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Předmluva

Milí mladí přátelé,

otvíráte nový svazek о XXIII. ročníku matematické
olympiády a jste možná zvědavi, co nového tento ročník
přinesl ve srovnání s předcházejícími léty.

Zvláště to bude zajímat vás starší, kteří soutěžíte v nej-
vyšší kategorii, neboť к určitým změnám došlo právě při
přípravě na mezinárodní matematickou olympiádu a v pří-
pravných kursech žáků nejvyšších ročníků gymnázií.

Ústřední výbor MO po dlouhá léta usiluje o to, aby
se v souvislosti s matematickou olympiádou rozvíjela
a zintenzivňovala i péče o matematické talenty. Ovšem
žádná z pomocných akcí nemůže nahradit systematické
vedení nadaných žáků, jaké jim může poskytnout jen dobře
organizovaná škola. Proto ÚV MO byl jedním z iniciátorů
zřízení tzv. matematických gymnázií, škol podobných těm,
které již byly zřízeny v řadě socialistických zemí. Idea pod-
chytit pomocí internátních škol i ty studenty, kteří nežijí
ve velkých městech, zajistit jim dobrou výuku, studijní
literaturu i péči vysokoškolských učitelů v sídle školy, je
bezesporu zdravá a mohla by přinést mnoho užitku jak
žákům, tak vysokým školám i reprezentaci našeho státu
na mezinárodním fóru.
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Y září 1974 byly otevřeny na čtyřech místech v ČSSR
třídy se zaměřením na matematiku, které mají tuto myšlenku
uskutečnit. Doufejme, že po překonání počátečních obtíží
s vydáváním učebních textů, s ubytováním v internátech
apod. se práce plně rozvine a že tyto třídy ovlivní i umístění
našich olympioniků na mezinárodních matematických
olympiádách. Dosavadní příprava družstva pro meziná-
rodní matematickou olympiádu je prozatím stále odkázána
na semináře ve velkých městech a na školení jednotlivců
vedená v obdobném stylu v některých menších střediscích.

Zmiňme se ještě o jedné nové pomocné akci, kterou
navrhl doc. dr. Jozef Moravčík už pro školní rok 1974/75.
Jde o korespondenční seminář, určený zejména nadějným
žákům bydlícím mimo hlavní centra. Je to tedy jistá obdoba
známé sovětské „zaočné školy“.*)

Účastníci se nezískávají náborem, ale jsou vybíráni
jednak z podnětů ÚV MO, jednak KV MO. Registrovaní
účastníci dostávají poštou listy s úlohami z určitých témat.
V stanoveném termínu se zaslaná řešení opraví a opravené
úlohy se zodpověděnými dotazy se vrátí řešitelům s pří-
slušnými připomínkami. Pro korektory úloh — což jsou
většinou vědečtí pracovníci nebo vysokoškolští učitelé —

je tato práce velmi časově i didakticky náročná, ale dou-
fámě, že tato forma bude představovat aspoň malý krůček
vpřed v péči o nadané žáky a v přípravě družstva pro mezi-
národní olympiády; a to aspoň v období, než se počnou
projevovat výrazněji účinky zřízení matematických tříd.

*) Jde o jakési studium řizené na dálku, při němž si dopisují účastníci
s vedením akce.
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Písemné školení je vždy těžkopádnější a namáhavější
než obvyklá forma výuky, hlavně protože schází osobní
styk mezi učitelem a žákem; ale právě tato okolnost má
také svou dobrou stránku. Obě strany (učitel i žák) si musí
více dávat pozor na svůj písemný projev, dbát o to, aby byl
úplný, přesný a srozumitelný. Pro korigujícího je to jakási
škola didaktiky, pro žáka — eventuálního člena meziná-
rodního družstva — je to dobrá průprava pro mezinárodní
olympiádu. Mimoto korespondenční semináře mají cha-
rakter individuální péče, a to je také významný klad.

Myslíme, že bychom mohli a měli využít této nové
formy studia i к řešení technicky náročných úloh, které
neztratí svůj význam ani při intenzívním nasazení prostřed-
ků moderní výpočtové techniky. Jde např. o algebraické
výpočty na první pohled namáhavé, nudné a zdlouhavé,
které se však nemohou provádět strojem, neboť jde v pod-
statě o sestavování programů. Pracnost a zdlouhavost vý-
počtu primitivním způsobem podněcuje řešitele к tomu,
aby hledal účinnější metody. Budeme-li takové úlohy za-
řazovat třeba i do korespondenčního semináře, budeme
tím snad aspoň trochu potírat onu „kondicionální mate-
matiku“, která se v poslední době ve školách tolik rozmáhá:
dospěje-li se do situace, která vyžaduje dlouhý, nudný vý-
počet, obětuje se raději výsledek, popřípadě i diskuse o něm,
a řekne se prostě, že „by se dále postupovalo tak a tak“
(např. že by se rozřešila soustava lineárních rovnic s pěti
parametry) „a úloha by byla rozřešena“.
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Uvedeme několik příkladů úloh tohoto druhu z fran-
couzské knížky o problémovém vyučování*), a to z kápi-
toly o „technických úkolech44.

A D

H P tiE

0 К
N

G

q Obr. 1В

První je jedna ze Steinhausových**) úloh. Jednotkový
čtverec ABCD je rozdělen podle obr. 1 na sedm právo-
úhelníků téhož obsahu (7). Máme zjistit, zda je úloha ře-
šitelná, kolik má řešení a vypočítat délky stran všech sedmi
pravoúhelníků. Označí se např. BE = x; z 12 rovnic, které
nejsou lineární, dojdeme po eliminaci neznámých к jediné
rovnici pro x:

x3 — fx2 + ffx — 15 = 0.

*) Le Livre du Probléme, fasc. 1, vydal IREM Strassbourg v naklada-
telství CEDÍC, Lyon—Paris 1973.

**) H. Steinhaus je význačný polský matematik.
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Vzhledem к podmínkám

j < x < j,

dostaneme jediný možný kořen

x = 14(7 4- ’

který skutečně vyhovuje, jak zjistíme zkouškou. Výpočet
stojí za trochu přemýšlení.

2. Jiný příklad: Máme vypočítat součin všech 16 čísel
1 ± y/2 ± y/3 ± y/5 ± y/l, která dostaneme všemi 16 mož-
nými volbami znamének. Primitivní výpočet by trval
mnoho hodin. Jednoduché použití formule a2 — b2 =
= (a + b) (a — b) ho podstatně zkrátí. Úlohu lze zobecnit
pro libovolný počet členů.

3. Máme vypočítat desátou (и-tou) derivaci funkce

—7), tj. x 1—► e-1/*2. Víme-li, že n-tá derivace

x Ф j

x 1—> exp x2
bude mít tvar

X 1-

kde Pn(x) je polynomická funkce stupně n — 1, je třeba
najít rekurentní vzorec pro Pn a počítat příslušné koefi-
cienty. Výsledek je

p10(x) = 1 024 - 69 120x 4 1 820 160x2 -

- 24 111 360x3 + 173 033 280x4 -

- 676 257 120x5 + 1 377 129 600x6 -
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- 1 317 254 400x7 + 479 001 600x8 -

- 39 916 800x9 .

Je jasné, že tento výsledek vybízí к sestavení účinného
programu pro výpočet; úloha se ovšem nesmí předkládat
řešitelům jako ryze rutinní, cvičná.

Zkuste si rozřešit uvedené tři úlohy „mimo soutěž“.
Doufáme, že průběhem doby se najdou i další typy

úloh vhodných pro korespondenční semináře a že se tím
zvýší tvořivá práce jejich účastníků.

Ústřední výbor matematické olympiády
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I. Průběh XXIII. ročníku matematické olympiády

1. ORGANIZACE SOUTĚŽE

Pořadatelem soutěže XXIII. ročníku matematické olym-
piády byla opět ministerstva školství ČSR s SSR s Mate-
matickým ústavem ČSAV v Praze (MU ČSAV) a s Jednotou
čs. matematiků a fyziků (JČSMF) za spolupráce s orgány
Socialistického svazu mládeže (SSM). Protože připravovaný
nový statut MO nebyl dosud schválen, řídila se soutěž
XXIII. ročníku MO opět podle statutu, který byl uveřej-
něn ve Věstníku MŠK, toč. XIX, str. 126, 127, směrnice 37,
ze dne 30. IV. 1963.

Žáci soutěžili celkem ve čtyřech kategoriích: kategorie A
je určena pro žáky III. a IV. ročníků škol II. cyklu, kate-
gorie В pro žáky II. ročníků a kategorie C pro žáky I. roč-
níků těchto škol. V kategorii Z soutěží žáci základních
devítiletých škol, především žáci 9. ročníků. Bylo ovšem
možné, aby žák soutěžil i ve vyšší kategorii, než do které
patřil.

2. SLOŽENÍ ÚSTŘEDNÍHO VÝBORU
MATEMATICKÉ OLYMPIÁDY

Funkční období ÚV MO, schváleného MŠ ČSR 18. led-
na 1971 a MŠ SSR 3. prosince 1970, skončilo 31. prosin-
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се 1974. Do této doby pracoval ÚV MO v tomto složení:
Předseda: doc. Jan Výšin, CSc., vědecký pracovník

MÚ ČSAV, Praha
I. místopředseda: dr. JozefMoravčík, CSc., docent VŠD,

Žilina
II. místopředseda: prof. dr. Miroslav Fiedler, DrSc.,

vedoucí vědecký pracovník MÚ ČSAV
I. jednatel: dr. Vlastimil Macháček, odborný asistent

pedagogické fakulty KU, Praha
II. jednatel: dr. Jiří Mída, odborný asistent pedagogické

fakulty KU, Praha

Členové:

Zástupce MŠ ČSR: Václav Šůla, ústřední škol. inspektor
MŠ ČSR, Praha

Zástupce MŠ SSR: Michal Žoldy, ústřední škol. inspektor
MŠ SSR, Bratislava

Zástupce ÚV SSM: Jana Pomazalová, profesorka gymná-
zia, Brno

dr. František Běloun, vedoucí matematického kabinetu
KPÚ, Praha

dr. Miloš Franěk, ředitel gymnázia, Prievidza
dr. Jozef Gruska, CSc., vědecký pracovník MÚ SAV, Bra-

tislava
dr. Milan Hejny, CSc., docent PF UK, Bratislava
František Hradecký, odborný asistent MFF KU v. v., Praha
prof. dr. Milan Kolibiar, DrSc., profesor PF UK, Bratislava
dr. Ivan Korec, CSc., odborný asistent PF UK, Bratislava
akademik Josef Novák, ředitel MÚ ČSAV, Praha
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Víiazoslav Repáš, ředitel gymnázia, Bratislava
dr. Jiří Sedláček, CSc., vědecký pracovník MÚ ČSAV, Praha
Jiří Šídlo, zástupce ředitele gymnázia, Praha
Miroslav Šmerda, učitel ZDŠ, Bílovice n. Svitavou
František Veselý, odborný asistent v.v., Praha
dr. František Zítek, CSc., vědecký pracovník MÚ ČSAV,

Praha

Dalšími členy ÚV MO byli předsedové krajských
výborů matematické olympiády:

prof. dr. Václav Pleskot, profesor ČVUT, Praha
Ludmila Tréglová, profesorka gymnázia, Říčany
ing. dr. Lada Vaňatová, profesorka gymnázia, Strakonice
Věra Rádiová, profesorka gymnázia, Plzeň
Karel Hnyk, odborný asistent pedagogické fakulty, Ústí n.L.
Jan Lašťovka, vedoucí kabinetu matematiky KPÚ, Hradec

Králové
dr. Petr Benda, odborný asistent VUT, Brno
Josef Andrys, docent pedagogické fakulty, Ostrava
Katarina Hajtášová, odborná asistentka PF UK, Bratislava
dr. Oliver Ralík, odborný asistent pedagogické fakulty,

Nitra

dr. Ladislav Berger, odborný asistent VŠD, Žilina
Kveta Hončarivová, odborná asistentka PF UPJŠ, Košice

Pracovní předsednictvo ÚV MO (PÚV MO) tvo-
řili (v abecedním pořadí): prof. dr. Miroslav Fiedler, DrSc.;
dr. Vlastimil Macháček', dr. Jiří Mída', doc. dr. Jozef Mo-
ravčík, CSc. ; dr. Jiří Sedláček, CSc. ; doc. Jan Výšin, CSc. ;
dr. František Zítek, CSc. a zástupci MŠ ČSR a SSR.
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V г, 1974 působili jako předsedové v KV MO Severo-
českého kraje Vladimír Blažek, odborný asistent pedago-
gické fakulty v Ústí n. L., v KY MO Východočeského kraje
Josef Kubát, odborný asistent VŠCHT v Pardubicích
a v KV MO Severomoravského kraje prof. dr. Miloslav
Zedek z PF UP v Olomouci.

Od 1. ledna 1974 převzal funkci I. jednatele Petr Fabinger,
odborný asistent pedagogické fakulty UK, Praha.

Do konce června 1974 nebylo složení nového ÚV MO
schváleno ani MŠ ČSR ani MŠ SSR.

3. SCHŮZE ÚV MO

Ve školním roce 1973/74 se konalo jedno plenární zase-
dání ÚV MO ve dnech 10. a 11. prosince 1973 v Praze.
Při hodnocení XXII. ročníku poukázala většina přitom-
ných předsedů KV MO na růst počtu účastníků MO
v I. kole. Většina KV MO pořádá pro olympioniky pra-
covní přednášky (zejména v podzimním období), v létě
pak soustředění pro účastníky kategorií В a C. Tato sou-
středění trvají obvykle jeden týden.

Při těchto přednáškách a soustředěních by se mělo více
používat svazků edice ŠMM. Pro učitele ZDŠ pořádaly
KV MO společně s KPÚ instruktáže věnované úlohám
kategorie Z. Bylo konstatováno, že v některých krajích se
těžko získávají pracovníci pro MO, neboť některé školské
orgány patřičně úlohu soutěže neoceňují.

Dále bylo zhodnoceno týdenní přípravné soustředění
na XV. MMO, které se konalo koncem června v průmyslové
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škole v Praze-Malešicích. Soustředění účastníků katego-
rie В a C se konalo ve Žďáru nad Sázavou v druhé polovině
června a začátkem července.

Dále byla projednána zpráva komise pro ŠMM. Dopo-
ručuje, aby edice byla rozdělena na dvě řady, základní a vý-
bérovou. Je potěšitelné, že se objevují i rukopisy slovenské,
které půjdou r. 1974 do tisku. Trvá však nedostatek autorů
pro základní řadu.

Zasedání věnovalo pozornost i blížícímu se 25. výročí
MO. Byl schválen návrh vydat v edici ŠMM zvláštní sva-

zek, věnovaný jubileu MO. Dále bylo navrženo zhotovit
Zelinkovu medaili, která by byla poprvé udělována к 25. vý-
ročí MO zasloužilým pracovníkům této soutěže.

Ve školním roce 1974/75 budou otevřeny třídy se zamě-
řením na matematiku. Na zasedání byla prodiskutována
otázka výběru žáků pro tyto třídy a organizační otázky
spojené s otevřením těchto tříd.

Bylo jednáno i o novém statutu MO.

Zasedání ve Strakonicích, které se konalo u příležitosti
celostátního kola MO, se zúčastnili jen někteří členové
ÚV MO, neboť definitivní složení nového ÚV MO nebylo
ještě známo, jak ostatně již bylo podotknuto. Byly pro-

jednány opět otázky ŠMM a jejího poslání, soustředění
olympioniků, příprava na MMO a jubilea MO. Matema-
tické třídy budou otevřeny na gymnáziu v Praze 2, ul.
W. Piecka, na gymnáziu v Bílovci u Ostravy, v Bratislavě
na gymnáziu v ul. Červenej armády a v Košicích na gymná-
ziu ve Šmeralově ulici. Velkou pozornost věnovalo zasedání
organizaci práce nového ÚV MO. Byl schválen návrh na
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ustavení komisí při ÚV MO, jejichž úkolem by bylo recen-
zovat úlohy došlé do konkursu JČSMF a JSMF, sestavit
z nich soutěžní úlohy pro jednotlivá kola soutěže, dbát
o ŠMM a soustředění olympioniků a připravit vydání
ročenky MO.

Jarní zasedání ÚV MO se konalo ve zvláště slavnostním

ovzduší, neboť okresní i městské orgány státní i stranické
věnovaly přípravě celostátního kola značnou pozornost
a připravily jak pracovníkům ÚV MO, tak i soutěžícím
srdečné přijetí a velmi dobré pracovní podmínky. Kulturní
večer, na němž účinkovali mj. Prácheňský soubor písní
a tanců a žáci LŠU se svými učiteli, dlouholetí pracovníci
MO hodnotili jako nejkrásnější večer v historii MO.

4. PRŮBĚH JEDNOTLIVÝCH KOL SOUTĚŽE

Organizace jednotlivých kol soutěže nebyla ve XXIII.
ročníku MO nijak podstatně změněna; byly pouze upra-

vény dílčí termíny odevzdání úloh, resp. posunuty termíny
II. kola.

I. kolo, tzv. studijní, proběhlo opět ve dvou etapách.
Čtyři přípravné úlohy odevzdávali soutěžící všech kategorií
svým učitelům (referentům MO) do 15. listopadu 1973.
Úlohy byly opraveny, ale neklasifikovány, takže každý žák
měl možnost se zúčastnit soutěžní části prvního kola. V této
soutěži, končící pro kategorii A 15. ledna 1974 a pro kate-
gorii В a C 15. února 1974, museli žáci podle vlastního
výběru vyřešit ze 6 úloh aspoň 3 na známku aspoň „dobrou“,
14



aby mohli být navrženi do II. kola. V kategorii Z bylo
podmínkou pro navržení do II. kola vyřešení aspoň tří
úloh ze čtyř na známku aspoň „dobrou“.

II. kolo se konalo v jednotlivých kategoriích v těchto
termínech:

kategorie A:
kategorie В a C:
kategorie Z:

Celostátní III. kolo kategorie A se konalo ve Strakonicích
3. a 4. května 1974.

Některé KV MO zorganizovaly krajské III. kolo v ka-
tegorii Z. Na Slovensku se konalo toto kolo v jednotném
termínu pro všechny slovenské kraje s jednotnými příklady.

Podrobné údaje o výsledcích soutěže v jednotlivých ka-
tegoriích a kolech podávají tabulky 1 až 4.

Proti poslednímu ročníku se počet žáků, kteří začínají
soutěžit, prakticky nemění u kategorií А а В nebo dokonce
zvyšuje u kategorií C a Z. Zaráží však skutečnost, že pro-
cento úspěšných řešitelů klauzurních kol je proti loňskému
ročníku podstatně menší. Vysvětlení tohoto jevu obtížností
příkladů II. kola je jistě neúplné a bude nutno hledat i pří-
činy další.

2. března 1974
30. března 1974

6. března 1974

5. POMOCNÉ AKCE

Těžiště přípravy vybraných úspěšných řešitelů MO jako
možných reprezentantů na XVI. MMO spočívalo opět v se-
mináři, který se konal na gymnáziu v Praze 2, ul. W. Piecka.
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Na tomto školení přednášel prof. dr. M. Fiedler, DrSc.,
doc. J. Výšin, CSc., dr. J. Sedláček, CSc., dr. Fr. Zítek, CSc.
a dr. J. Hojdar, všichni z MÚ ČSAV, a doc. dr. Zb. Nádeník,
DrSc. z ČVUT. К přednáškám byly vypracovány sylaby
s texty úloh, které byly dávány к dispozici KV MO pro
školení v jejich střediscích.

Od 17. do 22. června 1973 se konalo přípravné soustře-
dění 12 nejúspěšnějších řešitelů III. kola kategorie A. Z nich
vybralo PÚV MO na své schůzi 22. června 1974 osmičlenné
reprezentační družstvo pro XVI. mezinárodní matematic-
kou olympiádu v Erfurtu (NDR). Na soustředění byla pro-
brána tato témata:

dr. VI. Macháček: Vybrané úlohy z geometrie
dr. J. Hojdar: Nerovnosti a nerovnice
dr. A. Vrba, CSc.: Posloupnosti, kombinatorika, mate-

matická indukce
doc. dr. J. Moravčík, CSc. : Teorie čísel
L. Herrmann: Funkce

Soustředění úspěšných řešitelů MO a FO kategorie В
a C se konalo od 17. června do 6. července 1974. Byly opět
vybrány tři třídy — matematická, fyzikální a matematicko-
fyzikální. Matematický obsah školení tvořily přednášky:

a) Dr. Josef Hojdar: Analytická geometrie a lineární
algebra

b) Dr. Jiří Jarník, CSc. : Vyšetřování vlastností reálných
funkcí

c) Doc. dr. Alois Kufner, CSc.: Elementární nerovnosti
d) Doc. dr. Zbyněk Nádeník, DrSc.: Geometrické nerov-

nosti
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e) Dr. Ivan Korec, CSc.: Velká čísla
f) Dr. Antonín Vrba, CSc.: Princip matematické indukce,

jeho využití a postavení v matematice

6. STUDIJNÍ LITERATURA

Letáky MO vyšly v ČSR v září, na Slovensku o něco
později. Texty úloh MO uveřejnily časopisy Rozhledy ma-

tematicko-fyzikální a Matematika a fyzika ve škole.
V Mladé frontě pokračovalo vydávání edice Škola mla-

dých matematiků; vyšly tyto další svazky:
č. 34 (na obálce knihy uvedeno mylně 33) Ladislav

Rieger: O grupách
č. 35 Alois Kufner: Co asi nevíte o vzdálenosti
č. 30 Milan Koman-Jan Výšin: Malý výlet do moderní

matematiky (reedice)
Další svazky jsou v recenzním řízení nebo v tisku.

KONKURS JČSMF A JSMF
NA NÁVRHY ÚLOH PRO MO

Během své existence od roku 1966 se stal tento nepřetr-
žitě probíhající konkurs organickou součástí MO. Bez úloh
získaných jeho prostřednictvím by se jen s velkými obtížemi
sestavovaly úlohy pro jednotlivá kola.

Podmínky konkursu jsou od XXIII. ročníku uveřejňo-
vány v letácích s úlohami.
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V období od 1. září 1973 do 31. srpna 1974 došlo do
konkursu celkem 97 úloh od 24 autorů. Ve XXIII. ročníku
MO bylo použito 60 úloh získaných konkursem.

Tabulka 1

Výsledky kategorie A

Kolo

Kraj I. II. III.

ÚÚ Ús s s

23Praha

Středočeský
Jihočeský

Západočeský
Severočeský
Východočeský
Severomoravský
Jihomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

104 88 81 43 12

61 54 7 278 1

2 247 41 981

48 060 53 8 2

63 9 3 051 51

65 64 59 8 7 1

2372 58 13 358

123 113 13 0186 45

237 36 36 17 7

/133 112 108 12 1

72 72 13 5 179

010 9 418 1

Celkem 730 198 79 23976 775
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Tabulka 2

Výsledky kategorie В

Kolo

Kraj I. II.

Ú0 ss

Praha

Středočeský
Jihočeský
Západočeský

Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

2776 63 60

367 61 51

42 30 27 4

248 33 27

78 1348 41

30 1044 37

89 60 1756

75 56 51 6

324 32 13

134 91 90 18

7395 73 4

46 17 316

Celkem 798 601 554 120
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Tabulka 3

Výsledky kategorie C

Kolo

Kraj I. II.

0 úss

Praha

Středočeský

Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

126 93 86 24

122 65 1391

85 75 58 17

53 3269 II

113 70 58 17

154 144 122 24

27204 152 141

128 105 102 31

59 56 8101

176 138 135 47

120 115145 8

92 3141 51

Celkem 1192 1021 2301564
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Tabulka 4

Výsledky kategorie Z

Kolo

II.Kraj I.

ÚÚ ss

Praha

Středočeský

Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

177I 274 683 577

122446 359791

286 79511 310

217 41444 228

749 462 367 116

152436694 467

1527451 278 680

136540 487930

685 443 47456

1 553 1 170 1 146 237

1 313 112774 648

768 7661111 190

Celkem 11 333 7 049 6412 1 561
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příloha a

POŘADÍ ÚSPĚŠNÝCH ŘEŠITELŮ
II. KOLA VE XXIII. ROČ. MO

V seznamu je uvedeno nejvýše prvních deset úspěšných
řešitelů. Pokud není uveden typ školy, jde o gymnázium.

HLAVNÍ MĚSTO PRAHA

Kategorie A

Pavel Ferst, 4.d, Sladkovského n., Praha 3; Martin Bauman,
Sis, Učňovský závod ČKD Praha 9; Anna Pudláková, 4.e,
W. Piecka, Praha 2; Michael Valášek, 3.d, W. Piecka,
Praha 2; Alena Vencovská, 4.b, Štěpánská, Praha 1; Jiří
Měska, 4.d, Sladkovského n., Praha 3; Václav Salač, 4.a,
Ohradní, Praha 4; Jan Hugo, 3.c, Sladkovského n., Praha 3;
Richard Giirtler, 3.d, W. Piecka, Praha 2; Alexandr Fuchs,
4.a, Přípotoční, Praha 10.

Kategorie В

Václav Kotěšovec, W. Piecka, Praha 2; Tomáš Kotrba,
Štěpánská, Praha 1; Karel Suchomel, Štěpánská, Praha 1;
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Pavel Komárek, W. Piecka, Praha 2; Lenka Svobodová,
Nad štolou, Praha 7; Magda Volkeová, Leninova, Praha 6;
Vladimír Daněk, W. Piecka, Praha 2; Marek Špinka,
W. Piecka, Praha 2; Daniel Vyhnalík, Sladkovského n.,
Praha 3; Mirko Eisler, W. Piecka, Praha 2.

Kategorie C

Jiří Kolafa, W. Piecka, Praha 2; Josef Moural, Štěpánská,
Praha 1; Irena Hegerová, W. Piecka, Praha 2; Jan Dvořák,
W. Piecka, Praha 2; Miloš Mrkvička, Štěpánská, Praha 1;
Otto Volf, W. Piecka, Praha 2; Jiří Peterka, Nad Turbovou,
Praha 5; Anna Čermáková, Štěpánská, Praha 1; Oskar Ha-
roušek, Leninova, Praha 6; Martin Kalina, nám. Lidových
nilici, Praha 9.

/

STŘEDOČESKÝ KRAJ

Kategorie A

Vlaíimír Meier, 4. r., Mladá Boleslav; Vlastimil Klíma, 2. r.,

Benešov; Jan Procházka, 3. r., Mladá Boleslav; Jiří Somer,
3. r. Nymburk; Pavel Tvrdík, 3. r., Kolín; Tomáš Frajer,
3. r.,SPŠ, Čáslav; Karel Karlík, 3. r., Čáslav.

Kategorie В

Vlastnil Klíma, 2. r., Benešov; Vojtěch Zadražil, 2. r.,
ČeskýBrod; Hana Janoušková, 2. r., Sedlčany.
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Kategorie С

Jan Bázler, 1. r., Mladá Boleslav; Eduard Feireisl, 1. r.,
Nové Strašecí; Josef Blažek, 1. r., Mnichovo Hradiště;
Karel Jenčík, 1. r. SPŠ, Kutná Hora; Vladimír Červenka,
1. r., Kutná Hora; Jiří Sobotka, 1. r., Nymburk; Karel Žák,
1. r., Beroun; Iva Šolarová, 1. r., Benešov; Josef Holda,
1. r., Mladá Boleslav; Martin Tuček, 1. r., Kladno.

JIHOČESKÝ KRAJ

Kategorie A

Josef Voldřich, 3. r., Vimperk; Pavel Kindlmann, 4.a, Českí
Budějovice; Miroslav Vácha, 3.b, Tábor; Jan Teska, 4.1,
Milevsko; B. Jovanovič, 3.a, České Budějovice; Zd. Be-
vidová, 3.c, Tábor; Pavel Novák, 4.a, České Budějovic?;
Zdeněk Petráš, 4.a, České Budějovice.

Kategorie В

Martin Třeštík, 2. r., Písek; Jaroslav Tišer, 2.b, Strakoňce;
Josef Metlička, 2.c, Strakonice; Jaroslav Ploutar, 2.a, ’ra-
chatice.

Kategorie C

Jindřich Trnka, l.c, Tábor; Otakar Procházka, 1. r., Hunpo-
lec; Jan Kábrt, l.b, Jindřichův Hradec; Helena Jílkou, l.a,
České Budějovice; Jiří Had, l.a, SPŠ, Strakonice;Jaro-
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slava Jarátová, l.b, Týn nad Vltavou; Zdeněk Sýkora, l.a,
České Budějovice; Vladimír Kočma, Sla SPŠ stav., České
Budějovice; Petr Divoký, 1. r., Trhové Sviny.

ZÁPADOČESKÝ KRAJ

Kategorie A

Václav Veselý, 4.a, Klatovy; Jan Klaschka, 4.a, Mar. Lázně;
Michal Svrček, 3.b, Karlovy Vary; Jiří Zymák, 4.a, nám.
Odborářů, Plzeň; Emil Pelikán, 4.a, nám. Odborářů, Plzeň;
Václav Bouberle, 4.a, Klatovy; Václav Kohout, 4.a, Blovice;
Vladimír Krásný, 3.a, nám. Odborářů, Plzeň.

Kategorie В

Daniela Řezníčková, 2.a, nám. Odborářů, Plzeň; Milan
Studený, 2.a, Mar. Lázně.

Kategorie C

Jiří Koukol, l.a, Sušice; Ivan Novák, l.a, nám. Odborářů,
Plzeň; Vladimír Tumpach, l.a,nám. Odborářů, Plzeň; Alena
Petříková, l.a, Karlovy Vary; Pavel Ettler, l.a, ul. Pionýrů,
Plzeň; Petr Panzner, l.a, ul. Pionýrů, Plzeň; Hana Švarcová,
l.b, SEŠ K. Gottwalda, Plzeň; Petr Kopřiva, l.a, nám.
Odborářů, Plzeň; Jiřina Hrbková, l.a, Ostrov.
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SEVEROČESKÝ KRAJ

Kategorie A

Tomáš Novotný, 4.a, Teplice; Emil Vlasák, 3.d, SPŠ stroj.,
Ústí n. L.; Martin Pešek, 4.b, Teplice; Josef Kaláb, 3.b,
Teplice; Jaroslav Kotas, 3.b, Česká Lípa; Martin Muller,
З.а, Děčín; Jaroslava Pejznochová, 3.b, Ústí n. L.; Jan Malý,
3.a, Litoměřice; Otto Bergner, 4.a, Teplice.

Kategorie В

P. Vondrák, Ústí n. L.; /. Žižka, Ústí n. L.; M. Dragoun,
Teplice; M. Vancl, Ústí n. L.; I. Benda, Litoměřice; J. Čer-
vinek, Teplice; M. Oktábec, Teplice; P. Horák, Ústí n. L.;
J. Holomek, Liberec; M. Kečvara, Liberec.

Kategorie C

V Novotná, Teplice; V. Havlena, Rumburk; I. Perschová,
Rumburk; M. Šopr, SPŠ stroj., Liberec; E. Formánková,
Liberec; J. Ulmanová, Liberec; P. Strejc, Teplice; L. Peter-
ková, Liberec; J. Chaloupek, Liberec; D. Málková, Teplice.

VÝCHODOČESKÝ KRAJ

Kategorie A

Jiří Hůlka, 3.g, Hradec Králové; Jiří Hostinský, 4.a, Pardu-
biče; Tomáš Blažek, З.а, Pardubice; Dobroslav Kindl, 4.a,
Pardubice; Josef Ježek, 4.a, Pardubice; Josef Pavel, l.a,
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Rychnov n. Kněžnou; Luděk Němec, 3.a, Pardubice; Jaro-
slav Dobiáš, 3.a, Polička.

Kategorie В

Petr Novák, 2.a, Pardubice; Josef Novotný, 2.c, Česká Tře-
bová; Zdeněk Rudolf, 2.a, Trutnov; Miloš Ferjenčík, 2.a,
Pardubice; Jan Šugl, 2.a, Rychnov n. Kněžnou; Renata
Čermáková, 2.a, Pardubice; Libor Jelínek, 2.a, Pardubice.

Kategorie C

Libor Hnyk, l.g, Hradec Králové; Richard Liská, l.a, Par-
dubice; Jiří Dobeš, l.a, Pardubice; Ivo Havlas, l.g, Hradec
Králové; Vladimír Hulec, l.a, Pardubice; Milan Novák, l.a,
Vrchlabí; Petr Skuta, l.e, SPŠ el., Pardubice; Jiří Kalousek,
l.a, Pardubice; Josef Kuňák, l.a, Rychnov n. Kněžnou;
Rupert Leitner, l.a, Semily.

JIHOMORAVSKÝ KRAJ

Kategorie A

Vladimír Drášil, 4.a, tř. kpt. Jaroše, Brno; Jaromír Trubelík,
3.a, Kroměříž; Pavel Barták, 4.a, Koněvova, Brno; Martin
Kolínek, 4.c, Elgartova, Brno; Lubomír Vláčil, 3.a, Prostě-
jov; Luděk Jančář, 4.a, Uherský Brod; Jiří Sýkora, 3.a,
Jihlava; Libor Obrdlík, 4.b, Třebíč; Jaromír Novák. 4.a.
Koněvova, Brno; Štěpánka Kolářová, 4.a, Křenová, Brno.

27



Kategorie В

Jiří Peňáz, 2.b, tř. kpt. Jaroše, Brno; Alice Kapunová, 2.a,
tř. kpt. Jaroše, Brno; Hana Kovaříková, 2.a, Jihlava; Michal
Marvan, 2.a, Koněvova, Brno; Petr Ježek, 2.a, Prostějov;
Zdeněk Ondrák, 2.c, Třebíč; Miroslav Pavel, 2.a, Jihlava;
Eva Pivničková, 2.b, Znojmo.

Kategorie C

Jiří Svoboda, l.a, tř. kpt. Jaroše, Brno; Luděk Klimeš, l.a,
Blansko; Zdeněk Bureš, l.b, Třebíč; Jiří Zlatuška, l.c, tř.
kpt. Jaroše, Brno; Martin Čadek, l.a, tř. kpt. Jaroše, Brno;
Petr Bolek, 1, OUEZ, Zastávka u Brna; Jaroslav Šustr,
l.b, Blansko; Jiří Martišek, l.a, Kroměříž; Renata Holz-
bachová, l.c, Lerchova, Brno.

SEVEROMORAVSKÝ KRAJ

Kategorie A

Jaromír Šimša, Žďár n. Sáz.; Jiří Navrátil, Olomouc-Hejčín;
Antonín Otáhal, Volgogradská, Ostrava; Lubomír Balanda,
Český Těšín; Miroslav Šedivý, Přerov; Miroslav Lýčka,
Vsetín; Ivo Semrád, Opava; Vladimír Hruška, Valašské
Meziříčí; Nikos Pupakis, Ostrava-Poruba; Jaroslav Dvořák,
Volgogradská, Ostrava.

Kategorie В

Jiří Navrátil, l.a, Tomkova ul., Olomouc-Hejčín; Oskar
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Linkesch, 2.a SPŠ Ostrava-Hrabůvka; Kristián Walach, 2.b,
Volgogradská, Ostrava 4-Zábřeh; Miroslav Šedivý, 2.b,
Komenského, Přerov; Jan Mačejovský, 2.a, Šmeralova ul.,
Ostrava 1; Václav Kelar, 2.b, ul. Pionýrů, Uničov, okr.
Olomouc.

Kategorie C

Jan Kozina, l.b, AI. Hrdličky, Ostrava-Poruba; Tomáš
Cvik, l.a, J. G. Tajovského, Havířov II; Rostislav Urban,
IX. ZDŠ, Škrobálkova, Ostrava-Kunčičky; Helena Svozí-
lová, l.b, Tomkova ul., Olomouc-Hejčín; Petr Jančar, l.c,
Komenského, Opava; Miroslava Karpalová, l.a, J. G. Ta-
jovského, Havířov II; Eva Bartošová, l.c, Komenského,
Přerov; Jitka Jelínková, l.c, Komenského, Přerov; Martin
Petrák, l.a, nám. Rudé armády, Ostrava-Hrabůvka; Václav
Sosna, l.b, Nový Bohumín, okr. Karviná.

BRATISLAVA

Kategorie A

Jozef Širáň, 4.b, Novohradská ul.; Pavol Zlatoš, 4.b, No-
vohradská ul.; Lubor Kollár, 4.b, Novohradská ul.; Ján
Krajčík, 3.b, Novohradská ul.; Pavol Meravý, 4.b, Novo-
hradská ul.; Ján Slodička, 3.b, Novohradská ul.; Ivan Ja-
netká, 3.b, Novohradská ul.; Ivan Tkáč, 4.a, Metodova;
Štefan Olejník, 4.a, Novohradská ul.; Ján Brodnianský, 4.b,
Č. armády.
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Kategorie В

Juraj Walner; Viktor Birnsein; Pavol Kossey; Pavol
Krchňák', Ondřej Náther; Ondřej Blaho', Igor Brilla; Jozef
Kiss', Robert Šimončič; Miloš Blanárik. (Všichni z gymnázia
v Novohradské ulici.)

Kategorie C

Martin Bárto, Novohradská ul.; Ján Banko, Vázová ul.;
Augustin Mrázik, Novohradská ul.; Juraj Koza, Novo-
hradská ul.; Terézia Gonová, Novohradská ul.; Igor Remža,
Novohradská ul.; Roman Záhorec, Tomášiková ul.; Viera
Turčanová, Č. armády.

ZÁPADOSLOVENSKÝ KRAJ

Kategorie A

Ján Nižňanský, 4.b, Trenčin; Miloš Mikula, 3.b, Trenčín;
Štefan Knutelský, 4.a, Nitra-Párovce; Branislav Macúch,
4.a, Nové Město n. Váhom; Tibor Fiilóp, 4.a, Nitra-Pá-
rovce; Katarina Valášková, 4.b, Nové Město n. Váhom;
Vladimir Dzurák, 4.a, Nové Město n. Váhom; Pavol Ma-
saryk, 3.a, Topolcany.

Kategorie В

Vladimír Drienovský, 2.c, Zlaté Moravce; Dušan Uhrín, 2.c,
Nitra-E. Gudernu; Ján Kolník, 2.c, Nitra - E. Gudernu;
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Svetozár Malinarič, 2.a, Nitra-Párovce; Jiří Král, 2.b,
Trenčín; Maroš Martinkovič, 2.e, Trnava; Daniela Čunder-
Uková, 2.a, Nové Město n. Váhom; Daniel Madleňák, 2.c,
Nitra - E. Gudernu; Eleonora Ďurišová, 2.a, Nitra-Párovce;
Pavol Rieger, 2.d, Trenčín.

Kategorie C

Jozef Legény, l.a, Partizánske; Ludovít Šelc, l.b, Malacky;
Anna Mircová, l.a, Nové Město n. Váhom; Ján Suchánek,
l.d, Trenčín; Juraj Bojnanský, l.d, Hlohovec; Eva Javor-
ková, l.g, Trnava; Erich Hulman, l.e, Trnava; Tibor Gérecz,
l.a, Bratislava; Olga Kopová, l.a, Pezinok; Ivan Fiala, l.a,
Senec.

