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I. Do druhého desetiletí МО

Bývá zvykem při takové příležitosti, jakou je desáté
výročí založení Matematické olympiády, zamyslit se
nad vykonanou prací a ujasnit si plány do budoucna.
Nemyslím, že by bylo třeba obšírně hovořit o minu-
losti: historie naší Matematické olympiády je jistě
valné většině čtenářů této brožury známa. Ve všech
kulturních zemích a v každé době se pociťovala nut-
nost povzbuzovat zájem mladých lidí o matematiku
a rozvíjet schopnosti nadaných žáků řešit samostatně
úlohy, které přesahují svou náročností rámec škol-
ského učiva. Proto snad všecky matematické časopisy,
určené žákům středních škol, otiskovaly a otiskují
soutěžní úlohy a odměňují úspěšné řešitele: tak to
činily odedávna i naše Rozhledy matematicko-fyzi-
kalní. Takovéto soutěže však nemají žádný pevný řád
a probíhají — možno říci — docela živelně; úlohy
jsou často nevhodně voleny, jen podle záliby svých
autorů; řešitel je tak přiveden к tomu, aby řešil
úlohy, na které svými silami nestačí, není veden ani
studiem, ani jinak к metodám řešení, nemá často mož-
nost se poradit o svých nesnázích při řešení, není
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poučen o chybách, kterých se dopustil, a jeho vzestup
není sledován a usměrňován. Chybí ovšem i vý-
znamná část soutěže, kdy řešitelé pracují na řešení
úloh pod kontrolou a za stejných podmínek; chybí
i vnější rámec soutěže, jako např. její slavnostní uzav-
ření, který je pro mladé lidi často dosti přitažlivý.
Naproti tomu naše Matematická olympiáda (a právě
tak i obdobné soutěže v ostatních socialistických
státech) má pevný organizační řád a snaží se být nejen
soutěží, ale i akcí, v níž se její účastníci mají soustav-
nou plánovitou prací něčemu novému přiučit; v této
formě je naše Matematická olympiáda výrazem sou-
stavné péče naší socialistické vlasti o rozvoj naší
mládeže. Proto je zcela přirozené, že pořadateli této
soutěže jsou společně ministerstvo školství a kultury,
Matematický ústav ČSAV, Jednota čs. matematiků
a fyziků a ústřední výbor Československého svazu
mládeže.

Naše Matematická olympiáda vznikla před deseti
lety z iniciativy akademiků Čecha a Hronce a profesora
Vyčichla podle vzoru obdobných soutěží v RSFSR
a v Polské lidové republice a to po několika předcho-
zích pokusech, které byly u nás provedeny v oblast-
ním měřítku. V prvních deseti letech svého trvání
prodělala MO některé dětské nemoci: měnila se její
organizace, neboť se musila přizpůsobovat měnící se
struktuře našeho školství, vyjasňovalo se i pojetí
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soutěže. Šlo zejména o otázku, zda má být soutěží
masovou nebo výběrovou. Celkem lze říci, že Mate-
matická olympiáda se v prvním desetiletí svého trvání
zakořeňovala v našem matematickém a školském
životě a že se jí to přes mnohé počáteční obtíže podá-
řilo; přitom si vytyčila určité matematické požadavky,
neslevovala z nich a ukázalo se, že to byla správná
a jedině možná cesta. O dobře vykonané práci svědčí
řada bývalých účastníků Matematické olympiády,
kteří se s úspěchem uplatňují v technických i vědec-
kých oborech, mluví o ní i deset svazků této brožury
a archiv soutěžních úloh v Matematickém ústavě
ČSAV. Naše olympiáda má kádr obětavých a věrných
spolupracovníků, a to jak v ústředí, tak ve všech kra-
jích republiky; přitom všichni tito lidé pracují pro
olympiádu vedle svého zaměstnání. Neradi operu-
jeme při argumentacích velkými čísly, ale zde se tomu
nelze vyhnout: spolupracovníci Matematické olym-
piády mimo jinou činnost v této soutěži prostudovali
a opravili v uplynulých deseti letech na milión žá-
kovských řešení. Počítáme-li na jednu opravu jen
čtvrt hodiny — a to je v průměru hodně málo —

představují opravy úloh z olympiády pro jednoho
pracovníka nepřetržitou práci třiceti let; takové práci
je skutečně třeba vzdát čest.

Pohovořme si nyní o přítomnosti a budoucnosti
soutěže. Pojetí soutěže se snad už nyní vykrystalizo-
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válo: Předně je jasné, že účast na soutěži musí být
zcela dobrovolná; nelze schvalovat počínání učitelů,
kteří nutí к účasti žáky mající dobrý prospěch v ma-
tematice. Na druhé straně bychom si však přáli, aby
soutěž zejména v nižších kategoriích byla co nejma-
sovější: aby podchytila pokud možno všecky žáky,
kteří mají zájem a nadání pro matematiku. Přitom si
ovšem musíme uvědomit, že zájem a nadání jsou spo-
jité nádoby: u nadaného žáka se zpravidla snadno
vzbudí zájem, a pracuje-li žák v matematice soustavně,
rozvíjí se jeho nadání. Zvláště nejnižší kategorie D
určená pro žáky devátého, výjimečně osmého ročníku
základní školy, by měla získávat co nejširší okruh
účastníků, měla by mít co nejvíce propagační ráz.
V dalších kategoriích С, B, A určených pro žáky
středních a odborných škol by měla soutěž stále více
přecházet od masovosti к výběrovosti: to zcela odpo-
vídá zvyšování náročnosti úloh, vyhraňujícímu se
zájmu žáků o určité obory a konečně i ohledu na jejich
časové možnosti. Proto nás nemrzí pokles počtu
účastníků vyšších kategorií v posledních ročnících
MO; je to i přirozený důsledek vzniku Fyzikální
olympiády; tato soutěž v konečném cíli — tj. v roz-
víjení matematicko-fyzikálního nadání žáků — není
naším konkurentem nebo protivníkem, ale spo-
jencem.

Z vyloženého pojetí vyplývají některé zásady pro
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výběr soutěžních úloh. V nižších kategoriích (C, D)
by se měly úlohy spíše obracet na vtip žáků, bez vel-
kých nároků na jejich matematické vědomosti, které
jsou tak jako tak skrovné. Ve vyšších kategoriích
(A, B) by měly soutěžní úlohy klást větší nároky na
matematický aparát a znalost metod řešení. V soutěži
by se neměly vyskytovat úlohy s umělými obraty,
které žáky nevedou к systematickému zkoumání prob-
lému. I když středoškolská matematika není příliš
rozsáhlá, je snad vhodné — hlavně ze studijních dů-
vodů — zúžit náplň každého ročníku na určitá té-
mata, která nepokrývají celou středoškolskou látku.
Takový pokus jsme učinili v desátém ročníku; budeme
v něm pokračovat a budeme jej propracovávat. Deset
minulých let ukazuje, že se dobře osvědčila organi-
zace „kol“ soutěže: přípravné první kolo má cha-
rakter studijní, vlastní soutěží jsou kolo druhé a třetí.
Přípravné úlohy prvního kola, které byly poprvé za-
vedeny v X. ročníku, jsou určeny к jakémusi opako-
vání v okruhu školských poměrně snadných úloh.
Další úlohy prvního kola mají připravovat účastníky
na vlastní soutěž. Úlohy I. kola by měly žáky přimět
к tomu, aby se podrobněji zajímali o příslušnou té-
matiku; proto byly zavedeny od X. ročníku soutěže
tzv. přípravné přednášky. Tyto přednášky — i když
v nich budeme pokračovat — jsou jen jedním z pro-
středků, kterými lze působit na žáky; jednak je na-
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vštěvovat nemohou všichni účastníci soutěže, jednak
odsuzují posluchače opět víceméně к trpné roli žáka.
My však chceme, aby se nadaný žák učil pracovat
samostatně a tvořivě, aby si zvykal studovat jedno-
duché matematické texty. Nedostatek vhodné po-
pulární studijní literatury přiměl ÚVMO к jednání
s nakladatelstvím Mladá Fronta; jednání skončilo
úspěšně a počínaje rokem 1961 vydává Mladá Fronta
studijní sešity pro účastníky MO pod názvem „Škola
mladých matematiků11. Sešity budou zaměřeny zpo-
čátku hlavně к tomu, aby seznámily čtenáře přístup-
nou formou s metodami řešení úloh určité tématiky.
Později by mohlo být prostudování některých vhod-
ných brožur i jednou z podmínek, aby se žák vůbec
mohl účastnit soutěže. Brožury jsou ovšem určeny
hlavně pro žáky nejvyšších dvou kategorií; od mlád-
ších žáků bychom asi těžko mohli očekávat samostatné
studium literatury. Právě tak přípravné přednášky
se budou po loňských zkušenostech asi obracet hlavně
к účastníkům kategorií A a B; později, až bude к dis-
pozici více studijních sešitů, mohly by se změnit před-
nášky v konzultace a diskuse o obsahu některé bro-
žury. V této věci může být ponechána volnost krajským
výborům MO, aby se zařídily podle situace ve svém
kraji.

Nyní věnujme několik poznámek mezinárodním та-

tematickým olympiádám. Všecky dosavadní meziná-
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rodní soutěže (v r. 1959 a 1960 v Rumunsku, kde
i soutěž vznikla, a v r. 1961 v Maďarsku) patří zatím
jen do pokusného stádia; totéž platí i o mezinárodní
olympiádě, konané v Československu v roce 1962.
Význam těchto olympiád není jen v soutěžení, neboť
školské systémy a osnovy zúčastněných zemí se plně
neshodují. Mezinárodní olympiády jsou zvláště po
výchovné stránce neocenitelnou příležitostí к setkání
mladých účastníků z různých států i jejich vedoucích
pedagogických pracovníků. Tento politický význam
mezinárodních matematických olympiád je třeba
zvlášť zdůraznit. Mimoto nám poskytují tato setkání
jedinečnou příležitost porovnat naše poměry, pokud
jde o stav vyučování matematice a péči o mladé na-
dané matematiky, s ostatními státy socialistického
tábora. V tomto směru nejsou pro nás zkušenosti
z posledních olympiád v r. 1961 a 1962 příliš po-
těšující. Zdá se, že děláme pro nadané žáky méně než
některé jiné státy. Naše školy pečují sice o žáky za-
ostávající a snaží se dosáhnout doučovacími kroužky,
konzultacemi a jinými opatřeními, aby všichni žáci
zvládli minimum učiva. Je však třeba zvýšit péči
i o nadané žáky. Vždyť právě žáci nadaní pro mate-
matiku a přírodní vědy jsou nadějí našeho státu: oni
budou vedoucími činiteli hospodářského, technického
i vědeckého pokroku v příštím komunistickém státě.

Na schůzi ÚVMO v říjnu 1961 se zrodila myšlenka
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soustředit každoročně nej lepší účastníky obou nej-
vyšších kategorií na 10—14 dní a věnovat se jejich
individuálnímu školení. Takové soustředění ve vhod-
ném rekreačním prostředí by bylo jistě velmi lákavé
a velmi cenné jak pro žáky, tak pro jejich instruktory.
Doufáme, že se nám podaří zavést tato soustředění
olympioniků jako trvalou instituci.

Shrňme do několika bodů své záměry a přání pro
řadu příštích let:

1. Budeme usilovat o podchycení co největšího počtu
matematicky nadaných žáků, pomáhat jim individuálně
v soustředěních, sledovat jejich vzestup i další uplatnění
v životě. Při vyhledávání talentů spoléháme ovšem na

vydatnou pomoc učitelů.
2. Budeme zlepšovat náplň jednotlivých ročníků MO

tak, aby úlohy přípravného kola i soutěžních kol spolu
tématicky dobře souvisely a navazovaly na vyšlou stu-
dijní literaturu. Budeme usilovat o modernizaci úloh
a jejich přiblížení životu. Také v organizaci soutěže
lze leccos zlepšit, např. zajistit jednotnější posuzování
řešení úloh, zejména v závěrečném kole.

3. Budeme-věnovat všemožnou péči knižnici „Škola
mladých matematiků1 c, pokud jde o výběr témat a o způ-
sob jejich zpracování; budeme se snažit, aby se tato sbírka
stala vhodnou studijní literaturou jak pro olympioniky,
tak pro širší okruh zájemců.

4. Pro úspěch naší práce potřebujeme co největší sou-
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činnost všech složek, hlavně krajských výborů MO.
Tyto výbory by se měly co nejaktivněji podílet na sesta-
vování i kritice soutěžních úlohy měly by navrhovat
vhodná témata studijních sešitů, měly by kritizovat zpra-
cování vyšlých svazeěků a krajští pracovníci MO by se
měli vyskytovat stále častěji mezi jejich autory.

Přáli bychom si, aby i na odborných školách se Ma-
tematická olympiáda vžila tak jako na školách základ-
nich a středních. Věříme, že učitelé matematiky na těchto
školách se o to přičiní', víme totiž, že je to možné, neboť
mezi vítězi jednotlivých ročníků je řada žáků odborných
škol, kteří jasně prokázali mimořádné nadání pro ma-
tematiku.

5. Již delší dobu se uvažuje o tom rozšířit Matema-
tickou olympiádu i na studenty prvních ročníků vysokých
škol technických, aby se v nich probouzel zájem o hlubší
matematické vzdělání, které naše technická inteligence
tolik potřebuje. Prozatím se dělají pokusné soutěže na

některých školách; na základě jejich zkušeností snad
bude možné organizovat v budoucnosti soutěž celostátně.

Na závěr můžeme říci, že naše Matematická olym-
piáda si získala svou solidní prací za deset let dobré
jméno doma i za hranicemi; bude jistě snahou všech nás
jejích spolupracovníků, aby si tuto dobrou pověst udržela.
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Oslavy desátého výročí vzniku Matematické olym-
piády vyvrcholily v úterý dne 10. října 1961 s 1 a v-
nostní schůzí ústředního výboru Matematické
olympiády. Schůze se konala na ministerstvu školství
a kultury a vedle členů ústředního výboru byli pří-
tomni ti pracovníci v Matematické olympiádě, kteří
měli obdržet uznání od ministerstva školství a kul-

tury nebo od předsednictva ústředního výboru Jed-
noty čs. matematiků a fyziků. Po zahájení schůze
předsedou ÚVMO akademikem Josefem Novákem
promluvil к zasloužilým pracovníkům ministr školství
a kultury dr. František Kahuda. Vzpomněl zaklada-
telů soutěže a vysoce zhodnotil dobrovolnou práci,
kterou organizátoři Matematické olympiády během
deseti let vykonali. Poděkoval všem přítomným pra-
covnikům za jejich dílo a vzpomněl i těch, kteří byli
odměněni v rámci krajů a okresů.

Po projevu předal ministr školství a kultury 25 pra-
covníkům uznání a knižní dar. Poté místopředseda
Jednoty čs. matematiků a fyziků akademik Vlád.
Kořínek předal uznání této společnosti 56 pracovní-
kům a podaroval je knižními dary.

Jménem vyznamenaných poděkoval 5. František
Vejsada, předseda krajského výboru MO v Českých
Budějovicích.

V dalším uvádíme jmenné seznamy vy-
znamenaných pracovníků:
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UZNÁNÍ MINISTERSTVA ŠKOLSTVÍ
A KULTURY OBDRŽELI:

Josef Andrys, Ostrava; Petr Benda, Brno; Vladislav
Berger, Žilina; Jarolím Bureš, Rakovník; Fr. Diessl,
Karlovy Vary; Anton Dubec, Bratislava; Karel Hnyk,
Liberec; Miloš Jelínek, Praha; Ludvík Kapička, Far-
dubice; dr. Milan Kolibiar, Bratislava; Leo Krakówka,
Gottwaldov; Jozef Krchňavý, Košice; Fr. Krsek,
Zvolen; Rudolf Langhammer, Praha; Josef Mend,
Hradec Králové; dr. Cyril Palaj, Zvolen; Emanuel
Pavlata, Ústí n. Labem; dr. Josef Pírek, Brno; Josef
Porcal, Teplice; Věra Rádiová, Plzeň; Josef Stehlík,
Turnov; Josef Svoboda, Třebíč; Fr. Vejsada, České
Budějovice; Věra Vrtalová, Prostějov; Miroslava
Žáěková, Karlovy Vary.

UZNÁNÍ JEDNOTY ČS. MATEMATIKŮ
A FYZIKŮ OBDRŽELI:

a) Učitelé základních devítiletých
škol: K. Jakoubek, Praha; Fr. Kubal, Třeboň;
Boh. Meloun, Jindřichův Hradec; Alois Terš, České
Budějovice; J. Tvrdek, Vlachovo Březí; J. Vlček,
Netolice.

b) Učitelé středních a odborných
škol: Dr. Fr. Bacík, Ledeč nad Sázavou; J. Baran,
Bardióvské Kúpele; L. Beracková, Rim. Sobota;
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К. Brtek, Šumperk; J. Dittrich, Louny; Zd. Grund-
mann, Ústí n. Labem; A. Heinisch, Nitra; Margita
Hrnčiriková, Velké Kapušany; Zdeněk Kalousek,
Jablonec nad Nisou; Kornélia Kropilaková, Bratislava;
Lud. Lájčin, Púchov; Oldřich Lanta, Ostrava; Boh.
Macek, Strakonice; Jar. Meduna, Soběslav; Jar.
Novák, Praha; K. Pavlas, Velké Meziříčí; A. Peter-
ková, Týn nad Vltavou; VI. Polesný, České Budějo-
vice; Fr. Púchovský, Dolní Kubín; Vlád. Sedláček,
Poděbrady; V. Šimčisková, Bratislava; VI. Štejfko,
Turč. Teplice; Oldřich Tomeš, Ostrava; Karel
Trnovský, Ružomberok; Inž. A. Vano, Nitra; Vlád.
Večeřa, Velké Meziříčí; Alojz Viskupič, Trenčín,
Fr. Živný, Ostrava.

c) Učitelé vysokých škol, školští'
a vědečtí pracovníci: Dr. Fr. Bčloun,
Praha; Oldřich Černý, Plzeň; Fr. Dušek, Liberec;
dr. Mir. Fiedler CSc., Praha; Ondr. Gabor, Banská
Bystrica; Jos. Holubář, Praha; Fr. Hradecký, Praha;
dr. M. Jiroušek, Olomouc; dr. E. Jucovič, Prešov;
St. Kopellent, Plzeň; dr. Josef Korous, Žilina; Ján
Lešo, Prešov; Stanislav Liška, Olomouc; dr. L. Měst-
ková, Praha; Inž. Jindřich Mikeska, Ostrava; Juraj
Molčan, Prešov; Mir. Němec, Suchá; Vilém Okřina,
Jihlava; Jiří Sedláček CSc., Praha; Ondr. Strečko,
Prešov; Václav Volf, Ústí nad Labem; dr. Mir. Zedek,
Olomouc.
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II. К průběhu X. ročníku
Matematické olympiády

1. Jubilejní X. ročník soutěže Matematická olym-
piáda (zkratkou MO) probíhal ve školním roce 1960/61.
Žáci byli zařazeni do čtyř soutěžních kategorií, jak je
patrno z tabulky:

Kategorie A В C

Ročník střední všeobecně
vzdělávací školy

3 2 1

Ročník odborné školy 3—4 2 1

V kategorii D soutěžili žáci 8. a 9. ročníků základní
devítileté školy. Jestliže osnovy školy neodpovídaly
požadavkům kladeným na kategorii, mohl krajský
výbor MO zařadit žáky těchto škol i do nižší kategorie,
než jakou v předchozí tabulce uvádíme. Zvlášť pokro-
čilí žáci mohli být naopak zařazeni i do vyšší kategorie.

2. Soutěž se řídila týmž organizačním řádem jako
v předchozím ročníku (viz instrukci č. 70 ve Věst-
niku ministerstva školství a kultury, roč. XV, str. 289

15



ze dne 31.10.1959). Uspořádali ji ministerstvo školství
a kultury, Matematický ústav ČSAV, Jednota čs.
matematiků a fyziků a ústřední výbor ČSM.

Soutěž řídil ústřední výbor Matematické olympiády
(ÚVMO). V každém kraji byly zřízeny krajské výbory
a v okresích okresní výbory Matematické olympiády
(KVMO a OVMO); jmenovaly je odbory pro školství
a kulturu KNV a ONV. Členy výborů MO byli
učitelé matematiky středních, odborných a vysokých
škol, školští a vědečtí pracovníci, jakož i pracovníci
ČSM. Členy ÚVMO byli předsedové krajských vý-
borů MO a dále osoby jmenované ministerstvem
školství a kultury na návrh Jednoty čs. matematiků
a fyziků.

Ústřední výbor MO (sídlo: Žitná 25, Praha 1 —

Nové Město, tel. 24 11 93) měl toto složení:
Předseda: Akademik Josef Novák, vedoucí vě-

decký pracovník Matematického
ústavu ČSAV v Praze.

Místopředseda: Jan Výšin, docent matem.-fyzikální
fakulty Karlovy university v Praze.
Rudolf Zelinka, vědecký pracovník
Matematického ústavu ČSAV v Pra-

Jednatel:

ze.

Členové: Dr. Fr. Běloun, vedoucí matematic-
kého kabinetu Ústavu pro další vzdě-
láni učitelů v Praze.

16



Karel Hnyk, odb. asistent pedagogic-
kého institutu v Liberci.
Doc. Josef Holubář, vědecký pracovník
Matematického ústavu ČSAV
v Praze.
Fr. Hradecký, odb. asistent matem.-
fyz. fakulty Karlovy university
v Praze.
Dr. Karel Hruša, pracovník Ústavu
pro dálkové studium učitelů v Praze.
Miloš Jelínek, ústřední inspektor mi-
nisterstva školství a kultury v Praze.
Dr. Milan Kolibiar, docent přírodo-
vědecké fakulty Komenského uni-
versity v Bratislavě.
Dr. Josef Pírek, ředitel základní de-
vítileté školy v Brně.
Fr. Veselý, odb. asistent Vysoké školy
strojní a elektrotechnické v Plzni.
Dr. Miloslav Zedek, docent Palackého
university v Olomouci.
Dr. Miroslav Fiedler CSc., vědecký
pracovník Matematického ústavu
ČSAV v Praze.
Miroslav Šisler CSc., vědecký pra-
covnik Matematického ústavu ČSAV
v Praze.

Náhradník:

17



Členové — předsedové KVMO:

Stanislav Horák, odb. asistent ka-
tedry matematiky a deskr. geometrie
fakulty strojní ČVUT v Praze.
Dr. Václav Pleskot, profesor ČVUT
v Praze.
Věra Rádiová, učitelka SVVŠ, Plzeň.
Josef Porcal, učitel zdravotnické ško-
ly, Teplice.
Jan Laštovka, vedoucí kabinetu ma-
tematiky Ústavu pro další vzdělávání
učitelů, Pardubice.
Petr Benda, odb. asistent VŠP, Brno.
Inž. Jindřich Mikeska, docent vy-
soké školy báňské, Ostrava.
Dr. Cyril Palaj, docent Vysoké školy
lesní a dřevařské, Zvolen.
Dr. Ján Jakubík, docent Vysoké
školy technické, Košice.

3. Podle organizačního řádu měla soutěž v kategorii
A tři soutěžní kola, v ostatních kategoriích dvě kola.
Od října 1960 do konce února 1961 probíhalo I. kolo
soutěže. V něm žáci předložili řešení všech šesti pří-
pravných úloh (z toho musili podat úspěšná řešení
alespoň čtyř úloh) a šest soutěžních úloh (musili dobře

18



rozřešit alespoň čtyři úlohy). Úspěšní řešitelé I. kola
se mohli přihlásit do soutěže II. kola, a to na návrh
ředitele školy; o zařazení rozhodoval KVMO, popř.
OVMO. Žákovská řešení úloh I. kola opravoval
žákův učitel matematiky; řešení úloh II. kola opra-
vovali členové KVMO a OVMO. Počet přihlášených
žáků do II. kola nesměl v každé z kategorií překročit
10 % celkového počtu žáků příslušného ročníku na
škole.

Texty úloh připravovaly komise při některých po-
bočkách Jednoty čs. matematiků a fyziků (Č. Budě-
jovice, Plzeň, Liberec, Brno) spolu s předsednictvem
ÚVMO. Texty úloh I. kola otiskly časopisy Rozhledy
matematicko-fyzikální a Matematika ve škole. Vedle
toho ministerstvo školství a kultury vydalo svým
nákladem zvláštní leták o 30 stranách v celkovém

počtu 15 000 exemplářů. V letáku byly uvedeny orga-
nizační pokyny a informace pro účastníky soutěže,
přípravné a soutěžní úllohy I. kola pro všechny ka-
tegorie, seznam pomocné a studijní literatury, výběr
snazších úloh z předchozích ročníků soutěže a ně-
které matematické věty. Pro opravovatele žákovských
řešení rozeslal ÚVMO vzorová řešení ve velkém počtu
exemplářů; pomocí nich byli instruováni žáci o ne-
dostatcích ve svých řešeních I. a II. kola.

Pobočky Jednoty čs. matematiků a fyziků v rámci
svých rozpočtů uskutečnily s pracovníky KVMO pro
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žáky kategorií A až C tzv. přípravné přednášky pro
olympioniky v počtu 4—8 za školní rok. V těchto před-
náškách se žáci seznámili s některými odlehlejšími
partiemi školské matematiky nebo s těmi úseky učiva,
na které se soutěž soustředila; jednalo se o tyto úseky:

1. teorie dělitelnosti celých čísel; 2. základy školské
teorie funkcí (jejich vyšetřování a znázorňování);
3. planimetrické konstruktivní úlohy; 4. planíme-
trické početní úlohy. Pro přípravné přednášky při-
pravilo předsednictvo ÚVMO sylaby i s příklady
к procvičování v přednáškách vyložené teorie. Posláním
přednášky bylo nejen určitou školskou partii vyložit
nebo prohloubit, ale za aktivní spolupráce žáků pře-
devším řešit příklady z této partie.

Podle referátů KVMO se tyto přednášky osvědčily,
i když se v cestu stavěly různé nesnáze, jako dojíždění
žáků, nutnost ukončit včas přednášky, aby se žáci
mohli rozjet do domovů, současná přítomnost žáků
z různých kategorií atd.

Aby se vylíčené nesnáze překonaly, hledal ÚVMO
další způsoby jak pomoci žákům. Jedním způsobem
pomoci je zvláštní knihovnička brožurek pro účast-
niky Matematické olympiády; sbírku vydává pod
názvem „Škola mladých matematiků“ nakladatelství
Mladá Fronta v Praze. Na podzim roku 1961 vyšly
první dvě brožury formátu B6: Hradecký—Koman—
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Výšin, „Několik úloh z geometrie jednoduchých
těles“, 85 stran; cena Kčs 3,10. Jiří Sedláček, „Co
víme o přirozených číslech", 45 stran; cena Kčs 1,70.
Každoročně mají vyjít tři brožurky. Posláním brožur
především je přístupnou formou připoutat žáka к sa-
mostatnému studiu snadného matematického textu

a řešit úlohy, které navazují na výklad teorie, vyložené
v brožuře; dále mají být brožury i pomocným textem,
pro přípravné přednášky zvláště jako zásobárna vhod-
ných úloh, které by žáci řešili a rozbírali na přípravné
přednášce.

Některé KVMO těsně spolupracovaly s ČSM
a Pionýrskými organizacemi; v tomto rámci např.
v Teplicích se ustavil klub mladých matematiků.
Dále byly pořádány besedy a instruktáže pro žáky.

