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MATEMATICKÉ

OLYMPIÁDY

Zpráva o řešeni úloh ze soutěže konané
ve školním roce 1958—1959

^OstTeanl výbof.

22 66 01115 67
telefon

PRAHA 1960

STÁTNÍ PEDAGOGICKÉ NAKLADATELSTVÍ



V době tisku této knížky opustily čs. obec mate-
matiků dvě významné osobnosti, které byly v r. 1951
iniciátory založení této velmi důležité soutěže, které
stály u její kolébky a které projevovaly o MO neutu?
chající zájem.

Dne 1. listopadu 1959 zesnul ve věku 78 let nestor do-
venských matematiků akademik SAV Jur Hronec,
místopředseda ústředního výboru matematické olympiády.
Dne 15. března I960, po dlouhotrvající nemoci opustil nás
vědec světového ■významu, akademik Eduard Čech,
nositel Řádu republiky a dvojnásobný laureát státní ceny.

Matematická olympiáda jim oběma trvale zachová
vděčnou památku.

Za přispění spolupracovníků zpracoval Rudolf Zelinka
Slovenské části textu přeložil doc. dr. Milan Kolibiar

Recenzovali docent Josef Holubář, Vlastimil Macháček, dr. Zbyněk
Nádeník a Miroslav Sisler



I. К průběhu VIII. ročníku
matematické olympiády

1. Osmý ročník soutěže matematická olympiáda
(zkratka MO) probíhal ve školním roce 1958/59.
Účastnili se jej opět převážně žáci středních škol.

Žáci středních škol a žáci výběrových škol odbor-
ných byli zařazeni do čtyř kategorií podle této tabulky:

А В ! CKategorie D

1
11Ročník střední školy 10 i 9 8

Ročník výběrové odborné školy 3-4 2 ! 1

2. Soutěž se řídila organizačním řádem, který vy-
dalo ministerstvo školství a kultury (instrukce č. 51
VMŠK, roč. XIV, 31. 8. 1958); toto ministerstvo
spolu s Matematickým ústavem Československé aka-
demie věd (MÚ ČSAV)
Československého svazu

pořadateli této olympiády.
Soutěž organizoval ústřední výbor matematické

olympiády (ÚVMO) spolu s krajskými a okresními
výbory matematické olympiády (KVMO, OVMO).

a s Ústředním výborem
mládeže (ÚV ČSM) byly
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Členy těchto výborů byli učitelé matematiky středních
a vysokých škol, školští pracovníci, pracovníci ČSM
apod.

Ústřední výbor MO (adresa: Praha II, Žitná 25,
tel. 24-11-93) byl složen takto:
Předseda:

Akademik Josef Novák

Místopředseda:
Akademik SAV Jur Hronec, profesor přírodově-
decké fakulty university J. Á. Komenského v Bra-
tislavě (zemřel 1. listopadu 1959)

Jednatel:
Rudolf Zelinka, vědecký pracovník MÚ ČSAV

v Praze

Členové:
Ludmila Frantíková, učitelka jedenáctileté střední

školy ve Vítkově u Opavy
Dr. Karel Havlíček, docent matematicko-fyzikální

fakulty Karlovy university v Praze
Doc. Josef Holubářу vědecký pracovník MÚ ČSAV

v Praze
František Hradecký, odborný asistent Vysoké školy

pedagogické v Praze
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Dr. Karel Hruša, docent Vysoké školy pedagogické
v Praze

Miloš Jelínek, ústřední inspektor ministerstva škol-
ství a kultury v Praze

Dr. Milan Kolibiar, docent přírodovědecké fakulty
university J. Á. Komenského v Bratislavě

Jozef Krchňavý, učitel 2. jedenáctileté střední školy
v Košicích

Alena Mullerová, referentka oddělení studující mlá-
deže v ústředním výboru ČSM v Praze

Dr. Josef Pírek, učitel osmileté střední školy v Brně
Dr. Miloslav Zedek, odborný asistent Vysoké školy

pedagogické v Olomouci

PŘEDSEDY KRAJSKÝCH VÝBORŮ
MATEMATICKÉ OLYMPIÁDY BYLI:

Dr. Josef Korous, docent Vysoké školy železniční
v Praze (město Praha)

Dr. Alfons Hyška, dnes docent Vysokého učení
technického v Plzni, dříve docent Českého vysokého
učení technického v Praze (kraj Pražský)

František Vejsada, učitel 2. jedenáctileté střední
školy v Českých Budějovicích (kraj Budějovický)

Věra Rádiová, učitelka jedenáctileté střední školy
Julia Fučíka v Plzni (kraj Plzeňský)

Miloslava Žáčková, krajská školní inspektorka v od-
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boru školství a kultury rady KNV v Karlových Varech
(kraj Karlovarský)

Josef Porcal, učitel pedagogické školy v Teplicích
(kraj Ústecký)

Zdeněk Kalousek, učitel pedagogické školy v Liberci
(kraj Liberecký)

Josef Mencly učitel pedagogické školy v Hradci Krá-
lové (kraj Hradecký)

Ludvík Kapička3 učitel 1. jedenáctileté střední školy
v Třebíči (kraj Jihlavský)

Vladimír Štefl, krajský školní inspektor v Brně
(kraj Brněnský)

Dr. Miloslav Zedeky odborný asistent Vysoké školy
pedagogické v Olomouci (kraj Olomoucký)

Leo Krakówkay učitel průmyslové školy strojnické
v Gottwaldově (kraj Gottwaldovský)

Josef AndrySy vedoucí kabinetu matematiky při
Krajském ústavu pro další vzdělávání učitelů v Ostravě
(kraj Ostravský)

Jozef Kroupay učitel 2. jedenáctileté střední školy
v Bratislavě (město Bratislava)

Dr. Milan KolibiaVy docent přírodovědecké fakulty
university J. Á. Komenského v Bratislavě (kraj
Bratislavský)

Adolf Heinischy učitel matematiky na průmyslové
škole stavební v Nitře (kraj Nitranský)
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Dr. Cyril Polaj, profesor Vysoké školy lesní a dře-
vařské ve Zvolenu (kraj Banskobystrický)

Ladislav Berger, učitel 1. jedenáctileté střední školy
v Žilině (kraj Žilinský)

Dr. Ján Jakubík, docent Vysoké školy strojní v Ко-
sicích (kraj Košický)

Dr. Ernest Jucovič, odborný asistent Vyšší pedago-
gické školy v Prešově (kraj Prešovský)

3. Soutěž v kategoriích В, C, D měla dvě kola,
v kategorii A tři kola.

Podle organizačního řádu probíhalo I. kolo v době
od října 1958 do konce února 1959. Žáci měli rozřešit
ze šesti zadaných úloh alespoň čtyři dobře. Tuto práci
konali doma; vypracovaná řešení odevzdali svému
učiteli matematiky, který je opravil a seznámil žáky
s podstatnými nedostatky jejich řešení. Ředitel školy
spolu s referentem matematické olympiády (jímž je na
každé škole jeden z učitelů matematiky) podali návrh
příslušnému krajskému nebo okresnímu výboru MO,
které žáky své školy navrhují zařadit do II. kola sou-
těže; na škole nesmí počet všech navrhovaných žáků
určitého ročníku překročit 10 % celkového počtu
žáků tohoto ročníku. O definitivním zařazení žáka
do II. kola rozhoduje KVMO nebo OVMO.

Texty úloh I. kola byly uveřejněny v časopisech
Matematika ve škole a Rozhledy matematicko-fyzi-
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kální; vedle toho byl vydán zvláštní leták v počtu
15 000 exemplářů, v němž vedle úloh I. kola byly
uveřejněny další úlohy к procvičování pro přípravu na
úspěšné zvládnutí vlastní soutěže.

Vedle referenta MO pečovala na škole o propagaci
soutěže školská organizace ČSM a pionýrská organi-
zace.

II. kolo soutěže v kategoriích А, В, C se konalo
v neděli 12. dubna 1959 v krajských městech, v kate-
gorii D v městech okresních v neděli 26. dubna 1959.
Během Čtyř hodin měli žáci ze čtyř zadaných úloh
rozřešit alespoň dvě dobře. Stejné požadavky se
kladou i na III. kolo soutěže, kterého se účastní vy-
braní úspěšní řešitelé II. kola z kategorie A.

U příležitosti II. kola pořádaly krajské a okresní
výbory MO pro účastníky soutěže besedy o významu
studia matematiky, při nichž se mluvilo i o nedostat-
cích v žákovských řešeních jednotlivých úloh; vedle toho
bývá pro žáky uspořádán hodnotný kulturní podnik
jako návštěva divadla, výstavy nebo exkurze do růz-
ných průmyslových závodů. Žáci bývají upozorňováni
na vhodnou studijní literaturu z oboru matematiky,
fyziky, astronomie a technických věd.

Pedagogický dozor nad účastníky soutěže bývá
organizován ve spolupráci s ČSM a se školskými od-
bory rad KNV a ONV.
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t
4. Celostátní soutěž III. kola pro vybrané úspěšné

řešitele II. kola kategorie A se konala dopoledne
v sobotu 23. května 1959 v budově Matematického
ústavu Karlovy university v Praze 2-Nové Město,
Ke Karlovu 3.

Do posledního kola přihlásily krajské výbory celkem
90 úspěšných řešitelů II. kola. Organizační komise
ústředního výboru matematické olympiády vybrala
z nich 76 nejlepších (podle organizačního řádu mate-
matické olympiády se III. kola může účastnit ma-
ximálně 80 žáků); soutěže se účastnilo 73 řešitelů
(3 se tedy nedostavili). Požadavkům soutěže vyhovělo
33 řešitelů III. kola.

Pro účastníky III. kola soutěže uspořádal při této
příležitosti ústřední výbor matematické olympiády
besedu za účasti širší školské a vědecké veřejnosti.
Besedu řídil předseda ústředního výboru MO aka-
demik Josef Novák, který v úvodu podal přehled
o průběhu VIII. ročníku. O elektronkových počítacích
strojích z hlediska matematiky promluvil dr. Josef
Metelka, profesor Palackého university v Olomouci;
o významu matematiky pro technické studium promlu-
vil dr. Václav Pleskot, profesor Českého vysokého učení
technického v Praze. К oběma přednáškám se roz-
vinula bohatá diskuse a pracovníci přítomní na besedě
pak odpověděli olympionikům na řadu jejich dotazů.
Besedu uzavřel akademik Josef Novák, který poděkoval
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olympionikům za jejich pracovní úsilí a přál jim
hodně úspěchů v dalším studiu. Dále jako předseda
ÚVMO poděkoval pořadatelům soutěže; zvlášť srdečně
zhodnotil, obětavou dobrovolnou práci členů a spolu-
pracovníků krajských a okresních výborů MO i všech
učitelů matematiky na školách.

Večer téhož dne navštívili olympionici v Armád-
ním divadle na Vinohradech hru „Vojna a mír“, jejíž
předlohou je proslulý román L. N. Tolstého.

V neděli 24. května 1959 shlédli účastníci soutěže

pamětihodnosti Prahy v rámci hostitelských úkolů
ÚV ČSM; členové ČSM pečovali také o pedagogický
dozor nad olympioniky.
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II. Zpráva o výsledcích
jednotlivých kol soutěže

A. SOUTĚŽ I. KOLA

O počtu účastníků v soutěži informují tabulky čís. 1
a 2. V tomto soutěžním ročníku — jak je dále vyloženo
— nelze početní stav porovnávat s ročníky předcho-
zími, neboť na okresní a krajské výbory nebyla za-
sílána řešení všech žáků, ale jen těch, o jejichž koneč-
ném úspěchu měli ředitel školy a referent MO dobré
mínění. Nejsou tedy v tabulkách podchyceni ti, kteří
se o řešení úloh I. kola sice pokoušeli, ale neuspoko-
jili plně již ani v měřítku vlastní školy.

Podstatně příznivější jsou čísla’v kategorii A — a to
pokud jde o účast i úspěch; slabší jsou výsledky
v kategorii C. Zdá se, že by učitelé matematiky měli
věnovat žákům kategorie C intenzívní pozornost,
neboť většina z nich setrvává v příštích letech v sou-
těži; přitom žáci kategorie C postrádají hlubších zkuše-
ností s řešením obtížnějších úloh a nedovedou své
myšlenky ještě jasně formulovat a uvádět v logické
souvislosti.

Jestliže některá srovnání s loňským rokem jsou
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zdánlivě nepříznivá, je skutečnost jiná. Procento
úspěšných řešitelů ze všech účastníků soutěže v každé
z kategorií А, В, C je podstatně vyšší. Z toho však
nelze ještě usuzovat, že jsme podstatně pokročili ve
zvyšování výsledků vyučování matematice; mezi účast-
niky I. kola nepočítáme ty, jichž slabý výkon zjistil
již jejich učitel. Vedle toho měli žáci v VIII. ročníku
práci podstatně usnadněnu tím, že povinně řešili
nejvýše 6 úloh proti deseti úlohám v ročníku před-
chozím; přitom museli rozřešit správně jen 4 úlohy
proti dřívějším sedmi.

Značně menší je procento úspěšných řešitelů v kate-
gorii D (něco přes 52 % proti minulým 76 %). I když
kategorie D má podle organizačního řádu MO pod-
statně odlišné poslání než kategorie A až C, není tato
situace nepříznivá; recenzenti by měli na posuzování
olympioniků vzít přísnější měřítko, než tomu bylo
dosud, a zvláště je nezbytné, aby toto měřítko bylo
mnohem náročnější než to, s nímž se spokojují při
klasifikaci ve třídě, kde posuzují především zvládnutí
nejzákladnějších vědomostí.

Závažnější problém však je, že řada krajů se dosud
málo uplatňuje v soutěži — a to nejen pokud jde o celko-
vý počet účastníků, ale i pokud jde o úspěšné řešitele;
zde je třeba vzít v úvahu i počet obyvatelstva v jednot-
livých krajích. Nepříznivé je zvláště porovnání obou
prvních krajů v Čechách s krajem třetím. V Pražském
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Tabulka č. 1

Přehled, počtu účastníků I. kola podle krajů
v kategoriích А, В, C*)

Kategorie Kategorie Kategorie CelkemA В cKRAJ
U PP u p ! и p и

127 74Praha-město 133 51 175 17954 435

Praha-venkov 3630 26 29 50 29 116 84

České Budějovice 23 120118 21 146 19 384 63

68Plzeň 48 21 26 46 23 162 70

33Karlovy Vary 64 13 11 54 13 151 37

Ústí nad Labem 47 17 51 7813 17624 54

Liberec 20 1532 11 19 716 32

Hradec Králové 26 40 2647 58 42 145 94

Pardubice 49 20 4726 10 12218 48

51Jihlava 26 32 8155 18741 99

12795 54Brno 64 343121 17658

Olomouc 79 47 91 48 98 26849 144

Gottwaldov 31 34 16 6259 155 7730

Ostrava 33 74 35 106 9763 24329

49 33Bratislava-město 52 30 70 27 171 90

Bratislava - venkov 26 16 40 14 38 10412 42

16 23Nitra 31 34 70 18 135 57

Banská Bystrica 48 23 37193 72 116 381 108

Žilina 41 131 36110 111 23 352 100

Košice 38 635 14 58 8 131 28

Prešov 34 18 26 7 47 1076 31

Celkem 1397 605 1285 539 1657 566 433911710

*) P = celkový počet účastníků, U = počet úspěšných řešitelů

13



kraji soutěž dosud plně nezakotvila a je zajímavé, že
i české pohraniční kraje jeví příznivější situaci.

Slovenské kraje působí mnohem příznivěji než
tomu bylo dosud; úsilí slovenských soudruhů, aby se
olympiáda u nich vžila, se zřejmě osvědčuje. Přitom
kraj Bratislavský má asi podobné nesnáze jako Pražský.

B. SOUTĚŽ II. KOLA

1. Tabulky č. 3 a 4 podávají přehled o účasti
a výsledcích II. kola. Proti předchozímu ročníku jeví
kategorie A značně vyšší účast, avšak úspěšných
řešitelů je podstatně méně (asi 23 % proti loňským
50 %); to se projevilo i na menším počtu přihlášek do
III. kola. Kategorie В má sice horší procento počtu
úspěšných řešitelů z celkového počtu účastníků, ale
absolutně je počet úspěšných řešitelů týž jako minule.
Nejslabší skoro ve všech krajích a tím i celkově se jeví
v obou bodech kategorie C; je proto namístě věnovat
větší pozornost při náboru žáků do soutěže v této
kategorii a samozřejmě i jejich dalšímu vedení. V kate-
goriích A až C se umístilo úspěšně jen asi 25 % žáků
proti 60 % předchozího ročníku. Příčinu nelze hledat
např. jen v možné obtížnosti úloh; vedle jiných zá-
vážných okolností to může být menší připravenost,
zvláště vzhledem к podstatnému snížení počtu úloh
I. kola. Proto se snad právem ozývaly hlasy na závě-
řečné schůzi ústředního výboru Matematické olym-
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů
v kategorii D* )

Kategorie D
Kraj

P U

Praha -město 6181127

Praha-venkov 506 284

České Budějovice 658 329

Plzeň 450 294

Karlovy Vary 427 198

Ústí nad Labem 182 94

Liberec 436 187

Hradec Králové 334482

Pardubice 328 204

Jihlava 389 226

Brno 884 540

Olomouc 386705

Gottwaldov 664 366

Ostrava 755 337

Bratislava-město 310 190

Bratislava - venkov 431 212

677Nitra 289

327Banská Bystrica 553

Žilina 954 251

Košice 246 164

Prešov 196 64

Celkem 11360 5894

*) P = počet všech účastníků, U = počet úspěšných řešitelů
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Tabulka č. 3

Přehled počtu účastníků II. kola podle krajů
v kategoriích А, В, C*)

Kate-
gorie

Kate-

gorie
Kate-
gorie Celkem

KRAJ CВA

P [ UP I u p~| U P I и

5716450 3246 13Praha-město 68 12

4118 18914 27Praha-venkov 24

České Budějovice 56 20613 181 2018

65 321313 206 24Plzeň 21

334 94 12Karlovy Vary 11 101

Ústí nad Labem 54 371713 247 1317

32 54 6 1Liberec 1511

67Hradec Králové 22 3225 26 39 9013

125 455 16Pardubice 11 2 18

6729 8221 30Jihlava 23 17 29

733521 50 15849Brno 59 17

31 47124- 11 37Olomouc 45 5 42

1695 6916 27Gottwaldov 26 2

2110 978 29Ostrava
Bratislava - město

33 3 35

1710 854 2430 3 31

137 421 125 14Bratislava - venkov 16

305517 127 1115 23Nitra

229 1045 3323Banská Bystrica 48 8

Žilina 264 9316 2136 6 36

28 723 82 6Košice 14

6 2 32 64Prešov 18 8

569 131 511 206 497 288 1577 625Celkem

*) P = celkový počet účastníků, U = počet úspěšných řešitelů
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Tabulka č. 4

Přehled počtu účastníků II. kola podle krajů v kategorii D*)

Kategorie D
KRAJ

P U

Praha-město 503 444

Praha-venkov 158176

České Budějovice 276 210

Plzeň 236 194

Karlovy Vary 132 112

Ústí nad Labem 7590

Liberec 166 144

Hradec Králové 188231

Pardubice 159 134

Jihlava 157 142

Brno 429 378

Olomouc 287 246

282Gottwaldov 252

Ostrava 297 218

Bratislava - město 54 41

Bratislava - venkov 123 73

Nitra 178242

Banská Bystrica 241 200

Žilina 201 168

Košice 118 87

Prešov 59 35

Celkem 4459 3677

*) P = počet všech účastníků, U = počet úspěšných řešitelů
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piády, aby byl počet úloh I. kola zvýšen opět na 10.
V kategorii D je na 80 % úspěšných řešitelů, avšak

absolutně vzhledem к předchozímu roku je počet
účastníků i úspěšných řešitelů asi o 10 % menší. Pří-
růstky se jeví u krajů slovenských, kdežto řada českých
krajů má značné úbytky; zdá se, že okresní výbory
MO budou ijiusit této otázce věnovat zvláštní po-
zornost.

2. Všichni úspěšní řešitelé II. kola dostali po-
chvalná uznání. Podle organizačního řádu pak ještě
nejlepší úspěšní řešitelé II. kola v každé kategorii
A—C (v rámci kraje) obdrželi věcné ceny, zvláště
pak ceny knižní; v kategorii D se tak stalo v rámci
každého okresu.

V dalším uvádíme seznamy prvních deseti nejlepších
úspěšných řešitelů II. kola v kategoriích В, C podle
jednotlivých krajů (pro ně se II. kolem soutěž za-
končuje).

Pořadí úspěšných řešitelů II. kola v kategoriích В, C
J = jedenáctiletá střední škola, kterou někde neuvá-

dime,
P = průmyslová škola; Pg = pedagogická škola

Praha město

B. Souček Jiří, Praha 16; Lonek Bolemír, P,
Praha 2; Zvánovec Jan, Praha 12; Doubravová Anna,

18



Praha 12; Kutíš Ladislav, Praha 16; Mach Václav,
Praha 6; Temml Petr, Praha 16; Jaroš Petr, Praha 12;
Hemmer Ivan, Praha 2; Klátil Aleš, Praha 6.

C. Froněk Pavel, Praha8; Groda Alexander, Praha 3;
Leebová Anna, P, Praha 2; Veselý Karel, Praha 6;
Kraemer Emil, Praha 6; Kretschmer Michal, Praha 13;
Výborný Z., Praha 5; Lacina Libor, Praha 14; Smrž
Petr, Praha 6; Štecher Petr, Praha 12.

Pražský kraj

B. Regner Vlád., Mladá Boleslav; Renner O.,
Český Brod; Musil B., Kolín; Karhan V., Hořovice;
Vaněk Jos., Mladá Boleslav; Kobylka V., Hořovice;
Vojáček Jan, Český Brod; Kozlovský Jan, Benešov;
Nová Marta, Český Brod.

C. Hrbáček, Nymburk; Kovanda, P, Mladá Bole-
slav; Pilousek, P, Mladá Boleslav; Laifr, Poděbřady;
Jandová, Mladá Boleslav; Fanta, Mladá Boleslav;
Hanika, Hořovice; Drápal, Nymburk; Koníř, Kolín;
Černá, Říčany.

Kraj Budějovický
B. Havlíček Václav, 2. J, České Budějovice; Koře-

náč J., Vodňany; Krejšová Marie, 2. J, České Budějo-
vice; Komrska Josef, Týn n. Vit.; Ondřich Boh.,
1. J, České Budějovice; Kohelová Libuše, 3. J,
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České Budějovice; Proška Vladimír, 2. J, České Budě-
jovice; Žofka Jan, Písek; Moravec Vladimír, 2. J,
České Budějovice; Komárkové R., Vodňany.

C. HoíFerová Pravoslava, 1. J, Tábor; Lusk Jan,
2. J, České Budějovice; Moravec Václav, 2. J, České
Budějovice; Parma Ludvík, 2. J, Tábor (Maredův
Vrch); Horník Jiří, P, Písek; Gottwald Josef, 2. J,
České Budějovice.

Kraj Plzeňský
B. Hájek Josef, 1. J, Plzeň; Hajšman Lad., 1. J,

Plzeň; Vrba Ant., Přeštice; Žaloudek Fr., Plasy;
Mareš Jaroslav, 2. J, Plzeň; Baumlová Milena, 1. J,
Plzeň; Kahudová Alena, 1. J, Plzeň; Matějka Jan,
Sušice; Nedoma Petr, 2. J, Plzeň; Žilák Jan, 1. J,
Plzeň.

C. Vaniček M., P, Plzeň; Vacek Jiří, 3. J, Plzeň;
Čížek Zd., Klatovy; Pilný Karel, 1. J, Plzeň; Vaník
Josef, 1. J, Plzeň; Minařík Lud., 2. J, Plzeň; Walter
Karel, Plasy; Umprecht Jan, 1. J, Plzeň; Sláma Jar.,
P, Plzeň; Šaškové M., 3. J, Plzeň.

Kraj Karlovarský
B. Křišťan Bohumil, Karlovy Vary; Kalenda Libor,

Podbořany; Klír Jiří, Karlovy Vary; Vítkovský Evžen,
Podbořany; Konopásek Petr, Karlovy Vary.
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Kraj Ústecký
B. Cihlář Jiří, 1. J, Ústí n. L.; Růžička Karel, 1. J,

Ústí n. L.; Toman Zdeněk, 2. J, Chomutov; Wetzler
Jiří, 2. J, Chomutov; Černý Viktor, 2. J, Chomutov;
Pernerová Marie, 2. J., Ústí n. L.; Krajkářová Květ.,
1. J, Teplice II; Závodský Petr, 2. J, Teplice; Popel
Ivan, 1. J, Teplice II; Zavadil Jar., P, Děčín.

C. Starý Petr, 2. J, Ústí n. L.; Thorovský Ctibor,
2. J, Ústí n. L.; Jaeger Vlad., DSŠ, Most; Koten
Alexandr, P, Ústí n. L.; Franče Jiří, Litoměřice;
Lukšan Lad., 1. J, Ústí n. L.; Tymich Jiří AI., Lito-
měřice; Stará Ivona, P, Ústí n. L.; Šíma Stanislav, P,
Děčín; Vaněk Zdeněk, 2. J, Teplice.

Kraj Liberecký

B. Šída Otakar, Tanvald; Denk Jan, 2. J, Liberec;
Jonáš Stanislav, 2. J, Liberec; Zemanová Arnoštka,
1. J, Liberec.

C. Šoltys Dušan, 1. J, Liberec.

Kraj Hradecký

B. Nosek Pavel, Hradec Král.; Dršata Jaroslav,
Hradec Král.; Kovář Jindřich, Nová Рака; Vejs
Jaroslav, Hradec Králové; Gottland Miroslav, Hradec
Král.; Hovorka František, Hradec Král.; Kubíček
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Milan, Trutnov; Kyral Václav, Trutnov; Soukup
Karel, Nový Bydžov; Škop Josef, Dobruška.

C. Polkovníková Marie, Kostelec n. O.; Bryknar
Zdeněk, Nová Рака; Švejdar Václav, Náchod; Čápová
Marie, Kostelec n. O.; Rus Jan, Náchod; Tůma Petr,
Nová Рака; Zeidlerová Ludmila, Kostelec n. O.; Diviš-
ková Jarmila, Kostelec n. O.; Fialová Stanislava,
Kostelec n. O.; Losa Milan, Trutnov.

Kraj Pardubický

B. Synek Jan, P, Pardubice; Moravec Petr, 2. J,
Pardubice, Na Spořilově; Třešňák Josef, Chrudim;
Laštovková Marie, 1. J, Pardubice; Kyncl Jan,
Hlinsko v Č.

C. Gabrielová Věra, 1. J, Pardubice; Kroupa Jaro-
slav, Chrudim; Lesák Miloš, 2. J, Pardubice - Na
Spořilově; Rychlý Josef, Chotěboř; Malečková Dra-
homíra, Litomyšl.

Kraj Jihlavský
B. Vajcar Oldřich, Třebíč; Klíma Tomislav, Žďár

n. S.; Malbohan Ivan, Třebíč; Málek Jaromír, Žďár
n. S.; Langpaul Petr, Havlíčkův Brod; Šperlink Karel,
Havlíčkův Brod; Kadlec Luděk, Telč; Fráňa Jan,
Havlíčkův Brod; Lupač Vlád., Telč; Boušková Li-
buše, Telč.
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C. Dovalil Josef, Jihlava; Bulička Jaroslav, Třebíč;
Fořtová Libuše, Ledeč; Frolián Miroslav, Třebíč;
Rosa Jan, Jihlava; Svoboda Karel, Třebíč; Trtík
Bohumil, Ledeč; Večeřová Marta, Velké Meziříčí;
Bacík František, Ledeč n. S.; Jůna Pavel, Ledeč n. S.

Kraj Brněnský

B. Lochman Václav, Brno; Seidel Zbyněk, Brno;
Zavadilová Květa, Brno; Kuba Ivan, Brno; Soukup
Jiří, Brno; Štefanová Marie, Brno; Auermiiller Jan,
Brno; Halámek Josef, Brno; Okleštěk Josef, Slavkov
u Brna; Zachoval Jan, Brno.

C. Špundlová Jarmila, Brno; Vanýsek Jiří, Brno;
Mareš Petr, Ivančice; Běhal Jiří, Brno; Košťál Lubor,
Brno; Tomášek Jiří, 1. J, Břeclav, Stejskal Pavel,
Brno; Šilhán Jindřich, Svitavy; Marčíková Irena,
Brno; Matonoha Jiří, 1. P, Brno.

Kraj Olomoucký

B. Wichterle Karel, Jeseník; Losík Václav, 1. J,
Olomouc; Vrána Miroslav, Šumperk; Skopal Fran-
tišek, Litovel; Dohnal Zdeněk, Kojetín; Unzeitig
Petr, Zábřeh; Ferdinand Jan, Hranice; Karásek Voj-
těch, 1. J, Olomouc; Hronek Jiří, 1. J, Olomouc;
Kryl Miroslav, Uničov.

C. Černohorský Jindřich, 1. J, Olomouc; Mareček
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Michael, 1. J, Olomouc; Lukš Antonín, 1. J, Olomouc;
Novotný Jan, 121etá střední škola, Olomouc-Hodo-
lany; Burián Ivo, 1. J, Prostějov; Trnka Josef, P,
Přerov; Doskočil Ivan, 1. J, Prostějov; Pavlík Alfréd,
Hranice; Jahnová Jitka, 1. J, Olomouc; Sedláček Jiří,
Zábřeh.

Kraj Gottwaldovský

B. Krumpolc E., Kroměříž; Třešňáková J., P,
Gottwaldov; Pelíšek Vlad., 1. J, Gottwaldov; Jurečka
J., Vsetín; Mach R., Hodonín.

C. Zmeškalová Eva, Val. Meziříčí; Hron Josef,
P, Uherský Brod; Jandík M., 2. J, Gottwaldov;
Obdržálek VI., Otrokovice; Šnajdrová D., P, Gott-
waldov; Dřevojánková J., P, Gottwaldov; Plívová Eva,
2. J, Gottwaldov; Novotná Marie, Rožnov p. Radh.;
Kratochvíl Jan, 2. J, Gottwaldov.

Kraj Ostravský
B. Fiala Miroslav, Ostrava I; Kosík Pavel, Ostrava

I; Lanta Jan, Ostrava I; Jánoš Vít, Ostrava I; Weber
Milan, Ostrava I; Veselý Jan, Ostrava I; Srovnal
Milan, Ostrava I; Bezoušek Pavel, Ostrava I; Pěkník
Miroslav, Ostrava VII; Ottová Jana, Nový Jičín.

C. Ošmera Radomír, P, Kopřivnice; Sobotková
Jana, Ostrava I; Havlíčková Marie, Ostrava I; Dittri-
chová Libuše, Ostrava VII; Slíva Karel, Ostrava VII;
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Špička Jaroslav, Ostrava VII; Černík Jiří, Ostrava
VII; Vagera Ivan, Ostrava VII; Kývalová Miluše,
Nový Jičín; Novosad Antonín, Nový Jičín.

Bratislava město

B. Petrovič M., Bratislava; Plesník J., P, Bratislava;
Krušinský J., Bratislava; Matzt, P, Bratislava.

C. Macák K., Bratislava; Vinceková A., Bratislava;
Miklás D., Bratislava; Čunderlík J., P, Bratislava;
Komrska F., Bratislava; Schwarz J., P, Bratislava;
Klinský R., P, Bratislava; Lexa I., Bratislava; Jakubík
I., Bratislava; Krampl, P, Bratislava.

