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Předmluva

Milí mladí přátelé,
jako každoročně používáme i letos předmluvy, abychom

si s Vámi pohovořili o některých závažných otázkách
matematické olympiády.

1. Komentáře. V této brožuře jsou zpracována poprvé
řešení přípravných i soutěžních úloh I. kola pro kategorie
ZaB novým způsobem. Navazujeme tím na komentáře,
které dostali Vaši učitelé a pracovníci МО a které —
stručně řečeno — obsahují některé návrhy, jak uvést žáky
do řešení úloh. Protože naši brožuru budou číst i žáci
a učitelé, kteří se neseznámili s komentáři v průběhu
XX. ročníku MO, otiskujeme je v upravené formě v této
brožuře. Komentáře obvykle neobsahují přímo řešení
úloh; věnují se spíše otázce „jak na to?“ a obsahují vše-
lijaké úvahy kolem příslušné úlohy: jaké mohou být její
varianty (obměny), zobecnění, jak se sestrojují úlohy
podobného typu, co je principem řešení apod. Pro úpl-
nost je komentář ke každé úloze I. kola kategorií Z а В
doplněn řešením — ovšem už jen zcela stručným.

Doufáme, že se tato novinka osvědčí, že ji přivítají
žáci i učitelé. Prosíme Vás, abyste nám o tom napsali
své mínění.

2. Kategorie C. Na základě řady podnětů z řad pra-
covniků matematické olympiády byla obnovena počínaje
XXI. ročníkem kategorie C soutěže MO určená pro žáky
1. ročníku výběrových škol II. cyklu. Toto rozhodnutí
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učinil ÚVMO na svém podzimním zasedání r. 1970
s odůvodněním, že je takřka nemožné vybrat soutěžní
úlohy tak, aby vyhovovaly zároveň zkušenějším a pokro-
čilejším žákům II. ročníku a „prvňáčkůmtc gymnasií
a odborných škol, kteří nedávno přišli ze ZDŠ a ještě
si ani nezvykli na nové způsoby práce a abstraktnější
charakter studia. Přílišná náročnost úloh kategorie В je
odrazovala od soutěže a tomu chceme zabránit.

Jsme si ovšem vědomi, že obnovení kategorie C samo
nezachrání situaci. Žáci 1. ročníku škol II. cyklu potřebu-
jí v studijním I. kole pomoc svých učitelů a nemusí se sty-
dět se jí dožadovat. Z této potřeby vznikly komentáře,
o kterých jsme hovořili na začátku.

3. Mezinárodní olympiáda. Výsledky našich repre-
zentantů na XIII. mezinárodní olympiádě, která se konala
v r. 1971 v Československu (v Bratislavě a Žilině), jsou
zcela neuspokojivé. Jak je vidět ze zprávy na konci
brožury, dopadli jsme velmi špatně — naše družstvo
získalo jen 55 bodů, tj. ztratilo proti roku 1970 téměř
100 bodů. Úlohy XIII. MMO byly sice těžké, ale přesto
je vidět při podrobném rozboru žákovských řešení a vý-
sledků, že péče o matematické talenty není u nás na takové
výši jako např. v MLR, NDR nebo v SSSR a také, že naši
studenti nemají vždy dost vůle a vytrvalosti bojovat. Po
vzoru jiných socialistických států budeme pravděpodobně
usilovat o zřízení matematických škol, které by mohly
zlepšit naši situaci.

4. „Vyšší matematikaC(. Tato část předmluvy souvisí
s předcházející. Přirozenou touhou mladého člověka je,
aby se co nejdříve vyzul z dětských střevíčků a obul si
sedmimílové boty, které ho ponesou rychle kupředu.
Tak je tomu také v matematice, bohužel někdy ke škodě
spěchajícího. Víme a chápeme, že Vás nebaví stálé přemi-
láni středoškolské matematiky — ale není jiné pomoci,
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naučit se jí musíte, dokonce i mnoha partiím látky zcela
tradiční. Uvědomte si, že i v „staré“3 tradiční matematice
je mnoho problémů jednoduše formulovaných, velmi
zajímavých, ale často velmi obtížných к řešení. Naproti
tomu se i tzv. moderní matematika může stát „otravnoucc,
když se jí učí špatně; totéž platí i o tzv. vyšších partiích
matematiky. Uvědomte si, že každý, kdo chce matemati-
ku dále studovat nebo aplikovat, musí mít jisté všeobecné
matematické vzdělání. Je trapný pohled na středoškoláka,
který chce užít к řešení školského problému parciálních
derivací, ale věty o nich neovládá a nedovede aplikovat,
nebo na účastníka MO, který ztroskotá na zcela jedno-
duché stereometrické úloze. ÚV MO se snaží vyjít
vstříc Vaší touze naučit se něčemu novému; v knižnici
ŠMM vycházejí svazečky tzv. výběrové řady, které
značně vybočují ze středoškolského učiva jak obsahem, tak
metodami. Ale prosíme Vás: nepřehlížejte a nepodceňujte
středoškolskou matematiku, ani tu tradiční, a nepoužívej-
te zejména při soutěžích aparátu, který bezpečně neznáte
a který neumíte aplikovat. Chcete-li studovat něco dalšího,
poraďte se se svým učitelem matematiky nebo se obraťte
na ÚV MO\ sami si těžko vyberete vhodnou moderní
a přístupnou knihu.

5. Matematická logika. Poslední dobou pronikly
a pronikají do všech výběrových, a dokonce i nevýběro-
vých škol v zahraničí i u nás elementy matematické logiky.
Tato skutečnost byla vynucena situací, že malá exaktnost
dřívějšího vyučování nestačí ani matematice samé, ani
jejímu eventuálnímu použití. Precizovat myšlení v mate-
matice znamená bezesporu studovat aspoň základy mate-
matické logiky. Někdy se ovšem výklad o logice vulgari-
zuje triviálními ilustračními příklady, dále se poznatků
z logiky nikde nevyužije a celá taková partie je pak pro
posměch. To nás však nemůže odvrátit od úsilí naučit
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žáky, a zejména ty nadanější, v matematice přesně myslit.
Že i zdánlivě nevinné otázky v sobě mohou skrývat
záludnosti a mohou být podnětem к vážnému zamyšlení,
o tom svědčí dvě otázky, které předložil na mezinárodním
setkání učitelů matematiky v Krakově v srpnu 1970
prof. Freudenthal. Otázky znějí:

a) Je totéž: „nejstarší malíř mezi (žijícími) básníky“
jako „nejstarší básník mezi (žijícími) malířict?

b) Je totéž: „největšícc (ve smyslu proslulosti) malíř
mezi (žijícími) básníky jako „největší básník mezi
(žijícími) malířicc?

6. Spolupráce SSM. V závěru předmluvy konstatuje-
me s potěšením, že spolupráce ÚVMO se Socialistickým
svazem mládeže se rozvíjí velmi slibně, mnohem lépe než
spolupráce s bývalou mládežnickou organizací. SSM
velmi pomohl při organizaci XIII. MMO po stránce orga-
nizačně společenské, odměňuje vynikající řešitele zvlášt-
nimi rekreačními pobyty; jeho vydavatelství Mladá
fronta vydává a bude i nadále vydávat pomocnou studijní
literaturu (ŠMM). Svaz pomáhá zajistit soustředění
olympioniků, pomáhá při propagaci MO v prostředcích
hromadné komunikace, spoluúčastní se výběrové soutěže
MO ve znalosti cizí studijní literatury apod.

Milí přátelé, zmínili jsme se tu o několika aktuálních
otázkách MO; víme, že máte málo času a mnoho zájmů
i mimo matematickou olympiádu, víme však, že jistě
máte i mnoho dabrých nápadů. Budete-li mít někdy chuť
a chvilku volného času, napište nám o nich.

ÚVMO
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I. O průběhu XX. ročníku
matematické olympiády

1. ORGANIZACE SOUTĚŽE

Pořadatelem soutěže XX. ročníku byla ministerstva
školství ČSR a SSR s Matematickým ústavem ČSAV
v Praze (Ml1 ČSA V) a Jednotou čs. matematiků a fyziků
(JČSMF) za spolupráce s orgány Socialistického svazu
mládeže (SSM). Také XX. ročník se řídil statutem
uveřejněným ve Věstníku MŠK, roč. XIX, str. 126, 127,
směrnice 37 ze dne 30. IV. 1963.

Ministerstva školství ČSR i SSR prodloužila funkční
období ústředního výboru matematické olympiády
(ÚV MO) jmenovaného v roce 1966 do konce roku 1970.
V lednu 1971 obě ministerstva vyslovila (až na jediný
případ) souhlas s návrhem JČSMF na sestavení nového
ÚV MO pro další funkční období a vydala příslušné
dekrety.

Žáci opět soutěžili jen ve třech kategoriích: v kategorii
A žáci III. а IV. ročníků škol II. cyklu, v kategorii В žáci
1. а II. ročníků škol II. cyklu a v kategorii Z žáci IX. roč-
niku ZDŠ. Bylo ovšem možné, aby žák soutěžil i v kate-
gorii vyšší, než do které studijně patří; toho využila řada
žáků především v kategorii A.

2. SLOŽENÍ ÚSTŘEDNÍHO VÝBORU MATEMA-
TICKĚ OLYMPIÁDY

Nový ústřední výbor matematické olympiády schválený
přípisem ministerstva školství ČSR ze dne 18. ledna 1971
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a ministerstva školství SSR ze dne 3. XII. 1970 pracoval
v tomto složení:
Předseda: Jan Výšin, CSc., docent matematicko-fyzi-

kální fakulty KU v Praze
I. místopředseda: dr. Jozef Moravčík, CSc., odb.

asistent VŠD v Žilině
II. místopředseda: prof. dr. Miroslav Fiedler, DrSc.,

vedoucí vědecký pracovník MÚ ČSAV v Praze
I. jednatel: Vlastimil Macháček, cdb. asistent pedago-

gické fakulty KU v Praze
II. jednatel: Jiří Mída, odborný asistent pedagogické

fakulty KU v Praze
Členové:

Zástupce MŠ ČSR: Jaroslav Láník, ústřední škol.
inspektor MŠ ČSR, Praha

Zástupce MŠ SSR: Michal Žoldy, ústřední škol.
inspektor MŠ SSR, Bratislava

Zástupce ÚV SSM: Jana Pomazalová, prof, gymna-
sia, Brno

dr. František Běloun, vedoucí matematického kabinetu
KPÚ v Praze

Miloš Franěk, profesor gymnasia, Prievidza
dr. Jozef Gruzka, Matematický ústav SAV, Bratislava
dr. Milan Hejny, CSc., docent PF UK, Bratislava
František Hradecký, odb. asistent MFF KU v. v., Praha
prof. dr. Milan Kolibiar, DrSc., profesor PF UK, Bra-

tislava
dr. Ivan Korec, odb. asistent PF UK, Bratislava
akademik Josef Novák, vedoucí vědecký pracovník

MÚ ČSAV v Praze
Víťazoslav Repáš, ředitel gymnasia, Bratislava
dr. Jiří Sedláček, CSc., vědecký pracovník MÚ ČSAV

v Praze
Jiří Šídlo, zástupce ředitele gymnasia, Praha
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Miroslav Šmerda, učitel ZDŠ, Bílovice nad Svitavou
František Veselý, odb. asistent v. v., Praha
dr. František Zítek, CSc., vědecký pracovník MÚ ČSAV

v Praze

Dalšími členy ÚV MO byli předsedové krajských
výborů matematické olympiády:

prof. dr. Václav Pleskoty profesor ČVUT v Praze
Ludmila Tréglová, profesorka gymnasia, Říčany
Dr. Ing. Lada Vaňatová, profesorka gymnasia, Stra-

konice
Věra Rádiová, profesorka gymnasia J. Fučíka, Plzeň
Karel Hnyk, odb. asistent ped. fakulty, Ústí nad Labem
Jan Laštovka, vedoucí kabinetu matematiky KPÚ,

Hradec Králové
Petr Benda, odb. asistent VUT FE, Brno
Josef Andrys, docent ped. fakulty, Ostrava
Vladimír JodaSy odb. asistent PFUK, Bratislava
dr. Ladislav Berger, odb. asistent VŠD, Žilina
Kveta Hončarivová, odb. asistentka PF UPJŠ, Košice
Pracovní předsednictvo ÚV MO (PÚV MO)

tvořili (v abecedním pořadí): prof. dr. M. Fiedler, DrSc.;
VI. Macháček; J. Mída; dr. J. Moravcíky CSc.’, dr.
J. Sedláček, CSc.; doc. J. Výšin, CSc.’, dr. Fr. Zítek,
CSc. a zástupci MŠ.

I ih

3. SCHŮZE ÚV MO

Plenární zasedání ústředního výboru MO, který řídí
tuto soutěž, se konalo tradičně během XX. ročníku dva-
krát. Na první schůzi ÚV MO v Praze dne 10. a 11. pro-
since 1970 se sešel ještě starý ÚV MO. Při hodnocení
průběhu XIX. ročníku byl konstatován velký úbytek
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soutěžících v kategorii В, a to především z řad žáků
I. ročníků. Po diskusi bylo většinou hlasů rozhodnuto
obnovit od XXI. ročníku soutěž v kategorii C. Usneseno
bylo rovněž centrálně evidovat konání III. kol soutěže
v kategorii Z; organizace i náplň soutěže zůstává zcela
v rukou krajských výborů MO. Mimo obvyklé body
programu (edice Škola mladých matematiků, hodnocení
prázdninových soustředění, konkurs JČSMF na úlohy
pro MO, zajištění III. kola kategorie A apod.) projednalo
zasedání přípravu XIII. mezinárodní matematické olym-
piády, stav přípravy jubilejní brožury к 20 letům MO
v ČSSR a další organizační zajištění průběhu MO (jako
je jmenování nového ÚV MO, finanční zajištění akcí).

Byla provedena též recenze modelů soutěže МОу kate-
goriích А, В a. Z. Tyto modely sestavily komise. ÚV MO
práci komisí ocenil kladně a navrhl ji JČSMF к odměně-
ní. Projednány byly též návrhy na odměny za práci
v MO, které udělí MŠ v uplynulém ročníku i v jubilejním
XX. ročníku, kdy by měla být vyhlášena poprvé i Zelin-
ková cena.

Druhá schůze ÚV MO, která byla první schůzí nově
jmenovaného orgánu, se konala 7. a 8. května 1971
v Pardubicích u příležitosti III. kola kategorie A. Jednání
se týkalo především přípravy XIII. MMO v Žilině
(referoval dr. Berger), spolupráce s ÚV SSM (přítomen
J. Řepiš), zajištění jubilejního tisku a publikací ŠMM
i soustředění kategorie В v Rajnochovicích (referoval
dr. Fuka) a přípravného soustředění před XIII. MMO
v Brandýse n. L. Byla ustavena komise ÚV MO pod
vedením dr. Fr. Bělouna, která podle návrhů z KV MO
sestaví návrh odměn za práci v MO pro obě MŠ. Byly
stanoveny rovněž termíny pro odevzdání řešení úloh
v I. kole XXI. ročníku.
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4. PRŮBĚH JEDNOTLIVÝCH KOL SOUTĚŽE

Řešení přípravných úloh I. kola odevzdávali soutěžící
všech kategorií do 30. XI. 71; termíny odevzdání soutěž-
nich úloh I. kola byly uspořádány tak, aby KV MO mohly
lépe zvládnout agendu a aby ve II. kole (klauzurním) byla
umožněna účast soutěžícím i ve dvou kategoriích. Druhé
kolo kategorie A se konalo v sobotu 6. března 1971,
kategorie В v sobotu 3. dubna 1971 a kategorie Z ve stře-
du 7. dubna 1971. Podmínky pro pozvání soutěžících do
II. kola byly stejné jako v XIX. ročníku. V kategorii Z
byla doba čtyř hodin к řešení úloh II. kola rozdělena
přestávkou na dvě dvouhodinové části.

Z přiložených tabulek je vidět v kategorii A jistý
pokles počtu účastníků I. kola; ve II. kole je tento pokles
jen nepatrný. V kategorii В (spojené i s býv. C) je celkový
počet účastníků v XIX. i XX. ročníku prakticky stejný,
avšak značně nižší, než byl v XVIII. ročníku součet
počtu účastníků kategorií В a C.

Potěšitelný je stálý vzrůst počtu účastníků soutěže
v kategorii Z, kde komentáře к úlohám velmi mnoho
pomohly učitelům při získávání a přípravě soutěžících.

Celostátní III. kolo kategorie A se konalo 7. a 8. května
1971 v Pardubicích. Bylo vyhlášeno 8 vítězů a 12 úspěš-
ných řešitelů (viz příloha В). Všichni vítězové a úspěšní
řešitelé III. kola obdrželi od MŠ ceny a diplomy (jejich
seznamy byly zaslány všem vysokým školám); ÚV SSM
je odměnil týdenním rekreačním pobytem v srpnu
v Tatrách.

Obtížný byl výběr účastníků pro přípravné soustředě-
ní před XIII. MMO, které se konalo od 21. do 28. červ-
na 1971 v Brandýse n. L. Tři z těch, kteří přicházeli
v úvahu, dali totiž přednost účasti na mezinárodní fyzi-
kální olympiádě v Sofii. О XIII. MMO v Žilině vydal
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organizační výbor zvláštní zprávu; její upravené znění
je v kapitole VI.

V rámci působnosti KV MO bylo uspořádáno III. kolo
kategorie Z v těchto krajích: v Praze, ve Východočeském,
Západoslovenském a Středoslovenském kraji. Počet účast-
níků, kteří byli vítězi okresních II. kol MO kategorie Z,
se pohyboval od 20 do 46; KV MO rovněž vyhlašovaly
vítěze a úspěšné řešitele, které ve spolupráci se školskou
správou i vhodně odměnily.

5. POMOCNÉ AKCE

Školení účastníků kategorie A, určené jako příprava
před MMO, probíhalo v Praze podle příkladového mate-
riálu ze švýcarských olympiád, doplňovaného vedoucími
J. Zemánkem z MÚ ČSAV a dr. M. Komanem, CSc.s
z pedagogické fakulty KU. Z těchto materiálů čerpala
^ostatní střediska (Brno, Ostrava, Třebíč, Košice, Plzeň,
Žilina, Bratislava).

Soustředění úspěšných řešitelů MO a FO kategorie В
konalo se v Rajnochovicích od 13. do 28. června 1971
a bylo tedy časově velmi zkrácené. Rozdělení do tříd M,
MF a F bylo rovnoměrné.

V matematické třídě přednášeli:
a) dr. Oldřich Odvárko, odborný asistent MFF UK:

Booleovy algebry,
b) dr. Jaroslav Morávek, MÚ ČSAV: Algoritmy

a složitost úlohK
c) dr. Petr Liebl, MÚ ČSAV: Lineární transformace

v rovině,
d) dr. Milan Koman, CSc.3 odborný asistent PF UK:

Metoda souřadnic v geometrii.
Ve třídě matematicko-fyzikálni se konaly přednášky
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b) a d); večer pak bylo několik besed s matematickým
obsahem.

Soustředění proběhlo úspěšně, avšak jeho časové
zkrácení a rozšíření počtu vyučovacích hodin ze 4 na 5
v jednom dni nepovažuje ÚV MO za únosné. Pro poslu-
chače matematiky ve třídách M a MF byla uspořádána
anonymní anketa zabývající se problematikou soustředění,
matematické náplně přednášek a besed, zájmů jednotlivců
i vztahu к MO.

Názory studentů jsou velmi zajímavé a často zcela
bezprostřední. Lze říci, že hlavní přednost soustředění
vidí v tom, že si rozšířili rozhled, získali nové poznatky
a impulsy a zejména další povzbuzení к samostatnému
studiu matematiky. Získané .^vědomosti prý se však jen
málo bezprostředně uplatní v MO (FO). Někteří studenti
oceňují i to, že se mohli seznámit „s mnoha lidmi podob-
ného zaměření", „s konkurenciou" apod. Citujeme na
ukázku tento hlas: „Setkání s chytrými mladými lidmi
z celé republiky je opravdu krásné (i když to zní frázovité)."
Cenné jsou i připomínky, týkající se jednotlivých před-
násek i organizace soustředění, i když jsou často proti-
chůdné. Organizátoři matematické části soustředění se
budou snažit reagovat na všechny poznatky, získané
v anketě, i když to nebude snadné zejména pro značně
rozdílnou úroveň matematické přípravy účastníků soustře-
dění z jednotlivých krajů a škol.

6. STUDIJNÍ LITERATURA

Letáky s úlohami byly vydány celkem bez zpoždění
(pro kat. Л, В 5000 kusů celostátně, pro kat. Z česky
i slovenský zvlášť). Včas byly úlohy publikovány v Roz-
hledech matematicko-fyzikálních; v Matematice a fyzice
ve škole vyšly opožděně.

13



Po ukončení ročníku vyšly v SPN Praha dlouho připra-
vované a očekávané sborníky Vybrané úlohy z matematické
olympiády, a to jak pro kategorii Z (autoři: doc. J. Vуsin,
VI. Macháček), tak pro kategorie В, C (autoři :prof. dr. Mi-
loslav Zedek} Berta Banková, dr. Alena Hartmanová,
dr. Karel Holes, dr. František Krutský, Jana Petlachová
a dr. Jarmila Sedláčková).

První kladný ohlas možno dedukovat z toho, že prakticky
ihned po vyjití byla značná část nákladu rozebrána.

V nakladatelství Mladá fronta vyšky další dva svazky
edice ŠMM:

č. 28: Šmakal — Budinský: Vektory v geometrii;
č. 29: František Zítek: Vytvořující funkce.
Další dva rukopisy jsou již také ve výrobě, tři další po

recenzích má к dispozici redakční kroužek při PÚV MO.

7. KONKURS JČSMF NA NÁVRHY ÚLOH
PRO MO

V roce 1971 uplynulo 5 let od vyhlášení tohoto nepře-
tržitě probíhajícího konkursu. Od jeho zveřejnění v roce
1966 do 30. září 1971 bylo zasláno celkem 671 úloh,
přičemž recenzní řízení bylo skončeno u 615 úloh, z nichž
bylo přijato a odměněno 390 úloh. Bohužel autorský
okruh je značně úzký — úlohy zaslalo pouze 76 autorů.

V olympiádě se v současné době zadávají téměř výhrad-
ně úlohy získané konkursem. Ve XX. ročníku MO bylo
zadáno celkem 50 úloh, přičemž pouze 4 neprocházely
konkursem.

14



Příloha A

POŘADÍ ÚSPĚŠNÝCH ŘEŠITELŮ II. KOLA
KATEGORIE В VE XX. ROČNÍKU MO

(pokud není uveden typ školy, jde o gymnasium, resp.
SVVŠ)

Praha-město

Petr Hejl, 2. roč. Praha 1, Štěpánská; Jan Frynta,
2. roč., Petr Slačálek, 1. roč. a Miron Tegze, 2. roč.,
všichni Praha 2, ul. W. Piecka; Jan Trlifaj, 1. roč. Praha 3,
Sladkovského; Dalibor Volný, Daniela Čepická, Franti-
šek Drašnar a Petr Jarolím, všichni 2. roč., Praha 2, ul.
W. Piecka; Petr Dvořák, 2. roč. Praha 3, Sladkovského;
Vladimír Komárek a Ondřej Šteffl, 2. roč., Praha 2, ul.
W. Piecka.

Středočeský kraj
Tomáš Fiala, 2. roč. Příbram; Jaromír Kukal, 2. roč.

Benešov; Petra Novotná a Marie Barabášová, 2. roč.
Kladno; Vladimír Meier, 1. roč. Mladá Boleslav; Karel
Nalimánek, 2. roč. Kutná Hora; Ludmila Novotná,
2. roč. Brandýs; Miroslav Barták, 2. roč. Kladno.

Jihočeský kraj
Karel Horák, 2. roč. Strakonice; Pavel Kindlmann,

1. roč. a Zbyněk Neumann, 2. roč. České Budějovice;
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Josef Voldřich, 9. roč. ZDŠ Stachy; Ludmila Hlaváčová,
2. roč. Strakonice; Martina Lískovcová, 2. roč. Tábor;
Pavel Novák a Josef Urban, 2. roč. České Budějovice.

Západočeský kraj
Magda Fořtová a Svatopluk Machalka, 2. roč. Plzeň;

Jiří Zymák a Ladislav Peksa, 1. roč. Plzeň; Karel Tesař,
1. roč. Mar. Lázně; František Žák a Blanka Hnilicová,
2. roč. Plzeň; Hubert Hasler, 1. roč. Plzeň.

Severočeský kraj
JiH Svoboda, 2. roč. Teplice; Helena Korbová a Vládi-

mír Špůr, 2. roč. Liberec-Horní Růžodol; Jiří Hora,
2. roč. Zatec; Jan Holub, 2. roč. Teplice; Michal Eben,
2. roč. Ústí nad L.

Východočeský kraj
Jaroslav Kučera, 2. roč. Pardubice; Aleš Verner,

2. roč. Dobruška; Ladislav Šolc, 2. roč. Broumov; Lud-
vík Bartošek, Jiří Mezina a Jiří Svoboda, 2. roč. Pardu-
biče; Jiří Limpuch, 2. roč. Hradec Králové; Josef Ježek,
1. roč. Pardubice; Jan Fridrich, 2. roč. Chrudim; Zdeněk
Drábek, 1. roč. Lanškroun.

Jihomoravský kraj a Brno-město
Miroslav Kmošek, 2. roč. Brno, tř. kpt. Jaroše; Pavel

Šandera, 2. roč. Brno, Křenová; Vítězslav Ticháček,
2. roč. Kroměříž; Milan Jelen, 2. roč. Brno, Křenová;
Jiří Horák, 2. roč. Kroměříž; Josef Mejzlík, 2. roč. SPŠ
strojní, Třebíč.

Severomoravský kraj
Jaromír Šimša, 1. roč. Ostrava, Šmeralova ul.; Václav

Janiš, 2. roč. Rožnov pod Radh.; Antonín Otáhal, 1. roč.
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Ostrava-Zábřeh; Miroslava Foltýnková, 2. roč. Bílovec;
Petr Bulirsch, 2. roč. Ostrava, Šmeralova ul.; Tomáš
Zdráhal, 2. roč. Olomouc-Hejčín; Jiří Hranoš, 2. roč.
Hranice; Vladimír Polách, 2. roč. Rožnov pod Radhoš-
těm; Tomáš Divák, 2. roč. Ostrava, Šmeralova ul.;
Jiří Sobek, 2. roč. a Jiří Fuka, 1. roč. Ostrava-Zábřeh.

Západoslovenský kraj a Bratislava
Milan Lehotský a Milan Kolibiar, 2. roč. Bratislava,

Novohradská ul.; František Šindler, 2. roč. Zlaté Morav-
ce; Peter Hroššo, 1. roč. Topolčany; Lubor Kollár,
1. roč. Bratislava, Novohradská; Ján Kaňuk, 1. roč.
Malacky; Pavel Zlatoš, 1. roč., Peter Dobrota a Dušan
Prcúch, 2. roč. Bratislava, Novohradská; Ivan Tkáč,
2. roč. Bratislava, Metodova.

Středoslovenský kraj
Imrich Vrťo, 2. roč. Rim. Sobota; Jozef Tvarožek,

2. roč. Žilina; Ivan Kulich, 2. roč. Lučenec; Miroslav
Sýkora, 2. roč. Žilina; Štefan Baláž, 2. roč. Prievidza,
Vlastimil Vrťo, 1. roč. Rim. Sobota; Juraj Lanko, 1. roč.
Prievidza; Kamil Hanuliak, 1. roč. Žilina-Hliny; Jana
Števková, 1. roč. a Eva Siváková, 2. roč. Zvolen.

