúhlý rovnoramenný trojuholník ABC s pre-

ponou AB tak, aby body 513 S2 bolí dva zo stredov kružnic
zvonku vpísáných tomuto trojuholníku.

Rozhodnite o ricšitelnosti úlohy.

Riešenie. Rozoznávajme dve možnosti: Kružnice k^ e=
= (*Sl3 ry), k2 = (S2) r2), zvonku vpísané trojuholníku ABC, [1]
ležia v ostrých uhloch tohto trojuholníka; [2] majú tú vlastnosť,
že jedna z nich leží v ostrom uhle, kdežto druhá leží v pravom
uhle tohto trojuholníka.

Každý z prípadov budeme riešiť oddelene.
I. Případ. [1]. Rozbor (obr. 43). Nech kt leží v uhle a =

s= <£ CAB = 45° a k2 v uhle /3 = <): ABC - 45°. Označme
O střed kružnice k trojuholníku ABC zvonku vpísanej a ležiacej
v uhle у = ^ BCA. Ďalej označme /3' velkost’ vonkajšieho
uhla trojuholníka ABC pri vrchole B; je /3' = 135°. Pretože
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BS, je osou vonkajšieho uhla pri vrchole B, je CBS, =
= l P > t* )•

(1)<£ CBS, = 671°.

Ďalej je CS, osou vonkajšieho uhla pri vrchole C a teda

(1')<£ BCS, = 45°.

./
/ /

й
\

\

\ \
/ /

/\ //\ /v /
//

/
v.

cvFPs
/ /

N/ XT7
\)y2/

/ \
/ \

\2

Obr. 43.

Zo vzťahov (1), (Г) a zo súčtu uhlov v trojuholníku BCS,
1’ahko vypočítáme, že

< ОЗД = 67i°.

Pretože priamka CO je osou súmernosti trojuholníkov ABC,
OS,S2, platí podobné

< OS2S, <= 67‘°.

Podlá toho urobíme konštrukciu.

142



Konštrukcia (obr. 43). Označme o, g obe opačné polroviny
vyťaté priamkou Konštrukciu urobíme tak, že hladaný
trojuholník ABC umiestime do polroviny g, a to tak, že bod Si
padne do uhla a a bod S2 do uhla /3. Střed úsečky označme
C a jej os CP, pričom P leží vnútri zvolenej polroviny g. Ďalej
zostrojíme v g uhol <X QS^S2 = 67A° a označíme O spoločný
bod polpriamok CP, S&; tento bod podlá Euklidovho postu-
látu existuje a leží vnútri o. Potom osi pravých uhlov <£ OCS,,
<£ OCS2 (v tomto poradí) pretnú úsečky SyO, S20 v bodoch,
ktoré označíme B, A (dokáže sa pomocou Euklidovho postu-
látu). Potom je ABC jeden z hladaných trojuholníkov.

Dokaž. Existenciu trojuholníka ABC sme už dokázali pri
konštrukcii. Musíme dokázat’, že body O, Sl3 S2 sú stredmi
kružnic, tomuto trojuholníku zvonku vpísaných.

Podlá konštrukcie je <£ BCA = 90° a zo súmernosti podlá
priamky CO vyplývá, že trojuholník BCA je rovnoramenný,
pričom CO je os uhla a CSX _L CO, CS2 J_ CO sú osi
vonkajších uhlov pri vrchole C (podlá vety, že osi vedlajších
uhlov stoja na seba kolmo). Ďalej je BSXC = 67|° (podlá
konštrukcie), <£ BCS{ = 45° (CSt je osou vonkajšieho uhla troj-
uholníka ABC pri C); z trojuholníka BCSi vyplývá, že <£ CBSx=
= 180° — (<$; BSXC + <^c BCSj) = 67i°, takže BSi je osou
vonkajšieho uhla pri В v trojuholníku ÁBC (vonkajší uhol je
totiž 135°). Zo súmernosti podlá priamky CO vyplývá, že
AS2 je osou vonkajšieho uhla pri C v trojuholníku ABC. Tým
je dokaž hotový.

Diskusia. Z konštrukcie vyplývá, že v polrovine g možno
zostrojiť právě jeden trojuholník ABC vyhovujúci úlohe,
pričom leží v uhle a a So v uhle /? tohto trojuholníka. Ak
zostrojíme trojuholník A'B'C, kde <£ C = 90° a A'C' =
= B'C, pričom Sj leží v uhle <^c В' a S2 v uhle A', je zřejmé,
že platí A' = В, B' = A, C = C, t. j. dospievame к tomu
istému trojuholníku, len inak označenému. V súmernosti
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podl’a osi SvS2 dostaneme druhý trojuholnik Д ^41J51C71 ш
=Д ABC, ktorý je zrejme rózny od ABC.

Závěr případu [1]. Ak nehladíme na záměnu označení
vrcholov pri ostrých uhloch hladaného trojuholníka, má úloha
dve riešenia.

II. Případ [2]. Rozbor (obr. 44). Nech kružnica kx leží
v uhle a = <£ С/Ш a kružnica k2 leží v uhle у = <£ ВСЛ

hladaného trojuholníka ABC. Označme O střed kružnice k
trojuholníku ABC zvonku vpísanej, a to tej, ktorá leží v uhle
/? = <£ /1БС. Eahko zistíme, ako v případe [1], že platí

< ЗДО = 67|°,
pričom je <£ = 90° (osi vedíajších uhlov sú na seba kolmé).

Podlá toho urobíme konštrukciu.

Konštrukcia (obr. 44). Označme q jednu z polrovín vyťatých
priamkou SXS2- Požadujme, aby híadaný bod C padol do pol-
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roviny o. Zostrojme v polrovine o uhol <£ S2SxX = 67|°
a z bodu S2 veďme к priamke SVX kolmicu; jej pata C zrejme
padne dovnútra polpriamky lebo uhol <£ S2SxX je ostrý.
Ďalej zostrojme bod O tak, aby C bol stredom úsečky OSx.
V oboch pravých uhloch <£ SXCS2, <£ OCS2 zostrojme ich
osi CB, CA, kde В leží vnútri úsečky a A vnútri úsečky
OS2. Pot"»m trojuholník ABC vyhovuje úlohe.

Dókaz. Trojuholník ABC, ktorý sme zostrojili, má podlá
konštrukcie pri vrchole C pravý uhol. Podlá konštrukcie je
priamka CS2 jeho osou súmernosti, takže je CA = CB a pol-
priamka CS2 je osou uhla <£ BCA. Pretože je SxCO J_ CS2,
sú CSi, CO po radě osami vonkajších uhlov trojuholníka ABC
pri vrchole C.

V trojuholníku BCSX je podlá konštrukcie Sx = 67|°,
<£ C = 45°, takže <£ CBSX = 67 a polpriamky BSX, BS2
sú (v tomto poradí) osami vonkajších uhlov trojuholníka ABC
pri vrchole B. Zo súmernosti trojuholníkov ABC, SxOS2 podlá
osi CS2 vyplývá, že polpriamky АО, AS2 sú osami vonkaj-
ších uhlov trojuholníka ABC pri vrchole A. Tým je dókaz
hotový.

Diskusia. Z konštrukcie a urobeného dókazu vyplývá, že vo
zvolenej polrovine q možno zostrojiť právě jeden trojuholník
ABC, ktorý vyhovuje požiadavkám úlohy, pričom bod S, leží
v uhle a a bod S2 v uhle y.

Označme p os úsečky SXS2 a označme A B C' obraz trojuhol-
nika ABC v súmernosti s osou p. Trojuholníky ABC, A B C'
zrejme nesplývajú (všimnime si napr. toho, že je <£ CBSX =
= 67£°, <£ CBS2 = 112i°), ležia v polrovine o a vyhovujú
úlohe.

Ak zostrojíme v súmernosti s osou obrazy oboch troj-
uholníkov ABC, A'B'C, dostaneme v polrovine, opačnej
к polrovine q, ďalšie dva rožne trojuholníky, ktoré vyhovujú
úlohe. Tým sme zostrojili všetky trojuholníky, vyhovujúce
úlohe, ktoré majú tú vlastnost’, že jeden z daných bodov
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S13 S.> leží v pravom uhle takého trojuholníka. Přitom nehradíme
na možnú záměnu označenia bodov A, B.

Závěr případu [2]. Úloha má právě 4 riešenia.
Závěr riešenia danej úlohy. Úloha má 6 riešení (ak nehradíme

na možnú záměnu označení vrcholov ostrých uhlov Madaného
trojuholníka).

5. Bud dána kružnice k = (S, r) a její tětiva AD, která není
jejím průměrem. Dále bud dáno kladné číslo p.

Sestrojte rovnoramenný lichoběžník ABCD s ramenem AD,
který je dané kružnici k vepsán a jehož střední příčka MN má
velikost p.

Proveďte diskusi řešitelnosti.

Řešení. Rozbor (viz obr. 45). Předpokládejme, že jsme se-
strojili lichoběžník ABCD, který splňuje požadavky úlohy.
Jeho osa q souměrnosti je osou základen AB, DC a střední
příčky MN — p, kde M, N jsou pořadě středy ramen AD,
BC. Přitom přímka MN není průměrem kružnice, neboť jinak
by ABCD byl obdélník. Proto musí existovat trojúhelník
SMN, v němž MN — pa. SM = SN = v, a tudíž je S ф M.
O vzdálenosti v bodu S od přímky AD zřejmě platí

r > v > 0.

Aby trojúhelník SMN existoval, musí platit trojúhelníková
nerovnost MN < SM + SN neboli

2v > p.

(1)

(2)

Nyní provedeme konstrukci.
Konstrukce (obr. 45). V polorovině SMD sestrojme rovno-

ramenný trojúhelník SMN, kde MN - p, SN = SM — v;
bod N se sestrojí jako průsečík kružnic ni = (M, p), s =
= (S, SM). Označme Q střed a q osu úsečky MN. Označme
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В, С pořadě obrazy bodů A, D v souměrnosti podle osy q.
Jestliže body A, D leží uvnitř téže poloroviny vyťaté přímkou q,
potom je ABCD jedním řešením úlohy.

Důkaz. Takto sestrojený čtyřúhelník ABCD je lichoběžník,
neboť je AB J_ q, DC J_ q a tedy AB DC; přitom přímky
AD J_ SM, BC _L SN jsou různoběžnč (podle věty: Obě
kolmice к různoběžkám SM,
SN jsou rovněž různoběžné
— viz Geometrie pro 7. roč.,
str. 134/289). Přitom je po-
dle konstrukce MN = p a
body В, C leží na kružnici k,

Q*

N\\
a w

r MLjjL _neboť kružnice k obsahuje
body A, D a v souměrnosti
podle osy q přechází sama
v sebe. Tím je důkaz pro-
veden.

i
■

’BÁ T
9 /ГП

Diskuse. Možnost sestro-

jení lichoběžníka ABCD, jak
bylo v konstrukci popsáno -
vzhledem к tomu, že vztah (1)
je splněn zadáním úlohy - závisí na dvou okolnostech:

[1] Na existenci trojúhelníka SMN, tj. na tom, aby platil
vztah (2); platnost tohoto vztahu postačí к tomu, aby se troj-
úhelník SMN dal sestrojit (viz Geometrie pro 7. tř., str. 106/
261). Tím je zajištěno, že ABCD není obdélník (případ nastane
pro p — 2 v).

[2] Na požadavku, aby oba body A, D padly dovnitř polo-
roviny qA. Jinak ABCD není lichoběžník (je to trojúhelník
v případě, že je C = D, nebo AD, BC jsou úhlopříčkami licho-
běžníka ABCD).*)

*) Poznámka. Požadavek [2] lze vyjádřit omezením čísla p
pomocí čísel r, v, d = SQ, t = MA = MD v podstatě úlohou
daných.

к

Obr. 45.
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Přitom je
(3)r2 = v2 -f- ť1 j

0 < v < r,

d2=v2_^p)2>
jak plyne z trojúhelníků &4M (kde <£ M = 90°), SMQ (kde
< 2 = 90°).

Jsou-li oba požadavky splněny, pak ABCD je lichoběžník.
Druhé řešení dostaneme, sestrojíme-li obraz A'B'C'D' licho-
běžníka ABCD v souměrnosti podle osy SM; tu je A' = D,
D' = A. Protože osa SM úsečky AD není osou úsečky BC
[jinak by bylo AD | BC, neboli SM || SN, čemuž tak není
vzhledem ke (2)], jsou oba lichoběžníky různé a úloha má dvě
řešení.

