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Předmluva

Milí přátelé,

myšlenka organizovat pro žáky středních škol matema-
tické soutěže s pevným statutem a nespokojovat se jen
s volnými soutěžemi úloh, které vypisují a odměňují ně-
které studentské časopisy, nabývá ve všech zemích stále
většího ohlasu a větších sympatií. Dokladem toho je zvy-
šující se počet domácích olympiád v jednotlivých státech
a rostoucí zájem o mezinárodní olympiády mezi zeměmi
socialistickými i kapitalistickými. Dokazuje to i zájem,
který o tuto činnost projevuje Mezinárodní komise pro
vyučování matematice (anglická zkratka ICMI
International Commission for Mathematic Instruction*),
která je složkou Mezinárodní matematické Unie, největší
mezinárodní organizace matematiků. Komise ICMI uči-
nila první důležitý krok na poli výměny informací: shro-
máždila zprávy o domácích olympiádách z členských států,
publikovala je a rozeslala. Myslím, že uvítáte, když časopis
Rozhledy přinese v některém čísle stručný přehled o tom,
jak vypadají matematické soutěže v jiných státech.

Uvidíte, že organizace a pojetí těchto soutěží je opravdu
velice rozmanité. Společná je asi myšlenka, že soutěž má
být pro mladé lidi impulsem, aby se něčemu novému při-

tj.

*) Francouzská zkratka je CIEM, tj. Commission Internationale pour
ГEnseignement des Mathématiques.
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učili a že jim má к tomu poskytovat pomoc studijní lite-
raturou i jinými akcemi. Ovšem v mnohých zásadních
otázkách se tyto soutěže velmi liší. Je tu např. problém,
zda soutěž má být těsně spjata se školou, se školskými
osnovami, jako je tomu např. u nás. Tak totiž vzniká
jakási tuhá, možno říci někdy strnulá organizace, která
často znemožňuje zařadit úlohy, které by byly pro žáky
právě nejpřitažlivější. Jiná otázka je, zda ve vlastních sou-
těžních kolech, kde účastníci mají v předepsaném čase vy-
pracovat určitou klauzurní práci, mají být dávány jednot-
livé úlohy nebo skupiny úloh, z nichž by si žáci vybírali po
jedné úloze. Je totiž nepopiratelná skutečnost, že zájemce
o matematiku inklinuje hlavně ve vyšších ročnících
střední školy (gymnasia) к určité tematice (třeba к algebře
nebo analytické geometrii apod.). Může-li si z povinné
skupiny např. tří úloh vybrat úlohu s tématem, které je
mu nejbližší, má příležitost ukázat, co umí, a nikoliv co
neumí. Dalším problémem koncepce soutěže je zadávání
úloh navazujících na jednoduchou a neobsáhlou teorii,
kterou soutěžící samostatně nastudoval. Prastará zkuše-
nost totiž učí toto: člověk s uspokojením konstatuje, že
dokonale porozuměl jistému úseku teoretického výkladu
z matematiky, a když jej začne aplikovat, tj. řešit úlohy,
zjistí ke svému překvapení, že přece jen zcela teorii ne-
porozuměl. Jinými slovy, aplikace, ať v matematice samé
či v jiných oborech, jsou prubířským kamenem znalosti
teorie. Tuto souvislost bychom asi měli v budoucnosti
uplatnit i v naší matematické olympiádě. Jsou ovšem ještě
mnohé jiné otázky; tak např. před časem jsme udělali
nesmělý pokus s tzv. problémovými situacemi, tj. se situa-
cemi, které buď už jsou matematické, nebo se teprve musí
matematizovat, ale v nichž nejsou prozatím dány žádné
úlohy. Prvním úkolem řešitele je úlohy formulovat, a to
třeba v nějaké'gradaci od úloh zcela konkrétních a jedno-
duchých к úlohám složitějším a abstraktnějším. Touto
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činností, která patří do tzv. problémového vyučování, se
zájemce o matematiku učí postupně velkému umění,
rozumně se ptát, formulovat úlohy, což je někdy obtížnější
než úlohy řešit. V našem nesmělém pokuse před několika
lety byly nadhozeny dvě problémové situace:

1. Aritmetické posloupnosti prvočísel.
2. Rozdělení daného omezeného rovinného obrazce

přímkou ve dvě části sobě rovných obsahů.

Tento pokus, který byl uveden mimo soutěž, zůstal
celkem bez odezvy, pravděpodobně proto, že naši žáci
nebyli к tomuto způsobu práce nikdy vedeni, a snad
i proto, že při věčném spěchu svého denního režimu ne-
mají kdy se dlouho zamýšlet a věnovat čas pokusům
a spekulacím. Bylo by jistě záhodno, aby některé pří-
pravné přednášky (semináře) byly věnovány problémo-
vým situacím.

V knižnici Škola mladých matematiků, které dosud při
soutěži málo využíváme, počínají nyní vycházet brožury
tzv. ,,výběrové řady“. Jejich tematika částečně přesahuje
rámec školské matematiky; ukazují se v nich i některé
možnosti aplikovat vyloženou partii, která zpravidla bývá
netradiční. Také způsob výkladu je náročnější. Do této
,,řady“ patří např. knížka o Dirichletovu principu, o od-
dělování konvexních množin, bude tu také svazeček
o neeukleidovské geometrii, o algebraických strukturách aj.
Doufáme, že se touto řadou zavděčíme zejména těm čte-
nářům, kteří jsou už syti stálého „přemílání“ středo-
školské látky. Nechceme však navodit situaci, aby naši
žáci opovrhovali školskou matematikou, neovládali ele-
mentární mechanismy a zabývali se přitom povrchně
věcmi „učenějšími^. Z vysokých škol máme mnoho
smutných zkušeností, kam takový stav vede.
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V poslední době se mnoho hovoří o matematizaci světa,
o abstraktních, axiomaticky budovaných teoriích a jejich
modelech. O co vlastně jde? V jevech, s kterými se setká-
váme takřka denně a v nichž na první pohled nic mate-
matického nevidíme, vysondujeme při bližším nahlédnutí
vztahy vysloveně matematického charakteru, které lze
zpracovat v jakousi třeba drobnou a jednoduchou ab-
straktní matematickou teorii, která má své použití i v zcela
jiných situacích reálného světa. Těmito otázkami matema-
tizace a axiomatizace se zabývá např. prof. H. G. Steiner
z Miinsteru (NSR), který se žáky nej vyšší třídy střední
školy zpracoval pokusně některé takové náměty. Jeden
z nich — teorie hlasovacích množin — je přeložen do
češtiny a vydán pro studijní účely Jihočeského kraje
pedagogickým ústavem v Českých Budějovicích (Vrchlic-
kého nábřeží). Vedoucí kabinetu matematiky A. Terš jistě
vážným zájemcům exemplář tohoto textu zapůjčí. Je to
četba velmi poučná, z ní se můžete dozvědět, jak se určitá
situace, vzatá z reality, matematizuje a axiomatizuje. Prof.
Steiner má ještě další zajímavé práce tohoto druhu, s ni-
miž určitě naše studenty seznámíme — třeba informacemi
v Rozhledech.

Vraťme se však к naší olympiádě. Máme zkušenost, že
velké pobouření mezi řešiteli z řad žáků i učitelů působí
neřešitelné úlohy. Často se označují názvem „chybné“ či
„špatné“. Je pravda, že vznikne někdy neřešitelná úloha
neopravením tiskové chyby. Jindy však je neřešitelná
úloha zařaděna úmyslně. Uvažte, že musíte být psycho-
logicky připraveni na situaci, kdy úloha, s kterou jste se
dlouho lopotili, nemá řešení, i když je tento výsledek sebe
více šokující. Skutečnost je totiž taková, že v dané úloze
vyslovujeme požadavky, které má mít hledaný matema-
tický objekt (číslo, skupina čísel, funkce, geometrický
obrazec apod.) a je přece zcela dobře myslitelné, že tyto
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požadavky jsou jako celek nesplnitelné, tj. že neexistuje
matematický objekt žádaných vlastností, čili, že úloha je
neřešitelná. Nejvhodnější formulace každé (řešitelné či
neřešitelné) úlohy je však taková, která začíná slovy:
Najděte všecka řešení (čísla, trojúhelníky, body atd.),
která mají požadovanou vlastnost.

Hlavní částí obsahu brožury jsou jako vždy řešení
soutěžních úloh; je to text, který vás asi nejvíce zajímá
a z kterého se můžete nejvíce naučit. Řešení úloh jsou
ovšem většinou „autorská”, tj. tato řešení sestavili hlavně
sami autoři úloh. Jsou to často vědečtí pracovníci nebo
učitelé vysokých škol, jejichž způsob myšlení v matema-
tice je dost odlišný od vašeho; prostě proto, že jsou to
matematici-profesionálové. Tím si asi můžete vysvětlit, že
v řešeních se někdy vyskytují obraty a postupy vám ne-
obvyklé, které doslovně,,spadnou s nebe“. Víme, že vašemu
způsobu myšlení by možná lépe vyhovovalo jiné řešení,
zpracované více metodicky. Nedejte se však odstrašit ani
umělými autorskými řešeními. Zamyslíte-li se nad nimi
hlouběji, proniknete do duševní dílny autora, do jeho
způsobu myšlení a zjistíte, že i obrat, který se vám zdál
na první pohled umělý, vznikl vlastně cestou přirozenou.
Zarážející a snad zprvu trochu nepříjemné je jen to, že
vám autor tuto cestu neprozradil. V tomto ročníku jsme
sestavili oddíl úloh III. kola kategorie A a úloh z X. roč.
MMO většinou z řešení účastníků a upravili jsme tato
řešení jen nepodstatně. Jsme zvědavi, jak se Vám tatoře-
šení budou z. mlouvat.

V minulém ročníku naší olympiády jsme poprvé při-
stoupili pokusně k bodovacímu systému při hodnocení
řešení soutěžních úloh. To znamená, že daná úloha je doto-
vána podle předběžného odhadu své obtížnosti určitým
maximálním počtem bodů, které může řešitel získat za
zcela bezvadné řešení. Za každý nedostatek v řešení se mu
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počet bodů snižuje podle předem stanoveného klíče.
Součet všech získaných bodů určuje pak řešitelovo pořadí.
Tento způsob hodnocení, obvyklý např. ve sportovních
soutěžích, ale i na mezinárodních matematických olym-
piádách, je ovšem velmi náročný pro osoby, které řešení
posuzují. Účastníky soutěže pak nutí k jisté taktice při-
způsobené jejich individualitě: jsou žáci, kterým lépe
vyhovuje řešit nejdříve úlohy snazší (což by se mělo
poznat podle nižšího počtu bodů) a teprve pak úlohy
obtížnější. Jsou však jiní řešitelé, kteří mohou získat nej-
lepší pořadí právě tím, že se soustředí nejprve na nej-
obtížnější úlohy, dotované nejvyššími počty bodů. V pří-
štích letech hodláme pokračovat v bodovacím systému,
zdokonalovat jej a uplatnit jej nejen v závěrečných kolech,
ale postupně i v celé soutěži.

Všichni účastníci olympiády asi vědí, že naše školství
stojí před novou reformou. První krůček se stal prodlouže-
ním střední školy — gymnasia — na čtyři léta, ale pravdě-
podobně budou následovat další změny nejen v organi-
zaci, ale hlavně v obsahu a vyučovacích metodách. Mate-
matika bude jistě předmětem, který bude těmito změnami
zasažen velmi pronikavě; některé zastaralé a málo uži-
tečné partie budou nahrazeny tématy modernějšími, které
mají také mnohem blíže к aplikacím v nejrůznějších obo-
rech. Všecky tyto změny nezůstanou bez vlivu na mate-
matickou olympiádu. Myslíme, že význam soutěží pro na-
dané matematiky poroste, že bude stále naléhavější
potřebou vyhledávat matematické talenty a pomáhat jim.
Z toho, co jsme uvedli v předmluvě, je vidět, že práce ne-
bude málo a že organizátoři matematických soutěží u nás
i za hranicemi budou musit hodně přemýšlet a zkoušet,
aby tyto soutěže byly zmodernizovány, aby byly při-
tažlivé, neškolské a aby dobře plnily své poslání.

Matematická olympiáda i její pomocné akce jsou orga-
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nizovány pro vás; proto nás zajímají vaše názory, vaše
kritika, vaše podněty. Pište nám o svých zkušenostech,
nesnázích a úspěších. Pomůžete nám tak v naší práci.
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I. O průběhu XVII. ročníku
matematické olympiády

1. ORGANIZACE SOUTĚŽE

Rovněž letos bylo pořadatelem soutěže ministerstvo
školství (MŠ) s Matematickým ústavem ČSAV (MIJ
ČSAV), Jednotou čs. matematiků a fyziků (JČMF)
a ústředním výborem Čs. svazu mládeže (VV ČSM).
Také XVII. ročník se řídil statutem, uveřejněným ve
Věstníku MŠK, roč. XIX, str. 126, 127, směrnice 37 ze
dne 30. 4. 1963.

Soutěž řídil ústřední výbor matematické olympiády
(ÚV MO), v krajích krajské výbory matematické olym-
piády (KV MO) a v okresech okresní výbory matematické
olympiády (О V MO); v těchto výborech jsou také za-
stoupeny pořadatelské složky.

Žáci soutěžili ve čtyřech kategoriích podle svého stu-
dijního věku, a to v kategoriích А, В, C (střední školy)
a v kategorii D (základní školy).

2. SLOŽENÍ ÚSTŘEDNÍHO VÝBORU
MATEMATICKÉ OLYMPIÁDY

V XVII. ročníku nebyly proti předchozímu ročníku
podstatné změny. Nově byl pouze kooptován dr. Jozef
Moravčík, CSc., jako místopředseda za Slovensko a byli
vyměněni někteří předsedové KV MO, takže na závěr
období fungoval tento ÚV MO:
Předseda: Jan Výšin, docent matematicko-fyzikální

fakulty KU v Praze
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Místopředseda: prof. dr. Miroslav Fiedler, DrSc.,
vedoucí vědecký pracovník MÚ ČSAV v Praze

Místopředseda za Slovensko: dr. Jozef Moravčík,
CSc., odb. asistent VŠD v Žilině

I. jednatel: Vlastimil Macháček, odb. asistent pedago-
gické fakulty KU v Praze

II. jednatel: Jiří Mída, odb. asistent pedagogické fa-
kulty KU v Praze

Členové: Josef Bartůněk, ústřední inspektor MŠ, dr.
František Běloun, vedoucí matematického kabinetu
Krajského pedagogického ústavu v Praze
dr. Juraj Bosák, CSc., Matematický ústav SAV v Brati-
slavě
dr. Jaroslav Fuka, CSc., vědecký pracovník MÚ
ČSAV v Praze
František Hradecký, býv. odborný asistent matematicko-
fyzikální fakulty KU v Praze
prof. dr. Karel Hruša, vedoucí katedry matematiky pe-
dagogické fakulty KU v Praze
dr. Milan Kolibiar, DrSc., profesor přírodovědecké
fakulty Komenského university v Bratislavě
akademik Josef Novák, vedoucí vědecký pracovník
MÚ ČSAV v Praze
dr. Jiří Sedláček, CSc., vědecký pracovník MÚ ČSAV
v Praze
František Veselý, profesor v. v. v Praze
dr. František Zítek, CSc., vědecký pracovník MÚ
ČSAV v Praze
dr. Miloslav Zedek, docent přírodovědecké fakulty
university Falackého v Olomouci
Dalšími členy Ústředního výboru matematické olym-
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piády jsou předsedové krajských výborů mate-
matické olympiády:

dr. Václav Pleskot, profesor ČVUT v Praze
dr. Václav Vilímek, docent katedry ^matematiky a
deskriptivní geometrie strojní fakulty ČVUT v Praze
Marie Kleintová, odborná asistentka katedry matema-
tiky Vysoké školy zemědělské v Českých Budějovicích
Karel Hnyk, odborný asistent pedagogické fakulty
v Ústí nad Labem
Věra Rádiová, profesorka SVVŠ J. Fučíka v Plzni
Jan Laštovka, vedoucí kabinetu matematiky Krajského
pedagogického ústavu v Pardubicích
Petr Benda, odborný asistent VUT v Brně
Josef Andrys, docent pedagogické fakulty v Ostravě
dr. Ladislav Berger, odborný asistent katedry matema-
tiky Vysoké školy dopravní v Žilině
Ján Gatial, odb. asistent katedry matematiky elektro-
technické fakulty SVŠT v Bratislavě
RNDr. Ján Černý, CSc., docent přírodovědecké
fakulty v Košicích

Náhradník: dr. Miroslav Šisler, CSc., vědecký pracovník
MÚ ČSAV v Praze.

Pracovní předsednictvo: ÚV MO (PÚV MO)
tvoří (uvedeno v abecedním pořadí): J. Bartůněk;
dr. M. Fiedler, DrSc.; dr. J. Fuka, CSc.; V. Macháček;
J. Mída; dr. J. Moravčík, CSc.; akademik J. Novák;
dr. J. Sedláček, CSc.; doc. J. Výšin.

3. SCHŮZE ÚV MO

Také během XVII. ročníku se ústřední výbor sešel
dvakrát. První schůze se konala 30. listopadu 1967 v Praze.
Na této schůzi, kterou vedl předseda doc. Výšin, se

12



jednalo o řadě zásadních otázek a o zprávách, které při-
pravily obě komise zřízené na jarní plenární schůzi.
Opětně se jednalo o výrobních lhůtách letáků. Schůze
jednomyslně podpořila kladné stanovisko předsednictva
ÚV МО к návrhu na prodloužení střední všeobecně vzdě-
lávací školy na čtyři roky.

Po diskusi schválilo plénum dosavadní postup před-
sednictva při výběru účastníků III. kola, při němž jedi-
ným kritériem má zůstat úspěšný výkon v předcházejí-
cích kolech. Pro druhé a třetí kolo kategorie A bylo roz-
hodnuto zavést bodovací systém, к jehož přípravě bylo
zmocněno předsednictvo.

Komise vedená dr. J. Moravčíkem připravila materiál
jednak к organizačním otázkám, jednak, a to především,
к problematice práce s nadanými žáky. Navrhla také řadu
doporučení pro zkvalitnění práce s nadanými žáky na ZDŠ
(pořádat odborně vedené metodické semináře pro učitele
9. ročníků; požádat MŠ o vydání výnosu, podle něhož by
bylo ředitelům škol uloženo hodnotit a finančně odměňo-
vat kvalitní práci při vedení nadaných žáků; evidovat
úspěšné řešitele II. kola kategorie D a sledovat jejich
přestup na školy II. cyklu; v rámci KV MO sledovat
práci předsedů О V MO a její hodnocení i finanční).

Obdobná doporučení navrhuje komise pro práci s na-
danými žáky škol II. cyklu: konat odborně metodické in-
struktáže pro profesory; podpořit zavedení placených
hodin nepovinné matematiky i zájmových kroužků; za-
vádět takové semináře, resp. kroužky řešitelů MO, v nichž
by byli žáci vedeni к aktivnímu osvojování metod řešení
úloh, neboť pouhé přednášky v tomto smyslu mnoho
nepomáhají; doporučit KVMO, aby organizovaly čtyř-
denní až šestidenní soustředění úspěšných řešitelů kate-
gorie В a C.

Bohatá diskuse se týkala výběru úloh pro kategorii D;
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učitelé je považují za obtížné a řada z nich odmítá úlohy,
které nemají řešení (viz komentář v předmluvě). Na závěr
se většina přítomných sjednotila v názoru, že MO je
soutěž výběrová, jejíž potíže nelze řešit snížením úrovně
úloh, ale především pomocí při zvyšování odborné úrovně
učitelů. Nejzávažnějším nedostatkem je však to, že pro
kategorii D neexistuje žádná pomocná literatura; připra-
vený „Sborník vybraných úloh kategorie D“ tuto mezeru
zcela nevyplní.

Další komise, vedená krajským inspektorem Jaroslavem
Novotným z Prahy, připravila materiály o možnosti od-
měňování pracovníků za činnost v MO. ÚVMO před-
nesené návrhy prodiskutoval a doporučil postoupit MŠ
a JČMF к realizaci.

К textacím úloh MO byly různé připomínky i od žáků;
dopis M. Wolfa z Dvora Králové se stal doc. Vyšínovi
podnětem к napsání tří „otevřených dopisů olympionikům“
do Rozhledů matematicko-fyzikálních.

Druhá plenární schůze ÚV MO se konala u příležitosti
III. celostátního kola kategorie A v Brně a vyjádřila se
к bodovacímu systému při hodnocení žákovských řešení
(viz poznámky při shrnutí výsledků II. a III. kola) a pro-
jednala vedle organizačních otázek obsah přípravy pro
MMO a celostátního soustředění kat. В v Mariánských
Lázních, konkurs na úlohy pro MO a edici „Škola mladých
matematiků'1.

4. PRŮBĚH JEDNOTLIVÝCH KOL SOUTĚŽE
а) I. kolo (studijní) probíhalo od září 1967 do 15. ledna

1968 ve dvou etapách. V první etapě řešili žáci všech kate-
gorií čtyři tzv. přípravné úlohy s termínem odevzdání do
15. listopadu 1967. Odevzdání a úspěšné řešení těchto
úloh však nebylo podmínkou pro účast v I. kole, kde byly
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předloženy další čtyři úlohy. Vyřešit z těchto úloh aspoň
tři na známku aspoň „dobrou“ bylo podmínkou postupu
do II. kola. Jak je vidět z tabulky č. 1, splnily tuto pod-
minku v kategoriích А, В, C vždy aspoň tři čtvrtiny
účastníků; to ukazuje opět, že MO se účastní opravdu
vážní zájemci o matematiku. Je pochopitelné, že procento
úspěšných řešitelů v kategorii D (viz tabulka 2) bylo nižší.
Také celkově počet účastníků v XVII. ročníku proti
ročníku předcházejícímu poklesl.

b) II. kolo proběhlo v krajských střediscích pro kate-
gorii A v sobotu dne 9. března 1968, pro kategorie В a C
v neděli 10. března 1968 a pro kategorii D v okresních
střediscích ve středu dne 13. března 1968. (Uvedené
termíny byly voleny tak, aby se soutěžící v nižších kate-
goriích mohli zúčastnit i soutěže kategorie A a zástupci
KV MO mohli zajít do okresů.) Z tabulek 3 a 4 je vidět,
že procento úspěšných řešitelů soutěže při samostatné
práci ve střediscích je v kategoriích А, В, C velmi nízké.
Bude třeba provést podrobný rozbor příčin podle kate-
gorií; někdy to budou asi nevhodně vybrané a na I. kolo
nenavazující úlohy, jindy zas, např. tradičně už v kategorii
В, pokles aktivity soutěžících v době tanečních apod.

Ve II. kole kategorie A bylo poprvé vyzkoušeno místo
klasifikace bodování. (Texty úloh jsou na str. 93—101.)
Žáci byli informováni o bodové hodnotě řešení každé
úlohy a opravovatelé dostali od PÚV MO pokyny, jak
řešení bodovat. Pro informaci čtenářů je citujeme:

Úloha 1 (maxim, počet bodů 6). Nebude-li řešení obsahovat některý
z případů a) n sudé, b) n liché, zmenšete počet bodů aspoň o 3. Nebu-
de-li v kterémkoli z případů a), b) provedena zkouška, tj. nebude-li
ověřeno, že nalezené řešení splňuje všech n rovnic (1), snižte počet bodů
o 1 až 2. Totéž platí pro ověření, že podmínka (3) z autorského řešení je
postačující podmínkou řešitelnosti v případě a).

Úloha 2 (maxim, počet bodů 5). Dojde-li řešitel od dokazované ne-
rovnosti к nerovnosti evidentně platné — jako je např. nerovnost (1)
v autorském řešení — a neobrátí-li postup, zmenšete počet bodů aspoň
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о 2. Nezjistí-li řešitel všecky trojice x, y, z, pro které nastane rovnost,
doporučujeme snížit počet bodů o 1.

Úloha 3 (maxim, počet bodů 8). Úloha má v podstatě 3 části: důkaz
první věty a), důkaz obrácené věty a) a důkaz věty b) použitím obou vět
a). Správný důkaz obou vět a) hodnotíte 6 body, správný důkaz věty b)
2 body. Hodnocení jednotlivých důkazů vět a) záleží na metodě; tak
např. v poloanalytickém autorském řešení je možno hodnotit důkaz
přímé věty 4 body, důkaz obrácené věty jen 2 body. Naproti tomu
v druhém autorském řešení by měly být počty bodů zaměněny.

Úloha 4 (maxim, počet bodů 7). Při nesprávném rozložení hledané
množiny /И v části a), b), c), d) zmenšete počet bodů o 1 až 2. Úplné
vyšetření množiny P (viz autorské řešení) včetně obrácení, tj. odůvodnění
množinové rovnosti hyperboly a množiny P, hodnoťte 4 body.

Za „v podstatě úplně správné řešení“ pokládáme takové, které je
ohodnoceno buď nejvyšším možným počtem bodů, anebo počtem
o 1 bod menším.

Jestliže ovšem žák řešil úlohu podstatně jiným způsobem, než jaký
předpokládalo autorské řešení, musel opravující učitel individuálně
upravit hodnocení (tj. snižování maximálního počtu bodů).