STŘEDOSLOVENSKÝ KRAJ

Kategorie A

Vlastimil Vrťo, 4. r., Rim. Sobota; Valter Petrů, 4. r., Žilina -

H. Val; Emil Borák, 3. r., Prievidza; Pavol Makovický, 2. r.,
Žilina - H. Val; Ján Borsík, 3. r., Liptovský Hrádok; Peter
Takáč, 1. r., Rim. Sobota; Peter Maličký, 3. r., Prievidza;
Jozef Kordík, 3. r., Prievidza.

\
Kategorie В

Pavol Makovický, 2. r., Žilina - H. Val; František Chovánek,
2. r., SPŠ el., Tvrdošín; Karol Pekár, 2. r., Ružomberok;
Štefan Bračok, 2. r., Ružomberok.
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У
Kategorie С

Igor Bešše, 1. r., Prievidza; Pavol Quittner, 1. r., Prievidza;
Peter Takáč, 1. r., Rim. Sobota; Anna Bernátová, 1. r.,

Martin; Ivan Pavlíček, 1. r., Žilina, Hliny; Peter Mečiarik,
1. r., Prievidza; Igor Bóhm, 1. r., SPSS, Zvolen; Pavla
Olbřímková, 1. r., Martin.

VÝCHODOSLOVENSKÝ KRAJ

Kategorie A

Imrich Harbula, Sečovce; Jaroslav Jaroš, Poprad; Ján Sme-
rek, Humenné; Máňa Ševecová, Šmeralova ul., Košice.

Kategorie В

Ondřej Cako, Šmeralova ul., Košice; Dušan Malenčík, Šme-
ralova ul., Košice; Juraj Kavečanský, Šrobárova ul., Košice.

Kategorie C

Stanislav Filip, Šrobárova ul., Košice; Peter Jaroš, SPŠ
hutnická, Garbanova, Košice; Václav Ocelík, Šrobárova ul.,
Košice.

32



I

příloha в

SEZNAM VÍTĚZŮ A ÚSPĚŠNÝCH ŘEŠITELŮ
III KOLA KATEGORIE A

VE XXIII. ROČNÍKU МО V ROCE 1973/74

Vítězové

Navrátil Jiří, l.a, gymn., Olomouc-Hejčín
Ferst Pavel, 4.d, gymn., Praha 3, Sladkovského nám.
Valášek Michael, 3.d, gymn., Praha 2, W. Piecka 2
Baumann Martin, Sis, Uč. závod ČKD, Praha 9,
Poděbradská 12

Trlifaj Jan, 4.d, gymn., Praha 3, Sladkovského nám.
Pavel Josef, l.a, gymn., Rychnov n. Kněžnou
Šimša Jaromír, 4. r., gymn., Žďár n. Sázavou
Širáň Jozef 4.b, gymn., Bratislava, Novohradská
Kindlmann Pavel, 4.a, gymn., České Budějovice,
Šrámkova 29

Balanda Lubomír, 3.b, gymn., Český Těšín, Frý-
decká 30
Vencovská Alena, 4.b, gymn., Praha 1, Štěpánská 22

1.
2.

3.
4.

5.
6.

7.

8.-9.

8.-9.

10.

11.

Další úspěšní řešitelé

Salač Václav, 4.a, gymn., Praha 4, Ohradní
Štěrba Jiří, 3.d, gymn., Praha 2, W. Piecka 2

12.

13.
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14. —16. Měska Jiří, 4.d, gymn., Praha 3, Sladkovského nám.
14.— 16. Nižňanský Ján, 4.b, gymn., Trenčín, 1. máje 2
14. —16. Pudláková Anna, 4.e, gymn., Praha 2, W. Piecka 2
17. —18. Voldřich Josef, 3. r., gymn., Vimperk
17. —18. Makovický Pavol, 2.a, gymn., Žilina - Horný Val
19. —20. Fiala Jaroslav, 3.d, gymn., Praha 2, W. Piecka 2
19. —20. Roubíček Tomáš, 3.d, gymn., Praha 8, U libeňského

zámku
21. —23. Hrnčíř Evžen, 3.a, gymn., Praha 7, Nad štolou 1
21, —23. Klíma Vlastimil, 2.b, gymn., Benešov u Prahy
21. —23. Krajčík Ján, 3.b, gymn., Bratislava, Novohradská
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I
II. Přípravné úlohy I. kola

KOMENTÁŘE
К ŘEŠENÍ PŘÍPRAVNÝCH ÚLOH KATEGORIE A

I. KOLA

A — P — 1

Nechť sé je konečná množina s к prvky, (к > 1), nechť £P
je množina všech konečných posloupností prvků z sé.
Jsou-li a, /? dvě posloupnosti z 0*, a = {a1,a2, /? =
= {bx, b2,..., bm}, řekneme, že a je úsekem /I, jestliže n 5Í m
a cii — bi pro i = 1,2,

Nechť ář je konečná část množiny s touto vlastností:
ke každé posloupnosti ae^, která není úsekem žádné
posloupnosti z lze v nalézt právě jednu posloupnost,
která je úsekem posloupnosti a.

Jestliže v 01 je r posloupností, kolik existuje v £P posloup-
ností, jež jsou úsekem a) právě jedné, b) alespoň jedné po-
sloupnosti z ář?

KOMENTÁŘ

Formulace úlohy je značně složitá a budete s ní mít asi
potíže. Je třeba ji věnovat dost času a absolvovat tak užiteč-
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né cvičení v pochopení komplikovanějšího matematického
textu.

Označme r počet posloupností množiny 0t. Doporuču-
jeme, abyste si situaci znázornili stromem např. pro к = 2,
r = 8. Je-li sé — {a, b}, zakreslíme schéma

01 = {aaa, aaba, aabb, ab, ba, bba, bbba, bbbb).

Posloupnosti z 0 jsou zobrazeny ve stromu všemi ces-
tami (jsou konečné i nekonečné, ale množina je nekonečná).
Posloupnosti z 0t jsou zobrazeny ve stromu r konečnými
cestami (na obr. 2 jsou příslušné cesty ukončeny okroužko-
vánými písmeny). Na každé cestě leží právě jeden „okrouž-
kovaný bod“; to vyplývá z vlastnosti, kterou je v textu cha-
rakterizována množina 01. Jak patrno, vyjadřovali jsme se
v předcházejících větách geometricky; doporučujeme, abyste
si stále uvědomovali korespondenci geometrických a arit-
metických faktů.

Zavedeme ještě jeden parametr; impuls к jeho zavedení
vyplyne dále z rozhodnutí nalézt odpověď na otázku b)
pomocí stromu. Označíme s největší počet členů, vyskytující
se v posloupnostech z 0t, v příkladě na obr. 2 je s = 4.

Nyní můžeme zodpovědět bezprostředně otázku a). Každá
posloupnost z 9* je úsekem sama sebe; posloupnost aeář
je jediným úsekem a, který je úsekem jen jediné posloupnosti
z @1 (totiž a). Neboť každý „pravý“ úsek posloupnosti a je
úsekem ještě jiných posloupností z 01, jak ukazuje větvení
stromu. Tak např. na obr. 2 je posloupnost bb úsekem
posloupností bbaeffi, bbbaeffi, bbbbeffi-, naproti tomu
posloupnost bba (která je z není úsekem žádné jiné
36



Obr. 2

posloupnosti z 01, jak plyne z charakteristické vlastnosti
množiny 01.

Jádrem úlohy je otázka b). Probírejte nejprve jednotlivé
cesty (posloupnosti) z 0t a určujte, kolik cest z 0* (posloup-
nosti z 0*) každá z nich obsahuje. Při tomto zkoumání
rozložíme 0t v s skupin: v cesty (posloupnosti) jednoprv-
kové, atd. až v cesty s-prvkové; jejich počty označíme

A2,..., As. Na obr. 2 je tento rozklad dán „úrovněmi“,
na kterých cesty z 0t končí; je tedy = 0, X2 — 2, 23 = 2,
Á4 = 4. Pro úroveň 1,2,..., s vypočítáme, kolika „body“
cesty z otázky b) procházejí, v kolika z těchto bodů končí
a v kolika pokračují. Dostaneme tabulku (T):
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Počet bodů
ležících aspoň
na jedné cestě

Z toho
kon-

cových

Z toho

průchozích
Úroveň

к1 к —

(k - Xt)k = k1 - A,k k2 - ú/c - Я22 ^2

(к2 - Aik - Я2)к =
= к3 — Ajk2 — Я2к

к3 — Л^к2 — Я2к — Я33 Я3

Vzhledem к s-tému řádku tabulky je
ks - - X2ks~2 - ... - Vi/c =

Mimoto platí zřejmě
(i)

(2)Xi + X2 + ... + Xs = y .

Ověřte si tabulku na příkladě z obr. 2; možná, že by
bylo vhodné sestavit nejprve tuto tabulku pro situaci z obr. 2

Obr. 3

1 —

2

3
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(iк = 2, At = О, A2 — = 2, A4 = 4, s =v4), pak ji zobecnit
a ještě ověřit pro situaci z obr. 3 (k = 3, = 1, A2 = 4,
A3 - 6, 5 = 3).

Na tomto obrázku nejsou označeny prvky množiny sé\
zřejmě tu je podle (2) r = 11 + Á2 + A3 = 1 + 4 + 6 = 11.

Tabulka má v tomto případě tvar:

Úroveň PokračujeCelkem Končí

231 1

4 22 6

03 6 6

Výsledný počet posloupností je 3 + 6 + 6 = 15. Tabulka
situace z obr. 2 je:

Úroveň Celkem Končí Pokračuje

1 2 0 2

2 4 2 2

3 4 2 2

4 4 4 0

Výsledný počet posloupností je 2 + 4 + 4 + 4 = 14.
Po této experimentální přípravě můžete zpracovat ta-
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bulku (T); je to práce ryze algebraická. Je zřejmé, že počet
o všech posloupností z otázky b) je dán součtem údajů
v prvním sloupci v s řádcích tabulky (T). Je tedy
a = (k + k2 + ... 4- ks) — + k2 + ... + /cs_1) — ... —

- As_ ifc,

tj-

'ks+1 - 1 - 1
- 1 - 1o =

к - 1 к - 1

к2 - 1
Ч-i

к - 1

1
(Zcs+1 - Ai/cs - ... - As_!/c2) +a =

к - 1

1
'

_ i (^1 "I" "I” ^s_1 “ 1) — 1 + (Ai + ••• + As_x).
Upravíme použitím (1), (2):

г - К - 1/cAs
- 1 + г - А,.с =

к - 1к - 1

Po úpravě
. Hr-l)

к - 1 ’

což je výsledný vzorec. Ze vzorce (3) je patrno, že к — 1 dělí
r — 1. Ze vzorce (3) dostaneme pro к = 2, r = 8 výsledek
<T = 14 (obr. 2), pro к = 3, r = 11 výsledek cr = 15 (obr. 3)
jako dříve.

(3)
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A —P — 2

Je dán rovnostranný trojúhelník o straně délky 1. Každou
stranu rozdělte na к stejných dílů. Sestrojte všechny úsečky
rovnoběžné s příslušnými stranami; jejich krajní body jsou
dělicími body na stranách daného trojúhelníka. Vznikne
tak síť složená z rovnostranných trojúhelníků. Určete počet
všech trojúhelníků, které lze v této síti najít.

KOMENTÁŘ

Začneme experimentováním. Impulsem pro řešitele by
mohlo být nalezení rekurentního vzorce pro počet sk po-

psaných trojúhelníků. Rekurentní vzorec bude mít tvar

sk+1 — sk + Ф >

kde (p je počet trojúhelníků, které vzniknou tím, že přidáme
„jeden pás“; na obr. 4 je к = 5, /с + 1 = 6 a přidaný pás
je vyšrafován. Nově vzniklé trojúhelníky budou dvojího
druhu:

Obr. 4
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a) jednak ty, které vzniknou z daného trojúhelníka po-
sunutím nebo stejnolehlostí s kladnou konstantou; jejich
počet označíme (p1;

b) jednak ty, které vzniknou z daného trojúhelníka stej-
nolehlostí se zápornou konstantou; jejich počet označíme cp

Snadno odvodíte vzorec

2-

(pí = (k + 1) + к 4- (к - 1) + ... + 1 = Цк + 1)(/с + 2). (4)
Při pokusech vyjádřit (p2 se zjistí, že je třeba rozlišit к liché

а к sudé; proto je vhodné nakreslit mimo obr. 4 ještě další
obrázek, např. pro к = 6.

Je-li к liché, dostaneme
Л = Цк+ 1)

(p2 = 1 + 3 + ... 4- к = ^ (k + 2 — 2A) = ^к 4- l)2.
a= i

(5)
Je-li к sudé, dostaneme

<p2 = 2 + 4 + ... + fc = 2XA = *k(k + 2) •
A = 1

(6)

Oba vzorce (5), (6) se odvodí pomocí obrázků intuitivně;
exaktní důkaz vyžaduje opět matematickou indukci.

Nyní upravíme rekurentní vzorce pro к liché i pro к sudé
podle (4), (5), (6).

Pro к liché je

sk+i = sk + i(k + i)(k + 2) + %(k + l)2 ,

tj-
Sk+1 — Sk 4- ^(k + 1) (3к + 5) — Sfc + 4(3/с2 4- 8/с 4- 5). (7)
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Pro к sudé dostaneme

Sk+1 = sk + %k + 1) (k 4- 2) + Щк + 2),
tj-

iSjc+i — sk + ^(/c + 2) (3/c + 2) — Sfc + ^(3/c^ + 8/c + 4). (8)

Další impuls: rekurentní vzorec je vzhledem к odlišnosti (7)
a (8) třeba upravit tak, aby „krok“ byl nikoli 1, ale 2, tj. je
třeba odvodit vztah mezi sk, sk+2 pro к liché i sudé.

Pro liché к dostaneme s použitím (7) a (8) pro к + 1

sk+2 = sk+1 + Цк + 3) (3/c + 5) =

— sk + + l) (3к + 5) + к + 3) (3/c + 5),
tj-

Sk + 2 — Sk + i{3/c + 5) (k + 2) . (9)

Pro sudé к dostaneme s použitím (8) a (7) pro к + 1 místo k:

sk+2 — sk+1 + Mk + 2) (3/c + 8) —

= sk + K/c + 2) (3/c + 2) + Цк + 2) (3/c + 8),
tj-

sfc+2 — + i(k + 2) (3/c + 5). (10)

S potěšením konstatujeme, že vzorce (9) a (10) jsou totožné;
proto můžeme vypracovat tabulku diferencí:
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к 21 3 4 5 6 7

(Т.)
Мк + 2) (3/с + 5) 12 22 35 51 70 92 117

Čísla v druhém řádku tabulky tvoří aritmetickou posloup-
nost 2. řádu, jak ukazuje schéma diferencí

12 22 35 51 70 92 117 ...

1310 16 19 22 25
3 3 3 3 3

Protože víme, že je 5* = 1, s2 = 5, můžeme sestavit s po-
užitím tabulky (Tj tabulku (T2)

oк 72 3 4 5 61

(T2)
5 13 27 48 78 1181sk

(Např. 53 = 5!+ du kde dx = %{k + 2)(3/c + 5) pro к = 1,
tj. dx = 12, s3 = 1 + 12 = 13.)

Nepokládáme za nutné odvozovat ze vzorce (9) a z po-
čátečních hodnot = 1, s2 = 5 obecné vzorce pro sk; je
to v podstatě bezduché počítání s aritmetickými řadami
vyšších radu.

Pro úplnost uvádíme, že pro к liché vyjde

sk = |(fc + 1)(2k2 + 3к - 1),

s„ = ifc(fe + 2)(2k + 1),
což je v souhlase s tabulkou (T2).

pro к sudé
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A — P — 3

Ak sú x, у, z vnútorné uhly v trojuholníku (tj. ich velkosti)
a ak je V = tg x tg у 4- tg у tg z + tg z tg x, potom nutná
a postačujúca podmienka, aby trojuholník bol ostrouhlý,
znie: V > 0 a aby bol tupouhlý: V < 0.

KOMENTÁR

Táto úloha je založená na triviálnej úpravě výrazu, ak
použijeme vhodný trik. Azda možno riešitelov nechať, aby
„si lámali hlavu“, popřípadě aby súťažili o najkratšie rie-
šenie úlohy. Je celý rad riešení, zdá sa, že najkratšia je
úprava, ktorá dósledne využívá cykličnost’. Označme p =
= cos x . cos у. cos z, potom je 2pV = 2 sin x . sin у. cos z 4-
4- 2 sin у. sin z . cos x + 2 sin z. sin x . cos y, tj. (využijeme
trik násobenie dvomi)

2pV = sin x(sin у cos z 4- cos у sin z) 4-
4- sin y(sin Z COS X 4- cos z sin x) +
+ sin z(sin X cos у + cos x sin y) =

= sin2 x + sin2 у + sin2 z,

pretože napr. sin у . cos z + cos у . sin z = sin (y + z) =
= sin (n — x) = sin x. Pretože sin2 x 4- sin2 у + sin2 z > 0,
je V > 0, právě vtedy, keď je trojuholník ostrouhlý а V < 0,
keď je tupouhlý.*)

*) Pravoúhlý trojuholník je vylúčený, pretože tangenty x, y, z podlá
předpokladu existujú.
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A —P — 4

Vo vypuklom štvoruholníku ABCD sú středy úsečiek AB,
ВС, CD, DA označené za radom К, L, M, N. Dokážte, že
odchýlky dvojíc priamok AC, BD a KM, LN sú si rovné
právě vtedy, ak

2KM.LN = AC.BD.

KOMENTÁR

Impulz: pretože ide o vlastnost’odchyliek, bude asi vhodné
použit’ vektorové určenie smerov. Na obr. 5 je načrtnutá
situácia.

N

Obr. 5
A

Označme t — В — А, и — C — A, v — D — A. Potom
směrové vektory priamok AC, BD sú vektory u, v — t
s verkosťami A C, BD. Ďalej je
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К =A+$t,
N = А + jv ,

L = А+ (B -А)+ ЦС -B) = A+ t + j(u -t) =

= A + j(u + t);
М = А + (D — А) + ЦС - D) =

= А + v + ^{и — v) = А + j(u + v).

Priamky KM, LN teda majú směrové vektory и + (v -1),
i u + t — v = u — (v — t) s vefkosťami 2KM, 2LN.

Na obr. 6 je znázorněna situácia (velkosti vektorov sú
pripísané v zátvorkách). Oba vyznačené uhly sú zhodné
právě keď platí APQR ~ ASQP, čiže

2KM
_ AC

2BD ~ 2LŇ'
čiže

(и)2KM.LN = AC.BD.

Q

u+ v-T (2KM)
T-t (BD)

P s
и (АС)

-(iГ-fju-(v - t)
(2LN)

Obr. 6

R
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Právě tak sa odvodí, že < QPR = < PSR právě vtedy, keď
platí (11).

Myslíme si, že impulz „vektorové riešenie“, by mal stačiť.
Riešenie úlohy je pěkná aplikácia vektorovej algebry a zá-
roveň ukáže výhodu vektorového aparátu proti iným me-
todám, ktoré sú v podstatě jeho obchádzaním.
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KOMENTÁŘE
К ŘEŠENÍ PŘÍPRAVNÝCH ÚLOH KATEGORIE В

I. KOLA

B-P-l

a) V oboru reálných čísel řešte graficky soustavu nerovnic

у < — x2 — 2x + 1

у > — 1 + sign (x + 1).

b) Nalezněte graficky kde 0* je obor pravdivosti
soustavy výrokových forem (l) a 0. = {[x,x
у < (x 4- l)2 — 1 + sign(x + 1)]}. (<»! je množina všech
reálných čísel.)

c) Je dána soustava nerovnic

у ^ x2 — 2x + 1,

у ^ -1 + sign (x + 1).
Nalezněte 0t n SP, kde 01 je obor pravdivosti soustavy (2)

s reálnými proměnnými x, у а 6P = {[x, y] e $ x x ;
у ^ (x + l)2 — 1 + sign (x + 1)}.

(i)

Poznámka: Sign x (čti signum x) je funkce reálné pro-
měnné definovaná takto:

1, je-li x > 0
sign x = 0, je-li x = 0

— 1, je-li x < 0

49



KOMENTÁŘ

Ve XXII. ročníku MO se v soutěžních úlohách vyskytlo
několik úloh s tematikou „celá část“. Ve XXIII. ročníku
jsou úlohy, v nichž se vyskytuje jiný případ schodové funkce:
funkce sign (signum).

Vhodnou přípravou by bylo probrat několik funkcí typu
sign f(x), kde/je jednoduchá funkce: lineární celistvá nebo
kvadratická nebo lineární lomená. V prvním stadiu bude
vždy cílem sestrojit graf. Doporučujeme zakreslit vždy do
téhož náčrtku graf funkce/i funkce signum/

Na obr. 7—11 jsou načrtnuty grafy/a sign/pro tyto funk-
ce/:

x i—► — 1 ,x i—> x 4- 1 ,x i—► X ,

2x
x i—> —x2 + 2x + 2, x h

X — 1

/1
1 a

sign f

0
signf 0

-1 1Г

A
f: xi—*• ^x-1f: X>—*X + 1f: Xi—^X

Obr. 7 Obr. 9Obr. 8
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i

Obr. 11Obr. 10

/
f sign f11

?

h 1 hh 1— H h+

o I

b -1■-1
sign f

2xf: Xf: X -x2+2x + 2 7T

Po takovéto průpravě snadno rozřešíte úlohy a), b), c).
V úloze a) je grafem první nerovnice vnitřek 'V paraboly p,
grafem druhé nerovnice část roviny jejich průnik je
vyšrafovaná plocha na obr. 12. Je třeba upozornit na to,
že se má podrobně popsat útvar n Které body hra-
nice к němu náležejí a které nikoli?

Obdobně se řeší úlohy b) а с). V úloze b) sestrojíme nejprve
graf funkce x i—► (x + l)2 — 1 + sign(x +1).

Obr. 12
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Můžeme postupovat tak, jako se postupuje při řešení
rovnic a nerovnic s absolutními hodnotami: pro sestrojení
grafu vyjádříme tuto funkci jako sjednocení tří funkcí v mno-
žinách

j^i = (-00; -1),
Dostaneme:

•*2 = {-!}, ./3 = (-1; 00).

xe^: x ь-* (x + l)2 — 2
xe/2: x 1—► (x -f- l)2 — 1, tj. — 11—► — 1

(x + 1f
Příslušné grafy jsou na obr. 13. Výsledný graf se skládá
z obou tlustě vytažených oblouků parabol (bez bodů A, B)
a z izolovaného bodu C = [ —1; —1]. Odtud snadno od-
vodíme graf nerovnice y<(x + l)2 — 1 + sign (x + 1).
Průnik grafů z obr. 12 a 13 je na obr. 14; je ovšem třeba
průnik přesně popsat, zejména pokud jde o hraniční a izo-
lované body. Úloha c) je variantou předchozí úlohy b),

x e J3: x ->

\
\ 3

\
2/ /\

/\
1 /\

\ /\

f-t—i+
-2 -1В 0-3 /

•C y-1
/

/
-2

A Obr. 13
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№-1,0]

[-3,-2]Obr. 14

v níž se má vyšetřit, jak se změní graf po připuštění rovnítka;
to má vliv na příslušnost hraničních bodů.

B-P-2

V oboru přirozených čísel řešte soustavu rovnic

ac — bd = p,

ad — bc = 0,

kde a, b, c, d jsou neznámé a p je dané prvočíslo, p > 2.

KOMENTÁŘ

Text úlohy by měl znít raději takto: Je dáno prvočíslo
p > 2. Určete všechny čtveřice přirozených čísel a, b, c, d,
pro které platí

ac — bd = p,

ad — bc = 0.
(i)
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Autorské řešení používá triku: první rovnice (1) se umocní
na druhou a levá strana se upraví pomocí druhé rovnice (1):

(ac — bd)2 = a2c2 + b2d2 — 2abcd =

= a2c2 — (bc) (ad) + b2d2 — (bc) (ad) =

= a2c2 — b2c2 + b2d2 — a2d2 =

= c2(a2 - b2) - d2(a2 - b2) =

= (a2 — b2) (c2 — d2),
tj-

(a + b) (a — b) (c + d) (c — d) = p2 . (2)

V součinu na levé straně (2) jsou všichni čtyři činitelé kladní.
Z druhé rovnice (1) plyne totiž

(3)b d

Kdyby bylo např. a ^ b, plynulo by z (3) c ^ d a dále
ac ^ bd, což je ve sporu s první rovnicí (1). Je tedy a > b
a podle (3) i c > d, a — b > 0, c — d > 0.

Z (2) plyne, že právě dva ze čtyř činitelů na levé straně
jsou rovni p; jsou to a + b a c + d. Zbývající dva jsou
rovni 1. Je tedy

a — b = 1,a + b = p,
odtud

(4a)= Up + i) b = ?{p - 1) •
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Obdobně vyjde

c = j(p + 1), d = Hp-l). (4b)

Zkouška ukáže, že (4a), (4b) je jediné řešení soustavy (1).
Je však možné přirozenější řešení. V soustavě (1) jsou

čtyři neznámé a,b,c,d\ přirozený postup je vyjádřit dvě
z nich — např. c,d — pomocí u, b, p. Jednoduchým výpočtem
dostaneme

bpap
(5)d

a2 -b1'
C

a2 — b2’

Ze vzorců (5) ihned vidíme, že je a > b a zároveň od.
Z rovnic (5) lze dostat novou jednoduchou soustavu pro
c, d jejich sečtením a odečtením:

P
(6)c — d =

a + b

(Také z těchto rovnic je bezprostředně patrné, že je a > b,
c>d) Z rovnic (6) vyplývá, že a — b i a + b dělí p; pro-
tože je a — b < a + b, je a — b = 1, a + b = p; odtud pak
plyne (4a) a (4b).

К rovnicím (6) však můžeme dospět trikem jednodušším:
sečtením a odečtením rovnic (1). Trikovost tohoto postupu
můžeme zmenšit tím, že jej vyložíme jako pokus zavést
místo c, d nové neznámé c + d, c — d. Ostatně rovnice (6),
ať se к nim dopracujeme jakkoli, představují nahrazení pů-
vodní soustavy (1) s neznámými a,b,c,d novou soustavou
s neznámými a + b, a — b, c + d, c — d.
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Tento výklad umožňuje poznat podstatu úlohy; jde v pod-
statě o dva rozklady prvočísla p v součin 1 .p = p. 1. Po
tomto rozboru by bylo vhodné rozřešit zobecněnou sou-
stavu (1):

Je dáno přirozené číslo N > 1. Určete všechny čtveřice
přirozených čísel a, b, c, d, pro něž platí

ac — bd = N,

ad — bc = 0.
(7)

Při řešení soustavy (7) se budou diskutovat rozklady čísla N
v součin dvou činitelů (v každé dvojici (a — b, a + b),
(c — d, c + d) musí být čísla téže parity) a z těchto rozkladů
dostaneme všechna řešení soustavy (7). Tak např. pro
N = 15 a N = 24 je postup řešení i výsledky v tabulkách.
Přitom se vychází z rovnic (8), které byly odvozeny ze sou-
stavy (7).
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(a — b) (c + d) (a + b)(c — d) = N. (8)N,

53 3a — h 1 11

a + b 3 5 15 5 15 15

c-d 5 3 3 11 I

c + d 15 15 15 5 5 3

N = 15

2 3 9 108 4a

b 2 6 51 7 1

210 9 4 38c

d 5 6 7 2 11

a — b 1 2 2 2 4 4 6 8

a + b 3 4 6 12 6 12 12 24

c-d 8 6 4 2 4 2 2 1

c + d 24 12 12 12 6 6 34

IV = 24

2 3 4 7 5 8 9 16a

b 1 1 2 5 1 4 3 8

916 8 7 5 4 3 2

d 8 3 4 5 21 1 1
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в-P-3

V rovině sú dané dva rožne body A, D. Ďalej je dané
také číslo r, že r > jAD. Určte geometrické miesto priese-
číkov uhlopriečok všetkých rovnoramenných lichobežníkov
s ramenom AD -a s polomerom opísanej kružnice r.

KOMENTÁR

Táto úloha je školská úloha z konštrukčnej geometrie,
ktorú by ste mali vedeť rozriešiť samostatné — možno až
na diskusiu.

Najprv třeba zostrojiť Libovolný bod X hfadanej mno-

žiny. Zostrojí sa kružnica к zo stredom S, s polomerom
r > jAD, prechadzajúca bodmi A, D (takéto kružnice sú
dve, súmerne združené podlá priamky AD); AD nemóže
byť priemerom kružnice k, pretože je AD < 2r (pozři obr. 15).
Lichoběžník ABCD je súmerný podlá spoločnej osi základní
AB, CD, ktorá prechádza stredom S. Bod C (i В) leží teda
na tom oblúku AD kružnice k, ktorý leží v polrovine ADS.

Obr. 15
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Zvolíme teda bod Cek, diplníme lichoběžník ABCD a zo-

strojíme bod X.
Všimnime si obvodové uhly. Je -fcACD = a, < AXD = 2a

(je to vonkajší uhol rovnoramenného -fcCDX). Toto móže
byť další podnět, ktorý vedie к deduktívnému vyšetreniu
množiny všetkých bodov X.

Závěr je: každý bod X hladanej množiny Opatří teda
к oblúku kružnice x nad tětivou AD s obvodovým uhlom
velkosti 2a, ktorý leží v polrovine ADS; к oblúku x перо-
čítáme jeho krajné body A, D.

Úplný dokaž záleží vo vyšetření, či platí rovnost’ dvoch
množin x = Jí. Pretože inklúzia Jí <= x bola dokázaná,
stačí zistiť, či je x с M.

Obr. 16

Túto inklúziu móžeme vyšetřit’ pomocou obr. 16. Tu je
zakreslená kružnice к aj oblúk x, ktorý obsahuje S (prečo ?).

Zvolíme bod X e x, zostrojíme polpriamky AX, DX
a ich priesečíky С, В s kružnicou k. Pretože je £ ACD =
= *ABD = ^ASD = ^AXD, je aj ^CDX = £ ACD =
= £ ABD; preto je AB // CD a ABCD je rovnoramenný
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lichoběžník alebo pravouholník. Tento druhý případ nastane
iba pre X = S. Teda neplatí x <= M. Množina Jíje oblúk x
bez bodov A, D, S.

Odporúčame, aby ste si narýsovali množinu Jí aj pre

případ, keď je sice AD < 2r, ale keď sa obe dížky málo
lišia (napr. AD = gr).

B-P-4

Určete objem čtyřstěnu, jehož každé dvě protější hrany
mají tutéž délku; délky hran v těchto dvojicích jsou a, b, c.

KOMENTÁŘ

Předně je třeba nakreslit náčrtek, do kterého se zapíší
délky hran písmeny a, b, c. Z tohoto náčrtku je patrné, že
stěny čtyřstěnu jsou čtyři shodné trojúhelníky (obr. 17).

Obr. 17

Dále je zcela přirozené sestrojit patu P výšky v spuštěné
z vrcholu D na rovinu ABC. Pomocí obsahu trojúhelníka
ABC a pomocí výšky v je totiž možné vypočítat hledaný
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Obr. 18
Di bb D3В

objem. Patu P sestrojíme tak, že sklopíme stěny ABD,
BCD, CAD kolem příslušných hran AB, BC, CA do ro-

viny ABC (obr. 18). Bod P je průsečíkem výšek trojúhel-
nika DlD2D3; přitom ABD3, BCDX, CAD2 jsou sklopené
pobočné stěny čtyřstěnu ABCD. Z obr. 18 je vidět, že bod P
nemusí ležet na žádné výšce ДABC; kdo zná aspoň trochu
teorii čtyřstěnu, ihned pozná, že čtyřstěn ABCD nemusí být
ortocentrický, ale že mohou být každé dvě jeho výšky mi-
moběžné.

Odbočka: Je-li a — b = c, je čtyřstěn ABCD pravidelný,
a tudíž ortocentrický. Je otázka, zda i mimo tento případ
může být čtyřstěn ABCD ortocentrický. Analytická úvaha
zní takto: Je-li čtyřstěn ABCD ortocentrický, je bod P orto-
centrem trojúhelníka ABC; proto body P, D2 leží na výšce
vb trojúhelníka ABC; protože je DXB = D3B, je tato výška
osou úsečky D^D^,, a je tudíž DXD2 = D3D2 neboli 2c = 2a.
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'a6

C Obr. 19

Výměnou písmen vyjde a = b = c. Jediný ortocentrický
čtyřstěn mezi čtyřstěny ABCD je tedy čtyřstěn pravidelný.

Výpočet objemu čtyřstěnu ABCD pomocí bodu P by byl
svízelný a zdlouhavý. Proto použijeme malého triku, který
je vlastně znám z odvozování vzorce pro objem jehlanu.

Impuls zní: Doplňte čtyřstěn ABCD na trojboký hranol!
Doplnění znázorňuje obr. 19; je tu ADЦBEЦ CF, AC//DF,
BC//EF, AB Ц DF. Hranol ABCDEF lze rozdělit v jehlany
ABCD a BCFED. Čtyřboký jehlan BCFED lze rozdělit
na dva čtyřstěny

BCFED = BCED + FECD.

Oba tyto čtyřstěny mají týž objem, neboť mají společný
vrchol D a jejich protější stěny jsou shodné, totiž

ABCE £ AFEC.
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Přitom čtyřstěny ABCD a DEFC mají týž objem, neboť mají
shodné podstavy (ДЛ£С £ /\DEF) a sobě rovné výšky
(vzdálenost rovin ABC, DEF). Hledaný objem V je tedy
roven jedné polovině objemu jehlanu BCFED.

Podstava jehlanu BCFED je kosočtverec BCFE o straně
délky a (obr. 20). Jeho pobočné hrany mají délky CD =
= ED = c, BD = FD = b; proto pata výšky spuštěné
z vrcholu D je průsečík Q úhlopříček BF, CE. Označme
QE = QC = x, QB = QF = y, QD = z. Pythagorova věta
pak dává:

x2 4- z2 = c2, y2 + z2 = b2 , x2 + y2 = a2 . (9)

E a

aВObr. 20

Z rovnic (9) plyne

2x2 = a2 + c2 — b2, 2y2 = a2 + b2 — c2,
2z2 = b2 + c2 — a2 . (10)

Mimoto je
V= jxyz.
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Označme ještě (analogie s postupem při odvození Heronova
vzorce) 2<r = a2 + b2 + c2; pak je

У2 = o - c2,x2 = a — b2 , z2 = o — a2,

a odtud

V= - a2) (a - b2)(a - c2). (и)

Vzorec (11) je ovšem výsledek získaný jen formálním vý-
počtem.

Prodiskutujte logickou strukturu řešení úlohy В —P —4:

Existuje-li čtyřstěn žádaných vlastností, lze jej doplnit na

trojboký hranol a z něho lze oddělit symetrický jehlan čtyř-
boký, jehož podstavou je kosočtverec. Pro délky jeho úhlo-
příček 2x, 2у a pro jeho výšku z platí rovnice (9), jejichž
řešením jsou vzorce (10). Pravé strany těchto vzorců musí
být kladná čísla. To znamená, že čísla a, b, c nejsou libovolná,
ale že pro ně platí

a2 + b2 — c2 > 0, b2 + c2 — a2 > 0,

c2 + a2 — b2 > 0. (12)
Nerovnosti (12) vyjadřují nutnou podmínku pro existenci
čtyřstěnu uvedených vlastností. Obrácením postupu se dá
dokázat, že podmínka (12) je také postačující.

Jaký je geometrický význam nerovností (12)? Nerovnost
a2 + b2 — c2 > 0 platí právě tehdy, je-li úhel £ ACB < 90°.
To vyplývá z kosinové věty

c2 = a2 + b2 — 2ab cos у .
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Bez použití kosinové věty se dá tato věta dokázat např.
pomocí vzorce pro vzdálenost dvou bodů (Pythagorovy
věty). Soustavu souřadnic zvolíme podle obr. 21. Dostane-
те и2 + v2 = b2, (и — a)2 + v2 = c2; spojením těchto dvou
rovnic vyjde

2au = a2 + b2 — c2 > 0,

tj. и > 0, tj. Š.ACB < 90°. Všechny stěny daného čtyřstěnu
jsou tedy ostroúhlé trojúhelníky.

Obr. 21
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KOMENTÁŘE
К ŘEŠENÍ PŘÍPRAVNÝCH ÚLOH KATEGORIE C

I. KOLA

C-P-l

Dokážte, že pre všetky kladné čísla a, b, c platí:

b(2a — c) c(2b — a) a(2c — b) ac ab bc
~

b + 'cba c a

Kedy platí rovnost’?

KOMENTÁR

Dokazovaná nerovnost’ patří do série kvadratických
„identit“ — rovností, či nerovností — s tromi alebo viace-
rými premennými, kde obor pravdivosti je zvyčajne mno-
žíná , Mq (množina všetkých kladných, resp. nezápor-
ných reálných čísel), připadne (množina všetkých reálných
čísel). Zdá sa, že by bolo užitočnejšie študovat’ systematicky
tieto identity a ich obměny, než robit’ rožne úpravy výrazov
často dost’ bizarných, ktoré sa v matematickej „praxi“
vyskytujú málo.

Východzou úlohou by mohlo byťdokazovanie nerovnosti:

Vx, y, zeáč; (x2 + y2 4- z2 — xy — yz — zx) ^ 0. (1)
Rovnost’ nastane právě vtedy, keď x = у = z.

Ak označíme Vx = x2 + y2 + z2 — xy — yz — zx, je
2V, = (x - y)2 + (y - z)2 + (z - x)2.

Odtiaí plynie pravdivost’ tvrdenia.
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Z vety (1) 1’ahko odvodíme napr. vetu (2) (pre riešenie
nasej úlohy však nie je nutná):

Vx, y, z e 0t\3(x2 + y2 + z2) — (x + у + z)2 ^ 0.

Rovnost’ nastane právě vtedy, ak x = у — z.
Dá sa íahko ukázat’, že odhadovaný výraz je právě 2kj.

Nech sú a, b, c tri reálne čísla rožne od nuly a označme

(2)

^ ab + bc + ca b{2a — c) c(2b — a) a(2c — b)
b b cc Cla

Po úpravě

„ (ab bc ca\ , , 4

V2 = 2 ( 1 1—— J — 2(a + b + c) =c a

1 ť

72 + i? + 7
i I 1
ab bc ca

= 2abc

V2
Ak použijeme pre a > 0, b>0, c>0 vetu (1), je ^0

2abc

= z), a preto aj V2 ^ 0.
11 1

dosadzujeme - = x, - = y,
b ca

1 1 1
Rovnost’ nastane právě vtedy, ked - = - =

abc
číže a = b = c.

C-P-2

Ktoré štvorciferné číslo dělitelné 36 sa dá zapísať ako
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súčet třetích mocnin dvoch bezprostředné po sebe následu-
júcich nepárnych prirodzených čísel?

KOMENTÁR

Jeden impulz к riešeniu by mohol byť v rozpravě, ako
matematicky vyjadriť podmienky a), b), c) a v akom poradí
ich uplatnit’:

Ak uplatníme podmienku c), zapíšeme (každé) hladané
číslo vo tvare

(2n - l)3 + (2n + l)3 = 16n3 + 12n,

kde n g Jípkje množina všetkých prirodzených čísel). Pod-
mienku a) uplatníme pomocou nerovností

1000 ^ 16n3 + 12n < 10 000.

