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Dne 19. května 1965 skonal náhle na Malé Fatře vědecký
pracovník MÚ ČSAV s. RudolfZelinka, jeden ze zaklada-
telů naší celostátní Matematické olympiády. Od počátku
této soutěže v r. 1951 až po letošní rok vykonával funkci
jednatele ústředního výboru MO, byl hlavním autorem
všech dosud vyšlých brožur Matematické olympiády, vedl
čs. delegaci na pěti Mezinárodních matematických olympiá-
dách, byl členem redakčního kruhu knižnice Škola mladých
matematiků, v poslední době vedl kolektiv, který přeložil
pro naše olympioniky z ruského originálu Lidského sbírku
úloh — zkrátka na něm spočívala největší část všech úkolů
spojených s naší celostátní Matematickou olympiádou, s níž
jeho jméno nerozlučně srostlo.

Stovky učitelů a tisíce žáků, kteří znali jeho obětavou
práci a ryzí charakter, “vzpomínají s dojetím a vděčností na
dílo, které s. Rudolf Zelinka vykonal na poli naší školské
matematiky.

ÚV MOV Praze v červnu 1965
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I. К průběhu XIII. ročníku
Matematické olympiády

1. Soutěž se řídila organizačním řádem, uveřejněným
ve Věstníku ministerstva školství a kultury, roč. XIX,
str. 126—127, směrnice č. 37, z 30. 4. 1963. Žáci střed-
nich škol soutěžili ve třech kategoriích А, В, C (podle
tříd sestupně), žáci 9. ročníků základních devítiletých škol
byli zařazeni do kategorie D. Výjimek bylo málo (byly
povolovány krajskými výbory soutěže); většinou takové,
že žáci soutěžili ve vyšší kategorii, než do které svým
studijním věkem patřili.

Pořadatelem soutěže bylo ministerstvo školství a kultury
(MŠK) ve spolupráci s Matematickým ústavem ČSAV
(MÚ ČSAV), s Jednotou čs. matematiků a fyziků (JČMF)
a s ústředním výborem Čs. svazu mládeže (ÚV ČSM).
Soutěž řídil ústřední výbor Matematické olympiády
(ÚV MO); v krajích ji organizovaly krajské výbory MO
(KV MO) a v okresech, pokud jde o kategorii D, okresní
výbory MO (OV MO); rovněž v těchto výborech byli zá-
stupci pořadatelských složek vedle zástupců odborů
školství a kultury KNV, popř. ONV.

2. Ústřední výbor Matematické olympiády (adresa:
Praha 1, Žitná 25, telefon: 22 66 01) byl složen takto:
Předseda: akademik Josef Novák,vedoučí vědecký pra-

covník Matematického ústavu ČSAV v Praze

Místopředseda: Jan Výšin, docent matematicko-fyzi-
kální fakulty Karlovy university v Praze
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Jednatel: Rudolf Zelinka, vědecký pracovník Matema-
tického ústavu ČSAV v Praze

Členové: dr. František Běloun, vedoucí matematického
kabinetu Krajského pedagogického ústavu v Praze
Karel Hnyk, odborný asistent Pedagogické fakulty
v Liberci
Miloš Jelínek, vědecký pracovník Pedagogického ústavu
J. Á. Komenského ČSAV, Praha
doc. Josef Holubář, vědecký pracovník Matematického
ústavu ČSAV v Praze
František Hradecký, odborný asistent matematicko-
fyzikální fakulty Karlovy university v Praze
doc. dr. Karel Hruša, pracovník Ústavu pro učitelské
vzdělání na KU v Praze
Ladislav Krkavec, ústřední inspektor ministerstva
školství a kultury v Praze
dr. Milan Kolibiar, docent přírodovědecké fakulty Ко-
menského university v Bratislavě
Josef Porcal, ústřední inspektor ministerstva školství
a kultury, Praha
František Veselý, em. odborný asistent Vysoké školy
strojní a elektrotechnické, Plzeň
dr. Miloslav Zedek, docent Palackého university v Olo-
mouci
dr. Miroslav Fiedler, DrSc., vedoucí vědecký pracovník
Matematického ústavu ČSAV v Praze

Náhradník: Miroslav Šisler, CSc., vědecký pracovník
Matematického ústavu ČSAV v Praze

Členové-předsedové KV MO:
dr. Václav Pleskot, profesor ČVUT v Praze
dr. Václav Vilímek, odborný asistent katedry matema-
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tiky a deskriptivní geometrie fakulty strojní ČVUT
v Praze

František. Vejsada, odborný asistent Vysoké školy země-
dělské, České Budějovice
Karel Hnyk, odborný asistent Pedagogické fakulty
v Liberci

Věra Rádiová, učitelka SVVŠ J. Fučíka, Plzeň
Jan Laštovka, vedoucí kabinetu matematiky Krajského
pedagogického ústavu, Pardubice
Petr Benda, odborný asistent VUT, Brno
Josef Andrys, odborný asistent Pedagogické fakulty
v Ostravě

dr. Milan Kolibiar, docent přírodovědecké fakulty
Komenského university v Bratislavě
Ladislav Berger, odborný asistent katedry matematiky
Vysoké školy dřevařské v Žilině
Gejza Grega, odborný asistent Pedagogické fakulty
v Košicích

3. Jednotlivá kola byla organizována jako obvykle.
První kolo probíhalo od října 1963 do konce února 1964.
Žáci v něm řešili 6 úloh přípravných a 6 soutěžních.
Opravu a hodnocení žákovských řešení prováděli učitelé
matematiky ve spolupráci s referentem MO na škole
a s ředitelem školy. Krajské a okresní výbory MO pak
podle kvality žákovských řešení rozhodovaly o pozvání
žáků na soutěž II. kola.

Texty úloh I. kola vyšly opět na zvláštním tištěném
letáku v nákladu 15 000 exemplářů; mimoto byly uve-
řejněny v časopisech Rozhledy matematicko-fyzikální
a Matematika ve škole.
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Druhé kolo soutěže kategorií A až C se konalo v ne-
děli 12. dubna 1964 v krajských městech, kategorie D
v neděli 19. dubna 1964 v okresních městech; kromě
těchto středisek se II. kolo konalo i v dalších místech,
aby se žákům zkrátila cesta do místa soustředění.

Třetí kolo soutěže kategorie A se konalo v sobotu
16. května 1964 v Bratislavě.

4. Krajské výbory MO organizovaly ve spolupráci
s pobočkami Jednoty čs. matematiků a fyziků pro účast-
niky olympiády řadu pomocných akcí, jako přípravné
přednášky (až 8krát do roka), instruktáže, konzultace
apod. Tyto akce měly povahu pracovních seminářů
a byly zaměřeny na řešení matematických příkladů. Stejně
jako v předchozích letech byly ústředními tématy těchto
přednášek dělitelnost čísel, začátky teorie funkcí, řešení
planimetrických a stereometrických úloh, hlavně kon-
struktivních a početních.

V průběhu školního roku 1963—64 vyšly ve dru-
hém vydání v knižnici Škola mladých matematiků tyto
publikace:

a) Hradecký-Koman-Výšin, Několik úloh z geometrie
jednoduchých těles. Jaroslav Šedivý, Shodná zobrazení
v konstruktivních úlohách (jako dvojčíslo)

b) Šisler-Jarník, O funkcích
Nově vyšly svazečky:
Jaroslav Šedivý, O podobnosti v geometrii
Jiří Váňa, O rovnicích s parametry
Jan Výšin, Konvexní útvary
Jiří Sedláček, Faktoriály a kombinační čísla
Chystají se další svazky o geometrických místech v pro-

storu, o vícerozměrné geometrii aj.
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Ministerstvo školství a kultury vykupuje část nákladu
pro žákovské knihovny středních škol; tím je umožněno,
že i starší svazky této knižnice se novým účastníkům sou-
těže dostanou do rukou. Některé přípravné přednášky
jsou zaměřeny monotematicky a soustavně se opírají
o příslušný svazek knihovničky; žáci jej studují samo-
statně a při instruktáži se řeší těžší úlohy zařazené ve
svazku.

Celkem lze konstatovat, že se tato edice osvědčuje;
knížky jsou psány přístupně, a kdyby čtenáři věnovali
jejich studiu hlubší pozornost, mohla by nám tato kniž-
nice dobře pomoci překonávat nesnáze, které máme
s neuspokojivou připraveností našich žáků. Přáli bychom
si, aby se knižnice stala hlavní pákou přípravy žáků
v průběhu celého roku.

5. V rámci II. kola se ve vyšších kategoriích konaly
besedy a konzultace; někde se při té příležitosti prováděla
i analýza chyb, kterých se žáci dopustili při řešení úloh
I. kola; tuto závažnou práci provádějí některé výbory
soustavně v průběhu celého I. kola. Rovněž návštěvy di-
vadel, výstav a průmyslových podniků se staly většinou
nedílnou součástí programu, uskutečňovaného v rámci
II. kola soutěže.

V sobotu 16. května 1964 byla u příležitosti III. kola,
jehož soutěžní část se konala v budově Slovenské vysoké
školy technické, uspořádána v slavnostní síni této školy
beseda s účastníky soutěže. Přítomni byli zástupci
Slovenské národní rady, Slovenské akademie věd, střed-
nich a vysokých škol města Bratislavy aj. Besedu řídil
předseda IJV MO akademik Josef Novák. К žákům
promluvili vedoucí odboru pro školství a kulturu SNR
J. Bugala, dále krajský školní inspektor v Bratislavě
M. Žoldyi ústřední školní inspektor MŠK Ladislav
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Krkavec,
^ akademik Štefan Schwarz, profesor J. Kotzig,

členové ÚV MO aj. Na závěr besedy se rozvinula diskuse,
při níž olympionikům odpovídali přítomní zástupci vě-
deckých institucí, škol a školských orgánů a také pra-
covníci ÚV MO.

Večer navštívili účastníci olympiády představení ve
Hviezdoslavově divadle v Bratislavě. Druhého dne, v ne-
děli 17. května 1964 dopoledne, byl pro účastníky olym-
piády uspořádán autokarový zájezd na památný Děvín.
Zevrubný historický výklad o tomto významném místě
přítomným účastníkům podal vědecký pracovník Histo-
rického ústavu SAV dr. Radkoš. Téhož dne odpoledne
se rozjeli účastníci III. kola do svých domovů.

Pracovní schůze ÚV MO se konaly 28. listopadu 1963
v Praze a 16. května 1964 u příležitosti III. kola v Bra-
tislavě. Na této druhé schůzi se vedle zhodnocení průběhu
a výsledků XIII. ročníku jednalo o závažných opatřeních
к zabezpečení XIV. ročníku, dále se tu jednalo o edici
Škola mladých matematiků, a zvláště pak o chystaných
soustředěních žáků kategorie В (účastníků olympiády
matematické nebo fyzikální).

Celostátní soustředění 92 žáků se uskutečnilo ve dnech
21. června až 11. července 1964 ve Žďáru nad Sázavou.
Dopolední program byl věnován polovinou času mate-
matice a polovinou fyzice; odpoledne se žáci rekreovali
v rámci sportovního a turistického programu, večer se
konaly besedy s významnými vědeckými a vysokoškol-
skými pracovníky. Pro účely instruktáží byli žáci roz-
děleni do 4 tříd, zhruba po 25 účastnících. Souběžně
s touto instruktáží se ve dnech 21. 6. až 27. 6. 1964
konalo soustředění 8 žáků vybraných pro účast na VI.
mezinárodní olympiádě, která se počátkem července
1964 konala v Moskvě. Odbornou část instruktáží konali
pracovníci vysokých škol a Matematického ústavu ČSAV.
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Podobné instruktáže uspořádaly i některé krajské vý-
bory MO ve spolupráci s odbory pro školství a kulturu
KNV a s pobočkami Jednoty čs. matematiků a fyziků.
Stalo se • tak v krajích Středočeském, Západočeském,
Severočeském, Východočeském, Severomoravském a
Středoslovenském.



II. К výsledkům jednotlivých kol soutěže

1. Počet účastníků I. kola v kategoriích A až C vzrostl
proti minulému ročníku někde až dvakrát; v některých
krajích se prováděla intenzívní propagace (viz tabulku
č. 1). Procento úspěšných řešitelů se blíží číslu 50 (je
tedy zhruba stejné jako v minulém roce, tj. relativně
příznivé, neboť toto procento v dlouhodobém pozorování
kolísá mezi 25—35 %).

Zatím nemůžeme pozorovat zvláštní příznivý vliv sou-
středění vybraných žáků kategorie В XII. ročníku,
které se konalo v létě 1963. Je však třeba konstatovat,
že soustředěno bylo asi jen 10 % účastníků I. kola
kategorie А XIII. ročníku; to je tedy dosti málo (část
soustředěných žáků tvořili totiž účastníci jen fyzikální
olympiády, a nikoli matematické).

Rovněž počet účastníků I. kola kategorie D je o víc
než 20 % vyšší než v minulém ročníku. Procento úspěš-
ných řešitelů je zhruba stejné; přitom je jako vždy vyšší
než ve vyšších kategoriích. Viz tabulku č. 2.

2. Statistické údaje I. kola jsou tedy uspokojivější než
v předchozím roce. Avšak kvalita řešení se zřejmě pod-
statně nezměnila, jak o tom svědčí výsledky II. kola
(viz tabulky č. 3 a 4). Zde je procento úspěšných řešitelů
v kategoriích A až C blízké číslu 30, tedy celkem tradiční.
V kategorii D je úspěšných řešitelů na 50 %; to je dosti
vysoké číslo a není v souladu s hlasy řady okresů, že
úlohy II. kola byly pro žáky značně náročné.
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů v kategorii D *)

Kategorie D
Kraj

z toho dívek UP

Praha-město 10161 501 639

Středočeský 7311 214 605

Jihočeský 7591096 628

Západočeský 398757 396

612 365Severočeský 304

Východočeský 1 005 649506

Jihomoravský 8381 454 624

Severomoravský 7811 424 668

Západoslovenský 504671 374

Středoslovenský 847 409 554

Východoslovenský 471 262 293

Celkem 11 052 6 8885 415

*) P = celkový počet účastníků, U — počet úspěšných řešitelů.
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*

Tabulka č. 4

Přehled počtu účastníků II. kola podle krajů v kategorii D*)
%

Kategorie D
Kraj

z toho dívekP U

Praha-město 851 347 505

Středočeský 605 294 341

Jihočeský 617 336 345

Západočeský 348 64176

Severočeský 300 159129

Východočeský 583 333288

671Jihomoravský 324 203

S everomoravský 636 281 267

457Západoslovenský 253 245

Středoslovenský 475 232 256

152 183Východoslovenský 268

Celkem 5811 2 812 2 899

*) P — počet všech účastníků, U — počet úspěšných řešitelů.
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Počet slovenských účastníků soutěže ve všech ka-
tegoriích je dosud stále neuspokojivý. Žáci tří speciálních
tříd SVVŠ, v nichž jsou zařazeni žáci, kteří si oblíbili
matematiku a fyziku (po jedné třídě v Praze, Brně
a Bratislavě), se ve II. kole, pokud jde o Prahu a Brno,
dobře uplatnili; neuplatnili se však ve III. kole (malou
výjimkou jsou někteří žáci z Brna); zmíněné třídy tedy
neusnadnily např. výběr žáků pro VI. mezinárodní
olympiádu.

Úspěšní řešitelé II. kola obdrželi za svůj výkon v sou-
těži čestná uznání a byli odměněni hodnotnými věcnými
cenami, mimo jiné též studijní odbornou literaturou.

Dále uvádíme pořadí deseti nejlepších řešitelů
II. kola v každém kraji z kategorií В, C, pro které dru-
hým kolem soutěž končí.

Pořadí úspěšných řešitelů II. kola v kategoriích В, C

(Není-li uvedeno jinak, jedná se o žáka SVVŠ.)

Praha-město

B. Miloš Fink, Praha 6; J. Outrata, Praha 6; Jindřich
Bečvář, Praha 4; Jan Veselý, Praha 6; Jaroslav Doležal,
Praha 4; Jiří Rohn, Praha 6; Jiří Šolar, Praha 3; Otakar
Vituj, Praha 3; Jiří Kubie, Praha 3; Jaroslav Dittrich,
Praha 5

C. Petr Němec, Praha 6; Bohumil Čapek, ZDŠ Praha 4;
Petr Ludvík, Praha 1; Miroslav Prokeš, Praha 7; Jiří
Novák, Praha 5; Eduard Prandstetter, Praha 3; Ivan
Volný, Praha 10; Jan Faehnrich, Praha 7; Petr Brýdl,
Praha 1; Jiří Hoppe, Praha 1
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Středočeský kraj
B. Jiří Rott, PŠ hut. Kladno; Vladimír Loula, Nové

Strašecí; Jaroslav Příhoda, Čakovice; Bohuslav Severin,
Rakovník; Jiří Hochmann, Hořovice; Ivan Rádi, Kolín;
Dušan Vopálka, Benátky n. Jiz.; Miroslav Žaloudek,
PŠ Čáslav; Pavel Bunc, Kolín; Pavel Svoboda, Mladá
Boleslav

C. Jaroslav Chudáček, Mnichovo Hradiště; Jiří Svo-
bodá, Benešov; Jiří Sochor, Mnichovo Hradiště; Radko
Nejdi, Mnichovo Hradiště; Karel Dědek, ZTŠ Podě-
brady; Pavel Vavruška, Kolín; Eva Demská, Stodůlky;
Eva Zapotilová, PŠ Čelákovice; Jitka Váňová, Beroun;
Břetislav Fuj an, Kladno

Jihočeský kraj
B. Pavel- Vejvoda, OV JČE (učiliště), Hluboká n.

Vit.; Pavel Pták, Písek; Květuše Zbožínková, České Bu-
děj ovice; David Preis, Jindřichův Hradec; Josef Prokeš,
České Budějovice; Frant. Chvála, Písek; Jiří Vobořil,
České Budějovice; Ladislav Tomášek, Pelhřimov

C. Vladimír Kůrka, Písek; Václav Holíky Prachatice;
Petr Kříha, České Budějovice; Jan Mach, České Budě-
jovice; Pavel Podlešák, Písek; Pavel Vítek, Tábor; Mi-
roslav Červený, SZTŠ mech. České Budějovice; Petr
Sedláček, _SPS Písek; Lubor Hron, Pelhřimov; Jan
Plánský, Český Krumlov

Západočeský kraj
B. Petr Barči, Ostrov; Václav Steiner, Stříbro; Eva

Kotinová, Plzeň; Josef Bartoš, Aš; Jiří Novotný, Plzeň;
Bohumil Sýkora, Plzeň; Přemysl Breník, Plzeň; Jaroslava
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Pionérové, Karlovy Vary; Jiří Lažanský, Domažlice;
Jaromír Kašpar, Ostrov

C. Oldřich Vlásek, Mariánské Lázně; Jan Štěpáník,
Horažďovice; Přemysl Holub, Plzeň; Marie Samková,
Blovice; Jaroslav Špalek, Plzeň; Karel Stehlík, Přeštice;
Josef Sluka, Horažďovice; Jiří Sýkora, Karlovy Vary;
Jiřina Čapková, Ostrov

Severočeský kraj

B. Jiří Snětivý, SPŠ Liberec; Miloš Šidlichovský,
Liberec; Zdeněk Suchomel, Teplice; Zbyněkw Fučík,
SPŠ Liberec; Jiří Janeba, SPŠ Liberec; Karel Čermák,
Teplice; Bohumír Hoření, Tanvald; Rostislav Zábrod-
ský, Teplice; František Žalda, Frýdlant; Miloš Janda,
Rumburk

C. Slávka Šulcové, Děčín; Radomír Smetana, Li-
berec; Vladislav Hyšman, Roudnice n. Lab.; Ivan Ci-
bulka, Česká Kamenice; Petr Volf, Liberec; Ladislav
Dvořák, Tanvald; Antonín Heinzel, Liberec; Eva Ne-
radová, Litvínov; Jitka Štenclová, Ústí n. Labem; Milan
Velíšek, Tanvald

Východočeský kraj
B. Miroslav Řezníček, Hradec Králové; Milan Štědrý,

Ledeč n. Sázavou; Marcela Bílková, Hradec Králové;
Pavel Holan, Hradec Králové; Vladimír Klos, Jičín;
Bohuslav David, Vysoké Mýto; Jan Štěpánek, Pardubice;
Jan Ámos Víšek, Spořilov-Pardubice; Jaroslav Macháně,
Hradec Králové; Jaroslav Štěrba, Hlinsko v Čechách

C. Luboš Pěnička, Turnov; Miroslav Kolář, SPŠE
Pardubice; Pavel Křivka, Česká Třebová; Jan Rauch,
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Dvůr Královen. Labem; Petr Moravec, Hradec Krá-
love; Radko Škaloud, Hradec Králové; Karel Hejna,
SPŠE Pardubice; Vladimír Svědiroh, Pardubice-Spo-
řilov; Jaroslav Pokorný, Jilemnice; Jaroslav Vižďa,
Hradec Králové

Severomoravský kraj
B. Pavel Novotný, Olomouc; Emil Běták, Ostrava;

Raimund Koplík, Přerov; Jaroslav Dvořáček, Přerov;
Jura Charvát, Příbor; Vladislav Kalets, Český Těšín;
Luděk Zajíček, Ostrava; Miroslav Zika, Opava; Jaroslav
Pardziora, Karviná; K. Kovařík, SPSS Lipník n. Bečvou

C. Helena Velemínská, Vítkovice; Vladimír Karásek,
Ostrava; Wladyslaw _Martynek, PSVVŠ Český Těšín;
Oldřich Novák, SPŠE Frenštát p. Radh.; Stanislav
Olša, SPŠ Přerov; Jaroslav Šgindler, SPŠE Frenštát
£. Radh.; Jiří Růžička, SPŠŽ Šumperk; Pavel Slouka,
Šumperk; Petr Heraft, Nový Jičín; Vojtěch Smolík,
Olomouc-Hejčín

Jihomoravský kraj

B. Jitka Kesslerová, Brno; Eduard Černý, SPŠE
Brno; Karel Henc, Brno; Pavel Kaláb, Brno; Josef
Humlíček, Velké Meziříčí; Zdeněk Mikulášek, Brno;
Ctibor Pelikán, Moravský Krumlov; Miroslav Sedláček,
SPŠE Brno; Jaromír Volný, Znojmo; Milada Brabencová,
Třebíč

C. Jitka Křížová, Brno; Marie Lencová, Brno;
Zdeněk Michalec, Brno; Jiří Musil, SPŠCH Brno;
Martin Brunecký, Brno; Zdeněk Dědourek, Brno; Via-
dimír Handlíř, SPŠCH Brno; Jiří Mátl, Telč; Hana
Kundeliusová, Třebíč
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Západoslovenský kraj

B. Jana Buntová, Bratislava, Novohradská ul.; Tat-
jana Bušinská, Bratislava, Novohradská ul.; Martin Klein,
Bratislava, Novohradská ul.; Jozef Vančík, Bratislava,
Novohradská ul.; Olga Slabihoudová, Bratislava, Novo-
hradská ul.; Mária Kosibová, Bratislava, Novohradská
ul.; Viera Krňanová, Bratislava, Novohradská ul; Marián
Hučko, Bratislava, Vazovova 4; Branislav Zagoršek,
Bratislava, Metodova ul.