Původně PÚV MO předpokládalo, že kritérium pro
klasifikaci soutěžícího jako úspěšného řešitele bude splnění
těchto podmínek: a) získání aspoň 13 bodů, tj. 50 %
dosažitelných bodů, b) vyřešení aspoň jedné úlohy
„v podstatě úplně správně". Po opravě úloh se ukázalo,
že podmínka a) je příliš tvrdá, a proto minimální počet
bodů byl stanoven na 11. Dále se ukázalo, že se ojediněle
objevili i řešitelé, kteří splnili sice podmínku a), nikoli
však b). Toto bodování plenární schůze ÚV MO dne
20. dubna 1968 celkově schválila a dále se usnesla, že
v příštím ročníku bude aplikováno při klasifikaci úloh
II. kola kategorií А, В, C i III. kola kategorie A.

Protože II. kolem soutěž pro kategorie В a C končila,
uvedeme v příloze A jmenný seznam vítězů (nejvýše však
prvních deseti) v jednotlivých krajích.

Celostátní III. kolo kategorie A se konalo 20. dubna 1968
v Brně. Z úspěšných 70 řešitelů II. kola kategorie A
navrhly KV МО к účasti ve III. kole 57 studujících; po
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koordinaci bodování povolalo PÚV МО к soutěži celkem
52 účastníků.

Také úlohy III. kola (viz strana 120—133) byly bodo-
vány; žákovská řešení opravila komise PÚV MO. Na zá-
věrečném hodnocení na schůzi PÚV MO dne 14. května
1968 byly konstatovány tyto zkušenosti s bodováním:

1. úloha. Z dosažitelných 8 bodů byl nejvyšší počet
získaných 6,5. Nedostatky byly především v neúplné a ne-
systematicky prováděné diskusi. Úloha byla asi pod-
hodnocena (vhodnější počet bodů by byl 9).

2. úloha. Úloha byla poměrně lehká, určený počet
5 bodů odpovídal. Žáci často používali binomické věty
správně i nesprávně (pro n < 0). Někteří žáci nevěděli, co
je to celé číslo.

3. úloha. Úloha celkem byla méně obtížná, počet 6 bodů
odpovídal. Hlavní nedostatky: a) přílišné poutání na
pomocný obrázek, takže soutěžící zapomínali na druhou
přímku, která byla částí hledané množiny, nebo neuvedli
singulární případy (splývání trojúhelníku v bod apod.);
b) nedokonalá terminologie a frazeologie při zápisu
řešení.

4. úloha. Úloha spíše nadhodnocena; místo 7 bylo by
vhodnější 6 bodů. Většina řešení navazovala na vlastnosti
ortocentrického čtyřstěnu. Některá řešení byla stručná
a přehledná. Byly jen dva pokusy o analytické řešení, vždy
velmi pracné.

Seznam vyhlášených^ vítězů a úspěšných řešitelů,
opětně odměněných MŠ, uvádíme v příloze B.

S přihlédnutím к těmto výsledkům, к úspěchům ve
II. kole, popřípadě i v předchozích ročnících, a s ohledem
na účast a spolupráci ve speciálních kroužcích přípravy
na mezinárodní matematickou olympiádu, bylo vybráno

17



celkem 10 účastníků přípravného soustředění před
X. MMO v Moskvě. Protože jeden z vybraných žáků
odstoupil, byl povolán náhradník. Na základě výsledků
písemných prací účastníků tohoto soustředění ve Stinně
ve dnech 119. až 22. června 1968 a podle pozorování
přednášejících bylo určeno definitivní složení osmičlen-
něho reprezentačního družstva (viz Zpráva о X. MMO,
strana 134—152).

5. POMOCNÉ AKCE

Krajské výbory MO spolu s pobočkami Jednoty česko-
slovenských matematiků a fyziků organizovaly přípravné
přednášky během školního roku i školení o prázdninách
pro účastníky MO jednotlivých kategorií, a to podle míst-
nich podmínek nebo podle pokynů vydaných Pí?V MO.
Centrálně připravovanou tematiku mělo školení na mezi-
národní matematickou olympiádu. Programem tohoto ško-
lení bylo řešení úloh z těchto oblastí:

a) Posloupnosti, odhady součtů a součinů (připravil
dr. Jaroslav Fulca, CSc.).

b) Konstrukční geometrie (prof. dr. Karel Havlíček).
c) Kombinatorika (dr. František Zítek, CSc., dr. Jiří

Sedláček, CSc.).
Další centrálně řízenou akcí bylo celostátní soustředění

kategorií В a C v Mariánských Lázních-Úšovicích. Opětně
byla zřízena jedna matematická třída, která se zase
osvědčila, a dvě třídy s výukou v matematice a fyzice.
Uvedeme témata a přednášející:

Program matematické skupiny:
Břetislav Novák: Aditivní vlastnosti přirozených čísel
(20 hodin)
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Zdislav Kovařík: Invariantní body zobrazení (20 hodin)
Iva Rohlíčková: Teorie kvadratických forem a její užití
v geometrii (20 hodin)
Program matematicko-fyzikální skupiny:
Jaroslav Fuka: Odhady v matematickéanalýze (14 hodin)
Zdislav Kovařík (Marta Kovaříková): Invariantní body
zobrazení (16 hodin)

6. STUDIJNÍ LITERATURA

Státní pedagogické nakladatelství vydalo jako každo-
ročně letáky (jeden v 5000 kusech pro kategorii A, В, C
a odděleně 10 000 kusů letáku pro kategorii D). Texty
úloh byly před tím opětně otištěny v časopise Matematika
ve škole a v Rozhledech matematicko-fyzikálních.

Také nakladatelství Mladá Fronta pokračovalo ve vydá-
vání svazečků edice Škola mladých matematiků. Uvedeme
jen poslední z nich:

15. Milan Koman: Jak vyšetřujeme geometrická
místa metodou souřadnic

16. Stanislav Horák: Kružnice

17. Jaromír Hroník: Úlohy o maximech a mini-
mech funkcí

18. (omylem označen rovněž 17) Karel Havli-
ček: Analytická geometrie a nerovnosti

19. Jiří Jarník: Komplexní čísla a funkce
20. Bruno Budinský — Stanislav Šmakal: Go-

niometrické funkce
21. Alois Apfelbeck: Kongruence
22. Tibor Salát: Dokonalé a spriatelené čísla
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7. KONKURS JČMF NA ÚLOHY PRO MO A FO

Matematická olympiáda, jako každá matematická sou-
těž je zcela závislá na pestrosti, na zajímavosti (atraktiv-
nosti) a na matematické a didaktické hodnotě příkladů,
které jsou řešitelům předkládány. Dobrých úloh nebude
nikdy dost. V zájmu úspěšného průběhu MO se nemohou
vybírat úlohy běžně známé, a uvážíme-li, že olympiáda se
konala ve školním roce 1967-68 už po sedmnácté, snadno
pochopíme, že Ú V MO se setkává s nemalými potížemi
při získávání nových originálních úloh pro soutěž, neboť
tematika (středoškolské učivo) je poměrně dosti omezená.

^ Na svém podzimním zasedání v roce 1965 se proto
ÚV MO rozhodl požádat Jednotu československých mate-
matiků afyziků jako spolupořadatelku matematické olym-
piády o vyhlášení konkursu na návrhy úloh pro MO.
Konkurs byl Jednotou schválen a vyhlášen v dubnu 1966
v časopise Matematika ve škole.

Konkurs má následující podmínky. Text a řešení každé
úlohy je třeba zaslat napsané na listu formátu Л4, vždy
originál a jeden opis. Za každou přijatou úlohu je vyplá-
cena odměna ve výši 50,— Kčs v kategoriích As В a C
a 30,— Kčs v kategorii D. Při recenzi se přihlíží к původ-
nosti úlohy a odměna může být popřípadě zvýšena, např.
úlohy pro mezinárodní MO jsou odměňovány částkou
80,— Kčs. Úlohy, které neprojdou úspěšně konkursním
řízením, se autorům vracejí. Přijaté úlohy jsou zařazeny
do archívu ÚV MO, který vyplacením odměny autorovi
získává dispoziční právo, zejména právo upravit text
úlohy i autorské řešení a použít úlohy pro účely MO podle
vlastní úvahy. Autor samozřejmě na sebe bere závazek, že
přijatou úlohu utají, aby průběh olympiády nebyl na-
rušen.

Úlohy získané konkursem řešili účastníci MO již v XVI.

20



ročníku. Při sestavování XVII. ročníku se téměř vý-
hradně použilo úloh, které byly zaslány do konkursu.
К řešení bylo předloženo celkem 52 úloh, přičemž 47
jich pocházelo z konkursu. Všechny čtyři úlohy, které
byly navrženy Československem pro X. MMO v Moskvě,
byly také získány konkursem.

К 30. červnu 1968 došlo celkem 432 úloh od 60 autorů,
recenze byla ukončena u 304 úloh, z nichž 186 bylo při-
jato.
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PŘÍLOHA A

POŘADÍ ÚSPĚŠNÝCH ŘEŠITELŮ II. KOLA
V KATEGORIÍCH BAC

(Ncní-li uvedeno jinak, jedná se o SVVŠ a o třídu
odpovídající příslušné kategorii)

Praha - město

B. Tomáš Mašek, Miroslav Vlček, Petr Hadrava
a Michal Tošovský — všichni W. Piecka 2, Praha 2;
Vladimír Lisý, Nad Turbovou, Praha 5; Zdeněk Pod-
hradský a Karel Procházka, W. Piecka 2, Praha 2; Anna
Slavíčková, Arabská 682, Praha 6; Jiří Rákosník, Pod
Táborem, Praha 9; Helena Husová, 9c, ZDŠ, Uhelný trh,
Praha 1

C. Marek Boguszak, Svatopluk Poljak, Miroslav
Richter, Ondřej Matouš, Miloslav Handl, Vojtěch Hanzal
a Petr Ostatek — všichni W. Piecka 2, Praha 2; Miroslav
Hradil, ul. Leninova 33, Praha 6; Martin Kašík, Nad
štolou 1, Praha 7; Vladimír Šíma, W. Piecka 2, Praha 2

Středočeský kraj
B. Václav Šubrta, Nymburk; Miloš Potměšil, Kolín;

Vlastislav Podlena, Příbram; Jaroslava Dubová, Řadotín;
Eva Dvořáková, Kolín; Kamil Žídek, Brandýs nad Labem

C. Jiří Knobloch, Rakovník; Vladimír Kotlář, Beroun;
Petr Koříšek, Benešov; Jiří Lettl, Beroun

Jihočeský kraj
B. Petr Musil, Tábor; Vojtěch Růžička, České Budě-

jovice; Jaroslav Kulíř, Strakonice; Josef Maroušek,
Tábor; Emanuel Kiimmel, České Budějovice; Jan
Batik, SPŠ stroj. Strakonice; Jaroslav Trávníček, Strako-
nice; Miroslav Lexa, Tábor; Zdeněk Mašíček, Dačice
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C. František Vichta a Petr Novák, Tábor; Jan Kovář,
Trhové Sviny; Pavel Samec, Strakonice; Jan Šabata,
České Budějovice

Západočeský kraj
B. Karel Nejdi, J. Fučíka, Plzeň; Emanuel Makrlík,

Sušice
C. Jiří Benda, SPŠE Plzeň; Jaroslav Sokol, ul. Pionýrů,

Plzeň; Vladimír Junger, Rudolf Švarc a Tomáš Fořt,
všichni J. Fučíka, Plzeň

Severočeský kraj
B. Miloš Mazánek a Miloš Zahradník, Tanvald; Jan

Polák, Jablonec nad Nisou; Václav Bahník a Tomáš
Kemmler, Liberec

C. Jaroslav Klíma a Ivan Guluškin, Liberec; Jiří
Skrovný, SPŠ stroj. Liberec; Dagmar Jelenová, Tanvald;
yáclav Urban a Lubomír Zampr, Liberec; Jan Poláček,
Česká Lípa

Východočeský kraj
B. Jiří Kopřiva, Broumov; Aleš Holubář, Chotěboř;

Jiří Kouba, Vysoké Mýto; Stanislav Mrzena, Nový
Bydžov; Pavel Jirman, Vrchlabí; Josef Vlček, Chrudim;
Václav Kadlec, Pardubice; Antonín Mikeš, Rychnov nad
Kněžnou; Mojmír Brodský, Hradec Králové a Jaroslav
Dušek, Ledeč nad Sázavou

C. Jan Bartoš, Hořice v Podkrkonoší; Zdeněk Jelínek,
Pardubice; Pavel Schill, Hradec Králové; Pavel Hiblbauer,
Chotěboř; Věra Moravcová, Rychnov nad Kněžnou;
Vladimír Nývlt, Jilemnice; Miloš Řehošek, Hradec
Králové; Doubravka Koníčková, Nový Bydžov; Vladimír
Čapek, Hradec Králové a Jaromír Dohnálek, Jaroměř
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Jihomoravský kraj
B. Vladimír Prokeš, Koněvova, Brno; Michael Banzet,

Ivančice; Michael Paleček, Koněvova, Brno; Pavel
Pokorný, Stanislava Sýkorová, Jaromír Pavliš a Hana
Cagašová, Křenová, Brno, Zdena Nešporová, Jan Simek
a Zdeněk Smrž, Koněvova, Brno

C. Jaroslav Daniel, Moravské Budějovice; Igor Kadě-
řávek, ul. Lerchova, Brno; Zdeněk Kovář a Jaroslav
Kučera, Křenová, Brno; Stanislav Mastný, Třebíč;
František Josefík a František Ryšavý, Uherský Brod;
Milan Pantůček a Věra Šimečková, Křenová, Brno;
Stanislav Procházka, Gottwaldov; František Urbánek
a Karel Zelníček, Elgartova, Brno

Severomoravský kraj
B. Jiří Šrajer, Opava; Milan Varkoček, Havířov; Břeti-

slav Hlavica a Aleš Pospíšil, ul. Šmeralova, Ostrava 1;
Jiří Kotsch, Stanislav Němeček a Jaroslav Richter,
Šumperk; Bohuslav Rychtář, Bílovec a Pavel Suk, SPSS
Uničov

C. Věra Novotná, ul. Jiřího z Poděbrad, Olomouc;
Radomír Poneza a Martin Coufal, Karviná 1

Západoslovenský kraj
B. Juraj Dubay, Radko Mesiar, Karol Křupa, Ivan

Hrmo, Martin Ferrary, Pavol Černek, Juraj Šafařík
a Eudovít Niepel — všichni Novohradská, Bratislava;
Karol Šafařík, ZDŠ Košická, Bratislava; Juraj Breza,
Vazovova, Bratislava

C. Vladimír Černý, Štefan Pleško, Novohradská,
Bratislava; Ján Franců, ZDŠ Košická, Bratislava; Angela
Leitmanová, Lívia Hoferková, Novohradská, Bratislava;
Peter Vrabček, Malacky; Daniela Kalinová, Novohradská,
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Bratislava; Juraj Lispuch, Vazovova, Bratislava; Slavomír
Kontriš a Michal Greguš, Novohradská, Bratislava

Středoslovenský kraj
B. Peter Mach, Ružomberok a Anton Fleško, SPŠ

stroj. Březno
C. Eva Ilavská a Peter Ivan, Martin; Pavel Bartoš,

Prievidza a Marián Pivarči, Martin
Východoslovenský kraj

B. Vladimír Munka, Šrobárova, Košice; Jozef Ondas,
Tarasa Ševčenku, Prešov; Jan Seman, Poprad

C. Mirko Horňák, Kováčská, Košice; Ondřej Mathelig,
Michalovce
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů v kategorii D*)

1 Kategorie D
Kraj Z toho

dívek
tj ! Z toho

i dívek
P

Praha —město 690964 400 285

Středočeský 451618 312 229

Jihočeský 335611 360 187

Západočeský 360 207 91180

Severočeský ■310565 310 159

Východočeský 631785 362 260

Jihomoravský 1 447 701 663 320

Severomoravský 887 539376 229

Západoslovenský 5151 038 856 436

Středoslovenský 1 449 733 1 051 551

Východoslovenský 682 300 307 141

Celkem 9 406 4 524 6 065 ,2 888

*) P = celkový počet účastníků] Ú = počet úspěšných řešitelů
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Tabulka č. 4

Přehled počtu účastníků II. kola podle krajů v kategorii D*)

Kategorie D
Kraj Z toho

dívek
Z toho
dívek

ÚP

Praha-město 614 229 370 142

Středočeský 190 271376 131

Jihočeský 169 66327 26

Západočeský 89194 84 38

Severočeský 131265 143 58

Východočeský 216491 380 163

Jihomoravský 241557 70197

Severomoravský 140378 151 40

403Západoslovenský 135808 298

Středoslovenský 285 52620 146

Východoslovenský 111 92 38251

Celkem 4 881 2 211 2 191 893

*) P = celkový počet účastníků; Ú = počet úspěšných řešitelů
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PŘÍLOHA В

Pořadí vítězů a úspěšných řešitelů III. kola kategorie A
XVII. roč. MO

Vítězové

1. Bohuš Sivák, 2. r. SVŠ, Zvolen
2. Tomáš Mašek, 2. r. SVVŠ, W. Piecka, Praha 2
3. Tomáš Markvart, 3. r. SVVŠ, W. Piecka, Praha 2
4. Libor Polák, 3. r. SVVŠ, Koněvova, Brno
5. Jiří Demel, 3. r. SVVŠ, Valašské Meziříčí
6. Jiří Vinárek, 2. r. SVVŠ, W. Piecka, Praha 2
7. Michal Kaukič, 3. r. SVŠ, Námestovo
8. (Martin Bukovčan, SyŠ, Novohradská ul., Bratislava

až \jozef Komorník, SVŠ, Holič
10. У Vladimír Miiller, 3. r. SVVŠ, Arabská, Praha 6
11. Miloslav Toušek, 3. r. SVVŠ, Arabská, Praha 6
12. Pavel Balek, 3. r. SVVŠ, W. Piecka, Praha 2
13. Ladislav Ježek, 4. r. SPŠ el., Leninova, Brno
14. až 15. Jan Mašek, 3. r. W. Piecka, Praha 2

Peter Nagy, 3. r. SVŠ, Banská Bystrica
16. Pavel Polcar, 3. r. SVVŠ, Velké Meziříčí
17. František Pohl, 3. r. SVVŠ, dr. Šmerala, Ostrava I

Úspěšní řešitelé
Juraj Černák, 3. r. SVŠ, Turč. Teplice
Jan Páchl, 3. r. SVVŠ, W. Piecka, Praha 2
Pavel Čížek, 3. r. SVVŠ, Radotín
Marián Dénéš, 9. r. ZDŠ, Košická, Bratislava
Ondřej Křivánek, 3. r. W_. Piecka, PrahaJ2
Pavel Hofman, 3. r. SVVŠ, Teplice, ul. Čs. dobrovolců

30



II. Přípravné úlohy I. kola

1. KATEGORIE A

1. Je dána funkce proměnné x

2 __ *3 + 1
1 -f- | x -f- 11 -f- x

Určete parametr a tak, aby grafdané funkce ležel v jednot-
kovém kruhu se středem v počátku souřadnic.

2x3 — 3x2 + x
(1)У =

a + \x — a\ — x

ŘEŠENÍ. Je-li x + 1 ^ 0 neboli x lj je \x + 1| =
= —x—1, jmenovatel prvního zlomku je roven nule
a funkce (1) není pro tato x definována. Obdobně je-li
x — a ^ 0 neboli x ^ a, je |x — a\ — x — a, jmenovatel
druhého zlomku je roven nule a funkce (1) není pro tato x
definována. Definiční obor funkce (1) je tedy otevřený
interval

(2)— 1 < x < a,

přičemž ovšem musí být a > — 1.
Pro všechna x z intervalu (2) platí x + 1 > 0, tj.

|x + 1| = x + 1 a zároveň x — a <0, tj. |x — a\ =
= a — x. Funkci (1) lze vyjádřit rovnicí (po úpravě)

x3 + 1 , 2x3 — 3x2 4- x
У =

x —(— 1 a — x

neboli

2x3 — 3x2 + x
у — x2 — x + 1 + (3)

a — x

Polynom x2 — x + 1 je v intervalu (2) omezený; proto
musí být omezený v intervalu (2) i zlomek ve funkci (3).
Z toho plyne, že rovnice

2x3 — 3x2 + x = 0 (4)
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musí mít kořen x = a, neboť jinak by nabýval tento zlo-
mek pro x < a libovolně velkých hodnot a graf funkce
by nebyl omezený. Za parametr a můžeme tedy zvolit
jedině některý z kořenů rovnice (4). Tuto rovnici upra-
víme na tvar

x(2x2 — Зх T 1) = 0,
1

jež má kořeny a, = 0, a2 1, a3 = 2 '

První kořen dává funkci
• у — 2x — x1

definovanou v intervalu — 1 < x < 0. Zběžný náčrtek
ukáže, že graf funkce (4') neleží v jednotkovém kruhu;

1 5-
2 5 4 5

(4')

skutečně tomuto grafu náleží např. bod —

který neleží v jednotkovém kruhu. Je totiž

HÍ+H6 29
> i.

i6

Kořen a.z = 1 dává funkci
2лг2 — Зх + 1

= x2 — л: + 1 +у = x2 — x+l + x 1 — X

(1 - s) (1 - 2x)Т x 1 — л;

neboli
(4")у = l — x2.

Grafem této funkce je oblouk paraboly, který náleží
jednotkovému kruhu. Platí totiž pro
у > 0 а у < 1, tj. y2 <y.
Protože podle (4”) x2 + у = 1, platí x2 + y2 < x2 -f у =
= 1, čímž je tvrzení dokázáno.

1 < лг < 1 stále
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1
Třetí kořen a2 — dává funkci

2x(x — l)(x —
у = X2 — X + 1 + 1

— X
2

neboli

у = —x2 + X + 1.

Tato funkce je nyní definována v intervalu — 1 < x < .

Ihned je však vidět, že graf této funkce neleží v jednotko-
1 19

vém kruhu, neboť např. pro x = -^-jej> = ^r> 1.
Graf funkce (1) tedy leží v jednotkovém kruhu jedině

pro a — 1.

2. Množina /И sa skládá z n prvkov 1, 2, ..., n. Utvořte
kombinácie &-tej triedy z prvkov množiny УИ. Sčítajte
čísla, ktoré vytvárajú kombinácie &-tej triedy. Utvořte sú-
čet všetkých takto získaných súčtov a označte ho Sk.
Určité vzorec

a) pre Sk;
b) pre súčet S = Sx + S2 + ••• + Sn.

RIEŠENIE. a) Úvodom je vhodné si uvědomit’, že
súčet Sk móžeme dostat’ aj sčítáním všetkých čísel 1 vy-
skytujúcich sa v kombináciách k-щ triedy z prvkov mno-
žiny /И, všetkých čísel 2, atd’., až všetkých čísel n vysky-
tujúcich sa v kombináciách &-tej triedy z prvkov množi-
ny /И.

Najskór zistime, kolkokrát sa v kombináciách &-tej
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tricdy prvkov z množiny 7И vyskytuje lubovolný prvok m
z množiny M(1 m ^ n, m celé). To urobíme takto:
Predpokladajme, že máme tvoriť kombinácie &-tej triedy
z prvkov množiny /И (teda z n prvkov), ktoré obsahuj ú
prvok m. Dostaneme ich tak, že ku každej kombinácii
(k— l)-tej triedy z množiny prvkov 1,2, ..., m— 1,
m + 1, ..., n (čiže z и — 1 prvkov) přiřadíme prvok m.
Kombinácii &-tej triedy z prvkov množiny M, ktoré
obsahujú prvok m, je teda C^in— 1). Z toho vyplývá, že
súčet všetkých prvkov m vyskytujúcich sa v kombináciách
&-tej triedy prvkov z množiny /И je m . — 1).
Teraz už súčet Sk 1’ahko zistíme.

Sk = 1 • Ck-\(ji — 1) + 2 . Ck-X(n — 1) + ... +
+ {n — 1) • Ck-i(n — 1) + я . Ck-i(n 1) —

= (1 + 2 + ... + ri). CA;_1(n — 1),
skadiaf podlá známých vzorcov

c n (n + 1) (n — 1\
2 ’U-l/’ (1)

b) Je

2 Sk — Si ~\~ S>2 ~Ь ••• “b ‘S’
k= 1

a podl’a (1) preto platí

n(n + 1) Ifl — 1\‘

2 l 0 /

+ Snn--i

n{n + 1) — 1^2>- j 2
*=i

n(n + 1)n{n + 1) in — 1\
\« - 4 = C 0 ') +... + 22

■ + C=i)+C=!)]-CT1)+ + .•
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Ak si uvědomíme, že platí rovnosť

-("«'Kt')n-12ní = (1 + 1) + ... +

dostaneme

2 St = 2»-2. »(« + !)•
*= 1

3. V rovině je dáno pět bodů, z nichž žádné tři neleží
v přímce. Dokažte, že aspoň jeden z trojúhelníků jimi
určených má vnitřní úhel a ^ 108°.

ŘEŠENÍ. V dané rovině zvolme libovolnou přímku p
a veďme s ní rovnoběžky danými body. Lze nalézt pás
roviny obsahující pět daných bodů, jehož hranice mají
směr (p) a každá z nich obsahuje aspoň jeden z daných bo-
dů. Budiž h jedna z obou hranic, A ten z daných bodů,
který na ní leží (obr. 1). Bod A spojíme polopřímkami AX
se všemi danými body; všecky tyto polopřímky leží v jed-
né polorovině s hranicí h. Mezi všemi čtyřmi polopřím-
kami AX lze vybrat dvě tak, že dutý úhel jimi určený
obsahuje obě zbývající (žádné tři z daných bodů totiž
neleží v přímce). Tyto polopřímky jsou na obr. 1 ozna-
čeny AB, AE (В, E jsou dva z daných pěti bodů); zbý-
vající dané body C, D leží uvnitř úhlu <£ BAE.

