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I. O průběhu XV. ročníku
Matematické olympiády

1. Organizace soutěže. Pořadatelem soutěže je ministerstvo škol-
ství a kultury (MŠK) s Matematickým ústavem ČSAV
(MÚČSAV), Jednotou čs. matematiků a fyziků (JČMF)
a ústředním výborem Čs. svazu mládeže (ÚV ČSM). Také
XV. ročník se řídil statutem, uveřejněným ve Věstníku MŠK,
roč. XIX, str. 126, 127, směrnice 37 ze dne 30. 4. 1963.

Soutěž řídil celostátně ústřední výbor matematické olympiády
(ÚVMO), v krajích krajské výbory matematické olympiády
(KVMO) a v okresech okresní výbory matematické olympiády
(OVMO); v těchto výborech jsou také zastoupeny pořadatelské
složky.

Žáci soutěžili ve čtyřech kategoriích podle svého studijního
věku, a to v kategoriích А, В, C (střední školy) a v kategorii D
(základní školy).

2. Složení ústředního výboru matematické olympiády.

Předseda: akademik Josef Novák, vedoucí vědecký pracovník
Matematického ústavu ČSAV v Praze

Místopředseda: Jan Výšin, docent matematicko-fyzikální
fakulty Karlovy university v Praze

I. jednatel: Vlastimil Macháček, odb. asistent PedF UK
v Praze

II. jednatel: Jiří Mída, odb. asistent PedF UK v Praze
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Členové:

dr. František Běloun, vedoucí matematického kabinetu Kraj-
ského pedagogického ústavu v Praze

Miloš Jelínek, vědecký pracovník Pedagogického ústavu
J. A. Komenského ČSAV, Praha (tč. v zahraničí)

doc. Josef Holubář, Jičínská 3, Praha
František Hradecký, odborný asistent matematicko-fyzikální

fakulty Karlovy university v Praze
dr. Karel Hruša, profesor PedF UK v Praze
dr. Milan Kolibiar, profesor přírodovědecké fakulty Komen-

ského university v Bratislavě
Ladislav Krkavec, ústřední inspektor ministerstva školství a

kultury v Praze
Josef Porcal, ústřední inspektor ministerstva školství a kultury

v Praze
František Veselý, em. odborný asistent Vysoké školy strojní

a elektrotechnické, Plzeň
dr. Miloslav Zedek, docent Palackého university v Olomouci
prof. dr. Miroslav Fiedler, DrSc, vedoucí vědecký pracovník

Matematického ústavu ČSAV v Praze

Náhradník:

dr. Miroslav Šisler, CSc3 vědecký pracovník Matematického
ústavu ČSAV v Praze

Dalšími členy ústředního výboru matematické olympiády
jsou všichni předsedové KVMO:
dr. Václav Pleskot, profesor ČVUT v Praze
dr. Václav Vilímek, docent katedry matematiky a deskriptivní

geometrie fakulty strojní ČVUT v Praze
František Vejsada, odborný asistent Vysoké školy zemědělské,

České Budějovice
Karel Hnyk, odborný asistent pedagogické fakulty v Ústí nad

Labem
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Věra Rádiová, profesorka SVVŠ J. Fučíka, Plzeň
Jan Lašťovka, vedoucí kabinetu matematiky Krajského peda-

gogického ústavu, Pardubice
Petr Benda, odborný asistent VUT, Brno
Josef Andrys, docent pedagogické fakulty v Ostravě
Ladislav Berger, odborný asistent katedry matematiky Vysoké

školy dopravní v Žilině
Milan Hejny, odborný asistent katedry matematiky přírodo-

vědecké fakulty Komenského university v Bratislavě
Dr. Igor Kluvánek3 docent přírodovědecké fakulty University

P. J. Šafaříka v Košicích

Během XV. ročníku došlo к menším změnám ve složení
ÚVMO. Na jaře 1966 skončilo jeho tříleté funkční období;
na schůzi v Žilině dne 14. května 1966 byl schválen návrh no-
vého složení ÚVMO; tento návrh byl předložen MŠK a byly
o něm informovány MÚ ČSAV a JČMF.

3. Schůze ÚVMO. Ústřední výbor MO se sešel během XV.
ročníku dvakrát. První schůze byla dvoudenní a konala se ve
dnech 9. a 10. listopadu 1965 v Brně. Jednalo se tu o řadě zá-
sadních otázek, zejména o poměru MO a FO, o některých
změnách v organizaci МО, o honorování originálních námětů
na soutěžní úlohy. Z usnesení této schůze uvádíme nej důle-
žitější:

1. I. kolo XVI. ročníku bude uspořádáno takto:
Bude se skládat z řešení 4 přípravných a 4 soutěžních úloh.

Přípravné úlohy se sice opravují, ale neklasifikují. Úspěšným
řešitelem I. kola bude žák, který rozřešil správně aspoň tři
soutěžní úlohy. Lhůta pro odevzdání přípravných úloh bude
30. listopad, pro odevzdání soutěžních úloh 15. únor. Druhé
a třetí kolo bude probíhat časově tak jako dosud.
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2. MO a FO budou organizovány odděleně, tak jako dosud.
Doporučuje se, aby jen ve výjimečných případech soutěžil žák
v MO i v FO. Do MO budou zařazovány i úlohy s fyzikálními
a jinými aplikacemi. Letáky MO a FO budou vydávány společ-
ně, jeden pro kategorii D, jeden pro kategorie А, В, C.

3. ÚVMO se připojuje к návrhu ÚVFO, aby náměty sou-
těžních úloh zaslané autory ústřednímu výboru byly po recen-
zování a přijetí honorovány částkou aspoň 50 Kčs v kategoriích
A, В, C a částkou aspoň 30 Kčs v kategorii D. Dispoziční právo
s odměněnými návrhy budou mít příslušné ústřední výbory.

4. Z příkladového materiálu všech dosavadních ročníků MO
budou vydány tři sbírky úloh tématicky utříděných a meto-
dicky zpracovaných: jedna pro kategorii D, jedna pro kategorie
B, C a jedna pro kategorii A; ta bude^doplněna úlohami ze
zahraničních i mezinárodních olympiád.

Druhá schůze ÚV se konala při příležitosti III. kola dne
14. května 1966 v Žilině. Zde byla obsáhlá diskuse o průběhu
XV. ročníku, dále se jednalo o dotazníkové akci v kategorii D,
o chystaném prázdninovém soustředění v Banské Bystrici
a o knižnici „Škola mladých matematiků^. Zprávy ze zasedání
ÚVMO budou zasílány všem KVMO.

4. Průběh kol. Jednotlivá kola probíhala časově podle Sta-
tutu takto:

I. kolo (studijní) od října 1965 do konce února 1966; žáci
v něm řešili 6 úloh přípravných a 6 úloh soutěžních.

II. kolo dne 16. dubna 1966 v krajských městech pro kate-
gorii A, dne 17. dubna pro kategorie В a C a 12. dubna 1966
v okresních městech a některých dalších střediscích pro kate-
gorii D; žáci řešili 4 soutěžní úlohy.

III. kolo dne 14. května 1966 v Žilině jako celostátní soutěž.
Účastníci řešili 4 soutěžní úlohy.
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V rámci II. kola se konaly pro účastníky vyšších kategorií
besedy a konzultace. Na nich se mimo jiné prováděla analýza
chyb, kterých se žáci dopustili při řešení úloh I. kola.

Při příležitosti III. kola v Žilině byla pro účastníky uspořá-
dána beseda, které se zúčastnili mimo členy ústředního výboru
MO i někteří učitelé Vysoké školy dopravní v Žilině; к účast-
níkům promluvil prof. dr. Harant. Program pro účastníky
III. kola byl doplněn výletem na blízký Polom — dějiště velké
bitvy za druhé světové války.

5. Pomocné akce. Krajské výbory MO organizovaly s poboč-
kami Jednoty čs. matematiků a fyziků řadu akcí. Byly to jednak
přípravné přednášky (semináře) pro účastníky matematické
olympiády, které měly aktivizovat žáky v období studijního
kola, prohloubit jejich znalosti školské matematiky a učit je
studovat odbornou literaturu. Podle cíle těchto seminářů a podle
místních podmínek byla vybrána jejich tématika; některé se
opíraly o svazečky Školy mladých matematiků. Mimo tyto semi-
náře pořádaly? krajské výbory MO i instruktáže, konzultace
apod.

Celoscátní soustředění 92 úspěšných řešitelů kategorie В
matematické i fyzikální olympiády se konalo v Banské Bystrici
od 20. června do 9. července 1966. Účastníci byli tentokrát
rozdělení do tří oddělení: dvě byla matematicko-fyzikální; v nich
byl čas rovnoměrně rozdělen mezi matematiku a fyziku. Třetí
oddělení mělo program převážně matematický a byli do něho
zařáděni žáci s vyhraněným zájmem a schopnostmi pro mate-
matiku. Dopoledne bylo věnováno výuce; odpoledne se žáci
rekreovali v rámci sportovního a turistického programu, večer
se konaly besedy s významnými vědeckými a vysokoškolskými
pracovníky. Podobné instruktáže uspořádaly i některé krajské
výbory MO ve splupráci s odbory pro školství a kulturu KNV
a s pobočkami Jednoty čs. matematiků a fyziků.
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Družstvo 8 žáků (s 2 náhradníky) vybrané pro mezinárodní
matematickou olympiádu v Bulharsku prošlo krátkou instruk-
táží, která se konala ve dnech 28. června až 2. července 1966
ve Štiříně.6.Studijní literatura. Státní pedagogické nakladatelství vy-
dalo jako každoročně pro účastníky matematické olympiády
(I. kola) leták s texty úloh a s pokyny v nákladu 15 000 exem-
plářů. Bohužel, tento leták došel na krajské výbory MO už po
několikáté opožděně. Texty úloh I. kola byly otištěny v časo-
pisech Matematika ve škole a Rozhledy matematicko-fyzikální.
Jako pomoc pro opravování dostali zúčastnění učitelé kopie
autorských řešení všech’přípravných úloh i soutěžních úlohI.a II. kola.

Jako studijní literatura se osvědčuje knižnice Škola mladých
matematiků,, vydávaná nakladatelstvím Mladá fronta. Uvádíme
přehled všech svazečků vydaných až do září 1967:

1. Hradecký—Koman—Výšin: Několik úloh z geometrie jed-
noduchých těles

2. Jiří Sedláček: Co víme o přirozených číslech
3. Jaroslav Šedivý: Shodná zobrazení v konstruktivních úlo-

hách
4. Miroslav Šisler—Jiří Jarník: O funkcích
5. František Veselý: O nerovnostech
6. Rudolf Výborný: Matematická indukce
7. Jaroslav Šedivý: O podobnosti v geometrii
8. Jiří Váňa: O rovnicích s parametrem
9. Jan Výšin: Konvexní útvary

10. Jiří Sedláček: Faktoriály a kombinační čísla
11. Josef Holubář: Geometrická místa bodů v prostoru
12. Karel Havlíček: Prostory o čtyřech a více rozměrech
13. Miroslav Šisler—Josef Andrys: O řešení algebraických

rovnic
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14. František Veselý: O dělitelnosti čísel celých
15. Milan Koman: Jak vyšetřujeme geometrická místa metodou

souřadnic
16. Stanislav Horák: Kružnice
17. Jaromír Hroník: Úlohy o maximech a minimech funkcí

Svazky 1, 2, 3, 4, 6 a 7 vyšly v reedici. Knižnice je cenově
dostupná všem žákům (svazeček stojí průměrně 3 Kčs). Část
nákladu vykupuje ministerstvo školství a kultury pro žákovské
knihovny; jen poměrně malý počet exemplářů je ve volném
prodeji a nelze proto plně uspokojit zájem učitelů a žáků o tuto
knižnici.

Brožury starších ročníků MO jsou rozebrány; proto plánuje
ústřední výbor MO spolu se Státním pedagogickým naklada-
telstvím vydání výborů úloh z těchto brožur uspořádaných
podle jednotlivých kategorií (viz usnesení schůze z 9. a 10.
XI. 1965).

•9



II. Výsledky jednotlivých kol soutěže

1. I. kolo. Porovnáme-li tabulky č. 1 za poslední čtyři roční-
ky MO (tj. XII. až XV.), je účast ve XIV. ročníku jakýmsi
kulminačním bodem účasti v kategorii A; účast v patnáctém
ročníku je opět na výši XIII. ročníku a vyšší než v ročníku
dvanáctém. Absolutní pokles účasti v XV. ročníku byl ovlivněn
jistě tím, že přípravné úlohy I. kola měly obdobnou obtížnost
jako úlohy soutěžní. Za klad lze považovat vysoký počet úspěš-
ných řešitelů I. kola kategorie A (454 z 525 účastníků); to je
snad nejvyšší percentuální údaj svědčící o tom, že ti, kteří
začali soutěž, byli vážnými zájemci o matematiku. Obdobná
situace se jeví v kategorii B. Procento úspěšných v kategorii C
je poněkud nižší než v kategoriích A a B, avšak mnohem vyšší
než je průměr za předchozí ročníky.

V kategorii D (viz tab. č. 2) po loňském přechodném poklesu
stoupl opět počet účastníků i úspěšných řešitelů, což odporuje
do značné míry názorům vysloveným v některých krajích, že
uložené úlohy byly obtížné.

Pokud se týká účasti dívek, je opět v kategoriích D a C per-
centuálně nejvyšší; zajímavé je, že vysoká účast dívek v kate-
gorii C ve XIV. ročníku se neprojevila vzrůstem'počtu děvčat
v kategorii В v XV. ročníku.

2. II. kolo (tabulky č. 3 a 4). Rozdíl mezi počtem úspěšných
řešitelů I. kola a počtem účastníků II. kola není v kategorii A,
В a C již nijak vysoký; i zde se jistě projevil vliv obtížnějších
přípravných úloh. Procento úspěšných’'řešitelů je však velmi
rozdílné, zvláště v kategorii А а В je nízké.
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V kategorii D počet účastníků opět poněkud stoupl, avšak
počet úspěšných řešitelů je jen nepatrně vyšší; to snad souvisí
s tím, že úlohy II. kola se zdály poněkud obtížnější než obvykle.

Ve všech kategoriích zaslouží ocenění opět práce soudruhů
z Jihomoravského kraje, kde počty účastníků i úspěšných řeši-
telů v kategoriích А, В, C převyšují výsledky většiny ostatních
krajů; v kategorii D má nejvyšší účast Západoslovenský kraj.

Úspěšní řešitelé II. kola obdrželi čestná uznání, byli odmě-
něni podle pořadí různými věcnými cenami, zvláště studijní
literaturou.

Soutěží II. kola v kategoriích В, C a D soutěž končí; proto
uvedeme pořadí deseti nejlepších úspěšných řešitelů II. kola
v kategoriích В a C podle jednotlivých krajů.

Pořadí úspěšných řešitelů II. kola v kategoriích В a C
(Není-li uvedeno jinak, jedná se o SVVŠ a o třídu odpovídající

příslušné kategorii)

Praha-město

B. Radovan Gregor, Praha 2; Jan Čermák, Praha 2; Petr
Doberský, Praha 2; Aleš Filinger, Praha 7; Vladimír Haasz,
Praha 2; Marie Múnzová, Praha 7; Petr Novotný, Praha 7;
Štěpán Kotva, Praha 8; Petr Múller, Praha 4; Vít Bělič, Praha 6.

C. Jan Páchl, Praha 6; Tomáš Markvart, Praha 6; Pavel
Balek, Praha 2; Vladimír Múller, Praha 6; Jan Mašek, Praha 2;
Jiří Mukařovský, Praha; Alena Myšková, Praha 2; Jan Sedláček,
Praha 2; Václav Šrámek, Praha 2; Pavel Štěpán, Praha 6.

Středočeský kraj
B. Jiří Neustupa, Nové Strašecí; Michael Holan, Kolín;

Petr Dušek, Příbram; Věra Dvořáková, Příbram; Václav Kříž,
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Beroun; Jarmila Lisá, Beroun; Rudolf Sedlmaier, Brandýs
n. Labem.

C. Eva Albertová, Příbram; Jiří Čížek, Beroun; Pavel Čížek,
Radotín; Milan Benedikt, Příbram; Pavel Sedláček, Benešov;
Josef Zicha, Příbram; Vladimír Šimek, Benešov; Jaroslav
Faltýn, Benešov; Václav Havlík, Benešov; Petr Měchura, Be-
nešov.

Jihočeský kraj

B. Ivana Novotná, České Budějovice; Alena Kryštůfková,
Písek.

C. Jiří Laštovka, České Budějovice; Karel Hájek, Týn n.
Vltavou; Václav Šanda, Tábor; Václav Brunnhofer, České
Budějovice; Karel Chaloupek, SPŠ Písek; Vladimír Dvořák,
Český Krumlov; Jiří Novák, Vimperk; Jaroslav Dolejší, SPŠ
Písek; Zdena Lískovcová, Soběslav; Jiří Janovec, Pelhřimov.

Západočeský kraj

B. Jan Kastl, Plzeň; Jan Slavík, Plzeň; František Pazdera,
Plzeň; Jan Louda, Plzeň; Pavel Levý, Plzeň.

C. Jana Tauberová, Domažlice; Karel Rusňák, Klatovy;
Marie Lukešová, Sušice; Josef Zeman, Karlovy Vary; Milan
Giitter, Plzeň; František Straka, Rokycany; Jar. Červená,
Sušice; Pavel Danihelka, Sušice.

Severočeský kraj

B. Jan Miihlstein, Liberec; Stanislav Cais, Liberec; Josef
Fučík, Liberec; Zdeňka Cmuntová, Liberec; Jana Voříšková,
Ústí nad Labem; Hana Rezlerová, Liberec; Stanislav Hotmar,
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Tanvald; Jaroslava Nečasová, Liberec; Jaroslav Janáček, Libě-
rec; Pavel Vágner, Liberec.

C. Pavel Jurák, Liberec; Ludmila Boubelíková, Ústí n. L.;
Vladimír Kalina, Jablonec n. Nisou; Ladislav Kastl, Liberec;
Stanislav Hradský, Teplice; Zdeněk Rais, Liberec; Petr Jane-
ček, Liberec; Vladimír Vydra, Liberec; Marcel Štěpánek,
SPŠs Liberec; Karel Tyml, SPŠs Liberec.

Východočeský kraj

B. Milan Rejchrt, Hradec Králové; Zdenka Mašková, Koste-
lec nad Orlicí; Milan Fireš, Hradec Králové; Jan Sedláček,
Hradec Králové; Bohuslav Vacek, Česká Třebová; Libor
Hadrava, SPŠ elektro., Pardubice; Marie Moudrá, Hradec
Králové; Miloslav Hrubeš, Hradec Králové; Vladislav Hýbl,
Hradec Králové; Jaroslav Šimek, Jičín; Václav Beran, Trutnov.

C. Miroslav Ježek, Chrudim; Petr Janda, Vrchlabí; Michal
Allan, Pardubice-Spořilov; František Haas, Dvůr Králové;
František Mandys, Pardubice-Spořilov; Karel Plavec, Heřma-
nův Městec; Milan Horáček, Ledeč nad Sázavou; Jaroslav
Lesák, Žamberk; Vladimír Nevoral, SPŠ elektro., Pardubice;
Pavel Štajnrt, Náchod; Alena Brožová, Jičín; Jana Hájková,
Jilemnice; Jan Matouš, Pardubice-Spořilov; Jiří Pospíšil,
Hradec Králové; Miroslav Andrle, Vysoké Mýto; Milan Volf,
Dvůr Králové.

Jihomoravský kraj

B. Vlastimil Bartoš, Holešov; Jan Fiala, Třebíč; Josef Da-
lík, Brno; Jan Filipenský, SPŠ elektro., Brno; Ladislav Chvátal,
Třebíč; Ladislav Ježek, SPŠ elektro., Brno; František Klein,
Brno; Sáva Nováček, Třebíč; Petr Hons, SZTŠ Třebíč;
Ladislav Obdržálek, Brno, Koněvova ul.
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C. Rostislav Šehýr, Brno; Jaromír Duda, Brno; Pavla Be-
zunková, Znojmo; Stanislav Caha, Třebíč; Eva Ducháčková,
Brno, Lerchova ul.; Josef Gregor, Třebíč; Miloš Chlup,
Znojmo; Miloslav Karásek, Třebíč; Zdeněk Konečný, Nové
Město na Mor.; Karel Mikulášek, Brno.

Severomoravský kraj
B. Dagmar Nováčková, Bílovec; Roman Kotecký, Ostrava;

Stanislav Rduch, Karviná; Eva Kubištová, Nový Bohumín;
Vladimír Vytřás, Bílovec; Zdeněk Šrajer, Opava; Roman Kot,
Nový Bohumín; Milan Stoklasa, Ostrava-Hladnov; Pavel To-
máš, Ostrava-Hladnov; Jaroslav Dvořáček, Ostrava-Hladnov.

C. Jaroslav Sklenář, Havířov; Jiří Demel, Val. Meziříčí;
Miloslav Kawalec, Havířov; František Pohl, Ostrava 1; Olga
Velemínská, Ostrava; Ivan Novosad, Valašské Meziříčí; Otakar
Šigut, SPŠ stroj., Vsetín; Vladimír Šrámek, SPŠ stroj., Vsetín;
Pavel Hadraba, Bruntál; Jaroslav Teda, Ostrava.

Západoslovenský kraj
B. Martin Macháček, Bratislava; Marian Bukovčan, Brati-

slava; František Hajnovič, Bratislava; Gejza Wimmer, Brati-
slava; Otakar Grošek, Bratislava; František Benkovič, Holič;
Vlasta Křížová, Holič; Jaroslava Schofferová, Holič; Ján Zrubec,
Levice; Michal Tvrdoň, Bratislava.

C. Marián Déneš, ZDŠ Košice; Jozef Komorník, Holič;
Vladimír Čech, Bratislava; Lubomír Sestrienka, Bratislava;
Karol Pastor, Bratislava; Lubomír Pieružek, Bratislava; Michal
Grell, Bratislava; Jozef Gotz, Nitra; Peter Kurdel, Bratislava;
Jaroslav Kilián, Bratislava.

Stfedoslovenský kraj
В. M. Fúrik, Zvolen; I. Kantorová, Žilina; S. Sitarová,

Turč. Teplice; J. Slabeycius, B. Bystrica.
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C. Mária Ruttkayová, Prievidza; Peter Nagy, B. Bystrica;
Igor Túnyi, Hnúšta; Klára Gubalová, Modrý Kameň; Rudolf
Tholt, Lipt. Mikuláš; Vladimíra Hanžlová, SPŠ Dubnica;
Vladimír Plintovič, B. Bystrica;Milan Červeňan, SPŠ Dubnica;
Dušan Hudec, Rim. Sobota; 01’ga Nagyová, Filakovo.

Východoslovenský kraj
B. Stanislav Palúch, Prešov; Alica Pirická, Košice.

C. Eugen Ružický, Prešov-Svojdom; Vladimír Bulla, Ко-
šice.3.III. kolo. Ačkoliv mezi 446 účastníky II. kola kategorie A
bylo 132 úspěšných řešitelů, navrhly jich do III. kola KVMO jen
92. A z těchto 92 návrhů vybrala komise ÚVMO po koordinaci
klasifikace jen 57 účastníků. Zastoupení krajů bylo velmi ne-
rovnoměrné — od 1 účastníka (Západočeský kraj) až po 25
z Prahy. Úlohy III. kola nebyly zřejmě tak obtížné a proto je
relativně velmi vysoký počet vítězů a úspěšných řešitelů (cel-
kem 37 z 57 účastníků). Bohužel „mezinárodní prověrka“ kva-
lity našich vítězů MO na MMO v Sofii už tradičně nedopadla
dobře. Opět se potvrdilo, že se někteří přední vítězové našeho
III. kola neumístili. (O MMO v Sofii je v brožuře samostatná
zpráva.)

Dále uvedeme jmenný seznam vítězů XV. ročníku MO.

Pořadí vítězů XV. ročníku matematické olympiády
(Šk. r. 1965 —66)

1. Peter Mederly 3d, SVŠ Prievidza,
2. Jiří Šmerk 3c, SVVŠ Kyjov,
3. Pavel Vejvoda 2g, SVVŠ W. Piecka, Praha 2,
4. Miroslav Kosina 3a, SVVŠ U balvanu, Jablonec n. N.,
5. Jiří Rott Z 4b, SPŠ hutnická, Kladno,

15



6. Petr Kůrka 2g, SVVŠ W. Piecka, Praha 2,
v

^ Petr Němec 3d, SVVŠ Dlouhý lán, Praha,az
Pavel Novotný 3c, SWŠ Olomouc-Hejčín,

9Л Pavel Polcar lb, SWŠ Velké Meziříčí,
10. r Bohumil Čapek 2g, SVVŠ W. Piecka, Praha 2,

| Jan Kastl 2f, SVVŠ J. Fučíka, Plzeň,12.1 Miroslav Kolář 3d, SPŠ elektro Pardubice, Smetanovo n.,
13. í Václav Koubek 2e, SVVŠ Sladkovského, Praha 3,
až | Pavel Novák 2c, SVVŠ Štěpánská, Praha 2,15.1 Zdeněk Slanina 3a, SPŠ chem. Brno, Vranovská ul.,
16. ( František Hajnovič 2a, SVŠ Novohradská, Bratislava,

až

(až17.1Vladislav Hyšman 3b, SVVŠ Havlíčkova ul., Roudnice
n. L.

18. í Miroslav Sedláček M4a, SPŠ elektro Brno,
\ Jana Štěpánková 3d, SVVŠ Slovanské n., Brno,

20Д Jiří Svoboda 3a, SVVŠ Voděradská ul., Praha-Strašnice.
až

Poznámka. Společná místa uvádíme v abecedním pořádku.
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Tabulka Č. 2

Přehled účastníků I. kola podle krajů v kategorii D*)

Kategorie D
Kraj

z toho
dívek

z toho
dívek

ÚP

Praha - město 883 381 603 241

Středočeský 520912 617 325

Jihočeský 679 354 227521

Západočeský 219453 241 119
!

