
29. ročník matematické olympiády

Jozef Moravčík (editor); Leo Boček (editor); Lev Bukovský (editor);
Antonín Vrba (editor); Jan Vyšín (editor); František Zítek (editor):
29. ročník matematické olympiády. Zpráva o řešení úloh ze soutěže
konané ve školním roce 1979-1980. 21. mezinárodní matematická
olympiáda. (Czech). Praha: Státní pedagogické nakladatelství, 1982.

Persistent URL: http://dml.cz/dmlcz/404721

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides
access to digitized documents strictly for personal use. Each copy of
any part of this document must contain these Terms of use.

This document has been digitized, optimized for
electronic delivery and stamped with digital signature
within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/404721
http://dml.cz


XXIX. ročník matematické olympiády



 



DVACÁTÝ DEVÁTÝ
ROČNÍK

MATEMATICKÉ OLYMPIÁDY

Zpráva o řešení úloh ze soutěže
konané ve školním roce 1979—80

MEZINÁRODNÍ MATEMATICKÁ OLYMPIÁDA

STÁTNÍ PEDAGOGICKÉ NAKLADATELSTVÍ
PRAHA



Za přispění spolupracovníků zpracovali
prof. dr. Jozef Moravčík, CSc., dr. Leo Boček, CSc.,
doc. dr. Lev Bukovský, CSc., dr. Antonín Vrba, CSc.,
doc. Jan Výšin, CSc. a dr. František Zítek, CSc.
Recenzovali dr. Jitka Kučerová,
dr. Miroslav Šisler, CSc. a dr. Václav Šůla
© Státni pedagogické nakladatelství, n. p., 1982



Obsah

5Předmluva

O průběhu XXIX. ročníku MO 8

34Kategorie Z ... .

Přípravné úlohy I. kola
Soutěžní úlohy I. kola
Soutěžní úlohy II. kola
Úlohy III. kola v ČSR
Úlohy III. kola v SSR

34
41
49
52
54

55Kategorie C . . . .

Přípravné úlohy I. kola
Soutěžní úlohy I. kola
Soutěžní úlohy II. kola

55
61
73

78Kategorie В . . . .

Přípravné úlohy I. kola
Soutěžní úlohy I. kola
Soutěžní úlohy II. kola

78
85
96

103Kategorie A
Přípravné úlohy I. kola
Soutěžní úlohy I. kola .

Soutěžní úlohy II. kola
Soutěžní úlohy III. kola

103
117
131
138

Korespondenční seminář MO 148

156MMO



 



PREDHOVOR

Milí mladí priatelia a pracovníci v matematickej olympiádě,

už po 29. raz sa vám touto cestou prihovárame, aby sme
vám poskytli základné informácie o priebehu a výsledkoch
právě skončeného ročníka matematickej olympiády, ktorý sa
konal v školskom roku 1979/80. Ako zvyčajne, prináša táto
ročenka okrem prehfadu o organizácii a hodnotiacich tabuliek
všetky súťažné úlohy s riešeniami, výběr úloh riešených v celo-
štátnom korešpondenčnom semináři a stručnú informáciu
o jeho výsledkoch. Chýba však, žial, obvyklá správa o medzi-
národnej matematickej olympiádě, pretože roku 1980 sa po prvý
raz po 21 rokoch toto medzinárodné meranie sil matematických
nádejí neuskutočnilo. Dúfajme, že to bude len ojedinělá neradost-
ná epizoda v historii medzinárodných matematických olympi-
ád, na ktorú dá čoskoro zabudnúť další úspěšný rozvoj toh-
to nesporné velmi užitočného podujatia. Nasvědčuje tomu nielen
pozvanie na MMO 1981, ktorá sa má konať 8.—20. júla 1981
v USA, ale aj medzinárodné matematické súťaže, ktoré sa usku-
točnili na niekolkých miestach v júli 1980 ako náhrada za neu-
skutočnenú MMO. Podrobnejšie o nich píšeme na inom mieste
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V predhovore к ročenke 28. ročníka MO sme sa zmieňovali
o gymnáziách s triedami so zameraním na matematiku. Jedno
z nich - Gymnázium Mikuláša Kopernika v Bílovci - sa z tiodou
okolností stalo dejiskom celoštátneho kola kategorie A 29. roč-
nika súťaže. Bílovec je tak najmenším z miest, v ktorých sa
uskutočnilo celostátně kolo MO počas jej takmer tridsaťročnej
historie, a bez nadsádzky možno povedať, že bíloveckým orga-
nizátorom sa podařilo vytvořit' pre súťaž vynikajúce podmienky
a nezabudnutelhú spoločenskú atmosféru. Možno aj vdaka
tomu má naša súťaž v tomto ročníku po prvý raz páť absolút-
nych víťazov s rovnakým bodovým ziskom.

Aj ústredný výbor matematickej olympiády našiel v Bílovci
velmi dobré podmienky pre svoje náročné rokovanie, v ktorom
sa zaoberal dóležitými otázkami týkajúcimi sa změny koncepcie
v organizovaní súťaže od 31. ročníka. Odporúčal ministerstvám
školstva zrušenie doterajšej dobrovolnosti riešenia přípravných
úloh a změnu v organizácii školského kola súťaže v tom zmysle,
aby sa úspěšné riešenie váčšiny přípravných úloh v kategóriach
A - C stalo podmienkou pre postup do klauzúrnej časti, ktorá
by sa mala konať každoročně v mesiaci decembri, resp. februárí,
na jednotlivých středných školách. Toto školské vyvrcholenie
I. kola súťaže by málo byť v jednotlivých kategóriach na celom
území štátu v ten istý deň a úspěch v ňom by sa mal stať
podmienkou pre postup do krajského kola príslušnej kategorie.
Navrhované změny vychádzajú zo zistenia, že v posledných
rokoch doterajší systém dobrovolného riešenia přípravných
úloh neplnil svoje poslanie a klauzúrny závěr I. kola sleduje
váčšiu zainteresovanost’ školskej veřejnosti i žiakov na mate-

matickej olympiádě. Dá sa sice předpokládat’, že poklesne počet
účastníkův krajských kol, ale určité by mala vzrásť ich úroveň.
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V kategorii Z sa navrhuje len menšia úprava školského kola.
Riešitelia budú odovzdávať riesenie úloh I. kola v dvoch

etapách a úspěšné riešenie váčŠiny z nich bude podmienkou
pre postup do okresného kola súťaže.

Vo vyšších kolách súťaže sa v žiadnej z jestvujúcich kategorií
žiadne změny nepredpokladajú.

Zásadnú změnu by však mala priniesť realizácia doporučenia,
aby sa postupné od 5. ročníka základnej Školy zaviedla mate-
matická olympiáda pre žiakov základných škol s cielom včaššie
než doteraz vyhladávať žiakov matematicky nadaných, aby ich
talent bolo možné už na základnej škole podchytit’ a cielavedome
rozvíjať.

Realizácia spomínaných odporúčaní předpokládá viac zanie-
tených učitelov matematiky na středných a najma základných
školách pre prácu s talentami a podstatné viac pochopenia pre
túto ich časové náročnú a spoločensky vysoko užitočnú prácu.

Vědeckotechnický rozvoj, ktorý je neodmyslitelnou pod-
mienkou ďalšieho upevňovania rozvinutej socialistickej spoloč-
nosti, potřebuje stále viac žiakov a študentov s dobrým vzťahom
к matematike, s vysokým stupňom vědomostí a schopnosťou
tvorivo ich využívat’. Tomu chce stále účinnejŠie pomáhat’ aj
matematická olympiáda a vyššie spomínané změny v jej kon-
cepcii by mali к tomu prispieť. Očakávame, že v tomto svojom
úsilí nájdeme medzi vámi dostatok pochopenia a ochoty к spo-

lupráci.

Ústředny výbor matematickej olympiády
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O průběhu XXIX. ročníku
matematické olympiády

1. ORGANIZACE SOUTĚŽE

Pořadateli XXIX. ročníku matematické olympiády byla stejně
jako v minulých letech ministerstva školství ČSR a SSR, Mate-
matický ústav ČSAV (MÚ ČSAV), Jednota československých
matematiků a fyziků (JČSMF), Jednota slovenských mate-
matiků a fyziků (JSMF) a Socialistický svaz mládeže
(SSM). Soutěž byla řízena ústředním výborem matematické
olympiády (ÚV МО) a dále krajskými a okresními výbory
matematické olympiády (KV MO, OV MO). Žáci soutěžili ve

čtyřech kategoriích: v kategorii A žáci III. а IV. ročníků
středních Škol, v kategorii В žáci II. ročníků a v kategorii C
žáci I. ročníků středních škol. V kategorii Z soutěžili žáci
8. a 9. tříd základních škol. Se souhlasem KV MO může žák

soutěžit i v kategorii určené pro žáky vyšších ročníků.
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2. SLOŽENÍ ÚSTŘEDNÍHO VÝBORU
MA ТЕМА TICKÉ OL YMPIÁD Y

Ústřední výbor matematické olympiády pracoval v průběhu
jejího XXIX. ročníku ve složení:
předseda: prof. dr. Jozef Moravčík, CSc., VŠDS Žilina
místopředsedové: doc. Jan Výšin, CSc., MÚ ČSAV Praha

dr. František Zítek, CSc., MÚ ČSAV Praha
jednatelé: dr. Leo Boček, CSc., MFF UK Praha

dr. Antonín Vrba, CSc., MÚ ČSAV Praha
zástupce MŠ ČSR: dr. Václav Šůla, Praha
zástupce MŠ SSR: dr. Julia Lukátšová, Bratislava
zástupce ÚV SSM: Jana Pomazalová, gymnázium Brno,

tř. kpt. Jaroše
ostatní členové:

dr. František Běloun, Praha
dr. Ladislav Berger, Žilina
doc. dr. Lev Bukovský, CSc., přírodovědecká fakulta UPJŠ,

Košice

dr. Milan Cirjak, KPÚ Prešov
Petr Fabinger, pedagogická fakulta UK, Praha
prof. dr. Miroslav Fiedler, člen korespondent ČSAV, MÚ ČSAV

Praha

dr. Ivan Korec, CSc., přírodovědecká fakulta UK Bratislava
dr. Karol Križalkovič, CSc., pedagogická fakulta Nitra
doc. dr. Alois Kufner, CSc., MÚ ČSAV Praha
Olga Maříková, gymnázium Praha 10, Voděradská ul.
dr. Milan Maxian, gymnázium A. Markuša, Bratislava
dr. Jiří Mída, pedagogická fakulta UK Praha
akademik Josef Novák, MÚ ČSAV Praha
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doc. dr. Aleš Pultr, CSc., MFF UK Praha
Víiazoslav Repáš, gymnázium J. Hronca, Bratislava
Stanislav Rypáček, gymnázium Praha 9-Prosek
dr. Jiří Sedláček, CSc., MÚ ČSAV Praha
ing. Oldřich Skopal, gymnázium Brno, tř. kpt. Jaroše
dr. Jiří Sídlo, gymnázium Praha 3, Sladkovského nám.
Miloslav Šmerda, Brno

Dále jsou členy ÚV MO předsedové krajských výborů MO:
Praha: prof. dr. Karel Drbohlav, DrSc., MFF UK Praha
Středočeský kraj: Ludmila Tréglová, gymnázium Říčany
Jihočeský kraj: doc. dr. ing. Lada Vaňatová, pedagogická

fakulta České Budějovice
Západočeský kraj: Věra Rádiová, gymnázium J. Fučíka, Plzeň
Severočeský kraj: Jiří Slavík, gymnázium Teplice
Východočeský kraj: dr. Josef Kubát, gymnázium Pardubice
Severomoravský kraj: dr. Vladimír Vlček, přírodovědecká fa-

kulta UP Olomouc

Jihomoravský kraj: doc. dr. Jaroslav Bayer, CSc., VUT Brno
Bratislava: dr. Tomáš Hecht, CSc., přírodovědecká fakulta UK

Bratislava

Západoslovenský kraj: prof. dr. Ondřej Šedivý, CSc., pedago-
gická fakulta Nitra

Středoslovenský kraj: doc. dr. Pavel Kršňák, CSc., pedagogická
fakulta Banská Bystrica

Východoslovenský kraj: dr. Martin Gavalec, CSc., přírodo-
vědecká fakulta UPJŠ Košice
Pracovní předsednictvo ÚV MO (PÚV MO) tvořili (v abe-

cedním pořadí): dr. Leo Boček, CSc., doc. dr. Lev Bukovský,
CSc., prof. dr. Miroslav Fiedler, DrSc., dr. Júlia Lukátšová,
prof. dr. Jozef Moravčík, CSc,, Jana Pomazalová, Víťazoslav
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Repáš, dr. Jiří Sedláček, CSc., dr. Václav Šůla, dr. Antonín
Vrba, CSc., doc. Jan Výšin, CSc., dr. František Zítek, CSc.

3. SCHŮZE ÚV MO

V průběhu XXIX. ročníku MO se konala dvě zasedání
ústředního výboru MO. První se konalo 10. a 11. prosince
1979 v Praze, na programu bylo zhodnocení průběhu XXVIII.
ročníku MO, zpráva о XXI. mezinárodní matematické olym-
piádě v Londýně a spolupráce se Socialistickým svazem mlá-
deže. Účastníci zasedání uctili památku zesnulého profesora
Františka Hradeckého, dlouholetého člena ÚV MO a jednoho
z nejobětavějších pracovníků matematické olympiády od doby
jejího založení.

Jarní zasedání ÚV MO se konalo při příležitosti celostátního
kola MO kategorie A na gymnáziu M. Kopernika v Bílovci.
Nejzávažnějším bodem programu byly organizační změny
a nová koncepce MO od jejího XXXI. ročníku. Předsednictvo
ÚV MO se scházelo pravidelně jednou měsíčně a kromě
organizačního zajištění MO a ediční činnosti projednávalo
hlavně přípravu úloh pro II. a III. kolo soutěže a pro I. kolo
XXX. ročníku MO.

4. PRŮBĚH JEDNOTLIVÝCH KOL SOUTĚŽE

Organizace jednotlivých kol soutěže byla opět stejná jako
v předcházejících letech. Termín odevzdání přípravných úloh
byl pro všechny kategorie stanoven na 15. listopad 1979.
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O postupu do druhého kola rozhoduje pouze klasifikace sou-
těžních úloh I. kola. Termín jejich odevzdání byl 10. leden
198o Pro kategorie A a Z, pro kategorie В a C to byl 15. únor
1980. II. kolo soutěže se konalo v kategorii Z 13. února 1980,
v kategorii A 23. února 1980 a v kategoriích В a C 12. dubna
1980. V tentýž den se uskutečnilo z iniciativy krajských výborů
MO krajské (III.) kolo MO kategorie Z ve všech krajích České
socialistické republiky. V Slovenské socialistické republice se
toto kolo konalo 24. května 1980. Třetí, celostátní kolo MO
kategorie A proběhlo ve dnech 3,—5. května 1980 v Bílovci.
Vedení gymnázia Mikuláše Kopernika v Bílovci připravilo ve

spolupráci s KV MO v Olomouci pro samotný průběh soutěže
i pro zasedání ÚV MO ty nejlepší podmínky. Slavnostního
zahájení se zúčastnili představitelé stranických a státních orgá-
nů Severomoravského kraje, okresu Nový Jičín a města Bílovec
soudruzi Leopold Boháč, vedoucí odboru SmKV KSČ, ing. Aleš
Menšík, CSc., vedoucí odboru školství SmKNV, ing. J. Cien-
dala, tajemník SmKV SSM a další. Byli přítomni též zástupci
vysokých škol Severomoravského kraje, za Univerzitu Palac-
kého v Olomouci její prorektor prof. dr. M. Laitoch, CSc.
a děkan přírodovědecké fakulty prof. dr. L. Sedláček, CSc.
Po prvním dnu soutěže připravili pořadatelé pro soutěžící
žáky i členy ÚV MO zájezd do muzea n. p. Tatra Kopřivnice
a na Štramberk, večer strávili soutěžící v Závodním klubu
n. p. KOH-I-NOOR. Vedení gymnázia M. Koperrika, jeho
ředitel dr. Ota Hon a zástupce ředitele s. Bedřich Špaček,
a všichni pracovníci připravili za pomoci orgánů okresu a města
a patronátních závodů dobré podmínky pro soutěž a hodnotný
společenský program pro volný čas. Patřil jim dík všech 68
účastníků celostátního kola matematické olympiády.
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, 5. POMOCNÉ AKCE PRO MO

К úspěšnému umístění našich žáků v domácí i mezinárodní
matematické olympiádě napomáhá mnoho akcí, pořádaných
jak ústředním výborem MO, tak okresními a krajskými výbory
MO. Z akcí ÚV MO to byl především korespondenční seminář,
o kterém píšeme podrobně v samostatné kapitole této brožurky,
a dále to byla tři celostátní soustředění. Soustředění úspěšných
řešitelů matematické a fyzikální olympiády nižších ročníků
středních škol se konalo ve Vysokém Mýtě ve dnech 16. června
až 1. července 1980. Zaměstnání z matematiky tam vedli
především pracovníci MÚ ČSAV v Praze dr. Jaroslav Fuka,
CSc., dr. Jaroslav Morávek, CSc., dr. Antonín Vrba, CSc.
a dr. Karel Horák. Kromě nich přednášeli na soustředění
dr. Oto Strauch, CSc., z přírodovědecké fakulty v Bratislavě,
dr. Josef Kubát z gymnázia v Pardubicích a bývalý úspěšný
olympionik, dnes student matematicko-fyzikální fakulty, Jan
Kratochvíl. Dále se konala dvě soustředění pro přípravu na
mezinárodní matematickou olympiádu, první začátkem dubna
ve Štiříně a druhé za organizační pomoci ÚV SSM od 8. do
21. června 1980 v Kokoříně. Zajímavé přednášky, semináře
a úlohy připravili na těchto soustředěních dr. Ivan Korec, CSc.,
dr. Tomáš Hecht, CSc. a doc. dr. Ján Čižmár, CSc., z přírodo-
vědecké fakulty UK v Bratislavě, dr. Stanislav Jakubec z MÚ
SAV v Bratislavě, pracovníci MFF UK v Praze dr. Jan Franců,
CSc., dr. Josef Daneš, CSc., a dr. Rudolf Švarc, CSc. a opět
pracovníci MÚ ČSAV v Praze dr. F. Zítek, CSc., dr. J. Fuka,
CSc., dr. J. Morávek, CSc., dr. A. Vrba, CSc., dr. K. Horák
a dr. V. Muller, CSc.
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6. STUDIJNÍ LITERATURA

Základní informační literaturou pro účastníky MO jsou
letáky MO, které vydává Státní pedagogické nakladatelství
v Praze a Slovenské pedagogické nakladatelstvo v Bratislavě.
Mimo to otiskují úlohy MO též Rozhledy matematicko-fyzi-
kální. V edici Škola mladých matematiků (ŠMM) vydává ÚV
MO prostřednictvím nakladatelství Mladá fronta knížky, určené
hlavně našim olympionikům. Z posledně vydaných svazků
uvádíme:

svazek 41 - Bohdan Zelinka: Rovinné grafy
42 - Ladislav Beran: Uspořádané množiny
43 - Jiří Jarník: Posloupnosti a řady
44 - Bohdan Zelinka: Matematika hrou i vážně
45 - Antonín Vrba: Kombinatorika

46 - Jaroslav Šedivý: Shodnost a podobnost v kon-
strukčních úlohách

47 - Arnošt Niederle: Zajímavé dvojice trojúhelníků

7. KONKURS ÚLOH MATEMATICKÉ OLYMPIÁDY

JČSMF a JSMF vyhlásily roku 1966 konkurs na úlohy MO,
který stále probíhá. Je zájem hlavně o původní úlohy vhodné
pro nižší kategorie, úlohy modernizované matematiky a jedno-
duché úlohy aplikované matematiky. Návrhy úloh zasílejte na
adresu ÚV MO, 115 67 Praha 1, Žitná 25 ve dvou exemplářích.
Přijetím úlohy získává ÚV MO právo úlohu upravit a autor
na sebe bere závazek, že úlohu utají.
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Počty soutěžících v kategorii Z

Kolo

KRAJ III.I. II.

Ú Ú ÚS S S

Praha 1065 675 477 243 34 24

Středočeský 799 433 381 150 35 17

Jihočeský 904 419 342 40 22147

Západočeský 5171150 337 133 24 12

Severočeský 1236 446 342 33160 14

Východočeský 1155 622 448 52214 16

Jihomoravský 1699 1008 856 62 29319

Severomoravský 1099 565 448 186 60 15

Bratislava 335818 334 137 37 19

Západoslovenský 10221681 959 282 40 23

Středoslovenský 1449 750 628 33215 14

Východoslovenský 1901 996 770 323 61 13

Celkem 632214956 7788 2509 511 218

S — počet všech soutěžících
Ú — počet úspěšných řešitelů
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Počty soutěžících v kategorii C

Kolo

KRAJ I. II.

Ú Ús s

Praha 125 91 85 36

Středočeský 156 124 117 14

Jihočeský 127 117 108 35

Západočeský 87 49 47 11

Severočeský 134 98 84 13

Východočeský 138 94 88 23

Jihomoravský 130 120 120 30

Severomoravský 168 142 118 40

Bratislava 62 40 38 14

Západoslovenský

Středoslovenský

240 190 178 20

135 106 103 29

Východoslovenský 215301 250 23

Celkem 1803 1421 1301 288

S — počet všech soutěžících
IJ — počet úspěšných řešitelů
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Počty soutěžících v kategorii В

Kolo

KRAJ I. II.

Ú ÚSs

Praha 69 65 2681

Středočeský 7697 83 6

Jihočeský 74 72 481

Západočeský 3964 39 5

Severočeský 66 62 380

Východočeský 7494 80 19

J ihomoravský 72 70 1180

Severomoravský 110 100 95 14

Bratislava 4669 46 9

Západoslovenský 172 161 154 18

Středoslovenský 7291 75 16

Východoslovenský 186 153 64 23

Celkem 1205 1541018 889

S — počet všech soutěžících
Ú — počet úspěšných řešitelů
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Počty soutěžících v kategorii A

Kolo

I.KRAJ II. III.