Kraj Bratislavký

B. Krcho Bohuš, Nové Město nad Váhom.
C. Nemeček Miloš, 1. J, Trenčín; Suchán Pavol,

1. J, Trenčín; Zahradník Pavol, 1. J, Trenčín; Červe-
ňanová Agnesa, 1. J, Trenčín; Greener Dušan, 1. J,
Trenčín; Sýkorčínová Emilia, 1. J, Trenčín; Šebeková
Zora, 1. J, Trenčín.

Kraj Nitranský
B. Korec Ivan, Partizánske; Bendlová Helena,

Komárno; Petrikovits Ebbo, . Partizánske; Féglás
Ferenc, Komárno; Jahn Peter, Nitra; Ač Vladimír,
Nitra; Ručková Gabriela, Šurany.
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C. Chocholáček Ludovít, Komárno; Baník Peter,
Partizánske; Šmondrková Anna, Levice; Dodok Sa-
muel, Levice; Mohnáczky Ladislav, Komárno; Me-
šina Marián, Prievidza; Lazorišák Ivan, Levice; Sulo
Štefan, Partizánske; Švec Pavol, Šurany; Goga Anton,
Prievidza.

Kraj Banskobystrický
B. Heim Peter, Kremnica; Šoršák Jozef, Šáhy;

Sarka Kamil, Žarnovica; Ponthe Štefan, P, Lučenec;
Regelyová Mariana, P, Lučenec.

C. Dobríková Anna, 1. J, Ban. Bystrica; Ursíny
Ivan, Březno; Ferenc Jozef, Šáhy; Kováčová Mária,
2. J, Zvolen; Pavlajová Eva, 2. J, Zvolen; Palajová
Elena, 2. J, Zvolen; Lányi Štefan, P, Ban. Bystrica;
Badín Oto, P, Zvolen; Burjanív Jaroslav, P, Zvolen.

Kraj Žilinský
B. Beran Lad., 2. J, Žilina; Šlocová Tatiana,

Kláštor p. Zn.; Závodská Marta, 1. J, Žilina; Engelová
Mária, L. Mikuláš; Prokainová M., Kláštor p. Zn.;
Joštíková Vilma, Trstená; Geburová Tatiana, 1. J,
Žilina; Jagelka Leon, Púchov; Matula Pavol, Kláštor
p. Zn.; Macko Oto, L. Mikuláš.

C. KonČek Ján, Púchov; Rusnák Ivan, Ružom-
berok; Kordoš Ivan, Martin; Račková Margita,
Rajec; Jaroš Štefan, Ružomberok.
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Kraj Košický
B. Mikuš Ján, 2. J, Košice; Poracká Zita, 2. J,

Košice; Sedláček Anton, 2. J, Košice.
C. Kundrunovský Jozef, 2. J, Košice; Franclík

Ján, 2. J., Košice.

Kraj Prešovský
B. Csontó В., 1. J, Prešov; Skalský V., 1. J, Prešov;

Lukáč L., 1. J, Prešov; Bačík K., Humenné.
C. Pavelka D., 4. J, Prešov; Ličák Š., 4. J, Prešov.

C. SOUTĚŽ III. KOLA

Soutěž III. kola se týká řešitelů kategorie A. Krajské
výbory MO přihlásily do soutěže 90 nejlepších úspěš-
ných řešitelů II. kola. Organizační komise při ústředním
výboru matematické olympiády z nich vybrala 73
účastníků. Z nich 33 bylo úspěšných. Nejlepších 20
z těchto úspěšných řešitelů III. kola stává se podle
organizačního řádu vítězi příslušného ročníku soutěže;
jejich seznam podle pořadí kvality jejich výkonů
v dalším uvádíme.
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Pořadí vítězů VIII. ročníku

matematické olympiády
(škol. rok 1958-59)

1. Jiří Moudrý, ll.c tř. 1. jsš, Pardubice, ul. Sloven-
ského povstání

2. Jiří Votava, ll.d tř. 14, jsš, Praha 12, ul. W.
Piecka 2

3. Zdislav Kovařík, 11.a tř. jsš, Hodonín
4. Jiří Souček, 10.a tř. 21. jsš, Praha 16, Na San-

tošce 1
5. Karel Šmuk, ll.b tř. jsš, Ostrava VIII - Hladnov
6. Jaromír Fdhnrich, ll.b tř. 7. jsš, Praha 7, Štross-

mayerovo nám.
7. Jan Ježek, ll.c tř. 16. jsš, Praha 13 - Vršovice,

Kodaňská 16
8. Bohuslav Diviš, jsš, Praha 14 - Michle, Ohradní 5
9. Jitka Klánská, ll.b tř. 16. jsš, Praha 13 - Vršovice,

Kodaňská 16
10. Ján Vojtko, 11.a tř. jsš, Holič, Slovensko (okr.

Skalica)
11. Petr Jiříček, 11.a tř. jsš, Ostrava I, Matiční 5
12. Štěpán Mikoláš, 11.a tř. jsš, Boskovice na Moravě
13. Jan Vlček, 11. tř. jsš, Vimperk
14. Kamil John, ll.b tř. 14. jsš, Praha 12, ul. W.

Piecka 2
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15. Ri-Son-tek3 11.a tř. jsš, Brandýs n. Labem
16. JiříBičák, 11.d 14. jsš, Praha 12, ul. W. Piecka 2
17. Marie Krčálová, ll.b tř. jsš J. K. Tyla, Hradec

Králové
18. Anežka Nováčková, ll.b tř. jsš, Třebíč na Moravě
19. Petr Tomšů, 3.b ročník průmyslové školy strojní,

Kopřivnice
20. Jan Henig, ll.b tř. jsš, Plzeň, ul. Pionýrů 2

Jako každoročně obdrželi vítězové soutěže od minis-
terstva školství a kultury velmi hodnotné věcné ceny
podle vlastního výběru; dále každý dostal umělecky
provedený čestný diplom, podepsaný ministrem škol-
ství a kultury a předsedou ústředního výboru mate-
matické olympiády. Vítězům byla poukázána značná
peněžní částka (až 250,— Kčs) na nákup odborné
literatury z oborů matematiky, fyziky a technických
věd; seznam vhodné odborné literatury byl každému
vítězi zaslán.
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III. Řešení úloh ze soutěže

Poznámka: Odkazy na školské učebnice týkají se jejich čes-
kého znění.

I. ÚLOHY I. KOLA KATEGORIE A

1. Je dán čtverec ABCD o straně délky d. Úsečka
délky p se pohybuje tak, že její krajní body leží na
obvodu daného čtverce.

Jaký útvar vyplní střed pohybující se úsečky? Pro-
veďte diskusi vzhledem к daným číslům d, p.

Řešení. Daný čtverec ABCD má strany velikosti
d > 0. Úsečku délky p > 0, která má krajní body na
obvodu daného čtverce, označme XY a její střed Z.

Z názoru je patrné, že délka p úsečky XY musí
být menší než délka úhlopříčky AC — d]l 2 čtverce
ABCD; tuto domněnku dokážeme.

Důkaz. To je zřejmé, jestliže body X, Y leží na
téže straně daného čtverce, např. na straně AB; pak je
XY<d<d]í2.

Dále rozlišme dvě možnosti [a], [b],
[a] Body X, Y leží pořadě na dvou soused-

nich stranách čtverce, např. na stranách AB,
BC (viz obr. 1), ale s vyloučením případu, že některý
z bodů X, Y splývá s bodem B. [b] Body X, Y leží
pořadě na protějších stranách daného
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čtverce, např. na stranách AB, CD, ale s vyloučením
případu, že je XY J_ AB (pak je XY = AD = d <
< 42).

Případ [a] (obr. 1). Označme BX = x, BY = y,
kde je

d, 0 < у ^ d;
pomocí Pythagorovy věty užité na trojúhelník XYB
dostaneme

0 < x (!')

x2 + У2 = p2 • (2')

D CD

Y/

A/

//

/
S/ / /A /

/=>s

//
//

/

* E/4 X ВА X В
x— -A

Obr. 1 Obr. 2

Vzhledem к (Г) platí
x2 + y2 ^ d2 + d2; (3')

ze (2') a (3') tedy plyne
P2 ^ 2d2,

p s 42,
tj*

což jsme měli dokázat.
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Případ [b]. Označme BX = x, C Y — у jako v obr. 2,
přičemž můžeme bez újmy obecnosti předpokládat,
že 0 < x ^ d, 0 ^ у < d, у < x [jinak bychom vy-
měnili vhodně označení a tím i x3 у]. Označme E patu
kolmice vedené bodem Y к přímce AB; je-li E = B,
je у — 0, jinak je у > 0, ale vždy platí XE = x — y.
Pomocí Pythagorovy věty, užité na trojúhelník XYE,
dostaneme

XE2 + EY2 = XY2
neboli

(4')O — y)2 + d2 = p2.

Protože je 0 < л: 5^ <2, 0 f^y < d, у < x, je 0 < я —
— у ^ <2; na základě toho platí neboli

(* - y)2 + d2 ^ d2 + d2 .

Odtud a ze (4') dostaneme p2 ^ 2d2
p ^ df2 ,

což jsme právě měli dokázat.
Tím je důkaz proveden.

Daná úloha nemá tedy smysl pro

P > d]/ 2 .

V dalším o čísle p předpokládáme, že splňuje ne-
rovnost

P ^ d]/ 2 . (1)
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Rozbor úlohy rozčleníme na čtyři případy:
[l]p < d;[2]p = d;[3]d <p < dfzmp = 42 .(2)

Případ [1]. Nechť jz p < d (obr. 3). Všimněme si
toho, že vzdálenost dvou bodů, které leží na protějších
stranách čtverce ABCD, je rovna alespoň číslu d.
V našem případě musí proto body X, Y bud ležet
na téže straně čtverce — např. na AB — nebo
střídavě na dvou sousedních stranách. Nyní
rozlišme možnosti: a) Body X, У leží na sou-
sedních stranách čtverce ABCD; b) body X, Y
leží na téže straně daného čtverce.

Obr. 4

a) Nechť bod X leží uvnitř strany AB, bod Y na
straně BC (viz obr. 3) — a to uvnitř této strany
(z pravoúhlého trojúhelníka XYB, kde = 90°,
plyne BY <XY, tj. BY<d, tj. Y=áC). Potom
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v trojúhelníku XYB platí pro střed Z strany XY
vztahy ZВ — ZX = ZY — Ip; leží tedy bod Z na
čtvrtkružnici k = (B, \p), která má krajní body J315 B2
na ramenech BA, BC pravého úhlu <$.ABC a leží
celá v tomto úhlu (krajní body Bl3 B2 nepočítáme).
Obráceně, buď Z libovolný bod, který leží uvnitř
čtvrtkružnice k a tedy uvnitř úhlu <£ABC. Sestrojme
v tomto úhlu obdélník BXB' Y (kde X leží na polo-
přímce BA а У na polopřímce BC), jehož středem je
bod Z; provedeme to tak, že určíme obraz B' bodu В
v souměrnosti o středu Z a bodem B' pak vedeme
rovnoběžky s přímkami BA, BC. O úhlopříčce BB'
platí: BB' = 2 . bp = p; avšak rozměry obdélníka
jsou vždy menší než velikost jeho úhlopříčky. Je tedy
BX < p, BY < p, takže body X, Y leží pořadě uvnitř
úseček AB, BC; přitom je XY = BB' — p a XZ =
= ZY — \p [úhlopříčky obdélníka BXB'Y jsou
shodné]. Tím je obrácení provedeno.

Opakujeme-li tuto úvahu pro ostatní vrcholy
čtverce ABCD, dospějeme (viz obr. 4) celkem ke
čtyřem čtvrtkružnicím kx, k2, k3, k4 (bez krajních
bodů).

b) Protože je p < d, leží v obr. 4 bod Bx blíže
к bodu В než к A a bod A2 blíže к bodu A než к В.
Nyní snadno usoudíme, že úsečka A2BX (včetně
krajních bodů) je množinou středů úseček XY = p,
jejichž oba krajní body X, Y leží na úsečce AB.
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Závěr případu [1]. Množinou středů všech úse-
ček XY je čára vyznačená tučně na obr. 4.

Případ [2] (obr. 5). Nechť je p — d. Situace se tu
od případu [1] liší takto:

Obr. 5

a) Existuje jediná úsečka XY = p = d,- která leží
ve straně AB, totiž ta, která s úsečkou AB splývá. Je
tedy A2 = Bx, B2 = Cl3 C2 = Dx, D2 = Av Dostá-
váme čtyři čtvrtkružnice kXi k2> k3) včetně jejich
krajních bodů A13 Bx, Cx, Dx.

b) Existují úsečky XY — p, kde X, Y leží na
protějších stranách čtverce, např. na stranách AB,
DC (mezi tyto úsečky patří i strany daného čtverce).
Středy těchto úseček vyplní střední příčky AXCX,
BXDX (viz obr. 5).

Závěr případu [2]. Množina středů všech úseček
XY je znázorněna tučně na obr. 5.
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Případ [3] (obr. 6). Nechť je d <p < dj2 • Pak
krajní body úsečky XY = p nemohou ležet v téže
straně čtverce ABCD. Jsou tedy dvě možnosti:
a) Body X, Yležípořadě na sousedních stranách
daného čtverce nebo b) leží v protějších stranách
čtverce.

7 C = Y"1

Y3

Y

~P

Y'*Y,

3-

V.' a" вA*)C X Y4

Obr. 6

a) Sestrojme dva pomocné pravoúhlé trojúhelníky
AY'B, CX"B o přeponách AY' = CX" = p jako
v obr. 6; ukážeme ihned, že tyto trojúhelníky existují,
čímž dostáváme úsečky X'Y' — X"Y" — p, kde je
X' = A, Y" = C. Podle Pythagorovy věty o troj-
úhelníku A Y'B v obr. 6 platí В Y'2 A Y'2 - AB2 =
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= p2 - d2, takže je В Y'2 < p2 a BY' < BC; leži
tedy bod Y' uvnitř úsečky 5C. Stejně bod X" leží
uvnitř úsečky АВ, což ostatně plyne ze souměrnosti
podle přímky BD, takže

BX“ = BY' = - <p.

Nyní předpokládejme, že bod X úsečky XY — p
leží uvnitř úsečky ЛХ", tj. platí

(3)

BX" < BX < BA .

Ze vztahu BX" < BX a (3) dostaneme
p2-d2 < BX2;

vztah < BA lze psát ve tvaru
ď2 > BX2.

(4)

(5)
Snadno nyní dokážeme, že příslušný bod Y úsečky

XY, který leží na úsečce BC, padne dovnitř úsečky
Y'C, tj. platí

BY' < BY < BC . (6)
Důkaz. V trojúhelníku XYB, kde <£В — 90°,

je XY — p a platí (4), (5); podle Pythagorovy věty je
BX2 = p2- BY2. (7)

Odtud a z (5) plyne
d2 > p2 — BY2

neboli postupně [viz (3)]
BY2 >p2 - d2,
BY >BY'. (8)
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Ze vztahů (7), (4) postupně plyne

p2 - d2 <p- - BY2,
BY2 <d2,
BY <BC.

Platnost vztahů (6) vyplývá ze vztahů (8), (9).
Úsečky AY\ CX" mají pořadě středy Z', Z" a dále

mají společný bod M, který leží na úsečce BD, neboť
úsečky jsou souměrně sdružené podle přímky BD.

Probíhá-li bod X úsečku AX", probíhá příslušný
bod Y na úsečce BC úsečku Y'C (a obráceně). Jako
v případě [1] usoudíme, že středy těchto úseček vy-
plní oblouk Z'Z" kružnice kx == (B} %p); tento oblouk
Z'Z" leží v úhlu <£v4MC. Přitom z vlastnosti středu
kružnice opsané pravoúhlému trojúhelníku A Y'B
platí o bodu Z' zřejmě Z'A - ZT = Z'В a bod Z'
leží tudíž na střední příčce q čtverce ABCD kolmé
ke straně AB (viz obr. 6, z něhož je též patrno, že
bod Z" leží na úsečce BY2, kde Y2 leží na straně CD
a platí CY2 = BY').

b) Nechť body X, Y úsečky XY velikosti p leží
na protějších stranách AB, CD čtverce ABCD.
Příkladem takových úseček v obrázku 6 jsou úsečky
BY2{Y2 leží uvnitř CD a je CY2 = ВY’ = ]/p* - d2)
a DY4 (Y4 leží uvnitř a je Л F4 = BY’). Úsečky,
které vzniknou z úsečky BY2 posunutím ve smyslu
BA — a to nejvýše o délku BY± — patří mezi hledané

(9)
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úsečky; všechny leží v rovnoběžníku BY2DY.V Jejich
středy vyplní na střední příčce p || AB daného čtverce
úsečku Z"ZIV — AX". Druhá soustava takových
rovnoběžných úseček XY vznikne posunutím úsečky
CX" ve smyslu BA nejvýše o BYA (neboli X"A);
jejich středy rovněž vyplní úsečku Z"Z1V. Jiných
úseček kromě zmíněných dvou soustav, které by měly
krajní body na stranách AB, CD, zřejmě není.

Závěr případu [3]. Ze souměrnosti čtverce podle
úhlopříček a středních příček plyne: Množina středů
všech úseček se skládá ze čtyř oblouků a ze dvou
úseček ležících na středních příčkách daného čtverce
(viz tučné čáry na obr. 6).

Případ [4]. Nechť je p = d]/2 (obr. 1). Z úvodní
úvahy vyplývá, že jediné dvě úsečky XY velikosti p
jsou úsečky AC, BD. Hledaná množina středů těchto
úseček se skládá z jediného bodu; je jím střed čtverce
ABCD.

Tím je řešení úlohy provedeno.
2. Určte všetky reálne čísla x, pre ktoré platí

vztah i i
(1)2 .

x -f- 1 -j- У2 — \ 2
Riešenie. Nech reálne číslo я splňuje nerovnost’ (1),

čiže nerovnost’
i i

(2)-2^0.- +
x+l + \2 x + 1 - ]/2
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Označme V výraz na 1’avej straně nerovnosti (2);
o ňom postupné platí

V =

_x + 1 - ]/2 + x + 1 + ]/2 - 2(x + 1 + ]/2) (x + 1 - Vg) _

(x + 1 + У 2) (x + 1 — \ 2)
= 2x + 2 - 2[(x + l)2 - (У 2)2] =

(x + 1 -t- У2) (x + 1 — У2)
_ 2[jc + 1 — (x2 + 2x + 1 - 2)] _

(* + 1 + У2) (x 1 — У2)
2(x2 + Xj- 2)

(x + 1 + У2) (x -f 1 - У2)
Po rozložení kvadratického trojčlena v čitateli do-

staneme

2 (x + 2) (x - 1)

(x + 1 + У2) (x + 1 - У2)
O čísle x platí (2); vzhl’adom na výsledok (3) platí teda

(3)V = -

(x + 2) (x - 1) (3')(x + 1 + У2) (x + 1 — У2)
Musí teda o čísle л: platit’:

[1] buď súčasne

(x + 2) O - 1)^0,
(л; + 1 + У2) (x + 1 — У2 ) > 0

(3a)
(3b)

[posledná nerovnost’ je nevyhnutelné ostrá, inak by
v menovateli zlomku v (3') bola nula],
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[2] buď súčasne
(x + 2) O — 1) ^ 0 ,

(x -|- 1 -f- У2) (x -f~ 1 — Ь) ^ 0
[kde opáť v poslednej nerovnosti nemožno připustit’
znamienko rovnosti].

Každú z oboch možností preskúmame zvlášť.

(4a)
(4b)

Případ [1]. Zo vztahu (3a) vyplývá, že o čísle л;
musí platiť právě jeden zo vzťahov:

a) x ^ 1,
b) x fg - 2 .

Zo vztahu (3b) vyplývá, že o čísle x musí platiť
právě jeden zo vzťahov

a) x >] 2 — 1 > 0,4,
b) x < - (1/2 + 1) < - 2,4 .

Požiadavky (5a), (6b) alebo požiadavky (5b), (6a)
nemožno splnit’ súčasne. Kombinováním (5a), (6a) do-
staneme, že o čísle л: nevyhnutné platí

x ^ 1 .

Kombinováním (5b), (6b) dostaneme, že o čísle x

nevyhnutné platí

(5a)
(5b)

(6a)
(6b)

(7)

(1/2 + 1) . (70x < —

I. Pre x ^ 1 sú skutočne oba činitele v menovateli
zlomku (3) kladné čísla (platí x+1 — |/2^2 —
— ]/2 > 0,5, lebo У 2 < 1,5); rovnako všetky tri či-
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nitele v čitateli zlomku (3) sú nezáporné čísla. Je
teda a číslo x ^ 1 je riešením nerovnosti (1),
lebo vztah V ^ 0 je ekvivalentný s nerovnosťou (1).

II. Pre x < — (]/2 + 1) sú oba zlomky na 1’avej
straně nerovnosti (1) záporné čísla a teda aj ich súčet
je záporné číslo a teda menšie než 2.

Případ [2]. Zo vzťahu (4a) vyplývá, že o čísle л;

nevyhnutné platí jedine vzťah
- 2 (8)x 5^ 1 .

Zo vzťahu (4b) vyplývá, že o čísle л; musí jedine platit’
- ([/2 + 1) <x<]/2- 1 . (9)

2, ]/2 — 1 <l;o čísleAvšak platí — (|/2 + 1) <
x, pre ktoré zároveň platia vzťahy (8), (9), platí teda
nevyhnutné

- 2 S * < ]/2 - 1 .

Pre číslo x z intervalu (10) je
x + 1 + 1;2 > 0, x — (1/2 - l) < 0

(10)

a teda menovatel zlomku (3) je záporný. Ďalej je pre
toto x

x + 2 ^ 0 , x — 1 < 0
a teda čitatel’ zlomku (3) je záporný alebo nula. Je
teda zlomok vo výraze (3) nezáporný a preto o výraze
V platí V 0. Číslo x z intervalu (10) je teda riešením
nerovnosti (1).
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Závěr. Všetky riešenia nerovnosti (1) sú dané číslami
x, ktoré ležia v jednom z intervalov (7), (7'), (10)
(pozři grafické znázornenie na obr. 7), tj. v inter-
valoch

*<—(1/2+1), -2^ *<1/2-1, v + 1.

-112*1) -2 3 *12-1 1 2-1
■Ю-—4

0

Obr. 7

3. Sestrojte trojúhelník ABC, jestliže je dáno tc,
uc, vc. Proveďte diskusi řešitelnosti vzhledem к daným
číslům. (Daná čísla udávají pořade velikosti těžnice, osy
úhlu a výšky při vrcholu C trojúhelníka ABC.)

Řešeni (obr. 8, 9). Místo
rozboru dokážeme tuto po-
mocnou větu V: „Jestliže
v trojúhelníku ABC platí
CA = CB neboli a — b,
potom platí

P
Ic

(1)MC — Vc,

jestliže však je CA Ф CB
neboli а Ф b, potom platí

tc> uc >vc.

A
D=E В1 A

(2)
Důkaz. Platnost vztahu Obr. 8
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(1) plyne ze souměrnosti rovnoramenného trojúhel-
nika ABC podle osy p jeho základny AB (obr. 8).

Nechť je nyní а Ф b (obr. 9). Pro určitost před-
pokládejme, že platí a < b neboli a < /3 (proti menší
straně trojúhelníka leží menší úhel). Je-li a > b,
stačí uvažovat obraz daného trojúhelníka v souměr-
nosti o ose p, kde p je osa úsečky AB.

Sestrojme úhel a = *£ABB' — a. Ze vztahu
a < /3 plyne, že polopřímka BB' prochází vnitřkem
úhlu Pi dále ze vztahu a < (3 plyne, že a je ostrý
úhel. Je tedy a + a' < 180° a polopřímky АС, BB'
mají podle Euklidova axiómu uvnitř poloroviny ABC
společný bod P; trojúhelník ABP je tedy rovnora-

menný a osa p jeho základny AB prochází bodem P
a středem E základny AB. Protože polopřímka BB'
leží v úhlu /3, přičemž bod P je na této polopřímce,
leží tedy bod P uvnitř úsečky AC a bod C tudíž
padne dovnitř poloroviny pB.

Přímka p je osou úsečky AB a proto na ní leží
střed S kružnice k trojúhelníku ABC opsané. Společný
bod přímky p a kružnice k, který leží v polorovině
opačné к polorovině ABC, označme G. Ze souměr-
nosti úsečky AB a kružnice k podle osy p plyne

<£ASG - <£BSG .

К těmto shodným středovým úhlům kružnice k pří-
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slušejí pořadě i shodné obvodové úhly, takže platí
<£ACG = <£BCG = \y .

Polopřímka CG je tudíž osou úhlu у a protne proto
přímku AB v bodě i7, který leží uvnitř úsečky AB;
protože bod F leží uvnitř kružnice k, je bod F uvnitř
úsečky CG, která až na bod G leží uvnitř poloroviny
pB a proto je F vnitřním bodem úsečky EB.

Výška CD trojúhelníku ABC má na straně AB
patu D, která s bodem C leží uvnitř poloroviny pB;
přímky p, CD jsou tedy různé rovnoběžky. Úsečka
CG až na bod C leží uvnitř poloroviny CDE a proto
zde leží i bod F. Bod F leží tedy uvnitř úsečky ED.
Probíhá-li bod polopřímku DE z jejího počátku D,
vzrůstá i vzdálenost od bodu C [porovnej např.
s textem к obr. 82 v učebnici Geometrie pro 8. roč.,
vydání z r. 1958, str. 44], tj. ze vztahu DE > DF
a CD J_ AB plynou vztahy

CE > CF > CD
neboli

tc>uc>vc3

což je vztah (2), který právě jsme měli dokázat.
Jestliže tedy neplatí ani vztah (1) ani (2), nemá

úloha řešení.

Konstrukce. Uvažujme dvě možnosti: [1] platí
(1); [2] platí (2).
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Případ [1]. Nechť platí tc = uc = vc (viz obr. 8).
Sestrojme úsečku DC = vc a v bodě D sestrojme к ní
kolmici q; na přímce q sestrojme úsečky EA = EB,
přičemž bod D volíme libovolně. Potom troj-
úhelník ABC vyhovuje požadavkům úlohy.

Výsledek. Úloha má nekonečný počet řešení.

ctp

O'\в' 1 г
'/у

к V4
L4' 4's~^

A

77^
/Л-а /

Ю /В 7A X
■I /

; /
/

Gi/

Obr. 9

Případ [2]. Nechť platí tc > uc > vc (viz obr. 9).
Zvolme úsečku DC = vc a sestrojme bodem Z) přímku
q J_ DC. Požadujme, aby střed E strany AB hledá-
něho trojúhelníka ABC padl dovnitř jedné z polo-
rovin vyťatých přímkou DC (tuto polorovinu označme
q); to znamená vzhledem к provedenému důkazu
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věty V, že i bod F padne dovnitř poloroviny o. Se-
strojme tedy podle věty Ssu v polorovině q trojúhelník
CFD, kde CF = uc, <£D = 90°; bod F leží tedy na

přímce q. Dále sestrojme v polorovině q trojúhelník
CED, kde CE — tc, <£D — 90°; bod E tedy padne
na polopřímku DF. Bodem E veďme přímku p J_ ED
a označme G společný bod přímek CF, p. Dále se-
strojme osu o úsečky CG a označme <S společný bod
přímek p, o. Opišme kružnici k = (S, SC) a označme
А, В její průsečíky s přímkou q. Potom trojúhelník
ABC je řešením dané úlohy; přitom nebudeme při-
hlížet к možné výměně označení bodů A, B.

Důkaz. Body E, S leží na přímce p; proto je E
středem tětivy AB kružnice k; podle konstrukce je
CE = tc, takže velikost těžnice CE v trojúhelníku
ABC je tc. Ze souměrnosti kružnice k i úsečky AB
podle přímky p plyne, že je <£ASE = <$.BSE-, proto
o obvodových úhlech příslušných к těmto středovým
úhlům v kružnici k platí <£ACF = <£BCF. Je
tedy CF osa úhlu a podle konstrukce je CF = uc.
Konečně je CD _L AB, CD = vc. Tím je důkaz pro-
veden.

Diskuse. Vzhledem к platnosti vztahu (2) existují
oba trojúhelníky CFD, CED [podle věty Ssu] a po-
řádek bodů je D, F, E. Úhel <$.CFD je úhel právo-
úhlého trojúhelníka CFD ', je tedy ostrý a proto i úhel
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к němu vrcholový je ostrý. Proto podle Euklidova
axiómu má polopřímka CF s přímkou p společný bod
G uvnitř poloroviny opačné к polorovině DFC. Přímka
DF odděluje tedy body C, G a bod F leží uvnitř
tětivy CG kružnice k a tedy i uvnitř k. Je tedy i přímka
DFE sečnou (obsahuje bod F) kružnice k, tj. přímka
q = DFE je sečnou kružnice k a body А, В proto
existují.

Při zvoleném umístění úsečky DC — vc a bodu E
uvnitř poloroviny q existuje tedy při platnosti vztahu
(2) jediný trojúhelník ABC (nehledíme na možnou
záměnu označení bodů А, В).

Závěr. Jestliže platí tc — uc = vn potom při zvo-
leném umístění lze sestrojit nekonečně mnoho troj-
úhelníků; jestliže platí tc > uc > vn lze při zvoleném
umístění sestrojit právě jeden trojúhelník.

4. Řešte soustavu rovnic

i
(1)= 9 tgy,cosx +

cosx

11
(2)sin* + =

у cotgy,sinx

kde x, у jsou neznámé.

Řešení. Nechť dvojice čísel я, у splňuje rovnice
soustavy. Znásobme navzájem jednak levé a jednak
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pravé strany rovnic (1), (2). Dostaneme

cosx sinx +
sin*1 9cosx

sinx 2 *cosx sinx

Obě strany nové rovnice znásobme číslem cosx sinx;
po úpravě dostaneme

(cosx sin*)2 — ~ cosx sinx + cos2x + sin2x + 1 = 0
neboli

cosx

(cosx sinx)2 — у cosx sinx + 2 = 0.

Podle známého vzorce je cosx sinx = \ sin2x; po
dosazení do předchozí rovnice dostaneme

sin2 2x — ~ sin2x + 2 = 0

neboli
sin2 2x — 9 sin2x + 8 = 0

neboli

(sin2x — 1) (sin2x — 8) = 0 .

O čísle x musí tedy platit bud+in 2x — 8 = 0 anebo
sin2x — 1 = 0.

Ze vztahu

sin2x - 1

plyne
2x = 90° + 2k . 180%

kde k je libovolné celé číslo, tj.
x = 45° + k . 180°. (3)
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Vzhledem к tomu, že pro každé reálné číslo a je
|sin a| ^ 1, nelze vztah

sin 2x = 8 ,

splnit žádným reálným číslem x.

O čísle x podle (3) musí tedy platit
buď

x — 45° + 2n . 180° (3a)
anebo

(3b)x = 225° + 2n . 180° ,

kde n je libovolné celé číslo.
Dále uvažujme každou z těchto možností od-

dělené.

Případ [1]. Nechť platí (3a); potom je

sin* = ~ 1/2cosx = —1/2 ,

a po dosazení do rovnice (1) dostaneme

(4)

t V2 + y* ~9 tgy ’■
Odtud postupně dostáváme

j/2 + 2У2
= 9 tgу,2

3]/2
2~ = 9 ЧУ з

]/2 t

6
(5)

50



Položme ]/2 === 1,414, pak je
i

tgУ = ~6- 1j414
neboli

tgу = 0,236
a z tabulek pro у dostaneme přibližnou hodnotu

y = 13°10' + jfe. 180°,
kde k je libovolné celé číslo.

