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Milí řešitelé a spolupracovnici matematické olympiády,

dostáváte do rukou obvyklou výroční zprávu o organizaci,
průběhu a výsledcích 33. ročníku naší nejvýznamnější mate-
matické soutěže pro žáky základních a středních škol - mate-
matické olympiády (MO). Za třetinu století své existence se
MO rozrostla ze skrovných počátků v široce rozvinutou kom-
plexní akci, která zdaleka není omezena jen na vlastní soutěž
v řešení matematickj'ch úloh. Postupem let se její organizace
obohatila o celou řadu pomocných a doplňkových činností,
jako jsou různá školení, semináře a soustředění řešitelů MO,
korespondenční seminář, vydávání sbírek úloh a knižnice
Škola mladých matematiků, atd.

I při zachování hlavních cílů МО, к nimž bezpochyby patří
především vyhledávání a podchycování mladých matema-
tických talentů a podpora jejich dalšího rozvoje, se vlastně
stále poněkud mění a zdokonalují její organizační formy.
К nejzávažnějším změnám z poslední doby patří reorganizace
prvního kola MO v kategoriích А, В a C a postupné rozšiřo-
vání MO směrem к nižším věkovým ročníkům.

V 31. ročníku MO byla namísto dřívějších přípravných
úloh, jejichž řešení žáci většinou podceňovali, neboť neměly
přímý vliv na jejich úspěch v MO, zavedena školní část první-
ho kola, která má již zřetelně soutěžní charakter. Jedním z cílů,
který se tím sledoval, bylo zkvalitnění výběru účastníků dru-
hého kola, a tím i snížení procenta neúspěšných řešitelů ve
druhém kole. Školní část soutěže tak přirozeně překlenula
mezeru v náročnosti mezi domácím prvním kolem a klausur-
ním druhým kolem. Rovněž se od zavedení školní části první-
ho kola očekávalo, že přispěje ke zvýšení zájmu o MO ze
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strany vedení jednotlivých škol, jejichž úloha se dříve dosti
často redukovala na pouhé uvolňování účastníku MO na akce
pořádané mimo školu; šlo tedy i o zvýšení prestiže MO v očích
ředitelů škol.

Jak nasvědčují dosavadní zkušenosti, plní školní část první-
ho kola oba tyto hlavní cíle, takže se s ní počítá i pro další
ročníky. Zanedbatelná není ostatně ani skutečnost, že se
takto podstatně efektivněji využívá fondu vhodných olym-
piádních úloh.

Z historie MO víme, že zpočátku byla tato soutěž pořádána
jen pro žáky středních škol; teprve od 3. ročníku má MO
zvláštní kategorii - zprvu D, později Z - pro žáky nejvyšších
tříd základních škol. Od počátku se však tato kategorie poněkud
liší od kategorií středoškolských tím, že je v ní kladen relativně
větší důraz na podchycování zájmu žáků о МО a o matema-
tiku vůbec: kategorie Z tedy má také cíle propagační a nábo-
rové.

S postupující modernizací učiva i celého pojetí matematiky
na základní škole se začal v příznivém smyslu měnit i zásadní
poměr žáků к tomuto kdysi spíše obávanému předmětu. Rostl
i zájem žáků o různé matematické zábavné soutěže, které pro
ně byly v různých krajích pořádány. Vznikla idea rozšířit
MO tak, aby postihla všechny ročníky druhého stupně základ-
nich škol. V SSR byla tato idea realizována a již několik let
zde probíhá Malá matematická olympiáda; v ČSR se v tomto
směru teprve začíná. Vzhledem к dobrým zkušenostem ze
SSR lze doufat, že se postupně dospěje к celostátně organize-
váné matematické soutěži i na základních školách.

Součástí této ročenky je také zpráva o mezinárodní mate-
matické olympiádě (MMO), která byla v r. 1984 uspořádána
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již po pětadvacáté. Skutečnost, že dějištěm 25. MMO byla
Praha, silně poznamenalo i činnost naší MO. Byla věnována
zvýšená pozornost přípravě československého družstva a mno-
zí spolupracovníci MO v Praze i mimo Prahu se zapojili do
přípravných a organizačních prací. I když nelze mluvit o vý-
razném úspěchu našich reprezentantů v soutěži, skutečnost,
že ČSSR dokázala zabezpečit hladký průběh MMO s rekord-
ním počtem 192 soutěžících ze 34 států celého světa a zároveň
se všem jejím účastníkům předvést jako vyspělá socialistická
země se staletou kulturní tradicí, s hlavním městem plným
jedinečných historických památek a zároveň pulsujícím sou-

časným životem poskytujícím svým obyvatelům přednosti
moderní doby znásobené jistotami socialistického zřízení,
můžeme považovat za záslužný příspěvek к propagaci dobrého
jména naší vlasti ve světě.

Za čtvrt století své existence se MMO rozrostly do rozměrů
skutečně významné celosvětové soutěže - svědčí o tom mj.
i zájem, který o ně projevují tak vážené mezinárodní organi-
zace jako UNESCO a Mezinárodní matematická unie. Česko-
slovenský přínos к udržování a rozvíjení ušlechtilé tradice
olympiád, vyjádřený mj. trojím pořadatelstvím a stoprocentní
účastí, můžeme pak bez rozpaků hodnotit veskrze pozitivně.
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Hodnocení průběhu a výsledků
33. ročníku HO

V organizaci soutěže v kategoriích А, В a C nedošlo v tom-
to roce ke změnám.

Počty škol, jejichž žáci soutěžili v MO, nedoznaly pod-
statných změn, s výjimkou menšího poklesu ve Východo-
českém a Jihočeském kraji. V počtech účastníků 1. kola je
patrný určitý pokles v kategorii B, zvláště v Praze, v Západo-
slovenském a Středoslovenském kraji, avšak к zjištění skuteč-
ných příčin tohoto výkyvu nám chybí podklady. Potěšitelné
je, že se na stabilní úrovni udržuje zájem o MO v katego-
rii C.

Pokud se týče úspěšnosti v 1. kole, je zjevný všeobecný
pokles v kategoriích В a C. Ten se promítl rovněž do počtů
účastníků 2. kola v těchto kategoriích. Naproti tomu však tu
vzrostlo procento relativní úspěšnosti, což znamená, že větší
náročnost 1. kola vedla ke zkvalitnění výběru účastníků 2. kola
- to byl i jeden z cílů, jež zavedení školní klauzurní části
soutěže 1. kola sledovalo. Není tedy žádného důvodu, proč
hodnotit pokles úspěšnosti v 1. kole negativně.

V kategorii A je vcelku ustálený stav jak v počtech účastní-
ků, tak i v úspěšnosti, a to ve všech třech kolech.
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Kategorie Z sleduje poněkud jiné cíle nežli kategorie vyšší,
a proto při hodnocení jejích výsledků klademe větší důraz na

její co nejširší záběr. Pokud jde o zapojení škol, je zřejmé, že
již bylo dosaženo stavu plného nasycení; půjde tedy jen o to,
získané počty udržet.

Počty účastníků 1. kola i jejich úspěšnost zůstaly v tomto
roce na přibližně stejné úrovni jako dříve. Byly tedy zhruba
stejné i počty účastníků 2. kola. Procento úspěšnosti ve 2. kole
však ve srovnání s předchozím ročníkem silně pokleslo, a to
ve všech krajích. Ani tento jev však v nás nemusí vzbuzovat
nepokoj, neboť opět znamenal jen zdravé zvýšení náročnosti
ve 2. kole. Svědčí o tom i skutečnost, že 3. kolo kategorie Z
bylo obesláno dostatečným počtem soutěžících a relativní
úspěšnost ve 3. kole byla v ČSR podstatně vyšší než v minu-
lém ročníku. V SSR, kde je 3. kolo pořádáno v jiném termínu
a s jinými úlohami, úspěšnost ve 3. kole nevzrostla, spíše
naopak.

Příčiny výkyvů v úspěšnosti ve 2. a 3. kole dlužno hledat
mj. ve výběru úloh pro MO; jejich obtížnost se obvykle odha-
duje jen s potížemi, nepřesně a ne zcela spolehlivě.

Závěrem je třeba ještě říci, že všechna tato porovnávání
jsou v podstatě pouze orientační, na značně intuitivním zákla-
dě. Důkladnější statistická analýza by vyžadovala značnou
znalost údajů, které nejsou v materiálech MO obsaženy a jen
těžko by se zjišťovaly. К tomu by pak samozřejmě nutně při-
stoupil i hlubší rozbor zadaných soutěžních úloh.

V nejbližší době se v kategorii Z chystají určité úpravy
a změny v souvislosti se snahou rozšířit MO i do nižších roč-
níků základních škol. V SSR se již po řadu let organizuje
olympiádní soutěž pro žáky 5.-7. ročníků základních škol.
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Zkušeností ze SSR se nyní využívá při zavádění obdobné sou-
těže také v ČSR.

Závěrem lze říci, že 33. ročník MO proběhl vcelku úspěšně,
aniž by vybočil ze standardních mezí.
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O průběhu 33. ročníku matematické olympiády

Pořadateli celostátní soutěže »Matematická olympiáda«
jsou ministerstva školství ČSR a SSR, Matematický ústav
ČSAV v Praze (MÚ ČSAV), Jednota československých mate-
matiků a fyziků (JČSMF), Jednota slovenských matematiků
a fyziků (JSMF) a Socialistický svaz mládeže (SSM). Soutěž
je řízena ústředním výborem matematické olympiády (ÚV
МО) a dále krajskými a okresními výbory matematické
olympiády (KV MO, OV MO).

Žáci soutěží ve čtyřech kategoriích: v kategorii A žáci III.
а IV. ročníků středních škol, v kategorii В žáci II. ročníku
a pro žáky I. ročníků je určena kategorie C. Žáci 8. tříd základ-
nich škol soutěží v kategorii Z, v Slovenské socialistické re-

publice se začala matematická olympiáda organizovat i pro

žáky nižších tříd. Se souhlasem KV MO může žák soutěžit
i v kategorii určené pro žáky vyšších ročníků.

Na začátku školního roku 1983 — 84 jmenovala ministerstva
školství ČSR a SSR na další tříleté funkční období, nový
ústřední výbor MO ve složení:
předseda: dr. František Zítek, CSc., MÚ ČSAV Praha
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místopředsedové: prof. dr. Miroslav Fiedler, člen korespondent
ČSAV, MÚ ČSAV Praha

prof. dr. Beloslav Riečan, DrSc., MFF UK
Bratislava

jednatelé: dr. Leo Boček, CSc., MFF UK Praha
dr. Karel Horák, MÚ ČSAV Praha

zástupce MŠ ČSR: dr. Václav Šůla
zástupce MŠ SSR: dr.Júlia Lukátšová
zástupce ÚV SSM: Pavel Krsička
ostatní členové:

dr. František Běloun, Praha
dr. Ivan Bušek, Pedagogický ústav hl. m. Prahy
dr. Milan Cirjak, KPÚ Prešov
doc. dr.Ján Gatial, CSc., SVŠT Bratislava
dr. Tomáš Heckt, CSc., MFF UK Bratislava
dr. Vladimír Jodas, gymnázium J. Hronca, Bratislava
dr. Milan Koman, CSc., MÚ ČSAV Praha
doc. dr. Karol Križalkovič, CSc., Pedagogická fakulta Nitra
doc. dr. Alois Knfner, DrSc., MÚ ČSAV Praha
Olga Maříková, NVP Praha
dr. Milan Maxian, gymnázium A. Markuša, Bratislava
dr. Jiří Mída, CSc., pedagogická fakulta UK Praha
Vlasta Michálková, SMP Bratislava
Sylvia Michalovičová, KPÚ Bratislava
dr. Jaroslav Morávek, CSc., MÚ ČSAV Praha
dr. Jana Mullerová, CSc., VÚP Praha
doc. dr. Aleš Pultr, CSc., MFF UK Praha
dr. Oliver Ralík, Pedagogická fakulta Nitra
Stanislav Rypáček, gymnázium Praha 9
dr. Jiří Sedláček, CSc., MÚ ČSAV Praha
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Ing. Oldřich Skopal, gymnázium Brno, tř. kpt. Jaroše
dr. Bohumil Šmarda, CSc., UJEP Brno

Dodatečně byl členem ÚV MO jmenován prof. dr. Lev
Bukovský, DrSc., PF UPJŠ Košice.

Členy ÚV MO jsou též předsedové krajských výborů MO:
Praha: prof. dr. Karel Drbohlav, DrSc., xMFF UK Praha
Středočeský kraj: Ludmila Tréglová, gymnázium Říčany
Jihočeský kraj: doc. dr. Ing. Lada Vaňatová, Pedagogická

fakulta České Budějovice
Západočeský kraj: dr. Josef Polák, CSc., VŠSE Plzeň
Severočeský kraj: Jiří Slavík, gymnázium Teplice
Východočeský kraj: dr. Josef Kubát, gymnázium Pardubice
Jihomoravský kraj: doc. dr. Jaroslav Bayer, CSc., FE VUT

Brno

Severomoravský kraj: dr. Vladimír Vlček, CSc., UP Olomouc
Bratislava: dr. Ludovít Niepel, CSc., MFF UK Bratislava
Západoslovenský kraj: prof. dr. Ondřej Šedivý, CSc., Pedago-

gická fakulta Nitra
Středoslovenský kraj: dr. Pavol Klenovčan, Pedagogická fa-

kulta Banská Bystrica
Východoslovenský kraj: doc. dr.Ján Ohriska, CSc., PF UPJŠ

Košice

Pracovní předsednictvo ÚV MO (PÚV MO) tvořili (v abe-
cedním pořadí): dr. Leo Boček, CSc., prof. dr. Miroslav
Fiedler, DrSc., doc. dr. Ján Gatial, CSc., dr. Karel Horák,
dr. Milan Koman, CSc., doc. dr. Karol Križalkovič, CSc.,
dr. Júlia Lukátšová, Sylvia Michalovičová, prof. dr. Beloslav
Riečan, DrSc., dr. Jiří Sedláček, CSc., dr. Václav Sula,
dr. František Zítek, CSc.
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V průběhu 33. ročníku MO se konala dvě zasedání ÚV MO.
Na zasedání, které se konalo ve dnech 12. —13. prosince 1983
v Praze, byla projednána otázka rozšíření matematické olym-
piády i do nižších tříd základní školy, dále příprava celostát-
ního kola MO a příprava 25. mezinárodní matematické
olympiády v Praze. Druhé zasedání ÚV MO se konalo při
celostátním kole MO v Čáslavi 4.-5. května 1984. Bylo vě-
nováno zhodnocení průběhu 33. ročníku MO a především
přípravě jejího dalšího ročníku. Předsednictvo ÚV MO se
scházelo pravidelně jednou měsíčně, zajišťovalo především
výběr úloh pro všechna kola soutěže.

Celostátní kolo 33. ročníku MO se konalo v Čáslavi. Slav-

nostního zahájení se zúčastnil tajemník OV KSČ v Kutné
Hoře dr. Jaroslav Jílek a vedoucí odboru školství Středo-
českého KNV Ing. Josef Pokorný. Po projevu Ing. J. Pokorného,
ve kterém vyzdvihl pozornost, kterou naše socialistická spo-
lečnost věnuje rozvoji přírodních věd, a tedy i matematiky,
následoval bohatý kulturní program připravený žáky a profe-
sory gymnázia a střední pedagogické školy v Čáslavi. Velmi
pěkným zážitkem pro všechny účastníky celostátního kola
MO v Čáslavi byla bezesporu beseda s letcem kosmonautem
Ing. pplk. Vladimírem Remkem, se zasloužilou mistryní sportu
Jarmilou Kratochvílovou a jejím trenérem Ing. Miroslavem
Kváčem. Za zdařilý průběh III. kola MO vděčíme organizační-
mu výboru v čele s profesorem Ladislavem Šachem, další díky
patří předsedkyni KV MO prof. Ludmile Tréglové a také ře-
diteli gymnázia v Čáslavi Jindřichu Vyhndnkovi a jeho uči-
telskému sboru.

Pro rozvoj a vyhledávání žáků talentovaných v matematice
se ve všech krajích pořádají různé akce, které většinou nava-
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zují na matematickou olympiádu. V Praze je to tradiční se-
minář na gymnáziu W. Piecka, na kterém jsou třídy se zamě-
řením na matematiku. Ve spolupráci s FV SSM na matema-
ticko-fyzikální fakultě UK pořádá krajský výbor AIО ко-
respondenční seminář pro žáky středních škol, jehož nejlepší
účastníci jsou zváni na týdenní soustředění.

KV MO Středočeského kraje uspořádal dvě instruktáže
pro referenty MO. První, určené pro středoškolské profesory,
se zúčastnilo 50 zájemců. Druhá byla určena pro předsedy
OV MO a byly na ní zastoupeny téměř všechny okresy kraje.
Celkem 48 dvouhodinových přednášek bylo v Středočeském
kraji zorganizováno přímo pro žáky, průměrná účast byla
dvacet řešitelů úloh MO. Čtyřicet úspěšných řešitelů MO
a fyzikální olympiády z řad žáků základních škol bylo vybráno
na týdenní soustředění v červnu 1984.

Jihočeský kraj uspořádal rovněž několik instruktáží učitelů
a tradičně organizoval zájmové kroužky MO na základních
školách. Kroužky vedou studenti Pedagogické fakulty v Čes-
kých Budějovicích v rámci společenskopolitické praxe. V červ-
nu 1984 bjrlo uspořádáno týdenní soustředění pro 100 žáků
středních škol na Zádově.

V Západočeském kraji se na práci pro MO podílejí přede-
vším pracovníci kateder matematiky VŠSE a Pedagogické
fakulty v Plzni. Přednášky pro žáky i pro učitele konají
v pěti střediscích kraje. Již čtvrtým rokem se koná v kraji
korespondenční seminář, jehož se zúčastnilo téměř 130 středo-
školáků. Nejlepší z nich a úspěšní řešitelé krajských kol MO
a FO byli vybráni mezi těch 40 žáků, kteří se mohli zúčastnit
červnového soustředění, jež se konalo v Karlových Varech.

V dalším lázeňském městě, v Teplicích, se koná stejné
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soustředění pro úspěšné řešitele MO a FO Severočeského
kraje. Program pro 85 účastníku zajistila pobočka JČSMF
v Ústí n. L. V sedmi městech kraje bylo uspořádáno celkem
39 seminářů pro řešitele MO s průměrnou účastí 15 žáků.
Korespondenční seminář je pořádán pro žáky 3. ročníků
středních škol.

Východočeský kraj pořádá dva korespondenční semináře,
jeden pro žáky 2. ročníků a druhý pro žáky vyšších ročníků.
Pro žáky těchto ročníků se konala dvě soustředění (dvoudenní
a jednodenní), týdenní soustředění bylo určeno pro 30 úspeš-
ných řešitelů MO kategorie C.

V Jihomoravském kraji se konaly semináře pro řešitele MO
především v Brně, ale též v Třebíči, Ivančicích a Jihlavě.
Ivančice byly též místem krajského soustředění úspěšných
řešitelů úloh MO a FO, kterého se zúčastnilo 58 žáků. Měli
nejen možnost vyslechnout zajímavé přednášky z matematiky
a fyziky, ale i zúčastnit se několika exkurzí. КV MO pova-

žuje tato soustředění za jednu z velmi efektivních forem práce
s talentovanou mládeží.

V Severomoravském kraji se kroužky zájmové matematiky
soustředují především na gymnáziu M. Koperníka v Bílovci
a účastní se jich převážná většina žáků z tříd se zaměřením na
matematiku. Kroužky vedou pracovníci Univerzity Palackého
v Olomouci. Krajského korespondenčního semináře se zúčast-
nilo 54 žáků, jeho vítězové byli pozváni na soustředění žáků
matematických tříd. Tradiční jsou v kraji sobotní besedy MO
pro žáky středních škol, které se konají v Olomouci a v Ha-
vířově od října do dubna. Předtím se konaly instruktáže pro
učitele základních i středních škol.

Také v Slovenské socialistické republice se konají podobné
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akce. Velké zkušenosti s korespondenčními semináři mají
v Bratislavě a v Košicích, po odborné stránce zajišťují semi-
náře pracovníci Matematicko-fyzikální fakulty Univerzity Ко-
menského v Bratislavě a Přírodovědecké fakulty Univerzity
P. J. Šafaříka v Košicích. Úspěšní řešitelé korespondenčního
semináře jsou zváni na soustředění, ve Východoslovenském
kraji se konala tři taková soustředění, každé pro 40 účastníků.
Kroužky MO vede v Košicích prof. Bukovský a dr. Vojtáš,
v každém kroužku je asi 15 žáků. Ve spolupráci s Krajským
domem pionýrů a nfádeže se 15 žáků účastní práce v Klubu
mladých matematiků. KV MO v Košicích pořádal též pro
každou kategorii MO instruktáže učitelů, celkem se jich zúčast-
nilo 240 pedagogů.

Podobné instruktáže se konají v Západoslovenském kraji.
Stará se o ně metodická komise pro MO ve spolupráci s Kraj-
ským pedagogickým ústavem. Členy komise jsou zkušení uči-
telé středních škol, kteří již delší dobu dosahují dobré výsled-
ky v práci MO. Pro žáky se konaly individuální konzultace,
korespondenční seminář a 40 nejlepších se zúčastnilo sou-
středění v Budmericích. Korespondenční seminář vedl dr. P.
Vrábel, CSc. Také pro kategorii Z se konalo jak soustředění
žáků, na kterém bylo přítomno 46 nejlepších řešitelů krajského
kola, tak instruktáže učitelů, které vedli doc. dr. K. Križalko-
vič, CSc. a dr. Silvia Šúňová.

ÚV MO zajišťoval po odborné stránce tři celostátní sou-
středění. Pro žáky nematurujících ročníků to bylo soustředění
ve Ždáru n. S., které je společné pro matematickou i fyzikální
olympiádu. Zúčastnilo se ho 92 žáků, dík patří profesoru dr.
Janu Gregorovi ze SPŠ strojnické ve Ždáru n. S., který měl
na starosti organizaci soustředění, včetně exkurzí, večerních
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besed apod. Další dvě soustředění byla věnována přípravě
československého družstva na 25. mezinárodní matematickou

olympiádu. První se konalo v Březové p. B., druhé v Brati-
slavě. Organizačně je zajišťoval Ústřední dům pionýrů a mlá-
deže Klementa Gottwalda v Bratislavě, zvláště s. Vlasta Mi-
chálková. Odborné semináře na obou soustředěních vedli
dlouholetí pracovníci matematické olympiády, například prof,
dr. J. Moravčík, CSc., z VŠDS v Žilině, prof. dr. B. Riečan,
DrSc., z MFF UK v Bratislavě, dr. A. Vrba, CSc., z MÚ
ČSAV v Praze a další, ale též někteří mladí studenti a aspi-
ranti z řad bývalých úspěšných účastníků mezinárodních ma-

tematických olympiád dr.J. Kratochvíl af. Nekovář. ÚV MO
zajišťoval též celostátní korespondenční seminář, kterému je
však věnována samostatná část této brožurky.

Úlohy první části I. kola MO byly jako vždy otištěny spolu
s organizačními pokyny v letácích, které vydává Státní peda-
gogické nakladatelství v Praze a Slovenské pedagogické na-
kladatelstvo v Bratislavě. Kromě toho otiskly tyto úlohy
i časopisy Rozhledy matematicko-fyzikální a Matematika
a fyzika ve škole. Spolu s úlohami školní části I. kola a úlohami
dalších kol je třeba pro každý ročník MO připravit víc než
60 pokud možno původních a zajímavých úloh s pěkným řeše-
ním. Většina vybraných úloh pochází z konkursu JČSMF
a JSMF na úlohy MO, který probíhá již několik let. Své pří-
pádné návrhy úloh posílejte na adresu ÚV MO, za přijaté
úlohy obdržíte odměnu. Především je zájem o série úloh na
sebe navazujících.

V edici Škola mladých matematiků vydává ÚV MO v na-
kladatelství Mladá fronta matematické brožurky, vhodné pro

všechny mladé i starší zájemce o matematiku. V roce 1984
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vyšly svazky J. Holubář: Množiny bodů v prostoru a L. Da-
vidov: Funkcionální rovnice, celkem již vyšlo 55 svazků edice
§MM. Jsou dobrými pomocníky soutěžícím v МО a je účel-
né, aby byly žákům к dispozici v školních knihovnách.