Ú Ú Úss s

| Praha 92 76 64 29 17 13

í Středočeský

j Jihočeský

120 2101 88 01

84 72 71 5 1 1

Západočeský 53 37 34 4 1 1

Severočeský 92 75 66 3 2 1

Východočeský 78 59 53 14 5 1

! Jihomoravský 150 132 120 5 2 0

J Severomoravský
i Bratislava

120 99103 1218 5

93 7682 15 8 7

Západoslovenský 182 133 128 13 5 2

Středoslovenský 75 5866 8 4 2

Východoslovenský 98 5981 16 10 7

Celkem 10171237 916 132 68 40

S — počet všech soutěžících
Ú — počet úspěšných řešitelů
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Počty soutěžících v kategoriích А, В, C dohromady

I. kolo II. kolo

KRAJ
Ú ÚS s

Praha 298 236 214 91

Středočeský 373 308 22281

Jihočeský
I
J Západočeský

292 263 251 44

204 125 120 20

| Severočeský 306 239 212 19

Východočeský 310 233 215 56

Jihomoravský 360 324 310 46

Severomoravský 398 345 72312

Bratislava 224 168 160 38

Západoslov enský 594 484 460 51

Středoslovenský 301 247 53233

Východoslovenský 585 484 62338

Celkem 4245 3456 3106 574

S — počet všech soutěžících
Ú — počet úspěšných řešitelů
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POŘADÍ VÍTĚZŮ A ÚSPĚŠNÝCH ŘEŠITELŮ
CELOSTÁTNÍHO KOLA KATEGORIE A

Vítězové

1.—5. jfozef Bednařík, 3. a, G A. Markuša, Bratislava
Petr Couf, 2. d, G W. Piecka, Praha
Ctirad Klimčík, 4. c, G Prešov, Konstantinova
Jiří Mejzlík, 4. c, G M. Kopernika, Bílovec
Miroslav Ploščica, 4. a, G Stará Cubovňa

6.-9. Pavel Hruška, 3. c, G M. Kopernika, Bílovec
Igor Kříž, 1. d, G W. Piecka, Praha
Jan Nekovář, 3. d, G W. Piecka, Praha
Jiří Sgall, 1. d, G W. Piecka, Praha

10. —12. Jan Brousek, 4. b, G Klatovy
Ladislav Kubini, 4. b, G Bardejov
Aleš Nekvinda, 4. b, G Liberec

13. —14. Peter Božek, 4. a, G A. Markuša, Bratislava
Miroslav Engliš, 2. d, G W. Piecka, Praha

15. Martina Šimůnková, 3. d, G W. Piecka, Praha
16. Libor Forst, 3. a, G České Budějovice, Jírovcova

Další úspěšní řešitelé

17.—21. Michal Feěkan, 4. c, G Nové Zámky
Danica Kolibiarová, 4. c, G J. Hronca, Bratislava
Robin Thomas, 4. d, G W. Piecka, Praha

G - gymnázium
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Bořivoj Tydlitát, 3. d, G W. Piecka, Praha
Ondřej Virdzek, 3. a, G Žilina, Velká okružná

22. Juraj Beniak, 4. a, G A. Markuša, Bratislava
23.—24. Miroslav Straka, 4. a, G Prievidza

Jan Tomsa, 4. a, G Jaroměř
25.-26. Vladimír Hudec, 3. a, G Košice, Smeralova

Martin Kochol, 4. a, G A. Markuša, Bratislava
27.-28. Juraj Filin, 4. e, G Trenčín

Stanislav Vaněček, 4. d, G W. Piecka, Praha
29.—30. Petr Srp, 4. d, G W. Piecka, Praha

Pavel Šrein, 4. d, G W. Piecka, Praha
31,—33. Jan Krajíček, 4. d, G W. Piecka, Praha

Ladislav Kvasz, 4. a, G A. Markuša, Bratislava
Lubica Šedová, 4. a, G A. Markuša, Bratislava

34.—40. Miroslav Brzezina, 3. c, G M. Kopernika, Bílovec
Jiří Buršík, 4. a, G Ostrava, Smeralova
Janusz Drozd, 4., polské G Český Těšín
Albín Dzurňák, 3. a, G Košice, Smeralova
Pavel Kameník, 3. d, G Praha 3, Sladkovského nám.
Jozef Kunca, 3. d, G Bardejov
Ladislav Spišiak, 4. f, G Košice, Šmeralova
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NEJÚSPĚŠNĚJŠÍ ŘEŠITELÉ
II. KOLA MO v KATEGORIÍCH А, В, C

Praha

Kategorie A

Jan Nekovář, 3. d, Igor Kříž, 1. d, Robin Thomas, 4. d, Jan
Krajíček, 4. d, Miroslav Englis, 2. d, všichni G W. Piecka,
Praha; Zdenko Procházka, 4. a, G Praha 1, Nad štolou; Pavel
Šrein, 4. d, Bořivoj Tydlitát, 3. d, Petr Couf, 2. d, všichni
G W. Piecka, Praha; Pavel Kameník, 3. d, G Praha 3, Slad-
kovského nám.; Stanislav Vaněček, 4. d, G W. Piecka, Praha

Kategorie В

Igor Kříž, 1. d, Vladimír Lieberzeit, 2. d, Miroslav Englis, 2. d,
Petr Couf, 2. d, všichni G W. Piecka, Praha; Petr Boček, 2. a,
G Praha 7, Nad štolou; Martin Trusina, 2. d, Jiří Sgall, 1. d,
Ondřej Čepek, 2. d, Marcela Miillerová, 2. d, všichni
G W. Piecka, Praha; Martin Vopěnka, 2. d, G Praha 3, Slad-
kovského nám.; Petr Horák, 2. e, SPŠE Praha 2, Ječná

Kategorie C

Igor Kříž, Jiří Sušický, Jiří Sgall, Jan Bouček, Michal Vojtek,
všichni 1. d, G W. Piecka, Praha; Vítjiiza, 8. a, ZDŠ Praha 8,
Lyčkovo nám.; Petr Maršík, 1. a, G Praha 5, Nad Turbovou;
David Zámek, 1. b, G Praha 7, Nad štolou; Petr Pazdera, 1. d,
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G W. Piecka, Praha; Vladimír Kejhar, 1. e, G Praha 7, Nad
štolou

Středočeský kraj

Kategorie A

Jiří Hynek, 4. c, G Kolín; Jiří Novotný, 4. b, G Poděbrady

Kategorie В

Petr Hovorka, 2. a, G Kolín; Jiří Podolský, 2. c, G Mladá
Boleslav; Miroslav Šimek, 2. c, G Mělník; Jiří Šimimek a Aleš
Kisil, oba 2. b, G Kutná Hora; Lenka Kohoutová, 2. a, G Čáslav

Kategorie C

Martin Dvořák, 1. a, G Čáslav; Petr Kuboň, 1. d, G Mladá
Boleslav; Vladimír Ladma, 1., SPŠ staveb., Mělník; Jaw Gregor,
1. a, G Vlašim; Jindra Hyánková, 1. a, G Kolín; Jaroslav
Satranský, 1. a, G Nové Strašecí; Petr Tahal, 1. b, G Kolín;
Jitka Beranová, 1. a, G Sedlčany; Jiří Drábek, 1. b, G Kralupy;
Pavel Palkoska, 1. b, SPŠ stroj., Kladno

Jihočeský kraj

Kategorie A

Libor Forst, 3. a, G České Budějovice, Jírovcova; Lubomír
Přech, 4. a, G K. Šatala, České Budějovice; Ivo Tomšovic, 3. c,
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G Strakonice; Miroslav Masojídek, 4. a, G Písek; Eva Mitasová,
4. b, G Jindřichův Hradec

Kategorie В

Petr Husar, 2. d, G Strakonice; Ivo Straka, 2. c, G Jindřichův
Hradec; Vladimír Hóhne, 2., G Vimperk; Petr Vinklář, 2.,
G Tábor

Kategorie C

Petr Tyllner, 1. c, G Tábor; F. Cvrčková, 1. c, G Strakonice;
Hana Turková, 1. st., SZŠ České Budějovice; Stanislav Wal-
dauf, 1. a, G K. Šatala, České Budějovice; Š. Hořejšová, 1. d,
G Tábor; Zdeněk Křiká, 1. a, G K. Šatala, České Budějovice;
Petr Demal, 1., G Týn n. V.

Západočeský kraj

Kategorie A

Jan Brousek, 4. b, G Klatovy; Pavel Pokorný, 3. a, G J. Fučíka,
Plzeň; Petr Laciga, 3. a, G J. Fučíka, Plzeň; Pavel Pešek,
3. ST, SPŠE Plzeň

Kategorie В

Jan Juza, 2. a, Božena Smrková, 2. f, Josef Niedermeier, 2. c,
všichni G J. Fučíka, Plzeň; Bohumil Tříska, 2. b, G Blovice;
Petr Mýtina, 2. a, G J. Fučíka, Plzeň
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Kategorie С

Stanislav Jelen, 1. a, G Karlovy Vary; Martin Chval, 1. b,
G Mariánské Lázně; Jaromír Vajgert, 1. c, G Klatovy; Tomáš
Holeček, 1. a, G J. Fučíka, Plzeň; Jan Řezníček, 1. ST, SPŠE
Plzeň; Petr Novák, 1. a, G Karlovy Vary;Jana Marešová, 1. a,
G J. Fučíka, Plzeň; Vladimír Čech, 1. b, G Cheb; Tomáš Aloy,
1. g, G J. Fučíka, Plzeň; Štěpán Trojan, 1. d, G Cheb

Severočeský kraj

Kategorie A

Josef Hladík, Aleš Nekvinda, oba 4. b, G Liberec; Jiří Kubát,
4. d, G Teplice

Kategorie В

Milan Kolář, M 2, SPŠ stroj, a elektro, Liberec; Jan Tichým
2. c, G Česká Lípa; Jaroslav Šindelář, 2. b, G Teplice

Kategorie C

Jaroslav Novák, 1. e, G Liberec; Pavel Vítovec, 1. b, G Litví-
nov; Jaromír Drábek, 1. c, G Jablonec; Petr Pavlů, 1. d, G
Liberec; Michal Krejčík, 1. a, G Jablonec; Ladislav Bušák
a Luboš Talácko, oba 1. a, G Louny; Petr Chadim, 1. b, G
Roudnice; Gunther Kletetschka, 1. d, G Litoměřice; Vladimír
Koudelka, 1. d, G Ústí nad Labem
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Východočeský kraj

Kategorie A

Iva Dvořáková, 3. a a Pave1 Kalhous, 3. c, oba G Pardubice;
Ladislav Pecen, 3. b, G Havlíčkův Brod; Jan Tomsa, 4. a
a Martin Štěpánek, 1. a, oba G Jaroměř; Milan Hagan, 4. b,
G Semily; Jan Zindidka, 4. a, G Polička; Jaroslav Resler, 3. a,
G Lanškroun; Luboš Liška, 3. c, G Pardubice; Pavel Nosek,
4. b, G Trutnov; Petr Sourada, 4., SPŠCh Pardubice

Kategorie В

Richard Scholle a Milan Sourada, oba 2. d, G Pardubice; Petr
Eisler, 2. c, G Havlíčkův Brod; Radek Burda, 2. g, G J. K. Ty-
la, Hradec Králové; Alirka Machačová, 2. a, G Rychnov
nad Kněžnou; Petr Jiříček, 2. a, G Polička; Michal Štembera,
2. d, G Pardubice; Marie Henzlová, 2. b, G Havlíčkův Brod;
Václav Šimůnek, 2. b, G Semily; Martin Štěpánek, 1. a, G
Jaroměř

Kategorie C

Martin Štěpánek, 1. a, G Jaroměř; Ivo Kořeň, 1. g, G J. K. Tyla,
Hradec Králové; Michal Musílek, 1. c, SPŠE Pardubice;
Jiří Votínský a Jaroslav Rybka, oba 1. d, G Pardubice;
Jiří Hofman, 1., G Hořice; Jaromír Krys, 1. a., G Chrudim;
Zdeněk Holý, 1. a, G Vrchlabí; Miloš Hort a Zdeněk Řez-
nicek, oba 1. e, SPŠE Pardubice

26



Jihomoravský kraj

Kategorie A

Zenon Starčuk, 4. d, G Brno, Koněvova; Petr Mikšík, 4. d,
G Kroměříž; Petr Sojka, 3. a, G Brno, Koněvova; Vladimír
Babák, 4. b, G Tišnov; Mojmír Kallus, 4. d, G Uherské
Hradiště

Kategorie В

Jiří Černý, 2. b, G Brno, Koněvova; Eva Plháková, 2. a, G
Třebíč; Jan Mrázek, 2. b, G Ždar nad Sázavou; Pavel Jelínek,
2. c a Martin Juráš, 2. e, oba G Brno, Koněvova; Miroslav
Blažek, 2. b, G Brno, tř. kpt. Jaroše; Martin Orel, 2. c, G
Jihlava; Petr Havelka, 2. a, G Znojmo; Petr Kuchyňa, 2. a,
G Boskovice; Jaromír Marek, 2. a, G Velké Meziříčí; Jaroslav
Mikšík, 2. c, G Brno, Koněvova

Kategorie C

Jaroslav Smejkal, 1 a, G Velké Meziříčí; Petr Slavík, 1. e, G
Brno, Koněvova; Pavel Urban, 1. e, G Uherské Hradiště;
Darina Neumannová, 1. a, G Brno, Slovanské nám.; Helena
Holaňová, 1. c, G Brno, tř. kpt. Jaroše; Petr Srna, 1. c, G Brno,
Lerchova; Radek Řezníček, 1. e, G Brno, Koněvova; Martin
Kuril, 1. b, G Kyjov; René Matýsek, 1. e, G Brno, Koněvova;
Martin Kolář, 1. a, G Brno, Křenová; Pavel Polák, 1. a, G
Brno, Koněvova
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Severomoravský kraj

Kategorie A

Jiří Mejzlík, 4. c, G M. Kopernika, Bílovec; Jiří Buršík, 4. a,
G Ostrava, Šmeralova; Jiří Číhal, 4. c., G M. Kopernika,
Bílovec; Mirko Rokyta, 4. a, G Vsetín; Pavel Hruška, 3. c,

Jaroslav Štěpánek, 4. c, František Slanina, 3. c, Miroslav Brze-
zina, 3. c, Ladislav Šnevajs, 3. c, všichni G M. Kopernika,
Bílovec; Janusz Drozd, 4., polské G Český Těšín

Kategorie В

Martin Zemek, 2. c, G M. Kopernika, Bílovec; Petr Lisoněk,
2. d, G Olomouc-Hejčín; Miroslav Havelka, 2. a, G Nový
Jičín; Miloslav Grundmann, 2. d, G Ostrava-Poruba; Robert
Krajča, Libor Pleva, Miroslav Šmatera, Petr Tichavský, všichni
2. c, G M. Kopernika, Bílovec; Miroslav Mandula, 2. b, G
Ostrava, Šmeralova; Pavel Trávníček, 2. b, G Olomouc, Jiřího
z Poděbrad; Ivana Vitoulová, 2. c, G M. Kopernika, Bílovec

Kategorie C

Vládán Pecha, Vlastimil Serba, Jiří Erhart, všichni 1. c, G
M. Kopernika, Bílovec; Jiří Losert, 1. b, G Olomouc, Jiřího
z Poděbrad; Tomáš Novotný, 1. b, G Hranice na Moravě;
Radek Pecina, 1. c, SPŠ stroj., Karviná; Miloslav Vašíček, 1. b,
G Ostrava, Šmeralova; Bronislav Suchý, 1. c, G M. Kopernika,
Bílovec; Miroslav Kubíček, 1. d, SPŠ Lipník nad Bečvou;
Martin Póla, 1. b, G Frýdek-Místek
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Bratislava

Kategorie A

Martin Kochol, 4. a, Jozef Bednárik, 3. a, Juraj Beniak, 4. a,
Ladislav Kvasz, 4. a, Peter Božek, 4. a, všichni G A. Markuša,
Bratislava; Danica Kolibiarová, 4. c, G J. Hronca, Bratislava;
Eubica Šedová a Vladimír Hurta, oba 4. a, G A. Markuša,
Bratislava; Peter Kvasnička, 3. e, G L. Novomeského, Brati-
slava

Kategorie В

Richard Hlubina, 2. e, G Bratislava, Vazovova; Pavol Ralbovský,
2. a, G Bratislava, Metodova; Iveta Augustová, /aeřa Laurincová
a 0/e£ Rozenberg, všichni 2. a, G A. Markuša, Bratislava;
Alexander Galba a Dana Kůrková, oba 2. a, G A. Markuša,
Bratislava; Eubica Galléová, 2. d, G Bratislava, Vazovova; Peter
Papánek, 2. e, G Bratislava, I. Horvátha

Kategorie C

Helga Jakešová, 1. b, G J. Hronca, Bratislava; Xaver Gubáš,
Roman Bačík a Monika Bohmová, všichni 1. a, G A. Markuša,
Bratislava; Stanislav Král, 1. c, G A. Markuša, Bratislava;
Daniela Lukáčová, 1. c, G Bratislava, Vazovova; Richard Pul-
mann, 1. b, Peter Borovanský, 1. b, Pavol Stríženec, 1. d,
všichni G J. Hronca, Bratislava
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Západoslovenský kraj

Kategorie A

Juraj Filin, 4. e, G Trenčín; František Mráz, 3. c, G Malacky;
Michal Fečkan, 4. c, G Nové Zámky; Yveta Danešová, 3. c,
SPŠE Piešťany; Ján Tóth, 4. d, G Nové Zámky; Hubert Kluka,
4. b, G Piešťany; Perer Drahoš, 4. b, G Skalica; Igor Križal-
kovič, 4. a, G Nitra-Párovce; Peter Tarina, 2. a, G Topolcany;
Ladislav Zsilinszký, 3. d, G Nové Zámky

Kategorie В

Peter Tarina, G Topolčany; Alexander Tomášek, maď. SPŠE
Komárno; Aba Teleki, G E. Gudernu, Nitra; František Hor-
niak, G Levice; Vladimír Mužík, G Nitra, Párovská; Milá
Obuch, G E. Gudernu, Nitra; Anna Baráková, G Nové Zámky;
Klára Růžičková, maď. G Komárno (třídy neuvedeny)

Kategorie C

Erzsebet Szalay, 1. c, maď. G Komárno; Roman Šášik, 1. c,
G Nitra, Párovská; Tomáš Kmet’, 1. b, G Hlohovec; Igor Kravár,
1. a, G Nitra, Párovská; Jozef Roháč, 1. d, G E. Gudernu,
Nitra; Jawa Trnkusová, 1. c, G Levice; Marian Bartek, 1. b,
G Sereď; Hyacint Mircz, 1. c, maď. G Galanta; Eva Bačíková,
1. d, G Hlohovec; Roman Ко tiers, 1. b, maď. G Šamorín;
Dušan Močko, 1. a, G Nové Město n. Váhom
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Středoslovenský kraj

Kategorie A

Marián Moravčík, 4. d, G Žilina, Hliny VI; Ondřej Virdzek,
3. a, G Žilina, Velká okružná; Miroslav Straka, 4. a, G Prie-
vidza; Pavol Hronský, 3. a, G Žilina, Hliny VI; Tomáš Chabada,
4. c, G Banská Bystrica, Tajovského; Eduard Grešák, 3. a, G
Kysucké Nové Město; Robert Krejčír, 3. d, SPŠ Handlová

Kategorie В

Peter Dzurenda, 2. f, G Prievidza; Naděžda Fóglová, 2. a,
G Liptovský Hrádok; Ivan Brozman, Eduard Grolmus, oba
2. a, G Martin; Juraj Lórinc, 2.; G Kremnica; Roman Marto-
ňák, 2. a, G Žilina, Hliny VI; Robert Mendris, 2. b, G Povážská
Bystrica; Milan Rusko, 2. b, G Banská Bystrica, tr. SNP;
Peter Schwartz, 2. a, G Zvolen

Kategorie C

Milan Krátká, G Prievidza; Pavel Pavlenda, G Zvolen; Martin
Gažo, G Martin; Jaroslav Kostelanský, G Žilina, Hliny VI;
Peter Straka, G Martin; Radim Kafka, G Žilina, Velká okruž-
ná; Jozef Mihál, G Žilina, Hliny VI; Janka Mižúrová, G
Vrátky; Jaroslav Útlý, G Púchov (třídy neuvedeny, všichni
jsou žáky I. ročníku)
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Východoslovenský kraj

Kategorie A

Vladimír Hudec, 3. a, G Košice, Šmeralova; Ladislav Kubini
4. b, G Bardejov; Jozef Kunca, 3. d, G Bardejov; Albín Dzur-
ňák, 3. a, G Košice, Šmeralova; Ctirad Klimčík, 4. c, G Prešov,
Konštantinova; Ladislav Spišiak, 4. f, G Košice, Šrobárova;
Ivan Brovko, 4. c, G Spišská Nová Ves; Alexander Moroz,
3. c, G Humenné; Štefan Klembara, 3. a, G Košice, Šmeralova,
Jana Matúšová 3. a, G Prešov, Konštantinova; Miroslav Plos-
čica, 4. a, G Stará Eubovňa; Marek Smik, 3. a, G Krompachy

Kategorie В

Peter Spišiak, 2. a, G Košice, Šmeralova; Ján Hric a Anton
Sedlák, oba 2. e, G Prešov, Konštantinova; Lubomír Šoltés, 2. a,

G Michalovce; Milan Polaczyk, 2. b, G Kežmarok; Tatiana
Martonová, 2. e, G Poprad; Katarina Marčáková, 2. c, G Bar-
dejov; Jaroslav Hus a Peter Kostka, oba 2. a, G Poprad; Anton
Pisko, 2. a, G Košice, Šmeralova

Kategorie C

Otto Smolárik, 1. a, G Košice, Kováčova; Vladimír Dančík,
1. a, G Košice, Šmeralova; Juraj Veselý, 1. b, G Poprad;
Tatiana Rožaiová, 1. a, G Sečovce; Marek Hatala, 1. a,

G Košice, Šmeralova; Marián Ferenc, 1. f, G Prešov, Konštan-
tinova; Peter Karailiev, 1. b, G Michalovce; Marián Hatrák,
1. c, G Trebišov; Igor Hronec, 1. g, a Peter Kožuško, 1. c, oba
G Košice, Šrobárova; Roman Magda, 1. c, G Košice, Kováčova
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Poznámka: Z každého kraje je zpravidla uvedeno nejvýše
deset nejúspěšnějších řešitelů v každé kategorii. Větší počet
je uveden jen tehdy, získal-li jedenáctý nebo dvanáctý stejný
počet bodů jako desátý.
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Kategorie Z

PŘÍPRAVNÉ ÚLOHY I. KOLA

Z - P - 1

Jsou dány dva různé body P a Q. Sestrojte čtverec, který
obsahuje body P a Q a má nejmenší možný obsah.

Řešení. Hledaný čtverec je čtverec s úhlopříčkou PQ. Obsah
1

čtverce s úhlopříčkou PQ je totiž roven — PQ2. Uvažujme

čtverec, který obsahuje body P, Q, a přitom PQ není jeho
úhlopříčka. Dokážeme-li, že jeho úhlopříčka и je pak větší než

1
PQ, budeme hotovi, neboť jeho obsah — и2 bude pak větší

1
než — PQ1. Dokážeme to dvěma způsoby.

První způsob využívá Pythagorovy věty. Je-li úsečka PQ
rovnoběžná se stranou a čtverce, je PQ ^ a, kde a je velikost
strany, a tedy

a 1/2 > a ž PQ.u =

Není-li úsečka PQ rovnoběžná se stranou čtverce, doplníme ji
na pravoúhlý trojúhelník s odvěsnami rovnoběžnými se stra-
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námi čtverce (obr. 1). Pro odvěsny r, s platí r a, s ^ a, přičemž
alespoň jedna nerovnost je ostrá. (Pokud by pro obě platila
rovnost, byla by úsečka PQ úhlopříčka). Podle Pythagorovy
věty je

r2 -j- s2 < a2 | <22 = u2PQ2

Druhý způsob je založen na známé větě: V trojúhelníku je
proti většímu úhlu větší strana. Důkaz provedeme jen pro

Obr. i

P

Q

Obr. 2
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úsečky PQ, které mají oba krajní body na obvodu uvažovaného
čtverce. (To stačí, jinak úsečku prodloužíme až к obvodu.)