4. Ve II. а III. kole řešili žáci 4 úlohy; úspěšný ře-
šitel musil podat správná řešení alespoň dvou úloh.
Druhé kolo v kategoriích A až C se konalo v neděli
16. dubna 1961 v krajských městech a v kategorii D
v neděli 23. dubna 1961 v okresních městech; někde
se však soutěž konala na několika různých místech
kraje nebo okresu, aby se žákům zkrátila cesta. Po
soutěži II. kola se zpravidla konala se žáky beseda,
v níž se rozbíraly typické nedostatky v žákovských
řešeních, mluvilo se o důležitosti hlubokého studia
matematiky, především pro rozvoj našeho průmyslu
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a věd atd. Vedle toho zhlédli žáci různé kulturní pod-
niky nebo navštívili továrny apod.

Za své úspěšné výkony v II. kole dostali žáci po-
chvalná uznání a věcné ceny.

5. Celkem bylo do III. kola přihlášeno 96 žáků. Ко-
mise ÚVMO z nich vybrala nejlepších 80 žáků, kteří
byli pozváni na soutěž III. kola. Toto závěrečné kolo
soutěže se konalo v sobotu 20. května 1961 v době
od 8 do 12 hodin ve velké posluchárně matematicko-
fyzikální fakulty Karlovy university v Praze 2 —

Nové Město, Ke Karlovu 3.
Téhož dne odpoledne se na témže místě konala

s olympioniky beseda, které se účastnila řada hostí
v čele s ministrem školství a kultury dr. Fr. Kahudou.

Předseda ÚVMO akademik Josef Novák v úvodním
proslovu к besedě stručně vylíčil historii vzniku sou-
těže, její nesnáze i úspěchy. Ocenil i značný vliv, který
olympiáda má na žáky a jejich učitele, a dále, že na-
chází odezvu i v rodičovské veřejnosti. Není proto
divu, že se stala vzorem i pro jiné školské předměty,
aby se v nich včas podchytili a soustavně je studovali
ti žáci, kteří mají o předmět zájem a vlohy. Statistické
údaje za první desetiletí jsou velmi zajímavé. Závě-
řečné statistiky soutěže zaregistrovaly celkem na
40 000 účastníků v kategoriích A až C a v kategorii D
za osmiletou dobu jejího trvání na 100 000 žáků v I.
kole soutěže; к tomu přistupuje na 800 účastníků
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III. kola*z nichž dnes již mnozí zastávají platné služby
na vysokých školách a ve výzkumných a vědeckých
ústavech. Zhodnotil pak velké dílo, které dobrovolně
konají pro společnost učitelé matematiky; síť spolu-
pracovníků olympiády je vskutku rozsáhlá a dosud
žádná jiná akce tak nespojila učitele matematiky ke
společné práci jako Matematická olympiáda.

Hlavní projev pronesl ministr školství dr. Fr. Ka-
huda, který zhodnotil desetileté dílo Matematické
olympiády pod zorným úhlem 40. výročí založení Ко-
munistické strany Československa. Ukázal, jak se v so-
cialistické společnosti stala matematika významným
vědním oborem pro smělé budovatelské cíle komu-
nistického zítřka a jak potřebujeme, aby stále větší
množství pracujících dovedlo při své práci využívat
matematiky. Načrtl perspektivy této budoucnosti a

významné poslání, které má pro jejich uskutečňování
dobře matematicky vyškolený technik a vědecký pra-
covník. Na besedě dále promluvili akademik VI. Ко-
řinek za matematicko-fyzikální fakultu Karlovy uni-
versity, prorektor Českého učení technického v Praze
dr. B. Kvasil a pracovnice ústředního výboru Česko-
slovenského svazu mládeže Ilona Pietropaolová. V prů-
běhu besedy byli na základě předběžně provedené
klasifikace soutěžních prací zjištěni první tři nejúspěš-
nější řešitelé úloh III. kola a představeni přítomným;
byli to soudruzi Karel Příkrý, Tomáš Jech a Jan Lusk.
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Na závěr besedy přednesli olympionici přítomným
zástupcům vysokých škol své dotazy. Večer po besedě
shlédli účastníci III. kola v Tylově divadle Hrubínovu
Srpnovou neděli. Druhého dne v neděli si prohlédli
pamětihodnosti Prahy a navštívili jubilejní výstavu
40 let KSČ; odpoledne toho dne se účastníci III. kola
rozjeli do svých domovů.
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III.O výsledcích jednotlivých kol
soutěže

A. SOUTĚŽ I. KOLA

V tabulkách č. 1 a 2 je podle jednotlivých krajů
uveden počet účastníků I. kola, a to těch, kteří před-
ložili řešení všech šesti přípravných úloh a alespoň
čtyř soutěžních úloh I. kola. Nejsou zde uváděni ti,
kteří se soutěže účastnili jen z části. Dále je zde uve-
den počet úspěšných řešitelů prvního kola, tj. těch,
kteří ze šesti přípravných úloh rozřešili alespoň čtyři
správně a odevzdali alespoň čtyři správná řešení sou-
těžních úloh I. kola.

Účast je proti IX. ročníku MO značně slabší; ve
vyšších kategoriích poklesl počet účastníků až na polo-
vinu, v kategorii D je úbytek jen asi 15 %. Příčiny
tohoto zjevu jsou různé. Především je tu značné mimo-
školní časové zatížení žáků různými akcemi, což platí
zvláště o vyšších kategoriích. V těchto kategoriích
však také matematické olympiádě značně konkuruje
fyzikální olympiáda. V tomto ročníku působila znač-
nou nesnáz nestejná předběžná připravenost žáků
stejně starých v různých typech škol, vzhledem к tomu,
že se osnovy matematiky na těchto školách značně
lišily od osnov normálních. Proto mohli učitelé mate-
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matiky se svolením KVMO zařadit své žáky i do niž-
ších kategorií. Tak např. někteří žáci, kteří by svým
ročníkem patřili do kategorie C, soutěžili v kategorii D.
V celé této otázce počtu účastníků případná nevhod-
nost některých soutěžních úloh I. kola rozhodně ne-
hrála podstatnou roli.

Přitom je potěšující, že procento úspěšných řešitelů
prvního kola ve vyšších kategoriích se blíží číslu 553
v nejvyšší kategorii A dokonce číslu 65. To je pod-
statné zlepšení proti předchozímu ročníku, kde se
v těchto případech setkáváme s čísly 40 a 43. To do
jisté míry asi znamená, že absolutní úbytek počtu ře-
šitelů je vyvážen zlepšením kvality, pokud ovšem před-
pokládáme, že nároky na soutěžící v obou ročnících
byly zhruba stejné. V kategorii D procento úspěšných
řešitelů je asi 55, tedy jako v předchozím ročníku.

Lze očekávat, že v organizaci našeho školství na-
stane v příštích letech určitý klid a jednotnost v poža-
davcích, čímž budou i požadavky soutěže na žáky cel-
kem jednotné.

B. SOUTĚŽ II. KOLA

1. Výsledky II. kola jsou patrny z tabulek č. 3 a 4.
Je vidět, že všichni úspěšní řešitelé I. kola nebyli po-
zváni výbory МО к soutěži II. kola. Také někteří
pozvaní se nedostavili. Jednou z příčin tu bývá i to,
že někteří žáci nepracovali v I. kole zcela samostatně
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů v kategorii D*)

Kategorie D

Kraj Z toho
dívek

P U
i

Praha město 1212 601 761

Středočeský 1 170 643 773

Jihočeský 1082 550 600

Západočeský 982 524 534

Severočeský 1 136 573 586

Východočeský 1 809 1036 865

Jihomoravský 1 768 1063806

S everomoravský 1601 828796

Západoslovenský 868 468 495

1 156Středoslovenský 624 633

Východoslovenský 224323 173

Celkem 6794 736213 107

*) P = celkový počet účastníků; U = počet úspěšných řešitelů

a chtěli se vyhnout neúspěchu ve II. kole. Tato situace
je patrna i v kategorii D, kde se často v I. kole vysky-
tovaly stížnosti na opisování žáků.

Úbytek účastníků v II. kole při porovnání s před-
chozím ročníkem je větší než 30 %, zato procento
úspěšných řešitelů je asi 40 % oproti 32 % v před-
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Tabulka č. 4

Přehled počtu účastníků II. kola podle krajů v kategorii D* )

Kategorie D
Kraj Z toho

dívek
P U

Praha město 626 286 477

Středočeský 296214415

Jihočeský 75 65141

Západočeský

Severočeský

240 311442

257 321522

Východočeský 389 465723

Jihomoravský 427 421842

Severomoravský 666 335 379

Západoslovenský 452 247 273

Středoslovenský 12690191

Východoslovenský 14791167

3281Celkem 26515187

*) P = počet všech účastníků; U = počet úspěšných řešitelů.

chozím ročníku; v kategorii D je asi 60 % úspěšných
řešitelů proti 68 % v předchozím ročníku. Je tedy
klasifikace ve vyšších kategoriích příznivější, kdežto
v kategorii D ostřejší, což je к prospěchu věci, i když
poslání kategorie D je značně odlišné od poslání ostat-
nich kategorií.

2. Výbory MO odměnily úspěšné řešitele II. kola
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pochvalnými uznáními a hodnotnými věcnými cena-
mi, zvláště pak odbornými knihami.

V kategoriích В, C, D končí soutěž II. kolem. Uvá-
dime jména deseti nejlepších řešitelů v kategoriích В
a C za každý kraj. Pokud není jinak uvedeno, jedná se
v tomto seznamu o žáky střední všeobecně vzdělávací
školy.

POŘADÍ ÚSPĚŠNÝCH ŘEŠITELŮ II. KOLA

V KATEGORIÍCH В, C

SWŠ = střední všeobecně vzdělávací škola
= průmyslová škola

Praha—město

B. Durdil Jiří, 23. SWŠ, Prah 8; Veselý Karel,
6. SWŠ, Bílá ul., Praha; Ježek Jaroslav, 17. SWŠ,
Křesomyslova, Praha; Vaněček Milan, SWŠ, Školní,
Praha 1; Tvrdý M., 20. SWŠ, Praha 5; Cibulka Josef,
36. SWŠ, Vúžlabině, Praha; Běrák Jaroslav, 21. SWŠ,
Praha 5; Holzbecher J., 20. SWŠ, Praha 5; Hojdar
Josef, 9. SWŠ, Praha 8; Sobínová Zdeňka, 15. SWŠ,
Praha 3.

C. Zemánek Jaroslav, 20. SWŠ, Praha 5; Vít Zde-
něk, 14. SWŠ, Praha 2; Fried Viktor, 2. P, Praha 1;
Vodičková Ludmila, 14. SWŠ, Praha 2; Čtyroký Jiří,
27. SWŠ, Praha 4; Frič Martin, 7. SWŠ, Praha 7;
Beránek Václav, 5. P, Cyrilometodějské n. 8, Praha;

P
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Hudcová Marie, 24. SWŠ; Souček Vladimír, 21. SWŠ,
Praha 5; Vorlíček J., 14. SWŠ, Praha 2.

Středočeský kraj
B. Kunc, Kladno; Špetlík, Mnichovo Hradiště.
C. Procházka Jindřich, Čelákovice; Lišková Marie,

Říčany; Kobylka, Hořovice; Mužík J., Hořovice; Ši-
měrka Ivan, Mladá Boleslav; Kroupa K., Říčany; Hlou-
šek, Vlašim; Svoboda, P, Kladno; Nešetřil, Rakovník.

Jihočeský kraj
B. Cvach Jaroslav, Soběslav; Zavadil Jiří, Pelhřimov;

Parma Ludvík, Tábor; Ostrý Ladislav, P, Tábor; Ned-
vědová Zděna, Strakonice; Hronková Eva, Strakonice.

C. Limpouch Václav, Strakonice; Hájková Jarmila,
Blatná; Turek Zdeněk, P, Písek; Hora Jan, Tábor;
Komrska Pavel, Týn nad Vltavou; Matzner Jan, České
Budějovice; Macek Bohuslav, Strakonice; Milička Edu-
ard, Strakonice; Kloužek Jan, Český Krumlov.

Západočeský kraj
B. Vacek Jiří, Plzeň;
C. Štveráček Josef, Sokolov; Fleissig Jiří, Plzeň;

Opatrný Jaroslav, Nepomuk; Paidar Václav, P, Klato-
vy; Mertl Petr, Plzeň; Klička Jan, Přeštice; Zemandl
Milan, P, Klatovy; Švík Václav, Přeštice; Dvořák Josef,
Cheb; Sluka Zdeněk, Horažďovice.
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Severočeský kraj
B. Fejtková Pavla, Liberec; Starý Petr, Ústí n. La-

bem; Novotný Jiří, P, Most; Čmelík Jiří, Liberec; Jae-
ger Vladimír, Most; Bureš Václav, Ústí n. Labem; Tho-
rovský Ctibor, Ústí n. Labem; Andrlová Miroslava,
Tanvald; Balcar Rudolf, Liberec; Procházka Antonín,
Litoměřice.

C. Hovorková M., Liberec; Gorlich P., Ústí n. La-
bem; Růžička A., Ústí n. Labem; Marek Jan, Liberec;
Kněžourková D., Č. Lípa; Poláček К., P, Ústí n. La-
bem; Karásek J., Česká Lípa; Ryšánek F., P, Ústí n.
Labem; Kykalová L, P, Liberec; Ryšavý Jan, P, Libě-
rec.

Východočeský kraj
B. Netuka Ivan, Hradec Králové; Přidal Jaroslav,

Hradec Králové; Hrnčíř Fr., Nová Рака; Hrdlička Mi-
lan, 1. SWŠ, Pardubice; Bryknar Zd.,Nová Рака; Ku-
drnovský Pavel, Dvůr Králové n. Lab.; Fořtová Květa,
Přelouč; Martincová Marta, Rychnov nad Kněžnou;
Richter Antonín, Dvůr Králové nad Labem; Loučný
Zbyněk, Lanškroun.

C. Chaloupek Karel, Kostelec nad Orlicí; Kapička
Aleš, 1. SWŠ, Pardubice; Veverka René, 3. SWŠ,
Pardubice; Hartman Miroslav, Hradec Králové; Mou-
drá Milena, Pardubice; Plašil Jan, Hořice v Podkrko-
nosí; Hlaváček Ladislav, Kostelec nad Orlicí; Holoub-

33



ková Marie, P, Havlíčkův Brod; Zima Miroslav, Trut-
nov; Semerák Václav, Přelouč.

Jihomoravský kraj
B. Sobotka Jan, Blansko; Bartůšek M., Brno; Ко-

louch Jaromír, P, Gottwaldov; Vítek Pavel, Jihlava;
Bendová Jitka, Brno; Černý Václav, M. Budějovice;
Poustka Jiří, Brno; Jičínský Miloš, P, Brno.

C. Šimková Drah., Znojmo; Vašek Lub., Gottwal-
dov; Kubín Miloš, Brno; Chyba Jaroslav, Brno; Lenc
Michal, Brno; Rybář Pavel, Brno; Svoboda Karel,
Brno; Znojil Mir., Prostějov; Mikula Milan, Třebíč;
Vrbík Jan, Vyškov.

S e v e r o m o r a v s к ý к r a j
B. Josífko J., Opava; Vrána L., Nový Jičín; Kunčic-

ký P., P, Ostrava; Cimalová K., Orlová.
C. Blaťák J., Přerov; Porubá F., P, Val. Meziříčí;

Roch J., P, Val. Meziříčí; Ženčáková L., Olomouc;
Gryczová H., Jablunkov; Rozum Z., Opava; Krump-
holzová J., P, Val. Mezičíří; Ondřejová L., P, Val. Me-
ziříčí; Borůvka M., Ostrava I; Bědajánek I., Ostrava 3.

Západoslovenský kraj
B. Hatala Peter, Bratislava; Lesyk Peter, Bratislava;

* Komrska Peter, P, Bratislava; Tarábek Pavol, Bratisla-
va; Veselý Marián, Bratislava.
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C. Voda Pavol, Bratislava; Janeková Dagmar, Bra-
tislava; Kedro Martin, Trenčín; Pišútová Anna, Brati-
slava; Pohanka Vladimír, Bratislava; Kováčiková Na-
děžda, Trenčín; Krňan Pavol, Bratislava; Mardiaková
Anna, Bratislava; Plachetka Ján, Trenčín; Tóth Štefan,
Trnava.

Středoslovenský kraj
B. Jirásek Juraj, Žilina; Vnadlík Stanislav, T. Tepli-

ce; Holmová Augustina, Námestovo; Krško Ján, T.
Teplice; Fiizy Dušan, Ružomberok; Jaroš Štefan, Ru-
žomberok; Rusnák Ivan, Ružomberok; Bystrický Ka-
mil, P, Dubnica; Reich Rudolf, P, Zvolen; Kozík To-
máš, P, Dubnica.

C. Francen Jozef, Handlová; Hovorková Darina,
Zvolen; Moravčík Jozef, Zvolen; Kudlička Ján, P,
Martin; Jablonská Marta, P, Ružomberok; Heisová
Zdena, Zvolen; Szenesyová Elena, Zvolen; Králik Ja-
roslav, Zvolen; Hrdina Milan, Žilina; Hlaváč Ivan,
Ružomberok.

Východoslovenský kraj
C. Košlík Štefan, Košice; Neuwirth Peter, Košice;

Poništ Jozef, Košice; Sitárová Anna, Košice; Forgáč
Ladislav, Prešov; Zachar Juraj, P, Košice.
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C. SOUTĚŽ III. KOLA

Mezi 80 účastníky III. kola bylo 7 žáků průmyslo-
vých škol, ostatní byli ze středních všeobecně vzdělá-
vacích škol; přitom jeden úspěšný účastník byl ze II.
ročníku SVVŠ. Soutěže se účastnilo 11 děvčat.

Mezi 44 úspěšnými řešiteli byli 3 žáci z průmyslo-
vých škol. Úspěšné řešitelky byly 3.

Nejlepších 20 úspěšných řešitelů III. kola se podle
organizačního řádu stalo vítězi X. ročníku MO; jeden
z nich je z průmyslové školy, 4 jsou Slováci. Osm z vítě-
zů MO se účastnilo III. mezinárodní matematické olym-
piády, konané v červenci 1961 v Maďarsku (viz část VI
této brožury).

V dalším uvádíme pořadí vítězů X. jubilejního roč-
niku matematické olympiády.

Pořadí vítězů X. jubilejního ročníku MO
ve šk. r. 1960/61

1. Karel Příkrý, 3.a tř. SWŠ, Vyškov
2. Tomáš Jech, 3.b tř. SWŠ, Hellichova ul.,

Praha 13.—4. Alexandr Groda, 3.b tř. SWŠ, Kollárova ul.,
Praha 8

Jan Lusk, 3.d tř. SWŠ, České Budějovice
5. —6. Michal Kretschmer, 3.b tř. SVVŠ, Omská ul.,

Praha-Vršovice
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Přemysl Svoboda, 3.b tř. SWŠ, Roudnice n.
Lab.

7. Pavel Obložinský, 3.a tř. SWŠ, Bratislava-
Palisády

8.-9. Karel Hrbáček, 3.a tř. SWŠ, Nymburk
Emil Kraemer, 3.b tř. SWŠ, Žukovova, Pra-
ha 6

Jiří Lauda, З.а tř. SWŠ, Havlíčkův Brod
10.— 13. Belomír Lonek, 4.a roč. průmyslové školy ja-

děrné techniky, Ječná ul., Praha
Miroslav Šmuk, 3.c tř. SWŠ, Ostrava 5 —

Hladnov
Zdeněk Výborný, 3.b tř. SWŠ, ul. Pionýrů,
Praha 6

14. —15. Bohumil Král, З.а tř. SWŠ, Bratislava-Novo-
hradská
Ladislav Lukšan, З.а tř. SWŠ, Ústí n. Lab. —

Na skřivánku

Jan Dobeš, З.а tř. SWŠ, Český Těšín
16.—19. Pavel Krbec, 3.b tř. SWŠ, Beroun

/Саго/ Macák, 3.c tř. SWŠ, Bratislava-Novo-
hradská
Dušan Mikloš, 3.c tř. SWB, Bratislava-Novo-
hradská

20. jW/ Dawoř, l.d tř. SWŠ, Praha 9
Vítězové X. ročníku matematické olympiády byli

odměněni ministerstvem školství a kultury velmi hod-
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notnými věcnými cenami, jejichž druh si sami určili.
Vedle toho dostali poukázky na nákup odborné studijní
literatury (až do výše Kčs 250,—); seznam pro výběr
vhodných publikací v jazyce českém, slovenském a rus-
kém každý z nich obdržel. Vedle toho každému vítězi
byl doručen umělecky provedený čestný diplom o
úspěchu ve III. kole; diplom podepsal ministr školství
a kultury dr. Fr. Kahuda a předseda ÚVMO akademik
Josef Novák.
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Přípravné úlohy I. kola
KATEGORIE A

1. Zostrojte pravoúhlý trojuholník, ak je daný polo-
mer kružnice trojuholníku opísanej a poloměr kružnice
vpísanej. Urobte diskusiu riešitelnosti vzhladom na vel’-
kosti oboch daných polomerov.

(Pokyn. Vypočítajte súčet odvesien pomocou da-
ných polomerov a výsledku použité ku konštrukcii.)

2. V rovině jsou dány dvě kružnice k13 k2 (o polo-
měrech R, r, kde R ^ r — 1), které mají vnější dotyk.

Vypočítejte poloměr x kružnice k, která se každé
z kružnic k13 k2 dotýká vně a zároveň se dotýká jedné
společné vnější tečny kružnic kXi k2.

Rozhodněte, při které hodnotě R je x nejmenší.
3. Narýsujte graf funkce:

а) у
X2

; b)y~y%; с)у~[УУф^9Г
- 9

1*1

Vy = Ů\,]J
e) y= 1*1 • |/-|-4~*,|; s f)y=^\x|.]/-

X2 + x — 6
|x2 + x — 6| 5

x2 — 4

| 4 — л:21 *
Podejte odůvodnění.4.Určete všechna reálná čísla />, pro která rovnice

я2 — 2(p + 4)x + p2 + 6p = 0
o neznámé я má:
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a) oba kořeny různé a záporné; b) jeden záporný ко-
řen, druhý nezáporný.

5. Výroba podniku sa každým rokom zvyšuje o p %.
V priebehu ktorého roku vzrastie výroba o np % (kde n

je dané prirodzené číslo) proti počiatočnému stavu? Na
závěr urobte výpočet pře p = 20, n — 5.

6. Označme D průsečík osy úhlu <^BCA trojúhelníku
ABC se stranou AB; dále označme СВ = a, CA = b,
CD — u.

a) Dokažte, že platí = у.

b) Vypočtěte obsah trojúhelníka ABC, jestliže jsou
dána čísla a, b3 u.

(Je výhodné užít trigonometrických vzorců pro obsah
trojúhelníka.)

KATEGORIE В

1. Dané sú celá čísla A3 B. Potom aspoň jedno z čísel
A3 В, A + В, A — В je dělitelné troma; dokážte.
(Pokyn. Existuje jediná dvojica celých čísel a3 z3 kde
0 < z < 33 taká, že platí A = 3a + z.)

2. V rovině jsou dány dva různé body C3P a na přím-
ce CP bod V.

Sestrojte rovnoramenný trojúhelník ABC, v němž je
bod P středem základny AB a bod V průsečíkem výšek.

Rozhodněte o řešitelnosti úlohy vzhledem к poloze
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bodu V na přímce CP. (Pokyn. Vypočtěte velikost
úsečky x = \AB.)

3. V rovině je dán kosočtverec ABCD.
Sestrojte kružnice kx = (S13 гг), k2 = (S23 r2) těchto

vlastností:

(1) kružnice k13 k2 mají vnější dotyk,
(2) platí r2 = 2r13
(3) kružnice kx se dotýká ramen úhlu <£DAB a kruž-

nice k2 se dotýká ramen úhlu <£BCD,
(4) obě kružnice k13 k2 leží v kosočtverci ABCD.
4. V rovině jsou dány dva pravé přilehlé úhly <£QMN

<£MNP. Uvažujme čtverec ABCD3 kde bod A leží na

polopřímce MQ, bod В je bodem úsečky MN, bod C
leží na polopřímce NP.

Vyjádřete délku úsečky AB pomocí dané délky MN=
= 2d a vzdálenosti x bodů О, В (je tedy x ^ 0), kde O
je střed úsečky MN. Jestliže bod В probíhá úsečku MN,
vyšetřte, co přitom vyplní:

a) střed 5 čtverce ABCD; b) vrchol D čtverce ABCD.
(Ke zvolenému bodu В příslušný bod C je průsečíkem
přímky NP a přímky, kterou dostaneme otočením přím-
ky MQ o pravý úhel kolem bodu B.)

5. Riešte rovnicu

&
I x b i x c л

с'с-\-а'а-\-Ъ 5

kde a, b} c sú dané reálne čísla а л: je neznáma. Zistite,

x —

T+
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pre ktoré trojice čísel a, b, c nemá rovnica vyhovujúce
riešenie; ďalej, kedy má jediné riešenie a kedy má neko-
nečne mnoho riešení.

6. Výraz
P-2
p + 2

p2 — 4p + 4
p2 + 4p + 5

p3 — 6p2 + 12p — 8
p3 + 6p2 + 12£ + 8~5

F =

kde p 4= — 2 je dané reálné číslo, je záporný pro ta
čísla p, o nichž platí

— 2 < p < 2;
jinak je nezáporný; dokažte a udejte všechna čísla p3
pro něž je daný výraz roven nule.

(Pokyn. Lze řešit tak, že nejprve dokážete: 1 —
— v -f- x2 >0 pro všechna reálná čísla x; přitom po-

KATEGORIE C

1. Mořská voda obsahuje 5 % soli. Kolik kilogramů
obyčejné vody musíme přilít do m kg mořské vody,
abychom dostali dvouprocentní roztok soli ve vodě?
(Ostatní látky rozpuštěné ve vodě přitom zanedbáme.)
Proveďte též příklad pro m = 40.

2. V rovině je daná úsečka CP a priamka p _L CP,
ktorá prechádza bodom P. Uvažujme rovnoramenný
trojuholník ABC, ktorého vrcholy А, В ležia na priam-
ke p.
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Vyšetříte, čo vyplnia ťažiska T všetkých trojuholní-
kov ABC.

(Poznámka. Pre polohu hlavného vrcholu troj-
uholníka ABC sú dve podstatné rozdielne možnosti.)

3. V rovině jsou dány dvě různé rovnoběžky a, c
a uvnitř jimi určeného pásu je dán bod B.

Sestrojte čtverec ABCD tak, aby bod A ležel na přím-
ce a a bod C na přímce c.

Rozhodněte o "řešitelnosti úlohy.
(Pokyn. Otočte přímku c kolem bodu В o pravý

úhel.)
4. Narýsujte trojúhelník SMN, kde SM = 5 cm,

SN = 4 cm, MN = 6 cm.

Sestrojte kosočtverec ABCD o středu S, aby platilo:
(1) Délka stran kosočtverce je 7,5 cm.
(2) Přímka AB prochází daným bodem M.
(3) Přímka CD prochází daným bodem N.
Dokažte, že úloha má dvě řešení.
(Užijte souměrnosti o středu S.)
5. Nájdite všetky prirodzené čísla p3 q, o ktorých

platia:
1 , 1 1b) 7 + 7 = 2

s 1 , 1
a) — H—J p ' q

= i;

(Dokážte, že úlohe a) vyhovujú jedine čísla p = q — 2,
úlohe b) tieto tri dvojice: p = 6, q = 3; p = q — 4;
P = 3, q = 6.]
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6. Jsou dána reálná čísla a, b, c, o nichž platí a + b +
-}- c = 0.

