
09. ročník matematické olympiády

Rudolf Zelinka (editor): 09. ročník matematické olympiády.
Zpráva o řešení úloh ze soutěže konané ve školním roce
1959-1960. (Czech). Praha: Státní pedagogické nakladatelství,
1961.

Persistent URL: http://dml.cz/dmlcz/404484Terms of use:

Institute of Mathematics of the Czech Academy of Sciences
provides access to digitized documents strictly for personal use.
Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for
electronic delivery and stamped with digital
signature within the project DML-CZ: The Czech
Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/404484
http://dml.cz


DEVÁTÝ
ROČNÍK

MATEMATICKÉ
OLYMPIÁDY

státní pedagogické nakladatelství



 



Wf ' Г™



яDEVÁTÝ
ROČNÍK

MATEMATICKÉ

OLYMPIÁDY

.



 



 



DEVÁTÝ
ROČNÍK

MATEMATICKÉ

OLYMPIÁDY



г

ZPRÁVA
О ŘEŠENÍ ÚLOH

ZE SOUTĚŽE

KONANÉ VE ŠKOLNÍM ROCE

1 959-1 960

STÁTNÍ
PEDAGOGICKÉ

NAKLADATELSTVÍ
PRAHA 1961



Ústřední výbor

11567 Praha 1, lit:
telefon 22 Cú Cl - 3

: f

DEVÍTÝ ^I ROČNÍK I
I MATEMATICKÉ I
I OLYMPIÁDY |



Za přispění spolupracovníků zpracoval Rudolf Zelinka
Slovenské části textu přeložil Ján Moravěílc

Recenzovali doc. Josef Holubář, Vlastimil Macháček,
dr. Zbyněk Nádeník C. Sc. a Miroslav Šisler

(§) Rudolf Zelinka, 1961



I. К PRŮBĚHU IX. ROČNÍKU
MATEMATICKÉ OLYMPIÁDY

1. Devátý ročník žákovské soutěže matematická
olympiáda (zkratkou MO) probíhal ve školním roce
1959/60 a účastnili se ho většinou žáci středních vše-
obecně vzdělávacích škol; účast jiných žáků byla
celkem malá.

Žáci byli zařazeni do kategorií podle tabulky:

Kategorie CA В D

10 ! 9Ročník střední školy 11 8

Ročník výběrové odborné
školy 3—4 2 1

i

Vzhledem k tomu, že některé školy mají odchylné
osnovy, měly krajské výbory pravomoc zařadit žáky
i do nižší kategorie, než je stanoveno v tabulce.

2. Soutěž se řídila organizačním řádem, který
vydalo ministerstvo školství a kultury (instrukce č. 70
ve Věstníku MŠK, roč. XV, str. 289 ze dne 31. 10.
1959); toto ministerstvo spolu s Matematickým ústa-
vem ČSA V, Jednotou čs. matematiků a fyziků a s Ústřed-
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ním výborem Československého svazu mládeže byly po-
řadateli této soutěže.

Soutěž organizoval a řídil Ústřední výbor matema-
Иске olympiády (ÚVMO) spolu s krajskými a okresními
výbory matematické olympiády (KVMO, OVMO); členy
výborů byli učitelé matematiky středních a vysokých
škol, školští pracovníci, pracovníci ČSM apod. Vedle
členů jmenovaných ministerstvem školství a kultury
byli členy Ústředního výboru MO všichni předsedové
krajských výborů MO, což umožňuje, že ÚVMO má
přehled o situaci v každém kraji.

Ústřední výbor MO (adresa: Praha II, Žitná 25,
tel. 24-11-93) byl složen takto:
Předseda:

Akademik Josef Novák
M ístopředseda:

Jan Výšin, docent Vysoké školy pedagogické
v Praze.

Jednatel:

Rudolf Zelinka, vědecký pracovník MÚ ČSAV
v Praze.

Členové:
Dr. František Béloun, vedoucí kabinetu matema-

tického KPÚ v Praze.
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Karel Ilnylc, odborný asistent pedagogického insti-
tutu, Arbesova G, Liberec.

Doc. Josef Holubář, vědecký pracovník MÚ ČSAV
v Praze.

František Hradecký, odborný asistent Vysoké školy
pedagogické v Praze.

Dr. Karel Hruša, docent Vysoké školy pedagogické
v Praze.

Miloš Jelínek, ústřední inspektor ministerstva škol-
ství a kultury v Praze.

Dr. Milan Kolibiar, docent přírodovědecké fakulty
university J. Á. Komenského v Bratislavě.

Dr. Josef Pírek, ředitel základní školy v Brně.
František Veselý, odb. asistent Vysoké školy strojní

a elektrotechnické v Plzni.
Dr. Miloslav Zedek, odborný asistent přírodově-

decké fakulty Palackého university v Olomouci.
Dr. Miroslav Fiedler, C. Sc., vědecký pracovník

MÚ ČSAV v Praze.

Členové-předsedové К VМО:

Dr. Josef Korous, docent Vysoké školy železniční
v Praze (město Praha).

Stanislav Horák, odb. asistent ČVUT v Praze.
František Vejsada, učitel 2. jedenáctileté střední

školy v Českých Budějovicích.

7



Věra Rádiová, učitelka jedenáctileté střední školy
v Plzni.

Miloslava Žáčkova, krajská školní inspektorka
v odboru školství a kultury rady KNV v Karlových
Varech.

Josef Porcal, učitel pedagogické školy v Teplicích.
Josef Mencl, odb. asistent pedagogického institutu

v Hradci Králové.
Ludvík Kapička, zástupce ředitele jedenáctileté

střední školy v Pardubicích.
Josef Svoboda, učitel jedenáctileté střední školy

v Třebíči.

Vladimír Štefl, krajský školní inspektor v Brně.
Dr. Miroslav Jiroušek, asistent přírodovědecké fa-

kulty Palackého university v Olomouci.
Leo Krakówka, učitel průmyslové školy strojnické

v Gottwaldově.

Josef Andrys, odb. asistent pedagogického institutu
v Ostravě.

Anton Dubec, docent Vysoké školy pedagogické
v Bratislavě.

Dr. Milan Kolibiar, docent přírodovědecké fakulty
university J. Á. Komenského v Bratislavě.

Adolf Heinisch, učitel matematiky na průmyslové
škole stavební v Nitře.

Dr. Cyril Palaj, profesor Vysoké školy lesní a dře-
vařské ve Zvolenu.
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Ladislav Berger, odb. asistent Vys. školy železniční
v Žilině.

Dr. Ján Jakubík, docent Vysoké školy strojní v Ко-
šicích.

Dr. Ernest Jucovic, zást. docenta pedagogického
institutu v Prešově.

3. V kategoriích В, C, D se konala dvě kola, v kate-
gorii A tři kola soutěže. V době od října 1959 do
29. února 1960 se konalo I. kolo. Žáci řešili doma
6 úloh, z nichž alespoň čtyři musili rozřešit dobře, aby
se mohli hlásit do II. kola soutěže. Žákovské práce
I. kola opravoval žákův učitel matematiky a seznámil
žáky s nedostatky řešení; práce byla oceňována znám-
kou: výborné řešení, dobré, nevyhovující řešení. Na
některých školách se žáci pod vedením učitelů sdru-
žili v kroužku matematické olympiády.

Ředitel školy spolu s referentem MO na škole podali
na závěr I. kola návrhy krajským a okresním výborům
MO na zařazení úspěšných žáků do II. kola soutěže;
o přijetí rozhodoval s definitivní platností KVMO
nebo OVMO. Přitom počet všech navrhovaných žáků
určitého ročníku nesmí překročit 10 % celkového
počtu žáků tohoto ročníku na škole.

Texty úloh I. kola byly uveřejněny v časopisech
Rozhledy matematicko-fyzikální a Matematika ve škole;
vedle toho byl vydán zvláštní leták v počtu 15 000
exemplářů, který mimo textů úloh obsahoval seznam
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doplňkové literatury pro žáky, řadu cvičných úloh
(snazší úlohy z předchozích ročníků МО) a upozor-
nční na některé matematické věty. Vzorová řešení
úloh dal TJVMO ve velkém počtu výtisků к dispo-
zici opravovatelům; bylo jich užito i při instruktá-
žích žáků. Stejné opatření bylo provedeno i při II.
kole.

Spolu s pracovníky MO pečovali o soutěž i pracov-
níci ČSM i Pionýrské organizace, na jejichž půdě se
mnohde konají různé besedy, instruktáže apod. Vy-
datně pomáhala i řada krajských pedagogických
ústavů a zvláště pak pracovníci poboček Jednoty čs.
matematiků a fyziků.

4. Druhé kolo soutěže se v kategoriích A až C
konalo v neděli dne 3. dubna I960 v krajských měs-
tech; II. kolo kategorie D se konalo v neděli dne
24. dubna I960. Požadavky byly stejné jako v před-
chozích ročnících — ze čtyř zadaných úloh měli žáci
alespoň dvě rozřešit dobře; stejné požadavky se kla-
don i na III. kolo soutěže.

V rámci II. kola uspořádaly výbory MO spolu
s ostatními složkami besedy, kde se rozbíraly nedo-
statky řešení, žáci byli seznamováni se studijní litera-
turou apod.; kromě toho se žáci účastnili exkurzí, vý-
stav a jiných kulturních podniků. KVMO v Praze
svolal pražské úspěšné řešitele na besedu po provede-
né klasifikaci řešení úloh II. kola, pohostil je, předal

10



jim ceny a čestná uznání; tato akce se velmi osvědčila
a měla mezi žáky příznivý ohlas.

Pedagogický dozor pomáhaly zajišťovat složky
ČSM spolu se školskými pracovníky.

5. Vrcholná část soutěže bylo III. kolo, určené
pro nejlepší řešitele II. kola kategorie A; konalo se
v sobotu 14. května 1 96 0 v době od 7 do 13 hodin

•

v budově Matematického ústavu Karlovy university
v Praze 2 - Nové Město, Ke Karlovu 3.

Do III. kola krajské výbory MO přihlásily 69 žáků.
Organizační komise UVMO z nich pozvala 64 žáků
(z toho 12 žákyň); dostavilo se jich 62 (z toho 10 žá-
kyň). Tento počet nedosahuje 80, což je podle orga-
nizačního řádu maximum.

V minulých ročnících počet přihlášených do III. ко-
la dosáhl až 160 žáků; tato situace byla dvakrát před-
mětem jednání UVMO a na základě toho budou v příš-
tím ročníku provedena určitá opatření, jak pomoci
našim nejlepším žákům v jejich studiu matematiky
jako jednoho ze základních předmětů pro studium
přírodních a technických věd.

Ze 62 účastníků III. kola bylo 42 úspěšných (z toho
4 dívky).

Odpoledne po soutěži III. kola se na témže místě
konala beseda s olympioniky; účastnili se jí zástupci
všech typů škol, školští a vědečtí pracovníci, i někteří
rodiče žáků. Besedu řídil předseda ÚVMO akademik
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Josef Novák. V úvodu к besedě zhodnotil průběh
IX. ročníku MO, poukázal na příznivé i nepříznivé
zjevy a stručně naznačil i cesty, jimiž hodlá ÚVMO
zajistit příští ročník soutěže. Hlavní projevy na besedě
přednesli akademik Theodor Ježdík, rektor Českého
vysokého učení technického v Praze, a doc. dr. Fr.
Kysela, prorektor ČVUT. Akademik Ježdík mluvil
na téma ,,0 významu matematiky pro technické vědy“
a doc. dr. Kysela navázal na jeho projev a seznámil
olympioniky s různými možnostmi studia na vyso-
kých technických školách; ze živě a zajímavě pojaté
přednášky se rozvinula diskuse, v níž se olympionici
ptali na řadu otázek, týkajících se jejich dalšího
studia.

Na závěr besedy blahopřál předseda ÚVMO olym-
pionikům к dosaženým výsledkům a přál jim hodně
dalších studijních úspěchů. Poté poděkoval všem
učitelům matematiky za pečlivou přípravu olympio-
niků a zhodnotil obětavou a dobrovolnou činnost
všech členů olympijských výborů; vyslovil naději, že
se v příštím jubilejním ročníku se všemi těmito pra-
covníky opět setkáme při společném úsilí na výchově
a přípravě budoucích předních pracovníků v naší
vědě a technice.

Večer téhož dne se olympionici účastnili předsta-
vení Drdovy hry ,,Dalskabáty“ v Armádním divadle
na Vinohradech.
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Dopoledne v neděli 15. května 1960 si pod vedením
pracovníků ČSM prohlédli Prahu a odpoledne se roz-

jeli do svých domovů.
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Tabulka č. 1

Přehled účastníků I. kola podle krajů
v kategoriích A, B, G*)

Kate-
gorie A

Kate-
gorie В

Kate-
gorie C

Celkem
KRAJ

P 1 UP i U P I U P U

168j 54| 93 30; 104 67
24 15 20 11 17 _9

120 16 126 19| 141 41
48 26 35 j 14 50 24
39 19 25 7 54 19

17 12 25 21 31 22
"38 TÓ 301 4 51 19
58 32 51 28 85 48

_39 19 Í5 7 42 17
74 47, 9~6 34 75 33

130 77 96 59 T25 “65
71 39 52 27 70 32
42 17 49 23| 93 45

—50 11 65 22 70 29
80 26 ~"4o! 16 —69 36
26 13 25| 7 83 21
50 29 50 30 27 " 19

Praha-město
Praha-venkov

425 151

3561

České Budějovice
Plzeň

Karlovy Vary

387 76

133 64

118 45

Ústí n. Labem
Liberec
Hradec Králové
Pardubice

73 55

119 33
194 108

96 ”43 \

245Jihlava 114

20 í351Brno

Olomouc 193 98
85Gottwaldov 184

62Ostrava
Bratislava-město
Bratislava- venkov
Nitra

Banská Bystrica
Žilina
Košice "

185

Ts'9 78

134 41
127 78

. 193 671671 2526 51 71

92 13239 83 26 144 31967

8 37

6; 35
37 9 93
53 20 109

2219 5

Prešov 21 3711

1277 541 1099 417,1552'б67 3928 1625Celkem
1

*) P == celkový počet účastníků, U = počet úspěšných ře-
šitelů
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II. ZPRÁVA A HODNOCENÍ VÝSLEDKŮ
JEDNOTLIVÝCH KOL SOUTĚŽE

A. SOUTĚŽ I. KOLA

1. Tabulky č. 1 a 2 přehledně informují o počtu
účastníků I. kola, a to těch, kteří řešili předepsaný
počet úloh a jejichž řešení byla předložena výborům
MO; tabulky nepodchycují ty žáky, kteří soutěž
I. kola nedokončili. TJčast v kategoriích A až C byla
slabší než v předchozím ročníku, kdy se soutěže účast-
nilo 4400 žáků, z nichž 1700 bylo úspěšných. Menší
účast lze zčásti odůvodnit i opatřením ústředního vý-
boru MO, že totiž výbory MO mohou ze závažných
důvodů (škola má jiné osnovy) zařadit žáky do nižší
kategorie; to se uplatnilo zvláště u žáků 9. ročníků.

2. Okolnostmi, které nepříznivě působí na průběh
soutěže, zabývaly se zevrubně dvč schůze ústředního
výboru MO. Především to je řada mimoškolských
akcí, které kladou na žáky po všech stránkách značné
nároky. Žáci pak pracují povrchně, jsou netrpěliví
a nedovedou překonávat nesnáze, očekávají podněty
a vedení ze strany učitele, i když je v jejich silách
pracovat samostatně. Rovněž se zpravidla neoduěí
osnovami předepsaný celkový roční počet vyučova-
cích hodin, učitel nemůže učivo důkladně procvičit,
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů
v kategorii D*)

Kategorie DKRAJ
P U

Praha - město 569 265

Praha-venkov 741 473

České Budějovice 1028 522

430
323

Plzeň 653

Karlovy Vary 661

Ústí nad Labem 419 265

Liberec 717 321

539Hradec Králové 334

Pardubice 584 315

Jihlava 535 344

Brno

Olomouc
Gottwaldov

1779 961

899 558

777 491

Ostrava 1035 521

Bratislava - město 87 49

278”Bratislava - venkov 667

Nitra
Banská Bystrica

531 298

676 425

Žilina
Košice

348774

224323

271Prešov 132

Celkem 14 265 7877
I

*) P = počet všech účastníků, U = počet úspěšných řeši-
telů
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shrnout, popřípadě zopakovat. Fyzikální olympiáda
také odčerpala řadu zdatných žáků. TJVMO však do-
poručuje všem spolupracovníkům, zvláště referentům
MO na školách, aby dovolili žákům účastnit se obou
soutěží jen zcela výjimečně; je tu nebezpečí, že žáci
budou přetěžováni a vedle toho, že jejich práce nebude
dosti kvalitní, jak si to povaha obou soutěží vyžaduje.
Na závěr svého jednání se v květnu 1960 usnesl
TJVMO hledat různé cest}^, jak pomáhat účastníkům
soutěže při doplňování a prohlubování jejich vědo-
mostí a vychovávat z nich průbojné a houževnaté
žáky. Vedle zavedení šesti přípravných úloh (vedle
šesti soutěžních úloh I. kola) je to zavedení tzv. pří-
pravných přednášek, a to od školního roku 1960/
/61; pořádají je pro účastníky kategorie A až C poboč-
ky Jednoty čs. matematiků a fyziků a krajské výbory
MO. Též některé okresní výbory MO se chystají po-
máhat žákům při zdolávání nesnází v soutěži. Jinak
je třeba konstatovat, že soutěž v kategorii D měla
značný přírůstek v počtu účastníků (v předchozím
ročníku z 11 400 účastníků I. kola bylo 5900 úspěš-
ných); procento úspěšných řešitelů poněkud stouplo.
Požadavky na tuto kategorii jsou ovšem odlišné od
prvních tří kategorií, což vyplývá z výchovného
a propagačního poslání kategorie D.

3. Přestože se matematická olympiáda na značném
počtu škol stala tradiční, přece jsou dosud školy, kde

172 IX. roč. matem, olympiády



se této soutěži dostává malé podpory, i když na nich
studují žáci, kteří mají zřejmě znaěné matematické
nadání. Soutěž se však postupně dostává i do těchto
škol a je naděje, že společným úsilím všech pořadatelů
soutěže se podaří tuto situaci postupně odstranit.
Jisto je, že tam, kde matematice vyučuje kvalifiko-
váný a zkušený učitel, je o soutěž značný zájem;
někdy je až podivuhodné s jakou houževnatostí a záj-
mem se někteří žáci věnují zvýšenému studiu mate-
matiky v rámci naší soutěže.

B. SOUTĚŽ II. KOLA

1. Přehled o účasti a výsledcích, pokud jde o počet
žáků, podávají tabulky 3 a 4. Celkový počet účast-
níků II. kola v kategoriích A až C je o málo menší než
v předchozím ročníku, přestože řada žáků z důvodů
již dříve uvedených soutěží v nižší kategorii, než pří-
sluší jejich třídě; počet úspěšných řešitelů (i procento
úspěšných řešitelů z celkového počtu účastníků
II. kola) je značně nižší. Zmínka o příčinách tohoto
jevu, jakož i o opatřeních ústředního výboru MO,
je uvedena v předchozí části této zprávy. V kategorii
D je však situace celkem táž jako v předchozích roč-
nících; tendencí je tu spíše zvyšovat po všech stráň-
kách požadavky na výkony soutěžících, což je úplat-
něno i ve stále celostátně rovnoměrnější klasifikaci:
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Tabulka 3

Přehled počtu účastníků II. kola podle krajů
v kategoriích А, В, C*)

Kate-
gorie A

Kate-
gorie В

Kate-
gorie C

Celkem
KRAJ

P
. U P U P U P U

7 56 25 134 38Praha-město 50 6 28

Praha-venkov 13 8 11

4 18

7 8 32 15

České Budějovice 4 39

120

16 11 73 19
2Plzeň 925 12 57 12

19 384Karlovy Vary 1 315 4

Ústí n. Labem 12 5 21. 10 22 15 55 30
“9 1 i! 1 19 4 32 6

32 ~12 28; 20j 48 17 108
15! 4 7' í Í2 6 34 11

35, 231 291 24 109 70

_56 9 59 ~ 29 187 ~6Ó
26 ~~8 311 12 93 29

21 í 38 8 74 13
21 3 27| 7 70 16

25| 2 16 1 341 3 75 6
13 2 7~"“~2Í| 9 41 li
27 3 28 1 nj 8 72 12
21 3 13 1~25 3 59 7

21 5 15; 6 45 12 81 23
8 1 5j~j 9 í " 22 2
6 —_”ll]_3l_2o! 5 37 8

I 502; 130 387 107i 594!204Í1483 441

Liberec
Hradec Králové 49

Pardubice
45“ 23
72 Г 22
36 ~ 9

15 4

22; 6

Jihlava
Brno
Olomouc

Gottwaldov
Ostrava

^Bratislava-město
Bratislava- venkov
Nitra

Banská Bystrica
Žilina
Košice
Prešov

Celkem
:

*) P = celkový počet účastníků, U = počet úspěšných ře-
šitelů
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Tabulka 4

Přehled počtu účastníků II. kola
podle krajů v kategorii D*)

i

Kategorie D
KRAJ

P U

Praha-město 203 132

353 272Praha-venkov

C. Budějovice 390 240

Plzeň

Karlovy Vary
347 202

—

208 125

Ústí n. Labem
Liberec

139234

182288

283 208Hradec Králové
Pardubice 215270

205 109Jihlava
300"030Brno

402Olomouc 271

Gottwaldov 407 338
"403Ostrava 270

32 25Bratislava-město
223Bratislava-venkov 129

247Nitra 148

310Banská Bystrica 240

Žilina 290 213

Košice 107 147

132Prešov 98

Celkem 0042 4135

*) P — počet všech účastníků, U — počet úspěšných řešitelů
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Kdo viděl účastníky II. kola kategorie D při práci,
podivuje se tomu, s jakou radostí, nadšením a úsilím
se tito nej mladší a dosud nezkušení účastníci soutěže
snaží vyjít ze soutěže úspěšně.

Zkušenosti ukazují, že většina nadaných žáků,
kteří prošli II. kolem soutěže, se i v příštím ročníku
opět zúčastňují olympiády; tím se vliv soutěže na tyto
žáky stává trvalým. A tak se jmény, která se vysky-
tují v pořadí úspěšných řešitelů II. kola v kategoriích
Б a C, se setkáváme opět v příštím ročníku. Někteří
z nich se pokoušejí se svolením krajského výboru MO
o úspěch i v kategorii vyšší, než je ta, do níž svou
třídou náleží; je zajímavé, že většina z těchto žáků
má značné úspěchy.

2. Úspěšní řešitelé II. kola dostali od výboru MO
pochvalné uznání a nej lepší z nich dostali od kraj-
ských a okresních výborů MO věcné ceny, zvláště
knižní (většinou odborné povahy).

Pro účastníky II. kola v kategoriích Б, C tímto ко-
lem soutěž končí (stejně jako pro kategorii D); uvá-
dime dále jmenný seznam nejlepších deseti ře-
šitelů z obou těchto kategorií podle starého územ-
ního rozdělení státu.

Pořadí úspěšných řešitelů II. kola v kategoriích В, C
J = jedenáctiletá střední škola, kterou někde neuvá-

dime;
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P = průmyslová škola; Pg = pedagogická škola;
Dsš = dvanáctiletá střední škola.

Praha město

B. Jech Tomáš, Praha 1; Groda Alexandr, Praha 3;
Fiala Miroslav, Praha 14; Kretschmer Michal, Pra-
ha 13; Pancíř Jiří, Praha 16; Veselý Karel, Praha 6;
Výborný Zdeněk, Praha 5.

C. Durdil Jiří, Praha 3; Iblová Libuše, Praha 5;
Stárková Marta, Praha 5; Friedová Jitka, Praha 11;
Kopecký Ivan, Praha 6; Liška Přemysl, Praha 6;
Rusá Alexandra, Praha 6; Schwank Petr, Praha 14;
Splavcová Věra, Praha 14; Vodičková Ludmila,
Praha 12.

Pražský kraj
B. Hrbáček, Nymburk.

Kraj Budějovický
B. Žofka Jan, dsš, Písek; Lusk Jan, 2. J, České Bu-

dějovice; Johanna Václav, Vodňany; Moravec Vác-
lav, 2. J, České Budějovice.

C. Moravcová Irena, P, Písek; Hora Jan, dsš, Tá-
bor; Cvach Jaroslav, dsš, Soběslav; Švec Antonín, P,
Č. Budějovice; Voráčková Jaroslava, 3. J, Č. Budě-
jovice; Kabourková Jitka, dsš, Strakonice; Živná
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Jana, 3. J, České Budějovice; Šišková Jaroslava, dsš,
Strakonice; Pekárková Alena, dsš, Strakonice; Křížek
A., P, Č. Budějovice.

Kraj Plzeňský
B. Vaniček Milan, P, Plzeň.
C. Vacek Jiří, dsš, Plzeň; Šefrna František, Blatná.

Kraj Karlovarský
C. Žáček Josef, dsš, Cheb; Konopásek Petr, dsš,

Karlovy Vary; BarborkováMirka, Planáu Mar. Lázní.

Kraj Ústecký
B. Starý Petr, dsš, Ústí n. Labem; Lukšan L.,

Ústí n. Labem; Koten A., P, Ústí n. Labem; Thorov-
ský C., dsš, Ústí n. Labem; Neuhofer Z., dsš, Chomu-
tov; Franče Jiří, Litoměřice; Šíma S., P, Děčín VI;
Vaněk Z., 2. J, Teplice; Tymieh A. J., Litoměřice;
Velek V., P, Děčín VI.

C. Vorlíčková M., Ústí n. Labem; Nohová Hana,
Ústí n. Labem; Šidloch Petr, 1. dsš, Chomutov; Ко-
nečný Jiří, P, Děčín VI; Novotný Jiří, P, Most; Majer
Josef, dsš, Most; Hladík Vladimír, Litoměřice; Poncar
Jaroslav, Litoměřice; Klepiš Petr, dsš, Most; Kulík
Jiří, dsš, Chomutov.
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Kraj Liberecký
B. Doubravský Jiří, Mnichovo Hradiště.
C. Fejtková Pavla, Liberec; Šoltys Dušan, Libě-

rec; Stehlík Jaroslav, Liberec; Čmelík Jiří, Liberec.

Kraj Hradecký
B. Vostrý Jaromír, dsš, Jičín; Friml Leoš, Kostelec

n. Orl.; Chalupná Jana, Kostelec n. Orl.; Hofman
Augustin, Trutnov; Kozáková Zdeňka, dsš, Jičín;
Losa Milan, Trutnov; Samek Vladimír, Trutnov;
Měšťanová Jana, dsš, Jičín; Pojkarová Jana, dsš,
Jičín; Zakouřil Oldřich, Trutnov.

C. Fučík Svatopluk, Hradec Králové; Přidal Jaro-
slav, Hradec Králové; Hrnčíř František, Nová Рака;
Petr Karel, Police n. Met.; Šimek Antonín, Police n.

Met.; Izák Miroslav, Dobruška; Netuka Ivan, Hradec
Králové; Brykner Zdeněk, Nová Рака; Fialová Ma-
rie, Rychnov n. Kněž.; Kratochvíl Jiří, Hradec
Králové.

Kraj Pardubický
B. Pochobradský Pavel, dsš, Chrudim.
C. Kapička Aleš, dsš, Pardubice; Cupal Ivan, Česká

Třebová; Hrdlička Milan, dsš, Pardubice; Ryšánová
Hana, dsš, Litomyšl; Semerád Václav, dsš, Přelouč;
Baborák Karel, Holice v Č.
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Kraj Jihlavský
B. Svoboda Karel, Třebíč; Florian Miroslav, Tře-

bič; Bacík František, Ledeč n. Sázavou; Večeřová
Marta, Velké Meziříčí; Klouda Čestmír, Třebíč; Fo-
rejtová Berta, Pelhřimov; Mašátová Miloslava, Pa-
cov; Fiřtová Miluše, Ledeč n. Sázavou; Šrot Franti-
šek, Telč; Frey Zdeněk, Jihlava.

C. Mach Ivan, Dačice; Novák Vít, Pelhřimov;
Pavlečka Ivan, Třebíč; Svobodová Naděžda, Jihlava;
Urban Otmar, Třebíč; Piálek Miloslav, Třebíč; Polá-
ček Jindřich, Třebíč; Tržil Karel, Kamenice n. Lipou;
Maloušková Jana, Třebíč; Podhorský Miloslav, P,
Zdar n. Sázavou.

Kraj Brněnský
B. Příkrý Karel, Vyškov; Horsák Ivan, dsš, Brno;

Štefl Jiří, P, Brno; Švehla Josef, Vyškov; Trněný
Stanislav, Vyškov; Doležal Ivan, Brno; Kalužík
Svatopluk, Znojmo; Vrtílková Eva, Znojmo; Valen-
tin Jiří, Brno.

C. Jičínský Miloš, P, Brno; Zelníček Jiří, Brno;
Bendová Jitka, Brno; Sobotka Jan, Blansko; Stejskal
Miloš, Brno; Dryšlová Jana, dsš, Blansko; Vrbík Jan,
Vyškov; Košťál Lubor, dsš, Brno; Bartušek Miroslav,
Brno; Hudcová Zdeňka, Boskovice.
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Kraj Olomoucký
li. Lukš Antonín, Olomouc; Novotný Jan, dsš,

Olomouc; Jahnová Jitka, 1. J, Olomouc; Bradová
Vlasta, Litovel; Bárta Josef, Šternberk; Pšeničková
Věra, 1..J, Olomouc; Leznarová Jarmila, 1. J, Olo-
mouč; Šabacká Helena, 1. J, Olomouc.

C. Znojilová Emilie, 2. J, Prostějov; Trávníček
Jiří, Jeseník; Zdráhalová Vlasta, Zábřeh; Weiser
Ivan, 1. J, Olomouc; Cerman Ivan, 1. J, Olomouc;
Pospíšil Ivan, Přerov; Vašková Ladislava, Přerov;
Novotná Jitka, Přerov; Kolářová Helena, Zábřeh;
Studený Jaromír, Zábřeh.

