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Předmluva

Milí přátelé, účastnici a příznivci matematické olym-
piády,

v době vydání této brožury máme za sebou již jubilejní
XX. ročník domácí celostátní olympiády a XIII. mezi-
národní olympiádu, která se konala v r. 1971 v Slovenské
socialistické republice; byla to druhá z mezinárodních
matematických olympiád, která proběhla na území na-
šeho státu.*)

Dvacet let domácí olympiády i třináct mezinárodních
olympiád se stále rostoucím počtem účastnických zemí
potvrzuje, že zájem o soutěžení v matematice u žáků, stu-
dentů i u jejich učitelů je stále živý a snad nikdy neuhasne.
A současná společnost tento zájem opravdu velice potře-
buje, neboť je třeba stále víc a více matematicky školených
mladých lidí. Ve Spojených státech amerických odhadli,
že potřeba profesionálů-matematiků vzroste během deseti-
letí 1965 až 1975 čtrnáctkrát; v téže době vzroste potřeba
fyziků jen třikrát, inženýrů dokonce jen dvakrát. Domní-
váme se, že v socialistických státech jistě nebude potřeba
matematicky vzdělaných lidí menší.

Tato situace — jazykem ekonoma můžeme říci stupňo-
váná poptávka všech možných odvětví lidské činnosti po

*) Poprvé se konala v ČSSR mezinárodní matematická olympiáda
(čtvrtá) v r. 1962 při příležitosti stého výročí založení Jednoty čs. mate-
matiků a fyziků, a to v Jihočeském kraji.
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matematicích vyžaduje, aby se rozvíjely nejen špičkové
talenty a jedinci nejnadanější, ale aby se věnovala zvýšená
pozornost matematickému vzdělávání co nejširšího okruhu
mladých lidí. Na tento úkol nestačí a asi nikdy nebude
stačit škola: zde musí a budou musit pomáhat různé
formy mimoškolní činnosti; mezi nimi jsou na neposled-
ním místě žákovské soutěže, jakou je např. naše matema-
tická olympiáda.

Účastnit se s úspěchem soutěže, to znamená umět
aspoň trochu samostatně a tvořivě pracovat. Také v tomto
směru nemůže dát škola žákům vše, co by potřebovali.
Aktivitu a samostatnost získáte spíše v zájmových krouž-
cích, seminářích, prázdninových soustředěních, ale hlavně
studiem odborné literatury přiměřené vašemu věku, va-
šim schopnostem a předchozímu matematickému vzdě-
láni.

Milí účastníci celostátní matematické olympiády, my
všichni, kteří tuto soutěž připravujeme, cítíme velmi bo-
lestně nedostatek vhodné studijní literatury pro vás. Je
nepříjemná pravda, že je velmi těžké psát o matematice
populárně — ale správně, zábavně — i obsahově bohatě
a poučně. Máme málo vhodných článků v Rozhledech,
které by se hodily pro individuální studium a vedly к sa-
mostatné práci. V naší knižnici Škola mladých matema-
tiků (ŠMMJ vyšla sice již řada svazečků; některé z nich
jsou psány skutečně pracovní formou. Najdete tu sva-
zečky, o nichž říkáme, že patří do ,,základní řady“, tj.
pojednávají zhruba jen o tématech školské matematiky.
Najdete tu však také svazečky tzv. „výběrové řady“, které
jsou psány náročněji, spíše výkladovou formou a které
svými tématy už přesahují okruh středoškolské matema-
tiky. Ale to všecko nestačí. Svazečků je poměrně málo,
většina z nich je jen v několika exemplářích ve školních
knihovnách, mladí čtenáři tu takřka nenajdou takové
jednoduché a stručné texty, jaké vydávala před časem
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Jednota čs. matematiků a fyziků ve své sbírce Brána k vě-
dění. Nedostatek hodnotné a přístupné studijní matema-
tické literatury pro mládež, speciálně pro účastníky olym-
piád, pociťují už delší dobu i v jiných státech. Již v r. 1963
při V. mezinárodní olympiádě konané v Polsku vystou-
pila jugoslávská delegátka s návrhem na jakousi kooperaci
socialistických států v této oblasti. Navrhovala, aby vý-
znační matematici — popularizátoři nebo pedagogové
z těchto zemí psali studijní texty pro žáky. Texty by se
pak přeložily do národních jazyků a vydaly ve všech socia-
listických státech. Bohužel tento dobrý návrh, přijatý
všemi delegáty se sympatiemi, zůstal až dosud na papíře.

Uvědomte si, že studovat matematický text je podstatně
více než jej číst; umění studovat matematický text se mu-
sítě učit. V tomto směru jsou asi dále žáci experimentál-
nich škol (ZDŠ i gymnasií); ti jsou více vedeni ke studiu
pokusných textů, než žáci ostatních škol, kteří se učí tra-
diční matematice tradičním způsobem a z tradičních
učebnic. Zato však žákům pokusných tříd málo vyhovují
nynější témata soutěžních úloh a bude asi pro ně třeba
pořádat jakousi „modernizovanou" olympiádu.

Udělejme bilanci toho, co je v oblasti studijní literatury
к dispozici a co je třeba udělat nebo zlepšit. Pro vás to
bude zároveň jistý přehled pramenů ke studiu.

1. Bylo až dosud vydáno 19 brožur MO; každá z nich
referuje o jednom ročníku MO, obsahuje texty a řešení
všech úloh (přípravných i soutěžních) příslušného roč-
niku, popřípadě i texty a řešení úloh mezinárodní olym-
piády určitého roku. Protože brožury, hlavně starších
ročníků, jsou většinou rozebrány a protože autorská řešení
mnohých úloh nejsou metodicky právě nej lepší, neuka-
zují totiž čtenářům „jak na to", sestavili pracovníci MO
tři sborníky úloh, a to první pro kategorii Z (ZDŠ), druhý
pro kategorie В a C (1. a 2. ročník gymnasií a průmyslo-
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vých škol, třetí pro kategorii A (3. a 4. ročník gymnasií
a průmyslových škol); v tomto sborníku budou i některé
úlohy z MMO. První sborník už vyšel, druhý a třetí vyjde
v nejbližší době.

2. V knižnici Škola mladých matematiků (ŠMM),vy-
dávané nakladatelstvím Mladá fronta, vyšlo až dosud 27
svazečků. Z nich do základní, elementárnější řady patří
20 svazků, ostatní tvoří řadu výběrovou.

Seznam svazků najdete na konci této brožury. Většinou
si je ovšem budete musit vypůjčit ve školní knihovně.

3. Těžko dostupné, ale velmi užitečné by vám byly po-
kusné texty experimentálních ZDŠ i gymnasií. Tyto texty
mají formu skript, vydává je Kabinet pro modernizaci vy-
učování matematice v Praze 1, Krakovská 10, rozmnožuje
je středisko JČSMF v Brně. Tyto texty obsahují řadu
zajímavých úloh s moderní tematikou, zčásti s řešeními,
zčásti bez řešení. Nejsnáze si je vypůjčíte na některé expe-
rimentální škole; seznam škol i seznam dosud vydaných
pokusných textů je na konci této brožury.

4. V populární matematické literatuře starší i novější je
řada knížek, vhodných pro vaše studium. Pokud nejsou
к dostání na knihkupeckém trhu (a to je obvyklé), najdete
je ve školních knihovnách nebo u starších kamarádů. Ze-
jména bychom chtěli znovu upozornit na sovětskou sbírku
řešených úloh z matematických olympiád, kterou sestavil
Lidskij a kolektiv. Tato sbírka byla přeložena do češtiny.
Také seznam těchto publikací je na konci brožury.

5. Projděte staršími ročníky studentského matematic-
kého časopisu Rozhledy; v nich najdete řadu vhodných a
zajímavých článků. Zahraniční studenti mnohem více čtou
své matematické časopisy než naši. Můžeme říci, že leckde
si takový časopis „dělají sami“, tj. že starší studenti do
něho i píší krátké články a posílají originální úlohy i jejich
řešení. Toho druhu je např. americký studentský časopis
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The Mathematics Student Journal. Так by tomu mělo být
i u nás.

6. Zvlášť rádi bychom upozornili na cizojazyčnou, ze-
jména ruskou literaturu. Studenti gymnasií by měli umět
z ruštiny tolik, aby po osvojení základů ruské matema-
tické terminologie mohli číst sovětskou žákovskou mate-
matickou literaturu. V SSSR vydali mimo velkou řadu
sbírek úloh a svazečků populární literatury např. Sborník
úloh z mezinárodních matematických olympiád. Vydávají,
tak jako v jiných socialistických státech, letáky, které ob-
sáhují texty úloh běžného ročníku MO. Domníváme se,
že ledacos z těchto publikací i z obdobných publikací
ostatních socialistických států najdete v knihovnách, ze-
jména v knihovnách gymnasií a pedagogických fakult.
Pro vaši informaci je na konci této brožury uveden pře-
hled některých vhodných knih.

Co bychom chtěli zlepšit v oblasti studijní literatury?
1. V knižnici ŠMM by měly vycházet svazečky, psané

zcela elementárně, pojednávající o jednoduchých a ne-
náročných tématech; tyto svazečky by byly určeny nej-
mladším účastníkům MO (15— lóletým).

2. Bude třeba inten ívnější styk s redakcí časopisu
Rozhledy. Půjde o to ovlivnit redakci, aby uveřejňovala
některé vhodné texty koncipované nikoli jako naučné
články, ale jako podklady pro samostatné studium; čte-
náři by měli dostávat impulsy pro jakousi „laboratorní
práci“ v matematice. Dále by Rozhledy měly přinášet
překlady nebo volné zpracování význačných prací a úloh
ze zahraničních studentských časopisů.

3. Bude třeba vydávat další původní nebo přeložené
sbírky řešených úloh. Zejména by se měly vydat texty a
řešení úloh, které se uplatnily při školení žáků pro MMO
nebo při prázdninových soustředěních. Studium mate-
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matiky ovšem není jen řešení úloh, je třeba také studovat
teorii. Počítáme, že úspěšné přednášky z prázdninových
soustředění vyjdou jako zvláštní svazky ŠMM.

4. V minulých ročnících jsme začali rozmnožovat pro
kategorie В a Z komentáře k řešení úloh I. kola; v této čin-
nosti hodláme pokračovat. Snad tím trochu pomůžeme
při odpovědích na věčnou otázku „jak na to aniž by-
chom prozrazovali řešitelům předčasně řešení. Během
času by se z těchto komentářů mohla sestavit jakási meto-
dika řešení úloh pro žáky.

5. Zlepšení v oblasti studijní literatury předpokládá
ovšem lepší podmínky organizačně administrativní a eko-
nomické. Míníme tím větší pružnost a ochotu polygrafie-
kého průmyslu a větší volnost v distribuci, aby se tak vět-
šina publikací dostala do volného prodeje.

Jak vidíte, pokusili jsme se v předmluvě к letošní bro-
žuře trochu analyzovat otázku samostatného studia litera-
tury a říci, co v tomto směru dělají pracovníci olympiády.
Přáli bychom si, aby se naše snahy setkaly s pochopením
školské správy, vydavatelství, polygrafického průmyslu a
ovšem hlavně vás, účastníků MO, a vašich učitelů. Vaše
kritické a podnětné hlasy jsou vítány, ve vaší úspěšné
práci, zejména při studiu pomocné literatury, vám pře-
jeme co nejvíce zdaru!

Ústřední výbor MO
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I. O průběhu XIX. ročníku
matematické olympiády

1. ORGANIZACE SOUTĚŽE

Pořadatelem soutěže XIX. ročníku byla ministerstva
školství ČSR a SSR s Matematickým ústavem ČSAV
v Praze (MÚ ČSAV) a Jednotou čs. matematiků a fyziků
(JČSMF). Také XIX. ročník se řídil statutem, uveřej-
něným ve Věstníku MŠK, roč. XIX, str. 126, 127, směr-
nice 37 ze dne 30. IV. 1963.

Soutěž řídil opět ústřední výbor matematické olympiády
(ÚV MO), v krajích nebo oblastech pak krajské výbory
matematické olympiády (KV МО) a v okresech okresní
výbory matematické olympiády (О V MO); také v těchto
výborech jsou zastoupeny pořadatelské složky.

Žáci poprvé soutěžili jen ve třech kategoriích: v kate-
gorii A žáci III. а IV. ročníků škol II. cyklu, v kategorii В
žáci I. а II. ročníků škol II. cyklu a v kategorii Z žáci
9. ročníků ZDŠ. Bylo ovšem možné, aby žák soutěžil
i v kategorii vyšší, než do které studijně patří; toho vy-
užila řada žáků především v kategorii A.

2. SLOŽENÍ ÚSTŘEDNÍHO VÝBORU
MATEMATICKÉ OLYMPIÁDY

Ministerstva školství ČSR i SSR prodloužila funkční
období ÚV MO jmenovaného v roce 1966 do konce
roku 1970 s tím, že byli kooptováni další zástupci těchto
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ministerstev a jednotlivých stupňů škol z ČSR i SSR.
Během XIX. ročníku pracoval ÚV MO v tomto složení:
Předseda: Jan Výšin, CSc., docent matematicko-fyzi-

kální fakulty KU v Praze
Místopředseda: prof. dr. Miroslav Fiedler, DrSc., ve-

doučí vědecký pracovník MÚ ČSAV v Praze
Místopředseda za Slovensko: dr. Jozef Moravčík,

CSc., odb. asistent VŠD v Žilině
I. jednatel: Vlastimil Macháček, odb. asistent pedago-

gické fakulty KU v Praze.
II. jednatel: Jiří Mída, odb. asistent pedagogické fa-

kulty KU v Praze
Členové: dr. František Bčloun, vedoucí matematického

kabinetu Krajského pedagogického ústavu v Praze
dr. Juraj Bosák, CSc., Matematický ústav SAV v Brati-
slavě
dr. Jaroslav Fuka, CSc., vědecký pracovník MÚ ČSAV
v Praze
František Hradecký, odborný asistent matematicko-fy-
zikální fakulty KU v Praze
prof. dr. Karel Hruša, vedoucí katedry matematiky pe-
dagogické fakulty KÚ v Praze
prof. dr. Milan Kolibiar, CSc., profesor přírodovědecké
fakulty Komenského university v Bratislavě
Ladislav Krkavec, ústřední inspektor MŠ ČSR
Jiří Leiss, ústřední inspektor MŠ ČSR
akademik Josef Novák, vedoucí vědecký pracovník MÚ
ČSAV v Praze
dr. Jiří Sedláček, CSc., vědecký pracovník MÚ ČSAV
v Praze
Jiří Sídlo, zástupce ředitele SVVŠ, Nad štolou, Praha 7
Miloslav Šmerda, učitel ZDŠ, Bílovice n. Svitavou
František Veselý, profesor v. v. v Praze
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dr. František Zítek, CSc., vědecký pracovník MÚ
ČSAV v Praze
prof. dr. Miloslav Zedek, prof, přírodovědecké fakulty
university Palackého v Olomouci
Michal Žoldy, ústřední inspektor MŠ SSR
Dalšími členy ústředního výboru matematické olym-

piády jsou předsedové krajských výborů mate-
matické olympiády:

prof. dr. Václav Pleskot, profesor ČVUT v Praze
dr. Václav Vilímek, docent katedry matematiky a de-
skriptivní geometrie strojní fakulty ČVUT v Praze
Marie Štěpánková, odborná asistentka katedry mate-
matiky Vysoké školy zemědělské v Českých Budějo-
vicích
Karel Hnyk, odborný asistent Pedagogické fakulty
v Ústí nad Labem
Věra Rádiová, profesorka SVVŠ J. Fučíka v Plzni
Jan Laštovka, vedoucí kabinetu matematiky Krajského
pedagogického ústavu v Pardubicích
Petr Benda, odborný asistent VUT v Brně
Josef Andrys, docent Pedagogické fakulty v Ostravě
dr. Ladislav Berger, odborný asistent katedry matema-
tiky Vysoké školy dopravní v Žilině
Vladimír Jodas, odb. asistent, přír. fak. Komenského
university v Bratislavě,
Kveta Honěarivová, odborná asistentka přírodovědecké
fakulty v Košicích (zastupovala dr. Jána Černého, CSc.,
docenta přírodovědecké fakulty v Košicích, který t. č.
pobýval studijně v cizině)

Náhradníky dr. Miroslav Šisler, CSc., vědecký pra-
covnik MÚ ČSAV v Praze

Pracovní předsednictvo ÚV MO (PÚV MO) tvoří
(uvedeno v abecedním pořadí):
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Prof. dr. M. Fiedler, DrSc.; dr. J. Fuka, CSc.;
V. Macháček; J. Mida; dr. J. Moravčík, CSc.; akademik
J. Novák; dr. J. Sedláček, CSc.; doc. J. Výšin, CSc.;
dr. F. Zítek, CSc.; zástupci MŠ L. Krkavec a M. Zoldy.

Podle usnesení plenárních schůzí ÚV МО byl vypra-
cován návrh nového statutu MO i návrh složení nového
ÚV MO, který byl postoupen prostřednictvím Ústřed-
ního výboru JČSMF oběma MŠ к dalšímu projednání,
aby byla zajištěna kontinuita pořádání soutěže.

3. SCHŮZE ÚV MO

Také během XIX. ročníku se sešel ústřední výbor MO
dvakrát. První plenární schůze se konala v Praze dne
4. a 5. prosince 1969. Mimo obvyklé hodnocení uplynu-
lého, tj. XVIII. ročníku, se diskuse zabývala příčinami
poklesu počtu účastníků a problémem návaznosti úloh
v jednotlivých kolech soutěže. Bylo usneseno zřídit tři
komise, které by vypracovaly „modely11 soutěže (pro kate-
gorii A Fr. Hradecký, J. Sídlo, E. Calda, pro kategorii В
dr. Vlachynský, doc. Bosáky Vlad, Jodas a pro kategorii Z
M. Šmerda, O. Černý a O. Štefík). Kladně bylo hodnoceno
prázdninové soustředění úspěšných řešitelů kategorie В
v Pardubicích a projednáno zajištění III. kola soutěže
v Košicích. Byla navržena úprava vyplácení odměn
autorům přijatých úloh v konkursu JČSMF (viz sa-
mostatná zpráva). Jednáno bylo též o potížích s vydá-
váním vybraných řešených úloh z MO. MŠ SSR vyšlo-
vilo souhlas s pořádáním XIII. MMO na Slovensku
v roce 1971; byly zvoleny komise pro přípravu statutu
této MMO. Na návrh akademika Nováka byl požádán
o předsednictví přípravného výboru XIII. MMO aka-
demik Schwarz, který také tuto funkci přijal. Byl pro-
jednán též návrh na složení tohoto výboru. Byla ustavena
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i komise pro přípravu materiálů к XX. výročí naší MO
a pro XIII. MMO. Na závěr jednání byly projednány
úpravy návrhu statutu naší celostátní MO, do něhož má
být včleněno i ustanovení Ceny R. Zelinky za práci v MO.

Druhá plenární schůze se konala ve dnech 17. a 18.
dubna 1970 v Košicích u příležitosti III. kola MO kate-
gorie A.

Obsáhlé jednání se týkalo především budoucnosti MO;
ukázalo se, že obě ministerstva se ještě neshodla na jme-
nování nového ÚV MO a tak byl podán návrh, aby se
funkční období dosavadního ÚV MO prodloužilo ještě
jednou, a to do 31. XII. 1970. Neujasněná však zůstala
koncepce organizačního zajištění budoucích ročníků MO.
Kromě dalších organizačních otázek byly stanoveny ter-
miny pro XX. ročník MO.

Doc. Benda podal referát o přípravě materiálů do bro-
žury o jubileu MO.

UV MO schválil návrh statutu na XIII. MMO po
řadě doplňků.

Projednáno bylo i zajištění přípravného soustředění
žáků pro XII. MMO ve Stinně i úspěšných řešitelů kate-
gorie В v Martině. Schváleni byli i recenzenti „modelů
MO“, které byly připraveny komisemi stanovenými v mi-
nulém zasedání UV MO.

4. PRŮBĚH JEDNOTLIVÝCH KOL SOUTĚŽE
a) Studijní I. kolo proběhlo v první etapě tzv. příprav-

ných úloh od září do konce listopadu 1969; jejich řešení
opět nebyla klasifikována a nebyla ani podmínkou dalšího
postupu. Soutěžní část I. kola měla v kategorii А ко-
nečný termín odevzdání úloh 15. I. 1970, v kategorii В
(spojené býv. В a C) 15. března a kategorie Z 28. února
1970. V kategoriích А а В v soutěžních úlohách měli žáci
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možnost volby úloh, a to čtyř ze šesti, uspořádaných ve
dvě trojice. Úspěšným řešitelem byl pak vyhlášen ten žák,
který vyřešil správně nebo v podstatě správně (klasifikace
1 a 2) aspoň tři úlohy; přitom mezi těmito úlohami musela
být zastoupena každá z trojic aspoň jednou úlohou.

Z tabulky 1 v porovnání s obdobnými tabulkami z mi-
nulých ročníků je vidět jednou opět vzrůst počtu účast-
níků i úspěšných řešitelů v kategorii A. Bohužel, v kate-
gorii В, tj. spojené bývalé В a C, je značný pokles; ubylo
především účastníků z I. ročníků, jak je vidět např. ze
seznamu úspěšných řešitelů II. kola v příloze A. Otázka
spojení obou kategorií bude zřejmě ještě podrobně pro-
diskutována na plenárním zasedání UV MO.

V kategorii Z se v I. kole rovněž projevil vzrůst počtu
účastníků i úspěšných řešitelů.

b) Klauzurní II. kolo proběhlo opět v různých ter-
mínech: v kategorii A se konalo v sobotu 7. března, v ka-
tegorii В 25. dubna a v kategorii Z dne 8. března 1970.
Tato volba termínů umožnila opět zúčastnit se řadě žáků
dvou kategorií; pro kategorii В však termín z konce dubna
byl příliš pozdní a ztěžoval výběr účastníků pro soustře-
dění úspěšných řešitelů kategorie В v Martině. Výběr
úloh i jejich bodování byly v kategoriích А а В obdobně
určeny jako v XVIII. ročníku. Z hlediska výsledků je
možno v kategorii A opět jako v I. kole zaznamenat vze-
stup, a to dost značný. Počet účastníků soutěže II. kola
v kategorii В odpovídá poklesu účastníků I. kola. Pokud
se týká počtů úspěšných řešitelů, je jejich počet vzhledem
к počtu účastníků relativně lepší než v XVIII. ročníku,
kdy hlediska bodovací byla však velmi přísná.

V kategorii Z se i ve druhém kole projevil vzestup
počtu účastníků i úspěšných řešitelů.

Jistě na vzestupu počtu účastníků i úspěšných řešitelů
mají vliv komentáře, které byly к řešením úloh kate-
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gorie Z pořízeny; v jejich vydávání pro učitele bude dále
ÚV MO pokračovat.

Závěrečné celostátní III. kolo soutěže v kategorii A se
konalo 17. a 18. dubna 1970 v Košicích. Tentokrát byl
i počet navržených žáků a žákyň od KV MO vyšší, tj.
70, než v XVIII. ročníku. Po koordinaci klasifikace žá-
kovských řešení ve II. kole pozvalo PÚV MO celkem
36 žáků a 8 žákyň к soutěži III. kola.

Soutěž proběhla již po druhé ve dvou dnech formou,
jakou se soutěží na mezinárodních matematických olym-
piádách. Každý den řešili soutěžící tři úlohy ve čtyřech
hodinách, přičemž jim bylo oznámeno bodové ohodno-
cení za úplná řešení úloh; texty a řešení těchto úloh jsou
uvedeny na str. 124.

Nejvyšší dosažitelný počet bodů byl čtyřicet. Po opravě
řešení byly stanoveny hranice pro vítěze (aspoň 25 bodů)
a úspěšné řešitele (aspoň 17 bodů). Seznam vítězů a uspěš-
ných řešitelů je uveden v příloze B; všichni uvedení byli
odměněni od MŠ ČSR a MŠ SSR a obdrželi diplomy.
Všem vysokým školám byl zaslán jejich seznam, aby při-
jímací komise mohly vzít zřetel při zkoušce z matematiky
na úspěšné umístění uchazeče v závěrečném kole MO.

Do přípravného soustředění na XII. MMO v Buda-
pešti byli do Štiřína na dobu od 21. do 27. června 1970
povoláni nejlépe umístění žáci s přihlédnutím к ročníku,
v němž studují. Na konec bylo vybráno družstvo, jehož
jmenný seznam je ve zprávě о XII. MMO (str. 143).

5. POMOCNÉ AKCE

Podle zpráv z KV MO byly i v XIX. ročníku pořádány
ve spolupráci s pobočkami JČSMF různé přednášky a
školení pro MO, především v kategoriích В a Z. Pro kate-
gorii A mělo školení ráz přípravy na mezinárodní mate-
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matickou olympiádu a probíhalo podle sylabů, které při-
pravili:

a) dr. Jaroslav Fuka, CSc.: Odhady součtů, posloup-
ností a nerovností;

b) dr. Jozef Moravěík, CSc.: Úlohy z MMO (algebra);
c) dr. Milan Koman, CSc.: Geometrické úlohy z MMO.
Souběžně s prvním tématem vedl v Praze dr. P. Liebl

z MÚ ČSAV ještě kroužek, který postupoval podle
knížky Rudolfa Výborného Matematická indukce, která
byla vydána v edici ŠMM.

Podle uvedených materiálů probíhala příprava na MMO
v následujících střediscích: Praha, Plzeň, Bratislava, Ко-
šice, Žilina, Ostrava. Zvlášť úspěšná byla práce kroužku
v Bratislavě, který vedl dr. I. Korec, CSc., neboť 14 účast-
níků z tohoto kroužku se dostalo až do III. kola kate-
gorie A v Košicích.

Další celostátní akcí bylo soustředění úspěšných řešitelů
v Martině, které se konalo od 19. 6. do 3. 7. 1970. Již
druhý rok byli účastníci rozděleni do tří tříd: matema-
tické, fyzikální a matematicko-fyzikální. Toto rozdělení
bylo celkem rovnoměrné a odpovídalo převážně zájmu
jednotlivých žáků.

V matematické třídě přednášeli:
a) dr. Jaroslav Morávek, CSc.: O dynamickém pro-

gramování (14 hodin)
b) dr. Ivan Korec: Úlohy matematické olympiády

(16 hodin)
c) doc. dr. Lev Bukovský, CSc.: Úlohy řešené pomocí

jisté extremální vlastnosti (6 hodin)
d) doc. dr. Milan Hejný, CSc.: Geometrická zobrazení

z vyššího hlediska (12 hodin)
e) dr. František Zítek, CSc.: Soustavy mnohočlenů

(16 hodin)
Ve třídě matematicko-fyzikální byly matematické před-
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nášky uvedené v programu matematické třídy pod
body a), b) a c).

Fyzikální přednášky ve třídě matematicko-fyzikální a
ve třídě fyzikální zajišťoval ÚV FO.