Číslo 16n3 + 12n = 4n(4n2 4- 3) je dělitelné štyrmi; je de-
litelné číslom 36 právě keď je dělitelné deviati, čo nastane
právě keď je n dělitelné tromi. (Ak je 4n2 + 3 násobok
troch, je n násobok troch a obrátene.) Podmienka b) sa
teda uplatní tým, že sa n zapíše vo tvare n = 3/с, к e Jí.

Matematická formulácia úlohy С —P —2 teda znie: Náj-
dítě všetky čísla к e Jí, pre ktoré platí

1000 ^ Ш(\2к2 + 1) < 10 000. (3)
Nerovnosti (3) upravíme

27,7... ^ k(Uk2 + 1) < 277,7... .

Číslo k(\2k2 J 1) s rastúcim к velmi rýchlo rastie; zostav-

(3')
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me tabulku (to móže byť další pokyn к riešeniu,ak sa chceme
vyhnúť manipulácii s nerovnosťami).

к 2 3

к(12к2 + 1) 13 32798

Ďalej nemusíme tabulku zostavovať; vzhladom к (3') je
jasné, že vyhovujúce je iba к = 2. Potom je n = 6,2n — 1 = 11,
2n + 1 = 13. Naozaj číslo

ll3 + 133 = 3 528 = 36.98

vyhovuje všetkým trom podmienkam a), b), c).
Úloha С —P —2 sa dá róznym spósobom obměňovat',

napr.: Určte všetky štvorciferné čísla dělitelné číslom 48,
ktoré sú súčtom třetích mocnin troch po sebe bezprostředné
následujúcich prirodzených čísel.

Eahko sa přesvědčíme, že trojica musí obsahovat’ právě
jedno párne číslo a že má teda tvar

2/i — 1, 2n, 2n + 1.

Súčet třetích mocnin je

\2n{2n2 + 1).
Pretože 2n2 + 1 je nepárne číslo, musí byť n násobkom
štyroch, tj. n = 4k — a z (4) dostaneme nerovnosti

1 000 g 48/c(32/c2 + 1) < 10 000

a ďalej postupujeme pomocou tabufky ako v súťažnej úlohe.

(4)
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C-P-3

Jsou dány dva různé body А, В a kladné číslo b. Určete
geometrické místo těžišť všech trojúhelníků ABC takových,
že AC = b.

KOMENTÁŘ

Nejprimitivnější řešení této úlohy se může opírat o obr. 22.
Zde je M střed strany AB, T těžiště trojúhelníka ABC,

C
:

/

i /!: 4
/Т46 ý,3/!

-S—L
m

Obr. 22
A В

/

D bod úsečky AM, pro který platí AD = 2DM. Protože je
(z AACM) DT I AC, DT=^AC, leží bod T na kružnici к
se středem D a poloměrem jb. Označíme Jimnožinu všech
těžišť T; prozatím jsme dokázali inkluzi Ji a k. Pokus do-
kázat obrácenou inkluzi к c Ji ukáže, že neplatí; je totiž
třeba vyloučit oba průsečíky přímky AB s kružnicí k. Úvahy
o rovnosti dvou množin, která je zajištěna dvěma inkluzemi,
jsou nepostradatelné.

Náročnější variantu úlohy C — P — 3 dostaneme, budeme-li
vyšetřovat množinu těžišť T všech trojúhelníků AXC, kde
X probíhá polopřímku p opačnou к BA a. zároveň C pro-
bíhá kružnici (A; b), s výjimkou jejich průsečíků s přím-
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Obr. 23

kou АВ. Dostaneme útvar načrtnutý na obr. 23 a vyznačený
šrafováním. Zde získáte cennou zkušenost, jak v takovém
případě zacházíme s dvěma proměnnými: jednu z nich
(bod X) zvolíme pevně a vyšetříme množinu Mx pro proměn-
ný bod C. Pak zkonstruujeme množinu Ж, jež je sjednoce-
ním všech množin Jíx, kde X probíhá polopřímku p.

Přiměřenější je řešit úlohu stejnolehlostí: kružnice (D; Щ
je obrazem kružnice (A; b) ve stejnolehlosti se středem M
a koeficientem

С—P —4

Je dán obdélník ABCD a M je jeho libovolný vnitřní nebo
hraniční bod. Dokažte, že platí

MA2 + MC2 = MB2 + MD2.

Platí tato rovnost i pro body M roviny obdélníka, které
leží v jeho vnějšku?

KOMENTÁŘ

Také tato úloha je velmi primitivní. Situace volá po za-
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vedení soustavy ortonormálních souřadnic (obr. 24). Pak se
vypočte podle známého vzorce

AM2 + CM2 = x2 + y2 + (x — a)2 + (y — b)2 =

= BM2 + DM2 . (5)

Je zřejmé, že (5) platí pro každý bod M roviny. Lze ovšem
obejít soustavu souřadnic a vzorec pro vzdálenost dvou bodů
a použít jen Pythagorovy věty; upozorňujeme však na to,
že při tomto postupu musíme diskutovat polohu bodu M
vzhledem к bodům А, В, C, D, že některý z potřebných pra-

voúhlých trojúhelníků může přejít v úsečku nebo bod, prostě,
že řešení se stává těžkopádné. Naproti tomu použití vzorce

pro vzdálenost dvou bodů vyřídí všechny možné případy
naráz. V tom je cenné poučení o účinnosti metody souřadnic.

Dokazovaná rovnost platí ovšem také pro čtverec ABCD,
tj. pro každý pravoúhelník. Zato pro rovnoběžník, který
není pravoúhlý, věta neplatí. Umístíme soustavu souřadnic
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tak, aby vrcholy rovnoběžníka ABCD měly souřadnice

C = [a + u; c],A = [0; 0], B = [a;0],
D = [u; c] .

Vypočteme
A = AM2 + CM2 - (BM2 + DM2).

Po výpočtu vyjde
(6)A = 2au.

Protože а Ф 0, je d = 0, právě když и = 0, tj. když bod D
leží na ose y, tj. když £ DAB — 90°.

Problém můžeme ještě zobecnit: můžeme formulovat
otázku, pro které čtyřúhelníky (konvexní či nekonvexní)
platí

AM2 + CM2 = BM2 + DM2 (7)
pro všechny body M roviny. Metoda vyšetřování je stejná:
zvolíme soustavu souřadnic tak, aby pro vrcholy А, В, C, D
čtyřúhelníka platilo A = [0; 0], В = [a; 0], C =[b; c],
D = [d - 4
Z podmínky (7) dostaneme

b2 + c2 — 2bx — 2cy =

— a2 + d2 + e2 — 2ax — 2dx — 2ey.

Porovnáním koeficientů a absolutních členů dostaneme

b2 + c2 = a2 + d2 + e2 . (8)b — а d, c = e,
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Středy dvojic AC a BD mají souřadnice

[íb; ic] ;

podle (8) tedy oba středy splynou a čtyřúhelník ABCD je
rovnoběžník. Z poslední rovnice (8) plyne

b2 = a2 + d2 ;

protože b = a + d а а Ф 0, je d = 0, tj. £DAB = 90°.

[i{« + <4 i<?] ,

Shrneme výsledky: Je-li ABCD rovnoběžník, pak pro

všechny body M jeho roviny platí A — konst. Tato kon-
stanta (2au) je rovna nule právě tehdy, když je rovnoběžník
ABCD pravoúhlý.

Tím však není situace vyčerpána; zcela přirozená je otázka,
jakých hodnot pro body M nabývá výraz A, je-li ABCD
čtyřúhelník, který není rovnoběžník. Po předchozích zku-
šenostech můžete už postupovat samostatně. Zvolíte sou-
stavu souřadnic jako dříve tak, že A = [0; 0], В = [a; 0],
C = [b; c], D = [d; e] a vypočtete A:

A = 2(a + d — b) x + 2(e — с) у +
4- (b2 + c2 — a2 — d2 — c2).

Protože ABCD není rovnoběžník, nejsou oba koeficienty
při x, y, v (9) rovny nule. Z (9) lze vyčíst toto: Výraz A na-
bývá též hodnoty к (libovolně zvolené) pro nekonečně mnoho
bodů [x; y], jejichž souřadnice splňují rovnici A = k, tj.
které vyplňují přímku o rovnici A — k. Mohlo by se zjišťo-
vat, jakou polohu má tato přímka (resp. osnova přímek při
proměnném к) vzhledem к bodům А, В, C, D apod.

(9)
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Zkoumání vyžaduje hlavně tři poznatky analytické geo-
metrie. Jsou to: vzorec pro vzdálenost dvou bodů, souřadnice
středu úsečky a rovnice přímky. Tím tyto připojené úlohy
už značně vybočují z náplně osnovy pro první ročník, ale
poskytují pěkný příklad problémové situace pro starší olym-
pioniky.
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KOMENTÁŘE
К ŘEŠENÍ PŘÍPRAVNÝCH ÚLOH KATEGORIE Z

I. KOLA

Z-P-l

Šachový kroužek uspořádal turnaj, v němž každý z ka-
marádů, Jirka, Karel, Tonda, obsadil právě jedno z prvních
tří míst. Určete pořadí chlapců v šachovém turnaji, víte-li,
že z výroků

a) Jirka je třetí,
b) Tonda není druhý,
c) Karel není třetí,

je právě jeden pravdivý.

KOMENTÁŘ

Úloha dává příležitost к procvičování negací výroků a je-
jich pravdivostních hodnot, i když není třeba o nich expli-
citně hovořit. Řešení bude asi v každém případě experimen-
tální. Jedna možnost je vypsat všechny permutace tří prvků
J (Jirka), К (Karel), T (Tonda) a vybrat z nich ty, které
vyhovují podmínce. Toto je metoda dosti primitivní, ale
vede spolehlivě к cíli. Přitom musíme prozkoumat jen 3! = 6
permutací.

Této metody se dá zcela dobře použít i při čtyřech prvcích;
počet permutací je pak 4! = 24. Časově náročnější je zkou-
mání všech permutací 5 prvků, kterých je 5! = 120. Na V. me-
zinárodní matematické olympiádě v Polsku v r. 1963 byla
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dána úloha tohoto druhu; její experimentální řešení trvalo
jen asi 35 minut a bylo kratší i jednodušší než řešení, které
používalo pomocné věty z kombinatoriky.

Vraťme se к naší úloze. Šest možných permutací (pořadí)
tří kamarádů bylo:

1. JKT, 2. JTK, 3. KJT, 4. KTJ, 5. TJK, 6. TKJ.
Pro permutace 1 a 3 jsou pravdivé výroky b, c, proto nejsou
řešením úlohy. Pro permutaci 2 jsou nepravdivé všechny
tři výroky a, b, c, pro permutaci 4 jsou pravdivé výroky a, c,

pro permutaci 5 je pravdivý jen výrok b, pro permutaci 6
jsou pravdivé všechny tři výroky a, b, c. Řešení je tedy jediné:
je to permutace 5.

Jiné experimentální řešení vychází z pravdivosti či ne-
pravdivosti výroků a, b, c; z nich se sestrojí žádaná permu-
táce. Při tomto postupu lze použít tabulku:

i n

p

(l)
/. p

p

Přitom p (n) značí pravdivost (nepravdivost) příslušného
výroku.

Jsou tedy možné tři případy, charakterizované třemi
sloupci tabulky (1). Připomeňme ještě, že je-li výrok ne-
pravdivý, je jeho negace (popření) pravdivá, a že jen jediný
z výroků a, b, c je pravdivý. Tři možné případy pak zapíšeme
slovně:
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I. Jirka je třetí.
Tonda je druhý.
Karel je třetí.

II. Jirka neni třetí.

Tonda není druhý.
Karel je třetí.

III. Jirka není třetí.

Tonda je druhý.
Karel není třetí.

Případ I je nemožný (Jirka i Karel nemůže být třetí). Také
případ III je nemožný (Jirka i Karel by museli být první).
Zbývá jen případ II, který vede к pořadí TJK jako při
prvním způsobu řešení.

Varianta úlohy pro čtyřprvkovou množinu je tato: Z cifer
1, 2, 3, 4 má být sestaveno čtyřciferné číslo tak, aby

a) právě dvě cifry stály na místě, které udávají (např. 2
na druhém místě zleva);

b) byly právě tři dvojice, kde by větší z čísel 1,2, 3,4 stálo
před menším (např. 3 před 1).
Prozkoumáním všech 24 permutací v množině (1,2, 3,4}
zjistíme, že podmínce a) vyhovuje jen šest permutací

1243, 1324, 1432, 2134, 3214, 4231.

Počty dvojic, v nichž je větší číslo před menším, jsou po řadě

1, 1, 3, 1, 3, 5.

Řešením jsou tedy čísla 1432 a 3214.

Z - P - 2

Ručičky hodin ukazují přesně 12 hodin. Otočíme velkou
ručičkou stokrát po sto stupních. Kolik hodin pak budou
hodiny ukazovat? Udejte s přesností na minutu.

78



KOMENTÁŘ

Tato úloha je jednak školským cvičením na tzv. převody
měr úhlových na míry časové, jednak cvičením na rozšíření
algoritmu „dělení se zbytkem" čili měření na rozklad daného
čísla vzhledem к několika dělitelům.

Předpokládáme, že otáčení velkou ručičkou neprovádí
ničitel hodinových strojů, tj. že se otáčení děje ve smyslu
pohybu hodinových ručiček. Otočí se o 100.100°, tj.
o 10 000 úhlových stupňů. Jedné časové minutě je na cifer-
niku hodin přiřaděn úhel 6°; provedenému otočení je tedy
přiřaděn čas 10 000 = 1 667 časových minut, tj. 27 hodin
47 minut, neboť 1667 = 27.60 + 47. Je tedy

10 000° t-> 1 den + 3 hodiny + 47 minut.

Hodiny budou ukazovat 3h47m,n (s přesností na jednu
minutu).

Domníváme se, že by se však měla řešit též úloha obecná
(otočení o n stupňů) a měl by se sestavit vzorec

O)

(2)n = 8 640a + 3606 + 6c + z,

kde a, b, c jsou nezáporná čísla, b < 24, c < 60, a z je celé
takové číslo, že platí

|z| < 3. (3)
Přitom a značí počet dní, b počet hodin, c počet minut.

Vzorce (2) užijeme takto: číslo n dělíme číslem 8 640 a vyjde
počet dní a. Zbytek tohoto dělení dělíme dále číslem 360
a vyjde počet hodin b. Zbytek druhého dělení dělíme čís-
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lem 6, ale tak, aby nový zbytek měl absolutní hodnotu menší
než 3; tak vyjde počet minut.

V našem případě:

10000 = 8640. 1 + 1 360,

1 360 = 360. 3 + 280,

280 = 6.47 - 2.

Obdobné vzorce lze konstruovat např. při převádění hodin
na hodiny, dny, týdny, měsíce apod. Pozměněné „dělení“,
kde absolutní hodnota zbytku je nejvýše rovna polovině
dělitele, se dá dobře vysvětlit pomocí číselné osy (obr. 25),
např.

-i| <i-3. (4)17 = 6.3 - 1,

O 3 6 Q 12 15
i—i—i—i—i—i—i—i—i—l—l—i—l—i—i—l—h

18
Г I I

17
Obr. 25

Z-P-3

Pravidelný osemuholník má byť vpísaný do štvorca s jed-
notkovou stranou.

a) Popište konštrukciu.
b) Vypočítajte dížku strany osemuholníka.
c) Vypočítajte dížky všetkých uhlopriečok osemuholníka.
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KOMENTÁR

Formulácia „vpísať pravidelný osemuholník do štvorca“
nie je jednoznačná; málo by sa diskutovat’ o jej interpretácii.
Obdobná formulácia „vpísať trojuholník do kružnice" zna-

mená, že každý vrchol trojuholníka leží na kružnici, obdobně
v nasej úlohe budeme požadovat’, aby všetkých osem vrcho-
lov pravidelného osemuholníka ležalo na hranici štvorca
ABCD (obr. 26). Osemuholník vznikne oddělením vyšrafo-
váných trojuholníkov od štvorca ABCD.

Z obr. 26 móžeme fahko odvodit’ konštrukciu, ak si po-
všimneme, že -fcKSA = -fcASL = 22°30'; přitom je S střed
štvorca ABCD. Ďalšia konštrukcia pódia obr. 27; tu sú oba
vyšrafované trojuholníky zhodné (prečo?). Ak osemuholník
doplníme v tieto štyri trojuholníky, ktoré ležia mimo štvorca,
vznikne nový štvorec A B CD', zhodný s póvodným. Aj keď
nepoznáte zo školskej geometrie otočenie okolo středa, mó-
žete 1’ahko „objaviť", že štvorec A'B'C'D' vznikne zo štvorca

C D

/

D^\
/ / NК

A П вL

Obr. 26 Obr. 27



ABCD otočením o uhol velkosti 45° v kladnom zmysle
okolo středu S (S je střed štvorca ABCD). Tento štvorec
A B CD' sa dá Iahko zostrojiť, pri jeho konštrukcii záleží
velmi na přesnosti rysovania, tak ako pri prvom spósobe.
Dá sa povedať, že kontrola zistením zhodnosti všetkých
stráň a všetkých uhlov výsledného osemuholníka je nároč-
nou skúškou přesného rysovania. Za jednotku dížky volíme
asi 6 cm.

Druhá a tretia čásť úlohy je cvičením na použitie Pytha-
gorovej vety a na výpočty s odmocninami. Výpočty sa sice
dajú previesť úplné numericky, ale bolo by velmi cenné
porovnat’ eleganciu a přesnost’ „algebraického postupu"
s ťažkopádnosťou bezduchého numerického výpočtu.

\
\
\
\

Obr. 28

Pre výpočet dížky strany použijeme obr. 28. DÍžku strany
osemuholníka označíme x; potom je

x
KL = LM = MN = x, AL = BM = -г-

J2’
teda

x x

(5)J2 + X + J2~1’
82



tj.
2x

x(V2 + 1) = 1,x у/2 + x = 1,-7Г + X = 1 ,

л/2
1

(6)*

y/2+ť
V predchádzajúcich výpočtoch móžeme pracovat’ s J2 ako

s parametrom r; prevádzať algebraické úpravy a používat’

pri nich stále vztah r2 = 2 (napr. je -r- = —= yj2).
yj Z Z

Vzorec (6) je nepohodlný, pretože v jeho menovateli nie je
celé číslo. Preto prevedieme známu úpravu (tzv. rozšírenie)

1 r - 1 r - 1
X —

r+1 (r+l)(r-lj f2 — 1

= V2 -1
2 - 1

= yj2 — 1. (7)

Až teraz dosadíme napr. J2 = 1,414 a vyjde
x = 0,414.

Numerický výpočet by vyšiel od vyčíslenej rovnice

x x
= 1+ x +

1,414 1,414

a dospěl by к rovnici

3,414x = 1,414
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a odtiaT by sa po nepríjemnom počítaní určilo x numericky.
DÍžky uhlopriečok MP, MQ, MR (každá iná uhlopriečka

pravidelného osemuholníka je zhodná s niektorou z nich)
vypočítáme pomocou Pythagorovej vety. Vyjde

2
X X

— x2(2 + л/2),MP" = + 'T2 + XлЛ
MQ = 1,

MR2 = 1 + x2 .

Po úpravě (dosadenie za x zo (7)) dostaneme
MP2 = 2 - 72,

Ak sem dosadíme yj2 = 1,414, móžeme pomocou tabulky
druhých mocnin vypočítat’ MP a MR.

Ako cvičnú úlohu odporúčame „vpísať do jednotkového
pravidelného šesťuholníka pravidelný dvanásťuholník“ a vy-
počítat’ dlžku jeho strany (obr. 29). Pri konštrukcii použijeme

MR2 = 4 - 2 72 .

1

Obr. 29
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tú skutečnost’, že -$:PSB = £BSQ = 15° alebo otočíme
daný jednotkový pravidelný šesťuholník okolo jeho středu S
o 30°. Pri výpočte postupujeme takto: Označíme PQ = x,

pretože *PQB = 30°, *SBQ = 60°, je BQ = Zo
vztahu BQ + QR + RC = 1 plynie

2x
—TZ + X = 1 ,

V3
číže

x(2 + 73) = 73 .

Odtiaf vypočítáme

(8)x = 2 73 - 3 = 0,464.
Tiež v tejto cvičnej úlohe je vhodné nahradit’ J3 para-
metrom r. Výpočet má potom túto podobu:

x x
1 h X = 1 ,

r r

2x -I- rx
= 1,

r

(2 + r) x = r,

.. r(2 ~ r)
(2 + r)(2

2r — r2
(9)X =

4 — r2 '

Ak sem dosadíme r = J3 a r2 = 3, vyjde (8). Stojí azda
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za pozornost’, že pri dosadení r = J2, r2 — 2 do (9) vyjde (7).
To naznačuje, že vzorec (9) má obecnejšiu platnost’. Úlohou
zostáva výpočet dížok uhlopriečok dvanásťuholníka. Pri zo-
becňovaní úlohy sa uplatní miesto Pythagorovej vety jej
zobecnenie — kosinová veta.

Z-P-4

Jsou dány dvě kružnice k^S^; rj), k2{S2', r2), které se
protínají v bodě Q, přičemž je rx Ф r2, = 90°. Dále
je dáno kladné číslo d. Bodem Q veďte přímku tak, aby na
ní kružnice k1, k2 vyťaly dvě nepřekrývající se tětivy, jejichž
délky mají součet d. Proveďte diskusi řešení úlohy.

KOMENTÁŘ

Úloha Z —P —4 otvírá tematiku ortogonálních kružnic:
přímka QSX (QS2)
protože je QSt _L QS2, protínají se kružnice ku k2 v bodě Q
ortogonálně (obr. 30).

bodě Q dotýká kružnice k2 (iq);se v

k.
/Г)

/ki m

iyp
Q2

Si.
v

R

Obr. 30

Qi
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Do postupu řešení úlohy vnikneme upozorněním na sku-
tečnost, že Р±Р2 = \d (Pb P2 jsou paty kolmic spuštěných
z bodů Su S2 na přímku m). Přímka n vedená bodem S2
rovnoběžně s přímkou m (předpokládáme rt > r2) protne
úsečku SxPi v bodě R. Pravoúhlý trojúhelník SjS2P má
přeponu délky c — a odvěsnu délky S2R — \d\ může
se ovšem redukovat na úsečku SiS2, je-li S,S2 = jd. Z pra-
voúhlého trojúhelníka StS2Q plyne

c2 = r\ + r\ .

Body Q, R leží na polokružnici x sestrojené nad průměrem
5х52. Trojúhelník udává směr (S2Ř) přímky m. To
je druhý pokyn pro řešení úlohy.

(10)

Diskuse je poměrně obtížná. Je třeba zajistit sestrojitel-
nost bodu R; podmínkou pro to je vztah jd ^ SjS2, neboli
podle (10)

d2 й 4(r? + rj).
Dále je třeba uplatnit podmínku, že obě tětivy QXQ a Q2Q
se nepřekrývají. Zde asi budou řešitelé zkoušet а к výsledku
dojdou cestou vždy trochu intuitivní, neboť jde o otázku
uspořádání. Pravděpodobně zkoušením objeví (nutnou a po-
stačující) podmínku \d ^ r2 neboli ,

(4)

(12)d^2r2.

To vyplyne ze sledování polohy bodu R na obloucích SXQ,
S2Q polokružnice x. Spojením podmínky rx > r2 s podmiň-
kami (11) a (12) dostaneme tzv. podmínku řešitelnosti v sou-
časné platnosti nerovností
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d2 ^ 4(rf + rj).d^2r2,

Délka d tedy náleží intervalu

Г1 > Г2 •>

2r2^d ^2 Jr\ + r\.

Zbývá vyšetřit případ rx — r2 (i když ho znění textu úlohy
vylučuje). Vzhledem к choulostivé diskusi by bylo asi nej-
výhodnější řešit úlohu metodou souřadnic.

(

\
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III. Soutěžní úlohy I. kola

KOMENTÁŘE
К ŘEŠENÍ SOUTĚŽNÍCH ÚLOH KATEGORIE A

I. KOLA

А —I —1

Buďte xb x2, x3 tři kladná čísla. Buďte yu y2, y3 tři kladná
čísla, která leží mezi největším a nejmenším z čísel xl5 x2, x3
a nechť platí

(O+ x2 + x3 ^ yt + y2 + у3 .

Dokažte, že pak je

(2)*1*2*3 ^ У1У2УЗ ,

*1*2 + X2X3 + X3XX й У1У2 + У2У3 + УзУ1 • (3)

KOMENTÁŘ

Podmínky (1), (2), (3) se týkají tzv. elementárních symetrie-
kých funkcí proměnných xř, resp. yř. Označme:

si = *1 + *2 + *3, <?i = У1 + У2 + Уз ,

S2 = XXX2 + X2X3 + X3Xi , ^2 = У1У2 + У2У3 + УзУ 1 ,

s3 = X^X2X3 , 03 = У1У2УЗ •
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Symetrie těchto funkcí umožňuje zvolit označení tak, aby
platilo

(4)У1 йу2й Уз,Xí й x2 й x3,

takže z předpokladů úlohy

(5)*i ^ У\, Уз й *з •

Volbu označení můžeme považovat za první impuls pro ře-
šení úlohy.

Druhým impulsem je zjištění, že stačí dokázat tvrzení pro

případ, že v (1) nastane rovnost: snadno se ověří, že vždy
existují kladná čísla y\, y'2, y'3 tak, že y\ S У2 = Уз, dále

Уз й *з,*i ^ y'i,
a konečně

Уi й Уi, i = 1,2,3,
a přitom

*1 + x2 + x3 = y\ + ý2 + /3.

Dokážeme-li nerovnosti (2) a (3) pro y\, y2, y'3, pak (2) a (3)
platí tím spíše pro yu y2, y3.

Třetím impulsem, který ulehčí řešení, je zavedení polyno-
mických funkcí

f(t) = (t - xx)(t - x2) (t - x3)

g(t) = (t - yx)(í - y2)(t - y3).
a
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Po vynásobení totiž dostaneme

f(t) = ř3 - Siř2 + s2t - s3,

g(t) = ř3 - <Ti ř2 + cr2ř - <r3.

Dvojího vyjádření funkcí f[t) a g(t) užijeme při dosazení
t = a t = x3. Je totiž

J{xi)=f(x3) = 0, (6a)
zatímco z (5) vyplývá

0(*з) ^ 0,

g(xi) ^0.

Nyní je již vše připraveno к důkazu. Předpokládejme, že
v (1) nastane rovnost. Odečteme f(t) a g(t): výsledná funkce
r(ř) je lineární (nebo konstantní):

>{t) = {S2 ~ Vl) t ~ (S3 - (73) .

(6b)
(6c)

(6d)
Máme dokázat, že

s2 = a2 )

S3 ^ <73 •

Dosadíme-li do r(t) jednak t = xl5 jednak t = x3, dostává-
me podle (6a) až (6c)

ФО ^ 0, r(xз) ^ 0
neboli

(s2 - a2) xx - (s3 - <r3) ^ 0.
(s2 - cr2) x3 - (s3 - (73) ^ 0. (?)
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Tyto nerovnosti dávají po odečtení

(S2 - <T2)(x3 - Xj) ^ 0.

Je-li x3 > Xi (vždycky je x3 ^ хД dostáváme

s2 ^ <*2

a z první z nerovností (7)

s3 ^ ,

jak jsme měli dokázat. Případ x3 = xx v tomto studiu к cíli
nevede, ale vrátíme-li se na začátek úvahy, zjistíme, že z (5)
a (4) pak vyplývá rovnost všech čísel x, a yh takže s2 = o2
a s3 — <t3. Řešení je úplné.

A —1 — 2

Jsou-li dána libovolná čtyři různá reálná čísla, lze označit
vždy jedno z nich x a ostatní tři pak у, z, w tak, aby platila
nerovnost

|x3 — x2(y + z + w)| < |x(yz + zw + wy) — yzw\ ; (8)
dokažte.

KOMENTÁŘ

Snad nejpřirozenější je důkaz nepřímý. Jsou-li daná čísla
ve vzestupném uspořádání

(9)a < b < c < d,
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pak zvolíme-li kterékoli z nich za x, neplatí nerovnost (8),
ale její negace; platí tedy zároveň (9) a nerovnosti

a2\a — b г- c — d\ ^ |abc + abd 4- acd — bcd\, (10a)
b2\b — a — c — d\ ^ |abc + pbd + bed — acd\, (10b)
c2|c — a — b — d\ ^ |abc + acd + bed — abd\, (10c)
d2\d — a — b — c| ^ |abd + acd + bed — abc\. (I0d)

Ze systému nerovností (9) a (10) máme odvodit spor.

Protože podle (9) je (b — a) (b — c) (b - d) > 0, je

b2(b — a — c — d) + (abc + abd + bed — acd) > 0. (11)

Spojením (10b) a (11) dostaneme

b — a — c — d> 0.

Obdobně je podle (9) (c Sa) (c — b) (c — d) < 0, a tedy

c2(c — a — b — d) + (abc + acd + bed — abd) < 0. (13)

Spojením (10c) a (13) dostaneme

c — a — b — d< 0.

(12)

(14)
Z (12) a (14) odvodíme

b — c > a + d, b — c > —(a + d),
tj-

b — c > \a d\ 0.
Avšak nerovnost b — c > 0 je ve sporu s (9).
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Obdobně jako (12) a (14) lze odvodit z nerovností
(a — b) (a — c) (a — d) < 0 a (d — a) (d — b)(d — c) > 0 ne-
rovnosti

b + c + d — a> 0 a d — a — b — c> 0, (15)

kterých však nelze využít к odvození sporu.
Odvodí-li řešitel všechny čtyři nerovnosti (12), (14) a (15),

záleží na jeho kombinačních schopnostech, aby vyhledal ty
dvě z nich, které vedou ke sporu.

A —1 — 3

Je daná konečná množina Ж, označme Jii, Jí2 dve jej
Tubovolné neprázdné podmnožiny, s12, d12 nech sú počty
prvkov množin Jíi и Лъ [Лх u Л2) \ (Лг n Л2) a pre-

vzdialenosťou množin Ли Л2. Dokážte,
S12

že pre tuto vzdialenosť platí trojuholníková nerovnost’.

hlásme číslo

KOMENTÁR

Táto úloha poskytuje niekol’ko příležitostí к rozšíreniu
znalostí žiakov v množinovej tématike. Číslo d 12 je zrejme
počet prvkov tzv. symetrického rozdielu množin Д, Л2:
označme ho Л1V Л2. Pomocou Vennovho diagramu
(obr. 31), kde ЛгЧ Л2 je vyšrafovaný, 1’ahko odvodíme:

= (x e Лх u Л2; (x e Лх л x
x € Л2)}.

v

Av
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Mi п М2Obr. 31

V potenčnej množině ^ konečnej množiny Ж, ktorá je
tiež konečná*), zavedieme podlá textu úlohy vzdialenosť

q{M^ Jí^) = — pre Jíx Ф 0 v Jí2 Ф 0
S12

a q(0, 0) = 0.

Zrejme je

VUři, 4e^; q[Mъ J42) = 0<=> = Jít2 ■

Ak dokážeme, že pre vzdialenosť q platí ešte neostrá troj-
úholníková nerovnost’, bude dokázané, že štruktúra (^>ar, q)
je metrický priestor a zobrazenie x ^ -> ář, tj.

^#2] í?(^i, ^2) je metrika.
Pretože riešitelom sú najbližšie operácie n, u, vyjádříme

dí2 pomocou p12, s12; z definície operácie V vidno, že

*) Potenčná množina je množina všetkých podmnožin základnej
množiny 34 včítane množiny 0. Ak má 2Ě n prvkov, má 2" prvkov.
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^12 — s12 — Pí2 >

a teda

^12 P12

s12 s12

Teda máme dokázat’, že pre všetky trojice Мъ Мъ Мъ e

platí nerovnost’

P12 P23 P31
d = 1 + 1 - — 1 - žo,

S12 s23 S31

čili

1
d =

S12S23S31

• (S12S23S31 — Pl2S23S31 — P23S12S31 + P31S12S23) ~

s
(16)^0.

S12S23S31

Z (16) plynie, že d ^ 0 právě vtedy ak <5 ^ 0. Sústredíme
sa na dokázanie nerovnosti ó 0.

Za předpokladu, že riešitelia sú zoznámení zo symetrie-
kým rozdielom dvoch množin a s pojmom metrického prie-
storu (to však nie je nevyhnutelné nutné), móžu sa dopracovat’
nerovnosti <5^0 samostatné. Pre zjednodušenie ďalšieho
postupu snáď ešte doporučíme, aby použili indukciu, tým
sa vyhnú zdlhavým výpočtom.

Indukcia móže postupovat’ s rastúcim počtom prvkov

96



м. М3

M2n(M,uM3)Obr. 32

množiny M2 \ [Jíx u dii), ktorá je na obr. 32 hrubo ohra-
ničená.

Predpokladajme, že pre množiny Mx, Мъ Ji3 platí ne-
rovnost’ b ^ 0 a nahraďme množinu Jí2 množinou Jí{ tak,
že к množině Jí2 \ u -#3) přidáme další prvok. Číslo
b' příslušné množinám Jix, Jí2, Ji3 dostaneme tak, že čísla
s12, s23,... nahradíme podlá tabulky:

P23 Pils12 s23 S31 P12

s23 + 1s12 + 1 Pii‘S31 P1 2 Pil

Dostane sa tak

b' — b + s23s31 -I- s12s31 +

+ (S31 + P31S23 + P31S12 + P3l) — Pl2S31 — P23S31 >

tj-
b' ^ b + s31(s23 - p23) + s31(s12 - p12) ^ b,
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pretože s23 — p23 ^ 0, s12 — p12 = 0- Na tieto odhady
móžu riešitelia prísť sami, ak budu skúmať vyjadrenie b'
pomocou ó.

Indukcia bude převedená, ak platí ó ^ 0 pre

M2 \ [Mx u JI?) = 0. Nerovnost’ <5^0 dokážeme pre prí-
pad M2 \ u M-3) = 0 indukciou pre rastúci počet
prvkov množiny M3 \ («M2 u Mx). Ak sa prevedie indukčný
krok, potom záleží iba na tom, či nerovnost’ b ^ 0 platí
v případě .//3 \ {My u .^//2) = ^ \ (-^3 u - = 0- Toto
však dokážeme tretiou indukciou, a to pre rastúci počet
prvkov množiny Jix \ [M2 u M-3). Nakoniec teda musíme
zistiť, či nerovnost’ S ^ 0 platí v případe

\ ^ == *^2 \ (еУ^3 ^ ) ==

= ^3\ («^ и M2) = 0.

To je ale evidentně (pozři obr. 33), tu je s12 — s23 = s31 = s.
Označme p počet prvkov množiny Jíx n Jí2 n Ji3. Potom
z (16) plynie b = 2s2(p31 — p), a teda b ^ 0. Tým je veta
z úlohy A — I — 3 dokázaná.

Obr. 33
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A-1-4

Zistite všetky reálne a z intervalu (O, %k), pre ktoré platí

sin2a (6 — sin2a) —1^7
sin 2a cos a 12

KOMENTÁŘ

Úloha připomíná staré Časy, kdy jádrem středoškolské
matematiky bylo řešení rovnic všeho druhu a jejich soustav
ve vyumělkováných úlohách, jejichž řešení vyžadovalo na-

učených triků. I když je úloha A —1 — 4 formulována jako
nerovnost, vznikla z rovnice, v níž koeficienty jsou voleny
tak, aby vyšly kořeny racionální a aby se řešitel vyhnul
komplikacím — např. rovnici 4. stupně, kterou by neuměl
řešit. Ale snad neškodí, když se v olympiádě vyskytne jedna
uhlazená úloha z dob verneovek.

Je samozřejmým nápadem použít „substituce44 sin a = x;
tím se rovnice, která měla lehký goniometrický nádech, pře--
vede na úlohu algebraickou, zvláště když si všimneme vý-
hodné okolnosti, že

sin 2a cos a = 2 sin a cos2 a = 2x(l — jc2) .

Protože je ae(0, jk), je xe(0, 1); to má za následek ne-
rovnost 2x(l — x2) > 0, a tím ulehčení dalšího postupu.

Danou nerovnici znásobíme kladným číslem 2x(l — x2);
po úpravě vyjde

6x4 — 7x3 — 36x2 + 7x + 6 IZ 0. (17)
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Zabývejme se nejprve rovnicí

6x4 — 7x3 — 36x2 4- Ix + 6 = 0 ; (18)

její řešení nám umožní rozložit polynom na levé straně
v součin tzv. kořenových činitelů.

Koeficienty při x4, x° a x3, x jsou čísla s týmiž absolutní-
mi hodnotami; rovnice (18) je tzv. poloreciproká; víme, že
její kořeny (čtyři) jsou po dvou převrácená čísla až na zna-
mění. Použijeme známé úpravy (triku) a sdružíme členy
takto:

(6x4 + 6) + ( —7x3 + 7x) — 36x2 = 0. (19)

Rovnici (19) dělíme x2 (tím neztrácíme žádný kořen, neboť
rovnice (19) nemá kořen x = 0); vyjde

11
6( x2 4—=-1 — 7( x 1 — 36 = 0.

x2 X

Provedeme novou substituci

1
(20)у = x

X

1
z (20) dostaneme x2 + -j = y2 + 2. Po dosazení a úpravě
nabude rovnice (19) podoby:

6y2 — 7y — 24 = 0.

Známým způsobem rozložíme levou stranu v součin koře-
nových činitelů; pak přejdeme к nerovnici
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(3y-8)(2y + 3)žO. (21)

Připomínáme, že tento postup je přípustný, neboť jsme dříve
dělili kladným číslem x2; pomocí (20) se vrátíme к původní
neznámé x; po vynásobení kladným číslem x2 dostaneme

(3x2 — 8x — 3) (2x2 + 3x — 2) ^ 0.

Rozložíme-li oba kvadratické trojčleny v kořenové činitele,
vyjde konečně

(x - 3)(3x + 1)(x + 2)(2x - 1) £ 0. (22)

Dva z činitelů (22) jsou tedy nezáporní, dva nekladní nebo
jsou všichni čtyři nezáporní.

Pro zjednodušení práce se obrátíme ke geometrickému
znázornění na číselné ose (obr. 34). Grafem nerovnic
x — 3^0, x — 3^0 jsou dvě polopřímky s počátkem
v bodě 3; obdobně je tomu u ostatních dvojčlenů. Protože
řešení má padnout do intervalu (0, 1), jde o polopřímky

x + 2 ^ 0,

Čtvrtá polopřímka musí být podle předchozího 2x — 1 ^ 0.
Pro řešení tedy dostáváme interval (0,-j), který je průnikem
intervalů (0,1) a ( — 00,5-). Možná řešení jsou dána nerovní-
cemi

Зх + 1 ^ 0, X — 3 5$ 0 .

ушщ
I—t+ ■f +"4

-1 0 1 2

3̂Л 1
3 1-2Obr. 34
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О < sin а ^ j, tj. О < а ^ 30°.

Obrácením postupu je třeba dokázat, že všechna tato čísla
jsou skutečně řešením úlohy.

A —1 — 5

V rovině je dána přímka p a uvnitř jedné poloroviny určené
touto přímkou jsou dány dva různé body A, B. Dále je dán
úhel velikosti a, kde 0° < a < 180°, a úsečka velikosti d.
Uvnitř poloroviny opačné к polorovině pA určete všechny
body C takové, že ACB = a a že průnik tohoto úhlu
s přímkou p je úsečka délky d.