C. Tomáš Duby, SPŠE Bratislava; František Alexan-
der, Bratislava, Novohradská ul.; Alojz Némethy, Bra-
tislava, Novohradská ul.; Tomáš Hecht, SPŠE Bratislava;
Brigita Petrášová, Bratislava, Novohradská ul.; Eudovít
Zeman, SPŠE Bratislava; Marko Ftillop, SPŠE Bratislava;
Miroslav Fend, Bratislava, Novohradská ul.; Ivan Geor-
giev, Bratislava, Novohradská ul.

m

Středoslovenský kraj
B. Gabriel Kralik, Prievidza; Štefan Porubský, SPŠ

Zvolen; Bohuslav Sivák, ZDŠ Zvolen
C. Peter Mederly, Prievidza; Michal Pokorný, Žilina;

Dušan Hurinek, Púchov; Eva Kostrová, Žilina; Anna
Vojtášková, Liptovský Mikuláš; Dušan Čupka, Liptovský
Mikuláš; Ivan Duša, Prievidza; Miroslav Kučera, Zvo-
len; Tatjana Lehotská, Liptovský Hrádok; Vladimír
Blaha, Varín

Východoslovenský kraj

B. Alexander Doktor, Košice; Ján Čižmárik, Prešov-
Svojdomov; Jozef Dravecký, Spišská Nová Ves; Antonia
Mimránková, Poprad; Ján Novotný, Poprad
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C. Myron Majdák, Prešov-Svoj domov; Martin Fronc,
Košice3.К soutěži III. kola bylo pozváno 75 žáků, avšak
úspěšných řešitelů bylo jen 15. Na základě toho bylo
za vítěze XIII. ročníku soutěže prohlášeno pouze těchto
15 žáků. Dva z vítězů jsou z 2. ročníku střední všeobecně
vzdělávací školy. Mezi účastníky III. kola byl tentokrát
značný počet žáků středních průmyslových škol, totiž 11;
mezi vítězi jsou dva. Do III. kola se probojovalo 10
žákyň. Mezi vítězi jsou dvě žákyně, přičemž jedna je
z 2. ročníku střední všeobecně vzdělávací školy; potě-
šitelné je, že tato mladší žákyně se uplatnila i na VI.
mezinárodní matematické olympiádě v Moskvě. Dále
uvádíme jmenný seznam vítězů XIII. ročníku MO.

Pořadí vítězů XIII. ročníku matematické olympiády
(Šk. r. 1963-64)

1. Jaroslav Zemánek, 3.d roč. SVVŠ, Praha 4- Nusle,
Křesomyslova 2

2. Tamara Marcisová, 2.d roč. SVŠ, Bratislava, Novo-
hradská

3. Rudolf Jisl, 3.a roč. SPŠE silnoproudá, Praha 1, Na
příkopě 16

4. Miloslav Znojil, 3.b roč. SVVŠ, Prostějov, Kollá-
rova 3

5. Pavel Bureš, 3.f roč. SVVŠ, Brno, Koněvova ul.
6. Jan Hanslian3 4. roč. střed. prům. škola stavební,

Lipník n. B.
7. Lubomír Klapka, 3.a roč. SVVŠ, Brno 14, Elgar-

tova 3
8. Luděk Kučera, 4.a roč. SPŠ jaderné techniky, Praha 2,

Ječná 30
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9.Richard Špíšek, 2.b roč. SVVŠ, Brno, Koněvova 47
10. Jan Švejda, 3.d roč. SVVŠ, Praha 4, Křesomyslova 2
11.-14.

Marta Doležalová, 3.f roč. SVVŠ, Brno, Koně-
vova 47
Jan Karnolt, 3.d roč. SVVŠ J. Fučíka, Plzeň, nám.
Odborářů
Karel Svák, 3.f roč. SVVŠ, Brno, Koněvova 47
Bohdan Šmilauer, 3.d roč. SVVŠ, Praha 4, Křeso-
myslova 2

15. Ján Lupták, 3.a roč. SVVŠ, Bratislava, Vazovova 6
Poznámka: Společná místa uvádíme v abecedním

pořádku.
Ministerstvo školství a kultury odměnilo vítěze hod-

notnými věcnými cenami podle jejich vlastního výběru
a dále jim poskytlo poukázky na nákup odborné studijní
literatury. Každý z vítězů obdržel čestný diplom po-
depsaný prvním náměstkem ministra školství a kultury
a předsedou ústředního výboru Matematické olympiády.

4. Všeobecně lze říci, že nemůžeme být s výkony
žáků ve XIII. ročníku spokojeni. Nejlépe se to jeví na
výkonu žáků ve III. kole, o němž se stručně zmíníme.
Již zběžný pohled na texty úloh III. kola a na jejich
řešení přesvědčí, že úlohy byly zvoleny záměrně lehké,
aby se mohli uplatnit i slabší řešitelé. Nejlehčí byla
úloha č. 1; řešilo ji 57 žáků, ale jen 20 úspěšně. Je zají-
mavé, že o řešení úlohy č. 3 se pokusili všichni žáci, ale
jen 22 řešení bylo úspěšných (jsou to z valné části slabá
řešení). Úloha č. 4 byla poměrně velmi snadná, jistou
opatrnost si vyžadovala diskuse, na kterou se samozřejmě
při hodnocení kladl zvláštní důraz; bylo podáno 40
řešeni, z toho 2 výborná a 34 vyhovujících. Zvláštní
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kapitolou jsou řešení úlohy č. 2, tedy úlohy ze školské
stereometrie; 4 řešení jsou výborná, 8 vyhovujících
a 39 nevyhovujících, takže 24 žáků úlohu vůbec neřešilo.
Je zajímavé, že jediný žák úlohu řešil obvyklým škol-
ským syntetickým postupem; ostatní se pokoušeli o ře-
šení pomocí analytické geometrie, z valné většiny rovinné.
Mnozí užívali různých projekcí, mnohdy neoprávněně
nebo nesprávně; přitom řešení užitím stejnolehlosti se
celkem vnucovalo. Nejhorší však je, že úvahy prováděné
při řešení byly značně povrchní a často nekritické; to
platí o řešení všech čtyř úloh. Například jen málo řešitelů
při úloze č. 1 jasně vyslovilo jako požadavek, že dané
číslo musí být dělitelné oběma čísly 3 a 2 000; diskuse
při úloze č. 4 vyžadovala v podstatě rozhodování o vzá-
jemné poloze jistých dvou kružnic, tedy věc celkem zá-
kladní, kterou musí znát i slabší žák.

Z květnového jednání ÚV MO, pokud jde o výsledky
XIII. ročníku MO, zcela jednoznačně vyplývalo, že nej-
lepší zárukou úspěchu žáka v soutěži je, aby měl zkuše-
ného a obětavého učitele; o tom skutečně svědčí i vý-
sledky našich nejlepších účastníků na VI. mezinárodní
matematické olympiádě. Rozhodně ani učitelé ani orga-
nizátoři soutěže nesmějí spoléhat na to, že nadaný žák
si dovede sám se svou přípravou na soutěž dobře po-
radit. Ukazuje se, že nejlepší přípravou je kontrolované
soustavné studium spojené s řešením úloh. Edice Škola
mladých matematiků by tu byla dobrým východiskem
pro tento druh přípravy našich olympioniků. Podaří-li
se nám to zajistit ve spolupráci s našimi učiteli mate-
matiky, budeme mít alespoň zčásti o nadané žáky po-
staráno.
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III. Přípravné úlohy (texty)1.KATEGORIE A

1. Najděte nutné a postačující podmínky mezi reál-
nými koeficienty p3 q rovnice x2 + px + q = 0 к tomu,
aby měla kladné kořeny xls x23 o nichž platí хг = 2x2.

2. Vypočtěte délku středné dvou kružnic o daných
poloměrech R3 r3 které mají tu vlastnost, že úsek společné
vnitřní tečny těchto kružnic, obsažený mezi jejich spo-
léčnými tečnami vnějšími, má délku p3 kde p je dané
kladné číslo.

Proveďte konstrukci středné a diskusi řešitelnosti
úlohy.

3. Je dán kvádr ABCDA'B'C'D' (kde ABCD je ob-
délník a platí АА'ЦВВ'ЦСС'HDD') o rozměrech a = AB3
b = AD3 c — AA'.

Na přímce BB' najděte bod V a na přímce CA' bod Y
tak, aby platilo XY _L BB'3 XY _L CA'. Vypočtěte ve-
likosti úseček XY, BX3 CY.4.Určete všechny dvojice reálných čísel x3 y3 které
splňují nerovnosti

sin|x+:y + ^7cj 1
0^x^2iz3 0 ^ у < 2т:.—

2 5

V rovině pravoúhlých souřadnic x3 у pak zobrazte
všechna tato řešení.
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5. Jsou-li Ь3п >2 přirozená čísla, potom číslo bn+4 — bn
je dělitelné číslem 120. Dokažte.

6. Je dán lichoběžník MNQP, kde MN > PQ. Uvnitř
úsečky PQ zvolme body A, В tak, aby platilo PA = QB3
a sestrojme po řadě průsečíky X} Y dvojic přímek MP3
NB a NQ, MA.

Vyšetřte geometrické místo středů úseček XY.

2. KATEGORIE В

1. V rovině pravoúhlých souřadnic я, у zobrazte
funkci:

a) У — x + 3 b) у = I* + 3|
x2 + 3x

d) У =c) = |x| + 3 1*1
(* + 3)2

x + 3

- h)^ = j(|x-3| + |í + 3|) + 3

л:2 — 9

л: — 3
л:2 + x —

e) ^ f) У =

ё) У =
x — 2

2. Jsou dány rovnoběžky ra,«a uvnitř pásu jimi urče-
ného je dán bod C, který má od nich po řadě vzdále-
nosti p, q.

Sestrojte trojúhelník ABC, v němž je CA = CB,
^iBCA — 90° a body Л, В leží po řadě ria přímkách
m, n. Vypočtěte obvod a obsah tohoto trojúhelníku.

Pokyn. Lze užít otočení.

3. Je dán čtverec ABCD o straně délky 1.
Sestrojte v něm tři shodné kružnice, z nichž každé dvě

se navzájem dotýkají vně, přičemž první se dotýká
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přímek АВ, AD, druhá přímek ВС, АС a třetí přímek
CA, CD. Vypočtěte velikost poloměrů těchto kružnic.4.Je dán trojúhelník ABC o stranách délek a, b, c.

Vypočtěte vzdálenosti středu C strany AB od čtyř
bodů, ve kterých se přímky AB dotýkají kružnice vepsané
a kružnice vně vepsané danému trojúhelníku.5.Odvoďte vzorce pro všechna přirozená čísla, jejichž
druhá mocnina dělena patnácti má za zbytek (v oboru
celých nezáporných čísel) číslo: a) 9; b) 7.6.Udejte, pro které trojice reálných čísel x, y, z
nemá výraz

O — y) (y — z) (z — x)v =

(x — у)3 + (y — я)3 + 0 — x)3

smysl, a rozhodněte o hodnotě výrazu pro ostatní trojice
reálných čísel x, y, z.

3. KATEGORIE C

1. Uvnitř stran BC, CA, AB daného rovnostranného
trojúhelníku ABC sestrojte po řadě body X, Y, Z tak,
aby platilo XY _L BC, YZ _L CA, ZX ± AB, a vypočtěte
délky stran trojúhelníku XYZ pomocí délky d = AB.

2. Vypočtěte nejmenší přirozená čísla p, x, pro která
je výraz

x2 + 2px + p2 — 16
p2 + px — 4x — 16

V =

roven číslu 1,05.
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3.Je dán trojúhelník ABC s vnitřními úhly a, /?, y.
Aniž narýsujete střed kružnice k tomuto trojúhelníku

opsané, sestrojte к ni v bodech A, B3 C tečny.
Poznámka. Lze užít úsekového úhlu.

4. V rovině je dán dutý úhel <£MON a vně tohoto
úhlu je dán bod P. Na polopřímkách OAf, ON sestrojte
po řadě body X, Y tak, aby bod Y byl středem úsečky PX.

Rozhodněte o řešitelnosti úlohy.

5. Rozhodněte, které z celých čísel od 0 do 11 ne-
dostaneme jako zbytek při dělení (v oboru celých nezá-
porných čísel) druhé mocniny přirozeného čísla dvanácti.

6. Řešte rovnici:

x2 — 5x + 6 x — 3
:

= * + P
x + 4 ’

a) x2 — 4

я2 + 2px + p2b) x2 — p2

kde p je dané číslo.

4. KATEGORIE D

1. Napište všechny dvojice nesoudělných přirozených
čísel x, у (bez ohledu na pořádek čísel dvojice), jejichž
součin je roven číslu 415 800.

2. Narýsujte čtverec MNPQ o stranách délky d a dále
trojúhelník ABC o stranách délek a, b3 c.

Sestrojte trojúhelník XYZ těchto vlastností:
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(1) Platí AXYZ ^ AÁBC.
(2) Body X, Y3 Z padnou po řadě na přímky MQ,

MN, NP.
Rozhodněte o řešitelnosti úlohy.3.Továrna splnila plán výroby na 108 %. Považuje-

me-li toto skutečné plnění výroby za základ, vypočtěte,
kolik procent představovala původně plánovaná výroba,4.Narýsujte trojúhelník ABC, jestliže je BC — 5 cm,
CA = 12 cm, AB = 13 cm. Označme X bod tohoto
trojúhelníku, který splňuje tyto požadavky: Vzdálenost
bodu X

(1) od bodu A je větší než od bodu B;
(2) od přímky CA je větší než od přímky BC;
(3) od přímky BC je větší než od přímky AB.
Vyšetřte, jaký útvar vyplní všechny body X uvede-

ných vlastností. Tvrzení odůvodněte.5.Je dána kružnice k = (S3 r) a dvě její různé sečny
PII Я-

Narýsujte kružnici m, která se dotýká obou přímek
p, q a kružnice k.

Rozhodněte o řešitelnosti úlohy.

6. Výraz
xz — x2 — я + 1
Xs — X2 + x — 1

je roven nule pro jediné číslo x; dokažte. Zároveň udejte
všechna čísla x3 pro která tento výraz: a) je kladný;
b) je záporný; c) nemá smysl.

V =
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IV. Riešenia úloh zo súťaže

1. ÚLOHY I. KOLA KATEGORIE A

1. Udajte všetky prirodzené čísla n, pre ktoré číslo
n8 — n2 nie je dělitelné číslom 504.

Riešenie. Číslo N — n8 — n2 je dělitelné číslom
504 = 7.8.9 právě vtedy, keď je dělitelné každým
z činitelov 7, 8, 9, pretože každé dve z týchto čísel sú
nesúdelitelné. Pri vyšetřovaní dělitelnosti čísla N číslami
7, 8, 9 vyjádříme n postupné takto:

n = 7&! + z19 n = 8&2 + 02, n = 9k3 + 03> (1)

kde ki3 Zi (;i = 1, 2, 3) sú nezáporné celé čísla a platí:

«i ^6, 02 ^ 7, 2r3 <; 8.

Ak do N dosadíme z (1) za n, zistíme, že číslo AT je de-
litelné siedmimi (osmimi, deviatimi) právě vtedy, ak
je týmto číslom dělitelné číslo z\ — z\ (^| — z23 z% — z$).

Převeďme rozklad

0® — z2 = 02 (03 - 1) . (03 + 1)

a zostavme pomocou něho tabulku (viď str. 33).

Z tejto tabulky je vidieť, že každé z čísel 08 — 02 pre
0 ^ 0 ^ 8 je dělitelné siedmimi a deviatimi; osmimi sú
čísla 08 — 02 dělitelné len pre 0 = 0, 1, 3, 4, 5, 7, 8. To
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zs — z228 - г2 zz

5 25 . 124 . 126OO

36.215.2171 6O

49.342.3442 4. 7. 9 7

64.511 . 5139.26.28 83

16.63.654

znamená, že číslo N nie je dělitelné číslom 504 právě
vtedy, keď má číslo n tvar

n — 8k + 2
alebo

n — Sk + 6,

kde k je 1’ubovol’né celé nezáporné číslo.

2. Je dán rovnoramenný lichoběžník ABCD, o jehož
základně AB platí AB = 2BC — 2CD. Uvnitř lichoběž-
niku nad úsečkou CD jako přeponou sestrojíme právo-
úhlý trojúhelník CDE, pro jehož úhel co při vrcholu C
platí 30° < co < 60°. Označme F3 G paty kolmic ve-
děných po řadě body А, В к přímkám DE3 CE.

Vypočtěte poměr obsahů obrazce ABGEF a licho-
běžníku ABCD užitím úhlu co a vyšetřte, kdy je tento
poměr minimální.

Řešení (obr. 1). Je-li střed úsečky AB a cp velikosti
shodných úhlů <£ASDy <XBSC, je ASCD rovnoběžník
(je AS = CDj AS//CD); v něm platí *$:SAD 180° -
— 2 cp (úhel proti základně SD rovnoramenného troj-
úhelníku ASD3 v němž podle textu úlohy je AS = AD)3
a tedy <£ASC — 2cp (jde o úhly přilehlé ke straně AS
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rovnoběžníku ASCD). Je proto nutně <£CSD = <p. Ze
souměrnosti rovnoramenného lichoběžníku ABCD vzhle-
dem к jeho ose plyne, že i <£BCS = 99; proto je 9? =

= 4-. 180° - 60°. Trojúhelníky ASD, BSC, SCD jsou
j

proto vesměs rovnostranné a shodné. Bod E tedy vždy
leží uvnitř trojúhelníku SCD a body F} G vždy po řadě
padnou dovnitř úseček ED, ЕС.

q 120°-WD

Ш'

30°+w<\F \/
\/
\//

/ \
/ \60} \ /

\
U3-20° v)

fiS/1

Obr. 1.

Označme P obsah lichoběžníku ABCD, Р1Э P2, P3 po
řadě obsahy trojúhelníků CDP, zlDP, BCG a P4 obsah
obrazce ABGEF z textu úlohy. Je-li <£DCD = co, potom
snadno vypočteme, že <£CBG = co — 30°, <£ADP =
— co + 30°. Položme CD = 1, takže AD = PC = 1,
AB = 2. Pak je *

3--f Уз, P,=
P2 = 4 sin (co — 30°) cos (co — 30°) ==

(sin2co — |/3 . cos 2co),

1
sin CO COS co,p =

1

8
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1
P3 = 2 s*n (w + 30°) cos (ш + ^0°) =.

■

-g (sin 2co + ]/3 . cos 2co).
Vypočteme poměr

x=lp(P-P1-Pt-PJ = 1 - i (Л + P2 +Р») =

(2sin2co -f- sin2co — ]/3 cos2co -}~sin2co +]/3 cos 2 co) =
1

= 1 —

6 Уз
i

—77=. 4 sin2co.
6 уз

Hledaný poměr tedy je

= 1

—j^—- sin 2co. (i)X = 1 —

Minimum nastane, je-li druhý člen na pravé straně v (1)
maximální, tj. je-li sin 2co — 1 neboli je-li (jde o ostrý

co = 45°;
úhel co)

2УЗ
pak je x = 1 == 0,6. Tím je řešení provedeno.

Podle^řešení Jiřího Kabele, 3. roč.
SVVŠ, Křesomyslova ul., Praha 4

3. V rovině je dán rovnoramenný trojúhelník ABC,
jehož základna AB je menší než jeho rameno. Sestrojte
uvnitř úseček CA, CB po řadě body X, Y a v polorovině
XYC bod Z tak, aby platilo

AXYZ^ AABC.

Vyšetřte geometrické místo bodů Z.
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Řešení (obr. 2). V trojúhelníku ABC označme AC =
— BC — a, AB — c, <g:A = <^B — a, <+C = y; je tedy

a > c, a > y, a < 90°, у < 90°,
a -f- у = 180° — a > 90°.

Je-li XYZ trojúhelník splňující požadavky textu úlohy,
platí

ZX = ZY = a, XY = c, ^X = <£ Y = a, <^Z = y.

Body Xj Y3 Z, C jsou vesměs navzájem různé a platí
<£XCF = 4:ACB = y. Podle textu úlohy leží body C,
Z v téže polorovině vyťaté přímkou XY a platí <$:XCY =
— ^:XZY; proto body C, Z leží na větším oblouku jisté
kružnice k, která prochází body X3 Y. Jsou tedy X3 Y,
Z3 C vrcholy jistého tětivového čtyřúhelníku a jsou dvě
možnosti:

a) Body X3 Z jsou odděleny přímkou BC (obr. 2).
b) Body X3 Z padnou do téže poloroviny vyťaté

přímkou BC, a protože v tětivovém čtyřúhelníku každá
z úhlopříček odděluje jeden pár jeho protějších vrcholů,
jsou nutně body Y3 Z odděleny přímkou АС = XC.
Je-li p osa úsečky AB (obr. 3), označme Y'X'CZ' obraz
uvažovaného tětivového čtyřúhelníku XYCZ v souměr-
nosti o ose p3 takže X, Y' a Y3 X' jsou dvojice souměrně
sdružených bodů a CA, CB souměrně sdružené přímky.
Tu body X', Y' po řadě padnou dovnitř úseček CA, CB,
trojúhelník X'Y'Z' patří к případu a) a body X', Z' (což
jsou obrazy bodů Y, Z) jsou odděleny přímkou BC. Tím
je případ b) převeden na případ a). Postačí tedy omezit
se v dalším na případ a) a na výsledky užít souměrnosti
vzhledem к přímce p.
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Bod Z čtyřúhelníku XYZC leží v polorovině opačné
к polorovině BCA. Úhly obvodové AYXZ = oc, <tYCZ
v kružnici k leží v téže polorovině vyťaté přímkou YZ,
takže jsou shodné, a proto jsou shodné i střídavé úhly
AABC, A-YCZ = ABCZ; odtud plyne, že je CZ//AB
a že bod Z leží na jisté polopřímce q s počátkem C. Označ-
me M ten bod polopřímky q3 pro nějž platí

CM = c.

To znamená, že čtyřúhelník ABMC je rovnoběžník. Dále
sestrojme na polopřímce CM bod N tak, aby platilo

CN = a\

leží tedy bod M uvnitř úsečky CN.
Dokážeme, že každý bod Z hledaného geometrického

místa padne dovnitř úsečky MN (obr. 2). Důkaz pro-
vedeme sporem.

Předpokládejme nejprve, že bod Z náleží úsečce CM
(obr. 4). Je-li Z = C nebo Z = M, pak kružnice k' =
= {Z3a) prochází bodem B, tj. У = В proti předpokladu.
Leží-li bod Z mezi body С, M, je podle známé věty
ZB < СВ = MB = a; bod В — a ovšem i body С, M —
leží uvnitř kružnice k' a vrchol Y nemůže náležet straně
BC.