V případě, kdy jeden krajní bod úsečky PQ leží ve vrcholu
čtverce, dostaneme (obr. 2) z trojúhelníku PQR s tupým (pra-
vým) úhlem při vrcholu Q nerovnost PQ < PR = u.

V případě, kdy bod P ani bod Q neleží ve vrcholu čtverce,
dostaneme (obr. 3 pro P, Q na sousedních stranách, obr. 4 pro

Q SP

Q

S

Obr. 3

P, Q na protějších stranách) z trojúhelníku PQS s tupým
(pravým) úhlem při vrcholu Q že PQ<PS. Úsečka PS má krajní
bod ve vrcholu čtverce a podle předešlého případu je PS < u.

Úkolem bylo minimální čtverec sestrojit, což je snadná kon-
strukce. Existuje jediný hledaný čtverec.

Poznámka. Úloha byla zařazena v XXVIII. ročníku MO jako
Z-I-4.
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Z - P - 2

Do kružnice je vepsán sedmiúhelník A\A2AsA4AbA^A'j.
Přímka p prochází středy stran A3A4, A^A7. Kolik úhlopříček
daného sedmiúhelníku přímka p protíná ?

Řešení je založeno na následujícím názorném faktu:
V rovině je dána přímka p a dva různé body А, В, které na
ní neleží. Potom přímka p protíná úsečku AB (tj. prochází
jejím* vnitřním bodem), právě když body А, В leží v opačných
polorovinách určených přímkou p. V úloze leží v jedné polo-
rovině určené přímkou p body A4, A5, А в a ve druhé body
А'], A\, A2, As. Z vrcholu A$ vycházejí čtyři úhlopříčky do
čtyř vrcholů opačné poloroviny, z vrcholů A\ a Ae po třech
úhlopříčkách (a jedné straně). Celkem tedy přímka p protíná
4+3+3
od bodů druhé poloroviny, dostaneme 3-i 3+2+2 úhlopříček.)

Obecně, je-li v jedné polorovině určené přímkou p právě
k vrcholů и-úhelníku, je počet proťatých úhlopříček roven

10 úhlopříček daného sedmiúhelníku. (Vyjdeme-li

2(n-k- 1) +[(k -2)(n-k) = k(n - k) 2.

Z - P - 3

Určete dvojici různých trojciferných čísel, která má tyto dvě
vlastnosti:

a) v desítkové soustavě mají čísla zápisy xyz a zyx,

b) mají co největšího společného dělitele.
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Řešení. Úloha by se dala řešit tak, že bychom sestavili
všechny dvojice různých čísel s vlastností a), určili největšího
společného dělitele pro každou takovou dvojici čísel, a pak našli
dvojici (nebo dvojice), jejíž největší společný dělitel je mezi
všemi ostatními největší. Existuje však 360 dvojic různých
trojciferných čísel s vlastností a), a to by dalo příliš práce.
Pokusíme se tedy zmenšit počet dvojic, ze kterých budeme
vybírat. Využijeme к tomu zápisu čísel v desítkové soustavě.
Jsou-li N, N' dvě trojciferná čísla s vlastností a), můžeme psát

lOOx -j- 10j> z, N' = ЮОя + 10jy + x.N

Jejich rozdíl má tvar

N — N' = 99 (x — z)
Můžeme ještě předpokládat, že N > N', tedy x > z.

Je-li D společný dělitel dvou čísel, je D též dělitelem jejich
rozdílu. Víme tedy, že společný dělitel čísel N, N' je také
dělitelem čísla (1). Dělitelé čísla (1) jsou ale pouze čísla 1, 3,
9, 11, 33, 99 a jejich ^-násobky, kde k je dělitelem čísla x — z

^ 8. Protože však hledáme dvojice vlastnosti a) s největším
možným společným dělitelem, bude užitečné nejdříve vyzkou-
Šet, jestli existují takové dvojice čísel vlastnosti a), která jsou
obě dělitelná některým větším z vyjmenovaných čísel, třeba
číslem 99. Všechny trojciferné násobky čísla 99 jsou

198, 297, 396, 495, 594, 693, 792, 891, 990

a mezi nimi jsou tyto dvojice vlastnosti a):
(198, 891) s největším společným dělitelem 99
(297, 792) s největším společným dělitelem 99
(396, 693) s největším společným dělitelem 99
(495, 594) s největším společným dělitelem 99

(1)
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Teď musíme ještě vyzkoumat, zda neexistují dvojice čísel
vlastnosti a), která sice nejsou dělitelná číslem 99, ale jsou obě
dělitelná některým číslem větším než 99. Tímto společným
dělitelem by muselo být některé z čísel tvaru 33k, protože
pro k ^ 8 je 9k i \\k menší než 99. Přicházejí v úvahu pouze
čísla 4.33 = 132, 5.33 = 165 a 7.33 = 231. (Jsou-li obě čísla
dělitelná číslem 8.33, jsou též dělitelná číslem 4.33.) Mezi
všemi trojcifernými násobky čísla 132, tedy mezi čísly 132,
264, 396, 528, 660, 792, 924, není žádná dvojice čísel vlastnosti
a) a totéž platí pro násobky čísla 165 a čísla 231. Existují tedy
právě čtyři dvojice čísel daných vlastností, které jsme uvedli
výše. Každá dvojice má za největšího společného dělitele
číslo 99.

Z - P - 4

Dva přátelé z téže obce potřebují navštívit blízké město.
První jde pěšky a cesta mu trvá hodinu. Druhý jede na kole

km

d

cyklista

chodec

min
0 15 * 35 60

Obr. 5
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a cesta mu trvá 20 minut. Chodec vyšel čtvrt hodiny před
odjezdem cyklisty. Za jakou dobu po svém odjezdu ho cyklista
dohoní, je-li pohyb každého z nich rovnoměrný?

Grafické řešení. Na vodorovné ose bude čas v minutách,
na svislé vzdálenosti v kilometrech. (Obr. 5.) Pohyb chodce
bude začínat v počátku a končit v bodě (60, d), kde d je vzdále-
nost města od obce (tu neznáme, ani nezjistíme). Pohyb cyklisty
pak začíná v bodě (15, 0) a končí v bodě (35, d). Souřadnice
průsečíku obou úseček odpovídají času a místu, kdy a kde
předjel cyklista chodce.

Řešení porovnáním vzdáleností. Chodec má rychlost
d km/hod. a cyklista 3d km/hod. Označme x hledanou dobu
(v hodinách). V okamžiku setkání tedy cyklista i chodec urazili

tutéž vzdálenost, a to cyklista 3dx km a chodec d[ x “ )km
1 \

měl — h náskok j. Je tedy

“4*+4)’3dx

a odtud

( = 72-min).
1

x — h
8

Poznámka. V VII. ročníku MO byla úloha zařazena jako
D-II-3. Ve sbírce Výšin-Macháček: Vybrané úlohy MO ka-
tegorie Z je uvedena pod č. 56.

40



SOUTĚŽNÍ ÚLOHY I. KOLA

Z - I - 1

Je dán čtverec ABCD s délkou strany 2. Na jeho stranách
AB, BC, CD, DA jsou postupně zvoleny body K, L, M, N
tak, že AK — BL = CM = DN == x. Vyjádřete obsah čtverce
KLMN pomocí x. Pro které x je obsah čtverce KLMN nej-
menší ?

Řešení. Podle Pythagorovy věty snadno zjistíme, že čtverec
KLMN má obsah x2 + (2 — x)2.

V naší úloze zbývá zjistit, pro které x nabývá výraz

x2 + (2 - x)2 = 2[(x- l)2 + 1]

nejmenší hodnoty, probíhá-li x množinu <0, 2). Zřejmě je to
pro x = 1. Minimální čtverec má tedy vrcholy ve středech
stran daného čtverce a jeho obsah je polovina obsahu daného
čtverce.

Z- I -2

Je dán trojboký jehlan ABCV. Rovina protíná jeho hrany
AB, BC, CV a neprochází žádným z bodů А, В, С, V. Které
hrany jehlanu rovina ještě protíná ?

Řešení. Daná rovina dělí prostor na dva poloprostory.
Hrana daného čtyřstěnu je jí proťata, právě když koncové body
leží v opačných poloprostorech. Protože hrany AB, BC, CV

41



jsou proťaty, leží v jednom poloprostoru vrcholy A, C a ve
druhém В, V. Ze zbývajících hran tedy rovina protíná hranu
AV\ hrany AC, BV neprotíná.

Z - I - 3

Je-li N dvojciferné číslo, označme N' číslo, které z něho
dostaneme změnou pořadí číslic. Najděte všechny dvojice dvoj-
ciferných čísel X, Y, pro které jsou čísla XY — 1, X'Y'
obě dělitelná deseti.

1

Řešení. Úlohu bychom mohli řešit velmi pracně probráním
všech dvojic dvojciferných čísel. Podobně jako v Z-P-3 raději
využijeme rozvoje čísel v desítkové soustavě.

Je-li

X = Юг + 5

Y = Юг/ + v,

bude

X' = 10* + r

Y' = 10® + u,

a tedy

10(...) -|- sv

10(...) + rn — 1
1 = (Юг + s) (Юг/ + v)

(105 + r) (10® -f a) - 1
1XF 1

X’Y' - 1

Obě tato čísla budou dělitelná deseti, právě když budou deseti
dělitelná obě čísla sv — 1, ru — 1. Vzhledem к tomu, že
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1 ^ г ^ 9, 1 ^ и ^ 9, O ^ ^ 9, О ^ v ^ 9,
bude

O ^ sv ^ 81, 1 < ru 81.

Z čísel 1, 11, 21, ..., 81 jsou součinem dvou číslic jen

1 = l.l, 21 = 3.7a 81 = 9.9.

Zkombinujeme-li všechny možnosti, dostaneme

X = 11, Y = 11
X = 13, У = 17
X= 19, Y = 19
X = 31, Y = 71
X = 33, У = 77
x = 31, Y = 73

= 39, У = 79
X = 91, У = 91
JT = 93, У = 97
X = 99, У = 99

Všechna tato řešení vyhovují.

Z- I -4

Zjistěte, jestli mohou tři cestující stihnout vlak, který odjíždí
za 75 minut ze stanice vzdálené 40 km, dokáže-li každý z nich
běžet průměrnou rychlostí 10 km/hod. a mají-li к dispozici
dvoumístný motocykl, který může jet průměrnou rychlostí
80 km/hod.
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Řešení. Nejpohodlnější by bylo, kdyby A odvezl В na
nádraží a C zatím počkal, než se pro něj A vrátí a také ho
odveze na nádraží. Grafické znázornění přepravy je na obr. 6.

km

fo

0

To by ale motocykl urazil třikrát vzdálenost 40 km, což dokáže
nejdříve za 90 minut, takže by cestujícím A a C vlak ujel.

Přepravu bychom zrychlili, kdyby A odvezl В na nádraží
a C by mezitím běžel. A by mu pak jel naproti, a až by ho
potkal, odvezl by ho na nádraží (obr. 7). Vypočteme, jak dlouho
by přeprava trvala. Po 30 minutách vyjíždí motocykl z nádraží
zpět a běžec uběhl 5 km. Součet jejich drah od tohoto okamžiku
až do setkání na silnici bude tedy 35 km, běžec z něho urazí
1 8

— a motocyklista — (úměrně rychlostem). Tutéž vzdálenost

urazí pak motocykl s oběma cestujícími od místa setkání
к nádraží. Motocykl tedy celkem ujede
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km

40

//
A

:

—В

// с

5-~
min

О 30

Obr. 7

km

40

b

А

В

с

min
■

О 6030

Obr. 8

8 2
40 -f 2 . — . 35 = 102 — km,

což mu bude trvat déle než 75 minut. Ani tento způsob pře-
pravý není dostatečně rychlý.
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Zdokonalíme ho tak, že A neodveze В až na nádraží, ale
vysadí ho 6 km od startu, ještě před nádražím. В na nádraží
doběhne a A se mezitím vrátí naproti C, kterého doveze na
nádraží (obr. 8). V tomto případě závisí celková doba trans-

portu na b. Určíme ji podobně jako v minulém případě.
V okamžiku první obrátky motocykl ujel b km a C uběhl
b 7

km, a je tedy mezi nimi vzdálenost — b. Z té urazí moto-

8 1b
cyklista —, tj. —, a běžec —, tj. než se potkají. Pak zbývá

к nádraží

8 8

1 1b

2b1b b

879 8
-

= 40 - —40 -

9 '

Celkem ujede motocykl

1b 2b 146
b +

9 f 40 - 9 - 40 + 9

kilometrů, což mu trvá

14
40 +-i 1 1Ь

2 9.4080

hodin.

b 40 -

- hod.,Cestující В jede na motocyklu — hod. a běží ——

76
celkem 4 — — hod. Existuje-li 6 tak, aby zároveň80
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lb1 5 lb 5

80 — 4 5
0 ^ b ^ 40, -45

4 -

2 + 9.40

umožní uvažovaný systém přepravy všem třem cestujícím
stihnout vlak. Taková b skutečně existují, jsou to právě všechna

/220 270\
b e \ — , ~Y/ (km)-

km

ЫУ40

7\
7 /b

/
/

\ /
x\

\

min

9060O 30

Obr. 9

Místo obecného rozboru jsme mohli úlohu řešit také tak, že
bychom pro třetí systém přepravy odhadli některé vhodné b
(např. 35 km), a pro ně pak vyřešili příslušnou pohybovou
úlohu.

Všimněme si ještě jedné skutečnosti, zřejmé z grafického
znázornění (obr. 9). Vyjdeme ze situace, kdy všichni tři cestu-
jící dorazí к nádraží současně (plná čára). Zvětšíme-li b, zpozdí
se příjezd 4aCna nádraží (tečkované). Zmenšíme-li b, zpozdí
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se příchod В na nádraží (čárkovaně). Případ, kdy všichni tři
dorazí současně, je tedy nejrychlejší způsob dopravy uvažo-
váného typu. Stačí tedy vyřešit úlohu pro tuto speciální
situaci. To lze provést tímto způsobem: Označme d vzdálenost
к nádraží, v rychlost běžce a w rychlost motocyklu (tyto údaje
jsou dány). Dále označme b vzdálenost první obrátky od
startu. Vzdálenost druhé obrátky od nádraží je také b— to je
patrno například z grafu (obr. 10) ze shodnosti vyšrafovaných

km

АО

Ia

b

a
mm

O 6030

Obr. 10

trojúhelníků. Označme ještě a = d — b vzdálenost první otáčky
motocyklu od nádraží, což je také vzdálenost startu od druhé
otáčky. Vzdálenost obou otáček je pak d — 2a = 2b — d.
Motocykl urazí celkem b + (2b — d) + b = 4ů — d, doba jízdy

4b -d
. Zbývá určit b. Motocykl potřebuje к ujetí dráhyje
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b +- 2b - d
od startu к první otáčce a zpět к druhé otáčce čas

w

běžec potřebuje к proběhnutí od startu к druhé otáčce čas
a d — b
—

=
. Je tedy ——

V V w

3b -d d-b v +- w
, a proto b =

v
d.

3v -)- w

\b — d
Dosazením tohoto výsledku do zlomku dostaneme cel-

w

o + 3w
kovou dobu přepravy d (hod.).w(3v +- w)
Dosadime-li v — 10 km/hod., w = 80 km/hod., d = 40 km,

25 5
vyjde čas — hod., což je méně než — hod., tj. 75 minut —

tující mohou vlak stihnout.

ces-

SOUTĚŽNÍ ÚLOHY II. KOLA

Z - II - 1

Do pravoúhlého trojúhelníku ABC vepište obdélník CUVW
(obr. 11) tak, aby součet druhých mocnin délek jeho stran

byl nejmenší možný. Výsledek zdůvodněte.

Řešení. Podle Pythagorovy věty je

s = CU2 + UV2 +- VW2 + CW2 = 2 CV2

Součet 61 je tedy nejmenší možný, právě když je CV2 nejmenší
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možné, tj. právě když je CV nejmenší možné. Ze všech bodů
přepony AB má od vrcholu C nejmenší vzdálenost pata kolmice
spuštěné na ni z bodu C. Úloha má vždy jediné řešení, které
snadno sestrojíme (obr. 12).

В

Z - N -2

Je-li N přirozené číslo, označme N' číslo, které z něho
dostaneme obrácením pořadí číslic. Najděte všechna trojciferná
čísla N, pro která je číslo NN' — 3 násobkem čísla 10 a zároveň
číslo N + N' + 4 je násobkem čísla 100.

Řešení. Aby byl součin NN' — 3 dělitelný deseti, musí
součin první a poslední číslice čísla N končit číslicí 3. To
nastane jen v případech 1.3, 3.1, 7.9, 9.7. Kdyby první
číslice čísla N byla 3 a poslední 1 (nebo obráceně), nebyl by
součet N + N' + 4 dělitelný deseti. Hledané číslo N musí
tedy mít první číslici 7 a poslední 9, nebo obráceně.
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Druhou číslici čísla N označme x. Poslední číslice jednoho
z čísel N, N' je 7 a druhého 9. Představíme-li si, jak bychom
sčítali N + AT f 4 »odzadu«, vidíme, že druhá číslice tohoto
součtu musí být poslední číslicí čísla 2x + 2. Má-li být číslo
N + N' -ý 4 dělitelné stem, musí jeho druhá číslice být 0.
Poslední číslice čísla 2x musí být tedy 8, takže číslice x musí
být buď 4, nebo 9.

Všechna hledaná čísla N jsou tedy mezi čísly 749, 799, 947,
977. Snadno se přesvědčíme, že všechna tato čísla vyhovují
podmínkám úlohy.

Z - К - 3

Je dán pravidelný 33-úhelník A1A2...A33. Určete počet
úseček spojujících jeho vrcholy, které mají alespoň jeden
společný bod s trojúhelníkem A11A22A33.

Řešení. Z každého bodu A\ až Aw vychází po 23 úsečkách
protínajících daný trojúhelník A\\A22A33, jsou to spojnice zvo-
leného bodu s body Au, A22, ..., A33. Podobně z bodů A12
až A21 а A23 až A32 vychází po 23 úsečkách protínajících troj-
úhelník. Z bodu Au vychází 32 úseček s druhým koncovým
bodem ve vrcholu 33-úhelníka a všechny mají s uvažovaným
trojúhelníkem společný bod. Dvojnásobný počet hledaných
úseček je tedy 30.23 + 3.32 = 786, protože jsme každou
takovou úsečku počítali dvakrát. Hledaný počet je 393.

33.32
Jiné řešení. Celkový počet úseček AiAj (i Ф j) je —^— =528.

Od tohoto počtu odečteme ty úsečky, které nemají s uvažo-
váným trojúhelníkem žádný společný bod. Z každého vrcholu
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33-úhelníku, až na vrcholy Ац, A22, A33, jich vychází 9, celkem
1

jich je — .30.9 = 135. Hledaný počet je 528 — 135 = 393.

Z - II -4

Z Prahy do Bratislavy vyjíždí přesně v 10 hod. auto značky
Volha, které jede průměrnou rychlostí 100 km/hod. Zásilku
veze z Bratislavy naproti přijíždějící volze auto zn. Škoda,
které vyjíždí z Bratislavy také v 10 hod. Jakou nejmenší prů-
měrnou rychlostí musí jet toto auto až do místa setkání s vol-
hou, aby se volha po převzetí zásilky vrátila do Prahy nejpozději
ve 14 hod.? (Vzdálenost z Prahy do Bratislavy je 350 km).

Řešení. Aby se volha vrátila do 14 hod., musí se otočit
nejpozději za 2 hodiny po výjezdu, tedy ve vzdálenosti nejvýše
200 km od Prahy. Škodovka musí za tuto dobu ujet zbývající
vzdálenost, tj. aspoň 150 km. Musí tedy jet rychlostí aspoň
75 km/hod. Při této rychlosti se auta setkají přesně ve 12 hod.

ÚLOHY III. KOLA V ČSR

1. Je dán čtverec ABCD o straně 5. Označme F, G, H, E středy
stran АВ, ВС, CD, DA. Bod M je průsečíkem úseček BE,
DF; bod N je průsečíkem úseček GD, BH. Body M, N
leží na úhlopříčce AC (obr. 13).
a) Vypočtěte obsah čtyřúhelníku BNDM.
b) Určete, o jaký čtyřúhelník se jedná.
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Obr. 13

2. Pro která dvojciferná čísla xy, ух (x Ф y) je největší spo-

léčný dělitel jejich součtu a rozdílu největší ?
3. Je dán pravidelný osmiúhelník A1A2A3.. .As o straně veli-

kosti a, S je střed kružnice opsané osmiúhelníku. Sestrojte
a

kružnici k se středem S a poloměrem — .

Určete počet úseček spojujících vrcholy daného osmiúhel-
niku, které nemají s kružnicí k žádný společný bod.4.Na přímém úseku dvoukolejné trati z A do В (vzdálenost
AB je 6 km) jezdí oběma směry tramvaje rychlostí 20 km/hod
v šestiminutových intervalech. Chodec jde podél trati z A
do В rychlostí 5 km/hod.
а) V jakých intervalech bude chodec tramvaje potkávat

a v jakých intervalech jej budou tramvaje předjíždět ?
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b) Jaký největší možný počet tramvají může chodec potkat
a jaký největší možný počet tramvají jej může předjet
v úseku z A do В ?

ÚLOHY III. KOLA V SSR

1. Je daný obdížnik ABCD. Ak X je bod uhlopriečky BD, tak
označme po radě E, F, G, H paty kolmic vedených z bodu
X na strany AB, BC, CD, DA. Určte bod X uhlopriečky
BD tak, aby súčet obsahov obdížnikov AEXH a XFCG bol
najváčší.

2. Automobil sa má dostat’ z miesta A do miesta В vzdialeného

1300 km. Benzín možno kupovat’ len v mieste А. V tomto
mieste móže automobil tankovat’ do nádrže, ktorej obsah
je 40 1 a móže tiež kupovat’ benzín do 20 1 kanistrov, z kto-
rých si po ceste móže nádrž doplnit’. Automobil móže však
viezť so sebou najviac tri plné kanistre a móže si tiež zria-
dbvať zásoby benzínu v kanistroch popři ceste. Zistite, či
za předpokladu, že automobil má spotřebu 10 1 na 100 km,
stačí na cestu 195 1 benzínu.

3. Určte najmenšie prirodzené číslo, ktorým třeba násobit’
číslo 1980, aby sme dostali druhů mocninu prirodzeného
čísla.

4. V kruhu je 12 tětiv. Určte maximálny počet neprekrývajúcich
sa častí kruhu, na ktoré je kruh rozdělený danými tětivami.
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Kategorie С

PŘÍPRAVNÉ ÚLOHY I. KOLA

C - P - 1

Je dán trojúhelník ABC. Označme P, Q, R středy jeho
stran. Dokažte, že trojúhelníky ABC a PQR mají těžiště
v tomtéž bodě.