Má-li výraz
, _L_ i i

a + b ' b + c ' c + a

1
V =

smysl, potom platí
a2 + b2 + c2F =

dokažte.
Dále udejte všechny trojice čísel a, b, c, pro něž daný

výraz ztrácí smysl.

KATEGORIE D

1. Udajte všetkých delitel’ov (tj. prirodzené čísla)
čísla 180. Uveďte postup, ako ste túto úlohu riešili.

2. JZD mělo v r. 1959 dodat 2670 q obilí; plán splnilo
na 115 % (takže plán dodávky obilí překročilo o 15 %).

Kolik obilí musí dodat v roce 1960, jestliže chce pře-
kročit o 15 % svou dodávku z minulého roku?

3. Narýsujte dvě rovnoběžky p, q o vzdálenosti 4 cm;
na přímce p zvolte bod P.

Sestrojte kružnici, která se přímky p dotýká v bodě P
a která na přímce q vytíná tětivu délky 5 cm.

4. Počítajte dvojakým spósobom, najskór podlá pouč-
ky o druhej mocnině mnohočlenu, potom podlá poučky
o rozdielu štvorcov

(2x +j>)2 — {x + 2y)2.
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5. Narýsujte úhel -šMPN = 60°.
Na polopřímce PM sestrojte bod A a na přímce PN

sestrojte body B} C tak, aby o trojúhelníku ABC platilo:
AC = 6 cm, BC — 7 cm, <tBCA = 75°.

Úloha má dvě řešení; z provedené konstrukce roz-
hodněte, zda oba sestrojené trojúhelníky padnou do úhlu
<£MPN.

6. V rovnoběžníku ABCD je strana AB = 4,9 cm,
strana AD = 7 cm a výška příslušná ke straně AB má
délku 5 cm; přitom úhel <£.DAB je ostrý.

Výpočtem rozhodněte, zda pata P výšky vedené bo-
dem D ke straně AB padne dovnitř úsečky АВ či nikoli.
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V. Řešení úloh ze soutěže

1. ÚLOHY I. KOLA KATEGORIE A

1. a) Dokažte, že je-li 0 < я < 1, potom platí
1 — \x — У1 — л; < \x2.

b) Narýsujte (např. na milimetrový papír pomocí ta-
bulky hodnot) graf funkcí у = 1 —\x — ]/1 — x, у =
— lx2 v intervalu (0, 1); za jednotku délky zvolte 20cm.

c) Vypočtěte (na čtyři desetinná místa), o kolik se liší
hodnoty pravé a levé strany dokazované nerovnosti
v úloze a) pro x =

Řešení, a) Pra číslo jc podle textu úlohy platí
0 < x < 1,

1 — * > 0;
má tedy odmocnina v (1) smysl. Úpravami (1) dostaneme
2 — x — л:2 < 2 ]/l — * neboli

(2 + jc)(1 — x) < 2]/l — x
Vzhledem ke vztahům (2), (3) jsou čísla 2 + x, 1 — x
kladná; proto obě strany ve (4) jsou kladná čísla; umoc-
něním obou stran (4) na druhou dostáváme po úpravě
xi + 2xs — 3x2 < 0 neboli

x\x + 3)(x — 1) < 0.

(i)

(2)
takže

(3)

(4)
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Tento vztah vzhledem ke (2) vskutku platí pro všechna
uvažovaná x; obrácením postupu dostaneme správ-
nost vztahu (1), což jsme měli dokázat.

b) Položme = \x2, y2 =1 — \x — ]/1 — x; sou-
řadnice bodů grafu první funkce budou [x3y = уг]3
[x,y = y2\. Grafem první funkce je oblouk paraboly
(grafem funkce у = ax2, jak známo, je parabola); dá se
dokázat, že i grafem druhé funkce je oblouk paraboly.
Sestavme tabulku hodnot ke každé z obou funkcí (sloup-
ce označené *) jsou mimo uvažovaný interval):

*) *)
o 0,2 0,44 0,5 0,6 0,8 1x

0,50 0,02 0,125 0,18 0,320,08У i

*)*)
Poznámka0,2 0,4 0,60 0,5 0,8 1x

1 — \x přesně1 0,9 0,75 0,7 0,6 0,50,8

přesně1 — x 0,8 0,40,6 0,5 0,21 0

dolní
hranice]/l —x 0,891 0,77 0,70 0,63 0,44 0

horní
hranice

0 0,01 0,03 0,05 0,07 0,16 0,50J>2
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c) Pro х — 0,5 mají funkceз?! = \x2,y2 = 1 — \x—
]/1 — x hodnoty:

Ух = í = 0,125,
Л = 1 - i - V53 = 0,75 - Щ5-,

rozdíl

d = yi —y2 = 0,125 - (0,75 - 1/0,5) = Уо,5 - 0,625.
Přitom je

0,707106 < У0,5 < 0,707107,

0,707106 - 0,625 < d < 0,707107 - 0,625
tj.

neboli
0,082106 < d < 0,082107.

Je tedy
d = 0,0821 + k . 10-5,

kde 0 < k < 1 je jisté reálné číslo, které nemá vliv na
cifru 1 stojící na 4. desetinném místě.

2. Ak sú a, b3 c dížky stráň trojuholníka ABC a s jeho
polovičný obvod, potom pre dížku и osi vnútorného uhla
při vrchole A tohto trojuholníka platí vztah

4bc
s(s — a);u2 =

0b + cy
dokážte.

Ak je trojuholník ABC pravoúhlý s přeponou BC,
potom s použitím predchádzajúceho výsledku dokážte,
že

sin 2a)
u — \a У 2 sin co + cos co 3
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pričom je co velkost’ hociktorého z oboch ostrých uhlov
trojuholníka ABC.

Riešenie. I. Zavedieme označenie podlá obr. 1. Po-
užitím sinusovej vety na trojuholníky ABU} ACU
dostaneme

CU
= sinf

b sin у'
_ sinf .

sin Ф 5
Porovnáním vzťahov (1) dostaneme

BU
(1)

BU
(2)CU b *

Obr. 1

Pretože je BU + CU = a, je podl’a (2) j. CU + CU —
= a, tj.

ab
cu = (3a)b + c

a podobné (výměnou stráň bac)
BU —

b + c (3b)
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Teraz použijeme kosínusovú vetu na trojuholníky ABU3
ACU3 podlá vzorcov (3a), (3b) je

b2 - u2 4
a2b2 ab

— 2и . cos 9?j(b + c)2 b + c

(4)a2c2
+ 2и~ГГ~b + c

pretože cos(180° — cp) = —cos cp. Rovnosti (4) vynáso-
bíme po radě číslami c, b a sčítáme. Dostaneme

a2bc

Оь + C)2
Rovnost’ (5) delíme kladným číslom b a po úpravě
dostaneme

c2 = u2 4 . cos 9?,(b + 42

bc(b + c) = u2(b + c) 4 (b+c). (5)

a2bc
(6)u2 = be (1 (b + c)2 *

Vztah (6) je jeden tvar hladaného vzorca. Možeme ho
ďalej upravit’ takto:

u2 = 1FTW[(-b+^-a2] (7)
Pretože je

(b c)2 — a2 ■= (b -{- c a){b 4- c — á) =
— 2s(2s — 2d) — 45(5 — a),

kde s znamená dížku polovičného obvodu trojuholníka,
dostaneme z rovnosti (7) rovnost’

u2 =
4bc

s(s — a), (*)(b + c)2
čo je už hladaný vzorec.
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II. Nech je teraz <tCAB = 90°. Pri odvodení vzťa-
hu (*) vyjdeme zo vzorca (6). Ak je co =

b
sin co = —

^ABC, je

у. (Viď obr. 2.) Dosadíme do (6)
b = asin co, c = acos co a postupné dostaneme

—, cos co =
a 7

и2 = a2 sin co cos co |l
w2 = -y sin 2co |
u2 = -y sin 2co
w2 =

a2 )a2 (sin co + cos co)2)9
1 )•1 -

1 + sin 2co

sin 2co
1 + sin 2co 5

a2 sin2 2co
2 * (sin co cos co)

a -U
i

Obr. 2

Pretože je co < 90 °, je sin co > 0, cos co > 0, sin 2co >
> O, a teda

sin 2 co

u ~ у2 * sin co + cos co »
čo je už vzorec (*) z druhej časti úlohy. Pretože pre

a
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О < со < 90° je sin(180° — 2со) = sin 2со,
sin(900 — со) = cos со, cos(900 — со) = sin со,

vyplývá z predchádzajúceho vzorca, že platí pre obidva
ostré uhly co, 90° — co pravoúhlého trojuholníka ABC.

3. Je dán čtverec MNPQ. Uvažujme všechny rovno-
stranné trojúhelníky ABC, které mají tyto dvě vlast-
nosti:

(1) Vrchol A leží na úsečce MN.
(2) Vrcholy В, C leží po řadě na polopřímkách NP,

MQ.
Zjistěte, který útvar je geometrickým místem:
a) vrcholů B; b) středů úseček BC; c) těžišť trojúhel-

níků ABC. Potom sestrojte ten z trojúhelníků ABC,
jehož těžiště padne na úsečku MP.

\B2JP P

Q P Q PиТ Hi

/!\
К/

/
\
\/

/ \
/ \

/

št n=a2x2 =a

Obr. 4
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Řešení (vjz označení z obr. 5, kde MN= 2d). Označ-
me p osu úsečky MN a S’ střed této úsečky. Předpoklá-
dejme, že vrchol A hledaného trojúhelníka ABC leží
na úsečce SN (možnost, že bod A padne na úsečku SM
dostaneme z předchozího pomocí souměrnosti o ose p).

Případy, že je A = S nebo A = N jsou jednoduché,
jak je vidět z obr. 3, 4.

IP t

УуЖo
\

/

Qt *

J*

N

S
. Ai * A a-x

-*K—
Nti a

a+x

Obr. 5

Nechť nadále je A bod ležící uvnitř úsečky SN.
a) Bod В v obr. 5 dostaneme otočením bodu C okolo

bodu A o 60° v záporném smyslu; toto otáčení označme
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Q a otáčení obrácené nazveme Q'. S bodem C se přitom
otáčí i polopřímka MQ do polohy M'Q', takže bod В
je společným bodem polopřímek M'Q', NP. Protože
v otáčení Q platí AM' = AM, <£MAM' = 60°, je troj-
úhelník MAM' rovnostranný, takže bod M' leží uvnitř
strany MV rovnostranného trojúhelníka MNV sestro-
jeného v polorovině MNP (bod V padne na přímku p).
Přesněji řečeno, jestliže bod A probíhá úsečku SN, pro-
bíhá bod M' úsečku MXV, kde Mx je střed strany MV
trojúhelníka MNV (viz obr. 5). Protože pro každou po-
lohu bodu A je úhel <XMAM' = 60°, jsou přímky AM'
rovnoběžné s přímkou SMX pro všechny polohy bodu A;
jsou tedy rovnoběžné i polopřímky M'Q', které stojí
kolmo na AM'. Polopřímky M'Q' leží tedy v pásu rov-
noběžek MXQX, VVX, které stojí kolmo к přímce SMX
(počátky M' padnou na úsečku Mx V). Společná část
pásu rovnoběžek MXQX, VVX s polopřímkou NP je jistá
úsečka BXB2. Jak patrno z obr. 5 je vzdálenost bodu B2
od přímky MN větší o délku úsečky VH než NBX, kde H
je společný bod přímky p s polopřímkou MXQX; zřejmě
je <XVMXQX = 30° = <£MXVS, takže VH = MXH =
= SMi. tg30° (neboť úhel ^MXSV - 30°), tj. VH =
= ^З.М5 - ф a. Dále je 5F =_i MN. ]/3 = a]/3.
Je tedy NB2 = VH + SV = 03a, neboť NBX =
= SV = a]/3 (bod Bx je právě o délku VH blíže к přím-
ce MN); viz též obr. 3, 4. Obráceně od každého bodu В
vnitřku úsečky BXB2 obráceným postupem přes bod M'
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vnitřku úsečky MXV a otočením Q' okolo bodu A mů-
žeme dospět к bodu C polopřímky MQ.

Výsledek I. Geometrickým místem bodů B, odpoví-
dajícím bodům A úsečky SN, je úsečka BXB2, ležící
v polopřímce NP; přitom je NBX = a]/3; NB2 = fa]/3,
MN = 2a. Probíhi-li prk bod A celou úsečkou MN,
vyplní bod В úsečku B0B2 o středu Bx.

b) Střed O úsečky BC dostaneme otočením bodu C
kolem bodu A v záporném smyslu otáčení o úhel veli-
kosti 30° a stejnolehlostí s konstantou %]/3 (viz vzorec
pro výšku rovnostranného trojúhelníka). Toto otáčení
převede polopřímku MQ v polopřímku lW02o5 kde bod
M0 je zřejmě patou kolmice vedené bodem A na přím-
ku MV-, přímky MV, M0Q0 tedy splývají. Podobným
způsobem dostaneme bod O z bodu В; příslušné oto-
čení o úhel velikosti 30° má kladný smysl a polopřímku
NP převádí v polopřímku N0P0, ležící v přímce NV.
Společný bod polopřímek M0Q0, NqP0 je společným
bodem přímek MV, NV, tj. bod V; je tedy O = F-

Výsledek II. Geometrickým místem středů úseček BC
je jediný bod V, tj. vrchol rovnostranného trojúhelníka
MNV, který leží v polorovině MNP.

c) Těžiště T trojúhelníka ABC splňuje vztah^ =—,
bod T je tedy obrazem bodu A ve stejnolehlosti se stře-
dem V a koeficientem §. Obrazy bodů úsečky MN vy-
plní úsečku KL rovnoběžnou s přímkou MN (viz obr. 6);



vzdálenost přímek KL, MN je §]/3. MN. Tu je HK —

= i . MN, HL = §MN. Úhlopříčka MP čtverce
MNPQ protne přímku HK v bodě X, jehož vzdálenost
od bodu H je HX = |]/3 . MN = 0,577MN. Platí
však

l < 0,577 < §;

proto bod X náleží úsečce KL. Obráceně, ze zvoleného
bodu X na úsečce KL odvodíme snadno vrchol A a další

vrcholy В, C rovnostranného trojúhelníka ABC.

Výsledek III. Těžiště vyplní úsečku KL, jejíž kon-
strukce je patrna z obr. 6.

\P
Q P

1 ✓

/ i'4 /
H

ш 1
/ /

/ У

\
\ \\■8 \// \

4n
/

ti

\60°
A \

!š л N
l

Oér. £

Poznámka. Řešení úlohy užitím výpočtu (geometricky
opřeném o předchozí postup) je patrné z obr. 5: Nechť
bod A je bodem úsečky SN; označme x vzdálenost
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bodů S3 A, dále y, z vzdálenosti bodů В, C od přím-
ky MN. Snadno zjistíme, že SV = |(jy +#) = a]/3,
kde 2a = MTV, čímž je odvozeno geometrické místo
středů V úseček BC.

4. Nechť a, /?, у jsou velikosti úhlů trojúhelníka;
označme

p = sin a + sin /? + sin y,

t? = cos a + cos /5 + cos у + 1.
a) Je-li trojúhelník pravoúhlý, potom je p = q; do-

kažte.

b) Je-li p = q, potom je trojúhelník pravoúhlý; do-
kažte.

c) Které největší hodnoty může nabýt číslo p pro
pravoúhlé trojúhelníky?

Řešení, a) Předpokládejme, že jsme označení troj-
úhelníka ABC zařídili tak, že platí

(1)0 < oc ^ P < 180°.

Vztah a -f /9 + у = 180° užijeme zvláště ve tvaru

K«+/5) = 90°-Jy. (2)
Je-li у = 90°, je

sin|y = cosJy = £]/2, siny - 1, cosy — 0.
Utvořme výraz x = p — q\ platí postupně užitím
vzorců pro součet funkcí, přičemž položíme

sinj(a + /5) = cosy, cos|(a + /?) = sin^y:

(3)
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x — (siná + sin/?) + siny — [(cosa + cos/?) +
+ cosy + 1] = 2sini(a + /?) cosi(a — /?) + 1 —

— [2cos|(a -T /?) cosi (л — /?) -j- 1] =
= 2cos|(a— /?)[cos|y — sinjy] = 0 [viz (3)].

Platí x = 0 neboli p = q, neboť poslední činitel je
roven nule. Tím je tvrzení úlohy a) dokázáno.

b) Nechť platí p — q [předpokládejme, že platí (1)]
neboli
siná — sin(90° — a) + sin/? — sin(90° — /?) + sin у —
- sin(90° - y) = 1.
Pomocí vzorce sinx — siny pro rozdíl funkcí dostaneme

(přitom 2cos45° = ]/2, ~ = sin45°):

2cos45°sin(a — 45°) + 2cos 45° sin(/? — 45°) +
+ 2cos 45° sin(y — 45°) = 1

neboli

sin(a. — 45°) + sin(/? — 45°) = sin 45° — sin(y — 45°).
Pomocí vzorce sinx + siny pro součet funkcí dostaneme

2sin[|(a + /?) — 45 °] cos| (a — /?) =
= 2cos|y sin (45° — | y);

odtud pomocí vztahu (2) dostaneme
sin(45° — |y) cosi (a — /?) = cos|y sin (45° — |y),

tj-
sin(45° — iy) [cos i (a — /8) — cos fy] = 0. (4)
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Platí
z = cosf (a — /3) — cos| у =

= —2sinJ (a — /3 + y) • sin| (a — /3 — 7);
avšak

a -}- у = 180° — /3, — /3 —у = a — 180°,
proto

s = -2sinl(180° - 2/3) sin!(2a - 180°) =
= 2sin (45° -I 0) sin (45° - ±a).

Po dosazení do (4) máme, že pro úhly a, /3, у vedle
a + /3 + У = 180° platí

sin(45° — |a) sin (45° — \fí) sin (45° — \y) = 0.
Protože úhly |a, -|/3, |y jsou ostré, platí nutně jeden
ze vztahů a — 90°, /3 = 90°, у = 90°, tj. trojúhelník
je pravoúhlý.

c) Pro у = 90° je |(a + /3) = 45°; předpoklá-
dejme, že je 0 < a ^ /3, takže je

(5)0 ^ /3 - a < 90°.
Přitom je

p = siná + sin/3 + sin 90° =

2sin í(oí + /3) cos !(/3 — a) + 1 = 1 + y2cos |(/3 — a);
vzhledem к (5) je p při у = 90° maximální pro /8 —
— a =

rovnoramenný trojúhelník.
0, tj. pro a = /3 =45°, tedy pro pravoúhlý
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5. Nájdite všetky prirodzené čísla n, pre ktoré je
číslo 211 — 1 druhou alebo vyššou mocninou (s celým
exponentom) prirodzeného čísla.

Riešenie. Rozbor. Podlá textu úlohy máme nájsť pri-
rodzené čísla n3 m > 1, a, aby pre ne platilo

2n — 1 = am. (1)

Případ [1]. Nech je a = 1. Potom vzťah (1) má tvar
2n — 2 pre všetky prirodzené čísla m. Z toho vyplývá,
že nutné n — 1. Skutočne pre a = n = 1, m > 1
(Iubovolné) je vzťah (1) splněný.

Případ [2]. Nech je a > 1. Rozoznávajme možnosti
[2a], [2b].

[2a] Nech je n — 1. Vzťah (1) má tvar 1 = am a ne-
možno ho splnit’, pretože pre všetky prirodzené m
a > 1 je vždy am >1. Tým je táto možnost’ vylúčená.

[2b] Nech je n > 1. V tomto případe je 2 ‘ > 2
párne číslo a 2’* - 1 číslo nepárne. Zo vztahu (1) vy-
plýva, že číslo a je nutné nepárne (inak by číslo am
nebolo nepárne). Rozoznávajme dve možnosti

1,

04 (0:
(a) Nech je m > 1 číslo párne. Položme a = 2k +

+ 1, m = 2p3 kde k3 p sú prirodzené čísla. Po dosadení
do (1) dostaneme 2n — 1 = [('2k + l)2]p číže

2” — 1 = [4(&2 +k) +1?;. (2)

po umocnění dostaneme na právej straně číslo tvaru
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4Q + 1, kde Q ф O je prirodzené číslo. Vztah (1)
možno teda uviesť na tvar

2" = 4Q + 2.
Pretože je n > 1, je číslo 2>l dělitelné štyrmi. Kedže

pravá strana vztahu (3) nie je štyrmi dělitelná, dospěli
' sme к sporu.

Zostáva možnost’:

(/?) Číslo m > 1 je nutné nepárne. Vztah (1) možno
písať v tvare 2n = am + 1 (kde je teda m ^2). Na
pravú stranu použijeme vzorec xb + yb = (лс +jv) • P>
kde P— xb~x — xb~2y + . . . — xyb~2 -\-yb~x3 ktorý
platí pre všetky nepárne prirodzené čísla b > 3, pričom
počet členov mnohočlena P je právě b.

Vztah (1) potom přejde do tvaru

(3)

(4)2n = (a + 1). A,

kde A = ат~г — am~2 + ... — a + 1 je súčtom ne-

párneho počtu m nepárnych čísel. Je to teda nepárne
číslo. Přitom pre prirodzené 2 < k ^ m — 1 je zh =
= ak — a*-1 = a*-1(a — 1) > 0. Kedže číslo A je
súčtom aspoň jedného čísla zk a čísla 1, je A > 1,
teda A ^ 3. No, 1’avá strana vo vztahu (4) nie je děli-
tel’ná nepárnym číslom A ^ 3; tým sme dosiahli spor.

Závěr. Jediné prirodzené číslo w, ktoré splňuje po-
žiadavky úlohy, je číslo n — 1 a dané číslo 2n — 1 sa
rovná 1.
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6. Jsou dány dvě různoběžné roviny q, a a úsečka AC,
která nemá s žádnou z obou rovin g, a společný bod
a která není kolmá к průsečnici rovin g, a.

Sestrojte rovnoramenný rovnoběžník (kosočtverec
nebo čtverec) ABCD těchto vlastností:

(1) Body A, C jsou jeho protější vrcholy.
(2) Bod В leží v rovině q a bod D leží v rovině a.
Proveďte prostorové řešení úlohy a diskusi řešitel-

nosti.

Řešení (viz obr. 7). Označme p průsečnici rovin g,
a. Podle textu úlohy neplatí p J_ AC; proto rovina
co ± AC, která prochází středem O úsečky AC, je
s přímkou p různoběžná (tj. má s ní jediný společný
bod). Kdyby platilo p || co, existovala by přímka p' || p
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jdoucí bodem O a ležící v rovině co; pak by ale bylo
p' J_ АС a p _L AC, což je proti znění úlohy.

Je-li ABCD hledaný rovnostranný rovnoběžník, je
BD ± AC, takže body B, D is přímkou BD leží v ro-
vině co. Označme r, s průsečnice roviny co po řadě s ro-
vinami q, a. Bod O leží v jednom ze čtyř dutých úhlů,
v něž rovinu co dělí různoběžky r, s (přímky r, s jsou
jistě různé, protože přímka/) protíná rovinu co v bodě P,
jímž procházejí i přímky r, 5); tento úhel označme
3:RPS. Tím je úloha převedena na planimetrickou
úlohu U: „V rovině co je dán dutý úhel <$.RPS a
uvnitř tohoto úhlu bod O. Na polopřímkách RP, PS
určete po řadě body В, D tak, aby úsečka BD měla
střed 0.cc Odtud konstrukce:

Sestrojíme středem O úsečky AC rovinu co J_ ЛС
a označíme P její průsečík s přímkou p a r, s průsečnice
dvojic rovin co, q a co, o. Označme <^RPS ten z dutých
úhlů, v něž přímky r, s dělí rovinu co, uvnitř něhož
leží bod O (takový úhel je zřejmě jediný); přitom body
R, S leží po řadě v rovinách q, a. Nyní v rovině co
rozřešíme úlohu U, a to takto (obr. 8): Označme r',
s' obrazy přímek r, s v souměrnosti o středu O a B,
D průsečíky dvojic různoběžek r, s' a s, r'.

Protože bod O leží uvnitř úhlu <£RPS, existuje rov-
noběžník omezený přímkami r \\r', s || s' o středu O
a bod O půlí jeho úhlopříčku BD. Přitom přímka BD
leží v rovině co ± AC, takže je BD ± AC. Ve čtyř-
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úhelníku ABCD podle sestrojení jsou úhlopříčky AC3
BD navzájem kolmé a navzájem se půlí; z těchto dvou
vlastností se užitím osové a středové souměrnosti snadno

dokáže, že je to rovnostranný rovnoběžník (za osy sou-
měrnosti volíme úhlopříčky, za střed souměrnosti
střed O úseček AC, BD). Přitom existence řešení vy-
plývá z toho, že neplatí AC ± p, jak je patrno z roz-
boru úlohy. Tím je dokázáno, že úloha má jediné řešení.

2. ÚLOHY II. KOLA KATEGORIE A

1. Daný je trojuholník ABC, o ktorého vnútorných
uhloch a, /3 pri vrcholoch А, В platí vztah a = 2/3. Na
predížení strany AB za bod В je daný bod D tak, že
platí BD = iAB.

Vypočítajte rozdiel CD — CA pomocou dížky c
strany AB a uhla /3.
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Riešenie. Vonkajší úhol pri vrchole C trojuholníka
ABC je a + /3 = 3,3 < 180°, t.j.

0 < 60°.

Označme CA = b, CB = a, CZ) = <i. Velkosti úse-
čiek a, b určíme použitím sinusovej vety z trojuholníka
ABC. Je (obr. 9)

(1)

Obr. 9

Platí

sin3/3 = sin(2/3 + /5) = sin2/3 cos/3 + cos2,3 sin/3 =
= 2sin/3 cos2/3 + (1 — 2sin2/?) sin/3 =

= 2sin/3 (1 — sin 2/3) + sin/3(l — 2sin2/3) =
= 3sin/3 — 4sin3/3;

sin3/3 = 3sin/3 — 4sin3/3.
čiže
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Po dosadení do (2) dostaneme
2ccos/?

3 — 4 sin2/?
c

b = (3)a =
3 - 4sin2 /3 5

Aby sme určili velkost’ úsečky db použijeme na troj-
uholník BCD kosinusová vetu. Vzhladom к (3) dosta-
neme

cos2/? . c2
(3-4 sin2/?)2

I-. cos(180° - P)

d2 = 4c2

2ccos/?
3-4 sin2/? ' У

-2.

V • V

cize

c2
J2 = [36cos2/? + (3 — 4sin2/?)2 +9(3 - 4 sin2/3)

+ 12cos2/?(3 — 4sin2/?)] =

c2
r [81 - 144sin2/? + 64sin4/?] =

- (9 - 8 sin2/?)2.

Vzhladom к (1) je 0 < sin/5 < sin 60° = a teda
3 — 4sin2/? > 3 — 4 . | = 0.

Pretože je sin2/? < 1, je zrejme
9—8 sin2/? > 0.

Výsledok (4) možno vzhladom к (5) a (6) upravit’ takto:

*--3(3 -4.to.fl (9-SsinV)-

9(3 - 4 sin2/?)
c2

(4)9(3 - 4 sin2/?)

(5)

(6)
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Odtial a z (3) dostáváme

. 3(3-Wr(9-W)-3] =
_ 2c(3 — 4 sin2/5) _ 2c

“

3(3-4 sin2/S) — 3 5
takže je

d — b — \c.

Tým je úloha vynesená.

Riešila Marta Kasalická,
3. g tr. SWŠ,
Zátková úl.. České Budějovice.

2. Určete parametr p tak, aby funkce
6x — 6

(1)=

x2 — 2x p

byla definována pro všechna reálná čísla я a aby pro
x = 2 nabývala své největší hodnoty.