Tabulka 1
Počet středních škoí zapojených do 33. ročníku MO

Ostatní střední
školyGymnázia

z toho zapojeno zapojeno
Kraj

v kategorii v kategorii :E
'i || lit

O

и о.
ABC ABC

« > л а >

Praha
Středočeský
jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava
Západoslovenský
Středoslovenský
Východoslovenský

22 15 13 15
22 22 22
10 10 10
14 14 15
19 20 19
14 17 19
29 22 21
24 34 36

8 10
29 34 38
32 33 33
29 27 33

19 2 2
23 4 4 4

2 5 5
1 3 5
3 7 8
3 2 1
3 2 3
1 1 2
-22
8 12 23

10 19 35
5 14 31

723
19 13 6

515 15
21 1121

435 19
33 539

39 38 4
9 10 311

253838
3737 37
3338 37

ČSR celkem
SSR celkem

181 17 26 28
23 47 91

213 147 152 157
98 104 113

44
122 98124

ČSSR celkem 245 256 270337 303 40 73 119 142
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Tabulka 2
Počet žáků soutěžících v I. kole MO

2 i

CelkemKat. A I Kat. В Kat. C

s ú s ú s ú
Kraj

Ús

56 314 194
29 474 106
50 245 139

53 11510280Praha
Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava
Západoslovenský
Středoslovenský
Východoslovenský

97
12ó 1791859169

12266 4957 40
321 962623 13094 47

146 50
97

484 126
201 144
600 259
449 167
385 236
606 493
701 369

1624 472

190 54
84 60

143 22
54 394563

206 78198 65196 116
42 214 67129106 58

92145125 5292115
226
408

184165 123186215
136123 141 110152

892 221127396336 124

ČSR 3088 1231
3316 1570

1240 420920 316928 495
818 525 1671 633827 412SSR

ČSSR 6404 28012911 10537281746 1020 1747
1

S — celkový počet
O — počet úspěšných řešitelů
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Tabulka 3
Počet žáků soutěžících v II. koje MO

Kat. C i Celkem

S Ú ! S Ú
Kat. ВKat. A

Kraj
ÚÚ ss

77 36 57 23
49 2 16 2
38 5 42 6
43 7 21 8
46 5 19 5
43 10 36 8
93 9 63 17
55 15 42 22
89 37 52 13

168 10 112 15
103 12 80 13

17 71 13

186 103
94 14

127 37
87 31

114 36
138 54
215 58
160 82
203 87
436 64
265 49
326 84

52 44
29 10
47 26
23 16
49 26
59 36
59 33
63 45
62 37

156 39
82 24

186 54

Praha
Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
J ihomoravský
Severomoravský
Bratislava
Západoslovenský
Středoslovenský
Východoslovenskýj 69

1121 415
1230 284

ČSR 381 236
486 154

296 91
315 54

! 444 89
j 429 76

j 873 165

SSR

2351 699ČSSR 867 390611 145

S — celkový počet
Ú — počet úspěšných řešitelů
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Tabulka 4
Počet účastníků III. kola MO kategorie A

Celkový
počet

účastníků

Z toho
vítězů

Počet
úspěšnýchKraj

Praha
Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava
Západoslovenský
Středoslovenský
Východoslovenský

719 11
1 0 0
2 2 i

o2 1
2 11

34 0
0 03

10 4 2
1627 4
01 0

2 1 0
27 3

ČSR 43 22 11
SSR 37 20 6

ČSSR 4280 17

22



Tabulka 5
Počet základních škol, které se zúčastnily 33. ročníku MO -

kategorie Z

Zúčastnilo se

o
<r-+ >fj
.4 o
U o,

Kraj II. kola
počet % počet %

I. kola III. kola
počet %

Praha
Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava
Západoslovenský
Středoslovenský
Východoslovenský

204 191 94
206 75
160 87
177 82
227 79
240 76
341 75
415 88

54 74
427 89
309 75
336 86

184 90
194 71
130 71
165 76
185 64
214 68
320 70
339 72

54 74
392 82
286 70
296 76

30 15
29 11
27 15
31 14
31 11
34 11
54 12

274
184
216
288
317
457
469 43 9

73 12 16
480 41 9
411 29 7
389 36 9

ČSR 2409 1957 81
1126 83

1731 72
1028 76

279 12
SSR 1353 118 9

ČSSR 3762 3083 82 2759 73 397 11
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Tabulka 6
Počet žáků soutěžících v kategorii Z

I. kolo II. kolo III. kolo
Kraj

Ú Ú úss s

Praha
Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava
Západoslovenský
Středoslovenský
Východoslovenský

1687 1126 762 150 36 34
1448 781 635 106 37 30

5511317 439 65 34 18
837 4751601 83 45 38

1890 758 549 76 34 29
2009 1225 674 114 41 32
2750 1629
3546 1617

950 580
2807 1201

1123 211 62 51
2381107 53 46

541 129 38 15
981 22190 46
7391691 939 110 32 9

3317 1417 851 224 46 12

ČSR 16248 8524
8765 4137

5764 1043 342 278
SSR 3112 653 58162

ČSSR 8876 169625013 12661 504 336

S — celkový počet
XJ — počet úspěšných řešitelů

24



VÝSLEDKY CELOSTÁTNÍHO KOLA МО
KATEGORIE A

Vítězové

Pořadí, jméno a příjmení, ročník a zaměření, škola

1. —2. Juraj Balázs, 4 P, G Košice, Kuzmányho ul.
Jiří Witzany, 4 M, G W. Piecka, Praha
Ján Šefčík, 3 M, G A. Markuša, Bratislava

4.-7. David Bednářek, 2 M, G W. Piecka, Praha
Martin Grajcar, 4 M, G M. Koperníka, Bílovec
Vladimír Kordula, 2 M, G M. Koperníka, Bílovec
Pavel Krtouš, 3 MF, G Liberec

8.-9. Adam Obdržálek, 2 M, G W. Piecka, Praha
Andrej Pastva, 4 M, G A. Markuša, Bratislava

10. —12. Petr Hájek, 2 M, G W. Piecka, Praha
Marián Šumšala, 3 M, G A. Markuša, Bratislava
Pavel Valtr, 4 M, G W. Piecka, Praha
Josef Pelikán, 4 MF, G K. Šatala, České Budějovice

14. —17. Martin Černý, 4 M, G W. Piecka, Praha
Martin Poltin, 3 M, G A. Markuša, Bratislava
Ján Luzný, 3, SPŠE Prešov
Petr Maršálek, 4 P, G Praha 4, Ohradní

Ostatní úspěšní řešitelé
18. —21. Andrej Hoos, 4 M, G A. Markuša, Bratislava

Petr Kodet, 4 /ví, G W. Piecka, Praha

3.

13.
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Ján Kováč, 4 P, G Poprad, Lenin, nábrežie
Roman Tůma, 3 M, G W. Piecka, Praha

22.-27. Vládo Hapák, 4 M, G A. Markuša, Bratislava
Ján Mareš, 4 M, G A. Markuša, Bratislava
Marcel Polakovič, 1 M, G A. Markuša, Bratislava
Jarmila Ranošová, 3 M, G M. Kopernika, Bílovec
Ivo Švec, 4 MF, G J. Hronca, Bratislava
Tomáš Vaniček, 4 M, G W. Piecka, Praha

28. —31. Eva Kornová, 4 MF, G J. Hronca, Bratislava
Eva Kopecká, 3 MF, G J. Hronca, Bratislava
Tomáš Pecina, 4 P, G Turnov
Richard Pleva, 4 MF, G Praha 3, Sladkovského nám.

32.—35. František Adamec, 4 P, G Ostrov n. O.
Richard Nemec, 3 P, G Banská Bystrica
Ivan Polách, 2 MF, G J. Hronca, Bratislava
Robert Szelepcsényi, 4 M, G A. Markuša, Bratislava

36.—37. Martin Knor, 3 M, G A. Markuša, Bratislava
Bohumír Sládek, 4, SPŠE Písek

38. —40. Ivo Čermák, 4 M, G M. Kopernika, Bílovec
Peter Klein, 1 AI, G A. Markuša, Bratislava
Vládán Majerech, 1 A1F, G Pardubice

41. —42. Matěj Lexa, 4 M, G A. Alarkuša, Bratislava
Jan Ternbach, 4 P, G Jevíčko

Pořadí úspěšných řešitelů z tříd, které nejsou zaměřeny na
matematiku:

Juraj Balázs, 4, G Košice, Kuzmányho ul.
Pavel Krtouš, 3, G Liberec
Josef Pelikán, 4, G K. Šatala, České Budějovice

4.-5. Ján Luzný, 3, SPŠF Prešov

1.

2.

3.
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Petr Maršálek, 4, G Praha 4, Ohradní
Ján Kováč, 4, G Poprad, Lenin, nábrežie
Ivo Švec, 4, G J. Hronca, Bratislava

8. —11. Eva Koncová, 4, G J. Hronca, Bratislava
Eva Kopecká, 3, G J. Hronca, Bratislava
Tomáš Pecina, 4, G Turnov
Richard Pleva, 4, G Praha 3, Sladkovského nám.

12. —14. František Adamec, 4, G Ostrov n. O.
Richard Nemec, 3, G Banská Bystrica
Ivan Polách, 2, G J. Hronca, Bratislava
Bohumír Sládek, 4, SPŠE Písek
Vládán Majerech, 1, G Pardubice

Jan Ternbach, 4, G Jevíčko

6.

7.

15.

16.

17.
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NEJÚSPĚŠNĚJŠÍ ŘEŠITELÉ II. KOLA MO
V KATEGORIÍCH А, В, C

Z každého kraje a každé kategorie uvádíme nejvýše prvních
deset nejúspěšnějších řešitelů.

Praha

Kategorie A

Martin Černý, 4 M, G W. Piecka, Praha
2. —3. Zdeněk Culík, 4 M, G W. Piecka, Praha

Richard Pleva, 4 MF, G Praha 3, Sladkovského nám.
4.-5. David Bednárek, 2 M, G W. Piecka, Praha

Jiří Witzany, 4 M, G W. Piecka, Praha
Pavel Valtr, 4 M, G W. Piecka, Praha
Adam Obdržálek, 2 M, G W. Piecka, Praha
Petr Hájek, 2 M, G W. Piecka, Praha
Roman Tůma, 3 M, G W. Piecka, Praha
Petr Maršálek, 4 P, G Praha 4, Ohradní

1.

6.

7.

8.

9.

10.

Kategorie В

1. —2. David Bednárek, M, G W. Piecka, Praha
Adam Obdržálek, M, G W. Piecka, Praha
Tomáš Ledvinka, SPŠE Praha 1, Na příkopě3.
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Petr Hájek, M, G W. Piecka, Praha
Tomáš Holman, M, G W. Piecka, Praha
Martin Heisler, M, G W. Piecka, Praha
Michal Matýska, M, G W. Piecka, Praha
Ivo Petrous, M, G W. Piecka, Praha
Ivo Majetič, M, G W. Piecka, Praha
/i/ay Kemr, MF, G W. Piecka, Praha

4.

5.

6.

7.

8.

9.

10.

Kategorie C

František Trojánek, P, G Praha 4, Na vítězné pláni
Jan Sockcr, M, G W. Piecka, Praha
Miroslav Šíma, M, G W. Piecka, Praha

4.-7. Martin Barhoň, M, G W. Piecka, Praha
Tomáš Liška, M, G W. Piecka, Praha
Martin Novotný, P, G Praha 9, Litoměřická
Ondřej Šmíd, M, G W. Piecka, Praha
Jiří Krčil, M, G W. Piecka, Praha
František Hrnčíř, MF, G Praha 3, Sladkovského nám.

1.

2.

3.

8.

9.

Středočeský kraj

Kategorie A

1. Petr Kolář, 4 P, G Mladá Boleslav
2. Petr Vo tava, 3 P, G Kolín

Kategorie В

1. Leoš Sýkora, P, G Mělník
2. Petr Flek, P, G Slaný
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Kategorie С

1. Josef Šimůnek, SPŠE Kutná Hora
2. Jiří Knap, P, G Nymburk
3. Evžen Mazánek, P, G Vlašim
4. Libuše Husáková, P, G Slaný
5. Roman Masopust, P, G Kutná Hora
6. Jan Plešingr, P, G Říčany
7. Antonín Foiler, SPŠE Kutná Hora
8. Milena Bejdová, P, G Říčany
9. Vladimíra Rauchová, P, G Mnichovo Hradiště10.David Jánošík, P, G Poděbrady

Jihočeský kraj

Kategorie A

Bohumír Sládek, 4, SPŠE Písek
Josef Pelikán, 4 MF, G K. Šatala, České Budějovice
Tomáš Drtina, 4 P, G České Budějovice, Jírovcova

4.-5. Vojtěch Hromíř, 3 P, G Strakonice
Štěpánka Šindelářová, 3 P, G Č. Budějovice, Jírovcova

1.

2.

3.

Kategorie В

Josef Fictum, SPŠ staveb. Volyně
Barbora štěpková, P, G České Budějovice, Jírovcova
Petr Jaroš, P, G Pelhřimov
Jiří Měšťan, P, G Tábor

5.-6. Jindra Matoušková, MF, G K. Satala, Č. Budějovice
Milan Štech, MF, G K. šatala, České Budějovice

1.

2.

3.

4.
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Kategorie С1.—6. Roman Bartoš, P, G Písek
Robert Kostohryz, P, G Písek
Pavel Liška, P, G Písek
Josef Nečas, P, G Písek
Zdeněk Řanda, P, G Písek
Jindřich Zapletal, P, G Tábor
Aleš Chrdle, MF, G K. šatala, České Budějovice

8.-9. Stanislav Kropš, P, G Strakonice
Pavel Peniaštek, P, G Tábor
Jiří Veselý, P, G Strakonice

7.

10.

Západočeský kraj

Kategorie A

1. František Adamec, 4 P, G Ostrov nad Ohří
2. Miroslav Plevný, 4 P, G Cheb
3. Pavel Hajn, 4 MF, G J. Fučíka, Plzeň
4. Herbert Urbanec, 3 MF, G Karlovy Vary
5. Ladislav Hanyk, 3 MF, G Karlovy Vary
6. Jan Boček, 3 P, G Plzeň, ul. Pionýrů
7. Josef Běláč, 4 MF, G J. Fučíka, Plzeň

Kategorie В

Jiří Pittner, MF, G J. Fučíka, Plzeň
Lubomír Perk, MF, G J. Fučíka, Plzeň
Kamil Meisl, MF, G ]. Fučíka, Plzeň

1.

2.

3.
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Jakub Yagkob, MF, G J. Fučíka, Plzeň
Radovan Osoba, MF, G Plzeň, ul. Pionýrů
Pavel Samek, MF, G J. Fučíka, Plzeň

7.-8. Václav Kohout, P, G Plzeň, ul. Pionýrů
Martin Loveníz, P, G Cheb

4.

5.

6.

Kategorie C

Jaroslav Vracovský, P, G Plzeň, Opavská
Petr Kozel, MF, G Karlovy Vary
Martin Černý, MF, G Plzeň, ul. Pionýrů
Pavla Herciková, MF, G J. Fučíka, Plzeň

5.-7. David Ježek, P, G Ostrov n. O.
Jan Šmrha, P, G Plzeň, Opavská
Marcel Sucha, MF, G J. Fučíka, Plzeň

8.-9. Luboš Houdek, P, G Mariánské Lázně
Pavel Nýč, P, G Tachov

1.

2.

3.

4.

Severočeský kraj

Kategorie A

Pavel Krtouš, 3 MF, G Liberec
Petr Jaklin, 4 P, G Ústí n. L.

3. —4. Kateřina Denksteinová, 3 P, G Děčín
Martin Klazar, 4 P, G Louny
Vladimír Smutný, 4 MF, G Liberec

1.

2.

5.

Kategorie В

Petr Šleich, P, G Děčín
Libor Pánek, SPŠSE Liberec

1.

2.
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Ondřej Pavlata, P, G Jablonec n. N.
4.-5. Martin Beneš, MF, G Teplice

Pavel Nevyhoštěný, SPŠSE Liberec

3.

Kategorie C

Jana Vejvalková, P, G Most
Blanka Havelková, MF, G Ústí n. L.
Radka Zuzánková, P, G Děčín

4.-5. Šárka Březinová, P, G Děčín
Otakar Jirgl, P, G Děčín

1.

2.

3.

Východočeský kraj

Kategorie A

1. Jan Ternbach, 4 P, G Jevíčko
2. Aleš Limpouch, 4 MF, G J. K. Tyla, Hradec Králové
3. Tomáš Pecina, 4 P, G Turnov
4. Vládán Majerech, 1 MF, G Pardubice
5. Tomáš Kopf, 4, SPŠCh Pardubice
6. Zbyněk Linhart, 4 MF, G Pardubice
7. Ivo Hladík, 4 P, G Náchod
8. Ivan Picek, 3 MF, G Hradec Králové, Šimkova
9. Luděk Brukner, 3 MF, G Pardubice10.Josef Hynek, 4, SPŠE Pardubice

Kategorie В

1. Michal Demi, MF, G Pardubice
2. Vládán Majerech, 1 MF, G Pardubice
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3. Jiří Charbuský, SPŠ Jičín
4. Michal Blažej, P, G Trutnov
5. Luboš Dvořák, MF, G Pardubice
6. Vojtěch Jaruška, MF, G Pardubice
7. Martin Hospodka, SPŠE Pardubice
8. Martin Špelda, P, G Dobruška

Kategorie C

1.—3. Petr Jelínek, MF, G Pardubice
Jana Ježková, MF, G Hradec Králové, Šimkova
Vládán Majerech, MF, G Pardubice
Rudolf Roušek, MF, G Hradec Králové, Šimkova
Petr Fend, MF, G Pardubice

6.-8. Luboš Borůvka, P, G Náchod
David Janáček, SPŠE Pardubice
Josef Kříž, SPŠE Pardubice

4.

5.

Jihomoravský kraj

Kategorie A

1.—2. Martin Kovář, 3 P, G Brno, tř. kpt. Jaroše
Dušan Vaškovic, 4 P, G Uherský Brod
Tomáš Dr tílek, 4 P, G Brno, Koněvova

4.-5. Michal Beneš, 4 P, G Jihlava
Alan Kuběna, 4, SPŠE Brno, Leninova
Pavel Zemčík, 4, SPŠE Brno, Leninova
Michal Krupka, 2 P, G Brno, tř. kpt. Jaroše

8.-9. Luděk Niedermayer, 4 P, G Brno, tř. kpt. Jaroše
Václav Studený, 3 P, G Brno, Elgartova

3.

6.

7.
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Kategorie В

Pavel Adamec, P, G Kroměříž
Richard Seda, P, G Blansko
Petr Brada, P, G Třebíč

4.-6. Petr Fuchs, P, G Brno, tř. kpt. Jaroše
Michal Krupka, P, G Brno, tř. kpt. Jaroše
Libor Skřička, P, G Brno, tř. kpt. Jaroše
Petr Veselý, P, G Jihlava

8. —10. Radek Dočekal, P, G Jihlava
Hana Roztočilová, P, G Brno, Koněvova
Jan Veche ta, P, G Brno, Koněvova

1.

2.

3.

7.

Kategorie C

Jaroslav Hora, P, G Brno, tř. kpt. Jaroše
2. —3. František Klein, P, G Brno, Koněvova

Radek Tomčík, P, G Brno, Koněvova
4.-5. Hana Peňázová, P, G Brno, tř. kpt. Jaroše

David Toman, P, G Brno, tř. kpt. Jaroše
Miroslav Minářik, P, G Jihlava
Petr Steinmentz, P, G Brno, Koněvova
Jiří Kubáček, P, G Brno, Koněvova

1.

6.

7.

8.

Severomoravský kraj

Kategorie A

Vladimír Kordula, 2 M, G M. Koperníka, Bílovec
Ivo Staněk, 3 M, G M. Koperníka, Bílovec

1.

2.
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Ivo Čermák, 4 M, G M. Koperaíka, Bílovec
Petr Adámek, 3 M, G M. Koperníka, Bílovec

5.-8. Pavel Kráčmar, 4 M, G M. Koperníka;, Bílovec
Jarmila Ranošová, 3 M, G M. Koperníka, Bílovec
Petr Šimon, 4 M, G M. Koperníka, Bílovec
Angel Vargas, 4 M, G M. Koperníka, Bílovec
Jiří Lihotský, 4 P, G Opava
Aleš Pořízka, 2 M, G, M. Koperníka, Bílovec

3.

4.

9.

10.

Kategorie В

1.—2. Martin Blatný, M, G M. Koperníka, Bílovec
Vladimír Kordula, M, G M. Koperníka, Bílovec
Tomáš Klinkovský, P, G Valašské Meziříčí
Michal Šverdik, M, G M. Koperníka, Bílovec
Pavel Seleši, M, G M. Koperníka, Bílovec
Antonín Franěk, M, G M. Koperníka, Bílovec
Aleš Pořízka, M, G M. Koperníka, Bílovec
Ivo Kožušník, P, G Havířov
Martin Novotný, P, G Ostrava-Hrabůvka
Otto Jiinger, M, G M. Koperníka, Bílovec

3.

4.

5.

6.

7.

8.

9.

10.

Kategorie C

1. —5. Robert Babilon, M, G M. Koperníka, Bílovec
Pavel Calábek, M, G M. Koperníka, Bílovec
František Kašpárek, M, G M. Koperníka, Bílovec
Radan Kuča, M, G M. Koperníka, Bílovec
Vojtěch Šléžka, M, G M. Koperníka, Bílovec

6.-9. Petr Habala, M, G M. Koperníka, Bílovec
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Tomáš Novotný, P. G Frýdek-Místek
Martina Sklenářová, P, G Ostrava, Jízdárenská
Petra Sýkorová, M, G M. Koperníka, Bílovec
Marek Petřivalský, P, G Olomouc-Hejčín10.

Bratislava

Kategorie A

Ján šefčik, 3 M, G A. Markuša, Bratislava
Ondřej Pastva, 4 M, G A. Markuša, Bratislava

3.—4. Eva Koncová, 4 MF, G J. Hronca, Bratislava
Marián Šumšala, 3 M, G A. Markuša, Bratislava
Matěj Lexa, 4 M, G A. Markuša, Bratislava

6.-7. Martin Poltin, 3 M, G A. Markuša, Bratislava
Eva Kopecká, 3 MF, G J. Hronca, Bratislava
Mariin Knor, 3 M, G A. Markuša, Bratislava
Andrej Hoos, 4 M, G A. Markuša, Bratislava
Robert Szelepcsenyi, 4 M, G A. Markuša, Bratislava

1.

2.

5.

8.

9.

10.

Kategorie В

Miroslav Bedlek, M, G A. Markuša, Bratislava
2. —3. Vladimír Potisk, MF, G J. Hronca, Bratislava

Stanislav Meduna, MF, G J. Hronca, Bratislava
Milan Balucha, SPŠ Stavebná, Bratislava
Ivan Vargovič, M, G A. Markuša, Bratislava
Anna Vojtková, MF, G J. Hronca, Bratislava
Tomáš Fischer, MF, G j. Hronca, Bratislava

8.-9. Mária Orgonášcvá, MF, G J. Hronca, Bratislava

1.

4.

5.

6.

7.
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Pavol Senes, P, G L. Novomeského, Bratislava
Robert Trávník, MF, G j. Hronca, Bratislava10.

Kategorie C

1, — 6, Anton Belan, G A. Markuša, Bratislava
Zohdy Hamid, M, G A. Markuša, Bratislava
Jana Koncová, MF, G J. Hronca, Bratislava
Juraj Mázor, M, G A. Markuša, Bratislava
Marcel Polakovič, M, G A. Markuša, Bratislava
Milan Singhofer, M, G A. Markuša, Bratislava
Peter Klein, M, G A. Markuša, Bratislava
Robert Krídl, M, G A. Markuša, Bratislava
Adrian Liška, M, G A. Markuša, Bratislava
Stanislav Párnický, M, G A. Markuša, Bratislava

7.

8.

9.

10.

Západoslovenský kraj

Kategorie A

Pavel Beluský, 4 P, G Nitra, Párovská
Vladimír Uhelský, 3 P, G E. Gudernu, Nitra
Štefan Dragúň, 4 P, G šurany
Vladimír Páček, 4 P, G Skalica
Tibor Hlédik, 4 P, G mad. Komárno
Gabriel Drobný, 4 P, G Trenčín
Ján Malý, 3 P, G E. Gudernu, Nitra
Michal Valení, 4 P, G Levice
Tibor Lacza, 4 P, G Nové Zámky
Stanislav Varga, 4 P, G Topoíčany

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
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Kategorie В

Gejza Berek, P, G mad. Žcliezovce
Bronislav Krajčovič, SPŠ stavebná, Trnava
Zoltán Sedlák, 2 P, G Nové Zámky
Tomáš Polakovič, P, G Nové Zámky
Peter Mužila, P, G Nitra, Párovská
Robert Jakubík, P, G Levice
Peter Olláry, SPŠ Komárno
Roman Vince, P, G Šáhy
Zuzana Šuppová, P, G E. Gudernu, Nitra
Jozef Kúdela, P, G Levice

Kategorie C

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Marián Lukáč, P, G Bánovce n. B.
Rudolf Burel, P, G Trnava
Oliver Ralik, P, G E. Gudernu, Nitra
Martin Štepka, P, G Piešťany
Ildikó Vázsonyiová, P, G mad. Komárno
Pavol Kolník, P, G Nové Město n. V.
Peter Križalkovič, P, G Nitra, Párovská
Iveta Hercová, P, G Levice
Gabriel Iró, P, G mad. Senec
Andrea Szábóová, P, G mad. Komárno

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Středoslovenský kraj

Kategorie A

1. —3. Igor Jucho, 3 P, G Povážská Bystrica
Rickard Nemec, 3 MF, G Banská Bystrica, Tajovského

39



Igor Odrobina, 3 P, G Žilina, Velká Okružná
4.-5. Roman Gajdošech, 4M,G Žilina, Veíká Okružná

Roman Kučera, 4 M, G Žilina, Velká Okružná
6.-7. Erich Bielik, 3 P, G Dolný Kubín

Štefan Brisuda, 4 M, G Žilina, Velká Okružná
Dušan Pospíšil, 4 P, G Povážská Bystrica
Jozef Bača, 4 M, G Žilina, Velká Okružná

8.