6. STUDIJNÍ LITERATURA

Letáky s úlohami pro kategorie А а. В byly vydány
Státním pedagogickým nakladatelstvím v Praze v nákladu
5 000 kusů pro ČSR i SSR společně, kdežto leták pro
kategorii Z vyšel jak česky tak i samostatně slovenský
v počtu odpovídajícím potřebě každé z republik. Obvyk-
lým způsobem byly texty úloh naší celostátní MO i texty
a řešení úloh z MMO publikovány v časopisech Mate-
matika ve škole a Rozhledy matematicko-fyzikální.

V nakladatelství Mladá fronta vyšly v roce 1970 další
svazky edice Škola mladých matematiků:

č. 25 Lev Bukovský — Igor Kluvánek: Dirichletov
princip

l č. 26 Karel Hruša: Polynomy v moderní algebře
č. 27 Stanislav Horák: Mnohostěny

V dalším vydání vyšel svazek č. 8, Jiří Váňa: O rovnicích
s parametrem.

Po obtížích, které se v průběhu roku 1969 objevily, po-
dařilo se zajistit další vydávání ŠMM i sestavit výhledový
plán publikací pro další léta.

7. KONKURS JCSMF NA NÁVRHY
ÚLOH PRO MO

f Tento časově neomezený konkurs vyhlásila Jednota
československých matematiků a fyziků již v roce 1966. Od
jeho zveřejnění do 1. XII. 1970 bylo zasláno celkem
605 úloh od 69 autorů. Recenzní řízení bylo ukončeno
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u 591 úlohy, z nichž 368 bylo přijato. Z těchto přijatých
úloh bylo v MO už užito 235. Např. v XIX. ročníku MO
bylo celkem zadáno 50 úloh, z nichž 46 bylo z konkursu.
Také československá úloha zadaná na XII. mezinárodní
MO v Budapešti byla získána v konkursu.

Podmínky konkursu byly již několikrát uveřejněny, ale
pro zájemce je znovu připomínáme.

Text a řešení každé úlohy je třeba zaslat napsané na
listu formátu A4 (vždy originál a jeden opis) na adresu:
Ústřední výbor matematické olympiády, Praha 1 - Nové
Město, Žitná 25. Za každou přijatou úlohu je vyplácena
odměna ve výši 50 Kčs v kategoriích А, В a 30 Kčs v ka-
tegorii Z. Při recenzi se přihlíží к původnosti úlohy a od-
měna může být případně zvýšena, např. přijaté úlohy,
s nimiž se počítá, že budou na některé MM O předloženy
jako čs. návrh, jsou odměňovány částkou 80 Kčs. Odmě-
ny za přijaté úlohy vyplácí od roku 1970 autorům
z ČSR JČMF a autorům ze SSR JSMF. Úlohy,
které neprojdou úspěšně konkursním řízením, se auto-
rům vracejí. Přijaté úlohy jsou zařazeny do archivu ÚV
MO. Vyplácením odměny autorovi získává ÚV MO dis-
poziční právo, zejména upravit text úlohy i autorská
řešení a použít úlohy pro účely MO podle vlastní volby.
Autor samozřejmě na sebe bere závazek, že přijatou
úlohu utají, aby průběh olympiády nebyl narušen.

Díky konkursu získal ÚV MO sice řadu nových spolu-
pracovníků, avšak potřeboval by další. Počet autorů úloh
MO by měl být co největší, neboť jedině tak je možno
dosáhnout toho, aby problémy zadávané к řešení v úlo-
hách MO byly pro žáky skutečně přitažlivé a dále aby
v MO byly pokud možno zastoupeny rovnoměrně všechny
partie středoškolské matematiky. Problémům okolo vý-
běru úloh pro MO byl v 10. čísle XX. ročníku (1969/70)
časopisu Matematika ve škole věnován článek „O kon-
kursu na úlohy pro MO“ od J. Mídy.
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Příloha A

POŘADÍ ÚSPĚŠNÝCH ŘEŠITELŮ II. KOLA
KATEGORIE В V XIX. ROČNÍKU MO

(pokud není uveden typ školy, jde o gymnasium,
resp. SVVŠ)
Praha - město

Pavel Dušek, Andrej Kugler, Helena Husová, Vladimír
Burda, Ladislav Půst, Jiří Dominec, Eduard Kučera,
Antonín Lešanovský a Richard Nykl, všichni 2g, Praha 2,
W. Piecka; Miroslav Sůra 2b, Praha 6, Arabská ul.

Středočeský kraj
Jiří Doskočil, 2. roč. Poděbrady; Jiří Frýda, 2. roč.

Kladno; Jindřich Kareš, 1. roč., Říčany.
Jihočeský kraj

Jarmila Voldřichová, 2. roč., Vimperk; Karely Horák,
1. roč., Strakonice; Pavel Kindlman, 9. roč. ZDŠ, Jirov-
cova ul., České Budějovice; Václav Kubant, 2. roč.,
Tábor; Ludmila Hlaváčová, 1. roč., Strakonice.

Západočeský kraj
Magda Fořtová, Stanislav Hála, oba 1. roč. spec.;

Zdenka Černá, Václav Vacovský, oba 2. roč. spec.;
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Blanka Hnilicová, 1. roč. spec.; Karel Fliegel a Tomáš
Beneda, oba 2. roč. spec., všichni gymnasium Julia
Fučíka v Plzni.

Severočeský kraj
Jasna Lupoměchová, 2. roč., Frýdlant v Č.; Karel

Hájek, 2. roč., Liberec; Jiří Svoboda, 1. roč., Teplice;
Jaroslav Klápště, 2. roč., SPŠ stroj, v Liberci.

Východočeský kraj
Jaroslav Kubík, 2. roč., Hradec Králové, Tylovo ná-

břeží; Daniel Dvorský, 2. roč., Vysoké Mýto; Jiří Žák,
2. roč., Česká Třebová; Michal Resl, 2. roč., Turnov;
Jiří Dohnal, 2. roč., Hradec Králové, Tylovo nábřeží;
Zdenka Moravcová, 1. roč., Rychnov n. Kněžnou; Ludvík
Bartošek a Igor Koropecký, 1. roč., Pardubice, Na Spo-
řilově; Michaela Čermáková, 2. roč., Semily.

Jihomoravský kraj
a Brno - město

Jiří Němec a Václav Holý, 2. roč., Brno, Křenová ul.;
Jaromír Kuběn, 2. roč., Prostějov (JKNV); Miloš Pa-
leček, Vladimír Škoda a Petr Firbas, 2. roč., Brno, Kře-
nová ul.; Vladimír Němeček, 2. roč., Kroměříž (JKNV);
Pavel Šandera a Ladislav Ptáček, 2. roč., Brno, Křenová
ul., Karel Sázel, 2. roč., Kroměříž (JKNV).

Severomoravský kraj
Jiří Ivánek, 2. roč., Nový Bohumín; Milan Menšík,

2. roč., Ostrava 1; Tomáš Homola, 2. roč., Olomouc-Hej-
čin; Tadeusz Feruga, 1. ročník, Český Těšín, Havlíč-
ková 13; Věra Jalůvková a Jan Segeta, oba 2. roč.,
Ostrava 1; Vladimír Tichý, 2. roč., Olomouc-Hejčin;
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Igor Mačejovský a Eva Řádková, 2. roč., Ostrava 1;
Jaroslav Švrček, 2. roč., Přerov.

Západoslovenský kraj
Karel Šafařík, Jan Franců a Anton Černý, 2. roč.,

J. Hronca, Bratislava, Novohradská ul.; Petr Visugi,
1. roč., Trenčín; Ladislav Mišík, Milan Lehocký, oba
1. roč., J. Hronca, Bratislava, Novohradská ul.; Petr
Škriečka, 1. roč., Trenčín; Roman Prokop a Pavol Ha-
nula, 2. roč., J. Hronca, Bratislava, Novohradská ul.

Středoslovenský kraj
^ Štefan Sakáloš, 2. roč., Prievidza; Anton Píštěk, 1. roč.,
Čadca; Imrich Vrťo, 1. roč., Rimavská Sobota; Jaromír
Plesko, 1. roč., Martin; Jozef Tvarožek, 1. roč., JŽilina;
Zdena Novotná, 2. roč., Turč. Teplice; Dušan Škrada,
2. roč., Lučenec.

Východoslovenský kraj
Karol Pelikán, 1. roč., Košice, Šrobárova ul.; Ján

Varga, 2. roč., Prešov, Tarasa Ševčenka; Peter Butkovič,
2. roč., Košice; Gedeon Mohr, 2. roč., Košice, Šrobá-
rova.
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Příloha В

III. KOLO KATEGORIE A V XIX. ROČNÍKU МО

Vítězové

1. Pavel Pudlák, 3d, SVVŠ, Nad štolou, Praha 7
2. Štefan Sakáloš, 2d, SVŠ, Prievidza
3. Rudolf Švarc, 3f, SVVŠ J. Fučíka, nám. Odborářů,

Plzeň
4. Vladimír Černý, 3b, SVŠ J. Hronca, Novohradská 3,

Bratislava
5. Helena Husová, 2g, SVVŠ, ul. W. Piecka, Praha 2
6. Miroslav Hradil, 3f, SVVŠ, ul. W. Piecka, Praha 27.-9. Anton Černý, 2b, SVŠ J. Hronca, Novohradská 3,

Bratislava
7.-9. Jan Franců, 2b, SVŠ J. Hronca, Novohradská 3,

Bratislava
7.-9. Jiří Tůma, 3. roč. SVVŠ, Písek

Bratislava
10. H/íp Gulda, 3b, SVŠ J. Hronca, Novohradská 3,

Bratislava
11. £č/o Zorkovský, SVŠ, Šrobárova 46, Košice

Úspěšní řešitelé
12. Jiří Šafařík, 3b, SVŠ J. Hronca, Novohradská 3,

Bratislava13.—14. Jiří Benda, М3, SPŠ el., Koterovská ul., Plzeň
13.-14. Ondřej Matouš, 3f, SVVŠ, ul. W. Piecka, Praha 2
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15. Karol Šafaříky 2b, SVŠ J. Hronca, Novohradská 3,
Bratislava

16. Pavol Černeky 3b, SVŠ J. Hronca, Novohradská 3,
Bratislava17.-18. Miloslav Handly 3f, SVVŠ, ul. W. Piecka, Praha 2

17.—18. Michal Zajac, 3b, SVŠ J. Hronca, Novohrad-
ská 3, Bratislava

19. Jaroslav Ramíky 3a, SVVŠ, Ostrava I
20. Miroslav Kmošeky la, gymn., tř. kpt. Jaroše, Brno
21. Jaroslav Daniely 3a, SVVŠ, Moravské Budějovice22.-24. Alexander Kirschner, 3a, SVŠ J. Hronca, Novo-

hradská 3, Bratislava
22.-24. Angela Leitmannováy 3b, SVŠ J. Hronca, Novo-

hradská 3, Bratislava
22.-24. Zbyšek Stýbloу 3e, SVVŠ, Arabská ul., Praha 6
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů v kategorii Z

Kategorie Z

Kraj Z toho
dívek

Z toho
dívekÚP

638 294 524 269Praha-město

Středočeský 431 228 275 137

Jihočeský 340 170482 254

Západočeský 119 170 79235

Severočeský 136574 285 287

Východočeský 222589 308 422

Jihomoravský 2701059 497 570

Severomoravský 153272594 376

Západoslovenský 6731706 823 1441

Středoslovenský 3371046 558 694

Východoslovenský 191886 377 451

Celkem 263740158230 5550

P — celkový počet účastníků; Ú — počet úspěšných řešitelů

25



oo
со

00 o co
m

00 1-H
^ 1-H

CO r-H
CO ’-H

I> 1-HO
CM

a Я ъ
2>Л

co CO
CM
CM

rj< VO
CO
CM

r-J 2 00 Ov
CM

00
coя43 3Nи

CM CM
CO

CM
X

VO CM
00 о CM

rH

CO
CO

Ю
VO CM

со

Ov
pH

rH

pq

CM
vO
CM

oo
со

оin in l> CTv 00 t> CO
in
rH

о
.a

pq
•'3 •H я ■%

2 >
M CM vO Ю VO

CM
о Ov CMCO CO in

CM
CO
inCMa M

<D xNje ce

2>
<L>

§ CM
vO

О CM
о
rH

00 CM
VO

VO VO
in
in

in in
CM«0 PO,

>00
d>CO «

>cJ •*
<D

X 1
s ?
jo JS
rrt X

>lH

X
CM21 CO in f" о

CM 1-H
COin 00о *>>

>s<
*L>
а■Й

X "о
2>

CO

xCM CM CM4j* CO Ov CO 00 CM CO
00h 30

(L) X оN
ce 'o

•3 &

соOJ
CM VO

со s m rH
^ in

in
in

CMCMРч
00о

M CO
оaj

>o
X
X
о X
X

3<D
>»H

Ph 00
ce

>u
X

Kj£ <Dw
Ih KJсл

S’ > >
СЛ

jO4j>> ао
>Xjso сл

<D 2 о
>> ч>»ел

><и
00

U >о о
о

z
<D

ел
(L) jo2 аа 'о о о>о X"о'о в

1)
ооел

0) о
се X

се
X
се в 43й X

(D
X

<D
XX>U

« > £ Оj2 &
чсе

а
чсе ь'2 >иа ->1 QJ<D

00£ >> иNN оооо
Рч

26



Tabulka č. 4

Přehled počtu účastníků II. kola v kategorii Z

Kategorie Z

Kraj Z toho
dívek

Z toho
dívek

ÚP

Praha-město 232 319504 152

Středočeský 162245 126 79

Jihočeský 49336 169 18

Západočeský 24160 76 7

Severočeský 115246 113 48

285Východočeský 407 217 152

110Jihomoravský 530 242 38

138Severomoravský 336 135 49

Západoslovenský 452 276 117976

Středoslovenský 338697 94208

Východoslovenský 172 45426 104

Celkem 2272 1790 7994863

P — celkový počet účastníků; Ú — počet úspěšných řešitelů
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II. Přípravné úlohy I. kola

1. KATEGORIE A

1. Najděte všechny reálné kořeny rovnice
]]x2 + px + P + ]/x2 — px + P = X ,

kde p je reálný parametr.

ŘEŠENÍ. Číslo x je reálný kořen dané rovnice tehdy a
jenom tehdy, platí-li tyto vztahy:

x ^ 0,
x2 + px + p ^ 0; x2 — px + p ^ 0 ,

(Уx2 + px + p -f- ]/x2 — px + p)2 — x2.
Rovnici (3) upravíme na ekvivalentní tvar

2Уя2 + px + p . Уx2 — px + p = —x2 — 2p. (3')
Číslo x je reálný kořen dané rovnice tehdy a jenom tehdy,
platí-li vztahy (1), (2) a dále

—x2 — 2p ^ 0 , tj. x2 + 2p ^ 0 ,

(2Ул;2 -f px -j- p . ]/x2 — px + pY =
= (—X2 — 2p)2.

Rovnici (5) upravíme na ekvivalentní tvar
x2[3x2 — 4p(p — 1)] = 0 .

Z dané rovnice vidíme, že má kořen x — 0 tehdy a je-
nom tehdy, je-li parametr p = 0.

(1)
(2)
(3)

(4)

(5)

(4')
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Nechť tedy v dalším je p Ф 0. Potom x je reálný kořen
dané rovnice tehdy a jenom tehdy, platí-li vztahy (1), (2),
(4) a rovnice

3x2 — 4p(p — 1) = 0,

уP(P - !)•
Vidíme, že musí být p(p — 1) ^0, tj.

p < O anebo p ^ 1
(p — O nyní neuvažujeme). Z (4) je ovšem vidět, že p ne-
může být kladné, a tedy zbývá p < 0.

tj.

x2 =

Tedy: Je-li p Ф O, musí být p < O (jinak by rovnice
neměla řešení) а л; je reálný kořen právě když platí (1),
(2), (4 a

(6)

Reálné číslo (6) splňuje nerovnost (1). Musíme tedy
dále prozkoumat nerovnosti (2) a (4); dosadíme do nich
za x číslo (6) (které jediné může být hledaným řešením).
Přitom víme, že je p < 0. Z nerovnosti (4) plyne

+ 2í>£0, tj. 2(P~ 1} +1Ž0,4pjp - 1)
3

dostáváme tedy omezení
1

—

~2 — P < ° *

Dále zkoumejme nerovnosti (2):
a) x2 + px + p ^ 0,

4p(j> - 1) j/fci)+ 2p + P^ 0,3
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40-1) + 2 + 1^0,3

T/lP- 1) ^ 1 -
6

toto je ekv. s nerovnostmi

řO -1) <-
3

O ^ (2p + l)2, a to platí.

b) Druhá nerovnost (2) je

4Xp - 1)

x2 — ря + p ^ O ,

ž0 - !) + ÍŽO,-2p3 3

21/szs4Q>- 1) + 1^0,3

Vpíp - i) ^ i - ip
6

1
toto je splněno, neboť pro — — tĚp < O
je levá strana záporná, pravá kladná.

ZÁVĚR. Daná rovnice má reálný kořen tehdy a jenom

tehdy, je-li — P — 0- Kořen x je jediný a platí

X=2]/^J)
2. Zrkadlením na priemere ciferníka hodin prejdú ru-

čičky do nových poloh, ktoré budú vo všeobecnosti v roz-
pore s mechanizmom hodin, t. j. nebudú ukazovat’ možný
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čas. (Napr. v okamžiku, keď je presne jedna hodina, bude
zrkadlová poloha ručičiek vzhladom na priemer 9—3
takáto: malá ručička je presne na 5-ke, velká na 6-ke čiže
neukazujú možný čas.)

Nájdite všetky tie časy (polohy ručičiek) a polohy osi
súmernosti, kedy po zrkadlení vzniká možný čas.

RIEŠENIE. Problém sa zje-
dnoduší, ak budeme sledovat’
pohyb velkej ručičky vzhladom
na malú ručičku (obr. 1). Velká
ručička sa vzhladom na malú
otáča konštantnou uhlovou rý-
chlosťou co radiánov za hodinu
(v zmysle pohybu hodinových
ručičiek, ktorý sa váčšinou ozna-
čuje ako záporný zmysel). Vel’-
kosť tejto rýchlosti možno 1’ahko

vypočítat’ —

radiánov za hodinu — ale pri
dalších výpočtoch nepotřebuje-
me túto jej velkost’ poznat’. Ak
sa ručičky na ciferníku budú
kryt’, potom sa budú kryt’ aj na
obr. 1. Ak je na ciferníku uhlová
vzdialenosť velkej ručičky od
malej meraná v zápornom zrny-
sle a, potom bude tomu tak aj
na obr. 1.

Nech sú I a II také stavy na ciferníku hodin (obr. 2),
že existuje priemer ciferníka, podlá ktorého je stav I osové
súmerný so stavom II (resp. stav II osové súmerný so
stavom I). Pozorovatelovi, ktorý předpokládá, že malá
ručička je v klude, sa táto skutočnosť bude javiť tak ako

jeto (2*-f)
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na obr. 3. Obrátene platí: situácia z obr. 3 znamená, že
existuje aspoň jeden priemer ciferníka, ktorý je osou sú-
mernosti prevádzajúcej stav I do stavu II (resp. stav II

do stavu I). Možno teda uro-
biť tento čiastkový závěr: Ku
každému stavu I na ciferníku
hodin existuje aspoň jeden taký
stav II na ciferníku, že existuje
osová súmernosť podlá prieme-
ru ciferníka, ktorá prevádza
stav I do stavu II.

Ak boli hodiny v čase tx ho-
din v stave I, potom v stave II
sú v čase

2a -j- 2kiz
(1)ř2* — h +

hodin, kde k je celé číslo, pretože do stavu II musí prejsť
velká ručička (pozři obr. 3) uhlovú dráhu (2a + 2kn)
radiánov. Doby t2k dané vzťahom (1), kde k je celé číslo,
sú právě všetky doby, kedy existuje osová súmernosť po-
žadovaná v texte úlohy. Příslušná os súmernosti sa určí
ako priemer ciferníka, v ktorom je velká ručička v čase

CO

a -j- kizh + t2lc
— h +

co

čo sú, ako vidno z obr. 3, právě tie okamžiky, keď obe
ručičky zvierajú uhol 0 alebo n radiánov, t. j. ležia v tom
istom priemere ciferníka.

ZÁVĚR. Možný čas vzniká vždy právě vtedy, keď
osou zrkadlenia je ciferníkový priemer, ktorý má tú
vlastnost’, že mechanizmus hodin pripúšťa, aby obe ru-
čičky súčasne ležali v tomto priemere.
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JINÉ ŘEŠENÍ. Předpokládejme, že existují dva
stavy I a II které jsou souměrně sdružené podle nějakého
průměru o ciferníku (obr. 4). Představme si, že velká ru-
čička, která je ve stavu I, se
otočí o úhel a v kladném smys-
lu tak, aby ležela v ose o, a že
velká ručička, která je ve stavu
II, se otočí také o úhel a, ale
v opačném smyslu (tj. v zápor-
ném). Malé ručičky se přitom
pohybují v souhlase s mecha-
nismem hodin. Potom dosta-
neme stavy Г а II', při nichž
velké ručičky splývají na našem
průměru o a polohy malých
ručiček jsou opět souměrně
sdruženy podle osy o (obr. 5).

Poněvadž stavy Г а 1Г před-
stavují možné časy, musí po
určité době, uplynulé od sta-
vu Г, nastat stav 1Г. Z toho,
že polohy velkých ručiček v Г
а 1Г splývají, plyne, že tato
doba je celý počet h hodin.
Přitom ze symetrie Г а 1Г je

h
vidět, že přesně za hodin od
stavu Г bude malá ručička na

h .

ose o. Jelikož — je číslo buďcelé,

anebo celé + bude velká ručička v té chvíli opět na

ose o (buď se bude krýt s malou, anebo bude na opačné
straně od ní).
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Tak jsme dokázali, že průměr o má tuto vlastnost:
Existuje časový okamžik, v němž obě ručičky leží v ose o.
Z předchozí úvahy však také plyne, že zrcadlový obraz
každého možného stavu ručiček na hodinách podle takové
osy o je opět stav, který mechanismus hodin připouští.

Nyní ještě můžeme určit počet os souměrnosti, které
mají vlastnost požadovanou textem úlohy. Stačí jen najít
ty průměry ciferníku, v nichž v souhlase s mechanismem
hodin se ručičky v jistém okamžiku kryjí. Jestliže se totiž
obě ručičky v některém okamžiku na jistém průměru
kryjí, pak za 6 hodin budou ležet v témž průměru a svírat
úhel -тс radiánů (a obráceně).

Jestliže se ručičky na ciferníku kryjí, pak se budou
znovu krýt za

2n 27Z 12

и oo-co
2-k - -5-

6

Podle obr. 1 je zřejmé, že uvažujeme-li pohyb velké
ručičky vzhledem к malé, musí velká ručička od oka-
mžiku, kdy se kryla s malou ručičkou (a = 0), urazit
úhlovou dráhu 2iz radiánů, aby se za nejkratší možnou
dobu opět kryly. Za 12 hodin nastane tedy krytí ručiček

[l2 : -j^-jkrát, tj. 11 krát. Hledaných os je tedy 11.
ř 3. V rovině q jsou dány dvě neshodné úsečky AB, CD.

Sestrojte všecky takové body X roviny q, pro které platí
Л ABX ~ A CDX.

ŘEŠENÍ. Podle textu úlohy platí Д ABX ~ Д CDX,
tj.

АХ BX AB
CX ~ DX (1)CD ^ ^5
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neboť úsečky AB a CD jsou neshodné. Ze vztahu (1)
plyne, že bod X leží

(a) na Apolloniově kružnici h, která je množinou všech
bodů Y roviny q3 pro něž platí

AY AB
= k, kde k = CD’

(b) na Apolloniově kružnici /, která je množinou všech
CY

ABBZ
k3 kde k —bodů Z roviny q3 pro které platí

Z (a) a (b) plyne KONSTRUKCE: Bod X, existuje-li,
je společným bodem kružnic hal (obr. 6).

CD *
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Provedeme ZKOUŠKU. Z konstrukce vyplývá, že
BX ABAX

= k, = k, = ъ
CDCX DX

tj. skutečně Д ABX ~ Д CDX.
DISKUSE. Kružnice /га/ lze sestrojit, právě když

А Ф С а В Ф D.
1. Je-li A — C nebo В = D, potom nelze pro žádné X
splnit (1), tj. úloha nemá řešení.
2. V případě А Ф С а В Ф D jsou řešením úlohy všech-
ny takové body X, společné kružnicím /г, /, pro které
platí X $ AB а X $ CD. (Pro X e AB nebo X e CD ne-
vznikne Д ABX nebo Д CDX.)

4. Určité všetky hodnoty parametra a, pre ktoré nemá
rovnica

(1)sin2 x — a sin

žiadny kořeň.
RIEŠENIE. Podlá vzorca

cos (a + /?) — cos (a — /3) = 2 sin a sin /?
dostaneme

2ti \
cos-r)■y ^cos 2x —

sin2 л: = —

čiže

У (l — 2sitfx + i-)sin2 x = —

čiže
3a

1) sin2 jc = —.J 4 (2)(a
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Rovnice (1) a (2) sú ekvivalentně. Ak je a — 1, je rovnica
(2) neriešitelná. Ak je а Ф 1, vyplývá z (2)

3a
(3)sin2 л; =

4{a - 1) '
Rovnica (3) je neriešitelná právě vtedy, keď buď
a) čitatel’ a menovatel’ zlomku na právej straně majú
opačné znamienka, t. j. keď platí buď

a > 0 , a — 1 < 0 (4)
alebo

(5)a < 0 , a — 1 > 0
alebo

b) čitatel’ a menovatel’ sú súhlasných znamienok, ale zlo-
mok na právej straně rovnice (3) je vačší než 151. j. právě
vtedy keď

1 < a < 4 .

Z nerovnosti Г4) vyplývá 0 < a < 1, nerovnosti (5) si
odporujú.

ZÁVĚR. Daná rovnica je neriešitelná právě vtedy, keď
platí: 0 < a < 4.

2. KATEGORIE В

1. Rok 1967 začal i končil nedělí. Která příští léta
20. století budou mít tutéž vlastnost?

ŘEŠENÍ. Nechť žádaná událost nastane r. 1967 + x.

Rok 1968 je přestupný. V jc letech, která následují po
roce 1967 je у roků přestupných a 3у z roků obyčej-
ných; přitom z znamená některé z čísel 0, — 1, —2, — 3.
Táž úvaha platí i pro záporné x. Je tedy

X—уф 3yJrz = 4y-\-z.
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V těchto letech je 366y + 365(3у + z) = 14613; +
+ 3652 dnů a toto číslo musí být násobek sedmi, takže

1461y + 3652 = Ik ,

kde k je celé číslo. Vynecháme-li násobky sedmi, dosta-
neme 5y + z = Ih,
kde h je opět celé číslo.

a) Pro 2 = 0 dostaneme 5y — Ih a tomu vyhovuje
každé у = 7м, kde и je celé číslo. Pak je x — 28u.

b) Pro 2 = — 1 vychází 5y — 1 = Ih, odtud plyne
у — lu + 3, takže x — 4(7и + 3) — 1 = 28м +11.

c) Pro 2 = — 2 máme 5y — 2 = lh3 z toho dostaneme
3> = 7м + 6ая = 4(7м + 6) — 2 = 28м + 22.

d) Pro 2 = —3 je 5y — 3 = 7Л, takže у = lu + 2,
я = 4(7м + 2) — 3 = 28m + 5.