Dvojice čísel x, у daných vztahy (3a), (4a) je ře-
šením soustavy. To je podle výpočtu čísla у zřejmé
o rovnici (1). Dosaďme tuto dvojici (x, y) ze vztahů
(3a), (5) do (2). Vzhledem ke (4) na levé straně'rov-
nice (2) dostaneme

(4a)

{П + щ
neboli

3|/2 .

2

na pravé straně vzhledem к tomu, že pro у platí vztah
(5), obdržíme postupně

1 6
_ 3 3 У 2

2 ‘]/2~Г2~~
Tím je zkouška provedena.

Případ [2]. Nechť platí (3b); potom je

sinx = — у У2

2 •

-tV2. (6)cosx =

514*



a po dosazení do (1) dostaneme

-ŤV2 г= = 9tg3?,У 2
tj-

V"2 (7)tgУ = - 6 5

neboli

t&y = — 0,236 .

Stejně jako prve obdržíme
у == 166°50' + k . 180° ,

kde k je libovolné celé číslo.
Dvojice čísel (x, y) ze vztahů (3b), (7a) jistě vy-

hovuje rovnici (1). Porovnáním vztahů (3a), (3b)
a dále vztahů (5), (7a) je patrné, že dvojice čísel (x, y)
ze (3b), (7a) obsahuje právě opačná čísla к dvojici
čísel ze vztahů (3a), (5); je však sin (— x) = — sinx,
cotg(— y) = — cotgy. Dosadíme-li tedy dvojici (x,
y) ze vztahů (3b), (7a) do (2), znamená to dosazení
dvojice (x, y) ze vztahů (3a), (5) do (2) a znásobení
obou stran rovnice (2) číslem — 1. Avšak čísla (x, y)
ze (3a), (5) splňují (2) a proto ji splňují i čísla (x, y)
ze vztahů (3b), (7a).

(7a)

Závěr. Tím je řešení úlohy provedeno. Všechna
řešení soustavy (1), (2) jsou dvojice čísel (x, y) daných
buď vztahy (3a), (5) anebo vztahy (3b), (7a).
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5. Určte všetky dvojice (x, y) celých čísel x, yt
o ktorých platí

]/x + ]/y = У50 . (i)
Riešenie. Nech x, у sú celé čísla, ktoré vyhovujú

rovnici (1). Potom čísla x, у musia byť celé nezáporné
(předpokládáme, že druhá odmocnina je definovaná
len z nezáporných čísel). Potom z (1) vyplývá

]/y = ]/50 — ]/x.
Umocněním oboch stráň na druhů dostaneme rovnicu

у = 50 + x — 2]/50л:, (П
čiže

2]/50x = 50 + x -

Číslo na právej straně tejto rovnice je celé, preto aj
lává strana tejto rovnice je celé číslo a, t. j. platí

У •

2]/50jc = a .

Číslo na lávej straně je nezáporné, teda je tiež a ^ 0.
Ak umocníme obe strany tejto rovnice na druhů,

dostaneme
2 . 102. * = a2,

V • V

cize

-tór-2x (2)
Číslo a musí byť násobkom čísla 10, t. j.

a = 106,
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kde b je celé nezáporné číslo. Po dosadení do (2) do-
staneme

2x = b2. (3)
Číslo b nemóže byť nepárne*), lebo jeho druhá moc-
nina je párne číslo. Číslo b musí byť teda párne*),
t. j. musí platit’

b = 2c ,

kde c je celé nezáporné číslo. Po dosadení do (3) do-
staneme, že o čísle x musí platiť

2x = 4c2,
V • V

cize

x = 2c2.

Este si všimnime, že pre x >50 je ]/x > ]/50S preto
o celom nezápornom čísle л: nevyhnutné platí

(4)

číže
0 ^ 2c2 ^ 50

a teda
0 ^ c2 ^ 25 ,

číže

0^c^5.

Zostavme pre celé nezáporné číslo c tabulku. Ta-
bulku hned’ doplňme celým nezáporným číslom ys

*) Párne znamená česky sudé, nepárne liché.
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ktoré dostaneme po dosadení čísla я do právej strany
rovnice (Г):

2o i 3 4 5

32 500 2 8 18x

50 32 18 8 2 0У

Ak teda existuje dvojica (x, у) celých nezáporných
čísel x, у, ktoré vyhovujú rovnici (1), je to niektorá zo
siestich dvojíc tejto tabulky. Eahko sa přesvědčíme
dosadením do (1), že každá z týchto siestich dvojíc
vyhovuje rovnici (1). Danej úlohe vyhovuje teda šesť
dvojíc celých nezáporných čísel (x, y), uvedených
v tabulke a žiadna iná dvojica celých nezáporných
čísel. Tým je úloha rozriešená.

6. Je dán trojúhelník ABC o úhlech a, /?, у a polo-
měru r kružnice opsané. Nechť M, N, P jsou pořade
středy stran BC, CA, AB.

Dokažte: Je-li trojúhelník ABC ostroúhlý, potom
existuje čtyřstěn MNPQ, jehož síť tvoří trojúhelníky
MNP, NPA, PMB, MNC; jeho objem je

V = | siná sin/? siny |/cosa cos/? cosy .

Není-li trojúhelník ABC ostroúhlý, pak takový čtyř-
stěn neexistuje.

Řešení I. V trojúhelníku ABC o stranách a, b, c
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jsou úsečky NP, PM, MN středními příčkami, takže
jsou pořadě rovnoběžné se stranami BC, CA, AB
(obr. 12). Označme pořadě ox, o2, o3 kolmice vedené
vrcholy А, В, С к protějším stranám trojúhelníka
ABC; jejich paty na protějších stranách označme
pořadě V1} V2, V3. Dále buďte Oi3 02, Oa průsečíky
dvojic přímek (ox, NP), (o2, PM), (o3, MN). Konečně
položme

AVX — vx,

Platí, že <$iNPM = <^.BCA = у atd.
Všimněme si tohoto faktu (srovnej s obr. 12):

Buď MNPQ libovolný čtyřstěn. Otočme pořadě troj-
úhelníky NPQ, PMQ, MNQ i s jejich rovinami kolem
přímek NP, PM, MN do roviny MNP, a to pořadě
do polorovin opačných к polorovinám NPM, PMN,
MNP; přejdou do poloh NPA, PMB, MNC.
Bod Q se při těchto rotačních pohybech otáčí pořadě
v rovinách cox _L NP, co2 J_ PM, co3 J_ MN; jejich
průsečnice s rovinou MNP jsou pořadě ox, o2, o3
a středy příslušných kružnic kx, k2, k3 otáčení (ty leží
pořadě v rovinách cox, co2, co3) jsou body Ox, 02, 03;
poloměry těchto kružnic otáčení kolem os NP, PM,
MN jsou pořadě

OjQ - OxA, 02Q = 02B, 03Q = 03C.
Přímka q = QO _L MNP, kde O je pata této kolmice,
leží v rovinách a>x, co2, co3 a tudíž bod O je průsečíkem

BV2 = v2, CV3 = v3.
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výšek v trojúhelníku ABC. Tohoto výsledku užijeme
к důkazu, že naše úloha nemá řešení, jestliže troj-
úhelník ABC není ostroúhlý.

p
°г

Oj01

Obr. 10

Případ [1] (obr. 10). Nechť je у = 90°. Tu je
O^CaN^O^a kružnice kx má průměr AC, tj.
má s přímkou q J_ MNP (jdoucí bodem O) společný
jen bod C a ten leží v rovině MNP, takže neexistuje
hledaný čtyřstěn MNPQ.

Případ [2] (obr. 11). Nechť je у > 90°, takže prů-
sečík O výšek trojúhelníka ABC padne vně trojúhel-
nika. Kružnice ks otáčení má průměr CF3 a nemá
zřejmě společný bod s přímkou q _]_ MNP vedenou
bodem O.
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Případ [3] (obr. 12). Nechť ABC je ostroúhlý
trojúhelník, takže průsečík O jeho výšek padne dovnitř
tohoto trojúhelníka, tedy např. dovnitř úsečky AVX.

\!'Ó
-~(qT

\
/°i \°2i

L J-%
\

\

лVí
■°3/ 4\W

\
\

\
\ \
\

/54 e\

Ofcr. íí.

Je tedy poloměr OxA = kružnice otáčení ^
bodu Л větší než vzdálenost OxO a přímka q J_ MNP
vedená bodem O má s kružnicí kx společný bod Q,
který neleží v rovině MNP. Půjde o to dokázat, že
každá z kružnic kx, k2, k3 tímto bodem Q prochází;
to dokážeme tak, že určíme velikost v úsečky OQ,
kterou jsme sestrojili pomocí kružnice kx.

V obr. 12 je písmeny v kulaté závorce znázorněna
situace v rovině (ox, totiž kružnice (&x), přímka (g),

58



bod (<2)j přičemž trojúhelník AV^Q) má podle Thale-
tovy věty při vrcholu (Q) pravý úhel; o velikosti v
jeho výšky O(Q) podle Euklidovy věty o výšce platí

v2 = OA . OVx. (1)

Platí (z trojúhelníka AOV2, kde <£V2 = 90°, <£O =
= y)

OA =
ŝiny 5

(z trojúhelníka ABV2, kde <Ž.V2 = 90°, ЛВ = c,
<$:Л = a)

/4 F2 = c . cosa
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a tedy
cosa

C
siny ’ (2)ОA =

Dále platí (z trojúhelníka OCV13 kde = 90°,
<£0= /3)

OVx = CV,. cotg/?,

(z trojúhelníka ACV13 kde = 90°, <£C = y,
AC = b)

CV1 = 6 . cosy
a tedy

(3)OFj. = b . cotg/3 . cosy .

Po dosazení z (2), (3) do (1) dostáváme
i

(4)v2 = bc . cosa . cotg/3 . cosy • siny

Označme r poloměr kružnice opsané trojúhelníku
ABC. Podle věty sinové užité na trojúhelník ABC
platí

b c-~ — 2r
siná sin/? siny

neboli

(5)c — 2r siny;

po dosazení za b, c do (4) dostaneme
v2 _ 4r2. C0Stt # cos/3 . cosy

b — 2r sin/3 j

neboli

v — 2r]/cosa . cos/3 . cosy . (6)
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Číslo v se nezmění, jestliže místo kružnice kx uži-
jeme nčkteré z kružnic k2, k3, neboť vztah (6) zůstává
týž, provedeme-li záměnu úhlů a, /5, y. Z toho plyne,
že sestrojeným bodem Q procházejí všechny tři kruž-
nice k1} k2, k3i což právě jsme měli dokázat.

II. Obsah p trojúhelníka ABC je např.
lbe siná

a po dosazení za b, c z (5)
2r2. siná . sin/5 . siny;

obsah p trojúhelníka MNP je roven l obsahu troj-
úhelníka ABC, tj.

p — Ir2 siná . sin/5 . siny .

Objem V čtyřstěnu MNPQ je
(7)

V = \p . v
čili po dosazení
V — J- |r2sina . sin/5 . siny . 2r|/cosa . cos/5 . cosy

neboli

V — Ir3 siná sin/5 siny]/cosa cos/5 cosy .

Tím je řešení celé úlohy provedeno.

2. ÚLOHY II. KOLA KATEGORIE A

1. Zostrojte trojuholník ABC, ak je dané tc, vn у

(íc je dížka ťažnice príslušnej к vrcholu C; vc je výška
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příslušná к tomu istému vrcholu; у = <£ ВСA).
Urobte diskusiu riešitelnosti.

Riešenie (obr. 13, 14). Rozbor. Predpokladajme,
že sme zostrojili trojuholník ABC požadovaných vlast-
ností. Označme M střed strany AB, ďalej P patu
kolmice vedenej bodom С к priamke AB. Je teda

CM = tc, CP = vc, <£РСЛ = у < 180°.
Sú dve možnosti: [1] M = P a teda tc = vc

(obr. 13); v tomto případe je ABC rovnoramenný
trojuholník, ktorý pri umiestení úsečky MC a bodu A
v jednej z polrovín vyťatých priamkou MC možno
zostrojiť s jediným výsledkom. Tým považujeme
tento případ za vyriešený.

[2] M ^ P. Trojuholník CMP má uhol <£P = 90°
(obr. 14), preto je CM > CP, číže nevyhnutné platí

tc vc.

(V případe tc < vc zrejme nemá úloha riešenie.) Zo-
strojme rovnoběžník ACBC, ktorého stredom je
bod M. O ňomplatí CC = 2rc, <£СЛС' = 180° — у;
jeden z bodov А, В (pri vhodnom označení je to bod A)
padne dovnútra polpriamky AÍP. Z toho vyplývá
konštrukcia:

Zostrojme trojuholník CMP, kde CP = vc, <£P =
= 90°, СЛ4 — řc. Požadujme, aby bod A padol do-

(1)
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vnútra polroviny CMP. Na predížení úsečky CM za
bod M zostrojme úsečku MG = tc. Označme k
oblúk v polrovine CMP, z ktorého vidieť úsečku CG

в

Obr. 13 Obr. 14

pod uhlom 180° — y. Střed 5 oblúka k zostrojíme
takto: a) zostrojíme os m úsečky CC'; b) v polrovine
opačnej к polrovine CMP zostrojíme úsekový uhol

CGК — 180° — у a priamku GL J_ GK. Potom
je S = (m . GL). Poloměr oblúka je SC.

Označme ďalej A spoločný bod polpriamky MP
a oblúka k. Bod В je obraz bodu A v súmernosti so
stredom M. Potom je ABC hladaný trojuholník.
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Dokaž (obr. 14). Bod M je podlá konštrukcie
stredom úsečiek CG, AB, takže ACBC je rovno-

bežník, v ktorom podlá konštrukcie je +Л = 180° —
— у a teda +C — y. Trojuholník ABC má vzhladom
к straně AB výšku CP = vc a ťažnicu CM = tc. Tým
je dokaž hotový.

Diskusia (obr. 14). Trojuholník CMP za před-
pokladu (1) možno zostrojiť, takže priamky CM, MP
sú rožne. Oblúk k tiež (pre у < 180°) existuje. Bod M
podlá konštrukcie leží vnútri kružnice (S, SC) a teda
polpriamka MP nevyhnutné obsahuje právě jeden
bod oblúka k, totiž bod A^ M. Úloha má teda pri
zvolenom umiestení právě jedno riešenie.

Závěr. Pre tc ^ vc, у < 180° má úloha právě jedno
riešenie; inak nemá riešenie.

2. Nájdite všetky reálne čísla x, pre ktoré platí
simc + sin3x + sin5x
cosx + cos3ac + cos5x

(Poznámka. Najprv určte všetky x, pre ktoré nemá
1’avá strana nerovnosti zmysel.)

Riešenie. Upravme čitatela aj menovatela zlomku
Z na 1’avej straně vztahu (1). Platí (použijeme vzorce

pre súčet funkcií siná + sin/i, cos a + cos/5):
sin* + sin3x + sin5x = (sinx + sin5x) +

+ sin3x = 2sin3x . cos2jc + sin3x =

= sin3x (1 + 2 cos2x),

(1)> 1 .

(2)
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cos* + cos3x + cos5x = (cosx + cos5x) +
+ cos3x = 2cos3x . cos2x + cos3x =

= cos3x (1 + 2cos2x). (3)

I. Zlomek Z vzhladom na (3) stráca zmysel, ak
platí jeden zo vzťahov:

(4)cos3x = 0 ,

1 + 2cos2x = 0 .

Zo vztahu (4) vyplývá: bud je 3x = 90° + n . 4R,
alebo je 3x = 270° + n . 4R (kde n je lubovolné celé
číslo); teda

x = 30° + n . 120° a * = 90° + n . 120° ,

(5)

v • v

cize

(6)x = a + k . 4R

(kde k je lubovolné celé číslo), priČom a je ktorékol’-
vek z čísel

(6')30°, 90°, 150°, 210°, 270°, 330° .

Zo vztahu (5) vyplývá: 2cos2x = — 1, číže
cos 2x — — \ a teda: buď je

2x = (180° - 60°) + m . 4R, (?)
buď je

(7')2x - (180° + 60°) + m . 4R,
kde m je lubovolné celé číslo. Zo (7), (7') vyplývá
jednak

x — 60° + m . 2R ,
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jednak
x = 120° + m . 2R;

je teda
(8)x = /? + P • 4R

(kde p je 1’ubovolné celé číslo), pricom /5 je 1’ubovolné
z týchto čísel:

(8')60°, 120°, 240°, 300° .

Vzhladom na vztahy (6), (60 a (8), (80 stráca
zlomok Z zmysel pře

(9)я = у + q . 4R
(kde q je lubovolné celé číslo), priČom у je lubovolné
z týchto čísel:

30°, 60°, 90°, 120°, 150°, 210°, 240°, 270°
300°, 330° . (90

II. Nech л; je číslo, ktoré vyhovuje nerovnosti (1),
takže je rožne od všetkých čísel zo vztahu (9), (90*
Podlá (2) a (3)

sin3xsin3x(l + cos2x)
= tg3x .Z =

cos3x(l + cos2x) cos3x

Vztah (1) možno teda písať v tvare

tg3x > 1 . (10)
Nerovnost’ tg cp > 1, kde cp leží v intervale <0°, 180°),
má riešenie

45° < cp < 90°,
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nerovnost’ (10) teda splňujú právě tie čísla x, o kto-
rých platí

45° + r . 180° < 3x < 90° + r . 180°,
kde r je Iubovolné celé číslo, t. j.

15° + r . 60° < x < 30° + r . 60°. (ii)

30° 60° 90° 120' 150° 180°0°

/5° f35°15°

Obr. 15

Všetky čísla (9) možno písať v tvare x — m . 30° (kde
m je celé číslo, ktoré nie je dělitelné číslom 6). Medzi
číslami x z nerovností (11) nie je žiadne z týchto čísel.
Robili sme ekvivalentně úpravy danej nerovnosti.
Čísla (11) sú preto riešeniami danej nerovnosti a ne-
existuje žiadne iné riešenie.

Závěr. V intervale <0°, 180°) dostaneme podlá (11)
právě tieto riešenia x (obr. 15):

15° <x < 30°,
75° < x < 90° ,

135° < x < 150° .

Všetky riešenia nerovnosti (1) sú čísla tvaru

x -j- s . 2R ,

kde x je jedno z čísel (12) a s je 1’ubovoFné celé číslo.

(12)
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3. Je dána tato funkce у proměnné x (kde x je
reálné číslo):

j/i + p + Ví - p
, kde p = •У = У i + p - Ь-р

Na základě úpravy daných výrazů načrtněte graf
této funkce a dále rozhodněte, pro která x není funkce
definována; pomocí tohoto grafu určete ta x, pro
která nabývá у nejmenší kladné hodnoty.

Řešení. Nejprve vyšetříme, pro která x mají smysl
odmocniny l/l+p>]/l—pj platí:

x2 + 1 + 2x
_ (x + l)21 +P = x2 + 1 5X2 + 1

což je nezáporné číslo pro každé reálné x;

x2 + 1 — 2x (x - l)21 -P = X2 + 1 5X2 + 1

což je nezáporné číslo pro každé reálné x.

Dále vyšetříme, pro která jcjej/l + p — |/l — p—0
neboli ]/1 + p = ]/1 — p a tedy 1 -f p — 1 — p,
tj. p = 0. Avšak p — 0 právě pro x = 0. Pro x — 0
není tedy у definováno.

V dalším předpokládáme, že reálné x je různé od
nuly, takže je příslušné у definováno. Upravujme
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výraz:
Vi+P +b-p

.

]/Г+ р -yr^p
= (УГТ7>+УГ^>)2 =

G/i +p - l/i11 p) (l/i +p + Ví - p)
_ 2 + 2У(1 + p) (1 - p) _ 2 (l + Vl - p2)

_

1 + P - (1 ~ P) 2p

= i + yi - p2
p

(2л:)2
_ (л:2 - l)2

(л:2 + l)2 _ (x2 + l)2 5

dostáváme tedy

Protože je \ — p2 = 1 —

je УГГр-^1;
I*2 ~ H
X2 + 1

1 +
X2 + 1 + |x2 - 1|

3; = 2x 2x

x2 + 1

tj-
x2 4- 1 + |x2 — 1|

У = 2x

Zřejmě musí být x Ф 0. Nyní jsou dvě možnosti:

1 anebo[1] Nechť je x2 — 1 ^ 0, tj. buď je x
x — 1. Potom je \x2 — 1| = x2 — 1 a

x2 + 1 + X2 - 1
У = = X

2x

neboli

у = x.

69



1 se graf funkce skládá z polopřímek AP,Pro \x\
A'P' souměrně sdružených podle počátku O sou-
řadnic; přitom je A = [1, 1], P = [2, 2].

[2] Nechť je x2 — 1 ^ 0, ale x Ф 0, tj. — 1 ^ x ^
^ 1, x Ф 0; potom je \x2 — 1| = — x2 + 1 a

x2 + 1 - x2 + 1 2 1
У 2x x

neboli

V tomto případě jsou
grafem dva oblouky

rovnoosé hyperboly
(viz grafické znázorně-
ní nepřímé úměrnosti),
a to pro \x\ ^ 1, л:

Z obrázku 16 je pa-
trný průběh naší funk-
ce; z něho je vidět, že
nejmenší kladnou hod-
notu у = 1 dostaneme
pro x = 1. Tím je ře-
šení provedeno.

/

o

Obr. 16 4. Trojboký jehlan
má za podstavu rovno-

stranný trojúhelník o straně velikosti p. Pobočné stě-
ny svírají s jeho podstavou pořadě ostré úhly a, /?, y.
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Je-li a + /5 + у = 180°, potom poloměr kulové
plochy jehlanu vepsané je

Q — ÍPj/3 . tg|a tg tg
dokažte.

Řešení. Označme V hlavní vrchol jehlanu a 5 střed
kulové plochy jehlanu (v podstatě Čtyřstěnu VABC)
vepsané; je známo, že bod S existuje. Označme U
patu kolmice vedené bodem S’ к rovině ABC (obr. 17).
Bod S leží v rovinách, které půlí úhly a, /5, y; snadno
se zjistí, že bod S leží uvnitř kolmé hranolové plochy
sestrojené nad trojúhelníkem ABC a proto bod U
padne dovnitř tohoto trojúhelníka.

Označme X, Y, Z paty
kolmic vedených bodem U
к přímkám BC, CA, АВ
a položme UX=x,

UZ=z-,
podle předchozího jsou
x,y,z kladná čísla (bod U
neleží na obvodu troj- /
úhelníka ABC). Vznikají L.
trojúhelníky

SXU, SYU, SZU,

c

UY=y, .x

Yl-
V/ *У

; z

L-
Z В

Obr. 17

kde

<u = 90°, JS.X = i a, SY=IP,SZ= Ir,
SU= Q.
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O těchto trojúhelnících platí
x=q cotg^a, y = Q cotg-|/3, * = q cotg \y . (1)
Obsah P rovnostranného trojúhelníka ABC se stranou
P je

p= ip2p-
Zároveň je obsah P roven součtu obsahů trojúhelníků
UBC, UCA, UAB (obr. 17), tj.

P — ltpx + \py -f \pz

(2)

neboli
p = \p(x + у + z). (3)

Porovnáním (2), (3) dostaneme po snadné úpravě
x + У + z = '2"P|/ 3 •

Po dosazení za x, y, z ze vztahů (1) obdržíme
q(cotg \a + cotg i /? + cotg \y) = lp]/3

neboli

1
(? = \pI3 • cotg £a+ cotg i/3 + cotg \y '

Jestliže je tvrzení úlohy správné, musí být
1

cotg |a + cotg i/3 + cotg \y =
tg tg i/3 tg iy

neboli

cotg i a + cotg |/3 + cotg iy =
= cotg i a cotg Í/3 cotg \y .
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Jestliže je a + /3 + у = 180°, pak tento vztah
skutečně platí, jak ihned dokážeme.

Důkaz. Podle textu úlohy platí \y — R — (i a -f
-f Nyní postupně upravujme:

(cotg\a + cotgi/S) + cotg\у =

cos|asin|^ -f cossin\a cosiy
sin^a sini/3 siniy

sinQa + |/3) cosiy
sinia sini/3 siniy

siniy . sin [90° — iy] + sin^a sini/3 cosiy
sinia sini/3 sin \y

siniy . cosiy + sin^tt sini/3 cosiy
sin|a sin|/3 siniy

[siniy -f sin|a sin^/3] cosiy
sin^a sini/3 siniy

(sin [90° — (ja + i/8)] + sin i« sin 4/3} cos iy
sin \a sin i/3 sin \y

[cos (ia + 4/3) + sin^a sini/3] cosiy
sinia sini/3 siniy

[cosiacosi/3 — sin i a sin i/3 +sin i a sini/3] cos iу
sinia sin4/5 sin|y

cos^a cosi/? cosiy
= cotg i a cotg i /? cotgiy ,

což právě jsme měli dokázat. Tím je řešení úlohy pro-
vedeno.

sinia sin i/3 siniy
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3. ÚLOHY III. KOLA KATEGORIE A

1. Sestrojte pravoúhlý trojúhelník ABC (kde úhel
<£BCA = 90°), jsou-li dány délky těžnic r15 í2 pří-
slušných к vrcholům A, B. Proveďte diskusi řešitel-
nosti vzhledem к daným číslům t19 t2. (Lze řešit do-
plněním na rovnoběžník.)

/в

a'

Obr. 18

Řešení. Rozbor (obr. 18). Předpokládejme, že jsme
našli trojúhelník, který splňuje požadavky úlohy.
Označme T těžiště hledaného trojúhelníka a sestrojme
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rovnoběžník ABCD; jeho střed B' je zároveň středem
odvěsny CA hledaného trojúhelníku ABC. Tu platí
TA = 1119 TD = fr2, B'D = BB' = í2, ГЯ' = \t%.

Ze souměrnosti rovnoběžníka ABCD podle jeho
středu B' plyne, že

<£B'AD = <£B'CB = 90°.

Bod Л leží proto na Thaletově kružnici opsané nad
úsečkou DB' jako průměrem, přičemž je TA = §tx.
Odtud konstrukce (obr. 18):

Sestrojme úsečku BD délky 2ř2; označme B' její
střed a na polopřímce BD sestrojme úsečku ВТ =
— §í2. Zvolme polorovinu g o hranici BD. Nad
úsečkou DB' jako průměrem sestrojme Thaletovu
kružnici k a opišme kružnici m = (Г, § řj); označme Л
ten společný bod (pokud existuje) obou kružnic k, m,

který padne dovnitř poloroviny q. Dále sestrojme
obraz C bodu A v souměrnosti o středu B'. Potom

trojúhelník ABC vyhovuje požadavkům úlohy.

Důkaz. Podle konstrukce jsou D, В’ různé body
(čísla t2 i jsou kladná). Předpokládali jsme, že bod A
padne dovnitř poloroviny g, která má hranici DB.
Proto existuje trojúhelník ABD a tedy i trojúhelník
ABC; o něm podle konstrukce platí:

a) Bod B' je středem strany CA a úsečka BB'
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(shodná s úsečkou DB' = t2) je tedy těžnicí trojúhel-
nika ABC a má délku r2.

b) Podle konstrukce je ВТ = §BB' — §ř2; protože
úsečka BB' je těžnicí trojúhelníka ABC, je T těžištěm
tohoto trojúhelníka.

c) Podle konstrukce je TA = ft13 přičemž T je
těžištěm; proto těžnice trojúhelníka ABC příslušná
к vrcholu A má délku tx.

d) Podle konstrukce leží bod A na kružnici k, je
tedy <^DAB' = 90°; obrazem tohoto úhlu v souměr-
nosti o středu B' je úhel <£BCA, který je proto
rovněž pravý.

Trojúhelník ABC splňuje tedy všechny požadavky
vyslovené v textu úlohy.

Diskuse. Řešitelnost úlohy podle provedené kon-
strukce a důkazu závisí na existenci bodu A uvnitř

poloroviny q. Zřejmě se tedy jedná o to, aby se kružni-
ce k, m protínaly ve dvou různých bodech; tyto body
jsou, pokud existují, souměrně sdružené podle přímky
DB, takže jen jediný z průsečíků padne dovnitř polo-
roviny o.

Kružnice k, m mají pořadě poloměry r = |ř2, £>0 =
= a střednou délky fř2; kružnice k, m mají dva
různé společné body právě tehdy, jestliže o jejich
středné platí

Qo — r < fř2 < Q0 + r
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neboli

ih — \t2 < fí2 < Itx + |ř2.
Odtud dostáváme dvě nerovnosti

4tx < 8í2, 2r2 < 4řt
. neboli

tx < 2r2, *ř2 < 2rx;
to lze vyslovit takto:

Každá z daných těžnic musí být menší než dvoj-
násobek druhé z nich. Jedině za tohoto předpokladu
má úloha řešení, a to jediné; jinak úloha řešení nemá.

Tím je řešení dané úlohy provedeno.
Podle řešení s. Jitky Klánské,
ll.btř. 16. jsš, Praha 13-Vršovice,
a s. Jiřího SouČka 10.a tř. 21. jsš,

Praha 16, Na Santošce 1.

2. Ak o reálných číslach a, b, c platia tri nerovnosti
ci -\- b c !>0,

ab + bc + ca > 0,
abc > 0,

potom sú a, b3 c kladné čísla. Dokážte to.
Riešenie. Z nerovnosti (3) vyplývá, že čísla a, b> c

sú všetky rožne od nuly a ďalej, že sú právě dve mož-
nosti: [1] Čísla a, b> c sú všetky kladné. [2] Dve
z čísel a, by c sú záporné a tretie je kladné.

(1)
(2)
(3)
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Dokážeme, že případ [2] nemóže nastat’, Čím bude
dokázaná správnost’ tvrdenia danej úlohy.

Dokaž. Nech je a > 0, b < 0, c < 0 (to možno
v případe [2] dosiahnuť vhodnou záměnou označenia
uvažovaných čísel).

Zo vztahu (2) vyplývá
ab > — c(a -f- b); (4)

zo vztahu (1) vyplývá
(5)a + b > — c .

Znásobme obe strany nerovnosti (5) číslom — c,
ktoré je kladné; dostaneme

— c{a -f- b) > c2.
Z nerovností (4), (6) dostaneme

ab > c2.

Avšak tento vztah neplatí, lebo je ab < 0, ale c2 > 0.
Tým sme urobili dokaž, že případ [2] nemože nastat’.

Upravené podlá riešenie s. Čá
Zong Rjonga, žiaka 11.a tr. jsš,
Brandýs nad Labem.

(6)

(7)

Jiné řešení. Nechť tvrzení úlohy neplatí, tj. nechť
některé z čísel a, b, c není kladné (dokážeme, že to
není možné); můžeme předpokládat, že je to číslo a

(pro čísla b, c by se úvaha provedla podobně). Před-
pokládejme tedy, že platí

(4)a ^ 0 .
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Nemůže být a = O, jinak by neplatilo abc > 0. Je tedy
a < 0.

Ze vztahu abc > 0 potom dostaneme
bc < 0 . (5)

Z nerovnosti (1) dostaneme
a > — (6 + c),

takže platí
— (6 + c) < a < 0

a tedy též
— (b + c) < 0,

z čehož
ů + c > 0 .

Protože je a <0, plyne z předchozí nerovnosti
vztah

a(b -)- č) <C Oj
ze vztahů (5), (6) vyplývá, že platí též nerovnost

a(b + c) + bc < 0

(6)

neboli
ab + bc + ca < 0 .

To však není možné, neboť platí nerovnost (2).
Není tedy <2^0, tj. platí a > 0. Protože stejnou

úvahu můžeme provést i pro čísla b, c, je důkaz tvrzení
úlohy proveden.