Předpokládejme za druhé, že bod Z náleží prodloužení
úsečky CN za bod N. Je-li Z = N, prochází kružnice k'
vrcholem C a je tedy X = C proti předpokladu. Je-li
Z ф N, pak pro všecky body X strany AC platí ZX >
>ZC > a (úhel AZCA je totiž tupý) a kružnice k' nemá
s úsečkou AC vůbec žádný společný bod.

Dokážeme nyní, že každý bod Z ležící mezi body MN
je vrcholem jednoho z vyšetřovaných trojúhelníků XYZ
(obr. 2). Sestrojíme opět kružnici k' = (Z; a); pro ni je
vrchol C bodem vnitřním, neboť je ZC < NC — a.

38



Vrcholí je pro kružnici k' bodem vnějším; trojúhelník
ACZ je totiž tupoúhlý (<£ACZ >90°), proto je ZA >
> AC — a. Kružnice k' protne tedy úsečku AC v jejím
vnitřním bodě X. Trojúhelníku XCZ opišme kružnici k;
polopřímka CB prochází vnitřkem úhlu <£XCZ, protíná
úsečku XZ v jejím vnitřním bodě, a tudíž i kružnici k

tic z

7 ГТ■I
/h

! i /li
: / // /

/'

/
// í // I /

/ ■ /
:

i /
Y\ //

/7
//

/i в

Obr. 4.

v jistém bodě У фС. Body X, У, Z, С kružnice k jsou
vesměs navzájem různé a jsou vrcholy tětivového čtyř-
úhelníku; přitom X, Z jsou přímkou BC odděleny;
vznikne tedy čtyřúhelník XYZC, takže C, Z jsou sou-
sednimi vrcholy tohoto čtyřúhelníku. Proto je <$iXZY —
— *£XCY = у (obvodové úhly v kružnici k nad tětivou
XY)i stejně platí <£ YXZ = <YCZ = a. Je tedy XZ =
= AC, <£YXZ = yžBAC, <£XZY = <£ZCB, a proto je
AXYZ ^ AABC. Odtud plyne ZY = CB = a. Protože
je ZY = a, leží bod У na kružnici Bod В je však
vnějším bodem kružnice k! \ protože ABZN > :BMN >
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> 90°, je ZB > BM = a. Trojúhelník XYZ je tedy sku-
tečně jedním z vyšetřovaných trojúhelníků.

Závěr. Geometrickým místem bodů Z jsou dvě úsečky
MN, M'N' souměrně sdružené podle osy p úsečky AB,
přičemž konstrukce úsečky MN je v tomto řešení po-
psána.

Podleřešení Jaroslava Zemánka, 3.droč.
SVVŠ, Křesomyslova, Praha 4

4. V rovině je dáno n bodů, z nichž žádné tři neleží
v téže přímce.

Dokažte, že lze najít kružnici, která obsahuje alespoň
tři z daných bodů a že přitom žádný z daných bodů ne-
leží uvnitř této kružnice.

Řešení. Podle textu úlohy žádné tři z daných bodů
neleží v téže přímce; proto žádné dva z daných n bodů
nesplývají. Označme А, В (А ф В) takové dva z daných

bodů, pro které vzdá-
lenost AB není větší
než vzdálenost které-
koli dvojice z daných
n bodů (jsou-li M, N
dva libovolné různé bo-
dy dané w-tice, platí te-
dy MN c’ AB); označ-
me U množinu n — 2
bodů, která se skládá
z těch daných n bodů,
od nichž jsme odňali
body A, B. Je-li X bod
množiny U, potom vzni-
ká trojúhelník ABX
s ostrým úhlem £ =



= <ŽAXB, neboť žád-
ná ze stran AX, BX
není menší než strana

AB; vzniká tak množina
n — 2 takových ostrých
zorných úhlů |, pod
nimiž je vidět úsečku
AB z bodů X. Označ-
me у ten z (n — 2)
úhlů |, který není větší
než kterýkoli zbývající;
příslušný bod X označ-
me C. Bud k kružni-
ce opsaná trojúhelníku
ABC. Uvnitř této kruž-
nice již neleží žádný z bodů množiny U. To doká-
žeme sporem: Jestliže je D bod množiny U, který padne
dovnitř kružnice k, potom je <yADB > y. Toto tvrzení
je patrné z obr. 5, pokud bod D leží v polorovině ABC
(o vnějším úhlu d = <$:ADB trojúhelníku ABE platí
ó > e = y). Jestliže bod D leží v polorovině opačné
к polorovině ЛВС (obr. 6), platí <3 > e — 180° — у > 90°
(protější úhly v tětivovém čtyřúhelníku), tj. d > 90°,
což však vzhledem к tomu, že zorné úhly £ jsou ostré,
nemůže vůbec nastat. Tím je důkaz proveden a žádný
z daných n bodů tedy nepadne dovnitř kružnice k.

Podle řešení Jaroslava Zemánka, 3. d roč.
SVVŠ, Křesomyslova, Praha 4

5. Sú dané dve kvadratické nerovnosti

*2 + p±x + qx < 0,
X2 + p2X + q2 > Oj (1)
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kde pi, p2i (hi h sú dané reálne čísla a platí qx < O,
q2 < 0. Dokážte túto vetu:

Ak dané nerovnosti nemajú spoločné riešenie, potom
platí: (p2 Pi) • (piЯ2 P2Q1) = ÍQi Я2У- (2)
Udajte příklad štyroch čísel pX3 p23 qX3 q2 tak, aby platila
nerovnost’ (2) a aby nerovnosti (1) mali spoločné riešenie.

Riešenie. (V dalšom hovoříme len o reálných čís-
lach.) Funkcia у — x2 + pxx + qx nadobúda hodnotu
nula pre dve rožne čísla xx < x23 pretože diskriminant
D = p\ — 4qx rovnice x2 -f pxx + qx — 0 je kladný,
pretože qx < 0. Z podobných dovodov nadobúda funkcia
у — x2 + p2x + h hodnotu nula pre dve rožne čísla
x3 < xx.

Sústava (1) je neriešitelná právě vtedy, keď celý in-
terval < xX3 x2 > je obsiahnutý v intervale < xZ3 *4> *); po-
tom je

xz xX3 x2 íS xx
čiže

W) áic-A-VB),
\ (-Л + 1/Ď) s \ (~p2 + W),

(3)

kde D' = p\ — 4^2 je diskriminant rovnice x2 + p2x +
+ q2 = 0. Z nerovností (3) vyplývá:

yW-l/Ď ĚA-p,, (4)
Spojením vzťahov (4) dostáváme

Уо'-.ур Й1А-Л1- (5)

*) Ako sa 1’ahko přesvědčíme napr. z grafov kvadratických funkcií.
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Teda, ak je sústava (1) neriešitelná, platí vztah (5)
a tým aj

D + D' - 2 \DD' S />! - 2р1рг + p\
V • V

cize

P\ — 4^ + p\ — 4^2 > PÍ — 2pip2 + p\ + 2 |IdD' ,

skadial

MDD ^ P1P2 2 (q-i + ^2)5
kde je na oboch stranách kladné číslo.

Umocněním vztahu (6) dostaneme

(6)

DD' < [ргр2 - 2 (ft + ?2)]2,

skadial’ po dosadení za D — pf — 4q13 D' = p| — 4q2
a po jednoduchej úpravě vyplývá nerovnost’ (2).

Tým je veta dokázaná.
Příklad, kedy túto vetu nemožno obrátit’, je tento:

Pre
11

Pi — O5 Qi — 1j D — 4 3 P2 — 3 Я2 — 2 53
19

Dh= ^
36

nie je splnenie nerovnosti (2) postačujúcou podmienkou
pre neriešitelnosť sústavy (1). V tomto případe totiž

3
sústava (1) má riešenie — -r aj napriek tomu, že je
vztah (2) splněný.

6. Je dán rotační kužel, jehož podstava má poloměr 1
a jehož strana má od roviny podstavy odchylku 2co, kde
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1
со < — тс. Kuželi je vepsána koule K3 která se dotýká
pláště kužele i podstavy.

Dále je sestrojeno n shodných koulí, o nichž platí:
(1) Každá z nich se dotýká pláště a podstavy kužele

i koule К (vnější dotyk).
(2) Každá z nich se dotýká dvou z těchto n koulí.
Najděte vztah mezi čísly и a co a zjistěte, pro která n

a co může tato situace nastat.

Řešení. Označme S střed a R poloměr koule K, dále
C střed podstavy а V vrchol daného kužele. Je-li A bod hra-
ny kužele, je osovým řezem kužele vedeným tímto bodem
rovnoramenný trojúhelník VAA' (viz obr. 7), ve kterém

je C střed jeho základny AA'. Označme у délku přepony
AS pravoúhlého trojúhelníku ASC a co velikost ostrého
úhlu <^SAC.
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Platí
1

CS — R = tg со, у — AS — (1)
cos co

Koule Kx, jedna z n uvažovaných shodných koulí, má
poloměr r a střed Ox uvnitř úsečky SA. Z vnějšího dotyku
koulí K, Kx plyne

Oj5 —- R -j- v. (!')
Z vnějšího dotyku dvou sousedních shodných koulí
K13 K2 o středech 015 02 plyne vztah

0X02 = 2r,

takže středy uvažovaných n shodných koulí jsou vrcholy
pravidelného я-úhelníku 0X02... On o středu Z, délce

360° , .(viz
n

obr. 8). Je-li U dotykový bod koulí KX3 K2i je ZU osa
rovnoramenného trojúhelníku Z0x02i přičemž platí

strany 2r a o středovém úhlu velikosti 2e

(2)
6

kde q = ZOx.
Z trojúhelníku ABOXi

kde В je dotykový bod
koule Kx s rovinou pod-
stavy daného kužele (viz
obr. 7), dostáváme tg co —

= ~— neboli
1 — Q

tg co — r
6 =

tg CO



B01Dále je sin co — neboli
AOx

r
sin co =

AS - OxS’
Dosadíme-li sem z (1) а (Г), pak po úpravě obdržíme

tg co (1 — sin co)
1 + sin co

Ze vztahu (2) postupně dostáváme

r —

1 — sin cor tg cor
Sin £ = —

2 cos coQ tg CO — r

Položme pro stručnost sin e = x3 přičemž je nutně x > 0;
z předchozího vztahu vypočteme, že

(1 — sin co)2
4 (1 — sin2 co)

1 — sin co
X2 =

4(1+ sin co)
a odtud

1 - 4x2
(3)sin co —

1 + 4x2'

Vzhledem ke geometrickému významu úhlu <£VAC
zřejmě platí vztah

0 < co < 45°,

a proto o čísle sin co ze (3) nutně platí vztahy

1 - 4x2 <\T2-0<
1 + 4x2
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Odtud pro číslo x > 0 dostáváme snadným výpočtem
omezení

1 2-У2
- > X>^ /2 / 2 + У2

1

2

neboli

->*>i|/3 — 2]/2.

~ > sin £ plyne £ —

1
(4)2

180°
< 30°Odtud ze vztahu

neboli
n

n > 6;

180° 1
skutečně pro n > 6 je sin — < ^. Z druhé nerovnosti
(4) dostaneme postupně

]/з - 2 У2 > j Уз - 2 . 1,415 =
= \ У0Д7 > i . 0,4 = 0,2

a pomocí tabulek hodnot funkce sinus dostaneme

1
я >

2

(5)

180°
— >11,5°
n

neboli
180

< 16,n <
11,5

a tedy n < 16.
180°

. Pro n — 15 je £ = -=y- = 12° a z tabulek dostaneme
sin 12° > 0,207.
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Protože (viz tabulky druhých mocnin)

~ < i 1/3 - 2 . 1,414 =

= ^ 1/0Д72 < -i У0Д72 225 = j . 0,415 = 0,207,
je vztah (5) již pro и = 15 skutečně splněn.

Přípustné hodnoty pro číslo n jsou tedy přirozená čísla
7 až 15. Příslušný kužel je pak dán poloměrem r a hod-
notou co, určenou vztahem (3) a požadavkem 0 < co < 45°.

Podle řešení Břetislava Vernera, 3. d roč.
SVVŠ, Křesomyslova, Praha 4

2. ÚLOHY II. KOLA KATEGORIE A

1. Je dána funkce
x (1 — 2x)

2 — 3* ’

Načrtněte její graf a výpočtem zjistěte, kterých
reálných hodnot у tato funkce nenabývá.

Řešení. I. Z dané rovnice (1) plyne, že pro 2 — 3* = 0
neboli pro

(1)У =

2
(2)*

3
2

není у definováno. V dalším proto je * ф .

Abychom mohli načrtnout graf, vyšetříme především,
kdy je у = 0; z (1) plyne, že 3; — 0 pro * (1 — 2x) = 0,
a tedy

1
* = 0 anebo * =

2 '
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Máme tedy dva body grafu

[И[0, 0],

Těchto hodnot užijeme nyní ke zkoumání znaménka
čísla у, a to tak, že určíme znaménka čísel

(3)x; 1 — 2x\ 2 — 3x

a budeme na základě toho zkoumat znaménko zlomku na

pravé straně v (1):

[1] Nechť je x < 0, a tedy 1 — 2x > 0, 2 — 3x > 0:
pak je у < 0.

[2] Nechť je 0 < x < i; pak je 1 — 2x > 0;
2 — 3x > 0, a tedy у > 0.

[3] Nechť je ~ < x < ^
2 — 3x > 0, a tedy jy < 0.

[4] Nechť je %3
2 — 3x < 0, a tedy у > 0.

Těchto výsledků užijeme к načrtnutí grafu (obr. 9); dři-
ve však ještě sestavme tuto tabulku hodnot dané funkce:

; pak je x > 0; 1 — 2x < 0;

< x; pak je x > 0; 1 — 2x < 0;

321 11
I 20,6-2 -1 0X

4T 3 2 3

H’5Í = 1,2у -1= -1,25 -^ = -0,6
1 1

1
9 >0,1 0 -0,6 není

denno-
váno

0
510

[4] kladné у[2] kladné у [3] záporné у(1] záporné у
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У

1 2_
з

JL■+
2. 1 20,6

3 4

Obr. 9.

II. Pro я + %
J

dostaneme znásobením obou stran

rovnice (1) číslem 2 — 3x po úpravě kvadratickou rovnici

2x2 — (3у + 1) x + 2y — 0.

Hledáme taková у, pro která neexistuje příslušné x; to
nastane právě tehdy, když diskriminant D této rovnice je
záporný. Tu platí

D = (Зу + l)2 — 16y = 9y2 — 10[y + 1 =
~ (y — i) (Яу — i)*
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Tento rozklad jsme získali řešením kvadratické rovnice
9y2 — 10j> + 1 = 0. Diskriminant D je záporný pro у
z intervalu

1
(4)9 <У<1-

Závěr. Daná funkce nenabývá hodnot у z intervalu (4).

2. Nájdite všetky я z intervalu 0° ^ я < 360°, ktoré
vyhovujú nerovnosti

2 (cos2 x — Уз sin2 x) ^ (]/3 — 1) sin 2x.
Riešenie. Danů nerovnost’ postupné upravme takto:

2 cos2 x — 2 Уз sin2 x — 2 |/3 sin л; cos x +
+ 2 sin x cos x 2> 0,

cos я (sin x + cos x) — ]/3 sin я (sin я + cos я) ^ 0,
(sin я + cos я) . (cos я — ]/3 sin я) ^ 0.
Sú dve možnosti [1], [2].
Případ [1]. Z (1) vyplývá, že súčasne platí

sin я + cos я ^ 0, cos я — ]/3 sin я ^ 0.

a) Nech je sin я > 0. Tým sa obmedzujeme na in-
terval (0°, 180°). Vynásobením nerovností (2) číslom

dostaneme, že o čísle я platí súčasne

cotg я Г> —1, cotg я ^ 1/3.
Prvej z týchto nerovností vyhovujú čísla z intervalu
(0°, 135°), druhej čísla z intervalu (0°, 30°); spoločnou
častou oboch uvedených intervalov je interval (0°, 30°).

(1)

(2)

1

sin я

(3)
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Vzhladom na to, že nerovnostiam (3) vyhovuje i x — 0°,
je riešenie danej nerovnosti v tomto případe určené
intervalom

(4)<0°5 30°).
b) Nech je sin x < 0, čiže nech x leží v intervale

(180°, 360°). Rovnako ako v predchádzajúcom případe
dostaneme nerovnosti

1, cotg x ^ ]/3 ,cotg x

ktoré majú riešenia v intervaloch <315°, 360°), resp.
<210°, 360°), a riešenie danej nerovnosti je určené in-
tervalom

<315°, 360°).
Případ [2]. Z (1) vyplývá, že súčasne platí

0, cos x —- ]/3 sin x ^0.
a) Pre sin x > 0, t.j. pre x z intervalu (0°, 180°),

dostaneme z nerovností (6) nerovnosti
cotg x íS — 1, cotg x á 1/3

(5)

sin X + COS X (6)

a hladané riešenie je spoločná časť intervalov <135°, 180°),
<30°, 180°), к čomu možno připojit i x = 180°. Máme
teda interval

<135°, 180°).

b) Pre sin x < 0, t.j. pre x z intervalu (180°, 360°),
sa od nerovností (6) dostaneme к nerovnostiam

1, cotg x ^ ]/3

(7)

cotg X

a hladané riešenie je spoločná časť intervalov (180°, 315°),
(180°, 210°), ku ktorej připojíme aj x = 180° a dosta-
neme interval

(8)<180°, 210°).
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Závěr. Danej nerovnosti vyhovujú všetky čísla z in-
tervalov [viď (4), (7), (8), (5)] :

<0°,30°>, <135°, 210°), <315°, 360°).
Podlá riešenia Pavla Helia, 4. tr.
SPŠ hutnická, Košice

3. V soustavě pravoúhlých souřadnic x, у znázorněte
množinu všech bodů [x3 у], jejichž souřadnice splňují
rovnici \x\ + |у — 1| = 1, a dále množinu všech bodů
[x, jy], jejichž souřadnice splňují rovnici \x — 1| + |jy| =
= p, kde p je reálný parametr. Užitím výsledku grafic-
kého znázornění pak výpočtem řešte soustavu rovnic

1*1 + \y - 1| = 1> \x - 1| + Ы =p. " (1)
Řešení. I. Množina bodů příslušná к první rovnici je

obvod čtverce, jehož úhlopříčky leží v přímkách x = 0,
= 1 a mají délku 2. Množina bodů příslušná к druhé

rovnici pro p > 0 je obvod čtverce, jehož úhlopříčky leží
v přímkách x = l,y = 0 a mají délku 2p. Řešením sou-
stavy (1) jsou souřadnice bodů společných oběma ob-
vodům. Pro kladné hodnoty p lze z grafu vyčíst tento
výsledek (obr. 10):

a) p < 1: úloha nemá řešení;
b) p = 1: úloha má nekonečně mnoho řešení;
c) 1 < p < 3: úloha má dvě řešení;
d) p = 3: úloha má nekonečně mnoho řešení;
e) p >3: úloha nemá řešení.
II. Početní řešení soustavy. Pro p ^ 0 je úloha ne-

řešitelná: pro p < 0 nemá druhá rovnice (1) řešení;
pro p = 0 má druhá rovnice (1) jediné řešení x = 1,
у — 0, to však nevyhovuje první rovnici (1). V dalším
budeme předpokládat, že je p >0.

У
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i р7/
/

/f,
\\i//***
\Y.

T.-*
Obr. 10.

Z první rovnice (1) vyplývá, že pro každé řešení sou-
stavy platí x < 1, у 0. (Kdyby bylo x > 1, bylo by
|*| > 1; kdyby bylo у < 0, bylo by \y — 1| > 1.) Je
tedy x — 1^0, jy^Oa druhou rovnici (1) lze psát ve
tvaru

1 — * + у = p

у = * + p — 1.
neboli

(П
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Odtud vyjádříme^ — 1 a dosadíme do první rovnice (1);
vyjde

(2)1*1 + I* + P — 2| — 1.

Nyní rozlišíme čtyři případy:[1]í + ř-2ž0,íž0[2]j + ř-2ž0,iS0
[3] X + p - 2 ^ 0, я ^ 0
[4] x + p- 2 ĚO, XĚO
V případě [1] rovnice (2) zní 2x + p — 2 = 1

a odtud plyne
1 1

~2 (3 — p), у — £ Cp + i)
[vzorec pro у jsme dostali z (Г)].

V případě [2] rovnice (2) zní p — 2 = 1; je tedy

p = 3, у = jc + 2.

V případě [3] rovnice (2) zní 2 — p — 1; je tedy

p = l, у = x.

V případě [4] rovnice (2) zní —2x — p + 2 = 1,
odtud

(3)Я =

(4)

(5)

1 1
~2 (1— P)> У = 2 (P ~ (6)x —

Nyní probereme případy a) až e) pro parametr p a pro-
vedeme zkoušku.

V případě a) nevyhovuje žádné z řešení (3) až (6).
V případě b) vyhovují řešení (5) a řešení (3), (6) — ovšem
jen pro p — 1. V případě c) vyhovuje i řešení (3) i ře-
šení (6) a jsou navzájem různá. V případě d) vyhovují
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řešení (4) a řešení (V), (6)
V případě p > 3 nevyhovuje žádné z řešení (3), (6).

4. Je dán rovnostranný trojúhelník ABC o straně
délky 1 a bod P, který leží mezi průsečíkem výšek troj-
úhelníku ABC a bodem C.

ovšem jen pro p = 3.

вл 2' Л7

Obr. 11.

Sestrojte rovnostranný trojúhelník XYZ vepsaný troj-
úhelníku ABC tak, že vrcholy X, Y, Z leží po řadě na
úsečkách BC, CA, AB a že strana XF prochází bodem P.
Stanovte podmínku řešitelnosti.

Řešení (obr. 11). Označme <£CFP = <£CFX =
pak je <£CXF= 120° - <MFZ
- = 120° - cp, tj. <£CXY = <£AYZ. Protože je XF =
= YZ, <£YCX = AZAY = 60°, je podle věty usu
ЛXYC^ AYZA, tj.

99;
180° - 60° -

CF = AZ. (1)
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Dále je <£CYP = <£AZP' = 9?; přitom P' je průsečík
strany YZ s přímkou AS, kde S je průsečík výšek troj-
úhelníku ABC. Protože je <£ YCP — 4:ZAP' = 30°, je
vzhledem к (1) podle věty usu A YCP ^ AZAP', tj.
CP = AP', a tedy i

SP = SC -CP = SA- AP' = SF.

Z toho vyplývá, že bod P' vznikne z bodu P otočením
kolem bodu 5 o úhel velikosti 120°. Bod Y náleží geo-
metrickému místu bodů, z nichž je vidět úsečku PP'
pod úhlem velikosti 60°, a to tomu oblouku, který leží
v polorovině opačné к PP'S. Protože je APSP' = 120°,
náleží bod Y kružnici k opsané trojúhelníku PP'S.
• V diskusi je třeba vyšetřit, za jakých podmínek má
kružnice k s přímkou AC aspoň jeden společný bod.
Střed O kružnice k je vrcholem kosočtverce PSP'O,
složeného ze dvou rovnostranných trojúhelníků. Proto
je OS = SP = x. Vzdálenost bodu O od přímky AC je
dána výrazem

(2)

1 Уз
neboť vzdálenost bodu 5 od přímky AC je у . 4— . Pod-
minka řešitelnosti úlohy je

n
A JC X,
O

tj-
P1

— X + X2 ^ X2
12

neboli

>Pл; A ----
12 *

57



Střední příčka trojúhelníku ABC, spojující středy stran
AC, BC} protíná výšku CM právě v bodě, jehož vzdá-
lenost od bodu S je

1
- jV3-íV3).12

3. ÚLOHY III. KOLA KATEGORIE A

1. Dokážte, že číslo ll100 — 1 má dekadický zápis
ukončený štvorčíslom 6000 a je dělitelné číslom 6000.

Riešenie. Kedze je 6 000 = 3.2 000, musíme o čísle
N = 11100 — 1 dokázat’, že je dělitelné oboma nesúdeli-
telnými číslami 2000 a 3.