Řešení dávají formule a), b), c); formule d) řešení ne-
dává, neboť vede к přestupným rokům, které sice končí
nedělí, ale začínají sobotou. Nedělí začínají a končí ná-
sledující roky tohoto století:

1905, 1911, 1922, 1933, 1939, 1950, 1961, 1967, 1978,
1989, 1995; řešením úlohy jsou tedy léta 1978, 1989
a 1995.

JINÉ ŘEŠENÍ. Úlohu lze řešit postupem, který je
vhodný i pro kategorii Z. Z rovností

365 = 7.52 + 1 ,

366 = 7.52 + 2
plyne, že nepřestupný rok končí týmž dnem v týdnu jako
začal (např. začne-li nedělí, pak nedělí také skončí) a že
přestupný rok končí dnem v týdnu bezprostředně násle-
dujícím po dni, kterým začal (např. začne-li nedělí, pak
skončí v pondělí). К řešení si stačí sestavit tabulku tohoto
typu:
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Rok 1. I. 31. XII.

1967 Ne Ne

Ú1968 Po

St St1969

ČČ1970

Pá1971 Pá

Ne1972 So

1973 PoPo

ÚÚ1974

1975 St St

Č1976 Pá

So So1977

Ne1978 Ne

1979 Po Po

Dokončíme-li tabulku až do roku 2 000, nalezneme
další řešení a zjistíme, že vlastnost požadovanou v úloze
mají jen roky 1978, 1989 a 1995.

Použitá metoda se však zřejmě příliš nehodí к řešení
úloh tohoto typu, jestliže počet v úvahu přicházejících
roků je dost velký.

2. Ak sú x13 x2y . . ., xn kladné čísla, potom platí
X2xx xn-1 (1)“ Ь

лп
+ ...+

xn—1 X2 xx
dokážte.

39



RIEŠENIE. Pre n = 1 je veta evidentná. Ak je n > 1,
rozlišujme dva případy: a) n párne, b) n nepárne. V oboch
prípadoch použijeme pomocnú vetu P. ,

P. Ak sú a, b dve kladné čísla, potom je -y + — ^ 2.
DOKAŽ. Pre čísla a, 6 zrejme platí (a — b)2 ^ 0,

z čoho máme a2 — 2ab + b2 ^ 0 čiže a2 + 62 ^ 2ab а
z toho vzhladom na to, že čísla я, b sú podlá předpokladu

a2 + b2 > 2 čiže -f- + — > 2, čo sme— b a —
kladné, vyplývá
mali dokázat’.

a) Ak je n = 2m (m prirodzené), zoskupíme v (1) prvý
a posledný člen, druhý a predposledný člen, atď. Dosta-
neme tak m dvojíc zlomkov takých, že súčet každéj dvo-
jice je podlá vety P váčší alebo rovný dvom. Súčet 1’avej
strany (1) je teda váčší alebo rovný číslu 2m = n.

b) Ak je n — 2m + 1 (m prirodzené), postupujeme
analogicky. Dostaneme tak m dvojíc zlomkov, z ktorých
každá má súčet váčší alebo rovný dvom a okrem toho

ab

Xm+i
= 1. Súčet 1’avej strany (1) je tedaešte jeden člen —

v tomto případe váčší alebo rovný číslu 2m + 1 = n.

3. V rovině sú dané dva rožne body M, N a velkost’
uhla у (0° < у < 180°). Trojuholník ABC má bod M za
střed strany AC a bod N za střed strany BC. Ďalej platí
^ACB = y.

Určité: a) množinu vrcholov C; b) množinu vrcholov A
všetkých takých trojuholníkov ABC.

RIEŠENIE. a) Uhol <£ MCN = y, t. j. podlá vety
o obvodových uhloch ležia body C na dvoch kruhových
oblúkoch, ktoré majú krajné body Aí, N a ktoré sú sú-
merne združené podl’a priamky MN. Obrátene sa 1’ahko
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přesvědčíme, že ku každému bodu C týchto dvoch oblú-
kov s výnimkou bodov M, N možno zostrojiť dva body
A, В tak, že vznikne trojuholník ABC s uhlom ACB =
= у a so střednou priečkou MN || AB. Množina bodov C
je na obr. 7 hrubo vytiahnutá. Body M, N do nej ne-
patria.

b) Bod M je střed strany AC. Z časti a) vyplývá, že
množinou všetkých bodov A je útvar súmerne združený
podlá středu M к útvaru, ktorý je množinou bodov C
(pozři obr. 7. Body N± a M do tejto množiny nepatria).

4. Jsou dána dvě kladná čísla a, b (a > b).

a) Určete všechny hodnoty podílu pro něž lze se-b
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strojit trojúhelník ABC se stranami délek a, b, c = ]/ab.
b) Určete všechny hodnoty podílu pro které bude

trojúhelník ABC z odst. a) ostroúhlý (pravoúhlý, tupo-
úhly).

ŘEŠENÍ. К tomu, aby existoval trojúhelník se stra-
námi délek a, b3 c, je nutné a stačí, aby byly splněny ne-
rovnosti

b < a + ]/ab , ]/ab < a + b, a < b + ]/ab .

Jelikož předpokládáme a > b, je první nerovnost jistě
splněna. Totéž platí pro druhou nerovnost, což uvidíme,
povýšíme-li ji na druhou. Zbývá tedy poslední nerovnost;
tu můžeme psát

a — b < ]/ab .

Odtud dostaneme
a2 + b2 - 3ab < 0

a po dělení b2 dostaneme nerovnost, které má vyhovovat

poměr -y:

&)'-»(*) + 1 <0.

Jejím řešením je (vzhledem к a > b)

1 <-f <4-(3 + Vš).
Jelikož a je zřejmě nej delší z úseček a, b, c, může být

pravý nebo tupý jenom úhel proti ní. Podle kosinové věty
máme pro kosinus tohoto úhlu výraz

(b2 + c2 - a2) Qb2 A- ab- a2)
2b У ab2bc
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takže stačí vyšetřit znaménko výrazu (b2 + ab — a2) vy-
jádřeného jako funkce poměru (a/6):

КФ) = i + m - чьу •

Funkce f(x) = 1 + x — x2 (kvadratický trojčlen) má
kladný kořen k = (1/2) (l + ]/ 5) = 1,618 . .takže

trojúhelník ABC je ostroúhlý, když /(a/b) > 0 ,

trojúhelník ABC je pravoúhlý, když f(a/b) — 0 ,

trojúhelník ABC je tupoúhlý, když /(a/6) < 0 .

Vzhledem к tomu, že 1 < (a/6) < (1/2) (3 + ]/5), vidíme,

že ABC je ostroúhlý pro (a/6) e ^1, >
1 + У 5pravoúhlý pro (a/6) =

tupoúhlý pro (a/6) e

2

ř)-3 +

5. KATEGORIE Z

1. Zdeněk krátil při výpočtech zlomky takto:
JŽ _ _L 2^ _ 2^ W _ 1
^4 - 4 ; ^5 “ 5 ; №5 ~ 5 ‘

Učitel tento způsob „krácenť* pochopitelně neschvaluje,
ale Zdeněk se hájí tím, že výsledek je správný.

Najděte všechny zlomky a) s dvojcifernými, b) s troj-
cifernými čitateli i jmenovateli, které mohl Zdeněk svým
způsobem „krátit“ a přitom dostal správný výsledek.

ŘEŠENÍ, a) Čitatel i jmenovatel zlomku, který je
možno podle Zdeňka „krátit“, jsou dvojciferná čísla, a
proto můžeme takový zlomek psát ve tvaru

43



10a + 6
10b + c'

V případech, kdy má Zdeněk pravdu, platí
10a + b
106 + с c 5

přičemž čísla a, 6, c jsou přirozená menší než 10.
Z rovnice (1) plyne

a

(1)

10a6
(2)c —

9a + b
O číslech a, 6, c víme, že jsou přirozená menší než 10,
přičemž číslo c splňuje vztah (2). Čísla a, 6, c těchto
vlastností vyhledáme tak, že a, b budeme volit a číslo c
počítat pomocí vzorce (2). Chceme-li nalézt všechny
zlomky, kde je možno „krátit" Zdeňkovým způsobem,
musíme při volbě čísel a, b postupovat tak, abychom vy-
střídali všechny možnosti.
1. Zvolme a — 1. Pro b a c sestavme tabulku:

b i 2 3 4 5 6 7 8 9

10 60 9020 30 40 50 70 80
c

10 11 12 13 14 15 16 1817

Obdrželi jsme řešení: a — b — c — 1, tj. = -j-,
i г * , • 16 1

a = 1, 6 = 6, c = 4, tj. 64 4 5

A9. _ Jl
95 - 5 '

a = 1, 6 = 9, c = 5, tj.
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2. Zvolme a = 2. Pro бас sestavme tabulku:

5b i 2 3 4 6 7 8 9

40 60 80 100 12020 140 160 180
с

20 22 23 24 2519 21 26 27

Nalezli jsme další řešení: a = 6 = c = 2, tj.
22

_ _2
22 “ 2 5

_ , _ . 26 2
a = 2, 6 = 6, c = 5, tj. =

OD

3.—9. Volíme-li postupně a = 3, 4,. . 9, najdeme další
zlomky, pro něž platí a — b — c, tj.

33 _3_ 44 _ _4_
33 “ 3 5 44 — 4 5' * *5 99 ~ 9 5

5 *

99 9

a ještě případ
49 4

« = 4, 6 = 9, c = 8, tj. = 8 ‘

ZÁVĚR. Zlomky 11 22 99 J16^ 26 49
11 5 22 ’"•’ 99 5 64 ’ 95 ’ 65 ’ 98

jsou všechny zlomky vyhovující úloze.
b) Postupujeme obdobně jako v části а). V tomto případě
jde o nalezení přirozených čísel a, 6, c menších než 10,
které splňují rovnost

100a +106 + 6 a

1006 + 106 + c

Snadnou úpravou zjistíme, že pro c platí
c
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10ab
с —

9а + Ь 3
tj. vzorec (2). Je tedy možno využít výsledků z části a).
Všechny zlomky, které splňují část b) naší úlohy, jsou:

999 166 199 266 499
111 5 222 5 ‘ ' 5 999 5 664 5 995 5 665 5 "998'*
111 222

POZNÁMKA.

Úlohu lze dále různými způsoby zobecňovat, např. platí
1 666 1 4 9999

__ 4
666 4 ~ 4 5 9999 8 ~ 8 ’

Dále je možno i uvažovat jiné typy „krácení“. Označme
krácenou číslicí a3 nekrácené číslice x3 y3 potom by např.
v úloze a) bylo možno celkem uvažovat zlomky těchto
tvaru: -^7 (připuštěno ulohou); —; ; —.

yCL CLy yCL
2. Nákladným autom sa má previezť m ton stavebného

materiálu do vzdialenosti d km (po vodorovnej ceste).
Auto má hmotu V ton. Pri stálom výkone motora je
rýchlosť auta nepriamo úměrná celkovej hmotě auta a
nákladu. Čas nakladania a skladania (přibližné rovnaký)
je priamo úměrný hmotě nákladu. Materiál nemožno
naložit’ na jeden raz, ale třeba ísť niekolkokrát.

Rozhodnite výpočtom, čo je časové výhodnejšie: Na-
kladať menej, chodit’ teda rýchlejšie, ale samozřejmé
viackrát, alebo nakladať viac, chodit’ pomalšie, ale zato
menejkrát. (Na čas rozbiehania a zastavovania vozidla
neprihliadame.)

RIEŠENIE. Predpokladajme, že auto išlo celkom
и-krát (и ^ 2). Nech m13 m23 ..., mn sú hmoty jednotli-

ay
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vých nákladov v tónách, v13 v2, . . ., vn rychlosti v km/h
pri dopravě týchto nákladov a ř15 f2, . . tn doby v hodi-
nách potřebné к naloženiu а к zloženiu týchto nákladov.
Rychlost’ prázdného auta v km/h označme c.

Celková doba T v hodinách potřebná na převezeme
všetkého materiálu je:

T~ [h + 4^ + h + t) + [h + 4; + h+4)+
+tn+41)п c

— +...+

• • ~b [tn H—
\ v

- 2 (h + t2 + • • • +

1 \ . nd
vn / c

Podlá textu úlohy platí (q a k sú konstanty úměrnosti):
ti = qm13 ř2 — • • •> tn = tqmn 3

+ •

+ г„) + d (-J- + (1)+ —•

(2)
&& k

-> vn =c = Vi = ^2 =7 5 F + wii 5 F + m2 5' •
k

(3)F + '
Po dosadení z (2) a (3) do (1) dostaneme
T = 2q(m.i -f- m2 + тяи) +

я ♦ V + {mi + m2 + . . . 4- mn) ndV
+ d k

Zrejme platí тг + m2 + . . . + mn = m, a preto
2dV dm

T = n .
— A . ti -f- В,+ 2?m +

kde А а. В sú konstanty. Celková doba T bude tým men-
šia, čím menšie bude n3 t. j. časové výhodné je nakladať
tak, aby počet ciest bol čo najmenší.

k
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3. Je daný štvorec ABCD so stranou a = 10 cm.
Každá zo stráň BC, CD je rozdělená deviatimi bodmi na
desať zhodných úsečiek. Střed К strany AB je spojený
s deliacim bodorn X strany BC a vrchol В je spojený
s deliacim bodom Y strany CD. Ktoré deliace body X, Y
musíme vybrat’, aby priamky KX, BY boli navzájom
kolmé ?

Y C

X

A

Obr. 8

RIEŠENIE. V zhode s obr. 8 označme hladaný deliaci
bod na straně ВС X a deliaci bod na straně CD označme
Y. К tomu, aby priamky KX, BY boli na seba kolmé,
musí platit’

Д KBX ~ Д BCY.
Z toho máme

(1)BX: BK — CY: BC .
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/3, kde pre prirodzenéOznačme ďalej BX = а, СУ
čísla a, (} platí:

0 <0 < 10.

Kedze BK = -^- = 5, DC == a = 10, po dosadení do (1)
dostaneme

0 < a < 10 ,

a:
2

z čoho
(5 = 2cc.

Vyhovujú teda tieto hodnoty

i 2 3 4

/3 6 82 4

Úloha má podlá toho štyri rožne riešenia.
4. Je dán obdélník ABCD, jehož strany AB, DC jsou

v poměru 2:1. Do obdélníku je vepsána polokružnice k
nad stranou AB jako průměrem. Úhlopříčky AC a BD
protínají kružnici k po řadě v bodech F, E.

Určete obsah obrazce, který je omezen obloukem EF
polokružnice k a úsečkami DC, CD, DE.

ŘEŠENÍ. Obrazec O popsaný v úloze dostaneme
z rovnoramenného lichoběžníka DCFE oddělením úseče
nad tětivou EF (obr. 9). Označme Px obsah lichoběžníka
DCFE, P2 obsah výseče SFE a P3 obsah Д SFE, kde S
je střed strany AB. Je-li P obsah obrazce O, potom

P = Л + p3 - p2.
Označíme-li r poloměr vepsané polokružnice, potom

(1)
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AB — 2r a BC = r. Označme R průsečík přímky EF a
ВС. К výpočtu Pl3 P2, P3 potřebujeme znát velikosti
úseček EF a CR.

Platí
(2)EF = 2r - 2 . FR .

Podle Thaletovy věty je <$:AFB = 90° a FB je tedy
výška v Д ABC. Pro obsah tohoto trojúhelníka platí:

1 1

j AB . BC = -j AC . FB ,

2r . r

АС у 4Г2 _[_ r2 у 5
Protože je Д PPF ~ Д ЛБС (věta uu), platí

FP СБ

FB ~ ČA3

tj- AB . BC 2r
FB =
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tj.

FR = l 2r 2
rV5 ' V5 5 'Г '

Z rovnosti (2) potom dostáváme
4

2r —Д-
6

(3)— r = r

5 5

Z podobnosti Д FRC ~ Д ABC (věta uu) plyne
CR BC_
FR ~ AB 5

tj.

CR — ~ 2 1
(4)ZT— . r ■= -=-r .

2r 5 5

Užijeme-li (3) a (4), máme

r' (2r + Tr)51 1 1
P1 = f.CR.(DC + EF) = 2 ’ 5

tj.
8

(5)^=25r-
Dále dostáváme

5Г)’2 •ТГ-(Г1 1
P3 = fEF.BR =

tj.
12

(6)Рз 25
r2.

Zbývá ještě určit P2. Označme <£ ESF = 2a. Potom platí
Tir2a

(7)P2 = 180 5
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kde
1

2EF
= 3

BR 4 5

(Užito bylo tabulek M5 z tabulek pro ZDŠ.)
Spojením (1), (5), (6) a (7') dostáváme

(7')tj. a =37°.tg a =

-

OCTÍ
. r2 == 0,154r2 .P 0,8 - 180
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III. Súťažné úlohy I. kola

1. KATEGÓRIA A

1. V sáčku je 100 hracích známok označených číslami
100. Kolkými sposobmi možeme zo sáčku1, 2, 3, .

vytiahnuť tri známky tak, aby súčet čísel na nich uvede-
ných nepresiahol 100? Kolko je to percent zo všetkých
možných ťahov po troch známkách?

• O

RIEŠENIE. Ide zrejme o počet všetkých trojíc prirod-
zených čísel x, у, z, z ktorých každé dve sú navzájom
rožne a pre ktoré platí

x + у + z ^ 100 .

Pretože na označení čísel nezáleží, možeme předpokládat’,
že x < у < z. Najváčšie možné x je 32, pretože preň
máme tieto možnosti: 32 + 33 + 34 = 99, 32 + 33 -f
+ 35 = 100, zatial čo 33 + 34 + 35 = 102 > 100.

Ak zvolíme 1’ubovolné prirodzené číslo x tak, aby 0 <
< x ^ 32, možeme za у voliť ktorékolvek z čísel x + 1,
x + 2, . . ., x + w, kde n je najváčšie prirodzené číslo,
pre ktoré platí (x -f- n) + (x + n + 1) ^ 100 — x, t. j.

98 - 3x99 — 3x
pre x nepárne a n =

párne. Číslo z je potom třeba voliť tak, aby у < z ^
lí 100 — x — y. Máme teda pre každú dvojicu x, у —
— x + k, kde k — 1, 2, . . ., n celkom (100 — x — y) —

pre xn
2 2
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— у — 100 — Зх — 2k možností pre z a pre každú volbu
čísla x celkom

m = (100 - 3x - 2) + (100 - 3x - 4) + . . . +
+ (100 — 3x — 2n) — n(99 — 3x

možností pre volbu čísel у a z. Pre nepárne я je
99 — 3x

n)

i*) -■

99
99 — 3xm =

2

pre párne x je
98 - 3sj =

98 - 3x
99 — 3x —m —

2

100 — 3x 98 — 3x
2 2

Celkový počet r všetkých riešení dostaneme, ak sem po-
stupně dosadíme x — 1, 2, . . 32 a sčítáme. Dostaneme

r = 482 + 47.46 + 452 + 44.43 + . . . . +
+ 32 + 2 . 1 .

Pretože pre lubovolné a je
(За)2 + (За - 1) (3a - 2) - 18a2 - 9a + 2,

dostáváme
r = 18(12 + 22 + . . . + 162) -

- 9(1 + 2 + . . . + 16) + 32
a s použitím známých vzorcov

1
1 + 2 + -- - + & — -y k(k + 1) j l2 + 22 + . . . +

1
+ k* = fk(k + l)(2k + l),

ktorých správnost’ pre každé prirodzené číslo k sa 1’ahko
dokáže matematickou indukciou, stadia! máme
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г = 3 .16 . 17.33 - 9.8 . 17 + 32 =

= 25 736 .

Existuje teda 25 736 trojíc čísel x, jy, z, ktoré splňujú danú
podmienku.

/io°j =*161 700 Troji.Všetkých trojíc čísel x,y, z je
ce, ktoré vyhovujú úlohe, představujú teda 15,9 % vset-
kých možných trojíc.

2. Je-li n liché číslo, je číslo
N — w6 + 3w4 + 7n2 — 11

dělitelné číslem 256. Dokažte.

ŘEŠENÍ. Pro zkoumání dělitelnosti je užitečné roz-
ložit daný mnohočlen v součin jednodušších mnohočlenů.
Dosadíme-li n2 = x3 má daný mnohočlen tvar x3 +
f 3x2 + Ix — 11. Protože x — 1 je kořenem rovnice

я3 + Зл:2 + lx — 11 = 0 ,

je mnohočlen x3 + Зл;2 + lx — 11 dělitelný dvojčlenem
x — 1. Je tedy

x3 + 3x2 + 7x — 11 = (x — 1) (x2 + px + q). (1)
Koeficienty p, q zjistíme tím, že na pravé straně (1) vy-
násobíme a porovnáme koeficienty při týchž mocninách.
Vyjde

x3 + 3x2 -f 7x — 11 = x3 + (p — l)x2 +
+ (q — P)x - q;

odtud plyne p — 1 = 3, p
tečně je —11

x3 + 3x2 + 7x — 11 = (x — 1) (x2 + 4x -)- 11). (2)
Řešením kvadratické rovnice x2 4“ 4x 4- П == 0 dosta-
neme kořeny imaginární, proto mnohočlen x2 4- 4x +

4, q — p — 7, q — 11a sku-
q. Máme tedy rozklad
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+ 11 nelze rozložit v dvojčleny s reálnými koeficienty.
Dosadíme-li v (2) opět x — n23 vyjde

N — (n2 — 1) (w4 + 4n2 + 11) .

Protože zjišťujeme dělitelnost číslem 256 (= 162), je
vhodnější vyjádřit liché číslo n ve tvaru 4v + 1 (v celé),
nebo ve tvaru 4v — 1 (v celé).

a) Je-li n — 4v + 1, je n2 — 1 = I6v2 + 8v —
= 8v(2v + 1).
O druhém mnohočlenu v (3) platí po úpravě
я4 + 4n2 + 11 = 256И + 256v2 + I60v2 + 48v + 16 —

- 32k + 16(3v + 1).
Celkem tedy můžeme v případě n — 4v + 1 psát

N = 8v(2v + 1) [32k + 160 + 1)],

(3)

čili
I28v(2v 4- 1) [2к + 3v + 1] .

je-íi nyní v sudé, je hned vidět, že N je násobkem čísla
256. Je-li v liché, je číslo v hranaté závorce sudé, takže N
je opět násobkem čísla 256.

N

I6v2 — 8v násobkem
čísla 16 právě tehdy, když je v sudé; je-li v liché, je ná-
sobkem osmi.

b) Je-li n = 4v — 1, je n2 — 1

O druhém mnohočlenu v (3) platí po úpravě
w4 + 4n2 + 11 = (256И - 256r3 + I60v2) -

- 48 + 16 = 32k — 160 — 1) •

Je-li v sudé, je číslo (4) násobkem čísla 16, a tedy N ná-
sobkem čísla 16 . 16 = 256. Je-li v liché, je n2 — 1 ná-
sobkem osmi, ale и4 + 4n2 + 11 je podle (4) násobkem
čísla 32. Je tedy také v tomto případě N násobkem čísla
256 = 8.32.

Tím je úloha rozřešena.

(4)
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JINÉ ŘEŠENÍ. Ve výrazu pro N se n vyskytuje jen
v sudých mocninách. Položíme proto m = и2. Je-li n
liché, tj. tvaru n — 2k + 1, bude

m = {2k + l)2 = 4&2 + 46 + 1 - Щк + 1) + 1.
Ze dvou čísel k,k-\- 1 je nutně jedno sudé, je tedy m tvaru

m — 8r + 1 .

Potom však
N = m3 + 3m2 + Im — 11 =

- (8r + l)3 + 3(8r + l)2 + 7(8r + 1) - 11 =
256r3 4- 192r2 + 24r + 1 + 192r2 + 48r +'3 +

+ 56r + 7 - 11 - 256r3 + 384r2 + 128r =

- 256r3 + 128r(3r + 1) .

Je-li r liché, je 3r + 1 sudé, takže součin r(3r + 1) je
vždy sudý: r(3r + 1) = 2s. Je potom

N - 256(r3 + s),
tj. N je dělitelné číslem 256.

POZNÁMKA. Číslo 256 je zřejmě nejvyšší mocnina 2,
kterou je N vždy dělitelné — stačí uvážit případ r tvaru
4/ + 2 — 2(2/ + 1).

3. Je daná nerovnost’

*_ , 2a_
]/ X y]/X

“My 2^У (1)- +<
У 5

kde x, у sú premenné a a reálny parameter.
a) Určité množinu všetkých bodov v rovině, ktorých

pravoúhlé súradnice я, у vyhovujú danej nerovnosti.
b) Pre a — 3 určité súradnice všetkých bodov s celo-

číselnými súradnicami, ktoré patria do tejto množiny.

У

RIESENIE. a) Daná nerovnost’ má zmysel len pre
x > 0 , у > 0 . (2)\
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Preto v ďalšom budeme uvažovat’ len о I. kvadrante sú-
radnicového systému. Postupnými úpravami nerovnosti
(1) dostaneme

2]/y a]/y 2ax
<0,

]/ x y^xУ У

xy — 2]/л; ]/y — a]]x ]/y + 2a <0,
у]/ X

]/x Уу (1/дс Уу — 2) д(У* ]/у — 2) <0,
.уУ*

(Уд: ]/jy — 2) (Ух ]/у — а) <0.
У ]/х

Vzhladom na (2) je menovatel’ tohto zlomku kladné číslo.
Musí preto platit’:

Q/x]/y - 2) {Г*Ту a) < 0 .

1. Ak a = 2, potom výraz na 1’avej straně nerovnosti (3)
má tvar (]/x ]/у — 2)2, čo je zrejme číslo nezáporné.
Pre a — 2 nemá teda daná nerovnost’ riesenie.

(3)

2. Ak a < 2, potom —a > —2 a tiež ]/x]/y — a >
> ]/x]/у — 2, z čoho vyplývá, že ak má platit’ nerovnost’
(3), musí byť

^x]lу — a > 0 ,

У x ]/y — 2 < 0 .

Třeba preto rozoznávať dva případy: а^О, 0<a<2.
Ak a ^ 0, potom nerovnost’ (4) zrejme platí pre každé

dve kladné čísla x, y. Nerovnost (5) možeme vzhladom na
(2) upravit takto: У л: ]/у <2 čiže xy < 4, z čoho

(4)
(5)

4
(6)у < —•

X
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Z prvého kvadrantu vyhovujú nerovnosti (6) súradnice
vonkajších bodov rovnoosej hyperboly určenej rovnicou

4
(7)у = —

x

Ak je a ^ 0, sú teda hladanou množinou bodov, ktorých
súradnice vyhovujú nerovnosti (1) tie body prvého kva-
drantu, ktoré sú vonkajšími bodmi hyperboly (7).

Ak 0 < a < 2, móžeme nerovnost’ (4) vzhladom na
podmienky (2) upravit’ takto: ]/ x ~jу > a čiže xy > a2,
z čoho

a2
(8)У > —•

x

Nerovnosti (8) vyhovujú súradnice vnútorných bodov
rovnoosej hyperboly určenej rovnicou

a2
(9)у = —

л;

Ak je 0 < a < 2, hladanou množinou bodov, ktorých
súradnice vyhovujú nerovnosti (1) sú teda tie body I. kva-
drantu, ktoré sú vonkajšími bodmi hyperboly určenej
vzťahom (7) a zároveň vnútornými bodmi hyperboly urče-
nej vzťahom (9).