Načrtněte přibližný graf funkce a dokažte o něm, že
je středově souměrný podle bodu X = [1, 0].

Řešení I. Aby funkce (1) byla definována pro všechna
reálná čísla x, nesmí být trojčlen x2 — 2x + p roven
nule pro žádné я. Rovnice x2 — 2x + p = 0 nesmí
mít tedy reálné kořeny, tj. její diskriminant 4 — 4p
musí být záporný; musí platit 4 — 4p < 0 neboli

p > 1. (2)
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Pro p > 1 skutečně je

x2 — 2x -\-p = (jc — l)2 + {p — 1) > 0,

neboť je (x — l)2 nezáporné číslo a p — 1 >0.
Označme f(x) hodnotu zlomku na pravé straně (1)

pro dané reálné číslo x. Aby funkce (1) pro x = 2
nabývala své největší hodnoty, je nutné, aby platilo
/(2) > /(2 + k) pro všechna reálná čísla k ф 0; máme
tedy určit, pro která čísla p platí vztah

6(1 + k)
K2 + k)+p 5P

jestliže je k Ф 0. Dokázali jsme již, že oba jmenovatelé
v této nerovnosti jsou kladná čísla; ekvivalentními
úpravami dospějeme ke vztahu

(3)k2 + 2k > pk.

Rozeznávejme k > 0 a k < 0.
Případ [1]. Nechť je k > 0; potom ze (3) plyne

pro číslo p požadavek k + 2 > p, který musí platit pro
libovolné k > 0, tj. musí být

P^2.

Případ [2]. Nechť je k < 0; ze (3) podobně dostá-
váme požadavek k + 2 < p neboli

p^2.

(3')

(3")
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Má-li být /(2) maximum, musí platit (3) pro všechna
reálná k =f= 0 neboli musí být p — 2 [viz (3'), (3")],
tj. jedná se o funkci

6(jc — 1)
x2 — 2x -)- 2

Ta pro x — 2 nabývá hodnoty 3; to je maximum naší
funkce, jak plyne z obrácení postupu v případech [1],

(Пу =

[2].
II. Nyní dokažme, že graf funkce (Г) je středově

souměrný podle bodu X = [1, 0] neboli, že platí
/(1 + k) = —/(1 — k), kde k Ф 0; přitom je /(1) = 0.

Dosaďme do (1) jednak jc = 1 + k, jednak x =
— 1 — k\ dostaneme

/(i+*)= ьк
/(1 -k)=-
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Tím je důkaz proveden, nebo body [1 + k3f( 1 + k)\>
[1 — k, /(1 — &)] jsou souměrně sdružené ve středové
souměrnosti o středu X.

Na základě toho snadno sestrojíme graf (obr. 10),
к jehož sestrojení užijeme tabulkv:

Sešil Tomáš Jech,
žák 3. tř. SWŠ Jana Nerudy,
Praha 1 — Malá Strana, Hellichova ul. 3.

II. Náčrt jiného řešení. Jako v přechozím řešení
usoudíme, že nutně platí p > 1. První derivace funk-
се (1) je

6x2 + I2x + 6p - 12 (6)У =

Má-li funkce (1) pro x — 2 maximum, pak podle
známých vět pro x = 2 platí y' — 0. Avšak jméno-
vatel ve zlomku pravé strany (6) je pro p > 1 pro
všechna х kladný, proto je nutně pro x — 2 čitatel
tohoto zlomku roven nule; po dosazení x = 2 dostá-
váme, že nutně je 6(p — 2) = 0 neboli

p — 2.

(x2 — 2x + py
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Pro p = 2 funkce (1) zní
6(x — 1)

(x-iy+l ‘ (7)=

Pro л: = 2 ze (7) dostáváme
(8)/(2) = 3.

Pro x Ф 2 položme х = 2 ф &, kde & ф 0 je libovolné
číslo; je

6(1 + k)
(l Ф &)2 + 1 ’ (9)/(1 +*) =

Pomocí (8) a (9) dostaneme

/(2)-/(l+*)= Ък'(1 + ky + l5
což je kladné číslo pro všechna k ф 0; pro x — 2 má
tedy funkce (7) vskutku maximum.
Souměrnost grafu se dokáže jako v předchozím řešení.

Řešení podal Michal Kretschmer,
žák 3. tř. SWŠ,
Praha 10 — Vršovice, Omská ul. 1300.

3. Určíte všetky dvojice prirodzených čísel, ktorých
najmenší spoločný násobok je o páť váčší ako ich naj-
váčší spoločný delitel’.

Riešenie. Nech je D najváčší spoločný delitel hla-
daných čísel r, s, o ktorých móžeme předpokládat’, že je

г Ш s. (1)
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Predovšétkým je

(2)s = Sjl),r = r^D,
kde r1} s1 sú nesúdelitelné prirodzené čísla, o ktorých
vzhladom к (1) platí

(3)»i ^ íi- -

Označme n najmenší spoločný násobok čísel r, s,
takže podlá známej vety platí

n = r^xD.

Podlá textu úlohy má byť n = D + 5, takže po dosa-
dění do (4) dostaneme

(4)

r^íD = Z) + 5
číže

-1 +zf-
Číslo íVí je prirodzené a preto je nutné ~ tiež pri-

rodzené číslo, číže je buď D = 1 alebo D = 5.
Případ [1]. Nech je D = 1, takže vzhladom

к (5) máme r1s1 = 6. Je teda buď rx = 6, = 1 a teda
vzhladom к (2)

rvi

(6)Г = 6, 5=1

alebo 7*! = 3, 5Х = 2 a teda vzhladom к (2)
r = 3, s — 2. (7)
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Případ [2]. Nech je D = 5, takže vzhladom к (5)
máme = 2 číže rx = 2, 5X = 1 a teda vzhladom
к (2)

(8)r — 10, 5 = 5.

Tým sú všetky možnosti vyčerpané.
Závěr. Požiadavkám úlohy vyhovujú jedine dvojice

čísel 6,1; 3,2 a 10,5.
Riešenie podali: Alexander Groda,
žiak 3. tr. SWŠ.
Kollárova 5, Praha 8 — Karlín a

Ján Lusk,
žiak 3. tr, SWŠ,
České Budějovice, Zátková ul. 29.

4. Je dán pravoúhlý trojúhelník ABC, o jehož od-
vesnách platí CB < CA. Určete množinu všech bodů X
trojúhelníka ABC, pro něž platí zároveň tyto vztahy:

XA ^ X# ^ XC, xx ^ x2 > x3}

kde x1} x2, x3 po řadě značí vzdálenosti bodu X od
stran BC, CA, AB trojúhelníka ABC.

Řešení (viz označení v obr. 11). Při řešení úlohy
užijeme těchto vět:

Věta U. Buď dán dutý úhel <£CAB; označme X
libovolný bod tohoto úhlu a x2, x3 po řadě jeho vzdá-
lenosti od přímek АС, AB. Potom množinou všech
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bodů X, o nichž platí x2 > x33 je ostrý úhel <^BAK3
kde polopřímka AK je osou daného úhlu <$:BAK.

Věta V. Buď dána úsečka AB3 označme o3 její osu.
Množinou všech bodů v rovině, o nichž platí ХА XB
(včetně nulových vzdáleností), je polorovina o3B.

Věta W. Je-li <^BCM daný dutý úhel a prochází-li
polopřímka CK vnitřkem tohoto úhlu, protne polo-
přímka CK úsečku BM v jejím vnitřním bodě.

Řešení úlohy rozdělme na části I, II; v první části
vyšetříme množinu všech bodů X trojúhelníka ABC,
o nichž platí XA ^ XB ^ XC, v druhé části dokon-
číme řešení úlohy.

I. Označme po řadě o13 o23 o3 osy stran a, b, c daného
trojúhelníka ABC, dále M'3 M”3 M středy těchto stran,
AK3 BK3 CK osy jeho vnitřních úhlů, při čemž К je
střed kružnice trojúhelníku ABC vepsané (o něm víme,
že leží uvnitř trojúhelníka). Podle textu úlohy platí

a< b3

proto o ostrých úhlech <%, /5 trojúhelníka ABC platí
0 < « < 45° < p < 90°.

Z věty V vyplývá: Každý bod X trojúhelníka ABC3
o němž platí XA ^ XB, leží v polorovině o3B, každý
bod X trojúhelníka ABC, o němž platí XB ^ XC3
leží v polorovině оХС. Bod X3 o němž platí

XA >:XB > XC,

(1)

(2)

(3)
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leží zároveň v pravém úhlu <£BCA a v ostrém úhlu
<£QMM', kde Q je průsečík přímek AC, o3; úhel
<£QMM' je totiž společnou částí polorovin oxC a o3B.
Než stanovíme, co body X vyplní, proveďme dvě va-
šetřování:

[1] Platí ox || AC, neboť je AC J_ CB, ox CB.

[2] Platí MA — MB = MC,
neboť M je středem kružnice opsané trojúhelníku ABC.
Je tedy trojúhelník MAC rovnoramenný a o2 je jeho
osa souměrnosti; odtud plyne: <£CMM" = <£AMM" =
= /3 (neboť v trojúhelníku AMM" je <^A = a,
<£М" = 90°, <£AÍ = 0). Úhel <QMM" = a, takže
je <XMM" > <QMM" [viz (2)]; leží tedy polo-
přímka MQ v úhlu <ŽCMM" a tím bod Q uvnitř
úsečky CM ". Body X trojúhelníka ABC, o nichž platí
(3) tedy vyplní lichoběžník CQMM'o větší základně

MM' = \b.
II. Z věty U vyplývá: Každý bod X trojúhelníka

ABC, pro nějž platí xx ^ x2,

leží v ostrém úhlu <$:ACK;

každý bod X trojúhelníka ABC, pro nějž platí x2

leží v ostrém úhlu <$:BAK.

Označme L průsečík osy CK úhlu <£.BCA s přímkou
ox. Podle (4) je trojúhelník MBC rovnoramenný a platí

(4)

(5)

(6)

(7)
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<$BCM = <£СВМ= /3 >45° [viz (2)], takže je
<4BCM > 4ВСК =45°; leží tedy polopřímka CL
uvnitř úhlu <£BCM a má podle věty W s úsečkou MM'
společný bod L ležící mezi body M,M'. Odtud plyne,
že společnou částí lichoběžníka CQMM' [viz (5)]
a úhlu <ACK [viz (6)] je

lichoběžník CQML.

Zbývá vyšetřit, co je společnou částí lichoběžníka

(8)

A CQ\rř]

Obr. 11

CQML [viz (8)] a úhlu 4:BAK [viz (7)]. Polopřímka
АК leží uvnitř úhlu <^CAB neboli úhlu 4'QAM a
podle věty IVmás úsečkou QM společný bod P, který
leží mezi body Q, M. Dále bod К (střed kružnice ve-
psané trojúhelníku ABC) jistě leží uvnitř trojúhelníka
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ABC, dokážeme však, že bod К padne dovnitř úseč-
ky CL.

V trojúhelníku KBC platí <rB = <£C= 45°;
polovina ostrého úhlu /5 je však menší než 45°, takže
je <{B < <):C. Proti většímu úhlu <£C trojúhelníka
LTLC leží větší strana, tj. je КС < KB a podle věty V
(užité pro ostrou nerovnost) padne bod К dovnitř
poloroviny OjC, a tím nutně dovnitř úsečky CL; tím je
důkaz proveden.

Bod P tedy leží uvnitř úsečky QM a bod К leží uvnitř
úsečky CL; proto společnou částí lichoběžníka CQML
a úhlu <) BAK je čtyřúhelník (vypuklý) KPML.

V našem vyšetřování jsme se opírali o věty U3 V,
které jednají o množinách všech bodů jisté vlastnosti.
Proto je čtyřúhelník KPML množinou všech bodů,
které splňují požadavky úlohy. Tím je řešení úlohy
provedeno.

3. ÚLOHY III. KOLA KATEGORIE A

1. Je dána posloupnost

1, 2,2, 3,3,3, 4,4,4,4, 5, ....

Vypočítejte její tisící člen.
Řešení. Členy dané posloupnosti zařaďme do skupin

podle tohoto vzoru:
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Členy
posloupnosti 2,2 3,3,31 n, n, . . . , n

Index skupiny 1 2 3

Všimněme si toho, že index skupiny udává zároveň
skupinu a počet členů, které má skupina. Prvních n
skupin obsahuje

Sn = 1 + 2+ 3+ ... +w = \n(n + 1)

členů dané posloupnosti.
Jestliže tisící člen dané posloupnosti se nachází

v я-té skupině, je sn ^ 1000
neboli

+ 1) ^ 1000;

po úpravě dostaneme pro číslo n požadavek

(1)n2 + 72 — 2000 25 0.

Po rozkladu levé strany této nerovnosti dostaneme

(П — 72x)(72 — 722) ^ 0,

kde721 = i( —1 +У8боГ)>0, 72a='K—1 -У800Г)<0;
je tedy 72 — 72x > 0, a proto musí platit

72 + Щ.

(2)

(3)
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Avšak 90 > |/8001 > 89; proto je
—1 + 89 —1 + 90

= 44,5.= 44, nx <nx > 2 2

Vztah (3) tedy platí pro všechna přirozená čísla n větší
nebo rovná číslu 45, tj. tisící člen je ve skupině %, a je
tedy roven číslu 45.

Podle řešení Michala Kretschmera,
ll.b SWŠ,
Omská 1300, Praha 10 a

Svatopluka Fučíka,
ll.b SWŠ J. K. Tyla,
Hradec Králové.

2. Daný je pravoúhlý rovnoramenný trojuholník
APQ s přeponou AP. Zostrojte štvorec ABCD tak,
aby priamky BC3 CD prechádzali po radě bodmi P, Q.
Vyjádříte dížku strany štvorca ABCD pomocou dížky a
odvěsny daného trojuholníka.

Riešenie. Označme k = (M, MÁ) kružnicu opísanú
trojuholníku APQ. Rozoznávajme tieto dva prípa-
d у: [1] Bod В leží vo vnútri polroviny APQ. [2] Bod В
leží vo vnútri polroviny opačnej к polrovine APQ.

Případ [1]. Rozbor (obr. 12). Je <£ABC = 90°
a bod В leží vo vnútri štvrťkružnice AQ (inak priamka
CD neprechádza bodom Q). Bod C zrejme leží vo vnútri
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úsečky BP. Označme S spoločný bod úsečiek AQ, PB.
V pravouhlom trojuholníku PSQ je C pata výšky QC,
je teda ASQC = ASPQ a AAQD ^ AQPC (usu),
lebo je AQ = QP = a. Platí teda: AD = QC = b.
Ďalej platí b = DC = AD (pretože ABCD je štvorec).
Musí preto platit’: QC = DC. Je teda C střed úsečky
QD a 5 střed úsečky AQ (je CS |l AD a CS je středná
priečka v trojuholníku AQD).

Konštrukcia (obr. 12). Zostrojme střed 5 úsečky AQ
a označme В ф P spoločný bod polpriamky PS a kruž-
nice k. Označme C obraz bodu В v súmernosti so stře-

dom S, takže platí SC — SB. Trojuholník ABC (kde
AABC = 90°) doplníme na rovnoběžník ABCD, ktorý
vyhovuje požiadavkám úlohy, ako hned’ dokážeme.

Dokaž. Zo súmernosti so stredom 5 vyplývá, že
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ASQC ASAB a teda <£SC<2 = 90°. Preto strana
CD rovnoběžníka ABCD prechádza bodom Q a všetky
jeho uhly sú pravé.

Ďalej je SA — SQ a teda aj
CD = CQ.

No, AAQP ^ AQPC (usu) — viď rozbor — a teda

CQ = DA.
Z (1) a (2) vyplývá, že CD = DA a teda rovnoběžník
ABCD má všetky strany i uhly rovnaké, t. j. je štvorec.

Diskusia. Bod S možno vždy zostrojiť a preto existuje
právě jeden štvorec ABCD s vrcholom В vo vnútri pol-
roviny APQ.

Z trojuholníka QSC, kde ^.QCS = 90°, SC — \b>
QC = AB = b, pomocou Pythagorovej vety dostaneme
QS2 = SC2 + QC2 čiže

(1)

(2)

a2
4 4

odkial’

b = JL
vr

Případ [2] (obr. 13). Nech bod В leží vo vnútri
polroviny opačnej к polrovine APQ. Přitom nutné
padne na kružnicu k = (M, MA) a uhol <£ABP = 90°.
Bod C leží teda na geometrickom mieste bodov, z kto-
rých vidno úsečku AQ pod uhlom 45°. To je v našom
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případe váčší oblúk kružnice k = (M, MA) s koncó-
vými bodmi A, Q. Bod СфВ leží na PB a k, takže nutné
je С = P a teda a] D = Q. Konštrukcia je samozřejmá
(viď obr. 13 — na ňom štvorec AB'C'D'). V tomto prí-
páde je strana štvorca AB' = a.

JQfO'
i \
l \ к

\D
\

■

\
\ MPC'

\
\

\
\

в

в1I

Obr. 13

Závěr. Úloha má právě dve riešenia.
Podlá riešenia Dušana Mikloša,
3c tr. SWŠ,
Novohradská ul. Bratislava.

Iné riešenie (náčrt — viď obr. 14). Ak je bod C
rózny od P, Q, potom je
<£PCQ = 90% <£ACP = 135° alebo <£ACP = 45°.
Zostrojme kružnicu kt nad úsečkou PQ ako priemerom
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a kružnice k2 = (Q', QA), k3 = (Q, QA), kde Q' je
obraz bodu Q v súmernosti podl’a osi AP. Kružnice k19
k3 sa dotýkajú v bode P. Kružnice k13 k2 sa v bode P
pretínajú a sú na seba kolmé. Musia mať zrejme další
spoločný bod C v polrovine PQA (vo vnútri opačnej

polroviny neleží totiž žiadny bod kružnice k2), ktorý
nemože padnúť do polroviny opačnej к polrovine APQ.
Tým je dané jedno riešenie. Druhé riešenie dostaneme
pre případ, že je С ^ P (případ C = Q zrejme nemože
nastať) — viď štvorec AB'C'D' na obr. 13.

3. Dva cyklisté vyjedou současně z téhož místa kru-
hové dráhy a jezdí po této dráze v opačných smyslech,
první stálou rychlostí cxm/vt, druhý stálou rychlostí
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СоШ/vt. Kolikrát se potkají v době, v které první cyklista
objede kruhovou dráhu я-krát?

Proveďte výpočet pro cx = 10, c2 = 7, я — 11.
Řešení. Označme T čas (ve vteřinách), který uplynul

od vyjetí cyklistů až do jejich prvního střetnutí; dále
označme o obvod kruhové dráhy.

Platí
Tcx + Tc2 = o

neboli

(1)T =
Cl + C2

Za dobu xT, kde x je přirozené číslo, dojde к x setká-
ním; označíme-li t čas od vyjetí cyklistů až do určitého
okamžiku mezi x-tým a (x + l)-tým setkáním, potom
platí

xT ^ t < (x + 1)7”.
Jestliže v okamžiku t objel 1. cyklista obvod právě я-krát,
pak platí o .n =cxt neboli

(2)

o . n
t = .

Cl

Po dosazení z (1), (3) do (2) máme

* • ^ < (* + !)
Cl i~ t-2 Cl Ci -J- c% ^

Cl
Pro číslo x dostanemepo znásobení číslem

Cl + Ci
< X + 1X ^ я .

Cl
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neboli

C1 J
X = |w .

kde symbol [a] značí tzv. celistvou část čísla a

(pro celá a je [a] = a, pro necelé a je [a] nejbližší celé
číslo menší než a).

V daném příkladě je

* = [11.-^] = [l8,7] =18;
cyklista objel dráhu 1 lkrát, cyklisté se setkali 18krát.

Řešil Antonín Lukš, 3.c tř.
SWŠ, tř. Jiřího z Poděbrad,
Olomouc.

4. Je dán čtverec ABCD, jehož strana má délku 1.
Vrchol X proměnného rovnostranného trojúhelníka
XYZ leží na polopřímce AB} vrchol X na úsečce AD,
vrchol Z na polopřímce DC.

Zjistěte, jak závisí délka strany trojúhelníka XYZ na
vzdálenosti AX. Odtud vypočtěte, který z trojúhelníků
XYZ má nejmenší a který má největší obsah.

Řešení (viz obr. 15,16). Omezíme se na případ, že
bod Y probíhá úsečku ED, kde E je střed úsečky AB
(to lze učinit vzhledem к souměrnosti o ose e, kde e X
X AD je osou úsečky AD).

Označme AD = 1, XY = YZ = ZX = a, x vzdá-
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lenost bodů A, X, <f,A YX = a; při našem omezení
polohy bodu Y snadno v dalším ukážeme, že je 30° ^
^ a ^ 60°.

Uvažujme dvě možnosti: [1] Je Y ^ E; [2] У
je bodem úsečky ED.

Případ [1]. Platí x = AX = AE±tg60° = ф
a obsah P trojúhelníka XYZ je P — |]/3 (viz obr. 15).

z c

U-ft.
E

600

307
■"X В

Obr. 15

Případ [2] (viz obr. 16). Označme G střed strany
XZ trojúhelníka XYZ, dále F patu kolmice vedené bo-
dem X na přímku DC a H střed úsečky XF.

Označme T bod uvnitř čtverce ABCD takový, že
<£TYA = 90°; bod G zřejmě leží uvnitř úhlu <cA YT.
Protože je <$XYG = 30°, je <$AYX < 60°; zřejmě
platí 30° ^ <£AYX < 60°.

Platí <£ YXF = <icA YX = a (střídavé úhly); proto
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polopřímka XF leží v úhlu <£ YXZ, takže bod H padne
dovnitř úsečky EG a bod F dovnitř úsečky DZ.

Z trojúhelníka XZF (kde <£F = 90°, XF =1) plyne
1

XZ — XF.
cos(60° — a)

neboli
1

(1)a —

cos(60° — a)

Dále je
EG = YG. cos(60° - a) = |a]/3". cos(60° - a);

po dosazení z (1) máme
EG = il/3,

takže bod G, který leží na přímce e, je týž pro všechny
trojúhelníky XYZ (i pro případ [1]). Snadno zjistíme,
že o čísle x platí (viz obr. 15a, 16).

(2)

b-1
(3')išs x ^2 2"

D*Y F*Z' C Z
л
/i\

/ i \
/ i \

la»
30

i/ \i/ H \1

4
/ \ I

\/ í/
l\/
I \/

\/

A*Y' В X'X

Obr. 15a
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£ЫсЛ

IY

E

■60-a

As. 'X В

Obr. 16

Platí (viz pravoúlilý trojúhelník XGH, kde <fH =
= 90°,HX= HG = EG — EH — ф - x )

GX2 = HG2 + ЛХ2;

po dosazení a znásobení obou stran rovnosti číslem 4
dostaneme

a2 = (1/3 - 2x)2 + 1. (3)
Tím jsme určili stranu a v závislosti na x = tento
výsledek pro x = |]/3 platí i v případě [1].

Minimum (maximum) obsahu P trojúhelníka XYZ
nastane pro minimum (maximum) čísla a > 0.

Ze (3) plyne, že minimum a nastane, je-li ]/з — 2я =
= 0 neboli x — ||/3 (viz případ [1] a obr. 15).

Funkci

У = ф- 2хУ + 1
musíme vyšetřit v intervalu (3'); dokážeme, že je klesající.

(4)
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Mějme čísla xx > x2 taková, že

03 ^ хг < x2 ^ \ Уз,
a označme y13 y2 hodnoty funkce (4) po řadě pro x19 x2.
Platí

(5)

У» —yi — Ф - 2x2y - (1/3 - 2Xly =
= 4(«! — x2) . (Уз — ^2 — *l) -

= 4(*1 - *2)[(03 - x2) + (03 - Jřj)].
Vzhledem к (5) je хг — x2 < 0, 03 — я2 ^ 0,

03 — Xx > 0 a tedy j/2 — yx < 0 neboli y2 >yí3 což
jsme měli dokázat.

Minimum tedy nastane pro x = 03, maximum pro
x = 03 a pro ж = 03 (uvažujme trojúhelník Z'Y'X'
souměrně sdružený s trojúhelníkem XYZ z obr. 15a
vzhledem к ose e úsečky AD).

Podle řešení Jana Luska,
žáka 3.d tř. SWŠ,
České Budějovice.

4. ÚLOHY I. KOLA KATEGORIE В

1. Závod dodává p procent svých výrobků pro vývoz,
zbytek na domácí trh.

a) Závod dostane za úkol zvýšit vývoz o q%3 domácí
dodávky o r%. O kolik procent musí zvýšit celkem vý-
robu?
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b) Závod zvýší celkovou výrobu o 5%; z tohoto zvý-
šení dodá třikrát více vývozu než na domácí trh. O kolik
procent vzrostly jeho dodávky pro vývoz a o kolik pro-
cent dodávky pro domácí trh?

Řešení, a) Označme n původní počet výrobků (v ji-
stém období). Z toho připadlo vývozu щя výrobků,
domácímu trhu |l — výrobků. Při zvýšení výroby
připadne vývozu 11 + щ я výrobků, domácímu
trhu |l + |l — я výrobků. Je-li celková zvý-
šení výroby dáno x procenty, je zvýšené množství vý-
robků 11 + я. Podle podmínky úlohy a) je

(* ~^íůo) íůów “K1 +lóo) (* “ шо)”""!1 + ГооЬ
Znásobíme-li tuto rovnost číslem —, dostaneme

n 3

(l+m)p + [l+mYm-P'> = m + x-
Po vynásobení

í’+T66 + 100 +r-í-í55 = 100+*’
a odtud

x = r + wó(-q~r)-
Pro p — 40, q — 20, r = 25 vyjde x = 23,

(1)
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b) V druhé úloze platí mezi čísly p3 s a q, r (to jsou
hledané počty procent zvýšení dodávek) podle (1)
vztahu:

s = r+Kó(«-r)
Vzrůst dodávek pro vývoz je ^ ^ n = n výrob-
ků, vzrůst dodávek pro domácí trh je щ |l — n
výrobků. Podle podmínky je

Жи = 3
1002 100 \ 100)n'

1002

T’ vy,de

(2a)

Znásobíme-li tuto rovnici číslem

f2b)pq = 3r(100 — p).
Rovnice (2a), (2b) tvoří soustavu dvou lineárních rovnic
pro dvě neznámé q3 r.

Rovnici (2a) znásobíme číslem 100, rovnici (2b) uspo-
řádáme podle q3 r; tím uvedeme soustavu na tvar:

pq + (100 — p)r = 100Sj
pq — 3(100 — p)r = 0.

Vyloučíme-li r, dostaneme
75s ■

(3a)q=~r’
vyloučíme-li q, dostaneme
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25s
(3b)r =

100 - p ’

Vzorce (За), (3b) dávají řešení úlohy b).
2. Zostrojte trojuholník ABC, ak sú dané velkosti

výšok va, vb a velkosť ťažnice ta.
Udajte podmienky riešitelnosti.

Riešenie. Rozbor (obr. 18—20). Musí zrejme platit’
va ^ *«•

Nech sú M, N po radě paty výšok trojuholníka ABC
vedených bodmi А, В a S střed strany BC, takže je

AM = va, BN = vb, AS = ta.

Opišme kružnicu k = (S, lvb). Táto sa dotýká priam-
ky AC v bode T. Přitom je ST střednou priečkou v troj-
uholníku BCN, takže je T stredom úsečky CN alebo je
N = C = T (viď obr. 20).

Pri konštrukcii třeba rozoznávať dva případy:
[1] Je va = ta, t. j. M = S (obr. 17);
[2] je va < ta, t. j. M Ф S (obr. 18—20).

