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I. O průběhu XIV. ročníku matematické
olympiády

1. Organizace soutěže. Pořadatelem soutěže je minis-
terstvo školství a kultury (MŠK)s Matematickým ústavem
ČSAV (MÚ ČSAV), Jednotou čs. matematiků a fyziků
(JČMF) a ústředním výborem Československého svazu
mládeže (ÚV ČSM). Také XJV. ročník se řídil statutem,
uveřejněným ve Věstníku MŠK, roč. XIX, str. 126, 127,
směrnice 37 ze dne 30. 4. 1963.

Soutěž řídil celostátně ústřední výbor matematické
olympiády (ÚVMO), v krajích krajské výbory matema-
tické olympiády (KVMO) a v okresech okresní výbory
matematické olympiády (OVMO); v těchto výborech
jsou také zastoupeny pořadatelské složky.

Žáci soutěžili ve čtyřech kategoriích podle svého studij-
ního věku, a to v kategoriích А, В, C (střední školy)
a v kategorii D (základní školy).

2. Složení ústředního výboru matematické olympiády:
Předseda: akademik Josef Nováky vedoucí vědecký pra-

covník Matematického ústavu ČSAV v Praze.

Místopředseda: Jan Výšin, docent matematicko-fyzi-
kální fakulty Karlovy university v Praze.

Jednatel: Rudolf Zelinka, vědecký pracovník Matematic-
kého ústavu ČSAV v Praze. Po jeho smrti převzal tuto
funkci Vlastimil Macháček, odb. asistent pedagogické
fakulty Karlovy university v Praze.
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Členové: dr. František Běloun, vedoucí matematického
kabinetu Krajského pedagogického ústavu v Praze,

Miloš Jelínek, vědecký pracovník Pedagogického ústavu
J. A. Komenského ČSAV, Praha (t. č. v zahraničí),

doc. Josef Holubář, em. vědecký pracovník Matematic-
kého ústavu ČSAV v Praze,

František Hradecký, odborný asistent matematicko-fyzi-
kální fakulty Karlovy university v Praze,

dr. Karel Hruša, profesor pedagogické fakulty Karlovy
university v Praze,

Ladislav Krkavec, ústřední inspektor ministerstva školství
a kultury v Praze,

Josef Porcal, ústřední inspektor ministerstva školství a
kultury v Praze,

František Veselým em. odborný asistent Vysoké školy
strojní a elektrotechnické, Plzeň,

dr. Miloslav Zedek, docent Palackého university v Olo-
mouci,

dr. Miroslav Fiedler, DrSc., vedoucí vědecký pracovník
Matematického ústavu ČSAV v Praze,

Náhradník: Miroslav Šisler, CSc., vědecký pracovník
Matematického ústavu ČSAV v Praze.

Dalšími členy ústředního výboru Matematické olympiá-
dy jsou všichni předsedové KV MO:
dr. Václav Pleskot, profesor ČVUT v Praze,
dr. Václav Vilímek, docent katedry matematiky a des-

kriptivní geometrie strojní fakulty ČVUT v Praze,
František Vejsada, odborný asistent Vysoké školy země-

dělské, České Budějovice,
Karel Hnyk, odborný asistent pedagogické fakulty v Li-

bérci,
Věra Rádiová, učitelka SVVŠ J. Fučíka, Plzeň,
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Jan Laitovka, vedoucí kabinetu matematiky Krajského
pedagogického ústavu, Pardubice,

Petr Benda, odborný asistent VUT, Brno,
Josef Andrys, odborný asistent pedagogické fakulty

v Ostravě,
dr. Milan Kolibiar, profesor přírodovědecké fakulty Ко-

menského university v Bratislavě,
Ladislav Berger, odborný asistent katedry matematiky

Vysoké školy dopravní v Žilině,
Gejza Grega, odborný asistent pedagogické fakulty v Ко-

šicích.
Funkční období ústředního výboru matematické olym-

piády končí podle organizačního řádu na jaře 1966.
3. Schůze ÚV МО. V období XIV. ročníku zasedal

ústřední výbor matematické olympiády dvakrát; dne
19. října 1964 byla jednodenní schůze v Praze, dne
15. května 1965 se konala při příležitosti III. kola schůze
ústředního výboru MO v Olomouci. Obě schůze se za-
bývaly běžnými otázkami soutěže a pomocných akcí.
Protože se na olomoucké schůzi ukázalo, že je třeba ně-
které otázky důkladněji prodiskutovat, zejména zrevidovat
koncepci soutěže a její organizaci, bylo usneseno, svolat
příští schůzi ústředního výboru MO na podzim 1965
jako dvoudenní.

4. Průběh kol. Jednotlivá kola probíhala časově podle
Statutu takto:

I. kolo (studijní) od října 1964 do konce února 1965;
žáci v něm řešili 6 úloh přípravných a 6 úloh soutěžních.

II. kolo dne 4. dubna 1965 v krajských městech pro
kategorie A až C, dne 11. dubna 1965 v okresních městech
a některých dalších střediscích pro kategorii D; žáci
řešili 4 soutěžní úlohy.
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III. kolo dne 15. května 1965 v Olomouci jako celo-
státní soutěž. Účastníci dostali 4 soutěžní úlohy.

V rámci II. kola se konaly pro účastníky vyšších kate-
gorií besedy a konzultace. Na nich se mimo jiné pro-
váděla analýza chyb, kterých se žáci dopustili při řešení
úloh I. kola. Při příležitosti II. kola většinou byly pro
žáky uspořádány i exkurze do průmyslových podniků,
výlety, návštěvy divadel, výstav apod.

Při příležitosti III. kola v Olomouci byla pro účastníky
uspořádána beseda, které se zúčastnili mimo členy
ústředního výboru MO i někteří učitelé olomoucké uni-
versity; prof. dr. Metelka promluvil o vývoji matematiky
a o jejím významu pro současnou společnost. Program
pro účastníky III. kola byl doplněn výletem. Celé akce
se ještě obětavě zúčastnil jednatel ÚV MO Rudolf Ze-
linka, který několik dní potom zemřel.

5. Pomocné akce. Krajské výbory MO organizovaly
s pobočkami Jednoty čs. matematiků a fyziků řadu akcí.
V první řadě to byly přípravné přednášky (semináře)
pro účastníky Matematické olympiády, které měly akti-
vizovat žáky v období studijního kola a prohloubit jejich
znalosti školské matematiky a učit je studovat odbornou
literaturu. Podle cíle těchto seminářů a podle místních
podmínek byla vybrána jejich tematika; některé se opíraly
o svazečky knižnice Škola mladých matematiků. Mimo
tyto semináře pořádaly krajské výbory MO i instruktáže,
konzultace apod.

Celostátní soustředění 92 úspěšných řešitelů kategorie
В matematické olympiády i fyzikální olympiády se konalo
ve Vojtěchově od 7. června do 26. června 1965. Dopolední
program byl věnován polovinou času matematice a polo-
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vinou fyzice; odpoledne se žáci rekreovali v rámci spor-
tovního a turistického programu, večer se konaly besedy
s významnými vědeckými a vysokoškolskými pracovníky.
Pro účely instruktáží byli žáci rozděleni do 4 tříd, zhruba
po 25 účastnících. Souběžně s touto instruktáží se konalo
soustředění 8 žáků vybraných pro účast na VII. mezi-
národní olympiádě, která se počátkem července 1965
konala v Berlíně. Odbornou část instruktáží konali pracov-
níci vysokých škol a Matematického ústavu ČSAV. Po-
dobné instruktáže uspořádaly i některé krajské výbory
MO ve spolupráci s odbory pro školství a kulturu KNV
a s pobočkami Jednoty čs. matematiků a fyziků.

6. Studijní literatura. Státní pedagogické nakladatel-
ství vydalo jako každoročně pro účastníky matematické
olympiády (I. kola) leták s texty úloh a s pokyny v ná-
kladu 15 000 exemplářů. Bohužel tento leták došel na
krajské výbory MO z technických důvodů opožděně.
Texty úloh I. kola byly otištěny v časopisech Matematika
ve škole a Rozhledy matematicko-fyzikální. Jako pomoc
pro opravování dostali zúčastnění učitelé kopie autor-
ských řešení všech soutěžních úloh I. a II. kola.

Na počátku roku 1965 vyšel český překlad sovětské
sbírky řešených úloh, jejímž hlavním autorem je V. B.
Lidskij. Překlad pořídil kolektiv pod vedením R. Zelinky.

Platné služby koná knižnice Škola mladých matematiků,
vydávaná nakladatelstvím Mladá fronta. Uvádíme pře-
hled všech svazečků vydaných až do května 1966:

1. Hradecký, Roman, Výšin, Několik úloh z geometrie
jednoduchých těles.

2. Jiří Sedláček, Co víme o přirozených číslech.
3. J. Šedivý, Shodná zobrazení v konstruktivních úlo-

hách.
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4. M. Šisler, J. Jarník, O funkcích.
5. Fr. Veselý, O nerovnostech.
6. R. Výborný, Matematická indukce.
7. J. Šedivý, O podobnosti v geometrii.
8. J. Fd/ra, O rovnicích s parametry.
9. J. Výšin, Konvexní útvary.

10. J. Sedláček, Faktoriály a kombinační čísla.
11. J. Holubář, Geometrická místa bodů v prostoru.
12. K. Havlíček, Prostory o čtyřech a více rozměrech.
13. M. Šišler, J. Andrys, O řešení algebraických rovnic.
14. Fr. Veselý, O dělitelnosti čísel celých.

Svazky 1, 2, 3, 4 a 7 vyšly v reedici. Knižnice je cenově
dostupná všem žákům (svazeček stojí průměrně 3 Kčs),
bohužel však s její distribucí nemůžeme být spokojeni.
Část nákladu vykupuje ministerstvo školství a kultury pro
žákovské knihovny; knižnice však není ve volném prodeji
a nelze plně uspokojit zájem učitelů a žáků o tuto knižnici.

Brožury starších ročníků MO jsou rozebrány; proto
plánuje ústřední výbor MO spolu se Státním pedagogic-
kým nakladatelstvím vydání výborů úloh z těchto brožur
uspořádaných podle jednotlivých kategorií.
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II. Výsledky jednotlivých kol soutěže

1. I. kolo. Porovnejme tabulky č. 1 a č. 2 s obdobnými
tabulkami ze XIII. a XII. ročníku, z nichž je patrno,
že počty účastníků v kategoriích A i В byly velmi nízké.
Lze říci, že kvantitativní zlepšení,*) které nastalo v kate-
gorii C ve XII. ročníku, se postupně přeneslo až do
kategorie A ve XIV. ročníku MO. Ke kladným jevům
prvního kola XIV. ročníku lze rovněž počítat vzrůst
počtu úspěšných řešitelů na 50% účastníků.

V kategorii D sice nepatrně poklesl počet účastníků
I. kola, avšak počet úspěšných řešitelů se prakticky ne-
změnil a činí více než 65% účastníků.

Zajímavé je sledování účasti dívek. V kategoriích A
а В tvoří přibližně jednu třetinu, v kategoriích C a D
téměř polovinu účastníků. Vysoká účast dívek v kategorii
C odpovídá vzrůstajícímu počtu dívek na SVVŠ.

2. II. kolo (tabulky č. 3 a č. 4). Celostátně se opět
projevují značné rozdíly mezi počty úspěšných řešitelů
I. kola a účastníků II. kola, zvláště v kategorii C a D;
rozboru příčin by se krajské a okresní výbory MO měly
věnovat.

Počet účastníků II. kola kategorie A proti předcháze-
jícím letům sice podstatně vzrostl, avšak procento úspěš-

*) Uváděný rozbor tabulek vychází především z kvantitativního
hlediska; výsledky soutěže by bylo záhodno ohodnotit i z hlediska
kvalitativního. O to se pokusíme při rozboru výsledků III. kola celo-
státní soutěže kategorie A a při hodnocení našeho umístění na VII.
Mezinárodní matematické olympiádě v Berlíně.
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Tabulka 2

Přehled počtu účastníků I. kola podle krajů v kategorii D*)

Kategorie D
Kraj z toho

dívek
UP

Praha-město 1 057 466 749

Středočeský 1 076 506 794

Jihočeský 477 616878

Západočeský 244 295468

Severočeský 803 378 475

Východočeský 853 397 603

Jihomoravský 1 434 547 713

Severomoravský 1 117 531 737

Západoslovenský 1 129 566 751

Středoslovenský 981 636711

Východoslovenský 714 482390

Celkem 10 510 5 213 6 851

*) P — celkový počet účastníků, U = počet úspěšných řešitelů.
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Tabulka 4

Přehled počtu účastníků II. kola podle krajů v kategorii £)*)

Kategorie D
Kraj z toho

dívekP U
Ф

Praha-město 232627 480

Středočeský 313 424620

Jihočeský 269 289522

121Západočeský 135246

175Severočeský 229393

242Východočeský 422533

Jihomoravský 307 317636

Severomoravský 277 371641

Západoslovenský 314 349678

Středoslovenský 268 285512

Východoslovenský 396 213 250

Celkem 5 804 2 731 3 551

*) P = počet všech účastníků, U — počet úspěšných řešitelů.
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ných řešitelů je poněkud nižší, jen asi 25%. Podobně je
tomu i v kategorii B. Potěšitelné je, že při celkem stejném
počtu účastníků II. kola v kategorii C stouplo procento
úspěšných řešitelů nad 50%.

Rovněž v kategorii D se situace zlepšila, protože při
téměř konstantním počtu účastníků II. kola vzrostl počet
úspěšných řešitelů na 60%.

Pokud jde o slovenské kraje, lze konstatovat jisté malé
zlepšení v kategoriích А, В а С. V kategorii D však na
Slovensku vzrostl počet účastníků i úspěšných řešitelů
o 50%.

Ve všech kategoriích zaslouží ocenění práce organizá-
torů soutěže z Jihomoravského kraje, kde počty účastníků
i úspěšných řešitelů převyšují absolutně i relativně vý-
sledky většiny ostatních krajů.

Úspěšní řešitelé II. kola obdrželi čestná uznání, byli
odměněni podle pořadí různými věcnými cenami, zvláště
studijní literaturou.

Soutěží II. kola v kategoriích В, C a D soutěž končí;
proto uvedeme pořadí deseti nejlepších úspěšných
řešitelů II. kola v kategoriích В a C podle jednotlivých
krajů.
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Pořadí úspěšných řešitelů II. kola
v kategoriích В a C

(Není-li uvedeno jinak, jde o SWŠ a o třídu odpovídající
příslušné kategorii)

Praha — město

B. Pavel Novák, I. roč., Štěpánská ul.; Jan Fáhnrich,
Nad štolou;_Eduard Prandstetter, W. Piecka; Petr Kůrka,
I. roč. SPŠ el., Příkopy; Milana Říhová, W. Piecka;
Pavel Kovařík, SPŠ, Zborovská ul.; Ludmila Kohoutová,
Na dlouhém lánu; Aleš Procházka, Velvarská; Tomáš
Wichs a Jiří Zdobnický, W. Piecka.

C. Petr Doberský, Milan Chytil, Radovan Gregor a
Jaromír Durdík, všichni W. Piecka; Ivan Hořejší a Petr
Kroček, Přípotoční ul.; Jiří Němec, Na dlouhém lánu;
Daniel Brandi, U libeňského zámku; Jiří Henzler, Na •
dlouhém lánu; Jaroslav Kalous, Štěpánská ul.

Středočeský kraj
B. Štěpán Starý, Benešov; Jiří Svoboda, Benešov;

Petr Bareš, Příbram; Jaroslav Leder, Votice; Jiřina Char-
vátová, Benešov; Jaroslav Chudáček, Mnichovo Hra-
diště; Jan Jágr, Hořovice; Ladislav Šahát, Příbram;
František Deyl, Čakovice; Ludmila Dvořáková, Mladá
Boleslav.

C. Jaroslav Barták, Kladno; Václav Kříž a Jarmila Lisá,
Beroun; Jaroslav Podlipský, Brandýs n. L.; Jaroslav Po-
spíšil, Mnichovo Hradiště; Milan Číhá, Rakovník; Věra
Dvořáková, Příbram; Michael Holan, Kolín; Eva Roz-
točilová, Beroun; Miloslava Valešová, Benešov.
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Jihočeský kraj
B. Vladimír Kůrka, Písek; Jan Mach, Petr Kříha,

Marie Matoušková я Josef Vlasák, České Budějovice;
Jan Vandrovec, SPŠ, České Budějovice; Pavel Dvořák,
Pelhřimov; Pavel Petr, Strakonice; Rudolf Losenický,
Soběslav.

C. Jaromír Jelínek, SPŠ Tábor; Václav Šmajel a
Vlasta Vaňatová, České Budějovice; Pavla Břichová, Sobě-
slav; Jiří Krtek, Ivana Novotná a František Mráz, České
Budějovice; Vít Rybák a Bohumil Janeček, Jindřichův
Hradec; Václav Kopačka, Dačice.

Západočeský kraj

B. Jan Nauš, Klatovy; Jan Štěpánek, Horažďovice;
Marie Samková, Biovice.

C. Jiří Vilimovský a Jan Slavík, Plzeň, ul. Pionýrů;
Jan Kastl, Přeštice; Jiří Bouzek, Plzeň, ul. Pionýrů; Pavel
Levý, Ostrov n. Ohří; Miloslav Zajíc, Cheb; Jindřich
Klůfa, Ostrov n. Ohří; Božena Kučerová, Cheb; Pavel
Wohlmut, Domažlice; František Pazdera, Plzeň, nám.
Odborářů.

Severočeský kraj
B. Ladislav Dvořák, Tanvald; Karel Hnyk, Liberec;

Josef Fulier, Chomutov; Zdeněk Waldhauzer, SPŠ text.,
Liberec; Petr Volf, Liberec; Stanislava Šulcová, SPŠ,
Děčín; Václav Pernikář, Ústí n. Lab. - Skřivany; Jan
Fibir, Teplice; Václav Hyšman, Roudnice n. Lab.; Miro-
slav Kosina, Jablonec n. N.

C. Jan Můhlstein, Teplice; Stanislav Cais, Litoměřice;
Jaroslav Jindřich, Ústí nad Labem, Jateční; Zdeněk Svo-
bodá, Děčín; Květa Munzarová, Duchcov; Jaroslav Janá-
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ček a Jana Voříškové, Ústí n. Labem - Skřivany; Jitka
Hejtmánkové, Litoměřice; Pavel Vágner a Věra Poláková,
Louny.

Východočeský kraj

B. Jindřich Cupal, Česká Třebová; Jan Rauch, Dvůr
Králové; Jiří Holoubek, Havlíčkův Brod; Petr Moravec,
J. K. Tyla, Hradec Králové; Vladimír Svědiroh, Pardu-
biče; Radko Škaloud a Ivo Čáp, J. K. Tyla, Hradec
Králové; Luboš Pěnička, Turnov; Jan Klas, Česká Tře-
bová; Věra Pilcová, Trutnov.

C. Zdena Mašková, Kostelec n. Orlicí; Vladimír Holec,
Rychnov n. Kněžnou; Věra Dolenská, SPŠ text., Jilem-
nice; Jitka Ducháčková, Semily; Ivo Kozák, Úpice; Те-
režie Schliková, Jičín; Václav Hnik, Turnov; Zdenka
Svobodová, 1. SPŠ el., Pardubice; Miloslav Hrubeš,
Kostelec n. Orlicí; Jan Čhlebný, Pardubice.

Severomoravský kraj

B. Roman Kotecký, 1. roč. Ostrava, Šmeralova ul.; Jiří
Nejedlý, Hranice; Wladyslaw Martynek, Český Těšín -

pol.; Oldřich Syrovátko, Bruntál; Vladimír Karásek,
Ostrava, Šmeralova ul.; Josef Macháček, Rožnov p. R.;
Jan Pavlů, Olomouc-Hejčín; Roman Němec, Nový Jičín;
Jiří Pešl, Valašské Meziříčí, Karel Bednařík, Místek.

C. Zdeněk Kašlík, Jeseník; Rudolf Lachman, SPŠCh
Přerov; Mojmír Simerský, SPŠ el., Rožnov p. R.; Jiří
Svoboda a Helena Kaštovská, Ostrava 1; Milan Stoklasa
a Pavel Tomáš, Ostrava-Hladnov; Josef Hlanica, Jeseník;
Tomáš Tichý, Ostrava 1; Arnošt Rudek, Porubá.
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Jihomoravský kraj
B. Pavel Polcar, 9. roč. ZDŠ Velké Meziříčí; Bohumír

Štědroň, III. roč. Brno, Koněvova ul.; Vladimír Handlíř,
SPŠ chem., Brno, Vranovská ul.; Josef Provazníček,
Vyškov; Stanislav Slouka, SPŠ el., Brno, Leninova;

' Zdeněk Michalec, Brno, Koněvova; Zdeněk Slanina, SPŠ
chem., Brno, Vranovská ul.; Jiří Šmerk, Kyjov; Zdeněk
Dědourek, Brno, Koněvova; Jiří Stejnek, Velké Meziříčí.

C. Jan Fiala a Ladislav Chvátal, Třebíč; Libuše Nová-
ková, Telč; Helena Šánová, Jihlava; Karel Engelsmann,
Brno, Koněvova; Ladislav Ježek, SPŠ el., Brno, Leni-
nova; Zdeněk Lenhart, Brno, Lerchova; Jiří Loula_ Brno,
Koněvova; Jiří Najbrt, Brno, Lerchova; Karel Švehla,
Brno, Koněvova.

Západoslovenský kraj
B. Pavol Holič a František Hajnovič, Bratislava, Novo-

hradská; T. Flecht, SPŠ el., Bratislava, Zochova; J. Stei-
ner, Levice, L. Gyorffy a P. Šermer, Bratislava, Novo-
hradská; M. Ďurikovičová, Trenčín; J. Žákovič, SPŠ el.
Bratislava, Zochova; R. Virsiková, Bratislava, Novo-
hradská.

C. Ivan Mikulecký, Bratislava, Novohradská; Emilia
Přidalová, Bratislava, Vazovova; Michal Tvrdoň, Martin
Macháček, Gejza Wimmer a Milan Žirko, Bratislava,
Novohradská; Viktor Šuster, Vojenská škola J. Žižky,
Bratislava; Jozef Kolesár a Branislav Vašička, Bratislava,
Vazovova; Ján Ručka, SPŠ el., Bratislava, Zochova.

Středoslovenský kraj
B. Anna Vojtašková, Liptovský Mikuláš; Lubomír

Vlček, Březno; Ivan Duša, Prievidza; Emilia Mikulášo-
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vá, Prievidza; Kristián Chovanec, Turčianske Teplice:
Eva Bombová, Ružomberok; Dušan Čupka, Liptovský
Mkuláš; Anna Kavacká, Kysucké Nové Město; Ludovít
Šipoš, Zvolen.

C. Marian Fúrik, Zvolen; Štefan Krošlák, Žiar nad
Hronom; Jan Svoreň a Erik Wiszt, Banská Bystrica;
Lubor Adamec, Zvolen; Zuzana Farbakyová, Martin;
Rudolf Lukačka, SPŠ, Banská Bystrica; Sabina Sitárová,
Turčianske Teplice; Vladimír Štěpánek, Liptovský Hrá-
dok; Danica Ďurčová, Prievidza.

Východoslovenský kraj
B. František Čižmárik, Prešov; Miroslav Germuška,

Bardejov; Štefan Gašpar, Bardejov; Robert Vittek, Bar-
dejov; Stanislav Jendrol a Ludovít Parilák, Stropkov;
Anton Tomko, SPŠ stroj, a elektr., Košice; Martin
Fronc, Košice, Šrobárova.