Východoslovenský kraj
Tibor Lefkovič, 1. roč. a Karol Pelikán, 2. roč. Košice,

Šrobárova; Ivan Bača, 2. roč. SPŠ el., Košice; Danica
Jakubiková, 2. roč. Košice, Šrobárova; Amalie Gombá-
rová, 2. roč. Stropkov; Zoltán Loderer, 1. roč. SPŠ el.,
Košice.
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Příloha В

SEZNAM VÍTĚZŮ A ÚSPĚŠNÝCH ŘEŠITELŮ
III. KOLA KAT. A VE XX. ROČNÍKU MO

Vítězové

1. Jan Brychta, З.а, gymnasium Pražačka, Praha 3
2. Štefan Sakaloš, 3.d, SVŠ, Prievidza3.—5. Pavel Dušek, 3.g, gymnasium, ul. W. Piecka,

Praha 2
3.—5. Jaw Franců, 3.b, SVŠ J. Hronca, Bratislava
3.—5. Miroslav Kmošek, 2.a, gymnasium, ul. kpt. Jaroše,

Brno
6.-7. Anton Černý, 3.b, SVŠ J. Hronca, Bratislava
6.-7. Andrej Kugler, 3.g, gymnasium, ul. W. Piecka,

Praha 2
8. Miroslav Sůra, 3.b, gymn., ul. Arabská, Praha 6

Úspěšní řešitelé
9, —12. Ladislav Mišík, 3.b, SVŠ J. Hronca, Bratislava
9. —12. Václav Holý, 3.s, gymnasium, ul. Křenová 36,

Brno
9. —12. Jiří Němec, 3.s, gymnasium, ul. Křenová 36,

Brno
9.—12. Irnrich Vrťo, 2.a, gymnasium, Rim. Sobota

13. —16. Jiří Binder, 3.b, gymnasium, Moravské Budě-
jovice

18



13. —16. Karel Horák, 2. roč. gymnasia, Strakonice
13. —16. Jiří Ivánek, 3.b, gymnasium, Nový Bohumín,

okr. Karviná
13. —16. Luboš PospíšiL 3.s, gymnasium, ul. Křenová 36,

Brno
17. —19. Petr Filip, 3.g, gymnasium, ul. W. Piecka, Praha 2
17. —19. Ivan Gabaš, 3.g, gymnasium, ul. W. Piecka,

Praha 2
17.—19. Helena Husová, 3.g, gymnasium, ul. W. Piecka,

Praha 2
20. Hanula, 3.b, SVŠ J. Hronca, Bratislava
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů v kategorii Z — XX. roč.

Kategorie Z
KRAJ Z toho

dívek
Z toho
dívek

ÚP

Praha-město 987 412 737 314

Středočeský 619 257523307

Jihočeský 656 345 472 234

Západočeský 482 205262 398

Severočeský 775 223361 498

Východočeský 752 609 291367

Jihomoravský 1571 776 785 375

Severomoravský 1029 491 681 281

Západoslovenský 1187 942 489619

Středoslovenský 1168 962 473612

Východoslovenský 3951140 552 769

Celkem 10366 5104 7376 3537
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Tabulka č. 4

Přehled počtu účastníků II. kola v kategorii Z — XX. ročník

Kategorie Z
KRAJ Z toho

dívek
Z toho
dívek

ÚP

Praha-město 509693 195278

Středočeský 431 316 144206

Jihočeský 440 213 151 60

Západočeský 288 159 74148

Severočeský 424 113193 263

Východočeský 570 278 229483

Jihomoravský 741 420 176353

Severomoravský 620 173285 395

Západoslovenský 935 485 212435

Středoslovenský 152888 449 328

Východoslovenský 167740 348379

Celkem 16956770 3267 3807
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II. Přípravné úlohy I. kola

1. RIEŠENIA ÚLOH КATEGÓRIE A

1. V obore reálných čísel riešte rovnicu
ti — 2

2(* + ťX* + »+ l)-*(*+1)(* + 2). ..(* + «) +
и — 11 = 0

x(x + w — 1)5
kde и ^ 2 je dané prirodzené číslo а л; je neznáma.

RIEŠENIE. Pre každé x Ф 0, -1, -2,. .-()n - 1)
platí

1 11
x + i + 1

(f = 0, 1,. .

(л: + i)(* + г + 1) x + i
n 2),• 5

takže
ti —2

111

+o c
i = o

X + я — 1
n — 1

я(я + и — 1) *

x -j- i -\- 1) x

Pre hladané čísla x teda platí
x(x + 1)0 + 2) . . -O + n) = 0.

Z koreňov tejto rovnice vyhovuje však danej rovnici len
—n. Úloha má teda jediné riešenie x = — n.x =
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POZNÁMKA. Uvedené riešenie zostane v platnosti
dokonca i v obore komplexných čísel.

2. Najděte všechny dvojice reálných čísel x, у, které
splňují soustavu rovnic

COS Я + COS у = COS (X + y),
sin x + sinjy = sin (я + у).

ŘEŠENÍ. Druhou rovnici ekvivalentně upravíme
* + У 2 sin *+У~*+УX — у2 sin cos cos

2 522

• x+y( x—y
sm-2 \C0S—2

— COS

. X + у . X .у
Sin —~~ • Sin -у Sin у = 0.

Tato rovnice je splněna právě tehdy, nastane-li některý ze
tří případů

[1] yy = кл, tj. x + у = 2kn \
všude к je
celé číslo.[2] ~ = кл,

[3] |- = fet,
Každou z těchto možností dosadíme do prvé rovnice.
[1] Je-li у — —x + 2kn, pak dostáváme

cos x + cos (—x + 2kn) = cos 2kn,
2 cos x = 1,

tj. л; = 2kn ;

tj. jy = 2кл .

1
COS JC = -=-

2 *
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Odtud nalézáme řešení (x15 yx) a (jc2, y2)> kde

= Ty + 2Ы,— iу + 2кл,^1,2 JVl, 2

přičemž k, / jsou libovolná celá čísla.
[2] Zde máme

cos 2kn + cos = cos (jy + 2&л)3
čili

1 = 0,
což však není možné. Podobně ani [3] nevede к řešení.

ZÁVĚR. Hledaná čísla x, у jsou právě tato:

У + 2Ы
л

,

"г зX — 3> = -

а

у + 2Тгл j

kde k31 jsou libovolná celá čísla.
У + 2/л:,x = ^ =

3. Označme Г těžiště ostroúhlého trojúhelníka ABC,
r poloměr kružnice jemu opsané. Pak platí

8
AT2 + ВТ2 + CT2> у r2.

Dokažte.

ŘEŠENÍ. Při obvyklém označení máme s použitím
kosinové věty:

1 1
tc = y(a 2+ b2) — у C2,
ít = y(C2 + a2)--^2,

26



1 1
ti = ý(í>2 + c2) - f aK

Sečtením dostaneme

ň + tl + tl = ^(a2 + b? + c2).

a = AT* + ВТ2 + CT2 = y(í2 + řb + ř2),
Poněvadž

platí
1

y(a2 + 62 + c2).
Jak známo a = 2r sin a atd., tedy

4- r2 (sin2 a + sin2 (3 + sin2 y) .
j

a —

a =

Nyní provedeme výpočet
2 (sin2 a + sin2 (3 + sin2 7) =

= 3 — (cos 2 a + cos 2 f3 cos 2 y) =
= 3 — [2 cos (a + /3) cos (a — (3) + cos 2 (a + /?)] =

= 3 — [2 cos (a + /3) cos (a — /3) + 2 cos2 (a + /3) — 1] =
= 4 — 2 cos (oc + /3) [cos (oc — /3) + cos (& + /3)] =

= 4 — 2 cos (a + /3) . 2 cos a . cos /3, tj.
sin2 a + sin2 /3 + sin2 7 = 2 + 2 cos a . cos j3 . cos 7 .

Poněvadž trojúhelník je ostroúhlý, platí
cos a . cos /3 . cos 7 > 0,

takže
sin2 a + sin2 /3 + sin2 7 > 2 .

g
Nakonec vychází a > — r2, c. b. d.
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4. Nech M je vnútorný bod trojuholníka ABC a pAi
pBj pc sú v uvedenom poradí plošné obsahy trojuholníkov
ВCM} CAM) ABM. Potom platí

pAMA + pBMB + pcMC = o,
—v

kde O je nulový vektor. Dokážte!

RIEŠENIE. Veďme bodom A rovnoběžku s priamkou
MB a označme D jej priesečník s priamkou MC.
Potom zrejme platí (obr. 1)

AD ft MB) DM ft MC*)
a ďalej
*) Symbol označuje súhlasnú rovnobežnosť vektorov (orientovaných
úsečiek).
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1

■jMC. ААХAD ААг
МВ ~ ВВ1

Рв
Ра31

■jMC. ввг
kde А19 resp. Вх je pata kolmice spustenej z bodu A,
resp. В na priamku CM. Máme teda

AD = — . MB . (1)
Pa

Ďalej platí
1

ýJDAf. BBX obsah Д DBM
_ pc

obsah Д MBC pA

DM
MC 1

yMC. BBX
Vzhladom na to, že AD 11 MB, je totiž obsah Д DBM =
= pc. Z poslednej rovnosti máme

DM = — • MC. (2)
Pa

Použitím výsledkov (1), (2) dostáváme
pA . MA + рв • MB + pc . MC —

= Pa(ma+Pa
= pA (MA + AD + DM) = pA . O = O,

čo sme mali dokázat’.

KOMENTÁŘE A ŘEŠENÍ ÚLOH KATEGORIE В

(Komentáře byly určeny hlavně pro žáky 1. ročníků
gymnasií a středních odborných škol.)

1. Kolik neprázdných podmnožin má množina skládá-
jící se z deseti prvků?

£P-MB + —AÍcj =Pa
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KOMENTÁŘ. Je to vlastně úloha z kombinatoriky,
kterou žáci 1. a 2. ročníků gymnasií neznají. Tuto úlohu
by hravě rozřešili žáci pokusných ZDŠ, kde se kombinato-
rika probírá (v omezeném rozsahu) už v 7. ročníku.
Úlohu lze nejpohodlněji rozřešit vtipným obratem, který
souvisí s dvojkovou soustavou. Než však tento obrat
prozradíme, necháme vás experimentovat: vyhledat
všechny neprázdné podmnožiny tříprvkových, čtyř-
prvkových a pětiprvkových množin. Do vypsání pod-
množin je třeba ovšem vnést určitý systém, opírající se
třeba o uspořádání prvků. Tak např. při čtyřprvkové
množině M = {a3 b3 c3 d} postupujeme takto: podmno-
žiny budeme zapisovat tak, aby prvky každé podmnožiny
byly v abecedním pořádku. Dostaneme tak výčet:
{a}, {a3 b}3 {a3 c}3 {a, d}3 {a3 b3 c}3 {a, b3 d}3 {a3 c3 d}3
{#, b3 c3 d}, {ů}, {b3 c}, {b3 d}, {b} c3 d}, {c}, {c, d}, {d}.
Dobře se znázorní podmnožiny na tzv. stromu logických
možností:

И

fa, 6,c,d]
V grafu chybí podmnožina (b, c, d). Doplňte ji.
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Počty neprázdných množin se zapíší do tabulky:

Počet prvků
v M

32 4 51

Počet jejích
neprázdných
podmnožin

7 151 3 31

Nyní pravděpodobně vyslovíte domněnku, že hledaný
počet podmnožin je 2” — 1, kde n je počet prvků množi-
ny M.

A nyní „triktc, který dovolí přehledně registrovat
všechny podmnožiny množiny M. Zapíšeme prvky z M

a b c d

a pod každý z nich zapíšeme buď 0, jestliže tento prvek
nenáleží dané podmnožině, nebo 1, náleží-li jí. Podle této
úmluvy jsou např. podmnožiny (a, c), {b, c, d} charak-
terizovány čtveřicemi 1010 a 0111. Nyní už snadno sami
vypočítáte počet všech w-tic složených z nul a jedniček; je
jich 2.2 2 = 2”. Ale и-tice složená vesměs z nul

и-krát

je vyloučena (proč?).
Můžete rozřešit ještě nějakou úlohu, kde se uplatní

obdobně dvojková soustava. Např. v čtvercové síti se má
,,projíťc po stranách čtverců z vrcholu A do vrcholu В
(viz obr. 2). Je dovoleno postupovat jen zleva doprava
a'zdola nahoru. Otázka rzní: Kolik je(možných různých
cest z A do B} Postup o jednu stranu doprava zapíšeme
znakem 0, postup o jednu stranu nahoru znakem 1.
Tlustě vytažená cesta je registrována zápisem 001110100
0010110. Každý zápis musí obsahovat 16 znaků, z toho
9 nul a 7 jedniček (proč?). Tato úloha je ovšem podstat-
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ně těžší než daná úloha o podmnožinách, neboť je ještě
třeba uvažovat všechna možná umístění nul a jedniček.
Situace se zjednoduší, zvolíme-li místo čísel 9, 7 menší
přirozená čísla, např. 4, 3 apod. „CestámÍC můžeme pře-

В

7

C

a[
9

Obr. 2

depsat další podmínku, např. aby procházely daným bo-
dem C apod. Jak je vidět, nejde tu o jednotlivou úlohu,
ale o celý komplex úloh, čili o tzv. problémovou situaci.

ŘEŠENÍ. Každou podmnožinu A dané množiny M
můžeme jednoznačně určit tím, že každému jejímu
prvku přiřadíme 1, zatímco ostatním prvkům z M \ A při-
řadíme 0. Počet všech podmnožin naší množiny je tedy
210 = 1024; neprázdných je o jednu méně, tj. 1023.

2. Najděte všechny trojčlenné aritmetické posloupnosti
prvočísel s diferencí 1970.

KOMENTÁŘ. Tato úloha vyžaduje elementární
znalosti z teorie čísel. Pravděpodobně bude třeba vy-



světlit nejdříve název „trojčlenná aritmetická posloup-
nosťc, což dává příležitost vyslovit obecnou definici
aritmetické posloupnosti; je to věc zcela přístupná,
ilustrujeme-li ji několika příklady.

První impuls pro řešení bude asi tento: Zapíšeme
troj člennou aritmetickou posloupnost

x, x + d, x 2d
a budeme ji zkoumat (pokud jde o dělitelnost jejích
členů), a to ve dvou případech:

a) diference d e násobkem tří;
b) diference d není násobkem tří.

Výsledky zkoumání se zapisují do tabulky tohoto tvaru:
i

2d 4 5 7 3 10 6

5 31 67 32 1 11x

x + d 33 99 7 8 14 77

x -f- 2d 12 15 35 87 1513 17

Co vypozorujeme a jakou domněnku vyslovíme? Je-li
diference d násobek tří, pak posloupnost bud neobsahuje
žádný násobek tří (sloupec 4), nebo obsahuje samé násob-
ky tří (sloupec 7). Není-li diference d násobkem tří,
pak aspoň jeden člen posloupnosti je násobkem tří,
a tedy není prvočíslem, pokud je větší než 3.

Číslo 1970 = 3.656 + 2 není násobkem tří. Je-li
správná výše vyslovená domněnka, pak hledaná posloup-
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nost musí obsahovat číslo 3 a jediná možnost je
3, 1973, 3943.

Je ovšem ještě třeba:
a) zjistit z tabulek (nebo jinak), zda čísla 1973, 3943

jsou prvočísla;
b) dokázat vyslovenou domněnku.
Úkol b) splníme tak, že čísla d, я rozložíme vzhledem

к číslu 3; je tedy
я = 3y, nebo x = Зу + 1 nebo x — 3y + 2,

d = 3k + 1 nebo d = 3k + 2;
(d není násobek tří!). Ve všech čtyřech případech, kdy x
není násobkem tří, vypočteme я + d a x + 2d. Např.
pro Я 3y + 1, d = 3k + 2 dostaneme

x + d = 3 (y + k) + 3 = 3 (y + k + 1),
x 2d = 3 (_y -j- 2^) -(- 5.

Číslo я + d je skutečně násobkem tří.
Za nej podstatnější impuls zde pokládáme výzvu к expe-

rimentování, které vede po sestavení přehledné tabulky
к vyslovení hypotézy.

ŘEŠENÍ. Snadno nahlédneme, že z čísel
p, p + 1970, p + 2. 1970

je vždy jedno dělitelné třemi. Nutně tedy p — 3 a dostá-
váme jediné řešení: 3, 1973, 3943 (viz tabulky).

3. Nájdite množinu všetkých bodov, ktorých právo-
uhlé súradnice я, у splňujú sústavu nerovnic

|ж| ^ 2тг, \y\ < 2л,

tg я ^ 0, tg M)^>.
34



KOMENTÁŘ. Tato úloha je převážně počtářská;
к jejímu řešení je třeba znát definici goniometrických
funkcí pro všechna reálná čísla x.

Rada, kterou dáváme řešitelům, je tato: Vyšetřte
odděleně každou z množin bodů s analytickým vyjádřením
а) \x\ ^ 2л,

c) tg X ^ 0 ,

a pak stanovte průnik všech čtyř množin bodů.
Případy a) a b) jsou triviální, rovněž i případ c);

případ d) je nejobtížnější. Zde je třeba zjistit, že daná
nerovnice je ekvivalentní s nerovnicemi

x2 r , л
-£<kn+—.

A pak je třeba probrat všechna celá čísla k} která přicháze-
jí v úvahu; dostaneme tak zakřivené „pásyí£ omezené
parabolami (pozor na hranici!). Výsledek se dostane jako
průnik pásů roviny s těmito zakřivenými pásy. Celý graf
leží ve čtverci, jehož vrcholy jsou [± 2л:, zt 2л;].

Úloha je pracná, vyžaduje pozornost, ale je v podstatě
bez vtipu; je určena jako záchytná úloha. Lze ji však
modifikovat: Nerovnici a) nahradíme nerovnicí |jc| ^
nerovnice b), c) vypustíme a nerovnici d) nahradíme
nerovnicí

b) Ы^2.г,

d) ^ o

kn ^ у —

0Stg(j.-^)ál.
RIEŠENIE (obr. 3). Riešenie nerovnice tg x ^ 0

tvoří polopásy
кл x ■<. kn -\- ■— (k celé číslo). (i)
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/

[~2х, 2л] [2л,2х]

л

[-2л, -2л] [2л,-2л]

Obr. 3

Riešenie nerovnice tg ^ 0 tvoří polopásy s pa-

rabolickými hranami

j+háj<^ + b + ý (k celé číslo). (2)
Hladaná množina sa skládá právě z tých bodov štvorca

1*1 ^ 2л3 \y\ ^ 2л3
ktoré ležia súčasne v (1) i (2); na obr. 3 je vyšrafovaná.

4. Uhlopriečky AC, BD konvexného štvoruholníka
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ABCD sú navzájom kolmé právě vtedy, ak platí AB2 +
+ CD2 = BC2 + AD2; dokážte.

KOMENTÁŘ. Čtvrtá úloha je triviální, řešíme-li ji
kosinovou větou. Kosino-
vou větu lze však snadno
obejít. První část — důkaz
nutné podmínky — záleží
v prostém použití Pytha-
gorovy věty. Označíme-li
délky stran a úseček na
úhlopříčkách podle obr. 4, ^
platí pro co = 90°: a2 =
= X2 + Z2, c2 = y2 + t2,
b2 — y2 + z2} d2 — x2 +
+ ř2, a tedy a2 + c2 =
= 62 + i2. Postačitelnost
této podmínky dokážeme
takto: Je-li со Ф 90°, je
a2 + с2 Ф b2 + d2. Zde je
třeba provést jistou úvahu
o tzv. kontraponovaných
větách podle schématu:

(A => B) právě když (поп В => non A),
(В =► Л) právě když (non Л => non Б).

Důkaz postačitelnosti podmínky je pak druhá z uvede-
ných implikací. [A je výrok (výroková forma) co — 90°,
В je výrok (výroková forma) a2 + c2 = b2 + d2.]

Druhý impuls pro řešení implikace non A => non В
záleží v tom, že si připomeneme větu, která se dá jako
úloha odvodit z Pythagorovy věty: Jsou-li x3 z délky
stran trojúhelníka a je-li vnitřní úhel proti straně z ostrý
(pravý, tupý), pak platí я2 + у2 > z2 ( = z2, < z2).

Zvolíme označení tak, aby bylo co < 90°, je 180° —

d i

180-cv
T

У /с^Ш-ш /

b

в

Obr. 4
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—со > 90° a užitím předchozí věty dostaneme
a2 + c2 < b2 + d\

RIEŠENIE. Ak je AC J_ BD, vyplývá uvedená rov-
nosť zo štvornásobného použitia Pythagorovej vety.
Pri dokáže obrátenej vety móžeme použiť toto tvrdenie:
Ak je v &AXB uhol <£ AXB ostrý, platí AB2 < AX2 +
+ ÉX2(a analogické tvrdenie pre tupouhlé trojuholníky);
i tieto pomocné tvrdenia sa dajú dokázat’ bezprostředným
použitím Pythagorovej vety. Je možné riešiť tiež kosinu-
sovou větou.

3. KOMENTÁŘE A ŘEŠENÍ ÚLOH KA TEGORIE Z

1. Součet druhých mocnin tří po sobě jdoucích lichých
čísel je čtyřciferné číslo, jehož všechny číslice jsou stejné.

Najděte všechny takové trojice lichých čísel.
KOMENTÁŘ. Už při čtení textu narazíme na pojem

liché číslo. Lichá čísla jsou celá čísla, liché číslo může být
tedy i číslo záporné. Každému matematikovi je známý
,,trikcc, jak vyjádřit tři za sebou následující členy aritme-
tické posloupnosti. Zpravidla se osvědčuje vyjádření
a—d, a, a + d. Kdybychom použili nesymetrického
vyjádření b, b + d} b + 2d3 byl by výpočet asi složitější.
Řešení úlohy je poloexperimentální, neboť situace nás
přímo vybízí к tomu, abychom prozkoumali postupně
všechna čísla s dekadickým zápisem yyyy a čísla к nim
opačná. Doporučujeme obměnit podmínku b) na troj-
ciferná a pěticiferná čísla; zajímavé jsou tu důvody, proč
je úloha neřešitelná. Mimoto je cenná sama ta okol-
nost, že se setkáváme s neřešitelnou úlohou.

ŘEŠENÍ. Je-li jc prostřední číslo hledané trojice, máme
(pc — 2)2 + x2 T O + 2)2 = 3x2 + 8 = (yyyy), kde
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ye ,

být у lichá číslice. Číslo 3x2 + 8 se tedy nutně rovná
některému z čísel 1111, 3333, 5555, 7777, 9999, načež
3x2 se rovná některému z čísel 1103, 3325, 5547, 7769,
9991. Z nich pouze 5547 je dělitelné třemi, takže 3x2 =
= 5547, tedy x2 = 1849 = 432. Poněvadž

412 + 432 + 452 = 1681 + 1849 + 2025 = 5555,
jsou právě dvě vyhovující trojice: 41, 43, 45 a —45, —43,
-41.

9}. Poněvadž Зх1 + 8 je liché číslo, musí

2. Ozubené pedálové kolečko jízdního kola (bicyklu)
má 48 převodních zubů: malé převodní kolečko na zadním
kole má 20 zubů. Průměr zadního kola bicyklu je
72 cm. (Uvědomte si, že vzdálenost dvou sousedních
zubů u obou koleček je táž.) Cyklista jede po vodorovné
silnici stálou rychlostí 25 km za hodinu na plný záběr
(šlape rovnoměrně).

a) Kolikrát musí šlápnout za jednu minutu, aby si
udržel stálou rychlost 25 km za hodinu?

b) Kolikrát musí šlápnout na trati dlouhé 4,5 km?
KOMENTÁŘ. Úloha je značně idealizována; může

být proti ^ ní oprávněná námitka, že se takto na kole
nejezdí. Úloha předpokládá jistou znalost o převodech.
Pokud ji řešitel nemá, snadno si obstará příslušné názorné
vysvětlení. Zde bychom doporučovali opustit numerické
údaje a počítat algebraicky. Mají-li pedálové a převodní
kolečko po řadě z13 z2 zubů a jsou-li po řadě n13 n2 počty
jejich otáček, platí

(V)nxzx = n2z2.

Měli bychom rozřešit několik úloh na využití vzorce (V).
Tento vzorec je i klíčem к řešení dané úlohy. Vždy je
třeba nejdříve odvodit vzorec, podle něhož budeme
počítat. Např. má-li cyklista ujet v metrů a je-li poloměr
jeho zadního kola r metrů (pozor na jednotky!), je počet

39



potřebných otoček pedálového kola

2nrz±
Vzorec (A) můžeme upravit pro situaci, že je dáno
v kilometrech a r v centimetrech: čitatele násobíme tisícem
a jmenovatele dělíme stem; celkem tedy násobíme zlomek
103 . 102 = 105 a dostaneme

(v, r v metrech). (A)»i =

VZ 2 (B)= 105 (v v km, r v cm).2nrzx
Takovouto úpravu, jako je vzorec (B), pokládáme za velmi
účelnou pro aplikace.

Také bychom si měli vysvětlit, proč dáváme přednost
algebraickému výpočtu před numerickým (např. mož-
nost krácení, co největší využití tabulek apod.).

I při zodpovědění otázky a) je třeba správně a obratně
manipulovat s jednotkami (minuty—hodiny).

Celkem je tento příklad jen obtížnější a rozsáhlejší
školská úloha.

ŘEŠENÍ. Otočí-li se pedálové kolečko jednou, otočí se
48

zadní kolo — = 2,4krát; na to, aby se pedálové kolečko
otočilo jednou, musí cyklista šlápnout dvakrát.

Při jednom šlápnutí ujede zadní kolo dráhu délky
(v cm)

nd . 2,4 . 3,14.72.2,4
- 271,296 = 271,2 2

kde d jsme označili průměr zadního kola bicyklu.
Na dráze 25 km = 2 500 000 cm cyklista šlápne toli-

krát, kolik je 2 500 000 : 271; to je přibližně 9 225. Za
jednu hodinu tedy šlápne 9225krát a za jednu minutu
9225 : 60 = 153,75 tj. přibližně 154krát.
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4,5Poměr drah 4,5 km a 25 km je . V témže poměru se

změní i počet šlápnutí, tj. číslo 9225; dostaneme
4 5

9225 - ^ - 369.4,5 = 1660,5 = 1660.25

Na dráze 4,5 km musí cyklista šlápnout asi 1660krát.

3. Je dán rovnostranný trojúhelník ABC o straně délky
8 cm. Dále je dán pravidelný šestiúhelník KLMNOP
o straně délky 4 cm tak, že vrcholy А а. К v základní poloze
splývají a vrchol L leží na polopřímce AB. Oba útvary
leží v opačných polorovinách vyťatých přímkou AB.

Šestiúhelník KLMNOP se kotálí po obvodu troj úhel-
nika ABC.

a) Vyšetřte dráhu vrcholu K.
b) Vypočtěte obsah útvaru ohraničeného dráhou boduK.
KOMENTÁŘ. Abychom dobře porozuměli textu

úlohy, měli bychom si vystřihnout z lepenky trojúhelník
i šestiúhelník a s modelem provést popsaný pohyb, expe-
rimentálně zjistit a zakreslit dráhu bodu K. Pak provede-
me konstrukci přesně pravítkem a kružítkem. Při výpočtu
jde a) o aplikaci vzorců pro délku oblouku kružnice
a obsah výseče, když je dán poloměr a velikost středového
úhlu; b) o vhodné rozdělení vzniklého obrazce na troj-
úhelníky a výseče. Úloha je zcela běžná, vyžaduje spíše
čas a trpělivost při počítání než vtip.

I tato úloha může být ovšem východiskem к problémo-
vé situaci o kotálení jednoho obrazce po obvodě druhého.
Zkuste např. v dané úloze nahradit buď pevný trojúhel-
nik, nebo pohyblivý šestiúhelník čtvercem, který má
stranu téže délky.

