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Předmluva

Milí účastníci a spolupracovníci celostátní matematické
olympiády,

v době, kdy dostáváte do ruky tuto brožuru о XVIII.
ročníku naší soutěže, začal už probíhat její jubilejní
dvacátý ročník. Místo retrospektiv a bilancí uplynulých
dvaceti let, jaké bývají obvyklé při takových příležitostech,
pohovoříme si raději o přítomnosti a perspektivách naší
matematické olympiády.

Víte všichni, že zejména v XIX. ročníku se objevily
v organizaci soutěže některé změny, které byly přijaty
někde se sympatiemi, jinde s nepochopením; chtěl bych
upozornit, že dosavadními změnami není asi „přerod“
matematické olympiády ukončen, že si okolnosti vynutí
změny další, zejména v pojetí a obsahu soutěže. Důvody
změn jsou hlavně dvojího druhu: je to jednak reforma,
kterou začíná procházet náš školský systém, jednak je to
tlak měnícího se obsahu i vyučovacích metod ve středo-
školské matematice. Kdežto první příčina je rázu spíše
domácího, má druhá charakter mezinárodní, ba světový,
i když pravděpodobně její vliv se bude uskutečňovat
postupně a pomaleji.

Myslím, že proměny, kterými prochází a ještě bude
procházet naše celostátní olympiáda, můžeme stručně
charakterizovat tímto heslem: uvolnění tuhé organizace
a takřka stabilního tradičního obsahu. Víte, že jsme za-
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vedli v XIX. ročníku tři kategorie místo dřívějších čtyř
a že každá z těchto tří kategorií je určena pro dva ročníky:
kategorie A pro IV. a III. ročník gymnasií a odborných
středních škol, kategorie В pro II. а I. ročník těchto škol
a kategorie Z pro 9. a příp. 8. ročník základních devítile-
tých škol. Toto opatření bylo tvrdě kritizováno přívrženci
tuhé organizace, kteří by si přáli, aby se obsah soutěže
přimykal co nejtěsněji к školským osnovám. Jsme si
vědomi, že při této nové organizaci budou v každé kate-
gorii žáci nižšího z obou ročníků vždy trochu handicapo-
váni, žáci vyššího ročníku budou ve výhodě. Neměli
bychom však zapomínat, že účastníci MO jsou zpravidla
žáci nadaní, se zvláštním zájmem o matematiku, kteří
obyčejně studují soukromě více, než předpisují školní
osnovy. Na druhé straně je třeba jednak snížit náročnost
úloh ve všech třech kategoriích, vybírat spíše úlohy,
které vyžadují určité dovednosti a určitý způsob myšlení
a přístup к problému, než úlohy, které jsou prostě apliko-
váním naučených stereotypů; takovéto úlohy nepatří
podle našeho mínění do soutěže vůbec, protože účastník
v nich nemůže uplatnit nic ze své tvořivé individuality.
Druhá cesta к ulehčení práce v soutěži je v možnosti
výběru úloh. Domníváme se, že v každém kole by měly
být některé úlohy povinné, některé volitelné se dvěma
přibližně stejně obtížnými variantami různé tematiky.
Dále jsme pro zachování prvního studijního kola, které
má podněcovat a vést účastníky ke studiu; druhé kolo, tj.
v podstatě klauzurní práce, by mělo tematicky navazovat
na první kolo; práce by měla obsahovat asi tři úlohy, na
jejichž řešení by byly к dispozici čtyři hodiny čistého
času, jak je tomu v mezinárodních olympiádách. Snad
v první vývojové etapě by měly být z těchto tří úloh dvě
povinné a jedna volitelná, později by se mohl poměr obou
skupin úloh měnit ve prospěch úloh volitelných. Třetí
klauzurní kolo by mělo zůstat v celostátní soutěži asi jen
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v kategorii A s obdobnou organizací jako druhé kolo.*)
Ovšem nic nebrání krajským výborům MO uspořádat
třetí kolo i pro kategorii Z, podobně jako jim nic nebrání
organizovat např. pro nižší třídy školní či okresní soutěže.
Ve všech soutěžních kolech (druhém i třetím) by měl
trvale zůstat zaveden systém bodovací, který ovšem nelze
míchat se starým systémem klasifikačním. Podle bodo-
vacího systému lze v kraji (republice nebo celostátní
federaci) sestavit pořadí a je možno i určitý počet prvních
účastníků prohlásit za vítěze, resp. jim udělit podle počtu
dosažených bodů první, druhou a třetí cenu, tak jak
tomu je na mezinárodních olympiádách i v jiných mezi-
národních soutěžích, třeba sportovních.

Úprava organizace kategorií A} B, Z, pravděpodobné
snížení jejich náročnosti si vyžádá asi zřízení zvláštní
výběrové kategorie V, které by se mohli účastnit žáci
kterékoli třídy; tato kategorie by byla určena pro vysoce
nadprůměrné žáky, pro špičkové matematické talenty,
kteří se vyskytují na našich školách ve větším počtu, než
je na první pohled vidět, a z nichž mnozí se nezúčastní
olympiády právě proto, že úlohy tradiční školské mate-
matiky nejsou pro ně už dosti atraktivní.

Jak vidíte, některé z popsaných organizačních změn
už byly provedeny, к některým teprve směřujeme —

všecky změny však nejprve zkoušíme
zkušeností s nimi vyplyne definitivní úprava. Stálou naší
bolestí je jednak nedostatek soutěžních úloh, který nebyl
zlikvidován ani vypsáním konkursu Jednoty, jednak
časová přetíženost žáků pětidenním pracovním týdnem
ve škole. Žáci ani jejich učitelé nemají čas na mimořádné
studium, na přemýšlení o úlohách, na experimentování
a zkoušení různých metod řešení, na vymýšlení variant

*) Jak víte z XIX. ročníku, skutečnost už předstihla tyto naše pů-
vodní záměry.

a teprve ze
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úloh a jejich zobecňování, ačkoli toto vše by mělo být
nedílnou součástí hlavně studijního kola. Pro nedostatek
času neplní náležitě svůj úkol ani různé pomocné akce
MO, jako přípravné semináře a kroužky, vydávání
studijní literatury — hlavně sbírky Škola mladých та-
tematiků — jejíž existenci se nám podařilo prozatím
udržet jen s největšími obtížemi a ve zhoršené grafické
úpravě. Poměrně nejlépe ještě plní svůj úkol prázdninová
soustředění žáků 3. a 2. ročníku gymnasií a středních
odborných škol; zde je ovšem třeba velmi citlivě vyvážit
jednak zařazení úseků školské matematiky — a jednak
extenzi do matematiky neškolské. Další dluh, který tato
soustředění a MO vůbec má, je poměr к aplikacím mate-
matiky; zde opět doslovně zápasíme s nedostatkem vhod-
ných a přístupných úloh a s tím, že naši studenti neznají
potřebný matematický aparát, tj. některé jednoduché
partie tzv. moderní matematiky.

Nyní ještě několik poznámek к postupné přeměně
tematické náplně soutěžních úloh, která by asi měla začít
v kategorii V a pak ve fakultativních úlohách klauzurních
prací. Ve školním roce 1969/70 se začalo učit v I. ročníku
gymnasií podle změněné osnovy, na gymnasia budou
v nejbližších letech přicházet absolventi pokusných
devítiletek, kteří budou ledacos umět z tzv. moderní
matematiky. Mimo to žáci speciálních tříd, tj. žáci nadaní
pro matematiku, budou v rozšířeném vyučování — třeba
i v zájmových kroužcích
(pokusech), kde se seznámí s různými zcela novými
partiemi matematiky, s novými metodami řešení úloh
i s jejich aplikacemi. Tito žáci — jejichž počet postupně
stále poroste
MO; pro ně bude třeba soutěž upravovat tak, aby se jim
nepředkládaly к řešení muzeální problémy, které mohly
být zcela dobře soutěžními úlohami před sto lety, jak
trefně poznamenal před několika lety prof. Adler, vedoucí

participovat na sondách

budou asi průkopníky nového obsahu
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francouzské delegace na IX. MMO v Jugoslávii. Nebudu
se na tomto místě rozepisovat o modernější tematice
matematických úloh; ti z vás, kteří se aspoň trochu zají-
mají o moderní matematiku, vědí, oč asi jde.

Nakonec ještě slovo к mezinárodním matematickým
olympiádám. Zájem o ně mezi nejrůznějšími zeměmi
stále vzrůstá a myslím, že při rozumném pojetí by tu
mohla vzniknout pravidelná soutěž opravdu mezinárodní.
Ministerstva školství ČSR i SSR předběžně před časem
slíbila, že jsou ochotna uspořádat XIII. MMO v r. 1971
v Československu při příležitosti dvacátého jubilea
domácí olympiády. Ostatní účastnické země mezinárod-
nich olympiád s touto skutečností počítají a všecky okol-
nosti nasvědčují tomu, že naše ministerstva skutečně
příslušná pozvání počátkem r. 1971 pošlou, i když jde
o podnik neobyčejně nákladný. Při této příležitosti by se
mohl pokusit náš přípravný výbor XIII. MMO o reformu
neoficiálního statutu, který byl v podstatě vypracován
v r. 1962 a který dnes už nevyhovuje.*)

Ještě jedna poznámka: naše družstvo nemá na MMO
obvykle valné umístění; bývá v žebříčku zemí asi na
prostředním místě. Psal jsem už několikrát o této situaci;
jistě jedna z příčin je nedobrý psychologický stav našich
reprezentantů: nejsou dosti klidní, počátečním neúspě-
chem snadno znervózní, nemají dost vytrvalosti při pře-
konávání překážek. Ale je tu i jiná příčina: celková
úroveň vyučování na našich školách (hlavně v speciálních
třídách) je ve srovnání s cizinou nižší. Tento nedostatek
se nedá odstranit doplňkovým školením a semináři.
V zahraničí, zejména v socialistických státech, se věnuje
špičkovým talentům mnohem více péče, tréninku a času
než u nás. Nechci pronášet svůj úsudek o tom, zda je to

*) Přípravný výbor XIII. MMO se ustavil 16. 6. 1970 a počal již
pracovat.
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nutné a správné; ale rozhodně při reprezentaci na MMO
a pravděpodobně i při dalším studiu nese tato péče
dobré ovoce.

V závěru předmluvy bych chtěl znovu zdůraznit, že
soutěž MO je jen jedním z prostředků, jak zainteresovat
schopné žáky o matematiku, jak jim poskytnout příleži-
tost získat profesionální přístup к řešení matematických
problémů a v neposlední řadě i upevnit a rozšířit znalosti
matematických faktů a metod.

Přesto nechceme, a to zdůrazňuji, pohlížet na kterou-
koliv jinou zájmovou činnost žáků — účastníků MO, spe-
ciálně např. na jejich účast v jiných soutěžích, jako na cosi
škodlivého a nežádoucího. Přitom však učitelé sami nesmějí
při rozvíjení schopností žáků zapomínat, že jde o mladé
lidi v období fyzického i duševního rozvoje a musí
rozhodně bránit jakémukoli jejich přetěžování, jinak by
naše střední školy vychovávaly buď lidi jednostranné
a předčasně specializované nebo
neurotiky.

což je ještě horší —
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I. O průběhu XVIII. ročníku
matematické olympiády

1. ORGANIZACE SOUTĚŽE

Pořadatelem soutěže jsou ministerstvo školství (MĚJ
s Matematickým ústavem ČSAV v Praze (MÚ ČSAV) a
Jednotou čs. matematiků a fyziků (JČSMF). Také
XVIII. ročník se řídil statutem, uveřejněným ve Věstníku
MŠK, roč. XIX, str. 126, 127, směrnice 37 ze dne 30. 4.
1963.

Soutěž řídil ústřední výbor matematické olympiády
(ÚVMO), v krajích krajské výbory matematické olym-
piády (KVMO) a v okresech okresní výbory matematické
olympiády fOVMO); v těchto výborech jsou také za-
stoupeny pořadatelské složky.

Žáci soutěžili naposled ve čtyřech kategoriích podle
svého studijního věku, a to v kategoriích A, В, C (střední
školy) a v kategorii D (základní školy).

2. SLOŽENÍ ÚSTŘEDNÍHO VÝBORU MATEMA-

TICKÉ OLYMPIÁDY

V XVIII. ročníku nebyly proti předchozímu ročníku
žádné změny, takže během období fungoval tento ÚV
MO:

Předseda: Jan Výšin, CSc., docent matematicko-
fyzikální fakulty KU v Praze

Místopředseda: prof. dr. Miroslav Fiedler, DrSc.,
vedoucí vědecký pracovník MÚ ČSAV v Praze
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Místopředseda za Slovensko : dr. Jozef Moravčík,
CSc., odb. asistent VŠD v Žilině

I. jednatel: Vlastimil Macháček, odb. asistent pedago-
gické fakulty KU v Praze

II. jednatel: Jiří Mída, odb. asistent pedagogické
fakulty KU v Praze

Členové: Dr. František Běloun, vedoucí matematického
kabinetu Krajského pedagogického ústavu v Praze
dr. Juraj Bosák, CSc., Matematický ústav SAV v Bra-
tislavě
dr. Jaroslav Fuka, CSc., vědecký pracovník MÚ ČSAV
v Praze
František Hradecký, odborný asistent matematicko-
fyzikální fakulty KU v Praze
prof. dr. Karel Hruša, vedoucí katedry matematiky
pedagogické fakulty v Praze
dr. Milan Kolibiar, CSc., profesor přírodovědecké
fakulty Komenského university v Bratislavě
Josef Bartůnčk, ústřední inspektor MŠ
akademik Josef Novák, vedoucí vědecký pracovník
MÚ ČSAV v Praze
dr. Jiří Sedláček, CSc., vědecký pracovník MÚ ČSAV
v Praze
František Veselý, profesor v. v. v Praze
dr. František Zítek, CSc., vědecký pracovník MÚ
ČSAV v Praze
dr. Miloslav Zedek, docent přírodovědecké fakulty
university Palackého v Olomouci
Dalšími členy Ústředního výboru matematické olym-

piády jsou předsedové krajských výborů mate-
matické olympiády:

dr. Václav Pleskot, profesor ČVUT v Praze
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dr. Václav Vilímek, docent katedry matematiky a de-
skriptivní geometrie strojní fakulty ČVUT v Praze
Marie Štěpánková, odborná asistentka katedry matema-
tiky Vysoké školy zemědělské v Českých Budějovicích
Karel Hnyk, odborný asistent pedagogické fakulty v Ústí
nad Labem
Věra Rádiová, profesorka SVVŠ J. Fučíka v Plzni
Jan Laštovka, vedoucí kabinetu matematiky Krajského
pedagogického ústavu v Pardubicích
Petr Benda, odborný asistent VUT v Brně
Josef Andrys, docent pedagogické fakulty v Ostravě
dr. Ladislav Berger, odborný asistent katedry matema-
tiky Vysoké školy dopravní v Žilině
Ján Gatial, katedra matematiky elektrotechnické fa-
kulty SVŠT v Bratislavě
RNDr. Ján Černý, CSc., docent přírodovědecké fa-
kulty v Košicích

Náhradník; dr. Miroslav Šisler, CSc., vědecký pra-
covník MÚ ČSAV v Praze

Pracovní předsednictvo ÚVMO (PÚVMO) tvoří
(uvedeno v abecedním pořadí):

J. Bartůněk; prof. dr. M. Fiedler, DrSc.; dr. J. Fuka,
CSc.; V. Macháček; J. Mída; dr. J. Moravčík, CSc.;
akademik J. Novák; dr. J. Sedláček, CSc.; doc. J. Výšin,
CSc.; dr. F. Zítek, CSc.
Koncem roku 1969 mělo vypršet tříleté funkční období

uvedeného výboru. Vzhledem к přípravám na federa-
tivní uspořádání orgánů MO byla ministerstva školství
ČSR i SSR požádána, aby funkční období ÚV MO
bylo prodlouženo do 31. 12. 1970 a aby byli kooptováni
zástupci nově vzniklých orgánů. ÚV MO připraví ná-
vrh nového statutu MO (viz další podrobnosti v poznám-
kách o jednání plenárních schůzí ÚV MO); tato práce
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nebyla dosud uzavřena, neboť obě ministerstva školství
provedla další organizační zásah do soutěží MO, FO,
CHO. Nová organizace soutěže MO není proto dosud
stabilisována.

3. SCHŮZE ÚV MO

Během XVIII. ročníku MO se ústřední výbor sešel
tradičně dvakrát. První schůze se konala 5. a 6. prosince
1968 v Praze. Projednala řadu závažných otázek, pře-
devším organizačních. První usnesení se týkalo III. kola
kategorie A již v XVIII. ročníku MO. Bylo rozhodnuto,
aby se soutěž konala ve dvou dnech — každý den budou
soutěžící řešit tři úlohy ve 4 hodinách; tím se bude toto
kolo podobat soutěži MMO.

Další usnesení se týkalo organizace XIX. ročníku: Bylo
rozhodnuto zřídit jen tři kategorie: kategorii Z pro žáky
ZDŠ, kategorii В pro žáky I. а II. ročníku středních škol
a kategorii A pro žáky III. а IV. ročníku středních škol.
Místo dosavadních4soutěžních úloh v II. а III. kole bude
účastníkům předloženo vždy 6 úloh, a to ve dvou skupi-
nách po třech. Jedna skupina bude obsahovat úlohy spíše
algebraické, druhá skupina úlohy spíše geometrické
(o způsobu hodnocení bylo diskutováno na jarní ple-
nární schůzi ÚV MO).

Neméně závažné usnesení se týkalo zřízení české a slo-
venské subkomise pro návrh nového statutu MO, v němž
by se již přihlédlo к nové situaci, kterou vytváří federali-
zace státu.

Druhá plenární schůze ÚV MO se konala u příležitosti
závěrečného III. kola MO, kategorie A v Havířově
ve dnech 18. a 19. dubna 1969. Na schůzi bylo schváleno
vedení československé delegace na XI. MMO v Rumun-
sku a s radostí byl přijat příslib tehdejšího náměstka
ministra školství s. Ing. V. Hendrycha, že u příležitosti
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20. výročí MO v ČSSR bude u nás uspořádána i XIII.
MMO. Dalšími body jednání byly: příprava celostátního
soustředění kat. В, záležitosti edice ŠMM, konkurs
JČSMF na úlohy pro MO a FO a návrh evidenčního
listu účastníka AÍO. Hodnocení průběhu XVIII. ročníku
bylo velmi podrobné a obšírné; na závěr diskuse byly při-
jaty závěry pro organizaci XIX. ročníku: Pro postup do
III. kola kat. A bude rozhodující počet bodů (termínu
„úspěšný řešitel“ se nebude v tomto případě užívat); ve
II. kole kategorií А а В budou zadány к řešení tři sku-
piny úloh. Každá skupina bude sestávat ze dvou úloh,
které budou voleny tak, aby dosažitelný počet bodů za
řešení každé z nich byl týž. Do celkového bodového hod-
nocení se bude žákovi započítávat počet bodů za řešení
jediné úlohy z každé skupiny, a to té, jejíž řešení mu
bylo bodově lépe hodnoceno. Byly rovněž určeny nové
termíny soutěže. Elaborát slovenské subkomise pro návrh
nového statutu MO byl vzat za základ pro připomínkové
řízení КV MO a dalších orgánů; definitivně bude pro-
jednán na podzimním zasedání ÚV MO v roce 1969.

Zasedání ÚV MO prodiskutovalo rovněž otázku práce
s žáky nadanými pro matematiku a konstatovalo, že ne
všichni učitelé, a zvláště ne noví absolventi fakult, se
těmto žákům věnují. ÚV MO se proto usneslo obrátit
se dopisem s řadou podnětů na všechny fakulty připra-
vující budoucí učitele matematiky se žádostí, aby této
otázce věnovaly pozornost a aby eventuálně ÚV MO
sdělily své zkušenosti a další podněty.

4. PRŮBĚH JEDNOTLIVÝCH KOL SOUTĚŽE

a) Studijní I. kolo probíhalo od září 1968 až do 15. ledna
1969 jako obvykle ve dvou etapách. V první etapě řešili
žáci všech čtyř kategorií přípravné úlohy s termínem
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odevzdání do 15. listopadu 1968. Rozboru řešení těchto
úloh, jejichž odevzdání nebylo opět podmínkou postupu
do soutěžní části I. kola, využili mnozí učitelé к užitečným
besedám s účastníky a zájemci o MO. Avšak, zřejmě
vzhledem к mimořádným událostem, počet účastníků
i úspěšných řešitelů této soutěžní části I. kola klesl
někde i více než o 20 % oproti předcházejícímu ročníku
(viz tabulku 1). Jediným uspokojujícím faktem tohoto
kola je, že se ho účastní skutečně vážní a dobří zájemci
o matematiku, neboť procento úspěšných řešitelů je
poněkud vyšší než v předcházejících letech. V kategorii
D je však pokles počtu účastníků i úspěšných řešitelů
vyšší, přibližně o 30 %.

b) Klauzurní II. kolo proběhlo v krajských střediscích
pro kategorii A v sobotu 8. března 1969 a pro kategorie
В a C v neděli 9. března 1969. Kategorie D měla své
II. kolo v okresních střediscích až ve středu dne 2. dubna
1969. Tato volba termínů umožnila opět některým zvlášť
schopným řešitelům účastnit se II. kola i ve dvou kate-
goriích. Nejen v kategorii A, ale i v kategoriích В a C
bylo použito při klasifikaci řešení bodování. Texty úloh
i bodové hodnoty dílčích úseků řešení jsou na str. 96 až
128. Žáci při zadání práce byli informováni pouze o počtu
bodů za úplné řešení každé úlohy. Ukázalo se, že stáno-
vení počtu bodů tak, aby odpovídalo reálné situaci při
soutěži, je velmi obtížné. V kategorii A3 i když soutěžící
byli ve značné časové tísni, celkem bodování dobře
odpovídalo. Avšak pro kategorii В a C byla stanovena
měřítka zřejmě příliš přísná (viz tabulku 2). Proto vyšel
návrh, aby bodové hodnoty za řešení úloh byly stanoveny
až po vyzkoušení u experimentální skupiny. O dalších
závěrech týkajících se organizace i průběhu II. kola jsou
zmínky v „Předmluvě“ i v poznámkách ze schůzí ÚV
MO.

Protože pro kategorie В a C soutěž II. kolem končí,
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uvedeme v příloze A jmenný seznam úspěšných řešitelů
(nejvýše však prvních deset) podle jednotlivých krajů.

Závěrečné celostátní III. kolo soutěže v kategorii A
se konalo 18. a 19. dubna 1969 v Havířově. Pro účast do
III. kola bylo od KV MO navrženo 36 žáků a žákyň.
Podmínce stanovené komisí PÚV MO (úspěšný řešitel
měl dosáhnout aspoň poloviny bodů a vyřešit aspoň jednu
úlohu se ztrátou nejvýše jednoho bodu) nevyhovělo
z těchto 36 žáků celkem 9, avšak 8 z nich vyřešilo podle
starého kritéria „aspoň dvě úlohy aspoň na dvojku“,
případně jednu z nich na 2 — . Proto i těchto 8 bylo
povoláno к soutěži.

Vlastní soutěž III. kola proběhla po prvé ve dvou dnech
formou obdobnou soutěži na mezinárodních matematic-
kých olympiádách. Každý den řešili účastníci tři úlohy
ve čtyřech hodinách. Žákům byly oznámeny počty bodů
za úplná řešení úloh. (Texty úloh i stručná bodová
ohodnocení jednotlivých úseků řešení jsou na str. 129
až 146.)

Po korektuře řešení úloh bylo stanoveno, že za vítěze
budou prohlášeni ti soutěžící, kteří dosáhli aspoň 20 bodů
(z možných 40 bodů). Úspěšným řešitelem je pak ten
účastník, který dosáhl aspoň 15 bodů (viz jmenný seznam
vítězů a úspěšných řešitelů v příloze В). Všichni vítězové
a úspěšní řešitelé byli opět podle návrhu PÚV MO
odměněni ministerstvem školství.

Do přípravného soustředění na XI. MMO byli do
Štiřína na dobu od 22. do 28. června 1969 povoláni
všichni vítězové a dále s přihlédnutím к výsledkům II.
kola Rudolf Švarc a Jiří Šafařík, kteří byli žáky II. roč-
niku a kteří měli vysoký vážený průměr bodů za II. а III.
kolo soutěže. Definitivní složení družstva (viz Zpráva
о XI. MMO, str. 147 až 179) bylo určeno až na schůzi
předsednictva ÚV MO dne 28. června 1969.
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5. POMOCNÉ AKCE

Jako každý rok, tak i v XVIII. ročníku pořádaly krajské
výbory MO spolu s pobočkami JČSMF různé přípravné
přednášky pro účastníky MO různých kategorií bčhem
roku i celá soustředění (např. opětně v Západočeském,
Jihomoravském a Severomoravském kraji). Rozsah i úro-
veň těchto akcí závisela jak na finančních možnostech,
tak i na iniciativě příslušných činitelů.

Naproti tomu přípravné školení pro mezinárodní та-
tematické olympiády mělo centrálně připravovaný pro-
gram rozdělený do těchto tří úseků:

a) Úlohy z teorie čísel (připravil dr. Jiří Sedláček, CSc.,
z MÚ ČSAV);

b) Analytická geometrie (připravil dr. Vladimír Mahel,
CSc., z ČVUT v Praze);

c) Funkce a zobrazení (připravil dr. Jaroslav Fuka,
CSc., z MÚ ČSAV).

Podle těchto materiálů probíhala příprava v následu-
jících střediscích (v závorce uveden průměrný počet
účastníků): Praha (8), Plzeň (3), Brno (8), Bratislava (3),
Nitra (1), Zvolen (1), Banská Bystrica (1), Prievidza (1),
Košice (3) a Žilina (3), a to po celý školní rok.

Celostátní akcí je i soustředění řešitelů kategorií S a C,
které se konalo v XVIII. ročníku v Pardubicích od 23.
června do 12. července 1969. Tentokráte byly zřízeny
třídy s odlišným obsahem výuky: matematická, fyzikální
a matematicko-fyzikální.

Program přednášek a seminářů matematické třídy:
Dr. Milan Koman, CSc. (pedagogická fakulta UK

v Praze): Vyšetřovánígeometrických míst v prostoru metodou
souřadnic.
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Dr. Pavel Goralčik, CSc. (MFF UK v Praze): Kombi-
natorická algebra.

Jan Vinař (přírodov. fak. UJPŠ v Košicích): Jorda-
nova eliminace.

Ve fyzikální třídě zajišťoval celý program ústřední
výbor fyzikální olympiády.

V matematicko-fyzikální třídě polovinu výuky tvořily
matematické přednášky:

Dr. František Zítek, CSc. {MlJ ČSAV v Praze):
VvŤyinvuiíri типЪгр

yDr. Milan Koman, CSc. (PedF UK v Praze): Vyšetřo-
vání geometrických míst metodou souřadnic.

6. STUDIJNÍ LITERATURA
Letáky s úlohami pro kategorie А, В a C (v nákladu

5 000 kusů) a pro kategorii D (v nákladu 10 000 kusů)
vydalo včas Státní pedagogické nakladatelství; úlohy
I. kola byly rovněž otištěny v časopisech „Matematika
ve škole“ a v „Rozhledech matematicko-fyzikálních".

Nakladatelství Mladá Fronta vydalo do konce roku
1969 další svazky edice „Škola mladých matematiků";
uvedeme jen několik posledních:

č. 20. Bruno Budinský — Stanislav Šmakal: Gonio-
metrické funkce

č. 21. Alois Apfelbeck: Kongruence
č. 22. Tibor Salát: Dokonalé a spriatelené čísla
č. 23. Jaroslav Morávek—Milan Vlach: Oddělitelnost

množin

č. 24. Ján Gatial—Milan Hejný: Stavba Lobaěevského
planimetrie

V poslední době však nakladatelství Mladá Fronta při
zadávání svazků edice Škola mladých matematiků do vý-
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roby naráží na velké potíže. Podařilo se mu totiž zajistit
vydání knihtiskem jen jednoho svazku ročně; ostatní
svazky budou muset být tištěny rotaprintem. Snad
pomůže i příslib, že vydání jednoho svazečku zajistí
na Slovensku nakladatelství Alfa. Doufejme, že se všechny
potíže podaří překonat a vydávání edice bude zachováno.

7. KONKURS jfČSMF NA NÁVRHY ÚLOH
PRO MO

Tento nepřetržitě probíhající konkurs vyhlásila Jednota
československých matematiků a fyziků již v roce 1966.
Připomeňme jeho podmínky.

Text a řešení každé úlohy je třeba zaslat napsané na listu
formátu A4 (vždy originál a jeden opis) na adresu:
Ústřední výbor matematické olympiády, Praha 1 - Nové
Město, Žitná 25. Za každou přijatou úlohu je vyplácena
odměna ve výši 50,— Kčs v kategoriích А, В a 30,— Kčs
v kategorii Z. Při recenzi se přihlíží к původnosti úlohy
a odměna může být případně zvýšena, např. úlohy pro
mezinárodní MO jsou odměňovány částkou 80,— Kčs.
Úlohy, které neprojdou úspěšně konkursním řízením, se
autorům vracejí. Přijaté úlohy jsou zařazeny do archívu
ústředního výboru matematické olympiády, který vy-
placením odměny autorovi získává dispoziční právo,
zejména právo upravit text úlohy i autorské řešení a po-
užít úlohy pro účely MO podle vlastní úvahy. Autor
samozřejmě na sebe bere závazek, že přijatou úlohu utají,
aby průběh olympiády nebyl narušen.