Severočeský 565 183294 343

Východočeský 194796 390 429

J ihomoravský 1 009 447 628 299

Severomoravský 192759 330 483

Západoslovenský 1 070 511 846 441

Středoslovenský 621 318 378 190

Východoslovenský 698 355 352 180

Celkem 4 119
j 5 441 2 5918 445

*) P = celkový počet účastníků; Ú = počet úspěšných řešitelů
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Tabulka č. 4

Přehled účastníků II. kola podle krajů v kategorii D*)

Kategorie D
Kraj

z toho
dívek

z toho
dívek

ÚP

Praha - město 542 218 335 131

Středočeský 499 271263 129

Jihočeský 477 245 251 123

Západočeský 222 111 56 31

Severočeský 303 40155 101

Východočeský 412 118172 281

Jihomoravský 548 56257 132

Severomoravský 463 178 155 53

Západoslovenský 812 258 135430

Středoslovenský 223 119391 197

121Východoslovenský 200340 192

1 056Celkem 2 418 2 2635 009

*) P = celkový počet účastníků; Ú = počet úspěšných řešitelů
*
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III. Přípravné úlohy I. kola

1. KATEGORIE A

1. Z jistého množství rozváleného těsta se vykrájí p koláčů,
po novém rozválení stačí průměrně těsto z okrajků k koláčů na
vykrojení jednoho dalšího koláče.

Odvoďte vzorec pro celkový počet koláčů, které lze z tohoto
těsta vyrobit za předpokladu, že p < kk.

(Poznámka. Využijte rozkladu čísla p na mnohočlen v moc-
ninách čísla k:

P = avfcn “b an-ikn 1 "~b an-2^n 2 ~b • • • + aik ~b ao-)

Řešení. Číslo p rozložíme na mnohočlen v mocninách čísla k.
Budiž

P — ankn "Ь aTl-Ik™ 1 “b an-2^ 2 + • • • 4~ aik "b a0 5 (1)
kde a0, a1}..., an jsou nezáporná celá čísla menší než k, an Ф 0.

Z počtu kn koláčů je tak velké množství okrajků, že z nich
lze po novém rozválení těsta průměrně vyrobit dalších kn
koláčů. Z těchto koláčů je opět kW_1 okrajků, z nichž lze po dal-
ším rozválení těsta vyrobit kn~2 koláčů, atd. Celkem lze z těsta
na ankn koláčů vyrobit

-i

kn+1— 1
an(kn + + kn~2 + . . . + ^ + 1 ) = an —

k
(2)

- 1

koláčů. Nakonec ještě zbude an < k okrajků, z nichž už nelze
vyrobit žádný celý koláč. Obdobně z těsta na an^kn~x koláčů
lze vyrobit

21



kn- 1
(3)an—l k -1

koláčů a zbude an_x < k okrajků, atd. Celkem se z daného těsta
vyrobí podle (2), (3) a dalších podobných výrazů

kn+1 - 1 kn - 1
Nx un + ... +

k - 1 - 1

k2 - 1

k-l

k - 1
(4)a\ 1

koláčů a zbude

(5)an + an-1 + • • • + 0,\ + я0

okrajků. Z okrajků (5) se vyrobí ještě N2 koláčů, kde N2 je nej-
větší celé číslo splňující vztah

1
— (an + an-x + . . . + ax + a0) . (6)N2

Počet okrajků z těchto N2 koláčů je menší nebo roven číslu

1
(7)Z = —- . (n + 1) . a ,

k

kde {n + 1) je počet koeficientů polynomu (1) a číslo a je ma-
ximum z těchto koeficientů at (pro i = 0, 1,2,.. n). Protože
podle podmínky úlohy je p < kk, je n < k a dále

(8)

Pro každý z koeficientů at platí < k a tedy i
a < k .

Dosadíme-li z (8) a (9) do pravé strany vztahu (7), pak platí

(9)
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1
Z < — . k . k = k ,

k

což značí, že ze Z < k okrajků už nelze vyrobit žádný další
koláč.

Upravíme vzorec pro N± s použitím (1):
1

{k(ankn -f- an-x kn 1 -f- ... -f- a,\k -j- a0) — (an -f-N^i 1

+ an~l + • • • + + «o)} —

k 1
(an + an-\ + • • • + «i + «o)- (I®)■Pk-\ k - 1

Celkový počet N vyrobených koláčů je tedy nejbližší nižší
celé číslo к součtu pravých stran vztahů (6) a (10); označíme je
hranatými závorkami [a]. Platí tedy po úpravě

N = N, + iV2 =

ifln "l” ^n~1 • •
_ Г k

[k - 1 p k(k-\)
což je hledaný vzorec.

Např. pro p — 1000, k = 7, kde 1000 < 77, dostaneme

_ Г 7000 16
“П

1
• + + л0)j ,

]•N
42

neboť 1000 = 2.73 + 6.72 + 2.7 + 6. Je tedy

[пбб+4
8

-]-[”«+4]-N — 1166.
21

Jiné řešení. V celém řešení značí latinská písmena celá ne-
záporná čísla.
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Po vykrájení p koláčů zůstane také p okrajků. Nechť je nyní

p = cxk -f- dx, kde 0 ^ dx < k, cx Ф 0,

cx + dx = c2k + d2, kde 0 ^ d2 < k, c2 Ф 0,

c2 + d2 — c3k + d3, kde 0 ^ d3 < k, c3 Ф 0,

O)

(2)

(3)

^n—i H- 4—i cnk -T dn, kde 0 ^ dn <Z k, cn ^ 0, (ti)

Cfi -f~ dn 1э kde 0 dyi+i <C k.
Z rovnosti (1) je vidět, že po prvním rozválení těsta využijeme

z původních p okrajků pouze cxk okrajků ke zhotovení nových
cx koláčů. Z nich zůstane opět cx nových okrajků. Zbytek, tj.
dx starých okrajků, nelze zatím využít.

Z rovnosti (2) je vidět, že po druhém rozválení těsta z cx + dx
okrajků dostaneme nových c2 koláčů a zůstane c2 + d2 okrajků
atd. Tento postup skončí, jakmile zbude méně než k okrajků.
Všimněme si ještě, že dn+1 Ф 0. Jinak by totiž z (n + 1) plynulo,
že cn = dn = 0, což je spor.

Počet všech koláčů je dán součtem
5 =p + Z,

(ji + 1)

kde

z — cx + C2 + . . . + Cn.

Číslo z dostaneme sečtením levých a pravých stran rovností (1)
až (n + 1). Po snadné úpravě dostaneme

P ~ (ci + c2 + • • • + cn) № — 1) + 4+i,
tj.

P = z(k — 1) + 4+i •

Protože

p — 1 = z(k — 1) + q', kde pro q = 4+i — 1 je
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О ^ q' < k — 1, je z částečný podíl a q zbytek při dělení
čísla p — 1 číslem k — 1. Označíme-li jako C(x) největší celé
číslo nepřevyšující x, je celkový počet koláčů roven

'-(hí)
Tento výsledek je nezávislý na podmínce p < kk.

2. Funkcia premennej л; je pre x > 0 daná predpisom

3x — 4 C(x)
2x — C(x)

kde C(x) znamená najváčšie celé číslo neprevyšujúce x. Je teda
C(x) celé číslo, pre ktoré platí

V- (1)У =

C(x) ^ x < C(x) + 1 .

Vyšetříte obor definície tejto funkcie a načrtnite jej graf.
(Poznámka. Vyšetřujte danú funkciu postupné v intervaloch
(0; 1), (1; 2>, atď.)

Riešenie. Vyšetřujme najskór obor definície funkcie (1).
Odmocnina na právej straně je definovaná len pre tie x, pre
ktoré platí

(2)

3x — 4 C(x)
(3)^0.

2x — C(x)

C(x) ^ 0, je pre x > 0Pretože z nerovnosti (2) vyplývá x
menovatel zlomku 2x — C(x) vždy kladný. Nerovnost’ (3) platí
preto len pre tie x, pre ktoré súčasne platí

3x — 4 C(x) ^ 0.
Pre l’ubovol’né prirodzené číslo x platí

C(x) = x,

(4)
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takže po dosadení do 1’avej strany nerovnosti (4) dostaneme

3x — 4* < 0 ..

Funkcia (1) nie je preto definovaná pre žiadne prirodzené číslo*.

Z nerovnosti (4) vyplývá
3x ^ 3 C(x) + C(x),

čiže

1
* ^ C(x) + — C(x). (5)

Pre * > 3 je | C(x) ^ f. 3 = 1, takže po dosadení do (5)
dostaneme

* C(x) + 1,

čo je v spore s nerovnosťou (2). Funkcia (1) nie je preto defino-
váná pre žiadne * > 3.

Zostáva teda vyšetřit’ funkciu (1) v otvorených intervaloch
(0; 1) (1; 2) a (2; 3).

/

1-

f 30

Obr. 1.
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a)V intervale (0;1) je C(x) = O, takže předpis (1) má tvar

(Пу =

t- )■

1,22 .У =

Graf funkcie je znázorněný na obr. 1.b)V intervale (1; 2) je C(x) = 1, takže předpis (1) bude mať
tvar

3x — 4 (1")У = 2x - 1

Pretože pre čitatela zlomku na právej straně vztahu (1") musí
platit’

3x — 4 ^ 0 ,

je funkciá (1) definovaná v intervale (1; 2) len pre x ^ f.
Graf funkcie na obrázku vznikol spojením bodov, ktorých

súradnice sú uvedené v tabulke

4 3 7
1,9x

3 2 4

0 0,5 0,71 0,78Ус)V intervale (2; 3) je C(x) = 2, takže předpis (1) bude mať
tvar

V3jc — 8 (1"')У = 2x —2
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Pretože pre čitatela zlomku na právej straně vzťahu (1"') musí
platit’

3x — 8 ^ 0 ,

g
je funkcia (1) definovaná v intervale (2; 3) len pre x ^ .

Graf funkcie na obrázku vznikol spojením bodov, ktorých
súradnice sú v tabulke:

8
2,8 2,9

3

1
0,430

3

4
Závěr: Funkcia (1) je definovaná v intervaloch (0; 1), ( — ; 2)

8 ^
a ( — ; 3). V týchto intervaloch nadobúda předpis (1) v uve-

denom poradí tvar (1'), (1"), resp. (1"'). Graf funkcie je
na obrázku 1.

3. Je daná kvadratická rovnica

az2 -j- (b — b)z — a = 0 ,

kde a, b sú komplexně čísla, а Ф 0, a, b čísla komplexně združe-
né к číslam a, b. Koreňmi tejto rovnice sú dve komplexně jed-
notky právě vtedy, keď je

(1)

(2)(b — by -f 4 aa ^ 0 .

Dokážte!

(Poznámka. Pre rovnice typu (1) s komplexnými koefi-
cientami platia tie isté vety o vlastnostiach koreňov ako pre
rovnicu s reálnými koeficientami. Číslo z je komplexnou jed-
notkou právě vtedy, ak platí

1*1* = z.z= 1 .
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V dokáže použité nerovnost’

l*i + *2I ^ l*il + l*2l •)
Riešenie. a) Predovšetkým je zřejmé, že ak jeden kořeň

rovnice (1) je komplexná jednotka, potom aj druhým koreňom
bude komplexná jednotka, pretože súčin oboch koreňov je číslo

°L, čo je komplexná jednotka.
a

b) Nech koreňmi rovnice (1) sú komplexně jednotky zly z2.
Potom platí

(3)|*i + *2I ^ l*il + l*2l = 2.
Pre súčet koreňov rovnice (1) platí

b-b
(4)*1 + *2 =

a

Ak dosadíme zo vztahu (4) do (3), dostaneme
b-b

2 .

Teda

(b-b) (b-b)
a . a

čiže

0 - ьу- 2 .

a . a

Po umocnění nezáporných výrazov na oboch stranách poslednej
nerovnosti a jednoduchej úpravě dostaneme nerovnost’ (2).

c) Nech platí vztah (2). Označme

d = ]/(b- by + 4ad.
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Podia vzorca pre riešenie kvadratickej rovnice je potom jeden
z koreňov rovnice (1) daný vzťahom

b -b + d
(5)*i = 2a

Zo vztahu (5) dostaneme

b - b + d
(6)«i = 2a

Zo vzťahov (5), (6) ich vynásobením dostaneme

d2 - (b - b)2 (b - b)2 + 4aa - {b - bf
*i • *i = 4a . a 4 a . a

To znamená, že z1 je komplexná jednotka a podlá odstavca a) je
potom tiež druhý kořeň z2 rovnice (1) komplexná jednotka.

Tým je dokaž úplné převedený.

4. Je dán trojúhelník ABC a záporné číslo Vyšetřte mno-
žinu všech bodů X v rovině ABC, které máji tyto vlastnosti:

a) každý z bodů X leží uvnitř trojúhelníka ABC;
b) stejnolehlost se středem X a koeficientem x převádí

vrcholy А, В v body ležící uvnitř trojúhelníka ABC
a vrchol C v bod ležící vně trojúhelníka ABC.

(Poznámka. Experimentujte pro různá x, např. pro x — — •

Vyšetřování lze zjednodušit např. tím, že střed X stejnolehlosti
s koeficientem x, která převádí vrchol A v bod A'} lze sestrojit

; dokažte tuto
1

•]jako obraz bodu A' v stejnolehlostí A.
větu.) L

5
1
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Řešení. Označme A' obraz vrcholu A v stejnolehlosti [X, x).
Protože X leží mezi A, A' (neboť je x < 0), platí

AX AX 1

XA' 'ЛЛ' ЛХ + АГЛ'
1 4-

ЛХ

АЛ'
Avšak x — — ; proto stejnolehlost se středem Л, kteráXA 5

převádí Л' v Z má koeficient
AX 1

ЛЛ' 1 — x

[* —-—j převádí vnitřek trojúhelníkaStejnolehlost
ve vnitřek jistého trojúhelníka TT (obr. 2). Obdobně stejnolehlost

ABC

Гб, -—1—1 převádí vnitřek trojúhelníka ABC ve vnitřek jistého
L 1
trojúhelníka T2. Obdobně stejnolehlost [q -t—-—1

L 1 ~*j
převádí

vnějšek trojúhelníka ЛБС ve vnějšek jistého trojúhelníka T3.
Řešení úlohy dává společná část (průnik) vnitřků trojúhelníků
T13 T2 a vnějšku trojúhelníku T3.

Obr. 2.
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Rozlišíme tři případy:
1a)x> —2 5

1
b) — 1 < x ^ —--;

c) x — 1 .

a) Na obr. 3 je zvoleno x = ——. Body X žádaných vlast-
ností vyplní v tomto a v obdobných případech vnitřek vyšra-
fováného lichoběžníka L.

I
b) Na obr. 4a je zakreslena situace pro x — — — a na obr. 4b

5
situace pro = ——. Středy X tu vyplní vždy vnitřek vyšrafo-

váného trojúhelníka.



c) Na obr. 5a je zakreslena situace pro г = 1 a na obr. 5b
situace pro x — —2. Množina všech bodů X je v obou přípa-
dech prázdná.

Obr. 5a, b.

Výsledek je shrnut v tabulce:

l
— 1 ^ X1X

2

Množina
všech bodů X

Vnitřek
lichoběžníka

Vnitřek
trojúhelníka

Množina
prázdná

5. Je dána krychle o hraně délky 1. Každá její stěna je rozdě-
léna v (2n -j- l)2 shodných čtverců podle obr. 6 (kde n = 2
a n — 3). Vnitřními n2 čtverci každé stěny (na obrázku černými)
jsou vedeny celým tělesem kolmo ke stěně „kanály“ ve tvaru
pravidelných čtyřbokých hranolů.

a) Vypočtěte objem Vn a povrch Sn zbylého tělesa.

b) Zjistěte zda lze zvolit n tak, aby bylo Vn

c) Zjistěte zda lze zvolit n tak, aby bylo Sn > 100.

(Poznámka. V případě b) vyšetřujte výraz 2 . Vn.)

1

2 ‘

33



7"7
n = 3n-2

Obr. 6.

Řešení, a) Každý „kanál44 obsahuje 2n + 1 krychliček;
počet „kanálů44 je 3 . rř. Sečteme-li nezávisle objemy všech
Ъп2 „kanálů44, počítáme objemy jejich průniků třikrát; počet
těchto průniků je n . n2 (každý „kanál4‘ obsahuje právě n prů-
niků). Objem všech „kanálů44 je tedy

1
Vn = [3n1. (2n + 1) - 2n. n2]. (1)

(2n + l)3 5
1

- je totiž objem jedné malé krychličky z průniku
(2n + 1)

„kanálů44.
Z (1) dostaneme

4и3 + Зи2
Vn = l- VÍ=l- (2n + l)3

a po úpravě
4я3 -f- 9n2 + 6n + 1

8rí3 + 12w2 + 6n + 1
(2)Vn =
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Povrch Sn zbylého tělesa se skládá z šesti „děravých" stěn a ze
stěn „kanálů". Počet čtverečků děravých stěn je

6 [(2n -f l)2 — и2] = 6(n + 1) (3n + 1).
Počet čtverečků ve stěnách „kanálu" je 4(n + 1); počet

čtverečků skládajících stěny všech kanálů je tedy
Ш2 (n + 1) .

(3)

(4)
Spojením (3), (4) dostaneme

1
Sn = [б(я + 1) (3n + 1) + 12n2 (n + 1)]. ; (5)(2n + l)2 5

1
2 je totiž obsah jednoho čtverečku. Vzorec (5) upra-(2n + 1)

víme:

«•±§[3.+ !+*■] =
6(w + l)2(2n + 1)Sn —

(2n + l)2(2n

6(n + l)2
2n -f- 1 (6)

b) Uvažujme dvojnásobek čísla Vn ze vzorce (2):
Sn3 + 18я2 + 12я + 2

2V =^ y n 8n3 + 12и2 + 6n -j- 1
6n2 + 6n + 1

= 1 + > 1
8n3 + 12n2 + 6я -|- 1

neboli pro všechna n platí
1

K>J-
Žádné n, pro které by platilo, že Vn ^ у, tedy neexistuje.
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c) Máme řešit nerovnost (viz (6))
6(n + l)2

> 100
2n 4- 1

neboli po úpravě
(7)3n2 — 94n — 47 > 0 .

94n — 47 = 0 má dva reálné kořeny n13 n2,Rovnice 3n2

pro něž platí
— 1 < nt < 0 , 31 < n2 < 32 .

Zvolíme-li libovolné přirozené « > n2, je Sn > 100. Pro
n — 32 je počet „kanálů”, který splňuje požadavek úlohy c),
minimální, tj. 3.322 = 3072.

6. Uvnitř trojúhelníka ABC je dán bod R té vlastnosti, že
<£ RAB = <£ RBC = <£ RCA

Jsou-li a, /7, у vnitřní úhly trojúhelníka ABC, platí
9?.

1 1 11

sin2 уsin2 cp sin2 a sin2 /?
dokažte.

(Poznámka. Obsah trojúhelníka ABC vyjádřete jako součet
obsahů trojúhelníků ABR,
BCR, CAR.)

Řešení (obr. 7). Označme
AR = x, BR — y, CR = z,

° dále označme strany trojúhel-
nika ABC obvyklým způsobem
a písmenem P jeho obsah. Podle

1 sinové věty (pro trojúhelníky
В CAR, ABR a BCR) dostaneme

C

у
ft-*

г/b

\

a-y У\

Р-УГ'*
c

Obr. 7.
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b
—

. sin (f) , у =
sin ос

с а
——7г • sin ср 5 z = —: .sin (р; (1)
sin р sin у

je totiž < ARC = 180° - a, <£ ARB = 180° - A
< BRC = 180° - y.

Pro obsahy trojúhelníků platí
Л ABR + ABCR + АСAR = A ABC

х =

neboli

111
P. (2) •— cx . sin cp + — ay . sin у + — bz . sin cp —

Z (2) dostaneme úpravou
2 P

(3)cx + ay + bz — sin 9>

Do (3) dosadíme z (1) a dělíme číslem sin y, vyjde
abbc 2P

(4)sin a ^ sin A sin У sin2 T9 '

Použijeme-И vzorců pro obsah trojúhelníku

b

1 11
— be sin a = —ac sin = — ab sin у ,P =

vyjde dokazovaná rovnost.

2. KATEGORIE В

1. Najděte všecka reálná čísla v, pro která platí
1 1

(1)A 1 .

— x l/l + X
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Řešení, a) Platí-li pro reálné číslo x vztah (1), je

x^]/l — X2 ,У i + x — у i (la)
umocněním dostaneme

2 — 2 У1 — x2Si 1 — x2, (lb)
tj.

1 + x2 ^ 2f\ - x2.
Provedeme další umocnění; vyjde

1 + 2x2 + x4 ^ 4 — 4x2,

(lc)

(ld)
tj.

x4 + 6x2 — 3^0.

Trojčlen na levé straně (2) vyjádříme ve tvaru

(x2 + 3)2 - 12 ^ 0 ,

(2)

tj-
(x2 + 3 + У12) (x2 + 3 - ]/l2) ^ 0 .

První činitel na levé straně (3) je vždy kladné číslo; proto musí

(3)

být
x2 + 3 -]/l2 ^0, (3')

tj-

| x | ^ Уу 12 - 3 = У0,464 == 0,68 .

b) Zkouška. Z (4) plyne (3'), odtud (3), (2), (ld). Z (ld) plyne
(lc) právě tehdy, když platí

(4)

(5)1*1 ^ i -

Nerovnost (lc) upravíme na tvar (lb) neboli

Q/i+x J/~*)2a(l/r=T2)2.
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Z této nerovnosti plyne nerovnost (la) právě tehdy, když
je

]/l + x — |/l —x ^ 0,

]/1 + X ^ ]/1 — X ,

neboli

neboli

(6)1 + x ^ 1

Nerovnost (6) platí právě tehdy, když je
x ^ 0 .

Z nerovnosti (la) plyne (1) právě tehdy, pokud je
x ф ± 1 .

Spojíme-li (4), (5), (7) a (8), dostaneme řešení

1 > x ^ ]/yi2 - 3 .

Znázornění na číselné ose je na obr. 8.

x.

(7)

(8)

í2Í3-3 =0,68 1

Obr. 8.

O

2. Dekadický zápis právě jedného z čísel
an =: 72W + 2 . ln + 2,

kde n je prirodzené číslo, má na mieste jednotiek číslicu 5.
Dokážte.

Riešenie. Eahko sa přesvědčíme, že mocniny ln pre n —
— 1, 2, 3, 4,. . . končia v uvedenom poradí číslicami 7, 9, 3, 1,
pričom sa tieto číslice v postupnosti mocnin opakujú (podrobný
dokaž tohto pomocného tvrdenia možno podat’ matematickou
indukciou).

bn = 72w - 2 . ln + 2 ,
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Čísla an, bn možno vyjadriť v tvare

a« = (7” + l)2 + 1, bn = (7® - i)2 + i .

Čísla 7® + 1, resp. 7” 1 končía teda postupné číslicami
8, 0, 4, 2, resp. 6, 8, 2, 0. Potom čísla (7® + l)2,resp. (7” — l)2
končía číslicami 4, 0, 6, 4, resp. 6, 4, 4, 0 a konečne čísla
(7® -f- l)2 + 1, resp. (7® — l)2 -f 1 končía číslicami 5, 1, 7, 5,
resp. 7, 5,5, 1.

Je teda vidieť, že pre každé prirodzené n končí právě jedno
z čísel an, bn číslicou 5. Tým je dokaž převedený.

3. Pravoúhlý trojúhelník má tuto vlastnost: Z jeho odvěsen
a z výšky na přeponu lze sestrojit opět pravoúhlý trojúhelník.

a) Vypočtěte poměr odvěsny a přepony.
b) Sestrojte aspoň jeden trojúhelník uvedené vlastnosti.

£

b a

4

A
ВA a D

Obr. 9.

Řešení (obr. 9). a) Budiž b ^ u > v. Pak pro druhý právo-
úhlý trojúhelník platí

b2 = a2 + v1, (1)
takže zároveň je i

AD = ВС = a .

Podle Eukleidovy věty je
AC2 =AD . AB ,

tj.
b2 = ac . (2)
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Do (2) dosadíme b2 — с2 — а2, upravíme a získáme rovnici
а2 + ас — с2 — 0 . (3)

1
Protože с Ф О, násobíme rovnici (3) číslem a dostaneme
kvadratickou rovnici pro hledaný poměr odvěsny a a přepony c,
tj. rovnici

a
+ 1=0. (3')

c

Rovnice (3') má jediný kladný kořen
a 1

7= 2 (1/5 -1). (4)

Rovnice (3) vyjadřuje nutnou a postačující podmínku pro to,
aby daný trojúhelník měl vyslovenou vlastnost, jak plyne
z obrácení postupu.

Poznámka. Při výpočtu poměru druhé odvěsny b a přepo-
ny c vyjdeme rovněž ze vztahu (2); jednoduchou úpravou do-
staneme

b a

b 'c

Dále platí
ь IU2 - b2
7“

tj-

4 c2

b2

— dostanemeUmocněním a substitucí x —

c

1
X2 = — 1

X2
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čili
x4 -f- x2 — 1 = 0,

což je kvadratická rovnice pro x2. Její jediný kladný kořen je
(5)

*2 = J(l/5 1),
takže platí

b 1

b) Pro zvolené c = AB provedeme s použitím výsledku (4)
konstrukci trojúhelníku ABC takto:

Sestrojíme pomocný pravoúhlý trojúhelník ВАО s odvěsnami
c. Kružnice / =

v bodě T. Výpočtem se přesvědčíme, že
|o; yj protne úsečku ВОAO = j, AB =

což je délka hledané odvěsny a, kterou vypočítáme ze (4). Další
kroky konstrukce jsou zřejmé z obr. 10. Důkaz vyplývá z obrá-
cení postupu a).

0

\l
\
\
\

ч
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4. Je dán obdélník o rozměrech a, b. Do něho je vepsáno
písmeno „V“ podle obrázku 11.

Obr. 11.

a) Vyjádřete obsah plochy písmene „V“ pomocí délky x a roz-
měrů a, b.
b) Pro kterou délku x je obsah plochy „V“ polovinou obsahu
obdélníka ?