9.

Kategorie В

Igor Melicherčík, MF, G Banská Bystrica, Tajovského
Milan Kubala, M, G Žilina, Velká Okružná
Robert Germič, M, G Žilina, Vdká Okružná
Ivan Berkeš, MF, G Zvolen

5.-7. Lubomír Čaňo, MF, G Zvolen
Beáta Prostináková, SPŠ Dubnica n. V.
Peter Uher, MF, G Prievidza
Eubica Ferencová, MF, G Zvolen

9. —10. Jozef Čierny, M, G Žilina, Velká Okružná
Igor Kohút, P, G Púchov

1.

2.

3.

4,

8.

Kategorie C

1.—2. Dušan Hanes, MF, G Prievidza
Anna Kořenová, M, G Žilina, Vdká Okružná

3. —4. Miroslav Laššák, M, G Žilina, Velká Okružná
Miroslav Leštach, M, G Žilina, Velká Okružná
Fridrich Štrba, MF, G Žilina, Wolkerova
Bronislav GreŠák, P, G Kysucké Nové Město
Pavel Galba, P, G Dubnica n. V.

5.

6.

7.
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8.-9. Tomáš Kubík, MF, G Prievidza
Roman Labát, M, G Žilina, Velká Okružná
Lubomír Bašo, MF, G Prievidza10.

Východoslovenský kraj

Kategorie A

Juraj Balázs, 4 P, G Košice, Kuzmányho ul.
Ján Kováč, 4 P, G Poprad, Lenin, nábrežie
Ján Lúžny, 3, SPŠE Prešov
František Bobenič, 4 M, G Košice, Smeralova
Luboš Křupa, 4 P, G Humenné
Peter Vargovčík, 4, SPŠE Prešov
Juraj Va taščin, 4 P, G Prešov, Konstantinova
Ignác Tereščák, 4 P, G Michalovce
Renáta Franková, 4 P, G Košice, Šrobárova
Viliam Schickman, 4 P, G Prešov, Konstantinova

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Kategorie В

Vladimir Hašik, SPŠE Košice
Alexander Szabari, M, G Košice, Smeralova
Igor Bilak, P, G Prešov, Konstantinova
Alexander Slanina, P, G Kosice, Smeralova
Rudolf Bosák, P, G Giralíovce
Igor Kuruc, G Prešov, Revoiučná
Gabriel Zamborský, SPŠE Prešov

1.

2.

3.

4.

5.

6.-7.
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Kategorie С

Roman So ták, M, G Košice, Smeralova
Mário Drosc, P, G Michaiovce
Igor Fedačko, P, G Michaiovce
Josef Micko, M, G Košice, Smeralova
Michal Němčík, P, G Poprad, Lenin, nábrežie
Adriana Jergová, P, G Prešov, T. Sevčenka
Michal Lieskovský, P, G Prešov, Konstantinova
Jana Marcinová, Str. hotelová škola Kežmarok
Peter Muška, P, G Poprad, Lenin, nábrežie
Michal Urban, P, G Prešov, Konštantinova

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

G — gymnázium
M — třídy se zaměřením na matematiku
MF — třídy matematicko-fyzikáiní
P — třídy přírodovědné, s odbornou přípravou nebo

experimentální

Pokud není uvedeno jinak, byli všichni uvedení řešitelé
v kategorii В žáky 2. ročníku, řešitelé v kategorii C žáky
1. ročníku.
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Kategória Z

ÚLOHY I. KOLA

Z - 1 - 1

Nájdite všetky páťciferné čísla dělitelné číslom 84, ktoré
majú tuto vlastnost: Prvé tri číslice tvoria číslo, ktoré je
třikrát vačšie ako číslo zo zostávajúcich dvoch číslic. Poradie
číslic je přitom rovnaké ako v páťcifernom čísle.

Riešenie. Označme x dvojciferné číslo tvořené posledným
dvojčíslím hfadaného páťciferného čísla, у trojciferné číslo
tvořené jeho prvými troma ciframi; potom hfadané páťci-
ferné číslo n je rovné lOOy -f x. Podlá zadania úlohy má
platit'у — 3x, tedy n — 300x 4- x — 30Lv = 7.43.x. Kedže
84 deli 7.43x vtedy a len vtedy, ked 12 dělí 43x, preto
nutné x sa rovná jednému z čísel 12, 24, 36, 48, 60, 72, 84,
96. Kedže pre 12 a 24 číslo 3x nie je trojciferné číslo, tak
ostává týchto 6 riešení pre n:

10 836, 14 448, 18 060, 21 672, 25 284, 28 896.

Z - 1 - 2

Pre ktoré prvočíslo p je číslo 2p + 1 trefou mocninou
nějakého prirodzeného čísla ?

Riešenie. Položme 2p + 1 = kde m je prirodzené
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číslo a p prvočíslo. 2p + 1 je vždy nepárne číslo, preto nutné
rrfi teda aj m je nepárne. Zrejme 2p — nfi — 1 a odtiaí po
rozklade právej strany máme

2p — (m — 1) (m2 + m -i- 1). (0

Pretože m je nepárne, možno ho vyjádřiť v tvare m = 2k + 1,
kde k > 0 je prirodzené číslo. Po dosadení do rovnosti (1)
máme

2p = 2k (4k2 + 4k + 1 + 2k + 1 + 1)

a odtiaf

p = k(4k2 + 6k + 3).

Pretože prvočíslo móže byť deliteíné len číslem 1 a sebou
samým, nutné /c = la/>=4 + 6 + 3 = 13.

Teda len pre/> = 13 je 2p + 1 treťou mocninou prirodze-
ného čísla, 2.13 + 1 = 27 = 33.

Z - I - 3

Na linke električky je čas jazdy medzi konečnými stáni-
cami 45 minút. Na obidvoch konečných staniciach čakajú
električky 5 minút. Přidáním piatich električiek na linku sa
interval medzi električkami znížil o jednu minútu. Kolko
súprav jazdí teraz na linke a v akom intervale? (DIžka inter-
válu vyčíslená v minútach je prirodzené číslo.)

Riešenie. Jedna električka přejde ceíú trať tam i spáť za
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100 minut. Před změnou jazdí x vlakov s intervalem у
minút. Po zmene jazdí a- + 5 vlakov s intervalom у — 1
minut. Počet intervalov násobený dlžkou intervalu dává
vždy čas, potřebný к prejdeniu celej trati.

x.y = 100
(.v + 5).(У - 1) = 100

Riešením sústavy rovnic: x — 20, y — 5.
Po trati jazdí 25 súprav s intervalom 4 minuty.

Z- \ -4

Je daný rovnoramenný trojuholník ABC, d(AC) = d(BC).
Na predíženi strany CB za bod В zvolte bod D tak, aby
d(BD) = d{AB). Priesečníky osí uhlov BAC a BAD s úseč-
kou CD označte E a F. Akú vdkosť má uhol EAF, ak
r(<£ CAB) — a?
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Riešenie (obr. 1). Polpriamka AE je osou uhla a, preto
1

v(<£EAB) = — a. Trojuholník je rovnoramenný, preto

oc = /5. Uhol zJjRD je susedný к uhlu ABC, preto v(<£ABD) =
= 180° — a. Trojuholník zí£Z) je rovnoramenný, d(AB) —

180° - (180° - a)
= d(BD). Potom v(<^BAD) = = rp°-

1
lopriamka AF je osou uhla BAD, preto «?(<£BAF) — — oc.4

2

1 1 3
Súčet uhlov ÍL4B a ivíi? je — a -f — a

2 4

v rovnoramennom trojuholníku ABC platí oc < 90°. Potom
3

musí platiť pre súčet uhlov EAB a FAB — x < 67°39'.

Uhol ÍL4F zostrojený vyššie popísaným spósobom je pre

každý rovnoramenný trojuholník zíBC vždy mens íako 67,5°.

—

a. Pre uhol y.
4

Z - f -5

Je daný štvorec KLMN s dížkou strany 6 cm. Zostrojte
trojuholník ABC, ktorý má tieto štyri vlastnosti:

1. vrchol A leží na priamke KL,
2. vrchol C leží na priamke KN,
3. bod M má od každého z bodov A a C vzdialenosť

7 cm,
4. d(AB) : d(BC) : d(Gd) = 1,5 : 2 : 1.

Koíko riešení má úloha ?

Riešenie. Zostrojíme kružnici k = (M, 7 cm) (obr. 2).
jej priesečníky s KL označíme A, A' a jej priesečníky s KN
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/с'

označíme С, С'. Každá z dvojíc bodov А, С; A, CA', C;
A', C'i představuje vždy dva vrcholy zostrojeného trojuhol-
nika.

Uvažujme dvojicu A, C. Potom bod В je priesečníkom
kružnic кл — (A; 1.5.АС) a kc 7= (С; 2.AC). Obdobné je
tomu v případe dvojíc A, CA'3 С; A', C'.

Úloha má celkom 8 riešení.
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Z-l-$

Je daný rovnostranný trojúhelník ABV, d(AB) = 8 cm.

Zostrojte obdížnik ABCD, kterého strana CD prechádza
stredom К úsečky А V. Ďalej zostrojte v polrovine s hranič-
nou priamkou CD a vnútorným bodom A rovnostranný
trojúhelník CDU. Vypočítájte obsah tých častí obdížnika
ÁiBCD, ktoré ležia mimo trojúhelníka ABV i trojúhelníka
CDU.

Riešenie. Priesečníky priamok А V a DU, В V a CU
označme (obr. 3), po radě E a F. Zvonku obidvoch uvažova-
ných trojuholníkov ležia v obdížniku len trojuholníky ADE
a BCF. V obidvoch týchto trojuholníkoch majú uhly pri
stranách AD a CB velkost’ 30°. Strany AD a CB sú proti-

3
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Táhlé strany obdížnika ABCD. Teda troj úhelníky ADE
a BCF sú podTa vety usu zhodné rovnoramenné trojuhol-
niky. Stačí vypočítat obsah jedného z nich.

Označme L priesečník priamok BV a DC. Z konštrukcie
obdížnika ABCD vyplývá, že KL je středná priečka troj-
uholníka ABV, takže d(KL) = 4. Z osovej súmernosti
obdížnika ABCD a trojuholníka ABV podia osi UV vyplývá,
že d(DK) = 2. Trojuholník DKE má pri straně DK uhly
o velkosti 60°, a preto je rovnostranný. Teda ADE je rovno-

ramenný trojuholník o ramenách dížky 2 a uhlech pri zá-
kladni o velkosti 30°, takže má ten istý obsah ako rovno-

stranný trojuholník o straně dížky 2. Obsah /\AED je teda

1

-.2.УЗ = УЗ cm2.P =

Celkový obsah časti obdížnika ABCD, ktoré ležia zvonku
txABV i ACBU je 2]/3 cm2.

ÚLOHY II. KOLA

Z - 11 - 1

Před dvojciferné číslo napíšeme to isté číslo, avšak s opáč-
ným poradím cifier. Dostaneme štvorciferné číslo, ktoré je
dělitelné číslom 21. Určte dvojciferné číslo.

Riešenie. Označme a cifru na mieste desiatok a b počet
jednotiek zvoleného dvojciferného čísla. PodTa podmienok
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úlohy má byť číslo 100 (106 + a) + 10a + 6 = 10016 -f
+ 110a dělitelné číslom 21, teda sieámymi a tromi. Pretože
1001 je dělitelné siedmymi, musí byť siedmymi dělitelné
číslo a, teda a = 7. Číslo 10016 + 770 sa rovná 3(3336 +
-f 256) + 2(6 + 1) a je dělitelné tromi právě vtedy, ked
je číslo 6+1 dělitelné tromi. Jediným riešením sú čísla
72, 75, 78.

Z - II - 2

Nájdite všetky prvočísla p pre ktoré je číslo p + 4 dru-
hou mocninou prirodzeného čísla.

Riešenie. Ak je p + 4 = a2, je p = (a — 2) (a + 2).
Pretože je p prvočíslo, musí byť a — 2 = l,/> = a + 2 = 5.
To je jediné riešenie.

Z - H - 3

V trojuholníku ABC je S střed strany AB a P pata výšky
na priamku AB. Ďalej je d(CS) = 5, d(CP) = 4 a d{AP) :
: d(BP) = 2. Vypočítejte velkost’ strany AB.
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Riešenie. (obr. 4a, b). Pódia Pytagorovej vety je d(SP) =
- 3. Ak označíme d(AS) = x, je d(AP) = x + 3, d(BP) =
= .v — 3 lebo d{BP) — Ъ — x. Z podmienky d(AP):
: d(BP) = 2, potom vyplývá v prvom případe x — 9, v dru-
bom x = 1. Potom je d(AB) = 18 alebo d(AB) — 2.

Z - H - 4

Auto ide z miesta A do miesta В priemernou rýchlosťou
70 km/h, naspáť priemernou rýchlosťou 50 km/h. Keby
išlo tam i spáť priemernou rýchlosťou 60 km/h, trvala by
celá jazda o 8 minut menej. Aká je vzdialenosť miest A a B?

Riešenie. Ak označíme hfadanú vzdialenosť s (v km),
má pod Га podmienok úlohy píatiť

5 2s 8

70 + 50 = 60 + 60’

5

odtiaí 5 — 140 km.

ÚLOHY III. KOLA V ČSR
(úlohy připravil KV MO - Severočeský kraj)

Z - III - 1

Aké musia byť číslice x, y, ak páťciferné číslo 4дг0ijy je
dělitelné pátnástimi? Nájdite všetky riešenia úlohy a získá-
né čísla vypište.

Riešenie. Číslica у móže byť 0 alebo 5 a číslica x Tubo-
volné číslo z množiny {0,1, ..., 8, 9}, ktoré doplnia ciferný
súčet tak, aby bol dělitelný tromi. Teda ak
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у = О, tak 5 4- х — Ък, к е N а л: е {1, 4, 7},
у = 5, tak 10 4- х = Ък, k е N а лг е {2, 5, 8}.

HTadané páťciferné čísla, ktoré vyhovujú podmienkam úlohy,
sú:

41010, 42 015, 44 010, 45 015, 47 010, 48 015.

Z - Ш - 2

Existuje pática po sebe nasledujúcich nepárnych čísel, aby
súčet ich štvorcov bolo prvočíslo ?

Riešenie. Neexistuje. Číslica nultého rádu súčtu štvor-
cov rubovolnej pátice po sebe nasledujúcich nepárnych čí-
sel [(2k - 1)2 + (2k 4- l)2 4- (2k + 3)2 + (2/г 4- 5)2 +
4- (2k 4- 7)2, ke Z] je vždy číslo páť.

Z - Ш - 3

Je daný pravidelný šesťuholnik ABCDEF o straně a =
= 2 cm. Určte obsah obrazca, který je zjednotením troj-
uholníkov ACE a BDF.

Riešenie. Najprv vypočítáme obsah rovnoramonného
2.x

trojuholníka (obr. 5) Pabc — ~r~ = x, kde x =
P

Po-
3 *

r P
= 6.p-6. -L =tom obsah obrazca P = Pq — 6. Pabg

— 4 J/3 cm2.
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z - m - 4

Kolona áut mala dorazit do města nejneskór o 11.00 ho-
dine. Keby išla priemernou rýchlosťou 30 km/h, přišla by
do města už o 10.00 hodině. Keby išla priemernou rých-
losťou 20 km/h, dorazila by až o 12.00 hodině. Akou prie-
měrnou rýchlosťou musí kolona ísť a akú vzdialenosť má
překonat’ ?

Riešenie. Návod: Z podmienok úlohy dostáváme rovnice
Í = 30r (1), 5 = 20(r + 2) (2), 5 = v(t + 1) (3). Z (1)
a (2) máme 3Oř = 20(r + 2), odkiaí t = 4. Potom z (1)
a (3) vyplývá s = 120, v = 24. Kolona musí prejsť 120 km
najviac za 5 hodin. Musí teda ísť rýchlosťou aspoň 24 km/h.
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ÚLOHY III, KOLA V SSR

(úlohy připravil KV MO - Bratislava)

Z - Ill -1

Dokážte, že pre každý konvexný paťuholník platí: súčet
velkostí uhlopriečok (všetkých) je váčší ako súčet všetkých
jeho stráň.

Riešenie. Pri označení podlá obr. 6 zrejme platí:
ai + a2 > a, bi + Ы > b, cL + c2 > c, di + d-2 > d,
ei -f e-2 > e; dalej platí: щ > ai + b2, ..., 115 > e\ + а%.
Sčítáním uvedených nerovností dostaneme požadované tvr-
denie.
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Z - Ш -2

a) Ак napíšeme ГиЬоуоГпе 3-dferné číslo 4-krát za se-

bou, tak výsledné 12-ciferné číslo bude dělitelné 4-ciferným
číslom 9 901. Dokážte!

b) Nájdite dalšie (najlepšie všetky) 4-ciferné čísla, ktoré
majú rovnakú vlastnost', ako číslo 9 901.

Riešenie. a) Nech a je trojciferné číslo, potom příslušné
12-ciferné číslo je (1 001 001 001).a, tento súčin je dělitelný
číslom 9 901, pretože činitel 1 001 001 001 je dělitelný týmto
číslom. Možno sa o tom presvedčiť vydělením alebo roz-
kladom.

b) Platí: 1 001 001 001 = 7.11.13.101.9901. Vlastnosť
z a) má každý deliteí čísla 1 001 001 001. Štvorciferné deil-
tele sú: 1 001 = 7.11.13, 7 777 = 7.11.101, 9 191 = 7.13.
.101, 1 111 = 11.101, 1 313 = 13.101.

Z - lil - 3

Narýsujte íubovoíný trojuholník ABC. Vo vnútri strany
AC zostrojte bod X, vo vnútri strany BC zostrojte bod Y
tak, aby platilo:

XY | ] <-> ABd(AX) = d(XY), <->

a dokážte správnost’ konštrukcie.
Riešenie. Konštrukcia úlohy je zřejmá z obr. 7, ak si

uvědomíme, že priamka A Y je osou uhla BAC. Úloha má
jediné riešenie.
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Z - И! -4

Vládo a Peter sa vydali na túru z miesta A do miesta В
a spať. Vládo išiel rýchlejšie ako Peter a ked sa vracal, stretol
Petra. Peter mal prejsť do miesta В ešte 2 km. Peter sa
rozhodo!, že ho musí dobehnúť. Zvýšil rychlost’ chódze na

dvojnásobok. Vládo už nevládal, preto zvyšok cesty do A
prešiel polovičnou rýchlosťou. Do miesta A sa obaja vrátili
zároveň. Vypočítajte vzdialenosť miest A a B.

Riešenie. Označme x vzdialenosť miest AB v km, v±

rychlost’ Víada, v% rýchlosť Petra (označenie pre východis-
kové rychlosti). Podmienka, že obaja turisti dorazili do ciefa
naraz, sa dá zapísať v tvare:

x -j- 2 x — 2 x — 2 x + 2
+ + -

1/2 ví 2v-zvi Z’2

odkial dostaneme n = 2.z>2-
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Čas, кtor}/ uplynul od začiatku túry po prvé strcímitie
turistov bol rovnaký, z čoho možno zapísať dalšiu rovnicu:

x + 2 x — 2

ví V'2

Z oboch rovnic dostáváme:

x + 2 — 2. (x — 2)

Teda x = 6.

Vzdialenosť miest AB je 6 km.
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Kategorie С

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

C - i - 1

Najděte všechny uspořádané trojice kladných reálných
čísel a, b, c, pro které platí

1 2 3
a 4- 2b°- + 3c3 + — + = 12.4-

ž>2 ' сзa

!
Řešení. Pro každé kladné číslo и platí nerovnost и -f —^ 2,

přičemž znaménko rovnosti platí jen v případě a = 1. Pro
každou trojici kladných čísel a, b, c proto platí

(i2 + i)+3(C3 + i)1
^ 12,ci -f" -j- 2

a

přičemž znaménko rovnosti platí právě tehdy, je-li a — b —

— c = 1. To je jediná trojice, která vyhovuje rovnici úlohy.

C - \ - 2

Osy vnitřních úhlů konvexního čtyřúhelníku procházejí
jedním bodem nebo omezují čtyřúhelník, jemuž lze opsat
kružnici. Dokažte.
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Řešení. Osy vnitřních úhlu čtyřúhelníku ABCD při
vrcholech А, В nemohou být rovnoběžné, označme jejich
průsečík R. Bod R je středem kružnice, která se dotýká
strany AB čtyřúhelníku a také polopřímek AD a BC. Je-li
CD také tečnou této kružnice k, procházejí všechny osy
vnitřních úhlů čtyřúhelníku ABCD bodem R. Dál budeme
předpokládat, že přímka CD není tečnou kružnice k. Na
polopřímkách BC a AD zvolíme body C a D' tak, aby
čtyřúhelník ABCD' byl kružnici dopsán a aby CD'\\CD
(obr. 8). Osy vnitřních úhlů čtyřúhelníku ABCD' se pro-
tínají v bodě R, osy vnitřních úhlů čtyřúhelníku ABCD při
vrcholech C, D se protínají v bodě P, pro který platí CP\\C’R,
DP\\D'R. Přímky BC, AD, RP procházejí bud jedním bo-
dem, nebo jsou spolu rovnoběžné. Proto jsou body R, P

A В

Obr. 8
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protějšími vrcholy čtyřúhelníku PURV omezeného osami
vnitřních úhlů čtyřúhelníku ABCD. Platí \<£UPV\ =

-= |^яв| == ]<££>'ЯС'| = 180°-
у- + /5
—-—, kde jsme у., /3, у, <5 označili velikosti

vnitřních úhlů čtyřúhelníku ABCD při vrcholech А, В,
C, D. Protože a + P + у + d = 360°, je součet velikostí
úhlů UPV a URV roven 180°. Podle věty o obvodovém
a středovém úhlu lze čtyřúhelníku PURV opsat kružnici,
což jsme měli dokázat.

- 180° -

C - \ - 3

Určete všechna přirozená čísla n (200 > n > 3) s touto
vlastností: Poslední dvojčíslí dekadického zápisu čísla (w + 1)2
se liší od posledního dvojčíslí dekadického zápisu čísla и2
nejvýše pořadím cifer.

Řešení. Kdyby čísla (n + l)2 a n2 končila stejným dvoj-
Číslím, byl by jejich rozdíl dělitelný číslem 100, avšak
(n + l)2 — n2 = 2n + 1 je vždy číslo liché a tedy není děli-
telné číslem 100. Má-li tedy být přirozené číslo n řešením
naší úlohy, musí se čísla (n + l)2 a n2 lišit na posledních
dvou místech pořadím cifer. Do následující tabulky si napí-
šeme do sloupců všechny možnosti pro poslední číslici
čísel и, n + 1, n2, (n + l)2:
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! О 1 23456789п

1234567890п + 1

и2 0149656941

СВ + I)2 1496569410

Končí-li například číslo п2 číslicí 4 a číslo (п -f- l)2 číslicí 9,
a mají-li se tato dvě čísla lišit na posledních dvou místech
pořadím cifer, musí n2 končit dvojčíslím 94 a číslo (n 4- l)2
dvojčíslím 49. Výše uvedenou tabulku můžeme tedy doplnit
tabulkou posledního dvojčíslí čísel n2 a (n + l)2 (předpokládá-
tne-li, že n vyhovuje podmínce úlohy):

TI2 10 41 94 69 56 65 96 49 14 01

(n + l)2 01 14 49 96 65 56 69 94 41 10

Je-li druhá mocnina přirozeného čísla n dělitelná deseti, je
číslo n dělitelné deseti, pak je však číslo n2 dělitelné stem
a nemůže končit dvojčíslím 10. To znamená, že v poslední
tabulce nemůže nastat situace vyjádřená v prvním sloupci,
stejně tak pro poslední sloupec. Končí-li číslo n2 číslicí 5,
musí končit číslicí 5 i číslo n, pak však končí číslo n2 dvoj-
číslím 25. To znamená, že nemůže platit obsah 5». a 6. sloup-
ce. Konečně končí-li číslo n2 číslicí 4, musí číslo n končit
číslicí 2 nebo 8, pak je však v čísle n2 na místě desítek číslo
sudé. Proto žádná druhá mocnina přirozeného čísla nemůže
končit dvojčíslím 94 nebo 14. Zbývají tedy jen dvě možnosti,
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bud číslo n2 končí dvojčíslím 69 a číslo (n + l)2 dvojčíslím 96,
nebo obráceně. V prvním případě končí číslo n číslicí 3, na
místě desítek pak musí být cifra 1 nebo 6. V druhém případě
musí číslo n končit dvojčíslím 36 nebo 86. Protože n < 200,
může n nabýt pouze hodnot 13, 63, 113, 163 a 36, 86, 136,
186. Zkouškou se přesvědčíme, že všechny tyto hodnoty
vyhovují.

C - í -4

Je dána krychle ABCDA'B'C'D' o hraně délky a. Kulová
plocha protíná stěnu BCC' v kružnici vepsané čtverci BCC'B'
a prochází

a) bodem A,
b) středem úsečky AB.