Výše uvedené podmínky jsou upraveny vzhledem ke
změněné organizaci olympiády od XIX. ročníku (kate-
gorie D byla označena Z, kategorie BaC splynuly v ka-
tegorii B).

Pro autory, kteří se účastní nebo chtějí zúčastnit svými
úlohami konkursu, jsou určeny následující řádky.
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Při výběru úloh pro MO se dává vždy přednost úlohám
s atraktivními náměty před úlohami se složitými výpočty,
zvláště když není jejich výsledek nijak zajímavý. Početní
zběhlosti se má účastník MO naučit ve škole. Olympijská
úloha musí při řešení vyžadovat ne pouhou početní ru-
tinu, ale hlavně dobrý nápad. Obrazně řečeno: úloha
v MO má mít vtip! Ovšem za „vtipnosť* úlohy se nedá
považovat užívání zcela umělých obratů při jejím řešení.

Pro AÍO jsou vítané dvojice či trojice úloh, které spolu
souvisejí. Řešitele totiž jistě potěší, když např. ve II. kole
se setká s úlohou příbuznou úloze jemu známé z příprav-
ného nebo I. kola. Ovšem v řešeních na sebe navazujících
úloh se nelze odvolávat na předchozí úlohy. Každá úloha
totiž musí tvořit nezávislý celek. Musí se počítat s tím,
že řešitel předchozí úlohu nevyřešil, nebo že nemá její
řešení po ruce (např. ve II. kole).

V olympiádě se v současné době zadávají téměř vý-
hradně úlohy získané konkursem. Je to konec konců
vidět také z těchto čísel: Od roku 1966 do 31.října 1969
došlo do konkursu celkem 537 úloh od 65 autorů. Recenzní
řízení bylo ukončeno u 482 úloh, z nichž 281 bylo přijato.
V XVIII. ročníku mezi 54 zadanými úlohami bylo pouze
5 úloh nepocházejících z konkursu.
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PŘÍLOHA A

POŘADÍ ÚSPĚŠNÝCH ŘEŠITELŮ II. KOLA
V КA TEGORIÍCH BAC

(není-li uvedeno jinak, jde o SVVŠ, příp. gymnasium,
a o třídu odpovídající příslušné kategorii)

Praha-mčsto

B. Ondřej Matouš, Praha 2, tř. W. Piecka; Svatopluk
Poliak, Praha 2, tř. W. Piecka; Vladimír Šíma, Praha 2,
tř. W. Piecka; Miloslav Handl, Praha 2, tř. W. Piecka;
Martin Kašík, Praha 7, Nad Štolou.

C. Daniela Dlouhá, Praha 2, tř. W. Piecka; Vladimír
Zajíc, Praha 10, Voděradská.

Středočeský kraj
B. Jiří Gemprle, Radotín; Eva Nosková, Mladá Bole-

slav; Štěpán Vaněček, Benešov.
C. Jiří Doskočil, Poděbrady; Jiří Frýda, Kladno.

Jihočeský kraj
B. Jan Vyhnánek, České Budějovice.
C. Jarmila Voldřichová, Vimperk.

Západočeský kraj
B. Rudolf Švarc a Vladimír Junger, Plzeň, SVVŠ

J. Fučíka, nám. Odborářů; Jiří Benda, Plzeň, SPŠ elektro-
technická.

C. Zdenka Černá, Plzeň, SVVŠ J. Fučíka, nám. Odbo-
rářů; Pavel Maglia, Karlovy Vary-Drahovice.
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Severočeský kraj
B. Vladimír Šulc, Litoměřice; Jiří Skotnica, Chomu-

tov; Jaroslav Klíma a Václav Urban, Liberec.
C. Zbyněk Pejchal, Litoměřice; Jiří Horák, Děčín;

Jaroslav Klápště, Liberec, SPŠ strojnická.

Východočeský kraj
B. Zdeněk Jelínek, Pardubice; Pavel Schill, Ivan

Škaloud, Karel Vaniček, Vladimír Čapek a Oldřich
Qicr Нгяпрг

C. Jiří Dohnal a Jiří Horáček, Hradec Králové; Libor
Slezák, Pardubice; Jaromír Kubík a Jarmila Semrádová,
Hradec Králové; Pavel Maršíček a Karel Šklíba, Pardu-
biče.

Jihomoravský kraj
B. Igor Kadeřávek, Brno, Lerchova; Jaroslav Kučera

a Zdenko Staníček, Brno, Křenová.
C. Petr Firbas, Jiří Němec, Václav Holý, Slavomír

Kolčava a Miloš Paleček, Brno, Křenová; Ivan Vaniček,
Brno, Elgartova; Ivan Kubáček a Lubomír Pospíšil,
Brno, Křenová; Antonín Povolný a Zbygniev Zalewski,
Brno, Koněvova.

Severomoravský kraj
B. Marie Němčíková, Karviná.
C. Jiří Ivánek, Nový Bohumín; Marie Civínová a Milan

Konečný, Ostrava-Vítkovice.

Západoslovenský kraj
B. Karol Šafařík, Angela Leitmanová, Lívia Hofer-

ková, Vladimír Černý, Štefan Pleško a Michal Zajac,
Bratislava, Novohradská.
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C. Anton Černý a Eva Ambrošová, Bratislava, Novo-
hradská; Viliam Čuperka, Holič; Jan Franců, Bratislava,
Novohradská.

Středoslovenský kraj
C. Štefan Sakáloš, Prievidza.

Východoslovenský kraj
B. Belo Zorkovský, Košice, Šrobárova; Mirko Horňák,

Košice, Kováčska.
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PŘÍLOHA В

Závěr XVIII. ročníku МО - III. kolo kat. A

Vítězové

1. Tomáš Mašek, III. f, SVVŠ tř. W. Piecka, Praha 2
2. Bohuš Sivák, III. a, SVŠ Zvolen
3. Miloš Zahradník, III. a, SVVŠ Tanvald
4. Fwáreč, III. f, SVVŠ tř. W. Piecka, Praha 2
5. Petr Hadrava, III. f, SVVŠ tř. W. Piecka, Praha 2
6. Pavol Černek, II. b, SVŠ J. Hronca, Novohradská,

Bratislava
7. Štefan SakáloŠ, I. d, SVŠ V. B. N. Prievidza
8. Jm Benda, M 2, SPŠE Plzeň, Koterovská 85

Úspěšní řešitelé9.Josef Jirásko, III. a, SVVŠ Semily10.Vladimír Černý, II. b, SVŠ J. Hronca, Novohradská,
Bratislava

až Peter Mach, III. c, SVŠ Ružomberok
12. Jiří Kopřiva, III. a, SVVŠ Broumov
13. JW/ Jedlička, III. b, SVVŠ Moravské Budějovice
14. /Саге/ Malík, III. f, SVVŠ tř. W. Piecka, Praha 2
až Jiří Reif, III. f, SVVŠ J. Fučíka, nám. Odborářů,

Plzeň

16. Rudolf Švarc, II. f, SVVŠ J. Fučíka, nám. Odborářů,
Plzeň
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17. Hana Cagašová, III. e, SVVŠ Křenová, Brno
a

18. Jiří Šafaříky II. b, SVŠ J. Hronca, Novohradská,
Bratislava

19. Eva Dvořáková, III. a, SVVŠ Kolín III, Žižkova 162
až Jiří Jarušek, III. f, SVVŠ tř. W. Piecka, Praha 2
21. Vlasta Navarová, III. a, SVVŠ, Praha 3-Žižkov,

Pražačka
22. Jaroslav Daniel, II. a, SVVŠ Moravské Budějovice23.Zdena Štěrbová, III. SVVŠ tř. W. Piecka, Praha 2
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů v kategorii D*)

Kategorie D

Kraj
p Z toho

dívek
Z toho

dívek
Ú

955Praha-mčsto 439 594 282

Středočeský 344 176 239 132

408 226Jihočeský 226 107

Západočeský 217 116 53109

485 255Severočeský 247 118

485Východočeský 255210 126

401 450Jihomoravský 763 239

Severomoravský 301 366604 182

525Západoslovenský 8291082 410

Středoslovenský 846 339492 492

Východoslovenský 570 350 154272

Celkem 6759 3406 4264 2142

*) P značí celkový počet účastníků; Ú značí počet úspěšných řešitelů
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Tabulka č. 4

Přehled, počtu účastníků II. kola podle krajů v kategorii D *)

Kategorie D
Kraj

p Z toho
dívek

Z toho

dívek
Ú

Praha-město 263 105499 217

Středočeský 151222 81120

Jihočeský 43200 93 16

Západočeský 106 26 946

Severočeský 48219 99 110

Východočeský 85241 197111

34Jihomoravský 75402 211

Severomoravský 113 56301 144

Západoslovenský 139394 260806

Středoslovenský 552 302 178 96

Východoslovenský 328 139 66144

Celkem: 3876 1455 7341781

*) P značí celkový počet účastníků; Ú značí počet úspěšných řešitelů
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II. Přípravné úlohy I. kola

1. KATEGORIE A

1. Buďte a, b, c tři kladná čísla, pro něž platí
an + bn = cn ,

kde n je přirozené číslo větší než 1. Pak existuje trojúhel-
nik, jehož strany mají délky a, b, c. Dokažte.

ŘEŠENÍ. Dané číslo c je větší než daná čísla a i b.
Proto je

a + c > by
b + c > a

a stačí dokázat, že také
a + b > c .

Podle binomické věty platí

(„1(a + by = b + ...+

Protože n > 1, je na pravé straně kromě členů an a bn
alespoň jeden další člen. Všechny členy jsou kladné, takže

(a + b)n > an + bn = cn ,

tedy také
a + b > c .

Tím je tvrzení dokázáno.
2. Je dán obdélník ABCD, jehož strany mají délky

АВ = a3 AD = b. Trojúhelník XYZ je vepsán obdél-
niku ABCD tak, že vrcholy X, Y náležejí straně АВ,
vrchol Z straně CD.

a) Dokažte, že poloměr r kružnice opsané trojúhelníku
XYZ splňuje nerovnosti
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b CL1 + b2
(1)-x < Г <

2 2b

b) Dokažte, že každé číslo r splňující nerovnosti (1)
je poloměrem kružnice opsané některému z takových
trojúhelníků XYZ.

a

D

>b

A

Obr. 1

ŘEŠENÍ (obr. 1). a) Zvolme označení vrcholů Д XYZ
tak, aby bylo AX < A Y a označme AX = x, AY — y,
DZ = z.

Pro výpočet poloměru r užijeme známého vzorce
XY. YZ.ZX

(2)r =
4P

kde P je obsah Д XYZ.
Vyjádříme

FZ = У*2 + {y - z)\
ZX = 1lb2 + (x - z)\

b^{y~x\

XY — у — x,

(3)P ~~
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Dosadíme z (3) do (2); po úpravě vyjde

2b + O’ - zf ■ Vi>2 + (* - *)2 .
1

(4)

Zřejmě je
YZ^BD = ]/a2 + b2,

b = AD ^ ZX ^ AC = 1!a2 + b2.

b = BC

Z geometrického významu plyne, že nemůže současně
platit

YZ =b3 ZX = b,
YZ = ]/a2 + ,b2, ZX = j/a2"^2.

Spojením (3), (4) a (5) vyjde
(5)

a2 + b2b
< r <

2b2

což jsou nerovnosti (1).
b) Abychom dokázali, že poloměr r nabývá každé

hodnoty z intervalu (1), rozlišíme tři případy.
I. (obr. 2a). Nechť je 0 ^ x < у, у = —, z — -y .

a a

C D
/

ВВ A*X
Obr. 2b
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Pak je
1

(4a)Г
2b '

Pak r nabývá podle (4a) všech hodnot z intervalu
b_ _1_
2 “ 26 * *Г + 7=т|/*2 + |-1

b . b < r < —r
2b '

(6a)

II. (obr. 2b). Nechť je x = 0, jy = ^ ^ a.

Pak je

r=ísF+FDi-^+*2- (4b)

Pak r nabývá podle (4b) všech hodnot z intervalu

i.]/b2 + ^Srs4l/^7|.
. 1lb2 + a2 .

III. (obr. 2c). Nechť je л: = 0, 0 <3; ^

1

2b'

(6b)
z = a.
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Pak je
1

r =
2b + Су — a)2 • У*2 + b~ •

Pak r nabývá podle (4c) všech hodnot z intervalu

(4c)

j/б2 + j . ]/б2 + a2 ^ r < ^-]/62 + a2. ]/b2 + a2 =
1

26
a2 + b2

(6c)26

Spojíme-li (6a), (6b), (6c), zjistíme, že r nabývá všech
hodnot z intervalu (1).

3. Určité všetky komplexně čísla z, ktoré vyhovujú
rovnici

(1 + i)z2 - i\z2\ + 1 - i = 0 . (1)

RIEŠENIE. Platí \z2\ = \z\2 = zz. Rovnica (1) má
potom tvar

(2)(1 + i)z2 — izz + 1 — i = 0 .

Ak do (2) dosadíme z — x + yi, z — x — yi (x, у reálne
čísla), dostaneme:
(1 + i) (я2 — у2 + 2xyi) — i(x2 + у2) + 1 — i = 0. (3)
Z rovnice (3) vyplývá, že reálna aj imaginárna časť
1’avej strany sa rovná nule, t. j.

*2 - у* - 2xy + 1 = 0 ,

x2 - y2 + 2xy - (x2 + у2) - 1 = 0 .

(4a)
(4b)

Rovnicu (4b) upravíme na tvar
2xy — 2y2 —1 = 0.

Sčítáním rovnic (4a), (5) dostaneme x2 — 3y2 = 0 čiže
x — e]/3y3 kde e — ± 1 .

(5)

(6)
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Po dosadení zo (6) do (5) vyjde 2y2(e]/3 — 1) = 1.
Pretože у musí byť reálne, je 2y2 > 0 a preto je e = 1.
Máme teda

= i + Уз1
У2 = (7)2(]/3 - 1) 4

Zo vzťahov (7) a (6) dostaneme

Vl + 1/3
2

_ ]/з(1 + 1/3)*13h 2

З'г = —У» x2 = —*i .

Danej rovnici móžu teda vyhovovat’ len čísla
*i = *i + У1i 3 = *2 + y2i = — %i •

Skúškou sa 1’ahko přesvědčíme, že tieto čísla rovnici (1)
skutočne vyhovujú.

4. Buďte a, 6, c, d délky stran konvexního čtyřúhelníka,
и, v délky jeho úhlopříček, P jeho obsah.
Pak platí

4u2v2 = 16P2 + (я2 + c2 b2 - d2)2.
Dokažte.

C = \0;u ]
cDm[*2i, b

и

a

x

Obr. 3
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ŘEŠENÍ. Zvolme soustavu kartézských souřadnic
podle obr. 3. Pak platí podle vzorce pro vzdálenost dvou
bodů

a2 = x! + y\,
b2 = Xl + (y, - uf,
C2 = x! + (y2 - и)2 ,

d2 = xl + y\ .

Dále je podle téhož vzorce
v2 = Oi — *2)2 + Oi - з-2)2 •

Podle vzorce pro obsah trojúhelníka je

(2)

O)

11
P =

2 «(Oil + O2I) = 2a(*i-
neboť je >0, л;2 < 0. Z druhé a třetí rovnosti (2)
dostaneme

(4)

b2 — c2 = xl — xl + y\ — y\ — 2«Ox — y2),
neboli vzhledem к první a čtvrté rovnosti (2)

2и(уг — уo) = a2 + c2 — b2 — ď2.
Z (4) a (5) dosadíme do (3); vyjde

16P2 + (a2 + c2 - b2 - d2)2,

(5)

4н2г>2

což je rovnost (1).

2. KATEGORIE В

1. a) Najděte všechny dvojice Oj У) celých kladných
čísel, pro které platí

\2x - ioy; ^ 5.
b) Je-li p kladné číslo, pak nerovnice

\2X - Щ ^ p
má v oboru dvojic celých kladných čísel (xsy) buď
konečně řešení, nebo je neřešitelná. Dokažte.
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ŘEŠENÍ, a) Dokažme nejprve, že nerovnice |2*— 10y| ^
^ 5 nemá řešení x = y. Je totiž \2X — 10*1 = 10* — 2* =
= (10 — 2)N = 8N ^ 8, kde N je přirozené číslo.
Protože mocniny čísla 2 rostou „pomaleji" než mocniny
čísla 10, napadne nás, že předchozí odůvodnění by se
mohlo rozšířit i na případ x y. Skutečně je pro x ^ у

|2* - 10y| = 2* 11 — 2y~x . 5V\ ^ 2* (2y~x . 5y - 1) ^
^ 2 . (5 — 1) ==2.4 = 8.

Řešení nerovnice z úlohy a) můžeme hledat jen mezi
dvojicemi x} y, pro něž platí x > y. Pak platí

|2* - 10^1 = 2y \2x~y - 5y\ < 5 ,

tj.
12*-»-5*|

neboť у ^ 1. Je tedy \2x~y — 5y\ = 0 nebo 1 nebo 2.
Případy 0; 2 jsou vyloučeny, neboť číslo 5y je liché, čísla
2x~y\ 0; 2 jsou sudá. Je tedy buď

5y + 1 = 2x~y,

5y — 1 = 2*-y .

Dekadické vyjádření čísla 5y končí dvojčíslím 05 nebo 25;
proto dekadické vyjádření čísla 5y + 1 končí buď dvoj-
číslím 06, nebo 26. Je proto 5y + 1 dělitelné jen mocninou
21, tj. 2x~y = 2, x — у — 1. Z (la) pak plyne 5y = 1,
což je nemožné, neboť у je přirozené číslo.

Rovnici (lb) rozřešíme pomocí rozkladu
5y - 1 - 5y - ly = 4 (1 +5+ .. .+5y_2+5y“1). (2)

Má-li být číslo 5y — 1 mocninou dvou, musí mnohočlen
v závorkách (2) být roven buď 1, nebo být číslo sudé, tj.
musí obsahovat sudý počet členů. V posledním případě
seskupíme členy ve dvojice a použijeme vzorce 5k +
+ 5*+i = 5fc(i + 5) = 6.5*. To znamená: jsou-li v zá-

(la)
nebo

(lb)
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vorkách (2) aspoň dva členy, je číslo na pravé straně (2)
násobkem tří a není mocninou dvou. V úvahu přichází
tedy jen případ у = 1. Z (lb) dostaneme x — у — 2,
tj. x = 3.

b) Tvrzení dokážeme sporem. Budeme předpokládat,
že pro některé přirozené číslo/) má nerovnice \2X — 10*| ^
^ p nekonečně mnoho řešení. Mezi těmito řešeními lze
vybrat takové dvojice [jcí, j>j] a očíslovat je tak, že x13 x2,
X33 • • -j Мэ Угу Уз budou dvě posloupnosti přirozených
čísel, která stále porostou. Tyto posloupnosti nemohou
být totiž obě omezené (předpokládáme, že nerovnice má
nekonečně mnoho řešení); také není možné, aby jedna
posloupnost byla omezená a druhá neomezená, protože
[2X — 10*] ^ p.
Můžeme tedy najít takové přirozené číslo n, že je

5*'ř > p . (3)2Xn > p,
Je-li xn í^yn3 počítáme s použitím (3) takto:
\2Xn — 10*1 = 2Xn |1 — 2Уп~Хп . 5*л| > P j5 — 1 4p.

To je spor s danou nerovnicí; [xni yn] není tedy jejím
řešením.

Je-li xn >yn, počítáme s použitím (3) takto:
\2Xn - 10*1 = 2y" \2Xn~yn - 5*1 >p.N^p,

kde N je přirozené číslo. Také tato dvojice [x„,jyw] není
řešením dané nerovnice. Tím je dokázáno, že nerovnice
nemá nekonečně mnoho řešení.

Obrat, kterého jsme použili, je typický v disciplíně,
zvané matematická analýza.

2. Platí-li zároveň

sin x -f sin у -f sin z = 0 ,

cos x + cos у + cos z
(1)
(2)0,

pak je také
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sin 2я + sin 2у + sin 2z = O ,

cos 2x + cos 2y + cos 2# = 0 .

(3)
(4)

Dokažte.

ŘEŠENÍ. Upravíme
sin 2я + sin 2у -f sin 2z = sin 2я + sin 2j/ -f

+ 2 sin 2 cos z — sin 2x + sin 2у -j- 2(sin я + sin y)
(cos я + cos y) = 2 sin 2я + 2 sin 2y + 2 sin (я + У =
= 4 sin (я + y) cos (я — jy) + 2 sin (я + у) =
= 2 sin(* + J') [2 cos (я — У) + 1] = 0.

Nyní vyjádříme z (1) a (2) sin z, cos dosadíme do
formule sin2# + cos2 z = 1; po úpravě dostaneme
2 cos (я — у) + 1 = 0. Platí tedy (3).

Obdobně počítáme
cos 2я + cos 2y + cos2 z —

— sin2 z = cos 2я + cos 2у + (cos я + cos У2 — (sin я +
+ sin у)2 = 2 cos 2я + 2 cos 2y + 2 cos (я + у) —
— 4 cos (я + у). cos (я — у) + 2 cos (я + у) —
— 2 cos (я + У [2 cos (я — У + 1]

Protože je 2 cos (я — у) + 1 = 0, platí i (4).

cos 2я + cos 2у -f cos 2#

0.

3. V rovině je daný dutý uhol MON, vnútorný bod P
polpriamky opačnej к polpriamke ОМ a vnútorný bod
Q dutého uhla NOP. Ďalej je daný štvorec so stranou d.
Bodom <2 veďte priamku p, ktorá přetíná polpriamky
OM, ON v uvedenom poradí v bodoch X, Y tak, aby
trojuholník OXY a daný štvorec mali rovnaký obsah.

RIEŠENIE. Rozbor. Predpokladajme, že sme zostrojili
priamku p žiadaných vlastností (obr. 4). Bodom Q
veďme priamku q \ | ON. Priamka q leží v polrovine NOP.
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т

Obr. 4

S polpriamkou ОМ je róznobežná, z čoho vyplývá, že
přetíná polpriamku OP v jej vnútornom bode. Označme
ho R. Označme ďalej jc velkosť úsečky OX> r velkost’
úsečky RO, v velkosť výšky trojuholníka OXY prislú-
chajúcej к straně OX a w velkosť výšky trojuholníka
RXQ prislúchajúcej к straně RX.

Podlá vety (uu) je Д OXY ~ Д RXQ, z čoho vy-

plýva, ze —
w
-—- cize

wx

(1)v = —

1
Z textu úlohy vyplývá, že — vx — d2 číže

2d2
(2)v = —

x

2d2wx
Zo vzťahov (1), (2) vyplývá
úpravě

= —, z čoho po
Xr + x
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го;с2 — 2d2;e — 2d‘2r — O .

Riešením tcjto kvadratickej rovnice a ďalšou úpravou
dostaneme:

2d2 i ]/4d4 + 8d2rw 2d'2 4; 2d ]/d2 + 2rw _

d(d dr ]/d2 + 2гго)

*1,2 — 2zv 2w

zv

Pretože ]/ d2 4 2гго > ]j d'2 — d ал: má byť číslo kladné,
vyhovuje úlohe len prvý kořeň, t. j.

_ d (d + |/d2 4 2гго)
го

Úsečka velkosti d je daná, úsečky velkosti г, го móžeme
zostrojiť a úsečku velkosti л; dostaneme konštrukciou
algebraického výrazu (3).

Konštrukcia (obr. 5a, b).
1. Bodom Q vedieme priamku q || ON a jej priesečník

(3)
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1

* d,
1 I

d \ l

~w2r
Obr. 5b

s polpriamkou OP označíme R, a priamku h _L ОМ a jej
priesečník s priamkou OM označíme H. Velkosti úsečiek
RO a QH v uvedenom poradí označíme r, w (obr. 5a).

2. Zostrojíme úsečku velkosti y, pre ktorú platí:
y2 = 2rzv. Jej konštrukciu možno previesť například na
základe Euklídovej vety o výške (obr. 5b). Na základe
Pytagorovej vety zostrojíme úsečku velkosti z, pre ktorú
z — Уd2 + у2 a potom na základe podobnosti skonštru-
ujeme úsečku velkosti x, pre ktorú л: =

3. Na polpriamke OM zostrojíme bod X, pre ktorý
platí OX = jc. Priesečník priamky p — QX s polpriam-
kou ON je bod Y.

Dokaž. Z konštrukcie vyplývá, že
d{d + 1Id,2 + 2 rw)

d{d + z)
w

(4)OX =
zv
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a

Д OXY~ Д RXQ.
Zo vztahu (5) vyplývá, že — = —^— ,w J

x r + x

. Po dosadení zo vztahu (4) do tohto vztahu do-

(5)

z čoho v =

wx

r + X
staneme

wd (d + ]/ď2 + 2rw)
_ wd(d -f- ]jd2 -f- 2rro)

d(úř + ]/<i2 + 2rw) rro + d2 + d]/á2 -f 2 rw

w
v —

r 4 ■
w

Obsah P trojuholníka OXY je

p 1P = — XV
1 d(d + |/d2 -\- 2rw)
2 w

zvd(d + ]/d2 + 2rw)
+ d2 + d ]/d2 + 2m

1 2d2{d2 + d ]/ d2 -f- 2ra> + rzo)
2 d2 + d }]d2 + 2rw +

Diskusia. Z rozboru vyplývá, že úsečka velkosti x je
jednoznačné určená. Na polpriamke OM existuje jediný
bod X, pre ktorý OX — x, z čoho vyplývá, že úloha má
právě jedno riešenie.

rw

= d2.
rw

4. Jsou dány roviny q || q', jejichž vzdálenost je v > 0
V rovině q leží čtverec ABCD o straně d a středu S,
v rovině q' s ním shodný čtverec A'B'C'D' o středu S'.
Přitom je SS' _[_ q, odchylka přímek SA, S'A' je a, kde
0° ^ a ^ 90°, a polopřímka SX souhlasně rovnoběžná
s polopřímkou S'A' má s úsečkou AB společný bod.
Vypočtěte objem tělesa, které omezují čtverce ABCD,
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A'B'C'D' a trojúhelníky AA'B, A'BB', BB'C, F'CC',
СС'Д C'F>F>', £>Л'Л, D'AA'.

ŘEŠENÍ. Roviny A'BB\ В'СС\ COD', D'yM'
protínají rovinu £ v přímkách, které omezují čtverec
EFGH; označení volme tak, aby FF || Л'5' a aby body
A, 5, C, D ležely po řadě na stranách HE, FF, FG, G#
(obr. 6).

Protože £'Л' || FX, je <£ ^4FX = a. Označme Aí

Obr. 6
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průsečík polopřímky SX s polopřímkou AE. Vzhledem
к A'D' || НЕ je <£ AMS = D'A'S' = 45°. Protože
<X SAB — 45°, v trojúhelníku AMS vypočítáme
<£ MAS = 180° - (a + 45°) = 135° - a. Je tedy
<£ MAB = 135° - a - 45° - 90° - a. Potom ABE
— <£ BCF = a a BE = d . cos a, BF = d sin a, takže
EF = d . (sin a -f cos a).

Popsané těleso vznikne, jestliže od komolého jehlanu
s podstavami EFGH, A'B'C'D' a s výškou v odetneme
čtyři shodné jehlany AEBA\ BFCB\ CGDC, DHAD',
jejichž podstavy jsou pravoúhlé trojúhelníky s odvěsnami
d . sin a, d . cos a a jejichž výška je v. Jeho objem je

V = [1 + (sin a + cos a) + (sin a + cos a)2]
4 d2z> sin a cos a

— (2 + sin a -f cos a) —

= ^[2 + ^2 sin (a+ 45°)].
POZNÁMKA. Pro a — 0° a a = 90° vznikne

pravidelný čtyřboký hranol ABCDA'B'C'D', popř.
ABCDD'A'B'C' o objemu F = pro a

3 2

45 1 máme

- (2 + ]/2) == 1,138 . d2z;, což je zřejmě maxi-F =

mum.

3. KATEGORIE C

1. Dva chodci jdou stálými rychlostmi podél železniční
trati v témže směru. V témž směru jede po trati vlak.
Lokomotiva předjede prvního chodce т minut poté, co
předjela druhého chodce. Prvního chodce mine vlak
za ti vteřin, druhého chodce, který jde rychleji, za r2
vteřin. Za kolik minut dohoní druhý chodec prvního?
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ŘEŠENÍ. Prvního chodce, který jde pomaleji, mine
vlak za kratší dobu než druhého chodce, tj.

t1< t2.

Představme si, že v úloze popsaný děj sledujeme z uve-
děného jedoucího vlaku. Označme d jeho délku v met-
rech. Potom se nám zdá, že se chodci pohybují kolem
nás v obráceném pořadí pozpátku, a to první chodec
rychlostí

(1)

d
(2)©i = —

h
a druhý chodec rychlostí

d
(3)©2 = —

ř2

Rychlosti Vi a v2 jsou ve vztazích (2) a (3) udány v m/s.
Vzhledem к nerovnosti (1) platí

d d
>

h 5h

tj. podle (2) a (3)
vx > Vo .

Z poslední nerovnosti plyne, že z vlaku se zdá, že první
chodec je rychlejší a dohání druhého.

