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PREDHOVOR

Milí mladí priatelia a pracovníci v matematickej olympiádě,

kolekcia ročeniek matematickej olympiády (MO) začína
zvázkom, ktorý právě beriete do rúk, už svoju štvrtú de-
siatku. Nájdete v ňom ako obvykle prehíad o organizácii
a výsledkoch 31. ročníka MO, ktorý sa konal v školskom
roku 1981/82, všetky súťažné úlohy s riešeniami, vyber
úloh celoštátneho korešpondenčného seminára a podrobnú
informáciu o priebehu a výsledkoch 23. medzinárodnej ma-

tematickej olympiády (MMO) v Maďarsku.
Priebeh 31. ročníka MO a jeho výsledky sme sledovali

s ešte váčším záujmom než v predchádzajúcich ročníkoch.
To preto, že nás zaujímalo, ako sa osvědčí nová organizácia
školského kola súťaže. Po pátnástich rokoch odpadli vo vset-
kých kategóriách nepovinné přípravné úlohy a v středo-
školských kategóriách A - C ich nahradila klauzúrna súťaž
na závěr školského kola, ktorá sa uskutočnila na jednotlivých
středných školách v kategorii A v polovici decembra 1981
a v kategóriách В a C vo februári 1982. Predovšetkým možno
konštatovať, že v porovnaní s predchádzajúcim ročníkom
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takmer vo všetkých krajoch vzrástol počet gymnázií, ktorých
žiaci sa zapojili do riešenia úloh školského kola súťaže. Zvlášť
markantně sa to prejavilo v kategóriách В a C. Kým počet
účastníkov školského kola kategorie A vzrástol len mierne
(o 11,3 %), počty súťažiacich v kategóriách В a C sa zvýšili
o 54 %, resp. o 47,2 %. Vyššie nároky na súťažiacich v klau-
zúrnej časti školského kola mali za následok pokles počtu
účastníkov krajského kola v kategóriách A (o 33,1 %) а В
(o 14,5 %), ale zato sa zvýšilo percento úspěšných riešitelov
krajského kola v oboch týchto kategóriách (v kategorii A
zo 14% na 24,1 % a v kategorii В dokonca z 13,6% na

33,4 %). V kategorii C sa situácia vyvinula inak, keď v klau-
zúrnej časti školského kola bolo úspěšných až 72,3 % účast-
níkov, takže v niektorých krajoch z organizačných dóvodov
ani nebolo možné pozvat’ všetkých do krajského kola a zú-
častnili sa ho len tí, ktorí v klauzúre školského kola nazbierali
najviac bodov, ale v krajskom kole bolo úspěšných len 7,9 %
jeho účastníkov, čo je přibližné na úrovni predchádzajúceho
ročníka MO (8,2 %). Příčina tohto javu je pravděpodobně
predovšetkým v tom, že rozdiel v náročnosti úloh krajského
kola a klauzúrnej časti školského kola v tejto kategorii bol
relativné velký. Úlohy klauzúrnej časti školského kola totiž
poměrně úzko súviseli s úlohami domácej časti, zatial čo
úlohy krajského kola i pri tematickej nadváznosti vyžadovali
od riešitelov nepomerne viac dóvtipu.

Váčšia vyrovnanost’ a vyššia relativná úspěšnost’ sa prejavili
aj u účastníkov celoštátneho kola kategorie A. Najúspešnejší
z nich reprezentovali našu vlast’ na 23. MMO v Budapešti.
Ich účinkovanie na medzinárodnom fóre možno označit’
za úspěšné a podrobnejšie ho hodnotíme na inom mieste.
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Tieto výsledky ukazujú, že v podstatě sa dosiahli dele,
ktoré ministerstvá školstva a ÚV MO organizačnými zme-
námi sledovali. Bolo by však předčasné robiť zovšeobecňujúce
závěry z jednoročných poznatkov, a tak si na objektivně
zhodnotenie dósledkov novej organizačně] úpravy budeme
musieť ešte počkat’.

V kategorii Z sa nová organizácia školského kola okrem
zrušenia přípravných úloh prejavila v zvýšení počtu súťažných
úloh I. kola zo štyroch na šest’, ktorých riešenia žiaci odovzdá-
vajú po trojiciach v dvoch róznych termínech. I tu sa
počet účastníkov I. kola mierne zvýšil (o 3,4 %) a počet
úspěšných riešitelov poklesol (o 10,5 %), ale počet úspěšných
riešitelov okresného kola vzrástol o 5,8 %. Ani pri tejto
kategorii by však nebolo na mieste robit’ předčasné závěry.

Z iniciativy MŠ ČSR a Jednoty československých mate-
matikov a fyzikov (JČSMF) sa koncom augusta 1982 usku-
točnil seminář »Formy starostlivosti o žiakov talentovaných
na matematiku a fyziku« v Hradci Králové. Jeho účastníci
věnovali značnú pozornost’ problematike žiackych súťaží
vrátane MO. Zo záverov tohto seminára si zvláštnu zmienku

zasluhujú odporúčania vytvárať podmienky pre postupné
rozšírenie MO do nižších ročníkov základnej školy, poriadať
vo všetkých krajoch pre riešitelov jednotlivých kategorií
krajské sústredenia a organizovat’ krajské korešpondenčné
semináře. Pri týchto i dalších odporúčaniach vychádzali
účastníci seminára z pozitívnych skúseností s uvedenými
formami práce s talentami v jednotlivých krajoch. Přijalo
sa tiež odporúčanie navrhnúť takú organizáciu súťaží alebo
hodnotenie žiakov v MO, ktorá by rešpektovala ich rožnu

přípravu v matematike. Pokial ide o súťaž v riešení náročnej-
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ších úloh pře žiakov základných škol, uskutočnila sa pokusné
v školskom roku 1980/81 vo všetkých krajoch SSR od 5.
ročníka a střetla sa až s nečakaným záujmom žiakov i učite-
lov. V každom z 5., 6. a 7. ročníka základnej školy sa jej
zúčastnilo okolo sedem tisíc žiakov a v okresných kolách
bolo okolo 1 800, v 5. ročníku dokonca takmer 2 000 rieši-
telov. Pri repríze experimentu v školskom roku 1981/82
počty základných škol, ktorých žiaci sa súťaže zúčastnili,
ešte vzrástli a viac než o tisícku sa zvýšil počet riešitelov
školského kola v jednotlivých kategóriách totožných s ročníkmi
základnej školy. Přitom počet účastníkov okresného kola
v 5. a 6. ročníku překročil 2 000 a v 7. ročníku dosiahol takmer
1 900. Úspěšné poznatky z organizácie takejto súťaže sa
získali tiež v krajoch Západočeskom, Stredočeskom a Severo-
moravskom, v ktorom v záujme zlepšenia výběru žiakov
do tried základnej školy so zameraním na matematiku a prí-
rodovedné predmety organizovali MO už pre žiakov 4. roč-
nika.

Spomínané skúsenosti ukazujú, že myšlienka skoršieho
vyMadávania matematicky nadaných žiakov postupné za-

púšťa kořene aj u nás, keď v zahraničí, zvlášť v ZSSR, NDR,
Maďarsku a Bulharsku, majú v tomto smere už mnohoročné
pozitivně poznatky. Z týchto socialistických krajin by bolo
možné uviesť i fakty o aktívnom vztahu mládežnických orga-
nizácií к propagácii a organizačnému zabezpečeniu súťaží
pre vyhladávanie talentov. Podlá platného organizačného
poriadku MO je aj u nás SZM jedným zo spoluporiadatelov.
Jeho podiel na organizácii MO by mal spočívat’ najma v pro-

pagácii súťaže medzi zvázákmi na středných školách a v oce-
ňovaní dosahovaných výsledkov. Na základných školách
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by mali podobnú úlohu plnit’ základné útvary PO SZM.
Na semináři v Hradci Králové sa poukazovalo na užitočnosť
určitej symbiózy medzi Středoškolskou odbornou činnosťou
a MO, resp. Fyzikálnou olympiádou, čo vyústilo do odporů-
čania prehlbiť vzájomnú spoluprácu pri zabezpečovaní před-
metových olympiád a SOČ medzi jednotlivými zložkami -

školskou správou, JČSMF, SZM a jeho PO - v otázke organi-
zácie, členenia, bezpečnosti a pedagogického dozoru.

Seminář priniesol pre prácu s talentami celý rad cenných
podnetov a chceme veriť, že jeho odporúčania sa v relativné
krátkom čase dostanú do každodennej praxe na prospěch
práce s talentami i pre další rozvoj matematickej olympiády.

Ústředny výbor matematickej olympiády
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O průběhu 31. ročníku matematické olympiády

Pořadateli 31. ročníku matematické olympiády byla stejně
jako v minulých letech ministerstva školství CSR a SSR,
Matematický ústav ČSAV v Praze (MÚ ČSAV), Jednota
československých matematiků a fyziků (JČSMF), Jednota
slovenských matematiků a fyziků (JSMF) a Socialistický svaz
mládeže (SSM). Soutěž je řízena ústředním výborem mate-
matické olympiády (ÚV МО) a dále krajskými a okresními
výbory matematické olympiády (KV MO, OV MO).

Žáci soutěží ve čtyřech kategoriích: v kategorii A žáci III.
а IV. ročníků středních škol, v kategorii В žáci II. ročníků
a pro žáky I. ročníků je určena kategorie C. Žáci 8. a 9. tříd
základních škol a základních devítiletých škol soutěží v ka-
tegorii Z. Se souhlasem KV MO může žák soutěžit i v kate-
gorii určené pro žáky vyšších ročníků.

Po celý 31. ročník MO pracoval ústřední výbor MO ve
složení: ,

předseda: prof. dr. Jozef Moravčík, CSc., VŠDS Žilina
místopředsedové: doc. Jan Výšin, CSc., MÚ ČSAV Praha

dr. František Zítek, CSc., MÚ ČSAV Praha
jednatel: dr. Leo Boček, CSc., MFF UK Praha
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zástupce MŠ ČSR: dr. Václav Šůla
zástupce MŠ SSR: dr. Julia Lukáťsová
ostatní členové:

dr. František Běloun, Praha
dr. Ladislav Berger, Žilina
doc. dr. Lev Bukovský, CSc., přírodovědecká fakulta UPJŠ

Košice

dr. Milan Cirjak, KPÚ Prešov
prof. dr. Miroslav Fiedler, člen korespondent ČSAV, MÚ

ČSAV
doc. dr. Karol Križalkovič, CSc., Pedagogická fakulta Nitra
doc. dr. Alois Kufner, DrSc., MÚ ČSAV Praha
Olga Maříková, gymnázium Praha 10, Voděradská
dr. Milan Maxian, gymnázium A. Markuša, Bratislava
dr. Peter Mederly, CSc., MFF UK Bratislava
dr. Jiří Mída, CSc., pedagogická fakulta UK Praha
dr. Jana Mullerová, CSc., VÚP Praha
akademik Josef Novák, MÚ ČSAV Praha
doc. dr. Aleš Pultr, CSc., MFF UK Praha
Víťazoslav Repáš, gymnázium J. Hronca, Bratislava
Stanislav Rypáček, gymnázium Praha 9-Prosek
dr. Jiří Sedláček, CSc., MÚ ČSAV Praha
ing. Oldřich Skopal, gymnázium Brno, tř. kpt. Jaroše
dr. Jiří Sídlo, gymnázium Praha 3, Sladkovského nám.
Miloslav Smerda, Brno
zástupce ÚV SSM: Jana Pomazalová, gymnázium Brno,

tř. kpt. Jaroše
Dále jsou členy ÚV MO předsedové krajských výborů MO:
Praha: prof. dr. Karel Drbohlav, DrSc., MFF UK Praha
Středočeský kraj: Ludmila Tréglová, gymnázium Říčany
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Jihočeský kraj: doc. dr. ing. Lada Vaňatová, Pedagogická
fakulta České Budějovice

Západočeský kraj: dr. Josef Polák, CSc., VŠSE Plzeň
Severočeský kraj: Jiří Slavík, gymnázium Teplice
Východočeský kraj: dr. Josef Kubát, gymnázium Pardubice
Jihomoravský kraj: doc. dr. Jaroslav Bayer, CSc., FE VUT

Brno

Severomoravský kraj: dr. Vladimír Vlček, CSc., přírodově-
decká fakulta UP Olomouc

Bratislava: dr. Eudovít Niepel, CSc., MFF UK Bratislava
Západoslovenský kraj: prof. dr. Ondřej Šedivý, CSc., Peda-

gogická fakulta Nitra
Středoslovenský kraj: doc. dr. Pavel Krsňák, CSc., Pedago-

gická fakulta Banská Bystrica
Východoslovenský kraj: dr. Martin Gavalec, CSc., přírodo-

vědecká fakulta UPJŠ Košice

Pracovní předsednictvo ÚV MO (PÚV MO) tvořili (v abe-
cedním pořadí): dr. Leo Boček, CSc., doc. dr. Lev Bukovský,
CSc., prof. dr. Miroslav Fiedler, DrSc., dr. Júlia Lukátšová,
prof. dr. Jozef Moravčík, CSc., Jana Pomazalová, Víťazoslav
Repáš, dr. Jiří Sedláček, CSc., dr. Václav Šůla, doc. Jan
Výšin, CSc., dr. František Zítek, CSc.

V průběhu 31. ročníku MO se konala dvě zasedání ÚV MO,
první 14. až 15. prosince 1981 v Praze, druhé ve dnech 7. až
8. května 1982 v Popradě při celostátním kole MO kat. A.
Hlavními body programu bylo zhodnocení průběhu 30. roč-
niku MO, organizační záležitosti 31. ročníku a příprava
32. ročníku, dále ediční činnost a projednání československé
účasti na mezinárodních matematických olympiádách. Před-
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sednictvo ÚV МО se scházelo pravidelně jednou měsíčně,
hlavní náplní schůzí byl výběr úloh pro 31. až 33. ročník
MO.

V 31. ročníku MO byla zavedena nová organizace I. kola
soutěže v kategoriích А, В, C. Proti dřívějším letům odpadly
tzv. úlohy přípravné a žáci řeší v I. kole nejdříve šest úloh
doma a pak tři úlohy ve škole formou klauzurní práce.
V kategorii Z se v J. kole řeší pouze šest úloh doma, nejdříve
odevzdají žáci řešení první trojice úloh, pak řešení druhé
trojice. Organizace II. а III. kola byla stejná jako v předchá-
zejících letech. Na III., tedy celostátní kolo MO kategorie A
se sjelo do podtatranského města Poprad všech 80 pozvaných
žáků, nejúspěšnějších řešitelů krajských kol. Slavnostního za-

hájení se 6. května 1982 zúčastnili dr. Ján Hudec, vedoucí
oddělení gymnázií MŠ SSR, s. Karol Kecsey, vedoucí peda-
gogického oddělení Východoslovenského KNV, dr. jfozef
Lukáč, tajemník ОV KSS v Popradě, a další zástupci stra-
nických a státních orgánů. Za Univerzitu P. J. Šafárika v Ко-
šicích byl přítomen děkan přírodovědecké fakulty prof. dr.
Juraj Daniel-Szabó, CSc., prof. dr. Ernest Jucovič, DrSc.,
a další učitelé této fakulty. S kulturním programem vystoupil
dětský sbor Okresního domu pionýrů a mládeže a lidové školy
umění v Popradě. O velmi dobrý průběh celostátního kola
MO v Popradě se zvlášť zasloužili dr. Martin Lučivjanskýy
krajský školní inspektor KNV Košice, ředitel gymnázia
v Popradě s. Augustin Kuchár, okresní metodik dr. Tomáš
Svoboda a s. Anna Pribišová, pracovnice Ústředního domu
pionýrů a mládeže Klementa Gottwalda v Bratislavě, dále
pak předseda KV MO v Košicích dr. Martin Gavalec, CSc.,
a jeho spolupracovníci.
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Ve všech krajích se pořádají pro řešitele úloh matematické
olympiády pomocné akce. KV MO Praha pořádal pracovní
přednášky pro kategorie B, Cv měsících říjnu až prosinci,
týdně 2 hodiny s průměrnou účastí 12 studentů. Podobné
kroužky se konaly i pro kategorii Z. Ve spolupráci s fakultní
organizací SSM na matematicko-fyzikální fakultě UK byl
organizován korespondenční seminář, šest sérií úloh řešilo
asi 45 žáků, 30 z nich bylo pozváno na týdenní soustředění.
Další soustředění se konalo pro 40 vybraných žáků, řešitelů
v kategoriích В, C. Středočeský kraj konal na osmi středisko-
vých školách asi 50 přednášek s průměrnou účastí 29 žáků.
Na tyto přednášky byli zváni i žáci odborných učilišť. Týden-
ní soustředění pro řešitele kategorií А, В pořádal Středočeský
kraj v Janově v Jizerských horách. Jihočeský KV MO za-

pojil do práce kolem MO posluchače pedagogické fakulty,
kteří v rámci společensko-politické praxe vedli zájmové
kroužky z matematiky na základních školách a opravovali
úlohy krajského korespondenčního semináře, jehož se zúčast-
nilo 29 žáků. Jako každým rokem pořádal KV MO spolu
s КV FO letní školu pro úspěšné řešitele kategorií A, B,
v každé kategorii se zúčastnilo 30 žáků. V Západočeském kraji
vedli korespondenční seminář pro 98 studentů pracovníci
katedry matematiky VŠSE v Plzni. Spolu se svými kolegy
z Pedagogické fakulty v Plzni konali přednášky nejen pro

žáky, ale i pro učitele. Krajské soustředění úspěšných řešíte-
lů II. kola MO kategorií А, В, C se konalo v červnu v Klato-
věch. Podobné soustředění pořádal KV MO kraje Severo-
českého pro 108 žáků první týden v červenci, program zajisti-
la pobočka JČSMF v Ústí n. L. Kromě toho uspořádali 27
oblastních seminářů s průměrnou účastí 16 žáků. Ve Východo-
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českém kraji zorganizovali kromě dvou soustředění pro řešitele
také seminář к problematice MO, věnovaný rozboru úloh
МО a organizaci klauzurní části I. kola MO. Krajské soustře-
dění MO se neuskutečnilo v Jihomoravském kraji, protože
se nepodařilo zajistit ubytování žáků. Byly však uspořádány
semináře pro řešitele v Brně, ve Strážnici a v Třebíči. V kraji
Středoslovenském se práce pro MO organizuje jednak na
VŠDS v Žilině, jednak na Pedagogické fakultě v Banské
Bystrici. Krajský korespondenční seminář pro 58 účastníků
je rozdělen na 1. a 2. ligu, po třetím kole se uskutečňují
postupy a sestupy. Tradičně probíhá korespondenční semi-
nář i v kraji Východoslovenském, jehož KV MO je průkopní-
kem této formy práce s mladými talenty. ÚV MO pořádal
dvě soustředění v učebním středisku MŠ ČSR pro přípravu
československého družstva na mezinárodní matematickou

olympiádu a spolu s KV MO a KV FO v Praze zajišťoval
program celostátního soustředění pro úspěšné řešitele MO
a FO, které se konalo pro 90 účastníků v Praze 10-Třebešíně.

Úlohy matematické olympiády a organizační pokyny pro
řešitele jsou každým rokem obsaženy v letácích, které vydává
Státní pedagogické nakladatelství v Praze a Slovenské pedago-
gické nakladatelstvo v Bratislavě. Kromě toho byly úlohy
I. kola 31. ročníku MO otištěny v Rozhledech matematicko-
-fyzikálních a v časopise Matematika a fyzika ve škole, sa-

mozřejmě kromě úloh klauzurní části. O každém ročníku
MO vychází v SPN Praha ročenka, v níž jsou obsaženy všech-
ny úlohy, většina i s řešením. V edici Škola mladých mate-
matiků vydává ÚV MO v nakladatelství Mladá fronta mate-
matické brožurky, které jsou prospěšné nejen řešitelům úloh
MO, nýbrž všem zájemcům o matematiku.
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Více než polovina úloh každého ročníku MO pochází
z konkursu, který vyhlásily JČSMF a JSMF již v roce 1966.
Návrhy úloh do MO může poslat kdokoli ve dvou exemplá-
řích na adresu ÚV MO, který má právo přijatou úlohu upra-
vit a autor má povinnost úlohu utajit.
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Tabulka 1

Počet středních škol zapojených do 31. ročníku MO

Ostatní střední

školyGymnázia

O z toho zapojeno zapojeno>U

Kraj c.
*>1 :3 :5

&$8
сл

. Ф

v kategorii
ABC &Ч

v kategorii
ABC

o

o
U oi > M 05 >M

21 11 17 14

19 21 21

9 15 16

12 13 15

18 16 19

17 17 28

22 26 37

16 15 24

8 9 9

26 31 34

27 26 33

26 30 38

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

18 1 1 2 3

23 1223 5 7

4 5

2 4

4 2

6

19 16 8 9

15 15 7 7

21 919 6

35 31 1 4 4 6

38 38 1 2 2 4

39 32 100 1 10

11 9 0 0 0

9 20 31

0

38 3135

37 5 8

2 17

14 1435

39 37 3838

211ČSR celkem

SSR celkem

124 140 174

87 96 114

192 18 26

16 45

6045

125 83117 82

ČSSR celkem 336 211 236 288 34 71 127 143309
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Tabulka 2

Počet žáků soutěžících v I. kole MO

kat. A kat. Ckat. В Celkem

Kraj
S Ú S Ú S XJ s ú

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

122 97

165 98

171 112

105 78

240 116

263 180

201 177

139 115

105 72

605 384

223 196

532 451

90 41

121 33

71 28

43 24

114 25

52 33

93 63

58 37'

86 23

224 86

141 69

145 98

85 51

103 37

85 52

47 37

95 31

74 47

228 99

69 50

92 42

342 143

91 72

260 168

297 189

389 168

327 192

195 139

449 172

389 260

522 339

266 202

283 137

1171 613

455 337

937 717

ČSR 786 404

785 425

642 284

596 276

1406 973

1465 1103

2834 1661

2846 1804I SSR

ČSSR 1571 829 2871 20761238 560 5680 3465

S ... celkový počet
Ú ... počet úspěšných řešitelů
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Tabulka 3

Počet žáků soutěžících v II. kole MO

kat. A kat. В kat. C Celkem

Kraj
S Ú S Ú S Ú S LJ

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

39 36 95 25

90 2

101 6

63 9

112 7

163 11

153 9

109 20

69 19

209 9

175 12

451 13

185 81

159 12

172 24

117 20

168 26

236 31

304 48

192 58

156 55

385 40

296 40

599 50

20 51

33 36 64.

26 45 126

523 31 6

25 154 31

33 6 40 14

90 30

46 21

40 17

90 13

61 9

37 17

47 19

86 18

2264 6 57

70 17 78 20

ČSR 277 370 140 886 89

904 53

1533 300

1436 185

71

SSR 267 60 72265

ČSSR 544 131 635 212 1790 142 2969 485

S ... celkový počet
tJ ... počet úspěšných řešitelů
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Tabulka 4

Počet účastníků III. kola MO kategorie A

Počet

úspěšných
Z toho
vítězůKraj Počet všech

15 10 8Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
J ihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

02 1

001

04 0

013

06 1

015

4810

2916

3 06

124

268

ČSR 122246

52034SSR

ČSSR 174280
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Tabulka 5

Počet základních škol, které se zúčastnily 31. roč. MO - kat.Z

Zúčastnilo se

I. kola

počet %
II. kola

počet %
Kraj III. kola

počet %
o

7\ >oU ft

165 82

185 67

146 80

173 80

208 73

233 74

294 65

321 69

76 87

346 72

287 72

318 86

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

145 72

157 57

117 64

149 69

144 51

181 57

273 60

229 49

76 87

321 67

235 59

247 71

29 14

32 12

35 19

22 10

26 9

38 12

48 11

51 11

11 13

36 7

30 7

45 11

201

276

182

216

283

317

453

466

87

479

401

383

ČSR 1725 72

1027 76

2394 281 12

122 9

1395 58

879 65SSR 1350

ČSSR 2752 74 403 113744 2274 61
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Tabulka 6

Počet žáků soutěžících v kategorii Z

III. koloI. kolo II. kolo

Kraj
S OÚ s ús

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

1237 787

1072 566

1365 537

1341 565

1330 462

1588 736

2219 1255

2219 834

825 487

2012 1173

1727 717

2122 1117

304 39588 8

467 276 36 0

153 5368 41

2375 159 23

177 29 1385

530 288 43 3

62 25938 416

5566 251 54

395 126 40 23

935 379 40 26

624 203

765 368

35 16

56 23

ČSR 12371 5742

6686 3494

4217 2024 327 49

SSR 2719 1076 171 88

ČSSR 6936 3100 498 13719057 9236

S — celkový počet
Ú — počet úspěšných řešitelů
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VÝSLEDKY CELOSTÁTNÍHO KOLA MO
KATEGORIE A

Vitezové

Pořadí, jméno a příjmení, ročník, zaměření, škola

1. —3. Petr Couf, 4 M, G W. Piecka, Praha 2
Igor Kříž, 3 M, G W. Piecka, Praha 2
Jiří Sgall, 3 M, G W. Piecka, Praha 2

4.-5. Miroslav Engliš, 4 M, G W, Piecka, Praha 2
Vládán Pecha, 3 M, G M. Koperníka, Bílovec
Vladimír Lieberzeit, 4 M, G W. Piecka, Praha 2
Luboš Kouba, 4 M, G W. Piecka, Praha 2
Petr Tichavský, 4 M, G M. Koperníka, Bílovec
Pavel Jůza, 4 M, G W. Piecka, Praha 2

10. —11. Milan Krátká, 3 MF, G V. B. Nedožerského,
Prievidza

Petr Lisoněk, 4 P, Olomouc-Hejčín
12. —14. Xaver Gubáš, 3 M, G A. Markuša, Bratislava

Milan Kuchta, 3 M, G A. Markuša, Bratislava
Martin Zemek, 4 M, G M. Koperníka, Bílovec

15. —17. Ján Hric, 4 MF, Prešov, Konštantínova
Štěpán Kvapilík, 4 M, G W. Piecka, Praha 2
Ignác Tereščák, 2 P, Michalovce

6.

7.

8.

9.
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Další úspěšní řešitelé

18. —21. Vladimír Dančík, 3 M, Košice, Šmeralova
Viktor Martišovitš, 3 MF, G J. Hronca, Bratislava
Ondřej Petr, 4 M, G M. Koperníka, Bílovec
Jaroslav Smejkal, 3 P, Velké Meziříčí

22. Michal Vojtek, 3 M, G W. Piecka, Praha 2
' 23. —24. Hana Riečanová, 3 MF, G J. Hronca, Bratislava

Martin Štěpánek, 3 P, G V. Lindy, Jaroměř
25. —27. Richard Hlubina, 4 P, Bratislava, Vazovova

Peter Spišiak, 4 M, Košice, Šmeralova
Jan Tichý, 4 P, Česká Lípa

28. Ludmila Moravčíková, 3 P, Žilina, Wolkerova
29.—31. Marcela Foltínová, 3 M, G A. Markuša, Bratislava

Jiří Fridrich, 4 P, Ostrava-Poruba
Roman Šášik, 3 P, Nitra, Párovská

32. —33. Jiří Podolský, 4 P, Mladá Boleslav
Richard Pulmann, 3 MF, G J. Hronca, Bratislava

34.—39. Galina Kumičáková, 4 P, Košice, Kováčská
Aleš Martiník, 4 P, Ostrava, Šmeralova
Ladislav Németh, 3 M, G A. Markuša, Bratislava
Anton Sedlák, 4 MF, Prešov, Konštantínova
Miroslav Šmatera, 4 M, G M. Koperníka, Bílovec
Peter Tarina, 4 P, Topolčany

40.—42. Roman Bačík, 3 M, G A. Markuša, Bratislava
Vladimír Mužík, 4 MF, Nitra, Párovská
Martin Trusina, 4 M, G W. Piecka, Praha 2

Všichni byli žáky gymnázia.
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G — gymnázium
M — třídy se zaměřením na matematiku
MF — třídy se zaměřením na matematiku a fyziku
P — třídy s orientací na přírodovědné předměty nebo

s vyučováním odborným předmětům
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NEJÚSPĚŠNĚJŠÍ ŘEŠITELÉ II. KOLA MO
V KATEGORIÍCH А, В, C

Z každého kraje a každé kategorie uvádíme nejvýše prvních
deset nejúspěšnějších řešitelů.