Kraj Gottwaldovský
B. Novotná Marie, Rožnov p."R.
C. Vošek Lubomír, 1. dsš, Gottwaldov; Měchura

František, Kyjov; Tregl Karel, Rožnov p. Radh.;
Polák Alexandr, dsš, Hodonín; Sečkář Václav, dsš,
Hodonín; Kublák Aleš, Vsetín; Kolouch Jaromír, P,
Gottwaldov; Pflegrová Marie, P, Uherský Brod.

Kraj Ostravský
B. Borůvka Ladislav, P, Ostrava II; Šmuk Miro-

slav, dsš, Ostrava Vlil; Grossman Pavel, Český
Těšín.

C. Adámek Arnošt, P, Ostrava VII; Kuněický Petr,
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P, Ostrava VII; Cymalowna Krystyna, Orlová; Jaš-
ková Anna, P, Kopřivnice; Muroňová Pavla, Místek;
Škutová Olga, Místek; Máchej Henryk, Orlová.

Bratislava město

B. Hágel Jozef, Bratislava.
C. Hatala Peter, dsš, Bratislava; Komrska Peter,

P, Bratislava; Lesyk Pavol, dsš, Bratislava.

Kraj Bratislavský
C. Nemeček Miloš, dsš, Trenčín; Šebeková Zora,

dsš, Trenčín; Záhradník Pavol, dsš, Trenčín; Matouš-
ková Blanka, dsš, Trenčín; Grečner Dušan, Trenčín;
Suchán Pavol, dsš, Trenčín; Vojtko Jozef, Skalica;
Zarnayová Anna, dsš, Trenčín; Husárová Jana, dsš,
Trenčín.

Kraj Nitranský
B. Švec Pavol, Šurany.
C. Bartovič Rudolf, Šurany; Klobučník Ivan, Šu-

raný; Horváth Ladislav, Komárno; Krištof Ján, Le-
vice; Szabová Zuzana, Levice; Ghilányi Alexander,
Nitra; Germánová Tamara, Levice; Hoffmann Edgar,
Levice.

Kraj Banskobystrický
B. Klibáni Stanislav, Zvolen.
C. Jánoš Jozef, P, Banská Štiavnica; Kakarová
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Marta, Banská Štiavnica; Červenková Olga, Banská
Štiavnica.

Kraj Žilinský
B. Šingliarová Božena, dsš, Dol. Kubín; Labušský

Peter, P, Dubnica; Pastorek Aug., Čadca; Kardoš
Ivan, P, Martin; Čuntala Pavol, P, K. N. Město;
Harantová Jana, I. J, Zilina.

C. Fiala Juraj, P, Dubnica; Sivák Jozef, P. Dub-
nica; Rusnák Ivan, dsš, Ružomberok; Křupa Ján,
dsš, Ružomberok; Cibulková Dana, Turč. Teplice;
Hroš Vladimír, P, Pov. Bystrica; Fiizy Dušan, dsš,
Ružomberok; Kubašek Jozef, Trstená; Bystrický
Kamil, P, Dubnica; Kozík Tomáš, P, Dubnica; Žili-
naský Frant., P, Pov. Bystrica; Rumlová Ludmila,
P, Ružomberok.

Kraj Košický
C. Borecká Veronika, Rožnava.

Kraj Prešovský
B. Pavelka Dušan, 2. J, Prešov; Konečný Anton,

dsš, Prešov; Trenkler Peter, dsš, Prešov.
C. A. Patočková, 2. J, Prešov; Matušová Olga,

2. J, Prešov; Krešňáková Marie, 2. J, Prešov; Lomová
Anna, 2. J, Prešov.
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O. SOUTĚŽ III. KOLA

1. Soutěže III. kola se účastnili skoro vesměs žáci
11. tříd středních škol; jeden žák byl z 10. třídy střed-
ní školy, tři žáci z průmyslových škol (dva ze čtvrtých
ročníků, jeden ze třetího). Ze 64 pozvaných žáků
(mezi nimi bylo 12 žákyň) se к soutěži dostavilo 62
žáků (mezi nimi 10 žákyň); dvě žákyně se ze závaž-
ných důvodů omluvily.

Ze 62 žáků, kteří se účastnili soutěže, bylo 42 úspěš-
ných; z toho byli 2 žáci z průmyslových škol.

Z 10 žákyň, které se účastnily III. kola, se 4 žákyně
zařadily mezi úspěšné řešitelky.

Nejlepších dvacet úspěšných řešitelů III. kola
bylo prohlášeno vítězi IX. ročníku matema-
tické olympiády; mezi nimi je jedna žákyně. Nej-
lepším a v pořadí prvním z vítězů je žák 4. ročníku
průmyslové školy; druhým v pořadí je slovenský žák»
který se později velmi čestně umístil v II. mezinárod-
ní olympiádě v Rumunsku jako jeden ze dvou abso-
lutních vítězů této soutěže. Při této mezinárodní sou-

těži se ukázalo, že všech 8 československých účastníků
(bylo to 8 prvních vítězů III. kola IX. ročníku MO)
skutečně představovalo naše nej lepší olympioniky;
6 z nich získalo ceny na mezinárodní olympiádě a oba
zbývající rovněž podali hodnotná řešení, která snesla
pro svou úplnost a obratnost i přísné porovnání s ře-
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šeními účastníků ostatních zahraničních delegací na
této mezinárodní soutěži.

Uvádíme dále pořadí vítězů III. kola IX. roě-
niku matematické olympiády.

POftADÍ VÍTĚZŮ IX. ROČNÍKU
MATEMATICKÉ OLYMPIÁDY

(ŠKOL. ROK 1959/60)

1. Petr Tomšů, 4.b roč. průmyslové školy, Kopřiv-
nice

2. Ivan Korec, 11.a tř. jsš, Partizánske
3. Pavel Nosek, 11.a tř. jsš, Hradec Králové
4. Jiří Souček, 11.a tř. 21. jsš, Na Santošce 1, Praha

16

5. Josef Komrska, 11. tř. jsš, Týn nad Vltavou
6. Josef Kořenář, 11. tř. jsš, Vodňany
7. Jan Veselý, ll.c tř. jsš, Ostrava I
8. Ladislav Baran, ll.b tř. dsš, Žilina
9. Jiří Cihlář, 11.a tř. jsš, Ústí nad Labem

10. Petr Kohler, 11.a tř. dsš, Ostrava II
11. Oldřich Vajsar, 11.a tř. jsš, Třebíč
12. Pavel Bálek, 11.a jsš, Chrudim
13. Josef Kolář, 11. jsš, Roudnice
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14. Milan Kubíček, ll.b jsš, Trutnov
15. Karel Wichterle, 11.a jsš, Jeseník
16. Vladislav Čápek, ll.b jsš, Praha 1, Malá Strana
17. Kristina Dudašková, ll.bdsš, Bratislava-Trnávka
18. Alois Klíc, ll.b jsš, Boskovice
19. Eduard Krumpolc, ll.b jsš, Kyjov
20. Kamil Sarka, 11.a jsš, Žarnovica

2. Vítězové IX. ročníku MO obdrželi od minister-
štva školství a kultury velmi hodnotné věcné
ceny, a to podle jejich vlastního výběru. Vedle toho
jim byly poukázány peněžní částky (až Kčs 250)
na nákup odborné studijní literatury; seznam
vhodných děl к nákupu literatury jim byl zaslán.
Každý z vítězů dostal umělecky provedený čestný
diplom, který podepsal ministr školství a kultury
a dále předseda ústředního výboru matematické
olympiády.
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III. ŘEŠENÍ ÚLOH ZE SOUTĚŽE

1. ÚLOHY I. KOLA KATEGORIE A

1. Dokažte, že pro libovolná kladná čísla а, b, c
platí nerovnost

1 1 1 2

a -j- b -(■” ca + b b -f c c + a

Řešení. Z podmínky a > 0, b > 0, c>0 vyplývají
nerovnosti

n -)~ b 0, b -)- c 0, c -f- a 0, ci -)— b -)- c 0.

| Z poslední nerovnosti kombinací s nerovnostmi
a > 0, b > 0, c > 0 po řadě dostaneme

ci -j- b -f- c b -j- c,

ci -f" b -f- с c -j- u?

a-\-b+c>a-\-b.

V těchto nerovnostech jsou na obou stranách klad-
ná čísla; podle známé věty proto platí tyto nerovnosti
o převrácených hodnotách uvažovaných stran
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I

1 1
<

CL -j- 0 -f- с Ъ -j- С

1 1
<

с + а ’či -f- b -f- с

1 1
<

а + ЪCL *-)- Ъ -(- С

Sečtením levých a pravých stran těchto tří nerovností
dostáváme

3 11 1

ci b -f- c ci -}~ b b c
+ -<

c -f a

neboli

1 31 1
>

ci -)~ b “I- cci -j- b b -(- c c -j- Cl

Dále platí nerovnost

j>4-
Znásobením příslušných stran obou posledních ne-
rovností dostáváme

1 21 1
+ >

ci b -p ca -f- b b -j- c c + a

Z této nerovnosti pak zřejmě vyplývá daná nerov-
nost (1); tím je důkaz proveden.

333 IX. roč. matem, olympiády



2. Dané sú dve róznobežné roviny P, Q, pretínajúce
sa v priamke p\ v rovině P je daný bod A a v rovině
Q je daný bod C, pričom žiadny z bodov A, C neleží
na priamke p.

Zostrojte rovnoramenný lichoběžník ABCD (kde
AB\\CD), ktorému možno vpísať kružnicu, a to taký,
aby bod В ležal v rovině P a bod D v rovině Q.

Riešenie.

Poznámka. Riešenie úlohy rozdělíme na dve časti:
stereometrickú část A a planimetrickú část B.

A. Rozbor stereometrickej časti úlohy (obr. 1). Nech
existuje lichoběžník ABCD, ktorý splňuje požiadavky
textu úlohy. Rovinu lichoběžníka označme R; prie-
sečnicu rovin P, R označme pl a priesečnicu rovin
Q, R označme p2. Je teda px = AB, p2 ^ CD, pričom
nutné platí Px\\pz, px ф p2. Rovina R je teda určená
dvorná róznymi rovnoběžkami px, p2. Přitom je nutné
R ф P, lebo bod C neleží v rovině P (P, Q sú podTa
textu úlohy róznobežné roviny, bod C leží v Q, ale
neleží v P); rovnako je R ф Q. Je teda p фрх,
p фр2.

Priamky p, px nie sú róznobežné, čo hned’ dokáže-
me. Nech je X priesečík róznobežiek p, px, takže je
P = (p, px). Rovina R přetne rovinu Q v priamke p2
a pretože bod X roviny R leží i v rovině Q, prechádza
priesečnica p2 rovin Q, R týmto bodom (určité je
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Q ф R), tj. priamky px, p2 majú spoločný bod, čo však
nie je možné. Platí teda p\\px a podobné sa dokáže,
že je p\\p2- Priamky p, px, p2 sú teda rovnoběžné a
žiadne dve z nich nesplývajú. Z toho vyplývá kon-
štrukcia roviny R:

Bodom A vedieme priamku px\ \p a bodom C priam-
ku p2\\p. Podlá známej vety je Pi\\p2. Přitom je
px фр2, pretože priamka px obsahuje bod A, ktorý
neleží na p (takže je p ф px), priamka p2 je z podob-
ného dóvodu rózna od p (roviny P, Q nemajú okrem
priamky p spoločný bod). Obidve rožne rovnoběžky
px, p2 určujú jedinú rovinu R, ktorá je tým zostrojená.

Teraz v rovině R prevedieme ďalšiu část В riešenia
úlohy.

B. Rozbor planimetrickej časti úlohy (vid označenie

35



z obr. 2). Túto část úlohy možno vyslovit takto:
,,V rovině R sú dané dve rožne rovnoběžky px, p2,
na px je daný bod A, na p2 je daný bod C. Zostrojte
rovnoramenný lichoběžník ABCD, kde В leží na

px, D leží na p2, a to taký, ktorému možno vpísat
kružnicu.“ Rozriešením tejto úlohy bude skončené
riešenie danej úlohy.

V rovnoramennom lichoběžníku ABCD je ulilo-
priečka AC zrejme vždy šikmá к základní AB. Preto
úloha nemá riešenie v případe, keď platí AC _L Pi
alebo

AC _L p■

V ďalšom predpokladajme, že neplatí (1). Okrem
toho móžeme předpokládat, že je

(1)

AB > CD (2)

čiže, že v priamke px leží váčšia základna lichoběžníka
Odóvodníme to takto:

Nech je AB < CD. Označme O střed úsečky AC.
V súmernosti so stredom O sú p1} p2 súmerne združené
podle bodu O a právě tak sú súmerne združené aj
body A, C. Lichoběžníku ABCD odpovedá v tejto
súmernosti lichoběžník CD0AB0 alebo AB0CD0 (obr.2)
s ním zhodný, tj. platí CD0 < AB0 (pretože je
AB — CD0, CD = AB0). Lichoběžník AB0CD0 má
teda váčšiu základňu v priamke pv Od něho přejdeme
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spomínanou súmernostou к lichoběžníku ABCD, kto-
rý je tiež riešením úlohy.

Za platnosti vztahu (2) zostrojíme obdížnik AFCE,
kde F je pata kolmice vedenej bodom С к pv Označme
K, L středy základní lichoběžníka ABCD a M, N do-
týkové body ramien BC, AD s kružnicou к = (S, r)

\q

c*c0L1 D0D
rr

- I \ '

'/ЧЛ&''

'\

АвА0 К в B0

\Obr. 2

/

lichoběžníku vpísanou. Výška lichoběžníka je v — 2r.
Zo súmernosti lichoběžníka podlá jeho osi súmernosti
q 2= KL vyplývá, že K, L sú dotykové body kružnice
к s jeho základňami. Bod F padne nutné dovnútra
úsečky KB, bod D dovnútra úsečky EL. Pri vačšej
základni А В leží ostrý úhol <^DAB lichoběžníka,
pretojbod D nutné padne dovnútra úsečky LE a teda
aj dovnútra polroviny AEC. Položme (obr. 3)

AB = 2a, CD = 2c, kde a > c.

37



O dížkach dotýčnic vedených z bodov A, C ku kruž-
nici к platí

a = AK = AN, c = DL = DN.

Je teda AD = AN -f DN = a -f- c. Ďalej je AF =
= AK + FK = AK + LC = a + c, tj.

AD - AF. (3)
l<7

m I I

i L C rD
'^DoЛ P2> J

N I \ Gl\

ф'-Ny
n

f rl-
/

/к\ I !/

PíK=B0 iF В
■ c 1

— »

Obr. 3

A\
a

Tento výsledok použijeme ku konštrukcii bodu D
a tým aj hladaného lichoběžníka. Bod D je spoločným
bodom priamky p2 a kružnice m = {A, AF) a padne
do vnútra polroviny AEC. Všimnime si ešte toho, že
musí byť AD > v (pre AD — v by sme dostali štvo-
rec) čiže nutné platí

AF > CF (4)
alebo

<£CAF < 45°.

Vopred móžeme povedať, že úloha nemá riešenie pre

(4')
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AF ^ CF alebo <£CAF ^ 45°

tj. ak je odchýlka mimobežiek p, AC váčšia alebo
rovná 45° [vzhladom к (1) v čítané uhla 90°]. Při kon-
štrukcii dokážeme, že ak platí (4) alebo (4'), potom
má úloha právě dve riešenia.

Konštrukcia (obr. 3). V rovině R sú dané rožne

priamky Pi||p2> na V\ bod A, na p2 bod C, prióom je
<%.CAF < 45°, kde F je pata kolmice vedenej bodom
С к priamke pv Zostrojme obdížnik AFCE. Je teda

AF > CF. (5)

Opišme kružnicu m = (A, AF). Pretože platí (5),
m přetne priamku p2 vo dvoch róznych bodoch. Zo
súmernosti kružnice m podlá priamky AE vyplývá,
že jeden z priesečíkov padne do vnútra polpriamky
ЕС. Označme ho D (druhý bod D0 nevedie zrejme
к lichoběžníku s váčšou základňou v priamke px).
Pretože platí

AD = AF < AC

(přepona AC trojuholníka ACF je váčšia ako odvěsna
AF), padne bod D podlá známej vety do vnútra úseč-
ky ЕС. Označme q os úsečky DC а В obraz bodu A
v súmernosti s osou q. Dostaneme štvoruholník
ABCD s osou súmernosti q, pričom je AB J_ q,
CD J_ q, AB\\CD, AB > CD, čiže rovnoramenný
lichoběžník s váčšou základňou AB.
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Dokážeme, že mu možno vpísať kružnicu: Označme
K, L priesečíky priamky q s priamkami p1} p2 a nech
S je střed, úsečky KL. Kružnica к = (S, %v), kde v je
vzdialenosť rovnobežiek px, p2, sa dotýká priamok
Pi> P2 P° řade v bodoch K, L. Dotýká sa však aj
priamky AD ako hned’ dokážeme:

Podlá konštrukcie je AD = AF, takže ADF je
rovnoramenný trojuholník. Jeho základňou je úsečka
DF, no body D, F sú súmerne zdražené podlá středu
S, pretože K, L sú súmerne zdražené podia S a
KF — LC = LD, pričom body F, D sú oddělené
priamkou q. Zo stredovej súmernosti bodov F, D
vyplývá, že bod S je stredom úsečky DF, takže
priamka ^4$ je osou súmernosti /\ADF a bod S leží
na osi uhla <^BAD. Kružnica к má střed S na tejto
osi AS a dotýká sa ramena AF v bode K, preto sa
dotýká aj ramena AD tohto uhla. Zo súmernosti
lichoběžníka podlá priamky q vyplývá, že kružnica
к sa dotýká aj ramena BG lichoběžníka ABCD. Tým
je dokaž převedený.

Použitím stredovej súmernosti podlá středu O
úsečky AC přejde lichoběžník ABCD do lichoběžníka
CD0AB0, ktorý je tiež riešením úlohy. Viac riešení
úloha nemá.

Závěr. Ak je F pata kolmice vedenej bodom C
к priamke рг a platí AF > CF, má úloha dve rožne
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riešenia. Obidva lichoběžníky sú súmerne zdražené
podlá středu O úsečky AC. Inak nemá riešenie.

Lepšie možno vyslovit podmienku riešitelnosti
takto: Ak je odchylka mimobežiek p, AC menšia ako
45°, má úloha dve riešenia. V inom případe neexistuje
lichoběžník požadovaných vlastností.

3. V rovině je dána úsečka AB a uvnitř úsečky je
dán pohyblivý bod M\ nad úsečkami AM, BM jako
stranami sestrojíme dva čtverce AMCD, BMEF tak,
aby ležely v téže polorovině vyťaté přímkou AB.
Těmto čtvercům opíšeme kružnice; ty se vedle bodu
M protínají ještě v dalším bodu N.

a) Dokažte, že přímky AE, BC procházejí bodem N.
b) Dokažte, že přímka MN prochází určitým pev-

ným bodem.
c) Vyšetřte geometrické místo středů úseček, které

spojují středy obou uvažovaných čtverců.

Řešení (užijeme označení z obr. 4). a) V dalším
předpokládejme, že platí

AM > BM. (1)

Případ AM < BM převedeme na předchozí užitím
souměrnosti podle osy q úsečky AB a vhodnou vý-
měnou názvů bodů A, B; případ AM = BM vyřídíme
při závěru. Pro stručnost označme

AB = 4d (2)
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a dále q polorovinu, v níž leží oba čtverce AMCD,
BMEF. Označme U vrchol pravého úhlu v rovnora-
menném trojúhelníku ABU, kde U leží v polorovině
q na přímce q\ označme M0 střed úsečky AB, potom
platí

AM0 = 2d = MqU . (3)
Ze vztahu (1) plyne S101 > S202, neboť je S101 —

— \AM, S202 = \BM. Odtud plyne, že kolmice
MP J_ S\S2 prochází vnitřkem pravého úhlu <£BMC,
takže druhý průsečík N ф M obou kružnic klf k2
leží uvnitř tohoto úhlu. Bod E padne dovnitř úsečky
MC a body Sx, S2 zřejmě padnou pořadě dovnitř ra-
men AU, BU trojúhelníka ABU.

Úhly <$.ACM, <£ANM jsou obvodové v kružnici
В a jejich vrcholy leží v polorovině o; je tedy 45° =

= <£ACM = <ANM neboli

<£ANM = 45°. (4)

Stejně se dokáže vztah <£BEM = <£BNM = 45°
vzhledem ke kružnici k2, tj.

<£BNM = 45°.

Oba úhly A^-ANM, <£BNM jsou styčné a vzhledem
ke (4), (5) platí <£ANM + A^BNM = 90° neboli
A^ANB = 90°, takže je

(5)

AN J. BN; (6)
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trojúhelník ANВ je tedy pravoúhlý a úsečku AB má
za přeponu; kružnice m = (M0, 2d) mu je opsána.

Чч\\\\

/

ÍQ
r

Obr. 4

Nyní dokážeme, že body A, E, N leží v téže přímce
(v právě napsaném pořádku): Úsečka BE je průmč-
rem kružnice k2, bod E leží uvnitř úsečky MC, takže
body M, N jsou přímkou BE odděleny; k2 je kružnice
opsaná trojúhelníku BEN a tedy <£BNE — 90°, tj.
platí
4
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EN _L BN. (7)
Ze vztahů (6), (7) vyplývá správnost našeho tvrzení,
čímž je důkaz proveden.

Dále dokážeme, že body B, N, C leží (v právě na-

psaném pořádku) v téže přímce: Úsečka AC je prů-
měrem kružnice kx, opsané trojúhelníku ACN, tj>
*$iANC = 90°; oba styčné úhly <$lANC, ANВ jsou
pravé a tudíž vedlejší. Tím je i toto tvrzení dokázáno.

Dokázali jsme tedy, že platí-li (1), potom přímky
AE, BC procházejí bodem N.

Jestliže však je AM — BM, jsou oba uvažované
čtverce shodné, takže i kružnice kx, k2 jsou shodné
a platí C = E == N a tvrzení a) úlohy je samozřejmé.

Tím je tvrzení části a) úlohy dokázáno.
b) V předchozím jsme dokázali, že trojúhelník

ABN je pravoúhlý s přeponou AB a opsanou kruž-
ničí m = (M0, 2d). Polopřímka NM je osou úhlu
<$lANB a protíná nutně kružnici m v bodě Q ф N,
přičemž Q leží v polorovině q' opačné к polorovině q
na přímce q; to plyne z toho, že je <£ANM —

= -$lBNM = 45° neboli <^.ANQ = <$cBNQ, takže
jsou i příslušné středové úhly shodné, tj. <$:AM0Q =
= A:BM0Q - 90°.

Přímka MN tedy prochází bodem Q; tím je podáno
řešení části b) úlohy.

c) Označme S střed úsečky SXS2 a dále po řadě
,
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Оъ О2, О paty kolmic vedených body Sv S2, S к přímce
AB. Čtyřúhelník S1S20201 je pro AM Ф BM pravo-

úhly lichoběžník, pro AM — BM obdélník a úsečka
SO je jeho střední příčka, takže 0 je středem úsečky
0г02 a dále je

SO — НЗД -f- S202) — \[\AD -|- \BF~\ —

- ШАВ] = \ Ad = d.

Označme p\\AB přímku poloroviny q, přičemž
vzdálenost přímek p, AB je právě d\ bod S tedy leží
na přímce p.

Úhel <$iAUB je pravý; protože body Sl9 S2 leží
uvnitř jeho ramen, leží úsečka SXS2 v tomto úhlu.
Bod S je vnitřním bodem úsečky SXS2 a tudíž je
vnitřním bodem úhlu <£AUB. Protože z přímky
S'S" =‘p právě úsečka S'S" leží v úhlu <^AUB, leží
uvažovaný bod S nutně uvnitř úsečky S'S".

Odtud plyne, že bod O je vnitřním bodem úsečky
O'O" (kde O', O" jsou paty kolmic vedených body
S', S" к přímce AB) a tím bod S je vnitřním bodem
S'S".

Zbývá ještě dokázat, že každý bod S, který zvolíme
uvnitř právě popsané úsečky S'S", je středem jisté
úsečky S^S2, přičemž body S1} S2 jsou po řadě středy
čtverců AMCD, BMEF, které vyhovují požadavkům
textu úlohy.
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Důkaz. Nechť bod S leží uvnitř střední příčky (úseč-
ky) S'S'' rovnoramenného pravoúhlého trojúhelníka
ABU; bod S leží tedy uvnitř pravého úhlu <£AUB.
Sestrojme obraz pravého úhlu ^AUB v souměrnosti
o středu S. Buď M obraz bodu U. Je-li и rovnoběžka
s přímkou AB vedená bodem U, mají pásy rovnobě-
žek S'S" 11 AB, S'S" | | и stejné šířky a ze vztahu US =
= SM plyne, že bod M padne na přímku AB, a to
dovnitř úsečky AB.

Označme po řadě MX, MY obrazy polopřímek
UA, UB v souměrnosti o středu S. Přímky UA\\MX,
UB\\MY omezují obdélník US2MSX (viz obr. 4)
o středu S, v němž platí SSX — SS2, takže S je stře-
dem úsečky 8г82. Sestrojme čtverce AMCD, BMEF
v polorovině q; protože je <$.AMY = ABU — 45°
a A^BMX = *$.BAU = 45°, jsou právě sestrojené
body Slt S2 středy sestrojených čtverců AMCD,
BMEF. Tím je důkaz ukončen a řešení části c) úlohy
provedeno.

Geometrickým místem bodů S je tedy vnitřek
úsečky S'S", kde S', S" jsou po řadě středy odvěsen
pravoúhlého rovnoramenného trojúhelníka ABU
o přeponě AB a ležícího v polorovině q.

4. Je dána rovnice

x2 — 6 (к — 1)ж + 9 {к2 — 2) = О
o neznámé х, přičemž je к dané reálné číslo.

/

(1)
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Určete všechna Čísla k, pro něž má daná rovnice
alespoň jeden nezáporný kořen, který je nejvýše
roven číslu 1.

Řešení. Nechť číslo x, o němž platí
О ^ ж ^ 1

je řešením rovnice (1). Vyšetříme podmínky, které
o něm musí platit; protože úpravy, které budeme
provádět, budou ekvivalentní, dostaneme přitom
číslo k, pro něž o čísle x platí vztah (V).

Diskriminant D rovnice (1) je
D = 9(k — l)2 — 9(/j2 — 2) =

= 9 {k2 — 2k+l — k2 + 2) = 9(3

(!')

2k). (2')
Protože musí platit D ^ 0 neboli 3 — 2k ^ 0, dostá-
váme.

к ^ ! = 1,5;

jinak by rovnice (1) neměla reálné řešení.
Označme жх ^ x2 reálné kořeny rovnice (1); platí

(2)

ж152 = Цк — 1) ± 3|A3 — 2к
čili po úpravě

хг = 3(& — 1 + |/3— 2k),
x2 = s[k — 1 — }/3 — 2k).

Vyšetřování o čísle к provedeme pro každý z koře-
nů xlt x2 odděleně.

(3)

(4)
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I. Vyšetřování kořene xv A. Nechť je xx ^ 0;
pak ze (3) plyne postupně

к — 1 + j/3 — 2к ^ 0,

(/3 —"2к Ь 1 — к.
a) Nechť je 1 — к ^ 0 neboli

(5)

potom nerovnost (5) je splněna pro každé к, o němž
platí

isiáf. (6)

b) Nechť je 1 — к ^ 0 neboli
к ^ 1;

umocněním obou stran vztahu (5) na druhou dosta-
neme postupně

(7)

3 — 2k ^ 1 — 2k + k\
k2 — 2^0,

(k + Í2){k— p) á0.
Činitel к — У2 je vzhledem к předpokladu (7) zápor-
ný, a proto je nutně к + ]/2 ^ 0 neboli

l-ž- 1/2 ,

tj. vzhledem ke (2), (7)
— fžátsi. (8)

48



Spojením vztahů (6) a (8) vyplývá pro к nutně vztah

-íšáiá'}. (8')

B. Jestliže je dále xx ^ 1, dostaneme ze (3) postupně

3(k — 1 + /3 — 2Jfc) ^ 1,

3p — 2k^i—3k
0, tj.

к S | = 1,3.
Umocněním obou stran (9) na druhou dostáváme

postupně

9(3 — 2&) ^ 16 — 24& + 9jfe2,
0 ^ 9A;2 — 6A: — 11,

0 ^ (3* — 1 — 2 J/з) (3& — 1 +2 |/з).

(9)
takže nutně platí 4 — ЗА:

(10)

(И)

Tu vzhledem к (10) je 3к—1 — 2 j/3 5Í 4—1 —
— 2.1,7 = 4 — 4,4 < 0; proto z (11) nutně plyne

ЗА: — 1 + 2 У3~^ 0,

& ^ — 4(2 j/3-— 1) < 0.
tj-

[(12)

Shrnutí případu I. Spojením vztahu (8') se vzta-
hem (12) dostáváme

1/2 <Lk^ — j(2 l/S— l). (13)

494 IX. roč. matem, olympiády



Platí — У2 < — 3(2 1^3 — l), neboť je
*(2 к»— 1) — (— Щ =

2 j/3) >
2.1,8) =

= J(3 j/2 + 1
> *(3.1,4 + 1
= i(4,2 + 1 — 3,6) > 0;

proto interval (13) existuje. Obrácením postupu do-
stáváme:

Výsledek I (obr. 5). Vztah 0 5^ xx ^ 1 platí právě
pro

i (2 /3 — 1).— У2 к ^
II. Vyšetřování kořene x2. A. Z požadavku

x2 ^ 0 ze (4) plyne postupně

(13')

к — 1 — ]/3 — 2k 0, (14)
к— 1 ^ j/3 — 2к

a tedy především je nutně к — 1 ^ 0, tj.
ižl,

což spolu se vztahem (2) dává

(15)

látá!. (16)
Umocněním obou stran nerovnosti (14) na druhou
postupně obdržíme

к2 — 2k + 1 ^ 3 — 2k,
k2 — 2^0,

0 + у2) o — у2) ^ 0.
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Vzhledem ke vztahu (16)je&-f-f22>0az posled-
ní nerovnosti plyne, že nutně platí к — j/2 ^ 0 neboli
к ^ У2 ; spojením se (16) dostáváme

prs к s |.
B. Z požadavku ж2 ^ 1 ze (4) plyne postupně

3(А; — 1 — У3 — 2к) < 1,
ЗА: — 4 ^ зУЗ — 2к.