Popišme nyní, jak vypadá z hlediska pozorovatele
ve vlaku předjíždění chodců. Jako první se objeví u před-
ku lokomotivy druhý chodec. V okamžiku, kdy se octne
druhý chodec u zádi lokomotivy (z jeho hlediska ho
lokomotiva předjela), je od něho první chodec vzdálen

60 . x . v1
metrů (obr. 7). Z vlaku se nám zdá, že se chodci к sobě
přibližují s rychlostí

©i - ©2
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60tv1 2. chodec1. chodec

<><y

[lokomotiva

d

smysl chůze a jízdy pro pozorovatele sTbjidho и Tratt

smysl pohybu chodců pro pozorovatele z doku

Obr. 7

metrů za sekundu. Od okamžiku, kdy lokomotiva před-
jela druhého chodce, se oba chodci setkají za

1 60 tvx
60 vx — v2

minut. Dosadíme-li z (2) a (3) do (4), máme
t . ř2

rvx (4)
vx — v2

(5)t =

h
Vztah (5) udává počet minut, který potřeboval druhý
chodec v okamžiku, když ho předjela lokomotiva, к dosti-
žení prvního chodce.

POZNÁMKA. Samozřejmě lze udávat počet minut i od
jiného okamžiku, než kterého jsme užili. Musí být ovšem
zajištěno, že v tomto okamžiku jsou už chodci v pohybu
a že druhý chodec ještě není před prvním. U okamžiku,
jenž jsme výše zvolili, je toto zřejmé podle textu úlohy.
Podobně je tomu, počítáme-li čas potřebný к dostižení
prvního chodce druhým od okamžiku, kdy lokomotiva
předjela prvního chodce.

Dostáváme s užitím vztahu (5)
r . t2

t2 ti

r . txť = T =

t2 tl
minut.
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2. V rovině je daná priamka p a bod A vzdialený od
priamky p o a > 0. Ďalej je dané kladné číslo c. Určité
geometrické miesto vrcholu D všetkých pravouholníkov
ABCD, ktorých plošný obsah je c a ktorých vrchol В
leží na priamke p.

RIEŠENIE. Nech H je pata kolmice spustenej
z bodu A na priamku p (obr. 8). Nech ABCD je jeden
z pravouholníkov vyhovujúcich podmienkam úlohy. Preto-
že priamka АВ je zrejme róznobežná s priamkou/>, je tiež
priamka CD s priamkou p róznobežná a existuje preto
priesečník К priamok p a CD. Podobné existuje prieseč-
nik M priamky CD s rovnoběžkou s priamkou p vedenou
bodom A. Pravouholník ABCD a rovnoběžník ABKM
majú spoločnú stranu AB a rovnakú výšku na ňu (je to
dížka AD), preto sú rovnoploché. Plošný obsah pravouhol-
nika sa podlá textu úlohy rovná c a plošný obsah právo-
uholníka sa zrejme rovná súčinu dížok AM а АН. Pretože
čísla с а АН = a nezávisia na volbě pravouholníka ABCD,
je tiež dížka úsečky AM = c : a na tejto volbě nezávislá.
Existujú právě dva body vzdialené od bodu A o c : a a le-
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žiace na rovnobežke s priamkou p vedenej bodom A.
Jeden z týchto bodov sme označili M, druhý označme
M'. Z toho vyplývá podlá Thaletovej vety, že vrchol D
leží na niektorej z kružnic k, resp. k! opísanej nad úsečkou
AM, resp. AM' ako priemerom.

Hladané geometrické miesto vrcholu D je dvojica
kružnic k a k! bez bodu A. Posledně tvrdenie dokážeme.
Ukázali sme už, že vrchol D leží nutné buď na kružnici k,
alebo k'. Je zřejmé z textu úlohy, že D Ф A.

Nech teraz D Ф A je bod kružnice k alebo k'. Bodmi
D a A a tým, že bod В leží na priamke p je pravouholník
ABCD jednoznačné určený. Dókaz, že jeho plošný obsah
je c sa prevedie rovnako ako v predchádzajúcej úvahe.
Tým je dokaž převedený.

3. Športový krúžok školy má 79 členov. Z nich pestuje
45 futbal, 30 volejbal, 36 basketbal, 28 hokej, 25 plávanie
a 34 1’ahkú atletiku. Každý člen krúžku pestuje aspoň dva
športy a najváčší počet športov pestuje 40 členov krúžku.
Kolko členov krúžku pestuje právě dva športy, právě tri
športy, atd. ?

RIEŠENIE. Označme x{ počet členov krúžku, ktorí
pestujú právě i športov, i = 2, 3,... ., k, pričom xk = 40.
V počte 45 + 30 + 36 + 28 + 25 + 34 = 198 je každý
člen krúžku počítaný tolkokrát, kolko róznych športov
pestuje. Preto platí

(1)2x2 -j- 3jc3 -p • . • “b kxk — 198
a keďže členov krúžku je 79, platí

x2 + *з • • • + Xk — 79 .

Vylúčením x2 z rovnic (1) a (2) dostaneme
*з + 2x4 + ... + (& — 2)я* = 40 .

(2)
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Keďže хк — 40, musí byť k = 3, pretože inak by lává
strana bola váčšia než 40. Potom rovnicu (2) možeme
zapísať v tvare

*2 + x3 = 79 ,

skadial po dosadení x3 = 40 dostaneme x2 = 39.
Dva sporty pestuje teda 39 členov a tri sporty 40

členov krúžku.

4. Sestrojte lichoběžník ABCD, jehož úhlopříčky
jsou к sobě kolmé, je-li dána délka jeho ramene AD =
= d, délka jeho úhlopříčky АС = e a poměr obou
základen AB : DC =5:3.
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ŘEŠENÍ. Označme L průsečík úhlopříček AC a BD,
К průsečík ramen AD a BC. Z podobnosti trojúhelníků
(obr. 9)

ДКАВ ~ AKDC а ДЛЯТ ~ ACDL
plyne
AK:DK = 5:3, AL: CL = BL: DL = AB:DC =

Íac.= 5:3 a AL =
8

Poněvadž je AC ± BD, leží bod L na Thaletově
kružnici sestrojené nad průměrem AD.
Konstrukce (provedena na obr. 9 v polorovině ADR):

1. Nad úsečkou AD jako nad průměrem opíšeme
kružnici k.

2. Sestrojíme kružnici / = (A; lAQ.
3. Určíme průsečík L = k . / ležící v polorovině ADR.
4. Na polopřímku AL naneseme od A úsečku délky

AC — e.

5. Sestrojíme AB || DC', В leží na DL.
Důkaz. Z provedené konstrukce plyne, že DL J_ AL,

tj. úhlopříčky jsou к sobě kolmé. Poněvadž je AC : AL =
8 : 5, je AL : LC = 5:3 a AB : DC = 5:3.

Diskuse. Úloha má řešení, a to jediné (v polorovině
5

ADR), když e < d. (Další řešení v polorovině opačné
O

к polorovině ADR by bylo souměrné podle přímky AD.)

4. KATEGÓRIA D

1. Rozpočítali, že stavebný materiál odvezie auto za
л: dní, kde x > 3. Keďže odvoz bolo třeba urýchliť, začali
na štvrtý deň odvážať materiál ešte dalšími dvorná autami.
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5
Výkon prvého pomocného auta bol — výkonu póvod-
ného auta, výkon druhého pomocného auta bol 1,5
výkonu póvodného auta. Všetky tri autá dokončili odvoz
za у dní.

a) Vyjadrite у pomocou jc.

b) Pre ktoré celé čísla x < 50 je у celé číslo?

1RIEŠENIE. Prvé auto odviezlo za jeden deň — množ-

štva všetkého materiálu, čiže celkom odviezlo (y + 3) —

1 5
materiálu. Druhé auto odviezlo za jeden deň —

x 6
5y

množstva všetkého materiálu a celkom teda -ž- ma-
6x

1
teriálu. Tretie auto odviezlo za jeden deň — . 1,5 množ-

materiálu.3y
štva všetkého materiálu, čiže celkom ^

Všetky tri autá spolu odviezli všetok materiál, preto platí

6x + 2x ’
3y

x

z čoho dostaneme

те(*-3)-
Číslo у je zrejme kladné, pretože x >3. Ak je číslo у
celé, potom kladné číslo x — 3 je násobkom čísla 10, t.j.
x — 3 = 10&, kde k je číslo prirodzené. Pre prirodzené
číslo x máme teda vztah

У =
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x = 3 -f ЮЛ,
čiže x e {13, 23, 33, 43, 53, . .

Ak je x < 50, potom prichádzajú do úvahy čísla 13,
23, 33 a 43.

2. Určete všecky dvojice přirozených čísel x, y, pro
které platí

(1)8x3 -y* = 387 .

ŘEŠENÍ. Platí 8x3 — y3 = (2x)3 — y3 =
= (2x — y) (4x2 + 2xy -f у2), tj. rovnice (1) zní

(2x — jy)(4x2 -f- 2xy + У2) = 387 .

Zřejmě je 4x2 + 2xy + y2 > 0, 2x — у > 0, 2x > у.
Rozložíme číslo 387 v součin prvočinitelů: 387 =
= 3.3.43. Sestavíme tabulku:

3 43 129 3872x - у 1 9

4x2 + 2xy + y2 43387 129 39 1

1292 >3 3872 >1(2x - y)2 8191 1849

4x2 + 2xjy + У -
— (2x — 3;)2 = 6xy

zá- zá-
záporné záporné386 120

porné porné

není
celé

20xy

4x

5У

52



Rozložíme číslo 20 v součin dvou činitelů: 20 = 1 . 20 =

2 . 10 = 4.5; kladné rozdíly 2x — у jsou 2.20 — 1 =
= 39, 2 . 10 - 2 = 18, 2.5 - 4 = 6, 2.4 - 5 = 3.
Vyhovuje jen poslední; proto do tabulky (sloupec 2)
doplníme x = 4, у = 5. Skutečně je 8л;3 — у3 = 8.64 —
- 125 = 512 - 125 = 387.

JINÉ ŘEŠENÍ. Položíme-li 2л; =

z3 — у3 — 387 5

z, dostáváme
(1)

l3 = 1
23 = 8
33 = 27
43 = 64
53 = 125
63 = 216
73 = 343
83 = 512
93 = 729

103 = 1000
ll3 = 1331
123 = 1728
133 = 2197
143 = 2744

tj. úlohu: nalezněte taková dvě
přirozená čísla z a y, přičemž z je
sudé, aby rozdíl jejich třetích moc-
nin byl 387.

Z rovnice (1) plyne, že pro sudé
číslo z platí

*3 > 387 ,

takže z tabulky třetích mocnin
přirozených čísel snadno zjistíme,
že

(2)0^8.
Z této tabulky lze také odhadnout,
že sudé číslo z nemůže být větší
než 10, tj. musí být

(3)10 .z

Odečteme-li totiž od třetí mocniny
libovolného sudého čísla z > 10

třetí mocninu největšího čísla, které přichází v úvahu
jako číslo y} tj. třetí mocninu čísla z
se zdá z tabulky, dostaneme vždy číslo větší než 387.
Pravdivost tohoto odhadu snadno dokážeme. Každé sudé
přirozené číslo z > 10 lze psát ve tvaru 12 + n, kde n
je celé nezáporné číslo. Platí:
(12 + и)3 - [(12 + n) - l]3 = (12 + nf - (12 + nf +
+ 3(12 + n)2 - 3(12 + n) + 1 = 397 + n2 + 69n > 387.

1, potom, jak
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Ze vztahů (2) a (3) plyne, že sudé číslo z je buď
8, nebo 10. Z tabulky třetích mocnin zjistíme, že úloha
má jediné řešení z — 8 а у = 5, tj. x = 4 а у = 5.

3. Sú dané body Л, Z?, C, D, z ktorých žiadne tri
neležia v priamke. Zostrojte bod E tak, aby bolo ЛЕ j| BD,
DE || AB a bod F tak, aby bolo AF | CD a DF |j AC.
Dokážte, že ЕЕ = ВС.

/

с/X0-~->Ř °°

/! 4

х ^

/А \
Obr. 10

X

\ "

. >. \I
N

X
/г

/

RIESENIE. Obrazec ABDE je rovnoběžník, pretože
body А, Б, D neležia v priamke. Priesečník jeho uhlo-
priečok označme S (obr. 10). Potom AS = DS, BS =
= ES. Obrazec ACDF je taktiež rovnoběžník, pretože
ani body A, C, D neležia v priamke. Jeho uhlopriečky sa
taktiež pretínajú v bode S, pretože uhlopriečka AD je
spoločná pre oba rovnoběžníky. Preto platí tiež CS = FS.
Z podmienok BS — ES, CS = FS vyplývá EF = BC,
pretože body B, E a C, F tvoria dve dvojice bodov sú-
merne združených podlá středu S.
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4. Je dán čtverec ABCD, jehož strana má délku а; К je
Střed strany AD, L je bod polopřímky BA, pro který

3
platí BL — — a. Označme o nějakou takovou přímku
procházející bodem D, že úsečka XY souměrně sdružená
s KL podle osy o leží celá ve čtverci ABCD.

Jaký útvar vyplní všechny takto vytvořené úsečky
ЛТ? Narýsujte obrázek a vyšrafujte tento útvar.

ŘEŠENÍ. Danou situaci znázorňuje obr. 11. Protože
body К, X jsou souměrně sdruženy podle osy o, která
prochází vrcholem D, platí

DK= DX.

'2
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Bod X leží tedy na kružnici kx se středem D a poloměrem
DK — ovšem jenom na tom oblouku kružnice kx,

který leží ve čtverci ABCD (je to čtvrtkružnice KM).
Protože body L, Y jsou souměrně sdruženy podle osy o,

která prochází vrcholem D, platí
DL = DY.

Bod Y leží tedy na kružnici k2 se středem D a poloměrem

DL = ^ ]/5, jak snadno vypočteme podle Pythagorovy
věty z trojúhelníka ADL. Kružnice k2 prochází středem
G strany BC; bod У leží ovšem jen na tom oblouku
kružnice k2) který leží ve čtverci ABCD. Tento oblouk
je omezen středy E, G stran AB, BC.

Budiž Y libovolný bod oblouku EG; dokážeme, že
vznikne jako souměrně sdružený bod s bodem L podle
vhodné osy o procházející vrcholem D. Tuto osu o
sestrojíme jako osu úsečky LY\ určíme průsečík Z
přímek o, KL a dále průsečík X přímky YZ s obloukem
KM kružnice kx. Úsečka XY je souměrně sdružená s KL
podle osy o. Je-li Y — G, je X = F. Proměnná úsečka
XY vyplní vyšrafovanou část mezikruží (&15 k2) omezenou
obloukem EG kružnice k2i obloukem KF kružnice kx
a úsečkami KE, FG.
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III. Soutěžní úlohy I. kola

1. KATEGORIE A

1. Je dáno n (n ^ 4) reálných čísel ve vzestupném
uspořádání a13 a23 a33 . . ., an. Sestavte takovou jejich
permutaci b13 b23 b3,. . ., bn3 aby součet absolutních hodnot
l^i — b2\ + \b2 — b31 + + \bji-i — bn\-\-\bn — b4\

(1)
byl maximální. Popište vytvoření této permutace a na-
pište vzorec pro maximální součet (1).

ŘEŠENÍ, a) Označíme x13 x23 jc3, . . ., xn libovolnou
permutaci daných čísel a dále označíme
Ж*1~ X2\ + |Ж2 — *з1 +
Platí-li pro tři za sebou následující čísla, např. x2) x33 x43
nerovnosti

+ |*»_i — xn\ + |*« —*i|.

(2)X2 < *3 < *4 j

je
1*2 “ *з1 + 1*3 — *4! = *3 — *2 + *4 — *3 = *4 — *2)

tj. platí-li (2), pak střední číslo x3 trojice (2) se vůbec
neúčastní tvoření součtu s. Toto tvrzení platí i pro
trojice хпзхг a xn3x13x2. К stejnému výsledku dospě-
jeme i tehdy, když místo nerovností (2) platí nerovnosti

x2 > x3 > x4 .

b) Nechť pro některá tři za sebou následující čísla,
např. pro x23 x33 x4, platí nerovnosti

*2 < *3» *3 > *4 • (3)
Pak je
1*2 — *3I + I*3 — *4Í = *3 — *2 + *3 — XÍ^2X3— X2 — X43
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tj. střední číslo trojice (3) se v součtu (1) vyskytne se
součinitelem 2.

Nechť pro některá tři za sebou následující čísla, např.
pro x2, X3, x4, platí nerovnosti

*2 > *3J (4)X3 < *4 .

Pak je
1*2 — *3l + 1*3 — *4i = *2 — *3 + *4 — *3 = *2 +

2*з 5+ *4

tj. střední číslo trojice (4) se v součtu (1) vyskytne se
součinitelem —2.
Závěr odstavců a) a b):

Součet 5 vypočteme podle vzorce:
s — k-^a^ -f- k2a2 + k3a3 knan .

Koeficienty k13 k23 k33 . . kn určíme takto: je-li číslo at
v cyklicky chápané permutaci xl3 x2i x3, . . ., xn mezi
sousedním menším a větším číslem, je kt — 0; je-li číslo
a,i mezi dvěma menšími čísly, je kt = 2, je-li mezi dvěma
většími čísly, je kt — —2.

c) Při konstrukci permutace bX3 b2) b33 . . ., bn se tedy
budeme snažit, aby největší čísla dané skupiny ležela
mezi menšími. Přitom je třeba rozlišit dva případy:

I. n — 2v je sudé číslo. Pak sestrojíme permutaci
b13 b2i ^з> • . •? bn takto:

(5)

Qv+d a2, cLv-y2, . . ., av3 a2v.
Zde je každé z čísel av+l, . . ., a2v mezi dvěma menšími
čísly a kterékoli z čísel a13 a2i . . ., av mezi dvěma většími
čísly. Vyměníme-li mezi sebou kterákoli dvě z čísel
a13 a2i. . ., av nebo kterákoli dvě z čísel av+13 av+2). . ., a2vi
součet s se nezmění. Naproti tomu při výměně čísla první
skupiny s číslem druhé skupiny se součet s zmenší. Je
tedy kv+1 = ... = k2v = 2, kt = k2 = ... = kv = — 2 a
podle (5)
‘^max==2(íZ^+i -f- Clv+2 “b • • • ~b &2v ^1 ^2 • • • ^0*
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II. n — 2v + 1 je liché číslo. Pak sestrojíme permutaci
b13 b23 bZ3 . . ., bn takto:

av+2> a2, . . ., civ3 a2v+i) &v+i •

V permutaci (6) leží každé z čísel a}3 a23 . . ., av mezi
dvěma většími čísly, každé z čísel av+23 <з„+3, . . a2v+1
mezi dvěma menšími čísly a číslo av+1 mezi menším a
větším číslem. Je tedy kx = k2 = .. . = kv = —2,

5=2(a„+2 + <3^+3 + . . . + d‘>v + a2v+l— al— a2— • • • —av)-

(6)

= 2, kv+l = 0 a podle (5)• • koť+3 — • 2v+l

(7)
Jako v případě I se dokáže i zde, že s dané vzorcem (7) je
maximální.

JINÉ ŘEŠENÍ. Máme n(n ^ 4) čísel
an .

Označme si dj — aj+1 — aj ^ 0,/ = 1, 2,. . ., n — 1.
Při 1 ^ j < k tk n platí zřejmě rovnost

(1)^2 = ^3 = . • •ax

(2)\aj — ak\ — dj + dj+1 + . . . + dk.
takže součet

S = 2 \Ь,-Ь (3)j+l I 3

j=l

kde b13 b23 . . ., bn je hledaná permutace čísel a13 . . ., an3
b13 můžeme vyjádřit ve tvarubn+i —

71 —1

S 2 dj, (4)
í=i

kde koeficienty c} jsou jistá celá nezáporná čísla. Porovná-
ním (2) a (4) vidíme, že q je právě počet dvojic bi3 bi+1
(i = 1, 2, . . ., n), bt — ak3 bi+l = at takových, že platí
k -šLj < l anebo / ^ j < k.
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Poněvadž každé číslo ak vystupuje v součtu (3) právě
dvakrát, je vidět, že

(5)Cj ^ 2. min [/, n — j] .

Stačí nyní jen udat permutaci, která realizuje v (4) právě
koeficienty Cj — 2. min [/, n — j] — pokud existuje.
Ukážeme, že existuje. Vytvoříme ji nejsnáze tak, že
bereme čísla ak postupně z obou konců posloupnosti
(1), tedy v pořadí

(6)«1» am &n-U • • • •

V dalším rozlišíme dva případy podle toho, je-li n sudé
či liché.

I. n sudé, n = 2m.
Poslední dva členy posloupnosti (6) budou amiam+í. Utvoř-
me součet

w-l

S — 2 \bj ~ bj+11 (7)
]-1

pro permutaci (6); ve vyjádření obdobném (4) to bude
S' — dl 3d2 + 5^3 +. . .+(2m—l)dm+(2m—2)dm+1-{-

+ . . . + 4ířw_2 + 2dn (8)-i •

Avšak 5 — 5 -}- iam+i — ci-y\ — S -j- d-± -I- d2 “Ь . . . ~j~ d
takže podle (8) je
«S = 2di 4d2 6d3 (2m — 2)dm^1 2mdm +
+ (2m — 2)dm+1 + . . . + 2d
tzn.

Ttn

П-Л 3

Cj = 2.min [;', n — j] .

II. n liché, n — 2m — 1.
Zde budou poslední dva členy v (6): am+í3 am. Pro součet

71—\

S' = 2 Ibi — bt+11 dostaneme vyjádření
j-i
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S' — dx -f- 3ú?2 4* • • • 4~ (2tn — 3)<f
+ (2m — 4)dm+1 + .. . + 44_2 + 2<4
Avšak

S=S' + \am — ciiI, tzn. S—S' + di + d2 + . .. -\-dm_v
S = 2di + 4<i2 + • • • + 2(m — 4“ 2(/w — 1 )dm 4-
4- 2(m — 2)dm+i 4- ... 4- 4dn-2 4- 2dn-l3
tedy opět c} = 2.min [;', n — j].

POZNÁMKA 1. Existují i jiné permutace vedoucí
к témuž maximálnímu součtu S, např. permutace

а1з am+и a23 am+23 • • *з й2т-1з (й2т) •

POZNÁMKA 2. Snadno zjistíme, že naopak vždy Cj 2,
takže minimální hodnota součtu S3 odpovídající permu-
taci (aXi a23 . . ., an)3 je rovna

4~ (2m — 2)dm 4"m-1

-i •

(6')

П—1

»S = 2 — 2 . |Й1 — й 711 •

j=i

POZNÁMKA 3. Úloha má tuto geometrickou inter-
pretaci. Mějme dánu přímku p se zavedenou soustavou
souřadnic a na ní body A13 A23. . ., An3 které mají po řadě
souřadnice a13 a23 . . an. Potom součet s = I*! — л:2| 4*
4- |x2 — хг\ + . . . 4- \xn-i—Xn\ + \xn — Xi\3 kde x13 x23
. . ., xn je permutace čísel aX3 a23 . . ., an3 představuje
délku uzavřené cesty po přímce p z bodu [jcJ přes body
[лг2], \x3], . . ., [лгта] nazpátek do bodu [jcJ.

2. Je dána jednotková krychle a určitá její tělesová
úhlopříčka u. Zvolíme přímku p tak, aby nebyla rovno-
běžná ani s úhlopříčkou u3 ani se žádnou stěnou dané
krychle. Každým bodem úsečky и vedeme rovnoběžku x
s přímkou p a sestrojíme střed X dvojice bodů, v nichž
přímka x protne povrch krychle.
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a) Dokažte, že množina /И všech bodů X je při pevně
zvolené přímce p buď úsečka, nebo lomená čára složená
ze tří úseček.

b) Dokažte, že při libovolné volbě přímky p má čára
M délku menší než 1 + ]/2.

ŘEŠENÍ, a) Budiž ABCDA'B'C'D' daná krychle
(.AB — 1), A'C úhlopříčka и (obr. 12). Všechny rovno-
běžky x s přímkou p, které protínají přímku A'C, vyplní
rovinu q; rovina q protne rovinu ABD' v přímce, kterou
označíme r. Rovina AB D' je kolmá к přímce A'C (je
totiž jednak AA' = B'A' = D'A' — 1, jednak AC =
= B'C = D C = 1/2) a protne ji v bodě S0. Z věty
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o třech kolmicích vyplývá, že bod S0 je průsečíkem výšek
rovnostranného trojúhelníka AB'D'; mimo to bod SQ
leží v rovině q a tedy i na přímce r. Přímka r protne obvod
trojúhelníka AB'D' ve dvou různých bodech (obr. 13);
z toho vyplývá, že rovi-
na q protne právě dvě ze
stěn A'B'BA, A'B'C'D',
A'D'DA, které se sbíhají
ve vrcholu A', a protne
ovšem také stěny s nimi
rovnoběžné. Průsek ro-

viny q s danou krychlí
je tedy rovnoběžník; na
obr. 12 je tlustě vyzná-
čen a je popsán A'PCQ.
Přímky x JI p vedené vše-
mi body úsečky и = A'C
leží v rovině rovnoběžní-
ka A'PCQ a nejsou rovnoběžné se žádnou z jeho stran
ani s jeho úhlopříčkou A'C.

Na obr. 14 je sestrojena množina AI v případě, že
přímka xx || p vedená bodem A' protíná stranu PC.

Obr. 13

rt.A Q

P

Obr. 14
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Vedeme ještě přímku x2 || p bodem C, která protne stranu
A'Q, a označíme průsečíky M13 M2 podle obr. 13. Jsou-li
Xl3 X2 středy dvojic A’M1 a CM23 skládá se hledaná
množina M z těžnic PXÍ3 QX2 trojúhelníků A'PM13
CQM2 (jak snadno dokážeme stejnolehlostí) a ze střední
příčky XxX2 rovnoběžníka MXCM2A'. V případě, že je
p 1 PQ3 splyne hledaná množina /И s úsečkou и (obr. 15).

4' <3

\
X\

\.

S \M
\.

c

Obr. 15

Množina M je narýsována čerchovaně na obr. 14, 15
i na obr. 12.

b) Z trojúhelníkové nerovnosti pro l\PXxP13 AQX2Q2
(obr. 14) plyne

PXi < PP1 + РгХ1з QXa < QQ2 + ^2^23 a tedy
PX, + XxX2 + XoQ < PP, + PxXx + ХгХг +
+ X2Q2 + Q2Q — PP\ + P1Q.2 + Q2Q — PA' + PC,
neboli

(1)PX + X,X2 + X2Q < PC+CQ.
Podle trojúhelníkové nerovnosti pro ДЛ'РС plyne
A'C < A'P + PC, neboli

A'C <PC+ CQ. (2)
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Vztahy (1) a (2) vyjadřuji, že délka čáry /И je v každém
případě menší než součet délek sousedních stran průseč-
ného rovnoběžníka A'PCQ. Jde tedy o to vyšetřit průběh
délky у = A'Q + CQ, když bod Q probíhá úsečku
B'C (obr. 12).

Označme К střed hrany B'C', KQ — x; pak je 0 ^
^ x ^ • Z pravoúhlých trojúhelníků A'B'Q, CC'Q
plyne

y=-]/l + [j + +1/1 + (1 -x)2
neboli

/I + *2 + * +1/| + *2 - (3)У =

kde 0 ^ x ^ Máme dokázat, že je у < 1 + j/2.
Tvrzení dokážeme sporem. Připustíme, že je у 1 +
+1/2 ; pak z (3) dostaneme po umocnění

л;,

f + 2*2 + 2]/(f+ *f jc2 ^ 3 + 2 У2
a po úpravě

V(W S I + ]/2 - x2.
Protože na pravé straně (4) je kladné číslo, máme po
umocnění a po úpravě

(4)

2*2 (1 + У2) > \ (1 + 1/2).
Odtud plyne x2 ^ -r neboli jc ^ , což je nemožné.4 Z
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1
(Případ x = — je vyloučen, neboť by bylo Q — C',
tj. p ] CC.)

3. Je daná rovnica az2 -f Ь + c = 0, a ^ 0 s kom-
plexnými koeficientami, ktorá má (komplexně) kořene
zl3 z2. Zostavte rovnicu (s reálnými koeficientami), ktorá
má kořene [^1, \z2\.

RIEŠENIE. Pre kořene z13 z2 danej rovnice platí
*i + *2 = — *i*2 = -p (*i — *2)2 =’ kde

a*5
D — b2 — 4ac. Pre zostavenie hladanej rovnice potřebu-
jeme výrazy \zx\ + l*2l> l*il • 1*2I-

Q
Z podmienky zxz2 — — vyplývá

l*il • l*2l = l*i*2l =

a5

(1)

Ak označíme z číslo komplexně združené к číslu z,

potom z podmienky zx-\- z2 = — — vyplývá zx + z2 —

—
— í} takže

a

(*1 + Z2)(ŽX + Ž2) = + *1*2 + *1*2 + *2*2 =

-ИМ-!).
z čoho dostaneme

b 2
(2)l*l|2 + 1*2 i2 + *1*2 + *1*2 = —
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pretože zz = \z\2. Okrem toho platí
(«1 — z2)\zx — ž2)2 = (z1z1 — zxž2 — zxz2 + z2z2)2 =

D 2p D
~

a2 ' a2 ~ a2 5
z čoho

D
(3)l-S'll2 + k2|2 - (*1*2 + *1*2) = ? 5

pretože l^i — я2|2 = (zx — z2)(zx — z2) = zxzx — zxz2 —
— zxzo + £,*2 Iе zrejme nezáporné číslo. Z podmienok
(1), (2), (3) dostáváme

(kil + l*2l)2 = kil2 + k2l2 + 2|sí| . k2l =

+ a 2=i(°2 \ ~2 a

z čoho

1 1
kil + k2l = ]^[/^(l^ + kl2 + 4iac!).