Praha

Kategorie A

1. Igor Kříž, 3 M, Praha 2, W. Piecka
2. —3. Petr Couf, 4 M, Praha 2, W. Piecka

Jiří Sgall, 3 M, Praha 2, W. Piecka
4. Miroslav Engliš, 4 M, Praha 2, W. Piecka
5. Luboš Kouba, 4 M, Praha 2, W. Piecka

6.-7. Štěpán Kvapilík, 4 M, Praha 2, W. Piecka
Michal Vojtek,*3 M, Praha 2, W. Piecka

8. Pavel Jůza, 4 M, Praha 2, W. Piecka
9. Veronika Hrušková, 4 P, Praha 7, Nad štolou10.Vladimír Lieberzeit, 4 M, Praha 2, W. Piecka

Kategorie В

1.—3. Michal Brajer, P, Praha 4, Budějovická
Vít Jůza, M, Praha 2, W. Piecka
Jaroslav Štědronský, M, Praha 2, W. Piecka

4. Pavel Valtr, M, Praha 2, W. Piecka
5. Petr Kos, MF, Praha 3, Sladkovského nám.
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6.-8. Petra Beránková, P, Praha 2, Botičská
Martin Černý, M, Praha 2, W. Piecka
Petr Maršálek, P, Praha 4, Ohradní

9. David Vokrouhlický, MF, Praha 8, Náhorní

Kategorie C

1. Igor Puzanov, M, Praha 2, W. Piecka
2. Petr Loučky, M, Praha 2, W. Piecka
3. Filip Friedlaender, M, Praha 2, W. Piecka
4. Tomáš Otta, M, Praha 2, W. Piecka

5.-9. Bartoš, M, Praha 2, W. Piecka
Pavel Hrdina, M, Praha 2, W. Piecka
Jaw Hučín, M, Praha 2, W. Piecka
Boris Perušič, M, Praha 2, W. Piecka
Jaw M, Praha 2, W. Piecka

Středočeský kraj

Kategorie A

1. Jiří Podolský, 4 P, Mladá Boleslav
2. Martin Dvořák, 3 P, Čáslav3.—4. Bohumil Bednář, 4, SPŠ Mladá Boleslav

Petr Zavadil, 3 P, Říčany

Kategorie В

1.—2. Petr Kolář, P, Mladá Boleslav
Tomáš Vaněk, SPŠ Čáslav
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3. Josef Novák, SPŠ Kutná Hora
4. Petr Pokrupa, P, Nové Strašecí
5. David Vencour, P, Nymburk
6. Karel Pryl, P, Benešov

Kategorie C

1.—2. Jana Králová, P, Benešov
Tomáš Lorenc, P, Kolín

Jihočeský kraj

Kategorie A

1.—2. Fatima Cvrčková, 3 P, Strakonice
Aleš Kučera, 4 MF, České Budějovice, G K. Šatala

3. Luděk Kabele, 4 P, České Budějovice, Jírovcova
4. Šárka Hořejšová, 3 P, Tábor

5.-6. Ivo Moravec, 4 P, České Budějovice, Jírovcova
Petr Tiller, 3 P, Tábor

Kategorie В

1. Bohumír Sládek, SPŠE Písek
2. Petr Bartáček, MF, České Budějovice, G K. Šatala
3. Antonín Masojídek, P, Písek
4. Tomáš Drtina, P, České Budějovice, Jírovcova

5.-6. Vladimír Bouchal, P, Písek
Roman Jansa, P, Tábor
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Kategorie С

1.—2. Stanislav Brabec, P, Jindřichův Hradec
Martin Mišina, P, Týn n. Vltavou

3. Petr Petrlík, MF, České Budějovice, G K. Šatala
4.-6. Zdeněk Hanzálek, P, Soběslav

Aleš Janů, P, Tábor
Miroslav Suchan, SPŠ, Bechyně

Západočeský kraj

Kategorie A

Marek Vančata, 4 MF, Karlovy Vary
Marek Hoščálek, 4 MF, Plzeň, G J. Fučíka
Božena Smrková, 4 P, Plzeň, G J. Fučíka
JanJůza, 4 MF, Plzeň, G J. Fučíka
Bohumil Tříska, 4 P, Biovice

1.

2.

3.

4.

5.

Kategorie В

Radek Machačka, MF, Plzeň, G J. Fučíka
Zbysek Nový, P, Plzeň, ul. Pionýrů
Tomáš Martínek, P, Ostrov n. Ohří
Marek Uhlíř, P, Plzeň, ul. Pionýrů
Pavel Hajn, MF, Plzeň, G J. Fučíka
Miroslav Plevný, P, Cheb

1.

2.

3.

4.

5.

6.
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Kategorie С

1. Herbert Urbanec, MF, Karlovy Vary
2. Ladislav Hanyk, MF, Karlovy Vary3.—4. Jan Bican, P, Plzeň, Opavská

Jan Boček, P, Plzeň, ul. Pionýrů
5.-7. Petr Heřman, P, Cheb

Milena Tuchanová, MF, Karlovy Vary
Ivan Vrzal, MF, Karlovy Vary

8.-9. Dominika Janíkové, MF, Karlovy Vary
Jarmila Martínková, P, Ostrov n. Ohří

»

Severočeský kraj

Kategorie A

1. Pavel Vítovec, 3 P, Litvínov
2. Jan Tichý, 4 P, Česká Lípa
3. František Burian, 4 P, Ústí n. L.
4. Jaroslav Šindelář, 4 P, Teplice

Kategorie В

1. Michal Brhlík, P, Liberec
2. —3. Martin Klazar, P, Louny

Vladimír Smutný, MF, Liberec
4. Petr Jaklin, P, Ústí n. L.
5. Michal Holoubek, P, Děčín
6. Jiří Maier, P, Louny

7.-8. Dalibor Lošiák, MF, Teplice
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Irena Millerová, P, Liberec
9. —10. Pavel Kuba, MF, Teplice

Marek Říčař, P, Frýdlant

Kategorie C

1. Pavel Krtouš, MF, Liberec
2. Herbert Salov, P, Rumburk
3. Ivana Dvořáková, MF, Ústí n. L.

4.-6. Roman Buřič, P, Rumburk
Kateřina Denksteinová, P, Děčín
David, Vaverka, P, Litoměřice

7. Pavel Jošt, P, Frýdlant

Východočeský kraj

Kategorie A

1. Milan Sourada, 4 MF, Pardubice
2. František Venci, 3 P, Česká Třebová
3. Jiří Votínský, 3 MF, Pardubice
4. Radek Burda, 4 MF, Hradec Králové,

G J. K. Tyla
5. Martin Štěpánek, 3 P, Jaroměř
6. Jiří Hofman, 3 P, Hořice

Kategorie В

1. Zbyněk Linhart, MF, Pardubice
2. Pavel Šebek, MF, Hradec Králové, G J. K. Tyla
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3. Aleš Mokřen, SPŠE Pardubice
4. Tomáš Pecina, P, Turnov
5. Miloslav Koudelka, P, Přelouč
6. Stanislav Forejt, SPŠE Pardubice
7. Aleš Limpouch, MF, Hradec Králové, G J. K. Tyla

Kategorie C1.—2. Hana Dobešová, MF, Hradec Králové, Velká
Aleš Hýbner, MF, Hradec Králové, G J. K. Tyla

3. Jiří Moser, MF, Pardubice
4. Ivan Picek, MF, Hradec Králové, Velká

5.-6. Jan Andres, MF, Hradec Králové, Velká
Petra Sekyrová, MF, Hradec Králové, Velká

7. Jiří Hubeňák, MF, Hradec Králové, G J. K. Tyla

Jihomoravský kraj

Kategorie A

1. Jaroslav Smejkal, 3 P, Velké Meziříčí
2. Jiří Suk, 4 P, Ždár n. Sáz.3.—4. Ivana Capounová, 4 P, Zastávka u Brna

Petr Havelka, 4 P, Znojmo
5. Pavel Jelínek, 4 P, Brno, Koněvova

6.-8. Martin Juráš, 4 P, Brno, Koněvova
Petr Kuchyňa, 4 P, Boskovice
Petr Slavík, 3 MF, Brno, Koněvova

9. František Jurka, 4 P, Třebíč
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Kategorie В

1. Petr Nasarěuk, MF, Brno, Slovanské nám.
2. Luděk Niedermayer, P, Brno, tř. kpt. Jaroše
3. Rostislav Mach, P, Tišnov

4.-5. Jan Tomčík, P, Brno, Koněvova
Pavel Zemák, SPŠE Brno, Leninova6.Alan Kuběna, SPŠE Brno, Leninova

7.-8. Michal Beneš, P, Jihlava
Zdeněk Štesl, P, Boskovice

9. Radek Hedbávný, P, Třebíč

Kategorie C

1. Martin Kovář, MF, Brno, tř. kpt. Jaroše
2. Josef Pail, P, Ždár n. Sáz.
3. Aleš Černík, P, Uherský Brod

4.-7. Pavel Gromusy P, Prostějov
Jan Chmelařу P, Hodonín
Alena Knéslová, MF, Brno, tř. kpt. Jaroše
Vit Kratochvíl, MF, Třebíč

8.-9. Pavel Bureš, MF, Brno, tř. kpt. Jaroše
Radomír Halaš, P, Prostějov

Severomoravský kraj

Kategorie A

1. Martin Zemek, 4 M, Bílovec
2. Vládán Pecha, 3 M, Bílovec
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3. Petr Schiller, 4 M, Bílovec
4. Perг Tichavsky, 4 M, Bílovec
5. Aleš Martirúk, 4 MF, Ostrava, Šmeralova
6. Robert Krajča, 4 M, Bílovec
7. Ondřej Petr, 4 M, Bílovec
8. Miloslav Grundmann, 4 P, Ostrava-Poruba
9. Martina Kynclová, 4 P, Přerov

10. Petr Lisoněk, 4 MF, Olomouc-Hejčín

Kategorie В

1. Ivo Čermák, M, Bílovec
2. Martin Grajcar, M, Bílovec
3. Dalibor Damborský, M, Bílovec
4. Zírá Močkořová, P, Třinec
5. Pavel Kráčmar, M, Bílovec
6. Angel Vargas, M, Bílovec
7. Jiří Bouchala, P, Nový Jičín
8. Jaromír Mrkva, M, Bílovec
9. Peřr Ptáčník, MF, Ostrava-Poruba

10. Vlastimil Klapka, MF, Karviná

Kategorie C

1. Jarmila Ranosová, M, Bílovec
2. Vladimír Jašek, SPŠE Olomouc, Božetěchova
3. Přemysl Dědic, M, Bílovec
4. Perr Adámek, M, Bílovec
5. Marek Skotnica, P, Rožnov p. Radh.
6. Daniel Hrivňák, MF, Ostrava, Šmeralova
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7. Michal Brychta, M, Bílovec
8. Ladislav Stádeček, M, Bílovec
9. Jiří Šrom, M, Bílovec10.Vladimír Те tur, M, Bílovec

Bratislava

Kategorie A1.Marián Neamcu, 3 M, Bratislava, Červenej armády
2.-4. Perer Borovanský, 3 MF, Bratislava, Novohradská

Jaroslav Kaiser, 4 P, Bratislava, Vazovova
Viktor Martisoviťs, 3 MF, Bratislava, Novohradská

5. Richard Hlubina, 4 P, Bratislava, Vazovova
6.-7. Peter Papánek, 4 P, Bratislava, I. Horvátha

Hana Riečanová, 3 MF, Bratislava, Novohradská
8. Roman Bačík, 3 M, Bratislava, Červenej armády
9. Marcela Foltínová, 3 M, Bratislava, Červenej armády

Kategorie В

1 Ján Mares, M, Bratislava, Červenej armády
2. Jana Kátlovská, MF, Bratislava, Novohradská
3. Andrej Hoos, M, Bratislava, Červenej armády
4. Matěj Lexa, M, Bratislava, Červenej armády
5. Marián Hamda, MF, Bratislava, Novohradská
6. Ivan Ježík, M, Bratislava, Červenej armády
7. Vladimír Hajsík, M, Bratislava, Červenej armády

8.-9. Tomáš Gedeon, MF, Bratislava, Novohradská
Michal Hejny, MF, Bratislava, Novohradská
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10. Ondřej Pastva, M, Bratislava, Červenej armády

Kategorie C1.—2. Martin Knor, M, Bratislava, Červenej armády
Marián Šumšala, M, Bratislava, Červenej armády

3.—4. Vladimír Kliment, M, Bratislava, Červenej armády
Katarina Majlingová, M, Bratislava, Červenej armády

5.-7. Lucia Danišová, P, Bratislava, Metodova
Eva Kopecká, MF, Bratislava, Novohradská
Ingrid Velická, P, Bratislava, Tomašiková

8. Ján Šefčík, M, Bratislava, Červenej armády
9. Martin Foltin, M, Bratislava, Červenej armády

Západoslovenský kraj

Kategorie A

1. Peter Tarina, 4 P, Topolcany
2. Roman Šášik, 3 P, Nitra, Párovská
3. Vladimír Mužík, 4 P, Nitra, Párovská
4. Aba Teleki, 4 P, Nitra, G E. Gudernu
5. František Horniak, 4 P, Levice
6. Anna Jancsóová, 3 P, Komárno, maďarské G
7. Juraj Vórós, 4 P, Nitra, Párovská
8. Alexander Tomášek, 4, SPSS Komárno
9. Dušan Kešický, 4 P, Nové Zámky,10.Anna Baráková, 4 P, Nové Zámky
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Kategorie В

1. Michal Valení, P, Levice
2. Tibor Lacza, P, Nové Zámky
3. Juraj Michalík, P, Nitra, G E. Gudernu
4. Marián Vidovenec, P, Komárno
5. Robert Bartko, P, Trenčín
6. Beáta Kondeová, P, Komárno, maďarské G
7. Tibor Hladík, P, Komárno, maďarské G
8. Adriana Metzlová, P, Dunajská Středa, maďarské G
9. Attila Pasztor, P, Želiezovce, maďarské G10.Aladár Bddók, P, Dunajská Středa, maďarské G

Kategorie C

1. Juraj Hupka, P, Pezinok
2. Pavel Babica, SPŠE Piešťany
3. Csaba Vórós, SPSS Komárno
4. Dušan Kusenda, SPŠE Piešťany
5. Peter Pláňovský, P, Nové Město n. Váhom
6. Luboš Bednárik, P, Nové Zámky
7. Ladislav Bielik, P, Levice
8. Miloš Farkaš, SPŠE Piešťany
9. Maria Medzihradská, P, Levice10.Andrea Melcsóková, SPŠS Komárno
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Středoslovenský kraj

Kategorie A

1. Ludmila Moravčíková, 3 P, Žilina, Wolkerova
2. Jana Mižúrová, 3 P, Vrútky
3. Robert Mendris, 4 P, Povážská Bystrica
4. Jana Podhorová, 4 P, Lučenec
5. Milan Krátká, 3 P, Prievidza
6. Gabriel Balogh, 3 P, Fifakovo

Kategorie В1.Martin Bezák, P, Prievidza
2.-4. Mária Bártová, P, Dubnica

Roman Gajdošech, M, Žilina, V. Okružná
Viktoria Glasnáková, M, Žilina, V. Okružná

5. Stanislav Bednář, P, Žiar n. Hronom
6.-7. Štefan Brisuda, M, Žilina, V. Okružná

Ludmila Naňová, MF, Zvolen
8. Roman Kučera, M, Žilina, V. Okružná
9. Slávka Polónyová, P, Banská Štiavnica

Kategorie C

1. —2. Oto Bajana, M, Žilina, V. Okružná
Igor Odrobina, M, Žilina, V. Okružná

3. Tatiana Kocáková, P, Vrútky
4. Roman Roštár, P, Prievidza
5. Erich Bielik, P, Dolný Kubín
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6. —7. Ingrid Hudecová, P, Prievidza
Peter Vestenický, P, Vrútky

Východoslovenský kraj

Kategorie A

1. —2. Ján Hric, 4 P, Prešov, Konstantinova
Ignác Tereščák, 2 P, Míchalovce3.—4. Galina Kumičáková, 4 P, Košice, Kováčská
Peter Spišiak, 4 M, Košice, Šmeralova

5.-6. Vladimír Dančík, 3 M, Košice, Šmeralova
Lubomír Šoltés, 4 P, Michalovce

7. Stanislav Cabala, 4 M, Košice, Šmeralova

Kategorie В

i. —2. Juraj Balázs, P, Košice, Kuzmányho
Ignác Tereščák, P, Michalovce

3. Ján Smolárik, P, Košice, Kováčská
4. Lubomír Mačura, P, Kežmarok
5. František Bobenič, M, Košice, Šmeralova
6. Juraj Smik, P, Krompachy7.—8. Karol Kováč, M, Košice, Šmeralova

Peter Vargovčík, SPŠE Prešov
9. Ján Kováč, P, Poprad, Leninova

Kategorie C

1. Michal Chromý, P, Humenné
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2. Tatiana Csizmárová, M, Košice, Šmeralova
3.—6. Ján Barger, M, Košice, Šmeralova

Roman Fabián, P, Poprad, Leninova
Ján Luzný, SPŠE Prešov
Dana Švaňová, M, Košice, Šmeralova

7. Dagmar Sotáková, P, Košice, Šrobárová

Poznámky: Není-li uvedena škola, rozumí se gymnázium - G.
Všichni uvedení řešitelé v kategorii В byli žáky 2. ročníku,
všichni uvedení řešitelé v kategorii C byli žáky 1. ročníku.
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Kategorie Z

SOUTĚŽNÍ ÚLOHY I. KOLA

Z - I - 1

Tomáš se Sašou hrají matematickou hru: Tomáš začíná -

zvolí si jedno z čísel 1, 2, ..., 10 a napíše je na papír. Pak si
libovolné z těchto čísel zvolí Saša a připíše je pod Tomášovo.
Na řadě je pak opět Tomáš, a tak střídavě připisují čísla,
až je jich na papíru šest. Je-li jejich součet druhou mocninou
přirozeného čísla, vyhrává Saša, není-li, vyhrává Tomáš.
(Čísla se mohou opakovat.)

a) Poraďte Tomášovi, jak má hrát.
b) Tomáš začal číslem 1. Jak má Saša odpovědět?

Řešení. Předpokládejme, že hra již proběhla. Označme
é>6 součet všech šesti zapsaných čísel. Pak je Se alespoň 6
(kdyby oba hráči volili stále 1, je Se = 6, jinak je Se větší
než 6). Zároveň je Se ^ 60, protože každý hráč může zvolit
nejvýše číslo 10 a třikrát volí Tomáš, třikrát volí Saša. Saša
vyhrává v těch případech, kdy se Se rovná některému z čí-
sel 9,16,25,36, 49, zbývající možné součty jsou vítězné pro
Tomáše.

a) Je-li součet S$ prvních pěti zapsaných čísel menší než
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25, může ho Saša doplnit posledním číslem na druhou moc-
ninu a vyhrát. Tomáš musí proto hrát tak, aby bylo S5 ^ 25
a přitom takové, aby je Saša nemohla doplnit na číslo 36 nebo
49. Tomáš se tedy bude snažit, aby se S5 rovnalo některému
z čísel 25, 36, 37, 38, 49, 50. Sám však může připsat nejvýše
3 X 10 — 30, a proto nemůže zajistit, aby bylo S5 ^ 36.
Musí proto hrát tak, aby bylo S5 = 25. Toho může dosáhnout
jen tehdy, je-li 15 ^ 64 ^ 24. Bude proto usilovat, aby
S3 = 14. К tomu potřebuje, aby 4 ^ S2 ^ 13. Na začátku
tedy zvolí Si = 3. Pak je 4 ^ S2 ^ 13 a Tomáš zvolí další
číslo tak, aby S3 = 14. Součet S4 se pak rovná některému
z čísel 15, 16, ...,24, podle toho, zda Saša volila číslo 1,
2, ... nebo 10. Tomáš pak zvolí číslo 10, 9, ... nebo 1, aby
nezávisle na tom, jak volila Saša, byl součet prvních pěti
čísel roven 25. Pak je 26 ^ Sq ^ 35, a tedy při žádné Sa-
sině volbě posledního čísla není součet Se druhou mocninou
přirozeného čísla. Vítězem je Tomáš.

b) Začne-li Tomáš číslem 1, připíše Saša číslo 2, aby byl
součet prvních dvou čísel 3, a dál hraje Saša tak, jak hrál
Tomáš v předcházejícím případě: po Tomášově volbě je
součet prvních tří čísel alespoň 4 a nejvýše 13. Saša volí čtvrté
číslo tak, aby se součet prvních čtyř čísel rovnal 14. Tomáš
může volit 1,2,... nebo 10 a zvýšit celkový součet napsaných
čísel na 15, 16, ... nebo 24. Saša volí šesté číslo tak, aby
výsledný součet byl 25.
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Oba postupy jsou znázorněny v této tabulce:

Tomáš Saša Tomáš

Si = 3 4 ^ ^ 13 S3 = 14a

5i = 1b 5ž = 3 4 rg 53 ^ 13

I

Saša SašaTomáš

15 к Si <; 24 26 к 56 ^ 3555 = 25а

54 = 14 56 - 25i Ъ S3 ^ 2415

Z- i -2

Najděte všechna přirozená čísla n, pro která platí: Součin
(n + 1) (w + 3) (n + 5) není dělitelný žádným prvočíslem
větším než 3.

Řešení. Vyhovuje-li číslo n podmínce úlohy, pak žádné
z čísel n + \, w + 3, n + 5 není dělitelné žádným prvo-
číslem větším než 3. Z prvočísel dělí tudíž číslo n + 1 nej-
výše čísla 2 a 3, totéž platí pro čísla n + 3, n + 5. Z čísel
n + 1, n + 3, n + 5 je však třemi dělitelné právě jedno,
zbývající dvě pak musí být mocninou čísla 2. Přitom se tato
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dvě čísla liší buď o 2, nebo o 4. Mocniny čísla 2 jsou 2, 4,
8, 16, 32, ..z nich se o 2 liší pouze čísla 2, 4, o 4 se liší
pouze čísla 4, 8. V prvním případě se trojice n + 1, n + 3,
w + 5 rovná trojici 2, 4, 6, v druhém případě se jedná o trojici
4, 6, 8. Je proto v prvním případě n = 1, v druhém n = 3,
což jsou všechna řešení úlohy.

Z- I -3

Je dán obdélník ABCD a uvnitř něho bod X. Úsečky,
které spojují bod X s vrcholy A, Б, C, D, rozdělují obdélník
na čtyři trojúhelníky. Obsahy tří z nich jsou 31, 54 a 90.
Určete obsah obdélníku ABCD.

Řešeni. Součet obsahů trojúhelníků ABX a CDX (obr. 1)
se rovná polovině obsahu obdélníku ABCD, protože oba
trojúhelníky mají stejně velké základny AB, CD a součet
jejich výšek к těmto základnám se rovná velikosti druhé stra-
ny AD obdélníku ABCD. Stejně tak se rovná polovině obsahu
obdélníku ABCD také součet obsahů trojúhelníků ADX
a BCX. Označme P obsah čtvrtého z trojúhelníků, na které

A В
Obr. 1
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je obdélník rozdělen, a Q obsah obdélníku ABCD. Víme,
že platí

Q = 2 (31 + 54) = 2 (90 + P) nebo Q = 2 (31 + 90) =

= 2 (54 + P) nebo £> = 2 (54 + 90) = 2 (31 + P).

V prvním případě by bylo Q = 170, ale P = — 5. Tento
případ nemůže nastat, protože obsahem trojúhelníku nemůže
být číslo záporné. Obsah obdélníku ABCD se proto rovná
buď číslu 2 (31 + 90) = 242 a P = 67, nebo je Q = 2(54 +
+ 90) = 288, P= 113. Oba tyto případy mohou nastat,
úloha má tedy dvě řešení: 242 a 288.

Z- I -4

Rozhodněte, zda přirozené číslo

110100100010000100000... • 5

které má tisíc číslic, je dělitelné číslem 72.
Řešení. Dané přirozené číslo označme A. Číslo A je děli-

telné číslem 72 právě tehdy, jestliže je dělitelné číslem 8 a zá-
roveň číslem 9. Víme, že libovolné přirozené číslo je dělitelné
číslem 9 právě tehdy, když je jeho ciferný součet dělitelný
devíti. Číslo je dělitelné osmi, jestliže je dělitelné osmi jeho
poslední trojčíslí.

Všimněme si nyní podrobněji, jak dostaneme zápis čísla A
v desítkové soustavě: Nejdříve napíšeme číslici 1, napravo
od ní dvojčíslí 10, připíšeme zprava trojčíslí 100, čtyřčíslí
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1000 atd. Pokračujeme tak dlouho, až dostaneme číslo,
které má aspoň 1 000 číslic. Řekněme, že jsme naposled
připsali jedničku a n nul. Dostali jsme číslo

1 | 1 0 | 1 0 0 | 1 0 0 0 | 1 . . . |1 0 0... 0|,
n

které má 1 + 2 + 3 + ... + {n + 1) číslic a končí n
nulami. Vzpomeneme si, jak prý slavný německý matematik
K. F. Gauss sečetl rychle již jako žák základní školy všechna
přirozená čísla od 1 do 100. Sečetl nejprve první číslo s po-
sledním (1 + 100), pak druhé s předposledním (2 + 99),
atd. Celkem dostal 50 součtů, každý z nich byl 101, celkem
tedy 50.101 = 5050. Tento princip použijeme i my a dosta-
neme

(n + 1) (w + 2)
1 + 2 + 3+ ... + (w + 1) —

2

Hledáme nyní nejmenší přirozené číslo n, pro které je před-
cházející výraz aspoň 1000. Zkusmo zjistíme, že n — 44.

45.46
-— = 1035 míst, končí 44 nulami a ob-

sáhuje 45 jedniček. Z něho dostaneme číslo A škrtnutím
35 nul na konci. Číslo A tedy končí devíti nulami a v jeho
zápisu v desítkové soustavě je kromě nul 45 jedniček a žádné
další cifry. Číslo A je proto dělitelné tisícem, a tedy též osmi,
a protože jeho ciferný součet je 45, je dělitelné i devíti. Proto
je číslo A dělitelné číslem 72.

Obdržené číslo má
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Číslo n = 44 jsme mohli najít i bez užití výše uvedeného
vzorce. Je totiž 1 + 2 + ... + 10 = 55, a proto 11 +
+ 12 + ... + 20 = 155, 21 + 22 + ... + 30 - 255 a

31 + 32 + ... + 40 = 355, tedy 1 + 2 + ... + 40 = 820.
К číslu 820 přičítáme postupně čísla 41, 42, ..., až dosta-
neme číslo větší než 999. To nastane při čísle 45, tudíž
n + 1 = 45, n = 44.

Z- I -5

Každý vrchol krychle s hranou dlouhou 6 cm odřízneme
rovinou, která protne hrany vycházející z tohoto vrcholu
2 cm od vrcholu. Určete počet vrcholů, hran, stěn, povrch
a objem mnohostěnu, který tak vznikne.

Řešení. Krychle má 8 vrcholů, po odříznutí dostaneme
místo každého vrcholu krychle tři vrcholy nového mnoho-
stěnu (obr. 2), který má tudíž 24 vrcholů. Krychle má 12 hran,

^7!

/

L/

Obr. 2
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část každé hrany je i hranou nového mnohostěnu. Kromě
nich má tento mnohostěn při každém odříznutém vrcholu
krychle další tři hrany, celkem má vzniklý mnohostěn 36 hran.
Krychle má 6 stěn, každá rovina řezu určuje jednu další
stěnu mnohostěnu, který má celkem 14 stěn. Každá z meh je
buď pravidelným osmiúhelníkem - takových stěn je 6 - nebo
rovnostranným trojúhelníkem - takových stěn je 8. Osmi-
úhelník vznikne ze stěny krychle odříznutím čtyř rovnora-

menných pravoúhlých trojúhelníků o odvěsnách délky 2 cm.