ŘEŠENÍ (obr. 5). Dráha bodu К se skládá z pěti
kružnicových oblouků, jak je naznačeno na obrázku.
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Obsah útvaru ohraničeného dráhou bodu К vypočteme
jako součet obsahů celkem deseti obrazců, z nichž je pět
trojúhelníků a pět kruhových výsečí (viz. obr. 5). Obsah
obrazce označeného číslem i bude Pt v cm2 (i — 1,2,..
10). Obsah rovnostranného AABC je

16. ]/3==27,68.

• 5

(1)4
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Dále platí P2 = P8, takže

IH-1/3
í>4 + P5 = 2 (y-4 .4 . Уз) = 16 . Уз == 27,68. (3)

= 2 . • 4 • 4 • = 13,84. (2)

Podobně P4 = P5, takže

Kruhová výseč označená na obr. 5 číslem 7 má poloměr
roven NK = 8 cm a středový úhel 60°, její obsah tedy je

1
(4)P7 = -g- • n . 64 == 33,60.

Dále Pe = P8 = -^-л(4]/3)2 = 24л;, takže
Pe + p8 = 48 n = 150,72. (5)

Nakonec P9 = P10, takže

7>8 + 7>1о = 2(у-л:.42) = 16~=16,80. (6)

Sečtením výsledků (1), (2), (3), (4), (5), (6) dostaneme
Pj + P2 + .. . + P10 == 270 cm2,

což je hledaný obsah.

4. Je dána velikost 5 střední příčky a velikost v výšky
lichoběžníka ABCD, jehož úhlopříčky jsou к sobě kolmé.
Průsečíky úhlopříček se střední příčkou lichoběžníka
ABCD dělí tuto střední příčku na tři shodné úsečky.

Sestrojte lichoběžník ABCD.
KOMENTÁŘ. Mezi impulsy pro řešení této úlohy

patří bezesporu uvažování o tom, zda se mohou protínat
úhlopříčky lichoběžníka na jeho střední příčce. (Zřejmě
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nemohou, neboť by se pak navzájem půlily a obrazec by
byl rovnoběžník.)

Dále provedeme rozbor dané konstrukční úlohy. Je to
úloha nepolohová; první otázka je vždy, jak tuto úlohu
„lokalizovatcc, tj. který z daných prvků pevně umístit.
V našem případě to bude asi střední příčka EF lichoběž-
nika ABCD, neboť

a) známe její velikost;
b) známe její vzdálenost od přímek, v nichž leží zá-

kladny;
c) víme, kterými jejími body procházejí úhlopříčky.
Vyjdeme-li ze střední příčky EF a jejích bodů G, H

(EG = GH = HF\ pak průsečík L obou úhlopříček
zřejmě leží na kružnici k sestrojené nad průměrem GH

\d
'VX

\/ \L/
/ \ \

£■ F
/ \G H

\/ \

A В4 с3s 4-s\ 32s \X X
Obr. 6

(obr. 6). Mimoto víme, že vrcholy А, В а С, D leží па

dvou rovnoběžkách s EF vedených ve vzdálenosti v

(v je daná výška).
Zde se asi zarazíme: Nevíme ještě, který bod kružnice k
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máme zvolit za průsečík L obou úhlopříček. Na první
pohled situace vypadá tak, jako by úloha měla nekonečně
mnoho řešení. Zvolíme tedy bod L na k, pak narýsujeme
lichoběžník ABCD a provedeme zkoušku; speciálně si
ověříme (třeba grafickým sčítáním), zda platí

AB + CD = 2EF.
Tu se ukáže, že při libovolně zvoleném bodu L na k není
podmínka b) splněna. To znamená, že vzdálenost bodu L
od přímky EF není libovolná.

Další impuls je zkoumat tři podobné trojúhelníky ABL>
GHL3 CDL. Jejich vyšetřováním se zjistí, že vzdálenost
bodu L od přímky EF je -i-©. Tím je vlastně teprve

dokončen rozbor úlohy a zkouška pak vyjde. Zároveň
je tím také otevřena cesta к diskusi, v níž je třeba rozli-
šit případy v < s, v — s, v > s (kde s značí délku střední
příčky EF).

Tato úloha je poměrně nej těžší z přípravných úloh, ale
je velmi instruktivní.

Když jsme se ,,potrápilicc s předchozím poměrně složi-
tým řešením, můžeme užít určitého triku: doplnit
trojúhelník BCD na rovnoběžník BDCEx. Tak vznikne
pravoúhlý trojúhelník AEXC3 jehož přepona má délku
AEX — 2s a výška je v. Zůstane vám však ještě ledacos
к dokázání a úvaze (vyjádřit délku CD a tedy i BEX
pomocí s atd.).

Také z této úlohy bychom se mohli dopracovat к řadě
variant, a tím к jisté problémové situaci. Např. místo dané
výšky v můžeme požadovat, aby byl lichoběžník rovno-
ramenný, místo podmínky EG = GH — HF můžeme
požadovat 2EG = GH = 2HF apod.

ŘEŠENÍ (obr. 6). Předpokládejme, že ABCD je hledá-
ný lichoběžník, a na prodloužení jeho větší základny AB
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za bod В sestrojme bod Ex tak, aby BEX = DC. Pak bude
AEx = 2s, přičemž AB = s (z AABC) a BEX =

= DC = ~s{z A BCD). Poněvadž 11 BD, je
•$.ACEX = 90°. V pravoúhlém trojúhelníku ЛСВ^ známe
tedy délku přepony AEX = 2s a velikost příslušné výšky ©.

Proto nejprve sestrojíme pravoúhlý trojúhelník ACEX
s přeponou AEX = 2s a s příslušnou výškou ©.To prove-
deme užitím Thaletovy věty: Nad průměrem AEX
opíšeme polokružnici (jejíž poloměr tedy bude s) a najde-
me její společný bod C s přímkou vedenou v téže poloro-
vině rovnoběžně s AEX ve vzdálenosti v. Na přeponě EXA
pak sestrojíme bod В tak, aby bylo AB : BEX = 2:1
(víme totiž, že musí být AB = BEX = ~ s). Troj-
úhelník ABC nyní již snadno doplníme na hledaný licho-
běžník ABCD (bude CD = BEX).

Proveditelnost celé konstrukce závisí pouze na existen-
ci bodu С. V případě v > s tento bod neexistuje, takže
úloha nemá řešení. V případě v ^ s bod C existuje
(jeden nebo dva), takže úloha má řešení (jedno nebo dvě)
zřejmě souměrná podle osy úsečky AB.

Jedinou podmínkou řešitelnosti úlohy je tedy splnění
nerovnosti v ^ s.
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III. Súťažné úlohy I. kola

1. RIEŠENIA ÚLOH KATEGÓRIE A

1. V obore reálných čísel riešte rovnicu
n — 1

KM-
i = 1

)n — 1 %i • Л-í+i2 xx -j-1 + *(* + 1) 5i
i =

kde n je dané prirodzené číslo а %, хгз.. ., xn sú neznáme.
RIEŠENIE. Matematickou indukciou vzhladom na n

dokážeme, že pre reálne čísla a0, a13 a 23 . . ., an (n ^ 1)
platí nerovnosť

al+ 11 ^ <2i+ • • • + dn ^ 2 jjz0ai + ^ i +

( 2 ) atfh + “ * + (и - l) aw-lú!íí] 3 (1)+

pričom rovnosť v nej nastane právě vtedy, ked a0 =
CL\ — & 2 ' • • • ==

Pre w — 1 naše tvrdenie platí, pretože potom sa (1)
redukuje na známu nerovnosť ajj + <Л ^ 2a0«i-

Predpokladajme teda, že naše tvrdenie platí pre nějaké
n ^ 1 a uvažujme o Tubovolných reálných číslach
a03 a13 a23 ... 3 an3 an+1. PodTa indukčného předpokladu
platí okrem (1) tiež nerovnosť
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a\ + + • • • + (”)a«+i ^ 2 [aia2 + (” i

(я - lKa”«] ’

а2а3+

С г1) (2)азаь + • • • +

pričom vieme, že rovnost’ v (1) nastane právě vtedy, keď
<20 = ax = . . . = an a v (2) právě vtedy, keď ax — аг —
—

... — an — an+1. Sčítáním (1) a (2) dostaneme žiada-
nú nerovnost’

+

c: i)--»aŠ+(”|1)aS+(” + 1)a! + .

[«o<h + (”) (w)a„a„+i]5^ 2 й1а2 H~ • • • +

v ktorej platí rovnost’ právě vtedy, keď a0 = ax = a2 —
—

... — an = О'пл-Х'
Tým je naše tvrdenie dokázané. Z něho bezprostredne

vyplývá, že jediným riešením danej rovnice sú čísla
— 15 X% — 2^ • • • 2 — 72*

2. Najděte všechna přirozená čísla, která není možno
vyjádřit jako součet aspoň dvou, ale méně než 1970, za
sebou následujících přirozených čísel.

ŘEŠENÍ. Hledaná čísla jsou
(1) všechny celé nezáporné mocniny čísla 2;
(2) čísla tvaru 1024.2е. M, kde c je celé nezáporné

číslo a M je součinem prvočísel větších než 1970.
Důkaz. I. Nechť N = 2a, a je celé nezáporné, a nechť

T — 1

= 2(я + j) = у r (2w + r — 1)2a = N

/= o
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je vyjádřením čísla N ve tvaru součtu r 2) sčítanců n,
n + 1,. . . j n + r — 1. Je tedy

2<x+i = r(2n + r — 1);
avšak jedno z čísel г, 2и + r — 1 je nutně liché a větší než
než 1.

II. Nechť N není mocninou 2; budiž p nejmenší prvo-
číslo větší než 2, které je dělitelem čísla N. Číslo N lze
tedy psát ve tvaru

N — 2:ipPm,(3)
0 (celá čísla), a m je buď 1, nebo součinkde /3 > 0, a

prvočísel větších než p. Takové číslo N lze vyjádřit ve
tvaru

= /4” +/)>(4) iV

j = o

kde и je přirozené at = min [2a+1, />].
A. Nechť 2a+1 < p, takže r = 2a+1. Číslo

pPm — 2X+1
je nutně liché (p^m je liché) a kladné; označme je 2n— 1,
n^l. Pro toto přirozené n pak máme
w-l

+У) = yr (2я — 1 + г) = у 2a+1(pfim - 2*+1 +
+ 2a+1) = 2apčm = N.

В. Nechť p < 2a+1, takže r ~ p. Číslo
2a+i/"im — p

je nutně iché (a + 1 > 1, p je liché) a kladné {pp~xm ^ 1);
označm je 2/z — 1, n ^ 1. Pro toto přirozené и pak
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máme

2 (я +j) =yr(2n —
1 +r) =

j = 0

= ~ p(2a+1 p^^m — p + p) = 2X p^m — N.

C. Mějme N tvaru (3) a vyjádříme je ve tvaru (4) s něj a-
kým přirozeným r,r ^ 2; dokážeme, že r ^ min [2a+1,p].

C. a) Nechť r je sudé,
r-l

> +У) = у <2я + r — 1);2*pPm
j= o

číslo 2я + r — 1 je pak liché, takže z rovnosti
2a+1 p^m - r(2n + r — 1)

min [2a+1, p].plyne r 2a+1
C. b) Nechť r je liché, a tedy nutně dělitelné nějakým

prvočíslem q > 2. Je

2(и= 1
А/ = 2a pP m 2r (2« + r — 1) •

j = o

Také číslo iV je tedy dělitelné prvočíslem q, takže q ^
^ P ^ min [p, 2*+1].

Čísla AT tvaru 1024.2е. M tedy nelze vyjádřit ve
tvaru součtu méně než 1970 po sobě následujících při-
rozených čísel, neboť i 2048 i dělitelé čísla M jsou větší
než 1970.

Naopak čísla N, která nejsou tvaru ani (1), ani (2) bud
nejsou dělitelná číslem 1024, takže ve vyjádření (3) je
2a+1 ^ 1024 < 1970, anebo jsou dělitelná prvočíslem p,
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2 < p < 1970; v obou případech je
r = min [2a+1, p] < 1970

a iV lze vyjádřit podle toho, co bylo dokázáno před C ve
tvaru (4).

3. Nájdite množinu všetkých bodov v rovině, ktorých
pravoúhlé súradnice x, у vyhovujú sústave nerovností

1*1 + Ы < 3>



RIEŠENIE. Nerovnost’ sin л + у + -yj ^ 0 je
splněná právě vtedy, keď platí

2foi ^ n I* + у + -i-j 5^ 2kn + 7Г

v • v

cize

1 1
(1)—x + 2k —2~ — У — —x ,

kde k je celé číslo.

Podobné nerovnost’ sin л \x — у + ^ 0 je splněná
právě vtedy, keď platí

x -f- 2m —

kde m je celé číslo.
Hl’adaná množina bodov je potom prienikom štvorca

|x| + Ijvl < 3 a pásov (1) a (2); pozři obr. 7.

(2)

4. Jsou dána kladná čísla a, b, c, d. Sestrojte čtyřúhelník
ABCD s AB — a, BC — b3 CD — c, DA = d tak, aby
jeho obsah byl co největší. Najděte podmínku řešitelnosti.

ŘEŠENÍ. Nutnou podmínkou, aby existoval vůbec
nějaký čtyřúhelník daných rozměrů, je, aby největší
z čísel a3 b, c3 d bylo menší než součet tří zbývajících.
Budeme proto předpokládat, že tato podmínka je splněna
(a nakonec uvidíme, že je i postačující pro existenci hledá-
ného čtyřúhelníka). Máme tedy

cl <C b -J- c d,
b<LcL-\-c~\~d3 „

c <C cl -f- b -f- d,
d < a + b + c.

(1)
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(Jedna z těchto nerovností právě vyjadřuje naši podmínku
a zbývající tři jsou pak triviálně splněny.)

Předpokládejme, že ABCD je čtyřúhelník daných
rozměrů; označme S jeho obsah, a resp. у velikost jeho
vnitřního úhlu při vrcholu A, resp. C, p = -^-{a + b +
+ c + d). Pak platí

1
5 = — {ad sin a + bc sin y),

45 = 2{ad sin a + bc sin y).
Z dvojího vyjádření BD2 podle kosinové věty plyne

a2 -f d2 — b2 — c2 — 2ad cos a — 2bc cos у . (3)

(2)

Vztahy (2), (3) umocníme dvěma
1652 = 4a2d2 sin2 a + 8abed sin a sin у + 4b2c2 sin2 у ,

(a2 + d2 - b2 - c2)2 =
= 4a2J2 cos 2a — 8afo<i cos a cos у -f- Ab2c2 cos2 у

а рак sečteme.
16S2 = 4a2d2 + 4b2c2 - (a2 + d2 - 62 - c2)2 -

— 8abcd cos (a + y) .

Dosadíme sem cos (a + y) = 2cos2 -■ ^ — 1 a dosta-

neme

1652 = 4{ad + bc)2 - {a2 + d2 - b2 - c2)2 -
— 16abcd cos2 — - .

Upravíme
4{ad + bc)2 - (a2 + d2 - b2 - c2)2 =
= (a2 + d2 - b2 - c2 + 2ad + 2bc) .

. (—a2 — d2 + b2 + c2 + 2ad + 2bc) =
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= [{a + d)2 -{b- c)2] .

• [(^ + CT — {cl — d)2] = (a + d + b — c) .

. {u -\- d — b c) {b c a — d) {b -f- c — a d) —
= 16 0 - a) {p — b) (p — c) {p — d).

Odvodili jsme tedy vzorec

S = (j> — a)(j> — b)(j> — c)(p> — d) — abcd cos2 ■

(4)
Úloha bude rozřešena, sestrojíme-li (za předpokladů

(1)) tětivový čtyřúhelník ABCD s АВ — a, BC — b,
CD = c, = d a dokážeme-li, že existuje jediný takový
tětivový čtyřúhelník. V něm bude a + у = 180°, takže
podle (4) bude jeho obsah větší než obsah každého jiného
(tedy netětivového) čtyřúhelníka daných rozměrů.

Sestrojme Д ABD s

\ab + cd) {ac + bd)AB = a, AD — d, BD — ad + bc

(Dvojím užitím kosinové věty snadno plyne, že úhlo-
příčka BD tětivového čtyřúhelníka ABCD musí mít
tuto velikost.) Je zřejmé, že úsečku BD lze sestrojit
eukleidovskými konstrukcemi; musíme však ověřit trojú-
helníkové nerovnosti. To provedeme metodou ekvivalent-
nich úprav:

1/(ab + cd) {ac + bd)
a -f- d > ad + bc

(a2 + 2ad + d2) {ad + bc) > {ab + cd) {ac + bd),
asd + 2a2d2 + ad3 + a2bc + 2abcd -+- bed2 >

> a2bc + ac2d + ab2d + bed2,
a2 + 2ad + d2 + 2bc > b2 + c2,
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О < (a + d)2
О < (a b — c + d)(a — b + c + d) ,

což podle (1) platí. Podobně

(Ь ~ c)\

У(аб + c<i) (<ас + bd)\a — d\ <

(a2 — 2ad + d2) (ad + bc) < (ač> + ci) (ac + bd),
a3d — 2a2d2 + ad3 + a2bc — 2abcd + bed2 <

< a2bc + + ab2d + ,

a2 — 2ad + d2 — 2bc < c2 + b2,
0 < (b + cf - (a - d)2,

0 <c(<2-j-6-)-c — —íz b -\- c -\~ d) ,

což opět platí podle (1).
Nakonec v polorovině opačné к BDA sestrojíme troj-

úhelník BCD s BC = b, CD = c: jeho existence plyne
analogicky z (1).

Podle kosinové věty vypočteme

ad + bc

L2 i
__ iah + cd) (ac + bd)] =L flj + J

i
а

2ai
1 a3d+ ad3+a26c+bed2 —a2bc — ac2d — ab2d — bed2

2ad ad + bc
1 a2 + d2 — b2 — c2

; analogickyad + bc2

1 b2 -\- c2 — a2 — d2
cos 7 = у

Je tedy cos а = — cos 7, takže ABCD je tětivový čtyř-
úhelník.

Dokázali jsme, že úloha má jediné řešení, jakmile je
splněna podmínka vyslovená na začátku.

ad + bc
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5. Je dán čtyřstěn ABCD a jeho vnitřní bod M; objemy
čtyřstěnů MBCD, MACD, MABD, MABC označme
po řadě VA3 VB3 Vc> VD. Dokažte, že platí

VA . MA + Vв . MB + Vc . MC + VD . MD = O .

0
1

i
i
iP \

I\
i
/\ i

/\

w
—Hr —A i \\ / \\

^ Г \
\

\ \

\ \ Aai±MCD
Щ^мсо

\
r •*

a

fy

Obr. 8

ŘEŠENÍ. Veďme bodem A přímku p MB a označ-
meJ její průsečík s rovinou MCD. Buďte A13 Bx právo-
úhlé průměty bodů A3 В do roviny MCD (obr. 8). Platí

AX
_ AAX

= VB~

BBX ~ VA 'BM
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Poněvadž rovina MCD odděluje body А, В, jsou vektory
AX, MB souhlasně rovnoběžné a máme

V*

AX= • MB .

Pл

Veďme dále bodem X přímku q || MC a označme Y
její průsečík s rovinou MBD. Buďte C13 X13A2 pravoúhlé
průměty bodů С, X, A na rovinu MBD. Poněvadž
AX 11 MB, m&mzXX-L = AA2. Nyní platí

XY XXx AA2
CM ~ CCX ” CQ “ VA *

Přímka p (a tedy i její bodX) leží v poloprostoru MBDA,
takže rovina MBD odděluje bodyX, C a můžeme psát

XY = ^P--MC.

(1)

(2)VA
Přímka q leží v rovině MCD, neboť v této rovině leží její
bod X (podle konstrukce) a je q \ | MC. Proto i bod Y
(přímky q) leží v rovině MCD. Avšak (podle konstrukce)
Y leží také v rovině MBD. Z toho plyne, že Y leží na
přímce MD. Označme nyní D13 Y13 X23 A3 pravoúhlé
průměty bodů D3 Y3 X3 A na rovinu MBC. Body A, Y
určují přímku q 11 MC3 je YYX —XX2 a protože p ==
= AX | MB3 je také XX2 = AA3; z toho plyne, že
YYX — AA3. Poněvadž body Y3 M, D leží na jedné přím-
ce, platí

YM YYX AA3 VD
DM ~ DDX ~~ DDX ~ VA '

—У- —>■

Jelikož vektory AX, MB jsou souhlasně rovnoběžné, leží
oba body X, В v témž poloprostoru určeném rovinou
MAC, tj. v MACB. Proto i přímka q 11 MC leží v tomto
poloprostoru, takže její bod Y na MD je oddělen bodem
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M od D. Tak můžeme psát
—> Vn

YM = -Л ■ MD. (3)VA
Vzhledem к výsledkům (1), (2), (3) nakonec dostáváme

VA . MA + VB . MB + Vc . MC + VD . MD =

= VA . (má + jr • MB + —• • MC + —■ • ЛШj =
= VA . (MA + ÁX + XY + YM) ;

avšak vektor v poslední závorce je zřejmě nulový. Tím je
důkaz hotov.

POZNÁMKA. Rychlejší důkaz se dostane užitím
tzv. Carathéodoryho věty (dokonce pro simplex v Era).

6. Je daná jednotková коска ABCDA'B'C'D'. Z vrcho-
lov A a C vylezú súčasne dva chrobáky. Jeden z nich
lezie po hrané AD a za časovú jednotku dolezie do bodu
D. Druhý je rýchlejší a za tú istú časovú jednotku sa
dostane po telesovej uhlopriečke CA' do bodu A'. Zisti-
te, kedy si budú oba chrobáky najbližšie a aká bude v tom
okamihu ich vzdialenosť3 ak předpokládáme, že sa pohy-
bujú rovnoměrně.

RIEŠENIE. Zvolme v priestore kartézsku súradnicovú
sústavu tak, že A — (0, 0, 0), D = (0, 1, 0), A' =
= (0, 0, 1), C = (1, 1, 0) (obr. 9). Rýchlosť prvého
chrobáka je vx — (D — A) = (0, 1, 0), rýchlosť druhého
v2 = (A' —C) = (—1, —1, +1) (příslušných jednotiek).
V okamihu t (0 ^ t ^ 1) sa prvý chrobák nachádza
v bode

A + t. vx = (0, ř, 0)
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Obr. 9

a druhý chrobák v bode
С + t. v2 = (1 — ř, 1 — ř, ť).

Štvorec ich vzdialenosti d(t) v čase t teda je
d\ť) = (1 - tf + [(1 - ť) - t]2 + ř2 = 6f2 - 6t + 2 =

1
+ y

Táto kvadratická funkcia nadobúda minimum zrejme
pre г —~2 у č° íe hodnota z intervalu <0, 1>3 naktorom
o nej uvažujeme. Chrobáky budú teda к sebe najbližšie
v okamihu

1
ř

2

a ich najmenšia vzdialenosť bude — \ =
У2

2 '
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2. KOMENTÁŘE A ŘEŠENÍ ÚLOH KA TEGORIE В

(Komentáře byly určeny hlavně pro žáky 1. ročníků
gymnasií a středních odborných škol.)

1. Jestliže a3 b jsou kladná čísla menší než 1, platí
nerovnost

l]/q(l — b) — ]/б( 1 — a) 1 #

]ja{ 1 - b) + ]/b(l - d) 5
|e-*| ^ (1)

dokažte. Zjistěte, kdy nastane rovnost.

KOMENTÁŘ. První úloha je v podstatě část řešení
nerovnice o dvou proměnných; úloha je usnadněna tím,
že se nežádají všechna řešení dané nerovnice; má se
provést jen zkouška pro udaná řešení

(0 < a < 1, 0 < b < 1).
Můžeme pohlížet na úlohu také tak, že daná nerovnice se
má řešit v oboru

{[a, i]eRx R; 0 <b <1}.
Tímto omezením je usnadněno řešení, neboť můžeme

celkem snadno provést rozbor úlohy. Důležitá jsou tato
fakta:

• Daná nerovnice je souměrná v a, b; proto můžeme
volit označeni tak, že je např. a ^ b. Tím dosáhneme
zjednodušení při práci s absolutními hodnotami. Bylo
by ovšem třeba uvést ještě jiné příklady, třeba označení
úhlu v trojúhelníku podle rostoucí velikosti apod.

• Je třeba zjistit, zda všechny výrazy mají v daném
oboru smysl, neboť jsou tu zlomky a odmocniny. Z před-
pokladů však skutečně plyne

0 < 1 — a < 1,

0 < a < 1,

0 < 1 - b < 1.
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• Volbou označení a, b zmizí z dané nerovnice abso-
lutní hodnoty, neboť je a — b ^ 0 i a(l — b) ^ b(\ — a),
tj. Уа(1 — b) ^ У6(1 — a). (Můžeme ovšem postupovat
obvyklým způsobem, tj. např. umocněním. Sami pak
budeme hledat obratnější způsob, abychom se vyhnuli
komplikovaným výpočtům; tím dojdeme nenásilně к vol-
bě označení.)

• Když se rozborem určila všechna možná řešení
úlohy, tj. všechny dvojice [a, ůj, pro něž platí 0 < a < 1,
0 < b < 1, provede se zkouška obrácením postupu
z rozboru, neboť jde o nekonečně mnoho dvojic
čísel.

• Nerovnice

0 s (l/a(l - a) - 1/6(1 - b)f,
ke které dojdeme naznačeným způsobem, umožňuje
i vyšetřit, pro které dvojice [a, b] platí rovnost. Tyto
dvojice jsou řešením rovnice

Уа(1 — a) — У^( 1 — b)
neboli rovnice

(a — 6)(1 — a — b) = 0.
Z (1) plyne buď a = b, nebo a b — 1.
Můžeme tak pokládat a, b za ortonormální souřadnice
v rovině a prozkoumat řešení dané rovnice graficky.
Jako úvodní úlohu můžeme porovnat aritmetický, geo-
metrický a harmonický průměr dvou kladných čísel и, v.

Je a = —2—, g = \uv ,
dostaneme

(1)

2uv
h = ; porovnáním

и + v

a^g^h;
rovnost platí jen v případě и = v.
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ŘEŠENÍ. Za daných předpokladů 0 < a < 1,0 <b<
< 1 mají zřejmě všechny výrazy v nerovnosti (1) smysl.

Pro a = b vztah (1) platí, dokonce v něm nastává
rovnost.

Vyšetříme případ, kdy а Ф b. Vzhledem к tomu, že
výrazy na obou stranách nerovnosti (1) jsou souměrné
v a, b, můžeme označení <2, b volit tak, že

0 < b < a < 1.

Označme r rozdíl pravé a levé strany nerovnosti (1). Pak
vzhledem к (2) platí

(2)

r = ]/a(l - b) - ]/6(l - a)
]/a( 1 — b) + ]Jb( 1 — a)

— (a — b). (3)

Protože je а Ф b, můžeme zlomek v rovnosti (3) rozšířit
výrazem (]/a(l — b) — ]/&( 1 — a)). Po dalších úpravách
pak dostaneme

r = (Уа(1 — a) — ]/b(l - b)Y'
a — b (4)

Ze (4) plyne, že pro každou dvojici čísel a, b splňujících
(2) platí

r ^0,
tj. také nerovnost (1). Tím je platnost nerovnosti (1)
dokázána pro všechna kladná čísla a, b menší než 1.

Zbývá vyšetřit, kdy v (1) nastává nerovnost. Je třeba
zjistit, zda může v (1) nastat rovnost i pro nějakou dvojici
a, b splňující podmínky (2). Pak by bylo r = 0, tj.

a(1 — a) = 6(1 — b),
tedy

(a — b) (1 — a — b) '= 0 .