Hladaná rovnica (s neznámou £) má teda po úpravě
tvar

l/i(|D| + \b\* + i\ac\) í + |e| = 0 .kkč2-
Riešením úlohy však móže byť každá dalšia rovnica,
ktorú z tejto rovnice dostaneme ekvivalentnou úpravou,
alebo tiež rovnica vyššieho stupňa, ktorú dostaneme z tejto
rovnice vynásobením mnohočlenom /(£).

4. Je daný konvexný štvoruholník ABCD. Na pol-
priamkach AB, AC, AD sú zostrojené v uvedenom poradí
body B', C, D' tak, že platí AB'. AB = АС . AC =
= AD'. AD — 1. Dokážte vety:
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a) Štvoruholník ABCD je tětivový právě vtedy, keď
body ВC, D' ležia v priamke.

b) Pre každý konvexný štvoruholník ABCD platí
AC.BD AB.CD+BC.AD;

v ktorom případe nastane rovnost’?

RIEŠENIE (obr. 16). I. Z konštrukcie bodov В , C
vyplývá AB : AC = AC : AB'. Podlá vety -у и у o po-
dobnosti trojuholníkov je

/\ABC >—' i\AC'B' .

Zo vztahu (2) dostaneme B'C: BC — AB': AC, t. j.
(2)

1
(3a)B'C - BC.

AB .AC
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Záměnou písmen dostaneme z tohto vztahu
1 1

CD' = CD . , B'D' = BD . (3b)AB.AD ’AC.AD
Pretože platí

B'D' ^ B'C + CD',
dostaneme po dosadení z (3a), (3b) do (4) a po vynásobení
súčinom AB . АС . Л1) nerovnost’ (1). Rovnost’ vo vztahu
(1) nastane právě vtedy, keď nastane rovnost’ vo vztahu
(4), t. j. keď bod C leží medzi bodmi B' a D'.

II. Ak je štvoruholník ABCD tětivový, je

(4)

< ABC + <£ ADC = 180° .

Zo vztahu (2) však vyplývá, že <£ ACB'
<£ ACD' = <£ ADC, preto je podlá (5) <£ ЛС'Я' +
+ <)C ACD' = 180°, čiže body ZL, C, D' ležia v priamke
(C' medzi 5' a Z)'). Z obrátenia postupu vyplývá vzhla-
dom na odstavec I, že platí veta a). Rovnost’ vo vztahu
(1) nastane preto právě vtedy, keď štvoruholník ABCD je
tětivový.

(5)
<£ ABC,

2. KATEGORIE В

1. Jestliže pro reálná čísla a, b, c platí
a3 + 63 + с3 - ЪаЬс = 0 ,

potom buď a + b + c = 0, nebo a = b — c. Dokažte.
ŘEŠENÍ. Levou stranu rovnosti (1) vhodně upravíme.

(1)

Platí

(a + b + cf = a2 + 63 + c3 + 3a2b + 3a62 + 3a2c +
+ 3ac2 + 362c + 36c2 + 6a6c ,

a proto
a3 + 63 + c3 - 3a6c = (a + b + c)3 - 3a2b - ЪаЬ2 -
— 3a2c — 3ас2 — 362c — 36c2 — 9a6c .
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Avšak

3a2b + 3ab2 + 3a2c + 3ac2 + 3b2c + 3bc2 + 9a6c =
— 3ab(a -\- b c) -f- 3ac(a -f- b -)- c) -f- 3bc(a -j- b -f- c) =

= 3(a + b + c)(a6 + uc + £c) .

Je tedy
a3 + 63 + c3 — 3ata = (a +'b + c) [(a + b + c)2

— 3{ab + ac -J- ta)] = (2)
1

= — (a + b + c) [(a — b)2 + (a — c)2 + (b — c)2].

Je-li splněna rovnost (1), pak buď
a-\-b-\-c — 0}

nebo
(cl — b)2 + (a — c)2 + — c)2 = 0 ,

což lze splnit právě tehdy, když a — b — 03 a — c = 0,
b — c — 0, tj. když

a — b — c .

POZNÁMKA. Při rozkladu levé strany rovnosti (1)
na součin (2) lze postupovat také následujícím způsobem.

Dosadíme-li do mnohočlenu a3 + ta + c3 — 3abc za
a číslo — (b + c), dostaneme nulu. Dělením mnohočlenu
a3 + ta + c3 — 3ata mnohočlenem a — (—(6 + c)) =
= (a + 6 + c), přičemž oba mnohočleny považujeme
za mnohočleny v a, dostaneme

a3 + ta + c3 — 3ata =
= (a + b + c) (a2 + ta + c2 — ab — ac — bc).

2. Budiž ABCD čtyřstěn té vlastnosti, že každé dvě
z hran AD, DD, CD jsou navzájem kolmé. Označme U
těžiště trojúhelníka ABC a T bod úsečky DU3 pro který
platí DT — 3 . TU. Dále označme 5 střed kulové plochy,
která prochází body A3 В, C, D. Vyjádřete poloměr této
kulové plochy jako funkci vzdálenosti ST.
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ŘEŠENÍ. Čtyřstěn ABCD, znázorněný na obr. 17,
má uvedené vlastnosti (<£ ADB — <£ BDC = <£ CDA =
= 90°) a rovněž těžiště U trojúhelníka ABC a bod T
jsou sestrojeny podle textu úlohy, tj.

DT = 3 . TU .

Nyní sestrojíme střed 5 kulové plochy и o poloměru r,
která prochází body A, 5, C, D. Kulová plocha ^ protíná
rovinu ABD v kružnici &, opsané pravoúhlému trojúhel-
niku ADB\ její střed O je středem přepony AB. Bod S
leží na kolmici o v bodě О к rovině ABD. Protože
CD _L DB, CD J_ DA, je také CD _L ABD, takže platí

CD I o
a body C, Z), O, S leží v téže rovině.

(1)

(2)
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Rovina CDS protíná rovinu ABC v přímce CO, kde
úsečka CO je zřejmě těžnicí trojúhelníka ABC. Přímka
SD protíná tedy těžnici CO. Konstruujeme-li obdobným
způsobem přímku m J_ ADC, která prochází rovněž
bodem S, zjistíme, že přímka SD protíná i druhou těžnici
BM trojúhelníka ABC', prochází tedy jeho těžištěm U.

Body D, T, U, S leží proto v přímce. Všechny tyto
body leží v poloprostoru (ABD)C, neboť bod S leží
v rovině souměrnosti úsečky CD rovnoběžné s ABD.
Vzdálenost bodu S od roviny ABD je tedy

1

2-CD.SO =

Označíme-li V patu kolmice spuštěné z bodu U na
rovinu ABD, dostáváme z podobnosti trojúhelníků OU’U
a ODC, že

UU’ _UO _ 1
CD ~ OC ' 3 '

1 1
Je tedy UU' = — CD < — CD = SO, takže body
D, T, U, S leží v přímce v tomto pořádku.

Vzhledem ke vztahu (2) jsou trojúhelníky OSU a CDU
podobné podle věty uu, takže platí

US
_ UO 1

ÚD ~ ~UC ~ 2 *

Odtud dostáváme
1

(3)US =
2 UD ■

Situace na přímce bodů D, T, U, S je znázorněna na
obr. 18. Vzhledem к (1) a (3) tedy platí
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sD T u
-O ■ —o-

jUD-2TU
-/s.

TU3 TU

Obr. 18

1 1
ST = 2DS=2r

čili
r — 2.ST,

kde r je poloměr kulové plochy x. Tím je úloha vyřešena.

3. Je daný štvorec ABCD so stranou 2a. Vo vnútri
jeho stráň АВ, BC, CD a DA zvolte v uvedenom poradí
body К, L, M a N tak, aby sa plošný obsah štvoruholníka
KLMN rovnal číslu 2a2 a aby existovala kružnica k
opísaná štvoruholníku KLMN. Vyšetrite geometrické
miesto středu S opísanej kružnice k.

RIEŠENIE. Nech KLMN je štvoruholník vpísaný
štvorcu ABCD uvedeným sposobom tak, že KM || AD.
Potom je zrejme plošný obsah trojuholníka KMN, resp.
KML rovný polovici plošného obsahu obdížnika KMDA,
resp. KMCB. Pretože plošný obsah štvorca ABCD sa
rovná 4a2, je plošný obsah štvoruholníka KLMN rovný
2a2.

Nech teraz KLMN )z taký štvoruholník vpísaný štvorcu
ABCD uvedeným sposobom, že KM ^ ADaLN % AB
(obr. 19). Ukážeme, že plošný obsah tohto štvoruholníka je
rozny od 2a2. Nech M' je bod z vnútra strany CD, pre
ktorý KM' || AD. Podlá vyššie dokázaného má štvor-
uholník KLMN plošný obsah rovný číslu 2a2. Z druhej
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strany však trojuholníky LNM a LNM' majú spoločnú
stranu, ale ich výšky na túto stranu majú rožne dížky
(pretože LN%.DC), majú teda nerovnaké plošné obsahy.
Preto sú aj plošné obsahy štvoruholníkov KLMN a
KLM'N rožne, čím je dokaž převedený. Pre hladaný
štvoruholník musí teda platit’ buď KM || AD, alebo
LN j| AB. Z toho vyplývá, že střed 5 kružnice opísanej
hladanému štvoruholníku KLMN leží bud na priamke
p || AB prechádzajúcej stredom T štvorca ABCD, alebo
na priamke q |j AD prechádzajúcej bodom T.

Nech k — (S, r) je kružnica opísaná niektorému z da-
ných štvoruholníkov KLMN (obr. 20). Nech napr. S leží
na priamke p, SB < SA. Pretože kružnica k přetíná
úsečky AD, BC, resp. saich dotýká, je nutné a + TS <
< r < SB — ]/a2 + (a — TS)2, z čoho po úpravě do-
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staneme TS<-r. Hladaná množina stredov 5 sa
4

skládá z dvoch otvorených úsečiek ležiacich na priamkach
p a q tak, že střed T štvorca ABCD je stredom každéj
z nich a obe majú dížku у .

К dókazu tohto tvrdenia stačí ukázat’, že ku každému
bodu popísanej množiny skutočne možno nájsť štvor-
uholník KLMN a kružnicu k = (5, r) so stredom vo
zvolenom bode tak, aby boli splněné podmienky úlohy.

Nech je teda 5 bod popísanej množiny. Bez ujmy na
všeobecnosti možeme předpokládat’, že 5 leží na priamke
p, SA > SB. Potom je však tiež a + TS < SB a exis-
tuje reálne číslo r tak, žea + TS < r < SB. Kružnica
k = (S, r) přetíná zrejme všetky štyri strany štvorca
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ABCD vo vnútorných bodoch a z priesečníkov so stra-
námi AB, CD možno zvolit’ požadované body К, Aí
tak, aby KM || BC. Za body L a. N možno potom vziať
Iubovofný z priesečníkov kružnice k so stranami ВС a
AD. Takto zostrojený štvoruholník má požadované
vlastnosti, čím je dokaž úplné převedený a úloha vyrie-
šená.

4. Je dán lichý počet 2n + \{n ^ 2) reálných čísel
a2, • • ., &2п+1 tak, ze platí cii <C ci2 <C . . . <Cfl2n+i"

Označme x13 *2, *3j • • o *271+1 libovolné jejich uspořádání
a označme

5 = I*! *2! ~b X2 — *3I + ... + [*2 — *271 +11 +
~“b 1*277+1 *1 I •

Dokažte, že každý z těchto součtů s je menší nebo roven
součtu utvořenému z uspořádání

an+2, an+35 • • *5 ail) a2n+li an+l •

Najděte vzorec pro tento maximální součet s.

(1)

(2)

ŘEŠENÍ. Součet s získaný z uspořádání (2) je
*i = \a\ — a7i+21 + \an+2 — a2li + !a2 — ап+ з1 + • • • +
T \ап а2П+1\ T \а2П+1 ап+ ll ~Ь аП+1 a\\ ~
= ([dl ^71+2) ~b (&n +2 ^2) (^2 ^71 +3) “b • • •

(й?7 ^27í+l) “b (#271+1 #77+l) “b (#71+1 #l) =
= 2[(<3ra+2 + а„+з + . . . + 0-2П+ i) — (#1 + а2 . . . -f-

(3)Ь #0] ,

což je hledaný vzorec.
Úloha má následující geometrickou interpretaci. Měj-

me dánu přímku p se zavedenou soustavou souřadnic a na
ní body A13 A23 . . ., A2n+i, které mají po řadě souřadnice
а1з a23 . . ., a2n+1. Potom součet s představuje délku uza-
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pA> Аы-1^Ат2 А2п+1

Obr. 21

vřené cesty po přímce p z bodu [xj přes body [x2],
И,. . [x27l+1] nazpátek do bodu [x^. Obr. 21 naznačuje
geometrický význam součtu (3).

Součet s lze zřejmě vypočítat pomocí velikostí úseček
AtAk> kde 1 ^ i < k ^ n. Označme si

dj — cij+i — o.j Oj j = 1) 2). . n — 1 .

Pro 1 ^ j < k ^ n platí zřejmě rovnost

\aj — ak\ = dj + dj+1 + . . . + dk
takže součet s lze vyjádřit ve tvaru

s = c1d1 + c2d2 H~ . . . + cn-\dn

(4)-i >

(5)-i >

kde koeficienty cj3 j = 1, 2, . . n — 1 jsou jistá celá
nezáporná čísla. Číslo Cj udává „kolikrát se při výše
popsané cestě prošlo po úsečce AjAj+13 j — 1, 2,. .
n — 1“, a proto je Cj rovno počtu dvojic (xi3 xi+1), kde
i = 1, 2, 3,. . n, xn+1 = x13 xt = ak, *i+1 = az, tako-
vých, že platí k f^j < l anebo l t=Lj <k. Poněvadž
každé číslo ak vystupuje v součtu (1) právě dvakrát, je
vidět

c} ^ 2.min [/, n - ;'],
kde min [/, n — j] je minimum z čísel j a n — j.

Nyní vypočteme součet (3) pomocí čísel dj. Platí
si — 2 . [{an+ 2 — ax) + (an+3 — a2) + . . . +

H- (^2П &п~l) “b (^2W+1 ^?l)]
= 2. -{- d2 + + . . . 4* -f- + ^ji+i +

(6)
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4- d2 + d3 4- . . . + du~i + dn + dn+x -}■ dn+2 +
(7)

4~ dn~i + dn + dn+1 + í/w+2 + • • • + d2n-i +
~b dn + dn+i + dn+2 + • • • + don —i + d2n] =

— 2di + 4d2 + 6úř3 + . . . + 2(n — 1)^-! 2ndn +
4- 2ndn+1 4~ 2(w — l)tířra+2 4- • • • 4" 4í/2n-i 4~ 2úř2Jj.
Všechny koeficienty c} v součtu (7) jsou podle (6) nej-
větší možné, a proto součet s1 utvořený z uspořádání (2)
je skutečně maximálním součtem s.

POZNÁMKA. Řešení této úlohy tvoří část řešení
úlohy č. 1 z I. kola kat. A.

3. KATEGORIE C

1. Šachový kroužek sehrál klasifikační turnaj. (Hrálo
se systémem „každý s každým“). Z hráčů, kteří vyhráli
alespoň jednu partii, vyhrál jeden všechny partie až na
jednu, jeden všechny kromě dvou, jeden všechny kromě
tří, atd., až konečně poslední z nich všechny kromě deseti.
Nerozhodných partií bylo celkem 20. Označme x počet
hracu.

a) Vypočtěte x.
x — 1

b) Dokažte, že hráč, který získal právě —^
nebyl ani na prvním, ani na posledním místě.

Poznámka. Na šachových turnajích se hodnotí výsledky
takto: za vítězství v partii dostane hráč jeden bod, za
nerozhodný výsledek půl bodu a za prohru nedostane
žádný bod.

bodů,
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ŘEŠENÍ, a) Hrálo se systémem „každý s každým",
a proto každý hráč sehrál x — 1 partií. Z hráčů, kteří
vyhráli alespoň jednu partii, vyhrál jeden hráč celkem
x — 2 partií, další hráč x — Ъ partií, další x — 4 partie
atd., až konečně poslední z nich я — 11 partií. Partií,
které neskončily nerozhodně, tedy bylo (я — 2) +
+ (я — 3) + (я — 4) + . . . + (я — 11) = 10я — 65.
Nerozhodných partií bylo 20, takže hráči celkem sehráli

(10я - 65) + 20 - 10я - 45
partií. Vzhledem к tomu, že se použilo systému „každý
s každým“, byl celkový počet partií

у x(x — 1),
takže pro я dostáváme rovnici

45 = -i- я(я

Řešením této rovnice dostáváme kořeny xx — 15 а я2 = 6.
Kořen я? = 6 zřejmě nevyhovuje, neboť podle textu
úlohy bylo hráčů aspoň 10.

Zkouškou se snadno přesvědčíme, že kořen xx = 15 je
řešením úlohy. Turnaje se tedy zúčastnilo 15 hráčů,

b) Je-li hráčů я, pak při systému „každý s každým" se

sehraje у- я(я — 1) utkání. Při šachových turnajích je
součet všech udělených bodů roven počtu utkání, tj.
v našem případě bylo rozděleno я(я — 1) bodů. Na

' v " Я — 1
jednoho hráče tedy průměrně připadá —у
Nezískají-li všichni hráči stejný počet bodů, což je
zejména při větším počtu hráčů málo pravděpodobné
a také v naší úloze zřejmě tento případ nenastal, musí

1).10я —

bodů.
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někteří hráči (aspoň jeden) dosáhnout nadprůměrného
a jiní zase (aspoň jeden) podprůměrného počtu bodů.
Hráč s -

posledním místě.
Jiné řešení části b)
Za vyhrané partie získali jednotliví hráči
13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 0, 0, 0, 0, 0

—~2—~ = ^ body nemůže být zřejmě
první. К tomu, aby byl poslední, je nutné (ale nestačí),
aby posledních 5 hráčů sehrálo všechny partie nerozhodně,
čímž by měli po 7bodech. Toto však představuje 35 bodů,
což je spor s textem úlohy, podle něhož bylo nerozhodných

partií 20 a bylo možno tedy
za ně získat celkem 20 bodů.

body tedy není ani na prvním, ani na

bodů. Hráč se

A

; \\

2. Sestrojte konvexní rov-
nostranný (nikoliv nutně pra-
videlný) pětiúhelník ABCDE,
v němž jsou dány délky úhlo-
příček AC, AD, platí-li

BAE = 2. <£ CAD . (1)

a:

la\
i 4\/ ff\ \ \

sL._ \..v>V
/ ~ A \ \

•' \\\a\\

a,

в (-.A

ŘEŠENÍ. Rozbor(obr. 22).
Nechť ABCDE je takový
konvexní pětiúhelník. Pak je
úhel BAE menší než 180°
a vzhledem ke vztahu (1)
je úhel

// /

\\/
/ /

•• /
/

Da <£ CAD =--

- BAC + <£ DAE (2)Obr. 22
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ostrý. Označme <£ BAC = a, <£ DAE = /5. Sestrojíme-li
к bodu В bod O souměrně sdružený podle přímky AC,
platí

<£ BAC = <£ CAO = a; AB = АО.
Рак vzhledem к (1) а (2) je

< OAD = <£ DAE = /5 .

Protože je ЛБ — = ЛО a a + = <£ CM Z), je
bod O souměrně sdružený s bodem E podle přímky AD.
(Bod O není na obr. označen.)

Protože AB = BC = a, je vzhledem к souměrnosti
podle přímky AC také CO = BC = AB. Obdobně
dokážeme, že DO = DE = AE. Proto trojúhelník OCD
je rovnostranný a platí

<£ COD - 60° .

Trojúhelníku ACD je možno opsat kružnici o středu
O a poloměru OA = OC = OD; podle věty o obvodo-
vém a středovém úhlu je tedy

1
CAD = <£ COD = 30°.

Protože bod O je vnitřním bodem trojúhelníka ACD,
je tento trojúhelník nutně ostroúhlý.

Z předchozích vztahů vyplývá zcela jednoduchá
konstrukce. Podle věty sus sestrojíme trojúhelník ACD
(AC, AD a <£ CAD = 30°), najdeme střed O kružnice
jemu opsané. Je-li trojúhelník ACD ostroúhlý, je bod O
jeho vnitřním bodem. Sestrojíme pak к bodu O bod В
souměrně sdružený podle přímky AC a bod E souměrně
sdružený podle přímky AD.

Zkouška toho, že za uvedených podmínek sestrojený
pětiúhelník je řešením úlohy, je jednoduchá. Snadno
zjistíme, že všechny jeho vnitřní úhly jsou konvexní, tj.
každý má velikost menší než 180°. Úseček AC, AD dané
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velikosti jsme použili při konstrukci a z použitých sou-
měrností vyplývá, že <£ BAE = 2. <£ C/1D .

Diskuse. Za předpokladu, že trojúhelník C/4D je
ostroúhlý, dostaneme podle konstrukce zřejmě jediné
řešení. Nyní určíme nutné a postačující podmínky proto,
aby trojúhelník ACD, daný stranami AC, AD a úhlem
<£ CAD = 30°, byl ostroúhlý. Na obr. 23a je znázorněn
tento trojúhelník s pravým úhlem při vrcholu D. Pak
platí

PAD
= cos 30° čili AD — . AC.

Je zřejmé, že trojúhelník ACD může být ostroúhlý jen pro

P (3)AD .AC.

Připustíme-li, že úhel ACD trojúhelníka ACD by byl
pravý (obr. 23b), dostaneme ze vztahu

AC
= cos 303

AD
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další podmínku pro to, aby trojúhelník ACD byl ostro-
úhlý, je

AD < -jp . AC .

Spojením vztahů (3) a (4) dostaneme

|]/3. AC <AD < у 1/3 . АС,
což je zřejmě podmínka nejen nutná, ale i postačující
pro to, aby trojúhelník ACD byl ostroúhlý a úloha měla
řešení. Toto řešení je pak jediné.

(4)

3. Sústava dvoch rovnic s dvorná neznámými x, v
a{x — 1) + 2y — 1 ,

b(x — 1) + cy = 3
je neriešitelná, zatial čo sústava

a(x — 1) -j- 2y = 1,
b\x — су — Ъ

3
má riešenie x — —

a, b, c.

(1)

(2)

5
у = у . Vypočítajte koeficienty4 5

RIEŠENIE. Pretože sústava (1) je neriešitelná, je 1’avá
strana druhéj rovnice tejto sústavy A-násobkom 1’avej
strany prvej rovnice, ale číslo 3 nie je £-násobkom čísla 1,
číže кфЪ. Platí teda

b = ka, c — 2k, k Ф 3 . (3)
3

Ak do (2) dosadíme x = -j7, у = 4-, dostaneme8
1 . 5
Ja + 4

= 1,
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1 7 i 5
4Ь + 8C = 3,

z čoho vyjde po úpravě
(4)a = 1 ,

2b + 5c = 24 .

Ak do druhej rovnice sústavy (4) dosadíme zo vzťahov
(3), pričom použijeme výsledok a = 1, dostaneme

2k + 106 = 24,
z čoho vyplývá

k = 2

a z (3) vyplývá b = 2, c = 4.

4. V rovině je daný rovnoramenný trojuholník PQR
s pravým uhlom pri vrchole Q a bod A. ktorý je prieseč-
nikom osi uhla QPR a strany QR. Ďalej je dané kladné
číslo c. Určité geometrické miesto vrcholu D obdížnika
ABCD, ktorého obsah je c a ktorého vrchol В leží na
obvode trojuholníka PQR. Narýsujte obrázok pre
c = 2AQ.

RIEŠENIE. Obvod daného trojuholníka sa skládá
z troch úsečiek. Hladané geometrické miesto sa teda
skládá z geometrických miest obdobnej úlohy pre úsečku
PQ, úsečku PR a úsečku QR obsahujúcu bod A. Najprv
vyšetříme dve pomocné úlohy:

I. V rovině je daná úsečka EF a bod A, ktorý neleží
na priamke EF = p. Vyšetříte geometrické miesto
vrcholu D obdlznika ABCD, ktorého obsah je dané číslo
c > 0 a ktorého vrchol В prebieha úsečku EF.

II. V rovině je daná úsečka EF a bod A vo vnútri
tejto úsečky. Vyšetříte geometrické miesto vrcholu D
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obdížnika ABCD, ktorého obsah je dané číslo c > 0
a ktorého vrchol В prebieha úsečku EF.

Pri riešení úlohy I vyjdeme z výsledku prípravnej
úlohy č. 2 kategorie C (obr. 8), kde bod В prebieha celú
danú priamku p. Najprv vyšetříme (obr. 24a) tú časť
geometrického miesta, ktorá prislúcha kladnej orientácii
označenia vrcholov obdížnika ABCD. Podlá výsledku
uvedenej úlohy je to kružnica k s priemerom AM —

= -j-pz, kde AM a EF sú súhlasne rovnoběžné pol-АН ť
priamky а Я je pata kolmice vedenej bodom A ku priamkep.

Krajnej polohe vrcholu В v bode E odpovedá na kruž-
nici bod E'. Ak sa bod В pohybuje po priamke p až do
bodu F, otáča sa polpriamka AE' až do polohy AF\
kde F' leží na kružnici k. Časť hladaného geometrického
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miesta vrcholu D obdížnika s kladnou orientáciou
označenia vrcholov tvoří ten oblúk E'F' kružnice k,
ktorý neobsahuje bod A (na obr. 24a je hrubo vytiahnutý).
Vrcholy Ď obdížnikov А В C Ď so zápornou orientáciou
označenia vrcholov vytvoria oblúk E"F" na kružnici k,
ktorý je súmerne združený s oblúkom E'F' podlá středu
A (na obr. 24a je vytiahnutý čiarkovane).

Hladané geometrické miesto tvoria oba oblúky E'F'
a E"F".

Teraz vyriešime úlohu II. Bodom A vedieme priamku
n J_ EF (obr. 24b). Je zřejmé, že body hladaného geo-

\d*C*
| 1

i

\e"
[c]

B* L\
AE

n

F"
IT
I E'
I
■

Obr. 24b
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metrického miesta budu ležať na tejto priamke. Pre dané
c > 0 1'ahko vypočítáme ku každej zvolenej polohe bodu
В vzdialenosť bodov A a D na priamke n. Platí

AD = -L
AB•

Uvažujme najskor o případe, keď orientácia označenia
vrcholov obdížnika je kladná. Bodu В = E zodpovedá
začiatok E' polpriamky (na obr. 24b hrubo vytiahnutej)
opačnej к polpriamke E'A. Ak sa teraz bod В pohybuje
smerom к bodu A, zmenšuje sa rozměr AB obdížnika
a pri zachovaní konštantného plošného obsahu c sa druhý
rozměr AD zváčšuje. Bod D prebieha preto potom uve-
denú hrubo vytiahnutú polpriamku. Ak prebieha vrchol
В obdížnika s kladnou orientáciou označenia vrcholov
úsečku AF, prebieha příslušný vrchol D polpriamku so
začiatkom v F' opačnú к polpriamke F'A.

Pri zápornej orientácii označenia vrcholov obdížnika
ABCD leží bod D prislúchajúci bodu В úsečky EF
na polpriamkach so začiatkami F" a F", ktoré sú v uve-
denom poradí opačné к polpriamkam F"A a E"A (na
obr. 24b sú tieto polpriamky vytiahnuté hrubo čiarko-
vane a pre názornost’ sú máličko posunuté z priamky n).
Hladané geometrické miesto tvoří zjednotenie všetkých
štyroch uvedených polpriamok. К íubovolnému bodu
týchto polpriamok, napr. к bodu D*, možno zostrojiť
obdížnik AB*C*D*, ktorý vyhovuje podmienkam úlohy.

Pristúpme teraz к riešeniu danej úlohy. Na obr. 25 je
zostrojený rovnoramenný trojuholník PQR s pravým
uhlom pri vrchole Q tak, že PQ = QR = 2. Ak je bod
A priesečníkom osi uhla QPR s úsečkou QR a bod H
pátou kolmice vedcncj bodom A ku straně PR, leží H vo
vnútri přepony PR a platí

AH = AQ, HP = PQ = 2 . (1)
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Na úsečky PR, PQ a QR aplikujeme výsledky pomoc-
ných úloh I a II. Prvú časť riešenia (obr. 25) tvoří oblúk
R'P' na kružnici kx, oblúk P'Q' na kružnici &3 a polpriam-
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ky opačné к polpriamkam R'A a O'A, ktoré prislúchajú
polohám bodu D pri kladnej orientácii označenia vrcholov
obdížnika ABCD. Druhů časť geometrického miesta
tvoří útvar, ktorý je s popísanou prvou častou súmerný
podlá středu A. Vzhladom na vztah (1) sú kružnice
kl9 &2Э k3 a &4 zhodné. Pri inej volbě rozmerov trojuholníka
dostaneme obraz výsledného geometrického miesta ako
homotetický podlá středu A s vyššie popísaným riešením,
pretože celý útvar je určený napr. polohou bodu P"
na pevnej polpriamke vychádzajúcej z bodu A.