KOMENTÁŘ

Snad by se mohla dát na uváženou jiná textace úlohy:
Je dán trojúhelník ABC a přímka p jeho roviny, která

odděluje body A, C i body В, C: dále je dáno kladné číslo d.
Sestrojte všechny body X poloroviny pC, pro něž platí zá-
roven:

(I) ZAXB = XACB;

(II) úsečka p n AAXB má délku d.

Pokládejme tuto úlohu za podnět к tomu, abychom si
zopakovali celkem klasické schéma postupu řešení kon-
strukční úlohy a matematické úlohy vůbec. První fáze je
rozbor čili analýza, v kterém se snažíme odvodit nutné pod-
minky řešení s hlavním záměrem, abychom zachytili všechna
řešení; závěrem rozboru je vyslovení hypotézy, tj. konstruk-
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Obr. 35

•X

čního předpisu, kterým se dostanou všechna řešení úlohy.
Druhou fází je zkouška čili kontrola; tou se zjistí, která
z možných řešení jsou skutečně řešeními úlohy. Vyskytují-li
se v textu úlohy parametry, tj. jde-li o množinu úloh, prove-
deme její klasifikaci podle počtu řešení; tato fáze se tradičně
nazývá diskusí.

Obr. 35 ukazuje situaci v konstrukční úloze A —1 — 5.
Úloha je polohová, má tři neznámé body, X, A', B'; bod X
se sestrojí jako průsečík přímek AA', BB'. Polohová úloha
s dvěma neznámými body se řeší tak, že se jeden z těchto
bodů eliminuje. V našem případě použijeme к eliminaci bodu
B' translace která má velikost d, směr (p) a smysl takový,
že převede B' v A'. Translace 9~ převede bod В v bod D;
přitom je zřejmě $.AA'D = -fcAXB = jcACB, který je dán.
Pro bod A' máme tedy dvě podmínky:

A'ep ; ZAA'D = ZACB.

Bod A' vyjde tedy jako průsečík přímky p a oblouku a

sestrojeného nad tětivou AD s obvodovým úhlem velikosti
a = £ ACB. К bodu A' pak snadno sestrojíme bod B’. Užije
se inverzní translace к translaci, jež převádí bod В v bod D.
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Na tomto místě bychom mohli ukončit rozbor; doporu-
čujeme však řešitelům, aby v rozboru, tj. ve vyhledávání
nutných podmínek, ještě pokračovali, neboť tím si usnadní
zkoušku a diskusi. Obecnější poučení zní: rozbor můžeme
ukončit v podstatě kdekoli, ale tím zkomplikujeme zkoušku.
Stručně: čím kratší a snazší je rozbor, tím delší a kompliko-
vanější je zkouška.

Pokračováním rozboru zjistíme tyto dvě další nutné pod-
minky:

přímky AA', BB' musí být různoběžné
(aby vznikl bod C);

polopřímky A'A, B'B se nesmějí protnout
(aby bod C neležel v polorovině pÁ).

Je celkem zřejmé, že bod C, který byl sestrojen popsaným
způsobem jako průsečík přímek AA', BB1, je řešením úlohy.

Stanovit podmínky řešitelnosti je úkol velmi kompliko-
váný; úloha má totiž pět parametrů: např. velikost úhlu,
který svírají přímky p, AB, vzdálenosti QA, QB (kde Q je
průsečík p, AB) a konečně čísla a, d. Proto diskusi omezte
na určení maximálního počtu řešení a na sestrojení jednoho
případu, kdy úloha má maximální počet řešení.

I. Na obr. 36a je znázorněna situace, kdy AB || p. Trans-
láce вГ má dánu jen velikost (d) a směr (p); proto může mít
dvojí smysl. A tak dostaneme dva body Du D2. Nad každou
z tětiv ADX, AD2 lze sice sestrojit dva oblouky a s obvodo-
vým úhlem velikosti a, ale vždy jen jeden leží v polorovině
ABp. Dostaneme tedy nejvýše čtyři body А', к nim čtyři
body В’ a nejvýše čtyři body C. (Lze však dokázat, že jsou

(23)
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Obr. 36a

nejvýše dvě řešení — viz obr. 36a; jsou to body C3, C4.)
II. Na obr. 36b je znázorněna situace, kdy je AB % p; je

zvoleno А В 1 p a označení bodů А, В je takové, že platí

QA < QB (24)

Obr. 36b



(Q je průsečík přímek p, AB). Dostaneme opět dva body
Dx, D2 a čtyři oblouky ax, a2, u3, a4 nad tětivami ADU AD2
s obvodovým úhlem velikosti a. Každý z oblouků aua2,a3,a4.

protne v tomto případě přímku p; dostaneme tedy osm
bodů A', označených Áxl až A'2A а к nim osm bodů B\x
až B'24., tj. osm dvojic ÁB'. К řešení nevedou ty dvojice,
v nichž každý z bodů A', B' leží na jiné polopřímce s po-
čátkem Q a dále ty dvojice, pro které platí QB' < QA';
v obou případech totiž neni splněna druhá podmínka (23).
Zbývají tedy nejvýše čtyři řešení; na obr. 36b jsou to řešení
C44, Cj3, C23, č^24-

A —1 — 6

Je dán čtyřstěn A BCD. Je-li X libovolný bod prostoru,
označme d(X) součet druhých mocnin všech čtyř vzdáleností
bodu X od stěn daného čtyřstěnu. Dokažte, že minimum
funkce d(X) lze vyjádřit jako funkci výšek daného čtyřstěnu.

Odvoďte příslušný vzorec.

KOMENTÁŘ

I. Geometrický názor může řešitelům napovědět domněn-
ku, že funkce d(X) může nabýt minima jen pro některý bod X
v čtyřstěnu ABCD. Při důkazu této domněnky budeme hledat
ke každému bodu X vnějšku čtyřstěnu ABCD bod Y čtyř-
stěnu ABCD tak, aby platilo d(Y) < d(X). Jestliže X nená-
leží čtyřstěnu ABCD, pak nenáleží aspoň jednomu z polo-
prostorů ABCD, BCDA, CDAB, DABC\ nechť je např.

106



Obr. 37

X ф BCDA. Úsečka AX má pak s rovinou BCD společný
jediný bod Y. Označme po řadě ut, u2, u3, uA (4, t2, í3, 4)
vzdálenosti bodu X (У) od rovin BCD, ACD, ABD, ABC.

Zřejmě je 4 = 0, a proto

(25)u1 > 4 .

Na obr. 37 je situace v rovině g A. ABC vedené přímkou AX:
m je průsečnice rovin q, BCD, n je průsečnice rovin q, ABC.
Protože Y leží mezi body A, X, je

(26)Щ A tA

(bod X může ležet i na přímce n). Spojíme-li (25), (26) a dvě
další obdobné nerovnosti, dostaneme

d(X) = u\ + u\ + u\ + u\ ^ t\ + t\ + t\ + tl = d(Y).
Tím je domněnka dokázána.

II. Jako další impuls by snad bylo vhodné seznámit se
s Lagrangeovými identitami. Můžeme uvést tyto tři tvary:

(a2 + b2) (a2 + P2) — (ua + bfi)2 = (afi — boc)2 ;

(a2 + b2 4- c2) (a2 + p2 + y2) — (aot + bp + cy)2 =
= (aP — ba)2 + (by — cP)2 4- (ca — ay)2 ;
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(a2 + b2 + с2 + d2)(a2 + p2 4- у2 + d2) -

— (aa + bfi + су + dó)2 =

= (aft — ba)2 + (ay — ca)2 + (ad — da)2 +
+ (by — cfi)2 + (bó — dfi)2 + (cd — dy)2 .

Z těchto tří speciálních případů, které se jednoduše ověří
výpočtem, uhodnete jistě obecné znění Lagrangeovy identity
(pro 2n proměnných):

(a2 + a\ + ... + a2)(a2 + a\ + ... + a2) -
- (a1al + a2a2 + ... + anan)2 =

(a^j - ajat)2 .z
i, j= 1 n,i<j

Tato obecná formule se dá dokázat např. matematickou
indukcí; pro n = 2, 3 má jednoduchý geometrický význam,
pokládáme-li (ал, a2,..., an), (ab a2,..., an) za vektory dané
souřadnicemi.

III. Označíme Р\,Рг,Ръ->Р4 obsahy stěn tetraedru ABCD,
vuv2, v3, v4 к nim příslušné výšky, V objem tetraedru ABCD,
X libovolný jeho bod а ил, u2, u3, u4 jeho vzdálenost od stěn
tetraedru. Pak je

(27)PiU i + p2u2 + ръиъ + p4u4 = 3V.

Podle Lagrangeovy identity je

(PÍ + PÍ + Pl + PÍ) («i + u\ + u\ + ul) -

- (PiWi + p2u2 + p3u3 + p4u4)2 =

108



= (P 1«2 ~ P2U1Y + (P 1«3 “ P3«l)2 + (Pl«4 “ P4Wl)2 +
+ (P2U3 ~ РЗ«2)2 + (P2U4 ~ Р4«2)2 + (РЗ«4 - Р4Мз)2 •

(28)
Vypočteme-li z této rovnice d(X) = u\ + u\ + u\ + u|,
vidíme, že d(X) je minimální právě tehdy, jsou-li všechny
členy na pravé straně rovnice (28) rovny nule. Pak je podle
(27) a (28)

9V2
(29)d(X0) = pi + pí + pí + pl'

3V
—, dostaneme z (29)
vi

d(Xo) = Й + i + '
což je žádaný vzorec, který můžete na základě Lagrangeovy
identity odvodit samostatně.

Vhodným úvodem do úlohy A —1 — 6 je její rovinná va-
rianta.

Použijeme-li formule pt —

-1
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KOMENTÁŘE
К ŘEŠENÍ SOUTĚŽNÍCH ÚLOH KATEGORIE В

I. KOLA

B-I-l

a) Dokážte, že následujúca úloha nie je riešitelná: Máme
zostrojiť dve také neprázdné podmnožiny stí, ffl množiny 0t
všetkých reálných čísel, aby 01 = sé u 2Й, aby aspoň jedna
z množin 0t \ sé, 01 \ 01 nebola prázdna a aby pre Tubo-
volné čísla а e «s/, a' e sé, b e 01, b' e 01 platilo

(OCl + á G ,0 ,

a + b e 0f,

b + b' es/ .

(2)
(3)

b) Dokážte, že ak vo formulácii úlohy a) nahradíme mno-
žinu 0t množinou ^ všetkých celých čísel, potom existuje
právě jedna dvojica množin sí, 01 s požadovanými vlast-
nosťami. Nájdite ju.

KOMENTÁR

Text tejto úlohy, právě tak ako text úlohy В —I —3, je
dosť dlhý a poměrně zložitý, je tu najlepšia příležitost’, aby
sa riešitelia naučili pracovat’ s komplikovanějšími textami.

Odporúčame, aby začali s úlohou b) a aby si ju vyslovili
úplné „inými slovami“ asi takto:

Množinu % všetkých celých čísel máme rozdělit’ do dvoch
neprázdných podmnožin «с/, M tak, že nie je .0 = 0! = (€.
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Přitom súčet dvoch čísel z tej istej podmnožiny (s/ alebo 09)
má patriť do s/\ súčet dvoch čísel z róznych podmnožin
(,я/ а 09) má patriť do 09.

V texte úlohy sa nežiada, aby boli množiny л/, 0Й dis-
junktné, tj. aby „rozdelenie“ ^ = «я/ u 0Й bol rozklad.

Druhé odporúčanie riešitefom: „Nájdite jednu dvojicu
sZ, 09 vyhovujúcu daným podmienkam.“ Bez velkej námahy
zistíte, že podmienkam vyhovuje dvojica množin Sf (vset-
kých párnych čísel) a (všetkých nepárnych čísel). Naozaj
je

sf kj se = (é, se + ^
a

(i0súčet dvoch párnych čísel je párne číslo,
súčet párneho a nepárneho čísla je nepárne číslo, (2')
súčet dvoch nepárnych čísel je párne číslo.

Ak je pravdivá veta b), musí byť možné dokázat’, že
sZ n 09 =0, pretože úloha b) má jediné riešenie sZ = Sf,
0Й = S£. Třetí krok teda je: Dokážme nepriamo, že
«я/ n = 0, číže rozdelenie na množiny sZ, 09 je rozklad
množiny (€.

Predpokladajme, že existuje celé číslo p e sZ n 09 a zvol-
me Iubovolné číslo хеЧ*. Móžu nastat’ dva případy: buď
x — pes/ alebo x — pe 09.

Ak je x — pes/, je podia (1) a (2) xes/ n 0Й, pretože
x = p + (x - p).

Ak je x — pe09, je podía (2) a (3) xes/ n 09, pretože
P + (x~ p).

(3')

X =
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Dokázali sme, že c= si n tj.
(6\&4 — (€ \ £ň = 0, a to je spor s predpokladom.

Za štvrté dokážeme, že s4 = 5^. Nech у je íubovolné
párne číslo; pretože у = %y Ф jy, je ye.&t buď podia (1)
alebo podía (3) — číslo jy je totiž celé. Tým je dokázaná
inklúzia Sř <= sé. Miesto toho, aby sme dokazovali druhů
inklúziu s4 c Sf a z toho usúdili, že platí rovnost’ si = £f,
dokážeme nepriamo, že «я/ neobsahuje žiadne nepárne číslo.
Připusťme, že z0 je nepárne číslo a že platí z0 e «я/. Pre každé
nepárne číslo 2 platí

(4)z = z0 + y,

kde у je vhodné párne číslo. Z (4) plynie podfa (1), že z e «я/,
tj. cr sé, tj. % = «я/, «я/ n Ф 0, čo nemóže nastat’, ako
sme dokázali. Tým je úloha b) rozriešená.

Zostáva úloha a). Disjunktnosť množin s0, 8Ř sa dokáže
právě tak ako v úlohe b). Neexistencia takého rozkladu sa
dokáže tým istým „trikom“, aký sme použili pri riešení
úlohy b). Nech r je íubovolné reálne číslo. Z rovnosti
r = jr + \r plynie res/, keď jresď pódia (1) aj keď

pódia (3). Teda je c= «я/, a teda — s^. Je ale

(á? Ф 0 л sá — ář) =£► st n Ф 0,
čo nie je možné. Tým je rozriešená i úloha a).

Úloha В — I — 1 je dost’ ťažká. Aj keď tvrdenia a), b) nie
sú příliš prekvapujúca, ich dókaz má svoju hodnotu a určité
stojí za to, aby sa úloha vyriešila.
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В-1-2

Označme pro přirozené číslo n a pro reálné číslo x

Ux) = Ž siěn (* “ 0 •
i = 0

Nechť je p dané kladné číslo. Najděte všechna přirozená
čísla n taková, aby platilo

Up) = o.

(Poznámka. Funkce xh-> signx je definována na množí-
ně 3$ všech reálných čísel takto: Je-li x > 0, je signx = 1,
je-li x = 0, je sign x = 0, je-li x < 0, je sign x = — 1.)

KOMENTÁŘ

Pro řešení této úlohy by se mohl dát jediný pokyn:
sestrojovat kartézské grafy funkcí. Funkce signum vnáší
do soutěže — jak už jsme se zmínili v komentáři к pří-
pravným úlohám — rozšíření tematiky o schodových funk-
cích.

Na obr. 38—40 jsou načrtnuty funkce x i—> sign x,

signx sign (x-1) ху—»~ sign(x-2)
1 4- 1 - 1-

#

0 0 01 1 2

-1 -1-1

Obr. 40Obr. 38 Obr. 39
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x h-> sign (x — 1)? x i—► sign (x — 2); přitom jsme užili tech-
niky:

• (plný kroužek) — bod náleží grafu;
O (prázdný kroužek) — bod nenáleží grafu.

S pomocí těchto obrázků lze snadno popsat graf funkce
x i—► sign (x — i), kde i je libovolné přirozené číslo.

Na obr. 41 jsou grafy funkcí j\, f2 (/0 je funkce sign x —

3

© 2 2

1- 1--

++■o-

0o 1 2 1 2 3

-1-1

-2"
-2

-3
Obr. 41

viz obr. 38), tj. funkcí x i—► sign x + sign (x — 1) a
x i—► sign x + sign (x — 1) + sign (x — 2). Tyto dva grafy
reprezentuji dva druhy funkcí /„: pro n liché má tato funkce
nekonečně mnoho nulových bodů, pro n sudé má jediný
nulový bod. Tuto druhou domněnku potvrzuje i funkce /0,
první domněnku potvrzuje graf funkce /3 na obr. 42. Ma-
tematickou indukcí pro sudá a pro lichá n se snadno dokáže
(s pomocí grafů), že pro к = 0, 1,2. 3,... jsou nulové body
funkce /2*+1 všechna čisla otevřeného intervalu (k,k+ 1),

. funkce f2k má jediný nulový bod -- číslo k.
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I

A-

3 "

2-

f ■■

0 12 3 4
5-1-

4-2

3-3

2
-4

1

Obr. 42

Obr. 43 Q12 3

Řešení úlohy je nejlépe znázornit opět grafem. Obr. 38
až 41 a příslušná úvaha nás přesvědčují, že ty části grafů
funkcí /o,/i,/2, • ••, které náležejí ose x, jsou navzájem dis-
junktní a jejich sjednocení je kladná poloosa x. Proto ke
každému p > 0 existuje jediné přirozené číslo n takové,
že fn(p) = 0; dostáváme tedy funkci q>\

qr. {py+n; fn(p) = 0).

Její graf je na obr. 43. Jeho popisem odpovíme na otázku
úlohy.

Je-li p přirozené číslo, je (p{p) = 2p; není-li p přirozené
číslo, je cp(p) — 2[p] + 1. Přitom [ ] značí funkci „celá
část z“.
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В-1-3

Funkce/splňuje tyto podmínky:
1. je definována právě pro všechna reálná čísla x ^ 0;
2. f(nx) = f(x) pro všechna přirozená nax^O;
3. /(x + 1) = Дх) pro všechna x ^ 0;
4. /(0) š 0;
5. pro každou dvojici čísel x ^ 0, у ^ 0 platí /(x) +Ду) ^

ž/(* + y).
a) Dokažte, že pak pro každou trojici přirozených čísel

к, l, m platí

(*ЭгЛк)+/©f

b) Ukažte na příkladě, že existuje funkce vyhovující pod-
mínkám (1) až (5), která není identicky rovna nule v intervalu
<0, oo).

KOMENTÁŘ

Tato úloha je ukázkou problému, kdy několika funkčními
rovnicemi či nerovnicemi je určena jistá množina (rodina)
funkcí I. V našem případě máme dokázat, že každá funkce
feZ má jistou vlastnost (úloha a)) a že Z \ (xi—>0) Ф 0
(úloha b)).

Doporučujeme vypustit nejprve podmínky 3 až 5 a po-
užít jen podmínek 1, 2. Z podmínky 2 dostaneme pro x = 1

ЧпеЖ:Дп)=Д1).*)

*) Jí, 2L+ značí množinu všech přirozených, resp. kladných racionál-
nich čísel.
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Označíme /(1) = a a dosadíme do podmínky 2 n = m,

x = -; vyjde
m

1
Vm e Ж: /1 —

= a.
m

1
Dále dosadíme do podmínky 2 n = l, x = —; vyjde

m '

/ 11
VUe/:/ - =/(.-=/ -

m m

neboli

(5)Vxe<á+: Дх) = a.

Dokazovaná nerovnost z úlohy a) pak zní podle (5)
a ^ a 4- a,

neboli

(6)a S 0.

Kdybychom do textu úlohy к podmínkám 1, 2 připojili (6)
místo podmínek 3, 4, 5, platilo by tvrzení z úlohy a). Žádá-
ným příkladem funkce fel je funkce Dirichletova S, de-
fmovaná takto:

0 Vx ^ 0 racionální;
1 Vx ^ 0 iracionální.

6: x i—■>

Funkce ó splňuje i podmínky 3 až 5 z textu úlohy, jak se
snadno přesvědčíme; při ověření podmínky 5 se proberou
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tři případy: x, у racionální, x,y iracionální, x racionální
а у iracionální.

Vyjděme při dokazování vlastnosti a) z podmínek 3 až 5.
Podle podmínky 3 je (pro x = 0) /(0) — f{ 1) = a. Podle
podmínky 5 je (pro x = 0, у = 1) 2a ^ a, tj. a ^ 0. Spojí-
me-li tuto nerovnost s podmínkou 4, dostaneme a — 0. Pak
ovšem platí evidentně dokazovaný vztah

/ /
/ *•» ***)+/ - .

a to dokonce se znakem rovnosti.

B-I-4

Určete množinu všech bodů v rovině, jejichž pravoúhlé
souřadnice x, у mají tu vlastnost, že existují celá čísla m, n
taková, že platí

|x — 2m\ + |y — 2n\ ^ 1 ^
<; |(x - 2m) + (y - 2n)\ + |(x - 2m) - (y - 2n)\. (7)

KOMENTÁŘ

Nejprve snad poradíme řešitelům, aby si text úlohy
trochu přeformulovali: Zvolme bod se sudými souřadnicemi
\2m,2n\ a sestrojme množinu 3Pm n všech bodů [x; y],
jejichž souřadnice splňují nerovnice (7).

Máme vyšetřit sjednocení všech množin když m, n

probíhají množinu všech celých čísel. Z této formulace je
patrno, že klíčem к řešení úlohy je prozkoumání jedné
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množiny ^m>„; ostatní z ní dostaneme přemístěními (jsou
s ní shodné). Za tuto vzorovou množinu zvolíme ^0,o-
Nerovnice (7) pak znějí

M + M š i, (8)
y|ž 1.

První nerovnice (8) má jako graf množinu M všech bodů
v rovině, jejichž „orto-vzdálenosť‘ neboli „pošťácká vzdá-
lenost“ vzhledem к osám x,y od počátku [0; 0] je rovna
nejvýše jedné. Tato množina je — jak známo — uzavřený
čtverec J s vrcholy [1; 0], [0; 1], [—1; 0], [0; —1].

To se dokáže např. vyšetřením průniku hledané množiny
se všemi kvadranty. Tak třeba pro třetí kvadrant platí
x ^ 0, у S 0 a první nerovnice (8) zní — x — у ^ 1. Pří-
slušný průnik je průnikem polorovin

|x + y\ + |x

X ^ 0, УйО, X + у ^ -1

a je to trojúhelník vyšrafovaný na obr. 44.

- m
x+y~-1

[0,0] [1,0]Í-Щ
* yúO [0,-1]

хйО

Obr. 44
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Snad by bylo vhodné pohovořit si při této příležitosti
o „pošťácké“ vzdálenosti, seznámit se s pojmem metrického
prostoru, ověřit, že „pošťácká“ vzdálenost splňuje axiómy
metrického prostoru, že jde tedy o model abstraktní struk-
tury. Zvlášť je třeba zdůraznit, že „pošťácká“ vzdálenost je
závislá na určité soustavě ortonormálních souřadnic, tj. pra-

voúhlých souřadnic se shodnými jednotkovými úsečkami
na obou osách.

Dále pokračujeme ve vyšetřování množiny ^00, tj- grafu
soustavy nerovnic (8). Víme už, že ^0i0 c= «2; nyní budeme
zkoumat graf druhé nerovnice (8). Jsou různé možnosti.
Buď rozlišíme čtyři případy:

I.х+у^0лх-у^0;II.х + у^0лх-у^0;
III. х + у^Олх-уН;
IV. х + у^0лх-у^0;

nebo použijeme transformace souřadnic (otočení o 45°
v kladném smyslu) a transformačních rovnic

X + у -X + у
(9)x' = / =

V2 ‘л/2 ’
Tak např. v případě II. zní druhá nerovnice (8) у ^ |

a hledaný graf je průnik polorovin x + y^O, x — y^O,
у ^ j, který je vyznačen na obr. 45.

Při druhém řešení užijeme opět „pošťácké“ vzdálenosti,
ale vzhledem к osám x — у = 0, x + у = 0. Dostaneme
uzavřený vnějšek čtverce
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Obr. 45

\x + y\ + |x - y\ ^ 1,
neboli podle (9)

V2M + Игу
který je vyznačen na obr. 46 tlustým vytažením hranice.
Na obr. 46 je vjznačena množina @*0>0 šrafováním; hranice
náleží к této množině.

x=0

x-y=0
Л°.']

[■■H] ÚH]
F2P чМ y=0

Гг
Н-й/
/ 'Ы г= о

Obr. 46
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У

ш

I)á v.á. i

п

Z:
X.22

[6,-2]
Y—

Obr. 47

1

Hledané sjednocení vytvoří jakýsi ornament
m,n

v rovině, který je zakreslen na obr. 47.

Úloha В —I —4 nevyžaduje vtip. ale poskytuje dobrou
příležitost promluvit o „pošťácké“ vzdálenosti, o metrických
prostorech a o transformaci ortonormálních souřadnic.

В —I —5

Je daný trojuholník ABC; jeho strany majú dížky a, fr, c.
Určte bod trojuholníka, ktorý má minimálny súčet druhých
mocnin vzdialeností od jeho vrcholov. Vyjádříte tento súčet
pomocou dížok stráň trojuholníka.
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KOMENTÁR

Aj cena tejto úlohy je skór v príležitostiach к poučeniu,
ktoré poskytuje než v jej vlastnom riešení; tu to je otázka
volby súradníc a jej výhody a geometrická interpretácia
výsledku získaného výpočtom.

Zvolíme sústavu ortonormálnych súradníc tak, aby vrcho-
ly trojuholníka malí súradnice A = [0; 0], В — [c; 0],
C = [x0; Jo]- Ortonormálně súradnice volíme preto, že
budeme pracovat’ so vzdialenosťami. Výhoda metody sú-
radnic je v tom, že si nemusíme všímat’, či je Д/ШС ostro-
uhlý, pravoúhlý či tupouhlý, že nemusíme zohladňovať
polohu bodu M trojuholníka ABC vzhfadom к vrcholom,
dokonca ani to, či bod M roviny ABC patří к trojuholníku
ABC či nie, všetky tieto situácie sa odbavia jediným výpoč-
tom.

Označíme súradnice premenného bodu M = [x; y]; ešte
si uvědomíme, že nekolineárnosť bodov А, В, C je ekviva-
lentná s podmienkou y0 ф 0. Výpočet budeme samozřejmé
sprevádzať náčrtkom (obr. 48).

У
('“[Хо/Уо]

b a

x
cA =[o,o]Obr. 48

Funkcia premenných x, y, ktorej minimum máme výše-
trovať, je
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О- = (x2 + у2) + [(х - с)2 + у2] + [(х - х0)2 + (у - Уо)2] ,

po úpravě

а = Зх2 + Зу2 — 2(х0 + с)х — 2у0у + х\ + Уо + с2 . (10)

Krúčom к ďalšej úpravě je požiadavka, aby sa premenné
x, у vyskytovali iba v mnohočlenoch, ktoré sú základmi
druhých mocnin; toto dosiahneme úpravou (10):

(x0 + c)V koY
cr = 3 x —

3

(x0 + c)2 yl
— + Xo + Уо + C2 .

Táto funkcia nadobudne minimum <x0 právě ak platí

(и)
3

ко
(12)x —

3

Toto minimum je podlá (11)

(x0 + c)2 ко
°o = *o + ко + c2 -

Geometrická interpretácia výsledkov (12), (13). Čísla
* = з(*о + с), у = зу0 sú aritmetické priemery súradníc
vrcholov ЛABC [x = з(0 + x0 + с), у = з(0 + 0 + y0)];
preto je hladaný bod M s minimálnym a ťažiskom /\ABC.

Z rovnic Xq + Уо = b2, (x0 — c)2 + Vo = ci2 vypočítáme

2cx0 = b2 + c2 — a2

(13)3 3
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(x0 + с)2 = (x0 — с)2 + 4cx0 =
= 2b2 4- 2c2 -- a2 — yl.

Po dosadení z (14) do (13) po úpravě dostaneme
= з(я2 + b2 + c2) •

a ďalej

(14)

B-I-6

V rovině je daná konečná množina Jí bodov, z ktorých
každé dva majú vzdialenosť / ^ 1. Dokážte, že existuje pra-

videíný osemuholník AlA2...A8 s polomerom vpísanej
kružnice £ = j tak, že šesťuholník, ktorý je prienikom
polrovín

./1 g/í. j 2 ^ j v4 2^3 ^ ^2-^3^4 ^ -A3A4A 5 O

obsahuje všetky body množiny Jí.

8 5

KOMENTÁR

V súvislosti s riešením úlohy В —I —6 by bolo užitočné
zoznámiť riešitelov s elementárnymi geometrickými pojma-
mi a vyslovit’ obecný problém, ktorého zvláštnym prípadom
je úloha В —I —6. Stručný výklad je v článkoch L, II., III.

I. Ak je Jí konečná množina bodov (na priamke, v ro-
vine alebo v priestore), nazveme najváčšiu zo vzdialeností
dvojíc jej bodov priemerom množiny Jí\ teda

d ■— max XY.
X,Ye.4i
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1

^31 12
Obr. 49 Obr. 50 ч/

Podia tejto definície má jednobodová množina priemer 0,
priemer dvojbodovej množiny {A,B} je vzdialenosť AB,
priemer trojbodovej množiny [A,B,C] vrcholov trojuhol-
nika je dížka jeho najváčšej strany atd.

II. Ak je daná množina Jí v rovině a „vzorový" obra-
zec taký, že sa dá zostrojiť obrazec V'', pre ktorý platí

= J*' a. ■=> Ji, povieme, že obrazec pokrývá mno-
žinu ^aže obrazcom J' se dá pokryt’ množina Jí.

Pomocou tejto fráze sa niektoré situácie dajú popísať
stručnejšie. Tak například obr. 49 sa dá popísať větou:
Jednotkovým štvorcom sa dá pokryt’ trojuholník o straně
dížky 1. Obrazec (šesťuholník) x, o ktorom sa hovoří v texte
úlohy B —1 — 6, je vyšrafovaný na obr. 50. Úloha В —I —6
sa teda dá formulovat’ takto: Šesťuholníkom x sa dá pokryt’
každá konečná množina Л у rovině o priemere d ^ 1.

III. V prvej polovici XX. storočia vyslovil francúzsky
matematik Lebesgue (čítaj Lebeg) tzv. tabulkový problém;
tabulkou nazýval Lebesgue rovinný obrazec, ktorým sa dajú
pokryt' všetky množiny bodov o priemere 1. Problém znie:

Určit' tabulku s minimálnym obsahom.
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Tento problém zadal nie je rozriešený. Sú známe nie-
ktoré tabulky napr. tzv. Jungov kruh o polmere 1^/3 (obsah
1,047...), jednotkový štvorec (obsah 1), pravidelný šesť-
uholník o straně dížky ^ (obsah 0,866...). V posledných
desaťročiach sa získali zmenšováním pravidelného šesť-
uholníka ďalšie tabulky. Minimálna tabulka doposial zo-

strojená má obsah 0,844.... Pre obsah P minimálnej tabulky
máme i odhad zdola: je P > 0,825.

Po tomto výklade móžeme ešte raz znovu formulovat’
úlohu В —I —6: máme overiť, že šesťuholník z obr. 50 je
Lebesgueovou tabulkou.

IV. Doporučujeme čitateíom, aby najprv dokázali, že
jednotkový štvorec je tabulkou. Zvolia priamku p a vset-
kými bodmi množiny vedu rovnoběžky s priamkou p. Všetky
body množiny Jí ležia v páse roviny, ktorého hranice sú
priamky |j p, p2 |j p. Vzdialenosť priamok pbp2 sa na-
najvyšie rovná 1 (ináč by body množiny Jí ležiace na priam-
kách Pi,p2 mali vzdialenosť váčšiu než 1). Ak zopakujú
tento postup pre priamku q ± p, najdú pravouholník (prie-
nik dvoch pásov roviny), ktorého strany majú dížku najvyše
rovnú 1. Tento pravouholník sa dá íahko zváčšiť na jednot-
kový štvorec, ktorý je tabulkou.

Teraz vpíšeme do jednotkového štvorca pravidelný osem-
uholník (obr. 51). Ak vo vnútri jedného z vyšrafováných
trojuholníkov leží bod X e Jí, nemóže vo vnútri vyšrafova-
ného trojuholníka naproti ležať žiadný bod YeM, pretože
by potom bolo XY> 1. Preto sa dá aspoň jeden z vyšrafo-
váných trojuholníkov oddělit* od Štvorca ABCD a zbývajúci
páťuholník zostane tabulkou. Ak zopakujeme rovnaký po-

127



©

/■ 1
у

_s
12

А s ВВ
12

Obr. 51 Obr. 52

stup s trojuholníkmi pri vrcholoch B,D, zistíme, že sa od
štvorca ABCD dajú oddeliť trojuholníky pri dvoch súsed-
ných vrcholoch štvorca a zbývajúci šesťuholník zostane
tabulkou.

Obsah tejto tabulky vypočítáme pomocou obr. 52. Zrejme
S S r

je —j- + H—j- =1 (s je dlžka strany pravidelného osem-
V ^ л/ ^

uholníka, vpísáného do jednotkového štvorca), tj. s = y/2 — 1.
Obsah jedného z oddělených trojuholníkov je

1 л/2 - iy У2 - l)2 _ 3-2^2
A -J2 4 4

Obsah tabulky teda je

2.3-V? = 1 -(1,5-72) = 72 - 0,5 = 0,914... .1 -
4
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KOMENTÁŘE
К ŘEŠENÍ SOUTĚŽNÍCH ÚLOH KATEGORIE C

I. KOLA

C-I-l

Určte všetky štvorciferné čísla, z ktorých každé má sú-
časné následujúce vlastnosti:

a) je súčtom druhých mocnin troch bezprostredne po sebe
následujúcich párnych prirodzených čísel;

b) je dělitelné číslom 28.

KOMENTÁR

Híadané číslo označme N, potom existuje prirodzené číslo
n ^ 2 tak, že

N = (2n — 2)2 + (2n)2 + (2n + 2)2, o
čiže

N = 4(3n2 + 2).
Rovnica (1) dává najvýhodnější tvar vyjadrenia súčtu

druhých mocnin troch bezprostredne po sebe následujúcich
párnych prirodzených čísel.

Podlá předpokladu je N — 28N'; z (2) plynie potom

3n2 + 2 = IN',

čiže číslo 3n2 + 2 je násobkom siedmich. Otázka teraz znie:
určte všetky celé čísla n, pre ktoré je prirodzené číslo
3n2 + 2 násobkom siedmich.

(2)
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Množina čísel n, ktoré sú riešením tejto úlohy, je zrejme
nekonečná. Je vidieť, že bude třeba zistiť, do ktorých zbyt-
kových tried modulo 7 budú patriť hladané n; povedané
jazykom školy: aké zbytky pri delení číslom 7 budú dávať
příslušné čísla?

Odpověď na túto otázku sa nájde experimentálně. Zo-
staví sa tabulka:

2 30 1 4 5 6n

n2 2 20 1 4 4 1Zbytková trieda
(T.)

mod 7 čísla Зи2 0 3 5 6 6 35

3n2 + 2 02 5 0 1 1 5

Teda je buď n = Ik + 2 alebo n = Ik + 5, kde к je celé
číslo. Ak je n = Ik 4- 2, je 3n2 + 2 = 3.49k2 + 3.28/c + 14,
tj. podlá (2)

N = 28(21 k2 + I2k + 2). (3)

Ak je n = Ik + 5, je 3n2 + 2 = 3.49к2 + З.Ш + 77,
tj. podlá (2)

N = 28(21 k2 + 30к +11).
Vzorce (3) a (4) dávajú všetky možné riešenia úlohy bez ob-
medzenia na štvorciferné čísla. Naozaj, keď dosadíme do (3)
alebo (4) íubovolné celé číslo k, dostaneme násobek čísla 28.
Iste nevadí, ak rozriešime najprv túto trochu všeobecnějšiu
úlohu.

(4)
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Teraz uplatníme obmedzenie na štvorciferné čísla, tj. po-
žiadavku 1 000 ^ N < 10 000. Podlá (3), (4) dostaneme
jednak sústavu nerovností

1 000 10 000
(5)^ 21/c2 + 12/c + 2 <

28 ’28

jednak sústavu nerovností

10 0001 000
^ 21 k2 + 30k + 11 < (6)28 28

Sústavu (5) upravíme na tvar

(7)35 < 21 k2 + 12к + 2 < 358.

Zostavíme tabulku:

3 4к -2 0 1 2-5 -4 -3 -1

(T2)
2\k2 + 12/c + 2 386290 62 2 35 110 227467 155 11

Štipce —4, —3, —2 vyhovujú sice nerovnostiam (7), ale
vzorec n = 7/c + 2 dává záporné n. Ďalej vyhovujú nerov-
nostiam (7) stípce 2, 3*); příslušné hodnoty n sú 16 a 23.

Sústavu (6) upravíme na tvar

35 < 21 k2 + 30/c + 11 < 358. (8)

*) Pre každé к > 3 alebo к < —4 nie je splněná nerovnost' (7) ani ne-
rovnost' (8); to vyplývá z priebehu kvadratickej funkcie.
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Zostavíme opáť tabuFku:

к 2 3-5 -4 -3 -2 -1 0 1 4

(т,)
21 k2 + 30/c + 11 386 227 110 35 2 11 62 155 290 467

Stípce -4,-3 vyhovujú sice nerovnostiam (8), ale vzorec
n = lk + 5 dává záporné n. Ďalej vyhovujú nerovnostiam (8)
stípce 1,2,3; příslušné hodnoty n sú 12, 19, 26.

Dostáváme teda 5 riešení; sú to čísla 8 120, 4 340, 1 736,
3 080 a 6 356. Všetky tieto čísla sú dělitelné číslom 28 a platí:

8 120 = 502 + 522 + 542,
4 340 = 362 + 382 + 402,
1 736 = 222 + 242 + 262,
3 080 = 302 + 322 + 342,
6 356 = 442 + 462 4- 482 .

Riešenie úlohy je časové dosť náročné; z části je deduktivně,
z části experimentálně (opiera sa o zostavenie tabuliek
(Ti), (T2), (T3). Základnou myšlienkou je nájsť zbytkové
triedy modulo 7, do ktorých patria hladané čísla n.

С —I —2

Jsou dány tři konečné množiny Мъ Jt2, Мъ, pro něž platí
Jij n Jí2 — Jti n Мъ = Ji2 n Jix ф 0. Označme po řadě
A si2> s23> s3i počty prvků množin Jix n Jt2 n Jt2,
Jtx u Ji2, Ji-2 u Мъ u Jiy. Je-li každé z čísel s12, s23, s31
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větší než p, pak lze sestrojit trojúhelník, jehož strany mají
délky

P P P
1-—, 1-—, 1- —

s12 s23
(9)

S31

Dokažte.

KOMENTÁŘ

Ačkoli je myšlenka důkazu zcela jednoduchá, vyžaduje
výpočet trochu zamyšlení. Je jasné, že je třeba dokázat, že
čísla (9) splňují trojúhelníkové nerovnosti; to je nutná i po-
stačující podmínka pro sestrojitelnost trojúhelníka, jehož
strany mají délky

ХШ1-1- = 1 ,

S31

Důkaz lze provést v podstatě dvojím způsobem:
I. Dokáže se, že platí x + у > z, у + z > x, z + x > y.