Řešení, a) Z obrázku je patrno, že písmeno „V“ vznikne jen

pro x < — . Z podobnosti trojúhelníků

Д KLM ~ Д NPM (и и)
vyplývá

— b ~y
x a — 2x 5

odtud po úpravě
bx

(1)У = —
a — x
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Obsah plochy písmene „V“ označme z; pak platí
1

(2)z = 2bx —

~2 Xy ’

Spojíme-li vztahy (1), (2) vyloučením y, dostaneme
Aabx — 5bx2

(3)г- =
2(a — x) 5

což je hledaný vzorec pro z platný pro x < —.

1
b) Druhou otázku zodpovíme po rozřešení rovnice z = — ab

(viz (3)) neboli
Aabx — 5bx2 1

(4)
2{a — x)

kde neznámou je délka x; a, b jsou dané rozměry obdélníku.
Odtud dostaneme po úpravě rovnici

5jc2 — 5ax + a2 — 0.

Rovnice (5) má dva kladné kořeny
(5)

5+1/5 5-1/5
—r a .Xi & > —
1010

Kořen xx nevyhovuje, neboť je

7,236 1
= 0,7236a >—«;

pro tuto délku х-l nevznikne písmeno „V“. Druhý kořen x2 vy-
hovuje, neboť je

10
a

— a = 0,2764a < у a .x2 ==
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Je třeba si ještě uvědomit, že z rovnice (5) vyplývá (4) neboli

у ab; tím je provedena zkouška pro druhý kořen. Z postu-
pu je patrné, že a je libovolné reálné kladné číslo; číslo b je
rovněž kladné reálné číslo na číslu a nezávislé (viz úprava (4)
na (5) a obráceně). Omezení x < у vyplývá z požadavku
existence písmene tvaru „V“.

z =

5. Je dán kvádr o rozměrech a, b, c, který není krychle.
Součet objemů krychlí o hranách a, b, c je větší než trojnásobný
objem daného kvádru; dokažte.

(Poznámka. Použijte výrazu (a -ý b + c)3.)

Řešení. Máme vlastně dokázat toto tvrzení: Jsou-li a, b, c
tři kladná čísla, ne vesměs sobě rovná (neboť jde o rozměry
kvádru, který není krychle), pak platí

a3 + b3 -f- c3 — ЪаЪс > 0 .

Abychom tuto nerovnost dokázali, užijme vzorce

(1)

(a -f- b -f- cf = a3 -j- b3 + c3 + 3(a2b + ab2 + a2c + ac2 +
+ b2c + bc2) -(- 6abc .

Tedy
a3 -\- b3 -f с3 — ЪаЬс = (a -j- b + с)3 — Ъ(а2Ь J- ab2 -f a2c T

+ ac2 + b2c + bc2) — 9abc —
— (a + ř + c)3 - 3 [ab{a + b -j- c) + ac{a + b + c) +

4“ bc(a + b 4~ c)] =

= (a -j- b + c) [a2 + b2 + c2 — ab — ac — bc] —

= j(a + b + c) [(a — by + (a - cf + (b - c)*] .
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Poslední výraz je vždy kladný, neboť a, b, c jsou kladná čísla
ne vesměs sobě rovná. Tím je nerovnost (1) dokázána.

6. V rovině leží sedem roznych priamok, ktorých vzájomná
poloha je popísaná takto:

a) z daných priamok možno vybrat’ právě štyri dvojice
rovnobežiek;

b) v rovině jeli roznych bodov, z ktorých každý je prieseč-
nikom právě dvoch priamok.

Zistite, či niektorým bodom roviny prechádza viac než dve
z daných priamok.

Úloha má dva typy riešení; načrtnite ich!
(Poznámka. Počítáme všetky možné zostavitelné dvojice

rovnobežiek, napr. tri rožne rovnoběžky představujú tri dvo-
jice rovnobežiek.)

Riešenie. Zo siedmich roznych priamok možno utvořit’
7 6

—^— = 21 roznych dvojíc. V sústave sú štyri dvojice rovno-
bežiek, a teda 21—4=17 dvojíc róznobežiek. Z nich je 17 —
— 11 = 6 takých, ktoré sú tvořené priamkami, ktorých prie-
sečníkom prechádza viac než dve priamky. To je možné dvorná
spósobmi:

1. dva priesečníky ležia na troch priamkach (obr. 12 a, b);

3 dvojice 3 dvojice
Celkem 6 dvojic

Obr. 12a, b.
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2. jeden priesečník leží na Štyroch priamkach (obr. 13).

Štyri dvojice rovnobežiek nemóžu patriť štyrom róznym
smerom, pretože potom by všetkých priamok muselo byť aspoň
osem. Patria tedy aspoň tri priamky tomu istému směru. Ne-
móžu však tomu istému směru patriť štyri priamky, pretože
potom by existovalo aspoň 6 dvojíc rovnobežiek. Situácia s rov-
nobežkami je teda jedine takáto (obr. 14):

a) Predchádzajúci obr. 14 doplníme najskór dvorná priam-
kami tak, aby vznikli dva priesečníky troch priamok. Sú to napr.
takéto obrázky (obr. 15a, b, c):
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Obr. 15a, b.

b) Druhý spósob doplnenia je taký, že vznikne priesečník
štyroch priamok (obr. 16).
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3. KATEGORIE С

1. Tři navzájem různá přirozená čísla a, b, c mají tuto
vlastnost: součet každých dvou z nich je dělitelný třetím
číslem. Vyjádřete všecka čísla takové trojice pomocí nejmenšího
z nich.

Řešení. Zvolme označení čísel a, b, c tak, aby bylo
a < b < c . (1)

Podle (1) je a -f b < 2c. Nechť a + b = k . c, kde k je při-
rozené číslo. Je tedy k . c < 2c, tj. k = 1, takže platí

c = a + b . (2)
Podle (2) je

a-\-c = 2a-\-b = k'.b, (3)
kde k' je přirozené číslo.

Mimo to je podle (1) 2a < 2b a b < a + c. Je tedy podle
(3)

b < k' . b < ъъ,

tj. kr = 2 a dále z (3) vyplývá
(4)b = 2a .

Spojíme-li (2), (4), dostaneme
c — 3a.

Zvolíme-li a, dostaneme trojici a, 2a, 3a. Nejmenší taková
trojice je 1, 2, 3.

Zkouškou se přesvědčíme, že trojice vyhovuje daným pod-
mínkám.

2. O daných kladných číslech a, b, c, d platí

(5)

c

(1)b < d '
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Dokažte, že pro každou dvojici kladných čísel x, у platí nerov-
nosti

ax -f cya c

(2)<
bx -4 dy db

Řešení. Z (1) plyne
(!')bc — ad > 0 .

Vypočteme rozdíl
1ax + cy

(.abx -j- bcy — abx — ady) =bx - dy b b{bx + dy)
y(bc — ad)
b(bx + dy)

Poslední výraz v zápisu (3) je kladný, neboť b > 0, bx + dy >
> 0, у > 0, bc — ad y> 0 (podle (1')).

Vypočteme rozdíl

(3)

1ax -)- cyc

(écx -f cdy — adx — cdy) =d bx -f dy á{bx + dy)
(bc — ad)x
d(bx + dy)

(4)

Také ve vztahu (4) je z obdobných důvodů jako při výpočtu
prvního rozdílu poslední výraz kladný.

Vzhledem к výsledkům (3) a (4) jsou nerovnosti (2) správné.
3. Škola s n žiakmi mala pochodové cvičenie. Zraz bol na

konečnej stanici elektrickej dráhy. Električkou přicestovalo
p °/0 zo všetkých žiakov, p °/0 z ostatných přišlo pešo. Pri kon-
trole sa ukázalo, že chýba jediný žiak. Vyjádříte p pomocou n
a výpočet převeďte pre n

(Poznámka. Pri úpravě rovnice pre p vytknite n.)

400.
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pRiešenie. Električkou přicestovalo n. žiakov, zvyšok bol

/1—Ž-\-L
\ 100/ 100nli-JL)l 100/

. Peso přišlo teda n - žiakov.

Podl’a textu úlohy je

\ 100/ 100
p

n ■ ш + n
z čoho po úpravě máme

P
2n .

—— n.
100

Výrazy obsahujúce číslo n prevedieme na l’avú stranu a číslo
n vytkneme. Dostaneme

(*)'-']n j^2 .
P

1
100

(-i)a po vynásobení číslom

= i
\l00/ n

2 . ~

100

Výraz na 1’avej straně je druhou mocninou dvojčlena

Г00 T^>0’vyplývaz(1)

(1)1

(’ 100) . Pretože

1P1

I!n100

čiže

ř = 100 ť1 “ yr) •
(2)
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Ak dosadíme do (2) číslo n — 400, vyjde p — 95. Po dosadení
do podmienok úlohy zistíme, že električkou přicestovalo 380
žiakov, 19 žiakov přišlo pešo a jeden chýbal.

Skúška: 380 + 19 + 1 = 400.

Iné riešenie. Jeden žiak sa nedostavil, t. j. 1 je (100 — p)
percent zo zvyšku z. Platí teda

100
z = 1 .

100 — /» '

Zvyšok je zo všetkých n žiakov (100 — p) percent. Pre celkový
počet žiakov tedy dostaneme

)‘
skadial už vyplývá

4. Narýsujte obrazec podle připojeného obr. 17; ABCD je
čtverec o straně délky 6 cm, bod M je středem strany BC
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(BN J_ AM ± DY). Vypočtěte vzdálenost NY a zjistěte vý-
počtem, zda trojúhelník DNY je pravoúhlý.

Řešení. Zřejmě je
(1)Д ABM ^ Д BCN, (usu)

neboť <£ MAB = <£ NBC. Z (1) plyne BM — CN — 3 cm.
Podle Pythagorovy věty pro trojúhelník ABM je

AM = 1ŽAB2 + BM2 = У45 = 3]/5 .

Označíme-li BX= x a vyjádříme-li obsah trojúhelníka ABM
dvojím způsobem, dostaneme

AM . BX — 3*1/5 = 2 . AABM = AB . BM = 6.3 ,

(2)

odtud

6
(3)

Dále je podle Pythagorovy věty vzhledem ke (3)

AX=\/АВ* - BX2 =
o. 36 1236 — = = 2* . (4)

V55

Podle věty usu je však
aday^aabx,

tj.
6

AY= BX = (5)X=W
Bod Y je tedy podle (4), (5) středem úsečky AX.

Vzdálenost NY vypočteme podle Pythagorovy věty z troj-
úhelníka NYX. Platí podle (2), (3)

И-ТЙ+•NY2 = NX2 + YX2 =
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po úpravě
117

NY2 (6)5 5

tj.

NY= 3 .

Podle obrácení Pjrthagorovy věty je trojúhelník DNY právo-
úhlý (jeho nej delší strana je DY) právě tehdy, platí-li

DY2 - DN2 - NY2 = 0 .

Protože je A DA Л ABX, je podle (4) DY = AX =
12

; mimo to je DN = 3. Platí tedy podle (6)= 2x

W
117 18144

DY2 - DN2 - NY2 = — 9
5 5

Trojúhelník DNY tedy není pravoúhlý.

5. Je dána kružnice k = (S; r) a bod A jejího vnějšku.
a) Bodem A sestrojte přímku, která protíná kružnici k v bo-

dech В, C tak, že В je středem úsečky AC (úloha Catalanova).
b) Vyjádřete délku tě-

tivy BC pomocí délek
r, v = AS.

Řešení, a) Předpoklá-
dejme, že jsme přímku
sestrojili (obr. 18). Budiž
CD průměr kružnice,
M střed úsečky BC. Ne-
leží-li body А, В, C, D
v přímce, vznikne trojú-
helník ACD, v němž je

Proveďte diskusi.
/

1
/i

/В
/\ V

/
Xh /

T r's~-

%
/\

Id

к

Obr. 18.
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BS střední příčka rovnoběžná s AD; je tedy
AD = 2 . BS = 2r .

Leží-li body Л, В, C, D у přímce, je В = Z) a platí
AD = AB= BC=2r,

tj-
w = 3r .

Bod D leží tedy vždy na kružnici 1 = (A; 2r). Úloha má
aspoň jedno řešení právě tehdy, mají-li kružnice k, l aspoň
jeden společný bod, tj. když platí

r = 2r — r^v^2r-\-r — 3r .

Levá nerovnost (1) je splněna (neboť A je bod vnějšku kružnice
k). Podmínka řešitelnosti je tedy

v 4 3r,
neboť platí-li (2), platí i (1) a kružnice k, l mají společný aspoň
jeden bod; každý společný bod vede к jednomu řešení úlohy.

Platí-li ve vztahu (2) rovnost, má úloha jediné řešení;
v případě ostré nerovnosti má úloha dvě řešení. Jinak úloha
řešení nemá.

b) Označme BC = v; z pravoúhlého trojúhelníka ВMS
dostaneme podle Pythagorovy věty

(1)

(2)

JC2
MS2 = r2

4 ‘

Dále vypočteme z pravoúhlého trojúhelníka ASM

(H-AS2 = MS2 +

tj-
x2

-X2
4 x 5

г>2
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odtud 2л:2 = v2 — r2 neboli

x==)ll-]/v2 -r2. (3)

Vzorec (3) platí i v případě, když je v = 3r a kdy nevznikne
trojúhelník ACD; pak vyjde x — 2r.

Ze vzorce (3) dostaneme znovu podmínku řešitelnosti: ježto
musí platit x 5^ 2r, je

P ]/„2_r2 gJr,
tj-

v1 — r2 8r2,
takže

v ^3r,
což souhlasí s podmínkou (2).

6. Dokážte: Os strany BC trojúhelníka ABC přetne stranu
AB vo vnútornom bode právě vtedy, keď pre uhly trojúholníka
platí vztah

a + 2/5 < 180°.
(Poznámka. Pri dókaze obrátenej vety vyjdite zo situácie,

keď os úsečky BC nepretína úsečku AB.)
C Riešenie (obr. 19). a) Akpre-

tíná os o stranu AB vo vnútor-
nom bode M, vznikne rovnora-

menný trojuholník BCM a troj-
uholník ACM. Pre vonkajší
uhol <£ AMC zrejme platí
<)C AMC = 2/5. Okrem toho

q v trojuholníku ACM platí
< AMC + <£ CAM < 180°,

/ fl
/ \í-'o/

/
/

a ггЪ'' A
A

Obr. 19.
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čiže

a + 2/3 < 180°. (1)

b) Predpokladajme, že priamka o nepretína úsečku AB v jej
vnútornom bode. Ak je /3 ^ 90°, potom nerovnost’ (1) zrejme
neplatí. Ak je /3 < 90°, přetne priamka o (podl’a 5. postulátu)
polpriamku BA v bode M, ktorý neleží vo vnútri úsečky AB.
Vznikne rovnoramenný trojuholník BCM so základňou BC
(obr. 20), je teda

<£ BCM = [1. i

c
/o

/\
\
\
\
\
\
\ a

£
~1ma в

Obr. 20.

Pretože bod A leží na úsečke BM, je <£ ACB ^ <); BCM, t. j.
180° — a - /5 ^ /5

čiže
a + 2^ 180°,

čo je negácia vztahu (1).
Iné riešenie. b) Předpokládá]me, že priamka o nepretne

úsečku AB v jej vnútornom bode. Potom priamka o buď pre-
chádza bodom A alebo (podlá Paschovho postulátu) přetne
úsečku AC v jej vnútornom bode. V prvom případe je troj-
uholník ABC rovnoramenný so základňou BC a platí

a -j- 2 /3 = 180°.
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V druhom případe podlá a) je
a + 2y < 180° = 2 (a + /5 + y) - 180°,

takže

a + 2/5 > 180°.
Vždy teda platí

oc + 2/5 ^ 180°,
čo je negácia vzťahu (1).

4. KATEGORIE D

1. Žiak dostal za úlohu umocnit’ trojčlen (a + 26 — 3)2.
Vyšiel mu výsledok a2 + 462 — 9. „Ale to predsa nie je správné
— namietal učitel’ — dosaď si na skúšku za a, b nějaké určité
prirodzené čísla.“ Žiak poslúchol a skúška mu vyšla. Ktoré
čísla dosadil? Ako znie správné vzorec pre druhů mocninu
daného troj člena?

Riešenie. Správný výsledok má znieť

(a + 2b - 3)2 = a2 + Ab2 + 9 + 4ab -6a- 12b . (1)
Ak porovnáme správný výsledok s výsledkom žiaka, dostaneme

a2 + 462 + 9 + 4ab -6a- 12b = a2 + 4b2 - 9
čiže

4ab — 6a — 12b + 18 = 0,
t. j.

2ab — Ъа — 6b + 9 = 0 .

Vytknutím spoločných činitelův postupné dostaneme
a(2b - 3) - 3(2b - 3) = 0 ,
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čiže
(2b - 3) (a - 3) = O .

3, pretože 2b — 3 ako nepárne číslo jeStadia! vyplývá a
nenulové. Obrátene z a = 3 vyplývá vztah (1). Máme teda
výsledok:

Žiak dosadil a — 3 a za b nějaké prirodzené číslo.

2. Je dané prvočíslo p. Nájdite všetky dvojice prirodzených
čísel xj у, ktoré vyhovujú rovnici

11 1
(1)

P + x ' p + p p

Riešenie. Rovnicu (1) vynásobíme súčinomp(p + x) (p -f y),
ktorý je zrejme od nuly rózny, pretože p, x, у sú prirodzené
čísla. Dostaneme

P(P +y) +P(P + x) = (p + x) (p + jO
a po ďalšej úpravě

p% — xy .

Delitelmi čísla p2 sú čísla 1, p a p2. Dvojice prirodzených
čísel [x, y], ktoré vyhovujú rovnici (2) zostavíme do tabulky:

(2)

P21 P

P2 1Pу

Každá z usporiadaných dvojíc prirodzených čísel [1, p2]
alebo [p, p] alebo [p2, 1] vyhovuje tiež rovnici (1), o čom sa
přesvědčíme dosadením. Riešením úlohy sú teda uvedené tri
usporiadané dvojice čísel
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3. Písmeno a označuje přirozené číslo, jehož dekadický zápis
má více než 6 cifer, písmeno b označuje číslo, jehož dekadický
zápis tvoří posledních šest cifer čísla a. Dokažte: Je-li a ná-
sobkem čísla 26, je také b násobkem čísla 26 a obráceně.

Řešení. Číslo a vyjádříme jako součet nezáporného celého
čísla b a vhodného přirozeného čísla c, násobeného 106; je
tedy

a = b + 106. c ,

tj-
a = b + 26 . (56c),

1. Je-li a — 26 . a , je podle (1)
b = 2V - 56c),

kde a' — 56c je číslo celé; proto: je-li 26 dělitelem čísla a, je
i dělitelem čísla b.

2. Je-li b — 26 . b', je podle (1)
a =2\b' + 56c),

kde b' + 56c je číslo celé; proto: je-li 26 dělitelem čísla b, je
i dělitelem čísla a.

4. Vrcholy, středy stráň a priesečník uhlopriečok štvorca
tvoria skupinu deviatich bodov. Kolko trojuholníkov má všetky
tri vrcholy v týchto deviatich bodoch ?

Je osem typov (nezhodných) trojuholníkov. Nakreslíte ich
a udajte, kolko je trojuholníkov každého typu.

(Poznámka. Všetkých trojíc róznych bodov je 84.)

(1)

Riešenie. Skupina daných deviatich bo-
dov je znázorněná na obr. 21. Počet vset-
kých trojíc bodov je 84. Počet trojíc bodov
ležiacich na priamke je 8. Preto počet vset-
kých možných trojuholníkov je 84 — 8 = 76.

Obr. 21.
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Na obr. 22 abcdefg je znázorněný jeden spósob postupného
vytvárania trojuholníkov. V každom obrázku sa vychádza od
hrubo vytiahnutej strany. Prvý činitel’ udává, kolkokrát sa táto
strana opakuje. Druhý činitel’ udává počet vrcholov, ktoré
s uvažovanou stranou určujú trojuholníky. Tieto vrcholy sú
vyberané tak, aby nevznikli už vytvořené trojuholníky.

8.2=16

2.2=4V /

/

/

■'i
—*

\

f) 4.2=84.2=8c)
• V"

k-

Obr. 22.

Na obr. 23 je prehlad jednotlivých typov (nezhodných)
trojuholníkov. Pri každom type je uvedené číslo, ktoré udává,
kolkokrát sa příslušný trojuholník v nasej úlohe vyskytne.
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ж

16 16

i
16 4

Celkem 76Obr. 23.

5. Body А, В, C, D dělí kružnici k — (S; r) na čtyři oblouky,
jejichž délky jsou v poměru

ÁB:BC:ČD:DA= 1 : 2 : 4 : 5 .

Přímky AD, BC se protnou v bodě Q. Vypočtěte vzdálenosti
QB a QD.

Řešení (obr. 24). Zřejmě platí pro středové úhly
<£ ASВ : BSC : <£ CSD : DS/4 = 1 : 2 : 4 : 5 .

62



Odtud snadno vypočteme

<£ ASB = 30°, <£ BSC = 60°, < CSD = 120°, <£ DSA =
= 150°.

V rovnoramenném trojúhelníku ADS je <£ ADS = 15°,
v rovnoramenném trojúhelníku CDS je <£ SDC = <£ SCD =
= 30°. Protože trojúhelník BCS je rovnostranný, je <£ SCB —

= 60°. Je tedy
ЛВС - 15° + 30° = 45°,
BCD = 60° + 30° = 90°.

Z rovnoramenného trojúhelníka CDS (který rozdělíme
výškou ve dva pravoúhlé) dostaneme

CD = r]/3 .

Podle (1) je trojúhelník CDQ pravoúhlý a rovnoramenný;
podle (2) je tedy CO = CD = r]/3 . Protože je CB = r, je

BQ = CQ — CB = r(|/3 - 1).
Z trojúhelníka QCD dostaneme

QD= CD. 1/2 = г]/б .

6. Lichoběžník ABCD má úhlopříčky ЛС, BD, které mají
tutéž délku a půlí úhly při základně ЛВ. Dokažte, že platí
BC = CD = DA a sestrojte tento lichoběžník, je-li dáno
AB = a, < ЛСВ = 90°.

Řešení (obr. 25). Podle podmínky úlohy je DAC —

= <Č СЛВ; dále je <): ВСЛ = < СЛВ (úhly střídavé). Proto
je <ý ВЛС = <£ DCA a trojúhelník ЛСО je rovnoramenný
se základnou AC. Z obdobného důvodu je trojúhelník BCD
rovnoramenný se základnou BD. Je tedy

AD = CD = BC .

(1)

(2)

(1)
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Я. tt с у
ж

d Ь

Ж

+—а—
Obr. 25.

А

Ze vztahů (1) plyne, že lichoběžník je rovnoramenný; je tedy
<£ DAB = <£ СБЛ; z toho vyplývá

<£ СБЛ = 2 . <£ СЛЯ,

neboť ЛС je osa úhlu <£ DAB. Protože trojúhelník Л.ВС je
pravoúhlý, je <£ СЛЛ + <£ СЛЛ = 90°; z (2) pak plyne

<£ CAB = 30°, <£ СБЛ = 60° .

(2)

Lichoběžník ABCD se např. sestrojí jako část pravidelného
šestiúhelníka vepsaného do kružnice nad průměrem AB.
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IV. Soutěžní úlohy I. kola

1. KATEGORIE A

1. Určete nejmenší kladný zlomek, jehož součet s jeho druhou
mocninou je větší než šest a jehož čitatel a jmenovatel mají sou-
čet menší než 100.

(Poznámka. Ze všech zlomků s daným jmenovatelem v
a větších než číslo 2 vyberte nejmenší zlomek.)

Řešení. Hledaný kladný zlomek budiž —, kde u, v jsou celá
v

čísla buď obě zároveň kladná nebo zároveň záporná,
a) Nechť и > 0, v > 0. Podle podmínek úlohy platí

U2
(1)1 5" > 6 ,í;2v

и + v < 100 . (2)
Nerovnost

x2 + л; — 6 > 0 , (!')
u

kde x — — , má kladná řešení
■v

x > 2 .

Je tedy
и

— > 2 . (1")
-

Nejmenší kladný zlomek větší než 2 s daným jmenovatelem v
je

2v + 1и

(3)
v v
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Spojíme-li (2), (3), dostaneme po úpravě
v < 33 . (4)

-f- 1 2^2 1 dvě racionální čísla, pro něžJsou-li
v\

platí v1 < v2i je
^2

2vx -f- 1 2v2 + 1
>

®i ®2

2v + 1
je co nejmenším číslem čísloZe všech čísel tvaru

v

s co největším jmenovatelem; v našem případě je to tedy
podle (4)

v = 32 .

65
Hledané číslo je — j toto číslo splňuje nerovnost (1"), tedy

i(l')a(l).
b) Nechť и < 0, v < 0 jsou celá čísla; pak podmínka (2)

je splněna. Podmínka (1) platí jako v odst. a); platí také nerov-
nost (1"); z ní plyne (ježto v < 0)

(1"')и < 2v .

Nerovnost (1"') splňují např. čísla и — 2v — 1; pak je
2v - 1 1и

= 2 ->o,
v ii>v

neboť v < 0. Pro v = —33 dostaneme 2 — = .

Je-li x>2 libovolné racionální číslo, které vyhovuje podmiň-
kám úlohy, můžeme najít záporné celé číslo v tak, že

v

1
2 < x

v
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a přitom podle předchozího číslo 2 — — = — — také spi-
ňuje podmínky úlohy.

Neexistuje tedy v případě b) nejmenší číslo žádaných vlast-
ností, tj. úloha je neřešitelná.

2. V rovině je daných páť bodov, z ktorých žiadne tri neležia
na jednej priamke. Každé dva z týchto bodov sú spojené červe-
nou alebo modrou úsečkou tak, že žiadne tri z týchto úsečiek
nevytvoria trojuholník tej istej farby.

a) Dokážte, že z každého z daných páť bodov vychádzajú
dve úsečky červené a dve modré.

b) Dokážte, že existuje uzavretá lomená čiara zložená z pia-
tich červených úsečiek a uzavretá lomená čiara zložená z piatich
modrých úsečiek, z ktorých každá obsahuje všetkých páť daných
bodov.

c) Zistite, kolkými spósobmi možno dané body spojit’ červe-
nými a modrými úsečkami tak, aby bola splněná podmienka
úlohy.