Vzhledem к (2) je a — b ф 0, takže
a + b = 1. (5)
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Dosazením do (1) se snadno přesvědčíme, že pro kladná
čísla a, b splňující (5) platí v (1) skutečně rovnost. Ověří-
me ještě případ a — b3 který jsme během úprav vyloučili.
Po dosazení do (1) zjistíme, že i pro a — b platí ve vztahu
(1) rovnost. Závěr tedy zní:

Rovnost v (1) nastává pro dvojici kladných čísel a, b
menších než 1 právě když

a = b nebo a + b = 1.

2. Nechť n je přirozené číslo a f{x) polynom jedné pro-
měnné x s celočíselnými koeficienty. Písmenem M
označme množinu všech celých čísel x takových, že n dělí
f(x). Rozhodněte, zda se počet prvků množiny M může
rovnat číslu 1970 nebo 1971.

KOMENTÁŘ. Na scestí nás mohou zavádět určitá
čísla 1970 a 1971 (současně letopočty), která jsou však
pro řešení úlohy nepodstatná.

Osvědčená je metoda řešit nejprve problém pro speciál-
ní případy, tj. nejprve experimentovat, pak vyslovit
hypotézu a dokázat ji popř. metodou, které jsme užili
při experimentování. Jako první případ zvolíme lineární
polynomické funkce.'*) Nechť je tedy f(x) = ax + b,
а Ф 0. Impuls zní zkoumat hodnotu polynomické funkce
pro x + kn (kde k je celé číslo). Platí

f(x + kn) = a(x + kn) + b — {ax + b) + akn =
= f{x) + (ak). n .

Z (2) vyplývá pro lineární polynomické funkce: Je-li
x e M, je také x kn e M. Z toho plyne dále:

Je-li M Ф 0, je M množina nekonečná. (V)
Dalším krokem bude zkoumání, zda věta (V) platí

*) Nebudeme ovšem volit numerické koeficienty, specializujeme jen
stupeň.

(2)
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i pro polynomické funkce druhého stupně. Je-li /(x) =
= ax2 + bx + с, а ф 0, je

/(x + kn) — a(x + kn)2 + b(x -{- kn) + c = ax2 +
+ 6* + c + (2akx + ak2n + bk)n = /(x) + p . n , (3)

kde p je celé číslo. Z (3) odvodíme (jako z (2)), že
i pro polynomické funkce druhého stupně platí věta (V).

Snad nyní už lze vyslovit hypotézu o obecné platnosti
věty (V); můžeme se o tom však ještě přesvědčit na
některých zvláštních polynomických funkcích vyššího
stupně, např.

f(x) = x3 + 15 g(x) = я*4 + bx + c apod.
Důkaz hypotézy (bez znalosti binomické formule) se

může opřít o vztah platný pro každé přirozené a

{x + kn)a = (x + kn) . (x + kn) (x + kn) —

a-krát
= xa -|- C . n,

kde C je celé číslo.
Problémem zůstává umělý obrat (trik) zkoumat vztah

mezi funkčními hodnotami /(x) a f(x + kn) nebo jedno-
dušeji mezi /(x) a f(x + n). Toto zkoumání lze navodit
(v souvislosti s vyšetřováním lineárních funkcí) otázkou,
zda dovedeme z jednoho známého prvku množiny
určit nějaký její další prvek.

Z věty (V) ovšem plyne na otázku úlohy záporná
odpověď.

ŘEŠENÍ. Buď x celé a k přirozené číslo. Uvědomme
si nejprve, že (x + n)k = x* + n ■ C, kde C je celé
číslo. Proto f(x + n) = /(x) + n . F, kde F je jisté celé
číslo. Jakmile tedy xeM, pak také x + «e M. Z toho
plyne, že množina M je buď prázdná, anebo nekonečná.
Počet prvků naší množiny M se tedy nemůže rovnat
číslu 1970 ani 1971. Tím je úloha vyřešena.
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3. Najděte největší přirozené číslo n s touto vlastností:
Množinu čísel 1, 2, 3, . .., n lze rozdělit na dvě části tak,
že žádná z nich neobsahuje trojčlennou aritmetickou
posloupnost s kladnou diferencí.

KOMENTÁŘ. V textu úlohy má být místo „rozdě-
liťc, „rozložit" neboť jde skutečně o nalezení dvou
disjunktních částí M15 M2 tak, že

Mj U M2 = {1,2,3, ...,«}.
Předně asi bude třeba vysvětlit si termín trojčlenná

aritmetická posloupnost. Podle textu úlohy se mají
všechna přirozená čísla n roztřídit do dvou skupin:

Skupina I obsahuje všechna taková w, že existuje aspoň
jeden rozklad množiny {1, 2, . . ., n) v části Mx, M2
tak, že ani M13 ani M2 neobsahuje žádnou trojčlennou
aritmetickou posloupnost.

Skupina II obsahuje všechna taková n, že každý roz-
klad množiny {1, 2, . . ., n} v části M15 M2 má tu
vlastnost, že bud’ M15 nebo M2 obsahuje nějakou trojčlen-
nou aritmetickou posloupnost. Konečným úkolem je
najít největší číslo ze skupiny I.

Předně je zřejmé, že všechna čísla n < 6 patří do sku-
piny I. Dále se pokusíme zjistit, do které skupiny patří
čísla 6, 7, 8. Zkusmo snadno zjistíme, že patří do skupiny
I. Je totiž

{1, 2, 3, 4, 5, 6} = {1,2,4} U {3,5,6},
{1, 2, 3, 4, 5, 6, 7} = {1, 2, 5} U {3, 4, 6, 7},
{1, 2, 3, 4, 5, 6, 7, 8} = (1, 3, 6, 8} U {2, 4, 5, 7}.

Dalším podnětem pro řešení úlohy může být tato
otázka: Zdá se, ze čím větší bude n, tím bude nesnadnější
najit takový rozklad množiny 1, 2, . . ., n ve dvě částí
tak, aby žádná z nich neobsahovala žádnou trojčlennou
aritmetickou posloupnost. Ptáme se tedy: Když číslo n
náleží do skupiny II, náleží tam také n + 1 ?
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Odpověď je kladná; tvrzení se dokáže „skrytou^ mate-
matickou indukcí. Vyjdeme z množiny {1,2,,n,
n + 1} (to je velmi podstatné, v tom asi budeme chybo-
vat!); předpokládáme, že M1} M2 je její libovolný rozklad
ve dvě části, tedy

M1flM2 = 0.
Číslo n + 1 se vyskytuje v jediné z částí M15 M2; zvolme
označení množin M15 M2 tak, aby bylo n + 1 e M2. Pak
množiny M15 M2 \ {n + 1} tvoří rozklad množiny
{1, 2, . . ., «}. Protože číslo n patří do skupiny II, obsa-
huje aspoň jedna z množin M15 M2\ [n + 1} trojčlen-
nou aritmetickou posloupnost; totéž tedy platí i o mno-
žinách M13 M2, a tím je tvrzení dokázáno.

Tato část řešení je obtížná a vyžaduje vydatnou pomoc.
Zbývá vyšetřit případ n = 9. Ukáže se, že 9 patří do

skupiny II, a že tedy 8 je největší číslo ze skupiny I.
Fakt, že 9 náleží do skupiny II, se dokáže experimentálně.
Nechť je

(1,2,...,я,я + 1} = MXU M 2 5

{1,2,..., 9} = M,U M Mx n M2 = 0.2 5

Nejprve zkoumáme případy, kdy M2 je množina
o jednom nebo dvou prvcích; pak najdeme v Mx vždy
troj člennou aritmetickou posloupnost s diferencí 1,
neboť Mx vznikne z M2 vynecháním jednoho nebo dvou
čísel.

Dále zkoumáme případy, kdy Mx i M2 obsahují aspoň
tři prvky; označení množin M13 M2 zvolíme tak, aby Mx
obsahovalo více prvků než M2; Mx tedy obsahuje 6 nebo
5 prvků.*)

Zabývejme se nejprve případem, kdy Mx obsahuje
6 prvků. Uspořádáme těchto 6 čísel vzestupně a dostane-
me sled s kladnými diferencemi:

dy, í/2, d$, d4, d§. (4)
*) Zde je jiná volba označení Mx M2 než při předchozím důkazu indukcí.
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Probereme případy, kdy největší z čísel (4) je postupně
4, 3, 2, 1, a vždy dokážeme, že existuje v Mj troj členná
aritmetická posloupnost. Bylo by sice možné prozkoumat
experimentálně všechny možné rozklady množiny
{1, 2,. . ., 9} ve dvě části, z nichž každá obsahuje
3 až 6 prvků (3 + 6 nebo 4 + 5), avšak těchto rozkladů

(12 + 18) . 7 = 210; toto primitivní
řešení by bylo úmorné. Takovéto situace ospravedlňují
deduktivní přístup.

Vraťme se ke zkoumání sledu (4). Platí dx + d2 +
+ d3 + dx + d5 ^ 8 (proč?); proto každé z čísel dt je
rovno nejvýše čtyřem. Je-li některé z čísel dt rovno čty-
řem, jsou ostatní čtyři rovna jedné a žádaná posloup-
nost (s diferencí 1) je nalezena. Stačí totiž, aby dvě sou-
sedni diference byly sobě rovny. Je-li největší z čísel dt
rovno třem, je nejvýše jedno ze zbývajících rovno dvěma
a ostatní tři jsou rovna jedné. Pak je třeba zkoumat mož-
nosti sledu (4) a dokázat, že vždycky dostaneme trojčlen-
nou aritmetickou posloupnost. Zařádění členů této po-
sloupnosti ukazují znaky f, např. v těchto případech:

• 1 • 1 f 3, 1, 2
Obdobně probíhá zkoumání, jsou-li všechna dt sledu

(4) rovna jedné nebo dvěma a v případě, kdy množina M*
je jen pětiprvková, tj. kdy sled (4) obsahuje jen čtyři
kladné diference.

Úloha 3 vlastně nepředpokládá žádné matematické
znalosti. Je těžká, ale jejím řešením získáme mnoho
užitečných matematických dovedností.

ŘEŠENÍ. Znázorníme všechny možné rozklady množi-
ny čísel (1, 2, 3, . . ., n) na dvě části tak, aby žádná
z nich neobsahovala troj člennou aritmetickou posloup-
nost s kladnou diferencí. Při řešení naší úlohy se zřejmě

см:ьje

1 T 2, 1 • 3 • 1.
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můžeme zabývat jen disjunktními rozklady. Písmeno a,
resp. b, napsané na z-tém místě zleva v příslušné n-členné
posloupnosti (viz níže), bude znamenat, že číslo z patří
do prvé, resp. druhé skupiny rozkladu, který tato po-
sloupnost znázorňuje. Můžeme ještě předpokládat, že
číslo 1 bude patřit vždy do prvé skupiny. Sestavíme si
nyní schéma (obr. 10), v jehož zz-tém řádku shora jsou

n=A

Obr. 10

vypsány všechny možné přípustné rozklady množiny
čísel (1, 2, 3, ..., n}. Tyto rozklady se vždy najdou
užitím předchozího \n — 1 )-ho řádku: má-li se totiž
množina čísel (1, 2, 3,. . ., n) dát rozdělit na dvě
(disjunktní) části, z nichž žádná neobsahuje trojčlennou
aritmetickou posloupnost, pak totéž pochopitelně musí
platit i pro podmnožinu (1, 2,. . ., n — 1}; poslední
číslo n pak přidáváme buď к prvé, nebo к druhé skupině
každého rozkladu uvedeného v (n — l)-ém řádku,
přičemž ovšem dbáme na to, aby ze žádné z nově vzniká-
jících skupin nebylo možno vybrat trojčlennou aritmetic-
kou posloupnost s nenulovou diferencí. Tak se ukazuje,
že v osmém řádku našeho schématu vyjdou právě tři
možnosti: aabbaabb, ababbaba, abbaabbď, z nich už
však nelze pokračovat na devátém řádku.
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ODPOVĚĎ: Hledané číslo je n = 8.
POZNÁMKA: Řešení úlohy 3 bylo v komentáři

podrobně naznačeno; uvádíme zde proto další možné
řešení.

4. Ze všech čtyřúhelníků, které mají daný obvod, má
největší obsah čtverec; dokažte.

KOMENTÁŘ, a) Jako průpravu pro řešení čtvrté
úlohy by bylo vhodné řešit tzv. izoperimetrický problém
pro pravoúhelník. Označme s poloviční obvod právo-
úhelníka, x délku jedné strany. Pro jeho obsah у platí

s2
у — x{s — x) = SX — X2 = —

Funkce у (obsah) nabývá svého maxima, právě když je
s s

у = 0, tj. x = — . Pravoúhelník je pak čtverec.
b) Druhá část řešení je zkoumání libovolného čtyř-

úhelníka ABCD. Úvodem by měla být úvaha, že ke kaž-
dému nekonvexnímu čtyřúhelníku existuje konvexní čtyř-
úhelník téhož obvodu a většího obsahu. Stačí tedy zabývat
se konvexními čtyřúhelníky. To je druhá přípravná
úvaha.

c) Třetí přípravný krok je tento: Zkoumejme obsah
trojúhelníka, jehož dvě strany mají konstantní délky
p, q a úhel jimi sevřený má proměnnou velikost co.
Bez trigonometrie je patrné, že obsah je maximální,
právě když je maximální výška na stranu p, tj. když je
Р±Я-

d) Následuje vlastní řešení úlohy. Impuls je ve výzvě:
odhadněte pomocí délek stran čtyřúhelníka ABCD
(.AB = a, BC --- b, CD — c, DA — d) obsahy trojúhel-

x —
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níků ABC, ADC, ABD, CBD-, vyjde

AABC< ~ab,

AABD

1
AADC A —cd,

(6)1 1

Tad’
Sečtením vyjde pro obsah P čtyřúhelníka ABCD:

ACBD A-^-bc.

11 1
2P "A — a(b -\- d) A ~2 C(P + d) — (a + c) (b + d) .
Označíme-li 2s obvod (délku obvodu), a + c = x, dosta-
neme

x(2s — x) = s2 — (s — я)2.
Maximum funkce (7) dostaneme (viz odst. a)) pro x = s,
tj. a + c = b + d. Spojíme-li tento výsledek se skuteč-
ností, že v (6) platí rovnost, právě když je čtyřúhelník
ABCD pravoúhelník, dostaneme a = b — c = d. Ostat-
ně pak shledáme, že vztah (7) nebylo třeba odvozovat,
neboť je to repríza odvození a využití vztahu (5). Obě
úvahy se ztotožní, jakmile si uvědomíme, že čtyřúhelník
ABCD s maximálním obsahem musíme hledat mezi
pravoúhelníky.

ŘEŠENÍ. Buď АВCD libovolný čtyřúhelník se stranami
AB = a, BC — b, CD — c, DA = d. Pak platí

(7)4P

1
obsah Д ABC A—ab,

obsah Д BCD Д — 6c,

Tcd’
obsah Д DAB A -^~da.
obsah Д CDA
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Sečtením dostaneme

1
2 . obsah ABCD ^-^-{ab +bc + cd -f da) =

—

~2 {a -\~ c) {b -\- d) i
tedy

cl -f- c b -j- d
(1)'obsah ABCD

2 ’2

Přitom je jasné, že rovnost v (1) platí právě když ABCD
je pravoúhelník. Dále máme

a + c; -■ . ь + d
2^2+ C b + d <

cl -f- b “l- c -t- d
42

čili
a + b + c + d\2icl c b -\~ d

(2)2 2 4

s rovností právě když a + c = b + d. Z (1), (2) konečně
dostáváme

a + b + c + d\2)(obsah ABCD ^
4

s rovností právě když ABCD je čtverec. Tím je věta
dokázána.

5. Stěny čtyřstěnu jsou čtyři navzájem podobné rovno-
ramenné trojúhelníky; nejkratší hrana má délku 1.
Určete všechny takové čtyřstěny.

KOMENTÁŘ. Tato úloha je v podstatě zkoumání
sítí hledaného čtyřstěnu. Je třeba rozlišit dva případy:
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Nejkratší hrana*) je a) základnou rovnoramenného troj-
úhelníka, b) jeho ramenem.
V případě a) vychází zkoumání z rovnoramenného troj-
úhelníka o stranách (1, я, a), kde a ^ 1. S použitím
podobnosti snadno dokážeme shoonost všech čtyř stěn,
síť čtyřstěnu je nakreslena na obr. 11. Je pak ještě třeba

dokázat existenci čtyřstěnu, což je ryze stereometrická
úvaha; užije se tu otáčení boduX kolem osy o, bodX

vyplní kružnici k se středem S a poloměrem |/a2 —i
a na ní leží vrchol V čtyřstěnu ve vzdálenosti MV — 1.
Obdobně se postupuje v případě b): Zde je však třeba
rozlišit d vč možnosti (viz obr. 12). Předpokládáme a > 1,
neboť případ, kdy všechny stěny jsou rovnostranné
trojúhelníky, je zahrnut v a): A) b = c — 1, B) b — a,

*) Vysvětlíme si i termín „nejkratší“: znamená to, že žádná jiná
hrana nemá menší délku.

72



с = a2. Případ В) se přivede ke sporu (a = 1 A a > 1),
případ A) dá čtyřstěn, jehož síť tvoří čtyři shodné tupo-
úhlé rovnoramenné trojúhelníky. V případě A) je ovšem
také třeba dokázat existenci čtyřstěnu jako v cdst. a).

ŘEŠENÍ. Rozlišíme dva typy čtyřstěnů: I. Nejkratší
hrana je základnou některé stěny (tj. rovnoramenného
trojúhelníka); II. nejkratší hrana je ramenem některé
stěny.

Ad I. Stěna, která je rovnoramenným trojúhelníkem
se základnou délky 1, nechť má rameno délky a3 podle
textu úlohy je a 1. Začněme rýsovat síť čtyřstěnu
(obr. 13). Vycházíme z vyšrafované stěny а к ní připojí-
me trojúhelník o stranách délek 1, b, c. Tento nevyšrafo-
váný trojúhelník má buď za základnu základnu vyšrafova-
ného trojúhelníka, a pak je vzhledem к jejich podobnosti
b — c — a3 nebo má za základnu např. stranu c3 a pak je

=

-j~. Odtud plyne b = 1,
Protože nejkratší hrana má délku 1, je c = 13 a = la oba
trojúhelníky z obr. 13 jsou tedy opět rovnoramenné se

1 1
c = —^ 1 .

c a
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společnou základnou délky 1; vzhledem к své podobnosti
jsou shodné (obr. 14). Připojíme další dva trojúhelníky
(vyšrafované) o stranách délek a, a, d. Vzhledem к podob-
nosti všech stěn je d — 1 a definitivní tvar sítě je na obr. 15.
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Existenci čtyřstěnu, jehož síť je na obr. 15, dokážeme
pro a ^ 1 snadno. Otáčíme-li vyšrafovaný trojúhelník
kolem osy 0, opisuje bod X kružnici k, která leží v rovině
kolmé к nákresně a vedené přímkou />, která má střed S
a poloměr r = |/a2 — . Na kružnici k leží dva body,
které mají od bodu M vzdálenost 1, neboť platí

1 <УЗ ^ J/4a2 -1 = 2.1/ 1
a2 - 4-

4 5

což je průměr kružnice k. Tyto dva body jsou vrcholy
hledaných čtyřstěnů.

Ad II. Stěna, která je rovnoramenným trojúhelníkem,
má ramena délky 1 a základnu délky 0, pro kterou platí

1 < a < 2 (1)
(nerovnost a <2 plyne z trojúhelníkové nerovnosti).
Jako v případě I. začneme sestrojovat síť (obr. 16). Buď
je strana délky a základnou nevyšrafováného trojúhelníka,
a pak je b — c — 1 (případ A), nebo je např. strana c
základnou nevyšrafovaného
trojúhelníka, a pak je b = 0,
c — 02 (případ B).

V případě A pokračujeme
dále podle obr. 17. Vzhledem d



к podobnosti obou vyšrafováných trojúhelníků je d — a
a definitivní tvar sítě ukazuje obr. 18.

Existenci čtyřstěnu, jehož síť je na obr. 18, vyšetříme
jako v případě I. Čtyřstěn vznikne právě tehdy, leží-li

na kružnici k sestrojené nad průměrem MX bod F, pro
který platí MY = a , tj. platí-li

- J/4 - a2 . (2)a <2 .

Úpravou nerovnice (2) je
1 < a < ]/2, (3)

což je zúžení podmínky 1.
Případ B. Doplníme začátek sítě z obr. 16. Žádný

z vyšrafováných trojúhelníků na obr. 19 nemůže mít
základnu 1 (jinak by měl vzhledem к podobnosti stěn

76



rameno délky r < 1, což není možné, protože nejkratší
hrana má délku 1). Proto je d — 1, a2 = d = 1, tj. a = 1;
to je však ve sporu s předpokladem a > 1. Případ В
nemůže tedy nastat.

ZÁVĚR. Existuje jen jediný typ hledaných čtyřstěnů.
Jeho síť je na obr. 15, kde je a ^ 1, nebo na obr. 18, kde je
1 < a < ]/2. V obou případech jsou všechny čtyři stěny
čtyřstěnu shodné trojúhelníky.

6. V rovině jsou dány dvě navzájem kolmé přímky
p3 q a bod S3 který neleží na žádné z nich. К libovolnému
trojúhelníku ABC sestrojíme trojúhelník A1B1C1 s ním
sdružený podle přímky p, к trojúhelníku Аsestro-
jíme trojúhelník A%B2C2 s ním sdružený podle středu 5
а к trojúhelníku A2B2C2 trojúhelník s ním sdružený
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podle přímky q. Dokažte, že trojúhelník A3B3C3 můžeme
dostat posunutím trojúhelníka ABC.

KOMENTÁŘ. Úloha je snadným příkladem na sklá-
dání zobrazení. Impuls: V podstatě lze postupovat dvojím
způsobem: 1. ,,ryze geometricky“ tak, že rozložíme sou-
měrnost podle středu 5 ve dvě souměrnosti podle os
rovnoběžných s přímkami p3 q3 2. analyticky — metodou
souřadnic — tak, že zvolíme přímky p3 q za osy souřadnic,
vyjádříme analyticky všechna tři zobrazení a jejich složení
provedeme výpočtem. Při prvním způsobu řešení je
třeba dokázat rozklad středové souměrnosti ve dvě osové
souměrnosti s osami navzájem kolmými. Tato věta a věta
o skládání dvou souměrností s rovnoběžnými osami
v translaci je vám snad známa. Je ovšem také třeba
zdůraznit, že obráceně složením každých dvou souměr-
ností s navzájem kolmými osami vznikne souměrnost
podle středu. Pak už jde řešení hladce. Metoda souřadnic
(p je osa^, q je osa x) vede к tomuto analytickému vyjádře-
ní souměrnosti:

*i = — *0, yx = yQ3 x2 = 2k — x13 y2 = 2m — yl3
*з = *2> Уз = У 2*

Přitom x0,jy0j x13y13 x23y2'3 x33y3 jsou proměnné souřadni-
ce vzorů a obrazů; k3 m jsou konstantní souřadnice bodu

(8)

P1P

£1

zD
UT

9T

Obr. 20
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S. Složením všech tří zobrazení (postupným dosazením
v (8)) vyjde x3 — х0 + 2k3 y3 = y0 — 2m3 což je analy-
tické vyjádření posunutí čili vektoru (2k; —2m).

ŘEŠENÍ, a) Souměrnost podle středu 5 se dá složit
ze souměrnosti podle přímky m kolmé к p vedené bodem
5 a přímky p' rovnoběžné s p vedené bodem S (obr. 20).
Ale souměrnosti podle přímek p, m navzájem kolmých
skládají souměrnost podle středu R3 který je průsečíkem
přímek p3 m. Souměrnost podle přímky p' a souměrnost
podle přímky q{p' 1_ q) však skládají souměrnost podle
středu T, který je průsečíkem přímek p, q.

b) Trojúhelník A~B3C3 můžeme tedy sestrojit takto:
Sestrojíme nejprve trojúhelník A'B'G souměrně sdruže-
ný s trojúhelníkem ABC podle středu R a pak trojúhelník
A"B"C" souměrně sdružený s ДЛ'5'C' podle středu
T; zřejmě trojúhelníky A"B"C" a A3B3C3 splynou.

/

t

ů-

X' XT

Obr. 21

Je-li X' bod souměrně sdružený s libovolným bodem X
podle středu R a X" bod souměrně sdružený s X' podle
středu Г, vznikne X" posunutím bodu X ve směru RT,
ve smyslu RT3 velikost posunutí XX" je 2RT. Toto tvrze-
ní je zřejmé z vlastnosti střední příčky trojúhelníka
XXX"3 jak ukazuje obr. 21, ale dá se snadno dokázat
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i v případě, že body R, T3X3X'3 X" leží v přímce (viz
např. obr. 22, XX" =XX' + XX" = 2RX' + 2TX'=

-o——o

fl X' X"JTX

Obr. 22

= 2RT). Jinak se dá toto tvrzení dokázat rozložením
souměrností podle středů R3 T v souměrnosti podle os
a, 6, 6, c (viz obr. 23).

JINÉ ŘEŠENÍ. Zvolme p3 q přímky za osy kartézských
souřadnic. Bed 5 nechť má souřadnice [k3 m]3 bod A
souřadnice [x3 jy], bod Ax souřadnice [x^ уг]3 bod A2
souřadnice [*2;jy2L bod A3 souřadnice [x3;.y3] (obr. 24).
Podle formule pro souřadnice středu úsečky je % = — jc0,
Ух = Уо1 x2 — 2k — x13 у2 = 2m —y13 xz =x2í y3 = —y2.
Postupným dosazením dostaneme

*з = *o + 2&, Уг = Уо — 2m.
Bod A3 vznikne z A posunutím daným počátkem souřad-
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nic a bodem [2k, —2т]. Totéž platí pro body B3, В
а С3, С.

Р

А1 = [*i i У1}А ~[хо 1У0]
о -О,

X S = [к / т]

'У A2=[*2i У2]
9О i Аз [хз; Уз\

Obr. 24

3. KOMENTÁŘE A ŘEŠENÍ ÚLOH КA TEGORIE Z

1. Je dán zlomek
a2 — ab — ac + bcV —

a3 — a2b — a2c — a2d + abc + ohd, -f- acd — bed

Určete, pro která čísla a, b, c, d
a) ztrácí tento zlomek smysl, a pak ho zkraťte;
b) je daný zlomek rovný nule;
c) je daný zlomek kladný, popř. záporný.
KOMENTÁŘ. První soutěžní úloha je typická rutinní

úloha. První její otázka se týká určení tzv. maximálního
definičního oboru dané funkce V o čtyřech proměnných
a zjednodušení dané funkce; je to úloha na postupné
vytýkání. Připomeňme si, že každý zápis rovnosti dvou
výrazů s proměnnými je třeba doplnit údajem, pro které

81



hodnoty proměnných rovnost platí (jde tedy vlastně
o rovnici); např.

x2 - 1
= x + 1 pro všechna x ф 1.

x - 1

Postupné vytýkání připomene třeba ukázka:
a2 + ab — ac — bc = a(a + b) — c{a + b) —

= (a + b){a — c).
Vztah (1) platí pro všechna reálná čísla a, b, c.

Úlohy b) а c) se mohou řešit současně. Jde přitom
o užití vět: Součin (podíl) je kladný, právě když oba
činitelé (dělenec a dělitel) jsou oba čísla kladná nebo oba
čísla záporná
si, že zde zlomková čára je znakem pro dělení
o zlomky ve smyslu aritmetickém (uspořádané dvojice
celých čísel), neboť a, b, c, d mohou být racionální
a iracionální.