II. Čísla x,y,z se uspořádají, nechť je např. z ^ у ^ x;

pak stačí dokázat z < x + y.

Tato dvě kritéria (postačující podmínky) pro sestrojitel-

У
S23 s12

Obr. 53
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nost trojúhelníka ze tří stran by si měli řešitelé při této pří-
ležitosti připomenout.

Zaveďme označení počtu prvků podle Vennova diagramu
na obr. 53; množina je tu vyznačena tlustou čárou;
obdobně by se mohly vyznačit množiny Jt2, Ji3. Podle
obr. 53 platí

s12 = n1 + n2 + p, s23 = П2 + П3 + p,

S31 = n3 + «1 + P-

Postup I. Doporučujeme řešitelům, aby si pro formální
zjednodušení výpočtu zavedli značení + n2 = c,

n2 + n3 — a, n3 + nt = b. Pak je a 4- p = n2 + n3 + p —
= s23 > p, tj. a > 0 a obdobně b > 0, c > 0. Dále je

S31 = b + p,s12 = c + p, s23 = a + p,

ba c

(10)у =X = Z —

a 4- p ’
Dokažme nyní nepřímo třeba nerovnost x + у > z. Před-
pokládejme, že platí x + у ^ z, tj. podle (10)

b + p’ c + p

ba c

a + p b + p c + p

Odtud dostaneme po úpravě

p2(a + b — c) + 2pab -I- abc ^ 0.

Protože a + b — c = 2n3 ^ 0, 2pab > 0, abc > 0, dává (11)
spor.*)

(и)

*) Důkaz lze provést i bez zavedení proměnných a, b, c.

134



Postup II. Zvolme označení tak, že je nx 2; n2 = пз- Pak
platí

z ^ у ^ x,
neboť

nx + n2 n i + n3
= У,z =

nX + n2 + p nx + n3 + p

jak zjistíme z nerovnosti

(лi + n2)(nl + n3 + p) ^ («1 + «3)(«i + n2+ p).
Obdobně dokážeme у ^ x.

Nyní stačí dokázat nerovnost x + у > z. Kdyby platilo
x + у ^ z, bylo by

n2 + n3 n 3 + nx nx + n2
■ (12)

n2 + n3 + p n3 + nx + p nx + n2 + p

Je-li n3 + 0, dostaneme

n 1 + n3 n 1 + n3 л 1
> >

nx + n3 + p "" nx + n2 + p nx + n2 + p’
(13)

n2 + n3 n2 + n3 n2
>

n2 + n3 + P nl + n2 + p nx + n2 + p

Spojením (12) a (13) vyjde

nx + n2 n 1 + n2

nx +n2 + p’
>

nx + n2 + p

což je spor. Je-li n3 = 0, zní (12)
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n 1 + n2ni n2
(14)

nl + p n2 + p 1Ц + n2 + p

Protože je s13 > p,j23 > p, je n3 > 0, n2 > 0; z (14) pak
plyne

nx + n2 ni n 2
>

n 1 + n2 + p’«1 + n2 + p ni + n2 4- p

což je opět spor.
Úloha C —1 — 2 je poměrně dosti obtížná, neboť řešitelé

kategorie C nemají zpravidla zběhlost v práci s nerovnostmi.
Rozdíl mezi postupem I. a II. je v tom, že v I. se zbavujeme
zlomků, v II. s nimi pracujeme. Oba důkazy jsou nepřímé,
v obou musíme využít předpokladu s12 > p, s23 > p, s31 > p,
z něhož plyne, že nejvýše jedno z čísel n1,n2,n3 může být
rovno nule (při postupu II. je to n3, které je nejmenší). Při
postupu I. nemusíme štěpit nepřímý důkaz na dva případy
jako při postupu II., kde rozeznáváme případy n3 Ф 0
a n3 = 0. Postup I. je asi méně „trikový44 než postup II.,
a proto přístupnější.

V každém případě by si měl každý řešitel úlohu „ohmatat44
tím, že by si volil číselně počty prvků nu n2, n3, např. podle
obr. 54. Přitom by zároveň hned jistě vyloučil možnost
n2 = n3 = 0.

1 2

P

3
Obr. 54
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С-1-3

Cestovná kancelária organizovala 4 typy týždenných re-

kreácií, z ktorých sa žiadne dve časové nepřekrývali; označ-
me ich A,B, C,D. Pracovníčka cestovnej kancelárie zistila:

Na rekreácie A,B,C,D sa za radom hlási 195, 203, 106,
329 osob, přitom sa nikto nehlási na právě tri z týchto
rekreácií. Na právě dve rekreácie sa hlási 267 1’udí, a to na
rekreácie А а В 64 íudí, na rekreácie A a C 58 1'udí, na re-
kreácie В a C 32 osob, na rekreácie CaD 14 osob a na

rekreácie В a D 51 osob. Na všetky štyri rekreácie sa pri-
hlásili dvaja 1’udia.

Móže pracovníčka z týchto údajov zistiť:

a) kolko ludí sa přihlásilo na právě jednu z týchto re-
kreácií;

b) kolko 1’udí sa celkom přihlásilo na organizované re-
kreácie?

KOMENTÁR

Úloha С — I — 3 právě tak ako úloha С — I — 2 má tematiku
z tzv. modernizovanej školskej matematiky. Keď na jednej
straně úloha С — I — 2 vedie vlastně na algebraická, úlohu
(manipulácia s nerovnosťami), úloha С —I —3 na druhej
straně podstatné využívá Vennove diagramy a tým obchádza
riešenie sústavou lineárnych rovnic, ktoré by bolo zbytočne
zdíhavé a únavné.

Účastníci přihlášení na jednotlivé rekreácie tvoria štyri
množiny s/, Q> (označíme ich súhlasne s rekreáciami)
a poradíme riešitelom, aby si připravili základnú schému
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(Vennov diagram pre ich prieniky a zjednotenia například
v tomto tvare (obr. 55). Označenie jednotlivých oblastí čísla-
mi v dvojkovej sústave je výhodné a 1’ahko zrozumitelné:

/^Лв/1000/1100\ 0100 \

ooio\^011011101010

1011 001101111111

0001 / D010111011001

Obr. 55

napr. oblast' 1011 vyznačená na obr. 55 hrubou hranicou je
prienik sé n n <€ n Я), kde 31' je množina doplňková
к 31. Údaje o počte prvkov jednotlivých oblastí zapíšeme
podlá textu do následujúcej tabulky:

(T4)

1010 1001 0110 0101 ООП 0111 1011 1101 1110 11111000 0100 0010 0001 1100

o 232 51 14 0 0 064 58

267

Podlá textuje súčet čísel v stípcoch 1100,1010,1001,0110,
0101 а ООП rovný 267, súčty všetkých čísel v stípcoch, ktoré
majú na prvom (druhom, treťom, štvrtom) mieste jednotku,
sú za radom 195, 203, 106, 329. Aj tieto záznamy by malí
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riešitelia previesť, lebo v nich je vlastně matematizácia situá-
cie danej v slovnej úlohe.

Prvým impulzom je pokyn nahradit’ v scheme z obr. 55
dyadické označenia polí číslami, ktoré znamenajú počty ich
prvkov. Potom výjde ako výsledok obr. 56. Úlohou je do-
plniť všetky prázdné polia na obr. 56; potom budeme mócť
zodpovedať všetky možné otázky, teda i otázky úlohy.

Posledným impulzom móže byť pokyn, v akom poradí
sa majú polia vyplňovat'. Móže to byť napr. (podlá obr. 55):

a) 0100 má 203 prvkov);
b) 1001 (viď hoření tabulku (T4));
c) 1000 (sé má 195 prvkov);
d) 0010 (9Í má 106 prvkov);
e) 0001 (Q) má 329 prvkov).

Takto vyplněný diagram je na obr. 57. Odpověď na obe
otázky znie: Na právě jednu rekreáciu sa přihlásilo 291 osob,
všetkých přihlášených osob bolo 560. Je to súčet čísel v po-
liach 1000, 0100, 0010, 0001 a súčet všetkých čísel všetkých
polí.

с, Лс32О58 О 5832

О 14 142 О О2О

О 21448О 5151
D D

Obr. 56 Obr. 57
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Postup, ktorý v predchádzajúcom odporúčame, sa možno
zdá byť zbytočne rozvleklý, myslíme si ale, že je didakticky
velmi vhodný. To by sa najlepšie ukázalo, keby sme riešili
úlohu pre 7 — 8 množin; potom by bolo ale lepšie nahradit'
schémy na obr. 55, 56, 57 tabulkami obdobnými к (T4).

С — I — 4

Je daný trojuholník, ktorého žiadna strana nemá dížku
váčšiu než 1. Dokážte, že ho možno umiestniť do kruhu
o poloměru i^/3.

KOMENTÁR

Táto dókazová úloha patří к úlohám o tzv. ukladaniu (La-
gerung), ktorými sa zaoberá diskrétna geometria, geometria
konvexných útvarov i kombinatorická geometria. Ide tu
zrejme o odhad poloměru příslušného kruhu.

Nepatrné experimentovanie dá hypotézu, že dokaž je
velmi jednoduchý pre tupouhlý a pravoúhlý trojuholník.
Jeho najdlhšia strana — označme ju AB — má dížku AB ^ 1
a protiíahlý uhol je 4'ACB ^ 90°. Vnútrajšok kruhu Ж
zostrojeného nad priemerom AB je množina všetkých bo-
dov X v rovině daného trojuholníka, pre ktoré platí

90° < ZAXB ^ 180°,

teda je С e Ж. Teraz stačí zostrojiť kruh Ж' o poloměre
^ 73 sústredný s Ж. Pretože je i 7^ > 2 2AB, je
A ABC cz Ж с Ж'.
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Zostáva vyšetřit’ ostrouhlý trojuholník. Najváčší z jeho
uhlov má vždy velkost’ ^60°; ak by bolo a < 60° л fi <
< 60° л у < 60°, bolo by a + /? + у < 180° a to nie je
možné. Zvolme označenie tak, aby bolo a ^ 60° a ovšem
zároveň a ^ 1. Použijeme známy vzorec

(15)a = 2r sin a,

kde r je poloměr kružnice opísanej danému trojuholníku
ABC. Vzorec (15) vyplývá z pravoúhlého trojuholníka BMS,
kde M je střed strany BC, S je střed kružnice к opísanej
trojuholníku ABC (obr. 58). Zo vzorca (15) vyplývá

= V3.ia
r =

2
3 ’2 sin a

2

pretože 90° > a ^ 60°, tj. 1 > sin a ^ \yj3.
Kruh so stredom S a polomerom 1^/3 obsahuje teda

trojuholník ABC.
Hranicu з^/З pre poloměr kruhu nemožno ďalej znížiť,

Obr. 58
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pretože medzi vyšetřované trojuholníky patří aj rovnostran-
ný trojuholník o straně dlžky 1. Najmenší kruh, ktorý tento
trojuholník obsahuje, je kruh obmedzený kružnicou opísa-
nou a tá má poloměr

Zamyslíme sa ešte nad predchádzajúcim dókazom. Zá-
kladnou myšlienkou bolo použitie kružnice opísanej troj-
uholníku a jeho nejváčšieho uhla. Na prvom mieste teda
mal byť případ ostrouhlého trojuholníka ABC. Ak je však
trojuholník ABC pravoúhlý alebo tupouhlý, nedá sa uve-

děný postup s opísanou kružnicou použit’ a musí sa previesť
úvaha, s ktorou sme začali.

Ponuka sa ešte možnost’ použit' najmenší uhol trojuhol-
nika ABC, aby sme nemuseli štěpit’ dokaž na dva případy.
Najprv nepriamo ukážeme, že najmenší uhol má velkost’
^ 60° a potom využijeme obr. 59, kde označenie je zvolené
tak, aby у bol najmenší uhol.

Pretože je AC ^ 1, BC S b leží (vyšrafovaný) trojuholník
ABC vo výseči CPQ, kde CP = CQ = 1, *PCQ = 60°.
Teraz stačí ukázat’, že táto výseč leží v kruhu obmedzenom
kružnicou opísanou rovnostrannému trojuholníku CPQ',
táto kružnica má poloměr ^ J3.

u V3 = i>/3-

Obr. 59 C В P
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V týchto zdóvodneniach, kde ide vlastně o konvexitu,
bude asi v riešení vždy niečo intuitivné. Myslíme, že sa s tým
móžeme uspokojit’, pretože dóležitejšia je myšlienka dokážu.

(-1-5

Daný je rovnostranný trojuholník ABC a lubovolný jeho
vnútorný bod M. Paty kolmic zostrojené bodom M na strany
AB, BC, CA označte postupné P, Q, R.

Obr. 60
A P У В

a) Dokažte, že súčet PB + QC + RA je rovný polovič-
nému obvodu trojuholníka ABC.

b) Platí vlastnost’ uvedená v odseku a) i pre body M le-
žiace na obvode trojuholníka ABC?

KOMENTÁŘ

Řešení. Situace je na obr. 60. Pravděpodobně každý ře-
šitel začne počítat s použitím Pythagorovy věty na šest
pravoúhlých trojúhelníků, které vidí na obr. 60. Jakýsi vtip
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je snad jedině ve vhodných úpravách. Označíme-li a délku
strany trojúhelníka ABC, dále x,y,z a x1,y1,z1 délky úse-
ček podle obr. 60, dostaneme rovnice:

X2 + x\ = (a - y)2 + yj,
У2 + y\ = (a - z)2 + г?,
z2 + z\ = (a — x)2 + xj.

Rozvedeme-li druhé mocniny dvojčlenú a sečteme-li všechny
tři rovnice (16), dostaneme

(i6)

x + у + z = \a.

Tento postup zůstává v platnosti i tehdy, když některé
z pravoúhlých trojúhelníků degenerují v úsečku nebo bod,
tj. když bod M l^í na hranici AABC. (Např. když je
M = A, je x = 0, у = a, z = ja.)
Tím jsme odpověděli na obě otázky úlohy.

Úloha С —I —5 poskytuje příležitost zabývat se podrob-
něji situací z obr. 60. Pomocí obsahů ААВМ, ДВСМ,
АСАМ odvodíme pro čísla x1,yí,zl vztah

Xi + yx + Zi = \a 73 ;

v = ^a.j3 je délka výšky AABC, vzorec (17) se dá odvodit
také pomocí obr. 61.

(17)

Zde je
MN = MP = %MT,MQ = MN + NQ,

NQ = TU = TQ',

144



Obr. 61

a tedy

MR + MQ + MP = MR + \MT + TQ' + MP =

= MR + MT + TQ' = RQ' = v.

Každému bodu AABC je přiřaděna jediná trojice nezápor-
ných čísel [*!, yl5 Zi], která splňuje (17) — obráceně každé
takové trojici je přiřaděn jediný bod M trojúhelníku ABC.
Tím jsou zavedeny tzv. trilineární souřadnice bodu M =
— [xo Уo z\\ které ovšem nejsou nezávislé a z nichž každá
se pohybuje v intervalu <0, v). Tyto souřadnice lze rozšířit
na celou rovinu, připustíme-li za ně i čísla záporná a čísla
větší než v.

Druhá poznámka: Zkoumejme, zda a jak se dá úloha
С —I —5 rozšířit na libovolný ostroúhlý trojúhelník. Rov-

145



nice (16) se změní tak, že se v nich místo a budou vyskytovat
po řadě délky stran a, b, c. Výsledná rovnice pak bude

bx + cy + az — j(a2 + b2 + c2).
Tato rovnice by mohla být východiskem pro zavedení dal-
ších souřadnic.

C-l-6

V rovině jsou dány dva různé body A, D. Dále je dáno
číslo r takové, že r > jAD. Určete geometrické místo prů-
sečíku úhlopříček všech rovnoramenných lichoběžníků
s ramenem AD a s poloměrem opsané kružnice r.

KOMENTÁŘ

Jde o dost fádní konstrukční úlohu s tematikou „obvodový
úhel“. Nad tětivou AD sestrojíme kružnici к — (S,r); body
A, D ji rozdělí na dva neshodné oblouky, zbývající vrcholy
B, C každého z hledaných lichoběžníků leží na větším z těch-
to oblouků; označme jej ol. Na obr. 62 je načrtnut jeden
z rovnoramenných lichoběžníků ABCD: Na základě vlast-

D.

CCs
UJLU Obr. 62# ВA
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Obr. 63

nosti obvodových úhlů je £ ACD — $:ABD = co, vzhledem
к symetrii je < ACD = £ BDC = co, ЛШ) = £ CAB — со.

Pro trojúhelník ADP tedy platí

у - 180° - а - P = 2(0,

neboť je (a + co) + (/? + co) = 180° (AB |j CD). Bod P tedy
náleží tomu oblouku o\ kružnice k' sestrojené nad tětivou
AD a určenému obvodovým úhlem 2co, který leží v polo-
rovině ADol (obr. 63).

Každý bod P ф A, D oblouku o\ je průsečíkem úhlo-
příček některého lichoběžníku ABCD vepsaného kružnici /с;
tento lichoběžník se sestrojí podle obr. 63. Výjimku dělá jen
střed M oblouku o\, kdy příslušný lichoběžník přejde v pra-
voúhelník AB0CqD (viz obr. 63).

Hledaná množina průsečíků P (geometrické místo) je tedy
oblouk o\ bez bodů A, D, M.
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Úloha С — I — 6 snad nepotřebuje pokyny к řešení, jedině
snad pokyn: „všimni si úhlu Ovšem i tento pokyn
je zbytečný, sestrojí-li řešitelé — jak se sluší — několik
lichoběžníků ABCD a bodů P a z názoru odhadnou, že
hledané geometrické místo je oblouk kružnice; pak je cel-
kem jasné, že se tvrzení bude dokazovat pomocí obvodového
úhlu.
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KOMENTÁŘE
К ŘEŠENÍ SOUTĚŽNÍCH ÚLOH KATEGORIE Z

I. KOLA

Z -1 -1

a) Ak dosadíme za n celé čísla do zlomkov
18/7 + 13 5n + 7 24n + 13

11 n + 8 ’ Пn + 17’ 39n + 21 ’

dostaneme vždy zlomok v základnom tvare. Dokážte!

b) Platí to isté pre zlomky
12n + 7 29п + 31 79/2 + 25

19n + 15’ 32/7 + 41 ’ 24/7 + 7
?

KOMENTÁR

Táto úloha je jednoduchá a originálna aplikácia elemen-
tárnej číselnej teorie na aritmetiku racionálnych čísel. Časť
a) aj časť b) obsahuje po troch úlohách toho istého druhu,
ktorých přesná matematická formulácia znie:

A) pre všetky ne^š platí D(18/7 + 13, ll/i + 8) = 1;
resp.

B) pre všetky ne^š sú čísla 18/7 + 13, 11/7 + 8 nesúdelné.
Přitom ^ označuje množinu všetkých celých čísel, D(x, y)

je najváčší spoločný delitel čísel x, y.
Ak zostavíme formuláciu A), máme už prvý impulz к rie-

šeniu všetkých šiestich dielčich úloh.
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Druhý impulz móže byť tento: Ak máme dokázat’, že
je D(18n + 13, 11л + 8) = 1, budeme skúmať vset-

kých spoločných delitelov čísel 18n + 13, 11л + 8, a to
pře každé číslo n. Uvedené tvrdenie platí právě vtedy, ak
sa ukáže, že každý spoločný delitel je buď 1 alebo —1.

Nech teda je 6 spoločný delitel čísel 18л 4- 13, 11л + 8;
potom platí

(i)11л + 8 = <56,

kde a, b sú čísla ъЧэ.Ъ rovnic (1) vylúčime n

11(18л + 13) -18(11л + 8) = <5(1 la - 186),

18л + 13 = да,

tj-
143 - 144 = <5(1 la - 186),

t. j.
6(1 la - 186) = -1 . (2)

Predchádzajúci výpočet je analýza úlohy.
Teraz je třeba využit' rovnicu (2), pretože 11a— 186g^,

plynie z (2), že <5 = ±1, 11a — 186 = +1. Dokázali sme
teda: Уле^ platí: Ak je <5 spoločný delitel čísel 18л +13,
11л + 8, je 6 = +1, tzn. obe čísla sú nesúdelné a zlomok

18л + 13
je v základnom tvare.

11л + 8
Podobné sa riešia ďalšie dve úlohy v oddělení a).
Analýza pri riešení úloh oddelenia b) bude rovnaká. Napr.

prvý zlomok dá sústavu

12л + 7 = <5a ,

19л + 15 = 66.
(3)a, 6 £ ^ .
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Po vylúčení n dostaneme

7.19 — 12.15 = <5(19a - 12b),
t. zn.

-47 = <5(19a - 12b).
Pretože 47 je prvočíslo, móže byť <5 = +1, <5 = ±47

a oddal plynie 19a — 12b = +47, \9a — 12b = +1. Skú-
majme teda, pre ktoré а,ЬеЧ> platí

19a - 12b = ±1. (4a)

Výpočet urobme skusmo: Napíšeme postupnosti násob-
kov čísel 12,19 a vykládáme násobky, ktoré sa líšia o 1.

Dostaneme:

12, 24, 36, 48, 60, 72, 84, 96, 108, 120,...

19, 38, 57, 76, 95, 114, 133,....
Teda je

(4b)19.5 - 12.8 = -1 .

Po porovnaní (4a), (4b)zvolíme a — 5,b — S az ktorejkoívek
rovnice (3) vypočítáme n = 19. Pre n = 19 naozaj je

12.19 + 7
_ 235 _ 47.5 _ 5

19.11 + 15 ~ 376 ~ 4778 “ 8 ’

12n + 7
t. j. zlomok nie je pre n = 19 v základnom tvare.

19n + 15

Tým sme našli protipříklad: našli sme aspoň jedno n
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12и + 7
(п = 19), pre ktoré nie je zlomok v základnom

19w + 15
tvare. Pre iné n ovšem móže byť tento zlomok v základnom

12.1+7 19
tvare; například pre n = 1 dostaneme

19.1 + 15 34

a to je zlomok v základnom tvare. Upozorníme na rozdiel
struktúry riešenia úloh skupin a) a b):

skupina b)
Musíme nájsť aspoň jedno
n e (é, pre ktoré je čitatel
zlomku súdelný s měnová-
telom.

skupina a)
Musíme dokázat’, že pre

všetky n e <€ sú čitatel a
menovateí zlomku nesúdel-
né čísla

Obdobné sa riešia druhé dve úlohy skupiny b).
Predchádzajúce riešenia sú „příliš algebraické44 pre rieši-

telov kategorie Z. Ukážeme iné primitívnejšie riešenia, ktoré
majú v podstatě tú istú logickú štruktúru. Rozriešime tretie
úlohy z oboch skupin.

Predpokladajme, že čísla 24n +13, 39/i + 21 majú pre
niektoré n istého spoločného deliteía. Potom tento delitel
majú dvojice

39n + 21,

24n + 13,

15/i + 8,

9n + 5,

6n + 3,

3n + 2,

24n + 13

15n + 8 = (39n + 21) - (24n + 13),
9/1 + 5 = (24/i + 13) - (15n + 8),
6/i + 3 = (15/i + 8) - (9/i + 5),
3/i + 2 = (9/i + 5) - (6/i + 3),

-1 = (6/i + 3) - 2(3n + 2).
152



Posledně dve čísla ale majú pre každé n len spoločných
delitelov ±1. Preto sú čísla 39n + 21, 23n +13 pre každé /i
nesúdelné.

Predpokladajme, že čísla 19n + 25, 24n + 7 majú pre
niektoré n istého spoločného delitela. Potom tohto delitela
majú dvojice:

79/7 + 25,

24n + 7 ,

, 7/i + 4,

3/г — 5,

n + 14,

24/1 + 7,

7/i + 4 = (79/i + 25) - 3(24/i + 7),
3/i - 5 = (24/i + 7) - 3(7/i + 4),
n + 14 = (7/i + 4) - 2(3/i - 5),

-47 = (3/i - 5) - 3(/i + 14).
Posledná dve čísla ale majú tiež spoločného delitela 47,
napr. pre n = 33. Skutočne platí:

79.33 + 25 2 632 56.47 56

24.33 + 7 799 17.47 17

Našli sme teda aspoň jedno n, pre ktoré nie je zlomok

79n + 25
v základnom tvare.

24n + 7

Z —1 — 2

Jsou dána kladná čísla a, b, c, d, pro která platí

a + b + c + d= 1.
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Dokažte, že pak platí

abc + abd + acd + bed < ^,

a3 + b3 + c3 + d3 < 1.

KOMENTÁŘ

Základní myšlenka pro tyto jednoduché odhady je vy-
hledat příslušný výraz v rozvedení (a + b + c + d)3 a odtud
odvodit příslušnou nerovnost. К tomu nepotřebujeme znát
vzorce pro umocňování polynomu; mocnina se nahradí
prostě součinem:

(a-\-b-\-c-\-d) (a-^-b-{-c-\-d) (a-\-b-\-c-\-d}. (5)

Známe algoritmus pro násobení dvou mnohočlenů; v tom-
to případě však roznásobení nebudeme provádět. Ukážeme,
že bychom tak dostali nepřehledný sled 64 (43) členů, což
samo o sobě je kombinatorická úvaha.

Nyní použijeme „triku1"; pro účastníky MO je nesporně
ziskem, když se s tímto „trikem"" seznámí. Budeme určovat,
kolikrát se ve výsledných 64 členech vyskytne např. součin
abc. Neváhejme sestavit tabulku, v níž bude zachyceno,
z kterého z činitelů (a + b + c + d) součinu (5) je vybráno a,
z kterého b, z kterého c. Tabulka bude vypadat asi takto:
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činitelé
ba c

součin

3abc 21

2acb 31

(6)3bac 2 1

2bca 3 1

1cab 2 3

cba 13 2

Protože násobení je komutativní a asociativní, dostaneme
součin abc s koeficientem 6. Sestavení tabulky (6) byla jedno-
duchá kombinatorická úvaha o permutacích šesti prvků.

Stejnou úvahu jako pro součin abc můžeme provést i pro

součiny abd, acd, bed; vlastně jde jen o záměnu písmen.
V součinu (5) dostaneme po roznásobení mimo členy
6abc 4- 6abd + 6acd 4- 6bed další kladné členy (a, b, c jsou
čísla kladná); jejich součet označíme k. Je tedy

(a + b 4- c 4- d)3 — 6(abc + abd 4- acd 4- bed) + к,

tj. vzhledem к podmínce a + b + c + d— 1

6(abc + abd 4- acd + bed) = 1 — к < 1
a odtud

abc + abd + acd 4- bed < £.

Obdobně, ale jednodušeji se získá odhad aó + b3 + c3 4-
4- d3 < 1.
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Pro uvedení do úlohy Z — I — 2 můžeme použít obdobných
odhadů, např.

Va, b,ce Mq ;

Va, b e +;

a + b + c = 2=>ab + bc +ca <2,

a + b = 1 => ab(a2 + ab + b2) < ^

apod. Přitom značí množinu všech kladných, ne-
záporných reálných čísel. Tyto úlohy lze pochopitelně for-
mulovat ve stylu tradiční matematiky, např.: pro všechna
nezáporná čísla a, b, c platí: je-li a + b + c = 2, pak je
ab + bc + ca < 2.

Z-1-3

Pravoúhlý trojúhelník ABC má odvěsny AB = 4, BC — 3.
Opište mu čtverec APQR tak, aby vrcholy В, C ležely po
řadě na stranách PQ, ()R.

a) Popište konstrukci.
b) Vypočtěte délku AP.

KOMENTÁŘ

Je to úloha opsat útvar 41 x (čtverec APQR) danému útva-
ru 4l2 (pravoúhlému trojúhelníku ABC), která navazuje na
přípravnou úlohu „vepsat pravidelný osmiúhelník danému
čtverci“. Úlohy „vepsat“ a „opsat“ jsou v euklidovské geo-
metrii ekvivalentní: aplikujeme-li totiž vhodné podobné zo-

brazení, převedeme útvar 4ť2, vepsaný danému útvaru °ll\,
v daný útvar 4l2 a zároveň daný útvar 4t\ v útvar 4lx
opsaný danému útvaru 4/2. Vysvětlíme tuto myšlenku při
řešení úlohy Z —1 — 3.
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Budeme se zabývat úlohou: Vepište do čtverce APQR
(ponecháváme označení z úlohy Z —1 — 3) pravoúhlý troj-
úhelník ABC s přeponou AC tak, aby poměr jeho odvěsen
BC: AB bylo dané číslo к < 1 a aby vrcholy В, C ležely
po řadě na stranách PQ, QR.

První impuls: Pro sestrojení trojúhelníku i pro výpočet dé-
lek jeho stran postačí, budeme-li znát např. poměr АР : BP.

Druhý impuls: Pro určení tohoto poměru použijeme dvou
podobných trojúhelníků (obr. 66)

(?)AAPB ~ ABQC.

Jejich podobnost je zaručena shodností jejich vnitřních úhlů.
Protože je

BC = k.AB,

je vzhledem к (7)
(8)BQ = к. AP.

Dále je podle (8)

BP PQ - BQ k.APBQ
= 1 - = 1 - k,

PQ PQAP AP

tj-
BP

(9)= 1 -k.
AP

Je-li např. к = f, je BP = \AP, odtud snadno sestrojíme
bod B, pak i C a zkouškou — obrácením postupu — se pře-
svědčíme o tom, že sestrojený AABC splňuje podmínky
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úlohy. Výpočet délek jeho stran z délky AP a z čísla к se

provede použitím Pythagorovy věty.

Máme-li naopak opsat pravoúhlému trojúhelníku ABC
čtverec APQR, jak žádá úloha Z —1 — 3, vepíšeme libovol-
nému čtverci A'P'Q'R' pravoúhlý trojúhelník A'B'C tak, aby
platilo B'C' = ÁBf = | a výsledný obrazec zvětšíme (změn-
šíme) a přemístíme tak, abychom dostali řešení dané úlohy.

Výpočet délky strany AP — x je jednoduchý; pomocí
Pythagorovy věty pro /\APB dostaneme

x\2
= AB2.*2+

4

1617
Protože je AB = 4, vyjde —x2 = 16, tj. x =

, 16
íe^n

717
, číselně x = 3,89.

Kdybychom nechtěli použít podobného zobrazení, vyšli
17

4
bychom z daného /\ABC; vypočetli bychom BP —

_ 47П 4.4,13 _ 16,52
V17

= 0,97 a bod P bychom sestro-

jili na Thaletově polokružnici nad průměrem AB tak, aby
bylo BP = 0,97.

Oddělení a) úlohy Z —I — 3 je speciálním případem známé
úlohy, kterou lze řešit pomocí věty Thaletovy. Úloha zní:

V rovině jsou dány čtyři různé body K, L, M, N. Máme
jimi vést dvě dvojice rovnoběžek tak, aby tyto čtyři přímky
omezily čtverec (obr. 64).

1717 17
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Obr. 65Obr. 64

Nástin řešení: Rovnoběžné posunutí (M -> K) převede
body M, N po řadě v body M' = К, ЛГ, přímky p,q\ přím-
ky p', q\ které spolu s přímkami r, s omezí čtverec s jedním
vrcholem K. Z jeho protějšího vrcholu X (obr. 65) je vidět
úsečku LN' pod úhlem 90°, úsečku KN' pod úhlem 45°.
Odtud vychází konstrukce. Obdobného postupu lze použít
i při řešení oddělení a) úlohy Z —1 — 3. Neznámý vrchol Q
obr. 66) sestrojíme pomocí podmínek ^pBQC — 90°,

Obr. 66
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£ BQA — 45°. Obtížnější a méně přehledná je tu zkouška
i konstrukce než při dříve uvedeném řešení.

Z —1 — 4

Je daný obdížnik ABCD, pre ktorý platí AB — 2BC. Určte
geometrické miesto takých bodov X obdížnika ABCD, že
pre obsahy trojuholníkov platí

AABX = ABCX < AADX.

KOMENTÁR

Předpoklad AB = 2BC nedává podstatné zjednodušenie
a preto ho pri riešení vynecháme.

Situáciu chápeme množinové: ak označíme Jíj množinu
všetkých bodov X obdížnika (pravouholníka) ABCD, pre
ktoré je AABX = ABCX a Ji2 množinu všetkých bodov X
obdížnika ABCD, pre ktoré je ABCX < AADX, potom
hladané „geometrické miesto bodov“ je prienik Jtx n Jí2.

Pri skúmaní obsahov trojuholníkov samozřejmé vychád-
zame zo známej formule o polovičnom súčine strany á к nej
príslušnej výšky. Tak zistíme, že nielen priesečík M uhlo-
priečok obdížnika ABCD, ale aj každý bod X uhlopriečky
BD s výnimkou bodu В patria к množině ,Jtx. Pretože troj-
uholníky ABX, BCX majú spoločnú stranu BX a vzdiale-
nosti vrcholov A, C od priamky BD sú rovnaké (obr. 67).
Zostáva dokázat', že žiadný bod Y obdížnika ABCD ležiaci
mimo priamky BD к množině Jíx nepatří. Tu připomínáme
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Obr. 67

dve možnosti ako sa dá dokázat' rovnost’ množin Jíx а и

(и je uhlopriečka BD bez bodu B). Nech už to urobíme
s množinovým aparátom alebo bez něho, dokazujeme vlastně
dve inklúzie

и с: Jix а Mx c= u .

Prvú inklúziu sme už dokázali, miesto druhej dokazujeme
tvrdenie s ňou ekvivalentně: (ABCD \ u) n Jij = 0. Žiadný
bod obdížnika ABCD ležiaci mimo и nepatří к množině Mx.

Nech je У € (ABCD \ u). Ak leží bod Y například vo vnú-
trajšku polroviny BDC (obr. 68), zostrojíme priesečík Z
úsečky BD a úsečky AY a uvážíme, že priamky АХ, BC

D

•ýř

či

Obr. 68 A
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sa pretínajú v polrovine ABC, preto má bod У menšiu
vzdialenosť od priamky BC než bod Z. Teda je

ABCZ > ABCY

a ďalej z tejto nerovnosti

AABY= AABZ + ABYZ > AABZ = ABCZ > ABCY.

Teda je Y$Jtj.

Ináč je možno určiť množinu Mx takto: ak označíme
va, vc vzdialenosti bodu X e Jix od priamok AB, BC, potom
platí jAB . va — jBC . vc, t. j.

Vg
= BC

vc AB

Množina všetkých bodov roviny ABC, ktorých vzdiale-
nosti od priamok AB, BC sú v pomere BC : AB, je priamka
BD bez bodu B. Teda je J(x = ABCD n (priamka BD\{B}).

Množinu móže určiť čitatel’ samostatné; je vidieť,
že to je množina všetkých bodov obdížnika ABCD, ktoré
ležia vo vnútrajšku polroviny oB, kde o označuje spoločnú
os úsečiek AB, CD.

Prienik Jíj n Jt2 je tedy vnútrajšok úsečky BM (M je
priesečík uhlopriečok AC, BD).
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IV. Soutěžní úlohy II. kola

ŘEŠENÍ ÚLOH KATEGORIE A

II. KOLA

A-II-la

Je dán libovolný trojúhelník ABC. Pro libovolný bod X
roviny ABC označme d(X) největší ze vzdáleností AX, BX,
CX. Najděte takový bod X0, pro nějž je d(X0) minimální.

ŘEŠENÍ

PRVNÍ ZPŮSOB. Dokážeme nejprve tuto pomocnou
větu:

Je-li A1A2A3 ostroúhlý trojúhelník a S jeho vnitřní bod,
pak S je jediný bod průniku kruhů Ж1 n Ж2 n Жъ, kde
kruh Ж i má střed At a poloměr AtS, i = 1, 2, 3.

Důkaz. Vnitřní bod X trojúhelníku lze charakterizovat
např. tím, že každá otevřená polopřímka z X vycházející
protne hranici trojúhelníku.

Předpokládejme, že bod X Ф S je bodem průniku
Ж i n Ж2 о Ж3. Protože S je hraničním bodem kruhu Ж\
а X dalším bodem kruhu Жu je úhel AjSA ostrý. Svírá
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tedy polopřímka SX ostrý úhel s polopřímkou a ob-
dobně s polopřímkou SÁ2 i 5Л3.

Označme a+ uzavřenou polorovinu obsahující bod X
takovou, že její hranice prochází bodem S a je kolmá к SX.
Podle předchozího leží všechny tři vrcholy At v <x+, tedy
celý trojúhelník AÍA2A3 leží v cr+. Proto nemůže mít otevře-
ná polopřímka opačná к polopřímce SX společný bod
s hranicí trojúhelníka AiA2A3, což odporuje charakterizaci
vnitřního bodu uvedené na začátku důkazu.

Nyní přejdeme к vlastnímu řešení úlohy. Budeme rozli-
šovat dva případy:

A. Trojúhelník ABC je ostroúhlý.
Ukážeme, že pak o středu X0 kružnice opsané trojúhel-

niku ABC platí, že d(X0) < d(X) pro každý bod X ф X0:
Jak známo, v případě ostroúhlého trojúhelníka je X0

vnitřní bod tohoto trojúhelníka. Je-li nyní bod X různý
od X0, pak X není podle uvedené pomocné věty obsažen
v alespoň jednom z tří kruhů o středech А, В a C a stejných
poloměrech d(X0). Tedy d(X) je větší než d(X0).

V tomto případě je tedy jediný bod X0 s minimálním
d(X0), a to střed kružnice danému trojúhelníku opsané.

B. Trojúhelník ABC není ostroúhlý. Ukážeme, že střed
X0 nejdelší strany trojúhelníka má vlastnost, že d(X0) < d(X)
pro každý bod X Ф X0. Můžeme předpokládat, že označení
je zvoleno tak, že AB je nejdelší strana, takže X0 je střed
úsečky AB a d(X0) = \AB. Je-li X ф X0, je zřejmě

d(X) ^ XB,d(X) ^ XA,
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tedy také
d(X) ^ %XA + XB) ^ \AB = d(X.0).

Přitom d(X) se nemůže rovnat d(X0), neboť pak by
d(X) = XA, d(X) = XB, a také

XA + XB = AB,

tj. bod X by splynul s X0.
V tomto případě je tedy střed nejdelší strany trojúhelníka

jediným bodem X0, pro který je d(X0) minimální.
Úloha je rozřešena.
DRUHÝ ZPŮSOB. Číslo d(X) je zřejmě poloměr nej-

menšího kruhu se středem X, který obsahuje celý trojúhel-
nik ABC. Nejmenší kruh vůbec obsahující celý trojúhelník
ABC má proto střed X0, pro který je d(X0) minimální.

Z názoru je patrné, že takový nejmenší kruh existuje
(dokázat to přesahuje možnosti tohoto řešení). Označme Ж
tento kruh, X0 jeho střed а К hraniční kružnici kruhu Ж'.
Kružnice К zřejmě prochází alespoň jedním z vrcholů
А, В, C, např. bodem A. Kdyby neprocházela ani B, ani C,
pak malou změnou bodu X0 do nového bodu Xx na úsečce
Х0А bychom dosáhli toho, že d(Xí) = AXx < AX0 = d(X0),
což odporuje minimálnosti d(X0). Tedy К prochází alespoň
dvěma z vrcholů А, В, C, např. A a B. Pak X0 leží na ose

strany AB. Označme S střed úsečky AB. Je-li X0 ф S a ne-

prochází-li К bodem C, lze d(X0) opět změnit malým po-
sunutím X0 na úsečce X0S.