3. Ak a > 2, potom —a < —2 a tiež ]/x ]/y — a <
< ]/ x 1у — 2, z čoho vyplývá, že ak má platit’ nerovnost
(3), potom musí byť ]/x]fу — a <0, ]/x]/у — 2 > 0.
Vzhladom na podmienky (2) možno však tieto nerovnosti
upravit’ takto: ]/x ]/jy < а, ]/я jAy >2 čiže

xy < a2,
xy > 4,

£Z2 4
z čoho_y < —, v > —. Tejto sústave vyhovujú súrad-

X X

(10)
(И)
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nice tých bodov, ktoré sú vonkajšími bodmi hyperboly
určenej rovnicou

a2
(12)У = —

x

a zároveň vnútornými bodmi hyperboly určenej rovnicou
4

(13)у — —
X

Ak je a > 2, potom hladanou množinou bodov, ktorých
súradnice vyhovujú nerovnosti (1), sú teda tie body
I. kvadrantu, ktoré sú vonkajšími bodmi hyperboly (12)
a zároveň vnútornými bodmi hyperboly (13).

b) Ak a = 3, je a > 2 a teda podlá vzťahov (10), (11)
musí platit’ 4 < xy < 9 .

Keďže xy má byť celé číslo, z týchto nerovností vyplývá,
že

/♦
8 •'

?

6-

5--

4

3

2

1 ■-

0 123456 78х

Obr. 10
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5 ^ xy ^ 8 .

Týmto nerovnostiam vyhovujú len tieto usporiadané
dvojice prirodzených čísel: [1,5], [5,1], [1,6], [6,1], [1,7],
[7,1], [1,8], [8,1], [2,3], [3,2], [2,4], [4,2], ktoré sú zároveň
súradnicami hladaných bodov. Casť uvažovanej množiny
pre a 3 je vyšrafovaná na obr. 10.

4
у = —

x

0,5 0,8 1,25 1,6 2 2,5 3,2 5 8x

8 5 3,2 2,5 1,6 1,25 0,8 0,52У

9
у = —

л;

1,5 3,61 2 2,5 3 4,5 6 9л;

4,5 2,59 6 3,6 3 2 1,5 13>

4. V rovině q jsou dány dva různé body A, S a úhel
velikosti <p, 0° < cp 5^ 180°. Určete množinu všech bodů^
roviny £ takových, že bod X', který z X dostaneme oto-
čením okolo středu 51 o úhel cp (v kladném smyslu), leží
na přímce AX.

ŘEŠENÍ. I. Nechť cp = 180°. Poněvadž pak vždy X,
Га 5 leží na přímce, musí X ležet na přímce AS. Na-
opak každý bod přímky AS přejde otočením okolo 5
o 180° v bod přímky AS.
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V tomto případě je tedy hledanou množinou bodů X
přímka AS.

II. Nechť 0° < cp < 180°. Je vidět, že oba body A} S
patří do hledané množiny. Nechť A' je obraz bodu A
v daném otočení. Bud dále X ještě nějaký jiný bod hle-
dané množiny. Bod X zřejmě neleží na přímce AS a
padne tedy bud dovnitř poloroviny ASA', kterou ozna-
číme písmenem P, anebo dovnitř poloroviny L к ní

opačné (obr. 11). Přitom v rovnoramenném trojúhelníku
XSX' (SX = SX', ^ XSX' = cp) je vnitřní úhel
<£ X'XS = 90° — ~ a vnější úhel při vrcholu X má

velikost 90° + -тр Body X, X', A leží v přímce.
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[1] Leží-li náš bod X v polorovině L, pak z kladného
smyslu otáčení je zřejmé, že bod X' leží na polopřímce
XA, a proto

V^AXS = 90° - 2 '

[2] Padne-li náš bod X dovnitř poloroviny P, pak
bod X' leží na polopřímce opačné к XA, a proto

V<MXS = 90° + y.

Tak jsme dokázali, že bod X leží bud v polorovině L
na kruhovém oblouku určeném ostrým úhlem <5lAXS —

= 90° — -y, anebo na kruhovém oblouku v polorovině P
90° + Přitoms tupým obvodovým úhlem AXS

je jasné, že tyto dva oblouky spolu se svými krajními body
A, S dají dohromady celou kružnici k.

Obráceně se snadno uváží, že každý bod této kružnice k
splňuje podmínky úlohy.

V tomto případě je tedy hledanou množinou bodů X
kružnice k, kterou jsme před chvílí popsali.

Tím je úloha vyřešena.
5. V rovině je dána kružnice m se středem S a polo-

měrem r a přímka p, která má od středu S vzdálenost
d < r. Na přímce p zvolme libovolný bod M tak, že
SM ^ r; z bodu M veďme tečny ke kružnici m a jejich
dotykové body označme H, K; patu kolmice vedené
bodem 5 na přímku p označme C.

Pak pro všechny takové body M je součin
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1 1
tg у <£ CMK. cotg у <£ СМН

roven témuž číslu k (při vhodném označení bodů К, H).
Dokažte a vyjádřete k pomocí r, d. Platí tato věta i v pří-

pádě d ^ r?

ŘEŠENÍ, a) Počneme případem d = 0 (přímka p pro-
chází středem S). Celý útvar je pak souměrný podle
přímky p (obr. 12). Označme A, В krajní body průměru
kružnice m kolmého к p. Platí <£ HCM = 90° — a,

<$ACH = a, <£CAH = <£CHA = 90° - |3
y. Obdobně <£ £iVC - = у. Je tedy

= 1 .

<£ANC

i> (1)tg T. cotgy
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b) Nechť přímka p neprochází středem S3 tj. 0 < d <
< r (obr. 13a). Vyšetřujme velikost úhlu <£ CNH = cp.
Platí <£ SAH = <£ АЯЛ = 90° — 99, pro součet úhlů
v čtyřúhelníku CMHA platí 90° + a + 90° + 90° —

— cp + 90° — cp — 360°, tj. 99 = Odtud plyne

r -f d
tg T _ CŇ '

Obdobně vyšetříme pro polorovinu pB opačnou к pA
(i

_ r — dtg T “ CAT 5

kde AT je průsečík přímek БАГ, p. Je třeba ještě dokázat,
že body N, AT splynou, což nám naznačuje obr. 13a.
Skutečně <£ СЫН (<£ CMK) je vnější úhel Д MNH

a

(2a)

(2b)
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cMN'K). Z toho plyne, že MHN = у MKN =

=i). trojúhelníky Д NHM, Д N'KM jsou rovnora-

menné a je tedy MiV' = MK = MH — MN. Protože
oba.body N, N' leží na polopřímce opačné к MC, je
N = N'. Z (2a), (2b) plyne

/5 r + d
tsyC0tgT = 7^ř

Formule (3) souhlasí s formulí (1), kterou dostaneme, do-
sadíme-li do (3) d — 0.

c) Je zřejmé, že při výměně označení bodů К, Я je
r — d

konstantní poměr ve vzorci (3) roven ~ ^ . V přípa-
dě r = d zlomek ve vzorci (3) nemá smysl, zlomek
r — d 0 . .

—:—г = -7Г— ie konstantm.
r + d 2r

d) Prozkoumejme ještě případ d > r (obr. 13b).
V tomto případě musíme volit M Ф C, neboť jinak by
nebyly úhly <£ CMK, <£ CMH definovány. Při důkazu

a

(3)

1
rovnosti fp — — a postupujeme obdobně jako v odstavci

b), tj. využijeme vzorce pro součet vnitřních úhlů čtyř-
úhelníka CMHA. Trochu je jiná situace pro body K, N'
a úhly /?, ip. Zde nejprve dokážeme <£ CBN' = Д KBS=
= <^C 5ЯБ = 90° — y. Proto je MKB — y>, a protože
<£ ЯМС = p je vnější úhel Д MN'K, je <£ MKN' =

O

— V — A KMN' je rovnoramenný. Obdobně jako
v odstavci b) dokážeme, že je Я = N' a dostaneme tedy
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znásobením

d -\~ т

tgyc°tgT=7-T.
Souhrnně lze zapsat vzorce (3), (4) takto:

Pcc

(4)

d -\- y
gy cotgý = 1á^7f;

Odst. c) ukazuje, že nemá smysl se zabývat případemd = r.

Pa
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6. Je daná kružnica k = (S;r) a na nej štyri rožne
body А, В, C, D také, že Я5Л = <£ CSB = <£ DSC
= a < 60°. Zostrojte tětivu ЛЛ a jej priesečníky s priam-
kami SB, Č>C označte v uvedenom poradí Bx, Cx. Do-
kážte, že ak rastie a, rastie i poměr A = AB1: BjCj.

RIEŠENIE. ICedze <£ASD = 3a < 180°, leží úsečka
Л1) v tomto uhle a aj bod leží v uhle <£ ASD (obr. 14).

Přitom nemóže byť
Вг = S, pretože vtedy
by bol uhol ASD pri-
amy, ani Z?x nemóže
ležať na polpriamkach
SA, SD, pretože body
A, By C, D sú navzá-
jom rožne. To isté platí
i o bode Cx. Z textu
úlohy taktiež vidieť, že
body A, C ležia v opáč-

A ných polrovinách vyťa-
tých priamkou SB, t. j.
bod Bx leží vo vnútri
úsečky ACV

Z predchádzajúcej
úvahy vyplývá, že

S

0 ч p \®.

вc
Obr. 14

180° - 3a 3
= 90° - ~

2 a, <£ ASCi = 2a,<£ DAS =

BjCj = ЛС, - ЛВ
2

1 5

(V-A a) -a = 90° + y,

- 2a = 90° - 4-

SB±A = 180° -

(90= - A a)<£ SCXA = 180° - 2 '
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Podlá sínusovej vety je
sin a sin a

ABX = AS .
= r

Sin (90° +y)
a

COS
2

sin 2a
-

— r a ByCL =
a

sin 2a
ACy = AS .

Sin (90» - f) cos
2

sin 2a — sin asin 2a sin a
— r - = r= r

a aa
COS ”COS -zCOS

22 2

sin 2a — sin asin a
Teda Я = : B1C1 = г : г

аа
cos -cos

22

sin а

sin 2а — sin а

1

2 cos а — 1

Třeba dokázat’, že ak ах < a2 < 60°, potom je < A2.
Pretože funkcia cos a je v intervale <0°, 90°) klesajúca, je
cos ax > cos a2, z čoho 2 cos x1 — 1 > 2 cos а2 — 1 a

kedze cos 60° = , je cos ax > cos 60° = — a taktiež2

1
cos a2 > —, prechádza posledná nerovnost’ do tvaru

11
<

2 cos а2 — 1 5

čo je už nerovnost’, ktorej správnost’ sme mali dokázat’.

2 cos oty — 1
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2. KATEGORIE В

1. Jsou dána přirozená čísla 1, 2, 3,. . ., n (kde n ^ 19)
vyjádřená v desítkové soustavě. Řozdělíme-li tato čísla
libovolným způsobem na dvě neprázdné skupiny, pak je
vždy možno vybrat z každé skupiny po jednom čísle tak,
že obě vybraná čísla mají aspoň jednu společnou číslici.
Dokažte.
Platí takové tvrzení i pro n — 18?

ŘEŠENÍ. Předpokládejme naopak, že existuje rozklad
množiny daných čísel na dvě skupiny A, В takový, že
žádné číslo z jedné skupiny nemá společnou číslici s žád-
ným číslem z druhé skupiny. Číslo 10 nechť leží např. ve
skupině A. Pak ale z našeho předpokladu vyplývá, že ve
skupině A leží i 11, 12, 13, . . ., 19, takže ve skupině A se
vyskytují všechny číslice 0, 1, 2, . . ., 9. Na skupinu В
tedy žádné číslice nezbývají. To je spor.

Pro n — 18 tvrzení neplatí, jak ukazuje rozklad, při
němž jedna skupina obsahuje pouze číslo 9 a druhá všech-
na ostatní čísla.

2. Najděte všechny dvojice celých čísel x, y, pro které
1 + * 1 + Уplatí, že obě čísla

Výsledek znázorněte náčrtem v rovině pravoúhlých sou-
řadnic x3 y.

jsou celá.
У x

ŘEŠENÍ, x, у jsou celá čísla nutně různá od nuly.
[1] x > 0, у > 0. Je jasné, že musí platit

l + x^j; a 1 + 3; ^ x
neboli

1 + X ^y а у ^ x — 1,
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tj.
x — 1 ^ x + 1 .

Tu jsou právě tři možnosti:
1 + y

— = 1 celé čísloа) у = x — 1. Potom je -

pro všechna celá x > 0. Ale
1 + x

XX

x -(- 1 2
- 1 4x — 1 x- 1 5

a to je celé právě když л: — 1 je dělitelem 2, tj. (viz
x > 0) x — 1 — 1 nebo 2, tedy x — 2 nebo 3; příslušné
у — x — 1 = 1 nebo 2.

Obě nalezené dvojice (x = 2, у = 1), (я = 3, у — 2)
vyhovují úloze, jak se snadno přesvědčíme dosazením.

1 + y 1 x1 + X
b) у = x.

= 1 + —. Nutně x = 1.

Pak
xУ x

X

Dvojice (jc = 1, у = 1) vyhovuje úloze.
с) у = x + 15 tj. x — у — 1. To je zřejmě obdobné

jako v případě a); zaměníme x, y. Výsledek dostaneme
jako symetrický obraz výsledků z a) podle přímky у = x.

V I. kvadrantu tedy vyhovuje pět bodů.
[2] x < — l3jy > 0. Je zřejmé, že nyní musí platit

— x—(1 + x) ^y a 1 +y
čili

—(1 + х)^з/ а у ^ —(1 + x) ,

у — —x — 1 .

tj.
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Potom
1 -f- x 1 x 1 + y1 celé číslo.1 + xУ x

X
— — 1 celé.

Výsledek je znázorněn na obr. 15.

Případ x— — 1 je jednoduchý: vyhovuje každé celé
у Ф 0 (viz obr. 15).

[3] Případ у = — 1 je zase snadný. Mějme tedy * <
< — 1 ,y < —1. Tu musí být

— (1 + x) ^ —у a —(1 +y) ^
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tj.
1 + X а у ^ л; — 1 ,

tedy
у ^ x — 1 .

To však není možné, neboť vždy platí
X + 1 > x — 1 (o 1 > — 1) .

V tomto případě tedy nenacházíme žádnou vyhovující
dvojici я, y.

[4] IV. kvadrant už nemusíme vyšetřovat, vzhledem
к souměrnosti výsledku podle přímky у = x. Uvedené
body nejsou na obr. 15 ve IV. kvadrantu na přímce
у = — 1 vyznačeny.

Tím je celá rovnice prozkoumána.
Úloha má nekonečně mnoho řešení (viz obrázek 15).
3. Prirodzené číslo N > 2 je súčtom niekolkých

(aspoň dvoch) za sebou následujúcich prirodzených čísel
právě vtedy, keď nie je mocninou čísla 2. Dokážte a uveďte
příklad N — 100.

RIEŠENIE. a) Nech je
N= a (a 1) + . . . + (a + b),

kde a, b sú prirodzené čísla. Z (1) vyplývá, že platí
N = (a + b) + (a + b — 1) + . . . + a .

Sčítáním (1) а (2) dostaneme
2N = (2a + b) (b + 1) .

x + 1

(1)

(2)

(3)
Kedze z textu úlohy vyplývá, že je a
platí

1, b ^ 1, zrejme

2a + b ^ 3 ,

Ďalej platí: Ak je b párne, je b + l nepárne; ak je b ne-
párne, je aj 2a + b nepárne číslo. Číslo 2N a teda aj N

b+ 1^2.
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má aspoň jedného nepárneho prvočinitela a nie je preto
mocninou čísla 2.

b) Nech N > 2 nie je mocninou čísla 2. Potom má N
aspoň jedného nepárneho prvočinitela a číslo 2N možno
rozložit’ na súčin dvoch činitelov, z ktorých jeden je
párny, druhý nepárny a každý z nich je váčší než 1. Nech
je 2N = ocj3 taký rozklad. Označenie činitelov zvolme tak,
aby platilo: a < p.

Pretože й^1 implikuje 2a-\-b'^b-\-2>bJr\)
pokúsme sa nájsť prirodzené čísla a, b tak, aby platilo

b \ — a, 2a b — p .

Z toho dostaneme
b = oc — 1 , 2a = (i — ac + 1 .

Čísla a, p sú však róznej parity, preto je p — a + 1 číslo
párne a z podmienky a < p vyplývá, že je p — a + 1 ^2.
Zo (4) teda dostaneme

(4)

1
— (/? — a + 1) ,b = a — 1 , a =

kde a ^ 1 je prirodzené číslo. Obrátením postupu z (3)
dostaneme (1).

c) Ak je napr. N — 100, rozložíme číslo 2N = 200 na
súčin 8.25 a položíme b + 1 = 8, 2a + b — 25. Z toho
vyplývá 6 = 7, a — 9 a jedno z riešení úlohy teda je

9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 100 .

Iné riešenie dostaneme z rozkladu 2N = 200 = 5.40.
V tomto případe je b + 1 = 5, 2a + b = 40 čiže 6 = 4,
a = 18 a teda

18 + 19 + 20 + 21 + 22 = 10o .

4. Je daný ostrouhlý trojuholník ABC a na kružnici k
jemu opísanej bod M, ktorý nesplýva so žiadnym z vrcho-
lov А, В, C.
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Označme M19 M2) М3 body súmerne združené s bo-
dom M podia priamok BC3 АС a AB v uvedenom poradí.
Potom body M13 M2, M3 ležia na priamke prechádza-
júcej priesečníkom výšok trojuholníka ABC. Dokážte.

RIEŠENIE. Priesečník výšok daného trojuholníka
označme O a body s ním súmerne združené podlá pria-
mok ВС, АС, AB nech sú v uvedenom poradí 013 02, 03
(obr. 16). Pretože
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^А03В = <£АОВ = 180° - <£АСВ
a body С, 03 sú oddělené priamkou АВ, leží bod 03 na
kružnici к. Podobné aj body 013 02 ležia na kružnici k.
Ak teda zostrojíme kružnice k1} k2, k3 súmerne združené
s kružnicou k podlá priamok ВС, АС, AB, budú tieto
tri (zhodné) kružnice prechádzať bodom O.

Bez ujmy na všeobecnosti móžeme předpokládat’, že
bod M leží na tom oblúku AB kružnice k, na ktorom ne-
leží vrchol C. Bod M1 leží potom vo vnútri uhla <£ BOC
(a to na váčšom oblúku BC kružnice kx). Podobné tvrdé-
nie možno vyslovit’ aj o bode M2.

Zo súmernosti podl’a priamky BC vyplývá rovnost’
BOM1 = <£ BOxM

a pretože <£ BOxM — <£ BCM (obvodové uhly nad te-
tivou BM v kružnici k), platí

<£ BOMx = <£ BCM .

Podobné sa dokáže, že <£ AOM2 = <$ACM. Celkom
teda dostáváme

<£AOM2 + AOB + <£ BOMx = <£ACB +
+ <£AOB = 180° .

Tak sme dokázali, že body Mx, O, M2 ležia v jednej
priamke.

Ak je náhodou M = 03, leží i bod M3 — O na tejto
priamke. Predpokladajme preto, že bod M Ф 03 leží

/'—N

napr. na oblúku A03. Potom zo súmernosti podlá priamky
AB vyplývá, že

<£AOM3 <£A03M = <£ ACM = <£AOM2 .
/"“■4

Pretože bod Aí3 (ležiaci na menšom oblúku АО kruž-
nice k3) padne rovnako ako bod Aí2 do uhla <£ AOC, je
jasné, že aj Aí3 leží na nasej priamke.

Tým je úloha vyriešená.

76



5. Je daný štvorec ABCD. Uhlopriečka štvorca
KLMN je zhodná so stranou štvorca ABCD a vrcholy К
aj M ležia na obvode štvorca ABCD.

Určité množinu všetkých vrcholov L všetkých takých
štvorcov KLMN.

RIEŠENIE. Nech PRST je štvorec, ktorého středné
priečky sú AC, BD (pozři obr. 17).

I. Body К, M možu ležať na dvoch protilahlých stra-
nách daného štvorca ABCD. V tomto jednoduchom prí-
páde sa geometrické miesto bodov L skládá právě z úse-
čiek PS, RT.

II. Nech teraz body К, M ležia na dvoch susedných
stranách daného štvorca ABCD. například tak, ako to je
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q naznačené na obr .18. Štvorcu
KLMN opišme kružnicu k.
Podlá Thaletovej vety leží
aj vrchol В na kružnici k.
Všimnime si teraz obvodové
uhly v kružnici k (napr.
<£KBN = <£ KLN = 45° =
= <C KBL). Vidíme, že bod
L leží na úsečke PR a bod N
na úsečke OU (pozři obr. 17,
kde BU — AB'). Přitom však
označenie vrcholov L, N
možno zaměnit’. Obrátene sa

lahko zistí, že ku každému
bodu L úsečky PR, resp. OU možno zostrojiť štvorec
KLMN {KM = AB), ktorého vrchol iC leží na úsečke AB
a vrchol M na úsečke BC. Podobnú úvahu možeme pre-
viesť pre každú dvojicu susedných stráň daného štvorca
ABCD.

ZÁVĚR. Hladané geometrické miesto bodov je na
obr. 17 silno vytiahnuté.

6. Je dán trojúhelník ABC, jehož strany mají délky
AB — c, BC = a, CA — b.

a) Sestrojte bod D strany BC a bod E strany CA tak,
aby čtyřúhelníku ABDE bylo možno opsat i vepsat
kružnici.

b) Vyjádřete vzdálenosti CD, CE i obvod čtyřúhel-
nika ABDE pomocí délek a, b, c.

ŘEŠENÍ (obr. 19). a) Označme k kružnici vepsanou
trojúhelníku ABC а А', В', C její body dotyku se stra-
námi BC, CA a AB. Přímka DE musí být zřejmě tečnou
kružnice k. Protože má být čtyřúhelník ABDE tětivový,
musí být <£ BDE = 180° — 4; BAE; tím je dán směr s

\ /\N

4 V
V

\\

А К В

k L

Obr. 18
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přímky DE. Sestrojíme tečnu t kružnice k, která je rovno-
běžná s přímkou s tak, aby kružnice k i body А, В ležely
v téže polorovině s hranicí t. Průsečíky D, Ě přímky t se
stranami CB, CA leží uvnitř úseček CA', CB'. Obrácením
postupu vyplývá, že čtyřúhelníku ABDE lze i opsat
kružnici.

b) Označme S střed kružnice k; pak je <£ SDA' —

= -i- (180° - a) = 90° - у, a tedy <t DSA' = y.
Podle věty uu o podobnosti trojúhelníků je

AASC' — Д SDA'
a odtud

SA' : A'D = AC : SC'. (1)
Platí však SA' = SC' = q, kde q je poloměr kružnice k;
mimoto je podle známého vzorce AC' — s — a, kde s =

1
=

-j (a + b + c)-
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Dosadíme-li do (1), vyjde
о2

A'D = (2)
s — а

Dále užijeme vzorce

P
q — ——, kde P je obsah trojúhelníka ABC.

Užijeme-íi Heronova vzorce P = ]/s(s — á)(s — b) (s — c),
dostaneme pro q2 rovnost

(s — a) (s — b) (s — c)P2
Q2 (3)s2 s

spojením (3) a (2) vyjde
A’D -

(s -b)(s — c) (4)
s

Protože podle známého vzorce je
BA' — s — b ,

je podle (4)
BD = BA' + A'D = s - b + o - b) (s - C)

a po úpravě

y— (a + b) .
BD = —

Z rovnosti (5) plyne dále
CD — a — BD = — (as — as — bs ab -\- b2),

CD = у (a + b - s) = у (2s - c

(5)

- *)>
neboli

5 —

(6a)CD -
5
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Výměnou písmen D <-» E, a <-> b dostaneme
s — c

(6b)CE = . a .

s

Vzorce (6ab) jsou odpovědí na první otázku b).
Ze vzorce (5) dostaneme výměnou písmen A B,

D <-+ E, a <-► b vzorec
s — a . . i,

{a + b) .
s

AE =

AE + BD je poloviční délka obvodu o čtyřúhelníka
ABDEj který je tečnový. Je tedy

0 — 2 —— a (2 + b) + 2 5 — - -- (a + ř),

4(a + ú)
neboli

(5 — a + 5 — b),o =
2í

čili
4 (a + b) . c

<2 -J- b c
o —

což je výsledná formule.

3. KATEGÓRIA Z

1. Je daná sústava dvoch rovnic s dvorná neznámými

3x + 2y = 0 ,

2x — у = — 3 .

Z tejto sústavy dostaneme novů sústavu tak, že ku kaž-
dému koeficientu pri neznámej připočítáme to isté číslo p.
Nová sústava bude mať za riešenie dvojicu čísel x, y, kto-
rých rozdiel je 1. Určte všetky čísla p tejto vlastnosti.

x»y

(1)
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RIEŠENIE. Riešením novej sústavy budú buď čísla jc,
x + 1 alebo čísla x, x — 1. Preskúmajme obe možnosti.

a) Nechjy = x + 1. Potom nová sústava sa dá prepísať
do tvaru

(3 + p)x + (2 + p) (я + 1) — 0 ,

(2 p)x -f- (p — 1) (x T 1) = 3 .

Odčítáním druhej rovnice od prvej dostaneme x = 0. Po
dosadení do prvej rovnice (2) vyjde p — — 2. Pozměněná
sústava (1) má pre p = — 2 tvar: x = 0, — 3y = — 3 čiže
x = 0, у — 1. Je teda у — x = 1.

b) Ak bude у — x — 1, potom po dosadení do novej
sústavy máme

(2)

(3 + p)x + (2 + p) (x — 1) = 0 ,

(2 + p)x + (p — 1) (x 1) — —3 .

Rovnakou úpravou ako v predchádzajúcom případe zo
3

sústavy (3) dostaneme 4x — 3 = 3, z čoho x = —. Ak
tento výsledok dosadíme do prvej rovnice (3), dostaneme

(3)

11
p = Pozměněná sústava (1) má v tomto případe
teda tvar

1
T* x ry4 4

153
rx4

3
Táto sústava má riešenie x = -у, у —

splněná podmienka z textu úlohy: x — у — 1.

1
—, takže je opáť
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ZÁVĚR. Pretože sústavy (2), resp. (3) majú vždy len

jediné riešenie x — 0, p —
3

2, resp. x = P =2 ’
1111
— hladané čísla.
4—, sú teda p — —2, p =

2. Udejte všechny pravoúhelníky, jejichž strany mají
délky vyjádřené celými čísly (v centimetrech), a které
mají tu vlastnost, že jejich obvod (v cm) je roven jejich
obsahu (V cm2).

ŘEŠENÍ. Jsou-li a, b velikosti stran hledaného právo-
úhelníka, pak podle podmínky úlohy platí

2a -f- 2b = ab . (1)
Přepíšeme-li tuto rovnici v tvaru

ab — 2a — 2b + 4 = 4 ,

vyplývá odtud
(a — 2) (b - 2) = 4 .