V případě volby průsečíku N kružnic m, s uvnitř poloroviny
SMD padne pata X kolmice AX J_ MN na prodloužení úsečky
MN za bod M, ale pata Y kolmice DY MN padne dovnitř
polopřímky MN. Aby bod D padl dovnitř poloroviny qA, je
nutné a stačí, aby bod Y padl dovnitř úsečky MQ, tj. aby platilo
MY < MQ neboli

O)
(4)

MY< f (5)

Snadno usoudíme, že platí

Д SMQ ~ Д MDY (uuu),
neboť je <£ SQM = <£ MYD = 90°, Д SMQ + QMD =
= 90°. Je proto

MY SQ
MĎ SM 5

neboli vzhledem к zavedeným označením
dt

MY = —

v
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Po dosazení do (5) obdržíme
dt P

.<
2 ’v

po umocnění obou stran této nerovnosti na druhou (jedná se
vesměs o kladná čísla) a dosazení ze vztahu (4) dostaneme
postupně

4 Iv2- P‘ ť2 < p2 v2,4

4 v2t2 < p2 (v2 + t2),
2 vt

(6)<p.
]v2 + t2

Platí-li obráceně vztah (6), platí i (5) a při volbě bodu N uvnitř
poloroviny SMD padne bod У as ním i bod D dovnitř polo-
roviny qA.

Vztahy (2) a (6) vyjadřují podmínky řešitelnosti [vedle
vztahu (1) daného již textem].

6. Jedno z přirozených čísel, které bezprostředně předchází
nebo které bezprostředně následuje za prvočíslem větším než
číslo 3, je nutně dělitelné šesti. Dokažte.

Na základě toho ukažte, že každé prvočíslo větší než 3 se
dá psát buď ve tvaru 6k + 1 anebo ve tvaru 6& — 1, kde k je
přirozené číslo.

Řešení. Prvočíslo p > 3 je vždy liché. Tři bezprostředně
po sobě následující celá čísla

P ~ Ь P> P 1■

r

mají tyto vlastnosti:
a) p — 1, p + 1 jsou čísla sudá,
b) jedno z čísel /> — 1, /> + 1 je dělitelné třemi.
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Důkaz tvrzení a) je zřejmý.
Důkaz tvrzení b). Číslo p je prvočíslo; dělíme-li je číslem

3 (částečný podíl počítáme na jednotky), dostaneme zbytek
dělení rovný bud 1 nebo 2 (číslo 0 nedostaneme, jinak by číslo p
bylo dělitelné třemi). Je tedy p = 3m + 1 nebo p = 3w + 2,
kde m je přirozené číslo.

a) Nechť jt p — 3m + 1. Potom je p — 1 = 3m, tj.
p — 1 je dělitelné třemi.

/?) Nechť je p — 3rn + 2. Potom je p -f 1 = 3m -f 2 4-
+ 1 — 3(m -f- 1), tj. p -f 1 je dělitelné třemi.

Tím je důkaz tvrzení b) proveden.
Je tedy buď p — 1 sudé a dělitelné třemi nebo je p + 1

sudé a dělitelné třemi. Číslo sudé a dělitelné třemi je dělitelné
i šesti. Je tedy jedno z čísel p — 1, p + 1 dělitelné šesti, tj.
platí buď

(1)p — 1 = 6r,

kde r je číslo celé, nebo je

(2)P + 1 — 6s,
kde s je číslo celé.

Z (1), (2) dostaneme pořadč

(1')p = 6r + 1,

p — 6s — 1.

Ze vztahů (1), (2) podle provedené úvahy platí vždy právě jeden;
proto také platí právě jeden ze vztahů (1'), (2'), tj. každé prvo-
číslo p > 3 lze napsat buď ve útvaru (Г) nebo ve tvaru (2'),
ne však oběma způsoby současně.

Tím je řešení úlohy provedeno.

(2')

150



7. V rovině buďte dány dvě kolmice p, k = OA o společném
bodu O; na prodloužení úsečky OA za bod A bud dále dán
bod B.

Na přímce p sestrojte bod X ф O, který přímku p dělí ve
dvě opačné polopřímky XO, XP, přičemž platí

<£ PXB = 2 ■ <£ OXA.

Proveďte diskusi řešitelnosti.

Řešení (obr. 46). Rozbor. Označme X ф O bod přímky p,
který vyhovuje úloze, a o polorovinu, která je vyťata přímkou k
a uvnitř které leží bod X. Označme XY osu úhlu BXP,
který je dutý, takže úhel <£ YXP je ostrý. Dále označme XY'
polopřímku opačnou к polopřímce XY, takže

< OXY' = ф PXY

(úhly vrcholové), tj. <£ OXY' < R; proto podle Eukleidova
postulátu mají přímka k a polopřímka XY' společný bod A'
uvnitř poloroviny a', opačné к polorovině a = pA. Protože X
je bod vyhovující úloze, podle požadavku úlohy platí <£ OXA =
= | PXB = <^C PXY a tedy vzhledem к (*) dostaneme
(polopřímky XY', XA’ splývají)

(*)

<£ OXA = ф OXA',

takže trojúhelník XAA' je rovnoramenný o základně AA';
protože je p _L k, platí

OA' = OA.

Uvažujme souměrnost o ose q = A XY; v ní jsou А', X, Y
samodružné body a dále <£ BXY, <£ PXY souměrně sdružené
úhly, přičemž bodu В přísluší jako obraz bod C polopřímky
XP a tudíž úsečce А'В úsečka А С — А'В; leží tedy body В, C
na kružnici m = (A', A'B). Na základě toho provedeme kon-
strukci.
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Konstrukce (obr. 46). Sestrojme obraz A' bodu A v sou-
měrnosti podle osy p, takže je

OA = OA'.

Dále sestrojme kružnici m = (A', A'B) a označme C jeden ze
společných bodů kružnice m a přímky p. Pak sestrojme osu q

в

Л

.

X' o

4"
/

' Obr. 46.

úsečky ВС a označme X společný bod přímek p, q. Potom X je
jedním z bodů, které vyhovují úloze.

Důkaz. Body A, A' jsou souměrně sdruženy podle osy p;
proto je

< 0X4 = <£ OXA'.

Podle konstrukce jsou В, C body souměrně sdružené v sou- •

měrnosti podle osy q a tudíž je
BXY = <£ CXY = | • <£ BXC

(1)

\

(2)
kde Y je bod přímky q, který leží uvnitř úhlu <£ BXC. Dále
platí

<)C OXA' = <)c СХУ (vrcholové úhly). (3)
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Pořadě ze vztahů (3), (1) a (2) dostaneme

< OXA = § • < BXC.
Tím je důkaz proveden.

Diskuse. Bod A leží mimo přímku p a proto jsou body A, A'
a tím i body B, A' odděleny přímkou p, takže platí А' ф В а

А'В > А'О,

kde А’В je poloměr kružnice т а А'О je vzdálenost středu А'
kružnice т od přímky p. Proto je p sečnou kružnice m; jejich
průsečíky označme С ф C. Ze souměrnosti bodů С, C podle
přímky k plyne, že se při dalším vyšetřování můžeme omezit
na bod C. Další vyšetřování se tedy týká poloroviny kC.
Protože je A'BC rovnoramenný trojúhelník o základně BC
a o ose q souměrnosti, je úhel <£ BA C dutý a jeho polovina,
tj. úhel <£ BA Y neboli <ý OAY (kde Y je bod ležící na q
a uvnitř úhlu <£ BA C) je úhel ostrý. Proto je

<£A'OC + ф OA Y < 2R

a podle Eukleidova postulátu mají polopřímky OC, A'Y uvnitř
poloroviny kC společný bod X. Existuje tedy v polorovině kC
právě jedno řešení.

Druhé řešení dostaneme, když к bodu X sestrojíme obraz
X' v souměrnosti o ose k.

Úloha má tedy dvě řešení.*)

/

8. Součástka tvaru rotačního válce se původně vyráběla tak,
že měla poloměr r a výšku v. Nyní se vyrábí s poloměrem
o p procent menším a s výškou o p procent větší než původně.

a) Kolik procent z objemu součástky původní tvoří objem
součástky nově vyráběné?

*) Jiná řešení najdete v článku Fr. Živného na str. 144 časopisu
Matematika ve škole, ročník 1957.
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b) Dokažte, že objem nově vyráběné součástky se zmenšil
více než o p procent objemu součástky původně vyráběné.

Řešení. Označme V objem původní součástky a V objem
nově vyráběné součástky. Platí

V — 7Г r2v, (1)

4- rp vp \.
100 / ’

V v f-
100

úpravami postupně dostaneme

P V2F' — 7C r2 11 —

100 /5100

(100 - p)2 100 + PV = 7Г rlV •
1002 100

(100 -p)2(100 + p)
(2)V = tz r2v •

100:1

a) Objem V je jc % původního objemu V. Platí
VV

x = — • 100 neboli x = 100 • -r^

V ‘V

Dosaďme sem z (1), (2); dostaneme

X = 1100 • 71 r2v •
(100 — p)2 (100 +p)

: 7Г t2v .

1003

Po úpravě obdržíme

(100 -p)2 (100 + p)
(3)x =

1002

Tím je řešení úlohy a) provedeno.
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b) Objem V je x procent původního objemu V, který je zá-
kladem, jemuž odpovídá 100 %. Hledaný rozdíl у příslušných
počtů procent je

у = 100 — x;

po dosazení ze (3) postupně dostaneme

(100 -p)2(100 + p)
У= 100- 100“

100:i - (100 - p) (100 - p) (100 + p)
1002

1003 - (100 -p)(1002 -p2)
1002

1003 - (1003 - 1002 p - 100 p2 + p:l)
1002

1002 p + 100 p2 - p3 100“ p 100 p2 - p3
T

100“1002 1002

p2 (100 - p)
= p + 1002

Je tedy
P2 (100 - p)

(4).V =/> + 1002

Podle textu úlohy však o čísle p nutně platí

0 < p < 100,

takže je 100 — p > 0. Proto je čitatel zlomku na pravé straně
vztahu (4) číslo kladné a tím i tento zlomek je kladný, tj. platí

у >p.
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' Objem V se tedy zmenšil víc než o p procent objemu V,
což právě jsme měli dokázat.

Tím je řešení úlohy b) a tedy celého příkladu provedeno.

9. Nech je daná rovnica

(.P2 Ф 4)x2x ф p2 2x — p2
(1)

p2 - 9P + 3 P- 3
v ktorej x je neznáma a p je dané reálne číslo.

a) Riešte danú rovnicu a zistite všetky čísla p, prc ktoré
daná rovnica nemá riešenie.

b) Vypočítajte to číslo p, pri ktorom daná rovnica má kořeň
x — —6.

Riešenie. a) Daná rovnica (1) nemá riešenie pre p = ф 3.
Nech je nadálej p Ф ±3 a nech x je riešením rovnice. Zná-
sobme obe jej strany číslom p2 — 9 ф 0. Postupné dostaneme
rovnice, ekvivalentně s rovnicou (1):

(2x + p2) (p — 3) ф (2x — p1) (p + 3) = (/>“ -f 4)x,
x (2p - 6 + 2p + 6 - f - 4) =

= -p2 (P — 3) + p2 (p + 3),
\p + 4) = 6p2,

x (p — 2)2 = — 6p2.
x(p2

(2)

Teraz rozoznávajme dve možnosti: [1] Nech je p — 2 ф 0;
[2] nech je p — 2 = 0.

Případ [1]. Nech je p —

rovnice (2) znásobme číslom

2 ф 0, t. j. p ф 2. Obe strany
- ф 0; dostaneme

1

(P- 2)
6 p2■ /

(3)x

(p - 2)2 ’
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со je (za předpokladu p =f= 2) ekvivalerrtný vztah s (2). Rovnica
(1) má teda pre p rožne od čísel — 3, 2, 3 právě jedno riešenie(3).

Případ [2]. Nech je p — 2 = 0, t. j. p — 2. Pretože je
— 6p2 = — 24 ф 0, nemá rovnica (2) riešenie a tým ani
rovnica (1) nemá riešenie.

Tým sme úlohu a) rozriešili.
PreWad o riešení rovnice (1):

RiešenieParametr p

Rovnica nemá riešenie-3, 3

Rovnica nemá riešenie2

Rovnica má jediné riešenie
6 p2

Р<~Ъ
-3<P<2
2<p<3

3 <p

x =

Poznámka. Je zaujímavé všimnúť si rovnice (1) pre p = 2.
Z (1) dostaneme postupné

(4 + 4)x
4 — 9~

2x + 4 ( 2x — 4
5 1

2x + 4 8x
- (2x - 4) =

2x + 4 - (lOx - 20)
-5 ’5

8x

5 ’5

8x 24 8x

55 5

Z posledného tvaru rovnice je opáť vidieť, že nemá riešenie.
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b) Máme nájsť také číslo p, aby rovnica (1) mala kořeň
x — — 6. Ak má úloha riešenie, musí podlá výsledku (3) platit’

6p2
= -6,

(P ~ 2)2
čiže

f- = (P~ 2)2.
Z toho dostáváme postupné

p2 = p2 — 4p — 4,

P= I-
Ak má úloha riešenie, musí byť p = 1. Avšak pre p = 1 je

podlá (3)
6

x =

(1 - 2)2 5
čiže

x = —6.