Jsou tedy dvě možnosti:
Buď je X0 = S, takže К je Thaletova kružnice s průměrem
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AB, а pak < ACB ^ 90°, anebo je X0 ф S, a kružnice X
je opsaná kružnice trojúhelníku ABC. V tomto případě
je ABC ostroúhlý trojúhelník, neboť jinak lze opět d(X0)
zmenšit.

Závěr. Je-li ABC ostroúhlý trojúhelník, je bod X0 střed
kružnice opsané trojúhelníku ABC. Je-li ABC pravoúhlý
nebo tupoúhlý, pak X0 je střed nejdelší strany trojúhelníka
ABC.

A-II-lb

Dokažte, že pro libovolná reálná čísla a, b, x, у platí

|a sin x + 6 sin y\ у/a2 + b2 — 2ab cos (x 4- y).
Kdy nastane rovnost?

ŘEŠENÍ

Položme A = a sin x + b sin у, В = a cos x — b cos y;
bude potom

A2 + B2 = a2 -f b2 — 2ab cos (x -I- y).
Poněvadž zřejmě B2 ^ 0, je A2 ^ A2 + В2, a tedy také

И š J~A2 + B2 ,

což je právě dokazovaná nerovnost.
Rovnost zde nastane, právě když je В = 0, tzn. když

a cos x = b cos у.
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A — II — 2a

Dokážte, že pre všetky prirodzené n platí

1 11 1

3i + 5I + “' + (2n + l)2 < 4 ‘

ŘEŠENÍ

Zřejmě platí pro každé přirozené číslo к:

11 1 1 1
<

(2к + l)2 4к2 + 4/с + 1 4k(k +1) 4к 4/с + 4 ’

a tedy

1 1

З2 + Š2 + +
11

2 2 ^(2п + 1)(2п — 1)

1111

<4_8 + 8_ 12 + '" +
1 1

4п — 4 4п 4п 4п + 4

1 1

Snadnou úpravou dostaneme

1 1

? + ¥
1 1 1 1

+ ... +
(2n + l)2 4 4n + 4

< -

4’

což jsme měli dokázat.
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A — II — 2b

Je dán čtyřstěn ABCD, jehož hrany AB, BC, CD jsou po
dvou navzájem kolmé. Vyjádřete pomocí délek a, b, c hran
AB, BC, CD poloměr r kulové plochy vepsané čtyřstěnu
ABCD.

ŘEŠENÍ

Střed S kulové plochy čtyřstěnu vepsané je vnitřní bod
čtyřstěnu. Proto je objem čtyřstěnu ABCD roven součtu
objemů čtyř čtyřstěnů SABC, SABD, SACD a SBCD, které
mají stejnou výšku z vrcholu S, rovnou poloměru r vepsané
kulové plochy. O objemech platí (obr. 69):

VABCD — ^abc, neboť CD je výška čtyřstěnu ke stěně ABC,
která je pravoúhlý trojúhelník, dále

D

Obr. 69
C

C

b

ВA a
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VsABC — 6rab >

Vsacd = s/a2 + b2 ,

VsBCD = b'bc ,

a konečně

Vsabd = \ra s/b2 + c2,
neboť hrana AB je kolmá ke dvěma přímkám BC, CD roviny
BCD, tedy i к přímce BD, a trojúhelník ABD je proto právo-

úhlý.
Celkem dostáváme

£abc = £rab + £rc J~a2 + b2 + £rbc + \ra Jb2 + c2 ,

odkud
abc

r —

a(b + yjb2 + c2) + c(b + Ja2 + b2)

A — II — 3a

V téže rovině leží kružnice kl,k2,...,kn (n ^ 1).
a) Najděte vzorec pro největší možný počet an oblastí,

na které tyto kružnice rozdělí rovinu. Popište konstrukci n

kružnic, které rozdělí rovinu na tento počet a„ oblastí. Jaký
má odvozený výsledek význam pro Vennovy diagramy?

b) Budiž n = 4; popíšeme symbolem (1010) každou
z oblastí, která leží uvnitř /с1?/с3 a vně k2, kA, symbolem
(0100) každou z oblastí, která leží uvnitř k2 a vně /сь/с3, /с4
a obdobně dále. Ukažte, že je možné zvolit kružnice tak, že
dělí rovinu na a4 oblastí a každá z nich má jiný popis.
Narýsujte obrázek.
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ŘEŠENÍ

a) Pro an platí rekurentní vzorec

an = fln-i + 2(n ~ !)•
Neboť zvolíme-li n-tou kružnici tak, aby protínala každou
z předchozích n — 1 kružnic ve dvou bodech, dostaneme
na ní maximální počet, tj. 2{n — 1) průsečíků. Tím vznikne
na kn 2(n — 1) oblouků, z nichž každý rozdělí některou
z předchozích an^i oblastí na dvě. Vzhledem к tomu, že je
ax = 2, je podle (1)

O)

an — 2 + 2(1 + 2 + ... + n — 1),
po úpravě

an = n2 — n + 2.

Pro n ^ 4 je an < 2”, proto pro znázornění všech průniků
n množin a jejich doplňků nemůžeme kreslit kruhové Ven-
novy diagramy. Pro n = 1, 2, 3 jsou kruhové Vennovy
diagramy známé obrazce; viz obr. 70.

Zbývá dokázat, že pro každé n > 3 je maximální počet
oblastí an dosažitelný při vhodné volbě kružnic /сь k2,..., kn.

(2)

Obr. 70
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0010 0101
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м4

0000 0001 0100

Obr. 71

Dokážeme indukcí lemma: V rovině lze sestrojit pro každé
n ^ 2 n kružnic tak, že průnik všech jejich vnitřků je ne-

prázdný a že každé dvě se protínají ve dvou bodech.
Předpokládejme, že věta platí pro n — 1. V průniku 2P

všech vnitřků kružnic /сьk„_1? zvolme bod A, vně všech
kružnic zvolme bod B. Body A, В veďme takovou kruž-
ničí kn, aby neprocházela žádným z průsečíků kružnic
kít • • •? kn
k\i • • kn
žinou je neprázdný. Protože lemma platí pro n = 2, je
dokázáno.

b) V rovině sestrojme situaci podle obr. 71; každou
z oblastí, na něž rozdělí přímky x2 a kružnice x3, x4

rovinu, popišme podle obdobné úmluvy, jaká je v textu b) —

závorky jsou vynechány.

Kružnice kn zřejmě protne každou z kružnic
ve dvou bodech a průnik jejího vnitřku s mno-

-1-

-1
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Na obr. 71 je 14 různých popisů ze 16 možných; chybějí
jen 0110 a 1110.

Promítneme situaci z obr. 71 na kulovou plochu Г z ně-
kterého jejího bodu (stereograficky), dostaneme na kulové
ploše Г 4 kružnice x\, x'2, x3, x\, které tam omezí 14 oblastí
s vesměs různými popisy. Promítneme-li do roviny kružnice
x\, x!2, x'3, x\ z bodu kulové plochy Г, který neleží na žádné
z těchto kružnic, dostaneme kružnice kx, k2, /c3, k4 žádané
vlastnosti. Situace je na obr. 72.

A — II — 3b

V rovině je dáno 3n bodů Ax, A2, A3,..., A3„ (n ^ 1),
z nichž žádné tři neleží v jedné přímce. Potom je možno

К
<2

Ю00 0100

1110

1111
01101011

1001
0111

0011 00000001к} 0010 *3
Obr. 72
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sestrojit n trojúhelníků, z nichž žádné dva nemají společný
bod a takových, že všechny vrcholy těchto trojúhelníků leží
v bodech A(. Dokažte.

ŘEŠENÍ

Je-li n — 1, je tvrzení zřejmé. Předpokládejme, že tvrzení
je už dokázáno pro některé přirozené číslo n a uvažujme
3n + 3 body AuA2, ..., A
v jedné přímce. Sestrojme nejmenší vypuklý mnohoúhelník,
který obsahuje všechny body At (i — 1, 2,..., 3n + 3). Dejme
tomu, že tento vypuklý mnohoúhelník, jemuž se též říká
konvexní obal uvedené množiny bodů, má к vrcholů, jež
bez újmy obecnosti lze po řadě označit Ax, A2, A3,Ak.
Úsečka AXA3 je pro к > 3 úhlopříčkou mnohoúhelníka,
pro к = 3 je to jeho strana. Všimněme si trojúhelníka
AXA2A3 a rozlišujme dva případy.

První případ je ten, že uvnitř trojúhelníka AXA2A3 neleží
žádný bod A{ (pro i = к + 1, к 4- 2,..., Зп + 3). Pak přímka
AXA3 rozdělí rovinu na dvě poloroviny tak, že uvnitř jedné
leží bod A2, uvnitř druhé je 3n bodů A4, A5,..., A
Podle indukčního předpokladu lze ve druhé polorovině se-

strojit n trojúhelníků, jež splňují požadavky úlohy. Připo-
jíme-li к nim ještě trojúhelník AXA2A3, je tím sestrojen
n + 1 trojúhelník a druhý indukční krok je hotov.

Ve druhém případě připusťme, že uvnitř trojúhelníka
AxA2A3 leží některé body At (pro i = к + 1, к + 2,..., Зп + 3).
Sestrojme úhly AiA1A2 a vyberme z nich ten, který má nej-
menší velikost. Označme tento bod bez újmy obecnosti A

z nichž žádné tři neleží3n + 3?

3n+ 3-

k+ 1-
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je určen jednoznačně, neboť žádné tři body A,Bod A

neleží v jedné přímce. Nyní přímka A1Ak+1 oddělí bod A2
od zbývajících 3n bodů A{. Podle indukčního předpokladu
sestrojíme tedy v jedné polorovině n trojúhelníků poža-
dováných vlastností a připojíme к nim ještě trojúhelník
A1A2Ak + 1. Tím je důkaz podán.

fc+i
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ŘEŠENÍ ÚLOH KATEGORIE В

II. KOLA

B-II-la

V rovině je daná úsečka А В a bod M, ktorý na nej neleží.
Nech p,q sú 1’ubovolné dve priamky týchto vlastností:

1. Aep, Beq;
2. žiadna z nich neobsahuje úsečku AB ani bod M;
3. p ± q.

Nech P,Q sú v uvedenom poradí paty kolmic z bodu M
na priamky p, q. Určité množinu ťažísk všetkých trojuhol-
níkov MPQ.

ŘEŠENÍ

Průsečík přímek p a q označme R. Poněvadž p ± q, leží
body R na Thaletově kružnici к s průměrem AB (obr. 73).

Trojúhelník PMQ je pravoúhlý s pravým úhlem při vrcho-
lu M, obrazec MPRQ je obdélník. Středy všech takto vznik-
lých obdélníků leží na kružnici h, stejnolehlé s к podle
středu M a koeficientu j. Poněvadž těžiště T trojúhelníků
MPQ leží na úsečce SM a platí MT = ^RM, plyne
odtud, že množinou těžišť všech trojúhelníků PMQ je kruž-
nice t, která je stejnolehlá s kružnicí к podle středu stejno-
lehlosti M a koeficientu stejnolehlosti к =

Je-li V libovolný bod kružnice t, je tento bod těžištěm
trojúhelníka, který sestrojíme takto:
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Obr. 73

К bodu T' sestrojíme bod R' na přímce MT\ aby
MR' = 3МГ; bod R' leží zřejmě na kružnici k. Na přím-
kách AR' a BR' sestrojíme paty P', Q' kolmic z bodu M
na tyto přímky. Trojúhelník MP Q' má své těžiště bod T\

Je tudíž kružnice t hledanou množinou bodů, těžišť všech
trojúhelníků, které splňují podmínky úlohy.

B-II-lb

Zistite, pre ktoré dvojice reálných čísel x,y z intervalu
< — 2л, 2л> je splněná nerovnost’:

tg + y) + cotg + y) ^ 2.

Výsledok znázorníte graficky v pravouhlom súradnicovom
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systéme. Pre ktoré dvojice reálných čísel x, у z daného
intervalu platí rovnost’?

RIEŠENIE

Daná nerovnost’ nie je definovaná pre tie dvojice x,y,

pre ktoré je у = — x + kn, kde к je celé číslo, pretože funkcia
tangens nie je definovaná pre uhly, ktoré sú nepárnym ná-
sobkom jn, teda v našom případe pre у = — x 4- (2k + 1) n,
kde к je celé číslo, a funkcia kotangens nie je definovaná
pre uhly, ktoré sú párnym násobkom čísla ^n, teda pre
у = — x + 2kn. Spojením definičných oborov jednotlivých
funkcií dostáváme definičný obor celej nerovnosti. Danému
intervalu < — 2л, 2л) čísel x, у zodpovedajú tie к, pre ktoré
je \k\ ^ 4. Danů nerovnost’ móžeme písať aj v tvare:

sin ^{x + y) cos y(x + y)
cos ^(x + y) sin ^{x + y)

£2.

Po jednoduchej úpravě dostaneme

[sin j(x + y) - cos y(x + y)]2
^ 0.

sin ^(x + y) . COS Kx + y)

Daná nerovnost’ je teda splněná pre všetky dvojice x, y,

pre ktoré je:

sin i(x + y). cos ^{x + y) > 0.
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Keďže je sin ^{x + y). cos ^{x + y) = j sin (x + y), stačí zis-
tiť, kedy je sin (x + y) > 0. Tak tomu je pre všetky dvojice
reálných čísel, pre ktoré platí:

2kn < x + у < 2кп + я.

Odtial je:
— x + 2кп < у < — x + (2/с + 1) я .

Eahko sa přesvědčíme, že danému intervalu vyhovujú tieto
čísla к: -2,-1,0,1. Grafickým znázorněním nerovností
dostáváme 4 pásy štvorca (vyšrafované), do ktorých spa-
dajú dvojice čísel x, y, pre ktoré je daná nerovnost’ splněná
(obr. 74).

Je zřejmé, že rovnost’ nastane vtedy, ak sin + y) =
= cos ^{x + y). Použitím vety o doplňkových uhloch

Obr. 74
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a vlastnosti periodicity funkcie sinus je: sin^x + у) =
= sin [2kn + jn — ^(x + y)]. To znamená, že з(х + у) =
= 2кк + jji — ^(x + у). Oddal je у = —x + 2kn + fn.
Pre daný štvorec je k: 1,0, — 1, — 2. Sú to středy pásov
(na grafe zvýrazněné čiary). Ak dosadíme do póvodnej rov-
nice za у = — x + 2kn + jn, dostaneme:

tg (kn + + cotg (kn + Í7i) = 2,
čo skutočne platí.

В — II — 2a

Je dán čtyřboký jehlan V(ABCD) se čtvercovou podsta-
vou ABCD a na jeho hraně VC bod E \ poměr délek VE: VC
nechť je q, 0 < q < 1. Rovina ABE protne hranu VD
v bodě F. Určete poměr objemů těles VABEF a AFDBEC,
na něž rovina ABE daný jehlan rozdělí.

ŘEŠENÍ

PRVNÍ ZPŮSOB. Označme a délku strany čtverce ABCD
a v výšku jehlanu V(ABCD). Objem celého jehlanu je tedy
\a2v.

Poněvadž AB |l CD, je také EF |l AB, takže také
VF: VD — q. Vzdálenost přímky EF od (rovnoběžné) roviny
ABCD je právě (1 — q) v. Kromě toho je také EF : CD = q,
a tedy EF = aq.

Nyní vypočteme objem tělesa AFDBEC. Bodem F vede-
me rovinu rovnoběžnou s rovinou ВЕС; ta protne úsečku
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AB v bodě G a úsečku CD v bodě H, přičemž BG = CH =
= EF = aq. Těleso BECGFH je tedy trojboký hranol;
jeho objem je \aaq{ 1 — q)v — ?,a2vq(l — q). Těleso FAGHD
je čtyřboký jehlan s objemem ja(l — q) a( 1 — q) v =
= ja2v( 1 — q)2. Objem celého tělesa AFDBEC dostaneme
sečtením

ja2vq( 1 — q) + ja2v( 1 — <y)2 = £fl2r(l — ty) [3ty + 2(1 — ty)] —

= ia2v(l - q) (q + 2).

Odečtením od objemu ^a2v celého daného jehlanu V(ABCD)
získáme objem jehlanu V(ABEF):

ja2v - ^a2v( 1 - ty)(g + 2) =

= h2v[2 “ (1 - ty) Ů + 2)] = iu2wy(l + q).

Hledaný poměr objemů těles VABEF a AFDBEC je tedy

g(l + <?)
ia2v( 1 - q) {q + 2) (1 - ty) (2 + <y)'

+ q)

DRUHÝ ZPŮSOB. Uveďme ještě stručně jiné řešení za-

lqžené na využití Cavalieriho principu, resp. na výpočtu
objemu tělesa „rozřezáním na tenké hranolky44.

Označme opět v výšku daného jehlanu a a délku strany
čtverce ABCD. Jehlan protneme rovinou £ rovnoběžnou
s podstavou; vzdálenost g od V nechť je hv, 0 < h < 1.
Rovina g protne jehlan ve čtverci o straně ah. Je-li h < q,
rovina g neprotne těleso AFDBEC. Je-li h > q, protne g
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h — q
těleso AFDBEC v obdélníku o stranách ah, a

1 - q

Nyní následuje ono „rozřezání tělesa AFDBEC na tenké
hranolky“, což není nic jiného nežli vyjádření objemu tělesa
AFDBEC integrálem

h -
- v dh .ah a

1 - q

Snadným výpočtem zjistíme výsledek

Wv( 1 - q) (2 + q).
Další postup je stejný jako v původním řešení.

В —II —2b

Řešte v oboru reálných čísel rovnici

x2 + (a + l)x + a = sign [x2 + (a + l)x]
o neznámé x, přičemž a je reálný parametr. Proveďte diskusi.

(i)

ŘEŠENÍ

V dané rovnici se vyskytuje funkce signum, a proto je třeba
rozlišit tři případy.

1. Jestliže
x2 + (a 4- 1) x = 0 , (2)

pak rovnice (1) nabývá tvaru

x2 + (a + l) x + a — 0. (3)
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Soustava rovnic (2) a (3) může mít zřejmě řešení jen tehdy,
je-li

a — 0.

V tomto případě řešení existuje. Kořeny jsou 0 a — 1.
2. Jestliže

x2 + (a + 1) x > 0,

pak rovnice (1) nabývá tvaru

(4)

x2 + (a + 1) x + (a - 1) = 0.

Soustava tvořená nerovnicí (4) a rovnicí (5) je zřejmě ekvi-
valentní s rovnicí (5) doplněnou podmínkou

(5)

(«)a — 1 < 0.

Rovnice (5) má řešení v oboru reálných čísel, právě když

D = (a + l)2 — Mfl — 1) ž 0,
což pro každé a splňující podmínku (6) platí. (Dokonce pro
každé číslo a platí D ^ 0, neboť D = (a — l)2 + 4.) Tedy
pro a < 1 má rovnice (1) kořeny

*i,2 = l[-(a + 1) ± >/(a - l)2 + 4] .

3. Jestliže

x2 + (a + l)x < 0, (7)

pak rovnice (1) nabývá tvaru

(8)x2 + (u+ l)x + (u+ l) — 0.
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Soustava tvořená nerovnicí (7) a rovnicí (8) je ekvivalentní
s rovnicí (8) doplněnou podmínkou

a + 1 > 0.

Rovnice (8) má řešení v oboru reálných čísel, právě když
D' = (a + l)2 - 4(a + l) ± 0,

(a + 1)(a - 3) ^ 0,

což vzhledem к tomu, že platí (9), nastane, právě když

a — 3^0.

Podmínky (9) a (10) jsou splněny, právě když platí nerov-
nost (10). Pro a ^ 3 má rovnice (1) kořeny

(9)

tj-

(10)

*i,2 = í[-(a + 1) ± J(a +!)(«- 3)j •

Všechny možnosti pro řešení rovnice (1) v oboru reálných
čísel jsou zachyceny v následující tabulce:

Parametr a Kořeny

= i[-(«+l)±V(«-l)2 + 4](-oo, 1) *1,2
neexistují<1,0)

0 = 0, x2 = -1
neexistují
*1,2 = -2

_

*1,2 = Í[-(fl + 1) ± V(a + l)(a ~ 3)]-

(0,3)
3

(3, oo)
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B-II-3a

Je dána kružnice к a přirozené číslo n. Zjistěte největší
a nejmenší počet částí, na které lze vnitřek kružnice к roz-
dělit n tětivami.

ŘEŠENÍ

Největší počet dílů vznikne, když se každé dvě tětivy bu-
dou protínat uvnitř kruhu, nejmenší počet částí pak vznikne,
když tětivy nemají uvnitř kruhu žádný společný bod.

1. Označme a„ nejmenší počet částí vnitřku kružnice k,
které lze určit n tětivami íb t2,tn. Zřejmě ax — 2, a2 = 3
atd. (n + l)-ní tětivu musíme vést tak, aby neprotla žádnou
z tětiv í1? t2, í3,..., tn. Ta pak rozdělí jedinou z existujících
částí na dvě, takže platí: t

(i)an+ 1 — an T 1

pro každé přirozené n. Podle (1) určíme snadno a„ jako
funkci n:

an — an-1 + 1 — an- 2 + 1 + 1 — an-1 + 2 —

=

1) + n—l=a1+n — 1.

Avšak ax = 2, takže
(2)an = n + 1.

2. Označme bn největší počet částí vnitřku kružnice k,
kterého lze dosáhnout n tětivami tn. Zřejmě bx= 2,
b2 = 4 atd. (n + l)-ní tětivu tn+l musíme vést tak, aby
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protla každou z tětiv ř1? t2,t„. Je pak jimi rozdělena
na n + 1 úseček. Každá z nich rozděluje některou z existu-
jících částí na dvě, takže přibylo n+ 1 částí. Platí tedy

(3)K+i — bn + n + 1,

pro každé n ^ 1.
Stejným postupem jako v odst. 1 vypočteme bn:

bn = + n

bn = bn-2 + 2n - 1

b„ = b

bn = bl +(n- l)n - Цп - \)(n -2)
b„ = 2 + Цп - l)(n + 2)

Tento vztah můžeme ještě dále upravit na konečný tvar:

bn = jn(n + 1) + 1 .

+ — 1) n — (l + 2 + 3 + ... + (/? — 2))n-rt+l

(4)

• (4')

B-II-3b

Nechť Ji — {2ťb X2,2ťn] je množina bodů v prostoru
taková, že XtXk ^ 1 pro všechna i, к = 1,2,..., и, přičemž

= 1.

Dokažte:

a) Existuje kvádr, jehož všechny hrany mají délku nej-
výše rovnou 1 a který obsahuje množinu Ji.

b) Každý kvádr, který obsahuje množinu Jt, má aspoň
jednu hranu délky větší než 0,57.
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ŘEŠENÍ

a) Množina Jí má následující vlastnost: Zvolíme-li libo-
volnou rovinu g, pak existuje rovinová vrstva s hraničními
rovinami rovnoběžnými s rovinou g a o výšce nejvýše 1,
která obsahuje množinu Jí.

Důkaz. Nechť g je libovolná rovina. V množině -^zvolme
libovolný bod, např. Xx. Veďme bodem Xx rovinu gx rov-
noběžnou s rovinou g. Rovina gx pak určuje dva polo-
prostory. Body ležící v rovině považujeme za body patřící
do každého z těchto poloprostorů. Nechť Jí' a Jí" jsou
po řadě množiny všech bodů z množiny M, které leží v jed-
nom a ve druhém z uvažovaných poloprostorů. Množiny
Jí' a Jí" jsou neprázdné, neboť Xx eJí' a Xx eJÍ". V každé
z množin Jí' a Jí" nalezneme bod, který má od roviny gx
maximální vzdálenost. Nechť v množině Jí' je takovým
bodem bod Xj a v množině Jí" bod Vk*Nyní rozlišme dvě
možnosti.

a) Nechť Xjegx а Xkegx. Рак zřejmě Jí cz gx. Tudíž
Jí leží v rovinové vrstvě s hraničními rovinami g! a^', kde
q' |l q a vzdálenost rovin q' а gx je 1.

j8) Nechť Х]фдх nebo Xk ф gx. Pak roviny g} a gk, které
jsou rovnoběžné s rovinou g a procházejí po řadě body
Xj a Xk, určují rovinovou vrstvu obsahující všechny body
množiny Jí. Protože XjXk ^ 1, je výška rovinové vrstvy
určené rovinami gj a gk menší nebo rovna 1.

Výše uvedená vlastnost množiny zcela dokázána.
Zvolme v prostoru tři roviny л, v, /л, které jsou po dvou

к sobě kolmé. Pak existují rovinové vrstvy obsahující mno-
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žinu Д jež mají hraniční roviny po řadě rovnoběžné s ro-
vinami 7Г, v, /т a jejichž výšky jsou menší nebo rovné 1. Prů-
nikem těchto tří rovinových vrstev je kvádr, jehož existenci
jsme měli dokázat.

b) Toto tvrzení dokážeme nepřímo. Nechť existuje kvádr
Ж, který obsahuje množinu ^#a přitom žádná jeho hrana
není větší než 0,57. Zvolme dva libovolné body U, V kvá-
dru Ж. Zvolme ortonormální soustavu souřadnic s počát-
kem v jednom z vrcholů kvádru Ж. Každá z os souřadnic
nechť obsahuje jednu hranu kvádru Ж. Nechť

V = |>i, v2, i>3] •U = [u1,u2,u3],

Pak pro každé i = 1,2, 3 je

|Щ - Vi\ s 0,57.

Tudíž

J,Z(«i - Vi)2 ^ v/3.0,572,uv =

tj.
3.0,3249 < 1 .

Tedy v kvádru Ж neleží body Xx a X2, neboť X^X2 = 1.

Dospěli jsme tedy ke sporu s předpokladem, že M <= Ж.

Tím je tvrzení b) dokázáno.
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ŘEŠENÍ ÚLOH KATEGORIE C

II. KOLA

C-II-la

V rovině je dána konečná množina bodů, z nichž každé
dva mají vzdálenost nejvýše 1. Dokažte, že existuje jednot-
kový čtverec, který danou množinu obsahuje.

ŘEŠENÍ

1. Je-li daná množina bodů prázdná, pak zřejmě dokazo-
váné tvrzení platí.

2. Nechť je daná množina bodů neprázdná. Každým bo-
dem dané množiny vedeme přímky libovolného směru p
a směru q к němu kolmého. Krajní přímky obou osnov
označme px,p2 a qx,q2- Vzdálenost přímek px,p2 i přímek
qq2 je nejvýš 1. Tyto čtyři přímky určují pravoúhelník
(ve zvláštním případě úsečku nebo bod) o stranách délky
d ^ 1, takže zřejmě existuje jednotkový čtverec, který jej
obsahuje.

C-II-lb

Najděte všechny trojice přirozených čísel a, b, c takových,
že zároveň platí:

(1) a2 + b2 = c2;
(2) číslo c je dělitelné číslem a i číslem b.
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ŘEŠENÍ

Podle (2) existují taková dvě přirozená čísla m, n, že
с — та a c = nb.

Dosadíme-li do (1) dostaneme

c2 c2
1- — — c2

m2 n2
z čehož vyplývá

1 1
~2 + ~2 ~ ' ’
m n

m2{n2 — 1) = n2 .

Tato rovnice však nemůže platit, neboť by muselo (n2 — 1)
být dělitelem n2, což je možné jen pro n2 = 2 a tedy pro
n = yj2, což není přirozené číslo. Úloha tedy nemá řešení.

a tedy

С —II —2a

Je dán pravidelný šestiúhelník ABCDEF se středem S.
Určete množinu těžišť všech rovnostranných trojúhelníků
XSY, když bod X probíhá obvod daného šestiúhelníku.

ŘEŠENÍ

Těžiště AASB je bod M, těžiště ABSC je bod N. Jestliže
bod X proběhne úsečku AB a Y úsečku BC, pak těžiště
uvažovaných trojúhelníků XSY vyplní úsečku MN. Úhly
£ XGS a N.XPS jsou pravé a čtyřúhelník XGPS je tětivový
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Obr. 75

a poněvadž %XSP = 30°, je £ XGP = 150° (označení viz
obr. 75, 76). Odtud plyne, že středy stran XY leží na úsečce
GH, která s úsečkou AB svírá úhel 30°.

Těžiště T trojúhelníku XYS pak odpovídá bodu P ve

stejnolehlosti podle středu S as koef. f. Poněvadž body P
vyplňují úsečku GH, vyplňují body T úsečku MN, která je
stejnolehlá к úsečce GH v uvedené stejnolehlosti.

Je-li obráceně T libovolný bod úsečky MN, snadno se-

strojíme trojúhelník, mající v bodě T své těžiště. Nejprve
určíme průsečík P přímky ST s úsečkou GH a v tomto

A D

Obr. 76
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bodě sestrojíme úsečku XY1 SP s krajními body na ob-
vodě šestiúhelníku. Dokážeme, že XY — XS = SY.

Z tětivového čtyřúhelníku XGPS plyne, že -fcXSP —

= 180° - 150° = 30°, z tětivového čtyřúhelníku PSHY
plyne, že < PHY = 30° = -fcPSY (obvodové úhly nad týmž
obloukem kružnice čtyřúhelníku opsané). Z vlastnosti úhlu
■fcXSP, jehož velikost je 30° pak plyne: SX = 2.XP =
= 2. PY a dále je XP = PY. Je tudíž trojúhelník takto
sestrojený rovnostranný a jeho těžiště je bod T. Je-li velikost

2 a . a

■W3=-7úsečky AB = a, je velikost úsečky MN =
v33 2

Hledanou množinou všech těžišť trojúhelníků splňujících
podmínky úlohy je pravidelný šestiúhelník MNPQRU,
jehož vrcholy jsou těžiště rovnostranných trojúhelníků
SAB, SBC, SCD, SDE, SEF, SFA.

С — II — 2b

Určete všechny dvojice přirozených čísel А, В s těmito
vlastnostmi:

1. Obě jsou dvouciferná (v desítkové soustavě), přičemž
В vznikne z A vzájemnou záměnou cifer.

2. Číslo yjA2 — B2 je přirozené.

ŘEŠENÍ

Danou úlohu lze převést na tuto úlohu: Určete taková
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čísla x, у e {1,2,..., 9), že existuje přirozené číslo a, pro ktere
platí

a2 = (lOx + у)2 — (lOy 4- x)2 .

Po úpravě dostáváme

a2 = 99(x2 — у2) = 32.1 l(x 4- y) (x — y). (i)

Odtud vyplývá, že

(2)x > у.

Z rovnosti (1) dále plyne, že aspoň jedno z čísel x + у, x — у
je násobkem čísla 11. Protože je

x-y^9 — 1=8,

může být násobkem 11 jedině číslo x + y. Vzhledem к tomu,
že

x + yg 9 + 9 = 18,

dostáváme pro hledaná čísla x, у rovnici

(3)x + у = 11.

Pro naši úlohu mohou mít ovšem smysl jen ta řešení (x, y)
rovnice (3), pro něž platí nerovnost (2) а x, у e {1,2,..., 9}.
Takovými řešeními rovnice (3) jsou pouze dvojice

(9,2), (8,3), (7,4), (6,5).
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Z rovnice (3) a rovnosti (1) plyne pro čísla x а у další pod-
minka: Číslo x — y musí být druhou mocninou nějakého
přirozeného čísla. Tuto podmínku splňuje z dvojic (4) jedině
dvojice (6, 5). Řešením úlohy mohou tedy být jedině čísla
A = 65 а В = 56. Skutečně

652 - 562 = 9.121 = 332.

Závěr: Úloha má jediné řešení A = 65, В = 56.

С — II — За

Je dán rovnoramenný ДЛВС se základnou AB. Sestrojte
body P, Q ležící po řadě na stranách АС, BC, pro které platí

(i)CP = PQ = QB.

Proveďte diskusi vzhledem к velikosti úhlu A^ACB.

ŘEŠENÍ

Nejprve zjistíme, zda může platit P = С. V tomto případě
by bylo CP = 0, takže z (1) by plynulo Q — B. Pak by však
bylo PQ = CB =(= 0, tj. všechny rovnosti (1) by neplatily.
Tedy P =(= C. Dále je třeba zjistit, zda je možné, aby bylo
P = A. Pak z (1) a z toho, že AC = BC plyne, že musí být
Q = C. Pak PQ = AC, takže jedno řešení je nalezeno:

(2)p = A a Q = C.
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Obr. 77

Toto řešení vždy existuje. Hledejme řešení, kdy bod P leží
uvnitř strany AC.

ROZBOR (viz obr. 77). Označme у úhel £ ACB. Podle
podmínek úlohy je CP = PQ a tedy také

<PCQ = ZPQC = y.

Dále je PQ = QB, a tedy

*QPB = ZQBP = $y,

protože £PQC = у je vnějším úhlem rovnoramenného
APQB se základnou PB.

Z rozboru vyplývá konstrukce. V polorovině BCA sestro-
jíme polopřímku ВТ takovou, že £ CBT = %y. Průsečíkem
polopřímky ВТ a vnitřku úsečky AC je pak bod P. Sestro-
jíme kružnici к = (P; r = PC). Její společný bod s úsečkou
CB, jenž je různý od bodu C, je bod Q.
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ZKOUŠKA. Z konstrukce plyne, že body P, Q leží
po řadě na stranách AC,BC. Body C, Q leží na kružnici к
se středem P, a proto CP — PQ. Dále v trojúhelníku СРВ
platí

*CPB = 180° - у - = 180° - fy,

v trojúhelníku CPQ je

(3)

(4)ZCPQ = 180° - 2y.

Dosadíme-li (3) a (4) do rovnosti

ZQPB = ZCPB - *CPQ,
dostaneme

<QPB = b = <QBP.

Odtud plyne PQ = QB.

Sestrojené body P a Q mají všechny vlastnosti požadované
textem úlohy.

DISKUSE. Úloha má vždy řešení (2). Další řešení může
existovat, existuje-li společný bod vnitřku úsečky АС a polo-
přímky ВТ. К tomu je nutné a stačí, aby platilo

57 < í(180° — y).
tj.

у < 90°.

V tomto případě též existuje i průsečík Q Ф C kružnice к
a polopřímky CB. Zbývá ještě zjistit, zda tento bod Q je
bodem úsečky CB. Bod Q je dokonce vnitřním bodem úseč-
ky CB, neboť %-PQC > A:PBC.
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ZÁVĚR DISKUSE. V případě, že j:ACB = у ^ 90°,
má úloha jediné řešení — řešení (2). V případě, že AiACB —

— у < 90°, má úloha dvě řešení — mimo řešení (2) ještě
další řešení, které lze sestrojit výše uvedenou konstrukcí.

C-II-3b

Žáci jedné školy se zúčastnili bilologické, fyzikální a che-
mické olympiády. Účastníků FO bylo dvakrát tolik jako
účastníků ChO a účastníků ChO třikrát tolik co účastní-
ků ВО. Jen jedné z těchto olympiád se zúčastnilo 12 žáků,
dvou olympiád 4 žáci, ale FO a zároveň ВО žádný; těch,
kteří řešili jen ВО, bylo právě tolik jako těch, kteří řešili
zároveň ChO а ВО. Určete, kolik žáků se zúčastnilo každé
z uvedených soutěží a kolik bylo všech účastníků olympiád
dohromady.

ŘEŠENÍ

Při sestavování podmínek úlohy užijeme množinového
diagramu, označení viz na obr. 78. Platí tedy:

Obr. 78
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(1)x + z + и = 12

у + t = 4
х + у = 2(у + z + t)

у + z 4- t = 3(i/ + t)
и — t.

(2)
(3)
(4)
(5)

Dosazením za и podle (5) do zbývajících rovnic a úpravou
dostaneme:

x + z + t = 12

у + t = 4, z čehož у = 4 — t

x — у — 2z — 2t — 0

у +' z — 5t = 0.

Dosadíme za y:

12, z čehož x = 12 — í — zX + z + t =

x — 2z — t = 4

z — 6t — — 4.

Dosadíme za x:

3z + 2f = 8

z — 6f — — 4, z čehož z = 6í — 4,
takže

20f = 20,
tj-
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Zpětným dosazením dostaneme:

z = 2, x = 9, У = 3, и = 1 .

Zkouškou ověříme výpočet.

ODPOVĚĎ. FO se zúčastnilo 12 žáků, ChO 6 žáků а ВО
2 žáci; všech účastníků bylo 16.
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ŘEŠENÍ ÚLOH KATEGORIE Z

II. KOLA

Z — II — 1

Petr a Milan jeli tramvají do kina, které je v ulici na trati
tramvaje mezi stanicemi A a. B. Poměr vzdáleností vchodu
do kina od stanic А а В je 3 : 2. Petr vystoupil na stanici A,
Milan na stanici B. Šli stejnou průměrnou rychlostí a ke
vchodu kina přišli oba v témže okamžiku.

Vypočítejte, kolikrát byla průměrná rychlost jejich chůze
menší než průměrná rychlost tramvaje mezi stanicemi A a B.

ŘEŠENÍ

Tramvaj zřejmě nejdříve přijela do stanice A. Jen tak je
možné, aby chlapci přišli v týž okamžik ke vchodu kina.

Vzdálenost zastávek А а В v kilometrech nechť je 5а
(obr. 79). Průměrnou rychlost chůze chlapců v km/h označ-
me v. Je-li průměrná rychlost tramvaje x-krát větší než prů-
měrná rychlost chůze chlapců, pak je její rychlost xv km/h.

Doby cest chlapců ke vchodu kina měřme od okamžiku,
kdy tramvaj zastavila ve stanici A. Pak platí

A К В

За 2аObr. 79
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За

v

5а 2а
— + —.řfí —
xv v

Odtud plyne
За 5а 2а
— = 1 ,

г AT Г

tj-
5

3 = - + 2, takže x = 5.
X

Snadno ověříme, že chlapci přijdou ke vchodu kina v týž
okamžik, má-li tramvaj pětkrát větší průměrnou rychlost
než chlapci.

Závěr. Chlapci šli pětkrát menší průměrnou rychlostí,
než byla průměrná rychlost tramvaje mezi stanicemi A a B.

Z — II — 2

Je dán pravý úhel s vrcholem V a jeho vnitřní bod M.
Bodem M je proložena libovolná přímka p tak, že obě ra-
měna pravého úhlu protíná v různých bodech A a B.
Označíme-li Sl5 resp. S2, obsah trojúhelníka VAM, resp.
VBM, potom číslo

1 1
k = — + —

Si $2
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je stejné při každé poloze přímky p uvedených vlastností;
dokažte.

ŘEŠENÍ

Zavedeme toto označení: a = В V, b = А V, x а у jsou
výšky trojúhelníka BMV (AMV) příslušné straně BV (AV)
(viz obr. 80). Pak je

S i = iby, S2 = jax
a

S = íSj + S2 = + iux = jab.

Dále platí:

1 1 2 2 2(ax + by) 2.2S 2
—+—=—+—= - -

Sj S2 by abxy 2S. xy xyax

Ale součin xy nezávisí na volbě přímky p.

Obr. 80
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Z — II — 3

Sú dané celé čísla a, b, ktorých aritmetický priemer je
celé číslo dělitelné troma. Dokážte, že potom číslo

a(3a2 + b2) (a3 — 2b3)3

je násobkom čísla 108.