(Poznámka. Riešte len úvahami, nie výpočtom. V případe
a) uvážte, či je možné, aby z jedného vrcholu vychádzali tri
úsečky tej istej farby, t. j. převeďte tzv. nepriamy dokaž.)

Riešenie. a) Připusťme, že by z daného Aa
bodu A vychádzali tri červené úsečky (dané
body označme А, В, C, D, E). Nech sú to
napr. úsečky AB, AC, AD — pozři obr. 26
(červená je tište vytiahnutá).

Podlá podmienky úlohy musia byť potom
úsečky BC, BD, CD modré a vznikne „mod-
rý“ trojuholník, čo odporuje podmienkam
úlohy.

Podobné nie je možné, aby z bodu A vychádzali aspoň tri

в
7?
' I

/

£>' /■■■
/V X i

lc
Obr. 26.
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modré úsečky. Zostáva tedy jediná možnost’, že z každého bodu
vychádzajú dve červené a dve modré úsečky (vyznačené dlhými
čiarkami).

b) Podlá odst. a) vychádzajú teda z bodu A dve červené
úsečky — nech sú to napr. AB, AC; zostávajúce dve úsečky
AD, AB sú modré — pozři obr. 27. Z podmienky úlohy potom
vyplývá, že úsečka BC je modrá, úsečka DB červená. Z bodu D
vychádzajú podlá odst. a) dve červené úsečky. Úsečka CD je
teda buď červená (obr. 27) alebo modrá (obr. 28). V případe
z obr. 27 je podlá podmienky úlohy CB modrá a podlá odst. a)
(použitého na body D, E) je BD modrá a BE červená. Podobné
doplníme obr. 28. Hladané lomené čiary sú na obr. 27
ABEDCA (červená) a ADBCEA (modrá); na obr. 28 ABDECA
(červená) a ADOBEA (modrá).

c) Ak vyjdeme z bodu A a ak zvolíme obe červené úsečky,
ktoré z něho vychádzajú, dostaneme dve rózne možnosti. Čer-
vené úsečky vychádzajúce z bodu A možno voliť (£) = 6 róz-
nymi spósobmi. Dostaneme teda 2.6= 12 róznych situácií.

3. Do jednotkové kružnice se středem A je vepsán pravidelný
Body S, Aq, Ax jsou po řadě obrazyя-úhelník A0AX. . .A

komplexních čísel 0, 1, t.
n—1*

a) Vyjádřete vzdálenost A0Ak(k = 1, 2,. . ., n — 1) pomocí t.
b) Vypočtěte součet A0A\ -f- А0А% + ...-}- A0AП—1 •
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Řešení, a) Zřejmě je
360° 360°

+ i sin (1)t = cos
n n

Bod Ak je obrazem komplexního čísla tk, jehož absolutní hod-
—

. Je tedy podle Moivreovynota jela jehož amplituda je k .

věty a podle (1)
360°£ 360°&

+ i sintk = cos
n n

360°\*_
n J

360°
- tk .-f i sin (2)cos

n

Uvažujme o komplexních číslech tk — 1 ,tn~k — 1; jejich obrazy
jsou podle (2) body Ak, A'„_k, které vzniknou z bodů Ak, An_k

^

posunutím o daný vektor A0S (na obr. 29 je k = 2, n — 7).

У4 A2
че [t]‘Aч i

\
^3 \

x

/
/

AAS
у Авt— A5

Obr. 29.

Komplexní čísla tk — 1, tn~k — 1 mají za amplitudy opačná
čísla, jejich absolutní hodnota je velikost úsečky A0Ak; je tedy
podle Moivreovy věty
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(tk — 1) (tn k — 1) — A0A.% . [cos (99 — 99) -f- i sin (99 — 99)] =

tj.

4A =V(<* -1)(<~*-1).
Rovnice (3) je řešením úlohy a).

(3)

b) Vypočteme
a — A0Af + A0A% + A0An-i — (t — 1) (tn 1 — 1) -t

1) + • • • + (tn+ (*2 - 1) (í*-2 -1 1) (/ — 1) ,

tj-
a = tn —t — tn-x + 1 + tn - t2 - i”"2 + 1 + . . . +

+ tn — t71-1 - t + 1 .

Protože je tn = 1, dostaneme z (4)
<7 = 2(n - 1) - 2(ř + t2 + . . . + i”"1) =

í*-1 - 1

t - 1 5

(4)

= 2(я 1) - 2í

a dále

— 2(и — i) + утг7 -Ci — Os

a — 2(n — 1) +

tj-
(5)o = 2n .

Vzorec (5) je řešením úlohy b).
360°&

Jiné řešení úlohy a). Platí cp —

ty je (viz obr. 30)

c Podle kosinové vě-
n
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AqA% = 2—2 cos <p = 2(1

(6)
tento vzorec platí i v případě, že cp = 180°, tj. kdy A0Ak pro-
chází bodem S.

Podle Moivreovy věty je
360°& 360°k

tk = cos + i sin
n n

360° (n - k) 360°(n - k)pn к __ cos 4 i sin
n n

36Q°k 360°k
i sin= cos

n n

a dále

360°&
tk + tn k = 2 cos (7)

n

Dosadíme-li ze (7) do (6), vyjde

Л0Л| = 2 - tk tn-k = (tk _ ^ цп-ь _ з
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neboť tn = 1. Je tedy

A0Ak = 1/(7* - 1) (*»-* - 1) = ]/2 - tk - ,

což jsme měli dokázat.
4. V rovině je dána úsečka AM, dále je dán dutý úhel co

a kladné číslo k.

a) Sestrojte rovnoramenný trojúhelník ABC, který má
vnitřní úhel <£ BAC = co a jehož základna BC je bodem M
dělena v poměru BM : CM — k.

b) Vyšetřte geometrické místo středů základen BC všech
takových trojúhelníků, nabývá-li poměr k všech kladných
hodnot.

Řešení, a) Rozbor. Protože je <£ BAC = co, je <£ ABC —

— <£ ACB = 90° - у co. Proto náleží bod В (obr. 31)
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oblouku o13 který je geometrickým místem bodů X ležících
v polorovině gl s hranicí AM, pro něž platí

1
<£ AXM = 90° - — co .

Obdobně náleží bod C oblouku o2, který je geometrickým
místem bodů Y ležících v polorovině q2 opačné к gl3 pro něž
platí

1
<£ AYM= 90° - — co .

Oblouky ol3 o2 jsou zřejmě souměrně sdružené podle přímky
AM. Stejnolehlost se středem M a koeficientem (—k) převede
vrchol C ve vrchol B, oblouk o2 v oblouk o2, který leží v polo-
rovině q± a je sestrojen nad tětivou MA', kde A'M — k . AM.
Vrchol В je tedy společným bodem oblouků o13 o2 různým od
M. Tím je rozbor úlohy ukončen.

Konstrukce. V každé z polorovin q13 q2 vyťatých přímkou
AM sestrojíme oblouk, jehož vnitřní body patří do množiny
všech bodů, z nichž je vidět úsečku AM pod úhlem 90°

1

k) sestro-tyto oblouky nazveme ol3 o2. Ve stejnolehlosti (M;
jíme oblouk o%3 který odpovídá oblouku o2. Bod В je společným
bodem oblouků ol a o'2 různým od M. Bod C sestrojíme ve

|'M; — jako bod odpovídající bodu B.stejnolehlosti

Zkouška (tzv. důkaz správnosti). Oblouk ог náleží kružnici
k13 jejíž střed Sr leží uvnitř poloroviny o1 na ose úsečky AM.
Oblouk o'2 náleží kružnici k'%, jejíž střed S'2 leží také uvnitř polo-
roviny ог na ose úsečky A'M. Označme po řadě P13 P’2 středy
úseček AM, A'M; bod M odděluje body Pl3 P’%. Proto bod В
souměrně sdružený s bodem M podle přímky SXS2 náleží
vnitřku poloroviny gx, a ovšem i oběma kružnicím k13 k'2, tj.
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obloukům ox, o'v Odvodíme-li z tohoto bodu В bod C jako

průsečík oblouku o2 s přímkou BM, je BM : CM

vznikne, neboť je obrazem bodu В ve stejnolehlosti se stře-

= k ^bod C
dem M a koeficientem — -j-j . Dále platí

1
^ABM = 90° - — co = ACM,

tj. trojúhelník ABC je rovnoramenný se základnou ВС a je
<£ BAC = co.

Diskuse. Úloha má tedy dvě řešení, která dostaneme, vy-
měníme-li poloroviny ql a q2 (a oblouky oXi o2). Tato řešení
splynou pro k — 1.

b) Střed základny BC je pata kolmice spuštěné z vrcholu
A na základnu BC. Všechny tyto body 5 leží tedy podle Tha-
letový věty na kružnici x sestrojené nad průměrem AM
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(obr. 32). Přímky ВС však nevyplňují celý svazek se středem M,
ale jen dva vrcholové úhly omezené tečnami tl3 t2 sestrojenými
v bodě M po řadě ke kružnicím kx, k2. Označme V, U po řadě
průsečíky tečen t13 t2 s kružnicí x. Pak každá přímka, která
prochází bodem M a náleží úhlu <£ UMV a úhlu vrcholovému,
protíná jen jeden z oblouků ox, o2 mimo bod M; každá jiná
přímka procházející bodem M protíná oblouk ox v bodě В
a oblouk o2 v bodě C; body В a C jsou odděleny bodem M.
Odtud je patrné, že každý ze středů padne dovnitř oblouku
UMV kružnice x a obráceně každý bod vnitřku tohoto oblouku
je středem S některé z úseček BC.

Hledané geometrické místo bodů je tedy oblouk UMV kruž-
nice x bez bodů U, V.

5. Vyšetřte množinu všech bodů v rovině, pro jejichž kar-
tézské souřadnice x, у platí nerovnost

1*1 + Ы < V(* — i)2 + (y — O2 • (1)
Řešení. Umocněním a úpravou dostaneme z (1) nerovnost:

(2)\xy\ < 1 — x — у .

Z nerovnosti (2) obráceně plyne nerovnost (1), jak zjistíme obrá-
cením postupu. Je tedy také (2) analytickým vyjádřením hledá-
ného geometrického místa bodů. Rozlišíme dva případy:
1. x Si 0, у ^ 0 nebo x ^ 0, у 5^ 0;
2. x S; 0, у ^ 0 nebo x ^ 0, у 0 .

V případě 1 je |ry| = xy a nerovnost (2) lze upravit na tvar

(* + 1) (y + 1) < 2 . (3)
Rovnice (x + 1) (у + 1) = 2 vyjadřuje rovnoosou hyperbolu,
jejíž asymptoty jsou přímky x — — 1, у = —1. Nerovnost (3)
vyjadřuje tu uzavřenou oblast Ox omezenou oběma větvemi
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hyperboly, v níž leží bod [0, 0]; bod [0, 0] totiž splňuje ne-
rovnost (3). Připojíme-li к nerovnosti (3) ještě nerovnost
xy ^ 0, dostaneme průnik P0 I. а III. kvadrantu s oblastí Ox.

V případě 2 je \xy\ — —xy a nerovnost (2) lze upravit na
tvar

(1 — x) (y — 1) < 0 .

Rovnice (1 — x) (у — 1) = 0 vyjadřuje dvojici přímek x = 1,
у — 1. Nerovnost (4) vyjadřuje ten pravý úhel sevřený těmito
přímkami, v němž leží počátek [0, 0]. Připojíme-li к nerovnosti
(4) ještě nerovnost xy ^ 0, která vyjadřuje sjednocení II. а IV.
kvadrantu, dostaneme část roviny složenou ze dvou polopásů
P13 P2. Hledaná množina je sjednocením množin P0, P13 P2.

Situace je znázorněna na obr. 33, kde je množina vyšrafována.

(4)
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6. Zistite, pře ktoré ostré uhly a platí nerovnost’
12

O)^6.
siná

Dokážte, že rovnost’ vo vztahu (1) nastane len pre a — 30°.
(Poznámka. Ak poznáte jeden kořeň mnohočlena tretieho

stupňa jednej premennej, možno tento mnohočlen pomocou
delenia koreňovým činitelom rozložit’ na súčin mnohočlenov
nižších stupňov.)

Riešenie. Je zřejmé, že musí byť а Ф 45°, pretože ak je
a = 45°, je 2a = 90°, cos 2a = 0. Budeme rozlišovat’ dva
případy: a < 45° a a > 45°.

a) Nech je a < 45°. Potom sin a > 0, cos 2a > 0. Obidve
strany nerovnosti (1) vynásobíme súčinom sin a cos 2a a do-
staneme

cos 2a

2 cos 2a + sin a ^ 6 sin a . cos 2a .

Použijeme vzorec cos 2 a = 1 — 2 sin2 a, dosadíme do (2) a po
úpravě vyjde

(2)

12 sin3 a — 4 sin2 a — 5 sin a -j- 2 ^ 0 . (3)
Označme kvóli stručnosti sin a = x. Nerovnost’ (3) má potom
tvar

12x3 — 4x2 — 5x + 2 ^ 0 .

Dosadením si overíme, že rovnice
12a3 - 4a2 - 5x + 2 = 0

(3a)

(4)

=

y ^pretože 4)má zrejme kořeň x

točnosť použijeme na rozklad štvorčlena na lávej straně nerov-
nosti (3a). Vo vztahu

sin 30° . Túto sku-

= —

yj (ax2 + bx + c)I2x3 — 4x2 — 5x + 2 (5)
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určíme koeficienty a, b, c. Vynásobíme pravú stranu a porov-
náme koeficienty pri mocninách x s rovnakým exponentom na
oboch stranách rovnosti (5). Dostaneme

1 1
cl - 12, b

2 a — 2

Stadial vyjde

-5, = 2 .~7С

a = 12, b = 2, c — —4.

Rozklad teda po úpravě znie
12л;3 — 4л:2 — 5x + 2 = (2x — 1) (6л:2 -f- x — 2).

Rozložíme ešte kvadratický troj člen 6л;2 + x — 2 pomocou
koreňov kvadratickej rovnice 6л;2 + x — 2 — 0. Tieto kořene sú

1 db ]/49

(6)

«1,2 = 12

1
~

. Híadaný rozklad jet* )• «i 2 5 «2

6*2 + x - 2 = (2x - 1) (3x + 2) .

Ak dosadíme zo vztahu (7) do vzťahu (6), prevedieme ne-
rovnost’ (3a) na tvar

(7)

(2x - l)2 . (3x + 2) ^ 0 .

Nerovnost’ (8) je splněná pre každé x > 05 t.j. nerovnost’ (1)
je splněná pre každý ostrý úhol a < 45° (to sa dostane obrá-
tením postupu). Rovnost’ vo vzťahu (8) nastane jedine pre

Y čiže pre a
b) Zostáva vyšetrovať případ 45° < a < 90°. Postupujeme

(8)

- 30°.л: =
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pri tom ako v případe a). Pretože tu je 90° <2a < 180°, je
cos 2a < 0 a namiesto nerovnosti (2) dostaneme nerovnosť

12sin3 a — 4sin2 a — 5sin a + 2 5S 0 .

Po rovnakých úpravách ako v odst. a) dostaneme namiesto ne-
rovnosti (3a) nerovnosť

12a3 - 4x2 - 5x + 2 ^ 0 . (3b)
Nerovnosť (3b) je ekvivalentná s nerovnosťou

(2x - l)2. (3x + 2) ^ 0 .

Pretože je x > 0, je 3x + 2 > 0 a nerovnosť (9) přejde na

rovnosť len pre x = a x —

ostrý a váčší ako 45°3 nemóže byť ani x = , ani x = — .

Vztah (9) teda nie je splněný pre žiadne x e (45°; 90°).

Výsledok. Riešením nerovnosti (1) sú všetky ostré uhly
a < 45°. Rovnosť nastane jedine pre a = 30°.

(9)

. Pretože však uhol a je

2. KATEGORIE В

1. „Vzorec pro umocňování třemi”

(2a2 - a + l)3 - 8a6 - a3 + 1 (1)
1

platí pro a — — . Najděte všechna reálná čísla a, pro něž tento

„vzorec” platí.

(Poznámka. Kořen polynomu lze někdy bez řešení příslušné
rovnice najít zkusmo. Budete-li znát jeden z kořenů polynomu
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vyššího stupně, lze tento polynom rozložit pomocí dělení koře-
novým činitelem v součin polynomů nižších stupňů.)

Řešení. Umocníme-li

(2a2 — a + l)3 = 8a6 — a3 + 1 + 12a4 -f 6a2 — 12a5 -f 6a4 -j-
+ 3a2 — 3a — 12a3, dostáváme za předpokladu, že pro číslo a
platí (1), rovnici

-12a5 + 18a4 - 12a3 + 9a2 - 3a = 0 .

Mnohočlen na levé straně rovnice (2) lze rozepsat jako součin
—3a . (4a4 — 6a3 + 4a2 — 3a + 1) = 0 .

Rovnice (2) má tedy kořen a = 0, který vyhovuje i rovnici (1).

V textu úlohy je uvedeno, že rovnici (1) vyhovuje a = —.

Zřejmě a = ~ splňuje také rovnici (3) a tedy i rovnici

P(a) = 0,
kde P(a) = 4a4 — 6a3 + 4a2 — 3a + 1. Po dělení mnoho-
členu P(a) kořenovým činitelem ja — j dostaneme

P(a)=(a-^
Použijeme-li vztahu

4a3 - 4a2 + 2a - 2 = 2(a - 1) (2a2 + 1),
dále rovnosti (4) a úpravy, kterou jsme obdrželi rovnici (3), lze
rovnici (2) psát po zkrácení ve tvaru

(2)

(3)

(4a3 — 4a2 + 2a — 2). (4)

.(а-1).(2<12+ 1) = 0,
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odkud již plyne, že všechny reálné kořeny rovnice (2) a tedy
i rovnice (1) jsou čísla 0, , 1. Mnohočlen (2a2+ 1) totiž není

v oboru reálných čísel rozložitelný.
Závěr: Vzorec (1) platí právě pro čísla 0, — , 1 .

2. Znázorněte graficky průběh funkce

У — ~2 (]/1 — sin 2x + У1 -f- sin 2x ) .

(Poznámka. Vyjádření funkce nejprve vhodně upravte tak,
aby výraz na pravé straně obsahoval goniometrické funkce
argumentu *.)

Řešení. Protože — 1 ^ sin 2x 5^ 1, je funkce daná před-
pisem (1) definována pro všechna reálná x. Funkční předpis (1)
si nejprve upravíme tímto obratem: umocníme-li na druhou,
dostaneme

(1)

1 + ]/cos22* 1 + jcos 2x\1
y2 — — (2 4- 2]/1 — sin22x)4

Protože odmocnina je definována jako nezáporné číslo, platí
у ^ 0, takže

22

V 1 + |cos 2*| (2)У =
2

TZ
Funkce |cos 2x\ je periodická s periodou — , tedy i námi

vyšetřovaná funkce, jak plyne z předpisu (2), je periodická
7Г

s periodou —, takže stačí graficky znázornit její průběh v inter-

válu <0, y ) .
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Nyní budeme rozlišovat dva případy:
a) Je-li cos 2x ^ 0, pak |cos 2x\ — cos 2x, takže předpis (2)

у — |cos x\ .

Případ a) nastává v intervalu <^0, pro ta л:, pro něž
TU 7U
—. Avšak pro 0 ^ x ^ — je | cos x | = cos я, tedy

zní

(3)

(3) zní
(3a)у = COS X .

b) Je-li cos 2x < 0, pak |cos 2x\ — —cos 2.x, takže předpis (2)
nabývá tvar

(4)у — |sin x\ .

Případ b) nastává všude tam, kde nenastal případ а). V našem
, kde však | sin x | =

Ы тс ч

\4 5 2 /případě se jedná o interval
= sin x a tudíž (4) zní

у — sin X .

У

1
■

/
/

/ \
X*

-2 71 -2-71 0 ~Z~7l jTl $-7t 71

Obr. 34.

Výsledný graf je na obr. 34. V intervalu <^0, ~

i71

se užívá
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funkčního předpisu (За) a v intervalu předpisu (4).

Jiné řešení. Upravíme danou funkci

У — ~2 (Vs*n2 x + cos2 x ~ 2sin * cos x ) +
+ (Уsin2 л: + cos2 x + 2sin ),X COS X

1
^ — 2* (V(si COS x)2 + У (sin X + COS x)2 ) Jn x —

1
У = ~2 (lsin * cos x| + [sin X + cos x|) . (5)

Rozlišíme tyto čtyři případy:

a) sin x — cos x Sí 0, sin x + cos x ^ 0;
b) sin x — cos x 22 0, sin x + cos x ^ 0;
c) sin x — cos x 5^ 0, sin x + cos x ^ 0;
d) sin x — cos x ^ 0, sin x + cos x 5^ 0 .

Jak zjistíme snadno např. pomocí grafů, platí v intervalu
<0, 2tu) nerovnosti

571- /7Г
cos x ^ 0 pro x e / -— ,sin x —

5u
o \ .54T,2n>0 proxe<^0, —^>sin x — COS X

sin x + cos x ^ 0 pro x e <^0, 3 ;
/ Зтс 77Iv

0РГ|),е<7’ Т/'
sin x -f- cos x
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Nastane tedy případ:
/7Г Зтс\a) pro * e /-4-, —y

3n 5n
b) pro x e </- 5

4

c) pro x e /0, , 2tt^> , (6)

„ / 5тг Ind) pro —

V jednotlivých případech a) až d) dostaneme z (5)
a) у — sin x ,

b) у = —cos v ,

c) у = cos x ,

d) у = —sin x .

Zobrazením funkcí (7) v intervalech (6) dostaneme graf
dané funkce.

3. Štvorec ABCD je rozdělený štyrmi priečkami na deváť
zhodných štvorcov. Každé z týchto deviatich polí má byť na-
treté jednou zo štyroch daných farieb tak, aby žiadne dve su-
sedné polia neboli rovnakej farby. Za susedné polia pokládáme
štvorce, ktoré majú spoločnú buď stranu alebo vrchol.

Zvolte pevne farbu stredného a 1’avého dolného štvorca
a zistite počet róznych možností zafarbenia ostatných polí.

Riešenie. Polia označme malými pišme-
námi podlá obr. 35. Farbu, ktorou je natře-
té pole a, označme 1. Farby, ktorými sú
natreté polia b, d označme v uvedenom рога-
dí 2, 3. Potom pole e je natreté farbou 4.
Pre pole c sú podlá podmienky úlohy dve
možnosti: farba 1 alebo farba 3 (obr. 36).

(7)



Pře pole / potom vychádza ur-
čitá farba: v prvom případe 3,
v druhom případe 1. Zostáva
doplnit’ prvé riadky oboch ta-
buliek z obr. 36. Eavú tabulku
možno doplnit’ dvorná spósob-
mi (obr. 37). Pole h móže mať
totiž buď farbu 1 alebo farbu 2.
Druhů tabulku z obr. 36 možno
však doplnit’ len jedným spó-
sobom: pole h musí mať farbu
2 (obr. 38).

Farby 1 a 4 polí aaesú pev-
ne zvolené. Za farby 2 a 3 mož-
no teda volit’ z ostávájúcich dvoch farieb a sú
právě dve možnosti. Volba každej z oboch mož-
ností vedie ku trom spósobom zafarbenia polí
(pozři obr. 37, 38).

Počet róznych možností zafarbenia polí, ak
sú pevne zvolené farby stredného a 1’avého dol-
ného štvorca, je teda

4 33343

2 11 121

Obr. 37.

2.3 = 6.

4. Je daná kružnica k a jej dva rožne priemery AB, CD.
Vyšetříte geometrické miesto stredov všetkých úsečiek XY,

ktoré majú tieto vlastnosti:
a) XV || CD;
b) XY - CD;
c) body А, В, X, Y ležia na kružnici.

Riešenie. Označme (obr. 39) č> střed kružnice k. Nech m je
1’ubovolná kružnica prechádzajúca bodmi A a B. Jej střed M
leží teda na osi o úsečky AB. Nájdeme všetky úsečky XY vy-
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hovujúce podmienkam a) a b) úlohy a také, že X aj Y ležia na
kružnici m. Ak je M = S, je m = & a CD je jediná taká úsečka.

Nech je teda S. Z podmienky b) vyplývá, že taká
úsečka má dížku CD = AB. Všetky tětivy kružnice m dížky
AB sa však dotýkajú kružnice kx = (M;MS). Medzi nimi sú
právě dve tětivy XxYx a X2Y2, ktoré vyhovujú podmienke
a) úlohy, t. j. XxYx [| X2Y2 |j CD. Dotykové body Zx a Z2
týchto tětiv na kružnici kx ležia na priamke p idúcej stredom
M a kolmej к CD. Pretože Zx a Z2 sú v uvedenom poradí
stredmi tětiv XxYx a X2Y2, patria к hladanému geometrickému
miestu. Označme ešte T druhý priesečník (okrem S) priamky o
s kružnicou kx. Potom sú ZXZ2 a ST dva rožne priemery kruž-
nice kx a platí ZXZ2 J_ CD, ST _L AB. Body C, Z15 T, Z2 sú
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teda vrcholmi obdížnika, ktorého uhlopriečky sú kolmé к uhlo-
priečkam obdížnika ACBD. Preto strany oboch obdížnikov sú
rovnoběžné a body Zx, Z2 ležia na osiach qx, q2 uhlov ASD, ASC
róznobežiek AB, CD. Tieto osi obsahujú tedy všetky body
hladaného geometrického miesta.