Rovnica (1) má kořeň x — — 6 iba pre parameter p — 1.
Poznámka. Rovnica (1) má v případe p — 1 tvar

2x + 1 2x - 1 5x

2 “ -8 ’4

pre x = —6 favá strana L je
11 13 - 11 + 26 15

1 = ==
,

4 2 4 4
L =

pravá strana P je
-30 15

-8 “ ~T’P =

teda L — P, takže x = —6 je koreňom danej rovnice.
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10. Zostrojte trojuholník ABC, ak je daný uhol y, ťažnica
tc a rozdiel a — b ^ 0 jeho stráň. Urobte diskusiu o riešitel’-
nosti úlohy.

[Pokyn. Na riešenie móžete použit’ rovnoběžník ACBD.]
Riešenie (obr. 47, 48). Rozoznávajrtie dva případy:
[1] Nech je a — b = 0 (trojuholník ABC je rovnoramenný

s hlavným vrcholom C); pre tento případ riešenie len stručné
naznačíme.

[2] Nech je a — b >0.

Případ [1]. Rozbor. Z obr. 47 vidieť, že ak doplníme troj-
uholník ABC na rovnoběžník ACBD, dostaneme kosoštvorec
(v zvláštnom případe štvorec), lebo rovnoběžník, v ktorom
uhlopriečka rozpoluje uhol rovnoběžníka pri tom vrchole,
z ktorého vychádza, je kosoštvorec.

Z toho vyplývá konštrukcia (obr. 47). Zostrojíme uhol
<£ MCN — у a jeho os CU. Na osi CU zostrojíme úsečku
CD — 2tc. Bodom D vedieme po radě priamky m |j CM,
n || CN. Tieto štyri priamky určujú rovnoběžník ACBD, kde
A = n • CM, В = m • CN. Potom ABC je hladaný trojuholník,
a to rovnoramenný, ako vyplývá z toho, že ACBD je koso-
štvorec so stredom T, pričom je CT osou uhla <£ BCA a platí
CT = у CD
je daný uhol у dutý.

Případ [2]. Nech je
a — b > 0, t. j. a > b
(obr. 48). Rozbor. Před-
pokladajme, že sme zo- >

strojili trojuholník ABC, y*fjA
v ktorom je ВС — AC =
= a — b, BCA = у
a ťažnica CT = tc. Po-
ložme BC — a, AC — b,
teda je BC >AC. Zostroj-

tc. Úloha má zrejme jediné riešenie, pokial’
.

x icy

IT
i?\\

А/!K /

/ 4 U '

Obr. 47.

a-bsO
\
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me rovnoběžník ACBD, takže je CD = 2tc a T je jeho stredom.
Na polpriamke AD zostrojme bod E tak, aby bolo AE — b;
pretože je a > b, AD = CB = a, padne bod E dovnútra
úsečky AD a trojuholník АСЕ je rovnoramenný (AC = AE —

= b). Stanovme velkost’ uhlov pri základní CE trojuholníka
АСЕ. Nech/íD, AD' sú opačné polpriamky, pričom je CB |j AD',
takže uhly <£ BCA, <£ CAD' sú striedavé a zhodné, tj.

<7-6 >0

<£ C/íD' = y. Tento uhol je vonkajším uhlom v rovnoramen-
nom trojuho lniku /íCE a teda každý z uhlov pri základní CE
tohto trojuholníka je t. j. platí

<ý /i^c = = i у.

Tento uhol je teda polovicou dutého uhla у a preto je ostrý,
takže uhol <£ CED, к němu vedlajší, je tupý. V trojuholníku
CED teda poznáme dva strany ED = a — b, CD = 2rc,
<£ CED = 2 R — |y, tj. dve strany a tupý uhol proti jednej
z nich, takže musí platiť CD < ED, tj.

2rc > a — b. (1)
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Konstrukcia (obr. 48). Zostrojme úsečku ED = a — b, kde
a — b > 0 je dané číslo. Zvolme polrovinu q vyťatú priamkou
ED a zostrojme v nej uhol <£ DEF = 2 R — \y ; označme
ED' polpriamku, opačnú к polpriamke ED. Ďalej opišme
kružnicu k = (D, 2tc) a označme C spoločný bod kružnice k
a polpriamky EF. Ďalej v polrovine, opačnej к polrovine CED,
zostrojme uhol <£ ECA' = \y. Označme A spoločný bod
polpriamok ED', CA'. Nakoniec zostrojme rovnoběžník DACB.
Potom trojuholník ABC je jediné riešenie v zvolenej pol-
rovině q.

Dokaž. Označme T střed rovnoběžníka DACB. Pretože sa

uhlopriečky rovnoběžníka navzájom rozpoíujú, je TA = ТВ',
CT je teda ťažnicou trojuholníka ABC a podía konštrukcie bodu
C platí CT = | • CD = tc. Ďalej je podlá konštrukcie

| у = <£ D EC - < А СЕ,

<£AEC = <yACE т i y,

(2)
čiže

(2')
t. j.

AE=AC. (3)

Z rovnoběžníka DACB vyplývá
AD = ДС. (4)

Podlá konštrukcie leží bod Л na predížení úsečky DE za bod E
a vzhTadom na (4) a (3) platí

ED=AD -AE = BC - ЛС

a pretože podfa konštrukcie ED — a — b, platí skutočne
ВС — AC = a — b.

Pretože je AD || CB, platí
<£ /íEC = <); ECE (striedavé uhly)
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a porovnáním so vzťahom (2') vyplývá z toho

<£ AEC = <£ ECB = ^у.

Tieto uhly sú zrejme styčné, takže platí

<£ BCA - y.

Tým sme dokázali, že zostrojený trojuholník vyhovuje všetkým
požiadavkám, vysloveným v texte úlohy.

Diskusia. Dokážeme, že pri zvolenom umiestení úsečky
ED = a — b a pri zvolenej polrovine q možno zostrojiť právě
jeden trojuholník ABC, ktorý vyhovuje úlohe, a to za týchto
predpokladov:

1. Platí a — b > 0; 2. uhol у je dutý; 3. platí 2tc > a — b
[táto požiadavka nám vyplynula ako nutná podmienka pri
rozbore — pozři vztah (1)].

Podlá vety Ssn možno zostrojiť (ak nehladíme na umiestenie)
právě jeden trojuholník CDE z dvoch stráň ED — a — b,
DC — 2 tc a z tupého uhla <£ DEC — 2R — \y (lebo
\y < R). Právě z faktu, že uhol <£ DEC je tupý, vyplývá po-
žiadavka 2 tc > a — b. Týmito požiadavkami je zaistená exi-
stencia bodu C.

Zo vzťahov (2) a z faktu, že je \y < R, vyplývá, že
<£ D'EC + A'CE < 2 R. Pretože podlá Euklidovho postu-
látu majú polpriamky ED', CA' vnútri polroviny, opačnéj
к polrovine CED, spoločný bod A, tým je zaistená existencia
bodu A. Pretože body D, C, A zrejme neležia v priamke,
existuje trojuholník DAC a tým aj rovnoběžník DACB a teda
aj bod B.

Tým je tvrdenie, vyslovené na začiatku diskusie, dokázané
a úloha rozriešená.
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11. Riešte rovnicu

Х~П = 2
1 ф 1/3 1 + ]/2

Výsledok vyjádříte tak, aby v menovateli nebola odmocnina.
Řešení. Provedeme ekvivalentní úpravy rovnice (1). Zná-

sobme obě její strany číslem (l ф }/3) (l ф ; postupně
pak obdržíme

X— У2 Ф

УТ) (1 + У2) + (x- Уз) (1 + |/з) =
= 2 (1 + Уз) (1 + 1/2),

* (2 + У2 + уз) - (Уг + 2 + Уз + з) =

= 2 (1 + У2 ф Уз Ф ]/ 6),
X (2 4- 1;2 + Уз) 7 + 3 У2 + 3 ]/з ф 2 Уб

a protože je 2 + У2 ф Уз > 0, dostaneme

_ (7 ф 3 У2 + 3 Уз 4- 2 Уб)
2 ф ]/2 4- УЗ

Zlomek na pravé straně v poslední rovnosti rozšiřme číslem
2 4- ]/2 — Уз фО; dostaneme

_ (7 фЗ У2 4- 3 Уз 4- 2 Уб) • (2 4- У2 - Уз)
(2 + ]/2 )2 - 3

Označme М čitatele posledního zlomku a proveďme v něm
naznačené výkony; dostaneme

Af = 14 ф 6 У2 ф 6 УЗ ф 4 Уб“ ф 7 j/2 ф 6 ф 3 Уб ф
4- 4 УЗ - 7 ]/з - 3 (/б - 9 - 6 У2 =

= 11 ф 7 У2 ф 3 Уз ф 4 Уб.

(х

• (2)
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Jmenovatel N zlomku (2) je N = 4 + 4 \j2 + 2 — 3 — 3 + 4 [/ 2.
Tím ze vztahu (2) obdržíme

11+7 У 2 + 3 ]/з + 4 У6 (3)x =

3 + 4 У2
a po rozšíření zlomku na pravé straně číslem 3—4 j/2 pro
čitatele M' a pro jmenovatele N' tohoto zlomku dostáváme:

M' = ( 11 + 7 У2 + 3 Уз + 4 J/б) (3-4 j/2) =

= 33 + 21 У2 + 9 Уз + 12 У6 - 44 У2 - 56 - 12 Уб -

—32 У'З = - 23 - 23 1/2 - 23 У? = - 23 (1 + У2 + j/з),
N' = (3 + 4У2)(3 - 4[/2) = З2 - (4 1/2)2 = 9 - 16 • 2 =

= - 23.

Po dosazení do výsledku (3) dostaneme

23 (1 + 1/2 + l/З)
x =

-23
neboli

x = 1 + У 2" + Уз. (4)

Protože prováděné úpravy rovnice (1) byly ekvivalentní, musí
, být číslo ve vztahu (4) kořenem rovnice (1). Tím je řešení

provedeno.

Jiné řešení. Položme

x — У2 (1)= U,
1 + Уз"
X — Уз (2)= v,
1 4 У2
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takže danou rovnici lze psát

(3)и + v = 2.

Ze vztahu (1) dostaneme

x — w(l -(- }^3) + ]/2, (4)
ze vztahu (2) pak

x = ®(l + V2) + J/3; (5)
ze vztahu (3) plyne

(6)v — 2 — u.

Porovnejme pravé strany vztahů (4), (5) a dosaďme hned
ze vztahu (6) za v; obdržíme

«(1 + УЗ) + У2 = (2 - и) (1 + У2) + УЗ.
Odtud postupně dostaneme

и(2 + У2 + Уз) —2 -j- У2 -f- УЗ.
Protože je 2 + У2 + Уз Ф 0, plyne z poslední rovnice

и = 1.

Po dosazení tohoto výsledku do vztahu (1) obdržíme

x — У 2
1 +1/3

neboli

x = 1 + J/2 + УЗ .

Jestliže tedy daná rovnice má kořen x, potom je to nutně
číslo dané vztahem (7). Toto číslo skutečně vyhovuje dané
rovnici, jak se snadno přesvědčíme dosazením.

Podle řešení s. Vlasty Uhrové,
žákyně 9. tř., jsš, Lanškroun.

(7)
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Jiné řešení. Přičtěme ke každé z obou stran dané rovnice
číslo —2, a to vhodně zapsané; obdržíme postupně

x -]/2 1 + УЗ i x - ]!Ъ _ 1 + ]/2
1 + ]!2 1 + }Í2 ~
x — (l + ]/2 + V3)

_ л

“TTTf

1 + 1/3 1 + 1/3
x - (1 + 1/2 + Уз)

-!
1 +1'3

1 1
(1 + J/2 +[x — r

1 +1/3 1 +1/2
Druhý činitel na levé straně předchozí rovnice je zřejmě

kladné číslo a proto z této rovnice plyne

x - (1 + У2 + Уз) - 0
neboli

1 + У2 + Уз.x --

Zkouškou se snadno přesvědčíme, že právě vypočítané číslo x
je skutečně kořenem dané rovnice.

Podle řešení s. Petra Fesenko,
žáka 9.a tř., jsš, Chrudim.

12. Buďte dány dvě kružnice ky = (S13 rj), k2 = (č>2, r2),
které leží vně sebe. Označme А, В společné body úsečky S{S2
pořadě s kružnicemi kv k2. Proveďme tuto konstrukci: Se-
strojme kružnici / nad úsečkou S,č>2 jako průměrem a označme
M jeden z průsečíků kružnice / s osou p úsečky AB. Dále
označme Tl ф А, T2 ф В společné body kružnice m =
= (M, MA) pořadě s kružnicemi k13 k2.

Dokažte, že přímka TAT2 je společnou vnější tečnou obou
kružnic kl3 k2.
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I
Řešení (obr. 49). Označme P střed úsečky AB. Body na

přímce SXS2 leží v pořádku A, P, B, S2, neboť kružnice
kl3 k2 leží vně sebe; protože p je osa úsečky AB, odděluje obě
kružnice kx, k2. Proto existuje trojúhelník AMP, v němž je
<£ P = 90°. Kružnice l = (L, )e Thaletova a proto je

<£ StMS.y = 90°.