4. KATEGORIE D

1. Určete nejmenší přirozené trojciferné číslo n, jehož
ciferný součet je roven trojnásobku ciferného součtu čísla
n -j- 69.

ŘEŠENÍ. Když při sčítání dvou přirozených čísel
podle algoritmu je součet dvou pod sebou stojících cifer
větší nebo rovný deseti, nazveme tento krok přechodem.
Ciferný součet čísla 69 je 15, ciferný součet čísla n
označíme s. Při sčítání n + 69 může být počet přechodů
0, 1, 2, 3, jak ukazují následující numerické příklady:

352 952322320

69 69 6969

и

421 1021389 391

1 přechod 2 přechody 3 přechody:
Je-li sčítání n + 69 bez přechodu, je ciferný součet čísla
« + 69 roven 5+15, je-li s jedním přechodem, změní se
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tento ciferný součet o (—10 + 1) = —9 a je tedy 5 + 6.
Všecky možné případy udává přehledná tabulka :

3Počet přechodů 0 1 2

Ciferný součet čísla
я + 69 s + 65 + 15 s - 3 5 - 12

Podle textu úlohy platí některá z rovnic
3(5 + 15) - 5,
3(5 — 3) = 5,

3(5 + 6) — 5,
3(5 - 12) = 5,

neboli
25 + 45 = 0,

25 - 9 = 0,
25 + 18 = 0,
25 — 36 = 0. (1)

První dvě rovnice (1) mají řešení záporné, třetí nemá
řešení celočíselné. Přichází v úvahu jedině situace s třemi
přechody. Pak ovšem musí být první cifra čísla n rovna 9,
druhá cifra musí být nejméně 3, aby vznikl přechod. Třetí
cifra je pak 18 — 9 — 3 = 6 a hledané číslo n je n — 936.
Skutečně platí

936 .. . ciferný součet 18
69

1005 . . . ciferný součet 6
Číslo 936 je nejmenší číslo žádané vlastnosti.

2. Je dán rovnoběžník ABCD. Uvnitř stran AB, BC,
CD, DA zvolme po řadě body K, L, M, N tak, aby
KL ji MN. Uvnitř týchž stran zvolme další body K', L',
M', N' tak, aby K'L' |j M'N' || KL a aby vzdálenost
rovnoběžek K'L', M'N' byla táž jako vzdálenost rovno-
běžek KL, MN. Dokažte, že šestiúhelníky AKLCMN
a AK'L'CM'N' mají týž obvod.
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ŘEŠENÍ (obr. 26). Předpokládejme, že bod K' leží
uvnitř úsečky AK (kdyby tomu tak nebylo, zaměníme
označení bodů К, L, M, N a K'3L'3M'3N'). Pak bod M!
leží uvnitř úsečky DM a KK' = MM'. Veďme body K,
M' rovnoběžky se stranou ВС a označme po řadě X, Y
jejich průsečíky s přímkami K'L\ MN. Zřejmě platí
АК'КХ аэ AMM'Y. Označme KK' = MM' = r,
KX = M'Y = 5, /С'Х = MY = t. Potom (také vzhle-
dem к vlastnostem stran pomocně vzniklých rovnoběž-
níků) dostáváme:

AK' = AK-r,
K'L' = KL + t,
L'C = LC-s3
CM' = CM + r ,

ЛГЛГ= AÍA/- - ř,
= NA + s ;

sečtením těchto rovností dostaneme vztah
AK' + K'L' + L'C + CM' + М'ЛГ + N'A - Л/С +

+ KL + LC + CM + MN + ,

což znamená, že obvody obou šestiúhelníků jsou si rovny.

N'A
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3. Ak sú a, 6, c nezáporné čísla také, že a + b -f c = 1,
potom platí:

1
a) ab + ac + bc < —,

b) ab + ac + bc — abc < 4-.
D

Dokážte.

RIEŠENIE. a) Umocněním trojčlena a + b + c na
druhů dostaneme: (a + b + c)2 == a2 + b2 -f c2 -f-

2ab -)- 2ac ~j~ 26c = 1
číže

a2 + 62 + c2 = 1 — 2(ab -\- ac -\- bc) > 0, (1)
pretože zo vztahu a -f- b + c = 1 vyplývá, že čísla a3 6, c
nemóžu byť súčasne všetky tri rovné nule.

Zo vztahu (1) už dostáváme
1

ab + ac + bc < ,

čo sme malí dokázat’.

POZNÁMKA. Za danej podmienky a + b + c — 1
pre nezáporné čísla a, b, c možno odhad velkosti trojčlena
ab -f- ac -(- bc ešte zlepšit’. Dokaž prevedieme takto:
Označenie čísel písmenami a, b, c zvolíme tak, aby platilo
a ^ b ^ c. Umocněním nezáporných dvojčlenov a — b,
b — c, a — c na druhů dostaneme

a2 + b2 ^ 2a6, b2 + c2 ^ 26c, a2 + c2 2ac.
Sčítáním 1’avých i pravých stráň týchto nerovností dostá-
vame

a2 + b2 + c2 ^ ab + bc + <zc .

Ak do vztahu (2) dosadíme zo vztahu (1) za a2 + 62 + c2,
(2)
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máme
1 — 2{ab + ac -|- be) ^ ab -f ac -j- bc

čiže
1

ab + ac + bc ^ .
j

b) Umocněním trojčlena a -f b + c na tretiu dostá-
vame

(a + b 4- c)3 — a3 + b‘A + c3 + 3ab(a + b) + 3 ac{a +
+ c) + 3bc(b + c) + babc — aA + b3 + c3 + 3ab(a +
+ b + c) + 3ac{a + b + с) + 3bc(a -j- b + c) —
— ЪаЪс — 1 .

Pretože a + b + c = 1, je
a3 + b3 + с3 = 1 — 3(ab + ac + bc) + 3abc > 0,

z čoho priamo vyplývá
1

ab + ac + bc — abc < -5-,3

čo sme mali dokázat’.

4. Je dán pravoúhelník ABCD, Aí je střed strany
Uvnitř úseček DC, AD sestrojte body E, i7 tak, aby pěti-
úhelníku MECDF bylo možno opsat kružnici. Vyjádřete
poloměr této kružnice i obsah pětiúhelníka pomocí délek
stran pravoúhelníka ABCD. Určete podmínku řešitelnosti
úlohy._

ŘEŠENÍ. Situaci ukazuje obr. 27. Kružnice k opsaná
pětiúhelníku MECDF je opsána rovnoramennému troj-
úhelníku MCD. Její střed 5 je průsečík osy úsečky CD
a osy úsečky MC. Označme N střed strany CD, r poloměr
kružnice k, a — AB} b — BC délky stran pravoúhelníka
ABCD. Pak je

1
SC= SM=r,SN=b-r,CN = ~ a,
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tj. podle Pythagorovy věty platí

Z (1) dostaneme po úpravě
4b2 + a2

r —
8b

Ze vzorce (2) vyjde vždy r > 0. Dále je r < b právě když
je 4b2 + a2 < 8b2, neboli 4b2 > a2, 2b > a, neboli

b>2■
Nerovnost (3) je podmínka řešitelnosti, jak plyne obráce-
ním postupu.

(3)
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Výpočet obsahu pětiúhelníka MECDF:
Protože je /\CES rovnoramenný, je

CE= DF= 2SN = 2{b - r) . (4)
Dále je podle (4)

BE = ВС - CE = b - 2(b - r) = 2r - b. (5)
Pětiúhelník MECDF vznikne sjednocením pravoúhelníka
ECDF a rovnoramenného trojúhelníka MEF. Jeho obsah
P je tedy podle (4), (5)

P = a . 2(b - r) + j a(2r - b) = ~ (3b - 2r) . (6)

Dosadíme-li za r ze vzorce (2) do (6), dostaneme po
úpravě

a3
P = ab — j což je výsledná formule.
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IV. Soutěžní úlohy II. kola

1. KATEGORIE A

1. Nájdite všetky komplexně čísla z, pre ktoré platí
2zn + (1 + 3i) . [*и| = 1 + i, (1)

kde n je prirodzené číslo. Kolko róznych takých čísel
existuje? (6 bodov)

RIEŠENIE. Číslo z = 0 rovnici (1) zrejme nevyhovuje,
preto jej riešenie možeme hladať v goniometrickom tvare
z — v (cos cp + i sin cp), kde r > 0, cp sú reálne čísla. Po
dosadení do (1) dostaneme

2r”(cos n<p + i sin ncp) + (1 + 3i)rw = 1 + i,
čo je splněné vtedy a len vtedy, keď čísla r a cp vyhovujú
sústave rovnic

r”(2cos ncp + 1) = 1, rn{2sin ncp + 3) = 1 .

Zo sústavy (2) dostaneme
уП _

(2)

1 1
(3)2cos ncp — 1 2sin ncp -)- 3 5

z čoho pre cp vyplývá rovnica
cos ncp = sin ncp -f 1 .

Každé riešenie rovnice (4) splňuje však aj vztah
cos2 ncp = 1 + 2sin ncp + sin2 ncp

(4)

čiže
sin «9?(sin ncp + 1) = 0 .

Skúmajme teraz, ktoré z riešení rovnice (5) vyhovujú
(5)
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rovnici (4). Ak sin ncp = 0, potom zo (4) dostaneme
cos ncp = 1 a z oboch týchto podmienok vyplývá ncp =
== 2&7Г, kde k je celé číslo. Riešeniami rovnice (4) sú teda

2kn
čísla cpllc = , k celé číslo a po dosadení do (3)

. Čísla rx, <plk sú zrejme riešeniami
1

dostaneme rx — n

p
sústavy (2) a příslušné riešenia rovnice (1) sú preto dané
vzorcom

1 / 2kiz . . 2kiť\
Ziк = —— cos + i sin 1

\ n n )
, k celé číslo. (6)

P
Ak sin ncp = — 1, potom zo (4) dostaneme cos ncp — 0.

Obom podmienkam vyhovujú len tie cp, pre ktoré ncp —
3tí

—

-у + 2&тг, kde k je celé. Riešenia rovnice (4) sú
(4* + 3)*teda v tomto případe cp2k =

vzťahov (3) dostáváme r2 = 1. Dvojice r2, cp2k sú rieše-
niami sústavy (2) a příslušné riešenia rovnice (1) majú
tvar

pre r zo2n

{Ak + 3)tí
z** = cos 2»

Keďže každé celé číslo k možno zapísať v tvare k =
= qn + &i> kde q, 0 ^ w — 1 sú celé čísla, je
2&7t 2^x7t (4& + 3)tí

Vzhl’adom na periodičnost’ funkcií sinus a kosinus
je každým zo vzťahov (6) a (7) určených právě n róznych
komplexných čísel, ktoré dostaneme napr. pre

k — 0, lj 2, • • •) ti 1*

{Ak + 3)tt+ i sin , k celé číslo. (7)2n

(4^i + 3)n
2n2n = 2qK +
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Závěr: Rovnica (1) má právě 2n různých riešení, ktoré
sú určené vzťahmi (6) a (7) pre k = 0, 1, 2,. . n — 1.

2. V rovině jsou dány dvě navzájem kolmé přímky
p, q a bod A, který má od obou z nich tutéž kladnou
vzdálenost.

Vyšetřete geometrické místo bodů X, pro které vzdá-
lenost AX se rovná součtu vzdáleností bodu X od přímek
p, q. (Použijte metody souřadnic.) (7 bodů)

ŘEŠENÍ. I. Přímky p,
q zvolíme za osy kartéz-
ských souřadnic: p = x,
q = у (obr. 28). Osy ori-
entujeme tak, aby bod A
ležel uvnitř prvního kvad-
rantu, jednotku délky zvo-
Hrne tak, aby obě souřad-
nice bodu A byly rovny
jedné.*)

Budiž X — [x, у] pro-
měnný bod hledaného geo-
metrického místa bodů;
podle podmínky úlohy je

o

Obr. 28

pak
1*1 + \y\ = VO - i)2 + Су — i)2

Rovnici (1) umocníme a upravíme; vyjde
|*yl + * + У — 1 •

Rozlišíme dva případy: a) Leží-li bod X v I. nebo III.
kvadrantě, je xy ^ 0, tj. \xy\ — xy> rovnice (2) pak zní

xy + * + у = 1,
*) Volba souřadnic bodu A rovných jedné není nutná; pouze

zjednodušuje výpočty.

(1)

(2)

(2')
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neboli po úpravě
(x + 1) (y + 1) = 2 . (3)

Rovnice (3) vyjadřuje rovnoosou hyperbolu hl3 jejíž
asymptoty jsou přímky x = — l,y = — 1 a která protíná
osu x3 popřípadě у v bodě

В = [1; 0], popř. C = [0; 1] . (4)

I x= 1\ Уx-f
h, t
\ I
\
\

r-1ť\C

I
\b x
чO

—A_
y*-1

i

Obr. 29

Body X geometrického místa bodů náležejí jen těm
obloukům hyperboly které leží v I. а III. kvadrantě
(na obr. 29 tlustě vytaženy — větev ležící ve 3. kvadrantu
není na obr. 29 nakreslena),

b) Leží-li bod X ve II. neb IV. kvadrantě, je xy ^ 0,
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tj. \xy\ — — xy; rovnice (2) pak zní
xy — x—y + l = Q>

(* - !) Су - i) = o •

Rovnice (5) vyjadřuje dvojici kolmých přímek x = 1
а у — 1. Body X geometrického místa bodů náležejí
ovšem jen těm částem přímek, které leží ve II. a ve IV.
kvadrantu (na obr. 29 jsou tlustě vytaženy).

II. Zbývá dokázat, že každý bod tlustě vytažené čáry
náleží vyšetřovanému místu bodů. Tak v případě a)
platí-li pro souřadnice x, у rovnost (3), platí (2'); protože
je xy ^ 0, platí i (2) a tudíž i (1). Obdobně je tomu i v pří-
pádě b).

(2")
neboli

(5)

3. Jedna pobočná hrana čtyřbokého jehlanu má délku
x, všechny ostatní jeho

C hrany mají délku 1.
a) Vyjádřete objem

jehlanu jako funkci
proměnné x.

b) Určete, pro které
л; je objem co největší.

(6 bodů)

ŘEŠENÍ, a) Podsta-
va jehlanu ABCDE je
rovnostranný čtyřúhel-
nik (obr. 30). Označme
<p velikost ostrého úhlu

CAB. Pak je AS = CS — cos y, BS — DS = sin y.
Můžeme předpokládat, že hrana DE má délku x. Troj-
úhelník АСЕ je rovnoramenný (dvě protější pobočné
hrany mají délku 1) — viz obr. 31. Protože je /\ACB ^2
£2 AACÉ (,sss), je patrně SE = sin y. Situaci v rovině

1

A В1

Obr. 30
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BDE ukazuje obr. 32. Zde je DE — x, BE — 1. Protože
bod E leží na Thaletově kružnici se středem S a polomě-
rem sin 99, je £)ЯВ pravý, tj. platí

1 + x2 = 4 sin2 Ц). (1)

/г

i

Í2\A
S

Obr. 31
E

Výšku v trojúhelníka BSE
na stranu BS vypočteme
pomocí obsahu; je

v . sin 9? = — ,

iV i
v\

ВD siný S siný
Obr. 322 ’

tj.
л;

(2)v —

2sin 99

Protože obsah čtyřúhelníka ABCD je sin 2(p, je objem
у jehlanu ABCDE

У = Ьт2'р-2^=13ХСЖ'р (3)

Dále vypočteme z (1)
4cos2 cp = 4 — 4sin2 (p — 4 — (1 -f- x2) = 3 — V2;

odtud plyne 2cos 99 = ]/3 — x2.
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Dosadíme-li do (3), vyjde

У = j Уз — x2, (4)

což je výsledný vzorec.
b) у je maximální právě tehdy, je-li maximální 36y2,

tj. x2(3 — x2). Součin dvou čísel (л:2, 3 — x2), jejichž
součet je číslo 3, je maximální právě tehdy, jsou-li obě
čísla sobě rovna, tj. je-li

x2 — 3 — x2.

Odtud plyne 2x2 = 3, neboli

x

Objem je pak
1 3

= 1 3 1-

2 6 * 2
=

4 = °>25 *

Zajímavé je, že maximální objem nemá pravidelný čtyř-
boký jehlan, jehož všecky hrany mají délku 1. Tento
jehlan má totiž výšku ~ a jeho objem je

Уmax ^

1/2
= |l/2 = 0,236 < i .

1 1

V2

JINÉ ŘEŠENÍ, a) Budiž ABCDV daný jehlan s pod-
stavou ABCD a nechť A V = x; ostatní hrany mají tedy
délku 1. Zřejmě je ABCD rovnostranný čtyřúhelník
(kosočtverec, příp. čtverec) se stranami délky 1. Budiž
5 průsečík jeho úhlopříček. Poněvadž AB
= CB = 1 = AD = VD = CD, leží body A, V, C na
kružnici, jež je průsečnicí jednotkových kulových ploch

VB =
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se středy В, resp. D. Přitom AC je průměrem této kruž-
nice, neboť střed úsečky AC je totožný se středem úsečky
BD. Trojúhelník ACV je tedy pravoúhlý, s přeponou
AC a odvěsnami AV a CV. Jest А V = x, CV — 1, tedy
AC— ]11 + x2. Také trojúhelník ASB je pravoúhlý
s přeponou AB délky las odvěsnami AS a SB, takže
délku odvěsny SB dostaneme opět podle Pythagorovy
věty SB = ]/AB2 — AS2, tedy

14-^ = 1уст.SB = 1 -

Jehlan ABCDV si můžeme představit složený ze dvou
shodných trojbokých jehlanů ABCV a ADCV, se spo-
léčnou podstavou ACV a výškou SB, resp. SD. Pro objem
jehlanu ABCDV tak dostáváme vyjádření:

— x2 = ^ x]/3 — x2.V — 2 .

b) Stanovení maximálního objemu je stejné jako
v prvním řešení: součin x2(3 — x2) bude maximální

1/3
při x2 = 3 — x2, tzn. pro x — j maximální objem
je pak roven -jr .

4. Pravoúhlý trojúhelník ABC má přeponu AB = c\
D je takový bod přepony, že polopřímka CD je osa pra-
vého úhlu.

Vyjádřete výšku v na přeponu AB pomocí délek c =
= AB, и = CD. Jaký vztah mezi c a wje podmínkou, aby
trojúhelník ABC existoval? (6 bodů)
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ŘEŠENÍ (obr. 33).
a) Označme m = AD, n — BD-, podle kosinové věty

pro trojúhelníky ACD, BCD platí

= a2 + ir — 2au cos ,

2bu cos у .

Pro tytéž trojúhelníky dostaneme ze sinové věty

(1)
m2 = b2 + u2

b
(2)m — — . n .

a
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Dosadíme z (2) do druhé rovnice (1) a po úpravě vyjde

2erbu cos ~ .

První rovnici (1) násobíme číslem b2 a dostaneme

b2n2 = arb2 + b2u2 — 2ab2u cos ~ .

Odečtením (3) a (4) vyjde

(a2 — b2)u2 = 2abu cos . (a — b) .

Je-li а Ф b, plyne z (5)

(a + b)u — 2ab cos

Podle Pythagorovy věty pro troj-

b2n2 — a2b2 + a2u2 (3)

(4)

(5)

(6)ab j/2 ,

1
neboť cos ~ —

úhelník ABC máme
W

(7)c2 — a2 + b2 .

Ze vzorců pro obsah trojúhelníka dostaneme
ab = cv .

Ze (6), (7) a (8) eliminujeme a, b\ vyjde
2c2^2 — 2cu2v — c2u2 -

Rovnice (9) má jediné kladné řešení
и + ]/u2 H 2c2

^

(8)

(9)0 .

(10)V =
2c

Sestrojme nyní pravoúhlý trojúhelník s přeponou c
a výškou (na přeponu) v, danou vzorcem (10); označme
v něm щ příslušnou úsečku na ose úhlu y. Podle před-
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chozího je pak
щ + ]]u\ + 2c2 (И)v = ux 2c

Porovnáním (10) a (11) zjistíme, že nutně ux = u.

Vzorec (10) platí i v případě, že a =
1

Ь — . C .

1/2
b) Je-li dáno c, u, je úloha řešitelná právě tehdy, jestliže
„ 1

v ^
2 c’ podle (10)

и + ]/u2 + 2cz 1
'U

— ~2C'2c

Odtud
и2 + и |/и2 + 2c2 ^ c2,

и ]Jи2 4- 2c2 ^ c2 — u2

w4 -f- 2c2u2

neboli

a dále
с4 — 2с2м2 + и4 ,

tj-
4c2u2 ^ c4 ,

tj-
^ C

u= 2 •

To je hledaná podmínka řešitelnosti úlohy.
Ke konstrukci trojúhelníka ABC z daných с, и se

s výhodou použije známé vlastnosti osy úhlu (viz obr. 33).
Označíme-li E průsečík polopřímky CD s kružnicí k
(nad průměrem AB), jest

1
АСЕ = <£ ЛБЕ =
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a obdobně
1

<£ ЕСВ = <£ ЕАВ = — у .

Trojúhelník ЛRE" je tedy rovnoramenný a bod E leží
na ose strany ЛВ. Sestrojíme bod D tak, že vypočteme
délku л; = DE. Z podobnosti vyšrafováných trojúhelníků
totiž plyne л: = э tj.

c2
x =

w + ]/w2 + 2c2
tuto délku lze snadno sestrojit z daných c, u.

2. KATEGORIE В

1. Budiž Z ^ 3 přirozené číslo. Dokažte, že součin
/(/ + 1) (Z + 2) . . . (3Z - 4) (3Z - 3) (1)

je dělitelný druhou mocninou každého přirozeného čísla
m fC l. (5 bodů)

ŘEŠENÍ. Součin (1) obsahuje (31 - 3) - (/ - 1) =
= 2/ — 2 za sebou následujících přirozených čísel. Stačí
dokázat, že tento součin obsahuje aspoň dva násobky čísla

a) Je-li m — /, je 21 mezi těmito čísly (neboť 21 — 2 > l
vzhledem к předpokladu / ^ 3). Proto obsahuje součin
(1) činitele / i 21; je tedy násobkem čísla Z2.

b) Je-li m < /, tj. m 5^ l — 1, obsahuje součin (1) aspoň
dva násobky čísla m, neboť 2/ — 2 — 2(Z — 1) ^ 2m >
> m. Proto i v tomto případě je součin (1) násobkem
čísla m.

m.
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2. Je dána rovina q, v ní bod A a mimo ni bod В;
přímka AB není kolmá к rovině o. Bod X se pohybuje
v rovině o tak, že <£ AXB je a) pravý, b) tupý, c) ostrý.

Určete množinu těžišť všech trojúhelníků ABX, které
tak vzniknou. (6 bodů)

ŘEŠENÍ (obr. 34). a) Označme B1 patu kolmice
vedené bodem В na rovinu q. Veďme bodem A v rovině

Obr. 34

q libovolnou přímku m. Protože je BBt JL q, mají kolmice
spuštěné z bodů В a Bx na přímku m tutéž patu X. Body
X vyplní tedy kružnici k sestrojenou v rovině q nad prů-
měrem ABX, z níž je vyloučen bod A (je-li X = A,
nevznikne totiž <X. AXB). Množina středů Y všech stran
AX je kružnice k\ která je obrazem k v stejnolehlosti se

středem A a konstantou z kružnice k' je ovšem také
třeba vyloučit bod A (obr. 35). Těžiště Z každého troj-
úhelníka ABX leží na úsečce BY, a to tak, že ВZ =
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= уБУ. Body Z vyplní tedy kružnici k", která leží
v rovině cr || o; a dělí úsečku BB1 v poměru 2:1. Střed
S" kružnice k" náleží úsečce BS' (obr. 36). Poloměr

Obr. 36
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kružnice k" je у
=

у ABV Z kružnice k" je třeba vyloučit bod, který
je průsečíkem úsečky AB s rovinou o.

b) , c) Je-li bod U uvnitř kruhu k, platí podle věty
o vnějším úhlu pravoúhlého trojúhelníka (UBX)

<£ AUB > <£ AXB = 90°,
tj. < AUB je tupý (obr. 37). Je-li bod V vně kruhu k.
platí podle věty o pravoúhlém trojúhelníku (BXV)

<£AVB< 90°,
tj. <£ A VB je ostrý (obr. 37). Nerovnost (2) platí evi-
dentně i v případě, když bod W leží na tečně sestrojené
v bodě A ke kružnici k (obr. 38).

Ze vztahů (1), (2) vyplývá, že hledaná množina bodů
je v případě b) vnitřek kruhu k", v případě c) jeho
vnějšek.

2 1 2 11
as' = T2AS--3:-TJab> =

(1)

(2)



3. Určité všetky kladné hodnoty parametra a, pre
ktoré má sústava rovnic

(1)\x — a\ + a = |*| + \y li
* + 2y = 2

s neznámými *, у právě tri riešenia.
(Návod: Zostrojte graf prvej rovnice sústavy (1)

napr. pre a = 1). 1(7 bodov)

RIEŠENIE. Graf prvej rovnice sústavy (1) zostrojíme
tak, že vyšetříme grafy funkcií

(2)У = \x~ a\ + a — |*|,
(3)У = —\x — a\ — a + |*|

a utvoříme ich zjednotenie. Pri vyšetřovaní každého
z týchto dvoch grafov rozdělíme množinu všetkých
reálných čísel * na tri intervaly:

III. *II. 0 ^ *I. * ^ 0; a.a;

У
••

••

2

1

X

O /1-4 -3 4-2 -1 2 --.3

s
-1-

••

-2

Obr. 39
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Funkcia (2) je v týchto intervaloch určená v uvedenom
poradí vzťahmi: I. у = 2a; II. у = 2{a — x); III. у — 0.
Funkcia (3) je zasa v uvedených intervaloch určená vztah-
mi: I. у = — 2a; II. = 2{x — а); III. у = 0. Grafické
znázornenie prvej rovnice sústavy (1) je pre a = 1 na
obr. 39. Na obr. 39 je zároveň přerušovanou čiarou
znázorněná priamka p, ktorá je grafom druhéj rovnice
sústavy (1). Obrázok nám napovedá, že v tomto případe
má sústava (1) tri riešenia. Eahko vypočítáme, že sú to

dvojice reálných čísel [—2; 2], [M] a [2; 0].

Ak riešime druhů rovnicu sústavy (1) so šiestimi rovni-
cami, ktorými sme vyjádřili v intervaloch I., II., III.
prvú rovnicu (1), dostaneme:
pre interval I.: x = 2(1 — 2a), x = 2(1 + 2a),

4a - 2

-J-’ X = 5
4a + 2

pre interval II.: x —

pre interval III.: x — 2.
Druhý vztah pre I. nedává nikdy riešenie, pretože je

2(1 + 2a) > 0, zadal’ čo prvý vztah pre I. dává riešenie
len pre 1 — 2a ^ 0, t. j. pre

1
(4)a

— 2 *
4a —

Prvý vztah pre II. dává riešenie len pre 0 ^ —у
t. j. pre

-ša,

1
(5)2SaS2'

4a 4- 2
Druhý vztah pre II. dává riešenie len pre 0 5^ —^—-

a, t. j. pre
(6)a ^ 2 .
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Vztah pre III. je riešením sústavy len pre

a ^ 2 .

Zo vzťahov (4), (5), (6) a (7) je zřejmé, že pre 0 < a < ~

má sústava (1) len jediné riešenie (pozři (7), a to [2; 0].

Pre a — ~ má sústava (1) dve riešenia (pozři (4),

(5), (7)), a to [0; 1], [2; 0].

Pre — < a < 2 má sústava (1) tri riešenia (pozři(5), (4), (7)), a to [2(1 - 2а);2а],Гу(4а - 2);|(2 - a)l,
[2; 0].

Pre a — 2 má sústava (1) dve riešenia (pozři (4), (5),(6), (7)), a to:[-6; 4], [2; 0].
Konečne pre a > 2 má sústava (1) taktiež dve riešenia

(pozři (4), (6)), a to [2(1 — 2a); 2a],

(7)
1

[y (4a + 2); f (2 -a)].
Tri riešenia má sústava (1) teda právě vtedy, keď platí

j < a < 2.

4. Je dán úhel <£ AVC — e, kde 0 < e ^ 90° a dále
druhý úhel velikosti a. Uvnitř úsečky А V leží další bod
B.

Na polopřímce VC sestrojte body X, Y tak, aby platilo
<£ XA Y — <£ XBY — (1)a .

(6 bodů)
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ŘEŠENÍ. Rozbor. Na obr. 40 je znázorněno předpo-
kládané řešení úlohy: platí tedy vztah (1) a podle věty
o shodných obvodových úhlech velikosti a nad tětivou
XY leží body А, В, X а У na téže kružnici к (uvažujme

pořadí bodů na kružnici A, В, Y, X jako na obr. 40).
Proto také platí

<£ YAB <£ YXB = <p,
<£ ЛХВ - <£ Л YB = ,

A YX= ABX = a, .

S použitím vztahů (1) až (4) dostaneme pro součet
vnitřních úhlů čtyřúhelníka ABYX

2(a + 9? + ip -f- co) = 360° .