Řešení. Dokážeme, že těžnice (přímky) trojúhelníku ABC
splynou s těžnicemi trojúhelníku PQR', z toho plyne, že těžiště
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obou trojúhelníků splynou. Důkaz provedeme pro těžnici CP
(obr. 14). Úsečka QR je střední příčka trojúhelníku ABC, a je

1
tedy QR 11 AB a QR — — AB. Označme P' průsečík úseček

CP3 QR. Pak je úsečka RP' střední příčka trojúhelníku APC,
neboť prochází středem R strany АС a je RQ || AP. Z obdob-
ného důvodu je úsečka QP' střední příčka trojúhelníku BPC.
Pro bod P' tedy platí

1 1
RP' =

2 AP — — BP = QP',

tj. bod P' je střed úsečky QR, tj. přímka CP je těžnice troj-
úhelníku PQR.

Jiné řešení. Úsečka PQ je střední příčka trojúhelníku ABC3
je proto PQ — CR a PQ || CR. Body P, Q, C, R tvoří tedy
rovnoběžník. Úhlopříčky rovnoběžníku se půlí, přímka CP
tedy prochází středem úsečky QR a je to těžnice trojúhelníku
PQR.

C - P - 2

Je dán obdélník ABCD, v němž AB = 2a, BC — a. Nad
stranami AB, AD jako nad průměry jsou sestrojeny kružnice,
které kromě bodu A mají společný ještě bod K.

a) Dokažte, že bod К leží na úhlopříčce BD.
b) Vypočtěte vzdálenosti bodu К od vrcholů A, B, D.
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Řešeni, a) Poněvadž podle Thaletovy věty jsou úhly AKD,
AKB pravé, leží body В, K, D v přímce (obr. 15).

b) Podle Pythagorovy věty je BD = a 15. Označme hledané
vzdálenosti AK — x, ВК = у, DK = z. Snadno vypočteme
x — je to výška na základnu BD v trojúhelníku ABD, jehož

2a

obsah je a2, je x = y=. Z pravoúhlých trojúhelníků ABK,1/5
/Ш/С dostáváme podle Pythagorovy věty

4a
— V4a2 — x2 = tt=, 0

У5 У5 '

Mohli jsme využít také podobnosti trojúhelníků,

adab ~ aakb - adka,

které mají shodné odpovídající si úhly. Poměry velikostí
odvěsen jsou
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DA AК DK

AВ BK AK ’

takže

1 x z

2 У x

Odtud vidíme, že x = 2z, у = 4г. Teď už stačí určit některou
z veličin (například x z pravoúhlého trojúhelníku АКБ o od-
věsnách x, 2x a přeponě 2d), abychom dostali ostatní.

Щ
Poznámka. Úloha byla uvedena v XIX. roč. MO jako Z-I-3.

V brožuře Výšin-Macháček: Vybrané úlohy MO — kategorie Z
je zařazena pod č. 33.

C - P - 3

Najděte všechna trojciferná čísla s touto vlastností: Napíše-
me-li před hledané číslo stejnou cifru, jako je ta, která stojí
na místě jeho jednotek, dostaneme čtyřciferné číslo, které je
o 18 menší než sedminásobek hledaného čísla,

Řešení. Má-li hledané číslo v desítkové soustavě zápis abc,
má pozměněné číslo zápis cabc. Pro číslice a, b, c přitom platí
а Ф 0 (trojcifernost původního čísla), a c/0 (čtyřcifernost
pozměněného čísla). Podle podmínky úlohy je

1000c + 100a + 10b + c — 7 (100a + 106 + c) - 18,
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odkud dostaneme

3(100a + 106 - 3)
c =

497

Vzhledem к tomu, že c je celé číslo a 497 není dělitelno třemi,
je nutně 100a + 106 — 3 dělitelno 497. Mohou nastat jen dvě
možnosti:

(I) 100a + 106 - 3 = 497

(II) 100a + 106 - 3 = 994

Případ (I) vede ke vztahu

10a + 6 = 50,

5, 6 — 0, Hledané číslo jekterému vyhovují jen číslice a

pak 503 - snadno ověříme, že splňuje podmínky úlohy. Případ
(II) vede ke vztahu

100a + 106 - 997,

ale ten pro žádné číslice a, 6 neplatí — pravá strana není totiž
dělitelná deseti.
Úloha má jediné řešení - číslo 503.

Poznámka. V XII. ročníku byla úloha zařazena jako D-I-2.
V brožuře Výšin-Macháček: Vybrané úlohy MO - kategorie Z
je uvedena pod č. 6.
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С - P-4

Určete všechna čísla a, b, pro která platí

(a2 + b2f - (a3 + 63)2 ^ 0.

Zjistěte všechna a, b, pro která nastane rovnost.

Řešení. Jednoduchými ekvivalentními úpravami převedeme
danou nerovnost na nerovnost

a2b2 (3a2 - 2ab + 3b2) ^ 0.

Výraz a2b2 je pro všechna reálná čísla nezáporný, a protože

3a2 - 2ab + 3b2 = (a - bf + 2(a2 + b2),

je také výraz 3a2 — 2ab + 3b2 nezáporný pro každou dvojici
reálných čísel a, b. Platí tedy vždy

3a2 - 2ab + 3b2 > 0, a2b2 ^ 0,

a tedy také

a2b2 (3a2 - 2ab + 3b2) ^ 0.

Pro každou dvojici reálných čísel a, b tedy platí také daná
nerovnost. Rovnost nastává v dané nerovnosti právě tehdy,
platí-li

a2b2 [(a - b)2 + 2(a2 + b2)] = 0.
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V dané nerovnosti platí proto znaménko rovnosti tehdy a jen
tehdy, je-li a = 0 nebo b — 0.

Poznámka. Úloha byla zařazena v XV. ročníku MO jako
D-II-1. V brožuře Výšin-Macháček: Vybrané úlohy MO — ka-
tegorie Z je uvedena pod č. 23.

SOUTĚŽNÍ ÚLOHY I. KOLA

C - I - 1

V rovině je dán trojúhelník ABC a přímka p, která nepro-
chází žádným jeho vnitřním bodem. Dokažte, že součet vzdá-
leností bodů А, В, C od přímky p se rovná součtu vzdáleností
středů stran AB, ВС, AC od přímky p.

Řešení. Nejprve dokážeme pomocnou větu, jejímž přímým
důsledkem bude věta, kterou máme dokázat v úloze.

Leží-li body А, В v téže polorovině s hranicí p, je vzdálenost
středu S úsečky АВ od přímky p aritmetickým průměrem
vzdáleností obou bodů А, В od přímky p (obr. 16).

Pomocná věta zřejmě platí v případech AB | | p nebo AB p.
Má-li úsečka AB jinou polohu, označme a, b, s vzdálenosti
bodů A, B, S od přímky p. Přitom je s délka střední příčky

61



Obr. 16

lichoběžníka se základnami a, b (nebo pravoúhlého trojúhelníku,
je-li a — 0 nebo b = 0). Platí tedy

ci ~\~ b
2

Při řešení úlohy C-I-l označíme vrcholy trojúhelníku А, В, C,
středy stran А', В', C a jejich vzdálenosti od přímky p označme
a, b’, c (obr. 17). Podle pomocné věty platí

11 1

2 (c + a)j c' — 2 (a "'''2 <P + c\ b’a' =

Je tedy
a' + 6' + c = a + b -■ c

C - í -2

Úsečka АВ délky 12 cm je rozdělena bodem C v poměru
1 : 2. V jedné polorovině určené přímkou AB jsou sestrojeny
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polokružnice s průměry AB, АС, CB. Vypočítejte poloměr
kružnice, která se dotýká všech tří polokružnic.

Řešení. Poloměr uvažované kružnice označme r a její střed
S (obr. 18). Spustíme-li z bodu 5 kolmici na úsečku AB
a její patu označíme D, vidíme tři pravoúhlé trojúhelníky,
které mají společnou odvěsnu SD a jejichž přepony úzce
souvisí s poloměry daných polokružnic a s hledaným polo-
měrem r. Budeme se snažit tyto souvislosti vyjádřit rovnicemi
a z nich určit r. Podle Pythagorovy věty dostáváme, označíme-li
ještě SD = />, SqD — q,

p2 f q2 = (6 — r)2,z /\SoSD:

p2 + (4 - qf = (2 + r)\z /\S\SD\

p2 -f- (2 -j- ^)2 = (4 -j- r)2.z i_\StSD:

о с ч so4 52

Obr. 18
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To je soustava tří rovnic o třech neznámých p, q, r, které sice
nejsou lineární, ale snadno je vyřešíme, všimneme-li, že se v kaž-
dé vyskytuje p2 + q2 vlevo a r2 vpravo. Po úpravě je dostaneme
ve tvaru

p2 + q2 — r2 — — 12 r + 36

p2 -\- q2 — r2 = 4 r -(- 8 q — 12

p2 -f- q2 — r2 8 r — 4 q + 12.

Odtud plyne, porovnáme-li pravé strany 1. a 2., resp. 1. a 3.
rovnice

2 r -f q = 6

5 r — <7 = 6.

To už je soustava dvou lineárních rovnic o dvou neznámých,
kterou snadno vyřešíme: sečtením obou rovnic hned dostaneme

12
—. Existuje-li popsaná kružnice, má poloměr —.

12
r =

Jiné řešení. Vyhneme se zavádění dvou pomocných ne-

známých. Vyjdeme opět z trojúhelníku SySvS rozděleného
příčkou ve dva trojúhelníky T\ = SiSoS a To
(obr. 19). Pro jejich obsahy platí

S^SqS

(*)Ti = 2 7*
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neboť mají společnou výšku z vrcholu 5 na strany SiSo = 4,
S2So = 2. Podle známého Heronova vzorce pro obsah troj-
úhelníka

T = ]/s (s — a) (s — b) (s — c),

kde s je poloviční obvod a a, b, c jsou délky stran, dostaneme

Т\г = 12 r (4 - r)

Г22 = 24 r (2 - r).

Dosadíme-li odtud do vztahu (*), dostaneme

12r(4 -r) = 4.24r(2 -r)

neboli

4 - r = 8 (2 - r),

12
a odtud pro hledaný poloměr r =
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Poznámka. Kružnici, jejíž poloměr jsme vypočítali, snadno
sestrojíme. Vzdálenost jejího středu od bodu S) bude

12 12
—, od bodu So bude 4 + —.2 +

C - I - 3

Kružnice k\ = (Si, ri), kz = (Sz, гг) se dotýkají vně v bodě C.
Kromě společné tečny v bodě C mají ještě další dvě společné
tečny. Vezměme jednu z nich a body dotyku těchto kružnic
na ní označme A, B.
a) Dokažte, že trojúhelník ABC je pravoúhlý.
b) Vyjádřete obsah trojúhelníku ABC pomocí ri а Г2.

Řešení části a). Přímky S\A a SzB jsou rovnoběžné, neboť
obě jsou kolmé ke společné tečně. Označme D druhý průsečík
přímky SiSzs kružnicí kz (obr. 20). Trojúhelníky S\AC, SzBD
jsou podobné, neboť jsou oba rovnoramenné a mají stejné úhly
při vrcholech Si, Sz. Proto přímky AC a BD jsou rovnoběžné
a úhly ACB, CBD jsou stejně velké. Podle Thaletovy věty je
úhel CBD pravý.

Jiné řešení části a). Přímky SiA a S>B jsou rovnoběžné.
Je-li tedy a velikost úhlu AS\C а /5 velikost úhlu BSzC, je
a + /3 = 180°. Dále, protože trojúhelníky ACSi a CBSz jsou

a

rovnoramenné, je <£SiCA = 90° — — a <)CSzCB

Odtud dostaneme

P
90° - -

2 '

a /3
=

2 ’ 2

P
- 90°.90° - -

2
<ACB = 180° 90° - -

2
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Řešení části b). Zvolme označení tak, aby п ^ Г2. Na
přímce SiA najdeme bod D tak, aby přímka DSo byla rovno-
běžná s AB. Dostaneme pravoúhlý trojúhelník S1S2D a ob-
dělník DS2BA (obr. 21).



Podle Pythagorovy věty

AB2 = DS/ S1S22 — DS12 = (ri -f- Г2)2 — (n — Г2)2 =

= 4Г]/2.

Dále vedme bodem C kolmici na přímku AB. Tato kolmice
protne přímku DSt v bodě E a přímku AB v bodě F.

Z podobných trojúhelníků S1S2D, CS2E dostaneme

CS-2 • DSi rt (n — Г2)
CE =

П+Г2S1S2

a tedy

гг Oi — r2) 2rz n
CF=CE + EF = *+ r2 =

П + Г2 П + r2

Obsah trojúhelníku ABC je pak

Vrir21 1 2rir2 Г\Г2
-AB.CF=-V*rm. = 2

П + Г2П + Г2

Poznámka. К řešení úlohy se nabízí i následující postup:

V-=' n + r2

a AB. To nám umožní dokázat pravoúhlost ABC pomocí obrá-

n
Vypočteme AC = 2ri , BC = 2r2 I

П T- r2

1
ceně Pythagorovy věty a vypočíst jeho obsah jako — AC.BC.
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Tento způsob je však daleko pracnější než postupy uvedené
▼ýše.

С - I -4

Uvažujme všechny výrazy, které dostaneme z výrazu

и — v — x — у — z

doplněním alespoň jedné dvojice závorek tak, aby se tím ve

výrazu neobjevilo násobení. [Jeden z těchto výrazů je například
и — ((v — x) — у — z). Avšak například výraz (u — v) (— x—

z) mezi uvažované výrazy nepatří, neboť je v něm— У

násobení.] Kolika různých hodnot mohou nejvýše tyto výrazy
nabývat pro jednu pětici čísel u, v, x, у, z ?

Řešení. Ať si vezmeme kterýkoli z uvažovaných výrazů,
můžeme vždy postupně provést úpravy, naznačené závorkami,
a dospět к výrazu tvaru

и — v a x у у z,

kde každý ze symbolů a, /3, у znamená buď nebo —.

Výrazů tohoto tvaru existuje 8. Ukážeme, že každý z nich
může vzniknout uvažovaným způsobem:

и — v-\-xJry + z = и — (v — x — у — z)

и — (v x ~y) — zU — ZJ-f-X-fjy — z
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и — t> -f- JC — у Z — и — (v — x) — (y — z)

и — v -\- x — у — z — и — (v — x) — у — z

и — v — x-\-y-\-z — u — v — (x — у — z)

и — v — x -\- у — z = и — v — (x — y) — z

и — v — x — у ^ z = и — v — x — (у — z)

и — v — x — у — z = (u — v) — x — у — z

Pro jakoukoliv pětici čísel x, y, z, u, v nabývají tedy všechny
výrazy popsané v úloze nejvýše osmi různých hodnot. Existují
však pětice, pro něž nabývá osm naposled uvedených výrazů
osmi navzájem různých hodnot (např. и = v = 0, x — 1,
у = 2, z = 3). Hledaný počet je tedy 8.

С - I -5

Při oslavě svých narozenin Josef zjistil, že sečte-li číslice
momentálního letopočtu, dostane svůj věk, a odečte-li mo-

mentální letopočet od jeho zrcadlového obrazu, dostane čtyř-
násobek svého roku narození. V kterém roce našeho tisíciletí

Josef provedl výpočet ? •

Řešení. Provedl-li Josef výpočet v roce 1000 -f 100a -f
+ 106 -f- c, bylo mu právě 1 -f a + é + í let a narodil se
v roce 999 + 99a -f 96. Rozdíl momentálního letopočtu
a zrcadlového obrazu je
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(1000c + 1006 +, 10a + 1) - (1000 + 100a + Ю6 + c) =

4(1000 + 100a + 106 + c - 1 - a - 6 - c)

a po úpravě

(*) 37c + 26 - 18a - 185 = 0.

Odtud vidíme, že číslice c je nutně lichá, a dostáváme odhad

11
(185 + 18.0 - 2.9) > 4.-(185 + 18a -26)+;c --

37

Číslice c může tedy být jen 5, 7 nebo 9.
Pro c — 5 se rovnice (*) redukuje na 6 = 9a, a té vyhovují

dvě dvojice: (a = 0, 6 = 0), (a = 1, 6 = 9).
Pro c = 7 dostáváme rovnici 6 = 9 (a — 4) — 1, a té vyho-

vuje jediná dvojice: a

Pro c

5, 6 = 8.
9 dostáváme rovnici 6 9 (a - 8) 2, a té vyho-

vuje jediná dvojice: a — 9, 6
Příslušné letopočty jsou 1005, 1195, 1587 a 1979. Snadno

se přesvědčíme, že všechny vyhovují podmínkám úlohy. (Šestí-
letý Josef v r. 1005 měl však neuvěřitelné matematické schop-
nosti).

7.

C - I -6

Platí-li pro povrchy Pi, Р%, Рз tří krychlí Рз = P\ + P2,
pak pro jejich objemy Vi, V2, V3 je

Ti



Vi + V2 < V3 ^ Ь (Fi + F2).

Dokažte.

Řešení. Úloha je formulována geometricky, okamžitě se však
převede na čistě algebraický problém.

Text úlohy sugeruje označit velikosti hran krychlí symboly
fli, a2, аз. Označíme je však raději a, b, c, abychom se vyhnuli
indexům a výrazy byly přehlednější.

Z podmínky pro povrchy plyne с = Уa2 b2 a dosazením
nabude dokazovaná nerovnost tvar

a3 + b3 < (Va2 -f 62)3 ^ ]/2 (a3 + b3).(1)

Vzhledem к tomu, že pracujeme v oboru kladných čísel a, b,
je soustava nerovností (1) ekvivalentní se soustavou nerovností

(а3 + 63)2 < (a2 + b2)3 ^ 2 (a3 + 63)2.

Máme vlastně dokázat, že pro všechna kladná čísla a, b platí
tyto dvě nerovnosti:

(2) (a3 + b3)2 < (a2 + b2)3

(3) (a2 + 62)3 ^ 2(a3 + 63)2

První nerovnost už jsme dokázali v úloze C-P-4 (protože
a > 0, b > 0, platí ostrá nerovnost). Druhá nerovnost je ekvi-
valentní s nerovností
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a6 - Ъа4Ь% ! AaW - ЪаЧ4 \ b* > 0.

Výraz na levé straně je však roven

(a2 - 2ab I b2) (a4 + 2a3é + 2aP + b4)

a pro kladná a, b je vskutku nezáporný.

SOUTĚŽNÍ ÚLOHY II. KOLA

C - II - 1

V rovině je dán trojúhelník ABC a přímka p, která nepro-
chází žádným vnitřním bodem trojúhelníku. Vyjádřete vzdále-
nost těžiště T trojúhelníku od přímky p pomocí vzdáleností
bodů А, В, C od přímky p.

Řešení. Označme vzdálenosti bodů А, В, C od přímky p po
řadě a, b, c. Můžeme předpokládat, že bod C má z vrcholů
А, В, C od přímky p největší vzdálenost, tj. с ^ a, c ^ b.
Označme ještě s a t vzdálenosti středu S' úsečky AB a těžiště
T od přímky p (obr. 22). Pak je

a + b
s = , t

c — s

S + ~T~ . Po dosazení za s dostaneme
2

1
- (a + b + c).t =
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p

Obr. 22

С - II -2

Určete, kolik různých součtů můžeme dostat z výrazu

1-1+1 1 + ... + 1 1

1980 jedniček

doplněním alespoň jednoho páru závorek tak, aby vznikl správně
uzávorkovaný výraz a nedostali jsme přitom zápis součinu.

Řešení. Nejprve dokážeme, že můžeme dostat součty

1976, ..., -2, 0, 2, ..., 1974, 1976.-1978,
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Součet tvaru —2k pro k — 989, 988, ..., 1 dostaneme např.
uzávorkováním

1—(1 + 1)—(1 + 1) —- - - —(1 + 1) —1 + 1 —... +1 —1

k párů závorek

Součet tvaru 2k pro k
uzávorkováním

0, 1, 2, ..., 988 dostaneme např.

1—(1 + 1 -(1+1)—(1 + 1) —..(1 + 1)) —1 + .. .+1 —1.

k 1 párů závorek

Dále dokážeme, že jiné hodnoty dostat nemůžeme. Po
doplnění závorek dostaneme výraz, který lze upravit na výraz
bez závorek s 1980 členy, který se od původního bude lišit jen
znaménky členů. Je-li v něm a znamének + a b znamének —,

je jeho součet a — b, a je tedy sudý, protože a +■ b — 1980.
První člen má vždy kladné a druhý záporné znaménko, takže
součty —1980 ani 1980 nemohou vzniknout. Součet zřejmě
nemůže v absolutní hodnotě přesáhnout 1980. Zbývá dokázat,
že nemůže vzniknout součet 1978.

a) Má-li po odstranění závorek čtvrtý člen znaménko —, pak
alespoň dva členy (druhý a čtvrtý) mají znaménko — a součet
nemůže přesáhnout 1976.

b) Má-li čtvrtý člen znaménko +, znamená to, že leží uvnitř
závorky, před kterou je znaménko —. V této závorce leží
i třetí člen, a ten pak má v upraveném výraze znaménko —.

Opět tedy alespoň dva členy mají znaménko —.
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С - II - За

Nechť Pi, Po, P3, Pj jsou obsahy čtyř čtverců a o\, 02, 03, 04

jejich obvody (v tomtéž pořadí).
Platí-li

Pi + P2 + Рз = Pa,
pak

01 + 02 + 03 ^ 04 Ъ.

Dokažte.

Řešení. Označíme-li velikosti stran čtverců a, b, c, d, platí

a2 + b2 -\- c2 = d2.(1)

Máme dokázat nerovnost

a + b + c ^ d Уз.(2)

Kdyby
a 4- b + c > d ]/ 3,

bylo by
(a + b + c)2 > 3 d2 = 3 (a2 + b2 + c2)

neboli

a2 + b2 -\- c2 — (ab -f ac + bc) = (a — b)2 -f {b — c)2 +
+ (a — c)2 < 0,

a to )e spor.
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С - I! - 3b

Nad průměrem AB délky 10 cm je sestrojena polokruž-
nice k. Kružnice k\, &2 mají stejně velké poloměry, dotýkají
se vzájemně a obě se dotýkají polokružnice k a průměru AB.
Určete velikost jejich poloměru.

Řešení. Zvolme označení podle obr. 23, r je hledaný polo-
měr. Je SQ = 5 — r, ST — TQ — r a trojúhelník STQ je
pravoúhlý. Podle Pythagorovy věty je (5 — r)2 = 2 r2, tedy
r = 5(1/2 - 1) == 2,07.
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Kategória В

PŘÍPRAVNÉ ÚLOHY I. KOLA

В - P - 1

Je dané kladné číslo c, rovina a v nej dve róznobežky p, q.

a) Určte množinu vsetkých bodov X danej roviny, pre
ktoré je súčet vzdialeností od priamok p, q rovný c.

b) Určte množinu vsetkých bodov X danej roviny, pre
ktoré sa absolútna hodnota rozdielu vzdialeností od priamok
p, q rovná číslu c.