Podle řešení s. Kamila Johna,
ll.b tř. 14. jsš, Praha 12,
W. Piecka 2.
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3. Z polotovaru tvaru komolého rotačního kužele,
jehož podstavy mají poloměry R, r, byla zhotovena
součástka tak, že do něho byla vyvrtána dutina tvaru
souosého komolého kužele, jak je vidět z nákresu oso-
vého řezu; tím se hmota kusu zmenšila na polovinu.
Vypočítejte poloměry otvorů vzniklých v podstavách
součástky. Rozhodněte, pro který poměr у má úloha
řešení.

r

v

R'x^
R

-I
I

Obr. 19

Řešení (obr. 19). Předpokládejme, že vzhledem
к významu čísel R, r je

(1)R > r > 0 .
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Kuželová dutina má tvar rotačního komolého kužele
o poloměrech podstav

R' — R — x, (2)r' = r — x;

jeho objem označme Vls objem daného kužele
označme V2. Podle textu úlohy má platit

V2 = 2VX
neboli

2 . z[(R — x)2 + (R — x)(r — x) + 0 — x)2] =
= lr,(R2 -(- Rr + r2) .

Má-li úloha řešení, musí číslo x splňovat předchozí
rovnici, kterou upravíme postupně takto:

2(R2 — 2Rx + x2 -f- Rr — Rx — rx + x2 +
+ r2 — 2rx + x2) = R2 + Rr + r2,
6x2 — 6(R + r)x + R2 + Rr + r2 = 0 .

Diskriminant rovnice (3) je
D = 36 (R + r)2 - 24 (i^2 + Rr + r2) =

= 12(3tf2 + 6Rr + 3r2 - 2R2 - 2Rr - 2r2) =
= 12(Я2 + 4Rr + r2);

vzhledem к vztahům (1) je D > 0 a tedy
D = 21/3ČRM~4Rr + r2) .

(3)

Kořeny xlj2 rovnice (3) jsou
6 (R + r) ± 2^3 {Rl + 4Rr + Г2)

*1,2 12

neboli
3 (R + r) ± \'3(К2 + 4Rr + r2) (4)*1,2 b
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Číslo хг (které přísluší ke znaménku plus) je větší
R £ - a toto číslo je větší než r [viznež Ш + Ů

O

(1)]; je tedy xx > r a rozdíl r — je číslo záporné.
Nepřichází tedy xt pro naší úlohu v úvahu.

Má-li úloha řešení, pak hledaným číslem л: může
být jen kořen x2. Platí, že x2 > 0, jak ihned dokážeme.
Užijeme této pomocné věty V: „Jsou-li a, b ne-
záporná čísla a platí-li a2 ^ b2, potom je a ^ b.((
Položme a = 3(Я + r), b = ]/3(Д2 +~4Řr^r*) a
utvořme rozdíl a2 — 62; je

[3(Я + r)]2 - []/3(/?2 + 4Яг + r2)]2 =
= 9(Я2 + 2Rr + r2) - 3(Д2 + 4Rr + r2) =
= 6R2 + 6Rr + 6r2,

což je vzhledem к vztahům (1) kladné číslo. Je tedy
x2 > 0.

Pro čísla R', r' dostaneme pro x — x2 ze (4) tyto
výsledky

3 (7? - r) + |/з(7<!2 + 4Rr + r2)Д' -
6

- 3(7? - r) + |/3(7?2 + 7?r+~V2) (5)r' =

Číslo R' je vzhledem к (1) kladné. Jedná se o to, za
kterých podmínek je též r' kladné číslo; to nastane
právě tehdy, jestliže bude

УЗ (Я2 + 4Rr + r2) > I- 3(Д - r)| .

6
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Podle věty V utvořme rozdíl Q druhých mocnin čísla
na levé a pravé straně poslední nerovnosti; je

Q = [1/3(Д2 + 4Rr + r2)]2 - [- 3{R - r)]2 =
- 3(R2 + 4tfr + r2) - 9(Я2 - 2fir + r2) =
= - 6R2 + 30Rr - 6r2 -
= - 6 (R2 - 5Rr + r2) .

Číslo <2 musí být kladné neboli musí být
R2 - 5Rr + r2 < 0 .

Rovnice у2 — 5y + 1 = 0 o neznámé у má kořeny
£(5 ± У21); proto lze vztah (6) psát ve tvaru

+ (?)

Přitom první činitel levé strany vztahu (7) je větší
o r]/21 než druhý; vztah (7) lze tedy splnit jedině
takto

(6)

R - % + T F21 > 0«
*-7-ÍP<«

V>ý(5-l/2l),
y<ý(5 + l/2l).

Obráceným postupem z obou vztahů (8) plyne, že je
<2 > 0 a tím r' > 0. Přitom první vztah (8) je vzhle-
dem к vztahu (1) vždy splněn.

neboli

(8)
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Odtud výsledek: Úloha má řešení právě tehdy,
jestliže platí nerovnosti

1 <4-(5+ 1/21).
Podle řešení s. Karla Šmuka, ll.b
tř. jsš, Ostrava VIII - Hladnov.

4. Najděte všechny dvojice čísel x, у (ve stupních),
které vyhovují soustavě rovnic

sin(x + 150°) = cos(j> — 75°)
cos* + sin(j> — 225°) +

(1)

1=0. (2)

Řešení. A. Předpokládejme, že dvojice čísel *, у
splňuje obě dané rovnice (1), (2).

V dalším užijeme známého vzorce

siná = cos (90° — a)
a potom věty V: „Jestliže platí cos/1 — cosy, potom
o úhlech /1, у platí buď = у + k . 360° anebo /5 =
= — у + k . 360°, kde k je celé číslo.“

Užitím vzorce (3) na levou stranu rovnice (1) do-
staneme

(3)

cos [90° — (x + 150°)] = cos(j; — 75°) .

Musí tedy podle věty V platit:
a) buď

90° -(x+ 150°) + k . 360° = у - 75° ,
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kde k je libovolné celé číslo. Odtud
у = 15° - x + k . 360°. (4)

b) anebo
x + 150° - 90° + k . 360° = у - 75°,

kde k je libovolné celé číslo. Odtud
у = * + 135° + k . 360°. (5)

B. Užitím vzorce (3) upravíme výraz sin {y — 225°);
platí sin(jy - 225°) = cos(;y - 225° - 90°) =
= cos(j; - 225° - 90° + 360°) = cos(j/ + 45°).

Po dosazení tohoto výsledku za sin (y — 225°) do
rovnice (2) obdržíme

cosx + cos(j; + 45°) = — ||/ 3 . (6)

С. К této rovnici připojme jednou výsledek (4)
[viz část I], podruhé výsledek (5) [viz část II].

I. Po dosazení ze (4) do (6) dostaneme
cosx + cos(60° — x) = — ||/з

neboli
cosx + cos(x — 60°) = —

užitím vzorce pro součet kosinů dostáváme dále:
2cos(x — 30°) . cos30° = — ||/з ,

2cos(* - 30°). iVf = — 41/3 ,

2cos(x — 30°) = — 1 j

cos(x — 30°) —
_ i

2 •
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Musí tedy platit: [a] buď
x - 30° - 120° + m . 360°

(kde m je libovolné celé číslo);
[b] anebo

(?)

x - 30° - 240° + p . 360°
(kde p je libovolné celé číslo).

Možnost [a]. Ze vztahu (7) plyne
x= 150° + m . 360°;

(8)

po dosazení do (4)
у = - 135° + n . 360° = 360° - 135° + p . 360° =

= 225° + p . 360°,
kde p == n — 1 je libovolné celé číslo. Dostáváme
dvojici

x = 150° + m . 360°, у = 225° + p • 360° (9)
(čísla m, p jsou libovolná celá), o níž se přesvědčíme
dosazením do rovnic (1), (2), že je splňuje. Označme
Lí3 Px dosazení do levé, popř. pravé strany rovnice (1)
a L dosazení do levé strany rovnice (2). Dostáváme:

Lx = sin 300° = - sin 60° = - lj3;
Px — cos 150° = — cos 30° = — |j/3;
L = cos 150° + sin 0 + -|]/з = — cos 30° +

+ 3 = - i]/3 + lj/3 = o.
Je tedy Lx = Px a L = 0, takže všechny dvojice (9)

jsou řešením dané soustavy rovnic (1), (2).
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Možnost [Ъ]. Ze vztahu (8) plyne
x = 270° + p . 360°;

po dosazení tohoto výsledku do vztahu (4) dostáváme
y=- 255° + (k-p). 360°

neboli

у = 105° + q . 360°
(kde q je libovolné celé číslo). Dostáváme tedy dvojici

% = 270° + p . 360°, у = 105° + q . 360° (10)
(kde p3 q jsou libovolná celá čísla). Přesvědčíme se do-
sazením do jednotlivých stran rovnic (1), (2), že
uvedená dvojice tyto rovnice splňuje; užijeme stej-
ného označení jako při možnosti [a]:

Lx = sin60° = i]/3;
?! = cos30° = >p;
L = cos270° + sin(— 120°) + Ъ]/3 =

= - *уз + ф = 0 .

Platí tedy Lx — Pí3 L = 0, takže všechny dvojice
(10) jsou řešením soustavy rovnic (1), (2). Tím je
část I provedena.

II. Po dosazení z (5) do levé strany rovnice (6)
dostaneme postupně

cos* + cos(x + 180°) = cosjc — cosjc = 0;
naproti tomu je pravá strana rovnice (6) různá od
nuly. Soustava rovnic (5), (6) tedy řešení nemá.
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Závěr. Tím jsou všechny možnosti vyčerpány
a všechna řešení dané soustavy rovnic jsou dána čísly
x, у ze vztahů (9) a (10).

Podle řešení s. Jiřího Moudrého,
ll.c tř. 1. jsš, Pardubice.
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4. ÚLOHY I. KOLA KATEGORIE В

1. V lichoběžníku ABCD s větší základnou AB
označme M průsečík úhlopříček. Buď XY || AB
příčka vedená bodem M (body X, Y leží pořadě
uvnitř ramen AD, BC lichoběžníka).

Vyjádřete poměr obsahů lichoběžníků ABYX,
XYCD pomocí čísel a — AB, c — CD.

V"i
/ 'i'

/ и \
' i' \

i '/ \
I/ \

/ \
i \CDlí l

i
■

m Y
Xi

\

i \ &
i \
I

I
I

X
A Вa

Obr. 20

Řešení (zaveďme označení v obr. 20). Podle za-
vedeného označení o obsazích Px, P2 lichoběžníků
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АВУХ, XYCD platí
pi = Ha + *К,
Р2 = Нх + Ф2 .

Protože je АВ || CD || XY, platí
Д МАВ ~ Д MCD (uu),
Д NAB ~ Д Л/Х>С (uu),
ДАМБ ~ Д АГЯТ(ии),

přičemž i příslušné výšky těchto trojúhelníků jsou
v témže poměru jako příslušné strany [viz Geometrie
pro 9. ročník, příklad 9, str. 63, vydání z r. 1955].

Podle obr. 20 platí

(1)
(2)

(3)
(4)
(5)

(6)V = Vy + Z>2 = Я>! — ZU2 .

Ze vztahu (3) plyne
a

neboli

(7)vx — ka, v2 = kc ,

kde £ > 0 je poměr podobnosti; vzhledem к prvnímu
vztahu (6) je v — ka + kc, neboli

(71
a + c '

Ze vztahu (4) plyne
zuj a

w2

neboli

zv1 — k'a, w2 = k'c , (8)
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kde k' > O je poměr podobnosti; vzhledem к dru-
hému vztahu (6) je v' = k'a — k'c, neboli

a — c

(přitom je v lichoběžníku a > c a tedy a — c > 0).
Ze vztahu (5) plyne

(8')

щ - «i
a

neboli vzhledem к (7), (8)
k'a — ka

x — a —
k'a

a tedy
i

■jp * (№ ~ k)a •

Dosaďme sem za k’3 k ze (7'), (8'); dostaneme po-
stupně

x —

a — c / v

v \a — c

v \
-—

. a =
a + c]

a + c — (a — c)
_

(a — c) (a + с) a + c 3

X =

2ac
— a {a — c) •

tj-
2ac

(9)я =

Vzhledem к (1), (2) platí
Px a + x vx

P2 C + X v2

Po dosazení za vl3 v2 ze (7) obdržíme
Pj a + x a

c + x c

a + c
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Nyní dosaďme za x ze vztahu (9), čímž dostaneme

p2
neboli

Px a[a(a + c) + 2ac] % c[c(a -f c) + 2ac]
P2 a + ca + c

a postupně dále
P i
_ = [a(a2 + 3ac)] : [c(c* + 3ac)] = [a2(a + 3c)] : [c2(c -f- 3a)];
Рг

odtud konečně dostáváme

Px a2(a + 3c)
P2 c2(3a + c)

čímž je řešení úlohy provedeno.

2. Kruhový výsek so středovým uhlom 60° roz-
delrne priamkou kolmou к osi tohto uhla na dve části,
ktorých obvody sa navzájom rovnajú.

Ktorá z týchto dvoch častí má menší obsah?
Riešenie. Zaveďme označenie ako na obr. 21, kde

5 je střed kruhového oblúka výseku, SM = SN = r

(poloměr výseku), SP je os středového uhla výseku.
Obvod rovnostranného trojuholníka SMN je 3r,
obvod úseče odťatej priamkou MN je r + á • 2яг =
= Jr . (3 + ti). Teraz platí

3 + n
= 9 - (3 + tQ r =3r — r .

3
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je teda obvod trojuholníka SMN váčší než obvod
úseče (MPN). Predpokladajme, že daná úloha má
riešenie. Potom hladaná priamka AB J_ SP musí

!s

Г
i
i

i
i

..J -

N
,-f

N'ti

Obr. 21

podlá predošlého mať od bodu 5 menšiu vzdialenosť
než priamka MN (pozři obr. 21). Táto priamka teda
rozděluje výsek na dve časti, z ktorých jednou je
rovnostranný trojuholník SAB, ktorého strany majú
velkost’ x. Jeho obvod je 3x; obvod druhej časti je
x + 2(r — x) -f з~г. Podlá textu úlohy sa oba obvody
rovnajú, t. j. platí

1
Зх — X 2(r — x) А- у 7ГГ .

To je rovnica prvého stupňa pre neznámu x. Po-
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stupně dostaneme
i

4x = 2r + — 7ir ,
J

X = T2 (6 + *

Obsah trojuholníka SAB je P1 — 1х2]/зш, obsah
druhej časti je P2 = inr2 — \x2)j3- Vypočítáme Pj —
— P2; platí

Pi-P, =ý*2l/3 -|^ =

(6 + тг)2г2]/'з
= 4* • [is ^36 + 1271 + 7г2)1/3 - 7Г ]r2 =

[(36 -f- 12тс + 7:2)уз — 48тг]г2.

1 J_
2 * 122

1
— 7ТГ2 —

О

1
(П“6.48

Stačí rozhodnúť, či výraz V v lomenej zátvorke vo
vztahu (Г) je kladný alebo záporný, alebo sa rovná
nule. Platí

V = (ЗбУз + 121/Зтг + tv2]/3) - 48тт.
Pokúsime sa dokázat’, že V je záporné číslo. Za tým
účelom si připomeňme, že je

3 < 7Г ,

7i < 3,2,

1/3 < 1,733 .

Keď niektoré z čísel v zátvorke na právej straně
vztahu (1) zváčšíme, dostaneme namiesto čísla V

(1)

(2)
(3)
(4)
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nové číslo, ktoré je váčšie než V. Tento postup po-
užijeme niekolkokrát. Postupné teda platí

V = 12.3 УЗ + \2}/з тг + тг2 Уз - 48тг <
< 12ттУЗ + 12]/3 тг + тг2УЗ - 48тг - [pozři (2)]
= 24У37г + тс2Уз — 48тг =
= 7гуЗ(24 + тг) — 48тг <
< тгУз(24 + 3,2) - 48т: =

= тгУз . 27,2 - 48тг <
< тг. 1,733.27,2 - 48тг =

= тг (1,733.27,2 — 48),

[pozři (3)]

[pozři (4)]
V • V

cize

V < тг(1,733.27,2 - 48) .

Urobme výpočet:
(5)

1,733.27,2
3 466

1 2131
3466

47,1376
Číslo z vyjádřené v zátvorke vo vzťahu (5) sa teda

rovná
z = 47,1376 - 48

a je zrejme záporné. Je teda aj číslo tzz < 0 a preto je
aj V < 0. Je teda záporný aj výraz (Г) a teda
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V • v

cize Л < Рг •

Závěr. Časť podoby rovnostranného tmjuholníka
má menší obsah než druhá časť výseku.

Iný sposob odhadu výrazu V. V zátvorke
vztahu (1) nahraďme čísla |/з а тг podlá vzťahov

УЗ < 1,74,
к < 3,15

a číslo — 48т: nahraďme číslom — 48.3,14. Namiesto
V dostaneme číslo váčšie. Teda

V < (36 + 12.3,15 + 3,152). 1,74 - 48.3,14 <
< 83,73 . 1,74 - 48.3,14 =
= 145,6902 - 150,72 <0,

[pozři „Výpočty" dolu]
číže V < 0.

Je teda P1 — P2 < 0, t. j.
Pi < Рг •

Výpočty:
3,15 . 12 3,152

Súčet:

36
94 5630 37,80

9,92251 57537,80
9,9225

83,73 . 1,74
58 611

3 3492

83,7225 < 83,73

48.3,14
1256
2512

145,6902 150,72
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3. Sestrojte trojúhelník ABC, jestliže jsou dány veli-
kosti strany AB = c, úhlu <£CAB = a a jestliže
platí, že průsečík V jeho výšek půlí výšku procházející
vrcholem A.

Proveďte diskusi řešitelnosti vzhledem к velikosti
úhlu a.

Řešení. Rozbor. Zaveďme označení jako v obr. 22,
23, kde V13 V2, V3 jsou pořadě paty výšek na stranách
BC, CA, AB trojúhelníka ABC. Předpokládejme, že
jsme sestrojili trojúhelník ABC, v němž je <£A = a,
AB = c a v němž o průsečíku V výšek platí (obr. 22)

AV = VV1.
Označme k = (O, |c) kružnici sestrojenou nad úsečkou
AB = c jako průměrem, takže O je středem úsečky
AB. Na kružnici k leží body Vx, V2, což plyne z věty
Thaletovy.

Uvažujme stejnolehlost o středu A a koeficientu
AV 1

=

y. Tato stejnolehlost vzhle-
dem к vztahu (1) převádí bod Vx v bod V a kružnici k
v kružnici k' = (O', ic) opsanou nad úsečkou АО
jako průměrem; bod O' je tedy středem úsečky АО.
Obraz V bodu Vx v této stejnolehlosti vzhledem ke
vztahu (1) leží nutně na kružnici k'. Přitom je V bodem
přímky BV2 _L АС a tedy společným bodem kruž-
nice k' a přímky BV2. Odtud plyne konstrukce.

(1)

stejnolehlosti Я — AV,
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Konstrukce (obr. 22). Sestrojme úsečku AB = c
a označme q jednu z polorovin vyťatých přímkou AB.
Označme O střed úsečky AB a nad úsečkou АО jako

€' ; c\

Zi *
c

v. к

Yl/

A\ ^ 0' vi l0 В

1i'

Obr. 22

průměrem sestrojme kružnici k' == (O', £c). V polo-
rovině q sestrojme úhel <£BAX = a a označme V2
patu kolmice vedené bodem В к přímce AX. Spo-
léčné body přímky BV2 s kružnicí k! označme V,
V (pokud existují).

Další část konstrukce proveďme pro bod V (pro
bod V se provede obdobně). Na polopřímce AV se-
strojme úsečku

AVX = 2AV.
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Společný bod polopřímek AX, BVX označme C; potom
trojúhelník ABC vyhovuje požadavkům úlohy.

Důkaz. V trojúhelníku ABC (pokud existuje) je
BV2 _L AC3 AVX _L BC, takže AVX, BV2 jsou jeho
výšky a o jejich průsečíku V platí podle konstrukce
AV = VVX. Přitom, pokud C leží v polorovině q,

je <£ BAC — a, AB — c. Tím je důkaz proveden.
Diskuse. I. Nejprve dokážeme: „Úloha nemá

řešení, je-li v trojúhelníku ABC úhel a ^ 90°, tj.
má-li úloha řešení, musí být úhel a nutně ostrý.“
Rozeznávejme dva případy:

Případ [1]. Nechť je a — 90°. V takovém troj-
úhelníku je V = A a požadavek (1) nelze splnit.

Případ [2] (obr. 23). Nechť je 180° > a > 90°.
Potom jsou úhly <$.B, <£C trojúhelníka ABC ostré.
Proto pata Vx kolmice vedené bodem А к přímce BC
padne dovnitř úsečky BC [viz příklad 17 na str. 112
učebnice Geometrie pro 7. ročník, vyd. z r. 1955;
bod Vx musí totiž padnout dovnitř každé z obou polo-
přímek ВС, CB]. Proto přímka AVX prochází úhlem
<ŽBAC a úhlem <£В'АС' к němu vrcholovým. Pro-
tože je *$:A trojúhelníka ABC tupý, padne pata B2
kolmice vedené bodem В к přímce CA na polopřímku
opačnou к polopřímce AC, takže bod A leží uvnitř
úsečky CV2. Z trojúhelníka BCV2 plyne, že úhel
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<£В = е v tomto trojúhelníku je ostrý, takže součet
úhlů CAV\B = 90°, e je menší než 180°; podle
Euklidova axiómu mají polopřímky VXA, BV2 spo-

c

B'_ gV3_ _ Á фв
-/•'" " ~ 'Уг

--У \c-

Obr. 23

léčný bod V. Ten však nutně leží v úhlu <;СВ'АС',
neboť úsečky AV^ BV2 nemohou mít společný bod
(jsou odděleny přímkou AB)‘, bod A odděluje tedy
body V, V1 a bod V nemůže být středem úsečky A Vv

Tím je důkaz proveden.
II. V dalším proto předpokládáme, že úhel a je

ostrý, takže polopřímka BV2 _L AX až na bod В pad-
ne dovnitř poloroviny q. Nejprve rozhodneme o exis-
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tend bodů V, V. Platí: Přímka BV2 je a) sečnou,
b) tečnou, c) nesečnou kružnice k' podle toho, zda
platí (obr. 22)

a) O'P < lc, b) 0'P = c) 0'P > \c,

kde P je pata kolmice vedené bodem О' к přímce
BV2 [známá věta o vzájemné poloze přímky a kruž-
nice; viz učebnice Geometrie pro 8. ročník, vydání
z r. 1958, věta 6, str. 44]; bod P s polopřímkou BV2
leží zřejmě uvnitř poloroviny q. Ze stejnolehlosti
trojúhelníků BO'P, BÁV2 (koeficient stejnolehlosti
je I) podle středu В plyne, že 0'P = \AV2 =
= | c . cos a, jak plyne z pravoúhlého trojúhelníka
ABV2 o přeponě AB — c; po dosazení do (2) do-
staneme pořadě podmínky

cos a 0 £
neboli pro ostrý úhel a dostáváme pořadě podmínky

(2)

£ j

kde ostrý úhel e je dán vztahem
cos s = l

(platí 65°40' < e < 65°50').
V případě a > £ existují body V ^ V', v případě

a = £ existuje jediný bod V společný přímce BV2
a kružnici k'. Přímky BV2, AV1 jsou různoběžky
o průsečíku V; jsou tedy i přímky AV2 BV2,
BVX _L AVX různoběžky o společném bodě C [viz

(3)
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větu 6 v učebnici Geometrie pro 7. ročník, vydání
z r. 1955, str. 134]. Bod C tedy existuje a leží zřejmě
uvnitř poloroviny q [to plyne z Euklidova axiómu].

Závěr. Úloha má při zvoleném umístění úsečky AB
a úhlu a dvě řešení (viz trojúhelníky ABC, ABC' na
obr. 22), jestliže je a > e; má řešení jediné, jestliže
je a = e, jinak nemá řešení. Přitom e je ostrý úhel
daný vztahem (3).

4. Určete všechna reálná čísla я, pro která platí
x + p211

(1)Л уУ* + p Ух — p

kde p je dané reálné číslo.
Řešení. Buď x reálné číslo, které splňuje rovnici (1);

tu platí postupně

X — p

Ух — p + У* 4- P x + p2
(Ух + р)(Ух - p) x — p‘l 5

2 Ух X + p2
(Ух + p) (Ух - p) (]/* — p) (Ух + p) (П

Znásobíme-li obě strany této rovnice číslem
p) . Qlx + p), dostaneme postupně rovnice

2]/x = x + p2,
я — 2]/x + p2 = 0 .

(V*
(2)
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Položme

У* = у neboli у2 = х; (3)
dostaneme tak rovnici

y2 —■ 2y + P2 — 0
o kořenech

= 1 + У1 ~ P2 > У2 = 1 - 1/1 - P2 • (4)
Protože у = Ух, musí být čísla y13 y2 nezáporná,

tedy jistě reálná. Proto musí být především 1 — p2 ^ 0,
jinak by číslo У1 — p2 nebylo reálné. Ze vztahu
1 — p2 ^ 0 neboli (1 — p) (1 + P) ^ 0 plyne, že
o číslu p platí

(5)- 1^1.

Je tedy za předpokladu (5)

У1 >0- (6)
Protože je nutně y2 ^ 0, musí vzhledem ke (4) platit
1 — ]/1 — p2 ^ 0 neboli 1 ^ yi — p2j obě strany
této nerovnosti jsou nezáporná čísla a proto i o jejich .

druhých mocninách musí platit 1^1 — p2 neboli
P2 ^ 0; to je vzhledem к (5) splněno. Platí-li tedy (5^,
je y2 ^ 0.

Podle (3) příslušejí к číslům y13 y2 podle vztahu (3)
pořadě čísla xx = уx2 — y\ neboli

*i = (i + УГ^72)2 = 2 -p* + 21/Г=72,
x2 — (l — У\^~р2У = 2-p2- 2|/l -p2.

(7)
(8)
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Jestliže rovnice (1) má řešení, mohou to být jen
čísla xíy x2.

Aby tato čísla splňovala rovnici (1), musí mít přede-
vším tyto vlastnosti:

Čísla ]/ x+P) |/x —p, x — p2 = 0/ x — p) (]/x + p)
pro x — x1} x = x2 musí být různá od nuly; jinak by
některý ze zlomků v rovnici (1) neměl smysl. Zřejmě
stačí požadovat, aby bylo x — p2 Ф 0 a dále я Sřr 0.

Podle (7), (8) je
x — p2 = 2(l — p2 ф s]/1 — p2) ,

kde e = 1 pro xx a e = — 1 pro x2. Dále platí
x — p2 = 2У1 — p*Q/'l — p2 + e) .

Protože toto číslo musí být různé od nuly, musí být
každý z činitelů na pravé straně různý od nuly. Je-li
však |/l — pí — 0, je 1 — p2 — 0 neboli
(1 ~ P){ 1 + P) — 0? tj- buď p = 1 nebo p = — 1.
Proto vzhledem к (5) musí o čísle p platit

— 1 <p<1 .

Rovněž druhý činitel na pravé straně vztahu (9)
musí být různý od nuly. Rovnost

]/1 - p2 + e = 0
však nenastane pro e = 1, neboť je У1 — p2 ^ 0.
Pro e = — 1 máme pak rovnici

yr^72 -1 = 0

(9)

(10)
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neboli postupně
l/i - f = i,

1 - P- = 1 ,

p = 0 .

Skutečně pro p — 0 je x2 = 0 a jmenovatelé v (1)
jsou rovny nule.

Čísla xXi *2 mohou být kořeny rovnice (1) pro
všechna čísla p ze vztahů (10) s výjimkou čísla x2,
které se dostane pro p = 0. To ovšem platí za před-
pokladu, že je xx ^ 0, x2 ^ 0, o čemž se musíme
ještě přesvědčit:

a) Protože nutně platí vztah (10), je 2 — p2 > 0
a protože je 2|/1 — p- ^ 0, je zřejmě xx > 0.

b) Čísla a — 2 — p2, b — 2]'l — p2 jsou nezáporná
(první je dokonce kladné); rozhodněme, které je větší.
Platí věta V: „Jsou-li a, b nezáporná čísla, pak ze
vztahu a ^ b plyne a2 ^ b2 a obráceně/'

Platí

(2 - p2)2 = 4-4p2+ p\ (2]/1 - p2)2 = 4- 4p2,
takže je

а2~Ь2=Р*.
Protože je p4, ^ 0, je a2 b2 a tím a ^ b; je tedy
x2 ^ 0.

Nyní provedeme zkoušku, že čísla xx, x2 (za před-
pokladů, o nichž jsme mluvili) jsou kořeny rovnice (1).
Stačí, když se omezíme na porovnání čitatelů v rovnici
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(Г), neboť jsme zjistili, že jmenovatelé v (Г) jsou si
rovni a různí od nuly. Dokážeme tedy, že platí
2Jx — x + p2 pro x — Xj a x = x2. Víme však, že je

> 0, x2 ^ 0; proto čísla [/*15 |/*2> + p2, x2 + P2
jsou nezáporná čísla a pro vzájemné porovnání uži-
jeme věty V (ovšem pro případ rovnosti), tj. porov-
náme druhé mocniny těchto čísel, tj. čísla 4x3 (x + p2)2.
Pro stručnost pišme

x = 2-p2 + 2e]/l - p2,
kde pro s = 1 dostaneme xx a pro e = — 1 dostaneme
*2- Je:

O + РгУ= (2 + 2 e]/1 - p2)2 =
= 4(2 - p2 + 2^T^p2) ,

4x = 4(2 — p2 + в]/1 — P2) ,

čímž je zkouška provedena. Výsledek je přehledně
patrný z tabulky:

Číslo p je
v intervalu Řešení rovnice (1)

P< - 1 nemá řešení

Xl = 2 - p* + 2]/l - p*,
x2 = 2 - j>2 - 2]/1 - p2

— 1 < p < 0

.Xj = 4p = 0

Xl = 2-p* + 2]/l -p2,
*2 = 2 - p2 - 2]/l - p2

0 < p < 1

nemá řešení1
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5. Jsou dány dvě různé přímky a || b; na přímce a
je dán bod A, na přímce b bod B.

Sestrojte všechny kružnice kx = (Sí3 rx)3 k2 =
= (S2, гг)з které mají tyto vlastnosti:

(1) Kružnice kx se dotýká přímky a v bodě A,
kružnice k2 se dotýká přímky b v bodě B.

(2) Obě kružnice k13 k2 se navzájem dotýkají.
(3) Platí rx = 2r2.

Řešení. V dalším podáváme stručné řešení úlohy;
zevrubněji provedeme jen poslední možnost ozna-
čenou [2b] (<5). Viz obr. 24—34.

Vzdálenost přímek a || b označme v > 0, dále
AB — d > 0; je tedy v ^ d. Poloroviny aB, bA
označme pořadě q3 a a q'3 a poloroviny к nim opačné.
Kružnice kx = (Sl3 rx) musí ležet v jedné z polo-
rovin q, o', kružnice k2 = (S2J r2) musí ležet v jedné
z polorovin a, a'. Kružnice k13 k2 mají dotyk v bodě T,
v němž mají společnou tečnu t J_ SXS2 (jistě je St
^ S2); bod T leží na přímce SXS2.

Kombinujeme každou z polorovin q, q s každou
z polorovin o', or', přičemž hned vyloučíme kombinaci
({?', a'), neboť poloroviny q', a' nemají společný bod;
dostaneme tři dvojice

(o, o\ (p, a), (p', o) .

К těmto kombinacím přistupuje ještě požadavek,
aby kružnice kl3 k2 měly dotyk vnější anebo vnitřní.