Nyní rozlišíme dvě možnosti:
1. aspoň jeden z bodů C, D leží v polorovině BEA;
2. oba body C, D leží v polorovině opačné к BEA.
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Případ 1 (obr. 2). Protože žádné tři z bodů А, В, C, D, E
nejsou kolineární, leží např. bod C uvnitř Д ABE.
Protože

<£ ACB + ^ ВСЕ + ЕСA = 360°,
má aspoň jeden z těchto tří úhlů velikost větší nebo rov-
nou 120°; platí tedy např.

<£ ACB Д 120° > 108°
a věta je v případě 1 dokázána.

Případ 2. Obsahuje-li Д ВЕС bod D nebo Д BED
bod C, užijeme téhož postupu jako v případě 1 a dosta-
neme tvrzení věty.

Zbývá tedy případ, kdy ani bod D nenáleží trojúhel-
niku ВЕС, ani bod C trojúhelníku BED. Dokážeme, že
pak bod D nenáleží úhlu vrcholovému к <£ ВСЕ. Při-
pustíme, že by tato situace nastala (obr. 3); pak by přímka
CD procházela úhlem ВСЕ a proťala by úsečku BE
v jejím vnitřním bodě X. Pak by bod C náležel úsečce DX,
tj. trojúhelníku BED, což je spor.
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Protože bod D náleží polorovině ВЕС, náleží buď úhlu
CBE, nebo <£ СЕВ ; nechť náleží D např. úhlu <£ CBE

(ovšem nikoli trojúhelníku ВЕС); viz obr. 4. Pak sjedno-
cení trojúhelníků ВЕС, CED je konvexní čtyřúhelník, jak
se snadno dokáže pomocí úsečky YZ (viz obr. 4). Stejně
se dokáže, že sjednocení trojúhelníku ЛВЕ a čtyřúhelníku
BEDC je konvexní pětiúhelník; čtyřúhelník BEDC leží
totiž v úhlu <£ BAF.
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Protože součet velikostí vnitřních úhlů konvexního
pětiúhelníka je 3 . 180° = 540°, má aspoň jeden z těchto
úhlů velikost a ^ 108°.

4. Výšky štvorstena ABCD se pretínajú v tom istom
bode (čiže štvorsten ABCD je ortocentrický) právě vtedy,
keď pre dížky jeho hrán platia rovnosti

AB2 + CD- = AC2 + BD2 = AD2 + BC2. (1)
Dokážte.

RIEŠENIE. a) Najskor odvodíme pomocná vetu P:
Nech je daný trojuholník PQR. Potom množina M vset-
kých bodov X roviny PQR, pre ktoré platí

PX2 + QR2 = QX2 + PR2
je priamka predchádzajúca vrcholom R a kolmá na priam-
ku PQ.

Pri dokáže pomocnej vety P použijeme metodu súrad-
nic. Súradnicovú sústavu zvolíme tak, ako ukazuje obr. 5.
Súradnice bodov zapíšeme takto: P = [0;0], Q =
= [t5 0] (ř >0), R = [r; s], X = [x;jy]. Rovnost’ (2) je

(2)
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vyjádřená pomocou súradníc v tvare
X2 + y2 + (r — t)2 + s2 — (x — ť)2 + y2 + r2 + 52. (3)

Po jednoduchej úpravě dostaneme
x = r.

Z toho vyplývá: Každý bod X množiny /И leží na priamke
určenej rovnicou (4). Je to priamka k kolmá na priamku
PQ a prechádzajúca bodom R. Obrátene: súradnice
každého bodu X priamky k vyhovujú rovnici (4), teda aj
rovnici (3). Pre bod X platí teda rovnost’ (2) a bod X patří
preto do množiny /И.

Tým je veta P dokázaná.

(4)

C

\

\ I

--ЙС
! \

вÁ

Obr. 6

b) Nech je ABCD ortocentrický štvorsten. Výšky
vaí vvc tohto štvorstena sa premietajú pri pravouhlom
premietaní do roviny ABC ako výšky trojuholníka ABC,
výška vD sa premieta ako ortocentrum V (priesečník
výšok) trojuholníka ABC. Podlá pomocnej vety P je
(pozři obr. 6):

А V2 + BC2 - В V2 + AC2,
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skadial
(A V2 + VD2) + ВС2 = CBV2 + VD2) + АС2

čiže
AD2 + BC2 = BD2 + AC2. (5)

Podobné dostaneme aj ostatně rovnosti vztahu (1).
Nech obrátene platia pre štvorsten ABCD rovnosti (1).

Potom platí tiež rovnost’ (5). Označme M patu výšky vD.
Potom je

AD2 = AM2 + MD2, BD2 = BM2 + MD2. (6)
Ak dosadíme do rovnosti (5) zo vztahu (6), po úpravě do-
staneme

AM2 + BC2 = BM2 + AC2.
Podlá pomocnej vety P je bod M bodom výšky trojuhol-
nika ABC vedenej bodom C. Použitím ostatných rovností
vztahu (1) podobné dokážeme, že bod M je tiež bodom
ostatných dvoch výšok trojuholníka ABC. Je teda M = V
a výšky vA, vB, vc pretínajú výšku vD. Záměnou písmen,
vzhladom na to, že označenie vrcholov štvorstena nie je
podstatné, dostaneme, že každé tri výšky štvorstena ABCD
pretínajú jeho zostávajúcu výšku.

Štvorsten ABCD je teda ortocentrický.

2. KATEGORIE В

1. Jsou-li koeficienty kvadratické rovnice
ax2 bx -\- c — 0, а Ф 0

lichá čísla, nemá tato rovnice racionální kořeny; dokažte.
ŘEŠENÍ. Připustíme, že rovnice (1) má racionální

kořen — (p, q celá nesoudělná, q Ф 0). Dosadíme-li
Я.

P
— do (1) a vynásobíme číslem q2, dostaneme

ap2 + bpq ф cq2 = 0.

(1)

x = -

(2)
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První dva členy (2) jsou dělitelné číslem p; protože p, q
(i p, q2) jsou čísla nesoudělná, je p dělitel čísla c. Protože
je c liché, je i p liché. Obdobně dokážeme z (2), že q je
dělitel čísla a, a že q tudíž je liché číslo.

Ježto a, b, c, p3 q jsou čísla lichá, jsou všecky tři členy
na levé straně (2) čísla lichá a jejich součet nemůže být
roven nule. Tím je spor nalezen.

2. Vyšetříte a načrtnite množinu všetkých bodov
v rovině, ktorých pravoúhlé súradnice дс, у vyhovujú ne-
rovnostiam

1 ^ \\x + y\ — I* — у|| ^ 2.
RIEŠENIE. Použijeme vztah \a\ — | — a\, ktorý platí

pre každé reálne číslo a. Vypočítáme hodnotu výrazu
medzi znakmi nerovností pri dosadení:

a) —у miesto y3
b) — x miesto x,
c) у miesto x a x miesto y,
d) —у miesto x a — x miesto y.

Dostaneme

а) II* + (-jOl - I*
= II* +y\ — \x—y\\,

(—jOII = II* — y\ — I* + j'l! =

b) li—* + y\ I—* —y\\ = II* — y\ — I* + J'll =
= II* + y\ — I* —y\\,

c) \\y + *1 — 1з> — *11 = II* + y\ — I* — j'IIj
d) II—J' + (—*)l - |-ď - (-*)l| = II—(* +jOI -

I* — y\\-— \x —y\\ = ,|x +y\
Dané nerovnosti sa teda nezmenia, ak namiesto bodu
[*, у] vezmeme 1’ubovol’ný z bodov [x3 —у], [—л:, y\,
[y, *]> [~y> — *] čiže grafické znázornenie hladanej mno-
žiny bude súmerné podlá súradnicových osí a podlá
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л: (súmernosť podl’a priamky у =priamok у — х, у
= —х sme však dokazovat’ ani nemuseli, pretože vyplývá
z predchádzajúcich troch súmerností). Stačí preto nájsť tú
časť hladanej množiny, ktorá leží v uhle velikosti 45° vy-
jadrenom nerovnosťami

(1)0 ^y ^ x.

Pri tejto podmienke dostanú dané nerovnosti tvar
1 ^ \x + у — (x — y)\ < 2,

l^\2y\^2,
1

(2)

Množina bodov, ktoré súčasne vyhovuj ú nerovnostiam
(1) a (2) je znázorněná na obr. 7. Zo spomínanej súmer-
nosti vyplývá, že grafickým znázorněním celej hladanej
množiny je vyšrafovaná časť roviny na obr. 8.

У
3. Jsou dána dvě kladná

čísla m,s a pravý úhel <^ABC
tak, že platí AB — 2m.

Sestrojte rovnoramenný
trojúhelník AXY se základ-
nou A Y tak, aby měl obvod
2s, aby vrchol X ležel na po-

- lopřímce АВ a vrchol Y na
polopřímce BC.

ŘEŠENÍ. Je-li A AXY re-
šením úlohy, vznikne situace

znázorněná na obr. 9. Označíme Z střed strany AY, T
patu kolmice spuštěné z bodu Z na přímku AB; dále
označíme AZ = YZ = x, AX = z. Protože ZT je střední

1

1
г

0
2

Obr. 7
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příčka trojúhelníka AB Y, platí
AT = ВТ =

1
(1)2AB =

Úsečka XZ je výška rovnoramenného trojúhelníku AXY;
proto je <£ AZX pravý a trojúhelník AXZ pravoúhlý
s přeponou AX.

m.

У

//1

■

i ■

i I
x

Го j

-гi--

1-1 4
2

2

Ve
-1

m
Obr. 8

Sestrojíme Д AXZ na základě výpočtu: vypočteme
délky jeho stran x3 z. Podle textu úlohy platí

x + z = s.

Podle Eukleidovy věty o odvěsně je vzhledem к (1)
x2 = mz.

(2)

(3)
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Z rovnic (2), (3) vyloučíme z; dostaneme
x2 mx — ms,

neboli

Mí-СИ-
neboli

z

Obr. 9

Podle vzorců (4), (2) určíme délky x, z.
Z pravoúhlých trojúhelníků AXZ> AZT plynou ne-

rovnosti:

(5)m < x.x < z,
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Vzhledem к (2) dostaneme z první nerovnosti (5)
л: <

5

(6)2

a spojením (6) s druhou nerovností (5) vyjde

(7)m <
2 '

Dokážeme: platí-li (7), splňují délky x, z vypočtené podle
vzorců (4), (2) všecky nerovnosti (5), (6).

3
Nepřímý důkaz: Kdyby platilo m ^ x, bylo by у m ^

771
^ jc + 2". Po dosazení z (4) a po umocnění bychom

9 1
dostali — m2 ^ m2 + ms, tj. 2m ^ s, což odporuje

5 771
nerovnosti (7). Kdyby platilo x ^ —, bylo by x + у ^
> 5 + m
= “

2
. Po dosazení z (4) a po umocnění bychom

m2
, . m2, ms , s2 . . í

-4- + »ž T + 2 + 4 » 4- m = 2 ’ C0Z
opět odporuje nerovnosti (7). Dokázali jsme tedy, že platí
(6) i druhá nerovnost (5); z (2) pak plyne x < z, což je
první nerovnost (5).

Z vypočtených délek x, z sestrojíme pravoúhlý troj-
úhelník AXZ tak, aby vrchol X ležel na polopřímce АВ
a vrchol Z v polorovině ABC; to je možné, neboť platí
x < z. Obrácením postupu odvodíme z rovnosti (4)
rovnost (3); odtud vyplývá, že AT — m. Doplníme-li
trojúhelník AXZ na rovnoramenný trojúhelník AXY,
leží vzhledem к (1) bod Y na polopřímce BC.

Podmínkou řešitelnosti úlohy je tedy nerovnost (7);
je-li úloha řešitelná, má jediné řešení.

dostali
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4. Je dán kvádr ABCDA'B'C'D' o hranách délek
AB = a, ylD = AA’ = c. Na hraně BB' určete bod,
jehož vzdálenosti od hran A'D', CD mají součet a) co
nejmenší, b) co největší. Oba tyto extrémní součty vy-
jádřete pomocí délek a, b3 c.

D'

Á B‘

X

\c

D).
6/

/

A a В

Obr. 10

ŘEŠENÍ. Situaci znázorňuje obr. 10., vzdálenosti
bodu X hrany BB' od hran A'D'3 CD jsou délky úseček
А'Х, CX. Rozvineme-li část pláště (stěny ABB'A'3
ВСС'В') do roviny podle obr. 11, plyne z trojúhelníkové
nerovnosti, že pro všecky body X hrany BB' platí

A'X + CX ^ A'M + CM,
kde M je průsečík úseček BB'3 A'C. Podle (1) je tedy M
bod s nej menším součtem vzdáleností A'X3 CX. Dále
platí při označení z obr. 12 podle trojúhelníkové nerov-
nosti:

A' Y + YX > A'X, YB' + B'C > YC = YX + XC.

(1)

(2)
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Po sečtení nerovností (2) a po úpravě dostaneme
A'B' + B'C = A' F + YB' + B'C> A’X + XC. (3)

Podle (3) má tedy bod B' největší součet vzdáleností A'X,
CX ze všech bodů úsečky B'M. Obdobně má bod В největší
součet vzdáleností А'Х, CX ze všech bodů úsečky BM.

Zbývá tedy porovnat А'В' + В'С а А'В + BC.
V situaci na obr. 11 a 12. je a > ú; sestrojíme-li rovnoběž-
nik CB'A'Q, leží bod Q uvnitř úsečky AB (platí totiž
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AB'BC = AA'AQ). Z trojúhelníkové nerovnosti pro
AA'QB vyjde A'Q + QB > A'В a odtud A'Q + QB +
+ ВС > А'В + ВС, neboli A'Q + QC > A'B + BC
neboli z rovnoběžníku CB'A'Q

B’C + A'B' > A'B + BC.
Bod B' má tedy větší součet vzdáleností A'X, CX než
bod B. Tento extrémní součet vzdáleností je

A'B' + B'C = a + }!b2 c2.
Součet A'M + MC = A'C je zřejmě

A'C = ]/(a + b)2 + c2.
Jestliže a — b, je patrně A'B' + B'C = A'B + ВС
= а + | а2 + с2.

Odpověď: Bod М má minimální součet vzdáleností daný
vzorcem (5). Maximální součet vzdáleností má bod
B\B), jestliže a ^ b (b a). Tento součet je dán for-
mulí (4) nebo formulí, kterou z ní dostaneme výměnou
písmen a, b.

(4)

(5)

3. KATEGORIE C

1. Písmenem N označíme přirozené číslo, jehož zápis
v desítkové soustavě obsahuje tři jedničky, z nich jednu
na počátku, druhou na konci. Ostatní cifry zápisu jsou
jen nuly.

Určete všecka tisíciciferná čísla N, která jsou dělitelná
sedmi ^

ŘEŠENÍ. Každé z čísel N lze napsat ve tvaru
10* + (10* + 1),

kde n, k jsou přirozená čísla, n > k. Např. číslo N —
= 10 010 001 lze napsat ve tvaru N — 107 + (10* + 1).

Počítejme zbytky я po dělení sedmi u čísel ÍO* a 10* + 1
a zapišme je do tabulek:

(1)
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Z tabulek a ze způsobu jejich sestrojení je zřejmé, že se
zbytky po šesti místech opakují. Tato opakování jsou dána
pořadím zbytků

3, 2, 6, 4, 5, 1 pro 10м
4, 3, 0, 5, 6, 2 pro 10* + 1.

Má-li být číslo N tisíciciferné, musí být n — 999,
k < 999. V tabulce (I) je pro n = 999 zbytek z = 6,
neboť 999 = 166.6 + 3, tj. s pro n = 999 je totéž jako
pro n — 3. Má-li být číslo 10999 + 10* + 1 dělitelné
sedmi, musí zbytek po dělení čísla 10* + 1 sedmi být
roven 7 — 6 = 1. Protože se však v tabulce (II) zbytek 1
vůbec nevyskytuje, je úloha neřešitelná.

Řešitelná varianta

a

Pro šestisetciferná čísla N dostaneme n — 599, v tabulce
(I) z = 5. V tabulce (II) musí být z = 2, tj. číslo k + 1 je
násobkem šesti neboli k = 6 — 1. Za k můžeme volit
postupně všecka čísla5,11, 17, 23, ..., 593.
Např. největší z těchto čísel N — 10599 + 10r>93 + 1.

2. Riešte sústavu rovnic s neznámými x, у
ax + \y\ = 1,

x + у = я,

kde a je parameter. Převeďte diskusiu riešitelnosti vzhla-
dom na parameter a.

RIEŠENIE. Rozoznávajme dva případy: а) у ^ 0,
b) у ^ 0. V případe a) má sústava (1) tvar

ах + у = 1,
л; + у — а.

Odčítáním druhej rovnice sústavy (2) od prvej rovnice

(1)

(2)
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dostaneme
(a — l)x = 1 — а.

Ак je а Ф 1, má rovnica (3) jediné riešenie x = — 1.
Z druhej rovnice sústavy (2) potom dostaneme у —
— a + 1. Dvojica (—1, a + í) je riešením sústavy (1)
právě vtedy, ked je a + 1 ^ 0 čiže a ^ — 1.

Ak je a = 1, má sústava (2) nekonečne mnoho riešení,
a to všetky dvojice (x, 1 — x). Sústave (1) z nich však
vyhovuj ú len tie, pre ktoré x ^ 1.

V případe b) má sústava (1) tvar
ах — у = 1,
x + j; = a.

Sčítáním rovnic sústavy (4) dostaneme
(Cl l)x :==: CL 1.

Ak je а Ф — 1, má rovnica (5) jediné riešenie x = 1.
Z druhej rovnice sústavy (4) vypočítáme у — a — 1.
Dvojica (1, a — 1) je však riešením sústavy (1) právě
vtedy, ked je a — 1 ^ 0 čiže a ^ 1.

Ak je a — — 1, má sústava (4) za riešenia všetky dvojice
(x, —1 —x), ktoré však vyhovujú sústave (1) len pre
— 1 ~ x ^ 0 čiže x ^ —1.

Zhrnutie znázorníme na číselnej osi (obr. 13).

(3)

(4)

(5)

jediné riešenie
(1; a —1)

dve riešenia
(1; a — 1) a (-1; a + 1)

jediné riešenie
(-1-.0 + 1)

-1 1
a= —1

nekonečne mnoho riešení

(x; —1—x)kdexSi — 1

a=1
nekonečne mnoho riešení

(x; 1 — x kde x ^ 1
Obr. 13

3. Je dán čtverec ABCD, bod X probíhá vnitřek
úsečky BC, bod Y náleží úsečce CD a je XY J_ AX.

51



Určete všecky body X, pro které platí
< BAX < XA Y < <£ У/Ш.

ŘEŠENÍ (obr. 14). Stranu čtverce ABCD zvolíme za
jednotku délky. Všecky tři vyšetřované úhly jsou ostré,
můžeme je porovnat pomocí tangent. Označíme-li BX —
= я, platí CX — 1 — x; protože

AABXco AXCY (uu)
(platí totiž <£ BAX = 90° - AXB = <£ CXY), platí

CY — x(l - x). (1)
Z trojúhelníku XCY dostaneme podle Pythagorovy věty

XY = (1 — x) УГ+~х2 (2)
a dále

DY — 1 — x(l — я) = л:2 — x + 1.
Mimoto platí podle Pythagorovy věty pro Д ABX

AX = }'1+Л

(3)

(4)
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Platí tedy podle (2), (3), (4):

tg <£ BAX= x, tg <£ XA Y =

tg <£ YAD = x2 — л: + 1.
Jestliže tg <t BAX < tg <£ XA Y, pak x < 1 — x čili

~ a obráceně. Jestliže tg <£ XA Y < tg <£ YAD,

pak *1 — x < я2 — я + 1 neboli x2 > 0 a obráceně.
Dokazovaný vztah platí tedy právě pro všecky body X,

které leží mezi vrcholem В a středem M strany BC.

x)}[\ + *2(i
= 1 — x,

I 1 + r2
(5)

X <

4. Je dán obdélník ABCD, jehož strany mají délky
АВ — a, BC = b, a > b. Určete bod U ležící mezi body
C, D a bod V mezi body В, C tak, aby trojúhelníky АВ V,
AUV, ADU měly obsahy sobě rovné.

a) Vypočtěte délky CU, С V pomocí a, b.
b) Sestrojte body , VU.

ŘEŠENÍ (obr. 15).
a) Označme CU = x, CV = y. Pak pro obsahy Д

trojúhelníků platí
Д ABV = ]-a(b— y), A ADU

1

2 Ka — *)• (1)
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Pětiúhelník ABVUD má obsah
1

(2)P = ab — 2Xy'
Podle podmínek úlohy je vzhledem к (1), (2)

1 1 1

2 a(b ~ У) = J ab — -g

у b(a — x) = у cib - ~ xy.

(3)

(4)

Odečtením rovnic (3), (4) dostaneme
ay — bx.

Rovnici (3) znásobíme číslem 6a a dosadíme za ay z (5):
3a2b — ЪаЬх — 2a2b — bx2,

(5)

neboli (po krácení číslem b)
x2 — 3ax + a2 — 0.

Rovnici (6) řešíme doplněním na dvojmoc dvoj členu
(6)

(*-!*)
odtud

_3±|/5*
2 " a'

Protože musí být x < a, vyhovuje jediný kořen
3 - ]/5

2 ' a

3-1/5 ,
= —2_l j

= 0,382a < a. (7)jc =

Z (5) dostáváme

(8)= 0,382b < b.

Obrácení postupu ukazuje, že body U, F, pro něž platí
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CU = x, CV = у3 kde л:, у jsou dány vzorci (7), (8)
splňující skutečně podmínky úlohy.

b) Konstrukci úsečky délky л: ukazuje obr. 16.
Úloha má pro každé a, b jediné řešení.

|aí5 i
-2°

t.a
ť4

j ^
x

¥
Obr. 16

4. KATEGÚRIA D

1. Dokážte, že platí
1

ИН1+вИ1+У- - ■( ) <21 ! rf^\

pre všetky prirodzené n > 1.

RIEŠENIE. Premenný činitel vyšetřovaného súčinu s
je

k2k21
1 I k2 - 1 k2 - í (k - l)(k + 1) '

Súčin s možno teda napísať v tvare
22 32 42

1 . 3 274 3 . 5 "• '(и - 1) (n + 1)
n2

5 =
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čiže
22. З2.42 пг

s —

2. 32.42.52. ... . (и - l)2. n(n + 1) '
Stadia! po skrátení dostaneme

1
г <2.s — 2n .

n + 1

2. Při slavnosti sedí u kulatého stolu 6 hochů H2,...
..., //(! a 6 dívek Z)x, D2, ..., D6, rozmístěných tak, že
vedle sebe sedí střídavě vždy chlapec a dívka (obr. 17).

Před koncem slavnosti odešli 2 chlapci a 2 dívky. Přitom
obě místa, která uvolnili chlapci, oddělují obě místa
uvolněná děvčaty. (Např. mohli odejít Hl3 H2, Dr>,
ale nemohli odejít H1} Hi3 Db Dtí.)

Zjistěte, kolika způsoby lze vybrat takovou dvojici
chlapců a dvojici děvčat.
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ŘEŠENÍ. Prozkoumáme systematicky všechny možné
případy:

a) Místa uvolněná chlapci jsou H1} Я2 nebo Я2, Я3
nebo Я3, Я4 nebo Я4, Я5 nebo Я5, Я6 nebo Я6, Я^ Pro
každou tuto dvojici chlapců lze vybrat 5 = 5.1 vhodných
dvojic děvčat, tj. celkem 6.5 = 30 možností.

b) Místa uvolněná chlapci jsou Я15 Я3 nebo Я2, Я4
nebo Я3, Я5 nebo Я4, Я6 nebo Я5, Я4 nebo Яс, Я2. Pro
každou tuto dvojici chlapců lze vybrat 8 = 4.2 vhod-
ných dvojic děvčat, tj. celkem 6.8 = 48 možností.

c) Místa uvolněná chlapci jsou Я4, Я4 nebo Я2, Я5
nebo Я3, Я6. Pro každou tuto dvojici hochů lze vybrat
9 = 3.3 vhodných dvojic děvčat, tj. 3.9 = 27 mož-
ností.

Všech možných případů je tedy 105 = 30 + 48 + 27.

3. Trojuholník ЛЯС má velkosti vnútorných uhlov
a = 45°, /9 = 60°.
a) Vyjádříte dížky stran b, c pomocou dížky strany a.
b) Vyjádříte poměr dížok všetkých troch výšok trojuhol-
nika ABC.

RIEŠENIE. a) Pre třetí vnútorný uhol у platí у =
= 180° - (a + /9) = 180° - 105° = 75°. Pre dížky stráň
teda platí

(1)a < b < c.

Označme D patu výšky na stranu с, E bod strany AB,
pre ktorý platí BE = ВС = a (obr. 18). Trojuholník
ВСЕ je potom rovnostranný. Je teda

Trojuholník ACD je rovnoramenný so základňou AC —

(2)CD =
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= b. Je preto
b = CD. ]/2.