C. Blanka Rossenauerová, Košice, Šrobárova; Sta-
nislav Paluch, Prešov; Jozef Studenovský, Košice, Ко-
váčska; Ladislav Madarasz, SPŠ stroj, a elektr. Košice;
Alice Pirická, Košice, Kováčska; Vincent Šoltés, Barde-
jov; Alojz Komjaty, Stropkov; Martin Lucký, SPŠ geol.
a hut., Sp. Nová Ves; Juraj Takáč, Košice, Šrobárova ul.;
Ladislav Podolák, SPŠ stroj, a elektr., Košice.

3. kolo. Situace v III. kole se jeví v XIV. ročníku MO
příznivější než v ročníku XII. а XIII.; ze 152 úspěšných
řešitelů II. kola bylo totiž možné vybrat nejvyšší pří-
pustný počet účastníků III. kola — tj. 80 žáků. Z těchto
účastníků vyšlo 39 úspěšných řešitelů; z nich prvních 20
jsou tzv. vítězové III. kola. Je to výsledek na první pohled
slušný. Ale pokud jde o kvalitu úspěšných řešitelů III.
kola kategorie A, máme dosti objektivní kritérium, které
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nám chybí u ostatních kategorií: je to prověrka zpra-
vidla prvních osmi vítězů 1Щkola v mezinárodní mate-
matické olympiádě. A tu se opět letos ukázalo, že někteří
přední vítězové našeho III. kola se dobře neumístili. To
jednak může znamenat, že výběr reprezentantů pro mezi-
národní matematickou olympiádu pomocí III. kola do-
máčí olympiády není nejvhodnější, jednak ovšem to na-
značuje, že naše nároky na vítěze celostátního kola nejsou
v mezinárodním měřítku dosti vysoké. Pozoruhodné je, *
jak nevalně se umístili v III. kole žáci speciálních tříd,
zejména speciální třídy pražské. Musíme znovu opakovat
tvrzení z brožury о XIII. ročníku MO, totiž že prozatím
speciální třídy nesplnily naděje v ně kladené; vina bude
asi částečně ve výběru žáků, v jejich časovém přetížení,
ale částečně i v práci učitelů.

Otázky náplně III. kola, jakož i časového rozvržení a
náplně ostatních kol projednalo dvoudenní zasedání
ústředního výboru MO v Brně dne 9. a 10. listopadu
1965. Je třeba vyčkat, zda se příslušná usnesení ústřed-
ního výboru MO projeví příznivě v XVI. ročníku
soutěže.

SEZNAM VÍTĚZŮ III. KOLA XIV. ROČNÍKU
MATEMATICKÉ OLYMPIÁDY

1. a 2.
Jura Charváty 3. roč. SVVŠ_ Příbor
Milan Štědrý, 3. roč. SVVŠ, Chotěboř

3. až 7.
Jan Brodský, 3. roč. SVVŠ, Brno Koněvova ul.
Tamara Marcisová, 3. roč. SVŠ, Bratislava, Novo-
hradská
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Pavel Novotný, 2. roč. SVVŠ, Olomouc-Hejčín, Tom-
ková 45
DavidPreiss, 3. roč. SVVŠ V. Nováka, Jindřichův Hradec
Bohuš Sivák, 8. roč. I. ZDŠ Zvolen, Jilemnického 1813

8. a 9.
Miroslav Řezníček, 3. roč. SVVŠ J. K. Tyla, Hradec
Králové
Luděk Zajíček, 3. roč. SVVŠ Ostrava 4, Chrjukinova ul.

10. až 12.
Jan Hrníčko, 3. roč. SVVŠ Skuteč, Komenského nám.
Vladimír Loula, 3. roč. SVVŠ Nové Strašecí, okr.
Rakovník
Vladimír Sigmund, 4. roč. SPŠS, Praha 1, Masná

13. až 16.

Jiří Handlíř, 3. roč. SPŠE Brno, Leninova
Karel Henc, 3. roč. SVVŠ Brno, Koněvova
Peter Mederly, 2. roč. SVŠ, Prievidza-sidlisko
Jiří Rott, SPŠH, Kladno

17. až 20.
Pavel Holan, 3. roč. SVVŠ J. K. Tyla, Hradec Králové
Josef Mlček, 3. roč. SVVŠ Příbor, okr. Nový Jičín
Ján Pallag, 3. roč. SVŠ, maď., Komárno
Jiří Snětivý, SPŠS Liberec I, Leninova

(Společná místa uvádíme v abecedním pořádku.)
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III. Přípravné úlohy (texty)1.Kategorie A

1. Dekadický zápis přirozeného čísla a dekadický zápis
jeho páté mocniny končí touž cifrou. Dokažte.

2. Součet čtverců nad stranami rovnoběžníku je roven
součtu čtverců nad jeho úhlopříčkami. Dokažte.

3. V oboru reálných čísel řešte rovnici
(a2-62) x4 - 2 (a2 + b2) x2 + a2 - b2 = 0

o neznámé я, kde a, b jsou daná reálná čísla. Stanovte
podmínku řešitelnosti vzhledem к číslům a, b.

4. Řešte rovnici

l<2cos 2x + sin 2x
5. V rovině jsou dány vedlejší úhly <£ MON, <£ NOP

a uvnitř úhlu <£ NOP je dán bod Q.
Bodem Q veďte přímku, která s polopřímkami OM,

ON omezuje trojúhelník, jehož obvod je roven danému
kladnému číslu 2s.

6. Jsou-li a, b taková dvě komplexní čísla, že součet
a + b je reálné kladné číslo a že platí a + a > b + b,
potom platí \a\2 > \b\2. Dokažte. (Poznámka: a značí
číslo komplexně sdružené к číslu a.)

cos x .

2. Kategorie В
1. Řešte soustavu rovnic

x = a + ky , у = b + kz, z = c + kx
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o neznámých х3 у, z. Proveďte diskusi řešitelnosti vzhle-
dem к daným reálným číslům a, b, c3 k.

2. Udejte velikosti vnitřních úhlů trojúhelníku, který
má tyto vlastnosti: výška a těžnice při jednom vrcholu
trojúhelníku dělí úhel trojúhelníku na tři shodné úhly.

3. V rovině pravoúhlých souřadnic x3 у znázorněte
množinu všech bodů [x'3y], jejichž souřadnice splňují
rovnici jy — ]/(l + jc)[1 — x\3 a dále množinu všech bodů
[x3y], jejichž souřadnice splňují rovnici у -f- x = \y — x\.
Výpočtem pak řešte soustavu rovnic

у — ]/(l + x) |1 — x\ , у + x — \y — x\ .

4. Každé dvě z hran OA3 OB, OC čtyřstěnu OABC
stojí navzájem kolmo. Dokažte, že potom druhá mocnina
obsahu stěny ABC je rovna součtu druhých mocnin
obsahů zbývajících tří stěn.

5. V rovině je dána kružnice k a na ní bod A.
Dvěma odlišnými metodami řešte úlohu: Sestrojte

trojúhelník ABC vepsaný kružnici k tak, aby úhly <C CAB,
<£ABC měly dané velikosti. Udejte podmínky řešitel-
nosti.

w

6. Řešte nerovnost

1 1
=- +

X + ]/ x X — ]/ X

3. Kategorie C
1. Dokažte, že výraz

a2 x2 Ъг

(.x — a) (x — b) (b — á) (b — x) 5(a — b) (a — x)
pokud má smysl, nezávisí na čísle x.
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2.Je dána polorovina АВР a uvnitř úsečky AB je
dán bod M. Dále je dán úhel velikosti y.

V polorovině ABP sestrojte trojúhelník ABC takový,
aby úhel <£BCA = у a aby osa tohoto úhlu procházela
bodem M.3.V rovině pravoúhlých souřadnic [x,y] sestrojte graf
funkce

У = \x + 2| — I* — 2| .

4.Zlomek
ln + 1
ъп + i5

kde n je liché přirozené číslo, lze vždy krátit číslem 4.
Dokažte.

5. Zmenšíme-li poloměr i výšku rotačního kužele
o p %, o kolik procent se změní jeho objem?

\
6. V rovině je dána kružnice k = (S; r) a bod A,

jehož vzdálenost od středu 5 je v < r.
Bodem A veďte přímku, která od kružnice k oddělí

čtvrtkružnici. Proveďte diskusi řešitelnosti vzhledem
к číslům r, v.

4. Kategorie D

1. Tahem krále na šachovnici rozumějme tah ze zvole-
ného pole na některé pole к němu sousední (až 8 mož-
ností); přitom tah z pole A na pole В je jiný než tah
z pole В na pole A.

Kolik takových tahů lze na prázdné šachovnici udělat ?
2. Je dána přímka AP a mimo ni bod £; dále je dána

úsečka délky d. Napolopřímce AP sestrojte bod X takový,
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že platí vztah
AX + BX = d .

Rozhodněte o řešitelnosti úlohy.
3. V rovině jsou dány dvě kružnice kx = (S^; 10 cm),

k2 = (é>2; 10 cm), kde — 10 cm.
Vypočtěte délku x poloměru kružnice, která má s kaž-

dou z daných kružnic vnitřní dotyk a vedle toho se dotýká
přímky S14S2; na základě výpočtu proveďte konstrukci.

4. Dokažte, že:
a) 37 + 77 je dělitelné deseti, aniž mocniny počítáte.*)
b) 20 1937 + 3 0277 je dělitelné číslem 270.
5. Sestrojte rovnoramenný trojúhelník ABC se zá-

kladnou AB, jestliže je dáno:
• a) Součet základny a jednoho ramena a dále úhel

při základně. (Pokyn. Uvažujte trojúhelník BCD, kde
D je bod polopřímky CA a platí CD — AB + AC).

b) Rozdíl ramena a základny (v tomto pořadí) a dále
je dán úhel proti základně. (Pokyn. Vyhledejte vhodný
pomocný trojúhelník.)

6. Najděte všechna čísla p, pro která zlomek
(3p - 2)2 - (2p - 3)2
(2p - l)2 - (3p - 4)2

nemá smysl. Pak vypočtěte všechna čísla p, pro která je
zlomek roven nule.

/

*) Sledujte jen jednotky mocnin З2, 33, ..., 72, 73, ... v jejich
dekadických zápisech.
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IV. Řešení úloh ze soutěže

1. Úlohy I. kola kategorie A

1. Vypočtěte součet všech možných součinů xy, jejichž
činitelé x, у jsou navzájem různá čísla vybraná z při-
rozených čísel 1, 2, ..., n, kde n je dané přirozené číslo.
[Lze užít vzorce: l2 + 22 + ... + n% =

= jrti (n + 1)(2n + 1) .]
Řešení. Označme 5 hledaný součet a dále
Si=l + 2+ ...+re, s2 = l2 + 22 + ... + nK

Víme, že je
1 1

— nin + 1), s2 — —n(n + 1) (2n + 1),
2 6

(1)% =

což lze ověřit matematickou indukcí. Zřejmě platí vztah
— ^2 T 25 ,

z čehož
1

- 0! - .

Dosaďme sem z (1); dostáváme postupně
n2(n + l)2 — — n(n +1) (2n + l)j =

= —n(n + 1) (3n% — n — 2) = —n(n-\-1) (n — 1) (Зя+2).

5-

-и-
1

2424

Tím je číslo 5 nalezeno.
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2. Je daný rovnostranný trojuholník ABC so stranou
dížky 1; M je střed strany ÁB. Do trojuholníka ABC
je vpísaný rovnostranný trojuholník XYZ tak, že body
X, Y, Z ležia po radě vo vnútri stráň BC, CA, АВ a tak,
že úsečky XZ, CM majú spoločný bod U.

a) Vyjádříte vzdialenosť MU pomocou vzdialenosti
MZ.

b) Dokážte, že bod U každého z trojuholníkov XYZ
leží na určitej úsečke MN, ktorá má dížku ~ CM.

Riešenie (obr. 1). a) Vzdialenosť bodov M, Z označ-
me x, vzdialenosť bodov M, U označme v a <£ XZB
označme cp. Potom pre trojuholníky ZXB, XYZ platí, že

<£ZXB = 120° - cp, ^ YXC = 180° - 60° -
- (120° - cp) cp .

Je teda
ЛZXB^AXYC (usu),
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takže

ZB = XC, AZ = AB - ZB = ВС - XC = BX =
1

-~ = x.
2

Cyklickou záměnou dostaneme BX = CY, t. j.
1

AZ = BX = CY = - - x .

2

Označme Xx patu kolmice vedenej bodom X к straně
AB. Bod Xx náleží úsečke MB. Platí

(i 3
(2)XXx = БХ sin 60° */ 2 5

\ + \x- (3)MZj = MB- BXx = MB — BXcos 60° =

Pomocou vztahu (3) dostáváme

(i+í'H3
, 1—де 4 .

2 4
(4)ZXx = я -f-

Z rovnolahlosti trojuholníkov ZUM, ZXXx dostaneme
v : X = .

Stadia! pomocou vzťahov (2) a (4) po úpravě dostáváme

Щ - 2x)
6x + 1 5

pričom я prebieha interval 0 ^ л; < ^.
b) Máme určit maximum funkcie (5). Dokážeme, že

(5)v =

28



1 1 1 1
У3. Predpokladajme, že je189 ’ 2

CM =Iе t0 9

^ Уз v.v■у ^ ~~ cize
18

1/3x(l — 2x) 1
1/3 fe (6)kde 0 < x < •

~

218 56x + 1
18(6s+ 1)Vynásobením prvej nerovnosti kladným číslom

P
dostáváme po krátkej úpravě, že nutné platí

36л;2 — 12л: +1^0
čiže

(6x - l)2 ^ 0 .

Nerovnost’ (7) platí jedine pre x = Číslo x —

(7)
11

1
splňuje přitom nerovnost’ (6) a z rovnosti (5) pre x =

Уз 1 6dostaneme právě v — ^. Bod Z pre x — ~ leží v tretinelo O i / —

úsečky AB a příslušný bod U má od M vzdialenosť
Tým je riešenie úlohy převedené.

P
18 '

3. Je dána funkce proměnné л:

У = X2 4: \x 1| p }

kde p je parametr.
Určete p tak, aby příslušná funkce nabyla hodnoty 1

právě pro tři různé hodnoty л;.

Řešení. Označme x1 < x2 < л;3 hledané tři hodnoty
nezávisle proměnné x, pro které má daná funkce hodnotu
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у = 1. Vzhledem к dané funkci (1) rozeznávejme dvě
možnosti, podle toho, je-li x 5^ 1 nebo je-li x ^ 1.

Pro x ^ 1 funkce (1) zní

у — x2 + 4x — 4 — p;

pro x ^ 1 funkce (1) zní
у — x2 — 4x + 4 — p .

Jsou zřejmě jen tři možnosti [1], [2] a [3]:
Případ [1]. Funkce (2) nabývá pro x — x15 x = x2

hodnoty у = 1, kde x1 ^ 1, x2 S* 1. Pak ovšem funkce
(3) nabývá hodnoty у = 1 pro jediné x = x3 ^ 1, tj.
platí [viz (3)] 1 = x2 — 4x + 4 — p neboli x2 — 4x +
+ 3 — p — 0; tato kvadratická rovnice musí mít jediný
kořen, tj. její diskriminant 4[4 — (3 — p)] musí být roven
nule. Odtud plyne, že je nutně

(2)

(3)

P = -1-
Funkce (3) pak zní

у = x2 — 4x + 5
a pro у — 1 dostaneme x2 —- 4x + 4 = 0 neboli
(x — 2)2 = 0; odtud plyne

(4)x3 — 2,
to je číslo z intervalu x
У = 1-

Nyní zjistíme, zda existují čísla x13 x2, pro funkci (2)
a pro parametr p — — 1 taková, že pro ně je hodnota
funkce 3; = 1. Funkce (2) zní

у = x2 + 4x — 3
a pro у = 1 dostáváme rovnici x2 + 4x — 4 = 0, jejíž

1. Pro x — x3 je skutečně

(5)
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kořeny jsou
*!= -2 -2]/2= -2(1/2+ 1),

x2 = -2 + 2]/2 = 2(|/2" - l) < 2.0,5 = 1;
(6)

obě navzájem různá čísla x13 x2 jsou skutečně menší
než 1. Po dosazení x = x1} x — x2 do pravé strany (5)
dostaneme (čti zároveň horní anebo dolní znaménka)

(-2 ± 2]/2)2 + 4(-2 ± 2]/2) - 3 - 12 T 8У2 - 8 ±
±8У2 - 3=1,

tj. у = 1. Tím je případ [1] vyšetřen; hledaná čísla jsou
dána vztahy (6), (4).

Případ [2]. Funkce (2) nabývá hodnoty у — 1 pro
jediné x — xx ^ 1 a funkce (3) pro dvě čísla x — x2,
x = x33 x2 ^ 1, x3 ^ 1. Pro у — 1 ze (2) dostaneme
rovnici

л:2 + 4л: — (5 + p) — 0
o neznámé x> která musí mít jediný (reálný) kořen; její
diskriminant 4[4 + (5 + p)] musí být roven nule, tedy

p = —9 .

Funkce (2) tedy zní
у = я2 + 4x + 5

a pro у = 1 odtud plyne (я + 2)2 = 0, neboli
*i 2,

pro x — xx je hodnota funkce (7) skutečně у = 1.
Pro p — — 9 funkce (3) zní

jy — x2 — 4я + 13 .

Tu pro у = 1 dostáváme rovnici x2 — 4x + 12 = 0,
jejíž diskriminant je zřejmě záporný a případ [2] nevede
к řešení.

(7)

(8)
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Případ [3]. Zjistíme ještě, zda funkce (2) a (3) mohou
nabýt současně pro x = хг = 1 hodnoty jy — 1. V tomto
případě pak funkce (2) nabude hodnoty у — 1 pro jisté
x = x2 ^ 1 a rovněž funkce (3) nabude hodnoty у = 1
pro jisté x — x3 ^ 1.

Dosaďme tedy у = 1 a x — 1 např. do vztahu (2);
dostaneme rovnici pro p:

1 = 1 + 4 . 1 — 4 — p,
tj.

p = 0 .

О а у = 1 dostaneme ze vztahu (2) rovnici
1 = x2 + 4x — 4 .

Pro p

Kořeny této rovnice jsou očekávané xx = 1 a dále
5, tj. číslo menší než 1.x2 =

Dosazením p = 0 а у — l do vztahu (3) dostaneme
rovnici

1 = x2 — 4x + 4 .

/

1-.

б\ -4 -3 -г -i О

4;

-7

Obr. 2
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Rovněž tato rovnice má kořen хг = 1 a další kořen
x3 = 3, tj. číslo větší než 1. Tedy i případ [3] pro
p — 0 vede к řešení úlohy (obr. 2).

Závěr. Hledané hodnoty parametru jsou p — 0 a
P = -1.

4. Místnost má tvar krychle ABCDA'B'C'D' o hraně
délky 1. Označme M střed stěny BCCB'. Svítící bod
probíhá tělesovou úhlopříčku DB'. Přitom se vržený
stín úsečky AM pohybuje a probíhá postupně jistou část
stěn a podlahy místnosti.

Vyšetřte, z kterých obrazců se tato část skládá, a roz-
hodněte, zda její obsah je větší než obsah podlahy
místnosti.

Řešení. Situace je patrna z obr. 3. Nejprve dokážeme,
že se úsečky BD', AM protínají v bodě, který označíme P.

\
\

\
\
\/
\/
\ v" y /

\A iI /
/ \1 /

/
/

/
/

/
/

/
Oj/ c

—-ikx/

/ 7\

i % /

>í'/
/

4

Obr. 3
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Skutečně úsečky AM, BD' jsou úhlopříčkami lichoběž-
niku AD'MB a protínají se v bodě P, který náleží vnitřku
každé z nich. Vržený stín úsečky AM padne buď na přední
a pravou stěnu krychle (tj. ABB'A' a BCC'B'), nebo
na dolní a pravoij stěnu (tj. ABCD a BCC'B'); v prvním
případě se stín láme na hraně BB', ve druhém na hraně
BC. Přechodným případem je situace, kdy svítící bod X
splývá se středem X0 úsečky DB' a kdy stínem jsou úsečky
AB, BM; tu je bod В vrženým stínem průsečíku P
úseček AM, BD'. Bod P hraje v úloze důležitou roli
pro kteroukoli polohu bodu Xna úsečce DB'; označíme Y
bod, který je vrženým stínem bodu P z bodu X na povrch
krychle.

a) Bod Y padne na úsečku BB' v případě, že X je bodem
úsečky X0D; b) bod Y padne na úsečku BD v případě,
že X' je bodem úsečky X0B'.

Případ a). Vržený stín bodu P pro případ, že je svítící
bod X = D, označme Q; leží v rovině PADM, a protože
jsou stěny ADD'A', BCC'B' rovnoběžné, jsou rovno-
běžné i průsečnice AD, MQ roviny PADM s oběma
těmito stěnami. Protože M je střed stěny BCC'B', plyne
odtud, že Q je středem úsečky BB'.

Pohybuje-li se bod X z bodu D do X0, pohybuje se
bod Y z bodu <2 do B; pro X = X0 je Y = B. Lomené
čáry A YM pokryjí tedy v rovinách ABB', BCC troj-
úhelníky ABQ a BMQ.

Případ b). Vržený stín Y' bodu P pro případ, že
svítící bod X' náleží úsečce X0B', padne do úsečky BR,
kde R je vržený stín bodu P pro případ, že je X' = В',
tj. R je průsečík úhlopříček AC, BD stěny ABCD.
V tomto případě je stínem lomená čára AM'M, kde M'
je průsečík přímek A Y', BC. Tyto lomené čáry v rovi-
nách ABC, BCC pokryjí trojúhelníky ABC a BCM;
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v rovině BCC dostaneme celkem lichoběžník BCMQ
(viz případ a).

Obsah čtverce ABCD je 1 (plošných jednotek); troj-
úhelníky ABQ, BMQ, BCM, ABC mají po řadě obsahy
I I i A
4 3 8 3 4 3 2

5. Je dán rovnostranný trojúhelník ABC o straně délky
a. Dále jsou dány dva kruhy K15 K2 se středy А, В a
o poloměrech 1 a kruh K3 se středem С a o poloměru
r = ~2’ M je takový bod trojúhelníku ABC, ze kterého
je vidět kruhy K13 K2, K3 pod zornými úhly téže veli-
kosti.

Vypočtěte vzdálenosti MA, MB, MC a proveďte
diskusi vzhledem к číslu a.

9
3 a součet těchto obsahů je větší než 1.8

Řešení, a) Označení je patrné z obr. 4a. Je-li bod M
řešením úlohy, je

ДAME '—' ACMG ,

i
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neboť
<£ MBA = <£ MGC = 90°, '<£AME =

= <£ CMG = -co.
2

Odtud plyne
AM

_ AE
CM ~ CG

(1)= 2.

Dále je podle věty suu

ДАМЕ ABMF j

tj.
AM = BM.

Označíme-li AM = x, je podle (1), (2)

AM = BM = x, CM =

(2)

1
(2')x .

2

Užijeme kosinové věty na trojúhelník ACM; vyjde

— x2 -j- a2 — 2 . — x . a . cos 30°;
4 2

je totiž <£ACM = 30°, neboť bod M leží podle (2) na
ose úsečky AB. Úpravou vztahu (3) dostaneme pro ne-
známou x kvadratickou rovnici

3x2 + 2ax}/3 — 4a2 = 0 .

Její diskriminant D = 60a2 je kladné číslo. Kořeny rov-
nice (4) jsou

1
x2 = (3)

(4)

2a. ]/3 ±2.1/15a
= ± |/5 - 1 (5)л: =

уз6

Záporný kořen (5) nemůže být řešením úlohy3 zbývá
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tedy jediné možné řešení
ь

x —

- 1
(6)?з '

Tím je ukončen rozbor úlohy.
b) Sestrojíme rovnoramenný trojúhelník ABM tak, aby

platilo (2'), kde x je dáno vzorcem (6), a aby bod M
ležel v polorovině ABC. Je to možné, neboť platí 2x > a,
jak se snadno přesvědčíme tímto výpočtem: z nerovnosti

2-ť^i (7)a > a

1/3
vyplývá postupně

2(1/5 - 1) > 1/3,
1/20 >2 + ]/3.