Podlá binomickej vety platí
N = (10 + l)100 — 1 = Af + *,

kde M, z sú prirodzené čísla a platí (musíme si uve-
domiť, že kombinačně čísla sú celé čísla)

(1)

n (?) 104 +10" + .. • +M = 10100 +

(?)(?) 10" + ... +103 = 10100 ++

103 =+

(2)= 104 . a + 100.33.49.103 = 104.6

(přitom a, b sú celé čísla),

-(?)■»•+(?)'»=(?)'»■+(?)'»-
= 50.99 . 100 + 1000 = 496 000. (3)
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Dekadický zápis čísla M končí podlá (2) štyrmi nulami
a podlá (3) je teda posledným štvorčíslím čísla N číslo
6000, takže je N dělitelné číslom 2000.

Ďalej platí
100'

N = (12 - l)100 - 1 = 12100 - 12"+...-1

(T) 12 + 1 - 1 = 12P = 3.4P,

kde číslo P je celé (kombinačně čísla sú celé čísla). Číslo
N je teda dělitelné tiež tromi.

Tým je dokaž převedený.
Podlá riešenia Petra Neuwirtha, 3. d tr.
SVŠ, Šrobárova 46, Košice

2. Jsou dány dvě mimoběžky p = PP', q — QQ'‘
Bod X s počáteční polohou P se pohybuje po polopřímce
PP' konstantní rychlostí cx a bod Y s počáteční polohou Q
se pohybuje po polopřímce QQ' konstantní rychlostí c2.
Oba body se dají do pohybu současně.

Dokažte, že střed Z úsečky XY vždy leží na jisté polo-
přímce RR'3 kde R je střed úsečky PQ.

Řešení. V dalším užijeme známé věty V: „Jsou-li
a, dvě různé rovnoběžné roviny а X, Y libovolné body
po řadě v těchto rovinách ležící, potom množinou všech
středů Z úseček XY3 když body X3 Y po řadě probíhají
roviny a, /?, je rovina @//a, která má od každé z rovin a,

stejnou vzdálenost.”
Je-li R střed úsečky PQ3 veďme jím rovinu q3 kde

qIIPP'} qIIQQ' (obr. 12). Označme X3 Y polohu uvažo-
váných bodů v čase t > 0 a X13 Yx polohu těchto bodů
v čase t — 1; potom snadno sestrojíme rovnoběžnostěn
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T о hranách PQ, РХх, QY1; jeho dvě stěny jsou rovno-
běžné s rovinou q (viz obr. 12). Středy úseček XY,
XxYx po řadě označme Z, ZXi kde Zx je středem rovno-
běžnostěnu T} protože XxYx je jeho tělesová úhlopříčka;

P‘Xi xp
V l\ 4
\ \\

i\\ 1 \У
—\ —

bod Zx zřejmě leží v rovině q. Sestrojme rovnoběžníky
PXX'R, PXxX[R, eZiFíi?, přičemž první
dva leží v rovině ot//e, druhé dva v rovině j8//g; platí
tedy

PR = QR = XX' = УУ' - ХхХ{ = УХУ(.
Přitom trojúhelníky JRX( Y[, RX'Y' leží v rovině o
a platí XX'1/PR, PR//YYtakže je ХХ'//УУ' a vedle toho
XX' = УУ'; v konvexním čtyřúhelníku XX'УУ' s prů-
sečíkem Z úhlopříček jsou dvě protější strany XX', YY'
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shodné a rovnoběžné; pak se snadno dokáže (např,
užitím souměrnosti o středu Z), že XX'YY' je rovno-
běžník a že tedy platí X'Z — У'Z, takže Z je středem
úsečky X'Y'. Rovněž bod Zx je středem úsečky X[ Y[.
Snadno usoudíme, že platí

RX' ----- cxt, RY' — c2t, RX[ = c13 RY[ — c23

takže trojúhelníky RX[Y[3 RX'Y', a tím i středy Z13 Z
jejich stran X[Y[3 X'Y' jsou stejnolehlé vzhledem
к bodu R při konstantě stejnolehlosti t> 0. Odtud
plyne, že je RZ — RZr. t a že bod Z leží na polopřímce

• RZX pro každé t > 0, což jsme měli dokázat.

3. Určete všechny hodnoty parametru a z intervalu
<0,27t>, pro které má rovnice

(2 cos a

kladný kořen x13 kdežto druhý kořen x2, pokud existuje
a pokud je různý od xls není kladný.

Řešení. I. Je-li v (1)

(1)1) x2 + 4x + 4 cos a + 2 = 0

2 cos a — 1 03
tj-

a = 60°, a = 300°, (1')

pak, jak se snadno přesvědčíme, má rovnice jediný kořen
x = 1. Hodnoty (Г) nejsou tedy řešením úlohy.

II. Dále nechť je а ф 60°, a ф 300°, a tedy 2 cos a —
— 1 Ф 0. Kvadratická rovnice (1) pak má diskriminant
Z) = 8(3
je-li D ^ 0, tj. 3 — 4 cos2 a

4 cos2 a). Reálné kořeny má právě tehdy,
0, tj.

I cos a | ^ j УЗ~;
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to nastane právě tehdy, náleží-li a jednomu z intervalů

<30°, 150°), <210°, 330°).

Rovnice (1) má jeden kořen kladný a druhý kořen zá-
porný právě tehdy, když je xx x2 < 0. Platí

4 cos oc -j- 2
2 cos a — 1

(2)

(3)X% —

Jsou možnosti [1], [2].
Případ [1]. Nechť 2 cos a — 1 > 0 neboli nechť je

a v jednom z intervalů <0°, 60°), (300°, 360°); pak podle
(3) je 2 cos a + 1 < 0, tj. cos a < — i a a je z inter-
válu (120°, 240°). Uvedené intervaly nemají společné
číslo. Případ [1] nedává tedy žádné řešení.

Případ [2]. Nechť 2 cos a — 1 < 0, tj. a je z in-
tervalu (60°, 300°) a vzhledem ke (2) z intervalů

(60°, 150°), <210°, 300°).
Protože xxx2 je číslo záporné, je podle (3) 2 cos a +

(4)

1
+ 1 > 0, tj. cos a > — , takže a je v jednom z inter-
valů

<0°, 120°), (240°, 360°).
Průnik intervalů (4), (5) jsou intervaly

(60°, 120°), (240°, 300°),

(5)

(6)
které dávají řešení úlohy.

Zbývá vyřídit případ, kdy je jeden kořen kladný a druhý
roven nule. To nastane právě tehdy, když je xxx2 = 0
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a zároveň xx + x2 > 0. Z (3) pak plyne 2 cos a + 1 = 0,

a = 120° nebo a = 240°;

přitom vskutku je 2 cos a — 1 = —2 Ф 0. Dále je
Xj + x2 = 2, což je kladné číslo. Spojením (Г), (6), (7)
dostáváme, že řešením úlohy jsou všecka a z intervalů

(60°, 120°), <240°, 300°).

4. V rovině jsou dány body A, S o dané vzdálenosti
a > 0. Dále jsou dána kladná čísla b} c, pro která platí
b < a< c.

tj.
(7)

Sestrojte rovnostranný trojúhelník ABC tak, aby jeho
vrcholy В, C měly od bodu 5 po řadě vzdálenosti b3 c.
Udejte podmínky řešitelnosti pomocí čísel a, b} c.

Řešení. I. Rozbor (obr. 13). Vrcholy Б, C každého
z hledaných trojúhelníků ABC leží po řadě na kružnicích
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kx = (5; b), &2 = (S3 c). Otočení O kolem středu A
o úhel velikosti 60° ve vhodném smyslu (kladném
nebo záporném) převede vrchol В ve vrchol C; toto
otočení O převede kružnici kx v jistou kružnici k'x =
= (S', b). Bod C pak náleží dvěma geometrickým místům
bodů: kružnici k2 a kružnici kx (resp. kružnici kx;
kružnice k[, kx vzniknou z kx otočením kolem bodu A
o úhel velikosti 60° v kladném a záporném smyslu).
Tím je rozbor úlohy proveden.

Z rozboru vyplývá konstrukce; je-li C libovolný spo-
léčný bod kružnic k2, k'x, je С ф A (neboť c > a). Bod В
dostaneme otočením bodu C kolem A o úhel velikosti
60° ve vhodném smyslu. Trojúhelník ABC je rovno-
ramenný se základnou BC; úhel proti základně má ve-
likost <£BAC = 60°. Je tedy AABC rovnostranný
a splňuje zřejmě podmínky úlohy.

Diskuse. Úloha má tolik různých řešení, kolik různých
společných bodů mají kružnice &2j k'x a k2, kx (u obou
těchto dvojic jsou počty společných bodů stejné, neboť
obě dvojice jsou souměrně sdruženy podle přímky AS).
Protože trojúhelník ASS' je rovnostranný, je SS' =
= AS = a. Podmínka pro existenci společných bodů
obou kružnic tedy zní

b T- с ^ a A c — b

(neboť c > a > b). Platí-li v (1) rovnost, má úloha dvě
řešení, neplatí-li v (1) žádná rovnost, má úloha čtyři
řešení.

(1)
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4. ÚLOHY I. KOLA KATEGORIE В

1. Šesticiferné přirozené číslo, které je v dekadické
soustavě zapsáno ve tvaru (xyxyxy), kde x, у jsou ně-
které z cifer 0, 1, 2, . . ., 9, nemá většího prvočinitele než
97; dokažte.

Řešení. Hledané číslo N zapsané znakem (xyxyxy) je
N = 105x + 104j> + 103jc -f 102j> + 10jc + у —

= (10x+j;)(104 + Ю2 + 1)-
= 10101 (Юл; + y) =.
= 3.7 . 13.37 (10* +y).

Číslo lOi + у je dvojciferné (je x Ф 0) a největší prvo-
číselný dělitel čísla N bude 10л; А- Уз je-li Юл: + у
prvočíslo alespoň rovné 37; největší dvojciferné prvo-
číslo je 97. To vede к řešení pro л; = 9, у — 7. Takové
číslo je jediné, a to

979797,

o němž platí 979797 = 97 . 10101 = 97.3.7 . 13.37;
každé jiné číslo uvažovaného typu má největšího prvo-
číselného dělitele menšího než 97.

2. V rovině je daný lichoběžník ABCD s váčšou zá-
kladňou AB.

Zostrojte priamku рЦАВ takú, že úsečky AD3 AC, BD,
BC ju pretínajú postupné v navzájom róznych bodoch
M, N} P, Q tak, že platí MN = NP = PQ.

Riešenie. Označme и vzdialenosť priamok/íP, p a v
vzdialenosť priamok CD, p. Ďalej postupné označme a, c
dížky základní AB, CD. Z podobnosti trojuholníkov
(obr. 14)

AAMN ~ AADC
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dostaneme rovnost’
и

MN = (1)c —,— •и + v

Z podobnosti trojuholníkov

ABPQ ~ ABDC

cD c

/
s /

/s
/v

N a/ X?!U-14 pу s/ s/
/ Nи

/ X
X

X

ваА

Obr. 14.

dostaneme rovnost’

PQ — c ———.
и + v

(2)

Z podobnosti trojuholníkov
ADMP ~ adab

dostaneme rovnosť
v i

(3)MP = a —1—•U V

Podl’a (1), (2) platí teda pre každú priamku p rovnosť
MN = PQ. Ak platí ešte MN = NP, je MP = 2 MN,
t. j. podlá (1), (3)

(4)av — 2cu.
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Obrátene, ak platí vztah (4), potom je podlá (1) a (3)
MP = 2MN, t. j. MN = NP, MN = PQ a sú splněné
požiadavky úlohy.

К rozriešeniu úlohy stačí teda zostrojiť medzi bodmi
A, D bod M tak, aby platilo [podlá (4)]

AM
DM

Konštrukcia hladaného bodu M je naznačená na obr. 15.
Bod M je střed rovnolahlosti, v ktorej body D, C sú
obrazmi bodov A, B.

и a
\2c'v

Ď ecc
N.

N /
\
\
X

N/ \P| \0

X
>

X
/

s

вA a

Obr. 15.

3. Užitím výpočtu sestrojte trojúhelník ABC o obvodu
130 mm, který má tu vlastnost, že dotykové body kruž-
nice jemu vepsané dělí strany AB, AC v obou případech
v poměru 1 : 3.

Vypočtěte poměr stran trojúhelníku ABC.
Řešení (obr. 16—18). Pro stručnost položme

AB = c3 AC == b3 ВС — íz, 2s = и -(- b c3

tu je z planimetrie známo, že
AC = s — a, BC — 5 — by CB’ — s —

(viz označení v obr. 17).

• (1)c . .
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Vzhledem к textu úlohy jsou tři možnosti: Buď je
(obr. 16)

(2a)

anebo je (obr. 17)

Obr. 17.

anebo je (obr. 18)
АС AB'

= 3.
BC CB'
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Zdánlivá čtvrtá možnost se dá vyloučit záměnou označení
bodů В, C.

Případ [1]. Vzhledem ke vztahům (1), (2a) platí
s — a 1 s — a

b 3’ s — cs —

§*> * = c.a =

Je tedy
a : b : c 3:2:2.

Protože pro tento poměr délek a,
b, c platí

a + b > c, b + c > a,
c + a > 6,

proto trojúhelníky se stranami
splňujícími (3) skutečně existují
(viz obr. 16).

Případ [2]. Vzhledem ke vzta-
hům (1), (2b) platí (obr. 17)

Obr. 18.

1 1s — a

T^b ~ J’
s — c

3s — a

neboli
1

s — b — 3 (s — a), s — c = - {s — a). (5)
Protože je

a = (5 — b) + (5 — c), dostaneme po dosazení z před-
a) neboli a - -

1
chozích vztahů a = 3 (s — a) + -=■ (5

10 3
= 13S-
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Odtud a z (5) dostaneme
4

b = 3a-2s =
121

Í3s; e= 3 (2s + e) = í3s-
Je tedy

a : b : c — 5 : 2 : 6, (6)

přičemž platí vztahy (4) a trojúhelníky s poměrem těchto
stran existují.

Případ [3]. Vzhledem к vztahům (1), (2c) platí
(obr. 18)

s — a

s — b

Je tedy

— a
3 neboli b = c, b = 2a.

— c

(7)a :b : c = 1:2:2

a protože pro tato čísla platí vztahy (4), příslušné troj-
úhelníky existují.

Konstrukci v jednotlivých případech provedeme tak3
že daný obvod 2s — 130 mm rozdělíme v předepsaném
poměru [viz (3), (6), (7)] a sestrojíme z takto vznik-
lých úseček trojúhelník, který — jak jsme dříve dokázali
— existuje.

Pomocí vzorců (1) snadno provedeme zkoušku, která
nás přesvědčí o tom, že příslušné dotykové body kruž-
nice vepsané takto sestrojenému trojúhelníku dělí strany
AB3 AC v poměru 1 : 3 (bez ohledu na pořadí úseků).

Úloha má tedy právě 3 řešení (pokud připustíme vý-
měnu bodů Б, C).

4. V rovině je daných 6 róznych bodov tejto vlastnosti:
každá štvorica vybraná spomedzi nich obsahuje aspoň
tri body, ktoré ležia na priamke.
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Dokážte, že aspoň 5 z daných šiestich bodov leží na
priamke.

Riešenie. Kvoli jednoduchosti označíme dané body
číslami 1, 2, 3, 4, 5, 6. Vo štvorici 12 3.4 existujú
podlá předpokladu tri body, ktoré ležia na priamke.
Označíme ich 1,2,3 a priamku, na ktorej ležia, označímep.
Ak mimo priamky p leží najviac jeden z bodov 4 až 6,
je veta dokázaná. Připusťme teda, že aspoň dva body
(označíme ich 5, 6) ležia mimo priamky p. Vo štvorici
1 2 5 6 existuje trojica bodov ležiacich na priamke.
Nemože to byť trojica 1 2 5 ani trojica 12 6, pretože
body 5, 6 neležia na priamke p = 12. Trojicou bodov
ležiacich na priamke je teda buď 15 6, alebo 2 5 6.
Označenie bodov 1, 2 upravíme tak*), aby to bola
trojica 1 5 6. Vo štvorici 2 3 5 6 existuje aspoň jedna
trojica bodov ležiacich na priamke. Nie je ňou trojica
2 3 5 ani 2 3 6, pretože 5, 6 neležia na priamke p =
= 23, no ani 2 5 6, ani 3 5 6, pretože priamka 56 Ф p
přetíná priamku p v bode 1, ktorý je rozny od 2, 3.
Tým je dokázané, že mimo priamky p nemožu ležať
dva z daných šiestich bodov, t. j. aspoň páť z daných
bodov leží na p.

5. Najděte všechna celá čísla x3 pro něž výraz
-6x2 + 167* + 4 823 (1)

je roven:

a) prvočíslu;
b) co největšímu přirozenému číslu;
c) co nejmenšímu přirozenému číslu.
Řešení. Daný troj člen (1) označme у a jeho diskri-

minant D.

*) T. j. vyměníme připadne ich označenie.

71



Je
D = 1672 + 4.6.4 823 = 27 889 + 115 752

- 143 641 = 3792 > 0.

Proto rovnice —6x2 + 167л: -f- 4 823 = 0 má dva různé
reálné kořeny

53 91
(2)*i = — 3 ’ “ 2

a troj člen (1) lze rozložit:

= ”6(x + ?) (x“t)
neboli

у = (Зл; + 53) (—2л; + 91).

Je patrno, že pro л: z intervalu

(3)

53 91
(4)л:х = — — < л: < 2 = X2

je у >0. Pro hranice л:13 x2 tohoto intervalu je у = 0;
pro ostatní x je у < 0.

Obraťme se nyní к jednotlivým úlohám.
a) Má-li pro celé číslo л; být у prvočíslo, musí jeden

z činitelů na pravé straně (3) být ±1. Rozlišme mož-
nosti:

[lj. Pro číslo 1 je jediná možnost: —2л; + 91 = 1
neboli x = 45; tu je Зл; + 53 = 188, což však není
prvočíslo.

[2]. Pro číslo — 1 jsou dvě možnosti:
(1) Je Зл; + 53 = —1, tj. x

což není prvočíslo.

3

127,18 а у =
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1, tj. x = 46 а у(2) Je —2х + 91 =
také není prvočíslo.

Odpověď na otázku a): Požadované číslo x ne-
existuje.

Pro další vyšetřování si uvědomíme, že grafem funkce
(3) v pravoúhlých souřadnicích je parabola, která protne
osu x souřadnic v bodech

— 191, což

14 £1. 0
2 5 U 5 (5)X x2 =1

její vrchol V je nad osou x; abychom stanovili souřadnice
vrcholu, upravíme daný kvadratický troj člen na tvar:

2.167 1672 1672
у — — 6 |л;2 — + 4 823 + 6x -f- '

12212212

neboli
167 V2 1

(6)y = ~6 *“ 12
-|- . 143 641 .

24

Pro vrchol V paraboly je souřadnice у maximální;
ze vztahu (6) je patrno, že maximum у nastane pro

167167
0, tj. pro x =x —

12 *12

167
. 143641

12 ’ 24Je tedy l7 = |
Víme, že funkce (6) je v intervalu |^— ~3

Ít2~’ ~2 ^esaPc^’ na základě toho zodpo-

rostoucí,

v intervalu

víme otázky b), c).
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b) Hledané celé číslo x, pro které je у v (6) co největší
přirozené číslo, musí vzhledem к předchozímu být buď

167
nejbližší přirozené číslo menší než -pr-, anebo nej-12

167
bližší větší přirozené číslo к číslu
x = 13, anebo x — 14, neboť je

12 ; tj. buď je

167
13 < <14.

12

Pro x = 13 je podle (3) у — 92.65 = 5980; pro x — 14
je jy = 95.63 = 5985. Je tedy hledaným číslem číslo
x = 14.

c) Hledané celé x3 pro které je у co možná nej menší
přirozené číslo, musí být jedno z těchto čísel: buď nej-
bližší větší celé číslo než xx = — Щ-3 tj. *3 = —17,d 91
anebo nejbližší menší celé číslo, než je x2 — tj.
*4 = 45. 2

Pro x — x3 ze (3) dostaneme
у = (-51 + 53) (34 + 91) = 2 . 125 = 250.
Pro x — *4 ze (3) dostaneme
у = (135 + 53) (-90 + 91) = 188.
Hledané číslo je tedy x — 45.
Tím je úloha úplně rozřešena.

6. Jsou dány rovnice
хг — л; — 1 = 0,

x2 -j- px — 1 = 0,
(1)
(2)

kde p je dané reálné číslo.
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Dokažte, že obě rovnice mají reálné kořeny, a vyšetřte,
jak jsou tyto kořeny uspořádány podle velikosti, jestliže
parametr p probíhá všechna reálná čísla.

Řešení. Rovnice (2) má diskriminant p2 + 4 > 0,
takže má dva reálné různé kořeny; rovnici (1) dostaneme
ze (2) pro p = — 1. Každá z rovnic (1), (2) má tedy dva
různé reálné kořeny. Pro p = — 1 jsou kořeny rovnice
(2) rovny po řadě kořenům rovnice (1); nechť v dalším
je p Ф —1 a označme x13 x2 kořeny rovnice (1), я3, x4
kořeny rovnice (2). Podle známé věty o kvadratické
rovnici platí:

(3)*1 + *2 = 1
*1*2 = — 1

*3 + *4 = —P

*3X4 = — 1

(3')
(4)

(4')
O kořenech lze při vhodné volbě indexů předpokládat,
že je

(5)*1 *2J *3 *4 j

protože však platí vztah (3'), jsou xls x2 různých zna-
mének a tedy vzhledem к (5) je % > 0, x2 < 0; podobně
x3 >0, x4 < 0. Platí tedy

1 1
xt > 0; x3 > 0; x2 = < 0; x4 = <0. (6)

X-^ Xq

Řešením (1) dostaneme

*i = j (1 + У5), *2 = j (1 - V5); (7)

řešením rovnice (2) dostaneme
1

*3=2" + Vía + 4*4 = 2 ^~p ~ Vp2 + 4)*
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Zkoumejme., pro které hodnoty p platí x3 > хг. Podle
(7), (8) dostaneme podmínku

-p + УЧ+~4 >1 + 1/5
a odtud po umocnění a úpravě

p < —1.

Obrácením postupu zjistíme, že pro každé p <
*3 > xx.