(1)
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Ještě zaveďme toto označení: Nechť značí U, V
pořade vnitřní a vnější střed stejnolehlosti kružnic
kx, k2; koeficienty těchto stejnolehlostí jsou pořadě
— V dalším uvidíme, že jeden z bodů U, V lze
sestrojit ihned; podstata konstrukce spočívá v určení
druhého z obou bodů U, V.

Řešení úlohy rozdělíme na dvě části: [1] Je
v = d, tj. AB _L a. [2] Je v < d, tj. přímky AB, a
jsou kosé.

Případ [1], kdy v = d, jen načrtneme. Body Sí9 S2
leží nutně na přímce AB, neboť přímky a, b jsou
pořadě tečnami kružnic k13 k2, tím i bod T leží na
přímce AB. Nyní uvažujme kombinace (1) a druh
dotyku:

b в
1ШЛ

e\k2 I k2
i% ť

bst нишt
ТзВ*1U‘T

\k1%

??
'Л aa

ó/l

Obr. 24 Obr. 25
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[la] Nechť k13 k2 mají vnější dotyk, takže je T = U.
Pak každá z dvojic (1) vede к řešení. Viz obr. 24, kde
r2 = Iv; dále viz obr. 25, kde r2 = a konečně
viz obr. 26, kde r2 =

bstвb
umuZ~J s

ere

A p
U=Tz^\

as t lk2
m
r $

%

tК
///////

.ff

Obr. 27Obr. 26

TsV t

AA
A

6"
|BaS1b nimib* Wff BtS,

eA
irSp

f i3
i Ж/ mini

4á~aiT a

Obr. 29Obr. 28
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[lb] Nechť k, k2 mají dotyk vnitřní, takže je T = F.
Tu dvojice (g', a) nevede к řešení, neboť kružnice
k2 — až na bod T — musí ležet uvnitř kružnice kí3 která
má větší poloměr. Dostáváme: a) řešení z obr. 27, kde
7*2 = b) řešení z obr. 28, kde r2 = \v3 c) řešení
z obr. 29, kde r2 = \v.

Případ [2], kdy je v < d; označme s JL a přímku
jdoucí bodem A. Ze stejnolehlosti kružnic kl3 k2
plynou vztahy

US2 = iusVS2 = iVS i)1 5

přičemž bod V leží na prodloužení úsečky SXS2 za
bod S23 kdežto bod U leží uvnitř úsečky 5XS2. Nyní
rozlišme možnosti podle druhu dotyku kruž-
nic k13 k2.

[2a] Dotyk vnější; je T == U.

(a) Kombinace (g, o) — viz obr. 30. Nutně je
BS2i přičemž přímka b s bodem В jsou obrazy

přímky a s bodem A ve stejnolehlosti (Г) o středu T
a koeficientu — Odtud konstrukce:

Uvnitř úsečky AB sestrojme bod T tak, že je
ВТ i

AT 2 ’

bod S13 je společným bodem přímek s, p3 kde p je
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osou úsečky AT. Sestrojme kružnici kx = (S13 S^);
kružnice k2 je obrazem kružnice kx ve stejnolehlosti
(Г). Důkaz je snadný; bod T existuje a tím i jediná
dvojice kl9 k2 kružnic.

5
r

\ !
b /

7777/7
Л!\ €

/
/

/ 1^ Л7~1\

\

у i
■

кг f\ ✓i
✓

i '

/

N fi

j i i

\\A ///////Ii ! i
a

2 1 W\5 36 <

\

Obr. 30^

(/3) Kombinace (g, a), (g'9 a) znázorněné pořade
v obr. 31, 32. Nutně je ASX tt BS2 a jedná se o stejno-
lehlost (F) o středu F a o koeficientu Buď 7"
obraz bodu T ve stejnolehlosti (F); odtud plynou
vztahy

VT’=\VT9 \VA= VB9iS1T=S2T'=S2T=r2,
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takže T' je středem úsečky VT, tj. VT' — 2r2 =
= StA = r13 VSX — 6r2. O stranách trojúhelníka
ASXV platí

S,A_ __
~

3 -

V

\'
• v

\\
\\
\ \

\

Obr. 31

Odtud konstrukce: Na prodloužení úsečky AB za
bod Б určeme bod V tak, aby В V = Л5, takže =
= 2VB. Na přímce 5 zvolme úsečku AX (viz obr. 31
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v polorovině g; dále obr. 32 v polorovině g'). Podle
věty Ssu o určenosti trojúhelníka sestrojme trojúhelník
AXY, kde Y leží na polopřímce AB a platí XF =

umu

Obr. 32

= 3AX; ke konstrukci užijeme kružnice x =
== (X, 3AX). Bodem V veďme přímku q \\ XY
a označme Sl společný bod přímek q, s. Ke kružnici
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k± = (Sí3 SXA) sestrojme obraz k2 ve stejnohlehosti
(F) o středu F a o koeficientu Důkaz konstrukce je
snadný; úloha má zřejmě jediné řešení.

[2b] Dotyk vnitřníj takže je T = V; kombinace
(g'} <у)кzřejmě odpadá.

Obr. 33

(y) Kombinace (q, o') je znázorněna v obr. 33.
Nutně je AS1 ft BS2, ТВ = \ TA. Odtud konstrukce:
Na prodloužení úsečky АВ za bod В sestrojme úsečku
ВТ = BA a označme Sl společný bod různoběžek
sj kde p je osou úsečky AT. Ve stejnolehlosti (F)
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o středu Fa о koeficientu \ sestrojme obraz k2 kruž-
nice kx ~ (S15 SXA); kružnice k2 prochází zřejmě
bodem Sx. Úloha má jediné řešení.

(ó) Kombinace (o, a) je znázorněna v obr. 34.
Rozbor. Nutně je ASX ti BS2 a vnitřní střed U stejno-
lehlosti (U) kružnic kx, k2 leží uvnitř úsečky AB tak,
že platí

UB =\UA .

Protože je r1 = 2r2 a kružnice kx, k2 mají vnitřní dotyk,
leží bod Sx na kružnici k2. Buď T' = Sx obrazem bodu
T = V ve stejnolehlosti (Č7) s koeficientem — |, takže
je SXU = %SXT = |r2, = 2r2. Je tedy

SXU i
SXÁ — 3 '

Buď X patou kolmice s vedené bodem А к přímce b,
takže je AX — v. Ve stejnolehlosti o středu A nechť
bodu Sx přísluší bod X a bodu U bod Y polopřímky
AB, takže podle (2) je

XX_ - si4 1
AX — StA

(2)

i
= f neboli XY — -j AX

a tedy
i

(3)XY = ~v, AX=v.

Odtud konstrukce (obr. 34): Uvnitř úsečky AB se-
strojme úsečku BU = \UA = \AB a opišme kruž-
nici x = (X, označme У jeden ze společných
bodů kružnice x a polopřímky AB (pokud existuje).
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Bodem U veďme přímku q || XY a označme Sx
společný bod přímek q, s. Označme k2 obraz kružnice
kx = (Sl3 SXA) ve stejnolehlosti (17) s koeficientem
— Pak kl3 k2 je dvojice hledaných kružnic.

\
\

\ i
kt i

\ I к/4\ I

/Л\ I
\l \

IxZb
//////J\

№ ,-T'
\\//A /

JA

i\
/ \2ř \ i

/ i ■

/ \ гг
/ \ i

f\\

///////h/a
¥
I \

Obr. 34

Důkaz. Podle provedené konstrukce platí (3) neboli
SXU = (je rl = ^2^ = i *^1 U — ^Т1з Г2 — 2rl‘
Bod U leží uvnitř úsečky SXS2 a tedy = ^č/ +
-j- S2ř/ = \r13 takže &2 prochází bodem Sx. Označme
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T ž?á S1 společný bod polopřímky SXS2 s kružnicí kx;
je SXT = rx a protože je SXS2 = |r13 je S2 středem
úsečky TS1 a kružnice k1} k2 mají vskutku v bodě T
vnitřní dotyk. Ve stejnolehlosti (Í7) je b s bodem В
obrazem přímky a s bodem A; proto se kružnice k2
dotýká přímky b v bodě B.

Diskuse. Nejprve vypočteme velikost výšky у = XP
v trojúhelníku ABX, kde <£X = 90°. Je AXBP ~
~ AABX (uu) a tedy

XP
— AX

xb ~~ Xb
neboli

.v

- v2 d
a tedy

У = i 1l<P - .

Nyní rozhodněme, kdy je přímka AB sečnou,
tečnou nebo nesečnou kružnice x, jejíž poloměr je Iv;
to nastane, jak známo, jestliže platí pořadě vztah

У < iv, у = \v, у > \v .

Užitím (4') lze tyto podmínky uvést na tvar

d0l]'2v.
Ještě dokážeme, že bod Sl padne skutečně dovnitř

polopřímky AX (jinak by kružnice k1 neexistovala).
Označme e || a přímku vedenou bodem U (přímka e

(4')

(4)
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leží uvnitř pásu rovnoběžek a, b, takže má od přímky b
vzdálenost ta je tečnou kružnice x. Proto bod Y
padne dovnitř poloroviny eX, tj. dovnitř polopřímky
UB. Buďte <£XUA, <£UXZ dva shodné střídavé
úhly, tj. platí XZ UA; bod Y leží zřejmě uvnitř
úhlu <£ UXZ. Proto bod Sx (kde US1 f| XY) padne
dovnitř úhlu <£XUA a tedy dovnitř úsečky AX,
čímž je důkaz proveden.

Závěr. Je-li AB J_ lze sestrojit šest dvojic kružnic.
Není-li AB _L a, existují takové dvojice alespoň čtyři;
к nim se řadí další dvě, jedna nebo žádná dvojice
podle toho, zda platí první, druhý či třetí vztah (4).

6. Určte všetky reálne čísla x, pre ktoré platí vztah
i

ir= ^ 1/2 .]/í + x - [ (1)]/l~x
Riešenie. Nech reálne číslo jc je riešením nerovnosti

(1). Potom musí platiť 1 — я > 0, 1 + x > 0, t. j.
— 1 < x < 1,

inak by zlomky na lávej straně vztahu (1) nemalí
zmysel. Upravme 1’avú stranu nerovnosti (1). Dosta-
neme

(2)

У i + x — |/i — (Пl/l - X . j/l + X
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Vzhladom na požiadavku (2) je menovatel na 1’avej
straně (1') kladné číslo. Pretože na právej straně (Г)
je kladné číslo, musí byť čitatel’ zlomku na 1’avej straně
(Г) tiež kladný, t. j. musí platiť ]/l + x — Уí — x>
> 0, čiže У1 -f x > У1 —x • Pretože obe čísla v po-
slednej nerovnosti sú kladné, musí o ich druhých
mocninách platiť 1 + x > 1 — x, čiže x > 0. Ak
připojíme к tomu požiadavku (2), musí o čísle x platiť

0 < * < 1 .

Znásobme teraz obe strany nerovnosti (1') číslom
]/l — x • У1 + x > 0; dostáváme

У1 + x — ]/l — л: ^ У 2 У1 — x2.
Vzhladom na požiadavky (3) sú obe strany tejto ne-
rovnosti kladné čísla; preto po umocnění oboch stráň
vztahu (4) na druhů dostaneme postupné

1 + x + 1 - X - 2yr^Tx2 > 2(1 - x2),

(3)

(4)

Obe strany tejto nerovnosti sú vzhladom na (3) kladné
čísla. Umocněním na druhů postupné dostáváme

x4 ^ 1 — x2,
x4 + x2 — 1 ^ 0 .

Trojčlenky2 + у — 1 možno rozložit’ na súčin
(5)

b + i(l/5+ 1)] b - 4(1/5 - 1)];
nerovnost’ (5) možno teda napísať v tvare

[x2 + i(V5 + 1)] [x2 - 1(1/5 - 1)] s o .
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Prvý činitel lávej strany je kladný; preto druhý činitel
musí byť nezáporný, t. j. platí nevyhnutné

}(]/5 - 1)S0.
Pretože je j/5 — 1 > 0, je číslo

(6)

= Vt(W - o CO
kladné. Nerovnost (6) možno písať v tvare

(x + a) (x — á) ^ 0 .

Vzhladom na požiadavku (3) je prvý činitel na lávej
straně vztahu (7) kladný; preto musí byť x — a ^ 0,
čiže x ^ a. Ak připojíme к tomu požiadavku (3),
dostaneme, že o čísle x nevyhnutné platí

a < x < 1 ,

kde číslo a je dané vztahom (7').

(7)

(8)

10 o,?

Obr. 35

Este ide o to, či je skutočne a < 1, t. j. či je a2 < 1.
Tu platí a2 - 1 = i (l/5 - 1) - 1 = HÍ5 - 3) < 0,
t. j. skutočne je a2 < 1 a teda a < 1. Interval (8) teda
existuje.

Číslo x zo vztahu (8) splňuje požiadavky (2), (3).
Pri našich úpravách sme všade prihliadali к ekviva-
lencii; preto všetky čísla x z intervalu (8) sú riešenia
nerovnosti (1) a neexistuje žiadne dalšie (pozři obr. 35).
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5. ÚLOHY II. KOLA KATEGORIE В

1. V oboru reálných čísel řešte nerovnost
1 - |/l - 2x2 (1)^ 1;

dále určete všechna x, pro která nastává rovnost.

Řešení. Nechť je x řešením nerovnosti (1); nutně je
x Ф 0 .

Aby odmocnina ]/1 — 2x2 měla smysl, je dále nutně
1 — 2x2 ^ 0 neboli

(2)

fS*Sf,kdef<l; (3)

pro tato x má odmocnina skutečně smysl.
Platí tyto ekvivalentní úpravy nerovnosti (1):

1 — j/l — 2хг -1^0,
1 - Ж - Vl - 2x2 ^0,

]/l - 2x2 + x - 1 (4)
Jsou dvě možnosti: [1] Je x > 0; [2] je x < 0.

Případ [1]. Nechť je [viz (3)] .

Ь (5)0<IáV
Ze (4) plyne, že nutně je

]/l - 2x2 ^ 1 - x.
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1/2Poněvadž je 1 — x^l — ^->0, plyne odtud po-
stupně

1 — 2хг ^ 1 — 2x + x1,
0 ^ x(3x - 2),
0 ^ 3x - 2 3

(6)
Protože |]/2 > 0,7 > f, plyne z (5), (6), že o čísle x
nutně platí

(7)0 < jc ^ |.
V tomto případě nastane v (1) rovnost pro л; = -§.

Případ [2]. Nechť je [viz (3)]
1/2 (8)5- = * <°;

potom ze (4) plyne
У1 - 2x2 1 — x,

kde 1 — x > 0. Odtud dostaneme postupně
1 - 2л2 ^ 1 - 2x + jc2

0 ^ x(3x — 2),
0 ^ 3x - 2
§ ^x .

Toto je splněno pro každé л; z (8). V tomto případě [2]
nemůže v (1) nastat rovnost.

Čísla x daná vztahem (7) nebo (8) jsou skutečně
řešením dané nerovnosti.
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Závěr (obr. 36). Všechna řešení x nerovnosti (1)
jsou dána intervaly

V2
0<IÍ?

Rovnost v (1) nastane právě tehdy, je-li x = §.

~2 ^ X < 0,

10-1
и •

l

Obr. 36

2. Do daného obdélníka ABCD, kde AB > BC, je
vepsán osmiúhelník JKLMNOPQ, jak je naznačeno
na obrázku 37; osmiúhelník vznikl ze dvou obdélníků
JKNO, JMNQ o společné úhlopříčce JN} přičemž
bod J je středem úsečky AD a N středem úsečky BC.

Vypočtěte obsah osmiúhelníka pomocí rozměrů
a = AB, b = BC daného obdélníka.

Řešení. Konstrukce osmiúhelníka je patrná z obr.
37. Při označení z obr. 37 položme LT = x, LS — y,
KT — t. Obsah p obdélníka JKNO je p — JN. JD
neboli

P = \ab .

Obsah r kosočtverce JLNP je
r = ay,
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takže obsah s osmiúhelníka je s = 2p — r neboli
s = a(b — y).

Vypočítáme у. V trojúhelníku SKT je <£ T — 90°,
SK — \a\ podle Pythagorovy věty dostaneme

t2 - SK2 - ST2

(1)

neboli

t = ^a2 - b2. (2)
l
+

.1 r
_ c

—p
D __K2ZZ
Г"

\ iib .

I2 ■

i( "" \ I /
■

\

NIS
íl

I
l

I Ip\ ■

Ji-I
о вA Q

Obr. 37

Ze stejnolehlosti o středu L trojúhelníků LNS, LKT
plyne

TL
_ SL

TK~~ SN

neboli

X_ __ y_
t \a
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Po dosazení ze (2) a snadné úpravě obdržíme
у ]/a2 — b22yt

X = -

neboli

x _y]la*-b* '

a

Vedle toho platí TL + LS — \b neboli
, ь

x+y=r;
dosadíme-li sem ze vztahu (3), dostáváme postupně

(3)

Л . Ve*-b*\ by{l + J—^)=-2>
a + Va2 — b2 b

У - -a =2’
ab

У
2 (a + Уa2 - b2) '

Po dosazení do (1) dostaneme
ab(4s = a

2 (a + Уa2 - b2).

aí>(a + 2]/a2 —

2 (a + Уa2 - b\ *
což lze popřípadě násobením a — У a2 — 62 v čitateli
i jmenovateli upravit na tvar

a (2b2 — a2 + a\a2 — 62)

neboli

5 =
2b

Tím je řešení provedeno.
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3. Dokážte, že pre každú trojicu kladných čísel
<z, b, c platí vztah

(e + M-í)(i + | + -t)S9. (1)

Nájdite všetky trojice, pre ktoré nastáva rovnost’.

Riešenie. Daná nerovnost’ je ekvivalentná s ne-
rovnosťou

(a + b + c) + \ + -j) - 9 ^ 0 ;
jej 1’avú stranu označme L. Postupné platí:

bc + ca + abL — (a + b + c). - 9 =
abc

a2c + a2b + b2c + ab2 -f bc2 + ДС2 + 3abc — 9abc
abc

a2c + ac2 + b2a -f- ba2 + c2b -f cb2 — 6abc
abc

a2c — 2abc -f b2c-{- b2a — 2abc + ac2 -f c2b — 2abc + ba2
abc

c(a2 — 2ab -f b2) + a (b2 — 2bc + c2) b(c2 — 2ac + a2)
abc

c(a — b)2 + a{b — c)2 + b(c — a)2
abc

Je teda
a(b — c)2 + b{c — a)2 + c(a — b)2 (2)L =

abc

kde a, 6, c sú kladné čísla. Menovatel abc zlomku je
kladné číslo. Čitatel’ zlomku je súčet troch nezápor-
ných čísel, lebo napr. a(b — c)2 je súčin čísla a > 0
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a čísla {b — с)2 ^ 0. Preto je čitatel nezáporný a tým
aj zlomok (2). Tým je platnost’ vztahu (1) dokázaná.

Rovnost’ vo vzťahu (1) nastane právě vtedy, keď
sú tri nezáporné sčítance v čitateli zlomku (2) vsetky
rovné nule, t. j. keď platí

a(b — cf = 0, b{c — a)2 = 0, c(a — b)2 — 0 .

Pretože je a > 0, b > 0, c > 0, je nevyhnutné
c — a — 0,b — c = 0, a — b = 0,

čiže
a — b = c .

Rovnost’ vo vzťahu (1) skutočne nastane, ak trojica
má tvar (a, a, a), kde a je 1’ubovol’né kladné číslo. Tým
je riešenie ukončené.

4. Daná je úsečka AB velkosti 1. Označme P obsah
spoločnej časti dvoch kruhov opísaných okolo bodov
А, В s polomerom r — 1.

Vyjádříte obsah P v percentách (s presnosťou na
jednotky) vzhladom na obsah jedneho z uvažovaných
kruhov ako základ.

Riešenie (pozři obr. 38). Označme X, Y prieseč-
niky kružnic (A, 1), (В, 1), takže ABX je rovnostranný
trojuholník so stranou dížky 1. Jeho obsah je

*=iV3. (1)

127



Preto je a = <£XAY = 120° = §. 360°. Obsah p
úseče s tětivou XY a oblúkom XBY je (obsah q

jedneho z oboch kruhov je q = тс)
p=z — t,

lebo trojuholníky ABX, AXY
majú rovnaké obsahy. Po do-
sadení zo vztahu (1) máme

P = — i]/3 .

Obsah P spoločnej časti oboch
kruhov je 2p, čiže

P — §71 — ||/3 .

P
Poměr — násobený číslom 100

Я
udává hladaný počet л: percent,
t. j. platí

Jt= 100(fji- 41/3) : 7Г ,
čiže

100 (I Узb2т:

přitom je
I — 0,6; 1,732 < ]/з <1,733; 3,141 <тг <3,142 .

2 1/3Číslo Y — у — 2Ťč m^me určiť na dve desatinné
miesta presne. Platí

1,733 1,732
-6.< 3; < 0,667a — 0,666 — 2.3,1422.3,141
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Vypočítáme přibližné hodnoty oboch zlomkov z pre-
došlých výrazov:

1,733 : 6,282 < 0,276
1,2564

47660
43974

36860

Platí teda

1732 : 6284 > 0,275
12568

47520
43988

35320

0,666 — 0,276 < a ,

b < 0,667 - 0,275 ,
v» v

cize

0,390 < a,

b < 0,392 .

Je teda
0,390 < a < у < b < 0,392;

čiže

0,390 < у < 0,392
a teda

39,0 < x < 39,2 .

Odpoved. Obsah P je asi 39 % obsahu kruhu
s polomerom r — 1.
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6. ÚLOHY I. KOLA KATEGORIE C

1. Máme v zásobě litrové láhve 14%ního, ll%ního
a 9%ního roztoku kyseliny octové (dostatečný počet
od každého druhu).

Kolik plných lahví každého z těchto roztoků bude
třeba smísit, abychom dostali 30 litrů 12%ního roz-
toku, přičemž máme použít roztoků všech tří druhů.
Udejte všechny možnosti.

Řešení. Předpokládejme, že úloha má řešení a že
přirozená čísla x, y, z udávají pořadě počet lahví roz-
toku 14%ního, ll%ního a 9%ního, jichž při míšení
užijeme. Láhve jsou litrové a obsahují tedy celkem
x у z litrů roztoku; tento součet je podle poža-
dávku úlohy roven 30 litrům. Platí tedy

* + У + * = 30 .

Láhve s prvním roztokem obsahují litrů kyše-
liny octové*

láhve s druhým roztokem obsahují litrů kyše-
liny octové,

láhve s třetím roztokem obsahují г®0я litrů kyseliny
octové.

Vzniklá směs obsahuje celkem -Vg . 30 litrů kyše-
liny octové.

Musí platit

(1")

Шо x + Го“б У + 10 o z — TWo' 30 (2")
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neboli po znásobení obou stran této rovnice číslem 100

14x + 1 \y + 9z — 360 .

Dostáváme dvě rovnice

(1)x + у + я = 30 ,

14л: + lij; + 9z = 360 , (2)

které musí přirozená čísla л:, у, z splňovat. Nyní je
naším úkolem najít všechny trojice x, y, z přirozených
čísel, z nichž každé musí být menší než 30; do-
konce každé z nich musí být menší než 29.

Vylučme z rovnic (1), (2) číslo z [obě strany rovnice
(1) znásobme číslem —9a přičtěme je к příslušným
stranám rovnice (2)]; dostaneme

5x + 2y = 90
neboli

(3)у — 45 — §x .

Odtud plyne, že x musí být sudé; položme proto

x — 2n ,

kde n je přirozené číslo. Ze (3) a (1) po dosazení x =
= 2n dostáváme celkem

(!')x = 2n ,

У = 5(9 — n) ,

z — Ъ{п — 5) .

(2')
(3')
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Z (2') vidíme, že 9 — n musí být přirozené číslo,
tj. 9 — n > 0 (jinak by у nebylo kladné číslo) a dále
9 — n < 6 (jinak by у bylo větší než 29). Z obou ne-
rovností plyne

(4)3 < n < 9 .

Ze (3') vidíme, že musí být n — 5>0aw — 5<10
(jinak by z bylo větší než 29). Z obou nerovností do-
stáváme

(5)5 < n < 15 .

Spojením (4) a (5) obdržíme požadavek, který nutně
splňuje číslo n:

5 < n < 9 .

V úvahu tedy přicházejí jen čísla 6, 7, 8. Dosazuj-
me za n do (Г), (2'), (3') postupně čísla 6, 7, 8.
Výsledky jsou v této tabulce:

6 87

14 1612X

15 I 10 5У

93 6z

Trojice čísel x, y, z z této tabulky skutečně splňuje
rovnice (1), (2), jak se přesvědčíme dosazením; proto
splňuje i výchozí rovnice (1"), (2"), neboť (1"), (1) je
táž rovnice a (2") vznikne z (2) násobením obou jejich
stran číslem г^.
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Odpověd. Požadovanou směs obdržíme tak, že
vezmeme pořadč

12, 15, 3 lahví
nebo

14, 10, 6 lahví
nebo

16, 5, 9 lahví
jednotlivých druhů.

2. Daný je lichoběžník ABCD, v ktorom je
AB || CD, AB > CD.

Aký geometrický útvar vyplnia vsetky body X
roviny lichoběžníka, o ktorých platia vztahy

AX < BX < CX < DX.

Urobte diskusiu vzhladom na velkosti uhlov <£ DAB =

= a, <£ABC = /?.

Riešenie. Najprv dokážeme dve pomocné vety
U, V.

Veta U: „V rovině nech je daná úsečka MN so
stredom S as osou p. Množinou všetkých bodov
v rovině, ktoré majú od bodu M menšiu vzdialenosť
než od bodu N, je vnútro polroviny pM“

Dokaž (obr. 39). Toto tvrdenie sa lahko dokáže
pre body priamky MN (všetky body požadovanej
vlastnosti na tejto priamke ležia vnútri polpriamky

(1)
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SM; pozři body X19 X2, X2 v obr. 39). Nech teraz X
je bod vnútri polroviny pM, ktorý neleží na priamke
MN. Potom priamka p odděluje body N, X a vnútri
úsečky NX leží bod P priamky p. Úsečky PM, PN
sú súmerne združené podia p a teda

MP = NP . (2)
\P

x
N i/ \

4

I \ i >Y

Xi
i

/ I \i \/
\/
\/

•X \Á \

x3 п=хг X1 \s N

Obr. 39

O stranách trojuholníka MPX platí
MX <MP + PX

(súčet dvoch stráň je váčší než tretia strana). Po do-
sadení z (2) dostaneme

MX < NP + PX,
v • V

cize

(3)MX < NX.
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Ak je Y bod vnútri polroviny pN, potom sa rovnako
dokáže vztah

(4)MY >NY.
Pře bod P osi p platí

(5)MP = NP.

Vzťahmi (3), (4), (5) je veta U dokázaná, lebo sme
tým vyčerpali všetky body roviny.

Ďalej dokážeme vetu V (pozři obr. 41—43): „Nech
ABCD je lichoběžník, v ktorom AB je váčšia základňa,
P13 P3 středy a pí3 p3 osi základní. Potom platí:

a) Pi II Рг (pozři učebnicu Geometrie pro 7. ročník,
vydanie z r. 1955, příklad 7, str. 134).

b) Ak o uhloch a, pri vrcholoch A3 В lichoběžníka
platí:
[1] a = /3, potom jep1=p3;
[2] a < /?, potom bod P3 as ním priamka p3

leží vnútri polroviny pxB;
[3] a > fi3 potom bod P3 as ním priamka p3

leží vnútri polroviny pxA.
Dokaž. Tvrdenie [1] vyplývá zo súmernosti licho-

bežníka ABCD podlá px.
Dokaž tvrdenia [2] (pozři obr. 40). V trojuholníku

ABE platí
(6)BE < AE,

lebo je a < (i (proti váčšiemu uhlu trojuholníka ABE
leží váčšia strana). Zo vztahu (6) vyplývá podlá vety U,
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že bod E padne dovnútra polroviny pxB; preto vnútri
úsečky AE leží bod Q priamky px. Ak je D bodom
úsečky QE, je tvrdenie [2] samozřejmé, lebo celá
úsečka DC leží v polrovine pxB. Nech D leží vnútri

!a e

Q

w

d/ A. \d' \c
гГр3 H

\

\
\

&
вÁ

Obr. 40

úsečky AQ. Označme D' D jeho obraz v súmernoti
s osou px a F střed úsečky DD' (ten leží na px). Pol-
priamka BQ leží v uhle /3 a teda D' vnútri úsečky FC.
Je teda

DD' < DC
a

\DD' < \DC,
t. j.

DF < DP3.

136



Z toho vyplývá, že P3 leží vnútri úsečky FC a tým
vnútri polroviny pxB a s ním aj priamka p3 || px. Tým
je tvrdenie [2] dokázané.

Dokaž tvrdenia [3]sa prevedie na dokaž tvrdenia
[2] pomocou súmernosti podlá osi px.

Poznámka. Dokaž tvrdenia [2] možno urobit’
použitím faktu, že bod P3 leží vnútri úsečky PXE,
ktorá s výnimkou bodu Px leží celá vnútri polroviny
pxB. To předpokládá znalost’ vety o podobnosti troj-
uholníkov APXE, DP3E a BPjP, CP3E.

Riešenie danej úlohy (pozři obr. 41, 42, 43).
(Pre jednoduchost’ predpokladajme, že vo vzťahoch
(1), ktoré máme skúmať, sa jedná o vzdialenosti bodov,
takže pripúšťame napr. aj možnosť AX = 0, t. j.
A = X atď.) Označme px, p2, p3 (v tomto poradí) osi
stráň AB, PC, CD lichoběžníka ABCD.

Bod X, o ktorom podl’a (1) platí AX < BX, leží
podlá vety U vnútri polroviny pxA;

bod X, o ktorom platí BX < CX, leží vnútri pol-
roviny p2B;

bod X, o ktorom platí CX < DX, leží vnútri pol-
roviny p3C.
Ide o to, či vnútrajšky polrovín pxA, p2B, p3C majú
spoločné body. O tom rozhodneme podlá vety V.

Případ [1]. Nech je a = p (obr. 41). Potom je
px= p3 a pxA, p3C sú opačné polroviny, ktoré nemajú
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žiadny vnútorný bod spoločný. Bod X, o ktorom
platí (1), teda neexistuje.

Případ [2]. Nech je a < /5 (obr. 42). Priamka p3
a s ňou celá polrovina p3C leží vnútri polroviny pxB,
takže polroviny pxA, p:iC nemajú žiadny spoločný
bod. Preto bod X s vlastnosťami (1) neexistuje.

E
A

/!£ \
/ i

/l\
/ l \

Р/ АРз \C

/TT\/

\c0/

-•"T

\ ^ и
— fv | 4
rj I*

I
e

£л5
В>1

I

Obr. 42Obr. 4Í

Případ [3]. Nech je a > /? (pozři obr. 43). Priamka
p3 leží vnútri polroviny pxA a vnútrajšky polrovín
pxA, p.sC majú spoločné tie body, ktoré ležia vnútri
pásu rovnobežiek px, рг. Priamky BA, BC sú rózno-
běžné; preto sú róznobežné aj priamky px _]_ BA,
P2 -L ВC [pozři Geometrii pro 7. ročník, vydanie
z r. 1955, veta 6, str. 134] (a teda aj priamky p2, p2
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sú róznobežné). Vnútrajšok polroviny p2B má s vnú-
trajškom pásu rovnobežiek pl3 p3 spoločné body, ktoré
sú v obrázku 43 naznačené šrafovaním.