Poslední nerovnost je pravdivá, neboť je ]/20 >4 >2 +
+ ]/3; obrácením postupu pak dostaneme nerovnost (7).

Bod M takto sestrojený padne dovnitř trojúhelníku
ABC, neboť je

Vl5 — 1/31/5
я = —

У 5
• а = -—

- 1
• а <

Р 3

4 - 1,6
• а = 0,8а < а .<

3

Bod М padne vně kružnic kls k2 (a tudíž i vně &3),
právě tehdy, platí-li я > 1, neboli podle (6)

У 5 — 1
a > 1 ,

P
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tj. platí-li
^1/5+1 .

a

Obr. 4b

Platí-li nerovnost (8), je bod M řešením úlohy, a to
jediným, jak vyplývá z obrácení postupu.

Nerovnost (8) je tedy podmínkou řešitelnosti úlohy.
Konstrukci ukazuje obr. 4b.

6. Najděte všechna čísla x3 pro něž platí nerovnosti
(1)

(2)cos 2x > tg

Řešení, a) Předpokládejme nejprve, že л: Ф 7c, ~ TU,
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3 7
—7i. Je-li * řešením, pak z nerovnosti (2) postupně4

-r- a
4

plyne
1 — tg л:

1 + tg x ’ (2')2cos2* — 1 ^

2 1 — tg л:
- 1

1 + tg л: 51 + tg2*
1 — tg2* > 1 — tg *
1 + tg2* 1 + tg * 5

(1 — tg *)[(! + tg *)2 — (1 + tg2 *)]
(1 + tg2*) (1 + tg *)

1tg* tg* O,
1 + tg2* 1 + tg *

1
(2")tg„g^-*)£<),

1 3
neboť pro * různé od —тс,—тс je 1 + tg2* > O .

Jsou dvě možnosti, jak splnit (2"), a tím i (2'):
Případ [1]. Nechť zároveň platí

(i*-*) (3)tg

(4)tg * ^ O .

Ze (4) pro * vzhledem к (1) dostáváme intervaly
3 \—TC .

2 J
S o, (4')

39



Místo (3) pišme tg — -^-tc j ^ 0; tento vztah bez
ohledu na (1) platí právě tehdy, je-li

1 1
— TC ^ TC -j- flJZ ,

4

kde n je libovolné celé číslo [které dodatečně omezíme
požadavkem (1)]. Odtud

тс + mc < л; —

2

3
, . 5 ,

— TC WTC <1 S — TC + ПТС . (5)
4 4

Omezme n vzhledem к požadavku (1):
Pro n — — 1 již se zřetelem к (1) dostáváme

0 < x ^ — 7T . (6)
4

Pro n = 0 máme
3 5

4 4

Pro n — 1 vzhledem к (1) je
7

^ „
тс < x ^ 2tc .

(6')

(6")
4

Společné části intervalů (4') a (6) až (6") jsou
1

(6'")0, — тс )>
4 /

^ —
4/

Případ [2]. Neciť platí zároveň

(r_>) (7)tg

(8)tg л: ^ 0 .

40



Z (8) plynou intervaly

(i*’’ * (г’2кУ- (8')

Místo (7) pišme tg — -^7uj 0, a tedy bez zřetele
к (1) je

1 1
— 7U + ПТХ ,

2
x TC <nnv

4

kde w je libovolné celé číslo; odtud dostáváme
1

, . 3 ,
—TU -|- WU # <C — 7U + W7U.
4 4

Volba čísla n je omezena požadavkem (1); jsou tyto dvě
možnosti:

Pro n — 0 dostáváme

1
^ 3

7T bs x < —7t; (9)
4 4

pro и = 1
5 7

(9')л: < —7u .
— 7U

44

Společné části intervalů (8') a (9), (9') jsou:

(br)* (br)- (9")

13 3
b) Předem jsme vyloučili případy x —

7
-T-7t; první dvě hodnoty však vyhovují (1) a (2), další4

4
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dvě nikoli. Dostáváme tedy intervaly
/i 3 \ /3<4 2* 4/’ <2

7
(9'")TU

4

Pro čísla * z intervalů (б'"), (9") lze postup obrátit, takže
(б'"), (9") jsou všechna požadovaná řešení úlohy.

Jiné řešení. Daný vztah (2) upravujme takto:
1 — tg x

1 + tg x ’
cos x — sin л;

cos x + sin x

(cos x — sin x)2
cos2* — sin2*

— sin2*

cos2*

Úpravy byly provedeny za předpokladu, že je * různé
od čísel

(10)cos 2x ^

cos 2x >

(11)COS 2x

1
(12)cos 2x

13. 13
— 7Г, —тс [viz (10)], —TU,—
2 2 4 4

3 7
která až na 7u, -^-7u vyhovují (2).

Nerovnost (12) lze splnit dvěma způsoby:

5 7
(13)TCj i L ^

4 4

Případ [1]. Nechť je cos 2x > 0; pak ze (12) plyne
postupně

cos22* ^ 1 — sin 2x ,

sin 2x (1 sin 2x) ^ 0 .
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Druhý činitel vlevo je vždy nezáporný a máme tedy
celkem požadavky

sin 2x ^ 0 ,

Ty platí při libovolném celém n pro x z intervalů
cos 2x > 0 .

1
n . 2tí ^ 2x < — к + n . 2ти

2
neboli

1
wtu ^ x < —tu + mr. ^

4

Vzhledem к (1) jsou možné tyto dvě volby čísla n:
pro n = 0 máme

1
0 íí v < —тс;

4

pro n — 1
, 5

TU ^ л: < —TU .

4

Připojíme-li přípustné hodnoty z (13), obdržíme intervaly

(14)

Případ [2]. Nechť je cos 2x < 0; pak ze (12) postupně
plyne

cos22jc ^ 1 — sin 2x ,

sin 2x (1 — sin 2x) ^ 0 ,

kde druhý činitel vlevo je nezáporný, a tudíž celkem
cos 2x < 0 .

Ty platí při libovolném celém n pro л; z intervalů
sin 2x 0,

3
2x < — tu + n . 2ntu + n . 2tu

2
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neboli
1

, 3
—7Г + ПП 5== Я < —
2 4

7Г -j~ TVK .

Vzhledem к požadavku (1) jsou možné tyto volby čísla n:

pro n = 0 máme
1 3

—n я < —тс;
2 4

pro w = 1
3 _ 7

— ТС íS Я < —7Г .

2 4

3 7
Podle poznámky к (13) čísla -^-7c, vskutku nevyhovují
(1) a tak dostáváme intervaly

/i 3 ч / 3
\2 4 / \2 H (45)

Postup lze pro čísla я z intervalů (14), (15), pokud jsou
různá od čísel (13), obrátit. Tím jsou tedy nalezena všechna
řešení.

2. Úlohy II. kola kategorie A

1. Riešte nerovnost’

3 cotg я — |/з tg x ^ 3 — У3 .

Riešenie. Ak я je riešením nerovnosti (1), je nutné
x Ф k . 90°,

kde k je 1’ubovol’né celé číslo. Upravujme postupné ne-

(1)

(2)
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rovnost’ (1) pre я, ktoré je jej riešením:

— (1 — tg x) + 1/з (1 — tg x) ^ 0 ,

tg x

(1~tgHÍc+p) ^0,

3(1- tg*).(cotgx + ^|/3j ^0,

^cotg # + yV3) = 0 • (3)(1 — tg *) •

Rozlišujme teraz dve možnosti (v ďalšom je n lubovolné
celé číslo):

Případ [1]. Nech obidva činitele na lávej straně vztahu
(3) sú nezáporné, t. j. /

tg x ^ 1, cotg x

Musí teda súčasne platit’ jednak [vzhladom na (2)]
jedna z nerovností

45° + n . 180°,
90° + n . 180° < x < 180° + n . 180°

n . 180° < x

a jednak jedna z nerovností

n . 180° < x < 90° + n . 180°,
90° + n . 180° < x ^ 120° + n . 180° .
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Spoločné časti týchto intervalov sú (pozři obr. 5 pre
n — 0):

n . 180° < x ^ 45° + n . 180°,
90° + n . 180° < x ^ 120° + n . 180° . (4)

0° 45° 90° 120° 180°

Obr. 5

Případ [2]. Nech oba činitele na 1’avej straně vztahu

(3) sú nekladné, t. j. tg x ^ 1, cotg x ^
teda platit’ jednak [vzhladom na (2)] nerovnosť

45° + n . 180°

a súčasne nerovnost’

120° + n . 180°

Tieto dva intervaly však nemajú spoločnú časť.
Od čísla x daného niektorou z nerovností (4) možno

prejsť obrátením postupu к (1). Vzťahom (4) sú teda
dané všetky riešenia danej nerovnosti.

2. V rovině je dán rovnoramenný pravoúhlý trojúhelník
ABC s přeponou AB. Vyšetřte množinu všech vrcholů Z
rovnostranných trojúhelníků XYZ} které vzniknou, když
bod X probíhá vnitřek úsečky CA, bod Y probíhá vnitřek
úsečky CB a polorovina XYZ obsahuje bod C.

Řešení (obr. 6). Zvolme pevný bod X mezi body A,
C a nechť je XYZ jeden z trojúhelníků, který splňuje

jl/3. Musí

x < 90° + n . 180°

x < 180° + n . 180°.
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podmínky úlohy. Pak bod Z vznikne otočením bodu Y
kolem X o úhel velikosti 60°v záporném smyslu (viz

u

obr. 6). Probíhá-li bod Y vnitřek úsečky BC, probíhá
bod Z vnitřek úsečky TU3 která vznikne otočením úsečky
CB kolem X o úhel velikosti 60° v záporném smyslu.
Bod T vznikne tedy otočením bodu C kolem X o úhel
velikosti 60° v záporném smyslu, tj. bod T je vrcholem
rovnostranného trojúhelníku XCT3 ležícího vně troj-
úhelníku ABC.

Probíhá-li nyní bod X vnitřek úsečky AC, probíhá
bod T vnitřek úsečky CD; přitom D je vrchol rovno-
stranného trojúhelníku ACD sestrojeného v polorovině
opačné k’ polorovině ACB (obr. 7). Úsečky TU jsou
navzájem rovnoběžné (je TU _L XT//AD) a leží všechny
v polorovině opačné к CDA. Všechny úsečky TU vyplní
kosočtverec CDEF; jeho strany DE a CF vznikly po
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řadě otočením úsečky CB kolem středů A, C o úhel
velikosti 60° v záporném smyslu. Hledaný útvar, vy-
plněný vrcholy Z, je tedy vnitřek kosočtverce CDEF.

3. Uvnitř kvádru o daných rozměrech a, b, c zvolme
bod M a sestrojme jeho obrazy v souměrnostech vzhledem
к rovinám, ve kterých leží stěny daného kvádru. Obdržíme
tak 6 vrcholů osmistěnu, který má právě tři navzájem
kolmé tělesové úhlopříčky.

Vypočtěte objem tohoto osmistěnu i objem tělesa, které
je společnou částí osmistěnu a daného kvádru. Dokažte,
že oba tyto objemy nezávisí na volbě bodu M.

Řešení. I. Uvažujme tři navzájem kolmé roviny stěn
kvádru (obr. 8), které jdou bodem A\ a označme vzdá-
lenosti bodu M od těchto stěn x> у, z (levá, přední, horní
stěna), což jsou kladná čísla. Jsou-li a = AB, b — AD3
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с — AA' rozměry kvádru, рак а
vzdálenosti bodu М od rovin stěn kvádru (pravé, zadní,
dolní) jdoucích bodem C. Označme Ml3 ..., M6 obrazy
bodu M v uvažovaných rovinových souměrnostech, a to

x3 b — y3 c — z jsou

VY\
z p i

oj-
/

/
/

A

Obr. 8

Mls M2} M3 podle stěn levé, přední a horní, jdoucích
bodem A'3 a Aí4, M5, Aí6 podle stěn pravé, zadní a dolní,
jdoucích bodem C; jsou tedy МгМ^ M2M5, M3M6 těle-
sové úhlopříčky vzniklého osmistěnu. Platí

MMX ----- 2x3 MM2 — 2y3 MM3 — 2z3
MM4 = 2(a - x)3 MM, = 2(b - y)3 MM6 = 2(c - z)3
tedy
MXM4 = 2x + 2(a — x) — 2a, M2M5 = 2b3 M3M6 = 2c.

Objem kvádru je К = abc. Objem V osmistěnu vy-
počítáme jako objem dvoj jehlanu, např. s podstavou
MXM2M4M, (což je čtyřúhelník s kolmými úhlopříčkami
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мхм43 М2МЪ
M6 jehlanů, jejichž výšky jsou 2z3 2(с — я). Označme P
obsah zmíněného čtyřúhelníka; platí

viz obr. 9) a s hlavními vrcholy M3,

1 1

^MxM4.M2M5 = j
(čtyřúhelník snadno doplníme na obdélník s rozměry
MXM4) M2M5 a s dvojnásobným obsahem 4ab — viz
obr. 9). Součet objemů jehlanů je

P = .2a .2b — 2ab

1 1 1
P. MM3+ P. MM6 = -P. (MM3 + MM6) =

3 3 3

4
-K.

v =

1 1
= — P . M3M6 — — 2ab . 2c =

3 3

Objem osmistěnu je nezávislý na
poloze bodu M uvnitř kvádru a platí

4
-K.

3

ffb
7'!

//iF =

3

/ I

4 //i/ /

/i'!/
/

/!/

/ I / I/

i/
7 / P

Ac -/
/\ i

/Obr. 9 4

v
Obr. 10

%
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II. Označme L3 P3 H paty kolmic z bodu M na stěny
levou, přední a horní, jdoucí bodem A' (obr. 10). Troj-
úhelník LMP, kde <£ M = 90°, doplníme na obdélník
LMPZ se středem 5; přitom bod Z leží na hraně AA'
kvádru. Stejnolehlost o středu M a poměru 2 převádí
trojúhelník LMP v trojúhelník MXMM2 a střed strany
LP (a strany MZ) převede ve střed strany MXM23 což
je bod Z. Protne tedy hrana МгМ2 osmistěnu hranu A'A
kvádru. To se při vrcholu A' kvádru opakuje i pro hrany
M2M33 A'B'; M3M13 A'D'. Označme M2M3 . A'B'=
= X; M3Mt. A'D' = Y; pak platí

A'X = x3 A'Y = y3 A'Z — z .

Čtyřstěn A'XYZ odříznutý od kvádru stěnou MXM2M3
osmistěnu má objem • ^~xy^z = ^xyz. Obdobných
čtyřstěnů je celkem osm (při každém vrcholu kvádru
právě jeden); označme T součet jejich objemů; vzhledem
к právě provedenému výpočtu platí, že

6 T — xyz + xy(c — z) + x(b — y)z + (a — x)yz +
+ x(b — y)(c — z) + (a — x)y(c — z) + (a — x) (b —y)z+

+ (a — jc) (b — y) (c — z) = abc .

1

•g- К a objem tělesa společného kvádru
a osmistěnu je К — ~ К — J K.

o o

4
Závěr. Objem osmistěnu je у objemu kvádru a objem

společného tělesa je roven ^ objemu kvádru.

Je tedy T =
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4. Ak sú a, b, c, d prirodzené čísla, potom súčin
/a c\ Id b\

\žT ~ d) ' _ ~aj
nie je prirodzené číslo. Dokážte.

Riešenie. Dokaž tvrdenia prevedieme sporom. Nech
platí

(1)

kde k je prirodzené číslo. Po úpravě dostaneme
{ad — bc)2 = kabcd .

Ak položíme ad = x, bc = у, potom (2) možno písať
vo tvare

(2)

(x — y)z = kxy .

Pretože je x > 0, у > 0, vyplývá z toho

(2 + k) (-1 = 0.
У

Číslo xy je nutné racionálně a preto vo vzorci
(f)‘ (3)

— ^2 + k i ]/
pre kořene rovnice (3) je diskriminant D = (2 + ky — 4
(ktorý musí byť celým číslom) nutné rovný druhej
mocnině nezáporného celého čísla m, t. j. (2 + ky — 4 =

- m2 čiže (2 + k)2 — m2 — 4 a teda
(2 + & + m). (2 + k — m) = 4 .

Prvý činitel’ na 1’avej straně je kladné číslo, preto je
nutné kladný aj druhý činitel’. Sú to okrem toho čísla
párne, pretože ich súčin je 4 a rozdiel je 2m. Jediná
možnost’ je 2 + k + m = 2, 2 + k — m — 2, t. j. k = 0,
čo je však spor s predpokladom, že číslo k je prirodzené.
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Iné riešenie. Dokážme, že předpoklad (1), kde k je
prirodzené číslo, vedie к sporu.

Bez ujmy na všeobecnosti možno předpokládat’, že
dvojica prirodzených čísel a, b i dvojica c, d sú nesúdeli-
telné čísla. Nech P je najváčší spoločný delitel čísel
a, c a Q najváčší spoločný delitel’ čísel b, d. Možno teda
položit’

a = PA, c = PC, b = QB, d = QD, (4)

kde А, В, C, D sú nějaké prirodzené čísla, pričom čísla
A, C i čísla B, D sú nesúdelitelné. Po dosadení zo (4)
do (1) postupné dostaneme

АР CP

QB QD
QD QB
PC PA( И

číže

(MHf-5)-*-
(AD - ВСУ = k ABCD .

Nech niektoré z čísel А, В, C, D je rožne od čísla 1,
napr. číslo A. Označme p jeho prvočíselného delitela.
Potom je pravá strana rovnosti (5) dělitelná číslom p
a teda aj straná 1’avá. Tam je však číslom p dělitelné AD,
preto aj BC je nutné dělitelné číslom p. Je tedy nutné
bud dvojica А, В alebo dvojica A, C dělitelná číslom p,
čo je spor.

Preto nutné platí А — В — C — D = 1. Je teda
a — P — c, b = Q = d, čo je spor s tým, že čísla a, c
i čísla b, d sú nesúdelitelné s výnimkou případu: a =
= c — 1, b == d = 1. V tom případe však z (1) vyplývá
k = 0, čo je spor s tým, že k je prirodzené číslo. Tým
je dokaž tvrdenia převedený.

(5)
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3. Úlohy III. kola kategorie A

1. Je-li n celé nezáporné číslo, potom číslo
^2w+l 2w+2 _|_ 3W+2 22m+1

je dělitelné devatenácti. Dokažte.
První řešení. Dané číslo lze psát ve tvaru

5.22.52n . 2" + 32.2.3n . 22n = 20.50й + 18 . 12n=
= 19.50“ + 19 . 12” + 50» - 12” .

Protože číslo 50й— 12й je pro každé celé n ^ 0
dělitelné číslem 50 — 12 = 38 = 2 . 19, je dané číslo
dělitelné devatenácti pro každé celé n ^ 0.

Druhé řešení matematickou indukcí. Pro n = 0 platí
51.22 + 32.21 = 20 + 18 = 38 = 2 . 19, což je číslo
dělitelné devatenácti.

Předpokládejme nyní, že pro některé celé nezáporné
číslo n je číslo 52”+1.2”+2 + 3W+2 . 22n+1 dělitelné deva-
tenácti a uvažujme číslo 52w+3 . 2И+3 + Зи+3 . 22и+3,
jež stručně označíme A. Platí
^ __ $2n+i 52 2И+2 2 + 3ra+2 3 22w+1 22 =

__ 5Q 52W+1 2n+2‘ -)- 12 3n+2 2ŽW+1 =
— 38 52n+1 2re+2 -J- 12(52w+1 2n+2 -j- 3W+2 22w+1)
Číslo 38 je dělitelné devatenácti a také poslední číslo

v závorce je podle indukčního předpokladu dělitelné
devatenácti. Z toho plyne, že též číslo A je dělitelné
devatenácti. Tím je důkaz podán.

2. V rovině je daná úsečka AM dlzky d. Ďalej je dané
kladné číslo v.

Zostrojte pravoúhlý trojuholník ABC s přeponou AB,
ktorého výška kolmá к prepone má dlzku v a ktorého
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MB 2
odvěsna ВС je bodom M rozdělená v pomere MC 3'
Převeďte diskusiu riešitelnosti vzhladom na čísla d> v.

Riešenie. Podlá obrátenej Thaletovej vety leží vrchol
C každého z hladaných trojuholníkov na kružnici kx =

= ^Sx', zostrojenej nad priemerom AM. Rovno-
lahlosť so stredom M a koeficientom — ~ prevedie bod C
do bodu В a súčasne kružnicu kx do kružnice k2 =

. Bod В leží teda na kružnici k2.
Označme po radě P, Q pá-

ty kolmic spuštěných z bo-
dov С, M na priamku AB. >

Potom je CP — v a rovno- /
lahlosť so stredom В a koe- /

2 CS
ficientom у prevedie body C, ý
P po radě do bodov M, Q.

2
Je teda MQ = ~cv- Z toho
vyplývá: Priamka AQ, na
ktorej leží vrchol В, je dotýč-
nicou kružnice к

vedenej bodom A (obr. 11).
Tým je převedený rozbor úlohy. Předpis konštruk-

cie je takýto: Zostrojíme kružnicu kXi na polpriamke AM
4

zostrojíme bod S2 tak, aby bolo AS2 = -=d a opíšeme3
kružnicu k2. Potom zostrojíme kružnicu vedieme к nej

=M)
A,

к

S\d

tř

, \ ъ \

Obr. 11
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dotýčnice z bodu A a určíme spoločné body týchto
dotýčnic a kružnice k2. Tým sú nájdené všetky body B.
Vrcholy C hladaného trojuholníka 1’ahko doplníme.

Skúška. Z predchádzajúcej konštrukcie je vidieť, že
body А, В, C, pokud existujú, sú nekolineárne, že troj-
uholník ABC je pravoúhlý (C leží na кг)3 že platí
MB 2

= — (C leží na k13 В na k2) a že vzdialenosťMC 3 / 2 \
vrcholu C od priamky AB je v I je totiž MQ = —v 1.
Trojuholník splňuje teda podmienky úlohy.

Diskusia. Kružnice k13 k2i к možno narýsovat’ vždy.
Dotýčnica kružnice prechádzajúca bodomŤí má s kruž-
nicou k2 spoločný aspoň jeden bod len vtedy, ak bod A
leží zvonku kružnice x, t. j. ak platí:

, 2d > —v . (1)
5

Dotýčnica vedená ku kružnici ^ z vonkajšieho bodu A
s kružnicou k2 spoločný aspoň jeden bod právě vtedy,
ak je

d2

5 V ^ 3
(2)iyd

3

Nerovnosti (1), (2) upravíme na tvar
5d > 2v , 8v ^ 5d .

Ak je splněná druhá z nerovností (3), je splněná aj prvá
a úloha je riešitelná. Podmienka riešitelnosti úlohy je teda

(3)

5v

d 8
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Ak nastane nerovnost’, má úloha štyri riešenia (dve dvojice
trojuholníkov súmerne združených podl’a priamky AM).
Ak nastane rovnost’, má úloha dve riešenia (jednu dvojicu
trojuholníkov súmerne združených podlá priamky AM).

3. V oboru reálných čísel řešte rovnici
]/xz — 2x — 1 + ]/x2 + 2x — 1 — p}

kde p je dané reálné číslo.
Proveďte diskusi řešitelnosti vzhledem к číslu p.

(1)

Řešení. Předpokládejme, že л; je řešením dané rovnice
(1). Je pak tedy jednak

(2)P ^0,
jednak x2 — 2\x\ — 1^0, neboli

(:к2 - l)2 ^ 4x2 .

