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I. К průběhu XII. ročníku Matematické
olympiády

1. Ročník byl organizován tradičním způsobem. Žáci
soutěžili ve čtyřech kategoriích, jak je vidět z tabulky (žáci
9. ročníků základních devítiletých škol byli zařazeni do
kategorie D):

cKategorie A В

Ročník SVVŠ 3 2 1

Ročník střední
odborné školy 13-4 2

Odchylky od tohoto rozdělení povoloval příslušný
krajský výbor MO.

2. Podle organizačního řádu pořádalo soutěž minister-
stvo školství a kultury (MŠK) ve spolupráci s Matematic-
kým ústavem ČSA V (MÚ ČSAV), Jednotou čs. matematiků
a fyziků (JČMF) a ústředním výborem Čs. svazu mládeže
(ÚV ČSM).

Soutěž řídil ústřední výbor Matematické olympiády
(ÚV МО). V každém kraji soutěž organizoval příslušný
krajský výbor Matematické olympiády (KV MO); pro
kategorii D byly v okresech zřízeny okresní výbory MO
(OV МО). V těchto výborech, které jmenuje odbor škol-
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ství a kultury KNV, popř. ONV, jsou vedle učitelů též
zástupci zmíněného odboru, pobočky JČMF a krajského,
popř. okresního výboru ČSM.

3. V průběhu ročníku vyšel nový organizační řád (viz
Věstník ministerstva školství a kultury, roč. XIX, sešit 12,
str. 126—127 — směrnice č. 37 — „Matematická olym-
piáda. Fyzikální olympiáda**), který byl uveřejněn dne
30. dubna 1963.

V novém organizačním řádu je řada nových opa-
tření, která mají zkvalitnit soutěž; o některých z nich
se zcela stručně zmíníme. Závažnou novinkou je zři z o-
vání oddělení odborné literatury z matematiky
a fyziky při žákovských knihovnách škol I. a II. cyklu;
tato oddělení budou obsahovat učebnice a různé jiné
příručky školské matematiky a fyziky, brožury olympiád,
sbírky úloh, cizojazyčnou literaturu určenou pro žáky,
publikace edice „Škola mladých matematiků“ (bližší viz
na str. 8), vyšlé ročníky časopisu Rozhledy matematicko-
fyzikální apod.

Závažným opatřením je i další vydávání edice „Ško-
la mladých matematiků**, o němž se ještě zmíníme.
Dále uspořádá MŠK každoročně dvě celostátní sou-
středění nejlepších účastníků soutěže (což se vztahuje
i na Fyzikální olympiádu); většinou se bude jednat o nej-
lepší účastníky kategorie B. Do jednoho soustředění se
zařazuje 50 žáků; jedno soustředění se uspořádá v čes-
kých, druhé ve slovenských krajích. Přitom se doporučuje,
aby podobná soustředění v rámci svého kraje organizo-
vály i krajské výbory МО, a to za podpory příslušného
odboru školství a kultury KNV. KV MO Severomorav-
ského kraje skutečně uspořádal takové soustředění pro
žáky svého kraje.
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Konečně velmi závažnou novinkou je zřizování spéci-
álních tříd pro žáky, zajímající se o matematiku a fy-
ziku; na základě toho byly od počátku školního roku
1963/64 zřízeny speciální třetí třídy na matematicko-fyzi-
kálních větvích středních všeobecně vzdělávacích škol,
a to jedna v Praze, jedna v Brně a jedna v Bratislavě.
Tyto třídy mají svůj studijní plán, který je zaměřen přede-
vším na prohloubení učiva, nikoli na jeho rozšiřování.
Předpokládá se, že budou otevřeny i druhé třídy, popř.
že podobná opatření se zavedou i v dalších městech. Vý-
běr žáků pro tyto speciální třídy provádí MŠK na základě
společného návrhu, který mu předloží předsedové ústřed-
nich výborů MO a FO.

4. Ústřední výbor Matematické olympiády (adresa:
ÚV MO, Žitná 25, Praha 1-Nové Město, tel. 22 66 01 až 03)
se skládal jednak z předsedů krajských výborů MO, jednak
z pracovníků jmenovaných přímo ministerstvem školství
a kultury. Pracoval v tomto složení:
Předseda: Akademik Josef Novák, vedoucí vědecký pra-

covnik Matematického ústavu ČSAV v Praze
Místopředseda: Jan Výšin, docent matem.-fyzikální fa-

kulty Karlovy university v Praze
Jednatel: Rudolf Zelinka, vědecký pracovník Matematic-

kého ústavu ČSAV v Praze

Členové: Dr. František Běloun, vedoucí matematického
kabinetu Ústavu pro další vzdělání učitelů v Praze
Karel Hnyk, odb. asistent Pedagogického institutu
v Liberci
Doc. Josef Holubář, vědecký pracovník Matematického
ústavu ČSAV v Praze
František Hradecký, odb. asistent matem.-fyz. fakul-
ty Karlovy university v Praze
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Dr. Karel Hruša, pracovník Ústavu pro dálkové stu-
dium učitelů v Praze
Josef Bartůněk, ústřední inspektor ministerstva školství
a kultury v Praze
Dr. Milan Kolibiar, docent přírodovědecké fakulty Ко-
menského university v Bratislavě
Dr. Josef Pírek, ředitel základní devítileté školy v Brně
František Veselý, odb. asistent Vysoké školy strojní
a elektrotechnické v Plzni
Dr. Miloslav Zedek, docent Palackého university
v Olomouci
Dr. Miroslav Fiedler DrSc., vědecký pracovník Mate-
matického ústavu ČSAV v Praze

Náhradník: Miroslav Šisler CSc., vědecký pracovník
Matematického ústavu ČSAV v Praze

Členové-předsedové KV MO: _

Dr. Václav Pleskot, profesor ČVUT v Praze
Dr. Václav Vilímek, odb. asistent katedry matematiky
a deskriptivní geometrie fakulty strojní ČVUT v Praze
František Vejsada, učitel SVVS, České Budějovice
Josef Porcal, učitel zdravotnické školy, Teplice
Věra Rádiová, učitelka SVVŠ, Plzeň
Jan Laštovka, vedoucí kabinetu matematiky Ústavu
pro další vzdělávání učitelů, Pardubice
Petr Benda, odborný asistent VÚT, Brno
Josef Andrys, odb. asistent Pedagogického institutu,
Ostrava
Dr. Cyril Palaj, docent Vysoké školy lesní a dřevařské,
Zvolen
Gejza Grega, odb. asistent Pedagogického institutu,
Košice

^ Na tomto místě vzpomínáme1památky zesnulého člena
ÚV MO s. dr. Josefa Pírka, ředitele základní devítileté
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školy v Brně. Zesnul krátce po soutěži III. kola MO,
které se konalo v červnu 1963 v Brně a které dr. Pírek
obětavě pomáhal organizovat. S. Pírek se po řadu let
intenzívně věnoval zlepšování úrovně vyučování mate-
matice, zvláště na Moravě. Proto od vzniku soutěžní
kategorie D se usilovně zapojil i do práce pro Matema-
tickou olympiádu. Svou obětavou pomocí nemálo přispěl
к úspěchům naší soutěže.

5. Soutěž ve XII. ročníku měla v kategorii A tři kola,
v ostatních kategoriích dvě. První kolo probíhalo od
října 1962 do konce února 1963. Účastníci v rámci domá-
čího studia řešili jednak šest přípravných úloh (žák musil
svému učiteli předložit řešení všech šesti úloh, z toho
alespoň čtyři dobře), jednak šest soutěžních úloh (z nich
musili vyřešit alespoň čtyři správně). Opravu písemných
řešení prvního kola prováděli učitelé matematiky za ve-
dění referenta pro MO na škole a v dohodě s ředitelem
školy; po opravě seznámil učitel své žáky s typickými ne-
dostatky řešení. Podle kvality žákovských řešení úloh
prvního kola rozhodoval KV MO a OV МО o pozvání
žáka na druhé kolo .soutěže. Texty úloh prvního kola s po-
купу a dalšími úlohami к procvičování vydalo MŠK tis-
kem ve zvláštním letáku v 15 000 exemplářích o 32 stra-
nách. Texty úloh otiskly vedle toho časopisy Rozhledy
matematicko-fyzikální a Matematika ve škole. Vzorová
řešení úloh byla pro opravovatele a pro žáky rozmnožena
cyklostylem až v 1500 exemplářích.

6. V průběhu soutěže byla žákům poskytována
pomoc v několika formách.

Vedle konzultací, které měli se svými žáky učitelé
matematiky, to byly na prvním místě přípravné před-
nášky, pořádané pobočkami JČMF ve spolupráci
s KV MO. Jejich počet byl 4—8 za rok; byly pořádány
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i na několika místech kraje a většinou se soustřeďovaly
na tato ústřední témata: dělitelnost celých čísel,
školská teorie funkcí, konstruktivní a početní
planimetrické úlohy, jednoduché úlohy stereo-
metrické. Přípravné přednášky měly povahu pracov-
nich besed a seminářů; zaměřovaly se proto především
na řešení úloh s případnými doplňujícími výklady před-
nášejícího. To se mnohde provádělo v souvislosti s do-
máčím studiem žáků ze svazečků edice „Škola mladých
matematiků**.

Tuto edici pro potřeby MO vydává nakladatelství
Mladá fronta; řídí ji redakční komise, ustavená při před-
sednictvu ÚV MO. Od podzimu roku 1961, kdy tato
knihovnička byla na návrh člena ÚV MO s. Fr. Veselého
zřízena, do konce roku 1963 v ní vyšly tyto svazky:

1. Hradecký, Koman, Výšin: Několik úloh z geometrie
jednoduchých těles

2. Jiří Sedláček: Co víme o přirozených číslech
3. Jaroslav Šedivý: Shodná zobrazení v konstruktiv-

nich úlohách
4. Šisler, Jarník: O funkcích
5. František Veselý: O nerovnostech
6. Rudolf Výborný: Matematická indukce
7. Jaroslav šedivý: Podobná zobrazení
8. Jiří Váňa: O rovnicích s parametrem
Vedle toho koncem roku 1963 vyšla druhá vydání tří

z těchto svazků.
Knížky vycházejí nyní v nákladu 7 500 exemplářů,

z čehož větší část vykupuje MŠK pro žákovské knihovny,
určitou část zakupuje JČMF pro účastníky dalšího roč-
niku soutěže a jen zbytek 2 500 exemplářů přichází na
volný trh. Knížky jsou oblíbené a je po nich i v širší ve-
řejnosti značná poptávka, takže jejich dosavadní náklad
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nepostačuje. Svazečky jsou koncipovány tak, aby je mohl
samostatně studovat poměrně široký okruh zájemců, a to
i účastníci z kategorie C. Aby pak čtenář plně pochopil
vyloženou teorii, je do knížek zařazena řada řešených
úloh a větší množství příkladů к samostatnému řešení
čtenářů. Proto jsou tyto knížky i vhodným východiskem
pro přípravné přednášky, jednak jako opora pro před-
nášejícího, jednak jako základní materiál pro pracovní
náplň přednášek a žákovu dcmá:í práci. Očekáváme, že
tato edice i v budoucnosti bude jednou z hlavních opor
pro samostatné studium žáků, kteří mají zájem o mate-
matiku. ÚV MO uvítá všechny iniciativní návrhy, které
se budou týkat náplně této edice.

7. Ve II. а III. kole řešili žáci po čtyřech úlohách,
z nichž úspěšný řešitel musil rozřešit alespoň dvě.
Soutěž II. kola kategorií А, В, C se konala v neděli
7. dubna 1963, v kategorii D v neděli 21. dubna 1963.
Výbory MO při této příležitosti organizovaly tradiční
besedy, na nichž se mimo jiné rozebíraly nedostatky žá-
kovských řešení.

Za úspěšné výkony ve II. kole byli žáci odměněni
pochvalnými uznáními a věcnými cenami. Pracovníci
Severomoravského kraje místo toho uspořádali pro nej-
lepší žáky prázdninové internátní školení spojené s ří-
zenou rekreací.

8. Soutěž III. kola se konala v sobotu 1. června 1963
v Brně na Vysoké škole zemědělské. Z přihlášených
54 účastníků bylo na soutěž III. kola pozváno 50 žáků,
z toho bylo 8 dívek. V odpolední besedě konané s účast-
niky III. kola promluvili prorektor university J. E. Pur-
kyně dr. Jos. Hejl, profesoři této university člen koře-
spondent ČSAV Otakar Borůvka a Karel Koutský DrSc.,
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dále zástupci Vysoké školy technické, KV ČSM a pra-
covníci MO; ministerstvo školství a kultury zastupoval
ústřední inspektor Ladislav Krkavec. Přítomní olympio-
nici v závěru besedy diskutovali o svém dosavadním
studiu, o zkušenostech s olympiádou a živě se zajímali
o své studium na vysokých školách; na různé dotazy
obdrželi od přítomných zástupců jednotlivých institucí
informace.

Besedu řídil předseda akademik Josef Nováky který
připomenul, že se soutěž III. kola tentokrát koná v Brně
v rámci oslav 50. výročí vzniku brněnské po-
bočky JČMF; na závěr poděkoval jménem ÚV MO
brněnským hostitelům za péči, kterou věnovali organizo-
vání III. kola soutěže v Brně a účastníkům olympiády
přál hodně úspěchu na vysoké škole i v životě.

Téhož dne večer shlédli účastníci olympiády v Janáč-
kově divadle v Brně představení hry J. K. Tyla „Tvrdo-
hlavá žena“. V neděli 2. června 1963 pracovníci KV MO
a pobočky JČMF v Brně uspořádali dopolední auto-
busový zájezd účastníků III. kola na Macochu. V od-
poledních hodinách se rozjeli olympionici do svých
domovů.

U příležitosti III. kola se v Brně konala pracovní
schůze ÚV MO, která projednala řadu závažných opa-
tření, jako např. zajištění soutěže ve školním roce
1963/64, dále uspořádání obou celostátních soustředění
pro nej lepší účastníky MO a FO, otevření tříd pro žáky
nadané v matematice a fyzice apod.

9. Ve dnech od 17. června do 6. července 1963 uspořá-
dalo ministerstvo školství a kultury dvě celostátní sou-
středění nejlepších účastníků kategorie В obou olympiád.
Odbornou náplň těchto soustředění obstaraly ÚV MO
a ÚV FO se svými spolupracovníky z krajských výborů.
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Jedno soustředění se konalo na Richtrových boudách
v Krkonoších, druhé v Ružomberku a v každém bylo
padesát účastníků. Výběr účastníků provedlo ministerstvo
školství a kultury podle společného návrhu předsedů
ÚV MO a ÚV FO, při čemž se opíralo o zprávy před-
sedů krajských výborů.

Dopolední program na soustředěních byl věnován pro-
hlubování znalostí žáků ve školské matematice a fyzice,
kdežto odpoledne byla většinou věnována řízené tělový-
chovné rekreaci. Večer se konaly besedy na různá od-
borná témata. Program z matematiky se střídal s fyzi-
kálním. V matematice se přednášející zaměřili na sou-
stavné řešení úloh, jak je patrno z těchto tematických
celků: konstruktivní úlohy planimetrické, početní řešení
stereometrických úloh, teorie čísel, řešení rovnic a ne-
rovností, funkce, trigonometrie. Z fyzikálních témat
uvádíme: sluneční soustava, děje v plynech, zákony
ustáleného elektrického proudu, harmonický pohyb, zá-
kóny dynamiky, zákon zachování hybnosti, zákon zacho-
vání energie, setrvačné síly.
Přednášky a večerní besedy vedli učitelé středních a vy-

sokých škol a pracovníci některých ústavů Československé
akademie věd. V závěrečném hodnocení vyslovovali
účastníci souhlas s matematickým programem; uvědomo-
váli si, že v poměrně krátké době tří týdnů, které měli
vyměřeny na doplnění mezer ve svých znalostech, je
řešení úloh s příležitostnými výklady celkem to nej-
vhodnější. Pokud jde o vlastní soutěž, postrádají řešitelé
těsnější spojení s opravovateli úloh, a to pokud jde
o bližší rozbor nedostatků těchto řešení (máme tu na
mysli opravené úlohy И. a III. kola). Touto problema-
tikou se zabýval ÚV MO na své podzimní schůzi.

Souběžně s oběma soustředěními uspořádalo minis-
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terstvo školství a kultury za organizačního přispění
ústředního výboru MO instruktáž osmi žáků, kteří
se měli za ČSSR účastnit V. mezinárodní mate-
matické olympiády, konané v červenci 1963 v Polsku
(viz str. 119). Tato instruktáž se konala rovněž na
Richtrových boudách ve dnech od 20. června do
28. června 1963; na instruktáži přednášeli vysokoškolští
učitelé a vědečtí pracovníci.

li
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II. К výsledkům jednotlivých kol soutěže

1. Soutěž I. kola. Z tabulek č. 1 a 2*) je patrno, že počet
účastníků v I. kole v kategoriích А, В je značně menší než
v předchozím ročníku. Toto konstatování platí i o pro-
centu úspěšných řešitelů I. kola v těchto kategoriích.
Naproti tomu v kategorii C lze pozorovat značné zlepšení,
pokud jde o počet účastníků i o jejich úspěchy. Lze tedy
říci, že nepříznivá situace, která se v posledních letech
projevila, jak v počtu účastníků, tak v kvalitě řešení, se
dosud nezlepšila. Potěšitelné je, že už skoro nebylo po-
třeba přeřazovat některé žáky do nižších kategorií,
vzhledem k tomu, že navštěvují třídy, v nichž platí
osnovy s nižšími požadavky.

2. Soutěž II. kola. Z tabulek č. 3 a 4*) vidíme, že někteří
úspěšní řešitelé prvního kola se nedostavili k soutěži
druhého kola. Stává se to z několika příčin: především
proto, že se soutěž koná v neděli, kdy mnohé rodiny jezdí
na rekreaci a kdy venkovští žáci mají špatné autobusové
spojení, což platí zvláště o kategorii D. Mnozí žáci se
nedostavili také proto, že si «nebyli jisti tím, že by při
soutěži II. kola úspěšně obstáli.

Výsledky II. kola jsou nepříznivé především v kate-
gorii A, B, takže pro účast na třetím kole přicházeli
v úvahu jen 54 žáci. Procento úspěšných řešitelů je však
příznivé v obou z kategorií C, D. Celková situace v kate-
gorii C je nadějná.

Úspěšní řešitelé II. kola za své výkony obdrželi po-

*) Tabulky 1 až 4 viz str. 20 až 23.
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chvalná uznání a hodnotné věcné ceny; mezi věcné ceny
náležela též odborná literatura.

V kategoriích В, C, D končí soutěž II. kolem. Uvádíme
jmenný seznam prvních deseti nejlepších úspěšných
řešitelů v kategoriích В a C za každý kraj:

Pořadí úspěšných řešitelů II. kola
v kategoriích В, C

SWŠ — střední všeobecně vzdělávací škola
P = průmyslová škola

Praha - město

B. Švejda Jan, SWŠ, Praha 3; Kabele Jiří, SWŠ,
Praha 6; Jisl Rudolf, P, Praha 1; Friš Martin, SWŠ,
Praha 7; Neubauerová Kamila, SWŠ, Praha 1; Kroha
Petr, P, Praha Paroubek Jan, SWŠ, Praha 3; Kaše
Jaroslav, SWŠ, Praha 4;w Šmilauer Bohdan, SWŠ,
Praha 6; Pícek Pavel, SWŠ, Praha 6.

C. Bečvář Jindřich, SWŠ, Praha 4; Kubie Jiří, SWŠ,
Praha 3; Daňkovský Vladimír, SWŠ, Praha 6; Karván-
ková Eva, SWŠ, Praha 6; Vaniček Vladimír, SWŠ,
Praha 2; Kraemer Pavel, SWŠ, Praha 6; Novotný
Pravomír, SWŠ, Praha 7; Benda Jan, SWŠ, Praha 3;
Košťálek Jaroslav, SWŠ, Praha 4; Šoler Jiří, SWŠ,
Praha 3.

Středočeský kraj
B. Bednařík Karel, SVVŠ, Český Brod; Franěk J.,

SWŠ, Český Brod; Hájek František, SVVŠ, Radotín;
Hanuš Karel, SVVŠ, Říčany; Hejler Jaroslav, SVVŠ,
Rakovník; Klimtová Jarmila, SVVŠ, Radotín; Kolenský
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Miroslav, SVVŠ, Český Brod; Kolín Jaroslav, SVVŠ,
Příbram; Kopřiva Aleš, SVVŠ, Mladá Boleslav; Kulisová
Libuše, SVVŠ, Mladá Boleslav.

C. Beránek Jiří, SVVŠ, Nymburk; Bunc Václav,
SVVŠ, Kolín; Černý Pavel, SVVŠ, Nymburk; Červ
Václav, SVVŠ, Votice;_Frencl Miloslav, SVVŠ, Kladno;
Hamza Jiří, SVVŠ, Čakovice; Hochman Jiří, SVVŠ,
Hořovice; Hrdlička Jiří, P, Čáslav; Josková Marie,
SVVŠ, Hořovice; Kácalová Jaroslava, P, Čáslav.

Jihočeský kraj
B. Kubeš Jaroslav, SVVŠ, České Budějovice; Pavlíček

Pavel, SVVŠ, České Budějovice; Dráb František, SVVŠ,
Písek; Komrska Pavel, SVVŠ, Týn nad Vltavou; Vobr
Jan, SVVŠ, České Budějovice; Oharek Josef, SVVŠ,
České Budějovice.

C. Vejvoda Pavel, SVVŠ, Hluboká nad Vltavou.

Západočeský kraj
B. Chvátal Václav, P, Plzeň; Verner Břetislav, SVVŠ,

Rokycany.
C. Steiner Václav, SVVŠ, Stříbro; Kotinová Eva,

SVVŠ, Plzeň; Novotný Jiří, SVVŠ, Plzeň; Lunáčková
Marcela, SVVŠ,JKarlovy Vary; Bartoš Josef, SVVŠ, Aš;
Barči Petr, SVVŠ, Ostrov n. Ohří; Moschnerová Jarmila,
SVVŠ, Karlovy Vary; Jelínek Zdeněk, SVVŠ, Plzeň;
Brejcha Josef, SVVŠ, Domažlice; Kašpar Jaromír, SVVŠ,
Ostrov n. Ohří.

Severočeský kraj
B. Jirsa Miloš, SVVŠ, Ústí nad Labem; Novák

Václav, SVVŠ, Varnsdorf.
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^ C. Snětivý Jiří, P, Liberec; Krpata МПап, SVVŠ,
Ústí nad Labem; Stránský Emanuel, SVVŠ, Liberec;
Šidlichovský Miloš, SVVŠ, Liberec; Čermák Karel,
SVVŠ, Teplice; Peršín Jan, SVVŠ, Liberec; Kožíšek
Karel, SVVŠ, Rumburk; Hořejš Milan, SVVŠ, Tanvald;
Zábrodský Rostislav, SVVŠ, Teplice; Hilbertová Hana,
SVVŠ, Liberec.