V obou případech určete střed a poloměr kulové plochy.
/

D C

i

i

A By
/

O s ox
X

;

4-

cI
I

к

Obr. 9>4 В
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Řešení. Střed 5 dané kulové plochy leží na kolmici
vedené středem O čtverce ВСС'В' к jeho rovině, tedy na

spojnici středů O, O' čtverců BCC'B' a ADD'Apřesněji
na polopřímce 00'. Označme x = |OS| a r hledaný polo-
měr. Střed S bude vypočtenou velikostí x jednoznačně
určen (obr. 9). V případě a) vypočteme x a r ze vztahů
mezi stranami pravoúhlých trojúhelníků SAO' a SOK, kde
К je střed strany BC. Podle Pythagorovy věty je

(■:)'.mr2 — (a — x)2 + , r2 = x- -f

5 a
— j/41. V případě b) nahradímeodkud plyne x = ~a

trojúhelník SAO' trojúhelníkem SLM, kde L je střed hrany

> r =

a

AB a M střed krychle. Vyjde pak x = —, což znamená, že

bod S splývá s bodem M, trojúhelník SLM je vlastně jen
a —

úsečkou, a r = — |, 2.

C-f-5

Nechť a, b jsou nesoudělná přirozená čísla. Pak přirozená
čísla x, y, z, kde x = a(a + b), у = b(a + b), z = ab jsou

1 1 1
nesoudělná a platí — + — = —. Dokažte.

X у z

Nechť x, y, z jsou nesoudělná přirozená čísla, pro něž platí
1 1 1

— + — = —. Zjistěte, zda pak existují přirozená čísla a, b
x у z

taková, že x = a (a + b), у = b(a -f b), z = ab.
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Řešeni. Čísla x, y, z jsou opravdu nesoudělná, když jsou
nesoudělná čísla a, b. V opačném případě by některé prvo-
číslo z rozkladu čísla z muselo dělit čísla x i y. Dělí-li prvo-
číslo p číslo z, dělí bud a nebo b. Nechť dělí číslo a, pak
nedělí číslo b, protože a, b jsou nesoudělná. Protože dělí
číslo y, musí dělit číslo a 4- b. Jelikož dělí p číslo a a také
číslo a 4- b, musí dělit b, což je spor. Tím je dokázáno, že

1 1 1
čísla x. y, z jsou nesoudělná, vztah —

x

me prostým dosazením.
Nechť platí obráceně pro nesoudělná přirozená čísla x,

1 1 1
y, z vztah — -f — = —. Označme d největší společný dělitel

čísel x, y. Pak je x = ad, у — bd, čísla a, b jsou nesoudělná.
1 1 1

Dále platí —: 4- — = —, tedy z —* zd bd z

jsou nesoudělná, jsou nesoudělná i čísla a, a 4- b, rovněž
čísla b, a 4- b jsou nesoudělná. Protože číslo z je přirozené,
musí číslo a 4- b dělit číslo d, d — k(a 4- b), k je číslo přiro-
zené, takže x = ka(a 4- b), у = kb(a 4- b), z = kab. Protože
však čísla x, y, z jsou podle předpokladu čísla nesoudělná,
musí být k = 1 a pak je x = a(a 4- b), у = b{a 4- b), z —ab.
Tím jsme zjistili, že existují přirozená čísla a, b tak, že jsou
splněny podmínky druhé části úlohy, navíc víme, že to jsou
čísla nesoudělná.

= — dokáže-4-
У z

abd
Protože a, b

a 4- b‘

C - i - 6

Je dáno přirozené číslo n, n > 2. Dřevěnou krychli o hra-
ně délky n natřeme na červeno a rozřežeme 3(n — 1) ro-

vinnými řezy na rfi malých krychliček o hraně délky I.
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a) Kolik malých krychliček bude mít jednu červenou
stěnu, kolik dvě červené stěny, kolik tři červené stěny?

b) Je možné z malých krychliček sestavit kvádr o rozmč-
rech 1, An — 8, An — 8 tak, aby jedna jeho čtvercová stěna
o rozměrech An — 8, An — 8 byla vybarvena jako šachov-
nice ?

Řešení. Krychle má 8 vrcholů, krychličky při vrcholech
mají obarveny tři stěny. Právě dvě červeně natřené stěny
budou mít ty krychličky, které jsou umístěny při hranách
velké krychle, avšak ne při vrcholech. Vzhledem к tomu, že
krychle má 12 hran,jejich 12(n — 2). Právě jednu červenou
stěnu mají krychličky, které leží ve velké krychli při jejích
stěnách, avšak ne při hranách. Je jich 6(n — 2)2. Tím je
vyřešena část a) úlohy.

Abychom mohli kvádr z části b) úlohy složit tak, aby
jedna jeho velká čtvercová stěna byla vybarvena šachovni-
cově, potřebujeme к tomu (An — 8)2/2 obarvených krychli-
ček, stejně velký počet bude neobarvených. К dispozici
máme 6n1 — 12n +8 krychliček, které mají aspoň jednu
stěnu červeně natřenou. Musí tudíž pro n platit

(An - 8)2
< 6rc2 — 12n + 8,

2

tedy (n — 5)2 ^ 13. Z přirozených čísel větších než 2 vyho-
vují pouze čísla n = 3, 4, 5, 6, 7, 8. Celkem máme n3 krych-
liček, natřených i nenatřených, potřebujeme jich (An — 8)2,
přičemž natřené můžeme dát případně i nenatřenou stě-
nou do stěny šachovnicově složené. Musí tudíž ještě platit
(An — 8)2 rP. Z výše uvedených čísel pak vyhovují jen
n = 3 a n — 4.
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ÚLOHY ŠKOLNÍ ČASTI I. KOLA

C - S - 1

V rovnoramenném lichoběžníku ABCD procházejí osy
vnitřních úhlů jedním bodem. Vypočtěte součet a součin
velikostí jeho základen a = |AB\, c — \CD\ pomocí velí-
kosti ramene b = \AD\ a výšky v.

Řešení. Procházejí-li všechny osy vnitřních úhlů jedním
bodem (označíme ho S), lze lichoběžníku vepsat kružnici,

v

jež má střed v bodě A a poloměr —. Označme P, O její body

dotyku se základnami, R bod dotyku s ramenem (obr. 10).
r a

Je pak | DR = \DO\ = —, \AR j = \ AP\ = —, tedy a + c —

= 2b. Můžeme předpokládat c < a. Vedme bodem D

D CQ
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kolmici к přímce AB, patu označíme E. Z pravoúhlého
trojúhelníku AED plyne

2 2

(1 C a c
— I + V2, tedy ac = v2.

2

C - S -2

Je dána krychle ABCDA'B'C'D' o hraně délky a. Kulová
plocha protíná rovinu BCC' v kružnici opsané čtverci BCC'B'
a prochází středem M hrany AA'. Určete střed a poloměr
této kulové plochy.

Řešení. Úloha i postup řešení je obdobný jako u úlohy
a

]/41, jejíC-I-4; pro poloměr kulové plochy vyjde r —

střed S leží na spojnici středů K, L čtverců BCC'B', ADD'A',
8

5 3
|£S| = -a, |*S| = та.

Я

С - S - 3a

Číslo n = 123...399400 vzniklo tak, že jsme za sebou
zapsali prvních 400 přirozených čísel. Zjistěte, zda je číslo n
druhou mocninou přirozeného čísla.

Řešení. Jestliže by číslo n bylo druhou mocninou přiro-
zeného čísla p, muselo by číslo p být dělitelné deseti, p = 10q,
q ie číslo přirozené. Číslo q musí končit takovým dvojčíslím,
jehož druhá mocnina končí dvojčíslím 94. Takové dvojčíslí
však neexistuje, viz řešení úlohy C-I-3.

67



С - S - 3b

Dřevěný pravidelný čtyřboký hranol H má podstavnou
hranu délky n a výšku 6n, číslo n je přirozené. Hranol natře-
me červeně a rozřežeme na krychličky o hraně délky 1.
Zjistěte, pro která n lze z krychliček slepit dutou krychli К
o hraně délky 2n, jejíž vnější povrch je celý červený.

Řešení. Pro n — 1 zřejmě nelze krychli К slepit, protože
hranol К je složen pouze ze šesti krychliček, zatímco pro

slepení krychle bychom jich potřebovali aspoň 8. Předpo-
kládejme, že n ^ 2. Hranol H je složen z 6я3 malých krych-
liček, z nich je 8 s třemi červenými stěnami, dále ještě
8(n — 2) + 4(6n — 2) = Ъ2п — 24 má dvě červené stěny.
Právě jednu červenou stěnu má 2(n — 2)2 -f 4(w — 2) •
• (6n — 2) — 26n2 — 64?z + 24 krychliček. К sestavení krych-
le К potřebujeme všech 8 krychliček s třemi červenými stě-
námi, dále 12(2w — 2) = 24n — 24 krychliček s dvěma červe-
nými stěnami, a konečně 6(2n — 2)‘l — 24ríl — 48?z + 24
krychliček, které mají aspoň jednu červenou stěnu. Vidíme,
že krychliček s dvěma červenými stěnami máme dostatek,
ani všechny nepotřebujeme, 8n jich přebývá a můžeme je
použít při slepování krychle К jako krychličky s jednou
červenou stěnou. Těch potřebujeme 24w2 — 48w + 24, má-
те к dispozici 26n2 — 64n + 24 + 8n — 26n- — 56n + 24.

Pro 7i tak máme jedinou podmínku
26n2 — 56n + 24 ^ 24n1 — 48n + 24,

tj. n r • 4.
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ÚLOHY II. KOLA

C - П -1

Najděte všechny uspořádané n-tice (*i, ..., xn) reálných
čísel (n — 2k je číslo sudé), které splňují soustavu dvou
rovnic:

xi + x-i + • • • + x:ik-\

*2 + XI + ... + X~lk = X1X2 + *3*4 + . . . + *2*-l*2A>

= *1*2 + *3*4 + . . . + *2*-l*2*

Řešení. Sečtením obou rovnic a odečtením pravé strany
obdržené rovnice dostaneme rovnici

(*1 - *2)2 + (*3 - *4)2 + . . . + (*2Ar—1 - X2kf = 0.

Odtud plyne nutně *2 = *1, *4 = *3, ..., *2fc = *2fc-i-
Na druhé straně je ihned vidět, že každá и-tice čísel, která
splňuje tyto vztahy, je řešením dané soustavy rovnic.

C - H - 2

Žák měl určit délku tětivy v kruhu o poloměru r cm, vzdá-
lenost středu kruhu od tětivy byla d cm. Čísla r, d byla dána.
Žák použil nesprávného postupu. Domníval se, že délka tě-
tivy bude (r + d) cm. Přes chybný postup došel к správnému
výsledku. Jaký byl poměr délek rad ?

Řešení. Správně měl žák dosadit do výrazu 2]/r2 — ď2,
víme tedjr, že pro čísla r, d platí vztah 2] r2 — d2 = r -f í/, po

69



umocnění 4(г — d) (г 4- d) — (г + d)2. Součet r + d je ne-

nulový, můžeme tímto součtem předcházející rovnost dělit,
dostaneme 4(r — d) — r + d, odkud plyne r : d = 5:3.
Zkouškou se přesvědčíme, že každá dvojice r — 5p, d = Ър
(p > 0) je řešením.

С - I! - 3a

Zjistěte, zda je přirozené číslo l1 + 22 -b 33 + ... + lólí5 +
-f 1717 dělitelné třemi. Svou odpověd zdůvodněte.

Řešení. Každé přirozené číslo n můžeme psát ve tvaru
3m + z, kde m je přirozené číslo nebo nula a z je zbytek při
dělení čísla n třemi, 0 fSi z < 3. Pro každé přirozené číslo k
dávají čísla пк a zk při dělení třemi stejný zbytek. Dané číslo
je právě tehdy dělitelné třemi, když je třemi dělitelný součet
li +22 + O3 + l4 + 25 + O'5 + ... + l16 + 217 =

= 6 + 22 + 25 + ... + 217. Zbytek při dělení čísla 21' třemi
je 2 při lichém k a 1 při sudém k. Proto je číslo 22 + 25 děli-
telné třemi, stejně tak 28 + 211,214 + 217. Tím je dokázáno, že
dané číslo je dělitelné třemi.

C - 11 - 3b

Je dán rovnoramenný lichoběžník ABCD, \AB\ = 16,
|BC| = \AD\ = 13 a |CD| = 6. Uvnitř lichoběžníku leží bod
M tak, že poměr obsahů trojúhelníků ABM a CDM je 4 : 3
a poměr obsahů trojúhelníků BCM a ADM je 7 : 12. Určete
obsahy trojúhelníků ABM, BCM, CDM a ADM.

Řešení. Výška lichoběžníku je 12, vypočteme ji pomocí
Pythagorovy věty. Označme x výšku v trojúhelníku ABM,
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у výšku v trojúhelníku CDM. Podle zadání je 8x : Ъу = 4 : 3,
tedy у — 2x. Protože x 4- у — 12, je x — 4, у = 8, obsah
trojúhelníku ABM je 32, obsah trojúhelníku CDM je 24.
Obsah celého lichoběžníku je 132, zbývá tedy na trojúhelníky
ADM a BCM obsah 76. Protože poměr jejich obsahů je 12 : 7,
je obsah trojúhelníku ADM roven 48, obsah trojúhelníku
BCM je 28.
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Kategorie В

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

В - i - 1

Všechna obvodová pole šachovnice tvaru 497X497 jsou
očíslována přirozenými čísly od 1 do 1984. číslování začíná
v levém horním rohu a pokračuje ve směru pohybu hodino-
vých ručiček po obvodu šachovnice. Je dáno přirozené číslo k.
Na očíslované pole klademe figurky tak, že první položíme na

pole číslo 1 a další figurky pokládáme o k polí dále, tedy druhou
na pole číslo 1 + ky třetí na pole 1 + 2k, atd. ve směru očíslo-
vání, dokud se nedostaneme na pole, které už je obsazené
figurkou. V tom okamžiku pokládání figurek končí.

a) Na kterém poli skončí pokládání figurek ?
b) Kolik obvodových polí šachovnice bude obsazeno figur-

kami?

Řešení. Nejdříve je třeba vědět, kolik má naše šachovnice
polí na obvodu. V horní řadě je jich 497, v pravém sloupci
ještě 496, stejný počet ještě v dolní řadě, a v levém sloupci
zbývá 495, celkem 1984. První figurku položíme na pole
číslo 1, druhou na pole číslo 1 + k, třetí na pole 1 + 2k, atd.,
proto г-tá figurka připadne na pole číslo 1 + (г — \)k. Pokud
je však toto číslo už větší než číslo 1984, vezmeme pouze jeho
zbytek při dělení číslem 1984. Při našem obíhání obvodových
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polí šachovnice následuje totiž po poli číslo 1984 pole číslo К
Nechť je / > i. Figurka /-tá připadne právě tehdy na stejné
pole jako figurka г-tá, jestliže čísla 1 + (/ — l)&al + (i — \)k
dávají stejný zbytek při dělení číslem 1984, neboli když je
jejich rozdíl (/ — i)k dělitelný číslem 1984. Jestliže i-tá a /-tá
figurka připadnou na téže pole, připadnou na téže pole také
figurky s pořadovými čísly i — 1 a / — 1, dále figurky s po-

řadovými čísly i — 2, / — 2, atd. Jelikož však pokládání fi-
gurek končí, jakmile má být některá figurka položena na již
obsazené pole, musí být i — 1 a pokládání figurek končí vždy
na prvním poli. Číslo/ je takové nejmenší přirozené číslo větší
než 1, pro které je číslo (/ — \)k dělitelné číslem 1984, tedy
(/ — 1)£ = m . 1984, m je přirozené. Tady je výhodné vzít na

pomoc největšího společného dělitele čísel k a 1984, který
1984

označíme D. Je pak (/ — 1) — = a přirozená čísla

1984

k k

D y

D jsou nesoudělná. Protože / má být nejmenší přirozené
číslo, jež splňuje výše uvedenou rovnost, musí být (j — 1) =

1984
_ a to je též počet obsazených polí, protože /-tá figurka
L)

by už musela být položena na pole číslo 1, obsazené první
figurkou. Jsou-Ii čísla k, 1984 nesoudělná, budou obsazena
všechna obvodová pole šachovnice.

B-í-2

V rovině je dáno šest navzájem různých bodů Aj, A%, Аз,
A4, A5, Ae, z nichž žádné tři neleží na jedné přímce. Někte-
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rými dvojicemi z těchto bodů jsme vedli přímku. Nechť **

označuje počet všech těchto přímek, které procházejí bodem
Ajc (k = 1, 2, ..6). Jestliže z každých tří různých bodů
množiny Ai, ..., Аб lze vybrat dvojici bodů, jimiž byla vedena
přímka, pak platí nerovnost

(2*i - 7)2 + (2*2 - 7)2 + ... + (2*0 - 7)2 ^ 54.

Dokažte.
Řešení. Každé z čísel ** se rovná některému z čísel 0, 1,

2, 3, 4, 5, proto se číslo (2** — 7)2 rovná některému z čísel
49, 25, 9, 1. Jestliže pro všechna k = 1, 2, ..., 6 platí *^ ^ 2,
je pro každé £ hodnota (2** — 7)2 rovna 1 nebo 9, a proto je
dokazovaná nerovnost splněna. Nechť se některé ** rovná
nule, můžeme předpokládat, že je to číslo *i. To znamená, že
bod A\ není spojen přímkou s žádným dalším bodem z bodů
А2з ..., A6. Pak ale musí být spojeny přímkou každé dva
z těchto pěti bodů. Kdyby například nebyly body A2, A3
spojeny přímkou, znamenalo by to, že jsme žádnými dvěma
body z bodů A±, A2, A3 nevedli přímku, což je proti před-
pokladu. Je proto *1 = 0 a % = 4 pro k = 2, 3, ..., 6, součet
na levé straně dokazované nerovnosti je 49 + 5.1 = 54, ne-
rovnost je splněna. Zbývá vyšetřit případ, kdy se některé **,
třeba *1, rovná 1. Pak jsme bodem A\ vedli jedinou přímku,
můžeme předpokládat, že jsme bod A\ spojili přímkou s bo~
dem A2. Podobně jako v předcházejícím případě dokážeme,
že jsme vedli přímku každými dvěma body z bodů A3, Л4, A5
a Ae. Přitom jsme žádný z těchto bodů nespojili přímkou
s bodem A±. Nevíme, zda jsme vedli přímku bodem A2,
a některým z bodů A3, ..., Ae. Víme však, že platí *i = 1,
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1 ^ *2 ^ 5,3 ^ Sic ^ 4 pro k = 3,4,5,6. Proto je (2*x - 7)2 =
= 25, (2s2 - 7)2 ^ 25 a (2s* - 7)2 = 1 pro k = 3, 4, 5, 6.
Dokazovaná nerovnost je i v tomto případě vždy splněna.

В - \ - 3

Nechť a, b jsou daná reálná čísla. Nalezněte všechny uspo-
řádané dvojice reálných čísel x, y, vyhovující soustavě ne-
rovnic

x2 + y2 ax 4- by

ja — b + у — x\i^ a + b — x — у

\x - y\ ^ —x—y.

Provedte diskusi vzhledem к parametrům a, b.
Řešení. První nerovnici můžeme přepsat ve tvaru

(«-тМ'-т)' a2 + b2

4

dvojice (x, y) splňuje tuto nerovnici právě tehdy, když bod
a b

25~2
který se ovšem v případě a = b — 0 redukuje na pouhý bod
[0, 0]. Pro další postup je dobře si uvědomit, že |r| ^ * platí
tehdy a jen tehdy, když platí r ^ * a současně — r ^ s. Proto
je druhá nerovnice úlohy splněna právě tehdy, když jejy b
a současně x ^ a. Stejně tak můžeme poslední nerovnici
úlohy nahradit nerovnicemi x ^ 0 а у ^ 0. Dál musíme roz-
lišit čtyři případy podle znamének čísel a, b. Je-li například

1 a2 4- b2
a poloměru[л:,jy] patří do kruhu o středu 2
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a U: O, b " O, musí být x iC О, у ^ O a bod [v, у] musí ležet
v kruhu popsaném na začátku řešení úlohy. Jeho střed leží
v 1. kvadrantu, jeho průnikem s 3. kvadrantem je pouze po-
čátek [0, 0]. Podobně postupujeme v ostatních třech přípa-
dech. Řešením dané soustavy nerovnic je vždy právě jedna
uspořádaná dvojice reálných čísel. Pro a ^ 0, b 2b 0 je to
dvojice (0, 0), je-li a < 0, b 2b 0, je řešením dvojice (a, 0),
pro а 2b 0, b < 0 je to dvojice (0, b), a konečně v případě
a < 0, b < 0 je řešením dvojice (a, b). Výsledek můžeme
shrnout takto: Řešením dané soustavy nerovnic je vždy jedině
dvojice x = min (a, 0), у — min (b, 0). Označení min (c, d)
znamená vzít minimum z čísel c, d, tedy menší z čísel c, d,
nebo kterékoliv z nich, jsou-li si rovna.

В - t -4

je dána krychle ABCDEFGH o hraně délky a. Vrchol A je
spojen po povrchu krychle nejkratší čarou se středem stěny
BCGF, respektive DCGH. Tato lomená čára má s hranou BF,
respektive DH společný bod L, resp. K. Určete obsah troj-
úhelníku AKL.

Řešení. Představme si, že jsme stěnu DCGH uvažované
krychle otočili kolem hrany DH do roviny AEHD tak, že se
její střed M zobrazí do bodu M', různého od středu stěny
DAEH (obr. 11). Protože bod A byl spojen s bodem M přes
bod К nejkratší lomenou čarou, leží body А, К, M' na přímce
a lomená čára se skládá z úseček AK a KM. Z podobnosti
trojúhelníků ADК а АРМ' určíme velikost úsečky DK. Pro¬

a

tože\AP\ = 3\PM'\,je\AD\ =3\DK\,tedy\DK\ = —. Stej-
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Obr. 11

nou velikost má úsečka Б/., trojúhelník Л/CL je rovnoramenný
se základnou /CL, jiCL| = aj'2. Označíme-li střed úsečky KL
a jeho pravoúhlý průmět do roviny ABC písmeny O, 0\, je

1 22
\OQi\ = |-dO| = a (dostaneme z pravoúhlého troj-

j 6

2

VIÍ
úhelníku AOQi), obsah trojúhelníku AKL je tedy a2

6

В - 1 - 5

Je dán deltoid ABCD, jehož úhlopříčka BD délky / půlí
úhlopříčku AC délky e. Označme postupně K, L, M, N středy
vně sestrojených čtverců nad stranami AB, BC, CD, DA.
Dokažte tato tvrzení:

a) Čtyřúhelník KLMN je rovnoramenný lichoběžník, jehož
úhlopříčky KM a LN jsou к sobě kolmé a protínají se v témže
bodě S, jako úhlopříčky daného deltoidu.
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b) Obsah lichoběžníku KLMN se rovná obsahu daného
deltoidu zvětšenému o obsahy dvou čtverců se stranami délek
e f
2 5 2 '

Řešení. Označme velikosti úseček AS, BS, CS a DS po

řadě a, b, c, d. Je pak a = c = —,b + d = /. Vedme bodem К

kolmice к úhlopříčkám AC, BD deltoidu, jejich paty označíme
P, O (obr. 12). Pak jsou přímky KP, КО na sebe kolmé,

stejně tak přímky КA, KB, navíc je \KA\ — \KB\. Proto
jsou pravoúhlé trojúhelníky KPA a KQB shodné. Z toho
plyne rovnost |iOP| = \KQ\, to znamená, že bod К leží na
ose úhlu A SB. Stejně tak dokážeme, že bod M leží na ose
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úhlu DSC, a proto prochází přímka KM bodem S. Označme x
velikost úsečky KP. Protože je \PA\ = \QB\, je x — a =

CL b
— b — x, tedy x — —-—. Označíme-li vzdálenosti bodu M

od přímek AC a BD jako y, dostaneme obdobným způsobem
a -(- d

——. Je zřejmě у ф x, jinak by bylo b = d a místo

deltoidu bychom měli kosočtverec. Ze souměrnosti podle
přímky BD plyne ihned, že čtyřúhelník KLMN je lichoběžník
o základnách 2x, 2у a výšce x + y. Jeho obsah je (x -f y)2 =

(a + b + a + d)2 (e + f)2 ef e2 f2
4 — 2 + 4 + 4

У =

. Protože
4

ef
obsah výchozího deltoidu je — , je tím dokázáno i tvrzení

b) úlohy.

B - I -6

Konvexní pětiúhelník ABCDE má všechny vrcholy na kruž-
nici, jeho nejdelší strana má délku j/2 a jeho třetí nejdelší stra-
na délku 1. Dokažte, že poloměr kružnice je nejvýše 1.