Umocněním obou stran v (1) dostaneme
1 + 2]/ (x2 —l)2 — 4x2 = p2

(3)

x2 — 2x — 1 + x2 + 2x
neboli

2|/(jc2 - l)2 - 4x2 = p2 - 2(x2 - 1) .

Odtud vyplývá, že
(4)

p2 ^ 2(x2 - 1). (5)
Umocněním (4) dostaneme

4[(*2 - l)2 - 4x2] =p*~ 4p2(x2 — 1) + 4(л:2 — l)2,
čili

4x2{p2 — 4) = p\p2 + 4) .

p2 - 4 > 0

(6)
Je proto

(7)

57



a naše řešení л; je jedno z čísel

= , + 4
1,2 2 \ p% — 4'

(8)
Z (5) a (8) plyne

P\P% + 4)(p2 ^ 2 1
4(p2 - 4)

neboli vzhledem к (7)
2O2 - 4)p2 ^ p2(p2 + 4) - 4(p2 - 4) .

Odtud vyplývá
p4 - 8p2 — 16 ^ 0 ,

4(1 + 1/2)] [p2 + 4(1/2 - 1)] Й 0 .

P2 S 4(1 + 1/2)

tj-
lř2

Je proto

neboli vzhledem к (2)
p ž 2]/l + 1/2 .

Tím jsme dokázali: Má-li rovnice (1) řešení, je řešením
jedno z čísel (8) a pro číslo p platí nerovnost (9). Ukažme
nyní, že je-li pro číslo p splněna nerovnost (9), pak každé
z obou čísel (8) je řešením.

Je-li totiž splněna podmínka (9), pak čísla x13 x2 daná
vztahem (8) existují a vyhovují vztahům (6), (5), tedy
i (4). Protože je splněna rovnost (4), platí i (3), obě
odmocniny v (1) mají smysl a platí i (1).

Celkem tedy dostáváme závěr:
Daná rovnice má řešení právě tehdy, je-li

p ^ 2]/1 + У2. Řešení jsou dvě a jsou dána vzorcem

(9)1

- ±X\,2.
- 4'
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4. Nádoba má tvar duté krychle umístěné tak, že její
tělesová úhlopříčka AP je ve svislé poloze, a platí AP = 1.
V nádobě je voda; část tělesové úhlopříčky AP, která je
ponořena ve vodě, má délku x.

Vyjádřete objem у vody v nádobě pomocí čísla x
pro tyto dva případy:

a) 0 < x ^ —;
3

Řešení (obr. 12). 1. Označme В, C, D vrcholy krychle,
které leží na hranách vycházejících z vrcholu A, dále

1 1
b) — < x ^ — .

3 2

E, F, G vrcholy krychle, které leží na hranách vycházejí-
cích z vrcholu P. Roviny BCD, EFG dělí tělesovou
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1
úhlopříčku na tři úsečky délky y. To snadno dokážeme.
ABCD je pravidelný jehlan trojboký, jehož podstava
BCD je rovnostranný trojúhelník o straně délky
jeho pobočné stěny jsou pravoúhlé rovnoramenné troj-
úhelníky, jejichž odvěsny mají délku

Přímka AP je kolmá ke každé z přímek BC, CD, DB,
proto je kolmá к rovině BCD a obsahuje příslušnou
výšku v jehlanu ABCD. Vypočteme dvojím způsobem
objem tohoto jehlanu; dostaneme

n
1

Уз'

. mr1
—

. 1/3 • -
4 1 36

1
Odtud vyjde po úpravě v — což jsme chtěli dokázat.
Ze souměrnosti krychle podle průsečíku jejích tělesových
úhlopříček vyplývá, že také rovina EFG dělí tělesovou
úhlopříčku AP v poměru 1:2.

2. Pokud je číslo x v intervalu 0 < л:
1
—, tvoří voda
3

v nádobě pravidelný trojboký jehlan AB1C1D1; jeho pod-
stavou je rovnostranný trojúhelník B^C^D^ příslušná
výška jehlanu má délku jc a pobočné stěny jsou pravoúhlé
rovnoramenné trojúhelníky s odvěsnou délky s. Jako
v odst. 1 vypočteme dvojím způsobem objem tohoto
jehlanu; dostaneme

1
s3 —У =

6
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Z rovnosti objemů vyjde po úpravě s — xj/3 a dále
1
~x3]/3 . (1)=

1 1
3. Je-li číslo x v intervalu-^- < x ^ -r-, vytvoří voda3 2

v nádobě těleso, jež dostaneme, oddělíme-li od pravidel-
něho trojbokého jehlanu AB2C2D2 tři navzájem shodné
jehlany (vyšrafované na obrázku 12).

Jako v odst. 2 označme AB2 — AC2 = AD2 — s;
stejně jako dříve dostaneme

5 = х]/3.
Objem jehlanu AB2C2D2 je tedy opět — хг]/3. Každý
z vyšrafováných jehlanů je pravidelný jehlan trojboký;
délku jeho pobočné hrany označme z. Situaci v rovině
ABD znázorňuje obr. 13. Protože je AB — AD =

(2)

1

1/311
je podle (2) z — BB2 = s —

y= — y^(3x — 1). Objemkaž-
d2

E D

Ba

B? z В A Obr. 13
s
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dého z vyšrafováných jehlanů je— zs = — • —

l/т 6 6 31/3
= (Зх — l)3. Objem vody v případě 3 je tedy

1 1 1 ]/3
-s3-3.-23= -X3]/3 - (3x - l)3.

Po úpravě dostaneme

(3x—1)3=

У =

у = Vď (1 - 9x + 27x2 - 18x3) .18

Funkce (1), (3) jsou řešením úlohy. Rovnice (3) platí
/L jak se přesvědčíme dosazením: z (1) i (3)3

j
dostaneme pro v = - výsledek у =

(3)

i pro X
1/3
54 •

4. Úlohy I. kola kategorie В

1. Řešte nerovnost

1 — ]/l — 2x3 (1)
x

Řešení. Nutně je x Ф 0. Vztah (1) lze psát
x — У1 — 2x2 < 0

1 - (2)
x

Nechť je 1 — 2x2 ^ 0, tedy
1

2V2.
Rozlišme případy x > 0 a x < 0.

(200 < |x|
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Případ [1]. Pro x > 0 musí ve (2) být

1 - x - Vi ^2хг á o

1 - X- ^ f1 - 2x%.
Vlevo [viz (2')] je nezáporné číslo, tj. 0 < л: ^ —]/2;

(2")
neboli

umocněním obou stran nerovnosti na druhou dostaneme
postupně

1 - 2x + x2 ^ 1 - 2xz,

х{Ъх — 2) ^ 0 .

Protože je x > 0, je nutně 3x — 2 ^ 0 neboli

(2"0

2
(3)0 < x

3 '

Obrácením postupu pro takto stanovené л; dospějeme ke

(2'"). Tu musí být 1 — 2л:2 ^ 0 neboli ~

1/2 2 2
pusťme, že platí ť—- ^ —; umocněním na druhou do-2 3

14 9 8
jdeme ke vztahu — 5Í — neboli jg = jg
Lze tedy od (2"') dále dospět až ke (2"), (2) a (1).

Případ [2]. Pro x < 0 musí ve (2) platit
l-x- У12x2 ž 0

Г2
= X. Při-

, což je spor.

neboli
1 - x^]/l ~2x2. (4)

Vlevo je nutně nezáporné číslo, tj. 1 — x ^ 0 a tedy
1 ^ x3 což je pro л: < 0 splněno. Umocněme (4) na
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druhou; postupně dostáváme
1 — 2x + x2 ^ 1 — 2x2 ,

х(3л: — 2) ^ 0
a protože je jc < 0, je nutně 3x — 2 ^ 0 neboli

(4')
(4")

*
—

3 5
což podle předpokladu platí.

Obrácením postupu pro jc < 0 od (4") dospějeme ke
(4'); chceme-li přejít ke (4), musíme požadovat, aby bylo
1 -

dává

2x2 ^ 0 neboli |*| У2, což vzhledem к * < 0

-

2 !'ž •
Pak lze již přejít ke (2) a (1).

Závěr. Řešení nerovnosti (1) jsou dána intervaly (3)
a (5) (viz obr. 14).

(5)x < 0 .

Obr. 14

2. Dokážte, že číslo 48 je delitelom čísla
N = n\n + 1 )\n — 1) (n — 2)

pre každé prirodzené číslo n > 2.
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Riešenie. Platí: 48 = 24.3. Číslo N bude dělitelné
číslom 48, ak je súčasne dělitelné číslami 3 a 16. No,

N = (n — 2) (n — 1 )n(n + 1 )n(n + 1),
kde napr. čísla (n — 1), n, (n + 1) sú tri bezprostředné
za sebou následujúce prirodzené čísla, o ktorých je známe,
že právě jedno z nich je dělitelné číslom 3.

Teraz rozlišujme dve možnosti:
Případ [1]. Nech n je párne číslo. Ďalej rozlišujme:
a) Nech n — 2(2k +1), kde prirodzené číslo k ^ 1

(vzhladom na předpoklad n > 2). Potom je n — 2 =
= 2{2k + 1) — 2 = Ak, t. j. je dělitelné štyrmi. Každý
z činitelov и2, n — 2 čísla

N — (n — 2) (n — 1 )n\n + l)2 (1)
je dělitelný štyrmi a teda číslo N je dělitelné číslom
4.4 = 16.

Ak, kde prirodzené číslo
1 (opáť vzhladom na předpoklad n > 2). Potom je

w2 v (1) dělitelné číslom 42 = 16.
Tým sme případ [1] vybavili.

b) Nech je n — 2.2k
k

Případ [2]. Nech je n nepárne číslo. Položme n + 1 =
= m, kde m > 3. Potom je

l)2m2
a opakujme úsudky z případu [1] pre párne číslo m
(namiesto predchádzajúceho ti). Platia rovnaké závěry
ako v odstavcoch [la], [lb].

Tým sme vybavili případ [2] a zároveň dokázali
tvrdenie pre prirodzené čísla n > 2.

N = (m — 3) (m — 2) (m

3. Zostrojte trojuholník ABC, ak sú dané dížky stráň
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АВ, АС а ак platí <£ВСА — 3.<£АВС. Určité pod-
mienku riešitelnosti.

Riešenie (obr. 15). Rozbor: O uhloch (3, у troj-
uholníka ABC podlá textu úlohy platí у — 3(3, t. j.

c

2p\P
b

c-b

2P, P£\
A D c-bb

Obr. 15

у > (3 a tedy nutné platí c > b. Vo vnútri úsečky AB
zostrojme bod D tak, aby platilo DB — DC, takže je
<X.BCD = [3. Potom v trojuholníku ADC je <£ACD =
= 2(3 a uhol <yADC je vonkajším uhlom rovnoramenného
trojuholníka DBC, ktorý má pri základní BC zhodné
uhly velkosti [3, takže <)CADC = 2(3. Trojuholník ADC
je teda taktiež rovnoramenný trojuholník so základňou
DC, pri ktorej má uhly s velkosťou 2(3. Preto platí
AD = AC = b a teda DC = DB = AB
Trojuholník ADC má tedy ramená AD — AC = b a
základňa DC

AD = c — b.

c — b. Z toho vyplývá konštrukcia:
Z daných dížok Ъ = CA, c — AB zostrojíme troj-

uholník ADC tak, aby platilo:
AC = AD = b .DC — c — b,

Na predlzení úsečky AD za bod D určíme bod В tak,
aby platilo DB = c — b a teda AB = c. Potom ABC
je hladaný trojuholník, pretože strany CA, AB majú dané
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velkosti a platí <£ACD = 2 . <^ABC, čo hned’ dokážeme:
V trojuholníku DBC je podlá konštrukcie DB — DC

a preto uhly pri základní BC majú rovnakú velkost’ /5.
Uhol <^ADC pri základní DC rovnoramenného troj-
uholníka (čo vyplývá z jeho konštrukcie) je vonkajším
uhlom trojuholníka DBC a jeho velkost’ je teda 2/5. Je
teda <£ ACD — 2/5 a preto <$; ACB — <£ ACD +
+ <£ DCВ = 2/5 -f /5 = 3/5, čo sme malí dokázat’.

Diskusi а. К tomu, aby sme mohli zostrojiť trojuhol-
nik ADC, musí pre dížky jeho stráň platit’: AC < AD +
+ DC, AD < DC + AC, DC < AD + AC, t. j. b <
b -\- с — b, c — b < b + b. Z toho vyplývá, že úloha má
jediné riešenie právě vtedy, keď o daných velkostiach c, b
úsečiek AB, AC platí: b < c < 3b.

4. Deltoid ABCD má os súmernosti АС a jeho uhly
pri vrcholoch В, D sú pravé.

Vyjádříte poloměr kružnice vpísanej deltoidu pomocou
dížok jeho stráň.

Riešenie. Označme AB — a,
BC — c, x dížku poloměru vpí-
sanej kružnice. Nech S je střed \-í
hl’adanej kružnice a M, N jej v ' ;
dotykové body po radě so stra-
námi AB, BC. Potom platí:
X = SM = SN = BM = BN
a CN — c — x (pozři obr. 16).
Z podobnosti pravoúhlých troj-
uholníkov CSN, CAB (majú
zhodné pravé úhly a uhol co pri
vrchole C) vyplývá

X C X

A

w

TV''* '

N

MJ

O

Obr. 16Ca

67



z čoho dostaneme
ac

x =
ci -|- c

5. Do dutého rotačního válce s podstavou na vodo-
rovné rovině je vepsána koule К o poloměru 1. Tato
koule se dotýká jednak dolní podstavy, jednak pláště
podél kružnice. Ve zbývajícím prostoru mezi dolní pod-
stavou a koulí К spočívají na dolní podstavě shodné ku-
ličky, které se dotýkají jak pláště válce, tak koule K.

Kolik lze nejvýše takových kuliček, do zmíněného pro-
storu umístit?

i
I 0

в/

/

/

Т/
r_—4os/-

Л \M
1

Obr. 17

Řešení. Viz označení v obr. 17 a 18, kde S'M
= S'T MA = MA' = 1, ST = SF x, SO _L o,
OS = r, <^cSFO = 90°. Kružnice k\ k jsou stejnolehlé
podle středů stejnolehlosti T a A, konstanty stejnolehlosti
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mají absolutní hodnotu
_ AT _ [ 2 - 1

S'T X~AB~]/2 + 1

x+J. =4-2]/2 = 2y2_2 =
Л5' 1/2 1/2

= 2(1/2- 1).

5T
= 3-21/2.

Dále je
55'50

ЛМ

Je tedy
x = 3 - 2l/2, r = 2(1/2 - l) .

Z pravoúhlého trojúhelníku OSF (obr. 18), kde ostrý
úhel <$.SOF — (p3 dostáváme

£ 3-2У2 (3— 2l/2) (1/2 + 1)V
Г 2(1/2 — 1) 2
-V2-U 0,414 = 0;207>>

2
takže je jistě

a podle tabulek
0,207 < sin cp < 0,208

11—°< < 12°,
6

23--° < 2cp < 24°.

Zorný úhel jedné kuličky z bodu O má tedy velikost 299.
Pro hledaný počet p kuliček dostáváme meze

360 360
< p <

24
23—

3
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neboli
15 <p < 17,

a tedy p — 16. Je totiž
360

= 16,9 ... < 17 .

23
3

Kuliček se vejde 16 a to volně (bez vzájemného dotyku).
6. V rovině je dána kružnice k a na ní bod A; vně

kružnice k je dán bod B. Označme A' bod ležící vně
kružnice k, B' bod souměrně sdružený s bodem В podle
osy úsečky AA'. Jaký útvar vyplní všechny takto vzniklé
body B', proběhne-li bod A' vnějšek kružnice k7

Řešení (obr. 19). Veďme libovolnou přímku m1 stře-
dem S kružnice k a označme Ax bod souměrně sdružený
s bodem A podle přímky m1 (Аг zřejmě leží na k).
Zkoumejme, které přímky směru (wx) mohou být osami
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úseček AA', má-li bod A' ležet vně kružnice k. Zřejmě
jsou vyloučeny všechny přímky vyšrafováného pásu ro-
viny (obr. 19), který je ohraničen přímkou mx a přímkou
nx směru (mx) vedenou bodem A. Souměrnost podle
osy nx převede bod В v jistý bod Bx, který náleží kružnici
h = {A\ AB), neboť je AB = ABX. Souměrnost podle
osy mx převede bod В v jistý bod Вí, který náleží
kružnici A* = (5; SB), neboť je SB = SBX ; přímka mx
totiž prochází bodem S. Probíhá-li osa pás roviny (mx, w2),
probíhá obraz bodu В úsečku BxBf (i s jejími krajními
body). Náleží-li tedy osa úsečky AA' směru (mx), pro-
bíhá bod B' přímku BBX s vyloučením úsečky BXB*.

Na obr. 19 je nakreslena situace pro další směr (m2);
zde je z přímky BB2 vyloučena úsečka B2B*.

Jestliže směr (mx) splyne se směrem AS, pak se pás
(mx, nx) redukuje na jedinou přímku mx a úsečka BXB*
na jediný bod B*, souměrně sdružený s bodem В podle
přímky AS’, tento bod В* nenáleží mezi body B'. Úsečky
BXB\ vyplní množinu bodů, z nichž každý leží buď na
jedné z obou kružnic h, h*, nebo náleží vnitřku jedné
a vnějšku druhé.

Závěr. Hledaný útvar U se skládá ze všech takových
bodů B', které náleží současně vnějšku obou kružnic
h, h* nebo^ současně jejich
vnitřkům. Útvar U obsahuje
mimoto ještě bod B, pokud
je В e^é B*’, tato poslední
podmínka je splněna právě
tehdy, neleží-li body A, B, S h
v přímce. Útvar U je zná-
zorněn na obr. 20, je to ne-
vyšrafovaná část roviny.

Obr. 20



5. Úlohy II. kola kategorie В

1. Součet druhých mocnin dvou přirozených čísel je
dělitelný sedmi právě tehdy, jsou-li obě uvažovaná čísla
dělitelná sedmi. Dokažte.

Řešení. Označme А, В uvažovaná přirozená čísla;
pak lze určit s jediným výsledkem celá čísla <2, zx a b, z2
taková, že platí

A = 7a + z1, В — 1b + z2,

kde čísla z1} z2 jsou rovna některému z čísel 0, ±1, i2,
=t3.

Potom součet N = A2 + B2 lze psát
N = (49a2 + 14a*! + z\) + (4962 + 14bz2 + z\) =

= 7x + zf + zi,

kde л: je jisté celé číslo. Jsou-li čísla A, В dělitelná sedmi,
je z± = z2 = 0, takže v (1) je N — 7x, tj. dělitelné sedmi.

Předpokládejme nyní, že číslo N je dělitelné sedmi,
potom, protože Ix je násobek sedmi, plyne z (1), že
nutně i součet 5

tento součet 5 sestavme tabulku:

(1)

z\ + z\ je dělitelný sedmi. Pro

o ±1 ±2 ±3

1 40 9

2 5±1 1 10

4 5 8 13±2

10 13±3 9 18
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Avšak jediné číslo 0 z tabulky je dělitelné sedmi; toto
číslo odpovídá případu zx = z2 = 0, tedy případu, kdy
obě uvažovaná čísla А, В jsou dělitelná sedmi. Tím je
důkaz proveden.

2. Trojuholník ABC má tieto dve vlastnosti:
(1) platí, že ^ABC = 2 . <£ВСА ,

(2) uhol <£ABC je ostrý.
Dokážte, že potom možno trojuholník ABC rozdělit’

priamkou, vedenou vrcholom A, na dva rovnoramenné
trojuholníky, z ktorých aspoň jeden je tupouhlý.

Zostrojte trojuholník ABC, kíorý má obidve před-
chádzajúce vlastnosti (1), (2), ak sú dané dížky stráň
AC — b, AB = c a dokážte, že úloha má riešenie právě
vtedy, keď platí: c]/2 <b < 2c.

Riešenie (obr. 21). Strany a uhly označíme obvyklým
sposobom. Nech hladaná priamka (vedená vrcholom A)
přetíná stranu BC v bodě D. Pretože sú oba uhly
<£ABC = {3, <£ACB = у ostré, leží pata P kolmice
spustenej z bodu A na priamku BC medzi bodmi B,C
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a je АР < с. Pre kružnicu k = (Л; с) je teda bod Р
vnútorný a bod С vonkajší (je totiž b > c, pretože je
/9 > y). Preto medzi bodmi С, P leží bod D kružnice k.

Trojuholník BDA je rovnoramenný so základňou BD
a je <$.ADB = /3. Tento uhol je vonkajším uhlom troj-
uholníka ACD, preto

(1)<£CAD — p — у ~ у .

Trojuholník ACD je teda tiež rovnoramenný so zá-
kladňou АС a je AD — CD — c.

Konstrukci a. Zostrojíme pomocný trojuholník ACD
z daných úsečiek b, c a pomocou kružnice k ho doplníme
na trojuholník ABC.

Diskusia. Vztah 2c > b zaisťuje existenciu pomoc-
ného rovnoramenného trojuholníka DAC, ktorého os
súměrnosti o rozpoluje v bode O jeho základňu AC.
Pretože je /?' = /? < 90°, je uhol <£ ADC tupý. Obrátene,
ak je v pomocnom trojuholníku DAC uhol <£ADC tupý,
má úloha riešenie. Vyjadrime túto skutočnosť pomocou
dížok b, c. Zostrojme pravoúhlý rovnoramenný troj-
uholník АСЕ s přeponou AC, kde E leží na polpriamke
OD. Pretože je у <45°, leží D nutné vo vnútri úsečky

1
OE dížky b. Obrátene, každý bod D, ktorý leží vo

vnútri úsečky OE, vedie к tupouhlému trojuholníku DAC.
Z Pythagorovej vety použitéj na trojuholník CEO, kde
«£ COE -ЧН- 1

90°, dostaneme CE%

CE — Á=. Zrejme je CD < CE čiže c <

2* ’•
4= a teda

b > c]/2. Obrátene, ak platí tento vztah, padne bod D

b

n 1/2
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do vnútra úsečky OE a trojuholník DAC má <£D
tupý. Tým je tvrdenie o riešiteínosti úlohy dokázané.

3. Sestrojte graf funkce

(1)У =

Vp — x

P + x
kde p je dané kladné číslo.

Řešení. Vyšetříme nejprve definiční obor funkce (1).
Aby zlomky pod odmocninami v (1) měly smysl, musí
platit p — x Ф 0, p Ar x ф 0 neboli

x Ф p , x Ф —p .

Dále musí být zlomky (1) nezáporné; to nastane právě
tehdy, když platí (/> — *)(/> + *) >0 neboli

—p < x < p .

(2')

(2)
Položme pro stručnost

p + x (3)- = a,
xP ~

takže (1) zní

(4)У =

1,a+Va
1

Z požadavku (2) plyne a > 0 a — > 0; proto má vždy
smysl i zlomek na pravé straně (4); neboť je vždy

Va+yl>0-
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Rozšiřme zlomek ve (4) výrazem

У a (5:
dostaneme

a —

a2 — 2a + 1 (* - l)2
У =

<**-m
a2 - 1 (a — 1) (a + 1)

tento vztah označíme (6'). Další úpravou dostaneme
a — 1

У =
a + 1

Po dosazení ze (3) dostaneme
p + x

p — x

p + X

- 1
p x — (p — x)

^ X
p x p — x p

У =

p JC

neboli
x

(6)ď =
P

Provedené zjednodušení platí za jistých předpokladů.