(2)
(3)
(4)

(5)
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Podle věty o vnějším úhlu co trojúhelníka XVB
co = cp -(- e ;

odtud dosazením do (5) dostaneme
a + 29? + ^ + e = 180° ,

2(p -j- y> = 180° — (a + e) ;
úhel 2cp + у je tedy z daných podmínek sestrojitelný
a dostaneme jej jako úhel <£ AXBkde je bod sou-
měrně sdružený s bodem В podle přímky VC. Odtud už
plyne konstrukce.

1. Sestrojíme bod B' souměrně sdružený s bodem В
podle přímky CV.

2. Nad úsečkou AB' jako tětivou sestrojíme množinu
všech bodů X, pro něž platí

<£ AXB' = 2rp + у = 180° — (a + e);
tuto množinu tvoří dva kruhové oblouky m, n (obr. 41).

Clil

(6)



3. Každý z těchto oblouků protne přímku VC (neboť
body A, B' jsou odděleny touto přímkou) v hledaném
bodě XX3 popř. X2 (pokud leží na polopřímce VC).

4. Průsečík polopřímky VC s kružnicí opsanou troj-
úhelníku ABXx, popř. ABX2 je druhý hledaný bod YX3
popř. Y2.

Zkouška, a) pro řešení XX3 Yx (viz obr. 41). Kružnice
km opsaná trojúhelníku ABXx vždy protne polopřímku
VC v dalším bodě Yl3 kdyby totiž bylo Xx = YX3 dutý
úhel <£ XxA Yx by byl nulový, avšak а Ф 0 podle před-
pokladu. Bod Yx leží na polopřímce VC proto, že dvě
přímky, obsahující dvě různé tětivy této kružnice, se
protnou buď ve vnějším bodě obou tětiv (tj. náš případ),
nebo ve vnitřním bodě tětiv.

Dokážeme, že úhel <£ XxA Yx = I má danou velikost
a. Protože body A, B, YXi Xx leží na kružnici kmy platí

<£ ВAYx = <£ BXxYx - YxXxB' <P •

Potom pro součet vnitřních úhlů trojúhelníka XxVA
platí

180° — (a-j-e) — + — 180° ,

čili
I = a ;

potom také úhel <£ XxB Yx — oc.
b) Pro řešení X2i Y2, pokud existuje, proběhne zkouška

obdobně, pouze pořadí bodů na kružnici kje А, В, X2) Y2.
Diskuse. Konstrukce a řešení a) je proveditelné vždy

právě tehdy, je-li a + e < 180° (viz 2. bod konstrukce).
Řešení typu b) dostaneme jen tehdy, jestliže oblouk n

protne polopřímku VC ve vnitřním bodě X2. To nastane
právě tehdy, je-li

<£ AXB' > <£ AVB',

180° — (a + e) > 2e,
tj-
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čili 180° > a -f- Зе .

Shrnutí. Platí-li
a -f- Зе < 180°,

má úloha dvě řešení (při uvažovaných pořadích bodů
А, В, X, Y na kružnici k), platí-li

а + 3e ^ 180° > а + £ j

má řešení jediné. Pro а + e ^ 180° řešení neexistuje.

3. KATEGORIE C

1. Je dán vypuklý pětiúhelník, kterému lze vepsat
kružnici.

a) Dokažte větu: Jestliže všechny strany mají celo-
číselné velikosti a obvod je sudé číslo, potom také všechny
úsečky na jeho stranách, omezené vrcholy a dotykovými
body, mají celočíselné délky.

b) Je možno větu obrátit?
(6 bodů)

Řešení, a) veu-
kosti úseček na stranách
pětiúhelníka označme
podle obr. 42 písmeny

Уз %з tt, v. Jsou-li A
a, b, c, d3 e po řadě ve-
likosti stran AB, BC,
CD, DE a EA, dosta-
neme rovnosti

X + у = a ,

у + z = b ,

z + и = c,
и + v = d ,

v + x = e .



Po výpočtu z rovnic (1) dostaneme např.
2x = a — b-\-c — d + e

čili
ct -\- b -\- c -\- d в j

2 b - d. (2)jc =

Obdobně získáme

(3)^=2
— c — e ,

(4)z = a ,

и — ~^r — e — b у (5)2

(6)v = — a — c .

2

Protože velikost obvodu podle předpokladů je sudé číslo,
velikosti stran a3 b, c, d3 e jsou celočíselné, plyne z rovnic
(2) až (6), že i délky úseků л:, у, z3 u, v jsou celočíselné.

b) Obrácená věta zní: Jestliže všechny úsečky na stra-
nách vypuklého pětiúhelníka, omezené vrcholy a dotyko-
vými body vepsané kružnice, mají celočíselné délky,
potom délky stran jsou celočíselné a obvod je sudé číslo.

Věta je zřejmě správná; první tvrzení o celočíselnosti
délek stran plyne bezprostředně z rovnic (1). Druhé tvrze-
ní dokážeme sečtením rovnic (1); dostaneme rovnost

2(x у -\- z -\~ и -\~ li) = o, -\- b -\- c -\- d -\- 63
z níž je zřejmé, že velikost obvodu je sudé číslo.

2. V 8 hodin ráno vyjel cyklista z A do В (ЛВ =
= 50 km). Když ujel 10 km, předjelo ho auto, které
vyjelo z A v 8 hodin 25 minut. Tento automobilista
dojel do B, tam se zdržel 1 hodinu 15 minut a potom se

118



opět vracel do A. Zpáteční cesta mu trvala o třetinu kratší
dobu než cesta do B. Našeho cyklistu potkal 5 kilometrů
před B. (Všechny jízdy byly rovnoměrné pohyby.)

V kolik hodin se automobilista vrátil do Л?
(5 bodů)

ŘEŠENÍ. Označme vx a v2 po řadě rychlosti v km/h
cyklisty a auta na cestě do B. Ze setkání 10 km za A plyne
rovnice

10 10
, 25

®i ~ v2

ze setkání před В rovnice

(1)60 5

25 50 5

v2 1 4
2 5 45

(2)+
60 3 v2 ®1

Položíme-li
1 1

—
— x, Z7 — У >

®1 Vo

dostaneme spojením (1) a (2) soustavu rovnic o nezná-
mých xy y:

10y = j2’I0x-

5160
45л: —

3 У 3 *

Soustava (3) má řešení
1 1

* = T5’ y = 40’

o čemž se snadno přesvědčíme zkouškou. Rychlost
cyklisty byla tudíž 15 km/h a rychlost auta na cestě do
В 40 km/h.

119



Automobilista byl na cestě celkem

+ 1+ 2.50 =4 3 40

hodiny, tj. 3 h 20 min, takže se do A vrátil v 11 h 45 min,
o čemž se přesvědčíme zkouškou.

Zkouška. Auto se vrátilo do A v 11 h 45 min, tj.
automobilista byl na cestě 3 h 20 min. Z toho na jízdy
připadá 2 h 5 min. Zpáteční cesta do A mu trvala

50 10

40 3

1 /3
o — méně než z A do B; dojel tedy z A do В za ly

125\
“60 j min = 1 h 15 min.

Z toho se snadno vypočte, že při jízdě z A do В byla
rychlost auta 40 km/h, při návratu 60 km/h. Cyk-
listu předjel na 10. km v (8 h 25 min -f 4̂0h) = 8h
40 min, tj. cyklista za 40 min ujel 10 km, tj.
jel rychlostí 15 km/h. 5 km před В je tudíž cyklista

45
v (8 h + tč h) = 11 h. Automobilista je na tomtéžAí> 50
místě skutečně také v 8 h 25 min + ^ h + 1 h 15 min +

Ah =

40
11 h.

60

POZNÁMKA. Za neznámé by bylo možno také zvolit
doby r, a ř2, které potřebuje cyklista a auto к dojetí do B.
Je to však asi pro žáky méně obvyklé.

3. Je daná sústava troch rovnic
x + 2y + 3z = a ,

3jc + У + 2sr = 2a — 11 ,

2x + 3jy -j- z — a ^
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s neznámými x, y, z a parametrom a. Určité všetky
hodnoty parametra a, pre ktoré má daná sústava riešenie
týchto vlastností: x, y, z sú celé čísla a žiadne dve z nich
nedávajú pri delení troma ten istý zvyšok.

RIEŠENIE. Danů sústavu budeme riešiť obvyklým
spósobom: z druhej a tretej rovnice a potom z prvej
a tretej rovnice vylúčime z. Dostaneme

x + 5y = 13 j

5x + ly = 2a + 3 . (1)
Z rovnic (1) vypočítáme

1 1
* = ^(5a-38). (2)У = -g (31 “ ah

Ak dosadíme z (2) do tretej rovnice danej sústavy, dosta-
neme

1
(3)~ (2a - 8) .

Skúškou sa přesvědčíme, že čísla x} y, z dané vzťahmi (2)
a (3) sú v obore reálných čísel skutočne riešením danej
sústavy.

Ak hladáme riešenie sústavy v obore celých čísel, musí
byť zrejme a tiež číslo celé a z prvého vztahu (2) vidíme,
že musí byť číslo 31 — a násobkom deviatich. Ako je
známe, číslo a sa dá vyjadriť právě v jednom z nasledu-
júcich tvarov

9k, 9k + 1, 9k + 2, 9k + 3, 9k + 4, 9k + 5, 9k + 6,
9k + 7, 9£ + 8,

kde k je vhodné celé číslo. Ak dosadíme zo (4) do vztahu
(2) pre y, zistíme, že у je celé jedine v případe, ked platí

a — 9k + 4 .

z =

(4)

(5)
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[Napr. pre k = 1 má daná sústava riešenie л; = 3,
y = z = 2.\

Po dosadení z (5) do (2) a (3) vypočítáme
x — 5k — 2, у = 3 — k, z — 2k .

Zo (6) však vyplývá у — 2 = 3 — 3& — 3(1 — k)3
čo znamená, že číslo j; — # je dělitelné troma, čiže čísla
у a z dávajú pre každé celé k, a teda aj pre každé přípustné
celé a ten istý zvyšok pri delení troma.

Neexistuje teda žiadne a, ktoré by vyhovovalo podmien-
kam úlohy.

(6)

4. Je dána úsečka AB a její vnitřní bod C. Nad prů-
měrem AC je sestrojena kružnice k()3 bodem В je vedena
přímka p kolmá к AB. Budiž k kružnice, která protíná
kružnici k0 v bodech X, Y a přímku p v bodech X\ Y'.

Leží-li body А, X, X' v přímce, leží také body A, Y, Y'
v přímce; dokažte. (7 bodů)

ŘEŠENÍ (obr. 43). Nechť body Л, X3 X' leží v přím-
ce. Označme Y" průsečík přímek AY, p. Je-li X = C,
je X' = В a platí

(1)AX.AX' = AB .AC

Je-li X ^ C, vznikne Д ЛСХ (Д ABX') a podle Tha-
letový věty je AXC pravý. Proto platí

Д AXC ~ Д ABX' (uuu)
a odtud

ЛХ AB
AC ~ AX'

čili opět platí (1). Z obdobného důvodu platí
AY . AY" = AB . ЛС. (2)

Porovnáním (1), (2) dostaneme AX . AX' — AY . A Y"3

122



neboli

Z (3) vyplývá
AAXY"~ Д A YX'

a odtud
<£ A Y"X = <£AX'Y,

neboli
<£ УУ"Х = <£ XX'У.

Protože oba body X', У" leží &() (na přímce p), a tedy
v téže polorovině určené přímkou X У, plyne z obrácení
věty o obvodových úhlech, že bod Y" leží na k. Je tedy
Y" e k П p, tj. Y" = Y'.

Tím je věta dokázána, neboť body A, У, Y' leží v přímce.
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4. KATEGORIE D

1. Určete všechny dvojice celých čísel x, y} pro které

4*2 - 4x - v2 = 20 .

platí
(1)

ŘEŠENÍ. Rovnici (1) upravíme na tvar

(2x - 1 Y-y2 = 21 .

Levou stranu poslední rovnice rozložíme pomocí vzorce
pro rozdíl čtverců. Dostáváme

(2x+y- 1)(2x-y- 1) = 21 .

Číslo 21 lze rozložit v tyto součiny celých čísel:
1.21 = 3.7 = (-1). (-21) - (-3) . (-7).

Sestavíme tabulku:

(2)

-2121 -1 3 -31 72x + у - 1 -7

321 1 -21 -1 -32x - у - l 7 -7

6 -5 -5 3 36 -2 -2x

10 -10 2-10 10 -2 2 -2.V

Každá z 8 dvojic čísel x, у je řešením úlohy, jak se pře-
svědčíme zkouškou.

2. Určité všetky čísla a, pre ktoré kořeň rovnice
a{x — 2) + x — 5 — 0 (1)

124



s neznámou x vyhovuje rovnici
r* — 7jc2 + 7jc + 15 = 0 . (2)

RIEŠENIE. Najprv riešme rovnicu (1). Po úpravě
dostaneme

{a -)- l)# — 2a 5 .

Ak а Ф —1, potom má rovnica (1) riešenie
2cl -(- 5
a + 1 5 (3)x =

ako sa přesvědčíme skúškou. Pre a = — 1 rovnica riešenie
nemá.

Číslo x dané vzorcom (3) za předpokladu а Ф — 1 má
vyhovovat’ tiež rovnici (2), t. j. má platit’

2a. -j- 5(2a + 5\3 12a + 5\2
\a+l) [a+lj f 15 = 0 . (4)+ 7

a + 1

Tým sme dostali rovnicu pre neznámu a.
Z rovnice (4) po vynásobení výrazom (a + l)3 Ф 0

a úpravě dostaneme rovnicu
a3 — 4a = 0 ,

ktorú možno písať v tvare
a{a — 2)(a + 2) = 0,

z čoho vyplývá, že je buď <2 = 0, alebo a = 2, alebo
a = — 2. Skúškou sa přesvědčíme, že danej úlohe vyho-
vujú všetky tri tieto čísla, t. j. úloha má tri riešenia:
cl — "“2j cl — O* cl — 2*

3. Do lichoběžníka ABCD sú vpísané kružnice k1} k2,
ktoré sa dotýkajú stráň a3 c, d a a, c, 6 (pozři obr. 44). Pre
dížky stráň lichoběžníka platí: a + c > b + d.

Dokážte vetu: Ak má výška lichoběžníka dížku
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1
— (a -f c — b — d), potom majú kružnice kl3 k2 von-

kajší dotyk.
tl b~x СD d-y N z

b-xd-y
I

si\~ Hs2
x

n k2‘
I

У КA z x ВL

Obr. 44

RIEŠENIE. Body a dížky úsečiek označme podia
obrázku (úsečky ohraničené daným a dotykovým bodom
na dotýčniciach vedených z bodu mimo kružnice ku kruž-
nici majú totiž rovnaké dížky). Potom je KLMN pra-
vouholník. Ďalej platí

a = x у z, c = b -\- d — x — у -\- z . %

Sčítáním oboch týchto rovností dostaneme
ci c = b d -\- 2z j

čiže
1

~2 (a + c — b ~ d) •

Pravouholník KLMN je teda štvorec, vzdialenosť SXS2
sa rovná súčtu polomerov kružnic kXik2 a obe kružnice
majú vonkajší dotyk.

z =

4. V rovině je dána úsečka AM. Určete geometrické
místo středů ramen AC všech rovnoramenných trojúhel-
níků ABC se základnou/íJB, v nichž je úsečka^Mtěžnicí.
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ŘEŠENÍ, a) Budiž T těžiště trojúhelníků ABC, tj. T
je bod úsečky AM, pro který platí AT — 2TM. Označme
N střed ramene AC (obr. 45), pak BN je těžnice troj-
úhelníka ABC. Poněvadž trojúhelník ABC je rovno-
ramenný, je AM = BN, a tedy TM = TN. Bod N leží
tedy na kružnici k se stře-
dem T a poloměrem TM.

b) Nyní ještě musíme zjis-
tit, zda ke každému bodu
kružnice k existuje rovno-
ramenný trojúhelník poža-
dováných vlastností.

Označme M' střed úsečky
AT (který je také bodem
kružnice k). Zvolme libovol-
ný bod N kružnice k, různý
od M, M'. Dokážeme, že
existuje rovnoramenný troj-
úhelník ABC se základnou
А В a těžnicemi AM, BN.
Na polopřímce opačné к po-
lopřímce TN sestrojíme bod
B, aby platilo ТВ — 2TN. Dále sestrojíme bod C souměr-
ně sdružený s bodem В podle bodu M. Poněvadž
N Ф M, M', leží bod В mimo přímku AM, body В, C
jsou odděleny přímkou AM, a tudíž body А, В, C neleží
v přímce a jsou vrcholy trojúhelníka ABC.

Protože AM je těžnice trojúhelníka ABC (neboť
CM) a protože AT — 2TM, je T těžiště troj-

úhelníka ABC. Protože T je těžiště trojúhelníka ABC,
leží jeho těžnice z vrcholu В v přímce ВТ, a protože
ВТ = 2TN, je N středem strany AC. Protože těžnice
AM, BN trojúhelníka ABC mají touž délku, je trojúhel-
nik ABC rovnoramenný se základnou AB.

BM
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Odpověd. Hledané geometrické místo bodů je kružnice
k bez bodů Mj M'.

POZN. 1. Kdyby N = M, nebo N= M\ ležely by
sestrojené body А, В, C v přímce.

POZN. 2. Trojúhelník ABC je rovnostranný, právě
když MTN = 120°.
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V. Úlohy III. kola kategorie A

1. Určete všechny dvojice racionálních čísel x, y,
pro které platí

(x+y py = 7 + 3 P . (1)

ŘEŠENÍ. Budiž x, у dvojice racionálních čísel, pro
kterou platí (1). Potom

x2 + 5y2 + 2xy |/5 = 7 + 3 ]/5 ,
takže

x2 + 5y2 - 7 = (3 - 2xy) 1/5 .

Kdyby bylo 3 — 2xy Ф 0, byla by
;t2 + 5y2 — 7

3 — 2;cj>
racionální číslo, což není. Máme tedy 2xy = 3, tj.

P=

3
(2)Xy = -x-2

a ovšem také
x2 + 5y2 = 7 .

Umocníme rovnici (3) dvěma; vyjde
x4 + 10x2j>2 + 25y4-= 49 .

Zároveň však podle (2) je

(3)

(4)

20x2jy2 = 45 . (5)
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Odečteme (5) od (4) a dostaneme
x4 — I0x2y2 + 25ý2 = 4 ,

O2 — 5y2)2 = 4 .

x2 - 5y2 = 2 ,

tj-

Je tedy bud
(6)

anebo
x2 — 5у2 — —2 .

Sečtením (3) a (6) dostáváme 2x2 = 9, tj.
(7)

2 9

což není možné, neboť x je racionální číslo.
Sečtením (3) a (7) dostaneme 2x2 = 5, tj.

*• = -5.
2 5

což také není možné.
Poněvadž jsme z předpokladu existence dvojice racio-

nálních čísel x, у vyhovujících (1) dostali vždy spor,
žádná taková dvojice neexistuje.

2. V rovině leží páť bodov О, A3 В, C, D. Pre ich
vzdialenosti platí ОА У OB У ОС У OD.

Dokážte, že pre obsah P konvexného štvoruholníka,
ktorého vrcholmi sú body A} B3 C, D, vždy platí

P ^ j (OA + OD) (OD + OC)
a zistite, kedy nastane rovnost’.

RIEŠENIE. V lubovolnom konvexnom štvoruholníku
KLMN nech je Q priesečníkom uhlopriečok KM a LN.
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Pre obsah trojuholníka KLM zrejme platí

PklmŠ^KM.LQ,
pretože úsečka LQ nie je kratšia než výška v trojuholníku
KLM prislúchajúca straně KM. Pre trojuholník KMN
analogicky platí

1
— ~2 KM ■ NQ 3

takže pre obsah štvoruholníka KLMN vždy platí

PKMN

1

f KM. LN,
pričom rovnost’ nastane právě vtedy, keď je KM Ji LN.

Nech je R libovolným bodom roviny KLMN. Podlá
trojuholníkovej nerovnosti platí KM ^ KR -f MR a
LN ^LR + NR, takže

PKLMN

PKLMN

1
^ j (KR + MR) (LR + NR) .

Rovnost’ v tomto vztahu nastane právě vtedy, keď leží
R jednak medzi bodmi К a M a jednak medzi bodmi L
a N čiže, ak je R = Q, kde Q je priesečníkom navzájom
kolmých uhlopriečok KM a LN.

V konvexnom štvoruholníku s vrcholmi А, В, C, D
sú uhlopriečkami bud АВ a CD, alebo AC a BD, alebo
AD a BC. Podlá predchádzajúcej úvahy platí potom
v prvom případe

1
P^~(AO + ВО) (CO + DO),

v druhom případe
1

(AO + CO) (BO + DO)
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a v treťom případe
1

P ^ j (АО + ВО) (ВО + CO),
pričom rovnost’ nastane vždy právě vtedy, keď O je
priesečníkom navzájom kolmých uhlopriečok.

Pretože AO < BO < CO ^ DO, platí
(АО + DO) (ВО + СО) - (АО + ВО) (СО + DO) =
= АО.ВО + ВО.DO + АО. СО + СО . DO
- АО . СО - АО . DO
= АО.ВО + СО .DO - АО .DO - ВО .СО =
= (DO - ВО) (СО - АО) ^ О,
takže

(АО + ВО) (СО + DO) < (АО + DO) (ВО + СО),
pričom rovnost’ nastane vždy právě vtedy, keď DO = ВО
alebo CO = АО.

Analogicky tiež
(AO + DO) (ВО + CO) - (АО + СО) (ВО + DO) =
= АО . ВО + АО . СО + ВО . DO + СО . DO

АО .ВО - АО .DO - ВО .СО - СО . DO =

- АО.СО + ВО.DO - АО.DO - ВО.СО =
= (DO - СО) (ВО - АО) ^ О,
takže

(АО + СО) (ВО + DO) < (АО + DO) (ВО + СО),
pričom rovnost’ nastane vždy právě vtedy, keď DO = CO
alebo ВО — АО.

Platí teda vždy

ВО . CO ВО.DO -

1
P ^ АО + DO) (ВО + CO) .

Rovnost’ nastane právě vtedy, keď O je priesečníkom
navzájom kolmých uhlopriečok štvoruholníka XYZV,
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kde X, У, Z, V je taká usporiadaná štvorica bodov
A3 В, C, D, že OX=OA a OZ = OD.

3. Nechť p je prvočíslo. Kolik existuje různých po-
sloupností přirozených čísel

a0, a13 o23. . ., on}. . .

takových, že pro každé přirozené n — 1, 2, 3, ... platí

+ ... + ^ + ^- = 1?
an+\

ap Op (1)+
0\ o2 &n

ŘEŠENÍ. Nechť a0) a13 . . ., an, ... je posloupnost
vyhovující podmínkám úlohy. Vztah (1) si napíšeme pro
w = w+ law = ma pak odečteme:

= 1 3

0\ 0-2 am+1 O-jfi+2

+ ... + ?± +Op Op
= 1,+

0\ cl2 O-m Om+i

Ž_+S>ZLř=0.
O-m+2 Ощ+1

takže
P

(2)Ojn+2 — am+!•
P — ao

Tento vztah platí pro všechna m — 1, 2, 3, ... . Vyná-
sobíme (2) pro m= 1, 2,. . ., k

к

= p- -)\P ~ aja3a\ • • • dk+2 . a2a.á . . . <2^+1

a po zkrácení
= tP„) (3)ak+2
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pro k = 1, 2, 3,. . . Poněvadž všechna čísla аи jsou při-
rozená, musí být p — a0 > 0, tedy 0 < a0 < p. Zároveň
musí být buď p dělitelné číslem p — a(13 anebo musí být
a2 dělitelné libovolnou mocninou čísla p — a0; obojí
je však možné jen v tom případě, že

a0 = P — 1 •

Napíšeme si nyní vztah (1) pro n = 1 s použitím (4):
P- 1 . L

(4)

= 1,
ax Cl 2

tj*
PÍP 1 + a2) — (#i + 1)^2 •

Vidíme odtud, že buď číslo ax + 1, anebo číslo a2 musí
být násobkem prvočísla p.

I. Nechť tedy za prvé ax + 1
Dosadíme do (5); vyjde

(5)

kp (k přirozené číslo).

p{kp — 1 + a2) = kpa2,
kp — 1 + a2 — ka2,

takže
{kp — 1) = {k — 1 )a2 .

Poněvadž k je přirozené a/) ^ 2, je kp > 1, takže nemůže
být k — 1; a můžeme dělit číslem k — 1. Dostaneme tak

kp — 1
k - 1

- 1
= ř + f (6)Cl 9 —

Poněvadž a2 je přirozené, musí být číslo p — 1 dělitelné
číslem k — 1. Zároveň vidíme, že takovéto číslo a2 není
dělitelné číslem p.

Ke každému přirozenému číslu k 1, jež je dělitelem
čísla p — 1, dostaneme ze vzorce (6) a z ax — kp — 1
dvojici čísel

ai
ai = kp — 1 , <22 — & - 1 5
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poněvadž však я0 je určeno v (4) a am pro m > 2 vzorcem
(3), odpovídá každému přirozenému děliteli čísla p — 1
právě jedna posloupnost vyhovující úloze.

II. Nechť a2 — kp, k přirozené. Dosadíme do (5); vyjde
p{ax + kp) = (ax + 1)kp,

cix “f" kp kciy k ,

ax(k — 1) = k{p — 1) .

Poněvadž & ^ 1 2i p ^ 2, nemůže být k = 1; můžeme tedy
dělit číslem k — 1:

Kp - i) „
-1

i+f (7)ai =

Poněvadž ax je přirozené číslo a p ^ 2, vidíme opět, že je
číslo p — 1 dělitelné číslem k — 1.

Ke každému přirozenému číslu k — 1, jež je dělitelem
čísla p — 1, dostaneme podle předchozího dvojici čísel

- 1
- Г

poněvadž však čísla a0 a am{m > 2) jsou pak plně určena
vzorci (3) a (4), odpovídá každému přirozenému děliteli
čísla p — 1 právě jedna posloupnost vyhovující úloze.

Zároveň je vidět, že posloupnosti, které dostaneme podle
I a podle II jsou různé, neboť v případě II je a2 dělitelné
číslem p, kdežto v případě I tomu tak není.

Celkem tedy je počet různých posloupností vyhovují-
cích úloze roven právě dvojnásobku počtu přirozených
dělitelů čísla p — 1.

i + fk Clo — kp j= P —

4. Určité všetky komplexně čísla я, ktoré vyhovuj ú
nerovnosti

N1/3 ž o
a zobrazte ich v rovině komplexných čísel.

к — \z + И|| (1)
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RIEŠENIE. Nerovnost’ (1) je zrejme ekvivalentná
s nerovnosťou

\z — \z+\z\\\2 ^ 3 |я|2, (2)
ktorej evidentne vyhovuje číslo z — 0. Nech z —
— r(cos q> + i sin 99), kde r >0, <p e <0; 2л:) sú reálne
čísla, je riešením nerovnosti (2). Potom zrejme platí
|r (cos Cp + i sin (p) — |r(cos (p + i sin cp) + r||2 ^ 3r2,

1
skadial’ po vynásobení číslom ^ a vyjádření absolútnej
hodnoty vo vnútri výrazu na lávej straně dostaneme

|cos (p — 1/2(1 -f cos 99) + isin9?|2^3,
číže

cos29?—2co$(p\]2\\ + COS99) + 2(1 -f- cos99) -f- sin29? ^ 3.
Po jednoduchej úpravě máme

cos 99 ^ cos 99 ]/2(1 + cos 99).
Z převedených úprav je zřejmé, že číslo z Ф 0 vyho-
vuje nerovnosti (1) právě vtedy, keď jeho amplitúda
99 e <0; 2л:) splňuje vztah (3).

Nerovnosti (3) vyhovujú zrejme všetky tie čísla 99,

pre ktoré cos 99 = 0, tj. 9P = w a 99 — .

Nech cos 99 > 0. Potom z (3) máme 1 ^ ]/2 (1 + cos 99),
z čoho po umocnění na druhů a jednoduchej úpravě
dostáváme nerovnosť cos 99 , ktorá je v spore

s predpokladom, čo znamená, že uhly 99, pre ktoré cos 99 >
> 0 nerovnosti (3) nevyhovuj ú.

Nech cos 99 < 0, potom z (3) dostaneme
1 á 1/2(1 + cos i),

z čoho rovnakým postupom ako v predchádzajúcom prí-

(3)
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páde dostaneme nerovnost’
1

(4)—

~2 ^ cos <p < 0 ,

ktorej vyhovujú právě tie čísla у z uvažovaného intervalu,
pre ktoré platí jeden zo vzťahov

71 . 2tz
2<f=3;

3tí4tz
(5)у ^У<~2 .

Pre riešenia nerovnosti (4) však zrejme platí:
2(1 + cos у) ^ 1 čiže ]/2(l + cos у) ^ 1 a

cos у У2(1 + cos 9?) ^ cos 9?, t. j. vyhovujú nerovnosti (3).

ZÁVĚR. Nerovnosti (1) vy-
hovuje číslo z = 0 a tie čísla
z = r(cos 99 + i sin у) Ф 0, pre
ktorých amplitudy platí:

4 71

у ^ У ^ у (pozři obr. 46).