Východočeský kraj
B. Laštovka Jan, SVVŠ, Pardubice; Vojtíšek Otakar,

SVVŠ, Pardubice; Havel Miroslav, SVVS, Pardubice;
Vecková Ivana, SVVŠ, Jičín; Rykrová Jaroslava, SVVŠ,
Hradec Králové; Šikolová Zdeňka, SVVŠ, Jičín; Pácl
Gustav, SVVŠ, Ústí nad Orlicí; Rasocha Václav, SVVŠ,
Havlíčkův Brod; Kovářová Doubravka, SVVŠ, Turnov;
Musil Stanislav, SVVŠ, Turnov.

Jihomoravský kraj
B. Bureš Pavel, SyVŠ, Brno; Handlíř Jiří, P, Brno;

Čech Antonín, SVVŠ, Třebíč; Wasserbauerová Ivana,
SVVŠ, Třebíč; Znojil Miloslav, SVVŠ, Prostějov; Baláš
Petr, SVVŠ, Brno; Bouška Dušan, SVVŠ, Telč; Dvořá-
ková Miloslava, SVVŠ, Třebíč; Horáková Lada, SVVŠ,
Třebíč; Kalvodová Jana, SVVŠ, Brno.

C. Brodský Jan, SVVŠ, Brno; Humlíček Josefy SVVŠ,
Velké Meziříčí; Kesslerová Jitka, SVVŠ, Brno; Čechová
Ludmila, SVVŠ, Moravské Budějovice; Kunčík Vlastimil,
SVVŠ, Velké Meziříčí; Mikulášek Zdeněk, SVVŠ, Brno;
Spíšek Richard, SVVŠ, BrnoVolný Jaromír, SVVŠ,
Znojmo; Durma Jaromír, SVVŠ, Brno; Handlíř Jiří, P,
Brno.
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Severomoravský kraj
В. Opravil František, P, Rožnov p. R.; Blaťáka Jan,

SVVŠ, Přerov; Lednický Richard, SVVŠ, Nový Bohu-
min; Juránek Josef, SVVŠ, Olomouc.

_ C. Charvát Jura, SVVŠ, Příbor; Jekerle Jiří, SVVŠ,
Český Těšín; Kobělka Zdeněk, SVVŠ, Ostrava 1;
Pazdziora Jaroslav, SVVŠ, Karviná; Fajkus Jindřich,
SVVŠ, Frenštát p^ R.; Zajíček Luděk, SVVŠ, Ostrava;
Běták Emil, SVVŠ, Ostrava; Doležal František, SVVŠ,
Olomouc; Zika Miloslav, SVVŠ, Opava; Hanousková
Zdena, P, Přerov.

Západoslovenský kraj
B. Králik Jaroslav, SVVŠ, Zvolen; Mihálik Lubomír,

SVVŠ, Žilina; Orgoník Peter, SVVŠ, Dubnica n. Váhom;
Pfliegel Miloslav, SVVŠ, Žilina; Štěpánek Jaroslav, P,
Dubnica n. Váhom.

C. Galádová Eleonora, SVVŠ, Zvolen; Trnovský
Karol, SVVŠ, Ružomberok; Porubský Štefan, P, Zvolen;
Žitkuliaková Jana, SVVŠ, Ružomberok; Paulus Tibor,
SVVŠ, Pov. Bystrica; Kubizňa Ján, P, Martin; Roth
Miroslav, SVVŠ, Ružomberok; Králík Gabriel, SVVŠ,
Prievidza; Sivák Bohuslav, ZDŠ, Zvolen; Paulínyová
Eleonora, SVVŠ, Čadca.

Středoslovenský kraj

B. Paučová Mária, SVVŠ, Bratislava; Klimo Pavol,
SVVŠ, Bratislava.

C. Konrád František, Voj. šk. J. Žižku, Bratislava;
Bodecká Lubica, SVVŠ, Bratislava; Križanlgor, SVVŠ,
Bratislava; Lajda Pavol, SVVŠ, Bratislava; Šujan Štefan,
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SVVŠ, Bratislava; Marcisová Tamara, SVVŠ, Bratislava;
Klein Martin, SVVŠ, Bratislava; Peter Fedor, SVVŠ,
Bratislava; Zágorček B., SVVŠ, Bratislava; Rovan Bráni-
slav, SVVŠ, Bratislava. /

Východoslovenský kraj
B. Boháčik Juraj, SVVŠ, Košice; Neuwirth Petr,

SVVŠ, Košice.
C. Murakoz^ Koloman, SVVŠ, Košice; Andrejková

Gabriela, SVVŠ, Kežmarok; Doktor Alexandr, SVVŠ,
Košice; Kortanová Katerina, SVVŠ, Košice; Malár
Peter, SVVŠ, Košice; Sokolová Eva, SVVŠ, Košice;
Šimko Pavol, SVVŠ, Košice; Vášo Dušan, SVVŠ,
Košice; Redner Tomáš, P, Košice; Daniel-Sabol Ondřej,
P, Košice; Jančík Miloš, P, Košice; Dravecký Jozef,
SVVŠ, Spišská Nová Ves.

3. Soutěž III. kola. Mezi padesáti pozvanými účast-
niky III. kola bylo 8 dívek; ze středních odborných škol
bylo 5 žáků. Mezi 30 úspěšnými řešiteli III. kola byli
4 žáci z průmyslových škol a 2 dívky.

Z úspěšných řešitelů bylo vybráno 18 nejlepších a pro-
hlášeno za vítěze XII. ročníku Matematické olympiády;
mezi nimi je 1 dívka. 8 z těchto vítězů se účastnilo
V. mezinárodní matematické olympiády v Polsku (viz
str. 119). Dále uvádíme jmenný seznam vítězů XII. roč-
niku.

POŘADÍ VÍTĚZŮ XII. ROČNÍKU MO
ve šk. r. 1962/63

1. Josef Danes, 3.d tř. SVVŠ, nám. Lidových milicí 19,
Praha 9 - Vysočany

2. Vladimír Pohánka, 3.e tř. SVVŠ, Novohradská ul.,
Bratislava
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3. Vladimír Souček, 3. tř. SVVŠ, Na Zatlance 11,
Praha 5

4. Zdeněk Jirák, 3.b tř. SVVŠ J. K. Tyla, Hradec
Králové

5. Drahomíra Šimková, 3.d tř. SVVŠ, nám. Komen-
ského 4, Znojmo

6.-8.
Jan Blaťák, 3.d tř. SVVŠ, Komenského ul. 29,
Přerov
Josef Karásek, 3. tř. SVVŠ, Česká Lípa
Jaroslav Zemánek, 2.c tř. SVVŠ, Na Zatlance 11,
Praha 5 - Smíchov

9.-10.
Vladislav Kocbach, 3.e tř. SVVŠ, Dimitrovovo
nám. 34, Praha 7
Zdeněk Vít, 3.a tř. SVVŠ, Praha 2 - Vinohrady,
tř. W. Piecka 2

11.-14.
Miloš Božek, 3.b tř. SVVŠ, Bytča, Revolučná ul.
Richard Lednický, 3.a tř. SVVŠ, Nový Bohumín
Раг>е/ Řehák, 4. a tř. SPŠ jaderné techniky, Praha 2,
Ječná 30
Jiří Vorlíček, 3.b tř. SVVŠ, Praha 2 - Vinohrady,

Piecka. 2
15. Jan Vrbík, 3.a tř. SVVŠ, Vyškov, Komenského 1
16.-18.

Miroslav Bartůšek, 3.d tř. SVVŠ, Lerchova ul. 63,
Brno
Karel Sandler, З.а tř. [SVVŠ, Tyršovo nám., Česká
Třebová
František Šefrna, 3. tř. SVVŠ, Blatná
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Tabulka č. 1
Přehled účastníků I. kola podle krajů v kategoriích А, В, C*)

Kategorie Kategorie Kategorie CelkemВ cAKraj
P U P u p и p и

Praha-město 71 40 65 27 187 55 323 122

Středočeský 16 14 20 31 3119 67 64

Jihočeský 13 30 30 709 61 113 100

Západočeský 35 15 6423 6 40 114 69

Severočeský 14 17 489 11 48 6879

Východočeský 35 35 67 51 123 98 225 184

Jihomoravský 9488 43 67 203 147 385 257

Severomoravský 52 3614 20 201 136102 289

Západoslovenský 4650 39 25 176 12157 272

Středoslovenský 58 16665 39 43 128 84 251

Východoslovenský 23 54 8817 12 22 75 115

Celkem 1 375456 277 471 321 1 306 777 2 233

*) P = celkový počet účastníků; U = počet úspěšných řešitelů
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů v kategorii D*)

Kategorie D
Kraj

UP

Praha-město 7451 149

Středočeský 334543

Jihočeský 5811 110

Západočeský 243556

Severočeský 217 206

Východočeský 5031 042

Jihomoravský 5871 161

Severomoravský 5211 149

Západoslovenský 717 543

Středoslovenský 513853

Východoslovenský 278450

Celkem 5 0548 947

*) P = celkový počet účastníků; U = počet úspěšných řešitelů
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Tabulka č. 3

Přehled počtu účastníků II. kola podle krajů v kategorii А, В, C*)

Kategorie Kategorie Kategorie CelkemA CВKraj
P U UP P U P U

Praha-město 39 17 25 13 50 31 61114

Středočeský 14 3 14 4 30 8 58 15

Jihočeský 49 27 7 2653 3789

Západočeský 22 4 5 2 2240 67 28

Severočeský 29 2 11 46 29 3366

Východočeský 35 21497 6694 94178

Jihomoravský 39 6 64 19 241138 72 97

Severomoravský 420 12713 4 94 62 70

Západoslovenský 25 2 5739 1 32 121 35

Středoslovenský 527 2 33 49 13 109 20

Východoslovenský 22 2 54 8812 2 12 16

Celkem 1 258258 52 295 81 705 373 506

*) P = celkový počet účastníků; U = počet úspěšných řešitelů
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Tabulka č. 4

Přehled počtu účastníků II. kola podle krajů v kategorii D*)

Kategorie D
Kraj

P U

Praha-město 589 475

Středočeský 293 205

Jihočeský 479 279

Západočeský 202 120

Severočeský 180 140

Východočeský 429 333

Jihomoravský 588 325

Severomoravský 449 279

Západoslovenský 315453

Středoslovenský 392 261

Východoslovenský 258 181

Celkem 4 312 2 913

P = počet všech účastníků i U = počet úspěšných řešitelů
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Ministerstvo školství a kultury odměnilo vítěze velmi
hodnotnými věcnými cenami a dále jim poskytlo poukázky
na nákup odborné studijní literatury. Každý z vítězů
obdržel čestný diplom podepsaný ministrem školství a
kultury a předsedou ústředního výboru MO.

4. Z předchozího je patrné, že výsledky XII. ročníku
nejsou uspokojivé. Příznivá situace je v kategorii C a
částečně v kategorii D. Vážné nedostatky našich žáků se
projevily nejenom ve III. kole kategorie A, ale i na mezi-
národní matematické olympiádě.

Na malou účast v soutěži měla jistě značný vliv i ne-
dostatečná propagace mezi žáky; řada škol nevěnuje
olympiádě tu pozornost, kterou si tato soutěž zasluhuje.
Jinak by se např. nemohlo stát, že někteří žáci vůbec ne-
dostali letáky s texty úloh a že si museli tyto letáky
opatřovat jinde. Na průběh I. kola velmi nepříznivě půso-
bilo i prodloužení pololetních prázdnin. V kategorii A
časné výběrové řízení na vysoké školy mělo za následek,
že se žáci věnovali přípravě na pohovory a někteří z nich
pak již neměli zájem o další práci a úspěch v olympiádě.
Samozřejmě, že olympiádě konkurují některé jiné méně
náročné soutěže.

Neuspokojivou připraveností našich žáků v matema-
tice se budou muset zabývat nejen pracovníci olympiády,
ale i školské orgány. Bude třeba učiteli poskytnout veške-
rou pomoc v řešení této otázky, neboť především v jeho
rukou jsou možnosti, jak tuto nepříznivou situaci pře-
konat. Jinak se octneme v těžkých nesnázích a naše
hospodářství nebude mít dobře připravené odborné
kádry. Nepříznivé výsledky našich žáků v matematice se
zřejmě projevují nejenom mezi účastníky olympiády, ale
v mnohem širším měřítku vůbec, jak o tom konečně
svědčí studijní nesnáze posluchačů vysokých škol, kteří
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zápasí nejen s matematikou, ale i s jinými disciplínami,
které se o matematiku opírají. Patrně ještě méně příznivá
situace, pokud jde o připravenost ve školské matematice,
je mezi těmi absolventy středních škol, kteří odcházejí
ze školy přímo do praxe.
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III. Přípravné úlohy I. kola1.Kategorie A

1. Určete všecka celá čísla x3 y, která vyhovují rovnici
(3x + J>) (x +y) = p ,

kde p je dané prvočíslo.
2. Určete pět po sobě jdoucích členů geometrické po-

sloupnosti, jejichž součet je 5a a součin b5. Proveďte
diskusi.

3. Určete oblast všech bodů v rovině, jejichž pravoúhlé
souřadnice vyhovují nerovnostem

2x -\-y ^ 2,5, sin(j; — x) < 0 .

4. Vyjádřete délky úhlopříček tětivového čtyřúhelníku
pomocí délek jeho stran. (Použijte kosinové věty.)

5. V rovině je dán svou polohou čtverec ABCD a
pevný bod Q, který neleží na obvodu čtverce. Buď P
libovolný bod obvodu čtverce. Nad úsečkou QP se-
strojme rovnostranný trojúhelník PQR.

Vyšetřte, jaký útvar vyplní body R3 když bod P pro-
bíhá obvod daného čtverce.

• 6. Je dána krychle ABCDA'B'C'D'. Vyšetřte geo-
metrické místo bodů této krychle, jejichž vzdálenosti od
rovin ABC3 ABA'3 ADA' mají součet AB.
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2.Kategorie В
1. Vypočtěte kolika nulami končí dekadický zápis

čísla 100! (100 faktoriál).
2. Vyšetřte průběh funkce

у — x — X2
a načrtněte její graf. Dokažte, že platí у ^ У2 pro
všecka x, pro něž je funkce definována.

3. Určete koeficienty a, b, c, d dvojčlenů ax + b,
cx + d tak, aby byly splněny zároveň tyto podmínky:

a) (ax + b)2 + {cx + d)2 = x2 +1 pro všecka x;
b) {ax + b) {cx + d) = 2 pro x = 2.
4. Vyjádřete délky stran pravoúhlého trojúhelníku po-

mocí jeho obvodu 2л: a obsahu^2.
5. Je dán pevný bod A, přímka p a kladné číslo r.

Kružnice k prochází bodem A, má poloměr r a tečna
směru p se jí dotýká v bodě X. Vyšetřte geometrické
místo bodů X.

6. Buďte w, w, p velikosti tří stěnových úhlopříček
kvádru, které vycházejí z téhož vrcholu.

Vypočtěte jeho a) objem, b) obsahy stěn, c) rozměry.
Diskuse vzhledem к m, w, p.3.Kategorie C

1. Jestliže přirozené číslo n není dělitelné sedmi, pak
jedno z čísel w3 + 1 a n3 - 1 je dělitelné sedmi.

2. Řešte soustavu rovnic

У + p2 — 4
p2 - 4

(/> — 2)2x — 2py — 2p2x
o neznámých x, jy, je-li dáno reálné číslo p.

x + у
= 1,

2? +4
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„3. Jestliže pro čísla а, b platí а + Ь — —5, potom
výraz

а2 — ab + b2 а2 — ab — 2b2'1
a3 + 2a2b + ab2 1 a + b (a + 6)3

2a

a2 — b2

má pro všechna a, b stále touž hodnotu; stanovte ji.
4. Je dána kružnice k == (5, r) a přímka p, jejíž vzdále-

nost od středu 5 je d. Sestrojte čtverec, jehož jedna
strana leží v přímce p a jehož protější strana je tětivou
kružnice k. Diskuse.

5. Je dán čtverec ABCD o straně délky p a v něm dvě
čtvrtkružnice o středech A} В (A, C jsou krajní body
jedné, В, D krajní body druhé). Vypočtěte poloměr x
kružnice k} která leží ve čtverci, dotýká se obou čtvrt-
kružnic a úsečky BC. Potom kružnici k sestrojte.

6. Jsou dány délky a, b odvěsen pravoúhlého trojúhel-
niku ABC. Osa jeho pravého úhlu protne přeponu
v bodě M3 kolem něhož opíšeme kružnici k = (Aí, x) tak,
aby se dotýkala obou odvěsen.

Vypočtěte poloměr x této kružnice, délky úseček AM}
BM a jejich poměr.

a — b

i

4. Kategorie D

1. Je-li n libovolné přirozené číslo liché, je číslo
(n2 — 1) {n + 3) dělitelné číslem 24; dokažte.

2. Pěticiferné číslo *378*, kde hvězdičky znamenají ne-
známé cifry, je dělitelné číslem 72. Určete úsudkem a
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výpočtem chybějící cifry. (Návod: Rozložte 72 v součin
dvou nesoudělných čísel.)3.Dokažte, že hodnota výrazu

abbc ac
V =

(ia — b)(a — c) (b — c)(b — a) (c — á)(c — tí)
(а Ф b‘, а Ф c\ b Ф č)

nezávisí na číslech a, b} c.

4. Nádražní chodba dlouhá 42,8 m a široká 9,2 m je
vydlážděna čtvercovými dlaždicemi dvojího druhu: strana
větší dlaždice je o 10 cm větší než strana menší dkždic^.
Obrubu dlažby tvoří jedna řada menších dlaždic; celkem
je jich 332. Ostatní část chodby je vydlážděna většími
dlaždicemi. Vypočtěte rozměry dlaždic a počet větších
dlaždic.

5. Je dána kružnice k == (S’, r = 4 cm). Vepište do ní
rovnoramenný lichoběžník tak, aby se z bodů 5 jevila
jeho ramena pod úhlem 90° a aby prodloužená ramena
svírala úhel 45°.6.Jsou dány 3 různé body А, В, C. Narýsujte všecky
takové přímky, z nichž každá má od bodů A, B3 C stejné
vzdálenosti.

Rozhodněte, za kterých podmínek je úloha řešitelná
a kolik má řešení.
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IV. Řešení úloh ze soutěže

1. ÚLOHY I. KOLA KATEGORIE A

1. Je dána velikost výšky v příslušné к přeponě právo-
úhlého trojúhelníku a poloměr q kružnice tomuto troj-
úhelníku vepsané.

a) Vypočtěte délku přepony c pomocí čísel v, q.
b) Sestavte kvadratickou rovnici (o jedné neznámé),

jejímiž kořeny jsou délky odvěsen a, b uvažovaného troj-
úhelníku.

Pro které hodnoty v a q existuje takový pravoúhlý
trojúhelník ?

Řešení, a) Mezi délkami q, v, a, b, c jsou tyto vztahy:
2Q -(- C '=■ CL -(- b ,

vc — ab ,

c2 = a2 + b2.

(la)
(lb)
(lc)

První rovnost se odvodí z délek tečen vedených к ve-
psané kružnici z vrcholů trojúhelníku, druhá plyne ze
vzorce pro obsah, třetí z věty Pythagorovy. Na základě
rovnosti (a + b)2 = a2 + b2 + 2ab sestavíme rovnici
pro c

(2q + c)2 — c2 + 2vc
a odtud

2{?2 (2)c —

v - 2q 5
neboť v > 2q.
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b) Z (lab) vypočteme s použitím vzorce (2)
2qív

v — 2q '
a b = 2q —

v

~ Q ab =

-2e5
Délky odvěsen a, b jsou tedy kořeny kvadratické

rovnice

2q2v

Nyní odpovíme na otázku, pro které hodnoty v} q existuje
takový pravoúhlý trojúhelník.

Má-li být úloha řešitelná, musí vyjít c > 0; podle (2)
pak musí být v — 2q > 0 neboli

v > 2q .

(3)= 0.
v — 2Q

(4)
Diskriminant rovnice (3) je

(p ~ g)2 2q2v ]-= 4[e2D
(p - 2qY v — 2q

2 fe2 + 2QV - P2) =
4Q*

(p - 2o)
4g2

2 [2q2 - (e - p)2] =
(P - 2q)

ž ^2 + q - p) teV2 - e + o).4^2
(p - 2g)

Podle (4) je £»]/2 — p + v >0; platí tedy D ^ 0 tehdy
a jen tehdy, je-li q{]/2 -J- 1) — © ^ 0 neboli

® á e(i + V2). (5)
Dokážeme, že nerovnosti (4), (5) udávají nejen nutnou,

ale i postačující podmínku řešitelnosti úlohy.

31



Platí-li totiž (4) i (5), vypočteme kořeny rovnice (3)

, = í]Id =
V — 2Q *

(V — Q ± IV + 2QV — V2) .
в (6)

v — 2Q
Oba tyto kořeny jsou kladná čísla, neboť podle (4) je
v — q > 0 a v — q > ]/q2 + 2qv — v2\ platí totiž po-
dle (4)

(v — q)2 — (]V + 2qv — v2)2 =
= — 2@г> + é?2 — Q2 — 2рг> + v2 —

= 2v2 — 4qv = 2z;(z> — 2o) > 0.
Existuje pravoúhlý trojúhelník, jehož odvěsny mají

délky

v i-27 — 6 + V?2 + ~ ^2) =

+ ip,

a' =

= e(p - e)
V ~ 2Q

v Z72q ^ — l/^2 + 2qv - v2) =
_ g(p — e)

“

г; — 2o

V =

i]/D.
Jeho přepona c' má pak délku [opět s použitím (4)]

ga(p - q)2
{v - 2qY

c' =
2 + 2-D —

V
2 [(© — e)2 + e2 + 2gz> — г;2] =

4cd

(p — 2g)2 v — 2q'

O - 2o)
2o2
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Tento pravoúhlý trojúhelník má výšku v' danou vzorcem
q\v - g)2
(y - 2q)

a'b' ~ 2Q
_

2 í?2

2 [O - Qf -Q2- 2qv + p2] * ~2g=
2- • 2^(z; - 2p). -

-z;' = —r-

c'

í?2
(z; - 2o)

02 -2^
= v.

(z; - 20)
Poloměr q' vepsané kružnice se vypočte podle vzorce

e' = *' -c' = K<*' + *'-0,

202

tj.
i 20p - 20) ■ _

»-2e
= i [~20p — g) _ 2022

[ v — 2q v — 20
-e'

Tím je dokázána postačitelnost podmínek řešitelnosti
(4) a (5).

Jsou-li splněny podmínky (4) a (5), má úloha b) jediné
řešení.

2. Buď dána kružnice k a její určitý průměr AB
délky 2r. Z bodu A se dá do pohybu bod X a s ním
v témže okamžiku z bodu В bod Y; přitom se body X, Y
pohybují po kružnici k v témže smyslu. Bod X se po-
hybuje rovnoměrně zrychleně a při prvním průchodu
bodem В je jeho rychlost v; bod Y se pohybuje rovno-
měrně rychlostí c.