Především, že platí (5), tj. že ]/a
1

/ — Ф 0. Ze vztahu
_ i fi i д ' aУa — /— = 0 plyne У a = — (na obou stranách jsou

a2 = 1, a = 1 (neboť je
1

kladná čísla), tj. a =

a > 0). Ze (3) a z rovnosti a = 1 dostaneme
P + *

a 5

1,
p — x
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tj. jc = 0. Tedy <2=1 pro x =
~

iу
0 < <2 Ф 1 a výrazy ]/a — j—, a

0; pro л: Ф 0 je
1
~, a% — 1, které

se vyskytují v (6'), jsou různé od nuly, takže platí i (6).
Avšak pro x — 0 dostaneme z (1), žejy = 0; к tomuto
výsledku však dospějeme i z (6)
pro л: = 0. Vztah (6) poskytuje
pro х z intervalu (2) tytéž
hodnoty jako (1). Grafem funk-

p1 1

* o/l
1

ce (6) je přímka o směrnici —

jdoucí počátkem O souřadnic;
s omezením (2) pak jako graf
funkce dostaneme vnitřek úseč-
ky P= [p> 1L<2 = [—Pí -i]

^viz obr. 22 pro p = ^. Tím
je řešení provedeno.

4. Nad danou úsečkou ЛВ, která má délku c, jsou
v jedné z polorovin vyťatých přímkou АВ sestrojeny
všechny ostroúhlé trojúhelníky ABC takové, že vzdálenost
pat výšek vedených vrcholy А, В je rovna danému
číslu d.

Vyšetřte množinu všech vrcholů C uvažovaných troj-
úhelníků. Proveďte diskusi vzhledem ke kladným čís-
lům c3 d.

Řešení (obr. 23). Trojúhelník ABC požadovaných
vlastností, který leží v polorovině q3 leží nutně (až na
stranu AB) uvnitř pásu/) rovnoběžek AA', ВВ', kolmých
к přímce AB. Je známo, že v ostroúhlém trojúhelníku
padnou paty výšek dovnitř jeho stran. Proto paty M, N
výšek jdoucích vrcholy A, В trojúhelníku ABC leží uvnitř

L

Q

Obr. 22
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pásu p i uvnitř poloroviny q ; tam leží tedy i celá úsečka
MN i bod C. Trojúhelníky ABM3 ABN jsou pravoúhlé
a body M3 N tedy leží na Thaletově kružnici k = ; -^-cj.
Úhly *£MAN3 <^MBN jsou po řadě částmi ostrých úhlů

<£CAB3 <^cCBA a tudíž ostré; jsou to obvodové úhly
v kružnici k nad tětivou MN a oba tedy leží na větším

/ N

oblouku MN kružnice k. Jsou proto shodné a o jejich
velikosti co platí co < 90°. Z trojúhelníků ACM3 BCN3
kde <£M = -$N = 90°, plyne, že у = <£ВСA = 90° -
— co < 90°. Bod C tedy leží uvnitř p a uvnitř q na jistém
oblouku m3 z jehož bodů je úsečku AB vidět pod ostrým
úhlem 90° — co. Zvolme body A'3 B' přímek AA'3 BB'

s' N

právě na oblouku m3 bod C tedy leží uvnitř oblouku A'B'.
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Je-li obráceně C zvolený bod uvnitř oblouku A'B', je
<£BCA = 90° — co a polopřímky АС, BC leží uvnitř
pravých úhlů <£.BAA', <£ABB'; proto obě tyto polo-
přímky protnou k uvnitř g v bodech M, N a je AM _|_ ВC,
BN ± AC. Proto i trojúhelníky ACM, BCN mají při
M, N pravé úhly a platí <£CAM = <$.CBN = co. Je
tedy tětivu MN kružnice k z bodů А, В vidět pod kon-
stantním ostrým úhlem co, tj. všechny úsečky MN mají
konstantní délku d. Takto sestrojený trojúhelník ABC
splňuje proto požadavky textu úlohy. Tím je obrácení
provedeno.

Hledanou množinou všech bodů C je tedy vnitřek
popsaného oblouku A'B'.

Pokud jde o existenci trojúhelníků ABC, je zřejmě
nutné a stačí, aby tětiva MN délky d padla celá dovnitř g ;
pak jsou však úhly <£ABM, <£BAN ostré, jejich součet
menší než 180° a podle Eukleidova axiómu mají polo-
přímky AN, BM společný bod C uvnitř g a uvnitř
pásu p. Tětiva MN kružnice k tedy není průměrem,
tj. úloha má řešení, právě když je d < c.

6. Úlohy I. kola kategorie C
1. Je dána rovnice s neznámou x:

*..+ а _l * + b + * + c = _ •
b + c + а а + b 6 5

přitom reálná čísla а, b, c (vesměs různá od nuly) splňují
podmínku а + b + c = 0.

a) Dokažte, že rovnice má kořen a vyjádřete ho pomocí
čísel a, b, c.

b) Dokažte, že kořen rovnice a číslo abc jsou téhož
znamení.

1
(1)
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Řešení. Protože je a + b + c — 0, lze rovnici (1)
psát ve tvaru

x + a x + b 1X + C
— 0;+ ~+i+

ba

po znásobení číslem 6abc Ф 0 dostáváme postupně
6(bc + ca + ab)x + 3.6abc + abc — 0 ,

3.2(bc + ca + ab)x = — \9abc . (2)
Ze vztahu a + b + c — 0 umocněním na druhou do-
stáváme

2(bc + ca + ab) = —(a3 + b2 + c2)
a po dosazení do levé strany (2) máme

3(a2 + b2 + c%)x = 19abc,

(3)

(4)
kde a2 + b2 + c2 > 0, neboť čísla a, b, c jsou vesměs
různá od nuly; rovněž абс Ф 0.

Ze (4) dostaneme
19abc

(5)x =

3(a2 + b2 + c2)
Protože ve jmenovateli posledního zlomku je kladné číslo,
mají čísla abc a x stejná znaménka, přičemž je x Ф 0.

Proveďme ještě zkoušku dosazením výsledku (5) do (1):
Výsledek (5) lze pomocí (3) psát ve tvaru

19abc
(6)x =

6 (bc + ca + ab)
Protože b + c — — a, platí

x И-a x a

b + c —a
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po dosazení za x ze vztahu (6) najdeme
x -\- a 19bc
b + c 6 (be + cab + ab)

Podobné výrazy dostaneme i po dosazení za x do obou
zlomků na levé straně rovnice (1); hodnota L levé strany
rovnice (1) tedy po dosazení ze (6) je

19bc + 19ca + 19abL = -3
6 (bc + ca + ab)

neboli je postupně
T 19 {bc + ca + ab) 19L = — 3 —

6 (bc + ca + ab)
1

6’6

což je pravá strana rovnice (1). Krácení výrazem bc +
+ ca + ab lze provést, neboť je různý od nuly [viz
vztah (3)]. Tím je zkouška provedena.

2. Nad danou úsečkou AB jsou sestrojeny v téže polo-
rovině co vyťaté přímkou AB kruhové oblouky o13 o2i
ze kterých je úsečku АВ vidět po řadě pod zornými úhly
velikostí 120° a 60°. Bodem A je vedena taková přímka,
která má s oblouky ols o2 po řadě další společné body
X» Xt.

Vyšetřte množinu
středů Y všech tako-
vých úseček X1X2.

Řešení (obr. 24).
I. Úhel <£АХхВ veli-
kosti 120° je vnějším
úhlem v trojúhelníku
BXxX2Mz <№=60°,
takže \b = 60°; jé

°г.

Г

La 60° I

120° O

/////// cv

A В
IPObr. 24
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tedy trojúhelník BXxX2 rovnostranný a jeho těžnice BY
je kolmá к přímce AXxX2 neboli <£AYB = 90°.
Bod Y tedy leží na Thaletově kružnici opsané nad
úsečkou AB jako průměrem, a to uvnitř poloroviny

S’ N

co; všechny body Y tedy leží na polokružnici AB uvnitř
poloroviny co.

II. Je třeba ještě zjistit, zda každý vnitřní bod Y'
uvažované polokružnice AB je středem jisté úsečky XxX23
kde X13 X2 leží po řadě na obloucích o13 o2 a přitom
přímka AXx prochází bodem X2. Sestrojme bodem A
tečnu tx (ř2) к oblouku ox (<?2) — viz obr. 25. Přímka
procházející bodem A a ležící uvnitř poloroviny co a uvnitř
poloroviny txB {цВ) protne oblouk ог (o2) ve vnitřním
bodě Xx (X2). Úsečky XxX23 vyhovující úloze, mohou
ležet jen uvnitř společné části polorovin txB3 t2B a co,
a to na přímkách x procházejících bodem A. Všechny
tyto přímky x zřejmě protínají i polokružnici AB3 pišme-
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nem У označme libovolný z těchto průsečíků. Průsečík
tečny tx s polokružnicí АВ označíme Z.

Protože úhel AY'B je pravý, je přímka BY' výškou
trojúhelníku X1X2B. Tento trojúhelník je (viz odst. I)
rovnostranný, takže bod Y' je středem úsečky XxX2
a patří hledané množině. Z provedené úvahy plyne, že
hledanou množinou je pouze vnitřek oblouku ZB3 který
je částí polokružnice AB (a nikoli tato polokružnice celá).

3. Riešte sústavu rovnic

(1)px + 2y = 3 ,

2x + py = p — 1 (2)
s neznámými x, у.

Převeďte skúšku dosadením a převeďte diskusiu vzhla- -

dom na parameter p.

Riešenie. Vynásobme po radě číslami p, — 2 rovnice
(1), (2) a sčítajme. Dostaneme (p2 — Y)x = Ър — 2p + 2
čiže

СP + 2) (p — 2)x — p + 2 .

Potom vynásobme rovnice (1), (2) po radě číslami — 2, p
a sčítajme. Dostaneme (p2 — 4)jy = p2 — p — 6 čiže

(p + 2)(p - 2)y = 0> + 2)(ř - 3).
Rozlišujme teraz tieto možnosti:

Případ [1]. Nech je (p + 2) (p — 2) 7^ O, t. j. —2 7^
Ф p ф 2. Potom z (3), (4) dostaneme

p — 3
p^2

Skúška. Označme Lx, L2 l’avé strany rovnic (1), (2)

(3)

(4)

1
(5)x — У =

2 5P ~
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po dosadení výsledku (5):
2(f.-3) 3/>-6 3Q —2)
p — 2 /> - 2 /> — 2

3í
_ Cp — 2)Cp — 1)

p — 2p — 2 /> — 2
Čísla L13 L2 sú teda po radě rovné pravým stranám rovnic
(1), (2).

Případ [2]. Nech je p + 2 = 0, t. j. p — —2. Potom
nemožno použit’ výsledky (3), (4), pretože tieto vztahy
sú splněné pre každú dvojicu čísel x3 y. Sústava (1), (2)
má tvar

*

L2 =

—2x + 2y — 3 , 2x — 2y = —3 .

Ak vynásobíme prvú rovnicu číslom —1, dostaneme
druhů. Možno teda napr. x volit’Iubovol’ne а у vypočítáme
z rovnice 2x — 2y = —3. Riešenie teda je:

, 3
X + J.

x je 1’ubovolné číslo, у = (6)

0, t. j. p = 2. Potom vztah
(3) nie je splněný pre žiadne číslo, pretože na 1’avej
straně (3) je 0, na právej číslo 4. Daná sústava má tvar

2x -j- 2у = 3, 2x -j- 2у == 1 ,

čo zrejme nemožno splniť súčasne žiadnymi číslami,
pretože Ъ Ф i. Závěr je zřejmý z tabulky:

Případ [3]. Nech/> — 2

rózny od —2, 2 2Parameter p -2

Počet riešení
xj jy danej
sústavy

sústava nemá
riešenie

jediné riešenie
dané vzťahmi

sústave vyho-
vuje každá dvo-
jica čísel (6)(5)
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4. Je daný trojuholník OOx02.
Zostrojte trojuholník ABC tak, aby bod O bol stredom

kružnice trojuholníku ABC vpísanej a aby body 01S 02
boli po radě stredmi kružnic vpísaných trojuholníku ABC
zvonku ku stranám BC, CA. Převeďte diskusiu.

Riešenie. Na obr. 26 máme hladaný trojuholník ABC
a střed O kružnice jemu vpísanej ako aj středy 015 02, 03
kružnic zvonku vpísaných. Pretože osi vedlejších uhlov
sú navzájom kolmé, je vždy os vnútorného uhla troj-
uholníka ABC kolmá к osi vonkajšieho uhla pri tom istom
vrchole tohto trojuholníka. Ak označíme po radě a, /?, у
vnútorné uhly hladaného trojuholníka ABC, potom
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o uhloch daného trojuholníka 00x02 platí:

<£0X002 = <£АОВ = 180° - j (a + /3) = 90° +
11

+ j [180° - (a + fl] 90° + fy> 90°3
takže uhly pri vrcholoch Ox a 02 sú nutné ostré. Úloha
teda móže mať riešenie, ak je

0,002 > 90°.
Ďalej je OOx _L A023 002 _L BOX3 0X02 J_ OC, t. j.
body A3 В, C sú paty výšok v trojuholníku 00x023
ktorého priesečníkom výšok je bod 03. Podlá toho pre-
vedieme konštrukciu: Označme А, В, C po radě paty
kolmic vedených bodmi 023 013 О к priamkam OOl3
0023 0102 a označme 03 priesečník výšok trojuholníka
OOjOgj v ktorom je uhol <£01002 tupý a teda oba
ostatně uhly ostré. Tým je konštrukcia převedená.

Dokážeme správnost’ prevedenej konštrukcie: Použi-
jeme pri tom túto známu vetu: Ak vedieme vnútorným
bodom jedného ramena ostrého (tupého) uhla kolmicu
к jeho druhému ramenu, padne jej pata do vnútra (na
opačnú polpriamku) tohto druhého ramena. Z toho vy-
plýva, že bod C leží vo vnútri úsečky 0X02 (pretože
uhly <£Ох, <£02 trojuholníka 00x02 sú ostré a úsečka
OxÓ2 je spoločná časť polpriamok 0X023 O^O^y naproti
tomu body A3 В padnú po radě na predíženie úsečiek
0X03 020 za bod O, t. j. na polpriamky opačné к pol-
priamkam ООхз resp. 002 (pretože uhol <£0X002 je
tupý). Přitom je napr. <^A020X tiež ostrý (druhý ostrý
uhol v pravouhlom trojuholníku 0X02A)3 právě tak aj

B0X023 takže ich súčet je menší než 180° a podlá
Euklidovej axiómy leží bod 03 v polrovine 0X020 (v ktorej
ležia body A, В). Ešte musíme dokázať, že priamky
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I*1

0013 002, OjOa sú osami uhlov po radě pri vrcholoch
A, £, C výsledného trojuholníka ABC. Stačí zrejme
dokázat, že bod O je priesečníkom osí uhlov <£BAC,
<£ABC. Dokážeme pre prvý z uhlov, že jeho osa pre-
chádza bodom O; pre druhý z nich je dokaž obdobný:
ч Opišme nad úsečkami 0203, 03013 0X02 ako nad
priemermi po radě kružnice k13 k2, k3. Podlá Thaletovej
vety ležia na kx body B3 C; atď. Pri označení obvodových
uhlov podlá obrázka 26 platí: rj1 = rj (ležia na k3)3 rj =
= í?3 (ležia na kx)3 rj3 = (ležia na ^2). Je teda = ?y2,
čo sme mali dokázat’.

Úloha má za předpokladu, že uhol <£ 0X002 je tupý,
zrejme vždy jediné riešenie.

5. Ve vodorovné rovině je dán rovnostranný trojúhel-
nik SxS2Ss o straně délky 2. V každém z jeho vrcholů
spočívá na rovině SXS2S3 jedna ze tří shodných koulí
o poloměru r

Vyšetřete konstruktivně i výpočtem poloměr koule,
která se všech tří daných koulí dotýká vně a mimoto se
dotýká roviny SXS2S3. Rozhodněte o řešitelnosti úlohy
vzhledem к danému číslu r.

Řešení (viz označe-
ní v obr. 27). Označme
O střed a co rovinu da-
ného rovnostranného
trojúhelníku Sx S2S3;
dále označme é>{, S23
S3 středy daných koulí
s poloměrem r. Jsou-li
M13 M23 M3 dotykové
body hledané koule
к == (S; x) s danými

1.

Obr. 27

/o

S

/! a
I Г

si ji cv'
/

co

0

л
/ P

/
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koulemi, potom platí (za předpokladu, že je r

r x — SS[ — SS2 = SS3,

1)

a proto roviny souměrnosti úseček S[S23 S2Ss, S3S'X3
a tím i úseček SxS2i S2S3, iS^iSí procházejí bodem
5 a zároveň bodem O dotyku plochy kulové x s rovi-
nou co; roviny souměrnosti tedy obsahují přímku p =
=SO _L oj. Rovina co' = S[S3S3 // co protne přímku p

v bodě O'a platí 5(0' — 5(0 = j/з (úsek těžnice
nostranného trojúhelníku SXS2SZ od jeho těžiště к jeho
vrcholu).

V trojúhelníku SMO je SM = SO = л; a v troj-
úhelníku 55(P viz obr. 27, kde OP = r, n // co) je
55( = 5P = r + x3 takže osy základen těchto rovno-
ramenných trojúhelníků splývají v jedinou přímku o,
která prochází bodem S ležícím na přímce p. Konstrukci

^Д/З sestro-3

jíme kružnici kx = (5(, r), která se dotýká přímky SxO
v bodě Sx a v bodě O sestrojíme přímku /> J_ 5xO.
Od bodu O naneseme na přímku p úsečku délky r tak,
aby její druhý krajní bod P neležel v polorovině
Potom osa o úsečky PS[ protne přímku p v hledaném
středu 5 koule x. Protože úhel <^cOP5( je ostrý, jsou
přímky o, /> vždy kosé a bod 5 existuje nezávisle na
velikosti r. Úloha má zřejmě vždycky řešení (což potvrdí
i následující výpočet).

Jestliže přímka o prochází bodem O', je r = x, r —

= -i- • уУз neboli

rov-

tedy provedeme takto: Nad úsečkou OSx

r = \b- (1)x —
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Jestliže přímka o neprochází bodem O', vzniká právo-
úhlý trojúhelník SSiO' (kde <£0' = 90°); o jeho stra-
nách platí

|]/3, SS^ =1 < 5,0 - 0'S[ = x v 3

SO' = \x — r| ,

neboť musíme rozeznávat obě možnosti: zda bod S
padne dovnitř úsečky PO' nebo na její prodloužení za
bod O'. Užitím Pythagorovy věty na tento trojúhelník
dostaneme

(jc + r)2 — (x — r)2 — у
a odtud

1
л: = —,

3r

tento výsledek platí i pro (1). Úvaha byla provedena za
předpokladu, že hledaná koule existuje. Obrácením po-
stupu zjistíme, že bod S na polopřímce OO' ve vzdále-
nosti X od bodu O jakožto střed a číslo x = ^ (pro
r ^ 1) jakožto poloměr koule vyhovují naší úloze. Řešení
je jediné.

6. V debne boli dopravované tri druhy plechoviek so
súčiastkami. Plechovky mali váhy 0,8 kg, 1,5 kg, 2 kg
a po radě objemy 1,5 dm3, 4 dm3, 5 dm3. Celková váha
zásielky (bez váhy debny) bola 3,3 q. Celkový objem
plechoviek bol 0,78 m3. Plechoviek každého druhu bolo
aspoň 55 kusov. Ъ týchto údajov vypočítajte, kolko
plechoviek každého* druhu bolo v zásielke.

Riešenie. Počet naj menších plechoviek označme x}
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počet středných plechoviek 3;, počet najváčších plechoviek
z. Z podmienok úlohy dostaneme tieto dve rovnice

0,8x + 1j5j; + 2z — 330 (kg),
1,5л: + 4у -f 5z = 780 (dm3).

(1)

Z oboch rovnic (1) vylúčime z (prvú rovnicu vynásobíme
číslom 5, druhů číslom —2a sčítáme). Dostaneme rovnicu

x — 0,5у = 90 ,

z ktorej
(2)л: = 90 + 0j5jy .

Ak dosadíme z (2) do prvej rovnice (1), vyjde po úpravě
z= 129 - 0595з; •

Čísla x, y3 z sú podlá svojho významu prirodzené.
(3)

19
Pretože v (3) musí byť číslo 0,95з; = ~y celé, musí byť
у dělitelné dvadsiatimi.

Zostavíme tabulku přej; = 60, 80, 100, 120, ... (hod-
noty у = 20, 40 sú nepřípustné, pretože у ^ 55).

60 80У

120 130

72 ' 53

Údaje uvedené v druhom a treťom riadku boli vy-
počítané z rovnic (2), (3). Z rovnice (3) je zřejmé, že z
s rastúcimj; klesá. Pretože už přej; = 80 je z = 53 < 55,
je pre každé у > 80 tiež z < 55.

Úloha má teda jediné riešenie:
xx = 120, yx = 60, zx — 72 .
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7. Úlohy II. kola kategorie C
1. V rovině pravoúhlých súradníc х, у znázorníte

množinu všetkých bodov [x, y]3 ktorých súradnice vy-
hovujú nerovnostiam

(1)X + \y\ ,

у + M ^ 1 • (10
Riešenie. Ak je dvojica х, у riešením nerovnosti (1),

ako vyplývá z definície absolutnej hodnoty, je buď
1 — x (2a)^ 0, у

alebo
(2b)У ^ о, у ^x — 1 .

Ak je dvojica x3y riešením nerovnosti (Г), je buď
x >03 у 1 — x (За)

alebo
(3b)x ^ 0, jy šs 1 + я .

Zostrojme v rovině pra-
vouhlých súradníc x, у
body P = [0, 0], A =
= [-1, 0], В = [1, 0],
C = [0, 1],D= [0,-1]
a priamky px = BC3 p2 =
= BD, p3 == AC3 kde
P2 11 Pzi Pl -L p23 Pl -L Pz
(obr. 28). Priamka px má
rovnicu у = 1 — x, priam-
ky p23 p3 majú po radě
rovnice

*\

У = X — l3 у = 1 + X.
V rovině pravoúhlých súradníc x, у určujú
a) nerovnosti (2a) polroviny xC3 pxP3 ktorých spoločnou

častou je uhol <£CBA3
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b) nerovnosti (2b) polroviny xD, p2P, ktorých spoločnou
častou je uhol <3:ABD.

Obrazy [x, у] riešení x, у nerovnosti (1) ležia teda
v uhle <£ CBD.

V rovině pravoúhlých súradníc: x, у určuj ú
a) nerovnosti (3a) polroviny уВ, ргР, ktorých spoloč-

nou častou je uhol <£BCD',
b) nerovnosti (3b) polroviny уA, pzP, ktorých spo-

ločnou častou je uhol <£DCZL
Obrazy [x, y] riešení я, у nerovnosti (Г) ležia teda

v uhle <£BCA. Obrazy spoločných riešení daných ne-
rovností vyplnia teda spoločnú časť pravých uhlov
<£CBD, <£BCA. Je to tá časť pásu ohraničeného rovno-
běžkami p2, p3, ktorá padne do polroviny pxP (pozři
vyšrafovanú časť obr. 28 včítane polpriamok CA, BD
a úsečky BC).

2. V rovině je dána úsečka AB. V jedné z polorovin
vyťatých přímkou AB uvažujme všechny pravoúhlé troj-
úhelníky ABC o přeponě AB. Označme X patu kolmice
vedené bodem В к ose úhlu <£BCA.

Dokažte, že všechny takové osy úhlů procházejí pevným
bodem a vyšetřte množinu všech bodů X.

Řešení. Zvolenou polorovinu s hranicí AB označme

q ; bod C leží uvnitř q na Thaletově kružnici k

opsané nad úsečkou AB jako průměrem (obr. 29).
Osa úsečky AB protne kružnici k v polorovině opačné

к q v bodě P. Menší oblouky АР, BP jsou čtvrtkružnice;
proto platí pro příslušné obvodové úhly

<£ACP = <ŽBCP.
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Je tedy polopřímka CP osou úhlu <5tACB. Pata X kolmice
spuštěné z bodu В na polopřímku CP náleží polokružnici
m sestrojené nad průměrem BP a obsahující střed S
úsečky AB (nebo kružnice k).