Zkoumejme obdobně, pro které hodnoty p platí
jc4 > x2. Podle (7), (8) dostaneme podmínku

(9)
1 je

P — ]/p2 + 4 > 1 — ]/5
a odtud po umocnění a úpravě opět

p < —1.

Také zde dostaneme obrácením postupu, že pro každé
p < — 1 je > x2.

(9')

x* X3
+ 9

xX2 O *1
Obr. 19.

X4 *3

x2 o Xi
Obr. 20.

Odtud vyplývá, že pro p < — 1 nastane situace za-
kreslená na obr. 19, pro p > — 1 situace zakreslená na
obr. 20.
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Závěr. Znázorníme-li kořeny první rovnice body x13
x2 a (pro p Ф — 1) kořeny druhé rovnice body x3, x4J
potom je xx =t= x2í x3 ф x4 a platí r a) Obraz O nuly leží
uvnitř úseček xxx2) x3x4; b) každá dvojice x33 xi3 kterou
dostaneme pro p ф — 1, odděluje dvojici x13 x2.

5. ÚLOHY II. KOLA KATEGORIE В

1. Najděte všechna nezáporná čísla a, b, c, pro která
platí rovnost

]/<2 — ]/b + ]/c .

Řešení. Úkolem je najít všecka řešení rovnice (1).
Umocnění dá

]/a (1)b + c

b c — a b c — 2]jab — 2 ]jbc + 2 \ac,a —

po úpravě
b + |lac — |lb (|!a + |!c).f

Další umocnění dá

b2 + 2b ]/ac + — b (<2 -j- 2 |/<2C -j~ac

po úpravě
b2 — (a c) b ac — 0.

Rovnice (2) je kvadratická pro neznámou b a podle známé
věty má za kořeny jedině čísla bx = a, b2 = c\ platí
tedy nutně a — b anebo b = c.

Zkouška. Např. pro libovolné nezáporné a — b a libo-
volné nezáporné c je levá strana (1) rovna ]/c a pravá
rovněž |!c .

(2)
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2. V lichoběžníku ABCD sú dané dížky x, у základní
AB, CD. Rovnoběžka so základňami vedená priesečníkom
uhlopriečok tohto lichoběžníka přetne ramená AD, BC
postupné v bodoch U, V.

Nájdite poměr obsahov lichobežníkov ABVU, UVCD.
Riešenie. Použijeme označenie z obr. 21. Pre obsahy

P1} P2 lichobežníkov ABVU, UVCD platí

/
1.CDL

\

\ / *2/ \ /'

UA—-X-—У' / t \ \
—

\

Av-
T

Obr. 21.

11
Pi — -y (* + 0 я15 P2 — 2" Су “b 0 ■З'г?

takže

Pi
= O + Q -21!

(y + 0 *2 ’

Z rovnolahlosti úsečiek AB, UO podlá středu D vyplývá

(1)

*2UO = x
z1 + z2‘
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Z rovnolahlosti úsečiek AB, VO podlá středu C vyplývá
opáť •

*2VO = X
+ *2 ’

__ 2XZ2
ZX + Z% ’

Z rovnolahlosti úsečiek AB, CD podlá středu O vyplývá

Stadia!

(2)

x *i (3)
У *2

Ak zo vztahu (3) vyjádříme zx a dosadíme dó (2), do-
staneme

2xy (4)ř =
* +y'

Ďalej vyjádříme pomocou vztahu (4) dvoj členy x + ř,
у + t a dosadíme do (1); dostaneme

Л
_ O + 3y) X2

P2 (3* + зО У ’

3. Vně dané kružnice k = (S3 r) je dán bod A. Uvnitř
úsečky AS sestrojte bod X tak, aby délka tečny vedené
z bodu X ke kružnici k byla rovna délce úsečky AX.

Poznámka. U této úlohy uvádíme několik řešení,
z nichž čtenář vidí, že některou úlohu lze řešit velmi
odlišnými způsoby.

Řešení č. 1 (obr. 22). Označme A' dotykový bod
hledané tečny A'X, kde X je bodem úsečky AS a leží
vně kružnice k, přičemž platí ХА' = XA. Osa p úsečky
AA' prochází bodem X (bod X je hlavním vrcholem
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Obr. 22.

rovnoramenného trojúhelníku XAA'). Osová souměrnost
o ose p převádí úsečku AX v úsečku A'X, trojúhelník
SXA' (kde <£A' = 90°) v trojúhelník S'XA a kružnici k
v jistou kružnici k’ = (S', r), která se dotýká přímky AS
v bodě A. Odtud tato konstrukce:

Na kolmici vedené bodem А к přímce AS sestrojme S'
tak, aby AS' = r (z obou možností volme jednu), a se-
strojme kružnici k' = (S', r). Osa p úsečky SS' má
s úsečkou AS společný bod X, který je hledaným bodem.

Důkaz a diskuse. Kružnice k, k! jsou podle konstrukce
souměrně sdružené vzhledem к přímce p. Je r < AS
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(bod A leží vně kružnice k) a tedy AS' < AS; podle
známých vlastností osy p úsečky SS' leží bod A v polo-
rovině pS' a body S3 A jsou tedy přímkou p odděleny.
Proto bod X padne dovnitř úsečky AS; dále leží na
tečně AS kružnice k! a vně této kružnice; ze souměrnosti
a z toho, že X leží na ose p, plyne, že X leží vně kružnice k.
Existuje tedy právě jeden bod X.

Podle řešení Josefa Prokeše, 2.b roč.
SVVŠ, České Budějovice
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-*r-Ttr
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Obr. 23.

Řešení č. 2 (obr. 23). Užijme označení z předchozího
řešení a sestrojme průsečík O osy úhlu <£AXA' a přímky
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SA'. Platí А ОХА' ^ AOXA (usu), a tedy OA = OA'.
Bod O je středem kružnice m, která se dotýká přímky
SA v bodě a s kružnicí k má vnější dotyk.

Konstrukci (obr. 23) provedeme převedením úlohy na
sestrojení kružnice m', která je s m soustředná, prochází
bodem S a dotýká se přímky nl/SA, která má od přímky
SA vzdálenost r: Jestliže bod Ax leží na kolmici vedené
bodem А к přímce SA tak, že AAX = r, sestrojíme osu q
úsečky SAX a označíme O průsečík přímek q, AAX.
Hledaná kružnice m = (O, OA) se zřejmě dotýká kruž-
nice k vnč v hledaném bodě Abod X je společný bod
přímek q, SA, AXA'.

Podle řešení Václava Pištěka, 2.b roč.
SVVŠ, Pelhřimov
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Obr. 24.

Řešení č. 3 (obr. 24). Úhel ASA'A, kde A' je hle-
daný dotykový bod, je tupý, neboť bod X leží uvnitř
úsečky SA a je ASA'X — 90°. Proto polopřímka AA'
má s kružnicí k společný bod Р ф4'. Označme a, (3
úhly při základnách AA', PA' rovnoramenných troj-
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úhelníků XAA', SPA'. Protože je <£SA'X = 90°, je
<£PA'S + <£AA'X = 90° neboli a -f /? = 90° a v troj-
úhelníku APS je nutně <£S — 90°. Odtud konstrukce:

Sestrojme kolmici к přímce SA bodem S a označme P
jeden z jejích průsečíků s kružnicí k. Další průsečík
přímky PA s kružnicí k označme A' (snadno se dokáže,
že skutečně padne dovnitř úsečky PA); tečna v bodě A'
ke kružnici k má s úsečkou společný hledaný bod X.
Důkaz a diskusi provede čtenář.

Podle řešení Viliama Kozenčuka, 2.tr.
SVŠ, Trenčianske Teplice

к

Řešení č. 4 (obr. 25). Označme vzhledem к před-
chozím řešením В průsečík přímky XA' a kolmice vedené
bodem А к přímce AS. Potom je AXBA ^ Д XSA'
(XA — XA' a shodnost ve všech úhlech) a tedy BA =
= SA' — r. Bod A' tedy leží na Thaletově kružnici t
opsané nad BS jako průměrem.
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Odtud plyne snadno konstrukce: Na kolmici vedené
bodem А к přímce AS označme В jeden z obou bodů,
které mají od přímky AS vzdálenost r. Nad úsečkou BS
jako průměrem sestrojme kružnici t se středem M.
Kružnice k, t mají zřejmě dva různé průsečíky; ten,
který leží v polorovině SBA, označme A' a průsečík
úseček BA', AS je hledaný bod X. Diskusi si provede
čtenář.

Podle řešení Karola Trnovského, 2. tr.
SVŠ, Ružomberok

4. V rovině pravoúhlých souřadnic x, у sestrojte graf
funkce

l/l (I*2 - 32| - i*2 18|) • (1)У

Řešení. Je-li [x, у] bodem grafu funkce, je i bod
[—X, у] bodem grafu; proto se omezíme na x JSs 0,
přičemž je stále у ^ 0. Graf funkce je tedy souměrný
podle osy y.

Rozlišme vzhledem к x ^ 0 možnosti:

[1] Nechť je x2 — 18 ^ 0, tj.
0 ^ x ^ 3]/2 = 4,2.

Tuje |x2 - 18| = -(x2 - 18), |x2 - 32| - -(x2 - 32),
takže (1) zní

j/i- [~*2 + 32 + x2 = У4.14 = У7,18]У =

y = ]/7.
V intervalu <0, 3 ]/2 > je grafem úsečka YX s krajními
body Y = [0, У7], X = [3 p, ]/7].

tj-
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О, х2 — 32 < О, tj.[2] Nechť je я2 — 18

3p^xĚ4]/2, (2)
pak

1

j[-x‘ + 32-(x2- 18)] = y-x* + 25, (3)
takže musí platit — x2 + 25 ^ O, tj. x < 5 a spolu se
(2) tedy nutně platí (je totiž 5 < 4 ]/2)

У =

3]/2<x<5. (4)
jc2 + 25 neboli x2 +Ze vztahu (3) dostáváme j>2 =

+ y2 = 25 a příslušné body [x} у] leží na kružnici
o středu O (počátek souřadnic) a poloměru 5; z této
kružnice vzhledem ke (4) přichází v úvahu jen menší
oblouk XŽ} kde Z = [5, 0].

[3] Nechť je x2 — 32 ^ 0 a tím i x2 — 18 ^ 0, takže
|x2 - 321 = x2 - 32, \x2 - 18| = x2 - 18 a x > 4 ]/2.
Pak pod odmocninou v (1) je — 7; takže odmocnina
ani graf neexistuje.

o
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Graf dané funkce (obr. 26) je tedy souměrný podle
osy у a skládá se ze dvou menších kruhových oblouků
XZ, X'Z' a z úsečky XX', kde

X = [3 p, 1/7], Х’=[-Ър, 1/7], Z = [5, 0],
Z' = [-5, 0].

6. ÚLOHY I. KOLA KATEGORIE C

1. V rovině pravoúhlých souřadnic x, у zobrazte
množinu všech bodů Z = [x, у], o jejichž souřadnicích
platí zároveň všechny tři nerovnosti:

\x — y\ ^ 1
\x +y\ ^ 1
* + \y\ ^ 1

Řešení, a) Zjistíme nejprve, jaký útvar je množinou
bodů, jejichž souřadnice splňují nerovnost (1). Tato ne-
rovnost platí zároveň s nerovností, kterou dostaneme
jejím umocněním dvěma, tj. s nerovností

(X —y)2 < 1.

(1)
(2)
(3)

(П
Nerovnost (Г) upravíme

(x-yy-1 ů o,
(* — У — 1) (* — У + 1) ^0.

Nerovnost (1") je splněna právě tehdy, platí-li buď zá-
roveň

(1")

x — у — 1 ás 0,
X — у + 1 ^ 0, (4)
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nebo zároveň

x — у — 1 ^ О,
л: — у + 1 ^ 0.

Nerovnosti (4) vyjadřují společnou část polorovin s vy-
jádřením x — у ^ — 1 a x — у < 1, tj. pás Рг roviny,
omezený přímkami o rovnicích y = x-\-l}y = x— 1;
obě poloroviny obsahují totiž počátek souřadnic (viz
obr. 27).

(5)

/
/

/

4 /Pí
\
\ в

/\ /

\ /

/С/ \ A x.
\

V
/ \

\

/’1
/

\

Obr. 27.

Nerovnosti (5) si odporují, proto jim nevyhovují sou-
řadnice žádného bodu.

Závěr. Množina všech bodů, jejichž souřadnice vy-
hovují nerovnosti (1), je pás Pv
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Pro snazší vyjádření označíme А, В, C, D průsečíky
hraničních přímek pásu Px s osami souřadnic, a to tak,
aby platilo
A = [1, 0], В = [0, 1], C = [-1, 0], D = [0,

b) Obdobně vyšetříme množinu bodů, jejichž sou-
řadnice vyhovují nerovnosti (2). Dostaneme postupně

O + yf — 1 ^ 0,
1) (x + у + 1) ^ o.

1].

o+
Odtud plyne bud zároveň

x + у — 1 ^ 0,
x + у + 1 ^ 0,

nebo zároveň

X + у — 1 ^ 0,
x -)- у -(- 1 ^ 0.

Tyto poslední dvě nerovnosti si odporují. První dvě ne-
rovnosti vyjadřují opět pás P2 roviny, omezený přímkami
o rovnicích у — — л; + 1, у — — x — 1, tj. přímkámi
AB, CD.x

Závěr. Množina všech bodů, jejichž souřadnice vy-
hovují nerovnosti (2), je pás P2 (viz obr. 27).

c) Při vyšetřování množiny bodů, jejíž vyjádření je
nerovnost (3), dostaneme postupně

Ы ^ 1 — X,

У2 < (1 - *)2,
(6)(1 — X — у) (1 — x + y) ^ 0.
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Nerovnost (6) je splněna právě tehdy,, platí-li buď zá-
roveň

1 — x — у ^ 0,
(7)1 — x + у ^ O,

nebo zároveň

1 — x — у й 0,
1 — x + у ^ 0.

Nerovnosti (7) vyjadřují poloroviny s hraničními přím-
kami o rovnicích у = 1 — x, у — x — 1, jež obě ob-
sáhují počátek souřadnic. Společná část těchto polo-
rovin je pravý úhel <^BAD. Nerovnosti (8) vyjadřují
společnou část polorovin opačných к oběma předchá-
zejícím, tj. pravý úhel U vrcholový к úhlu BAD.

Závěr. Nerovnost (3) vyjadřuje dvojici vrcholových
úhlů; úhel <ýBAD a úhel U к němu vrcholový (viz
obr. 27).

Průnik pásů P15 P2 je čtverec ABCD, který leží v pra-
vém úhlu <3'BAD. Tento čtverec má s úhlem U jediný
společný bod, tj. bod A.

Výsledek. Množina všech bodů, jejichž souřadnice
vyhovují zároveň nerovnostem (1), (2), (3), je čtverec
ABCD.

(8)

2. Sú dané dve kružnice &13 k2 so spoločnou tětivou
PQi ktorá odděluje ich středy.

Nájdite na kružnici bod A a na kružnici k2 bod В
tak, aby bod Q ležal vo vnútri úsečky AB a aby platilo
<APQ = ýtBPQ.

Riešenie (obr. 28). Rozbor. Označíme
a = <£PAQ, /3 — ý:PBQ3 e — ýiAPQ — ý:BPQ.
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Z trojuholníkov APQ, BPQ vyplývá podlá vety o von-
kajšom uhle trojuholníka

(a + £) ~b (,P + e) = 180°,
skadial

1
í = 90° - ^(« +/3). (1)

Podlá vety o středovom a obvodovom uhle je

«PSi2 = 2a, <PS,,Q = 2ji.

Pretože priamka SXS2 rozpoluje oba uhly <£PS1Q3
<£PS2Qj je

a ďalej
<PS,S2 — а., <сРЗД —

^PSs = 180° - (a + 0). (2)
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Porovnáním vzťahov (1), (2) dostaneme
1

(3)2 <^SLPS2.e —

Zo vztahu (3) vyplývá táto konštrukcia: Zostrojíme
polpriamky PX3 PY ležiace postupné v polrovinách
PQS13 PQS2 tak, aby platilo

<QPX = <QPY = e.

Ak pretnú polpriamky PX, PY postupné kružnice k13 k2
v bodoch А ф P3 В ф P3 je <£PAQ — a, -Š.PBQ = /3.
Preto platí

<£AQP = 180° - (a + e)3
<BQP = 180° - (/i + *),

t. j. podia (1)
<£AQP + ^BQP = 360° - (a + p + 2e) = 180°.

Body A3 B3 Q ležia teda na priamke.
Diskusia. Zostáva rozhodnúť, za akých podmienok

má úloha riešenie; riešenie je potom jediné. Pretože
priamka PQ odděluje středy S13 S23 prislúchajú obvo-
dové uhly a, /9 к menším oblúkom PQ a sú obidva ostré.

Označíme PT3 PU polpriamky, ktoré ležia postupné
v dotýčniciach kružnic kX3 k2 v bode P a postupné v pol-
rovinách PQS13 PQS2. Uhly <$.QPT3 'QPU sú obidva
tupé. Ak sú PX3 PY polpriamky, o ktorých bola reč
v skúške konštrukcie, je <$:QPX — <£QPY — e a podlá
(3) je e < 90°, pretože uhol je dutý. Preto
pretnú polpriamky PX3 PY postupné kružnice k13 k2
v bodoch А ф P, В ф P.

Výsledok diskusie: Úloha má vždy jediné riešenie.
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3. V rovině je daný trojuholník ABC. Použitím vý-
počtu určité medzi bodmi А, В taký bod D, aby sa kruž-
nice vpísané trouholníkom ACD a BCD dotýkali priamky
CD v tom istom bode.

Riešenie. Rozbor. Označme strany trojuholníka ABC
obvyklým sposobom: a — BC, b = CA, c — AB; ďalej
označme d — CD, x — BD, у AD (obr. 29), T spo-

A V ID U
JL ■f

Obr. 29.

ločný dotykový bod oboch vpísaných kružnic, ležiaci na
straně CD. Potom platí podlá známého vzorca

1
DT — у (л + d — a) (z trojuholníka BCD),
DT = ^ (y -f d — b) (z trojuholníka ACD).

Porovnáním dostáváme x d — a = у d — b čiže

x — у == a — b. (1)
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Okrem toho je
(2)x + У = c-

Z (1) a (2) vyplývá sčítáním
1

2 (a + c — b) = s ~ b> (3)x —

1
kde s — у (a + b + c). Podlá známej vety je teda bod D
bodom dotyku kružnice vpísanej trojuholníku ABC.

Skúška. Zostrojíme bod D ako bod dotyku kružnice
vpísanej trojuholníku ABC ležiaci na straně AB. Troj-
uholníkom ACD, BCD vpíšeme postupné kružnice k
k23 ktoré sa dotýkajú strany CD postupné v bodoch Tl3T2.
Vypočítáme podlá známého vzorca

1 5

1 1

DT^jid + у-Ь), DT2
Pretože je podlá (3) x = s — b, )e.y = s — a. Dosadením
do (4) dostaneme

2 \d + x a). (4)

1
(5)DTX = 2“ (d + 5 — a

Pretože oba body T13 T2 ležia na polpriamke DC3 je podlá
(5) Tx = T2 a kružnice kX3 k2 splňujú požiadavky úlohy.

Úloha má zrejme vždy jediné riešenie.

4. Najděte všechna celá čísla x3 pro která je výraz

b) = DT2.

6 (x2 — Ърх — x + 3p)V -
хз _ 2>px2 — x + Ър

roven celému číslu.
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Proveďte diskusi řešitelnosti vzhledem к danému
celému číslu p.

Řešení. Rozložme jmenovatele a čitatele v daném
zlomku:
6 (я2 — Ърх — x + 3p) = 6 [(л:2 — я) —■ 3p (x — 1)] =

= 6 (я — 1) (я — 3p);
я3 — Ърх2 — я + Ър — я2 (я — Ър) — (я — 3/>) =

= (я — 1) (я + 1) (я — 3/>).
Platí tedy

6 (я — 1) (я — Ър)
(я — 1) (я + 1) (я — 3/))' (1)V =

Výraz F má tedy význam pro všechna reálná čísla я
s výjimkou čísel

(2)-и 1; Ър.

Nechť je tedy dále я různé od čísel (2). Zkrátíme zlomek
na pravé straně (1) a dostaneme

6
(3)F=i-+r

Tento zlomek má být roven celému číslu, tj. číslo
я + 1 musí být dělitelem čísla 6 neboli číslo я + 1 musí
být rovno některému z čísel

—6; —3; —2; —1; 1; 2; 3; 6.
Odtud pro я dostáváme po řadě tyto hodnoty:

-7; -4; -3; -2; 0; 1; 2; 5.
Podle (2) je vyloučena možnost я = 1 a možnosti я =
= — 3, я = 0, které dostaneme ve (2) pro p = — 1
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a p — 0. Zbývá těchto 5 případů, к nimž pomocí (3)
určíme hned příslušnou hodnotu V:

-2 2-7 -4 5

К -1 -2 -6 2 1

5. Žák měl najít objem kvádru z jeho daných rozměrů,
což byla přirozená čísla. Když žák objem vypočetl,
zjistil, že dojde к témuž výsledku, když sečte všechny tři
rozměry.

Ukažte, že pomocí těchto údajů lze s jediným vý-
sledkem vypočítat rozměry daného kvádru.

Řešení. Označme x, у, z rozměry kvádru tak, aby
platilo

(1)X ^ у ^ z.

Objem je V — xyz; podle textu úlohy platí

(2)xyz = x + у + z.

Avšak vzhledem к (1) je x + у + z ;
plývá, že nutně platí

3x a ze (2) vy-

xyz ^ 3x
a po dělení obou stran číslem x

уz íS 3.
Pro přirozená čísla y3 z máme vzhledem к (1) tyto tři
případy:

[1] З' — 3, z= 1, [2] у = 2, z = 1, [3]^ 1,Я= 1.
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Dosaďme za у, z do (2) a hledejme příslušné x, přičemž
má platit (1):

Případ [1]. Pro j; = 3, z = 1 ze (2) dostaneme 3x =
— я + 4, tj. x = 2, což je spor se vztahy (1); nedostá-
váme žádné řešení.

Případ [2]. Pro = 2, z = 1 ze (2) dostaneme 2x =
= x -f 3, tj. x = 3, což vyhovuje (1). Skutečně V —
= 3.2.1=6a:x:-j-jy + '2' = 6.

Případ [3]. Pro у — z — 1 dostaneme x — x 23
takže není žádné řešení.

Odpověd. Rozměry kvádru jsou 3, 2, 1.

6. Je dán pravoúhlý rovnoramenný trojúhelník ABC
s přeponou AB délky 1 a kladné číslo d. Světelný paprsek
vyslaný z bodu X, který leží mezi body A, Б, se odrazí
na odvěsně БС v bodě Y a dopadne právě do středu M
odvěsny AC.

Sestrojte bod X tak, aby dráha XY + YM paprsku
měla danou délku d. Proveďte diskusi vzhledem к číslu d.