Určete rychlosti c, v tak, aby byly splněny tyto dva
požadavky:

(1) Bod X dostihne poprvé bod Y za bodem A3 ale
před bodem B.

(2) Když po třech obězích bod X dospěje do polohy A3
tu současně bod Y dospěje do polohy B.
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Řešení. Označíme sx (s2) dráhu, kterou vykoná bod
X(Y) za t vteřin; pak je

sx = \at2, s2 = ct,
kde a je zrychlení pohybu bodu X. Urazí-li bod X polo-
kružnici AB za t0 vteřin, platí za předpokladu, že r = 1:

7Г = \atl, v = at0;
odtud plyne

v2
a

2n *

Nechť bod X dostihne bod У poprvé po r vteřinách;
pak platí

v2
l._ ř2 _2 2тг* cř тс

neboli
(1)V2t2 — 47TCÍ — 4712 = 0 .

Rovnice (1) má jediný kladný kořen
ř = ^(c + l/c2 +г>2).

Doby, které potřebuje bod У к tomu, aby poprvé dospěl
do bodu ^4, resp. Б, jsou —, resp. —. Podle (2) tedy
má platit

(2)

7u 2iz _ i —— у 2тс
7 (í +l/í2 +"!)S7’

Označme = Я, kde Я > 0, Podmínky (3) lze pak
psát ve tvaru

(3)

1 < 2Я2 +2A]/l + Я2 <2. (3')
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Z pravé části nerovností (3') plyne
A < iV3 == 0,577.

Z levé části nerovností (3') plyne
1 - 2A2 < 2A]/l + A2.

Rozeznávejme dvě možnosti:
Případ [1]. Nechť je 1 - 2A2 <_0 neboli A > \fl (tj.

A > 0,708); protože je |]/3 < |j/2, nedostaneme vzhle-
dem ke (4) žádné řešení nerovností (3').

Případ [2]. Nechť je 1 — 2A2 > 0 neboli A < ||/2.
Potom z (5) řešením obdržíme j]/2 < A, kde j]/2 =

0,353. Se zřetelem na (4) tedy nutně platí
i]/2 < A < il/3;

(4)

(5)

(6)
obráceně je pro tato A vztah (4) zřejmě splněn. Z druhé

TJ2
— 1

. _ #2
2 2тг 5

2w7c = cř, kde я je jisté přirozené číslo, které máme určit.
Vyloučením r z těchto vztahů plyne

podmínky textu úlohy plynou vztahy 6re

4тг2я2
24-rc2 = z;2 *

c2

neboli я = А]/б. Znásobme strany nerovností (6) čís-
lem ]/6; obdržíme |]/з < я < ]/2 (tj. přibližně 0,866 <
< я < 1,42). Tomu vyhovuje jediné přirozené číslo

cl i—
n = 1. Je tedy — = neboli v = cl/б, kde kladné

v [/6
číslo c lze volit libovolně; tím jsou určeny všechny dvojice
čísel c, v, pro něž nastává v textu popsaná situace.

3. Určete velikosti všech ostrých úhlů a, pro něž
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obě čísla
tga

tg“ ’ tg3a
jsou přirozená.

Řešení. Ze vzorce tg2a =
2tga

se odvodí vzorec
1 — tg2a

3tga — tg3a
1 - 3tg2a“ 5 (1)tg3a =

který platí pro všecka přípustná a, 3a.
[Je-li 2a nepřípustná hodnota, je třeba vzorec (1)

ověřit přímo dosazením.]
Označme tga = a; pak je podle (1):

За2 - 1

a2 - 3 * (2)tga:tg3a =

Označme tga: tg3a = b. Z (2) vyplývá
3b - 1
b - 3 '

Rovnost (3) přepíšeme do tvaru

3+i

a2 = (3)

8
a2 = (3')-3'

8
Protože a, a2 jsou celá čísla, je i číslo ^ - celé,

tj. b — 3 je dělitel čísla 8. Mimoto je b ^ 1, tedy b —
— 3^—2. Pro b — 3 máme tudíž jen tyto možnosti:
-2, —1, 1, 2, 4, 8.
Protože a2 je kladné číslo, které je druhou mocninou při-
rozeného čísla, vyhovuje podle tabulky na str. 37 jen
a2 = 4, a — 2, 6=11. Z rovnice tga = 2 dostaneme
podle tabulek jediné řešení a == 63°26'.
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Tabulka:

-l i 2 4-2 86-3

2 56 1 4 7 11

8 -4 8 4-8 2 1
6-3

а* -1 -5 11 7 5 4

4. Ак (nekonečná) aritmetická postupnost’ prirodze-
ných čísel obsahuje tretiu mocninu prirodzeného čísla,
potom obsahuje nekonečne mnoho takých mocnin.
Dokážte!

Uveďte příklad (nekonečnej) aritmetickéj postupnosti
prirodzených čísel, ktorej žiadny člen nie je treťou moc-
ninou prirodzeného čísla.

Riešenie. a) Nech aritmetická postupnost’ s diferen-
ciou d > 0 obsahuje mocninu a3 (a prirodzené). Potom
obsahuje tiež mocninu {a -{-kdy, kde k je lubovolné
prirodzené číslo. Platí totiž
(a + kd)z — a3 = kd[(a + kd)2 + {a + kd)a + a2] = md,
(m > 0 celé),
tj.

(a + kd)3 = a3 + md,
čím je tvrdenie dokázané.

b) Príkladom nekonečnej aritmetickej postupnosti,
ktorej žiadny člen nie je treťou mocninou prirodzeného
čísla, je postupnost’

5, 105, 205, 305,... (1)
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s diferenciou 100. Jej všeobecný člen možno napísať
v tvare

5 + lOOw (kde n 2> 0 je fubovolné celé číslo).
Ak je 5 + lOOtt — a3, kde a je prirodzené číslo,

končí číslo a cifrou 5, t. j.
a = 10a +5 (a ^ 0 celé).

Ďalej je
a3 - (10a + 5)3 = 1000a3 + 1500a2 +

+ 750a +125 .

Ak je a nepárne, vyplývá z (2)
a2 = Ю0/5 + 75 (kde p ^ 0 je celé),

ak je a párne, vyplývá z (2)
a3 = lOOy + 25 (kde у ^ 0 je celé).

Žiadne z týchto čísel nie je však v tvare 100?z + 5
(n ^ 0 celé) číže nemóže byť členom postupnosti (1).

(2)

5. Je daný rovnostranný trojuholník ABC se stranou
dížky 1.

Vyšetříte geometrické miesto bodov X v priestore,
pre ktorých vzdialenosti od bodov A, В, C platí

AX: BX: CX = 1:2:3.

Riešenie. Vyšetřujme najskór geometrické miesto
bodov X roviny q = ABC, pre ktorých vzdialenosti od
bodov A} В platí AX: BX =1:2. Toto geometrické
miesto bodov je — ako je známe — Apolloniova kružnica
kx so stredom Sx a polomerom rv Určenie středu Sx
a poloměru rx sa prevedie pomocou obr. 1. Priemerom
kružnice kx je úsečka MXNX taká, že platí AMX: BMX =
= ANX: BNX =1:2. Preto je ASX = \AB = b BSX =
— Is ri = §• Geometrické miesto všetkých bodov X
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v priestore, pre ktorých vzdialenosti od bodov A3 В
platí АХ: BX = 1:2, je útvar, ktorý vznikne rotáciou
kružnice kx okolo priamky AB3 je to gulová plocha -
so stredom Sx a polomerom rx = f.

Analogicky nájdeme geometrické miesto bodov X
v rovině q3 pre ktorých vzdialenosti od bodov A3 C platí
AX: CX =1:3. Je to kružnica kz so stredom ^2 a

39



polomerom r2 — §5 přitom platí AS2 — %3 CS2 — f.
Rotáciou kružnice k2 okolo priamky AC vznikne gulová
plocha x2 so stredom S2 a polomerom r2 = f. Situácia
v rovině q je nakreslená na obr. 2. Hladané geometrické
miesto bodov M je prienik gulových ploch x13 x2.
Útvar M nájdeme, ak určíme spoločné body kružnic k13 k2
a necháme ich rotovat’ okolo priamky SXS2.

Třeba teda výpočtom vyšetriť vzájomnú polohu kružnic
k13 k2. Z trojuholníka AS1S2 dostaneme podlá kosínusovej
vety

c2 = SXS! = ASl + ASI -2 ASX. AS2 cos 60°,
čiže

C — 9 T )4 ^882 — 5Te4 3

t. J.
C = h •

Ďalej je
rl +ř2 = f + f = ff 3

Platí teda rovnost’ c = rx — r2, a preto sa gul’ové plochy
«и x2 navzájom dotýkájú v bode P. Hladané geometrické
miesto bodov je jediný bod P.

Bodom P prechádza aj kružnica k3J ktorá je geometrie-
kým miestom bodov X roviny q, pre ktorých vzdialenosti
od bodov Вj C platí

„ „ 2 a 7
^1 — Г2 = 3 — f — 24 •

BX:CX= 2:3.

Střed S3 leží na priamke BC, BS3 — f, CS3 — f, polo-
mer kružnice k3 je r3 — f. Pretože hladané geometrické
miesto má jediný bod P, dotýkajú sa tiež dvojice kružnic
klt k3 a k2J k3; preto ležia body S1} S2i S3 na priamke.

Iné riešenie. Označme M patu kolmice spustenej
z hladaného bodu X na rovinu q3 ďalej označme dx — AM3
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d2 = BM, d3 = CM, z = XM. Podlá podmienky úlohy
je (obr. 3):

2]/dl + z2 = 1Idl + ^ >

зу5Г+7г = У5Г+72,
8г8 = Й - 9dl.

V • V

cize

(i)Зя2 = dl — 4;d% ,

tf, ^
r

\
■4

Xy"'-*
♦r

4^

$

0=p

Obr. 3

V rovině (5 umiestnime sústavu kartézských súradníc tak,
aby kladná poloos x bola polpriamka BA (je teda bod В
počiatkom P súradnic) a aby bod C mal zápornú súrad-
nicuy. Súradnice bodu M v tejto sústave označíme [x3 jy].
Potom je

rfj = (l-*)»+У, di = x*_+y\
dI = (*-«2 + Cv +Ф)*.

Ak vylúčime z2 z oboch rovnic (1), dostaneme
8i2 = 5Jf + 3df .

Ak do vztahu (3) dosadíme z (2), po úpravě dostaneme
13jc — 3]/3 — 8 .

(2)

(3)

(4)
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Ak zo vztahu (4) vyjádříme
8+31/3 r 5 3l 3 v

13 5 * “ 13
a dosadíme do prvých dvoch rovnic (2), bude

25 301/3 , 196 _

-y+my>

(5)

dl = 169 169

64 + 48]/3 4
169 169

169
У •dl 196

Z týchto dvoch vzťahov dosadíme teraz do prvej rov-
nice (1). Po vynásobení číslom 169, sčítání a krátení
troma dostaneme

12 - 56]/3у + 196y2 + 169*2 = 0,

(13*)2 +(14з;-21/3)2 = 0.
Stadia! vyplývá z = 0, у = \]/3 a ďalej z prvej rov-
nosti (5) x = f.

Úloha má teda jediné riešenie — bod X so súradni-
— Jy-; mimo to je * = 0.

číže

cami x = f, у

6. Buď dán čtyřstěn A1A2A3Aá, který má tyto vlast-
nosti: Lze sestrojit dvě (různé) kulové plochy, z nichž se
každá dotýká všech šesti přímek, na nichž leží hrany
daného čtyřstěnu. Přitom každá z těchto kulových ploch
se dotýká přímky A3A4 ve vnitřním bodě úsečky A3A4,
kdežto přímky A4A2 se dotýká v bodě, který nenáleží
úsečce A4A2.

Dokažte, že každé dvě protější hrany daného čtyř-
stěnu mají touž délku.
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Řešení. Každá z uvedených dvou kulových ploch
protíná rovinu AXA3A4 v kružnici, která se dotýká všech
tří přímek AXA3, A3A4 а A4AX; je to tedy bud kružnice k2
vepsaná trojúhelníku AXA3A4, nebo kružnice h2 vně
vepsaná ke straně A3A4. Obdobně protíná každá z uvede-
ných dvou kulových ploch rovinu A2A3A4 buď v kruž-
nici kx vepsané trojúhelníku A2A3A4 nebo v kružnici hx
vně vepsané ke straně A3A4. Žádná z našich kulových
ploch nemůže obsahovat kružnice k13 k2, neboť v tomto
případě by kulová plocha obsahovala vnitřní body pěti
hran čtyřstěnu (AXA3, AXA4, A3A4, A2A3, A2A4), proťala
by rovinu AXA2A3 v kružnici vepsané trojúhelníku
AXA2A3} a tudíž by se dotýkala přímky AXA2 ve vnitřním
bodě hrany AXA2, což odporuje předpokladu. Také žádná
z uvedených kulových ploch
nemůže obsahovat obě kruž-
nice hXi h2, neboť v tomto
případě by se dotýkala obou
přímek AXA3, A2A3 v bodech
ležících mimo úsečky AXA3,
A2A3j proťala by rovinu
AxA2A3 v kružnici vně ve3 j
psané trojúhelníku AXA2A- a3
ke straně AXA2, a tudíž by
opět obsahovala vnitřní bod
úsečky AxA2.

Naše kulové plochy obsahují tedy kružnice kx, h2
(plocha xx) a kružnice k2, hx (plocha x2). Plocha xx protíná
tedy rovinu A2A3A4 v kružnici kx vepsané trojúhelníku
A2A3A4 (obr. 4); body dotyku označme X2, X3, X4. Dále
označme aik délku hrany AtAk (indexy uspořádáme tak,
aby bylo i < k). Podle známého planimetrického vzorce
platí

4*

&

> 4j

Obr. 4

(1)A2X3 — A2X4 — "2 (#23 T #24 ^34) •
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Plocha xx protíná dále rovinu AXA2A3 v kružnici k[
vně vepsané trojúhelníku A1A2A3 ke straně A2A3; body
dotyku na přímkách AXA2, AXA3 označíme Y2) Y3 podle
obr. 5; bod dotyku s přímkou A2A3 je už výše zmíněný
bod XPodle známého planimetrického vzorce je

A2Y2 = A2X& — £(#i3 + a23 U12) • (2)

Spojením vzorců (1), (2) dostaneme po úpravě vztah
^24 ~Ь a14 = ^34 “Ь Яхз .

Obdobný vztah dostaneme pro kulovou plochu x2\
odvodíme jej z rovnosti (3) jednoduše tím, že indexy

(3)
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1,2,3,4 nahradíme po řadě indexy 2,3,4,1. Vyjde a31 +
+ я23 = a41 + a24 neboli po úpravě

*24 *14 = *23 + *13 •

Spojením rovností (3), (4) dostaneme po úpravě
*12 *34 == *14 *23 •

Vyměníme-li v rovnosti (5) indexy 1,2 (kulové plochy
x13 x2) nebo indexy 3,4 nebo oboje zároveň, dostaneme
zřejmě opět platnou rovnost, kterou lze odvodit stejně
jako rovnost (5); tím vyjdou tři další rovnosti

*12 *34 == *24 *13 3

*12 *34 = *13 *24 3

*12 *34 = *23 *14 •

Spojením rovností (5), (5c) vyjde a12 — a34 = 0, a23 —
— a14 = 0; spojením rovností (5a), (5b) vyjde a12 — %4 =
= 0, a13 — a24 = 0, tj. úhrnem

*12 = *34 3 *23 = *14 3 *13 == *24 3

lak jsme měli dokázat.

2. ÚLOHY II. KOLA KATEGORIE A

1. Ve čtyřstěnu ABCX je stěna ABC daný rovno-
stranný trojúhelník o straně délky a. Označme Y střed
kulové plochy opsané čtyřstěnu ABCX.

Vyšetřte geometrické místo středů F, jestliže bod X
probíhá přímku p kolmou к rovině ABC s výjimkou
průsečíku D přímky p s rovinou ABC.

Proveďte diskusi vzhledem к vzdálenosti d bodu D od
středu trojúhelníku ABC.

Řešení. Označme q rovinu ABC. Všecky středy F leží
na kolmici о к rovině q = ABC, vedené středem S

(4)

(5)

(5a)
(5b)
(5c)
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kružnice k opsané trojúhelníku ABC. Je zřejmé, že kulová
plocha, opsaná každému ze čtyřstěnů ABCX, obsahuje
kružnici k. Nyní je třeba rozlišit 3 případy:

[1] bod D leží uvnitř kružnice k (obr. 6);
[2] bod D leží na kružnici k (obr. 7);
[3] bod D leží vně kružnice k (obr. 8).

z

в

V případě [1] je každý bod Z přímky o středem plochy
kulové, která obsahuje kružnici k a protíná přímku p ve
dvou bodech X13 X2i z nichž žádný neleží v rovině o.
Tato kulová plocha je tedy opsaná čtyřstěnům ABCX13
ABCX2• Hledaná množina bodů je přímka o.

V případě [2] zvolíme nejprve bod Z=£S; pak je
přímka p sečnou kulové plochy; jeden z bodů Xl3 X2,
např. bod Xx leží mimo rovinu q, kulová plocha je opsaná
čtyřstěnu ABCX13 tj. bod Z náleží hledané množině
bodů. Je-li Z = S, je přímka p tečnou příslušné kulové
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plochy, nevznikne čtyřstěn ABCX, tj. bod S nenáleží
hledané množině bodů. V případě [2] je tedy hledaná
množina bodů přímka
o bez bodu 5.

V případě [3] sestro-
jíme nejprve obě kulo-
vé plochy, které obsa-
hují kružnici k a dotý-
kají se přímky p. Za tím
účelem vedeme rovinu
a = Sp (obr. 9) a ur-
číme její průsečíky U3
V s kružnicí k. V rovi-
ně a sestrojíme obě
kružnice k13 k23 které
procházejí body U, V
a dotýkají se přímky/).
Body dotyku označíme
po řadě XX3 X23 středy
kružnic označíme Y13 Y2. V případě [3] je hledaná mno-
žina bodů přímka o bez vnitřku úsečky YXY2.

Skutečně, body Y13 Y2 zřejmě náležejí hledané mno-
žině bodů.

Leží-li bod Z přímky o vně úsečky YXY23 pak kruž-
nice k' se středem Z, procházející body U3 V3 protne
přímku />, neboť má poloměr větší než kružnice kx.
Průsečíky přímky p s kružnicí k! leží mimo rovinu q3
vzniknou tedy dva čtyřstěny ABCX3 pro něž je bod Z
středem opsané kulové plochy. Je-li T bod uvnitř
úsečky YxY23 má kružnice (Г; TU) menší poloměr než
kružnice kX3 proto je přímka p její nesečnou, tj. bod T
nenáleží hledané množině bodů.

Tím je úloha rozřešena.

6“,
Tt C JZ

ч

\

\
\

uf/osV' / /
/ /

A /
/ Ы/ /

/

!P

Obr. 8
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2. Najděte všechny dvojice reálných čísel x, y, které
splňují soustavu rovnic

cos* — cosy = sin(* — 3;) ,

sin л: — siny = sin2* — sin(x +jv) •

V rovině pravoúhlých souřadnic x3y pak zobrazte všechna
řešení, pro která platí

(S)

О ^ x ^ 2п 3 0 ^ у 5^ 2u .

Řešení. Nechť je x, у řešení soustavy (S). Potom
každou z rovnic upravíme, jak je dále uvedeno.

I. Úprava první rovnice (S). Postupně platí
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—2sin£(* +jy) sin-|(* — у) — 2sin|(* — у) cos£(x — у),
sin£(* — у) [sin|(* + у) + cosiO — у)] = О ,

sin£(* — у) {sini(x +у) + sinter — К* ~У)]} = О,
sin^(* — у) sinQjy + irc) cos(£* — Jtt) = О ,

sin|(* — у) sin(£j; + ítc) sin(|* + In) = О .

Nutně platí jedna z rovnic (písmena k, /, m, n apod.
dále značí libovolné celé číslo):

a) Kx —■ y) — k'n neboli
у — x — 2k'n = x + 2kn (kde k = —(1)

b) 2У + — ln neboli
У — — \n + 2 ln — f7Г + 2STC;

c) £* + |tc = m'n neboli
x = — -Jtc -f 2ш'тс = — + 2(m + 1)tc =

= frc + 2mn {m — m + 1) .

Obráceně snadno zjistíme, že řešení rovnic (1) až (3)
splňují první rovnici (S).

II. Úprava druhé rovnice (S). Postupně platí:
2sin£(x — y) cos^(x +jy) = 2cos£(3x +jy) sin|(x — y),

sm$(x — y) [cos1(3* +y) — cosK* +y)] = 0,
sinJ(* — y) sin(* + %ý) sin-|* = 0 .

Nutně platí jedna z rovnic:
d) £(* — y) = k'n neboli rovnice (1);
e) * + \y = nn neboli

у = —2x + 2nn\
f) \x = pn neboli

* = 2pn .

Obráceně výsledky (1), (4), (5) splňují druhou rovnici (S).

(2)

(3)

(4)

(5)
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III. Nyní stanovíme řešení dané soustavy tím, že kom-
binujeme výsledky (1), (2), (3) a výsledky (1), (4), (5).
Jsou tyto možnosti:

Případ [1]. Řešení
v

у — x + 2kn
vyhovuje oběma daným rovnicím. Jeho grafem je přímka;
ve čtverci ABCD, kde A = [0, 0], В = [2тг, 0], С =
= [2л;, 2n], D = [0, 2tc] dostáváme jako graf úsečku AC
a body B, D (obr. 10). Tím je případ [1] vyřízen.

(6)

D C
Л 1 i r 1 i 1 г

■i

-1 1- -1-ť

i 1Д
i- -*x -i- -!

1- - f 1-tt-

"Фл - 1 \
' ! !tiii
i 1—i- —i

j— -f ^ —Лn
l

-i -—i T —

—i 1 — i ■+ —i 1-f -

h—i -1

j_

A ~0 1л ? ~Л

Obr. 10

Případ [2]. Výsledky (2), (4) vyžadují, aby —2x +
+ 2mc = — \-к + 2/7c, neboli x = Í7r + qn, takže
máme řešení

x = \n -f q-rt, у = f7i -)- 2í7t . (7)
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Viz body 7l3 72 v grafu.
Případ [3]. Výsledky (2), (5) dávají

x = 2piz , у — fтс + 2sk . (8)
Viz body 813 82 v grafu.

Případ [4]. Výsledky (3), (4) dávají
X = 2ГС + 2WTT , у = 7t -f- 2wr. (9)

Viz bod 9 v grafu.
Případ [5]. Výsledky (3), (5) nedávají řešení soustavy.
Závěr. Řešení soustavy je dáno výsledky (6) až (9).

3. V rovině je dána
úsečka MN délky d a .

uvnitř této úsečky je
dán bod O tak, že platí
OM > ON. Dále jsou
dána kladná čísla />, q. k.