RIEŠENIE

a + b
Podlá textu úlohy je —-— = 3k, kde к je celé číslo. Potom

však b = 6k — a, a teda

3a2 + b2 — 3a2 + 36k2 — 12ka + a2 =

= 4a2 — 12ak + 36k2 = 4(a2 — 3ak + 9k2),
a3 — 2b3 = a3 — 2(216k3 — 108/c2a + 18/ca2 — a3) =

= 3(a3 - 12/ca2 + 12k2a - 144/c3),
z čoho

a(3a2 + b2) (a3 - 2b3)3 =

= 4.33a(a2 - 3ak + 9k2) (a3 - 12/ca2 + 72/c2a - 144/c3)3,
čo je násobkom 108, ako bolo třeba dokázat’.

Z — II — 4

Je dán trojúhelník ABC, v němž má strana AB délku a.
Na polopřímce opačné к polopřímce AB leží bod D tak, že
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DA = na, kde n je dané přirozené číslo. Nechť E je střed
strany BC a F průsečík přímky DE se stranou AC. Určete
obsah trojúhelníka CEF, jestliže obsah trojúhelníka ABC
se rovná číslu P. (Proveďte výpočet nejdříve pro n = 1
a n = 2, potom pro libovolné n.)

ŘEŠENÍ
Označme H střed strany AC (obr. 81). Úsečka HE je pak

střední příčkou AABC, jež je rovnoběžná se stranou AB.
Bod H je tedy vnitřní bod úsečky CF. Obsah AECH je
zřejmě |P. Pro obsah P' trojúhelníka CEF tedy platí

P' = iP + Q,

kde Q je obsah AEFH. Úloha je tak převedena na úlohu
určit obsah Q trojúhelníka EFH pomocí obsahu AABC.
Protože víme, že EH = ja, je třeba určit výšku v' trojúhel-
nika EFH na stranu EH. Označme v výšku AABC na stra-
nu AB.

O)

Obr. 81

В

crn.a
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a)Nechť DA = a. Podle věty uu je

AEFH ~ ADFA .

Bod F je těžištěm ADBC, a proto pro výšku vl trojúhelníka
DFA na stranu DA platí

Vl =JV.

Tedy
HE

v' = jv = h> • i = iv.
AD

Pak

Q = t • & ■& = riP ■

Podle (1) je
P'= iP+ -ЬР = $Р.b)Nechť DA = 2a. V tomto případě užijeme podobnosti

trojúhelníků EFH a DEG (věta uu), kde G je střed strany AB.
Trojúhelník DEG má zřejmě na stranu DG výšku \v. Platí
tedy

HE
v' = jV = \v. \ = fa .GD

Tudíž

Q — 2 ■ 2a ■ 10V — 2qE ?

takže podle (1)
P' = iP + éP = ŮP.c)Nechť DA = na, kde n je přirozené číslo. Podobně

jako v části b) z podobnosti trojúhelníků EFH a DEG plyne
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1HE
v' — jV = \v

GD 2n + 1

Tedy
1

Q = J • ia ■ b
In + Г

takže podle (1)
n + 1

4(2n + 1) “ 2(2и + 1)
1

P' = iP + P.
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V. Řešení soutěžních úloh HI. kola kategorie A

A —III —1

Je daná postupnost' kladných čísel a}, a2, a2,... s touto
vlastnosťou: Pre každé n ^ 2 platí

cin +1. an — \ = • (i)
Označme

bn = (a^.-.a,,)1'" ■

Potom platí pre každé n ^ 2:

(2)

K+1 A-1 ^ К ; (3)
dokažte.

RIEŠENIE

Tvrdenie dokážeme metodou matematickej indukcie.

1. Pre n = 2 z (1) dostaneme

fl3 . fli ^ «2 • (4)

Keďže čísla ah i = 1,2, 3 sú všetky kladné, dostaneme vy-
násobením nerovnosti (4) číslom a2: a1a2a3 ^ a2, z čoho
po odmocnění máme
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(5)(аха2аъУ1Ъ ^ а2 .

Ак nerovnost’ (5) vynásobíme číslom ал a použijeme (2)
pre п = 1,2, 3, dostaneme

bl.b2^bj,

čím sme dokázali platnost’ (3) pre n = 2.

2. Nech teraz (3) platí pre nějaké prirodzené číslo к ^ 2,
t-j-

i/(k—i) / к \1 lk

žÍTb1) • (6)
l/(fc+l)'k+ 1 k — í

n^i • П “i
i= 1i= 1 /= 1

Z nerovnosti (6) po umocnění na k(k — 1) (/c + 1) vzhíadom
na to, že na oboch stranách sú kladné čísla, dostaneme

k2-1k(k + 1)k(k-l)к + 1 'к- 1

а (ГК (7)гк-
í= 1 i= 1í= 1

Z nerovnosti (7) jednoduchou úpravou dostaneme

2k2 — 22 k2 к — 1’к- 1
к2 —к ^ ( п>.ai ) • {ak • ak+ l)

ř=l£= 1

2k2-2к — 1

z čoho po vydělení číslom ( at
vyplývá

a vynásobení
— k2 + k i=la\

UaX.41^ £ aí!+*. (8)
i= 1

/cs + к
+ 2 >

Ak nerovnost’ (8) vynásobíme číslom dostaneme
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П °Í) • 4+1 • ак+2 ^ (ак ■ ак + 2)к2+к ,

i= 1

z čoho vyplývá, ak použijeme (1) pre n = к + 1:

( П aij ■ akk +i • Clk++2 ^ К +1)
2k2 + 2k (9)

Nerovnost’ (9) možno upravit' na tvar

(ft «i)2-K+2F,,! ž(a»+if+,,í+tt+1,-2)-(fc+1)

2(k+ l)2 —2
z čoho po vynásobení číslom I a, )
chej úpravě máme ^, = 1 '

a jednodu-

2(k+ l)2

CÍW .K+1.at + 2)«‘+1'2-«‘+‘»ž
2(k+ l)2 — 2

»(n* .(а1+1)2,‘+1,1-г.

k2 + 3k

Z toho po vydělení číslom I Y[ ai)
úpravě dostaneme ^i=1 ’

/k + 2 W+l) / к \

(ДЯ|) (Дл)

a jednoduchej

(*+l)(k + 2) /к+ 1

^ П ai

2k(k + 2)

i= 1

Z poslednej nerovnosti po umocnění na ijk(k + 1) (k + 2)
vzhladom na (2) dostáváme

^fc + 2 • bk = bk+1 •

208



Tým sme dokázali, že (3) platí pre n = к + 1.
Vzhl’adom na 1. a 2. platí nerovnost’ (3) pre každé pri-

rodzené číslo n ako sme malí dokázat’.
Riešil Jozef Širáň,

4.b tr. gymnázia Jura JJronca, Bratislava

A —III —2

Je daný trojuholník ABC. Pre každý bod X trojuholní-
ka ABC označme m(X) najmenšiu zo vzdialeností ХА, XB,
XC. Zostrojte všetky body X trojuholníka ABC, pre ktoré
je m(X) maximálna.

RIEŠENIE

Najskór dokážeme pomocná vetu: Pre každý bod X ф C
trojuholníka ABC platí: АХ + BX < АС + BC.

Označme X0 priesečník polpriamky AX s úsečkou BC
v případe, keď X je vnútorný bod trojuholníka ABC (pozři
obr. 82). Zrejme platí: AX0 < AC + CX0. Z toho priamo

Obr. 82 A В
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Obr. 83

vyplývá: AX0 + BX0 < AC + CX0 + BX0 = AC + BC.
Keďže BX < XX0 + BX0, je AX + BX < AX + XX0 +
+ BX0 = AX0 + BX0. Z nerovností AX + BX < AX0 +
+ BX0 a AX0 + BX0 < AC + BC priamo vyplývá správ-
nosť dokazovanej nerovnosti v případe, keď X je vnútorným
bodom trojuholníka ABC. Pre body X ležiace na obvode
trojuholníka ABC je uvedená nerovnost’ zrejme splněná.

1. Nech trojuholník ABC je ostrouhlý. Označme O střed
jeho opísanej kružnice (pozři obr. 83). Nech pre bod I ф 0
ležiaci napr. v trojuholníku AOC platí AX ^ r a súčasne
CX ^ r. Potom aj AX + CX ^ 2r = АО + CO, čo je
v spore s tvrdením pomocnej vety. Musí preto platit’ buď
AX < r alebo CX < r. Pre bod 0 však platí АО = ВО =
— СО — r. Je teda m(0) maximálně.

2. Nech trojuholník ABC je tupouhlý s tupým uhlom
pri vrchole C (pozři obr. 84). Označme b0 váčšiu zo stráň
a, b trojuholníka ABC. Označme M priesečník osi strany b0
so stranou c. Pre tupouhlý trojuholník zrejme platí
AM — MC < MB. Je teda m(M) = AM = MC = d. Na
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základe pomocnej vety dokážeme nepriamo, že pre 1’ubo-
volný bod X (X ф M) trojuholníka AMC platí CX < d
alebo AX < d.

Nech a0 je menšia zo stráň a, b trojuholníka ABC. Označ-
me N priesečník osi strany a0 so stranou c. Zrejme platí

= b0.
a) Ak je a0 < b0, je zrejme tiež CN < CM = d a bod N

leží preto vo vnútri kružnice opísanej okolo bodu C s polo-
merom CM = d. Pre body X trojuholníka MNC rožne
od bodu C je teda CX < d. Na základe pomocnej vety
vyššie použitým postupom 1’ahko dokážeme, že pre body X
trojuholníka BNC platí buď BX < d alebo CX < d. Ma-
ximálna je teda vzdialenosť m(M).

b) Ak platí a0 = b0 = a = b, je trojuholník ABC rovno-

ramenný. V tomto případe je CM = CN. Analogicky ako
v predchádzajúcom případe 1’ahko dokážeme, že funkcia
m(X) nadobúda maximum v dvoch bodoch: M a N.

3. Ak trojuholník ABC je pravoúhlý s pravým uhlom

Obr. 84



pri vrchole C, bude m(X) maximálně zrejme pre střed stra-
ny AB, ktorý bude stredom opísanej kružnice trojuholníka
ABC.

Závěr: Ak ABC je ostrouhlý alebo pravoúhlý trojuhol-
nik, je hladaný bod právě jeden — střed opísanej kružnice.

Ak trojunclník ABC je tupouhlý nerovnoramenný, je
hladaným bodom bod M, ktorého konštrukcia je popísaná
v časti 2a.

V případe rovnoramenného tupouhlého trojuholníka sú
hladané body dva, M a N — ich konštrukcia je popísaná
v časti 2b.

Riešil Ján Krajčík,
3.b gymnázia Jura Hronca, Bratislava

A — III — 3

Nech pre každé prirodzené číslo m, ktoré je v dekadickom
zápise aspoň dvojciferné a má číslice navzájom rožne, zna-
mená f(m) súčet všetkých prirodzených čísel róznych od m,
ktoré z čísla m dostaneme změnou poradia jeho číslic (na-
příklad /(302) = 320 + 023 + 032 + 230 + 203 = 808).

Nájdite všetky prirodzené čísla x, pre ktoré platí
/

/(x) = 138 012. (i)

ŘEŠENÍ

Nejprve ukážeme, že číslo x splňující rovnici (1) musí být
čtyřciferné. Pro dvojciferné číslo x = IOxí + x2, хг + x2,
máme /(x) = 10x2 + x1? což nevyhovuje vztahu (1). Pro
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trojciferné číslo x s různými číslicemi lze f(x) vyjádřit jako
součet pěti přirozených čísel menších než 999. Je tedy
f(x) < 999.5 = 4 995 < 138 012. Kdyby číslo x bylo pěti-
ciferné nebo mělo ještě větší počet (navzájem různých) číslic,
mohli bychom je vyjádřit jako součet aspoň 119 sčítanců
(5! — 1 = 119), z nichž každý by byl aspoň 01234. Měli
bychom f(x) ^ 01 234.119 = 146 846 > 138 012.

Zbývá probrat čtyřciferná čísla x s navzájem různými
číslicemi, jež vyhovují vztahu (l). Tuto část řešení provedeme
způsobem, který použil Ivo Semrád, žák 4.b třídy gymnázia
v Opavě.

Položme x = 1 000хх -I- 100x2 + 10x3 + x4. Je vidět, že

6(xj + x2 + x3 + x4). 1 111,

neboť mezi všemi permutacemi různých čísel x1?x2,x3,x4
je právě (4 — 1)! = 6 takových, které mají na témž místě
totéž číslo.

Po dosazení do (2) dostáváme

138 012 + x = 6 666(xj + x2 + x3 + x4),

/

/W + (2)X =

tj.
4 692 + x

(3)Xi + x2 + x3 + x4 = 20 -I-
6 666

Číslo x je čtyřciferné, a proto čitatel na pravé straně rovni-
ce (3) je menší než 15 000, takže tento zlomek je raven buď 1
nebo 2. V prvním případě

x' = 6 666 — 4 692 - 1 974,
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v druhém případě

x" = 2.6 666 - 4 692 = 8 640.

Rovnici (3) vyhovuje pouze číslo 1 974. Číslo 8 640 rovnici (3)
nevyhovuje, a proto není řešením dané úlohy.

Pro číslo 1 974 podle rovnosti (2) dostáváme, že

/(1 974) = 6.21.1 111 - 1 974 = 138 012.

Číslo 1 974 je tedy jediným řešením dané úlohy.

A —III—4

Nech M je množina všetkých polynomických funkcií /
stupňa najviac 3

f(x) = ax3 + bx2 + cx + d, (i)

pre ktoré platí

Vxe< —1,1>; |/(x)|šl.
Dokážte, že existuje kladné číslo к tak, že

\а\йк. (2)VfeJt;

Určte najmenšie kladné číslo к tejto vlastnosti.

ŘEŠENÍ

Pro každou funkci feM platí:
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[/(l)| = |í7 + Ь + C + í/|
\f( — l)\=\ — a + b — c + d\ ^ 1 ,

= + jc + d\ ^ 1,
|a + — \c + d\ ^ 1.

(3)~ 1 9

(4)
m (5)
W-i» = (6)

Dále budeme používat věty: Nechť x,y,z,v jsou libo-
volná reálná čísla. Jestliže |x| ^ z a zároveň \y\ ^ v, pak
\x + y\ ^ z + v.

Z nerovností (3) a (4) plyne podle zmíněné věty:

2. \a + c\ ís 2,
tj-

|a + c| 1. (7)

Z nerovností (5) a (6) plyne:
2 • |ia + ic\ = 2,

|i« + ic| ^ 1,
neboli

- c| ^ 2. (8)

Z nerovností (7) a (8) opět podle zmíněné věty dostáváme

\a - Ь\ й 3,
tj-

M S 4.
Tím je dokázána existence čísla k, které má vlastnost (2).
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Tuto vlastnost má každé číslo

к ^ 4.

Nyní ukážeme, že nejmenší kladné číslo к požadované
vlastnosti je к = 4. Je třeba dokázat, že množina Jí obsa-
huje aspoň jednu polynomickou funkci (1), jejíž koeficient
a — 4.

Uvažujme mnohočlen

g(x) = 4x3 — 3x.
Potom

g'(x) = 12x2 — 3 .

Mnohočlen g(x) tedy může mít lokální extrém v bodech
*1 = i, X2 =

Platí

_i

g"(x) = 24x,

takže g"(i) = 12 > 0 a g"(~i) = -12 < 0. V bodě Xl=i
má mnohočlen g(x) lokální minimum, v bodě x2 — — j
lokální maximum.

Dále platí
0® = ~1 >

0(1) = 1,

Mnohočlen g(x) nabývá v intervalu < — 1,1) nejmenší hod-
noty —lv bodech j a — 1, největší hodnoty 1 v bodech
—j a 1. Tedy pro každé xe( — 1,1) je |g(x)| ^ 1, tj.

M-i) =

g(- 1) = -1 .

1,

g e Jí.

216



Tím je dokázáno, že к = 4 je nejmenší číslo k, jež má
vlastnost (2).

Řešil Jiří Navrátil,
žák l.a gymnázia v Olomouci-Hejčíně

A — III — 5

Je dána kružnice a do ní je vepsán šestiúhelník ABCDEF
takový, že

(i)AB = BC, CD = DE, EF = FA.

Dokažte, že obsah trojúhelníka АСЕ není větší než obsah
trojúhelníka BDF. Kdy platí rovnost?

ŘEŠENÍ

PRVNÍ ZPŮSOB. Bez újmy na obecnosti lze předpoklá-
dat, že

(2)AB ^ CD ^ EF.

Trojúhelník АСЕ otočme kolem středu S kružnice к tak,
aby A -> В (viz obr. 85); otočený trojúhelník označme
А'С'Е'. Pak CE |j A’E, neboť vzdálenost otočených vrcholů

ЕЕ' = AA' = AB ;

podle zadání
AB = BC — A'C,

takže

А'С = ЕЕ'.
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Obr. 85

Protože tyto shodné úsečky jsou v jedné polorovině vyťaté
přímkou CE, je Л'СЕЕ' rovnoramenný lichoběžník.

Přímka SD je tedy osou tětiv CE i A'E'. Je patrno, že pro

obsahy trojúhelníků ACE, A'C'E', ADE' platí

(3)Pace — Pace' = Pá de' •

Trojúhelníky A'C'E' a A'DE' mají totiž společnou stranu
A'E' a výška příslušná к této straně je v ДА'С'Е' menší
nebo rovna výšce na tuto stranu v AA'DE'.

Nyní sestrojme bod E" souměrně sdružený s bodem E'
dle osy úsečky A'D. Nad tětivou DE' jsou dvě tětivy E'E
a ED. Nyní jsou opět nad tětivou A'E" dvě tětivy, přičemž
AA' = ЕЕ'. Ze shodnosti vyplývá, že i AE” = DE. Podle (1)
a (2) dostáváme AE" ^ AF. Protože však z předpokladu (2)
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vyplývá, že ЕЕ' = AB ^ EF, lze vzhledem к tomu, že body
E', E" a F leží v téže polorovině určené přímkou AE, vyšlo-
vit závěr, že v případě E' = E" je F = E' = E", v pří-
pádě E' Ф £" leží bod F na oblouku kružnice /с určeném
body £", £' a neobsahujícím bod А. V tomto případě je
E"E' I AD.

Výška AA DE' na stranu AD je tedy menší nebo rovna

výšce AA'DF na stranu AD. Tedy pro obsahy trojúhelníků
ADE', ADF a BDF platí

(4)P.ADE' = Pa DF — Pbdf •

Z nerovností (3) a (4) vyplývá, že

Pace = Pbdf • (5)
Z postupu je patrno, že rovnost v (5) nastane, právě když

bude
C = D a E' = F,

tedy půjde-li o pravidelný šestiúhelník.

Řešil Josef Pavel,
žák l.a třídy gymnázia v Rychnově nad Kněžnou

DRUHÝ ZPŮSOB. Bez újmy na obecnosti můžeme
předpokládat, že daná kružnice má poloměr 1. Střed dané
kružnice (obr. 86) označíme S. Dále zavedeme označení
úhlů:

ZCSD = ZDSE = p,■fcASB = -fcBSC = a,

£ ESF = < FSA — у .

219



Obr. 86

Zřejmě platí

2oc + 2/? + 2y = 2я,
neboli

a + P + у = n .

Z toho plyne, že úhly a, p, у leží v intervalu (0, я).
Nyní vyjádříme obsahy trojúhelníků ACE a BDF pomocí

a, p,y:
Расе — i{sin 2a + sin 2fi + sin 2y) =

= y[sin (a + P) cos (a — P) + sin (P + y) cos {P — y) +
+ sin (y + a) cos (y — a)] ,

Pbdf = j[sin (a + P) + sin {P + y) + sin (y + a)] .

Tyto rovnosti platí pro každou polohu bodu S vzhledem
к trojúhelníkům АСЕ a BDF.
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Máme dokázat nerovnost:

![sin (a + P) cos (a — P) + sin (P + y) cos (P — y) +
+ sin (y + a) cos (y — a)] fg

íg ^[sin (a + P) + sin (P + y) + sin (y + a)] .

Tuto nerovnost přepišeme do tvaru:

sin (a + P). [1 — cos (a — /?)] +
+ sin (p + y). [1 - cos (P - y)] +
+ sin (y + a). [1 — cos (y — a)] ^ 0.

(i)

(2)
Protože a, P, у e (0, я) a a + P + у = к, platí

sin (p + у) > 0,

Výrazy v lomených závorkách na levé straně nerovnosti (2)
jsou zřejmě nezáporné; to znamená, že nerovnost (2) a tedy
také (1) je vždy splněna.

Rovnost v (2) a v (1) může nastat tehdy a jen tehdy, když

sin (y + a) > 0.sin (a + P) > 0,

platí
cos (a — P) = cos (P — y) = cos (y — a) = 1.

Protože však a, P, у e (0, n), nastane rovnost právě když

a = p = у = ±n,

tj. když šestiúhelník ABCDEF je pravidelný.

Řešil Jiří Navrátil,
žák l.a třídy gymnázia v Olomouci-Hejčíně
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A —HI — 6

V rovině q je dán jednotkový čtverec Q. Označme £x
čtverec, který vznikne otočením čtverce £ kolem bodu X
roviny q o pravý úhel v kladném smyslu. Určete množinu
všech takových bodů X roviny q, pro které je obsah sjedno-
cení и Л.х roven nejvýše 1,5.

ŘEŠENÍ

Podmínka vyslovená v textu úlohy je ekvivalentní s pod-
mínkou, že obsah ^ n J2X je aspoň 0,5; pro obsahy platí
totiž — jak známo — vztah

^ = £ n £x + £ u £x .

Klíčem к řešení je věta: Nechť v rovině q leží čtverce
й а й', které nejsou totožné. Pak v rovině q existuje takový
bod X, že čtverec je obrazem čtverce J? v otočení kolem
bodu X o pravý úhel v kladném smyslu, právě když existuje
rovnoběžné posunutí, které převádí čtverec i2 ve čtverec
Tuto včtu si jistě čtenář sám snadno dokáže.

Zvolme soustavu souřadnic tak, aby počátek byl střed
čtverce 2L, strany obou čtverců H a Qx rovnoběžné s osami
souřadnic. Vyšetřujme středy [£, ř/] čtverců Qx nejprve
v prvním kvadrantu. Střed [£, ř/] určitě náleží čtverci i2,
neboť jinak by bylo £1 n £x < 0,5 proti předpokladu. Je
tedy

Ošnši- (1)
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Průnik je pravoúhelník o stranách 1 — 1 — \\\

je-li p jeho obsah, platí

(i ^ P ^ 1) •

Vztahy (1), (2) jsou analytickým vyjádřením oblouku rovno-
osé hyperboly, která má střed v bodě [1,1], za asymptoty
má přímky £ = 1, r\ — 1, vrchol [1 — Jp, 1 — *Jp~\ a osy
souřadnic protíná v bodech [0, 1 — p], [1 — p, 0]. Protože
je p ^ i je ^ iV2’ 1 - Jp й 1 - i V2- Probíhá-li
číslo p interval <|, 1), pak oblouky hyperbol o analytickém
vyjádření (1), (2) vyplní obrazec (9X vyšrafovaný na obr. 87.
Z podmínek (1), (2) a výše uvedené věty vyplývá, že obra-
zec (9X je množinou středů všech čtverců Qx, jejichž středy
leží v 1. kvadrantu.

Střed Mx čtverce &x vznikne ze středu M čtverce ^ oto-

(1 -£)(1 -r\) = p (2)

У

+r[1,1]
Ol

[O*]

fro]

Q

Obr. 87
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Obr. 88\/
\/

cením kolem bodu X о 90° v kladném smyslu. Proto vznikne
bod X z bodu Mx otočením kolem středu M o 45° v kladném
smyslu a zmenšením vzdáleností MMX v poměru >/2:1.
Otočený a zmenšený sektor к sektoru Ox je naznačen na
obr. šrafováním.

Ostatní kvadranty se doplní pomocí symetrií. Množinou
všech bodů X, které mají vlastnost uvedenou v textu úlohy,
je obrazec O, jehož obvod je na obr. 88 vytažen tlustě.

■

J
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VI. Správa о XVI. medzinárodnej matematickej

olympiádě

1. ORGANIZÁCIA A PRIEBEH SÚŤAŽE

O starostlivej organizačnej přípravě XVI. MMO najlep-
šie svědčí skutočnosť, že už počas XV. MMO v júli 1973
v Moskvě dostali vedúci zúčastněných delegácií od vedenia
delegácie NDR jej rámcový program a organizačný poriadok
súťaže. Samotný priebeh XVI. MMO len potvrdil neoby-
čajnú pozornost’, ktorú súdruhovia z NDR jej organizácii
věnovali. Poriadatelmi súťaže, ktorá sa konala od 4. do
17. júla 1974 boli Ministerstvo školstva NDR, Matematická
spoločnosť NDR (Mathematische Gesellschaft der DDR)
a Ústredný výbor FDJ (mládežnická organizácia NDR).
Vlastná súťaž sa konala v krajskom meste Erfurte na juho-
západe NDR a závěr so slávnostným vyhlášením výsledkov
bol v hlavnom meste NDR — Berlíne.

Nielen velmi dobrou organizáciou, ale aj počtom zúčast-
nených krajin patřila XVI. MMO medzi najvydarenejšie
z doterajších medzinárodných střetnutí mladých matema-
tických nádejí. К družstvám 16 krajin, ktoré sa zúčastnili
XV. MMO v Moskvě pribudli ako noví účastníci MMO
družstvá USA a Vietnamskej demokratickej republiky. Na
XVI. MMO do NDR vyslalo teda svoje družstvá týchto
18 krajin: Rakúsko (A), Bulharsko (BG), Kuba (C), ČSSR
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(CS), NDR (DDR), Francúzsko (F), Veíká Británia (GB),
Maďarsko (H), Mongolsko (M), Holandsko (NL), Polsko
(PL), Rumunsko (R), Švédsko (S), Finsko (SF), ZSSR (SU),
USA (USA), Vietnamská demokratická republika (VN),
a Juhoslávia (YU). S výnimkou Kuby (7 žiakov) a VDR
(5 žiakov) boli všetky družstvá osemčlenné, ako to stáno-
voval organizačný poriadok súťaže. Celkem na XVI. MMO
súťažilo teda 140 žiakov.

Predsedom organizačného výboru olympiády bol pracov-
nik Ministerstva školstva NDR, tajomník ústredného výboru
olympiád mladých matematikov NDR a člen předsednictva
Matematickej spoločnosti NDR s. Herbert Titze a jeho zá-
stupcom s. Gerhard Kleinfeld, pracovník odboru školstva
rady kraja v Lipsku.

Prezidentom medzinárodnej jury súťaže, ktorú tvořili ve-
dúci jednotlivých delegácií zúčastněných krajin, bol prof. dr.
Wolfgang Engel, předseda Matematickej spoločnosti NDR
a riaditel sekcie matematiky na univerzitě v Rostocku. Jeho
zástupcom bol’ prof dr. Helmut Bausch, vedúci oddelenia
matematiky a prírodných vied na Ingenieurhochschule
Berlín-Wartenberg a předseda ústredného výboru olympiád
mladých matematikov NDR.

Vedúci delegácií sa schádzali do Erfurtu vo štvrtok
4. 7. 1974. Hned’po příchode na železničnú stanicu či letisko
ich organizátoři odviezli do nedalekého Weimaru (23 km),
střediska nemeckej klasiky a humanistických tradicií, kde
boli ubytovaní v hoteli Elephant. Na zoznamovacej večeři
v reštaurácii hotela sa střetávali váčšinou staří známí z před-
chádzajúcich MMO.
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Jury pracovala v priestoroch Hochschule fiir Architektur
und Bauwesen vo Weimare. Na prvom zasadnutí v piatok
5. 7. prezident jury prof. dr. Engel přivítal vedúcich delegácií
zúčastněných krajin, najma tých, ktoré sa MO zúčastňovali
po prvý raz (VDR a USA), zaželal im úspešnú prácu a prí-
jemný pobyt v NDR a informoval, že na XVI. MMO bolo
pozvané tiež Taliansko, ktoré aj prislubilo účasť, ale v po-

slednej chvíli sa ospravedlnilo. Členov jury v krátkom pre-

jave pozdravil tiež prorektor Hochschule fiir Architektur
und Bauwesen prof. dr. Fritsch. V pracovnej časti 1. zasad-
nutia podal prof. dr. Engel krátké vysvetlenie к programu
XVI. MMO, představil svojich spolupracovníkov z NDR —

členov komisie pre úlohy, prekladatelov a dalších a prečí-
tal text telegramu, ktorý účastníkom XVI. MMO poslal
I. S. Petrakov (ZSSR) — účastník všetkých MMO od IV.
po XV. a spoluautor úspešnej publikácie o MMO, známej
aj u nás.

Členovia komisie pre úlohy (prof. dr. G. Geise, prof. dr.
U. Pirl a doc. dr. L. Stammler) vybrali z cca 50 navrhnutých
úloh došlých do organizátormi stanoveného termínu (15. 4.)
dva varianty po 6 úloh, ktorých texty s riešeniami dostali
vedúci delegácií vo štvrtok (4. 7.) popoludní. Pri výbere
vychádzali z toho, aby každý variant obsahoval úlohy z róz-
ných oblastí matematiky, ktoré by boli povodně a pokial
možno róznej obťažnosti. Do prvého variantu zařadili po-
merne jednoduchý hlavolam (USA), zaujímavú úlohu na
odhad nekonečného súčtu (PL), netradičnú úlohu o mnoho-
členoch s celočíselnými koeficientami (S), velmi peknú dó-
kazovú úlohu na odhad minima istej konečnej množiny
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reálných čísel (SU), obťažne formulovatelnú úlohu na dokaž
existencie zhodných trojuholníkov v istom nekonečnom
systéme trojuholníkov se spoločnou opísanou kružnicou
(GB) a úlohu zo školskej teorie čísel využívajúcu určité
prvky kombinatoriky (R). Druhý variant obsahoval dóka-
zovú úlohu zo školskej teorie čísel tradičného charakteru
(PL), úlohu na najdenie množiny hodnot istej homogénnej
funkcie štyroch reálných premenných (NL), dokaž identity
založený na použití trigonometrických funkcií (C), poměrně
jednoduchú úlohu z klasickej planimetrie (SF), zaujímavú
a nie velmi náročnú úlohu na pokrytie (BG) a konečne velmi
peknú, ale značné náročnú úlohu kombinatorického cha-
rakteru (SU).

Základom pre diskusiu mal byť prvý navrhnutý variant.
Už v úvode diskusie upozornil však vedúci polskej delegácie
prof. Mqkowski na to, že do něho zaradená polská úloha
bola medzičasom publikovaná v Gardnerovej knihe, ktorej
překlad vyšiel v ZSSR. Na sobotňajšom zasadnutí jury (6. 7.)
prečítal vedúci maďarskej delegácie prof. Hódi text úlohy
z maďarskej olympiády, ktorá bola v podstatě zovšeobec-
nením sovietskej úlohy z prvého variantu. Vzhladom na po-
žiadavku póvodnosti bolo preto nutné polskú a sovietskú
úlohu z prvého variantu vynechat’. Keďže viacerí vedúci
delegácií namietali proti zaradeniu britskej úlohy, ktorá sa
im zdala příliš obťažná a náročná na hodnotenie riešení
a váčšina členov jury sa napokon vyslovila za jej nahradenie
finskou úlohou z druhého variantu, bol po doplnění tohto
výběru bulharskou a holandskou úlohou z druhého variantu
na závěr sobotného predpoludňajšieho zasadnutia jury jed-
nomyseíne přijatý nižšie uvedený komplex súťažných úloh.
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Formulácii textov úloh v rokovacich jazykoch (němčina,
ruština, angličtina, francúzština), ktorá patří už tradičné
к najnáročnejším povinnostiam jury, boli věnované dve za-
sadnutia jury: v sobotu 6. 7. popoludní a v nedelu 7. 7.
predpoludním. Pri nej bol podstatné změněný najma pó-
vodný text americkej úlohy. Na závěr nedělného predpo-
ludňajšieho zasadnutia schválila jury jednomyselne návrh
vedúceho československej delegácie na rozdelenie úloh pre
oba súťažné dni ako aj maximálně počty bodov za úplné
riešenie jednotlivých úloh. Na riešenie každej trojice úloh
boli stanovené 4 hodiny čistého času.

S históriou a památihodnosťami Weimaru sa členovia
jury zoznámili v piatok 5. 7. popoludní počas přednášky do-
plnenej premietaním diapozitívov v Goetheho múzeu a počas
prechádzok po meste vo volnom čase. V piatok 5. 7. večer
podávala pre členov jury a organizátorov XVI. MMO ve-
čeru Mathematische Gesellschaft der DDR. Prehovoril na

nej předseda spoločnosti prof. dr. Engel a za zahraničných
hostí vedúci sov. delegácie doc. Skvorcov.

Nedelňajšieho zasadnutia jury sa zúčastnili už aj zástup-
covia vedúcich delegácií, ktorí mali svoje družstvá priviesť
do Erfurtu najneskoršie v sobotu 6. 7. Žiaci boli ubytovaní
v modernom internáte Pádagogische Hochschule Dr. Theo-
dor Neubauer v Erfurte, zatial čo zástupcovia vedúcich dele-
gácií sa ubytovali spoločne se svojimi vedúcimi vo Weimare.
O žiakov jednotlivých družstev sa po celý čas pobytu v NDR
starali okrem tlmočníkov aj nemeckí sprievodcovia — čle-
novia FDJ.

Na vedúcich delegácií a ich zástupcov čakala v nedelu
popoludní náročná úloha překladu textov úloh do materčiny
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žiakov a ich příprava na rozmnoženie. Po prvý raz na MMO
bola pri rozmnožení textov úloh použitá moderná technika
(xerox).

Slávnostné otvorenie XYI. MMO sa uskutočnilo v pon-
delok 8. 7. ráno v aule Pádagogische Hochschule Dr. Theo-
dor Neubauer v Erfurte. Prezident jury prof. Engel na ňom
v krátkom prejave přivítal nám. min. školstva NDR Wernera
Engsta a dalších čestných hostí, vedúcich delegácií zúčast-
nených krajin a najma účastníkov súťaže, ktorým zaželal
vela úspechov pri riešení súťažných úloh.

V dvoch štvorhodinových klauzurach čakali na nich na-

sledujúce úlohy:

PRVÝ DEN SÚŤAŽE — 8. JÚLA 1974

1. Traja hráči A,BaC hrajú hru, pri ktorej používajú tri
hracie karty. Na každej z týchto kariet je napísané celé číslo:
na prvej p, na druhej q, na tretej r, pričom platí 0 < p < q < r.
Pri každom kole hry sa karty zamiešajú a každý hráč do-
stane jednu z nich. Potom kartu vráti a dostane za ňu tol’ko
guličiek, kol’ko udává na nej napísané číslo.

Hra trvala N kol, N ^ 2. Na konci hry mal hráč A cel-
kom 20 guličiek, hráč В 10 a hráč C 9 guličiek.

Ak viete, že v poslednom kole hráč В dostal r guličiek,
určité, ktorý z hráčov dostal v prvom kole q guličiek.
(USA, 5 bodov)

2. Označme velkosti vnútorných uhlov trojuholníka ABC
pri vrcholoch А, В, C v uvedenom poradí a, f, y.

Dokážte, že nutnou a postačujúcou podmienkou pre to,
aby na úsečke AB existoval bod D tak, že dížka úsečky CD

230



je geometrickým priemerom dížek AD a BD je splnenie
nerovnosti

sin a sin P ^ sin2 jy.

(Finsko, 6 bodov)3.Dokážte, že pre žiadne prirodzené číslo n nie je číslo

t (2"+ 1 )23‘^ 2/c + 1 /

dělitelné číslom 5. (Rumunsko, 8 bodov)

fc= o

DRUHÝ DEŇ SÚŤAŽE — 9. JÚLA 1974

4. Rozdeíme šachovnicu pozostávajúcu z 8 x 8 polí na p

neprekrývajúcich sa pravoúhlých rovnobežníkov. Uvažujme
o všetkých takýchto rozdeleniach šachovnice, pre ktoré
platia nasledujúce podmienky:

a) Každý z pravoúhlých rovnobežníkov pozostáva z ce-
lých polí a obsahuje bielych polí právě toTko ako čiernych.

b) Ak at znamená počet bielych polí na i-tom rovnobež-
niku, potom platí: at < a2 < ... < ap.

Nájdite najváčšie číslo p, pre ktoré je také rozdelenie
šachovnice možné. Pre toto p určíte všetky postupnosti
aua2,..., ap, pre ktoré možno také rozdelenie šachovnice
realizovat’. (Bulharsko, 6 bodov)

5. Určité množinu hodnot, ktoré móže nadobúdať súčet

dba c
S =

a + b + d a + b + c b + c + d a + c + d ’
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keď a, b, c, d sú ГиЬоуоГпё kladné reálne čísla. (Holandsko,
7 bodov)

6. Nech P je mnohočlen s celočíselnými koeficientami,
ktorý nie je identicky rovný konstantě, a nech n(P) je počet
všetkých navzájem róznych celých čísel k, pre ktoré platí:
№)]2 -1.

Dokážte, že
n(P) - deg (P) S 2,

kde deg (P) znamená stupeň mnohočlena P. (Švédsko, 8 bo-
dov)

V zátvorke za textom úlohy je uvedené, ktorá krajina
úlohu navrhla a maximálny počet bodov, ktorý bolo možné
získať za úplné riešenie úlohy. Tieto údaje však žiakom pri
súťaži oznámené neboli. Počas súťaže boli žiaci rozdělení
do 8 učební, v každej z nich bol najviac jeden příslušník
každého družstva. Po oba súťažné dni najneskoršie pol
hodiny po obdržaní textov mohli žiaci predkladať písomné
otázky na případné nejasnosti v textoch. Na tieto otázky
po predchádzajúcom prerokovaní v jury písomne odpove-
dali vedúci delegácií.

Vedúci delegácií a ich zástupcovia sa mohli po otvorení
súťaže 8. 7. počas krátkej autokarovej exkurzie aspoň čias-
točné zoznámiť s dejiskom XVI. MMO, dvestotisícovým
krajským mestom Erfurtom, miestom tradičných medziná-
rodných výstav kvetov. Po nej sa v hoteli Erfurter Hof
zúčastnili na obede, ktorý pri příležitosti XVI. MMO po-
dával předseda rady kraja Erfurt s. Gothe. Po návratu do
Weimaru už na nich v Hochschule fiir Architektur und
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Bauwesen, kde mala každá delegácia к dispozícii jednu
učebnu, čakali riešenia prvých troch úloh, aby začali s ich
korektúrami a hodnotením. Tejto práci, ku ktorej sa v uto-
rok 9. 7. přidružili korektúry a hodnotenie riešení ďalšej
trojice úloh ako aj koordinácia hodnotení, sa věnovali až
do štvrtku 11. 7. večer. Počas korektúr a koordinácie sa

jury zišla na jednom spoločnom zasadnutí s koordinátormi
(9. 7. večer), na ktorom sa ujasnili niektoré kritériá hodno-
tenia riešení.