Riešenie. a) Pri riešení úlohy využijeme tuto vlastnost’ rov-
noramenného trojuholníka (obr. 24): Nech ABC je rovnora-

menný trojuholník so základňou BC a body A, A' sú súmerne
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združené podlá priamky ВС. Ak je X lubovolný bod úsečky
ВС a M pata kolmice vedenej z bodu X na priamku BA,
přejde pri osovej súmernosti kolmica XM do kolmice XM'
к priamke BA'. Pretože BA' // CA, je XM' // XN, kde N je
pata kolmice z bodu Xna priamku АС a platí \XM\ -f \XN\ =
— ,|.XAÍ'| + |ХАГ| = |iVAf'|3 čo je dížka výšky trojuholníka
ABC na stranu AC.

Nech teraz P, R sú také body priamky p, ktoré majú od
priamky q s ňou róznobežnej vzdialenosť c (pozři obr. 25),

PP'a1

Y

R'

Obr. 25

a Q, S zasa také body priamky q, ktorých vzdialenosť od
priamky p sa rovná c. Na základe vyššie uvedenej úvahy má
každý bod hranice pravouholníka PQRS od priamok p, q
súčet vzdialeností rovný c.

Ak je Y lubovolný bod roviny róznobežiek p, q, ktorý
neleží na hranici pravouholníka PQRS, potom možno zostrojiť
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pravouholník P'Q'R'S', na hranici ktorého bude iežať b«d Y
tak, že bude rózny od pravouholníka PQRS, a preto súčet
vzdialeností bodu Y od priamok p, q bude rózny od c.

Množinou bodov X požadovaných vlastností je teda hranica
pravouholníka PQRS.

b) Nech X je Tubovofný bod hladanej množiny. Označme
dp jeho vzdialenosť od priamky p a dq vzdialenosť od priamky
q. Podlá podmienok úlohy musí platit’: |dv — dq| = c, čo
znamená, že buď dp = dq + c, alebo dq = dv + c.

Ak je dp = dq X c, je vzdialenosť bodu X od priamky p
váčšia alebo rovná c. Bod X musí preto Iežať v niektorej
z polrovín ohraničených priamkami pi, resp. p2, neobsahu-
júcej priamku p (obr. 26), pričom pi, p2 sú rovnoběžky s priam-

\

><

X
\

Obr. 26
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kou p, ktoré majú od nej vzdialenosť c. Ak hfadaný bod X
leží v príslušnej polrovine ohraničenej priamkou p± vrátane
tejto priamky, je dv = dPí-\- c číže dPi — dq. Bod X leží
teda na niektorej z osí uhla priamok p\ a q v príslušnej pol-
rovině.

Obrátene, každý bod X, ktorý leží na niektorej z týchto
dvoch polpriamok, vyhovuje podmienke dv — dq + c.

Analogickou úvahou sa dokáže, že hl’adanej množině patria
všetky body osí uhlov priamok p^ a q v príslušnej polrovine.

Ak vyjdeme z rovnosti dq = dv + c, dostaneme podobným
spósobom ďalšie dve časti hladanej množiny. Ak totiž qi, q%
sú rovnoběžky s priamkou q vo vzdialenosti c, potom hl’a-
danej množině patria osi uhlov priamok p, qi, resp. p, q^,
v polrovine ohraničenej priamkou qi, resp. q?, a neobsahu-
júcej priamku q.

B-P-2

Na šachovnici tvaru 20x20 polí je vyznačených 31 navzá-
jom róznych šachovnic tvaru 8x8. Dokážte, že existuje
pole, ktoré patří aspoň šiestim z vyznačených šachovnic.

Riešenie. Použijeme metodu nepriameho dókazu. Budeme
předpokládat’, že tvrdenie úlohy neplatí, tj. že každé pole
šachovnice 20x20 patří najviac piatim vyznačeným šachov-
niciam tvaru 8x8.

Označme 5 súčet všetkých polí 31 vyznačených šachovnic,
v ktorom je každé pole zahrnuté toíkokrát, kofkým vyznače-
ným šachovniciam patří. Zrejme platí: 5 = 31.8.8 = 1984.
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Pokusme sa súčet S odhadnúť za předpokladu, že každé
pole može patriť najviac piatim vyznačeným šachovniciam.
Pre polia v rohoch vel’kej šachovnice bude však tento počet
ešte menší, ako ukazuje schéma na obr. 27. Podlá toho by málo
platit’:

4.(1 + 2.2 f 2.3 + 3.4) + (400 - 4.8).5 = 1932,

čo však je spor s vyššie určenou hodnotou súčtu S. To zna-

mená, že náš předpoklad bol nesprávný a musí existovat’
aspoň jedno pole patriace šiestim šachovniciam, ako sme mali
dokázat’.

5 2 134

255 4

5 35

4*4

5

Obr. 27

Iné riešenie. Zaveďme na šachovnici 20x20 súradnice r, s

polí tak, že r bude číslo radu počítané oddola nahor a 5 číslo
stípca počítané zfava napravo. Významnú úlohu hrajú polia
(8, 8), (8, 16), (16, 8), (16, 16). Cahko sa vidí, že každá šachov-
nica tvaru 8x8, ktorú možno vyznačit’ na šachovnici 20x20,
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obsahuje právě jedno z nich. Keďže 31 : 4 ^ 7, vyplývá
z toho, že niektoré z týchto štyroch polí leží dokonca na 8
z 31 vyznačených šachovnic.

В - P - 3

Nájdite všetky reálne čísla a, b, c také, že rovnica

(1) x3 ax2 + bx — c = 0

má kořene a, 6, c.

Riešenie. Nech reálne čísla a, 6, c sú koreňmi rovnice (1).
Potom 1’avú stranu rovnice (1) možno rozložit’ na súčin koře-
nových činitelov:

x3 — ax2 4 bx — c — (x — a) (x — b) (x — c).(2)

Vynásobením právej strany (2) a porovnáním koeficientov pri
rovnakých mocninách x na oboch stranách takto získanej
identicky platnej rovnosti dostaneme:

(3) a + b 4- c — a čiže b -f c = 0,

(4) ab -(- ac 4- bc = b čiže, vzhTadom na (3), bc = b,

(5) abc = c.

Ak je c = 0, je podlá (3) tiež b
má potom rovnica (1) tvar

0. Pre íubovolné reálne a

83



x3 — ax2 — О

s koreňmi a, 0, 0.
Ak je с Ф О, potom je podia (3) tiež b Ф О, z čoho vzhladom

na (4) vyplývá c — 1. Potom však podra (3) je b = —1 a podra
(5) tiež a = — 1.

Po dosadení týchto koeficientov do (1) dostaneme rovnicu
—x3 — x2 + x + 1 = 0,

ktorej čísla 1 a

dvojnásobným koreňom.
Úloha má teda dve riešenia: 1) a lubovolné, b = 0, c — 0;

2) a = -1, b = -1, c — 1.

1 vyhovujú, pričom číslo —1 je dokonca

В - P - 4

V obore reálných čísel rieste sústavu rovnic

x + у = s,

(1)
ax + 2y — 0

s neznámými x, y, pričom a, s sú reálne čísla. Urobte diskusiu
riešitelnosti sústavy vzhladom na čísla a, s.

Riešenie. Ak od dvojnásobku prvej rovnice odčítáme druhu,
dostaneme

(2) (2 — a) x — 2s.
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Ak je a — 2, s Ф O, rovnica (2) zrejme riešenie nemá. Pře
a — 2, s = 0 má nekonečne mnoho riešení tvaru x = c,

c, kde c je reálne číslo.
Ak je а Ф 2, móže rovnici (2) vyhovovat’ len číslo x =

У =

2s

, ku ktorému z prvej rovnice sústavy (1) lahko určíme2 — a

as

У = 2 - a '

Dosadením sa lahko přesvědčíme, že táto dvojica čísel x, у
sústave (1) skutočne vyhovuje.

SÚŤAŽNÉ ÚLOHY I. KOLA

В - I - 1

Do kružnice je vpísaný 1979-uholník A\A2A3.. .A1979.
Ak leží střed kružnice vo vnútri 1979-uholníka, potom súčet

1977
uhlov pri vrcholoch A1, A3, A5, ..., A1977 je menší než —-— n.

Dokážte.

Riešenie. Označme (obr. 28) A střed kružnice, do ktorej
je vpísaný 1979-uholník, oq = ^Ai^AiS, аг = <£AiA2S,
<X3—<^CA2A3S, ..., 34979 ~ "^AjgygAjg^gS. Úsečky A\S,
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Al 97®

0-19/9

0-1978

AgS, ..., Ai97gS rozdelia daný mnohouholník na 1979 rovno-

ramenných trojuholníkov. Z toho vyplývá, že vnútorné uhly
pri vrcholoch Ai, Ag, ..., A1979 1979-uholníka sú v uve-
denom poradí oq. -j- 0.2, аг + аз, ..., ^979 -f ai. Preto pre
súčet s všetkých vnútorných uhlov 1979-uholníka platí

5 = 2 (ai + a2 + ... + ai979) = 1977т:.

Súčet vnútorných uhlov pri vrcholoch A\, A3, A5, ..., Л1977
však bude

ai + аг + аз + a4 -f ... -f- ai977 -f- ai97g =
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19775

čo sme mali dokázať.

Poznámka. Z postupu dókazu je zřejmé, že platí nasledu-
júca všeobecná veta: Nech n je nepárne prirodzené číslo.
Ak w-uholník je vpísaný do kružnice, ktorej střed leží v jeho
vnútri, potom súčet uhlov pri vrcholoch w-uholníka s nepár-

n — 2
—

n. Pre n — 3 dostaneme

ako dósledok známu vetu: Ak střed opísanej kružnice leží
vo vnútri trojuholníka, potom je trojuholník ostrouhlý.

nymi indexami je menší než

В- I -2

V rovině je daný konvexný uhol a v ňom kružnica. Zostrojte
na kružnici body, pre ktoré je súčet vzdialeností od ramien
daného uhla minimálny.

Riešenie. Využijeme výsledok časti a) riešenia úlohy
В - P - 1, podlá ktorého je množinou bodov v dutom uhle,
pre ktoré je súčet vzdialeností od ramien tohto uhla dané
číslo, úsečka kolmá к osi uhla. Je zřejmé, že tento súčet je
tým váčší, čím váčšia je vzdialenosť úsečky od vrcholu uhla.
Z tejto úvahy vyplývá, že minimum pre všetky body danej
kružnice sa dosiahne v případe dotykového bodu, v ktorom
sa dotýká kružnice priamka kolmá na os uhla, a to bližšia
к vrcholu uhla z oboch priamok tejto vlastnosti (pozři obr. 29).
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Poznamenájme, že dotykový bod 1\ druhéj z oboch pria-
mok je tým bodom kružnice, pre ktorý je súčet vzdialeností
od ramien daného uhla maximálny.

В - I - 3

Je daný trojuholník ABC, ktorého výšky označíme va,
Vbi vc. Zistite, či existuje trojuholník UVW tak, aby | UV| = va,

\VW\ =vb, \WU\=vc a aby strany UV, VW, WU boli
v uvedenom poradí kolmé na strany BC, CA a AB trojuhol-
nika ABC.

Riešenie. Predpokladajme, že trojuholník UVW žiadaných
vlastností existuje. Vzhladom na vzájomnú kolmost’ odpove-
dajúcich si stráň oboch trojuholníkov majú oba trojuholníky
rovnako velké odpovedajúce si uhly. Z toho vyplývá, že
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trojuholník UVW je podobný trojuholníku ABC. Existuje
preto číslo k > 0 tak, že pře dížky stráň trojuholníka ABC
(pri obvyklom označení) platí

a = kva, b kvb, c = kvc.

Z toho vyplývá, že taktiež platí

ava = kva23 bvb — kvb2, cvc — kvc2.

Eavé strany týchto rovností majú všetky rovnakú hodnotu -

dvojnásobok plošného obsahu trojuholníka ABC, čo znamená,
že sa musia rovnat’ aj ich pravé strany. Z toho však vyplývá,
že platí

va = Vb — vc a taktiež a = b = c.

Tieto vlastnosti však može mať len rovnostranný trojuholník.
Na druhej straně je zřejmé, že rovnostranný trojuholník

podmienkam úlohy vyhovuje.

В- I -4

Na šachovnici tvaru 1000 x 1000 stojí 800 000 figuriek.
Potom na obvode niektorej jej časti tvaru 8x8 stojí aspoň
22 figuriek. Dokážte.

Riešenie. Podobné ako pri riešení úlohy В - P - 2 použijeme
metodu nepriameho dókazu. Najskór zistíme, kol’ko róznych
šachovnic tvaru 8x8 sa dá vyznačit’ na danej velkej šachov-
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nici. Je zřejmé, že prvý rad malej šachovnice možno umiest-
niť len na lubovolnom z prvých 993 radov vel’kej šachovnice
a rovnako tomu je s umiestnením prvého stípca malej šachov-
nice. Z toho vyplývá, že na vel’kej šachovnici možno vyznačiť
celkom 9932 šachovnic tvaru 8x8.

Každá šachovnica tvaru 8 x 8 má celkom 28 obvodových
polí. Z toho vyplývá, že nějaké pole vel’kej šachovnice móže
byť obvodovým polom najviac 28 roznych malých šachovnic.
Túto vlastnost’ však majú len tie polia, ktoré ležia aspoň na
osmom radě alebo stípci od okraja velkej šachovnice. Týchto
polí je teda právě 9862. Nazvime ich střednými poliami a ostatně
polia velkej šachovnice budeme volat’ okrajovými poliami.
Označme 5 počet figuriek stojacich na obvodových poliach
šachovnic tvaru 8x8, v ktorom je každá figúrka započítaná
tolko ráz, na obvode kolkých roznych malých šachovnic
stojí. Predpokladajme teraz, že na obvode každej malej ša-
chovnice stojí najviac 21 figuriek. Potom musí byť

(1) 9932.21 = 20 707 029.

Nech Si je tá časť súčtu S prislúchajúca středným 9862 po-
liam. Zrejme

(2)

Všetkých figuriek stojacich na velkej šachovnici je 800 000,
okrajových polí je 10002 — 9862. Na středných poliach musí
preto stát’ aspoň 800 000 — (10002 — 9862) figuriek. Do
súčtu iSi počítáme každú z nich s násobnosťou 28, čiže platí
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28.[800 000 - (ÍOOO2 - 9862)] = 21 621 488,Si

čo je spor s (2) vzhladom na (1).

Poznámka. Pracnějším odhadom so započítáním aj figuriek
na okrajových poliach vel’kej šachovnice do Si možno do-
konca dokázat’, že existuje šachovnica tvaru 8x8, na obvo-
dových poliach ktorej stojí aspoň 23 figuriek.

B- ! -5

КоГко riešení má v obore reálných čísel sústava rovnic

b
1,ax -f-

У

a

by + 1
x

$ neznámými x,y? Urobte diskusiu vzhladom na dané reálne
čísla a, b.

Riešenie. Uvažujme najskór o případe a = 0. Vtedy sa
b

sústava redukuje na

má táto sústava nekonečne mnoho riešení: у — b, x fubo-
volné. Pre ostatně hodnoty b sústava riešenie nemá.

Nech а Ф 0. Je zřejmé, že počet riešení sústavy sa nezmení,
ak navzájom vyměníme čísla a, b. Preto pri b

1, by = 1. Ak je b — 1 alebo b 1,
У

0 má sústava
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nekonečne mnoho riešení, ak a = 1 alebo a = — 1, a pri
ostatných hodnotách a riešenie nemá.

Zostáva teda vyšetřit’ případ ab Ф 0. Nech x, у je riešenie
danej sústavy. Potom musí byť x Ф 0, у Ф 0. Z druhej rov-
nice vyjádříme y:

x — a

0)

a dosaďme do prvej rovnice sústavy. Dostaneme po jednoduchej
úpravě, že x je koreňom kvadratickej rovnice

ax2 — (a2 — b2 Ь 1) x + a = 0.(2) *

Obrátene, ak x je koreňom kvadratickej rovnice (2), po-
tom — ako sa lahko přesvědčíme — musí platit’: x Ф 0, x Ф a.
Po vydělení rovnice (2) číslom x — a a jednoduchej úpravě
dostaneme

b
= 1.ax +

x — a

bx

Z toho je zřejmé, že ak pre každé riešenie x kvadratickej rov-
nice (2) položíme у podia (1), dostaneme dvojicu x, y, ktorá je
riešením danej sústavy. Znamená to teda, že daná sústava
je ekvivalentná so sústavou (1), (2), z čoho je zřejmé, že počet
riešení danej sústavy je zhodný s počtom riešení kvadratickej
rovnice (2). Diskriminant D tejto rovnice upravíme:
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D = (a2 - b2 + l)2 - 4a2 = (a2 - 62 + 1 - 2a).
.(a2 - 62 + 1 + 2a) = (a - 1 - b) (a - 1 + b) (a + 1 - b).

.(a 4-1+6).

Z toho vyplývá, že v případe ab Ф 0 má daná sústava jedno
riešenie, ak čísla a, b vyhovujú niektorej z rovností a + 6 —
= ± 1 a vo vsetkých ostatných prípadoch má dve riešenia.
Výsledok diskusie znázorníme prehladne v súradnicovej



rovině a, b (pozři obr. 30), v ktorej vyššie uvedené rovnosti
určujú dve dvojice rovnoběžných priamok. Pri jednotlivých,
priamkach, ich priesečníkoch a v častiach roviny, na ktoré je
týmito priamkami rozdělená, sú vyznačené počty riešení danej
sústavy.

B- \ -6

Nájdite všetky trojice prirodzených čísel x, y, z také, že

я3 4- j>3 -)- z5 =

y2z = X.

1979,

Riešenie. Nech x, у, z sú prirodzené čísla, ktoré vyhovujú
obom daným rovniciam. Pretože 133 = 2 197 > 1979 a 55 =
= 3 125 > 1979, vyplývá z prvej rovnice, že musí platit’

4.

Podobné dostaneme z druhéj rovnice odhad pre y1:

z ktorého vyplývá, že у 3.

Pomocou vykonaných odhadov sa nám podařilo počet
usporiadaných trojíc prirodzených čísel, ktoré móžu vyho-
vovať daným rovniciam, obmedziť na 144. Ich preskúšanie
by však aj tak zabralo příliš mnoho času. Efektívnejšie bude,
ak postupné preskúmame případy, ktoré móžu nastat’ pri
pevnej volbě tej neznámej, ktorá má najmenší rozsah, tj. y.
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Nech у — 1. Potom z druhej rovnice máme x
rovnice po dosadení a jednoduché] úpravě dostaneme

z a z prve]

z3(l -1-z2) = 1978.

Eahko sa přesvědčíme, že tejto rovnici nevyhovuje žiadne
z prirodzených čísel z 5^ 4.

Pre у = 2 z druhej rovnice dostaneme x = 4z a z prvej
rovnice analogicky ako v predchádzajúcom případe

z3 (64 +*2) = 1971.

3, čomu odpovedá x — 12. Dosa-Tejto rovnici vyhovuje z
děním sa 1’ahko přesvědčíme, že trojica 12, 2, 3 skutočne
vyhovuje obom daným rovniciam.

Pre y = 3)ex = 9zaz prvej rovnice máme

z3 (729 + z2) = 1952,

čomu však žiadne z prirodzených čísel z ^ 4 nevyhovuje.
Podmienkam úlohy vyhovuje teda jediná trojica prirodze-

ných čísel:

x = 12, у = 2, z = 3.
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SOUTĚŽNÍ ÚLOHY II. KOLA

В - li - 1

Koreňmi rovnice x3 + ax2 -f- bx ■+- c — 0 sú reálne čísla
xi, X2, хз, koreňmi rovnice x3 + Ax2 -f Bx -j- C
čísla X1X2, X2X3, X1X3.

Vyjádříte koeficienty А, В, C pomocou koeficientov a,

0 sú

b, c.

Riešenie. Mnohočlen na lávej straně rovnice možno podlá
předpokladu rozložit’ na súčin koreňových činitelov takto:

x3 + ax2 + bx -f c = (x — xi) (x — X2) (x — X3).

Z toho po vynásobení činitelov v súčine na právej straně
identickéj rovnosti a porovnaní koeficientov pri rovnakých
mocninách s koeficientami mnohočlena na lávej straně dosta-
neme rovnosti

—a = xi + X2 + b xix2 + x2x3 + X1X3,

(O —C — X1X2X3.

Analogickým postupom pre koeficienty druhej rovnice dosta-
neme

—A — X1X2 + X2X3 + xiX3,

В — XiX22X3 -f Xi2X2X3 + X1X2X32,
— C = Xl2X22X32.

(2)
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Ak dosadíme z (1) do pravých stráň (2), dostaneme

A = —b, В = ас, C = —c2.

В- II -2

Je daný trojuholník ABC s obsahom P. Ncch S, T, U sú
středy úsečiek AB, BC3 CA.

Ukážte, že existuje trojuholník KLM tak, že KL//CS,
LM//AT, МКЦВи, \KL\ = \CS\, \LM\ = \AT\, \MK\ =
— \BU\3 tj. strany trojúhelníka KLM sú rovnoběžné s ťažni-
cami trojuholníka ABC a sú taktiež rovnako velké ako ťažnice
tohto trojuholníka.

b) Vyjádříte obsah trojuholníka KLM pomocou P.

Riešenie. a) Doplňme trojuholník ABC na rovnoběžník
ABCD (obr. 31) a označme V střed úsečky BD. Potom sú
ASVT a BVCU rovnoběžníky, a preto platí: SV/IAT, |5F| =
= \AT\, VCIjBU, \VC\ — \BU\. To znamená, že požado-

-7°
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váné vlastnosti má trojuholník Č\SF. Stačí preto položí
K=C,L = S,M=V.

b) Obsah rovnoběžníka ABDK je zrejme 2P. Obsah troj-
uholníkov ALK a KMD sa rovná P/2. Označme W strec

úsečky LM, tj. priesečník priamky LM s uhlopriečkou BL
rovnoběžníka ABDK. Potom obsah trojuholníka LBW j(
štvrtinou obsahu trojuholníka ABT, teda Р/8. Obsah troj-
uholníka BMT je rovný zrejme P/4 a obsah trojuholníkí
BMW je jeho polovicou, teda tiež P/8. Preto je obsah troj-
uholníka LBM rovný P/4. Z toho už vyplývá, že pre obsah P
trojuholníka KLM platí:

P' = 2P - 2(P/2) - P/4 = 3P/4.

В - II - За

Na poliach šachovnice tvaru 8x8 je rozostavených 41
figuriek. Potom na diagonálnych poliach niektorej jej část:
tvaru 4x4 stoja aspoň štyri figurky. Dokážte. (Diagonálnym:
poliami šachovnice tvaru 4x4 rozumieme 8 polí na jej uhlo-
priečkach.)

Riešenie. Použijeme metodu nepriameho dókazu, ktora
sa nám osvědčila pri riešení úloh В - P - 2 а В - I - 4.

Najskór si uvědomíme, že na šachovnici 8x8 možno vy-
značit’ celkom 52 = 25 róznych šachovnic tvaru 4x4. Označme
5 súčet, ktorý dostaneme, ak každú figurku započítáme toíko-
krát, na uhlopriečkach kolkých šachovnic tvaru 4x4 stojí.
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Ak budeme předpokládat, že na diagonálách každej šachov-
nice tvaru 4x4 stoja najviac 3 figurky, musí platit’

5 3.25 = 75.