Řešení. Použijeme zákona o odrazu světelného pa-
prsku: musí být <£CYM = <£BYX. Proto při překlopení
trojúhelníku ABC kolem odvěsny BC přejde úsečka
YM v úsečku YM' tak, že body X, F, M' leží v přímce.
Přitom M' je střed překlopené odvěsny A'C. Má-li být
XY + FM = d, musí být XY + YM' = XM' = d, tj.
bod X musí ležet na kružnici k = (M'; d) a uvnitř
úsečky AB. Tato podmínka je nejen nutná, ale i po-
stačující.

Vzdálenost bodu M' od přímky AB je dána délkou
kolmice M'QI/A'B (viz obr. 30); M'Q = ^. Úloha má
tedy tyto možnosti řešení:
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«
, v v 3

Žádné řešení pro d < ,

3
1 řešení pro d =

2 řešení pro ^ < d < M'B,

1 řešení pro M'B
žádné řešení pro d ^ M'A.

d < M'A,

) (

Vzdálenosti M'B, M'A se vypočtou snadno: M'A =
^

= ~r ]/2 = 1,06 a podle Pythagorovy věty je4

I 10 = J/To
У 16 4

1 \2 3 \ 2MB = 0.79.
4 4
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7. ÚLOHY II. KOLA KATEGORIE C

1. Riešte rovnicu

1 1 31
(1)

x — р + х —2р^х+Ър x5

kde л; je neznáma a p dané reálne číslo.
Riešenie. Vynásobme obidve strany danej rovnice (1)

číslom * (x — p) (x — 2p) (x -j- 3p) a postupné upra-
vujme:

x (я — 2p) (я + Ър) + x (я — p) (я + Ър) +
+ я (я — р) (я — 2р) — 3 (я — р) (я — 2р) (я + 3р)3
Зя3 + (Ър — 2р + Ър — р — 2р — р) я2 +
+ (—Ьр2 — Ър2 + 2р2) х = Зя3 + (Ър — 2р — р) я2 +
+ 3 (2р2 - 6/>2 - З^2) я + 18р3,

Up2x = 18^3,

1р2х == 9/>3.

Rozoznávajme dve možnosti:
[1] Nech je = 0. Potom rovnica (1) je splněná pre

každé я Ф 0, Vtedy totiž skutočne platí rovnost’

- + - + - = 3

(2)

яя я я

[2] Nech je p Ф 0. Potom z rovnice (2) dostaneme

9p
x — ~ (3)7-'
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Převeďme skúšku dosadením. Pre l’avú stranu rovnice
(1) dostaneme postupné:

L
9p "^”9p
Y~p y

1 1

9p-2p f + 3p
7 77

(9-7(9- 14)(9 + 21)í

/> \2 5 ^30/
7 15 - 6 + 1 7

3P‘30

Predchádzajúci výpočet platí pre každé p Ф 0. Pre pravú
stranu rovnice (1) dostaneme

3.7
_ 7_

9p 3p ’

Je teda skutočne L = P a číslo (3) je pre p ф 0 jediným
koreňom danej rovnice.

^ 2. Odvěsna pravoúhlého trojuholníka má velkost’ 1.
Ťažnica prislúchajúca к druhej odvěsně je kolmá к ťaž-
nici prislúchajúcej к prepone.

Vypočítajte dížku ostatných dvoch stráň.
Riešenie (obr. 31). V danom trojuholníku ABC

označme <£C = 90°, a = BC, b — CA = 1, с = AB3
takže podlá Pythagorovej vety platí:

a2 + l2 = c2.
Nech sú ďalej A'3 C postupné středy stráň ВС, AB.
Ťažnice AA'3 CC' majú spoločný bod T3 ťažisko troj-

P =

(1)
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uholníka. Preto platí 2 . TA — TA, 2 . TC = TC. Po-
ložme

TA = x, ГС' = з». (2)
Je teda

TC = 2y, TA = 2x, С'Л = CC' = 3j;. (3)

Z pravoúhlých troj-
uholníkov ACT, ACT
dostaneme pomocou
Pythagorové] vety

(2x)2 + (2y)2 = 1,
(2x)2 + j>2 = (З3;)2

/1

/

- s'

číže

4x2 + 4y2 = 1, iВ
2y2.

Z oboch posledných
rovnic dostaneme 6x2 = 1,12j;2

x2
Obr. 31.

l,t. j.
11

У =
1/12 ‘

6
1,-

== [/3 . Pomocou tohto vý-
sledku a vztahu (1) dostaneme

Pretože c = 6y, je c =

a2 = c2 — 62 _ 3 — 1=2,

a = У2.

Trojuholník má teda tieto dížky stráň:
a = ]/2, 6 = 1, c — J/3.

t.).

(4)
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Dokážeme naviac: Ak sú dížky stráň (pravoúhlého)
trojuholníka dané rovnosťami (4), má trojuholník vlast-
nosť vyslovenú v texte úlohy.

Skúška. O týchto číslach platí vztah (1), takže troj-
uholník so stranami uvedených dížok (podlá obrátenej
Pythagorovej vety) je pravoúhlý. Jeho ťažnice AA', CC
majú dížky |použijeme pravoúhlý trojuholník AA'C
a vztah CC = ~AB) :

iXtf + ъ\ Ъу = CC = ~ Уз.(.AAJ = (3jc)2
Po dosadení

11 + i-l *2 =
2 + 1 “ 2 ’ x9x2 =

6 '
Tým

1
X = 77=

V«'
У =

Dokážeme, že je CC ±AA', t. j. že pre trojuholník
ACT platí Pythagorova veta, t. j. že TA2 + TC2 = 1:

1 . . 1 , _ 4 . 2
6 + 4'36 * 3 6 + 6(2x)2 + (2:yf = 4 .

= 1.

Tým je dokaž převedený.
Pekne túto úlohu vyriešil Michal Maruščák,
1. b tr. SVŠ Stropkov

3. V soustavě pravoúhlých souřadnic x, у znázorněte
množinu všech bodů [x, у], jejichž souřadnice splňují
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rovnici у — \x — 3\ a dále množinu všech bodů [x, y],
jejichž souřadnice splňují rovnici И + Ы — 6. Užitím
grafického znázornění a pak výpočtem řešte soustavu
rovnic

(1)У = \x — 3|,

\x\ + Ы = 6.
Řešení. I. Nejprve vyšetříme graf funkce (1), o níž

zřejmě platí у ^ 0.

(2)

[1]. Je-li x — 3 ^ 0, je |:r — 3| = x — 3; rovnice (1)
pak zní

у = x — 3 (pro x ^ 3).

Grafem (obr. 32) je polopřímka dM opačná к polo-
přímce AB, určené počátkem A = [3, 0] a bodem
В = [Oj -3].
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[2]. Je-li x — 3 ^ O, je \x — 3| = —л: + 3, rovnice
(1) pak zní

y = — x + 3 (pro x < 3).

Grafem je polopřímka AC určená počátkem A a bodem
c = [0, 3].

Graf funkce (1) se skládá z polopřímek AM, АС.
II. Protože platí |я| = | — x\, \y\ — \—y\, pak je-li

bod [я, y] bodem grafu rovnice (2), jsou i body [л:, —у],
[—x, у], [—л:, —у] body grafu této rovnice, tj. graf je
souměrný podle obou os souřadnic. Stačí se tedy omezit
na vyšetření grafu v I. kvadrantu. Pro x ^ 0, у 0
rovnice (2) zní x + у — 6 neboli

у = — x + 6 (pro x (5)о, у ž 0).

Grafem je úsečka DE s krajními body D = [0, 6], E =
= [6, 0]. Grafem rovnice (2) je pak čtverec DEFG se
středem O.

III. Z obou grafů je patrno, že hledáme souřadnice
těchto dvou průsečíků:

a) polopřímky AM a úsečky DE (označíme jej F);
b) polopřímky АС a úsečky DG (označíme jej X).
Výpočet provedeme z daných dvou rovnic (1), (2).
Z rovnice (1) pak plyne

(3)\y\ = \X - 3|;

dosadíme-li z (3) do (2), dostaneme

(4)1*1 + I* — 3| = 6.
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Při řešení rovnice (4) rozlišíme tři případy:
1. я ^ 0; pak je \x\ — — x} \x — 3\ = 3 — x. Rov-

nice (4) pak zní
3 — 2x = 6,

odtud plyne x — — ~

2. 0 x

nice (4) pak zní

9

2 ’ y 2 '

3; pak je |x| = v, \x — 3\ — 3 — x. Rov-

x -\- 3 — x = 6
a je neřešitelná.

3. x 3; pak je |я| = \x — 3| = x — 3. Rovnice
(4) pak zní

2x — 3 = 6;

odtud plyne jc = }

Souřadnice obou bodů X =

3
У = 2 '

9 3

2 5 2
vyhovují rovnicím (1), (2); tím jsou body X, Y určeny
výpočtem.

4. Kvádr ABCDA'B'C'D' o rozměrech AB = a, BC =
= b,AA’ = c je zkosen dvěma rovinnými řezy. Na hraně
BB' jsou sestrojeny body M, N tak, že SM = MiV =

- NB' =

a

Načrtněte ve volném rovnoběžném promítání obraz
výsledného tělesa a vypočtěte, jakou částí objemu daného
kvádru je objem tohoto tělesa.

Řešení. Z obrazu 33 ve volném rovnoběžném pro-
mítání, kde QMST je obdélník shodný s obdélníkem

3 9
, Y =2 5 2

1

j c. Zkosení je provedeno rovinami C'D'M
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ABCD a leží v rovině rovnoběžné s rovinou ABC, je vidět,

jo rozměrech a, 6, у cj ježe kvádr QMSTA'B'C'D'
rovinou QMCD' rozpůlen; objem této poloviny je
Vi = ^ ab . % c = abc. Objem kvádru ABCDQMST2 3 3

jo rozměrech a, b, у cj je V2 = у ябс. Objem větší
části tělesa zkoseného rovinou CD'M je tedy roven

V3 = V1+V2=j абс.
Objem tělesa po dal-

ším zkosení rovinou
A'D'N dostaneme tak,
že od čísla V3 odeč-
teme objem V4 trojbo-
kého jehlanu s podsta-
vou RCP (kde <£ P=
= 90°) a s tělesovou
výškou C'D' — a. Při-
tom je PS
=

у c, takže úsečka RP
je střední příčka troj-
úhelníku MSC a tedy

platí RP = ~ b; obsah
x trojúhelníku RCP tedy je

o' CЛУ
' /I/

/
/1/ /

/ / IA'fc~ ГT \S'
/ P
l>

7?I /

LWя- ^3 Sc
/ //

/PC' =
/

/ /
1

MDX- c
s

bу

ВА а

Obr. 33.

1 1 , 1
2 ' 2 b ' 3 С 12

11

у РР . PC' =

Objem V4 = у x . С7У neboli

6c.jc =
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1 1 1
bc.a = ^z abc.3 Iz 30

Objem V výsledného tělesa pak je

у abc — ^ abc = ^ (24 — 1) abc =V = F3 - U4 =

23
= -=-=■ aéc.

36
23 23

Je tedy V = ^abc; protože ^ = 0,64, je to asi 64%30 36

objemu původního kvádru.

8. ÚLOHY I. KOLA KATEGORIE D

1. Najděte všechna přirozená čísla и, pro která je
číslo 10” + 8 dělitelné číslem 72.

Řešení. Protože je číslo 72 = 8.9, kde 8, 9 jsou ne-
soudělná čísla, musíme najít všechna přirozená čísla w,
pro něž je 10” + 8 dělitelné devíti a osmi. Číslo 10” + 8
má ciferný součet 1 + 8 = 9, takže je dělitelné devíti.

Dále je 10” = (2.5)” = 2”. 5”. Je tedy 10” dělitelné
osmi tehdy, je-li 2” dělitelné osmi neboli číslem 23; to
nastane právě pro n ^ 3. Pak je 10” + 8 součtem dvou
čísel dělitelných osmi a je tudíž dělitelné osmi.

Závěr. Dané číslo je dělitelné osmi pro všechna při-
rozená čísla n ^ 3 a pro žádná jiná.

2. Je dán čtverec ABCD o straně délky 1. Uvažujme
dva kruhy o poloměrech délky 1 a o středech A, C.
Nazveme M obrazec, který se skládá z bodů společných
oběma kruhům, а V obrazec, složený z těch bodů,
které náležejí alespoň jednomu z obou kruhů.
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Vypočtěte v procentech, jakou částí obsahu obrazce V
je obsah obrazce M.

Řešení (viz obr. 34). Označme P obsah shodných
kruhů K13 K2 o středech A, C a poloměrech 1; je

Dále označme X obsah
úseče kruhu Кг, která
má středový úhel 90°;
příslušný čtvrtkruh leží
v pravém úhlu <^BAD.
Tu X je rozdílem
obsahu —г- 7i zmíněného

4
čtvrtkruhu a obsahu
pravoúhlého trojúhel-
niku BDA , který se rov-

ná -y (je to polovina ob-
sáhu čtverce ABCD,
který má obsah 1);
proto je

1 1 1
( -

4*- 2 =x =

Avšak M = 2X, tj.

1
(1)у ("-2)-M =

Dále obrazec V je přímkou BD rozdělen ve dvě shodné
úseče, z nichž každá má obsah Y roven obsahu P kruhu
Kx zmenšenému o obsah X dříve uvažované úseče; je
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1 1
71 - — (тс - 2) = J (Зтс + 2). Pro-tedy У — Р — X =

tože je V = 2У, dostáváme

1

2(3* +2)- (2)V =

Hledaný počet procent * je
M

x = íoo.
V '

Po dosazení z (1), (2) máme
- 2

x — 100 . ~ (3)Зтс -f- 2

Vypočteme přibližnou hodnotu čísla x3 a to tak, že po-
22

ložíme тс “ j po dosazení do vztahu (3) dostaneme

22
== - 2

22 - 147
x = 100 . 100.

66 + 14223.t̂+ 2
8

= 100 .

- 10.
80

Obsah obrazce M je asi 10 % obsahu obrazce V.

3. Je daný trojuholník ABC.
Zostrojte body X, Y tak, aby bod X ležal na straně

CA a bod У na straně CB a aby platilo: ХУЦАВ, AX +
A-BY = ХУ.
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Riešenie (obr. 35). Rozbor. Predpokladajme, že sme
našli priamku XY. Nanesme na polpriamku XY úsečku
XA. Dostaneme úsečku XZ a platí XZ = XA. L'ahko
zistíme, že vzhladom na vztah AX + BY = XY je
YZ = YB. Sú teda XAZ, YBZ rovnoramenné trojuhol-
niky a v každom z nich sú oba uhly pri základni zhodné,

<iXAZ = <£XZA, 4YBZ = <$YZB.

Pretože je XY/IAB, sú
striedavé uhly pri tých-
to rovnoběžkách zhod-
né. Platí teda:

<lXZA = <£ZAB,
YYZB = <£ZBA. (2)
Porovnáním vzťahov
(1), (2) dostaneme
^XAZ = <$ZAB,
YYBZ = <)ZBA. (3)

Polpriamky AZ3 BZ sú
teda postupné osami
uhlov <£CAB, <£CBA
trojuholníka ABC.

Stadia! konštrukcia (obr. 35): Zostrojme postupné osi
AA'j BB' uhlov <£A, <$:B trojuholníka ABC a ich spo-
ločný bod označme Z (poznámka: jedná^sa zrejme
o střed kružnice vpísanej trojuholníku ABC). Ďalej veďme
bodom Z priamku рЦАВ a označme X, Y postupné jej
priesečníky s priamkami CA, CB. Potom je XY hladaná
priamka.

Skúška. Platia vztahy (3) a podlá konštrukcie je bod
Z stredom kružnice vpísanej trojuholníku ABC, takže

t. j.
(1)