Řešení. Můžeme předpokládat, že nejdelší stranou pěti-
úhelníku je strana AB, tedy \AB\ = |/2. Ukážeme nejprve,
že střed 5 kružnice k pětiúhelníku ABCDE opsané je bodem
pětiúhelníku. Kdyby tomu tak nebylo, ležely by vrcholy C,
D, E v opačné polorovině ohraničené přímkou AB, než ve
které leží bod 61 (obr. 13). Označme X ten bod kružnice k,
který leží v polorovině ABC a zároveň na průměru kružnice k
kolmém к přímce AB, dále Y průsečík úseček AB, XS.

79



Protože |<£ ASY\ < 90°, je |<£ AXY\ > 45°, proto je
! 2

jAry |< а |ЛАГ| < 1. Podle předpokladu jsou délky
dvou stran BC, CD, DE, AE pětiúhelníku aspoň rovny 1.
Odpovídající středové úhly by pak musely být větší než
]<£ ASY\, což není možné. Můžeme tedy předpokládat, že
bod 5 je bodem pětiúhelníku. Kdyby byl poloměr kružnice k
větší než 1, byl by středový úhel odpovídající straně А В
menší než 90°, totéž by platilo pro středový úhel odpovídající
další nejdelší straně. Další strany mají délky nejvýše rovny
jedněm proto jim odpovídající středové úhly jsou menší než
60°. Pak by se ovšem nemohl součet všech pěti středových
úhlů rovnat 360°, jak však na druhé straně plyne z toho, že
bod A je bodem pětiúhelníku. Proto se poloměr kružnice k
rovná nejvýše 1.
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ÚLOHY ŠKOLNÍ ČÁSTI I. KOLA

B-S-1

V oboru reálných čísel řešte soustavu rovnic

x2 -f y2 = \ax 4- by'

bx — ay = 0 .

Proveďte diskusi vzhledem к reálným parametrům a, b.
Řešení. Je-li a — b = 0, má soustava jediné řešení x =

= у = 0. V opačném případě můžeme předpokládat a 4= 0,
bx

případ & Ф0 bychom řešili obdobně. Je-li a 4= 0, jej; = — .

Dosazením do rovnic x2 + y2 — ax -f by, x2 -f y2 = —ax —

— by dostaneme x = a, x = — a, x — 0. К nim vypočteme
bx

hodnoty у = — a zkouškou se přesvědčíme^, že dvojice {a, b),

( — a, —b) a (0, 0) jsou opravdu řešením.

B-S-2

Je dán pravidelný čtyřboký jehlan ABCDV s výškou v
a velikostí podstavné hrany 2a. Vypočtěte odchylku sousedních
bočních stěn jehlanu.

Řešení. Označme E patu kolmice vedené bodem А к přím-
ce BV (obr. 14). Ta je též patou kolmice vedené bodem C
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к přímce В V. Máme určit velikost o. = | <£ ЛЕС|. Trojúhelník
AEC je rovnoramenný, jeho základna AC je půlena středem 5
čtverce ABCD. Také trojúhelník BCV je rovnoramenný, jeho
základna BC má velikost 2a, výška příslušná к této základně
je j/V2 -f a2, velikost ramene je | VB\ — ~jv2 + 2a2. Dvojím
vyjádřením obsahu trojúhelníku BCV dostaneme pro w =

= \EC\ vztah w^v2 + 2a2 = 2ajv2 + a2. Z pravoúhlého troj-
úhelníku ESC plyne pro /3 = |<£ SECI rovnost sin /3 =

a|/2 |jv2 + 2a2 ]/v2 + 2a2
, tudíž cos a = cos 2/3 =

2a ]/v2 + a2 ]Í2v2 + 2a2
a2

= 1—2 sin2 /3 = — Tím je odchylka a určena.v2 -f a2'
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В - S - За

číslo п = 1234.. .328329 vzniklo tak, že jsme zapsali čísla
1, 2, ..., 328, 329 bez mezer za sebou. Dokažte, že číslo n
není druhou mocninou žádného přirozeného čísla.

Řešení. Chceme dokázat, že číslo n není druhou mocninou
žádného přirozeného čísla m. Mohli bychom postupovat spo-
rem: Kdyby platilo m2 = n, muselo by číslo m končit cifrou
3 nebo 7, aby jeho druhá mocnina měla na konci číslici 9.
Vezměme nyní v úvahu i předposlední číslice. Aby číslo m2
končilo dvojčíslím 29, musí číslo m končit dvojčíslím 23, 27,
73 nebo 77. Tak postupujeme dále, až dojdeme ke sporu. To
je ovšem postup zdlouhavý. Ukážeme si lepší metodu. Stačí
totiž ukázat, že číslo n je dělitelné nějakým prvočíslem a není
dělitelné jeho druhou mocninou. Zkusíme prvočíslo 3, protože
známe jednoduchá kritéria pro dělitelnost třemi i devíti.
Číslo je dělitelné třemi právě tehdy, když je třemi dělitelný
jeho ciferný součet, totéž platí pro dělitelnost devíti. Platí
ještě víc: Číslo a jeho ciferný součet dávají při dělení třemi
stejný zbytek a totéž platí pro dělení devíti. Jaký je ciferný
součet čísla я? Nám stačí znát jeho zbytek při dělení devíti.
Považujeme-li dvě čísla za sobě rovná, jestliže se liší o celý
násobek devíti (říkáme, že počítáme modulo 9), pak se sobě
rovnají ciferný součet C(s) a číslo s pro každé s. Kromě toho
je C(n) = C(l) + C(2) + C(3) + ... + C(329) = 1 + 2 +

330
+ 3 + ... + 329 = 329 . —

modulo 9. Proto dostaneme při dělení čísla n číslem 9 zbytek 6,
při dělení třemi zbytek 0. Proto nemůže být číslo n druhou
mocninou některého přirozeného čísla.

= 329 . 165 =5.3=6, vše
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8 - S - 3b

V rovině je dáno k množin M}, M2, ..., M^ přímek, každá
z množin MŽ(Y = 1, ..k) se skládá z m navzájem různých
rovnoběžných přímek. Pro i =j= j nejsou přímky množiny Мг-
rovnoběžné s přímkami množiny М,- a žádné tři přímky mno-

žiny MiU M2 и ... и Mje neprocházejí jedním bodem. Urče-
te, na kolik částí dělí rovinu přímky z množiny Mi и M2 и ...

• • . U Mfc.
Řešení. Množina Mi dělí rovinu na m + 1 částí, množina

Mi U M2 rozdělí rovinu na (rn + l)2 částí. Každá přímka z М3
se protne s každou přímkou z množiny Mi и M2, těch je 2mi
a protíná proto 2m + 1 částí z těch (ni + l)2. Každou z těchto
částí rozdělí na dvě. Proto Mi и M2 U М3 dělí rovinu ni

(rn + l)2 -f m(2m + 1) = 1 -f 3m 4- 3m2 částí. Obdobně od-
vodíme, že množina MiU M2U M3U M4 dělí rovinu na

1 + 3m -f 3m2 + m(3m + 1) = 1 + 4m + brd1 částí. Přidá-
ním množiny Mg dostaneme 1 + 4m -Ь 6m2 + m(4m + 1) =
= 1 + 5m + 10m2 částí. ÍViatematickou indukcí pak dostane-

me pro všech k množin konečný výsledek 1 4- km 4- (2)
ÚLOHY II. KOLA

В - П - 1

Určete, kolik řešení má v oboru reálných čísel soustava
rovnic
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я2 -f у2 = ах + by

\bx — ay I = 1.

Proveďte diskusi vzhledem к reálným parametrům a, b.
Řešení. Všimněme si nejdříve, že máme určit pouze počet

řešení, ne řešení sama, i když by to také nebylo obtížné.
Dvojice (x, y) je řešením dané soustavy, právě když je buď
řešením soustavy rovnic x2 + y2 — ax + by, bx — ay — 1,
nebo soustavy x2 + y2 — ax + by, ay — bx — 1. Žádná dvo-
jice není řešením obou soustav. Je-li a = b = 0, nemá ani
jedna z popsaných soustav řešení. V opačném případě budeme
předpokládat, že a ={= 0, jinak bychom zaměnili x а у, a a b.
Dvojice (v,y) je pak řešením první soustavy právě tehdy, je-li

bx — 1
а л- je řešením kvadratické rovniceУ =

(a2 + b2)x2 — (2b + a3 + ab2) x + 1 + ab = 0 ,

její diskriminant je a2[(a2 b2)2 — 4]. V případě druhé sou-

stavy rovnic dostaneme kvadratickou rovnici s týmž diskri-
minantem. Proto platí: Je-li a2 -f b2 > 2, má úloha čtyři ře-
šení, v případě a2 + b2 = 2 má úloha dvě řešení. Je-li a2 +
+ b2 < 2, nemá úloha řešení. Zde je zahrnut i případ a =
= b — 0. Výsledek je dobře vidět při grafickém znázornění.
Je-li aspoň jedno z čísel a, b nenulové, je první rovnicí sou-

a b

2 5 2stavy dána kružnice se středem v bodě

jící počátkem soustavy souřadnic. Druhou rovnicí jsou dány
dvě přímky, jež jsou rovnoběžné se spojnicí středu kružnice

, procháze-

85



1
a počátku a mají od středu kružnice vzdálenost

[/a2 + 62 5
|/a2 -f b-poloměr kružnice je

2

В - H -2

V konvexním čtyřúhelníku, kterému lze opsat kružnici a je-
hož úhlopříčky jsou na sebe kolmé, se součet druhých mocnin
velikostí protějších dvou stran rovná druhé mocnině průměru
kružnice čtyřúhelníku opsané. Dokažte.

Řešení. Zvolme označení jako na obr. 15, jedna úhlopříčka
je druhou rozdělena na úsečky velikostí x, y, druhá je rozdě-
léna první úhlopříčkou na úsečky u, v. Vzdálenosti úhlo-
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příček od středu kružnice čtyřúhelníku opsané jsme označili
p, q. Označíme-li ještě dvě protější strany čtyřúhelníku a, c, je

a2 -f c2 = x2 -f y2 -f u2 -f v2.

Dále jс у — }/V2 — p2 + q, x = j/r2 — />2 — <7, podobně pro
u, v; r značí poloměr uvažované kružnice. Dosazením dosta-
neme a2 + c2 = 4r2 = (2r)2, což jsme měli dokázat.

В - И - За

Určete všechna reálná čísla x, která vyhovují rovnici

1-ř 1
1*2 - 2\ + = 1.

Poznámka, [a] znamená celou část z čísla a.
Řešení. Aby bylo číslo x řešením, musí být číslo x2 — 2

celé, protože jeho absolutní hodnota se má rovnat celému čís-
lu. To však znamená, že x2 musí být celé. Je-li x2 liché, je
x2 — 1
—-— celé a máme řešit rovnici j jc2 — 21 + — = —, vyho-

vuje pouze *2 = 1, protože pro x2 ^ 4 je levá strana větší než 2
a nevyhovuje ani hodnota x2 = 3. Je-li x2 sudé, je x2 — 1 li-

x2 — 1 x2 — 2
„

ché, celá část čísla ——— je —-—. Řešíme tedy rovnici

x2 3

л:2
\x2 — 2\ + — = 2. Opět nevyhovují x2 ^ 4, nevyhovuje

я2 = 2, vyhovuje pouze x2 — 0. Rovnice má právě tři řešení:
-1,0, 1.
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в-и-3b

Je dán pravidelný čtyřstěn ABCD s hranou délky a. Vrchol
A je spojen po povrchu čtyřstěnu nejkratší lomenou čarou
s těžištěm T stěny BCD jednak přes hranu BD, druhá čára
vede přes hranu CD. První čára protne hranu BD v bodě K,
druhá protne hranu CD v bodě L. Vypočtěte objem čtyřstěnu
AKLT.

Řešení. Výška jehlanu AKLT na stěnu KLT (obr. 16) je
stejná, jako výška čtyřstěnu ABCD. Vypočteme ji z právo-

П Dále je \KL\ =-
3 2

úhlého trojúhelníku ATB, vyjde a
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a pro výšku w v trojúhelníku KLT na stranu KL platí w =

/2 1 \
=

\ 3 ~ ~2 J v> kde v je výška v trojúhelníku BCD, tedy
]/3. Výsledný objem je a3] 2L, a

2 l'3z; = , v> =
12 144
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Kategorie A

úlohy domácí části i. kola

A - 1 - 1

Posloupnost vyhovuje pro všechna přirozená čís-
la n rekurentnímu vztahu

an+3 — 5яя.+2 9дй+i -f- 9cín . (1)

Jestliže kromě toho pro každé přirozené číslo n platí

Ы ^ 2» , (2)

pak tato posloupnost také vyhovuje rekurentnímu vztahu

(3)&n+2 — 3s2j}

pro každé přirozené n. Dokažte,
Řešení. Označme bn = an+2 — 2a«+i + 3an, pak je podle

rekurentního vztahu (1)

bn+i — 5яд+2 9#/h-i -f- 9дй 2аи+2 •+■ 3uw+i —

— 3(яи+2 2ай.+1 -Н 3дй) — ,
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takže

bn — 3n 1 bi .

Protože podle předpokladu (2) je

IM < ia»+2| + 2\a,M\ + 3|a„| Й 2»+a + 2.2»+' + 3.2» =

= 11.2%

platí pro každé přirozené n

2 \n
3»-i|Í!|S 11.2», tj. NS 33.1-г I .

Proto je bí = 0, tedy bn — 3n~1bi — 0 pro každé n, což jsme
měli dokázat.

Poznámka. Obecné řešení rekurentního vztahu (1) najde-
me řešením příslušné charakteristické rovnice

/3 - 5A2 + 9A - 9 = (A - 3) (A2 - 2A + 3) - 0,

která má kořeny Ai = 3, A2, 3 = 1 ± i]/2. Každá posloupnost
vyhovující rekurentnímu vztahu (1) pak má tvar

an = A.Xn + В. Re(Ao) + C. Im(A”), (4)

kde А, В, C jsou libovolné konstanty (viz např. A. Prá-
gerová: Diferenční rovnice. SNTL 1971). Z podmínky
(2) pro posloupnost {an} ovšem plyne,, že ve vyjádření (4)
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musí být A = 0, jinými slovy, takové posloupnosti {an}
splňují rekurentní vztah (3) s charakteristickou rovnicí
Á2 - 2?, + 3 = 0.

A - l - Z

Najděte všechna reálná čísla x, pro která platí
a) sin тгл: = cos (тс/*);
b) tg тех = cotg (tz/x).
Řešení, a) Zřejmě musí být x4=0. Protože cos у —

(Ы= sin , je daná rovnice ekvivalentní s rovnicí

(i - i)sin —x = sin . Odtud plyne, že je bud

7C TC

+ 2k~тел =
2 X

pro nějaké celé číslo k, nebo

TC TC

+ 2кл—

0 + '2 x
тех — TC

pro nějaké celé k.
V prvním případě dostaneme kvadratickou rovnici

2*2 - (4k + 1)* + 2 = 0

s kořeny

i

x(k)i, 2 = -(4k + l± ]/(4k + 1)2 - 16).
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Reálné kořeny dostáváme pro všechna celá кф{0, — 1},
přitom žádný z kořenů není roven nule. V druhém případě
dostaneme kvadratickou rovnici

2x2 - (4& + 1)jc - 2 = 0

s kořeny

1
x'(k)l, 2 = -T (« + 1 + 1'(« + l)2 + 16) ,

4

které jsou reálné a nenulové pro všechna celá k.
Řešením první rovnice jsou čísla 2 pro všechna

celá k£ {0, —1} a čísla x\k)i, 2 pro všechna celá k.
7Z 7C

b) Zřejmě musí být x 4= 0, ~x 4= — + тк3 — Ф яти,

= tg(f-j-) *
kde ra, n jsou celá čísla. Protože cotg jy

/ t: tc \
je daná rovnice ekvivalentní s rovnicí tgт:я

Odtud plyne, že je

7Г

KX = — - — + k-K,
Z X

kde k je celé. Dostáváme tak kvadratickou rovnici

2x2 - (2k + l)x -f 2 = 0,
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která má kořeny tvaru

*№l, 2 = J (2k + 1 ± }(2k + 1)2 - 16).
Ty jsou zřejmě reálné a nenulové pro všechna celá k $
ф {—2, —1, 0, 1}. Vyšetříme nyní, pro jaká k jsou tyto ко-

1 1
řeny tvaru — + m nebo — pro celá m, n.2 n

1
Nechť 2 = ~ -f m, pak po úpravě dostaneme

Ani2 + Ani + 5 4
2k + 1 = = 2m + 1 +

2m + 12 m + 1

Kořen x(k) může tedy být uvedeného tvaru jen pro m =0
nebo m— —1, tj. pro ke{—3, 2}. Výpočtem zjistíme, že

1 1
— mají tvar — + m.

1
pouze kořeny x(2)-2 = — , л:( —3)i =

1
Nechť jc(^)t, 2 = — , ифО celé, pak po úpravě dosta-

n

neme

2
2k + 1 = 2n + — .

To je liché celé číslo jen pro n = ± 2, pak je však k e
g { — 3, 2} stejně jako v předchozím případě.

Tuto poslední část jsme už vlastně mohli vynechat. Všech-
ny kořeny x(k)i, 2 jsou vlastně ta čísla x, pro která je
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11 1
я; + — + ~~ celé číslo. Pro ne však je — celé číslo, právě

1 1
kctyž x -f ~ je celé číslo, tj. právě když je x tvaru — + m

pro m celé.
Řešením druhé rovnice jsou čísla x(k)i, 2 pro všechna

celá k ф { — 3, — 2, —1,0, 1, 2} a čísla —2, 2.

A - t - 3

Nechť n > 1 je dané přirozené číslo. Najděte všechna
přirozená m, pro něž je číslo lognm iracionální.

Řešení. Nejprve najdeme všechna přirozená čísla m, pro

P
která je lognm racionální. Budiž tedy lognm = —, kde

Я

p a q jsou celá nesoudělná čísla, p ^ 0, q > 0. Pak je

p_
m = n(/, neboli mq — np.

Odtud je patrné, že každé prvočíslo, které dělí číslo m, musí
také dělit číslo n.

Je-li

n — Pi P> • • • Pr (1)

rozklad čísla n na prvočinitele, v němž jsou pt navzájem
různá (kladná) prvočísla, má číslo m rozklad tvaru

rn = p\' ^ ... ph;
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a platí qbi = pa-i pro všechna *g{1, 2, r}. Protože
p Si q jsou nesoudělná, dělí q každé at, takže dělí i jejich

Cti
největší společný dělitel d, d — qď. Označme a{ — -7

pak je qbi — pat = pda{ — pqďd{, tedy bi — pď'ať a m —

= (d]jnyd'.
Ukázali jsme tedy, že je-li logwm racionální, pak m —

— (й|in)k, kde k ^ 0 je celé číslo. Naopak pro každé m tvaru
__ Ž

m — (л|/я)* pro k ^ 0 je m° — nl\ m = ril, a tedy logww
je racionální.

Číslo lognm je iracionální pro všechna přirozená čísla m,
která nejsou nezápornou celou mocninou přirozeného čísla

d|ín, kde d je největší společný dělitel exponentů v rozkla-
du (1).

d 5

A- 1 -4

Určete největší přirozené číslo n s touto vlastností: Exis-
tuje konvexní и-úhelník, který lze vyjádřit jako sjednocení
konečného počtu vzájemně se nepřekrývajících pravoúhlých
trojúhelníků s ostrými úhly 30° a 60°.

Řešení. Nechť AiA-2...An je konvexní «-úhelník s uve-
děnou vlastností. Každý z jeho vnitřních úhlů je sjednoce-
ním konečného počtu nepřekrývajících se úhlů velikosti
30°, 60° nebo 90°. To znamená, že velikost každého vnitřního
úhlu mnohoúhelníku AiA-2...An je celočíselným násobkem
30° a není tedy větší než 150°. Protože součet vnitř-
nich úhlů konvexního «-úhelníku je (n — 2). 180°, do-
stáváme nerovnici
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(n - 2). 180^ 150«

s řešením n

Pro n — 12 skutečně existuje dvanáctiúhelník, který lze
vyjádřit jako konečné sjednocení nepřekrývajících se pra-

voúhlých trojúhelníku s úhly 30° a 60° (obr. 17).

12.

Obr. 17

A- I -5

V kouli o poloměru 1 je dáno 73 různých bodů. Dokažte,
že z těchto bodů lze vybrat 13 navzájem různých, které leží

5
uvnitř nějaké koule s poloměrem — .6

Řešení. К důkazu uvedeného tvrzení stačí najít 6 koulí
5

s poloměrem nejvýše — takových, že sjednocení jejich vnitřků
o

obsahuje danou jednotkovou kouli. Pak bude úloha výře-
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šena, neboť alespoň jedna z nalezených koulí musí ve svém
vnitřku obsahovat 13 nebo více ze zvolených bodů. Jinak
by totiž uvnitř každé ze zmíněných šesti koulí leželo nej-
výše 12 daných bodů, takže ve sjednocení jejich vnitřků by
leželo nejvýše 6.12 — 72 zvolených bodů a toto sjednocení
by pak nemohlo obsahovat celou jednotkovou kouli.

Dokážeme nyní existenci uvedených šesti koulí. Do dané
koule К o poloměru 1 vepišme nejprve krychli Q = ABCD
EFGH. Roviny stěn krychle O protnou povrch koule К
v šesti kružnicích, každá z těchto kružnic je hlavní kružnicí
jisté koule К;, г e {1, 2, ..., 6}, jejímž středem je střed
příslušné stěny krychle. Určíme poloměr těchto koulí.
Má-li krychle Q hranu velikosti a, pak její tělesová úhlo-

příčka měří aj/3 = 2, odkud a =
2

Každá z koulí K-t má
1/3

/ 2аV2
tedy poloměr —L_ =

cení všech šesti koulí Ki obsahuje kouli K. Čtyři tělesové úhlo-
příčky krychle Q, které se protínají ve středu S koule K,
rozkládají krychli Q na šest čtyřbokých jehlanů, jejichž
podstavy tvoří stěny krychle Q a jejichž společným vrcholem
je střed S. Protože střed S krychle Q zřejmě leží v průniku
všech šesti koulí Ki, každý z těchto jehlanů leží v jedné
z uvedených koulí, takže krychle Q leží celá ve sjednocení
koulí Кi, i 6 { 1, ..., 6). Roviny proložené stěnami krychle Q
oddělují z koule К ještě šest kulových úsečí. Také každá
z těchto úsečí leží v některé kouli Ki, jak snadno zjistíme,

—. Zbývá ukázat, že sjedno-
6

/ <
3

provedeme-li řez koule К např. rovinou ACGE (obr. 18).
Leží tedy celá koule К ve sjednocení koulí Kt a aspoň jedna
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z nich obsahuje nejméně 13 zadaných bodů. Tím spíše je
obsahuje příslušná koule s ní soustředná s větším polo-

5
měrem — .

6

E

A

К
Obr. 18

Obr. 19

A - I - 6

Na obr. 19 je znázorněn »žebřík« skládající se z n navzájem
shodných čtverců, kde n je dané přirozené číslo. Stranou
žebříku budeme rozumět stranu libovolného z uvažovaných
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čtverců. Některé ze stran žebříku obarvíme červeně. Sym-
bolem Pn označme počet všech takových obarvení žebříku,
při nichž má každý ze čtverců alespoň jednu stranu čer-
vénou.

a) Určete nejmenší přirozené číslo n, pro které platí
Pn > 10».

b) Dokažte, že pro všechna přirozená n je Pn liché číslo.
Řešení. Strany žebříku označme symboly a\, а>, ..

bi, bi, ..., c\, c-2 ... podle obr. 20. Určíme nejprve Pí a Pg.
• У

Ví <?2 g3

*1 c2 ^3

Ь\ b 2 b 3

Obr. 20

P\ je zřejmě počet všech neprázdných podmnožin čtyřprvkové
množiny, je tedy P\ = 24 — 1 = 15. Pro n = 2 rozdělme
všechna obarvení na dvě části. Těch, u nichž je c± obarvena,
je 2(i = 64. Těch, u nichž c-i není obarvena, je (23 — l)2 = 49.
Celkem je tedy = 64 + 49 = 113.

Pro n > 2 odvodíme rekurentní vzorec. Všechna možná
obarvení opět rozdělíme na dvě části. Takových obarvení,
že je obarvena alespoň jedna ze stran an, bn, cn+1, existuje
(23 — \) Pn-i — lPn-i• Pokud strany an, bn, cn+1 nejsou
obarveny, musí být obarvena strana cn a ke každému ze čtyř
obarvení stran an-1, bn-1 existuje Pn-2 obarvení zbylých
stran žebříku. Celkem je tedy pro n > 2

Pn = IPn-i + 4Pw-2,
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což je hledaný rekurentní vzorec. Z tohoto vzorce plyne
okamžitě matematickou indukcí, že Pn jsou lichá, neboť
P\ a P-z jsou lichá čísla. Tím je vyřešena úloha b). Z reku-
rentního vzorce dále plyne, že P3 = 7P2 + 4P\ = 791 -f
+ 60 = 851. Postupně pak dostáváme Pí > 7Рц > 72Po >
> 73Pi > 74Рз > 402.800 > 106. Na druhé straně, při-
čteme-li к oběma stranám rekurentního vzorce Pn~i, dosta-
neme

Pn + Pn 1 < 8(Pn -J "ř Pn—2)?

takže

Pe + P5 < 8(P5 + P,) < 82(P4 + Рз) < 83(Рз + P2) =
= 512.964 < 10°.