Sestrojte lichoběžník
ABCD takový, že bod
M půlí jeho základnu
АВ, bod N půlí základ-
nu CD a že bod O je /
průsečíkem úhlopříček i
AC3 BD3 jejichž délky
po řadě jsou p3 q.

Proveďte diskusi ře-
šitelnosti vzhledem к
daným číslům d3 p3 q.

Řešení (obr. 11). Stejnolehlost se středem O, která
převádí vrchol A ve vrchol C, převádí body B3 M po
řadě v body D3 N. Je totiž AB || CD a spojnice středů

\
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obou základen lichoběžníku prochází — jak známo —

průsečíkem obou úhlopříček.*)
Dovedeme tedy určit vzdálenosti OA, OB konstruk-

tivně i početně tím, že rozdělíme úsečky délek p, q
po řadě v poměru OM: ON — k. Protože je OM +
+ ON — d, platí

'

OM =
kd d

(1)ON =
k + 1 5

OA - kpOA ~

k + 1 5

k +1 ’

ов = тЪ- (2)

O; kpBod A náleží tedy kružnici kx = ^ ) , bod Вk + 1

kružnici k2=(o, - - ) . Mimoto jsou body A, Вk 1

souměrně sdruženy podle středu M; sestrojíme-li tedy
obraz k'z kružnice k2 v souměrnosti se středem Aí,
náleží bod A kružnicím kx, kz. Mají-li tyto kružnice
společný bod A mimo přímku AÍO, tj. protnou-li se,
lze sestrojit další vrcholy В, C, D, tj. lichoběžník žádaných
vlastností.

Kružnice k'2 má střed O' ležící na přímce OM, pro
který platí OO' = 2. OM, poloměry kružnic k2, k2 jsou
si rovny. Je tedy podmínka pro to, aby se kružnice kx, k’2
proťaly, dána podle (1), (2) nerovnostmi

2kd kqkpkp kq
<<

&-f~l k + 1 k \k +1 k +1
k

Uvedené nerovnosti lze dělit kladným číslem k + l5

*) Bod O je vnitřním středem stejnolehlosti kružnic sestrojených
nad průměry AB, CD-, tyto kružnice mají středy v bodech M, N.
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dostaneme
\p — q\ < 2d <p + q.

Z podmínky (3) je patrné, že řešitelnost úlohy nezávisí
na čísle k, tj. na tom, v jakém poměru dělí bod O
úsečku MN.

(3)

4. Nájdite všetky reálne čísla p, pre ktoré nerovnost’
лг+1/l + px — 2p ^ l

má aspoň jedno reálne riešenie x.

Riešenie. Úpravami danej nerovnosti dostaneme po-
stupně

]/px (1)2p + 1 ^ 1 — x,

px — 2p + 1 ^ 1 — 2x + x2,
x2 —■ (p + 2)x + 2p ^ 0 .

Kvadratický trojčlen na 1’avej straně (2) možno rozložit’:
x2 — (p + 2)x + 2p — (x — p) (x — 2).

Nerovnost’ (2) nahradíme teda nerovnosťou
(x-p){x- 2) s o .

(2)

(3)
Riešenia nerovnosti (3) sú dané vzťahmi

x p , x ^ 2 (4a)
alebo

(4b)я fS* p , # ^ 2 .

Skúška. Ak majú byť čísla dané vzťahmi (4a), (4b)
riešeniami danej nerovnosti, resp. nerovnosti (1), musí
platit’

px — 2p +1 ^ 0, 1 — # ^ 0

p(x - 2) +1 a o,
x^l. '

čiže
(5a)
(5b)
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Za týchto predpokladov možno obrátit’ predchádzajúci
postup a odvodit’ z nerovnosti (3) nerovnost’ (1).

Druhá nerovnosť (4a) a nerovnost’ (5b) sú v spore.
Preto vztahy (4a) nedávájú žiadne riešenie úlohy.

*

P n 2
* ŠP

Obr. 12

Vyšetřujme čísla dané vzťahmi (4b) a (5b). Na číselnej
osi sú znázorněné bodmi troch súhlasných polpriamok
(viď obr. 12). Tieto polpriamky majú vždy nekonečne
mnoho spoločných bodov, teda nerovnosti (4b), (5b)
majú nekonečne mnoho spoločných riešení. Záleží ešte
na nerovnosti (5a).

Prz p — 0 je táto nerovnosť zrejme splněná pre každé x.
Ak je p < 0, je nerovnosť (5a) ekvivalentná s nerovnosťou

x ^ 2 ——:P5
nerovnosti (4b), (5a), (5b) majú teda aspoň jedno spoločné
riešenie. Ak je p > 0, je nerovnosť (5a) ekvivalentná
s nerovnosťou

1
(6)x ^ 2 .

P

Nerovnosť (6) má aspoň jedno spoločné riešenie s ne-
rovnosťami (4b), (5b) právě vtedy, ak súčasne platí

-Ui.
P ~

1
(7)

P
2 -2 -
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Prvá nerovnosť (7) je ekvivalentná s nerovnosťou
(p — l)2 ^ 0 a je splněná pre každé p. Druhá nerov-
nosť (7) má riešenie p ^ 1.

Výsledok. Daná nerovnosť (resp. nerovnosť (1)) má
aspoň jedno reálne riešenie právě pre všetky p, pre
ktoré platí p ^ 1.

3. ÚLOHY III. KOLA KATEGORIE A

1. V kvádru ABCDA'B'C'D' (kde ABCD je obdélník
a platí AA'\\ BB' || CC || DD') je AA' = d> <£ABD' =
= a, <£A'D'B = p.

Vypočtěte oba zbý-
vající rozměry kvádru,
jestliže je dáno číslo d
a oba ostré úhly a, p.
Stanovte podmínky ře- a1
šitelnosti.

Řešení (viz označe-
ní v obr. 13). Předpo-
kládějme, že kvádr da- d
ných vlastností existu-
je. Všimněme si, že oba
dané úhly a, p jsou
úhly pravoúhlých troj-
úhelníků BD'A3 BD'C3
a proto tedy ostré (je
^BAD’ = <£BCD' =
= 90°).

Označme O střed kvádru, tj. střed úsečky BD'.
Úsečky J3C, D'A' jsou souměrně sdružené podle středu O,
a proto je <$lCBD' — p.

D'

l
/

/
/

/
/ A?--V- c

/

/ ✓
/ \

2Й
'B

Obr. 13
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Označme BD' = e\ z pravoúhlých trojúhelníků BD'A3
BD'C pro délky x = AB3 у — ВС dostaneme vztahy

x = ecosoc, у = čcos/? . (1)
Z pravoúhlého trojúhelníku ABD, kde ^A = 90°,
dostaneme pomocí Pythagorovy věty
BD2 = AB2 -f- AD2 = x2 + y2 = e2(cos2oc + cos2/?) .

Z pravoúhlého trojúhelníku BD'D, kde <£D = 90°,
dostaneme pomocí Pythagorovy věty BD'2 = BD2 +
+ DD'2. Dosaďme sem z předchozího vztahu a položme
BD' = č, Z)D' = obdržíme

e2 = e2(cos2a + cos2/?) + d2
neboli

d

]/1 — (cos2a + cos2/?)
Po dosazení za do (1) zjistíme, že o číslech x3 у platí

dcosa

]/1 — (cos2a + cos2/?)J
_ dcos/?

У
У1 — (cos2a + cos2/?)

(2)

Tyto vzorce mají smysl jedině v případě, že čísla x, у
jsou kladná. Vzhledem к tomu, že a, /? jsou ostré úhly,
je dcosa > 0, dcos/? > 0; jmenovatelé zlomků ve (2) mají
smysl jedině pro 1 — (cos2a + cos2/?) > 0. Lze však psát

1 — (cos2a + cos2/?) = (1 — cos2a) — cos2/? =
= sin2a — sin2Q-n: — /?) .

Musí tedy platit sin2a > sin2(|7i: — /?); protože a, /?
jsou ostré úhly, je siná > 0, sin(^7r — /?) > 0, takže
z předchozího vztahu dostáváme, že nutně platí

siná > sin(|7T — /?),
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neboli
a > -|тс — /?,

tj-
CC + p > .

Tento fakt je patrný i geometricky z trojhranu o hranách
BA, BC, BD'.

Obráceně, platí-li o číslech d, a, (3, kde 0 < a < frc,
0 < /3 < vztah (3), dospějeme obráceným postupem
od (3) к závěru, že existují kladná čísla x,y daná vzorci (2).
Potom kvádr o rozměrech AB = x, BC — y, AA' = d
[kde x, у je dáno vzorci (2) za předpokladu, že o ostrých
úhlech a, /3 platí (3)] skutečně splňuje požadavek, že

ABD' = a, <£A'D'B = 0.
Důkaz. Podle vzorce pro délku úhlopříčky BD'

kvádru je totiž

(3)

BD'2 = AB2 + ВС2 + AA'2 =v

i2
[cos2a + cos2/? + 1 —1 — (cos2a + cos2/?)

— (cos2a + cos2/?)] =
d2

1 — (cos2a + cos2/?)5
takže

d
(4)BD' =

У1 — (cos2a + cos2/?)
Z pravoúhlého trojúhelníku i?D'Z[ plyne, že

AB
cos <$.ABD' = BD'

a po dosazení za AB = x ze vztahu (2) a za 2Ш' ze
vztahu (4) máme

cos <$.ABD' = cosa .
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Protože ide o kosiny ostrých úhlů, je <šABD' — a: po-
dobně je fCBD' = p.Ťím je řešení provedeno.

2. Dané párne prirodzené číslo 2k rozložte na súčet
dvoch nesúdelitelných prirodzených čísel x, у tak, aby
súčin xy bol čo nejváčší.

Riešenie. Dané párne prirodzené číslo 2k (kde k je
nějaké dané prirodzené číslo) rozložme na súčet pri-
rodzených čísel x, у = 2k — x. Označenie zvolme tak,
aby platilo x ^ y. Potom je

xy = x(2k — x) = k2 — (k — x)2.
Prirodzené číslo x je najváčšie právě vtedy, ak je k — x =
= 0 číže x = k, takže máme rozklad k, k.

Tento rozklad vyhovuje ďalšej požiadavke úlohy jedine
pre £=1, pretože vtedy sú čísla 1, 1 nesúdelitelné.

Vyšetřujme teraz případy, keď je k > 1. Označme
k — x — p (p prirodzené); súčin xy — k2 — p2 je tým
váčší, čím je p menšie. Rozlišujme případy, keď k je
párne, resp. nepárne.

Nech je k párne. Potom pre p = 1 sú & — 1, & + 1
nepárne čísla s rozdielom 2. Z toho vyplývá, že majú len
spoločného delitela 1 číže sú nesúdelitelné. Tento rozklad
vyhovuje teda požiadavkám úlohy^

Nech je k > 1 číslo nepárne. Čísla k — 1, k + 1 sú
párne a teda nevyhovujú požiadavkám úlohy: No,
čísla k — 2, k + 2 sú nepárne, majú rozdiel 4, pričom
čísla 2, 4 nie sú ich delitelmi. Čísla k — 2, k + 2 sú
teda nesúdelitelné a vyhovujú požiadavkám úlohy.

Závěr. Pri párnom k je híadaný rozklad
(k — 1) + {k + 1) .

Pre k — 1 je híadaný rozklad 1+1.
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Pre nepárne k > 1 je hladaný rozklad
(k — 2) + (k + 2).

3. V rovině je dána přímka MN. Uvažujme dvojici
kružnic k19 k23 které se dotýkají přímky MN po řadě
v bodech M, N a přitom se navzájem dotýkají vně.
Označme X střed úsečky PQ, kde P, Q jsou dotykové
body druhé společné vnější tečny kružnic k19 k2.

Najděte geometrické místo bodů X pro všechny dvojice
kružnic uvedených vlastností.

Řešení (obr. 14). a) Označme S13 S2 středy kružnic k19
k23 T jejich bod dotyku. Souměrnost podle osy
převede body M, N po řadě v body P3 Q. Společná
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(vnitřní) tečna m obou kružnic v bodě Г je kolmá к přím-
ce SXS2 a protne společnou tečnu MN v bodě O, z něhož lze
vést ke kružnicím kx, k2 tečny téže délky ОТ; je tedy
OM = ON, tj. bod O je středem úsečky MN. Souměrnost
podle osy SXS2 převede bod O ve střed X úsečky PQ;
přitom body O, T, X leží na přímce m a T je středem
úsečky OX, tj. platí

0X=20T. (1)
b) Z rovnoramenných trojúhelníků OMT, ONT do-

staneme

<£MTO = 90° - i <£ MOT,
<£NTO = 90° - i <£ NOT.

Sečtením rovností (2) vyjde
*£MTN = <£MTO + <$NTO =

= 180° - \{<$MOT + <£NOT) =
= 180° - 90° = 90° .

Bod T leží tedy na kružnici x sestrojené nad průmě-
rem MN', kružnice x má střed O.

Zvolíme-li obráceně libovolný bod T ^ M, N na
kružnici x, je OM — ON — ОТ. Lze tedy sestrojit
kružnici kx, která se dotýká přímek ОМ, ОТ po řadě
v bodech M, T. Obdobně lze sestrojit kružnici k2, která
se dotýká přímek ON, ОТ po řadě v bodech N, T.
Kružnice kx, &2 mají zřejmě v bodě T vnější dotyk
(ОГ je společná tečna), jsou to tudíž dvě kružnice vy-
hovující podmínkám úlohy.

Zjistili jsme tedy, že geometrické místo bodů dotyku T
vyšetřovaných dvojic krůžnic kx, k2 je kružnice x s vy-
loučením bodů M, N.

c) Vzhledem к rovnosti (1) dostaneme každý bod X
z příslušného bodu T stejnolehlostí o středu O a koefi-
cientu 2. Tato stejnolehlost převede kružnici x v kruž-

(2)
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nici x’ = (O; MN); protože z kružnice ^ byly vyloučeny
body M, iV, je hledané geometrické místo bodů kruž-
nice x' bez bodů M'} N' (viz obr. 14).

4. Jsou dány dvě kvadratické rovnice
x2 + ax + b = 0 ,

x2 + cx + d = 0
s reálnými koeficienty.

Najděte nutné a postačující podmínky mezi koeficienty
daných rovnic pro to, aby obě rovnice měly jeden spo-
léčný kladný kořen a aby zbývající kořen první rovnice
byl větší než zbývající kořen druhé rovnice.

Řešení. Nechť dané rovnice splňují podmínky úlohy;
pak jejich společný kladný kořen я vyhovuje rovnici

x2 + ax + b — (я2 + cx + d) — 0
neboli

(1){a — c)x + (b — ď) = 0 .

Z toho vyplývá, že buď
I. čísla a — c, b — d jsou obě rovna nule, nebo

II. obě čísla a — c, b — d jsou různá od nuly a mají
opačná znamení.

Zbývající kořen první rovnice je x± = —, zbývající

kořen druhé rovnice je x2~-^. Protože platí x1 > x2,
je > Oj protože je x > 0, je

(2)b > d.
Z toho vyplývá, že případ I nenastane; nastane tedy pří-
pad II a je

(3)'a < c .
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Společný kladný kořen je pak podle (1) dán vzorcem
b- d

(4)x =
c — a

Dosadíme-li z (4) do kterékoli z daných rovnic, dostaneme
po úpravě rovnost

(b — d)2 — (c — a) (ad — bc) . (5)
Vztahy (2), (3), (5) udávají hledané nutné podmínky

pro koeficienty daných rovnic. Tyto podmínky jsou však
také postačující. Platí-li totiž (2) a (3), pak kladné číslo x
dané vzorcem (4) je podle (5) kořenem každé z daných
rovnic. Zbývající kořeny jsou xx = —, x2 = — a platí
podle (4), (2)

b-d
= c — a > 0,^1 ^2 —

X

neboli xx > x2.

4. ÚLOHY /. KOLA KATEGORIE В

1. Najděte všechna alespoň trojciferná přirozená
čísla x, která mají tuto vlastnost: Číslo x a jeho druhá
mocnina x2 končí (v desítkové soustavě) stejným posled-
ním trojčíslím.

Řešení. Hledané číslo я lze napsat v tvaru
x = a . 102 + b . 10 + c ,

kde celá čísla a, b3 c splňují nerovnosti
1 ^ a , 0 ^ ^ 9 , 0 ^ c ;

(1)

9.
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Z (1) vypočteme x2:
x2 = a2. 104 + 2ab . 103 + (2ac + b2) . 102 +

+ 26c. 10 +c2.
Podle požadavku úlohy je číslo x2 — x dělitelné tisícem;

použijeme-li vztahů (1), (2), vyjde, že číslo
a2. 104 + 2ab . 103 + (2ac + b2 - a)102 +

+ (2bc — b) 10 + c2 — c

je dělitelné tisícem. Odtud plyne
(2ac + b2 — a) . 102 + (2bc — 6) . 10 + c2 —

= k . 103,
kde k je nezáporné celé číslo.

Z rovnosti (3) vyplývá, že c2 — c je dělitelné deseti;
z podmínky 0 ^ c ^ 9 dostaneme pro c čtyři možnosti:

c = 0, 1, 5, 6 .

Probereme nyní jednotlivé případy:

(2)

c —

(3)

1. Pro c — 0 dá vztah (3)
(b2 - a)102 - b . 10 = k. 103

neboli
{b2 - a) . 10 - b = & . 102.

Odtud plyne, že 6 je dělitelné deseti, tj. b — 0 a dále
a = 10 . Я (Я přirozené číslo). Máme tedy první možné
řešení .... 000, tj. čísla (aspoň čtyřciferná) končící
třemi nulami.

2. Pro с = 1 dá vztah (3) po úpravě
(b2 +fl)10 +6 = k . 102.

Jako v případě 1 odtud dostaneme b = 0, a = 10Я
(Я přirozené číslo). Druhé možné řešení je tedy ... 001,
tj. čísla (aspoň čtyřciferná) končící trojčíslím 001.
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3. Pro с — 5 dá vztah (3) po úpravě
(62 + 9a) 10 + (96 + 2) = k . 102.

Číslo 96 + 2 je tedy dělitelné deseti, 9b končí cifrou 8.
Jediný možný násobek čísla 9 je 9.2— 18, tj. b — 2.
Ze vztahu (4) pak vyjde 6 + 9a = k . 10. Číslo 2 + 3a
je tedy dělitelné deseti, 3a končí cifrou 8. Přípustné ná-
sobky čísla 3 jsou 18, 48, ..., tj. a = 6 + 10Я (A celé
nezáporné číslo). Třetí možná skupina řešení jsou aspoň
trojciferná čísla končící trojčíslím 625.

4. Pro c — 6 dostaneme jako v případě 3
(b2 + 11a) . 10 +(116 +3) - Ы02.

Odtud plyne b — 7, 57 + 11a == 6.10 a dále a — 3 +
+ 10A (A nezáporné celé číslo). Čtvrtá možná skupina
řešení jsou aspoň trojciferná čísla končící trojčíslím 376.

Zkouška ukáže, že všechna čtyři možná řešení vyhovují
podmínce úlohy.

2. V rovině je dán dutý úhel +AÍOÍV a uvnitř tohoto
úhlu bod P; dále je dána úsečka velikosti r.

Sestrojte trojúhelník ABC, který má tyto vlastnosti:
(1) Body A} B3 C leží po řadě uvnitř polopřímek OM,

ON, OP.
(2) Kružnice, která se dotýká přímky AB a je troj-

úhelníku ABC vně vepsaná, má střed O a poloměr r.

(4)

Řešení (obr. 15). a) Označíme +AÍOP = a>, +iVOP =
= £•

Úhly hledaného trojúhelníku označme obvyklým způ-
sobem a, fí, y. Protože O je střed kružnice k vně vepsané
ke straně AB, je

(1)+ЛСО = +PCO = iy .

Polopřímky АО, ВО jsou osy vnějších úhlů trojúhelníku
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ABC, proto platí
^OAB = 90° - ja, <£ОБЛ - 90° - ,

a odtud dále

<£OAC = 90° + ia, <£ОВС = 90° + ^ . (2)
Ze vztahů (1), (2) vypočteme snadno

oj = 180° - (90° + i« + fy) = iP,
180° - (90° + f/J + fy) = i« ,

tj.

b) Rovnosti (3) jsou výsledkem rozboru úlohy; z nich
odvodíme konstrukční předpis. Sestrojíme libovolný troj-
úhelník AqBqCq(obr. 16)*) tak, aby jeho vnitřní úhly měly
velikosti a, /5 dané vztahy (3) a aby kružnice k0 se
středem O0, vně vepsaná ke straně A0B0) měla poloměr r.

Použijeme-li předchozího postupu na trojúhelníky
A0C0O03 B0C0O0} dostaneme

Obr. 16 je na str. 66.
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<А000Со — 2@ — CO J <)СBqOqCq — \сс — £ .

Stačí nyní přenést narýsovaný obrazec tak, aby polo-
přímky O0A0, O0B0, O0C0 splynuly po řadě s polo-
přímkami OM, ON, OP a úloha je rozřešena.

c) Konstrukce trojúhelníku AQB0C0 se provede takto:
Do úhlu velikosti у = 180° — a — /5, jehož vrchol
označíme C0, vepíšeme kružnici k0 o daném poloměru r.
Sestrojíme trojúhelník C0AXBX (viz obr. 16), jehož
vnitřní úhly mají velikosti y, a, j3, a vedeme tečnu A0B0
kružnice k0 rovnoběžnou s přímkou AXBX tak, aby k0
byla kružnicí vně vepsanou trojúhelníku A0B0C0.

d) Úloha je zřejmě řešitelná právě tehdy, jsou-li oba
úhly co, e ostré (viz obr. 15), a má pak jediné řešení.

\

c
.^r\

\

r
\
\

°o \Bo

к

v

Obr. 16

3. Daný je kváder ABCDA'B'C'D' (ABCD je jedna
jeho stená a platí AA' || BB' || CC || DD') s rozmermi
a = AB, b = AD, c = AA'. Roviny BDA' a CB'D'
oddelujú od kvádra dva štvorsteny ABDA' a C'CB'D'.

Vypočítajte objem a povrch telesa, ktoré zostalo, po-
mocou čísel a, b, c.
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Riešenie. Označme (obr. 17)
a' = AD' = ]/b2 + с2, V = AB' = Ус2 + a2,

c' = AC = l/a2 + b2.
D‘ C

/ГI v

I v

\
4I \

\
\

K\-r^

\ fi'

a'\ V-
\ ,<7'6’i У

II
[cD
\\

A. JL\\
\t \

\ DP c>
\ Вb\ \

\ \ 'Л' \

\j/'У a

Obr. 17 Obr. 18

Štvorsteny ABDA\ C'CB'D' sú zhodné (vyplývá to napr.
zo středovej súmernosti daného kvádra podlá jeho středu).
Označme P povrch a V objem každého z nich a P', V'
povrch a objem telesa, ktoré dostaneme odňatím oboch
čtvorstenov.