Podnětná ukázka pro vyšetřování je tato:

a2 + ab — ac — bc
_ (a — c) (a + b) _ a — c . .

ab + b2 + ac + bc (b + c) {a + tí) b + c'
Vztah (2) platí právě když b ф — с, а Ф — b. Při vy-
šetřování, zda V > О, V — 0, V < 0, tedy předpokládá-
me, že jsou tyto podmínky splněny, a užijeme schématu
zvaného strom:

(1)

a obdobných dalších vět. Připomeňme
nejde

V =

Г
a — c > 0 c = 0 a — c < 0 —г

1 -
|č> + c>0 b c < 0 j& + c>0 b -\- c < 0

(3)
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Ve schématu (3) je tlustě zakreslena jedna z pěti možných
cest. Zkoumání zapíšeme přehledně takto:
• a — c > 0, 6 + c>0
• a — c> O, b -\- c < 0
• a — c = 0
• a — c < 0, b + c > 0
• a — c < 0, 6 + c<0

F> 0
V <0
F = 0
F <0
F > 0

ŘEŠENÍ. Čitatele i jmenovatele daného zlomku vhod-
ným vytýkáním rozložme v činitele:

c(a — tí) = (a — b) .a2 — — ac -f 6c = a(a — é)
. (a - c)

a3 — a2b — a2c — a2d + abc + abd + acd — bed —

= a3 — a2ž> — a2c + abc — a2d + abd + acd — bed —

= a2(a — b) — ac{a — b) — ad(a — b) + a/(a — b) =
— (a — b)[a2 — ac — ad + cd] = (a — 6)[a(a — c) —

— d(a — c)] = (a — &)(a — c)(a — d) .

Pro zlomek V tedy platí
(q - b) (a - c)

(a — b) (a — c) (a — d)3
takže má smysl pro všechna taková čísla a, b3 c, d, pro
která je jmenovatel různý od nuly, tj. a musí být různé
od každého z čísel b, c, d.

Za tohoto předpokladu lze daný zlomek V psát ve
tvaru

1
V =

a — ď

Odtud vidíme, že daný zlomek se nikdy nerovná nule;
v případě a> d je kladný, v případě a < d záporný.
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2. Hrací kostka má tvar krychle; její stěny jsou označeny
oky v počtu 1, 2, 3, 4, 5, 6 tak, že součet počtu ok na dvou
protějších stěnách je vždy týž.

К hrací kostce přilepíme další dvě stejné hrací kostky
z téhož materiálu vždy celými stěnami. Jak kostky slepit
a pak slepenec položit na stůl aspoň jednou stěnou tak,
aby počet viditelných ok byl a) maximální; b) minimální?

(Za viditelné považujeme všechny stěny slepence, které
nepřiléhají ke stolu.)

KOMENTÁŘ. Druhá úloha nepotřebuje téměř žádné
matematické znalosti; je snadnou kombinací představí-
vosti, jednoduchých úsudků, např. systematického výčtu
všech možností apod. Je možno ji uvést jednodušší obrně-
nou (dvě hrací kostky) a případ tří kostek řešit jako druhý.

Postup řešení se skládá asi z těchto částí:
zjištění, že součet počtů ok na dvou protějších stěnách je

7[1 + 2 + 3 + 4 + 5 + 6 = 21, 21: 3 = 7];
zjištění tvarů všech možných slepenců a jejich postavení;
roztřídění dvojic stěn krychlí slepence na dvojice, kde

vidíme
a) obě stěny,
/3) jedinou stěnu,
y) žádnou stěnu.

JíI.

ЛЖ7\j——4
/

/
/ //

Obr. 25
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Úvodní úlohu s dvěma hracími kostkami řešíme takto:
O součtu viditelných ok rozhodují jen dvojice stěn a, /?.
Dvě krychle tvoří vždy slepenec tvaru pravidelného hrano-
lu čtyřbokého. Je-li kvádr položen na jednom čtverci,
existují čtyři dvojice čtverců druhu a a jediný čtverec
druhu /?, je-li kvádr položen na dvou čtvercích, jsou čtyři
čtverce druhu /3. Celkem jsou tedy možné tyto případy
(obr. 25):

Počet dvojic
stěn a

Počet dvojic
stěn /5

Součet ok Součet ok

I. Kvádr
spočívá
na jednom
čtverci

4 28 1

II. Kvádr
spočívá na
dvou
čtvercích

2 14 4 У

Snadno zjistíme meze pro jc a y. Je totiž 1 ^ x 5S 6,
22; viditelné stěny obsahují totiž v případě II6 ^ у

aspoň 2.1+2.2 = 6 ok a nejvýše 2.5 + 2.6 = 22
ok. Pro celkový součet ok tedy platí:
v případě I

(1)29 ^ 28 + x ^ 34,
v případě II

(2)20 ^ 14 + у ^ 36 .

Z nerovnic (1) a (2) vyplývá, že minima i maxima dosáhne-
me v případě II; počty ok jsou 20 a 36.

Je samozřejmé, že nemusíme zapisovat odhady nerovni-
cemi (1) a (2), ale můžeme prostě v každém z případů
I, II stanovit výpočtem horní a dolní mez počtu viditel-
ných ok.
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V případě tří kostek vzniknou dva tvary slepenců
(obr. 26), u každého z nich je třeba uvážit různé jeho
polohy.

ŘEŠENÍ. Jsou možné dva různé tvary slepence a cel-
kem pět možností, jak tyto útvary postavit na stůl;

47A
/ I

+

Á~
47/ I/ I

) 4h — i / //
/

Obr. 26

těchto pět možností je znázorněno na obr. 27. Prozkou-
máme-li největší, resp. nejmenší možný počet viditelných
ok u jednotlivých soustav, docházíme к závěru, že nej-
větší počet viditelných ok může být 52 (u sestavy podle
obr. 27e) a nejmenší 26 (podle obr. 27d).

3. Je dán trojúhelník ABC o stranách AB — 9 cm,
BC = 5 cm, CA = 8 cm. Vepište mu kružnici k a na
kružnici k sestrojte všechny body X této vlastnosti:
Přímka p rovnoběžná s AC vedená bodem X protíná
strany AB, BC po řadě v takových bodech Y a Z, že X je
středem úsečky YZ.

KOMENTÁŘ. Třetí úloha je snadná typová konstrukč-
ní úloha. Hledaný bod X náleží dvěma množinám bodů:
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/
/

/ /
Obr. 27

87



kružnici k a množině M středů všech úseček YZ \ \ AC3
jejichž krajní body Y, Z leží po řadě na stranách AB, BC.
Úvodem do této úlohy by mohlo být, že bychom kružnici
k nahradili přímkou, úsečkou nebo jinou kružnicí. Takto
obměněná úloha může být složitější než úloha soutěžní,
neboť při diskusi se může objevit i případ s jediným
řešením nebo případ neřešitelný. Naproti tomu soutěžní
úloha má vždy právě dvě řešení, což je třeba ovšem doká-

Klíčem к řešení úlohy je vyšetření množiny M. Expe-
л rimentálně se zjistí, že M

je těžnice BB03 kde B0
značí střed strany AC.
Tento experimentálně
zjištěný fakt se musí do-

R kázat. Jde v podstatě
o tzv. harmonickou
vlastnost lichoběžníka:
Je-li PQRS lichoběžník

м se základnami PQ, RS,
| Q pak spojnice průsečíků
I PR П QS a PS П QP

zat.

S
\

\
\
\

7p

půlí každou z obou zá-
kladen (obr. 28). Známe-

li tuto větu, můžeme z ní vyjít. Jinak si ji můžeme doká-
zat takto:
Harmonická vlastnost lichoběžníka se dokazuje obyčejně
pomocí stejnolehlosti, ale je obecně známo, že každý
důkaz opírající se o podobnost lze převést na důkaz
založený na obsazích obrazců (trojúhelníků); tato druhá
cesta je intuitivnější a přístupnější. V našem případě by
mohla být východiskem věta o situaci načrtnutá na obr.
29. Zde jsou p3 q3 r tři rovnoběžky, ДАСВ' je rovno-
ramenný se základnou AC. Pomocí obsahů nejprve
dokážeme sporem, že platí

Obr. 28
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if r

Z1Y'j
Y Z

*~pA C

Obr. 29

YZ = Y'Z'.
Předpokládejme, že je např. Y'Z' > YZ\ pak platí pro
obsahy trojúhelníků a lichoběžníků:

/ \ACZY < / \ACZ'Y',
A YZB < A Y'Z'B'.

Sečtením předchozích vztahů vyplyne

(i)
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д лев < а лев',
což je ve sporu s předpokladem r\\p.

Nyní stačí na obr. 29 přikreslit bodyX,X' jako prů-
sečíky přímky q a těžnic BB0, B'B0 (B0 je střed strany
ЛС). Použitím předchozí věty, tj. vztahu (1), dostaneme

XY =X’Y' =X'Z' =XZ.

ŘEŠENÍ (obr. 30). Množina středů všech úseček
rovnoběžných se stranou AC, jejichž krajní body leží na
stranách AB, BC, je vnitřek těžnice BB0 a bod B0. Hle-
dané body X jsou dva: jsou to průsečíky kružnice k
s těžnicí BB0.

4. Jsou dány dva různé pravidelné šestiúhelníky
ABCDEF a KLMNOP, které mají společnou stranu
(Л = К, В = L).

a) Určete dráhu, kterou opíše vrchol К šestiúhelníka
KLMNOP, který se kotálí vně po obvodu šestiúhelníka
ABCDEF.

b) Vypočtěte délku této dráhy.
KOMENTÁŘ. Čtvrtá úloha v podstatě nepotřebuje

návod. Navazuje na přípravnou úlohu 3 kategorie Z. Je
to konstrukčně početní úloha. Dráha bodu К se skládá
z pěti oblouků kružnic tří různých poloměrů. Nanejvýš
snad je třeba připomenout, že musíme určit středy
i poloměry kružnic, po nichž se bod К pohybuje, a dále
velikosti středových úhlů pro příslušné oblouky. Narý-
sujeme si opět šestiúhelník ABCDEF, vystřihneme si
z kreslicí čtvrtky šestiúhelník KLMNOP a na tomto
modelu si skutečně provedeme kotálení druhého šesti-
úhelníka.

ŘEŠENÍ. Dráha bodu К se skládá z pěti kružnicových
oblouků, jak je naznačeno na obr. 31; kx, k2, k3 značí
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délky příslušných oblouků. Každému z pěti oblouků
odpovídá středový úhel velikosti 120°. Označíme-li a

délku strany daného šestiúhelníka, budou příslušné
poloměry

r2 = a]/ 3, r3 = 2a.*i = a,

Je tedy
. 2nrx 2
«1 ^ ^<2 5

2ттг 2 2 i/žjr
з~ “ T1 'k2 = 7ZCL j
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k - 2лгз*3 “ ~3“
Celková délka dráhy bodu К je tedy

d = 2,ki -f- 2k2 -f- k3 = -jj- тш(2, -f- У З).
Je-li např. a = 4 cm, vychází d = 62,3 cm.

4
= -г-ла.

3

t
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IV. Súťažné úlohy II. kola

1. RIEŠENIA ÚLOH KATEGORIE A

la. Nech n > 1 je prirodzené číslo, a ^ 1 reálne číslo
a nech pre reálne čísla xk , k — 1, 2,..., n platí:

~~
— а осk}

xk

pričom čísla ock vyhovujú nerovnosti

(1)*i = 1, k — 1, 2,. . ., n — 1;

1
(2)|ail - £(£+1)’ k

1xn < a + -

— 1, 2,. . ., n 1.
n — 1 1

—j; dokážte.
(Použité známu nerovnost’: Pre 1’ubovolné nezáporné

reálne čísla b13 b23... 3 bm platí:

]/bib2 ...bm

Potom platí:

-.jb\ + b2 + • . • + b (5 bodov)
m

RIEŠENIE. Z (1) jednoduchým výpočtom dostaneme
xn = (a + ocj) . ..(a + an_i).

Keďže z (2) pre každé k — 1, 2,..., n— 1 vyplývá

a + a* ^ 1 —

(3)

1
> 0,k(k +1)

dostaneme z (3) na základe vety o geometrickom a arit-
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metickom priemere
Ťt — 1 TI — 1

1/*» |Ka + «l) . • • (a + an-i) ^
n — 1

(/Z — l)a + 2 ak
k=l

П — 1

čiže
n — 1

У 1

k(k + 1)Ťt — 1

^ xn ^ a + ———
n

(4)
- 1

Zrejme však platí
Я-1 ti—i

2
k = l

)-1 111
1 - — < 1,

k{k + 1) k k + 1 П
k = 1

na základe čoho už zo (4) vyplývá nerovnost’, ktorej
správnost’ sme malí dokázat’.

lb. Vyšetřete množinu všech bodů v rovině, jejichž
pravoúhlé souřadnice x, у splňují soustavu nerovnic

|*| < 2, \y\ < 2,
cos лху У О,

cos л(х2 — у2) У 0.

(1)
(2)
(3)

(5 bodů)Načrtněte obrázek.

ŘEŠENÍ. A) Množinou všech bodů, pro které je spině-
no (1), je vnitřek čtverce, který omezuje přímky

x — 2} x = 2, у — 2, у — 2.
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B) Z nerovnice (2) plyne
тс 3

2kn + — ^ лху ^ 2kn + — n,

2k + у ^ x;y ^ 2k + у,
Kde k je celé číslo. Množinou všech bodů, pro které je
splněno (2), jsou všechny body ležící mezi rovnoosými
hyperbolami

xy = 2k + у,
a na těchto hyperbolách.

C) Z nerovnice (3) plyne
2kn + у ^ 7i(x2 — y2) ^ 2kn + у л,

tj-

3
xy = 2k + у, k celé číslo, (4)

tj.

-yž2i + y,
kde k je celé číslo. Množinou všech bodů, pro které je
splněno (3), jsou všechny body ležící mezi rovnoosými
hyperbolami

x*-y* = 2k + y,

1
x22k + Y

3
— 2k + у, k celé číslo,x2 — у2

(5)
a na těchto hyperbolách.

D) Hledaná množina je průnikem množin nalezených
v А), В), C). Na obr. 32 je vyšrafována. Při určování tohoto
průniku stačí v případě B) uvažovat jen body mezi hyper-
bolami (4) a na nich pro
k = —2, —1, 0, 1, neboť pro k ^ 2 (k ^ —3) platí
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хУ=т{ху-~т)’ takže je |x| > 2 nebo \y\> 2.

Podobně v případě C) stačí uvažovat jen body mezi
hyperbolami (5) a na nich pro k = —2, —1, 0, 1, neboť

pro k ^ 2 (k ^ —3) je *2 — y — y% ^ ,

takže |jc| > 2 nebo [j>| > 2.

2a. Je dán Д ABC. Sestrojte všechny takové body X,
které mají tu vlastnost, že čtyřúhelníku s vrcholy A, В, C,
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X lze opsat i vepsat kružnici. Konstrukci proveďte
eukleidovsky (tj. kružítkem a pravítkem).

(6 bodů)
ŘEŠENÍ. Rozbor (obr. 33). Budiž k kružnice opsaná

Д ABC. Hledané body X potom leží na k. Nechť čtyř-
úhelník ABCX, jehož vrchol X leží uvnitř oblouku AC

neobsahující bod В, splňuje podmínky úlohy. Protože
jde o čtyřúhelník tečnový, platí

AB + CX — ВС + AX
čili

AB — BC = AX — CX = d, (1)
což je konstanta.
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a) Jestliže
AB = ВС,

je
AX’ - CX= О,

tj, bed X leží na ose úsečky АС. V případě a) je tedy
KONSTRUKCE bodu X jednoduchá: Bod X je průse-
číkem osy úsečky AC s vyšetřovaným obloukem AC, a to
zřejmě vždy jediným.

b) Nechť např. AB > ВC, potom body X, pro něž
platí (1), leží na té větvi hyperboly s ohnisky A, C as hlav-
ní osou d, která obsahuje bod B. Určení průsečíku
příslušné větve hyperboly s uvažovaným obloukem by
byla jen přibližná konstrukce.

Bod X je však vrcholem trojúhelníka ACX daného
stranou AC, úhlem <£ AXC = 180° a rozdílem
stran АХ — CX = d. Tuto pomocnou úlohu vyřešíme
nejprve:

Předpokládejme, že trojúhelník ACX na obr. 33 je
řešením této pomocné úlohy. Rozdíl AX — CX = d
sestrojíme jako úsečku AR — AX — XC. Potom troj-
úhelník RCX je rovnoramenný; jeho úhly při základně
RC mají velikost e = у [180°- (180°- 0)] = у 0 .
Potom úhel <£ CRA = ó = 180° —^-/3 je tupý, úsečka
AR = AX — CX je menší než AC (z trojúhelníka
ACX). Je tedy bod R sestrojitelný podle Ssu v pomocném
obrázku nebo jako průsečík kružnice m — (A; d) a men-

šího oblouku příslušného úhlu <5 = 180° —^-/3 nad
tětivou AC, který leží v polorovině opačné к polorovině
ACB. Bed X je pak společným bodem uvažovaného
oblouku AC a osy o úsečky RC. Z toho vyplývá KON-
STRUKCE:
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1. Sestrojíme kružnici k opsanou Д ABC.
2. Sestrojíme kružnici m — (A ;d) a oblouk n příslušný

úhlu <5 (viz rozbor).
3. R = m П nv polorovině opačné к polorovině ACB.
4. Sestrojíme osu o úsečky CR.
5. X = о П AC (na k v polorovině opačné к ACB).
6. ABCX je hledaný čtyřúhelník.
ZKOUŠKA. Obrácením výpočtu z rozboru vyplývá, že
AXC = 180° — /3 a tedy ABCX je tětivový čtyřúhelník.

Podle konstrukce je AB — CB = d = ЛЯ = АX — CX,
a tedy AB + CX = AX + CB, čili ABCX je tečnový
čtyřúhelník.

DISKUSE. V uvedené konstrukci má každý krok
právě jeden výsledek, takže na uvažovaném oblouku
dostaneme jediný bod X. Obdobnou konstrukcí i pro
zbývající oblouky AB a BC dostaneme po jednom bodu
X. Celkem má tedy úloha tři řešení.

Obdobně tři řešení dostaneme i v případě a).
2b. Je daný pravoúhlý trojuholník ABC s přeponou

AB. Na odvěsně AC zvolme bod X3 na odvěsně BC
zvolme bod Y. V rovině ABC zostrojme kružnicu
s priemerom XY.

Určité množinu P všetkých bodov všetkých takto zo-
strojených kružnic.

RIEŠENIE. I. Označme К množinu všetkých kružnic
roviny ABC, ktoré boli zostrojené podlá textu úlohy.
Dokážeme, že množina středov všetkých kružnic z К je
pravouholník CDFE bez bodu C, pričom D, E3 F sú
v uvedenom poradí středy stráň AC, BC, AB (obr.
34a, b).

Skutočne, ak je Y pevný bod odvěsny BC a ak prebieha
X odvěsnu AC, prebieha střed Z úsečky XY úsečku

(6 bodov)
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I о

AD

b)

UV || AC3 kde U je bod odvěsny BC3 V bod osi о
úsečky AC. Ak je Y = C, je třeba vylúčiť případ X — C.
Ku každému bodu Y odvěsny BC je teda priradená jediná
úsečka UV (obr. 34a) a všetky tieto úsečky UV vyplnia
pravouholník CDFE bez bodu C. Túto skutočnosť možno
jednoducho dokázat’ tiež metodou súradníc, ak zvolíme
za súradnicové osi kartézskej sústavy súradníc priamky
AC3 BC.

II. Stredom každej kružnice k z К je teda nějaký bod Z
z pravouholníka CDFE
(mimo C) a pre jej poloměr
CZ platí (obr. 35)

CZ ^ BZ, CZ ^ AZ3
pretože priamky DF3 EF sú
v uvedenom poradí osi stráň
AC3 BC. Preto kružnica k
přetíná úsečku AC i BC

д (pokial sa priamok AC alebo
' BC v bode C nedotýká)

okrem bodu C ešte v jej



vnútornom bode. Analogické tvrdenie platí pře jej prie-
sečníky s přeponou AB3 ak ovšem existujú.

Intuitivné zistíme: Hladanou množinou P je obrazec
O, ktorý sa skládá z trojuholníka ABC a z troch polkru-
hov zostrojených nad priemermi AB3 AC3 BC (obr. 36).
Tieto polkruhy sú ohraničené kružnicami z K, ktoré

majú středy v bodoch D3 E3 F. Dokážeme teraz, že
každý bod každej kružnice kz К patří do obrazca O. Ak
kružnica k neleží v /\ABC3 potom tá jej časť, ktorá
leží napr. v polkruhu (obr. 37), je polkružnica alebo
menší oblúk nad tětivou CY3 ktorá je častou príslušnej
strany trojuholníka ABC3 t. j. odvěsny BC. Ak je M
Iubovolný bod tohto oblúka kružnice k3 je <£ CMY pravý
alebo tupý a patří preto do polkruhu zostrojeného
nad priemerom CY a teda aj do polkruhu Px. Analogická
úvaha platí pre polkruhy P2 a P3.

III. Zostáva dokázať, že každý bod M obrazca O patří
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aspoň jednej kružnici k z K, t. j. kružnici, ktorá pre-
chádza bodom C a jej stredom je niektorý bod Z právo-
uholníka CDEF (okrem bodu С). К tomu stačí dokázať,
že os p úsečky CM (předpokládáme С Ф Aí), má s pra-

vouholníkom CDEF aspoň jeden spoločný bod Z. Pre
hraničně body obrazca O nie je třeba nič dokazovat’. Pre
každý iný bod M polkruhu P3 а ДЛБС (ktorý leží
v doplňkovom polkruhu) platí MF < CF. Preto medzi
bodmi C, F leží aspoň jeden bod osi p.*) Os p obsahuje
teda vždy aspoň jeden bod pravouholníka CDFE.

ZÁVĚR. Hladaná množina P je množina všetkých
bodov obrazca O (pozři obr. 36).

POZNÁMKA. Nie je výhodné riešiť túto úlohu meto-
dou súradníc, pretože výsledný obrazec nemá v súradni-
ciach jednoduché vyjadrenie.

3a. Mějme posloupnost celých čísel
*) Analogicky pre každý nehráničný bod polkruhu Px (P2) platí
ME < CE (MD < DC) a preto medzi bodmi C, E (C, D) leží aspoň
jeden bod osi p.
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(1)^"05 <^2> * * • 5 ^n ) •

v níž pro všechna n ^ 1 platí
йя+1 “Ь a»-i = aian •

• • 5

(2)
a) Může být taková posloupnost posloupností arit-

metickou?

b) Určete nutné a postačující podmínky pro to, aby
v takové posloupnosti platilo

^n+k ~b Q"n-k = ^k^n

pro všechna n, k3 n ^ k ^ 0.
c) Jestliže aQ = 2, pak existuje komplexní číslo z

takové, že pro všechna 0 je
an = zn + z~n ;

(3)

(4)
dokažte.

ŘEŠENÍ, a) Ano, může. Např. posloupnost (1), ve
které je an = Opro všechna и ^ 0, je aritmetická (s dife-
rencí 0) a vyhovuje (2). Kromě toho také všechny po-
sloupnosti (1) splňující (2), v nichž je ax = 2, jsou aritme-
tické, jak je ihned vidět, napíšeme-li (2) ve tvaru

un+\ ^n ~ Q-n %-l.

POZNÁMKA. Lze dokázat, že toto jsou také všechny
aritmetické posloupnosti vyhovující (2).

b) Vztah (3) platí pro všechna n ^ k ^ 0 právě
tehdy, jestliže je buď an — 0 pro všechna n ^ 0, anebo
£Zq 1 ■ ■“

DŮKAZ. I. Jestliže je an = 0 pro všechna n ^ 0,
platí (3) triviálně.

II. Nechť a0 — 2. Potom (3) platí pro všechna n ^ 0
a k = 0. Pro k = 1 je však (3) totéž co (2). Obecnou plat-
nost (3) dokážeme nyní indukcí. Předpokládejme, že (3)

(7 bodů)
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platí pro k = O, 1,... , ms kde m 2> 1, a dokážeme, že
platí také pro k = m + 1. Jest

&п+тп+1 4“ ^n-m-l = #n+m+l 4" ^я+от-l an+m-1 4“
4“ an-m-l 4" an-m+1 ^n-m+i

== (^n+m+l 4“ Я ) 4“ (a 4“ an-m+1)n-m-1

(an+m-l 4“ ^ra-m+l) •

n+m-l

Na první dvě závorky aplikujeme (2), na třetí závorku
pak (3) pro k = m — 1.
Dostaneme

— CL-^Jd 4“ Gn-m) &т-1&п •а1йя+т 4“ axa

Znovu užijeme (3) pro k — m a máme
CL^a,nClm am-lan = «»(%«» ^m-i) •

и+тn-m

Avšak podle (2) je
^l^m flm-l — йт+1 s

takže celkem

йя+т+1 4~ an-m-l am+\an )

což jsme měli dokázat. Vztah (3) tedy při a0 = 2 platí
pro všechna n ^ k ^ 0.

III. Nechť platí (3) pro všechna n ^ k ^ 0 a nechť
není an = 0 pro všechna n ^ 0. Budiž m takové, že
am Ф 0. Položíme-li v (3) n = m, k = 0, dostaneme

2^m = ^m 4" ^m = ^m+0 4“ ^m-o == >

a tedy nutně a0 = 2.
c) Vezměme kvadratickou rovnici

x2 — 4-1 = 0* (5)
Součin jejích kořenů je roven 1, jejich součet je ax.
Označme z jeden z těchto kořenů; druhý kořen bude
pak z*1 a bude

z + z 1 = ax.
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Poněvadž pak zřejmě z° = 1, (я-1)0 = 1, a tedy
z° -f* z~° — 2 = a0J

vidíme, že — při této volbě čísla z — platí (4) pro n = 0,1.
Indukcí dokážeme, že pak platí pro všechna n ^ 0.
Předpokládejme, že (4) platí pro všechna n = 0,1, 2,..
m;m ^ 1, a dokážeme, že platí i pro n — m + 1. Podle
(2) máme

• i

am+l — aiam am-1

a tedy podle (4) pro n — man = m— 1 jest
am+1 = (z + z-1) (zm + z~m) - (zm~x + zx-m) =

j zm~X -f- zx~m -f- z~m~x zm~x zx~m —

+ г-™-1,
což jsme měli dokázat. Platí tedy (4) pro všechna n ^ 0,
jestliže za z zvolíme jeden (kterýkoli) kořen rovnice (5).

m+1= Z

m+1= Z

3b. Je daný štvorsten ABCD. Vo vnútri jeho steny
ABC zvolte bod M a veďte ním priamky MCt || CD,
MBX || BD, MAt || AD, kde C15 B13 Ax sú priesečníky
s rovinami ABD, ACD, BCD.

a) Dokážte, že pre každý taký bod M platí
MAX MBX MCX
AD + BD + CD

b) Vyjádříte poměr objemov štvorstenov AXBXCXM
a ABCD len pomocou velkostí úsečiek AD, BD, CD,
MAX, MBX, MCX.

c) Zistite, ako třeba zvolit’ bod M, aby objem štvor-
stená AXBXCXM bol maximálny.

RIEŠENIE. Body Ax, Bx, Cx ležia na priesečniciach
rovin AMD a BCD, BMD a ACD, CMD a ABD.

(1)= 1.

(7 bodov)
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(Pozři obr. 38.) Označme velkosti úsečiek MAX — aX3
MBX = bX3 MCX = c13 AD = a3 BD = b3 CD — c.

a) Štvorsteny MBCD3 ABCD majú spoločnú podstavu

a preto ich objemy sú vpomere velkostí ich výšok, t. j.
objem MBCD

_ ax. sin e __ ax
objem ABCD a. sine

kde e je odchylka AD a BCD. Pre štvorsteny MACD
a MABD analogicky dostaneme
objem MACD

_ bx objem MABD
objem ABCD b 5 objem ABCD
Sčítáním rovností (2a, b, c) dostaneme

(2a)
a

= (2b, c)
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ъ . h
а ' b

čo je už rovnosť (1).
b) Platí

<£ A1MB1 = <£ ADВ = у, <£ AAÍQ = <£ ADC,
<£ CXMBX = <£ CD5

a možno preto zostrojiť štvorsten MVli-BÍCÍ zhodný so
štvorstenom МЛ^Си pričom Aí' == D, A[, B[} C[
ležia v uvedenom poradí na polpriamkach DA, DB, DC
(obr. 39).