Případ [1] (viď obr. 17). Zvolme úsečku AS =
= ta — va, uhol <ASX = 90° a opišme kružnicu k =
— № lvb)- Požadujme, aby bod C padol do polroviny
ASX čiže na polpriamku SX. Označme T dotykový bod
dotýčnice vedenej z bodu A ku kružnici k, ktorý leží
v polrovine ASX. Spoločný bod polpriamek AT, SX

(1)
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označme C a jeho obraz v súmernosti so stredom S nech
je B. Potom je ABC hladaný trojuholník.

Dokaž konštrukcie nebudeme prevádzať, pretože sa
zrejme jedná o rovnoramenný trojuholník s hlavným
vrcholom A.
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Podmienkou riešitelnosti je, aby bod A ležal mimo
kružnice k (nie na kružnici k) čiže \vb < va = ta3 t. j.

vb > 2va — 2ta. (2)

Případ [2] (viď obr. 18—20). Ak je ta > va, zo-
strojme trojuholník ASM tak, aby platilo <£AMS =
— 90°, AM — va3 AS = ta. Ďalšia konštrukcia je tak-
mer taká istá ako v případe [1]. Označíme C priesečník
priamky AÍ5 a dotýčnice p vedenej bodom A ku kruž-
nici k a zostrojíme obraz В bodu C v súmernosti so stře-
dom S. Potom trojuholník ABC splňuje požiadavky
úlohy.

Dokaž a diskusia. V trojuholníku ABC má ťažnica AS
dížku ta a výška AM dížku va. Ak bod A leží mimo
kružnice k (t. j. pre 2ta > vb), je dotýčnica p rozno-
běžná s priamkou MS a bod СФ5 existuje. Přitom je
BN=2.TS = vb (viď obr. 18-20), pretože TS je
středná priečka v trojuholníku BCN. Má teda výška
trojuholníka ABC vedená bodom В dížku vb.

Z bodu A možno viesť ku kružnici k dve rožne dotýč-
nice. Sú teda dve riešenia právě vtedy, keď je

2ta > vb.

Inak úloha riešenie nemá.

Závěr. Ak platí: [1] va = tai vb < 2ta, má úloha dve
riešenia.
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[2] va < ta, vb< 2ta má úloha taktiež dve riešenia.
Inak úloha riešenie nemá.

Riešenie zaslal s. Karol Trnovský,
učitel SWŠ, Ružomberok.

3. Máme rozdělit lichoběžník ve tři nepřekrývající se
trojúhelníky o stejných obsazích.

Zjistěte, zda je úloha řešitelná pro každý lichoběžník.
V případech, kdy je úloha řešitelná, najděte všechny

způsoby takového rozdělení.
Řešení. Označme a — AB3 c — CD základny a v

výšku uvažovaného lichoběžníka ABCD; nechť přitom
platí a > c (toho lze dosáhnout vhodným označením
vrcholů lichoběžníka). Obsah každého z hledaných díl-
čích trojúhelníků pak je i(a + c)v.

cDD

A

Obr. 21 Obr. 21 a

Přímka, která neobsahuje žádný vrchol trojúhelníka,
zřejmě úloze nevyhovuje; taková přímka dělí lichoběž-
nik buď ve dva čtyřúhelníky, nebo na trojúhelník a pěti-

95



úhelník (ten nelze jednou další přímkou rozdělit ve dva
trojúhelníky). Proto musí hledaná přímka p obsahovat
alespoň jeden vrchol lichoběžníka. Jsou dvě možnosti:
Přímkap oddělující dílčí trojúhelník prochází vrcholem:

[1] větší základny a a protíná rameno lichoběžníka
(srovnej s obr. 21).

[2] větší základny a a protíná menší základnu c (srov-
nej s obr. 22).

[3] menší základny a protíná rameno (srovnej s obr.
23).

O M.

T

4

Obr. 22[4]menší základny a protíná větší základnu (srovnej
s obr. 24). (Výrokem „přímka protíná úsečkuíe
tu rozumíme, že má s úsečkou jediný společný bod,
který leží uvnitř uvažované úsečky.)

Případy [1] až [4] prozkoumáme ve sledu [2], [4],
[1], [3]:

Případ [2] nevede к řešení, neboť čtyřúhelník T
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v obr. 22 je lichoběžník a ten nelze rozdělit přímkou,
která obsahuje úhlopříčku, ve dva rovnoploché troj-
úhelníky.

Případ [4] povede к řešení právě tehdy, je-li
v obr. 24 čtyřúhelník T = BCDM rovnoběžníkem, tj.
platí-li

cv = 2.\(a + c)v

a = 2c.

Skutečně, tato podmínka je nejen nutná, ale i postaču-
jící; tím je tento případ vyřízen (viz
obr. 21, 24a, 24b).

Případ [1]. Označme v obr. 21a
x výšku trojúhelníka ABM; tu platí

~2 ax ~

neboli
(i)

tj-
a + c

x = . v.
3a

D c
Г

ч
\
\

\

\
\
\t1=S

JB ÁA^ JBa=2c a=2c

Obr. 24a Obr. 24b
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Máme dvě možnosti pro" rozdělení čtyřúhelníka T
ve dva rovnoploché trojúhelníky:

a) Čtyřúhelník T v obr. 21a rozdělme úhlopříčkou
AC ve dva trojúhelníky; pro obsah P trojúhelníka ACD
platí

P = \cv = \{a + c)v
neboli

(1')a = 2c.

Po dosazení (2) dostáváme
X = \v

což vede к řešení (viz obr. 21a) a trojúhelníky mají obsah
(3)

cv.

b) Úhlopříčka DM (viz obr. 21) vzhledem к (Г), (3)
nedělí čtyřúhelník T ve dva rovnoploché trojúhelníky,
neboť obsah Q trojúhelníka CDM je

<2 = \c{v — x) = \{a + Ф;
pomocí vztahu (2) však je

2a^~ v a po dosazení do (4) máme

6"—a—-CT= 6 (a +с)г’

(4)

v — x —

neboli
a2 — ac + c2 — 0,

tj.
a2

- + 1 = 0.
cc2
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Trojčlen у2 — у + 1 = (у — I)2 -\-у je pro všechna
kladná čísla у kladný; avšak ^ je kladné číslo, proto
rovnice (5) nemá reálné řešení a dělení lichoběžníka je
nemožné.

Případ [3]. Označme z výšku příslušnou ke stra-
ně CD trojúhelníka CDM v obr. 23; pak musí být

\cz = \{a + Ф,

d -\- c
~v•

Celé další vyšetřování dostaneme z případu [1] výmě-
nou písmen <z, c. Protože je a > c, je vztah c — 2a [ob-
dobný ke vztahu (1')] nemožný; proto případ [3] nemůže
nastat.

Závěr. Úloha je při a > c řešitelná jedině, platí-li
a = 2c; pak má tři řešení — viz obr. 21a, 24a, b.

4. Nájdite všetky trojice navzájom roznych prirodze-
ných čísel x, y, z, ktoré majú tu vlastnost’, že súčet kaž-
dých dvoch čísel trojice je dělitelný zostávajúcim třetím
číslom trojice.

tj.
z —

Riešenie. Predpokladajme, že sme našli prirodzené
čísla, ktoré splňujú požiadavky úlohy. Najmenšie z nich
označme x, najváčšie z a středné, čo do velkosti, Označ-
те у. Platí teda

(1)0 < x < у < z.
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Z nerovností

ttOX < z, у < z

dostaneme sčítáním

(2)x -\-y < 2z.
Podlá textu úlohy je súčet x -\-y dělitelný číslom z,
teda platí

x -\-y = kz3
kde k je nějaké prirodzené číslo. Pomocou vztahu (3)
přejde vztah (2) do tvaru

kz < 2z, číže 0 < (2 — k)z.
Pretože je z > 0, je nutné 2 — k > 0 číže 2 > k. Pre-
tože k je prirodzené číslo, je nutné k = 1 a vztah (3)
má preto tvar

(3)

(3')x +y = z.

Podlá textu úlohy pre čísla x, y, z okrem vzťahu (3)
platia ešte vztahy

(4)X + z = ny,

у + z — щ;

pričom m, n sú určité prirodzené čísla. Ak do (4) a (5)
dosadíme za z z (3'), dostaneme

2x + у — ny,

x + 2у = mx.

(5)

(40
(50
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Zo vztahu (5') vyplývá, že я je delitelom čísla 2y, tj-
2у =

kde p je nějaké prirodzené číslo. Zo vztahu (4') vyplývá,
že у je delitelom čísla 2я, t. j.

2я = qy,

kde q je prirodzené číslo. Vynásobme navzájom Iavé
a pravé strany vzťahov (6) a (7). Dostaneme

4xy = pqxy.

Kedze je xy Ф 0, vyplývá z téjto rovnice
pq = 4.

Prirodzené čísla p, q nemóžu byip = q — 2, lebo potom
zo (7) vyplývá я = jy, čo je v spore s predpokladom (1).
Taktiež nie je možné, aby bolo p= 1; q = 4, pretože
potom zo (7) vyplývá я = 2jy, čo je opať v spore s před-
pokladom (1). Zostáva teda posledná možnost’: p = 4,
q = 1. Zo vzťahov (6) a (7) dostaneme у = 2я a stadia!
a z (3') obdržíme z = Зя. Dostali sme trojicu čísel

хъ у — 2я, я — Зя,
kde я jelubovolné prirodzené číslo. Tieto čísla vyhovujú
požiadavkám úlohy, ako sa 1’ahko přesvědčíme. Opravdu
čísla

(6)

(7)

x + у У + Z Z + X
= 2

sú prirodzené.
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Hladaná trojica čísel je teda

r, 2r, 3r,

pričom r je lubovolne zvolené prirodzené číslo.
5. Jsou dány dvě shodné kružnice k13 k23 které se

protínají ve svou různých bodech P, Q. Bodem P vedme
přímku, která protne obě kružnice ještě v dalších bo-
dech X, Y navzájem oddělených bodem P.

a) Vyšetřte geometrická místa středů stran trojúhel-
nika QXY.

b) Vyšetřte, který útvar vyplní středy kružnic opsa-
ných trojúhelníkům QXY.

Řešení. Užijeme označení z obrázku 25, kde tx =

= PTX3 r2 = PT2 jsou po řadě tečny daných kružnic
kx = (S13 r), k2 = (S23 r) ve společném jejich bodě P.
Přitom kružnice kx leží v polorovině rx = tx03 kde O je
střed úseček PQ3 SXS2. Přímky p3 q jsou rovnoběžné
s SXS2 a po řadě procházejí body P, Q. Dutý úhel
co = <^cTXPT2 je společnou částí polorovin rj, r'2; úhly
cp = <pTxPU3 7/ = <) T2PV jsou vrcholové а к úhlu co

vedlejší. Přímka r2 je různá od tl3 obě přímky mají
společný bod P, takže jsou různoběžné a protože je
ř2 ф t13 je t2 sečnou kružnice kx. Průsečíky přímky ř2
s kx označme P, U Ф P; podobně je V druhý průsečík
přímky tx s k2.

Označme s = XPY přímku, která má vedle bodu P
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s kružnicemi kx, k2 po řadě další společný bod X, popř.
У, a to takový, že bod P odděluje body X, У. Doká-
žeme, že každá přímka, která prochází bodem P a vnitř-
kem úhlu 9p, je přímkou typu s; všechny ostatní přímky
jdoucí bodem P nejsou přímkami typu s.

Především přímky t1} t2 nejsou typu s; každá přímka o,
která prochází vnitřkem úhlu co, nemá s žádnou z kruž-
nic kly k2 uvnitř úhlu co společný bod; úhel co je společ-
nou částí polorovin r'x, r'2 a např. uvnitř poloroviny r'x
neleží žádný bod kružnice kx, proto bod P nemůže od-
dělovat body X, Y, které padnou do úhlu co', který je
к úhlu co vrcholový.

Zbývají nám přímky, které procházejí bodem P a

vnitřky vrcholových úhlů cp, <p'. Buď s jedna taková
přímka; dokažme, že má např. s kružnicí kx společný
bod X, ležící uvnitř úhlu cp. Přímka s prochází bodem P
a není tečnou tx kružnice kx, je tedy nutně sečnou této
kružnice; druhý její průsečík X Ф P však nemůže pad-
nout dovnitř poloroviny r'x (v této polorovině má kruž-
nice kx pouze bod P). Padne tedy bod X nutně dovnitř
úhlu cp. Stejně dokážeme, že druhý průsečík У Ф P
přímky s s kružnicí k2 padne dovnitř úhlu cp'. Úhly cp,

cp' jsou vrcholové, nemají žádný společný vnitřní bod
a proto bod P odděluje body X, У.

Protože přímka typu s neprochází vnitřkem úhlu co',
v němž leží bod Q, nepadne bod Q na přímku s a ke
každé přímce s = XPY existuje tudíž trojúhelník QXY,
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o němž se mluví v textu úlohy. Označme £ = <£PXQ,
r) = <^PYQ; platí £ = rj3 což ihned dokážeme. Úhel £
má vrchol na kx a uvnitř poloroviny r'23 jeho ramena

procházejí body P, Q kružnice kx; je tedy £ obvodový
úhel v kružnici kx a úhel <£PSXQ je к němu příslušný
úhel středový, takže je £ = PSXQ. Stejně se dokáže,
že rj — £<£PS2Q; avšak je <£PSXQ = <£PS2Q (úhly
souměrně sdružené vzhledem к ose m úsečky SXS2),
a tím £ = rj. Je tedy trojúhelník QXY rovnoramenný
s hlavním vrcholem Q. Dále je patrné, že všechny troj-
úhelníky QXY jsou navzájem podobné, neboť se sho-
dují v úhlech; toho užijeme v části b) této úlohy.

a) Označme Q03 X0, Y0 po řadě středy stran XY,
YQ, QX trojúhelníka QXY. Dokážeme dvě věty.

Věta Vx: Geometrickým místem bodů Q0 je vnitřek
oblouku UqPVq kružnice v = (O, OP), kde O je střed
úseček PQ; body U03 V0 jsou po řadě středy
úseček PU, PV.

Věta V2- Geometrickým místem bodů Y0 je vnitřek
oblouku OSxU' kružnice k\, která je obrazem kruž-
nice kx ve stejnolehlosti o středu Q s koeficientem
přitom je U' středem úsečky QU. (Podobná věta platí
o bodu X0.)

Důkaz věty Vx: Je-li přímka typu s kolmá
к přímce PQ (v obr. je to přímka p)3 je Q0 = P a bod Q0
leží na oblouku U0PV0. Je-li s ф/>, vzniká pravoúhlý
trojúhelník PQQo s přeponou PQ; podle Thaletovy věty
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leží bod <2o na kružnici v opsané nad úsečkou PQ jako
průměrem. Z bodů kružnice v mohou přijít v úvahu
pro bod <2o jen vnitřní body oblouku U0PV0 (kde U03
Vo jsou středy tětiv PU3 PV), neboť ty body leží v jed-
nom z úhlů <p, <p (jer vnitřky těchto úhlů procházejí
přímky typu s). Je-li Q0 Ф P bod tohoto oblouku, po-
tom přímka PQ0 je typu s a Q0 je zřejmě středem pří-
slušné úsečky XY. Tím je věta Vx dokázána.

Důkaz věty V2- Libovolná přímka typu s má
s kx společný bod 1фР; bod X leží uvnitř úhlu <p
a uvnitř oblouku O = PU, tj. toho, který neobsahuje
bod Q. Bod Y0 je však obrazem bodu X ve stejno-
lehlosti o středu Q s koeficientem body O, U' jsou
obrazy bodů P, U v této stejnolehlosti. Obrazy bodů X
oblouku O v této stejnolehlosti leží na oblouku OSxU'
kružnice sestrojené nad úsečkou SXQ jako průměrem
(bod Sx je obrazem bodu X' diametrálního к bodu Q
na kružnici k^. Ve stejnolehlosti к předchozí obrácené
je vnitřek oblouku Q obrazem vnitřku oblouku OS1U';
každý bod vnitřku oblouku OSXU' je tedy středem У0
strany QXjistého trojúhelníka našeho typu QXY. Tím je
věta V2 dokázána a řešení části a) dané úlohy provedeno.

b) Již jsme dokázali, že každé dva rovnoramenné
trojúhelníky QXY, Q'X' Y'3 které vyhovují požadavkům
textu úlohy, jsou navzájem podobné (podle věty uuu).
Označme M, M' středy kružnic těmto trojúhelníkům
opsaných; ty leží po řadě na polopřímkách QQ0, QQ'q,
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kde <2oj Q'o js°u středy základen XY, X'Y'. Proto
platí

QM
_ QM'

QQo ~ QQ'o

kde Я > 0 je konstanta; je tedy QM = X . QQ0. Body
M, M' = P' jsou tedy po řadě obrazy bodů Q0, P ve
stejnolehlosti o středu Q s konstantou X stejnolehlosti.
Bod M proto vyplní vnitřek oblouku U'0M'V'0, který je
v této stejnolehlosti obrazem již dříve vyšetřovaného
oblouku U0PV0.

Obráceně, ke zvolenému bodu M uvnitř oblou-
ku UqMqVq přísluší v obrácené stejnolehlosti bod Q0
uvnitř oblouku U0PV0; víme již, že ke každému tako-
vému bodu Q0 přísluší jediný trojúhelník QXY a ten
má zřejmě bod M za střed opsané kružnice.

Geometrickým místem středů M kružnic opsaných
trojúhelníkům QXY je vnitřek jistého oblouku S^'Sz,
který má sečnu PQ za osu souměrnosti, přitom je Si =

= U'0, S2 s V'.
Poznámka. Konstanta X se dá jednoduše vyjádřit po-

mocí čísel r, ř, kde 21 = PQ je délka společné tětivy
kružnic &15 k2. Je

A = QU'0 = QS1 = r, QU0 - PQ . sinŠ = —,

takže

(1)= A,

,.2
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Nebo označme QX'Y' ten z uvažovaných trojúhel-
níků, který má přímku m = PQ za osu souměrnosti
(takže je X' Y' J_ ni); tu bod Sx je středem ramene QX'
a střed M' kružnice trojúhelníku QX'Y' opsané je prů-
sečíkem přímky m a kolmice vedené bodem Sx к přím-
ce QSX. Bod P je středem základny X' Y' rovnoramen-
ného trojúhelníka QX'Y', tj. Qó = P. Poměr A ze vzta-
hu (1) je

QM' QSl : sin I
;A =

QQ'o 21. siní21

a protože je
sÍn ír - °Q - *

QSX r 3
dostaneme

r2
A =

2í2 *

6. Je-li x nezávisle proměnná, dokažte:
a) Funkce у = x + 2]/l — v je klesající v intervalu

(0, 1).
b) Funkce у

10x
je v intervalu < —5, 5 > ro-x2 + 25

stoucí, kdežto v obou intervalech (—co, —5>, <5, co)
je klesající; načrtněte přibližný graf funkce.

Vysvětlení. Funkce у — f(x) se nazývá v urči-
tém intervalu klesající, jestliže pro každá dvě čísla xx <
< л;2 tohoto intervalu platí /(xj >/(x2); nazývá se v in-
tervalu rostoucí, jestliže pro každá dvě čísla xx < x2
tohoto intervalu platí f(xt) < /(x2).
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Řešení, a) Mějme čísla x13 x2, o nichž platí
O < xx < x2 < 1;

máme dokázat, že potom platí

+ 2]/1 — Xx > x2 + 2У1 — x2.
Podle (1) mají pro uvažovaná čísla x13 x2 odmocniny
У1 — x13 }'l — x2 význam a jsou kladné.

Důkaz proveďme nepřímo; nechť platí

Xi + 2]/l — xx sS x2 + 2]/1 — x2;

případ rovnosti se snadno vyloučí. Vyloučíme-li tedy
ve vztahu (2) rovnost, potom platí postupně

2(]/1 — Xi — У1 — x2) > x2 — x13

, (yr^y-cvi^n-
j/l — + У1 — x2

. (1)

(2')

(2)

< *2 — X13

2 %2 %1
]/l — X! + ]/l~X2

< x2 — хг.

1Po znásobení obou stran číslem > 0 dosta-
Х4 Xi

neme

2
< 1.

У i — xi + yi — *2

Znásobme obě strany této nerovnosti číslem У1 — xx +
+ 1/1 — x2 > 0; dostaneme

2 < yr=y, + yr^ (3)x2.
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Avšak pro л; z intervalu (0,1) platí 0 < 1 — я < 1
a tím též 0 < ]/1 — л; < 1; je proto pravá strana ve
vztahu (3) menší než 2 a vztah (3) vyjadřuje spor,
к němuž vede předpoklad (2). Tím je důkaz proveden.

Náčrt jiného řešení úlohy, a) Položmeу = |/l — я
pro 0 < x < 1; zřejmě je

(4)0 < у < 1.

Odtud plyne % = 1 — у2. Pro x13 x2 z intervalu (1)
máme dokázat vztah (2'); položme y1 = ]/l — xx,y2 =
= ]/l — x2. Potom lze (2') psát ve tvaru 1 — y\ +
+ 2ух > 1 — y\ + 2j/2, jehož platnost máme dokázat.

Platí-li tento vztah, platí postupně (1 — у2)2 >
> (1 ~Ух)\ 1 ~Уг>1 -Ух [viz (4)],у2 >y19

хг < х2.]/l — х2 < l/l
Obrácením postupu dostaneme naše tvrzení.

1 — x2 < 1 — x1}- x19

b) Mějme reálná čísla xx > x2i takže je
x2 — xx> 0.

Utvořme rozdíl r funkčních hodnot /(x2) —f(xx) funkce
(5)

10x
/(*) = X2 + 25 *

Platí

10xx 10[xiX2 — XjX| + 25x2 — 25xi] _

x\ + 25 x\ + 25
10x2

r —

(xj + 25) (X? + 25)

_ 10(x2 — Xi)(25 — XiX2)
_

(x| + 25) (xl + 25)“ ‘
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V jmenovateli posledního zlomku jsou kladná čísla;
též číslo 10(*2 — JCi) je kladné. Znaménko čísla r je tedy
shodné se znaménkem čísla и = 25 — хгх2.

Platí jednak
и = 25 — x±x2 < 25 + 5(x2 — jcx) —

— хгх2 = (5 — Xi)(5 + x2)9 (6)
jednak

и — 25 — > 25 — 5(x2 — xx) —
— xxx2 = (5 + *0(5 — x2).

Uvažujme tyto možnosti:
[1] Je xx < x2 ^ —5. Potom je 5 — xx > 0, 5 +

+ x2 ^ 0; odtud a z (6) plyne, že je и < 0 a tím r <
< 0.

(7)

[2] Je 5 ^ xx < x2. Potom je 5 — xx ^ 0, 5 + x2 >
> 0; odtud a ze (6) plyne, že jé и < 0 a tím r < 0.

[3] Je — 5 ^ Xx < x2 ^ 5, Potom je 5 + хг ^ 0,
5 — x2 ^ 0; odtud a ze (7) plyne, že je и > 0 a tím
r > 0.

Tím je dokázáno, že v intervalech (—oo, —5>, <5, oo)
je daná funkce klesající (možnosti [1], [2]), kdežto v in-
tervalu <—5, 5> je tato funkce rostoucí (možnost [3]).

i

-6 -5 -4 -3 ~2 -1

O 1 2 3 * 5 6

■ó.

Obr. 26
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Protože je /(—x) — —/(я), je graf (obr. 26) funkce
souměrný podle počátku O pravoúhlých souřadnic.
Stačí sestavit tabulku hodnot funkce pro x ^ 0.

0,5 2 60 1 3 4 5x

šk<0'2 20

29 = °’7
15

л

Í7= °>9
40 ,
TT < 1 2<i— — 0,413— »

3> = 0 1
6141=/(*)

Je patrné, že v bodě [5,1] je maximum, v bodě
[—5, —1] minimum. S rostoucím x > 5 se graf blíží
ose x shora; pro x < —5, která rostou v absolutní
hodnotě, se graf blíží ose x zdola.

5. ÚLOHY II. KOLA KATEGORIE В

1. Nákladní vlak projede trať dlouhou 100 km za
2 hodiny 50 minut, z toho stráví 20 minut čekáním,
takže se za jízdy pohybuje průměrnou rychlostí 40 km/h.

Při nové úpravě jízdního řádu vzrostla doba čekání
o p %. O kolik procent je třeba zvýšit průměrnou rych-
lost jízdy vlaku, aby zůstala celková doba jízdy vlaku
(tj. včetně čekání) nezměněna?

Řešení. Původní doba jízdy je

í. 20.
100

(1)40 1 60
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Nová doba jízdy je

+ ^-20(1 + Шо);100
(2)

40(1 + ш)
přitom q značí počet procent, o nějž je třeba zvýšit
rychlost jízdy. Podle podmínky úlohy jsou si čísla (1),
(2) rovna. Po úpravě dostaneme

í1 +ш)-517 1
+6 ~ 32(* + ш)

Po další úpravě
15 = 15. P

50
1 + =4

100
a odtud

100j?
9 = 750 - p

Např. pro p = 50 (10 min) je q — $?■ == 7 (%) (zvýšení
rychlosti jízdy je tedy asi o 2,8 km/h).

2. V rovině je dána úsečka AB a uvnitř této úsečky
je dán bod P tak, že platí АР < PB.

Najděte geometrické místo bodů Q té vlastnosti, že
oba trojúhelníky APQ, PBQ mají shodné opsané kruž-
nice.

Označte <2o ten z bodů Q, kterým jsou určeny nej-
menší z těchto opsaných kružnic, a sestrojte všechny
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takové body Q0. Vyšetřte, jakou polohu má kružnice
opsaná každému trojúhelníku APQ0 vzhledem к nale-
zenému geometrickému místu bodů Q.

Řešení (viz obr. 27). I. Nechť APQ, BPQ je jedna
dvojice trojúhelníků, jimž opsané kružnice k19 k2 o stře-
dech S19 S2 jsou navzájem shodné; přitom je nutně
P Ф <2, takže se jedná o protínající se kružnice. Oba

úhly PSXQ, <£PS2Q jsou souměrně sdružené podle
přímky PQ, je tedy = <X»S2; proto je též <£A
trojúhelníka PQA roven úhlu <£B trojúhelníka PQB
(obvodové úhly příslušné ke středovým úhlům =
— ^.S2). Proto je trojúhelník QAB rovnoramenný (proti
shodným úhlům <£A, <fB leží shodné strany), tj. platí
QA = QB. Osa m souměrnosti tohoto trojúhelníka pro-
chází bodem Q a středem M základny AB, přičemž je
m _[_ AB.
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Leží tedy každý bod Q na přímce m právě popsané.
II. Obráceně, nechť Q je libovolný bod přímky m.

Je-li <2 Ф M, pak lze oběma trojúhelníkům APQ, BPQ
po řadě opsat kružnice k13 k23 které zřejmě nemohou
splynout (bod P odděluje body A, B). Přitom je QA =
= QB (neboť m je osa úsečky AB) a tudíž <fA prvního
trojúhelníka je shodný s úhlem АВ druhého; obvodové
úhly <£A, <j B jsou ostré (úhly při základně rovnora-
menného trojúhelníka), takže body А, В leží po řadě
na větších obloucích (s krajními body P, Q) kružnic k13
k2. Středové úhly AS13 *$.S23 příslušné po řadě v kruž-
nicích k13 k2 к obvodovým úhlům <íA3 <íB, jsou tedy
shodné, a proto je l\PQSl ^ APQS2 (rovnoramenné
trojúhelníky o společné základně PQ a shodných úhlech
AS13 <£.S2 proti základnám); je tedy SXP — S2Q a obě
kružnice k13 k2 jsou shodné.