Trojúhelníková stěna má podle Pythagorovy věty strany dlou-

hé 2 У2 cm. Obsah osmiúhelníku je 62 — 4 .

2 . 2
28 cm2,

2

^
1/3 = 2 уз cm2.

Povrch vzniklého mnohostěnu je ё>=6.28 + 8.2уз =
= 168 + 16 уз cm2. Objem tohoto mnohostěnu vypočteme,
když od objemu krychle odečteme objem osmi odříznutých
jehlanů. Podstavou každého takového jehlanu je rovnoramen-
ný pravoúhlý trojúhelník s odvěsnou 2 a výška jehlanu je

obsah trojúhelníkové stěny je

41
rovněž 2 (vše v cm). Objem jehlanu je tedy —.2.2= —

objem mnohostěnu je 63 — 8 . — = 205

3’
4 1

cm3.
3

Z - I - 6

Je dán lichoběžník ABCD s pravým úhlem při vrcho-
lech A, D a se stranami \AB\ = 6, \AD\ = |CZ)j = 3. Na
jeho střední příčce je dán bod 5 ve vzdálenosti 2 od strany AD.
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Sestrojte kosočtverec, který má střed v bodě S a uvnitř každé
strany lichoběžníku leží jeden jeho vrchol.

Řešení. Při konstrukci kosočtverce využijeme jeho vlast-
ností, a sice to, že úhlopříčky kosočtverce jsou na sebe kolmé
a vzájemně se půlí. Dále využijeme souměrnost kosočtverce
podle jeho středu. Označíme-li M vrchol kosočtverce na
straně AD lichoběžníku (obr. 3), leží protější vrchol O nejen
na straně BC lichoběžníku, nýbrž i na úsečce A'D', kde
A', D' jsou body souměrně sdružené к bodům A, D podle
středu 5. Sestrojíme tedy nejdříve průsečík O úseček BC,
A'D' а к němu vrchol M tak, aby byly body O, M souměrně
sdružené podle středu 5. Zbývající vrcholy N, P kosočtverce
leží na úhlopříčce, která prochází bodem S a je kolmá na
úhlopříčku MO. Najdeme je jako průsečíky této kolmice se
stranami АВ a CD lichoběžníku.

PD C A'

\ИА\
\ 0^ /

t-
n

\ N

\
ú

A D'N В

Obr. 3
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SOUTĚŽNÍ ÚLOHY II. KOLA

Z - II - 1

Je dána kružnice k a v její vnitřní oblasti bod O různý
od středu kružnice k. Sestrojte kosočtverec se středem v bo-
dě O tak, aby tři jeho vrcholy ležely na kružnici k. Kolik má
úloha řešení ?

Řešení. Protože tři vrcholy hledaného kosočtverce mají
ležet na kružnici k, musí být jedna jeho úhlopříčka tětivou
kružnice k. Protože bod O je středem této tětivy, je tato
tětiva kolmá na ten průměr kružnice k, který prochází bo-
dem O. Bodem O vedeme tedy kolmici к spojnici bodu O
se středem kružnice k; průsečíky této kolmice s kružnicí k
jsou dva vrcholy hledaného kosočtverce, označme je A, C.
Zbývající dva vrcholy kosočtverce leží na druhé úhlopříčce,
tedy na spojnici bodu O se středem kružnice k (obr. 4). Jeden
z nich leží kromě toho také na kružnici k. Úloha má dvě řešení,
jsou to kosočtverce ABCD a AB CD'.
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Z- I! -2

Součet podílu a součinu dvou přirozených čísel p, q je 30.
Určete všechny dvojice čísel této vlastnosti.

Řešení. Podle znění úlohy má platit f- pq = 30. Proto

je číslo p násobkem čísla q, a tudíž p ^ q. Kdyby bylo
q ^ 6, bylo by i p ^ 6, tedy pq^ 36, což nemůže platit,

P
—. Je tedy q ^ 5. Zkusíme proto postupně

Я

protože pq = 30

q — 1, 2, 3, 4, 5 a z výše uvedené rovnice vypočteme p.
V posledních dvou případech není číslo p přirozené, úloha
má jen tři řešení: q = 1, p = 15, dále q = 2, p = 12 a třetí
řešení je q — 3, p = 9.

<7

Z - II - 3

Vnitřním bodem /С obdélníku ABCD vedeme přímky
rovnoběžné s jeho stranami. Daný obdélník tím rozdělíme
na čtyři obdélníky. Obsahy tří z nich jsou 16, 12 a 18 (obr. 5).

d

c

A a

Obr. 5
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Určete obsah čtvrtého obdélníku a obsah daného obdélníku
ABCD.

Řešení. Délky stran obdélníků označíme podle obr. 5.
Platí tedy ac — 16, bc = 12, bd = 18 a obsah čtvrtého
obdélníku je ad. Protože je ad : ac = bd : bc = 18 : 12 =

24. Obsah čtvrtého obdélníku je
3

= 3:2, je ad = ac . —
2

24, obsah obdélníku ABCD je 70.

Z - II -4

Je dána krychle ABCDA'B'C'D' o hraně délky 10. Na
přímce B'C' zvolíme bod M tak, aby bod C byl středem
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úsečky B'M. Řezem dané krychle rovinou A'BM je rovno-

ramenný lichoběžník. Vypočítejte jeho obsah.
Řešení. Přímka BM protíná úsečku CC v jejím středu S}

přímka A'M protíná úsečku CD' v jejím středu T (obr. 6).
Máme vypočítat obsah lichoběžníku A'BST. Úsečka ST
je střední příčka trojúhelníku A'BM, výška lichoběžníku se
rovná jedné polovině výšky tohoto trojúhelníku. Je \A'B\ =

1
== 10 ]/23\ST\ = — . 10 1/2 = 5 J/2. Dále je |/CM|2 - \KB'\2 +

+ \B'M\2 = (5 ]/2)2 + 202 = 450, \KM\ = 15 J/2. Obsah li-
10 ]/2 + 5 1/2 15 J/2 225

choběžníku je 112,5.
22 2

SOUTĚŽNÍ ÚLOHY III. KOLA V ČSR

(Úlohy připravil KV MO Severomoravského kraje.)

Z - Ш - 1

Najděte všechna přirozená čísla m, n, p, jejichž součet je
42, přičemž jedno z nich se rovná druhé mocnině součtu
obou zbývajících.

Řešení. Úloha má tři řešení, jsou to trojice (1, 5, 36),
(2, 4, 36) a (3, 3, 36),
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Z- III -2

Dokažte, že pro všechna reálná čísla x, у platí nerovnost

(я + у + l)2 + (я + jy)2^ b

Kdy nastane rovnost?
Řešení. Nerovnost upravíme na ekvivalentní tvar (2x +

+ 2у + l)2 ^ 0. Rovnost platí právě tehdy, když je x +
+ у = — b

Z-HI-3

Je dán čtverec ABCD a jeho vnitřní bod K, který není
jeho středem. Sestrojte kosočtverec XYUV tak, aby bod К
byl jeho středem a aby alespoň tři vrcholy kosočtverce ležely
na stranách čtverce ABCD. Kolik má úloha řešení?

Řešení. Postup je obdobný jako u úlohy Z-II-1. Úloha
má vždy aspoň dvě řešení, nekonečně mnoho řešení má
tehdy, když bod К leží na střední příčce čtverce ABCD.

Z- lil -4

Je dán kvádr ABCDEFGH se čtvercovou podstavou
ABCD o délce hrany \AB\ = 9 cm a výšce |AE\ — 24 cm.

a) Vypočtěte délku nejkratší spojnice bodů К, L jdoucí
po stěnách kvádru. Body К, L jsou body podstav, bod К
leží na ose hrany AB ve vzdálenosti 1 cm od hrany AB,
bod L leží na ose hrany GH ve vzdálenosti 1 cm od hrany GH.

b) Na obraze kvádru (obr. 7) náčrtněte nejkratší spojnici
bodů K, L.
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Řešení. Úlohu řešíme nejlépe pomocí sítě kvádru, délka
nejkratší spojnice bodů K, L je j/1000 == 31,62. Nejkratší
spojnice je načrtnuta na obr. 8, mohli jsme ovšem vzít i tu,
která je s načrtnutou souměrně sdružená podle roviny sou-
měrnosti úsečky AB.

SOUTĚŽNÍ ÚLOHY III. KOLA V SSR

(Úlohy připravil KV MO Západoslovenského kraje.)

Z - lil - 1

Nájdite najmenšie prirodzené číslo n, pre ktoré platí, že
počet číslic potřebných na zápis všetkých prirodzených čísel
1 až n je váčší ako trojnásobok čísla n.

Výsledok je n — 1108.

Z - III -2

Je daný rovnoramenný lichoběžník so základňami AB, CD.
Zostrojíme jeho uhlopriečky a ich priesečník označíme S.
Vypočítajte obsah lichoběžníka, ak viete, že obsah trojuhol-
nika DSC je 3 a obsah trojuholníka ASD je 6.

Riešenie. Trojuholníky DSC a DAC majú rovnaké základ-
ne, teda ich výšky sú v pomere 1 : 3. Výška trojúholníka DAC
je výškou lichoběžníka. Obsah lichoběžníka je 27.

i
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z-ш-з

Kolkými spósobmi móžeme celé čísla od 0 až po 20 do-
sadit’ namiesto premenných a, b v nerovnosti a < b tak, aby
bola splněná?

Riešenie. Ak a = 0, tak b móže nadobúdať hodnoty od
1 až po 20, ak a = 1, tak miesto b móžeme dosadit’ celé čísla
2 až 20, atď. Spolu je to 20 + 19 + ... + 2 + 1 = 210
prípadov.

Z- Ml -4

Na коске ABCDA'B'C'D' s hranou dížky 10 sú umiestne-
né body M, N} P následovně: Bod M je střed úsečky AB,
bod N je střed úsečky BC, bod P je střed úsečky CC. Nájdite
velkosť obsahu řezu коску rovinou určenou bodmi M, N, P.

Riešenie. Rovina určená bodmi M, N, P přetne kočku
v pravidelnom šesťuholníku, dížku strany šesťuholníka určíme
pomocou Pytagorovej vety, je \MN\ = 5 ]/2. Obsah šesťuhol-
nika móžeme vypočítat’ ako šesťnásobok obsahu rovnostran-
ného trojuholníka so stranou 5 |/2. Výsledok: 75 |/3.
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Kategória С

SÚŤAŽNÉ ÚLOHY I. KOLA

C-l-1

Vnútorným bodom X trojuholníka ABC vedieme rovno-
běžky s jeho stranami a tak rozdělíme trojuholník ABC na
tri trojuholníky a tri rovnoběžníky. Obsahy nových trojuhol-
níkov sú p, q, r. Vypočítajte obsah P trojuholníka ABC
pomocou čísel p, q, r.
, Riešenie. Označme (pozři obr. 9) novovytvořené troj-
uholníky DEX, XFG, KXH. Vzhfadom na rovnobežnosť
odpovedajúcich si stráň, a teda aj zhodnosť odpovedajúcich
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si uhlov, sú tieto trojuholníky podobné všetky navzájom
i s trojuholníkom ABC. Vieme, že ak sú dva trojuholníky
podobné v pomere k : potom ich plošné obsahy sú v pomere
k2 : 1. Preto platí:

У2 z2
p:P q:P =

(x + у + z)2 5 (x + у + z)2 3

X2
r : p —

(x + у + z)2

Z týchto rovností po odmocnění dostaneme

P У z

P X + у + z X + у + z

ГТ X

p X + у + z

Sčítáním 1’avých a pravých stráň týchto rovností dostáváme

]/p + ]/ q + ]/ r x + у + z
= 1,

]/P ' x + у + z

z čoho vyplývá, že j/P = ]/p + |/q + ]/r,
čiže P = (jjp + Уq + У r)2.
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С - I - 2

Definujme pre 1’ubovol’né čísla r, s číslo min (r, s) takto:
min (r, s) = r, ak je r s, min (r, s) = s, ak je r > s.

Nech a, 6, c sú nezáporné čísla a nech platí

a + b ^ c.(1)

Potom platí tiež

(2) min (1, a) + min (1, b) ^ min (1, c);

dokážte.

Riešenie. Budeme rozlišovat’ niekolko prípadov:
1. Potom je min (1, a) — a,

min (1,6) = b, a pretože vždy platí: c ^ min (1, c), bude vzhla-
dom na (1)

a)0^a^l, 0^6

c ^ min (1, c),min (1, a) + min (1, b) — a + b

z čoho vyplývá, že v tomto případe nerovnost’ (2) platí.
b) Nech a > 1, 0 5^ b ^ 1. Potom je min (1, a) = 1,

min (1,6) = 6, čo znamená, že min (l,a) + min (1,6) = 1 +
+ 6^1^ min (1, c), čím sme opáť dokázali správnost’
nerovnosti (2) aj v tomto případe. Rovnako by sme postupová-
li aj v případe, keď by bolo 0^af^l,6>l.

c) Nech konečne a > 1, 6 > 1. Potom je min (1, a) = 1,
min (1, 6) = 1, z čoho vyplývá, že min (1, a) + min (1, 6) =
= 2 > 1 min (1, c), čím je dokázaná nerovnost’ (2) aj v tom-
to případe.
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Pretože iné případy pre nezáporné čísla a, b už nastať
nemóžu, je tým správnost’ tvrdenia úlohy dokázaná.

C - I - 3

Nájdite všetky prirodzené čísla m, pre ktoré platí, že m + 3
je dělitelné štyrmi, m + 4 je delitel’né piatimi a m 4- 5 je
dělitelné šiestimi.

Riešenie. Nech m je prirodzené číslo požadovaných vlast-
ností. Zo zadania úlohy vyplývá, že potom musia existovat’
prirodzené čísla p, q, r tak, že platí

(1) 5q, m + 5 = 6r.m + 3 — 4p, m + 4

Rovnosti (1) budú zrejme splněné právě pre také m, pre
ktoré bude existovat’ celé nezáporné číslo 5 deliteřné číslami
4, 5, 6, pre ktoré platí

(2) m + 3 = 4 + s, m + 4 = 5 + s, m + 5 = 6 + s.

Za číslo 5 vo vzťahoch (2) možno zvolit’ zrejme každé číslo tvaru
s = 4.5.3.&, kde k je 1’ubovol’né celé nezáporné číslo, čiže
s — 60 k. Z toho vyplývá, že podmienkam úlohy móžu vyho-
vovať len čísla

(3) m = 1,61,121,181,241, ...

a skúškou sa 1’ahko přesvědčíme, že všetky čísla (3) sú rieše-
niami úlohy.
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С- I -4

Úsečky v obr. 10 je třeba zafarbiť červenou a modrou farbou
takto:

Začneme v niektorom vyznačenom bode a zafarbíme niekto-
rú z úsečiek, ktorá z něho vychádza, červenou farbou. V dal-
ších krokoch farbíme striedavo modrou alebo červenou

farbou niektorú z dosial’ nezafarbených úsečiek vychádza-
júcich z bodu, do ktorého viedla právě zafarbená úsečka.
Takto pokračujeme dovtedy, pokiaí je to možné.

a) Určte, v ktorých bodoch třeba začať, aby sa potom dali
zafarbiť všetky úsečky.

b) Kolko róznych zafarbení všetkých úsečiek móže vznik-
núť?

Q>b5 D5 E5

DiB4

в с вЙ * £4

a2 a3 b2 b3 c2 c3 d2 d3 e2 e3
Obr. 10

Riešenie. a) Daný obrazec voláme grafom, jednotlivé
úsečky sú hranami grafu, ich koncové body voláme uzlami.
Počet hrán vychádzajúcich z daného uzla grafu voláme jeho
stupňom. V danom grafe sú s výnimkou uzlov A\ a E±
všetky uzly párneho stupňa. Uzly Ai, E4 sú tretieho, teda
nepárneho stupňa. Úloha zafarbiť všetky hrany daného grafu
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je totožná s úlohou nakreslit’ daný graf jedným ťahom.
К tomu, aby sme daný graf nakreslili jedným ťahom, nemo-
žeme začať v uzle párneho stupňa. Ak by sme začali napr.
z uzlu Aq farbením hrany A5A1, pri predpísanom sposobe
farbenia hrán by sme sa pri farbení »domčeka« A buď zafarbe-
ním hrany A4A5 vrátili naspat’ do uzla A5 a ďalej к domčeku
В by sme už nemohli pokračovat’, pričom by aj niektoré
z hrán domčeka A (napr. A4A1) zostali nezafarbené, alebo by
sme nemohli zafarbiť hranu A4A5. Musíme preto začínat’
v uzle nepárneho stupňa. К tomu, aby sa dali zafarbiť všetky
úsečky daného obrazca, musíme teda začať v bodoch A1,
resp. E4.

b) Predpokladajme, že začneme daný graf farbiť v bode A\.
Každý domček pozostáva zo 6 hrán. Po zafarbení všetkých
hrán domčeka A sa dostaneme к hrané A4B4, ktorá je spojní-
cou prvých dvoch domčekov. Po vyjdení z vrcholu A\ sa
móžeme к hrané A4B1, ktorú budeme farbiť ako siedmu,
a teda červene, dostat’ celkom 6 spósobmi, ale vzniknú přitom
len dve navzájom rožne zafarbenia hrán domčeka A (pozři
obr. 11, na ktorom sú červené hrany vyznačené plnou čiarou,
modré čiarou přerušovanou). Domček В začneme farbiť
z uzlu Вi modrou hranou a z rovnakých dóvodov ako pri
farbení domčeka A dostaneme dve rožne zafarbenia s tým
rozdielom, že farby hrán budú opačné ako na obr. 11. Pri
farbení prvých dvoch domčekov máme teda celkom 4 rožne
zafarbenia. Hranu B4C1, ktorá je spojnicou domčekov В
a C, budeme farbiť ako štrnástu, teda modrou farbou. Domček
C zafarbíme podobné ako domček A a domček D podobné
ako domček В a domček E opáť podobné ako domček A.
Pri každom z nich dostaneme teda celkom dve rožne zafar-
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benia. Pri troch domčekoch máme tak 8 róznych zafarbení,
pri štyroch 16 a pri všetkych piatich 32. Přitom sme hranu
C4D1 farbili ako dvadsiatu prvú, čiže červene,a hranu D^E\
ako dvadsiatu osmu, tj. modré.

Ak začneme s farbením grafu z bodu £4 červenou farbou,
dostaneme farbenie domčeka E ako na obr. 12, kde opáť plná
čiara znamená červenú farbu hrany a přerušovaná čiara farbu
modrú. Po zafarbení domčeka E budeme hranu E1D4 farbiť
ako siedmu, čiže červenou farbou. Pri tomto spósobe farbenia
grafu dostáváme teda iné zafarbenia ako pri farbení z bodu
A\, ktorých je zrejme taktiež celkom 32. Z toho vyplývá,
že celkový počet róznych zafarbení je 32.2 = 64.

Poznámka. Odporúčame čitatelovi, aby si uvědomil, že
pri farbení grafu pozostávajúceho zo 6 domčekov bude počet
zafarbení pri vyjdění z bodu A\ 64, ale pri vyjdění z druhého
uzla nepárneho stupňa nedostaneme už ďalšie rožne zafarbe-
nia grafu. Teda i v tom případe bude celkový počet róznych
zafarbení len 64.

*1

A.
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С - I - 5

Je daný lichoběžník ABCD so základňami AB, CD, kde
\AB\ > |CD|. Vrcholom A veďte priamku p tak, aby rozde-
lila daný lichoběžník na dve časti rovnakých obsahov.

Riešenie. Veďme vrcholom D daného lichoběžníka rovno-

běžku s uhlopriečkou AC tohto lichoběžníka. Táto přetne
polpriamku BC v nejakom bode, ktorý označíme E. Vznikne
tak trojuholník ABE (pozři obr. 13), ktorý má zrejme rovna-

ký obsah ako lichoběžník ABCD. Trojuholníky ACD а АСЕ
majú totiž spoločnú stranu АС a výšky oboch trojuholníkov
na túto stranu sú rovnako velké.

Označme F střed úsečky BE. Vzhl’adom na to, že \AB\ >
> |CD|, musí bod F ležať zrejme vo vnútri úsečky BC.
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Priamka AF je potom zrejme hl’adanou priamkou p. Obsah
trojuholníka ABF je totiž polovicou obsahu trojuholníka
ABE a vzhladom na vyššie uvedené teda polovicou obsahu
daného lichoběžníka. Z toho vyplývá, že obsahy trojuholníka •
ABF a štvoruholníka AFCD sú rovnaké.

C- I -6

Je daný trojuholník ABC. Nech O je střed jemu vpísanej
kružnice a nech |OC| < \OA\, |OC| < \OB\. Vyjádříte
velkosti tětiv, ktoré na stranách trojuholníka ABC vytína
kružnica k — (O; |OC|), pomocou velkostí jeho stráň.

Riešenie. Označme C, D, E, F, G spoločné body kružnice
k a obvodu trojuholníka ABC (pozři obr. 14). Trojuholníky
DOC, FOE, COG sú zrejme všetky tri rovnoramenné s rovna-
ко velkými ramenami, a sú preto zhodné. Ich základňami
sú tětivy kružnice k vyťaté na stranách trojúholníka ABC,
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ktoré sú preto tiež zhodné. Označme ich dížku t. Platí
teda: \CD\ — \CG\ = \EF\ = t. Označme ďalej \BC\ — a,

\AC\ — b, \AB\ = c. Body D, E sú súmerné podlá priamky
AO, body G, F zasa podlá priamky ВО. Preto platí: \AFj =
= \AC\ = b, \BE\ = [Z?C| - a. Ďalej platí: |AE\ — c —
— \BE\ — c — a, |5F| — c — \AF\ = c — b. Keďže \AB\ -

— \AE\ + \EF\ + \FB\, po dosadení dostaneme c — c —
— a + t + c — b, z čoho už vyplývá: t = a + b — c.

ÚLOHY KLAUZÚRNEJ ČASTI I. KOLA

C - S - 1

Nájdite prvé dve z čísel 3, 33, 333, 3333, ..., ktoré sú
dělitelné siedmimi.

Riešenie. Priamym výpočtom sa 1’ahko přesvědčíme, že
žiadne z čísel 3, 33, 333, 3333, 33 333 nie je siedmimi delitel’-
né. Číslo 333 333 však už siedmimi dělitelné je, pretože platí
333 333 = 7.47 619. Tak sme našli prvé z hladaných čísel.
Druhé by sme mohli rovnako hladať skúšaním dělitelnosti,
ale riešenie si móžeme ulahčiť následujúcou úvahou:

Číslo zapísané k + 6 trojkami dává pri delení siedmimi
rovnaký zvyšok ako číslo zapísané k trojkami, pretože ich
rozdiel je rovný 333 333 . 10fc, čo je číslo dělitelné siedmimi.
Preto dalším číslom dělitelným siedmimi v danom slede bude
číslo zapísané dvanástimi trojkami, teda číslo 333 333 333 333.
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С - S - 2

Určete, kolkými spósobmi možno daný obrazec (obr. 15)
nakreslit’ jedným ťahom. Přitom za rožne pokládáme také
spósoby, pri ktorých sa začína na róznych miestach alebo pri
ktorých sa úsečky zakreslujú v róznom poradí.

ВA

Obr. 15

Riešenie. Ako sme zistili pri úlohe С - I - 4, ak chceme
daný graf nakreslit’ jedným ťahom, musíme začat’ a končit’
v uzle nepárneho stupňa. V danom případe musíme teda
začat’ v bode A a končit’ v bode В alebo obrátene. Daný graf
pozostáva z troch »domčekov«, z ktorých každý obsahuje šest’
hrán, a z dvoch spojovacích hrán. Akonáhle zakreslíme spo-

jovaciu hranu, nemóžeme sa už vracať spát’. Preto před
zakreslením spojovacej hrany už musí byť zakreslený celý
predchádzajúci domček. Každý z troch domčekov možno
zakreslit’ šiestimi róznymi spósobmi (obr. 16): KMNLKPQL,
KMNLQPKL, KPQLKMNL, KPQLNMKL, KLQPK-
MNL, KLNMKPQL. Ak začneme v bode A, móžeme teda
daný obrazec zakreslit’ 6.6.6 = 216 spósobmi. Rovnaký
počet spósobov zakreslenia obrazca dostaneme, ak vyjdeme
z bodu B. Celkom je teda 432 možností, ako sa dá daný obra-
zec nakreslit’ jedným ťahom.
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C - S - За

Lichoběžník ABCD so základňami \AB\ = 10> \CD\ — 5
a výškou = 9 je svojimi uhlopriečkami AC, BD rozdělený
na štyri trojuholníky. Vypočítajte ich obsahy.

Riešenie. Označme M priesečník uhlopriečok AC, BD
(obr. 17). Trojuholníky DCM а ВАМ majú odpovedajúce

D
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Obr. 17
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uhly zhodné, sú teda podobné. Pretože podlá předpokladu je
\AB\ = 2|CD|, sú aj ich výšky v pomere 2:1. Platí preto:
vi = 6, V2 — 3. Z toho vyplývá, že obsah trojuholníka ABM
je i. 10.6 =30, obsah trojuholníka CDM je 2.5.3 ==7,5.
Ďalej je obsah trojuholníka ABC rovný ^. 10.9 = 45,
z čoho vyplývá, že obsah trojuholníka BCM je 45 — 30 = 15
a rovnako velký je tiež obsah trojuholníka ADM.

C - S - 3b

c. Zistite, či potomPre nezáporné čísla a, b, c platí a + b
musí platit’ a2 + 3b2

Riešenie. Ukážeme, že nerovnost’ a2 + 3b2
platit’ pre všetky také a, b3 c, pre ktoré je a + b ^ c. Stačí
totiž, aby sme zvolili čísla a, b tak, aby platilo a2 + 3b2 <
< (a 4- b)2, čo je ekvivalentně s nerovnosťou b(b — a) < 0,
a číslo c tak, aby bolo a2 4- 362 < c2 ^ {a + b)2. Eahko sa
vidí, že príkladom takej trojice sú čísla: a = 2, b = 1, c = 3.
Je totiž a + 6 = 3 = c, ale a2 + 362 = 7 < 9 — c2.

c2.
c2 nemusí

SÚŤAŽNÉ ÚLOHY II. KOLA

C- II -1

Je daný lichoběžník ABCD so základňami \AB\ — 2a,
jDC| = a. Veďte dve priamky rovnoběžné s úsečkou AC
tak, aby rozdělili lichoběžník na tri časti rovnakého obsahu.
Určte priesečníky týchto priamok s priamkou AB.
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Riešenie. Označme v = \CE\ výšku lichoběžníka ABCD
(pozři obr. 18). Potom pre jeho obsah P platí

2 2

Hfadané rovnoběžky s úsečkou AC majú preto rozdělit’
daný lichoběžník na tri časti s obsahom | av. Takýto obsah
má však zrejme trojuholník ACD. Preto jednou z hladaných
rovnobežiek je priamka AC. Druhů rovnoběžku s úsečkou
AC nájdeme tak, že trojuholník ABC rozdělíme na dve časti
rovnakého obsahu. Označme X priesečník hladanej rovno-

běžky s priamkou AB, Y jej priesečník s priamkou BC.
Obsahy podobných trojuholníkov BXY a BAC sú v pomere
1 : 2. Podlá vety o obsahoch podobných trojuholníkov, ktorú
sme použili v riešení úlohy C-I-l, musí preto platiť |BX|:

: \BA\ = 1 : У2, z čoho vyplývá, že \BX\ = —= = a]/2.
P
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С- II -2

Pre každé prirodzené číslo n je číslo N = 102w
násobkom čísla 96. Dokážte.

Riešenie. Číslo N móžeme postupné upravit’ takto:

22n

N = 22n (52й - 1) = 22и (5« 1) (5n + 1) .

Číslo 22n^i 22 pre každé 1 je zrejme násobkom 4. Čísla
5n — 1, 5ns'5n + 1 sú tri za sebou nasledujúce prirodzené
čísla. Právě jedno z nich je preto násobkom troch. Nie je
to číslo 5n. Násobkom troch bude teda niektoré z čísel 5n — 1,
5n + 1, ktoré sú párne a jedno z nich musí byť násobkom
štyroch. Súčin (5n — 1) (5й + 1) bude teda pre každé n^. 1
násobkom čísla 3.2.4 =24. Preto číslo N je pre každé priro-
dzené n násobkom čísla 4.24 = 96, ako bolo třeba dokázat’.