Nech v je výška štvorstena ABCD z vrcholu C na stenu
ABD a v' výška štvorstena A'XB'XC'XM' z vrcholu Cí
na stenu M'A'XB'X. Potom

v' cx . . cx
= —

J t. . v = — -v.
c c

Objem F štvorstena ABCD je

=
• b sinyj . v,V
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objem V štvorstena А'хВ'хС'гМ' a teda tiež štvorstena
je

= y(y«AsinV

t.).

_ = ch-bx.Cx
V a . b . c

V

c) Objem V bude maximálny právě vtedy, keď bude
maximálny súčin Kedze súčet všetkých
troch faktorov sa rovná jednej, zo vzťahu medzi aritme-
tickým a geometrickým priemerom nezáporných čísel

í 55 T- уУр!ууа nerovnosť ^—~ ^ i , takžeCL и C CL O C Z /

i
V < — F,=

27

pričom rovnost’ nastane právě vtedy, keď ~ ‘ =

= — = číže pre
c 3

MX MY MZ 1
AX ~ BY ~ CZ ~ 3

(pozři obr. 38). Z rovnolahlosti úsečiek ЛБ a XY so
stredom rovnolahlosti M a koeficientom —2 vyplývá, že
Xj Y sú středy stráň БС, ЛС, takže bod M je ťažisko
trojuholníka ABC.

ZÁVĚR. Objem V štvorstena A^B^CxM je maximálny
právě vtedy, keď bod M je ťažiskom trojuholníka ABC.
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2. ŘEŠENÍ ÚLOH KATEGORIE В

la. Nechť p, q jsou prvočísla větší než 3. Potom číslo
p2 + Iq2 - 23 (i)

(5 bodů)
ŘEŠENÍ. Dosadíme-li do výrazu (1) několik dvojic

prvočísel p, q větších než 3, dostaneme vždy číslo větší
než 3 a přitom dělitelné 3. Nabízí se nám domněnka, že
pro každou dvojici prvočísel p, q větších než 3 je číslo (1)
větší než 3 a dělitelné třemi. Dokážeme-li ji, znamená to,
že číslo (1) není prvočíslo.

Pro p > 3 a q > 3 je číslo
p2 + 7?2 - 23 > 9 + 63 - 23 > 3.

Protože p, q jsou prvočísla větší než 3, není žádné z nich
dělitelné 3, a proto je lze psát ve tvaru

P = 3& ± 1,
kde p, q jsou vhodná přirozená čísla. Platí

p2 + Iq2 - 23 = (3k ± l)2 + 7(3/ ± l)2 - 23 =
= (9k2 ± 6k + 1) + 7 . (9/2 ± 6/ + 1) - 23 =

= 3 . (3&2 ± 26 + 21/2 ± 14/ - 5).
Podle (2) a (3) tedy číslo (1) není prvočíslo.

JINÉ ŘEŠENÍ. Každé prvočíslo větší než 3 je tvaru
6^+1 nebo 6k — 1. Nechť tedy p = 6& ± 1, g = 6w ±
± 1. Potom číslo

není prvočíslem; dokažte.

(2)

Я — 3/ ± lj

(3)

p2 + Iq2 - 23 = (36&2 ± 126 + 1) +
+ 7 . (36m2 ± 12m + 1) - 23 =

= 12 . (3k2 ± k +21ni2 ± Im) - 15
je zřejmě dělitelné_3, a tedy vzhledem к (2) není prvo-
číslem.
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lb. Sú dané štyri rožne body A, B, C, D v priestore.
Pre každý bod X priestoru platí

AX + BX + CX + DX >
1

> (AB + AC + AD + BC + BD + CD).
j

(5 bodov)Dokážte.

RIEŠENIE. Ak je X lubovolný bod priestoru, potom
podlá trojúholníkovej nerovnosti platí:

AX + BX^ AB,
AX + CX ^ AC,
AX + DX ^ AD,
BX + CX ^ БС,
5X + DAT ^ 5D,
CX + DX ^ CD.

Rovnost’ v nerovnosti (a) nastava právě vtedy, keď je Xbo-
dom úsečky AB a analogicky je tomu v ostatných prípa-
doch. Keďže body А, В, C, D sú podlá předpokladu na-
vzájom rožne, nemože v nerovnostiach (a) — (f) nastat’
rovnost’ vo všetkých súčasne. Ich sčítáním preto dosta-
neme

3(АХ + BX+ CX + DX) > AB + AC + AD +
+ BC + BD + CD,

(a)
(b)
(c)
(d)
(e)
f)

1
skadial po vynásobení -j- už dostáváme nerovnost’, ktorej
správnost’ sme mali dokázat’.

2a. Nech n je dané prirodzené číslo. Nájdite všetky
skupiny siedmich za sebou následujúcich prirodzených
čísel tej vlastnosti, že súčin všetkých čísel skupiny je
menší než и7.

RIEŠENIE. Súčin prvých siedmich prirodzených
čísel za sebou následujúcich je 1.2.3.4.5.6.7 =

(6 bodov)

110



= 5040. Je zrejme váčší než 27 = 128 i ako 37 = 2187,
ale je menší než 47 = 16 384. Najmenším prirodzeným
číslom w, pre ktoré má daná úloha riešenie, je teda číslo 4.
Vzhladom na to, že najbližší váčší súčin siedmich za
sebou následujúcich prirodzených čísel je 2.3.4.5 .

. 6.7.8 = 40 320 > 47, je to aj riešenie jediné.
Ukážeme, že pre lubovolné prirodzené číslo n > 4 má

daná úloha právě týchto n — 3 riešení:
[1, 2, 3, 4, 5, 6, 7]; [2, 3, 4, 5, 6, 7, 8];3,

n — 2, n — 1, w, n + 1, n + 2, n + 3]. (1)
К tomu stačí, aby sme ukázali, že súčin všetkých čísel
poslednej skupiny je menší než и7, ale súčin všetkých
čísel skupiny

[w — 2, ti — 1, w, ti 1, ti -j- 2, ti “I- 3, ti "I- 4],
ktorá je následujúcou skupinou prichádzajúcou do úvahy,
je už váčší než и7.
Platí však

(n — 3){n + 3) = w2 — 9 < w2,
(ji — 2){n + 2) — n% — 4 < w2,
(n — 1)(и + 1) = я2 — 1 < и2,

п =

z čoho vynásobením Tavých a pravých stráň nerovností,
resp. rovnosti, dostaneme

(n — 3){n — 2){n — 1) n{n + 1)(я + 2)(w + 3) < n7.
Na druhej straně pre n > 4 platí:

(n — 2)(n + 4) = n2 + 2n — 8 > w2,
{n — 1)(я + 3) = я2 + 2n — 3 > w2,

(и + 2)(и + l)w — и3 + 3«2 + 2n > и3;
z čoho opáť vynásobením Tavých i pravých stráň nerov-
ností máme

n\

(n — 2){n — 1 )n(n + 1)(и + 2)(и + 3)(« + 4) > n7.
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ZÁVĚR. Úloha má pre n ^ 4 právě n — 3 riešení
uvedených v (1). Pre n ^ 3 úloha riešenie nemá.

2b. Je dán pravoúhlý trojúhelník ABC s odvěsnami
Л1С = 43 ВС = 3. Kružnice &13 k23 k3 mají středy ve
vrcholech A, B3 C a každé dvě z nich mají vnější dotyk.

a) Vypočtěte poloměry kružnic k13 k23 k3 a sestrojte je.
b) Vypočtěte poloměr kružnice, která má s každou

z kružnic k13 k23 4 vnější dotyk. (6 bodů)

ŘEŠENÍ, a) Označme r13 r2) r3 poloměry kružnic
kl3 k23 k3. Pak je (obr. 40)

rx + r2 = c3 r2 + r3 = a3 r3 + r± = b.
Protože a = 33 6 = 43 c — |/a2 + b2 =53 dostaneme z (1)

»•! + r2 = 5, - r2 = 6 — a =1
a dále rx — Ъ3 r2 — 23r3 — 1. Kružnice k3 která se dotýká
obou odvěsen v bodech A\ B' (viz obr. 40)3 má poloměr
A'C = B'C = 1. Poněvadž kružnice vepsaná trojúhelní-

(1)
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ku ЛВС má také poloměr q — 1 (obsah Д ABC je

-^-•3.4 = 6, poloviční obvod je s = -^-|з +
p \

-f 5) = 6, р = — = 11 a dotýká se také obou odvěsen
v bodech A', B', je k
kružnice vepsaná troj-
úhelníku АВ C. Pomocí
vepsané kružnice k se-
strojíme tyto body do-
tyku A\ B', C kruž-
HIC ^5 ^2з К

b) Označme kruž-
nici, která má s každou
z kružnic k1} k2i k3 /$•
vnější dotyk, S její
střed, r její poloměr.
Pak je podle obr. 41

x2 + y2 = (1 + r)2, (4 — jc)2 + y2 = (3 + r)2,
(3 — y)2 + x2 = (2 + r)2.

Po úpravě (dosazení za x2 + y2 z první rovnice (2))
i r

x = 1 —

Dosadíme-li nyní za x,y z (3) do první rovnice (2), vyjde
po úpravě kvadratická rovnice pro r

23r2 + 132r - 36 = 0.
Jediný kladný kořen rovnice (4) je

132 + ]/1322 + 4.36.23
_ 6^
“

23'

За. V obore reálných čísel riešte sústavu rovnic
jc2 + xy — a2 -f- ab,

4 +P =

В

s :

í/ 3-y
4/

s-t^-
3*r.

у
I \

- x c
4-x

Obr. 41

(2)

(3)У2 5 3 '

(4)

r —
46

(1)
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У2 + ху = а2 — ab, (2)
kde х, у sú neznáme, а, Ъ reálne parametre. Urobte
diskusiu. (7 bodov)

RIEŠENIE. Ak dvojica [x, у] vyhovuje danej sústave,
potom pre čísla x, у dostaneme sčítáním oboch rovnic

(x + y)2 = 2a2 (3)
a odčítáním (2) od (1)

x2 — y2 = 2ab
číže

(x — y)(x +y) = 2ab.
V případe, keď а Ф 0, vyplývá zo (4) po umocnění na
druhů a využití rovnosti (3)

(4)

(5)(x - yf = 262.
Z (3), (4), (5) však po jednoduchej úpravě dostaneme

(2x)2 = [(x + у) + O — J>)]2 = 2(a + 6)2, resp.
(2y)2 = [(* + У) — O — У)]2 = 20 — b)23 z čoho

1/2 (6)1*1 = 2 'a +
= Ц-\а-Ъ\.

Zistili sme teda, že v případe, keď а Ф 0, možu danej
sústave vyhovovat’ len tieto štyri dvojice reálných čísel:

(7)\y\

[~Ц{а + Ь)1 ^(а-i)],
Ч<e-4

(8a)

(8b)

[?< (8с)Д + ^) j
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Ч<-4[-Ц(а + Ь); (8d)

Dosadením sa přesvědčíme, že sústave (1), (2) vyhovujú
len dvojice (8a) a (8d), ktoré sú pre йФО, navzájom
rožne. (Z rovnosti oboch dvojíc vyplývá totiž a + b = 0,
a — b — 0 a stadial priamo a — 0.)

Ak a = 0, má daná sústava tvar
x2 + xy = 0,
У2 + xy = 0

a má zrejme nekonečne mnoho riešení tvaru
[k, -k],

kde k je 1’ubovolné reálne číslo.
ZÁVĚR. Pre а ф 0, b 1’ubov. má daná sústava dve

rožne riešenia dané vzťahmi (8a) a (8d); pre a = 0,
b lubov. má nekonečne mnoho riešení tvaru (9).

POZNÁMKA. V případe а Ф 0 možno riešenie
sústavy (1), (2) dostat’ tiež riešením sústavy

(9)

I* +^l = МУ2,
I* —У\ = \b\]/29

ktorú dostaneme odmocněním rovnic (3) a (5).
3b. V rovině je dána přímka p a uvnitř jedné poloroviny

s hranicí p dva různé body A a B. Dále je dáno kladné
číslo u. Na přímce p sestrojte body X a Y tak, aby XY =
— и a aby délka lomené čáry AXYB byla co nejmenší.

(7 bodů)
ŘEŠENÍ (obr. 42a). Bodem В "sestrojme přímku

q 11 p a přímku s _L p. Na přímce'^ sestrojme bod Bx tak,
aby BBX — и a aby Bx ležel v téže polorovině vzhledem
к přímce s jako bod A; leží-li bod A na přímce s, sestro-
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jíme na q oba body Bx a B2 tak, že BBX — BB2
(obr. 42 b).

К bodu A sestrojíme bod A' souměrně sdružený podle
přímky p. Hledaný bod X je průsečík přímky A'BX

= и

A s

A

B1 В i\1<7 B2В В \
\\/L /{ Я

i / \ \ /\Uf /

дДа-у'X\/Y'ý, ГчХ'Х, p
A : A

I
i

P Xflx XIY
I ! íi

iI
i
i / \\ii

\i

И \ i
\ i

I \ ! /
V/A'
У

a) Obr. 42 b)

s přímkou pj příslušný bod У je průsečík přímky p
s rovnoběžkou s А'Вг bodem В. V případě, že bod A
leží na přímce s, vede i průsečík X' přímky A'B2 s přím-
kou p к řešení.

К důkazu KONSTRUKCE budeme užívat pro délku
lomené čáry C symbolu d(C). Nechť tedy Xx a Yx jsou
libovolné body na přímce p takové, že XxYx — u. Rozli-
šujme dva případy (obr. 42a):

a) XxYxBBx (v tomto pořadí) je rovnoběžník. Pak
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d(AXxYxB) = d(AXxBxB) = d(A'XxBxB) ^ d(A'BxB) =
= d{A'XBxB) = d(AXYB), a přitom rovnost nastane,
právě když = X

b) XxYxBB2 (v tomto pořadí) je rovnoběžník, kde
jB2 Ф (obr. 42b) je bod přímky q takový, že BB2 = и.
Potom d(AXxYxB) = d(AXxB2B) = d(A'XxB2B) ^
^ d(A'B2B) ^ d(A'BxB) = d(AXYB). V nerovnosti
d(A'B2B) ^ d(A'BxB) nastane rovnost, právě když bod
Л leží na přímce 5. Potom je d{AXxYxB) = d^AXYB),
právě když Xx je průsečík přímky Л'Б2 s přímkou p
a body Л, Б leží na přímce 5 J_ p-

ZÁVĚR. Úloha má jediné řešení, není-li přímka ЛБ
kolmá к přímce p; je-li kolmá, má úloha dvě řešení.

5. ŘEŠENÍ ÚLOH KATEGORIE Z

1. Závory na železničním přejezdu se spouštějí
2 min. před příjezdem vlaku, spuštěny zůstávají celkem
3 min. Vlak jedoucí průměrnou rychlostí 60 km/h je
12 km před přejezdem. Po silnici jede auto, které je
v téže době před přejezdem 14 km. Vypočtěte nejmenší
a největší průměrnou rychlost auta, při které spuštěné
závory auto zadrží.

ŘEŠENÍ. Představme si, že jsme zmáčkli stopky
v okamžiku, kdy je vlak 12 km a auto 14 km od přejezdu.
Když vlak přijede к přejezdu, bude na stopkách

12

60 (h) = 12(min.)
Přejezd tedy bude uzavřen od okamžiku, kdy stopky
ukazují čas 10 min., do okamžiku, kdy je na stopkách
čas 13 min. Přijede-li auto v tomto časovém intervalu,
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závory je zadrží. Době 10 min. odpovídá největší prů-
měrná rychlost

14
*>io = Iq- = 84 (km/h)

60

a době 13 min. nejmenší průměrná rychlost
14.60 ,. 8 .. ...

—jj— = 64^ (km/h).
14

60

Závory zadrží auto, bude-li jeho průměrná rychlost
g

aspoň 64 km/h a nejvýše 84 km/h.

POZNÁMKA. Pro praxi nemá vlastně smyslu otázka,
zda auto projede nebo nikoli, bude-li jeho průměrná

o

rychlost ,,přesněcc 64-^ km/h, neboť závory se nespouště-
jí okamžitě a též průměrná rychlost je jen pomocný
abstraktní pojem. Podobně pro hodnotu 84 km/h.

2. Je daný štvorec ABCD so stranou dížky 6 cm. Ďalej
je daný pravidelný šesťuholník KLMNOP so stranou
dížky 4 cm tak, že vrcholy А а К splývajú a vrchol L
leží na polpriamke AB. Obidva obrazce ležia v opačných
polrovinách s hranicou AB.

a) Zostrojte dráhu, ktorú opíše vrchol К šesťuholníka
KLMNOP, ktorý sa zvonka odvaluje po obvode štvor-
ca ABCD.

b) Vypočítajte dížku tejto dráhy.
RIEŠENIE. Dráha bodu sa skládá zo 7 kruhových

oblúkov, ako je naznačené na obr. 43. Dížky jednotlivých
oblúkov sú k13 &2j • • • a ^7- Platí
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= утг|/16 + 42 - 22 = nj 7,
. KM — \-n . 1/82 - 42 =

=
. УЗ,

—4 ■ 150 = 8л
Celková dížka dráhy bodu je teda

d = 2kx -\- 2k2 “I- -J- ^4 ==

= (у + 2У 7 + уУ 3 + yL = 19,2 ж = 60,4 (cm).

1ЛГ>
■ 60 = I,^3 — — 180

20
^4 = . 150 = утг.180 180

3. Trojciferné číslo n má v dekadickém zápise aspoň
dvě cifry stejné. Jeho šestinásobek je čtyřciferné číslo,
jehož dekadický zápis obsahuje a) nulu a b) tři stejné
cifry. Určete všechna čísla n těchto vlastností.

ŘEŠENÍ, a) Protože je n < 1000, je 6n < 6000;
jediná nenulová cifra čísla 6n je tedy 1, 2, 3, 4 nebo 5.
Obsahuje-li číslo 6n tři nuly, platí 6n = 3000, neboť
čísla 1000, 2000, 4000, 5000 nejsou násobky šesti. Máme
tedy jedno řešení úlohy:

(1)500, 6nx — 3000 .

b) Obsahuje-li číslo 6n jedinou nulu a je-li jeho nenulová
cifra 1, 3, 5, je nula na místě jednotek, neboť 6n je sudé.
Dělíme-li čísla 1110, 3330, 5550 šesti, dostaneme po
řadě 185, 555, 925. Dostáváme tedy další řešení úlohy:

и2 - 555, 6w2 = 3330.
c) Obsahuje-li číslo 6n jedinou nulu a je-li jeho nenu-

nx

(2)
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lová cifra 2 nebo 4, je třeba prozkoumat 6 možných pří-
pádů; výsledky jsou uvedeny v tabulce:

2022 2202 22206n 4044 4404 4440

337 367 370 674 734 740

V této tabulce jen první sloupec dává řešení úlohy:
n3 = 337 , 6и3 = 2022 .

Úloha má tedy celkem 3 řešení (1), (2), (3).

4. Je daný lichoběžník ABCD so základňami AB3
CD. Určité taký bod X uhlopriečky AC3 aby priamka p
rovnoběžná s АВ vedená bodom X přeťala ramená
AD3 BC v uvedenom poradí v bodoch Y, Z, pre ktoré
platí' XY — XZ. Vyjádříte dížku XY pornocou| a —
= AB, c = CD.

RIEŠENIE. a) Určíme množinu všetkých bodov T3
pre ktoré platí: Y leží na AD3 X leží na А С, X je stredom
úsečky YT, priamka^XF je rovnoběžná s AB. Zostrojme
bod E tak, aby vrchol C bol stredom úsečky DE (obr. 44).

(3)

c ED
7

1F
pYj

U, /
X - ^

вA
Obr. 44
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Potom v trojuholníku ADE je vnútro ťažnice AC a bod C
množinou stredov všetkých úsečiek rovnoběžných so stra-
nou DE, ktorých koncové bcdy U, Tležia v uvedenom po-
radí na stranách AD, AE. Hladaný bed X dostaneme jedine
v případe, keď bod T splynie s priesečníkom úsečiek
ВС, AE.

b) Zo vztahu Д ZCE oo Д ZBA vyplývá
EZ c

(1)AZ a

a ďalej podlá (1)
AE AZ + EZ a + c

= 1 + —= (2)AZ AZ a a

Zo vzťahu Д AXZ oo Д АСЕ vyplývá
XZ AZ
CE ~ AE'

Podlá (2) je
XZ= ~CE - ,AE a + c5

a teda

a + c
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V. Řešení soutěžních úloh III. kola kategorie A

1.Nechť a3 b3 c jsou reálná čísla. Dokažte, že existují
nezáporná čísla x, y, z, ne všechna rovná nule, která
splňují nerovnosti

cy — bz ^ 0,
az — cx

bx — ay ^ 0.

ŘEŠENÍ. Je zřejmé, že cyklickou záměnou čísel
a, b, с a zároveň x3 y3 z se soustava nezmění. Lze se tedy
v řešení omezit na tyto případy:

1. a = b — c — 0 nebo a = b = 0, с Ф 0, pak
x = у — 0, z = 1 je řešením;

2. a = 0, bc Ф 0, pak
pro b > 0, c> 0jex = 0,3; = 1, z = 0 řešení,
pro b > 0, c <0jex = l,y = 03 z = 0 řešení,
pro b < 0, c> 0je^ = 0,jv = 1, z = 1 řešení,
pro b < 0, c < 0 je x = 0,jy = 0, z — 1 řešení.

3. abc Ф 0, pak
pro a>0, b > 03 c > 0 nebo a <03 b < 03 c < 0

0,

je
x = \a\3y — \b\3 z — |c| řešení,
pro a > 0, b > 03c <0jex = l3y = 03 z = 0
řešení,
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pro a> 0, b < 0, c < 0 je x = 0, jy = 0, z — 1
řešení.

JINÉ ŘEŠENÍ. Zavedeme označení:
CL kft) Ь C — ^2?
X = ř05 .У = *l» ^ = r2.

Máme soustavu

^1/2 = Oj
^0^2 ^2^0 = Oj
^lř0 Vl =

kterou lze po zavedení úmluvy, že pro každé celé číslo
i položíme

ki+3 — ki a ří+3 — h j

psát v jednotném tvaru
ki+ih — ktti+1 ^ 0 . (1)

1. Předpokládejme, že čísla k0, k13 k2 jsou všechna buď
nezáporná, nebo nekladná, přičemž nejsou všechna rovna
nule. Pak existuje řešení soustavy (1)

h = \ki\ j

protože pro každé i
Ы+хЫ — ki\ki+1| = 0.

Platí totiž

ki+1. \ki\~ &í|£ť+il = h . ki+1 .sgnki — ktki+1. sgn ki+1 =
= kiki+1 (sgn ki — sgn ki+1) = 0*),

neboť a) jsou-li ki3 ki+1 čísla různá od nuly, pak podle
předpokladu sgn kt = sgn ki+1;
*) Funkce (signum, tj. znamení) je definována pro každé reálné číslo
takto:

1, je-li x > 0
0 , je-li x — 0

— 1 , je-li x < 0 .

sgn X =
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b) je-li jedno z čísel ki3 ki+1 rovno nule, pak fyki+1 =0.
2. Nechť nenastane případ 1. Pak nutně existuje

takový indexУ, že fy ^ 0 a přitom fy+1 0.
Nyní volme

tj-1 — 1 •tj+1 — Ojh = °>
Pak ze soustavy

kjtj_y kj_xtj ^ 0 ,

fy+lfy ~~ fytj+1 ^ 0 ,

fy-itj+i fy+itj-i = o.
Po dosazení za tj, ř;-+13 dostáváme

fy ^ 0, &/+i ^ 0,
což platí. Tím je důkaz proveden i v případě 2.

Řešil Miroslav Kmošek,
2a. gymnasium, tř. kpt. Jaroše, Brno

2. К trojúhelníku ABC jsou na přímce AB sestrojeny
body D ф В a E ф A tak, že DA — BE = AB.

Určete nutnou a postačující podmínku pro délky
úseček a = BC', b = AC3 aby existoval takový trojúhel-
nik ABC, že úhel DCE je pravý.

ŘEŠENÍ (obr. 45). Nechť <£ DCE je pravý. Označme
CD — u3 CE = v3 Áx patu kolmice z bodu A na přímku
CD, Bx patu kolmice z bodu В na přímku CD. Protože

v, BEX = ЛХС = ~u3 BXC = -i- w, plyneЛЛ =

z Pythagorovy věty pro pravoúhlé trojúhelníky BBXC3
AAXC a DEC, že

1 4
v“2 + ya2 *2j (1)
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T“2 + y®2’

\u‘‘ + YvK

уМ2 + yZ>2 > Ь2

у и2 + уг>2> а2,

у <b<2a.
Ukažme, že pcdmínka (4) je i postačující. Splňují-li

totiž kladná čísla a, b podmínku (4), má kladné řešení
и, v soustava rovnic (1) a (2):

(2)b2 =

(3)c2 =

Nyní je
4a2 =

a obdobně

4b2 —

Celkem

(4)

у (4b*-a?),u2 =
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у (4а2 - Ъ2).
Je-li с kladné číslo ze vztahu (3), lze sestrojit trojúhelník
DEC o stranách délek DE = 3c, CD = u3 СЕ = a,
a platí, že <£ DCE je pravý. Bcdy A a B, které dělí
stranu DE na tři stejné části (DA = АВ = BE = с),
tvoří s bodem C trojúhelník, který má strany a3 b, jak
plyne opakováním úvahy ze začátku řešení.

ZÁVĚR. Podmínka (4) je nutná a postačující. Lze ji
také psát ve tvaru

v2 =

max(tf, b) <2 min(a, b).
INÉ RIEŠENIE. Označme

—^ —V —>■

ВЛ = с, ЛС = <2,

Potom

Predpokladajme, že existujú také dížky úsečiek a, 6,
aby existoval Д ЛВС tej vlastnosti, že DCE je pravý.
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Potom platí (obr. 46)

(1)и . v = 0 .

Zrejme platí:
c, v — b — c,

ÍZ “I- 5 c ■—- o ^

kde o je nulový vektor. Podlá (1), (2a), (2b) platí
-» —> —> —> —> —> ->

a.b — с(а-\-Ь)-\-с.с — 0.

(2a, b)u = a —

(2c)

(3)
Podlá (2c) je

(4)a + b — —c
číže

1 —>- —> —> —>■

у (с . c — a . a — b . b).
Po dosadení zo (4) a (5) do (3) dostaneme teda

(5)a . b =

5c.c — a.a-\-b.b
číže

(6)5c2 = a2 + 62.

Naopak, ak v Д ЛБС platí (6), potom sa obrátením postu-
pu přesvědčíme, že <£ DCÍí = 90°.

Aby sme mohli zostrojiť Д ЛБС požadovaných vlast-
ností, musí platit’

\a — b\ < c < a + b,

a2 + &2 - 2a6 < c2 < a2 + b2 + 2ab
a vzhladom na (6) súčasne

t.j.