Už pri svojom příchode do Weimaru dostali vedúci dele-
gácií přesný časový plán koordináciejednotlivých úloh, ktorý
sa dósledne dodržiaval. Riešenia každej úlohy koordinovala
trojica matematikov NDR (1 — dr. Bartschová, dr. Rehm,
Schiemann; 2 — doc. dr. Schróder, dr. Sommerfeld, dr. Noac-
ková; 3 — dr. Liiders, dr. Harnau, dr. Riedewald; 4 —

dr. Drews, Germer, dr. Kummer; 5 — dr. Seifert, prof. dr.
Wintgen, dr. Kuchler; 6 — dr. Zacharias, doc. dr. Rosenbaum,
dr. Schwarz), medzi ktorými boli aj dvaja úspěšní účastníci
predchádzajúcich MMO. Riešenia žiakov družstva NDR —

ako je to už v případe družstva poriadajúcej krajiny tra-
dičné — koordinovali vedúci delegácií tých krajin, ktoré
navrhli úlohy.

Pri koordinácii hodnotení sa nevyskytli žiadné vážnejšie
nedorozumenia, takže jury mala pri svojom záverečnom
zasadnutí, ktoré sa konalo v piatok 12. 7. predpoludním,
ulahčenú úlohu. Najskór jednomyselne súhlasila, aby sa
v případe jedného rumunského žiaka, ktorý mal v čase
súťaže už viac než 20 rokov, urobila výnimka a aby bol
ponechaný v súťaži, keď vedenie rumunskej delegácie ubez-
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pečilo, že je žiakom strednej školy. Potom hlavní koordiná-
tori jednotlivých úloh stručné zhodnotili dosiahnuté vý-
sledky. Stanovenie hraníc dosiahnutých bodov pre udelenie
cien ufahčilo tentoraz ustanovenie organizačného poriadku,
podlá ktorého nemal počet odměněných v zásadě překročit’
polovicu všetkých účastníkov a počty prvých, druhých a tre-
tich cien mali byť, pokiaf možno, v pomere 1:2:3. Vy-
chádzajúc z tohto ustanovenia rozhodla jury o hraniciach
cien takto: I. cena od 40 do 38 bodov, II. cena od 37 do 30
bodov a III. cena od 29 do 23 bodov. Znamenalo to, že
10 žiakov dostane I., 24 II. a 37 III. cenu, čo je spolu 71
odměněných zo 140 účastníkov XVI. MMO.

Napokon jury prerokovala 4 návrhy na udelenie diplomov
za originálně a zvlášť elegantně riešenia. Jeden z nich (jed-
němu z maďarských žiakov za riešenie 2. úlohy) zamietla
a ostatně tri (jednému žiakovi z družstva Švédská za rieše-
nie 5. úlohy a po jednom žiakovi z družstiev USA a Ma-
ďarska za riešenie 6. úlohy) schválila.

V záverečnom slově poďakoval prezident jury prof. dr.
Engel za konštruktívnu spoluprácu všetkým členom jury
a informoval, že zadal nie je doriešená otázka usporiadatela
XVII. MMO. Podlá vyjadrenia vedúcich bulharskej a mon-

golskej delegácie sa móže konať v ich krajinách, v Mon-
golsku však až od 15. 7. 1975, pretože Mongolská ludová
republika slávi 11. 7. svoj štátny sviatok.

V závere zasadnutia sa přihlásil o slovo vedúci rakúskej
delegácie prof. Muhlgassner. V mene zahraničných delegácií
poďakoval usporiadatefom za výbornú organizáciu olym-
piády a za velmi dobré podmienky, ktoré NDR vytvořila
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jej účastníkom. Potom z poverenia ministerstva školstva
svojej krajiny oznámil, že Rakúsko je ochotné usporiadať
XVIII. MMO v roku 1976. Pozval všetky krajiny zúčastněné
na XVI. MMO, aby sa na nej zúčastnili a požiadal vedúcich
delegácií, aby ho informovali o stanovisku svojich krajin
к tomuto pozvaniu.

Žiaci od svojho příchodu do Erfurtu (6. 7.) do otvorenia
súťaže sa mali možnost’ zoznámiť s památihodnosťami města.
Navštívili o. i. aj svetoznámu medzinárodnú výstavu kvetov,
ktorá sa v tomto starobylom centre Durínska každoročně
koná. Popoludnie prvého dňa súťaže strávili na športovis-
kách študentského domova, v ktorom boli ubytovaní a po

druhej klauzúre pre nich usporiadatelia zorganizovali mlá-
dežnícku zábavu, na ktorú okrem výbornej hudby zabezpe-
čili aj dostatočný počet dievčat z erfurtských středných škol.
Medzi účastníkmi XVI. MMO boli totiž len 2 dievčatá:
Sarah Maria Duyos z Kuby a naša Alena Vencovská.

Kým sa vedúci delegácií a ich zástupcovia vo Weimare
plné zaměstnávali korektúrami, hodnotením a koordináciou
riešení, absolvovali žiaci dve celodenné autokarové exkurzie
do okolia Erfurtu. V středu 10. 7. navštívili známe středisko

zimných športov Oberhof v Durínskom lese a dejisko ne-

dávných majstrovstiev světa v športovej strelbe v Suhle.
Vo štvrtok 11. 7. si mali možnost’ pozrieť Eisenach a hrad
Wartburg. Vo štvrtok večer sa v internáte po prvý raz od
súťaže střetli so svojimi vedúcimi, aby sa dozvěděli niektoré
podrobnosti o programe ďalšieho pobytu v NDR a hlavně
uspokojili svoju zvědavost’ na výsledky, ktoré pri riešení
úloh dosiahli. Vela sa hovořilo tiež o smutné známej historii
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Buchenwaldu, ktorý sa chystali účastníci XVI. MMO na-
vštíviť nasledujúceho dňa popoludní.

Počas závěrečného zasadnutia jury si žiaci prehliadli Wei-
mar, kde navštívili múzea v domoch Goetheho a Schillera
i ďalšie památihodnosti. Popoludní 12. 7. sa uskutočnila
spoločná exkurzia všetkých účastníkov XVI. MMO na ne-

daleký Ettersberg a do múzea na mieste niekdajšieho kon-
centračného tábora Buchenwald, v ktorom fašistické jed-
notky SS počas 2. světověj vojny povraždili 56 000 1’udí,
príslušníkov takmer všetkých európskych národov. Po pre-
hliadke múzea položili jednotlivé delegácie kytice kvetov
к pylónu svojho národa na Ceste národov v Národnom
památníku v Buchenwalde a poklonili sa pamiatke tých,
ktorí zahynuli v boji proti fašizmu pre lepšiu budúcnosť
dnešnej mladej generácie a celého 1’udstva.

V sobotu 13. 7. ráno sa účastníci XVI. MMO rozlúčili
s Durínskom a rýchlikom odcestovali do Berlína, kde sa
žiaci ubytovali vo vysokoškolskom internáte Humboldtovej
univerzity a vedúci delegácií so svojimi zástupcami v hoteli
Berolina v střede města. Krátko po příchode do Berlína
čakala v přístave v Treptovskom parku na účastníkov
XVI. MMO loď Fridrich Wolf zo známej „Weisse Flotte“,
na ktorej podnikli vyhliadkovú plavbu po Spréve a prifah-
lých jazerách. Požitok z plavby trvajúcej celé popoludnie
kazilo dáždivé počasie, tak typické v júli 1974 nielen pre
Berlín a NDR.

V nedelu 14. 7. 1974 navštívili účastníci MMO nedaleké
viac než stotisícové krajské město Potsdam, kde si prezreli
niekdajší královský letohrádok Sanssousi s rozlahlým par-
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kom a historické miesto konania Postupimskej konferencie
Cecilienhof.

Po pondelňajšom voínom predpoludní (15. 7.) následovalo
popoludní závěrečné slávnostné zhromaždenie v Kongre-
sovej hale na Alexandrovom náměstí. V jeho úvode za-
znělo Largo a Allegro z Hándlovho Concerto grosso, op. 6.
Po otváracom preslove předsedu organizačného výboru
XVI. MMO s. Titzeho prehovorili prezident jury prof. dr.
Engel a sekretář min. školstva NDR s. Werner Lorenz, ktorí
po doznění 1. vety Beethovenovej Jenskej symfonie odo-
vzdali diplomy odměněným účastníkom XVI. MMO. V za-

stúpení súťažiacich žiakov poďakovala potom organizáto-
rom olympiády za vytvorenie velmi dobrých podmienok
pre súťaž i bohatý spoločenský program členka čs. družstva
Alena Vencovská. V mene zahraničných členov jury preho-
voril vedúci bulharskej delegácie dr. Čukanov, ktorý taktiež
vyzdvihol velmi dobrú organizáciu olympiády a v závere
pozval delegácie všetkých zúčastněných krajin na XVII.
MMO, o mieste konania ktorej sa rozhodne medzi Bulhar-
skom a Mongolskom pri vzájemnom rokovaní na úrovni
ministrov školstva. Kuriozitou závěrečné slávnosti bolo to,
že na nej účinkoval ako klavírista Wolfgang Burmeister,
úspěšný účastník niekolkých predchádzajúcich MMO, ktorý
vysokoškolské štúdium matematiky absolvoval za tri roky
a teraz pracuje ako učitel matematiky na Technische Uni-
versitát v Drážďanoch.

V pondelok (15. 7.) večer sa opáť v Kongresovej hale ко-
nala závěrečná spoločná večera, na ktorej prehovoril pre-
zident jury prof. dr. Engel. Před ňou, resp. počas nej, dostali
všetci účastníci olympiády spomienkové darčeky od jej or-
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ganizátorov. Celý večer sa niesol v radostnom a priatefskom
ovzduší. Mladé matematické nádeje si vymieňali adresy
a prísfuby dalších vzájomných kontaktov.

Na rozdiel od predchádzajúcich MMO sa slávnostnou
spoločnou večerou oficiálny program XVI. MMO neskon-
čil. Na utorok 16. 7. dopoludnia naplánovali nemeckí hos-
titelia ešte návštěvu berlínskej televíznej veže, aby účastní-
kom olympiády umožnili pohlad na hlavně město NDR
z výšky 203 m a po nej autokarová prehliadku Berlína.
Počas nej navštívili o. i. památník padlých červenoarmejcov
v Treptovskom parku a zoznámili sa s dalšími památihod-
nosťami hlavného města hostitelskej krajiny.

Posledným oficiálnym podujatím v rámci olympiády bol
koktail, ktorý v utorok popoludní usporiadal v reštaurá-
cii hotela Johannishof námestnik ministra školstva NDR
s. Werner Engst. Spolu s prezidentom jury prof. dr. Engelom
zotrval počas něho v krátkom srdečnom rozhovore s ve-
děním každej delegácie.

V utorok 16. 7. popoludní začali postupné odchádzať
jednotlivé zahraničné delegácie do svojich domovov. Dele-
gáciu ČSSR odvážala Vindobona z berlínskej stanice Ost-
bahnhof v středu predpoludním. Jej členovia odchádzali
zo susedného socialistického německého Štátu bohatší
o mnohé dojmy a pěkné zážitky a ti, ktorí majú ešte možnost’,
plní predsavzatí urobit’ všetko pre to, aby ich budúca cesta
na MMO bola úspešnejšia.

XVI. MMO sa zapíše do historie ako jedna z najlepšie
organizačně připravených po odbornej i spoločenskej stráň-
ke. Značnú pozornost' jej věnovala i domáca tlač a ostatně
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masovokomunikačné prostriedky. Všetci organizátoři na
čele s prezidentom jury prof. dr. Engelom a predsedom org.
výboru s. Titzem sa vyznačovali bezpříkladnou pozornosťou
a starostlivosťou o to, aby všetko klapalo presne podlá
vopred připraveného plánu. Všetci účastníci olympiády sa
na každom kroku přesvědčovali o vel’kej pozornosti, ktorú
venuje NDR rozvojů školstva, védy a techniky.

2. VÝSLEDKY SÚŤAŽE

Najdóležitejšou a zároveň najťažšou úlohou medzinárod-
nej jury MMO je každoročně výběr súťažných úloh. S rastom
počtu zúčastněných krajin narastá jej náročnost’ hlavně preto,
že sa zmenšuje prienik množin tých partií matematiky, ktoré
sa vyučujú na středných školách v zúčastněných krajinách.
V návrhoch úloh, ktoré zaslali jednotlivé krajiny pre XVI.
MMO bolo naviac málo vhodných úloh z geometrie. Po vy-
nechání pěkných a zaujímavých úloh, ktoré sa však v pri-
pravenom návrhu ukázali ako neoriginálne, sa napokon
zrodil nie celkom vyvážený výběr, ktorý pozostával z 2 do-
slovné 1’ahkých úloh, z 1 poměrně nenáročnej úlohy klasic-
kého typu a z 3 úloh, ktoré sa všeobecne považovali za ná-
ročné. Ohýbali úlohy stredne náročné, ako to ukázali aj
účastníkmi dosiahnuté výsledky. Nasledujúca tabulka uka-
zuje, kolko zo 140 účastníkov olympiády získalo ten-ktorý
počet bodov za riešenie jednotlivých úloh:
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Úloha Úloha Úloha ÚlohaÚloha Úloha
Počet bodov

1 2 3 4 65

358 35

27 87 5

6 64 90 8 31

113 15 15 55 7 1

132 14 9 18 11

9 23 4 9 106

12 72 5 7 106

18 22 281 14I

0 34 515 28 62 4

Ak vyjádříme poměr udělených bodov za riešenie jednotli-
vých úloh к celkovému počtu možných bodov, dostaneme
nasledujúce čísla vyjadrujúce relatívnu úspěšnost’ účastníkov
XVI. MMO pri riešení úloh: 1. 90,3 %, 2. 62,7 %, 3. 35,1 %,
4. 84,4 %, 5. 44,6 %, 6. 38,4 %. S jednotlivými úlohami si
najlepšie poradili tieto družstvá: 1. bez straty bodu riešili
CS, DDR, H, PL, SU, USA, VN a YU; 2. VN stratilo 1 bod,
SU 2 body; 3. Rumunsko získalo 50 bodov zo 64 možných;
4. Švédsko a Juhoslávia získali po 47 bodov zo 48 možných;
5. ZSSR získalo 44 bodov z 56 možných a 6. USA získalo
58 bodov zo 64 možných.
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Celkové výsledky jednotlivých družstiev ukazuje nasle-
dujúca tabulka:

Neofic. Body
a neofic. por.

na XV. MMO

Počet získaných cien Súčet

bodov
Dip-

Krajina Pozn.po-
lomy rádieSpoluI. II. III.

212 144-8.A 1 1 4 6 6.

96-12.-13.BG 4 1711 5 11.

C 42-16. 7 ž.65 17.

CS 2 2 12. 149-7.158

DDR 2 7 236 4. 188-3.5

3 8. 153-6.F 1 1 5 194

GB 3 4 188 9. 164-5.1

H 3 31 7 1 237 3. 215-2.

M 60 18. 65-15.

NL 96-12.-13.i 1 112 15.

PL 2 2 138 14. 174-4.

R 1 1 3 5 199 141-9.7.

S 1 1 2 1871 10. 99-11.

SF 1 1 111 16. 86-14.

SU 2 3 2 7 256 1. 254-1.
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USA 3 2435 8 1 2. na MMO po 1. raz

len 5 žiakov
na MMO po 1. raz

2 4 13.VN 1 1 146

YU 2 2 5 216 5. 137-10.1

Velkým prínosom sa ukázali byť družstvá krajin, ktoré
sa MMO zúčastnili po prvý raz. Družstvo USA sa vklínilo
medzi už tradičné najlepšie družstvá ZSSR, Maďarska
a NDR a bolo jediným družstvom, ktorého všetci členovia
získali cenu. Výsledky, ktoré dosiahlo nekompletně družstvo
VDR, boli pre všetkých nečakaným překvapením. V po-
rovnaní s minulým rokom sa značné zlepšili najma družstvá
Juhoslávie, Rakúska, Švédská, Bulharska a čiastočne i druž-
stvo Rumunska. Francúzske družstvo potvrdilo, že jeho
vlaňajší výsledok nebol náhodný. Nečakane slabé výsledky
dosiahlo družstvo Polska a, žial, aj ČSSR. Výsledky ostat-
ných družstiev sú v zhode s doterajšími zvyklosťami s vý-
nimkou snáď len Vďkej Británie, ktorej družstvo nekleslo
pri svojich doterajších štartoch na MMO v neoficiálnom
poradí pod siestu priečku. Celkove možno povedať, že do-
siahnuté výsledky sú vyrovnanejšie než na niekolkých před-
chádzajúcich MMO a aj napriek trom poměrně náročným
úlohám sa našlo až 6 žiakov, ktorí získali plný počet 40 bo-
dov, a to po jednom z družstiev Rakúska, Francúzska, Ma-
ďarska, Rumunska, Švédská a ZSSR.

Pri rokovaní jury sa podařilo vytvořit’ vďaka velmi dobré-
mu vedeniu zo strany jej prezidenta prof. dr. Engela i jeho
zástupců prof. dr. Bauscha konštruktívnu pracovnú atmo-
sféru, na ktorú mala zrejme vplyv aj tá skutočnosť, že členo-
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via jury boli váčšinou staří známi z predchádzajúcich MMO, ak to
ukazuje nasledujúci prehlad:

Jeho zástupcaKrajina Vedúci delegácie — člen jury

Thomas Miihlgassner
Gymnázium Eisenstadt

Wolfgang Ratzinger
Pádagogische Akademie Linz

A

Dr. Vladimír Čukanov
Akadémia vied Sofia

Dimo Serafimov Angelov
Min. školstva Sofia

BG

Dr. Luis j. Davidson
Min. školstva Havana

Felix Redo

Univerzita Havana
C

Dr. Vlastimil Macháček

Ped. fakulta UK Praha

Doc. Dr. Jozef Moravčík, Csc.
VŠD Žilina

CS

Dr. Hans-Jiirgen Sprengel
Pádag. Hochschule Potsdam

Prof. Dr. Gustav Burosch
Univerzita Rostock

DDR

Prof. Georges Glaeser
IREM Strasbourg

Denis Gerll

Lycée Louis-le-Grand Paris
F

Robert Cranston Lyness
Min. školstva Londýn

Dr. David Monk
Univerzita Edinburgh

GB

Endre Hódi

Ped. inštitút Budapešť
Doc. Dr. István Reiman, CSc.
Techn. univerzita Budapešť

H

Prof. Ursincerengin Sanžmjatav
Univerzita Ulánbátor

Sagdarača Gombyn
Min. školstva Ulánbátor

M



Dr. Jan van de Craats

Univerzita Leiden

Doc. Ary van Tooren
Univerzita Leiden

NL

mgr. Andrzej Mqkowski
Univerzita Varšava

Dr. Maciej Brynski
Univerzita Varšava

PL

Dr. Ion Cuculescu

Univerzita Bukurešť
Constantin Ottescu

Liceul 21 Bukurešť
R

Doc. Dr. Ake H. Samuelson
Univerzita Goteborg

Stig Westlund
Středná škola Halmstad

S

Matti Lehtinen
Univerzita Helsinki

Jarmo Nystróm
Středná škola Pohjois-Tapiolan

SF

Doc. Valentin A. Skvorcov
MGU Moskva

Soňa I. Mojsejeva
Min. školstva Moskva

SU

Prof. Dr. Samuel L. Greitzer
Rutgers University New Brunswick

Cecil C. Rousseau

Memphis State University
USA

Prof. Phan Due Chinh
Univerzita Hanoi

Le Hai Chan

Min. školstva Hanoi
VN

Dr. Vladimír Mičič

Univerzita Bělehrad

Zorán Kadelburg
Matem, gymnázium Bělehrad

YU
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3. К ČESKOSLOVENSKEJ ÚČASTI
NA XVI. MMO

Družstvo ČSSR pre XVI. MMO vybralo předsednictvo
ÚV MO na závěr týždenného sústredenia 10 žiakov, ktoré
sa konalo v Prahe od 17. do 22.6.1974. Účastníci sústredenia
boli vybraní na základe výsledkov III. a II. kola XXIII. roč-
nika MO a prípadnej predchádzajúcej účasti na MMO.
Z účasti na sústredení sa ospravedlnili dvaja, do ktorých sa
vkládali najváčšie nádeje: Jaromír Šimša, ktorý získal už
na XIV. i XV. MMO tretiu cenu (pre účasť na sústredení
maturantov odchádzajúcich na jeseň študovat’ do zahraní-
čia) a Pavel Ferst, ktorý na XV. MMO získal dokonca
II. cenu. Za nich bolo nutné povolat’ nahradníkov, medzi
nimi i Alenu Vencovskú, ktorá sa napokon v Erfurte ukázala
byť najlepšou členkou nášho družstva. Na základe poznat-
kov zo sústredenia ochudobneného o skúsených reprezen-
tantov bolo do NDR vyslaných týchto 8 žiakov (v taburke
sú zároveň uvedené výsledky, ktoré dosiahli na XVI. MMO):
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Priezvisko Počet bodov získaných za úlohuРог.

číslo
Trieda a škola

Spolu2 31 4 5 6a měno

Bahnila

Lubomír

3.b gymn.

Český Těšín
1.

5 4 0 6 1 0 16

Kindlmann
Pavel

2. 4.a gymn.
České Budějovice 6 3 6 2 1 235

3. Navrátil

Jiří

l.a gymn.

Olomouc-Hejčín 5 6 0 2 5 0 18

Šírán
Jo~-ef

4.b gymn.
Bratislava, Novoh.

4.

5 6 6 4 0 221

4.d gymn.
Pha 3, Sladkovsk.

Trlifaj
Jan

5.

0 0 185 6 6 1

Valášek

Michael

3.d gymn.
Pha 2, W. Piecka

6.

145 1 1 6 0 1

Vencovská
Alena

7. 4. tr. gymn.
Pha 1, Štěpánská 4 6 5 8 295 1

Voldřich

Josef
8. 3. tr. gymn.

Vimperk 0 6 0 1 185 6

Spolu 39 1240 6 44 17 158

Ako vidno, naši žiaci si velmi dobré poradili s 1. úlohou
a s výnimkou víťaza XXIII. ročníka МО a najmladšieho
člena čs. družstva J. Navrátila aj so 4. úlohou. Za velmi
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dobrý možno považovat’ aj výsledok v 2. úlohe, ktorú ne-
riešil s úspechom len M. Valášek. Katastrofálné sú však
výsledky dosiahnuté vo všetkých troch tzv. ťažkých úlohách.
Výnimku tvoří len jediná žena v čs. družstve A. Vencovská,
ktorá vefmi vtipné riešila 6. úlohu (i keď s niektorými drob-
nými nepresnosťami) a poměrně úspěšně aj 5. úlohu. Len to,
že v 2. úlohe nedokázala postačujúcu podmienku, spósobilo,
že jej o vlások ušla II. cena. Ku jej cti slúži fakt, že maturovala
v triede s humanitním zaměřením a pokiar ide o matematiku,
možno ju považovat’ do značnej miery za samouka. Ukázala,
čo dokáže vytrvalost’ a pevná vóía, v čom móže opravdu
slúžiť príkladom. Uspokojivý výsledok v 5. úlohe dosiahli
ešte J. Navrátil a J. Širáň, ktorému ušla III. cena len o jediný
bod. P. Kindelmannovi, jedinému z našich žiakov, ktorý sa
zúčastňoval MMO po druhý raz, umožnili zopakovat’ via-
ňajší úspěch a získat’ opat’ III. cenu pokusy o využitie bino-
mickej vety pri riešení 3. úlohy.

Po spoločenskej stránke reprezentovali naši žiaci velmi
dobré. Tvořili stmelený kolektiv s vefmi slušným vystupo-
váním. Neúspěchy v súťaži ich viditelné mrzeli a třeba po

pravdě povedať, že i počas exkurzií sa zaoberali matematikou
a riešením úloh. Po prvej klauzúre nešli na večeru dovtedy,
kým sa im nepodařilo nájsť riešenie 3. úlohy (je uvedené
nižšie), čo medzi drobničkami zo XVI. MMO zaznamenal
aj Junge Welt. Úlohy, s ktorými si pri klauzúrach váčšina
z nich neporadila, boli netradičné a pre našich stredoškolá-
kov nezvyklé.

Ak chceme v budúcnosti dosahovat’ na MMO lepšie vý-
sledky, bude třeba po celý rok sa věnovat' príprave družstva.
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Širší výběr by mal byť známy už v septembri a s ním by bolo
třeba pracovat’ pravidelné, sústavne a cieravedome po celý
školský rok. Takto to robia dnes už prakticky vo všetkých
krajinách, ktoré skončili na XVI. MMO v neoficiálnom
poradí před námi. Semináře poriadané v Prahe pre vybra-
ných žiakov pražských škol a týždenné sústredenie krátko
před odchodom na MMO к dobrej príprave rozhodne ne-

postačujú. Čas, prostriedky a energia věnované systematic-
kej príprave talentov by určité neboli samoúčelné.

Určitým príslubom do budúcnosti sú 4 gymnázia so špe-
ciálnymi matematickými triedami (po 2 v ČSR a SSR), ktoré
sa od 1.9.1974 otvárajú z iniciativy ÚV МО a predovšetkým
jeho předsedu doc. Výšina, CSc. Ani od nich však nemožno
očakávať zázraky. Už aj preto nie, že pri najlepšej voli
nebudu mócť samotné podchytit’ všetky matematické talenty.

4. RIEŠENIA SÚŤAŽNÝCH ÚLOH

RIEŠENIE 1. ÚLOHY

Keďže z čísel p,q,r sa v každom kole každé vyskytuje
právě raz, pre celkový počet rozdaných guličiek zrejme platí:

N(p + q + r) = 20 + 10 + 9 = 39 = 3. 13. (O

Vzhladom na to, že N ^ 2 a pre navzájom rožne prirodzené
čísla p, q, r určité platí: p + q + r ^ 6, vyplývá z (1):

p + q + r = 13.

Keďže hráč В v treťom kole získal r guličiek a za celú hru

N = 3,
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len 10 guličiek (menej než 13), musel v prvom i druhom kole
získať po p guličiek. Hráč A mohol v treťom kole získat' naj-
viac q guličiek a keďže jeho celkový zisk bol 20 guličiek
(viac než 13), musel v prvom i druhom kole získať po r gu-
ličiek. Z toho vyplývá, že q guličiek v prvom kole získal
hráč C.

Na základe vyššie vykonanej úvahy móžeme naviac určiť
i číselné hodnoty p,q,r, pretože platí: 2p + r — 10 (zisk
hráče В) a buď 2r + p — 20, 3q = 9, alebo 2r + q = 20,
2q + p = 9. V prvom případe dostáváme q = 3, p + r = 10,
v — p — 10 čiže q = 3, r — 10, p — 0, čo podmienkám úlohy
nevyhovuje. V druhom případe r = 10 — 2p ^ 8, q =
= 2 . (10 — r) ^ 4, p = 9 — 2q ^ 1, z čoho hned máme p = 1,

. r = 8, = 4. Zisk guličiek jednotlivými hráčmi vo všetkých
3 kolách udává teda nasledujúca tabulka:

I2. 3.1.

8A 8 4 20

В 1 1 8 10

c 4 4 9

Závěr. V prvom kole získal q guličiek hráč C.

RIEŠENIE 2. ÚLOHY

Obr. 89. Nech vo vnútri úsečky AB existuje bod D tak,
že platí:

CD2 = DA . DB . (O
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с

Obr. 89г, \ь
\
\
\
\

вА D

Označme <£ ACD = уи < BCD = у2. Platí zrejme ух 4- у2 = у.
Pre trojuholníky ADC.BDC zo sínusovej vety vyplývá:

CD
sin a = — sin yj,

AD

(2)CD
sin /? — sin y2 .

DD

Priamo z (1) a (2) dostaneme

CD2
sin a sin P = sin yj sin y2 = sin yx sin у2 =

AD.BD

= i[cos (уг - y2) - cos (yi + y2)]
čiže

sin a sin /? = |(cos <5 — cos y), (3)
kde 0 ^ |yj — y2| = ó < y. Zrejme vždy cos <5^1
máme

(3)a z

sin a sin Д ^ ^(1 — cos y) = sin2 -2-y, (4)
čo sme mali dokázat’.
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Nech obrátene platí (4), t. j.

cos у < 2 sin a sin /? 4- cos у ^ 1,

pretože sin a sin P > 0. Vzhfadom na to, že funkcia cos x
je v intervale <0; n} spojitá, existuje aspoň jedna hodnota
d e <0; y) tak, že platí:

(5)2 sin a sin P + cos у = cos ó .

Rozdělme uhol у na uhly yx, y2 tak, aby platilo |yj — y2\ = S,
t. j. buď Ti — У2 = <5 alebo y2 — y1 = д. V prvom případe

У2 = i{y - <5),У1 = l{y + <5),

pričom iy ^ 7i < У, 0 < у2 ^ iy. V druhom případe

Ti = %y ~ <5), уi = Му + <5),

pričom 0 < y! ^ |y, ^y ^ y2 < y.

Ak označíme D priesečník úsečky AB so spoločným ra-
menom uhlov yl5 y2, potom z (2) a (5) dostáváme

CD2 sin a sin P
AD . BD sin у i sin у2

= 1.

čím sme dokázali, že vo vnútri úsečky AB existuje bod D
s požadovanou vlastnosťou.

RIEŠENIE 3. ÚLOHY

Označme pri danom prirodzenom n daný súčet A„. Zrejme
platí:
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S: !f'>
" Í2n + 1

2к + 1
4, = Z 23k = 2"3/2 £

= o

2fc+ 1

k = 0

Podlá binomickej vety platí
2n+ 1 2n + 1

(23/2 + 1)2n + 1
= z (23/2)m =

m /m = O

2n + 12n + 1

2/c + 1 (23/2)2fc+l + £
k = O

(23/2)2fe == Z 2кfc = o

= 23/2An + ВП >

kde

В, = z 23k
fc = o

je pri každom prirodzenom n zrejme celé číslo.

Analogicky použitím binomickej vety dostaneme

= 23i2A„ - B,.(23/2 - 1)2n+ 1 (i)

Vynásobením rovnosti (1) a rovnosti

(23/2 + 1)2n+ 1
= 23,2A, + B„

dostaneme

23Al - Bl = (23 - 1)2и + 1 (2)
Použitím kongruencií mod 5 sa rovnost’.(2) redukuje na rov-
nosť

3Ai - Bl = 2(- 1)" (mod 5).
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Kedze О2 = O (mod 5), l2 = 42 = 1 (mod 5), 22 = З2 = — 1
(mod 5), nebude pre žiadne n В2 = ±2 (mod 5), čo známe-
ná, že 3Агп ф 0 (mod 5) a teda Ап ф 0 (mod 5) platí pri
každom prirodzenom n, čo sme malí dokázat’.

Iné riešenie: Zrejme platí:

(2n + % + 3f.i (2n + 1j\2k + 1/ ; k=o \2k + 1 /
3k (mod 5).a. = y

fc = o

Označme

+ (V3 - i)2n+ 1(V3 + *)2n+ 1
2, /2и + 1

2к + 1
s,= X 3* =

2 V3k = 0.

(V3 + i)(4 +2 V3)" + (V3 - >H4 -2 V3)”
2^/3

Keďže čísla 4 + 2 ^/3, 4 — 2 ^/3 vyhovujú rovnici
x2 — 8x + 4 = 0,

platí zrejme rekurentný vztah

(3)+ 2 8S„+1 — 4S„

pre každé celé číslo n ^ 0. Z (3) hned dostaneme

S„ + 2 = S„ - 2Sn+1 (mod 5). (4)

Dosadením sa 1’ahko přesvědčíme, že platí:

S0 = 1 (mod 5),
Z (5) a (4) postupné dostaneme

Sj = 1 (mod 5). (5)
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S2 = 1 — 2.1 = 4 (mod 5),
S4 = 4 — 2.3 = 3 (mod 5),
S6 = 3 - 2.2 = 4 (mod 5),
58 = 4 — 2.4 = 1 (mod 5),
S10 = 1 — 2.2 = 2 (mod 5),
S12 = 2 — 2.3 = 1 (mod 5),

S3 =1 — 2.4 = 3 (mod 5),
S5 = 3 — 2.3 = 2 (mod 5),
S7 = 2 — 2.4 = 4 (mod 5),
S9 =4 — 2.1 =2 (mod 5),
Sn = 2 — 2.2 = 3 (mod 5),
513 = 3 — 2.1 = 1 (mod 5),

(6)

Zo (6) a (5) vzhl’adom na (4) vyplývá, že pre vsetky к ^ 0
platí

Si2+k = (mod 5).

Kedze Sk ф 0 (mod 5) pre к = 0,1,..., 11, znamená to zá-
roveň, že Sk = 0 (mod 5) pre všetky к ^ 0 číže A„ ф 0
(mod 5) pre každé prirodzené číslo n, čo sme malí dokázat’.

Pozn.: Týmto spósobom riešil 3. úlohu najmladší člen
čs. družstva J. Navrátil, žial, až po súťaži.

RIEŠENIE 4. ÚLOHY

Predovšetkým si třeba uvědomit', že

fa, = 32. (1)
í= 1

Z ostrej monotónnosti čísel a,- vyplývá ďalej, že musí byť
«i ^ i, i = 1,2,...,p, z čoho priamo máme
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p(p + 1)£«,ží i- (2)2i= 1 i= 1

Z (1) a (2) dostáváme nerovnost'

ÁP + 1)
^ 32 čiže p(p + 1) ^ 64,2

ktorej vyhovujú len tie prirodzené čísla p, pre ktoré platí:

Рй 7.

Pokúsime sa overiť existenciu rozkladu požadovaných vlast-
7

= 7. Keďže Yj * = 28, jeností pre najváčšie z nich, t. j. p

rozklad čísla 32 na 7 róznych sčítancov s najváčším možným
sčítancom

Ž=1

(3)1+2 + 3 + 4+ 5 + 6+11.

Z něho postupným zmenšováním najváčších sčítancov
a zváčšovaním vhodných menších dostaneme všetky také
rozklady čísla 32 na 7 sčítancov, ktoré vyhovujú požadova-
ným podmienkam:

(4)1 + 2 + 3+4 + 5 + 7+10,

1+2 + 3 + 4 + 5 + 8+ 9,

1+2 + 3+ 4 + 6 + 7+ 9,
1 + 2 + 3 + 5 + 6 + 7+ 8.

(5)
(6)
(7)

Rozklad šachovnice na 7 rovnobežníkov s počtom bielych
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polí podia (3) neexistuje, pretože rovnoběžník s 22 poliami
by musel mať rozměry 1 x 22, resp. 2 x 11, čo na šachovnici
s 8 x 8 poliami nie je možné. Rozklady šachovnice na rov-

nobežníky s počtom bielych polí podlá (4) —(7) sú na obr.
90-94.

Závěr. Najváčším číslom p, pre ktoré je možné rozdelenie
šachovnice požadovaných vlastností, je teda číslo 7 a daným
podmienkám vyhovujú nasledujúce 7-členné postupnosti:
1,2,3,4,5,7,10, 1,2, 3,4, 5, 8,9, 1,2, 3,4,6, 7,9, 1,2, 3,5, 6,
7,8. V obrázkoch 90 — 93 sú jednotlivé rovnoběžníky ozna-
čené tým členom príslušnej postupnosti, ktorý sa rovná
počtu bielych polí v nich obsiahnutých.

RIEŠEN1E 5. ÚLOHY

Pre každú štvoricu kladných reálných čísel a, b, c, d
zrejme platí

Obr. 90 Obr. 91
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*4
a5

a7*5 *6
a+

°3
°3 °2°2*1 Zl

Obr. 92 Obr. 93

ba
1 =

и T b 4* c + d и + b -f- c -|- d

dc
<

g b c d и + b + c 4“ d

ba
<

g -f- b + d g H- b + c

dc
= S <+

b + c + d g + c + d

b da c
= 2.<

a + b a 4- b c + d ' c + d

Tým sme ukázali, že všetky hodnoty súčtu S pře 1’ubovolné
stvoříce a, b, c, d kladných reálných čísel musia ležať v in-
tervale (1; 2).

Pokúsme sa ešte ukázat’, že súčet S každé číslo x e (1; 2)
skutočne pre nějaká štvoricu a, b, c, d nadobúda. Označme
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S(a, b, c, d) hodnotu daného súčtu pre štvoricu a, b, c, d.
ЕаПко sa vidí, že S(ka, kb, kc, kd) = S(a, b, c, d) pre každé
kladné reálne číslo k. Stačí preto uvažovat’ len o takých
štvoriciach a,b,c,d, pre ktoré platí a + b + c + d=l.
Označme a + c = u, b + d = v, kde u, v sú také kladné
reálne konstanty, pre ktoré platí u + v = 1. Pre také stvoříce
a, b, c, d kladných reálných čísel je

b dc

S(a, b, c, d) = —
a + v c + v b + и d + и

2bd + uv2ac + uv

ac + uv + v2 bd -f uv + u2

2ас + и — и2 2bd + v — v2
bd -f 1 — vас + 1 — и

Ak a, c sú fubovolné kladné reálne čísla, pre ktoré a + c = u,

kde и je pevné, potom 0 < ac <
a + c\2 u2

— —. Analogicky
4

b + d\2 v2
2

pre b, d, pre ktoré b + d = v je 0 < bd <
2ас + и — u2

ас + 1 — и

túcou funkciou ac, pretože Sj(ac) =

2bd + v — v2
bd + 1 — v

cou funkciou bd. Z toho vyplývá, že

2 4
= iSj(ac) je pri pevnom ue(0,1) ras-

(2 — и) (1 — u)
Zlomok

ř>0(ac + 1 — u)
a analogicky S2(bd) = pri pevnom v je rastů-

2u 2v
и < ^

2 — и
v < S2 ^ ——

2 — v
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a teda
2и 2v 4 — 4uv

1 = и + v < S <
2 — и

, , 4Kedže zlomok S3(uv) = -
funkciou uv:

2 — v 2 + uv

— 4uv

je spojitou klesajúcou
2 + uv

12 4 — 4uv

S'3(uv) = — 2 < 0 a lim — 2,
(2 + uv)

nadobúda súčet S všetky hodnoty z intervalu (1, 2).

uv->o 2 4- uv

RIEŠENIE 6. ÚLOHY

Ak má celočíselné kořene len jedna z rovnic

P(x) = 1 ,

P(x) = -1 ,

potom zrejme je n(P) ^ deg (P) a daná nerovnost'je splněná.
Nech pre mnohočlen P súčasne existujú celočíselné kořene
rovnice (1) i rovnice (2). Nech k,m sú Libovolné celé čísla,
pre ktoré platí P(k) = 1, P(m) = — 1. Potom P(k) — P(m) = 2.
Kedže к — m dělí celé číslo P(k) — P(m), musí byť buď
\k — m\ = 1, alebo \k — m\ = 2. To však znamená, že pre
Libovolný nekonštantný mnohočlen P, pre ktorý majú obe
rovnice (1), (2) celočíselné riešenie, je n(P) ^ 5. Z toho vy-
plýva, že daná nerovnost'je splněná pre každý mnohočlen P,
pre ktorý deg (P) ^ 3. Kedže pre mnohočlen 2. stupňa je
n(P) ^ 4 a pre mnohočlen 1. stupňa je n(P) ^ 2, je daná

(i)
(2)
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nerovnost’ splněná pre každý nekonštantný mnohočlen P,
čo sme mali dokázat’.

PoznUvedené riešenie vzniklo úpravou riešenia naj-
úspešnejšej čs. účastníčky XVI. MMO A Vencovskej.
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