INÉ RIEŠENIE. Ak použijeme vztah |*|2 = **,
z nerovnosti (2) dostaneme

(z — \z + k||) (z \z + N|) ^ 3**,
zž — (z + Z) |* + |*|| + \z + [*||2 ^ 3**,
— (z + *) |* + \z\\ + (z + N) (ž + |*|) > 2zž,

z čoho po jednoduchej úpravě vyplývá
o + z) (|*| — \z + |*||) ^ 0 , (6)

pričom je zřejmé, že nerovnost’ (6) je ekvivalentná s ne-
rovnosťou (2) a teda aj s nerovnosťou (1).

Nerovnosti (6) vyhovujú však len tie komplexně čísla z,
pre ktoré platí buď

(7)* + * ^ 0 , \z\ — \z 4- HI ^ 0 ,

alebo
z + * ^ 0, |*i — |* + |*

Nech platia nerovnosti (7). Z druhej z nich máme
|*| ^ j* 4- |*||, z čoho po umocnění na druhů dostaneme
|*|2 ^ (* + |*|) (* + |*|) čiže
|*|2 ^ ** + (* + *) |*| + |*|2, skadiaí

(* + z) |*| ^ - |*|2.
Vzhfadom na prvú z nerovností (7) vyhovuje však nerov-
nosti (9) zrejme len číslo * — 0, ktoré splňuje sústavu

(8)0 .

(9)

(7).
Ak platia nerovnosti (8), potom z druhej z nich analo-

gicky ako v predchádzajúcom případe dostaneme postup-
ne

\z\ ^ \z + |*||, N2 ^ (z + 1*1) (* + 1*1),
** + (* + *) 1*1 + l*l2,!*|2 tj.

(* + *) 1*1 ^ — j*|2, z čoho pre * Ф 0 dostaneme
(10)* -j- * ^ 0 .-1*1
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Číslo z = 0 vyhovuje však tiež nerovnosti (10) i predchá-
dzajúcej nerovnosti. Nech z = x + řy, kde л;, у sú reál.
čísla, je riešením nerovnosti (10). Potom je táto ekviva-
lentná s nerovnosťou

]/*2 + y2 Hk 2jc ^ 0 , (И)
ktorej vyhovujú len tie dvojice reálných čísel [x,y], pre
ktoré plati: x ^ 0, л:2 + y2 ^ 4x2 čiže jy2 3jc2, tj.

|/3 x. Z posledného vztahu pre у ^ 0
vyplývá jy ^ — ]/3 . jc a pre 3; ^ 0: zasa у ^ ]/з . x.
Obrátením postupu sa 1’ahko přesvědčíme, že dvojice
[x,y], Pre ktoré x ^ 0 а у ^ - |/3 л: ^ 0, resp. у ^
^ ]/3 л: ^ 0 vyhovujú nerovnosti (11).

M й Уз |*| =

ZÁVĚR: Nerovnosti (1) vyhovujú všetky tie komplexně
čísla гг, ktorých obrazy ležia v spoločnej časti polrovín
jcr^O, у i=^]l3 X, a polrovín x ^0, у
obr. 46).

INÉ RIEŠENIE. Nech z = x iy, kde x, у sú
reál. čísla, je riešením nerovnosti (1). Po dosadení do
nerovnosti (2), ktorá je s ňou ekvivalentná, dostaneme
\x + iy — \x + iy + ]/x2 + j>2||2 ^ 3{x2 + у2),
!* + iy — |/2(д:2 + x\j x2 + у2 + J>2)l2 ^ 3(x2 + У2)>
x2 — 2x^2{x2 + jc |/jc2+ у2 + у2) +
-f 2(x2 + хУд:2 + у2 + у2) + у2 ^ 3(х2 + у2),
z čoho po jednoduchej úpravě vyplývá

л:]/л:2 + у2 л;|/2(л;2 + хУ*2 +У2 + .у2) .

Nerovnosti (12) vyhovujú zrejme všetky dvojice [x,j>]
reál. čísel, kde x = 0, у je lubovolné.

Уз x (pozři

(12)
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Nech x > 0. Potom z (12) dostaneme

]/x2 + У2 ^ l/2(x2 + х]/х2 +У +У),
z čoho postupné vyplývá

x2 + J’2 sš 2(x2 + у2) + 2x]/x2 -f У2 3

x2 + y2 + 2x]/x2 + jy2 ^ 0 j

čo však neplatí pre žiadnu dvojicu [x, j;], kde x > 0,
pretože na 1’avej straně je súčet dvoch kladných a jedného
nezáporného čísla.

Nech x < O, potom

Ух2 + У2 ^ У2(х2 + x]/x2 +y2 + y2\
z čoho postupné máme

x2 + у2 ^ 2(x2 + у2) + 2хУx2 + ;y2,
x2 -}- у2 ^ — 2x ]/x2 + y2 > 0 ,

a pretože pre x < 0 je ]]x2 + У2 >0, je nerovnost’ (13)
ekvivalentná s nerovnosťou

(13)

|/x2 + У2 ^ — 2x > 0 ,

ktorej vyhovujú všetky dvojice [x,j>], pre ktoré x < 0
а у ^ — Уз X, resp. у 3 x, o čom sa přesvědčíme
podobné ako pri riešení nerovnosti (11).

5. Jsou dány dvě kolmice p, q a bod A jejich roviny,
který neleží na žádné z nich. Označme vzdálenosti bodu
X roviny přímek p, q od přímek p, q a bodu A po řadě
u, v, t. Určete množinu všech takových bodů X, pro něž
platí t — ]/uv.
[Návod: zvolte za osy souřadnic osy daných dvou různo-
běžek.]
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ŘEŠENÍ. Zvolme osy souměrnosti přímek p3 q za osy
soustavy ortonormálních souřadnic. Orientaci os zvolme
tak, aby bod A náležel 1. kvadrantu (obr. 47). Označme
souřadnice A = [x0, j>0], *o ^ ďo ^ x = ix> У\-

Rovnice přímek p3 q jsou pak x ± У — 0. Podmínka pro
body X hledané množiny zní

í2 = uv. (1)
Použijeme vzorců:

= (* - *0)2 + Су — Уо)2 > м =
\X - у 1

1/2 ’
I*+ 3>l (2)v =

У2
Po dosazení z (2) do (1) dostaneme

I*2 — У21 (3)(* - *o)2 + (ď ~ JVo)2 = 2
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Z (3) plynou dvě rovnice — buď
2(4 + y2 - 2x0x — 2y0y + 4 + yl) = x2 — y2, (4)

nebo

2(4 + У — 2x0x — 2y0y + 4 + yl) = y2 — x2. (5)
Po úpravě (4) dostaneme

o — 2x0)2 + 3(у — -|з>0)2 = 44 + у З'о — 24 — 2з?£.
(6)

Po úpravě (5) dostaneme

3(x — j *o)2 + (:V ~ 2^o)2 = у 4 + 4j;2 — 24 — 24 .

(7)
Obráceně z (6) a (7) plyne (4) a (5), odtud (3), a tedy

podle (2) i (1). Analytické vyjádření vyšetřované množiny
je tedy dáno rovnicemi (6) a (7).

Označme P6(P7) pravou stranu rovnice (6), (7) po
dělení dvěma.
Pak je

1 1
Pe = 4 — jyl > P7=yl — у 4 •

3Pe = («о Уз - 3>0) Oo Уз + 3>0) >

Upravíme
(6')

(70P7

P6 = 0 je analytickým vyjádřením dvou přímek p<7',
které mají od osy x odchylku 60°. P7 = 0 je analytickým
vyjádřením dvou přímek p", q'\ které mají od osy x
odchylku 30° (obr. 48). Nerovnost P6 ^ 0 vyjadřuje
v 1. kvadrantě úhel s tlustě vytaženými ramen}?, nerov-
nost P7 ^ 0 vyjadřuje v 1. kvadrantě úhel sevřený čárko-
váným ramenem a polopřímkou +3?.

142



Vyšetřovaná množina bodů je tedy dána touto tabulkou

Vyšetřovaná množina bodů jeBod A leží

Uvnitř úhlu <£ p'y
nebo na rameni у Elipsa (7)

2
Elipsa (7) a bod 2x0 , —y0Na rameni p'

Elipsa (6) a elipsa (7)Uvnitř úhlu p'p”

2
т xo > 2y0Elipsa (6) a bodNa rameni p" T

Uvnitř úhlu < p"x
nebo na rameni л: Elipsa (6)
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Symetriemi podle os a počátku dostaneme situaci v ostat-
nich kvadrantech.

6. Je dána kulová plocha o poloměru délky 1. Na této
kulové ploše jsou umístěny shodné kružnice k03 kXi k2)
. . ., kn(n ^ 3) o poloměru r. Kružnice k0 se dotýká x)
každé z kružnic kL, k2,. . ., kn. Dále se dotýkají x) každé
dvě kružnice kb kin, kde i = 1, 2,. . ., n, přičemž
kružnice k

a) Najděte vztah, který platí mezi čísly r, n.

b) Zjistěte, pro která n může nastat popsaná situace
a vypočtěte příslušný poloměr r.

a kx jsou totožné.n f 1

ŘEŠENÍ, a) Nechť kruž-
nice k, k! o poloměru r leží
na dané kulové ploše a mají
dotyk. Jejich středy 5, S'
a středem O kulové plochy
je určena rovina 0, která
protne kulovou plochu v hlav-
ní kružnici x; situaci v rovině
a znázorňuje obr. 49. Ozna-
číme T bod dotyku kružnic
k, k!; bod T leží zřejmě
v rovině <7. Protože je TS —

— TS' — г, ОТ = 1, dosta-
neme z pravoúhlého troj-
úhelníka OST (OS'T)

os = os' =

Pro vzdálenost a — SS' vyjde z deltoidu OSTS' (po-
*) „Dotykem<e dvou kružnic (neležících v rovině) rozumíme pří-

pad, kdy obě kružnice mají jediný společný bod a v něm společnou
tečnu.

(1)
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rovnáním dvojího vyjádření obsahu)

!<* = r}/'i - r\
neboli

a = 2r]]\ — r2.
Označme podle obr. 49 cp = <£ SOSz trojúhelníka
Д OST plyne

(2)

sinf = r-
Středy všech kružnic £0, . . ., kn jsou podle před-

chozího vrcholy pravidelného jehlanu я-bokého, jehož
všecky hrany mají délku a. Poloměr q kružnice opsané
podstavě tohoto jehlanu (je to pravidelný я-úhelník
o straně a) je roven délce úsečky S'P _L OS (obr. 49).
Z pravoúhlého trojúhelníka OS'P plyne

q = S'P — OS' sin у — |/l — r2. sin (p

(3)

(4)
tj.

Q = V1 — r2.2 . sin У1 - sin2l
a podle (3)

(5)Q = 2r(l— r2) .

Pro pravidelný я-úhelník o straně a a poloměru o opsané
kružnice dostaneme

. 7г a
SID. — 7\ 3

n 2 Q

tj. podle (2) a (5)
1. n

Sin — = ■ ■

» 2 1/1 — r2
Rovnice (6) je řešením úlohy a).

b) Z obr. 49 je patrné, že je S'P < S'S, neboli o < a.

(6)
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11
Protože je г < 1, je У1 — г2 < 1, a tedy >2'l/l - г2

1
> ^

2 *

Podle (6) je
~ —

77

(7)^ ^
2 56 n

neboť — je velikost ostrého úhlu. Z nerovností (7)
n

dostáváme řešení n — 3, 4, 5. Sestavíme tabulku

3 54n

w 1
. 7Г

sin —- sin 36°
1/22n

У! i i
i -r

]/2 4 sin2 36°
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VI. Jedenásta medzinárodná matematická olympiáda
v Bukurešti v dňoch 5.—20. 7. 1969.

1. ORGANIZÁCIA A PRIEBEH SÚŤAŽE

Na XI. МАЮ, ktorá sa konala v Bukurešti v dňoch
5. —20. 7. 1969, opáť vzrástol počet účastnických zemí,
keď sa súťaže po prvý raz zúčastnili družstvá Belgická
a Holandska. Z účastnických zemí X. MMO chýbalo
tentoraz Taliansko, takže bukurešťská olympiáda zazna-
menala rekordný počet — 14 zemí: Anglicko, Belgicko,
Bulharsko, ČSSR, Francúzsko, Holandsko, Juhoslávia3
Madarsko, Mongolsko, NDR, Polsko, Rumunsko, SSSR,
Švédsko. Ako pozorovatel’ sa na práci jury zúčastňoval
zástupca Rakúska.

Vedúci delegácií jednotlivých zemí (ich mená spolu
s měnami ich zástupcov — pedagogických sprievodcov
sú uvedené ^ tabulke č. 1), ktorí boli súčasne členmi
medzinárodnej jury, sa schádzali v Bukurešti v dňoch
4. a 5. júla 1969. Ihned’ po svojom příchode boli ubytovaní
v priestoroch tělovýchovného zariadenia Complexul
sportiv Snagov asi 35 km od Bukurešti. V Snagove sa
konali tiež zasadania jury v období přípravy vlastnej
súťaže, kedy boli vedúci delegácií dokladné izolovaní od
žiakov a pedagogických sprievodcov.

Predsedom jury bol akademik Gr. C. Moisil, předseda
rumunskej vedeckej matematickej spoločnosti Societátia
de stiinte matematice. Rokovania jury však viedol zváčša
jej podpredseda akademik N. N. Teodorescu, podpredseda
Národnej rady pre vedecký výskům a podpredseda ru-
munskej vedeckej matematickej spoločnosti. Ďalším
podpredsedom jury bol prof. C. lonescu — Bujor,
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profesor bukurešťskej polytechniky. Do vedenia organi-
začného komitétu súťaže patřili okrem menovaných ešte
prof. Gh. Rizescu, profesor matematiky na lyceu Dimitrie
Cantemir v Bukurešti, ako sekretář, prof. Stefan Vágái
z toho istého lýcea ako technický sekretář a prof. Simion
Cioatá, ústr. inspektor Ministerstva školstva RSR.

Prvé zasadnutie jury sa uskutočnilo v nedelu 6. 7. 69.
Delegáti boli na ňom zoznámení s programom olympiády
a s návrhmi úloh, medzi ktorými však chýbali návrhy
předložené delegáciami Anglicka, Bulharska, Juhoslávie
a Maďarska, ktoré ich neposlali vopred, ale priviezli so
sebou. O výbere úloh, ktorému boli věnované tiež za-
sadnutia jury v dňoch 7. a 8. 7., sa zmienime podrobnejšie
na inom mieste.

Jednotlivé delegácie, na čele se zástupcami vedúcich
ako pedagogickými sprievodcami, přicestovali do Buku-
rešti v dňoch 7. a 8. 7. 1969. Ubytovaní boli vo vysoko-
školskom internáte ,,Cáminul 6. Martie<í na bulváre
Gheorghe Gheorghiu-Dej v centre Bukurešti. Na rozdiel
od niekolkých predchádzajúcich olympiád zostali peda-
gogickí sprievodcovia ubytovaní spolu so žiakmi a ne-
zúčastňovali sa prvej etapy práce jury — výběru úloh
a ich překladu do materskej řeči súťažiacich žiakov.

V dňoch 7.-9. 7.1969 sa žiaci zoznamovali s miestom
súťaže a jeho najbližším okolím. V utorok 8. 7. podnikli
autokarový zájazd к zámku Mogosoaia nedaleko Bukurešti
а к jazeru Snagov. Predpoludnie dňa 9. 7. bolo věnované
prehliadke Bukurešti, ktorú žiaci absolvovali na autobusoch
s dvorná dlhšími zastávkami — na stadióne 23. augusta
a v Muzeul Satului (rumunský skanzen). Počas popo-
ludňajších horúčav mohli žiaci oddychovať v príjemnom
prostředí internátu.

Vedúci delegácií počas středy 9. 7. rozmnožovali texty
úloh vybraných pre súťaž a zavčas ráno dňa 10. 7. 1969 sa
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definitivně presťahovali zo Snagova do Bukurešti, kde boli
ubytovaní na zostávajúcu časť svojho pobytu v Rumunsku
v hoteli Ambassador na bulvári Magheru, najrušnejšej
tepne hlavného města.

Vo štvrtok 10. 7. 1969 o 9. hodině bolo v lyceu Nicolae
Bálcescu slávnostné zahájenie súťaže. Krátký přejav
к zhromaždeným členom delegácií predniesol po ru-
munsky námestník ministra školstva Traian Pop. Po
niekolkých organizačných pokynoch prof. Ionescu-Bujora
sa žiaci rozišli po jednom z každej delegácie do ósmich
tried lýcea, kde asi o 9.03 hod. začali pracovat’ na riešení
prvej trojice súťažných úloh. Vedúci delegácií boli potom
odvezení do Valca Cálegáreased (asi 70 km od Bukurešti),
kde si prehliadli vinárske závody a neskoro večer sa
vrátili do svoj ho nového bydliska — hotelu Ambassador.

Druhá časť súťaže sa začala v piatok 11. 7. o 9. hodině
a žiaci opáť riešili 3 úlohy za 4 hodiny čistého času. Potom
sa vedúci delegácií po prvý raz od příchodu do Rumunska
střetli so svojimi zástupeami a za vytrvalého dažďa
podnikli výlet do údolia rieky Prahový, kde si prezreli
královský zámok Peleš v kúpelnom městečku Sinaia, a do
Brašova. Do Bukurešti sa vrátili opáť neskoro v noci. Žiaci
večer pod vedením tlmočníkov jednotlivých delegácií
navštívili v bukurešťskom divadle Nottara vystúpenie ru-
munského súboru ludových piesní a tancov „Perinica“.

Ráno 12. 7. 1969 sa vydali z Bukurešti na sedemdňový
zájazd okolo Rumunska tri autobusy so žiakmi, tlmoč-
níkmi a rumunskými organizátormi. V prvý deň cesty
prechádzali mestami Buzau, Foscani, Marazešti, kde si
prezreli památník rumunských hrdinov z 1. světověj vojny,
a Bacau.

Dňa 13. 7. navštívili priehradu a jazero Rosu a město
Bicaz, město Piatre Neamt a cestu zakončili prehliadkou
monastýra Agapia, v ktorom nocovali.
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V následujúci deň sa presťahovali do města Suceava,
z ktorého podnikli výlety do klášterov Sucevica, Moldovica
(14. 7.), Humor a Voronec (15. 7.).

Dňa 16. 7. viedla trasa zájazdu zo Suceavy cez Gwra
Humorului, Fatra Domain Bistricu (návštěva pionierskeho
tábora) do Mureš.

V predposledný deň zájazdu navštívili jeho účastníci
mestá Sighišoara a Brašov. Dňa 18. 7. absolvovali cestu
z Brašova cez Predeal a Poianu Tapului do Sinale, kde si
so záujmom prehliadli královský palác Peleš a krátko před
polnocou sa vrátili do Bukurešti.

Počas dlhej a na dojmy bohatej cesty sa účastníci zá-
jazdu zoznámili s históriou Rumunska a vo všetkých
krajoch viděli desiatky nových tovární, ktorých počet
neustále rastie.

Pri ceste Rumunskom priam cítiť, ako sa polnohospo-
dársky štát mění na krajinu s vyspělým priemyslom.

V sobotu 12. 7. 1969 začali vedúci delegácií so svojimi
zástupcami opravu riešení súťažných úloh. O 14. hodině
sa v Univerzitnom dome zúčastnili na obede poriadanom
ministrom školstva RSR pre zahraničných delegátov
olympiády a organizačný výbor.

Opravy žiackych riešení pokračovali v lýceu Nicolae
Balcescu i v nedelu 13. 7. 1969, kedy sa začala zároveň
koordinácia opráv a hodnotenia riešení s rumunskými
koordinátormi.

Oprava, bodovanie a koordinácia klasifikácie úloh boli
stažené tým, že sa principiálně otázky nepřejednali
vopred na spoločnej schódzke vedúcich delegácií, ich
zástupcov a koordinátorov. Koordinátoři boli povodně
len štyria, až na žiadosť členov jury bol ich počet zvýšený
na šesť tak, aby pre každú úlohu bol zvláštny koordinátor.
Práce rumunských žiakov koordinovali — ako je to na
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olympiádách obvyklé — vedúci delegácií tých zemí, z kto-
rých boli autoři súťažných úloh.

Koordinácia riešení prebiehala tiež v dňoch 14. 7. a
15. 7. V utorok 15. 7. o 19.00 hod. navštívili vedúci
delegácií so svojmi zástupcami predstavenie súboru
Perinica v divadle Nottara.

V středu 16. 7. bol pre delegátov prakticky volný deň,
ktorý využívali na prehliadku Bukurešti a jej najbližšieho
okolia.

Vo štvrtok 17. 7. sa v lýceu Nicolae Bálcescu konali
závěrečné zasadnutia jury, ktorých sa bez hlasovacieho
práva zúčastnili aj pedagogickí sprievodcovia. Na pro-
grame predpoludňajšieho zasadnutia bolo schválenie
výsledkov jednotlivých žiakov a stanovenie podmienok
pre udelenie cien. Rokovanie o cenách bolo komplikované
a zdíhavé, takže rozhodnutie o udelení zvláštnych cien
za originalitu a eleganciu riešení bolo odložené na popo-
ludňajšie zasadnutie jury. Na predpoludňajšom rokovaní
předložil tiež podpredseda jury prof. Ionescu-Bujor návrh
na změnu programu závěrečných dní olympiády. Jeho
návrh, aby sa v sobotu 19. 7. nekonal spoločný výlet
delegátov a žiakov do Curtea de Argeš vzhladom na
neskorý plánovaný návrat žiakov zo zájazdu okolo Ru-
munska a aby sa slávnostné vyhlásenie výsledkov a odo-
vzdanie diplomov přeložilo z nedele 20. 7. na 19. 7.,
přijala jury bez námietok.

V závere popoludňajšieho zasadnutia sa přihlásil o slovo
vedúci maďarskej delegácie prof. E. Hódi, ktorý predniesol
pozvanie na XII. MMO do Madirska. O usporiadanie
XIII. MMO v r. 1971 sa uchádza ČSSR, o čom českoslo-
venskí zástupcovia v neoficiálnych rozhovoroch informo-
váli zástupcov ostatných delegácií, ktorí přijímali túto
správu so súhlasom. V piatok 18. 7. mali vedúci delegácií
a ich zástupcovia opáť volný deň, ktorý váčšina z nich
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věnovala neúspěšným pokusom o získanie cestovných
lístkov, resp. leteniek pře návrat do vlasti so skorším
dátumom.

O 20.30 hod. poriadal výbor Societatia de stiinte mate-
matice večeru pre zahraničných delegátov a organizačný
výbor olympiády. Večera sa konala opáť v Univerzitnom
dome a zúčastnil sa jej tiež námestník ministra školstva
s. Traian Pop.

V sobotu 19. 7. o 10.00 hod. sa v aule lýcea Nicolae
Bálcescu konalo slávnostné vyhlásenie výsledkov a rozde-
lenie cien. Za přítomnosti nám. ministra školstva s. Traia-
na Popa prehovoril akad. Gr. C. Moisil, ktorý vo svojom
přej ave zhodnotil význam medzinárodných matematic-
kých olympiád, ktoré se před rokmi začali konať z ini-
ciatívy rumunských matematikov a právě Rumunsko
už po třetí raz hostilo desiatky nádejných matematikov,
ktorí si přišli zmerať sily v súťaži. V závere prejavu
úprimne želal účastníkom olympiády, aby po celý život
udržiavali a upevňovali medzinárodné priatelstvá, ktoré
počas svojho pobytu v Rumunsku uzavřeli.

Po prejave odovzdal akad. Moisil diplomy o udelení
cien a zvláštnych cien odměněným žiakom a účastnické
diplomy ostatným účastníkom olympiády.

V mene zahraničných delegácií podakoval za dobrú
organizáciu a vynaloženú starostlivost’ rumunským hosti-
telom vedúci madarskej delegácie prof. E. Hódi, ktorý
v závere svojho prejevu opátovne pozval delegácie
všetkých zúčastněných zemí i Rakúska, ktoré málo
v Bukurešti len svojho pozorovatelů, na budúci rok do
Madarska na XII. MMO.

O 13.00 hod. sa v jedálni internátu „Cáminul 6. Martietl
uskutočnil slávnostný oběd všetkých účastníkov olym-
piády, ktorým sa skončil oficiálny program. Před obedom
odovzdali rumunskí hostitelia knižné a drobné věcné
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darčeky všetkým zahraničným účastníkom olympiády.
Zvyšok času do svojho odchodu využívali jednotlivé

delegácie na prehliadku niektorých miest Bukurešti
a nákup suvenírov a darčekov pre svojich blízkých.
Odchod delegácií sa uskutočnil v nedelu 20. 7. popoludní
a v pondelok 21. 7. 1969. Zhodou okolností odchádzala
ako posledná z Bukurešti československá delegácia, ktorá
opustila dejisko XI. MMO až v pondelok večer.

Rumunskí poriadatelia urobili všetko pre to, aby XI.
MMO skončila plným úspechom, připravili žiakom a ich
vedúcim tie najlepšie podmienky pre prácu. Počas celého
svojho pobytu sa všetky delegácie střetávali s pozornosťou
a pohostinstvom. Olympiádě věnovala pozornost aj
rumunská televízia, ktorá 10. 7. večer vysielala záběry
zo slávnostného zahájenia súťaže a v sobotu 19. 7. večer
zasa záběry z rozdel’ovania cien a rozhovor s akad. Moi-
silom, predsedom jury, a so všetkými 3 žiakmi, ktorí
získali 1. cenu.

2. o vybere súTažných úloh

Vyber 6 súťažných úloh na rokovaní jury v Snagove sa
ukázal byť velmi zložitým problémom. Pretože pozvanie
na XI. MMO v Rumunsku došlo poměrně neskoro
(v polovici apríla), neposlali niektoré zúčastněné štáty
(.Anglicko, Bulharsko, Juhoslávia, Madarsko) úlohy vopred,
ale vedúci delegácií ich priviezli až so sebou do Snagova.
Sekretariát MMO mohol potom včas rozmnožit iba
texty týchto úloh. Ich autorské riešenia neboli známe
a členovia jury nemali už čas úlohy rozriešiť a preštudovať.
To isté platí aj o sovietskych úlohách, pretože SSSR
poslal do stanoveného termínu poriadatelom len texty
navrhovaných úloh bez riešení.
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Rumunská přípravná komisia vybrala 12 úloh z tých,
ktoré přišli včas, aby z nich jury vybrala 6 súťažných úloh.
Medzi týmito úlohami boli aj 2 úlohy československé.
Dodatočne předložené úlohy však změnili situáciu.
Prof. Ionescu-Bujor, ktorý viedol zasadnutia jury pri
výbere úloh, doplnil skupinu 12 úloh o ďalšie návrhy, a to
podlá jednotlivých úsekov školskej matematiky. Přitom
sa ukázal nedostatok vhodných úloh zo školskej algebry,
planimetrie a trigonometrie, ale zato bol nadbytok úloh
napr. z číselnej teorie.

Výběr súťažných úloh sa previedol potom z upravenej
skupiny 12 úloh hlasováním o jednotlivých úlohách. Táto
metoda výběru, ktorá bola použitá po prvý raz s nevelkým
úspechom na X. MMO v Moskvě, sa příliš neosvědčila
ani tento raz. Medzi súťažné úlohy sa dostala celkom
nevhodná úloha č. 1 z číselnej teorie, ktorá sa hodí skór
pre žiakov nižšieho stupňa strednej školy, málo vhodná
planimetrická úloha č. 4, ktorá nedává takmer žiadne
možnosti elegantného riešenia, a neobvyklá a pre žiakov
značné obťažná úloha č. 6. Stereometrická úloha č. 3
bola sformulovaná tak, že jej riešenie nevyžadovalo de-
tailné preskúmanie najobťažnejšieho případu pre k — 3,
ktoré mal autor hlavně na mysli, čím sa příliš zjednodušila,
pretože jej riešenie sa opieralo v podstatě len o použitie
trojuholníkovej nerovnosti.

Dalšia ťažkosť sa objavila pri stanovení maximálneho
počtu bodov dosiahnutelného za úplné riešenie jednotli-
vých úloh. Predsedajúci prof. Ionescu-Bujor stanovil pre
počet bodov hranice 5 — 8. Pretože toto rozpade bolo
vzhladom na rožnu obťažnosť úloh napr. č. 1 a č. 6
příliš malé, zdržal sa čs. delegát hlasovania o tejto otáz-
ke. Pri hlasovaní bola tiež úloha č. 3 nadhodnotená
7 bodmi. Najlepšie boli vybrané a ohodnotené úlohy č. 2
(po úpravě povodněj formulácie) a č. 5.
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Je pozoruhodné, že na XL MMO sapo prvý raz ne-
dostala medzi súťažné úlohy úloha z ČSSR. Pri stále
rastúcom počte účastnických zemí je to však celkom pri-
rodzené a samozřejmé.

Pri celom rokovaní jury o výbere úloh sa ukázalo, že
rozdielnosť osnov tolkých zúčastněných štátov sťažuje
výběr. Tématikou navrhovaných úloh je podlá doterajšej
tradicie tzv. ,,klasická'1 školská matematika. Viacerým
zemiam, v ktorých modernizácia vyučovania matematiky
viac pokročila, to však nevyhovuje. Pravděpodobně už
v blízkej budúcnosti bude třeba uvažovat’ o zmene kon-
cepcie súťažných úloh.