Ukážme teraz, že aj obrátene každý bod oboch osí je stredom
niektorej úsečky XY. Pre střed 5 to platí (XY = CD). Ak je
Zx^ S bodom osi qx, veďme ním kolmicu к priamke CD. Tá
přetíná o v bode, ktorý označíme M, druhů os q2 v bode, ktorý
označíme Z2. Pretože body Z13 S, Z2 sú troma vrcholmi ob-
dížnika (s uhlopriečkami kolmými к uhlopriečkam obdížnika
ACBD), prechádza kružnice kx = (M;MS) bodmi Zx, Z2.
Jej dotýčnica v bode Zx přetíná kružnicu m = (M; MA) v bo-
doch Xx a Yx vyhovujúcich podmienkam úlohy. Taktiež pre
každý bod Z2^ S osi q2 sa dokáže, že patří к hladanému geo-
metrickému miestu.

Závěr: Hladané geometrické miesto je zložené z oboch osí
qx, q2 obdížnika ACBD.

Poznámka. Pretože platí CS || XxZx, CS — XxZx podl’a
podmienok úlohy, je pre S^ZX štvoruholník CSZxXx rovno-
bežníkom. Ďalej je AČ || qx = SZX, takže bod Xx leží na priamke
AC. Podobné dokážeme, že bod X2 leží na priamke CB, bod Yx
na priamke BD a bod Y2 na priamke AD.

5. Sestrojte trojúhelník ABC, jsou-li dány délky těžnice ta
a výšek vb, vc. Proveďte diskusi řešitelnosti.

Řešení. Rozbor (obr. 40). Označme A' střed strany BC; je
tedy AA’ — ta. Dále označme po řadě Bx, Cx paty kolmic
spuštěných z bodu A' na přímky АС, AB. Stejnolehlost se

středem В a koeficientem převede vrchol C v bod A'

a výšku vc v úsečku A'CX; proto je A'CX =yDc. Z obdobné-
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1
ho důvodu je A'B1 = — vb, přímky p = AB, q = AC se tedy

dotýkají po řadě kružnic k2
a přitom bod A! leží uvnitř úhlu BAC.

Konstrukce. Nejprve sestrojíme úsečku AA'3 pak kružnice
k13 k2 a vedeme к nim z bodu A tečny. Z nich vybereme tečnu p
ke kružnici k2 a tečnu q ^ p ke kružnici kx. Právě jeden ze čtyř
úhlů určených přímkami p, q obsahuje úsečku AA'; na jeho
ramenech leží vrcholy В, C. Směr přímky BC určíme takto:
Sestrojíme rovnoběžník AB2MC2 tak, aby body C2, B2 ležely
na obou ramenech úhlu, který obsahuje úsečku AA'; přitom
bod C2 leží na přímce p, bod B2 na přímce q (M značí bod
vnitřku úsečky AA'). Přímka BC procházející bodem A' je
rovnoběžná s přímkou C2B2.
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Zkouška. Je zřejmé, že podle předchozího sestrojené přímky

p, q mají od bodu Á po řadě vzdálenosti у vc, ~ vb, dále, že
úsečka BC je půlena bodem A', tj., že trojúhelník ABC má
těžnici AA' délky ta. Konečně je patrné, že výšky spuštěné
z vrcholů В, C mají po řadě délky vb, vc.

Diskuse. Úsečku AA' a kružnice k13 k2 lze sestrojit za
všech okolností. Tečny p, q lze vést právě tehdy, je-li

vb ^ 2 ta , vc (1)2 ta-

Tečny p, q nesplynou (jsou různoběžné) právě tehdy, když
ve vztazích (1) platí aspoň jedna ostrá nerovnost. Rovnoběžka
vedená к přímce C2B2 bodem A’ protne obě přímky p, q.
Vztahy (1), v nichž nastane rovnost v nejvýše jednom případě,
udávají tedy podmínku řešitelnosti úlohy.

Obr. 41 ukazuje, jak můžeme vybrat dvojice tečen p, q v pří-
pádě, že kx ■=£. k2 (vb Ф vc) a platí obě ostré nerovnosti (1).
Obr. 42a znázorňuje případ, kdy 2ta = vc, 2ta > vb. Na obr.
42b je = k2(vb = vc< 2ta).
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Obr. 42a, b.

Možný výběr dvojic tečen na obr. 41 je pq, pq, p'q, p'q';
na obr. 42a jsou dvě dvojice pq a pq'; na obr. 42b je jediná
dvojice pq (nehledíme-li na souměrnost podle přímky AA').

6. Strany rovnoběžníka ABCD označme AB = CD = a,
BC = DA = b a jeho úhlopříčky AC — e, BD = /.

a) Dokažte, že o velikostech stran a úhlopříček libovolného
rovnoběžníka ABCD platí rovnost

e2 +/2 = 2(a2 + b2) .

b) Použijte této rovnosti a vyjádřete vzdálenost středů hran
AB, CD čtyřstěnu ABCD pomocí délek všech jeho stran.

Řešení, a) I. Pomocí kosinové věty (obr. 43).

D

4

f4 ""e\
\

4 У6к

4
\a

■WV 8 v.

Obr. 43.
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V trojúhelníku ЛВС a v trojúhelníku ABD platí
e2 = a2 + b2 + 2a6 cos a, /2 = a2 + b2 — 2a6 cos a;

sečtením těchto rovností dostaneme

e2 + P = 2(a2 + 62) .

II. Bez kosinové věty (obr. 44).

CD a

N
4

4
-r6 'b'X

\
\ ^80°-a

4i

8a4

Obr. 44.

Zavedeme označení podle obr. 44. Platí podle Pythagorovy
věty v trojúhelnících AMC a BMC

(a + я)2 + г>2 — e2,
Odečtením obou rovností dostaneme

a2 + 2ax = e2 — b2.

Obdobně pro trojúhelníky BND a AND platí

(a — x)2 v2, — f2,

x2 + v2 = b2.

(1)

x2 -\- v2 — b2,
tj-

a2 - 2ax = f2 - b2 .

Sečtením (1), (2) dostaneme

(2)

e2+f2= 2(a2 + 62).
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b) Ve čtyřstěnu ABCD označme M, N, P, Q, R, S po řadě
středy hran AB, BC, AC, AD, BD, CD. Budeme hledat vy-
jádření délky MS (obr. 45).

D

\
S\

ViR c\/
\

\/
К/ / \/Q. R \/

\/ Jf'\ \/\

Т/ Vm
\
\ p\ i/ / \4 \

/

\// \
\ \

\

В4 П

Obr. 45.

Podle vlastností střední příčky trojúhelníka je
1

PS = MR = PS || MR,2AD’
1

PM = RS = PM || RS;TBC,
proto je čtyřúhelník MPSR rovnoběžník. Podle a) platí

11
MS2 + PR2 2(PS2 4- PM2) = — AD2 + — BC2. (3)

Analogicky dostaneme
1 1

PR2 + NQ2 = — AB2 -f — CD2,

l-AC2 + ^- BD2.2 2

(4)

(5)NQ2 + MS2
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Od sečtených rovnic (3) a (5) odečteme rovnici (4):

1 11 1
2MS2 = у АС2 + у AD2 + — ВС2 + — BD2 -

11
— AB2 ~ — CD2,
2 2

tj-
1

MS== J l/ЛС2 + AD2 + BC2 + BD2 AB2 - CD2.

3. KATEGORIE C

1. Určité všetky zlomky ~ (a,b prirodzené čísla), ktoré majúb

tieto vlastnosti:

(1)90 < a + b < 100 ,

0,9 < ^ < o,91 . (2)b

Riešenie. Z prvej podmienky vyplývá
90

л a
~T<l+J

100
(3)<

b 5

t. j. vzhladom na nerovnosti (2) a (3)
100 90

< ~b~ ’ г < 1>91
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a stadia!

90 100
< b < —- = 52,6 . ..47,1 . . . "

1,91 1,9

čiže
b 52 . (4)48

Vyšetřujeme najskór menovatel’a b — 52. Z nerovnosti (2)
po vynásobení číslom 52 vyplývá

46.8 < a < 47,32 ,

t. j. a — 47. Skutočne je a + b — 99 < 100 .

Vyšetřujme za druhé menovatel’a b = 51. Z nerovnosti, (2)
po vynásobení číslom 51 vyplývá

45.9 < a < 46,41 ,

t. j. a = 46. Skutočne je a + b — 97 < 100.

Vyšetřujme za tretie menovatela b — 50. Z nerovnosti (2)
vyplývá

45 < a < 45,5 .

Nerovnostiam (5) nevyhovuje však žiadne prirodzené číslo a.
Za štvrté vyšetříme menovatela b — 49. Z nerovnosti (2) dosta-
neme

(5)

(6)44.1 < a < 44,59 .

Konečne vyšetříme menovatela b = 48. Z nerovnosti (2) vyjde

43.2 < a < 43,68 .

Zrejme ani nerovnostiam (6) a (7) nevyhovuje žiadne prirodzené
číslo a.

(7)

47 46
Úloha má tedy dve riešenia. Sú to zlomky —, —.
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2. Udejte všecky dvojice přirozených čísel p, q, pro něž je
číslo

N = lv — 3q

násobkem deseti.

Úlohu řešte nejprve pro přirozená čísla p, q, která jsou vá-
zána podmínkami

p 1005 a 2002 ^ q ^ 2006 .

Řešení. Číslo N je násobkem deseti právě tehdy, když moc-
niny 72>, 3Q končí toutéž číslicí. Sestavíme tabulku:

1001

2 5 7 9 101 3 4 6 8n

. . .3yn 3 27 81 243 729 . . .7 . . .99

ln 49 243 1701 11907 . . .9 . . .3 . . .7 . . .97 . . . 1

Z tabulky je patrné, že poslední číslice přirozených mocnin
čísla 3 se pravidelně opakují tak, že pro exponent n — 4a -+- 1
(kde a je libovolné nezáporné celé číslo) je poslední číslicí 3,
pro n = 4a + 2 je poslední číslicí 9, pro n — 4a + 3 je po-
slední číslicí 7 a konečně pro и = 4a + 4 je poslední číslicí 1.

Poslední číslice čísla ln se také opakují: pro n = 4b + 1
(kde b je libovolné nezáporné číslo) je poslední číslicí 7, pro
n — 4b + 2 je poslední číslicí 9, pro n = 4b + 3 je poslední
číslicí 3 a pro я = 46 + 4 je poslední číslicí 1.

Poslední číslice mocnin čísel 3 a 7 pro daná přirozená q a p
sestavíme rovněž do tabulky (pod sebe napíšeme mocniny
s týmiž posledními číslicemi):
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I
1 002 1 003 1 0041 001 1 005P

. ..7 . . .9 . ..37P . . .7

2 002
2 006

2 003 2 005 2 004 2 003Я

. ..7Ъч . . .9 . . .3 . ..7

Hledaných dvojic přirozených čísel p, q z daných exponentů
lze sestavit 6; jsou to: (1 001; 2 003), (1 002; 2 002), (1 002;
2 006), (1 003; 2 005), (1 004; 2 004) a (1 005; 2 003).

b) Vzhledem к tomu, že se poslední cifry mocnin čísel 3 a 7
pravidelně opakují, lze vyjádřit dvojice přirozených exponentů
p, q i obecně (čísla аг- a ty jsou nezáporná celá):

1. Je-li
q = Aty + 3 ,p — 4ax + 1 ,

mají obě mocniny za poslední cifru číslo 7 a příslušné číslo N
je tedy násobkem deseti.

Z obdobných důvodů tvoří dvojice hledaných přirozených
exponentů ještě tato čísla:

p = 4a2 2 ,

P — 4a3 + 3 ,

p — 4a4 + 4 ,

q — 462 + 2;
q = 463 + 1;
9 — 464 + 4 .

3. Větší počet provozoven se podílel stejným dílem na vý-
robním plánu. Vzhledem к zahraničním objednávkám bylo
třeba zvýšit plán na 108 %. Shodou okolností p% zúčastněných
provozoven splnilo svůj plán jen na 90 %. O jaký počet q %
musela zvýšit každá ze zbývajících provozoven svůj plán, aby
byl celkový zvýšený výrobní plán splněn ?

2.

3.

4.
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Vyjádřete q pomocí p a sestrojte graf této funkce pro 0 :+
^ p < 100.

Řešení. Označme a počet provozoven, které splnily svůj
plán jen na 90 %, b počet zbývajících provozoven. Pak platí
rovnost

(‘ + Toč) ~ (a + b) 1,08 .a . 0,9 + b (1)

Obě strany rovnice (1) dělíme číslem a + b a použijeme
vztahů

b 100 —pPa

a + b 100 5 a -f b 100

vyjde

100 -

\ r m)ж-°’9 + 1,08 .
100

Po úpravě (vynásobení stem) dostaneme

pq
+ 0,1p —<7 + 8 = 0100

neboli

pq + 10p — 100í/ + 800 = 0 ,

tj-
$(100 —p)= щр + 80).

Protože je p < 100, je 100 — p > 0 a lze tímto číslem dělit
obě strany rovnice (2); dostaneme

• 80 +p
loo —p ’

(2)

q= 10 . (3)
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což je výsledek úlohy. Grafické znázornění funkce (3) je na
obr. 46.

<7

I větev |
rovnoosé

hyperboly

A
asymptota

1±
0 p100-80 10

asymptota

Obr. 46.

4. Lichoběžník ABCD má úhlopříčky AC, BD, které jsou
téže délky a půlí úhly při základně AB.

a) Dokažte, že platí BC = CD = DA.

b) Sestrojte tento lichoběžník, je-li dáno AB = AC = a.

D c
/i

4
/

/ // N // X
/ \* bA ú/ N/

\
/

/ N./
/ X

/ / 4

ВE A a

Obr. 47.
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Řešení, a) Podle podmínky úlohy je <£ DAC — A CAB
(obr. 47). Dále je <£ CAB = Д ACD (úhly střídavé). Proto je
Д DAC = Д ЛСЛ a trojúhelník ACD je rovnoramenný se
základnou AC. Z obdobného důvodu je rovnoramenný troj-
úhelník BDC se základnou BD. Je tedy

(1)BC = CD = DA = b .

b) Dokončíme rozbor: Na přímce AB sestrojíme bod E
tak, aby bylo DE || AC; pak je AE = CD = b, DE = AC — a,
Д DEB = A CAB (úhly souhlasné), <X DEB = A- DBE
(trojúhelník BED je rovnoramenný). Je tedy

Д BED ~ Д ACD (uu). (2)

Ze vztahu (2) plyne

ba

a + b

Odtud dostaneme kvadratickou rovnici pro b
h1 + ab - a2 = 0 .

Rovnice (3) má vždy jediný kladný kořen

(3)

b = ■— QJa? + 4a2 -fl) = -í-fl (]/5 — l) .
(4)

Konstrukci lichoběžníka můžeme provést po konstrukci
úsečky délky b (použitím Pythagorovy věty) pomocí a, b ob-
vyklým způsobem. Jinak je možno sestrojit trojúhelník BED
a z něho lichoběžník ABCD, který vyhovuje podmínkám úlohy.

Podmínka sestrojitelnosti trojúhelníka BED je BD Д ED >
> BE neboli

2a > a + b ;
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pomocí vztahu (4) dostáváme

a > у (]/5 — i),
tj-

2 >]/5 - 1 .

Protože У5 < 3, je vztah (5) správný. Protože postup lze
obrátit, je podmínka (5) i podmínkou postačující. Úloha má
tedy vždy jediné řešení (ve zvolené polorovině s hranicí АВ).

(5)

5. Je dán trojúhelník ABC s vnitřními úhly a, (j, y. Označme
Oi, 02, O3 body, které jsou souměrně sdružené se středem O
vepsané kružnice po řadě podle přímek BC, CA, AB.

Udejte všechny možnosti poloh bodů Ol3 02, 03 vzhledem ke
kružnici k opsané trojúhelníku ABC (v závislosti na velikostech
úhlů a, /3, y).
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Řešení (obr. 48). Přímka BC odděluje body Л, 015 neboť
střed vepsané kružnice leží v polorovině BCA. Označme X
libovolný bod opsané kružnice k, který leží uvnitř poloroviny
BCOv Podle známé věty o obvodových úhlech je

<£ BXC = 180° -

Z konstrukce bodu Ox vyplývá, že platí <£ СВОг — ,

< BC01 = yy, tedy

(1)a .

1

11 1
(2)— y = 90°+ — cc.2?BOxC = 180°

Bod Ox leží na kružnici k právě tehdy, je-li <£ BXC =
= <)C ВОгС, neboli podle (1), (2)

a = 60°. (3)
Dále odvodíme, že bod O, leží vně kružnice k právě tehdy,

je-li <%. BXC > <£ BO,C, neboli podle (1) a (2)

a < 60°.

Obdobně bod Ox leží uvnitř kružnice k právě tehdy, je-li
a > 60°.

Je tedy třeba uvážit všechny možnosti velikostí úhlů troj-
úhelníka ABC vzhledem к úhlu velikosti 60°. Označíme-li
úhel větší než 60° značkou +3 úhel menší než 60° značkou —,

dostaneme tyto případy:

(4)

(5)

I. 60°, 60°, 60°;
II. 60°, 60°,

III. 60°, 60°,
IV. 60°, +,
V. 60°, +,

VI. 60°,
VII.+ ; + ;

VIII.
IX. +,
X.
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Případy II, III, IV, VI, VII a X nemohou v trojúhelníku
nastat; sečteme-li totiž velikosti úhlů v každém z těchto případů,
dostaneme součet různý od 180°.

V případě I, tj. u rovnostranného trojúhelníka, leží podle (3)
všechny body Ox, 02, 03 na kružnici k.

V případě V, je-li např. a = 60°, /3 > 60°, у < 60°, leží
podle (3), (4) а (5) bod 01 na kružnici k, bod 02 leží uvnitř
kružnice k a bod 03 leží vně kružnice k (obr. 48).

Obdobně popíšeme situaci i v případě VIII а IX. Obecně lze
o případech V, VIII а IX říci, že u nerovnostranného trojúhel-
nika platí: Ten z bodů Ol3 02, 03, který odpovídá úhlu většímu
než 60°, leží uvnitř kružnice k, který odpovídá úhlu 60°, leží
na kružnici k a který odpovídá úhlu menšímu než 60°, leží vně
kružnice k.

6. Je daný rovnoramenný trojuholník ABC so základňou AB.
Zo středu D úsečky AB je spustená kolmica na priamku BC.
Jej pata je označená E, střed úsečky DE je označený F. Do-
kážte, že priamky AE, CF sú navzájom kolmé.
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Riešenie (obr. 49). Označme G patu kolmice spustenej
z vrcholu A na priamku BC. Podlá vety uu je

A ABG Д CDE. (1)

Je totiž
A ABG = 90° — A GAB = 90° — А Ш9Я = А СОЯ.

Z (1) vyplývá

AG : GB = CE: ED ,

t.j.

11
GB =AG: CE: jED,

čiže

(2)AG : GE — CE: EF.

Podlá vety sus o podobnosti trojuholníkov je vzhladom na
vztah (2)

A AGE Д CEF,
a teda platí

< СЛЯ = <£ ECF = oj .

Pretože AG || ЯЯ, je

A AEF = А ЯСЯ = oj .

Označme H priesečník priamok ЛЯ, СЯ. V trojuholníku CHE
potom platí

A HEC = 90° - oj .

Je teda А СШ; — 90° čiže AE J_ CF, čo sme mali dokázat’.
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4. KATEGORIE D

1. Najděte všechna čísla x, která splňují rovnici

(2a + b)b2xa2b2ЪаЬс bx
— Ъсх -\ . (1)

a
Г +a + b (a + b) a(a -f- b)2

Proveďte zkoušku a diskusi řešitelnosti vzhledem к číslům a, b, c.

Řešení. Aby rovnice (1) byla řešitelná, je nutné, aby bylo

(2)а Ф 0, a -\- b Ф 0 .

Znásobme obě strany rovnice (1) výrazem a(a + Ь)й; vyjde

Ъа2Ъс{а + b)2 + a?b2 + (2a + b) (a -j- b)b2x =
= 3ac(a + b)2x -f- bx(a + b)3.

Další úpravou
3cfibc + 6a3b2c + 3a2b3c + a3b2 =

= xa(a + b) (3a2c + 6abc -f- 3b2c + ab)
neboli

(3)a2b . V = ax{a + b). V,
kde

V = 3a2c + бабе + 3b2c ab — 3c(a + b)2 + аб . (4)

Nyní je třeba rozlišit dva případy:
1. Je-li V ф 0, dělíme obě dvě strany rovnice (3) součinem

a{a + b) . V a vyjde
ab

(5)x —

a + b
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Zkouška:

a2b2 (2a + b)ab3
(a + b)3 ^ a(a + b)3

ЪаЬс
L = +

a + b

1
3- [3abc(a + b)2 + a2b2 + (2a + b)b3](a + b)

1
- [3abc(a + b)2 + a2b2 + 2ab3 + 64] =

(a + b)

(a + bf (ЪаЬс + b2) .

(fl + b)3

3ac -f- b
= ~1Г+ГЛ’

Ъас + b ab
P =

a -f* ba

tj-
L = P .

2. Je-li V = 0, je
—a6

c =

3(a + 6)2 •

Pak rovnice (1) zní
a2b2 d2b2 (2a -f- b)b2x abx bx

(a + b)2 a(a + bf (a + b)3 a(a + b)2

neboli

bx
[2ab + b2 + a2 - a2 - b2 - 2ab] = 0 .

a(a + b)2

Protože výraz v hranaté závorce je nulový, jsou kořeny rovnice
(1) všechna (reálná) čísla.
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2. Určité všetky dvojciferné čísla л; tej vlastnosti, že každé
z čísiel 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x má ten istý ciferný súčet ako
číslo x.

Riešenie. Predpokladajme, že číslo m vyhovuje podmienkam
úlohy. Potom číslo m má rovnaký ciferný súčet ako číslo 9m.
Pretože číslo 9m je zrejme dělitelné deviatimi, je jeho ciferný
súčet dělitelný deviatimi. Teda aj číslo m je dělitelné deviatimi.
Preto hladané dvojciferné čísla x musia byť medzi dvojcifer-
nými násobkami čísla 9, tj. medzi číslami

18, 27, 36, 45, 54, 63, 72, 81, 90 a 99.
Teraz postupné u každého z čísel (1) overíme podmienky

úlohy.
Uvažujme o čísle 18. Potom všetky čísla 2. 18 = 36,

3.18 = 54, 4.18 = 72,. . ., 9 . 18 = 162 majú ciferný súčet
rovný deviatim, t. j. rovnaký ako číslo 18. Číslo 18 je tedy jed-
ným z riešení úlohy.

Ak vyšetřujeme násobky čísla 27, zistíme, že číslo 7.27 =
= 189 má ciferný súčet 18. Preto číslo 27 nie je riešením úlohy.

Podobné vyskúšame aj ostatné čísla z (1) a zistíme, že hladané
čísla x sú len čísla

(1)

18, 45, 90 a 99 .

3. Čtyřciferné číslo N je dělitelné osmnácti, má vesměs různé
číslice a dá se napsat jako součet tří čísel: první je dvojciferné,
druhé je jeho desetinásobek a třetí je jeho stonásobek. Najděte
všechna čísla N těchto vlastností.

i

Řešení. Číslo N se dá vytvořit jako součet:
ab

ab
ab

(1)N
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Protože je N dělitelné osmnácti, je sudé a je dělitelné devíti.
Je tedy buď b — 0 nebo 2 nebo 4 nebo 6 nebo 8. Číslo 3(a -f b)
je dělitelné devíti jako ciferný součet čísla N‘, je tedy a -f b
dělitelné třemi. Protože a + b Ф 0, jsou tyto možnosti:

a + b = 3 nebo 6 nebo 9 nebo 12 nebo 15 nebo 18. Kdyby
však bylo a -f- b < 10, pak by při sčítání (viz (1)) vyšly pro-
střední dvě číslice stejné; je tedy

a -\-b = 12 nebo 15 nebo 18 .

Nemůže však být a + b = 18, neboť pak by nemohlo být b
sudé (bylo by a = b = 9). Zbývají tedy jen dvě možnosti
a + b — 12 nebo a + b 15, b sudé, tj.

8 4 9 76a

b 4 6 8 6 8

a + b 15 1512 12 12

Přezkoušíme jednotlivé případy:
84 66 48 78
84 66 48 78

6684 48 78

9324 7326 5328 8658

Případ 96
96

96

10 656 nemůže nastat, neboť vede к číslu
N pěticifernému.

c
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Případ
78

78
78

8658 rovněž nemůže nastat, neboť
číslo N má pak dvě číslice stejné.

Úloha má tedy tři řešení: 9 324, 7 326 a 5 328.

4. Je dán trojúhelník ABC, jehož úhly mají velikosti
<£ BAC — 60°, <£ ABC = 30° a strana AC má velikost 1.

Vypočítejte obsah vyšrafované plochy, která je omezena
(obr. 50) kružnicemi sestrojenými nad průměry AB, BC, CA
(na dvě desetinná místa).

Řešení. Trojúhelník ABC je pravoúhlý, <£ ACB = 90°.
Označme D patu výšky na přeponu. Podle obrácení Thaletovy
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věty procházejí kružnice kx, k2 sestrojené nad odvěsnami BC,
CA bodem D. Pro délky stran trojúhelníku ABC platí

AC= 1, AB = 2, BC= j/з .

Označme P obsah vyšrafované plochy, Px, P2 obsahy úsečí
omezených tětivami BD, AD a kružnicemi kx, k2', středy těchto
kružnic označme Sx, S2. Pak platí vzhledem к (1)

(1)

1
(2)2 71 — pi — p2 •

P =

Obsahy Px, P2 vypočteme pomocí středových úhlů

BSXD = 120°, <£ ASoD = 60°.

Je tedy vzhledem к (1)

Уз31
(3)4

^trojúhelník BDSx má týž obsah jako rovnostranný trojúhelník

. Rovnost (3) po úpravě znío straně délky-L

з]/з1
(4)

16

Obdobně dostaneme

po úpravě

Уз1
(5)P2 = 24 71 16
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Dosadíme-li z (4) a (5) do (2), vyjde

16 24 ' 16 24 ^ 4 ’
з]/з11 7Г

р=г*~ 4П+
Numericky

P= (3,14. 5): 24 + (1,73 : 4) = 0,65 + 0,43,
tedy

P= 1,08 .