Pro ЗА: — 4^0, tj. к ^ §, je tato nerovnost
splněna; protože však platí f < j/2 , nepřichází
tento požadavek vzhledem к požadavku (17) vůbec
v úvahu.

Pro ЗА: — 4 > 0 neboli pro к > -f (což je splněno
požadavkem (17), neboť je f < У2) po umocnění
obou stran nerovnosti (18) na druhou postupně do-
stáváme

(17)

(18)

9k2 — 24к + 16 ^ 27 — 18A:;

(ЗА: — 1 — 2]/3) (ЗА; 1 + 2|/3) S 0.
Přitom první činitel na levé straně této nerovnosti jé
menší než druhý činitel. Z poslední nerovnosti tedy
plyne

ЗА: — 1 — 2j/3 ^ 0,
ЗА: — 1 + 2^3Ъ 0

neboli platí zároveň
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& = "jj* (2/3 + 1),

-|(2fí-l)gi,
kde —1(2/3— l) < 0; vztah (20) je požadavkem
(17) splněn. Uveďme ve vzájemnou souvislost vztahy
(17), (19).

Je /2 < — (2/3 -f- l), nebot platí
ó

у (2^3 + l) — t'2 = -I (2|,T+ 1 — 3/2) >

> у (2.1,7+ 1 — 3.1,42) = у (4,4 —4,26) > 0.
Dále je (2/3 + l) < — , neboť platí

t(2|/3 + l) = у (9-4^3-2) =

= ý(7-4V3)>y (7 — 4.1,74) = у (7 — 6,96) > 0.
Z obou posledních výsledků musí tedy vzhledem

ke vztahům (17), (19) o čísle к platit

|/2 Stá* (2/3 + l).
Obrácením postupu dostáváme:

(19)

(20)

3 1

2

I

(21)
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Výsledek II (obr. 6). Vztah O ^ x2 ^ 1 platí právě

‘
(2|/3 + l).

pro

(21')

Závěr. Alespoň jeden z kořenů dané rovnice (1) je
nezáporný a zároveň nejvýše roven číslu 1 právě pro
čísla к, o nichž platí buď vztahy (13') anebo vztahy
(21').

2& к-2 -I(2 -1 {? 1О г*,/ к 1

!X $(213+1)V7$(2(5-1)
t*—

případ kořene 0 = < = 1

Obr. 5

Г
Případ kořene Ok к, Ě 1, kde X, £x,

Obr. 6

Poznámka. Současná platnost vztahů 0 xx 5^ 1,
0 ^ x2 5^ 1 nenastane (viz též grafy — obr. 5 a 6).

5. Daná je reálna funkcia

у = I x — 2 \x — i — \ x 2 \x — 1

reálnej premennej x.
Nájdite všetky x, pre ktoré má táto funkcia zrny-

sel; ďalej ukážte, že pre x ^ 2 je funkcia rovná kon-
staňte. Potom náčrtnite graf danej funkcie.

(1)

Iliešenie. Predovšetkým musí o premennej x platit
x — 1^0 čiže

x ^ 1, (2)
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pretože inak by ]íx—1 nemala zmysel. Potom je
x + 2 \íx—- 1 číslo kladné a existuje aj jeho druhá
odmocnina.

Číslo x — 2]^x 1 musí byť nezáporné, aby mala
zmysel jeho druhá odmocnina, tj. musí platit x ^
^ 2\'x— 1. Na oboch stranách tejto nerovnosti sú
nezáporné čísla, preto ich umocněním na druhu do-
staneme nerovnost

x2 ^ 4(x — 1)
čiže

(x — 2)2 ^ 0.

Táto nerovnost je však splněná pre každé reálne x,

preto pre x ^ 1 existuje tiež odmocnina ]/x — 2\íx — 1.
Daná funkcia je teda definovaná pre všetky x ^ 1.
Teraz rozhodnime o znamienku hodnot funkcie у

pre x z uvedeného intervalu. Dokážeme, že platí
у ^ 0 čiže

|!x— 2|íx— 1 ^ J/ж -f 2 jíx— 1 . (3)

Pretože x — 2]!x — 1, x 2\x — 1 sú pre x ^ 1 ne-

záporné čísla, dostaneme umocněním oboch stráň
nerovnosti (3) na druhu ekvivalentnú nerovnost. Ak
utvoříme rozdiel jej 1’avej a právej strany, dostaneme

x — 2^x — 1 — [x + 2]Гх — l) = — 4 ]jx — 1 ,
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čo je záporné číslo pře x > 1 a nula pre x = 1. Tým
je dokázané, že je

2/^0.

Teraz vypočítáme y2. Postupné platí

у2 = ж— 2\íx — 1 + x + 2j/#— 1 — 2]/#2 — 4(#— 1),
у2 = 2{x — У (x — 2)2 ),
у2 = 2(ж —|ж — 2|);

У

л-йс8 Ш
о

аФ,-2]
Р- [2,-2]

Obr. 7

z čoho vzhl’adom к tomu, že у ^ 0, vyplývá

У = — У2(х — \x — 2|).
Rozoznávajme dva případy:

Případ [1]. Nech je x—2^0, takže \x — 2| —

— x — 2. Potom platí у — — У4 číže

У = — 2.
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Pre x ^ 2 je teda у rovné konstantě —2, čo sme
mali dokázat a grafom fnnkcie je v tomto případe
polpriamka (viď obr. 7).

x ^ 2, takže je \x — 2| =Případ [2]. Nech je 1
= 2 — x. Potom postupné platí

У = — /2(ж — 2 + x) ,

У = — f4(ж — 1) ,

у = — 2|/íc — 1 .

Grafom funkcie v uvedenom intervale je oblúk AP
paraboly o rovnici

У2 = Цх — 1),
ktorá má vrchol ^4 =(1,0) a prechádza bodom
P = (2, -2).

Tým je vyšetrenie grafu převedené (viď obr. 7).

6. Řešte soustavu rovnic

sin (x — a) + cos(y — <x) — 0,

sin(a; + a) + cos(y + a) = sin2a

o neznámých x, y, přičemž oc je dané reálné číslo.

Řešení. Nechť dvojice x, у reálných čísel splňuje
obé rovnice (1), (2).

Z rovnice (1) podle vzorce shnp = — sin(—cp) do-
staneme rovnici

(1)

(2)
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— sin(—x + a) -f cos (у
Pomocí vzorce sine = cos(ič — e) lze první člen levé
strany této rovnice upravit, čímž dostaneme rovnici

—cos(iť 4- x—oí) -f cos(y— a) = 0

л) = 0.

neboli rovnici

cos (R -f я

Na její levou stranu užijme vzorce cosíOj — cos<o2 —

= — 2 sin^tOi -f co2) . sin2 (coj — <o2); dostaneme rov-
nici

— 2sin£(a; -f у — 2<x -f R) . sin^fc — у -f R) = 0

neboli rovnici

sin£(# -f у — 2oí -f R). sin2(a; — у -f R) = 0. (3)

Jeden z obou činitelů levé strany této rovnice musí
být roven nule; každou z těchto možností uva-

žujme odděleně (viz případy [1] a [2]).

oí) — cos (y — Oí) = 0.

Případ [1]. Nechť ve vztahu (3) je

sin^fc -fy —• 2oí -f R) =0.

Je známo, že všechna řešení rovnice sinco = 0 jsou
dána vztahem co = n.2R, kde n je libovolné celé
číslo; podle rovnice (3') tedy o číslech x, у nutně platí

(3')

\(x -fy — 2oí -f R) = n.2R
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neboli
у — 2oí — x — R + n. 4R,

tj-
у — 2(x — x + R(4n

kde n je libovolné celé éíslo. Došaďme tento výsledek
do rovnice (2); její levá strana se postupně upravuje
takto:

1), (4)

sin(£ + a) + cos(3a — x — R) =
— sin(ír + oí) + cos[ič — (3a — ж)] =

= sin(a; -f a) + sin(3a — x) =
= 2 sin2a cos(a; — a),

přičemž jsme užili vzorce sina^ -f sinco2 =

= 28т^(а>х + co2) cos^a^ — a>2).
Dosazení ze (4) do (2) tedy dává rovnici

2sin2a. cos(ír — a) = sin2a,

тЬj^cos(xsin2a a) — (5)

Rozeznávejme dvě možnosti [a], [b].
Možnost [a]. Necht o čísle a platí

sin2a = 0 (6)
neboli

2a = p. 2R,
kde p je libovolné celé číslo. Potom rovnice (5) je
splněna každým reálným číslem x. Řešením soustavy
rovnic (1), (2) může být jedině dvojice čísel [viz (4)]

(6')
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x, у = —х + 2(х — R + п. 4R,
kde x je libovolné reálné číslo a n je libovolné celé
číslo; přitom platí (6').

Proveďme zkoušku dosazením čísel (7) do rovnic
(1), (2), jejichž levé strany po řadě označme Ь1г L2:
Lí = sin(x — a) + cos(—x + л — R) =

= sin(# —- a) + cos[i? — (л — #)] =
- sin(a; — a) + sin(a — x) =

= sin(a; — oc) — sin(a; — л) = 0,
takže vskutku je Ll = 0.

Dále je
L2 = sin(x + oí) + cos(—x + Зл — R) —

= sin(x + oí) + cos[R — (3a — x)] —

= sin(a: + a) + sin(3a — x) =
= 2sin2a cos(a; — a);

avšak sin2a je podle předpokladu rovno nule a tedy
L2 — 0, proto jsou obě strany rovnice (2) rovny nule.
Jsou tedy čísla (7) řešením soustavy rovnic (1), (2),
a to tehdy, platí-li (6) neboli (6').

Možnost [b]. Nechť o čísle a platí

sin2a ф 0

(7)

(8)
neboli

2л ф V ■ 2Ii>
a to pro kterékoli celé číslo p\ potom z rovnice (5)
plyne rovnice

(8')
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cos(z — x) = ~2 ’

Ч-
x — (x = 60° -f m\ • 4i2

anebo
x — x = 300° m2.4R,

kde mv m2 jsou libovolná celá čísla. Máme tedy pro
číslo x jeden z požadavků:

x = x -f 60° -f mí. 4R

(kde ml je libovolné celé číslo),
x — x + 300° + m2.4R

(kde m2 je libovolné celé číslo).
Po dosazení ze vztahů (9), (10) do (4) dostáváme pří-
slušná čísla y, tj.

(9)

(10)

у = x — R — 60° + (n — mx) 4R,
у — x — R — 300° + (n — m2) 4R,

neboli

у — x + 210° + n^AR,
у = x + 330° + n2AR;

(9')

(10')

přitom к sobě příslušejí dvojice (9), (9') anebo dvojice
(10), (10').

I. Zkouška dosazením dvojice (9), (9') do (1), (2)
při označení Llt L2 levých stran rovnic (1), (2):
Ll = sin00° + cos210° = sin60° — cos30° = 0;
L2 — sin(2л + 60°) -f- cos(2<* -f 210°) =

= sin2a costíO0 -f- cos2« sin60° -f-
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+ cos2a cos210° — sin 2a sin210° =

=sin2a(cos60° +sin30°) -fcos2«(sin60°—cos 30°) =
= sin2a.(£ + 2) = sin2«.

Dvojice čísel (9), (9') tedy splňují obě rovnice (1),
(2).

II. Zkouška dosazením dvojice (10), (10') do (1),
(2) při předchozím označení:

Lx = sin300° + cos330° = —sin60° -f cos30° = 0;
L2 = sin(2a + 300°) + cos(2* + 330°) =

= sin2a cos300° -f cos2a sin300° +
+ cos2& cos330° — sin2a sin330° =

= sin2«(cos60° + sin30°) +
+ cos2<*(—sin60° + cos30°) =
= sin2a.(2 + 2) = sin2&.

Dvojice čísel (10), (10') tedy splňuje obě rovnice
(1), (2).

Případ [2]. Nechť ve vztahu (3) je
1

sin — (x У + R) = 0 (3")
neboli

1
~(x — y + R) = n.2R

kde n je libovolné celé číslo, takže
x = у — R + nAR. (H)
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Dosaďme tento výsledek do rovnice (2); dostaneme
rovnici

sin(y + a — R) -f cos(y + a) = sin2&
neboli postupně

—sin [ič — (y + a)] + cos (y + a) = sin2«,
—cos (у -f a) + cos (y + a) = sin2a,

0 = sin2a. (12)
Jsou dvě možnosti [a], [b]:
[a] Nechť je

sin2« = 0 (13)
neboli

2a. — n. 2R,
tj-

a — n.R,
kde n je urěité celé číslo závislé na čísle oc. Potom rov-
nice (12) je splněna libovolným číslem y. Jedno z čísel
x, у tedy zvolíme, druhé vypočítáme ze vztahu (11).

Jestliže je sin2a = 0, potom dvojice
x, у — x + R + m. 4R,

kde x je libovolné reálné číslo a m je libovolné celé
číslo, je řešením rovnic (1), (2); přesvědčíme se o tom
zkouškou dosazením. Tu Lv L2 jsou opět dosazení do
levých stran těchto rovnic.

III. Zkouška

Lx — sin(a; — a) + cos(íc + R — a) =
= sin (x — a) + cos[i? — (a — ж)] =

(14)

62



= sin(íc — a) + sin(a — x) —
— sin(:c — oí) — sin(£ — a) = 0.

L2 — sin(£ + oí) + cos (R + x + oí) =
= sin(a; -f- oí) — sin(a; + <x) = 0,

přičemž pravá strana rovnice (2) je sin2a = 0.

Čísla (14) splňují rovnice (1), (2).
[b] Nechť je

sin2& Ф 0
neboli

а Ф nR,
/

ať zvolíme za n kterékoli celé číslo. Potom levá strana

rovnice (2) po dosazení za x ze vztahu (11) je rovna
nule, kdežto pravá strana je různá od nuly. Dvojice
čísel (14) tedy nesplňuje rovnici (2) při oí ф nR.

Závěr. Jestliže o čísle oí platí:
1. sin2a = 0, potom dvojice čísel (7), tj.

x (libovolné reálné číslo), у = —x + 2oí — R -f nAR
(kde n je libovolné celé číslo) a dále dvojice čísel (14),
tj-

x (libovolné reálné číslo), у = x -}~ R ф nAR

(kde n je libovolné celé číslo) je řešením soustavy
rovnic (1), (2).

2. sin2« Ф 0, potom obě dvojice čísel (9), (9')
a (10), (10'), tj.
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a) x = a + 60° + mAR, у — <x + 210° -f nAR,
b) x = ос + 300° + mAR, у = a + 330° + nAR

(kde m, n jsou libovolná celá čísla) jsou řešením obou
rovnic (I), (2).

2. ÚLOHY II. KOLA KATEGORIE A

1. Nájdite všetky reálne čísla x, pre ktoré platí
vztah

tg2x 2 cotg2a;
tgx

Riešenie. Aby výrazy na 1’avej straně (1) mali zmy-
sel, musí byt tga: Ф 0, cotgz Ф 0 a okrem toho musia
mať zmysel tgx, cotg#, tg2a; a cotg2:r. Z toho dostá-
váme tieto požiadavky na číslo x (pričom m je 1’ubo-
volné celé číslo):

(1)fý 1.
cotga;

; x Ф (2m + 1). ;
71

x Ф mn\ x Ф (2m -f- 1). —

x Ф mn\

2x Ф (2m + i). ~ ; 2x Ф mn.

Tieto požiadavky možno všetky zapísat takto:
7t

-

-, kde n je lubovolné celé číslo. (2)x Ф n.
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V dalšom nech x splňuje vztahy (2). Ak je x rieše-
ním nerovnosti (1), položme

tgx = y.
Potom (1) znie

Щ1 — У2)2у 1
(i — y2)y

a po úpravách dostaneme odtial

2у

2
(1 —у2) ^ 1,1 — у2

у2)2 — (i — у2)2— (1
О,

1 — у2
— у4 + 3у2 ^0,1 —у2

у2(у2—3) 5С 0. (3)
у2—1

Vzhladom ku (2) je у Ф 0 a teda у~ > 0. Namiesto
(3) stačí preto skúmať nerovnost

у2- — 3 ^ л

T = °-у2 — 1

(V dalšom je п lubovolné celé číslo.) Uvažujme o prí-
padoch [1] a [2]:

(3')

Případ [1]: Nech je y2— 1 > 0 číže \y\ > 1. Po-
tom zrejme platí

655 IX. roč. matem, olympiády
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3л

(4)\- ПЛ < X < л + пл
4 4

[pričom zároveň platí (2) podia předpokladu].
Z (3') potom vyplývá, že je nutné у2 — 3^0 číže
\y\ ^ ][3 a teda:
buď

ПЛ X < — 1- пл— —

g I

2
— 7Г + №Я < X < 7Г + П7Г.
3 _ _ i

Spojením požiadaviek (2), (4) a (5), resp. (6) dostá-
vame, že o čísle x musí platit
buď

(5)
alebo

(0)

7C 7t
h WTT < ж < — -f пл

4 — 3

2 3
— 7Г Я-ТГ ^ X < —
О тс

Obrátením postupu zistíme, že čísla splňujúce vztahy
(7) a (7') vyhovujú nerovnosti (1).

(V
alebo

(7')Л + ПЛ.

Případ [2]. Nech je y2— 1 < 0; potom z (3') vy-
plýva, že musí byt y2 — 3 ^0. No, obom týmto
vzťahom súčasne nemóže vyhovovat žiadne reálne
číslo.
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Závěr (obr. 8). Vsetky riešenia nerovnosti (I) sú
dané vztahmi (7) a (7').

?тП3-3

7*7* i*0

Obr. 8

2. Dané sú dve mimobežné priamky ръ p2 a bod
M, ktorý neleží na žiadnej z nich. Převeďte priesto-
rove riešenie a diskusiu tejto úlohy:

Zostrojte kružnice kx, k2, ktoré prechádzajú bodom
Ж a v tomto bode sa dotýkajú tej istej priamky,
pričom kružnica kx sa dotýká priamky px a kružnica
k2 sa dotýká priamky p2.

V diskusii udajte, kolko dvojíc takých kružnic kx,
k2 existuje.

Riešenie. Predpokladajme, že úloha má riešenie.
Označme ocx, <x2 roviny určené bodom M a priamkou
px resp. p2. Tieto roviny sú rožne (inak by priamky
px, p2 ležali v tej istej rovině) a pretože majú spoločný
bod M, sú roviny oíx j a2 róznobežné. Ich priesečnicu
označme t. Priamka t je zrejme rózna od pria mok
Pi> Vii pretože inak by bod M padol na niektorú
z priamok plf p2. Teraz prevedieme túto konštrukciu
v rovině oíi ’■
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a) V rovině <xx sú dané rožne priamky px, ř a na
priamke t bod M, ktorý nepadne na px.

Sú dve možnosti:

[1] px, t majú spoloéný bod Px (obr. 9);
[2] Pi\\t, pričom jeft фЬ (obr. 10).

Obr. 9

Případ [1]. Ak sú px, t róznobežky, možno postupo-
vat takto (obr. 9):

Zostrojíme na px dva rožne body Xx, Yx také, že
PxXx = PXYX = PXM. V každom z uhlov MPxXx,
<£ MPXYX leží právě jedna kružnica, ktorá sa dotýká
priamky t v bode M, a priamky px (v bode Xx, resp.

— viď obr. 9). Označme tieto kružnice xkx, Ykx.
Sú to kružnice navzájom rožne.
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Príjpad [2]. Nech je Pi\\t, ргфЬ (viďobr. 10).Potom
zrejme existuje jediná kružnica Jclf ktorá sa dotýká
priamky t v bode M a priamky pv

b) Rovnakú konštrukciu ako v rovině prevedie-
me v rovině a2 (pozři predchádzajúci text, v ktorom

Obr. 10

sa zamění priamka pl priamkou p2). Ak sú p2, t róz-
nobežné, dostaneme dve rožne kružnice xk2, Yh2. Ak
je p2\\t (přitom je p2 ф t), dostaneme jedinú kružnicu
lc2.

DisJcusia. Tým sú kružnice zostrojené. Zostáva vy-
šetřit, za akých podmienok dostaneme v rovině
dve kružnice alebo jedinú a to isté v rovině a2.

Ak je Pi\\t, potom priamky p2, t, ktoré ležia v rovině
cx2 sú róznobežné (inak by bolo Pi\\p2). Bod M
a priamka t ležia v rovině oí2, t. j. je oí2\\pv Podobné,
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a-k je p2\\t, leží bod M a t v rovině ocx a je Лх||р2- Ak
neplatí ani jeden zo vzťahov px\\t, pz\\t, vtedy je t
priečkou mimobežiek px, p2.

Závěr diskusie. Označme лх rovinu, ktorá obsahuje
priamku px, pričom je л1\\р2. Ďalej označme л2 ro-
vinu, ktorá obsahuje priamku p2, pričom je л2\\рх.
(Existuje právě jedna rovina лх a jedna rovina л2, je
лх\\л2 а лх ф л2.)

Ak neleží bod M v žiadnej z rovin лх, л2, potom
v každej z rovin <xx, <xg existujú právě dve kružnice
splňujúce požiadavky úlohy. Kombinováním teda
dostaneme celkom štyri dvojice hladaných kružnic
kx, k2, a to dvojice:

xkx, xk2; xkx, Yk2; Ykx, xk2, Ykx, Yk2.
Ak leží bod M v niektorej z rovin лх, л2, napr.

nech M leží v rovině лх, takže je лх = potom
v rovině oíx existujú právě dve kružnice, zatial’ čo
v rovině oí2 ф л2 existuje jediná kružnica, ktorá vyho-
vuje požiadavkám úlohy (tu je t\\p2). V tomto prí-
páde dostaneme tedy kombinováním celkom dve dvo-
jice hladaných kružnic; napr. dvojica xkx, k2 a dvojica

3. Je dán pravidelný šestiúhelník АХА2А3А^А5А6,
jehož strana má délku 1. Uvnitř stran (tj. úseček)
AxA2, A2A3,..., A5A6, A6Ax jsou po řadč sestrojeny
body Bx, B2, . . ., B6 tak, že platí
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A1B1 = A2B2 = ... = A6B6 = x.

Úsečky AxB2, A2B3, .. ., A^By omezí nový šestiúhel-
nik. Dokažte, že tento šestiúhelník je pravidelný,
a jeho obsah vyjádřete jako funkci dutého úhlu
(p = <£. a2a,b2.

Potom vypočtěte, pro které cp má vzniklý šesti-
úhelník obsah rovný dvěma třetinám obsahu šesti-
úhelníka daného.

Dodatečná otázka. Obsah vzniklého šestiúhel-
nika vyjádřete jako funkci délky x = AXBX.

Řešení (obr. 11). a) Označme Cx, C2, . . .,C6 vrcholy
vytvořeného šestiúhelníka jako na obrázku 11. Podl$
vět o shodnosti trojúhelníků snadno dokážeme, že
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jsou shodné trojúhelníky Д A1A2B2, Д A2A3B3,..
Д A^A1Bl a dále trojúhelníky Д Д A2B2C2,
. . ., Д АС,ВС(36. Odtud vyplývá, že šestiúhelník
C102C3C4C&C6 má všechny vnitřní úhly shodné, všech-
ny strany shodné a že je tedy pravidelný.

b) Obsah P0 daného šestiúhelníka je

= б.|#=|уз.

• 9

Označme P obsah šestiúhelníka C1C2. . .C6 a P' obsah
trojúhelníka A1A2C2.

V trojúhelníku A1A2C2 je ^A2AXB2 = cp, ^lAxA2C2^
= ^ ^ A3A2B3 = 120 <p, <£ =
= 60°. Ze sinové věty užité na tento trojúhelník
plyne

AxC2 sin(120° — <p) A2C2
AjA2 sin 60°

sin<p
AxA2 sin60° ’

O'-
sin<p

sin60°

Přitom je AlC1 = A2C2 a tedy CXC2 = AXC2 — AXCX =
— Ax02 A^J2, tj.

sin(120° — (p) a2c2 =AG2 = sin60°

sin(120° — <p) — sin9?
sin()0°

= sin(60° — 9o).
ó

У = C,c2 =

2cos60°sin(60° cp)
sin60°
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Odtud

'-•■i rfr=A.‘ff
P = 2)/3~sin2(60° — <p).

1
-— sin2(60°
O

<P),

tj-
(1)

c) Máme najít 99, pro které platí P = § P0 neboli
P = § . f f 3 a tedy

P = j/aT. (2)

Ze vztahů (1), (2) vyplývá vzhledem к danému po-
žadavku:

2}/3 sin2(60° — 99) = j/3

sin2(60° — 99) = Y >

wsin(60° — 99) =

neboť vzhledem к textu úlohy je
0 < 99 < 30°

(3)2 ’

(3')
a tudíž sin(60° — 99) > 0, takže pro úhel 60° — 99
nutně platí

30° < 60° — q> < 60°,

tj. úhel 60° — 99 je ostrý.
Ze vztahů (3) a (3') plyne 60° — 99 = 45°, tj.

cp = 15°.
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Závěr. Obsah vzniklého šestiúhelníka pro 0 < 9? <
< 30° je dán vzorcem (1). Tento obsah je roven dvěma
třetinám obsahu daného šestiúhelníka právě pro

(p = 15°.
Dodatečná otázka. Z trojúhelníka АгА2В2, kde

je <£ Ax = cp1, <£A2 = 120°, <£ B2 = 60° — cpx, pomocí
sinové věty dostaneme

^42Z?s
AXA% sin (60°

neboli pro x = A2B2 platí

sin<p
<P)

sin99 (4)X —

sin(60° — cp)
a tedy

sm(eo° — <p)
Po dosazení do (1) máme

sin29?
x2

Ze (4) postupně plyne pro 0 < cp < 30° (viz geomet-
rický význam úhlu cp a úsečky A2B2 délky x, při-
čemž bod B2 leží uvnitř úsečky A2A3)

1 sin(60° — cp)

P = 2|/3 • (6)

sin<px

1 1Ж
rr [2

1/3 11
COS93 — SÍ11991 : simp = ^ - cotgip
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a tedy
2 -f- x 2

cot^=-2X
2 -)- x

xjZ
(6)

Кз
Je znám vzorec

1
sin2<p = 1 + cotg2<p

po dosazení ze (6) máme

= 1 :^1 +

sin29? = —

4 4- 4x + x2 )sin29? 3x2
neboli

x2

ж2 + ж + 1

Dosaďme tento výsledek do (5); dostaneme
1

X2 + X + 1

4. Platí-li pro reálná čísla a, b, c nerovnosti
a > 0, 6 > 0, 2c > a + b,

potom je c2 > ab a platí
c — |/c2 — ab < a < c + |/c2 — «6; (1)

dokažte.

Řešení. Z nerovnosti 2c > a -f b umocněním obou
stran dostaneme (jde o kladná čísla)

4c2 > a2 -J- 2ab + b2 = (a — Ď)2 + 4a6 ^ 4a6
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a tedy
с2 > ab;

proto v (1) je c2 — ab > 0 a odmocniny mají smysl.

(2)

I. Předpokládejme, že platí c— |/'c2— ab < a
neboli

a < j/c2 — ab . (3)c —

Jsou dvě možnosti:

Případ [1]. Nechť je c— a ^ 0, potom (3) platí.
Případ [2]. Nechť je c — a > 0; umocněme obě

strany (3) na druhou:
c2 — 2ac + a2 < c2 — a&

neboli
a — 6).0 < a(2c

Protože platí 2c > a + b, je vztah (4) správný; obrá-
cením postupu dospějeme ke (3).

II. Platnost nerovnosti a < c + |/c2 — ab neboli
a — c < |/c2 — ab

dokážeme stejně jako v odst. I.
Tím je tvrzení úlohy dokázáno.

(4)

Náčrt jiného řešení. I. Podle předpokladu platí
(2c)2 > (a + b)2;

nechť neplatí (2), tj. platí
4c2 4ab.

(5)

(6)
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Z (5), (6) plyne 4ab > (a + b)2 neboli 0 > (a — b)2,
což je spor.

II. Nechť platí c — ]íc2 — ab ^ a neboli c — a ^
^ ]/c2 — ab] pak nutně je c — a ^ 0 a platí (c — a)2 ^
^ c2 — «6, tj. —2ac + a2 ^ —ab neboli 2c a + b,
což je spor s předpokladem.

3. ÚLOHY III. KOLA KATEGORIE A

1. Najděte všechna reálná ěísla #, pro něž platí ne-
rovnost

1 S1
(1)-

3 'sin2# COS2#

Ilešení. Je-li x řešením nerovnosti (1), pak je
nutně

x Ф n.90° (kde n je libovolné celé ěíslo);
jinak by zlomky v (1) neměly smysl. Tu je

(2)

3sin2# cos2# > 0

a znásobením obou stran nerovnosti (1) tímto číslem
dostaneme nerovnost

3(cos2# — sin2#) ^ 8cos2# sin2#;

po snadné úpravě obdržíme
8cos4# — 2cos2# — 3 2^0

neboli

|-j ^cos2# + y) = 0-(cos2# —
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Protože druhý činitel na levé straně této nerovnosti
je kladný, plyne odtud, že nutně je*

!>o4 —
cos2# —

neboli
1

|cos#| ^ — F3 •

Protože je cos30° = , snadno z grafu funkce
cos# najdeme tyto intervaly pro úhel # (viz např.
obr. 12):

—30° + k.2R ^ # < k.2R ,

к. 2R < #

kde к je libovolné celé číslo.
Obrácením postupu s kterýmkoli z čísel # těchto

30° + k.2R
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intervalů dospějeme ke vztahu (1). Tím je řešení
úlohy provedeno.

Podle řešení Pavla Noska, 11.a tř. jsš,
Hradec Králové.