Iné riešenie. Pri dokáže tvrdenia úlohy móžeme použit’
tiež metodu matematickej indukcie. Za tým účelom označme
hodnotu čísla N v závislosti na n ako an.

Pre n = 1 je a± = 102 — 22 = 100 — 4 = 96, čo je zrejme
číslo dělitelné číslom 96.

Nech pre. nějaké prirodzené číslo n^i 1 je an = 96k,
kde k je prirodzené číslo. Potom

an+1 = 102«+2 - 22ra+2 = 100 . 102íí - 4 . 22ra =

= 96 . 102й + 4 an = 96 (102й + Щ,

čo znamená, že číslo an+1 je tiež násobkom čísla 96. Tým je
tvrdenie úlohy dokázané.
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Ďalšie riešenie. Metodou matematickej indukcie sa dá
dokázat’, že pre lubovolnú dvojicu prirodzených čísel p, q
a každé prirodzené číslo n^L 1 je

pn — qn — (p — q) (pn-i + pn-2 q + .. . 4. qn-i^}

qn je dělitelný číslom p — q.čo znamená, že rozdiel pn
V našom případe stačí teda položit’ p = 102, q — 22.

C-ll -3a

Nech a, b, c sú nezáporné reálne čísla také, že platí:
a + b ^ c. Potom platí

b ca

(1) +
1 + a 1 + b 1 + c

Dokážte.

Vyšetříte dalej, kedy platí vo vztahu (1) rovnost’ a rozhod-
nitě, či tvrdenie platí aj v případe, keď nepředpokládáme
nezápornost’ čísel a, b, c, ale iba to, že sú rožne od čísla — 1.

Riešenie. Vzhladom nato, že čísla a+1, 6+1, c+1
sú kladné, platí (1) právě vtedy, keď platí nerovnost’, ktorú
z nej dostaneme, ak obe strany vynásobíme súčinom (a +
+ 1) (6 + 1) (c + 1), čiže

cl + obc + ob + CLC + b + obc + ob + bc ^

^ c + abc + ac + bc,

74



tj.

(2) a + b + 2ab + abc^ c.

Nerovnost’ (2) však zrejme platí, pretože podlá předpokladu
je a + b^ c a 2ač> + abc^i 0. Platí preto aj nerovnost’ (1),
ktorej správnost’ sme malí dokázat’.

Rovnost’ vo vztahu (1) nastane zrejme právě vtedy, keď
nastane rovnost’ vo vztahu (2). To však nastáva právě vtedy,
keď súčasne platí

(3) a +' b — c,

(4) 2ab + abc — 0.

Vzhladom na to, že 0, platí (4) právě vtedy, keď buď
a = 0, alebo b — 0. Pre a = 0 však z (3) máme b = c a pre
b — 0 je z (3) zasa a = c. Rovnost’ vo vztahu (1) nastáva teda
právě vtedy, keď buď a = 0, b = c, alebo b — 0, a = c.

Ak o číslach a, b, c nepředpokládáme nezápornost’, tak
jednak vo všeobecnosti z (1) nevyplývá (2), ale ani pre
a > —1, b > —1, c > —1, keď (2) z (1) dostaneme vyššie
uvedeným postupom, neplatí (1) a zrejme ani (2), ako ukazu-
je tento příklad: Ak a = b — — |, c = 0, je a + b^. c, ale

0,5 -0,5 1
1 + b ~ ГТо^ + Г-^5 “ 3

b 2a
1 = <+

1 + a 3

c

< 0 = —

1 + c
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С - II - 3b

Ак vedieme vnútorným bodom X trojuholníka ABC
rovnoběžky s jeho stranami, rozdělíme tým trojuholník na tri
trojuholníky a tri rovnoběžníky. Obsahy týchto rovnobežníkov
označíme u, v, w. Vyjádříte obsah P trojuholníka ABC po-
mocou čísel u, v, w.

Riešenie. Označenie priesečníkov priamok prechádza-
júcich bodom X so stranami trojuholníka ABC zvolíme tak
ako na obr. 19. Obsahy rovnobežníkov ADXKy BEXF,
CHXG v uvedenom poradí označíme u, v, zv. Nech ďalej
\AD\ = x, \DE\ = y, |EB\ = z. Výšky trojuholníkov DEXy
XFG, KXH na strany DE, XF, KX v uvedenom poradí
označíme vi, V2, v%. Pretože tieto trojuholníky majú všetky
uhly zhodné, sú navzájom podobné, a tak platí:

vi : у = V2 : z — vs : x čiže v± -= ky, V2 = kzy V3 — kxy

В/1 D Ex У z

Obr. 19
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kde k > O je reálna konstanta. Veďme bodom H rovnoběžku
so stranou AB daného trojuholníka a jej priesečník so stra-
nou BC označme L. Trojuholník CHL je zrejme zhodný
s trojuholníkom GXF. Preto jeho výška na stranu HL je
rovná v-г. Z uvedeného je zřejmé, že výšku trojuholníka ABC
na stranu АВ dostaneme ako súčet v± + V2 4- V3 a pre
obsah P tohto trojuholníka platí:

k1
P = — (x + у + Z) (vi + V2 + V3) = — (x + у + z)2 ,

z čoho vyplývá, že

k
P = — (v2 + y2 + z2 + 2xy + 2xz + 2yz).(1)

Keďže obsah rovnoběžníka HXFL je zrejme zhodný s obsa-
hom rovnoběžníka CHXG, pre čísla u, v, w platí:

(2) U = XVl — kxy, V — ZV1 = kyz, W = ZV3 = kxz,

z čoho vyplývá

(3) uv = k2y2xz — ky2w, uw = k2x2yz = kx2v,

vw = k2z2xy = kz2u.

Z (2) dostaneme

и v w

(4) xy = J’ xz — —

k
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a z (3) zasa •

uv vw
Y2 —

kv 5(5) у2 = z2 = —

kw 5 ku

Dosadenim zo (4) a (5) do (1) dostaneme konečne

k (uw uv vw
p = — — + — + — +

2 \kv kw ku k k k

2и 2v 2w\
—+—+—=

u2w2 + u2v2 + v2w2 + 2u2vw + 2uv2w + 2uvw2

2uvw

(uv + uw + vw)2
2uvw
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Kategorie В

SOUTĚŽNÍ ÚLOHY I. KOLA

В - I - 1

Na přímce leží čtyři různé body A\, A2, As, A\ a na přímce
s ní rovnoběžné pět různých bodů B\, B2, Bs, B4, B5. Každou
úsečku AiBk obarvěte jednou z barev červená, modrá tak,
aby nevznikl žádný jednobarevný čtyřúhelník (tj. uzavřená
lomená čára složená ze čtyř úseček stejné barvy).

Řešení. Každému obarvení úseček AiBjc můžeme přiřadit
tabulku:

Вi В -z Bs Ba Вь

A\ C C

A 2 M C

A3

Aa

V tabulce uvedeme písmeno C nebo M podle toho, je-li
obarvení odpovídající úsečky červené nebo modré. Podmínka

79



o čtyřúhelníku znamená, že v tabulce se nesmějí vyskytovat
stejná písmena v rohových polích obdélníku.

Řešení lze najít zkoušením. To si však usnadníme ověřením
tvrzení: V žádném sloupci tabulky řešení nesmějí být tři
stejná písmena:

C C M

např. C lze doplňovat v řádcích buď na C M a dále

C C M

C C M M

С M С M a dále nelze.

C M M c
nelze, nebo

V každém sloupci tabulky řešení jsou tedy dvě písmena C
a dvě písmena M, a to pokaždé jinak. Takových různých
sloupců je šest:

C C C M M M

C M M C C M

M C M C M c

M M C M c c

a (každé!) řešení dostaneme výběrem pěti z nich v některém
pořadí. Např. prvním pěti sloupcům odpovídá obr. 20 (plná
čára značí modrou, čárkovaná červenou barvu).
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A<A3Ai A?

/ /4^
/\

V
\

ч7-/ \ /

*5«ř5 *3*2
Obr. 20

В - I - 2

Je dán rovnoramenný trojúhelník ABC se základnou AB.
Zvolíme libovolný bod X přímky AB různý od bodů A, B.
Dokažte, že kružnice opsané trojúhelníkům AXC a BXC
mají stejně velké poloměry, a zjistěte, co je množinou středů
všech těchto kružnic, probíhá-li bod X přímku AB.
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Řešení (obr. 21). Nechť &i(,Si, ri) je kružnice opsaná
trojúhelníku AXC, ^2(^2, r2) kružnice opsaná trojúhelníku
BXC. Obě kružnice mají společnou tětivu CX. Rozlišme
tyto případy:

a) X leží uvnitř úsečky AB. Pak obvodový úhel CAX
kružnice ki nad tětivou CX je shodný s obvodovým úhlem
CBX kružnice кг, takže obě kružnice mají nad společnou
tětivou CX shodné oblouky, a jsou tedy shodné.

b) X neleží uvnitř úsečky AB; nechť např. leží uvnitř
polopřímky opačné к polopřímce BA (druhý případ je obdob-
ný). Pak obvodové úhly nad menším z oblouků CX kružnice
ki mají velikost a = |<£ XACj, obvodové úhly nad menším
z oblouků CX kružnice кг velikost tz — | <£ XBC\ = | <$iABC\ =
- a. Kružnice ki а k-г jsou proto opět shodné.

Tím jsme dokázali rovnost poloměrů, n = r2, obou kruž-
nic. Abychom našli množinu U všech středů těchto kružnic,
označme (obr. 21) o\ osu úsečky AC, 02 osu úsečky BC,
pi, рг kolmice v bodech А, В na přímku AB. Dále nechť
01 n pi = {K}, 02 n рг — {L}, 01 n 02 = {M}.

Dokážeme, že množina U je rovna množině V = (01 и 02) —
- {К, L, M}.

Každý z bodů 4S1 je průsečíkem přímky 01 s osou úsečky
AX; ta nemůže procházet bodem A, a tedy ani bodem K,
neboť X Ф A, a rovněž nemůže procházet středem M
kružnice opsané Д ABC, neboť X Ф B. Platí tedy Si e 01 —
- {К, M). Obdobně 52 e 02 - {L, M], takže U С V.

Je-li obráceně 5 libovolný bod množiny V, pak nastane
právě jedna z možností:

5 e 01 - {К, M),(I)
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5 e о2 - [L, M}.(И)

V případě (I) kružnice k(S3 r) pro r = |5Л| = \SC\
protne přímku AB v bodě X Ф A, neboť 5 Ф K. Podmínka
S Ф M zaručuje, že X Ф B, takže 5 je střed kružnice opsané
některému z trojúhelníků AXC. Obdobně v případě (II)
zjistíme, že S je středem kružnice opsané některému z troj-
úhelníků BXC. Proto U = V.

В - I - 3

Nechť a, /9, у jsou velikosti vnitřních úhlů trojúhelníku,
d velikost jeho nejdelší strany a P jeho obsah. Pak platí

( ■
1 1 1

d2 < 2P + +
sin a sin (i sin у

dokažte.

Řešení. Nechť a, b, c jsou velikosti stran proti úhlům
a, /9, y. Bez omezení obecnosti můžeme předpokládat, že
a t^= b c, takže d — c.

Podle známého vzorce je

P = b bc sin a,

tj-
2P

— bci
sin a

obdobně

2P
= ac.

sin /9

83



Proto

)>2p{1 1 1 1 1
-2P T+ +

sin a sin /ř sin 7 sin a sin /5

= c(b + a) > c2 — d2.

Poznámka. Dokázali jsme při tom silnější tvrzení:
Je-li c nejdelší strana Д ABC a P jeho obsah, pak

1 1
c2 < 2P +

sin a sin P

В - I - 4

Nájdite všetky riešenia sústavy rovnic(1)x2 + y2 + z2 + 2xy + 6xz + 6yz + 6x + 6y + 14a1 +

+ 5=0,(2)z2 + 4xy — 2л:,г — 2yz + x + 7y — 4z + 1=0,(3)2л:2 + 2jy2 + z2 + 2л;я + 2j>,a + 8л; + 2y + 5z + 6 = 0.

Řešení. (I) Sečteme (1), (2) a (3) a dělíme třemi; dostane-
me

x2 + у2 + z2 + 2xy + 2xz + 2yz + 5л; + 5y + 5z + 4 = 0
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neboli

(я + у + z)2 + 5(х + у + z) + 4 = О,
tj.

(х + у + z + 1) (л: + у + z + 4) = 0.

Jsou tedy dvě možnosti:

a) x + у + z = —1,
b) x + у + z — —4.

(II) Odečteme (2) a (3) od dvojnásobku (1). Dostaneme

12 xz + 12yz + 3*4-3у + 21z +3=0,

tj-
4^(x +y) + x+ y + 9z+ 1=0.

V případě a) je x + у = — (z + 1), takže máme

— 4z(z + 1) — (z + 1) + 9z + 1 = 0

neboli —4a'2 + 4z = 0,

tedy z(z — 1) = 0.

Proto

a) z = 0, X + у = — 1,

/3) z = 1, x + у = —2.
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V případě b) je л; + у — — (2 + 4), tj.

— 4z(z + 4) — {z + 4) + 9z + 1 = O,

po úpravě

4г2 4- 80 + 3 == О

neboli

(20 + 3) (2z + 1) - 0.

Proto

3 5
У) z = — X + у = —

2 ’ 2 5

1 7
ó) z = — X + у = —

2 5 2

(III) Dosazením za z a x z a), /3), y), ó) do rovnice (2) do-
staneme:

a) —4(1 + y)y — (1 + y) + ly + 1 = O,

odkud
— 4jy2 + 2y — 0,

tj.

("I, 0, 0),у = О, а рак x = — 1, z — 0 ...
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anebo

■(
1 3 3 1

— — о
2 2

у = —, а рак х = , z = О ...2 3 2

Р) 1 + 4( — у — 2)у — 2( —jy — 2) — 2у —у — z +

+ 7у — 4 + 1 = О,

odkud

- 4/ - 2у = О,

tj- К

jy = О, а рак х — — 2, z — 1 ... (- 2, О, 1),

anebo

■ ( ! 4
i з i

у = , а рак х = —, z — 1 ..2 5 2’ 2

)у + 1(-у-у) + ъ-52
+ 1у + 6 + 1 = Oj

2

9
у)_ + 4 — ~У +---у4

odkud

3
4у2 + 4у -i — о,

4
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tj.

1 9 3
у = , а рак х — , 2 =

4 5 4 3 2

( 9 1 3

Р ~ Т’ ~ ~2
anebo

3 7 3
jy = 5 а рак л: = — z = —

4 ’ 4 5 2

( )■7 3 3
"

. 5 Гз “
4 4 2

Í- у — — — У + у — — — У + 7У +
1 7 7

<5) — + 4
4 2 2

+ 2+1-0,
odkud

15
4у2 + 8у 3 = 0,

4

tj-

3 11 1
а |рак л; =З’ = — z = —

4 54 2

)•( 11 3 1

Т* ~~ Р ~ ~2
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anebo

5 9 1
—, a pak x =
4

y = - z = —

4 3 2

i)-9 5
7~34 4

Zkouškou se přesvědčíme, že všech osm trojic skutečně
vyhovuje soustavě.

В - I - 5

Označme M(n) počet všech uspořádaných я-tic nul a

jedniček, v kterých se nevyskytují tři nuly vedle sebe.
a) Určete M(13). b) Rozhodněte, zda je Aí(1000) sudé číslo.

Řešení, a) Výpisem všech možností zjistíme

(1) M(l) = 2, M(2) = 4, M(3) = 7, M(4) = 13.

Je-li я ^ 5, pak všechny я-tice můžeme získat z (я — l)-tic,
připisujeme-li za jejich poslední prvek nulu nebo jedničku.
Jedničku lze připsat ke každé z (я — l)-tic, kdežto v případě
nuly musíme vyloučit situace, kdy je (я — l)-tice zakončena
trojčíslím 1, 0,0. Těch je M(n — 4), takže celkem platí

(2) M(n) = 2 ,M(n — 1) — M(n — 4).

Postupným dosazováním do tohoto rekurentního vzorce
dostaneme

Af(13) - 3 136.
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b) Z rekurentního vztahu (2) je zřejmé, že Min) je pro n > 4
liché, právě když M(n — 4) je liché. Vzhledem к (1) je tedy
M(n) liché, právě když n = 3 + 4r nebo n = 4(r + 1), kde
r je celé nezáporné číslo. AÍ(IOOO) proto nemůže být sudé
číslo, neboť 1000 = 4.250.

Jiný způsob řešení:
a) Jak již bylo uvedeno, platí M(l) = 2, Aí(2) = 4, M(3) = 7,
M(4) = 13. Nechť я ^ 4. Množinu Am všech uspořádaných
я-tic splňujících danou podmínku rozdělíme na tři pod-
množiny

A»i = {(xi, *2, xz, ..., xn) £ Аиэ-xi = 1),

A»2 = {(*ij x2, ..., Xn) £ Аи; Ж1 = 0 Л л:2 = 1),

А„з = {(xi, x2, ..., X») £ Аи; Xi = x2 = 0 Л x3 = 1}.

Tyto množiny jsou zřejmě disjunktní a jejich sjednocení je
Ajj.

Přitom AW1 má М(я — 1) prvků, An.2 má M(n — 2)
prvků а Аиз má М(я — 3) prvků. Je tedy pro každé n ^ 4

M(«) = AÍ(h- 1) + М(я - 2) + M{n - 3).

Odtud již výpočtem určíme M(13) =3136.
b) Matematickou indukcí dokážeme tvrzení:

M(4k + 1), M(4k + 2) jsou sudá čísla, M(4k + 3),
M(4k + 4) jsou lichá, přičemž k = 0, 1, 2, 3, ....

Pro n = 1, 2, 3, 4 tvrzení platí podle (1). Předpokládejme,
že tvrzení platí i pro každé m — 1, 2, ..., я — 1. Pak
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M{n) = M(n - 1) + Min - 2) + M(n - 3) =
= 2AÍ(« - 2) + 2АГ(« - 3) + M(n - 4),

a tedy М(п) má při dělení dvěma stejný zbytek jako M(n — 4).
Pro n — 4 tvrzení platí, platí tedy i pro n. Číslo M(1000)
je proto liché.

B- I -6

Pro reálná čísla x, у platí x ^ у > 0. Dokažte, že pak
platí

ix-yf x + y — . (x-y)2
_ _ yxy S .

Řešení. Nejprve upravíme prostřední člen nerovností tak,
aby měl v čitateli výraz (x — y)2:

8x

x + у — 2 |Ixy
__ ( ]ÍX — ]/y)2(1)

2 2

(У* — Уу)2 (]/x + Уу)2 (л: — у)2

2(1/* + |/y)2 2 (У* + 1/у.)2

Protože х ^ у > 0, je též У* ^ Уу > 0. Nahradíme-li
ve jmenovateli zlomku (1) j/x číslem ]/y, zlomek (1) se zvětší
nebo nanejvýš zůstane stejný. Proto

x + у •— 2y*y (x — y)2 (x — y)2
2 8y2(2)ív)2
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Nahradíme-li ve jmenovateli zlomku (1) jfy číslem ]/x, zlomek
(1) se zmenší nebo nanejvýš zůstane stejný a platí

x + у — 2]/ху (x —у)2 (x — j>)2
2(2fx?2 8x

ÚLOHY KLAUZURNÍ ČÁSTI I. KOLA

B-S-1

Zjistěte, pro jaké trojúhelníky leží střed kružnice trojúhel-
niku opsané

a) uvnitř trojúhelníku,
b) na obvodě trojúhelníku,
c) mimo trojúhelník.

Řešení. Bez omezení obecnosti můžeme předpokládat,
že o velikostech a, /?, у úhlů trojúhelníku ABC platí a ^ ^'
^ y. Označme 5 střed kružnice opsané trojúhelníku ABC.
Leží-li A uvnitř Д ABC, je velikost středového úhlu BSC
menší než 180°, takže a < 90° а Д ABC je ostroúhlý.
Je-li obráceně Д ABC ostroúhlý, je у ^ a < 90°
a každý z bodů А, В, C leží v téže polorovině určené přímkami
ВС, АС, AB jako bod S (odpovídající středový úhel je totiž
menší než 180°).

Bod 5 dále zřejmě je na obvodě Д ABC, právě když troj-
úhelník je pravoúhlý. Z předchozích dvou případů už plyne,
že bod A leží mimo trojúhelník, právě když trojúhelník je
tupoúhlý.
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В - S - 2

Dokažte, že pro reálná čísla a, b, c platí

1
a2 + b2 + c2 sl — (a + b + c)2 .

Kdy platí znaménko rovnosti ?
Řešení. Pro libovolná reálná a, b, c platí

(a — b)2 + (a — c)2 + (£ — c)2 ^ 0, tedy

a2 + b2 — 2ab + a2 + c2 — 2ac + 62 + c2 — 2bc ^ 0,

neboli

3a2 + 3b2 + 3c2 ^ a2 + b2 + c2 + 2ab + 2ac + 2bc.

Proto

1
a2 + b2 + c2 ^ — (a + b + c)2

3

a rovnost nastane, právě když a = b = c.

В - S - 3a

V trojúhelníku ABC protíná osa úhlu BAC protější
stranu BC v bodě D. Dokažte, že

1 21
cos a, kde 2a = |<£ BAC|.+

\AB\ ' \AC\ \AD\
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Řešení. Pro obsahy P, Pi, P2 trojúhelníků ABC, ABD,
ADC z obr. 22 platí P = P\ + P2, tedy

l\AB\.\AC\ sin 2a -

\ \ AB\.\AD\ sin a + I \ AD\. \AC\ sin a.

2
Vynásobíme-li tuto rovnost číslem

dostaneme dokazovaný vztah.
\AB\.\AC\.\AD\ sin as

В - S - 3b

Kolko je prirodzených čísiel n s týmito dvomi vlastnosťami:

a) 103 ^ n < 104, tj. n je štvorciferné,

b) v desiatkovom zápise čísla n nie sú vedla sebe dve párne
číslice.
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Řešení. Pro k ^ 1 označme M(k) počet &-ciferných čísel,
která splňují i podmínku b). Každé (k + l)-ciferné číslo
splňující b) dostaneme právě jedním z těchto způsobů:

1. připojením liché cifry к některému &-cifernému číslu
splňujícímu vlastnost b);

2. připojením dvojčíslí, jehož první cifra je lichá a druhá
sudá, к některému {k — l)-cifernému číslu splňujícímu
vlastnost b).

Proto je
M(k + 1) - 5M(k) + 25M{k - 1).

Protože M( 1) = 9, Af(2) - 5M(1) + 25 = 70, M(3) =
= 5AÍ(2) + 25Af(l) = 5.70 25.9 = 575, je M(4) -
= 5M(3) + 25M(2) = 5.575 + 25.70 = 4 625.

Jiné řešení. Vyznačme si schematicky, jak mohou vypadat
čtyřciferná čísla splňující podmínku b). L bude značit lichou
cifru, S sudou cifru. U každého tvaru hned pišme počet
čísel toho tvaru; vždy lze užít pět lichých a pět sudých cifer,
s výjimkou sudé cifry na prvním místě, kdy lze užít jen čtyři
cifry (nikoli nulu).

Tvar čísla

S L S L

S L L S

S L L L

L S L S

L L L L

L L S L

L L L S

L L L L

počet čísel
4.53

4.53

4.53

54

54

54

54

54
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Čtyřciferných čísel vyhovujících podmínce b) je tedy
3.4.53 + 5.54 = 125.37 - 4 625.

SOUTĚŽNÍ ÚLOHY II. KOLA

В - II - 1

Dané sú kladné čísla a, b, c také, že a3 + b3 — c3. Dokážte,
že a2 + b2 > c2.

Řešení. Dokazovaná nerovnost zřejmě platí, právě když
platí nerovnost (a2 + b2)3 > c6 neboli když platí

(a2 + b2)3 > (a3 + b3)2.

S touto nerovností je však ekvivalentní nerovnost

a2b2 (За2 + ЪЬ2 — 2ab) > 0.

Ta je však skutečně splněna, protože a2b2 > 0 a

За2 + ЪЬ2 — 2ab = (a — b)2 + 2a2 + 2b2 > 0.

3

Jiné řešení. Podle předpokladu je = 1.+

a b
Proto jsou obě čísla —, kladná a menší než jedna. To

c c

3a \3 b \2
však znamená, že a tedy>>

c c
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2 32 3

1,++ >

odkud a2 + b2 > с2.

В- II -2

Určete množinu všech bodů uvnitř nebo na hranici pra-
voúhlého rovnoramenného trojúhelníku ABC o velikosti
přepony c, jejichž součet vzdáleností od jednotlivých stran
trojúhelníku je roven danému kladnému číslu p. Proveďte
diskusi vzhledem к parametru p.

В

/wc v
c

I

c A

Obr. 23

Řešení (obr. 23). Označme и, v, no vzdálenosti bodu X
trojúhelníku ABC od jeho stran АС, BC3 AB. Protože se
obsah trojúhelníku ABC rovná součtu obsahů trojúhelníků
ACX, BCX a ABX (a není-li X vnitřní bod trojúhelníku,
je situace obdobná), platí
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с21 1с’

. —=■ (и + v) Н
2 1/2 2

ш = —,
4

tj.

с
и + v + ю |'2 - —

1/2

Platí tedy и + v -f w — р, právě když

У2

Protože pro body trojúhelníku je 0 ^ w ^ , má úloha

neprázdné řešení pro ta p, pro která

c

-=-p

П_<1_
1/2 - 1 2 ’

0^

tj-

c c

2 l/o

Řešením je průnik trojúhelníku s přímkou rovnoběžnou
c — p 1/2
2 — ]/2

s přeponou, jejíž vzdálenost od přepony se rovná
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В- II- За

Je dán pravidelný 2w-boký jehlan s hlavním vrcholem V.
Nechť nějaká rovina protíná boční hrany jehlanu v bodech
A i, A2, .. .j A2n a výšku jehlanu v bodě B. Vyjádřete součet

1 1 1
+ ... +

I VA\\ + \VA2l \VA2n\

pomocí \VB\ a úhlu cp, který svírá výška jehlanu s každou
boční hranou.

Řešení. Pro i ='1, ..n je VB osa úhlu v trojúhelníku
Ai VAi+n a přitom |<£ BVAi\ = |<£ BVAt+n\ = <p. Podle
výsledku úlohy B-S-3a je

1 1 2

\VAi\ + \VAi+n\ \VB\
cos cp.

2n cos (p
Proto je hledaný součet roven

\VB\

В - II -3b

Fibonacciove čísla Fn (n prirodzené číslo) sú definované '
takto:

Fi = 1, F2 = I, Fn+2 — Fn+1 + Fn> n — 1, 2, ...

Ukážte, že právě jedno z čísel Fi98i,Fi982, .. .,Fi992 je děli-
tefné číslom 6.

99



Řešení. V posloupnosti Fibonacciových čísel se střídají
vždy dvě lichá čísla a jedno sudé, je tedy právě každé třetí
číslo sudé. Vyšetřujeme-li obdobně zbytky při dělení čísel Fn
třemi, dostaneme tyto zbytky: 1, 1, 2, 0, 2, 2, 1,0, 1, 1, 2, 0
atd. Proto je právě každé čtvrté Fibonacciovo číslo dělitelné
třemi, a tedy právě každé dvanácté šesti. Z dvanácti daných
za sebou jdoucích čísel je proto právě jedno dělitelné šesti.
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Kategorie A

SOUTĚŽNÍ ÚLOHY I. KOLA

A - I -1

Najděte všechny uspořádané dvojice x,y kladných reálných
čísel, pro které platí

1 jxn — 1 yn — 1
I x — 1 у — 1 3

]/xnyn — 1(1)
Уху — 1

kde n je přirozené číslo.
Riešenie. Zo zadania úlohy vyplývá, že x Ф 1, у ф 1,

x > 0, у > 0, ху Ф 1.
Případ п = 1 je jednoduchý. Vtedy každá dvojica klad-

ných reálných čísel x, y, pre ktorú je x Ф 1, у Ф 1, ху Ф 1,
je riešením rovnice (1).