Zostavme si teraz tabulku, v ktorej pre každé pole šachov-
nice 8x8 vyznačíme, na uhlopriečkach kolkých róznych
šachovnic tvaru 4x4 leží:

l 1 2 2 11 1 1

2 31 3 4 4 2 1

61 3 5 36 5 1

82 6 8 24 6 4

2 6 4 24 6 8 8

1 3 35 6 6 5 1

1 2 33 4 4 2 1

1 1 11 1 2 2 1

Je zřejmé, že 5 bude minimálně, ak figurky budú umiestnené
na poliach s najmenšími hodnotami 1, 2, 3, ktorých je celkom
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40 a na 2 poliach s hodnotou 4. To však znamená, že v kaž-
dom případe musí byť

20.1 + 12.2 +8.3 + 2.4 = 76,

čo je spor s (1).

В - II -3b

Nech a, b sú dané reálne čísla. Nájdite všetky stvoříce
xi, x2, x3, X4 nezáporných reálných čísel, ktoré vyhovujú
rovniciam

(1) xi — X2 = a,

(2) X3 — X4 = b,

+ X2 + хз + x4 = Fa2 + b2.(3) XI

Riešenie. Predpokladajme, že nezáporné čísla x4, хг, x3, X4

vyhovujú sústave (1), (2), (3). Ak do (3) dosadíme z (1) za a
a z (2) za b, dostaneme

+ X2 + x3 + x4 = V(xi — x2)2 + (x3 — x4)2 ,Xi

z čoho umocněním oboch stráň na druhů a jednoduchej
úpravě dostáváme

(4) 4x4x2 + 2x4x3 + 2x4x4 + 2x2x3 + 2x2x4 + 4x3x4 = 0.
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Všetky sčítance na Tavej straně (4) sú nezáporné, a teda nu-
lové. Z toho vyplývá, že z čísel xt-, 2 = 1, 2, 3, 4 móže byť
nenulové najviac jedno. Ak by totiž boli nenulové například
čísla jci, xo} potom 4xiX2 > 0 a rovnost’ (4) nemóže byť spi-
nená. Analogicky vylúčime ostatně případy. Z toho vzhladom
na (1) a (2) vyplývá, že z čísel a, b aspoň jedno musí byť rovné
nule.

0. Potom z (1) máme xi = x2. Uvažujme
najskór o případe b ^ 0. Potom z (2) a (3) dostaneme

1) Nech a

(5) *3 — x4 = b, 2xi -f *3 + *4 = b.

Z (5) odčítáním prvej rovnice od druhej dostáváme rovnicu

2xi + 2x4 — 0,

ktorej jediným nezáporným riešením je dvojica jci = *4 = 0.
Sústave (1)—(3) vyhovuje preto len štvorica

Xl — X2 — X4 — 0, *3 = b.

V případe b < 0 z (2) máme *3
do (3) dostaneme

X4 + b a po dosadení

2xi + 2^4 -f b = Mb2 ,

čiže

, 2xi -f- 2x4 — —2b3

(6) xi + X4 = —b.
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Ak má byť хз = x* -f- b ^ O, musí byť X4 ^ —b, z čoho
vzhTadom na (6) vyplývá jci — 0 a sústava (1)—(3) má opáť
jediné nezáporné riešenie:

*1 = *2 = X3 — О, X4 — —b.

2) Nech b — 0. Potom z (2) máme X3 = 14 a analogickým
postupom dostaneme v případe a ^ 0 jediné riešenie

Xi = а, X2 — X3 = X4 = 0

a v případe a < 0 taktiež jediné riešenie

*i = *3 = *4 = 0, хз = —a.
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Kategorie A

PŘÍPRAVNÉ ÚLOHY I. KOLA

A - P - 1

Obsah P konvexního čtyřúhelníku se stranami a, b, c, d
a úhly a (mezi stranami a, b), у (mezi stranami c, ď) je dán
vzorcem

16P2 = 4 (ab + cd)2 - (a2 + b2 - c2 - i2)2
a + у

(1)

— 16abcd cos2
2

neboli

1
(П P2 = — (—a 6 + c + d) (a b -)- c -j- d).16

. (a b — c + ď) (a + 6 + c
a + У

«0-

— aéa/ cos2
2

Dokažte tento vzorec a odvoďte z něho větu: Při pevných
velikostech stran a, b, c, d (a proměnných úhlech a, y) má
konvexní čtyřúhelník největší obsah, je-li tětivový, tj. leží-li
všechny jeho vrcholy na kružnici.
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Poznámka. Uvedená formulácia úlohy pripúšťa dve možné
interpretácie. Autor úlohy zrejme požaduje dokázat’ impli-
káciu Vi: ak štvoruholník má najváčší obsah, tak je tětivový.
Uvedená formulácia skór požaduje dokaž implikácie V2: ak
je štvoruholník tětivový, tak má najváčší obsah. Kvóli úpl-
nosti dokážeme obidve implikácie.

Riešenie. Uvažujme konvexný štvoruholník ABCD so
stranami a, b,c,d a uhlami a, /5, y, ó podlá obr. 32. Úsečka BD

*

D

\
d

\

a

c\
\

a

ВbA

Obr. 32

rozdělí štvoruholník ABCD na dva trojuholníky BCD a ABD
s obsahmi P\ a P2. Pre obsah P štvoruholníka ABCD platí

P — Pi + P2
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Obsahy Pi a P2 Гайко vypočítáme:

1
Pi = — cd sin у,

1
Po — — ob sin a.

2

Teda

(2) 2P = sin a + cd sin y.

Podlá kosínusovej vety pře obidva uvažované trojuholníky
dostáváme

BD2 a2 -f~ b2 — 2ab cos a,

PZ)2 = c2 + d2 — 2cd cos y.

Takže

a2 -f b2 — 2ab cos a = c2 -f- d2 — 2cd cos y.

Odtial po jednoduchej úpravě máme

(3) (a2 + 62 — c2 — d2)2 = 4a262 čos2a +
+ 4c2d2 cos2y — 8abed cos a cos y.

Vztah (2) umocníme na druhů, násobíme 4

16P2 = 4a2b2 sin2a -f 4c2d2 sin2y +
+ 8abed sin a sin у

a připočítáme к (3):
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(4) 16P2 + (a2 + & - с2 - d9-f = Aá2b2 + 4c2d2 + 8abcd.
. (sin a sin у — cos a cos y).

Z trigonometrie vieme, že platí

a + у
cos (a + у) = 1 — 2 cos2 —^—sin a sin у — cos a cos у

Po dosadení do (4) dostáváme

16P2 + (a2 f b2 - c2 - ď2)2 = 4a262 + 4c2ď2 + 8<tó -

a + у
— 1 babcd cos2

2

a odtial’ už bezprostredne vyplývá (1) a (1').
Skór ako přejdeme к dókazom implikácií VL a V2, pripo-

meňme si známe fakty. Uvažujme kružnicu k so stredom S
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a dva rožne body M, N na kružnici k. Nech o, o sú polroviny
určené priamkou MN a bod leží v polrovine q (ak S leží
na priamke MN, tak leží v obidvoch polrovinách o, a)
obr. 33. Nech cp je velkost’ uhla MSN. Vieme, že bod X
polroviny o leží na kružnici k vtedy a len vtedy, ak uhol MXN

pozři

1
je —<p, alebo X je niektorý z bodov M, N. Podobné bod Y

polroviny a leží na kružnici k vtedy a len vtedy, ak uhol MYN
1

je 7Г — ~(p, alebo Y je niektorý z bodov M, N.

Z uvedeného vyplývá, že ak vrcholy štvoruholníka ABCD
ležia na jednej kružnici, tak a у — n. Naopak, ak a -f у = n,
tak podlá vyššie uvedeného bod C leží na kružnici opísanej
trojuholníku ABD. Teda štvoruholník ABCD je tětivový
vtedy a len vtedy, ak a + у = 7r.

Pri pevných velkostiach stráň a, b, c, d obsah P je najváčší
právě vtedy, ked je najváčšie číslo 16P2. Podlá vztahu (1)
najváčšia možná hodnota čísla 16P2 je

4 (ab + cdf - (a2 + 62 - c2 - ď2)2.

Ak štvoruholník ABCD je tětivový, tak a 4- у = тс. Potom
a + У

cos —— 0, a teda P nadobúda najváčšiu možnú hodnotu.

Tým sme ukázali pravdivost’ implikácie \Л>.
Ukážeme teraz pravdivost’ implikácie Vi, К dokážu prav-

divosti implikácie Vi na základe uvedeného je potřebné
dokázat’ toto: ak a, b, c, d sú strany (nějakého) konvexného
štvoruholníka, tak existuje tětivový štvoruholník so stranami
a, b, c, d.

2
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Predpokladajme, že existuje konvexný štvoruholník so
stranami a, b, c, d. Potom podia (1) platí

4 {ab -j- cd)2 — (a2 + b2 — c2 — d2)2 —

— 16P2 -f 16abcd cos2 —.
2

Odtiaí vyplývá

4 {ab + cd)2 — {a2 + b2 c2 - d2)2 > 0,
a teda

(a2 -f b2 — c2 — d2)2
4 {ab -f cd)2

< 1.

Teda existuje číslo (p, 0 < cp < тг také, že

a2 -v b2 — c2 — d2
cos (p = 2 {ab -f- cd)

Označíme

x =]/a2 + b2 — 2ab(5) COS (p.

Potom platí

a2 + b2 — c2 — d2
x2 a2 + b2 — 2ab

2ab + 2cd

a2 + b2 — c2 — J2
= c2 - i J2 + 2cd

2ab 4 2cd
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a teda

jc2 — c2 ^2 _ 2cd cos (n — qj).
Lahko vidíeť, že možno zostrojiť trojuholníky o stranách
a, b, x а c, d, x. Ak ich zostrojíme tak, že budú mať spoločnú
stranu dížky x a ležať v opačných polrovinách určených touto
stranou, tak ich vrcholy určujú konvexný štvoruholník so
stranami a, b, c, d, ktorý je podfa (5) a (5') tětivový.

(5')

A-P-2

Jsou-li A i, A‘2, A3 vrcholy ostroúhlého trojúhelníku, pak
nejmenší kruh, který je obsahuje, je kruh omezený kružnicí
opsanou trojúhelníku A1A2A3. Nejsou-li body A i, A2, A3

vrcholy ostroúhlého trojúhelníku a jsou-li aspoň dva z nich
navzájem různé, pak nejmenší kruh, který obsahuje body
A1, A2, A3, je kruh omezený Thaletovou kružnicí nad nejdelší
z úseček A1A2, A2A3, Л1А3. Dokažte.

Riešenie. Najprv upřesníme, čo znamenajú šlová »naj-
menší kruh«. Najmenší kruh (S; r) obsahujúci body A1, A2, A3
je kruh s týmito dvomi vlastnosťami: i) kruh (S, r) obsahuje
body A1, /Í23 ^3; ii) ak kruh (5'; r') obsahuje body Ai, A2, A3,
tak buď r < r', alebo r — r' a S = S'.

Dahko vidieť, že to nie je najmenší kruh v zmysle množi-
novej inklúzie.

Najprv předpokládáme, že body Ai, A2, A3 nie sú vrcholy
ostroúhlého trojuholníka a aspoň dva sú navzájom rožne.
Bez újmy na všeobecnosti móžeme předpokládat’, že "A1A2 je
najdlhšia z úsečiek A1A2, A2A3, A1A3.

Ak body A1, A2, A3 ležia na jednej priamke, tak bod A3
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leží na úsečke A1A2. Potom kruh ohraničený Thalesovou
kružnicou nad úsečkou A1A2 obsahuje aj bod A3.

Ak body A1, A2, A3 neležia na priamke, tak tvoria vrcholy
pravoúhlého alebo tupouhlého trojuholníka. Pravý alebo tupý
uhol je proti najdlhšej straně A1A2. Potom zase body A\,
A2, A3 ležia vnútri kruhu ohraničeného Thalesovou kružni-

1
cou nad úsečkou A1A2. Tento kruh má poloměr — A1A0.

Naopak, každý kruh obsahujúci body Ai, A2, A3 obsahuje
1

úsečku A\Az,a teda buď má poloměr váčší ako — A1A2, alebo

je ohraničený Thalesovou kružnicou nad touto úsečkou.
Teraz budeme předpokládat’, že body A±, Ao, A3 sú vrcholy

ostrouhlého trojuholníka. Nech A je střed opísanej kružnice
tomuto trojuholníku a r jej poloměr. Zrejme kruh (S; r) má
vlastnost’ i). Nech kruh (S'; r') obsahuje body A\, A2, A3
a je rózny od kruhu (S; r). Kružnice (5; r) a (S'; r') sa musia
přetínat’ v dvoch bodoch X, Y. Tětiva XY nemóže byť prie-
merom kružnice (S; r). Teda dělí kružnicu na dva nerovnaké
oblúky. Keby bolo r' 5^ r, tak kratší oblúk XY kružnice
(S; r) leží v kruhu (S'; r). Keďže body Ai, A2, A3 ležia na
kružnici (S; r) a v kruhu (S'; r')3 tak ležia na tomto kratšom
oblúku. Bez újmy na všeobecnosti móžeme předpokládat’, že
bod Az leží medzi bodmi A±, A3. Potom však uhol A1A2A3
je tupý, čo je spor s predpokladom. Teda r' > r. Ukázali
sme, že kruh má aj vlastnost’ ii).

Poznámka. Úloha bola tiež úlohou В - I - 4 28. ročníka

Matematickej olympiády. Čitatel1 móže nájsť iné riešenie úlohy
v príslušnej brožúrke.
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A - P-3

Pre každé kladné reálné čísla xi, х%, ..., xn platí

1 1
— + — + + — | ^ n2.
X\ X2

1
• + Xn) |(6) (xi + *2 + • •

xn

Kedy platí rovnost’ ?

Riešenie. Nerovnost’ (6) dokážeme matematickou indukciou
a súčasne ukážeme, že rovnost’ platí vtedy a len vtedy, keď
xi = x2 = ... = xn.

Pre n — 1 nerovnost’ (6) vždy platí:

1
JCi . — = 1 ^ l2.

X\

Pre n = 2 jednoduchými úpravami dostáváme

(*1 + X2)2 (Xl — X2)2 + 4xi^2
(ДГ1 + *2) (ч + J - X1X2

(xi — X2)2
X1X2

= 4 + 4.
X1X2

Zrejme rovnost’ platí právě vtedy, keď xi = X2.

Predpokladajme, že platí (6). Označíme a = xi -f ... + xn,
1 1

b = + ... +— •

Xi Xn

111



Potom

1 1
(•*1 + ... + xn + i) I + ... +

XI %n + 1

(7)
1 1

— (<z + xn +1) I b 4’ — ab + bx + 1.i ~h a.n +
Xn + 1 Xn + 1

Podlá indukčného předpokladu platí

n2,ab

a teda

n2
b

a

Zo (7) dostáváme

(*1 + . . . + Xn +1) ^ + • • . + )
1 1

(8)
Xn + 1

1
^ n2 + a + bxn + 1 + 1.

Xn + 1

Přitom rovnost’ platí vtedy a len vtedy, ak ab — n2, tj.

Xí = X2 — ... = xn.

Jednoduchou úpravou dostaneme

a2 + n2 x2n + i1a n

+ • xn +1 —
Xn + 1

(a — nxn + i)2 + 2anxn +1

n a naxn +1

- ^ 2.
naxn +1
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Rovnost’ platí právě vtedy, ked a = nxn + i, tj. xn + i =

1
= — (*i + • • • + xn)- Dosadením do (8) dostaneme

«

/1
(*1 + . . . + Xn + l) ^ -j- . . . + )

1
rfi + 2n + 1 =

Xn + 1

= (n + l)2.

Přitom rovnost’ platí vtedy a len vtedy, keď ab = n2 a a —

= ПХп + 1, tj. Xi = X2 — . . . = Xn — Xn + !•

Iné riešenie. Cavá strana nerovnosti (6) sa dá napísať ako
1

súčet n — n(n — 1) sčítancov:

/*i x2\ lI + I + • • • + (
\X2 X\1 \

Xi Xn Xn - 1 Xn
+

X! Xn Xn Xn - 1

Xi Xn
Zrejme — = ...

Xi Xn

Pre i Ф j dostáváme

xi Xj Xi2 + Xj2 (xí — Xj)2 + 2XiXj

Xj Xi XiXj
> 2.

XiXj

Rovnost’ platí právě vtedy, keď Xi = Xj.
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Teda

1 1
(*i + ... + xn) I + • •. + *

Xi Xn

1
^ n ■ 1 + 2«(k 1).2 = w2.

Rovnost’ nastáva právě vtedy, keď xi = X2 — ... = xn.

A - P - 4

Jsou dány konečné množiny Mi, M2, Ms, M4. Symbolem
\M\ označme počet prvků množiny M. Dokažte, že platí

(9) |iVfi ej M2 и M 3 yj M4|
- \Mi n M2\ — !Mi n Ms\ — |Aíi n M4\ — \M2 n Ms\ —

- |M2 n M4| — \Ms n M4| + \Mi n M2 n ЛТз| +

;Aíi| -)- IAÍ2! 4~ \Ms\ |M4| —

+ IM] n M2 n M4| + |Mi n М3 n M41 +
4 M2 n М3 n M4| Mi n M2 n М3 n M4|.

Riešenie. Nech m je počet prvkov množiny M\ vj М2 U
u М3 kj M4. Rovnost’ (9) dokážeme matematickou indukciou
podlá m.

Označíme
a = |Mij 4~ IM2I 4~ !M3| 4~ |M4|,
b = |МщМ2| + |Mi n Мз| -4 |Mi n M4| 4-

4- |Мг n Мз| 4- IM2 n M4| 4- М3 n M4j,
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с = \Mi n M2 о Мз| + íМ\ n М2 n M4j +
-f |Mi n M3 n M4I + |M2 n М3 n M4I,
Mi n M2 n М3 n M4I.

Rovnost’ (9) je potom ekvivalentná rovnosti

(10) m = a — b + c — d.

Nech m — 1. Potom množina Mi u М2 u М3 u M4 má

jediný prvok x, a ten patří do i množin, i — 1, 2, 3, 4. Lahko
vidieť, že platí toto:

Ak i = 1 (teda x patří len do jednej z množin Mi, М2,
М3, M4), tak a = 1, 6 = c = í/ = 0 a teda (10) platí.

Ak i = 2, tak a = 2, b = 1, c = d = 0 a zase (10) platí.
Ak i = 3, tak a = 3, b — 3, c = 1, <i = 0. Potom 1 —

= 3 — 3 f- 1 -j- 0 a (10) platí.
Ak i - 4, tak a = 4, 6
Predpokladajme, že m

ktorých zjednotenie má & prvkov. Nech x je lubovolný prvok
množiny Mi и М2 u М3 u M4. Označíme

1 a zase platí (10).4, íí6, c

k 1 a (9) platí pre množiny,

Ail - M,
M2 — {x},
M3 — {л},

M4' = М4 - {jc}.

Mi'
М2
М3'

Ďalej označíme

а |M'iH-|M'2|+|M'3|+!M'4|,

a podobné i', c, ď.
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Podia indukčného předpokladu platí

(И) k = a' - V + c' - ď.

Prvok x patří do i množin, i = 1, 2, 3, 4.
Ak i = 1, tak (2 = a' + 1, b — b', c = c,d = ď a podlá (11)

m = &-f-l = a — 6+c —

tj. platí (10).

Ak i = 2, tak a = a' + 2, 6 = 6' + 1, c = c', d — ď
a podlá (11) máme

ш — k -j~ 1 — k I 2 — 1 — д — 6 -f- c — d.

Podobné pre i = 3 máme a — a + 3, b = + 3, c =
= c' + 1, d = ď. Pre i = 4 je a = a' + 4, 6 — 6' -f- 6,
c = c' -f- 4, d = ď + 1. V obidvoch prípadoch pomocou (11)
dostáváme rovnost’ (10).

* ^щтжзт
Poznámka. Tvrdenie úlohy je špeciálnym prípadom vse-

obecného tvrdenia, ktoré sa nazýva princip zapojenia a vypo-

jenia alebo princip inklúzie a exklúzie. Jeho přesná formu-
lácia je táto: nech Aíi, М2, ..., Mn sú konečné množiny.
Pre lubovolnú neprázdnu množinu T c= (1, 2, ..., n) ozna-
číme Mr prienik všetkých tých množin Mi, pre ktoré i e T.
Potom platí

IAÍíU ... u Mn\ =2(-l)|r| + 1.\MT\,(12)
T
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sčitujeme cez všetky neprázdné podmnožiny T množiny
{!> 2, ..., n}.

Špeciálnym prípadom rovnosti (12) je rovnost’ (9) alebo
jednoduchá rovnost’

\A и B\ = \A\ + |5| - i An B\.

Dókaz rovnosti (12) je rovnaký, ako uvedené riešenie úlohy
(jediný rozdiel: i — 1, 2, n).

Iný dókaz rovnosti (12) možno urobit’ matematickou in-
dukciou podlá n. Stačí si uvědomit’, že každá neprázdná
podmnožina množiny {1, 2, ..n + 1} má jeden z tvarov
T, T и [n + 1}, {n -f 1}, kde T je neprázdná podmnožina
množiny {1, 2, ..n).

SOUTĚŽNÍ ÚLOHY I. KOLA

A - I - 1

Označme Pa obsah trojúhelníku A1A2A3 а Рц obsah
trojúhelníku B1B2B3. Jestliže \AiAk\ ^ \BíBjc\ pro všechny
dvojice indexu 1, 2, 3 a v trojúhelníku A1A2A3 není žádný
úhel tupý, pak Pa ^ Pb- Dokažte.

Riešenie. Označíme

\BiBjc\
Pik = \AíAjc\
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pre každú dvojicu i, k, i Ф k čísiel 1, 2, 3. Podlá zadania
úlohy platí

0 < pik < 1.

Bez újmy na všeobecnosti móžeme předpokládat’, že />12 ^ />23,
pn-

Lahko zostrojíme bod C ležiaci v tej istej polrovine určenej
priamkou BiB2 ako bod B3 a taký, že trojuholníky A\A2A3
а B1B2C sú podobné. Pre dížky ich stráň platí

Pl2

|BiC| — />i2 \A1A3l, \B2C\ = руг IZÍ2ZÍ3I} \B\B2\ =/>12 \AiA2\.

Obsah P trojúhelníka B\B2C je potom

P — Piz2-Pa Ф Pa-

Nech priamka q prechádza bodom B3 a je rovnoběžná
s priamkou B1B2 a r prechádza bodom C a je kolmá na B\B2.
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Priesečník priamok B\B> a r označíme X (obr. 34). Nijaký
uhol v trojuholníku А\А2Аз nie je tupý, teda ani uhly B2B\C
a B1B2C nie sú tupé. Z toho vyplývá, že bod X leží na úsečke
B1B2. Nech B'3 je priesečník priamok q a r.

Uvažujme dve polroviny g a a určené priamkou r. Nech
o obsahuje bod Bi a g obsahuje bod B2. Ak bod B3 leží v pol-
rovině g, tak |#ьВз1 ^ |£ь6з'|. Kedže |i?iZ?3| = P13 \AiA3\ ^
^ P12 \AiA3\, tak máme < \BiC\.