Jiné řešení. Vztah (1) lze za předpokladu (2) po-

stupně upravovat takto (je tg2# > 0):

cotg2# — tg2# ^ ~ ,

o ;> 3tg4# 4- 8tg2# — 3.
Rovnice 3y2 + 8y — 3=0 má kořeny

j (— 8 ± Y 64 -Г36 ) = i- (—8 ± 10),

(3)

Vl.2 —

tj. yx = |, y2 — —3. Lze proto vztah (3) psát ve
tvaru

0^(tg2# + 3) (3tg2# — 1),
kde první činitel napravo je číslo kladné, a proto je
nutně

3tg2# —1^0.

|tg #| ^ у ][3 .

O čísle # proto nutně platí: buď

Odtud plyne

n. 2R ^ # ^ 30° -j- n. 2R
anebo

150° + n.2R ^ ^ 180° -f n.2R,
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kde n je libovolné číslo celé. Avšak vzhledem ke (2)
dostáváme intervaly

n.2R < x 30° + n. 2R,
150° + n.2R ^ x < 180° + n.2R,

kde n je libovolné číslo celé.
Obrácením postupu dospějeme pro každé z těchto

čísel x к nerovnosti (1).
Podle řešení Jana Svobody,

4. roč. průmyslové školy strojní,
Praha 1, Panská ulice.

2. Je dána krychle ABCDA'B'C'D', kde ABCD je
čtverec a platí AA'\\BB'\\CC'\\DDr. Na přímce AA!
leží bod P.

Sestrojte S střed kulové plochy, která je souměrná
podle roviny ABB', prochází bodem P a dotýká se
přímek p = AB, q ^ A'D'.

Proveďte diskusi řešitelnosti úlohy pro různé polo-
hy bodu P na přímce AA'.

Řešení. Rozbor (obr. 13). Hledaná kulová plocha x
je souměrná podle roviny q = ABB', proto její střed
S nutně leží v rovině q. Plocha x se dotýká přímky
q = A'D', kde q _|_ q; protože rovina vedená stře-
dem kulové plochy kolmo к její tečně protíná tuto
tečnu v jejím dotykovém bodě, je nutně bod A' do-
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týkovým bodem tečny q kulové plochy x. Rovina q
protne plochu x v hlavní kružnici к o středu 8. Kruž-
nice к prochází tedy body A', P a dotýká se přímky
p = AB\ tím jsme naši úlohu převedli na planimet-
rickou úlohu, kterou provedeme v rovině q.

Označme m osu úsečky
PA' (pokud je P ф A'),
která je kolmá к přímce p,
takže jem\\p;bodSnutně
leží na ose m tětivy PA'
a protože tečna p je rov-
noběžná s průměrem m,

je vzdálenost r rovnobě-
žek p, m poloměr kružni-
ce k. Odtud konstrukce
bodu S (obr. 14):

/4
D' c

A' B'
ř

p
Dl

H-
ВP 4

Obr. 13

/

i

\

\
/

N\ n
\

/

\nA'/ ■

\/ /\\
■ (A1 /\I

/\ /
/ \\ ✓

Mí—/. \OL
T As

\

-sK'
— ■=:

s

p 'k fk
k'

(Г ^/4 4p pA = P = QQ

Obr. 15Obr. 14
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Sestrojme osu m úsečky PA' a vyšetřme vzdálenost
r = AM rovnoběžek m, p. Bod S leží jednak na přím-
ce m, jednak na kružnici n = (A', r), tj. je jedním
ze společných bodů přímky m a kružnice n. Dále
sestrojme kružnici к = (S, r).

Důkaz. Uvažujme nyní kulovou plochu o středu S
a poloměru r; kružnice к je její hlavní kružnicí. Plo-
cha x prochází podle konstrukce body P a A'; protože
je A'D' _L g, je bod A' dotykovým bodem tečny
A'D' = q kulové plochy x. Přímka p se dotýká kruž-
nice к v bodě Q; proto má přímka p s plochou x spo-
léčný jedině bod Q a přímka p je proto i tečnou plo-
chy x. Tím jsme dokázali, že plocha x splňuje poža-
dávky úlohy. Úvahu jsme provedli za předpokladu,
že je P A'.

Diskuse. [1] Jestliže je P = A, je r = \ AA'
a kružnice к se přímky p dotýká v bodě A ; úloha má
jediné řešení (obr. 15).

[2] Jestliže bod P leží uvnitř úsečky AA', je r >
> \ AA'; vzdálenost bodu A' od přímky m je menší
než r. Proto kružnice n protne přímku m ve dvou
různých bodech S, S' a úloha má dvě řešení (obr. 14.)

[3] Jestliže je P = A' (výjimečný případ, který
jsme neuvažovali — viz obr. 16), potom má úloha
nekonečně mnoho řešení. Každý bod T přímky p je
dotykovým bodem jedné kružnice, která prochází
bodem A' a dotýká se přímky p v bodě T. (Množinou
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středů hledaných kulových ploch к je podle známé
definice parabola o ohnisku A' a řídicí přímce p.)

[4] Jestliže bod P leží na prodloužení úsečky AA'
za bod A', je vzdálenost d bodu A' od přímky m
rovna d = \A'P, kdežto poloměr r kružnice n je

kk' я

/

VL___
•T\ ms;

/;
\/
\/

A Q/vuf sQ'p

Obr. 16 Obr. 17

t — 2 A'P -f AA', tj. r > d; proto přímka m a kruž-
nice n se protínají ve dvou různých bodech S, S'
a úloha má dvě řešení (obr. 17).

[5] Jestliže bod P leží na prodloužení úsečky AA'
za bod A, nemá úloha řešení; tečna p kružnice nemůže
oddělovat body P, A' kružnice.

Tím je řešení úlohy provedeno.
Podle řešení Jana Veselého,

11c. tř. jsš,
Matiční 5, Ostrava I.
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3. V rovině jsou dány dva různé body A, AI o vzdá-
lenosti d. Dále je dáno kladné ěíslo v, V této rovině
sestrojte kosočtverec ABCD o výšce v tak, aby bod AI
byl středem jeho strany BC.

Najděte podmínku řešitelnosti a zjistěte poěet ře-
šení úlohy.

Může být řešením místo kosočtverce čtverec?

Řešení (obr. 18). Rozbor. V trojúhelníku ABM
je AB = 2.BM, a proto je úhel oj <£ ВАМ vždy
ostrý. Padne tudíž pata К kolmice vedené bodem AI
na přímku AB dovnitř polopřímky AB. Protože M
je středem úsečky BC, je MK = \ v, kde v je výška
kosočtverce. Trojúhelník AAIК má při vrcholu К
pravý úhel; známe přeponu AM a délku odvěsny AIК
tohoto trojúhelníku (určení podle věty Ssu). V troj-
úhelníku ABM je

ВAI
_ 1

~AB “ T ’ (1)

Na základě toho sestrojíme stranu hledaného koso-
čtverce.

Konstrukce (obr. 18). Nad úsečkou AAI jako prů-
měrem sestrojme Thaletovu kružnici к a opišme
kružnici m = (AI, \ v). Zvolme jednu z polorovin
vyťatých přímkou AAI a označme К společný bod
kružnic k, m, který leží v této polorovině. Tím jsme
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sestrojili trojúhelník AMK\ trojúhelník ABM se-
strojíme užitím stejnolehlosti takto:

Uvnitř polopřímky AK zvolme bod P a opišme
kružnici n = (P, o = \ AP); označme X ф A jeden
ze společných bodů polopřímky AM s kružnicí n. Tu

PX 1
platí др — . Ve stejnolehlosti o středu A při-
řaďme bodu X bod M;
potom bodu P odpovídá
bod В (je MB\\XP) a
platí vztah (l). Tím jsme
sestrojili stranu
hledaného kosočtverce

ABCD, který pak snad-
no sestrojíme.

Z konstrukce plyne, že
takto sestrojený koso-
čtverec splňuje požadav-
ky úlohy: Bod A je jeho vrcholem, bod M je středem
strany ВС a výška kosočtverce je v.

Diskuse. Bod К se dá ve zvolené polorovině sestro-
jit právě tehdy, je-li MK <C MA neboli jestliže je

v < 2d.

Úloha má dvě, jedno nebo žádné řešení podle toho,
leží-li uvnitř polopřímky AM dva, jeden nebo žádný

AB

(2)
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bod kružnice n = (P, g = \AP), tj. podle toho,
který ze vztahů x < g, x = g, x > g platí (x je vzdá-
lenost bodu P od přímky AM\ přitom je g < AP,
takže společný bod kružnice n a přímky AM může
padnout jedině dovnitř polopřímky AM). Ale x —
= AiVsinco, kde co = <£ KAM, přičemž sinco =

=

Ж ' Jedi tedy 711
1

d ; je tedy k“2 V'
neboli v = d, má úloha dvě, jedno anebo žádné ře-
šení [v případech v ^ d je již splněn požadavek (2)].

Ve ětverci je výška v ětverce rovna straně a čtverce.
Pomocí Pythagorovy věty v tomto případě z troj-
úhelníka AMВ dostaneme d = \v\H ; platí-li tento
vztah, pak je již v < d a jedním ze dvou řešení je
čtverec.

Závěr. Při konstrukci bodu К jsme se omezili na

jednu z opačných polorovin o hranici AM\ souměr-
ností podle přímky AM dospějeme z právě popsaných
řešení к dalším (i v případě, kdy je BC _]_ AM neboli
v — d) vesměs různým řešením. Pro v = d jsou tedy
celkem dvě řešení, pro v < d celkem čtyři řešení
(popřípadě včetně dvou čtverců); pro v > d není žád-
né řešení.

Podle řešení Marie Reichlové, 11.a jsš,
Antonínská ul., Brno.
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Náčrt jiného řešení (obr. 19). Označme N střed
strany CD hledaného kosočtverce ABCD. Je známo,
že úhlopříčka AC je osou souměrnosti kosočtverce
ABCD; v této souměrnosti jsou úsečky CB, CD a tím
i body M, N souměrně sdružené útvary, tj. platí

AN = AM.

Na základě těchto vlastností provedeme konstrukci:
Bod К sestrojíme podle předchozího řešení (přitom

hledaný bod В bude ležet na přímce p = AK).
Označme L obraz bodu К ve středové souměrnosti
o středu M, takže je KL — v, a veďme bodem L
přímku q\\p- Opišme kružnici n = (A,d — AM)]
jeden ze společných bodů přímky q a kružnice n
označme N. Osa e úsečky MN (prochází jistě bodem
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A) protne přímku q v bodě C; body B, D hledaného
kosočtverce leží na ose / úsečky АС a po řadě na

přímkách p, q.
Důkaz. Označme S společný bod kolmic e, f. Po-

dle konstrukce je aSM = SC a dále SB — SD, neboť
přímky p, q a tím i body В, C jsou souměrně sdružené
podle bodu S. Je tedy A BCD rovnoběžník, jeho výška
je v. Podle konstrukce je přímka AC osou soumčr-
nosti tohoto rovnoběžníka, a proto je CB = CD; je
tedy A BCD kosočtverec (popřípadě čtverec). Protože
bod M leží na ose o pásu rovnoběžek p, q, je M stře-
dem strany BC. Tím je důkaz proveden.

Diskuse. Při volbě jedné z polorovin vyťatých
přímkou ^4J/ existuje bod К právě tehdy, jestliže je
v < 2d. O řešitelnosti dále rozhoduje vzájemná po-
loha kružnice n = (A, d) a přímky q. Je-li v < d,
jsou ve zvolené polorovině dvě různá řešení (v tom
je též čtverec, jestliže je d — |v|/5); tato řešení
jsou vskutku různá, neboť body N, N' jsou různé
(jsou souměrně sdružené podle přímky o' _|_ AK,
jdoucí bodem A), přičemž bod M leží uvnitř-poloro-
viny o'К (úhel <£ MAK je ostrý). Je-li v = d, je
jediné řešení, kdežto pro v > d nemá úloha řešení.
Závěr je v předchozím řešení.

Podle řešení Josefa Pátka,
11.a tř. jsš, Litoměřice.
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4. Zistite, pře ktoré reálne čísla x je definovaná
funkcia

4 1*1 + /У =

(1)г'*
a zostrojte jej graf.

Riešenie. I. Najprv rozhodneme, pre ktoré reálne
čísla x má daná funkcia zmysel.

[1] Musí platit 1 — ~ |ж| ^ 0 čiže
£

x |ícJ ^ 2.
a) Pre x < 0 je x \x\ =

a vztah (2) je splněný.

(2)
x2, čo je záporné číslo

b) Pre x ^ 0 je x |ж| = x2 a vztah (2) možno písat
x2 ^ 2, t. j.

x 5^ \r2 .

Spojením obidvoch výsledkov dostáváme, že predo-
všetkým musí platit

x ^ ]/1Г.
Platnost tohto vztahu budeme v ďalšom predpokla-
dat.

(3)
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[2] Napišme danú funkciu stručné v tvare у —

— \íAx — }íA2, pričom je Ax ^ A2 ^ 0. Stačí vyšetřit
len to, kedy je A2 ^ 0, t. j.

i-f-NSo,
čo možno napísat

ж . .

j 1*11 —

Ak x splňuje tento vztah, je 1’avá strana nerovnosti
nutné nezáporné číslo a obidve strany nerovnosti mó-
žeme umocnit na druhů. Dostaneme, že nutné platí

i—-f-1*1+ (-j- N)2 ě !—f-W
čiže

^ 0,

čo však je splněné pre každé reálne x. Pre každé
reálne číslo x platí teda tiež A2 ^ 0.

Tak sme zistili, že funkcia (1) je definovaná pre
všetky x, pre ktoré platí (3).

II. Pre dalšie štúdium funkcie (1) rozoznávajme
možnosti:

a) x ^ 0; b) }/2 .

Případ [a]. Pre x ^ 0 je x |ж| = — x2 a pravú stra-
nu vztahu (1) možno písat
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X2 X1X2 X2

1+т + 1+ч1+-2 1+-2- =

1I\ (4 + X2) + 2 (2 + ж2) -
11

2 (2 + ^2) •
— (4 + а;2) —

Položme 2 -f ж2 = a2, kde а > 0. Po dosadení dosta-
neme

(И
L

г (2 + °г> +У =

ПИ1
г (2 + а2) -

= / [(К2)г + 2^2 а + а«]

fl-ккю* 2}/~2 а + а2] =

,r_f|.L(řr_.)r+ а

—

~2

Pretože je а2 ^ 2, je а ^ |/2 a teda |^(/2
= |(а

а)| =

щ.
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Dostaneme preto

У =\ IV2 + a
Výsledok [a]. Pře x ^ 0 je

У = V2 •

Případ [6]. Pre a; ^ 0 je a:|a;| = a;2 a pravá strana
vztahu (1) je

1/2)] = j/2 .(a

(4)

x2 X2 X2 X2
1 1 — 1 —

г + 2 4 2

y(2-**)-
1

= / -Г (4 — x2) +

1I
(2 — x2) .

— (4 — x2) —

Položme 2 — x2 — b2, kde b ^ 0 [viď (3)]. Po dosa-
dění je

/ 2

I1

4 (2 + b2) +У =

1
Г (2 + &2) -
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Platí však 2 ^ b2, t. j. ]/2 ^ b číže ]/2 — b
dostaneme

0. Preto

у = Y H/2 + b - O''2 - 6)] = ь = f2.
Výsledok [6]. Pře x ^ 0 je

у = У2 — x2. (5)

Závěr. Pre a; ^ 0 je
у = ]/2 , teda konstanta
a příslušný graf je pol-
priamka ^471/, kde ^4 =
= [ О, Ш,М = [—1, |/2|
(pozři o6r. 20).

Pre ж ^ 0 je у =
= У2 — ж2 0 číže
x2 + у2 = (У2)2. Body
[ж, у], ktoré splňujú po-
slednú rovnicu, ležia na kružnici к = (O, \2], pri-
čom v našom případe je ж^Оа súčasne у ^ 0, čo
znamená, že sa jedná o štvrťkružnicu AB, kde
A = (O, jr2], В = [У2, 0] so stredom О = [0, 0] (pozři
obr. 20).

у

АИ

Ч

)1

/Ъ
Г'У А

-1 о в

Obr. 20

Tým je riešenie úlohy převedené.
Podlá riešenia Ivana Korea, 11.a tr. jsš,

Partizánske.
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4. ÚLOHY I. KOLA KATEGORIE В

' 1. Určete všechna reálná čísla x, pro která platí:

a) }'x + ]Í2x — 1 + ]/”x — \Í2x — 1 = |/2 ;

b) ]/ x + ][~2x — 1 + ]/ x — ]/2a? — 1 =

c) |íx -j- |/2ж — 1 + }íx — ^2x — 1 = 2.

(Přitom odmocnina má smysl jen pro nezáporná
čísla.)

liešení. I. Řešme rovnici

]/ x + \2x — 1 + ]/x — |/2ж — 1 = p,

kde p > 0 je dané reálné číslo. Jestliže x je reálné
číslo, které splňuje tuto rovnici, potom nutně platí

2x — 1 ^ 0

(1)

(2)i;

(3)

(4)

(5')
neboli

x
—

2 ’ (5)

jinak by odmocnina \Í2x — 1 neměla smysl. Za před-
pokladu, že platí (5), je vzhledem к (5') první člen
součtu na levé straně rovnice (4) číslo kladné; je však
třeba, aby i druhý člen levé strany rovnice (4) měl
smysl, tj. aby platilo

x — |/2ж — 1 ^0 (6)
neboli

x ^ \2x — 1 .
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V této nerovnosti jsou obě strany nezáporná čísla
[viz (5) a (5')]; proto je tato nerovnost ekvivalentní
s nerovností

x2 ^ 2x — 1
neboli

l)2 ^ 0.
Avšak tato nerovnost platí pro každé reálné číslo x,
a proto vztah (6) je splněn pro všechna x ze vztahu

{x

(5).
Umocněme nyní obě strany rovnice (4) na druhou;

pro p > 0 dostáváme ekvivalentní rovnici
x + уйх— 1 + x— V"2x— 1 + 2]jx2— (2x— 1) = p2,
tj. rovnici

2x + 2}f(x— lj2 = p2.
Protože pro reálné číslo a je ]■ a2 = \a\, plyne z před-
chozí rovnice

2x + 2\x— 11 = p2.

Rozeznávejme dvě možnosti:

(7)

Případ [1]. Nechť je
(8)x ^ 1;

potom rovnici (7) lze psát
2x -f 2{x — 1) = p2

neboli
4x = p2 -f 2
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a tedy
p2 + 2

(9)x
4

Případ [2]. Nechť je x < 1; potom rovnici (7)
lze psát

2x + 2(1 — x) = p2
neboli

2 = p2.

Jestliže je tedy p = 2 , je rovnice splněna pro
všechna

(7')

I

~2 = x < 1 ’

pro 0 < p ^ j^2 nemá rovnice (4) v intervalu (10)
žádné řešení.

(10)

II. Nyní přejdeme к jednotlivým úlohám:
a) Pro p = ]/2 podle případu [1] o čísle x musí

platit
2 + 2

x — —

4
neboli

x = 1.

Podle případu [2] pro každé číslo x z intervalu (10)
musí být p — \r2 . Dosazením do rovnice (1) se pře-
svědčíme, že číslo x z intervalu

1

2" — X — 1
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je řešením rovnice (1). Podle našeho postupu dospě-
jeme ke vztahu (7'), přičemž klademe p = j/ 2 , tj. ke
vztahu 2 = (l^2)2, který skutečně platí.

b) Pro p = 1 ze vztahu (9) plyne
3

x = —

4 ’

což odporuje předpokladu (8); rovnice (2) tedy nemá
řešení.

c) Pro p = 2 ze vztahu (9) plyne

4+2
x =

4
neboli

3
x — —

2 ’

což vyhovuje požadavku (8). Číslo x — f je skutečně
řešením rovnice (3), jak plyne z obrácení postupu
nebo dosazení.

Závěr. Řešením rovnice (1) je každé číslo x, o němž
platí

1

Rovnice (2) nemá řešení a rovnice (3) má jediné ře-
šení x — 2-

1.

977 IX. roč. matem, olympiády



2. V rovině je dán trojúhelník ABC. Uvnitř úsečky
AC sestrojte bod X a uvnitř úsečky BC bod Y tak,
aby platilo:
(1) XY\\AB,
(2) obvod trojúhelníka CX Y je roven obvodu licho-

běžníka ABYX.

a „-i

Obr. 21

llešení (obr. 21). Rozbor. Předpokládejme, že jsme
našli přímku XY požadovaných vlastností. Troj-
úhelník XYC a lichoběžník ABYX mají společnou
stranu X Y, a protože mají sobě rovné obvody, musí
o jejich zbývajících stranách platit

XA + AB + YB = CX + CY.

Platí (úseky na polopřímkách CA, CB proťatých
dvěma rovnoběžkami AB, XY)

(1)

XA=k.CX, YB = k.CY, (2)

kde konstanta úměrnosti к > Oje nutně menší než 1;
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to dokážeme takto: Ze (2) dosaďme do (1); dostaneme
postupně

AB + k(CX + CY) = CX + CY,
AB = (1 — к) {CX -\-CY).

^ Přitom vždy je А В > 0, CX + CY > 0 (pokud má
úloha řešení) a tím nutně též 1 — к > 0 neboli
к < 1, což jsme měli dokázat. Je tedy XA < CX,
YB < CY.

Proto vzhledem к (1) a (2) platí

XA -f AB — CX -j- CY — kCY = CX -f (77(1 — k)
čili

XA + AB > CX.

Existuje tedy uvnitř úsečky AB bod Z takový, že
platí

XA + AZ = CX. (3)

Levou stranu vztahu (1) lze tedy psát

{XA + AZ) + {ZB + YB)

CX + {ZB + YB).
neboli

(

Tím (1) nabude tvar

CX + {ZB + YB) = CX + CY

ZB + BY = CY.
neboli

(4)
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Ze (3), (4) plyne
AZ = CX — XA,
BZ = <77— YB-

po dosazení z (2) pak dostáváme
AZ = CX(l — k),
BZ = (77(1 — k)

a tedy
J Z

_ CX
BZ~ CY ‘ (5)

Protože je XY\\AB, platí podle známé věty vztah
CX CA

CY CB

a ve spojení s (5) platí též
AZ CA

(6)BZ CB •

Sestrojme na prodloužení úsečky AC za bod A bod
M tak, aby AM = AZ\ na prodloužení úsečky BC za
bod В sestrojme bod N tak, aby BN = BZ. Po do-
sazení za AM, BN do levé strany (6) dostáváme

AM
_ CA
-

~CB '

Podle známé věty (svazek přímek proťatý dvěma
rovnoběžkami nebo stejnolehlost trojúhelníků CAB,
CMN) z této rovnosti plyne

MN\\AB.
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Přitom je XM = XA + AM = XA + AZ =CX
a podobně se dokáže, že nutně je YN — CY. Je tedy
XY\\AB střední příčkou trojúhelníka CAIN. Vedle
toho platí (6), takže bod Z dělí úsečku AB v poměru
stran CA,CBtrojúhelníka. (Poznámka. Podle známé
věty o ose úhlu <$iBCA je CZ osou tohoto úhlu). Na
základě toho projedeme konstrukci.

Konstrukce (obr. 21). Bodem A sestrojme pomoc-
nou polopřímku APQ, která není částí přímky AB,
a to tak, že o jejích bodech P, Q platí

AP = CA, PQ = CB. 0)

V trojúhelníku ABQ veďme příčku PR\\QB a označme
Z společný bod přímek PB, AB. Protože bod P leží
uvnitř úsečky AQ, leží Z uvnitř AB; přitom je

AZ
_ AP

BZ ~ PQ
neboli vzhledem к (7)

_ CA
BZ ~ CB ' (8)

Na prodloužení ťisečky AC za bod A sestrojme úsečku
AM = AZ, na prodloužení úsečky BC za bod В se-

strojme úsečku BN = BZ. Označme po řadě X, Y
středy úseček CM, CN; potom je X Y hledaná přímka.

Důkaz správnosti konstrukce pro stručnost nebu
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deme provádět; je patrný z rozboru a z poznámek
připojených ke konstrukci, viz především vztah (8).

Diskuse. Protože bod Z lze sestrojit s jediným vý-
sledkem a protože střední příčka XY|| 31N trojúhel-
niku C31N existuje, má úloha vždy právě jedno ře-
šení.

Dodatek. 1. Z „Poznámky" uvedené v textu
vyplývá velmi jednoduchá konstrukce bodu Z užitím
osy úhlu -$.BCA; tu užíváme známé věty: „Osa úhlu
^BCA trojúhelníka dělí stranu AB ve dvě úsečky,
o nichž platí vztah (8).“

2. Jiné řešení (užitím výpočtu) je uvedeno v uěeb-
nici Geometrie pro 9. post. ročník, vyd. z r. 1955,
str. 106.

3. Nech je dané prirodzené číslo n. Dokážme:
a) Ak je číslo n párne, potom je číslo 3n + 63 děli-

telné číslom 72.

b) Ak je číslo 3re + 63 dělitelné číslom 72, potom
je číslo n párne.'

liiešenie. a) Pretože pre n — 2 je tvrdenie úlohy
pravdivé, predpokladajme, že je n > 2 a že číslo
n = 2k, kde к je prirodzené číslo váčšie ako jedna.
Platí

(1)ж = 3» + 63 = (3-— 32) + 72.
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Ak dokážeme, že číslo

у = 3” — 32

je dělitelné číslom 72, potom bude dokaž tvrdenia "

úlohy převedený, pretože je x = у + 72, kde druhý
sčítanec je dělitelný číslom 72.

O čísle у platí
у = 32(3n-2 — 1).

Tedy číslo у je dělitelné deviatimi, no číslo 72 = 9.8
(tj. súčin dvoch nesúdelitelných čísel), preto stačí do-
kázat, že-číslo

z = 3n~2 — 1

je dělitelné ósmimi. Číslo n — 2 je párne a prirodzené,
takže móžeme písat n — 2 = 2k, kde к je prirodzené
číslo. Podlá známého vzorca platí

z = 32* — 1 = (3*

kde 3* — 1,3*-)- 1 sú bezprostredne za sebou nasledu-
júce párne čísla v prirodzenéj postupnosti čísel.
O týchto je známe, že právě jedno z nich je dělitelné
štyrmi a zbývajúce je dělitelné dvorná. Preto je číslo
z dělitelné súčinom 4.2, tj. číslom 8. Tým je tvrdenie
úlohy a) dokázané.

b) Dokaž tvrdenia úlohy prevedieme tak, že sa
oprieme o dokázané tvrdenie úlohy a) a o skutočnost,
že pre prirodzené nepárne n nie je číslo x — 3ra + 63
dělitelné číslom 72. (Iné celé čísla x ako pre prirodzené

1)(3* + 1)
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párne alebo nepárne n totiž neprichádzajú do úvahy.)
Ncch je prirodzené číslo n nepárne, takže platí

n — 2& -f- 1. Móžeme předpokládat, že o prirodze-
nom čísle к platí к ^ 1 (pre к = 0 je x = 3 + 63 = 66
a toto číslo nie je dělitelné číslom 72).

Pre к ^ 1 móžeme písat [s použitím označení z úlo-
hy a)]

ж — 72 = у = 32*+1 — 32 - 32(3
z = 32*-1 — 1 =

= (3 — 1) (32^-2 + 32*-3 + . . . + 3 + 1).

Druhý činitel tohto súčinu je súčtom 2к — 1 nepár-
nych čísel a je teda nepárne číslo. Prvý činitel 3 — 1
je deliťelhý dvorná. Z obidvoch činitelov vo vztahu
(2) je teda prvý nepárny a druhý je dělitelný dvorná,
no nie ósmimi. Číslo у nie je teda dělitelné ósmimi a

preto ani číslo x pre prirodzené nepárne n nie je děli-
telhé číslom 72. Ak teda číslo 3n + 63 (pre n priro-
dzené) je dělitelné číslom 72, je nutné n číslo párne.

Tým je dokaž tvrdenia úlohy b) převedený.

2k-1
- 1), (2)

4. Sestrojte pravoúhlý trojúhelník ABC, je-li dána
jeho přepona с = AB, přičemž víme, že těžnice pří-
slušná к přeponč je rovná střední geometrické úměrné
obou odvěsen.

Řešení. Rozbor. Označme a, b, c odvěsny a přeponu
hledaného trojúhelníka ABC, kde <£(7 = 90°; dále
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označme ос, {$ jeho ostré úhly, v výšku příslušnou
к přeponě AB (viz obr. 22), P její patu a S střed pře-
pony, který je středem kružnice к trojúhelníku ABC
opsané. Platí SA — SB = SC — \c\ podle textu
úlohy pak platí SC2 — CA.CB neboli (|c)2 = ab, tj.

c2 = 4ab. (1)

+x

к

jC''

ba
VI

'Ýlp •

P' Asв
)

Obr. 22

Podle Pythagorovy věty platí

c2 — a2 -f- b2. (2)

Pro obsah p trojúhelníka ABC platí p = \ab a též
p — \cv\ odtud porovnáním

ab
v =

c
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Po dosazení z (1)
c2

v =

4c

tj-
c

(3)v = —

4 ’

V trojúhelníku SCP, kde <£P = 90°, je SC = \c,
CP = \c, takže poměr odvěsny CP a přepony SC je
1:2; podle známé věty je proti odvěsně CP úhel
<£$ = 30°. Tento úhel <$iASC je středový к obvodo-
věrnu úhlu p = <£ABC, takže

P = 15°, a = 75°.
Toto platí při označení trojúhelníku ABC tak, že bod
P je bodem úsečky neboli, že je a > p. Pro případ
л < P máme dvojici úhlů

(4)

P = 75°, л - 15°.
Odtud konstrukce (viz obr. 22). Zvolme polohu pře-

pony AB — ca dále zvolme polorovinu ABX, v níž
má ležet hledaný trojúhelník. Opišme kružnici
к = (S, \c) nad úsečkou AB jako průměrem a se-

strojme v polorovině ABX úhel = 30°. Spo-
léčný bod polopřímky SY a kružnice к je vrchol C
hledaného trojúhelníka, který podle předchozího
zřejmě splňuje požadavky úlohy [viz vztah (4)]. Dále
označme q osu úsečky AB a dále BAC' obraz troj-
úhelníku ABC v souměrnosti vzhledem к ose q\ troj-

(5)
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úhelník ABC je zřejmě při zvolené poloze úsečky
AB a poloroviny ABX také řešením úlohy [viz vztah

Úloha má tedy dvě řešení.
(5)]-

Takto řešil úlohu
Václav Moravec, lO.atř. 2. jsš,

České Budějovice.