Čísla a — 2, b — 2 jsou tedy sdruženými děliteli čísla 4.
Výsledky sestavíme do tabulky:

a - 2 4 2 1 -4 -2 -1

b-2 21 4 -1 2 -4

16 4 -23 0a

6 3 -24 6 1 0

Geometrický význam mají jen kladné hodnoty. Hledané
pravoúhelníky jsou dva: obdélník o stranách velikosti
3 cm a 6 cm a čtverec, jehož strana má velikost 4 cm.
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POZNÁMKA. Při hledání dvojic přirozených čísel
a, b, které splňují rovnici (1) lze také postupovat následu-
jícím způsobem. Z (1) plyne

2b 2{b - 2) + 4 4
= 2 + T=

Cl —

b-2 - 2 ’

Číslo b — 2 je tedy dělitelem čísla 4. Na základě toho
dojdeme tedy к obdobné tabulce jako v uvedeném řešení.
Bude ovšem mít jen tři řádky, a to pro b — 2, b, a.

3. Je dán obdélník ABCD, v němž AB — 2a, BC = a.
Nad stranami AB, AD jako nad průměry jsou sestrojeny
kružnice, které kromě bodu A mají společný ještě bod K.

a) Dokažte, že bod К leží na úhlopříčce BD.
b) Vypočtěte vzdálenosti bodu К od vrcholů A, B, D.
ŘEŠENÍ, a) Poněvadž podle Thaletovy věty

<£AKD = 90° a zároveň <$iAKB = 90°,
leží body В, K, D v přímce, tj. na úhlopříčce BD daného
obdélníka (obr. 20).

b-2

D
cc

г

:

&

X
У%

a

P
вA

2a

Obr. 20

84



b) Označme
AK BK = y, BD = l/a2 + 4a2 - a]/5 .

Z pravoúhlého trojúhelníka ABK plyne
x2 У2 — 4a2,

a podobně z pravoúhlého trojúhelníka ADK plyne
je2 + (a]/5 — у)2 — a2.

x,

Upravujeme druhou rovnici
x2 + y2 — 2ay]/5 + 5a2 = a2 .

Dosadíme z první rovnice
4a2 — 2ay]/5 + 4a2 == 0

a odtud
4a 2a

У =
1/5 ’ V5 '

Nakonec ještě dostaneme

DK= a]/5 - у =
Ь'

JINÉ ŘEŠENÍ. Označme DK — z. Z podobnosti
А АKB ~ Д Z)iG4 (věta гш) plyne

я == ж:з/.

# = a]/5
Dosadíme-li

(1)— У у

dostáváme

ay]/5 — у2 — x2,
odtud s použitím vztahu

x2 -j- y2 = 4a2 (2)
4a

plyne у = Z (1) pak určíme z. Z (2) můžeme určit x.Vš-
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Rychleji lze x určit z podobnosti ДАВК ~ Д DBA
(věta uu), odkud plyne

1я a

2a 2 '

4. Do ostrouhlého trojuholníka ABC je vpísaný ob-
dížnik MNPQ tak, že vrcholy M, N ležia na straně АВ,
vrchol P na straně ВС a vrchol Q na straně CA.

Vyšetrite geometrické miesto středov všetkých obdíž-
nikov MNPQ.

RIEŠENIE. Zostrojme jeden obdížnik MNPQ, ktorý
vyhovuje podmienkam úlohy a jeho střed 5 (obr. 21).

У

a P

A В

Bod S ako střed obdížnika MNPQ je stredom jeho střed-
nej priečky HG, kde H je střed strany QP a G střed
strany MN. Zrejme je HG J_ AB.
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Bod H je stredom priečky QP trojuholníka ABC, ktorá
je rovnoběžná so stranou AB, a preto bod H leží na ťaž-
nici tc = ЕС trojuholníka ABC. Obrátene lahko zistíme,
že každý vnútorný bod H' ťažnice ЕС = tc je stredom
strany QP' nějakého obdížnika M’N’P'Q vyhovujúceho
podmienkam úlohy. Dochádzame teda к úlohe, ktorú
možno formulovat’ takto:

Určíte geometrické miesto stredov S všetkých úsečiek
HG, kde bod H prebieha vnútro úsečky EC = tc, G leží
na AB a HG ± AB.

ZÁVĚR. Množinou stredov 5 je teda vnútro úsečky
EF, kde F je střed výšky vc z bodu C na stranu AB, čo
platí aj v případe, keď tc splývá s vc, t. j. keď АС — BC.
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IV. Soutěžní úlohy II. kola

1. KATEGORIE A

la. Dokažte, že pro každé liché přirozené číslo a je
výraz (2a + l)12 — (2a + l)8 — (2a + l)4 + 1 dělitelný
číslem 512 a2. (5 bodů)

ŘEŠENÍ. Nechť 2a + 1 = n, pak postupně dostaneme
(2a + l)12 - (2a + l)8 - (2a + l)4 + 1 -
= n12 — n8 — W4 + 1 = n8(rft — 1) — (и4 — 1) =
= (*24 — 1) (n8 — 1) = (*24 — 1) (n4 — 1) (n4 + 1) =
= (!24 — l)2 (ř24 + 1) = (*22 — l)2 ('П2 + l)2 (/í4 + 1) =
= (n + l)2 (n — l)2 (n2 + l)2 (w4 + 1) =
= (« + 1) (n — 1) (n + 1) (n — 1) (n2 + 1) (w2 + 1) •

. (и4 -f- 1) = 2a2(a + 1) 2a2(a + 1) 2(2a2 + 2a + 1) .

. 2(2a2 + 2a + 1) 2(8a4 + 16a3 + 12a2 + 4a + 1) =
= 128a2(a + l)2 (2a2 + 2a + l)2 .

. (8a4 + 16a3 + 12a2 + 4a + 1) .

Poněvadž a je liché, je a + 1 sudé číslo čili a + 1 — 2&;
pak
128a2ía + l)2 (2a2 + 2a + l)2 .

. (8a4 + 16a3 + 12a2 + 4a + 1) = 512a2k2 .

. (2a2 + 2a + l)2 (8a4 + 16a3 + 12a2 + 4a + 1) =
= 512a2iV,
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kde

N = k\2a2 + 2a + l)2(8a4 + 16a3 + 12a2 + 4a + 1) .

Jiná možná úprava je:
(2a + l)12 - (2a + l)8 - (2a + l)4 + 1 =
= (2a + l)8 [(2a + l)4 - 1] - [(2a + l)4 - 1] =
= [(2a + l)8 - 1] . [(2a + l)4 - 1] =
- [(2a + l)4 + 1] [(2a + l)4 - l]2 =
- [(2a + l)4 + 1] [(2a + l)2 - l]2 [(2a + l)2 + l]2 =
= [(2a + l)4 + 1] • [2a . 2(a + l)]2 . [(2a + l)2 + 1]2=
= 2m . 16a2. (a + l)2.4 . p a protože a je liché, je
a + 1 = 2k3 takže celkem dostaneme 512a?mk2p.

JINÉ ŘEŠENÍ. Daný mnohočlen N lze rozložit takto:
N = [(2a + l)4 - 1] . [(2a + l)8 - 1] =

- [(2a + l)2 + 1] . [(2a + 1) + 1] .

. [(2a + 1) - 1] . [(2a + l)4 + 1].

. [(2a + l)2 + 1] . [(2a + 1) + 1] .

. [(2a + 1) - 1] = 2 . (2a2 + 2a + 1) .

. 2(a + 1) . 2a . 2 . (8a4 + 16a3 + 12a2 + 4a + 1).

. 2(2a2 + 2a + 1) • 2(a + 1) . 2a .

N je tedy dělitelný číslem 29. a2 = 512a2, protože (a + 1)
je číslo sudé, q . e . d.

Řešil Pavel Pudlák,
3. D, SVVŠ, Nad štolou, Praha 7

lb. V rovině o je dána přímka o, bod M a posunutí P
ve směru přímky o. Souměrnost podle osy o převede
bod X roviny q v bod X', posunutí P převede X' v bod X".
Určete množinu všech takových bodů X roviny q, pro
něž leží body M, X, X" v přímce. (5 bodů)
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ŘEŠENÍ. Samo znění textu svádí к použití metody
souřadnic. Přímku o zvolíme za osu x, a to tak, aby smysl
kladné poloosy x byl souhlasný se smyslem posunutí P.

' /

X's'ylX'
УГ

/

/ о=хоу
I /

у
УХ

Obr. 22

Osu у zvolíme tak, aby bod M ležel na kladné poloose у
(obr. 22). Souřadnice bodu M jsou pak M = [0; b], kde
b ^ 0. Dále označme X — [х3у\, X' — [х\у'\, X" =
= [x\y"~\. Z textu úlohy plyne pro souměrnost podle
osy o: x' = x,

У = —У ■
(1)

Pro posunutí P pak platí
x ~f~ & ,л:

(2)У" = У'>
kde a > 0. Spojením (1) a (2) dostaneme

x" — x + a ,

У' = —y ■

Podle (3) je vždy X Ф X", neboť a > 0. Existuje tedy
přímka XX" a má rovnici

af + fit) + у = 0 .

(3)

(4)
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Z (4) plyne podle (3)
a* + fiy + у = 0 ,

a(x + a) — {3y -f- 7 = 0 (5)
a odtud

(6)aoc — 2y{3 - 0 .

V rovnici (6) můžeme volit a = 2y, /3 = a, neboť a > 0.
Z první rovnice (5) vypočteme у = —ay — 2xy. Rovnice
přímky XX" tedy zní

(7)2y! + a?? — (<23; + 2x3;) = 0 .

Prochází-li přímka XX" bodem M, vyhovují rovnici (7)
čísla £ = 0, r\ — b. Ze (7) pak plyne

2xy + ay — ab ,

neboli

(8)

Obráceně, když souřadnice [я 53;] vyhovují rovnici (8),
pak přímka (7) obsahuje bod Aí(£ = 0, rj = b), bod
X(£ = x, г] = у) a podle (3) i bod X"(£
= —3;). Je tedy rovnice (8) analytickým vyjádřením hle-
dané množiny bodů.

Pro 6 > 0 rovnice (8) však vyjadřuje rovnoosou hyper-

bolu, jejíž asymptoty jsou přímky 51: + у“0,з; = 0а
která prochází bodem M (obr. 23a). Pro b = 0 vyjadřuje
rovnice (8) dvojici kolmých přímek (obr. 23b).

X -)- Tj =

2a. Určte všetky hodnoty parametra <2, pre ktoré má
rovnica

cos (x + a) — cos x + cos a (1)
riešenie. (6 bodov)
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м

о м о=хо = х

1а Та

Obr. 23bObr. 23a

RIEŠENIE. Rovnica (1) je ekvivalentná s rovnicou
cos (x + a) — cos x = cos a ,

a teda tiež s rovnicou

2 sin í* + у^ a
. sin у = cos a .

Nutnou podmienkou riešitelnosti rovnice (2) je

sin у Ф 0 .

Ak by totiž bolo sin у = 0, potom by rovnica (2) mala
riešenie len vtedy, ked by zároveň platilo cos a — 0, čo
však nie je možné.

(2)

(3)
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Rovnica (1) má teda riešenie právě vtedy, keď má rie-
šenie rovnica

(* + t) =
cos a

(4)sin

čiže právě vtedy, ked platí
cos a

2sinf
Přitom je zřejmé, že podmienka (3) je už zahrnutá v (5).

Úloha přešla teda na riešenie nerovnice (5). Nerov-
nica (5) je ekvivalentná s nerovnicou

(5)^ 1.

|cos a\ ^ 2 |sin , (6)

pretože <2, pre ktoré platí sin — — 0, nemóže byť riešením
(6), lebo by zároveň muselo platit’ cos <2 = 0.

Nerovnica (6) je ekvivalentná s nerovnicou
cos2 a < 4 sin2 ~.

—

2

Ak použijeme vztah 2 sin2 — = 1 — cos a, dostaneme

cos2 a ^2 2 cos a

čiže
(cos a + l)2 ^ 3 ,

z čoho po odmocnění máme
s 1/3 -1. (7)cos a
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Ak označíme a velkost’ ostrého uhla, pre ktorý platí
cos oc — j/З — 1, t. j. a == 42°56', dostáváme, že riešením
nerovnice (7), a teda tiež (5), sú všetky a, ktoré vyhovujú
nerovnostiam

a <5 (2л: — a) + 2kn , (8)a -f- 2kn
kde k je celé číslo.

Nerovnosti (8) spolu s podmienkou cos a = ]/3 — 1
určujú množinu všetkých hodnot parametra a, pre ktoré
má rovnica (1) riešenie. Pri zvolenom a, ktoré vyhovuje
podmienkam (8) sa x určí z rovnice (4).

INÉ RIEŠENIE. Rovnica (1) je ekvivalentná s rov-
nicou

cos я . cos a — sin x . sin a = cos x + cos a ,

ktorú možno upravit’ na tvar
sin a . sin л; + (1 — cos a) cos я = —cos a . (9)

Ak položíme sin a — Л, 1 — cos a = B, —cos a = C,
dostaneme goniometrickú rovnicu

A sin л; + В cos x = C .

Riešenie goniometrickéj rovnice typu (10) je podrobné
rozobrané v knižke autorov B. Budinského a S. Šmakala:
Goniometrické funkce, ktorá vyšla v nakladatelstve Mladá
fronta r. 1968 ako 20. zvázok edície Škola mladých mate-
matikov. V knižke sú vysvětlené tri sposoby riešenia rovnic
typu (10). Je tam tiež odvodené, že rovnica (10) má rie-
šenie právě vtedy, keď С2 ^ A2 + B2. Pre rovnicu (9)
má táto podmienka tvar

cos2 a ^ sin2 a + (1 — cos a)2,
z čoho po jednoduchéj úpravě dostaneme

(cos a + l)2 ^ 3 ,

odkia! po odmocnění dostáváme nerovnicu (7).

(10)
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2b. Je daný štvorsten ABCD taký, že pata P výšky v
vedenej z bodu D na stenu ABC leží v trojuholníku ABC.
Nech v

Dokážte, že potom
max (a, b, c), kde a = BC, b = АС а. c — AB.

f2-Рлвс < 2 (PBCD + -PЛС7) + PABd) э
znamená plochu trojuholníka XYZ. (6 bodov)kde PXYZ

RIEŠENIE. Označme vzdialenosti bodu P od stráň
PC, ЛС, ЛР v uvedenom poradí vas vb, vc (ak P leží na
straně PC, kladieme va = 0, podobné v případe iných
stráň trojuholníka ABC). Eahko sa přesvědčíme, že
va ^ vA, kde vA je výška na stranu PC v trojuholníku
ABC. Z vlastností pravoúhlého trojuholníka však vyplývá,
že platí (1)VA ^ b 3

z čoho vzhladom na predchádzajúcu nerovnost’ vyplývá,
že va ^ b. Podobné zistíme, že vb ^ c, vc ^ a, a keďže
vždy platí

a ^ max (a, 6, c), 6 ^ max (a, 6, c),
c ^ max (a, 6, c), (2)

dostáváme
max (a, 6, c),vа ^ max (a, b, c), vb

vc ^ max (a, 6, c) . (3)
Dokážeme teraz, že z nerovností (3) je vždy aspoň jedna

ostrá. Ak by totiž v (3) všade platila rovnost’, musela by
platit’ všade rovnost’ aj v (2), z čoho vyplývá, že а =
= b = c, a teda aj v (1), čo však nie je možné, pretože
v rovnostrannom trojuholníku je určité vA < b. Tento
spor dokazuje naše tvrdenie. Bez ujmy na všeobecnosti
možeme teraz předpokládat’, že v (3) je ostrá prvá ne-
rovnost’. Potom platí

va < v, vb^v, vc ^ v .
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Označme paty kolmic spuštěných z bodu P na strany BC,
CA, AB v uvedenom poradí Ax, Bx, Cx (čiže va = PAX,
vb — PBX, vc = PČi). Potom je DP J_ BC, CA, AB;
PAX J_ BC, PBX J_ CA, PCX X AB čiže roviny DPAX,
DPBX, DPCX sú kolmé v uvedenom poradí na priamky
BC, CA, AB a teda DA1} DBly DCX sú v uvedenom po-
radí výškami trojuholníkov BCD, ACD, ABD (spustě-
nými z vrcholu D).

Teraz si dokážeme vetu: V pravouhlom trojuholníku
s odvěsnami 1,3; (x a s přeponou z platí

я = ]/2x pre x =z > ]/2x pre x <y;

Pythagorova veta dává totiž
pre x <y je

z = ]/л;2 + у2 > ]/2x2 = ]/2x čiže z > ]/2я;
pre x = у je

z — ]/x2 + y2 = ]]2x2 — ]/2x čiže z = ]/2x .

Podlá tejto dokázanej vety máme
DAX > ]/2 PAX - 1/2 va, ĎBX X У2 PBX = ]/2 vb,

DC! ž ]/2PČj = ]/2vc,
pričom tieto vztahy zostanú zrejme v platnosti aj v prí-
páde, keď niektoré z čísel va, vb, vc sa rovná nule. Keďže
bod P leží podlá předpokladu v trojuholníku ABC, platí

У-

1
Pлес — “л (5C . va + AC . vb + AB . vc)

a ďalej tiež

~ BC . DAX > -i- BC . 12 vPBCD — a 5
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^-ЛС. DB, й у лс. 1/2 i>6>

\ ÁÉ . DC, й у ВВ . р ®„ .

Sčítáním posledných troch nerovností dostaneme

+ Pacd + Pabd > V 2 • (-SC . + ЛС . vh +

+ AB.vc) = ]/2.P
z čoho už priamo dostaneme nerovnost’, ktorej správnost’
sme malí dokázat’.

JINÉ ŘEŠENÍ. Platí

PACD —

PABD —

PBCD

ABC J

1
— 2 ab ’

PABC

1

-~2hc’PABC

1
PABC ž у ca ,

přičemž rovnost může nastat pouze v jednom případě.
Sečtením a užitím nerovnosti v max (a, b, c) plyne

1
(1)2" + & + c) .

3 . P <ABC

Dále platí
1

PABD 2 C • v,

1

~2b'v’PACD
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1
PBCD ^ -тга .v,2

z čehož sečtením plyne
1

+ PACD ~Ь PBCD = ~2 V(a + ^ 4“ C)- (2)PABD

Z (1), (2) dostáváme
1

PABC < ~Ť~ {PABD + + PBCD) J

což je dokonce silnější nerovnost než ta, kterou jsme měli
dokázat (je totiž у <|=-).

Řešil Zbyšek Stýblo,
3. roč. SVVŠ, Arabská ul., Praha 6

3a. Nutnou a postačující podmínkou pro to, aby menší
z kořenů rovnice

qx2 + px + 1 = 0 ,

kde />, q jsou reálná čísla, q < 0, splňoval nerovnost
x2 + px + q < 0

je, aby platilo p > q + 1. Dokažte.
ŘEŠENÍ. Rovnice

(8 bodů)

(1)x2 + px + q = 0
i daná rovnice

(2)до2 + + 1 = 0
mají týž diskriminant

P2 (3)D = y-í >0-
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Proto každá z rovnic (1), (2) má dva navzájem různé
reálné kořeny. Označme xl3 x2 kořeny rovnice (1); pak je

f-ys. (4)
Označme dále x33 xx kořeny rovnice (2); snadno vypo-
čteme, že je

y+Vd’ x2= —xx = —

1 1
(5)

í 15
Z (4) je patrné, že platí

x4 — *2 •

Я
x3 —

(6)xx > x2.

(í)' P2 i <YS;
protože je у ^ у , je у < ]/D, tj. podle (4)

xx > 0 .

< , q = A tj.Dále je 4

(7)
1

Znásobíme-li (4) záporným číslem
dem к (5) a (6) nerovnost x3 < x4. Úloha tedy žádá, aby
byly splněny nerovnice

, dostaneme vzhle-
Я.

(8)x2 < лг3 < % .

Platí-li x3 < x13 je podle (4), (5) —< xx neboli xx > qxx
Я.

neboli %(1 — q) >0. Protože 1 — q > 0 a protože
platí (7), je poslední nerovnice splněna. Obrácením po-
stupu zjistíme, že druhá nerovnice (8) je splněna pro
každé p, q (q < 0), stačí tedy zabývat se první nerov-
ničí (8).
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Nerovnici x2 < x3 přepíšeme podle (4), (5)
1 PP

7Г +< —
2 2q

Po znásobení záporným číslem 2q dostaneme
—pq — 2q\lD > — p + 2]/D ,

ř(i - «) > 2p(? + i).
Nyní rozlišíme dva případy: a) q -\- 1 ^ 0, b) <7 + 1 <0.

V případě a) plyne z (9) p ^ 0. Umocníme (9) dvěma
a dostaneme po úpravě

0 > —^q(q2 + 2q + 1) + 4p2q .

tj- (9)

Dělíme tuto nerovnici kladným číslem —4q a po další
úpravě vyjde

(10)p q \ .

Případ b): Je-li p ^ 0, je (10) evidentní. Je-li p < 0,
umocníme (9) dvěma a dostaneme

P2(. 1 — qf < ÍP2 — Ц) (q + l)2;
po úpravě jako v případě a) vyjde p2 < (q + l)2, tj.
—p < —{q + 1), neboť v případě b) je \q + 1| =
= —{q + 1) a ještě p < 0, je \p\ — —p. Z nerovnice
—P < — (? + 1) Plyne (10).

Tím je dokázáno, že (10) je nutná podmínka pro poža-
dovánou vlastnost. Obráceně, nechť platí (10); rozlišíme
opět případy: a) <?+1^0, b) g'+lcO. V případě
a) plyne z (10) vztah p > 0; obrácením postupu odtud
dospějeme к (9) a odtud к (8). Případ b): Je-li q + 1 < 0
ap^O, je (9) evidentní a z (9) dospějeme obrácením
postupu к (8). Je-li q + 1 < 0, ^ < 0, je —p < — (q+1);
odtud umocněním a obrácením postupu vyjde (9) а ко-
nečně (8).

Je tedy (10) také postačující podmínkou pro požado-
vanou vlastnost.

100



JINÉ ŘEŠENÍ. Kořeny rovnice qx2 + px -f 1 = 0

p ~ Ур2 —

jsou
p -f Ур~ — 4q

Xj. = , Xo =2q 2q

(Protože q < 0, p2 ^ 0, je p2 — Aq >0.) Menší z kořenů
x13 x2 je kořen x13 neboť q < 0. Řešením nerovnosti x2 +
+ px + q < 0 je interval

l -p - Ур2 - 4<7 p + Ур2 — 4q
x e

2

Má-li x1 splňovat nerovnost x2 + px + q < 0, musí být
—p — Ур2 — 4g P + Kp2 — 4^

> tedyx1 e 2 2

P — Ур2 — 4? p + yp2 — 4<7< <
2 2?

P + yp2 — 4q<
2

Protože q < 0, je — 4# > 0, p2 — 4# > p2, |//>2 — 4g >
> lpi, takže —p + ]jp2 — 4<? > 0. Nerovnost

—p + Ур2 — 4<7 P + Ур2 — 4g<
2q 2

tedy vždy platí, takže nedostáváme z ní žádný nový vztah
pro čísla py q.
Budu řešit nerovnost

—p — Ур2 — 4q p + yp2 — 4q<
2 2#

jež je ekvivalentní s nerovností
q(p + Ур2 — 4g) < p — Ур2 (1)4q ,

neboť q < 0.
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Nerovnost (1) je ovšem ekvivalentní s nerovností
pq — P < ~ (g + 1 )]/p2 - 4g,

(q + 1)VX — 4q < X 1 - q). (2)
Rozliším nyní tři případy:
1. q e (— °°; — 1), pak levá strana nerovnosti (2) je

záporná, 1 — q je číslo kladné. Je-li
a) p ^ 0, je XI — q) ^ 0 > (q + l)]/p2 — 4q, takže

nerovnost (2) je splněna. Protože q < — 1, je <7 + 1 <0,
p ^ 0, takže p > q + 1.

b) p < 0, je XI — q) < 0, tedy
(g + 1)УХ — 4g < xi — q) < 0 .

Pak je ovšem nerovnost (2) ekvivalentní s nerovností
(1q + l)2 (X — Aq) > X(1 ~~ ?)2s z niž dostávám po-
stupně

« (i - qf
(i + q)p2 — Aq > p

2 (1 - qf - (1 + qf
(1 + #

2 5

—4^ > p

Aq—Aq > p2 2 5(1 + 0)
(1 + q)2 > p2, neboť q < 0, takže —4# > 0,

(3)II +q\ >\p\.
Avšak p < 0, 1 + q < 0, takže \p\ — —p, |1 + q\ —
= — 1 — q a z nerovnosti (3) dostávám

— 1 — q > —p3
p > q + 1

2. q = — 1, pak z nerovnosti (2) dostávám
0 < 2/>, tedy
p > 0 . (4)
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Pro q = —1 je # + 1 = 0, což dosazeno do (4) dává
P > q + 1 •

3. q e (— 1; 0); pak levá strana nerovnosti (2) je kladná,
dále 1 — q > 0, takže nutně musí být p > 0. Kdyby
totiž bylo p ^ 0, bylo by p{\ — q) ^ 0, ale (^ + 1) .

• ]/p* — 4? > 0, takže by nemohlo být (1 + g)]/p2 — 4g <
> /С1 - Я)- Je tedy

0 < (q + 1 )fp2 — 4g < p(l —

a tato nerovnost je ekvivalentní s nerovností
(.q + l)2 (j>2 — 4#) < p"( 1 — <?)2, kterou upravíme

2 (1 ~ ď
(1 + í)

2 (1 ~ g)2 ~ (1 + g)2
(1 + ď

p2 — 4q <p í >

—4q < p

—4g
— 4^ < p2 2 5(1 +í)

(1 + q)2 < p2, neboť —4q >0, dále
|1 + q\ < \p\s a protože 1 + q > 0, p > 0, je

|1 + q\ = 1 + q, \p\ = p, takže
q + 1 <p.

Postup lze obrátit (upravovat nerovnost 1 + q < p
pro q e (— со; — 1), q = — 1, q e (— 1; 0) až do tvaru (2),
pak do tvaru

P — Mp2 — 4q P + ]/p2 — 4q<
2 2q
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takže platí
p — \/p2 — 4q P + ]/p* — 4q

- < <
2 2q

p + W ц<
2

a kořen xx < x2 rovnice qx2 + px + 1 = 0 tedy sku-
tečně splňuje nerovnost x2 + px + q < 0. Tím je důkaz
proveden.

Nutnou a postačující podmínkou pro to, aby menší
z kořenů rovnice qx2 + px + 1 = 0, kde p, q jsou reálná
čísla, q < 0, splňoval nerovnost x2 + px + q < 0 je
tedy, aby platilo p > q + 1.

POZNÁMKA. Nejprve jsem dokázaly že má-li pro
menší kořen rovnice qx2 + px + 1 = 0 platit x2 + px +
+ q < 0, musí být q + 1 < p. Obrácením postupu jsem
dokázal větu obrácenou, že totiž pro p > q + 1 pro
menší kořen rovnice qx2 + px + 1 = 0 platí x2 + px +
T q < 0. Podle zákonů matematické logiky jsem tím do-
kázal, že p > q + 1 je nutná a postačující podmínka pro
to, aby menší kořen rovnice qx2 + px + 1 — 0 splňoval
nerovnost x2 + px + q < 0.