Pre n > 1 rovnicu upravíme. V rovnici vystupujú súčty
geometrických radov:

]/xnyn — 1
— 1 + ]/ху + (|/xy)2 + ... + (j/ry)”-1,Уху — 1

xn — 1
= 1 + X + ... + xn~x3

x — 1
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yn - l
= 1 + у + ... + y1l~l.

У - 1

Teda rovnicu (1) móžeme ekvivalentně upravit’ takto:

1 + }jxy + ... + (.}Ixy)n-1

= |/(1 + x + ... + хи_1) . (1 + у + ... +

Rovnicu móžeme umocnit’ na druhů a zapísať pomocou

sumačných znamienok:

1 11 — 1П— 1

(2 (1/лэОО2 = 2 xi • 2У-(2)
í = 0 i = 0i=0

Známa Cauchyho nerovnost’ (pozři napr. 39. zvázok ŠMM,
A. Kufner: Nerovnosti a odhady)

m mm

14.1Щ ě (2 W(3)
»=o»=o í=o

platí pre 1’ubovol’né reálne čísla ao, .. ., am, bo, ..., bm.
Naviac, rovnost’ platí vtedy a len vtedy, ak existuje reálne
číslo t také, že ao = tbo, a\ = tbi, ..., am — tbm, alebo ak
bo = ... = bm — 0.

Rovnost’ (2) je rovnost’ v Cauchyho nerovnosti (3) s m =
— 1, at = (|/х)1-, bt = {]jy)\ i = 0, ..., n — 1. Teda

(2) platí vtedy a len vtedy, ak existuje také reálne číslo ř,
že (]/х)г = t (]/уУУг = 0, ..., n — 1. Pre * = 0 z tejto pod-

= n
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mienky vyplývá t = 1. Teda, ak x, у sú riešením rovnice (1),
tak x — y.

Skúškou sa 1’ahko přesvědčíme, že každá dvojica x, у

kladných reálných čísel, pre ktorú je x =3/, x ф 1, je rieše-
ním rovnice (1).

А- I -2

Pro každé přirozené číslo n existuje přirozené číslo m takové,
že na kružnici se středem [0,0] a poloměrem m leží alespoň n

mřížových bodů. Dokažte. (Mřížový bod je bod s oběma
souřadnicemi celočíselnými.)

Riešenie. Ak mrežový bod [&, /] leží na kružnici so stře-
dom [0, 0] a polomerom m, tak trojica celých čísel k, /, m

je riešením rovnice

X2 + jy2 = z1.(1)

Naopak ak trojica celých čísel k, /, m je riešením rovnice (1),
tak mrežový bod [&, /] leží na uvažovanej kružnici.

Teda póvodná úloha je ekvivalentá takejto úlohe: Máme
nájsť prirodzené číslo m také, že rovnica (1) má aspoň n

róznych riešení tvaru

(2) у ^5 ky YYly ••• у 1цу ttl.

Zdá sa, že je 1’ahšie nájsť n róznych nenulových celočísel-
ných riešení

pl) Ql) rli p2) <pl) • • • j pn> Qm
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rovnice (1) (bez podmienky n — r2 — ... = rn)3 ako hfadať
riešenia tvaru (2). Všimnime si však toto:

Ak pi, q\3 n a p23 qz3 r2 sú nenulové celočíselné riešenia
rovnice (1), potom trojice pir2, <7ir2, nr2 а р2П3 q^ri, rir2
sú riešenia rovnice (1) tvaru (2) s m = rir2. Tieto trojice
však nemusia byť rožne. V tejto súvislosti zavedieme nový
pojem. Dve nenulové celočíselné riešenia pi3 qi, r± a p2, qz3 r%
rovnice (1) nazveme súdelitelné, ak existuje také reálne číslo t3
že platí pi — tp23 qi — tq23 n = ír2.

Ak pi3 q\3 n a p2, q%3 r2 sú nenulové nesúdelitelné celo-
číselné riešenia rovnice (1), potom trojice pir2, qir23 rir2
а р2П3 <?2гь П/2 sú dve rožne riešenia rovnice (1).

Vo všeobecnosti, ak máme n po dvojiciach nesúdelitelných
nenulových celočíselných riešení pi3 qi3 n; p23 q%3 r2; ...; pn,
qn3 rn rovnice (1), tak stačí označit’

m — r\ rn>

pi . m
h = j i = 1, ..n3

П

qi . m
3 i — 1 i • • • 3U =

n

a dostaneme n róznych riešení rovnice (1) tvaru (2).
Teda zostáva nájsť n navzájom nesúdelitelných nenulových

celočíselných riešení rovnice (1).
Z jednoduchej identity

(и2 + г>2)2 — (и2 — v2)2 + 4ulv2
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vyplývá, že pre 1’ubovolné celé čísla и, v trojica x — u2 — v2,
у — 2uv, z — u2 + v2 je celočíselné riešenie rovnice (1).
Ak zvolíme postupné и — 2 + 1, 2 + 2, ..., 2 + n, v — 1,
tak trojice pi = (i + 2)2 — 1, qi =2 (i -f 2), n — (i +
+ 2)2 + 1, i = 1, 2, ..n sú nenulové celočíselné riešenia
rovnice (1).

Ukážeme, že uvedené riešenia sú navzájom nesúdelitelné.
Ukážeme to sporom. Predpokladajme, že existujú také
i < j ^ n a reálne číslo t, že platí

(3) pí = tph qi tqj, Гг = trp

i 2
Z druhej rovnosti (3) vyplývá t

prvej rovnosti v (3) dostáváme

. Dosadením do
j + 2

((< + 2)2 - 1) (J + 2) = (i + 2) ((;' + 2? I)*

Po jednoduchej úpravě máme

0 + 2) ((г + 2)2 — 1 — (i + 2) (У + 2)) — — (i + 2).

Teda číslo i + 2 je dělitelné číslom j + 2. To však nie je
možné, lebo i + 2 < j + 2.

Výsledok móžeme zhrnúť takto: Na kružnici so stredom
[0, 0] a polomerom m3 kde

»i=((l + 2)2 + 1) . ((2 + 2)2 + 1) ((« + 2)2 + 1)

leží aspoň n mrežových bodov o súradniciach
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((г + 2)2 — 1) . т 2 (г + 2) . т

~{i + 2)2+1 ’ (г + 2)2 + Г
i = 1, 2, ..п.

Poznámky. 1. Všetky uvedené body ležia v prvom kva-
drante. Aj body otočené o 90°, 180° a 270° sú mrežové body
ležiace na uvažované) kružnici. Podobné body [0, m], [m, 0],
[0, — m], [—m, 0] ležia na uvažované) kružnici. Teda je tam
aspoň 4n + 4 mrežových bodov.

2. Dá sa ukázat’, že trojice и2 — v2, 2uv, i (w2 + z>2)
a 2uv, w2 — z>2, i (w2 + v2), kde и, sú celé čísla, sú všetky
celočíselné riešenia rovnice (1) - pozři napr. úlohu A-P-l
26. ročníka MO.

A - I - 3

Do každého trojúhelníku lze umístit revnoramenný troj-
1/2

úhelník, jehož obsah je větší než — -násobek obsahu pů-

vodního trojúhelníku. Dokažte.
Riešenie. Uvažujme trojuholník ABC. Označíme pišme-

námi a, b, c dížky stráň oproti vrcholom А, В, C a a velkost’
uhla pri vrchole A. Nech P je obsah trojuholníka ABC.
Máme nájsť rovnoramenný trojuholník s obsahom P' umiest-

У 2P'
nený v trojuholníku ABC a taký, že — > J^-.

Ak niektoré dve strany trojuholníka ABC sú rovnako
velké, tak ABC je hladaný rovnoramenný trojuholník
a P' — P. Bez ujmy na všeobecnosti móžeme teda predpokla-
dať, že platí a < b < c.
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Nech D je bod na straně AC taký, že ABD je rovnora-

menný. Nech E je bod na straně AB taký, že AE = b (pozři
obr. 24). Nech P\3 P2 sú obsahy trojuholníkov ABD, AEC,
v je výška trojuholníka ABC na stranu AB a zc je výška
trojuholníka ABC na stranu AC. Potom platí

P = | cv = i bzv,

Pi=\\AD\ . w,

Рг = i \ AE\ . v = | 6®.

6 1/2
Ak — > ”, tak

c 2

P2 b 1/2
— = — > -—

2 ’P c

a teda ЛРС je hladaný trojuholník.
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V 2b
— je hladaným trojuholní-

kom trojuholník ABD. Z obrázku 24 vidieť, že platí

Ukážeme, že v případe —
c

c

2
cos a =

1^15
a teda

сто

Pi =
4 COS a

Predpokladajme, že PC je najkratšia strana, a teda a je
7t

najmenší uhol. Určíte je 0 < a < —, a teda 0 < cos a < L

Takže postupné dostaneme

1 jL-Ij2
2b = 2 ’ ]/2 2

Pi 2 cсто c

P 4 cos a bzv 2b cos a

А- I -4

Sú dané reálne čísla a, b} r také, že 0 < a ^ 2r, 0 < b ^ 2r.
Na kružnici k s polomerom r sú pevne zvolené body A, P
tak, že |y4P| = a. Určte množinu všetkých priesečníkov
uhlopriečok konvexných štvoruholníkov ABXY vpísaných
do kružnice k, pre ktoré \XY\ = b.

Riešenie. Označíme M hladanú množinu všetkých prie-
sečníkov К uhlopriečok konvexných štvoruholníkov ABXY
s vlastnosťou uvedenou v zadaní úlohy.
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Ak a — b = 2r, tak bezprostředné vidieť, že M je prázdna
množina. Ďalej budeme předpokládat’, že а Ф 2r alebo
b Ф 2r.

Budeme hovořit’, že úsečku UV vidieť z bodu W pod uhlom
а, ак a je velkost’ uhla UWV. Vieme, že množina bodov,
z ktorých vidieť úsečku UV pod uhlom a, je zjednotenie
dvoch oblúkov kružnice.

Máme pevne zvolené body A, В na kružnici k so stredom
A a polomerom r také, že \AB\ = a. Nech Xo, Yo sú body
na kružnici k (pozři obr. 25) také, že jAo Yo| = b, priamka
XoYo je rovnoběžná s priamkou АВ a bod S leží v licho-
bežníku ABXoYo. (Ak a = r, tak existujú dve dvojice takých
bodov. V opačnom případe sú body Xo, Yo určené jedno-
značné.) Priamka AB určuje dve polroviny @ a o. Nech q

je polrovina obsahujúca body Xo, Y0. Označíme a, velkosti
uhlov AXoB, YoBXo. Nech Ко je priesečník uhlopriečok
AXo, BYo. Úsečku AB z bodu Ко vidieť pod uhlom a + /5.

Nech X, Y sú body na kružnici k také, že \XY\ —b
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(pozři obr. 26). Označíme К priesečník uhlopriečok kon-
vexného štvoruholníka ABXY.

Ďalej budeme rozlišovat’ tri případy.
1. a = b. Potom ABXoYo je obdížnik a a = /3. Bod X

leží v polrovine q. Uhol AXB je obvodový uhol nad tětivou
AB, a teda jeho velkost’ je a. Podobné uhol XBY je obvodový
uhol nad tětivou XY, \XY\ — b, a teda jeho velkost’ je /3.
Takže úsečku АВ vidieť z bodu К pod uhlom a + /3. Bod К
leží na oblúku kružnice k\ v polrovine q, z ktorého vidieť
úsečku AB pod uhlom a + /3. Tým sme ukázali, že M c ki.
Ukážeme aj opačnú inklúziu.

Nech Z e k\. Označíme U, V priesečníky polpriamok
AZ, BZ s kružnicou k (pozři obr. 27). Vieme, že uhol AZB
je a + /3. Bod U leží v polrovine q na kružnici k s tětivou
AB, a teda uhol AUВ je a. Potom uhol UBV je /3 a odtial’
vyplývá, že \VU\ = b. Štvoruholník ABUV je konvexný,
a teda Ze M.
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Číže v případe a — b množina M je oblúk kružnice v pol-
rovině q, z ktorého úsečku АВ vidieť pod uhlom a + /5.

2. a < b. Body X, Y musia ležať v polrovine q (lebo
tětiva XY je dlhšia ako tětiva AB). Uhol AXB je a. Uhol
YBX móže byť (3 alebo tz — (3 (obr. 28). Teda uhol AKB
je a + (3 alebo и + a — /3. Z uvedeného vyplývá, že M c
c ki U kz, kde ki, k% sú oblúky kružnice v polrovine q,
z ktorých vidieť úsečku АВ pod uhlom a + /5, resp. 7t +
+ a — /?.

Rovnakými argumentami ako vyššie možno ukázat’, že
И = ki U k%.

3. a > b. Body X, Y móžu ležať bud obidva v polrovine q,
alebo obidva v polrovine a. Uhol YBX je v obidvoch prípa-
doch (3. Uhol AXB je v prvom případe a a v druhom тс — a.
Teda uhol AKB je a + /5 alebo тс + /5 — a. Z uvedeného
vyplývá, že M с ^ и ks, kde k\ je oblúk kružnice v polro-
vine q, z ktorého vidieť úsečku АВ pod uhlom a + /5, a ks
je oblúk kružnice v polrovine a, z ktorého vidieť úsečku AB
pod uhlom тс + [3 — a.
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Ak Z e ki и k3i tak zostrojíme body X, Y ako priesečníky
polpriamok AZ, BZ s kružnicou k. Jednoduchou úvahou
(ako v případe 1.) zistíme, že |XF| — ba ABXY je kon-
vexný štvoruholník. Teda M =^u k3.

А- I -5

Sú dané dve nerastúce postupnosti reálných čísel {an}™=v
{bn}ZLi a dve prosté zobrazenia P, R množiny všetkých
prirodzených čísel na seba. Utvořme súčty aP(1) + bRW,
aP(2) + 6R(2),... a usporiadajme ich podlá velkosti do ne-
rastúcej postupnosti {cnj^Lv Potom pre každé dve pri-
rodzené čísla m, n platí

am + bn•cm+n—1

Dokážte.
Riešenie. Z definície postupnosti {cn)n=\ vyplývá, že

existuje postupnosť ki, kz, ...,kn3 ... taká, že

ci — api-ki) + bR(ki), ..., cn — ap(k„) + ^R(kn) j • • • •

Naviac, pre i Ф j je ki ф kj.
Z toho, že postupnosti {an}^Lv (&и}“=1 sú nerastúce,

vyplývá, že a;- ^ am pre j ф m a bi ф bn pre i ф и. To zna-
mená, že nerovnost’ aj + bt > am + bn móže platit’ jedine
pre j < m alebo i < n.

Označíme A = {/; P(ki) < m} а В = (/; R(ki) < n}. Ak
ci > am + bn, tak podlá predchádzajúceho platí Ze А и В.
Kedže množina Amám-l prvkov,množina В mán — l prv-
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kov, tak А и В má menej ako n + m — 1 prvkov. To znamená,
že nerovnost’ ci > am + bn platí pre menej ako n + m — 1 hod-
not indexu /. Teda (n + m — l)-tý člen nerastúcej postup-
nosti {c/fc}"=1 je nie váčší ako am + bn, tj.

Cn+m—l =2 am + bn•

А- I -6

Je daný štvorsten ABCD a lubovolný bod К v jeho vnútri.
Nech Gi, G2, G3, G4 sú ťažiská štvorstenov KBCD, AKCD,
ABKD, ABCK. Dokážte, že objem štvorstena G1G2G3G4
nezávisí od volby bodu K.

Riešenie. Vieme, že ťažisko štvorstena dělí ťažnicu v po-
mere 1 : 3. Ťažnica je spojnica vrcholu s ťažiskom steny
štvorstena. Ďalej vieme, že štvorsten je až na posunutie,
otočenie, připadne zrkadlový obraz, jednoznačné určený
dížkami svojich hrán. Špeciálne, objem štvorstena je určený
dížkami jeho hrán.

Nech 7i, Г2, Г3, J4 sú ťažiská stien BCD, ACD, ABD,
ABC. Bod Gi, i = 1,2,3,4, dělí úsečku KTi v pomere 1 : 3,
lebo Gt je ťažisko příslušného štvorstena a KTí je jeho ťažnica.
Teda štvorsten G1G2G3G4 je rovnolahlý so štvorstenom

s koeficientom rovnol’ahlosti | a stredom rovno-
lahlosti K. Keďže koeficient rovnolahlosti je nezávislý od
volby bodu К, tak dížky hrán štvorstena G1G2G3G4 tiež
nezávisia od volby bodu К, a teda ani jeho objem.

Naviac ak si uvědomíme, že rovnolahlosť s koeficientom k
mění objem telies |&|3-krát, tak 1’ahko určíme objem štvor-
stená GiG2G3G4pomocou objemu ABCD. Štvorsten Г1Г2Г3Г4
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je rovnolahlý so štvorstenom ABCD s koeficientom rovno-

. 1Iahlosti a stredom v ťažisku štvorstena ABCD. Teda
3

1 3 / 3 \3
objem štvorstena G1G2G3G4 je . I — I =

3 \ 4 / 64

1
— násobok

objemu štvorstena ABCD.
Inériešenie. Umiestnime štvorsten ABCD do súradnicovej

sústavy s počiatkom O. Označíme gi vektor G* — O. Po-
dobne a = A — O, b = B — O, c = C — O, d = D — O,
к = К — O. Keďže Gi je ťažisko štvorstena KBCD, tak
platí

к + b 4- c -j- d
gi =

4

Podobné platí

a + к + c + d
g2 =

4

q 4- ь -)- к + d
g3 4

o + b -И c + к
g4 =

4

DÍžka hrany G1G2 je rovná velkosti vektora

o — b
G2 — Gi = g2 — gi =

4
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Podobné pře ostatně hrany. Z uvedeného vyjadrenia vyplývá,
že dížka hrán štvorstena G1G2G3G4 nezávisí od volby bodu K,

je rovná — dížok odpovedajúcich hrán štvorstena ABCD.

Teda objem štvorstena G1G2G3G4 nezávisí od volby bodu К
1

a je — násobok objemu štvorstena ABCD.
43

ÚLOHY KLAUZÚRNEJ ČASTI I. KOLA

A-S-l

Určte všetky usporiadané w-tice čísel ai, 012,...,«« z inter-
/ 71 TC \

válu y— —, —j, pre ktoré má kvadratická rovnica

x У sin 2ai + 2 sin2 a« = 0x2 2 cos2 ai(1)
í=i i— 1 1

aspoň jeden reálny kořeň.
Riešenie. Kvadratická rovnica (1) má aspoň jeden reálny

kořeň právě vtedy, keď jej diskriminant

D — (2 sin 2ai)2 — 4 2 cos2 щ . 2 sin2 щ
i= 1i = l »=1

je nezáporný.
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Jednoduchou úpravou použitím vzorca pre sinus dvojná-
sobného uhla dostaneme

(2) D = 4 [( 2 sin cos Щ)2 — 2 cos2 a* • 2 sin2 aí] = 0.
i=l í= i í = i

Podlá Cauchyho nerovnosti (pozři riešenie úlohy A-I-l)
však platí

(2 sin щ cos až)2 2 COS2 Xi . 2 sin2 a,;.(3)
Í = 1 Í = 1 Í=1

Teda nerovnost’ (2) platí vtedy a len vtedy, ked D = 0.
To je ekvivalentně tomu, že platí rovnost’ v nerovnosti (3).
Zo zadania úlohy vyplývá, že cos xi Ф 0 pre i = 1, 2, ..., n.
Teda rovnost’ v (3) nastáva právě vtedy, ked’ existuje reálne
číslo k také, že

sin ai k . cos aí, i = 1, 2, ..., и,

ekvivalentně

£ = tg <xi = tg a2 = . .. = tg a„.

/ 7Г 7Г \

^ — j—-j, tak posled-Kedže čísla ai, ..., xn sú z intervalu

ná podmienka je ekvivalentná podmienke ai = a-2 = .

Iné riešenie. Rovnicu (1) upravíme na tento tvar

2 x2 cos2 xt — 2 2xcos Xi sin ať + 2 sin2 аг = 0.
»=i í= iť= i
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tj-

v (x cos щ — sin a*)2 = 0.
Í=1

Suma štvorcov reálných čísel je rovná nule právě vtedy,
keď každý sčítanec je nulový. Teda rovnica (1) je ekviva-
lentná sústave rovnic

x cos ai = sin ai.

X COS 0C2 = sin <X2,

(4)

x cos a„ = sin an.

Zo zadania vyplývá, že cos ai ф 0, cos ф 0,..., cos аи ф 0.
Rovnica (1) má reálne riešenie právě vtedy, ak má reálne
riešenie sústava rovnic (4). Táto má reálne riešenie právě
vtedy, keď

sin ai Sin Cf-n

cos <xi cos an

tj. keď ai = аг = ... = аи.
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A - S - 2

Do každého pravoúhlého trojúhelníka lze umístit rovnora-
1

menný trojúhelník, jehož obsah je větší nebo roven —--ná-
3]/2

sobku obsahu původního pravoúhlého trojúhelníka. Dokažte.
Riešenie. Uvažujme pravoúhlý trojuholník ABC s pra-

vým uhlom pri vrchole C a dížkou stráň a, b, c, a ^ b ^ c.
Nech a je velkost’ uhla BAC. Obsah P je potom

P = \ bc sin a.

Nech D je bod na straně AB taký, že \DA\ — b, a nech E
je bod na straně AC taký, že \BE\ — \EA\ (pozři obr. 29).
Také body zrejme existujú.

C

E

ba

a,

В D Ac

Obr. 29

Obsah Py trojuholníka ADC je

b1
Py — — b2, sin a = — P.

2
(1)

c
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Podobné obsah Рг trojuholníka ABE je

sin a I c31 1
(2) P2 = yc.

1
— c tg a = — c2 .

2 4
—

. sin a.
4 bcos a

b 1
Ak — 2> —tak podfa (1) trojuholník ADC vyhovuje pod-

31/2c

b 1
mienkam úlohy. Ak — < —=, tak podlá (2) platí

3Pc

1 c2 1 1
— be sin a > — (3|/2)2 .

4 1,2 2
P = —P2 = —

3У2

Teda v tomto případe trojuholník ABE vyhovuje podmien-
kám úlohy.

A - S - 3a

V rovině je dána kružnice k s poloměrem r a na ní body А, В
ve vzdálenosti d. Nechť číslo v splňuje nerovnosti 0 < d <
< v 2 r.

Najděte množinu všech bodů X z vnější oblasti kružnice k,
pro něž druhé prusečníky А' Ф А, В' Ф В přímek XA,
XB s kružnicí k mají vlastnost, že \A'B'\ = v.

Riešenie. Body A, В rozdelia kružnicu na dva oblúky
k\3 kv. Nech ki je váčší z nich, tj. ten, ktorý leží v tej istej
polrovine ako střed S kružnice k určenej priamkou AB.
Nech X je bod z vonkajšej oblasti kružnice k3 A', B' sú body
na kružnici k rožne od A, B} \A'B'\ = v, a AT leží na priamkach
AA\ BB'.
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Nech 2a je velkost’ vypuklého uhla ASB a 2/3 je velkost’

vypuklého uhla A'SB'. Teda a < — а (3 5^ —• Naviac, číslo2 2

/3 nezávisí od polohy bodov A', B'3 je určené dížkou v.

Móžu nastat’ tri případy:

1. A'3 B' e kr,
2. A’ e kl3 B' e k2;
3. A' e k2, B' E k\.

V případe 1 máme ďalšie dve možnosti:
a) střed S leží v štvoruholníku ABB'A' (obr. 30);
b) střed S leží mimo štvoruholníka ABB'A' (obr. 31).



V případe la) sa lahko vypočítá

<£ AXB - (<£ XA'B' + <C XB'A') == TU

= TU - (<£ ХЛ'Б' + ЛБ'Л' + a) =;

= tu — (tu — /? + a) = /5 — a.

Podobné v případe lb) zistíme, že

<£ ЛХБ = tu - a - fi.

V případe 2 máme tiež dve možnosti:
a) bod Б leží v trojuholníku AB'A' (obr. 32);
b) bod Б leží mimo trojuholníka AB'A' {obr. 33).



V případe 2a) dostáváme

<£ AXB = тс — (tu — /3) — (тс — (тс — a)) = /3 — a,

a v případe 2b) máme

<£ ЛЛГЯ = тс - a - /3.

Rovnako v případe 3 máme dve možnosti a uhol <£ AXB
je P — a alebo тг — a — /3.

Nech 4 je oblúk kružnice, z ktorého vidieť úsečku ЛЯ
pod uhlom /3 — a. Podobné nech /2 je oblúk kružnice, z kto-
rého vidieť úsečku АВ pod uhlom тс — a — fi. Obidva
oblúky ležia v opačné j polrovine určenej priamkou АВ ako
bod S.

Z uvedeného rozboru vyplývá, že hladaná množina M
bodov X s vlastnosťou uvedenou v texte úlohy je podmnožina
zjednotenia h и h•

Nech Ti, Г2, Г3, Г4 sú priesečníky dotyčníc ři, t-> kružnice k
v bodoch А, В s oblúkmi 4, l2. Ukážeme, že

M = 4.иh — {Ti, Га, П, Ti}(1)

(pozři obr, 34).
Označíme T priesečník dotyčníc ři a t?. Uhol ATB je

TC

тс — 2a, Keďže platí 0 < a < fi ^ —, tak тс — 2a > p — a

а тс — 2а>тс — a — fi. Teda bod T leží vnútri kružnic
oblúkov 4, 4. Nech bod X leží na 4u 4 a je rózny od bodov
Ti, Г2, Г3, Г4. Móže nastat’ zřejmých šest’ prípadov (oblúky
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/i, /2 sú bodmi Ti, T2, 7з, Г4 rozdělené na šesť častí). Nech
například bod X leží na oblúku h medzi bodmi li а Г3
(pozři obr. 35). Potom druhý priesečník A' priamky AX
s kružnicou k leží na oblúku k\ (vzhladom na polohu bodu X
к dotyčnici fi). Podobné bod B' leží na oblúku k]_. Keďže
uhol AXB je /? — a, uhol AB'B je a, tak 1’ahko sa vypočítá,
že uhol A'AB' je /?. Odtial’ už vyplývá, že \A'B'\ — v. Teda
Xe M.

Podobné by sme postupovali v ostatných prípadoch.
Teda hladaná množina je popísaná vzťahom (1).
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A - S - 3b

V rovině se souřadnicemi x,y je dána přímka/). Pak jsou
právě tři možnosti:
a) p obsahuje nekonečně mnoho mřížových bodů roviny

(tj. bodů s celočíselnými souřadnicemi);
b) p neobsahuje žádný mřížový bod;
c) p obsahuje přesně jeden mřížový bod.
Dokažte. Pro každou z možností a), b), c) udejte příklad
přímky p.
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Riešenie. Ukážeme, že nastane aspoň jedna z uvedených
troch možností. Předpokládáme, že nenastane možnost’ b)
ani c). Ukážeme, že vtedy nastane možnost’ a).

Ak nenastane možnost’ b) ani c), tak existujú aspoň dva
rózne mrežové body A, B, ktoré ležia na priamke p. Nech A
má súradnice [xo, jyo] а В má súradnice [xi, yx]. Ak rovnica
priamky p je у — kx + q, tak musí platit’

y0 = kxo + q,

yx = kx\ + q,

teda

Уi — Уо
k =

X\ — Xq

У1 — Уо
q = Уо — *o —

Xi — Xo

Teda rovnica priamky p má tvar

Уi — Уо
(1) (x — x0) + 3^o-У =

XI — Xo

Ak n je prirodzené číslo, tak čísla

xn = xo + n (xi — Xo),

Уп =Уо + n (yx — y0)
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sú celé. Naviac zrejme dvojica xn, yn vyhovuje rovnici (1).
Teda na priamke p ležia všetky mrežové body so súradnicami
[xn, Уn], tj. nastáva možnost’ a). Ak priamka p nemá rovnicu
uvedeného tvaru, tak je rovnoběžná s osou y. Potom jej
rovnica je x — jco a obsahuje všetky mrežové body so sú-
radnicami [*o, y], kde у je celé číslo.