Tým je úloha roznesená.

/ \
i

i

i i \
в \ co'

3
Ъ

\p, Ж-4\h
! z'

A

• ffiill

P,
В

Obr. 43

Závěr. Body požadované) vlastnosti existujú jedine
v případe, keď je a > /3.

3. Určte všetky reálne čísla x} pre ktoré je zlomok
12x2 - 36x + 27Z =

8x2 - 18
•• Vv r v V/ 1 o

vácsi ncz číslo 2"•
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Riešenie. Daný zlomok Z upravujme postupné
takto:

12x2 - 36x + 27
_ 3(4x2 - 12x + 9) _

~

~2(4x2 - 9) ~
3(2x - 3)2

_ 3(2x - 3) _ 3(2* + 3-6)
“

2(2x + 3) (2x - 3) — 2 (2.x + 3) — 2~(2x + 3)

3(2x + 3)
2(2* + 3) 2(2x + 3) ~ 2 2x + 3 ~ 2 x + f ’
Aby platilo Z > f, musí byť

Z =
8x2 - 18

!»
3.6 3 9 3 2

!>

(1)
X + f

kladné číslo; to znamená, že Číslo x + f musí byť
záporné, t. j. x < — f.

Pre л: < — -f je každý z výrazov 2x + 3, 2x — 3
rozny od nuly (prvý výraz sa rovná nule pre x = — f,
druhý pre x = f) a zlomok Z má zmysel. Pre tieto x
je zlomok (1) kladný a teda Z > f.

Tým je úloha rozriešená.

Iné riešenie. Podlá predošlého riešenia je
3(2* - 3)
2(2* + 3) 5

Z =

čiže

у 3 2x — 3Z “ T ’ 2x + 3 •

Požadujeme, aby platilo Z > f. O zlomku
2x - 3

2x + 3

(2)

(3)z —
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musí teda platit’, že je váčší než 1. Obrátene, ak bude
z > 1, bude tiež Z > f. Určíme preto všetky čísla x
také, že pre ne je z > 1. Vzhladom na to, že čitatel’ aj
menovatel’ zlomku (3) musia byť súčasne kladné čísla
alebo súčasne záporné čísla, rozdělme úlohu na
dve časti:

Časť [1]. Nech sú 2x — 3, 2x + 3 kladné čísla. Ak
má byť z > 1, musí byť 2x — 3 > 2x + 3. To však
nie je možné splnit’, lebo číslo 2x — 3 je o 6 menšie
než 2x -f- 3.

Časť [2]. Nech 2x — 3, 2x + 3 sú záporné čísla.
Číslo 2x + 3, čiže číslo 3 + 2x je záporné pre všetky
čísla 2x < — 3, t. j. pře x < — f (to 1’ahko nahliad-
neme, keď na číselnej osi znázorníme číslo 3). Pre
tieto čísla je záporný nielen výraz 2x + 3, ale aj
výraz 2x — 3 = 2x + (— 3), ktorý je totiž potom
súčtom záporných čísel 2x, — 3.

Ešte ide o to, či pre

x < — f

je zlomok z váčší než číslo 1. Rozšiřme zlomok (3)
číslom — 1. V zlomku

3 - 2x
z =

- 3 - 2x

sú potom čitatel aj menovatel’ kladné čísla. Aby bolo
z > 1, musí byť čitatel’ váčší než menovatel’ a to sku-
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točné pre x < — f je, lebo rozdiel

3 2x - (- 3 - 2x)

sa rovná číslu 6, ako sa 1’ahko přesvědčíme.

Závěr. Zlomok Z je váčší než f pre všetky čísla
x < — f a žiadne iné.

4. Je dána kružnice k = (5, r) a v ní středový
úhel co = /1SZ? (dutý nebo přímý), přičemž A i В
jsou body kružnice k.

Na její tečně t sestrojené v bodě В najděte bod X
tak, aby druhý průsečík Y přímky AX s kružnicí k
byl hlavním vrcholem rovnoramenného trojúhelníka
YBX.

Rozhodněte o řešitelnosti úlohy vzhledem к veli-
kosti úhlu co.

Řešení. Užijme této věty P (viz označení v obr. 44):
V rovnoramenném trojúhelníku BXY o hlavním
vrcholu Y veďme polopřímku BFft XY. Potom je
r\ — г], y' = y. Obráceně, jestliže v polorovině MBY,
kde bod M leží na prodloužení úsečky XB za bod B,
sestrojíme úhel y' = <£MBF = y, potom je XY \\BF.
(Důkaz je snadný.)

Jsou dvě možnosti: a) Je 0 < co < 180°; b) co =
= 180° (řešení jen naznačíme).
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Nechť je oj dutý úhel (obr. 45 až 47): Druhý stře-
dový úhel ASB označme oj'; platí

oj -J- oj' = 360°, oj < oj' .

Obr. 44

Příslušné obvodové a dále úsekové úhly při vrcholu В
označme <p, op' a e, e'; platí

<p = e — i oj , op' = e' — \ oj , £ <C 90° < e' .

Tečny t, ť v bodech Б, A kružnice k mají společný
bod C, přičemž je £ = <£CBA; BC, 5AÍ jsou opačné
polopřímky. Dále je ZLdiítf MBC.

Nyní jsou možné dvě situace: Bod X padne
dovnitř: [1] polopřímky BM; [2] polopřímky BC
(přitom musí být X různý od bodů В, C; pro X = C
je přímka AX = ťa nemá s kružnicí k další společný
bod).
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Případ [1] (viz obr. 45). V rovnoramenném troj-
úhelníku YBX je cp vnějším úhlem, neboť Y leží
uvnitř úsečky ЛХ; je tedy

P = Y = i(P= 2fi •

Osa BF úhlu e je tedy podle věty P rovnoběžná
s x = AYX. Odtud konstrukce (viz obr. 45):

Obr. 45

Bodem A veďme зс || BF, kde BF je osa úhlu e.
Označme pořadě X, Y ^ A společné body přímky
x s t,k\ pak X vyhovuje požadavkům úlohy.

Důkaz a diskuse. Je <£CBA = ^.BAD (střídavé
úlohy mezi rovnoběžkami). Protože BF je osou prvního
z těchto úhlů, leží v přímce л; osa druhého úhlu
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BAD ', z toho plyne, že x, t jsou rňznobčžky a bod X
existuje, takže i bod Y ф A existuje. Podle konstrukce
je у — \e, /3 = cp — у (podle věty o vnějším úhlu
trojúhelníka) a tedy \e = y.

ť A
-fí—

/

'

-/

✓

\

YÍ/
"<ds í ~p/ v/ xr

/ Is
■/

/ VU/V
7it4 в XV✓

Obr. 46

Výsledek [1]. Na polopřímce BM leží právě jeden
požadovaný bod.

Poznámka. К témuž výsledku dospějeme i v tom
případě, že oj — 180° (viz obr. 46); ze souměrnosti
kružnice k a přímky t podle osy SB plyne, že úloha
má v tomto případě dvě řešení. Bod Y leží na průměru
p || t vedeném bodem S’ a bod Y' je na kružnici k
к bodu Y protilehlý.

Případ [2] (viz obr. 47, 48). Vyloučili jsme možnost,
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že by platilo X = C (pak přímka AX nemá s k další
společný bod a je nutně /3 = у = <£BAC — 60°,
co = 120°).

Jsou dvě možné situace: a) Viz obr. 47, kde
X je vnitřní bod úsečky ВС a Y vnitřní bod menšího
oblouku АВ kružnice k; v hledaném rovnoramenném
trojúhelníku YBX platí

(1)/3 = у = W = К •

Je-li BF' osou úhlu s, je <^MBF' — |e' a podle
věty P je

(2)XA || BF'.

b) Viz obr. 48, kde X je na prodloužení úsečky BC
za bod C a bod Y pak nutně leží na větším oblouku AB
kružnice k. Označme cp' úhel vedlejší к obvodovému
úhlu cp = <£AYB; pak je cp' = s, kde e = 4.MBA.
Platí stejně jako v předchozí situaci vztahy (1) a o ose
BF' úhlu s' platí

(3)XA || BF'.

Ze vztahů (2), (3) plyne táž konstrukce: Bodem A
veďme přímku x || BF', kde BF' je osou úsekového
úhlu e'; nechť přímka x má s přímkou t společný
bod X ^ C, s kružnicí k společný bod Y A.
Potom bod X vyhovuje požadavkům úlohy.

Důkaz a diskuse (obr. 47, 48). Je 4^-BAE =
= 4:MBA = e' (střídavé úhly mezi rovnoběžkami
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BM АЕ); jejich osy leží pořadě v přímkách x,
BF'. Odtud plyne, že bod X padne dovnitř polo-
přímky BC. Je <£BAC — e, <£BAX = Jsou
tři možnosti:

a) Je e > £e' neboli postupně co > |co',

co > |(360o — co), co > 120°; potom vskutku X leží
mezi body В, С a Y na menším oblouku AB (obr. 47).
Platí /3 = cp' — у (věta o vnějším úhlu trojúhelníka
YBX) neboli /3 = e' — |e' = |e' == y.

/3) Je e = \e' a tedy co = 120°; pak je Y = A,
což jsme vyloučili; trojúhelník ABC je rovnostranný.

y) Je £ < \e' neboli co < 120° (viz obr. 48); potom
leží přímka x v úhlu <£CAE i v úhlu к němu vrcho-
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lovém. Bod X padne na prodloužení úsečky BC za

bod C a bod Y na větší oblouk AB kružnice k.
Je (3 — <p' — у (viz označení z obr. 48) neboli

P = e — \e' - = y.

iX/

Obr. 48

Závěr. Na každé z opačných polopřímek ВС3 BM
leží právě jeden bod X, který má požadované vlast-
nosti. Jedině v případě oj = 120° je X == C a Y == A,
což jsme vyloučili, kdežto řešení na polopřímce BAÍ
existuje.

5. Kolik čtveřic celých čísel a, 6, c, d má tyto vlast-
nosti:
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(1) Žádná dvě z čísel a, b, c, d si nejsou rovna.

(2) Platí a+&+c+d= 0.
(3) Každé z čísel a, b, c, d má absolutní hodnotu

menší než pět. (Čtveřici 1, 2, — 3, 4 považujte za
různou od čtveřice 2, — 3, 4, 1 apod.)

Řešení. Úlohu rozdělme na dvě části: [1] Hle-
dejme čtveřice, o nichž platí, že jedna dvojice čísel ze
čtveřice má součet nula. [2] Žádná dvě čísla čtveřice
nemají součet nula.

Případ [1]. Nechť o dvou číslech čtveřice, např.
o číslech c3 d, platí, že jejich součet je nula.

Tu nemůže být např. d — 0; jinak by bylo c + d —

= 0, tj. c — 0. Dvojici c — 0, d = 0 vylučujeme,
neboť čísla čtveřice mají být vesměs navzájem různá.

Tabulka č. 1

III IVI II

5 > a > d 5 > d> 0b c

-22 1-1

-33 1-1

4 -4 1-1

3 -3 -2 2

4 2-4 -2

4 -3-4 3
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Sestavme nyní tabulku (číslo 1) čísel a, b} c, d tak,
aby bylo d > 0 (tj. hledejme čtveřice, v nichž je
d > 0) a aby v tabulce postupně d vzrůstalo; dále
učiňme úmluvu, že v tabulce je a > d.

Za daných předpokladů dostaneme právě 6 čtveřic
(a, b3 с, d). Nyní uvažujme takto:

Vlastnost čísla d, kterou jsme požadovali, může mít
kterékoli z čísel a} b, c> d, to tedy jsou

4 možnosti. (1)
Zbudou nám tři z čísel a3 b3 c3 d'3 vlastnosti, které

jsme připsali číslu c (tj. c + d — 0), mohou mít která-
koli tři z nich; tc jsou

(2)3 možnosti,
přičemž kteroukoli možnost (1) lze spojit s kteroukoli
možností (2); to je tedy

(3)4.3= 12 možností.

Nyní nám zbývají ze čtveřice a, b3 c, d dvě čísla;
vlastnost, jež mělo číslo a může mít jedno z nich;
to jsou

2 možnosti,
z nichž každou lze spojit s 12 možnostmi (3). Dosta-
neme tedy

12.2 = 24 možností.

Dostaneme tedy celkem 24 tabulek typu č. 1. To je
6.24

různých čtveřic dané vlastnosti.
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Případ[2]. Nechť o číslech čtveřice (a, b, c, d) platí
|a| > |6| > \c\ > \d\ . (4)

Sestavujme tabulku (číslo 2) tak, že volíme číslo a,
к němu volme číslo b tak, aby platilo (4) a pak volme
číslo c zase podle (4), načež číslo d určíme podle
vztahu a-\-bJrcJrd = 0; přitom čísla a, 6, c, d
musí být různá. Dostaneme:

Tabulka č. 2

I II III IV

b da c

-24 -3 1

2-4 3 1

4 -1-3 0

-4 1 03

-1 o3 -2

-3 1 02

V*tabulce je tedy 6 čtveřic čísel. Vlastnost, kterou
má číslo a v tabulce č. 2, může mít opět kterékoli
z čísel a, 6, c, to jsou 4 možnosti. Vlastnost čísla b
může mít kterékoli ze tří zbývajících čísel, to jsou
3 možnosti; tedy 4.3= 12 možností. Zbudou dvě
čísla a jedno z nich volíme (jako číslo c v tabulce
číslo 2); to jsou dvě možnosti, tedy 12.2 = 24 mož-
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ností. Dostaneme tedy 24 tabulek tvořených týmž
postupem jako tabulka čís. 2; obdržíme tedy

6.24 čtveřic .

Protože uvedenými případy [1], [2] jsou všechny
možnosti vyčerpány, dostaneme [viz (4), (5)] celkem

6.24 + 6.24 = (6 -f 6) . 24
čtveřic neboli 12.24 = 288 různých čtveřic.

Odpověd. Různých čtveřic, majících vlastnosti po-
žadované textem dané úlohy, je 288.

(5)

6. Je dána kružnice k = (5, r) a v ní průměr AB;
dále je dáno kladné číslo m.

Na tečně t sestrojené v bodě В kružnice k určete
bod X tak, že pro druhý průsečík Y přímky AX
s kružnicí k platí vztah

XY rn .

(Nejprve vypočítejte velikost úsečky XA a na základě
výpočtu proveďte konstrukci.)

Řešení. V obr. 49 označme

SA - SB = r, AX = x,XY= m,
AY = x — m\

přitom r, m jsou daná kladná čísla a x > 0 je neznámé
číslo, jež vypočítáme.

(1)
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Platí

Д ABY ~AXB (uu),
neboť se tyto pravoúhlé trojúhelníky shodují v úhlech.

(2)

Ze vztahu (2) plyne

(2')
neboli vzhledem к (1)
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Znásobme obě strany této rovnice číslem 2rx;
postupně dostaneme

x (x — m) = 4r2 ,

x2 — mx — 4r2,

(3)

kde jsme položili
4r2 + (f)2=D >0•

Rovnici (3) lze upravit dále takto:

(3')

f)2 = (P)2 >

(* - f)2 - (P)2 = o,
[(* ~ f)+v^] * [(* - f) - У^]=o •

(*

Jeden z obou činitelů na levé straně této rovnice musí
být roven nule [viz učebnici Algebra pro 9. ročník,
vydání z r. 1955, str. 8, řádek 4; str. 78, odstavec 1], tj.

~ + P = 0, * - У -p = oл: —

neboli

* = ?-P,
* = f + P.

(4)

(5)
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Případ (4) nepřichází v úvahu; ze (3') totiž plyne,
že je D > (\m)2 a tedy ]/d > \m, takže ve (4) je
л: < 0 a proto nemá geometrický význam.

Případ (5) má význam, neboť x je součtem dvou
kladných čísel; na základě výsledku (5) provedeme
konstrukci.

Konstrukce (viz obr. 49). Sestrojme trojúhelník
ABL, kde <£В = 90°, AB = 2r, BL = Podle
věty Pythagorovy z tohoto trojúhelníka plyne

ЛБ2 + 5L2 - AL2
neboli

4r2 + (f)2 = AL2 >

přičemž porovnáním se vztahem (3') dostáváme
AL = Ví) .

Na prodloužení úsečky AL za bod L sestrojme úsečku
LP = \m, takže je AP = x, kde x je dáno vztahem (5).
Dále opišme kružnici k' =. (A, r' = AP), která pro-
tíná přímku t v hledaných bodech X, X'. Uvnitř
úseček AX, AX' a na kružnici k leží pak pořadě body
Y, Y', přičemž platí

XY — X' Y' — m .

Důkaz. Stačí se omezit na úsečku XY, neboť
úsečka X'Y' je obrazem úsečky XY v souměrnosti
o ose AB.
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Podle konstrukce je AX = AP = x, což je číslo ze
vztahu (5). Vztahy (2), (2') platí, neboť trojúhelníky
ABY, AXB jsou pravoúhlé a mají společný úhel při
vrcholu A. Musíme dokázat, že je XY = m.

Ze vztahu (2') plyne AX . AY = AB2 neboli
4r2

(6)AY =
лх *

Uvažujme úsečku ЛУ0 = ЛХ — m, takže vzhledem
к (5) je

ay, = 1!d-~, ax = Tď + ~.

Proto je

AY0.AX = (1
neboli

AY0.AX = 4r2;
je tedy

4r2
ЛУ0 =

Porovnáním (6), (7) dostáváme
AY0 = AY,

takže rozdíl velikostí sestrojených úseček AX, AY je
skutečně m.

Diskuse. Úloha má vždy dvě řešení, neboť podle
konstrukce je AB < AL < AP, takže vzdálenost
bodu A od přímky t je menší než poloměr r kružnice

(7)AX '
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k!; je tedy t sečnou kružnice k'. Protože přímka AX
není kolmá к přímce AB, není tečnou kružnice k
v bodě A, tj. je sečnou (bodem A na kružnici k pro-
chází jediná tečna, ostatní přímky jsou sečny kružnice).

7. ÚLOHY II. KOLA KATEGORIE C

1. Daná je priarnka m. Vnútri jednej z polrovín
vyťatých priamkou m je vo vzdialenosti v daná priarnka
n || m; vnútri opačnej polroviny sú dané dva rožne
body P, Q. Vzdialenosti bodov P, Q od priamky m
označme (v tomto poradí)/), q \ ďalej označme PQ = d.

Zostrojte kosoštvorec ABCD, ktorého strana AB
leží na priamke m a strana CD na priamke n\ přitom
bod P leží na priamke AC a bod Q na priamke BD.
Urobte diskusiu riešitelnosti vzhladom na čísla

(kladné) d, p, q, v.

Riešenie. Rozbor (obr. 50). Označme S střed hla-
daného kosoštvorca ABCD (presnejšie: rovnostran-
ného rovnoběžníka). Potom je <$:PSQ = 90°. Přitom
bod 5 leží na strednej priečke s || AB, čiže s || m.
Vzdialenosť priamok s, m je \v. Z toho vyplývá
konštrukcia:

Zostrojme os s || m súmernosti páru rovnobežiek
m} n. Označme O střed úsečky PQ a opišme kružnicu
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k = (O, \d) nad úsečkou PQ ako priemerom. Ďalej
označme 5 spoločný bod (ak existuje) priamky s
s kružnicou k. Zostrojme priamky SP, SQ. Označme
A, C spoločné body priamky SP (v tomto poradí)

\

D\'C

Obr. 50

s priamkami m,n a ďalej B, D spoločné body priamky
SQ (V tomto poradí) s tými istými priamkami m, n.
Potom štvoruholník ABCD vyhovuje požiadavkám
úlohy.

Dokaž. Bod 5 má podlá konštrukcie priamky s
navzájom rovnaké vzdialenosti od rovnobežiek m, n.
V súmernosti so stredom S sú priamky m, n súmerne
združené a tým aj dvojica bodov A, C a dvojica bodov
B, D. Bod 5 teda rozpoluje uhlopriečky AC, BD
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štvoruholníka ABCD, takže je to rovnoběžník. Pretože
5 leží na Thaletovej kružnici k, je <£PSQ = 90°
a uhlopriečky AC, BD rovnoběžníka ABCD sú na
seba kolmé. Je teda napr. priamka AC osou súmer-
nosti tohto rovnoběžníka, t. j. platí AB = AD a rovno-
bežník je rovnostranný. Tým je dokaž hotový.

Diskusia (pozři označenia z obr. 50). Riešitelnosť
úlohy závisí od toho, či priamka s a kružnica k majú
spoločné body. Pokial nie je PQ J_ m, existuje licho-
bežník (resp. obdížnik keď PQ || m) PQQ'P', kde
PP' J_ m, QQ' ima body P', Qf ležia na priamke m.
Jeho středná priečka OO' — \(PP' + QQ) =
— I (P + Я)- Vzdialenosť středu O od priamky m je
teda \{p + q). Pretože body P, Q ležia vnútri tej istej
polroviny mP (opačnej к polrovine mC), vzdialenosť
bodu O od priamky s sa rovná o = \(j> + q) + \v =
= \ÍP + Я + v)‘ Poloměr kružnice k je \d. Úloha
má dve rožne, jedno alebo žiadne riešenie, podlá toho,
či vzdialenosť bodu O od priamky s je menšia, rovná
sa alebo je váČšia než poloměr \d kružnice k, t. j. či
platí (v tomto poradí):

o < Id,
kde o = \{p + q + v) .

Avšak to platí aj pre případ, že je PQ _L m, kedy
úloha nemá riešenie.

Tým je úloha rozriešená.

o — \d, o > Id,
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2. Písařka píše na psacím stroji těsně za sebou při-
rozená čísla

123456789101112 atd.

bez mezer a čárek; celkem takto napsala 1000 číslic.
Vypočítejte, kolik přitom napsala sedmiček.
Řešení. Nejprve určíme to přirozené číslo, jehož

cifra při uvedeném psaní číslic bude stát na tisícím
místě. Počítejme postupně napsané cifry;

Napišme čísla:
1 až 9

10 až 99
100 až 199
200 až 299

Napsali jsme tím tento počet číslic:
9

180
300
300

Přitom jsme napsali celkem 789 číslic.

Máme ještě napsat 211 číslic. Napíšeme-li
dalších (trojciferných) čísel, napíšeme 210 číslic;
jedná se o napsání čísel od 300 až do 369. Zbývá napsat
ještě další číslici (tisící) a tou je číslice 3 čísla 370.

Nyní vypočítáme, kolik napíšeme sedmiček, když
napíšeme bezprostředně po sobě následující přirozená
čísla od 1 až do 369.

V každé desítce od 1 do 100 napíšeme jednu sed-
mičku, která stojí na místě jednotek, tj. celkem 10
sedmiček; při psaní desítek čísel 70, 71 atd. až 79
napíšeme rovněž celkem 10 sedmiček. Při psaní čísel
od 1 do 100 napíšeme tedy úhrnem 20 sedmiček. Totéž
platí při psaní čísel od 101 do 200 a od 201 do 300.

210
- 70
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К napsání čísel od 1 do 300 napíšeme 60 sedmiček.
Při napsání čísel 301 až 369 napíšeme 7 sedmiček.

Odpověd. Při výkonu popsaném v úloze napíše pí-
sařka 67 sedmiček.

3. Jsou dány dva přilehlé úhly <£MPQ, <£PQN,
z nichž každý je pravý; dále je dáno kladné číslo p.

Na polopřímkách PM, QN sestrojte pořade body
А, В a na úsečce PQ bod C tak, aby trojúhelník ABC
byl rovnostranný se stranou velikosti p.

Proveďte diskusi řešitelnosti vzhledem k číslům

p,d = PQ.

Řešení (obr. 51). Při řešení užijeme známé věty
V: Je-li <£PQY = 90° (viz obr. 52) a QY < QT,

potom je PY < PT a <£PYQ > ^.PTQ a obráceně.

Rozbor. Nechť ABC je trojúhelník, který splňuje
požadavky dané úlohy. Označme o osu úsečky PQ; přím-
ka o je osou souměrnosti útvaru, který se skládá z úseč-
kyP<2 a obou polopřímek PM, QN. Označme B'A'C
(v napsaném pořadí) obraz trojúhelníka ABC v sou-
měrnosti o ose o; body В', A', C ležípořadě na polo-
přímkách QN, PM a úsečce PQ. Trojúhelník tedy
také splňuje požadavky úlohy. Označme a, b pořadě
vzdálenosti bodů А, В od přímky PQ; tu tedy B', A'
mají od přímky PQ pořadě rovněž vzdálenosti a, b.
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Proto v celém dalším řešení můžeme předpokládat,
že je

a ^ b;
jinak totiž místo trojúhelníka ABC stačí uvažovat
jeho obraz B'A'C v souměrnosti o ose o.

\o e N\o И
П ВN

IA' AВrv 60°
\ 'V-
\ Xt\l

I I .-•B'A
I . /\ ✓

. / ^

У

£\
? CPbX\ a

fУ I\\ I 4
/»Xх \ b- Г/

\P У C vJ a M' 4Г\ I

d<p < žoct I s\]t/3
\ Xzi

J

Obr. 51 Obr. 52

Posuňme trojúhelník ABC o délku a ve směru MP
(i co do smyslu — viz obr. 52), čímž dostaneme
shodný trojúhelník XYZ (je X = P). Jsou dvě mož-
nosti: [1] Je a = b a tedy Y = Q, tj. d — p\ v tomto
případě je zřejmě jediné řešení ABC (viz obr. 53)
a je AB || PQ, přičemž je C = (PQ . o). [2] Je a < b,
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takže existuje pravoúhlý trojúhelník PYQs přeponou
PY = p a odvěsnou PQ = d, takže je

d <p. (i)

(Je zřejmé, že pro d > p nemá úloha řešení.) Přitom
bod C leží na úsečce PQ a tudíž bod Z v pásu rovno-
běžek PM, QN. Bod Z náleží úhlu <£PYQ, neboť
musí být 60° = <£PYZ ^ <£PYQ; je tedy <£YPQ <
^ 30° a proto polopřímka PZ prochází vnitřkem
pravého úhlu <$iQPM', kde PM'3 PM jsou opačné
polopřímky. Sestrojme rovnostranný trojúhelník PTT\
v němž je úsečka PQ výškou a bod T leží na polo-
přímce QN; je PQ = ^3 . РГ neboli d = Ц3 • РГ
a tedy

2 Уз
3 ^

Protože <£QTP = 60°, padne nutně bod Y Q
na úsečku QT. Podle věty V pro Y = Г je totiž
PT = p, <£PYZ = <£PYQ = 60°, kdežto pro
vnitřní bod У úsečky £)Г je = PY <PT, <£PYQ>
> ^pPTQ = 60°; v prvním případě padne bod Z
na polopřímku TQ, v druhém případě padne bod Z
dovnitř úhlu <ZpPTQ. Vhledem к (1) a právě odvo-
zeným vztahům je

PT =

d<P^Md. (2)

íi* 163



ti\o No
ti

7V A' В

A В

>"f"A B'mTmY

#C'=Pa CaQ
Ъ. £. N.P c (3 >
pad p.frod YmZmVI

Obr. 53 Obr. 54

Konstrukce (viz obr. 52, 54). Kolem bodu P = X
opíšeme kružnici k = (P, p); vzhledem к (2) je
přímka QN sečnou této kružnice. Označme Y spo-
léčný bod polopřímky QN s touto kružnicí. Bod
Y Q náleží úsečce QT, takže podle věty V je
<£PY<2 ^ 60°. Rovnostranný trojúhelník XYZ se-
strojený v polorovině ХУ£) má stranu p\ bod Z náleží
úhlu <£PY<2 a tím pásu rovnoběžek PM, QN.
Označme C patu kolmice vedené bodem Z к přímce
PQ a posuňme trojúhelník XYZ o délku ZC ve
směru PM (i co do smyslu) do polohy ABC. Z před-
chozího plyne, že trojúhelník ABC vyhovuje poža-
davkům úlohy. Obraz B'A'C trojúhelníka ABC
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v souměrnosti o ose o vyhovuje rovněž úloze, přičemž
oba trojúhelníky jsou různé; úsečka XY a její obraz
v souměrnosti o ose o jsou totiž dvě různé úsečky
a tím i úsečky AB, B'A' jsou různé, přičemž úsečka
B'A' není stranou trojúhelníka ABC.

Důkaz konstrukce vyplývá z předchozího. Pod-
mínkou řešitelnosti je vztah (2).

Protože od trojúhelníka ABC lze к pomocnému
trojúhelníku XYZ přejít jediným způsobem (příslušné
posunutí je zcela určeno) a protože od sestrojeného
trojúhelníka XYZ lze podle naznačené konstrukce
dospět opět jediným způsobem к trojúhelníku ABC,
který úloze vyhovuje, má úloha dvě různá řešení.

Závěr. Je-li d — p, má úloha jediné řešení. Platí-li
vztahy (2) jsou dvě různá řešení. Pro d > p nebo pro
P > §]/3d není řešení.

4. Rozhodnite, ktorý zo zlomkov
100100 + 1
10090 + 1 5

je váčší. (Návod: Utvořte napr. ich rozdiel.)

100" + 1
100" + 1

Riešenie. Rozdiel zlomkov sa postupné rovná
100100 + 1 100" + 1
100" + 1 — ÍÓ0" + 1 ~

(100100 + 1) (100" + 1) - (100" + 1) (100" + 1)

r -

(100" + 1) (100" + 1)
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Ak bude čitatel posledného zlomku kladné číslo, bude
prvý z daných zlomkov váčší. Označme tohto čitatela
x. Platí postupné:

* = 100189 + 100100 + 10089 + 1 -
- (100189 + 100" + 10090 + 1) =
= 100100 + 10089 — 100" — 10090 =

= 100100(l +
l i l

100u 100 10010

Číslo v zátvorke je zrejme kladné, takže x je kladné
číslo.

Odpoved. Prvý z daných zlomkov je váčší než druhý.
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8. VLOHY I. KOLA КA TEGORIE D

1. Je dán výraz
Сь - D2(а - 1)2 (с - I)2

(с - а) (с - Ъ)(а - Ъ) (а - с) (Ъ - а) {Ъ- с)

Zjednodušte jej a dokažte, že je kladný. Co musí
platit o číslech a, b, c, aby daný výraz měl smysl ?

Řešeni. I. Označme V daný výraz. Upravme
menovatele ve zlomcích výrazu V pořade takto:

(a — b) (a — c) — — (a — b)(c — a) ,

(b — a) (b — c) = — {a — b) (6 — c),
(c — a) (c — 6) = — (c — a) {b — c) .

Vidíme nyní, že jmenovatelé našich zlomků vznikly
jako součiny vždy dvou z těchto výrazů

% a — b,
a ještě dalšího činitele, jímž je Číslo — 1. Výraz

n — (a — b) (b — c) (c — a)
je zřejmě společným násobkem výrazů (1), neboť
platí např.

(1)

(Пb — c, c — a

(2)

= -(b-c) (3)(a — b) (a — c)

atd. Je tedy výraz « skutečně společným násobkem
našich jmenovatelů.

Převeďme nyní zlomky ve výrazu V na jméno-
vatele n> musíme je vzhledem к (1) a (3) rozšířit
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pořadě těmito výrazy:
— (c — a),— (b — c), - (a — 6);

postupně pak obdržíme tyto úpravy:
(6 c) (a 1)2 - (C - a) (ft - l)2F =

_ (a _ b) (c _ 1)2

1
= — — [(6 — c) (a2 — 2a + 1)+ (c — a) (62 — 2b + 1) +

+ (я — (c2 — 2c + 1)]; (4)
l

tu jsme ze zlomků vytkli — —. Proveďme nyní
násobení v lomené závorce a potom sečtěme. Označme
L výraz v lomené závorce; dostaneme postupně

L = a~b — 2ab + b — a2c + 2ac — c +

+ 62c — 2ác + c — ab2 + 2a6 — a +

+ ac2 — 2ac + a — 6c2 + 2bc — b —

— (a2b — ab2) + (b2c — bc2) + (c2a — a2c) . (5)
Proveďme dále násobení na pravé straně rovnosti

(2); dostaneme postupně

n — (a — b) (b — c) (c — a) =
= (ab — ac — b2 + bc) (c — a) —

= abc — ac2 — b2c + bc2 —

— a26 + crc + ob2 — a&c =

= — (a26 — ab2 + b2c — bc2 + c2a — ca2) — — L
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[viz vztah (5)]. Platí tedy
n = — L .