C

к.

*L
?//////

Г7A / B
/ /

//n

/
/>

/Р
/

Obr. 29

Označme m! kružnici sestrojenou nad průměrem BP.
Je-li Y libovolný bod vnitřku oblouku m, označme dále C
průsečík kružnice k s přímkou PY. Bod C náleží polo-
rovině £>; protože tečna kružnice m! v bodě P prochází
bodem A3 přímka PY, která je sečnou kružnice m!,
protne úsečku AB, a tudíž i kružnici k v bodě C polo-
roviny q. Sestrojíme-li к trojúhelníku ABC patu X
kolmice spuštěné z vrcholu В na osu úhlu <£ ACB,
zjistíme, že je X = Y.

Závěr. Hledanou množinou všech pat X je vnitřek
oblouku m.
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3. Je dán výraz

(я — a)2 (я — byV = +
ab — bc + ca — a2 bc — ca + <26 — b2

(я — c)2 (1)
ca — a& + bc — c2

kde a, bf c jsou daná reálná čísla.
Dokažte, že výraz F, pokud má smysl, nabývá pro

všechna reálná čísla я konstantní hodnoty. Zároveň
udejte podmínky pro čísla a, b, c, kdy výraz V nemá
smysl.

Řešení. Je
ab — bc + ca — a2 = b(a — c) — a(a — c) —

=(b — a) (a — c) — (a — b) (c — a);
podobně

bc — ca + ab — b% = (b — c) (a — b)’}
ca — ab + bc — c2 = (c — a) (b — c) .

Výraz F ztrácí smysl, je-li některý jmenovatel v (1)
roven nule, tj. platí-li některá z rovností:

c — a = 0a — b — Oj b — c — 0,
neboli

(2)a — b, b = с, c = a .

Upravíme výraz F za předpokladu, že neplatí žádný
ze vztahů (2); společný jmenovatel n zlomků v (1) vzhle-
dem к provedeným rozkladům je

n = (a — b) {b — c) (c — á) .

94



Dostaneme
1

— [(x2 — 2ax + a2) (b — c) + (x2 — 2bx + bz){c — á) +

+ (x2 — 2cx + c2) {a — 6)] = ~{x2 [b — c-\-c—a A-a — b~\ —

— 2x [(a(b — c) + é(c — a) + c(a — 6)] +
+ a\b — c) + b\c — a) + c\a — b)} —

— ~\.a\b — c) + b2 (c — a) + c\a — 6)] .

V =

Ale
w = —a\b — c) + — c) — bc(b — c) + ca(b — c) =
= —a?(b — c) — 62(c — a) — c2(a — 6);
je tedy

F = —и : n — —1.

Závěr. Výraz F má smysl právě tehdy, jestliže žádná
dvě z čísel a, b, c si nejsou rovna; v tom případě je
F = -1.

4. V rovině je dán čtyřúhelník AMBN.
Na polopřímkách /íM, 5ÍV sestrojte po řadě body X, Y

tak, aby bylo ХУЦВМ a aby přímka AB půlila úsečku
XY.

Řešení. Jestliže v daném čtyřúhelníku AMBN je
AM//BN (rovnoběžník nebo lichoběžník), potom podle
známé věty střední příčka, která půlí strany AN, MB,
vytíná na úsečce AB bod S", jím vedeme přímku рЦВМ
a její společné body s polopřímkami AM, BN po řadě
označíme X, Y. Dále nechť přímky AM, BN mají
společný bod P, který leží buď na prodloužení úsečky
AM za bod M (viz obr. 30), nebo na prodloužení úsečky
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BN za bod N (čtyřúhelník leží v úhlu <£ MPB troj-
úhelníku PMB). Je-li XY hledaná úsečka, jejíž střed 5
padne na přímku AB, pak XMBY je lichoběžník se
základnami BM, XY. Stejnolehlost o středu P, která
převádí úsečku XY v úsečku MB, převádí střed S
úsečky XY ve střed T úsečky MB. Odtud konstrukce:

Sestrojíme střed T úsečky MB. V úhlu <$.MPB se-
strojíme polopřímku PT, která prochází vnitřním bo-
dem 5 úsečky AB; bodem S vedeme přímku рЦМВ a
průsečíky přímky p s přímkami AM, BN označíme po
řadě X, Y. Potom je XY hledaná úsečka.

Důkaz, že S je středem úsečky XY, vyplývá ze stejno-
lehlosti, která převádí úsečku MB v úsečku XY. Přitom
bod 5 existuje, neboť polopřímka PT prochází vnitřkem
úhlu <£APB, a protíná tudíž každou jeho příčku, tedy
i úsečku AB v jejím vnitřním bodě

Úloha má proto vždy jediné řešení.

8. Úlohy I. kola kategorie D
1. Dopravní síť města se skládá ze tří trolejbusových

linek. Celková délka trolejového vedení je 13 km. Jed-
notlivé linky mají po řadě délky 5,7 km, 5,8 km a 6,9 km.
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První a druhá linka mají společný úsek délky 1,8 km.
Druhá a třetí linka mají společný úsek délky 2,3 km.
Třetí a první linka mají společný úsek délky 2,7 km.

Rozhodněte, zda existuje úsek společný všem třem
linkám; jestliže ano, pak vypočtěte jeho délku. Načrtněte,
jak asi vypadá plánek tří tratí a vepište do něho délky
jednotlivých úseků.

Řešení. (Délky udáváme v kilometrech.) Linky
označme čísly 1, 2, 3. Celkovou délku trolejového vedení
rozdělíme do tří skupin a vyjádřeme ji jako součet délek
vedení každé ze skupin. Označíme:

a) d13 dp d3 délky těch částí tratí č. 1, 2, 3, v nichž
probíhají jednoduše (sólově);

b) dí2) d233 d31 délky těch částí tratí, u nichž probíhají
,,dvojitě“ (nikoli však trojitě); tak např. d12 značí délku
společné části tratí č. 1 a č. 2;

c) x délku části společné všem třem linkám.
Celková délka vedení 13 (km) je součtem právě zave-

děných čísel, tj.
(d\ + d2 -f- d3) -f- (d12 + d23 -j- d31) + x = 13 . (1)

Nyní se pokusíme součty dx + d2 + d33 d12 + d23 + d31
vyjádřit pomocí údajů uvedených v textu úlohy a pomocí
neznámého čísla jc.

Platí např. d12 -\- x = 1,8, takže je d12 = 1,8 — я; do-
staneme tak celkem

d12 = 1,8 — x; d23 — 2,3 — x; d31 — 2,7 — x . (2)
Podle textu úlohy a podle významu čísla d1 platí

dx — 5,7 — (d12 + d31 + x); podobně najdeme d23 d3.
Máme tak

di = 5,7 {d12 + d31 T x); d2 — 5,8 — (d12 -f- d23 T x)3
d3 = 6,9 — (d31 + d23 + x) . (3)
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Pomocí (2) platí
d\3 ~Ь d23 T d3X = (1j8 + 2,3 + 2,7) — 3x =

= 6,8 — 3x .

Pomocí vztahů (3) a (4) najdeme
+ d2 + d3 =

— (5,7 -T 5,8 + 6,9) — 2(J12 + J23 T <^31) — 3x =
= 18,4 — 2(6,8 — 3x) — 3x — 3x + 4,8 .

Nyní výsledky (4), (5) dosadíme do (1); postupně
dostaneme

(4)

(5)

(3x + 4,8) + (6,8 — 3x) x = 13,
л: + 11,6 — 13 ,

л: = 1,4 .

Tím jsme našli délku společného úseku všem třem tratím.
Provedeme zkoušku : Pomocí (2) a (6) dostaneme

dí2 = 0,4; d23 = 0,9; d3X — 1,3 .

Pomocí (7) a (3) najdeme
di = 2,6; d2 — 3,1; d3 — 3,3 .

Celkové délky tratí č. 1, č. 2, č. 3 po řadě jsou:
di + dX2 + d3i + x — 2,6 + 0,4 -ЬТ,3 + 1,4 = 5,7;
d2 + d23 + dí2 -f- x = 3,1 + 0,9 T" 0,4 -f" 1j4 = 5,8;
d3 + d3X + d23 + x — 3,3 -T 1,3 + 0,9 + 1,4 = 6,9 .

Společné úseky mají délky:
a) pro tratě č. 1 a č. 2 je to

dX2 -f~ x = 0,4 1,4 = 1,8;
b) pro tratě č. 2 a č. 3 je to

d23 T x — 0,9 + 1,4 = 2,3;
c) pro tratě č. 3 a č. 1 je to

d3X + x — 1,3 + 1,4 = 2,7 .

(6)

(7)

(8)
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Přitom skutečně platí
(A + d2 + d3) + (d12 + d23 + dsl) + x = 13,

jak se snadno pomocí výsledků (8), (7), (6) přesvědčíme.
Připojený plánek je jedna z mnoha možných situací
(obr. 31).

Poznámka. Zobrazíme-li délky tratí kruhy (obr. 32),
pak z obrázku snadno dospějeme к rovnici (1), jakož
i ke vztahům (2)a (3).

2. Je dána kružnice k = (S; r) a vně této kružnice je
dán bod A, z něhož je ke kružnici k sestrojena tečna AT
s dotykovým bodem T.

Uvnitř úsečky AT sestrojte takový bod X, aby platilo
AX — XY3 přičemž Y je průsečík úsečky SX s kruž-
ničí k.

Řešení (obr. 33). Je-li Y bod, který je řešením úlohy,
je trojúhelník A YX rovnoramenný s rameny AX — XY.
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Osa p jeho základny A Y převede střed S v jistý bod
В ležící na polopřímce XA; přitom platí

AB = BX — AX = SX — XY = r .

Sestrojíme tedy na polopřímce opačné к polopřímce
A T bod В tak, aby bylo AB = r. Bodem A vedeme přím-
ku ql/BS; hledaný bod Y náleží jednak přímce q, jednak
kružnici k. Tím je rozbor úlohy ukončen.

Přímka AB je tečnou kružnice k3 přímka BS nikoli;
proto také přímka ql/BS není tečnou kružnice k a protne
ji ve dvou různých bodech F, V. Zvolme označení tak,
aby bylo AY < AY'. Označme U průsečík přímky q
s úsečkou ST. Přímka SY protne stranu AU trojúhel-
niku ATU v jejím vnitřním bodě F, prodlouženou stranu
TU protne v bodě S; proto protne podle Paschovy věty
stranu AT v jejím vnitřním bodě X. Obrácením před-
chozího postupu zjistíme, že bod X je řešením úlohy.

Naproti tomu polopřímka SY' je buď s přímkou AT
rovnoběžná, nebo ji protne vně úsečky A T; proto bod Y'
nevede к žádnému řešení úlohy.

Závěr. Úloha má vždy jediné řešení.
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3. Rozhodnite, ktoré z oboch čísel
a = 6399 , b = 6389 + 6388

je váčšie. Svoje rozhodnutie odovodnite.
Riešenie. Máme porovnat’ čísla

a = 6399, b = 6389 + 6388.
Pokúsime sa napísať číslo a v tvare súčtu dvoch mocnin,

ktoré sa dajú porovnat’ s oboma číslami vyskytujúcimi
sa vo vyjádření čísla b. Platí

a = 639.6398 = (638 + 1). 6398 = 638.6398 +
+ 6398 .

Je známe, že mocnina s váčším kladným mocnencom
je váčšia; je preto 6398 > 6388. Ak teda v súčte na právej
straně (2) nahradíme obe mocniny 6398 mocninami 6388,
dostaneme číslo menšie než a. Tak postupné dostaneme

a > 638.6388 + 6388 = 6389 + 6388 = b .

(1)

(2)

Je teda a > b, čím je úloha vyriešená.
Poznámka. Platnost’ vztahu 6398 > 6388 medzi klad-

nými číslami overíme napr. tak, keď dokážeme, že zlomok
6398

je váčší než jedna.6388
/Platí:

6398

6388

Číslo v zátvorke je váčšie než jedna. No, súčin dvoch
čísel (1 + m) (1 + и), kde m, n sú kladné čísla, sa rovná
číslu (1 + m -f- n + mn), ktoré je váčšie než jedna. Preto
aj osma mocnina čísla váčšieho než 1 je váčšia než 1.
Tým je dokaž převedený.

К dokážu možno však použiť aj vzorec pre rozdiel
druhých mocnin: Položme л; = 639, у = 638. Máme

_ /639\8_ /638 + 1\8_ /
\638/ \ 638/ \

1
■1 + -----

638
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dokázat, že je x8 — y8 >0. Platí:
r = xs — jy8 = (x4)2 — (У)2 = (x4 — у4) (л:4 + jy4) =
= [(*2)2 - (У)2]. (*4 + У) - (*2 - y2) (*2 + y2) •

• O4 + У) = (л — у) (x + у )(x2 + у2) (x4 + У).
Všetky 4 činitele posledného súčinu sú kladné čísla,
preto je r > 0, čo sme mali dokázat’.

4. Druhů mocninu prirodzeného čísla N delíme čís-
lom 12. Zistite, aký zvyšok (t. j. niektoré z celých čísel
0, 1, 2, ..., 11) može pri tomto delení vyjsť. Sú len
štyri možnosti.

(Pokyn: Každé prirodzené číslo N možno písať v tvare
N — 12k -\- z, kde k je celé nezáporné číslo a o celom
čísle z platí 0 ^ z < 12.)

Riešenie. Ku každému prirodzenému číslu N možno
nájsť jedinú dvojicu nezáporných celých čísel k3 z, kde

0 < 12,

takých, že platí N = 12& + z (nájdu sa napr. delením
čísla N číslom 12). Je teda

N2 = (12k + z)2 = 144&2 + 24kz + z2 = 12(l2k2 +
+ 2 kz) + z2 .

Číslo z2 možno taktiež jediným sposobom napísať v tvare
z2 — 12m + z'> kde m3 z' sú celé nezáporné čísla a
platí 0 ^ z' < 12. Po dosadení do (1) teda dostaneme

N2 = \2{\2k2 + 2kz + m) + z'.
Tento výsledok hovoří, že zvyšok z' pri delení čísla N2
číslom 12 je ten istý ako zvyšok pri delení čísla z2 číslom
12. Zvyšky, ktoré dostaneme pri delení čísla z2 číslom 12
zostavme do tabulky:

(1)
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6 10о 1 2 3 4 5 7 8 9 11číslo г

číslo z2 16 25 36 64 100 1210 1 4 9 49 81

zvyšok pri delení
čísla z2 číslom 12 0 1 4 4 1 0 1 4 9 4 19

Z tabulky je zřejmé, že zvyšok pri delení čísla N2 číslom
12 je právě jedno z čísel 0, 1, 4, 9 a žiadne iné. Sú teda
skutočne len 4 možnosti, ako sa tvrdí v texte úlohy.

5. Je daná polkružnica k so stredom Sas priemerom
AB. Označme x vzdialenosť 1’ubovol’ného bodu X pol-
kružnice k od priamky AB. Na polpriamke SX zostrojme
bod Y tak, aby SY — x.

Vyšetříte geometrické miesto bodov Y.

c

X к

YIŇ
X X m

Obr. 34 I i
A Z В

Riešenie (obr. 34). Označme k = (S',r = 1) danú
polkružnicu s priemerom AB a dálej C bod tejto pol-
kružnice, ktorý má rovnaké vzdialenosti od bodov A, В,
takže je SC ± AB. Zvolme niekolko poloh bodu X a
zostrojme příslušné body Y. Pri tom zistíme, že ak je
X = A3 je Y = a ak je X == C, je tiež Y = C. Eahko
dospěj eme к domnienke, že body Y padnú na kružnicu m
zostrojenú nad úsečkou SC ako priemerom.
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Najskór dokážme, že každý bod Y leží na kružnici m:
[1] O bodoch X A, X = В а X = C to zrejme

platí.
[2] Nech je X bod polkružnice k rózny od bodov

A, В, C. Potom vznikne pravoúhlý trojuholník SXZ,
kde Z je pata kolmice vedenej bodom X ku priamke АВ,
takže je XZjJSC. Trojuholníky SXZ, CSY sú však
potom zhodné podlá vety sus, pretože sa zhodujú v stra-
nách SX = CS = 1, XZ = SY — x a v uhloch <)SXZ=
— AiCSY (uhly striedavé medzi rovnoběžkami XZ,
SC). Je teda A.SYC = A:XZS = 90° a preto bod Y
leží na Thaletovej kružnici m opísanej nad úsečkou SC
ako priemerom.

Obrátene, nech je Y bod kružnice m (móžeme zrejme
předpokládat’, že Y je rózny od bodov S, C, pre ktoré
je vec samozřejmá). Označme X priesečník polpriamky
SY s polkružnicou k a Z patu kolmice vedenej bodom X
к priamke AB. Potom sú trojuholníky SCY a XSZ
zhodné podlá vety usu, pretože je SC = XS = 1,
AiCSY = AiSXZ (uhly striedavé medzi rovnoběžkami
SCI/XZ), 90° = <ZCYS = A:SZX a teda aj <$SCY -
= AiXSZ. Je teda skutočne YS = XZ = x .

Závěr. Hladané geometrické miesto bodov Y je kruž-
nica m, zostrojená nad úsečkou SC ako priemerom, kde C
je spoločný bod polkružnice k a osi úsečky AB.

6. Najděte všechna celá čísla p, pro která je výraz
+ f +1

2 [p2 ;] • v 2p + 1) +V
2p+l (p - 1)

+ £_zJ*
p + 1 ř2 - 1

p2 — Ър (1)
roven celému číslu.
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Řešení. Protože je p2 — 2p + 1 — (p — l)2, dosta-
neme po dosazení do lomené závorky, že první člen
výrazu V je

z = iy + p +
2 L p - 1

1
. (p - 1 )(P2+P + !) - =

p- 1
= 1

_ (p3 - 1) - (p3 + 1) _ 1. = _±I
2 p — 1 p — 1

2

2 P - 1
Pak je

3 p2 — 3p
p — 1 «p+1 p2 — \

-1 +F =

(P+l) + (p- 3) (p - 1) - (P2 - 3p)
(p -1) (p +1)

—p — 1 + p3 — 4p + 3 — p2 -j- 3p
(p- i)(p +1)

~2(P - 1)
(P-1XP + 1) (p — l)(p + 1) p+1

2p + 2 -2
(2)

Abychom tedy dostali celé číslo, musí o číslu p+1
platit některý ze vztahů:

2; p + 1p +1 1; p+1 — 1; p+1 — 2,
neboť číslo —2 lze dělit právě čísly: —2; —1; 1; 2.
Odtud dostáváme tyto možnosti:

3; p = -2; p = 0; p = 1 .P =
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Z těchto možností vyloučíme p = 1, neboť je p — 1 = 0
a pak některé zlomky ve výrazu (1) mají jmenovatele
rovné nule. Hledaná čísla p tedy jsou

-3; -2; 0.
Provedeme ještě zkoušky dosazením těchto hodnot do(1)a (2), zda skutečně vyhovují požadavkům úlohy:
[1] Pro p = — 3 dostáváme
- 1 [9-3 + 1 -27 + 11 . -6 9+9

2L (-4)2 (—4)3 r -2

= L\L_21
2 Ll6 64.

(3)

V
9-1

•i6 + «
4 2 L 2 J

+
2

14-13+12-9
+ *-i

2 4[2]Pro p = —2 dostáváme

4 4

-5 4+6
-1 4-1

Г4 — 2 + 1 -8+1
~

2 L ] (-3)4V
(-3)2 (-3)3

= — [3 — —1 + 5-—=2 L 3j 3

9-7 + 30-20
— 2 .

6[3]Pro p — 0 dostáváme

-•2-3 = -2.
0

F
-1 2

Tato dosazení souhlasí s dosazeními do výrazu (2). Čísla
(3) jsou tedy všechna řešení úlohy.
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9. Úlohy II. kola kategorie D
1. Otec aj matka sa zúčastňujú na závodnom spoření.

Každý z nich má svoju vkladnú knížku. Pri výhernom
zlosovaní vytiahli obe knížky. Otec na svoju knížku vy-
hrál 20% svoj ho vkladu a matka vyhrala 100% svoj ho
vkladu. Obaja malí potom spolu aj s vkladmi 10 040
Kčs. Ak by však bola výhra na otcovu knížku 100%
a na matkinu 20 %, malí by po výhře celkom 9 480 Kčs.

Vypočítajte povodný vklad aj výhru každého z rodičov.
Riešenie. Čiastky uvádzame v korunách. Otec mal

po výhře celkom x} matka 10 040 — x. Povodný otcov

vklad bol = 4 x, matkin
o

10 040 — x ...

2 • Ak by si-
tuácia, pokial sa jedná o percento výhry, bola opačná,

5x 5
bol by otcov vklad po výhře у 2 = y л: a matkin
10 040 - x 120 10 040 - x

100л:

120

. 4 = |- (10040 - x).
3 52 100 2

Súčet týchto čiastok by bol

jX + у (10 040 - x) = 9 480.
Ak poslednú rovnicu vynásobíme číslom 15, postupné
dostaneme

25* + 9(10 040 - x) = 9 480 . 15 ,

x = 3 240 .

Ďalej je 10 040 — 3 240 = 6 800. Po výhře má otec

celkom 3 240, matka 6 800. Povodně mal otec
1 y

= 2 700 a matka 6 800 • = = 3 400. Výhry teda sú

3 240.5

540 a 3 400.
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Odpověď. Povodný vklad otca bol 2 700 Kčs,
matky 3 400 Kčs. Otec vyhrál 540 Kčs, matka 3 400 Kčs.

2. V rovině je daná priamka p a dva body A, В ktoré
ležia vo vnútri opačných polrovín vyťatých priamkou p.

Na priamke/) zostrojte body X, Y tak, aby AXY bol
rovnoramenný trojuholník s ramenami XA, XY a aby
priamka BX rozpolovala uhol <£ AXY.

A

TY

\k

Obr. 35

Riešenie (obr. 35). Zrejme je (podlá podmienky úlohy)
priamka BX osou základné AY. Preto platí

BA = BY.

Bod Y teda zostrojíme ako spoločný bod kružnice k =
= (В; BA) a priamky p. Kružnica má s priamkou vždy
spoločné dva rožne body У, Y13 pretože priamka p
odděluje body A, B. Na obr. 35 je jeden z týchto spoloč-
ných bodov označený Y.

Bod X zostrojíme ako priesečník osy q úsečky A Y
s priamkou p. Pretože X leží na osi q, je AX
trojuholník AXY je teda skutočne rovnoramenný so
základňou A Y. Úloha má vždy dve riešenia.

1У a
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Poznámka. Na obr. 35 je naznačené len jedno z oboch
riešení.

3. Součet 7 2515 + 6 1597 je dělitelný číslem 90. Do-
kažte.

Řešení. I. Nejprve dokážeme pomocnou větu V:
Jsou-li a, b dvě přirozená čísla, jejichž dekadický zápis
končí ciframi m, n, potom dekadický zápis součinu ab
končí touž cifrou jako dekadický zápis součinu mn. Důkaz
provedeme takto:

Čísla a3 b lze s jediným výsledkem napsat ve tvaru
a = 10Л + m j b = 10B + n,

kde А, В jsou celá nezáporná čísla a m,n jsou některá
z čísel 0,1,2, ...,9. Je tedya& — (10Л + ni) (10B + ri) =
= 10(10AB + Ап + Вт) + mn. V tomto výsledku
je první člen dělitelný deseti, a proto neovlivňuje
jednotky dekadického zápisu čísla ab; čísla ab} mn mají
tedy v dekadických zápisech na místech jednotek tytéž
cifry. Tím je důkaz proveden.