Dosadením zo vztahu (2) do (3) dostaneme
(3)

ž “V*' (4)b =

0

7
/

/
/

Ь A / a

/
/

/

A5° I/ 60°/ih
E D ВA

Obr. 18

Okrem toho je AB = AD + BD — CD + BD čiže
podlá vztahu (2)

3 + | = |(1+V3).
Vztahy (3) a (5) dávajú riešenie úlohy a),

b) Pre výšku vc platí podlá (2)

2
Obsah P trojuholníka ABC je daný podlá vzťahov (2'),
(5) vzorcom •

P — J CVC = J • (1 + 1/3). J a 1/3 čiže

(5)c —

(2')=
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(3 + 1/3).
Zo vztahu (6) vypočítáme ^as použitím vztahu (4) aj vb:

2P=
J (3 + 1/3),

^=^=1 (1/2+1/6).

(6)P =

(7)°*“T

(8)

Zo vzťahov (2'), (7), (8) vyplývá
va:vb: vc

Numericky je přibližné: va : vb: vc = 4,73 : 3,86 : 3,46.

= (3 + ]/3): (1/2 + 1/6): 2^3.

4. V trojúhelníku ABC
jsou těžnice ta a tb navzá-
jem kolmé. Dále je dána
délka těžnice tc a poloměr
r opsané kružnice.

Sestrojte tento trojúhel-
nik a proveďte diskusi ře-
šitelnosti.

ŘEŠENÍ. Rozbor (obr.
19). Víme, že CS = r,
<£ ATB = 90°. Kružnice
opsaná Д ABC má střed O
a poloměr r. Z pravoúhlé-
ho Д ABT plyne ST — a
= SA = SB (S je střed
úsečky AB), tedy AB =

= 2ST =

C

S -r

Obr. 19

1 2
2 . - Cč> = 1. Odtud konstrukce:

3 3
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21.Zvolíme polohu úsečky AB = у t a sestrojíme její
střed S.

2. V jedné z polorovin vyťatých přímkou АВ sestrojíme
bod O tak, aby bylo OA — OB = r.

3. Sestrojíme kružnice c = (5, ř) a k = (O, r).
4. Společný bod kružnic c, k označme C.
5. Sestrojíme Д ABC.
Zkouška správnosti konstrukce. Je jasné, že kružnice

opsaná sestrojenému trojúhelníku má poloměr r. Označme
1

T těžiště A ABC, pak ST — у t. Protože podle kon-
yř, platí SA = SB = ST. Bod T leží

proto na Thaletově kružnici nad průměrem /1Б, tedy je
^iATB — 90o. Těžnice AT, ВТ jsou tedy navzájem
kolmé.

Diskuse. Bod 2 z konstrukce je možno provést, právě

strukce AB =

když
1

(1)r
—

3

Bod 4: společný bod C kružnic c =(S,ť), k ={0,r)
existuje tehdy a jen tehdy, platí-li

\r — t\ ^ SO ^ r + ř.

ř.

(i-)' (viz obr. 20); poDosadíme sem SO =

úpravě dostaneme
^ 5

r > 9-1. (2)
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Vztahy (1) a (2) platí současně právě tehdy, jestliže
r>5

—

9

Protože společný bod C kružnic c, k nikdy nepadne na
přímku AB, možno provést bod 5.

t.

C' C

c

0
/

/

/ 'к/г/
/

/
л

/j jm.
Ж1Ж в

i 0

Obr. 20

Podmínka řešitelnosti tedy je
r 5
t = 9 *

Snadno vyšetříme, že řešení jsou dvě (symetrická podle
5

přímky o), pouze v případě r = — t je řešení jen jedno
(rovnoramenný trojúhelník s hlavním vrcholem C).
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III. Súťažné úlohy I. kola

1. KATEGÓRIA A

1. Je daná úsečka AB. Množina bodov M je definovaná
takto:

a) obsahuje body A, B;
b) ak obsahuje X, Y, obsahuje aj bod Z úsečky XY, pre
ktorý platí YZ — 3 . XZ.

Dokážte, že každá úsečka ležiaca v úsečke AB obsahuje
aspoň jeden bod množiny M.

RIEŠENIE. Z vlastností a) a b) je zřejmé, že množina /И
obsahuje všetky množiny Л10, /И1} M2, ..., Mn, ... týchto
vlastností:

/И0 obsahuje len body A, B.
obsahuje okrem bodov А, В také body C, D, pre

ktoré platí: AC = DB — ~ AB, CD = AB.

M2 vytvoříme rovnakým sposobom z úsečiek AC, DB,
CD a patří do nej desať bodov.

Z M2 vytvoříme analogicky množinu УИ3, z nej /И4, atď.
DÍžka úsečky s koncovými bodmi z /И0 je AB. Naj-

dlhšia z úsečiek s koncovými bodmi z M13 ktorá neobsahuje
iné body z tejto množiny, má dížku CD — у AB. Naj-
dlhšia z úsečiek s koncovými bodmi z M2, ktorá nemá
iných bodov z M2, má dížku у CD — ^ AB. Matema-
tickou indukciou 1’ahko dokážeme, že naj dlhšia z úsečiek,
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ktorá má s množinou M,t spoločné len koncové body,
má dížku

Nech je teraz daná úsečka PQ s dížkou d < 1 ležiaca
v úsečke AB. Predpokladajme, že PQ neobsahuje žiadny
bod množiny /VI. Zvolme n tak, aby platilo

г. AB <d.

Kedze PQ podlá předpokladu neobsahuje žiaden bod
množiny /И, neobsahuje ani žiaden bod množiny Mn,
ktorá je častou množiny /И. To znamená, že každý bod
množiny Mn patří buď úsečke AP alebo úsečke BQ
(obr. 21).

1
AB.

2n

1
(1)2n

YX

A P Q В

Obr. 21

Nech je X bod množiny /Ии najbližší к bodu P a ležiaci
v úsečke AP3 Y bod množiny tAn najbližší к bodu Q
a ležiaci v úsečke BQ. Body X, Y sú teda dva susedné
body množiny řAn a platí pre ne jednak

xys ~ AB > (2)

jednak
(3)ZF ^ d.

Z nerovností (2), (3) na základe tranzitivnosti relácie
usporiadania dostaneme nerovnost’ d ^
je však v spore s nerovnosťou (1).

Tým je tvrdenie dokázané.

1
. АВ, ktorá2”
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2. Dokažte, že všechny nerovnosti
sin x (1)sin 2x sin 3x ^ ...

platí jen pro čísla tvaru x = k . л, kde k je celé číslo.

ŘEŠENÍ, a) Pro všechna x = ku, k celé, jsou všechny
nerovnosti zřejmě splněny.

Nechť я je nyní číslo, které není tvaru кл, k celé,
a nechť x vyhovuje všem nerovnostem (1). Potom platí
podle (1) pro všechna přirozená n

sin (n + 2) x ^ sin nx}
tj.

sin (n + 2) x — sin nx ^ 0
neboli po úpravě podle vzorce pro rozdíl sinů

2 sin x cos (n + 1) x ^ 0. (2)
b) Dokážeme, že pro každé я, 0 < z < л, existují celá

čísla m1 ^ 2, m2 ^ 2 tak, že
cos mxz > 0, cos m2z < 0.

Зл 5л
(3)

5л: 7л
2z 3 2z( )Intervaly 2z 3 2z

mají oba délku — > 1 a každý z nich tedy obsahuje aspoň
Z

jedno přirozené číslo: první z těchto čísel označíme ml3

druhé m2. Protože je — > 1, je ~
Z ZáZ

tj. mx ^ 2, m2 ^ 2. Je tedy

3 5ru
^ 5>

2 3 2z> 2 3

53

2 71 < miz < ~2 n >
5 7
2 u < m*z < 2"71 »

takže nerovnosti (3) jsou splněny.
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c) Vraťme se к nerovnosti (2). Rozlišujeme dva případy:
A. Je sin x > 0. Potom existuje číslo я, 0 < z < 7t, tak,
že x = я + 2mn, m celé. Nechť m2 je celé číslo z nerov-
nosti (3), pro které je cos m2z < 0. Potom je i cos m2x < 0
a (2) neplatí pro přirozené n = m2 — 1, což je spor.
B. Je sin x < 0. Potom existuje číslo z, 0 < z < n, tak,
že x = — z + 2m n, m celé. Nechť m1 je celé číslo z (3),
pro které cos m}z > 0. Potom je i cos mxx > 0 a (2) ne-
platí pro přirozené n = mx — 1, což je opět spor.

Tím je dokázáno, že žádné číslo, které není tvaru ku,
k celé, není řešením.

Uvedené řešení je řešení autorské a je dosti umělé,
zejména v části b), kde se dokazují pomocné nerovnosti
(3). Řešitelé žáci by jistě dovedli nalézt řešení myšlenkově
jednodušší, i když třeba delší.

3. Vyšetřte množinu УИ všech bodů roviny komplex-
nich čísel, jež jsou obrazy komplexních čísel z splňují-
cích nerovnosti:

1 < Щ + \*\ <a\*\ >
kde a je kladné číslo. Zjistěte, pro která čísla a je mno-
žina УИ prázdná.

(1)

ŘEŠENÍ. Nerovnosti (1) uvedeme násobením kladným
číslem |я| (platí totiž z Ф 0) na tvar

\z\ <\z + \z\21 < а |я|2. (2)
Dosaďme z = x yi (x, у reálná); (2) nabude tvaru

у*2 + y2 < |(* + .v2 + у2) + yi\ < a(x2 + у2),
neboli (po umocnění dvěma)
я2 + y2 < x2 + y1 + (x2 + у2)2 -f- 2x(jc2 + y2) <

< a2(x2 + y2)2. (3)
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Levou nerovnost (3) dělíme kladným číslem jc2 + у2
(platí totiž я Ф 0) a dostaneme

(x+ 1)2+У > 1.
Nerovnost (4) vyjadřuje vnějšek V\ kružnice kx se středem

= [— 1, 0] a poloměrem rx = 1.
Také pravou nerovnost (4) dělíme kladným číslem x2-\-

+ У2j P° úpravě vyjde

(4)

5

(1 — a2)(x2 + у2) + 2x + 1 < 0. (5)
Při vyšetřování nerovnosti (5) rozlišíme tři případy:

1. a > 1; 2. a — 1; 3. a < l. Jestliže a > 1 nebo
a < 1, vyjadřuje rovnice příslušná к nerovnosti (5) kruž-
nici k2i která protíná osu x v bodech А, В (AB je průměr),
jejichž souřadnice jsou kořeny rovnice

(1 — a2) x2 + 2x + 1 = 0, (6)
1 1

tj. A 1 + a ’ °
Nerovnost (5) pak vyjadřuje v případě 3 vnitřek V2 kruž-
nice k2 a v případě 1 vnějšek V2 kružnice k2.

Jestliže a = 1, vyjadřuje nerovnost (5) vnitřek P polo-
roviny s hranicí я = —

, В 1 -

1

2 *

Vyšetřovaná množina je průnik Vx f| V2 nebo Vx n V2
nebo Vx pi P.

Zjistíme ještě, pro která a platí, že množina /И je prázd-
ná. To může nastat jen v případě 3 a to tehdy, padnou-li
oba body A, В na průměr kružnice kl3 omezený body
[-2; 0], [0, 0].
Jestliže a < 1, pak 1 + a > 1 — a > 0, tj.

> —

1 1
0 > -

1 — a ’1 + a
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1
Stačí tedy vyšetřovat podmínku —

Z této nerovnosti plyne a

^ -2.
1 — a

^ a naopak.
Výsledek. Vyšetřovaná množina /И je prázdná právě

1

1
tehdy, když platí 0 < а ^ у .

4. Je dán čtyřstěn ABCD. Vyšetřte a popište množinu
všech přímek x, které procházejí vrcholem D a mají tuto
vlastnost: rovnoběžka s přímkou x vedená vhodným vrcho-
lem čtyřstěnu ABCD protne jeho protější stěnu v jejím
vnitřním bodě.

ŘEŠENÍ. Obr. 22 znázorňuje situaci v rovině ABC.



Přímky AB, BC, CA dělí rovinu ABC v sedm částí;
jejich vnitřky jsou označeny podle obr. 22: Ф je vnitřek
A ABC, Q13 Q2, -O3 jsou vnitřky úhlů vrcholových к úhlům
trojúhelníka ABC, Пл, П2, /73 jsou vnitřky zbývajících
tří částí (např. П1 je průnik vnitřků polorovin ABC,
ACB a vnitřku poloroviny opačné к ВСA).

Množinu všech přímek DX, které mají požadovanou
vlastnost, označme M. Do množiny УИ nenáleží žádná
z přímek DX, kde X je bod některé z přímek AB, BC,
CA, neboť tyto přímky jsou rovnoběžné s některou stěnou
čtyřstěnu, a proto rovnoběžka se žádnou z nich vedená
vrcholem čtyřstěnu neprotne protější stěnu v bodě jejího
vnitřku.

Do /И nenáleží z téhož důvodu žádná přímka prochá-
zející vrcholem D a rovnoběžná s rovinou ABC.

Do množiny M náleží však každá přímka DX, kde
X e Ф. Zbývá zkoumat přímky DX, kde X e Ql nebo
X e tfj (i = 1, 2, 3).

a) Budiž nejprve X e Qv Pak bod A je bodem vnitřku
Д BCX, neboť přímka AX protíná vnitřek úsečky BC
v bodě Y (obr. 23a). Přímka DX obsahuje hranu DX
tetraedru BCXD. Rovina DXA protne tetraeder BCXD
v trojúhelníku XYD (obr. 23b). Rovnoběžka s přímkou
DX vedená bodem A protne stranu DY v bodě Z jejího
vnitřku. Bod Z zřejmě náleží vnitřku stěny BCD a bod X
náleží tedy množině /И.

b) Budiž za druhé X e Ux. Pak lze snadno dokázat, že
sjednocení trojúhelníků BCA, BCX je konvexní čtyř-
úhelník ABXC (obr. 24a) a ABXCD je tedy (konvexní)
jehlan čtyřboký.

Každá z rovin DXA, DXB, DXC protne tento jehlan
v trojúhelníku; na obr. 24b je trojúhelník DXA. Rovno-
běžka s přímkou DX vedená bodem A je styčnou přímkou
Д DXA a nemá s ním mimo vrchol A žádný další spo-
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léčný bod. Obdobně tomu je s přímkami, které jsou rovno-
běžné s DX a procházejí vrcholy В, C.

Závěr odst. b): Přímka DX nenáleží množině M.

Shrnutí: Množina M se skládá ze všech přímek DX,
kde X náleží sjednocení oblastí Ф, Qly Q2 a
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2. KATEGORIE В

1. Pěticiferné číslo N, jehož zápis v desítkové soustavě
obsahuje jednu nulu a končí číslicí 1, dává při dělení
číslem 43 trojciferný podíl a třikrát za sebou se při algo-
ritmu dělení opakuje týž zbytek. Určete N.

ŘEŠENÍ. Budiž
N = 10 000 x + 1 000 j; + 100 z + 10 t + 1; (1)

zápis čísla N v dekadické soustavě je
N — xyzt 1.

Protože podíl je trojciferný, začínáme při algoritmu dělit
od prvního trojčíslí; je tedy

100 x 10 + z = 43 a + r, (2)
kde 1 ^ a ^ 9 (a celé) а 0 ^ r ^ 42 (r celé).
Pokračujeme-li v algoritmu dělení, dostaneme podle textu
úlohy

Юг + t = 436 + r,
kde 0 ^ b ^ 9 (6 celé). Při třetím kroku vyjde

Юг + 1 = 43c + r,

(3)

(4)
kde platí opět 0 ^ c ^ 9. Odečtením rovnic (3), (4) do-
staneme

t- 1 = 43(6 - c)
a odtud plyne (levá strana je násobek čísla 43)

t= 1,
Vypišme násobky čísla 43:

(5)6 = c.

b i 2 3 5 6 7 8 9 04

43 & 129 215 301 387 043 86 172 258 344

436-1 -185 128 171 214 257 300 343 38642
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Podle rovností (3) a (5) je číslo 436 — 1 násobkem devíti,
neboť

(3')436 —1 = 9r.

Ježto 0 ^ 6 9, vyhledáváme v třetím řádku tabulky
násobky devíti; je to jediné číslo 171 = 43.4 — 1. Platí
tedy podle (3')

(6)6 = 4,
Vypočteme nyní 43a + 19 = lOOx + lQy + z pro a =
= 1, 2, ..., 9; dostaneme tabulku

r = 19.

i 5 82 3 4 6 7 9a

43 129 172 215 258 301 344 38743a 86

320 363 10643a f 19 62 105 191 234 277148

Čísla v třetím řádku (počínaje číslem 105, neboť N je pěti-
ciferné) určují cifry x,y, z. Podmínce o nule vyhovují tři
čísla 105, 320, 406. Úloha má tedy tři řešení

N,= 10 511, N2 = 32 011, N, = 40 611.
O správnosti se přesvědčíme zkouškou.

2. Ak sú a, p, у velkosti vnútorných uhlov lubovol-
ného trojuholníka ABC, potom platí

cos a . cos /? . cos у ^ ;
o

dokážte.

RIEŠENIE. Pre tupouhlý alebo pravoúhlý trojuholník
platí zrejme ostrá nerovnosť v danom vztahu, pretože
súčin na 1’avej straně je buď záporný alebo nula.

Uvažujme preto ďalej len o ostrouhlom trojuholníku.

71



Móžeme předpokládat’, že je
0° <y^p^oc < 90°.

V tomto případe sú všetky čísla cos a, cos /9, cos у kladné
a menšie než jedna. Speciálně máme

0 < cos у < 1.
Vieme, že pre l’ubovol’né a, /9 platí

cos a . cos /9 = -y [cos (a — /9) + cos (a + /?)].
Ak sú a, /9, у velkosti vnútorných uhlov trojuholníka (t. j.
a -f /9 -j- у = 180°), platí cos (a + /?) = — cos y. Teda
v trojuholníku platí

cos a . cos /9 = “ [cos (a — /9) — cos у].

Zo vztahu (1) 1’ahko usúdime, že platí 0° ^ a — /9 < 90°,
teda 0 < cos (a — /9) ^ 1. Z (2) potom vyplývá

cos a . cos /9 ^ у (1 — cos y).

(1)

(2)

Pretože cosy > 0, dostaneme stadia! cos a . cos /9. cos y^

2 (cos у — cos2 y) = УТ1 ri

(cos у —2 4

Platí teda
1\2

V
1 1

cos a . cos /9 . cos у ^

a teda tým skór
2 cosy -8

1
cos. a . cos /9 . cos у ^

Tým je daná nerovnost’ dokázaná aj pre ostrouhlý troj-
uholník.

Rovnosť móže nastat’ len pre nějaký ostrouhlý troj-

8 '
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uholník, a to taký, pre ktorý podl’a vztahu (3) musí byť
0, t. j. cos у — číže у = 60°. Podl’a

vztahu (1) však potom v tomto trojuholníku musí byť
a = p — у = 60°. Rovnost’ nastane teda len pre rovno-
stranný trojuholník. Tým je úloha vyriešená.

5-K- -i)-

3. Trojúhelník ABC má tu vlastnost, že kružnice pro-
cházející středy jeho stran se dotýká kružnice opsané.

Dokažte, že bod dotyku je jedním vrcholem trojúhel-
nika ABC a že vnitřní úhel při tomto vrcholu je pravý.

ŘEŠENÍ. Stejnolehlost, která má střed v těžišti T
trojúhelníku ABC a koeficient — i , převede vrcholy
trojúhelníka ve středy protějších stran; proto převede
výšky trojúhelníku (přímky) v osy stran s nimi rovno-
běžné, průsečík výšek V ve střed S kružnice k opsané
trojúhelníku ABC. Mimoto převede ovšem střed 5
kružnice k ve střed S' kružnice k\ která prochází středy
všech tří stran trojúhelníku ABC.

Dokážeme, že S pá Г. Kdyby totiž platilo S=T, pak
by platilo S == T e= V3 splynuly by osy stran a výšky,
trojúhelník ABC by byl rovnostranný, kružnice k' by byla
kružnicí jemu vepsanou a kružnice k, k! by neměly dotyk.

Protože S ^T, pak V ž?á T} V a také S' T,
S' ^ S. Bod T odděluje jak body V, S, tak body S', S
a platí

1 1 1 1
TS = : vt, ts - ; vs, ts' = * ts = : vs,1 5 Z o

tj.
11 1

SS' = TS + TS' = J VS + ~ VS = VS. (1)
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Je-li r poloměr kružnice k, je poloměr kružnice k' roven

—r. Protože dotyk kružnic k, k' je zřejmě vnitřní, pro-2 1
chází kružnice k' bodem 5, tj. podle (1) -y r

— VS3 neboli

= 55' =

r — VS.

Opsaná kružnice k prochází tedy průsečíkem výšek V.
Trojúhelník ABC je pravoúhlý s pravým úhlem při
vrcholu V = C. Bodem V zřejmě prochází také kružnice
k!; bod V je tedy bodem dotyku obou kružnic k, k' (viz
obr. 25).

4. V prostoru jsou dány čtyři body Al9 A2, A3, A4,
které neleží v rovině. Je-li X libovolný bod prostoru,
označme Хг patu kolmice spuštěné z X na přímku Л,Л2,
X2 patu kolmice z X na Л2Л3, X3 patu kolmice z X na
A;iA4, patu kolmice z na /44/24.
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Dokažte, že mezi všemi body X prostoru má střed
kulové plochy procházející body A13 A23 A33 A4 tu vlast-
nost, že součet

(ЛА)2 + W + (« + (AtXrf
je minimální.

ŘEŠENÍ. Dokažme nejprve větu: Je-li Xx pata kolmice
z X na A1A2, platí (viz obr. 26 a, b, c, d, e).

1 1
№A)2 = + J KAtXy - (A,X)2} -I-

2 [(A,*)2 - (A2xy-r.
1

(1)4(AíA2)
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Důkaz. Podle obr. 26 a, b, c, d, e platí totiž (i když

{A,X,f = {A,Xf - {XX,)--,
(A2Xx)2 - (A2X)2 - (XXO2.

Vhodnými úpravami eliminujeme XXx, AxXx a A2X
nejprve dostaneme

(Axxi)2 - (ЛА)2 = (Л^)2 - (Л2Х)2.
Dále je pro e = 1 anebo —1

A2X1 = |AXA2 — tj.
(A2Xx)2 = (AxA2 - eAxXxy2, takže

(A*i)2 - (AXA2 - еЛА)2 = (A*)2 - (Л*)2,
2 e AxA2 . AxXx - (AXA2)2 = (AxX)2 - (A2X)2.

Odtud (Ax Ф A2)
1

(AxXO2 = 2 [(AxX)2 - (A2X)2 + (AxA2)T,4(AM
1

г* {(AM4 + 2(AxA2)2 [(AxX)2(AxXx)2 = 4(AxA2)
- (A2X)2] + [(A.xy - (A,xy-Y)
neboli po roznásobení dostaneme vztah (1).

Obdobně platí
1 1

(A,X)2] +(w = -;- (am2 + j[(a2x)2
i l(A2Xf

1
CA,X)2]2,4(A2A3)

1 1
(X4A4)2 = j(AM2-hf Í(A4X)2

2 l(A4X)2

(A xX)2] +

1
(AxX)2]2.4(A,AX)
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Sečteme-li tyto rovnosti, dostaneme rovnost, kterou
označíme (2):
(XM2 + (хм2 + (XM2 + (XM2 =

1
= f KAM2 + (AM2 + (AM2 + (AM2] +

11
2 KAM -2 KAM - (A,XW ++ 4(A2A3)

2 KAM - (^4^)2]2 +

4(AM
1

(AM? + 4(AM

5 l(AtXY - {A.Xff.
1

+
4(AM

Odtud ihned plyne, že je-li X střed kulové plochy obsa-
hující všecky čtyři body A13 A23 A3, A43 je A tX = A2X —
= A3X = A4X, tj. uvedený součet je roven prvnímu
členu na pravé straně (2); pro každý jiný bod je součet
vpravo větší.

3. KATEGÓRIA C

1. Vyšetříte a načrtnite množinu všetkých bodov v ro-
vine, ktorých pravoúhlé súradnice vyhovujú nerovnosti

(хь — 13л:3 +36 л:)(л:4 — 17л;2 +16)
(у* -— 13_у3 + 36уХу* — 17у2 + 16)

RIEŠENIE. Hladanú množinu označme písmenom /И.
Čitatela zlomku upravíme na tvar
л:(л;2 — 4)(л:2 — 9)(л;2 — 1)(л:2 — 16) =
= (х + 4)(л: + 3)(л: + 2)(х+ 1) л:(х—1)(х—2)(х—3) (л:—4).
Dosadením у namiesto л; dostaneme tvar menovatel’a.
Daná nerovnost’ je teda ekvivalentná s nerovnosťou

+ 0,

+ 0.

/(*) (1)f(y)
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kde f(x) = (я + 4)(я + 3)(x + 2){x + l)x(* — 1).
. (x — 2)(x — 3)(jc — 4). Body priamok у = q (g = 0,
zb lj ±2, ±3, ±4) do množiny M zrejme nepatria, ale
body priamok x — p(p — 0, ±1, ±2, ±3, ±4) okrem
bodov prv vylúčených do /И patria, ako to vyplývá
priamo z tvaru (1).