Je V = \Zv> kde Z je obsah trojuholníka ABA' a
v = AD — b\ no Z — 1'AB.AA' — \ac, takže V —

= \'{\ас)Ь = iaéc.
Teda je

F' = faře .

Povrch P' skúmaného telesa vypočítáme, keď к po-
vrchu Px daného kvádra připočítáme dvojnásobný
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obsah P2 trojuholníka. A'BD a odčítáme dvojnásobný
„plášťcc P3 štvorstena AA'BD, t. j. číslo

P3 = AABA' + AABD + AADA’ =
— \{ab + bc + ca) .

Pretože Px = 2{ab + bc + ca), stačí vypočítat’ P2.
Označme strany trojuholníka A'BD (obr. 18) a' —

= Dďj b' = /РР, c' = BD; potom platí
a'2 - č>2 + с2, 6'2 = c2 + a2, c'2 = a2 +b2, (2)

pretože úsečky a', ž>', c' sú stěnové uhlopriečky kvádra.
Trojuholník A'BD má aspoň dva ostré vnútorné uhly.
Nech sú to napr. uhly <):A'BD, <£A'DB. Potom pata P
výšky v spustenej z vrcholu A' na stranu BD leží medzi
bodmi B, D. Označíme DP = x; potom je BP — c' — x
a podlá Pythagorovej vety platí:

v2 = a'2 _ *2 = b'4 _ ^ _ xy m

Po dosadení z (2) dostaneme po úpravě

(1)

(3)

b2
(4)

Z rovnosti (3) vypočítáme v2 dosadením z (2) a (4). Vyjde
a2b2 + 62c2 + c2a2

(5)v2 = b2 + c2 — a2 + b2 a2 +62

Pretože je 2P2 = с'г> — z>]/a2 + 62, vyplývá z (5)
2P2 = ]/a262 + 62c2 + c2a2 (6)

a konečne podlá vzorca P; = Px + 2P2 — 2P3 a podlá
(1), (6)

P' = až? + bc + ca + ]/a262 + b2c2 + c2a2.
4. V rovině jsou dány tři kružnice o poloměrech délek

I, 2, 3; každé dvě z těchto kružnic mají vnější dotyk.
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Určete, kolik kružnic se zároveň dotýká vně každé ze
tří daných kružnic, a vypočtěte jejich poloměry.

Řešení (obr. 19). Pro vzdálenosti středů Sl9 S2, S3
kružnic k13 k2i k3 platí při vhodném označení S1S2 = 3,
ЗД = -b ЗД = 4.

Označme 5 střed hledané kružnice k, q její poloměr;
pak platí

SXS = 1 rb Q ,

S2S = 2 + @ ,

*S3*S = 3 + g .

(1)

Dále označme x, у vzdálenosti bodu 5 od přímek SXS23
SXS3. Pak dostaneme z pravoúhlých trojúhelníků

SSl — x2 +y2,
SSi = x2 + (3 — jy)2,
5532 = (4 - x)2 +j2.

(2)
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Spojením (1), (2) vyjde
*2 +У2 — q2 = 1 + 2g ,

x2 ~\-y2 — q2 = 6y + 4(5 — 5 ,

x2 -\ry2 — Q2 — 8x + 6o — 7;
(3)

z první a třetí rovnosti (3) vyjde 8x = 8 — 4(5, tj.
X — 1 '2É> •

Z první a druhé rovnosti (3) vyjde 6y = 6 — 2(5, tj.
= 1 — к •

Dosazením za x,y z (4), (5) do první rovnice (3) dostaneme
po úpravě kvadratickou rovnici

23q2 + 132(5 - 36 = 0 ,

která má jediný kladný kořen 6 — M' Existuje tedy
jediná kružnice žádaných vlastností.

(4)

(5)

5. V rovině leží čtyři body. Pět z jejich šesti vzájemných
vzdáleností (v cm) je rovno číslům 1, 2, 3, 4, 5. Načrtněte
všechny možné případy vzájemné polohy těchto čtyř
bodů a vyložte jejich odvození.

Řešení, a) Při sestrojování hledaných skupin čtyř bodů
budeme užívat stále této známé věty:

Tři kladná čísla x, у, z jsou vzdálenosti tří dvojic,
utvořených z tří bodů právě tehdy, když největší z čísel x,
y, z je menší nebo rovno součtu obou ostatních.

b) Hledané čtyři body А, В, C, D určují celkem šest
vzdáleností, z nichž jedna je neznámá. Bod, jehož jedna
vzdálenost od ostatních je neznámá, označme D. Pak
všecky tři vzdálenosti AB, BC, CA jsou daná čísla
a máme pro ně těchto 10 možností:

123, (124), (125), 134, (135),
145, 234, 235, 245, 345. } (i)
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Případy 124, 125, 135 nemohou podle odstavce a) nastat.
Zbývajících sedm případů je znázorněno na obr. 20.

31г?
-O

cА ВА В

7

г41

А В

7

5

В.
зг

5

yQА
4

Obr. 20

Přitom je třeba připomenout, že označení bodů A, B, C
můžeme volit libovolně a dále, že trojice ABC v pří-
pádech 123, 134, 145 a 235 leží v přímce.

c) Nyní budeme postupně vyšetřovat všecky možné
případy (1). Ze vzdáleností AD, BD, CD jsou vždy dvě
známy, třetí hledáme. Tyto dvě známé vzdálenosti spolu
s jedním z čísel AB, BC, CA budou splňovat podmínku
z odstavce a); tak určíme možné polohy bodu D.

Začneme s posledním případem (1), tj. s trojící 345.
Zbývající známé vzdálenosti jsou 1, 2: připojíme-li
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к nim jedno z čísel 3, 4, 5, dostaneme trojice
123, 124, 125.

Poslední dva případy (2a) jsou podle odst. a) nemožné.
Zbývá tedy jen případ 123, který nám dá dvě různá
řešení znázorněná obrázky 21. Různost obou řešení vy-
plývá z toho, že neznámá vzdálenost (BD) je při prvním
řešení BD — j/I2 + 42 = j/l7, kdežto při druhém řešení
je BD = ]/22 + 42 = ]/20.

(2a)

d) Obdobně nyní vyšetříme další případy (1). V pří-
pádě 245 jsou zbývající vzdálenosti 1, 3 a dostaneme tedy
trojice

(3a132 , 134 , 135 .

Z těchto případů je poslední nemožný, první a druhý
dají po dvou řešeních zachycených na obr. 22. Všechna
tato řešení jsou zřejmě navzájem různá a odlišná i od
obou řešení z obr. 21.

V případě 235 jsou zbývající známé vzdálenosti 1,4.
Dostaneme tedy trojice

(4a)142 , 143 , 145 .

Z nich první je nepřípustná, další dvě dají po dvou řeše-
nich znázorněných na obr. 23.

Z těchto řešení jsou však jen tři různá; jinak jsou
všecka tři řešení z obr. 23 odlišná od předchozích šesti
řešení.

V případě 234 jsou zbývající známé vzdálenosti 1,5;
dostaneme tedy trojice

(5a)152, 153, 154.
První dvě trojice jsou nepřípustné, poslední dá dvě řešení
znázorněná na obr. 24.

Je zřejmé, že obě tato řešení jsou navzájem různá a liší
se i od řešení z obr. 21 i od řešení z obr. 22 a 23.
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e) V případě 145 jsou další známé vzdálenosti 2,3.
Možné trojice jsou tedy

231 , 234, 235.
Trojice 234, 235 byly již vyšetřeny v odst. d). Trojice 231
dá dvě řešení zachycená na obr. 25. Z nich první se však
shoduje s jedním řešením z obr. 23; zbývá tedy jediné
další řešeni.

(6a)

c c

332 2

1 4D A' ^В DВ A'/-

1

Obr. 24
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Á B~1 C D«1
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Obr. 25 Obr. 26

V případě 134 jsou další známé vzdálenosti 2,5. Možné
trojice jsou tedy

251 , 253, 254.
První trojice je však podle odst. a) nepřípustná, ostatní
dvě byly vyšetřeny v odst. d) jako trojice 235, 245.
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f) Ze všech případů (1) zbývá tedy případ 123.
Ostatní dvě známé vzdálenosti jsou 4,5; dostaneme tedy
trojice

451 , 452, 453.
Trojice 452, 453 byly již vyšetřeny v odst. c), d) jako

trojice 245, 345. Trojice 451 dá dvě řešení naznačená
na obr. 26. Obě se však shodují s dvěma řešeními z obr. 23.
Nedostáváme tedy žádné další řešení.

Celkem máme tedy 12 různých řešení; přitom za různá
pokládáme taková dvě řešení (čtveřice bodů), která se liší
aspoň v jedné vzdálenosti. Z těchto 12 řešení jsou čtyři
taková, že všecky čtyři body A3 В, C, D leží v přímce.

6. Sú dané tri kvadratické rovnice

x2 + ax + b — 0 ,

я2 + bx + cl = 0 ,

x2 + x — a -\-b +1=0,
kde x je neznáma.

Reálne čísla a, b určité tak, aby každé dve z týchto
rovnic mali spoločný aspoň jeden reálny kořeň.

Riešenie. Odčítáním prvej a druhej rovnice dostaneme
{a — b)x — a — b .

Rozlišujme dve možnosti [1] a [2].
[1] Nech jza ФЬ. Potom z tejto rovnice vyplývá x — 1.

Prvá rovnica má potom kořene 1, —a— 1; druhá
rovnica má kořene 1, —b— 1.

Keď dosadíme x = 1 do ktorejkolvek z prvních dvoch
daných rovnic, obdržíme

ci + b + 1 — 0 . (1)
Odčítáním prvej a tretej rovnice dostaneme

(a — l)x + (a — 1) = 0 . (2)
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Ďalej rozlišujme dva případy a), b):
a) Nech je а Ф 1. Potom je x = — 1, prvá a tretia

rovnica majú teda kořeň — 1. Prvá rovnica má kořene
1, — 1 a platí — a — 1 = — 1 číže a — 0. Z (1) potom
dostaneme b — — 1; druhá rovnica má teda kořene 1,0.
Tretia rovnica znie x2 + x — 0; má teda kořene —1,0.
Daná sústava má v tomto případe tvar:

*2 _ i = o ,

x2 — x = 0 ,

x2 + x = 0 .

Požiadavka, aby každé dve z týchto rovnic mali spoločný
aspoň jeden reálny kořeň, je v tomto případe splněná.

b) Nech je a — 1; potom z (1) vyplývá b = — 2 a daná
sústava má tvar:

x2 + x — 2 = 0 ,

x2 — 2x + 1 = 0,
x2 + x — 2 = 0 .

Prvá a tretia rovnica sú totožné; obe majú kořene 1, —2.
Druhá rovnica má dvojnásobný kořeň 1. Všetky tri
rovnice majú teda spoločný kořeň x = 1.

[2] Nech je a = b. Potom má daná sústava tvar
x2 -\- ax + a = 0 ,

x2 + ax + a — 0 ,

x2 + x + 1 = 0 .

Pretože posledná rovnica nemá žiadny reálny kořeň, je
úloha v tomto případe neriešitelná.

Celkem má teda úloha riešenie jedine v dvoch prí-
padoch:

a) Pre <2 = 0, b — — 1;
b) pre a=l, b = —2.
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5. ÚLOHY II. KOLA KATEGORIE В

1. Součet více než dvou bezprostředně za sebou ná-
sledujících přirozených čísel není nikdy prvočíslo. Do-
kažte.

Řešení. První z čísel označme a, přičemž je
a ^ 1 .

Další čísla jsou (přitom n > 2)
a -f- 1 j ci -f- 2, . . ., a T w — 1 .

Součet 5 všech и čísel je
s — \[a + (a + и — 1 )]n = £(2a + n — 1 )w;

přitom je s přirozené číslo. Proto je nutně jedno z čísel
2a + n — 1, n sudé; potom však je druhé liché. Jsou
dvě možnosti:

[1] Je-li n sudé, je \n > 1 (viz text úlohy); avšak
i 2a + n — 1 > 1, neboť 2a > 1 a w — 1 > 1. Je
tedy s součinem dvou přirozených čísel, z nichž každé
je větší než 1; tj. s je číslo složené.

[2] Je-li n liché, je 2a + (n — 1) sudé a větší než dvě;
jeho polovina je větší než 1; zároveň je n ^ 3. Je tedy s
opět číslo složené.

Tím je důkaz proveden.

2. V rovině jsou dány dva různé body A, P. Najděte
geometrické místo vrcholů C všech čtverců ABCD,
které obsahují bod P (uvnitř anebo na obvodu).

Řešení. I. Označme у, a obě opačné poloroviny s hraní-
cí p = AP (obr. 30 na str. 79). Ihned nahlédneme,
že se při dalším vyšetřování můžeme omezit na ty
čtverce ABCD z naší úlohy, v nichž bod P padne na

(1)
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úsečku CD nebo CD: Jestliže totiž bod P leží uvnitř
čtverce AB'C'D' z naší úlohy, popř. uvnitř některé ze
stran AD' nebo AB', potom polopřímka AP má s jednou
ze stran CB', CD' společný bod P' (obr. 27 až 29);

p=D'\ 71ť

-rвв

Obr. 28

AP
stejnolehlost o středu A a koeficientu 1

AP'
převádí bod P' v bod P a čtverec AB'C'D' ve čtverec

ABCD, v němž bod P leží
na některé z úseček CB,
CD. Tím je tvrzení doká-
záno.

Dále se můžeme omezit
na čtverce ABCD s bo-
dem P na úsečce CD,
neboť leží-li bod P na

úsečce CD, vyměníme ná-
zvy bodů D, D. Přitom
stačí vyšetřovat případy,
že bod C padne do polo-



roviny у, neboť souměrnost o ose p převede takový
čtverec, v němž bod C leží v polorovině o, ve čtverec
z naší úlohy, ale v němž obraz bodu C padne do polo-
roviny y. Všimněme si zvláště dvou případů takových
čtverců: čtverec ABXC D1} kde Cx = P a čtverec

&M, ! \. ^

/ \
i&

/
X i! /:

^t44\
\ V

/
/I

«' 'Vv
/0\7Г7\ \ / St

ж. " /j
j

I
/<3 /

,\V

Obr. 30

AB2C2D23 kde D2 = P (obr. 30). V každém jiném pří-
pádě padne bod P dovnitř strany CD hledaného čtverce
ABCD s bodem C v у; na tyto čtverce se nyní omezíme.

Všimněme si, že v trojúhelníku APC je
^ACP = 45°, (1)
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<$.APC > 90° (neboť vedlejší úhel <$cAPD < 90° je
totiž ostrý úhel pravoúhlého trojúhelníku APD3 kde
<£D = 90°); proto je úhel

<£РАС < 45°.
Množinou všech bodů C v polorovině у, o nichž platí (1),

/" N

je kruhový oblouk AP se středovým úhlem ASP = 270°,
kde S = BX3 vzhledem ke vztahu (2) se však uplatní
z tohoto oblouku AP jen vnitřek oblouku PC2. Avšak
i krajní body C2, P к tomu musíme přibrat vzhledem
к oběma čtvercům ABXCXD13 AB2C2D2.

II. Nyní již snadno usoudíme, že hledané geometrické
místo N bodů C uvedených v textu úlohy (tedy bez
našich pomocných omezení) se skládá ze dvou množin M15
M2 navzájem souměrně sdružených podle přímky p,
přičemž body množiny leží v polorovině у a množina
Mx se skládá z bodů úhlu ^LPAC23 od něhož musíme
odejmout jednak body trojúhelníku AC2P (kde <£P =
= 90°), s výjimkou vrcholů C2, P, jednak body kruhové
výseče o středu S, poloměru SP a středovém úhlu
^:PSC2 (== 90°), přičemž však body výseč omezujícího
kruhového oblouku PC2 к množině Мг patří. Hranici
množiny M tedy tvoří souměrně sdružené kruhové
oblouky PC2, PC2 a souměrně sdružené polopřímky
opačné к polopřímkám C2A3 C^A.

Obráceně, je-li C libovolný bod právě popsané mno-
žiny M, dovedeme sestrojit čtverec AB'C'D', který ob-
sáhuje bod P. Úvaha je podobná jako na počátku řešení,
stačí se omezit na bod G z poloroviny y. Úsečka AG
má jistě s obloukem PC2 z předchozích úvah společný
jediný bod С а к němu snadno sestrojíme čtverec ABCD,
na jehož straně CD leží bodP. Stejnolehlost o středu A a

(2)
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АС
^ 1 převede čtverec ABCD v hledanýkoeficientu

čtverec AB'C'D'.
Tím je řešení provedeno.

AC

3. Je daná sústava rovnic
ax -f- by : + cz — d ,

bx + cy ф az — d ,

cx + ay + bz = d
s neznámými #, y3 z, v ktorej sú a, b, c} d dané reálne
čísla také, že a + b +' c — 0.

Určité všetky riešenia danej sústavy.

Riešenie. Sčítáme všetky tri rovnice. Dostaneme
(<2 -j- b ~f“ d)x -f~ ~\~ b -f- c)y T (cl b “f" c)z = 3d

0 = 3d.
Ak je d Ф 0, je sústava (1) neriešitelná.

Ak je d — 0, dosadíme za c do prvých dvoch rovnic
a — b (pretože a + b + c = 0); dostaneme

ax + by — (a + b)z — 0 ,

bx — (a + b)y + az = 0 .

Elimináciou z z týchto dvoch rovnic vyjde
x(a2 + b2 + ab) — y(a2 + b2 + ab) — 0 .

Ak je a = b = 0, a teda tiež c = 0, vyhovujú rovni-
ciam (1) všetky trojice čísel x, у, я. Ak je aspoň jedno
z čísel a, b rožne od nuly, je a2 + b2 + ab Ф 0. Ak je
totiž a — b (Ф 0), j$ a2 + b2 + ab — 3а2 Ф 0; ak je

a3 — b3
а Ф b, potom je a2 + b2 + ab — —

(1)

čiže

c —

(2)

ьф0-

81



V rovnici (2) krátíme koeficientom a2 -\-b2 -\-ab a vyjde
x — y. Analogicky dostaneme у — z3 z = x. V tomto prí-
páde sú riešeniami sústavy (1) všetky trojice sebe rovných
čísel.

Výsledok:

Riešenie x, y, zPřípad Podmienka

íubovolná trojica
čísel

a + b + c = 0,
a = b = c = 0, d = 0

1

Tubovolná trojica
sebe rovných čísel

a + b + c — 0, d = 0;
aspoň jedno z čísel a, b, c
je rózne od nuly

2

žiadneа Ъ + c — 0, d+O3

4. V rovině je dán rovnostranný trojúhelník PQR
o straně délky p. Dále je dána úsečka délky d.

Na obvodu trojúhelníku PQR sestrojte body А, В
takové, že platí AB — d a že body A} В půlí obvod da-
ného trojúhelníku PQR.

Vyšetřte podmínky řešitelnosti vzhledem к daným čís-
lům d, p. (Pro konstrukci lze užít výpočtu.)

Řešení. Budiž AB úsečka žádaných vlastností; zvolme
označení vrcholů daného trojúhelníku tak, aby bod A
ležel na straně RP, bod В na straně RQ a aby bylo
RA ^ RB (obr. 31). Pak plyne z trojúhelníku PQR, že

p; dále plyne z trojúhelníku PRB, že AB ^ pPB
neboli

(1)d^p.
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Máme-li sestrojit body А, В, musíme sestrojit troj-
úhelník RAB, v němž je znám úhel ARB = 60°,
protější strana AB = d a součet obou zbývajících stran
AR + BR = fp (podle podmínky úlohy). Pro konstrukci

R

в
d.

A

QP P A d

Obr. 32Obr. 31

použijeme přenesení úsečky RB na polopřímku opačnou
к polopřímce RA (viz obr. 32); tak dostaneme bod C,
pro který platí RC = RB. Je tedy

AC = AR + RC = AR + BR = fp .

Protože je RA ^ RB, vyplývá z trojúhelníku ARB
vztah pro úhly

(2)<£.RBA ^ ,

dále pak pro čtyřúhelník ABQP dostaneme (víz obr. 31):
60° + 60° + 180° - <£RBA + 180° - <£RAB = 360° ,

RAB + RBA = 120°*)

*) Tato rovnost platí, i když čtyřúhelník ABQP přejde v troj-
úhelník.
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a vzhledem к (2)
^RBA ^ 60°.

V trojúhelníku ABC pak platí vzhledem к (3)
<£ABC = <£ABR + <$RBC ^ 60° + 30° = 90°.

(3)

(4)
Konstrukce trojúhelníku ABC ze dvou stran a úhlu

proti menší z nich ležícího je známa [skutečně je AB <
< AC, neboť platí (1)]. Kružnice k = (A; ď) má s ra-
menem CM úhlu <£ACM = 30° (viz obr. 33) společný
bod jen v případě, že je

(5)d^AN= \AC = \p\

ÍP
Obr. 33

přitom N značí patu kolmice spuštěné z bodu A na
přímku CM. Protne-li kružnice k polopřímku CM ve
dvou bodech B13 B23 má pro řešení význam jen jeden
z nich (na obr. 33 bod B13 pro který platí CBX < CB2),
neboť podle (4) musí být <%.ABC tupý nebo pravý.

Při pokračování konstrukce sestrojíme osu o úsečky CBX
a určíme její průsečík R s polopřímkou CA. Bod R leží
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zřejmě vždy mezi body A, C. Aby bylo možné doplnit
trojúhelník RPQ, je nutné a stačí, aby platil vztah

AR
neboli

(6)CR ^ \p.
Upravíme nerovnost (6) tím, že vyjádříme CR; zřejmě je

(7)CB1 = 2Ci?.cos30°
a dále z trojúhelníků ACN, ABXN je

CBX = CN — = fpcos30° - J/d2 - (fp)2. (8)
Spojíme-li (6), (7), (8), dostaneme

fpcos30° - Vd2 - (l/))2 ^ pcos30°
neboli

]/d2 - (ipy á |/>cos30° = iřl/3 . (9)
Po umocnění a úpravě dostaneme z (9) vztah d2 ^ fp2
neboli

á £ í?l/3 .

Spojením (5) a (10) vyjde podmínka řešitelnosti úlohy:
lp £p]/3.

(10)

č. ÚLOHY I. KOLA KATEGORIE C

1. Jestliže přirozené číslo n je druhou mocninou při-
rozeného čísla, potom součin dvou posledních cifer
(dekadického zápisu) čísla n je číslo sudé. Dokažte.

Řešení. Položme n — (10a + Ъ)2, kde a ^ 0, 0 ^
b ^ 9, a, b jsou celá čísla. Číslo a a předposlední cifra
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čísla n jsou buď obě lichá, nebo obě sudá. Potom platí
n — 100a2 + 20ab + b2. (1)

Je-li b sudé číslo, je věta správná. Je-li b liché (6=1
nebo 3 nebo 5 nebo 7 nebo 9), končí b2 lichou cifrou,
počet d desítek čísla b2 je sudý (0 nebo 2 nebo 4 nebo 8).
Protože 20ab = (2ab). 10, je podle (1)

n = 100a2 + (2a6).10 + (Ш + /)
neboli

n = 100a2 + (2ab + d).10 + /,
kde l je liché, ?a6 + d sudé. Tím je věta dokázána.