Protože je AP < PB3 padne střed M úsečky AB do-
vnitř úsečky PB. Kružnice kx jdoucí body A, P nemůže
procházet bodem Q = M. Z toho plyne, že bod M
nepatří к hledanému geometrickému místu bodů.

Závěr. Geometrickým místem bodů Q je osa m úseč-
ky AB3 přičemž z ní musíme vyloučit střed M úsečky
AB.

III. Kružnice, která je z určité množiny kružnic nej-
menší (obr. 28), má nejmenší průměr. Nejmenší z kruž-
nic, které v úloze uvažujeme, je nutně kružnice k2 opsaná
nad úsečkou PB jako průměrem (všechny její tětivy
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nejsou větší než PP); kružnici k[ shodnou s К lze body
A, P proložit, neboť je АР < PB. Označme k[, k2 shod-
né kružnice, z nichž první jde body A, P a druhá má
úsečku PB za průměr. Tyto kružnice se protínají v bo-
dech P, <2o (nemohou se v P dotýkat, jinak by středy S'13
Sl těchto kružnic ležely v přímce АВ a nutně by bylo
AP = PB, což je proti předpokladu); přitom je Q0
jeden z průsečíků přímky m s kružnicí kz (tento bod

existuje, neboť m prochází vnitřním bodem M kruž-
nice &2j takže m je sečnou kružnice k'z). Čtyřúhelník
o úhlopříčkách PQ0, S[S'2, který určují středy S[, S2
a průsečíky P, Q0 dvou shodných kružnic, je nutně
kosočtverec (úhlopříčky se totiž navzájem půlí a jsou
к sobě kolmé). Je tedy PS'Z = QqS[ (jsou to poloměry
shodných kružnic k2i kx) a Qo^í II PS'z neboli _L
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J_ m; z toho však plyne, že kružnice kx se dotýká přím-
ky m v bodě Q0.

Konstrukce (obr. 28): Nad průměrem PB sestrojíme
kružnici & (ta existuje právě jedna) a označíme Q(), Q'0
její průsečíky s přímkou m\ oba tyto body jsou různé
a souměrně sdružené podle přímky AB. Obě různé
kružnice k\, &í, opsané trojúhelníkům APQ0, APQ'0,
jsou podle předchozího shodné s k’%\ dvojice k[, k2
a dvojice k[, k'2 jsou všechna řešení úlohy. Tím je řešení
úlohy provedeno; úloha má vždy dvě řešení (pokud jde
o body <2o a dvojice shodných kružnic).

3. Je dána funkce

V= HI 1 +У4 —*2| +| 1 -1/4-x*\). (1)
Sestrojte její graf v intervlau —2 fg x ^ 2 a dokažte,

že se skládá ze dvou úseček a kruhového oblouku.

Řešení. Funkce (1) nabývá vesměs kladných hodnot
(neboť člen | 1 -f-1/4 — x2 | je kladné číslo, člen
| 1 — ]/4 — л:2 I je číslo nezáporné) pro všechna x,
pro něž je 4 — x2 < 0 neboli

x ^2.

Protože pro čísla x, — я dostáváme z rovnice (1) touž
funkční hodnotu, je graf této funkce souměrný podle
osy y.

(2)
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Pro další vyšetřování je třeba rozlišit dvě možnosti.
Případ [1]. Nechť je 1 — — я2 ^ 0 neboli

1 ^ У4 — x2; umocněním obou stran této nerovnosti
na druhou dostaneme, že tento vztah platí právě pro
tato x:

buď
* Ь 1/3,

x ^ —1/3.
Potom je | 1 — ]/4 — jc2 | = 1 —1/4 — я2 a ze vztahu
(1) dostáváme

= |[i + +1 -yí^^2] = 1

anebo

(3)

(4)
neboli

У = 1-

Spojením vztahů (2), (3) a výsledku (4) máme (viz obr.
29): Grafem funkce (1) v intervalech <—2, — Уз >,
< УЗ, 2 > jsou úsečky MN3 PQ, kde
M S [-2,1], N = [-1/3, 1], P = [1/3,1], 2 = [2,1].

Případ [2]. Nechť je 1 — У4 — x2 ^0 neboli
1 ^ У4 — x2; umocněním obou stran této nerovnosti
na druhou dostaneme, že tento vztah platí právě pro
tento interval:

-Уз ^ x ^ Уз (5)
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Potom je I 1 — |/4 — x21 = ]/4 — x2 — 1 a ze vzta-
hu (1) dostáváme

у — |[1 -f- У4 — x2 + У4 — x2 — 1] = ]/4 — л:2
neboli

jy = ]/4 — x2.

Umocněním obou stran této rovnice na druhou obdrží-
me

(6)x2 +У = 4,
takže příslušné body grafu funkce (1) leží na kružnici
opsané kolem počátku souřadnic poloměrem 2. Přitom
je у > 0 a jedná se o body této kružnice, pokud pří-
slušné souřadnice x náleží do intervalu (5); pro x —
= ±|/3 а у > 0 z rovnice (6) dostáváme у — 1. Tedy
(obr. 29) grafem funkce (1) v intervalu <—j/3, ]/3> je
oblouk NP kružnice o středu v počátku souřadnic a po-
loměru 2; tento oblouk leží nad osou x.
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4. Daný je lichoběžník ABCD s váčšou základnou
AB.

Zostrojte vo vnútri úsečky AD bod P a vo vnútri
úsečky BC bod Q tak, aby súčasne platilo: PQ 11 AB,
AQ || PC. Vypočítajte velkosti úsečiek AP, BQ porno-
cou velkostí stráň daného lichoběžníka.

Riešenie (viď označenie v obr. 30). Rozbor. Označme
M priesečník priamok AD, BC. Vsimnime si toho, že
rovnolahlosť (M) so stredom M, ktorá prevádza bod A
do bodu P, prevádza úsečku AB do úsečky PQ, bod В
do bodu Q. Ďalej prevádza úsečku AQ do úsečky PC
(pretože je PC jj AQ), takže bod Q prevádza do bodu
C. Z toho však vyplývá, že úsečku QP prevádza do
úsečky CD a teda bod P do bodu D. Označme я > 0
koeficient rovnolahlosti (M). Potom platí:

MP — x . MA, MD — x . MP.

Z toho delením odpovedajúcich si stráň oboch rovností
* dostaneme

MP
_ MA

MD MP 5
t. j.

MP2 = MA . MD.

Je teda dížka úsečky MPstřednou geometrickou úměr-
nou zostrojenou z dížok MA, MD.

Z toho vyplývá konštrukcia: Nad úsečkou MA ako
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priemerom opišme polkružnicu k. V bode D zostrojme
kolmicu к priamke MA a spoločný bod tejto kolmice
a polkružnice k označme R. Podlá Eukleidovej vety
o odvěsně vyplývá, že je MR2 — MA . MD, takže

\ /к
\ /

/ \S

/ '
l/
I/
I/

>P/ c

PA'" lq

A в

Obr. 30

MP = MR, čím je bod P zostrojený. Bod Q leží na
úsečke BCana rovnobežke vedenej bodom P к priam-
ke AB. Tým je konštrukcia úsečky PQ převedená.

Dokaž. Podl’a konštrukcie je

MP = Ума . md

mq = 1Гмв. MC,

pretože je PQ || AB. Musíme dokázat’, že platí AQ
|j PC. К tomu stačí dokázat’, že je

a teda aj
(1)
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MA MQ (2)MP MC 5

čiže MA . MC = MP. MQ. Podia (1) je

MP . MQ = fMA .MD. MB. MC . (3)

No, z homotetie so středom M, ktorá prevádza úsečku
AB do úsečky DC, vyplývá

MCMD
MA MB 5

t. j.
MB . MD = MA . MC.

Po dosadení výsledku (4) do (3) dostaneme
MP. MQ = MA . MC,

čím je dokázaný vztah (2) a platí teda AQ j| PC, čo
sme malí dokázat’.

Z konštrukcie vyplývá, že úloha má jediné riešenie.
Este vypočítáme dížky úsečiek AP, BQ. Označme

AB = a, BC = b, CD = c, DA = d.
Z rovnol’ahlosti (M) vyplývá DP = x. PA, PQ =

= x . AB, CD — x . PQ, čiže

DP = x . PA, PQ — ах, c = x . PQ.
Po dosadení druhého vztahu do tretieho dostaneme c =

= ax2 a teda

(4)

(5)

* = l/f- да
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Ďalej platí DP + PA — AD, t. j. DP + PA = d. Ak
sem dosadíme z prvého vztahu (5), dostaneme

PA(x + 1 ) = d
a stadia! po dosadení za x zo (6)

(Íií +*) - d>PA

t. j.
PA0]c + Уa) = d]]a.

Stadia! vypočítáme, že
d]aPA =

V<Z + ]/c
Podobné dostaneme

Уа + Ус

Tým je riešenie úlohy převedené.

6. ÚLOHY I. KOLA KATEGORIE C

1. Rozhodněte, který z obou zlomků
5678901234 5678901235
6789012345 5 6789012347

je větší.

Řešení. Položme x = 5678901234,y = 6789012345;
potom rozdíl r zlomků daných v úloze (v napsaném po-
řádku) lze psát
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xy + 2x — (xy + y) 2x — у

У(У + 2)

Zřejmě platí 2x > у neboli 2x — у > 0; je tedy
r > 0.

Odpověď. První zlomek je větší než druhý.
2. Z cihelny v místě A se vozí nákladními auty cihly

na stavbu v místě B. Řidič nákladního vozu nastupuje
a končí práci v místě A", jezdí průměrnou rychlostí
45 km/h s vozem plným a 48 km/h s vozem prázdným.
Při každé jízdě trvá nakládání vozu 35 minut, jeho vylo-
žení 20 minut.

Vypočtěte vzdálenost místa A od místa В, víte-li,
že řidič při osmihodinové pracovní době odvezl z cihel-
ny na staveniště 5 vozů cihel.

O kolik minut při každé jízdě je nutno zkrátit dobu
nakládání a skládání (počítáno dohromady), aby neklesl
osmihodinový výkon řidiče, je-li nakládané auto nuceno

jet z místa A do В (i zpět) objížďkou, která je o čtvrtinu
delší než původní silnice.

Řešení. Označme d vzdálenost (v km) míst А, В
(měřeno na původně užívané sinici); potom cesta

prázdným vozem trvá ^ hodiny, cesta plným
trvá ~ hodiny. Na naložení a vyložení jednoho vozu

je třeba ff hodiny. Na jednu okružní cestu vozu (včetně
naložení, vyložení a návratu) je třeba

X + 1
r — —

y(y + 2) 'У У + 2

vozem
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did, 55 * i •

45 48 60 h0dm’
na pět okružních cest za den bylo třeba celkem 8 hodin
neboli platí

5/— _|_ A _|_ =\45 ^ 48 ^ 60 / 8;

odtud postupně dostáváme
3 ld 41

9.16 12 5

41.12
d = 531

d~m=15^27

31 -31

Vzdálenost míst A, Б je skoro 16 km (15ffkm).
V případě objížďky koná auto při cestě tam i při cestě

zpět dráhu o \d delší, čímž se doba jízdy prodlužuje o

\d-k + \d-^ = \d-[h +iš)hodin’
i 4.1 =
45 ^ 48

x =

kde
16 + 15

3.3.5 . 16 ’
je tedy

1 41.12
4 * 31 • 9.5 . 16 _ 3.5 . 16 ~ 240

41 4131
X =

neboli v minutách

41 41 1
240 ‘ 60 4

= 10
4 *
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Odpověd. Dobu 55 minut potřebnou na nakládání
a vykládání auta musí zkrátit o 101 minuty, tj. asi na
45 minut (44 f min).

3. Jsou dány poloměry r, q opsané a vepsané kruž-
nice pravoúhlému trojúhelníku.

Vyjádřete vzdálenost středů obou těchto kružnic po-
mocí čísel r, q.

Obr. 31

Řešení. Je-li ABC daný pravoúhlý trojúhelník s od-
věsnami a, b a přeponou c, potom pro poloměr r kruž-
nice tomuto trojúhelníku opsané platí r = označme
2s obvod daného trojúhelníka ABC. Z obr. 31 je patrno,
že délky tečen vedené z bodů С, В, А к vepsané kruž-
nici k po řadě jsou q, a — b — q. Podle Pythagorovy
věty platí

(1)a2 + b2 = c2 = 4r2.
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V obr. 31 jsou А', В', C' dotykové body vepsané
kružnice se stranami trojúhelníka ABC, M střed kruž-
nice vepsané a O střed kružnice opsané (bod O je stře-
dem úsečky AB a bod P středem úsečky AC); je
tedy OP || BC střední příčka daného trojúhelníka.
Označme Q patu kolmice vedené bodem M к přímce
OP. Zřejmě je BA' > A'C, tj. a — q > q, takže je a —
— q > 0; proto je \a — OP > CA' = QP = q. Z toho
plyne, že bod Q padne dovnitř úsečky OP a existuje
trojúhelník MOQ s pravým úhlem <f Q], označme x =
= OM vzdálenost, kterou podle textu úlohy máme
zjistit. Je OQ — OP — PQ = \a — q; stejně se vy-
šetří, že MQ = CP — CB' = \b - e. Užitím Pytha-
gorovy věty na trojúhelník MOQ obdržíme MO2 —

= MQ2 + OQ2 neboli
*2 = (\a - e)2 + ilb - Q)2,

tj.
x2 = \[a2 +b2 -46(a + b) +8^2].

Přitom podle obr. 31 je a + b = {a — q) + (b — q) +
+ 2q = c -\-2q = 2(r + q)-, tento výsledek a výsledek
(1) dosaďme do (2); dostaneme

x2 = r2 — 2^(r + q) + 2^2

(2)

neboli
x2 = r2 — 2yq}

čímž je řešení provedeno.
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Je tedy
x — ]/r(r — 2 q).

Jiné řešení (viz označení v obr. 32). Můžeme před-
pokládat, že je a < /?, neboli BC < AC (případ BC =
= AC vyřídíme na závěr). Označme J, K, L dotykové
body kružnice k == (5, g) vepsané trojúhelníku ABC

Obr. 32

s jednotlivými stranami a O střed přepony AB, jejíž
délka je 2r (průměr opsané kružnice). Platí

SJ = SK = SL = CK = CJ — g, OL — d (1)
a tedy

AL = AK = r + d, BL = BJ = r — d (2)

(délky tečen vedených po řadě z bodů A3 В ke kružnici
k); zřejmě je totiž BL < AL (stačí určit obraz B' bodu
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В v souměrnosti o ose SL a všimnout si toho, že je
> |a = <$SAL, kde <$SB'L je vnější a

<$:SAL vnitřní nesousední úhel v trojúhelníku ASB').
Pomocí Pythagorovy věty užité na trojúhelník ABC

vzhledem к (1) dostáváme
(AK + СКУ + (BJ + CJY = (AL + BL)2;

po dosazení z (2)

(r + d + q)2 + (r — d + q)2 = (r + d + r — d)
neboli

(3)d2 — r2 — q2 — 2vq.
Z trojúhelníka OSL, kde <lL = 90°, pomocí Pythago-
rovy věty pro hledanou délku я = OS dostaneme 052=
- SL2 + OL2 neboli

x2 = q2 + d2;
odtud po dosazení ze (3) plyne

x = ]/r(r — 2 q).
Řešení podal Jaroslav Jerhout,
žák l.b SWŠ J. Fučíka,
nám. Odborářů, Plzeň.

(4)

4. Ak sú p, q prirodzené čísla, potom je číslo
10p+a + 2.10* + 2 . 10* + 4

36

celé. Dokážte.
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Riešenie. O čísle у — 10o+9 + 2 . 10 ° + 2 . 109 +4
platí

у = 10я(10* + 2) + 2(109 + 2) =
= (102 + 2)(10« + 2).

Pretože p, q sú prirodzené čísla, sú čísla 10”, 1(P párne
a právě tak sú párne aj čísla 109 + 2 a KP + 2. Zápis
čísla 109 + 2 v dekadickej sústave obsahuje jednu čísli-
cu 1, jednu číslicu 2, ostatně číslice sú pre/> > 1 všetko
nuly. Preto je súčet číslic tohto čísla 1 + 2 = 3 a číslo
10P + 2 je dělitelné troma. Číslo 10" + 2 je teda děli-
tělně dvoma a troma a preto aj šiestimi. To isté platí
aj o čísle 10? +2. Číslo у je teda dělitelné číslom 6.6 =
= 36. Tým je dokázané, že číslo ^ je prirodzené.

Iné riešenie. Zápis čísla у = 10й 9 + 2 . 10p +
+ 2 . 10g + 4 v dekadickej sústave má súčet číslic 1 +
+ 2+ 2+ 4 = 9 (to platí aj v tom případe, keď p =
= q). Číslo у je teda dělitelné deviatimi. Každé z čísel
10'9+2,2 . 109,2.102,4 je dělitelné štyrmi: Číslo 10 " ; í =
= 10*9. 109 je súčinom dvoch párnych čísel, čo je zřejmé
z uvedeného zápisu, kdzp, q sú prirodzené čísla. Podob-
ne číslo 2 . 10p i číslo 2 . 102 sú súčiny dvoch párnych
čísel. Číslo у je teda dělitelné nesúdelitelnými číslami 9
a 4 a podlá známej vety je dělitelné aj ich súčinom.
Číslo ~ je teda prirodzeným číslom.

5. Zvolte ostrý úhel +PFQ a uvnitř tohoto úhlu
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✓
.

bod C. Uvažujme všechny trojúhelníky ABC, kde A je
vnitřní bod polopřímky VP а В vnitřní bod polopřím-
ky VQ.

Sestrojte body A, В tak, aby trojúhelník ABC, který
tak vznikne, měl ze všech uvažovaných trojúhelníků
nejmenší obvod.

Dokažte, že se takový trojúhelník dá sestrojit právě
jeden.

Řešení (obr. 33, 34). Rozbor. Buďte С', C" obrazy
bodu C v souměrnostech o osách VP, VQ; jsou-li A',
B' po řadě libovolně zvolené body přímek VP, VQ,
potom platí

r

A'C' = A'C, B'C" = B'C.
Délka л; obvodu trojúhelníka А'В'С je x = CA' +
+ A'B'+B'C a tedy x = C'A' + A'B' + B'C';



jedná se tedy o délku lomené čáry C'A'B'C". Máme
body A\ B' určit tak, aby délka této čáry byla nej-
kratší. Podle známé věty z planimetrie (důkaz se opírá
o větu, že součet dvou stran trojúhelníka je větší než
strana třetí — viz obr. 35a—h) je známo, že úsečka C'C"
je nejkratší lomená čára, která spojuje body С', C"-
Odtud konstrukce:

Á A'л \
/ \ \

Г ЯС. с \r
7 V\

eT c,

4/\ B'b)

A'
\

\ ч
\\
\\

-O ^
C" B‘

\(f cC!s' \
4^
vol) ej

УлВ> I/' \ I//

A‘ -Л*' \ // /
Ах' /\ IB'I // \1 \// / \1 \// / \

i \
-b dL

C" c
c£

C"c C" c
f) b)9)

Obr. 35a—h
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Sestrojme tedy body C', C" (viz nahoře) a určeme
společné body A, В úsečky C'C" s polopřímkami VP,
VQ (obr. 34); existují-li tyto body, potom je ABC hle-
daný trojúhelník. Důkaz vyplývá z rozboru.

Diskuse. Dokážeme, že body A, В existují a leží po
řadě uvnitř polopřímek VP, VQ. Označme co = <£PVQ
podle textu úlohy je co < 90°. Dále označme cox =

= <fPVC, co2 = <£CVQ, přičemž je oj = cox + a>2.

Body С', C" jsou zřejmě různé a existuje úsečka C'C".
Přitom je <£C'VC = 2cox, <£CVC" = 2co2, a tedy
180° > 2co = 2cox +2co2 = C'VC + ^VCC" (dva
úhly styčné a duté), tj. <£C'FC'' < 180°, takže se jedná
skutečně o dutý úhel, ve kterém leží ostrý úhel <£PVQ;
polopřímky VP, VQ procházejí vnitřkem úhlu <XC' VC",
a proto protínají úsečku C'C" v bodech A, B. Tím je
důkaz proveden; úloha má tedy právě jedno řešení.

6. Dané sú dve zhodné kružnice kx = (Sx, r), k2 =
= (S2, r), ktoré sa navzájom pretínajú. Označme O
střed úsečky SXS2.

Bodom O veďte takú priamku, aby jej priesečníky
s kružnicami kx, k2 boli krajnými bodmi troch navzájom
zhodných úsečiek bez spoločných vnútorných bodov.

Udajte podmienky riešitelnosti pomocou čísel r, c,
kde c —— ^1^2»

Riešenie (obr. 36). Označme si P, Q priesečníky kruž-
nic kx, k2 (P ф Q). Zrejme je SXS2 < PSX + PS2 (čo
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platí o stranách trojuholníka PSXS2) číže SXS2 < 2r.
Preto je SxO < r, S20 < r a bod O leží vo vnútri
každej z kružnic &13 k2. Kružnice kx, k2 sú súmerne
združené podlá bodu O a podlá priamky PQ. Priamka
PQ rozděluje kružnicu kx na dva oblúky O, Q' s kraj-
nými bodmi P, Q. Bod O leží vo vnútri kx a preto od-
dekuje oba krajné body A, C každej tětivy AC kruž-
nice kx, pokial’ priamka AC prechádza bodom O a je
rozna od priamky PQ. Body A, C odděluje teda aj
priamka PQ, takže patria vnútrajškom oboch róznych
oblúkov Q, O'. Zo súmernosti so stredom O vyplýva3
že to isté platí o obrazoch D, В bodov A, C, a to
vzhladom ku kružnici k2. Z tej istej súmernosti vyplý-
va3 že je

(1)OA = OD, AB = CD, OB - OC.

Našou úlohou je zostrojiť body А, В, C na priamke
p idúcej bodom O tak, aby platilo AB = CD a aby
bod В ležiaci na kružnici k2 dělil tětivu AC kružnice kx
na dve rovnaké časti. Je známe, že geometrickým
miestom stredov tětiv AC kružnice kx idúcich vnútor-
ným bodom O tejto kružnice je kružnica m zostrojená
nad úsečkou OSx ako priemerom (vyplývá to z Thale-
tovej vety, pričom aj body Sx, O patria ku geometrie-
kému miestu m ako střed tětivy MN, resp. PQ — viď
obr. 36).

Konštrukcia (obr. 36). Zostrojme kružnicu m nad

134



úsečkou OvSi ako priemerom. Označme В spoločný bod
kružnic m, k2 (pokial bod В existuje). Potom priamka
p = OB je jedným riešením úlohy, pretože bod В patří
ku geometrickému miestu m a teda je stredom tětivy

AC, ktorú na kružnici k1 vytína priamka p. Súmernosť
so stredom O prevádza kružnicu k± na k2 a obrátene,
body Б, C, A po radě do bodov С, В, D, takže platí:
BA = BC3 CD = CB a teda BA = BC =. CD.

Diskusia. Třeba rozhodnúť o počte spoločných bodov
kružnic k2, m, ktorých poloměry si označíme r, q. Je
q = Spojnica stredov kružnic k23 m má dížku
3q. Kružnice kl3 k2 sa podía předpokladu pretínajú
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(v dvoch roznych bodoch), preto platí 0 > SxS2 > 2r
číže 0 < 4é> < 2r, t. j. 2q < r. Je teda 0 < q < r — g
a preto r > q.

Pretože bod O ležiaci na kružnici m je vnútorným
bodom kružnice k2, možu pre vzájomnú polohu kruž-
nic k2, m nastat’ tri rožne případy.

Nech o dížke 3q spojnice stredov kružnic k2, m platí:
[1] r — q < 3£> < r + q čiže r < 4^, 2q < r (tento

vztah už platí). Potom existujú dva rožne spoločné body
kružnic k2i m a úloha má dve rožne riešenia (súmerne
združené vzhladom к priamke 5ltS2).

[2] r — q = 3q čiže 4q — r. Úloha má jediné rieše-
nie: priamka S^z je hladaná priamka.

[3] r - e > 3e čiže r >4q. V tomto případe úloha
riešenie nemá.

Pretože SiSz = 4q, možno závěr vyslovit’ takto:
Ak je dížka spojnice stredov daných kružnic kXi k2

váčšia ako ich poloměr r (přitom je nutné menšia ako
2r), má úloha dve rožne riešenia. Ak sa dížka spojnice
stredov rovná poloměru r, má úloha jediné riešenie.
Inak úloha riešenie nemá.

Poznámka. Jednoduché riešenie úlohy sa dostane
použitím rovnolahlosti so stredom O a koeficientom 3.
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7. ÚLOHY II. KOLA KATEGORIE C

1. Jsou dány rovnoběžky b, c a uvnitř pásu jimi
určeného je dán bod A.

Sestrojte čtverec ABCD tak, aby jeho vrchol В ležel
na přímce b a vrchol C ležel na přímce c. Kolik řešení
má úloha?

Řešení (viz obr. 37). Rozbor. Je-li ABCD hledaný
čtverec, potom existuje pravoúhlý trojúhelník ABM
o přeponě AB = d, kde M je pata kolmice vedené
bodem А к přímce b. Označme v něm <£A = a,

= p (viz obr. 37); je tedy a + P = 90°. Dále
označme N patu kolmice vedené z bodu C na přím-
ku b. Potom je úhel označený v obr. 37 písmenem od
nutně roven a. Úhel označený co v obr. 37 je pravý,
a tedy od + P' — 90° neboli a' = a. Je tedy x úhel
ostrý, a proto pata N kolmice vedené z bodu C na jeho
rameno padne dovnitř tohoto ramene, tj. na prodlou-
žení úsečky MB za bod B.

Označme ještě AM = a} CN = v. Platí

AABM &BCN (usu),
neboť je AB =* BC = d (strana čtverce ABCD), a =
— od, p — P'. Odtud plyne:

MB = NC = v, BN = AM — a

Z tohoto odvodíme konstrukci (viz obr. 37): Sestrojme
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patu M kolmice vedené bodem A na přímku b; bod M
dělí přímku b ve dvě opačné polopřímky MP, MQ.
Další konstrukci provedeme pro polopřímku MP (pro
polopřímku MQ je konstrukce obdobná).

D,
Cc

N

ř\ .

A
a

a LU.

b -P-
~pn!7 в

Obr. 37

Na polopřímce MP sestrojme úsečku MB = v, kde v
je vzdálenost daných rovnoběžek b, c. Na prodloužení
úsečky MB za bod В sestrojme úsečku BN = a, kde
a = AM; v bodě N sestrojme kolmici к přímce b
a označme C její průsečík s přímkou c. Trojúhelník
ABC doplňme na rovnoběžník ABCD, což je hledaný
čtverec.

Důkaz. Podle konstrukce je

AABM ^ ABCN (sus),

neboť jsme sestrojili AM = BN, MB = NC, AM =
= AN — 90°. Je tedy AB = ВС a a = a', = §'
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(viz obrázek); proto je /9 + a' = 90°, a tudíž <^ABC =
= 180° — 90° = 90° neboli AB J_ BC. Je tedy rovno-
běžník ABCD pravoúhlý a rovnostranný neboli je to
čtverec.

Diskuse. Právě popsané řešení ABCD existuje. Obraz
A'B'C'D' čtverce ABCD v souměrnosti o ose AM. je
rovněž řešením úlohy (které odpovídá polopřímce MQ).
Body В, В' jsou odděleny bodem M, a tedy je В Ф В',
a tím i oba čtverce ABCD, A'B'C'D' jsou různé.