Dosaďme tento výsledek do (4); obdržíme
i

(6)V=-
L ■ L — 1,

tj.
V = 1 .

Výsledek. Výraz V je roven číslu 1 a tím kladný pro
všechna čísla a, b, c, pro něž má smysl.

Obdobné řešení vypracoval
Lubomír Vašek, 8.d tř. 1. jsš,
Gottwaldov.

II. Musíme ještě zjistit, kdy výraz V ztrácí smysl.
To nastane tehdy, je-li jeden z jmenovatelů (1) daného
výrazu roven nule, tj. jestliže platí alespoň jeden ze
vztahů

(a — b) (c — a) = 0,
(a — 6) (6 — c) = 0 ,

(c — a) (b — c) = 0 .

(7)

Z rovnic (7) plyne, že nutně musí platit alespoň jedna
rovnost [viz učebnice Algebra pro 8. roč., str. 24 a ná-
sledující, vydání z r. 1959]

a — 6 = 0, b — c — 0, c — (2 = 0
neboli

(8)a = 6, 6 = c, c — a .
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Skutečně, když platí jeden ze vztahů (8), je jeden ze
jmenovatelů (1) roven nule a výraz V nemá pak
smyslu.

Odpověd. Jestliže současně platí
а Ф b, b Ф с, с Ф a ,

má výraz V smysl; jinak smysl nemá.
Za předpokladu, že platí (9), je vzhledem ke vztahu

(2) číslo n různé od nuly (tím je též L Ф 0) a proto lze
provést krácení naznačené ve vztazích (6).

Tím je úloha rozřešena.

(9)

Obdobné řešení vypracovala
Jitka Državová, 8. tř. 4. osš,
Přerov.

2. Zvolte trojuholník MNP. Narýsujte taký troj-
uholník ABC, aby bod M bol stredom strany BC,
bod N stredom strany CA, a aby bod P bol pátou
výšky vedenej: a) bodom C, b) bodom A. (Každú
z oboch úloh narýsujte Zvlášť.)

Riešenie. a) Na obrázku 55 máme trojuholník ABC
a body M, Ny ktoré sú (v tomto poradí) stredmi stráň
BC, CA, takže MN je střednou priečkou; preto je
MN || AB. Ďalej P je pata výšky vedenej bodom C.
Bod P može splynúť nanajvýš s jedným z bodov A, B.
Predpokladajme, že je napr. P^B. Potom v troj-
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uholníku BCP je úsečka MQ || BP (Q je priesečník
priamok MN a CP), lebo je MN || AB. Je teda MQ
středná priečka v tomto trojuholníku a 2 je teda
střed úsečky CP. Vedla toho je MQ || BP, CP J_ BP;
ak je priamka CP kolmá к jednej z rovnobežiek, je
kolmá aj к druhej [pozři učebnicu Geometrie pro
7. ročník, vydanie z r. 1955, str. 134, druhá veta
zhora]. V trojuholníku CMQ je teda <£<2 = 90°.
Podlá toho urobíme konštrukciu.

Obr. 55

Konštrukcia (obr. 55). Zvolme trojuholník MNP.
Bodom P veďme priamku p || MN. V bode P zo-
strojme kolmicu q к priamke p a označme Q spoločný
bod priamok q, MN. Na predížení úsečky PQ za bod

171



<2 zostrojme úsečku QC = QP. Zostrojme polpriamky
CAÍ, CN; ďalej označme (v tomto poradí) В, A spo-
ločné body týchto polpriamok s priamkou p. Potom
ABC je hladaný trojuholník.

Dokaž správnosti konštrukcie. Pretože MNP je
trojuholník, neleží bod P na priamke MN a preto
MN, p sú dve rožne rovnoběžky a tým aj body P, Q
sú rožne; bod C sa dá teda zostrojiť. Priamka CM
přetíná priamku MN v bode M; preto přetíná aj
priamku p, ktorá je s MN rovnoběžná [keď CM přetíná
jednu z rovnobežiek, přetíná aj druhů; pozři učebnicu
Geometrie pro 7. roč., vydanie z r. 1955, str. 133,
veta 5]. Bod В sa teda dá zostrojiť a rovnako aj bod A.

Úloha má teda riešenie, a to jediné.

b) V obrázku 56 máme trojuholník ABC; body
M, N sú (v tomto poradí) středy stráň BC, CA. Bod P
je pátou výšky vedenej bodom A, t. j. p _J_ PM.
Úsečka MN je střednou priečkou a preto je MN || AB.
Priamka n || MP (čiže n || BC) prechádza bodom N
a preto na nej leží středná priečka LN || BC, kde L
je střed strany AB. Bod P móže splynúť nanajvýš
s jedným z bodov В, C. Predpokladajme, že je P ^ B.
Potom v pravouhlom trojuholníku ABP(^P = 90°)
je LQ || BP a bod Q je stredom úsečky PA. Z toho
vyplývá konštrukcia.

Konštrukcia (obr. 56). Zvolme trojuholník MNP
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Bodom N veďme priamku n || MP. Bodom P zo-

strojme priamku p J_ MP. Priesečník priamok n, p
označme Q. Na predížení úsečky PQ za bod Q zo-

,\A
/

lQ~

i-
pn*c

Obr. 57

strojme úsečku QA = QP. Polpriamka AN má
s priamkou MP spoločný bod C. Na predížení úsečky
CM za bod M zostrojme úsečku MB — MC. Potom
ABC je hladaný trojuholník.

Dokaž správnosti konštrukcie. Bod Q je podlá kon-
štrukcie stredom úsečky PA a preto je N stredom
úsečky AC [buď je N = Q3 alebo, ak je N ^ Q, je QN
střednou priečkou v trojuholníku CAP a teda N je
střed strany АС]. Podlá konštrukcie sú body M, N
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stredmi stráň a P pata výsky vedenej bodom A
Avšak ak je C = M, čo nastane, keď je MN = NP
(pozři obr. 57), nemá úloha riešenie (bolo by В = C).
Inak má úloha jediné riešenie (to platí aj v případe,
keď je <$PMN = 90°, t. j. P = B).

Jiné řešení. Rozbor. Na obr. 57a máme hledaný
trojúhelník ABC. Trojúhelník ACP má úhel <£P =
= 90е a proto je bod N středem jeho přepony AC.
Proto kružnice k = (N, NP) prochází body A, C
(kružnice Thaletova). Přitom přímka p _|_ PM, která
prochází bodem P, prochází zároveň bodem A.
Odtud konstrukce (obr. 57a):

Opišme kružnici k = (N, NP) a bodem P veďme
přímku p J_ MP. Jestliže přímka p protne kružnici k
v bodě A různém od P, potom sestrojme průměr
ANC kružnice k, kde C je druhý průsečík přímky NA
s kružnicí k. Na přímce MC sestrojme bod В tak,
aby bod M byl středem úsečky CB. Pak je ABC
hledaný trojúhelník.

Důkaz. Podle konstrukce platí: (1) Bod A leží na
kolmici p, takže AP je výškou trojúhelníka ABC.
(2) Bod N je středem úsečky AC. (3) Bod M je
středem úsečky BC.

Diskuse. Přímka p není tečnou kružnice k (takže je
A ^ P), neboť jinak by bod M ležel na přímce NP,
což je proti předpokladu, že je dán trojúhelník MNP.9
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Obr. 57bObr. 57a

Bod В se dá sestrojit právě tehdy, je-li M^C.
Jestliže je M bodem kružnice k (tj. MN = NP), nemá
úloha řešení.

V našem rozboru jsme předpokládali, že je P C,
tj., že není <£NPM — 90°; v tomto případě však je
jediné řešení, jak se snadno zjistí (viz obr. 57b).

Podle řešení Jana Šenftuka, 8.b
tř. osš „Julia Fučíka“, Kladno.

3. Pomyslite si, že máte napísať všetky prirodzené
čísla od 1 do 5555. Kolko deviatok přitom napíšete?

Riešenie. К napísaniu čísel od 1 do 100 potřebu-
jeme 20 deviatok. Ten istý počet deviatok je potřebný
к napísaniu čísel od 101 do 200. To isté platí o číslach
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od 201 do 300, od 301 do 400, . . ., od 701 do 800.
К napísaniu čísel od 1 do 800 třeba 20 .-8 deviatok,
t. j. 160 deviatok.

Ak však píšeme čísla od 801 do 900, potřebujeme
21 deviatok (číslo 900 potřebuje к zápisu jednu de-
viatku).

Každé číslo od 901 do 999 (je ich 99) sa začína
deviatkou; podlá predošlého (pozři čísla od 1 do 99)
třeba teda 20 + 99, t. j. 119 deviatok

К napísaniu čísel od 1 do 1000 třeba teda 160 +
+ 21 + 119 = 300 deviatok.

Rovnaký počet deviatok třeba к napísaniu čísel od
1001 do 2000, ďalej od 2001 do 3000, ďalej od 3001
do 4000 a konečne od 4001 do 5000. Teda celkom
300.5 = 1500 deviatok.

К napísaniu čísel od 5001 do 5500 třeba ten istý
počet deviatok, ako к napísaniu čísel od 1 do 500,
t. j. 20.5 = 100 deviatok.

К napísaniu čísel od 5501 do 5555 potřebujeme ten
istý počet deviatok ako к napísaniu čísel od 1 do 55,
t. j. 5 deviatok.

К napísaniu čísel od 1 do 5555 třeba preto
1500 + 100 + 5 = 1605 deviatok .

Tým je úloha rozriešená.

4. V našem obrázku 58 jsou dány soustředné kruž-
nice = (S, x)} k2 = (5, y)} přičemž je x > y.
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Úsečka ЛВ je průměrem kružnice kly bod C leží na
kružnici k2 a uvnitř úsečky SB. Nad úsečkami AC,
BC jako průměry opíšeme kružnice k3, k±.

Součet Px + P2 obsahů vodorovně vyčárkovaných
ploch je roven součtu /И + N obsahů ploch vyčárko-
váných svisle. Dokažte.

Řešení (viz obr. 58). Obsahy kružnic kl3 k2, k3, k4
označme pořadě pí3 p2, p3, p4 = N. Poloměry kružnic
k3, &4 jsou pořadě r3 — \AC, r4 = \CB, kde AC =
= AS + SC = x + у, CB --- SB — SC — x — y;
proto je

r3 = №+y), ^4 = K* —y) •

Je proto

Pi = p2 = ny\ p3 = ~{x + yf, pí = ~(x -yf.

Je tedy
“h ^*2 — P\ Pa P\ —

=

-j t4*2 — (* + yf — (* — 3>)2] =

(1)
Dále je

M = Рз - P2 = -J (* + ď)2 - ^2 =
= т[(*+з02-4УЪ

N = P* =lf(x ~yf
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a tedy
м + N = -J [(л + у)2 — 4у2 + (х — у)2] =

(2)

р,т
А

г2

IS Je —KlfV,и А/

ш

Обг. 55

Porovnáním výsledků (1), (2) vyplývá
Pi + P2 = M + N ,

což jsme měli dokázat.
Obdobné řešení vypracoval

V. Klouček, 8. tř. 81. osš, Praha 13.
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5. Načrtněte pravoúhlý trojúhelník ABC tak, aby
odvěsna BC byla menší než odvěsna CA. Uvnitř
úsečky BC zvolte bod X a uvnitř úsečky AB najděte
bod Y tak, že platí XY = XB. Bodem Y veďte
kolmici к přímce AT; její průsečík s přímkou AC
označte Z.

Přesvědčte se o tom, že obvod čtyřúhelníka CXYZ
je stále týž, ať zvolíme bod X kdekoli uvnitř úsečkyBC.

Vypočtěte tento obvod pomocí stran trojúhelníka
ABC.

Řešení (viz označení z obr. 59). I. Označme BC =
= a, CA = b; podle textu úlohy je

a < b .

Bod X jsme podle textu úlohy zvolili uvnitř úsečky
BC. Mysleme si, že sestrojení bodů X, Z lze provést
tak, jak je naznačeno v obrázku 58, tj., že je

XY = XB,
přičemž bod Y leží uvnitř úsečky BA, a dále, že je

YZ ±XY,

(П

(*)

přičemž bod Z padne dovnitř úsečky CA. Podle (*) je
trojúhelník XBY rovnoramenný a úhly /9, /9' při jeho
základně BY jsou shodné; je tedy

(1)P =
Dále podle konstrukce kolmice k je

/ = 90° .

Vypočítejme nyní velikost úhlu a. Víme, že
(2)
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v daném trojúhelníku ABC je у = 90° a tedy
a + /5 - 90° (3)

(součet ostrých úhlů v pravoúhlém trojúhelníku je
90°). Je tudíž

a! = 180° - /5' - /

^ N
I \

\

Obr. 55

neboli [dosazujeme sem ze vztahů (1), (2)]
«' = 180° - /? - 90°

a! = 90° - [i.
Ze vztahu (3) plyne, že a = 90° — /5; odtud po-

a tedy
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rovnáním obou posledních vztahů dostáváme
a — a . (3')

Z této rovnosti (podle známé věty o úhlech a protějších
stranách trojúhelníka) plyne pro trojúhelník AYZ,
že je ZY = ZA. (**)
Nyní vyjádříme obvod p čtyřúhelníka CXYZ\ je

p = (CX + XY) + (CZ + ZY).
Dosaďme sem za XY ze vztahu (*) a za Z У ze vztahu
(**); dostaneme

p = (CX + XB) + (CZ + ZA). (4)
Podle obr. 59 však platí

CX + XB = CB — a ,

CZ + ZA = CA = b .

Dosaďme tyto výsledky do (4); dostaneme
p = a + b .

Odpcvěd. Obvod Čtyřúhelníka CXYZ je roven
součtu odvěsen daného pravoúhlého trojúhelníka ABC.

II. Než ukončíme řešení, musíme ještě dokázat,
že při volbě bodu X uvnitř úsečky CB (viz obr. 59)

[1] bod Y padne dovnitř úsečky AB ,

[2] bod Z padne dovnitř úsečky CA .

Důkaz (viz označení z obrázku 59). V polorovině
BCA sestrojme polopřímku CQ || XY. Vnější úhel co
rovnoramenného trojúhelníka XBY je roven /9 + /?'
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a protože je /Г = /? [viz (1)], platí
co = 2/5.

O přilehlých úhlech e, co mezi rovnoběžkami C<2,
YX platí e + co = 180°; dosaďme sem ze vztahu (5).
Dostaneme e + 2/5 = 180°; proto je

e = 2a j

(5)

neboť 2 (a + /5) = 2.90° [viz vztah (3)]. Ale a < 45°,
/5 > 45°, neboť v daném trojúhelníku ABC je a < b,
у — 90°; je tedy e — 2a < 90° a polopřímka CQ
leží v pravém úhlu y. Proto společný bod Y0 polo-
přímky CQ a úsečky AB padne dovnitř této úsečky.
Leží tedy celá přímka XY || CY0 uvnitř poloroviny
CYqB a bod Y padne tudíž vždy dovnitř úsečky Y0B
a tím také dovnitř úsečky AB.

Nyní sestrojme přímku YP |j BC\ je tedy CA J_
_L YP. Protože přímka YP leží uvnitř poloroviny
BCA a protože bod Y je vnitřním bodem úsečky AB,
padne společný bod Z0 kolmic CA, YP dovnitř
úsečky CA. V trojúhelníku AYZ0 je úhel <£Z0 =
= 90° a úhel /5" = 90° - a, tj. /5" = /8. Protože je
a < /5, je podle (3') též a < /?" a polopřímka YZ
leží v úhlu /5" a tudíž bod Z padne dovnitř úsečky Z0A;
tato úsečka však padne do úsečky CA a proto bod Z
leží též uvnitř úsečky CA, což jsme měli dokázat.

Tím je důkaz proveden.
Podobné řešení podal Karel Tregl,
8. tř. osš, Střítež nad Bečvou.
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6. Máme 12 stejných kostek, z nichž každá je
kvádrem o rozměrech 2 cm, 3 cm a 4 cm. Ze všech
těchto kostek sestavíme velký kvádr tak, že přikládáme
vždy shodné stěny dvou kostek к sobě tak, aby se
jedna stěna s druhou kryla. Takových velkých kvádrů
je možno sestavit větší počet. Udejte rozměry všech
těchto kvádrů. Zároveň rozhodněte, které z nich je
možno sestavit několika odlišnými způsoby.

Řešení. Všechna čísla, o nichž budeme v dalším
mluvit, jsou přirozená. Označme x, y, z rozměry ně-
kterého z velkých kvádrů, který dostaneme skládáním
kostek; x, y, z jsou přirozená čísla, jak snadno usou-
dime. Přitom x označme rozměr, který vzniká tím, že
přikládáme ty hrany kostek, které mají délku a = 2cm;
podobně у je rozměr, který vzniká přikládáním hran
délky b — 3 cm a potom je z ten rozměr, který do-
staneme přikládáním hran délky c = 4 cm. Je tedy
nutně x součinem čísla 2 a jakéhosi čísla xX} které je
přirozené (toto číslo udává, kolik kostek jsme ve
směru hrany délky x к sobě přiložili). Je proto x =
= 2x1; podobně jej; = 3y13 z — 4z13 takže máme

x = 2x1}
Čísla x13 y1} zx pořadě udávají, že jsme hranu délky

a = 2 cm „nastavilicc v celkovém počtu xu hranu
b = 3 cm v počtu yk a hranu c v počtu zx. (Dále ne-
uvádíme již rozměry; velikosti délek udáváme v centi-

У = 3.У1> (1)z = 4zx .
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metrech, objemy kvádrů v cm3.) Objem jedné kostky
je 2.3.4 = 24 (cm3), kostek je 12; proto objem V
velkého kvádru je

(2)V = 24 . 12 .

Protože velký kvádr má podle (1) rozměry x, y, z,
je jeho objem xyz neboli podle (1)

V = 2xx. 3yx. 4zx
a tedy

(3)V = 24xxyxzx.

Když porovnáme výsledky (2), (3), dostaneme

*1^1*1 = 12 .

Naším úkolem je najít tři přirozená čísla xXi yX3 zx
taková, aby měla součin 12. Nehledíme-li na pořádek
činitelů, existují právě tyto čtyři rozklady čísla 12
v součin tří přirozených čísel: 1.1.12; 1.2.6;
1.3.4; 2.2.3; přitom v našem případě je třeba
pro součin xxyxzx v těchto rozkladech vystřídat
všechna možná pořadí činitelů. Příslušné kvádry
budeme hledat postupně, jak je patrno z tabulky č. 1;
v ní uvádíme nejprve pořadové číslo kvádru, dále
čísla xx, yx, zx a konečně rozměry velkého výsledného
kvádru, který к těmto číslům přísluší.

(4)
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Tabulka

Počet způsobů,
jimiž lze takový

kvádr složit

Originál
typu

z

(4*0
x V*1*1 Ух

-d (2*0 (3y0
*£•§.23*

I 2 48 11 3121 1

II 2 362 4 11 12 1

4III3 24 3 212 1 1

IV4 2 24 1661 2

V5 82 18 121 6

(III) viz č. 36 34 242 1 6

7 VI 4 418 12 6 1

VII 88 126 2 3 21

VIII9 12 4 3i 6 1 62

IX10 4 2 16 11 3 9

X11 3 12 12 11 4 2

XI12 3 4 16 11 6 3

(VIII) I13 viz č. 9

viz č. 8

3 1 44 6 12

(VII)14 3 124 1 8 3

15 XII 4 3 1 8 9 4 2

16 (VIII) 122 2 3 4 6 viz č. 9

17 (XII) 3 4 9 viz č. 152 2 8

18 XIII 63 2 6 82 1

13 typů 18 případů
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Výsledek. Lze tedy z daných kostek složit 18 kvádrů,
ale některé z nich mají stejné rozměry; je 13 kvádrů,
které nemají stejné rozměry, tj. nejsou shodné. Počet
způsobů, jimiž lze kvádr určitých rozměrů z kostek
složit, je uveden v posledním sloupci tabulky.

Obdobná řešení podali Monika
Fetterová, 8. tř. 81. osš, Praha 13
a Karel Tregl, 8. tř. osš, Střítež
n. Bečvou, který zhotovil i pří-
slušné modely.

9. ÚLOHY II. KOLA KATEGORIE D

1. Je dán výraz
a3 — b2c — bc2 c3 — a2b — ab2

4- b3I 7Г

— c2a — ca2

(b - a) (b — c) (c - a) (c - b)(a — b) (a - č)

Zjednodušte jej.
Co musí platit o číslech a, b, c3 aby daný výraz měl

smysl ?
Řešení. I. Označme V daný výraz. Jmenovatelé

jeho tří zlomků jsou
x = (a — b) (a — c) — — (a — b) (c — a),
у = (b — a) (b — c) = — (b — c) (a — b),
z = (c — á) {c — b) = — (c — a) (b — c).

(1)
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Z pravých stran těchto rovností vidíme, že tyto vý-
rázy vznikly jako součiny vždy dvou z těchto tří čísel

a — b, b — с, c — a

a třetího čísla, jímž je číslo — 1. Proto výraz
n = (a — b) (b — c) (c — a)

je společným násobkem čísel (1). Přitom platí
n = — x(b — c),
n = — jyO — a),
n = — z(a — b).

Abychom zlomky daného výrazu V uvedli na spo-
léčného jmenovatele, rozšíříme je pořadě čísly

— (b — c), — (c — a), — (a — 6) .

(2)

Dostaneme

1
К = — — [(я3 — b2c — bc2) (6 — с) + (63 — c2a — ca2) (c — a) +

П

1
-• U,
n

+ (c3 — a2č> — ač>2) (a — &)] = —

kde

£7 = a3b — 63c — b2c2 — a3c + 62c2 + 6c3 +
-j- 63c — ac3 — a2c2 — ab3 + a2c2 + cl3c +
+ ac3 — a3b — a2ž>2 — bc3 + a2b2 + ab3 =

= a3b — a3b + b2c2 — b2c2 + bc3 — bc3 +
+ b3c — b3c + a2c2 — a2c2 + a3c — a3c +
+ ac3 — ac3 + a2b2 — a2b2 + ab3 — ab3 — 0,

tj. £7=0.
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1Je tedy V — —--0 = 0

pro všechna čísla a, b, c, pro která má každý ze zlomků
daného výrazu význam.

II. Jestliže jmenovatel některého zlomku výrazu V
je roven nule, ztrácí výraz V smysl. Ptáme se tedy, pro
která čísla a,b,c je některé z čísel x,y, 2 [viz (1)] rovno
nule. Ze vztahů

(a — b) (c — a) = 0 ,

(b — c) (a — b) = 0 ,

(c — a) {b — c) = 0
plyne, že musí platit jedna z těchto rovností:

a — b — 0, b — c = 0, c — a = 0
neboli jedna z rovností

a = b, b = c, c = a . (3)
Platí-li jedna z uvedených rovností, jsou dvě z čísel
x, y, z [viz (1)] rovna nule; tím ztrácejí dva zlomky ve
výrazu V smysl.

Jestliže neplatí ani jeden vztah (3), má výraz V
smysl.

Odpověd. Daný výraz V má smysl pro každá tři
čísla a, b, c, z nichž žádná dvě si nejsou rovna; pro
tato čísla je V = 0. Jsou-li dvě z čísel a, b, c sobě
rovna, ztrácí výraz V smysl.

Řešení podala P. Goliášová, 8. tř.
2. jsš, Gottwaldov.
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2. Zostrojte trojuholnílc ABC, ak je dané AB =
— 6 cm, <£CAB = Ы\°, ak viete, že priesečník
všetkých troch výšok tohto trojuholníka ABC roz-
poluje výšku vedenú vrcholom B.

Riešenie. Rozbor. Myslíme si, že trojuholník ABC
v obr. 60 vyhovuje požiadavkám úlohy, t. j. že platí

AB = 6 cm, <£CAB = 67|°, VB = VB',
kde V je priesečník výšok a B' je pata výšky vedenej
bodom В na stranu CA. Potom je ВС ± А V. Podlá
toho urobíme konštrukciu:

(1)

N П

C

jj

//? /

I

*/////// I

A В

6 cm

Obr. 60

189



Zvolíme úsečku AB dížky 6 cm. Jednu z polrovín
vyťatých priamkou AB označíme q. V polrovine q

zostrojíme euklidovsky (pomocou pravítka a kružidla)
uhol <£MAB = 67-2°. Bodom В zostrojíme kolmicu
к priamke AM a označíme B' jej patu. Zostrojíme
střed V úsečky BB'. Bodom В zostrojíme kolmicu
к priamke AV a označíme na nej bod N, ktorý leží
vnútri polroviny o. Spoločný bod C polpriamok AM,
BN je třetí vrchol hladaného trojuholníka.

Dokaž. Podlá konštrukcie o trojuholníku ABC
platia vztahy (1); ďalej je BB' J_ АС, AA' _]_ BC,
takže priesečník V priamok AA', BB' je priesečníkom
výšok trojuholníka ABC.

Diskusia. Uhol <£MAB — 671° je ostrý; preto
bod B' leží vnútri polpriamky AM [pozři učebnicu
Geometrie pro 7. roč., vydanie z r. 1955, str. 112,
příklad 17]. Bod В' a s ním aj střed V úsečky BB'
leží preto vnútri polroviny q. Bod Pas ním pol-
priamka A V leží v uhle <£BAM; je teda uhol <£BAV
menší než 67|° a preto pravoúhlý trojuholník ABA'
s přeponou AB leží v polrovine q. Přitom je uhol
<£ABA' třetím vrcholom pravoúhlého trojuholníka
ABA' a je teda ostrý. Súčet ostrých uhlov <£BAM,
<£ABA' je preto menší než 180°. Z toho podlá
Euklidovej axiómy vyplývá, že polpriamky AM, BN
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majú v polrovine q spoločný bod C. Trojuholník ABC
sa teda z daných prvkov dá zostrojiť. Pri zvolenom
umiestení sa teda dá zostrojiť jediný trojuholník ABC.

Tým je riešenie úlohy hotové.

Pěkné riešenie vypracovala Adéla
Benešová, 8. tr. 5. osš, Gottwal-
dov a ďalej Pavel Bureš, 8. tr.
školy pri Gottwaldovej detskej
liečebni v Luži-Košumberku.

3. Narýsujte pravoúhlý rovnoramenný trojuholník
ABC s přeponou AB — 0,7 dm. Okolo bodov А г В
opište kružnice s polomerom \AB. Označte x obsah
(v dm2) tej časti trojuholníka ABC, ktorá leží zvonku
oboch týchto kružnic.

a) Vypočítajte číslo x.

b) Kolko percent z obsahu trojuholníka ABC je
obsah x?

Riešenie (obr. 61). a) Obsah P trojuholníka ABC je
P = \AB .SC,

kde AB — 0,7, SC = 0,7. Je teda
P = 0,7-1-0,7,
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(1)
V • V

cize P= 1-0,72.
Výseky so stredmi А, В majú poloměr r = \AB =

— |. 0,7. Ich středové uhly sú 45°. Súčet oboch vý-
sekov je štvrťkruh s obsahom

Obr. 61

Q = jTrr2 = -ÍTU (i • 0,7)2 = Í7U • i • 0,72 =
= -—тс. 0,72,16 33

t.).
Q~ • °>72 •

x = P — Q, čiže
i.0,72(4- *).

Obsah

(2)x =

Platí

(2')4 - tc = 4 - 3,1416 - 0,8584
a teda

* = i • 0,72- 0,8584 = 2-- 0,49.0,8584.10 3 3 16 3 3
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Výpočty:
0,49.0,8584 0,4206 16: 16 - 0,026 288 5

1003 4336
77256 46

1410,4 20616
136

80

x = 0,0262885 = 0,0263 (dm2) .

Odpoved. Obsah x = 0,0263 dm2, t. j. asi 2,6 cm2,
b) Označme p hladaný počet percent. Percentová

časť je daná vzťahom (2), základ P je daný vzťahom (1).
Platí

p = у • 100 = IOOjc • у .

Zo vztahu (1) vyplývá, že

(3)

4i
(4)P 0,72 *

Dosaďme zo vzťahov (2), (4) do vztahu (3); dostaneme
P = 100 • ~ ■ 0,7* (4 — 7t) • ^ = 25 (4 - Ti) .

Podlá (2') je teda
p== 25.0,8584 .

25.0,8584Výpočet:
1 7168

42920

21,4600
Je teda p = 21,46 = 21,5.

19313 05-0-06



Odpoved. Obsah x uvažovaného obrazca je asi
21,5% obsahu daného trojuholníka ABC.

Riešenia podali Juraj Milian, 8. tr.
jsš, Štúrovo a B. Martišová,
8. tr. 4. osš, Gottwaldov.

4. Pavel měl u sebe přesně 40 Kčs (vesměs v pa-

pírových penězích). Chtěl si koupit knížku za 30 Kčs.
Nemohl ji však zaplatit, protože prodavač neměl
nazpět drobné a částka 30 KČs se nedala Pavlovými
penězi vyplatit.

Určete, kolik korun, tříkorun, pětikorun atd. měl
Pavel u sebe. Odpověď odůvodněte.

Řešení. I. V dalším značka 3/10 znamená tři deseti-
koruny; podobně 4/3 značí čtyři tříkoruny a 5/x značí
pět jednokorunových státovek.

Zjistíme všechny možnosti, jimiž lze ze čtyřiceti
korun (v československých papírových penězích) vy-
platit částku 10 Kčs nebo částku 30 Kčs; částka 10 Kčs
by totiž po zaplacení nákupu Pavlovi zbyla. Nebu-
deme však všechny tyto možnosti vyhledávat se vší
zevrubností, spokojíme se s určitými skupinami mož-
ností, kdy lze provést výplatu 30 Kčs popřípadě 10 Kčs
(ostatně viz tabulku č. 1).

Vyjdeme od takové situace, kdy je počet papírových
peněz co nej menší, takže к sestavení částky 40 Kčs
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užíváme peněz co největších. Pod názvem např.
„možnost č. 1 “ rozumíme řadu možností, kdy je mezi
penězi 1/25, í/10 a kdy nás další peníze nezajímají;
stejně tomu je i u dalších možností.

Při našich úsudcích užijeme několikrát této věty
P: „Máme-li částku alespoň 10 Kčs v tříkorunách
a v jednokorunách, přičemž počet jednokorun je
alespoň jedna, potom můžeme vyplatit částku 10 Kčs.cc

Důkaz. Představme si, že postupně z dané částky
vytváříme hromádky po třech korunách (to znamená,
že na hromádce je bud jedna tříkoruna anebo tři
jednokoruny); pak na poslední hromádce jsou buď
tři koruny nebo jen dvě anebo pouze jedna. Přitom
můžeme vytvoření hromádek provést tak, že tu
jednokorunovku, která podle předpokladu je v dané
částce (viz předpoklad naší věty P), zařadíme právě
do poslední hromádky. Protože máme částku alespoň
10 KČs, vzniknou nejméně 4 hromádky, přičemž
jedině poslední hromádka může být neúplná. Vezmeme
3 první hromádky a připojíme к nim jednu jedno-
korunovku z poslední hromádky; tím vznikne hledaná
částka 10 Kčs, čímž je důkaz věty P proveden.