Kružnice klt m = (M, MA) mají střednou S}M a jejich spo-
léčný bod A leží mimo jejich osu SXM souměrnosti; proto mají
další společný bod 7\ ф A.

Protože bod M leží vně kružnice kl3 existuje rovnoramenný
trojúhelník MATX o hlavním vrcholu M. TrojúhelníkyAMP,
МАТг leží v polorovině pS1', podobně v opačné polorovině
pS2 leží trojúhelníky BMP (kde <£ P = 90°), MBT2 (kde
MB = MT2). Body T13 T2 jsou rovněž odděleny přímkou p.

Zaveďme nyní označení úhlů jako v obrázku; přitom je
ATxT2B tětivový čtyřúhelník. O zavedených úhlech platí:
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ос = а 5 со — со' (souměrnost podle osy Aí^)
/? = /Р, e = e (souměrnost podle osy MS2),

у — у' (souměrnost podle osy p).
Dále snadno vypočteme z pravoúhlých trojúhelníků velikost
úhlů <£ МЛР = R - y, < MATX = R - а, <£ AÍ5P = R -
— у, <£ МВТ2 = R — /?. Odtud dále

o/ = co = 2R — (R — oc-f-R — y) = oc d- у

(užitím vedlejších úhlů),
e' = £ = 2R-(R-/3 + R-y)=/3 + y

(užitím vedlejších úhlů).

3

(2)

(3)

Dále je
I = kATxT2 = 2R — <$.ABT2 (protější úhly v tětivovém
čtyřúhelníku ABT2TX) neboli

f = 2R-(R-/? + R-y) = |S + y; (4)

podobně se vypočte
(3)r] — а + У-

Protože <£ SlT1T2 = a>' -f- £, dostaneme ze (2) a (4)

<£ SXTXT2 = (а -T у) + (/? + у) = a + у + у + /? =
= <£ Б,М52 = 90° [viz (1)].

Podobně ze (3) a (5) plyne, že

<£ ^P^ = 90°.
Platí tedy o přímce PiP2, že

T\T2 J_ SxTXi TXT2 J_ S2T2,

tj. přímka Tx P2 je tečnou kružnic kx, k2 pořadě v bodech P,, P2,
což jsme měli dokázat.

Tím je řešení provedeno.
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7. Úlohy II. kola kategorie C

1. Riešte rovnicu

i + Уз 1 - ]/з
x -f Уз* - Уз

Urobte skúšku.

Riešenie. Ak číslo л: je riešením rovnice (1), potom postupné
platí

(1 + уз)(* + уз) + (1 - 1/3) (x Vil = 2>
x2 — *3

x (1 + Уз + 1 - Уз) 4- Уз + з - Уз + 3 = 2х2 - 6,
2х + 6 = 2х2 — 6,

О = х2 — х — 6,

(х — 3)(х + 2) — О.

Je teda buď х = 3, buď х — —2.
Urobme skúšku dosadením do rovnice (1). Označme pri-

tom L (x) favú stranu rovnice (1):
Případ [1]. Dosaďme x = 3; dostaneme

i + У'з i - Уз
з - Уз 1 з + уз

(i + Уз) (з + уз) + (i - Уз) (з - уз)

L(3) =

9-3

3 + з ]/з + Уз + з + з з уз - Уз + з 12
— = 2.

66
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Platí teda L (3) = 2, číže x = 3 je riešením rovnice (1).
Případ [2]. Dosaďme x = — 2. Dostaneme

l+J/3 1 - ]/зL (-2) =
2 -\- 1/3

(1 + 1/3) (-2 + 1/3) + (1 - 1/3) (-2 - ]/3)
2 - ]/3

4-3

2 + 2 1/3 - УЗ + 3 = 2.
Je teda L (—2) = 2, číže x = —2 je riešením rovnice (1).

Závěr. Daná rovnica má dva kořene:

= -2 - 2 ]/3 + j/3 + 3

x = 3, x = —2.

2. V rovině buď dán trojúhelník PCQ a uvnitř tohoto troj-
úhelníka bod T.

Sestrojte trojúhelník ABC tak, aby bod T byl jeho těžištěm,
bod A aby ležel na polopřímce CP a bod В na polopřímce CO.

Řešení (obr. 50). Jestliže ABC je hledaný trojúhelník o tě-
žišti T, potom polopřímka CT prochází střederp M strany AB;
pak podle známé poučky platí TM — \CT = CS, kde S'
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e střed úsečky CT. Jestliže sestrojíme rovnoběžník ACBN,
'e bod M zřejmě jeho středem. Podle toho provedeme kon-
strukci:

Sestrojme střed úsečky CT a na polopřímce CT určeme bod
takový, aby TM = CS. Dále na polopřímce CT se-

strojme bod N ф C takový, aby platilo MN = CM. Bodem N
sestrojme přímky a || CQ, b j| CP; společný bod přímek a,
CP označme A a společný bod přímek b, CQ označme B.
Potom je trojúhelník ABC hledaným trojúhelníkem.

Důkaz. Bod M je podle konstrukce středem úhlopříčky
CN rovnoběžníka ACBN a tedy i středem úsečky AB. Proto je
úsečka CM těžnicí trojúhelníka ABC. Podle konstrukce je
CT = 2 • TM a proto je bod M těžištěm trojúhelníka ABC.

Z postupu provedené konstrukce plyne, že úloha má vždy
řešení, a to jediné.

3. V rovině nech sú dané dve róznobežky p, q, ktorých
priesečník je A. Ďalej nech je daný bod M rózny od bodu A.

Zostrojte kosoštvorec ABCD tak, aby bod В ležal na priamke
p, bod D ležal na priamke q a aby priamka BD prechádzala
daným bodom M.

Urobte diskusiu riešitel’nosti.

Riešenie (obr. 51). Rozbor. Ak kosoštvorec ABCD je rieše-
ním úlohy, potom bod В ф A leží na priamke p, bod D ф A
leží na priamke q a priamka BD prechádza bodom M. Avšak
v kosoštvorci stoja uhlopriečky na seba kolmo a každá roz-
poluje uhol kosoštvorca pri vrchole, z ktorého vychádza. Preto
uhlopriečka AC _L BD leží na jednej z osí с, c róznobežiek p, q.

Poznámka. Ak sú PAP\ QAQ' dve róznobežky, rozpolúje
ich os c' uhly <£ PAQ, <£ P'AQ' a ide bodom A; druhá os c
rozpolúje uhly <£ PAQ, <£ P AQ a ide bodom A. (Platí
c _L c'.) Je teda priamka BD kolmá к jednej z oboch os с, c
a prechádza bodom M. Podlá toho urobíme konštrukciu.
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Konštrukcia. Zostrojme osi с, c róznobežiek p, q. Bodom M
veďme kolmice k J_ c, k' c . Ďalej označme B, D (v tomto
poradí) priesečníky priamky k s priamkami py q. Označme
dale) Br, D' (v tomto poradí) priesečníky priamky k! s priam-
kami p, q. Potom rovnoběžníky ABCD, ABCD' (kde zrejme
C leží na osi caC' leží na osi c') sú hladané kosoštvorce.

Dókaz urobíme pre rovnoběžník ABCD (pre druhý rovno-
bežník sa urobí podobné). Podlá konštrukcie je ABCD rovno-
bežník, v ktorom je BD _L c. Přitom os c uhla <£ BAD troj-
uholníka BAD stojí kolmo к jeho straně BD. Je teda priamka c
osou súmernosti tohto trojuholníka (bod A je samodružný,
priamky p, q sú súmerne združené, priamka BD samodružná
a preto body B, D sú súmerne združené). Je teda AB =AD
a rovnoběžník ABCD je kosoštvorec. Tým je dókaz ukončený.

Diskusia. Priamky с, c sú rožne; preto sú rožne aj priamky
k, k! a sú iste róznobežné s priamkami p, q. Ide o to, aby bolo
ВфЛ (popřípadě В' фЛ); to znamená, že priamka k (po-
případe k') nesmie prechádzať bodom A. Pretože je k c,
k' _L с', c J_ c, je k || c', k! || c. Ak priamka k prechádza bodom
Ay potom je k = c' a ak priamka k' prechádza bodom A, potom
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je k = c. Ak je k = c', leží bod M
bod M leží na osi c.

Obrátene: Ak bod M leží na jednej z osí c, c\ prechádza
jedna z priamok k', £ bodom Л; potom má úloha jediné riešenie
(pretože je M ф A, leží bod M nanajvýš na jednej z osí c, c').
Avšak ak bod M neleží na žiadnej z osí c, c', má úloha dve
riešenia.

Tým je riešenie úlohy ukončené.

osi c. Ak je k’ s c,na

4. Z téhož druhu oceli byly zhotoveny dvě tyče o čtvercových
průřezech. První tyč má délku 2 m a průřezem je čtverec o straně
5 cm.

O kolik procent je druhá tyč delší než první, jestliže průřez
druhé tyče má stranu o p procent menší, než je strana průřezu
první tyče a jestliže obě tyče jsou stejně těžké.

Řešení. Protože obě tyče jsou ze stejného materiálu a jsou
stejně těžké, mají sobě rovné objemy. Rozměry v dalším
udávejme v centimetrech a objemy v centimetrech krychlových.
Rozměry první tyče jsou

5; 5; 200;

rozměry druhé tyče jsou

Гос); 5(1_ioo); 200(1 + w)’5 1

kde číslo x udává počet procent, o něž je druhá tyč delší než
první (její délku zde považujeme za základ). Porovnáním objemů
obou tyčí dostaneme rovnici

')'(-*)■52 • 200 = 52 • 200 1 -
100
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Odtud snadno dostaneme

1

100
1 -

100

Vypočtěme neznámou x a postupně upravme:

100 1003
- 100 100 =x ----- T

('-i) (100 -pf

1003 — 100(100 -pf
(100 - pf~

100:! - 100(1002 - 200 p + p-)
(100 - pf

100 p (200 - p)
(100 - pf ’

takže
100 p (200 - p)

(100 -pf ’
x =

Protože je p < 100, jsou čísla 200 — p, (100 — pf kladná a tedy
i číslo x.

Tím je úloha rozřešena.

Poznámka. Ze získaného výsledku lze učinit zajímavý závěr
(který ovšem text úlohy výslovně nevyžaduje); můžeme totiž
odhadnout velikost čísla x. Platí

100 p (100 - p) 100 p • 100
x =

(100 - pf (100 - pf
1002 ploop

+
(100 - pf '100 -p
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10Ó
Protože je 100 > 100 — p > 0, je zlomek větší

100 -p
l 100 \2

\ 100 - p )než 1, tedy také > 1. Proto je

100 p
100 -p "" P’ (100-/))

Sečtením obou nerovností dostáváme

1002 p
T>P-

1002 pmp
Г >2л100 — p ' (100 -p)

tedy x > 2p. Druhá tyč je proto o více než o 2p procent
delší než tyč první.

8. Úlohy I. kola kategorie D

1. Buď dán obdélník ABCD o rozměrech AB = 2 m,
AD — 1,6 m. Uvnitř tohoto obdélníka leží bod X‘, přitom
jsou obsahy trojúhelníků ABX, BCX, CDX, DAX pořadě
úměrné číslům 5, 6, 3, 2.

a) Vypočtěte obsah každého z těchto čtyř trojúhelníků.
b) Vypočtěte vzdálenost bodu X od přímek AB, BC, CD, DA.
c) Sestrojte obdélník ABCD v měřítku 1:20 a v něm bod X,

který vyhovuje požadavkům úlohy.

Řešení (obr. 52a). a) Je AB = 20 dm, BC = 16 dm. Obsah
P daného obdélníka ABCD je 320 dm2. Označme P15 P2, P3,
PA obsahy (v decimetrech čtverečních) trojúhelníků ABX,
BCX, CDX, DAX. Podle textu úlohy platí

Pl = 5d, P2 — 6d, P3 — 3d, P4 = 2d, 0)
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kde číslo d > 0 musíme vypočítat. Platí
p = p, + p2 + p, + p4

neboli
320 - + 6J + 3ci + 2d;

odtud postupně dostaneme
\6d = 320,

320
d =

16 ’
d = 20.

Ze vztahů (1) pak dostáváme

Pl = 100, P2 = 120, P3 = 60, P4 = 40.
Skutečně jsou čísla Pt, P2, P3, P4 úměrná číslům 5, 6, 3, 2, jak
se přesvědčíme násobením čísel (2) číslem

Л + P2 + P3 + P4 = 320 (dm2).
b) Označme pořadč z;15 ©2, v3, г;4 vzdálenosti bodu X od

přímek AB, BC, CD, DA neboli výšky trojúhelníků ABX,
BCX, CDX, DAX. Platí pořadě (velikosti úseček v decimetrech,
obsahy v decimetrech čtverečních):

(2)

1
Součet

20 *

1 1
Рг — 2 BC '

P, = j-DA-vt

Л = J 'AB -vJ,

Pz ~ ~2 ' CD • v3,
neboli

1 1
100 = 120 = у 16 • »2,

40 = • 16 • ©4.
Z

у 20 • г>13

60 = у 20 • ю3,
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Po zkrácení a záměně stran rovnic dostáváme

1(Ц = 100, 8z>2 = 120, 10ť3 = 60, 8^4 = 40.