Podobné, ak bod B3 leží v polrovine a, tak \В2Вз\ ^ \B2B3\.
Kedže |^2^з! = p23 \A2A3\ ^ pi2 \A2A3i, tak dostáváme
\B2B3'\ ^ |B2C|.

V obidvoch prípadoch bod B3 leží na úsečke XC, teda

\ХВз\ ^ \XC\.

Obsah Pb je rovnaký ako obsah trojuholníka B1B2B3, a pre
ten platí

11
Pb = - \BiB2\. \XB3'\ < - \BiB2\.\XC\ = P ^ PÁ.

A - I - 2

Najděte délky stran konvexního čtyřúhelníku, jehož nejdelší
strana má délku 13 cm a nejkratší 3 cm, víte-li, že jeho obsah
je 96 cm2.

Riešenie. Využijeme vztah (1) dokázaný v úlohe A - P - 1.
Máme dve možnosti: buď najkratšia a najdlhšia strana sú
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prilahlé, alebo protilahlé. Použijeme označenia z riešenia
úlohy A - P - 1.

Uvažujme najprv případ, že najkratšia a najdlhšia strana
sú prilahlé. Označíme ich a, b. Potom platí

a + У
Keby bolo c < 13 alebo d < 13 alebo cos —-— Ф 0, tak

podlá (Г) by platilo

1
P2 = — (-3 + 13 + c + d) (3 - 13 + c + d).16

. (3 + 13 - c + d) (3 + 13 + c - d) - 39a/cos2 =

1
= — (10 + c + d) (-10 + c + d) (16 - c + d) .16

а +У
• (16 + c — d) — 39cd cos2 ——■—

• (162 - (c - df) - 39cd cos2 < — (262 - 102) . 162 =2 16

= 962.

1
= ^((^ + ^)2-io2).

1

Podlá podmienky úlohy má byť P — 96, a teda nutné c = d —

= 13 a a + у = те.
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Podobné postupujeme v případe, ak najdlhšia a najkratšia
strana sú protilahlé. Označíme najkratšiu stranu a = За naj-
dlhšiu c — 13. Potom platí

a = 3 ^ b ^ c = 13,

a = 3^d^c=\3.

Podlá (!') dostaneme podobné ako vyššie

1
P2 = - ((6 + J)2 - 102) (162 - {b - rf)2) -16

a + у
— 39M cos2 —-— .

2

a + 7
Keby bolo 6 < 13 alebo < 13 alebo cos —-— Ф 0, tak

platí
1

P2 < — (262 - 102).162 = 962.16

Keďže P = 96, tak z uvedeného vyplývá, že £=13, d — 13
a + у

a cos —-— = 0, tj. a -f- у — 7Г.

Zistili sme, že podmienke úlohy vyhovuje jedine tětivový
štvoruholník o stranách 3, 13, 13, 13.

Iné riešenie. Tětivový konvexný štvoruholník o stranách
a, £, c, d má podlá vztahu (1) dokázanom v úlohe A - P - 1
obsah 96.
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Ukážeme, že je to jediný štvoruholník, ktorý vyhovuje
podmienke úlohy. Kvóli zjednodušeniu našich úvah je uži-
točné dohodnúť sa na jednom pojme. Budeme hovořit’, že
štvoruholník má vlastnost’ Q, ak je konvexný, jeho najkratšia
strana má dížku 3 a najdlhsia strana má dížku 13. Najprv
dokážeme pomocné tvrdenie: ak štvoruholník s vlastnosťou Q
nemá tri strany dížky 13, tak existuje štvoruholník s vlast-
nosťou Q, ktorý má od něho váčší obsah.

Dokážeme pomocné tvrdenie. Uvažujme štvoruholník ABCD
s vlastnosťou Q, ktorý nemá tri strany dížky 13. Nech a, b,
c, d sú dížky stráň DA, AB, BC, CD. Móžeme předpokládat’,
že DA je najkratšia strana, tj. a — 3. Keďže štvoruholník
ABCD nemá tri strany dížky 13, tak jedna zo stráň AB, BC,
CD je kratšia ako 13 (a jedna je 13). Zrejme stačí uvažovať
případy \)b< 13, c — 13 a ii) b — 13, c < 13.

Označíme и dížku úsečky AC (pozři obr. 35). Lahko vidieť,
že и < 13 -f 13 (lebo и <Ъ -\- 13). Teda móžeme
zostrojiť trojuholník ACB' o stranách u, 13, 13 a taký, že

В

Obr. 35
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bod В' leží v tej istej polrovine určenej priamkou AC ako
bod B. Uahko vidieť, že štvoruholník AB'CD má vlastnost’ Q
a obsah váčší ako štvoruholník A BCD (lebo má váčsiu stra-
nu AB v případe i) a váčšiu stranu BC v případe ii)). Tým je
pomocné tvrdenie dokázané.

Předpokládá jme, že štvoruholník ABCD má vlastnost’ Q.
Ak dížky jeho stráň sú 3, 13, 13, 13, tak pre jeho obsah padla
úlohy A - P - 1 platí

1 a +y
— 3.133 cos2 —-— =

2

a + У
— 3.133 cos2 —-— .

2

P2 = —.36.16.16.16
16

962

a+y
= 96, tak nutné cos —- — = 0, teda oc -f- у = тс. То

ale znamená, že ABCD je tětivový štvoruholník. Naviac, ak
je netetivový, tak jeho obsah je menší ako 96.

Podlá pomocného tvrdenia, ak štvoruholník má vlastnost’ Q
a nemá tri strany dížky 13, tak existuje štvoruholník s vlast-
nosťou Q o stranách 3, 13, 13, 13 a s váčším obsahom.

Z uvedeného vyplývá, že jediný štvoruholník vyhovujúci
podmienke úlohy je tětivový o stranách 3, 13, 13, 13.

Ak P

A - I - 3

V rovině je dána konečná množina bodů. Každý z nich je
označen právě jednou ze tří barev, a přitom je každá barva
použita alespoň pro jeden bod. Dokažte, že existuje kruh,
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který obsahuje po jednom bodu dvou barev a alespoň jeden
bod třetí barvy.

Riešenie. Označíme L danú konečnú množinu bodov.

Zrejme existuje kruh, ktorý obsahuje všetky body množiny L.
Cahko vidieť, že existuje kruh Ко s týmito dvomi vlastnosťa-
mi:

i) kruh Ко obsahuje aspoň jeden bod každej farby;
ii) ak kruh К je taký, že К n L má menej prvkov ako Ко n L,

tak К neobsahuje body všetkých troch farieb.
Ukážeme, že kruh Ко je hladaný kruh, tj. obsahuje len

po jednom bode dvoch farieb.
К dókazu potřebujeme pomocné konštrukcie. Ak kruh К

má střed 5 a poloměr r, tak jeho hranica h (К) je kružnica so
stredom a polomerom r.

Uvažujme kruh К — (S; r). Nech r' je najváčšie z čísiel
\SX\, X e К n L. Potom r r. Ak K' — (S; r'), tak zrejme
platí K' n L = К n L a existuje bod množiny L na hranici
h (К'). Teda v dálšom bez újmy na všeobecnosti móžeme
vždy předpokládat’, že h (К) n L Ф 0.

Dokážeme teraz prvé pomocné tvrdenie:
Ak К n L má aspoň dva prvky, tak existuje kruh K' taký, že
KnL — K'nLah (К') nlmá aspoň dva prvky.

Podlá vyššie uvedeného móžeme předpokládat’, že h (K) n
n L Ф 0. Nech A e h (K) n L, tj. A je bod množiny L
ležiaci na hranici kruhu K.

Ak bod X patří do kruhu К, X Ф A, tak označíme Sx
priesečník osi súmernosti úsečky AX s priamkou AS. Lahko
vidieť, že bod Sy leží na úsečke AS. Nech Xo e К o L,
Xo Ф- A je taký, že pre každé X e К n L, X Ф A platí
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|S*0S| ^ \SXS\. Existencia takého bodu Ar0 vyplývá z toho,
že množina К n L — {A} je konečná a neprázdná (lebo
К n L má aspoň dva body). Nech S' = Sx0 a r' — \Sx A\.
Ukážeme, že K' = (S', r') má požadovanú vlastnost’.

Zrejme К' с К a teda K' n L ^ К n L. Ak X e К n L,
tak buď X = A alebo X Ф A. Zrejme A e K'. Ak X Ф A,
tak |SXoAT| ^ |Ax(i5'x| + |5xA'|. Ale \XSx\= a|č>x0>SxH-
+ |£д:Л| = r'. Teda X E K'. Zrejme AyoATo| = r a teda Xo
leží na hranici kruhu K'.

Dokážeme druhé pomocné tvrdenie:
Ak A e h (К) n L, tak existuje kruh K' taký, že K' n L =
= К r L {A}.

Nech d je najmenšie z čísiel |XS|, kde X e L — K. Potom
d > r. Na priamke AS zvolíme bod S' taký, aby platilo |Л5[ <

d + r
< \AS'\ < ——

X e L n К (ak také X neexistuje, tak stačí položit’ r'
Ukážeme, že K' — (S'\ r') je hladaný kruh.

. Nech r' je najváčšie z čísiel |AiS'i, X Ф A,

r)•

Ak X e LnK, X ф A, tak \S'X\ < \SX\ + |55'| ^
[č>'/4[. Z toho vyplývá, že j5'/í| > r,< |5Л| + \SS'\

a teda A nepatří do K’.
r í -

+ \S'S\ < |S'zí| f |S'S\ ф d. Z definície čísla d vyplývá,
že X e K. Ukázali sme, že L n K' c= Lr\K — {A}.

Naopak, nech X e L n К, X Ф A. Potom podlá definície
čísla r' je \XS'\ ф r a teda X e L n K'.

Tým je druhé pomocné tvrdenie dokázané.
Dokážeme teraz, že kruh Ко je hladaný kruh. Budeme

dokazovat’ sporom. Předpokládáme, že kruh Ко obsahuje

Nech X e LnK'. Potom \XS\ ф |АА'| + \S'S>
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aspoň po dva body dvoch farieb, napr. aspoň dva body prvej
farby a aspoň dva body druhej farby. Podra prvého pomocného
tvrdenia možeme předpokládat’, že na hranici h (Ко) ležia
aspoň dva body množiny L. Označíme ich A, B. Buď sú
obidva tretej farby, alebo aspoň jeden z nich, povedzme A,
je jednej z prvých dvoch farieb. V obidvoch prípadoch exis-
tuje vln Ко bod X Ф A, ktorý je rovnakej farby ako bod A.
Podlá druhého pomocného tvrdenia existuje kruh К taký, že
Kn L A}. Kruh К obsahuje body všetkých
troch farieb, a to je spor s vlastnostem ii) kruhu Ко.

K0nL i

Poznámka. Úlohu možno riešiť aj mnohými inými postup-
mi. Například vhodnou kruhovou inverziou možno úlohu
previesť na Madame polroviny g, ktorá obsahuje po jednom
bode dvoch farieb a aspoň jeden bod tretej farby. Nájsť takú
polrovinu o je jednoduchšie.

A - I - 4

Pre každé kladné reálne čísla x\, ..., xn, уъ ■ • Уп platí

4rí11
N(13) > —

— n

ХкУк 2 (** + УкУk = 1
k - 1

Dokážte. Kedy platí rovnost’?

Riešenie. Nerovnost’ (13) je ekvivalentná s nerovnosťou

1
(х/с Ф Ук)2 . ^ —— > 4n2.

ХкУк
(14)

кk = 1
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Zrejme platí

П Пn n

v Ук2 — 2 У xkyk.
k = i

0 ^ 2 (** — Ук)2
k - 1

Z Xk2 +
k = 1

Z,
k = 1

Teda

JíПП

2 (x* + ук)2 = 2 X&2 + 2 Ук2 +
л - 1k = 1* = 1

пп

г 2 2 >42
k = 1 * = 1

п

Rovnost’ platí vtedy a len vtedy, ak 2 (x* — Ук)2 = 0, tj. ak
к - 1

** =Ук pre k = 1, 2,
Z uvedenej nerovnosti dostáváme

П П П П

11

22 I
k = i

2(x* f Ук)2 ■
—- > 4 .

ХкУк
ХкУк ■

ХкУк
к = 1 к = 1к = 1

(15)

Podlá nerovnosti (6) z úlohy A - P - 3 platí

П П

1

2 2(16) > n2.ХкУк ■

ХкУк
к = 1 к = 1

Odťial pomocou (15) už vyplývá nerovnost’(14), a teda aj (13).
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Rovnost’ v nerovnosti (13) nastáva právě vtedy, keď platí
rovnosť v nerovnosti (15) a (16), a to je jedine v případe xi =
= yi= • • • = xn= уn.

A - I -5

Na škole pracuje 64 žiakov v piatich záujmových krúžkoch.
Každý krúžok má aspoň 19 členov. Žiaden žiak nepracuje
vo viac ako troch krúžkoch, ale každé tri krúžky majú aspoň
jedného spoločného člena. Dokážte, že existujú dva krúžky,
ktoré majú spoločných aspoň páť členov.

Riešenie. Označíme K\, ..., /С5 množiny členov prvého
až piateho krúžku. Podlá zadania úlohy žiadne štyri z mno-
žín /Ci, ..., /С5 nemajú spoločný prvok.
Označíme (i,j, l — 1, 2, ..., 5):

ki = \Ki\, kij = \Ki n KjI, kiji = Kj n Kj n Кi\.

Podlá zovšeobecnenia (12) úlohy A - P - 4 platí

5

ž kj + 2 kiji.
i <j < 1

2 ki64 = |/Ci и ... и K5\
i < ii = 1

Zo zadania úlohy vyplývá, že кщ > 1, ki > 19.

Teda

5

2 ř,>5.19 = 95,
i = 1

128



jhn g
i < j < i

. i = 10.

Teda

5

2 ki! = 2 k, + 2 km - 64 > 95 4- 10 - 64 = 41.
i <j i = 1 i < i < l

Keby bolo každé kц menšie ako 5, tak

^><g.4=
* < j

10.4 - 40.

To však nie je, teda existujú také dva indexy i, j, že кц > 5.
To ale znamená, že krúžky K{, Kj majú aspoň páť spoločných
členov.

A - I -6

Riešte sústavu rovnic s neznámými xi, ..., xn (c, d sú
reálne čísla):

—2xi
Xi — 2X2

4- *2 = C,

-f- Хз — c,

(17)
Xn — 2 2xn _ i “j- Xn c,

Xfi — i — 2xn + d = c.
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Riešenie. Zo zadania úlohy vyplývá, že n > 2. Označíme
xre + i = d. Ak sčítáme prvých / rovnic sústavy (17), tak dosta-
neme rovnice

— Xi — Xi -f X2 = c,
— Xi — X2 + X3 = 2c,

(18)
— Xi — Xl + Xl + 1 = Ic,

— Xl — Xn + xn + 1 = nc.

Spočítáním prvých k rovnic (18) dostaneme pre k = 1, 2, ...

...3n:

1
(19) (^ + 1) *i + xjc +1 — 2 k (k -{- V) c.

Pre k = n oddal vyplývá

d 1
Xl = , T — T nc.n + 1 2

Pomocou (19) dostaneme

k k1 1
-k(k — l)c+ —— d — - nc = - k (k — 1 — n) c +
А П | 1 A A

Xk =

k
+ _Ll^n + 1

pre £ 1,2, ., n.
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Skúškou 1’ahko zistíme, že čísla

k1
Xk=-k(k n) C -f —d, k = 1, 2, ..., n

n | i
- 1

sú riešenia sústavy rovnic (17).

SOUTĚŽNÍ ÚLOHY II. KOLA

A - II - 1

Určete všechny w-tice reálných čísel *i, X2, ..., xn, která
vyhovují rovnicím

a:i2 — 3*1 -f 4 = *2

*22 — 3*2 + 4 = *3

(20)
X2n - 1 — 3xn _ 1 + 4 = xn

Xn2 — 3xn + 4 = *1.

Riešenie. Eahko vidieť, že w-tica 2, 2, ..., 2 je riešením
sústavy (20). Ukážeme, že je to jediné riešenie tejto sústavy.

Nech у = *2 — 3* -j 4. Z jednoduchej identity

у — x = x2 — 4* -j- 4 = (* — 2)2

vyplývá, že pre x Ф 2 platí у > *.
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Nech xiy x2, ..., xn je riešenie sústavy (20). Ak niektoré
Xi je rovné 2, potom z z-tej rovnice sústavy (20) vyplývá, že
Xi + i = 2, a z posledněj rovnice vyplývá xi = 2. Podlá prvej
rovnice je potom aj x2 — 2 atď. Úhrnom: ak niektoré Xi — 2,
tak xi — x2 — ... — xn =2.

Předpokládá jme teraz, že xi Ф 2. Potom aj X2 ф 2, ..

... xn Ф 2. Podlá vyššie uvedeného však platí
• )

X] < X2,

X2 < X3,

Xn — 1 ^ x1lj

Xn < Xi,

čo je spor.
Teda я-tica 2, 2, ..., 2 je jediné riešenie sústavy (20).

Iné riešenie. Sústavu (20) upravíme na ekvivalentnú
sústavu

xi2 — 4xi -f 4 = X2 — x\

X22 — 4X2 + 4 = X3 я:2

(20')
xn -i2 — 4x„ _ i + 4 = xn — xn - i

xn2 — 4xn + 4 = Xi — xn.

Ak spočítáme tieto rovnice, po jednoduchéj úpravě dostaneme

(xi - 2)2 + (x2 - 2)2 + ... + (xn - 2)2 = 0.

Riešením tejto rovnice je jediná и-tica čísiel 2, 2, ..., 2.
Skúškou zistíme, že táto w-tica je aj riešením sústavy (20).
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A - II - 2

Najděte všechny konvexní čtyřúhelníky, pro které je součet
délek dvou stran roven 6, součet délek zbývajících dvou stran
je 8 a obsah je 12.

Riešenie. Musíme uvažovat’ dve možnosti:

a) súčet dížiek dvoch prilahlých stran je rovný 6;
b) súčet dížiek dvoch protiřahlých stran je rovný 6.

Uvažujme případ a). Použijeme vzorec (Г) z úlohy A - P - 1.
Bez újmy na všeobecnosti móžeme předpokládat’, že

a 4- b = 6,
c -f d = 8.

Potom podlá vzorca (Г) platí

1
122 = — (—a + b + 8) (a — b + 8) (6 — c -f- ď)16

a + у
d) — abcd cos2 —-— ,(6 + c

a teda

1
(82 — (a — b)‘2) (62 — (c — d)2) — abcd cos2 —.16 2

Číslo na právej straně tejto rovnosti je vždy menšie alebo
rovné číslu

122 =

1 1
. 82.62 = . 82.62 = 22.62 = 122.

4216
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Teda musí platit’ rovnost’, a tá zrejme nastáva jedine v případe

a +y
a — b — 0, c — d — 0 a cos —-— = 0.

Z toho vyplývá, že a ~ b = 3, c — d — 4 a a -f у = тг.
Tento štvoruholník (deltoid) je riešením úlohy.

V případe b) dostaneme podobnou úpravou (teraz a -f c = 6,
6 + d = 8):

1
— (82 — (a — c)2) (62 — (b — d)2) — afcí/ cos2 —,16 2

122 =

a teda a = c — 3, 6 = ú = 4 а а+у=тг. Tento stvoř-
uholník (obdížnik) je tiež riešením úlohy.

Úhrnom, riešením úlohy sú dva konvexně štvoruholníky:
deltoid o stranách 3,4 a obdížnik o stranách 3,4.

A - II - 3a

Trojúhelník o stranách a, b, c má obsah P a trojúhelník
o stranách и, v, w má obsah Q. Dokažte, že pak platí

а2 (—M2 -j- a2 + zv2) -p b2 (u2 — v2 + w2) +
4- с2 (m2 -f- ^2 — w2) > 16 PQ.

(21)

Pro které trojúhelníky platí rovnost?

Riešenie. Označíme у uhol v prvom trojúhelníku ležiaci
proti straně c a <p bude uhol v druhom trojuholníku proti
straně w. Potom platí
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1
P = — ab sin y,

1
Q = — uv sin cp.

Podlá kosinusové) vety platí

c2 = a2 + b2 — 2ab cos y,
u2 -f v2 — w2 = 2uv cos (p.

Pomocou týchto štyroch identit nerovnost’ (21) přepíšeme na

ekvivalentný tvar

á2 (2v2 — 2uv cos (p) -f b2 (2u2 — 2uv cos (p) +
-f (a2 + b2 — 2ab cos y) 2uv cos (p > 4abuv sin у sin op.

Úpravou dostaneme nerovnost’

2 (a2v2 + b2u2) — Aabuv (cos у cos q + sin у sin rp) > 0.

Použitím vzorca pre kosinus rozdielu a jednoduchou úpravou
získáme nerovnost’

(22) (av — bu)2 -j- 2abuv (1 cos (y — (p)) > 0,

ktorá je ekvivalentná s nerovnosťou (21).
Pretože cos (y — q>) ^ 1, tak nerovnost’ (22) vždy platí.

Tým sme dokázali nerovnost’ (21).
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V nerovnosti (22) platí rovnost’ vtedy a len vtedy, keď
obidva sčítance sú rovné nule, tj.

av = bu

a

COS (y —(f) = 1.

и : v, tj. v případe, keďTo nastáva v případe у — cp a a : b
trojuholníky sú podobné a a, b, c a u, v, w sú odpovedajúce
si strany.

A - II - 3b

Nech k, m, n sú prirodzené čísla. Potom číslo

lm + 2Ш -f ... + (nk — \)m + [nk)m

je dělitelné číslom nk ~ l. Dokážte.

Riešenie. Označíme

\)m + (nk)m.Lk = Vn + 2m + ... + (nk

Matematickou indukciou dokážeme, že pre každé k je číslo Lk
dělitelné číslom nk ~1.

Pretože n1 ~ 1 = n° = 1, tak pre k = 1 tvrdenie zrejme
platí.

Předpokládáme, že Lk je dělitelné číslom nk ~1. Upravíme
výraz pre Lk + i takto:
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\m _|_ 2» + . . . + (и*)™ +
+ (nk + l)m + •... + (Пк + nk)m +
L/c + i

(23) +

+ ((n - 1) я* + l)m + • • • + ((я 1) -f

Podlá binomické) vety platí

(ni
(jnk + i)m = im + im - 1 .

Označíme

(:)■+... +í°. jm(nk)m~1Ai}=im~lJ

Teda

(jnk + i) ím + Aij.nk.m

Súčet v (j + l)-om riadku výrazu (23) potom bude

(jnk + \)m + ... -f (jnk + nk)m
+ nk (Ajj + ... + Ank.)

lm + ■ ■ • + (nk)m +
Lk + nk. Bj,

kde

Bj — A\j ... -j- Ankj.

Úhrnom z (23) dostaneme

L/c + i — Lk + (Lk nkBi) -j- ... -|-
"f (Lk + nkBn _ i)
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a teda

(24) Lk +1 — tiLk + nk (Вi -(- ... + Bn _ i).