Nástin jiného řešení. Ze vztahů (2), (1) porovnáním
pravých stran postupně dostaneme

a2 + b2 — 4ab,

KM‘) + 1=0,

(6)

(x) (ir) = kuc^ou trojúhelníky (АВС)г,Protože

(BAC)2 příslušné kořenům (6) shodné. Omezíme se na
konstrukci pro případ prvního kořene.

Konstrukce (viz obr. 23). Sestrojíme pomocný troj-
úhelník A'B'C ~ ABC, kde <£C" — 90°. Zvolme
úsečku CA' = b’ a polorovinu CA'M, v níž leží

CB'
CA'

= 2 + P ■
vrchol B'. Podle (6) musí být

Ve zvolené polorovině sestrojme úhel -i^A'C'D —
= 90° tak, aby CD = 26'; nad úsečkou CD jako prů-
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mčrem sestrojme kružnici к == (O, b'). Označme E
průsečík kružnic к, m = (C, b'), a to ten, který padne
do poloroviny C'A'M\ potom je DE2 = DC'2 —

- CA'2 = 4b'2 — 6'2 - 3b'2, tj.DE = b'\r 3. Na pro-
dloužení úsečky DC za bod0'
i) sestrojme úsečku DB' =
= DE - b'\f3 , takže je
C'B' = (2 + j 3)6' a poměr
CB'

\

1

BsA„ + M

\\
(2 + |/з)Ь'

= 2-f- jr3 , jak mělo být.
К trojúhelníku А'В'С se-

strojme trojúhelník ABC
stejnolehlý podle středu
A' = A stejnolehlosti, a to
takto: Na polopřímce A'B'
sestrojme úsečku А'В — c,
kde c je číslo dané v textu
úlohy. V uvažované stejno-

lehlosti přiřaďme bodu B' bod В jako obraz. Potom
je ABC jedno z hledaných řešení. Druhé řešení, které
odpovídá druhému kořenu (6), je trojúhelník
ДЛ0Л0(70 ^ Д BAC (viz obr. 23), jak se snadno
přesvědčíme.

D b'

\

Л
4^

m4O

e;

1 Á=A = ВoC OCo
b' ai

Obr. 23

5. Vypočítejte všechna reálná čísla x, která splňují
nerovnost
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11
(1)^ 1.

|/l X

ltesení. Předpokládejme, že reálné číslo x je řešením
dané nerovnosti (1). Aby zlomky na levé straně ne-
rovnosti měly v reálném oboru smysl, musí platit

У1 + X

1 + ж > О, 1 — ж>0

neboli musí být
(2) 4

— 1 < x < 1.

Nerovnost (1) lze uvést na tvar

jí — x — f 1 + x (3)
V(l +»)(!— x)

a protože vzhledem ke (2) je j/(l -(- x) (1 — x) > 0,
po znásobení obou stran (3) právě uvedeným číslem
dostaneme

У1 — x — j/l — x2.
Levá strana této nerovnosti musí být kladná, neboť

je |/l — ж2 > 0, tj.

(4)

|/l — x — ]f 1 + #>0
neboli

У1 X > У1 + X

a po umocnění obou kladných stran této nerovnosti
postupně dostáváme
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1 X > 1 + X,

О > 2х,

х < 0;

spolu se vztahem (2) tedy nutně platí
—1 < x < 0.

Umocněním obou kladných stran nerovnosti (4)
na druhou postupně obdržíme

1 — x -f 1 + x ■— 2 ]/1 — x2 ^ 1 — x2,
1 + x2^ 2]fl — x2

a opětným umocněním na druhou (je jistě 1 — x2 > 0)
postupně máme

(5)

1 + 2x2 + Xх ^ 4 — 4#2,

z4 + 6x2 — 3 ^ 0,

2fŠ) [x2 + 3 + 2]/'з) ^ 0.

Druhý činitel na levé straně je kladné číslo, proto
první činitel musí být nezáporný, tj.

ж2 + 3 — 2|/3~^ 0.

0* + 3

(*)
Tu platí

2j 3 — 3 > 2.1.7 — 3 = 0,4 > 0;

proto lze vztah (*) psát

(* + Щ-») (*-f2/3-3) Й 0.
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У

Vzhledem к požadavku (5) je druhý činitel záporné
číslo, proto o prvním činiteli musj platit

Ж + Уг|/з — 3 s o

x s — ^3 — 3 .

I
. neboli

-1 -V2I/5-3 0

Obr. 24

Spojíme-li tento požadavek s (5), dostaneme (viz
obr. 24)

— 1 < x ^ — У2j/3 — 3 .

Přitom jistě je —1 < — }''2j/3 — 3 , neboť platí

(6)

0 < 2j/3 — 3 < 2.1,8 — 3 = 0,6 < 1
a tedy

}' 2^3 — 3 < 1.

Protože pro x dané vztahem (6) lze celý postup
obrátit, jsou tímto vztahem dána všechna řešení dané
nerovnosti (1).

6. Daný je dutý uhol <$.PCQ — у a kružnica
к = (S, r), ktorá sa dotýká priamok CP, CQ v bodoch
P,Q.

\
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Vo vnútri úsečiek CP, CQ zostrojte po řade také
body A, B, že priamka AB je dotýčnicou kružnice k,
pričom platí AB = c, kde c je dané kladné číslo.

Převeďte diskusiu riešitelnosti úlohy vzhladom na
dané čísla c, r, y.

ltiešenic. Poznámka. Uvádzame dva postupy rieše-
nia. Je zřejmé, že móžeine předpokládat platnost
vztahu (pozři obr. 25)

CA ^ CB (1)
číže

s — s' Až co' = ar,

čo vyplývá z trojuholníka ABC, pričom vztahy (1),
(2) sú ekvivalentné a případ rovnosti nastáva v obi-
dvoch vzťahoch. Oprávněnost ohraničenia (1) vyplý-
va zo súmernosti vzhladom к priamke SC. Ak je

(2)
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úsečka AB riešením úlohy, je aj jej obraz B1A1 (v tom-
to poradí bodov) v spomínanej súmernosti tiež rieše-
ním úlohy. Případ АВ = A1B1 nastane právě v tom
případe, ked v (1) alebo (2) platí rovnost.

i
Ф S'

i F
SL ж

!ř
n \!

\~p!o.X
r. ■k.

Чч 6
i Vr-\ '//////

&oV 'D
■

c
W-

Obr. 2tí

Prvý postup. Rozbor (viď obr. 25). V štvoruholníku
CPSQ je <£P = <£Q = 90° a teda <$PSQ = 180° —
— <£.PCQ = 180° — y. í)alej je s — s', co = co' (prvý
vztah vyplývá zo súmernosti dotýčnic vedených
z bodu A ku kružnici к vzhladom na priamku ^4$
a podobné sa odóvodní platnost druhého vztahu).
Přitom platí
<PSQ = £ + e' + co' + ao = 2(s' + oo') = 180° — y,

takže

ASB = b^PBQ — e' + co' — 90° — \ y,

1138 IX. roč. matem, olympiády

/ .



tj-
<£ASB = 90° — h у■

Uhol <ZyASB je teda ostrý (uhol \y je ostrý, pretože
je polovicou dutého uhla) a právě tak aj uhly <$.A,
<yfí v trojuholníku SAB sú ostré (sú to polovice du-
tých uhlov ^yPAB, <£QBA). Trojuholník SAB je
preto ostrouhlý. V tomto trojuholníku poznáme vel-
kost с = AB jednej strany, velkost uhla <$:ASB =
= 90° — \y ležiaceho proti straně AB a velkost r

výšky prislúchajúcej ku straně AB. Zostrojíme po-

mocný trojuholník /\S'A'B' ^ ASAB a to z týchto
prvkov: strany A'B’ — c, <£$' = 90°— \y a výšky
velkosti r prislúchajúcej ku straně A'B'. Použitím
trojuholníka S'A'B' potom lahko zostrojíme hladanú
úsečku AB.

(2')

Konštrukcia (pozři obr. 26). Zvolme polohu úsečky
А'В' — c a polrovinu o, ktorú vytína priamka A'B'.
Hladaný bod S' v polrovine o dostaneme ako spoločný
bod dvoch geometrických miest m, n bodov, a to:

a) priamky m\\ A'B', ležiacej v polrovine a vo vzdia-
lenosti r od priamky A'B' (výška trojuholníka S'A'B'
ku straně A'B' má byť r);

b) oblúka n = A'B' so stredom O ako geometrie-
kého miesta bodov v polrovine a, z ktorých je vidieť
úsečku A 'B' pod zorným uhlom 90° — \y (v obr. 26 je
teda uhol <ZyB'A'0' = %y).
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Přitom hned’ prevedieme ohraničenie. Vieme, že
trojuholník S'A'B' musí byť ostrouhlý a má platiť
(2), tj. ^A’B'S'
musí padnúť do vnútra oblúka KF (kde КA' _L A'B'
a F je spoločný bod oblúka n a osi OD úsečky A'B',
pričom D je střed úsečky A'B'). Přitom případ
S' = F prislúcha právě rovnosti vo vztahu (2) [alebo
(1)]; ak je S' vo vnútri oblúka KF, odpovedá to
ostrej nerovnosti (2). V prvom případe je jediné rie-
šenie, v druhom okrem bodu S' vo vnútri oblúka
KF leží jeho obraz S" v súmernosti o osi OD vo vnútri
oblúka LF, ktorý je obrazom oblúka KF v tejto
súmernosti. Bod S" vzhladom na vzťah (2) však ne-

uvažujeme.
Musí teda platiť

^B'A'S' < 90°. Preto bod S'

A'K < DB ^ DF,
kde E je priesečík priamok m, OD. Platí však
DE = г, А'К — A'B' Ag\y = c.tg^y, DF = OD +

+ OF = OD -f- OA' = . tg\y -f- \c .

Vzťah (3) móžeme teda písať

(3)

1

cos\y
= \c.

1
’ c.tg \ y < Г ^\c. (1 ~b sin 2 У)• (3')cos|y

Vzťah (3') upravíme, aby sme mohli vyšetřit jeho geo-
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metrický význam. Vynásobme obidve strany prvej
nerovnosti číslom cotg \y > 0. Dostaneme

c < r.cotg\y.
Ďalej vynásobme obidve strany druhéj nerovnosti
kladným číslom

2(1 — sinjy)
cos \y

dostaneme
1 — sin|y2r.

cos jy

Namiesto (3') máme teda ekvivalentně vztahy
1 — sin \y ^ c < r. cotg 2 у t (4)2r.

cos \y
ku ktorým sa vrátime. Ak platia tieto vztahy, padne
v případe ostréj nerovnosti bod S' do vnútra oblúka
KF a je S'A' < S'B', kým v případe rovnosti (vlavo)
je S' = F a trojuholník S'A'B' je rovnoramenný.

Označme T' patu výšky vedenej bodom S' troj-
uholníka S'A'B', kde <£i?' 5^ <£A' < 90° a S'T' = r.

Vrátme sa к obr. 25, tj. к danej kružnici k, ktorá sa
dotýká ramien uhla у = <£PCQ, pričom je CP — CQ.
Uhol <£PSQ rozdělíme polpriamkou ST (kde ST — r)
na dva uhly, a to PST = 2. *£A'S'T', <^QST =
= 2.^iB'S'T', čo je podlá konštrukcie zrejme m$>žné.
Zostrojme osi SB uhlov <£PST, <£QST, pričom
A leží na priamke CP а В na priamke CQ (bod A leží
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zrejme vo vnútri úsečky CP а В vo vnútri úsečky
CQ). Potom je úsečka AB riešením úlohy.

Dokaž. V súmernosti o osi je podlá konštrukcie
bod T obrazom bodu P (polpriamka SA je totiž osou
uhla <£PST a ST = SP = r); je teda <$STA = 90°.
Právě tak je -ýiSTB = 90°, takže polpriamky TA,
ТВ sú opačné a ST _\_ ATB. Je teda AB dotýčnicou
kružnice к a bod T je příslušný dotykový bod. Podlá
konštrukcie je /^SAT 2^ i\S'A'T' (usu), pretože
podlá konštrukcie je ST = S'T', <£$ = <£$' a ďalej
<£T' = ýcT1 = 90°. Odtial’ vyplývá, že je SA — S'A'.
Rovnako sa dokáže SB = S'B'. Preto je /\ASB
^ /\A'S'B' (sus) (podlá konštrukcie je <£$ = ^S').
Je teda AB = A'B' = c, čím je dokaž převedený.

Závěr. Ak platí (4), má úloha riešenie, a to:
a) Ak platí vo vztahu (4) rovnost, existuje jediná

úsečka AB, pretože S'A'B' je rovnoramenný troj-
uholník a teda je rovnoramenný aj trojuholník SAB,
ktorý má priamku SC za os súmernosti. Priamka
AB _L SC je dotýčnicou kružnice к v bode H, v kto-
rom polpriamka SC přetíná túto kružnicu [tým je
daný geometrický význam výrazu na 1’avej straně vo
vztahoch (4), t. j. c je dížka právě zostrojenej úsečky].
V obr. 25 je dotýčnica UV J_ SC touto hladanou
priamkou AB, a to pre případ, že c = UV.

b) Ak neplatí v (4) rovnost, je CA > CB a okrem
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úsečky AB máme druhé riešenie. Je to obraz BXAX
úsečky AB v súmernosti o osi SC (bod Bx je obrazom
bodu A a bod Ax obrazom bodu B). Priamky AB, SC
a teda aj priamky BXAX, SC sú šikmé. Geometrický
význam nerovnosti vpravo vo vztahoch (4): Je CP =
= SP.cotg^y = r.cotgly; musí teda byť c<CP,
kde CP je dížka jednej z daných dotýčnic vedených
z bodu C ku kružnici k.

Ak neplatí (4), nemá úloha riešenie.
Úlohu tákto riešili:

Jan Zofka, ll.b tr. dsš, Písek,
a Josef Gottwald, 10.a jsš,

České Budějovice

Druhý postup řešení (viz označení v obr. 27).
Rozbor. Předpokládejme (stejně jako v předchozím
řešení) platnost vztahu

CA ^ CB. (1)
Je AT = АР, ВТ = BQ, AB = AT + ТВ = c, tak-
že obvod trojúhelníka ABC je CA -\- АВ + ВС =
= (CA + AT) + (ВТ + ВС) = CP +CQ = 2 .CP.
Proto je součet

CA + CB = 2. CP — c,

kde známe velikosti CP, с. V trojúhelníku ABC známe
tyto prvky: AB = c, součet CA + CB = 2.CP — c,
<$iACB = y. Sestrojíme nejprve pomocný trojúhelník
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А'В'С ^ ABC tak, aby platilo: А'В' — с, СА' -f
-\-С'В' = 2.СР— с, <£С" = у (viz obr. 28); рак
teprve provedeme konstrukci úsečky А В v obr. 27.

Proveďme tuto úvahu (obr. 28): Na prodloužení
strany A'C trojúhelníka А'В'С' za bod C určeme bod
M' takový, že CM' = СВ'; pak je trojúhelník
С'В'М' rovnoramenný a každý z úhlů <£/?', <£M' při
základně B'M' je roven polovině vnějšího úhlu у při
vrcholu C, tj. = AiM' = V trojúhelníku
А’М'В' tedy je: A'M' = 2 . CP — c, A'B' = c,

= \y. Odtud konstrukce trojúhelníku А'В'С
a tím i úsečka AB.

Konstrukce (viz obr. 28). Zvolme polohu úsečky
A'M' — 2.CP — c a označme o jednu z polorovin
vyťatých přímkou A'M' (v polorovině o hledáme bod
В'). V polorovině a sestrojme úhel lA'M'N' = \y
a opišme kružnici m = (A', c). Označme C patu kol-
mice vedené bodem А' к přímce M'N'; bod C padne
dovnitř polopřímky M’N’, neboť úhel A^A'M'N' =
= ir, tj. je ostrý.

Hledaný bod В' je společným bodem polopřímky
M’N' a kružnice m. Z požadavku (1) plyne C'A' ^
^ CBproto hledaný bod B' musí padnout buď
dovnitř úsečky M'G' anebo je B' = G', což ihned
dokážeme:

Pro B' = G' neboli pro c = A'G' bod C leží
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na ose p úsečky M'G' a na přímce A'M', tedy uvnitř
úsečky A'M' (bod C je pak středem této úsečky).
Yr případě, že B' leží uvnitř úsečky M'G', padne prů-
sečík C osy p úsečkyM'fí' a přímkyA'M' blíže к bodu
M' než к bodu A' a protože je C'B' = CM', je
C'B' < CA'. (Naproti tomu pro bod B0 v obr. 28

Ж

Obr. 27

padne průsečík C0 osy p0 úsečky M'B0 a přímky A'M'
blíže к bodu A' a vzdálenost bodů C0, A' je menší než
C0B0 = C0M'; proto bod B0 nepřísluší к našemu ře-
šení.) Přitom je úhel <$lA'C'B' vnějším úhlem při
hlavním vrcholu C rovnoramenného trojúhelníka
CB'M', v němž je <£В’ — = \y, a proto je
<£A'C'B' - y, A'B' = c, A'C + C'B' = 2.CP — c.
Je tedy A'B'C hledaný pomocný trojúhelník. Pře-
místěme tento trojúhelník do obr. 27 takto: Bod C
splyne s bodem C, polopřímky CA', C'B'. po řadě
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s polopřímkami CP, CQ (to je možné, neboť je
<£A'C'B' = у = <£PCQ). Padnou tedy body A', B'
po řadě dovnitř polopřímek CP, CQ a jejich nové po-

lohy označme А, В (je tedj^ CA = C'A', CB = C'B');
ze shodnosti /\АВС ^ /\A'B'C (sus) plyne AB =

\

Л2.PC-C

= A'B' = c. Dokážeme, že úsečka AB je řešením
úlohy (viz obr. 27, 28):

Důkaz. Je AB = c podle konstrukce. Dále doká-
žeme, že daná kružnice к je vně vepsanou kružnicí
trojúhelníka ABC (a to do úhlu <£ACB). Užijeme této
známé věty V: „Kružnice vně vepsaná trojúhelníku
ABC, která leží v jeho úhlu <$.ACB, dotýká se polo-
přímek CA, CB po řadě v bodech P0, Q0, o nichž platí
CP0 = CQ0 — s, kde s je poloviční obvod trojúhelníka
ABCP (Důkaz je obsažen v rozboru naší úlohy.)
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Podle konstrukce pro obvod 2s trojúhelníka
ABC neboli trojúhelníka A'B'C' platí 2s — A'B' +
+ (B'C + CA') = A'B' + {M'C + C'A') =
= A'B' + M'A' = c + (2.CP — c) -- 2.CP, tj. s =
= CP. Bod P je vzhledem к větě V dotykový bod
kružnice trojúhelníku ABC vně vepsané, a to té,
která leží v úhlu <£ACB, a dotýká se obou ramen
tohoto úhlu; taková kružnice je však jediná a tou
je daná kružnice Jc. Tím je proveden důkaz, že přímka
AB je tečnou kružnice Jc.

Všimněme si řešitelnosti úlohy: a) Je-li В' = C
(obr. 28), pak osa q úsečky A'B' (neboli úsečky A'G')
prochází bodem C, takže q je osou rovnoramenného
trojúhelníka С'А'В' o základně A'B'. Je tedy SC
(obr. 27) osou sestrojené úsečky AB a řešení je jediné
(viz obr. 29 pro A = U, В = V).

b) Je-li B' (obr. 28) vnitřním bodem úsečky M'G',
je C'A' > C'B', a tedy CA > CB. Kromě úsečky AB
máme druhé řešení ВХАЪ kde Bv Ax jsou po řadě obra-
zy bodů А, В v souměrnosti vzhledem к ose SC; tu
je CAX < CBV

c) Není-li B' = G' nebo není-li B' vnitřním bodem
úsečky M'G', pak nemá úloha řešení.

Tyto výsledky vyjádříme pomocí daných čísel c,
y, r (viz obr. 28 a 27): Platí
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CP = r.cotg \ у, л

AW = A'M'.sinhy = (2.CP — c)sin \ y. f
Kružnice m má s polopřímkou M'N' společný bod B'
popsané vlastnosti právě tehdy, když platí

(5)

AW ^ c < A'M'; (6)

přitom rovnost vede к je-
dinému řešení, nerovnost
vlevo pak ke dvěma řeše-
ním. Vztah A'G' c lze po
dosazení z (5) psát

2rCOS 2 У r‘ sin \ у 5^ c

neboli

2fCOS 2 У ^ с (1 -f- sin 2 y) •

Znásobme obě strany této nerovnosti kladným číslem
1 — sin

cos2^y ’
dostaneme

1 — sin£y2r. (?)c.

cos|y
Vztah c < A'AI' ze (6) lze psát postupně takto:

c < (2 .CP c), c < CP,

c < r.cotg Ь у.

Spojením (7), (8) dostáváme

(8)
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1 sin Iу ^ с < т. cotg 2 у,2г.

cos£y

což jsou vztahy (4) prvního řešení. Přitom rovnost
vede к jedinému řešení, ostré nerovnosti ke dvěma;
jinak není řešení.

5. ÚLOHY II. KOLA KATEGORIE В

1. Najděte všechna reálná čísla x, pro která platí

\íx + X ú\íx . (1)
\íX X

Řešení. Aby zlomek na levé straně (1) měl smysl,
musí být

(2)x > 0, x Ф 1.

Postupně provedeme ekvivalentní úpravy:
1 + \x 6]Ar ^ 0 (zlomek jsme krátili číslem x),
1 — ]fx

Qx — 5 Ух + 1 ^ 0.
1 — ][x

Položme jíx = y, kde у > 0, у Ф 1; tak máme

6y2—~_5y + 1
1 —y

Jsou dvě možnosti: 1 — у > 0 anebo 1 — у < 0.

^ 0. (3)
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Případ [1]. Nechť je 1
plyne

У > O, tj. у < 1. Ze (3)

6y2 — 5y -J- 1 fjí O
neboli

(3y 1) (2y 1) = O;
musí proto platit zároveň

3y — 1 ^ o,

2y — 1 ^ 0
neboli

§ S 2/ái,
takže pro x musí platit

(4)

Obrácením postupu dospějeme к tomu, že číslo (4)
vyhovuje vztahu (3).

Případ [2]. Nechť je 1 У < 0, tj.

у > 1.

Pak vzhledem ke (3) nutně platí
6y2 — 5y + 1 ^ 0.

Tento vztah zřejmě platí pro všechna у > 1, tj. pro
všechna

x > 1.

Obrácením postupu dospějeme к tomu, že toto x
splňuje (3).
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Závěr. Danou nerovnost (1) splňují právě tato čísla
x (viz obr. 30):

x > 1.4 5

o i i 1

Obr. 30

2. Daná je polokružnica kx o priemere AB = 2r a
bod C vo vnútri úsečky AB taký, že platí AB =
— 2p < r. Na polkružnici kx daný je bod D taký, že
je CD JL AB. Nad priemerom AC je v polrovine ABD
zostrojená polkružnica k2.

Pomocou daných kladných čísel r, p vypočítajte
poloměr x kružnice k, ktorá sa dotýká oboch polkruž-
nic k1} k2 aj úsečky CD.

Riešenie. Použijeme označenie ako v obr. 31. Před-
pokladajme, že kružnica к = (S, x) požadovaných
vlastností existuje. Eahko usúdime, že musí ležat
v polkruhu príslušnom ku kx, ale mimo polkruhu
prislúchajúceho ku k2. Je samozřejmé, že к musí ležat
v polrovine CDA. Označme

ST = STX = ST2 = КС = x, (1)

kde К je pata kolmice vedenej bodom S к priamke
AB. Označme M spoločný bod polpriamky TS a pol-
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kružnice kx, kde TS _]_ CD čiže TS\\AB. Preto zrejme
je АС > MT > 2x, t. j. 2p > 2x a teda p > x. Bod
К preto padne do vnútra úsečky CS2 (máme teda
situáciu ako na obr. 31).

Z vnútorného dotyku k, kx vyplývá
SS1 = S1T1 — STX = r — x. (2)

Z vonkajšieho doty-
ku k, k2 vyplývá

ASS2 = ST2 + T2S2 =
= V + X. f

(3)

t)alej z obr. 31 vyplývá
KS2 = CS2 — КС = a—-
= p X [viď (1)].

'Bк c s;—
Obr. 31

(4)
Podlá Pythagorovej vety z trojuhol nika SS2K

(kde = 90°) s použitím vzťahov (3), (4) dostane-
me KS2 = SS* — KS\ čiže

(p -f- x)2 — (p — x)2 — 4px.

I)alej použijeme Pythagorovu vetu pre trojúhelník
SS^K (kde -QK = 90°), pričom je

KSX = КС + CS1 = x + r — 2p.

Pomocou (5), (6) dostaneme
+ KS2 = ápx + (# + t — 2p)2. (7)

(5)

(6)
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Zo vztahu (2) máme

SSl — (r — a:)2.
Porovnáním (7), (8) potom po úpravě dostáváme

4px + {x + r — 2p)2 — (r — ж)2 = 0,

(8)

odkial postupné vyplývá
ápx +

+ [x + t — 2p + r — x]. [x + r — 2p —
— {г — ж)] = 0,

4px + 2(r — p). 2(x — p) =0,
px + p2 — px — pr -f- rx = 0,

rx = p(r — p),
p(r — p)

(9)X =
r

Tým je poloměr x vypočítaný. Eahko zistíme, že
kružnica к = (S, x), kde KS = 2 \ px , ST = x (pričom
je KS J_ AB, aST||^45) splňuje požiadavky úlohy.

3. Nech sú a, b dve 1’ubovolné kladné čísla. Potom
platí

\ CL Уь .

i i
(i)+ +65a5 b5.Vb a5.1ía

dokážte.

Riešenie. Platí veta V: Ak je a > b > 0, potom
platí an > bn > 0, kde n je lubovolné prirodzené
číslo.
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Položme
1 1

= Г,= V,
]ra Vb

zrejme je p > O, g > 0. Máme dokázať vztah
v11

p10 + glO <~
q

(П
V

Odtial’ postupné dostaneme nerovnosti
png -(- pg11 ^ p12 -]- q12,

0 ^ pi\p — q) — gii(p — q)
o ^ (p — q) (v11 — g11) •

Pre p = q vztah (2) zrejme platí.
Pre p > q > 0 je tiež pu > g11 > 0 (vid vetu V);

čísla p — q, p11 — g11 sú teda kladné a ich súčin je
preto tiež kladný. Vztah (2) teda platí i v tomto prí-
páde.

Pre 0 < p < g je tiež 0 < pu < g11 (viď vetu V);
obidve čísla p — g, p11 — gn sú teda záporné a ich
súčin bude preto číslo kladné. Vztah (2) opat platí.

Obrátením postupu sa dostaneme к (1') a odtial’
к (1). Tým je tvrdenie úlohy dokázané.

4. V rovině jsou dány dvě různoběžky pl5 p2 a mi-
mo nč bod M.

Sestrojte dvě shodné (různé) kružnice k1} k2, které
se navzájem dotýkají v bodě M, přičemž se kružnice
kx dotýká přímky px a kružnice kz se dotýká přímky p2.

(2)
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Poznámka. Při řešení je možno užít středové sou-
měrnosti.

Řešení (označení v obr. 32; je px = AP, p2 = AQ).
Rozbor. Předpokládejme, že jsme sestrojili kružnice
kx, k2, které splňují požadavky úlohy. Je známo, že
dvě shodné a navzájem se dotýkající kružnice jsou
souměrně sdružené podle středu souměrnosti, kterým
je bod M jejich dotyku. Proto v souměrnosti o středu
M přejdou kružnice kx, k2 jedna ve druhou, společná
jejich tečna m v bodě M přejde sama v sebe; tečna px
s dotykovým bodem Px kružnice kx přejde v přímku
q\\px s příslušným dotykovým bodem P2 kružnice k2.
Kružnice k2 se tedy dotýká přímky q a přímky p2
(viz obr. 32); přitom prochází bodem M. Tím jsme
úlohu převedli na známou úlohu: Jsou dány různo-
běžky q, p2 a bod M mimo ně; sestrojte kružnici k2,
která se dotýká přímek q, p2 a prochází bodem M.
Podle toho provedeme konstrukci.

Konstrukce (obr. 32). V souměrnosti o středu M se-
strojme obraz C bodu A, potom je přímka q\\px ve-
děná bodemC obrazem přímky px; označmeDprůsečík
přímek q, p2. Bod M je středem úsečky АС a proto
leží uvnitř úhlu <£ ADC. Nyní provedeme konstrukci
kružnice k2 užitím stejnolehlosti o středu D:

Sestrojme pomocnou kružnici k0 = (S0, r0), která
leží v úhlu <£ ADC a dotýká se jeho ramen (např.
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zvolíme na ose tohoto úhlu bod S0 ф D a najdeme
patu N kolmice vedené bodem S0 к přímce p2; tu je
r0 = S0N). Kružnice k2 je stejnolehlá s k0 podle stře-
du D.

Polopřímka DM má s k{) dva různé společné body
M0, M\.

Stejnolehlost o středu D, která převádí bod M0
v bod M, převede kružnici k0 v kružnici k2, bod S0
ve střed S2 kružnice k2; bod S2 je společným bodem
polopřímky DS0 a přímky w||$0Jf0, vedené bodem M.

Poznámka. Leží-li bod M na polopřímce DS0, je
konstrukce jednoduchá
vepsané a vně vepsané trojúhelníku o stranách
v přímkách p2, q,m _L DM, kde m prochází bodem M.

Pak je k2 = (S2, S2M) a kružnice kY je jejím obra-

jde o sestrojení kružnice
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zem v souměrnosti o středu M. Stejně sestrojíme
kružnici k'2 = (S2, S2M) a její obraz k\ v souměrnosti
o středu M (je S'2M\\S0M'Q atd.). Tím je konstrukce
provedena.