Spomínané priamky rozdelia rovinu na 100 obrazcov
(ohraničených i neohraničených), ktorých vnútra nazveme
oblasťami a označíme ich Pab (a, b — 0, 1, 2, ..., 9) podlá
schémy na obr. 27. Vezmime lubovolný bod [x,y] e Pab.
Potom a je zrejme počet čísel n z množiny N = { —4,
—3, —2, —1, 0, 1, 2, 3, 4}, pre ktoré x — n < 0 a b je
počet čísel m z množiny N3 pre ktoré у — m < 0. Ak je

7Г)

II

v* ONI- o<\l
. IIII

U' ч*ч 4 44

pr90 p~20^30 Pio Poo y=<

P01 y=3P91 P21 Pl1

y=2

y~-1

O

y=-2

y=-3

P18P98 Pp8 y=-4Ъв

P99 P19 Pq9Рв9

Obr. 27
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/(*)
> О a ак а + Ь je

< 0. Z toho vyplývá, že УИ je

a + b párne číslo, je zrejme
nepárne číslo, je
množina bodov \x9y\, ktoré sú na obr. 28 vyznačené vy-
šrafovaním, pričom body vodorovných hraničných čiar
do M nepatria a body zvislých hraničných priamok okrem
priesečníkov s vodorovnými hraničnými priamkami do
/И patria.

/Су)/О)
/Су)

2. Je dán pravoúhlý rovnoramenný trojúhelník ABC,
jehož základna má střed D a délku 2.

a) Dokažte, že pro každý bod M výšky CD platí
AM + BM + CM ^ 1 + 1/3.

b) Sestrojte ten bod M výšky CD, pro který je součet
AM + BM + CM nejmenší.

(1)
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ŘEŠENÍ.
a) Označme DM — x; pak CM = 1 — x a dále (viz

obr. 29)
AM + BM + CM = 2]/Г+x2 + 1 - x. (Г)

П

x

A 1 D В1

Obr. 29

Vzhledem к (Г) stačí dokázat, že platí
2}/Т+x2 + 1 - л: ^ 1 + 1/3

pro všecka čísla л:, pro něž platí 0 ^ x ^ 1. Z (2) plyne
2l;l i- x2 ^ УЗ + ж

4(1+ x2) ^ 3 + 2x}/3 + x2,

3x2 - 2x]/3 + 1^0,

(2)

(2a)
a po umocnění

(2b)
neboli

(2c)
neboli

»(*-# (3)^0.

Nerovnost (3) platí pro každé x. Z ní plyne obráceně
(2c), z (2c) plyne (2b), z (2b) plyne (2a) — neboť na obou
stranách (2a) jsou kladná čísla. Z nerovnosti (2a) plyne
(2) a vzhledem к (1') je tím dokázána nerovnost (1).

b) Jako nejmenší hodnota pro AM + BM + CM při-
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chází podle (1) v úvahu číslo 1 + 1 3. Nastane-li tento
případ, pak v (3) platí vztah rovnosti, tj.

1
x = TJ-— .4'3

V případě, že platí (4), je AM =

(4)

1 2

3
— 2DM. Je tedy <£ MAD =30°. Odtud plyne konstrukce
bodu M.

3. Určete délky stran všech pravoúhlých trojúhelníků,
které mají tyto vlastnosti:

a) délky stran v centimetrech jsou celá čísla;
b) obvod trojúhelníku v cm je roven obsahu troj-

úhelníku v cm2.

ŘEŠENÍ. Označme délky odvěsen hledaného právo-
úhlého trojúhelníku v centimetrech a, b a délku jeho pře-
pony v centimetrech c. Podle textu úlohy (podmínka b)

2 ab o -j- b c,
tj.

1

2 ab
Rovnost (1) umocníme dvěma a dosadíme podle Pytha-
gorovy věty c2 = a2 + b2; po úpravě dostaneme

~ a2b2 + 2 ab — a2b — ab2 — 0,

— a — b. (1)c —

tj-
ab{ab — 4a — 4b + 8) = 0.

Protože a > 0, b > 0, dostaneme po dělení součinem ab
ab — 4a — 4b + 8 = 0,
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tj.
(a - 4)(b - 4) - 8.

Každé z čísel a — 4, b — 4 je podle (2) dělitelem čísla 8.
Sestavíme tabulku:

(2)

-i -2 -4 -8a — 4 1 2 4 8

b - 4 1 -8 -4 -2 -18 4 2

5 6 8 12 3 2 0 -4a

b 12 0 38 6 5 -4 2

13 10 10 13C

Úloha má tedy v podstatě dvě řešení 5 cm, 12 cm, 13 cm,
a 6 cm, 8 cm, 10 cm.

Zkouškou se snadno přesvědčíme, že oba tyto troj úhel-
niky úloze vyhovují.

JINÉ ŘEŠENÍ. Úlohu lze také řešit pomocí věty:
Jestliže a, b jsou délky odvěsen а c délka přepony právo-
úhlého trojúhelníku, přičemž a, b, c jsou celá čísla, potom
existují taková přirozená čísla k, m, n, m > n, že platí

a = &(m2 — я2), b — 2 kmn, c = &(m2 + w2).
Zřejmě platí i věta obrácená.

Podle podmínky b) v textu úlohy
— ab = a + b + c.

Po dosazení dostáváme

k2mn(m2 — nr) — 2km{m -f n).
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Čísla m, k3 m -\- n nemohou být rovna nule, a proto
kn(m — n) — 2.

Čísla k, n3 m—n jsou přirozená, takže z poslední rovnice
plynou tyto tři možnosti:
a) k = 1, n — 1, m — n — 2, tj. a = 8, b = 6, c = 10;
b) & = 1, n = 2, m — n — 1, tj. a — 5, = 12, c = 13;
c) k = 2, « = 1, m — и — 1, tj. a = 6, b = 8, c = 10.
Řešením úlohy jsou tedy trojúhelníky o stranách 5 cm,
12 cm, 13 cm a 6 cm, 8 cm, 10 cm.

Obr. 30

4. Je daný štvorec ABCD so stranou dížky 8 cm, ktorý
je rozdělený na sposob šachovnice na 16 zhodných polí.
Zostrojte rovnostranný trojuholník AXY tak, aby vrchol
X ležal v rohovom poli pri vrchole 5, vrchol Y v rohovom
poli pri vrchole D a aby dížka jeho stráň AX = XY =
= YA bola čo najváčšia.

RIEŠENIE (obr. 30). Nech je trojuholník AXY taký
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rovnostranný trojuholník, ktorého vrchol X leží v roho-
vom poli pri vrchole В a vrchol Y v rohovom poli pri
vrchole D. Otočenie (9 okolo středu A o 60° v kladnom
zmysle prevedie bod X do bodu Y. Otočenie (9 prevedie
rohový štvorec QB (pozři obr. 30) do rohového štvorca
Q'b. Bod Y patří do prieniku P' štvorca a rohového
štvorca Qn.

Prienik P' je konvexný štvoruholník (na obr. 30 husto
vyšrafovaný), ktorého každý bod Y dává jeden rovno-
stranný trojuholník AXY. Příslušný vrchol X trojuhol-
nika AXY vznikne otočením bodu Y okolo bodu A
o 60° v zápornom zmysle a leží teda v konvexnom štvor-
uholníku P, ktorý vznikne otočením P' okolo A o 60°
v zápornom zmysle.

Riešenie úlohy dostaneme, ak za vrchol Y zvolíme ten
bod štvoruholníka P', pre ktorý je vzdialenosť A Y maxi-
málna. Je to zrejme jeho vrchol Y0 (pozři obr. 30).

4. KATEGORIE D

1. Mirek dostal za domácí cvičení známou úlohu
o nádržce^ a čtyřech kohoutech, ale marně se snažil ji
rozřešit. Úloha zněla:

Prvním a druhým kohoutem nateče dohromady za
hodinu p hektolitrů vody; druhým a třetím nateče za
hodinu o 30 hl více. Třetím a čtvrtým nateče za hodinu
dvakrát více než druhým a třetím dohromady. Prvním
a čtvrtým kohoutem nateče za hodinu o 20 hl více než
prvním a druhým.

Kolik hl nateče za hodinu každým kohoutem zvlášť?
Vyložte, proč Mirek nenašel řešení úlohy.

ŘEŠENÍ. Označíme x, у, z, t počet hektolitrů, který
nateče za hodinu po řadě prvním, druhým, třetím a čtvr-
tým kohoutem; dále označíme p počet hektolitrů, který
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nateče za hodinu prvním a druhým kohoutem dohro-
mady. Dostaneme soustavu rovnic

x + = pi
у + z = P + 30,
z + t = 2(p -f- 30),
t -f- x — p -I- 20.

Z prvních dvou rovnic vyloučíme у odečtením; vyjde
x — z — —30.

(1)

(2)
Z třetí rovnice (1) a rovnice (2) vyplývá

x -(- t — —30 -f- 2,(p -j- 30),
neboli

(3)x -)- t — 2p -f- 30.
Čísla x a. t musí splňovat jak rovnici (3), tak i čtvrtou
rovnici (1); to je možné jen tak, že platí

2p + 30 = p + 20.
Odtud plyne p — —10, což je nemožné podle významu
čísla p (nemůže být p < 0).

INÉ RIEŠENIE (bez použitia sústavy rovnic). Podlá
textu úlohy platí:
(1) 1. a 2. kohútikom spolu natečie za 1 hodinu p hekto-

litrov vody,
(2) 2. a 3. kohútikom spolu natečie za 1 hodinu p +

+ 30 hektolitrov vody,
(3) 3. a 4. kohútikom spolu natečie za 1 hodinu 2(p + 30)

hektolitrov vody,
(4) 1. a 4. kohútikom spolu natečie za 1 hodinu p -j-

+ 20 hektolitrov vody.
Všetkými štyrmi kohútikmi spolu natečie za 1 hodinu
(a) vzhladom na podmienky (1) a (3) p -(- 2(p + 30)

hektolitrov vody,
(b) vzhladom na podmienky (2) a (4) (p + 30) + (P +

+ 20) hektolitrov vody.
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Ak má úloha riešenie, potom musí teda platit’
P + 2(p + 30) = (p + 30) 4- O + 20) čiže

3p 4- 60 = 2p + 50,
skadial vyplývá

p = -10.
Úlohe však može vyhovovat len p > 0. Úloha teda nemá
riešenie.

2. Určete čísla a, b tak, aby pro každé libovolně zvolené
číslo x platilo

a — b .

л,,/ у \ i x — 2ab(b — a)
J+b e) + ^ = —5 + ř—--

2
(1)b — a

ŘEŠENÍ. Zlomky v rovnosti (1) mají smysl, jestliže
a + 6 Ф 0,
a — b Ф 0.

Obě strany rovnosti (1) vynásobme výrazem
(a + b) (a — b). Dostáváme

{a — b)2. [a(x — a) + ú(x — ú)] = x(a — b) +
+ 2ab(a — b)2 + 2(a + ú).

(2a)
(2b)

Po další úpravě
(a — b)2. [(a + ú) . x — (a + 6)2] = x(a — b) + 2(a + b).
Výrazy s x převedeme na levou stranu, ostatní na pravou
stranu rovnosti

x . {a - b) . [{a + b)(a - b) - 1] =
— {a-\-b). \(a — b)2. (a -}- b) + 2].

Rovnost (3) bude splněna pro každé x právě tehdy, když
(3)
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bude zároveň platit
(4){a + b) . [(a + b)(a — b) — 1] = 05

(a + b) . [(a - bf . (a + 6) + 2] = 0.
Uvážíme-li platnost vztahů (2a) a (2b), plyne ze (4)

(5)

a (5)
{a + b) .(a — b)= 1,
(a — b)2. (a + b) = —2.

Dosadíme-li (4a) do (5a), máme
a — b = —2,

což zase dosadíme do (4a) a dostáváme

(4a)
(5a)

(6)

1
(7)a + b = —

Řešením soustavy rovnic (6) a (7) nalezneme
5

b = l.

2 *

a —

4 5 4 *

Zkouška:
-8

!(*+!)+1 (*-f)] --2
4

5 25
+ \x ž] 17

= 4 . —2x4X 16

15 8
‘

16 ‘ 4 2

2 5

.X 2

Ч+¥)P = - 1 =
82

4 4

17
= —2л:

2 5
tedy L — P pro každé x.
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3. Trojuholník ABC je pravoúhlý s přeponou AB, D
je bod vo vnútri odvěsny AC.

a) Ak platí BD2 — AD . CD, potom platí AD2 =
3BD2. Dokážte.

b) Zistite, či možno vetu a) obrátit’.
- AB2

RIEŠENIE. a) Nech bod D je vnútorným bodom od-
vesny AC pravoúhlého trojuholníka ABC s přeponou AB
(obr. 31) a nech platí

BD2 = AD . CD. (1)
C

'BA
Obr. 31

Podlá Pythagorovej vety pre trojuholník ABC platí
AB2 = {AD + CD)2 + BC2.

Podobné pre trojuholník BCD platí
BD2 = CD2 + BC2.

Ak upravíme vztah (2), dostaneme AB2 — AD2 +
+ 2AD . CD + {CD2 + BC2). Ak dosadíme do posled-
nej rovnosti za AD . CD podlá vztahu (1) a za {CD2 -f

I BC2) podlá vztahu (3), dostaneme AB2 = AD2 +
+ 2BD2 + BD2, skadial už vyplývá AD2 = AB2 —

- 3BD2. Tým je veta a) dokázaná,
b) Nech D je taký vnútorný bod odvěsny AC právo-

uhlého trojuholníka ABC s přeponou AB, že preň platí
AD2 = AB2 - 3BD2 čiže 3BD2 = AB2 - AD2.

(2)

(3)
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Z posledncj rovnosti po dosadení za AB~ zo vztahu (2)
vyplývá

3BD2 = (AD + CDУ + ВС2 - AD2,
skadial po úpravě

3BD2 = 2AD . CD + (CD2 + BC2)
a vzhladom na vztah (3) z poslednej rovnosti dostaneme

BD2 = AD . CD.
Vetu a) je teda možno obrátit’.

4. Je dán čtverec, jehož strana má délku 6 cm. Bod M
má od dvou sousedních stran čtverce vzdálenosti 15 mm

a 20 mm.

Sestrojte lomenou čáru procházející bodem M, která se
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skládá ze středů všech úseček XY navzájem rovnoběž-
ných, jejichž krajní body leží na obvodu daného čtverce.
Vypočtěte její délku.

ŘEŠENÍ. Sestrojme čtverec ABCD o straně 6 cm.
Nechť bod M má vzdálenost 20 mm od strany AB
a 15 mm od strany AD (viz obr. 32).

Bod M sám musí být středem jedné takové úsečky XY,
o nichž mluví text úlohy, a proto bod M musí být vnitřním
bodem čtverce ABCD.

Nejdříve budeme řešit dílčí úlohu:
Na obvodu čtverce ABCD sestrojte body X0, Y0 tak,

aby bod M byl středem úsečky X0Y0.
Jsou-li XQ, Уo takové body, potom
a) neleží na téže straně čtverce ABCD, neboť bod M je

vnitřním bodem čtverce ABCD;
b) neleží na rovnoběžných stranách čtverce ABCD,

neboť bod M neleží ani na jedné ze středních příček
čtverce ABCD;

c) neleží na stranách AB а ВС, ВС a CD, neboť M
je vnějším bodem trojúhelníku ABC a trojúhelníku BCD.

Zbývají tedy dvě možnosti: X{) a Y0 leží po řadě na stra-
nách AB a AD nebo AD a'DC.

Uvažujme případ, že X() je bodem strany AB а У„ je
bodem strany AD. Označme M1 patu kolmice spuštěné
z bodu M na AB a M2 patu kolmice spuštěné z bodu M
na AD. Potom zřejmě X0 je bodem úsečky MXB a Y0
je bodem úsečky M2D. Platí

(1)am2my0,
neboť oba trojúhelníky jsou pravoúhlé, <£ МгХ0М —
= <£ M2MY0 a X0M = MY0. Tudíž platí

MlXlo =15 mm, M2Y0 — 20 mm.
Vzhledem к tomu, že strana čtverce ABCD má délku

(2)
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6 cm, body X0, Y0 splňující podmínky (2) leží uvnitř
úseček MXB a M2D, tj. na obvodu čtverce A BCD.

Jsou-li X() а У0 body ležící po řadě na úsečkách MXB,
M2D, přičemž splňují podmínky (2), pak platí (1) a tudíž
M je středem úsečky X0 Y0.

Uvažuj eme-li možnost, že X0, У0 leží po řadě na stra-
nách AD, DC, potom stejnou úvahou, jaká byla právě
užita pro strany AB a AD se zjistí, že takové body X()
a Y0 na obvodu čtverce ABCD neexistují.

Řešením dílčí úlohy máme určen směr úseček XY.
Veďme rovnoběžky s úsečkou X0Y0 vrcholy D a B.

Označme body Dx a Bl dle obrázku. Nechť E je střed
úsečky DDX a F je střed úsečky BBX. Hledaná lomená čára
je AEEC, neboť

1. AE je těžnice Д ADXD, tj. je množinou středů
všech úseček XY\\DxD, jejichž krajní body leží
na straně ADx a na straně AD (dokáže se z podob-
nosti Д ADXD со Д AXY);

2. EF je střední příčka rovnoběžníku DXBBXD, a je
tedy množinou středů všech úseček XY\\DDx,
jejichž krajní body leží na stranách DXB a DBX,

3. FC je těžnice Д BCBX a je tedy množinou středů
všech úseček X Y || BBX, jejichž krajní body leží na
stranách ВС a BXC.

Zbývá určit délku lomené čáry AEFC. Bod F leží na
střední příčce čtverce ABCD, a proto FC = FB. Čtyř-
úhelník DXBFE je rovnoběžník, tj. FC = FB — EDX.
Trojúhelník ADXD je pravoúhlý, E je střed jeho pře-
pony, a proto DE = AE. Z předchozích úvah plyne, že

AE + FC — DDX.
Délku úsečky DDX určíme pomocí podobnosti

Д MxX0M со Д ADXD.
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Platí
DA

DD, = MX,. = 3 . MX, .MMX
Užijeme-li Pythagorovy věty pro Д М^цМ, dostáváme,
že MX, = 2,5 cm, tj.

DDX — AE + FC — 7,5 cm.

Čtyřúhelník DXBFE je rovnoběžník, tj.
EF = D,B;

dále platí
Djfí = AB — ADV.

Z podobnosti trojúhelníků MtX,M a ADXD plyne, že

AD cm — 4,5 cm,

tj-
EF = 1,5 cm.

Délka lomené čáry AEFC je (7,5 + 1,5) cm = 9 cm.
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IV. Soutěžní úlohy II. kola

1. KATEGORIE A

1. Jsou dána kladná čísla aXi a2, ...,an(n ^ 2). Najděte
všechna reálná řešení soustavy
^1^2 -^2^3 ^23 •••3 1з XftXx (!■)

ŘEŠENÍ. Je-li л;„л;2, ...,4 řešení soustavy (1), jsou
všecka čísla x13 x2i ...,*„ různá od nuly. Rozřešme sou-
stavu (1) pro n = 2 a n = 3.

Pro n — 2 dostaneme soustavu xxx2 = aXi x2xx = a2.
Tato soustava je řešitelná právě tehdy, když je

«i = a2\ (2)
pak má soustava (1) nekonečně mnoho řešení.

Pro n — 3 dostaneme soustavu je,x2 = als x2x3 = a23

. Protože je axa2ala3
x3xx = a:i. Z ní vyjde x\
dostaneme dvě navzájem různá čísla xx jako řešení rovnice

. Ke každému xx vypočteme x2

> o,
a2 a2

axaxa2x\ = x,3 =
X\ ’

= a2. Soustava (1) má tedy pro

cl2

= —. Dále х2хя —
X-^

n = 3 právě dvě řešení.
Předchozí pokus ukazuje, že bude vhodné rozlišit n

sudé a n liché.
a) Je-li n číslo sudé větší než 2, platí
(Xj X^^X^Xq) (ХП-ХХП) (XoX^^X^Xr^ (ХПХХ),

po dosazení z (1) dostaneme

axa2

^JL

(3)axa2 &n-1 ^2^4 •

Není-li splněna podmínka (3), je soustava (1) neřešitelná.
Platí-li (3), zvolíme xx Ф 0 a z první až {n — 1). rovnice
(1) vypočteme postupně x2, *3, ..., xn. Tím je zaručeno, že
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těchto n čísel x1} x23 ..., xn splňuje prvních n — 1 rovnic
(1); ověříme, že splňují i poslední rovnici (1). Platí totiž

(здХзд) . ... . (xn_xxn)
=

{Хп-гХп-i)
Podle (3) je pravá strana (4) rovna an. Tím je dokázáno:
platí-li (3), má soustava (1) nekonečně mnoho řešení. To
platí i pro n — 2, kdy se podmínka (3) redukuje na pod-
minku (2).

b) Je-li n liché číslo, vypočteme
... . (хпх^

_

(*2*з)-(*4*5) (xn_ixn)

aia3 ... an-\
• (4)xnxl =

••• an-2

axaz CL)i (5)
й2а4 an-1

Levá strana (5) je zřejmě rovna x\3 pravá strana je číslo
kladné. Z rovnice

<*1^3 (6)x\ —
^2^4 an-l

vypočteme dvě různé hodnoty xx; z první až (n — 1).
rovnice (1) pak vypočteme к určitému kořenu xx rovnice
(6) postupně x23 xZ3 ••• j xn. Tím je zaručeno, že těchto

splňuje prvních n -

ověříme, že splňují i poslední rovnici (1).
n čísel xl3 x23 . 1 rovnic (1);Xn

v

Vypočteme —. Platí
Xn

(*!*2X*a*4) . ... . (xn-2xn i)
(*2*зХ*4*в) (*„_!*„)

ala3 an-2

Xj (7)
xn

Pravá strana (7) je rovna , což je podle
@2 ’ ^4 &n-1

x\rovnice (6) rovno —. Rovnice (7) má tedy tvar
<*n

X7Xi i
.

xn an
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a po dělení číslem xx (xt ф 0) dostaneme xnxx = an} což
je poslední rovnice (1).

Shrnutí. Pro n sudé je soustava (1) neřešitelná, nepla-
tí-li podmínka (3); platí-li (3), má nekonečně mnoho
řešení. Pro n liché má soustava (1) právě dvě řešení.

2. Pre každé tri nezáporné čísla x, y, z platí nerovnost’
IV) + y{y — 1i xz) + z{z — 1Ixy) > 0;

dokážte. V ktorých prípadoch nastane rovnost’?
RIEŠENIE. Pre každé dve nezáporné čísla x,y zrejme

platí: 0 ^ (|/x — ]jyfi pričom rovnost’ nastane len pre
x — y. Z tejto nerovnosti priamo vyplývá tzv. Cauchyho
nerovnost: j/xjy ^ X ^, t. j. geometrický priemer ne-

záporných čísel je menší alebo rovný ich aritmetickému
priemeru. S použitím Cauchyho nerovnosti dostaneme

x(x — Чуz) + y(y — 4xz) + z(z — ЧХУ) ^
X + z

У - -2-

x(x

) + - ^2^)
1

=

2 (2*2 — xy — xz + 2yr -

= \[{x- yf + (y
čím je daná nerovnost’ dokázaná.

Rovnost’ v poslednej nerovnosti može zrejme nastat’ len
pre x = у — z, kedy nastane rovnost’ aj v dokazovanej
nerovnosti.

Tým je úloha vyriešená.

xy — Уz + 2a:2 — xz —уz) =

a:)2 + (z — x)2] ^ 0,

3. V prostoru jsou dány čtyři různé body A, В, C, D.
a) Jestliže AC _L BD, pak je AB2 + CD2 - BC2 +
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+ AD2 a obráceně: je-li AB2 + CD2
pak je AC _L BD.

b) Jestliže AC ± BD a zároveň AD J_ BC, pak je
také AB _L CD.

Dokažte.

BC2 + AD2,

/
?zi

D1/
/

/

C x/

Obr. 33

ŘEŠENÍ, a) (Obr. 33.) Přímkou AC vedeme rovinu q
rovnoběžnou s přímkou BD a označíme B13 Dx průměty
bodů B, D do roviny p; zřejmě BD || BXDX. Označíme
BBX = DDX = v a v rovině g zaveďme soustavu kartéz-
ských souřadnic tak, aby polopřímka AC byla kladnou
poloosou x, pak jsou souřadnice bodů
A = [0; 0], Bx = [«ijjyi], C = [x23 0], D, =[д:3;^3].
Jestliže AC J_ BD, pak

(OX] — x3.

Dále podle Pythagorovy věty (vzorce pro vzdálenost dvou
bodů)
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AB2 + CD2 = *; + .я + + (x2 - *3)2 +yš-hv2 =
= xf + xl + xl + y\ + yj + 2v2 — 2*2*3; (2)

BC2 + ЛВ2 = (*x — *2)2 + 3^1 + + *1 + yi + v2 =
= X? + *| + *1 + yí + y\ + 2v2 — 2*!*2. (3)

Obě rovnosti (2), (3) platí i v tom případě, splyne-li ně-
který z bodů B1} Dt s některým z bodů A, C nebo v pří-
pádě, že v = 0.

Jestliže BD || BjDj __L ЛС, pak *j = *3; z (2), (3) pak
plyne

AB2 + CD2 = ВС2 + ЛВ2.
Obráceně, platí-li (4), pak podle (2), (3) *2(*j — *3) = 0.
Protože *2 Ф 0 (platí totiž A C), pak *x = *3, tj.
BD || BlDl J_ AC.

b) Z předpokladů plyne podle odst. a) jednak (4), jednak
(výměnou C, D) vztah

(4)

AB2 + CD2 = AC2 + BD2.
Spojením (4),(5) dostaneme AC2 + BD2 — BC2 + AD2
a opět podle odst. a) vztah AB J_ CD.

(5)

JINÉ ŘEŠENÍ, a) Platí-li o čtyřech různých bodech
А, В, C, D, že AC J_ BD, veďme přímkou BD rovinu o
kolmou к přímce AC. Označme P průsečík přímky AC
s rovinou q. Zřejmě platí

AB2 = AP2 + BP2,
CD2 = CP2 + DP2

a obdobně
BC2 = BP2 + CP2,
AD2 = AP2 + DP2.