Protože Pí > 10s а Ре < 106, je hledané číslo n — 7. Tím
je vyřešena úloha a).

úlohy Školní CAsti i. kola

A-S-1

Je dáno přirozené číslo n. Určete 2n + 1 za sebou jdoucích
přirozených čísel, pro která platí: součet druhých mocnin
prvních n + 1 čísel se rovná součtu druhých mocnin posled-
nich n čísel.

Řešení. Označíme-li x první z hledaných 2n -f 1 čísel,
má platit rovnost
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я2 4- (х 4- I)2 4- ... 4- (я 4- и)2 = (л: 4- я 4- I)2 4-
4- ... + (х + я 4- rif

neboli

(я 4- 1)х2 4- 2х (1 4- 2 4- ... 4- я) 4-

4- I2 4- 22 4- ... 4- я2 =

= я(х 4- я)2 4- 2(х 4- я) (1 4-2 4 ... 4- я) 4-

4- I2 4- 22 4- ... 4- и2.

п(п 4- 1)
Protože 1 4-2 4- ... 4- п — , dostáváme odtud pro

х kvadratickou rovnici

x2 — 2я2х — 2rí- — я2 = 0,

která má dva kořeny

xi, 2 = я2 ± ]/n4 4* 2я3 4- я2 = я2 ± nin 4- 1),

z nichž pouze jeden je kladný. Je tedy x = 2я2 4- n a řeše-
ním úlohy jsou čísla 2n2 4- я, 2я2 4- я 4- 1, ..., 2и2 +3я.

А - S - 2

Je-li cos a racionální číslo, pak je také cos 7a racionální
číslo. Dokažte.
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Řešení. Podle součtových vzorců je

cos 7x = cos 4a cos 3a — sin 4a sin 3a =

= (1 — 2sin22a) (cos 2a cos a — sin 2a sin a) —

— 2sin 2a cos 2a(sin 2a cos a + sin a cos 2a) =

— (1 — 8sin2a cos2a) [(cos2a — sin2a) cos a —

— 2sin2a cos a] — 4sin a cos a (cos2a — sin2a) •

• [2sin a cos2a + sin a (cos2a — sin2a)j =

— (1 — 8sin2a cos2a) [(cos2a — sin2a) cos a —

— 2sin2a cos a] — 4sin2a cos a (cos2a — sin2a) •

• (3cos2a — sin2a).

Protože cos a je číslo racionální, jsou racionální i čísla cos2a
a sin2a = 1 — cos2a a podle předcházejícího výpočtu je
racionální i číslo cos 7a.

Jiné řešení. Podle Moivreovy věty je

cos 7a + i sin 7a — (cos a -f i sin a)7,

takže stačí určit z Pascalova trojúhelníku binomické koefi-
cienty fy pro lichá k, abychom dostali podle binomické věty
vztah

cos 7x — Re (cos a -f i sin a)7

= cos7a — 21cos5a sin2a -f

+ 35 cos3a sin4a — 7cosx sin^'a.
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Protože sin2x = 1 — cos2x a cos x je racionální, plyne odtud
racionalita čísla cos 7x.

A - S - 3a

Určete všechna přirozená čísla n > 3 s touto vlastností:
Existuje konvexní и-úhelník, který je sjednocením koneč-
ného počtu vzájemně se nepřekrývajících rovnoramenných
pravoúhlých trojúhelníků.

Řešení. Má-li и-úhelník požadovanou vlastnost, je každý
z jeho vnitřních úhlů sjednocením konečně mnoha nepřekrý-
vajících se úhlú velikosti 45° nebo 90°. Je tedy velikost
každého vnitřního úhlu takového mnohoúhelníku nejvýše
135°. Protože součet vnitřních úhlú и-úhelníku je (и — 2).
. 180°, dostáváme pro и nerovnici

(и - 2). 180 ^ 135 и,

které vyhovuje и ^ 8. Pro každé ne {4, 5, 6, 7, 8} existuje
и-úhelník s požadovanou vlastností (obr. 21).

!>
n~7 n- 8

Obr. 21
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A - S - 3b

Rozhodněte, zda platí tvrzení: Je-li ve čtverci C o straně
velikosti 1 dáno 999 různých bodů, pak existuje čtverec,
který obsahuje 112 z daných bodů, přičemž jeho strany jsou
rovnoběžné se stranou čtverce C a mají velikost 0,4.

Řešení. Tvrzení neplatí - uvedeme protipříklad. V ro-
zích čtverce C, v jeho středu a při středech jeho stran zvolíme
malé čtverce o straně 0,04, celkem tedy 9 čtverců (obr. 22).

□ □

Obr. 22

V každém z nich zvolme 111 různých bodů. Mezi dvěma
sousedními čtverečky je vždy vzdálenost 0,44. Proto každý
čtverec o straně 0,4, jehož strany jsou rovnoběžné se stra-
námi čtverce C, může mít společné body nejvýše s jedním
z devíti zvolených čtverečků, a proto může obsahovat nej-
výše 111 ze zvolených 999 bodů.
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ÚLOHY II. KOLA

A- 11 - 1

N) . Dokažte, že tg a je racionální číslo, prá-

vě když pro každé přirozené číslo n > 1 platí: je-li tg nade-
finovaný, pak je tg na racionální číslo.

Řešení. Nejprve dokážeme tuto implikaci: je-li tg a

racionální, pak pro každé přirozené n platí, že bud není tg na

definovaný, nebo je tg na racionální. Tvrzení zřejmě platí
pro n = 1. Předpokládejme, že platí pro и =š rn, a dokážeme
je pro n = nf 4- 1. Pokud není tg ma definovaný, tak je

] 7Г i
= (2k + 1) “ pro nějaké celé číslo k, takže

i 2

Nechť a e

ma

= tg(«+(2* + l) j)
1

tg (m ■+} 1) a
tg a

i
je číslo racionální. Je-li naopak tg ma racionální, je bud

což znamená, že je cos (m+l)a = 0 a

tg (m + l)a není definovaný, nebo

1
tg ma = •—,

tg a

tg ma -f tg a
tg (m -f l)a = 1 — tg ma tg a

je číslo racionální. Tím je důkaz matematickou indukcí
hotov.
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Předpokládejme nyní obráceně,,že pro každé přirozené
n > 1 je tg nrx racionální nebo není definovaný. Tento před-
poklad stačí použít pro n — 2 a n — 3. Není-li tg 2a defi-

TU

novaný, je a = — + krz a tg a = 1 je racionální. Hodnota4
~

tg 3a není definovaná pro a = — + for, pro takové hodnoty6

však není tg 2a = j/3 racionální. Je-li konečně tg 2a i tg 3a
racionální, pak je

cos a

1 + tg 2a tg 3a —
cos 2a cos 3a

1
Ф0

cos 2a (cos 2a — 2sin2a)

а

tg 3a — tg 2a
tg a = 1 + tg 2a tg 3a

je racionální číslo.

A - II -2

Určete nej menší přirozené číslo n, pro které existuje
mnohostěn s n hranami, jehož všechny vrcholy s výjimkou
nejvýše dvou mají stupeň alespoň 4. (Stupněm vrcholu
mnohostěnu nazýváme počet hran, které z tohoto vrcholu
vycházejí.)
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Řešení. Označme v (v ^ 4) počet vrcholů mnohostě-
nu, který má n hran a splňuje podmínky úlohy. Z kaž-
dého vrcholu vycházejí aspoň tři hrany, podle předpokladu
však vycházejí ze všech vrcholů kromě nejvýše dvou aspoň
čtyři hrany. Celkem má tedy takový mnohostěn aspoň
4 (v - 2) + 3.2

hran (každá hrana přísluší dvěma vrcho-

lům). Je tedy 2 (v — 2) + 3 — 2v — 1. Nemůže být
v — 4, protože ve čtyřstěnu je stupeň každého vrcholu 3.
Pro v — 5 máme й ^ 9a mnohostěn s pěti vrcholy a devíti
hranami opravdu existuje (obr. 23).

2

V

Obr. 23

A - И - 3a

Pyramida z jednotkových krychlí má 2V > 1 vrstev (na
obr. 24 je taková pyramida pro N = 4). Najděte nejkratší
spojnici protějších vrcholů А, В podstavy vedenou po
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povrchu pyramidy (vylučuje se spojnice procházející vnitřkem
podstavy).

a

r
A

Obr. 24

Řešeni. Vzhledem к souměrnosti pyramidy můžeme
předpokládat, že spojnice bodů А, В prochází některým
bodem C na spojnici bodů L a K, která leží v rovině sou-
měrnosti bodů А а В (obr. 25 pro N = 3). ikbychom našli
bod C, pro který je spojnice AC nejkratší, rozvineme pří-

L

3

I

кA

Obr. 25
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slušnou část povrchu pyramidy do roviny (obr. 26). Je
zřejmé, že je vždy \ADk\ < \AEic\, takže z bodů úsečky
DkEk (1 ^ k 5^ N) má nejmenší vzdálenost od bodu A
bod D/c. Z bodů úsečky EkDk+i má nejmenší vzdálenost
od bodu A vždy některý z jejích krajních bodů s výjimkou

L\ Ез\
\

/D3

^2
/

\
\

\
v

\
£-1

K=D i

VA

Obr. 26

případu, kdy je \AEk\ — \ADk+i\ (v každém jiném případě je
trojúhelník AEkDk+i tupoúhlý nebo pravoúhlý). V tomto
případě má z bodů úsečky EfCDk+1 od bodu A nejmenší
vzdálenost její střed F, pak je ale \AF\ > \AD/C\. Zjistili
jsme tedy, že hledaným bodem C je některý z bodů Dk
(1 ^k^N).
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Zvolme soustavu souřadnic s počátkem v bodě A tak,
aby bylo Di = (2N — 1, 0). Pak leží body Dk = (2N — k,
2k — 2) na přímce, která má rovnici у 4- 2x = 4N — 2,
a kolmice vedená к ní bodem A ji protíná v bodě

/8N - 4 4N — 2

Hledaným bodem C je ten z bodů D/c, který je nejblíže
bodu P, k je tedy takové celé číslo, pro které je rozdíl

8ЛГ — 4 2N + 4
2N -k- - -k

5 5

nejmenší. Jak snadno zjistíme, nejbližší celé číslo к číslu
2N 4- 4

)'e5

ijj+
2 J L 10

2N + 4 4N 4- 13
k =

5

/ 1
^ Pro čísla tvaru m 4- “ , kde m je celé, existují ovšem taková

1 1
celá čísla dvě: m a m 4- 1 = m +

Jinak můžeme také k určit v závislosti na zbytku čísla N
V» lvi r v.*

pn delem pěti:

4- —
2 ‘

_
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N k

2N + 5
5n 2n -f 1 =

5

2N 4- 3
5n 4- 1 2n 4- 1 =

5

2N -f 6
5n 4- 2 2n -f- 2 —

5

2N 4- 4
5и 4- 3 2n 4- 2 =

5

2iV + 2
5« 4- 4 2л 4- 2 —

5

Poznámka. Nalezený výsledek zřejmě platí i pro Д/ = 1.

A - li -3b

Na obr. 27 je útvar složený z 1984 shodných trojúhelníků.
Některé z jejich vrcholů obarvíme tak, aby každý z 1984
uvažovaných trojúhelníků měl aspoň jeden vrchol obarven.

Obr. 27
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Rozhodněte, je-li počet takovýchto obarveni sudý nebo
lichý.

Řešení. Označme Bn počet všech přípustných obarvení
pro útvar složený z n trojúhelníků. Je-li n > 3, můžeme
takto obarvené útvary rozdělit do tří disjunktních skupin
podle toho, jak jsou obarveny vrcholy w-tého trojúhelníku
POR (označení volíme tak, aby bod P patřil posledním
třem, O posledním dvěma a R jen poslednímu trojúhel-
niku).

Do první skupiny dáme útvary, jejichž vrchol R je obar-
ven - takových obarvení je Bn-±. Do druhé skupiny dáme
útvary, jejichž vrchol R není obarven a vrchol Q je obarven -

takových obarvení je Bn-2. Do třetí skupiny dáme útvary,
jejichž vrcholy R a O nejsou obarveny, takže musí být
obarven vrchol P - takových obarvení je Вп-ъ. Platí tedy
rekurentní vzorec

Bn — Bn—1 + Bn—2 4~ Bn~3.

Přímo zjistíme, že B± — 1, B> — 13, B3 — 24. Vzhledem
к rekurentnímu vzorci následují za sebou v posloupnosti
{Bn} vždy dvě lichá čísla a dvě sudá čísla, pak opět dvě
lichá a dvě sudá čísla, atd. Proto je číslo i?io84 sudé.

jiné řešení. Pro n jSe 1 označme Bn počet všech pří-
pustných obarvení útvaru složeného z n trojúhelníků a vrchol,
který náleží pouze poslednímu м-tému trojúhelníku, označ-
me Pn. Ke každému z Bn-± obarvení n — 1 trojúhelníků
máme pro obarvení vrcholu Pv dvě možnosti (obarvit či
neobarvit). Pouze v případě, kdy ani Pn-2, ani Pn~1 obar-
vény nejsou, musí být obarven jak vrchol Pn, tak i vrchol
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P„-3. To nastane právě v Bn~4 případech. Platí tedy pro
n > 4 rekurentní vztah

.Sft — Bn—4.

Protože na základě stejné úvahy je £4 — 2£з — 4, což je
číslo sudé, plyne z uvedeného rekurentního vztahu, že
číslo Z?i9 84 je také sudé.

ÚLOHY III. KOLA

A - Ш - f

V prostoru je dána krychle AiA2AzA4AóA^A^A8. Označme
£ její střed (průsečík tělesových úhlopříček). Najděte všech-
na přirozená čísla k, pro která existuje rovina neobsahující
bod S a protínající právě k z polopřímek SAi, SA>, ..., SA3.

Řešení. Označme M množinu všech rovin, které neob-
sáhují bod S. Především je k^2, neboť čtyři přímky A1A7,
A2A s, A3A5, A^Aq se protínají v bodě S a žádné tři z nich
neleží v jedné rovině. Je tedy každá rovina z M rovnoběžná
nejvýše se dvěma z nich, tj. protíná aspoň dvě z těchto
přímek neboli protíná alespoň dvě z polopřímek SA\,
SA‘2, ..., SA8.

Dále je k ^ 4, protože rovina neprocházející bodem Y
může protínat vždy jen jednu z polopřímek к sobě opáč-
ných.

Rovina oi obsahující body A2, A3 a rovnoběžná s rovi-
nou A1A4A7 protíná právě dvě polopřímky SA2 a SA3.
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Rovina <72 obsahující body Аз, А в a rovnoběžná s přímkou
A2As protíná právě tři polopřímky SA3, SAe, SA^. Konečně
rovina libovolné stěny krychle protíná právě čtyři z polo-
přímek SAi, SAo, ..., SAg. Úloze tedy vyhovují čísla
2, 3, 4.

A- ill -2

Nechť pro vnitřní úhly konvexního čtyřúhelníku platí

cos a + cos /9 + cos у -f cos Ó = 0,

pak je to tětivový čtyřúhelník, lichoběžník nebo rovnoběž-
nik. Dokažte.

Řešení. Je a + /3 + у + d = 2tz, takže použitím známých
vzorců postupně dostaneme

cos a + cos f) + cos у + cos Ó =

у - Ó\cos-r) =
a + (3 x — f) У + d

—— + cos
2 2

= 2 cos cos
2

a + (3 a — j'3 у — ó
— 2cos cos — cos

2 2 2

a 4- /5
= — 4cos—--—sin

2

neboť je

a + 7 — /5 — <5 y. + ú — /J — 7
sin

4 4

x + (3У + <5 * + (3
= —cos= coscos —

22 2
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Dále je

a 4- у — fi — ó OC -f у — 71 a + у
sin = sin = —cos —

4 2 2

а

a + (5 — fí — у a + ё
sin = —cos

24

takže dostáváme

cos a 4- cos /5 + cos у + cos <5 =

a + (} a. óa + у
= 0.= cos — cos cos

2 2 2

Z poslední rovnosti plyne, že je součet dvou sousedních nebo
dvou protějších úhlů roven 180°, tedy daný čtyřúhelník je
lichoběžník nebo rovnoběžník anebo čtyřúhelník tětivový.

А - Ш -3

Nechť posloupnost {aM}”=0 splňuje rekurentní vztah

(I)&n+2 — 4an+i Заn •

Definujme posloupnost { hn }“= x vztahem

]•an+i
bn —

_ an-1
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přičemž klademe bn — 1 pro an-i = 0. Dokažte, že od jistého
clenu počínaje splňuje posloupnost {bn} rovněž rekurentní
vztah (1). ([x] značí celou část čísla x.)

Řešení. Posloupnost {aM} splňující V2tah (1) je monotónní,
jak dokážeme indukcí. Nechť ao 5^ a\ a předpokládejme, že je
ao ^ an-1 ^ an. Pak je

U/irl — 4аи Зйй-l ^ Ují .

Přitom je tato posloupnost bud konstantní, nebo ostře mono-
tónní. Je-li konstantní, je posloupnost {bn} rovněž konstantní
a vyhovuje rekurentnímu vztahu (1).

Předpokládejme tedy, že posloupnost {an} je nekonstantní,
pak je od jistého členu počínaje (pro všechna n ^ no pro
vhodné no) bud stále kladná, nebo stále záporná. Položíme-li

dn
, je cn > 0 pro n ^ no a ze vztahu (1) plyne rovnostCn —

Clu—1

3

takže je bud
(a) 0 < cn < 1 pro všechna n ^ no + 1,
nebo

(b) 1 < cn^ 3 pro všechna n ^ no + 1,
nebo

(c) 3 < cn < 4 pro všechna n ^ m + 1 •

3
Přitom je v případě (a) a (c) cra+i = 4 — — > cn, v případě
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(b) je cn+if^cn. Posloupnost {си} stejně jako posloupnost
{cn Cn+1} je tedy od určitého členu počínaje monotónní a omc-
zená. Proto je posloupnost

í a7l-1-1 1
l an-1Jbn \Cn C-n+1]

od určitého členu počínaje již konstantní. Konstantní pošloup-
nosti však splňují rekurentní vztah (1).

Jiné řešení. Rekurentnímu vztahu (1) přísluší charakte-
ristická rovnice

Я2 — 4/ + 3 = 0,

která má kořeny = 3, Я2 = 1. Členy posloupnosti {an}
mají tedy tvar

an — А.Ъп В,

kde А, В jsou reálné konstanty. Posloupnost [an} je zřejmě
monotónní, takže pokud není konstantní, je od jistého členu
počínaje nenulová. Pak je ale

H-[ 3«+1 A + В 9.3”-1 A + 9B - 9B + В
bn

3"-1 A + В yn-i a + В

-SB[= 9 +
уг-1 А + By
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-SB
přičemž posloupnost konverguje monotónně к nu-3”-1 A + В
le. V každém případě je tedy posloupnost { bn } od jistého členu
počínaje již konstantní, a každá konstantní posloupnost spinu-
je rekurentní vztah (1).

A - lil - 4

Nechť r je přirozené číslo větší než 1. Potom existují kladná
iracionální čísla x, у taková, že platí

x 'i — r .

Dokažte.

Řešení. Zvolme libovolné prvočíslo p, které nedělí číslo r,

a položme x — }■'p. Snadno se dokáže, že x je (kladné) ira-
cionální číslo. Logaritmus čísla r při základu ]//> označme^, tj.

(1!p)y = r.

Kdyby nyní у bylo racionální, tj. у — — pro přirozená číslab

a, b, dostali bychom

pa —

což je spor, neboť p nedělilo r.

Jiné řešení. Předpokládejme, že tvrzení neplatí, tj. že pro
každé iracionální x je číslo у = logxr racionální. Vezměme
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x = ]f2 at х = уз. Existují tedy racionální čísla y, z (jejich
společný jmenovatel označme q) taková, že

ФУ = ФУ = r

neboli

2ш — Ъг<1.

To je zřejmě spor, protože yq a zq jsou celá čísla.

Jiné řešení. Množina \ry :у e (0, ]) je iracionální/ jene-
spočetná, existuje v ní tedy takové iracionální číslo x3 že je

i

X — ry i

А - Ш - 5

Najděte všechna přirozená čísla n, pro která existuje kon-
vexní mnohostěn s n hranami, přičemž z právě jednoho jeho
vrcholu vycházejí čtyři hrany a ze všech ostatních vrcholů tři
hrany.

Řešení. Nechť n je přirozené číslo vyhovující podmínce
úlohy, označme k počet vrcholů příslušného konvexního
mnohostěnu. Sečteme-li hrany v každém vrcholu, dostaneme
dvojnásobný počet hran, tj.

2n = 4 + \k - 1) = 3k + 1.

Protože 1 — 2.8 — 3.5, můžeme předchozí neurčitou rov-
nici upravit na tvar
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2(n - 8) = \k - 5),

přičemž je k ^ 5, neboť čtyřstěn 2řejmě nevyhovuje podmiň-
ce úlohy. Protože čísla 2 a 3 jsou nesoudělná, mají všechna
řešení předchozí rovnice tvar

ti — 8 + 3z, k — 5 + 2z, z 6 {0, 1, 2, ...

Ukážeme, že pro každé takové n existuje konvexní mnoho-
stěn, který vyhovuje podmínce úlohy. Pro n = 8 (z = 0) vy-
hovuje např. čtyřboký jehlan. Předpokládejme, že jsme již
sestrojili pro z ^ 0 mnohostěn s n = 8 + 3z hranami, který
splňuje podmínku úlohy. Vezměme jeho libovolný vrchol,
z kterého vycházejí právě tři hrany, a na každé z nich zvolme
jeden vnitřní bod. Uvedené tři body určují rovinu, která roz-
dělí původní mnohostěn na trojboký jehlan a konvexní mno-
hoštěn s 8 + 3(z + 1) hranami, který zřejmě splňuje pod-
minku úlohy. Z principu matematické indukce plyne existence
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Obr. 29

konvexního mnohostěnu s danou vlastností pro každé n tvaru
n = 8 + 3r, kde t ^ 0 je celé číslo.

Jiný příklad mnohostěnu s n = 8 -f 3t hranami, který
splňuje podmínku úlohy, je na obr. 28, kde mezi hranami
ВС a AD je t ^ 0 hran, a na obr. 29, kde t + 3 hran spojuje
vrcholy (r -f 2)-úhelníku s vrcholy (t 4- 3)-úhelníku.

A - III - 6

Zobrazení / množiny Z všech celých čísel do sebe splňuje
pro všechna me Z podmínku

f(f(rn)) = — m. (1)

Potom platí
a) / je bijektivní (tj. prosté zobrazení množiny Z na sebe),
b) pro všechna m e Z je/( — ni) = —/(m),
c) /(m) = 0, právě když m — 0.

Dokažte tato tvrzení a sestrojte příklad zobrazení /, které vy-

hovuje podmínce (1).
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Řešení, Ze vztahu f(m) — f(k) plyne

™ = -f(f(k)) = k,

f je tedy prosté, a protože pro každé keZ jef(f(—k)) = k,
zobrazuje/ množinu Z na sebe.

Ze vztahu— —m plyne

f(-m) =/(/(/(w))) = -/(m).

Pro m = 0 odtud speciálně dostáváme/(0) = 0, a protože /
je prosté, platí c).

Definujme zobrazení/ nyní takto:

/(0) - 0,

/(2k) = —2k + 1,f(2k -l) = 2k,

/(-(2k - 1)) = -2é, /(-2k) = 2k-l

pro libovolné k přirozené. Zobrazení / funguje podle násle-
dujícího schématu a splňuje zřejmě podmínku (1):

2k
\

*e{l,2,3, ...}~(2k - 1),2k - 1
t
J- -2/г L
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Korespondenční seminář О V HO

Korespondenční seminář ÚV MO je jednou z forem péče
o talentované žáky, zvláště pak o ty, kteří nemají možnost
navštěvovat speciální školy se zaměřením na matematiku
a pracovat v tamních seminářích. Zásadně však nejsou přijí-
máni studenti pražských škol, ti mají obvykle možnost sezná-
mit se s vybranými okruhy úloh na seminářích řešitelů MO.

К účasti v korespondenčním semináři pozvalo předsednictvo
ÚV MO na základě návrhů KV MO a individuálního zájmu
téměř 50 žáků, z nichž se přihlásilo 33 řešitelů ze všech krajů
republiky:

Kraj Stč Jč Zč Sč ve Jm Sm Eva Zsl Ssl Vsi

Počet řešitelů 35244252141

V průběhu 33. ročníku MO jim bylo zasláno pět sérií poměrně
náročných úloh. Došlá řešení pak byla opravena, ohodnocena
a s rozmnoženým komentářem, vrácena účastníkům semináře.
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Korespondenční seminář je řízen tajemníkem ÚV MO Karlem
Horákem, který se stará o výběr a přípravu úloh a obvykle
provádí i redakci komentářů. Opravu pak zajišťuje několik
pracovníků MÚ ČSAV a několik studentů a aspirantů MFF
UK v Praze (všichni to jsou bývalí olympionici).