2. Je daný obdížnik ABCD. Označme M patu kolmice
spustenej z bodu В na priamku AC.

a) Vypočítajte vzdialenosti AM, BM, CM, DM po-
mocou rozmerov a = AB, b — AD daného obdížnika.

b) Rozhodnite, či existuje taký obdížnik ABCD,
v ktorom platí DM = 3BM.

Riešenie (obr. 34). a) Označme rozměry obdížnika
AB = a, BC = b; ďalej označme body P, Q, R podlá
obrázka. Podlá Euklidovej vety potom platí

AB2
AC ~ ]/a2 + b2 5
BC2

_

АС ~ уa2 + b2 '

a2
AM =

b2
CM =

Zo vzorcov pre obsah trojuholníka ABC ďalej vyplývá
AB . BC ab

BM —

Уа2 + b2 '
Zostáva ešte určiť vzdialenosť DM. К tomu použijeme

AC
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trojuholník DMQ. Určíme
AM.BM

иu,

a2ba3b
MP =

a(a2 + b2) a2 + b2 'AB

D

RQ

«O

4 5P
a

Obr. 34

Ďalej je
DQ = AD — AQ = AD — AÍP =

a26 63
6

a2 + 62 a2 + b2'

Ďalej vypočítáme z pravoúhlého trojuholníka ABM
AM2
AB ~ a(a2 + 62) ~ a2 +b2'

a4 a3
MQ = AP —

Рос1Га Pythagorovej vety je
DM2 = DQ2 + MQ2 =

a6 + 66 (a2 + ž>2) (a4 - a2b2 + b4)
(a2 + 62)2 “ (a2 + b2)2

a4 — a262 + b4 (a2 + b2)2 - 3a2b2
a2 + ž>2 a2 + 62
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Ak zavedieme označenie AC — c} BM = v, je c2 =

— a2 + b2, v — ~y platí teda

DM2 = с2-ЗЦ~c2

b) Ak je DM = 3BM, je |!c2 — 3v2 = 3v a obrátene.
Umocněním tejto rovnosti dostaneme c2 = 12v23 c =

— 2v]j33 číže c = * skadial’ c2 = 2ab]/3 číže

á2 — 2ab]/3 + b2 — 0. Položme
mer x rozmerov a, b dostaneme rovnicu

— c2 — 3v2.

— x; potom pre po-

л:2 - 2j/3 л; -И = 0,
ktorú upravíme takto:

o - ]/3)2 -3+1-0 číže O - 1/3)2 - (У2)2 = 0.
Z toho použitím vzorca pre rozdiel štvorcov dostaneme

o - Уз + 1/2) (x — 1/3 — 1/2) = 0 .

Tomuto vztahu vyhovujú čísla:
* = уз- у2,

ktoré sú kladné. Máme teda dva typy obdížnikov. Jeden
x — Уз + У2 ,

typ má poměr ^
číslu Уз +У2. Tieto čísla skutočne vyhovujú požiadav-
kám úlohy, ako sa 1’ahko přesvědčíme skúškou.

rovný číslu Уз — У2, druhýrozmerov

3. Jsou dány tři lineární rovnice
px — 2у == 2p —
2x +РУ = P — 1,

O — 1)* + y =.p +1

1,

s neznámými x, у.
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Najděte všechna reálná čísla />, pro něž mají uvedené
tři rovnice společné řešení; vypočtěte tato řešení.

Řešení, a) Те-li x, у dvojice čísel, která jsou řešením
všech tří rovnic, pak číslo л; vyhovuje oběma rovnicím,
které dostaneme, dosadíme-li za у z třetí rovnice do
prvních dvou. Vyjde po úpravě

(3p — 2)x = 4/> + 1 ,

O2 — p — 2)x = p2 + 1 .
(1)

Znásobíme-li obě strany první rovnice (1) číslem p2 —
— p — 2 a obě strany druhé rovnice číslem 3p — 2,
budou levé strany totožné; dostaneme tedy rovnost

(4p +1) (P2 — /> — 2) =, (p2 + 1) (3/>-2).
Po vynásobení a úpravě vyjde

pz — p2 — 12/) = 0
neboli

(2)p(p2 — p — 12) = 0 .

Troj člen p2 — p — 12 lze rozložit v součin dvojčlenů
p — 4, p + 3. Užijeme-li tohoto rozkladu, uvedeme
podmínku (2) na tvar

/>(/) — 4) (p + 3) = 0 . (3)
Dokázali jsme: Mají-li dané tři rovnice společné řešení,
vyhovuje parametr p podmínce (3). Rovnici (3) však
vyhovují jedině tři čísla: /> = 0, p — 4 a. p = —3. Jsou
tedy možné nejvýše tři hodnoty parametru žádané
vlastnosti.

b) Pro p = 0 dostaneme rovnice
—2у = — 1 , 2x — — 1 ,

které mají skutečně společné řešení x = — у =
Pro p = 4 mají dané rovnice tvar

4x — 2j> = 7 , 2* + fy = 3 , Зя + = 5 .

* +У = 1 5
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Řešením prvních dvou rovnic dostaneme x = 1,7,
у = —0,1; toto řešení skutečně vyhovuje i třetí rovnici.

Pro p — —3 mají dané rovnice tvar
—3x — 2y = — 7 , 2x — 3y = —4, —4x -\-y = —2 .

Řešením druhé a třetí rovnice dostaneme x = 1, 3; == 2;
toto řešení skutečně vyhovuje i první rovnici.

4. Nájdite všetky trojice prirodzených čísel, ktorých
súčet sa rovná ich súčinu.

Riešenie. Ak označíme hladané čísla л:, у, z, móžeme
podmienku úlohy vyjadriť takto:

x -f-y + z — xyz . (1)
Označenie hTadaných troch prirodzených čísel móžeme
zvolit’ tak, že platí

0 < x £ у ^ z .

Potom je x -\-y -f z ^ 3z. Z danej rovnice (1) potom
vyplývá podmienka xyz ^ 3z číže

xy ^3 .

Podmienky (3) a (2) možno splnit’ len troma sposobmi:
a) * = 1, ý = 1; b) x = 1, у = 2; c) x === 1, у = 3 .

V případe a) má rovnica (1) tvar 2 + z = z a je ne-
riešitelná.

V případe b) má rovnica (1) tvar 3 + я = 2z a má
kořeň z — 3. Stadiar dostáváme jedno riešenie úlohy

x = 1 , == 2 , £ = 3.
V případe c) má rovnica (1) tvar 4 +я = 3ar a má

kořeň z = 2, ktorý však nevyhovuje podmienke (2).
Úloha má teda jediné riešenie (4).
Všimnite si, že podstatné zjednodušenie pri riešení

(2)

(3)

(4)
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úlohy vyplypulo z toho, že sme ohraničili neznáme x3 у
zhora podmienkou (3).

5. V rovině je dán trojúhelník ABC; vně tohoto troj-
úhelníku jsou sestrojeny čtverce ABMN, BCPQ se
středy 013 02.

Dokažte, že středy úseček AC} MQ a body 0ly Oa
jsou vrcholy jistého čtverce.

Řešení (obr. 35). a) Předpokládejme, že je <):CBA <
< 90°. Označme U střed strany АС, V střed úsečky MQ.
Úsečka U01 je střední příčkou trojúhelníku ACM,
proto je u

UOx || CM, UOx = \CM.
Obdobně je úsečka U02 střední příčkou trojúhelníku
ACQ, proto je

(1)

uo2\\aq, uo2 — \aq . (2)
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Podle věty sus plyne
AABQq?= am.bc .

Skutečně je AB = BM, BQ = BC,^ABQ = <£MBC=
= <£ABC + 90°. Podle (3) je dále AQ = CM, tudíž též

uo, - uo2.
Obdobně jako dříve dokážeme z vlastností střední příčky,
že platí

(3)

(4)

V02 = \CM,
VO, - \AQ .

V02 || CM,
VO, || AQ,

Spojením vztahů (1), (2), (4), (5) dostaneme
uo, II vo2, U02 II VO„ UO, = U02 = VO, - vo2,

(5)

tj. obrazec U0,V02 je kosočtverec.
Protože trojúhelník BCM vznikne otočením trojúhel-

niku BQA o pravý úhel,*) je AQ ± CM, tudíž také
UO, _L U02, tj. rovnoběžník U0,V02 je čtverec.
b) Je-li <$iCBA > 90°, provede se důkaz jako v případě a).
c) Je-li <£CBA = 90°, je tvrzení zřejmě platné.

Tím je řešení provedeno.

6. V rovině je dán kruhový oblouk s krajními body
A a B.

Vyšetřte geometrická místa středů kružnic vepsaných
a vně vepsaných trojúhelníku ABC, jestliže bod C pro-
bíhá vnitřek daného oblouku.

Řešení (obr. 36). I. Budiž o daný oblouk AB, q polo-
rovina s hranicí AB, v níž leží oblouk o, C jeden jeho
bod různý od А, В, dále bod 5 střed kružnice vepsané

*) Odtud přímo plyne shodnost obou trojúhelníků.
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trojúhelníku ЛВС a Sl} S2, S3 středy kružnic vně ve-
psaných tomuto trojúhelníku po řadě к stranám BC,
CA, ЛБ. Je zřejmé, že body S, S15 é>2 leží v polorovině £,
bod S3 v polorovině opačné к q. Označíme-li vnitřní úhly
trojúhelníku ABC obvyklým způsobem a, B, y, je

<ŽSAB = ±oc, <£SBA =

z trojúhelníku SAB pak plyne, že je
<£ASB = 90° + ty .

Dále je
<£S2AC = 1(180° - a) = 90° -



proto platí г?

^S2AB = 90° - la + a = 90° + £a .

Protože je <£S2BA = dostaneme z trojúhelníku
S2AB vztah

*£AS2B = \y .

Výměnou vrcholů А, В vyplývá z (2) vztah
^BSj^A = jy .

(2)

(3)
Protože polopřímka AS3 je osou vnějšího úhlu troj-
úhelníku ABCу je

^S3AB = K180° - a) = 90° -
a obdobně

^S3BA = 90° - *0.
Z trojúhelníku рак dostaneme

<AS3B = 90° - iy . (4)
Probíhá-li bod C oblouk o, je — podle věty o obvo-

dovém úhlu — velikost úhlu у konstantní. Podle (1),
(2), (3), (4) leží tedy

a) bod S na jistém oblouku o0 sestrojeném nad tě-
tivou AB v polorovině q a daném velikostí obvodového
úhlu 90° + \y;

b) body S13 S2 na jistém oblouku o12 sestrojeném nad
tětivou AB v polorovině q a daném velikostí obvodového
úhlu iy;

c) bod S3 na jistém oblouku o3 sestrojeném nad tě-
tivou AB v polorovině opačné к q a daném velikostí
obvodového úhlu 90° — \y.

Hledaná geometrická místa bodů náleží tedy uvedeným
třem obloukům o03 o123 o3 (viz obr. 37).

Poznámka. Je bezprostředně patrno, že oblouky o03 o3
tvoří dohromady kružnici k.
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II. Zbývá zjistit, zda hledaná geometrická místa bodů
jsou celé oblouky o0, o12, o3 (bez krajních bodů A3 В)
nebo jen jejich části, a které.

////////?

Sestrojme v bodě A tečnu ke kružnici ^ a na této
tečně zvolme v polorovině q bod M. Pak je — jak známo —

<£MAB = 180° - (90° + iy) = 90° - \y < 90.° Je-li
5 libovolný bod oblouku oQ různý od A, В, je SAB <
< <£MAB < 90°; označíme a = 2<£SAB.

Dále sestrojíme v bodě A tečnu ke kružnici obsahující
daný oblouk o a na této tečně zvolíme bod N uvnitř
poloroviny q; snadno odvodíme, že je <$.NAB = 180° —
— y. Vedeme-li tedy v polorovině q bodem A polo-
přímku AP tak, aby platilo PAB — a, protne polo-
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přímka AP oblouk o v jistém bodě C různém od A, B.
Kružnice vepsaná trojúhelníku ABC má pak střed S
(odůvodněte podrobně). To znamená, že celý oblouk o0
(mimo body A,B) náleží hledanému geometrickému místu.

°12

в; A

i

1к

Рэ

Obr. 38

Středy Sx, S2 kružnic vně vepsaných dostaneme jako
průsečíky oblouku o12 s polopřímkami AS, BS. Hledané
geometrické místo bodů obsahuje tedy jen ty části
oblouku o12, které jsou omezeny tečnami vedenými ke
kružnici k v bodech A, B; jsou to vnitřky oblouků AB0,
BA0 (viz obr. 38).

Konečně bod S3 dostaneme, vedeme-li bodem A
kolmici к přímce AS a určíme její zbývající průsečík
s kružnicí k. Hledané geometrické místo se skládá tedy
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z té části Á3B3 oblouku o3, která je omezena kolmicemi
vedenými к přímce AB body A3 В (body A3) B3 ke
geometrickému místu nenáleží).

/
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\

\
\
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°з

Obr. 40

Na obr. 38 až 40 je sestrojeno geometrické místo pro
у < 90°, у = 90° а у > 90°.

7. ÚLOHY II. KOLA KATEGORIE C

1. Řešte rovnici
x2 + 2x — 24
x2 - 9x + 20

- 10.
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Řešení. Platí я2 + 2x — 24 = (x + 6) (x — 4), л:2 —
— 9x + 20 = (я — 5) (x — 4). Je-li x řešením dané
rovnice, potom platí

(x + 6) (x — 4)
(x — 5) (x — 4) (1)= 10.

Zlomek na levé straně (1) zkrátíme číslem x — 4 a do-
staneme

x + 6
(2)=± 10.

x — 5

Z rovnice (2) plyne x + 6| = 10|jc — 5|, neboli bud
x + 6 = 10(x — 5) (3a)

nebo
x + 6 = 10(5 — x).

Řešením rovnice (3a) dostaneme
(3b)

Y _ 56.Л 9 j

řešením rovnice (3b) dostaneme
x = 4.

Zkouška. Dosadíme kořen (4a) do rovnice (1) a zjistíme,
že je splněna. Kořen (4b) nelze do (1) dosadit, neboť je
x — 4 = 0. Daná rovnice má tedy jediné řešení (4a).

2. V rovině je daný uhol <£АОМ. Zostrojte rovno-
ramenný trojuholník ABC so základňou AB taký, že
úsečka АО je jeho ťažnica a body B3C ležia na priamke ÓM.

(4a)

(4b)

Riešenie (obr. 41). Rozbor. Nech je zostrojený hladaný
rovnoramenný trojuholník so základňou AB. Úsečka АО
je jeho ťažnica, takže na nej nutné leží ťažisko T troj-
uholníka. Platí o ňom

(1)AT= 2.TO.
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Bodom T prechádza ťažnica CT, ktorá je podlá známej
vety osou súmernosti hladaného trojuholníka ABC.
Přitom sú úsečky ТА, ТВ súmerne združené podlá osiCT
a platí o nich AT = ВТ. Z toho vyplývá konštrukcia:

Úsečku OA rozdělme na tri zhodné úsečky a vy-
značme hladané ťažisko T. Opišme kružnicu k =
= (T, TA) a označme В jeden z priesečníkov kružnice k
s priamkou OM. Bod C je priesečníkom priamky OM
a osi p úsečky AB.

Obr. 41

Správnost’ konštrukcie vyplývá z vety, že ťažisko T
trojuholníka ABC dělí jeho ťažnicu АО tak, že platí
vztah (1). Trojuholník ABC je skutočne rovnoramenný,
pretože bod C leží na osi strany AB, ale neleží na
priamke AB.

Diskusia. Dokážeme, že kružnica k má s priamkou OM
dva rožne spoločné body.
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Dokaž. Poloměr TA kružnice k je dvojnásobkom
úsečky TO, ktorá je váčšia alebo rovná vzdialenosti
bodu T od priamky OM. Preto priamka OM přetíná
kružnicu k a dostáváme dva rožne priesečníky В, В'
kružnice k a priamky OM. Pretože je ОТ < OB, ОТ <
< OB', leží bod O vo vnútri úsečky BB'. Bod O od-
deluje teda body В, В' a tým aj body С, C. Ak napr.
bod В leží na polpriamke OM, leží tam aj bod C,
zatial čo body В', C ležia na polpriamke opačnej. Ak je
napr. В = C, je ТВ' — ТВ a bod O je stredom úsečky
BB', t. j. TO J_ BB' číže daný uhol <£AOM je pravý.
Potom je v pravouhlom trojuholníku TCO přepona
TC = 2.TO, a preto je <£OCT = 30°, takže uhol
<£ACB = 60° a trojuholník ABC je rovnostranný.
Přitom trojuholník AB'C' s ním splývá. Ak daný uhol
^AOM nie je pravý, dostaneme dva rožne trojuhol-
niky ABC, AB'C.

3. Žák měl vypočítat aritmetický průměr daných
čísel a, b, c, d. Počítal jej tímto způsobem: Nejprve našel
aritmetický průměr p čísel a, b, potom aritmetický
průměr q čísel p,c a nakonec aritmetický průměr čísel q, d.

a) Ukažte, že způsob, kterého žák použil, není správný.
b) Jestliže však žák přesto dostal správný výsledek,

splňovala čísla a, b, c, d nutně určitý vztah. Najděte jej.

Řešení. Označme
r — \{a + b + c + d)

hledaný aritmetický průměr čísel a, b, c, d a r' průměr,
který vypočítal žák. Platí p — \{a + b), q — \{p + c) =
= Ka + b “b 2c),

(1)

v' = \{d + q) = |(a "b b +2c + 4d). (2)
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Budiž
г' = г

neboli
!(а + b + 2с -f- 4d) — \{a + b -f- c -f- d),

a -j- b -j- 2c -f- 4d = 2íz 26 -j- 2c -(- 2.d 3

tj-

tj-
</=««+»)•

. (3)
Žák mohl tedy dostat správný výsledek jen za před-

pokladu, že daná čísla splňovala rovnost (3); jinak by
dostal výsledek nesprávný. Proto postup výpočtu není
správný.

Zkouška. Ze vztahu (2) po dosazení za d ze (3) do-
staneme r' — |[a + b + 2c + 2(a + b)] = |[3(a + b) +
+ 2c]. Ze vztahu (1) po dosazení za d ze (3) dostaneme
r — + b + c -f- %(a + 6)] = |[2(a +6) + 2c +
+ (a +6)] = i[3(a +6) +2c], takže žák skutečně za
předpokladu, že platí (3), dostal správný výsledek.

4. V rovině je dána polokružnice s krajními body A3 B.
Dále je dáno kladné číslo с < AB.

Najděte geometrické místo průsečíků úhlopříček všech
čtyřúhelníků ABCD3 jejichž zbylé dva vrcholy C, D
leží na dané polokružnici, a to tak, že strana CD má
stálou velikost c.

Řešení (obr. 42). a) Označme S’ střed polokružnice o.
Pro každou polohu tětivy CD konstantní délky je velikost
2cp středového úhlu <£CSD příslušného к menšímu
oblouku CD táž; je tedy i

^CAD = ^CBD = <p < 90°
(obvodové úhly nad menším obloukem CD). Dále je

<£ADB - <£ACB = 90°

(1)

(2)
(věta Thaletova).
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V trojúhelníku ABM označme co velikost úhlu <£AMB.
Tento úhel je vnějším úhlem trojúhelníku ADM, a je
roven součtu jeho vnitřních úhlů <£MAD = <£CAD
[viz (1)] a <£ADM = <£ADB o velikostech cp a 90°;
je tedy co — cp -f- 90° < 180° (úhel cp je totiž ostrý).

Hledáme tedy, jaký útvar vyplní bod M, z něhož je
vidět danou (pevnou) úsečku AB pod konstantním
úhlem cp -f- 90°. Podle známé věty je to kruhový oblouk o'
o krajních bodech А, В (tyto body к nalezenému geo-
metrickému místu bodů nepatří), přičemž leží v téže
polorovině vyťaté přímkou AB jako daná polokružnice;
oblouk přísluší к obvodovému úhlu velikosti cp + 90° >
> 90°, což je úhel tupý. Vyšetřovaný oblouk AB je tedy
menší oblouk příslušné kružnice.

b) Zbývá zjistit, zda každý bod oblouku o' (mimo
body А, В) náleží hledanému geometrickému místu.

Oblouk o' náleží jisté kružnici k\ jejíž střed leží v po-
lorovině opačné к ABC. Středový úhel nad tětivou AB
v kružnici k' má velikost 180° — 2 cp. Z toho snadno od-
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vodíme, že tečna ke kružnici k' v bodě A svírá s přímkou
AB ostrý úhel velikosti 90° — cp.

Zvolme nyní libovolný bod M^A, В oblouku o' a o-
značme C průsečík polokružnice o s polopřímkou AM.
Podle předcházejícího je <£MAB < 90° — cp.

Z rovnoramenného trojúhelníku ACS dostaneme
ASC = 180° - 2. <£MAB > 2<p.

Lze tedy sestrojit na polokružnici o mezi body C, A
bod Z) tak, aby bylo CD — c3 a zvolený bod M je průsečí-
kem úhlopříček čtyřúhelníku ABCD.

8. ÚLOHY I. KOLA KATEGORIE D

1. Je daná kružnica k = {S3 r — 5 cm) a v nej tětiva
AC dížky 9 cm. Zostrojte rovnoramenný lichoběžník
ABCD so základňami AB, CD tak, aby body B3 D ležali
na kružnici k a aby uhlopriečka AC rozpolovala jeden
z uhlov lichoběžníka ABCD.

Riešenie. a) Rozbor. Predpokladajme, že je zostrojený
taký lichoběžník (napr. ABXCD^)3 ktorého uhlopriečka AC
rozpoluje vnútorný uhol ^iB^D^ Pretože je ABX || CDX
a body B13 Dx ležia v opačných polrovinách s hranicou A C,
sú striedavé uhly <ZcBxAC3 <£DXCA zhodné. Okrem
toho je podlá předpokladu

<$cBxAC = <£DXAC.
Platí teda <^DXAC — <^BXAC — <pDxCA a trojuholník
ACDX je rovnoramenný so základňou AC. Vrchol Dx
leží teda na osi o úsečky AC.

b) Konitrukcia a skúška (obr. 43). Zostrojíme prieseč-
niky Dí3 D2 osi o s kružnicou k a bodom A vedieme
priamky mx || CDX3 m2 || CZ)2. Zistíme, že priamky m13 m2
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pretínajú kružnicu k mimo bodu A po radě v bodoch
BX) B2. Přitom sú body Bx, Dx a body B2, Z)2 oddělené
priamkou AC. Pretože trojuholník ACDX je rovno-
ramenný, je <£DXAC = <£DXCA. Pretože uhly <£DXCA

a <£BXAC sú striedavé a pretože platí CDX || ABX, je
<£DXCA = <cBxAC. Polpriamka AC rozpoluje teda
skutočne uhol <f.BxADXi t. j. lichoběžník ABXCDX vyho-
vuje podmienkam úlohy. Analogický dokaž platí aj pre
lichoběžník AB2CD2.

c) Zostáva ešte rovnakým spósobom zostrojiť tie licho-
bežníky, ktorých uhlopriečka AC rozpoluje uhol <£BCD.
Tie dostaneme zrejme predchádzajúcou konštrukciou, ak
vyměníme body A, C (a potom ovšem aj body В, D).
Zostrojíme ich teda ako lichoběžníky súmerne združené
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podl’a osi o s obidvoma lichobežníkmi ABXCDX3 AB2CD2.
Úloha má teda štyri rožne riešenia.