Kružnice kl} k2 a k\, k'2 zřejmě vyhovují požadav-
kům úlohy, a proto důkaz neprovádíme.

Diskuse. Platí M0 ф M’Q, neboť M leží uvnitř úhlu
<£ADC; proto jsou obě uvažované stejnolehlosti
o středu D a dvojicích (M0, M), (M'0, M) příslušných
bodů navzájem různé a tím jsou i kružnice k2, k'2 růz-
né. Úloha má tedy právě dvě řešení.

6. ÚLOHY I. KOLA KATEGORIE C

1. V rovině je dán dutý úhel <£PCQ a bod V. Se-
strojte trojúhelník ABC, jehož vrchol A leží na polo-
přímce CP a jehož vrchol В leží na polopřímce CQ,
a to takový, že bod V je průsečíkem výšek tohoto
trojúhelníka.

Má-li mít úloha řešení, je třeba, aby bod V měl
vzhledem к danému úhlu <£PCQ určitou polohu; roz-
lište jednotlivé případy a konstrukci hledaného troj-
úhelníka proveďte pro každý případ zvlášť.

Řešení. Platí známá věta I: Výšky (ve významu
přímek) trojúhelníka ABC procházejí týmž bodem V
(tzv. průsečík výšek neboli ortocentrum trojúhel-
nika).
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Dále platí věta II: Je-li <£.MUN dutý úhel a P
pata kolmice vedené bodem M к přímce UN, potom,
jestliže je úhel <$.MUN ostrý, padne bod P dovnitř
polopřímky UN, jestliže je úhel <^MUN tupý,
padne bod P dovnitř polopřímky к polopřímce UN
opačné.

Dokážeme větu III Q*ypV
c4/(obr. 33 až 35): Ortocen-

trum V trojúhelníka ABC
leží: a) uvnitř tohoto
trojúhelníka, jestliže je
trojúhelník ABC ostro-
úhlý; b)vjeho vrcholu
C, jestliže je úhel BCA A

pravý; c) uvnitř vrcho- s^7

'A

■-K
t—й

ic

/plového úhlu у' к úhlu у =
= <$iBCA, jestliže je tento
úhel tupý; přitom polo-
přímka CV dělí úhel y'
ve dva ostré úhly.

Důkaz. Označme А', В', C paty výšek trojúhelníka
ABC jako v obrázcích 33 až 35; vnitřní úhly tohoto
trojúhelníka označme a, /3, y.

a) Nechť ABC je ostroúhlý trojúhelník (obr. 33).
Podle věty II bod A' padne dovnitř ramene BC ostré-
ho úhlu <£ABC a dále padne dovnitř ramene CB
ostrého úhlu <A.ACB; padne tedy zároveň dovnitř

Q\\V3

Obr. 33

133



každé z obou polopřímek ВС, CB, tj. padne dovnitř
úsečky BC. Výška AA' tedy prochází vnitřkem úhlu
(X = <$.CAB a vnitřkem úhlu к němu vrcholového.
Totéž platí i o výšce BB' vzhledem к úhlu /? =



= <£АВС. Protože podle věty I jsou přímky AA',
BB' různoběžné, musí jejich společný bod V ležet
uvnitř úhlů oč, (3. [Uhel a a úhel /3', vrcholový к /3, ne-
mají totiž společného bodu; totéž platí o úhlu a

(vrcholovém1 к л) a úhlu /3 nebo o úhlech <x', /3'.]
Avšak vnitřky úhlů <x, (3 mají za společnou část právě
vnitřek trojúhelníka ABC. Tím je důkaz části a) věty
III proveden.

b) Nechť je у — 90°; pak je zřejmč V = C (obr. 34).
c) Nechť je у > 90°, takže a, /3 jsou ostré úhly (obr.

35). Stejně jako v části a) důkazu se dokáže, že přím-
ka CC prochází vnitřkem úhlu у a tedy také vnitř-
kem úhlu у' к němu vrcholového. Úhel (3 je ostrý,
podle věty II padne pata A' výšky AA' dovnitř polo-
přímky BC. Protože ABA' je pravoúhlý trojúhelník,
kde = 90°, nemůže A' ležet uvnitř úsečky BC;
jinak by totiž byl úhel ^cACB ostrý. Leží tedy bod
A' na prodloužení úsečky BC za bod C, a proto ra-
měno AA' ostrého úhlu <^BAA' leží v úhlu &0

vedlejším к úhlu a (v polorovině ABC), takže polo-
přímka AA' nejde vnitřkem úhlu a. Přitom je <£BAA'
ostrý úhel trojúhelníku ABA'. Podobně se dokáže,
že polopřímka BB' leží v polorovině ABC, vně úhlu (3
a že úhel <£ABB' je ostrý.

Protože je AiBAA' + <£ABB' součet ostrých
úhlů, je menší než 180° a podle Euklidova axiomu
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mají polopřímky AA', BB' uvnitř poloroviny ABC
společný bod V. Ten podle věty I leží i na přímce CC,
ale vzhledem к předchozímu vně trojúhelníka ABC,
tj. uvnitř úhlu ý vrcholového к úhlu y. Z trojúhel-
nika ACC (kde <£C" = 90° a bod C leží uvnitř
úsečky AB) plyne, že úhel <^ACC' je ostrý; totéž
platí i o úhlu <$.BCC. Polopřímka CV tedy dělí
úhel у ve dva ostré úhly (viz obr. 35).

Tím je věta III dokázána.

Řešení úlohy. I. Daný úhel <£PCQ označme у a úhel
к němu vrcholový označme y' = P'CQ'. Dokážeme
postupně tvrzení [o] až [c]:

Tvrzení [o]. „Nechť je у < 90°. Označme <£QCQ"
pravý úhel, ve kterém leží bod P a dále označme

:PCP" pravý úhel, ve kterém leží bod Q (viz obr.
37).

Jestliže bod V padne dovnitř úhlu *$.P"CQ" (kte-
rý je zřejmě tupý), potom má úloha právě jedno ře-
šení.“

Tvrzení [b]. „Nechť je у = 90° а V = C; potom
má úloha nekonečně mnoho řešení (obr. 34).“

Tvrzení [с]. „Nechť je 90° < у < 180° a nechť
bod V padne dovnitř úhlu <^P'CQ', přičemž oba
úhly <£F(7P', <4iVCQ' jsou ostré, potom má úloha
právě jedno řešení (obr. 35).“

„Jinak úloha nemá řešení.“
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II. Důkaz. Případ [о]. Je у < 90°. Rozeznávejme
tři možnosti: (1) Bod V padne dovnitř úhlu y;
(2) bod V leží uvnitř jedné z polopřímek CP,
CQ; (3) bod V padne dovnitř úhlu *$.P"CQ",
avšak vně úhlu у (viz obr. 37).

Možnost (1) (viz obr. 33). Označme A', B' paty
kolmic vx, v2 vedených po řadě bodem V к přímkám
CQ, CP. Přímka VA' = vx má s polopřímkou CP spo-

léčný bod А ф C a přímka VB' = v2 má s polopřím-
kou CQ společný bod В фС\ dokažme toto tvrzení
pro bod A: Je А' фС (plyne z věty II, neboť úhel

VCQ je ostrý); součet úhlů у a <$.VA'C = 90° je
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menší než 180°, a proto mají polopřímky CP, A'V
uvnitř poloroviny CQP společný bod A (Euklidův
axiom).

Trojúhelník ABC tedy existuje, přímky vv v2 jsou
v něm výškami a jejich průsečík V je tedy ortocen-
trém tohoto trojúhelníka (věta I), který je nutně
ostroúhlý. Je jediné řešení.

Možnost (2) (viz obr. 36). Bod V фС leží uvnitř
polopřímky CP (případ, kdy V leží uvnitř CQ, se řeší
obdobně). Podle věty III padne ortocentrum na
obvod trojúhelníka jedině v pravoúhlém trojúhel-
niku, a to právě do vrcholu jeho pravého úhlu.

Sestrojme tedy přímku v2 _[_ CP bodem V = A.
Z Euklidova axiomu plyne, že uvnitř poloroviny
CPQ mají přímky v2, CQ společný bod B. Trojúhelník
ABC je jediné řešení úlohy a bod V je jeho ortocen-
trum.

Možnost (3) (viz obr. 37). Bod V leží uvnitř úhlu
P"CQ", ale vně úhlu y. Nechť bod V leží např.

uvnitř poloroviny opačné к polorovině CPQ a tedy
uvnitř úhlu <$.Q"CP (případ, že bod V padne dovnitř
úhlu -^QCP", se řeší obdobně).

Označme B' patu kolmice v2 J_ CP vedené bodem
V. Přímka v2 a polopřímka CQ mají podle Euklidova
axiomu uvnitř poloroviny CB'Q společný bod В (neboť
je у < 90° a při bodu B' je pravý úhel). Úhly trojúhel-
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nika BCV jsou ostré (je <^VCQ < <£ 90°, <£В je
ostrý úhel pravoúhlého trojúhelníka BCB' a <£F je
ostrý úhel trojúhelníka VCB')\ označme A ortocen-
trum trojúhelníku BCV. Protože je BCV ostroúhlý
trojúhelník, leží bod A uvnitř výšky CB' (tj. úsečky)
trojúhelníka CVB a je VA _|_ BC, BAC' J_ VC, kde
C je pata kolmice vedené bodem В к přímce CV. Je
tedy V ortocentrum trojúhelníka ABC, který je je-
diným řešením úlohy. (Úhel <£A trojúhelníka ABC
podle věty III je nutně tupý.)

Doplněk. Padne-li bod V na některou z polopří-
mek CQ", CP" nebo vně úhlu <$.P"CQ", nemá zřejmě
úloha pro у < 90° řešení; alespoň jedna z pat A', B'
kolmic vx, v2 nepadne dovnitř příslušné polopřímky
CP, popřípadě CQ.

Případ [b] Je у = 90° (obr. 34). Je-li ABC hledá-
ný trojúhelník, je nutně V = C.

Je-li tedy V = C, zvolme uvnitř polopřímek CP,
CQ po řadě po jednom bodě; označme je А, В. Troj-
úhelník ABC má ortocentrum v bodě С = V. Úloha
má nekonečně mnoho řešení.

Doplněk. Je-li V фС, nemá zřejmě úloha řešení.
Případ [с]. Je 90° < у < 180°, bod V leží uvnitř

úhlu / ^ <P'CQ' a úhly ^VCP', <£VCQ' jsou
ostré (obr. 35); v jiném případě není podle věty III
řešení.
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Bodem V veďme přímky v1 _]_ CQ, v2 J_ CP a pří-
slušné paty označme po řadě A', B'; protože je
<$.VCQ' ostrý, padne bod A' dovnitř polopřímky CQ'
opačné к polopřímce CQ a z téhož důvodu odděluje
bod C body P, B'.

Polopřímky VA', B'CP mají podle Euklidova axio-
mu společný bod A uvnitř poloroviny VB'C (neboť
je CB'V — 90° a <$.A'VB' < 90°, což plyne ze
čtyřúhelníka CA'VB', ve kterém jsou úhly <$iA',

pravé a úhel <£(7 = y' tupý). Stejně se dokáže,
že polopřímky CQ, VB' mají společný bod В -фС
uvnitř poloroviny VA'C. Snadno se pak usoudí, že
bod A již nutně padne dovnitř polopřímky CP a bod
В dovnitř polopřímky CQ.

V trojúhelníku ABC jsou podle konstrukce přímky
vi> v2 výškami, bod V ortocentrem, takže trojúhelník
ABC je zřejmě jediným řešením úlohy.

Tím je důkaz tvrzení z odst. I proveden a úloha
řešena. '

2. Pravidelný štvorboký hranol, ktorého podstav-
ná hrana má velkost a (v cm) a výška velkost v (v cm),
má tú vlastnost, že číslo, ktoré udává jeho povrch
(v cm2) sa rovná číslu, ktoré udává jeho objem
(v cm3); přitom a, v sú prirodzené čísla.

Nájdite všetky také hranoly a vypočítajte к nim
prislúchajúce čísla a, v.
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Riešenie. Objem V daného hranola je
V — a2v; (1)

povrch P hranola je
P = 4av -f- 2a2. (2)

Podlá textu úlohy platí
a2v — 4av + 2a2.

Vzhladom к textu úlohy nutné platí a > 0, preto
obidve strany poslednej rovnice móžeme dělit číslom
a. Dostaneme rovnicu

av = 4v 2a,
z ktorej za předpokladu, že je а Ф 4, máme

2a
(3)v = —

a —4 ’

éo možno postupné upravit takto:
2 (a — 4) + 8

v = —i
a — 4

8
= 2 +

a —4 ’
čiže

8
(4)v — 2 +

a — 4

Z geometrického významu čísla v vyplývá tiež, že je
v > 0. Kedže čitatel’ zlomku na právej straně rovnice
(3) je kladné číslo, dostaneme v > 0 len pre a — 4 > 0
čiže nutné platí a > 4. Podlá textu úlohy sú a, v pri-
rodzené čísla. Do rovnice (4) dosadzujme teda po-
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8
stupně za a prirodzené čísla 5, 6, 7 atď. Pretože —

CL

musí byt prirodzené číslo [pozři (4)], musí platit
8 ^ a — 4,

— 4

číže
a ^ 12.

Za a budeme teda dosadzovať len čísla od 5 do 12.

Výsledky sú zřejmé z tabulky:

Poznámkaa v

5 10 vyhovuje
vyhovuje66

14
nevyhovuje7

vyhovuje48

18
nevyhovuje9

5

10
nevyhovuje10

3

22
nevyhovuje11

7

vyhovuje312

Všetky 4 označené dvojice čísel a, v vyhovujú po-
žiadavkám úlohy, o čom sa 1’ahko přesvědčíme dosa-
denim do (1), (2) a porovnáním příslušných čísel V, P.
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Poznámka. Pomocou vzťahu (4) možno výpočet čí-
sel a, v zjednodušit takto: Číslo — —musí byť při-
rodzené čiže kladné číslo a — 4 musí byť delitelom
čísla 8. Preto sa musí rovnat niektorému z kladných
delitelov čísla 8: 1, 2, 4, 8. Dostáváme teda 4 rovnosti:

a) a — 4 = 1, tj. a = 5 a teda v = 10;
b) a — 4 = 2, tj. a = 6 a teda v — 6;
c) a — 4 = 4, tj. a = 8 a teda v = 4;
d) a — 4 = 8, tj. a = 12 a teda v = 3.

3. Je dán rovnoramenný trojúhelník ABC se zá-
kladnou AB, který má tu vlastnost, že ho lze přím-
kou p vedenou jedním z jeho vrcholů rozdělit na dva
trojúhelníky, které jsou oba rovnoramenné.

Vypočítejte velikosti vnitřních úhlů daného troj-
úhelníka ABC, a to vzhledem к tomu, kterým z bodů
А, В, C byla přímka p vedena.

Řešení. Užijeme věty P: „líhly při základně rovno-
ramenného trojúhelníka jsou shodné a ostré.“ Dále
této věty Q: „Uovnoramenný trojúhelník ABC
o základně AB (a tedy o hlavním vrcholu C) má
osu souměrnosti q J_ AB, která prochází bodem C.“

Úhly daného trojúhelníka ABC označme a, /5, у
a podle věty P je

a = P < 90°, (1)
dále je у = 180° — 2«.
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Pro polohu přímky p postačí uvažovat dvě mož-
no stí: Přímka p prochází: [1] bodem C\ [2] bodem
A. Případ, že přímka p prochází bodem B, převedeme
podle věty Q osovou souměrností na možnost [2].

Přitom budeme do obráz-
ků vpisovat velikosti
úhlů, a to pomocí veli-
kosti úhlu a; některé
z obrázků neodpovídají
skutečnosti, protože uva-
žovaná situace vůbec ne-

existuje.
Případ [1] (viz o-

značení obr. 38).
Nechť p prochází
bodem C; její společný
bod D se základnou AB

padne dovnitř této úseč-
ky. Podle textu úlohy
dostáváme dva rovnora-

menné trojúhelníky ACD,
BCD; jejich hlavní vrcho-

ly po řadě označmeH, ГГ. Jsou tři možnosti: [la]
až [lc].

[la] (viz obr. 39). Nechť je H = A, takže podle
věty P musí být ó = cp — 90° — \oí a d' — 90° -f- \<x,
který je к ó vedlejší. Je tedy ó' > 90°, a proto může
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být jedině H' = D. Je tedy BC základnou trojúhel-
nika BCD a platí ft = <p' = \b = 45° — |a.
Odtud a ze vztahu (1) plyne a — 45°— neboli
fa = 45° a tedy i

a = 36°, p 36°, у = 108°.

/>

C

íO-i

eo°-aisď-гау лга
D"H "H'

Obr. 41

Platí skutečně

6=<p = 72°,, p = (p’ = 36°, У — <P + <p' = 108°

a přímka p skutečně dělí daný trojúhelník ve dva
rovnoramenné trojúhelníky.

[lb] (viz obr. 40). Nechť jeli =C, tj. a = <5, při-
čemž ó je vnějším úhlem v trojúhelníku BCD, tj. platí
ó = P + cp' (viz obr. 38); dosaďme sem b — a, P — a,
čímž dostaneme a = a + P', což je spor.

[lc] (viz obr. 41). Nechť je H = D a tedy <p = a,
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(3 = 180° — 2ос. Pro trojúhelník BCD mohou nastat
tři možnosti [lcj], [lc2], [ 1 c3].

[lCl] (viz obr. 41). Nechť je H' = D a tedy /3 =
= cp' = \ó = 90° — л, neboť je vnějším úhlem troj-

úhelníka BCD. Ze vztahů /3 = 90° — л, /3 — л do-
staneme 2л = 90° neboli

л = 45°, /3 = 45°, у = 90°.
Skutečně je cp = л = 45°, ó = 180° — 2л = 90°

a odtud /3 = cp' — £<5 = 45°; přímka p skutečně dělí
daný trojúhelník ve dva rovnoramenné.

[lc2] (viz obr. 42). Nechť je H' = В a tedy <5' =
= 9?' = 2л; odtud a z trojúhelníka BCD plyne, že

(3 = 180° — 4л. Z tohoto vztahu a /3 = л dostaneme
ос — 180° — 4л neboli

146



л = 36°, /5 = 36°, у = 108°.
Tato situace je souměrně sdružená s případem [la];
porovnej obrázky 42 a 39.

[lc3] (viz obr. 43). Necht je H' =C a tedy d' = /3,
Cc

2
I1

p

*06 iao°-a\ DsH1 /

a

p, iao°- га a.ли

АяН ВЛ В

Obr. 44 Obr. 45

tj. д' = a. Úhel д" je vnější v trojúhelníku ACD,
a proto o něm platí 6" — a + cp neboli b" — 2a, což
je spor se vztahem S" = a.

Tím je případ [1] vyřízen.
Případ [2] (viz obr. 44). Nechť přímka p pro-

chází bodemd a protne rameno BC v bodě D, který
padne dovnitř úsečkyBC. Úhly <5, ó' jsou vedlejší, tj.á +
+ <5' = 180°. Označme hlavní vrcholy v trojúhelnících
ABD, ACD po řadě II, H'. Je třeba uvažovat tři
možnosti: [2a] až [2c].
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[2a] (viz obr. 45). Nechť je// = A a tedy /3 = <5;
protože je /5 = a, plyne odtud ó = a, takže vedlejší
úhel ó' = 180° — a je tupý a bod D = H'. Proto
v trojúhelníku DAG je у = co' = neboli co' = у =
= \oí. Je co = 180° — 2«, co' - |a a protože je

\

C
'P

DsH

JJJmCL

A в/А BmH

Obr. 47Obr. 46

co + oj' — a, dostaneme po dosazení (180° — 2a) +
+ 2 a = a neboli fa = 180° a tím

a - 72°, 0 = 72°, у = 36°.
Skutečně je d = (i — 72°, co' = у = = 36°, co =
= 180° — /3 — (5 = 180° 114° = 3G°, a = co +
+ co' = 72°; přímka p dělí daný trojúhelník ve dva
rovnoramenné.

[2b] (viz obr. 46). Nechť je II = В a tedy co = ó =
= 90° — № = 90° — \<x. Úhel <5' = 90° + |-a (vedlejší
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Tabulka výsledků

Číslo
pří-

pádu
Poloha přímky pa. = P PoznámkaУ

přímka jde bodem C,
dělí úhel у ve dva úhly
72°, 36°

36° 108° 2 případy
(souměrné
podle osy q
základny
AB)

la

přímka p jde bodem C
a půlí úhel у a jo kolmá
na AB

přímka p jde bodem A
(nebo В) a půlí úhel
daného trojúhelníka
ABC při tomto vrcholu
přímka p jde bodem A
(nebo В) a dělí úhel při
tomto vrcholu v pomě-
ru 2 : 1, přičemž větší
díl je přilehlý к základ-
ně AB daného troj-
úhelníka ABC

1 případ45° 90°
lc

2 případy
(souměr-
né)

36°72°

2a

2 případy
(souměr-

267.7 £°

né)
2b

X

к d) je tupý, takže je nutně II' = i) a w' = у = {á =
= 45° — %<x. Ze vztahu co + oj' — oí po dosazení máme

= a neboli 135° = \oí\ je(90° _ £a) + (45°
tedy

у = 25 f°.a = 77}°, ft = 77
Skutečně platí co = ó = -1(180° — P) — 90° — 38f° =
= 51f°. Dále je co' co = 77)° — 51f° = 25f°,— cx —
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tj. со = у. Přímka р tedy dělí daný trojúhelník ve dva
rovnoramenné. Protože je 25f°. 2 =61f°neboli 2co' =
= co, dělí přímka p úhel л v poměru 2:1.
• [2c] (viz obr. 47). Nechť je H = D. Tato situace
nemůže nastat, neboť vyžaduje vztah co = /? neboli
co = a. a zároveň co < oí.

Tím je případ [2] vyřízen. Závěr je v tabulce.

4. Daný je výraz
У = (s + УY (s — у) + (У + z)2 (y — z) +

+ (2 + xY (z + %), kde x, y, z sú reálne čísla.
Výraz V rozložte na súěin výrazov, ktoré sú v čís-

lach x, y, z prvého stupňa a nájdite všetky trojice
čísel x, y, z, pre ktoré je V = 0.

Riesenie. Upravujme postupné výraz V takto:
v = (X + y) (x2 — y2) + (y + z) (y2 — z2) +

+ {z + x) (z2 X2) =
= X3 xy2 + У3 2/22 + Z3 — zx2 —
— xz + х2У — У3 -f y2z — z3 + z2x =
= x2y xy2 + y2Z yz1 + z2x — zx2 +
+ xyz — xyz,

kde sme připočítali xyz — xyz — 0, aby sme mohli pre-
viesť ďalšiu úpravu. Ďalej platí:

V ■= xy(x — y) — xz(x — y) — yz(x — y) +
+ z2(x — y) =
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= (X — у) (ху — XZ — yz + Z2) =
= (х — у) Му — г) — z(y — 2)] =
= (х —у) (у — z) (Я — z) =
= —{х — у) (у —z) (z — х).

Je teda

F - —(x — у) {у — z) (z
Preto platí V = 0 právě vtedy, ak platí aspoň jeden
zo vzťahov

ж).

x — y = 0, y — 2 = 0, 2 — ж = 0
číže aspoň jeden zo vztahov

x = у, у = z, z = x.

Dostáváme teda tri množiny trojíc x, y, z, pře ktoré
je V = 0. Sú to:

x, у -- x, z, kde x, z sú 1’ubovolné reálne
čísla;

x, y, z = y, kde x, у sú lubovolné reálne
čísla;

x — z, y, z, kde y, z sú lubovolné reálne
čísla.

Tým je riešenie úlohy převedené.

5. V obrázku znamenají! rožne rovnoběžky m, n

břehy prieplavu, ktorého pozdížnou osou je priamka
p\\m. Na oboch róznych brehoch ležia miesta A, B,
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ktoré sú spojené cestou AMNB (lomená čiara), pri-
čom platí:*

(1) MN J_ p;

(2) body M, N ležia v uvedenom poradí na priam-
kach m, n\

(3) AM = BN.
Převeďte konštrukciu cesty z A do B, ak sú dané

priamky m\\n a body А, В ako v obr. 48 a rozhodnite
o riešitelnosti úlohy.

Riešenie. Rozbor (obr. 48). Predpokladajme, že
sine zostrojili body M, N, ktoré vyhovujú textu
úlohy. Priamka p je osou úsečky 31N. V súmernosti
podlá osi p přejde úsečka MA do úsečky NA'. Troj-
uholník NBA' je rovnoramenný a jeho základňou je
úsečka BA', bod N leží na osi q úsečky BA'. Podlá
toho prevedieme konštrukciu.

Konštrukcia (obr. 48). Zostrojme obraz A' bodu A
v súmernosti s osou p. Ďalej zostrojme os q úsečky
BA' (ak ovšem je В ф A') a označme N priesečík
priamok n, q a Jí obraz bodu N v súmernosti podlá
osi p.

Dokážeme, že body M, N vyhovujú požiadavkám
úlohy: Body B, A' ležia vo vnútri polroviny nB \ preto
bod N je rózny od B, A'. Bod N leží na osi q úsečky
BA', preto je

NB = NA'. (1)
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Úsečky NA', MA sú podlá konštrukcie súmerne
združené podlá priamky p, preto je

NA'=MA. (2)
Zo vzťahov (1), (2) vyplývá
Nfí = MA,

čo sme mali dokázat.

Poznámka. Požiadavky
vyslovené v úlohe strácajú p
praktický význam, ak prie-
sečík N je velmi daleko, ako _n
sa 1’ahko overí náčrtom.

Diskusia. Riešitelnosť úlo-

hy záleží predovšetkým od
toho, či je В ф A'. Ak však
je В гг A', sú body А, В sú-
merne združené podlá priam-
ky p. Potom ktorýkolvek
bod priamky m móžeme považovat za hladaný bod
M (bod N je potom pátou kolmice vedenej bodom M
к priamke n).

Teda, ak sú А, В súmerne združené podlá priamky
p, potom má úloha nekonečne mnoho riešení.

Nech А, В nie sú podlá priamky p súmerne zdru-
žené, takže В ф A'. Potom existuje os q úsečky BA'.
Priamka q je s priamkou n róznobežná právě vtedy,

sa-4h

/

iN
+

w
í \

I

7
B<<-—

h—

I
Obr. 48
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keď nie je BA' J_ n, tj. ak priamka AB je šikmá
к priamke p (alebo к priamkam m, n). Potom má
úloha jediné riešenie. Priamka q je však s n rovno-
běžná právě vtedy, ak je BA' J_ n čiže AB _L p.

Vtedy sú q, n dve rožne rovnoběžky a úloha nemá
riešenie.

Závěr. Ak je priamka p (os pásu rovnobežiek m, n)
osou úsečky AB, potom má úloha nekonečné mnoho
riešení. Ak je AB J_ p, ale p nie je osou úsečky AB,
úloha riešenie nemá. Ak sú AB, p dve šikmé priamky,
má úloha jediné riešenie.

6. Jestliže je číslo p různé od čísel —1, 0, 1, potom
rovnice

p(x — 1) + p2 — x p3 — 1
p3 + T

o neznámé x má vždycky jediné řešení; dokažte a roz-
hodněte, jak je tomu s řešením této rovnice v právě
uvedených výjimečných případech.

Potom řešte tyto úlohy: Vypočítejte číslo p tak,
aby daná rovnice měla kořen: a) x = 5; b) x = —3
a rozhodněte, je-li to možné.

(1)
p(x — 1) — p1 + X

Řešení. Nechť při daném reálném čísle p je x řeše-
ním rovnice (1); po znásobení obou stran rovnice
číslem (p3 + 1) [p(x— 1) — p2 + íc] dostaneme po-
stupně
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(p3 -f 1) [p(% — 1) + p2 — x\ =
= (p3 — 1) \p(x — i) — p2 x],

(p3 + i) Ир — i) + p(p — 0] =
= (p3 — i) Ир + i) — p(p + Щ

x[(p — 1) (p3 + 1) — (p + 1) (p3 — 1)] =
= —píp — 1) (P3 + i) —
— p(p + 1) (p3— 1),

x(p — 1) (p+ 1) [p2 — p + 1 — (p2 + p -f 1)] ==
= —P(P — 1) (P + 1) [p2 — P + 1 + (P2 +
+ p + 1)],

—2p(p—1) (p + 1)íc =
= —2p(p — 1) (p + 1) (P2 + 1),

1) (p + 1) [x — p2 — 1] = 0.—2p(p

Rozeznávejme možnosti [1] až [4]:
[1] Nechť je p(p — 1) (p + 1) Ф 0 neboli nechť je

(2)

(3)P ^ 1, P Ф 0, p ф —1.

Potom v rovnici (2) je nutně
x — p2 — 1 = 0,

tj-
x = p2 4-1.

Zkouška. Označme po řadě L, P dosazení čísla (4)
do levé a do pravé strany rovnice (1); dostáváme (je
x — 1 = p2):

(4)

p3 + P2 — P2 — 1 p3 — 1
P3 + 1 5L =

p3 — p2 + p2 + 1
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je tedy L = P, pokud ovšem p3 + 1 Ф 0. Řešme
rovnici

pz + 1 = 0 (5')
neboli

{p + 1) (p2 p + 1) = 0.
Buď je p + 1 = 0, tj. p — —1, což vzhledem ke (3)

nenastane; nebo je
V2 — V + 1 = 0, (5)

což lze psát
p2 — 2p -f 1 + V — 0,

neboli
l)2 = —p.

Je-li p > 0, je —p < 0, kdežto (p— l)2 ^ 0; ne-
může tedy být p > 0.

Je-li p < 0, jsou všechna tři čísla na levé straně
rovnice (5) kladná a jejich součet je rovněž kladný;
nemůže tedy být p < 0.

Je-li p = 0, je levá strana rovnice (5) rovna číslu 1
a tudíž různá od nuly.

Rovnici (5) nelze splnit žádným reálným číslem;
rovnici (5') lze tedy splnit jedině číslem p = —l,
které jsme předpokladem (3) vyloučili.