_1 1 1 \
10 5 8 5 To"’8"’Násobme obě strany každé z rovnic pořadě čísly

dostaneme
40120 60

Ví = 10, v.> — r* ш’ 8D
'

A

£
X"

g
OO

§1
Ю

.V V
A' 2,5 cm <

10 cm =J

Obr. 52 a, b.

neboli
— 10, v., — 15, z>3 = 6, v4 = 5.

Zřejmě platí vx + v3 — BC, tj. 16, dále = AB, tj. 20.
c) (Velikosti úseček udáváme v decimetrech; obr. 52b.)

Obdélník ABCD znázorníme obdélníkem AB'CD' v měřítku
1 11 1:20, tj. AB' — —— • AB, B C = — ' BC neboli A'B' =

20 20
1 1 8

=

20 ‘ 20; B C = — ■ 16 neboli Л'Я' = 1, B'C = — =
= 0,8. Sestrojení obdélníka AB'CD' je snadné a nebudeme
je popisovat.
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Nyní platí
10 5 v2 15 3

v3 6 3 5 5 1

Úsečku A'B' = 1 rozdělíme v poměru 3:1 [viz (3)1; pro-
vedeme to takto: Rozdělíme ji na 4 sobě rovné díly; 1 díl je

1 3 1
—; části budou—,—. Označme X'0 bod úsečky4 4 4

A'B', pro nějž platí A'X'0 = — neboli B'X3 — -^-(tj. A'XÓ =4 4
— 2,5 cm).

Úsečku 5'C' = 0,8 (tj. B’C = 8 cm) rozdělíme v poměru
5:3; to provedeme takto: Rozdělíme ji na 8 sobě rovných

dílů, 1 díl je -jj- BC = • 0,8 = 0,1 (tj. 1 cm); části budou
0,1 -5= 0,5, 0,1 • 3 = 0,3. Sestrojme na úsečce BC bod
Xo tak, aby platilo BX3 = 0,5 neboli CX'Q'= 0,3 (tj. C'X3 =
= 3 cm).

Nyní sestrojme bodem X'tí přímku x' j| B'C', bodem Xq
přímku x" || A'B'. Průsečík přímek jc', x" je bod X'. Tím je
úloha rozřešena.

(3)

1
т-А'В' =4

I

2. Určte počet všetkých prirodzených čísel menších než
5 000 000, z ktorých každé je súčasne dělitelně číslami tri,
páť a sedem.

Riešenie. Čísla 3, 5, 7 sú nesúdelitelné; každé číslo, ktoré
je súčasne dělitelné každým z týchto troch čísel, je násobkom
(celistvým) čísla 3-5-7 = 105. Máme teda určiť počet všet-
kých násobkov (prirodzených) čísla 105, z ktorých každý je
menší než 5 000 000. Delme 5 000 000:105; čiastočný podiel,
určený na jednotky, udává počet násobkov čísla 105, ktoré sú
menšie než 5 000 000.
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Výpočet.
5 000 000:105 147 619

800
650

200
950

5

Skúška delenia. Platí 47615 • 105 + 5 -4 999 995 + 5 =
= 5 000 000, lebo je

47 619 • 105
2 38095

4 999 995

Odpoved. Počet prirodzených čísel, z ktorých každé je děli-
telné číslami 3, 5, 7 a přitom menšie než číslo 5 000 000, je
47 619.

H

\\k4
úvVm \

29í
-V—ážuc

\
A

Obr. 53.

3. Na připojeném obrázku 53 vidíte kvádr o rozměrech
AB = 4 cm, AD — 3 cm, AE = 5 cm; tento kvádr je stmelen
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z krychliček o hranách délky 1 cm. Na povrchu kvádru je vy-
značen obdélník Qt o rozměrech 1 cm a 2 cm a dále pak dva
čtverce Q2, Q3 o stranách 1 cm.

Nad obdélníkem Qt vyrazíme z daného kvádru ve směru
hrany AD sloupec (tvaru kvádru) složený celkem ze šesti
krychliček; vyňatá část je znázorněna vlevo na obrázku. Tím
vznikne v daném kvádru otvor. Obdobným způsobem se-
strojíme otvor nad čtvercem Q2 dlouhý 5 cm ve směru hrany
AE a dále otvor nad čtvercem Q3 dlouhý 4 cm ve směru
hrany AB.

Vypočtěte objem a povrch (tj. včetně povrchu dutiny) tělesa,
které takto vzniklo.

Řešení. Abychom úlohu rozřešili, rozřežeme vzniklé těleso
(tj. daný kvádr po sestrojení otvorů) na vrstvy, a to rovinnými
řezy rovnoběžnými s rovinou horní podstavy EFGH daného
kvádru. Dostaneme tak pět vrstev, které jsou v obr. 54 se-
řazeny ve směru shora dolů; přitom si myslíme, že se na
vrstvu díváme shora (z nadhledu). Patří-li horní stěna krych-
ličky, obsažené v určité vrstvě, к povrchu tělesa, označíme ji

Počet stěn ve vrstvě krychliček,
které patří povrchu tělesa

15Značka

vrstvy
> 1pobočných

(v obrázku
tlustě

vytažených)

£
u a p

CU M >

horních stěn dolních stěn JU
•—< Ch

<u >a>

и «

(+) (-)

и18 3411 5а

b 2020 6
18 21 93c

d 20 11182
29 111811e

Součet 124 48
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v našem obrázku značkou -f; patří-li spodní (dolní) stěna
krychličky к povrchu tělesa, označíme ji v obrázku značkou —.

Jestliže náleží povrchu pobočná stěna krychličky, vyznačíme ji
v obrázku vrstvy tlustou úsečkou. Podle toho spočítáme v každé
vrstvě počet stěn krychliček, které patří povrchu tělesa; zá-
roveň spočítáme i počet krychliček v každé vrstvě.

+ ; ± i •+ : +
+ !

+ I

f- - -

+

+4- ; z : + +

d)a)

□

□
+

b) <0

■

+ -f ■ +
■

i

1

c)
Obr. 54.

Povrch vzniklého tělesa je tedy 124 cm2, objem tělesa je
48 cm3. (Odpadlo 60 — 48 = 12 krychliček.)
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Jiné řešení. Na obrázku 55 máme znázorněno těleso, které
jsme z kvádru odebrali. (Svislé šrafy značí zelenou barvu,
šikmé šrafy červenou a vodorovné žlutou; stejně jsou
obarveny i stěny vzniklé dutiny.)

Označme V objem a S povrch původního kvádru a V, S'
objem a povrch kvádru
s dutinou.

Dutina nad Qt vznikla
vyjmutím šesti krychlí a
vezmeme ji celou; má
objem Vl — 6 cm3, povrch

= 14 cm2.
Dutina nad Q2 (vznikla

vyjmutím dalších tří krych-
lí); objem je V2 = 3 cm3,
povrch So

Dutina nad Q3 (vznikla
vyjmutím ještě dalších tří
krychlí); objem je V3 =
= 3 cm3, povrch S3 =
— 12 cm2.

Obsahy obrazců Q„ Q2, Q3 označíme Qlt Q2, Q3.
Podle obrázku vidíme, že platí (objem je vyjádřen v cm3,

povrch v cm2):
V = V - (Vx + V2 + K3) = 4 • 3 • 5 - (6 + 3 + 3) =

12 = 48;
S' = 5 + (5, + S2 + S3) - 2 (Q, + Q, + Q3) =

= 2 • (4 • 5 + 3 • 5 + 4-3) + (14 + 12 + 12) - (4 + 2 + 2) =

červená

12 cm2.

60

94 38 8+
= 124.

Kvádr s dutinou má objem 48 cm3 a povrch 124 cm2.
Podle řešení Jaroslava Šelbického,
8. tř., l.osš, Turnov.
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4. Nech sú dané dve rožne čísla a, b, ktoré majú túto vlast-
nosť: Rozdiel prvého čísla a jeho druhej mocniny sa rovná
rozdielu druhého čísla a jeho druhej mocniny.

Dokážte, že potom sa súčet čísel a, b rovná číslu 1.
Obrátene, ak o dvoch róznych číslach a, b platí a + b = 1,

potom rozdiel prvého čísla a jeho druhej mocniny sa rovná
rozdielu druhého čísla a jeho druhej mocniny. Dokážte to
a uveďte příklad takých čísel.

Riešenie. I. Dané čísla označme a, b. Ich rozdiel a — b je
číslo rožne od nuly (kladné alebo záporné). Druhé mocniny
daných čísel sú a2, b2. Rozdiely a — a2, b — b2 sa podlá před-
pokladu navzájom rovnajú, t. j. platí

a — a2 = b — b2. (1)

Máme dokázat’, že o číslach a, b platí a + b — 1.
Dokaž. Rovnost’ (1) upravme na tvar

a — b — a2 — b2
alebo

a — b = (a — b) (a + b).

Číslo a — b je rožne od nuly; preto ním móžeme obe strany
rovnosti (2) deliť. Dostaneme

(2)

1 = a -(- b.

Súčet a -f b sa teda rovná číslu 1, čo sme mali dokázat’.

II. Obrátene, predpokladajme, že o róznych číslach a, b
platí

a -f b = 1.

Máme dokázat’, že potom platí tiež rovnost’

a — a2 — b — b2.
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Dokaž. Znásobme obe strany rovnosti
a -f b — 1

číslom a — b ф 0. Dostaneme rovnost’

(a + b) (a — b) = a — b
alebo

a2 - b2 = a - b.

Z toho vhodnou úpravou dostaneme
a — a2,b -b2

čo sme mali dokázat’.

—

, takže je a2 = — , b2 =
4 16

Příklad 1. Nech a = — , b —

1
Tieto čísla majú vlastnost’ uvedenú v úlohe, lebo je

9 12 9 3

Тб" ~ Тб " Тб ~~ Тб ’

16 *

2 3a — аг = —

4

1 41 1 3
b - b2 = -

4 16 16 16 16 '

Skutočne o nich platí
1

a+b=-+—
4 4

Také čísla 1’ahko nájdeme právě pomocou obrátenej vety, t. j.
keď výjdeme od róznych čísel, o ktorých platí a + b — 1.

Příklad 2. Popísané vlastnosti majú napr. tieto čísla, ako
sa 1’ahko přesvědčíme:

!■*- 8
a) a = 0, b = 1; b) a = — 1, b — 2; c) a = — 3 ‘

Poznámka. Ak je však a — b,čo je textom úlohy vylúčené,
potom majú vlastnost’ a + b = 1 jedine čísla a = b = 2-

i
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5. Na obrázku 56 vidíte plechovú súčiastku, ktorej obvod
sa skládá z oblúkov zhodných kružnic o danom poloměre a.
Středy oblúkov sú v obrázku vyznačené krúžkami. Přitom
ABCD, MNPQ sú štvorce, ktorých uhlopriečky ležia v dvoch
navzájom kolmých priamkach MACP, NBDQ. Přitom je
AB = 4a, MN = 6a.

a) Narýsujte obrázok súčiastky (urobte pre a = 2,5 cm).
b) Vyjadrite obsah obrazu súčiastky pomocou čísla a.
c) Vyjadrite pomocou čísla a váhu 1000 kusov súčiastok,

ak 1 m2 plechu, z ktorého sú vyrobené, váží 8,5 kg. Výpočet
urobte pre a = 2,5 cm.

Řešení, a) Viz obr. 56 (není ve skutečné velikosti).
b) Protože číslo a udává velikost úseček v centimetrech,

provedeme výpočet obsahu P vyšrafované plochy v obr. 56
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v centimetrech čtverečních. Obvod čtverce ABCD rozděluje
plochu součástky ve dvě části. První část je znázorněna vy-
šrafovanou plochou ve čtverci ABCD\ její obsah označíme x.
Druhá část je znázorněna čtyřmi vyšrafovanými plochami,
z nichž každá leží ve čtverci MNPQ. Jedna z těchto ploch je
znázorněna ve zvětšení v obr. 57, a to plocha, která leží při
vrcholu A; její obsah označíme j>. Výpočty provedeme odděleně.
Obsah čtvrtkruhu o poloměru a označíme К; obsah celého
kruhu o poloměru a je

4 К = xa2. (O

I. Výpočet obsahu x první části vyšrafované plochy: Obsah
x dostaneme, když od obsahu čtverce ABCD odečteme obsah
čtyř polokruhů o poloměru a (středy polokruhů jsou v bodech
1, 2, 3, 4). Čtverec ABCD má stranu 4a; jeho obsah je (4a)2 =
= 16a2. Obsah jednoho polokruhu je 2 K, všech čtyř je 8 K.
Proto je

x = 16a2 -SK. (2)

II. Výpočet obsahu druhé části vyšrafované plochy: Obsah
у plochy naznačené v obr. 57 dostaneme, když od obsahu

čtverce MAjAA2 o straně
MAX — a odečteme obsah jed-
noho čtvrtkruhu (jeho střed je
v M a poloměr je а) а к tomu
přičteme obsahy dvou čtvrt-
kruhů o středu A a poloměru
a. Obsah čtverce МАгАА2 je
a2, obsah čtvrtkruhu je K; je
tedy у = (a2 — K) + 2 К neboli
у = a2 + K. Obsah 4у druhé
části je tedy

л

Ai 4y = A (a2 + K). (3)/n

Obr. 57.
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III. Výpočet obsahu P celé vyšrafované plochy: Tu platí
= x -f 4y. Dosaďme sem z výsledků (2) a (3); dostanemeP

postupně
P = (16a2 — 8 K) + 4 (a2 -f K),
P = 16a2 - 8 К 4- 4a2 + 4 K,
P - 20a2 4JC.