c

~~~r

A В

Obr. 35.
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leží vo vnútri tohto trojuholníka. Preto body X, Y padnú
postupné do vnútra úsečiek CA, CB, pričom podlá
konštrukcie je ХУЦАВ, a preto platia vztahy (2). Ale zo
vzťahov (2), (3) vyplývajú vztahy (1), t. j. trojuholníky
XAZ, YBZ sú rovnoramenné a preto je XA — XZ, YB —
= YZ a tým AX + BY = XY, čím je dokaž převedený.

Z prevedenej konštrukcie vyplývá, že úloha má právě
jedno riešenie.

4. Rozhodnite, ktorý zo zlomkov
5 555 555 553 6 666 666 664
5 555 555 557 5 6 666 666 669

• •• V V ,

je vacsi.

Riešenie. Označme X, Y dané zlomky a kvóli struč-
nosti položme

5 555 555 557 = *, 6 666 666 669 = y.

Potom platí
У - 5x — 4

, YX =

x У

Utvořme rozdiel X — Y. Platí

x — 4 у — 5X - Y =

x У

Po úpravách právej strany postupné dostaneme
5x — 4уу (x — 4) — x(y — 5)X — Y = • (1)

xy xy

Vypočítajme čísla 5x, 4y; platí
5x = 27 777 777 785,
4у = 26 666 666 676.
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Zrejme je 5x — 4y kladné číslo. Pretože aj čísla x, у
sú kladné, je zlomok (1) kladný a preto je rozdiel X — Y
tiež kladný. Teda je X >Y.

Odpoved. Prvý z daných zlomkov je váčší než druhý.

5. Klempířská pájka je slitina cínu a olova. Jeden
druh pájky obsahuje 25 % cínu a druhý druh 60 %.
Smíšením obou druhů pájek a přidáním 2 kg čistého
olova máme vyrobit 10 kg pájky obsahující 30 % cínu.

Kolik kilogramů každého druhu pájky musíme přitom
užít?

Řešení. Označme x počet kg pájky prvního druhu,
takže pájky druhého druhu bylo vzato (10 — 2 — x) kg
neboli (8 — x) kg. Porovnejme nyní váhy cínu v obou
použitých pájkách a ve výsledné slitině;

25 60 10.30
x' Too (8 ~ ' loč

Upravme obě strany této rovnice; dostaneme
25x + 60 (8 — x)

_

100 '

100
neboli

480 - 35x
- 3.

100

Po znásobení obou stran číslem 100 a po dalších úpravách
postupně dostaneme

480 - 35* - 300,
180 = 35x,
36

— x.
7
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1
Pájky prvního druhu bylo vzato 5 -=■ kg, pájky druhého

6 ■
druhu 2 у kg.

Zkouška. Obě užité pájky se 2 kg čistého olova skutečně
vážily 10 kg. Váha cínu v užitých pájkách v kg byla:

36 25 20 60
= 6.25

7 ' 100 + 7 ' 100 700

6.25

(6 + 4.2) =

6.25 300
. 14 3;700 100100

v , 3 30
>e vsak 15 = Toó
skutečně 30 % cínu.

6. Rovnoběžník ABCD s ostrým úhlem při vrcholu A
má strany AB = 21 cm, AD =13 cm a jeho výška
DE _EAB má délku 12 cm. Označme F patu výšky
DF + BC.

Výpočtem dokažte, že body E, F padnou po řadě
dovnitř stran AB, BC, a dále vypočtěte délky obou
úseček BD a EF.

Řešení (viz obr. 36). Délky úseček uvedeme v cm.
Označme DE výšku v trojúhelníku ABD a DF výšku
v trojúhelníku BCD. Nejprve dokážeme, že body E, F
padnou po řadě dovnitř úseček AB, BC, přičemž též
určíme délku BD; potom vypočteme délky BF, DF.

a) Úhel <£DAB je podle textu úlohy ostrý; proto bod
E padne dovnitř polopřímky AB. Vypočteme pomocí
Pythagorovy věty délku AE z pravoúhlého trojúhelníku
ADE (kde +£ = 90°): Je

AE2 = AD2 - DE2 = 132 - 122 =

= (13 - 12) (13 + 12) = 25,

, takže výsledná slitina obsahovala
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a tedy <5* ■*' Л ЛЛ*"*'
'■ ъыг * - ' -i>- •*•■

= 5, BE = AB-AE = 16. (1)R

Je tedy AE < a bod F padne dovnitř úsečky AB.
Nyní z pravoúhlého trojúhelníku BDE (kde <£F = 90°)

vypočteme přeponu BD; podle Pythagorovy věty platí:
122 + 162 = 42 (32 + 42) -FD2 = Z)F2 + BE2 =

- 42.52 = 202,
a tedy

BD = 20. (2)
D

Obr. 36.

b) Výška DF trojúhelníku BCD je rovna výšce v
trojúhelníku DAB, vedené bodem В (oba trojúhelníky
jsou souměrně sdružené podle středu S rovnoběžníku
ABCD, a tedy shodné). Obsah rovnoběžníku ABCD vy-
jádříme dvojím způsobem:

AB.DE = AD. v, tj. 21.12 = 13©,
a tedy

21 . 12 252
(3)DF — v =

13 '13
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Je ještě třeba dokázat, že bod F padne mezi body 5,
C. Z trojúhelníků ADE, BDE vypočteme pro úhly a =
= -&DAE) p = *$.DBE

j = °>75-
1212

tg a - у = 2,5, tg /3 = —

V tabulkách najdeme
a > 66°, p > 36°.

Je tedy a + p > 102° a dále
= 180° - (a + /3) < 180° - 102° - 78°.

To znamená, že trojúhelník AABD i ACDB s ním shodný
je ostroúhlý. Proto pata každé výšky trojúhelníku CDB
(tj. i bod F) leží uvnitř protější strany.

c) Zbývá vypočítat délku EF. Označme G patu kol-
mice spuštěné z bodu F na přímku AB. Vznikne právo-
úhlý trojúhelník BFG, v němž je AFBG = a. Označme
BF = x; pak je

FG — x sin a, EG = EB + x cos a = 16 + x cos a.

Podle Pythagorovy věty platí

EF2 = FG2 + EG2 — x2 sin2 a + 162 + 32* cos a +
+ x2 cos2 a,

EF2 = x2 (sin2 a + cos2 a) + 32* cos a + 162.

Z trojúhelníku ADE dostaneme

12 5
sin a = —, cos a = —, sin2 a -f cos2 a = 1.

(4)

13 13
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Z (4) plyne po dosazení i

160
(5)EF2 = r2 + x + 162.13

Zbývá ještě vypočítat x z trojúhelníku BDF; podle (3) je
2522 42

*2 == BD2 _ Di72 = 202 - (52.132 — 632) =132 132
42 . 16242

W (65 + 63) (65 - 63) = 132 5
a dále

64
X = J3■

Dosadíme-li za x do (5), vyjde

ef* = W+W-m+162 =
162 162
13, (16 + 40 + 169) = jjj . 152,

a dále
16 . 15 240

EF =

13 - 18’5-13

9. ÚLOHY II. KOLA KATEGORIE D

1. Jsou dány dvě různé rovnoběžky p, q o vzdálenosti
d a přímka m к nim kolmá. Dále jsou dány dvě úsečky
délek a, b.

Na přímkách p3 q3 m sestrojte po řadě body X3 Y3 Z
takové, aby všechny tři ležely na téže přímce á aby platilo:

XY = a3 YZ = b.
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Udejte podmínku řešitelnosti úlohy jako vztah mezi
čísly a3 b3 d.

Řešení (obr. 37). Rozbor. Označme P, Q průsečíky
přímky m po řadě s přímkami p3 q. Je-li XY přímka,
která splňuje požadavky úlohy, veďme bodem P přímku
гЦХУ a označme M její průsečík s přímkou q. Rovno-
běžka s p bodem Z protne r v bodě N. Platí

PM = a3 YZ= MN = b.

Bod M tedy leží na kružnici k = (P, a); bod Z leží na
rovnoběžce vedené bodem N к přímce p.

Konstrukce. Opišme kružnici k = (P, a) a označme M
jeden společný bod kružnice k a přímky q. Na polo-
přímku opačnou к polopřímce MP naneseme úsečku
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délky b, čímž dostaneme bod N; platí MN = b. Bodem
N veďme rovnoběžku s přímkou p a označme Z její
průsečík s přímkou m. Bodem Z veďme rovnoběžku
к přímce PM a označme X, F její průsečíky po řadě
s přímkami p, q. Přímka XY vyhovuje požadavkům
úlohy, jak snadno dokážeme. V obrázku 37 jsme bod N
sestrojili na prodloužení úsečky PM za bod M\ potom
bod Z leží na prodloužení úsečky XY za bod F. Naproti
tomu bod N' leží na polopřímce MP a vede к druhému
řešení X'Y'.

Diskuse. Aby existoval bod M, musí být a ^ d (pro
a < d není řešení). Pro a — d zřejmě je X = P, F = Q
a bod Z leží na prodloužení úsečky PQ za bod Q, kdežto
bod Z' leží na polopřímce QP; v tomto případě má úloha
dvě řešení. Pro a > d protne kružnice k přímku q v růz-
ných bodech M, M0 a každý z nich poskytne dvě řešení,
takže jsou 4 řešení; dvě a dvě jsou navzájem souměrně
sdružená podle přímky m, stejně jako oba body M, M0.

2. V rovnoramenném lichoběžníku ABCD má větš
základna AB délku 4 cm; úhlopříčky lichoběžníku jsou
navzájem kolmé a dělí se v poměru 2:1.

Vypočtěte poloměr kružnice lichoběžníku opsané.
Řešení. Označme P průsečík úhlopříček a M3 N po

řadě středy úseček AB3 CD (viz obr. 38). Jsou-li A', B'
středy úseček PA, PB, potom podle textu úlohy je PA' =
— PC, PB' = PĎ; ve středové souměrnosti o středu P
si příslušejí úsečky A'B' a CD a je tedy 4 = AB = 2 .

. А'В' (А'В'ЦАВ střední příčka trojúhelníku PAB), 2 =
= A' B' — CD (středová souměrnost). Je tedy CD — 2.
Trojúhelníky АРМ, DPN jsou rovnoramenné a právo-
úhlé; je tedy PM = AM = 2,PN = DN = la MN = 3.

Označme q osu ramena AD lichoběžníku. Průsečík O
přímek MN, q je střed hledané kružnice k = (O, r)
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lichoběžníku opsané, tj. platí OA — OD. Sestrojíme-li
v obrázku bod O, shledáme, že padne dovnitř úsečky
MN. Správnost tohoto závěru ověříme výpočtem takto:
Označme E patu kolmice DE к přímce AB; tu je AE =
— AM — ME — 2 — 1 = 1; v pravoúhlém trojúhelníku
ADE o přeponě AD podle Pythagorovy věty platí

AD2= AE2 + DE2 = l2 + 32 = 10, AD = ]/Í0.

Obr. 38.

Proto je A Q — yj/lO, kde Q je střed úsečky AD. Přímky
AB, AD, q omezují pravoúhlý trojúhelník AFQ, který
má s trojúhelníkem ADE společný úhel a = <£DAE. Pro
cos a tohoto úhlu z obou trojúhelníků dostaneme

AE AQ
C0SCÍ=AĎ = AF;

odtud dostaneme

AE.AF = AD.AQ
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neboli

AF = AD. = l/io lyio = 5.

Protože = 4, padne bod F do poloroviny MNB,
kdežto bod 2 do poloroviny MNA. Leží proto bod O
úsečky QF spolu s bodem Q uvnitř poloroviny ABD,
a tedy uvnitř úsečky MN.

Označme AÍO = x, takže ON = MN — MO = 3 — x.
Z obou pravoúhlých trojúhelníků OAM, ODN (<£M =
= <£iV = 90°) o přeponách ОЛ, OD délky r pomocí
Pythagorovy věty dostaneme:

AM2 + ОМ2 = OA2i OD2 = OiV2 + DiV2 (1)
neboli

(2)4 + x2 = r2, r2 = (3 - x)2 + 1.

Porovnejme oba tyto výsledky; dostaneme rovnici
4 + x2 = (3 — x)2 + 1

neboli
x = 1

(bod O je tedy střed úsečky A'B'). Podle (2) je r2 — 5, tj.
r = 1/5 = 2,24.

Závěr. Vzhledem к (1) je r = OA — OD = ]/5 .

Z úspěšných řešitelů úlohy uvádíme:
Erich Wint, 9. tr. ZDŠ, Banská Bystrica
Milan Šaling, 9. tr. ZDŠ, Podbrezová

3. Máme dva kusy klempířské pájky (slitina olova
a cínu) o váhách 5 kg, 7 kg. Obsah cínu v prvním
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1 1
kusu je — jeho váhy, ve druhém kusu — jeho váhy. Od
každého z obou kusů oddělíme část stejné váhy a při-
pojíme ji ke zbytku druhého kusu; po slití zbytku a nově
připojené části dostaneme opět dva kusy o váze 5 kg
a o váze 7 у kg.

Vypočtěte, jak těžké musí být oddělené části, aby nově
slité kusy pájky obsahovaly stejné procento cínu. Pro-
veďte zkoušku.

Řešení. V prvním kusu je 5 kg. у = ~ kg cínu; ve
1 1 5

druhém pak 7 — kg . — = kg cínu. V obou kusech je2 3 2
5 5 15
-£■ kg + — kg = — kg cínu. Bude-li nakonec procento cínu
v obou kusech stejné, bude poměr vah cínu v prvním
a druhém kusu týž jako poměr celkových vah těchto
kusů, tj. 5 : \-. Celkové množství ^ kg cínu2 3 4

2
rozdělíme v poměru у, tedy v prvním kusu bude

|y?kg. yj 2 = j kg cínu, ve druhém |^kg. ~-j 3
-r kg cínu.4

ikg
3

V prvním kusu přibylo о у kg
5

hém kusu ubylo о у kg

1

у kg, ve dru-
^ kg cínu (tedy skuteč-

ně stejná váhová množství). Jestliže jsme od každého kusu
oddělili л; kg pájky, pak v prvním kusu bylo v tomto

íkg
1
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X X
množství ~r kg cínu, ve druhém kusu pak — kg cínu.4 3

Platí, že rozdíl ~ — ^ je roven — neboli ~ tj.
x — Ъ.

Z každého kusu jsme tedy oddělili 3 kg pájky a při-
pojili vždy ke druhému kusu.

1 3
Zkouška. Z prvého kusu jsme odebrali 3 kg. — = — kg

cínu, ze druhého 3 kg . — 1 kg cínu. V prvním kusu3 1 1
zbylo 5 kg — 3 kg = 2 kg pájky avní2kg.-r = -^-kg cínu;
po přidání 3 kg pájky 2. druhu к prvnímu kusu bylo v něm
tedy kg + 1 kg = 1 4 kg cínu. Ve druhém kusu zbylo

1 1 9 13
7 ту kg — 3 kg = 4 — kg pájky a v ní bylo kg. ^ kg
cínu; po přidání 3 kg pájky prvního druhu ke druhému

3 3 9
kusu v něm tedy bylo ^ kg + - kg — — kg cínu. Procenta2 4 4
cínu v jednotlivých kusech nakonec jsou

(M- 100.3
100. = 30,2.5

9 1 \ 100.9.2

4 ‘‘ 2 ~ 4.15
100. 30,

tedy stejná. Tím je zkouška provedena.
Řešil Jan Kastl, 9.b roč., 1. ZDŠ, Přeštice

4. Jsou dány kružnice k: = (Sx, rx = 12 cm), k2 =
= (S2, r2 — 5 cm), které se protínají v bodech A, В tak,
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že trojúhelník SXS2A má při vrcholu A pravý úhel.
Kružnice k3 = (S33 x) leží uvnitř každé z kružnic k13 k2
a má s každou z nich vnitřní dotyk; přitom střed S3
leží na přímce S1S2.

Narýsujte obrázek a vypočtěte poloměr x a vzdálenost
AS3.

Řešení. Délky jsou v cm. Konstrukce je patrna
z obrázku 39; v něm jsou M, N body kružnic k13 k2

A

•. V/
/

/

aMs \ /
/ ii

S2 M N$3

кз
k2

4

Obr. 39.

ležící uvnitř úsečky SXS23 dále P3 Q paty kolmic vedených
bodem S3 po řadě к přímkám AS13 AS2 a konečně a
velikost úhlů :S2SXA3 <;cS2S3Q. Trojúhelníky

SXS2A; SxS3P; S3S2Q
jsou pravoúhlé a podobné. Délku úsečky SXS2 najdeme
pomocí Pythagorovy věty; platí

SXS2 = ]jr\ + r\ = 1/122 + 52 = 1/169 = 13.

(1)
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Pro body M, N, Sls .S2, S3 a délku л; platí vztahy:
S2M = - Tl = 13 - 12 .= 1,
SjN = 5х52 - r2 = 13 - 5 = 8,

MN = 2x = SXS2 - S2M - =13-8-1-4;
x — 2.tedy

Proto je
ЗД = + я = 10, é>3»S2 — S2M -j- x — 3. (2)

Úsečka AS3 je přepona v pravoúhlém trojúhelníku AS3P
a platí

AS§ = PSi + PA2.
Musíme tedy vypočítat PS3} PA. Vypočteme je z troj-
úhelníků SjSgP, S3S2Q [viz (1)], kde známe přepony (2).
Platí:

(3)PtSg tSjtSg Slil a, Q ^3^2 C()

pro sin a, cos a plyne z trojúhelníku SXS2A:
AS2

_ 5
S,S2 ~ 13 5

Po dosazení ze (2), (4) do (3) dostaneme

12
(4)sin a = cos a = —.

50 36
— уз j *2^3 — уз j

takže

3 = ]/362 + 502 1

,y = J3 l/l296 + 2500 =AS

1 1
= ^ 1/3796 = ^.61,61 =4,74.

Odpověd. Poloměr x = 2 cm a vzdálenostně^ = 4,74 cm.
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V. Zpráva o Šesté mezinárodní matematické
olympiádě

1. Šestá mezinárodní matematická olympiáda (VI.
MMO) se konala v Sovětském svazu ve dnech 30. června
až 10. července 1964. Uspořádalo ji ministerstvo osvěty
RSFSR; přípravou, řízením a celou organizací byl po-
věřen zvláštní organizační komitét (OK), jehož před-
šedou byl prof. A. /. MarkuševiČ, vicepresident Pedago-
gické akademie věd RSFSR, sekretářem komitétu byl
Ivan Semjonovič Petrjakov, pracovník v oboru metodi-
ky matematiky v ministerstvu osvěty RSFSR. Vlastní
soutěž řídila mezinárodní komise (MK), jejímiž členy
byli vedoucí jednotlivých zúčastněných delegací. Před-
šedou MK byl rovněž profesor A. I. MarkuševiČ; v této
funkci jej popřípadě zastupoval DrSc. Alexandr A. Kiri-
lov, profesor Lomonosovovy státní university v Moskvě.
Delegace byly ubytovány v budově Lomonosovovy
státní university na Leninských horách, v níž se konaly
i všechny porady MK, vlastní soutěž, rozdělení cen,
slavnostní oběd apod.

Soutěže se zúčastnilo po osmi žácích z devíti zemí,
tedy celkem 72 žáků; každá z delegací měla svého ve-
doucího a pedagogického průvodce. Byli to:

Bulharsko (B): Alippi Mateev, profesor university
v Sofii, a Stoian Budurov, inspektor ministerstva osvěty
B. L. R., Sofia.

Československo (Č): Rudolf Zelinka a František
Zítek CSc., oba vědečtí pracovníci Matematického
ústavu ČSAV, Praha.
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NDR (D): W. Engel, profesor university, Rostock,
a doc. Herbert Titze, vědecký pracovník Pedagogického
ústavu v Berlíně.

Maďarsko (H): prof. Hódi Endre, vědecký pracovník
Ústavu optiky, Budapešť, a Reiman István.

Mongolsko (M): B. Altangerel, pracovník minister-
štva osvěty, Ulán Bátor, a D. Gurisav, pracovník peda-
gogického institutu, Ulán Bátor.

Polsko (P): Mieczyslav Czyžykowski, profesor póly-
techniky, Varšava, a Andrzej Mqkowski, odborný asistent
university, Varšava.

Rumunsko (R): Tiberiu Roman, docent polytechniky
a generální sekretář Rumunské matematické společnosti,
Bukurešť, a Paul Alger, učitel matematiky, Bukurešť.

SSSR (S): Jelena Alexandrovna Morozovova, docentka
Lomonosovovy státní university v Moskvě, a L. B. Fuks3
asistent Lomonosovovy státní university v Moskvě.

Jugoslávie (Y): profesorka Milica C. Dajevičová
z Bělehradu a profesorka M. Stojanovičová.

2. Organizační komitét sestavil návrh dvou šestic
soutěžních úloh z textů, které zaslaly zahraniční instituce;
návrhy obsahovaly stručná řešení. Po zevrubných po-
radách, hodnoceních a po určitých úpravách byla přijata
první šestice. Zároveň MK rozhodla, kolik bodů bude
maximálně přiděleno za řešení jednotlivých úloh; rovněž
byly stanoveny některé zásady pro klasifikaci (maximál-
ního počtu 42 bodů dosáhl jeden sovětský žák). Dále bylo
rozhodnuto, že o nejasnostech a případných sporných
otázkách rozhodne MK. Texty úloh s řešeními jsou
uvedeny v příloze č. 2; zároveň je tam udán maximální
počet bodů, které mohl žák za řešení úlohy získat, jakož
i země, která úlohu navrhla.
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Žáci se к soutěži sjeli do 2. července 1964. Vlastní
soutěž se konala v sobotu 4. 7. a v neděli 5. 7. 1964
v posluchárně č. 02 Lomonosovovy státní university,
vždy v době od 9.30 hod. do 14 hod. Ve dvou následují-
cích dnech pak prováděli vedoucí delegací spolu s peda-
gogickým průvodcem opravy úloh vlastních žáků; úlohy
současně korigovali členové koordinační komise z řad
sovětských vysokoškolských pracovníků. Koordinaci ře-
šení sovětských žáků prováděli členové zahraničních
delegací.

Na závěrečném zasedání MK za předsednictví pro-
fesora A. A. Kirilova bylo rozhodováno hlasováním
o nejasných případech klasifikace. Celé jednání mělo
celkem velmi hladký průběh. Na základě schválené
klasifikace byly přiděleny ceny jednotlivým řešitelům
(viz tab. č. 1 ,,Přehled o celkovém počtu bodů, které získali
jednotliví žáci”, tab. č. 2 „Přehled o počtu udělených cen
jednotlivým delegacím” a přílohu 1 „Jmenný seznam vítězů
VI. AÍAfO”); bylo uděleno 7 prvních, 9 druhých a 19
třetích cen (celkem 35). Bodové rozpětí pro I. cenu bylo
42—37 bodů, pro II. cenu 36—31 bodů a pro III. cenu
30—27 bodů. Z tabulky je patrno, že nejlepší bylo druž-
stvo sovětské a těsně za ním družstvo maďarské. Čs.
družstvo bylo na konci jakéhosi středu, který tvořila
mužstva těchto zemí: R, P, B, D, Č. Přitom Jugoslávie
postavila nové družstvo, ačkoli mohla užít loňského.

V maďarském družstvu bylo 5 loňských účastníků V.
MMO, kdežto v sovětském žádný; v našem a polském
družstvu bylo po jednom z loňských účastníků. Abso-
lutním vítězem se stal David Bernštejn, žák moskevské
střední školy, který jediný získal maximální počet 42
bodů. Dva naši žáci, Tamara Marcisová, 2. tr. SVŠ,
Bratislava, a Pavel Bureši 3. roč. SVVŠ, Brno, získali
druhé ceny. Další dva čs. žáci, Jaroslav Zemáneki 3. roč.
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SVVŠ, Praha 4, a Miloslav Znojil, 3. roč. SVVŠ, Prostějov,
získali třetí ceny; čs. žáci tedy získali 4 ceny z celkového
počtu 35 cen.

Ve středu 8. 7. 1964 se pro účastníky VI. MMO konala
slavnostní večeře, které za přítomnosti A. Černiševa, první-
ho náměstka ministra osvěty RSFSR, předsedal profesor
A. I. Markuševič. Večeře proběhla v radostném a veselém
ovzduší, o něž se postarali především sovětští hostitelé.

Ceny a upomínkové dary byly vítězům odevzdány na
slavnosti, která se konala ve čtvrtek 9. 7. 1964 o 13. hod.
v promočním sále Lomonosovovy university; žáci, kteří
nedostali cenu, obdrželi diplom o účasti na mezinárodní
soutěži. Schůzi zahájil a řídil profesor A. I. Markuševič.
Po něm pronesl slavnostní projev ministr osvěty RSFSR
J. I. Afanasjenko, který jako matematik zhodnotil význam
této vědy pro lidskou společnost a její perspektivy; kon-
statoval výslovně, že sovětští účastníci všesvazové mate-
matické olympiády nekonají přijímací zkoušky na vysoké
školy, protože svým výkonem v soutěži prokázali svou
kvalifikaci. Blahopřál všem účastníkům, že se svým
pracovním úsilím probojovali do této mezinárodní sou-
těže a zdůraznil velký mezinárodně politický význam
tohoto mírového setkání mládeže. Zvláště přitom ocenil
výchovná hlediska, spočívající v tom, že se tu schází
a svá přátelství uzavírá právě dorůstající mladá generace
budoucích vědeckých pracovníků. Za mezinárodní ко-
misi poděkoval sovětským hostitelům profesor W. Engel
z NDR. Nejlepší maďarský žák László Gerencsér, který
v soutěži získal 41 bodů, poděkoval jménem žáků za
udělené ceny a uznání.

V pátek 10. 7. 1964 o 9. hod. moskevského času od-
letěla naše delegace zpět do vlasti.

3. Za svého pobytu v Moskvě zhlédli žáci řadu paměti-
hodností tohoto města a jeho bezprostředního okolí.
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Jmenujme Kreml, Leninské Gorki, Palác pionýrů,
Treťjakovskou galerii, řadu muzeí a výstav, poklady ve
Zbrojním paláci v Kremlu, Lužniky; mimo jiné se
účastnili baletu Labutí jezero v Kremelském divadle.
Vedoucí delegací s pedagogickými průvodci navštívili
Velké akademické divadlo.