Celý korespondenční seminář absolvovalo 25 řešitelů, nej-
lepšími v celkovém hodnocení byli Martin Klazar (G Louny),
Ján Šefčik (G A. Markuša, Bratislava), Jarmila Ranošová
(G M. Koperníka, Bílovec), Juruj Balázs (G Košice, Kuz-
mányho ul.) a Aleš Limpouck (G J. K. Tyla, Hradec Králové).
Uvádíme znění všech zadaných úloh.

Užiti invariantů

1.1 Na tabuli je napsáno několik nul, jedniček a dvojek.
Můžeme smazat dvě od sebe různá čísla a místo nich napsat
jedno, které se liší od právě smazaných. Dokažte, že jestliže
nakonec zůstane na tabuli jediné číslo, pak stejné číslo
dostaneme při každém jiném pořadí uvedené operace.

1.2 V tabulce 8x8 jsou zapsána celá čísla. Je dovoleno
vybrat libovolný čtverec 3x3 nebo 4x4 a zvětšit v něm
všechna čísla o 1. Je vždy možné pomocí takovéto operace
dostat tabulku, v níž jsou všechna čísla dělitelná třemi ?

1.3 Kruh je rozdělen na 10 výsečí, v každé z nich je jeden
kámen. Jedním tahem je možno přemístit libovolné dva
kameny do sousedních výsečí tak, aby se přitom pohybovaly
v opačných směrech. Je možno takovými tahy dosáhnout
toho, aby všechny kameny ležely ve stejné výseči?

1.4 Vrchol Aí% pravidelného dvanáctiúhelníku je označen
znaménkem —, ostatní vrcholy -f. Je dovoleno změnit
znaménka na opačná ve třech vrcholech tvořících rovnora-
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menný nepravoúhlý trojúhelník. Je možno pomocí tako-
výchto změn dosáhnout toho, aby ve vrcholu Ax bylo —

a v ostatních vrcholech + ?
1.5 Změní se výsledek předchozí úlohy, jestliže můžeme

měnit znaménka i ve vrcholech rovnoramermých právo-

úhlých trojúhelníků ?
1.6 Čísla 1, 2, ..1975 jsou zapsána ve svém přirozeném

pořadí. Je dovoleno vybrat libovolná čtyři čísla a umístit je
na stejná místa, kde byla předtím, ale v opačném pořadí.
Je možné pomocí takovýchto operací dosáhnout pořadí čísel
1975, 1974, ..., 2, 1?

1.7 Na kružnici je rozmístěno 10 bílých a 20 černých
kamenů. Můžeme vyměnit libovolné dva kameny, mezi
kterými stojí ještě tři jiné kameny. Dvě konfigurace kamenů
jsou ekvivalentní, jestliže můžeme od jedné ke druhé přejít
prováděním uvedené operace. Kolik existuje neekvivalent-
nich konfigurací kamenů ?

Planimetrie

2.1 Z měst А а В vyjíždějí v různou dobu různými rych-
lostmi proti sobě dva jezdci, aby si vyměnili zprávy. Setkají
se v místě C a okamžitě se vracejí zpět. Po návratu do svých
měst opět vyjíždějí proti sobě s novými zprávami, setkají se
v místě D a opět se vracejí atd. Kde se setkají při 1983.
cestě, pohybují-li se oba neustále konstantní rychlostí?

2.2 Trojúhelník AiBiCi dostaneme z trojúhelníku ABC
otočením o nějaký úhel co < 180° okolo středu kružnice opsa-
né trojúhelníku ABC. Průsečíky odpovídajících si stran AB,
A\B\; BC, B\C\ a CA, C\A\ jsou vrcholy trojúhelníku podob-
ného trojúhelníku ABC. Dokažte.
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2.3 Úhlopříčky rozdělují daný čtyřúhelník ABCD na čtyři
trojúhelníky, jimž vepsané kružnice mají shodné poloměry.
Dokažte, že ABCD je kosočtverec nebo čtverec.

2.4 O čtyřúhelníku ABCD víme, že poloměry kružnic ve-

psaných trojúhelníkům ABC, BCD, CDA, DAB jsou shodné.
Dokažte, že pak je ABCD obdélník.

2.5 Nechť a, b, c, d jsou strany čtyřúhelníku ABCD, e, f
nechť jsou velikosti jeho úhlopříček. Označíme-li а, у dva
z protilehlých úhlů čtyřúhelníku, potom platí

e2f2 = a2c2 + b2d2 — 2abcd cos (a -f y).

Dokažte.

2.6 Dokažte, že je-li ABC rovnostranný trojúhelník a P
libovolný bod v rovině ABC takový, že neleží na kružnici
opsané trojúhelníku ABC, pak existuje trojúhelník se strana-
mi délky \PA\, \PB\, \PC\.

2.7 Mějme trojúhelník ABC a sestrojme nad jeho stranami
rovnostranné trojúhelníky APB, BQC, CRA tak, že troj-
úhelníky APB (\AP\ = \ AB\) a BQC (\BQ\ = |ЯС|) nemají
s trojúhelníkem ABC společný žádný vnitřní bod a trojúhel-
nik CRA (|GR| = \CA\) leží v polorovině CAB. Dokažte, že
BPRQ je rovnoběžník.

Posloupnosti
3.1 Dokažte, že pro každou posloupnost {an}, jejíž členy

jsou navzájem různá přirozená čísla, která nemají ve svém
dekadickém zápisu nulu, platí pro každé k

1 1
+ + • • • +

a± a2

1 1
+ ~ < 29.

au-i au
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3.2 Je dána posloupnost reálných čísel { an}. Dokažte, že ke
každému přirozenému číslu m existuje přirozené číslo k tak,
že

к m

| 2 a% — 2 ai\ — шах |ai|.
1 áíámi=k+1* = 1

3.3 Je dána posloupnost reálných čísel {an}, která má tuto
vlastnost: existuje přirozené číslo rn takové, že

^1+^2+ • • • + Om — 0

a pro každé přirozené číslo k je am+k = a/c. Dokažte, že existu™
je přirozené číslo p tak, že pro každé celé nezáporné číslo k
platí

Op + Op+i 4* • • • + ttp+jc ^ 0-

3.4 Uvažujme čtyři posloupnosti reálných čísel {an},
{си}5 {dn} takové, že pro každé přirozené číslo n je

Q-íi+i — on -{- bn, bn+1 — bn + c-n, cn+i — cn + dn,

d-n+i — dn + o-n.

Dokažte, že pokud existují přirozená čísla k, m tak, že

Ofc+m — Om,> bic+m — Ьщ, C^+m — djc+m — dm,

pak je

<22 = bi = C% — dz = 0.
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3.5Nechť pro posloupnost reálných čísel {an} platí

Un ~r &n+2 ^ 2dn fi

pro každé přirozené n. Dokažte, že pak pro každé n přirozené
je

a-2 a.\ azna\ 4- as -f ... -f а-щ+1

n + 1 n

3.6 Jsou dána přirozená čísla a\, a2. Pro přirozená čísla
n > 2 položíme an = |aw-2 — an~i|. Tak jsme definovali
posloupnost nezáporných celých čísel an• Je-li největší člen
této posloupnosti 1984, jaký je největší možný index prvního
nulového členu ?

3.7 Je dána posloupnost číslic {an} neobsahující číslici 9.
Tato posloupnost určuje posloupnost {bn}> jejíž členy mají
dekadické zápisy b\ = (ai), 62 = (<21^2) atd. Dokažte, že
posloupnost {bn} obsahuje nekonečně mnoho složených čísel.

Kombinatorické úlohy z teorie čísel
4.1 Jsou dána přirozená čísla a, b. Existují přirozená čísla

c, d taková, že a2 + b2 + c2 = d2 ?
4.2 Turnaje se zúčastnilo (m — 1 )n -f- 1 sportovců. Do-

kažte, že bud je mezi nimi m účastníků, kteří se navzájem ne-

znají, nebo je mezi nimi sportovec, který se zná s alespoň n
ostatními sportovci.

4.3 V tabulce n X ni jsou zapsána navzájem různá reálná
čísla. V každém řádku (resp. sloupci) je podtrženo k (resp. r)
největších čísel. Dokažte, že alespoň kr čísel je podtrženo
dvakrát.
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4.4Je dáno prvočíslo p. Pro každé ke{\,2, — 1}
označíme symbolem a* zbytek čísla kP při dělení číslem p2.
Určete

j»-i
í = 2 ak-

л=i4.5Nechť />/г, qn jsou nesoudělná přirozená čísla, pro něž
platí

222 2»Pn

q, 1 + 2
+ . . . +

n

Dokažte, že platí
a) pn je sudé pro všechna n;

b) pro každé k existuje n tak, že 2k dělipn+m pro všechna m.4.6V posloupnosti 19842376... je každá číslice počínaje
pátou rovna poslední číslici součtu předchozích čtyř číslic.

a) Existuje v posloupnosti čtveřice 1985 ?
b) Vyskytuje se v posloupnosti čtveřice 4198?

Rovnice a funkce

5.1 Označme Q2 množinu všech bodů v rovině R2, jejichž
obě souřadnice jsou racionální čísla. Rozhodněte, zda

a) sjednocení všech úseček, jejichž krajní body náleží mno-
žině Q2, pokrývá rovinu R2,

b) konvexní obal Q2 (tj. nejmenší konvexní podmnožina R2
obsahující množinu Q2) je celá rovina.

5.2 Najděte všechna celá čísla x, pro která je

X4 + X3 + X2 + ^+ l

úplný čtverec.
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5.3Určete všechna reálná čísla a tak, aby pro kořeny jcj,
X2, хз rovnice

я3 — 6x2 + ах -f a = 0

platilo

(*1 — l)3 + (д:2 — 2)3 -f (хз — 3)3 = 0.5.4Mohou mít rovnice

x5 — x — 1 = 0, x2 + ax + b = 0,

kde a, b jsou racionální čísla, společný (komplexní) kořen?5.5Uvažujme rovnici

]j2p 4- 1 — x2 + ]j3x + p + 4 = ]/x2 + 9x + 3p + 9, (1)

kde x, p jsou reálná čísla. Ukažte, že pak je

(x2 -f x — p) (x2 + 8jc + 2p + 9) = 0,

a najděte množinu reálných parametrů p, pro které má rov-
nice (1) právě jeden reálný kořen.5.6Ukažte, že rovnice

11
1 + Jc-f-r*2-f ... + — xn — 0

2 n

nemá pro sudá n žádný reálný kořen.
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5.7 Nechť fag jsou zobrazení množiny A do sebe. Funkci
/ nazveme w-tou funkcionální odmocninou g (n je přirozené
číslo), je-li

/"(*) = 8ÍX)

pro každé x e A. Přitom definujeme

fK*) =K*),f”*Kx) =/(№))•

i
a) Dokažte, že funkce g: Rd = —, má nekoneč-

x

ně mnoho n-tých funkcionálních odmocnin pro každé n ^ 2.
b) Dokažte, že existuje prosté zobrazení R na R, které nemá

n-tou funkcionální odmocninu pro žádné n ^ 2.
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Správa о 25. medzmárodnej matematickej
ofympiáde

I. Organizácia a priebeh súťaže

jubilejná - 25. mcdzinárodná matematická olympiáda sa
konala v hlavnom meste nasej republiky - v Prahe. Táto
skutočnosť znamenala možno menšiu atraktivnost’ pre našich
reprezentantov, lebo účast’ v súťaži nebola spojená so zahra-
ničnou cestou. Na druhej straně však umožnila zoznámiť sa
s neopakovatelnou atmosférou súťaže ovela širšiemu okruhu
našich odborníkov ako je to možné v případe jej konania sa
v zahraničí.

Usporiadatelom 25. MMO bolo Ministerstvo školstva ČSR
(po vzájomnej dohodě oboch národných ministerstiev), ktoré
přípravou a organizačným zabezpečením pověřilo Л/late-
maticko-fyzikálnu fakultu Univerzity Karlovej a Matema-
tický ústav ČSAV. Na usporiadaní MMO sa dalej podielali
JČSA1F, ÚV SZM, ÚV MO, odbor školstva NVP a KV MO
v Prahe.

Možno to neprichodí hodnotit’ nam a hodnotit’ to už teraz,
ale pražská olympiáda sa vyznačovala priatelskou atmosférou
znásobenou srdečnosťou a obetavosťou usporiadatefov a zna-
menala úspěch tak z hfadiska upevnenia priatefstva a spolu-
práce mladých matematikov z celého světa, ako aj z hladiska
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upevnenia dobrého měna usporiadajúcej krajiny. Zásluhu na
tom mal predovšetkým organizačný výbor na čele s prof. dr.
Karlom Drbohlavom, DrSc. Nezabudnutefriým zážitkom bol
otvárací ceremoniál i vyhlásenie výsledkov olympiády v aule
Karolína, bohatý kultúrny a spoločenský program (vrátane
prijatia na staroměstské) radnici, výletu na Karlštejn atd.),
ako aj matematické hry organizované pre mládež po skončení
súťaže. Druhý raz v historii olympiád sa uskutečnilo v jej
programe sympózium, na ktorom referovali viacerí delegáti
o výchove matematických talentov v jednotlivých krajinách.
Za ČSSR prehovoril dlhoročný funkcionář MO prof. dr.Jozef
Moravčík, CSc. Priebeh olympiády bol široko komentovaný
našimi hromadnými oznamovacími prostriedkami, vrátane
rozhlasu a televízie. Účastníci sa mali příležitost’ zoznámiť
s hodnotnou výstavkou matematických materiálov z mnohých
krajin.

Olympiády sa zúčastnil rekordný počet 34 krajin z 5 konti-
nentov (po prvýkrát sa zúčastnili Cyprus a Norsko) i rekordný
počet 192 účastníkov. Přítomný bol aj zástupca UNESCO
prof. E. Jacobsen. Otvorenie súťaže sa konalo 3. júla 1984,
závěr 9. júla 1984, samotná súťaž prebiehala v dňoch 4. a 5.
júla, dalšie 3 dni boii věnované opravě úloh a ich koordinácii
(hlavným koordinátorom bol prof. dr. Lev Bukovský, DrSc.,
z PF UPJŠ v Košiciach). Ale ešte predtým medzinárodná
jury (pod vedením jedného z našich najskúsenejších olym-
pijských pracovníkov dr. Františka Zítka, CSc., z MÚ ČSAV
v Prahe) vybrala 6 súťažných úloh. Podklady jej připravila
problémová komisia (vedená členom korešpondentom ČSAV
prof. dr. Miroslavom Fiedlerom, DrSc. z MÚ ČSAV v Prahe),
ktorá vybrala a spracovala 16 najvhodnějších úloh spomedzi
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úloh navrhnutých jednotlivými krajinami. Jury rozhodla hla-
sovaním o konečnom výbere. Bola přitom o niečo náročnejšia
ako problémová komisia. Možno až příliš, čo ostatně može
čitatel posúdiť sám.

Úlohy prvého súťažného dňa

1. Nech x, у, z sú nezáporné reáine čísla, x + У -f z — 1.
Dokážte, že

7
0 5^ xy -f- уz -\r zx — 2xyz ^ 27 *

(Táto úloha bola navrhnutá NSR.)
2. Nájdite takú dvojicu (a, b) celých kladných čísel, aby

platilo:
(1) číslo ab{a + b) nie je dělitelné čísiom 7,
(2) číslo (a + b)7 — a1 — b1 je dělitelné čísiom V.
Výsledok zdůvodníte.

(Táto úloha bola navrhnutá Holandskom.)
3. V rovině sú dané dva rožne body O, A. Pre íubovolný

bod X roviny rózny od bodu O označíme symbolom <x(X)
velkost orientovaného uhla AOX meranú v radiánoch proti
směru hodinových ručičiek (0 ú a(X) < 2тг) a symbolom
C(X) kružnicu so stredom v bode O a polomerom dížky

a(X)
\OX\ + . Daný je konečný počet farieb a každý bod

'\ox\
roviny je zafarbený jednou z nich. Dokážte, že v rovině
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existuje taký bod X, že oc(A') > 0 а na kružnici C(X) existuje
aspoň jeden bod tej istej farby ako X.

(Táto úloha bola navrhnutá Rumunskom.)

Úlohy druhého súťažného dňa

4. V konvexnom štvoruholníku sa priamka CD dotýká
kružnice o priemere AB. Dokážte, že priamka AB sa dotýká
kružnice o priemere CD vtedy a len vtedy, ked sú priamky
BC, AD rovnoběžné.

(Táto úloha bola navrhnutá Rumunskom.)
5. Nech d je súčet dížok všetkých uhlopriečok a p je obvod

rovinného konvexného w-úholníka (n > 3). Dokážte, že

kl(T2d
n — 3 < — < - 2

P

([jc] je celá časť čísla x, tj. najváčšie celé číslo neprevyšujúce x).
(Táto úloha bola navrhnutá Mongolskom.)6.Nech a, b, c, d sú nepárne celé čísla vyhovujúce nasledu-

júcim podmienkam:
(1) 0 < a < b < c < d,
(2) ad = bc,
(3) a -f d = 2k3 b + c = 2m pre nějaké celé čísla k, m.
Dokážte, že a = 1.

(Táto úloha bola navrhnutá Polskom.)
Po oba dni mali súťažiaci na riešenie к dispozídi čas 4,5

hodiny.

2. Výsledky 25. MMO

Po náročnej koordinácii, pri ktorej panovala spokojnosť
s našimi koordinátormi (československé riešenia boli koordi-
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uované autorskými krajinami vzhladom na to, že sme boli
usporiadajúcou krajinou), jury určila výsledky. Stalo sa tak na
zasadnutí siahajúcom hlboko do noci. Okrem určenia výsled-
kov jury prerokovala na záverečnom zasadnutí aj dalšie otázky.
Medziiným sa dohodlo, že v r. 1985 sa uskutoční medzi-
náxodná matematická olympiáda vo Finsku, v r. 1986 v РоГ-
sku a v r. 1988 v Austrálii. Otvoreným ostal rok 1987, na

který předložili návrh Kuba aj Švédsko.
jury rozhodla, že oceněných bude polovica zo 192 účast-

níkov. Pri tradičnom rozdělení prvých, resp. druhých, resp.
třetích cien v poměre 1 : 2 : 3, bolo udělených 14 prvých,
32 druhých a 49 třetích cien. Okrem toho bola udelená jedna
osobitná cena za originálně riešenie úlohy č. 5. Prehlad
výsledkov je uvedený v priloženej tabulke (str. 138).

К celkovým výsledkom třeba poznamenat’, že 3 krajiny
vyslali neúplný počet účastníkov: Alžírsko štyroch, Luxem-
bursko a Norsko po jednom. (Ostatně, už aj z tohto vidieť, že
nie je možné stanovit' oficiálně poradie krajin.) MMO mala
8 absolútnych víťazov, ktorí získali plný počet 42 bodov.
Boli to: A. Astrelin (ZSSR), Dan Than Son (Vietnam),
К. Gróger (NDR), K. Ignatiev (ZSSR), B. D. Mihov (Bulhar-
sko), D. Moezos (USA), L. Oridoroga (ZSSR), D. Tataru
(Rumunsko).

3. Hodnotenie československéj účasti

Předsednictvo ÚV MO určilo členov čs. družstva na svojom
zasadnutí 21. 6. 1984. Vychádzalo najma z výsledkov celo-
štátneho kola a krajského kola ako aj permanentnej súťaže
prebiehajúcej v rámci 3-týždňového sústredenia užšieho
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Počet
bodov

Neoficiálně
poradie

Počet cien
1. 2. 3.Krajina

Alžírsko
Austrália
Belgicko
Brazília
Bulharsko
Cyprus
ČSSR
Finsko
Francúzsko
Grécko
Holandsko
Juhoslávia
Kanada
Kolumbia
Kuba

Kuvajt
Luxembursko
Maďarsko
Maroko
Mongolsko
NDR
NSR
Norsko
Polsko
Rakúsko
Rumunsko
Španielsko
Švédsko
Taliansko
Tunis
USA
Velká Británia
Vietnam
ZSSR

2836
103 1 215
56 23-24 1
92 18 3

203 2 3 12
2647 1

125 2 213
31 29

126 12 2 2
88 19 1
93 17 1 2

14105 4
83 20 1
80 21 2

22 167
9 33

22 32 1
195 4-5 1 4 1
56 23-24 1

146 -32
1 2 3
-24

10
161 8
150 9
24 31 1

140 11 - 1 5
- 1 2
2 2 2

1697
199 3

2743
53 25

0 34
29 30

195 4-5 1 4 1
1 3 1
1 2 3
5 1 -

169 6
162 7
235 1
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10-členného výběru. Toto sústredenie sa konalo 4.—23. 6.
1984 v Bratislavě. Předsednictvo prihliadalo tiež к sústredeniu
širšieho kádra (1. —8. 4. 1984 v Brezovej pod Bradlom)
а к celoštátnemu korešpondenčnému seminářů. Určilo týchto
reprezentantov: Juraja Balázsa (4. ročník gymnázia na Kuz-
mányho ul. v Košiciach), Martina Grajcara (4. ročník gym-
názia M. Koperníka v Bílovci), Pavla Krtouša (3. ročník
gymnázia v Liberci), Adama Obdržálka (2. ročník gymnázia
W. Piecka v Prahe), Jána Šefčíka (3. ročník gymnázia A. Mar-
kuša v Bratislavě) a Jiřího Witzanyho (4. ročník gymnázia
W. Piecka v Prahe). Náhradníkom bol Petr Hájek (2. ročník
gymnázia W. Piecka v Prahe). Vedúcim čs. delegácie bol
prof. dr. Beloslav Riečan, DrSc., z MFF UK v Bratislavě, jeho
zástupcom dr. Leo Boček, CSc., z MFF UK v Prahe.

Dosiahnuté výsledky sú uvedené v nasledujúcej tabufke:

Počet
bodov

za riešenie
úlohy č.

1 2 3 4 5 6

Udelená cena

a celkové
umiestnenie

Žiak Súčet
bodov

Juraj Balázs 7 7 0 7 4 1 26 2. 47.-49.

Martin Grajcar 25 3. 50.-52.6 7 0 7 4 1

Pavel Krtouš 123.-132.0 1 0 6 3 1 11

Adam Obdržálek 139.-143.3 10 4 10 9

Ján Šefčík

Jiří Witzany

20 3. 76.-81.7 7 0 6 0 0

2. 25.-28.347 1 7 6 7 6

125
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Vzhíadom na mimoriadnu náročnost’ príkladov 25. MMO
móžme s uspokojením konstatovat’, že naši reprezentanti po-
dali solidné výkony. Isteže, naše (neoficiálně) 13. miesto ne-

pósobí efektne a v posledných rokoch sme si zvykli na umiest-
nenie o niečo lepšie. Třeba si však uvědomit, že medzitým
rady našich súťažiacich opustilo niekolko výnimočných ta-
Jentov (napr. jeden z nich, Igor Kříž, už tohto roku ako
poslucháč 1. ročníka MFF UK v Prahe získal popředně
umiestnenie v celoštátnom kole ŠVOČ), do nášho družstva
nastúpili noví, nadaní sice, ale neskúsení členovia. Svoje
zohrala aj napatá atmosféra medzinárodnej súťaže.

Na druhej straně, v takej náročnej súťaži, akou MMO je,
hrá významnú úlohu aj náhoda. Keby napr. aj zvyšní dvaja
členovia nášho tímu boli získali ceny (tj. keby boli uhráli svoj
standard, ako to dokázal urobit v neoficiálnom súťažení,
pravda, v neporovnatelné uvoínenejšej atmosféře, náš ná-
hradník), boli by sme zopakovali vlaňajší úspěch a umiestnili
sa v prvej desiatke. Alebo taký útok nášho Witzanyho na
1. cenu. Zo suchých čísel sa nedá vyčítat ten drobný kročik,
čo ho od nej dělil. Witzanyho položil druhý příklad. Mimo-
chodom příklad bez zvláštnej invencie, ani nie obzvlášť ťažký.
Bolo třeba upravit’ binóm; kto prišiel na vhodnú úpravu,
příklad vyriešil. Jiří uskutočnil niekolko róznych jednoduch-
ších i zložitejších obratov. V jednom z nich sa už implicitně
objavilo riešenie. Možno Jiřímu chýbalo 5 minút a bol by
mal namiesto jedného bodu za 2. příklad bodov sedem,
namiesto druhej ceny, cenu prvú.

Ale také je už súťaženie, třeba ho brat špcrtovo. Pre všet-
kých našich súťažiacich bola MMO životným zážitkom, pre

tých mladších azda aj povzbudením do dalšieho ročníka sú-
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ťaže. Zanedbatelným nie je ani sposob, akým na 25. MMO
zvíťazila myšlienka priateístva medzi národmi, Ani to, že sa
tak stalo v hlavnom meste nasej vlasti.

4. Řešení úloh 25. MMO

Řešení 1, úlohy. К důkazu nezápornosti uvedeného
výrazu si stačí uvědomit, že 0 x, y, z ^ 1, takže

xy + уz -b zx — 2xyz = xy(l — z) -f yz(l — x) 4- zx ši 0.

Můžeme také díky symetrii předpokládat x ^ у z, takže
1

x< — a
~

3

xy 4- yz 4- zx — 2xyz = xy -+• yz{1 — 2x) -f zx ^ 0.