5. Je daný poloměr q kružnice vpísanej pravoúhlému troj-
7

uholníku a dížka d — — q úsečky, ktorú vytína vpísaná kružnica
na jeho výške v spustenej na přeponu:

a) Vyjadrite dížku výšky v pomocou poloměru o.

b) Zostrojte pravoúhlý trojuholník pre q — 2 cm.

8

■tfP
Q /

/

MfA
* ГT

w t>k

R A
Obr. 51.

Riešenie. a) Do pravého uhla s vrcholom C (obr. 51) vpí-
šeme kružnicu k = (S; q). Výška na přeponu hladaného troj-
uholníka ABC leží v takej priesečnici p kružnice k, ktorá pre-
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chádza bodom C a na ktorej kružnica k vytána úsečku UV
7

dlžky d = — q. Označme M střed tětivy UV. Potom MS je
4

vzdialenosť středu 5 od priesečnice p. Vzdialenosť MS vieme
určiť konštrukciou i výpočtom z pravoúhlého trojuholníka
MSU, v ktorom je

1
, 7

2d~ 8
UM = US = Q.

Vyjde

I 49 1
ť? - 1/I5-MS = O)/«*- 64 e2 =

Priesečnica p sa teda dotýká kružnice h == (S; MS).
Zrejme je (pozři obr. 51)

8

v = CP= CM + MP.

Z obdížnika SMPQ vyplývá MP = SQ = o, t. j.
v — CM + Q •

Zostáva tedy vypočítat’ dížku CM z pravoúhlého trojuholníka
CMS. Podlá Pythagorovej vety je

CM2 = CS2

Zo štvorca CRST vyplývá CS — £>]/2. Vzhl’adom na (1) je teda

(2)

SM2 .

15 113

СЙР-2?--Ц<? = -ы?‘
t. ).

= lilie. (3)CM
8

111



Ak spojíme (2) a (3), dostaneme

8 + 1/113
v — — n

8 L
8 + 10,63

q == 2,33^ .8

b) Konstrukci a. Zostrojíme pravý uhol s vrcholom C
a vpíšeme do něho kružnicu k = (S; 2 cm). Okolo bodu A

opíšeme kružnicu h s polomerom SM = — Q • |/l5 = 0,97
O

cm.

Bodom C vedieme dotýčnicu p ku kružnici h. Ku kružnici k
zostrojíme dotýčnicu t _L p tak, aby kružnica k ležala v polro-

. vine tS. Priesečníky ramien pravého uhla s priamkou t sú
vrcholy A, B.

Dokaž. Zostrojený trojuholník ABC je zrejme pravoúhlý
a kružnica k je jeho vpísanou kružnicou. Priamka p je výškou,
pretože p ± AB. Pretože p je dotýčnicou kružnice h =

, dostaneme (pozři obr. 51)4s>}^i5)
e2-

takže skutočne je dížka úsečky, ktorú vytína vpísaná kružnica
7

na výške spustenej na přeponu — q. Záměnou označenia vrcho-
4

lov А, В dostaneme dve rožne riešenia. Pretože CS — {?]/2 >
> () > MS, možno bodom C viesť dve dotýčnice p a p' ku
kružnici h. Tieto dotýčnice sú súmerne združené podlá priamky
CS a vedú ku zhodným riešeniam úlohy.

UM2 - US2 - SM2

6. Osový řez rotačního kužele je pravoúhlý rovnoramenný
trojúhelník VAB o přeponě AB délky d. Přímkou А V je ve-
děna rovina, která protne kužel v rovnostranném trojúhelníku
VAC. Vyjádřete pomocí proměnné d
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a) objem jehlanu ABCV;
b) povrch jehlanu ABCV.

Řešení. Bod V je vrcholem kužele (obr. 52); platí
d

(1)AV = BV = —

w
Označíme S střed podstavy kužele; jeho výška je pak

SV=i. (2)2 '

Protože trojúhelník VAC je rovnostranný, je

ЛС=* (3)
1/2

Trojúhelník ABC je podle Thaletovy věty pravoúhlý s přepo-
nou AB; podle Pythagorovy věty tedy platí

BC = 1/АВ2 -AC2 = V
dd2 (4)á2-T =W
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Podle (3) a (4) je tedy

Д VAB аз Д CAB;

proto je i trojúhelník VBC rovnostranný.

a) Pro objem jehlanu ABCV s podstavou ABC a výškou SF
dostaneme

2

'

T ~ 24 ■
1 1

3 ’ 2
F = —

b) Povrch jehlanu vyjde
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V. Soutěžní úlohy li. kola

1. KATEGORIE A

1. Určete všechny dvojice přirozených čísel x, y, která jsou
řešením rovnice

1
i 1 - 1 0)18 'У

Řešení. Rovnice (1) má v oboru přirozených čísel táž řešení
jako rovnice

(2)18(x + dO = xy .

Rovnice (2) má v oboru přirozených čísel táž řešení jako
rovnice

18x
(3)У =

x - 18 '

Rovnici (3) upravíme takto:
18* - 182 + 182 182

(4)= 18 +У =
x — 18

Z (3) vyplývá, že je x > 18, neboť je x > 0, у > 0. Protože у
je celé číslo, je podle (4) x — 18 kladný dělitel čísla 182 = 324.
Sestavíme tabulku:

x - 18

1 i 218 3 4 126 9 18x

2719 20 21 22 24 30 36x

342 180 126 72 54 45 3699У
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Dalších osm řešení dostaneme výměnou x, у. O tom, že nale-
zené dvojice čísel x, у jsou skutečně řešením rovnice (1), se
přesvědčíme obrácením postupu.

2. Množina všech přímek v rovině, jejichž vzdálenosti od
bodů A = [1,0], В = [0,0] (v tomto pořadí) mají rozdíl druhých
mocnin rovný číslu 1, je množina všech tečen paraboly

У = 2*. (1)
Dokažte.

Řešení. Označme и (v) vzdálenost přímky dané množiny M
od bodu А (B). Podle podmínky úlohy je

M2 _ V2 = i . (2)
Budiž

(3)ax + by + c = 0

rovnice libovolné přímky množiny /И. Pak platí

м \a + c\"

l/a2 + b2 ’ ^ У a2 + &2 ’
Dosadíme-li z (4) do (2), vyjde po úpravě

\c\
(4)

a2 + 2ac = a2 + b2.
a dále

2ac = b2. (5)
Znásobíme-li rovnici (3) číslem 2a a dosadíme-li z (5) za
2ac, dostaneme

2a?x + 2aby -(- b2 = 0 ,

což je rovnice kterékoli přímky množiny M. Zkouškou se
přesvědčíme, že každá přímka daná rovnicí (6) [kde ovšem je
а Ф 0] splňuje podmínku (2). Je tedy (6) rovnicí množiny
přímek /И.

(6)
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Zkoumejme společné body přímky (6) a paraboly (1). Do
rovnice (6) dosadíme za 2x z (1); vyjde:

a2y2 + 2aby + b2 — 0 .

Rovnice (7) má diskriminant 4a2b2 — 4a262 = 0 a proto má
jediný kořen y. Přímka (6), která není rovnoběžná s osou
x (а Ф 0), je tedy tečnou paraboly (1).

V množině M je po jedné přímce každého směru. Rovno-
běžku s osou у dostaneme pro b — 0. Přímku o směrnici А Ф 0
dostaneme pro a = —A, b = 1. Protože parabola (1) má jedinou
tečnu každého směru různého od směru osy л: a protože každá
přímka množiny M je tečnou paraboly a protože množina M
obsahuje přímky všech směrů různých od (x), náleží tečna
paraboly (1) množině M.

(7)

3. Je daná kružnica = (.S^; r-j) a kružnica k2 = (S2; r2),
kde r2 < rv Tieto kružnice májů vnútorný dotyk v bode A.
Zostrojte kružnicu k, ktorá má vnútorný dotyk s kružnicou klt
vonkajší dotyk s kružnicou k2 a dotýká sa priamky ASV
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Riešenie (obr. 53). Nech je k == (č>; r) a nech P je bod do-
tyku kružnice k s priamkou ASV Dalej označme x číslo, pre
ktoré |xj = SyP a také, že x < 0, ak bod P leží na polpriamke
SyA a x > 0 pre P na polpriamke opačnéj к polpriamke SyA.
Pre P == St je samozřejmé x = 0. Potom pri každom usporia-
daní bodov 51э S2, P bude platit’

S2P = r-y — r2 + x .

Z trojuholníka SyPS dostaneme rovnost’ (r, — r)2 = r2 -f
+ x2, čiže

0)2ГуГ — r2 — x2.

Z trojuholníka S2 PS dostaneme (r2 -j- r)2 = r2 + (ту — r2 x)2,
čiže

(2)2r2r = r? — + 2(rx — r2) x + x2.
Z rovnic (1) a (2) vylúčime r. Vyjde kvadratická rovnicaprex:

(Гу + r2) x2 + 2rx(rj — r2) x + r? — 3rfr2 = 0 . (3)
Diskriminant rovnice (3) je

D = \r\{jy — r2)2 4(rx + r2) rf — 3r2) =
= 4rf . 4r| = lórfrf . (4)

Pomocou (4) dostaneme dva kořene rovnice (3)

3r2 r1 (5)x = fy .

Гу + r2

a x — —fy (ktorý nevyhovuje).
Úloha má riešenie právě vtedy, keď je |x| < r131. j. ak platí

podlá (5)
|3r2 - fy|

< 1 .

ri + r2
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Táto nerovnost’ je ekvivalentná s dvojicou nerovností

3r2 — rx < + r2 číže r2 < rx a rx — 3r2 < + r2 čiže
0 < r2, ktoré sú vždy splněné.

Skúškou sa přesvědčíme, že číslo r z rovnice (1) vyhovuje
podmienkam úlohy (x može vyjsť aj záporné). К tomuto číslu r
prislúchajú dve riešenia súmerne združené podlá priamky ASV

Konstrukcia. Pomocou podobných trojuholníkov (štvrtá
geometrická úměrná) zostrojíme úsečku dížky |jc|, pomocou
nej bod P a potom podlá obr. 54 bod S. Priamka o je os úsečky
SoQ, kde PQ = r2.

4. Dokažte věty:
a) Má-li rovnice

zz + az-\- b = 0 ,

kde a, b jsou komplexní čísla, aspoň jeden kořen tvaru ki
(k je reálné číslo), pak platí

(1)

(a + a) (ab + ab) = (b — Ъ)г. (2)
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b) Platí-li pro koeficienty a, b rovnice (1) podmínka (2),
je-li а^Оа rovnice (1) řešitelná, pak má aspoň jeden kořen
tvaru ki (k je reálné číslo).

Řešení, a) Vyhovuje-li číslo z rovnici (1), vyhovuje i rov-
nici konjugované

(Ozz + az + b = 0 .

Odečtením rovnic (1), (!') dostaneme

az — az -\- b — b — 0. (3)

Je-li z — ki(k reálné), je z = —z; dosadíme-li za z do rovnice
(3), vyjde

(a + a)z = b — b . (4)

Nyní je třeba eliminovat я z rovnic (1), (4). S použitím vztahu
5 — —z přepíšeme (1) do tvaru

(1")z2 az -f b — 0;

abychom se vyhnuli dělení číslem a + a, o němž nevíme, zda
je různé od nuly či nikoli, znásobíme rovnici (1") číslem
(a -f- a)2 a použijeme (4); dostaneme

(b — b)2 + a(a + a) (b — b) + (a + a)2 b = 0
a odtud po jednoduché úpravě plyne (2).

b) Při dokazování věty b) nám pomůže rovnice (4). Z od-
stávce a) totiž víme, že má-li rovnice (1) kořen z = ki, pak
platí vztah (4); je-li mimo to ještě a + а ф 0, dá se tento kořen
vypočítat z rovnice (4); vyjde

b-b (5)z =

a + a '
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Budeme tedy nejprve předpokládat, že platí (2), mimo to že je
a -fа Ф 0, a zkusíme, zda číslo z dané vzorcem (5) vyhovuje
rovnici (1). Dosadíme za z do levé strany (1);
po úpravě vyjde

1
b) + (o, -j- a)2ž>J. (6)2 [— (b — b)2 + a(a + a) (b(a + a)

Protože platí (2), zjistíme krátkou úpravou, že výraz v lomených
závorkách v (6) je roven nule. Číslo (5) je tedy skutečně kořenem
rovnice (1).

Zbývá vyšetřit případ, že je a -f- a = 0, neboli a = —a.

Z podmínky (2) pak plyne b = b. Protože předpokládáme, že
rovnice (1) má řešení, platí to i o rovnicích (1'), (3).Vzhledem
к podmínkám a = —a,b — b nabude (3) tvaru

a(z + 5) = 0 .

Protože je а Ф 0, je я + z = 0, tj. kořen rovnice (1) je z = ki.

2. KATEGORIE В

1. Jsou-li a, b dvě přirozená čísla taková, že ]/a +]/£ je
rovněž přirozené číslo, pak každé z čísel a, b je druhou moc-
ninou přirozeného čísla. Dokažte.

Řešení. Podle předpokladu je

]ja -\-^b = n (kde n je přirozené číslo).
Dvojím umocněním a úpravou dostaneme

w4 — 2n\a -f b) + (a — b)2, = 0 ,

tj-
(a — b)2 — пг [2(a + b) — w2] . O)
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(a - bfČíslo 2{a -f- b) — n2 je podle (1) , je to tedy
druhá mocnina racionálního čísla; protože je celé, je to druhá
mocnina přirozeného čísla p. Je tedy 2(a -f b) — n2 = p2
neboli

rovno
n2

2{a b) = n2 -f- p2.
Z (2) vyplývá, že čísla n, p jsou téže parity, neboť na levé straně
je číslo sudé. Dosadíme-li do (1) a (2) a předpokládáme-li
a ^ b, vyjde a — b = np, neboli

(2)

2(a — b) — 2np . (3)

Spojením (2), (3) dostaneme
4a = (n p)2, 4b = (n —p)2.

Čísla n p, n — p jsou sudá, П —^- , ? celá; je tedy
/я + p \2

e = (~)*
jak jsme měli dokázat.

2. Nech je a pevné reálne číslo, pre ktoré platí 0 < a <1.
Potom pre všetky x také, že — 1 < x < 1 platí nerovnost’

ax)2
1 -

Dokážte ju a ukážte, že rovnost’ nastane len pre x = a. Na-
ал:)2

1 -1c2-

Riešenie. Keďže 1 — л:2 > 0, z nerovnosti (1) vyplývá
(1 — ах)2 ^ (1 — a2) (1 — л;2),

(1
^ 1 - a2 . (1)

(1 1
kreslíte graf funkcie у — pre a — —2 ‘

(2)

122



stadia!

1 — 2ax + a2x2 1 — a2 — хг -f- a2*2, (3)
z čoho

a2 — 2ax -f- X2 ^ 0 , (4)
čiže

(40xf ^ 0 .

Obrátene zo (40 čiže zo (4) vyplývá (3), z (3) vyplývá (2)
a pretože 1 — я2 > 0, vyplývá z (2) vztah (1).

Ak nastane rovnost’ v (1), nastane rovnost’ i v (40, t. j. x = a.
(1 - axf

(a

Graf funkcie у pre a =1 — X2

-1 1O 7

Obr. 55.

3. Vypočtěte poměr délek stran rovnoramenného trojúhel-
nika, jehož průsečík výšek leží na kružnici vepsané.

Řešení. Budiž ABC rovnoramenný trojúhelník se základnou
AB (obr. 56), který má uvedenou vlastnost. Pak průsečík výšek
V leží na výšce CD (D je střed základny AB); to je důsledek
souměrnosti Д ABC podle přímky CD. Označme velikosti
stran a úhlů trojúhelníka obvyklým způsobem a označme q

123



poloměr vepsané kružnice k a P patu výšky A V. Pak platí
< ACD = 90° - CAD = 90° - a =

= 90° - <£ CDD = <£ VAD ,

tj-
ACD = <£ VAD

a proto
Л ACD ~ Д 1C4D . (1)

Z (1) plyne
CD:AD=AD:VD

neboli

c2
(2)=

-r >

kde © značí velikost výšky CD. Dále je podle známého vzorce
pro obsah trojúhelníka*)

cvcv

(3)9 = 2a -j- c
2 (e + t)

*) P = qs, kde P je obsah trojúhelníka, 5 jeho poloviční obvod.
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a konečně podle Pythagorovy věty

(4)v2 = a2
4 *

Dosadíme z (3) do (2), tj. eliminujeme o; vyjde
2cv2

2a -[- c 4

Dosadíme z (4) do (5), tj. eliminujeme v; vyjde

c2
(5)

(a*-4) = (2* + C)f (6)2c

Rovnici (6) dělíme číslem c; po další úpravě vyjde
8a2 — 2ac — 3c2 = 0 .

Rovnice (7) je kvadratická rovnice pro poměr —; jejím řešením
dostaneme

(7)

c

3

a
_ 2 ±]/4 + 96 /4

7 16 \ _

1 •

2

Záporný kořen nevyhovuje; je tedy a: c — 3:4.
Zkouška se provede obrácením postupu.

4. Sú dané dva body A, M, priamka p, ktorá ich odděluje,
a kladné číslo d. Zostrojte trojuholník ABC tak, aby vrchol В
ležal na priamke p, ťažnica tb mala dížku d a ležala na priamke p
a aby priamka BC obsahovala bod M.

Riešenie. Označme D střed strany AC. Vrchol C je obrazom
bodu D v rovnol’ahlosti x so stredom A a koeficientom 2. Preto
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leží vrchol C na priamke q \\ p, ktorá je obrazom priamky p
v rovnolahlosti x.

1. Ak leží bod M na priamke q, je C = M. Zostrojíme prie-
sečník D priamok АС, p a na priamke p dva body Bx, B2 tak,
aby bolo BXD = B2D = d (obr. 57). Úloha má dve riešenia.

d

4h
3 p

*9Csft
Obr. 57.

2. Ak neleží bod M na priamke q, vedieme ním priamku
r || q. Ak je Д ABC riešením úlohy, přetne priamka r priamku
AC v bode M' (obr. 58) a platí

Д CBD — Д CMM';

skadial
0)
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kde v je vzdialenosť rovnobežiek p, q, и je vzdialenosť rovno-
bežiek q, r. Ak v (1) dosadíme BD = d, dostaneme

du
MM' = —

v

z čoho vieme zostrojiť úsečku MM', bod M' a vrcholy С, B.
Úloha má tiež v tomto případe 2 riešenia (obr. 59). Bod M
može ležať mimo pásu (pq).

Iné riešenie. Rozbor: Predpokladajme, že sme hladaný
trojúhelník ABC zostrojili (obr. 60). Střed strany AC označme

\a A
\

:

/>
.* /

\
\
\ //\

\ /

<B1 \ ID ОЛ/В
I

Mc C,
Obr. 60.
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D. Platí Ď = p . AC, BD — d. Bodom A veďme priamku
a\\p. Jej priesečník s priamkou BM = BC označme E.
Platí

EB.BC = AC.DC = 1 .

Z toho vyplývá, že EB = BC, čo znamená, že ťažnica BD je
střednou priečkou trojuholníka AEC a teda platí

AE = 2 DB = 2d .

Z toho vyplývá konštrukcia: Bodom A vedieme priamku
a rovnobežnú s priamkou p. Na priamke a zostrojíme bod E,
pre ktorý platí AE = 2d. Priesečník priamky EM s priamkou p
označíme B. Tento priesečník vždy existuje, pretože podlá před-
pokladu body A, M a teda aj body E, M ležia v opačných pol-
rovinách s hraničnou priamkou p. Na polpriamke BM zostro-
jíme bod C, pre ktorý platí BC = EB. Body А, В, C sú vrchol-
mi hladaného trojuholníka.

Dokaž: Podlá konštrukcie body B, D a teda aj ťažnica tb
ležia na priamke p, bod M leží na priamke BC, AE — 2d,
ВС = EB a AE \\p. Z toho ďalej vyplývá, že AD : DC —
— EB : BC = 1 a teda AD = DC. To znamená, že bod D je
stredom úsečky AC, bod В je stredom úsečky ЕС a ťažnica BD
je střednou priečkou trojuholníka ACE. Podl’a vlastností

strednej priečky je BD = ~ AE — — 2d — d.

Zostrojený trojuholník vyhovuje teda všetkým podmienkam
úlohy.

Diskusia: Na priamke a existujú dva rožne body, ktorých
vzdialenosť od bodu A je 2d. Z toho vyplývá, že úloha má dve
riešenia.

Riešila Sabina Sitárová, žiačka II. roč. SVŠ
v Turčianskych Tepliciach

128



3. KATEGORIE С

1. Pri priamej ceste ležia za sebou štyri obce А, В, C, D.
Medzi obcami В, C je křižovatka K. Táto křižovatka leží
uprostřed medzi A, D a v tretine cesty z C do A. Vzdialenosť
CD je menšia než 10 km, zato vzdialenosť AB je váčšia než
16 km. Vzdialenosti každých dvoch miest v km sú vyjádřené
celými číslami. Vypočítajte ich.

XJC
DCA В К

Obr. 61.

Riešenie (obr. 61): Označme КС = x, BK — y. Potom je
AK = 2 . CK = 2x a teda CD = DK — CK — x. Ďalej je
AB = AK — BK = 2x — у, AD — 4x.

Okrem toho platí CD < 10, AB > 16, t. j.
x < 10,

2x — у > 16 .

(1)
(2)

Z (2) vyplývá
16 +

>8. (3)x >
2

Z (1) a (3) dostaneme x == 9 a ďalej z (2) potom je у < 2.
Je teda x = 9, у = 1, t. j.
AB = 17, BC - 10, CD = %AD = 36.

Výsledok overíme skúškou.

2. Je dána soustava dvou rovnic o dvou neznámých x, у:

(a — 1) x + 2y = 36 — 1 ,

(b + 4) x + 4y = 3a — 2 .

(1)
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Zvětšíme-li každý z parametrů a, b o jednu, dostaneme novou
soustavu, která má nekonečně mnoho řešení. Vypočtěte para-
metry a, b a řešení soustavy (1).

Řešení. Nová soustava zní

ax + 2y = 3b -f- 2 ,

(b + 5)x + 4y — 3a + 1 .

Podle textu úlohy má soustava (2) nekonečně mnoho řešení. Je
tedy druhá rovnice (2) dvojnásobkem první rovnice (2) (viz
koeficienty při y). Platí tedy

(2)

b + 5 = 2a,
3a + 1 = 2(3b + 2), (3)

po úpravě
2a — b — 5,
a — 2b — 1 .

Soustava (3) má jediné řešení a — 3, b = 1; to jsou hledané
hodnoty parametrů a, b.
Dosadíme-li a — 3, b — 1 do (1), dostaneme soustavu

* + J> = 1 >

5x 4y — 1.

Soustava (4) má jediné řešení x — 3, у = —2.

(4)

3. Rovnoramenný lichoběžník ABCD má tyto vlastnosti:
1. jeho základna CD má délku 1;
2. lze mu vepsat kružnici;
3. kružnice, která prochází vrcholy C, D a dotýká se přímky

AB, prochází středy obou ramen.

a) Vypočtěte délky AB, BC — AD.
b) Sestrojte lichoběžník ABCD.
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Řešení (obr. 62). a) Označme délky’ stran lichoběžníka ob-
vyklým způsobem AB = a, BC = zlĎ = 6; podle textu úlohy
je CD = 1. Body E, F jsou po řadě středy ramen BC, AD
a body G, H po řadě dotykové body kružnice na těchto
ramenech. Z vlastnosti tečen kružnice plyne

AH = BG = AN = BN = (1)2 5

1
DH — CG = DM — CM = — (2)2 5

přitom M, N jsou po řadě středy základen CD, AB. Protože

je AH -f DH = BG + CG = b, plyne z (1), (2) у + у = b,
neboli 2 2

a + 1 = 2b .

iWzí je úsekový úhel nad týmž obloukem FN jako obvo-
dový úhel <£ FDN. Proto platí podle věty uu

AADN~AANF.

(3)

(4)
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a b

I :T’thZ (4) plyne AD: AN — AN: AF, neboli Ъ\^ —
a2 = 2b2.

Dosadime-li do (5) z (3), dostaneme
2a2 = (a + l)2,

(5)

tj.
a2 — 2a — 1=0.

Rovnice (6) má jediný kladný kořen a = 1 + ]/2; z (3) vy-

počteme b = 1 + у ]/2 .

b) Sestrojíme rovnoramenný lichoběžník, jehož strany mají
délky a = 1 + ]/2 j b = d = l+-^-|/2, c—1. Tento h-
choběžník lze sestrojit, neboť je a — c = ]/2 , b a
b < b + (a — c). Obrácením postupu se přesvědčíme, že
sestrojený lichoběžník má žádané vlastnosti.

4. Je daná kružnica k = (S; r) a bod A ležiaci zvonku mimo
nej. M je priesečník úsečky AS a kružnice k. Zostrojte troj-

(6)

— c,

132



uholník ASX tak, aby vrchol X ležal na kružnici k a aby os
strany AX rozpolovala úsečku SM. Převeďte diskusiu úlohy.

Riešenie (obr. 63): Označme N střed úsečky SM, Y střed
úsečky AX. Ďalej označme P bod polpriamky AS, pre ktorý
platí AP — 2 AN. Potom priamka o = YN je střednou prieč-
kou trojuholníka APX. Je teda PX || YN a prero

PX _L AX.

Podia (1) leží bod X na kružnici m, zostrojenej nad priemerom
AP, a súčasne tiež na kružnici k. Z tohto rozboru vyplývá
konštrukčný předpis: Zostrojíme body N, P, kružnicu m
a určíme společné body k, m.

Skúška vyplývá z obrátenia postupu rozboru.
Diskusia. Označme AS = d. Potom je

(1)

AN = d —Г— (2)2 *

Riešitelnosť úlohy závisí na existencii spoločných bodov kružnic
k = (5; r), (TV; AN), pričom je SN = . Úloha je rieši-

telná právě vtedy, keď sa obe kružnice pretínajú (bod X nesmie
ležať na priamke AS), a má potom dve riešenia. Podmienka
riešiternosti vzhladom na vztah (2) teda je

r r r

2<d-2+r=d+2- (3)-r <

Pravá nerovnost’ vo vztahu (3) platí vždy. Podmienka riešitel-
nosti je teda

— r < —
2 9
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у г čiže d < 2 г, jednak у г — d <
г

< — čiže d> г, čo zrejme platí. Podmienka riešitelhosti je

teda

3
t. j. jednak d — — r <

r < d < 2r .