Výsledek I. Je-li p různé od čísel
rovnice (1) jediné řešení x = p2 -j- 1.

[2] Nechť je p — 1. Rovníce (1) pak zní

(V

1, 0, 1, má

00

2{x—l) 2
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je zřejmě splněna každým číslem x, o němž platí
x— 1 Ф 0

neboli jejími řešeními jsou všechna reálná čísla různá
od čísla 1.

Výsledek II. Pro p — 1 má rovnice (1) nekoneč-
ně mnoho řešení; splňuje ji každé číslo x Ф 1.

[3] Nechť je p = 0. Rovnice (1) pak zní
— x

= — 1.
x

Jejím řešením je každé číslo x Ф 0.

Výsledek III. Pro p — 0 jo řešením rovnice
(1) každé reálné číslo x Ф 0.

[4] Nechť je p = —1. Rovnice (I) pak zní
— 2x + 2 — 2

0 0

takže ani levá ani pravá strana nemá smysl.
Výsledek IV. Pro p = —1 nemá rovnice (1) žád-

né řešení.
Přehled o výsledcích vidíme v tabulce na str. 158.

Nyní ještě odpovíme na zbývající dvě otázky a)
a b):

a) Pro číslo p různé od čísel —1, 0, 1 z výsledku (4)
dostáváme rovnici

5 = p2 + 1
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Číslo p Řešení x rovnice je Poznámka

je různé od
čísel
—1, 0, 1

jediné řešeníx = p2 + 1

zlomky na obou stra-
nách rovnice nemají
smysl
nekonečný počet
řešení

nekonečný počet
řešení

P = —1 x neexistuje

x ф 0 je libovolné
reálné číslop — 0

x Ф 1 je libovolné
reálné čísloV = 1

neboli postupně
0 = p2 — 4,

0 = (P — 2) (V + 2)
a tedy buď

p = 2
anebo

p = —2.

Přímým výpočtem [dosadíme do (1) za p číslo 2
nebo —2] dostaneme rovnici, která má skutečně ко-
řen x — 5, jak se snadno přesvědčíme.

Také pro p = 0 nebo pro p = 1 dostáváme rovnice,
mezi jejichž nekonečným počtem řešení je též číslo
x = 5.

Výsledek a). Rovnice (1) má řešení x = 5 pro číslo p
rovné jednomu z čísel: —2, 0, 1, 2.
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b) Pro číslo p různé od čísel —1, 0, 1 z výsledku
(4) dostáváme rovnici

—3 = p2 + 1,
kterou nelze splnit žádným reálným číslem, neboť na
levé straně je záporné číslo, na pravé je vždy číslo
kladné (součet čísla 1 a nezáporného čísla p2).

Pro p — 0 nebo pro p = 1 má rovnice (1) za řešení
číslo x — —3.

Výsledek b). Rovnice (1) má řešení x — —3 jedině
pro číslo p — 0 a pro číslo p = 1.

7. ÚLOHY II. KOLA KATEGORIE G

1. Riešte rovnicu

3px — 6#
px — 2x — 1

s neznámou x, pričom p je dané reálne číslo. Udajte,
pre ktoré číslo p nemá daná rovnica riešenie.

Potom nájdite také číslo p, aby rovnica mala rieše-
nie x =

5px — 10# (1)= — 2
px — 2x + 1

—

3*

Riešenie. a) Necli číslo x splňuje rovnicu (1). Potom
postupné platí

3x(p — 2)
(p — 2)x — 1 (p — 2)x + 1

ox(p — 2)
(П= —2,
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3x(p — 2) [(p — 2)x + 1] —
— 5x(p — 2) [(p — 2)x — 1] =
= —2[(p — 2)x — 1] [(p — 2)x + 1],

3 (p — 2)2x2 + 3 (p — 2)x — 5 (p — 2)2x2 -f-
+ 5 (p — 2)x = — 2[(p — 2)2x2 — 1],

(p — 2)2x2.(3—5 + 2) + (p — 2)x(3 + 5) = 2,
8 (p — 2)x — 2.

Případ [1]. Nech je p Ф 2, t. j.p — 2 Ф 0. Potom je
1

(2)x =
4 (p — 2)

Teda za předpokladu, že je p — 2 Ф 0 čiže
p Ф 2

je riešenie rovnice (1) dané vzťahom (2).
Skúšku prevedieme dosadením. Označíme L dosa-

denie výsledku (2) do 1’avej strany rovnice (1). Použi-
jeme к tomu tvar (!') danej rovnice. Platí:

(3)

53 52.

i=-r = —1 — 1 =—2.
I +’l

Teda skutočne L = —2.

— 1

Případ [2]. Nech je p = 2. Potom 1’avá strana rov-
nice (1') sa rovná nule, kým pravá strana je rovná
—2. Teda rovnica (1) pre p = 2 nemá riešenie.

b) Má platit x = — 5. Po dosadení do (2) dosta-
neme rovnost
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1 1

5 4(p—2) ’
z čoho postupné

5

4 ’
3

(4)V = 4 ‘

Skúšku prevcdieme tak, že do (L') dosadíme p = f
a rovnicu riešime. Dostáváme (přitom menovatel’ kaž-
dého z oboch zlomkov na 1’avej straně rovnice je pre
x = — -g rózny od nuly)

— I x — í — f x + 1
Ak rozšírime zlomky číslom —4, dostaneme rovnicu

25x

5x + 4 5x — 4

odkial postupné dostaneme

= — 2.

15ж

15ж(5а; — 4) — 25x{5x + 4) = —2(2ox2— 16),
5(15 — 25)x2 — 60ж — 100л: = —50л:2 + 32,

— 160 x = 32,
x = — i,

čo má platit.
Tým je skúška převedená.

Odpoved. Rovnice (1) má kořeň ж = — 3 jedine pre
V = 4-
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2. Je dána kružnice к == (S, r) a uvnitř této kruž-
nice ve vzdálenosti p ^ 0 od jejího středu S je dán
bod T.

Užitím výpočtu sestrojte dvě shodné (různé) kruž-
nice k1} k2, které procházejí bodem T, v tomto bodě
se navzájem dotýkají, přičemž každá z nich se dotýká
dané kružnice k.

Proveďte diskusi o počtu řešení vzhledem к daným
číslům r, p.

Řešení. Označme x poloměry hledaných shodných
kružnic к1г k2. Případ, kdy je p = 0, tj. T = S, je
velmi jednoduchý (obr. 49); zřejmě platí x = \r a

existuje nekonečné množství dvojic kružnic klf k2,
které vyhovují úloze (je-li Tx bod kružnice k, je k\
kružnicí sestrojenou nad úsečkou ST1 atd.).

V dalším je p > 0 (viz označení v obr. 50). V troj-
úhelníku STXT2 je STX = ST2 = r; v trojúhelníku
SSXS2 je SS1 = ST1 — S1T1 = r — x, SS2 = ST2 —
— S2T2 — r — x, tj. SSX = SS2. Je tedy SSfíz rovno-
ramenný trojúhelník; protože je TSr = TS2 -= x, je
T střed základny tohoto trojúhelníka, tj. q =
= ST _L SXS2 je osou souměrnosti nejen trojúhelníka
SSXS2, ale i celého útvaru složeného z kružnic k, kr, k2.

Z trojúhelníka SSXT (kde <£.T = 90°) pomocí
Pythagorovy věty dostaneme ST2 = SS\ — TS\ ne-
boli postupně
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p* = (r — x)2 — ж2,
p2 — (г — 2x).r,
2rx = r2 — p2,

tím je výpočet proveden. Protože platí r > p, je
x > 0 a číslo x má geometrický význam.

Vztah (1) lze psát
2r r — p (2)

r + V

Provedeme konstrukci úsečky TSX = x podle vzta-
hu (2); v obr. 50 je
TA = 2г, ТВ = r -\- Vr TC — TD = r — p,

BSX11AC.

x
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Tu platí /\TBS1 ~ /\ТАС(ии) a tedy
TSX = x.

Je-li T ф S, má úloha jediné řešení.

3. Sestrojte rovnoramenný lichoběžník ABCI)
(AB je jeho větší základna), jestliže je dáno: b (délka
ramene), p (délka střední příčky), e (délka úhlo-
příčky).

Proveďte diskusi řešitelnosti vzhledem к číslům b,
V> e.

Řešení (obr. 51). Rozbor. Je-li ABCT) hledaný licho-
běžník, sestrojme rovnoběžník ACDE; je

AD = BC = b, AE = CD - c,
BE = AB + AE = a + c = 2p,

AC = = BD = e.

V rovnoramenném trojúhelníku je BE základ-
nou; jeho strany jsou

BE = 2p, BD = ED = e.

Odtud konstrukce: Sestrojme rovnoramenný troj-
úhelník BED tak, aby platilo

BE — 2p, BD — ED = e.

Opišme kružnici к = (D, b) a označme A společný
bod přímky BE s t'outo kružnicí, a to ten, který padne
dovnitř úsečky PE, kde P je pata kolmice vedené
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bodem D к přímce BE (existenci bodu A vyšetříme
v diskusi). Dále sestrojme rovnoběžník AEDC; potom
ABCD je hledaný lichoběžník.

Důkaz. Čtyřúhelník ABCD podle konstrukce je
lichoběžník, neboť je: AB\\CD, 2p = BE — AB
+ AE = AB + CD, tj. střední příčka je rovna p,

.

>7
D C

\' N
l

w A'' !ty- b
I ✓ 4

N ’
У

pУ I \qуЛ ///////a
E КA к

Obr. 51

rameno AD - b, AC — ED = BD = e (podle kon-
strukce), *$.CAB = <$'MED = <£ABD (podle kon-
strukce), takže úsečky AC, BD jsou souměrně sdru-
ženě podle osy q úsečky AB a tím jsou souměrně sdru-
ženě podle q i úsečky AD, BC, tj. BC = AD — b.
Přitom je А В větší základna, neboť podle volby leží
bod A uvnitř úsečky PE, a proto je AB > BP =
= PE > AE =CD neboli AB > CD. Tím je důkaz
proveden.
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Diskuse. Aby se dal sestrojit trojúhelník DBE, musí
platit

neboli
BE < ED + BD

2p < 2e,
tj-

(1)p < e.

Aby bod A padl dovnitř úsečky PE, musí platit
v — DP < DA < DE neboli

v < Ъ < e;

z Pythagorovy věty pro trojúhelník EDP (kde
<£ P — 90°) plyne DP2 = DE2 — РР2 neboli

•y = |/e2 — p2 . Po dosazení do (2) dostaneme vztahy

}/e2 — p2 < 6 < e

(2)

neboli
e2 — p2 < b2 < e2.

Jsou-li vztahy (1), (3) splněny, má úloha zřejmě
jediné řešení; jinak není řešení.

(3)

4. Máme m gramů p-procentního roztoku cukru ve
vodě. Kolik procent váhy veškeré vody musíme z roz-
toku odpařit, aby vznikl roztok 2p-procentní?

Doporučení. Úlohu nejprve řešte pro p — 40.
Vysvětlivka, p-procentní roztok cukru znamená,

že máme-Ji např. 100 gramů roztoku, je v něm p

gramů cukru a 100 — p gramů vody.
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Řešení. Původní roztok nechť váží m gramů; váha
jeho cukru je

P
—— m
100 (l)

100 — v
— m gramů. Odpa-gramů, váha jeho vody 100

říme-li q% z této váhy vody, zmenší se váha roztoku
100 —

— •

щ m gramů.o
100

Váha nového roztoku je tedy
1002— (100 — p)q(100 — j))q

mm m —
10021002

gramů. Je-li nový roztok 2p-procentní, je
1002— (100 — p)q2p V (2)m.m :

1002100 100

neboť váhové množství (1) cukru zůstalo nezměněno.
Úpravou vzorce (2) dostaneme

1002p
1002— (100 — p)q ’ (3)2p —

4^odtud po úpravě máme
1002— (100 — p)q = 5.103

neboli
5000

(4)<1 = 100 — p
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Má-li být úloha řešitelná, musí být zřejmě p < 50;
pak podle vzorce (4) vyjde q > 0 a zároveň q < 100.

Číselný příklad. Pro p — 40 vyjde q — 83^ —

= 83,3. Chceme-li tedy z roztoku 40procentního zís-
kat roztok 80procentní, musíme odpařit 83 £% pů-
vodního množství vody.

8. ÚLOHY I. KOLA KATEGORIE D

1. Je dán pravoúhlý rovnoramenný trojúhelník
ABC o odvěsnách CA — CB — 2 dm. Kolem každého

jeho vrcholu opíšeme kružnici o poloměru 1 dm.
Oblouky těchto kružnic oddělí z trojúhelníka ABC
tři kruhové výseče a z trojúhelníka zbude obrazec,
jehož obsah označíme x.

Vypočtěte, kolik procent je číslo x z obsahu daného
trojúhelníka.

Řešení (obr. 52). Označme P obsah trojúhelníka
ABC a x obsah v textu uvažovaného obrazce; dále
označme Q obsah tří kruhových výsečí, které od troj¬
úhelníka ABC máme oddělit. Platí P = \.CA .CB —
— \. 2.2 = 2, tedy

P = 2. (1)
Obsah Q je součet obsahů tří výsečí o poloměru

r — 1, kruh o poloměru r = 1 má obsah яг2, tj. n\
dvě z těchto výsečí (při vrcholech A, B) mají tedy
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obsahy rovné \n a třetí výseč (při vrcholu C) má
obsah \n\ je tedy

Q = 2 . I л + l n

Q = 2 Л-

2 П,

(2)

Z výsledků (1), (2) pro číslo x = P — Q dostáváme
x — 2 — \ n.

Položme přibližné n 272 ; po dosazení do (3)
obdržíme

(3)

14— 11 3
x = 2 — \ .

2 2 O 11
7 * "7 ~ 7 ’7

tj-
3 (4)/V» • O

«X/ ■ - -- <7 .

Označme p hledaný počet procent; je
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p = -4- • 100.г

Dosaďme sem z (1) a (4); dostáváme přibližně

. 3.100 3.100 1 150 3
: 2 = = 21v 7 7 2 7 7

nebo
p = 21,43.

Odpověd. Hledaný obrazec je asi 211% obsahu da-
něho trojúhelníka.

2. Kolika způsoby je možno napsat číslo 99 jako
součet tří různých prvočísel? (Přitom nehledíme na

pořádek sčítanců.)

Řešení. Poznámka. Prvočísla do 99 vyhledáme
pomocí tzv. Eratosthenova síta, tj. tím, že postupně
vyškrtáme všechny celistvé násobky (větší než jedno-
násobky) přirozených čísel dvojkou počínajíc; viz
další tabulku (čísla ,,škrtnutá" jsou tištěna obyčejně,
čísla „neškrtnutá" polotučně):

8,1, 2, 3, 4, 5, 6, 7, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
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71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99.

Máme tedy tato prvočísla, která mohou přijít
v úvahu:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Při sestavování součtu hledaných tří prvočísel se
snažíme volit prvního a druhého sčítance co nejmen-
šího; dvojka nemůže přijít v úvahu, nebot by se
v součtu musila vyskytnout dvě sudá čísla a jedno
liché číslo, avšak jediné sudé prvočíslo je číslo 2.
Máme tyto součty:

3 + 7 + 89
3 + 13 + 83
3 + 17 + 79
3 + 23 + 73
3 + 29 + 67
3 + 37 + 59
3+43 + 53

11 + 17 + 71 13 + 19 + 67
11 + 29 + 59
11 + 41 + 47

17 + 23 + 59 19 + 37 + 43 23 + 29 + 47
17 + 29 + 53

5 + 11+83
5 + 23 + 71
5 + 41+53

7 + 13 + 79
7 + 19 + 73
7 + 31+61
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Existuje tedy celkem 21 trojic různých prvočísel
o součtu 99 (přičemž nehledíme na pořádek sčítanců
— jinak by jich bylo šestkrát více.)

3. Daný je dutý uhol <$iPAQ a úsečka velkosti d.
Zostrojte kosoštvorec ARCD, ktorého vrchol В leží

na polpriamke AP a vrchol D leží na polpriamke AQ,
pričom vieme, že súčet velkostí uhlopriečok AC, BD
sa rovná číslu d.

Má úloha vždy riešenie? (Pozři učebnicu: Dr. J.
Pírek, Geometrie pro 8. roč., SPN, vyd. z r. 1958, str.
25, príkl. 16.)

Riešenie (viď obr. 53a). Rozbor. Ak je A BCD hladaný
kosoštvorec (štvorec), platí

AS + SB = \d.
v

V pravouhlom trojuholníku ABS je <£S — 90° a súčet
jeho odvesien poznáme. Na predížení úsečky za
bod S zostrojme úsečku SE = SB, takže je

AE = AS + SB = \d.
Přitom je známe, že uhlopriečka AC v kosoštvorci
(štvorci) rozpoluje jeho uhol pri vrchole A. Vieme
však zostrojiť os tohto ulila a teda aj bod E.

Ďalej vidíme, že trojuholník BES je rovnoramenný
a pravoúhlý, lebo o uhlopriečkach kosoštvorca
(štvorca) platí AC _L BD. Pri základní BE má preto
uhly velkosti 45°.
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Na základe toho prevedieme konštrukciu.
Konštrukcia (obr. 53ci). Zostrojme os AX daného

uhla <£PAQ a na nej úsečku AE = \d. V polrovine
AXP zostrojme uhol <$.AEY = 45°. Uhol <£PAX je
polovica dutého uhla a je preto menší ako 90°. Súčet

AQ
\ /
\
\

/>
\

EsУ
\

i* sf.\
\ \
\

SAу
/

\
I \

\/

\ л \
\

4 Bi\
i '

P

\
\

05r. 53a

uhlov <£P^4X, je teda menší ako 180° a podlá
Eukleidovho axiomu majú polpriamky AP, EY vo
vnútri polroviny AXP spoločný bod B.

V polrovine APX nad úsečkou AB ako stranou
zostrojíme kosoštvorec (štvorec) ABCD, ktorého
vrchol D padne na danú polpriamku AQ. Konštrukciu
prevedieme takto: Na polpriamke AQ zostrojíme
úsečku AD = AB a trojúhelník ABD doplníme na
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rovnoběžník ABCD tak, že bodom D vedieme priam-
ku c\\AP a bodom В priamku b\\AQ. Priesečík pria-
mok b, c je hladaný vrchol C. Tento rovnoběžník je
jediné riešenie úlohy, čo ihned’ dokážeme.

Dokaž. Podlá zostrojenia je ABCD rovnoběžník.
Pretože je AB — AD, je to kosoštvorec (štvorec).
Pri vrchole A má daný uhol <£PAQ. Vieme, že uhlo-
priečka AC kosoštvorca (štvorca) rozpol u je jeho uhol
pri vrchole A a preto polpriamky АС, AX splývajú,
takže bod E padne na polpriamku AC. Uhlopriečky
AC, BD sú na seba kolmé a pretínajú sa v střede koso-
štvorca (štvorca). V trojuholníku BES je teda
<£& = 90° a uhol A^E = 45° podlá konštrukcie. Preto
je třetí uhol = 45° a trojuholník je rovnoramen-

ný, takže SB = SE. Podlá konštrukcie je AE — \d
čiže + SE — \d. Dosaďme za SE = SB a dosta-
neme AS -f SB = \d. Súčet polovic uhlopriečok je
teda \d a preto sa súčet uhlopriečok AC, BD rovná d.
Tým je dokaž převedený.

Náčrt podobného řešení. Jestliže ABCD je hledaný
kosočtverec, sestrojme rovnoběžník BDCB' (viz obr.
53b); tu je

CB' = DB. (1)

Přitom úhlopříčka AC kosočtverce půlí úhel A.DAB;
na polopřímce AC sestrojme úsečku d = AC =
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= АС + DB. Vzhledem к vztahu (1) je CC — AC —

— AC = DB) je tedy
(2)CB' = CC.

Přitom je AC ± DB a tím též CB' J_ CC (úhly stři-
davé mezi rovnoběžkami DB, CB' proťatými příčkou
ASCC). Proto je trojúhelník CB'C pravoúhlý (<£0 =

A?
/

/

iу
Q i/

l
/ I

X\D IЧС/
3 ■

/
4
\ / Is

4 I
* 4^

N
Ж
\

Ж ,p
/А

/

4

p4 N

Obr. 53b

= 90°) a rovtioramenný [viz (2)]. Z toho plyne, že
AiCCB’ = 45°. Na základě toho provedeme tuto
konstrukci:

Sestrojme úhel <$.PAQ a na jeho ose sestrojme úseč-
ku AC = d. V polorovině ACP sestrojme úhel
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C-AC'E = 45° a označme В' společný bod polopří-
mek AP, CE. Dále označme C patu kolmice vedené
bodem В' к přímce AC'\ osa p úsečky AC protne polo-
přímky AP, AQ po řadě v bodech B, D. Důkaz kon-
strukce je snadný a nebudeme jej provádět. Je
AíPAC' polovina dutého úhlu, tj. menší než pravý;
proto je <£AC'E + <%PAC < 45° + 90° < 180°
a podle Euklidova axiomu mají polopřímky AP, CE
vždycky společný bod B'. Proto má úloha jediné
řešení.

ftešil Vlastimil Vadlejch,
8. tř. dsš, Kadaň.

4. Turistického zájazdu sa zúčastnilo 286 zamést-
nancov podniku. Mali к dispozícii autobusy jednak
s 19 sedadlami, jednak so 17 sedadlami (riadič auto-
busu ani jeho sedadlo sa v úlohe neuvažujú).

Vypočítajte, koTko autobusov každého z oboch
druhov sa pre zájazd použilo, ak všetky sedadlá boli
obsadené.

Riešenie. Predpokladajme, že sa použilo autobusu
II. typu (so 17 sedadlami). К tomu je třeba aspoň
tolko autobusov, kolko je 286 : 17. Platí

286 : 17 = 16

116

14
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Třeba teda 16 autobiisov II. typu, ale zostáva umiest-
niť ešte 14 osob. Autobus I. typu (s 19 sedadlami) má
o 2 sedadla viac ako autobus II. typu, přitom je
14 : 2 = 7. Nahraďme 7 autobusov II. typu autobus-
mi I. typu. Tak umiestnime právě zostávajúcich 14
osob.

Skutočne, 7 autobusov I. typu a 16—7 = 9
autobusov II. typu uvezie (ak sú všetky autobusy
plné obsadené) tento počet osob:

19.7 + 17.9 = 133 + 153 = 286.

Odpoved. Bolo třeba 7 autobusov I. typu a 9 auto-
busov II. typu.

5. Je dán ostrý úhel <^APM = 45°; na prodloužení
úsečky PA — 4 cm za bod A je dán bod B, přičemž
je PB =14 cm.

Užitím osové souměrnosti sestrojte na polopřímce
PM body X, Y tak, aby o čtyřúhelníku AXYB pla-
tilo:

(2). X Y — 3 cm.

Poznámka. Obrázek, který dostaneme, můžeme
považovat za plán řezu terénu svislou rovinou o.
Přitom je PA řezem šikmého rovinného svahu a PM
řezem vodorovné roviny; čtyřúhelník AXYB je ře-
zem průkopu ve svahu. Průkop vede kolmo к rovině

(1) <£AXY = ^XYB-

17712 IX. roč. matem, olympiády



q, jeho stěny mají stejné sklony a jeho vodorovná
stěna má danou šířku atd.

Řešení. Rozbor (viz obr. 54). Předpokládejme, že
jsme našli body X, Y, které splňují požadavky textu
úlohy. Sestrojme obraz A' bodu A v souměrnosti
o ose PM; obrazem úhlu ^iAXY je úhel <£AřXY
s ním shodný, tj.

<£AXY = <£A'XY. (1)
Podle požadavku úlohy je

^AXY = <£XYB.
Porovnáním obou rovností dostáváme

<$A'XY = <£XYB;
to jsou dva střídavé úhly mezi přímkami A'X, YB,
které jsou proťaty třetí přímkou XY. Z rovností obou
střídavých úhlů [viz К Kraemer, Geometrie pro 7.roč.,
str. 128, vyd. 1957] plyne

A'XII YB.

Trojúhelník XYB můžeme doplnit pomocí přímky
p\\PM vedené bodem В na rovnoběžník XYBZ;
v něm jsou rovnoběžné strany XY — 3, BZ shodné.
Avšak bod Z dovedeme z daných prvků snadno sestro-
jit a na základě toho provedeme konstrukci.

Konstrukce (obr. 54a). Sestrojme úhel <^A1>M — 45°,
kde PA — 4; dále sestrojme na polopřímce PA úseě-

178



ku Pfí = 14. Bodem A veďme kolmici к к přímce
PM a na ní určeme bod A' souměrně sdružený к bodu
A vzhledem к přímce PM (v obr. 54 je tedy SA' —

= SA). Dále bodem В veďme přímku p\\PM a na ní
sestrojme úsečku ВZ — 3, a to tak, aby body M, Z
ležely v opačných polorovinách vyťatých přímkou
PA. Body A', Z leží v opačných polorovinách o hranici
PM. Proto uvnitř úsečky A'Z leží bod X, který záro-
veň leží na přímce PM; je to průsečík přímek A ’Z,
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PM. Konečně sestrojme bodem В přímku q\\A'Z a
označme Y průsečík přímek q, PM. Tím jsou body
X, Y sestrojeny.

0 bodech X, Y skutečně platí XY = BZ = 3, ne-
bot XYBZ je podle konstrukce rovnoběžník. Dále je
podle konstrukce A'Z\\q; rovnoběžky A'Z, q jsou pro-
táty přímkou XY, proto jsou střídavé úhly <^A'XY,
<£X YB shodné; z konstrukce bodu A' plyne shodnost
souměrně sdružených úhlů <£AXY, <£A'XY, takže
skutečně je <£AXY = <£XYB. Body X, Y tedy
splňují požadavky úlohy. Z konstrukce vyplývá, že
daná úloha má při daných údajích právě jedno řešení.

Náčrt jiného řešení. Rozbor {obr. 54b). Mysleme si,
že jsme sestrojili hledané body X, Y. Označme po
řadě A', B’ paty kolmic vedených body A, В к přímce
PM, takže АА'В'В je lichoběžník; .jsou-li S, S' po
řadě středy jeho ramen AB, A'B', je p — SS' jeho
střední příčka a osa úsečky A'B'.

Uvažujme souměrnost o*středu S, ta převádí bod
A v bod В a přímku AA' v přímku BB' a obráceně;
přímka m\\PM vedená bodem S protíná přímky AA',
BB' po řadě v bodech J, K, které jsou souměrně sdru-
žené podle bodu S.

Bodem J veďme přímku j\\AX a označme C její
průsečík s přímkou PM; bodem К veďme přímku
k\\BY a označme D její průsečík s přímkou PM.
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Z rovnosti úhlů <$.AXY, <£XYB a z rovnoběžností
j\\AX, k\\BY plyne, že <£JCD = <£CDK; odtud vy-
plývá, že lichoběžník CDKJ (je CD\\JK) je rovnora-
mermý a přímka p je nutně jeho osou. Dále platí
[\EJA ^ /\FBK (viz obr. 54b, kde je AE\\PM),

Obr. 54b

neboť je AJ — BK, jak vyplývá ze souměrnosti
těchto úseček podle středu S, dále je <£A — <£K =
== 90°, <£Е = <£F; proto je AE = KF, a protože je
XC = AE a DY = KF, je též XC = DY, tj. CD =
= XY — 3. Odtud konstrukce:

Sestrojme střed S úsečky AB a veďme jím kolmici
p к přímce PM; její patu označme S'. Na přímce PM
sestrojme úsečky S'C = S'D = 1,5 (kde С ф D).
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Dále veďme kolmice AA', BB' к přímce PM a pro-
tněme je přímkou m\\PM vedenou bodem S; přímka
m protne přímky AA', BB' po řadě v bodech J, K.
Tím jsme sestrojili rovnoramenný lichoběžník CDKJ.

Nyní veďme bodem A přímku a\\JC a bodem В
přímky B\\KD. Přímky а, Ъ protnou přímku PM
v hledaných bodech X, Y.

Důkaz konstrukce plyne z obrácení postupu v roz-
boru; úloha má zřejmě jediné řešení.

Tuto konstrukci podala Věra Uldrichová,
8.a tř. osš., Perštejn nad Ohří. Podobně

řešil úlohu i Karel Šulc, 8.a tř. osš,
Rumburk.

(i. Je dán zlomek

[x(p + q) + pq + l]2 — [x{pq -f 1) + p + g]2 ,Z -

(p + q)2 — {pq + i)2
kde p, q jsou daná ěísla.

a) Jestliže každé z čísel p, q je různé od čísel 1, —1,
potom má zlomek Z smysl a po zkrácení je vidět, že
nezávisí na žádném z čísel p, q; proveďte.

b) Vypočítejte všechna ěísla x, pro která je Z — 0.
c) Vypočítejte všechna ěísla x, pro která je Z zá-

porné číslo.
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ŘeSení. Označme A čitatele а В jmenovatele zlom-
ku Z; výrazy А, В postupně pomocí vzorce a2 — b2 =
= (cl -f b) (a — b) upravíme. Platí
A = [x(p + q) + pq + l]2 — [x(pq + 1) 4- p + q]2 =

= íx(p + g) +[pq + 1 + x(pq + l) + v + g]-
. [x(p + q) + pq + 1 — Х(РЯ + l) — P — Я] =

= [x(p + q + pq + 1) + {pq + P + q + !)]•
• ÍXÍP + q — pq — !) — (P + q — pq — !)] =

= (p + q + pq + i) (x + i).
■ (p + q — pq — i) (x — l) =

= X1 + q) + (i + g)] (x + i).
• IX1 — g) — (i — g)J («— i) =

= (i + q) (p + !)•(» + i)-
• (i — q) (p — !)•(*— i) -

= — (p + 1) (P— 1) (q + 11 (q— ]) .

. (x + l) (x — 1).
В = (p + q)2 — {pq + i )2 =

= [p + q + pq + i]-[p + q — pq — i] =
= X1 + q) + (i + g)J • [X i — g) — (i — g)] =
= (i + g) (p + i)-(i — g) (p-
= — (p + O (p — i) (g + !) (g — i).