Sovětští hostitelé svou pečlivostí připravili dospělým
i žákům vskutku příjemné prostředí. Ještě poslední večer
pobytu v Moskvě zhlédli členové MK bibliofilské sbírky
ručně psaných knih a prvotisků v bytě předsedy MK
profesora A. I. Markuševiče, kde byli mile pohoštěni.

Zvláštní událostí je přijetí členů MK ministrem
osvěty RSFSR Jevgenijem Ivanovičem Afanasjenkem, a to
ve středu 8. 7. 1964 dopoledne. Ministr přednesl delší
referát, ve kterém informoval hosty o současné situaci,
pokud jde o vyučování matematice, dále o experimentech,
které se budou konat ve speciálních třídách. Ministr se
pak v diskusi zvláště rozhovořil o nejbližších úkolech
výchovy a výuky sovětských škol. Na závěr přál školám
socialistických zemí hodně úspěchů. Ministr sledoval
průběh olympiády a činnost MK. Řada novinářů a re-
portérů z rozhlasu a televize navštěvovala nej důležitější
akce, které se konaly v rámci soutěže.

4. Posuzujeme-li úlohy, pak celkem zapadaly do nor-
málu soutěže. Jistou závadu měla úloha č. 2, neboť ne-
rovnost platí pro všechna kladná čísla (tedy i pro jiné
trojice čísel, než jsou jen velikosti stran trojúhelníku).
Rozhodně obtížný byl dodatek к úloze č. 6; úspěšně jej
řešili 4 žáci a jeden z nich jen částečně. Jeden náš žák
se pokoušel o řešení, ale bezvýsledně.

Naše družstvo jen asi z poloviny bylo na výši, což
vzhledem к slabým výsledkům naší celostátní soutěže
nepřekvapuje; výsledek MMO to celkem potvrdil.
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Úlohy č. 1 až 3 většině našich žáků dopadly celkem
dobře, i když se i někteří lepší žáci dopustili triviálních
chyb, hlavně numerického rázu. Je vidět, že našim
žákům chybí jistota, které lze nabýt jen soustavnou prací.
Velmi špatně však dopadla úloha č. 4, jejíž tematika měla
spíše povahu časopiseckých zábavných koutků a byla
zadána jako úloha pro útěchu, která si nevyžaduje žád-
ných předběžných znalostí. Úlohu rozřešili jen 3 naši
žáci. Ještě horší výsledky máme při úloze č. 5, kde ře-
šitelé neuvažovali o ortocentrech trojúhelníků a vůbec
zápasili s pojmem kombinace. Lze říci, že první část
úlohy č. 6, kde se dalo získat 6 bodů, dopadla dobře;
o druhé části, kde se daly získat maximálně 3 body, jsme
se již zmínili; dopadla vesměs špatně. Aby čtenář získal
představu o tom, jak naši žáci řešili jednotlivé úlohy,
připojujeme tabulku č. 3 „Klasifikace řešení jednotlivých
úloh čs. žáků”.

Žáci se před odjezdem na soutěž účastnili týdenní
instruktáže ve Žďáru nad Sázavou. I když to bylo
nouzové opatření, přece jen tu asi žáci získali jakýsi
přehled o tom, jakým způsobem tu či onu úlohu řešit.
Naše dosavadní péče o nejlepší žáky je však zatím ne-
postačující; potřebujeme pomoc stálou a trvalé vedení
a povzbuzování. Bude třeba najít cestu, jakou formou
se to má provádět. 70 bodů, o něž jsme zůstali pozadu
za sovětským družstvem, je příliš veliký rozdíl, který
nelze omluvit náhodou, cizím prostředím apod.
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Tabulka č. 1

Přehled o celkovém počtu hodů, které získali jednotliví žáci na VI. MMO

Č Mв D H R SP Y

čís.

161 16 i 3630 | 28 29 I 35
27 36 31 i 24

24 13 25 21

23 30 24 ; 41

23 36 27 26

26 39

22 12 33 ! 39 29

3 26 30 42 2426

4 726 30 21 30

5 18 |27 31 24 í 30

27 38 176 18 14 3014 20

19 15

18 | 25

39

137 15 2530 28 28 30

32 29 31 i138 32 39 24

Součet
za zemi

269 155194 196 169 209 213198 253

Tabulka č. 2

Přehled o počtu udělených cen jednotlivým delegacím

Země
(číslice udává počet získaných cen)

Cena
číslo

I. S3; H 3; PÍ

Č 2; D lj H 1; P 1;
R2; S 1; Y 1

II.

В 3; Č2; D2;H1;
M1;P3; R 3; S3; Y 1

III.

130



Tabulka č. 3

Klasifikace řešení jednotlivých úloh čs. žáků
(v závorkách je uveden maximální počet bodů za dokonalé řešení úlohy)

Úlohy Získal
celkem bodů
(celkem max.

42 bodů)

Žák
2 3 4 5 61čís.

(7) (6) (6) (7) (9)(7)

2867 41 5 6 0

6 362 7 6 6 47

131 5 2 03 5 0

6 6 304 5 6 70

365 7 6 67 6 4

6 146 0 6 0 20

197 67 5 10 0

188 64 6 20 0

Součet 1944243 18 2620 45
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PŘÍLOHA 1

Jmenný seznam vítězů VI. MMO

I. cena:

Genadij Archipov S; David Bernštejn S; Jurij Matija-
sevič S; László Gerensér H\ László Lovász H; József
Pelikán H\ Tadeusz Figiel P.

II. cena:

Pavel Bureš Č; Tamara Marcisová Č', Wolfgang
Klamt D; Marian OrlowskiP; István Berkes H\ Alexandru
Vinea R; Octavian Bisca R; Viktor Urumov Y; Valerij
Aleksejev S.
III. cena:

Mižiddorž Cevegmidyn M; Miloslav Znojil Č; Jaroslav
Zemánek Č; Monika Titzová D; Manfred Brandt D\
Zbigniew Slodkowski P; Wojciech Patkaniowski P; Krzysz-
tof Nowinski P; Avram Eskenazi B; Svjetoslav Bilčev B;
Vladimír Zajmov 5; Endré Makai H; Tiberiu Spircu P;
Eleodor Popescu R; Mihai Chercin R; Stanko Verščaj Y;
Alexandr Florensov S; Boris Ivlev S’, Alexandr Vilenkin S.

PŘÍLOHA 2

Súťažné úlohy zo VI. Medzinárodnej matematické)
olympiády

1. a) Určité všetky celé kladné čísla я, pre ktoré je
číslo 2” — 1 dělitelné siedmimi.
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b) Dokážte, že neexistuje žiadne celé kladné číslo щ
pře ktoré je číslo 2n + 1 dělitelné siedmimi. (ČSSR —
7 bodov.)

Riešenie. Každé prirodzené číslo n > 2 možno na-
písať v právě jednom z tvarov:

a) n = 3ky
/?) n — 3& + 1,
у) и = 3k -j- 2,

kde k je vhodné prirodzené číslo.

a) Do daného výrazu dosadíme postupné každú
z týchto troch možností:

a) 2” — 1 = 23k — 1 = 8* — 1; podlá známého
vzorca

8*- 1
číslo je dělitelné siedmimi;

0) 2" — 1 = 23*+! — 1 = 2.8*
- 1 = 8* + 7 K3

7 (8*-1 + 8*—2 + . . . + 1), t. j. dané

1 = 8* + 8* -

kde К je vhodné prirodzené číslo. Aby platilo, že 7 je
delitelom čísla 2n — 1, muselo by platit’ i to, že 7 je
delitelom čísla 8*, čo zrejme nie je možné pre žiadne
prirodzené číslo k.

23*+2 — 1=4.8*— 1 = 8*— 1 +
+ 3.8*. Aby 7 bolo delitelom 2n — 1, muselo by byť
tiež delitelom čísla 3.8*, čo zrejme neplatí pre žiadne pri-
rodzené k.

Dosadíme do daného výrazu ešte n = 1, n = 2; je
21 — 1 = 1, 22 — 1 = 3.

Číslo 2n — 1 je delitelne číslom 7 právě pre tie pri-
rodzené čísla n3 ktoré sú násobkami čísla 3.

y) 2" — 1
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b) Za n do výrazu 2” + 1 dosadíme z možností a),
/3), y). Přitom máme dokázané, že číslo 8k — 1, kde k
je prirodzené číslo, je dělitelné siedmimi.

a) 2" + 1 = 23k + 1 = 8* - 1 + 2 = 1K + 2, kde
К je vhodné prirodzené číslo. Aby číslo 7 dělilo číslo
2n + 1, muselo by deliť i číslo 2, čo nie je možné;

jS) 23k+l + 1 = 2.8k - 2 + 3 = 2 (8* - 1) + 3.
Kedže číslo 7 nie je delitelom čísla 3, nemóže deliť
ani 2n + 1;

y) 23k+2 + 1 - 4.8* - 4 + 5 = 4 (8*
Z toho, že číslo 7 nedelí 5, vyplývá, že nemóže deliť ani
2"+ 1.

l) + 5.

Dosadíme ešte n = 1, w = 2; je 21 + 1 = 3, 22 + 1 = 5.
Kedže iná možnosť neexistuje, dokázali sme, že číslo

2” + 1 pre žiadne prirodzené číslo n nie je dělitelné
číslom 7.

Riešila Tamara Marcisová,
2. tr. SVŠ, Bratislava

2. Ak sú а, Ь, c dížky stráň 1’ubovolného trojuholníka,
potom platí

a2(b + c
^ 3abc,

dokážte. (Maďarsko — 6 bodov.)
Riešenie. Ak sú a, b, c dížky stráň lubovolného troj-

uholníka, je vždy spínená nerovnost’

a) + b2(c + a — b) + c2(a + b — c)

0 (a — b)2 (a b — c) {b — c)2(b -\- c — a)
+ (c — a)2 (a + c — 6), (1)

pretože v trojuholníku musí byť súčet 1’ubovolných dvoch
stráň váčší ako tretia strana (je a + b — c > 0, atd.) a na
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právej straně nerovnosti (1) je teda súčet 3 nezáporných
čísel, z ktorých každé je súčinom kladného a nezáporného
čísla. Rovnost’ nastane zrejme iba v případe a = b = c.
Převedením naznačených úkonov dostáváme na právej
straně (označme ju P):

P = (a2 — 2ab + b2) (a + b — c) + (b2 — 2bc + c2)
(b + c — a) + (c2 —2ас + a2) (a + c — b) =

a2c +
2b2c + bc2 + b2c — 2bc2 +
ас2 + ac2 — 2a 2c + a3 +
bc2 + 2abc — a2 b —

= a3 - 2a26 + a£2 + я26 - 2a62 + b3
+ 2a6c — 62c + 63
+ c2 — a&2 + 2a6c
+ c2 — 2ac2 + a2c
— 2 (a3 + b2 + c3) + 6abc — 2 (a2b + ab2 + a2c +
+ ac2 + b2c + bc2).

Pre čísla a3 b, c, ktoré sú dížkami stráň trojuholníka, platí
teda vždy nerovnost’

0 ^ a3 + b2 + c2 + 3abc — a2b — ab2 — a2c —

— ac2 — b2c — bc2, (2)

pretože je ekvivalentná s (1). Po úpravě dostaneme

—a2 + a2b + a2 c — b2 + ab2 + b2c — c2 + ac2 +
+ bc2 ^ 3abc

a teda

a2(b + c — a) + b2(a + c — b) + c2(a + b — c) ^
sS ЪаЬс.

Nerovnost’ (3) je zhodná s danou nerovnosťou. Platí pre
všetky a, b, c, ktoré sú dížkami stráň Iubovoíného troj-

(3)
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uholníka, pretože je ekvivalentná s nerovnostem (1),
ktorá je pre všetky takéto a, b, c zrejme splněná.

Riešenie wTamarу Marcisovej,
2. tr. SVŠ, Bratislava

Jiné řešení. Danou nerovnost upravíme postupně
takto:

a2(b -f- c — á) — abc + b2{c + a — b) —
— abc + c2 (a — b — c) — abc ^ 0
a (ab + ac — a2 — bc) + b (bc + ba — b2 — ac) +
+ с (ac + bc — c2 — ab) ^ 0
a (a — b) (a — c) -f b (b — a) (b — c) +
+ c (c — a) {c — 6) ^ 0
Rozeznáváme tři možnosti:

Případ [1]. Nechť je a — b — c. Pak z (1) plyne
0^0, což je správná nerovnost.

(1)

Případ [2]. Nechť je např. a — b, с ф a. Pak (1)
lze psát

c(c — a)2 ^ 0,
což je správná nerovnost, neboť na pravé straně je součin
dvou nezáporných čísel. Změnou označení dospějeme
к podobným závěrům v případě, kdy dvě z daných čísel
jsou si rovna, třetí je od nich různé.

Případ [3]. Vhodným označením při vesměs různých
číslech lze dosáhnout, že platí

a > b > c.

Pak je na levé straně (1) číslo c (c — a) (c — b) > 0, neboť
je součinem čísla kladného a dvou čísel záporných. Jest-

(2)
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liže dokážeme, že je x = a (a — b) (a — c) + b (b — a)
(b — c) 0, bude platit i vztah (1). Avšak snadno se
usoudí, že vzhledem ke (2) platí

x — {a — b) [a {a — c) — b {b — c)] >
> (a — b) b [a — c — {b — c)] = b {a — b)2 > 0,

neboť v posledním součinu jsou oba činitelé kladná čísla.
Ve všech třech případech lze postup obrátit a dospět

od výsledné nerovnosti к původní. Tím je řešení pro-
vedeno.

Poznámka. Předložený důkaz dokonce platí pro
všechny trojice kladných čísel a, b, c.

Podle řešení Pavla Bureše, 3. roč. SVVŠ, Brno

3. Do trojúhelníku ABC se stranami o délkách a, b, c
vepíšeme kružnici a sestrojíme к ní tři nové tečny rovno-
běžné se stranami daného trojúhelníku. Každá z těchto
tečen utíná od trojúhelníku ABC po jednom trojúhelníku.

Do každého z těchto tří nových trojúhelníků vepíšeme
kružnici.

Vypočtěte součet obsahů všech čtyř vepsaných kruhů.
(Jugoslávie — 6 bodů.)

Řešení. Označme po řadě q3 q13 q23 é>3 poloměry kružnic
k, k13 k2, kz (viz °br. 40). Máme vypočítat číslo

v = тс (e2 + ef + qI + e|).
Pro výpočet poloměrů použijeme vzorců

(1)

P Px p* Ps
Q = t Q 2 — 3

S2

Přitom P, P13 P2, P3 jsou po řadě obsahy trojúhelníku
ABC a tří trojúhelníků oddělených při vrcholech A, P,

в3 =
5 5
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C; sj 51} s2, s3 jsou jejich poloviční obvody. Vzorce (2)
upravíme takto:

P Л
C;1 — ~~2 - ’

(3)
P2

í?2 — o • $25

Z podobnosti trojúhelníku ABC a každého z tří odděle-
ných trojúhelníků vyplývá

P, _P1 = P1==P
$2 sf s2 ‘ (4)$?

Dosadíme-li z (4) do (3), vyjde
P P P

(5)Í?1 — ~2 ' 51> ^2 — ~2 • 52J Q3 S3-
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Z vlastností tečen snadno zjistíme, že obvod trojúhelníku
ABXCX je ABX + + ВXCX = ABX + ACX + BXT -f
+ Cx U = ЛГ AU = s — b s — c při obvyklém
označení stran trojúhelníku ABC. Je tedy 2sx — s — b +
+ 5 — c = a, tj.

ba c

(6)si — 2 5 ^2 — 2 3 ss — 2̂ '

Dosadíme-li z (6) do (5) a odtud do (1), vyjde:
P2 l2. а2 л Ъг г\71 IT (s + 4+ 4 + 4) “

(4s2 + a2 + 62 + c2) =

V =

tu P2
4s4

tuP2
= (2a2 + 262 + 2c2 + 2a6 + 2ac + 26c) =

ttP2
= 2J41 (д2 + b2 + c2 + ab + bc + ca).

Za P2 lze do tohoto vzorce dosadit ze vzorce Heronova.

Poznámky, a) Ze vzorců (5), (6) vyplývá vztah
P ‘ P

£1 + č?2 + Qz — ji (51 + *2 + S3) = 2J2 (a + b + c) —

-Д.2, p
2s2

b) Poměr součtu obsahů kruhů &13 &23 k3 к obsahu
kruhu & je podle předcházejícího

(gf + qI + ei)
7U02

a2 + b2 + c2 a2 + 62 + c2
P2 ‘ s4 (a2 + b2 + c2) =

(a + b + c)2 ’4s2
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4. Sedemnásť osob si navzájom píše, každá z nich so
všetkými ostatnými. V celej korešpondencii sa objavujú
celkom len tri rožne témy. Každá dvojica osob si spolu
píše iba o jednej z týchto tém.

Dokážte, že existujú aspoň tri osoby, ktoré si navzájom
píšu na tú istú tému. (Polsko

Riešenie. Označme jednu zo 17 osob A. Osoba A
si podlá podmienky úlohy píše so 16 inými osobami
o maximálně 3 témach. Podlá Dirichletovho principu si
musí teda na jednu z týchto tém, označme ju I, písať
aspoň so 6 osobami. Rozoznávajme tu právě 2 možnosti:[1]. Aspoň 2 z týchto 6 osob si píšu na tému I. Tým
je splněné, že existujú aspoň tri osoby, ktoré si na-
vzájom píšu na tú istú tému (I).[2]. Žiadne 2 z týchto 6 osob si nepíšu na tému I.
Potom jedna z nich, nech je to Б, si píše s ostatnými 5
z tejto skupiny na zostávajúce dve témy. Podlá Dirichle-
tovho principu si musí písať na jednu z týchto tém —
označme ju II — aspoň s 3 z týchto 5 osob. Opáť musíme
rozoznávať právě 2 možnosti:

a) Z týchto 3 osob si aspoň dve píšu na tému II,
čím je splněné, že existujú aspoň 3 osoby, ktoré si na-
vzájom píšu na tú istú tému (II).

b) Žiadne 2 z týchto 3 osob si nepíšu na tému II,
teda všetky 3 si píšu na zostávajúcu tému III.

V každom případe si teda aspoň tri osoby navzájom
píšu na tú istú tému. Tým je dokaž převedený.

Riešila Tamara Marcisová,
2. tr. SVŠ, Bratislava

5. V rovině je dáno 5 bodů. Mezi přímkami, které
spojují vždy dva z těchto bodů, neexistují žádné dvě, které
jsou navzájem rovnoběžné nebo kolmé nebo splývající.

6 bodov.)
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Každým z daných bodů vedeme kolmice ke všem
spojnicím zbývajících čtyř bodů.

Určete maximální počet průsečíků, které mohou mít
navzájem tyto kolmice. (Rumunsko — 7 bodů.)

Řešení. Dané body lze spojit |^ j přímkami, z nichž
žádné dvě podle textu úlohy nejsou ani splývající, ani
rovnoběžné, ani kolmé (jsou tedy kosé).

Zvolme jeden z pěti daných bodů; pak 4 zbývající
body mají 6 spojnic a zvoleným bodem к nim prochází
6 kolmic. Žádné dvě z nich nesplynou (jinak by dvě ze
šesti spojnic splývaly nebo byly rovnoběžné) a žádná
z těchto kolmic neprochází žádným ze čtyř zbývajících
bodů (jinak by byly dvě spojnice daných bodů navzájem
kolmé). Nesplynou však ani dvě kolmice příslušné ke
dvěma různým z daných bodů; pak by totiž byly dvě
spojnice daných bodů navzájem kolmé.

Každým z pěti daných bodů prochází proto 5 kolmic,
což je celkem 6.5 = 30 kolmic. Jestliže žádné dva
z jejich průsečíků nesplynou, máme | ^ 1 = 435 prů-
sečíků. Ale každým z pěti daných bodů prochází 6 kolmic;
tím vždy — 15 průsečíků splývá v jeden a odpadne
tak 14.5 = 70 průsečíků, takže jich zbývá 435 — 70 =
= 365.

Vedeme-li dvěma z daných bodů kolmice к téže spoj-
nici zbývajících tří z daných bodů, nemají tyto přímky
průsečík, neboť jsou rovnoběžné a různé. Ke každé
spojnici dvou daných bodů lze ze tří zbývajících vést
3 různé kolmice a z nich lze sestavit = 3 dvojice;
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žádná z nich nedává průsečík. Spojnic je |^j
takže odpadne 3. 10 = 30 průsečíků. Zbývá tedy
365 — 20 = 335 průsečíků.

= io,

Každé tři z daných bodů určují trojúhelník a tvoří
jeho vrcholy. Tři výšky tohoto trojúhelníku nemají
celkem 3 průsečíky, nýbrž jen jeden (ortocentrum).
Z pěti daných bodů jako vrcholů lze zkombinovat

j = 10 trojúhelníků; každý z nich sníží počet hledaných
průsečíků o dva, celkem tedy odpadne 2 . 10 — 20 prů-
sečíků a zbývá 335 — 20 = 315 průsečíků.

Maximální počet průsečíků je 315 (včetně pěti daných
bodů).

Řešil Miloslav Znojil, 3. roč. SVVŠ, Prostějov

6. V daném čtyřstěnu ABCD spojíme vrchol D
s těžištěm Dx trojúhelníku ABC. Rovnoběžky к přímce
DDX, vedené body A, В, C, protínají po řadě roviny
BCD, CADу ABD v bodech Als Bx, Cx.

a) Dokažte, že objem čtyřstěnu ABCD je roven jedné
třetině objemu čtyřstěnu AXBXCXDX.

b) Platí tento výsledek i v případě, kdy Dx je libo-
volný bod uvnitř trojúhelníku ABC? (Polsko — 6 + 3
body.)

Řešení (obr. 41). a) Bod Ax je určen jako průsečík
přímky al/DDx vedené bodem + s rovinou gx = BCD.
Rovina ADDX obsahuje přímku a a přímku A'D, kde
je střed hrany BC. Z trojúhelníku A'AAX odvodíme

(1)AAX — 3DDXy

je totiž A'DX = \aA\ AA'AAx ~ AA'DxD.
D
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Protože je AAX — BBX = CCX — 3DDX,
AA1IIBB1HCC1IIDD1, je

AA1B1C1 ^ /\_ABC (sss); (2)

čtyřúhelníky ABBXAX,
"

CAA1C1 jsouBCCXBX,
totiž rovnoběžníky. Výšky
v, vx čtyřstěnů ABCD,
AXBXCXDX vedené po řadě
z vrcholů Dj D! jsou v po-
měru 1 : 3, tj. platí

Ci

v : vx = 1 : 3. (3)
Vztah (3) dokážeme takto:
Ze stejnolehlosti trojúhel-
níků AAAAx, AA'DxD
a ze vztahu (1) vyplývá

= 3A'D. (4)
Je-li co odchylka přímky
A'D od roviny ABC, platí
pro výšku v čtyřstěnu
ABCD a pro vzdálenost и
bodu Ax od roviny ABC
vztahy

v = A'D sin co,
и — A'Ax sin co,

tj. podle (4)
v : и — 1 : 3. (5)

Roviny jsou rovnoběžné; proto vzdále-
nost и bodu Ax od roviny ABC je rovna vzdálenosti
bodu Dx od roviny AXBXCX, tj. výšce vx Čtyřstěnu
AXBXCXD i •
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Je tedy
(6)и = vx.

Spojením vztahů (5), (6) dostaneme (3). Pro objemy
V, Vx čtyřstěnů ABCD,AXBXCXDX vyjde vzhledem к (2),
(3)

1 1
V = Vx = j p . 3v = 3V;3 p-v>

přitom p značí společný obsah trojúhelníků ABC,
AXBXCV.

Tím je tvrzení věty dokázáno.
b) Označme A', B', C průsečíky přímek ADX, BDX,

CDX po řadě s přímkami BC, CA, AB; dále označme a,
P, у roviny stěn DBC, DCA, DAB а a, b, c rovnoběžky
s přímkou DDX, vedené po řadě body А, В, C. Průsečík
Ax přímky a s rovinou a leží na přímce DA' a existuje,
neboť přímky DDX, DA' jsou různoběžné a platí a//DÁ';
stejně vždy existují body Bx, Cx po řadě na přímkách
DB', DC'. Roviny a, n = ABBXAX mají společné body
B, A13 takže BAX je jejich průsečnice. Označme P prů-
sečík rovin a, n, CDC'; bod P je tedy průsečíkem pří-
mek BAX, p ležících v n, kde pl/DDx prochází bodem C.

Přímka AP leží v rovině (i, neboť bod A a přímka
CP = CD leží v /?. Proto je přímka AP průsečnicí rovin
/5, n, a protože bod В leží v n, prochází přímka AP
bodem Bx. Přímka p = PC má s úsečkou A XBX společný
bod Mx a přímka DDX, ležící v rovině ССХМХС', má
s úsečkou Cx Mx společný bod Z)2. Označme D3 společný
bod přímky DXD2 s úsečkou CXP. Ve čtyřúhelníku
ABBXAX platí AAXHBBX a P je průsečík jeho úhlopříček;
proto je PC' = PMX, jak snadno odvodíme užitím
stejnolehlostí o středech В, Вx as konstantami rovnými
poměru vzdáleností přímek a, b a přímek p, b (Vlastnost
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lichoběžníku nebo rovnoběžníku, že průsečík P jeho
úhlopříček je středem jeho příčky MXC' — viz obr. 41 —

pro dalšř úvahu označme věta 1.)
Úsečky PC', CCX jsou stejnolehlé podle bodu D

a úsečky PMX, CXC s nimi shodné jsou stejnolehlé podle
DP

_ D3P '

DC ~ D3CX ’
proto je D3 průsečíkem úhlopříček PCX, CMX čtyř-
úhelníku CCXMXP. Proto podle věty 1 platí DDX —
= DD3 (viz lichoběžník nebo rovnoběžník CCXPC)
a podle téže věty DD3 — D3D2 (lichoběžník nebo rovno-
běžník CCXMXP)', je tedy DDX = DD3 — D3D2. Proto je

DXD2 = 3DDX.

Čtyřstěn AXBXCXDX lze rozložit ve tři čtyřstěny
AXBXD2DX, BxCxD2Dx, CxAxD2Dx, které mají po řadě
objemy rovné objemům čtyřstěnů ABDXD2, BCDXD2,
CADxD2 (např. čtyřstěny AXBXD2DX, ABDXD2 mají
zřejmě stejné obsahy podstav AXDXD2, ADXD2 а к nim
příslušné délky výšek vedených po řadě vrcholy Bx, В
jsou rovněž stejné).

Proto mají čtyřstěny AXBXCXDX a ABCD2 sobě rovné
objemy. Avšak druhý z těchto čtyřstěnů má objem třikrát
větší než čtyřstěn ABCD, s nímž má společnou pod-
stavu ABC, přičemž výšky těchto čtyřstěnů jsou v témž
poměru jako úsečky DXD2, DXD, o nichž platí DXD2 =
— 3DXD. Tím je platnost tvrzení úlohy rozšířena i na
případ, že Dx je libovolný bod uvnitř trojúhelníku ABC.

Připomínka. Úlohu b) v podstatě rozřešili jen asi
3 žáci; jinak byla podána řada řešení úlohy a) asi tak,
jak je uvedeno v odst. a).

bodu D3 (konstanta obou stejnolehlostí je
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