Úloha má právě dvě řešení.
2. Uvažujme číslo

x = 1 . 10*+«+г + 2 . 10^ + 4 . 10* + 8,

kde p, q, r jsou daná přirozená čísla (např. zvolíme-li
p — 2, q — 13 r = 3, obdržíme číslo 1 002 408).

Dokažte, že číslo x je dělitelné číslem 24, ať zvolíme
přirozená čísla p, q, r jakkoliv.

Řešení. Platí věta: Je-li číslo dělitelné dvěma ne-

soudělnými čísly, je dělitelné i jejich součinem. Pro
dělitelnost 24 máme tedy větu: Číslo je dělitelné 24,
je-li dělitelné třemi a osmi..

Protože mocnitelé p+g+r, p -\- q, p čísla 10 v zá-
pise čísla x jsou různá přirozená čísla [je p + q + r —
~ {p q) = r >Qip-\-q-{-r—p—q-\-r>Q,pJr
+ q — p = q > 0], vyskytují se v zápise čísla x v deka-
dické soustavě jen cifry 1, 2, 4, 8 a nuly (popřípadě
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žádná nula); ciferný součet čísla x tedy je 1 +2 +4
+ 8 = 15, tj. je dělitelný třemi.

Uvažujme, jak v dekadickém zápise čísla я vypadá
poslední trojčíslí tohoto zápisu. Jsou tyto možnosti
(vesměs pro r ^1):

Pro p — 1, q — 1 je to 248.
Pro p = 1, q= 2 je to 048.
Pro p — 2, q = 1 je to 408.
Pro p = 2, q = 2 je to 008; totéž trojčíslí dosta-

neme pro p > 2, q > 2. Avšak každé z čísel: 248; 48;
408; 8 je dělitelné osmi. Je tedy číslo я dělitelné osmi.

Číslo x je tedy dělitelné čísly 3 a 8, a tím i číslem 24.
3. V roce 1960 měl únor pět pondělků. Který nej-

bližší rok bude mít tutéž vlastnost?
Řešení. Má-li být v únoru 5 pondělků, musí to být

přestupný rok. Protože se v každém novém obyčejném
roce posunuje např. pondělí (pokud jde o datum)
o jeden den dopředu, kdežto v přestupném roce o dva
dny dopředu, znamená to za 4 roky přesun o 5 dní
dopředu.

Hledaný rok musí být tedy přestupný a musí na
1. února padnout pondělí; jedná se tedy o to, ve kterém
prvním roce po roce 1960 se pondělek posune opět na
1. února. Posunutí za 1. čtyřletí je o 5 dní, za dvě čtyř-
letí je posunutí o 10 dní, za tři čtyřletí o 15 dní atd.
Hledáme tedy první násobek pěti, který je dělitelný
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sedmi (abychom dostali posunutí pondělku zase na
pondělek); je to zřejmě 35 dní = 5 dní. 7 neboli na-
stane to za 7 čtyřletí, tj. za 4.7 = 28 let (viz tabulku —

čti ji ve vodorovných řádcích).

čúPo Pá So NeSt

1960 1964
1968

1972 1976
1980

1984
1988

Hledaný rok, který bude mít 5 pondělků v únoru
jako rok 1960, je rok 1988.

Řešil Václav Limponek, žák 1. tř.
SVVŠ, Strakonice.

4. Daný je pravoúhlý trojuholník ABC s přeponou
AB. Označme kl3 k2 kružnic zvonku vpísané troj-
uholníku ABC, ktoré sa po radě dotýkajú úsečiek BC,
CA.

Pomocou dížek a, b, c stráň trojuholníka ABC vy-

jadrite dížku dotýčnic vedených z bodu C ku kružni-
ciam kls k2 a vypočítajte vzdialenosť stredov kružnic
кц k%.
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Riešenie (viď označenie na obr. 38). Označme a —

= BC, b = CA, c = AB. DÍžky dotýčnic vedených
z bodu C ku kružnici kx sú rovnaké. Označme ich x
— CM = CN. DÍžky dotýčnic BN, BP z bodu В ku
kružnici kx sú si tiež rovné, teda platí BP = BN = a —
— x.

Je teda AP = AB + BP = c + (a — x) čiže
AP = CL ~\~ c (1)X.

\
\
\

\p
у/

\

Л-
шЛ 4-

\.I
I
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:
/I, \\
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кг\

Obr. 38

DÍžky dotýčnic vedených ku kružnici kx z bodu A sú
taktiež rovnaké, teda AP — AM, kde AP je dané
vzťahom (1) a AM — AC + CM, t. j.

AM = b + x. (2)
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Porovnáním vzťahov (1) a (2) dostaneme
b -\- x — a c — x

V • V

cize

x — \{a — b + c) — s — b,
kde 5 je polovičný obvod trojuholníka ABC. Přitom je
CMSxN štvorec a jeho strana л; je poloměr kružnice kx.
Je teda

(3)x = s — b.

Rovnako sa zistí, že poloměr j; = CR — CQ kružnice &2
j,e

(4)У = s — a.

Polpriamky CS1} CS2 sú osami vrcholových pravých
uhlov <$MCN, <] QCR a sú preto navzájom opačné,
takže bod C leží vo vnútri úsečky SXS2. Priamky 5iAÍ,
S2Q sú na seba kolmé a s priamkou SXS2 ohraničujú
pravoúhlý trojuholník S-iS2U s přeponou SiS2. Jeho
odvěsny sú zhodné úsečky a platí

S-lU = S2U — x -\-y = 2s — a — b — c.

Přepona = SJJ. ]/2 (ako uhlopriečka štvorca)
čiže

ад = c]/2.
Závěr. Vzdialenosť stredov kružnic ku k2 je cj2, kde c

je dížka přepony daného trojuholníka ABC.
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8. ÚLOHY I. KOLA KATEGORIE D

1. V zápise dělení dvou přirozených čísel chybí
některé cifry. Nahraďte chybějící cifry tak, aby zápis
byl správný. Zápis zní: 12* 76 : 23* = *2 (každá hvěz-
dička značí jednu chybějící cifru).

Řešení. Označme x, y, z po řadě chybějící cifry.
Platí tedy

(12 x 76) = (23y) . (z2).
Číslo (#2), a tím i hledanou cifru z, dostaneme dělením
(12 x 76) : (23y). Přitom dělenec je větší než 12 000
a menší než 13 000, dělitel je přirozené číslo mezi 230
a 239 (popříp. jedno z těchto čísel). Tu platí

12 000 13 000
<6, 5 <5 < < 6;239 230

je proto nutně z — 5 (dělili jsme největšího z možných
dělenců nejmenším dělitelem a nejmenšího dělence nej-
větším dělitelem).

Součin čísel jy, 2, která stojí na místě jednotek v činí-
telích (23y), 52, je 2y; na místě jednotek součinu
(12 л:76) stojí číslo 6. Znásobením čísel 0, 1, 2, ..., 9
číslem 2 dostaneme v součinu na místě jednotek číslo 6
jen ve dvou případech:

3.2 — 6, 8.2 = 16.

Musí tedy být buďjy — 3 anebo у — 8; avšak proy — 3
máme

233.52 = 12 116,
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což nevyhovuje. Pro у = 8 dostáváme
238.52 = 12 376,

takže je x = 3. Je tedy jediné řešení x = 3, у = 8,
z = 5.

Uvažovaný součin tedy je 238.52 = 12 376.
2. Daná je úsečka AB so stredom S. Označme a, b

kolmice zostrojené po radě v bodoch А, В к priamke
AB. Ďalej zvolme bod M na predíženi úsečky AB za
bod A.

Bodom M zostrojte priamku p tak, aby jej prieseč-
niky X, Y s priamkami a, b a bod 5 boli vrcholmi
pravoúhlého trojuholníka s přeponou XY.

Riešenie. Rozbor (obr. 39a). Nech MXY je hladaná
priamka, takže je AXSY = 90°. Označme U prieseč-
nik priamok SY, a. Je ASBY ^ ASAU (usu), pretože
je SA = SB, ABSY = AASU (uhly vrcholové),
A.YBS= AUAS = 90°. Preto je SU - SY. (To
možno dokázat’ tiež pomocou súmernosti so stredom S,
v ktorej sú priamky a, b súmerné združené.) Podlá
textu úlohy je AXSY — 90°. Preto je trojuholník XYU
rovnoramenný so základňou YU a osou súmernosti XS,
ktorá rozpoluje uhol AUXY. V osovej súmernosti
s osou XS je obrazojn polpriamky XU polpriamka XY
a obraz T bodu A padne teda na polpriamku XY.
Z tejto súmernosti vyplývá, že

ST= SA. (1)
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Óbrazom pravého uhla <^XAS je uhol <£XTS, ktorý
je teda tiež pravý a platí:

ST 1 MX.
Zo vztahu (1) vyplývá, že body А, В, T ležia na kruž-
nici k = (S, SA). Pretože platí (2), je priamka MX
dotýčnicou kružnice k.

(2)

Z toho konštrukcia: Opišme kružnicu k = (S, SA)
a s použitím známej konštrukcie veďme z bodu M do-
týčnice ST, ST' ku kružnici k. [Nad priemerom MS
opíšeme kružnicu m = (О, ОМ) a označíme T, T' prie-
sečníky kružnic m, k.] Priamka p = MT přetne priam-
ky a, b po radě v bodoch X, Y, ako hned’ dokážeme.
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К dokážu použijeme túto vetu V: „Ak sú A, T doty-
kové body dotýčnic XA, XT vedených z bodu X ku
kružnici k = (S3 SA), potom je priamka XS osou sú-
mernosti štvoruholníka SAXT aj kružnice k. Je teda
na obrázku e = e13 co = co13 pričom je co + e = 90°
(súčet ostrých uhlov v trojuholníku SXT).“

Podl’a vety V je e — e13 co = co13 cp — qox (v tomto
případe ide o dotýčnice YB, УГ ku kružnici k). Platí
však

(3)^BYX + ^YXA = 180°

(uhly prilahlé medzi rovnoběžkami a, b} přeťatými
priečkou p = MXY). Ale <£BYX — cp -\-cp1 = 2cp,

YXA = e + ех = 2e. Po dosadení do (3) máme
2cp + 2e = 180° čiže

<•/)+£ = 90°.
Preto v trojuholníku XYS je

<£XSY = 180° -(<p+e)=: 90°.
Je teda SX _L SY, čo sme mali dokázat’.

Diskusia. Pretože bod M leží na predížení úsečky AB
za bod Aj padne mimo kružnice k a podlá známej vety
možno z bodu M zostrojiť dve rožne dotýčnice MT,
MT\ z ktorých každá vyhovuje požiadavkám úlohy.
Úloha má teda dve riešenia.

Iný zposob riešenia (náčrt — obr. 39b). Zo -

strojme pomocnú kružnicu k = (S, SM) a jej druhý
priesečník s priamkou AB označme M'. Niektorý
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z priesečníkov kružnice k s priamkou a označme R.
Stredom 5 úsečky AB veďme priamky r || MR, q ji

11 RM'. Je teda r _|_ q (podlá Thaletovej vety je
<£MRM' = 90°). Priesečník priamok a, q označme X3
priesečník priamok MX, r označme Y. Potom X, Y sú
bodmi hladanej priamky p.

i

Y°= b г

Y sr.MX

Dokaž (viď obr. 39b). Uvažujme o .rovnoběžníku
MRM'R'. Kedže je <)MRM' = 90°, je to obdížnik.
Priamky r, q sú jeho středné priečky. Podlá konštrukcie
je trojuholník XYS pravoúhlý (<fXSY = 90°).

Označme Y° priesečník priamok b, r. Dokážeme,
že je F° = Y: V osovej súmernosti podlá osi q = SX
je priamka a obrazom priamky MXY°, lebo priamka q
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je středná priečka obdížníka MRM'R'. Bod У přitom
přejde do priesečníka X° priamok a3 r a platí X°Y _[_
J_ q. Zrejme je SY = SX0. Vieme, že bod 5 je stře-
dom súmernosti, ktorá prevádza priamku b do priam-
ky a a obrátene. Táto středová súmernosť prevádza
spoločný bod X° priamok a, r do spoločného bodu pria-
mok b, r. Je teda У0 = У, čo sme mali dokázat’. Priam-
ka MX prechádza teda bodom У a je hladanou priam-
kou p.

3. Majme tri prirodzené čísla a, b, c. Utvořme

(a ++ b + c)25 {a + b — c)2, (a — b + c)2,
(—a + b + с)2, (a — b — c)2, (—a + — c)2,

(—a — 6 + c)2, (—a — b — c)2
a označme s súčet týchto osmich čísel.

a) Napište súčet s v najjednoduchšom tvare.
b) Nájdite všetky trojice prirodzených čísel a, b, c

tak, aby výsledný súčet s bol rovný 240.
Riešenie. Platí vzorec (a -\-b -\- c)2 = a2 -\-b2 +

+ c2 + 2(ab + bc + ca). Ak tu položíma napr. —b
namiesto b3 dostaneme

(a — b +c)2 =
= a2 + (—b)2 + c2 + 2[a(—b) + {—b)c + ca] =

= a2 + b2 + c2 + 2(—ab — bc + ca).
Kvóli stručnosti bude vhodné označit’ X = a2 + 62 -f-
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+ c2. Označme ďalej výrazy uvedené v texte úlohy po
radě Vx, V2, V3, ..., V8. Platí:

Vi = X + 2(ab + bc + ca),
V2 = X + 2(a6 — bc — ca),
V3 — X + 2( —— bc *+ ca),
F4 = X + 2( —a6 + bc — ca),

. F5 = X + 2( —ab + éc — ca),
F6 = X + 2( —ab — bc ~\~ ca),
V1 ■= X -\- 2{ab — bc — ca),
V8 = X + 2(až> + 6c + ca).

a) Ihned’ je zřejmé, že s = 8X, čiže
5 = 8(a2 + 62 + c2).

b) Máme nájsť prirodzené čísla a, b, c tak, aby platilo
8(a2 + 62 + c2) = 240 čiže

a2 +62 + c2 — 30.

Tieto čísla nájdeme pomocou tabulky. Je zřejmé, že
každé z čísel a, b, c musí byť menšie ako 6, pretože
62 = 36 >30. Pri hladaní čísel a, b, c možeme před-
pokladať, že je

a < b ^ c

(ostatné možnosti určíme na závěr). Hned’ možeme vy-
lúčiť tiež případ, že sú všetky tri čísla párne; potom by
totiž druhé mocniny čísel a teda aj ich súčet bolí děli-
telné štyrmi. Musia byť preto nutné dve z čísel a, b, c
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nepárne a tretie párne (v tabul’ke uvádzame len také
trojice).

2 2i i 3i 4a

b 2 2 3 3 31 5

2 3 3 55 4 5c

a2 1 1 4 4 9 161

62 1 9 9 9 254 4

c2 25 9 25 . 254 9 16

a2 + b2 +
+ c2

6 14 30 22 38 34 66

Z posledného stípca tabulky je vidieť, že musí byť
a < 4. Jediná vyhovujúca trojica v tabulke je <2 = 1,
b = 2, c = 5. Z nej dostaneme záměnou dalších 5 tro-
jíc.

Nasej požiadavke vyhovujú teda iba tieto trojice
(o tom, že vyhovujú5 sa 1’ahko přesvědčíme skúškou):

11 2 2 5 5a

b 2 5 51 1 2

5 2 5 1 2 1c

Tým je riešenie převedené.
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4. Na obrázku 40 je ABC pravoúhlý trojúhelník
o přeponě AB; M je střed přepony, CD — CA; B' je
bod souměrně sdružený s bodem В vzhledem к přímce
CD, přičemž je a < 45°.

Vnitřní úhly všech trojúhelníků, které se vyskytují
na obr. 40, vyjádřete pomocí úhlu a.

Na závěr proveďte výpočet pro a = 42°.
--_CB‘'/^7

/ /\

//
/

SC/
/QX./ /

/ /
/

в/М\
/\

\ /
\ /\

/\
\ /\

7d
Ořr. 40

Řešení. Užijeme označení z obrázku 41. Trojúhel-
nik ABC je pravoúhlý s přeponou AB, takže je

*$iABC — 90° — a;

bod M je středem přepony АВ a kružnice opsaná kolem
bodu M poloměrem MA je trojúhelníku ABC opsána
(Thaletova kružnice), takže je

AÍC = MA.

(1)
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Je tedy trojúhelník MAC rovnoramenný se základnou
AC, při které má shodné úhly; je tedy

<£ACM = a, AMC = 180° - 2a. (2)

Dále
<HAMD = <)BMC = 2a (3)

(vnější úhel v trojúhelníku AMC).
Trojúhelník CAD je rovnoramenný (neboť podle

textu úlohy je CA = CD) o základně AD; proto platí
<£CAD = <£ADC = | (180° - <£ACD) = 90° -

2aí tj.
<nADC = <£CAD — 90° — fa. (4)

Je tedy 4*

<?CMAD = <£CAD - <ZCAM = 90° - fa - x —

= 90° - fa,
tj-

^MAD = 90° - fa.

Trojúhelník MBC je rovnoramenný (je MA =
= MB = MC) se základnou BC, takže <f C =

tj. [viz druhý vztah (2)]
■1BCM = f(180° - 2a) = 90° -

<£CBM = 90° - a,

(5)

a> j (6)

což souhlasí s tím, že je <fBCM + <£ACM = 900
[viz první vztah (2)].
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Všechny čtyři úhly o vrcholu Q jsou podle textu
úlohy pravé; na základě toho snadno vypočítáme dosud
neznámé velikosti úhlů o vrcholech В, С, P} B'.

Z trojúhelníka PCQ (kde <££) = 90°) plyne

<£QBC = 90° - <BCM = a [viz(6)].
Z trojúhelníka BMQ (kde <£<2 = 90°) plyne

^MBQ = 90° - <£BMC = 90° - 2a [viz vztah (3)].

Z trojúhelníka CPQ (kde <£Q = 90°) o úhlech
■Š.CPQ = <£APB' plyne

<£.APB' = <£СРБ = 90° - <£ACM = 90° - a (8)
[viz první vztah (2)]; o úhlech к nim vedlejších platí

<£APB = <£СРВ' = 90° + a.

(7)

(9)
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Ze souměrnoti o ose CM vyplývá, že Q je středem
úsečky BB' a že je

<QB'C = <$QBC = a [viz (7)], (S')

dále, že <^QCB' = <fQCB neboli
<íQCB' = <BCM 90° (9)— a

[viz první vztah (6)].

Avšak [viz (90 a první vztah (2)]

<ACB' = <CQCB' - <£ACM =
= 90° - a - a = 90° - 2a. (10)

Protože bod M je středem úsečky АВ a Q je středem
úsečky BB', je úsečka MQ střední příčkou v troj-
úhelníku ABB', tj. platí

MQ || AB'.

Odtud plyne, že přilehlé úhly <£MQB' = 90° a
<£AB'Q mezi rovnoběžkami AB', MQ proťatými přič-
kou QB' mají součet 180°; je tedy

(11)<AB'Q = 90°.

Poslední úhel, který máme vypočítat, je úhel <$ PAB'
v pravoúhlém trojúhelníku APB' [kde <£Б' — 90° —

viz (11)]; v něm je úhel <£APB' = 90° — a [viz (8)].
Je tedy
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<PAB' = 90° - <APB' = 90° - (90° - a) = a,
tj.

4.PAB' — a; (12)

odtud plyne, že polopřímka АС je osou úhlu <£BAB
Tím je výpočet velikostí úhlů proveden. Velikosti všech
úhlů (až na vrcholové) jsou zapsány v obr. 41, pro
případ, že je a = 42°, pak na obr. 42.

Obr. 42

Zkoušku správnosti výpočtů můžeme např. provést
tak, že si ověříme, zda je součet úhlů v každém z troj-
úhelníků na obr. 41 roven 180° a součet úhlů ve čtyř-
úhelníku APQM roven 360°.
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5. Tenký drát jsme stočili do tvaru číslice 8 tak, že
se skládá ze dvou shodných smyček. Smyčku tvoří
oblouk AB kružnice k a části tečen sestrojených v bo-
dech A, В ke kružnici k; délka oblouku AB je | délky
kružnice k. Víme, že výška zhotovené číslice je 48 cm.

Vypočtěte šířku číslice a délku spotřebovaného drátu.

Řešení. Buď x délka (v cm) spotřebovaného drátu.
Označme r poloměr a p obvod kružnice k, jejíž větší

oblouk AB tvoří část jedné smyčky číslice 8 (viz ozna-
čení v obr. 43). Oblouk AB se skládá ze tří čtvrtkruž-
nic, neboť úsečky A'A", B'B" jsou středními příčkami
čtverce MNPQ a platí A'A" _]_ B'Bje tedy délka
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o oblouku АВ dána výrazem о = lp. Oblouk na druhé
smyčce má touž délku a oba dohromady mají délku

2o = fp = f . 2лг = Злг
neboli

2o = Злг. (1)

Jedna smyčka je vedle oblouku AB tvořena úsečkami
AE, BE (viz obr. 43). Protože je SA = SB = r a
SA _|_ SB, je čtyřúhelník SAEB čtverec; je tedy
AE = ДЕ = г а + B£ = 2r. Stejnou délku mají
obdobně dvě úsečky na druhé smyčce; abychom dostali
délku drátu spotřebovaného na osmičku, musíme к vý-
sledku (1) přičíst číslo 4r. Je tedy x — 2o + 4r neboli
[viz (1)] x = Злг + 4r = г(3л + 4).

22 , .

; pak jePoložme л ~ -y
/66 . 28 \ 94

* = Г
7 + t) = у r-

Označme у = MN šířku číslice 8; zřejmě je

У = 2r.

Pro další výpočet potřebujeme určit délku r pomocí
výšky v — 48 cm zhotovené číslice. Z obrázku 43 je
vidět, že \ v = SB" + SE\ přitom je SB" = r,

= r]/2, kde У2 == 1,4 (což plyne ze vzorce pro
ihlopříčku SE čtverce SAEB, jehož strana má délku r).
Je tedy

(3)
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\v — г + г]/2
neboli

\v = r(l +1/2).
Znásobme obě strany této rovnice o neznámé r číslem
—dostaneme
1 + 1/2

v
— r.

2(1 + 1/2)
Přibližně tedy je

r~
2(1 + 1,4)

Ze vztahů (2) a (3) po dosazení za r — 10 dostaneme

48 24
= 10.

2,4

• 9f- = 1341 = 134, j- = 20.
Odpověd. Šířka číslice je asi 20 cm, délka spotřebo-

váného drátu asi 134 cm.

x ==

6. Je dán výraz
a2 + b2 b2\ . la + b

a2 + b2) ’ i a ++ a)H a2 -

a2 - b2 - b

a) Zjednodušte daný výraz V.
b) Udejte, pro která čísla a, b nemá výraz V smysl.
c) Udejte, pro která čísla a, b je V = 0; dále, kdy je
kladný a kdy záporný.

Řešení, a) Provedeme postupně tuto úpravu výrazu V
[zvláště užijeme vzorce я2 — у2 = (x — y)(x ++)]:
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у (а2 + b2)2 — (а2 — Ъ2)2 # (а + V)2 — (а — 62)
(а2 — b2) (а2 + &2) " (а — 6) (а + 6)

[а2 + Ъ2 — (а2 — 62)] [а2 + ž>2 + а2 — 62]
(а2 - 62) (а2 + &2)

(а — Ъ) (а + 6)
[а + Ъ — (а — Ь)] [а + Ъ + а — 6]

(■а — Ъ) {а + Ъ)4а262

(а — 6) (а + 6) (а2 + &2) 4а6

Po zkrácení obou zlomků dostaneme

ab
(2)V =

a2 + b2 ‘

b) Výraz V nemá smysl především tehdy, je-li roven
nule některý ze jmenovatelů na pravé straně rovnosti
(1). Platí a2 — b2 — (a — b)(a + b); ze vztahu

(a — b)(a + b) = 0
vyplývá, že jeden z činitelů a — b, a + b je roven
nule. Tedy a — b — 0 anebo a + b = 0; odtud plyne

(3)a = b anebo a = —b.

Tím je rozhodnuto i o obou jmenovatelích a — b,
a -\-b ve výrazu (1). Výraz a2 + b2 je součtem dvou ne-
záporných čísel a ten je roven nule jedině tehdy, jsou-li
obě čísla a2, b2 rovna nule, tj. platí-li a2 = 0, b2 = 0.
Avšak zde ze vztahu a2 = 0 plyne a — 0; podobně
se najde i vztah b = 0. Je tedy a2 + b2 rovno nule
jedině pro a = b = 0, což je již zahrnuto ve vztazích (3).
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Výraz V nemá dále smysl tehdy, je-li dělitel
CL “b b
a — b

podle provedeného výpočtu však je

^ ^
a -y na pravé straně (1) roven nule;d =

4ab
d =

(a — b) (a + b)

Jestliže je 4ab = 0, je d = 0 (a obráceně); ze vztahu
4ab = 0 plyne buď a = 0, nebo 6 = 0. Musí tedy být
obě čísla <2, b různá od nuly, tj. а Ф 0, b Ф 0.

Odpověď. Výraz V ztrácí smysl, jestliže je a = b
nebo a — —b nebo je-li jedno z čísel a, b rovno nule.

c) Výraz (1), pokud má smysl, je roven číslu
ab

. (4)a2 + b2

[viz (2)]; má-li být V = 0, musí být ve zlomku (4)
čitatel roven nule (avšak jmenovatel různý od nuly),
tj. musí platit ab — 0. Odtud dostaneme, že musí
platit buď a — 0 nebo 6 = 0. Avšak v žádném z obou
případů nemá výraz (1) smysl.

Odpověď. Výraz V je různý od nuly pro všechna čísla
a, 6, pro něž má smysl.

O znaménku výrazu (1) rozhodneme pomocí vztahu
(2). Jmenovatel a2 +62 je součtem dvou kladných
čísel, neboť např. a2 je druhá mocnina čísla různého
od nuly, a tedy kladné číslo. Proto o znaménku zlomku
rozhodne čitatel ab zlomku (2).

Snadno usoudíme, že je správná tato odpověď:
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Jsou-li čísla a, b týchž znamének (tedy i různá od
nuly), je ab kladné číslo; jsou-li čísla a, b různých zna-
mének, je ab záporné číslo. Tedy: jsou-li <z, b různá
čísla týchž znamének, potom je V číslo kladné; jsou-li
a, b čísla opačných znamének a mají-li různé absolutní
hodnoty, potom je V záporné číslo.

Závěr. Jsou-li a, b různá čísla a mají-li táž znaménka,
je V >0; jsou-li a, b čísla různých znamének a není-li
a - —b, je V < 0.

9. ÚLOHY II. KOLA KATEGORIE D

1. Daný je štvorec ABCD so stranou dlžky d. Zo
středu každej jeho strany opišme polkružnicu, ktorá
prechádza stredom štvorca ABCD (viď obrázok 44).

Kolko percent z obsahu štvorca je obsah vyčiarko-
váného obrazca?

Riešenie (obr. 44). Obsah daného obrazca dosta-
neme, keď obsah obrazca na obr. 45 vynásobíme štyrmi,
t. j. obsah polkruhu s polomerom \d zmenšený o \
obsahu štvorca so stranou d. Teda

p = 4[\л(ЫУ ~ Id2] - d\\n - 1).
Obsah štvorca ABCD je P' = d2. Pre hladaný počet p

percent platí:
P' 100P

p = P:m P' •
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Po dosadení za P a P' dostaneme

1^1 (iл - 1) = 100(1тг - 1) = 57.P =

Obsah vyčiarkovaného obrazca je přibližné 57 %
obsahu štvorca.

Riešila Viera Kožiaková,
8. b tr. ZDŠ,
Hnúšťa, okr. Rimavská Sobota.