(O

i) =

(2)
Je tedy

(p + 1) (p —1) (g +_1) (g—1) • (« + 1) (x —1)
— (p + i) (p — í) (g + i) (g— i)

z -

(3)
[Poznámka. Zlomek Z zřejmě ztrácí význam, jest-
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liže některé z čísel p, q je rovno některému z čísel
-1, 1.]

Všechny další úpravy provádíme za předpokladu,
že ani jedno z čísel p, q není rovno některému z čísel
— 1, 1.

a) Protože čísla p, q jsou různá od čísel 1, —1, pak
po dosazení do jmenovatele В za p, q není žádný z či-
nitelů v součinu (2) roven nule, a proto je В Ф 0.
Můžeme tedy čitatele i jmenovatele zlomku (3) dělit
číslem B; dostaneme

Z = (x (x — 1). (4)

Tento výraz skutečně neobsahuje čísla p, q, a proto
zlomek Z nezávisí na číslech p, q.

b) Vzhledem к předchozí části a) je Z = 0 tehdy,
je-li

(x -f- 1) (x — 1) = 0,

tj. je-li bud x -f- 1 = 0 anebo x— 1 =0. Z rovnice
x + 1 = 0

dostaneme x = —1. Z rovnice

x — 1=0
dostaneme x = 1.

Obráceně, když do vztahu (4) dosadíme x — —1,
dostaneme

Z = (—1 + !).(—! 1) = 0. (—2) = 0;
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podobně, když do (4) dosadíme x = 1, dostaneme

1) = 2.0 - 0.Z = (I + 1)(1

Výsledek. Zlomek Z = 0 jedině pro x — —1 a pro
x — 1 (pokud ovšem žádné z ěísel p, q není rovno ně-
kterému z čísel—1, 1).

c) Máme rozhodnout, pro která čísla x je součin
Z — (x + 1) (x — 1)

záporné číslo. Součin dvou čísel je záporný, je-li jeden
činitel kladný a zbývající činitel záporný. Hledáme
tedy x takové, aby jedno z čísel x -f- 1, x— 1 bylo
kladné, ale druhé záporné.

Číslo x — 1 je kladné pro x > 1; pak je x 1
součet dvou kladných čísel, Z je pak součin klad-
ných čísel a tedy je kladný.

Číslo x— 1 je záporné pro x < 1; číslo x -j- 1 je
pak kladné jen tehdy, je-li x > —1. To znamená, že
x musí být mezi čísly —1, 1, např. f, 0, —§ apod.

Pro x = l nebo —1 je jedno z čísel x + 1, x — 1
nula, a proto je Z = 0* Pro x < —1 je £ -f 1 i ж — 1
záporné číslo a Z je součin dvou záporných čísel, tj.
kladné Číslo.

Výsledek. Zlomek Z je záporný pro číslo x větší než
—1, ale menší než 1 (pokud obč čísla p, q jsou různá
od čísel —1, 1).
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Jiné řešení. Položme a — p -f- q, b — pq -f 1;
potom platí

\ax + b]2 — [bx + a]2Z =

a2 — b2

a2x2 -j- 2cibx b2 — (b2x2 + žabx -f «2)
a2 — b2

b2)x2 — (a2 — b2) (a2 — b2) (pc2 — 1)(a2
a2 — b2a2 — b2

Pro a2 — b2 Ф 0 je tedy Z = x2 — 1 =
= (x -f 1) (x — 1). Dále podobně jako v předchozím
řešení.

Toto velmi stručné řešení podal
Petr Hataš, 8.a tř., osš, Varnsdorf.

9. ÚLOHY II. KOLA KATEGORIE D

1. Řešte rovnici

p(x — 3) p(x -M)
9p2— 12p + 4 1 9p2 + 12p + 4 9p2

o neznámé x, přičemž p je dané číslo.
Rozhodněte, pro která čísla p nemá daná rovnice

řešení.

Řešení. Danou rovnici (1) upravme takto
p{x — 3) p{x + 3)
(3p —2)2 (Зр I-2)2 (3p + 2) (3p — 2) ‘

— 4

4 O

— 4

(2)
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Společný násobek jmenovatelů všech tří zlomků je
n = (3p— 2)2(3p + 2)2; (3)

je různý od nuly, jestliže neplatí ani jedna z rovností

3p — 2 = 0, 3p + 2 = 0.

Z první rovnosti plyne p — §, ze druhé p =
Jestliže tedy je

—

5-

V Ф f > V

potom mají zlomky ve (2) smysl a je n Ф 0.

Znásobme obě strany rovnice (2) číslem n; obdrží-
me postupně rovnice

p(x — 3) (3p + 2)2 -f p(x + 3) (3p — 2)2 =
- —4(3p + 2) (3p — 2),

px[(3p -f 2)2 -f (3p— 2)2] —
- —4(3p + 2) (3p — 2) 4-

4- 3p[(‘3p + 2)2 — (3p — 2)2],
px[9p2 -f- 12p 4-4 4- 9p2— 12p 4- 4] =

= —4(9p2 — 4) +
4- 3p[(9p2 -f 12p 4- 4) 4- (9p2 — 12p 4- 4)],

p(18p2 4- 8)íc =—4(9p2 — 4) 4- 3.24p2,
2p(9p2 4- 4)íc = —36p2 4- 16 4- 72p2,
2p(9p2 4- 4)x = 36p2 4- 16,
p(9p2 -f 4)ж = 2(9p2 4- 4).
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N

[1] Protože p2 je nezáporné číslo, je součet 9p2 + 4
číslem kladným. Jestliže je p Ф 0, je číslo p(9p2 + 4)
součinem dvou čísel různých od nuly, tj. je to rovněž
číslo různé od nuly; příslušné převrácené číslo je

. Znásobme jím obě strany poslední rov-
1

p(9p2 + 4)
nice; po úpravě máme

2
(4)x —

p

Zkouška. Dosaďme výsledek (4) do levé strany
rovnice (1); dostáváme

2 — 3p

(3p-2)
(3p —2)

2 + 3p

(3p + 2)2 '
3p + 2

(3p + 2)2

2" +

Г +(3p-2)
11

2_ + Sp + 23p —

(3p + 2) + 3p — 2 — 4

(3p — 2) (3p + 2) 9p2 — 4
což je pravá strana rovnice (1).

[2] Jestliže je p — 0, levá strana rovnice (1) je

pravá strana je
— 4

— 4
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Je tedy L Ф P a rovnice (1) nemá řešení.
Odpověď. Daná rovnice má řešení x =

2
pro každé

V
číslo p, které je různé od čísel —§, 0, §; pro tato tři
čísla nemá řešení.

Toto zevrubné řešení podal
Luděk Kučera, 8. tř. 5. osš,

Ústí nad Labem.

2. Dané sú kružnice к = (S, r = 7 cm), k' =

= (S', r' = 3 cm), ktoré majú vnútorný dotyk.
Narýsujte všetky kružnice o poloměre 3 cm, ktoré

sa dotýkajú obocli daných kružnic к, к'; zostrojte
dotykové body hladaných kružnic s danými kružni-
cami.

Porovnáním dížky strednej kružnic к, к' a polome-
rov pomocných kružnic odóvodnite počet riešení da-
nej úlohy.

Riešenie. (Dížky sú uvádzané v centimetroch). Je
známe, že středná dvoch kružnic, ktoré majú von-
kajší dotyk, sa rovná súčtu polomerov kružnic; střed-
ná dvoch kružnic, ktoré majú vnútorný dotyk sa
rovná rozdielu rx — r2 ich polomerov rx, r2, kde
rx > r2. Z toho vyplývá veta V: ,,Středy všetkých
kružnic o poloměre q = 3, ktoré sa dotýkajú danej
kružnice к = (S, r) zvonku, vyplňujú kružnicu
v = (S, r 3). Středy všetkých kružnic o poloměre
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3, ktoré majú s danou kružnicou к s= (S, r) vnútorný
dotyk (pričom je r > 3), vyplňujú kružnicu и =
= (S, r — 3).“

Zostrojme kružnice г; = ($, r -f 3), w = ($, r — 3)
sústredné s kružnicou к; dalej zostrojme kružnicu
v' = (S', r' + 3). (Poznámka: Pretože je r' = 3,
je r' — 3 = 0 a teda neexistujú kružnice s polome-
rom 3, ktoré by mali s kružnicou k' vnútorný dotyk.)

Ak je X stredom kružnice o poloměre 3, ktorá sa

dotýká kružnic k, k' zvonku, potom musí bod X
ležať na každej z kružnic v, v', tj. v ich spoloénom
bode.

Ak je Y stredom kružnice o poloměre 3, ktorá má
s kružnicou к vnútorný a s kružnicou k' vonkajší do-
tyk, potom bod Y musí ležať v spoločnom bode kruž-
nic u, v'.

(V našom případe neexistuje kružnica o poloměre
3, ktorá by s kružnicami k, k' mala vnútorný dotyk,
viď poznámka.)

Podlá toho prevedieme konštrukciu.
Konštrukcia (obr. 55). Označme T dotykový bod

daných kružnic к, к', takže je
ST =r = 7, S'T = r' = 3,

SS' = ST — S'T = 4.

Opišme pomocné kružnice v = (S, r -f 3 = 10),
u = (S,r— 3 = 4), v' e= {S', r' + 3 = G).

(1)
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Kružnice v, v' majú spoločný bod X. Podlá (1) je
SX = ST + 3, S'X = S'T + 3 a body S, S', T, X
ležia na tej istej priamke. Kružnica x = (X, q = 3)
má s kružnicami k, k' vonkajší dotyk.

Kružnice u, v' sa pretínajú v dvoch róznych bodoch
Y, Y'. Kružnice у = (Y, q = 3) a y' = {Y', q = 3)
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majú s kružnicou к vnútorný a s kružnicou k' von-

kajší dotyk.
Tak sú zoštrojené všetky kružnice (obr. 55) poža-

dováných vlastností: x, y, y'.
Dokaž správnosti vyplývá z konštrukcie pomocných

kružnic.

Dotykovým bodom kružnice x s kružnicami k, k'
je zrejme bod T.

Dotykový bod Tx kružnic у, к dostaneme ako spo.

ločný bod kružnice к s polpriamkou SY; dotykový
bod T2 kružnic y, k' dostaneme ako spoločný bod
kružnice k' s polpriamkou S'Y.

Obrazy T\, T'2 bodov Tx, T2 v súmernosti podlá osi
SS' sú dotykovými bodmi dvojíc kružnic у', к a y1, k'.

Diskusia. Kružnice v, v' majú strednú SS' — 4,
poloměry r -f 3 = 10, r' + 3 = 6, takže je SS' =
= r + 3 — (r' + 3) = 4; preto kružnice v, v' majú
vnútorný dotyk a teda jediný spoločný bod X.

Kružnice u, v' majú strednú SS' = 4, poloměry
rx = r — 3 = 4, r2 = r' + 3 = 6 a preto platí

r2 — rx < SS' < r2 + rx,

takže sa kružnice u, v' pretínajú v róznych bodoch
Y, Y'. Preto existujú dve hladané kružnice y, y', ktoré
sa dotýkajú kružnice к z vnútra a kružnice k' zvonku.

Závěr. Možno zostrojiť celkom tri kružnice požado-
váných vlastností: x, y, y'.
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3. Máme 1500 gramov 7,2percentného roztoku ku-
chyňskej soli vo vodě. Vařením tohto roztoku sa od-
pari část vody a zostane nám 1200 gramov nového
roztoku.

a) KoTkopercentný je nový roztok?
b) Kolko gramov kuchyňskej soli musíme přidat

do nového roztoku, aby sme z něho získali 25percent-
ný roztok?

Vysvetlenie: p-percentný roztok kuchyňskej soli vo
vodě znamená, že ak máme napr. 100 gramov roz-
toku, je v ňom p gramov kuchyňskej soli a 100 — p
gramov vody.

Riešenie. V 1500 gramoch póvodného roztoku je

.7,2 = 108 gramov soli.
1500

100
1200

a) Je 108 : - = 9.
100

Odpověď. Nový roztok je 9percentný.
b) Přidáme x gramov soli; získaný roztok váži

(1200 + x) gramov a je v ňom (108 -f x) gramov soli.
Podlá textu úlohy přitom platí

1200 + x
(108 + x) : = 25

100
čiže

100
(108 + x). = 25.

1200 + ж
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Úpravami tejto rovnice postupné dostaneme
100(108 + x) = 25(1200 + ж),

4(108 + x) = 1200 + x,
Зж = 1200 — 432,
Зж = 768,

ж = 256.

Odpověď. Třeba přidat 256 gramov soli. Získaný roz-
tok váži 1456 gramov.

Skúška. Je

1456 364.100 1.100

1456
364 : = 25,100 4

čo súhlasí s požiadavkou, aby výsledný roztok bol
25percentný.

Pěkné riešenie vypracoval
Jiří Pražský, 8.b dsš, Kadaň.

4. Je dána přímka p a body A, B, které jsou přím-
kou p navzájem odděleny. Sestrojte lomenou čáru
AXYB, která má tyto vlastnosti:

1. Body X, Y leží na přímce p.
2. Přímky AX, BY jsou navzájem rovnoběžné.
3. Úsečka XY má délku 6 cm.

Poznámka. Body А, В zvolte libovolně.
Ílešení. Rozbor. Jestliže body X, Y na obr. 56 vy-
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hovují požadavkům úlohy, je X Y = 6 cm a A X11В Y.
Sestrojme rovnoběžník X YBZ; v něm je B7j =17 =
= 6 cm. Pomocí tohoto výsledku provedeme kon-
strukci.

i ii i

!b zvz! i_zi £в
7Г ZT ГУ i

/I I
II /

/ I
I/I/ II

X! x±lZ xl Y
P, Y' PI

Лi I
i

//
//

) /*
Й'
j i

Obr. 5b Obr. 57

Konstrukce. Sestrojme bodem В přímku q\\p a na
ní sestrojme úsečky BZ — BZ' = 6 cm (přitom jsou
BZ, BZ' opačné polopřímky).

Další konstrukci proveďme s bodem Z (s bodem Z'
se provede obdobně): Označme X průsečík přímek p,
AZ \ dcále bodem В veďme přímku b\\AZ a označme Y
průsečík různoběžek p, b. Potom lomená čára
AXYB je jedním řešením úlohy.

Důkaz (obr. 56). Podle konstrukce je X YBZ rovno-
běžník; o jeho protějších stranách platí
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XY = BZ = 6 cm,

XZ\\BY neboli AX\\BY.
Přitom body X, Y leží na přímce p. Tím je důkaz
proveden.

Diskuse (obr. 57). Ke každému z bodů Z, Z' pří-
sluší jedna lomená čára, tj. dostaneme právě dvě
čáry AXYB, AX'Y'B. Ty jsou skutečně různé, neboť
např. úsečky AX, AX' jsou různé, což vyplývá z toho,
že AZ, A7j' jsou strany trojúhelníka AZZ', a proto
navzájem různé úsečky. Úloha má tedy právě dvě
řešení. (Poznámka. Přitom může být A" = F',
F = X' a přesto existují dvě různé lomené čáry.)

Podobné řešení podal
Josef Dvořák, 8.a tř. osš,
Jabloň né v Podještědí.
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IV. ZPRÁVA O DRUHÉ MEZINÁRODNÍ
M А ТЕ M AT К КĚ OLY MPIÁDĚ

1. Rumunská vědecká společnost pro matematiku
a fyziku (Societatea de Stiinte Matematice si Fizice
din R. P. R. - zkratkou SSMF) uspořádala ve dnech
18. až 25. července 1960 druhou mezinárodní ma-

tematickou olympiádu (zkratkou II. MMO) pro

žáky nejvyšších tříd středních a odborných škol.
Soutěže se účastnily žákovské delegace těchto zemí:
fíidharska, ČtiSR, Maďarska, NDR, Rumunska. Kaž-
dá země vyslala osm žáků a dva vedoucí delegace.
Os. delegaci tvořilo prvních osm vítězů IX. ročníku
čs. celostátní matematické olympiády; vedoucími čs.
delegace byli s. František Vejsada, předseda KVMO
v Českých Budějovicích, a Rudolf Zelinka, jednatel
Ústředního výboru matematické olympiády. Vedou-
čími ostatních delegací byli: a) bulharské: Stoian
Budurov, inspektor ministerstva osvěty v Sofii, a Alipi
Nicolov Mateev, profesor matematiky university v So-
fii; b) maďarské: Endre Módi, vědecký pracovník
Maďarské akademie věd, a Ferenc Késedi, pracovník
ministerstva školství v Budapešti; c) Německé
demokratické republiky: Johannes Gronitz, pra-
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covník ministerstva školství NDR, a Walter Schramm,
učitel střední školy v Berlíně; d) rumunské: doc. Ti-
beriu, Roman, generální sekretář SSMF, a Gh. D. Simio-
nesen, docent vysoké polyteclinické školy v Bukurešti.
Ostatní pozvané země nemohly vyslat delegace pro
krátkou lhůtu, v níž byla soutěž svolána.

Zvláštní přípravná komise, do které bylo delego-
váno po jednom zástupci z každé zúčastněné země,
vybrala z úloh, které jí jednotlivé vědecké společnosti
předem zaslaly, sedm úloh pro žákovskou soutěž (čs.
zástupce se pro krátkou lhůtu na tuto schůzku ne-
mohl dostavit); tyto přípravné práce se konaly ve
dnech 15. až 18. července 1960 v Bukurešti. V závěru
této zprávy je seznam úloh zadaných na
těž i (příloha 111); v závorce je uvedena země, která
úlohu zadala.

sou-

2. Vlastní soutěž se konala ve dnech 21. a

22. července 1960 v krásném lázeňském městě

Sinaia, v klínu Jižních Karpat, poblíže známého stře-
diska petrolejářského průmyslu Ploesti. Soutěž ří-
dila mezinárodní komise, v níž z každé zúčastně-
né země zasedali dva delegáti. Žáci českoslovenští,
maďarští a rumunští měli přibližně stejnou úroveň,
především dík celostátním matematickým olympiá-
dám pro ně pořádaným. Výsledky jednotlivých
žáků (anonymně) jsou patrny z přílohy 1; přitom
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jednotlivec mohl získat nejvýše 45 bodů. Seznam
vyznamenaných žáků je v příloze II. Celkem
bylo uděleno 19 cen; z osmi našich žáků šest obdrželo
ceny, avšak i oba zbývající žáci měli pěknou úroveň.

Můžeme tedy hodnotit výkony našich účastníků
velmi příznivě; nebýt nervozity z těžké únavy po ces-
tě, kterou delegace musela konat vlakem, takže do-
jela s dvoudenním opožděním, mohly být výsledky
naší delegace ještě příznivější. Ostatně pěkná úroveň
i dobrý výběr našich účastníků bylo možno konstato-
vat už na čtyřdenní instruktáži, kterou pro čs. žáky
uspořádali v Praze pracovníci Matematického ústavu
ČSAV těsně před odjezdem naší delegace, v době, kdy
delegace čekala na vyřízení pasových záležitostí.

3. Udílení cen bylo provedeno v neděli 24. čer-
vence 1900 v Domě university v Bukurešti za před-
sednictví akademika Gh. C. Moisila, předsedy SSMF.
Po jeho projevu к olympionikům, v němž načrtl
skvělé perspektivy mládeže tábora míru, jménem ve-
doucích zahraničních delegací poděkoval rumunským
hostitelům ěs. delegát Rud. Zelinka. Ve svém projevu
ocenil organizační nesnáze, které musili překonat ve
velmi krátké době, když chtěli soutěž uskutečnit,
aby byla zachována kontinuita v tomto zdárně zapo-
ěatém a mezinárodně významném podniku. Vedle
pracovníků SSMF má velikou zásluhu o zdar celé
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akce ministerstvo osvěty a kultury Rumunské lidově
demokratické republiky. Nelze dost poděkovat za
srdečné přijetí, za všechnu pohostinnost a upřímnou
pozornost, jež byla zahraničním delegacím věnována.
Ve velmi krátké době se v tomto příznivém prostředí
sbratřili jak dospělí, tak i žáci, a řada zde navázaných
přátelství bude trvalá. Pro mládež byly chvíle strá-
vené v soudružském mezinárodním prostředí skuteě-
nou školou к proletářskému internacionalismu.

Za olympioniky poděkoval hostitelům a rumunské
mládežníky pozdravil jeden ze dvou absolutních ví-
tězů soutěže — maďarský soudruh Ferenc Mezei, žák
4. ročníku gymnasia F. Rákócziho č. II v Budapešti.

Po udělení cen uspořádala SSMF pro všechny účast-
niky soutěže slavnostní večeři u umělého jezera
v blízkosti Vesnického muzea v Bukurešti; přítomni
byli vedle vědeckých a vysokoškolských pracovníků
zástupci Rumunské dělnické strany, ministerstva
osvěty a kultury a města Bukurešti a pracovníci mlá-
dežnické organizace.

4. V rámci pobytu v Rumunsku navštívili účastníci
soutěže řadu význačných míst a podniků. Z přírod-
nich nebo historických památek a míst to bylo léto-
visko Busteni a Predeal s památným průsmykem
v Jižních Karpatech, muzeum, radnice a továrny
v krajském městě Orasul Stalin, muzea v Bukurešti,

200



muzeum v zámku Mogosoaia u Bukurešti, černomoř-
ské pobřeží (Constanta s Ovidiovým pomníkem, Ma-
maia, Eforia); velmi zajímavá byla exkurze do tiská-
renského kombinátu ,,Jiskra“ Rumunské dělnické
strany v Bukurešti.

Čs. delegace se vrátila do Prahy dne 28. červen-
ce 1900 letadlem.

PŘÍLOHA I

Počet bodů, které získali na II. MMO jednotliví žáci
(anonymně)

Počet bodů, které jednotlivci
získali

CelkemZemě

ČSSR
Maďarsko
Rumunsko
Bulharsko
NDR

43 37 34 33 32 32 24 22
43 41 38 37 29 21 21 18
41 39 34 30 28 27 26 23
35 31 29 28 22 14 10 6
16 10 6 4 2 0 0 0

257
248
248
175
38

L

Poznámka: První cena nad 40 bodů, druhá cena nad
37 bodů, třetí cena nad 33 bodů, čestné uznání nad 29 bodů.

PŘÍLOHA II

Jmenný seznam odměněných žáku na II. mezinárodní
matematické olympiádě

1. ceny:

Korec Ivan, XI.a roč. jsš, Partizánske (ČSSR)
Mezei Ferenc, roč. IV, Gymnasium F. Rákócziho II,

Budapešť (MLR)
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Gheorghe Cezar, XI.a roč. střední školy č. 1 „В. Р.
Hasdeu“, Buzáu (RLR)

Bollobás Béla, III. ročník Pokusného gymnasia
,,Aspáczai Csere János“, Budapešť (MLR)

II. ceny:

Popa Nicolae, X.a roč. střední školy č. 1 ,,Unirea“,
Focsani (RLR)

Fritz Jozsef, III. roč., Gymnasium ,,L. Kossuth “,
Mospomagyaróvár (MLR)

Souček Jiří, XI.a roč., jsš, Praha XVI-Smíchov
(ČSSR)

Muszély Gyórgy, IV. roč., Gymnasium ,,M. Vóros-
marty“, Budapešť (MLR)

III. ceny.

Petrov I. Peter, XI. a roč. střední školy ,,Liliana
Dimitrova“, Plovdiv (BLR)

Tomšů Petr, IV. roč. průmyslové školy, Kopřivnice
(ČSSR)

Strátiliá Serhan, X.a roč. střední školy č. 1 ,,N. Bál-
cescu“, Pitesti (RLR)

Veselý Jan, XI.a roč. jsš, Ostrava (ČSSR)

Čestná uznání :

Baran Ladislav, XI. a roč. střední školy, Žilina
(ČSSR)
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Nosek Pavel, XI.a roč. jsš, Hradec Králové (ČSSR)
Bojanov P. Todor, XI.a roč. střední školy č. 20,

Sofia (BLR)
Nicolescu Basarah, XI.a roč. střední školy č. 1 ,,I.

L. Caragiale“, Ploesti (RLR)
Vlaev P. Panajot, XI.a roč. střední školy „Christe-

Botev“, Ajtos (BLR)
Komlós János, IV. roč., Pokusné gymnasium

„Apáczai Csere János“, Budapešť (MLR)
Walter Klaus, XII.a roč. střední školy ,,Joliot Cu-

rie“, Gorlitz (NDR)

5. V rámci porad mezinárodní olympijské komise
se konala vzájemná informační porada, která
se zabývala též některými závažnými problémy škol-
ské matematiky v jednotlivých zúčastněných zemích.
Jednalo se např. o těchto otázkách: sepětí školy se ži-
votem, zaostávání školské matematiky za rozvojem
matematických věd, péče o talentované žáky a v sou-
vislosti s tím o celostátních olympiádách apt d. Po-
čítá se s tím, že příští ročník soutěže bude konán
v Maďarské lidově demokratické republice. Přípra-
vou tohoto ročníku se má zabývat stálá mez in á-
rodní komise, která se má po příslušných jednáních
sestavit.

Na závěr nutno říci, že mezinárodní matematická
olympiáda se vžívá jako tradiční akce, která má
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vzájemným měřením sil mladých matematiků nejen
přispívat ke zvyšování úrovně pracovních výsledků
školy, pokud jde o vyučování matematice, ale která
má specifickým způsobem přispívat i к příznivému
politickému rozvoji a vývoji matematicky nadané
mládeže; tuto skutečnost je třeba vysoce ocenit, neboť
potřebujeme, aby naši odborníci byli nejen vědecky
kvalifikovaní, ale i náležitě politicky uvědomělí.

PÍtlLOHA III

Texty úloh zadaných na II. mezinárodní matematické
olympiádě

(V závorce za textem je uvedena země, která
úlohu zadala.)

První písemná práce
Л1.\I)ělíme-li hledané trojciferné číslo jedenácti, do-

staneme podU^.lýt^rý je roven součtu druhých mocnin
jednotlivýchjýfer hledaného čísla, ft Určete všechna
taková trojciferná čísla.'

' ' \П/,Л2. Určete všechna čísla x, pro která platí nerovnost

(Bulharsko)

4rr2
У < 2x + 9. (Maďarsko) *]/l + 2x)3.Je dán pravoúhlý trojúhelník ABC, jehož pře-

pona BC je rozdělena na n shodných úseček, přičemž- r'c(o

0
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je n liché číslo. Označme oc dutý úhel, pod kterým je
z bodu A vidčt tu ze shodných viseček, která obsahuje
střed přepony daného trojúhelníku; dále označme h
výšku a a velikost přepony daného trojúhelníku. Do-
kažte, že potom platí

4 nh
(Rumunsko)tg a = (n2 — 1) a

Druhá písemná práce

4. Sestrojte trojúhelník A BC, jsou-li dány velikosti
va, vb výšek^příslušných-po řadě vrcholům А, В troj---

.úhelníka^, a dále- velikost ta tčžnice, která přísluší 1/WidгUr/i^
(Maďarsko)vrcholu A.

5. Je dána krychle ABCDA'B'CD'.
/У^Т/vvo 'у^оллл, /\УГ<-(Ал

a) Určete geometrické místo středů úseček X Y,
kde X je libovolný bod úsečky AC a Y je libovolný
bod úsečky B'D'.

b) Určete geometrické místo bodů Z, které leží
uvnitř úseček Jí У £z předešlé úlohy a)]-a o nichž platí

ZY = 2.XZ. (ÚSSR)

* 6. Je dán rotační kužel, jemuž je vepsána kulová
plocha tak, že se dotýká podstavy kužele. Této kulové
ploše je opsán rotační válec, jehož jedna podstava
leží v rovině podstavy daného kužele. Označme Vx
objem kužele, V2 objem válce.
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a) Dokažte, že neplatí rovnost Vx = V2.
b) Určete nejmenší číslo k, pro které platí vztah

Fi = k^V2;
pro tento případ sestrojte dutý úhel, pod kterým je
z vrcholu kužele vidět průměr podstavy kužele.

(Bulharsko)
7. Je dán rovnoramenný lichoběžník se základna-

mi a, c a výškou v. Na ose souměrnosti tohoto licho-
běžníku sestrojte bod P tak, aby z něho obě ramena
lichoběžníku byla vidět pod pravými úhly.

Dále vypočtěte vzdálenost bodu P od jedné ze zá-
kladen lichoběžníku.

Konečně rozhodněte} za jakých podmínek je možno
provést konstrukci bodu P.-(Diskuse případů, které
mohou nastat.)i- (NDR)
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DOSLOV

O úspěchy naší olympiády se zasloužila široká obec
spolupracovníků v okresích i krajích a samozřejmě
učitelé matematiky na školách.

Při práci na formulaci úloh a jejich řešení zvláště
pomáhali tito pracovníci Matematického ústavu
ČSAV: dr. M. Fiedler C. Sc., doc. J. Holubař, Jiří
Sedláček C. Sc. a M. Šisler; práci mi podstatnou měrou
usnadňoval místopředseda UVMO doc. Jan Výšin.
Svým dílem mi dále přispěli odborný asistent Vysoké
školy strojní v Plzni František Veselý a odborný
asistent Vysoké školy technické v Bratislavě Josef
Filip. Spolupráci s ministerstvem školství a kultury
i s Jednotou čs. matematiků a fyziků zajišťoval přesně
a obětavě ústřední inspektor MŠK Miloš Jelínek.
Poslovenštční části textu po všech stránkách pečlivě
provedl odborný asistent přírodovědecké fakulty
v Bratislavě Jozef Moravčík.

Všichni recenzenti se snažili zlepšit text, aby mohl
dobře plnit své poslání mezi mladými čtenáři. Obráz-
ky vzorně narýsoval pracovník pražského pedagogic-
kého institutu Vlastimil Macháček. Redakční práce
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trpělivě a obětavě prováděla redaktorka SPN Květa
Brázdová. Stenotypistické práce a zajišťování celé
organizace MO po řadu let s péěí jí vlastní provádí
pracovnice MÚ ČSAV Marie Jarošová.

Děkuji všem, kteří se přiěinili o zdar IX. roěníku
MO i této brožury.

V Praze v prosinci 1960.
Rudolf Zelinka
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