Sečtením dostáváme ihned
AB2 + CD2 = BC2 + AD2.

Předpokládejme nyní, že o různých bodech А, В, C, D
platí (1). Označme P patu kolmice z bodu В na přímku

(1)
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AC, Q patu kolmice z bodu D na přímku AC. Dokážeme,
20 jy • ■ — ^
Protože ВС2 = BP2 + CP2, AB2 = АР2 + BP2, je

BC2 - AB2 = CP2 - ЛР2. (2)
Obdobně ze vztahů CD2 — CQ2 + DQ2, AD2 = AQ2 +

|- DQ2 dostáváme
CD2 - AD2 = CQ2 - AQ2. (3)

Podle (1)
BC2 - AB2 = CD2 - AD2,

takže z (2) a (3)
CP2 - AP2 = Cg2 -

Na přímce /4С zaveďme jednu souřadnici takto: bod A
bude počátek se souřadnicí nula, bod C bude bod o sou-
řadnici 1. Označme p souřadnici bodu P, q souřadnici
bodu Q. Platí tedy AP2 = p2, AQ2 — q2, CP2 = (1 — p)2,
CQ2 = (1 — q)2. Ze (4) vyplývá, že

(1 - p)2 - p2 = (1 - q)2 - f

(4)

neboli po úpravě
P = Я-

Platí tedy P e^Q. To však znamená, že přímka BD
leží v rovině q vedené bodem P kolmo к přímce AC.
Proto BD _]_ AC.

b) Nechť AC J_ BD a zároveň AD _L BC. Podle části
a)

AB2 + CD2 = BC2 + AD2

AB2 + CD2 = AC2 + BD2.
a zároveň

Proto také
AC2 + BD2 = BC2 + AD2,

odkud podle a) vyplývá, že
AB ± CD.

Tím je úloha rozřešena.
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4. Je daný štvorec ABCD so stranou dížky 8 cm. V jeho
vnútri je daný bod M, ktorého vzdialenosti od stráň AB,
AD sú v uvedenom poradí 2 cm a 4 cm. Vyšetříte mno-
žinu stredov všetkých úsečiek, ktoré obsahujú bod M
a ktorých koncové body ležia na obvode štvorca ABCD.
(Použité metodu súradníc.)

RIEŠENIE. Bod M spojíme so všetkými vrcholmi
štvorca ABCD a určíme priesečníky A', B\ C, D' týchto
priamok s obvodom štvorca (obr. 34). Teraz budeme

C"/ Ájr

skúmať úsečky XY obsahuj úce bod M, ktorých koncové
body X, Y sú bodmi obvodu štvorca ABCD, a ktoré
ležia vo dvojiciach vrcholových uhlov:

a) <£ CMD
b) «£ DMB'
c) ^B'MA
d) AMC

^ CMD';
<£ D'MBy
<£BMA';

A'MC.

a

a

a

a
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V případe a) je častou hladanej množiny /И stredov
úsečiek XY úsečka C"D", ktorá je prienikom strednej
priečky A'B' s uhlom <£ CMD (obr. 34). V případe c)
dostaneme jediný bod Aí ako časť množiny /И.

Zostáva vyšetriť případy b) a d). Ak vyšetříme časť
množiny M v případe b), budeme poznat’ aj jej časť v prí-
páde d), pretože obe časti sú zrejme súmerne združené
podlá osi úsečky AB.

Časť množiny УИ v případe b) vyšetříme metodou sú-
radnic. Za kladné polosi kartézskej súradnicovej sústavy
zvolíme polpriamky AB (x) a AD {y). Potom je Aí =
= [4; 2]. Budeme vyšetřovat’ analyticky množinu P stře-
dov všetkých úsečiek XY, ktoré obsahuj ú bod Aí, a kto-
rých koncové body ležia na priamkach AB, AD. Do
úvahy přitom zrejme neprichádzajú úsečky rovno-
běžné s osami AB, AD, preto móžeme skúmať len úsečky
ležiace v priamkach

(1)У — 2 = t{x — 4),
kde t je parametr. Rovnica (1) vyjadřuje potom 1’ubovolnú
priamku prechádzajúcu bodom Aí a róznobežnú s osou
y(=AD). Priesečníky priamky (1) so súradnicovými
osami sú

7 ’ °] ’
Je totiž t ф 0, pretože podlá predchádzajúceho je priamka
(1) róznobežná tiež s osou x(= AB). Súradnice středu Z
úsečky XY sú podlá (2)

(2)Y = [0;2 4r].X 4 _

1
(3)У = 1 - 2t.x — 2 —

t 3

Vylúčením parametra t z rovnic (3) dostaneme
(x - 2)Cy - 1) = 2,

čo je rovnica rovnoosej hyperboly s asymptotami x — 2,
(4)
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у = 1, ktorá obsahuje body [0; 0] i [4; 2] (obr. 35).
Obrátením postupu zistíme, že každý bod hyperboly (4)
patří do množiny P. Časť množiny /И v případe b) je
prienik hyperboly (4), (resp. jej vetvy ležiacej v prvom
kvadrante) s vrcholovými uhlami <£ DMB' a <£ D'MB.

= ADУ

D"

x = ABA

Obr. 35

Tahko zistíme, že hyperbola (4) sa dotýká v bode M
priamky BB'. Táto priamka má totiž rovnicu jc -f 2y = 8.
Ak dosadíme stadia! za x do (4), po úpravě vyjde

4y + 4 = 0 čiže (y — 2)2 = 0. Priamka BB' má
teda s hyperbolou (4) jediný spoločný bod M = [4; 2]
a nie je rovnoběžná s asymptotou. Je to teda skutočne do-
týčnica hyperboly. Pretože vďaka vyššie uvedenej sy-
metrii je tým vyšetřená aj časť množiny /И, ktorá leží vo
vrcholových uhloch AMC a <^C A'MC (případ d),
móžeme doplnit’ obr. 34 na „erb“, ktorého obvod je hla-
daná množina Л1 (obr. 36).

У2
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о

А1В'

А С D1

Obr. 36

KATEGORIE В

1. Na kruhové dráze vyjeli z téhož místa A v témž oka-
mžiku v opačných smyslech dva cyklisté. Pomalejší, který
jel rychlostí 6 m/s, potkal druhého cyklistu v prvním svém
okruhu dvakrát, v druhém okruhu třikrát, v třetím okruhu
zase dvakrát, přitom vždycky mimo místo A. Najděte co
nejužší meze pro rychlost druhého cyklisty.

ŘEŠENÍ. Je-li tk doba (měřená v sekundách od počátku
jízdy), v které se oba cyklisté potkali po k-té, je

64 + vtk = k . s,
kde s je délka kruhové dráhy v metrech a v rychlost dru-
hého cyklisty v m/s. Z (1) plyne

h —

(1)

ks
(2)6 + v ’

s
Protože je doba, za kterou projel pomalejší cyklista
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jednou kruhovou dráhu, pak podle textu úlohy
5 2s 3s

*2 < < ^3 J ^5 < ■g" < tb) h < "Z" <h>
tj. vzhledem ke (2)

2s s
^ 3s 55

6 + z;<6 ^ 6 + ^ ’ 6 + zj

(3)

652s
<

6 6 + v 5
75 35 (4)85

6 + ^<6 < 6 v ‘
Z (4) dostaneme po úpravě

6 < v < 12, 9 < © < 12, 8 < v < 10, tj.
9 < v < 10. Rychlost druhého cyklisty je mezi 9 a 10 m/s.

2. Na kružnici k je daných n bodov, z ktorých žiadne
dva neležia na tom istom priemere. Potom možno viesť
stredom kružnice k takú priamku p, že každá z opačných
polrovín s hranicou p obsahuje z daných bodov rovnaký
počet. Dokážte.

RIEŠENIE. Označme /И množinu daných bodov,
5 střed kružnice k. Ku každému bodu X kružnice k pri-
radíme celé číslo p{X) = m — m\ kde m je počet bodov
množiny /И, ktoré ležia v tej polrovine v+ (X) s hranič-
nou priamkou SX, ktorá vznikne otočením polpriamky
SX o uhly 0° až 180° v kladnoip zmysle, m' je počet bodov
množiny M, ktoré ležia v polrovine v~(X) opačnej к pol-
rovině v+(X).

Číslo p(X) móžeme zrejme vyjadriť tiež iným spóso-
bom: Označme M' množinu súmernú к množině M
podlá středu S. Množina /И' sa skládá taktiež z n bodov
ležiacich na kružnici k. Pretože žiadne dva body z mno-
žiny /И neležia na tom istom priemere, nemajú množiny M
а /И' žiadny spoločný bod. Číslo p(X) je preto tiež roz-
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dielom medzi počtom bodov z M a počtom bodov z /И'
(v uvedenom poradí), ktoré ležia v polrovine v+(X).

Zvolme teraz na kružnici k lubovolný bod O, ktorý
neleží ani v /И, ani v /И '. Označme O' druhý priesečník
priamky SO s kružnicou k. Ak je p(0) = 0, má priamka
SO hladanú vlastnost’. Ak je p{0) > 0, potom

p{0) < 0.
Nech teraz premenný bod X prebieha polkružnicu 00'

kružnice k v polrovine v+(0) z bodu O do bodu O’. Vy-
šetrime, ako sa mění číslo p(X). Číslo p(X) je celé a ne-
mění sa vo vnútri takého oblúka polkružnice, ktorý ne-
obsahuje žiadny bod z /И ani z M'. Ak pride bod X do
bodu A z množiny /И, číslo p(X) sa v bode A zváčší
o jednu, po prejdení bodom A sa opáť zváčší o jednu. Ak
pride bod X do bodu A' z množiny /И', číslo p(X) sa
v bode A' zmenší o jednu, po prejdení bodom A' sa
zmenší opáť o jednu.

Pretože začiatočná hodnota p(X) v bode O je p{0) > 0
a koncová hodnota je podia (1) —p{0) < 0, nadobúda
funkcia p(X) na polkružnici 00' všetky celé hodnoty
medzi číslami p{0) a —p(0), teda tiež hodnotu 0 (resp.
i niekolkokrát). Ak je p(X0) = 0, je SX0 hladaná priamka,
pretože v polrovine v +(X0) aj v polrovine v ~(X0) je ten istý
počet bodov z N\.

Ak jep(O) < 0, postupujeme analogicky alebo začneme
z bodu O' súmerne združeného s O podia S.

Tým je úloha vyriešená.
Poznámka. Podrobnějším rozborom možno zistiť, že

pre n párne je nekonečné mnoho riešení (priamka/) móže
prechádzať lubovolným bodom X na niektorom oblúku
medzi dvorná bodmi z M alebo /И'), pre n nepárne má
úloha len konečne mnoho riešení (priamka p vždy pre-
chádza niektorým bodom z množiny /И).

(1)P(O')
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3. Jestliže kvadratická funkce
/(x) — ax1 + bx + c

nabývá v intervalu — 1 ^ x ^ 1 pouze hodnot — 1 ^
^ fix) t=k 1, potom \a\ ^ 2; dokažte. Může být \a\ = 2?

ŘEŠENÍ. Pro x — 0 plyne
(2)

Pro x = 1 a x = — 1 dostaneme

(3)ta -\- b -\- c\ 1, |a — b + c\ < 1.
Z (3) odvodíme podle známého vzorce |a + /J| ^ |a| +
+ \ft\ tento výsledek

\(q + b + c) (<2 — b + c)|
b + c| ^ 2,

|2a + 2c\
= Iй b -j- c\ -j- a

neboli
(4)\a + c\ 1.

Podle vzorce |aj — |/Sj ^ |a + fi\ plyne z (4)

neboli podle (2)
|a| ^ 1 + \c\ ^ 2.

Hledaný odhad je tedy skutečně \a\ ^2.
Funkce у = 2x2 — 1 (kde <2 = 2) splňuje v intervalu

1 podmínku - 1 < /(x) Д 1. Neboť pro x = 0
nabývá hodnoty —1, pro x = 1 hodnoty 1 a v intervalu
0 ^ x ^ 1 je rostoucí. Jestliže totiž 0 ^ xt < x2 ^ 1, platí

(2Xa — 1) — (2x\ — 1) = 2(x2 — Xi)(x2 + xx) > 0.
V intervalu — 1 ^ x ^ 0 nabývá tato funkce týchž hod-
not jako v intervalu 0 fgj x ^ 1.

1 < x

4. Jsou dány dva body А, В a bod S ležící uvnitř
úsečky AB. Sestrojte Д ABC, pro který platí <£ ACB =
= <£ ASC a jehož těžnice tb má danou délku d. Proveďte
diskusi vzhledem к délkám d, AB a AS.
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ŘEŠENÍ. Rozbor (obr. 37). Podle věty uu platí
Д ACB co A ASC,

neboť <£ ACB = <£ ASC a <£ CAB = 5ЛС. Tudíž
АС AB
AS ~ AC 3

tj-
(1)AC2 = AB . AS.

Z posledního vztahu už plyne konstrukce. Nejdříve
sestrojíme podle Euklidovy věty o výšce nebo o odvěsně
úsečku velikosti b = AC tak, aby platil vztah (1). Nyní se
už jedná o známou úlohu sestrojit trojúhelník, je-li dáno
AB = c, AC = b, délka d těžnice tb. Užije se pomocného
Д ABE, kde E je střed strany AC. Tento trojúhelník se
sestrojí podle věty sss. Bod C sestrojíme na prodloužení
úsečky A E za bod E tak, aby bylo ЕС = AE = ~.

Zkouška. Zřejmě má sestrojený Д ABC vrcholy Л, В
a těžnici tb o délce d. Je ovšem nutno dokázat, že platí

<£ ACB = <£ ASC. (2)
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Pro trojúhelníky Д АСВ а Д ASC platí
<£ CAB = <£ SAC,

АС АВ
AS АС5

což plyne z (1). Tudíž Д АСВ со Д ASC, takže platí (2).
Diskuse. Úloha bude mít řešení, právě když půjde sestrojit
pomocný Д ABE, tj. právě když bude platit

|AB - AE\ <BE <AB + AE.

Avšak AE = b — ÁB ÁŠ(plyne z (1)), 0 < AS <

< AB, takže \AB — AE\ — AB — AE. Dosadíme-li do

(3) BE = d а ]MŘ . AS, dostáváme podmiň-
ku řešitelnosti úlohy

AB -

(3)

1/АВ . AS < d < AB + ~ fAB.AS .

1
(4)2‘

Je-li splněno (4), má úloha jediné řešení. Neplatí-li (4),
nemá úloha řešení.

3. KATEGORIE C

1. V dekadickém zápisu čísla 23A5B6 nahraďte
písmena А, В ciframi tak, aby vzniklo číslo dělitelné
devatenácti. Kolik má úloha řešení ?

ŘEŠENÍ. Číslo je napsáno v desítkové soustavě, a proto
platí 23A5B6 = 230506 + A . 103 + В . 10, 0 ^ A ^ 9,
0 Д £
zbytek 17, je číslo 23A5B6 dělitelné 19, právě když
A . 10:5 + В . 10 dává při dělení 19 zbytek 2. Avšak 103
dává při dělení 19 zbytek 12, a tedy A . 103 -f В . 10 dává

9. Protože číslo 230506 dává při dělení 19
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při dělení 19 týž zbytek jako číslo 12A + 105 =
= 2(6A + 55). Poněvadž číslo 19 je prvočíslo, dává
12A 4* 105 zbytek 2, právě když 6A + 55 dává zbytek 1.

Máme tedy najít všechny dvojice čísel A, 5,0
0 ^ 5 ^ 9, tak, aby číslo 6A + 55 dávalo při dělení 19
zbytek 1, tj. číslo 55 musí dávat při dělení 19 týž zbytek
jako číslo 1 — 6A. Sestavme si tabulku zbytků těchto čísel
při dělení 19:

A 9,

A 1 - 6A В 5В

0О 1 о
1 51 14

102 8 2
3 3 152

1154 4
65 59

116 3 6
16 167 7
10 88 2

94 79

Z těchto tabulek vidíme, že jediné dvojice, které dávají
týž zbytek, jsou

В

4
8
3
7
2

Úloze tedy vyhovují tato čísla:
230 546, 233 586, 234 536, 237 576, 238 526.
Dělením 19 se o tom snadno přesvědčíme.
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2. Určete všecky trojice prvočísel a, b, c, pro které
platí abc < ab + bc + ca.

ŘEŠENÍ. Zvolme označení tak, aby platilo
(1)b ^ c.a

Jestliže a ^ 3, je pak
ab 4- bc + ca ^ 3bc < abc.

Pro každé řešení nerovnosti
abc < ab + bc + ca

platí tedy a — 2. Z (2) pak plyne 2bc < 2b + bc + 2c
neboli po úpravě

(2)

1 1 1
(3)>

2 *b c

11,1^2 1
5 < 25

1 1 1
Jestliže 5 ^ b ^ c, je -€-^b

tj. neplatí (3). Pro každé řešení nerovnosti (2) platí tedy
b = 2 nebo b = 3. Trojice a = b = 2, c libovolné, je
zřejmě řešením nerovnosti (2). Jestliže b = 3, c ^ 7, je

1 1 1 1 1111 10 1
~

7 5 b ' c ~ Ъ ~ 1 ~

5 5 c =5’ b c

Pro<
b 3 ’ c 21 2 '
a = 2, b — 3 máme tedy jen dvě možnosti pro c, a to

3 nebo c = 5.c

Shrnutí. Nerovnost (2) má tato prvočíselná řešení:
2, 2, c (c libovolné prvočíslo); 2, 3, 3; 2, 3, 5.

3. Je daná úsečka AB a bod S jej vnútra. Aký útvar je
množinou vrcholov C všetkých trojuholníkov ABC, pre
ktoré platí <£ ACB = <£ ASC?

RIEŠENIE (obr. 38). Nech je C jeden z bodov hlada-
ného útvaru U. Potom podlá vety uu o podobnosti troj-
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uholníkov platí vztah
(1)Д ASC oo Д ACB.

Z (1) vyplývá AC: AS = AB : AC číže
AC2 = AB . AS. (2)

A ВВ АS s

Obr .£39Obr. 38

Podlá (2) je teda vzdialenosť AC konštantná a bod C leží
na kružnici k so stredom das polomerom r = ]/А В . AŠ.

Zvolme obrátene 1’ubovol’ný bod C kružnice k tak, aby
neležal na priamke AB. Potom vzniknú trojuholníky
Д ASC3 Д ACB a pre dížky ich stráň platí rovnost’
(2). Z rovnosti (2) vyplývá vztah AC: AS = AB : AC.
Okrem toho majú oba trojuholníky spoločný uhol

— и — o podobnosti troj-<£ CAS = <£ CAB. Podlá vety ^
uholníkov platí teda vztah (1). Z (1) potom vyplývá zhod-
nosť uhlov <£ ASC — <£ ACB3 t.^j. bod C patří do
útvaru U.

Závěr. Útvar U je kružnica k so stredom A a polome-
rom r = YAB .AS s vylúčením jej priesečníkov s priam-
kou AB. Poloměr r kružnice k zostrojíme napr. pomocou
Euklídověj vety o pravouhlom trojuholníku (obr. 39).

110



4. Je dána úsečka AB a přímka p kolmá к AB; oba
body А, В leží v téže polorovině s hranicí p. Sestrojte
trojúhelník ABC tak, aby vrchol C ležel na přímce p
a aby platilo <£ ABC = 2 <£ BAC. Určete podmínku
řešitelnosti úlohy.

ŘEŠENÍ. Označme Q průsečík přímek p, AB; dále
označme a = AQ, b = BQ. Názor nám napovídá, že
úloha je neřešitelná, je-li

(1)a < b.
В

В

А

п
С Р С РA=Q а

Obr. 40а, b

Skutečně, je-li а = 0, tj. A =Q (obr. 40а), je <£ ВАС —
= 90°, <)С АВС < 90°, proto neplatí

АВС - 2 <£ БЛС.
Je-li 0 < а < b (obr. 40b), je <£ QAC < 90°, BAC >
> 90°, ABC = <)C QBC < 90°, proto také neplatí (2).

Je-li В =Q (obr. 41), jsou řešením úlohy zřejmě dva
rovnoramenné pravoúhlé trojúhelníky ABC13 ABC2.
Zbývá případ 0 < b < a (obr. 42). Označíme-li
<£ BAC - a, je <£ ABC = 2a, QBC = 180° - 2a.
Označme A' bod souměrně sdružený s bodem A podle

(2)
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přímky p\ pak je BA'C = <£ QA'C = X QAC =
= <£ BAC — a. Osa úhlu -Д OBC = <£ A'BC protne

úsečku A'C v bodě Maje <£A'BM = -i ^QBC = 90° —

— a, tj. i?M X ^4'M. Bod M leží tedy na kružnici k
sestrojené nad průměrem A'B. Protože je X A'BM =
= X CBM, X A'MB = X CMB - 90°, je Д A'MB^>
Cs? Д CMB, a tedy A'M — CM. Bod M leží tedy také
na přímce r||p, která prochází středem úsečky A'Q,
neboli na ose r úsečky A'Q.

Bod M sestrojíme jako průsečík kružnice k s přímkou r
(jsou dvě řešení) a bod C (jsou opět dvě řešení) sestrojíme
jako průsečík přímek p, A', M.

Obrácení předchozího postupu ukáže, že takto sestro-
jené body C jsou skutečně řešením úlohy.

Závěr. Úloha je řešitelná, právě když platí a > b; pak
má dvě řešení. Tento výsledek dostaneme spojením uve-
děného řešení s podmínkou neřešitelnosti (1).

JINÉ ŘEŠENÍ. Proti delším stranám trojúhelníka leží
větší úhly a naopak. Je tedy vidět, že úloha nemůže mít
řešení, je-li bod A blíže к přímce p nežli bod B.

Předpokládejme tedy, že BQ < AQ, kde Q je průsečík
(viz obr. 43) přímek p a AB. Použijeme opět vlastnosti
obvodového a středového úhlu. Sestrojíme kružnici k
se středem В tak, aby dvojnásobek úhlu <£ ABC byl
úhlem středovým (je to úhel nevypuklý, neboť <£ ABC
je tupý) a aby dvojnásobek úhlu <£ BAC byl úhlem obvo-
dovým. Za tím účelem sestrojíme opět bod A’ souměrně
sdružený s bodem A podle přímky p; kružnici k pove-
deme bodem A'. Poněvadž В a A' leží v různých polo-
rovinách s hranicí />, protne kružnice k přímku p ve dvou
bodech C15 C2. Trojúhelníky ABCl3 ABC2 jsou řešením
úlohy, jak snadno dokážeme.
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Důkaz. Budiž A'A" průměr v k.
<£ A"A’C{ je obvodový úhel příslušný к tětivě А"С(.
<£ A"BCi je středový úhel příslušný к tětivě А"С(.
Avšak <£ A"BCi = <£ ABCi3 a na drnhé straně

A"A'C= <K QA'C, = <£ QAC, = <* BAQ. Tedy
z věty o obvodovém a středovém úhlu plyne

2 <£ BACi = <£ ABCi (i = 1, 2).

y«w

A
\
\
\

A \
\
\
\
\
\
\

В \
\
л

CV />C2 Q a

a
a

A
A

A
A

к/
Obr. 43

4. KATEGORIE D

1. Dokažte, že výraz
I/=,a2-a6 + 62-a + 6+ l

je kladný pro každá dvě čísla a3 b.
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ŘEŠENÍ. Daný výraz F znásobme dvěma a pokusme
se upravit výraz 2 F tak, aby byl součtem druhých moc-
nin. Z prvních tří členů výrazu 2 F sestavíme druhou moc-
ninu dvojčlenu (a — b)2 = a2 — 2ab + b2. Platí tedy

2V — (a — b)2 = a2 + b2 — 2a + 2b + 2.
Z prvního, třetího a pátého členu na pravé straně (1)
sestavíme druhou mocninu (a — l)2 = a2 — 2a + 1.
Platí tedy dále

2V-(a- b)2 - (a - l)2 - b2 + 2b + 1 = (b + l)2
a odtud

(1)

2 V=(a- b)2 + (a - l)2 + (b + l)2.
Z rovnosti (2) vyplývá, že V ^ 0. Jestliže F = 0, plyne
z (2) a — 6 = 0, a — 1 = 0, b + 1 = 0, tj. a = 6, a = 1,
6 = — 1, což je nemožné. Proto nemůže být V = 0
a pro každé a, 6 platí F > 0.

(2)

2. Prirodzené čísla 1, 2, 3,...,« napísaná v nejakom
poradí označme a2, a3, ... , aM. Ak je n číslo nepárne,
je súčin

(ax — l)(a2 — 2)(a3 - 3) (an — n)
dělitelný dvorná. Dokážte.

RIEŠENIE. Medzi číslami 1,2, ..., n je pri nepárnom n
nepárnych čísel o jedno viac ako párnych. Preto v uspo-
nadaní ^3)
na ,,nepárnom“ mieste k. Párnych miest je totiž o jedno
menej. Rozdiel ak — k je potom dělitelný dvorná a preto
aj súčin (aj — l)(a2 — 2)(a3 — 3) ... (an — n) je dělitelný
dvorná.

an stojí aspoň jedno nepárne číslo ak• -O
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3. Je daný šesťuholník ABCDEF zložený z obdížnika
ABGF s rozmermi AB = 12 cm, AF = 4 cm a z ob-
dížnika CDEG s rozmermi CD = 4 cm, CG = 2 cm
(pozři obr. 44). Narýsujte tento šesťuholník a zakreslite
geometrické miesto stredov všetkých úsečiek kolmých
к priamke BE, ktorých koncové body ležia na obvode
šesťuholníka. Geometrické miesto sa skládá z ósmich
úsečiek. Vypočítajte súčet ich dížok.