4. KATEGORIE D

1. Jsou-li a, 6 libovolná dvě čísla, pak platí

(a2 + ž>2)3 - (a3 + ž>3)2 ^ 0 .

Dokažte a zjistěte, pro která a, b nastane rovnost.

Řešení. Na levé straně vztahu (1) vypočítáme mocniny
dvojčlenů a upravíme. Dostaneme

3a462 - 2azbz + 3a264 ^ 0 .

(1)

a?b2(3a2 - 2ab + 362) ^ 0 .

V závorce na levé straně vztahu (2) vytvoříme druhou mocninu
dvoj členu (a — b), takže platí

(2)neboli

a2b2 [(a - b)2 + 2a2 + 2b2] ^ 0 .

Zřejmě lze postup obrátit, tj. z nerovnosti (3) dostaneme
postupně (2) a pak (1). Proto vztahy (3) i (1) platí pro táž
čísla a, b.

Rovnost ve vztahu (1) nastane tedy právě tehdy, když nastane
rovnost ve vztahu (3), tj. platí-li aspoň jeden ze vztahů:

a2b2 = 0; (a - b)2 + 2a2 + 2b2 = 0 .

(3)

(4)
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První rovnost je splněna, je-li aspoň jedno z čísel a, b rovno
nule. Druhá rovnost je splněna jen v případě, že obě čísla a, b
jsou zároveň rovna nule; výraz na levé straně je pro libovolná
čísla a, b, z nichž aspoň jedno je od nuly různé, kladný. Protože
a2b2 pro libovolná nenulová čísla a, b je kladný, dostáváme
celkem tento výsledek:

Je-li aspoň jedno z čísel a, b rovno nule, platí ve vztazích (3)
i (1) rovnost, není-li žádné z čísel a, b rovno nule, je výraz na
levých stranách ve (3) i (1) kladný.

2. Představte si, že píšeme za sebou všecky násobky čísla tři
s koeficienty 1, 2, 3, 4,. . . . Dostanete tak sled číslic

36 9 12 15 1821 24... . (1)

Zjistěte, která číslice je na dvoutisícím místě sledu (1).

Řešení. Jednociferné násobky jsou tři, totiž čísla 3, 6, 9,
a zaberou celkem tři místa ve sledu (1).

Dvojciferných násobků je celkem
99-9

= 30 ,
3

neboť 9 je největší jednociferný násobek a 99 největší dvojci-
ferný násobek čísla 3. Tyto násobky zaberou ve sledu (1)
celkem 2.30 = 60 míst.

Trojciferných násobků je celkem

999 - 99
= 300 ;

3

protože 99 je největší dvojciferný násobek a 999 největší troj-
ciferný násobek čísla 3. Tyto násobky zaberou ve sledu (1)
celkem 3.300 = 900 míst.
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Čtyřciferných násobků je celkem

9999 - 999
= 3 000

3

a zaberou celkem 4.3 000 = 12 000 míst ve sledu (1).
Násobky 1 až 3ciferné zaberou 3 + 60 + 900 = 963 míst.

Dvoutisící místo sledu (1) bude tedy náležet některému čtyř-
cifernému násobku; vypočteme kolikátému. Platí

2 000 - 963 = 1 037 ,

1 037 = 4.259 + 1 .

Ze vztahu (2) plyne, že před dvoutisícím místem sledu (1) je
259 čtyřciferných násobků; dvoutisící místo je tedy obsazeno
první číslicí 260-tého čtyřciferného násobku tří.

Tento 260-tý čtyřciferný násobek tří je číslo

(2)

999 + 260.3 ,

tj. 1 779; jeho první číslice je tedy 1.
Ve sledu (1) stojí na dvoutisícím místě číslice 1.

3. Je daný pravoúhlý trojuholník AMN s pravým uhlom pri
vrchole A. Zostrojte rovnoramenný trojuholník ABC so zá-
kladňou AB tak, aby vrchol C ležal na predížení úsečky AN
za bod A, aby priamka BC prechádzala bodom M a aby platilo

AC= CM-AN. (1)
Riešenie. Rozbor. Na obr. 64 je znázorněné předpokládané

riešenie úlohy. Pretože bod C leží na predížení úsečky AN za
bod A, platí •

CN=CA+AN. (2)
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Z podmienky (1) vyplývá
CM = AC + AN,

takže vzhladom na vztah (2) je
CN — CM .

Trojuholník CMN je teda rovnora-
menný so základňou MN, a preto bod
C leží na osi o úsečky MN.

Konštrukcia. Zostrojíme os o

úsečky MN a ak existuje jej prieseč-
nik s predíženim úsečky AN za bod
A, je to hladaný bod C. Bod В je
potom priesečníkom priamky CM
a kružnice k = (C; CA). Také body
sú zrejme dva: В a B', takže dosta-
neme dva trojuholníky ABC a AB'C.

Dokaž. Oba zostrojené trojuhol-
niky sú zrejme rovnoramenné s vrcho-
lom C proti základní. Ak bod C leží
na predíženi úsečky AN za bod A, prechádza priamka BC
(připadne B'C) bodom M. Pretože bod C leží na osi úsečky
MN, platí CM = CN a pretože bod C je na predíženi úsečky
AN za bod A, dostaneme

AC = CN — AN = CM — AN,
čo je vztah (1), ktorý je platný pre oba trojuholníky ABC
a AB'C.

D i s к u s i a. Ak je pravoúhlý trojuholník AMNrovnoramenný,
ide os o bodom A, takže A = C a úloha nemá riešenie.

Ak je AN > AM, leží bod A vo vnútri polroviny oM a body
A, N ležia v opačných polrovinách s hranicou o. Preto prie-
sečník osi o s priamkou AN leží medzi bodmi A, N a. nesplňuje
podmienku úlohy.
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Ak je

AM > AN,

přetne os o priamku AN v bode C A, ktorý leží na predížení
úsečky AN za bod A. Vtedy dostaneme dve riešenia. Pod-
mienkou riešitelnosti je tedy splnenie nerovnosti (3).

(3)

4. Je dán obdélník ABCD, jehož strany mají délky AB — a,
BC = b, a> b. Na polopřímkách BA, CB, DC, AD sestrojte
po řadě body B', C, D', A' tak, aby platilo AA' = BB' =
= CC = DD' a aby A'B'CD' byl kosočtverec.

Vypočtěte nejprve velikost úseku AA! — x a pak kosočtverec
sestrojte.

Řešení. Budiž A'B'C'D' kosočtverec (obr. 65). Označme
AA' = BB' = CC' = DD' = x. Pak je AB' - CD' = \a-x\
(nevíme, zda je a > x nebo x > a); obdobně je BC' = DA' =
= \b — x\. Podle Pythagorovy věty je

BB'2 + BC'2 = B'C'2,

CC'2 + CD'2 = CD'2. (1)
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Protože je B'C — CD', plyne z (1)
' BB'2 + BC'2 = ,CC'2 + CD'2;

protože je BB' = CC, máme

(b — x)2 — {a — x)2 .

Odtud plyne a — x = b — x nebo a — x = x — b. První rov-
nost je vyloučena, poněvadž je a > b. Z druhé rovnosti plyne

(2)

1
— (a b). (2)v =

Obrácením postupu zjistíme, že A'B'C'D' je při takto zvoleném
x skutečně kosočtverec. Vzorec (2) zároveň ukazuje, že je

b<x<a,

tj. body C', A' leží vně obdélníka, B', D' na jeho stranách
(viz obr. 65).

Konstrukce. Na polopřímce opačné к AB sestrojíme bod
M tak, aby bylo AM = b. Pak je BM — a + b a B' je středem

úsečky BM, neboť je BB' — ~ BM — ~ (a + b). Další body
A', C, D' snadno doplníme.

Poznámka. Předpokládáme-li, že na obr. 65 je znázorněno
řešení úlohy, zjistíme, že

Л B'BC go д c'CD'

(podle věty Ssu, neboť oba trojúhelníky jsou pravoúhlé a platí
B'B = CC = x, B'C = CD'). Proto je

BC = CD',

tj. \a — x\ = \b — x\ a obdobnou úvahou jako v uvedeném
řešení zjistíme platnost vzorce (2).
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VI. Úlohy III. kola kategorie A

1. Je dána soustava nerovností

У — x ^ |x + 1| — |x — 1|,
\y — x\ — у x ^2.

(1)

Znázorněte řešení každé z daných nerovností v rovině a určete
všechna řešení úlohy.

Řešení, a) Pro znázornění řešení první nerovnosti (1) roz-
lišíme případy 1) x ^ —1, 2) —1 ^ x ^ 1, 3) x ^ 1. V pří-
pádě 1) je x + 15^0, x — 1^0 a první nerovnost (1) zní
у — x ^ —x — 1 + x — 1 neboli

у Ss x — 2 .

V případě 2) je x + 1 ^ 0, x — 1^0 a první nerovnost (1)
zní у — x^x + 1+ я — 1 neboli

У ^ 3x.
V případě 3)jex — 1^0, x + 1^0a první nerovnost (1)
zní ji — x ^ x + 1 — x + 1 neboli

у ^ x + 2 .

(*^ -1) (2)

(-l^x^l) (3)

(x ^ 1) (4)
b) Pro znázornění řešení druhé nerovnosti (1) rozlišíme

případy 1) у > x, 2) у 5^ x. V případě 1) zní druhá nerovnost
у — x — jy + x ^ 2 neboli

0^2.

Druhá nerovnost není tedy splněna pro žádnou dvojici x, y,
pro niž platí у ^ x.

V případě 2) zní druhá nerovnost —y x — у 2
neboli (po krácení)

У ^ x — 1 . (5)
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Grafické znázornění je na obr. 66.

Řešení soustavy jsou dána nerovnostmi:
x ^ —1, x — 2 <^,y < x — 1 ,

~1 ^ , Зх^у^х —

(4) a (5) nedávají řešení (jsou ve sporu). Graf je část roviny
skládající se z části pásu omezeného polopřímkami BB1} ССг
a úsečkou BC (řešení I) a z trojúhelníka ABC (řešení II).
Body A, B} C mají souřadnice

(I) [(2) a (5)]

[(3) a (5)](И) 1 .

.= [-1 !]■ в=[-1, -2], C = [-1,-3].

2. V rovině je daných n kružnic, z ktorých každé dve sa
pretínajú právě v dvoch bodoch a žiadnym bodom neprechád-
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zajú tri z týchto kružnic. Určité celkový počet častí, na ktoré
dělí sústava kružnic rovinu. (Napr. tri kružnice uvedených
vlastností delia rovinu na osem častí.)

Riešenie. Počet častí, na ktoré dělí rovinu n kružnic uvede-
ných vlastností, označíme an. Pridajme к týmto n kružniciam
ďalšiu kružnicu k tak, aby sústava n + 1 kružnic mala požado-
váné vlastnosti. Kružnica k přetíná každú z n póvodných kruž-
nic v 2 bodoch. Celkom na k vznikne 2n bodov, ktoré ohřáni-
čujú 2n jej oblúkov. Ku každému z týchto oblúkov patří jedna
z an častí roviny, ktorá ním bola rozdělená na 2 časti. To zna-
mená, že kružnica k zapříčinila vznik 2n dalších častí roviny.
Je teda

(1)an+1 — an + .

Zo vztahu (1) odvodíme vzorec pre an.
= an-i + 2(я — 1) 3

an—1 = an—2 "T 2(w 2) ,

&П—2 = ^П—3 “Ь 2(^ 3

an

(2)

о,^ = -f* 2.1.
Sčítáním všetkých rovností (2) dostaneme

n—1

an — ai + V 2T
ife=i

- 2) . (я - 1) = я(я - 1). Kedže

(3)
n—1 1

Platí 2 26 = — (2 + 2я
= 2 (vnútro a vonkajšok kružnice), je

dn = и(и — 1) + 2 = n% — n + 2 .

Správnost’ vzorca (4) dokážeme teraz pomocou vztahu (1)
matematickou indukciou: Pre и = 1 dá vzorec (4) skutočne
ax = 2. Nech platí (4), potom an+1 = an + 2n = и2 — и +
+ 2 + 2w — и2 + и + 2 — (я + l)2 — (п + 1) + 2.

(4)

142



3. Je daný štvorec ABCD so stredomS a stranou 5 = AB =
= 1. Ďalej sú dané dva body E, F ležiace v uvedenom poradí
na priamkach BC, AD vo vnútri polroviny opačnej к CDA.
fef Určíte na základe výpočtu všetky také trojuholníky XYZ, že
vrcholy X, Y, Z ležia v uvedenom poradí na úsečkách CD, AD,
BC a priamky XY, YZ, ZX prechádzajú v uvedenom poradí
bodmi E, S, F. (Poznámka. Výpočtom určujte napr. dížku
CX.)

E

Obr. 67.

Riešenie (obr. 67). Označme s dížku strany štvorca, a, b
dížky CE, DF
a trojuholníky DFX, CZX sú rovnolahlé podlá středu X.

Z toho vyplývá

dížku CX. Trojuholníky CEX, DYXa x

CZ=^—b, DY — —
s — x

DÍžka strednej priečky lichoběžníka (obdížnika) DYZC je

— x

(1)a .

x
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1
vzdialenosť středu 5 od priamky CD, t. j. rovná sa —

platí CZ + DY = s, číže podlá vztahu (1)
X , sb -1

s — X

s. Preto

— X

(2)a — s..
x

Po úpravě vztahu (2) dostaneme pre x rovnicu 2. stupňa
(a + b + s)x2 — (2a + s)sx + as2 = 0.

Diskriminant rovnice (3) je
(3)

D — (s2 — 4ab)s2.
Ak je D 2> O, má rovnica (3) dva (rožne alebo splývajúce)
kořene

(4)

(2a -f- s) s i ]/D
X

2(a + b + s)

Každý z koreňov (5) je kladný, pretože (2a + s)s > ]/d. Ak
by totiž bolo (2a + s)s < ]/D , dostali by sme po umocnění
a + s < — b, čo je spor. Oba kořene (5) sú taktiež menšie alebo
rovné s, pretože (2a + s)s ± ]/D 2(a + b + s)s. Ak by
totiž bolo (2a + s)s + ]/D > 2(a + b + s)s, dostali by sme po
úpravě a umocnění D > (s + 2b)2s2 čiže —a >5 + 6, čo je
spor. Podmienkou riešitelnosti úlohy je teda

D ^ 0 .

Zostrojenie sa prevedie konštrukciou koreňov (5), kde D je
dané vzorcom (4). Pre D — 0 má úloha jediné riešenie, pre
D > 0 dve riešenia.

(5)

4. V prostoru jsou umístěny dva trojúhelníky ABC a ABD
se společnou stranou délky c. Trojúhelník ABC je pravoúhlý
s přeponou AB, trojúhelník ABD je rovnostranný, roviny ABC,
ABD mají odchylku op.
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a) Vyjádřete vzdálenost bodů C, D pomocí délek stran obou
trojúhelníků a čísla 99; určete tuto vzdálenost konstrukcí.

b) Najděte takovou odchylku cp, aby čtyřstěn ABCD měl
čtyři shodné hrany.

Řešení (obr. 68). a) Označme délky stran trojúhelníka ABC
obvyklým způsobem; označme M střed úsečky AB, P patu
kolmice spuštěné z bodu C na přímku AB. Pak platí

ab

{Уз, (1)DM — CP = —

c

a dále

a2
. PM = IBM - BP\ = у (2)

Situaci v prostoru ukazuje obr. 69. CPMQ je obdélník;
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proto platí podle (1), (2)

PM L MDQ

CQl MDQ

Podle kosinové věty je

DQ2 = DM2 -f MQ2 Д 2DM . MQ . cos cp

neboli podle (1), (3)
a2b23c2

± ab ]/з (4)D& = -r + . COS (p .c2

Podle Pythagorovy věty (v Д DCQ) platí

CD2 = DQ2 + CQ2
neboli podle (3), (4)

a43 a2b2 y- c2jc2+—r±ab I/3.COS99 + — + o я2 >CD2 =
c2
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po úpravě
a2

CD2 = с2 + 7Г (a" + b2) ± bc ]/3 cos (p — a2 ,

c2

tj.

CD = ]/c2 ± 1/3 (5)COS 99 ,

což je výsledný vzorec.

Konstrukce: Sestrojíme (ve skutečné velikosti) pravoúhlý
trojúhelník DMQ a pak sestrojíme (ve skutečné velikosti) právo-
úhlý trojúhelník CDQ; provedení ukazuje obr. 70.

ab --řiQcM
/.

/
/

/
/

ÍÍ3 /
/

/
/
/
/
/

o
Obr. 70.

b) Má-li čtyřstěn ABCD čtyři shodné hrany, je CD = c,
neboť ВС = a < c3 AC = 6 < c. Ze vzorce (5) pak plyne

c2 = c2 ± Л&]/3 . cos (p ,

tj. cos cp = 0°, takže 9? = 90°.
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VIL
Osmá mezinárodní matematická olympiáda

v Sofii ve dnech 1.—13. července 1966

Při VIII. mezinárodní matematické olympiádě se projevily
výrazně některé tendence, nad kterými se musíme \zamyslit,
chceme-li objektivně hodnotit výsledky této soutěže a chceme-li
realisticky uvažovat o budoucnosti mezinárodních matematic-
kých olympiád a o naší účasti na nich.

Předně lze pozorovat stále rostoucí úroveň reprezentantů
většiny účastnických států. I když oficiálně jsou tyto soutěže
soutěžemi jednotlivců, sestavuje se vždy tabulka pořadí států
podle součtu bodů, resp. cen, kterých jednotlivé země dosáhly.
Dobré umístění celého družstva se pokládá za věc národní
prestiže a většina zemí věnuje přípravě svých olympijských
reprezentantů zvláštní péči. Někteří talentovaní žáci se účastní
mezinárodních olympiád několikrát, aby získali zkušenosti na
mezinárodním fóru, aby se připravili i psychologicky a tak vy-
rostli v kvalitní reprezentanty. Domácí příprava žáků je v mnoha
státech — jak tomu nasvědčují různé příznaky — často spíše
individuálním školením profesionálních reprezentantů. Je jasné,
že výsledky dosažené v olympiádách nejsou pak ovšem objek-
tivním ukazatelem úrovně vyučování matematice v jednotlivých
zemích, ale spíše vizitkou péče, kterou věnuje ta která země
svým matematickým talentům. Nemá smyslu diskutovat o tom,
zda je tato koncepce soutěží správná či nikoli; nechce-li však
kterýkoliv stát hrát na olympiádách roli beznadějného outsi-
dera, nechce-li se pouštět do nerovného zápolení, má jen dvě
možnosti: bud se mezinárodních olympiád neúčastnit, nebo se
přizpůsobit jejich koncepci.

Druhá tendence, která se na VIII. MMO projevila, je jakási
— byť i často skrytá — nespokojenost s nedostatečným statuár-
ním zajišťováním organizace soutěže a z toho vyplývající snahy

148



o její novou organizaci. V roce 1962 byl sice při příležitosti
IV. MMO vypracován v ČSSR statut této soutěže, který byl
v podstatě přejímán ve všech dalších mezinárodních matema-
tických olympiádách; pořádající země jej však může v detailech
měnit — a tím vzniká těsně před soutěží určitá nejistota, která
není mnohým zemím sympatická. Na druhé straně se zdá, že
se okruh účastnických zemí bude zvětšovat; zájem o meziná-
rodní matematické olympiády počínají projevovat i některé
státy mimo socialistický tábor. Možná, že i proto se objevují
pokusy organizovat mezinárodní soutěž nebo obdobné oblastní
soutěže na půdě mezinárodní organizace jako např. UNESCO.
Velká diskuse o mezinárodních matematických olympiádách
byla i na kongresu v Moskvě v srpnu 1966; velmi blízká bu-
doucnost nám asi ukáže, jak se budou věci vyvíjet; rozhodně
bychom však přitom neměli být jen pasivními diváky, ale spíše
také aktivními činiteli.

Konečně třetí výraznou tendencí je stále větší a větší po-
zornost věnovaná společenské stránce soutěže; lze říci, že
pro pořadatelskou zemi se stává mezinárodní matematická
olympiáda příležitostí pro reprezentaci státu před ostatními
účastníky soutěže. Tím jednak stoupají nároky na čas účastníků,
jednak ovšem i finanční náklady; při rostoucím počtu účast-
nických zemí a při nynějším úsporném hospodaření, které se
projevuje téměř ve všech státech, tato tendence by mohla v bu-
doucnosti vážně ohrozit pořádání soutěží.

2.

VIII. MMO se oproti roku 1965 účastnilo o jednu zemi méně;
bylo tu 9 států: Bulharsko, Československo, Jugoslávie, Maďar-
sko, Mongolsko, Německá demokratická republika, Polsko, Ru-
munsko a Sovětský svaz. Finové nepřijeli, také Kuba, Vietnam,
Korea, ač pozvány, se nedostavily. Jména vedoucích delegací
i pedagogických průvodců jsou uvedena v příloze 1.
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Delegáti se sjeli dne 1. července 1966 v Sofii; již v 19 hod.
téhož dne se konala v anglické škole první schůze Mezinárodní
komise (Jury), řízená prof. Alippi Matteevem, děkanem Mate-
matické fakulty sofijské university, který byl předsedou bulhar-
ského přípravného výboru a zároveň předsedou Jury. Gene-
rálním sekretářem přípravného výboru byl inspektor Stojan Bu-
durov. Na schůzi byl oznámen a schválen program celé soutěže
a rozdány materiály, zejména návrhy 19 soutěžních úloh.

Dne 2. 7. po celý den a 3. 7. dopoledne zasedala Jury a vy-
bírala soutěžní úlohy. К 19 původním návrhům (ze zemí:
Bulharsko, Československo, Maďarsko, Mongolsko, Německá
demokr. republika, Polsko a Sovětský svaz) byly připojeny do-
datečně při zasedání Jury další návrhy: tři úlohy jugoslávské,
dvě rumunské a jedna sovětská. Vybírání bylo velmi obtížné,
neboť byl nedostatek návrhů úloh z algebry, konstrukční i kom-
binatorické geometrie a stereometrie; situaci ještě zkomplikoval
požadavek, aby žádná ze zúčastněných zemí nebyla zastoupena
dvěma nebo více úlohami. Hodně se diskutovalo o obtížnosti
úloh; po dlouhém jednání byly vybrány dvě trojice úloh; pro
první den slovní úloha (bulharská), úloha z trigonometrie
(maďarská) a ze stereometrie (sovětská); pro druhý den úloha
z goniometrie (jugoslávská), soustava rovnic (československá)
a úloha z početní geometrie (polská).

Dne 3. 7. 1966 ve 12 hod. byli delegáti přijati ministrem
národní osvěty BLR s. Gončevem. Při besedě se ministr Gončev
zajímal o stav vyučování v jednotlivých zúčastněných zemích
a vyslovil návrh, aby se při mezinárodních matematických
olympiádách pořádalo vždy jakési „symposium“ o školské ma-
tematice.

Na zasedání Jury 4. 7. se ukázala snadnost 1. a 3. soutěžní
úlohy. Jury se pak usnesla nahradit první soutěžní úlohu so-
větskou slovní úlohou a třetí soutěžní úlohu bulharskou úlohou
stereometrickou. I po této úpravě tvořil komplex všech šesti
úloh celek ne příliš náročný, což se ukázalo při soutěži samé.

\
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Pak byly formulovány texty úloh v světových jazycích (ruský,
německy, francouzský) a stanoven počet bodů; odpoledne pře-
ložili delegáti texty úloh do národních jazyků, rozmnožili je
pro oba dny soutěže a připravili zalepené obálky pro svá druž-
štva. К této práci nebyli podle rozhodnutí organizátorů soutěže
připuštěni pedagogičtí průvodci.

3.

Dne 5. 7. 1966 byla v 8.30 zahájena v aule university soutěž
bulharským proslovem prof. Matteeva, který delegáti přetlu-
močili do všech ostatních osmi jazyků. Prof. Matteev zdůraznil
ve svém projevu důležitost matematiky pro výstavbu socialismu,
význam mezinárodních olympiád pro vyhledávání a vzdělávám
matematických talentů i pro výměnu zkušeností na poli školské
matematiky. Po oficiálním zahájení byly žákům rozdány obálky
s texty prvních tří soutěžních úloh a byla zahájena práce. Odpo-
ledne se začalo v anglické škole (kde konali delegáti všecky
své práce a Jury všecka svá zasedání) s korekturou první žákov-
ské práce; opravování se zúčastnili i pedagogičtí průvodci. Žáci
měli odpoledne volno.

Dne 6. 7. v 9 hod. byla zahájena v budově university druhá
soutěžní práce. Dopoledne dokončovali vedoucí delegací s pe-
dagogickými průvodci korekturu prvních tří úloh, odpoledne
se opravovala druhá trojice úloh a začalo se s koordinováním.
Pro každou úlohu stanovila bulharská strana jednoho koordi-
nátora z domácích pracovníků, který koordinoval práce žáků
všech devíti zemí včetně Bulharska.

Dne 7. 7. a dopoledne 8. 7. se pokračovalo v opravování
druhé soutěžní práce a v koordinování. Ihned po ukončení
koordinace dne 8. 7. se zahájilo závěrečné zasedání Jury, které
pokračovalo i po polední přestávce. Počty bodů pro jednotlivé
ceny byly stanoveny takto:

I. cenu získali žáci, kteří dosáhli 39—40 bodů (40 bodů bylo
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maximum), II. cenu žáci s 35—38 body a III. cenu žáci s 31 —34
body.

Žáci měli ve dnech 7. a 8. 7. setkání s komsomolci-matematiky,
výlet na jezero Pančarevo a na Vitošu s večeří v restauraci
Kopitoto.

4.