Řešil Rudolf Švarc,
3. F SVVŠ J. Fučíka, Plzeň

3b. Je dán čtyřstěn ABCD, jehož stěna ABC je ostro-
úhlý trojúhelník a jehož výška spuštěná z vrcholu D má
patu uvnitř stěny ABC. Vyšetřte geometrické místo prů-
sečíků tělesových úhlopříček takových kvádrů, které leží
v čtyřstěnu ABCD, jejichž jedna stěna leží v rovině ABC,
jedna hrana v rovině ABD a zbývající dva vrcholy v ro-
vinách BCD3 CAD.

ŘEŠENÍ. Nejdříve uvedeme konstrukci jednoho
z kvádrů XYZTX'Y'Z'T', který má žádané vlastnosti.

(8 bodů)
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Nechť jeho stěna XYZT leží v rovině ABC, jeho hrana
X' Y' v rovině ABD a vrcholy Z', T' po řadě v rovinách
BCD, CAD. Rovina g = (.X' YZ') protne čtyřstěn v troj-
úhelníku A'B'C' (A' na AD, B' na BD, C na CD) a platí

A A'B'C ~ a ABC .

Vzhledem к (1) je A A'B'C ostroúhlý, X'Y' <= A'B',
Z', T' leží po řadě na stranách B'C, C'A'. Situace v pro-
storu je znázorněna na obr. 24, situace v rovině g na
obr. 25.

(1)

D

C
/T' a'

zp Cf/
A'/

X'

T



Pravoúhelník X'Y'Z'T' sestrojíme tak, že vedeme
vhodnou pří nku p || A'B' || AB v rovině q, určíme její
průsečíky Z', T' s vnitřky úscčvk B'C', C'A' a z bodů Z',
T' spustíme kolmice na А'В'; jejich paty jsou body X'
Y'. Geometrické místo průsečíků S tělesových úhlopříček
všech kvádrů daných vlastností najdeme takto: Zjistíme
geometrické místo průsečíků M' úhlopříček pravoúhel-
níků X'Y'Z'T'; určíme patu M kolnice spuštěné z kaž-
dého takového bodu M' na rovinu ABC; S je pak zřejmě
střed úsečky MM' (M je průsečík úhlopříček stěny
XYZT).

Označme N' střed úsečky Z'T' (obr. 25); všecky
body N' ležící v rovině q vyplní vnitřek těžnice CC"
trojúhelníka A'B'C. Všecky tyto body M' vyplní tedy
vnitřek úsečky, jejichž krajní body jsou C" a střed V
výšky C'C* spuštěné z vrcholu C na stranu A'B' (obr. 26).
Všecky body C" vyplní vnitřek těžnice DDX stěny ABD
(viz obr. 27). Všecky body C* vyplní vnitřek úsečky DD2,
kde CD2 _L AB, D2 e AB. Protože je С" V || {ABC), vy-
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plní všecky body V vnitřek těžnice DD3 trojúhelníka
CDD3 (viz obr. 27). Všecky úsečky С" V vyplní vnitřek
trojúhelníka Д DDXD3. Tento vnitřek je tedy geometrické
místo bodů M' (průsečíků úhlopříček stěn X'Y'Z'T').
Označme nyní D4 patu výšky DD4 čtyřstěnu ABCD.
Body 5 vyplní vnitřek trojúhelníka Z)4Ď3D5, kde D5 je
střed výšky DDá (obr. 28); to snadno zjistíme, vedeme-li
v libovolném pravoúhlém trojúhelníku XDxD (X na
DXD3) všecky příčky rovnoběžné s odvěsnou DJ) a zjis-
tíme-li jejich středy S. (Ve zvláštním případě, leží-li
bod Z)4 na úsečce DXD3 a je-li X = D4, se redukuje
Д XDJ) na úsečku DJT).

ZÁVĚR. Geometrické místo středů S „vepsaných^
kvádrů XYZTX'Y'Z'T' je vnitřek trojúhelníka
(viz obr. 28), neboť je i možno ke každému bodu vnitřku
trojúhelníka DxD3Db sestrojit kvádr požadovaných vlast-
ností.

107



2. KATEGÓRIA В

la. Určité všetky prirodzené čísla k, pre ktoré je číslo
Зк + 1 dělitelné a) dvoma, b) štyrmi, c) osmimi.

RIEŠENIE. Tabulka

k i 2 3 4 5

3fc + 1 824 10 28 244

nám napovedá, že pre nepárne k je 3* + 1 násobkom
štyroch, pre párne & len násobkom dvoch, ale nie štyroch.

Platí

3k+l + 1 = 3* . 3 + 1 = 2.3* + (3* + 1) . (1)
Číslo 2.3k je zrejme pre každé prirodzené k len násob-
kom dvoch, ale nie štyroch. Ak je číslo 3^+1 tiež len
násobkom dvoch, je podia (1) Ък+1 + 1 násobkom štyroch.
Ak je Зк + 1 násobkom štyroch, potom je podia (1)
3k+1 + 1 násobkom dvoch, ale nie štyroch. Pretože 31 +
+ 1 = 4 je násobkom štyroch, je tým prvá a druhá časť
úlohy vyriešená, a to tak, že je potvrdená naša domnienka:

a, b) Číslo 3k + 1, kde k je prirodzené číslo, je vždy párne,
ale je dělitelné štyrmi vtedy a len vtedy, keď k je nepárne.

c) Platí
Зк + 1 = 9.3k~2 +1 = 9.3k~2 + 9 - 8 =

= 9 . (3k~2 + 1) - 8 . (2)
Ak by bolo číslo 3k + 1 pre niektoré prirodzené číslo k
násobkom ósmich, potom by to podlá (2) muselo platit’
tiež o čísle 3k~2 + 1. Opakováním tejto úvahy dospejeme
к závěru, že buď 31 + 1 = 4 alebo 32 + 1 10 je ná-
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sobkom ósmich. Toto protirečenie ukazuje, že číslo
3k -f 1 nie je dělitelné osmimi pre žiadne prirodzené k.

lb. Součet druhých mocnin tři po sobě následujících
celých lichých čísel je menší než 107 a jeho dekadický
zápis má všechny číslice stejné. Najděte všechny takové
trojice čísel.

ŘEŠENÍ. Označíme-li x prostřední ze tří hledaných
čísel, pak součet čtverců je

s = (x — 2)2 + x2 + (x + 2)2,
tj-

(1)s = 3x2 + 8 .

Poněvadž x je liché číslo, končí x2 některou z číslic
1, 5, 9 .

Číslo s pak končí některou z číslic
1, 3, 5 .

Z (1) plyne, že s není dělitelné třemi, takže číslice 3 ne-
přichází v úvahu. Vzhledem к tomu, že podle (1) číslo s
má při dělení třemi dávat zbytek 2, zbývají pro s již jen
tyto možnosti

11, 11111,
5, 5 555, 5 555 555 .

Dosadíme-li tyto možnosti postupně do (1), zjis&ne, že
číslo 11 vede ke trojicím

[-1,1,3], [-3,
číslo 5 555 ke trojicím

1, 1],

[41, 43, 45], [-45, -43, -41],
zatímco pro ostatní tři čísla s nemá rovnice (1) celočíselné
řešení x.

Snadno se ověří, že nalezené čtyři trojice skutečně
splňují podmínky úlohy. Úloha má tedy čtyři řešení.
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2a. Určete reálná čísla a5 6, c, i tak, aby platilo
я + 1 a c

(1)я2 - я — 2 я + 6 1 я +
pro všecka reálná я, pro něž není žádný z jmenovatelů
roven nule.

ŘEŠENÍ. Existují nejvýše čtyři čísla x, která anulují
některý ze jmenovatelů zlomků v (1). Pro všecka ostat-
ní reálná x platí

я + 1
__ a(x + d) + c(x + b)

(я + b) (я + d) ’я2 + я — 2
tj.

(я -f- 1) (я -j- b') (я -)- d) —

= (я2 + я — 2) [(а + с)я + (ai + 6c)] •

Po úpravě dostaneme
я3 + я2(1 + 6 + d) + я(6^ + b + d) + bd —

= x3(a + с) + x2(a + c + ad + bc) +
+ x(ad + bc — 2a — 2c) — 2(<zd + bc) .

Porovnáním koeficientů u týchž mocnin я dostaneme
a + с = 1

1 -f~ b -j~ d = a -J- c -i- {ad -f- bc)
bd -f- b -j~ d = {ad -j- bc) — 2{a -f- c) % (2c)

bd = —2(ad + bc) .

Užijeme-li (2a) v (2b) a dále (2a) i (2b) v (2c), vyjde
a -j- c — 1 3

b d — ad -f- bc 3

bd=—2,
bd = —2(ad + bc) .

(2a)
(2b)

(2b)

(3a)
(3b)
(3c)
(3d)
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Z (Зс), (3d) dostaneme
(4)ad + be = 1

a dosazením (4) do (3b)
(5)b + d = 1 .

Z (3c), (5) vyplývá, že b3 d jsou kořeny kvadratické rov-
nice t2 — t

čení tak, aby bylo
2 = 0; to jsou čísla 2,-1. Zvolme ozna-

(6)b = 2, d=-1;
pak (4) zní

Spojením (3a), (7) vyjde
(7)я -j- 2c — 1 .

12
(8)c = a = —.

33 5
Vzorce (6), (3) dávají řešení úlohy. Zkouškou se snadno
přesvědčíme, že je skutečně

21

3x -)- 1 3
x — 1x2 x — 2 x + 2

2b. Nájdite všetky hodnoty parametra a, pre ktoré je
v kartézskej súradnicovej sústave so súradnicami x, у
graf rovnice

(1)I* +^1 + a\y\ = 1
obvodom pravouholníka.

RIEŠENIE. Graf rovnice (1) zostrojíme zo štyroch
častí, ktoré dostaneme uvažováním o štyroch prípadoch:

a) x + у ^ 0, у ^ 0; b) x + у
c) * + з/ ^ 0, ^ ^ 0; d)x+j;^0, у ^0 .

Na obr. 29abcd sú načrtnuté a vyšrafované uhly, ktoré
sú grafickým znázorněním štyroch dvojíc nerovností (2).

0,.y^0; (2)
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У

'ЛУЖ у-0
о

ж +у =0

%
О

Obr. 29abcd

V prípadoch a)—d) nahradíme rovnicu (1) v uvedenom
poradí rovnicami

(2a)x + (1 + a)y = 1 ,

x + (1 — a)y = 1 ,

x + (1 — a)y = — 1 ,

x + (1 + á)y = — 1 .

(2b)
(2c)
(2d)
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Každá z rovnic (2a)—(2d) je rovnicou priamky. Prvé dve
z týchto priamok pretínajú priamku у = 0 v bode P =
= [1; 0], druhé dve v bode N = [—1; 0].

Uvažujme zvlášť o případe a = 0. V tomto případe
dávajú štyri grafy spolu dve rovnoběžky x + у = ±1
prechádzajúce bodmi P, N (obr. 30).

Ak je а Ф 0, přetíná každá z priamok (2a) — (2d)
priamku л; + у = 0 v určitom bode, a to priamky (2a)
a (2c) v bode Q = a priamky (2b), (2d) v bode

7]1
. Body Q, R patria do vyšrafovaných

uhlov právě vtedy, keď je a > 0. Pre a > 0 je teda gra-
fom rovnice (1) obvod rovnoběžníka PQNR (obr. 31),
pre a < 0 je týmto grafom štvorica polpriamok (obr. 32).
Rovnoběžník PQNR je však pravouholníkom právě
vtedy, keď je NP = QR. Platí však: NP — 2, QR =

R
a 3
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21/211

^— . Graf rovnice (1) je teda ob-— 2 j + ™2- —
vodom pravouholníka právě vtedy, ked a = ]/2.

32

3a. Je dán vypuklý čtyř-
úhelník ABCD a bod Zúhlo-
příčky BD tak, že přímka AX
protíná stranu CD v jejím
vnitřním bodě. Pak platí
AX + BX + CX < AD +

(1)+ BD + CD .

Dokažte. Platí vztah (1) i
v případě, že přímka AX
prochází vrcholem C nebo
protíná stranu BC?

ŘEŠENÍ (obr. 33). a)
Označíme Y průsečík pří-



mek AX3 CD. Podle trojúhelníkové nerovnosti pak platí
AD + DY > AX + XY (= AY),

XY + CY > CX,
BD > BX.

Sečtením těchto tří nerovnic dostaneme nerovnici (1),
neboť DY + CY = CD.

b) V případě, že přímka AX obsahuje bod C, je Y —
= C; nerovnice (2) se změní jen v tom, že druhá z nich
přejde v rovnici XY = CX.
Platnost (1) tedy zůstává beze změny.

c) Obr. 34 ukazuje na
deltoidu ABCD, vepsa-
ném kružnici k o středu
X, že vztah (1) neplatí.
Zde je totiž
AX =BX = CX — DX =

= r, BD = 2r . (3)
Body Л, C jsou zvoleny
tak, aby platilo

AD + CD <r. (4)
Je tedy podle (3) a (4)
AX + BX + CX = 3r ,

AD + BD + CD = 2r +
+ ziD + CD < 3r,

tj. (1) neplatí.
3b. Uvnitř kružnice k se středem 5 a poloměrem r jsou

dány dva body A, В tak, že Л, В, В neleží v přímce.
Sestrojte dvě navzájem kolmé tětivy kružnice k, které
mají tutéž délku a obsahují po řadě body A, B.

(2)
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ŘEŠENÍ. Rozbor. Předpokládejme, že tětivy a _j_ b
na, obr. 35 splňují podmínky úlohy. Je tedy možno např.
rotací v kladném smyslu otáčení přenést tětivu b v tětivu

a = b'\ bod В po otočení
pak přejde v bod B' ležící
na přímce a. Pro В' Ф A

{ tak dospějeme к jednoduché
konstrukci tětivy a = AB'.
Protože o vzájemné poloze
bodů A, B' nemůžeme pře-
dem rozhodnout, provedeme

Л/ diskusi:
7 I. Vyšetříme nejprve pří-

' pad, kdy <£ ASB je pravý.
Otočíme-li tětivu b procháze-
jící bodem В kolem středu 5
o pravý úhel v kladném ne-
bo záporném smyslu, přejde

v tětivu a procházející bodem A (obě mají totiž tutéž
délku). Otočený bod B' leží tedy také na tětivě a. A tu
je třeba rozeznávat dva případy:

а) В' Ф A, b) B' = A (obr. 36ab).

B'
A

Ъ=Ь'
S

Obr. 35



V případě b) má úloha nekonečně mnoho řešení: je to
libovolná tětiva a procházející bodem A — В' а к ní
kolmá tětiva b procházející bodem В. V případě a) má
úloha jediné řešení: jsou to
tětivy SA — a3 SB = b.

II. Nyní vyšetříme pří- /

pad, kdy ^.ASB není pravý /
(obr. 36c). Postupujeme jako /
v případě I. V tomto pří-
pádě neleží bod B' na přímce l
AS3 proto je vždy В' Ф A. \
Sestrojíme tětivy ax = AB' \
a a2 = AB"; к nim vedeme
bodem В tětivy kolmé: bx
J_ clx; b2 _L ^2- Úloha má
v tomto případě dvě řešení
(obr. 36c).

к
•VfA

B\
B_,

sir ^2,
\ b?

<k

Obr. 36c

3. KATEGÓRIA Z

178
1. Zlomok

zlomkov s menovatelmi 3, 13 a s celočíselnými čitatelmi.
Nájdite všetky riešenia úlohy.

RIEŠENIE. Podlá textu úlohy má platit’

= 2L 4. -2-
39 3 ^ 13 *

13л: + 3у — 178 j

kde x3y sú prirodzené čísla. Upravme túto rovnicu na tvar
1 — 13л:

У = 59 H 3 .

39 vyjádříte ако súčet dvoch kladných

178

t. j.
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Pretože hladáme celočíselné a kladné riešenia, musíme
určit’ číslo x tak, aby zlomok

1 - 13x
V =

3

bolo celé číslo váčšie než —59.

Pre x = 1, 4, 7, 10, 13 nadobúda výraz V hodnoty
—4; —17; —30; —43; —56, takže

i 4 7 10 13x

55 42 29 16 3У

iných možností niet. Výpočtom sa 1’ahko přesvědčíme, že
daný zlomok možno teda rozložiť takto:

4 42 7 29

3 ' 13 3 13

= 13 3_
3 13 ■

2. Je dán čtverec, jehož
strana má velikost a. Z jeho
vrcholů jsou opsány dovnitř
čtverce čtvrtkružnice s polo-
měrem a. Tím se rozdělí
čtverec na 9 částí tří růz-
ných tvarů (viz obr. 37). Vy-
počtěte obsahy těchto částí.

ŘEŠENÍ. Průsečík oblou-
ků opsaných z bodů А, В

В označme M. Písmeny x, y,
z označme obsahy vzniklých

178 i 55
39 ' ~ 3 + 13

10 16

3 r 13

c

A a

Obr. 37
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ploch tak, jak je uvedeno na obr. 37. Potom platí
z = P-(P1 + 2P2),

kde P je obsah čtverce ABCD o straně a, P1 obsah rovno-
stranného Д ABM o straně aaP2 obsah kruhové výseče
o poloměru a a středovém úhlu 30° (tj. 2P2 je součet
obsahů výsečí AMD a BCM). Tudíž

\c? ,\ъ
30

z = a2 —
— 2na2 .

360 5
tj-

a2
(12 - 2ti - 3]/3) == 0,043a2. (1)# = —

Dále platí
У = P — (Рз + 2z) ,

kde P3 je obsah čtvrtkruhu ABD o poloměru a, tj.
a2

(тс + 6]/3 - 12) = 0,128a2 . (2)У =

Pro x platí
x — P — (4j; -f- 4я),

tj-
a2

3]/3) == 0,315a2.(З + 7Г

Řešení úlohy je dáno vztahy (1), (2) a (3).

(3)x = -

3. Je dán čtverec ABCD. Stranu CD rozdělte na
n shodných dílů tak, aby na ní existoval dělicí bod X
takový, že

(1)YL,
kde К je střed strany BC, L je střed strany АВ a Y je
dělicí bod na straně AD, která je rozdělena na 5 shodných
dílů.

KX

Určete nejmenší n této vlastnosti.
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ŘEŠENÍ (obr. 38). Ze vztahu (1) plyne
AALY ~ ACXK,

tj-
AY CK
AL ~ CX'

Označíme-li délku strany čtverce a} potom rovnost (2)
nabývá tvaru

(2)

aa

г-т 2
(3)

aa
s . —

2 n

kde r, 5 jsou přirozená čísla vyhovující nerovnostem
1 s <n . (4)1 ^ r < 5 ,

120



Vztah (3) po úpravě zní
(5)4rs — 5n .

Z poslední rovnosti je zřejmé, že n je násobkem 4. Nej-
menší takové n je 4. Pro n — 4 dává (5)

rs — 5 ,

což však nelze splnit čísly r, 5 vyhovujícími nerovnostem
(4). Pro n = 8 rovnost (5) zní

rs — 10 .

Této nerovnosti vyhovují čísla r = 2, s = 5, která také
2 5

splňují nerovnosti (4). Potom AY = -=- a, CX = a.
D o

V tomto případě skutečně platí (1).
ZÁVĚR. Nejmenší n požadované vlastnosti je n — 8.
JINÉ ŘEŠENÍ. Označme Y13 У2, Y3, У4 dělicí body

na straně AD (viz obr. 38). Ze vztahu (2) plyne
CK.AL a2 1

4 * AY '
CX =

AY

Pro Yx platí
a2 5 5

— =

-£■ a, tj. X by nebyl bodem úsečky DC;

a2 5 5
T'2^ = Ta’

cx =
4 '

pro У2 je

CX = n = 8;

pro У3 je
a2 5

ira> Ч-«с* = ^Г'з<Г =
- 12;

pro У4 je

121



■~!а=Тба’ Г’' й=16-
Nejmenší п požadované vlastnosti je tedy n = 8.

4. Je daný štvoruholník ABCD, ktorého strany majú
dížky AB = 70 mm, BC = 35 mm, CD = 75 mm,
D/J = 65 mm a uhlopriečka BD má dížku 70 mm. Zo-
strojte štvoruholník ABCD a potom zostrojte rovno-
bežník, ktorého všetky štyri vrcholy ležia na obvode
štvoruholníka ABCD a jeho uhlopriečky sú rovnoběžné
s uhlopriečkami daného štvoruholníka. Zostrojte najskór
střed hladaného rovnoběžníka.

a2
CX =

4

D

XL ý\

\ • \
v\ \ T

\

Yt w

/ s' ^

A Z В

Obr. 39

RIEŠENIE. Zostrojíme najskór /\ABD a potom
v polrovine opačnej ku BDA zostrojíme Д BCD (obr.
39). Střed S hladaného rovnoběžníka patří do dvoch
geometrických miest bodov: do geometrického miesta I\
stredov všetkých pricčok štvoruholníka ABCD rovno-
běžných s priamkou 4C a do geometrického miesta Г2
stredov všetkých pricčok štvoruholníka ABCD rovno-
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běžných s priamkou BD. Geometrické miesto I\ je
zjednotením ťažníc BM, DM trojuholníkov ACB, ACD
bez bodov В, D, geometrické miesto Г2 je zjednotením
ťažníc AN, CN trojuholníkov BDA, BDC bez bodov
A, C. Body Aí, iV sú teda v uvedenom. poradi stredmi
uhlopriečok AC, BD. Geometrické miestá Г15 Г2 majú
jediný spoločný bod. Je to priesečník S ťažníc AN, DM.
Bodom 5 vedieme rovnoběžky s priamkami AC, BD.
Tieto rovnoběžky pretnú obvod štvoruholníka ABCD
v bodoch X, Y, Z, T, ktoré sú vrcholmi hladaného rovno-
bežníka.

Skúška konštrukcie vyplývá z vety: Vypuklý štvor-
uholník je rovnobežníkom právě vtedy, keď sa jeho uhlo-
priečky navzájom delia na dve zhodné časti.

Z vrcholov X, Y, Z, T výsledného rovnoběžníka ležia
X, Y na straně AD, Z na straně AB а Г na straně CD.
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V. Soutěžní úlohy III. kola
kategorie A

1. Nechť pro přirozená čísla a, b platí
— = i + — + JL + ...H——b ^ 2 r 3 ^ p- 1 5

kde p je prvočíslo větší než 2. Potom p je dělitelem čísla a.
Dokažte.

ŘEŠENÍ. DŮKAZ. Uvedením na společného jméno-
vatele (p — 1)! vyjde v čitateli 2.3.4 ... (p — 1) +
+ 1.3.4 ... (p — 1) + 1.2.4 ... (p — 1) + ...

. . . +1.2.3 ... (p — 2), tj. součet součinů prvků
v kombinacích (p — 2) třídy z (p — 1) prvků 1, 2, 3, . ..

... O — i).
Označme tento součet písmenem s.
Utvořme nyní mnohočleny (p — 2)ho stupně

(p — 2) (p — 3) (p — 4) . .. [p — (p — 1)],
(p- l)(p-3)(p-4).[p-(p- 1)],

(p - l)(p - 2) (p - 4) ... [p - (p - 1)]....
....(P- l)(ř-2)(p-3)...[p-(p-2)]

a sečtěme je. Je to zřejmě zase součet s} jen jsou sčítanci
v obráceném pořádku [např. první mnohočlen (p — 2) .

. (p — 3) (p — 4) ... [p — (p — 1)] je roven součinu
1.2.3 ... (p - 2)].
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Prostý člen výsledného mnohočlenu v p, totiž
(-2) (-3).. .[-(p - 1)] + (-1) (-3)... [-(/>-!)] +
+ (-1) (-2) (-4) ... [-(/>- 1)] atd. až (-1) (-2).
. (—3) ... [—(p — 2)] je zase, avšak záporně vzatý sou-
čet s (počet záporných činitelů v každém součinu je
(p — 2), tedy lichý).

Ze všech ostatních členů výsledného mnohočlenu lze
vytknout p. Dostáváme tak rovnici

s = p . M — s ,

kde M je mnohočlen v p s celistvými součiniteli.
M

Z toho plyne 2s — p . M a s — p -y = pM1,
položíme-li M — 2MX. (M je totiž sudé číslo.)

Celkem tedy součet prvních (p — 1) členů harmonické
pMiřady je

činitel v čitateli, ať lze zlomek krátit nebo ne.

. Jelikož p je prvočíslo, zůstává jako(P — 1)!

POZNÁMKA. Úlohu lze řešit také pomocí kongruencí
modulu p.

JINÉ ŘEŠENÍ. Protože je p prvočíslo větší než 2, je
p liché a počet sčítanců je sudý. Upravíme

т=(1 + т^т) + (т + т)1
+ . . . +

p-
1 1

(1)+
p-1 p± 1

2 2

a sečteme jednotlivé dvojice v závorkách takto:
_ p — n + n _

______

n n(p — n) n{p — n)J-+-1
n P —

p
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Celý součet potom je
P P P+ ‘ +

p — 1 p + 1l(p-l) 1 2(p — 2)
2 2

= j> г—

1 /Р- 1
2 * \ 2

+ i) • • • • (ř - i)1.2...

p.č (2):

O — 1)! *
Čitatel 6 je přirozené číslo, není nutno ho vyčíslovat.
Nyní upravím rovnost (1) s použitím (2) a dostáváme:
a . (j) — 1)! = p . č. b.

(p — 1)! však podle zadání nemůže být dělitelno p,
tudíž je a dělitelno p, což jsme měli dokázat.

Řešil Pavel Pudlák,
3. D, SVVŠ Praha

D

2. Stěny čtyřstěnu
ABCD jsou čtyři navzájem
podobné pravoúhlé troj-
úhelníky s pravými úhly

u při vrcholech В, C. Nej-
delší hrana čtyřstěnu má
délku 1. Zjistěte, zda ta-
kový čtyřstěn existuje.
Určete, která jeho hrana
je nej delší, která hrana je
nejkratší a jakou má délku.

ŘEŠENÍ. Předpoklá-
dejme, že existuje čtyřstěn

h

В



žádaných vlastností. Nechť stěny, které mají pravé úhly při
vrcholu B, jsou ABD a BCD (obr. 40). Protože každá
stěna má právě jeden pravý úhel, jsou pravé júhly <piACB
a <£ACD. Označme délky hran podle obr. 40 (ж = AB,
у — ВС, z — CA, t — AD, и — BD, v — CD) a dále
označme cp velikost ostrého úhlu <£ DAB. Pak plyne
z AABD

и — t sin cp , X
Pro trojúhelník Д A CD máme dvě možnosti: a) CAD —
= <P> b) <£ ADC = <p. V případě a) dostaneme

(1)t COS cp .

(2)z — t cos cp , v = t sin Cp .