Do tohoto výsledku dosadíme ze vzorce (1); obdržíme postupně

7Ш2,P = 20a2

P a2 (20 - тс),

což je hledaný výsledek. Tím je úloha b) rozřešena.
c) Označme Q váhu 1000 kusů součástek v kilogramech.

Protože je udána váha 1 m2 plechu, převedeme obsah P ve
výsledku (4) na čtvereční metry. Platí 1 m2 = 100 dm2 =
= 100- 100 cm2 = 10 000 cm2. Obsah součástky v metrech

z) a váha jedné sou-
1

čtverečních je proto

částky v kilogramech je

• a2 (2010 000

1
• a2 (20 - 7t) • 8,5.10 000

Váha Q je lOOOkrát větší, tj.
1

Q =
■ a2 (20 - те) • 8,5 • 1000 ;10 000

postupnou úpravou dostaneme
1

Q = — • a2 (20 - тс) • 8,5,10

O = a2 (20 - тс) • 0,85.
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Jestliže je a — 2,5, dostaneme odtud postupné

Q = 2,52 • (20 - тс) • 0,85,

Q = 6,25 • 0,85 (20 - тс).
22

Výpočet proveďme pro přibližnou hodnotu — čísla 7c. Tu
140 - 2222 118

je 20 — 7Г = 20 — 7 7

6,25 5,31
x0,85 xl 18

31 25
5 00 0

42 48
53 1

531 '5,31 25
626,58 = 627

118 1 1
= (5,31 * 118) • у = 627 •2^5,31- —

— =89.

1000 kusů plechových součástek váží asi 90 kg.
*

Stručné, ale obsahově stejné řešení
podala Jana Valkounová,
8.tř., 2. osš, Turnov.

6. Tvůj spolužák si myslí tři bezprostředné následující při-
rozená čísla a vypočítá jejich součin. Aniž bys znal myšlená
čísla dokaž, že výsledný součin je násobek čísla 6.

Řešení. Tři bezprostředně po sobě následující přirozená
čísla, která si žák myslí, označme

a5 ci ci ~[” 2. co
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jsou to tedy tři bezprostředně po sobě následující čísla z po-
sloupnosti přirozených čísel

1, 2, 3, 4, . . . .

Součin čísel (1) je
x = a (a -j- 1) (a + 2).

Máme dokázat, že číslo x je dělitelné šesti.
Známe větu: Číslo je dělitelno šesti, jestliže je dělitelné

dvěma i třemi.
Naše číslo x bude tedy jistě dělitelno šesti, když jedno z čísel

(1) bude dělitelné dvěma a dále, když jedno z čísel (1) bude
dělitelné třemi.

Víme však, že každé druhé číslo v posloupnosti přirozených
čísel je dělitelné dvěma. Čísla (1) jsou tři bezprostředně po sobě
následující přirozená čísla; je tedy alespoň jedno z nich děli-
tělně dvěma a tím i číslo x je dělitelné dvěma.

Dále víme, že každé třetí číslo v posloupnosti přirozených
čísel je dělitelné třemi. Čísla (1) jsou tři bezprostředně po sobě
následující čísla a tedy jedno z nich je dělitelné třemi a tím
i číslo x je dělitelné třemi.

Je tedy číslo x dělitelné dvěma i třemi a tím i šesti.

Jiné řešení. Označme n, n -f- 1, n + 2 tři bezprostředně
po sobě následující přirozená čísla. Když alespoň jedno z těchto
čísel bude dělitelné třemi a když alespoň jedno bude sudé,
pak bude jejich součin dělitelný šesti.

I. Dčlíme-li číslo n třemi, může vyjít zbylek:
a) nula, tj. číslo n je dělitelné třemi;
b) jedna, pak je n + 2 dělitelné třemi;
c) dvě, pak je n -f- 1 dělitelné třemi;
Jeden z těchto tří případů musí nastat, a proto je vždy

jedno ze tří čísel n, n + 1, n + 2 dělitelné třemi a tím i jejich
součin.

II. Je-li číslo n sudé, je i součin našich čísel sudý.
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je-li číslo n liché, je n + 1 sudé a tím i součin našich čísel.
Tak jsme dokázali, že náš součin je dělitelný šesti.

Podle řešení Miroslava Třešňáka,
8.tř., l.osš, Turnov.

7. Zaiste viete, ako smie na šachovnici ťahať dáma (krá-
1’ovna). Určte teda počet všetkých ťahov, ktoré móže dáma
vykonat’ na prázdnej štvorcovej šachovnici o 64 poliach. (Pri-
tom považujeme ťah z póla A na iné pole В za rózny od ťahu
z роГа В na pole A.)

Riešenie. V nasledujúcej schéme je znázorněná šachovnica
a na každom poli je uvedené, kolko móže z něho vykonat’
královna ťahov.

21 21 212121 21 21 21

23 23 I 2321 23 23 23 21

21 23 25 25 25 25 23 21

21 23 25 i 27 27 25 23
. 21

21 23 25 I 27 i 27 25 23 ■ 21

21 23 25 25 25 ! 25 ; 23 21

21 23 23 23 23 ; 23 23 I 21

i

21 , 21 I 21 21 21 21 21 21

I
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Htadaný počet je 21 • 28 + 23 • 20 + 25 • 12 + 27 • 4 =
= 588 + 460 + 300 + 108 = 1456.

To isté riešenie zaslal M. Žák,
8.tr., osš, Turnov.

8. Je daný pravidelný šesťuholník A1A2A3A4AbA6 so stredom
5 a so stranou velkosti 5 cm. Zostrojte rovnostranný trojuhol-
nik MlN1P1 ako na obrázku 58, pričom jeho strana má velkost’
5 cm a vrchol Nl je stře-
dom úsečky AXA2; střed
tohto trojuholníka označ-
te Oj.

Daný trojuholník sa
kotúla po obvode daného
šesťuholníka a to takto:
Trojuholník sa najprv
otočí okolo bodu Nt do
polohy M2N2P2. Potom
sa trojuholník M2N2P2
otočí okolo bodu A2 do
polohy M2NÓP2 ako na
obrázku. Ďalej sa troj-
uholník М'ЖР2 otočí
okolo bodu P2 atď., až
sa vráti do povodnej po-
lohy.

Narýsujte dráhy bodov Aí, a Ot v priebehu celého pohybu.
Riešenie vidieť na obrázku 59.

9. Ozubené pedálové kolečko jízdního kola (bicyklu) má
48 převodních zubů; malé převodní kolečko na zadním kole
má 20 zubů. Průmčr zadního kola bicyklu je 72 cm. (Uvědomte
si, že vzdálenost dvou sousedních zubů u obou koleček je táž.)
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Cyklista jede po vodorovné silnici stálou rychlostí 25 km za
hodinu na plný záběr (šlape rovnoměrně).

a) Kolikrát musí šlápnout za jednu minutu, aby si udržel
stálou rychlost 25 km za hodinu?

b) Kolikrát musí šlápnout na trati dlouhé 4,5 km ?
Řešení, a) Označme d = 72 cm průměr zadního kola

bicyklu a p velikost jeho obvodu (v centimetrech); pak platí

p = ~ d.
Za hodinu urazí bicykl 25 km, tj. 25 • 1000 • 100 cm neboli

(1)
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2 500 000 cm. Počet otoček zadního kola bicyklu na dráze
25 km je

'
2 500 000

X =

P
a po dosazení z (1)

2 500 000
X= - (2)72 7Г

22
Položme přibližně тс = —; potom ze vztahu (2) dostaneme

2 500 000
X =

22

T'12
neboli

2 500 000 • 7
(3)X = -

22 • 72

Na dráze 25 km vykoná zadní kolo X otoček, kde X je udáno
vztahem (3); týž počet otoček vykoná i malé ozubené kolečko,
neboť je pevně spjato se zadním kolem.

Vzdálenost dvou sousedních zubů u obou ozubených ко-
leček je táž. Malé ozubené kolečko má 20 zubů, pedálové ozu-
bené kolečko má 48 zubů. Otočí-li se na dráze 25 km malé

20
ozubené kolečko X krát, otočí se pedálové kolečko X • —— krát,48

20
neboť obvod malého ozubeného kolečka je — obvodu pedálo-48
vého ozubeného kolečka. Počet potřebných šlápnutí je roven

20
dvojnásobku tohoto čísla, tj. X • — • 2.

48

Dosaďme sem z výsledku (3); dostaneme
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2 500 000-7 20
n

22 • 72 48 ’ ~
2 500 000-7-20-2

22 • 72 • 48

2 500 000 • 7 • 10

11 • 36 • 48

To je přibližný počet šlápnutí za jednu hodinu; za jednu
minutu je to —- tohoto čísla, tj.60

2 500 000 • 7 • 10 2 500 000 • 7
“

11 -36-48-6 * (4)11 • 36 • 48 • 60

Proveďme potřebné výpočty:
2 500 000 • 7 = 17 500 000;

11 • 36 • 48 • 6 = 11 • 216 • 48 = 114 048,

(5)

(6)
neboť je

216 10 368
x 11x48

864 10 368
103 681728

10 368 114 048

Určeme dále částečný podíl čísel (5) a (6):

17 500 000:114 048 | 153
6 095 20

392 800
50 656

Odpověd. Cyklista musí v každé minutě šlápnout asi 154krát.
b) Počet potřebných šlápnutí pedálem na drahách 4,5 km

a 25 km je v témže poměru jako velikosti těchto drah; poměr
drah je

194



4,5 0,9
25 “ 5 ’ (7)

Počet šlápnutí na dráze 4,5 km vypočteme, když číslo dané
vztahem (3') znásobíme číslem ze vztahu (7); dostaneme
postupně

5 • 2 500 000 • 7 • 0,95 2 500 000 • 7 0,9
6 • 22 • 72 • 522 • 72 56

1 750 0001 • 250 000 • 7 • 15 • 250 000 • 7 • 9

6-22-72-5 6-22-8-1 48-22

1 750 000

1 056 ’
Tu je

1 750 000 :1 056 | 1 657
694 0

60 40
7 600

208

Odpověd. Na dráze 4,5 km je počet šlápnutí cyklisty asi
1660.

Jiné řešení, a) Otočí-li se pedálové kolečko jednou, otočí
48

se zadní kolo — = 2,4krát; na to, aby se pedálové kolečko
otočilo jednou, musí cyklista šlápnout dvakrát.

Při jednom šlápnutí ujede zadní kolo dráhu (v centimetrech)
Ti d • 2,4 . 3,14 • 72 • 2,4 542,592

= 271,296 = 271, »
22 2

kde d je průměr pedálového kolečka.
Na dráze 25 km = 2 500 000 cm cyklista šlápne tolikrát,

kolik je 2 500 000:271; to je přibližně 9225.
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Za jednu hodinu tedy šlápne 9225krát a za jednu minutu
9225:60 - 153,75, tj. přibližně 154krát.

4}5
b) Poměr drah 4,5 km, 25 km je ; v témže poměru se25

změní i počet šlápnutí, tj. číslo 9225; dostaneme

4,5
9225 • -?=- = 369 • 4,5 = 1660,5 = 1660.25

Na dráze 4,5 km musí cyklista šlápnout asi 1660krát.
Podle řešení Veroniky Malé, 8. tř.,
2. osš, Turnov. — Jiné řešení jsme
ještě dostali od Zdeňka Vaňka,
8. tř., l.osš, Turnov.

10. Rozhodněte nejprve, pro která čísla a, b, c má smysl
výraz

(a-by 0b ~ cfV = +
a- — ab — ac + bcc2 — ca — ab + 6b

(с - аУ (1)b2 — bc — ba + ca

Potom dokažte, že pro každou takovou trojici čísel a, b, c
je výraz V roven témuž číslu; vypočtěte toto číslo.

Řešení. Platí postupně:
c2 — ca — cb ~\~ ab = c (c — a) — b (c — a) =

(2)= (c — a) (c — b).
Podobně dokážeme, že platí

a2 — ab — ac -f bc — {a — b) (a — c),
b2 — bc — ba + ca = (b — c) (b — a).