Príkladom priamky pre možnost’ a) je 1’ubovoíná priamka
s rovnicou у = k, k je celé číslo. Príkladom priamky pre

případ b) je priamka у = §, tá neobsahuje ani jeden mrežový
bod. Na priamke s rovnicou у = j/2 x leží mrežový bod so
súradnicami [0,0]. Ukážeme, že iný mrežový bod tam neleží.
Keby totiž mrežový bod [*i, y\], kde yi Ф 0 alebo y\ Ф 0,
ležal na priamke у = j/2 x, tak y\ — ]/2 x\. Potom xi ф 0

aj угф 0, a tedy j/2 = —. To by znamenalo, že j/2 je rado-
X\

nálne Číslo, a to nie je.

SÚŤAŽNÉ ÚLOHY II. KOLA

A - II - t

Nech A} B3 C, D sú mrežové body také, že body C, D neležia
na priamke AB. Nech v\ je výška trojuholníka ABC na
stranu AB a v% je výška trojuholníka ABD na stranu AB.
Potom vi : V2 je racionálně číslo. Dokážte.

Riešenie. Ak body А, В ležia na priamke rovnobežnej
s osou y, tak \AB\ je prirodzené číslo a aj v\3 v% sú prirodzené
čísla.
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Ak body A, В neležia na priamke rovnobežnej s osou yy
tak priamka АВ má rovnicu у — kx + q, kde ky q sú racio-
nálne čísla (pozři riešenie úlohy A-S-3b). Označme [ci, C2]
a [d\3 do) súradnice bodov C, D. Podlá vzorca pre vzdialenosť
bodu od priamky platí

c-2 + q\ } 1 + *2,V\ = \kci

do + q\ : j/1 + &2.^2 — \kdi
Potom

C2 + q\ : \kd\ — íf2 + qi®i : ^2 = \kci

a to je racionálně číslo.
Iné riešenie. Ukážeme najprv pomocné tvrdenie: Ak

mrežové body Xi, X2, X3 neležia na priamke, potom dvoj-
násobok obsahu trojuholníka X1X2X3 je prirodzené číslo.

Nech [xí3 уi\ sú súradnice bodu Xi3 i — 1, 2, 3. Bez ujmy
na všeobecnosti móžeme předpokládat’, že x\

(keby *i = X2 — X3, tak body X\, ХзУ X3 ležia na priamke).
Ak xi = X2, tak \XiX2\ — \У2 — yi\ a výška trojuholníka
X1X2X3 na stranu X1X2 je хз — X2. Teda pre obsah P
platí

X2 < X3

P = \\У2 —yi\ . (*3 — X2).

Odtial’ už vyplývá tvrdenie.
Nech teraz x\ < X2 < X3. Nech X je bod s r-ovou sú-

radnicou X2 na úsečke X1X3 (pozři obr. 36). Pre druhů sú-
radnicu у bodu X platí

(y — yi): Суз — yi) — (X2 — xi): (x3 — ^1)
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^2,

*3

У X
*1

*1 х2 хз

Obr. 36

a teda

Х2 — Х±
• Суз - yi).у =yi +

Хз - XI

Pře dížku úsečky Х^Х platí

Х2 — Х\
(Уз —yi)-\Х2Х\ =у2 — У =У2 — У1 —

Хз — XI

Obsah Р trojuholníka Х1Х2Х3 je súčet obsahov trojuholníkov
X1X2X а XX2X3. Teda platí

11
— \X2X\ . (x2 - xi) + — \X2X\ . (x3 - x2).P =

Odtial postupné dostaneme
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11
— (\X2X\ . Оз - *i) =У СС-У2 -З'О . (*з - *i) -p =

- O2 - XI) . (3* - J>i)).

Z poslednej rovnosti vyplývá, že 2P je prirodzené číslo.
Teraz už 1’ahko dokážeme tvrdenie úlohy. Označíme Pi

а P2 obsahy trojuholníkov ABC a ABD. Keďže P] = —.

1
. ]/ÍP| . wi, P2 = — |/1P| . z>2, tak vi: V2 = 2Pi : 2P2. Ale

čísla 2Pi, 2P2 sú prirodzené, teda : v2 je racionálně číslo.

A - II - 2

Určete všechny uspořádané w-tice (и^ 1) kladných reál-
ných čísel jci, x2, ..., xn, které vyhovují soustavě rovnic

1
(1) #1 + X2 + ... + Xn — — >

4

14 n2
1 b ... H = w2 (я + l)2.

Xl X2
(2)

Riešenie. Predpokladajme, že w-tica kladných reálných
čísel xi3 x2, ..., xn vyhovuje rovniciam (1) a (2). Označíme

Щ = 1/xí, bi =

rovnosti platí

i
i = 1, 2, ..., n. Podra Cauchyho ne-

]/xí

129



1
(3) 2 af. У bf У (У a,b,f ř (2 if = — rf (я + 1)2.

i= 1 1=1 i = 1 1=1 ^

Z druhéj strany podia (1) a (2) platí

n n n n V2

2 «?.2 = 2> • Z - = -Я2(я + i)2.
i=l í = 1 i = 1 г = 1 за ^

Teda v Cauchyho nerovnosti (3) platí rovnost’. Vieme, že
pre kladné číslo platí v Cauchyho nerovnosti rovnost’ právě
vtedy, keď existuje kladné číslo t také, že a* = tbi pre i =

n. Teda j/x* = t .

i
~ pre i = 1, 2, ..n. Teda= 1, 2, .. • Э

}/xt
Xi = t . i, i — 1, 2, ..n. Dosadením do rovnice (1) dosta-
neme

1
t =

2n (n + 1)

Zistili sme, že ak и-tica kladných čísel xi, xz, ..., xn vyhovuje
rovniciam (1) a (2), tak

i

(4) j i — I? 2, ..и.Xi =
2n (n + 1)

Dosadením sa Tahko přesvědčíme, že и-tica (4) je nesením
rovnic (1) a (2).
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А-М-За

Dokažte: Ke každému rovnoběžníku existuje pravoúhelník
v něm obsažený, jehož obsah je větší nebo roven jedné polo-
vině obsahu původního rovnoběžníku.

Riešenie. Nech ABCD je rovnoběžník. Móžeme před-
pokladať \AB\^i \BC\. Nech E, F sú středy stráň AD, BC
(pozři obr. 37). Nech k je kružnica nad priemerom EF.
Poloměr kružnice k je rovný % \AB\. Vzdialenosť priamok
AB, DC od priemeru EF je nie váčšia ako \ |J3C|, teda nie
váčšia ako poloměr kružnice k. Kružnica k teda přetíná
priamky AB, DC aspoň v jednom bode. Naviac aspoň po

jednom z týchto priesečníkov je na úsečkách AB, DC.
Nech Q je priesečník kružnice k s úsečkou AB a i? je prieseč-
nik kružnice k s úsečkou DC, a to taký, že QR je priemer
kružnice k.

Štvoruholník EQFR je pravouholník (uhly ERF, EQF sú
obvodové uhly nad priemerom EF) a jeho obsah je rovný
polovici obsahu rovnoběžníka ABCD.
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A - II -3b

V rovině je daná kružnica k s polomerom 1, do ktorej je
vpísaný pravidelný 1982-uholník. Nech M je pevný bod,
ktorý leží v jeho vnútri. Potom existujú dva vrcholy А, В
tohto 1982-uholníka také, že platí

(
2

— ^ AMB < 7z.1 -
1982

Dokážte.

Riešenie. Ak A, В sú vrcholy mnohouholníka, ktoré nie
sú susedné, tak úsečku AB nazveme uhlopriečkou. Uhlo-
priečok je konečný počet. Speciálně teda, v našom 1 982-uhol-
niku existuje uhlopriečka AB taká, že bod M na nej neleží,
ale je к uhlopriečke AB najbližšie, tj. ak XY je iná uhlopriečka
neobsahujúca bod M, tak vzdialenosť bodu M od XY nie je
menšia ako vzdialenosť bodu M od AB.

Označíme A', B' druhé priesečníky priamok AM, BM
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s kružnicou k (pozři obr. 38). Vnútri (kratšieho) oblúku BA'
neleží žiadny vrchol 1982-uholníka. Ak by tam ležal vrchol X,
tak uhlopriečka AX by bola bližšie к bodu M ako uhlopriečka
AB. Z rovnakých dóvodov neleží žiadny vrchol 1982-uhol-
nika vnútri kratšieho oblúku AB'. Keďže pre dva susedné

vrcholy X, Y nášho mnohouholníka platí <£ XS Y
2tz

1982

2tz
<£BSA'^(S je střed kružnice k), tak nutné <£ASB' 19825

2tt
Bod M neleží na priamke AB, takže <£ AMB <~

1982

< r. Z druhej strany

<£ ABB’ = i <£ A SB'
a

<£ A'AB = BSA'.
Teda

1
<£ AMB = те - (<£ A'AB + <£ ABB') = те —

2

1 27Г 2
.(<£ + BSA . 2 . тс 1

1982/'19822

SÚŤAŽNÉ ÚLOHY III. KOLA

А - Ml - 1

Je dán čtyřstěn ABCD a uvnitř čtyřstěnu body K, L, M, N,
které neleží v rovině. Předpokládejme, že také těžiště P, Q>
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R, S čtyřstěnů KBCD, ALCD, ABMD, ABCN neleží
v rovině, a označme T těžiště čtyřstěnu ABCD, To těžiště
čtyřstěnu PQRS a Ti těžiště čtyřstěnu KLMN.

a) Dokažte, že body T, To, Ti leží v jedné přímce.
b) Určete poměr \T0T\ : \T0Ti\.
Riešenie. Zvolíme si sústavu súradníc. Nech a, b, c, d

sú x-ové súradnice bodov А, В, C, D, k, 1, m, n, p, q, r, s,

t, to, ti sú x-ové súradnice bodov K, L, M, N, P, Q, R, S,
T, To, Ti. Súradnica ťažiska je aritmetický priemer súradníc
vrcholov štvorstena, teda

o. + h -f- c + d
t =

4

k ~Ь b “f- c “f- d
P =

4

<2 -f- / 4* с “Ь d
Я =

4

a + b + m + d
r = 3

4

a + b + c + n
s —

4

p + q + r + s
to 5

4

k + l + m + n
ti =

4
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Z uvedených rovnic 1’ahko dostaneme

íi + 31
to =

4

Rovnaké vztahy dostaneme aj pre jy-ové a £-ové súradnice.
Teda bod To leží na úsečke T\T a deli ju v pomere 1 : 3,
To je bližšie к bodu T. Ak Ti splývá s bodom T, tak poměr

jToT| : | ToTi| nie je definovaný. Ak Ti ф T, tak z uvedeného
vyplývá

|T0T| : jT0Ti| =1:3.

A- III -2

Dané sú reálne čísla xi, x%, хз, х±, X5, xo. Označíme M ma-
ximum ich absolútnych hodnot. Dokážte, že platí

(1) |xiX4 — X1X5 + X2X5 — X2X6 + X3X6 — X3X4I ^ 4M2.

Riešenie. Jednoduchými úpravami postupné dostaneme

ÍX1X4 — X1X5 + X2X5 — X2X6 + X3X6 — X3X4I =

= |xi (x4 — x5) + x2 (x5 — Хб) + Хз . (x6 — x4)| ^

^ |xi| . |x4 — x5| + IX2| . |x5 — X6| + |x3| . |x6 — X4|

^ M (|x4 — X5I + |X5 — x6| + |x6 — x41)••

Bez újmy na všeobecnosti móžeme předpokládat’, že platí
X4 ^ X5 ^ Хб. Potom
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|x4 — *51 + 1*5 — *61 + |*6 — *41 = X5 — *4 +

+ *6 — *5 + *6 — *4 = 2 (*6 — *4) Š5 4AÍ.

Z uvedených výpočtov už vyplývá nerovnost’ (1).
Iné riešenie. Výraz na 1’avej straně nerovnosti (1) je rovný

dvojnásobku obsahu trojuholníka ABC, kde A = [xi, xe],
В — [x2, X4], С = [хз, х5]. Zostrojíme pravouholník KLMN
taký, že jeho strany budú rovnoběžné s osami súradnicovej
sústavy a trojuholník ABC je vpísaný do pravouholníka
KLMN, tj. body А, В, C ležia na stranách pravouholníka
a KLMN je najmenší možný. Dokážeme pomocné tvrdenie:
Obsah P trojuholníka ABC je menší alebo rovný polovici
obsahu <2 pravouholníka KLMN.

Skutočne, ak dva z bodov А, В, C ležia na jednej straně

pravouholníka KLMN, napr. body А, В na straně KL,
tak P — \ \AB\.v. Přitom výška v je menšia alebo rovná
\LM\. Teda

P^\\KL\.\LM\ = \Q.

Ak na žiadnej straně neležia dva vrcholy trojuholníka
ABC, tak až na označenie, musí byť napr. vrchol A — K,
vrchol В leží na straně LM a vrchol C leží na straně MN.

Vedieme priamku p rovnobežnú so stranou KN cez bod C
(pozři obr. 39). Priamka p rozdělí trojuholník ABC na dva
trojuholníky a pravouholník KLMN na dva pravouholníky.
Podía predchádzajúceho novoutvorené trojuholníky majú
obsah menší ako polovica obsahu odpovedajúcich pravou-
holníkov, a teda aj pre ich súčet platí P ^ \ Q.
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К dókazu nerovnosti (1) si stačí uvědomit’, že dížka stráň
pravouholníka KLMN nie je váčšia ako 2M.

Podlá riešení Petra Coufá, žiaka IV. D triedy
Gymnázia W. Piecka v Prahe,

a Vladana Pecha, žiaka III. C triedy
Gymnázia M. Koperníka v Bílovci.

A - III - 3

V rovině se souřadnicemi x,y najděte příklad konvexní mno-

žiny M, která obsahuje nekonečně mnoho mřížových bodů
(tj. bodů s celočíselnými souřadnicemi), ale přitom na každé
přímce v té rovině leží jen konečně mnoho mřížových bodů
z M.
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Riešenie. Nech k je kladné iracionálně číslo, napr. k — ] 2.
Ukážeme, že množina M všetkých bodov medzi priamkami
у — kx а у = kx + 1 má uvedenú vlastnost’.

Množina M je zrejme konvexná. Každá priamka, ktorej
smernica nie je k, přetíná množinu M v úsečke, a teda obsahu-
je len konečne mnoho mrežových bodov množiny M. Na
priamke so smernicou k leží najviac jeden mrežový bod.
Skutočne, keby na priamke у = kx + q ležali dva rožne
mrežové body o súradniciach [xi, j>i] а [х%, у-г], tak sa 1’ahko
vypočítá, že

У2 — yi
k 5

*2 — *1

čo nie je možné, lebo k je iracionálně číslo.
Zostáva ukázat’, že množina M obsahuje nekonečne mnoho

mrežových bodov. Vieme, že existuje postupnost’ racionál-
nych čísel {kn}n=l taká,že knmá desiatkový rozvoj ukončený
na и-tom mieste a 0 ^ kn < k < kn + 10-”. Potom platí

£.10» < К.Ш + 1 < £.10» + 1.

Naviac, číslo £M.10» + 1 je číslo prirodzené. Teda množina
M obsahuje nekonečne mnoho mrežových bodov [10ra;

Jtn • 10й + 1], n = 1, 2, ....

A- III -4

V kruhu o poloměru 1 je zvoleno 64 navzájem různých bodů.
Dokažte, že z nich lze vybrat 10 navzájem různých bodů,
které leží v některém kruhu o poloměru
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Riešenie. Nech k je kružnica, ktorá ohraničuje skúmaný
kruh К so stredom 5 a polomerom 1. Nech 5ь...,5б sú
středy stráň vpísaného pravidelného šesťuholníka A1A0A3-
A4A5A0 do kružnice k (pozři obr. 40). Ukážeme, že kruhy
so stredmi S, Si,. . .,č>6 a polomerom pokrývajú kruh K.

Uvažujme bod X ležiaci v kruhu K. Bod X leží v niektorom
z uhlov A1SA2, A2SA3,. . .,AeSAi. Bez újmy na všeobec-
nosti móžeme předpokládat’, že X leží v uhle A1SA2.
Uvažujme najprv případ, keď bod X leží mimo trojuholníka
A1SA0. Označíme a velkost’ uhla SiSX (pozři obr. 41).

Zrejme 0
TZ

a ^ —. Podlá kosínusovej vety platí
6

139



(1) |ЗД2 = ISiSj2 + \SX\2 -2.\SiS\.\SX\.cosa.

Keďže \SiS\ = — ■ , tak platí

3
— + [5X|2 - уз.|5Х|.(2) | ЗД2 = COS a.

Bod X leží v kruhu K, teda \SX\ ^ 1. Z předpokladu, že
bod X neleží v trojuholníku A1A2S, vyplývá |5X|.cos a ^

V3
!55i| = —.

2

Z rovnosti (2) dostáváme

!+1_узД? = !4 ^ 2 4
1ЗД2

Takže bod X leží v kruhu o střede Si a poloměre i.
Teraz uvažujme případ, keď bod X leží v trojuholníku

A1A2S. Nech naviac < J.Ak a je velkost’ uhla XSSi,
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tak (pozři obr. 42) z kosinusové) vety dostáváme znovu

vztah (1). Keďže 0 a ^ —, tak
6

уз уз
= 2

2 ' 2 4

—

|5i5| cos a ^ I'S’ivSI cos — =
6

(3)

Označíme л = \SX\. Podlá předpokladu je b < x 1.
Po dosadení do (1) a použitím (3) dostaneme

3 \2 3
+ —.

3 3
(4) |ЗД2^-

4
+ x2 — 2 . — x = x

4 4 16

(-Ť)' 1 \
Výraz v intervale nadobúda najváčšiu1

2 5 V

Ю'- 1
hodnotu . Podlá (4) teda

16

1 3 1

16 + 16 ~ ~41ЗД2

Takže bod X leží v kruhu o střede Si a poloměre
Keďže v kruhu К leží 64 zvolených bodov, К je pokrytý

siedmymi kruhmi o poloměre f, aspoň v jednom z týchto sied-
mých kruhov leží 10 bodov. Keby totiž každý zo siedmych
kruhov obsahoval najviac 9 zo zvolených bodov, tak by
ich bolo spolu nie viac ako 7.9 = 63.
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A- III -5

Daná je postupnost’ reálných čísel {an 1 =0 taka, zc cín -/— cim

pre пф m, dané je prirodzené číslo k. Zostrojte prosté zobra-
zenie P množiny 1,2,.. .,20k do množiny prirodzených
čísel také, aby platilo

Sn= i

aP( 1) < aP(2) < • • • < ap( 10) 3

aP( 10) > aP( 11) > • * • > aP(20) 3

aP{20) < °P(21) < • • • < aP(30) 3

^P(2Qk —10) > aP(20k — 9~) > ■•• > aP(20k) >

aP(10) > aP(30) > ••• > аР(20^-10)з

< . . . <aP(l) < aP(20) aP(20k) •

Riešenie. Najprv prvých 20& členov postupnosti {an}™=
zoradíme podlá velkosti do rastúcej postupnosti. To znamená,
že zostrojíme prosté zobrazenie R množiny {1,2,.. .,20k) na
seba také, že

i

(1) aR(l) < aR(2) <••••< aR(20k) •
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Zobrazenie P zostrojíme tak, že položíme P(l) = R(l) a za
čísla P(2),.. .,P(10) zvolíme deváť najváčších z čísel R(l),..
R(20k), za P(ll),.. .,P(20) zvolíme desať najmenších z čísel
R(2),...,R(20k), ale v klesajúcom poradí. Za P(21),.. .,P(30)
volíme desať najváčších (z čísel R(l),. . .,R(20k)), ktoré sme
ešte nepoužili, a tak dalej striedajúc zase desať najmenších
v klesajúcom poradí za čísla P(31),.. .,P(40).
Teda (zabezpečujeme platnost’ prvých dvoch riadkov a

aP( 1) > aP(20) ):

P( l) = R(l),

P(2) = R(20&—8), P(3) = R(20k—7),.. .,P(10) =

= R(20ífe),

P(ll) = R(11), P(12) = R(10),.. .,P(20) = R(2).

Ďalej definujeme v súlade s nerovnosťami v riadkoch 2i + 1
a 2i + 2:

P(20í + /) — R(20k — Юг — 9 + j) pre i 1,2,.. .,k — 1,

j = 1,2,...,10,

P(20/ 4- 10 + У) = R(10ř + 12 — У) pre z' = 1,2,..., k — 1,

j - 1,2,..., 10.

Ak/ = 2z + 1 je nepárne, tak
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P(10Z) = P(20i + 10) = R(20k - 10/ — 9 + 10) =

= R(20k - 10/ + 1),

/>(10/ + 1) = P(20/ + 10 + 1) = R( 10/ + 12 1) =

= R( 10/ + 11).

Keďže2/ < k, tak 10/ + 11 < 20& — 10/ + 1, a teda

aP(10l) > aP(10l+l) •

Pre / párne by sme postupovali podobné. Ukážeme ešte
platnost’ nerovnosti v predposlednom riadku. Podl’a definície
2obrazenia P platí

P(20/ + 10) = R(20k - 10/ + 1).

Keďže 20k — 10 + 1 > 20k — 20 + 1 > ... > 20k -
— 10(& — 1) + 1, tak

aP( 10) > aPC30) ~ aR(20k-10+l) > aP(50) — aR(20k-20+l)

atď.

A - III - 6

Nechť n, k jsou daná přirozená čísla. Určete všechny uspořá-
dané я-tice nezáporných reálných čísel (ví, xz, ..., xn),
které splňují soustavu rovnic
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х\ "Ь + ... + x^ — 1,(1)

(1 + Xl).(l + X2) (1 + xn) — 2.(2)

Riešenie. Nech nezáporné čísla xi3 ..., xn vyhovujú
rovniciam (1) a (2).

Keby bolo Xi > 1, tak x\ 4- ... + x„ ^ л:* > 1, čo je
spor s (1). Teda 0 x* ^ 1 pre i = 1, 2, ..n. Takže pre
každé i = 1,2, ..., n platí х\ ^ лц.

Využijeme to, že čísla xi3 . .\, xn sú nezáporné a z rovnice
(2) postupné dostaneme

(1 + Xn) — 1 + (xl + . . . + Xn) +2 — (1 + xi)

Xn, ^ 1 ++ (X1X2 + . . . + Xn—1 Xn) + . . . + X1X2

+ (xi + . . . + Xn) + (X1X2 + - - - + Xn—1 Xn) — 1 4~

+ (x^ + . . . + X^) + (X1X2 + . . . + Xn—1 Xn) ^ 2 +

+ (*1*2 + . . . + Xn-i Xn).

V uvedených nerovnostiach musí platit’ rovnost’ a teda musí
platit’

X1X2 + ... + xn-ixn = 0.

Z toho vyplývá, že z čísel xi, ..., xn móže byť najviac jedno
nenulové. Ak všetky xi, ..., xn okrem Xí sú rovné nule, tak
z (1) vyplývá, že Xi = 1. Teda w-tica xi, ..., xn musí byť
niektorá z w-tíc
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(3) 1,0, 0,0,...,о

о, 1,0,о, ...}о

0,0,1,0, ...,0

0,0,0, 0,1.

Skúškou sa přesvědčíme, že uvedené w-tice sú riešením rovnic
0)a(2).

Podlá riešenia J. Sgalla, žiaka III. D triedy
Gymnázia W. Piecka v Prahe.

Iné riešenie. Ilahko vidieť, že n-tice (3) sú riešením rovnic
(1) a (2). Matematickou indukciou ukážeme, že rovnice
(1) a (2) iné riešenia nemajú.

Pre n = 1 rovnice (1) a (2) majú tvar

4 = i,

1 "b #i — 2,

a teda xi = 1 je jediné riešenie.
Predpokladajme, že sústava (1) a (2) nemá iné riešenia ako

(3), a skúmajme sústavu
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ХХ + • • • + Хп+1(4) = 1,

(5) (1 + xi). (1 + Xn+i) — 2.

Z rovnice (4) vyplývá, že 0^ ;ц ^ 1 pre 2 = 1,2,.. ., 22 + 1,
a teda 0 xk{ ^ Xi. Potom tiež

xi + ... + xw+i ^ 1.

Z rovnice (5) dostaneme

2 — (1 + xi) (1 + хи-,-1) — 1 + (xi + ... + x„+i) +

Xn+1 ^ 1 + 1 + Х1.Ж2 Xra+i.+ . . . + XiX2’

Teda X1.X2 xn+i — 0. Teda jedno z čísel *i, X2, ..

xn+i musí byť rovné nule, napr. x«+i = 0. Potom dosadením
do rovnic (4) a (5) dostaneme pre čísla *1, ..., xn rovnice (1)
a (2). O tých už vieme, že máju riešenia (3). Teda rovnice
(4) a (5) majú riešenia n + 1-tice núl a jednej jednotky.

• У

Podia riešenia L. Kouby, žiaka IV. D triedy
Gymnázia W. Piecka v Prahe.

147



Korespondenční seminář ÚV MO

Jednou z forem péče o žáky talentované v matematice, kte-
ří nejsou z Prahy ani z Bratislavy, a nemají tudíž možnost
pracovat v tamních seminářích, jsou korespondenční semináře.
ÚV MO pořádal v průběhu 31. ročníku MO celostátní ко-
respondenční seminář, jehož se zúčastnilo 37 žáků. Bylo jim
zasláno ve třech tématech celkem 17 úloh. Řešení účastníků

semináře opravovali pracovníci MÚ ČSAV v Praze a opra-
vená řešení se žákům vracela spolu s rozmnoženým komentá-
řem ke každé úloze. Správnost řešení se bodovala, nejlepšími
účastníky celostátního korespondenčního semináře ve škol-
ním roce 1981/82 byli:

Vládán Pecha, 3. ročník gymnázia M. Koperníka v Bílovci,
Galina Kumičáková, 4. ročník gymnázia v Košicích,
Kováčská ul.,
Jaroslav Šindelář, 4. ročník gymnázia v Teplicích,
Lubomír Šoltés, 4. ročník gymnázia v Michalovcích.

Uvádíme znění všech úloh korespondenčního semináře
ÚV MO.
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Posloupnosti1.1Posloupnost {pn} je rekurentně definována takto:
pi = 2, pro n > 1 jz pn největší prvočíselný dělitel čísla

PlpZ • • • Pn-1 + 1-

Dokažte, že žádný člen posloupnosti pn není roven 5.
1.2 Je dáno přirozené číslo k. Sestavte ^-člennou posloup-

nost ao, a\, ..., ajc-i tak, aby pro každé i (0 ^ i ^ k — 1)
byl člen сц roven počtu členů rovných i.

1.3 Je dáno přirozené číslo и, (n ^ 2). Definujeme и-členné
posloupnosti *1, X2, X3, , Xniyi, У2>УЗ) ■ ■ ■, Уп
rekurentně: xi = и, yi = 1, pro i ^ 1 je

Lxi + 1

1
- Oi + Уг) ,^i+l = Уг+l =

Dokažte, že nejmenší z členů xi, X2, ..., xn je roven [|/и].
([ ] znamená celou část čísla.)1.4Nechť {аи} je neklesající posloupnost přirozených čí-

je neomezená. Dokažte,sel taková, že posloupnost

že nekonečně mnoho členů posloupnosti

1.5 Dokažte, že z každé posloupnosti přirozených čísel lze
vybrat posloupnost, jejíž každé dva členy jsou nesoudělné,
nebo posloupnost, jejíž všechny členy mají společného dělitele
většího než 1.

1.6 Je dána posloupnost přirozených čísel taková, že pro
každé přirozené číslo n součet členů, které nejsou větší než и,

jsou celá čísla.

149



není menší než n. Dokažte, že ke každému přirozenému číslu k
existuje její vybraná posloupnost, která má součet členů
roven k.