RIEŠENIE. Na obr. 44 je narýsovaný daný šesťuhol-
nik. Vrcholmi С, E, D, A vedieme v uvedenom poradí
priamky p\, p2> Pv Pi kolmé к BE. Časť hladaného geo-
metrického miesta (množiny) M, ktorá leží v polrovine
pxB, je výška rovnoramenného pravoúhlého trojuholníka
BCC' (C je priesečník priamky px a úsečky AB). Podobné
je tomu v polrovine p4E, kde příslušnou častou množiny M
je výška rovnoramenného pravoúhlého trojuholníka AFA'
(A' je priesečník priamky p4 s úsečkou EG). V pásoch
(pjp2) a (p:ip.i) sú příslušnými časťami množiny /И úsečky.
Ležia v osiach súmernosti dvojice rovnobežiek AB, CD
a AB, ЕЕ. Najzložitejšia je situácia v páse (p2p3). Na obr.
45 je zakreslená priamka p tohto pásu kolmá к priamke
BE. Číslami 1, 2, 3, 4 sú označené jej priesečníky s ob-
vodom šesťuholníka ABCDEF. Dvojicami 12, 13, 14, 23,
24, 34 je označených šesť stredov dvojíc vybraných zo
štyroch bodov 1, 2, 3, 4. Ak priamka p prebieha pás p2p.„
dostaneme ako časti množiny M hrubo vytiahnuté úsečky
na obr. 45. Na obr. 44 sú к jednotlivým úsečkám, ktoré
tvoria množinu /И, pripísané ich dížky.

Súčet týchto dížok je 10 + 8 ^2 = 21,3.

4. Sestrojte pravoúhlý trojúhelník ABC s přeponou
AB, je-li dána délka jeho těžnice tc a velikost úhlu co, který
svírá těžnice tc s osou úhlu ACB. Pro která co má úloha
řešení ?
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ŘEŠENÍ. Rozbor (obr. 46). Označme S střed přepony
AB. Podle Thaletovy věty SA = SC = SB = tc. Troj-
úhelníky A ASC а Д BSC jsou tedy rovnoramenné,
a proto

<£ ACS = <£ CAS = a,

<3C BCS = <)c SBC — p.

Je-li a) úhel, jenž svírá těžnice tc s osou úhlu <£ ACB =
= 90°, potom

(1)a = 45° + co, p = 45° - co

a = 45° — o), p = 45° + co.

Z posledních vztahů již plyne konstrukce. Jde o kon-
strukci trojúhelníku podle věty usu: AB — 2 . tc a úhly
a, p jsou určeny vztahy (1), resp. (2).

Zkouška. Ze vztahů (1), resp. (2), je zřejmé, že sestro-
jený A ABC je pravoúhlý. Protože je jeho přepona rovna
2rc, má těžnice na přeponu předepsanou délku.

Diskuse. Ovšem, aby úloha měla řešení, musí být úhly

nebo
(2)

118



a, (3 dané vztahy (1), resp. (2), ostré, tj.
0° ^ co < 45°.

Jestliže co = 0°, má úloha jedno řešení — sestrojený
Д ABC je rovnoramenný. Jestliže 0° < co < 45°, má
úloha dvě řešení.

Pro co 45° nemá úloha řešení.
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V. Úlohy III. kola kategorie A

1. Nechť <2l3 a2, ..., an {n >w2) jsou reálná čísla, z nichž
nejvýše jedno je rovno nule. Řešte v reálném oboru sou-
stavu

*1*2

xn - ixn Ofl_1 ,

xnxl

ŘEŠENÍ. A. Zabývejme se řešením soustavy rovnic

^2^3

[8 bodů]= d)l ‘

al 3

= й2 )

(1)
xlxl+1 — al 3

kde cit Ф 0 pro 1, 2, ..., ^ 1.
Na pravých stranách těchto rovnic jsou čísla různá od

nuly, a proto musí být xt Ф 0 pro i = 1, 2, ..

Chceme-li ze soustavy (1) vypočítat xb i = 2, 3, ..

je nutno rozlišit zda г je číslo sudé nebo liché.
1. Nechť i je číslo sudé. Pro i — 2 dostáváme z první

rovnice

., / + 1.
•3 l + 13

a1
Xo =

xx
Nechť i = 2k, kde k je přirozené číslo splňující nerovnosti
2 < 2k ^ / 4- 1. Vezměme prvních 2k — \ rovnic sou-
stavy (1) a přepišme je následujícím způsobem

xlx2 — d\ 3

О.у = X.yX$ ,

X3X4
(2)

X2'c-2X21:—1 3a2’c-2
^2*-1^2* = a2Jc-l‘
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Rovnice (2) spolu znásobme. Dostáváme
(•*1^2 **• XZk){.a2ab ••• a2k-‘2) — i.X2*3 ••• x2’C-l)(&l&3 ••• a2k-l)‘
Po úpravě
(*2*3 ... x2k 1)[xxx2k(a2aA ... a2k.2) — {axaz ... a2t-i)] = 0>
odkud již plyne

axa2 ... a2k-x (3)x2k
a2ax ... d2ic-2 • *i

Poznámka. Vztah (3) platí i pro i = 2, tj. k = 1, klademe-li
a2a4 ... а2к_2 = 1 pro k

2. Nechť i — 2k-\-1, kde k je přirozené číslo splňující
nerovnosti 3^2£+l^/+l.Z 2&-rovnice soustavy (1)
plyne

1.

a2k
x2k+\ —

x2к

tj. podle (3)
а2й4 • • • &2k (4)X2k+X —

ахал ... a2k.-^

Z tvaru vzorců (3) a (4) je zřejmé, že x2k a x2k+x dané (3)
a (4) vyhovují 2^-rovnici soustavy (1) pro 2 ^ 2k
a libovolné xx Ф 0; (2k + l)-rovnici soustavy (1), (kde
3 ^ 2^ +1 ^ /) splňují x2kxx dané (4) а *2(jfc+i) určené
pomocí (3) pro libovolné xx Ф 0. První rovnici soustavy
(1) splňuje jc2 dané vztahem (3) pro k = 1 při libovolném
xx Ф 0.

Soustava (1) má tedy nekonečně mnoho řešení daných
vztahy xx = t a (3) a (4) pro x2i x2, ..., xl+Xi kde t je libo-
volné reálné číslo různé od nuly.

B. Výsledků získaných v odstavci A. využijeme pro
řešení soustavy dané v úloze. Je třeba rozlišovat několik
případů.

/
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1 Nechť ax. a2 an-X Ф 0. Potom řešení z od-
stávce A., položíme-li / = n — 1, musí splňovat podmínku

xnxx
1.1 Je-li n sudé, pak podle (3) má platit

gjg3 * • • Q"ri 1

^2^4 •" &n— 2

Označme zlomek na levé straně nerovnosti (5a) písmenem
a. Jestliže a ^ ani má soustava nekonečně mnoho řešení;
v případě, že a < anj soustava řešení nemá.

1.2 Jestliže je n liché,' potom ze vztahů (5) a (4) plyne,
že má platit

(5)(Xn.

(5a)CLn •

Cl2^4 ... <Xn m. x\ Ф an .

«1^3 ••• an-2

Označme zlomek na levé straně nerovnosti (5/?) pišme-
nem b. Zřejmě tedy b Ф 0.

1.21 Jestliže 6 > 0, potom

*i*T
a čísel а, Ф 0 splňujících tuto nerovnost je nekonečně
mnoho a soustava má nekonečně mnoho řešení, přičemž
an je libovolné reálné číslo.

1.22 Jestliže b < 0, potom
2 <^ПXl - b •

Vzhledem к tomu, že musí být xx ф 0, má soustava řešení,
a to nekonečně mnoho, právě když ~ > 0, tj. an < 0.

2 Nechť ax — 0. Potom z prvních dvou rovnic sou-
stavy plyne, že xx = 0, neboť a2 Ф 0. Lze opět využít
výsledků z odstavce A., ovšem nyní jde o soustavu
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•^2^3 — ^23
= fl3 3

Xn-l^n ап-1 з

takže je třeba nejdříve xt a at přečíslovat (snížit indexy
o jedničku).
Řešení ovšem musí splňovat podmínku

^ a /I 3

tj.
Xji. О Ил .

Soustava má tedy pro an < 0 nekonečně mnoho řešení
a pro an> 0 nemá žádné řešení (an Ф 0, neboť ax = 0).

3 Nechť fy = 0, kde ie (2, 3, ..., n — 2}, přičemž
n > 3. Potom = 0 nebo xž+1 = 0, což však není možné,
neboť а^х Ф 0 a abfl Ф 0. Soustava nemá tedy v tomto
případě řešení.

4 Nechť an x = 0. Potom zřejmě = 0 (xn-X Ф 0,
neboť an 2 Ф 0). Řešení opět získáme pomocí výsledků
z odstavce A., položíme-li l = w —[2.
Řešení ovšem musí splňovat podmínku

^ <2XnXL II 3

tj-
0 . ^ an.

Jestliže an < 0, má soustava nekonečně mnoho řešení; pro
an > 0 žádné řešení (an Ф 0, neboť an_x — 0).

Závěr:
Soustava má nekonečně mnoho řešení, právě když nastane
jeden z těchto případů:

ax. аг ... an_x Ф 0, n je sudé číslo, a ^ an [viz 1.1]
ax . a2 ... ^ 0, n je liché číslo, b > 0 [viz 1.21]
ax. a2 ... an..x Ф 0, n je liché číslo,

6 < 0, an < 0 [viz 1.22]
[viz 2]
[viz 4].

ax — 0, an < 0
CLn-X = 0, un <C 0
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Soustava nemá řešení, právě když nastane jeden z těchto
případů:

«^2 ... Ф 0, n je sudé číslo, a < aH [viz 1.1]
ata2 ... ап.л Ф 0, n je liché číslo,

b < 0, an ^ 0 [viz 1.22]
[viz 2]
[viz 3]
[viz 4]

— 0, an > 0
at = 0, ie {2, 3, ..

<*n-1

n — 2}, n > 3•3

= 0, a„ > 0
2. Je-li ri celé číslo, potom číslo

(2 + 1 3)" - (2 - 1 3)"
Qn

2]/3
je celé. Dokažte a vyšetřete, pro která n je an dělitelné
třemi. [5 bolů]

ŘEŠENÍ, a) Nechť n je číslo přirozené. Použijeme bi-
nomické věty. Potom

y[(Í)- 2”-* • (1/3)*- -(-!)»(*) 2“-*-. (1/3)*
k = 0

.2'1' 5(l/3)’‘ -p ...

2]r3
. 3 + . 2ří~5.32 + ..

tj. aH je celé číslo. Všechny členy této řady s možnou
výjimkou prvního jsou dělitelné třemi. Z tohoto důvodu
číslo a„ je dělitelné třemi právě tehdy, jestliže je

. 2"-1 = n. 2а~л dělitelné třemi, tj. když n je děli-
telné třemi (neboť 2"_1 není dělitelné 3).

(з)2"-3 • 31
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b) Pro n — 0 platí:
1 - 1

2]/f
Číslo a0 je tedy celé a dělitelné 3.

c) Je-li n celé záporné číslo, pak užijeme rovnosti

= 0.tf,> =

1
2 +j/3 2-УЗ 5

proto

(2 + Уз')п — (2 — 1 3)"
an —

2 УЗ
- 2 - Уз)~га - (2 + Уз)-л

—

2|/3
Číslo (—п) je přirozené, a proto podle a) je číslo —а.
= an celé. Z a) dále plyne, že an je dělitelné 3, právě když
je — n, tj. také и, dělitelné třemi.

n

Závěr: Dokázali jsme, že pro každé celé číslo n je číslo
an celé a že číslo an je dělitelné 3, právě když je n děli-
telné 3.

Řešil Tomáš Masek
žák třídy 2. f SVVS, W. Piecka,
Praha 2

3. V rovině sú dané dve zhodné úsečky AB, CZ);
priamky AB, CD sú róznobežné. Vyšetrite množinu
všetkých bodov S, ktoré majú túto vlastnost’: súmernosť
podlá středu S prevedie úsečku А В na úsečku súmerne
združenú s úsečkou CD podlá vhodnej osi o. [6 bodov]

RIEŠENIE. Označme A'B' úsečku súmerne združenú
s úsečkou AB podlá středu S (obr. 47). Zrejme platí
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A 'В' || AB. Róznobežné priamky AB a CD majú dve
osi súmernosti; označme ich ^ a o2. Pretože A'B' || AB3
platí buď o\\ox alebo o\\o2.

в

\

A

A'S

°2\

B'

o

C

D

P c
4Obr. 47

1. Ak je o || o2, potom body súmerne združené s bodmi
C, D podlá osi o ležia na priamke c3 resp. d3 ktoré sú
kolmé na os o a teda aj na os огз pričom bod C leží na
priamke c3 bod D leží na priamke d. Všetky úsečky A’B'
sú zrejme navzájom rovnoběžné (pretože A'B' || AB)
a ich koncové body ležia na priamkach c a d (pretože sú
súmerne združené s úsečkou CD podlá osi o). Bod je
stredom úsečky A'A. Kedze bod A' prebieha priamku d,
prebieha bod S priamku!p\\d3 ktorá má rovnakú vzdiale-
nosť od bodu A a priamky d.

Ak je o || oí3 dokáže sa analogickou úvahou, že bod 5
prebieha priamku q rovnobežnú s priamkou ď (cť je
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priamka rovnoběžná s osou o2 prechádzajúca bodom C)
a rovnako vzdialenú od bodu A a priamky ď.

2. Teraz dokážeme, že každý bod priamky p i každý
bod priamky q patří к hladanej množině. Nech 5 je bod
priamky p. Potom bod A' súmerne združený s bodom A
podlá středu S leží na priamke d \ \ ог, bod B' súmerne
združený s bodom В podia středu S leží na priamke
c || 0! a platí AB || A'B'. Osou súmernosti úsečiek A'B'
a CD je priamka o, ktorá je osou súmernosti úsečky A'D,
resp. B'C.

Ak je bod priamky q, sa analogicky ukáže, že osou
súmernosti úsečky A'B' súmerne združenej s úsečkou А В
podlá středu 5 a úsečky CD je priamka o, ktorá je osou
súmernosti úsečky B'D, resp. A'C.

В

A

°2

q

ď
C

Do
cp d

Obr. 48
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Závěr: Ukázali sme, že hladanou množinou bodov S
je zjednotenie priamok pag, ktoré majú tieto vlastnosti:
Priamka p 11 d je rovnako vzdialená od bodu A a priamky d,
kde priamka d je rovnoběžka s osou ox vedená bodom D.
Priamka q || ď je rovnako vzdialená od bodu A a priamky
ď, kde ď je rovnoběžka s osou o2 vedená bodom C
(obr. 48).

Riešil Marián Dénéš,
žiak 9c ZDŠ, Košická, Bratislava

JINÉ ŘEŠENÍ. V rovině (obr. 49) zvolme rovnoběž-
[ax; 0], В =

[ax + d\ 0], C = [0; c2]; D = [0, c2 + d], kde d > 0.
Při středové souměrnosti je obraz přímky rovnoběžný se
vzorem, to znamená, že úsečka C'D' souměrně sdružená
s úsečkou CD dle nějaké osy o leží na přímce rovnoběžné
s AB. Označme tuto přímku p\ nechť má rovnici

У = r.

kovou soustavu souřadnou tak, aby A
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Na této přímce p sestrojíme otočením úsečky CD kolem
průsečíku R = p П CD dvě úsečky CD' a C"D".
Označme S, S' středy souměrnosti úseček AB, CD'
a AB, C"D". Platí

C = [c2 — r; r], D' = [c2 + i — r; r] ,

C" = [r — c2; r\, D" = [r — c2 — d; r\,

ai “1“ c2 H- d
čili

A + В + C + D'
-

r. rl
5 2 J 5

5' =
4 2

Л + Б + C" + D" aj + r — c2 # r ]
2 5 2J '

5" =
4

Protože bod R probíhá celou přímku CD, probíhá para-
r

metr r množinu všech reálných čísel. Označme yr

Potom parametrické vyjádření množiny bodů S' je
a\ 4“ c2 d

* =
2 h

У = t,
t e (-OO, oo);

parametrické vyjádření množiny bodů S" je
aí ~ C2 i t

2 +

= t.

x —

У = *,
t e (—oo, oo).

Množinou středů souměrnosti je dvojice navzájem kol-
mých přímek, které jsou rovnoběžné s osami úhlů přímek
AB, CD a prochází bodem, jenž ve výše zvolené soustavě

\2aí -\- d 2c2 d~\
L 4 ; 4 J *

souřadnic má souřadnice

Řešil Jan Mašek, žák 3f SVVŠ,
Praha 2, W. Piecka
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4. V priestore sú dané štyri rožne body A, В, C, D
také, že ЛС J_ DD a AD J_ BC. Potom existuje gulová
plocha, ktorá prechádza stredmi všetkých úsečiek AB, AC,
AD, BC, BD, CZ). Dokážte. [7 bodov]

RIEŠENIE. Označme středy úsečiek AB, ЛС, /ID,
ЛС, 5D, CD v uvedenom poradí SAB, SAC, SAD, S
Snu, Scd (obr. 50). Nech je 5 střed úsečky SAUSCD (oprí-

l!( '5

SCD budeme uvažovať zvlášť; zatial predpo-páde SAR
kladajme, že body SAB, SAC, SAD, SBC, SBD, SCD sú na-
vzájom rožne). Podlá známej planimetrickej vety je
SabSad BD, z čoho vyplývá, že
SABSAD\\ SBCSCD. Analogicky sa ukáže, že SADSCD I!

BD a tiež SBCScn
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II SABSBC. Štvoruholník SabSBcScdSad je teda rovno-
bežník a bod 5 je súčasne stredom úsečky SAI)SBC. Platí
preto: SSAB = SSBC=SSCD= SSAD a kedze AC±BD a
SabSbc I! AC, SBCSCD II BD3 je SABSBc _L Зверев a
rovnoběžník je zrejme obdížnikom, čo znamená, že tiež
SSBC = SSCD.

Analogicky sa dokáže, že SabSbdSCdSac je obdížnik
a teda platí: SSAR = SSBD = SSAC = SSCD. Bod A je
teda rovnako vzdialený od všetkých bodov SAIi, SAC)
SAD, SBC, SBDi SCd číže existuje gulová plocha so stře-
dom S, ktorá všetkými týmito bodmi prechádza.

Zostáva nám ešte uvažovat’ o případe SAB = SCI). Ak
by tento případ nastal, boli by body Л, В, C, D vrcholmi
rovnoběžníka ACBD, v ktorom AD || BC. Vzhladom na
předpoklad AD J. BC nemóže však tento případ nastat’.
Analogicky se vylúčia případy: SAC = SBf)3 SAD = SBC.

Riešil Bohuš Sivák,
žiak 2a SVŠ, Zvolen

JINÉ ŘEŠENÍ. Žádné tři z těchto čtyř bodů nemohou
ležet v přímce. Po označení podle obr. 51 by totiž musel
být <£ DAC — 90°, takže body A3 В by splývaly, což by
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byl spor s předpokladem. Při jiné poloze bodů dojdeme
obdobným postupem opět ke sporu.

Budou-li body A, В, C, D ležet v rovině, budou body
А, В, C tvořit vrcholy trojúhelníku a bod D bude orto-
centrem Д ABC (obr. 52). Středy zmíněných úseček ozna-
čené Als B1} Clf A2, É2, C2 pak budou ležet na tzv.
Feuerbachově kružnici devíti bodů.*) Touto kružnicí lze
proložit nekonečně mnoho kulových ploch.

Neleží-li tyto body v rovině, tvoří vrcholy čtyřstěnu.
Středy úseček AB, AC, AD, BC, BD, CD označme podle
obr. 53. Sestrojíme-li pravoúhlý průmět tohoto čtyř-
stěnu do roviny ABC, bude obrazem vrcholu D orto-
centrum D' trojúhelníku ABC. Úsečky BC a CA jsou

*) Poznámka. Feuerbachova kružnice trojúhelníka ABC prochází
těmito devíti body: a) středy stran A2, B2, C2, b) středy Al3 B1} Сг
úseček, určených vrcholy a průsečíkem výšek a c) (v úloze nepoužitými)
patami výšek tohoto trojúhelníka.
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totiž samodružné, a proto se úsečky AD a BD promítnou
opět jako jejich kolmice. Průměty bodů A13 B13 Cj ozna-
čené na obr. 53 A[3 B[3 C[ leží na kružnici devíti bodů
Д ABC. Je to kružnice opsaná trojúhelníku A2B2C2.
Poněvadž trojúhelník AlBlC1 se promítá ve skutečné

velikosti, je kružnice jemu opsaná shodná s kružnicí
opsanou trojúhelníku A2B2C2 a úsečka spojující středy je
kolmá к rovinám obou kružnic. Tyto dvě kružnice tedy
leží na kulové ploše, tj. existuje kulová plocha, která pro-
chází středy všech úseček AB3 AC3 AD3 BC3 BD3 CD.

Řešil Jiří Demel3
žák 3a SVVŠ, Valašské Meziříčí
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VI. Desátá mezinárodní matematická olympiáda

Jubilejní desátý ročník MMO uspořádal SSSR
v Moskvě ve dnech 5.—19. července 1968. Zúčastnily se
ho delegace dvanácti zemí: Anglie, Bulharska, Česko-
slovenská, Itálie, Jugoslávie, Madarska, Mongolská, NDR,
Polska, Rumunska, SSSR a Švédská; celkem soutěžilo
96 žáků (z toho jedna žákyně). Mimoto byl přítomen též
jeden zástupce Rakouska jako pozorovatel.

Vedoucí delegací
soutěž řídí — se sjeli v Moskvě již 5. července, aby soutěž
připravili; osmičlenná žákovská družstva přijela spolu se
zástupci vedoucích ve dnech 7. a 8. července. Vlastní soutěž
probíhala ve dnech lO.all. července v internátní fyzikálně-
matematické střední škole v Moskvě-Davydkově. V ná-
sledujících dnech jury žákovská řešení úloh korigovala
a hodnotila; dne 14. července pak podle výsledků roz-
hodlá o udělení cen. Slavnostní rozdělení cen se konalo
v aule Moskevské státní university dne 18. července;
19. července se jednotlivé delegace rozjely opět domů.

Jak je tomu při MMO zvykem, zahrnoval program vedle
samotné matematické soutěže také řadu vedlejších akcí
společenských a kulturních. Účastníkům MMO bylo
umožněno seznámit se s historickými památkami Moskvy
(Kreml, Tretjakovská galérie, muzeum v Ostankinu,
borodinské panorama), navštívili též Leninovo muzeum
v Gorkách и Moskvy. Ve dnech 15.—17. července byli
všichni účastníci olympiády na zájezdu v Leningradě,
kde si rovněž prohlédli místní pamětihodnosti (Petro-
pavlovská pevnost, křižník Aurora, Isakčejevské muzeum,
a zejména nezapomenutelná je návštěva Ermitáže) a odkud
si zajeli také na prohlídku Petrodvorce. V Leningradě
shlédli též představení baletu (Antonius a Kleopatra)

členové mezinárodní jury, která
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a v Moskvě, kde divadelní sezóna již skončila, předsta-
vení státního cirkusu. Kromě toho se v Leningradě účast-
níci MMO setkali s místními pionýry v jejich domě na přá-
telském večírku. Celý program byl tedy velmi bohatý.

Úlohy pro X. MMO byly vybírány jako obvykle z ná-
vrhů zaslaných, resp. dodatečně předložených, účastnic-
kými zeměmi. Jednání o výběru úloh vyplnila program
zasedání mezinárodní jury v prvních dnech. Výsledkem
dlouhých diskusí byl výběr šesti úloh, jejichž text uvádíme
v dalším. Výběr ani tentokráte nelze pokládat za ideální;
i na zasedání jury byly proti němu vznášeny námitky,
hlavně v tom smyslu, že v úlohách je málo zastoupena
geometrie a že úlohy jsou vesměs dosti snadné. Většina
členů jury však, jak se zdá, dávala záměrně přednost
úlohám spíše snazším.

Soutěž se konala v osmi třídách internátní střední školy,
ve které byli žáci po dobu svého pobytu v Moskvě také
ubytováni. Bylo to poprvé, co nebyli všichni účastníci
pohromadě; v každé třídě seděl z každého družstva jeden
žák. Toto uspořádání zaručilo bezpochyby větší klid pro
soutěžící, s výjimkou prvních okamžiků, kdy třídy po-
stupně navštěvovala skupina dvanácti vedoucích dele-
gací, aby mohla soutěžícím vysvětlit event, nejasnosti
v textu úloh.

V dalších dnech 10. —13. července byla žákovská řešení
úloh obvyklým způsobem opravována a koordinována.
Koordinátory bylo šest moskevských mladých matema-
tiků, většinou bývalých olympioniků. Závěrečné hodno-
cení se konalo na schůzi jury dne 14. července. Definitivní
schválení bodového hodnocení nezabralo mnoho času,
o to více se ho věnovalo diskusi okolo stanovení hranic
pro jednotlivé ceny. Většina delegací se snažila o získání
co největšího počtu cen; prestižní otázky hrály bezpo-
chyby opět značnou roli. Nakonec bylo rozhodnuto udělit
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celkem 64 ceny, ve srovnání s minulými ročníky tedy
enormní počet (právě 2/3 soutěžících); hodnotu cen je
nutno brát i z tohoto hlediska. Prvních cen bylo uděleno
22, druhých také 22 a třetích 20. К získání třetí ceny po-
stačilo tentokrát 26 bodů (ze 40 možných), к získání druhé
ceny 34 bodů, na první cenu bylo zapotřebí 38 bodů.
Vedle těchto cen bylo uděleno ještě pět zvláštních cen;
čtyři za zvláště originální či elegantní řešení, pátou dostala
mongolská žákyně za relativně nejlepší výkon.