2. V továrně pracovalo 1440 zaměstnanců (mužů
a žen). Za vzorně vykonanou práci obdrželo prémie
18f % ze všech mužů a 22| % ze všech žen. Vedení
továrny vyhlásilo, že prémiemi bylo odměněno 20 %
zaměstnanců.

Kolik mužů a kolik žen bylo zaměstnáno v továrně?
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Řešení. Označme л; počet mužů, kteří pracovali v to-
várně; potom počet žen, které pracovaly v továrně je
1440 — %. Bylo odměněno:

18f % z počtu všech mužů je щ . 18f = ^,
-.221 =

1440 -

22\ % z počtu všech žen je 100

1440 - x 45
_ 45(1440 - x) .

100 * 2 200

1440 1440
20 % ze všech zaměstnanců je . 20 =

5 ’100

Součet počtu odměněných mužů a počtu odměněných
žen je roven počtu odměněných zaměstnanců, tj. platí

75% , 45(1440 - x) 1440
5 •400 200

Dostali jsme rovnici pro neznámou x; budeme ji
řešit. Znásobme obě strany rovnice číslem 400 a po-
stupně ji upravujeme:

75% + 90 (1440 - x) = 80.1440,
1440 . (90 - 80) = (90 - 75)%,

14400 = 15%,
14400 2880

= 960.% =
15 3

Počet mužů je tedy % = 960; počet žen je 1440 —
- 960 = 480.
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Zkouška. Platí 960 +480 = 1440. Dále je:
18| % z 960 je - f =180 (počet odměněných

mužů);
221 % z 480 je yfo • ¥ = 108 (počet odměněných žen);
20 % z 1440 je 1440. \ = 288 (počet odměněných

zaměstnanců).
Skutečně je 180 + 108 = 288.

960
ÍOO •

3. Dané sú dve rovnoběžky p, q o vzdialenosti v =
= 6 cm. Na priamke p je daný bod A.

Zostrojte lomenú čiaru ABCD takého tvaru ako na
obrázku 46, aby štyri uhly na obrázku vyznačené (ob-
lúčkami) bolí zhodné a aby úsečky AB, BC, CD malí
tieto dlžky:

AB = 4 cm, BC = 7 cm, CD = 6 cm.

Je táto úloha riešitelná pre AB = 2 cm, BC =
— 7 cm, CD — 3 cm? Odůvodníte.

и!
p

Вc T_

i
I s

9

Obr. 46
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Riešenie (viď označenie na obr. 46). Rozbor. Podlá
textu úlohy jea = /? = y=<5. Uhly a, ft sú striedavé
uhly medzi priamkami p, £C, přeťatými priamkou AB.
Z rovnosti a = ft vyplývá podlá známej vety, že je

- SC ||p. Pretože však je p || q, vyplývá z toho, že je

(1)P lise || <7.

Taktiež uhly ft, у sú striedavé medzi priamkami
AB, CD, přeťatými priamkou J3C. Z rovnosti ft = у

preto vyplývá, že je
AB II CD. (2)

Označme E priesečník priamok q, AB. Potom podlá
(1), (2) sú protilahlé strany štvoruholníka EBCD na-
vzájom rovnoběžné, takže EBCD je rovnoběžník.
Preto je

ED — BC = 7 cm,
BE = CD = 6 cm.

1
(3)

)

Keďže AE = AB + BE, je AE = 4 cm + 6 cm =
= 10 cm, t. j.

AE = 10 cm. (4)

Na základe výsledkov (4), (3) a (1), (2) prevedieme
konštrukciu (viď obr. 47):

Označme m kolmicu vedenú bodom А к priamke q.

Jej patu označme M. Konštrukciu bodu E prevedieme
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v polrovine q, čo je jedna z polrovín vyťatých priam-
kou m. Výsledok v polrovine opačnej к q dostaneme
pomocou osovej súmernosti podlá priamky m.

Pretože je AE =10 cm, je bod E jedným z prieseč-
níkov priamky q a kružnice k = (A, 10 cm). Na pol-
priamke EM a polpriamke к nej opačnej zostrojme
podlá vztahu (3) po radě úsečky ED = 7 cm a ED' =
= 7 cm. Na polpriamke AE zostrojme úsečku AB =
= 4 cm. Bodom В veďme priamku r\\ q. Bodmi D, D'
veďme rovnoběžky s, s' к priamke AE a označme po

m
4
4

p \ a
a'4 3 I /

I, p
? к

s c

--p--
vC

г 8 N
4

4
s

4 4\ í'4

\ \& J
ao^4fÓV E

ч
s

if
I

N

к

Obr. 47

radě С, C' ich priesečníky s priamkou r. Potom lomené
čiary ABCD, ABC'D' vyhovujú požiadavkám úlohy.

Dokaž prevedieme pre čiaru ABCD (označenie viď
na obr. 47). (Pre čiaru ABC'D' sa dokaž prevedie po-
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dobne.) Podlá konštrukcie je BCDE rovnoběžník a

preto je
0 = у (5)

(uhly striedavé medzi rovnoběžkami BE, CD preťa-
tými priamkou BC). Ďalej je

(6)у — á

(uhly striedavé medzi rovnoběžkami q, r přeťatými
priamkou DC). Konečne je

(7)a = /5

(uhly striedavé medzi rovnoběžkami r, p přeťatými
priamkou AE). Spojením (5), (6), (7) dostáváme a =
= = у — d.

Podlá konštrukcie je AE — 10 cm, AB = 4 cm,
takže BE = AE — AB — 6 cm. Pretože CD, BE sú
protilahlé strany rovnoběžníka BCDE, je CD = BE —

= 6 cm. Podlá konštrukcie je ED = 7 cm, pričom
protilahlé strany BC, ED rovnoběžníka BCDE sú
zhodné, t. j. BC = ED — 7 cm. Majů teda časti lo-
menej čiary ABCD dl’žky předpísané v texte úlohy.
Tým je dokaž převedený.

Diskusia. Vzdialenosť v = 6 cm středu A kružnice k
od priamky q je menšia ako jej poloměr, ktorý je 10 cm.
Preto je q sečnicou kružnice Hvo vnútri polroviny o
leží priesečník E = M čiar q, k (druhý priesečník čiar
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q, k dostaneme ako obraz bodu E v súmernosti podlá
priamky m).

Dostali sme dve riešenia ABCD, ABC'D' prislú-
chajúce к bodu E. Ďalšie dve riešenia dostaneme ako
obrazy týchto riešení v súmernosti podlá priamky m.

Úloha má teda celkom štyri riešenia.
Pre údaje AB = 2 cm, CD = 3 cm nemá úloha

riešenie, pretože úsečka AE, pomocou ktorej sme úlohu
riešili, by mala dlžku AE = AB + CD — 5 cm. No,
kružnica k' = (A, 5 cm) nepretína priamku q, pretože
v > 5 cm.

Podrobné riešenie tejto úlohy podal Ján Lupták,
9. atr. SVVŠ,
Vazovova 6, Bratislava.

4. Je dán výraz

v = [ i ?— -I \ —I • í
\x2 — 2x ~ 2x — 4/ x2 — 4] ' X — 2 'x2 + 4 '

a) Daný výraz zjednodušte a určete všecka čísla x,

pro která ztrácí daný výraz smysl.
b) Najděte všechna celá čísla x3 pro která je výraz V

roven celému číslu.

Řešení, a) V okrouhlé závorce máme zlomky o jme-
novatelích

*(* — 2), 2(x — 2);
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jejich společný násobek je

2x(x — 2).

Proto první zlomek v okrouhlé závorce rozšíříme
číslem 2 a druhý číslem я; dostaneme nyní postupně:

F=r_i^_ /_4 ,+_*aK I x2 + 4'* \2x(x - 2) ~ 2x(x - 2)1 x2 - 4 j '

• *
= [ 4x

'

x - 2
x2 + 4

x2 + 4 ’ 2x(x — 2)
V lomené závorce první člen zkrátíme číslem

2x(x2 + 4);

4 1 x

x2 — 4j ' x — 2 '

tím dostaneme

V=[^2 4 1 x

- 4 I ' x - 2 *x2 —

Společný jmenovatel obou zlomků v lomené závorce je
x2 ___ 4 _ (x _ 2)(x 2); proto musíme první zlomek
v lomené závorce rozšířit číslem x + 2. Dostáváme
postupně:

2(x + 2)
(x — 2) (x -j- 2) (x — 2) (x -j- 2)J

4 1
# x

J ' x —
- 2

2x x

(x — 2) (x + 2) ‘ x — 2

Po provedení dělení pak máme
2x x — 2

V =
(x — 2) (x 4” 2) x
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Po zkrácení čísly x, jc — 2 je
2

(1)v =
x -{- 2

Provedená úprava výrazu je správná, pokud daný výraz
V má smysl, tj. jsou-li jmenovatelé všech zlomků, jež
se v daném výrazu vyskytují, různí od nuly; tito jme-
novatelé jsou x(x — 2), 2(x — 2), x2 + 4, x2 — 4 =
= (x — 2)(x + 2). Musí tedy být x Ф 0, x — 2 ф 0,
x2 +4 #0 (což vždy platí, neboť je x2 ^ 0), x +
+ 2^0. Odtud plyne, že x musí být různé od čísel

0, 2, -2.

Vedle toho dělitel musí být různý od nuly, tj.
musí být x Ф 0.

2
Závěr a). Daný výraz V je roven zlomku — 2 a má

smysl pro každé číslo x různé od čísel —2, 0, 2.
b) Dosadíme-li do výrazu ~x _r~2 za ^ ce^ Iе

x -\-2 rovněž celé číslo; naším úkolem nyní je najít
celé číslo x + 2, které je dělitelem čísla 2. Avšak číslo 2
je dělitelné právě těmito čtyřmi čísly:

(3)2, 1, -1, -2.

Musí tedy platit jedna z rovnic

x + 2 — 2, x4~2 — 1, x + 2 — —1, x -j- 2 — —2.
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Jejich řešení po řadě jsou:

x = 0; x = —1; x — —3; x = —4.

První případ ve (3) jsme však v části a) vyloučili [viz
(2)]. Zbývá tedy provést zkoušku pro ostatní tři čísla.

Pro x = — 1 je V
2

= 2.
-1 + 2

Pro ж = -3 je F = -_I3~72-
= -2.

2
Pro x — —4 je V = -1.

-4 + 2

Závěr b). Je-li x celé číslo, pak výraz V je roven
celému číslu jedině pro x = — 1 nebo pro х——Ъ
nebo pro x — —4.
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VI. Zpráva o třetím ročníku
mezinárodní matematické olympiády

1. Pořadatelem III. mezinárodní matematické olym-
piády byla maďarská Matematická společnost Jánoše
Bolyaie (János Bolyai Matematikai Tarsulát, dále zkrat-
kou JBMT); soutěž uspořádala pod záštitou a za pod-
póry maďarského ministerstva osvěty v červenci 1961.

Čs. osmičlenná žákovská delegace byla vybrána z ví-,
tězů III. kola čs. celostátní Matematické olympiády.
Celkem se soutěže účastnilo 48 žáků ze šesti zemí.

Jednotlivé delegace měly vedoucího a peda-
gogického vedoucího; byli to:

Alipi Mateev, profesor university v Sofii a Alexander
Nikolov, inspektor matematiky města Sofie (Bulharsko).

Rudolf Zelinka, pracovník Matematického ústavu
ČSAV, Praha a Petr Benda, odborný asistent VŠP
v Brně (Československo).

Herbert Titze, vědecký pracovník, Berlín a Johannes
Gronitz, hlavní referent ministerstva školství, Berlín
(NDR).

Endre Hódi, vědecký pracovník Optického ústavu,
Budapešť a Ferenc Késedi, pracovník ministerstva kul-
tury, Budapešť (Madarsko).
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Mieczyslaw Czyžykowski, profesor polytechniky ve
Varšavě a Edward Otto, profesor polytechniky ve Var-
savě (Polsko).

Gheorghe D. Simionescu, profesor polytechnického
institutu, Bukurešť a loan Musat, inspektor matematiky
v ministerstvu vyučování a kultury, Bukurešť (Ru-
munsko).

Vedoucí delegací tvořili mezinárodní komisi soutěže,
která soutěž řídila a schvalovala závěrečnou kvalifikaci

pro stanovení vítězů soutěže. Předsedou komise byl
profesor Matematického ústavu Eotvosovy university
v Budapešti János Surányi, který zastává funkci gene-
rálního sekretáře JBMT. Vedle toho účinně komisi po-
máhali Endréné Gáderovás vedoucí katedry matematiky
Pedagogického institutu v Budapešti, a Tamás Varga,
odborný asistent Matematického institutu Eotvosovy
university v Budapešti.

Šestičlenná komise složená z vedoucích delegací za

pomocí maďarských organizátorů soutěže vybrala ve
dnech 5. až 7. 7. 1961 šest soutěžních úloh z příklado-
vého materiálu, které již v květnu 1961 zaslaly jednotlivé
země. Tři úlohy první písemné práce se týkaly školské
algebry a trigonometrie, úlohy druhé písemné práce
měly reprezentovat jednak geometrickou úlohu důka-
zovou, jednak konstruktivní planimetrickou úlohu,
jednak úlohu stereometrickou. Stanoven byl i maxi-
mální počet bodů, které mohl žák získat řešením úlohy
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(viz Přílohu). Celkem mohl žák získat 20 x 2, tj.
40 bodů; družstvo jednotlivé země mohlo tedy maxi-
málně získat 320 bodů (viz Tabulku č. 1).

Žákovské delegace se sjely ve dnech 7. až 8. 7. 1961
v Budapešti a odjely 8. 7. 1961 do Veszprému poblíže
Blatenského jezera; v tomto krajském městě je technická
universita (chemická fakulta) a jejího zařízení se po-
užilo pro ubytování a stravování. Ve volném čase za-
jížděli žáci z Veszprému na koupání к Blatenskému
jezeru. Vlastní soutěžní písemné zkoušky se konaly
v pondělí 10. 7. a v úterý 11. 7. 1961 v dopoledních
hodinách.

V turistickém programu shlédli žáci celé pobřeží
nádherného Blatenského jezera, zvláště města Tikány,
Badacsóny, Keszthely a Siófok a ve dnech 14. až 16. 7.
pamětihodnosti hlavního města Budapešti, mimo jiné
pozorovali noční osvětlení Budapešti z rozhledny na
hoře Set. Jánoše. Bohatý kulturní a zájezdový program
a vzorné pohostinství a všechna péče maďarských přátel
se zapsala trvale do myslí všech zahraničních hostí.

V pátek 14. 7. 1961 odpoledne bylo provedeno slav-
nostní rozdílení cen podle jednomyslného rozhodnutí
mezinárodní komise. Stalo se tak v Domě techniky
v Budapešti, v němž má své sídlo JBMT. Slavnostními
řečníky byli čestný předseda JBMT akademik G. Ale-
xits a dr. József Féketé, náměstek vedoucího oddělení
středních škol v maďarském ministerstvu osvěty. Za
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Tabulka č. 1

Počet bodů,
které získal žák č.

Delegace
získala
celkem
bodů

Země
32 5 61 4 7 8

Maďarsko 40 37 34 34 33 29 27036 27

Polsko 39 29 24 23 2029 23 20316

Rumunsko 34 30 26 26 1428 27 12 197

ČSSR 33 25 24 21 16 13 12 15915

NDR 31 23 22 20 14 1213 11 146

Bulharsko 1828 15 14 14 213 4 108

zahraniční žáky poděkoval žák polské delegace Maciej
Skwarczyňski, který získal jednu ze tří prvních cen.
Za vedoucí delegáty poděkoval maďarskému minister-
štvu osvěty a Matematické společnosti Jánoše Bolyaie
profesor Gh. D. Simionescu. Po slavnosti se za před-
sednictví akademika G. Alexitse konala slavnostní
večeře.

V neděli 16. 7. 1961 se delegace rozjely do svých
vlastí.
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2. Výsledky soutěže. Počet bodů, které za řešení úloh
získali jednotliví žáci i celá družstva je patrný z tabulky
č. 1.

Rozdělení cen a čestných uznání mezi jednotlivé
země je vidět z tabulky č. 2.

Tabulka č. 2I.cenu dostali 3 žáci s počty 40, 39, 37 bodů (2 Maďaři,
1 Polák);II.cenu dostali 3 žáci s počty 36,34,34, 34 bodů (3 Maďaři,
1 Rumun);III.cenu dostali 4 žáci s počty 33,33,31,30 bodů (1 Čechoslovák,
1 Maďar,
1 Němec,
1 Rumun).

Velkého úspěchu v soutěži dobyli maďarští žáci,
z nichž každý byl odměněn cenou nebo uznáním. Abso-
lutním vítězem se stal žák Béla Bollobás z Budapešti,
který jediný z žáků získal maximální počet bodů; již
v loňské mezinárodní olympiádě dobyl jednu z prvních
cen. Naši žáci získali jednu III. cenu a tři čestná uznání.
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Jmenný seznam žáků odměněných na III. mezinárodní
olympiádě. I.cenu získali:

Béla Bollobás, IV. ročník gymnasia „Apáczai Csero
János Budapešť, (Maďarsko).

Maciej Skuarczyúski, 11. tř. I. stř. školy, Varšava
(Polsko).

József Kóta, III. ročník gymnasia Tatbánya (Maďarsko).II.cenu získali:

István Juhász3 IV. ročník gymnasia „Madácha Imre“,
Budapešť (Maďarsko).

Miklós Simonovits, III. roč. gymnasia „Radnóti Mik-
lóseCí, Budapešť (Maďarsko).

Constantin Nástásescu, 11. tř. stř. školy, Pucioasa (Ru-
munsko).

Gerzson Kéry, III. ročník gymnasia, Sopron (Ma-
ďarsko). III.cenu získali:

Tomáš Jech, IlI.b ročník SVVŠ Jana Nerudy, Praha 1
(ČSSR).

László Gálfi, III. ročník gymnasia „I. Istvána“, Bu-
dapešť (Maďarsko).
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Thomas Gornitz, 12. tř. stř. školy „ThomasCí Schule,
Lipsko (NDR).

Tudor Zamfirescu, 11. tř. stř. školy „G. H. Lazarcc, Bu-
kurešt (Rumunsko).

I. čestné uznání obdrželi:

Atanas Ivanov Atanasov, XI. tř. polytechnické školy,
Gabrovo (Bulharsko).

Alexandru Buimovici, X. tř. 18. střední školy „M.
Eminescucc, Bukurešť (Rumunsko).

Radu Diaconescu, X. tř. střední školy, Pucioasa (Ru-
munsko).

József Fritz, IV. tř. gymnasia, Mosonmagyaróvar (Ma-
ďarsko).

László Góth, III. tř. gymnasia, Budapešť (Maďarsko).
Michal Kretschmer, III. tř. SVVŠ, Praha, Omská ul.

(ČSSR).
Marcin Kuczma, X. tř. I. lycea, Katowice (Polsko).
Marian Oziewicz, XI. tř. I. lycea, Inowroclaw (Polsko).
Nicolae Popa, XI. tř. střední školy, Focsani (Rumun-

sko).
Serban Stratila, XI. tř. lycea, Pitesti (Rumunsko).

II. čestné uznání obdrželi:

Mikolaj Jagielka, XI. tř. I. lycea, Inowroclaw (Polsko).
J$rzy Jurkieiicz, IX. tř. lycea, Varšava (Polsko).
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Gerd Nass, XII. tř. střední školy, Halle (NDR).
Karel Příkrý, III. tř. SVVŠ, Vyškov (ČSSR).
Mary Schleifstein, XII. tř. střední školy, Berlín —

Friedrichsheim (NDR).
Andrzej Skowroň, XI. tř. lycea, Bielsko-Biala (Polsko).
Stanislav Špiež, X. tř. lycea, Kalisz (Polsko).
Přemysl Svoboda, III. tř. SVVŠ, Roudnice n. L. (ČSSR)
IFmzč/ Heike, XII. tř. střední školy, Berlín-Lichten-

berg (NDR).

Z tohoto přehledu vyplývá, že Maďaři se stali favo-
rity soutěže. Jejich mužstvo mělo žáky, kteří se účast-
nili již loňské soutěže; přípravě družstva maďarští pra-
covníci věnovali zřejmě velkou pozornost a podařilo se
jim vskutku zajistit svým žákům zasloužený úspěch.

Někteří žáci podali dvě i více odlišných řešení nebo
načrtli řešení zobecněné úlohy; to platí vedle Maďarů
zvláště o Rumunech. Rovněž Poláci tvořili velmi úspěš-
ný celek.

Nesnáze našim žákům nejvíce působilo rychlé, obrat-
né a jisté počítání, identické úpravy algebraických a go-
niometrických výrazů a řešení soustav rovnic, tedy 1. pí-
semná práce; velké nesnáze působila zvláště 3. úloha,
ač se dala celkem jednoduše a vtipně řešit. Z toho je
patrné, že nesmíme podceňovat pohotové a hbité pro-
vádění numerických výpočtů; bez tohoto základního
předpokladu nelze totiž zajistit ani úspěch vyučování

180



matematice ve škole. Přitom je zajímavé, že i s mnohem
menšími a méně hlubokými znalostmi, než měli naši žáci,
se dalo docílit úspěchu. Pro naše žáky bylo překvape-
ním, že se na nich požadovalo, aby prováděli v soutěži
soustavně a zevrubně výpočty, aby se přitom nezatěžo-
váli z důvodů časových zbytečně zevrubnými úvahami
nebo otázkami, o kterých se text úlohy nezmiňoval.
Mnohem lépe než první písemná práce dopadla našim
žákům 2. práce, i když i tu došlo к řadě zbytečných
ztrát bodů, především pro nesprávnou soutěžní taktiku.
Žáci si ponechávali až na konec řešení těch úloh, které
se jim zdály být snadné a pokoušeli se netakticky dřív
rozřešit úlohy obtížné; v časové tísni pak někteří již
nemohh řešení zformulovat. Rovněž podcenili obtížnost
diskuse v 5. úloze, kterou zadalo samo Československo
a která jim byla tematicky blízká; přitom i výsledek
diskuse byl uveden v textu úlohy. Šlo tu o důkaz toho,
že za daných podmínek má jistý kruhový oblouk s jistou
kružnicí dva různé společné body; důkaz se snadno po-
dařil tomu, kdo řešil úlohu co nej jednodušeji. Ti, kdo
užili к řešení kružnice Apolloniovy (jejíž střed lze loká-
lizovat jen pomocí dosti komplikovaného výpočtu), ne-
byli s to diskusi úplně provést; i tento fakt je poučný.
Již před detailní formulací konstrukce a důkazu její
správnosti se musíme zamyslit nad nesnázemi, к nimž
nás přivede diskuse.

Je tedy patrno, že nám soutěž přinesla řadu poučení,
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tentokráte většinou jiného druhu než poučení z prvního
a druhého ročníku, kdy největší slabinou našich žáků
byla školská číselná teorie a důkazové geometrické úlohy
а к tomu příslušný řádný zápis. Z těchto zkušeností si
musí nejen naši žáci, ale i učitelé matematiky a organi-
zátoři olympiády vzít poučení.
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PŘÍLOHA

Texty písemných prací ze III. mezinárodní matema-
tické olympiády, pořádané v červenci 1961 v Maďarsku.

V závorce uvádíme zemi, která úlohu zaslala, a počet
bodů, které řešením úlohy mohl žák maximálně získat.

1. písemná práce
(na 4 hod. čistého času)

1. Řešte soustavu rovnic

x +j> +я = a,
x2 +J>2 + *2 = b2,

xy = z23
kde a, b jsou daná čísla.

Udejte podmínky, které musí čísla a, b splňovat, aby
čísla x, у, z (která jsou řešením soustavy rovnic) byla
kladná a navzájem různá.

(.Maďarsko 6)
2. Buďte a, b, c délky stran trojúhelníka a 5 jeho

obsah.

Dokažte, že potom vždy platí
a2 +b2 +c2 ^ 451/3.

Ve kterém případě nastává rovnost?
(.Polsko 7)
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3.Řešte rovnici

cos”* — sinmx = 1,
kde n je dané přirozené číslo.

{Bulharsko 7)

2. písemná práce
(na 4 hod. čistého času)4.Je dán trojúhelník РЛР2Р3 a uvnitř tohoto troj-

úhelníka je dán libovolný bod P. Přímky РгР3 P2P3
P3P protínají protější strany trojúhelníka po řadě v bo-
dech Q13 Q23 Q3.

Dokažte, že z čísel

PiP P2P P2P
PQx9 PQ2 5 PQ*

nejméně jedno není větší než 2 a nejméně jedno není
menší než 2.

{NDR 6)5.Sestrojte trojúhelník ABC3 je-li dáno AC = b3
AB = c a úhel 'AMB — co, kde M je střed úsečky
BC3 přitom je co < 90°.

Dokažte, že úloha má řešení tehdy a jen tehdy,
platí-li

b.tg^^c<b.
Ve kterém případě platí rovnost?

(ČSSR 7)
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6. Je dána rovina e a po téže straně této roviny jsou
dány tři body А, В, C, které neleží v téže přímce;
přitom rovina těmito body určená není rovnoběžná
s rovinou e. V rovině e zvolme tři libovolné body
B'} C'. Označme L, M, N středy úseček AA\ BB',
CC'; dále označme G těžiště trojúhelníka LMN. (Ne-
budeme uvažovat takové polohy bodů А', ВC\ pro
které příslušné body L, M, N netvoří vrcholy troj-
úhelníka.)

Co je geometrickým místem bodů G, když body A',
B'} C' nezávisle na sobě probíhají rovinou e?

(Rumunsko 7)
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Doslov

Organizační komisi při ÚV MO při sestavování úloh
v X. ročníku MO svým dílem přispěly komise při poboč-
kách Jednoty čs. matematiků a fyziků v Praze, Č. Budějo-
vicích, Plzni, Liberci, Brně a Bratislavě. Všem těmto spolu-
pracovníkům patří náš dík; úlohy, kterých nebylo v tomto
ročníku užito, jsou v archivu pro další ročníky. V organi-
začni komisi ÚV MO vedle podepsaných obětavě pracovali
dr. Miroslav Fiedler CSc., doc. Josef Holubář, Miloš Je-
línek, Jiří Sedláček CSc., Miroslav Šisler CSc.

Recenzi knížky provedli s velkým porozuměním doc.
Josef Holubář, Miloš Jelínek, Vlastimil Macháček, doc.
dr. Zbyněk Nádeník CSc. a Miroslav Šisler CSc.; s. Ma-
cháčkovi patří zásluha za vzorné narýsování obrázků. Re-
daktorce SPN Květě Brázdové děkujeme za všechnu pomoc

při redakčních pracích a recenzních úpravách. Náš dík
vedle všech zmíněných soudruhů patří i s. Marii Jarošové
za spolupráci při organizování soutěže a za práce stenoty-
pistické.

U příležitosti desátého výročí vzniku soutěže zdravíme
všechny naše spolupracovníky na celém území naší vlasti
a těšíme se na další jejich práci pro zdar této významné žá-
kovské soutěže.

Jan Výšin a Rud. ZelinkaZáří 1962
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Technická redaktorka: Jana Týlová

Vytiskl Tisk, knižní výroba, n. p., Brno, závod 3,
Český Těšín, AA 5,68 (text 5,16 — grafika 0,52) —

VA 6,00 - D - 10*20439
Náklad 3500 výtisků

Tematická skupina a podskupina 02/57
Cena brož. výtisku Kčs 3,80

63/11 13
Vydalo Státní pedagogické nakladatelství, n. p.,
v Praze jako svou publikaci č. 25-0-06

14 - 919 - 62 Kčs 3,80
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