0)
(4J
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Jednotlivé zlomky na pravé straně vztahu (1) mají smysl,
jestliže jejich jmenovatelé jsou různí od nuly; vzhledem к roz-
kladům (2), (3) a (4) musí platit

(c — a) (c — b) Ф 0, (a — b) (a — с) ф 0,
(6 — c) (b - а) ф 0. **

To znamená, že nesmí být c — a — 0 nebo c — b — 0 nebo
a — b = 0, tj. nesmí být c = a nebo c — b nebo a — b neboli
žádná dvě z čísel a, b, c si nesmějí být rovna; jen pro taková
čísla a, b, c platí dále uvedené úvahy.

Společný jmenovatel zlomků na pravé straně vztahu (1)
vzhledem ke (2), (3) a (4) je

v

n = (a — b) {b — c) (c — a);

protože je c — b — — (b — c), musíme první zlomek v (1)
rozšířit číslem — (a — b). Stejně se usoudí, že druhý zlomek
v (1) rozšíříme číslem — (b — с) a třetí číslem — (c — a).
Dostaneme postupně:

- (a - b) (a - bf

(5)

-{b-c)(b- cfV ■f
и

(c a) (c — a)2
гг

1
- - - [(a - &)3 + (6 - c)3 + (c - a)3] =

n

(a3 — 3 a26 + 3 ab2 — Ья + № — 3 62c T
1

+ 3 6c2 — c3 4- c3 — 3 c2a + 3 ca2 — a3) =

1
[— 3 (a2b — a62 + b2c — fee2 -f c2a — ca2)] =

гг

3
= — (a2b — ab2 + 62c — 6c2 + c2a — ca2).

n
(6)

197



Ze vztahu (5) však plyne postupně

n = (ab — ac — b2 + bc) (c — a) = .

= ((abc — ac2 — b2c + bc2 — a26 -(- a2c -{- ab2 — abc) =

= — (a26 — ab2 -f- b2c — 6c2 + c2a — ca2);

po dosazení tohoto výsledku do (6) dostáváme

V = -3.

Je tedy výraz V roven číslu —3 pro všechny takové trojice
čísel a, b, c, pro které má smysl.

*
4

Jiné řešení. Daný výraz upravme takto:

(a - b)2 (b - c)2V = +
(c - a) (c - 6) (a — 6) (a — c)

(c - a)2
0)í

{b — c)(b — a)

Odtud je vidět, že výraz V má smysl pro všeclma taková
čísla a, b, c, pro která neplatí žádná z rovností:

a — b, a = c, b — c. (2)
Nyní položme

a — b = x, a — c=yi b — c = z;

je tedy
c — a — —у, b — a — —x.

Po dosazení obdržíme

x2 г* (-У)2
(-3>) (-*) + xy + ar • (-*) '
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Po úpravách je
x2 z2 y2

V= — + Z-
yz xy xz

Dosaďme nyní zpět; dostaneme

x3 4- za — y3
xyz

(a — b)z 4- (b — c)3 — (a — c)3V =

(a — b) (a — c) (6 — c)
a3 — 3a26 + 3ab2 -bz-\-bz — 3b2c + 3bc2 — c3 — (a3 — 3a2c + 3ac2 — c3)

(a2 — a6 — ac 4 6c) (6 — c)
—3 (a26 — a62 4- b2c — bc2 — a2c 4- <зс2)

a26 — ab2 — a6c 4- b2c — a2c 4 obc 4- ac2 — bc2

—3 (a2b — ab2 4- b2c — bc2 — a2c + ac2)
= -3.

a2b — ab2 + b2c — bc2 — a2c 4- cic2

Dosadíme-li tedy do výrazu V jakákoli čísla a, b, c, o nichž
neplatí rovnosti (2), vyjde nám vždy —3.

Podle řešení Jitky Třešňákové,
8.a tř., osš, Na dílech,
Gottwaldov — Zlín.

11. Nech je daná kružnica k = (S, r) a priamka p vo vzdia-
lenosti v = od bodu S.

Zostrojte štvorec ABCD, ktorý je opísaný kružnici & a kto-
rého vrchol 4 leží na priamke p. Dokážte, že úloha má právě
dve riešenia.

Riešenie (obr. 60). Rozbor. Ak má úloha riešenie, musí byť
daná kružnica k hladanému štvorcu ABCD vpísaná. Vieme, že
poloměr kružnice štvorcu vpísanej sa rovná polovici jeho strany;
preto v našom případe musí byť r — \AB. Každý štvorec
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A0BqC0D0, opísaný danej kružnici k, má teda stranu velkosti
2r. Polovica 5C0 uhlopriečky takého štvorca je přeponou
pravoúhlého rovnoramenného trojuholníka SC0Q, ktorého od-
vesny majú velkost’ r. Úsečka SC0 je teda zhodná s úsečkou SA
(je polovicou uhlopriečky AC hladaného štvorca); leží teda

bod A na kružnici m = (S3 SC0) a podlá požiadavky úlohy aj
na priamke p, t. j. je jedným zo spoločných bodov priamky p
a kružnice m. Na základe tohto výsledku urobíme konštrukciu.

Konstrukcia (obr. 60). Najprv narýsujeme dané útvary.
Opišme kružnicu k = (S, r) a zvolme na nej bod P. Danů
priamku p zvolíme tak, že bude osou úsečky SP. Opišme teda
kružnicu l = (P, r) a označme M, N spoločné body kružnic
k, /; priamka AíiV je zrejme osou úsečky SP a preto je p = MN.

Zostrojíme pomocný štvorec A0B0C0D0, opísaný kružnici k,
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napr. tak, že jeho středná priečka leží v priamke SP. Označme
Q protilehlý bod к bodu P kružnice k (t. j. SQ = SP; SP, SQ
sú opačné polpriamky). Stačí, ked zostrojíme len vrchol C0
pomocného štvorca, t. j. ked zostrojíme pomocný trojuholník
5C0Q. Za tým účelom zvolme jednu z oboch opačných pol-
rovin vyťatých priamkou SQ; túto polrovinu označme q.
Zostrojme teraz bodom Q kolmicu q к priamke SQ; na tejto
kolmici q zostrojíme v polrovine q úsečku QC0 = r. Tým sme
zostrojili pomocný trojuholník SC0Q a tým aj poloměr SC0
pomocnej kružnice m (t. j. polovicu uhlopriečky štvorca).

Opišme kružnicu m = (S, SC0) a označme А ф A' prieseč-
niky kružnice k a priamky p. Ďalšiu konštrukciu urobíme pre
bod A (pre bod A' sa urobí podobné).

Označme C protilehlý bod kružnice m к bodu A. Zostrojme
kolmicu s _L AC bodom 5 a označme В, D jej priesečníky
s kružnicou m. Potom je ABCD jeden zo štvorcov, ktorý sme
mali zostrojiť.

Teraz zostrojme štvorec A'B'C'D', ktorý je súmerne zdru-
žený к štvorcu ABCD podlá priamky PSQ. Aj tento štvorec je
riešením úlohy.

Dokaž. Dokážeme, že štvorec ABCD je riešením úlohy.
Predovšetkým ABCD je štvorec, lebo jeho uhlopriečky sa na-
vzájom rozpolujú, stoja na seba kolmo a sú zhodné (je totiž
SA = SC — SB = SD). Ďalej bod A skutočne leží na priamke
p. Přitom sú štvorce A0B0C0D0, ABCD zrejme zhodné a majú
spoločný střed 5; preto je k kružnicou vpísanou štvorcu ABCD.

Že štvorec A'B'C'D' je riešením úlohy, vyplývá zo súmer-
nosti podlá priamky PSQ.

Diskusia. Podlá konštrukcie bodu C0 je SC0 > SQ a teda
SC0 > r. Pretože vzdialenosť v středu S kružnice m od priamky
p je |r, ale poloměr SC0 tejto kružnice je váčší než r, je
vzdialenosť v menšia než poloměr SC0. Z toho podlá známej
vety z planimetrie vyplývá, že priamka p je sečnicou kružnice m
a spoločné body A, A' týchto čiar sú skutočne rožne.
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Ku každému z bodov A, A' možno zostrojiť právě jeden
štvorec. Ak sa nám podaří dokázat’, že štvorce ABCD, A'B'C'D'
nesplývajú, bude tým dokázané, že úloha má dve riešenia.

Z predošlého vyplývá, že A, A' sú rózne body. Dokážeme,
že bod D v obr. 60 je rózny od bodu A'. Podlá konštrukcie je

< ASD = 90°.

Zo súmernosti bodov A3 A' podia priamky PSQ vyplývá, že

<£A’SA = 2- <ŽPSA.

Podlá konštrukcie bodu M je SP — PM — SM = r a SPM
je rovnostranný trojuholník, takže je <£PSM — 60°. Ale bod
A leží zvonku kružnice k na priamke p\ preto je <£PSA > 60°.
Preto zo vztahu (2) dostaneme

(1)

(2)

^A'SA > 120°,

kdežto podlá vzťahu (1) je
< ASD = 90°.

Preto sú SD, SA' rožne priamky a body D, A' sú rózne.
Tým sme dokázali, že oba zostrojené štvorc<t ABCD3 A'B'C'D'

nesplývajú a úloha má dve riešenia.
Podobné úlohu riešila Vítězslava Kleinová (8. tř., 2. osš,

Turnov), ktorá vyslovila bez dókazu vetu: Každej kružnici k
možno opísať množinu zhodných štvorcov, ktorých strany sa
rovnajú priemeru kružnice k. Vrcholy všetkých týchto štvorcov
ležia na kružnici m (pozři obr. 60) sústrednej s kružnicou k
a s polomerom, ktorý sa rovná polovici uhlopriečky takého
štvorca.

12. Bud dána přímka p a mimo ni bod S‘, dále bud dán
ostrý úhel a. Sestrojte kosočtverec ABCD, který má tyto
vlastnosti:
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(1) Vrcholy А, В leží na přímce p.
(2) Bod S je středem kosočtverce.
(3) Úhel <£ DAB = a.

Dokažte, že úloha má právě dvě řešení.
Řešení (obr. 61). Rozbor. Předpokládejme, že jsme sestrojili

kosočtverec ABCD, který splňuje požadavky vyslovené v úloze.

"I

A' LPВ В\
I 4

Obr. 61.

7A

Označme P, Q paty kolmice vedené bodem S к rovnoběžkám
AB, CD. Potom v trojúhelníku SAP je odvěsna SP dána svou
velikostí i polohou, dále je <£ APS = 90° a konečně je <£ SAP—
— |a (víme, že úhlopříčka kosočtverce půlí úhel při vrcholu
kosočtverce, z něhož vychází). Na tomto základě provedeme
konstrukci.

Konstrukce (obr. 61). Bodem S sestrojme kolmici к přímce/)
a označme její patu P. Dále sestrojme na polopřímce opačné
к polopřímce SP úsečku SQ = SP a bodem Q veďme přímku
q ]| p. Označme PL, PL obě opačné polopřímky, v něž bod P
rozděluje přímku p. V pQlorovině pS sestrojíme úhly <); LPM,
<£ Ь'РМ\ jejichž velikost je |a.
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Konstrukci provedeme jen pro úhel <£ LPM (pro úhel
<£ L'PM' se konstrukce provede stejně). К přímce PM veďme
bodem rovnoběžku и a označme pořadě A, C průsečíky
přímky и s přímkami p, q. Dále bodem 5 sestrojme kolmici v
к přímce и a označme В průsečík přímky v s přímkou p.
Bodem A veďme rovnoběžku t s přímkou ВС a označme D
její průsečík s přímkou q. Potom je ABCD kosočtverec a vy-
hovuje požadavkům úlohy.

Důkaz. Nejprve musíme dokázat, že čtyřúhelník ABCD je
kosočtverec.

Podle provedené konstrukce je CD \AB, AD\\ BC, neboť je
q\p, r||Í?C; je tedy ABCD rovnoběžník.

Nyní je
Д SAP = Д SCQ (usu), (2)

neboť podle konstrukce bodu Q je SQ = SP, dále je <£ APS —

— ^ CQS = 90° a <£ ASP = <£ CSQ (úhly vrcholové).
Z této shodnosti (2) plyne, že je SA = SC a bod 5 je středem
rovnoběžníka ABCD. Proto přímka BD prochází bodem S
a protože je SB = v, prochází přímka v bodem D.

Podle konstrukce je v J_ u; v souměrnosti o ose v jsou tedy
body A, C souměrně sdruženy a tím i úsečky AB, CB, tj. platí

(3)AB = BC.

Protože je ABCD rovnoběžník, platí CD — AB, BC — AD
a vzhledem ke vztahu (3) je CD = AB = BC = AD, tj. ABCD
je kosočtverec o středu S.

Ještě dokážeme, že DAB — a: Ze souměrnosti kosočtverce
ABCD podle osy AC plyne, že

(4)<£ DAB = 2 • <£ SAB.

Ale o úhlu <)C SAB snadno dokážeme, že je roven \x.