Podle nerovnosti mezi aritmetickým a harmonickým prů-
měrem platí dokonce

3 3 xyzxy 4- yz -f- zx
= 3xyZj3 1 1 1

4" 4*
xy yz zx

x 4- у + z

tj-

xy 4" уz 4~ zx 9xyz.

I
Nyní dokážeme druhou nerovnost. Položme x = — 4-a,
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1 1
.у = —- + b, z = — + c, podle předpokladu úlohy pak je

21
a + Ъ + c = 03 - a,b, c^L — а

7 1
xy + yz -f zx — 2xyz = — -f ~ (ab + bc + cd) — 2abc =

7 1
= — + — (bc — a2 — 6abc). O)27

Vzhledem к symetrii můžeme předpokládat afd,bi=Lc, pak
musí být bud a b i=L 0 c, nebo a 0 b d, c.

V prvním případě je bc — a2 — 6abc 5^ 0, v druhém přípa-
1

dě můžeme psát pro — — ^ a ^ 0

bc — a2 — 6abc = bc — (b + c)2 — 6abc = —{b — c)2 —
- 3bc - 6abc = -(b - cf - 3bc(\ + 2u) ^ 0

s rovností, právě když b ~ с = a — 0. V obou případech
plyne z (1) nerovnost

7
+ ** — 2*y* ^ — .

1
2. řešení. Nechť např. x , pak je
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xy + yz + zx — 2xyz = x(y -f z) -f yz{\ — 2x) =

1 7

~4 < 27 *
= Jf(l — x) + jy0(l — 2л:) ^ лг(1 — jf)

Vzhledem к symetrii zbývá vyšetřit jen případ, kdy je
1

O ^ x,y, z <C~ . Položme x' = 1 — 2x, у' = 1 — 2yy

z' = 1 — 20, pak je

л' + У + z' — 1, x',y', 0' > O

a

1
л^у + yz + 0Л; — 2xyz = — (1 -f xyz).4

Podle nerovnosti mezi aritmetickým a geometrickým průmě-
rem dostaneme

x' + y' -j- 0'^3( 1
xyz 27 53

takže

7
xy + yz + zx - 2xyz ^ — .

3. řešení. Uvažujme mnohočlen

p(t) = (ř _ x) (t -y) (t - 0) =

= ř3 — ř2 + í(a;j; -f j>0 + 0л:) — xyz.
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Máme tedy dokázat, že pro x í> у í> z ^ 0, x 4- у 4- z — 1
je

1 1 1

8 ~P \ 2 216 '

1 1 1
Je-li x ^ J , jey^ j,
nosti mezi aritmetickým a geometrickým průměrem

^0 a podle nerov-2 ’P

(1) = (*-P

Pr1)’ 1
—

8 5

1
podobně pro x ^ — je

(i £\3 1X —y —

O^p
216 '3

4. řešení. Funkce

f(x, y, z) — xy + уz +■ zx — 2xyz

je spojitá a nabývá proto v uvažovaném definičním oboru
0 ^ x, y, z ^ 1, x -f у + 3! = 1 svého maxima. Je-li

1

-j ay Ф z, platíx <
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/ у + z У + Я

fV’-2 (т-Т= *0 + z) + (1 - 2х) >5 2

> х(у + z) + yz{1 - 2л) =f(x,y3 z).

Z důvodu symetrie můžeme předpokládat, že л ^ jy ^
1

Není-li x = j/ — 2 = — , je bud x < у < z, nebo3

1\
v obou případech musí být x < — I , takže(Л = ;y < z

( у + Z у + z\/(*, 2 5 2 /
> /(*, *),

1 1
nebo x < у = z a я 5^ — , takže pokud z Ф — , je

/ x + 3; x + у
>f(z, X,y) =f(x,y, z).2

= 0 máme/ (°, —, —) =
1 7

¥ 27 '

1
Pro у = z — 2’*

Funkce / tedy nabývá v uvedeném definičním oboru svého
1

maxima v jediném bodě x — у = z = — a je

/ 1 1 1 \ 7
y, yj = y7.
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5. řešení. Označme k — xy -f Уz -f zx — 2xyz =
= x(l — x) -f yz( 1 — 2л:). Vzhledem к symetrii můžeme

i
předpokládat, že л; ^ — . Protože3

у + z — l — x,

k + x(x — 1)
yz =

1 - 2x

jsou čísla y, z reálné kořeny kvadratické rovnice

k + x(x - 1)
ř2 + (л: — 1) t + = 0,

1 — 2л:

pro jejíž diskriminant platí

(x - 1)2 (1 - 2x) - 4k - 4x(x -1)^0,

neboli

1 1 1
к = - 7 *3 + 4 *2 + 4 ■

1 1 1 1
Funkce /(x) = — — x3 + — x2 + — má v intervalu (0, —)

nezápornou derivaci

3 1 1
/'(*) = - у *2 + У X =-x(l - 3x) ^ 0,
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takže

«4)-i-
6. řešení. Najdeme extrémy funkce

f(x9y) = xy + XI - X - y) +

+ (1 - X - y)x - 2xy(l - x - y) =

= jc + jy — x2 — y2 — 3xy + 2x2y + 2xy2

v trojúhelníku Г s vrcholy (0, 0), (0, 1), (1, 0). Ty budou
ležet bud na jeho hranici, nebo v jeho vnitřních bodech,
pro které zároveň

0/
- = 1 — 2jc — 3у + 4xy + 2y2 —8x

- (2x + у - 1) (2у — 1) = 0,

V
— = 1 — 2y — Ъх + 4xy + 2x2 —
fy

= (2y + x - 1) (2x - 1) = 0.

Snadno zjistíme, že těmto dvěma podmínkám vyhovuje

(ť-ť)jediný vnitřní bod trojúhelníku T, totiž , v němž
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/1 l\ 7
J = — . Zbývá prozkoumat hranici trojúhelníku T,f

tj. vyšetřit průběh funkce

f(x, 0) = /(0, x) = /(*, 1 -*) = x(l - x)

1
v intervalu <0, 1). Tam je ale 0 ^ д:(1 — x) ^ —- .4

7
Funkce f(x,y) nabývá v trojúhelníku T maxima —: v bodě27

(U) a minima 0 v bodech (0, 0), (0, 1), (1, 0), takže je

7
0 ^ xy + yz + zx — 2xyz

27

s rovností vlevo pro trojice (1,0,0), (0, 1, 0), (0, 0, 1) a vpravo

(I I L)\ 3 5 3 5 3 / 'pro

Řešeni 2. úlohy. Podle binomické věty je

(a 4- b)7 — a7 — b1 =

= 7ab((a5 4- 65) 4- 3ab(a3 + 63) + 5a2b2(a 4- 6)) =

= 7ař(a + b) (a4 + 2a36 + 3a262 + 2ab’á + 64) —

= 7až>(a 4- b) (a2 + <26 + 62)2.

Vyhovují-li čísla a, b podmínkám úlohy, je číslo a2 4- ab -f b2
dělitelné číslem 73 = 343. Zkusme např. a = 1 a hledejme 6
tak, aby 62 4- b 4- 1 bylo dělitelné 343. Vyhovuje b — 18.

(1)
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2. řešení. Použijeme rovnost (1). Položme a = 1 a hle-
dejme b tak, aby čísla b, b -f 1 nebyla dělitelná sedmi a aby
b2 -f b + 1 bylo dělitelné 73. Podle Eulerovy věty platí pro
nesoudělná čísla r, s, že r^s) — 1 je dělitelné číslem s, kde
<p(s) je počet přirozených čísel menších než s a nesoudělných
s s. Je-li tedy r číslo, které není dělitelné sedmi, je

_ 1)(И--2 +r2'73 + 1)r^V) _l= (r2 . 72

dělitelné 73, a není-li ani r98 — 1 dělitelné sedmi, bude
r2-98 _(_ r98 _u i dělitelné 73. Dvojice a = 1, b — r98 tedy
vyhovuje podmínkám úlohy, pokud žádné z čísel

98 - 1, b + 1 = Г98 + 1r, r

není dělitelné sedmi.

Není-li r dělitelné sedmi, dává rp> podle Fermatovy věty
při dělení sedmi zbytek 1. Protože 98 = 6.16 -f 2, dávají
čísla r98 ar2 při dělení sedmi stejný zbytek, takže stačí najít
takové r, aby žádné z čísel r,r2— 1, r2 + 1 nebylo dělitelné
sedmi. Odtud plyne, že dvojice a — 1, b = r98 vyhovují
úloze, právě když r dává při dělení sedmi zbytek 2, 3, 4
nebo 5.

3. řešení. Řešením úlohy jsou právě ty dvojice (a, b),
pro něž а ф 0 (mod 7), b ф 0 (mod 7), a 4- b ф 0 (mod 7) а

(2)а2 4- Ь2 -Ь аЬ = 0 (mod 73).

Vyhovuje-li dvojice (а, b) rovnici (2), vyhovuje jí zřejmě
i dvojice (ka} kb) pro libovolné přirozené číslo k. Vyhovuje-li
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tedy úloze dvojice (a, b), vyhovuje podle Eulerovy věty
i dvojice (1, a2936). Chceme-li tedy najít všechny dvojice
(a, b) vyhovující úloze, stačí najít všechna řešení tvaru (1, t),
ostatní pak budou tvaru (k, kt), kde (mod 7).

Řešme tedy rovnici

t2 + t + 1 0 (mod 73). (3)

Vyhovuje-li г rovnici (3), vyhovuje jí i (mod 7) a snadno
zjistíme, že t = 2 (mod 7) nebo t = 4 (mod 7).

2 (med 7), tj. г = Im + 2. Pak má rovniceNechť t

(Im + 2)2 + (7m + 2) + 1 = 0 (mod 72)

neboli

35m -f 7 = 0 (mod 72)

neboli

5m + 1 ss 0 (mod 7)

4 (mod 7). Proto vyhovuje-li t 2 (mod 7) rov-řešení m

nici (3), je t = 30 (mod 72), tj. t — 49я + 30. Platí tedy

0 (mod 73),(4972 + 30)2 + (49w + 30) + 1

neboli

61tí -f 19 = 0 (mod 7)
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a odtud n = 6 (mod 7). V případě t = 2 (mod 7) jsme našli
jediné řešení rovnice (3) t = 324 (mod 73).

V případě t = 4 (mod 7) najdeme analogicky druhé
řešení rovnice (3) t = 18 (mod 73).

Řešením úlohy jsou všechny dvojice přirozených čísel

(a, b) = (A, 18£) nebo (&, 324&) (mod 73),

kde k ф 0 (mod 7).
Řešení 3. úlohy. Uvažujme dvě kružnice R = (O, r)

a = (O, í), kde 0 < r < s < 1. Na kružnici R existuje
bod X takový, žq S = C(X). Je to bod X, pro nějž oc(AT) =
= r(s — r) (zřejmě 0 < a(X) < 1). Nevyskytuje-li se barva
bodu X na kružnici S, znamená to, že množina všech barev
na kružnici R se liší od množiny všech barev na kružnici S.

Kdyby dokazované tvrzení neplatilo, znamenalo by to, že
na každých dvou různých kružnicích se středem O a polo-
měrem menším než 1 jsou různé množiny barev. Množina
všech barev, jimiž jsou obarveny body roviny, by tedy měla
nekonečně mnoho podmnožin a nebyla by konečná.

Řešení 4. úlohy. Označme M střed strany AB, M’ pra-

voúhlý průmět bodu M na přímku CD (obr. 30). Protože
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podle předpokladu leží bod M' na kružnici s průměrem AB,
je trojúhelník BM'M rovnoramenný, neboli

\<£MBM'\ = \<£MM'B\

Dále označme N střed strany CD a N' jeho průmět na přím-
ku AB. Protože |<^MM'D\ — = 90°, je

\<£AMM'\ = \<£DNN'\

a body M, M', N, AT leží na kružnici s průměrem A4N.
Kružnice nad průměrem CD se dotýká přímky AB, právě

když trojúhelník CN'N je rovnoramenný, tj. právě když

| <%NCN' I = i I DNN' I = i j <£AMAÍ' | = | <%MBM' |.

To nastane pro M’ ф C a N' =j= В právě tehdy, leží-li body
M', N', В, C na kružnici (obr. 30, 31). Pokud je M' = C
(obr. 32) nebo N' = В (obr. 33), je zřejmě \<£NCN'\ —

= \<$MBM'\, právě když MN\\BC, tj. AD\\BC, takže
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v tomto speciálním případě jsme s důkazem hotovi (dokonce
bude A — N'; resp. D = Ať).

Zbývá ukázat, že čtyři různé body Ať, N', В, C leží na
kružnici, právě když

\^AMN\ = \^ABC[3

tj. jsou-li protější strany ВС a AD čtyřúhelníku ABCD
rovnoběžné. To ale plyne okamžitě z věty o obvodových
úhlech - jen je třeba uvážit všechny možné polohy bodů Ať,
N' vůči bodům M, N, В, C (podle toho je bud ] <ZfcN'MN\ =
= |<£N'M'N\ nebo \<£N'MN\ = 180° - |<£ЛГЛГЛП a po-
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dobně bud | ^N'BC\ = 180°- |<£ЛГЛГЛГ|пеЬо|<£ЛГ£С| =
= \*&N'M'N\). Ze všech 16 možností však stačí uvažovat
jen případy uvedené na obr. 34a —e (případ M' — N, N' =
— M je triviální). Tím je důkaz hotov.

Poznámka. Poslední tvrzení zřejmě platí, i když MN je
libovolná tětiva kružnice k (obr. 34): Předpokládejme, že
body M, N, M', N' leží na kružnici, bod В leží na přímce MN'
a bod C na přímce M'N, M’ Ф Сф В i=-N'. Potom body
M', ЛГ, J?, C leží na kružnici, právě když MN\\BC.
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2. řešení. Označme M střed strany AB, N střed strany
\m

—, obsah S(ABCD)

čtyřúhelníku ABCD můžeme tedy vyjádřit jako (obr. 35)

CD. Podle předpokladu je |MAf'| =

156



S(ABCD) = S(AMD) + S(MBC) + S(CDM) =

= J- S(ABD) + i S(ABC) + { \CD\.\AB\.

Zároveň však je (obr. 36)

S(ABCD) = i S(CDA) + i S(CDB) + { \AB\ .\NN'\.

Odtud plyne odečtením (obr. 37)

\AB\(\\CD\ - \NN'\) = S(CDA) + S(CDB) - S(ABD) -

- S(ABC) = S(ABCD) + S(CDO) - S(ÁBO) -
- S(ABCD) - S(ABO) + S(CDO) =

= 2(S(CDO) - S(ABO)) = 2(S(ADC) - S(ADB)).

Kružnice nad průměrem CD se dot}fká přímky AB, právě
když |iSW'| = \ \ CD\, což je podle poslední rovnosti, právě
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když

S(ADC) = S(ADB).

To je však ekvivalentní s rovnoběžností přímek AD a BC.
3. řešení. Pokud AB\\CD, dotýká se zřejmě kružnice

nad průměrem CD strany AB, právě když |CD| = \AB\,
tj. právě když ABCD je rovnoběžník.

Jsou-li přímky AB, CD různoběžné, označme V jejich
průsečík, o osu úhlu BVC, M a N středy stran AB a CD
(obr. 38). Uvažujme zobrazení Z, které dostaneme složením

osové souměrnosti podle osy o a stejnolehlosti se středem V
\VN\

a koeficientem 77777:. V tomto zobrazení bude Z(M) = N.
I VM\

Protože kružnice k sestrojená nad průměrem AB má střed
v bodě Aí a dotýká se přímky CD, bude se kružnice nad
průměrem CD se středem Z(AÍ) dotýkat přímky AB, právě
když bude obrazem kružnice k v zobrazení Z, tj. právě
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když bude Z(A) — D a Z(B) = C. Zřejmě však je AZ(A)||
l\BZ(B).

Řešení 5. úlohy. Uvažujme konvexní я-úhelník AXAa...
.. .An. S indexy budeme počítat modulo n.

Je-li A(Aj úhlopříčka, je podle trojúhelníkové nerovnosti

\AiAj\ -f | Лп-i^+il > \A(Aí+i\ -4- \AjAj+1|.

n(n — 3)
Sečteme-li tyto nerovnosti pro všech

AiAj, dostaneme vlevo každou úhlopříčku dvakrát a vpravo
každou stranu (n — 3)-krát, tedy

2 úhlopříček

2d > (n — Ъ)р.

Pro délku úhlopříčky AiAj dále platí

\AiA}\ < \AfAi+i\ + ... 4- | Aj—iAj \,
CD

\A{Aj\ < \AfAj+i\ 4- ... 4- \Ai-iAj\.

Je-li n — 2k 4* 1} vezměme pro každou úhlopříčku AiAj
tu z nerovností (1), která má na pravé straně menší počet

n(n — 3)
sčítanců, a těchto

nerovnost, na jejíž levé straně je d a na pravé straně je součet
délek stran, v němž se každá strana vyskytuje tolikrát, pro
kolik úhlopříček leží v »menší« ze dvou částí, na které je
obvod úhlopříčkou rozdělen. Např. pro stranu A\An vy-
chází z vrcholu Аь jediná taková úhlopříčka, z vrcholu

nerovností sečtěme. Dostaneme
2
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Ajc-1 dvě, ..., z vrcholu Ao jich vychází k — 1 a z vrcholu A\
také k — 1. Na pravé straně je tedy každá strana započtena
tolikrát, kolik je

1 + 2 + ... + (k - 1) + (k - 1),

takže

* - f (lí 2).(k - l)(k + 2) n + 1
d<

22

Je-li n = 2k, vezměme pro každý »průměr« A [A h* ne-
rovnost

a pro ostatní úhlopříčky opět tu z nerovností (1), která má na
n(n — 3)

pravé straně menší počet sčítanců. Sečteme-li těchto

nerovností, dostaneme

(k - 2){k + 1) & - 2
p = —

P
+ P =

2

-ШЖ-г)
Poznámka. Nerovnosti, které jsme dokázali, nelze zlepšit.

Pro mnohoúhelník, jehož dvě sousední strany mají délku 1
a ostatní strany jsou velmi malé, bude
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2d
p = 2, d= n — 3 a — = n — 3.

P

Pro mnohoúhelník, jehož »protilehlé« strany Ai-A^+i, AnA\,

, mají délku 1 a ostatní strany jsou velmi malé,kde k

bude

p = 2, d = k(n — k) — 2

a

n \n + 1

2 JL 2

2d
—

== k(n - k) - 2 =
- 2.

2. řešení. Zvolme přímku q a pravoúhlé průměty vrcho-
lů A\ A2, ..., An uvažovaného mnohoúhelníku na přímku q
označme A'1, A'2, ...,

Uvažujme nejprve body 2?i, BL>, ..., Bn ležící v přímce
v tomto pořadí a odhadněme součet délek 5 všech úseček BtBj
pomocí délky úsečky B\Bn a čísla n. Zřejmě

i ž (Iftftl + \BiBn\) + + \B3B„\) + ... +
+ (|5i5ra-i| + \Bn-\Bn\) + \B\Bn\ — (n — 1) \B\Bn\.

Dále si všimněme, že každá úsečka BLBj se skládá z úseček
B/cB/c+i, přičemž každá úsečka BjcB/c41 je částí právě k(n — k)
úseček BiBj. Je tedy

П— 1

5= 2 Kn-k)\BkBk+1\.
k= 1
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Přitom

4k(n — k) = n2 — (n — 2ky

a součin k(n — k) nabývá tudíž největší hodnoty pro k

takže

П —1

•*ium ]n + 1
\BkB/c-'ri\ \BiBnl2

ifc=i

Odvodili jsme nerovnosti

[fim(и - 1)|BA|^5 \BiBn\. (2)

Jsou-li mezi body Bi, В2, ..., Bn aspoň čtyři různé, jsou při-
tom na obou stranách ostré nerovnosti.

Průměty A\, A'2, ..A'n nemusejí sice ležet na přímce q
v tomto pořadí, vzhledem ke konvexitě mnohoúhelníku
A\A-z.. ,An je však součet

\A\A'2\ + \A'2A'3\ + ... + {A'n-iAW + \A'nA\\

roven dvojnásobku nejdelší z úseček A'iA'j. Je tedy podle (2)

(n - \){\A\A'2\ + \A'2A'3\ + ... + \A’nA\I)

(\A\A'z\ + \A'2A's\ +^22\A'tA',\^
i<j

+ ...+ \A'nA\ I),
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přičemž \A'iA'j\ = \AíAj\ cos aij, označíme-li ац úhel sevře-
i 71 \

ný přímkami AíAj, q yO ^ a-ij J ■

Otáčejme nyní zvolenou přímku q kolem nějakého bodu O.
Pro 0 ^ x < tu tak dostaneme přímku q(x), která bude s přím-

7Г \
—

J, bude tedysvírat úhel ощ(х) |o 5^ а*/х)kou A{Aj

pro každé x e <0, tu) platit

(n - 1)(\А2А2\ cosai2(^) -f |^2^з| COSа2з(л) -f ... +

-f \AnAx\ cosani(*))^ 2 2 \AtAj| cos ац{х)<к
i<j

(\AiA2\ cos а!2(лг) + \А2Аз\ cos а2з(*) +

+ ... + \ AnAi\ cos *»i(*))-

Přitom je pro 1 ^ i < j ^ n

f cos a.ij(x)dx = f |cos x\ dx = 2.

Zintegrujeme-li tedy poslední nerovnost na intervalu <0, tu),
dostaneme

2(« - 1)QAiA2\ + \A»A3\ + ... +\АяА1\)£*2,\А,А)\й
i<j

(\AiA2\ -f \А2Аз\ + ... + \AnAi\),
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neboli

n + 1
(n-l)p^2(d+p)^ - P■2

Protože n > 3 a jen pro konečně mnoho x e <0,7r) se stane, že
některé průměty splynou, budou na obou stranách dokonce
ostré nerovnosti, tj.

n j n + 1 j
2 JL 2 j(n - 1 )p < 2(d +p)< P,

čili

(n — 3)p < 2d <

Řešení 6. úlohy. Nejprve dokážeme, že k > m, což
plyne z nerovnosti

a((a + d) — (b 4- c)) = a(a — c) + a(d — b) =

= a(a — c) 4- éc — = (a — 6) (a — c) > 0.

Z rovnosti

a(2k — a) = b(2m — b)

dostaneme

2m | b2 — a2 = (6 -4 a) (ó — a). (1)
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Čísla b -f a, b — a nejsou obě dělitelná čtyřmi, protože jejich
součet 2b není dělitelný čtyřmi. Jedno z čísel b + a, b — a

je tedy podle (1) dělitelné číslem 2m~1 - označme je x. Je však

0 <x^=b-\-a<b + c = 2m,

a tedy

x = 2™-1. (2)

číslo

b -f c — x = 2m — 2m~1 = 2m~l (3)

je jedno z čísel c + a, c — a. Protože a, b, c jsou lichá čísla,
plyne z (2), že a, b jsou nesoudělná čísla, a z (3), že a, c jsou
nesoudělná čísla. Z podmínky ad — bc vidíme, že a\bc. Musí
tedy být a = l.

Navíc x, tj. jedno z čísel b 4- 1, b — 1 je rovno 2m~1 a jed-
no z čísel с -г 1, c — 1 je rovno 2m~1. Protože b < c, je
b — 2m~1 — 1, c = 2m~1 + 1 a odtud d = 22(m-1) — 1, kde
m > 2 je přirozené číslo.

2. řešení. Nejprve ukážeme, že /г > m:

2ík = (d + a)2 = (i - a)2 + 4ad > (c - &)2 + 4bc =

= (6 -j- c)2 = 22m.

Uvažujme přirozená čísla x3 y, pro která je

a — 2к~г — x, b — 2m~1 — у, c = 2m~1 4- y,

(4)
d — 2k~1 + x.

165



Platí

22Л-2 — x2 — aíj — fe = 2%m~2 — y2^ (5)

takže

x‘2 y2 — 22fc-2 22щ“ 25

neboli

(x -y)(x +y) = 22ж-2(22<а'-,й) - 1). (6)

Čísla x3 у jsou lichá, čísla д: + У, x — у sudá a přitom nemo-
hou být obč zároveň dělitelná čtyřmi, protože

(7)X + у + x — у = 2x.

Je tedy {# -f- y} x — y} = {2r, 22m~3s} pro nějaká lichá čísla
ras. Odtud plyne podle (7) a (6)

x — 22m~4s + r,rs = 22<*-w) — 1,

takže podle (4)

a = 2*-1 — x — 2*-1 — 22<m~2>$ — r

a dále

1 <£ 5a = 2A~]í — 22<ш“%2 — 22<к~т'> + 1 —

= 1 - (2m~2s - 2k~m)2^ 1,
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tedy

a — s = 1.

Navíc je m — 2 = k — m, tj. k = 2m — 2 a ze (4) dostane-
me

x = 22m_3 - l, d = a + 2x = 22m~2 - 1 = bc - 22m~* - y2,

takže

b = 2m~1 - 1 ,c = 2m~x -f 1.

Podmínkám úlohy tedy vyhovují právě všechny čtveřice

a = 1, b = 2м-1 - 1, c - 2m~2 + 1 ,d = 22m~2 - l,

kde m > 2 je přirozené číslo.
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