Z (1) a (2) plyne x — z, což je spor, neboť v pravoúhlém
trojúhelníku ABC je x délka přepony a z délka odvěsny.
Případ a) je tedy nemožný a nastane případ b). Je tedy

V = t COS cp , z = t sin cp . (3)
Z (1) a (3) plyne

(4)v = x .и = z,

Z (1) a (3) plyne dále — = tg cp-, podle textu úlohy je

buď — = cos cp, nebo — = sin cp. Ze vztahu — = sin cp

dostaneme vzhledem к vztahu — = tg cp vztah cos cp —

— 1, což je nemožné. Je tedy ~ = cos cp, tj. podle (1)
z — t cos2 cp .

vZ A ABC pak plyne ~ = sin cp (neboť <$.ACB je pravý

= cos cp), tj. podle (1)
у — t sin cp cos cp .

(5)

a

(6)
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Z (3) a (5) vyjde sin 99 = cos2 99, neboli
sin2 (p + sin 99 — 1 = 0

a odtud (sin 9? > 0)

sin? = у(]/5 - l) = 0,618.
Podle (7) je 99 < ^sin 99 <

sin cp < cos 99.

Tak dostaneme z (1), (3), (4), (5) a (6) vzhledem к (8)
uspořádání délek hran podle velikosti:

y<u = z<x = v<t.
Podle textu úlohy je t — 1; nejkratší hrana je BC; její
délka je vzhledem к (7), (6)

(7)

(8)

BC —

= У1 — sin2 99 = У ^ 5~2 -
1

neboť cos 99 ; numericky
BC = 0,486. Ze vztahu (7) zjistíme, že je 99 ^ 38° 10'.

Existence čtyřstěnu je prokázána sestrojením sítě,
která je na obr. 41. Vyjde se z AACD (99 = 38°10'), se-
strojí se A ABC a bod D leží na kolmici vztyčené к ro-
vině ABC tak, že BD — и = z.

JINÉ ŘEŠENÍ. Předpokládejme, že takový čtyřstěn Z
existuje a promítněme ho pravoúhle do roviny ABC.
Bez újmy na obecnosti lze předpokládat, že A ABC má
pravý úhel při vrcholu C. Trojúhelník ACD má pravý
úhel při vrcholu C a tento úhel se při promítnutí zachová.
Obraz Dx bodu D musí tedy ležet na přímce BC. Ob-
dobně Д ABD má pravý úhel při vrcholu В a ten se při
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promítnutí opět zachová. Bod Dx musí proto ležet i na
přímce r J_ AB} Ber. Z toho plyne, že В = Dx> tudíž
BD je kolmé na rovinu ABC а Д BCD má pravý úhel
při vrcholu B.

Poněvadž AB je odvěsnou v AABD, je
AD > AB > AC .

Obdobně je
AD > CD > BD ,

AD > CD > BC .

Nejdelší je tedy hrana AD = 1.
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Z podobnosti Д ABD ~ Д DBC plyne
BD BC
AD ~ CD ’

takže
BD AD
BC - CD >1,

tudíž

BD > BC.

DD BD
=

„n , 'neboť by potom bylo AD =L/iJ
(Nemůže být
= CD, což by byl spor s již dokázaným AD > CD.)

AD

Obdobně se dokáže, že platí AACD ~ Д BCA a odtud
AC BC
AD ~ AB’

takže
AC

= AD
BC ~ AB >1,

proto
AC >BC.

Nejkratší hranou tedy bude BC.
Poněvadž Д ABC, Д BCD mají být podobné, musí

pro jejich odvěsny (AC > BC, BD > BC) platit
AC BD
BC BC ’

tedy
AC — BD .

Podobně z /\АСВ ~ Д DBC vyplývá
AB = CD .
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Ve čtyřstěnu Z tedy máme
AD — 1, BC = a> AC — BD — b, AB = CD = c .

Z podobnosti Л DBA ~ Д CBD plyne
b a

c

tedy
b2 — ac .

Podle Pythagorovy věty máme
b* + C2 = i з

b2 + a2 = c2 .

Z posledních tří rovností plyne
ac + c2 — 1 ,

ac + a2 = c2,
Clil

ac = 1 — c2,
ac = c2 — a2 .

Srovnáním dostaneme
1 + a2c2 -

2

což dosadíme do rovnice ac + c2 = 1:

1 + a2 1 + a2
1 -a

2 2

odtud po úpravě přichází v úvahu jediný kořen

a = ]/j/5 - 2 (1)
a pak můžeme též vypočítat

-FT (2)> a .
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Dokážeme nyní, že náš čtyřstěn Z existuje. Z předcho-
zího je jasné, že pravoúhlý trojúhelník ABC s <£ C =
= 90° je jednoznačně určen odvěsnou ВС — a a pře-
ponou AB = c (viz vzorce (1), (2)). К rovině ABC pak
vztyčíme kolmici v bodě В a sestrojíme na ní úsečku
BD — b. Z Pythagorovy věty pak CD = c. Poněvadž
AC _L BC, AC J_ BD, je také AC JL CD, takže i troj-
úhelník ACD je pravoúhlý (<£ C = 90°) a platí

AD2 — b2 + c2 = (c2 — a2) + c2 =
= 2c2 — a2 — 1 + a2 — a2

Podobnost všech čtyř stěn je pak zajištěna vzájemným
poměrem hran.

Tím je úloha vyřešena; čtyřstěn existuje, nejdelší hrana

je AD = 1 a nejkratší BC =_

1 .

Vři - 2 .

Řešil Jiří Tůma,
III. roč. SVVŠ, Písek

3. Nájdite všetky reálne čísla x, pre ktoré platí
1 11

(1)
X + ]/P — X2 X — У p — X2 P 5

kde p je dané kladné číslo. Urobte diskusiu.

RIEŠENIE. Ak reálne číslo x vyhovuje nerovnosti (1),
potom musí preň platit’ p — x2 ^ 0 čiže

- ]/p ^ x ^ ]/p
a súčasne (я + ]/p — x2) (л: — ]jp — х2) Ф 0 čiže

(2)

(3)x Ф — X Ф
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Nech platia vztahy (2) a (3). Po zlúčení zlomkov na 1’avej
straně nerovnosti (1) dostaneme

12x
(4)— > —.

P ~ P2x2 —

a) Nech 2x2 — p > 0 čiže

buď x < — janebo л: >
Potom je nerovnost’ (4) ekvivalentná s nerovnosťou 2x2 —
— 2px — p ^ 0, z čoho postupné dostaneme

(*- lfžlř(ř + 2)’

у (p - ho + 2)) s * s у O- + hoři)). (6)
Pre p > 0 zrejme platí | J-f- 1 j > -у + 1, z čoho
postupné dostaneme

(5)

v 2~ + 1з+ 1 >

]/f >yh(P + 2),
|- < у (ř - ho + 2)),

z čoho vyplývá, že žiadne z čísel vyhovujúcich 1’avej ne-
rovnosti vo vztahu (6) nesplňuje prvú z nerovností (5).
Pretože pre p > 0 zrejme platí

P
2 +

(7)

у (p + ho + 2)),P
~ <
2
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nerovnostiam (5) a (6) súčasne vyhovujú všetky tie x,
pre ktoré platí

|/у < * s у (p + VřO + 2)) (8)
Čísla určené vzťahom (8) splňujú však podmienku (2)
vtedy a len vtedy, keď platí

у (p + Ур(р + 2) ^ yp
číže ]/p(p + 2) ^ 2Ур — p, z čoho postupné dostaneme

p2 + 2p ^ 4p — 4рУр + p2,

(9)

V# á t>
1

(10)0 < p S T;
obrátením postupu sa však 1’ahko přesvědčíme, že každé
číslo určené nerovnosťou (10) vyhovuje tiež nerovnosti (9).

Zistili sme teda, že ak x vyhovuje nerovnosti (1) za
podmienky a), potom musí platit’:

1
Ak 0 <p ^ y, je

2" < x ^ ~2 (p Ур(Р + 2)) ,

í- < * ^ yp.

(8')

ví1
(11)ak p>y, je

Obrátením postupu 1’ahko zistíme, že pre čísla jc určené

(-*) 1

4 PÍP + 2),vzťahmi (8'), resp. (11), platí:

2л:2 — 2px - p ^ 0,
čo je za podmienky a) ekvivalentně s nerovnosťou (4) a
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teda aj s nerovnostem (1) pričom podmienky (2) a (3) sú
zrejme splněné.

b) Nech 2x2 — p < 0 čiže
P (12)T<*<

Čísla určené vzťahom (12) zrejme splňujú podmienky (2)
a (3) a za uvedeného předpokladu je nerovnost’ (4) ekvi-
valentná s nerovnosťou

2x2 — 2px — p ^ 0, z ktorej postupné máme

— y) ^ \p(P + 2) čiže bud’

*ž{(ř-ШрТ2))
л: ^ у (p + Ур(р + 2)).

Vzhladom na (7) je množina čísel súčasne splňujúcich
(12) a (13) vždy neprázdná a určená vzťahom

(13)
alebo

(14)

1/у < * ^ у G> - Ур(р + 2)) j (15)
zatial’ čo množina čísel súčasne vyhovujúcich vzťahom (12)
a (14) je pre každé p > 0 zrejme prázdna.

Obrátením postupu sa opáť lahko přesvědčíme, že
čísla určené vzťahom (15) za podmienky (12) vyhovujú
nerovnosti (4) a teda aj nerovnosti (1).

ZÁVĚR. Nerovnosti (1) vyhovujú pre 0 < p ^ -r-4

všetky čísla л; určené vzťahmi (8') a (15) a pre p >

všetky čísla x určené vzťahmi (11) a (15).
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4. Po moři (jeho hladina je považována za rovinu)
pluly dvě lodi stálými rychlostmi při stálých kursech.
Jejich vzájemná vzdálenost činila v 9.00 h 20 námořních
mil, v 9.35 h 15 mil a v 9.55 h 13 mil.

a) Zjistěte, jakou funkcí času je druhá mocnina jejich
vzdálenosti.

b) Zjistěte, kdy si byly lodi nejblíže a jaká byla přitom
jejich vzdálenost.

ŘEŠENÍ, a) Snadno se ukáže, že čtverec vzdálenosti
obou lodí je kvadratickou funkcí času.

Buďte A3 В polohy lodí v okamžiku t — 0, u, v vek-
tory jejich rychlostí. Polohy v okamžiku t tedy budou
A + ш, В + tv. Čtverec vzdálenosti d2(t) je skalární
čtverec vektoru

{A — B) + tu — tv,
tedy

d\ť) = (A - В, A - B) + 2 í(u -

+ t2(u - v, и — v),
což je skutečně kvadratická funkce času t.

v, A- B) +

b) Zvolíme-li za začátek časové osy čas 9.00 h a za
jednotku času 5 minut, máme najít minimum kvadratické
funkce

d\t) = at2 + bt + c ,

známe-li její hodnoty

lio 7

d(t) 20 1315

ďKO 225 169400
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Máme tedy c — 400
a pro a, b soustavu rovnic

49a + 7b = -175
121a + 116 = -231 ,

jejímž řešením je a = 1, b = —32.
Je tedy

d\t) = ř2 - 32ř + 400 .

Hledané minimum nastane pro t — 16 a činí
d2(16) = 256 - 512 + 400 = 144,

tzn. ú(16) = 12 .

Obě lodi si tedy byly navzájem nejblíže v
900 + 16.005 = 1020

hodin a byly od sebe vzdáleny 12 námořních mil.
5. V rovině sú dané dva rožne body S, A tak, že SA =

= 1, a je dané reálne číslo k. Bod A otočíme okolo středu S’
o orientovaný uhol velkosti 9? do polohy A'3 к bodu A'
zostrojíme jeho obraz A" v rovnolahlosti so stredom 5 a

1
s koefickntom rovnolahlosti . Keď na-

cos (p — k sin cp
dobúda cp všetky hodnoty, pre ktoré cos cp — k sin cp Ф 0,
vyplnia body A" priamku prechádzajúcu bodom A. Do-
kážte.

RIEŠENIE. Označme x'3 ý kartézské súradnice bodu
A'} x", y" kartézské súradnice bodu A" v súradnicovej
sústave, ktorá má počiatok v bode 5 a bod A má v nej
súradnice [1; 0]. Potom platí

x' = cos cp , ý = sin cp ,

sin cpCOS cp (1)/' =X —

COS Cp — k sin Cp 5 cos cp — k sin cp
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Vyšetřujme najskór tie hodnoty cp, pre ktoré je cos cp Ф 0,
sin cp Ф 0, cos cp — k sin cp Ф 0. Z (1) vyplývá

1 1
x" — У" = (2)1 — k tg cp 5

Za uvedených predpokladov pre cp je podl’a (1) x" Ф 0,
у" Ф 0 a z (2) dostaneme

cotg cp — k '

1 1
k . tg 9? = 1 — cotg = k + г// 3

Po vynásobení oboch rovnic zo vztahu (3) a jednoduchej
úpravě dostaneme

ky" - x" + 1 = 0,
čo je rovnica priamky prechádzajúcej bodom A — [1; 0].

Zo vztahu (1) je vidieť, že aj v případe, keď buď cos cp =
= 0 alebo sin cp = 0, leží příslušný bod A" na (4).

Obrátene zvolme bod [x",y"\ priamky (4), pre ktorý
je x" Ф 0, у" Ф 0. Z druhéj rovnice (3) určíme cp. Platí
preň cotg cp Ф 0, pretože inak by z druhej rovnice (3)
vyplývalo ky" + 1 = 0 a v důsledku toho zo (4) x" = 0.
Pretože podlá druhej rovnice (3) je cotg cp — k Ф 0, je
tiež cos cp — k sin cp Ф 0. Z existencie cotg cp a z nerov-
nosti cotg cp Ф 0 vyplývá sin cp Ф 0, cos cp Ф 0. Tým
sme našli hodnotu cp, ku ktorej prislúcha zvolený bod
[x"9 y"] priamky (4).

Zostávajú ešte tie body priamky (4), pre ktoré je buď
x" — 0 alebo y" — 0. Prejy" = 0 dostaneme x" — 1, t. j.
bod A", ktorý zodpovedá hodnotám cp — 2niz alebo
cp — тс + 2mz. Keďže k Ф 0 (inak by nemohlo byť x" =

= 0), dostaneme pre x" = 0 zo (4) y" = —. Bod

(4)
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[о, zodpovedá hodnotám 99 = -f 2nn alebo
3

7Г + 2W7T.(P =

Tým je veta úplné dokázaná.
INÉ RIEŠENIE. Zvolme kartézsku súradnicovú sú-

stavu tak, aby 5 = [0, 0] a d = [1,0]. Bodu 5 přiradíme
komplexně číslo s = 0 a bodu A komplexně číslo a — 1.
Bodu A' přiřadíme číslo a', bodu A" číslo a".

Kedze otočeniu o uhol 99 odpovedá násobenie čísla a — 1
komplexnou jednotkou s amplitúdou 9?, dostaneme

a = cos 99 + i sin 99.

Číslo a" dostaneme tak, keď číslo a' vynásobíme reálným

čiže
1

číslom
cos 99 — k sin cp

sin 99cos 99
+ ia

cos 99 — k sin 99 cos 99 — k sin 99

Ak označíme a" = a{ + iaá', kde a", al sú reálne súrad-
nice bodu A" v námi zvolenej súradnicovej sústave, do-
staneme

sin 99cos 99// 7 //
<2i — —

v • V

cize

Body prislúchajúce jednotlivým hodnotám 99 ležia
teda na priamke určenej rovnicou x — ky = 1. Na tejto
priamke leží však aj bod Л, pretože jeho súradnice vyho-
vujú danej rovnici.

Dokážme teraz, že aj obrátene každý bod tejto priamky
je nějakým bodom A". Lubovolný bod tejto priamky má

- k 1
COS 99 — k sin 99COS 99 — k sin 99

a[ -- kal = 1 •
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súradnice [1 + ky^y^. Musíme dokázat’, že existuje taký
uhol <p0, že

sin (pQ
^0 =

t. j. y0 cos cpQ — ky0 sin (p0 = sin (p0 a cos cpQ — k sin (p0 Ф
Ф 0. Pre j;0 = 0 existuje (p0 = 0. Ak y0 Ф 0, musí byť aj
sin (pQ Ф 0 a pre hladané (p0 máme rovnicu

;Уо cotg (p0 — ky0 = 1 čiže

cos <p0 — k sin cpQ 5

1
(5)+ k .cotg (p0 =

Уo

Pretože funkcia cotg cp nadobúda všetky reálne hodnoty,
uhol 9?0 existuje pre každú hodnotu y0 Ф 0. Pretože
cotg cpQ Ф k} dostaneme z rovnosti (5) obráteným po-
stupom, že

sin 9?0
Уo =

cos 9?0 — k sin <p0 '
Potom však

k sin <p0
x0 — 1 + ky0 — 1 +

cos <p0 — k sin (p0

cos <p0
cos <pQ — k sin 9?0 *

Tým je úloha vyriešená.
Riešil Štefan Sakáloš,
2. D, SVŠ Prievidza

6. Najděte všechna reálná *, pro něž platí
Уtg x — 1 [logtg* (2 + 4 cos2 x) — 2] ^ 0 .

ŘEŠENÍ. Levá strana nerovnice (1) má podle definic
druhé odmocniny a logaritmické funkce smysl pro všech-
na Ху pro něž současně platí

(1)
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tg x — 1 ^ O ,

tg x > O, tg x Ф 1 ,

2 + 4 cos2 x > O .

Všechny tyto nerovnosti json současně splněny, právě
když je

(2)tg x > 1 .

Za toho předpokladu je nerovnice (1) ekvivalentní ne-
rovnici

logtg* (2 + 4 cos2 x) ^ 2 . (3)
Nerovnice (1) je tedy ekvivalentní soustavě tvořené ne-
rovnicemi (2) a (3). Podle (2) je základ logaritmu v ne-
rovnici (3) větší než 1, a proto soustava nerovnic (2)
a (3) je ekvivalentní soustavě nerovnic

tg x > 1 ,

2 + 4 cos2 л; (4)tg2 v .

Dosadíme-li do druhé nerovnice soustavy (4)
1

cos2 я =

tg2 я + 1 5
což platí pro všechna v, pro něž je definována funkce
tg x, dostáváme následující soustavu nerovnic

(5)tg x > 1 ,

tg4 x — tg2 x — 6 + 0 ,

která je ekvivalentní soustavě (4).
Upravujme postupně druhou nerovnici soustavy (5). Do-
stáváme

(tg2 X - \) 25
< -

=

4

Vzhledem к tomu, že tg x > 1, je tedy
tg2 x + 3,

141



tj.
Уз.

Přihlédneme-li к první nerovnici soustavy (5), máme
1 < tg x ^ Y3 ,

odkud již plyne řešení soustavy nerovnic (5), a tedy také
nerovnice (1):

Ti
, , . TC .

—j 1- &7Г < X S — (- kli .4 j

kde k je libovolné celé číslo.
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VI. Zpráva о XII. mezinárodní
matematické olympiádě

1. ORGANIZACE A PRŮBĚH SOUTĚŽE

Tato soutěž pro žáky středních škol se konala ve dnech
9. až 21. července 1970 z větší části v městě Keszthely
u Balatonu v MLR. Zúčastnilo se jí z pozvaných 17 států
jen 14; Itálie odřekla pro nevyhovující časový termín,
Belgie a Finsko pro nepřipravenost. Vedoucí delegací,
kteří s pracovníky pořadatelské země tvoří mezinárodní
jury, se sjeli dne 8. 7. 1970 v Budapešti, odkud příští den
ráno odjeli autobusem do lázeňského městečka Hévizu;
zde se po čtyři dni věnovali vybíráni soutěžních úloh a
přípravě soutěže. Mezinárodní jury předsedal na těchto
jednáních akademik G. Hajós, který se však pro nemoc
neúčastnil závěru soutěže; zastupoval jej prof. J. Surányi,
který byl předsedou přípravného výboru. Řízení schůzí
se zúčastnil i dlouholetý pracovník mezinárodních mate-
matických olympiád a hlavní sekretář přípravného výboru
prof. E. Hódi.

Soutěžní úlohy se vybíraly z 12 úloh, které ze zaslaných
návrhů předem připravil přípravný výbor a ke kterým
připojil i stručná řešení. Jednání začalo oficiálně 9. 7.
o 16. hodině.

Akademik G. Hajós vzpomněl zesnulého spoluzakla-
datele mezinárodních matematických olympiád Rudolfa
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Zelinky. Pak byly rozdány návrhy soutěžních úloh; jako
obvykle měli delegáti poměrně málo času na prostudo-
vání úloh (možností různých řešení) a tak se stalo, že vy-
brané úlohy nebyly právě nejvhodnější a také jejich ohod-
nocení body nebylo zcela přiléhavé. Témata úloh byla
z tradiční středoškolské matematiky, což nevyhovovalo
zejména západním státům. Nesmírné potíže působila for-
mulace textů. Když byl konečně stanoven definitivní text
ve čtyřech jednacích jazycích (angličtina, francouzština,
němčina a ruština^, přeložili jej delegáti do národních ja-
zyků a připravili jako obvykle obálky s texty úloh pro oba
dny soutěže (viz přílohu).

Na vypracování každé práce byly stanoveny jako ob-
vykle 4 hodiny čistého času. Delegátům ani žákům ne-
byly předem oznámeny zásady a požadavky, které budou
uplatňovat maďarští koordinátoři při sjednocování klasi-
fikace řešení, což se stalo později předmětem řady nedo-
rozumění. Žáci také neznali bodové hodnocení úloh.

Družstva jednotlivých států se sjížděla se zástupci ve-
doucích v Budapešti během 10. července. Po přenocování
v internátu — hotelu Universitas odcestovali 11. 7. do
Keszthely, kde byli ubytováni v internátě
ventus a měli téměř dva dni volné na rekreaci a koupání
v Balatonu; počasí bylo překrásné.

Vlastní soutěž probíhala v Keszthely dne 13. a 14. čer-
vence. Slavnostní zahájení se konalo v aule Vysoké školy
zemědělské (nejstarší v Evropě, založené r. 1779). Pro-
mluvil vedoucí odboru ministerstva školství MLR Mikló-
svary Sándor a prof. J. Surányi. Zahájení se zúčastnili
vedoucí delegací, kteří přijeli ráno autobusem z Hévizu
(vzdálenost je jen asi 6 km). Také druhý den soutěže byli
přítomni vedoucí delegací na začátku soutěže; po oba dni
jim byl povolen asi na 5 minut vstup do sálů, kde žáci
pracovali; proti tomu vznášela jak maďarská strana, tak

hotelu Ju-
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i někteří členové jury námitky. Teprve dne 14. 7. se pře-
stěhovali delegáti z Hévizu do Keszthely, kde byli ubyto-
váni v témž internátě jako žáci. Tím skončila izolace dele-
gátů od žáků i jejich pedagogických průvodců. Toto ře-
šení se ukázalo nevýhodné, neboť delegáti tu neměli dosti
klidu pro opravování úloh a pro koordinování. Proti pů-
vodnímu plánu byl na korektury vyhrazen jen jeden půl-
den (!), takže se opravovalo 14. 7. až do 2. hodiny noční.
Naproti tomu pro koordinaci oprav byly stanoveny dva
dni (15. a 16. 7.).

Koordinace byla značně ostrá; nejvíce se ohrazovali de-
legáti proti tomu, že žákům byly ubírány až dva body za
to, že výslovně neuvedli triviální úsudky a věty a že
o tomto požadavku nebyli předem informováni ani oni,
ani opravující delegáti. Večer 15.7. uspořádal župní výbor
v Keszthely recepci pro delegáty i žáky, promluvil na ní
předseda župního výboru Bask Sándor. Dne 16. 7. byla
dokončena koordinace oprav zbývajících úloh; čs. delegát
mimoto musel koordinovat 4. úlohu domácího madar-
ského družstva a byl přizván ke koordinování 4. úlohy
(čs. původu) к jiným družstvům, kde. vznikly rozpory.
Žáci byli bez programu, neboť počasí se velmi zhoršilo
a plánované koupání v Balatonu i hry odpadly. V pátek
17. 7. za chladného, větrného a deštivého počasí podnikli
všichni účastníci XII. MMO dvěma motorovými loďmi
po rozbouřeném Balatonu výlet do Badacsony, který se
přesto celkem vydařil. V těchto dnech si vyměnily dele-
gace tradiční upomínkové dárky.

Mimo společné exkurze se žáky měli delegáti samostat-
nou exkurzi dne 13. 7. Prohlédli si krásný kostel v Siimegu
i zříceniny stejnojmenného hradu. Po silnici pocházející
z římských dob dojeli do Sarvaly, kde v krásném prostředí
v myslivně poobědvali. Pak navštívili krasovou jeskyni
v Tapolce a po koupání v Balatoně se vrátili do Hévizu.
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Bouřlivá a dlouhá byla obě poslední zasedání jury dne
18. 7.; závěrečné zasedání skončilo až ve 23.15 h. Obtížné
bylo zejména stanovit hranice pro I., II. a III. cenu (na-
konec se určily hranice 37, 30 a 19 z dosažitelných 40 bodů
pro žáka). Dále byla obtížná úloha rozhodnout o udělení
zvláštních cen za vynikající řešení. Byly ustaveny zvláštní
komise, ale při rozhodování se návrhy komise pro 4. úlohu
znovu přezkoumávaly. Ukázalo se nakonec, že 1., 2. a
5. úloha neposkytovaly žádnou příležitost к elegantnímu
řešení, 3. úloha byla příliš obtížná a nevhodná. 6. úloha
obtížná, ale vhodná. Nejvíce bylo diskusí kolem 4. úlohy.
Výsledek jednání byl tento: byla udělena jedna zvláštní
cena za 3. úlohu, 4 zvláštní ceny za 4. úlohu (mezi nimi
jedna čs. účastníku Černému) a 2 zvláštní ceny za 6. úlohu.
V závěru zasedání přednesl čs. delegát na základě písem-
ného příslibu obou ministerstev školství ČSSR pozvání
na XIII. MMO do ČSSR na rok 1971. Zároveň rozdal
všem přítomným delegátům návrh nového statutu, podle
kterého má být XIII. MMO organizována. V živé diskusi,
která se rozvinula v nočních hodinách, se ukázalo, že bude
třeba poslat všem účastnickým zemím XII. MMO, ale
i Belgii, Finsku a Itálii nový, podrobnější vysvětlující
dopis o nové koncepci olympiád, zejména o volitel-
nosti úloh. Je třeba podotknout, že mezinárodní jury
jednohlasně přijala pozvání ČSSR a celkem se vyslovila
kladně к chystaným změnám; definitivní stanovisko к ná-
vrhu statutu měly sdělit jednotlivé země pořadatelské ze-
mi (tj. ČSSR) do 31. 10. 1970.

Dne 19. 7. se přemístili všichni účastníci vlakem (Ba-
laton-expresem) do Budapešti a ubytovali se všichni
v internátě hotelu Universitas. 20. 7. ráno byla pro-
hlídka města pro delegáty, jejich zástupce i žáky, večer
byla velmi působivá projížďka osvětlenou Budapeští
(zejména Margitin ostrov s vodotryskem, Buda, královský
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zámek a citadela se sochou Svobody). Jinak bylo dne
20. 7. i 21. 7. (až do 16 h) volno na procházky a nákupy.