204



Označíme-li totiž PK polopřímku opačnou к polopřímce PM,
tu podle provedené konstrukce platí [viz vztah (1)]

1
= <£ BPM;i1

<£ BPM — < APK (úhly vrcholové);
<£ APK = <£ SAB

(úhly střídavé při rovnoběžkách PM, SA = u). Spojením
těchto výsledků dostaneme

1
= 4.SAB

a po dosazení do (4) dostáváme <£ DAB = 2 • (| a) neboli
ДЛВ = a,

což jsme chtěli dokázat.
Tím je tedy důkaz správnosti konstrukce proveden.
Diskuse. Protože к úhlu <£ LPM lze sestrojit právě jeden

kosočtverec ABCD а к úhlu <£ L'PM' rovněž jeden koso-
čtverec A’BCD', má úloha dvě řešení. (Tyto kosočtverce
nemohou splynout; jsou totiž zřejmě navzájem souměrně
sdružené podle přímky SP a kdyby navzájem splynuly, měly
by při vrcholech А, В shodné úhly, tj. úhly pravé. Podle
požadavku úlohy však je úhel a ostrý, takže kosočtverce jsou
jistě navzájem různé).

Jiné řešení (obr. 62). Označme P, M pořadě středy stran
AD, AB. Potom úsečky SP, SM jsou poloviny středních příček
kosočtverce ABCD a rovnají se polovině jeho strany; protože
je střední příčka kosočtverce rovnoběžná s jednou dvojicí
protějších stran kosočtverce, platí v našem případě SP || AD,
5М||у4В. Je tedy APSM kosočtverec a AS jeho úhlopříčka;
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ta však půlí jeho úhel <£ MSP. Tento úhel je protější к úhlu a
při vrcholu A a proto mu je roven. Odtud konstrukce:

Sestrojme polopřímku SM01| p a úhel <£ M0SP0 = a tak,
aby bod P0 ležel s přímkou p v téže polorovině o hranici SAÍ0.
Označme P průsečík přímek p, SP0. Pak sestrojme osu £Л0
úhlu <£ M0SP0 a označme A společný bod přímek p, SA0.

A' PP B‘

A,
Obr. 62.

Na polopřímce opačné к polopřímce PA sestrojme úsečku
PB = PA. К bodům А, В sestrojme pořadě souměrně sdružené
body C, D podle středu 5. Potom je ABCD jeden z hledaných
kosočtverců.

Důkaz. Čtyřúhelník ABCD je rovnoběžník, neboť se jeho
úhlopříčky půlí a podle konstrukce je SP polovinou strany; proto
je SP j| AD. Označme M průsečík přímek 5AÍ0, AD; protože je
ёШ||АВ, je SM polovinou střední příčky rovnoběžníka ABCD.
Ale APSM je také rovnoběžník, neboť je jednak SP |j AD a dále
je SM\AB (podle provedené konstrukce). Podle konstrukce
je však <£ MSA = <£ ASP = | a; známe větu: Jestliže úhle-
příčka AS rovnoběžníka APSM půlí jeho úhel při vrcholu
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S, je tento rovnoběžník kosočtverec, tj. AP = AM; tedy
také 2 • AP = 2 • AM, tj. AB = /Ш neboli rovnoběžník ABCD
je kosočtverec. Tím je důkaz proveden.

Diskuse. Označme SM’0 polopřímku opačnou к polopřímce
SM0. Nyní lze opakovat provedenou konstrukci, avšak místo
polopřímky Č>M0 užijeme polopřímky SM'0. Dospějeme ke
kosočtverci A'B'C'D'. Označíme-li P' střed jeho strany A'B',
je <£ PSM0 + < P'SM' < 90° + 90° < 180°; proto jsou
body P, P' různé. Proto strany AB, A'B' nesplývají a dostaneme
dva různé kosočtverce ABCD, A'B'C'D'; tyto kosočtverce
jsou zřejmě souměrně sdruženy podle kolmice k vedené bodem
S к přímce M0, M'0 a proto jsou shodné.

Podle řešení Jany Valkounové,
8. tř., 2. osš, Turnov.

9. Úlohy 11. kola kategorie D

1. Ocelová tyč má obdížnikový prierez o rozmeroch 2,7 cm
a 1,5 cm; váha 1 dm3 tejto oceli je 7,6 kg.

Kolko váži táto tyč, ak je jej dížka 10 m? Kolko asi takých
desaťmetrových tyčí sa vyrobí z 1,4 tuny ocele?

Riešenie. Váha P desaťmetrovej tyče v kilogramoch podTa
známej poučky z fyziky sa rovná

P = 7,6 • V, (1)
kde V je objem tyče v dm3. Objem kvádra v dm3 sa rovná
súčinu všetkých troch jeho rozmerov udaných v dm. Pretože
rozměry v dm sú

0,27, 0,15, 100,
objem V je

V = 0,27 • 0,15 • 100,

207



čiže V = 27 • 0,15.
27-0,15Tu je

135
27

4,05

a teda objem V = 4,05 (dm3). Po dosadeni do (1) dostaneme
P — 7,6 • 4,05 (v kg); tu je

7,6 • 4,05
304

380

30,780

Desaťmetrová tyč váži asi 31 kg.
Teraz vypočítáme, kolko asi tyčí sa vyrobí z 1,4 tuny ocele.

Platí 1,41 = 1400 kg. Počet tyčí sa rovná celistvej časti po-
dielu 1400:31 (pravda, přibližné). Tu je

1400:31 | 45
160

5

Z 1,4 t ocele sa vyrobí asi 45 tyčí uvažovaného druhu.

2. Sestrojte kosočtverec ABCD, jestliže je dána velikost jeho
výšky v — 4,1 cm a jestliže jeho úhlopříčka AC — 2 v. Popište
postup konstrukce.

Řešení (obr. 63). Nechť ABCD je hledaný kosočtverec. Pak
AC = 2 v a vzdálenost obou rovnoběžek AB, CD je v. Leží
tedy bod C na kružnici k = (A, 2 v) a dále na přímce q = CD
rovnoběžné s přímkou p = AB, přičemž vzdálenost těchto
rovnoběžek p, q je právě v. Odtud konstrukce:
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Zvolme přímku p a na ní bod A. Dále zvolme jednu z polo-
rovin vyťatých přímkou p a označme ji g. Požadujme, aby bod В
padl na přímku p a bod C do poloroviny o. Sestrojme bodem A
přímku m _L p a na ní v polorovině g sestrojme úsečku
AA' = v. Bodem A' veďme přímku q || p.

Nyní opišme kružnici k = (A, 2 v) a označme C společný
bod přímky q a kružnice k.

Dále sestrojme osu r úsečky AC (viz obr. 63); označme В
společný bod přímek p, r a dále S střed úsečky AC. Na polo-

'\0D‘cV c

\
к

{к C\S
?\

mu
pB‘ b\.SA

\m

Obr. 63.

přímce opačné к polopřímce SB sestrojme úsečku SD = SB.
Potom je ABCD kosočtverec, který vyhovuje požadavkům
úlohy.

Důkaz. Čtyřúhelník ABCD je podle konstrukce rovnoběžník,
neboť je SA = SC, SB — SD (úhlopříčky se půlí). Tento
rovnoběžník má podle konstrukce kolmé úhlopříčky a proto je
to kosočtverec (ostatně zřejmě jsou trojúhelníky SAB, SCB3
SDC3 SCD shodné podle věty sus a proto je AB — BC —

= CD =DA). (Poznámka. Je tedy CD\\AB, tj. bod D leží
na přímce q.)

Rovnoběžky p, q dovedeme vždy sestrojit. Kružnice k =
= (A, 2 v) protne přímku q ve dvou různých bodech С, C',
neboť vzdálenost středu A kružnice k od přímky q je v, což je
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menší než poloměr 2v kružnice k. Bod C lze proto sestrojit.
Daná úloha má tedy řešení.

Při zvoleném umístění dostaneme ještě druhý kosočtverec
ABCD', který je souměrně sdružený s kosočtvercem ABCD
podle přímky AA'. Přitom je В ф Б'; jsou tedy oba tyto koso-
čtverce různé a protože jsou souměrně sdružené, jsou navzájem
shodné. Proto má úloha v podstatě jediné řešení.

Jiné řešení (obr. 64). Rozbor. Víme, že kosočtverci lze vepsat
kružnici; její průměr je roven velikosti výšky kosočtverce.

Označme hledaný kosočtverec ABCD a kružnici mu vepsanou k.
Ta se dotýká jeho stran AB, AD pořadě v bodech T, T'.
Přímky AT, AT' jsou tečnami z bodu A ke kružnici k\ proto
AST, AST' jsou pravoúhlé trojúhelníky o společné přeponě
AS a proto body T, T' leží na Thaletově kružnici nad úsečkou
AS.

Konstrukce. Narýsujeme kružnici k = (S, \ v) a libovolnou
přímku PSQ. Na polopřímkách SP, SQ sestrojíme úsečky
SA = SC = v. Nad úsečkou AS jako průměrem sestrojíme
pomocnou kružnici k' = (O, \ v) a označíme Г, T' společné
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body kružnic k, k' (viz obrázek). Dále bodem C sestrojíme
přímky m \\AT, n || AT' a označíme pořadě B,D společné body
dvojic přímek AT, n a AT', m. Potom je ABCD hledaný koso-
čtverec.

Důkaz. Z konstrukce vyplývá, že polopřímka AS půlí úhel
<£ TAT' (známá vlastnost tečen vedených z bodu ke kružnici),
tj. platí

(*)<£ SAT = SAT.

Protože platí AT\\m, AT'\n neboli AB ||CD, AD\BC, je
ABCD rovnoběžník, v němž je bod 5 středem úhlopříčky AC;
proto je bod 5 jeho středem. Poněvadž podle vztahu (*) půlí
úhlopříčka AC úhel při vrcholu A, je tento rovnoběžník koso-
čtverec (přímka AC je jeho osou souměrnosti). Tím je důkaz
proveden.

Úloha má zřejmě při zvoleném umístění přímky PSQ jediné
řešení, neboť je SA = 2 v > v, takže lze z bodu A ke kružnici k
vést právě dvě různé tečny AT, AT'.

Podle řešení Josefa Sádovského,
8.b tř., 18.osš, Praha-Košíře.

3. Daný je štvorec MNPQ so stranou 4,5 cm (umiestite ho
doprostřed polarchu).

Zostrojte rovnostranný trojuholník ABC ako v obr. 65
a jeho střed označte 5 (teda je A = M, В = N a bod C leží
zvonku daného štvorca). Trojuholník ABC sa kotúra po obvode
štvorca MNPQ takto:

Najprv sa otočí okolo bodu N do polohy AXBXCX. Potom sa
trojuholník AxBlCl otočí okolo bodu P a pri dalších pohyboch
sa otočí okolo bodov Q a M; po otočení okolo bodu M sa troj-
uholník /l4fí4C4 pokryje so svojou póvodnou polohou ABC, ale
tak, že je A4 = C.
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Narýsujte:
a) Polohy, do ktorých pride trojuholník vždy po vykonaní

jednotlivých otočení.
b) Dráhu, ktorú opíše bod S.
c) Dráhu, ktorú opíše bod A.
Riešenie vidieť na obrázku 65.

4. Je dán výraz:
2b (a - 1)

ab + a — 2b — 2
a — b

ab — a —2b A- 2'

(a - 2) (62 - 1)

‘(1)
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Zjednodušte jej a dokažte, že je roven nule. Co musí platit
o číslech a, 6, aby daný výraz měl smysl?

Řešení. Vypočteme společného jmenovatele všech tří zlomků
daného výrazu (1). Platí tyto rozklady:

(a - 2) (62 - 1) = (a - 2) (6 + 1) (b - 1); '
ab + a - 2b - 2 = a (6 + 1) - 2 (6 + 1) =

= (a — 2) (6 + 1);
ab — a — 2b + 2 = a (6 - 1) — 2 (6 — 1) =

= (a-2) (6-1).

(2)

Společný násobek těchto výrazů je
я = (a - 2) (6 - 1) (6 + 1).

Zlomky daného výrazu (1) rozšíříme tedy pořade těmito výrazy

1; 6 - lj 6 + 1.
Obdržíme

a + 626 (a - 1)
(a-2) (62-l) a6 + a — 26 — 2

a — 6

a6 — a — 26 + 2

26 (a — 1) (a + 6) (6 — 1) (a — 6) (6 + 1)
nn n

2ab — 26 — (u6 — a + 62 — 6) — (ab + a — 62 — 6)

2ab — 26 — a6+a — 62+6— a6 — a + 62 + 6 1 = 0.
tiП
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Protože každý z jmenovatelů daných zlomků musí být různý
od nuly, musí každý z činitelů rozkladů (2) být různý od nuly,
tj. musí platit

a - 2 ф 0, 6 - 1 ф О, Н1Ф0
neboli

а ф 2, 6 Ф 1, i Ф -1.

Nesmí tedy platit ani jeden ze vztahů

a — 2, b — 1, b = —1.

Tím je řešení úlohy provedeno.
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