II. Máme dokázat, že číslo

n = 7 2515 + 6 1597

je dělitelné číslem 90. Je 90 = 9 . 10, kde 9, 10 jsou
nesoudělná přirozená čísla; číslo n je dělitelné devade-
sáti, jestliže je dělitelné čísly 10 a 9.

Opakovaným užitím věty V dostáváme, že dekadický
zápis čísla 7 2515 končí cifrou 1. Z téže věty plyne, že
mocniny první, druhá, třetí atd. až sedmá čísla 6 159
končí po řadě ciframi 9, 1, 9, ..., 9; stačí totiž uvažovat
čísla 91 = 9, 92 = 81, 93 = 81.9, ...; 97 = (.... 1). 9=
= (... .9) (sudé mocniny končí jedničkou, liché devít-

(1)
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kou). Proto číslo n má na místě jednotek cifru jako
součet 1 + 9 = 10, tedy nulu; je proto n dělitelné čís-
lem 10.

Každé z čísel 7 251, 6 159 je dělitelné třemi; protc
mocniny těchto čísel od druhé počínajíc jsou dělitelné
devíti a tím i jejich součet. Např. platí 7 2515 =

35.2 4175
= (3.2 417)5 = 35.2 4175,
Tím je důkaz proveden.

4. Je dána polokružnice o průměru AB a středu 5.
Na polokružnici zvolme bod C různý od bodů A, В
a sestrojme v něm к polokružnici tečnu t. Bodem В
veďme kolmici p к přímce t a bodem 5 kolmici q к přímce
BC. Označme X průsečík přímek p, q.

Vyšetřete množinu všech bodů X, jestliže bod C pro-
bíhá danou polokružnici.

= 33 . 2 4175.
32

Řešení (viz označení z obr. 36). Označme q polo-
rovinu (s hranicí AB), ve které leží daná polokružnice k.
Podle textu úlohy je p J_ ř, q J_ BC; paty těchto kolmic
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označme po řadě P, O. O středu 5 polokružnice k platí
SA = SB — SC = r . (1)

Označme a, (3 úhly při vrcholech A, В pravoúhlého
trojúhelníka ABC (bod C leží totiž na Thaletově kruž-
nici opsané nad úsečkou AB jako průměrem). Proto
o úhlech vyznačených v obr. 36 platí

a + p = 90°
(ostré úhly v pravoúhlém trojúhelníku ABC),

Pi = P
(trojúhelník SBC podle (1) je rovnoramenný se základ-
nou BC),

ai + Pi — 90° , tj. % = a (je SC _L t) ,

ai + /^2 = 90°, tj. ^2-/5
(součet ostrých úhlů v trojúhelníku BCP3 kde <£P =
= 90°). Přímka BC tedy půlí úhel <£SBX, přičemž je
PC J_ q', je tedy ВSX rovnoramenný trojúhelník s ra-
měny BS, BX a vzhledem к (1) platí r = BS = BX.
Je tedy *£SBX dutý a bod X padne dovnitř poloroviny q
na polokružnici m, která má střed В a průměr SM.
Trojúhelníky SBC, ВSX mají kolmé základny BC, SX,
které se navzájem půlí; proto je SBXC rovnostranný
rovnoběžník (čtverec nebo kosočtverec) a polokružnice
k, m vzniknou jedna z druhé posunutím o délku SB
ve směru SB (nebo opačném).

Obráceně, je-li X bod uvnitř oblouku SM (polokruž-
nice ní), sestrojíme rovnostranný rovnoběžník SBXC; je
SC — SB, tj. bod C padne dovnitř oblouku АВ (polo-
kružnice k) a najdeme-li к bodu C příslušné přímky
p, q, je jejich průsečíkem zvolený bod X. Odtud závěr:

Množinou všech bodů X jsou body polokružnice
1

m = (B; 2-AB) ležící v polorovině q, a to bez obou
jejích krajních bodů S, M.
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V. Sedmá mezinárodní matematická

olympiáda v Berlíně ve dnech 3.—12. července
1965

1. Průběh olympiády

VIL MMO měla ze všech dosavadních mezinárodních
olympiád největší počet účastnických zemí. Zúčastnilo se
jí deset států: Bulharsko, Československo, Finsko, Jugo-
slávie, Maďarsko, Mongolsko, Německá demokratická
republika, Polsko, Rumunsko a Sovětský svaz. Pozoru-
hodné je, že se letos olympiády účastnilo Finsko jako
první stát, který nepatří к socialistickému táboru. Ně-
které další pozvané státy (Čína, Kuba) se nedostavily,
ale lze očekávat, že v příštích letech bude počet účastnic-
kých zemí vzrůstat a že soutěž nezůstane omezena jen
na socialistické státy; tím se ovšem bude zvyšovat její
význam pro spolupráci národů na poli školské matema-
tiky i její politická váha. Soutěž byla organizována v pod-
statě podle statutu vypracovaného pro IV. MMO v roce
1962 v Československu. Každý účastnický stát vyslal
osmičlenné družstvo pod vedením delegáta a jeho zá-
stupce (pedagogického průvodce).

Soutěž řídila mezinárodní komise (Jury); jejím před-
šedou byl prof. dr. Engel z university v Roztokách (Ro-
stock), členy s hlasovacím právem všichni vedoucí
delegací.

Program soutěže byl velmi pečlivě připraven do nej-
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menších podrobností; byl skutečně bohatý a časově i pra-
covně velmi náročný. VII. MMO se konala za velké
morální i finanční podpory strany a vlády NDR a těšila se
velké pozornosti, zejména tisku; deset časopisů — mezi
nimi i Neues Deutschland — věnovalo na svých stránkách
mnoho místa reportážím a zprávám.

Vedoucí delegací se sjeli dne 1. července t. r. v Berlíně.
Večer bylo krátké přijetí všech členů prof. Engelem
v hotelu Newa. Dne 2. července zasedala Jury po celý
den v Domě odborů; při zahájení uctila památku zesnu-
lého čs. pracovníka R. Zelinky. Odpoledne se zabývala
předběžně hodnocením navržených soutěžních úloh.
Večer byli delegáti přijati v hotelu Moskva státním sekre-
tářem Wernerem Lorenzem za účasti dalších vládních a

stranických činitelů. Celý den 3. července byl věnován
výběru úloh pro soutěž. Po dlouhé diskusi bylo vybráno
šest úloh (tři pro první soutěžní práci, tři pro druhou).
Během 3. července dorazila do Berlína všechna družstva
pod vedením pedagogických průvodců a byla ubytována
v internátu Jugendhochschule W. Piecka v Bogensee,
v pěkné lesnaté a jezernaté krajině, vzdálené asi 30 km
od středu Berlína.

V neděli 4. července se dostavili na zasedání Jury
i pedagogičtí průvodci; po krátké schůzi se účastníci
rozešli, aby rozmnožili texty soutěžních úloh v národních
jazycích. Překlady textů z německého originálu připravili
vedoucí delegací již předchozí večer. Odpoledne odjeli
delegáti se svými zástupci do Postupimi. Prohlédli si
zámek Sanssouci, park i další pamětihodnosti; večer bylo
uspořádáno v restauraci Zur Stadt Potsdam přátelské
setkání s učiteli postupimské Vysoké školy pedagogické.
Žáci věnovali neděli rekreaci a vyjížďce na Weisse Flotte
po Sprévě.
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Ráno 5. července byla v Bogensee v sále Jugendhoch-
schule zahájena první část soutěže. Promluvil krátce prof.
Engel, potom zástupce strany přečetl pozdravný dopis
s. Waltera Ulbrichta, adresovaný účastníkům VII. MMO,
a pak začali žáci pracovat na prvních třech úlohách
(viz část II).

V úterý 6. července soutěž pokračovala řešením druhé
trojice úloh; současně delegáti a jejich zástupci korigovali
první trojici soutěžních úloh.

Dne 7. července se za spolupráce pedagogických prů-
vodců dokončovalo korigování úloh a koordinace. Opra-
vování úloh i práce Jury filmovala televize. Na zasedání
Jury byly stanoveny podle počtu bodů hranice pro udělení
I., 2. a 3. ceny, pak bylo rozhodnuto jednomyslně o udě-
lení cen. Mimo to byla projednána udělení zvláštních
pochval za mimořádně obratná řešení nebo za více růz-
ných způsobů řešení a zobecnění. Žáci věnovali celou
středu 7. července návštěvě Postupimi (Potsdamu).

Dny 8. až 11. července byly vyplněny okružní cestou
po NDR, kterou v autobusech absolvovaly všechny dele-
gace se svými vedoucími i jejich zástupci. Po celou dobu
doprovázeli delegace prof. W. Engel a neúnavní organizá-
toři: hlavní sekretář Oberstudienrat H. Titze a F. Weiss
z Technické stanice. Většina cesty se projela po výbor-
ných německých dálnicích. 8. července byla polední za-
stávka v Naumburku (s prohlídkou dómu), večer dorazila
výprava přes Jenu a Weimar (Výmar) do Ettersbergu
(Buchenwaldu), kde byla ubytována v tamějším hotelu.
Dopoledne 9. července byla prohlídka bývalého končen-
tračního tábora a po ní následoval pietní akt; vedoucí
delegací v průvodu všech účastníků VII. MMO položili
kytice к pylonům národů; za znění buchenwaldského
zvonu byl položen věnec к památníku obětí nacismu a
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delegáti podepsali společný zápis v pamětní knize. Od-
poledne následovala prohlídka Vymam, zejména Schille-
rova a Goethova domu. Večer se účastnili delegáti re-
серее, kterou pro ně uspořádal rektor Vysoké školy archi-
tektury a stavitelství ve Výmaru dr. Motzke.

Dne 10. července odjeli účastníci VII. MMO přes
Karl-Marx-Stadt do Drážďan. Ihned po příjezdu násle-
dovala prohlídka galerie a večeře v Italienisches Dorfchen.
Večer byl volný s možností navštívit slavnost Dne tisku,
která se právě v městě konala. Ráno 11. července byla
na programu prohlídka Zwingru, po ní volný čas к pro-
hlídce města. Snídaně i oběd byly toho dne podávány
v příjemném prostředí Luisenhofu s krásnou vyhlídkou
na město. Odpoledne asi v 16 hodin byla nastoupena
zpáteční cesta do Berlína.

V pondělí dne 12. července v 10 hodin byla ve Sjezdové
dvoraně na Alexandrově náměstí v Berlíně uspořádána
závěrečná slavnost s udělením cen a pochval. Promluvili
profesor Engel, státní sekretář Werner Lorenz a nakonec
prof. Mateev, který oficiálně pozval jménem bulharského
ministerstva školství všechny účastníky na VIII. MMO
do Sofie. Pak následovalo udělení cen a pochval. Za
žáky poděkovala rumunská účastnice Liliana Bucurová.
Význam slavnosti byl zvýšen i účastí četných vynikajících
hostí, např. rektora Humboldtovy universityprof. Schrodra,
mongolského vyslance aj. Slavnost byla zahájena i úkon-
čena komorní hudbou. Po ukončení následovaly inter-
viewy rozhlasu a televize s některými účastníky. Večer
téhož dne uspořádal časopis Junge Welt přátelskou besedu
ve Sjezdové dvoraně, která byla dovršením pozornosti,
kterou věnoval tisk VII. MMO. Každá z delegací měla
svého hosta z řad domácích prominentů — hostem čs.
delegace byl rektor Humboldtovy university profesor
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Schroder. Večer byl doplněn řadou programových
čísel (např. zpěvním číslem mongolské delegace, před-
vedením finského lidového tance aj.) a vyzněl v opravdové
přátelské sblížení všech účastníků soutěže.

Během 13. července se rozjížděly delegace do svých
domovů.

Tento popis průběhu alespoň naznačuje nesmírnou
práci, kterou němečtí organizátoři věnovali VII. MMO.
Účastníci VII. MMO měli příležitost zhlédnout velko-
lepou výstavbu v Berlíně, Drážďanech, Karl-Marx-
Stadtu a jinde, měli možnost poznat jedinečné historické
památky; ve Weimaru a v Buchenwaldu měli před
očima ohromující kontrast mezi kolébkou německého
humanismu a nedalekým památníkem připomínajícím
hrůzy fašismu. Tyto zážitky zapůsobily hluboce na
všechny účastníky a zanechaly jistě, zejména v myslích
žáků, nesmazatelné dojmy.

2. Soutěžní úlohy VII. MMO

Soutěžní úlohy byly rozděleny do dvou trojic: 5. čer-
vence byly zadány úlohy 1 až 3, 6. července úlohy 4 až 6.
Na každou klauzurní práci byly stanoveny 4 hodiny
čistého času. Následují texty úloh; v závorce je uveden
stát, který úlohu navrhl, a maximální počet bodů, které
mohl řešitel úlohy získat.

í. Určete všechna čísla я z intervalu 0 ^ v
která vyhovují nerovnostem

2 cos x ^ | ]/1 + sin 2x

2tc,

]/1 — sin 2x |^l/2.
(.Jugoslávie, 4 body)
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2.Je dána soustava rovnic
CL\\Xi -f- Q.ypX2 -f- <213X3 = 0 j

^21X1 ~b ^22^2 H- ^23^3 ~ ^ 3

^31-^1 “Ь ^32-^2 H~ ^ЗЗ-^З = 0
s neznámými x13 x2. x3. Její koeficienty splňují tyto
podmínky:
a) an, a22, <z33 jsou kladná čísla;
b) všechny ostatní koeficienty jsou záporná čísla;
c) v každé z daných rovnic je součet všech tří koeficientů

kladné číslo.

Dokažte, že daná soustava má jediné řešení хг — x2 —
= x3 = 0.

(Polsko, 6 bodů)3.Je dán čtyřstěn ABCD, jehož hrany AB, CD mají
po řadě délky a, b. Vzdálenost mimoběžek AB, CD je d,
jejich odchylka je co. Čtyřstěn ABCD je rozdělen ve
dvě tělesa rovinou e rovnoběžnou s přímkou AB i s přím-
kou CD; poměr vzdáleností roviny s od přímky AB
a od přímky CD je roven k. Vypočtěte poměr objemů
obou vzniklých těles.

{Československo, 8 bodů)4.Vypočtěte všechny čtveřice reálných čísel x13 x2,
x3, x4, pro něž platí, že součet každého z těchto čísel se
součinem tří zbývajících je roven dvěma.

{SSSR, 6 bodů)5.Je dán trojúhelník OAB, jehož úhel <цАОВ je ostrý.
Bodem M чф. O trojúhelníku OAB jsou vedeny kolmice
к přímkám OA, OB a jejich paty jsou označeny po řadě
P, Q; průsečík výšek trojúhelníku OPQ je označen H.
Zjistěte, jaký útvar je geometrickým místem bodů H,
probíhá-li bod M
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a) stranu AB,
b) vnitřek trojúhelníku OAB.

{Rumunsko, 8 bodů)
6. V rovině je dána množina n bodů {n [> 3), každé

dva z nich jsou spojeny úsečkou. Označme d délku nej-
delší z těchto úseček. Průměrem dané množiny nazveme
každou z těchto úseček, která má délku d. Dokažte, že
počet průměrů dané množiny je roven nejvýše n.

{Polsko, 9 bodů)

3. Řešení soutěžních úloh

Úloha 1. Řešme nejprve nerovnost

|]/l + sin 2x — У1 — sin 2xj ^ |/2 .

Jejím umocněním a úpravou dostaneme
1 — |cos 2x\ ^ 1 .

Nerovnost (2) je splněna pro všechna x z intervalu
<0, 27t>. Protože lze obrácením postupu přejít od ne-
rovnosti (2) к nerovnosti (1), jsou řešením nerovnosti (1)
všechna čísla x z intervalu <0, 2tu).

Řešme za druhé nerovnost

2 cos x ^ |]/l + sin 2x — У1 — sin 2x! .

Je-li cos x 5^ 0, tj.

(1)

(2)

(3)

7Г ЗТГ
— < X < — ,

2 “2
(4)

je nerovnost (3) splněna. Je-li cos x ^ 0, umocníme ne-
rovnost (3) dvěma a upravíme; vyjde

2 cos2x 1 — [cos 2x| ,

neboli
(5)1 — 2 cos2x = —cos 2x .[cos 2x[
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Nerovnost (5) je splněna pro všechna x z intervalu
<0, 2n>, pro něž platí ^ 2x

7tc 2
= ~2~> tj. Pr0 všechna я, pro něž platí

37V 5tí _

4 5 4

Protože lze postup obrátit, jsou všechna x vyhovující
nerovnostem (6), řešením nerovnosti (3).

Všechna řešení dané nerovnosti dostaneme spojením
vztahů (4), (6); jsou to tedy všechna x z intervalu

71 77ť\^
4 3 4/ '

Úloha 2. Bud platí pro aspoň dvě neznámé nerovnosti

v

~ nebo — < 2x <
2 2 — —

7n71

(6)X

4 4

(7)xt ^ 0 , Xj ^ 0 ,

nebo znásobíme všechny tři dané rovnice číslem —1 a
dosáhneme toho, že pro neznámé —xx> —#2, — x3 platí
vztahy (7).

Vhodnou výměnou neznámých a současnou výměnou
rovnic dosáhneme toho, že je

xx ^ 0 , x2 ^ 0
a že koeficienty takto upravené soustavy splňují podmínky
a) až b). Z poslední rovnice dané soustavy pak plyne

^31^1 ~b ^32^2 — 0 ,

(8)

tj.
a33X3 = 0 ,

Je tedy Xx ^ 0, x2 ^ 0, x3 ^ 0. Budiž např. xx největší
z čísel xX3 x2, л;3, tj.

Xg^O.

(9)xx^x2^0, xx^x3^0 .
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Znásobíme nerovnosti (9) po řadě zápornými čísly aX23
0i3; vyjde

012^1 = 012^2 3 013*1 — «13*3 •

Sečteme nerovnosti (10) a přičteme rovnost axxxx =
= dostaneme

0 ^ (axl -f- a12 + 0i3)*i ^ axxxx -f- 012*2 013% = 0 .

Odtud plyne — protože axx + aX2 + a13 > 0 — výsledek
Xj = 0 a dále podle (9) x2 — x3 — 0 .

Úloha 3. Čtyřstěn ABCD doplníme na rovnoběžno-
stěn, jak ukazuje obrázek 37; výsledný rovnoběžnostěn

(10)

D

b

mE.
\I
\I

1
\

\d
ч \ c/1+k

\
)z и \Y

\

Ar вkd
N
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O) x/

/
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Obr. 37

ovšem nemusí být kolmý. Hrany AB, CD čtyřstěnu jsou
úhlopříčkami jeho podstav, rovina e dělí rovnoběžnostěn
ve dva rovnoběžnostěny; objem dolního (horního) ozna-
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kd
číme V1(V2). Protože jejich výšky jsou po řadě -—■—r,

d 1 + /г
Y'. £ a protože oba rovnoběžnostěny mají podstavu
téhož obsahu — —<a& sin co, platí

^1 =
kabd

(И)sin co.sin co ,

2(1 -f- k)
Rovina e rozdělí čtyřstěn ABCD na dvě části; dolní
dostaneme, když od dolního rovnoběžnostěnu oddělíme

2(1 + k)

kd
dva jehlany a dva komolé jehlany. Výška jehlanů je 1 +k
a jejich podstavy mají týž obsah P4; je to obsah trojúhel-
niku XYZ.Poněvadž trojúhelníky XYZ, CDEjsou stejno-
lehlé podle středu A ^koeficient stejnolehlosti je ^ ,
platí

p

Součet objemů jehlanů je tedy

1 kd
3 ’ 1 + k Í-Mll + k) ■Рз = (12)

kd
Oba komolé jehlany mají také výšku ; jejich pod-
stavy mají obsahy P4 (AABF) a P2 (AXVU). Protože
trojúhelníky XVU, ABF jsou stejnolehlé podle středu C

1 + k5

^koeficient stejnolehlosti je ^ ^ platí

-G-Ť-JP * Pi •
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Součet objemů obou komolých jehlanů je tedy
2 kd íPi+(rh)Pi+(nh) Pi
3 1 + k

2d k{k2 + 3& + 3) •Л. (13)(i + kf
Objem V'[ dolní části dostaneme, odečteme-li od čísla
Vx obě čísla (12), (13). Uvážíme-li, že je

3

1
Px = P3 = —ab sin co,

dostaneme

Vl =
2

d • k3
3 ’ (1 + kf

2k2 (k + 3)

2kd
• Pi ' Pi

1 + k
2 k(k2 + 3& + 3)

’

(1 + kf. “
Objem V2 horní části dostaneme zřejmě, nahradíme-li

■dPx. (14)• Pi =
3(1 + kf3

1
ve výsledku (14) číslo k číslem po úpravě vyjde

2(1 + 3k)
3(1 + kf

Vl (15)■dPx.

Z (14) a (15) plyne
V'i

_ k\k + 3) (16)
v; 1 + 3k

Jak je patrno, poměr nezávisí na údajích a, 6, d, co.
Úloha 4. Podle textu úlohy je

#i x2x3xx — 2 ,

X2 “h XqX^x-^ :— 2 у

X$ #4X2^1 — 2 5

x4 + x±x2x3 = 2 .

(17)
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Označme q = ххх2х^х^ a znásobíme г-tou rovnici (17)
číslem Xi’, dostaneme pro i = 1, 2, 3, 4 po úpravě

xf — 2Xi + q = 0 .

Kvadratická rovnice (18) má reálné řešení právě tehdy,
platí-li 1 — q ^ 0 neboli

(18)

(19)Я ^ 1 •

Kořeny rovnice (18) jsou pak
rx = 1 + Уí — £ , r2 — 1 — ]/1 — q .

Pro q = 1* dostaneme = r2 = 1, a tedy
^2 *3 <^4 1 3

(20)

(21)*1
což je jedno řešení soustavy.

Je-li q < 1 [viz (19)], je rx > r2 ^ 0. Z rovnic (17)
vyplývá, že nemohou být aspoň tři z čísel xt rovna r2.
Kdyby totiž bylo např. xx = *2 = *3 — r2, bylo by
*4*2*3 — r% < 1. Z poslední rovnice (17) by pak plynulo
лт4 > 1, tj. *4 = rx. Z toho by pak plynulo (protože
ГхГ2 = q, 1 + q < 2)

Xx + *2*3*4 = r2 + rpi = r2(l + ^) < 1.2 = 2,
což je spor s první rovnicí (17). Nehledíme-li к permuta-
cím indexů, jsou tedy tři možnosti:

I» X-^ — ^2 -— Xg —

IX* Xj — — *3 — 7"4 5 X^ — 7*2 э

III* X^ — ^2 — 7*4 5 ЗС3 — X^ — ^2 •

V případě I plyne z kterékoli rovnice (17) rovnice
*2 -)- *г- — 2 = 0,

která má reálný kořen *ť = 1. Rozložíme trojčlen
(*i + *г — 2) = (*г — 1) (*f + *ť + 2);

protože kvadratická rovnice *f + *« + 2 = 0 nemá žád-

(22)
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ný reálný kořen, má rovnice (22) jediný reálný kořen 1
a dostáváme tedy opět řešení (21).

V případě II dostaneme jednak r*r2 = q, jednak podle
(20) rxr2 = q a odtud

rxr2(r\ — 1) = 0 . (23)
Z rovnice (23) vyjde buď rx = 0, to je však podle (20)
vyloučeno, nebo r2 = 0, což dává q = 0, rx = 2. To je
však ve sporu se čtvrtou rovnicí (17). Musí tedy být
r\ — 1 = 0, neboli rx = di 1. Pro rx == 1 dostaneme
z rovnice (18) r2 = 2 — = 1, a tudíž opět řešení (21).
Pro rx= —1 dostaneme z rovnice (18) r2 = 2 — = 3,
a tudíž další možné řešení

(24)XX — X2 ~ ^3 = Ř x3 ~ 3 3

které skutečně soustavě (17) vyhovuje.
Zbývá vyšetřit případ III. Zde je r\r* = q, rxr2 = q,

tj.
(25)rxr2 (rxr2

Řešení rx = 0 nebo r2 = 0 se ukázala v předchozím jako
nemožná. Rovnost rxr2 —1 = 0 nemůže platit, neboť je
rir2 = q < 1.