1

f{a2 + b2).c2 =
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Stadial, máme
1

a2 + b2 — 2ab < -j- (a2 -f b2) < a2 + b2 -f 2ab
čiže

4a2 + 462 — 10ab < 0 ,

4a2 + 4b2 + 10ab > 0.
Druhá z týchto nerovností je pre každé kladné a, b spine-
ná. Po úpravě prvej nerovnosti na tvar

iií - Mí) + 2 <0

dostaneme
T

f<2- (7)<
2

Keďže všetky úpravy, ktorými sme dostali podmienku
(7), boli ekvivalentně, stačí splnenie tejto podmienky
к tomu, aby existovalo c tak, že

\a — b\ < c < a + b a 5c2 = a2 + b2,
t.j., že trojuholník ABC možno zostrojiť a uhol DCE
je pravý.

Hladanou nutnou a postačujúcou podmienkou je teda
splnenie nerovností (7).

Riešil Štefan Sakáloš
3. d, SVŠ Prievidza

POZNÁMKA. К rovnosti (6) lze samozřejmě dojít
také bez užití vektorového počtu.

Označme 5 střed úsečky AB. Bod C zřejmě leží na
Thaletově půlkružnici nad průměrem DE, a proto
(viz obr. 47).

3
CS — tc — —c.
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Podle kosinové věty v Д A SC
platí
b2 = 1C2 + !

4 ' 4

obdobně v Д BCS
19 3

Tc2 + T‘2 + У

3 2

у c1 cos a j
c2 -

a2 c2 cos a,

takže
a2 + b2 = 5c2.

Tato podmínka je nutná a posta-
čující, aby těžnice tc v Д ЛВС

ус, tj. aby <£ /)СЯměla velikost

byl pravý.

3. Jsou dána přirozená čísla 2, 3, 4, 5,. . ., n —- 1, и,
96. Rozdělíme-li je libovolně do dvou skupin,

pak vždycky aspoň v jedné z nich je možno najít dvě
(různá) čísla a současně jejich součin. Dokažte.

Nalezněte příklad, který ukazuje, že věta neplatí pro
n — 95.

ŘEŠENÍ. Nejprve se budeme zabývat případem
n ^ 96. Abychom odvodili spor, budeme předpokládat,
že čísla je možno rozdělit do dvou skupin А а. В tak, že
žádná z nich neobsahuje současně dvě čísla i jejich součin.
Bez újmy obecnosti lze předpokládat, že číslo 2 patří
do A. Nyní rozlišíme čtyři případy.

I. Číslo 3 a 4 patří též do A. Pak součiny 2.3 = 6,
2.4 = 8 a 3.4=12 jsou ve skupině B. Součiny
6.8 = 48 a 8 . 12 = 96 náleží tedy do A. /ívšak 2, 48
a 96 nemohou současně být v A a to je spor.

kde n
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II. Dále probereme případ, že 3 je ve skupině A a 4
v B. Potom součin 2.3 — 6 je v B, součin 4.6 = 24 je
v A. Kam patří číslo 8? Rozhodně ne do A, neboť je
3.8 — 24; leží tedy v B. Součin 6.8 — 48 ukazuje, že
by 48 mělo být v A, avšak 2.24 = 48 — to je spor.

III. Případ, že 3 je v В a 4 je v A, se řeší podobně.
Součin 2.4 — 8 patří do Б, součin 3.8 = 24 do A.
O čísle 6 nyní snadno rozhodneme, že musí patřit do В,
neboť 4.6 = 24. Zase je tu spor, neboť 6.8 = 48,
2.24 == 48.

IV. Konečně nechť čísla 3 a 4 obě patří do B. Pak
3.4= 12 je v A a číslo 6 musí být v B. Rovnosti 2.12 =
= 24 a 4.6 = 24 ukazují znova spor. Důkaz pro n ^ 96
je tedy podán.

Pro w = 95 tvrzení neplatí. Rozdělme čísla např. tak,
že do první skupiny dáme
2, 3, 4, 5, 7, 9, 11, 13, 17, 19,23,25, 29,31,32,37,
43, 47, 48, 49, 53, 54, 56, 59, 60, 61, 66, 67, 70, 71,72,73,
78, 79, 80, 81, 82, 83, 84, 88, 89, 90,
a do druhé

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28,
30, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 52,
55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 85,
86, 87, 91, 92, 93, 94, 95;
žádná skupina neobsahuje dvě čísla a současně jejich
součin.

4. Dokažte, že existujú reálne čísla А, В tak, že rovnost’

2 tg к . tg(& — 1) = Л . tg w + £ . w
k=\

platí pre každé prirodzené číslo n.
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RIEŠENIE. Zo známého

^ tg a — tg p
í + tg a . tg/3’

uhlov a, /3, pre ktoré je definovaná funkcia tangens,

pričom a-j5 + y + тл, kde m je celé číslo, vyplývá
tg(a — jff) + tg(a — /3) . tga . tg 0 = tg a — tg /3, z čoho

tg (a — /3) • tg a . tg /3 = tg a — tg /3 — tg (a — /3). (1)
Pre každé prirodzené číslo k zrejme platí: k Ф (2m + 1) .

•yp, kde m je celé číslo, pretože číslo na právej straně je
iracionálně. Pre každé prirodzené číslo k je teda tg k
definované a ak v (1) zvolíme speciálně a = &, /3 = & — 1,
dostaneme:

tg 1 . tg k . tg (k — 1) = tg k — tg (k — 1) — tg 1 . (2)
Ak teraz v (2) volíme postupné k = 1, 2, 3,.. ., n a vset-
ky takto získané rovnosti sčítáme, dostaneme:

tg 1 . = (tg 2 — tg 1 — tg 1) + (tg 3 — tg 2 — tg 1) -f
+ . .. + (tg n — tg (n — 1)— tg 1), kde

Sn = 2 lg k • tg (k - 1) ,

čiže tg 1 . sn = tg n — tg 1 — (n — 1) tg 1 , z čoho
(vzhladom na to, že zrejme tg 1 + 0) máme

tg (cc /3) —vzorca

ktorý platí pre všetky také dvojice

k=i

1
(3)s» = 4i

Správnost’ (3) pre každé prirodzené číslo n Iahko dokážeme
matematickou indukciou:

132



a) Pre n — 1 je sx = tg 1 . tg 0 = 0 a z 3) máme
1

•tgl - 1 =0.5l
tg 1

b) Nech (3) platí pre nějaké prirodzené číslo m. Potom
1

Sm+i = íjTf‘tg m — m + tg(m + 1). tg m =
= tg m + tg 1 . tg(m + 1). tg m _

tg 1
a s použitím (2) pre k — m + 1 ďalej platí

tg m + tg(m + 1) — tg m — tg 1
== ; — m =

tgl
= ■ tg(m + 1) - (m + 1),

čo dostaneme taktiež z (3) pre n = m + 1. Tým je dokaž
skončený.

POZNÁMKA. Úspěšní řešitelé této úlohy postupovali
většinou tak, že předpokládali, že požadovaná reálná
čísla A} В existují, a za tohoto předpokladu je určili ze
soustavy rovnic:

Sm+l

2 tg k. tg (k\-1) - A .tgl +IB,

2 tg k . tg (k — 1) = A . tg 2 + 2Б .

£=1

/г= 1

Pomocí vypočtených čísel A3 В, pak z rovnosti uvedené
v textu úlohy získali vzorec

”
1

2 tg k . tg (& - 1) = —у • tg л - w,
6=1
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který pak dokázali pro každé přirozené číslo n stejně jako
v autorském řešení matematickou indukcí.

JINÉ ŘEŠENÍ. Předpokládejme nejprve, že existují
taková reálná čísla A, B, že rovnost

2tgk.tg(k- 1) = Atg n + В . n (1)
*=i

platí pro jisté přirozené číslo n. Má-li (1) platit pro táž
čísla A, B3 též pro n + 1 musí být správná rovnost

И+ 1

A . tg (n + 1) + В O + 1) = 2 k • tg (k — i) =
ft=i

n

= .tg(k — \) + tgn .tg{n А- V),
£=i

čili musí platit
A . tg (n + 1) + Bn + В =

= A . tg n + Bn + tg n . tg {n + 1).
Čísla n a « + 1 jsou přirozená, a proto jsou jejich tangen-
ty vždy definovány. Úpravou rovnosti (2) dosazením ze
známého vzorce

(2)

tg n + tg 1
1 — tg 1 . tg n

tg («+!) =

dostáváme

A (tg n + tg 1) + B{ 1 — tg 1 , tg n)
_

1 — tg 1 . tg n

(A — A . tg 1 . tg n + tg n + tg 1) . tg n
1 — tg 1 . tg n

a protože tg (ji + 1) je definován, je 1—tgl . tg« + 0,
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a tedy lze poslední rovnost upravit na tvar
(1 — A . tg 1) . tg2 n + (tg 1 + В . tg 1). tg n

— (A . tg 1 -f- В) — 0 . (3)
Má-li vztah (3) platit'pro všechna n3 tj. pro všechny

příslušné tg w, stačí, aby všechny koeficienty v mnohočle-
nu proměnné tg n na levé straně rovnosti (3) byly nulové,
tedy

Л . tg 1 = 1 a J3= -1.
Takové A existuje, neboť tg 1 + 0.
Nyní si ověříme, zda s těmito koeficienty А а В platí
rovnost (1) i pro n = 1. Pak skutečně platí, neboť

tg 1 . tg 0 = 0
a

y4.tgl + 5.1 = l- l = 0.
1ZÁVĚR. Pro reálné koeficienty A = а В = -1

tg 1
platí vztah (1) podle principu matematické indukce pro
všechna n3 neboť platí pro n = 1 a z platnosti pro přiroze-
né číslo n3 jak bylo výše dokázáno, plyne platnost (1)
pro číslo n + 1.

Řešil Andrej Kugler
3. g, SVVŠ, ul. W. Piecka, Praha

5. Je daný trojuholník ABC. Zvolíme bod X úsečky
AB a bod Y ф X polpriamky АС a zostrojíme v rovině
ABC rovnostranný trojuholník XYZ. Vyšetříte množinu
M vrcholov Z všetkých takto zostrojených trojuholníkov
XYZ3 keďbod X prebieha úsečku AB a bod Y polpriamku
AC. Vyšetříte tiež případ, keď <C BAC = 60° .

RIEŠENIE. Každý bod Z vznikne otočením bodu Y
okolo bodu X o 60° v kladnom alebo zápornom zmysle
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(obr. 48). Pretože všetky body Y vyplňujú polpriamku
AC, vyplnila body Z množinu všetkých bodov všetkých
polpriamok AXCX a AXCX} ktoré vzniknu otočením
polpriamky АС o 60° v kladnom alebo žápornom zmysle
okolo všetkých bodov X úsečky AB.

Otočíme najskor bod A okolo bodu X do poloh
Ax, Ax. Body Ax, Ax sú zrejme vrcholy rovnostranných
trojuholníkov AXAX3 AXA'x. Pretože bod Ax vznikol
otočením bodu A okolo X o 60° v kladnom zmysle, vzni-
kol bod Ax otočením bodu A okolo X o 60° v žápornom
zmysle. Množinu všetkých bodov Ax dostaneme ako
obraz AAB úsečky AB v otočení okolo středu A o 60°
v žápornom zmysle. Teraz už 1’ahko doplníme polpriamky
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AxCx- leh množina vyplní akýsi „polpás“ roviny (je to
prienik pásu roviny s istou polrovinou; na obr. 48 je
vyznačený tučné a vyšrafovaný).

Analogicky dostaneme druhý „polpás“. Je to množina
všetkých bodov všetkých polpriamok А'хС'х^ ktoré
vznikli otočením polpriamky AC okolo X o 60°, ale

v zápornom zmysle. Koncové body A'x polpriamok
AxCx vyplnila úsečku AA'B. Vyšetřovaná množina M
je v případe, keď ВАС Ф 60° zjednotenie oboch
„polpásovÍC, ale bez bodu A.

Ak je <£ BAC = 60°, je nahradený jeden z „polpásovcc
polpriamkou so začiatkom v AB (na obr. 49 je to ABCB)
a bod A potom patří do množiny M.

Ak je <£ BAC — 120°, je tiež jeden z „polpásovcc
nahradený polpriamkou, ale bez jej začiatočného bodu A
(obr. 50).
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Obr. 50

6. Je dán čtyřstěn ABCD a libovolný jeho vnitřní bod O.
Bodem O vedeme příčky rovnoběžné s jeho hranami
(jejich krajní body leží ve stěnách čtyřstěnu). Pak platí,
že součet poměrů délek těchto příček a délek s nimi
rovnoběžných hran čtyřstěnu je roven 3. Dokažte.

ŘEŠENÍ. Veďme bodem O příčku AXDX || AD, Ax
leží've stěně ABC, Dx ve stěně DBC; Cx, Dx jsou krajní
body příčky vedené bodem O a rovnoběžné s^ CB; Cx
leží ve stěně ACD a Bx ve stěně ABD. Čtyřstěny
0(BCD), A(BCD) mají společnou podstavu BCD, a tudíž
poměr jejich objemů se rovná poměru délek jejich výšek
v'a : va. Ale z podobných trojúhelníků Д ADQ ~ AODxQ'
plyne (viz obr. 51) va: va = ODx: AD. Je tedy

objem 0{BCD) ODj
objem A(BCD) ~~AD '3 (1)
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čtyřstěny 0(ABC) a D(ABC) mají společnou podstavu
Л5С a jejich objemy jsou v poměru

objem 0(ABC)
_ CMj

objem D(ABC) ylD '
Sečtením (1) а (Г) dostaneme

(O

objem 0(BCD) + objem O(ABC)
objem A(BCD)
OD1 + OA-y AyDy

AD ~ AD * (2)

Výměnou vrcholů Л <-> С, В D dostaneme z (2)
objem Q(ABD) + objem Q(ACD)

_

objem A(BCD) (2')jBC •
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Sečtením (2) a (2') máme
součet objemů čtyřstěnů [0(ЛБС)+ 0{BCD) +

+ O(CDA) + O(ABD)]
objem čtyřstěnu A{BCD)

ЛОх | B.c,
AD ^ BC (3)- 1.

Podobné vztahy platí pro další dvojice protějších hran
čtyřstěnu

A2B2 , C2D2 (30CD+AB

j A3C3 (3'0= i.
ACBD

Sečtením (3), (30j (3") dostaneme
AXDX BXCX A2B2 C2D2 B3D3 Л3С3
AD ^ BC ^ AB ^ CD ^ BD 1 AC

= 3 .

JINÉ ŘEŠENÍ (obr. 52). Veďme bodem O příčku
A1A 2 II AD. Potom rovina určená body A, D, Als O, A 2

protne hranu BC v bodě X. Z podobnosti trojúhelníků
Д XAxA23 Д XAD vyplývá

AXA2
_ XAx (1)XA •AD

Veďme nyní přímku OX a její průsečík s hranou AD
označme Xx. Z podobnosti trojúhelníků vyplývá

XAx XO
ХА “ Д

a ze vztahu (1) dostáváme
AXA 2 XO
ЛО " XXj * (2)
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Jediná hrana čtyřstěnu, která je mimoběžná s hranou AD,
je hrana BC. Veďme bodem O příčku EXE21| BC. Rovina
určená rovnoběžkami EXE2 a BC obsahuje zřejmě také

body О, X, a proto i bod Xx. Z podobnosti trojúhelníků
AXxExE2} Д XxBC plyne

ExE2 XxEx
BC XxB5

protože XxEx
= XxO t

XxB ~ XxX ;
dostáváme

EXE2 XxO
BC XxX'

Sečtením rovností (2), (3) dostaneme
AxA2 ExE2 XO + XxO

(3)

(4)- 1 .

AD BC XxX
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АХА2 п ЕХЕ2Dokázali jsme, že součet poměrů
Podobně dokážeme tento vztah pro další dvě dvojice
příček a hran, tj. že

BC je roven 1.AD

příčka rovnob. s BD příčka rovnob. s AC (5)= 1,ACBD

příčka rovnob. s CD příčka rovnob. s АВ (6)= 1.
CD AB

Sečtením rovností (4), (5), (6) dostáváme tvrzení, které
jsme měli dokázat.

Řešil Miloš Paleček
3.S. gymnasium, Křenová ul., Brno
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VI. Správa о XIII. medzinárodnej matematickej
olympiádě

1. ORGANIŽÁCIЛ A PRIEBEH SÚŤAŽE

XIII. medzinárodná matematická olympiáda (MMO)
sa konala v ČSSR pri příležitosti XX. ročníka domácej
matematickej olympiády. Jej usporiadatelom bolo Mini-
sterstvo školstva SSR, a to predovšetkým preto, že IV.
MMO, ktorá bola r. 1962 v Československu, sa konala
celá na území dnešnej ČSR. Přípravný výbor XIII. MMO,
ktorý začal svoju činnost’ v júni 1970, pracoval v zložení:
akad. Štefan Schwarz, předseda; akad. Josef Novák,
podpredseda; ústr. skol. inspektor Michal Žoldy, zástup-
ca МД SSR; ústr. škol. inspektor Jaroslav Láník, zástupca
MŠ ČSR; Valeria Baračková (ÚV SZM), prof. dr.
Miroslav Fiedler, DrSc., dr. Ján Gatial, CSc., prof. dr.
Michal Greguš, DrSc., doc. dr. Milan Hejný, ČSc., prof,
dr. Milan Kolibiar, DrSc., dr. Jozef Moravčík, ČSc.,
doc. Jan Výšin, CSc., dr. František Zítek, CSc. a dr.
Ladislav Berger, ktorý bol tajomníkom přípravného
výboru.

MŠ SSR pozvalo na XIII. MMO celkom 16 štátov,
z ktorých sa Belgicko a Taliansko ospravedlnili, takže sa
súťaže zúčastnil spolu s ČSSR rekordný počet 15 krajin.

Za miesto konania súťaže bola přípravným výborom po
zrelej úvahe vybraná Žilina s tým, že miestom příchodu
i odchodu zahraničných hostí bude hlavně město Sloven-
ska — Bratislava. Vedúci delegácií, ktorí spolu s před-
sedom a podpredsedom přípravného výboru tvořili
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medzinárodnú jury súťaže, sa schádzali do Bratislavy
v priebehu středy 7. 7. Vedúci delegácií Bulharska, NDR
a Rumunska sa o jeden deň oneskorili a vedúci delegácie
Francúzska přicestoval vlastným autom až 10. 7. a na
prvej časti práce jury sa nezúčastnil.

Prvým oficiálnym podujatím XIII. MMO bola slávnost-
ná večera, ktorú poriadal 7. 7. minister školstva SSR
s. prof. Ing. Štefan Chochol, CSc., na privítanie vedúcich
delegácií v hoteli Carlton. Okrem s. ministra na večeři
prehovorili akad. Schwarz a zo zahraničných hostí vedúci
sovietskej delegácie doc. Skvorcov. Vo štvrtok 8. 7.
popoludní odcestovali členovia jury a členovia komisie
pre vyber úloh: prof. dr. Fiedler, DrSc., doc. dr. Hejny,
CSc., doc. Výšin, CSc., dr. Zítek, CSc. do hotela Partizán
na Táloch, ktorý bol určený za miesto pobytu jury počas
prvej etapy jej práce. Cestou se zastavili v Banskej
Bystrici, kde si so záujmom prezreli expozíciu památníka
SNP.

Na prvom zasadnutí jury, ktoré sa konalo hned po
příchode na Tále, oboznámil předseda jury [vedúcich
delegácií s programom XIII. MMO a členovia komisie
pre úlohy im rozdali připravené a rozmnožené materiály.
Komisia spracovala celkom 55 úloh z 11 krajin (Mongol-
sko a Francúzsko úlohy neposlali, zástupca Rumunska
ich priniesol so sebou a ČSSR ako usporiadatel úlohy
nenavrhovala). Z nich vybrala 17, ktorých texty dostali
delegáti s upravenými autorskými riešeniami v niektorej
z rokovacích řečí (angličtina, francúzština, němčina,
ruština), do ktorých boli přeložené. Okrem toho dostali
vedúci delegácií tiež texty všetkých 55 navrhovaných úloh
v tom jazyku, v ktorom ich příslušná krajina poslala.

Na štúdium materiálov bolo vyhradené celé predpolud-
nie v piatok 9. 7. Ukázalo sa však, že to v krásnom letnom
počasí, ktoré panovalo po celý čas pobytu na Táloch,
bolo málo a váčšina^členov jury se nechala ovplyvniť
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výberom komisie a hlavně zdánlivou jednoduchosťou ňou
předložených riešení. Po zdíhavom rokovaní vybrala
jury z předloženého návrhu týchto 6 úloh:

ÚLOHY PRE PRVÝ DEŇ SÚŤAŽE - 13. 7. 1971

ATV4 ЛМУлл1П1.Dokážte, že tvrdenie^
„Pre luboyolne reálne čísla a19 a2,. . ., an je splněná

nerovnostf(ax — a2) (ax — a3) . . . (ax — an) -j- (a2 — ax) .

. (a2 - aj:. . {a2 -- <L) + . . . + (an ~ ax) (an - a2) . .

. . .{an —■ an-1) ^ О* Д

.

5 a nie je pravdivé pre žiadne
(MadarskO) 5 bodov)

je pravdivé pre n — 3 a n
iné prirodzené n > 2.2.Nech je daný konvexný mnohostěn P19 ktorý má

t právě deváť vrcholoví A1} A2,. . ., A9. Označme Рц
(j = 2, 3,.. ., 9 mnohostěn, ktorý sa dostane z Px rovno-

běžným posunutím, pri ktorom sa bod Ax premiestni do \_-u >4
bodu Л*, i = 2, 3,..., 9.

Dokážte, že aspoň dva z mnohostenov P15 P2,. . ., Р»
majú aspoň jeden spoločný vnútorný bod.

(ZSSP, 7 bodov)3.Dokážte, že postupnost’ — «?} (я = 2, 3, 4,. . .)
obsahuje nekonečne mnoho čísel, z ktorvch každé dve чД,)'
sú nesúdelitelné. (.Polsko, 9 bodov)

ÚLOHY PRE DRUHÝ DEŇ SÚŤAŽE - 14. 7. 19714.Všetky steny štvorstena ABCD sú ostrouhlé troj-
uholníky. Uvažujme o všetkých uzavretých lomených
čiarach XYZTX, ktoré sú definované následuj úcim
sposobom:

( 4.<s.J
1453 УГ



X je bod hrany AB rózny od A aj od B. Analogicky
Y, Z, T sú vnútorné body hrán J3C, CD, DA .vovede-
nom poradí.

Dokážte, že
-<U'7 a) ak <£ DAB + BCD - f^ ABC- <£ CD/I Ф 0,

potom medzi týmito lomenými čiarami nejestvuje naj-
kratšia; ТилсСлЬ í

<£ CDA —b) ak DAB + <£ BCD - *£ ABC
— 0, potom existuje nekonečne mnoho lomených čiar
minimálnej dížky a táto dížka je rovná 2 dAC)(sm^,
kde a = <£ BAC + <£ CAD + DAB.

{Holandsko, 6 bodov)
!RjL ^£?(-Awc\_

5. Dokážte, že pre každé prirodzené číslo m existuje
neprázdná konečná množina S bodov v rovině «-ton
vlastnosťou, že ku každému bodu A e S existuje v S
právě m bodov, ktorých vzdialenosť od A sa rovná jednej.

(.Bulharsko, 7 bodov.

/1 Г6. Uvažujme o štvorcovej tabulke
@\i @12 • • • @m
@21 @22 • * • @2П

@nn5@П1 @n2

ktorá je zostavená z nezáporných celých čísel a vyhovuje
nasledujúcej podmienke: ak atj = 0, potom platí nerove
nosť

@il + @Í2 + • • • + @in + @lj • • • 4“ @nj = n •

Dokážte, že pre súčet s všetkých čísel tabulky platí:
{Švédsko, 8 bodov)

1
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V zátvorke za textom úlohy je uvedená krajina, ktorá
úlohu navrhla a maximálny počet bodov, ktorý bolo
možno získat’ za jej úplné riešenie.

Neúmerne dlhá časť rokovania jury bola věnovaná
formulácii vybraných úloh v rokovacích jazykoch. Na
riešenie každej trojice úloh boli určené — ako obvykle -
4 hodiny čistého času.

V piatok 9. 7. usporiadal večeru pre členov jury pod-
předseda KNV v Banskej Bystrici s. Jozef Baláž. Před-
stavitelia Stredoslovenského KNV obdarovali každého
účastníka večere vkusnou vázou z krištálového skla s vy-
rytým emblémom XIII. MMO z dielne sklárov v Kata-
rínskej Hutě.

Na ceste z Tálov do Žiliny v nedelu 11. 7. 1971 popolud-
ní sa všetci členovia výpravy zúčastnili prehliadky
Demánovskej jaskyne Slobody. V nedelu 11. 7. večer sa
vedúci delegácií střetli v žilinskom hoteli Metropol, kde
sa na celý týždeň ubytovali, so svojimi zástupcami.
Zástupcovia vedúcich priviedli v priebehu soboty 10. 7.
výpravy žiakov do Bratislavy, skadial’ v nedelu predpo-
ludním spoločne odcestovali do Žiliny. Cestou sa zastavili
v Piešťanoch (prehliadka kúpelov) a v Trenčíne (prehliidka
města).

V priebehu 12. 7. přeložili vedúci delegácií a ich zástup-
covia (dalej krátko delegáti) texty úloh do národných
jazykov žiakov a rozmnožili ich v príslušnom počte.

Miestom konania súťaže i pracoviskom členov jury po
celý čas žilinského pobytu bola nová, modeme zariadená
budova Strednej priemyselnej školy stavebnej v Žiline,
v ktorej mala každá delegácia vyhradenú miestnosť. O to,
aby v nej našla všetko potřebné pre svoju prácu sa postaral
technický štáb olympiády, ktorý pracoval pod vedením
dr. Bergera a pozostával prevažne z pracovníkov Katedry
matematiky a deskriptívnej geometrie fakulty SET
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VŠD v Žiline. V jeho práci vydatné pomáhal tiež riadite
SPSS s. ing. Jozef Král.

V pondelok 12. 7. popoludní podnikli delegáti výlet
do Vrátnej doliny, kde si pri vrcholové] stanici výtahu
na Chleb uctili pamiatku bývalého díhoročného tajom-
nika ÚV MO Rudolfa Zelinku. Jeho ušlachtilý charakter
a nezabudnutelné zásluhy o rozvoj matematiky u nás
připomenul v krátkom preslove doc. Výšin, CSc. Bolo
to na mieste, kde s. Zelinka v máji 1965 náhle zomrel.

Žiaci v ten deň absolvovali výlet do Bojníc, kde si
prehliadli zámok, zoologickú záhradu a osviežili sa kúpa-
ním v rieke Nitre.

Slávnostné zaliájenie súťaže sa uskutočnilo v utorok
13. 7. v aule SPSS v Žiline za účasti nám. ministra škol-
štva SSR s. prof. dr. Greguša, Dr. Sc., ktorý mal krátký
přejav. Přítomní boli aj zástupcovia politických a štátnych
orgánov města i okresu Žilina a Stredoslovenského kraja.
Po zahájení sa žiaci odobrali do miestností určených pre
súťaž. Do 10 min. od otvorenia obálok s textami úloh,
ktoré našli na svojich stoloch, mali možnost’ vyjsť na
chodbu a spýtať sa vedúcich delegácií na případné ne-
jasnosti v texte. Předseda jury přísné dozeral, aby sa ich
odpovede obmedzili len na stručné vysvetlenie. Rovnaká
procedúra sa opakovala i na druhý deň, keď žiaci zasadli
к riešeniu druhej trojice úloh.

13. 7. delegáti absolvovali výlet autobusom do Bojníc
s rovnakým programom ako deň predtým žiaci. Popo-
ludní po súťaži mali žiaci po oba dni volno, ktoré využívali
na športové hry v areáli internátu, kúpanie na žilinskej
krytej plavárni, resp. na prehliadku města. V středu 14. 7.
večer pre nich usporiadal OV SZM v Žiline stretnutie so
žilinskou mládežou.