československé družstvo soutěžící na X. MMO bylo slo-
ženo z osmi žáků vesměs 2. a 3. ročníku SVVŠ. Byli to:

1. Bohuš Sivák, Zvolen,
2. Tomáš Mašek, Praha,
3. Martin Bukovčan, Bratislava,
4. Pavel Polcar, Velké Meziříčí,
5. Libor Polák, Brno,
6. Jiří Vinárek, Praha,
7. Michal Kaukič, Námestovo,
8. Vladimír M idler, Praha.
Výsledky, jichž dosáhli v soutěži, jsou uvedeny v při-

ložené tabulce. Vzhledem к výsledkům minulých let by se
mohlo zdát, že jsou to výsledky velmi dobré. Je však
třeba si uvědomit, že úlohy byly vesměs snadné, takže
dobrých výsledků dosáhl poměrně značný počet účast-
níků. V pořadí podle celkového počtu bodů skončila ČSSR
na sedmém místě (viz další tabulka pořadí družstev); toto
umístění vyjadřuje dosti dobře skutečný poměr sil.

V jistém smyslu lze tvrdit, že snadné úlohy odhalí spíše
slabší žáky nežli výrazné matematické talenty. Z tohoto
hlediska nás pak ovšem zarazí, jestliže tři naši žáci totálně
neuspěli při řešení velmi snadné čtvrté úlohy, jestliže třetí
úlohu dokázali bez chyby rozřešit jenom tři z osmi. Potíže
činilo našim žákům také tvoření negace tvrzení s kvantifi-
kátory, rovněž nevynikali v schopnosti systematického pro-
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bírání jednotlivých případů, které se vyskytovaly v roz-
boru některých úloh (např. první, druhé, šesté).

Při přípravě čs. družstva na další, XL MMO, které se
má konat v červenci 1969 v Rumunsku, bude proto potřeba
ještě více prohloubit nejen znalost matematických obratů,
metod a algoritmů, ale také umění logických rozborů;
nelze přitom opomenout ani zdánlivě ,,vedlejší“ formální
stránku: formulace tvrzení a vůbec redakce a stylizace
textu řešení. Vedle toho však bude, zdá se, potřeba vzít
v úvahu i tendenci, která se začíná u MMO projevovat:
od klasické, elementární, školské matematiky к matema-
tice modernější, к matematické analýze i event, jiným
moderním disciplínám. I když se pravděpodobně v příš-
tím ročníku opět dostane ke slovu syntetická geometrie,
přijdou jistě znovu návrhy úloh podobných, jako se vy-
skytly v X. ročníku: vyšetřování průběhu funkcí, nerov-
nosti i odhady, limity posloupností a součty řad.

Zároveň však v Moskvě bylo možno pozorovat určitou
diferenciaci mezi delegacemi v názoru na MMO vůbec:
lze se na ni dívat jako na vyvrcholení obdobných soutěží
domácích (a pak ovšem nemůže být příliš snadná) anebo
jako na prostředek propagace matematiky a povzbuzení
zájmu o ni. Není vyloučeno, že při event, dalším rozšíření
počtu účastnických zemí nabudou podobné problémy
na významu.

SOUTĚŽNÍ ÚLOHY A JEJICH ŘEŠENÍ

1. Dokažte, že existuje jediný trojúhelník takový, že
délky jeho stran jsou vyjádřeny třemi po sobě jdoucími
přirozenými čísly a jeden z jeho úhlů je dvojnásobkem
jednoho ze zbývajících dvou.

(Rumunsko, 6 bodů)
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ŘEŠENÍ СВ. Sivák)
Nechť existuje trojúhelník ABC se stranami BC =

= я — 1, CA — n, /4Б = я + 1, kde я je přirozené číslo
a v němž je jeden úhel dvojnásobkem jednoho ze zbývá-
jících dvou. Označme úhly <£ BAC — a, <£ ABC = /9,
<£ ACB — y. Protože proti větší straně leží v trojúhel-
niku vždy větší úhel, takže nutně a < /9 < y, máme jen
tyto tři možnosti:
a) /? = 2a, b) у — 2/Í, с) у — 2a. Podle kosinové věty
máme

AB2 + АС2 - BC2
2Tab.ačcos a —

(1)(n + l)2 + n2 — (n — l)2 n + 4
2(n +1)2(n + 1) • n

AB2 + BC2 - CA2
2.AB.BC

cos [i —

(n + 1)2+ (я — l)2 — n2
2(n + 1)(я - 1)

AC2 + BC2 - AB2
2AC.BC

n2 + (я — l)2 — (n + l)2

(2)Я2 + 2
2{n2 - 1)

cos у =

(3)
я — 4

2(и — 1) ’2я(я 1)
a) Jestliže /9 = 2 а, je cos /9 = cos 2 а = 2 cos2 а — 1,
tedy

я2 + 2 (я + 4)2
2(я + Í)2

- 1
2(я2 - 1)

a odtud
я3 — 2я2 — 4я + 8 = О,

tj.
(я - 2)2(я -f 2) = 0.
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Protože я je přirozené, muselo by být я = 2 a trojúhelník
ABC by měl strany délek 1, 2, 3, které ovšem nevyhovují
trojúhelníkové nerovnosti. Tento případ tedy vyloučíme,

b) Jestliže у = 2/3, je cos у — 2 cos2 /3—1, tzn.
(я2 + 2)2

2(n - 1) ~ 2(я2“- l)2
я — 4

čili
2я4 — 3rř — 13я2 + Зя + 2 = 0

neboli
я(2я3 - Зя2 - 13я + 3) = -2.

Na obou stranách této rovnosti stojí celá čísla, z čehož
plyne, že je nutně bud я = 2 nebo n = 1. První možnost
jsme vyloučili již v předchozím případě, avšak ani n = 1
není možné, neboť by pak strana BC měla nulovou délku,

c) Nechť tedy konečně у = 2a, tedy
n — 4

2(n- 1) “ 2{n + l)2
(и + 4)2 1

a odtud
2я3 - In2 - Yin + 10 - 0,

což lze napsat ve tvaru
(n - 5)(2n2 + Ъп - 2) = 0.

Víme již, že je nutně n > 2, avšak pro n > 2 je 2и2 +
-f Зя — 2 > 8 + 6 — 2 > 0, takže jediným řešením je
n = 5.

Pro я = 5 má trojúheník ЛЛС strany 4, 5, 6; přesvěd-
číme se, že pak skutečně у — 2a. Podle vzorců (1) — (3)

3 1
je cos a = —, cos у — ~ . Odtud snadno vyplývá cos2a =

= cosy. Úhel a je nejmenší (ležíprotinejkratšístraně),
takže 0°< a < 60°. Musí tedy být 2a = y. Trojúhelník
o stranách 4, 5, 6 má tedy všechny požadované vlastnosti
a je jediný takový, c . b . d.
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2. Najděte všecka přirozená čísla x taková, že součin
jejich cifer (v dekadickém zápisu) je roven x2 — lOx — 22.

('Československo, 7 bodů)

ŘEŠENÍ. (M. Kaukič)
Označme P(x) součin cifer čísla x. Nejprve si dokážeme,

že pro každé přirozené x je P(x) ^ x. Skutečně, nechť
x = c0 -f- IOcí + 102c2 + ••• + Ю"ся,

kde Ci(i — 0, ..., ri) jsou cifry čísla x; 0 ^ cx ^ 9,
0 < cn ^ 9. Součin w-cifer c0c1 ... je zřejmě menší
než 10", takže

P(x) — CqCj ... cn < 10 cn ^
^ Ю”си + 10"' + ... + lO^x + c0 = x.

Má-li platit P(x) = x2 — lOx — 22, musí být
x2 - lOx - 22 ^ x,

tedy
x2 Ux - 22 ^ 0.

Řešením této kvadratické nerovnosti dostáváme jc ^ 13.
Pro jednociferná x je ovšem P(x) = x, bylo by tedy

x2 — lOx — 22 = x,

x2 - llx - 22 = 0,
avšak tato rovnice nemá žádné přirozené řešení.

Pro dvojciferné x < 20 je P(x) = x — 10, tedy má být
x2 — lOx — 22 = x — 10,

x2 - llx - 12 = 0.

Jediným přirozeným řešením je x = 12; to je tedy jediné
přirozené číslo vyhovující podmínkám úlohy.

tzn.

čili
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3. Je dána soustava rovnic s neznámými xv x2J .

ax\ + bxx + c = x2i
ax\ + bx2 -f- с — лг3,

Xjl

+ C = ,

kde a, b, c jsou reálná čísla, й^О. Dokažte, že tato sou-
stava:

I. nemá žádné reálné řešení, jestliže
(b — l)2 — 4ac < 0;

II. má právě jedno reálné řešení, jestliže
(b — l)2 — 4ac = 0;

+ cIII.má více než jedno reálné řešení, jestliže
(b - l)2 - 4ac > 0.

(.Bulharsko, 7 bodů).

ŘEŠENÍ. (5. И)
Označme P(x) = ад:2 + (ib — 1)д: + c; danou sou-

stavu pak můžeme přepsat ve tvaru
P(xi) = *2 - *i,
P(x2) = д:2,

P(Xn-l) ~ xn

Sečtením všech rovnic dostáváme

P(xi) + P(x2) + ••• + P{xn) — 0.
I. Nechť (b — l)2 — 4ac < 0. Potom je buď P(x) > 0

pro všechna reálná л: (při a > 0), anebo je P(x) < 0 pro
všechna reálná x (při a < 0). V žádném případě tedy
nemůže platit rovnost (*).

II. Nechť {b - l)2 - 4ac = 0. Při a > 0 je opět
P(x) ^ 0 pro všechna reálná л;, při a < 0 je P(x) ^ 0 pro

P(xn)

(*)
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všechna reálná x, takže rovnost (*) může být splněna jen
v tom případě, jestliže P(xx) = P(x2) = ... = P(xn) = 0.
Avšak rovnice P(x) = 0 má při (b — l)2 — 4ас — 0 právě

1 -
-. Jediným řešením danéjedno řešení, a to x = _

2a

soustavy je tedy
1 - b

2a 5Xy X‘2 • • • Х'п

které skutečně soustavě vyhovuje.
III. Nechť (b - l)2 4ac > 0. Rovnice P(x) = 0 má

v tomto případě dvě různá reálná řešení x = у. a jc = /?.
Snadno se přesvědčíme, že pak také

Xí = X2 ~ • •• = xn —

a

*1 = x2 = ••• = Xn = ft
jsou dvě (různá) řešení dané soustavy, (která ovšem může
mít event, ještě jiná, další řešení).

4. Dokažte, že v každém čtyřstěnu existuje takový
vrchol, že z úseček rovných hranám, které z něho vy-
cházejí, lze sestrojit trojúhelník.

(Polsko, 5 bodů)

ŘEŠENÍ. (B. Sivák)
Budiž ABCD libovolný daný čtyřstěn, přičemž ozna-

čení volíme tak, aby hrana АВ byla nej delší (jedna z nej-
delších). Pro stěny ABC, ABD čtyřstěnu platí trojúhel-
níkové nerovnosti, tj.

АС + ВС > AB,
AD + BD !> AB;

sečtením dostaneme nerovnost

АС + BC + AD + BD > 2AB,
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kterou můžeme napsat též jako
(AC + AD - AB) + (BC + BD — AB) > 0.

Nutně tedy platí buď AC + AD > AB anebo BC +
+ BD > AB. Protože hrana AB je nejdelší, je možné buď
z úseček AC, AD, AB anebo z BC, BD, BA sestrojit
trojúhelník.

5. Nechť / je funkce s reálnými hodnotami definovaná
pro všechna reálná x a taková, že pro každé x platí

1

2 + №0 —/(*)2> (*)f(x + a)

kde a je dané kladné číslo.

I. Dokažte, že funkce / je periodická (tzn. že existuje
kladné číslo b takové, že f(x + b) — /(;c) pro všechna x).

II. Udejte pro a = 1 příklad funkce / s uvedenými
vlastnostmi, která není identicky rovna konstantě.

(NDR, 7 bodů)

ŘEŠENÍ

I. Má-li funkce /být definována pro všechna л; a přitom
vyhovovat (*), musí nutně být

m > u(x)y
i

a tedy /(x) 1, a současně f(x) ^ -y, takže celkem
1

pro všechna reálná x.
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Počítejme dále /(x + 2d) podle (*). Je
f(x + 2d) = /[(x + a) + a] =

—

2 + a) — t/(x + a)]2 —

= \ + V/(* + л)[1 —/(ж + a)] =

]/^- + У/м - [/с*)]2. í^-y/w-[/w]41
-

2 +
1 1 п21

т- {/(*)-№)]2} = у +”

2 + Л*)-г! =
=

у + |/(*) - у = у +/(*) ~ у = /(*) •
1 1 1 1

Platí tedy
/о + 2d) = /О)

pro všechna х; za číslo 6 lze tedy vzít b = 2a.
II. Příkladů funkce s požadovanými vlastnostmi je

ovšem mnoho. Obecně lze takovou funkci definovat
takto:

1. pro 0
tak, aby j < /(x)

2. pro 1 ^ x < 2 určíme /(x) pomocí (*), tj. tak,

x < 1 definujeme /(x) zcela libovolně, ale
i;

aby

/(*) = \ + Vf(* - i) - № - i)]2;3.pro všechna ostatní x určíme f(x) tak, aby / byla
periodická s periodou 2.
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Lze ostatně udat i některé jednoduché konkrétní pří-
klady jako

r, , 1 1 . 7IX
/(*) =2+2 Sm T ’

anebo
1

/0) = 2 pro O ^ x < 1,
/(x) = 1 pro 1 ^ л; < 2

a dále periodicky, atp.

6. Pro každé přirozené číslo n vypočtěte součet
я + П , Г« + 2'

S' + -4

'oo

'«+2A'
2fc+12[ + ...

£ = 0

a dokažte správnost odvozeného vzorce.
Symbol [x] zde značí celou část čísla x, tj. největší celé

číslo m takové, že m ^ x.
{Anglie, 8 bodů)

Poznámka.

Tato úloha byla poprávu ohodnocena největším počtem
bodů ani ne proto, že by snad byla nejtěžší (uvidíme, že
má velmi krátké a elegantní řešení), ale proto, že je pod-
nětná a inspiruje к dalšímu zobecnění získaných vý-
sledků, a to v několika různých směrech. Proto si tu také
uvedeme různé způsoby řešení.

ŘEŠENÍ 1 (autorské)
oo

n + 2k'
2*h "Vypíšeme si součet Sn = pro n — 1, 2,

3, ...
O
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í + ...

ít + --*=l + l + 0 + 0 + ...,

i]21
n — 1: — 1 + 0 + 0 + 0 + •••)+2 8

-1 + \~2^4n — 2: + 8

ffl - ra - [í]n — 3: + ... — 2 + 1 + 0 + 0 + ...,

výsledky nás vedou к formulaci hypotézy Sn = w, kterou
se pokusíme dokázat. Předně je zřejmé, že pro n < 2k je

n + 2k , j

2*+i < 1j a tedy
'n + 2*

- 0. V každém součtuuž
2k+i

Sn je tedy jen konečný počet nenulových sčítanců. Pozo-
rujme, jak se liší sčítanci

Г n + 2k] ГbH a
(« + !) + 2*

■

2k+l

v součtech Sn a S Zřejmě vždy
(n + 1) + 2*

71+1*

№] * [ ■2k+1

takže nutně Sn ^ Sn+l. Poněvadž však
(n + 1) + 2k n + 2k

2k+1
1

2k+l » ^ Oj •2k+i

nemůže být rozdíl
i _ Г” + 21

L 2«
O + 1) + 2*[ 2Ár+1

větší než 1. Kdy však je právě roven 1 ? V takovém případě
musí existovat přirozené číslo m takové, že

n + 2*
2k+1

n + 1 + 2k
< m + 2A:+1

Odtud
n + 2k < m . 2*+1 ^ n + 2k + 1.
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Avšak n + 2k a n + 2k + 1 jsou dvě po sobě následující
přirozená čísla a také číslo m . 2k+1 je přirozené. Musí
tedy být

m . 2k+l = n + 2k + 1,

n + 1 = 2k(2m — 1).
Snadno je vidět, že při daném n existuje právě jedno celé
nezáporné k takové, že lze najít m tak, aby n -f 1 =
= 2A(2m — 1) — k ; к tomu stačí rozložit číslo n + 1
na prvočinitele: k pak bude počet dvojek v tomto roz-
kladu.

Pro všechna ostatní k bude pak nutně
n + 2A*
"

2k+i '

Při přechodu od Sn к Sn+1 změní se tedy právě jeden sčí-
tanec o jednotku, všechny ostatní zůstanou nezměněny.
Platí tedy pro každé n: Sn+Í — Sn -f 1. Poněvadž však
Si *= 1, je skutečně Sn = w, c.b.d.

ŘEŠENÍ 2

Číslo n vyjádříme v dvojkové soustavě, tedy ve tvaru
n = Cq 2cj -f- 22Co 2^C;j -j~ ••• ~t~ 2rcr ... , = 0,1.
Potom
n + 2* = c0 ... + + 2к{ск + 1) -|- 2кл1ск+1 -j-
~\~ ... -f- 2'cr + ...

n + 2k
2k+1

+ ck-\-1 + ck\\ + ••• + 2 r~k~^Cr + ...

a dále zřejmě
n + 2k'

2k+1

t).

'n + 1 + 2k
2k+l

— 2 k kcQ + 2 hC\ + ... + 2 2c^_) + 2 -f- 1) -j-

r t-1 “1“ ck+\ + 2С]сЛ 2 + ... + 2r~k ]c,. -j- ....
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m - ck. Máme tedyAvšak ck — O nebo 1, takže

m- co + + 2c2 + 22c3 + ...

m - ci c2 2c3 + ...

\n + 2fcl
[ 2*+1 j~ Ck + ck+2 + 2ck+2 + ... .

Sečtením dostáváme na levé straně právě součet Su a na
pravé straně

c0 + 2c1 + 22Co + ... + 2 ’c2 + ... — w}
tedy

Sn = и.

ŘEŠENÍ 3. (M. Bukovčan— upraveno)
Uvažujme všechna přirozená čísla od 1 do n. Můžeme

si je rozdělit do dvou skupin: na čísla lichá, kterých je
a na čísla sudá. Sudá čísla si dále rozdělíme

opět do dvou skupin: na čísla nedělitelná čtyřmi — a těch

Právě pT-]»
je právě ^ ^ a na čísla dělitelná čtyřmi. Tuto poslední
skupinu dále dělíme na čísla nedělitelná osmi — a těch je

— a zbytek—. Tímto způsobem postupujeme
dále až bude při některém dělení druhá skupina prázdná.
Poněvadž takto vyčerpáme všechna přirozená čísla od 1 do
n (a těch je právě rí) a přitom každé číslo bude právě
v jedné skupině — vidíme, že platí Sn = n.

m
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Г" + 2-1
[ 2fc+1 JUkážeme si ještě, že skutečně je právě počet

těch přirozených čísel ^ w, která nejsou dělitelná 2fc41,
ale jsou dělitelná 2fc, kde k = 0, 1, 2, .... Čísla s těmito
vlastnostmi jsou tvaru

m = 2k(2l — 1), / = 1, 2, .

přitom z nerovnosti m 5^ n plyne postupně
2*(2/ - 1) ^ n,

• •i

2/ - 1 ^ 52fc 5
n + 2fc/

2*+1 *

rw _|_ 2a"|
Největší přípustná hodnota / je tedy ^k+1 , avšak to
je zároveň hledaný počet těchto čísel m.

Toto řešení vede к zobecnění úlohy, kdy dvojku nahra-
dime libovolným prvočíslem p. Každé přirozené číslo m
lze vyjádřit — a to právě jedním způsobem — ve tvaru .

m = pk . q,
kde q není dělitelno prvočíslem p. Toto číslo q pak lze
dále vyjádřiti — opět jediným způsobem — ve tvaru

1 ^ r <p, 1= 1, 2, ....

Analogicky jako v předchozím případě pak dostaneme
z nerovnosti m ^n postupně

n ^ m = pk . q = p\lp - r),
— + r > Ip,
pk ~ ť

l <> ^
~

P

q = lp — r,

n rpk
к-1
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к•Гп гр
L Р

je opět právě počet všech těch přiroze-

ných čísel m nejvýše rovných n, která jsou dělitelná pk,
ale při dělení číslem pk+1 dávají zbytek p — r. Vidíme tak,
že platí

takže
fc+i

[TM'-J-H’i'l
[”-р-] + ГЯ+Г ¥*) + ■

+ ... +

.. +

~T ... +
n+ p(p - 1) n+p'2(p— 1)n-H M+ +

f

ŘEŠENÍ 4. (Aí. J. Williamson, Anglie)
Nejprve si dokážeme, že pro každé nezáporné reálné x

platí

[íH-í11 = [X].

Skutečně , pro 21 5S x < 21 + 1 je

/ < ~ < / + i < - -t 1—

2 2 — 2
< / -f- 1 ,

takže

['] + [Ц " = 1 + 1=21= [x].

Pro 21 + 1 x < 21 + 2 je pak

/ + \ sf </+isI-+1 c / + ,
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takže

'x + 1]
2 J / + / + 1 = 21 + 1 = [х].

Platí tedy pro každé nezáporné x

[íl-pí11M

Do této rovnosti dosazujeme za x postupně —ki k —
— O, 1, 2, ... a všechny rovnosti pak sečteme:

[fbpf1]’[x] ~

x + 2
■i] - И - 222

Гх1 [Л Г* + 2*1
[2*J “ [2^J “ •

й- 0, takže sečtenímPro dosti velké k bude ovšem

dostaneme na levé straně [x] a na pravé straně součet

x + 2*'
2*+1 ’

co

A = 0

Tím je úloha rozřešena, a to dokonce obecněji nežli jen
pro celé hodnoty x.

Třetí a čtvrtý způsob řešení lze ještě dále kombinovat.
Budiž p prvočíslo, potom pro každé nezáporné reálné x
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platí
v-\

x +/1
= [x],

P
i=o

takže opět
v-i

x x

M-
p p

)=1

Dosazujeme sem za x postupně x, -, 2, ... a po sečtení
dostaneme jako konečný výsledek rovnost

v-1co

22Pf#]= [X].
k=o }=l

152



Příloha 1

Vedoucí delegací na X. MMO

Země zástupcevedoucí

Anglie dr. Norman Routledge dr. David Monk

Bulharsko Christo Stojanov
Dóganov

doc. Doj čin Bogdanov
Dojčinov

ČSSR dr. Jozef Moravčíkdr. František Zítek

Itálie prof. Angelo Pescariniprof. Tullio Viola

prof. France J. KrižaničJugoslávie Vladimir P. Mičič

Maďarsko doc. Hódi Endré dr. Reiman I štván

Mongolsko Aivan Dugerdoc. Uršin Sanžimjatav

NDR dr. Helmut Bausch Herbert Titze

Polsko Mgr. Andrzej
Mqkowski

prof. Mieczyslaw
Czyžykowski

Rumunsko prof. Constantin Ionescu-
-Bujor

Z. Bogdanov

SSSR N. B. Vasiljevdoc. E. Morozova

Švédsko dr. Per Martin-Lof Peter Hackman

Rakouský pozorovatel: prof. Alexander
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Příloha 2

Přehled výsledků čsl. účastníků.

Úloha číslo Cel-
kemJméno

21 3 4 5 6

B. Sivák 6 7 7 5 8 407

T. Mašek 6 7 7 5 7 408

M. Bukovčan 4 83 1 0 0 16

P. Polcar 5 7 347 0 7 8

L. Polák 335 7 5 7 81

J. Vinárek 7 8 346 1 5 7

M. Kaukič 4 7 4 0 1 160

7 5 35V. Muller 6 2 7 8

Družstvo
celkem 53 2541 30 42 57 248

Žáci B. Sivák a 7’. Mašek dosáhli maximálního možného počtu bodů
a získali tak první cenu, žáci P. Polcar, L. Polák, J. Vinárek a V. Muller
získali druhou cenu.
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Příloha 3

Přehled celkových výsledků družstev

Pořadí
podle
počtu
bodů

Počet cen

celkový
počet
bodů

Cel-
kem

Země
III.II.I.

Anglie 263 473 2 2

Bulharsko 94 20410 3

Československo 6 2480 72 4

Itálie 1 1 132 110 0

Jugoslávie 3 3 177 100 0

Maďarsko 2 8 291 33 3

Mongolsko 0 0 74 120 0

NDR 0 8 3045 3 1

Polsko 2 73 2622 5

Rumunsko 2 41 1 208 8

SSSR 2 85 1 298 2

Švédsko 2 5 81 256 6

Celkem 22 22 6420

Vedle těchto cen bylo uděleno ještě 5 zvláštních cen: Dva maďarští,
jeden anglický a jeden jugoslávský žák dostali ceny za originální
řešení, příp. zobecnění úloh; pátou zvláštní cenu dostala mongolská
žákyně za nejlepší výkon (získala 19 bodů).
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