Úloha má tedy jen dvě řešení v oboru reálných čísel:
jsou to řešení (21) a (24).

Úloha 5. Zvolme nejprve libovolný bod M ležící
uvnitř úhlu <£AOB, spusťme z něho kolmice MP, MQ
na polopřímky OA, OB; dále sestrojme výšky QP', PQ'
trojúhelníku OPQ a jejich průsečík H (obr. 38). Přímka
OH je třetí výškou trojúhelníka OPQ, proto platí

OH ±PQ.
Body P, Q leží na kružnici sestrojené nad průměrem
OM; podle věty o obvodových úhlech platí

<^PQM = <£POM.

1) — 0 .
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Dále je
<HOQ = 90° - <£OQP = 3.PQM,

tedy
(26)<£POM = *£HOQ = 99.

Označíme-li <£AOB — co, platí
1 cos co cos co

OH=OQ' • OP- — OAÍ . cos 99 •
cos 99

— OM . cos co .

COS 99COS 99

(27)
Bod if leží vždy uvnitř úhlu <ícAOB3 neboť trojúhelník
OPQ je ostroúhlý (to plyne z věty o obvodových úhlech).
Ze vztahů (26), (27) pak vyplývá, že bod H je obrazem
bodu M v zobrazení složeném ze souměrnosti 5 podle
osy úhlu <£A OB a z homotetie H, která má střed O
a koeficient cos co. Podobnost P, která vznikne složením
obou těchto zobrazení, převede úsečku AB v úsečku,
jejíž krajní body jsou paty A'3 B' výšek trojúhelníku OAB
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Obr. 39

spuštěných z bodů A, Б (obr. 39). Lze totiž snadno do-
kázat, že paty А', В' jsou obrazy bodů А, В v podob-

nosti P. Z toho vyplývá, že obra-
zem vnitřku trojúhelníku ОАВ
je vnitřek trojúhelníku OA'B',
obrazem úsečky AB je úsečka
A'B'.

Úloha 6. Odvodíme nejprve
tuto pomocnou větu: Vychá-
zejí-li z některého bodu A dané
množiny 9Л aspoň tři průměry,
pak existuje takový bod В množiny
sDř, z něhož vychází jediný prů-
měr (obr. 40).

Nechť z* bodu A množiny 9Л
vycházejí tři průměry AB3 AC,
AD’, pak všechny tři body В, C,
D leží na kružnici kA = (A; d).
Přitom body В, C, D leží v středo-



vém úhlu velikosti a ^ 60°, neboť vzdálenost každých
dvou z nich je menší nebo rovna d. Zvolme označení
tak, aby polopřímka AB náležela úhlu ý:CAD a hledejme
všechny průměry, které vycházejí z bodu B.

Je-li BX takový průměr, pak bod X leží na kružnici
kB = (£; d,)', kružnice kA, kB se protnou ve dvou bodech,
které označíme U, V tak, aby bod U(V) náležel polo-
rovině ABC(ABD). Náleží-li krajní bod X ^ A prů-
měru BX oblouku AU, pak kružnice kx = (X; d) má
bod U za vnitřní, V za vnější a prochází bodem B.
Proto každý bod V ^ В oblouku В V, tedy i bod D,
leží vně kružnice kx, tj. platí DX > d, což je spor.
Dokázali jsme tedy, že z bodu В vychází jen jediný
průměr, totiž BA.

Z pomocné věty vyplývá, že daná množina může být
jen dvojího typu: buď I. z každého jejího bodu vycházejí
právě dva průměry, nebo II. obsahuje bod, z něhož
vychází nejvýše jeden průměr. Větu z úlohy 6 dokážeme
nyní indukcí. Předpokládejme, že platí pro každou mno-
žinu 90!ra o n bodech (n ^ 3) a zvolme množinu Шпц
o n + 1 bodech. Je-li množina Шп+1 typu I, má

= n + 1 průměrů. Je-li množina 9Л
II, zvolíme její bod A, z něhož vychází nejvýše jeden
průměr. Vynecháme-li z množiny 9Ли+1 bod A, dosta-
neme množinu Шп, která má nejvýše n průměrů; množina

má tedy nejvýše n + 1 průměrů.
Tím je dokázán indukční krok; protože věta z úlohy 6

platí zřejmě pro n = 3, platí pro každé přirozené n.

Poznámky k úlohám a jejich řešením

Když Mezinárodní jury vybírala úlohy a rozhodovala
o přidělení počtu bodů, byla v časové tísni. Tak se stalo,

2 (n + 1)
typu11+12

aun+1
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že bylo sice velmi mnoho diskutováno o formulaci úlohy 3,
ale vůbec se neanalyzovala úloha 6, která byla velmi
obtížná а к jejímuž řešení bylo v podstatě vždy třeba
umělého obratu. Tato úloha se stala skutečně zkušebním
kamenem matematického vzdělání a nadání účastníků;
správně ji rozřešilo jen několik žáků z SSSR a Maďarska.
Při jednání Jury nebyl také čas uvážit různé způsoby
řešení úloh a chyby, které se mohou vyskytnout a stanovit
zásady, jak budou tyto chyby posuzovány. Tím byla
velmi stižena činnost opravujících i koordinátorů, kteří
musili teprve během své práce stanovit zásady pro
hodnocení, někdy se vracet a měnit klasifikaci.

První úloha byla nejsnazší; hlavní chyba, která se tu
vyskytovala, bylo vynechání obrácení postupu, pokud
ovšem nerovnosti byly řešeny umocněním. Řada žáků
však řešila úlohu jinak, např. použitím vzorce

У1 ± sin 2л: = |cos x d= sin л;|
a pak nebylo třeba postup obracet.

Také úloha 4 nevyžadovala vtip. Žáci často nepoužili
umělého obratu, který je v autorském řešení, ale prováděli
eliminace neznámých obvyklým způsobem. Obě řešení
úlohy je možno zjistit experimentálně; těžiště úlohy je
v zjištění, že soustava nemá jiné řešení. V původním
návrhu úlohy se měla hledat všechna řešení soustavy (17)
v oboru komplexních čísel. Poněvadž ve většině zúčastně-
ných států se komplexní čísla na středních školách ne-
probírají, byla úloha redukována na zadaný tvar.

Pěkná a vhodná byla úloha 2. Někteří žáci ji řešili
pomocí vlastností determinantů; dokázali, že determinant
dané soustavy je číslo kladné, což je velmi snadné.

Označme st = aix + ai2 + ai33 i = 1, 2, 3; pak je
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podle předpokladu st > 0. Upravíme determinant sou-
stavy:

aXl a12 a13
D = #21 й22 ^23

a31 a32 a33

51 й12 al3
52 #22 ^23 = Si(#22#33 ~~ й23й32) "Í-
53 #32 #33

"T ^2#1з#32 ~Ь ^3^12^23 ^2^12^33 ^3Й22Й13 •

Druhý, třetí, čtvrtý a pátý člen součtu (28) jsou kladná
čísla; dokážeme-li, že je #22a33 — #23#32 > 0, bude do-
kázáno, že je D > 0.

Protože je #31 < 0, ss > 0, je a32 + #33 >0; znásobí-
me-li tuto nerovnost kladným číslem — #23 a přičteme-li
na obou stranách součin #22#33, dostaneme #22#33 —

#23#32 a33a3Z ^ ^22^335 ПеЬоН
й22й33 й23й32 ^ Д3з(й23 4“ ^22) •

Protože je a21 < 0, 52 > 0, je #23 + #22 > 0 a z пегоv-
nosti (29) рак plyne #22#33 — #23#32 > 0.

Řešení bez použití determinantů, které jsme uvedli
výše, je v podstatě řešení čs. reprezentanta D. Preisse.

Jak jsme se již dříve zmínili, bylo při zasedání Jury
mnoho diskutováno kolem úlohy 3, tj. kolem otázky,
má-li se žákům „pomoci“ tím, že se dá dílčí úloha:
odvodit vzorec pro objem čtyřstěnu, který je dán délkami
protějších hran, jejich vzdáleností a odchylkou. Tato
formule byla totiž východiskem v autorském řešení. Na-
konec se však rozhodlo „nevnucovat" žákům tento způsob
řešení, neboť jsou možné i způsoby jiné. A skutečnost
rozhodnutí Jury potvrdila: žáci řešili úlohu nejrůznějšími
metodami — třeba i integrálem (vlastně aplikací Cavalie-
riova principu), jako např. D. Preiss. Pěkná a obratná
řešení podali někteří sovětští žáci.

Také úloha 5 nebyla náročná a poskytovala celou řadu
možností různých řešení: pomocí zobrazení (viz řešení

(28)

(29)
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výše uvedené), metodou souřadnic aj. Originální řešení
pomocí rovnoběžníku vepsaného do čtyřúhelníku podal
třináctiletý československý účastník Bohuš Sivák:

Řešení. Mějme body V13 V u19 u23 u33 u4
tak, že body V13 V23 V3 leží na úsečkách UXU23 U2U33
U3U4 a platí UxVx: Уги2 = m: n3 U2V2: V2U3 = n: m,
U3V3: V3U4 — m: n. Potom na úsečce UJJx existuje
právě jeden bod V43 pro který platí U4V4:V4Ux =
= n: m a VxV2V3V4 je rovnoběžník (obr. 41).

Důkaz. 1. Ux U2U3 U4 je konvexní čtyřúhelník. Podle
volby bodů V13 V23 V3 platí, že

AUxU2U3 ~ AVxU2V,
tedy je

au2u3u4~ av2u3v332 5

и±и3 и vxY23 U2U4IIV2V3.
Pro bod Vx na úsečce UxU2 platí

UxVx m

u,v2
Na úsečce UXU4 existuje právě jeden bod V43 pro

který platí

n

UiVÍ
u4v4

= ”, UtUJIVM,
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a tedy také
v2v3nvxv4.

Pro bod V3 na úsečce U3U4 platí obdobně U3V3
_ m

U3U4 n'
Na úsečce UXU4 existuje právě jeden bod V"43 pro který
platí

UxVlm ViU3 ii v3v;3
n 5u4v*4

a tedy také
vxv2nv3vl.

Protože existuje jediný bod, který dělí úsečku v daném
poměru, je F4 = F4. Označíme-li tento bod V4, pak
Vi V2 V3 V4 je rovnoběžník.

2. Úsečky UXU43 U2U3 se protínají. Bod V4 se sestrojí
a důkaz, že V4 V2 V3 V4 je rovnoběžník, se provede podob-
ně jako v případě 1. Je-li U4U3 // U2U43 přejde V4V2V3V4
v úsečku, protože V2V3 // U2U4 // UXU3 // V3V4 (obr. 42).

3. Dva z bodů U13 U23 U33 U4 jsou totožné; nechť
např. Ux = U2 (obr. 43). Pak bod V4 dostaneme tak, že

UrU^V1

kŽ1

U3
Obr. 43
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bodem V3 vedeme rovnoběžku s U2U3^ UXU3. V tomto
případě musí byt Ux = U2 = Vx.

Zvolíme-li v některém z případů 1 až 3 jinou polohu
bodu V4 uvnitř úsečky UXU4, pak nebude VXV2II V3V4.

o o PAQ'

Obr. 44

a) Podle obr. 44 označme C, D paty výšek trojúhelníku
AOBs vedených vrcholy A, B. Je-li DP:PA = m: ns je

AM : BM = n : m,
BQ : CO = BM: AM = m: n .

Podle dříve dokázané věty existuje na úsečce CD
bod H, pro který platí QH//MP3PH // MQ, tj. QH±OP,
PH _L OQ. Bod H je tedy průsečíkem výšek trojúhel-
niku OPQ a musí ležet na úsečce CD. Probíhá-li bod
M úsečku AB, probíhá bod H úsečku CD.

b) Zvolme na úsečce CD bod H. Stejně jako dříve
dokážeme, že je-li HPMQ rovnoběžník, leží bod M
na úsečce AB. Geometrickým místem bodů H je tedy
úsečka CD.
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c) Zvolme uvnitř /\АОВ bod M; pak existuje právě
jedna stejnolehlost se středem O a koeficientem k > 1,
která převádí bod M v bod M' úsečky AB. Jak jsme
zjistili v odstavcích a), b), leží bod Я', sestrojený podle
textu úlohy, na úsečce CD. Stejnolehlost s koeficientem
0 < k < 1 a se středem O převede bod H' v bod H,
příslušný к bodu M. Protože se změnou polohy bodu
M se mění koeficient od nuly do jedné, je geometrie-
kým místem bodů H vnitřek trojúhelníku OCD (obr. 45).

c
в.

\^

Ol

Л
\H?

AD

Obr. 45

Mezi rumunskými řešiteli se vyskytl případ zobecnění
úlohy ve smyslu afinním: místo výšek trojúhelníku použil
žák přímek daného směru.

Afinní zobecnění úlohy, které provedl žák A. Badescu,
zní takto:

Buďte OA, OB dvě různoběžky, p, q dvě různoběžky,
z nichž žádná není rovnoběžná ani s přímkou OA, ani
s přímkou OB. К libovolnému bodu M roviny OAB
sestrojíme bod H takto: Bodem M vedeme rovnoběžku
s přímkoup{q\ její průsečík s přímkou OA{OB) označíme
Mi(M2). Trojúhelník MxAÍMo doplníme na rovnoběžník
МЛММ2Н.
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Probíhá-li bod M úsečku (vnitřek trojúhelníku), pro-
bíhá bod H také úsečku (vnitřek trojúhelníku).

Řešení této zobecněné úlohy, při němž se užívá rovno-
běžkových souřadnic, lze formulovat takto: zvolíme
přímky OA, OB za osy x, у rovnoběžkových souřadnic
(obr. 46).

Označíme souřadnice bodů: M = [x,j>], Aíx = [и, 0],
M2[0, v], H = [x'3y']. Pak platí

у = a{x — m),
у — v = b . x,

Přitom konstanty a3 b3 které charakterizují směry přímek
p, <?, vyhovují podmínkám

y' — v = a . X,

y' = b{x' — u) .
(30)

а Ф 0 , b Ф 0 , а Ф b .
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Z rovnic (30) eliminujeme nejprve и, v, tím dostaneme
soustavu dvou lineárních rovnic pro x'} y'

by (31)— bx' + у = —— bx ,

ax' — у' = bx — у .

Ze soustavy (31) vyjádříme x',y' jako funkce x, y; vyjde

* = -2- (32)y' = —bx .
a 5

Rovnice (32) vyjadřují zobrazení (afinitu); přiřadění bodů
M3 H je zřejmě vzájemně jednoznačné. Z rovnic (32)
snadno dokážeme, že probíhá-li bod M úsečku (vnitřek
trojúhelníku, přímku, úhel apod.), probíhá bod H útvar
téhož druhu.

Řešení zobecněné úlohy, které jsem uvedl, není ovšem
původní řešení žákovo. Při korigování se ukázalo, že
pokud žáci použili metody souřadnic, byla jejich řešení
dosti neobratná nebo neúplná. Je to dokladem, že prvkům
analytické geometrie se nevyučuje na středních školách
účelně.

Vcelku lze říci, že soutěžní úlohy byly vybrány a zadány
(až snad na úlohu 6) vhodně, přesto, že členové Jury měli
jen velmi málo času к jejich předběžnému prostudování.
Některá žákovská řešení ukazují oproti olympiádám dři-
vějším rostoucí úroveň.

4. Československé družstvo

Československé družstvo tvořili tito žáci:

Jan Brodský z Brna,
Jura Charvát z Příboru,
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Tamara Marcisová z Bratislavy,
Pavel Novotný z Olomouce,
David Preiss z Jindřichova Hradce,
Miroslav Řezníček z Hradce Králové,
Bohuš Sivák ze Zvolena a

Milan Štědrý z Chotěboře.
Pavel Novotný byl absolventem 2. třídy SVVŠ, Bohuš

Sivák 8. třídy ZDŠ, všichni ostatní 3. třídy SVVŠ.
Žáci byli vybráni jako v dřívějších letech na základě

výsledků v třetím kole domácí olympiády. Tento způsob
se však opět neosvědčil: ukázalo se, že nej lepší z vítězů
třetího kola měli v VII. MMO nejslabší výsledky. Zdá se,
že budeme musit přejít к jinému způsobu vybírání a pří-
pravý našich reprezentantů než dosud. Je totiž skuteč-
ností, že úroveň mezinárodních matematických olympiád
vzrůstá a že výsledky delegací — i když jde stále o soutěž
jednotlivců
státu v oblasti školské matematiky. Není proto vhodné
vysílat družstvo, v němž je polovina i více slabých žáků.
Může-li neveliké Maďarsko vyslat družstvo, které získá
7 cen, z toho 3 první, mohli bychom to udělat i my, neboť
máme jistě dostatečný počet nadaných žáků; s jejich
nadáním však špatně hospodaříme. Tabulky v přílohách
3 a 4 jsou pro nás skutečně zarmucující a svědčí o stálém
ústupu z dřívějšího dobrého průměru. Největší možný
dosažitelný počet bodů pro družstvo byl 320; sovětské
družstvo dosáhlo téměř 90%, my ani ne 50%. To vše
ukazuje, že naše vyučování matematice a hlavně naše
péče o nadané žáky nejsou na výši. Máme sice ve třech
městech speciální třídy, ale výběr žáků do nich není uspo-
kojivý a učitelé neučí tak, jak to současná doba vyžaduje.
Pořádáme sice přednášky a semináře pro olympioniky,
ale ty nemají leckdy potřebnou úroveň a nadaní žáci

jsou pokládány za vizitku příslušného
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nemají dost času ani chuti ke studiu, protože jsou příliš
rozptylováni školními i mimoškolními povinnostmi.

Projděme tabulku 4\ druhý sloupec ukazuje, že jen
tři žáci z osmi se dobře vyrovnali s nepříliš složitou úlohou
o soustavě tří lineárních homogenních rovnic. Plná polo-
vina zcela selhala v úloze stereometrické, plná polovina
měla nevyhovující výsledek v celkem běžné planimetrické
úloze na geometrické místo bodů. Naproti tomu ne-
úspěch v úloze 6 není třeba brát příliš tragicky; svědčí
jen o tom, že nikdo z našeho družstva neměl trénink
„vyššího řádu“.

Co naši žáci neumějí? Stále vázne obracení postupů,
projevuje se nedostatek představivosti, zvláště prostorové,
malá zběhlost v používání geometrických zobrazení a
metody souřadnic, hlavně však je vidět často neobratný
přístup к řešení problému a malá kombinační schopnost.

Na nepříliš příznivé umístění našich reprezentantů měla
vliv asi také jejich celková dispozice. Snad působením
výchovy a režimu života jsou naši žáci málo průbojní
a vytrvalí, leckdy lhostejní nebo zase neklidní: zdá se,
že i na tomto poli by mohla mít naše pedagogika dosti
práce.

Na závěr bychom chtěli vyslovit naději, že se poučíme
z výsledků našeho družstva v letošní MMO a že učiníme
vše možné, aby naše umístění na VIII. MMO v Sofii
bylo příznivější.
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Příloha 1

Vedoucí delegací a jejich zástupci

Bulharsko: Prof. dr. Alippi Mateev, děkan mat. fakulty
university v Sofii.
Inspektor Stoian Budurov.

Československo: Docent Jan Výšin, mat.-fyz. fakulta
KU v Praze.
František Zítek, CSc., Matematický ústav ČSAV.

Finsko: Jarmo Nystrom, ředitel střední školy v Tapiole.
Anja Hormio.

Jugoslávie: Prof. dr. Milica Iličová-Dajovičová, Sta-
vební fakulta university v Bělehradě.
Magistr Vladimír Mičič.

Maďarsko: Hódi Endre, vedoucí vědecký pracovník
Optických závodů v Budapešti.
Reiman István.

Mongolsko: Prof. dr. Gensengin Ischzeren, universita
v Ulánbátoru.
Balsh Altangerel.

Německá demokratická republika: Prof. dr. Hans
Joachim Weinert, Vysoká škola pedagogická, Potsdam.
Johannes Gronitz.

Polsko: Prof. dr. Mieczyslaw Czyzykowski, Polytechnika
ve Varšavě.
Magister Andrzej Mqkowski.

Rumunsko: Prof. Tiberiu Roman, Vysoká škola těch-
nická v Bukurešti.
Prof. Zlaté Bogdanov.
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Sovětský svaz: Doc. E. Aleksandrovna Morozovova,
Mech.-matem, fakulta Lomonosovovy university
v Moskvě. ✓

Ivan Semjonovič Petrakov.



Příloha 2

Přehled udělených cen a pochvalných uznání
*•

Pavel Elecher
Lovász László

Andrej Subkov
Sergej Valander
Anatolij Peresezkij
Nikolaj Sirokov
Makai Endre

Pelikán Jószef

SSSR

MLR

SSSR

SSSR

SSSR

SSSR

MLR

MLR

40 bodů

40 bodů

39 bodů

39 bodů

38 bodů
38 bodů

38 bodů

38 bodů

1. cena:

(8)

Alexander Karsanov

Liliana Bucurová

Pósa Lájos
David Preiss

Krzysztof Nowiňski
Alexandru Bádescu
Dan Voiculescu

Vasilij Stojanovskij
Jacques Weinstein
Berkes István

Manfred Brandt
Wolfgang Klamt

36 bodů

34 body
34 body
32 body
32 body
32 body
32 body
32 body
32 body
31 bod

30 bodů

30 bodů

2. cena: SSSR

RLR

MLR

ČSSR
PLR

RLR

RLR

SSSR

RLR

MLR

NDR

NDR

(12)

ČSSR
NDR

PLR

PLR

RLR

Tamara Marcisová
Peter Enskonatus

Zeno Fortuna

Michal Misiurewicz

Octavian Biscá

29 bodů

29 bodů

29 bodů

29 bodů

29 bodů

3. cena:

(17)
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28 bodů

28 bodů

27 bodů

27 bodů

26 bodů

24 body
22 body
22 body
22 body
21 bod

21 bod

20 bodů

Walter Liepe
Laczkovich Miklós

Velimir Bole

Elekes Gyorgy
Tadeusz Figiel
Eugen Popa
Bohuš Sivák

Wilhelm Otto

Miroslav Ašič

Ion Stefánescu-Sabba
Jordan Tabor
Miroslav Řezníček

NDR

MLR

FSRJ
MLR

3. cena:

(pokrač.)

PLR

RLR

ČSSR
NDR

FSRJ
RLR

BLR

ČSSR

Pochvalná uznání:

Timo Erkama, RF (Finsko)
Krzystof Nowiňski, PLR
Avgaanzere Damdinsuren, Mong. LR
Alexandru Adescu, RLR
Lovász László, MLR
Pelikán Josef, MLR

i
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Příloha 3
Přehled počtu bodů, jež získala družstva v jednotlivých úlohách

Úloha č.

4 5 61 2 3 s9
>CJStát

сл

Bulharsko 931012 6 36 21 8

Československo 15 15928 17 29 37 33

Finsko 3 626 24 1712 0

Jugoslávie 15 33 25 13726 20 18

Maďarsko 46 24436 50 38 4529

Mongolsko 636 22 8 1188

175Něm. dem. republika 2217 42 34 3723

Polsko 40 8 17825 33 4428

21 22239 53Rumunsko 32 5027

61 281Sovětský Svaz 64 43 424625
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Příloha 4
Přehled počtu bodů, které získali čs. žáci v jednotlivých úlohách
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