II. Řešení dané úlohy. V připojené tabulce máme
vypsány možnosti složení Pavlových peněz. Otazníky
v tabulce značí zcela určité přirozené číslo nebo nulu;
jeden takový řádek přitom popřípadě značí řadu mož-

19513*



I *± CO
я '3 y.

I3'§
><U £ со
> >u

•*©

his

-
c U £-p”3 я

iH M p M

cl
5«2

45 2 *|§3~•« ’3 л’3 ^cd
тз '3 х

ie
ill
ill

l о
> о.

■séP«fši“1
l;í-i
r.ť:iá

'c О я 3

eu

i oi"
•cd O
•< i ‘Cd
< cn C

Г я
♦ cd P

co
o

aS .1*
•te -Г +8•§sl
■Ш —

4 &
au

o

.1 o v

=5 4r$> m

3r
C.Q.

o
o. a.

ri2 !

J3
~ I?
I"

C

2 íjD O
X) 3.

h Oc
c 3

-11
E,^

1Л
-

>U

M
‘Cd

cn
o

>-j
a

a c

o2 >1)

•cd ^л. a_ &<NS o o o
M

1 uir

G
•Cd

1
c

s >c

o oo o o o, —<
co

o■¥
O

M
o

c

2
J3 o oo o

iA
<N

2l11-šl (N 1Л vOm co

S E gо 'V
a. >

196



ností, neboť otazníky lze různým způsobem vhodně
doplnit, aby hodnota peněz byla v řádku právě 40 Kčs.

Tím jsou všechny možnosti vyčerpány. Podle ta-
bulky Pavel měl tedy právě jednu dvacetipětikorunu
a 5 tříkorun; skutečně je

25 + 15 — 40 .

Částku 30 Kčs však Pavel nemůže ze svých peněz vy-
platit, neboť je 25 + 3 = 28 a 25 -f- 3n > 30 pro
přirozené číslo n > 1. Tím je řešení úlohy provedeno.

Jiný postup řešení. I. Dokážeme, že situace
líčená v textu úlohy může nastat jedině tehdy, má-li
Pavel V25.

Důkaz. Předpokládejme, že nemá 1/25; dokážeme,
že může vyplatit 10 Kčs nebo 30 Kčs.

Má-li alespoň 1/10 nebo alespoň 2/5, může vyplatit
10 Kčs.

Má-li V5 a nemá ani 1/25 ani х/ю5 má částku 35 Kčs ve
tříkorunách a korunách; protože je 35 = 33 + 2,
musí mít alespoň 2/x. Ze zbytku peněz (33 Kčs) si udělá
hromádky po 3 Kčs (buď pomocí */3 nebo 3/х) vezme
3 hromádky a 1/1, čímž dostane 10 Kčs.

Nechť nemá ani 1/25 ani 1/10 ani 1/5, tj. má jen tříko-
runy a koruny. Protože je 40 = 39 + 1, má alespoň 1/l
a stejně jako v předchozím odstavci pomocí tříkoru-
nových hromádek a J/i vytvoří částku 10 Kčs.

Tím je důkaz proveden.
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II. Nechť Pavel má 1/25.
Má-li 1/10 nebo alespoň 1/5, může vyplatit částku

10 Kčs, popřípadě 30 Kčs (je 25 + 5 = 30).
Nechť nyní má 1/25, ale nemá ani 1/10 ani х/5, tj. má

jen tříkoruny a koruny. Má-li alespoň 1/1, tj. má
1/25 а 1/1э tedy dohromady 26 Kčs, zbývá mu 14 Kčs;
z této částky utvoří 3 tříkorunové hromádky a ke
třem z nich připojí 1/1, takže může vyplatit 10 Kčs.
Zbývá nám tedy možnost, že nemá ani 1/1, takže musí
mít V25 a 5/3.

Tu platí skutečné 25 + 3.5 = 40.
Částku 10 Kčs nelze vyplatit pomocí tříkorun a proto
nelze vyplatit ani částku 30 Kčs.

Odpověd. Pavel měl dvacetipětikorunu a pět tří-
korun.
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IV. Zpráva o první mezinárodní
matematické olympiádě

1. O VZNIKU A PRŮBĚHU PRVNÍ
MEZINÁRODNÍ MATEMATICKÉ OLYMPIÁDY

V této kapitole uveřejňujeme zprávu o první mezinárodní
olympiádě, která byla uspořádána v Rumunsku z iniciativy ru-
munských matematiků. Autorem 1. části této zprávy je generální
tajemník Společnosti pro matematické a fyzikální vědy Rumunské
lidové republiky, s. docent Tiberiu Roman; jeho příspěvek pře-
ložil hlavní autor této brožury, který jako vedoucí československé
delegace na I. mezinárodní olympiádě zpracoval 2. část této zprávy.

I. Společnost pro matematické a fyzikální vědy Ru-
munské lidové republiky1) se snažila v průběhu svého
desetiletého trvání získat zájem mládeže o matematiku
těmito prostředky: Od svého založení vydává pro
mládež měsíčník „Gazeta Matematicá si Fizicá“,
řada В (též maďarský s názvem Matematikas es
Fizikai Lapok), pořádá olympiády a zájmové kroužky
ve městech a organizuje v rámci mimoškolní činnosti
žáků soutěže mezi jednotlivými Školami. Tuto vý-
chovnou práci mezi mládeží převzala SSMF jako
tradici časopisu Gazeta Matematicá2) a přetvořila ji

Societatea de $tiin{e Matematice $i Fizice din R. P. R., str.
Academiei Nr. 44, Bucure§ti I; v dalším pro název této společ-
nosti užíváme zkratky SSMF — poznámka překladatele

2) Časopis byl založen r. 1895 a má ještě dvě další řady; z nich
řada A je určena pro studenty a kandidáty učitelství matematiky
a fyziky na středních školách — poznámka překladatele
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v činnost masovou. Soutěže se dnes účastní stovky
učitelů a desetitisíce žáků, přičemž se za dobu jejího
trvání okruh účastníků i počet odborných disciplín
podstatně rozšířil.

V r. 1950 byla uspořádána první matematická soutěž
pro žáky středních škol (tj. 8. —10. třídu), a to nejprve
jen v některých krajích. V dalších letech se soutěž
rozšířila na všechna nejdůležitější města a v r. 1954
i na žáky 5. až 7. tříd středních škol3). Roku 1955 bylo
provedeno dvojí rozšíření soutěže: jednak přešla i na
odborné a technické mistrovské školy a jednak vedle
matematiky byla do okruhu soutěžní látky přibrána
i fyzika. Roku 1957 pak se začalo s organizováním
soutěže z matematiky a fyziky pro vysokoškolské
studenty.

Návrh na uspořádání mezinárodní matematické
olympiády podal autor těchto řádků v květnu 1956
na IV. mezinárodním kongresu matematiků (ve svém
příspěvku „O mimoškolní matematické činnosti žáků
na všeobecně vzdělávacích školách“).

Tento podnět byl pojat do pracovního plánu SSMF
a podařilo se jej uskutečnit díky trvalé pomoci, kterou
kultuře, vědě, vyučování a výchově věnují Rumunská
dělnická strana a vláda Rumunské lidové republiky

3) Do škol. r. 1958/59 včetně byla rumunská střední škola
desetiletá jako v SSSR — poznámka překladatele
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a díky přátelským vztahům, které existují mezi jednot-
livými zeměmi socialistického tábora.

Pozvání к účasti na mezinárodní matematické

olympiádě byla zaslána těmto společnostem: Moskevské
matematické společnosti, Jednotě čs. matematiků a fy-
ziků, Polské matematické společnosti, Matematické spo-
lečnosti Jánoše Bolyaie v Budapešti a ministerstvům
školství a kultury Albánské lidové republiky, Bulharské
lidově demokratické republiky a Německé lidově demo-
kratičké republiky.

Poslání mezinárodní matematické olympiády spatřu-
jeme v těchto směrech:

1. Umožnit osobní setkání a navázání přátelských
vztahů mezi mládeží téhož věku, která je v našich
spřátelených socialistických zemích vychovávána
v témže duchu.

2. Položit základ к budoucí vzájemné vědecké
spolupráci těch příslušníků mládeže, kteří se mají
v budoucnu stát vědeckými pracovníky v oboru mate-
matických věd.

3. Umožnit účastněným učitelům vzájemnou vý-
měnu názorů na budoucí vývoj vyučování matematice
na středních školách.

4. Organizovat tyto matematické olympiády po-
stupně ve všech zúčastněných socialistických zemích.

5. Účastníkům dát příležitost, aby dobře poznali
zemi, ve které je právě mezinárodní MO pořádána.
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Kladné odpovědi se sliby spoluúčasti na I. mezi-
národní matematické olympiádě jsme obdrželi od
všech pozvaných zemí s výjimkou Albánské lidové re-

publiky.
II. Účastníci na mezinárodní matematické olympi-

ádě, žáci z Československa, Maďarska, Polska, Ru-
munska a Sovětského svazu, byli vybráni na základě
úspěchů, jichž dosáhli při národních matematických
olympiádách ve svých zemích, kdežto žáci z Bulharska
a Německé demokratické republiky byli vysláni na
základě svých úspěchů v matematice při zkouškách
dospělosti.

Vedoucími delegací na mezinárodní matematické
olympiádě byli (podle abecedního pořádku zemí):

Stoian Budurov, inspektor metodiky ministerstva
školství a kultury, Sofie (Bulharsko); Rudolf Zelinka,
zástupce ředitele Matematického ústavu Českoslo-
venské akademie věd, Praha (Československo); Endre
Hodi, vědecký pracovník Laboratoře pro optiku
a jemnou mechaniku, Budapešť (Maďarsko); Rudolf
NitZy učitel vyšší střední školy Otty Guericke, Magdě-
burg (Německá demokratická republika); Mieczyslaw
Czyžykowski, profesor polytechniky, Varšava (Polsko);
G. D. Simionescu, docent polytechniky, Bukurešť
(Rumunsko); Anatol Michajlovič Vladimirski, ředitel
střední školy č. 450, Moskva (Sovětský svaz).

Písemné zkoušky účastníků mezinárodní mate-
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matické olympiády se konaly ve dnech 24. a 25. čeř-
vence 1959 ve velké posluchárně Polytechnického
ústavu v městě Orasul Stalin. Byly zadány úlohy,
které vybrala mezinárodní komise4) z celkem 70 návrhů,
které dodali jednotliví vedoucí sedmi delegací ze

svých zemí.
Pro první písemnou práci byly zvoleny tři úlohy

z těchto oborů školské matematiky: aritmetika
(Polsko); algebra (Rumunsko); trigonometrie
(Maďarsko).

Druhá písemná práce měla tři úlohy s tematikou:
planimetrie(Maďarsko, Rumunsko); stereometrie
(Československo).

Mezinárodní komise provedla nejen výběr témat
úloh a jejich překlad do sedmi jazyků (což si vyžádalo
mnoho hodin intenzívní práce), ale i opravy písem-
ných soutěžních prací a určila vyznamenané účastníky
soutěže (což si vyžádalo ještě víc času a námahy5)).

Je třeba zdůraznit, že všechny tyto práce byly pro-
vedeny za obětavé soudružské spolupráce a v ovzduší
plném vzájemného pochopení.

Při obou písemných zkouškách šlo o to, aby
olympionici prokázali své znalosti, které pak mohly
být na podkladě daných úloh spravedlivě oceněny

4) Ta byla sestavena z vedoucích jednotlivých delegací.
5) Při této příležitosti znovu děkuji s. Giintheru Bachovi,

odbornému asistentu university v Bukurešti, za pomoc, kterou
mi při těchto pracích poskytoval. — Překladatel

203



(znalost matematických pouček, početních metod atd.).
Vybraná témata umožňovala, aby soutěžící pro-

kázali své vědomosti v klasické školské matematice

(znalost pouček, početních metod), aby ukázali své
objevitelské nadání a vynalézavost i schopnost mate-
maticky dokázat všechna svá tvrzení; vedle toho měli
soutěžící i možnost u každé úlohy podat více řešení,
připojit závažné poznámky nebo podat zobecnění pří-
slušné úlohy. To vše umožnilo mezinárodní komisi
vybrat mezi soutěžícími nejlépe připravené a nej-
nadanější žáky.

Přestože směrnice pro organizaci mezinárodních
matematických olympiád, pokud jde o pořadí jednot-
livých zemí, nebyly vůbec sjednávány, lze přece jen
podle získaných výledků neoficiálně udat toto pořadí:
1. Rumunsko, 2. Maďarsko, 3. Československo, 4. So-
větský svaz, 5. Bulharsko, 6. Polsko, 7. Německá
demokratická republika.

Program mezinárodní matematické olympiády měl
vedle vlastní soutěže tuto další náplň:

a) Slavnostní zahájení soutěže v Orasul Stalin.
Za předsednickým stolem zasedli vedoucí delegací
a za vedení SSMF promluvil profesor dr. N. Teodo-
rescu, člen korespondent Rumunské akademie věd.

b) Shlédnutí některých přírodních krás Ru-
munska (lázně Tusnad a cesta tam dne 23. 7.; Poiana
Stalin a Postávarul dne 25. 7.; údolí Timise a Prahové
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dne 26. 7.; Snagov dne 30. 7.). Dále návštěva vý-
značných průmyslových podniků („Steagul Rosu“ —

továrna na nákladní vagóny, prohlídka města Orasul
Stalin, naftové rafinerie č. 1 v Ploesti, závody „23.
Augusta“ a kombinát „Casa Scinetii“).

c) Návštěva některých kulturně historických
míst (muzeum v Pelesi, muzeum v Doftaně; Vesnické
muzeum a Palác pionýrů v Bukurešti).

d) Návštěva některých měst (Orasul Stalin,
Cimpina, Ploesti, Bucuresťi).

e) Slavnost, konaná u příležitosti zakončení mezi-
národní matematické olympiády, spojená se slav-
nostním rozdílením cen (dne 28. 7.), na níž
promluvil akademik profesor dr. Gr. Moisil jako
president SSMF, dále ředitel А. M. Vladimirski
jménem zahraničních delegací, žák Nicolescu Besarab
za Rumunskou mládež a žák Bohuslav Diviš z Česko-
slovenská jménem vyznamenaných zahraničních žáků.

f) Slavnostní večeři, pořádanou v „Casa Uni-
versitarilor“ (společenský dům universitních učitelů)
pro účastníky mezinárodní matematické olympiády za
účasti ústředních orgánů Rumunské dělnické strany,
orgánů UTM (Rumunská organizace mládeže), zá-
stupců rumunského ministerstva školství a kultury
a pracovníků SSMF. Na večeři promluvili: Akademik
profesor dr. Gr. Moisil, generální ředitel J. Borca
a inspektor S. Budurov.
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III. V době, kdy žáci pracovali na soutěžních
úlohách v městě Orasul Stalin, konaly se diskuse
o vyučování matematice. Vedle vedoucích dele-
gací se jich účastnili členové vedení SSMF, zástupci
pedagogického institutu, Nakladatelství pro pedago-
giku a didaktiku, zástupci redakcí matematických časo-
pisů a učitelé z Orasul Stalin.

V úvodu к těmto diskusím přednesl z pověření
předsednictva SSMF profesor A. Hollinger z Buku-
rešti referát, v němž podal v historické zkratce přehled
o vyučování matematice na rumunských středních
školách; přitom se zvláště podrobně zabýval nynějšími
osnovami matematiky.

Na dotaz některých vedoucích delegací vysvětlil
docent T. Roman organizační strukturu olympiád
v Rumunsku (pro 5. až 7. třídu, dále pro střední školy,
pro odborné školy atd. a pro vysokoškolské studenty);
zmínil se o spoluúčasti ministerstva školství a kultury
a UTM (Rumunská mládežnická organizace) a se-
známil přítomné se způsoby propagace této soutěže
mezi učiteli a žáky, jakož i o pomoci, již poskytují
v této věci národní výbory.

Vedoucí delegací Bulharska a Německé demokratické
republiky se rozhodli, že budou ve svých zemích
usilovat o zavedení podobných olympiád, přičemž jim
budou za základ sloužit zkušenosti, s nimiž se v prů-
běhu diskusí seznámili.
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Vedoucí delegací Bulharska, Československa, Ma-
ďarska, Německé demokratické republiky, Rumunska
a Sovětského svazu se těchto diskusí účastnili a po-
ukazovali na charakteristické rysy struktury vše-
obecně vzdělávacích škol svých zemí, přičemž zároveň
podali informace o počtu vyučovacích hodin mate-
matických předmětů v jednotlivých ročnících a o zá-
kladním pojetí orientace vyučování vůbec.

Značné pozornosti v průběhu diskusí se těšila
otázka spojení školy s praxí, se životem a problema-
tiká s tím spojená. Vedoucí delegací Československa,
Německé demokratické republiky, Maďarska a Sovět-
ského svazu tu podali informace, jak se tato otázka řeší
u nich na školách — a to jak v zásadě, tak i v náplni
vyučovacích hodin matematiky.

Krátce bylo diskutováno i o modernizaci vyučování
matematice na školách, přičemž někteří vedoucí dele-
gací zaujímali к této otázce rezervované stanovisko.
Učitel St. Márculescu z Orasul Stalin podal sděleni
o poradách, organizovaných SSMF, a informoval
o tom, co bylo v této otázce podniknuto v Rumunsku.

Československý delegát informoval o pokusech,
které byly v tomto směru podniknuty v jeho zemi
a zdůraznil, že celý problém nebude ještě dlouho zcela
rozřešen. Maďarský delegát projevil mínění, že bude
nutno nejprve rozhodnout o tom, které dosavadní partie
školských osnov matematiky bude třeba vyloučit, a to
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ještě dříve, než budou zaváděny partie nové. Sovětský
a bulharský delegát vysvětlovali svou zdrženlivost
v této otázce tím, že v současné době lze skutečně
mluvit o přetěžování žáků, a že už plnění požadavků
nynějších osnov působí obtíže.

Ačkoli při této příležitosti ani při námětech před-
chozích nebyly formulovány určité závěry, lze přece
říci, že výměna názorů byla užitečná a že by se v ní
mělo pokračovat, zvláště pak se zřetelem na výsledky
pokusů, které v tomto směru jednotlivé země učinily.

IV. Ze strany SSMF byl dán podnět к výměně
časopisů, který se hned realizoval. Maďarský delegát
dovezl řadu učebnic a Rumunská společnost dala
к dispozici svou literaturu. Každý přítomný vedoucí
delegace dostal od SSMF vydanou část souboru
učebnic, které se zavádějí na rumunských školách od
školního roku 1959 — 60, dále řadu děl o vyučování
matematice, která vyšla v Nakladatelství pro pedago-
giku a didaktiku, dále soubory čísel časopisu ,,Gazeta
Matematicá si Fizicá“, řady A a řady В z roku 1958/59.
Napříště bude SSMF spřáteleným zemím zasílat též
nově vyšlé učebnice, jakož i výtisky školních osnov pro
nový školní rok. Očekává pak, že organizace, které
byly na mezinárodní matematické olympiádě za-
stoupeny, budou rovněž zasílat příslušná díla svých
zemí.

Jsme toho názoru, že tato výměna bude jistě užitečná
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a že bude v budoucnu přispívat к vzájemným infor-
macím učitelů socialistických zemí.

V. Závěry ze zmíněných skutečností první
mezinárodní matematické olympiády.

Zahraniční účastníci mezinárodní matematické

olympiády, stejně jako pracovníci rumunského minis-
terstva školství a kultury, označují tuto mezinárodní
akci za zdařilou, oceňujíce přitom iniciativu i její
výsledky.

Vědecké společnosti i ministerstva lidové osvěty
všech zemí, které se soutěže účastnily, hledí na ni
sympaticky nejen pro tento rok, ale i pro léta příští.
Z diskusí s vedoucími zahraničních delagací vyplývá,
že budou doma přesvědčovat příslušné orgány o tom,
aby v nejblíže příštích letech postupně přebíraly orga-
nizaci takových soutěží.

Delegáti těch zemí, kde se dosud národní olympiády
nekonají, prohlásili, že se budou snažit svá ministerstva
к uspořádání podobných soutěží přimět.

Mezinárodní komise soutěže pracovala objektivně,
v duchu vzájemného porozumění a soudružské spolu-
práce, přičemž vykonaná práce byla opravdu náročná
a podstatně omezila hodiny odpočinku a zájezdového
programu členů této komise.

Bylo započato s přímou výměnou informací a ná-
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zorů o vyučování matematice, v kteréžto výměně se
bude i v budoucnu pokračovat.

Členové rumunské delagace i zahraničních delegací
(žáci i učitelé) měli při této akci příležitost uzavřít
družbu ve znamení přátelství a ideové jednoty.

К tomu přistupuje seznámení se s některými vý-
značnými rumunskými podniky a s mnohými krásami
našeho venkova.

Ministerstvo vyučování a kultury0) přispělo vše-
stranně při organizování matematické olympiády a
má velkou zásluhu na jejím uskutečnění.

Rada stranických a státních orgánů i průmyslové
podniky se přičinily morálně i hmotně o zajištění úspě-
chu soutěže.

VI. Je třeba zde ocenit všechny návrhy, které
byly podány v průběhu mezinárodní mate-
matické olympiády:

a) Návrhy týkající se olympiády samé:
— Každá delegace bude napříště vedena dvěma od-

bornými učiteli, z nichž jeden se bude zabývat jen
otázkami a úkoly soutěže, druhý povede žákovskou
skupinu v rámci všeobecného programu.

— Výběr úloh musí být proveden urychleně tím, že

e) Rozumí se: Rumunské lidové republiky.
Poznámka překladatele
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mezinárodní komise začne pracovat již před příjezdem
soutěžících žáků.

— Práce kolem olympiády se budou konat na po-
čátku července.

b) Návrhy к programu, který se pojí к olympiádě:
— Rozdělit program na řadu dní tak, aby všichni

účastníci soutěže získali celkový obraz o hostitelské
zemi.

— Připravit informující a obrazový materiál o zemi,
v níž je olympiáda pořádána, kterýžto materiál každý
host obdrží hned po svém příjezdu.

— Organizovat diskusi žáků o matematických časo-
pisech pro mládež.

— Poskytnout návštěvníkům přehledný obraz
o všech druzích umění a o literatuře hostitelské země.

c) Návrhy vyplývající z diskuse na jedno až dvě té-
mata, přičemž by každý účastník dostal úvodní referát
již předem.

— Uskutečnit pravidelnou výměnu učebních plánů,
učebnic i časopisů a jiného vhodného materiálu mezi
příslušnými orgány jednotlivých zemí.

— Seznamovat učitele matematiky j ednotlivých zemí
s úlohami s praktickou náplní ze života socialistických
zemí.

d) Aby byl materiál z každé mezinárodní mate-
matické olympiády zhodnocen, bude vydána brožura
s touto náplní:

/
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Přehledná zpráva a získané výsledky. Texty za-
daných úloh a jejich žákovská řešení s příslušnými
komentáři, úlohy zadané v jednotlivých národních
a domácích olympiádách s úplnými řešeními nebo
jejich náčrty.

Tato brožura by měla vyjít současně ve všech
zúčastněných zemích.

První mezinárodní matematická olympiáda splnila
v podstatných bodech dobře své poslání.

Přejeme budoucím mezinárodním matematickým
olympiádám plný úspěch!

Docent Tiberiu Roman,
generální tajemník Společnosti pro
vědy matematické a fyzikální RLR

2. NĚKTERÉ DALŠÍ ÚDAJE O SOUTĚŽI

1. Československou osmičlennou žákovskou dele-

gaci na první mezinárodní matematickou olympiádu
navrhl předseda ústředního výboru naší celostátní
matematické olympiády.

Žáci byli vybráni z vítězů VIII. ročníku soutěže;
přitom byl brán zřetel jednak na umístění, jednak na
rovnoměrné zastoupení jednotlivých krajů, jakož i na
politickou vyspělost každého žáka. Předložený návrh
delegace i jejího vedoucího byl pak projednán s pří-
slušnými činiteli ministerstvem školství a kultury
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a s Jednotou čs. matematiků a fyziků, na níž bylo
pozvání adresováno. Náklady spojené s cestou hradilo
ministerstvo školství a kultury, pobyt v Rumunsku
hradila SSMF.

Jednotlivé delegace se skládaly z osmi žáků a ve-
doucího delegace; sovětská delegace měla však vedle
vedoucího jen čtyři žáky. Celkem tedy se účastnilo
soutěže 52 žáků.

2. V tomto odstavci podáváme další údaje o vý-
sledcích soutěže.

V tabulce č. 1 je uveden počet bodů, které mohl
soutěžící maximálně získat za řešení jednotlivých úloh.

Tabulka č. 1

1 i 2 : 3 ! 4 ! 5Příkl. č. 6 Součet

Max. počet bodů | 5 8 7 5 8 7 40

V tabulce č. 2 je přehledně uvedeno ocenění jednot-
livých žáků podle delegací; čísla udávají celkový počet
bodů, které jednotlivý žák získal. Náš žák Bohuslav
Diviš z Prahy-Michle získal maximální počet bodů
a stal se prvním absolutním vítězem soutěže.

Za úspěchy bylo uděleno celkem 21 cen, a to:

a) 3 ceny první; b) 3 ceny druhé; c) 5 cen třetích;
d) 10 čestných uznání.
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Tabulka č. 2

Počet bodů, které získali jednotliví žáci

Žák čís. Celkový počet
bodů delegace

Jméno
země

i 1 : 2 | 3 | 4 6 ; 7 | 85 |

Bulharsko
ČSR
Maďarsko
NDR
Polsko
Rumunsko
SSSR

30 13122 20 17 15 10 9 8
40 19229 28 28 25 21 12 9

23337 1536 35 34 31 24 21
4039 6 4 4 26 6

12225 20 18 11 8 519 16
24937 36 35 33 28 23 2136

111 (222)*)34 32 30 15

*) Vzhledem к tomu, že se za SSSR zúčastnili soutěže jen 4 žáci,
byl při konečném hodnocení počet všech jimi dosažených bodů
násoben dvěma.

Tabulka č. 3

Přehled o cenách udělených jednotlivým zemím

Čestné
uznání

II. cena III. cenaI. cena

1. ČSR
2. Maďarsko
3. Rumunsko

1. Maďarsko
2. Rumunsko
3. Rumunsko

1. Maďarsko
2. Rumunsko
3. Maďarsko
4. SSSR
5. Rumunsko

1. SSSR
2. Maďarsko
3. Bulharsko
4. SSSR
5. ČSR
6. ČSR
7. ČSR
8. Rumunsko
9. ČSR

10. Polsko
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V tabulce č. 3 je uvedeno, iak se o tyto ceny jednot-
livé země podělily.
Českoslovenští žáci získali první cenu a čtyři čestná
uznání, tedy celkem 5 cen; vyznamenáni byli žáci:
Bohuslav Diviš, 11.tř. jsš, Praha 14-Michle, Ohradní5.
Karel Šmuk, 11.b tř. jsš, Ostrava VIII-Hladnov.
Jiří Votava, ll.d tř. 14. jsš, Praha 12, ul. W. Piecka 2.
Jiří Moudrý, ll.c tř. jsš, Pardubice, ul. Slovenského

povstání.
Zdislav Kovářík, 11.a tř. jsš, Hodonín.
Žáci od SSMF vedle diplomů obdrželi i věcné ceny,
především z národního folklóru. I všichni ostatní
účastníci a vedoucí delegací byli obdarováni upo-
minkovými předměty, zvláště pak knihami, takže slav-
nost, na níž se udílely ceny, měla velmi tadostný prů-
běh, jako vůbec celý pobyt naší delegace v Rumunsku.

3. Dále uvádíme texty úloh zadaných na

první mezinárodní matematické olympiádě;
v závorce je uvedena země, která úlohu dodala. Vět-
šinu z těchto úloh jsme zařadili mezi úlohy I. kola
IX. ročníku (škol. r. 1959/60) matematické olympiády,
jednak proto, aby se s úlohami naši žáci seznámili,
jednak proto, aby jak žáci, tak i naši pracovníci
v KVMO a s nimi i ostatní učitelé poznali, jakou te-
matikou se v národních olympiádách jednotlivých
spřátelených zemí ponejvíce zabývají. Lze říci, že se
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značná pozornost věnuje číselné teorii a v planimetrii
vedle konstruktivních úloh též úlohám důkazovým.

TEXTY ÚLOH ZADANÝCH
NA I. MEZINÁRODNÍ MATEMATICKÉ

OLYMPIÁDĚ V RUMUNSKU

1. písemná práče (dne 24. 7. 1959).
1. Dokažte, že zlomek1

21 n + 4
'

14w + 3

V ir<

\ "4л í VC-Te
2\'Pro která reálná čísla x platí:

a) lx + j/2x — 1 + /x — ]/2x — 1 — ]/2";
b) !x + j/2x — I + /x — j/2x — 1 =

x + |/2x — 1 + /x — ]/2jc — 1 = 2.

i;

c)
^ (Přitom odmocnina má smysl jen pro nezáporná čísla.)

-{Rumunsko)
3. Pro číslo X platí rovnice

a cos2x + b cosx + c — 0 ,

kde a, b, c jsou daná reálná čísla.
Napište rovnici-druhého stupně, kterou splňuje pří-

slušné číslo cos2x.

Výsledek výpočtu užijte na případ, kdy je a — 4,
{Maďarsko)b = 2, c = - 1.

216



Celá tato práce byla rozvržena na 3 hod. čistého času.

2. písemná práce (dne 25. 7. 1959).
4. Sestrojte pravoúhlý trojúhelník ABC, je-li dána

jeho-přepona c = AB, přičemž wme,-že těžnice pří-
slušné к přeponě je rovna-střední geometrické úměrné

5. V rovině je dána úsečka AB a uvnitř -úsečky je (V
dán-pohyblivý bod M; nad úsečkami AM, BM jako
stranami sestrojíme dva čtverce AMCD, BMEF tak,
aby ležely v téže polorovině vyťaté přímkou AB.
Těmto čtvercům opišme kružnice; ty se vedle bodu M
protínají ještě v dalším bodě N.

a) Dokažte, že přímky AE, BC procházejí bodem N.
b) Dokažte, že přímka MN prochází určitým pev-

ným bodem.
c) Vyšetřte geometrické místo středů úseček, které

spojují středy obou uvažovaných čtverců. (Rumunsko)
6. Jsou dány dvě různoběžné roviny P, Q o prů-

sečnici p; v rovipě P je dán bod A a v rovině Q je
dán bod C, přiceniž žádný z bodů A, C neleží na
přímce p.

Sestrojte rovnoramenný_ lichoběžník ABCD (kde
AB || CD), jemuž lze kružnici' vepsat) a to takový,
aby bod В ležel v rovině P a bod D v rovině Q.

('Československo)

obou odvěsen.
'

\
217



Rovněž tato práce byla rozvržena na 3 hod. čistého
času.

4. Na závěr je nutno podotknout, že vzájemné
setkání mládeže účastněných zemí bylo dojemné
a srdečné. Mladí si toho měli mnoho co říci, což bylo
usnadněno zvláště tím, že většina z nich mluvila
dobře ruský. Jedním z velmi kladných momentů
byla právě tato politická škola mládeže, která
se ve svých rozhovorech zevrubně informovala o budo-
vatelském úsilí jednotlivých zemí, zvláště pak o rozvoji
průmyslu a jeho výrobcích, o školství a studiu vůbec,
o sportu a na neposledním místě i o národních mate-
matických olympiádách. Tento výchovný moment
velmi vysoce oceňujeme.
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