2. Najděte všechna trojciferná (přirozená) čísla s touto
vlastností: Napíšeme-li před hledané číslo stejnou cifru,
jako je ta, která stojí na místě jeho jednotek, dostaneme
čtyřciferné číslo, které je o 18 menší než sedminásobek
hledaného čísla.

Řešení. Trojciferné číslo v dekadickém vyjádření lze
symbolicky zapsat (xyz), kde o celých číslech x, у, z platí
0 < x ^ 9 (dané číslo je trojciferné), 0 ^ у ^ 9, 0 ^
^ z ^ 9. Číslo (xyz) zapíšeme jako trojčlen

100л; + lOy + z .

Nové číslo lze symbolicky psát {zxyz) nebo jako čtyřčlen
ÍOOO# + 100* + lOy -j- z,

po úpravě
(1)100л: + lOy + IOOI2: .

Sedminásobek hledaného čísla je 700л: + 70y + lz\
odečteme-li od něho číslo 18, dostaneme číslo dané vý-
rázem (1), tj. platí

700л; + 70у + 7^r — 18 = 100л; + lOy + 10012"
neboli

(2)600л: + 60j> = 994,2' + 18 .

Pomocí této rovnice a vztahů
0 < л: 9, 0^y^ 9 3 0^z^9

určíme v několika krocích čísla л;, у, z.

[1] Levá strana rovnice (2) je dělitelná deseti, proto
i pravá strana 9942: + 18 je tímto číslem dělitelná. Ale
9942” -j- 18 = (9902: + 10) + (42: + 8); proto číslo 42: +
+ 8 musí končit nulou. Dosazujme do výrazu 42: + 8
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za z postupně čísla 0, 1, .. ., 9; číslo 4z + 8 končí nulou
jen pro z = 3 nebo z — 8. Pro z = 8 však dostaneme z (2)

60jc +6у — 797;
této rovnici nevyhovují žádná nezáporná celá čísla x, у
menší než 10. Je tedy nutně z — 3.

[2] Do (2) dosaďme z — 3, takže napravo dostaneme
3000 a obě strany rovnice znásobme číslem do-
staneme rovnici

(3)10x -\-y — 50 .

[3] Čísla 10я, 50 jsou dělitelná deseti; proto jedno-
ciferné číslo у musí být též dělitelné deseti neboli je
nutně у — 0. Pak (3) zní

10x = 50;
odtud plyne x — 5.

Hledané číslo (když vůbec existuje) musí být rovno 503.
Číslo, které z něho vznikne, je 3503 a skutečně platí

503.7 = 3521 = 3503 + 18.
Tím je řešení provedeno.

3. Kvádr ABCDA'B'C'D' (o stěně ABCD, přičemž je
AA' || BB' || CC || DD') má dané rozměry a — AB,
b — AD, c — AA'. Rovnoběžné roviny BDA' a CB'D'
oddělují od daného kvádru dva čtyřstěny ABDA' a
C'CB'D'.

Vyjádřete objem zbylého tělesa pomocí a, b, c. Na-
rýsujte jeho síť pro a — 4 cm, b — 3 cm, c — 5 cm.

Řešení (obr. 44). a) Objem čtyřstěnu vypočítáme podle
vzorce pro objem V jehlanu, tj. V — \Pv, kde P je
obsah podstavy a v velikost příslušné výšky. Považujme
ve čtyřstěnu ABDA' trojúhelník ABD za podstavu, pak
ve v = AA' = c. Obsah pravoúhlého trojúhelníku ABD
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o odvěsnách" a, b je P = \ab.
Proto je

V = \ • \ab . c — \abc .

I čtyřstěn C'CB'D' má objem
\abcj takže součet obou objemů
je \abc. Protože objem daného
kvádru je abc, je objem zbylé-
ho tělesa

abc — \abc — %abc .

Výsledek: Objem zbylého tě-
lesa je fabc.

b) Síť zbylého tělesa je v obr.

D

45.

/

/

I

\

\

\

\
\ \

\
\

N

I

;
/

/
/

107



4. Jsou dány tři kružnice kx = (S13 4 cm), k2 = (S2,4 cm),
k3 = (S33 r), z nichž každá se dotýká vně obou zbývá-
jících kružnic.

Sestrojte všechny kružnice, které mají s každou z da-
ných kružnic vnitřní dotyk. Proveďte diskusi řešitelnosti
vzhledem к poloměru r.

Řešení (obr. 46). a) Označme P bod dotyku kružnic k13
k23 o jejich společnou tečnu. Protože pro střed S3 kruž-
nice k3 platí = S2S3 = r + 4, leží bod S3 na
přímce o. Budiž x) hledaná kružnice; pro její
střed platí = S2S = x — 4 (kružnice k13 k2 se totiž
dotýkají zevnitř kružnice k). Oba středy S3) S leží tedy
na přímce o a na ní leží i bod dotyku T kružnic k, k3;
je to ten z průsečíků přímky o a kružnice k3, který má
větší vzdálenost od bodu P. Tečna t kružnice k3 v bodě T
je společnou tečnou kružnic k3 k3.
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b) Názor napovídá, že existuje-li řešení úlohy, je jen
jediné; to snadno dokážeme. Nechť jsou k, k' dvě různá
řešení (viz obr. 46) a nechť kružnice k má menší poloměr

než k'. Kružnice k, k' se dotýkají obě v bodě Г kružnice k
i navzájem; leží tedy kružnice k (až na bod T) uvnitř k'.
Protože obě kružnice kí3 k2 leží (až na dotykové body U1}
U2, které nesplynou s T) uvnitř ks leží celé uvnitř k'

'3
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a tedy žádná z nich se nemůže dotýkat kružnice k'.
Kružnice k' není proto řešením úlohy.

c) Nyní sestrojíme řešení úlohy (obr. 47). V bodě
dotyku Tx kružnic kx, k3 vedeme jejich společnou tečnu tx
a najdeme její průsečík Qx s tečnou t. Bod Qx vždy
vznikne, protože bod Tx neleží na přímce o, a není tudíž
tx || ř. Z bodu <2i vedeme zbývající tečnu ux ke kružnici kx
a označíme Ux její bod dotyku.

Nyní sestrojíme kružnici k, která se dotýká v bodě T
přímky t a prochází bodem Ux. Kružnice k se dotýká
zřejmě kružnice k3 v bodě T. Mimo bod T existuje na
kružnici k jediný bod, jehož vzdálenost od bodu Qx je
rovna QXT; je to bod dotyku druhé tečny vedené z Qx
ke kružnici k. Tento bod je však UX3 přímka QXUX = ux
je tedy tečnou kružnice k, tj. kružnice kx, k se dotýkají
v bodě Ux. Protože útvar složený z kružnic k, kXi k33 k3
je souměrný podle přímky o, dotýká se k také kružnice k2.
Je tedy kružnice k řešením úlohy.

d) Úloha má řešení právě tehdy, je-li úhel TQXUX3
obsahující bod SX3 dutý. To nastane právě tehdy, je-li
vzdálenost přímky t od bodu P imnší než 4 neboli platí-li

PT > 4.

5. Výraz
V = (x — у)3 + {y — z)3 -f- (z — x)3

rozložte na súčinitelov a potom určité všetky trojice
čísel x, у, z, pre ktoré V — 0.

Riešenie. Platí postupné
V — Xs — 3x2y + 3xy2 — y3 +

+ y3— 3y2z + 3уz2 — z3 +
+ z3 — Зя2х -f- Зядс2 — x3 .

(1)
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Stadia! vypočítáme
\V = —xy(x — y) + z(x2 — y2) — z2(x — y) =

— (x — y) [—xy + (xz -\-yz) — z2] —
= (ж — jO [?(* — x) — *(* — *)] =
= (л: - у) (у - z) (z-х).

Je teda
V = 3(x — y) (y — z) (z — x),

\

čo po vynásobení súhlasí s výrazom V [viď (1)].
V — 0 právě vtedy, ked platí aspoň jedna z rov-

ností:
x — у — 0 , у — z — 0 у z — x = О

V • V

cize

x = у alebo у — z alebo z = x .

Výsledok: V = 0 právě vtedy, kedsú hoci dve z čísel
x3 y, z sebe rovné.

6. Je dán pravoúhlý trojúhelník ABC s odvěsnami
velikostí a — BC, b — AC. Označme D bod, ve kterém
se přímky AB dotýká kružnice trojúhelníku ABC vepsaná.

a) Vypočtěte pomocí čísel a3 b velikost poloměru kruž-
nice danému trojúhelníku ABC vepsané.

b) Dokažte, že obsah trojúhelníku ABC je roven
obsahu obdélníku o rozměrech DA3 DB.

Řešení (viz obr. 48). O délkách tečen vedených ke
kružnici k = (S3 r), vepsané danému trojúhelníku ABC3
platí (přitom x je délka tečen vedených z bodu C ke k
a zároveň poloměr vepsané kružnice):

AD = b — x — AC — x,
BD — a — x — BC — x .

(1)
(2)
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a) Přitom o délce с přepony АВ platí
с — BD + AD,

neboli
c — a — x + b — x;

odtud vypočteme číslo x:

x= l(a +b - c) = i(a+b(3)
což jsme měli vypočítat.

Obr. 48

b) Ze vztahů (1), (2) dostaneme
AD = b — x — b — \{a + b — c) = \{—a -\-b +c), (3)
BD — a — x — a — \{a + b — c) = — b +c); (4)
vedle toho podle věty Pythagorovy platí

с2 = a2 + Ьг . (5)
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Odtud plyne
AD . BD = i [c -(a - b)] [c + (a - b)\ =

= í[c2 - (a - bf] =
= i[«2 + b2 - (a2 - 2ab + b2)] =
= J • 2ab = ,

což je skutečně obsah daného trojúhelníku.

9. ÚLOHY II. KOLA KATEGORIE D

1. Při omezování odběru elektrického proudu v době
špiček se 35 závodů zavázalo к snížení spotřeby. Celkem
byly tři skupiny těchto závodů: V první skupině dosáhl

* každý závod snížení na 50 % svého pravidelného odběru,
ve druhé skupině snížil každý závod spotřebu o i a ve
třetí skupině o £ pravidelného odběru.

Tím se dosáhlo úspory 40 % celkové pravidelné spo-
třeby. Přitom v první skupině byl počet závodů dvoj-
násobný než ve druhé. Kolik závodů bylo v každé sku-
pině, jestliže každý z těchto 35 závodů měl původně
stejnou pravidelnou spotřebu proudu?

Řešení. Označme m Ф 0 (v kWh) množství elektric-
kého proudu, odbírané pravidelně každým z uvedených
35 závodů v době špičky. Dále označme 2x, x, у počet
závodů v jednotlivých skupinách, takže platí

Зх А-У = 35 .

Spotřeba závodů v době špičky pak v jednotlivých
skupinách je:

(1)

m-\-2x = mx; fmx; \my .

Celková spotřeba v době špičky je jm(2x + x +jy) =
= fwz(3# +jy). Přitom podle textu platí

mx +1mx + Imy — |m(3x + y) .
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60
Po znásobení obou stran této rovnice číslem — dostá-

i

váme postupně
60л; + 40л; + 45у — 36(3x -\-y),

9y — 8л; ,

У = »x .

Po dosazení výsledku (2) do (1) dostáváme postupně
Зл; + f* = 35 ,

x = 9;

(2)

odtud a ze (2) obdržíme
У = 8 .

Odpověd. V první skupině bylo 18, ve druhé 9 a ve
třetí 8 závodů.

Zkouška. V době špičky závody jednotlivých skupin
spotřebovaly:

m-\-18 = 9m\ \m.9 = 6/w; |m.8 = 6m ,

takže celková spotřeba v době špičky podle toho byla
(9 + 6 + 6)m = 21m. Na druhé straně podle textu úlohy
celková spotřeba byla fm.(18 +9 +8) = 21 m} což
souhlasí.

2. V rovině je dána úsečka AM a uvnitř této úsečky
bod V.

Sestrojte rovnoramenný trojúhelník ABC se základ-
nou AB tak, aby úsečka AM byla jeho výškou a bod V
průsečíkem výšek. Stanovte podmínku řešitelnosti.

Narýsujte, je-li AM = 82 mm, AV — 45 mm.

Řešení (obr. 49). Rozbor. Označme M, N, P paty
výšek vedených body А, В, C v hledaném trojúhelníku.
Přímka CP = p je osou souměrnosti tohoto trojúhelníku,
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a proto je VB — VA. V pravoúhlém trojúhelníku VBM
(je <£M = 90°) tedy známe odvěsnu VM a přeponu VB.
Odtud konstrukce:

Označme q jednu z polorovin vyťatých přímkou AM
a v ní nad úsečkou VM jako odvěsnou sestrojíme právo-
úhlý trojúhelník VBM, kde <£M = 90° a VB = VA.
Bod C je průsečík přímek m, p, kde m = MB, p je osa
úsečky AB. Tím je sestrojen hledaný trojúhelník ABC,
který splňuje požadavky úlohy.

Důkaz. Podle konstrukce je
VAB rovnoramenný trojúhel-
nik o základně 'AB a o ose p,
která prochází bodem V. Bod C
podle konstrukce leží na ose p
úsečky AB a na přímce m, kde
m p, a proto trojúhelník
ABC existuje a jerovnoramen-
ný. Podle konstrukce je AM J_
_L ВС, CP _L AB, takže bod V
je v trojúhelníku ABC průse-
číkem výšek. Tím je důkaz pro-
veden.

Diskuse. Řešitelnost úlohy
zřejmě závisí na možnosti se-
strojení pravoúhlého trojúhel-
niku VBM s přeponou VB,
která je v pravoúhlém trojúhel-
niku největší stranou, takže
nutně musí být VB > VM neboli VA > VM. Jestliže
tento vztah platí, dovedeme trojúhelník VBM sestrojit,
neboť pak je přímka m sečnou kružnice k = (V; VA).
V pravoúhlém trojúhelníku ABM (kde <£M = 90°) je
úhel <£jB ostrý, a proto je <£ VPB + <pPBM < 180°,
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takže podle Euklidova axiómu se přímky p, m protínají
v bodě C.

Při umluvené volbě poloroviny q dostaneme jediný
trojúhelník ABC; jeho obraz v souměrnosti o osz AM je
druhé řešení. Tyto trojúhelníky splynou, jestliže je AM
osa úsečky BC neboli je-li ABC rovnostranný troj-
úhelník; to zřejmě nastane právě tehdy, je-li A V =
- 2. EM.

3. Nájdite všetky prirodzené čísla dělitelné ósmimi,
ktorých ciferný súčet v desiatkovej sústave je sedem a
súčin ich číslic je šesť.

Riešenie. Hladané číslo je dělitelné ósmimi, a preto
je nutné párne. Na konci móže mať len cifru 2 alebo 6
(pri cifrách 0, 4, 8 by bol súčin cifier iný ako 6). Vytvá-
rajme súčiny hladaných cifier tak, aby boli rovné číslu 6
a aby ich súčet bol 7 (buď je jedna Cifra 6; ak nie, je
nutné jedna cifra 2):

Případ [1]: Platí 6 = 6.1; případ [2]: Platí 6 =
= 2.3 . 1 . 1.

Iné případy nie sú. možné. Zostavujme z cifier, ktoré
sme tu dostali, příslušné čísla:

Případ [1]. Číslo 16 vyhovuje požiadavkám úlohy;
číslo 61 nie.

Případ [2]. Máme zostaviť všetky štvorciferné čísla
z cifier 1, 1,2,3, pričom na mieste jednotiek musí byť
cifra 2 a čísla majú byť dělitelné ósmimi. Stačí teda
uvažovat’ o tých posledných trojčísliach, ktoré končia
dvojkou a sú dělitelné ósmimi.

Nech na mieste desaťtisíciek je cifra:
a) 3; potom máme jediné posledně trojčíslie: 112.

Hladané číslo je 3112 a vyhovuje požiadavkám úlohy:
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je dělitelné osmimi a platí:
3.1. 1.2 = 6, 3+1 +1+2 = 7.

b) 1; potom máme tieto posledné trojčíslia: 132, 312.
Z nich vyhovuje 312 a číslo 1312 vyhovuje požiadavkám
úlohy, pretože je dělitelné osmimi a platí 1 . 3 . 1 . 2 = 6,
1 +3 + 1 +2 = 7.

Výsledok: Požiadavkám úlohy vyhovujú právě tri čís-
la, a to: 16; 1312; 3112.

4. V rovině sú dané dve kružnice kx = (Sx; 25 mm),
k2 = (*S2; 25 mm); pričom vzdialenosť SXS2 = 120 mm.

Narýsujte všetky kružnice, ktoré majú s každou z da-
ných kružnic k13 k2 vonkajší dotyk a zároveň sa dotýkájú
priamky SXS2. Vypočítajte poloměry zostrojených kružnic.

Riešenie (obr. 50). Nech je k = (S; r) hladaná kruž-
nica. Podlá podmienok úlohy je SXS = S2S = r +25;
preto bod S leží na osi m úsečky SXS2. Os m prechádza
stredom M úsečky SXS2. Tento bod je bodom dotyku
kružnice k a priamky SXS2, pretože je SXS2 + SM.
Vypočítajme poloměr r kružnice k. Z pravoúhlého troj-
uholníka SXMS vyplývá podlá Pythagorovej vety SXS2 =
= SXM2 + SM2 čiže

(r + 25)2 = 602 + r2,
pretože SXM = 60 (mm). Z rovnice (1) vypočítáme

r = 59,5 (mm).
Konštrukciu prevedieme na základe výpočtu: Na

priamke m zostrojíme oba body S, S', pre ktoré platí
MS — MS' = r. Kružnice k
riešením úlohy, pretože sa dotýkajú priamky SXS2
(v bode M) a každej z kružnic k13 k2. Z (1) totiž vyplývá,
že SXS = S2S = SXS' = 525' = r + 25.

(1)

(5; r), k! = (S'; r) sú
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Bod 5 (S') móžeme skonštruovať bez výpočtu po-
mocou pravoúhlého trojuholníka SiMS. Je to pravoúhlý
trojuholník, v ktorom je známa dlžka odvěsny 5jAÍ =
= 60 mm a rozdiel dížky přepony a druhej odvěsny,
ktorý je 25 mm. Ak zostrojíme na polpriamke SM úsečku
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Obr. 50

SP tak, aby platilo SP = SS19 vznikne rovnoramenný
trojuholník SXPS so základňou SjP. Vrchol 5 je prieseč-
nikom priamky m a osi o úsečky Č^P. Os o vieme zostrojiť,
pretože vieme zostrojiť bod P. Je to bod polpriamky
opačnej к MS, pre ktorý platí MP = 25 mm.
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V. Zpráva o páté mezinárodní matematické
olympiádě

1. Pořadatelem V. mezinárodní matematické olympiády
(V. MMO) byla v roce 1963 polská vědecká matematická
společnost Towarzysztwo Matematyczne. Program spojený
s vlastní soutěží trval od^ pátku 5. července 1963 do
neděle 14. července 1963. Československá delegace, která
se skládala z osmi žáků, vedoucího delegace a pedagogic-
kého průvodce, přijela do Varšavy 5. července 1963
o 8.30 hod. VEČ a odcestovala 14. července 1963
o 4.15 hod. VEČ z Vratislavi do vlasti. Naše žákovská
delegace byla vybrána z vítězů XII. ročníku česko-
slovenské celostátní matematické olympiády.

Soutěže se účastnilo celkem 8 socialistických zemí
a každá byla zastoupena osmi žáky, takže celkový počet
účastníků byl 64. Vedoucími delegací a pedagogickými
průvodci podle jednotlivých zemí byly tyto osoby:
BLR (Bulharsko): prof. A. Mateev; S. Budurov, inspektor
w ministerstva osvěty BLR.
ČSSR: doc. Jan Výšin; Fr. Zítek CSc.
SFRJ (Socialistická federativní republika Jugoslávie):

prof. M. Dajovicová; asistent M. Marjanovič.
MLR (Maďarsko): prof. E. Hódi; redaktor T. Bakos.
NDR: prof. W. Engel; doc. H. Titze.
PLR (Polsko): Mgr. A. Mqkowski; Mgr. K. Wisniewski.
RLR (Rumunsko): prof. G. D. Simionescu.
SSSR: doc. A. Morozovová; pedagog I. S. Petrakov.

Předsedou polského přípravného komitétu
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V. MMO byl známý prof. St. Straszewicz, jednatelem
pak prof. Mieczyslaw Czyžykowski, oba z Varšavy. Pro-
fesor Straszewicz zároveň předsedal mezinárodní
komisi soutěže (MK), jejímiž členy byli vedoucí
delegací a jejíhož zasedání se účastnili i pedagogičtí
průvodci.

Přípravný komitét vypracoval návrh na dvě šestice
soutěžních úloh; к tomu užil textu úloh, které mu na jaře
roku 1963 jednotlivé zúčastněné země zaslaly (z ČSSR
bylo zasláno pět úloh). Ve dnech 4.-6. července 1963
pak MK vybrala šest soutěžních úloh, z nichž jedna je
československého původu. Přitom byl zároveň stanoven
maximální počet bodů pro klasifikaci jednotlivých úloh
(žák mohl získat maximálně 40 bodů).

Neděle 7. července byla věnována jednak výletu do
okolí Varšavy, jednak prohlídce historických paměti-
hodností města. V pondělí 8. července odjely delegace do
Vratislavi, kde byly ubytovány v internátě Inspekce
práce. V úterý 9. července dopoledne byl první sou-
těžní den. Ve středu 10. července měli žáci volno, kdežto
vedoucí delegací a pedagogičtí průvodci prováděli hodno-
cení žákovských řešení; večer pro ně uspořádali profesoři
vratislavské university večeři. Ve čtvrtek 11. července
dopoledne byl druhý soutěžní den; dva jugoslávští
žáci pracovali svá řešení v nemocnici vzhledem к jejich
virovému onemocnění. Hodnocení žákovských řešení
skončilo v pátek 12. července 1963 v 16.00 hod. Hned
nato o 18. hod. se konalo závěrečné zasedání MK
a schváleno hodnocení prací tak, jak se na tom dohodli
vedoucí delegací s koordinátory; funkci koordinátorů
konali členové Mezinárodní komise spolu s pedagogic-
kými průvodci. Byl stanoven tento počet bodů pro
udělení cen: první cena: 35—39 bodů (40 bodů nikdo
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nezískal); druhá cena: 28—34 bodů; třetí cena: 21 až
27 bodů.