Delegáti sa v středu 14. 7. už plné věnovali opravám
a hodnoteniu žiackych riešení. Najskór vedúci delegácií
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a ich zástupcovia posúdili riešenia členov svojho družstva
a navrhli počty bodov za jednotlivé riešenia. Koordináciu
hodnoteníu všetkých družstiev okrem ČSSR robila skupina
koordinátorov pod vedením dr. Zítka, CSc.: doc. dr.
Bukovský, CSc. (2), doc. dr. Černý, CSc. (4), dr. Franěk
(5), dr. Gruska, CSc. (6), doc. dr. Hejny, CSc. (4), dr. Jar-
nik, CSc. (1), doc. dr. Kufner, CSc. (1), dr. Liebl (6),
doc. dr. Riečan, CSc. (5), dr. Rohn (2), dr. Vrba (3),
dr. Zítek, CSc. (3)
číslo úlohy, ktorej hodnotenie menovaný koordinoval.
Hodnotenia riešení československých žiakov koordinovali
vedúci delegácií tých krajin, ktoré navrhli jednotlivé
úlohy. Hodnoteniu riešení a koordinácii bol věnovaný aj
celý štvrtok 15. 7. a takmer celý piatok 16. 7.

Vo štvrtok 15. 7. podával večeru na počest’ zahraničných
hostí předseda ONV v Žiline 5. Ing. Perkovič. Okrem
něho na večeři prehovorili rektor VŠD prof. Ing. Ponec,
předseda MsNV v Žiline dr. Kováčik, akademik Schwarz
a za zahraničných delegátov vedúci sov. ddegácie doc.
Skvorcov a vedúci holandskej delegácie prof, van Tooren.
Posledně menovaný vo svojom vystúpení zvlášť ocenil
formu patronátov jednotlivých závodov z okresov Žilina,
Považská Bystrica a Martin nad jednotlivými družstvárni,
ktorá sa v historii MMO realizovala po prvý raz. Jej
iniciátorom bol dr. Berger a je chvályhodné, že jeho
neúnavné úsilie našlo porozumenie vo vedení závodov,
ktoré sa po celý štvrtok 15. 7. všestranné starali o zverené
družstvá.

V dňoch 16. a 17. 7. podnikli žiaci autokarový zájazd
po Slovensku, počas ktorého navštívili Strečno, Martin,
Dolný Kubín, Oravský zámok, Ružomberok, Lipt. Miku-
láš, Demánovskú jaskyňu Slobody, Svit, Poprad (noclah),
Tatranská Lomnicu, Starý Smokovec s výstupom na
Hrebienok а к vodopádom, Štrbské Pleso s prehliadkou
Areálu snov a Podbanské.

v zátvorke za menom je uvedené
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Delegáti sa v piatok 16. 7. po skončení koordinácie zišli
na záverečnom zasadnutí jury, ktorého plánovaný začiatok
(14,00) bol posunutý o 4 hodiny pre nesúhlas niektorýeh
delegácií s koordináciou. Riešenie nezrovnalostí sa stalo
viac než trojhodinovým prológom zasadnutia. To nepriaz-
nivo ovplyvnilo další priebeh porady, ktorá sa skončila
až okolo 02,30 hod. ráno. Jury sa snažila zmierniť čiastoč-
nú vlastnú vinu, ktorej sa pri výbere úloh nechtiac do-
pustila tým, že připustila poměrně náročný celok a —
ako ukázali výsledky žiackych riešení
vhodnější pre takúto súťaž. Ako ukazuje tab. č. 3, bodový
zisk prevažnej váčšiny riešitelov bol velmi nízký a tak sa
napokon stalo, že po zamietnutí návrhu na udelenie
4. ceny, resp. pochvalného uznania sa váčšina unavených
členov jury zhodla před záverom zdíhavého rokovania
na tom, aby hranice pre udelenie cien boli: I. 42—35,
II. 34—23, III. 22—11 bodov. К tomu třeba poznáme-
nať, že v minulosti sa dolná hranica pre udelenie cien
pohybovala velmi blízko polovičnej hodnoty celkového
dosažitelného počtu bodov.

Jury udělila celkom 48 cien, z toho 7 prvých, 12 dru-
hých a 29 třetích, čo je pri 115 účastníkoch aj napriek
velmi nízkej dolnej bodovej hranici poměrně málo.

O udelení zvláštnych cien za eleganciu riešení jednot-
livých úloh, resp. za ich zovšeobecnenie sa tentoraz
dlho nerokovalo. Boli udelené tri zvláštně ceny za 2. úlohu
a po jednej za 3. a 4. úlohu. Za 1., 5. a 6. úlohu nebola
zvláštna cena udelená vóbec. Za zmienku stojí skutočnosť,
že dve zvláštně ceny (za 2. a 3. úlohu) dostal maďarský
žiak Ruzsa Imre, ktorého možno nazvat’ absolútnym
víťazom XIII. MMO, pretože jediný získal plný počet
42 bodov.

$ V sobotu 17. 7. sa uskutečnil pre delegátov autokarový
výlet do Vysokých Tatier, ktorého účastníci sa vyviezli
lanovkou na Lomnický štít a prezreli si tamojšie praco-

nie právě naj-
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visko Astronomického ústavu SAV. Niektorí zahraniční
účastníci (delegáti ZSSR, Polska, Bulharska a Mongol-
ska) dali přednost’ odpočinku po prediskutovanej noci
před lákavou exkurziou do slovenských velhór. Na
spiatočnej ceste sa výprava zastavila na Štrbskom Plese
a prezrela si Areál snov.

V nedelu 18. 7. popoludní sa všetci účastníci XIII.
MMO rozlúčili so Zilinou
města Slovenska, kde delegátov ubytovali v hoteli Carlton
a žiakov vo vysokoškolskom internáte Mladá garda.
(Počas pobytu v Žiline bývali žiaci vo vysokoškolskom
internáte VŠD.)

V pondelok 19. 7. predpoludním usporiadal nám.
ministra školstva SSR prof. dr. Greguš, DrSc. koktail
pre delegátov, kým žiaci sa v tom čase pod patronátom
5 ÚVSZM zoznamovali s památihodnosťami Bratislavy.
Ešte před slávnostným zakončením súťaže v aule UK
přijal delegátov rektor UK prof. MUDr. Emil Huraj, CSc.

Na záverečnej slávnosti sa okrem účastníkov olympiády
zúčastnili tiež pozvaní predstavitelia politického a veřej-
ného života z Bratislavy, Žiliny i Stredoslovenského kraj a,
členovia konzulárneho zboru, zástupcovia tlače a další
hostia. V jej úvode informoval stručné akad. Schwarz
o priebehu a výsledkoch XIII. MMO. Potom podpredse-
da jury akad. Novák odovzdal diplomy odměněným
žiakom. Víťazi dostali zároveň hodnotné ceny věnované
váčšinou podnikmi zo žilinskej oblasti. Prof. dr. Greguš,
DrSc., vo svojom slávnostnom prejave vyzdvihol význam
matematiky a MMO a podákoval všetkým, ktorí přispěli
ku zdaru XIII. MMO. Za zúčastněných žiakov organi-
zátorom poďakoval maďarský žiak Ruzsa Imre. V mene
zahraničných hostí sa s poriadatel’mi XIII. MMO rozlúčil
vedúci polskej delegácie doc. Mqkowski, ktorý na závěr
pozval všetky zúčastněné krajiny na XIV. MMO do
Polska.

a odcestovali do hlavného
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Večer о 19,00 hod. sa v miestnostiach hotela Carlton
konala slávnostná závěrečná večera, ktorú pre všetkých
účastníkov XIII. MMO podával na rozlúčku ÚV SZM.
Zúčastnili sa jej aj zástupcovia konzulárnych zborov.

So spoločenskou a kultúrno-politickou stránkou olym-
piády možno vyslovit’ spokojnosť i napriek niektorým
drobným nedopatreniam v organizácii, ktorým sa pri
takomto podujatí sotva možno vyhnúť. Organizačný
výbor vyslovil poďakovanie všetkým pracovníkem, najma
zo Stredoslovenského kraj a, členom komisií, za obeta-
vosť, s akou sa věnovali práci pri príprave a organizačnom
zabezpečení celého priebehu XIII. MMO.

Pri rozbore matematickéj stránky podujatia nám vela
slov ušetří zvyčajný statistický prehlad.

Tabulka č. I

Členovia medzinárodnej jury a zástupcovia vedúcich delegácií
Předseda jury: Akademik Štefan Schwarz
Podpredseda jury: Akademik Josef Novák

Vedúci delegácie —

člen jury
Zástupca

vedúcehoKrajina

Thomas Miihlgassner, Wolfgang Ratzinger
prof. reál. gymn. Eisenstadt
Kiril Dočev, docent mat. Dimo Serafimov
fakulty univerzity v Sofii Angelov, hlavný

specialista matema-
tiky min. školstva

Rakúsko (A)

Bulharsko (BG)

Kuba (C) Luis Davidson, ústredný
inspektor min. školstva,
Havana

RNDr. Jozef Moravčík,
CSc., odb. asistent KMDg
Fakulty SET Vysokéj ško-
ly dopravnej v Žiline

ČSSR (CS) Jiří Mída
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Zástupce
vedúceho

Vedúci delegácie —
člen juryKrajina

Dr. hab. Helmut Bausch,
prof, vysokej školy
v Berlíne

André Warusfel, prof,
lycea Louis le Grand,
Paříž

Prof. Frank Budden,
Royal Grammar School
Newcastle

Hódi Endre, techn. porad-
ca Mad. opt. závodov
v Budapešti

Uržincerendijn Sanžimja-
tov, docent Mongolskej
štátnej univerzity v Ulán-
bátore

Ary van Tooren, inspektor
středných škol, Haag

Andrzej M^kowski, docent
Matematického ústavu
univerzity vo Varšavě
Nicolae Mihaileanu, prof.
Matematického ústavu
univerzity v Bukurešti

Kjell-Ove Widman, Mate-
matický ústav univerzity
v Uppsale
Valentin Anatoljevič
Skvorcov, docent MGU
v Moskvě

Vladimír Miéič, docent
univerzity v Belehrade

Dr. hab. Gustav
Burosch, (Manfred
Máthner, ped. ved.)
Denis Gerll, prof,
lycea

NDR (D)

Francúzsko (F)

Prof. Peter ReynoldsVelká Británia
(GB)

Dr. Reiman IstvánMaďarsko (H)

Dambyn Sadgar,
kand. mat. — fyz.
vied

Mongolsko (M)

Artur HoogendoornHolandsko (NL)

Dr. Maciej BryúskiPolsko (PL)

Rumunsko (R) Prof. Constantin
Ottescu

Švédsko (S) Lars Wahlbin

ZSSR (SU) Ivan Semjonovič
Petrakov, metodik
min. školstva

Jovan VukmirovičJuhoslávia (YU)
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Tabulka č. 2

Počty získaných cien

Štát
Cena

A BG C CS D FGBH MNLPLR S SU YU

I. 41 1 1

II. 1 1 4 1 5

III. 4 1 4 4 2 4 4 2 2 2

Tabulka č. 3

Počty získaných bodov

Súčet bodov
družstva na

XII. MMO

Počet získaných bodov
žiaka čís.

1 2 3 4 5 6 7 8

Súčet
bodovKrajina

4 11 19 5 14 13 6 10

3 10 3 6 8 1 4 4

4 1 3 1

82 104A

39BG 145

9 na MMO po
prvý raz

C

55CS 11 8964782

7 38 23 8 18 21 11 16

7 1 9 5 1 6 6 3

17 6 6 20 25 7 17 12

27 37 24 39 38 25 23 42

3 9 1 2 5 3 0 3

4 1 2 1 20 13 2 5

6 9 4 17 18 38 11 15

2 27 13 21 7 9 15 16

0 12 12 3 8 3 5 -

26 24 18 35 27 32 31 12

3 2 9 21 10 4 10 12

145

D 142 221

F 38 141

110GB 180

255 233H

26 58M

NL 48 87

PL 118 105

R 208110

S 43 110

SU 205 221

YU 71 209

154



POZNÁMKA: Keďže MMOJe súťažou jednotlivcov,
třeba považovat’ posledně dva stípce za neoficiálně a čisto
informativně. Ich vzájomným porovnáním získáme aspoň
relativné měřítko na potvrdenie zvýšenej obťažnosti
tohtoročného výběru úloh. Z tabulky taktiež vidno, že
družstvá Kuby a Švédská přišli na XIII. MMO ne-
kompletně.

Tabulka č. 4

Prehlad o úspěšnosti podaných riešení

Počet>CJ Celkový počet bodov
podaných za rješenie úlohy
úplných
riešení dosiahnutý možný

% úspeš-
nosti

Počet bodov
za úpl. rieš.

j2
3
•o

1 5 57518 284 49,4
2 7 222 805 27,614

3 9 194 1035 18,717

38,9'4 6 9 269 690

5 7 225 805 27,925

6 8 15712 920 17,1

2. RIEŠENIA SÚŤAŽNÝCH ÚLOH

RIEŠENIE 1. ÚLOHY

Pre n = 3 má íavá strana danej nerovnosti tvar

(<*i — a2) (ax — a3) + («2 — tfi) («2 — a3) + Оз — «i) •

• (.a3 5

z ktorého po vynásobení a jednoduchej úpravě dostaneme
pre každú trojicu ax, a2, az reálných čísel:
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Uf -f- д| ClI — &\Cl2 — #4Й3 — íř2íZ3 ==
1

= ytOl - й2)2 + Oi - яз)2 + («2 - a3)2] >

čo je zrejme číslo nezáporné.
Pre n = 5 dostáváme na 1’avej straně uvažovanej ne-

rovnosti výraz
(ax — a2) (a4 — a3) (ax — a4) (ax — a5) + (a2 — ax) .

. (a2 — a3) (a2 — a4) (я2 — a5) + (a3 — ax) (a3 — a2) .

(a3 — a4) . (a, — a5) + (a4 — a-,) (a4 — л2) (a4 — a3) .

• (a4 — a5) + (a5 — ax) (a5 — a2) (a5 — a3) (a5 — a4) ,

ktorý je zrejme symetrický vzhladom na čísla a13 a2) a3,
a4, a5, tj. nezmení sa, ak v ňom lubovolné dve z nich
navzájom zaměníme. Móžeme preto předpokládat’, že
platí napr.:

ax ^ a2 ^ a3 ^ a4 ^ a5

V tomto případe však je
ai ~ a2 = —{a2 — a4) ^ 0,
CL-^ — #2 #4

takže platí

^1 a3 ^ íř2 0,
ax — a5 ^ a2 — a5 ^ 0,0,

Oi - a2) (ax a3) (ях — a4) (a4 — a5) + (a2 — a4) .

. (a2 — a3) (a2 — я4) (a2 — a5) ^ 0.
Analogickým spósobom dostaneme, že tiež

(<z4 — ax) (a4 — <z2) (a4 — a3) (a4 — a5) + (a5 — ax) .

. (a5 — a2) (a5 — a3) (a5 — a4) ^ 0.
Pretože súčin

(a3 a4) (a3 a2) (a3 <z4) (a3 a5)
je súčinom dvoch nekladných a dvoch nezáporných čini-
tělov, je tiež nezáporný, z čoho už vyplývá správnost’
dokazovaného tvrdenia aj v tomto případe.

К tomu, aby sme ukázali nesprávnost’ daného tvrdenia
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pre všetky ostatně prirodzené n > 2, stačí nájsť w-ticu
reálných čísel a13 a2,... ,an tak, že uvažovaná nerovnosť
nebude pre ne splněná.

Pre n — 4 má túto vlastnost’ každá štvorica čísel, pre
ktorú platí: ax = a2 = a3 > a4, pretože pre ňu má lává
strana nerovnosti hodnotu (a4 — a4)3, čo je zrejme číslo
záporné.

Pre n 6 stačí zvolit’ napr. ax — a2 = a3 > a4 > a5 =
=

... = an v případe párneho йай1 = а2 = а3<а4<
< a5 — ... = an v případe nepárneho n, pretože vtedy
má l’avá strana nerovnosti hodnotu (a4 — a4)3(a4 — a5)n_4,
čo je zrejme v oboch prípadoch záporné číslo.

RIEŠENIE 2. ÚLOHY

Označme P' mnohostěn, ktorý dostaneme z mnohoste-
nu Px pri rovnol’ahlosti H so stredom A1 as koeficientom
2. Dokážeme, že pre každé Pi3 i = 1, 2,..., 9, platí
Pí C P'.

Pre i = 1 je toto tvrdenie zřejmé. Ak je X lubovolný
bod mnohostena Pt3 i = 2, 3, ..., 9, zvolme Y ePx
tak, že X je obrazom Y pri rovnobežnom posunutí, pri
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ktorom sa bod Ax premiestni do bodu At. Potom však
úsečky AxX, AtY majú zrejme spoločný střed Z (pozři
obr. 53). Z konvexnosti mnohostena Px však vyplývá, že
úsečka At Y leží celá v P15 teda Z e Px a preto X e P'
ako obraz bodu Z pri rovnol’ahlosti H.

Označme V(P) obsah mnohostena P. Zrejme platí
V(PJ = F(Pj) ==...= V(P,), V(P’) = 2ЩР,) =
= e^Pi). Ak by žiadne dva z mnohostenov Pb i = 1,
2, . . . , 9, nemalí spoločný vnútorný bod, muselo by na
základe vyššie dokázaného platit’

9 F(Pi) = P(Pt U P2 U ... U P9) £ F(P') = 8 V(PJ,
čo je spor.

RIEŠENIE 3. ÚLOHY

Tvrdenie dokážeme zostrojením vybranej postupnosti
s uvedenou vlastnosťou použitím matematickej indukcie.
Predpokladajme, že každé dve z prirodzených čísel

ax = 2»*- 3, a2 = 2И«- 3, . . . , = 2W* - 3, (1)
kde 2 = nx< n2< . . . < nk sú nesúdelitelne a zostroj-
me číslo <2*+1 = 2re*+1 — 3 nesúdelitelné s každým
z čísel (1) následujúcim sposobom:

Označme s — ax a2... ak. Spomedzi 5+1 čísel 2°,
2S možno vždy vybrať aspoň dve také, ktoré pri21,.

delení číslom s majú rovnaký zvyšok. Nech sú to 2a,
2^(a > /9). Potom však platí

2* — 2P = p . s (p — prir. číslo).
Z (2) dostaneme (2a~P— 1)2P = p . s, z čoho, vzhladom
na to, že s je číslo nepárne, vyplývá, že 2X~P — 1 je ním
dělitelné čiže

(2)

2a-/? (q — prir. číslo). (3)1 = q . s
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Na základe (3) dostaneme
2«-A+2 — 3 = 4.2°^ - 3 = 4{qs + 1) - 3 = 4qs + 1.

Stačí teda vziať nk+1 — a — /3 + 2, ak+1 — 4qs + 1.
Keďže zrejme platí ak+1 > ak, je tiež nk+1 > nk a celú
konštrukciu možeme neohraničene opakovat’.

RIEŠENIE 4. ÚLOHY

a) Predpokladajme, že napr. body X, У, Z sú pevne
zvolené na úsečkách AB, BC, CD (pozři obr. 54). Ak
trojuholník ACD sklopíme do roviny ABD (obr. 55),

hned’ vidíme, že súčet dížok ZT + TX možno zmenšit’
změnou polohy bodu Г, ak platí ATX Ф <£ ZTD.

Z tejto úvahy vyplývá, že ak existuje lomená čiara
minimálnej dížky, potom musia byť splněné následujúce
nutné podmienky:

<£ DAB = n - <£ ЛГАГ - <£ ЛАГГ,
<£ ЛБС = тг - <£ БАГУ - ^ БУАГ = тг -

- <£ AXT — <£ CyZ,
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<£ BCD = л - <£ CYZ - <£ CZY,
<)C СЛЛ = тг - <£ DTZ - <£ DZT = 7Г -

- <£ATX- <£ CZF,
z čoho hned’ dostaneme

<£ DAB + <£ BCD - <£ ABC - CDZi - 0. (1)
b) Nech teraz platí (1). Rozřežme povrch štvorstena

ABCD pozdíž hrán AC, CD a DB a rozviňme ho do rovi-
ny. Dostaneme rovinný útvar P = AC'D'BDC zložený
z trojuholníkov AC'D'i ABD', ABC, BCD, ktoré sú
všetky podlá předpokladu ostrouhlé. Pri vhodnom ozna-
čení vrcholov štvorstena (ak třeba zaměníme A za С, В
za D a obrátene) dosiahneme, že P je konvexný (4-, 5-
alebo 6-uholník). Priamky CB3 CD’ sú roznobežné

a pretínajú sa v nejakom bode M (obr. 56). Zo štvoruhol-
nika ABMD' však vzhladom na (1) dostaneme hned’, že
<£ BMD' = <£ BCD, čo znamená, že úsečky CD a CD'
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sú rovnoběžné a súhlasne orientované. Rovnoběžník
CDD'C' leží zrejme celý vo vnútri konvexného ob-
razca P.

Každej úsečke ZZ' rovnobežnej s CC' (a teda aj s DD')
odpovedá lomená čiara XYZTX minimálnej dížky.
Z rovnoramenného trojuholníka ACC' vyplývá, že jej
dížka je 2. A C. sin — a.

RIEŠENIE 5. ÚLOHY

Pre m — 1 je takou množinou S dvojbodová množina
s bodmi, ktorých vzdialenosť je 1. Nech m ^ 2 je dané
prirodzené číslo. Matematickou indukciou podlá m sa
1’ahko ukáže, že v rovině existuje systém v13 v2,. .

vektorov týchto vlastnosti (|v| znamená dížku vektora v):

|v,| = 2 3 i — 1, 2,..., ж ,
—> —> —> 1

О Ф IWi + c2v2 + . . . + cmvm| Ф —

• )

(1)

(2)

pre 1’ubovolné čísla c13 c2,. . ., cm} ktoré nadobúdajú len
niektorú z hodnot —1, 0, 1, ale aspoň dve z nich rožne
od nuly.

Ukážeme, že požadované vlastnosti má množina S
pozostávajúca z 2m bodov, ktorú možno popísať takto:

Ak Вo je lubovolný bod danej roviny, potom do množi-
ny S patria vsetky body В určené predpisom

В = B0 + e1v1 + e2v2 + . . . + e7nvm >

kde et= i 1, i = 1, 2,. . ., m.
Z (1) a (2) vyplývá, že ak nějaký bod JgS (prislúcha mu

určitá kombinácia znamienok e13 e2,. . . , em), potom v S
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existuje právě m bodov, ktorých vzdialenosť od A sa
rovná jednej. Sú to právě tie body, pre ktoré příslušná
kombinácia znamienok sa líši od e15 e2,. . ., em právě
na jednom mieste.

RIEŠENIE 6. ÚLOHY

Utvořme súčty všetkých čísel v jednotlivých riadkoch
a v jednotlivých stípcoch a označme p najmenší z týchto
súčtov. Ak p ^ yw, potom pre súčet s všetkých čísel
tabulky zrejme platí

1
s ^np ^ yW2

a tvrdenie je pravdivé.
Nech teraz p < -^-n. Bez ujmy na všeobecnosti može-

me předpokládat’, že právě prvý riadok má súčet p a právě
čísla na prvých q miestach v ňom sú rožne od nuly. Potom
však súčet čísel v posledných n—q stípcoch sa rovná
aspoň (n — p) (n — q), zatial čo súčet všetkých čísel
v prvých q stípcoch bude najmenej pq. Platí teda

s ^ (n — p) (n — q) + pq = я2 — n(p + q) + 2pq =
1 1 1

-=

у и2 + у (« — 2p)(n — 2q) >y«2,
pretože n>2p^ 2q.

3. ÚČAST ČESKOSLOVENSKÉHO DRUŽSTVA

Vedúcim československého družstva bol RNDr. Jozef
Moravčík, CSc., odb. asistent Vysokej školy dopravnej
v Žiline, podpredseda ÚV МО a jeho zástupcom bol
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s. Jiří Mída, odb. asistent Pedagogickej fakulty Karlovej
university v Prahe, tajomník ÚV MO. Členovia družstva
boli vybraní na závěr sústredenia 12 žiakov v Brandýse
n. L. na základe výsledkov v II. a III. kole XX. ročníka
MO a na základe hodnotenia pracovníkov, ktorí viedli
jednotlivé semináře na sústredení. Podrobné výsledky
československých účastníkov XIII. MMO podává
tabulka na str. 164.

Ako z tabulky vidno, poradili si naši žiaci ako—tak
len s 1. a 4. úlohou, ktoré boli všeobecne označované za
najlahšie. Rozhodne viac sa od nich čakalo v 2. a 5.
úlohe, ktoré čo do náročnosti nemuseli byť nad ich sily.
Výsledok v 3. a 6. úlohe je úplné zdrvujúci, ale dá sa
čiastočne vysvětlit’ tým, že tieto úlohy boli opravdu
náročné a nie celkom vhodné pre takúto súťaž, pretože
ich riešenia sa zakladali na obratoch nie celkom běžných
pre stredoškolákov.

Kvoli úplnosti třeba poznamenat’, že výběr družstva
bol stažený tým, že traja z úspěšných riešiťelov III. kola
XX. ročníka MO dali přednost’ atraktívnejšej ceste
do Sofie na V. medzinárodnú fyzikálnu olympiádu. Išlo
o žiakov, ktorí sa v III. kole XX. ročníka MO umiestnili
na 3., 6.-7. a 9. —12. mieste. Je však otázne, či by v prípa-
de svojej účasti na XIII. MMO boli dosiahli lepšie výsled-
ky než ich náhradníci. Skutočnosť, že družstvo ČSSR
skončilo v dolněj polovici neoficiálneho poradia nie je
totiž náhodná a třeba s ňou počítat’ za súčasného stavu
i pre najbližšiu budúcnosť. V tejto súvislosti stojí za
zmienku, že v Madarskej ludovej republike slúži pre
výchovu matematických talentov o. i. 7 škol so špeciálny-
mi matematickými triedami, v ktorých je až 12 hodin
matematiky týždenne, pričom osnovy matematiky v tých-
to triedach sú iné než v ostatných triedach. (U nás v špe-
ciálnych triedach, ktoré máme v celej ČSSR tri, je
maximálně 6 hodin matematiky týždenne a osnovy
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matematiky sú v nich prakticky rovnaké ako v ostatných
triedach.) Podobné ako v MLR sa o matematické talenty
starajú aj v ZSSR a v NDR. Tak napr. v Kyjeve, Moskvě,
Novosibirsku a iných sovietskych univerzitných mestách
sú velmi kvalitně středné školy, nad ktorými majú po
odbornej stránke patronát příslušné univerzity. Učia
na nich čiastočne vysokoškolskí učitelia. Podobné sa
o výchovu talentov stará napr. Humboldtova univerzita
v Berlíne. Uvedená činnost’ plné podporovaná minister-
stvami školstva neslúži samozřejmé len príprave repre-
zentantov pre MMO, ale má značný význam pre přípravu
stredoškolákov pre vysokoškolské štúdium.

Ako ukázali diskusie so zahraničnými delegátmi,
podobná cielavedomá a centrálně riadená činnost’ pri
výchove matematických talentov sa rozbieha tiež napr.
v Bulharsku, Rakúsku, Juhoslávii, a vo Velkej Británii.
Preto, ak nechceme trvale zaostat’ nielen na MMO, ale
hlavně v úrovni výchovy matematicky nadaných žiakov,
bude třeba, aby naše ministerstvá školstva přijali čím
skór účinné opatrenia v tomto smere. Niektoré doporuče-
nia im předložil jednak organizačný výbor XIII. MMO
a jednak ÚV MO pri hodnotení celkových výsledkov
XIII. MMO. Třeba dúfať, že tieto hlasy budú čoskoro
vypočuté a po postupnom cielavedomom realizovaní
předložených návrhov sa dosiahne želatelná náprava.
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