Lahko vidieť, že Bi, B2, ..., Bn _ 1 sú prirodzené čísla. Podl’a
indukčného předpokladu, číslo L* je dělitelné číslom nk ~ l.
Z vyjadrenia (24) vyplývá, že číslo Lk ^ 1 je dělitelné číslom nk.

SOUTĚŽNÍ ÚLOHY III. KOLA

A - III - 1

Dokažte, že pro každé celé nezáporné číslo k je součin
(k + 1) (k 2) ... (k -f- 1980) dělitelný číslem 1980197.

Riešenie. Rozložíme číslo 1980 na súčin mocnin prvo-
čísiel:

22.32.5.11.1980

Stačí ukázat’, že súčin

Sk = (k + 1) \k + 2) ... (k + 1980)

je dělitelný číslami 22-197, 32’197, 5197 a ll197.
Lahko vidieť, že Sk je dělitelný číslom 2"° (lebo každé

druhé číslo je párne), a teda aj číslom 22’197. Podobné Sk je
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1980 : 3
= 3660, a teda aj číslom 32-197. Keďže 5.197<dělitelné 3

< 1980, každé piate číslo je dělitelné číslom 5, tak Sk je
dělitelné číslom 5197.

Z čísiel k + 1, k + 2, ..k + 1980 je právě 1980 : 11 =
= 180 dělitelné číslom 11. Niektoré však móžu byť dělitelné
aj číslom ll2. Keďže 16.II2 = 1936 < 1980, tak aspoň 16
z týchto čísiel je dělitelné číslom ll2. Ale aj ll3 = 1331 je
menšie ako 1980. Teda aspoň jedno z čísiel k + 1, ..., k (
4 1980 je dělitelné treťou mocninou čísla 11. Z uvedeného
vyplývá, že Sk je dělitelné číslom

Ц180 + 16 + 1 — Ц197

To sme chceli dokázat’.

A - III -2

Najděte velikosti stran rovnoramenného lichoběžníku, který
má nejdelší stranu 13 cm, obvod 28 cm a obsah 27 cm2. Existuje
takový lichoběžník, předepíšeme-li obsah 27,001 cm2?

L

X
I/

13

Obr. 36
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Riešenie. Zo zadania úlohy jednoducho vyplývá, že naj-
dlhšou stranou musí byť váčšia základňa.

Označíme dížku ramena л; a dížku kratšej základné y. Zo
zadania úlohy potom vyplývájú rovnice (pozři obr. 36):

2x + y + 13 = 28
(25)

13 • .v | mX2 27.
2

Z prvej rovnice vyjádříme j>:

у = 15 — 2x

a dosadíme do druhej rovnice. Po úpravě dostaneme

(14 - x).l;/2x - 1 = 27,

a teda

(14 — я:)2 (2.x(26) 1) = 272.

Keďže у je kratšia základňa, tak у íSJ 13, a teda x 1. Z prvej
rovnice (25) vyplývá, že 2x < 15. Úhrnom

15
(27) 1 x <

2 '

Potřebujeme nájsť všetky riešenia rovnice (26) vyhovujúce
podmienke (27).
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Podia nerovnosti medzi aritmetickým a geometrickým
priemerom kladných čísiel

(« -f v +u.v.w ^

máme (podlá (27) čísla 14 — x, 2x — 1 sú kladné):

x + 14 — л; -f 2x — l^3(141)^(14 - x)2 (2x 3

(28) = 93 = 272.

Rovnost’ nastáva jedine v případe 14 —- x = 2x — 1, tj. pre
x — 5. Teda jediné riešenie rovnice (26) je x = 5.

Z uvedeného vyplývá, že existuje jediný lichoběžník vyho-
vujúci podmienkám úlohy a to je lichoběžník o stranách
13, 5, 5, 5.

Z nerovnosti (28) vyplývá, že obsah lichoběžníka s naj-
dlhšou stranou 13 a obvodom 28 je menší alebo rovný 27.
Teda neexistuje lichoběžník s uvedenými vlastnosťami a ob-
sahom 27,001.

Poznámka. Rovnicu (26) možno riešiť aj tak, že pomocou
diferenciálneho počtu vyšetříme priebeh funkciejy =( 14 — x)2 .

• (2x — 1) a zistíme, že v intervale <1, 15/2) má jediné maxi-
mum v bode x = 5.

A- N1-3

Množina M vznikla z roviny vyjmutím tří bodů A, В, C,
které jsou vrcholy trojúhelníka. Jaký je nejmenší počet kon-
vexních množin, jejichž sjednocením je M ?

141



^ с

Obr. 37

Riešenie. Ukážeme, že najmenší počet konvexných mno-

žín, ktorých zjednotenie je množina M, je tri. К tomu je
potřebné dokázat’ dve tvrdenia: i) množina M sa dá vyjadriť
ako zjednotenie troch konvexných množin a ii) množina M
sa nedá vyjadriť ako zjednotenie dvoch konvexných množin.

Dokážeme najprv tvrdenie i), a to tak, že zostrojíme tri
konvexně množiny K, L, N také, že M^KuLuN.

Nech К je množina všetkých bodov, ktoré ležia vnútri
uhla ABC alebo vnútri úsečiek AB, BC (pozři obr. 37). Nech
L je množina všetkých bodov, ktoré ležia mimo polroviny
ABC alebo na polpriamke opačnej к polpriamke AB (okrem
bodu A). Podobné nech N je množina všetkých bodov, ktoré
ležia mimo polroviny BCA alebo na polpriamke opačnej
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к polpriamke СВ (okrem bodu C). Lahko vidieť, že К, L, N
sú konvexně množiny a že ich zjednotenie je množina M„

Dokážeme teraz tvrdenie ii) sporom. Predpokladajme, že
množina M sa dá vyjádřit’ ako zjednotenie dvoch konvexných
množin P, Q. Na priamke AB zvolíme tri rózne body U,
V, W také, že bod A leží vnútri úsečky UV a bod В leží vnútri
úsečky VW (pozři obr. 38). Body U, V, W patria do množiny

M a teda aj do zjednotenia P и Q. Potom niektorá z mno-
žín P, Q musí obsahovat’ dva z týchto troch bodov. Nech je
to množina P. Móžu nastat’ tri případy: a) U, V e P, b)č/,
W e Рас) V, W e P. Keďže množina P je konvexná, tak
v případe a) a b) máme A e P a v případe c) máme Be P.
To je však spor s tým, že А, В ф M.

А - III-4

Nech ai < й2 < ... < an sú reálne čísla, /(*) = 2 \x —
i - i

— сц I, n párne. Nájdite minimum tejto funkcie.
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Riešenie. Pre n — 2 fahko zistíme priebeh funkcie / a zostro-
jíme jej graf (pozři obr. 39):

a1 a2

Obr. 39

f(x) = ai + a2 — 2x
f(x) = a2 — ai

/(x) = 2x — (CL\ + CL2) pre X > <22.

pre x < ai

pre ai ^ x ^ <22,

Ak x < ai, tak <21 + a2 — 2x > a\ + &г — 2ai = a2 — a\.

Podobné ak x > a2, tak 2x — (ai - - a2) > 2a> — {сц + <22) =
= a2 — ai. Z toho vyplývá, že funkcia / nadobúda svojho
minima a2 — ai v každom bode intervalu <ai, ai).

Ak n je 1’ubovol’né párne prirodzené číslo, n — 2k, tak
hodnotu funkcie / v bode x vieme vyjadriť ako súčet hodnot k
funkcií:

/(*) = (I* — «il + I* ви|) + (I* -

. . . (jx — <2&| + \x
«2I + |x — an _ 1!) +...

-

+ ll)-
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Každá z funkcií \x — <ц\ + |x — an + i _ *| nadobúda svoje
minimum an + i - i — Щ na intervale (a*, an + i - *>. Pre
tieto intervaly platí

Ol, a„ - i> 3 <a2, a„- 2> 2 ... 3 (ak, ak + i>.

Teda funkcia / nadobúda svoje minimum na najmenšom
z týchto intervalov (ak, ak +1) a hodnota tohoto minima je
číslo

k

2 (ak + i
i = 1

<h).

A - III -5

Riešte v obore celých čísiel sústavu nerovnic

3x2 + 2yz 5^ 1 + jy2
3y2 + 2,гх ^ 1 + z2
3z2 + 2xy 5^ 1 + x2.

(29)

Riešenie. Ak spočítáme všetky tri nerovnice, po jedno-
duchej úpravě dostaneme nerovnicu

(30) x2 + y2 -f z2 -f (x + у + z)2 ^ 3.

Každé riešenie sústavy nerovnic (29) je aj riešením nerovnice
(30). Ak x, y, z je celočíselné riešenie nerovnice (30), tak
nutné I*] ^ 1, |jyj 1, tj. x, y, z1, 1*1 -1, 0, 1. Ak
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1*1 = 1, tak podia prvej nerovnice (29) je 2у z ^ 1 — 3 4-
1. Tedajya: = — 1. Potom však |j;| —

= |я| = 1 a z druhej a tretej nerovnice (29) podobným
spósobom dostaneme xz — — 1 a xy — — 1. To však nie je
možné, lebo potom by bolo

x2y2z2 — xy.xz.yz = (—l)3 = — 1.

Teda x — 0. Podobné sa zistí, že musí byť у — z = 0. Skúš-
kou lahko overíme, že 0, 0, 0 je jediným celočíselným rieše-
ním sústavy nerovnic (29).

+ y* S -2 + 1 =

A - ill -6

Nech M je množina piatich bodov v priestore, z ktorých
žiadne štyri neležia v rovině. Nech je ďalej R množina sied-
mich rovin s vlastnosťami:

a) Každá rovina z množiny R obsahuje aspoň jeden bod
množiny M.

b) Žiadny z bodov množiny M neleží v piatich rovinách
množiny R.

Dokážte, že existujú také dva rožne body P, Q, P e M,
<2 e M, že priamka PQ nie je priesečnicou žiadnych dvoch
rovin z množiny R.

Riešenie. Nech M = {A\, ..., A5}. Nech R* je množina
tých rovin z množiny R, ktoré obsahujú bod Ai, i = 1, 2,..., 5.
Nech R*y je množina tých rovin z množiny R, ktoré obsahujú
body Ai, Aj. Teda Ry = Ry- n Rj. Podobné označíme Ry* =
= Ri n R, n R^t, Rнм = Ri n R; n Rfc n R/, i, j, k, 1 =
= 1,2, •.., 5, 1 ^ y, k, /, j k, /, k l.
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Keďže žiadne štyri body množiny M neležia v jednej rovině,
tak Rij/ci = 0 pre i < j < k < l. Podlá podmienky b) máme

4 pre i — 1, 2, ..., 5.
Číslo 3 |Ry*| udává počet rovin, ktoré obsahujú právě

i <j < k
tri body množiny M. Keďže každý bod leží najviac v štyroch
rovinách množiny R, tak máme

R<

3. V |Ryjfc|^4.5.
i < j < k

Teda

Z |Ry*l ^ 6.
i <j < k

5

Podlá podmienky a) je 2 [Rť 1= R|.
i = 1

Podía principu inklúzie a exklúzie (úloha A - P - 4) máme

5

Z Ry! + Z !Ry*l-7= Z IRil
i = i i < i i < j < k

Z tejto rovnosti vyplývá

5

z |Ry| = Z 'Rí\ + Z Rm\ - 7 < 5.4 + 6 - 7 = 19.
* < i i = 1 i <j < k

Kedže (’) = 10, tak sčítancov na lávej straně je 10 a aspoň

jeden musí byť menší ako 2. Teda existuje dvojica i <j taká,
že |Ry| < 1. Body A), Aj ležia teda najviac v jednej rovině
z množiny R, t.j. priamka AiAj nie je priesečníkom dvoch
rovin z množiny R.
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Korespondenční seminář МО

Cílem korespondenčního semináře bylo dále zvyšovat úro-
veň špičkových řešitelů MO, kteří nejsou z Prahy ani z Bra-
tislavy a neměli tak možnost pracovat v tamních seminářích
pro přípravu na МО. К účasti bylo předsednictvem ÚV MO
na základě výsledků v MO, návrhů KV MO a individuálního
zájmu pozváno asi 50 žáků, z nichž se přihlásilo a zúčastnilo
asi 30. Pravidelně jim byla rozesílána série sedmi poměrně
náročných úloh, které měli během 4—5 týdnů vyřešit. Došlá
řešení byla pak opravena, ohodnocena a spolu s rozmnoženým
komentářem vrácena účastníkům. Uvádíme znění všech úloh
v korespondenčním semináři zadaných.

1. Velká čísla

1.1 Najděte největší přirozené číslo v takové, že

O!) ! < 1010’\

a nejmenší přirozené číslo у takové, že y\ je násobkem čísla
io1010.
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1.2Dokažte, že kvadratická rovnice

88’. x2 + 1010 ° .x + 99‘ = 0

má dva různé reálné iracionální kořeny.
1.3 Napíšeme-li za sebou všechna čísla od 100 do 999,

vznikne dekadický zápis jistého čísla N. Dokažte, že N není
prvočíslem ani mocninou (s přirozeným exponentem větším
než 1) žádného přirozeného čísla.

1.4 Dokažte, že existuje mocnina dvou (s přirozeným ex-

ponentem), jejíž dekadický zápis začíná číslicemi

197919801981

1.5 Najděte dvě poslední nenulové číslice čísla 10001.
1.6 Dokažte, že při žádné volbě znamének není číslo e

±lv ±22* ± ... ± 595959 ± 606°b"

druhou, třetí, čtvrtou, pátou ani šestou mocninou žádného
celého čísla.1.7Dokažte, že mezi přirozenými čísly menšími než 10
existuje 1010 po sobě následujících složených čísel.

ío1*

2. Goniometrie

2.1 Najděte všechna reálná x, pro která platí

26 sin2 x2 + 12 cos 2x + 5 sin 2x = 13.
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2.2Najděte všechny trojúhelníky, pro jejichž vnitřní úhly
А, В, C platí

3
cos A + cosВ f cos C = — .2.3Najděte všechna reálná a, pro něž je funkce

/(x) = cos ax + cos x

periodická.2.4Jsou dána lichá přirozená čísla m, n. Najděle všechna
reálná x, pro která platí

1 1
sinwx + — COSnX + — .

coswx smmx2.5Bez pomoci tabulek, počítačky a logaritmického pra-
vítka vypočtěte

sin 47° + sin 61° — sin 11° — sin 25° — sin 83°.2.6Vyšetřete průběh funkce

/(x) = arcsin x + 3 arccos x + arcsin (2x V1 — x2)

v intervalu (-if)2.7Najděte všechna reálná x, pro něž platí

loge sin x + logsin x.cos x — 2.OS X
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3. Obsahy

3.1 V rovině je dáno několik pásů, žádné dva nejsou rovno-
běžné. Posuňte pásy tak, aby zachovaly své směry a obsah
jejich průniku byl co největší. (Pásem rozumíme část roviny
mezi dvěma rovnoběžkami. Dané pásy nemusí mít stejnou
šířku).

3.2 Dva shodné obdélníky jsou v rovině umístěny tak, že
jejich obvody mají 8 společných bodů. Dokažte, že obsah
jejich průniku je větší než polovina obsahu každého z nich.

3.3 Dokažte, že každý trojúhelníkový řez čtyřstěnu má
obsah menší než některá stěna.

3.4 Jakou polohu má krychle, vrhá-li na rovinu kolmou ke
směru světla stín s největším možným obsahem?

3.5 Je dán trojúhelník.
a) Umístěte do něho středově souměrný mnohoúhelník s co

největším obsahem.
b) Umístěte ho do konvexního středově souměrného mnoho-

úhelníku s co nejmenším obsahem.
V obou případech extrémní obsahy vyjádřete pomocí obsahu
daného trojúhelníka.

3.6 V jednotkovém čtverci je obsažen útvar U (ne nutně
souvislý). Pokud v U neexistují dva body vzdálené 0,001, je
obsah U menší než 0,3. Dokažte.

3.7 V jednotkovém čtverci je 102 bodů, žádné tři neleží
v přímce. Dokažte, že jisté tři z nich jsou vrcholy trojúhelníku
s obsahem nejvýše 0,005.
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4. Obdélníková schémata

4.1 Čísla 1, 2, n2 jsou zapsána ve čtvercové tabulce,
jejíž řádky jsou očíslovány indexy 1, 2, ..n a sloupce také.
Číslo 1 je na libovolném místě; číslo 2 je v řádku, který má
stejný index jako sloupec obsahující číslo 1; číslo 3 je v řádku,
který má stejný index jako sloupec obsahující číslo 2 atd.
Určete rozdíl součtu čísel v řádku obsahujícím číslo 1 a součtu
čísel ve sloupci obsahujícím číslo n2.

4.2 V obdélníkové tabulce jsou zapsána reálná čísla. Je
dovoleno současně změnit znaménka všech čísel v řádku nebo

ve sloupci. Je možno každou tabulku převést postupným
prováděním těchto změn na tabulku obsahující samá nezá-
porná čísla?

4.3 Do čtvercové tabulky 8x8 je zapsáno 64 nezáporných
čísel, jejichž součet je 1956. Součet všech 16 čísel ležících
na úhlopříčkách je 112. Čísla umístěná souměrně podle ně-
které úhlopříčky jsou si rovna. Dokažte, že součet čísel je
v každém řádku i v každém sloupci menší než 518.

4.4 Ve čtvercové tabulce nxn je zapsáno n2 čísel xvq (tak
značíme číslo v p-tém řádku a g-tém sloupci). Dokažte, že
je-li xtj + Xjk + Xfci = 0 pro libovolné tři indexy i, j3 k e

{1, 2, ...,«}, existují čísla fi, t<i3 ..., tn tak, že хц = Ц — tj
pro všechny i, j, e {1, 2, ..n).

4.5 Ve čtvercové tabulce nXn je zapsáno n2 čísel. Vyne-
cháme-li jakoukoliv podmnožinu řádků, která neobsahuje
všechny řádky (včetně prázdné), bude ve zbylé tabulce vždy
nějaký sloupec obsahovat jedinou nulu. Dokažte, že ať pak
vynecháme jakoukoliv podmnožinu sloupců, která neobsa-

152



huje všechny sloupce, bude ve zbylé tabulce vždy nějaký
řádek obsahovat jedinou nulu.

4.6 Ve čtvercové tabulce 8x8 je zapsáno 64 nenulových
čísel. Jediné z nich je záporné a není umístěno v rohu. Je
dovoleno změnit znaménka všech čísel nějakého řádku nebo
sloupce nebo řady rovnoběžné s úhlopříčkou (sem patří
i změna znaménka rohového čísla). Dokažte, že postupným
prováděním těchto změn nemůžeme nikdy dostat tabulku
obsahující samá kladná čísla.

4.7 Ve čtvercové tabulce 8 x 8 je zapsáno 64 čísel. Je dovo-
léno změnit znaménka všech čísel v libovolné její souvislé
části 3x3 nebo 4x4. Je možno každou takovou tabulku
převést postupným prováděním těchto změn na tabulku
obsahující samá nezáporná čísla ?

5. Posloupnosti

5.1 Dokažte, že pro každou posloupnost {an}, jejíž členy
jsou navzájem různá přirozená čísla, která nemají ve svém
dekadickém zápise číslici 0, platí:
Pro každé přirozené číslo k je

1 1
+ ~ + • • • +

ai аг

1 1
+ - < 29.

aic -1 cik

5.2 Je dána posloupnost reálných čísel {an}. Dokažte, že
ke každému přirozenému číslu m existuje přirozené číslo k
tak, že

k m

v СЦ — У Щ
= к + 1

= max \сц\
1 < « á тi = 1
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5.3Je dána posloupnost reálných čísel {an}, která má tuto
vlastnost: Existuje přirozené číslo m takové, že

0d1 4~ 4~ • • • 4~ 0,111

a pro každé přirozené číslo k je

dm + к — dk.

Dokažte, že existuje přirozené číslo p tak, že pro každé celé
nezáporné číslo k platí

°v 4~ av + i 4~ • • • 4~ dp + к = 0.5.4Uvažujme čtyři posloupnosti reálných čísel {an},
{6»}, {cn}, {dn} takové, že pro každé přirozené číslo n je

fln + 1 — dn 4“ bn
bn +1 = bn 4- Cn

Cn + i — cn 4“ dn
dn + i = dn 4~ cín

Dokažte, že pokud existují přirozená čísla k, m tak, že

&k + m — dni) bk — brii) Ck + m — Cni) dk — dni)+ m + m

pak je

a% = bi = c% = dv = 0.5.5Pro posloupnost reálných čísel {an} platí, že pro každé
přirozené číslo n je

2dn +1.dn 4~ dn + 2
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Dokažte, že pak pro každé přirozené číslo n je

tfl ~b <23 -f- ... -f- d‘ln +1 ÍÍ2 -f- <24 -)- ... &2n

П + 1 П

5.6 Jsou dána přirozená čísla ai, a-z. Pro přirozená čísla
n > 2 položme an = \an - 2 — an _ i|. Tak jsme definovali
posloupnost nezáporných celých čísel {an}. Je-li největší
člen této posloupnosti 1980, jaký je největší možný index
prvního nulového členu ?

5.7 Je dána posloupnost číslic {an} neobsahující číslici 9.
Ta určuje posloupnost {bn}, jejíž členy mají dekadické zápisy

h = Oi)
bz = О1Я2)
63 = (сцагаъ)
atd.

Dokažte, že posloupnost {bn} obsahuje nekonečně mnoho
složených čísel.
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ммо?

Na tomto místě bývá zpravidla otištěna zpráva o průběhu
mezinárodní matematické olympiády (MMО). V roce 1980 se
však MMO nekonala, neboť se nenašla země ochotná ji v tomto
roce uspořádat. Zbývá jen doufat, že tím nebude narušena
tradice, která se za uplynulých jedenadvacet let vytvořila.

Ve snaze poskytnout úspěšným žákům alespoň náhradní
možnost mezinárodního soutěžení zorganizovaly některé země
v červenci 1980 mezinárodní matematické soutěže obdobné
MMO.

Jedna z nich se konala ve finském Mariehamnu. Podobně
jako na MMO tam přijela osmičlenná družstva z Finska,
Maďarska, Švédská a Velké Británie — celkem zde tedy sou-
těžilo 32 žáků. Prvních deset z nich dostalo ceny. Nejlepšího
výkonu dosáhl Géza Bohuš z Maďarska, také v součtu bodů
celého družstva bylo Maďarsko na prvním místě.

Druhá mezinárodní soutěž se konala v Lucembursku ve

městě Mersch. Zde soutěžilo 34 žáků z Belgie (8), Holandska
(8), Jugoslávie (7), Lucemburska (3) a Velké Británie (8),
vedle toho byli přítomni »pozorovatelé«, a to čtyři z Alsaska
a dva z Lucemburska.
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Jedinou první cenu, která zde byla udělena, získal K. Schou-
tens z Holandska. Dále bylo uděleno sedm druhých cen
a jedenáct třetích cen. V součtu bodů byly na prvních místech
Velká Británie a Jugoslávie.

Konečně třetí mezinárodní soutěž se konala v Krakově za

účasti polských a rakouských žáků; nepodařilo se nám však
získat podrobnější informace.
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