3. RIEŠENIE SÚŤAŽNÝCH ÚLOH

1. DEŇ (10. JÚLA 1969)
1. Existuje nekonečne mnoho prirodzených čísel a,

ktoré majú tú vlastnost’, že číslo a + «4 nie je prvočíslom
pre žiadne prirodzené číslo n. Dokážte.

(.NDR, 5 bodov)

RIEŠENIE. Položme a = 4k4, kde k je prirodzené
číslo, abysme číslo a + nx vyjádřili ako rozdiel druhých
mocnin. Potom je a + w4 = w4 + 4&4 = (w2 + 2k2)2 —
— 4w2&2 = (и2 + 2k2 — 2nk) (w2 + 2k2 + 2nk) —
= [(n - kf + k2] [(» + k)2 + k2] .

Ak zvolíme k ^ 2, sú oba činitele v hranatých zátvor-
kách váčšie alebo rovné 4 pre každé prirodzené n a číslo
a |n4 nie je teda prvočíslo.

an (n ^ 1) reálne konštanty
a nech f(x) — cos (a1 + x) + cos (a2 + x) + . . . T

2. Nech sú a}, a2, . • O
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1
+ yn^i cos (aw + x) )e funkcia reálnej premennej x
Ak je f(xx) ----- f(x2) = O, potom je x2 — xx — rrm, kde

(.Madarsko, 7 bodov)rn je celé číslo; dokážte.

RIEŠENIE. Podlá vzorca pře kosinus súčtu uhlov
platí f(x) = A cos x — В sin x} kde

cos a2^ cos aA cos an

2n~1 3

sin an

2A^ '

4-2° 21
(1)

sin al sin a2B = -

2° 21

Podlá předpokladu je
A cos хг — В sin xx — 0 ,

A cos x2 — В sin x2 — 0 .

Nepriamo dokážeme, že nie je súčasne A — В = 0.
Nech platí opak, tj. A — В = 0. Potom, ak prvú rovnicu
v (1) vynásobíme číslom cos alt druhů číslom sin al
a sčítáme, dostaneme

(2)

П

(cosai cos Uk s^n s*n a*) — 0 ,1 +

k=2

čiže
П

1

2 (3)cos (ax — ak) — 0 .1 -! 2k~1
k=2

Platí však
П П

cos (a, — ak) 2
cos (at — ak)21 4- 4: 1 -2*-1 2k~1

k=2 к=2
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(Г'1 -
V_L = 1 _ 1
/_р-х 2

1
> 1 - >0,2п-11

к=2

čo je spor s (3).
Móžeme preto předpokládat’, že je napr. А Ф 0.

Ak vynásobíme prvú rovnicu (2) číslom A sin x2, druhů
číslom — A sin xx a sčítáme, dostaneme

A2 (cos xx sin x2 — cos x2 sin Xj) = A2 sin (x2 — Xj) =
= 0 .

Pretože А Ф 0, je sin (x2 — Xj) — 0, tj. x2 — xx — miz,
kde m je celé číslo.

V případe A — 0 musí byť B^Oa dokaž sa prevedie
analogicky.

3. Pre každé z čísel k = 1, 2, 3, 4, 5 riešte úlohu: Určité
nutné a postačuj úce podmienky pre kladné číslo a, aby
existoval štvorsten, ktorého k hrán má dížku a a zostá-
vajúcich 6 — k hrán má dížku 1.

RIEŠENIE. Keďže případy k — 4, k — 5 možno
volbou úsečky velkosti a za jednotkovú previesť na
případy k — 2, k — 1, stačí vyšetřovat’ len případy
k - 1, 2, 3.

I. k = 1. Nech AB = a, AC = AD = BC = BD =
= CD = 1 a nech M je střed hrany CD (obr. 50).
Potom je AM = BM = j]/3, AB < AM + BM, čiže

0 < a < ]/3 .

Podmienka (1) je však zrejme aj postačujúcou podmien-
kou pre to, aby bylo možné zostrojiť štvorsten typu I.

(Polsko, 7 bodov)

(1)
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II. k = 2. Třeba rozlišovat 2 případy: a) Hrany dížky
a sú mimobežné, napr. AB = CD = a, AC = BC =
— AD — BD = 1. Pri označení ako v obr. 50 potom platí

-V a2
1 - =r9 AB <AM+ BM, čiže4

1 — z čoho a2 < 4 — a23 čiže \a\ < ]/2, a teda

0 < a < 1/2,

AM = BM

Va <2

čo je opáť aj podmienka postačujúca.

b) Hrany, dížky a sú róznobežné, napr. AB = AC =
= a; AD — BD = BC = CD — 1. Označme N střed
hrany BC (obr. 51). Z existencie trojuholníka ADN
vyplývá: AD -f DN > AN > |AD — DN\, čiže

iV3<J/e*-I<i + iy3,
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odkial postupné dostaneme

1 — 1/3 + j < a2 — j < 1 + 1/3 + j,
2 — Уз < a2 < 2 + ]/3 ,

j/2-1/3 < a < 1/2 + 1/3 ,

z čoho po úpravě surdických výrazov dostaneme nutnú
podmienku pre existenciu štvorstena v tomto případe
v tvare

i (1/6 - 1/2) < a < i (1/6+ 1/2). (3)

1
Ak platí (3), je a > —, možno preto zostrojiť troj-

uholník ABC so stranami AB
a určiť bod D tak, že bude AD — BD = CD = 1.

Kedze I/2 — ]/3 = (]/б — |/2) < ]/2, je nutnou a po-

stačujúcou podmienkou к tomu, aby pre k = 2 existoval
štvorsten uvedených vlastností splnenie nerovnosti

0<a<-i(V6 + V2),

АС = a, BC = 1

ktorú dostaneme z (2) a (3).
III. k — 3. Možu nastať celkom 3 případy: a) Hrany

dížky a sú strany trojuholníka^; b) hrany dížky a vychá-
dzaj ú z toho istého vrcholu; c) dlžku a maj ú dve mimobežné
hrany a ich priečka.

a) Nech je napr. AB — BC = CA = a, DA = DB =
= DC — 1. Kolmý priemet bodu D do roviny ABC je
stredom kružnice opísanej trojuholníku ABC. Nutnou
a postačujúcou podmienkou pre existenciu štvorstena
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tohto typu je, aby poloměr kružnice opísanej Д ABC
bol menší než 1, tj. a < 1, číže

0 < a < УЗ = 1,732 .

b) Nech je napr. DA — DB = DC — a, AB — BC =
= CA = 1. Podobné ako v případe a) dostaneme pre
poloměr R kružnice opísanej Д ABC podmienku
R < a, tj.

(4)

a > 4 У3 = 0,577 .ó

Zo (4) а (5) dostáváme 0 < a, čo je zrejme nutná aj
postačujúca podmienka pre existenciu štvorstena uvede-
ných vlastností pre k — 3 a o případe c) netřeba uvažovat’.

Nutnú a postačujúcu podmienku pre existenciu štvor-
stená uvedených vlastností pre jednotlivé k možno zhrnúť
v tabulke

(5)

0 < a < УЗk = 1

0<a<i(l/6-+y2)k = 2

k = 3 0 < a

у (V6 ~]/2)<ak = 4

1 yr<k = 5 T

POZNÁMKA. Kedze skúmanie případu Hic je
najzaujímavejšie a podlá záměru autora úlohy málo byť
jadrom riešenia, rozoberme ešte tento případ.
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Nech napr. AD - BD = BC — a, AB=AC—CD =
= 1. Zvolme si súradnicovú sústavu v priestore tak, že
A = [0, 0, 0], В = [1, 0, 0], C = [u, v, 0], D = [*, j/, я]
(obr. 52).
Potom platí

(6)(АС2 =) w2 + í;2 = 1,
(BC2=)(u- lf + v2 = a2,
(AD2 —) x2 + У2 + z2 = a2,
(P£>2 =) (x - l)2 + у2 + *2 = a2,
(CD2 =) (л: - и)2 + (y-vf + z2 = 1 . (10)

Zo (6) a (7) odčítáním do-
staneme

(7)
(8)
(9)

a2
(И)и — 1 —x-

2 *

Zo (6) a (11) po dosadení
za и máme

—fy*
Z (8) a (9) po odčítaní
dostaneme

a2. (12)

1

2 <13)X — ~

a z (9) а (10) po odčítaní
bude 2их + 2vy = a2, z čoho po dosadení "z (11), (12),
(13) máme

3a2 - 2
(14)З’ =

2a ]/4 — a2
Pata P výšky z vrcholu D na stenu ABC má súradnice
P[x9y9 0]. Pre dížku platí AP — ]jx2 -f- y2. Nutná
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a postačujúca podmienka existencie štvorstena je AD >
> AP čiže AD2 > AP2, tj.

x2 + y2 < a2 .

Ak do (15) dosadíme z (13) a (14), bude
1 (3a2 - 2)2
4 + 4a2(4 - a2)

(15)

< a2,

z čoho po úpravě máme
a6 - 2a4 - 2a2 + 1 < 0 .

Štvorčlen na 1’avej straně (16) sa však dá rozložit’,
afi — 2a4 — 2a2 + 1 = (a2 + 1) (я4 — 3a2 + 1), takže
podmienkou existencie štvorstena typu IIIc je splnenie
nerovnosti a4 — 3a2 + 1 < 0, čiže

(16)

1/ЦР < a <

2. DEŇ (11. JÚLA 1969)

4. Je daný pravoúhlý trojuholník ABC s přeponou
А В a jemu opísaná kružnica k. Označme D patu výšky
spustenej z vrcholu C na přeponu AB, kx kružnicu
vpísanú trojuholníku ABC k2i k3 dve navzájem rožne
kružnice, z ktorých každá sa dotýká priamok AB, CD,
leží v polrovine ABC a dotýká sa zvnútra kružnic k.
Dokážte, že kružnice kx, k2, k3 majú okrem priamky AB
ešte dalšiu spoločnú dotýčnicu. (.Holandsko, 6 bodov)

RIEŠENIE. Označme podlá obr. 53 AB = с, BC = a,
CA — b, AD = p, BD = q. Ďalej označme S13 S2, S3
středy a r13 r2, r3 poloměry kružnic kx, k2, k3 v uvedenom
poradí. Ich dotykové body s priamkou AB označme Tl3
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Г2, Г3 a střed přepony АБ označme S. Predpokladajme
(bez ujmy na všeobecnosti), že je b ^ a.

Pre Д S2T2S platí podlá Pythagorovej vety (i vtedy,
■>

keď je T2= S): j

A

b
a

:

\Г1

Вc Ti
Obr. 54
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z čoho vyplývá (r2 + q)2 — qc = a2, čiže
(1)r2 = a — q .

Použitím Pythagorovej vety na Д S3T3S analogicky
dostaneme

(2)rs — b — p .

Pretože je podlá předpokladu b ^ a, leží bod Ty na pol-
priamke SB (obr. 54). Podlá známého vzorca je

rx = s — c, ATy = s — a .

Pre body Tly T2, T3 (ležiace na polpriamke AB) a pre
body Sy, S2, S3 nastane teda situácia z obr. 55).

(3)

*2
r

%
~rГ2 riA \r%

Г-1
A T2 S T,

Obr. 55

В5

Podia vzťahov (1), (2), (3) přitom platí:
AT2 = p -h q — a, AT3 = p + b — p = b,

ATу = s — a,
čiže

11
ATу — (а b ~r c) — a — -^(b -\~ c a) —

= ~{АТг + АТ2),

Г1 = J (a + b + c) — c = J (a + b — с) = у (r2 + r3),
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pretože
p - q — c .

Bod Sx je teda stredom úsečky S2S3. Priamka súmerne
zdrúžená s А В podlá priamky je preto ďalšou spo-
ločnou dotýčnicou kružnic kl3 k2i k3.

5. V rovině je daných n bodov (n > 4), z ktorých žiadne
tri neležia v priamke. Potom existuje aspoň ~ (n — 3).
. (n — 4) róznych konvexných štvoruholníkov, ktorých
všetky vrcholy sů niektoré z daných bodov. Dokážte.

(jMongolsko, 7 bodov)

j úsečkami, ktoré spájajú bodyRIEŠENIE. Medzi

danej množiny ЯЯ po dvoch vyberieme najdlhšiu úsečku
ЛВ (tj. pre všetky dvojice bodov X, Y množiny
platí XY ^ AB). Bodom В vedieme priamku p _L AB.
Podlá volby úsečky АВ ležia všetky body množiny 9JÍ
okrem bodu В vo vnútri pol-
roviny pA (obr. 56).

Na priamkep zvolíme body
K3 L tak, aby boli oddelo-
váné bodom В a určíme také
body C, D množiny aby
vo vnútri uhlov <£ KBC a
< LBD neležal žiadny bod
množiny Ш. Potom všetky
body množiny s výnimkou
bodov В, C, D ležia vo vnútri
dutého úhla <£ CBD.

Zvolme 1’ubovolné dva
body X, Y z 9)1 rožne od В,



C, D. Body X, Yležia vo vnútri uhla <£ CBD. Može nastat’
právě jeden z týchto 5 prípadov: a) Priamka XY přetíná
obe úsečky BC, BD; b) priamka XY přetíná úsečku
BD (BC) a polpriamku opačnú к CB(DB); c) priamka ХУ
přetíná úsečku BD(BC) a je rovnoběžná s priamkou
BC (BD); d) priamka XY přetíná polpriamku opačnú
к DB (CB) a je rovnoběžná s priamkou BC (BD);
e) priamka XY přetíná polpriamky opačné к СВ, DB.
Jednotlivé případy sú načrtnuté na obr. 57a)—e).

Štvoruholník CXYD v případe a) (obr. 57a) je zrejme
prienikom polrovín CDX, CXD, DYC a XYC. Ako
prienik konečného systému konvexných množin je to
teda konvcxná množina. Analogicky sa dokáže konvexita
štvoruholníkov s vrcholmi X, Y vyšrafovaných na obr.
57b) —e) v ostatných prípadoch. Z každej dvojice bodov
X, Y dostaneme teda aspoň jeden konvexný štvoruholník
so stranou XY (na obr. 57d i 57e sú také štvoruholníky
tri: CXYB, CXYD, BXYD). Dvojíc bodov X, Y je

3) (n — 4). Tým je tvrdenie dokáza-frH<«
né.

6. Ak sú x1} y13 z13 x23 y23 z2 reálne čísla, pre ktoré
platí xx >0, x2 > 0, xxyx — z\ >0, x2y2 — z\ > 0,
potom platí

18

(*i + *2) (У1 + ^2) ~ (^1 + Х\У\ — z\
1

(1)
X2Y2 — '

Dokážte. Nájdite nutné a postačujúce podmienky pre to,
aby v (1) platila rovnost’.

(SSSR, 8 bodov)
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RIEŠENIE. Označme D, = x1yl — z\, D2 = х2уг —
— z\. Potom platí
Oi + *2) Oi + у2)
+ Х2У1 — 2*1*2

Ol + -З'г)2 — Dj + D2 + ^1^2 H~

■Di _h D2 + — (D2 + +
*2

H—“ (Dx + zl) — 2zxz2 = Di + D2 + O D2 + —- /)х +
x2 *1*1

+ x\d
+ — zl + — zl — 2z1z2 = Dl +D2 + -1 +

XiX2X2 Xi

^-l/o) ^ Di + D2 -j- 2 11DxD2 —

= (1/Л, + 1/d2)2,

Oi + *2) Oi + у2) - Oi + *2)2 ^ (\Di + Vd2)2 . (2)
Z toho

+

tj.

88
(3)2 ^ (l/^ + l/Z),)2'Oi + x2) Oi + y2) - Ol + Z2)

Keďže pre každé reálne čísla a > 0, b > 0 platí
2ab

^ ]/ab,
a -f b

číže
4a2b2

2 O ab(a + b)
a tiež

a2 + b2
ab ^

2

platí
4a262 a2 + 62

(a + 6)2“ 2
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z čoho
8

^ 1 , I
0 + 6)2 ~~ a2 ^ b2 ‘

Po dosadení do (4) za a — ]/D1} b = ]/D2 dostaneme

(4)

8 1,1 (5)m + my- -d, + d2-
Z nerovností (3) a (5) vyplývá (1).

Rovnost’ vo vztahu (1) nastane zrejme právě vtedy, keď
platí rovnost’ vo vztahu (2), tj. keď platí

#1 УZ)2 — X2 УA. (6)
a súčasne

(7)

a ak zároveň platí rovnost’ vo vztahu (5),t. j. keď platí
tiež

1Id, = 1lDt.
Vzhladom na (8) máme zo (6): xx = x23 v dósledku

čoho zo (7) bude zx = z2 a z (8) = y2 •

Rovnost’ vo vztahu (1) nastane teda právě vtedy, keď

(8)

platí
*1 = *2> У1 = У25 *1 = *2 .

4.|КУ5ХШЖГ SÚŤAŽE
г Překlad poctu bodov, ktoré získali jednotliví žiaci

ukazuje tabulka 2. Dosiahnuté výsledky potvrdzujú to,
čo sme povedali o výbere úloh. O obťažnosti 6. úlohy
svědčí napr. to, že plný počet bodov za jej riešenie
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dosiahlo len 7 žiakov zo 112 (1 z Anglicka; 1 z ČSSR,
3 z Maďarska, 1 z Polska a 1 z SSSR). Celkove boli
výsledky podstatné horšie než na X. MMO v Moskvě,
keď plný počet 40 bodov za riešenie všetkých 6 úloh do-
siahli len 3 žiaci.

Tabulka 2 ukazuje, že v poradí družstiev nedošlo
v porovnaní s predchádzajúcim rokom к podstatným
změnám. Do skupiny silnějších (Madarsko,NDR, SSSR,
Anglicko) se opáť zařadilo domáce Rumunsko a relativné
sa zlepšilo Bulharsko, ktoré málo tohto roku poměrně
vyrovnané družstvo, a Juhoslávia. ČSSR, ako už tradičné,
uzatvára skupinu vyrovnaných družstiev středu. Na čelo
slabšej skupiny sa dostalo Mongolsko, ktoré v súčte bodov
předstihlo Polsko a Francúzsko. Švédsko přišlo opáť so
slabším družstvom a najslabších výsledkov dosiahli
Belgicko a Holandsko, ktoré přišli na MMO po prvý raz
s družstvami bez špeciálnej přípravy, ktorých členovia
neabsolvovali žiadnu domácu súťaž. Úspěch Mongolská
nie je určité náhodný a v budúcich rokoch možno očaká-
vať dálšie zlepšeme jeho družstva.

Pokial ide o ceny, hranice pre ich udelenie boli na
zdíhavom rokovaní jury, na ktorom bol jedným z naj-
iniciativnějších vedúci sov. delegácie prof. V. J. Levin,
stanovené takto:

I. cena: 40 bodov;
II. cena: 37—30 bodov;
III. cena: 29—24 bodov.

Podlá tohto klúča získali účastníci z jednotlivých zemí
ceny uvedené prehladne v tabulke 3. V protiklade s tra-
díciou, ked ceny dostávalo přibližné 50 % účastníkov,
je počet odměněných nepomerne nižší.

Okrem týchto cien boli udelené niekolkým žiakom
zvláštně odměny za originálně a elegantně riešenie. Pri zlo-
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žitom rokovaní o tejto otázke sa nedosiahlo v jury jednotné
hladisko na podsuzovanie metody riešenia, použitia
aparátu nepreberaného na strednej škole a z toho vyplý-
vajúcu krátkost’ či tzv. eleganciu riešenia. Sovietsky delegát
prof. Levin vyslovil napr. názor, že žiak, ktorý pri riešení
úlohy vie použit’ diferenciálnych rovnic, sa nemá zúčast-
niť MMO, hoci inak (vekom a školským zaradením)
podmienky splňuje.

Je zaujímavé, že nikto nedostal zvláštnu cenu za rie-
šenie 1. a 4. úlohy, čo opáť potvrdzuje nevhodnost’ ich
volby. Ani úloha č. 3 v predloženej formulácii nedala
možnost’ originálnych a elegantných riešení. Za riešenie
úlohy č. 2 dostali zvláštnu cenu 1 anglický, 1 českoslo-
venský (Tomáš Mašek) a 1 švédsky žiak, za riešenie úlohy
č. 5 po 1 žiakovi z Anglicka, Madarska, NDR, Polska
a SSSR a za riešenie úlohy č. 6 jeden sovietsky žiak.

5. ČESKOSLOVENSKÁ DELEGÁCIA

Naša delegácia sa skladala z vedúceho, jeho zástupců
a osmich žiakov. Mená žiakov i výsledky, ktoré dosiahli
sú uvedené v tabulke 4.

Po vlaňajšom relatívnom úspěchu, keď naše družstvo
získalo dve prvé a 4 druhé ceny, sú tohtoročné výsledky
sklamaním. Pre družstvo, v ktorom boli jeden páťná-
sobný (Sivák), jeden trojnásobný {Mašek) a 1 dvojná-
sobný (Vinárek) účastník MMO je zisk len troch třetích
cien menej než chudobným vysvědčením. Najmenej sa
dal očakávať neúspěch Siváka, ktorý už ako 13-ročný
na VII. MMO získal 3. cenu a na XI. MMO sa musel
uspokojit’ s diplomom účastníka. No, ani ostatní členovia
družstva — snáď až na Hadravu a Vinárka — nepodali
očakávané výkony.

171



Najmencj možno žiakom vyčítať malý úspěch v úlohe
6 (celkom 18 bodov), pretože s úlohami tohto druhu sa
nestretli ani v školskej praxi, ani v špeciálnej príprave.
Najviac zaráža nevalný výsledok v úlohe 4, obe nuly
v stípci 1 a to, že úlohu č. 3 riešili s plným bodovým
ziskom len 2 žiaci. V predloženej formulácii nemusela
robit’ problémy ani jednému z našich žiakov.

Pri pátraní po příčinách nášho malého úspěchu by sme
opáť museli opakovat’ to, čo sa v správách o MMO
povedalo už niekolkokrát, a to, že žiadna špeciálna mimo-
školská příprava nemože nahradit’ systematické, náročné
r dobré vedené vyučovanie. Aj pri organizácii špeciálnych
matemadckých tried by sme sa mali poučit’ z osvědčených
zahraničných skúseností, kde sa takéto triedy zriaďujú
len v miestach, kde sú pre to podmienky a učia v nich
prevažne vysokoškolskí učitelia.

Nedostatkom, ktorý sa zvlášť vypukle prejavil u nášho
družstva, je snaha používat’ aparát vyššej matematiky,
ktorý žiak poriadne neovládá namiesto aplikácie středo-
školských metod. Ďalej sa stále prejavuje častokrát kriti-
zované bezhlavé počítanie bez predchádzajúcej logickéj
úvahy o rozumnej ceste.

Ako ďalšia příčina poměrně malého úspěchu našich
žiakov sa javí opáť ich nedobrý nervový stav, ich malá
sebadóvera, húževnatosť a vytrvalost’ v překonávaní
prekážok. Nazdávame sa, že kořene týchto nedostatkov
třeba hladať v nedostatkoch vo výchove, a to už v nižších
triedach.

Záverom uveďme ešte dve riešenia úlohy č. 2, za ktoré
boli naši žiaci navrhnutí na zvláštnu cenu, ale pod vply-
vom vyššie spomínaných názorov, ktoré sa přesadili pri
rokovaní jury, dostal ju len prvý z nich.
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RIEŠENIE T. MASKA
n n

1 1

)= Re (e‘* z2^Л)'pi (an+x)
2k-l C/(*) = Re

k=l k=1

n

2' . Platí: 1 = | eiai í =2k-1 *Položme 2- =

k = l

n 71

24-1 1 1
éak =2*-! e'“‘ á |г| + 2k-i

k=~-2 k — 2

1
< |я| + 1. Z toho vyplývá \z\ > 0,= 1*1 + 1 - 2«-i

teda z = rei<r, kde r = \z\ > 0, 99 sú reálne čísla.
Teda f(x) = Re (e1^) = Re(rei(*+9))) = r cos (x + 99);

r > 0. Ak platí /(X]) = f(x2) = 0, potom cos (jcx + 99) =

= cos (x2 + 99) = 0, číže xx + 99 = + /тс, x2 + 99 =

= -^ + р-тг, kde /, p sú celé čísla. Potom však x2
— (p — /)7i = W27T, kde w je celé číslo.

- *1 =

RIEŠENIE B. SIVÁKA
П

1
Zrejme je /(— ax) = 1 -f ^ cos (ak — a {). Potom2k~1

k= 2

n

1 1

2i/(-«i) — II ^ 2k-l ^ 2n-1 ^ ^ 5
k=2
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čiže
O <f(-ax) <2.

f"(x) = — cos (a1 + x) — -y cos (a2 + x) — .

cos (a„ + x)
1

-/(*)•2”"1

Funkcia /(x) vyhovuje teda dierenciálnej rovnici/"(x) -j-
+ /(*) = 0, ktorej všeobecné riešenie má tvar /(x) =
= A cos (x + <p)} kde A, <p sú lubovolné konstanty.

Keďže /(—аг) = A cos {—ax + cp) > 0, je А Ф 0.
Ak f(xi) — /(x2) — 0, potom cos (xt + <p) — cos (x2 +
+ ф) = 0 a x.y — xx = mn, kde m je celé číslo sa dokáže
rovnako ako v predchádzajúcom riešení.
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Tabulka 1

Vedúci delegácií a ich zástupcovia

Vedúci delegácie Zástupca ped. sprievodcaKrajina

F. R. Watson, profesor
University of Keele,
Staffordshire

Lenon Beeson, profe-
sor Biskop Otter Col-
lege, Chichester

Anglicko

Svens Marcel, inspektor
Sint Martens-Latem

Nachtere Jaele Jean,
inspektor, Bruxelles

Belgicko

Dimo Serafimov Ange-
lov, inšpektor, Sofia

Doc. Kiril Dočev, ved.
katedry vyššej algebry, Mat.
fakulta Sofia

Bulharsko

ČSSR Doc. Jan Výšin, CSc.,
Mat. fyz. fakulta, KU,
Praha

Dr. Jozef Moravčík,
CSc., odb. asistent
VŠD, Žilina

Geril Denis, profesor
Lycée Louis le Grand,
Paris

Francúzsko A. Warusfel, profesor
Lyceé Louis le Grand,
Paris

Holandsko Prof. dr. Hans Freuden-
thal, Utrecht

Ary van Tooren,
asistent, Haag

Vladimír Mičič, magister,
asistent Univerzity
v Belehrade

Milá Mrševič, asist.
Univ. v Belehrade

Juhoslávia

Maďarsko Endré Hódi, vedúci ved.
pracovník, Budapešť

Ištván Reiman, ve-
decký pracovník,
Budapešť
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Pokračovanie tabulky 1

Krajina Vedúci delegácie Zástupcaped. sprievodcu

Mongolsko Gombyn Zagdragca,
inspektor, Ulanbator

Doc. Gunže Gatavyn, ve-
dúci katedry mat. analýzy,
Štátna univerzita, Ulán-
bator

NDR Dr. Helmut Bausch, ve-
dúci ved. pracovník, Berlín

Doc. dr. Rolf Lúders,
Berlín

Polsko Doc. dr. Mieczyslaw
Czyžykowski, Polytechnika
Waršawa

Andrzej Mqkowski,
magister, Waršawa

Prof. dr. Willi Flick,
Univerzita Graz
(pozorovatel)

Rakúsko

Rumunsko Zlaté Bogdanov, profesor
lýcea Nicolae Balcescu,
Bukurešť

Florea Pasarica, prof.,
Bukurešť

Ivan Semjonovič Pe-
trakov, inšpektor-me-
todik, Moskva

SSSR Prof. Viktor Josifovič
Levin, doktor fyz. mat.
vied, Moskva

Švédsko Prof. dr. Thomec Vidar,
Goteborg

Dr. Ake H. Samuelsson,
asist. Univer. Goteborg
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Tabulka 2

Počty získaných bodov

Celkový
počet
bodov

Počet bodov žiaka č.
Krajina

3 5 6 871 2 4

18 24 193Anglicko 20 18 30 22 2140

Belgicko 3 165 5 3 5 5710 10

Bulharsko 22 23 18925 28 2028 21 22

ČSSR 28 2213 25 28 14 20 17020

Francúzsko 30 14 188 10 13 1194 22

Holandsko 6 5112 44 15 9 01

Juhoslávia 1830 1022 17 25 32 27 181

Maďarsko 3731 34 24 25 2140 35 247

Mongolsko 2521 13 13 10 4 1201717

NDR 35 36 2535 32 24 24 24029

Polsko 1334 18 10 8 1197 209

Rumunsko 31 3015 37 30 28 2192127

SSSR 30 30 23140 24 32 27 2127

Švédsko 1610 16 12 10414 8 11 9

0
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Tabulka 3

Prehlad udělených den

Počet získaných cien
Krajina Celkom

I. II. III.

Anglicko 1 1 1 3

Belgicko 0 00 0

Bulharsko 30 0 3

ČSSR 30 o 3

Francúzsko 0 01 1

Holandsko 0 00 0

Juhoslávia 40 2 2

Maďarsko 2 71 4

Mongolsko 10 0 1

8NDR 40 4

Polsko 100 1

6Rumunsko 240

SSSR 3 731

Švédsko 0 00 0

Celkom 443 2120
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