Dne 9. 7. ráno v 6.30 nastoupily všecky delegace (žáci, ped.
průvodci i vedoucí delegací) spolu s organizačním výborem
VIII. mezinárodní matematické olympiády i s přítomnými no-
vináři (NDR a BLR) a tlumočníky (každé družstvo mělo svého
tlumočníka) čtyřdenní okružní cestu po Bulharsku. Jelo se tře-
mi autobusy a dvěma osobními auty přes Lovec, Starotirnovo,
Varnu, Nesebar, Burgas, Sliven, Starou Zagoru a Plovdiv zpět
do Sofie. Ujelo se více než 1000 km s jednodenní zastávkou
a dvěma noclehy ve Varně, s půldenní zastávkou a jedním noc-
lehem v Plovdivě. I když cesta byla namáhavá a sled dojmů
překotný, podařilo se hostitelům podat všem účastníkům po-
hled v kostce na staré i nové Bulharsko a poskytnout jim zážitky,
na které jistě hned tak nezapomenou. Cesta Mizií, krásným
podhůřím Balkánu, letmá prohlídka stoličního města Tirnova,
kouzelné Černé moře, koupání v Zlatých pískách i na Sluneč-
ním pobřeží, jízda po moři katěrem do Varny, návštěva památ-
niku Vladislava Varnenčika, letmé shlédnutí přístavu Burgasu,
prohlídka Plovdiva-staré Filippopole, mnoho dojmů z krásné
balkánské přírody, z památek starých zašlých kultur i výstavby
nového socialistického Bulharska a všude ve Varně, v Plovdivu,
v Tirnovu a v Tergovišti vřelé vítání pionýry i zástupci měst —
to je stručně nastíněný popis cesty.

Dne 12. 7. 1966 večer dorazily všecky delegace do Sofie.
Dopoledne 13. 7. 66 bylo volné a bylo věnováno nákupům.
Odpoledne v 16 hodin byla závěrečná slavnost v aule univer-
šity za přítomnosti ministra školství s. Gončeva. Zasedání za-
hájil prof. Matteev, pak promluvil s. Gončev o významu mate-
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matiky v období technické revoluce a výstavby socialismu.
Na to rozdal prof. Matteev diplomy a dárky vítězům, uznání
i diplomy ostatním účastníkům. Zvláštní uznání dostal nejlepší
mongolský žák, který dosáhl 18 bodů. Mezi žáky, kteří získali
uznání za originální řešení, zobecnění úloh apod., byl i čs.
reprezentant Bohuš Sivák. Jménem žáků pak poděkoval hos-
titelům německý žák a jménem delegátů vedoucí čs. dele-
gace. Projevy byly tlumočeny do všech jazyků zúčastněných
zemí. Za zmínku stojí, že tentokrát žádný delegát nepozval
účastníky jménem své země na příští MMO. Po zakončení
slavnosti byla ve 20 hodin v internátě Obščežitie společná
večeře pro všecky účastníky, které se zúčastnil také s. ministr.
Při večeři si vyměnily delegace mezi sebou tradiční dárky.

5.

Texty a řešení soutěžních úloh

I. den (5. 7. 1966).

1. V matematické soutěži byly dány tři úlohy А, В, C.
Mezi účastníky bylo 25 žáků, z nichž každý rozřešil aspoň
jednu úlohu. Ze všech účastníků, kteří nerozřešili úlohu A,
byl počet těch, kteří rozřešili úlohu B, dvojnásobkem počtu
těch, kteří rozřešili úlohu C. Počet těch žáků, kteří rozřešili jen
úlohu A, byl o 1 větší než počet ostatních žáků, kteří rozřešili
úlohu A. Ze všech žáků, kteří rozřešili jedinou úlohu, právě
polovina nerozřešila úlohu A.

Kolik žáků rozřešilo jen úlohu В?

(SSSR, 6 bodů)
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2.Označme po řadě a, b, c délky stran trojúhelníka а а, /?, у
velikosti protějších úhlů. Platí-li rovnost

a + b = tg у (a tg a + b tg /5),
pak je tento trojúhelník rovnoramenný. Dokažte.

' (.Madarsko, 7 bodů)3.Součet vzdáleností vrcholů pravidelného čtyřstěnu od
středu kulové plochy jemu opsané je menší než součet vzdále-
ností těchto vrcholů od kteréhokoli jiného bodu prostoru.
Dokažte.

(.Bulharsko, 7 bodů)

II. den (6. 7. 1966).4.Dokažte, že pro každé přirozené číslo n a pro každé reálné
Xtz

číslo x Ф —ТГ (k = 0, 1,. . ., n3 A celé) platí2&

1 1 1
= cotg x — cotg (2nx).+ ••

sin (2nx)sin 2x sin 4x

(,Jugoslávie, 5 bodů)5.Řešte soustavu

\<h. — az\ *2 + \<h — a3\ x3 + \ax — a4| x4 = 1 ,

К ~ ai\ xi + la2 — Я3| % + \az — a4| *4 = 1 ,

К — аз\ X1 + \a2 — a31 x2 + |a3 — a4| x4 = 1 ,

К — a4| xx + \a2 — a4| x2 + |a3 — a4| x3 = 1 ,

kde a13 a2, a3, a4 jsou čtyři daná navzájem různá reálná čísla.

(ČSSR, 7 bodu)
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6. Uvnitř stran AB, BC, CA trojúhelníka ABC zvolíme
po řadě libovolné body K, L, M. Dokažte, že obsah aspoň jed-
noho z trojúhelníků MAK, KBL, LCM je menší nebo rovný
čtvrtině obsahu trojúhelníka ABC.

{Polsko, 8 bodů)
Řešení úlohy 1. Označme po řadě xA, xB, Xq počty žáků,

kteří rozřešili jen úlohu А, В, C; dále pak xBC je počet žáků,
kteří rozřešili jen úlohy В, C a analogicky x'A je počet žáků,
kteří rozřešili úlohu A a aspoň ještě jednu další úlohu.

Podle podmínek úlohy je pak

xa “b xB + xc -f- xA + xBC = 25 ,

хв + xbc ~ 2 (xc + xBC),

XA — XA "b 1 j

(1)
(2)

(3)
1

(4)~2 (xa xb d- xc) — xb + xc ■

Z (2) plyne

(5)хвс — xb — 2xc ■

Z (4) plyne

(6)XA — XB A- xc •

Dosadíme-li z (3), (5) do (1), dostaneme

2xj^ ~— X(j = 26 .

Dosadíme-li z (6) do (7), vyjde

(7)

(8)4Xg -f- Xq — 26 .

Z (5) vyplývá xB — 2xc ^ 0, tj.

XB ^ 2Xq . (9)
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26
Spojením (8), (9) dostaneme xc 5^ — . Protože podle (8) je

xc sudé, je xc = 0 nebo xc = 2. Pro xc = 0 však nevyjde
z (8) celé xB. Je tedy xc — 2 a xB = 6, z (6) a (5) plyne = 8,
*bc = 2, z (3) plyne x^ = 7.

Zkouškou se přesvědčíme, že jediné možné řešení xB = 6
je skutečně řešením úlohy.

Řešení úlohy 2. Danou rovnost upravíme na tvar

(a + b) cos a cos /? cos -y =
у e V

= a sin a cos sin + b sin cos a sin у ,

neboli

'( У
cos a cos — — sin a

+ 6 cos a ^ cos /1 cos sin /? sin = 0

+a cos
2

neboli

Ma cos y8 cos + b cos a cos 0. (10)

Pro úhly trojúhelníka platí

(*+Гг)- (č+i)’ (И)COS — cos

neboť je

(“+1) + +1) (12)= TC .
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И)- И)- О, рак je a -fBuď je cos — cos

V V 7Г

у = /5 -f y = — j tj. а = /5 a jde tedy o trojúhelník rov-

K) =noramenný. Nebo je cos Ф 0;— cos

K)pak dělíme rovnost (10) číslem cos a dostaneme

(13)a cos /3 — b cos а = 0 .

Připojíme-li к rovnosti (13) rovnost

a sin /3 — b sin а = 0

(sinová věta), vyjde <z£(sin a cos /3 — cos a sin /3) = 0 neboli
sin (a — /5) = 0, tj. a = /3. Tento druhý případ však nemůže

У n у 7Z
nastat, neboť pro а — p vyjde z (12) а + -^- = р+ -^- = -—,

tj. cos

Řešení úlohy 3. Použijeme pomocné věty P:
Budiž /15 úsečka, p přímka s ní rovnoběžná. Nechť bod X

probíhá přímku p. Pak součet vzdáleností АХ + BX je mini-
mální, leží-li bod X na ose úsečky AB.

Důkaz věty P: Obsahuje-li přímka p úsečku AB, je věta P
zřejmá*). Neobsahuje-li přímka p úsečku AB, označíme X0

*) V tomto případě je součet AX + BX minimální pro jakoukoliv
polohu bodu X na úsečce AB.
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průsečík osy o úsečky AB s přímkou p, X ^X0 bod přímky
p, B' bod souměrně sdružený s bodem В podle přímky p
(obr. 71). Pak je

BXo = B'X BX = B'X. (14)0 3

Body A, B' jsou zřejmě souměrně sdruženy podle středu X0,
proto bod X0 leží mezi body A, B'. Je tedy podle (14) a podle
trojúhelníkové nerovnosti

AX0 + BX0 = AX0 + B'X0 = AB' <AX + B'X =
— AX + BX .

Tím je pomocná věta P dokázána.
Budiž nyní ABCD pravidelný čtyřstěn a nechť bod X ne-

leží v rovině souměrnosti hrany AB (obr. 72). Rovina o obsa-
huje vrcholy C, D, neboť platí

АС — BC,

Bodem X vedeme přímku p || AB a označíme X0 její průsečík

AD = BD.
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OPRAVNÝ LÍSTEK

Doplněk na str. 159 (dodatek к řešení úlohy 3 z VIII. MMO).

Existenci bodu, pro který je součet AX + BX + CX + DX
minimální, lze dokázat takto: Podle pomocné věty P lze tento bod
hledat jen na přímce m, která obsahuje středy protějších hran
AB, CD; také střed S kulové plochy opsané čtyřstěnu ABCD leží
na přímce m. Otočíme-li hranu CD kolem přímky m do roviny
ABS, dostaneme podle věty P pro každý bod X přímky m
AX + CX ^ AS + CS3 BX + DX ^ BS + DS, a tedy
AX + BX + CX + DX ^ AS + BS + CS + DS.



\



s rovinou o. Protože CX0 a DX0 jsou pravoúhlé průměty úseček
CX a DX do roviny o, je

(15)CX0<CX, DX() < DX.
Podle pomocné věty P je

(16)AX0 + BX0 ^ AX + BX.
Spojením (15), (16) dostaneme
AX0 + BX0 + CX0 + DX0 <AX + BX + CX + DX. (17)

Tím je dokázáno: neleží-li bod X v rovině souměrnosti ně-
které hrany čtyřstěnu ABCD, lze nalézt takový bod X0, že
platí (17). Bod X, pro který je součet AX + BX + CX + DX
minimální, musí tedy ležet v rovinách souměrnosti všech šesti
hran čtyřstěnu; je to tedy střed kulové plochy čtyřstěnu
ABCD.

Řešení úlohy 4. Pro n = 1 se redukuje daná rovnost na
rovnost \

1 cos 2xcos x

sin 2xsin 2x sin x
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z ní plyne rovnost

1 = 2 cos2 x — cos 2x,

Ате
která platí pro všecka x. Pro x ф — lze postup obrátit; je

tedy daná nerovnost dokázána pro n= 1.
* Á7Z

Indukční krok z n na n + 1: Předpokládáme, že x Ф

{k = 0,1,‘..и, n + 1) a označíme Ln levou stranu dokazo-
váné nerovnosti. Pak je

= Ln +
1

= cotg x — cotg(2”x) +sin (2n+1x)
cos (2nx) 11

= cotg x —sin (2n+1x) sin (2nx) sin(2”+1x)
1

[2 cos2 (2nx) - 1] .
= cotg x sin (2n+1x)

Protože výraz v lomených závorkách je roven cos (2n+1x)3 je
= cotg x — cotg (2ra+1x).

Tím je dokázán indukční krok a je dokázána i daná formule.

Ln+i

Řešení úlohy 5. Při současné výměně parametrů a(i ak
a neznámých xi3 xk se soustava nezmění. Zvolíme-li tedy vhodné
označení, je

(17)Uj д2 ]> Я3 U4 .

Pak lze každou absolutní hodnotu |a{ — ak\ (i < k) nahradit
rozdílem af — ak. Odečteme-li druhou rovnici od první, vyjde

(fix — аг) (—+ x2 + *з + *4) = 0 • (18)
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Podobně odečtením třetí rovnice od druhé dostaneme

(a2 — a3) (—xl — x2 + x3 + x4) = 0 .

Konečně odečtením čtvrté rovnice od třetí dostaneme

(a3 — a4) (—xx — x2 — x3 -j- я4) = 0 .

Rovnice (18), (19), (20) dělíme nenulovými koeficienty (a4 — a2),
(a2 — a3), (a3 — a4). Takto upravené rovnice (18) a (20) sečte-
me; vyjde хг = x4. Odečtením upravených rovnic (18) a (19)
vyjde x2 = 0, z (18) pak x3 — 0.

Z původních rovnic pak dostaneme

(19)

(20)

1
X j = x4 -=

\ai - a4\
Za předpokladu (17) má tedy daná soustava jediné možné ře-

1
šení xx = x4 = x2 — x3 = 0. Zkouškou se pře-

Ml a4l
svědčíme, že to je skutečně řešení dané soustavy.

Řešení úlohy 6. Označíme K0, L0, M0 po řadě středy(úseček
AB, BC, CA (obr. 73); pak úsečky K0L0, L0M0i M0K0 rozdělí
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1
trojúhelník ABC ve čtyři části téhož obsahu — Д ABC.

Leží-li dva z bodů K, L, M na obvodu některého z „roho-
vých“ trojúhelníků AK0M0, L0BK0, CM0L0, např. K, L na
úsečkách BK0, BL0 (viz obr. 73), pak je

1
Д BKL ^ Д BK0L0 = — Д ABC.

Stačí tedy zabývat se případem, kdy žádné dva z bodů K, L,
M nemají od téhož vrcholu trojúhelníka ABC vzdálenosti menší
nebo rovné polovinám délek příslušných stran.

Nechť např. bod К leží mezi A, K0, dále bod L mezi B, L0
a bod M mezi C, M0 (obr. 74). Označme KK0 — x, LL0 = y,
MM0 = z.

C

г

L0
a У

\
[L\

/
4/

ВA

Obr. 74.

Větu dokážeme sporem. Předpokládejme, že je

1 1
AAKM> - A ABC, ABLK>-AABC,

Д CML > — A ABC.
4
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Pak je

Д AKM + Д BLK + Д CML > -у Д ABC,4

neboli

Д AKM
4

A ABC

Poměry obsahů trojúhelníků v nerovnosti (21) vyjádříme po-
mocí délek a, b, c, x, y, z. Při obvyklém označení úhlů platí

Д BLK A CML
(21)+ 4 + 4 >3.

Д ABC aabc

= \ (t (y ~ *) *sin a5 ^ ABC=\bc sin a’Д AKM

tj-

Д AKM
(22)

A ABC
Cyklickou záměnou dostaneme z (22) další dva poměry obsahů;
po dosazení do (21) a úpravě vyjde

a(b + 2z) (c — 2x) + b(c + 2x) (a — 2y) -j-
+ c(a + 2y) (b - 2z) > ЪаЬс .

Tuto nerovnost zjednodušíme po vynásobení na tvar
axz + byx + czy < 0 ,

což je ve sporu s podmínkami a > 0, b > 0, c > 0, x > 0,
у > 0, 2 > 0.

Tím je věta úplně dokázána.

bc

6.

Pro zajímavost uveďme první a třetí úlohu původního návrhu,
které byly pro snadnost nahrazeny jinými úlohami.

Místo sovětské úlohy 1 byla původně navržena tato bulharská
úloha:
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1'. Žáci jedné třídy uspořádali tři exkurze; každé z nich se
zúčastnilo 15 žáků. Sedm účastníků I. exkurze se zúčastnilo
také II. exkurze, osm účastníků I. exkurze se účastnilo také
III. exkurze. Pět účastníků II. exkurze se zúčastnilo také III.
exkurze. Čtyři žáci se zúčastnili všech tří exkurzí.

a) Kolik žáků se zúčastnilo jen I., kolik jen II., kolik jen
III. exkurze?

b) Kolik žáků se zúčastnilo aspoň jedné z těchto tří exkurzí?
Řešení úlohy lze podat velmi jednoduše bez výpočtů, po-

mocí Vennových diagramů; stačí podle textu úlohy vepsat počty
žáků do průniků tří množin M{ (i = 1, 2, 3); přitom Mt zna-
mená množinu všech žáků, kteří se zúčastnili г-té exkurze
(obr. 75).

Odpověď: a) Jen I. exkurze se zúčastnili 4 žáci, jen II.
exkurze 7 žáků, jen III. exkurze 6 žáků. b) Aspoň jedné exkurze
se zúčastnilo 29 žáků (počet prvků sjednocení množin УИ1з /И2,
M3).
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Místo bulharské úlohy 3 byla původně navržena sovětská
úloha:

3'. Každé dvě protější hrany čtyřstěnu jsou navzájem kolmé.
Dokažte, že všech šest středů jeho hran leží na kulové ploše.

Řešení (obr. 76). Budiž A4A2A3A4 daný čtyřstěn; označme
středy hran podle obr. 76. Pak je A13AU || A3A4 j| A23A
A13A23 (I A4A2
běžník. Protože je A4A2 _L A3A4, je A13A23 ± A13AU, tj. obra-
zec A13A23A24A14 je obdélník. Jeho úhlopříčky jsou shodné
a navzájem se půlí. Proto kulová plocha £ sestrojená nad prů-
měrem A13A24 má za průměr i úsečku A14A23. Vyměníme-li
indexy 2, 4 (1, 3 ponecháme), vidíme, že kulová plocha £ má
za průměr i úsečku A12A34. Tím je věta dokázána.

245

A14A24. Obrazec A13A23A24A14 je tedy rovno-

7.

Složení čs. družstva je patrné z přílohy 3, výsledky, kterých
dosáhlo, z přílohy 4. Seřadíme-li všecka družstva podle počtů
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dosažených bodů, je ČSSR na osmém, tj. předposledním místě.
Také podle udělených cen je na předposledním místě: má tři
ceny, z toho jednu druhou a dvě třetí (Jugoslávie má také tři
ceny, ale dvě druhé a jednu třetí). Je to bilance na první pohled
žalostná, která svědčí, že naše družstvo relativně к jiným druž-
stvům má tendenci sestupnou, i když snad naši letošní repre-
zentanti byli v celku lepší než loňští. Ale rychle se zvyšující
úrovni reprezentantů ostatních států (všimněme si např. vze-
stupu NDR) nestačíme. Naproti tomu je třeba uvážit, že např.
náš nejlepší reprezentant Sivák by byl získal se ztrátou jen
dvou bodů na každé z předchozích olympiád I. cenu. Dále je
třeba uvážit, že bodové rozpětí mezi námi a nejlepším druž-
stvem SSSR bylo loni více než 130 bodů, letos ani ne 80 bodů.
Také rozdíly v počtu bodů mezi 6., 7. a 8. družstvem jsou cel-
kem malé; je vhodné hned na tomto místě ukázat, čím jsou
způsobeny. Na letošní olympiádě vzhledem к poměrně snad-
ným soutěžním úlohám byl žák, který nedosáhl ani 25 bodů,
vysloveným outsiderem. Z přílohy 4 je patrné, že my měli tako-
véto účastníky tři; naproti tomu Jugoslávie měla jen dva takovéto
žáky, Bulharsko jen jednoho. Zde se už částečně ukazuje jedna
z příčin našeho neúspěchu: nedobrý výběr reprezentantů.
Chceme-li se dále účastnit mezinárodních matematických olym-
piád, a to nikoli jako podřadné družstvo, musíme vybírat své
reprezentanty z žáků, které budeme individuálně a systema-
ticky připravovat. Musíme se zaměřit na žáky mladší, popřát
jim možnost získat zkušenosti v mezinárodní soutěži, tj. dát
jim psychologickou přípravu. Neboť i letos se ukázalo, jako
v minulých letech, že našim reprezentantům často chybějí
dobré nervy. Při přípravě družstva se pochopitelně nemůžeme
spoléhat jen na školu.

Nyní ještě stručně к našim nedostatkům řešení soutěžních
úloh VIII. MMO. Naši žáci chybují v důkazu matematickou
indukcí a přitom jde o matematické „řemeslo", které by měl
ovládat každý průměrný středoškolák.
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Z řešení našich žáků je zřejmé, že se i logická stránka výuky
zanedbává; je to vidět i na jejich vyjadřování, které je nedbalé
a často nesprávné. Mnoha zla působí fráze o „ekvivalentních
úpravách” zakořeněná na našich školách. Našim reprezentan-
tům lze také těžko odpustit jejich nedostatky ve stereometrii
(ani jeden z našich osmi žáků nerozřešil úlohu 3 zcela správně).
Žáci nadaní v matematice se často pachtí za studiem tzv. vyšší
matematiky, jejího aparátu pak užívají nevhodně nebo dokonce
nesprávně, ale středoškolskou látku do hloubky neznají. Přitom
„středoškolská matematika” v pojetí mezinárodních olympiád
je užší než v pojetí našich osnov; nepřicházejí tu úlohy z ana-
lytické geometrie, z aritmetiky komplexních čísel (tato témata
nejsou v osnovách řady zúčastněných zemí), málo se vyskytují
i úlohy z teorie čísel, zato se věnuje dosti pozornosti kombinato-
rice, kombinatorické geometrii, stereometrii, kde je často třeba
celkem jen skrovného aparátu, zato tím více zkušenosti, logic-
kého výcviku a experimentálně-analytického přístupu к řešení
úlohy. Konečně je třeba poukázat ještě na jeden nešvar, kterým
naši žáci trpí — je to bezuzdná psavost, „počtářství” v špatném
slova smyslu. Počítají často celkem bezhlavě, popíší řady strá-
nek, ač jsou stále upozorňováni na to, že je třeba spíše přemýšlet
a netopit se ve výpočtech, jejichž složitost zřejmě ukazuje, že
nastoupená cesta nebyla vhodná.

Vzhledem к našemu neúspěchu na VIII. MMO se rozhodl
ústřední výbor MO změnit od základu přípravu našich repre-
zentantů a jejich výběr, pokusně přejít к individuálnímu školení
nadaných jedinců, pokud možno z nižších tříd.
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PŘÍLOHA 1

Vedoucí delegací a pedagogičtí průvodci.

Bulharsko:

Prof. Spas Monolov, Vyšš. inženerno-stroitelen institut
v Sofii.

As. Kostadin Petrov, Mat. fakulta univerzity v Sofii.

Československo:
Doc. Jan Výšin, Matematicko-fyzikální fakulta Karlovy
university v Praze.
Odb. as. Vlastimil Macháček, Pedagogická fakulta Kar-
lovy univerzity v Praze.

Jugoslávie:
Doc. Dušan Adnagievič, Bělehrad.
Vladimír Mitič, Bělehrad.

Maďarsko:

Hódi Endre, vedoucí vědecký pracovník Optických zá-
vodů v Budapešti.
Reiman István, Budapešť.

Mongolsko:
Doc. N. Sanžimjatav, St. univerzita Ulanbátor.
G. Zagdragča, inspektor matematiky ministerstva škol-
ství MLR.

Něm. dem. republika:
Prof. dr. Hanns-Joakim Weinert, Vys. škola pedagogická,
Potsdam.

Dr. Helmut Bausch, Berlín.
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Polsko:

Prof. dr. Mieczyslaw Czyžykowski, Polytechnika ve Var-
savě.

Magister Andrzej Mqkowski, Varšava.
Rumunsko:

Prof. Tiberiu Roman, Vysoká škola technická v Buku-
rešti.

Prof. Zlaté Bogdanov, Bukurešť.

Sovětský svaz:
Doc. Elena Alexandrovna Morozova, Mech. matem,
fakulta Lomonosovy university v Moskvě.
Ivan Semenovič Petrakov, metodik ministerstva školství
RSFSR.
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PŘÍLOHA 2

Počty udělených cen a celkové počty dosažených bodů.
Počet

dosažených
bodů

Počet cen
Stát

II. III. CelkemI.

Bulharsko 236 30 1 4

ČSSR 215 0 1 2 3

Jugoslávie 224 0 2 31

Maďarsko 281 3 1 2 6

Mongolsko 0 0 0 090

NDR 3 3 0280 6

Polsko 269 1 4 1 6

Rumunsko 257 2 2 51

SSSR 293 5 1 1 7

Celkem 1213 15 40

170



PŘÍLOHA 3

Naro-
Poř. Škola-třídaJméno zen
č. roku

3. a, SVVŠ U balvanu
Jablonec n. Nisou

Kosina Miroslav 19481.

2. g, SVVŠ W. Piecka,
Praha 2

Kůrka Petr2. 1949

3. d, SVVŠ Prievidza3. Mederly Petr 1948

3. d, SVVŠ Dlouhý lán,
Praha 6

4. Němec Petr 1948

4. b, SPŠ hutnická KladnoRott Jiří5. 1947

9. tř. ZDŠ Zvolen6. Sivák Bohuš 1951

Šmerk Jiří 3. c, SWŠ Kyjov7. 1948

2. g, SVVŠ W. Piecka,
Praha 2

Vejvoda Pavel8. 1947
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PŘÍLOHA 4

Počet bodů
Žák

úl. 1 úl. 2 úl. 3 úl. 4 úl. 5 úl. 6 Celkem

Kosina 4 5 4 207 0 0

Kůrka 0 54 7 8 317
III. cena

Mederly 6 5 3 8 327 3
III. cena

6 4 16Němec 1 4 10

Rott 6 4 4 2 6 220

Sivák 6 5 5 8 387 7
II. cena

Šmerk 4 2 8 296 7 2

Vejvoda 5 276 51 3 7

22 37 29 5140 36
Celkem 215

max 64max 56 max 56 max 40 max 56max 48

Poznámka: Průměrný počet bodů připadající na jednoho žáka je
(nepočítáme-li Mongoly) 32.
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