V 16 hod. uspořádal v technické universitě náměstek
ministra školství Lugossy Jenó malou recepci pro dele-
gáty a pak následovala závěrečná slavnost za přítomnosti
všech účastníků (anglické družstvo se však nezúčastnilo,
neboť předčasně odjelo) XII. MMO a dalších hostí. Za-
hájil ji prcf. Surányi, promluvil náměstek ministra, který
zdůraznil společenský význam olympiád pro porozumění
mezi národy a upevňování míru. Pak osobně rozdal dip-
lomy (ceny) vítězům; každý účastník dostal upomínkovou
obrazovou publikaci. Za delegáty pak poděkoval vedoucí
čs. družstva, připomněl význam vědecké analýzy mate-
matického nadání pro současnou společnost i pokrokové
ideje J. Á. Komenského o demokratizaci vzdělání, které
realizují zejména socialistické státy. V závěru opakoval
pozvání všech účastnických zemí do ČSSR na XIII.
MMO.

Večer 21. 7. se konala společná večeře všech účastníků,
která vyzněla v opravdu přátelskou besedu mezi delegáty,
jejich zástupci i žáky.

Ráno dne 22. 7. se počaly delegace rozjíždět. Jako jedna
z prvních odjela v 7.50 h. rychlíkem Hungaria čs. dele-
gace; 22. 7. večer byli už všichni čs. účastníci XII. MMO
ve svých domovech.

Při celkovém hodnocení je třeba uznat, že soutěž byla
dobře připravena, a to po stránce odborné i společenské.
Zároveň se však ukázalo, že mají-li se MMO udržet, bude
asi třeba připustit volitelné úlohy, neboť koncepce škol-
ské matematiky se v mnoha zemích velmi rozcházejí.

Pokud j de o výsledky družstev, dává neoíiciální „žebříček“
toto pořadí zemí (v závorce jsou počty dosažených bodů):

1. Maďarsko (233), 2. a 3. SSSR a NDR (221), 4. Jugo-
slávie (209), 5. Rumunsko (208), 6. Velká Británie (180),
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7. a 8. Bulharsko a ČSSR (145), 9. Francie (141), 10.
Švédsko (110), 11. Polsko (105), 12. Rakousko (104), 13.
Holandsko (87), 14. Mongolsko (58).

Celkem bylo uděleno 65 cen, a to 7 prvních, 11 dru-
hých, 40 třetích a 7 zvláštních. Rozdělení cen mezi jednot-
livé státy ukazuje tabulka 1 (státy jsou označeny mezi-
národními zkratkami a uvedeny abecedně):

Tabulka č. 1

Stát
Cena

A BG CS D F GB H M NL PL R S su YU

I. 1 3 21

1 3 1 3II. 12

4 3 3III. 4 4 6 3 1 1 1 21 3 4

Z bývalé „silné pětky“ se stala „silná šestkacc: patří do
ní tyto státy: NDR, GB, H, R, SU, YU. Československo
vede s Bulharskem slabší skulinu (všimněte si rozdílu
počtu bodů mezi V. Británií a ČSSR!). Státy silné šestky
mají lépe připravené žáky. Z rozhovoru s delegáty je patrné,
že významnou roli hrají matematické školy (nikoli třídy),
kde v učebním plánu je 10 hodin matematiky i více a kde
vyučují hlavně vysokoškolští učitelé. Takovéto školy už
zavádí i Bulharsko. Pro nás z toho vyplývá jednoznačné
poučení: zřídit v ČSR i SSR aspoň po jedné matematické
škole, a to co nejdříve.

Tabulka 2 výsledků našeho družstva ukazuje jasně, že
máme nadějné talenty mezi mladšími žáky, ale že se tito
žáci nemohou rozvinout, neboť úroveň vyučování je
i v tzv. speciálních třídách poměrně nízká.
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Pro úplnost uvádíme ještě seznam členů mezinárodní
jury, tj. seznam těch účastníků, kteří měli právo hlasovací
(bohužel se příliš často hlasovalo):

1. Akademik Hajós Gyorgy, předseda
2. Prof. Surányi János, doktor Akademie, místopřed-

sedá

Vedoucí delegací účastnických států:
3. Thomas Múhlgassner, prof. reál. gymnasia Eisen-

stadt, A
4. Kiril Dočev, docent mat. fakulty university v Sofii,

BG
5. Jan Výšin, docent mat.-fyz. fakulty UK v Praze, CS
6. Dr. hab. Helmut Bausch, Něm. akademie věd, NDR
7. André Warusfel, profesor lycet Louis le Grand,

Paříž, F , ,

8. Dr. Bryan Twaites, Westfield College, London, GB
9. Hódi Endre, technický poradce Maď. optických zá-

vodů v Budapešti, H
10. Uržincerendijn Sanžimjatov, Mongolská státní uni-

versita v Ulánbátoru, M
11. Ary van Tooren, inspektor středních škol, Haag, NL
12. Andrzej Mqkowski, lektor Matematického ústavu

university ve Varšavě, PL
13. Gleb Simionescu, ústřední inspektor min. školství

v Bukurešti^ R
14. Áke H. Samuelsoon, Matematický ústav university

v Goteborgu, S
15. Michail Iljič Serov, Karelský pedagogický institut

v Petrozavodsku, SU
16. Dr. Milenko Stekovič, profesor strojní fakulty uni-

versity v Sarajevu, YU
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2. ŘEŠENÍ SOUTĚŽNÍCH ÚLOH

První den soutěže (13. července 1970)
(Doba určená pro vypracování jsou 4 hodiny)
1. Uvnitř strany AB trojúhelníka ABC je dán bod M.

Označme rl5 r2, r poloměry kružnic vepsaných po řadě
trojúhelníkům ACM, BCM, ABC. Označme dále рг, j>2, q
poloměry kružnic, které jsou po řadě vně vepsány týmž
trojúhelníkům a které leží v úhlu <$:ACB. Dokažte, že platí

U r2

Q\ Qz Q
ŘEŠENÍ. Situace je znázorněna na obr. 42 a,b. Při

označení z obr. 42a dostaneme

r

(Polsko, 5 bodů) -1
C

к

\S./

Ir 44

1Ё
4"

\ /
\ /
\ /

к'

Obr. 42a
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p7
ВТ = г cotgAT = г cotg — 2 52 5

AU = q cotg |y У.a
= 6 tg-^r2 52

PP71
BU = Q cotg = в tg-Tí2 '2 2

Protože AB = AT + 5Г = AU + BC7, je
a /3

tg у + tg уr
(1)

pQ
cotg + cotg 2
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Vzorec (1) upravíme podle součtových vzorců pro sinus
. a . (i

sin у sin ~ pr

(2)
^cos 1Q

cos
22

Označíme-li <£AMC
(2) vyjde

<5, je <£ BMC = -к — д Э. podle

д r2 Pf = tgTtg 2

7V — S
= t82tg2’e i

P (3)= tgY.c°tgY.
Vynásobíme-li podle (3) a přihlédneme к (2), dostaneme
výslednou formuli.

2. Buďte a, b, n přirozená čísla větší než 1. Čísla a, b
jsou základy dvou číselných soustav. Čísla An, Bn mají
totéž vyjádření

%n^n—1 • • • *1*0

v obou číselných soustayácja., o základech a, b\ přitom
x03 . • o xn-13 xn jsou cifry a platí хп.л фО,хпФ 0.
Čísla, která dostaneme z An, Bn vynecháním cifry я
označíme po řadě A вn-15 П-!•

>
Dokažte, že je a > b právě tehdy, když platí

A Вn-1 я-1 {Rumunsko, 7 bodů)<
An Bn

ŘEŠENÍ. К zapsání čísel An3 Bn) A
polynomických funkcí. Označme

/(0 = xntn + Xn^t71-1 + . . . + xxt + x0,

g{ť) — Хп-гtn 1 + xn-2tn 2 + . . . + xxt + x0.

užijemeВn—13 n-1

153



Je tedy
Ап = /(<0> Bn = f(b)} An._! = g(a)9

Bn-1= •

Máme dokázat oboustrannou implikaci
(1)

*(*)_ ^ j(*)_
m кьу (2)a > b o —

Protože pro ř > 0 je /(í) > 0 a ^(ř) > 0, je i /(a) > 0,
^(a) > 0. Důkaz implikace (2) je tedy ekvivalentní s dů-
kazem implikace

a >b o £(a)/(ž>) - /0) £(&) < 0 .

Důkaz může pokračovat takto:
Protože je f{ť) = g(t) + xntn, je

Á 7)/0) ~ Ka) g{b) = xn{g(c) . bn — g{b) . an). (4)

(3)

Dokážeme snadno, že pro každé k < n platí pro
a > b > 0

akbn - bkan < 0 .

Skutečně
akbn — bkan = akbk(bn~k — an~k) < 0 .

Z toho plyne, že g(a)bn — g(b)an < 0 a podle (4) je věta
dokázána.

3. Posloupnost reálných čísel a0, ax, a2, . . ., an} . .

splňuje podmínky
(1)1 = a0 ^ ^ л2 ^ ^ an ^ . . . .

Posloupnost {bn} je definována vzorcem

) 1fl*-1

I. Dokažte, že pro všecka přirozená čísla w platí
0 ^ bn < 2 .

(n = 1, 2, . . .)b; 1 -

154



/
с <2, рак lze najít ta-II. Je-li c číslo z intervalu 0

kovou posloupnost {an} splňující podmínky (1), že v od-
povídající posloupnosti {bn} platí bn > c pro nekonečně
mnoho indexů n. Dokažte. (Švédsko, 8 bodů) i

0*-iŘEŠENÍ. I. Protože ^ 1, je bn ^ 0 pro všecka n.

Označme ]/ ак = ak a proveďme tuto úpravu
ak

( cd a21 1 1k-l k-l1 -
a2dk a* *-i

1 'a2 1 1 1
-

k-l
+ •

a* ak-l *k ak-l <*k

( a2 1 11 1ak-1 k-l d 2+
a* / *

tedy pro každé přirozené číslo k platí
cck Я-к-1 <*kxk-1

(a2 1 1 1k-l1 ^ 24 xk-1

Sečteme-li tyto nerovnosti pro k — 1, 2, . . ., n3 dosta-
neme

1 1 N 1

( *o

II. Zkusme zvolit za an rostoucí geometrickou posloup-
nost.

Zvolme číslo d3 pro které platí 0 < d < 1 a položme
cxk — d~k3 neboli ak — d~2k. Pak je

bn£ 2. - 2 < 2 .

Vanocn

( J2-2fccd 1 1k-i
= (1 - d2). d*1 -

d~2k
'

drk4 *k
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a tedy

ьп = У (1 - d2)d* = (1 - d2) у dk =
Aí=1&=*1

1 -
= (1 - d2). d. 1 - d

neboli
b„ = d(l + d) (1 - d”).

Je-li 0^c<2a má-li platit > c, musí být
d{ 1 + d) (1 - í/w) > c,

(1)

tj.
c

1 - dn >
d(l + d) 5

tj-
c

(2)dn < 1 -
d(l + á) '

Je ještě třeba dokázat, že ke každému c z intervalu 0
^ c < 2 lze zvolit takové d z intervalu 0 < d < 1, že

c
číslo 1 — je kladné.d{ 1 + d)

c
Podmínka 1 — > 0 je ekvivalentní s pod-d{1 + d)

c
mínkou < 1 neboli s podmínkou

d2 + d > c .

Funkce у = d2 + d je znázorněna grafem na obr. 43.
Tento graf je parabola, která protíná osu d v bodech
[— 1; 0], [0,0] a prochází bodem [1; 2].
Z grafu je patrné, že pro každé 0 ^ c < 2 protíná přímka

d{ 1 + d)
(3)
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у — с parabolu v bodě, jehož souřadnice dx je z intervalu
0 ^ d < 1. Je to číslo

ái = y (VTTS - 1) <y (У 1 + 4.2 - 1) = 1.
Zvolíme-li d tak, že dx < d < 1, je nerovnice (3) splněna
a protože {dn} je nulová posloupnost, splňují všecky její
členy od určitého počínaje nerovnost (2), tj. pro všecka
příslušná n platí bn > c.

Druhý den soutěže (14. července 1970)
(Doba určená pro vypracování je 4 hodiny)
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г
4. Určete všecka přirozená čísla 72, která mají tuto

vlastnost: Množinu {72, тг+l, n-\-2, 72+3, n+4, и+5}
lze rozložit ve dvě podmnožiny bez společného prvku tak,
že součin všech prvků jedné z těchto podmnožin je roven
součinu všech prvků druhé podmnožiny.

(ČSSgi 6 bodů)
ŘEŠENÍ. Označme E = {n, тг+1, 72+2, n-\-3, тг+4,

72+5}, E15 E2 obě hledané podmnožiny. Zřejmě je Ex +
+ 0, E2 + 0, E-l n E2 = 0, Ej u E2 = E. Žádná z pod-
množin Ej, E2 není jednoprvková, neboť pro největší
číslo z E, tj. pro n + 5 platí

(n + 2) (и + 3) — {n + 5) =
= 722 + 4t2 + 1 > 0 .

Lze tedy hovořit o součinu všech prvků Ex i E2.
Budiž p prvočinitel čísla ae E; pak existuje aspoň

jedno číslo b 6 E (b Ф a), jehož prvočinitelem je p. Pro-
tože 5 ^ \a — b\ — p . k, je p ^ 5, tj.

p je 2 nebo 3 nebo 5 .

Je zřejmé, že 5 může být prvočinitelem jedině čísel 72,
n + 5 (jinak by E neobsahovala dva násobky pěti).
Množina

F = {«+1, 72 + 2, 72 +3, 72 +4}
obsahuje tedy jedině čísla tvaru 2a ЗА Množina F však
obsahuje zřejmě dvě čísla sudá a dvě lichá. Obě lichá
čísla z F můžeme tedy napsat ve tvaru

ЗУ, 3*.
Avšak [3r — 3*| < 4; protože V — 3* je číslo sudé, je
|3r — 3*| = 2. Zvolíme-li označení tak, aby bylo у > <5, je

3y - 3* = 3 . iV= 2;
přitom N je přirozené číslo; to je však nemožné.

Úloha je tedy neřešitelná.
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5. Pata E výšky DE čtyřstěnu ABCD je průsečík výšek
trojúhelníka ABC; dále je BD _]_ CD. -—-

Dokažte, že platí
(AB + BC + CA)2 X 6(AD2 + BD2 + CD2).

Určete všecky čtyřstěny, pro které nastane v předchozím
vztahu rovnost. (Bulharsko, 6 bodů)

ŘEŠENÍ (obr. 44). Platí {DE _[_ AB) Д {CE J_ AB);
proto (CDE) X AB a odtud dále

o)CD X AB.

Vztah (1) platí i v případě, že E = C, tj., že body C, D3 E
neurčují rovinu, neboť pak je CD = DE.

Protože AB X CD podle (1) a BD X CD podle před-
pokladu, je {ABD) X CD. Odtud plyne

CD X AD . (2)
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Protože v (1) i v předpokladu lze vyměnit body В, C,
platí to i v (2), tj.

BD _L AD .

Čtyřstěn ABCD má tedy všecky tři stěnové úhly při
vrcholu D pravé. Podle Pythagorovy věty (pro /\ABD,
BCD, CAD) dostaneme

AB2 + BC2 + CA2 = 2(AD2 + BD2 + CD2)
nebo při obvyklém označení stran A ABC

6(AD2 + BD2 + CD2) = 3(a2 + b2 + c2) . (3)
Dále 3a2 + 3b2 + 3c2 - {a + b + c)2 = {a - b)2 +
+ (b — c2) + (c — a)2, tj. podle (3)

6{AD2 + BD2 + CD2) =
= (a + b + c)2 + {a —■ 6)2 + (b — c)2 + (c — a)2.

Odtud plyne tvrzení obsažené v textu úlohy. Rovnost
nastane, právě když a = b = c.

6. V rovině je dáno 100 bodů, z nichž žádné tři neleží
v přímce. Vyšetřujeme všecky trojúhelníky, jejichž všecky
tři vrcholy jsou některé z daných bodů.
Dokažte, že nejvýše 70 % všech těchto trojúhelníků jsou
trojúhelníky ostroúhlé.

{SSSR, 8 bodů)
ŘEŠENÍ. Označme T„ počet všech trojúhelníků, da-

ných systémem n nekolineárních bodů, On počet všech
ostroúhlých trojúhelníků daných týmž systémem.
Dokážeme lemmu

On A aTn => O ^2 а~^П+1 •П+1

Ze systému n + 1 bodů vynecháme po řadě 1., 2. až
{n + l)-tý bod; příslušné počty všech trojúhelníků
(ostroúhlých trojúhelníků) v těchto n + 1 systémech
o n bodech označíme T On]c{k — 1, 2, . . ., ti 1).nk3

160



Pak platí
^nl + n2 ~b • • • “к n, n-V 1~^n+1

n — 2

Ощ + Ow2 + • • • + On, n+1®m+i — (1)
n — 2

neboť každý trojúhelník (ostroúhlý trojúhelník) je za-
hrnut do (n + í) — 3 = n — 2 systémů. Podle před-
pokladu platí On ^ aTw, speciálně

ОиА; = a~^nk> k ~ lj 2, . . ., И -f- 1 .

Dosadíme z (2) do druhého vzorce (1) a dostaneme
(2)

nl H~ *^*И2 H~ • ♦ • ~f~ *T*W, n+1®íl+l

Tím je lemma dokázán^

Protože je T4 = 4 , O , % 3 ,

a = 0,75. Dále je T5 = 10, a teda podle lemmy 05 ^

^ 0,75 . 10 = 7,5, neboli 05 ^ 7,

tj. a ^ 70 % .

Indukcí se dokáže pro libovolné n (tedy také n — 100).

= aT< a n+1 •
n — 2

o4 ^ 0,75 tj.T4

o5 ^ 0,7 čili 70%,T5
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Příloha 1

POMOCNÁ STUDIJNÍ LITERATURA

A. Edice „Škola mladých matematikůCí (vydává nakla-
datelství Mladá fronta)

1. Hradecký — Koman — Výšin: Několik úloh z geometrie jednodu-
chých těles (3 Kčs)

2. Jiří Sedláček: Co víme o přirozených číslech (1,50 Kčs)
3. Jaroslav Šedivý: Shodná zobrazení v konstruktivních úlohách

(2,60 Kčs)
4. Miroslav Šisler — Jiří Jarník: O funkcích (1,80 Kčs)
5. František Veselý: O nerovnostech (2,50 Kčs)
6. Rudolf Výborný: Matematická indukce (2 Kčs)
7. Jaroslav Šedivý: Podobná zobrazení (3 Kčs)
8. Jiří Váňa: O rovnicích s parametrem (2 Kčs)
9. Jan Výšin: O konvexních útvarech (3 Kčs)

10. Jiří Sedláček: Faktoriály a kombinační čísla (3 Kčs)
11. Josef Holubář: Geometrická místa bodů v prostoru (2 Kčs)
12. Karel Havlíček: Prostory o více dimensích (3 Kčs)
13. Miroslav Šisler — Josef Andrys: O řešení algebraických rovnic

(4 Kčs)
14. František Veselý: O dělitelnosti čísel celých (4 Kčs)
15. Milan Koman: Geometrická místa vyšetřovaná metodou souřadnic

(3,50 Kčs)
16. Stanislav Horák: Kružnice (4 Kčs)
17. Jaromír Hroník: Úlohy o maximech a minimech funkcí (3 Kčs)
18. Karel Havlíček: Analytická geometrie a nerovnosti (4 Kčs)
19. Jiří Jarník: Komplexní čísla a funkce (3,50 Kčs)
20. Bruno Budínský — Stanislav Šmakal: Goniometrické funkce

(4,50 Kčs)
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21. Alois Apfelbeck: Kongruence (6 Kčs)
22. Tibor Salát: Dokonalé a spriatelené čísla (4 Kčs)
23. Jaroslav Morávek — Milan Vlach: Oddělitelnost množin (6,50 Kčs)
24. Ján Gatial — Milan Hejný: Stavba Lobačevského planimetrie

(7 Kčs)
25. Leo Bukovský — Igor Kluvánek: Dirichletov princip (6 Kčs)
26. Karel Hruša: Polynomy v moderní algebře (8 Kčs)
27. Stanislav Horák: Mnohostěny (8 Kčs)

Ve vydávání těchto svazečků se pokračuje.

B. Knížky dalších nakladatelství
1. Hruša — Kraemer — Sedláček — Výšin — Zelinka: Přehled ele-

mentární matematiky (vydalo Státní nakladatelství technické litera-
tury, cena 25 Kčs)

2. Medek — Mišík — Salát: Prehlad středoškolskéj matematiky (vy-
dalo Slovenské vydavatelstvo technickej literatury, cena 13,20 Kčs)

3. Kraemer a kol.: Sbírka řešených úloh z matematiky pro 6. až 8. roč-
nik (vydalo Státní pedagogické nakladatelství, cena 7,50 Kčs)

4. Brožury matematické olympiády, kterých dosud vyšlo 19, obsahují
vždy texty a řešení úloh z jednoho ročníku soutěže. V brožurách na-
jdete řadu zajímavých úloh, jejichž řešením si jednak prohloubíte
své vědomosti, jednak se seznámíte s různými metodami řešení.

5. Hruša — Sedláček: Řešené úlohy z matematiky (vyd. Státní nakla-
datelství technické literatury, cena 6,70 Kčs)

6. Jarník — Šisler: Jak řešit rovnice a jejich soustavy (vyd. Státní na-
klad. technické literatury, cena 9,40 Kčs)

7. Sedláček: Nebojte se matematiky (vyd. Státní naklad, techn. litera-
tury, cena 5,50 Kčs). Tato knížka vyšla letos znovu.

8. Hruša a kol.: Úvod do studia matematiky (vyd. Státní ped. naklad.,
cena 8,40 Kčs)

9. J. B. Dynkin — V. A. Uspenskij: Matematické besedy (vyd. Stát.
naklad, techn. literatury, cena 20,50 Kčs)

10. Lidskij a kol.: Úlohy z elementární matematiky (vyd. Stát. pedagog,
naklad., cena 19,50 Kčs)

11. Juraj Bosák: Rovnice a nerovnosti (vyd. Slov. pedagog, nakl., cena
4 Kčs)

12. Jiří Kůst: Sférická trigonometrie (vyd. Stát. pedagog, nakl., cena
9,50 Kčs)

13. Petr Benda a kol.: Sbírka maturitních příkladů z matematiky (vyd.
Státní pedag. nakl., cena 6 Kčs)

14. Miroslav Menšík: Geometrické základy fotogrammetrie (vyd. Státní
pedagogické naklad., cena 9,50 Kčs)
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Mimoto upozorňujeme na knížky sovětského autora
Perelmana „Zajímavá aritmetikacc5 „Zajímavá algebraíC,
„Zajímavá geometrieeí, které vyšly v českém překladu
v nakladatelství Mladá fronta; jsou zvláště vhodné pro
pořádání matematických besed a večerů. Z příruček o dě-
jinách matematiky uvádíme:

1. I. Depman: Besedy o matematice (český překlad vyd. Stát. peda-
gog. naklad., cena 5,70 Kčs)

2. Fr. Balada: Z dějin elementární matematiky (vyd. Státní pedagog,
naklad., cena 12 Kčs)

3. Dirk J. Struik: Dějiny matematiky (vyd. Orbis, cena 11 Kčs)
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Příloha 2

SEZNAM EXPERIMENTÁLNÍCH
MATEMATICKÝCH ŠKOL

1. ZDŠ, Praha 8-Karlín, Lyčkovo nám. 6,
2. ZDŠ, Praha 3-Vinohrady, Jiřího nám. 8,
3. ZDŠ, Brno, tř. kpt. Jaroše 14,
4. ZDŠ, Brno-Lesná, Hakenova 24,
5. ZDŠ, Brno, Staňkova 14,
6. ZDŠ, Liberec I, Lesní 14,
7. ZDŠ, Bratislava, Košická ul.,
8. ZDŠ, Bratislava, Kvačalova 18,
9. Gymnasium, Praha 3-Žižkov, Sladkovského nám. 8,

10. Gymnasium, Brno, tř. kpt. Jaroše 14,
11. Gymnasium, Bratislava, Novohradská.
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Příloha 3

SEZNAM EXPERIMENTÁLNÍCH
MATEMATICKÝCH TEXTŮ*)

1. Hruša: Návrh modernizace, pro 1. roč., Kčs 5,40 (4,—)
2. Hruša: Návrh modernizace, pro 2. roč., Kčs 5,40 (4,—)
3. Hruša: Návrh modernizace, pro 3. roč., Kčs 8,— (6,—)
4. Hruša: Pracovní listy, pro 1. roč., Kčs 15,80 (11,80)
5. Hruša: Pracovní listy, pro 2. roč., Kčs 19,20 (14,40)
6. Hruša: Pracovní listy, pro 3. roč., Kčs 22,— (16,60)
7. Taišl—Kůst: Matematika, pro 4. roč., Kčs 13,60

(10,20)
8. Taišl—Koman: Matematika, pro 5. roč., Kčs 23,20

(17.40) ,

9. Výšin: Úvod do množ. matematiky I., Kčs 28,80
(21,60)

10. Výšin: Úvod do množ. matematiky II., Kčs 29,60
(22,20)

11. Koman—Taišl: Matematika, pro 6. roč., I., Kčs 34,—
(25.40)

12. Koman: Matematika, 6. roč., II., Kčs 20,80 (15,60)
13. Koman: Kombinatorika, Kčs 9,40 (7,—)
14. Dlouhý: Relace, Kčs 17,60 (13,20)
15. Hájek a kol.: Zlomky, Kčs 21,40 (16,—)
16. Výšin: Zobrazení, Kčs 18,— (13,60)
17. Dlouhý: Matematika, pro 7. roč., I., Kčs 19,— (14,20)
18. Výšin a kol.: Množiny a relace, Kčs 20,40 f 15,40)
19. Výšin: Nezáporná racionální čísla, Kčs 14,20 (10,60)

*) Uvedené texty možno objednat na adrese: Kabinet pro moderní-
zaci vyučování fyzice ČSAV, Žitná 25, Praha 1-Nové Město. Členové
JČSMF mohou uplatnit slevu!
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20. Výšin: Rovnice, Kčs 10,80 (8,—)
21. Čech—Blažek: Obrazce, Kčs 9,20 (7,—)
22. Dlouhý: Reálná čísla, Kčs 24,— (18,—)
23. Hruša: Operace v množině reálných čísel, Kčs 18,40

(13,80)
24. Výšin: Množiny bodů a grafy relací, Kčs 22,80 (17,20)
25. Výšin: Stereometrie, Kčs 18,— (13,60)
26. Výšin: Grupy, Kčs 12,60 (9,40)
27. Yyšín: Funkce, Kčs 10,40 (7,80)
28. Šedivý: Matematika pro 1. roč. g., I., Kčs 12,80 (9,60)
29. Šedivý: Matematika pro 1. roč. g., II., Kčs 13,40

(10,-)
30. Šedivý: Zobrazení, funkce a operace, I., Kčs 12,20

(9,20)
31. výt. Algebraické struktury, text pro žáky, Kčs 7,20

(5,40)
32. výt. Algebraické struktury, pro učitele, Kčs 13,40

(10,-)
33. Výšin: Aritmetika a logika
34. Výšin: Geometrické struktury I.
35. Výšin: Metoda souřadnic
36. Dlouhý: Matematika pro sedmý ročník, II.
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