Čs. žáci získali jednu první cenu {Josef Danes —
35 bodů) a jednu třetí cenu {Jaroslav Zemánek — 23 bodů).
V příloze č. 1/uvádíme jmenný seznam vítězů
V. MMO.

V tabulce č. 1 je uveden celkový počet bodů,
které získali jednotliví žáci a jednotlivá družstva
celkem; v tabulce č. 2 uvádíme, kolik bodů získali
jednotliví čs. žáci za každou ze šesti soutěžních úloh.
V příloze II uvádíme texty a nástin řešení šesti
soutěžních úloh; za každou úlohou v závorce je
uvedena země, která úlohu zadala, a dále maximální počet
bodů, které při řešení úlohy mohl žák získat.

Na závěr zasedání MK poděkoval prof. Straszewicz
všem delegátům za jejich přátelskou spolupráci; prof.
Simionescu pak poděkoval jménem zahraničních delegací
hostitelům za družné přijetí.

V sobotu 13. července měli účastníci volno. Závěrečné
slavnostní vyhlášení vítězů se konalo toho dne
o 15.30 hod. v historické síni vratislavské radnice. Stalo se

tak za předsednictví prof. Straszewicze. Hlavní projev
к olympionikům měl prof. Šikorski, jako místopředseda
Towarzystwa Matematicznego; mluvil o charakteru a vý-
známu matematiky. Po jeho projevu dostali žáci ceny
a dárky. Jménem zahraničních delegací pak poděkoval
prof. E. Hódi.

Závěrečný projev pronesl předseda Národní rady města
Vratislavi prof. Iwaskiewicz. Poté se konala přátelská
beseda, která skončila po 18. hod.
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Tabulka č. 1
Celkový počet bodů, které získali žáci jednotlivých zemí

Tabulka č. 2
Klasifikace řešení jednotlivých úloh čs. žáků

(v závorkách je uveden maximální počet bodů za dokonalé řešení úlohy)

Úloha č. Získal celkem
bodů

(celkem max.
40 bodů)

Žák č. 1 2 3 4 5 6

(6) (7) (7) (6) (6) (8)

351 6 5 5 67 6
4 152 3 0 1 0 7

205 43 3 7 1 0
3 154 4 5 0 3 0

155 2 3 2 52 1
142 0 66 2 4 0

6 142 5 0 1 07
1 7 238 5 5 5 0

celkem 151
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Příloha I.

Jmenný seznam vítězů V. mezinárodní matematické
olympiády

I.cena

G. Maloletkin (SSSR); R. Sarkisjan (SSSR); A.Zajcev
(SSSR); A. Tolpygo (SSSR); L. Zsido (RLR); F. Dacar
(SFRJ); J. Danes (ČSSR).

II.cena

V. Fišman (SSSR); L. Lovász (MLR); F. Szidarovszky
(MLR); L. Gerencsér (MLR); J. Pelikán (MLR);
I. Boljevski (SFRJ); G. Lusztig (RLR); A. Zvjagincev
(SSSR); P. Fazekas (MLR); S. Smirnov (SSSR);
P. Petek (SFRJ).

III.cena

K. Andreev (SSSR); G. Eckstein (RLR); M. Mrševič
(SFRJ); G. Corradi (MLR); V. Zaimov (BLR); S. Grigo-
rescu (RLR); E. Makai (MLR); A. Mate (MLR);
iý. Riedel (NDR); B. Wajnryb (PLR); J. Zemánek
(ČSSR); 5. Bilcev (BLR); U. Kiichler (NDR); G.Gancev
(BLR); H. Schwarz (NDR); T. Spircu (RLR); H. To-
runczyk (PLR).

2. Všimněme si stručně soutěžních úloh i nesnází,
s nimiž žáci při jejich řešení museli zápasit.*)

^ К jednotlivým úlohám poznamenáváme stručně toto:
Úlohy č. 1, 2, 4 byly vhodné pro soutěž. Přitom úloha

*) Texty a řešení soutěžních úloh jsou uvedeny v příloze II.
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č. 4 si vyžadovala rozklad mnohočlenu třetího stupně,
jehož jeden kořen byl znám. Tato látka není v osnovách
většiny zúčastněných zemí; avšak podle mínění vedoucích
delegátů by měl každý olympionik nabýt potřebných
znalostí toho druhu z vlastního studia. Úloha č. 3 sváděla
žáky к tomu, aby používali intuitivních prvků (žáci nebyli
s to matematicky zvládnout pojem konvexního mnoho-
úhelníku); cosi podobného bylo i při úloze č. 2. Úloha
č. 5 vyžadovala určitého speciálního obratu, načež řešení
bylo zcela krátké; to si však vyžadovalo jistou zkušenost
a vynalézavost. Úloha č. 6 měla dlouhý text (dala se totiž
nesnadno formulovat); sváděla к experimentálnímu řešení
a vyžadovala obšírný výklad; to působilo nesnáze při
hodnocení a koordinaci klasifikace (podobná nesnáz byla
i při úloze č. 2).

3. К výkonům žáků v průběhu soutěže poznamená-
váme toto: Všeobecně lze říci, že např. žáci sovětští byli
mnohem pohotovější než naši. Je to především proto,
že byli ze speciálních tříd a dovedli řešit úlohy podstatně
rozličnými metodami. Při úloze č. 4 se např. ukázaly
základní nedostatky při eliminaci neznámých z většího
počtu rovnic. Obratnost řešitelů se např. jasně projevo-
vala při řešení úlohy č. 2, kde u mnohých řešitelů chyběl
důkaz. Úloha č. 5 mnoho neukázala; většina žáků ji
snadno rozřešila pomocí vhodného obratu, avšak mnozí
přes značnou námahu nedospěli ke kladnému závěru.
Při úloze č. 6 asi žádný z řešitelů neodvodil jistou větu
o permutacích, jak to předpokládalo autorské řešení;
většinou se řešila experimentálně a tu ovšem záleželo
na tom, aby řešitel provedl zručným způsobem analýzu.

Posuzujeme-li československé družstvo, pak jen asi
polovina žáků měla skutečně mezinárodní úroveň, kdežto
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druhá polovina nebyla na soutěž patřičně připravena.
Nas nejiepsi žáK zřejmé zpúsoon, že jsme se jako celek
nedostali na poslední mísio. boutež je závodem jednot-
livcú, ale přesto výKony celeho družstva ukazují na kvalitu
a připravenost nejiepsich mladých matematiků té které
zeme. A tah při porovnávaní vidíme, že všichni žáci
ze SSSR a MLR zishaL ceny, žáci z RLR až na jednoho.
Zatímco průměrný počet oodu na jednoho sovětského
žáka je 34, připada na našeho jen 19; jako celek jsme se
umístili temeř na spodní hranici výkonů.

Uveďme přehledně nejzákladnější a nej typičtější ne-
dostatky většiny našich žáků: malá znalost metod řešení,
nedostatek pohotovosti zvolit správnou metodu; ne-
dostatečná ZDéhlost v úpravách výrazů a malá znalost
školské algebry; nedostatečná znalost provádění rozboru
(dichotomické třídění); žáci „odvodilicc pomocné věty,
které zřejmě neplatí, a užívali jich při řešení; malá
zběhlost v řešení geometrických polohových úloh.

Uvedené neznalosti netkví v nedostatku nadání, ale
v nedostatečné přípravě žáka. Vlekou se pak v průběhu
jeho celého studia a ani nejlépe organizovaná příležitostná
školení (přípravné přednášky, soustředění olympioniků
před odjezdem na MMO) nemohou nahradit soustavné
a pečlivé vedení žáka učitelem po celou dobu jeho studia.
V zahraničí zřejmě věnují nejlepším mladým matema-
tikům mnohem větší pozornost než u nás; pečují o ně
soustavně organizátoři soutěže i vysokoškolští pracovníci.
Našim žákům zatím chybí určitá samostatnost, jsou
zvyklí plnit své povinnosti poněkud formálně a nejsou
vychováváni к tomu, aby sami intenzívně usilovali o to,
aby nabyli co nejhlubších znalostí v matematice vlastním
úsilím. К těmto závěrům naši žáci sami dospěli při
diskusích se zahraničními žáky, u nichž obdivovali nejen
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hloubku a šířku vědomostí, ale i vážnost, s jakou jsou
upjati na studium matematiky.

Pro nás z předchozího vyplývá, že musíme hledat
cesty, jak máme žáky vést odpovědně, plánovitě a sou-
stavně, aby si zvykali na poctivou práci, aby sami v sobě
potlačovali jakoukoli polovičatost a plně si uvědomovali,
že jejich úkolem ve škole je uvědoměle a usilovně studo-
vat. Čím dříve se nám podaří vnést do myslí našich žáků
tyto zásady, tím dříve překonáme nesnáze, které dnes
máme při výchově mladých kádrů.

Příloha II.

Soutěžní úlohy
z V. mezinárodní matematické olympiády

1. Najděte všecky reálné kořeny rovnice
У*2 — p + 2Уя2 — 1 = x,

(ČSSR — max. 6 bodů)kde p je reálný parametr.

Řešení. Danou rovnici upravíme na tvar

2Ул;2 — 1 = x — ]/x2 — p
a obě strany této rovnice umocníme dvěma; vyjde
po úpravě

2л:2 + (p — 4) = — 2л:Ул:2 — p .

Po dalším umocnění a úpravě dostaneme:
4(4 - 2p)x2 = {p- 4)2.

Je-li daná rovnice řešitelná, je i rovnice (1) řešitelná;
proto je p Ф 2, 4 [v případě p = 4 dá (1) kořen x = 0,
který nevyhovuje rovnici (1)]. Je-li p Ф 2, 4, plyne z (1)
4 — 2p> 0 neboli p < 2. V úvahu pak přichází kořen

(1)
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rovnice (1) daný vzorcem
IP - 41

2У4^2У (2)

neboť z dané rovnice vyplývá, že л: musí být nezáporné
číslo. Je ovšem ještě třeba provést zkoušku. Vypočteme

x2 — _ (P ~ 4)2 .* 4(4 - 2p) ^ _ (3/>~4)2.
4(4-2p)5

odtud
|3p - 4|

2]/4 - 2p ’У*2 — p =

Dále vypočteme

x2 — 1 =
(/> ~ 4)2 Рг

- 1 =

4(4 - 2py4(4 - 2p)
odtud

]/x2-l = -^>L= .r 2У4 - 2p
Kořen (2) bude tedy splňovat danou rovnici právě pro
ty hodnoty p, pro něž bude platit

|3p — 4| + 2\p\ = \p — 4| .

Při řešení rovnice (3) rozlišíme čtyři intervaly:
(3)

Ab) 0 ^ p <
c) f ^ p ^
d) p ^ 4 .

V případě a) má rovnice (3) tvar — 3p + 4 — 2p =
= 4 — p a má jediné řešení p = 0. V případě b) má
rovnice (3) tvar — 3p + 4 + 2p = 4 — p a vyhovuje jí

3 5

4,
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kterékoli p z tohoto intervalu. V případě c) má rovnice (3)
tvar Ър — 4 + 2p = 4 — p a má jediné řešení p — f.
Konečně v případě d) má rovnice (3) tvar 3p — 4 +
+ 2p — p — 4 a vyhovuje jí jediné číslo p — 0.

Výsledek zkoušky, jediný možný kořen (2) vyhovuje
dané rovnici jen v případě, že jsou splněny nerovnosti
p<2a0^p^|. Podmínka řešitelnosti tedy je

2. Je dán bod A a úsečka BC. Určete geometrické
místo všech bodů v prostoru, které jsou vrcholy pravých
úhlů, jejichž jedno rameno obsahuje bod A a druhé ra-
měno má s úsečkou BC společný aspoň jeden bod.

(SSSR — max. 7 bodů)
Řešení (jednoho ze sovětských účastníků). Je zřejmé,

že bod A náleží vyšetřovanému geometrickému místu M.
Je-li X ^ A bod útvaru M, pak rovina q kolmá к přímce
p = AX a procházející bodem X má s úsečkou BC
aspoň jeden společný bod Y. Obráceně: vedeme-li
libovolným bodem Y úsečky BC rovinu q kolmou к libo-
volné přímce p procházející bodem Л, pak průsečík X
roviny q s přímkou p náleží útvaru M.

Všecky body X útvaru M ležící na pevné přímce p
procházející bodem A dostaneme, vedeme-li příslušné
roviny q všemi body Y úsečky BC. Průsečíky X přímky p
s rovinami q bud splynou v jediný bod, nebo vyplní
úsečku omezenou průsečíky přímky p s rovinami /5, у
к ní kolmými, vedenými body В, C.

Vedeme-li ke všem přímkám p příslušné roviny /?,
vyplní příslušné body X kulovou plochu K19 sestrojenou
nad průměrem AB. (Je-li A = B, redukuje se tato plocha
na jediný bod A.) Obdobně: vedeme-li ke všem přímkámp
příslušné roviny y, vyplní příslušné body X kulovou
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plochu K2, sestrojenou nad průměrem AC. (Je-li A = C,
redukuje se tato plocha na jediný bod A.)

Útvar M popíšeme takto: skládá se z obou kulových
ploch K15 K2 a ze všech bodů prostoru, které leží vně jedné
z nich a uvnitř druhé.

Příklady: Leží-li bod A uvnitř úsečky BC, skládá se
útvar M z obou koulí určených plochami K1} K2. Leží-li
bod A na přímce BC mimo úsečku BC, vznikne útvar M
rotací vyšrafovaného obrazce (i s hranicí) kolem přímky
BC (viz obr. 51). Obdobně se vytvoří útvar M, když
bod A neleží na přímce BC (viz obr. 52); v tomto případě
je osou rotace osa úsečky AA', kde A' je pata kolmice
spuštěné z bodu A na přímku BC.

3. Konvexní w-úhelník, jehož po sobě následující
strany mají délky a13 a%, . . ., an má tyto vlastnosti:

a) všecky jeho vnitřní úhly jsou shodné;

129



b) pro délky jeho stran platí nerovnosti
ax ^ a2 ^ ^ an . (1)

Pak je ax = a2 = . . . = an. Dokažte.
(MLR - max. 7 bodů)

Řešení (autorské). Označme PXP2 . . . Pn-iР» daný
konvexní и-úhelník; přitom platí PťPí+1 — ai3 i =
= 1, 2, ..., n (Pn+1 = Px). Myšlenka důkazu je v tom,
že se pokoušíme sestrojit kružnici opsanou и-úhelníku
(ukáže se, že и-úhelník je pravidelný), a to tak, že vy-
cházíme postupně ze všech jeho stran.

Nad stranou PťP(+1 jako základnou sestrojíme rovno-
ramenný trojúhelník PťPi+1»Sť tak, aby úhel <£Р^Р*+1

360°
proti základně měl velikost —; trojúhelník sestrojíme
v té polorovině s hranicí Р^Р{+13 v níž leží daný и-úhelník
(и-úhelník je podle předpokladu konvexní). Kružnice
k{ = (Si; StPi) by měla být kružnicí и-úhelníku opsanou.

Vyšetříme vzájemnou polohu kružnic kti kt+x (i =
= 1, 2,. . ., и, ki+1 = kx). Je-li a{ = ai+1 neboli PťPí+1 =
— Pi+1Pi+2, splynou body Si3 St+13 a tedy i kružnice
ki3

Je-li at > ai+13 leží bod mezi Si3 P{+1 (viz obr. 53),
kružnice k13 ki+1 mají pak vnitřní dotyk v bodě Pt+13
a to tak, že ki+1 leží (s výjimkou bodu Pi+1) uvnitř
Z předchozího vyplývá, že kruh náleží kruhu kt
(;i — 1, 2, . . ., и), tj., že kruh kn náleží kruhu kx. Nyní
provedeme nepřímý důkaz. Nechť mezi vztahy (1) platí
aspoň v jednom případě nerovnost. Pak kruh kn leží
uvnitř kx s možnou výjimkou jediného bodu, totiž
bodu Pn.*) To znamená, že bod P1 Pn leží zároveň

*) Ta by nastala v případě, kdyby platilo ax — a2 — .
— an-1 ^ an‘
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na kružnici kx a zároveň uvnitř kx (na kn). Tím je nalezen
spor s předpokladem; závěr: platí ax = a2 = ... — ani
jak jsme měli dokázat.

Obr. 53

4. Určete všecka řešení x1} x23 x3, xXi x5 soustavy rovnic
*5 + *2 = yxi,
*i + *з = yx2,
*2 + *4 = № J

*3 + *5 = УХ\ >

X4 + xx = yx5,

(1)

(SSSR — max. 6 bodů)kde у je parametr.

Řešení. Eliminujeme nejprve x5 z prvním čtvrté a páté
rovnice; dostaneme novou soustavu

*2 - *з = У(х1 — x4),
xá + xx = y(yxx — x2),
xx T- x2 — yx2 5

*2 +*4 =yxz>
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po úpravě
ухг — X2 +^-^4=0,

(1 — y2)x1 -\-yx2 +i4 = 0,
*1 + *3 = № 3

*2 + *4 = Ухг •

Nyní eliminujeme z první, druhé a čtvrté rovnice soustavy
(2) neznámou x4; vyjde

(2)

yxx — x2 + *3 — y2x3 + 3>*2 = 0
(1 — У)*4 Л- уx2 +yxz — x2 =

po úpravě
ухг + (у — l)x2 + (1 — y2)x3 = 0 ,

(1 — y2)x! +(y — l)x2 +ухъ = 0 ,
— 3^2 •

Dále eliminujeme x3; vyjde po úpravě

(3)

(У + У — 1)*1 + (— У + 2У —

(1 — у — y2)x1 + (У + з> —

l)x2 — 0, 1
1)*2 =,0.1 W

Rozložíme

—У +2y — 1 = (y2 +y — 1) (1 — y);
soustava (4) přejde užitím (5) v soustavu

(У + 3> - 1) [*i - Су — 1K] = 0,
(У + 3> - 1) (*2 — *i) = 0

a) Je-li У +3; — 1 У 0, plyne z (6) xx = x2,,
^i(2 — У = 0. Je-li 3/ У 2, pak = x2 = 0, a dále
*3 — x4 — x5 = 0. Toto řešení skutečně vyhovuje sou-
stavě (1), jak ukazuje zkouška.

b) Je-li у2 T- у — 1 Ф 0, ale у — 2, je opět x2 = x13
a dále x3 — x13 jc4 = x13 x5 = 2xx — x2 — x13 číslo xx je
možno volit libovolně, jak ukazuje zkouška.

(5)

} (6)
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c) Je-li y*+y —1=0, tj. у = К—1 ± 1/5 ), lze
zvolit xl3 x2 libovolně, *3, xi3 x5 se určí ze soustavy (1)
pomocí vztahů:

*3 = № — *1 9

*4 = УХ3 — *2 = (у2 — 1)*2 — № í

*5 = УХ1 — *2 .

Zkouška se provede buď obrácením předchozího postupu,
nebo dosazením.

Řešení lze zkrátit, odvodíme-li ze soustavy (1) další
rovnici sečtením všech pěti rovnic.

5. Dokažte, že platí
2 tu 3tu 1TU

7 + cos 7 2 .

(NDR — max. 6 bodů)
Řešení (vedoucího bulharské delegace). Důkaz se

velmi zjednoduší, použijeme-li umělého obratu: levou
stranu dokazované rovnosti znásobíme číslem

2cos -Д-.

cos — — cos
7

2cos
14'

S použitím vzorce
2cosacos/i = cos(a + /5) + cos(a — /?)

dostaneme
- 7Г
2cos -r-7

Зтг/ 7Г 2тС 3tu\

j COS 7- — COS -7- + COS-7I = C0S14 +
. 7U 5ти Зти 7тс 57Г
+ COS ,-7 — COS — COS + COS —. + COS rrr14 14 14 14 14

14

TU
, TU

I4+C0S2
TU

= COS = COS ~r~7 •14
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Je tedy
тс Г / u 2tc 3tt\ 1

C0S Ti 2\C0S y-cosT + cos у I — 1 = 0 .

Protože je cos — 0, vyplývá odtud dokazovaná14
rovnost.

6. Soutěže se zúčastnilo pět žáků А, В, C, D, Zí. Kdosi
předpověděl, že výsledné umístění bude ABCDE. Tato
předpověď se však nesplnila: žádný soutěžící nebyl na
předpověděném místě a žádná dvojice bezprostředně za
sebou následujících soutěžících nebyla předpověděna
správně.

Kdosi jiný předpověděl umístění DAECB. Tato před-
pověď byla správnější: právě dva soutěžící byli na před-
pověděných místech a právě dvě dvojice bezprostředně
za sebou následujících soutěžících byly předpověděny
správně.

Určete, jaké bylo skutečně výsledné umístění.
(MLR — max. 8 bodů)

Řešení. I. Úlohu lze řešit ryze experimentálně, tj.
napsat všech 120 permutací pěti prvků a vyškrtat všecky
nevyhovující. Zůstane jediná permutace

EDACB,
která je skutečně řešením úlohy (prvky С, В jsou na před-
pověděných místech, správně byly předpověděny sledy
DA, CB).

Toto experimentální řešení trvá asi půl hodiny.
W II. „Matematičtějšícc řešení (autorské) se opírá o tuto
snadno odvoditelnou pomocnou větu V:

(1)
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Nechť permutace XYZTU (pěti prvků) má vzhledem
к permutaci KLMNP tento vztah: právě dva z prvků К,
L, M, N, P jsou na týchž místech a právě dvě dvojice
bezprostředně za sebou jdoucích prvků (tj. KL, LM,
MN, NP) jsou zachovány.

Pak je buď X = K, Y = L, nebo T = N, P = U.
Důkaz pomocné věty V. Experimentálně zjistíme, že

permutace XYZTU nemůže mít žádný z tvarů
K.MК..NК. .. P; . LM.
.L.N.; . L . . P; .. MN..M.P.

Zbývají tedy jedině permutace, v nichž první dva nebo
poslední dva prvky zůstávají na svých místech.

III. Podle pomocné věty V má v našem případě hle-
daná permutace tvar buď DA ..., nebo ... СВ. V prvním
případě jsou možnosti:

DACBE, DACEB, DABCE, DAEBC,
DABEC, DAEBC,

z nichž žádná nevyhovuje (důvod vyznačen podtržením).
Vyplývá to ze srovnání s první předpovědí.

V druhém případě jsou možnosti:
ADECB, AEDCB, DAECB,
EADCB, РРЛCP, CP.

v—✓

Z nich první, druhá a pátá opět odpadají (důvod vyznačen
podtržením), třetí je předpověděná permutace — proto
také nevyhovuje. Čtvrtá permutace zachovává sled jen
jediné dvojice CP; proto také nevyhovuje.

Zbývá jen šestá permutace, která je skutečně řešením
úlohy.
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Jak je patrné, je toto řešení kombinací pokusů a de-
duktivních úvah, jichž se použilo к rychlejší eliminaci ne-
vyhovujících permutací.

/
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Z nové sazby písmem Plantin vytiskla Svoboda, grafické závody, n. p.,
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