1.7 Je dáno reálné číslo a. Posloupnost {an} je rekurentně

definována takto: ai = a, an+1
1

) pro an Ф 0,-Ť Q-n
an>

an+i = 0 pro an = 0. Dokažte, že posloupnost [aH} obsahuje
nekonečně mnoho nekladných členů.

Geometrie
2.1 ABC je rovnoramenný trojúhelník, \AC\ = BC

k je kružnice se středem C, jejíž poloměr je menší než \AC\.
Najděte na k všechny body T, pro které je tečna kružnice k
v bodě T osou úhlu ATB.

2.2 Je dána kružnice k se středem O, na ní body A, B,
А Ф В, AB není průměrem kružnice k, NN' je průměr
kolmý к АВ, přičemž N leží na menším oblouku kružnice k
s krajními body A, B. Označme M průsečík tětiv ЛГАГ,
AB. Nechť P je libovolný bod většího oblouku, P Ф A, B, N'.
Dále je PQ tětiva kružnice k procházející bodem M, a R
průsečík tětiv AB, PN. Dokažte, že \QM\ < \RN\.

2.3 ABC, AA1A2, BBiB>, CC1C2 jsou čtyři rovnostranné
trojúhelníky ležící v jedné rovině a stejně orientované.
Dokažte, že středy úseček A1C2, B1A2, C1B2 tvoří rovnostran-
ný trojúhelník.

2.4 ABCDE a A1B1C1D1E1 jsou dva pravidelné pětiúhelní-
ky ležící v jedné rovině a stejně orientované, přičemž A = A\.
Dokažte, že přímky BBi, CCi, DD\ a EE\ procházejí jedním
bodem.

2.5 Strany trojúhelníku jsou a, b, c, r = a2 + b2 + c2,
s = (a + b + c)2. Dokažte, že 2r < s 3r.
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Matematická indukce

3.1 au a-2, ...5 an nechť je konečná posloupnost nezá-
porných čísel, pro kterou platí: 2ai, <22 ^ as ^
^ 2a2, ..аи_i ^ an ^ 2aw-i. Dokažte, že existuje konečná
posloupnost bu bu ..., bn, pro kterou platí: bt se rovná 1 nebo
-1 aO^ biai + ž>2«2 + ... 4- bnan ^ ai.

3.2 Budiž n přirozené číslo, x libovolné přirozené číslo
menší nebo rovné ní. Potom existují přirozená čísla k, au a-2>
..., aic taková, že platí následující podmínky: k 5^ n, ai dělí
ní pro i = 1,2, ..., k a x = a\ + a2 + ... + <%.

3.3 Vrcholy neorientovaného grafu (bez smyček) obarvuje-
me několika různými barvami tak, aby žádné dva vrcholy
spojené hranou neměly stejnou barvu. Dokažte: Jestliže
existuje přirozené číslo n takové, že z každého vrcholu
daného grafu vychází nejvýše n hran, potom je možno vrcholy
obarvit n + 1 barvami.

3.4 Najděte všechna přirozená čísla n, pro která platí:
Součet žádných n po sobě jdoucích členů Fibonacciovy po-

sloupnosti není dělitelný třemi.
Fibonacciova posloupnost přirozených čísel je definována

vztahy a\ = a2 = 1, a*+1 = a* + pro všechna k > 1.
3.5 V rovině je dána jednotková čtvercová síť. Uvažujme

mnohoúhelník (ne nutně konvexní) s vrcholy ve vrcholech
sítě, jehož hranice je jediná lomená čára, která sama sebe
neprotíná. Označme P obsah tohoto mnohoúhelníku, V
počet mřížových bodů ležících uvnitř a S počet mřížových
bodů ležících na hranici tohoto mnohoúhelníku. Dokažte,
že pro každý takový mnohoúhelník platí

|5 + V — P — l.
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Správa о 23. medzinárodnej matematické]
olympiádě

1. Organizácia a priebeh súťaže

V poradí už 23. medzinárodná matematická olympiáda
(MMO) sa konala v dňoch 5. —14. 7. 1982 v Maďarské}
Tudovej republike, a to v prevažnej miere v jej hlavnom meste -
- Budapešti. Poriadatelom 23. MMO bolo ministerstvo
školstva MER a pri príprave odbornéj časti súťaže i rámcového
programu spolupracovali predstavitelia a členovia maďarské}
matematickej spoločnosti Jánosa Bolyaia.

V organizácii tohtoročne} MMO v porovnaní s predchád-
za}úcimi došlo к niekolkým změnám. Najpodstatnejšou
z nich však bolo, že usporiadatelia pozvali len štvorčlenné
družstvá, zatial čo v minulosti sa MMO zúčastňoval z jednot-
livých krajin dvojnásobný počet súťažiacich žiakov. Oficiálně
bolo pozvaných 32 krajin (z účastníkov predchádzajúcich
MMO nepozvali organizátoři len Taliansko a Turecko,
ktoré sa nezúčastňovali pravidelné), z ktorých účast’ odriekli
iba Luxembursko, Mexiko a Španielsko. Spolu s poriadajú-
cou MER poslalo teda na 23. MMO svoje družstvá týchto
30 zemí: Alžírsko (DZ), Austrália (AU), Belgicko (BE),
Brazília (BR), Bulharsko (BG), Československo (CS), Finsko
(FI), Francúzsko (FR), Grécko (GR), Holandsko (NL),

152



Izrael (IL), Juhoslávia (YU), Kanada (CA), Kolumbia (CO),
Kuba (CU), Kuvajt (KW), Maďarsko (HU), Mongolsko
(MG), NDR (DD), NSR (DE), Polsko (PL), Rakúsko (AT),
Rumunsko (RO), Švédsko (SE), Tunis (TN), USA (US),
Velká Británia (GB), Venezuela (VE), Vietnam (VN) a ZSSR
(SU). Je to rekordný počet, keď po prvý raz na MMO pri-
cestovala delegácia Kuvajtu, po niekolkoročnej prestávke
delegácie Alžírská a Mongolská a po vlaňajšej absencii na 22.
MMO v USA tiež NDR a Vietnam. Z 27 delegácií zastúpených
na 22. MMO chýbali len Luxembursko a Mexiko. Všetky
delegácie přicestovali so štvorčlennými družstvami, ale jeden
z alžírských žiakov pre onemocnenie na súťaž nenastúpil,
takže na 23. MMO si zmeralo svoje schopnosti 119 mate-
matických nádejí zo všetkých svetadielov.

Převážná časť vedúcich delegácií, ktorí s pracovníkmi
usporiadajúcej krajiny tvoria medzinárodnú jury, přicestovala
do Budapešti v pondelok 5. 7. 1982. Stadia! ich organizátoři
po skupinkách mikrobusom a automobilmi přepravili do
Ceglédu, štyridsaťtisícového městečka ležiaceho 70 km
juhovýchodne od Budapešti. Predsedom jury bol akademik
Ákos Császár, vedúci katedry na budapeštianskej uni-
verzite Loranda Eotvosa. Úlohy tajomníka jury příkladné
plnil najčastejší účastník doterajších MMO prof. dr. Endre
Hódi, vedúci matematického oddelenia pedagogického ústavu
v Budapešti, ktorý bol zároveň vedúcim maďarskej delegácie.

Po svojom příchode do Ceglédu dostali vedúci delegácií
širší návrh úloh pre súťaž s riešeniami v angličtině a textami
vo všetkých štyroch oficiálnych jazykoch (angličtina, fran-
cúzština, němčina, ruština). Obsahoval dva varianty šiestich
úloh tvoriace tematicky pestré celky a osem náhradných
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úloh pre případné doplňovanie. Návrh připravila maďarská
úlohová komisia vedená dr. Józsefom Pelikánom z 57 úloh
navrhnutých zúčastněnými krajinami, keď takmer polovica
krajin, ktoré přijali pozvanie na 23. MMO, do požadovaného
termínu (15. 4. 1982) možnost’ poslat’ najviac 5 úloh pre súťaž
nevyužila. Boli to AT, CO, CU, DE, DZ, GR, IL, KW,
MG, RO, SE, VE. V predloženom širšom výbere 20 úloh
boli návrhy jednotlivých delegácií zastúpené takto: CA a GB
po 3, NL a SU po 2 a AU, BG, BR, CS, FI, FR, PL, TN,
VN a YU po 1 úlohe. Neuplatnili sa teda len návrhy úloh
z BE, DD a US.

Prvé zasadnutie jury (6. 7. 1982 predpoludním) bolo
věnované všeobecnej rozpravě o navrhovaných úlohách'.

Po obedňajšej prestávke, počas ktorej přijal členov jury
a dalších účastníkov 23. MMO mešťanosta Ceglédu, roko-
vanie pokračovalo ďalšou diskusiou o úlohách, v závere ktorej
bol v podstatě přijatý prvý navrhnutý variant s dvorná změna-
mi, keď juhoslovanská úloha o plošnom obsahu konvexného
mnohouholníka a mrežových bodoch bola nahradená mierne
archaickou holandskou planimetrickou důkazovou úlohou
a bulharskú úlohu o koreňoch reciprokej rovnice 4. stupňa
vystriedala anglická úloha o riešeniach diofantickej rovnice
3. stupňa. Zvlášť prvá změna, za ktorú sa pri hlasovaní
vyslovilo 18 delegátov, sa v konečnom důsledku ukázala ako
nie příliš šťastná pre váčšinu družstiev, naše nevynímajúc.

Na závěr stredajšieho predpoludňajšieho zasadnutia jury
konečne schválila všetky 4 oficiálně formulácie vybraných
úloh v oficiálnych jazykoch olympiády a delegáti tak mali
možnost’ přikročit’ к prekladom textov úloh do materčiny
súťažiacich а к ich rozmnoženiu v potrebnom počte. Vedú-
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cim delegácií už pri tejto práci pomáhali aj ich zástupcovia,
ktorí 7. 7. priviedli do Budapešti súťažiace družstvá.

Po relativné krátkéj diskusii na svojom popoludňajšom
zasadnutí jury váčšinou hlasov schválila návrh, aby počet
bodov za úplné riešenie každej úlohy bol rovnaký - sedem.
Z toho vyplývalo, že každý súťažiaci mohol získat’ najviac
42 bodov. O době určenej na riešenie úloh sa v jury neroko-
válo, pretože organizačný poriadok 23. MMO stanovil na rie-
šenie každej trojice štyri a pol hodiny čistého času.

V piatok 9. 7. 1982 vo včasných ranných hodinách čaka-
la vedúcich delegácií a ich zástupcov cesta autobusom
do Budapešti na slávnostné otvorenie 23. MMO, ktoré sa
konalo v aule gymnázia Margity Kaffkovej. Po krátkom
príhovore předsedu jury akad. Császára sa žiaci rozišli do
tried, kde na nich čakala prvá trojica následujúceho súboru
súťažných úloh.

Prvý deň súťaže - 9. júla 1982

1. Funkcia/je definovaná pre všetky celé kladné n a nado-
búda len celé nezáporné hodnoty. Ďalej platí:a)/(2) = 0,/(3) > 0,/(9 999) = 3 333;

b) pre všetky m, n nadobúda rozdiel

f(m + n) — f(m) —f(n)

hodnotu 0 alebo 1.

Určte /(1982). (Velká Británia)

2. Je daný nerovnoramenný trojuholník A1A2A3 so stranami
tfi, 0.2-, аз (at je strana protilahlá vrcholu A(). Nech je pre všetky
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i — l, 2, 3 Mi střed strany щ, Ti bod dotyku strany ai
a kružnice vpísanej trojuholníku A1A2A3, Si bod súmerne
združený к bodu Ti podlá osi vnútorného uhla daného troj-
uholníka pri vrchole At.

Dokážte, že priamky MiSi, M2S2, M3S3 prechádzajú tým.
istým bodom. (Holandsko)

3. Uvažujme o postupnostiach {xM}^L0 kladných reálných,
čísel s vlastnosťami: xo = 1 a pre všetky i ^ 0 platí: x*+i ^ xu

a) Dokážte, že pre každú takú postupnost’ existuje n

tak, že platí
1

r2ло x2лп1 -1
3,999.- + — + ... +

Xi X2 xn

b) Nájdite takú postupnost’ daných vlastností, pre ktorú
nerovnost’

x2 X2л0 , Л1
Xi x2

x2
П -1

< 4+ ... +
Xn

platí pre všetky n ^ 1. (ZSSR)

Druhý deň súťaže - 10. júla 1982

4. Je daná rovnica

x3 — 3xjy2 + y3 = n.

Dokážte, že ak celé kladné číslo n je také, že daná rovnica má
celočíselné riešenie x, y, potom má aspoň tri celočíselné rie-
šenia.
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Ukážte, že pre n = 2 891 nemá daná rovnica celočíselné
riešenia. (Vel’ká Británia)

5. Na uhlopriečkach АС a CE pravidelného šesťuholníka
ABCDEF sú dané vnútorné body M, resp. N tak, že platí

! AM\ \CN\
JAC\ ~ \CE\

Vypočítajte deliaci poměr A, ak body В, M, N ležia na

priamke. (Holandsko)

6. Nech S je štvorec so stranou dížky 100 a nech L je
lomená čiara v 5 bez násobných bodov zložená z úsečiek
AoAi, AiA-2, ..An-iAn, Ao Ф An taká, že pre každý bod P
hranice štvorca 5 existuje na L taký bod, ktorého vzdialenosť
od P nie je váčšia než

Dokážte, že na L existujú také dva body X, Y, ktorých
vzájomná vzdialenosť nie je váčšia než 1, ale dížka tej časti
čiary L, ktorá je ohraničená bodmi X a Y, nie je menšia než
198. (Vietnam)

V zátvorke za textom úlohy je měno krajiny, z návrhu
ktorej úloha pochádza.

Pre zodpovedanie otázok súťažiacich na případné nejasnosti
v texte sa aj v Budapešti použila tradičná osvědčená forma,
keď žiak má možnost’ poslat’ otázku písomne na lístku к tomu
určenom najneskoršie pol hodiny po obdržaní textov. Otázka
sa prečíta a přeloží v jury, ktorá schvaluje taktiež plný text
odpovede. V čase čakania na otázky žiakov v prvý súťažný deň
představil předseda jury delegátom vedúceho skupiny koordi-
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nátorov, ktorým bol člen korespondent Maďarskej akadémie
vied dr. László Lovász, další z niekdajších vynikajúcich
maďarských olympionikov, ktorý získal prvú cenu na rovna-

kých troch MMO ako dr. Pelikán.
V sobotu 10. 7. opat’ zavčas rána odchádzali delegáti z Ce-

glédu, tentoraz už definitivně. Po zodpovedaní otázok
к textom druhej trojice úloh sa ubytovali na zvyšok pobytu
v MLR v osemnásťposchodovom internáte Zoltána Schon-
herza patriacom budapeštianskej vysokej škole technickej*
kde sa konala tiež koordinácia hodnotení a závěrečné zasad-

nutie jury.
Pre koordináciu bolo vyhradené v programe nezvykle

málo času: sobotňajšie popoludnie a celý pondelok. Vďaka
tomu, že každú úlohu koordinovali dve skupiny maďarských
koordinátorov podlá umné zostaveného grafikonu, nakoniec
sa túto náročnú úlohu s vypátím všetkých sil podařilo zvlád-
nuť tak, že začiatok závěrečného zasadnutia jury plánovaného
na pondelok 12. 7. večer sa oneskoril len asi o hodinu.

Popoludní po súťaži mali žiaci v oba súťažné dni volný
program a v nedelu 11. 7. 1982 sa uskutočnila celodenná
spoločná exkurzia všetkých účastníkov 23. MMO do Balaton-
ského pionierskeho tábora v Zánke.

Na pondelok 12. 7. 1982 mali žiaci plánovaný celodenný
výlet loďou po Dunaji do Visegrádu spojený s prehliadkou
tamojších historických pamiatok. Večer sa uskutočnila beseda
s autorom svetoznámej »buvos koczky« a dalších hlavolamov
prof. Rubikom.

V pondelok 12. 7. 1982 večer na záverečnom zasadnutí
jury sa najskór rozhodlo o hodnotení riešení v tých prípadoch,
keď nedošlo к dohodě medzi vedením delegácie a koordiná-
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tormi. Také případy bolí celkom tri a ich riešenie nezabralo
mnoho času. Potom následovalo rozhodovanie o potrebnom
počte bodov pre získanie jednotlivých cien. Po krátkej diskusii
prešiel nakoniec póvodný návrh předsedu jury, aby cenu
dostali súťažiaci, ktorí získali aspoň polovicu možných bcdov.
Takých bolo celkom 61. Pre prvú cenu bolo stanovené roz-

pátie 42—37 bodov, pre druhů cenu 36—30 bodov a pre tretiu
cenu 29—21 bodov. Znamenalo to takmer ideálne rozdele-

nie cien, keď prvú cenu dostalo 10, druhů 20 a tretiu 31
súťažiacich. O udelení zvláštnych cien za originálně riešenie
úloh sa nerokovalo, pretože organizačný poriadok 23. MMO
s tým nepočítal. V závere rokovania sa diskutovala otázka
organizátorov budúcich MMO. Vedúci francúzskej delegácie
uviedol, že u nich sa uvažovalo o usporiadaní MMO roku 1985
v Paříži. Vzhladom na to, že žiadna delegácia sa nehlásí
к usporiadaniu MMO roku 1983, pokúsi sa po návrate do
vlasti získat’ súhlas к tomu, aby sa konala v Paříži už 24. MMO
roku 1983. Vedenie delegácie ČSSR informovalo o predbež-
ných úvahách usporiadať 25. MMO roku 1984 v Prahe a zá-
stupca Finska prof. Lehtinen oznámil, že o usporiadanie
26. MMO roku 1985 sa bude pravděpodobně uchádzať jeho
krajina. Vedúci austrálskej delegácie prof. Williams informo-
val, že MMO r. 1988 by chceli usporiadať v Austrálii v rámci
osláv 200. výročia vzniku austrálskeho zvázu. V rámci disku-
sie o budúcnosti MMO odznel o. i. návrh, aby sa oficiálnym
jazykom stala taktiež španielčina. Poďakovaním předsedu
jury akad. Császára ostatným členom za činorodú spoluprácu
a vedúceho francúzskej delegácie prof. Deschampsa maďař-
ským hostitel’om za starostlivú přípravu a dobrú organizáciu
23. MMO sa závěrečné rokovanie jury skončilo.
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V utorok 13. 7. predpokidním sa uskutočnilo rozšířené
zasadnutie komisie ICMI pre organizáciu MMO za účasti jej
tajomníka J. Herseeho z Velkej Británie. S uspokojením
konstatovalo, že pre najbližšie tri roky sú usporiadatelia
MMO predbežne zabezpečení.

Popoludní přijala vedenia zahraničných delegácií a do-
mácich organizátorov v zasadacej sieni rektora Vysokej školy
záhradníckej v Budapešti námestníčka ministra školstva
MER Mária Hanga a hned’ potom následovalo slávnostné
zakončenie 23. MMO spojené s vyhlášením výsledkov a odo-
vzdáním diplomov držitelom cien i ostatným súťažiacim
v aule tejto vysokej školy. Na ňom v krátkom prejave předseda
jury zhodnotil priebeh a výsledky 23. MMO a námestníčka
ministra školstva MER M. Hanga vo svojom vystúpení
vyzdvihla význam matematiky a medzinárodných střetnutí
matematických talentov a poďakovala všetkým, ktorí sa

přičinili o odborný i spoločenský úspěch podujatia. Súčasne
s diplomami preberali víťazi 23. MMO i ostatní súťažiaci
věcné ceny a suveníry.

Definitívnou bodkou za tohtoročnou MMO sa stala zá-

verečná slávnostná večera, ktorá sa konala o 20,00 hod. v bu-
dapeštianskom hoteli Ifjuság. Prehovorili na nej předseda jury,
představitel ministerstva školstva MER a vedúci delegácie
Kuvajtu, ktorí tak využili příležitost’ poďakovať sa za pozvanie
ich delegácie na 23. MMO, čím dostali po prvý raz příležitost’
zúčastnit’ sa na takomto podujatí.

V středu 14. 7. 1982 od skorých ranných hodin postupné
opúšťali jednotlivé delegácie pohostinnú podu hlavného města
Maďarska. Ako jedna z prvých odcestovala rýchlikom Hungá-
ria do svojej vlasti aj československá delegácia.
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2. Výsledky 23. MMO

Výběr súťažných úloh na MMO bývá každoročně najzod-
povednejšou úlohou jury a má podstatný vplyv na priebeh
a výsledky súťaže. Maďarskí organizátoři sa usilovali ulahčiť
túto úlohu starostlivou přípravou navrhovaných variantov
šiestich problémov, z ktorých prvý svojou tematickou pěst-
rostou i primeranou obťažnosťou, keď obsahoval relativné
1’ahké i náročné úlohy, zodpovedal představám značnej časti
vedúcich delegácií. V priebehu rokovania jury o úlohách
sa však prejavila snaha niektorých delegácií zíahčiť navrhnutý
variant a tak sa stalo, že mechanickou váčšinou pri hlasovaní
sa do výběru dostala holandská planimetrická úloha zaradená
nakoniec ako druhá v poradí. Súťaž ukázala, že váčšina
súťažiacich nebola na úlohu tohto typu připravená a nedoká-
žali si s ňou poradit’. Okrem niekolko málo delegácií (NDR,
NSR, ZSSR, Maďarsko, Vietnam, Velká Británia) všetky
na nej strácali body, čo podstatné ovplyvnilo celkové výsledky
23. MMO. Pre zaujímavosť spomeňme, že ani družstvo
Holandska, ktoré úlohu navrhlo, nezískalo za jej riešenie
ani bod. Možno povedať, že ostatné úlohy boli vhodné vole-
né a umožnili přesadit’ sa najschopnejším účastníkom súťaže.

Svoju suverenitu z vlaňajška potvrdili najma družstvá
NSR, ZSSR a USA. Po vlaňajšej neúčasti sa opáť umiestnili
medzi najlepšími družstvá NDR a Vietnamu. Viac sa čakalo
na domácej pode od Maďarska i od tradičné velmi úspešnej
Velkej Británie, aj keď všetci členovia oboch družstiev získali
ceny rovnako ako reprezentanti ČSSR a Bulharska, čím
potvrdili dobrý standard z posledných rokov. V porovnaní
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Krajina Súčet bodov žiaka č. Celkom Neofic. Počet cien
1 2 3 4 bodov porad. I. II. III.

Alžírsko (DZ)
Austrália (AU)
Belgicko (BE)
Brazília (BR)
Bulharsko (BG)
ČSSR (CS)
Finsko (FI)
Francúzsko (FR)
Grécko (GR)
Holandsko (NL)
Izrael (IL)
Juhoslávia (YU)
Kanada (CA)
Kolumbia (CO)
Kuba (CU)
Kuvajt (KW)
Maďarsko (HU)
Mongolsko (MG)
NDR(DD)
NSR (DE)
Polsko (PL)
Rakúsko (AT)
Rumunsko (RO)
Švédsko (SE)
Tunis (TN)
USA (US)
Velká Británia (GB) 23 23 28 29
Venezuela (VE)
Vietnam (VN)
ZSSR (SU)

11 10 2 -

20 23 10 13

7 2 22 19

24 10 19 13

26 29 26 27

29 21 31 34

16 35 28 34

38 17 14 20

14 19 9 13

17 22 34 19

22 18 17 18

30 20 18 30

14 12 23 29

3 9 18 4

17 7 17 3

2 110

21 36 33 35

21 12 13 10

37 40 27 32

42 35 31 37

30 23 16 27

11 11 38 22

26 14 26 33

23 15 11 25

7 8 13

40 35 29 32

23 27.-28.

20.-21.66 1

24.50 1

66 20.-21. 1

9. 4108

2 2115 7.

113 2 18.

89 15. 1

55 23.

92 14. 1 1

75 18. 1

298 12.

78 17. 2

34 26.

25.44

4 30.

125 3 16.

56 22. 1

136 3.-4. 2 1 1

145 2 21.

1 296 13.

82 16. 1 1

1 299 11.

74 19. 2

29.19

3.-4. 1 2 1136

410.103

11 10 1 1

42 30 32 29

37 42 30 28

27.-28.23

5. 1 2 1

2 1 1

133

2.137

Celkom 2474 10 20 31
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s vlaňajškom značné stratili Rakúsko a Kanada, kým ostatně
tu nemenované družstvá dosiahli v podstatě očakávané
výsledky. Podrobný prehlad o výsledkoch 23. MMO podává
tabulka.

Tabulka zároveň ukazuje, že 3 žiaci: Bruno Haible (DE),
Le Tu Quoc Thang (VN) a Grigorij Perelman (SU) získali
plný počet bodov a stali sa tak absolútnymi víťazmi 23. MMO.
Skutočnosť, že účastníci 23. MMO získali spolu 2 474 bodov,
čo je 49,5 % z celkového možného počtu, potvrdzuje, že aj
napriek vyššie uvedeným výhradám sa výběr úloh podařil
jury lepšie než v minulom roku a ukázal sa byť pre súťaž
primeraným. Kvóli úplnosti ešte dodajme, že na 23. MMO
súťažilo 7 dievčat (HU 1, IL 1, MG 1, TN 3, VE 1), z kto-
rých len Rita Csákány (HU) získala tretiu cenu, keď dosiahla
21 bodov.

3. Hodnotenie československej účasti

Československé družstvo pre 23. MMO vybralo předšed-
níctvo ÚV MO predovšetkým na základe výsledkov II.
a III. kola kategorie A 31. ročníka MO. Pri nominácii však
prihliadalo tiež к poznatkom z dvoch sústredení širšieho
výběru, ktoré sa konali v Štiříne od 5. do 10. 4. 1982 a od
7. do 19. 6. 1982, к poznatkom z korešpondenčného seminára
a predchádzajúcej účasti členov širšieho výběru na MMO.
Příležitost’ zmerať svoje matematické tvořivé schopnosti
s reprezentantmi 29 krajin všetkých svetadielov tak dostali
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tito žiaci tried so zameraním na matematiku z Gymnázia
W. Piecka v Prahe 2: Petr Couf, 4. tr.; Miroslav Engliš,
4. tr.; Igor Kříž, 3. tr.; Jiří Sgall, 3. tr. Vedením delegácie
bol poverený předseda ÚV MO prof. dr. Jozef Moravčík,
CSc., prorektor Vysokej školy dopravy a spojov v Žiline,
a jeho zástupcom bol podpredseda ÚV MO dr. František
Zítek, CSc., zástupca riaditeía Matematického ústavu ČSAV
v Prahe. V súvislosti s předpokládaným usporiadaním 25.
MMO roku 1984 v Prahe však bola naša delegácia početnejšia
než obvykle, pretože 23. MMO sa zúčastnil ako pozorovatel
tiež tajomník ÚV MO dr. Leo Boček, CSc., z MFF UK
v Prahe, vyslaný MŠ ČSR
ÚV JSMF,tiež dr. Václav Šůla z MŠ ČSR,resp. dr. Ladislav
Berger, předseda pobočky JSMF v Žiline a člen ÚV MO.

Ako už bolo vyššie spomenuté, podielalo sa Českoslo-
vensko na organizácii 23. MMO aj zasláním návrhu troch
súťažných úloh do požadovaného termínu. Jednu z nich orga-
nizátori zařadili aj do širšieho výběru, ale do prijatej šestice
sa už nedostala.

Výsledky, ktoré naši žiaci na 23. MMO dosiahli, sú zhrnuté
v tabulke:

náklady ÚV JČSMF, resp.a na

Žiak Počet bodov za

riešenie úlohy č.
1 2 3 4 5 6

Celkom Udelená cena a

celkové umiest.

Couf Petr

Engliš Miroslav
Kříž Igor
Sgall Jiří

ČSSR spolu

III. 31.-36.

III. 59.-61.

II. 24.-25.

II. 16.-18.

7 0 2 7 6 7

7 0 7 0 7 0

7 1 7 7 7 2

6 0 7 7 7 7

29

21

31

34

27 1 23 21 27 16 115
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Tabulka ukazuje, že naši žiaci si suverénně poradili
s 1. a 5. úlohou, keď strata jedného bodu bola v oboch prí-
padoch spósobená nepozornosťou pri jednoduchom nume-
rickom počítaní. Překvapením bola strata bodov u M. Engliša
za 4. úlohu, pretože ide o úlohu zo školskej teorie čísel, o ktorú '
sa poměrně silné zaujíma. V podstatě uspokojivý je výsledok
v 3. i v 6. úlohe, ktoré boli všeobecne považované za najná-
ročnejšie, ale velmi nepříjemným překvapením je doslovný
výbuch celého družstva v planimetrickej 2. úlohe. Okrem
toho, čo už bolo uvedené vyššie, je třeba konstatovat’, že
v triedach so zameraním na matematiku sa podobnej proble-
matike venuje málo pozornosti, ale čo je horšie, pozabudlo
sa na ňu aj v tohtoročných přípravných sústredeniach.

I keď československú účast’ na 23. MMO možno považovat’
celkove za úspešnú - veď všetci členovia družstva získali
ceny, pri kritickej náročnosti musíme po pravdě povedať,
že v silách družstva bolo podstatné viac. Stačí, ak pripome-
nieme, že už na 22. MMO Kříž a Couf získali 2. cenu so
stratou len 2, resp. 4 bodov a Sgall si z USA priviezol 3. cenu.
Ak na budúcich MMO chceme pokračoval v úspešnom
trende posledných rokov, bude třeba ešte lepšie využil
podmienky, ktoré nám ministerstvá školstva pre přípravu
družstva poskytujú, a v_ přípravných sústredeniach opravdu
nič neponechat’ na náhodu. Podlá poznatkov z krajin najúspeš-
nejších na 23. MMO i podlá našich vlastných skúseností
by málo mal aprílové sústredenie prednáškovo-seminárny
charakter a júnové formu samostatného riešenia úloh s rožnou
tematikou spojeného s rozborom róznych metod riešení.
Bude potřebné v predsedníctve ÚV MO ešte starostlivejšie
zvažoval tematiku sústredení a podlá vopred schválenej
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tematiky vyberať tých najvhodnejších lektorov. V tematike
sústredení by nemalí chýbať: elementárna číselná teória
(vety o dělitelnosti, kongruencie, neurčité rovnice, číselne-
-teoretické funkcie), základy matematickej analýzy (postup-
nosti, limity, nekonečné rady), nerovnosti a odhady, reku-
rentné postupnosti, mnohočleny jednej a viac premenných
(vlastnosti koreňov, apod.), základy funkčněj teorie (limita,
spojitost’, trigonometrické, exponenciálně a logaritmické
funkcie), rovnice a sústavy rovnic, diferenčné a funkcionálně
rovnice, kombinatorika (kombinácie, binomické koeficienty,
vytvárajúce funkcie), geometrické zobrazenia v rovině (zhod-
nosť, podobnost’, rovnolahlosť), dókazové planimetrické úlohy
(trojuholník, kružnica, apod.), stereometria (štvorsten a jeho
vlastnosti, apod.), metrické vlastnosti geometrických útvarov
v rovině a priestore (trojuholníková nerovnost’, kružnica a jej
časti, gula), konvexně mnohouholníky, kombinatorická geo-
metria.

Pokial’ ide o přípravu na organizovanie MMO roku 1984,
možno očakávať, že naši delegáti i pozorovatelia na 23. MMO
mali oči otvorené a pozorné sledovali tak dobré, ako aj tienisté
stránky organizácie, a odpozorované skúsenosti uplatnia pri
príprave podujatia, ktoré by sa málo stať ďalšou príležitosťou
pre šírenie dobrého měna nasej socialistickej vlasti vo svete.
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4. Riešenia úloh 23. MMO

Riešenie 1. úlohy. Z časti a) zadania úlohy vyplývá, že
/(2) = 0,a z časti b) zasa, že buď/(2) = 2/(l),alebo /(2) =
= 2/(1) + 1. Vzhfadom na nezápornost’ hodnot funkcie /
z toho vyplývá, že musí byť /(1) = 0. Z b) taktiež vyplývá

/(m) + /(я),
(1) f(m + n) —

/(m) + /(я) + 1,

z čoho pre m — 1, n = 2 dalej dostaneme

/(l)+/(2)=0,
/(3) =

/(l)+/(2)+ 1=1,

odkial vzhladom na podmienku /(3) > 0 plynie, že/(3) = 1.
Pre m = 1 a 1’ubovol’né celé kladné n z (1) dostaneme

/(*)+/(!)=/(«)>
(2) /(« + 1) =

/(я) +/(1) + 1 —f(n) + Ь

z čoho vyplývá, že funkcia / je neklesajúca. Podobné pre
m — 2 a Fubovol’né celé kladné и z (1) dostaneme, že/(n +
+ 2)^/(n), ale pre w = 3 už z (1) vyplývá, že /(и +
+ 3) ^ / (я) + 1 pre každé celé kladné я. Z toho máme, že
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/(6)й/(3) +1=2, /(9)й/(6) + 1ЙЗ, atď. Úplnou
indukciou 1’ahko dokážeme, že pre celé kladné n platí:

/ (Зя) ěl и.(3)

1 vztah (3) platí. Nech teda platí preViděli sme, že pre n

nějaké celé kladné k: f(3k)^ k. Potom pre n = 3k, m — 3
z (1) máme

/(3*) +/(3)^*+ 1,
/(ЗЛ + 3) =

f(3k) + /(3) + + 2,

čo znamená, že f (3 (k + 1))^ k 4- 1, tj., že (3) platí pre
k + 1, ako sme potřebovali dokázat’. Ak pre nějaké celé
q > 0 platí f(3q) > q, potom

/(3?) + /(3) > q + 1,
/(3? + 3) =

/ (3í) + / (3) + 1 > q + 2,

z čoho je zřejmé, že pre každé celé kladné n
v (3) ostrá nerovnost’.

Z časti a) zadania úlohy však vieme, že / (9 999) = 3 333,
čo znamená, že pre všetky n ^ 3 333 platí v (3) rovnost’.
Speciálně preto platí

q už platí

1 982 =/(3 . 1 982)^/(2 . 1 982) + /(1 982)^

^ 3 ./(1 982).
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Z toho však priamo vyplývá, že

1 982
—й /(1 982)S/(1 980) + /(2) =661 >

1 980
— = 660 .

3

Teda/(1 982) = 660.
Iné riešenie (podia M. Englisá). Rovnost /(1) = 0 a vztah

(2) dostaneme ako hoře. Vztah (2) prakticky znamená, že pre
každé celé kladné n platí

f(n) ^ f(n + 1) ^/(n) + 1.(4)

Nech n je lubovolné celé kladné číslo. Dokážeme úplnou
indukciou, že pre lubovolné celé kladné k platí

-И-(5)
/00

kde symbol [c] znamená celú časť čísla c. Pre k — 1 rovnost*
(5) zrejme platí. Nech (5) platí pre nějaké celé К > 0,
tj. nech

(6) Kf(n) ^ f{I<n) < Kf (jí) + K.

Potom podlá b) je f(Kn + n) — f(Kn) + f(ri) + e, kde
Í 6 {0; 1}. Je teda f(Kn + n)^f{Kn) + /(«)S Kf{n) +
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+ f(n) = (К + 1)/ (я) podia (6) a taktiež f(Kn + я) 5^
^f(Kn) + /(я) + 1 < OK + 1)/(я) + К + 1 čiže

4

(К + 1)/(я) ^/((K + 1) n) < (K + 1) (/(я) + 1),

odkial

Я(К+ 1) я)
< /(я) + 1 í/(я)

К + 1

čo sme mali dokázat’.

Teraz podlá (5) pre я = 11 a k — 909 a podlá a) dostaneme

= 3. Na druhej straně však[/(9 999)] |3 333]
L 909 J L 909~J/(П) =

z (5) pre k = 8, я = 11 máme/(11) =

vyplývá, že /(88) ^31. Preto podlá (4) je /(89) ^ 32. Analo-

3, z čoho

[/(9 999)1
= (3 3331 з 1/(90) jgicky zistíme,že /(9) =

z čoho vyplývá, že /(90)^ 30 a stadia! podlá (4) máme
/ (89) ^ 29. Platí teda

29 ^ / (89) < 32.(7)

Z b) pre m = 9 910, я = 89 máme

/(9 999) = 3 333 -/(9 910) + /(89) + e,

kde e G {0; 1). Z toho vzhladom na (7) vyplývá

3 300^/(9 910)^ 3 304.(8)
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Keďže 9 910 = 5 . 1 982, z (8) podlá (5) dostaneme

/(9 910)
/ (1 982) = = 660.

5

Poznámka. Dá sa dokázat’, že vlastnosti a), b) požadované

v úlohe má napr. aj funkcia / (n) =

Riešenie 2. úlohy. Pri osovéj súmernosti podlá osi uhla
trojuholníka A1A2A3 pri vrchole A\ je oblúk S1T3 kružnice
vpísanej trojuholníku A1A2A3 súmerne združený к oblúku
T1T2 tejto kružnice (pozři obr. 43). Pri súmernosti podlá
osi uhla pri vrchole A 2 analogické tvrdenie platí pre oblúky
T3S2 а T1T2 tejto kružnice. Platí teda:

\

T3S1 = — T2T1 = T1T2 = — T3S2.

A2°3*1
Obr. 43
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Z toho vyplývá, že S1S2 || A1A2, ale pretože M1M2 || A1A2,
je tiež S1S2 II M1M2. Analogickou úvahou prídeme к závěru,
že S1S3 !| M\M-i a S>S% || M2M3. Trojuholníky M1M9M3
a S1S2S3 majú teda odpovedajúce strany rovnoběžné, čo
znamená, že ich možno na seba transformovat’ buď posunu-

tím, alebo středovou rovnolahlosťou (homotetiou). Je zřejmé,
že v rovnakom vzájomnom vztahu sú aj kružnice týmto
trojuholníkom opísané. Trojuholník M1M2M3 je však ne-

rovnoramenný rovnako ako daný trojuholník A1A2A3, a tak
jemu opísaná kružnica přetíná strany щ daného trojuholníka
v dvoch róznych bodoch. Z toho vyplývá, že jej poloměr je
váčší ako poloměr kružnice opísanej trojuholníku S1S2S3,
ktorá je zhodná s kružnicou vpísanou trojuholníku A1A2A3.
Spomínané zobrazenie nemóže byť preto posunutím, ale
středovou rovnolahlosťou. Potom však priamky MiSi,
M2S2, M3S3 musia prechádzať stredom tejto rovnolahlosti,
čím je tvrdenie dokázané. Poznamenajme ešte, že vzhladom
na to, že trojuholník A1A2A3 je nerovnoramenný, je Mi Ф Si
pre všetky i = 1, 2, 3.

Poznámka. Dá sa dokázat’, že tým stredom rovnolahlosti
je spoločný dotykový bod kružnic opísaných trojuholníkom
M1M2M3 a S1S2S3 (tzv. Feuerbachova veta).

Riešenie 3. úlohy, a) Predpokladajme, že existuje postup-
nosť {cnj^Li kladných reálných čísel tak, že pre každú
postupnost’ {xn}n=o daných vlastností platí

x2Ao x2. x2л
il -1

(1) — CjiXQ.4- ... +— + —

Xi X2 Xn

Potom z (1) a nerovnosti medzi aritmetickým a geometrie-
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kým priemerom dvojice nezáporných reálných čísel vyplývá

x2лпX2л0 ÍX1
\X2

лп X2Ao-1
+ ... +— + + — +

Хи+1

+ cn XI ^ 2 ]!x\cn = Xo 2 ]/cn

Možno preto položit’ cn+\ — 2 jjcn pre každé n^. 1, a keďže
*o

Xp z čoho vyplývá — ^ xi, stačí zvolit’ c\ = 1. Potom
Xl

však platí C2 = 2, cs = 2 |/2 = 21 + 1/2, ca = 2 j/сз — 21 + 1/2 + 1/4
a všeobecne cn. = 21 + 1/2 + • • • + 1/2"-2 — 22 d-1/2"'1) = 4 _ 2-1/,2п"2
pre n
teraz я zvolit’ tak, aby platilo 4.2“1/2""2^ 3,999, čo je ekviva-

^ 2. Pretože zrejme platí

Xl *»» Xl

2. Vzhradom na (1) a předpoklad, že xo = 1, stačí

2 «-2

(—'3,999/
lentné s nerovnosťou

4 4,001
—>ie>

3,999

2<!-22n~2

> 2«-2i-)3,999'

1
1 + > 1 +>

400054000

čo je váčšie než 2 pre každé n ^ 14. Tým je prvá časť úlohy
dokázaná.

b) Stačí zvolit’ postupnost’ s všeobecným členom xn =
= 2~w. Potom

и r2
^ Xk

n O — 2/e + 2
= ý —

-1
= 2 2-*+2 = 2 + 1 + 2-k+ ... +

2-*ÁI= 1 x* &=i *=i

+ 2_к+2 = 4 — 2_и+2 < 4 pre všetky 1.
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Poznámka. Dá sa dokázat’, že je to jediná postupnost’ po-

žadovaných vlastností. Z toho, čo sme ukázali v časti a),
vyplývá totiž, že pre každú postupnost’ {xre}2=0 daných

n xl x2л0k-lvlastností platí 2

Pretože lim cn = lim 4.2“ 1/2’'~2 = 4, potom, ak vo vztahu
и —> 00

+ cn-1 xi pre každé n ^ 2.
k =1 Xk x\

n —>oo

- xk X2ло-i
4 > 2 —- “Ь ^77—1 3

* = 1 Xi

ktorý má platit’ pre všetky 1 pri co = O, přejdeme к limite
pre n -> oo, dostaneme

x2л0 1
4 2; — + 4xi = 4 H (xo — 2xi)2 ,

Xl Xl

z čoho už vyplývá, že musí byť xo — 2xi. Metodou úplnej
indukcie z toho už teraz analogickou úvahou 1’ahko dokážeme,
že pre každé n^. 1 musí platit’ xn = 2xM+i, z čoho zrejme
vyplývá, že xn = 2~n.
Iné riešenie časti a) (podlá M. Engliša). Označme

n xlk-i
sn = 2 On — 2 Xje .

k = 0k — 1 Xjc

O, platí pre všetky n^. 1:Pretože xj- > O pre všetky k

% > O, C% > Oj $w+1 > S)lj O-n+1 > On.
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Použitím Cauchyho nerovnosti dostaneme, že pre každé
1 platí

" xlk-\
1 • 2 **^(2 ^-i)2,

£ = 1 Xjc k=l k=l

čiže

sn (an — *o)^ a2n_x.(2)

Zrejme je však an — xq > o\ — *o = xi > 0, a keďže *o =
= 1, z (2) máme

al~i(3)
sn = 1 .

= Vn ,

(Jn 1

Rozoznávajme nasledujúce dva případy:
1. Postupnost’ {ow}”=1 je neohraničená. Pretože pre všetky

k~2í 0 platí: xjc ^ яо = 1, je an - 1 ^ an~\ pre každé
1. Z toho vyplývá, že

-i
Vn Gn—1

СГи 1

platí pre každé 1, čiže postupnost’ {vn}n=\ je taktiež
neohraničená. Existuje teda prirodzené číslo N tak, že
vn > 3,999, z čoho vzhladom na (3) vyplývá, že sn^ 3,999,
ako bolo třeba dokázat’.

2. Nech postupnost’ {(7n}™=i je ohraničená. Vzhladom na
to, že je to postupnost’ rastúca, má podlá Bolzano-Weier-
strassovej vety vlastnú limitu, ktorú označíme L. Pre každé
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1 zrejme platí an < L, teda tiež oi — 1 + xi < L, z čoho
vyplývá, že musí byť L > 1. Ďalej je zřejmé, že (L — 2)2^ 0

4L — 4, z čoho máme —
L

Preto vzhladom na (3) pian

L2
> 4.číže L2

- 1 “

o? L2
W — 1

(4) lim % ^ lim vn — lim ^4.
П —r OC 1 L - 1W—>0072—> 00

Vzhladom na to, že postupnost’ {sw}2=i je rastúca, vyplývá
zo (4), že aj v tomto případe existuje dokonca nekonečne
mnoho prirodzených čísel N tak, že platí: sn^. 3,999.

Ďalšie riešenie časti a) (podlá J. Sgalla): Označme
oo v2
- xk-\

i

pre xo > O /(xo) infimum zo súčtov 2 cez všetky
k=l Xk

postupnosti {x*}^ daných vlastností. Vzhladom na to, že
ide o rady s kladnými členmi, je zřejmé, že /(xo) existuje
pre každé xo > O a platí: /(xo) > 0. Ďalej sa 1’ahko vidí, že

a

pre každé a > O, b > O platí / (a) = —f(b). Ak totiž pre
b

°° Xu

nejakú nerastúcu postupnosť {Хк}£=о platí 2 —
k=l x/c

xo = b3 potom pre nerastúcu postupnosť {y/c}kLoj Уо = a>

pre ktorú ух = — xic pre všetky k ^ O, zrejme bude s' —
b

0° v2
— ^ Уk~l

k=i Ук
b

Ak navzájom vyměníme a a b, dostaneme f(b) ^ — f(a)

k-i
= s>

00 x? a
= ~y k-i

= —5. Je teda f(a)^—f(b).
b bb k=i Xk

a
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číže / (a) ^ — / (b), z čoho už vyplývá dokazovaná nerov-
b

nosť.
co Y^

Označme ďalej g (xo, xi) infimum zo súčtov 2 ——
k=l X/c

cez všetky postupnosti {x*;}”=2 daných vlastností. Potom
podlá definície funkcií / a g platí:

X? x2
— + — + .

*ie(0;l> \*1 *2 *3

1
(/(1) = inf£ (1; Xi) = inf

xie(0;l>

— +

(— + Xif (1)) .
xi6(0;l> '*^1

= inf í f /(xi)l = inf
xi6(0;l> --^l ' v

1
+ x/(l) je spojitá pre x e (0; 1) a v pravom

okolí bodu x = 0 je neohraničená. Bude preto nadobúdať
infimum v nejakom čísle xi e (0; 1), čo znamená, že bude

Funkcia у =
x

1
(5) /(1) = — + *i/(l).

Xi

Zrejme nemóže platit’ xi = 1. Stačí preto uvažovat’ o xiG (0; 1),
pre ktoré z (5) dostaneme

1 1
/(1) (1 — xi) čiže/ (1) = 4

*i(1 — Xi)Xl

pre všetky xi e (0; 1).
Z toho vyplývá, že pre všetky postupnosti {x*}£L0 daných
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oo v2Л /*-lvlastností má nekonečný rad ^ súčet rovný aspoň 4

alebo nekonverguje, tj. postupnost’ jeho čiastočných súčtov
je neohraničená. V oboch prípadoch však zrejme existuje
čiastočný súčet sn tohto radu, pre ktorý platí 3,999,
ako sme malí dokázat’.

k= 1 xk

Riešenie 4. úlohy. Nech [x,y] je nějaké celočíselné riešenie
rovnice

(1) x3 — 3xy2 + y3 — n,

kde n je dané celé kladné číslo. Pretože (y — x)3 = y3 —
— 3y2x + 3yx2 — x3, je x3 — 3xy2 + y3 = (y — x)3 —
— 3x2y + 2x3 = (y — x)3 — 3 (y — x) x2 — x3, čo známe-
ná, že rovnici (1) vyhovuje tiež usporiadaná dvojica [y — x,

—x] celých čísel. Keďže dálej platí (x — y)3 = x3 — 3x2y +
+ 3xy2 — y3, bude x3 — 3xy2 + y3 = (x — y)3 — 6xy2 +
+ 3x2y + 2y3 = (x — _y)3 + 3у (x —y)2 — y3 = (—y)3 —
— 3 (—y) (x — y)2 + (x — y)3, z čoho vyplývá, že rovnici
(1) vyhovuje potom tiež usporiadaná dvojica [—y, x — y]
celých čísel.

Eahko sa vidí, že dvojice [x, у], [у — x, —x] a [—y,
x—y] sú navzájom rožne. Ak by napr. platilo [x, y] =
-= [y — x, — x], muselo by byť x = y — x a súčasne у =
= — x, z čoho už vyplývá x = у = 0. Táto dvojica rovnici (1)
však pri celom kladnom n nemóže vyhovovat’. Podobné dojde-
те к sporu aj v zostávajúcich dvoch prípadoch. Tým sme
dokázali, že ak rovnica (1) má nějaké celočíselné riešenie,
potom má aspoň tri také riešenia.
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Nech teraz pře nějaké celé čísla x, у platí

x3 - 3xy2 + y3 = 2 891 = 9 . 231 + 2.

Potom zrejme je x3 — 3xy2 + y3 = 2 (mod 9). To však
znamená, že musí byť x3 + y3 = 2 (mod 3) číže x3 + y3 =
= — 1 (mod 3). Uvažujme o jednotlivých možných prí-
padoch:

a) Nech x eee 0 (mod 3). Potom musí byťjy3
číže у = — 1 (mod 3). Existujú teda celé čísla s, t tak, že
platí: x = 3s, у = 3t — 1. Potom však x3 — 3xjy2 + y3 —

= 27 s3 - 3 . 3s (31 - l)2 4- 2113 - 27í2 + 9ř — 1 = -1
(mod 9), čo je spor.

b) Nech x = — 1 (mod 3). Potom x3
a musí platit’ у = 0 (mod 3). Existujú teda celé čísla и, z;

tak, že platí x = 3u — 1, у = 3z>. Analogicky ako v případe
a) dostaneme x3 — 3xjy2 + jy3 = —1 (mod 9), čo je opat’spor.

c) Nech konečne x = 1 (mod 3). Potom tiež x3 = 1
(mod 3) a musí preto platit’y3 = 1 (mod 3) čižejy = 1 (mod 3).
Podlá vyššie dokázaného musí danej rovnici vyhovovat’ tiež
usporiadaná dvojica [y — x, — x], pre ktorú však v tomto
případe platí у — x = 0 (mod 3), — x = — 1 (mod 3), ale
také riešenie sme vylúčili už v případe a). Daná rovnica teda
nemóže mať celočíselné riešenie, ako sme mali dokázat’.

1 (mod 3)

1 (mod 3)

Riešenie 5. úlohy. Pretože trojuholník АСЕ je rovnostran-
ný (pozři obr. 44), zo zadania úlohy vyplývá, že \CM\ =
= \EN\. Pretože zrejme |J3C| = \DE\ a <£ DEC = ^ BCA =
— 30°, sú trojuholníky BMC a DNE zhodné. Z toho ďalej
plynie, že <)C NBC = <£ EDN. Keďže ECB = 90°, je

179



(90° - <£ NBC) +<£ BND = <£ BNC + <£ CND
+ <£ CED + <£ NDE = 120°. To znamená, že úsečku BD
vidno z bodu N pod uhlom 120° rovnako ako zo středu S
kružnice opísanej danému šesťuholníku. Z toho vyplývá, že
bod N leží na kružnici so stredom C a polomerom \CB\ =
= CD. Platí preto: jCN\ = \CB . Pre deliaci poměr Я
z toho vyplývá, že

Я = \CN\ : \CE\ = \CB\ : \CE\ = 1 : ]/3

узčiže Я = —, pretože v pravouhlom trojuholníku ВСЕ je

<£ EBC - 60°.
Iné riešenie (podl’a I. Kříža). Zvolme v rovině daného

šesťuholníka súradnicovú sústavu so začiatkom v bode В
a označujme polohové vektory jednotlivých bodov rovnakými
symbolmi, ako sú označené tieto body. Platí teda 8=0
a M = Я С + (1 - Я) A, N = Я £ + (1 - Я) C, kde 0 ф
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фХф\^ pretože M, N sú podlá předpokladu vnútornými
bodmi uhlopriečok АС, CE daného šesťuholníka. Z vlast-
ností pravidelného šesťuholníka vyplývá, že £ —2 (A + C).
Preto N = 2A (A + C) + (1 - A) C = 2A A+ (1 + A) C.
Z toho, že body В, M, N ležia na jednej priamke, vyplývá,
že vektory /И, N sú kolineárne. To však znamená, že musí
platit’

2A 1 + A
(1)

1 — A A

Rovnost’ (1) však platí právě vtedy, keď 2A2 = 1 — A2, čiže
1

vtedy, keď A2 = —. Pretože musí byť A > 0, je jediným rie-

šením A =

3

Ďalšie riešenie (podlá J. Sgalla): Zobrazme vrcholy
daného šesťuholníka v rovině komplexných čísel tak, že

уз
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A = 1, Z) = — 1 a 5 = O, kde 5 je střed daného šesťuholníka
(pozři obr. 45). Pretože АСЕ je rovnostranný trojuholník,
je \AC\ — \CE\ a zo zadania úlohy vyplývá, že \AM\ —
= |CN\. Kedze je tiež |5Л| = \SC\ a <£ SAC = <£ SCE =
= 30°, sú trojuholníky SAM a SCN zhodné. Z toho vyplývá,
že ]SAf! = \SN\. Pretože <£ MSN = <£ MSC + <£ CSN =

= <£ ASC - <£ ASM + <£ CAN = <£ASC = 120°, je bod
N obrazom bodu Л4 v otočení o 120° okolo středu S. Označme

1/3 1/31 1
s = 1 i. Potom A = 1, В — e = — + — i, C =

2 2 2 2

— i. Podlá zadania úlohy je dalej M =

, 3 1/3
= A + A (C — A) = 1 A + i -— A. Potom však N —

P1

2

22

Од) =2 / 2
1/3 11 3

1 A + i- £2 M = + h
2 2 2

Й? z. Ak body £, M, N, ktoré sú navzájom

rózne, ležia na priamke, potom musí existovat’ reálne číslo
k Ф 0 tak, že platí

+

В — N = k (M — N) číže

- 3 1/3
1 + A 1/3 i = k — (1 — A) -h -L (ЗА — i) i .

Porovnáním reálných a imaginárnych častí stadia! máme
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1/33
k—(\-X), A1/3 = k (ЗА - 1).(2) 1 -

Z (2) po jednoduchej úpravě dostaneme

2 = 3k - 3kX, 21 = З^Я - k,

z čoho sčítáním oboch rovností vyplývá 2k — 2á + 2 číže
k = Я + 1. Ak teraz dosadíme za k do prvej rovnosti (2),
dostaneme

3 1
— (1 — Я2), z čoho už je X2 = —1 =

a stadial rovnako ako v predchádzajúcom riešení máme Я =

уз
3

Riešenie 6. úlohy (podl’a P. Coufá). Vrcholy štvorca S
označme А, В, C, D a pre body lomenej čiary L definujme
usporiadanie takto: Označme 1 (Ao, U) dížku tej časti L,
ktorá je ohraničená bodmi Ao, U. Nech U, V e L. Potom
U ^ V, ak l (Ao, U) ^ l (Ao, V). Vzdialenosť bodov U, V
v rovině označujeme d(U, V). Nech A', B', C, D' sú ta-
ké body z L, pre ktoré platí: d (A, A') ff=\,d (В, B') 5^
d(C, C')^\, d(D,D')
móžeme předpokládat’, že platí A' < D' < B' (pozři obr. 46).
Označme U = {Z e L \ Z ^ D'}, L2 = (Z e L \ Z ^ £>'}.
Nech L\ = {W e AB \ 3 W e U : d (W, W)
Je zřejmé, že A e L\, Be L2, číže L{ Ф 0, i = 1, 2.
Podlá zadania úlohy taktiež platí: = L[ и L2. Ďalej

f. Bez ujmy na všeobecnosti

2 }, i — 1,2.1
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D

A ВМ
Obr. 46

je zřejmé, že L{, i — 1, 2 je zjednotením konečného počtu
intervalov alebo jednobodových množin. Preto platí: Lx n
n L2 ф 0. Nech teraz M e Lx n L2 а X e Li, Y e L%
sú také body, že platí d (Ms X) ^ d (M, Y) ^ Potom
z trojuholníkovej nerovnosti vyplývá, že d (X, Y)^ d (M,
X) + d (Aí, У) ^ 1. Na druhej straně však pre dížku
1 (X, У) tej časti lomenej čiary L, ktorá je ohraničená bodmi
X, У, zrejme platí: l(X, Y)=l(X3 D') + l(D', У)^
^ </(*, D') + d(D\ У)^ 99 + 99 = 198, čo sme mali
dokázat’.
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