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Předmluva

Milí mladí přátelé a spolupracovníci
v matematické olympiádě!

Uzavřel se 34. ročník matematické olympiády (MO)
a jako obvykle Vám zde předkládáme zevrubnou zprávu
o jeho organizaci, průběhu a výsledcích.

Jak se přesvědčíte v dalším textu, nedošlo v tomto roce
к žádným podstatným změnám v organizaci středoškolských
kategorií А, В a C - zde se pokračovalo podle osvědčeného
programu.

Jiná je situace na základních školách. Tam proniká MO
postupně do nižších ročníků, avšak s odlišnou rychlostí
v SSR a v ČSR. Na Slovensku se totiž pořádá MO - pod
názvem Malá matematická olympiáda - již po několik let
experimentálně pro žáky pátých až sedmých tříd a začíná
se již i se čtvrtými třídami. Zkušeností z této soutěže pro
mladší žáky se snažíme využít při rozšiřování celostátní MO.
Zatím se podařilo zavést MO na základních školách vedle
dosavadní kategorie Z jen pro sedmé třídy. Máme tedy
dvě kategorie, nyní označované Z7 a Z8, které probíhají
v celé ČSSR s jednotnými úlohami a stejnou organizací ve
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všech krajích; zprávu o nich najdete také v této brožuře,
Pro nižší ročníky se však v ČSR. zatím MO nepořádá ani
experimentálně a lze jen doufat, že se časem podaří dořešit
organizační otázky tak jako v SSR. Na některých školách
v ČSR se řeší úlohy ze SSR, příp. školy nebo okresy pořádají
zvláštní soutěže pro žáky nižších ročníků.

К organizaci MO dnes již neodmyslitelně patří i četné
pomocné akce, jako různá školení a soustředění řešitelů,
korespondenční semináře atd. O některých z nich, zejména
o celostátním korespondenčním semináři, který je určen
především к prohloubení přípravy těch žáků, kteří se ne-
mohou osobně účastnit seminářů pořádaných ve větších
centrech, najdete rovněž zprávu v této brožurce. Úlohy z těch-
to seminářů Vám mohou - spolu se soutěžními úlohami
MO - poskytnout vhodnou příležitost к procvičování.

Vyvrcholením každého ročníku MO se již pravidelně stává
účast československého družstva na mezinárodní matematické

olympiádě (МАЮ). V červenci 1985 proběhla 26. MMO,
hostitelskou zemí bylo tentokráte Finsko, které tak oslavilo
dvacáté výročí své první účasti na MMO. Stručná zpráva
o průběhu 26. MMO je připojena na konci této knížky.
Výsledky MMO jsou v mnohém poučné. Je vidět, že se přes
stále rostoucí počet zúčastněných zemí daří udržovat poměrně
vysoký standard náročnosti soutěžních úloh MMO, zřetelně
vyšší než je zvykem v naší domácí MO. S tímto faktorem,
který - ač ne jediný - bezpochyby také přispěl к nepříliš
výraznému úspěchu naší reprezentace na 26. MMO, se
budeme muset v příštích letech lépe vyrovnat.

Dlouholeté zkušenosti s MO prokazují, že tato soutěž
nezanedbatelnou měrou přispívá к podpoře zájmu o mate-
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matiku mezi naší mládeží, pomáhá vyhledávat talentované
žáky a rozvíjet jejich schopnosti a znalosti. Těmto cílům
chce MO ještě lépe sloužit i v příštích letech. Doufáme, že
nám při tom pomůžete - starší aktivní spoluprací, mladší
hojnou účastí v soutěži - v této činnosti Vám přejeme mnoho
úspěchů.

Ústřední výbor matematické olympiády
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O průběhu 34. ročníku
matematické olympiády

Soutěž »Matematická olympiáda« pořádají ministerstva
školství ČSR a SSR ve spolupráci s Jednotou českosloven-
ských matematiků a fyziků, Jednotou slovenských mate-
matiků a fyziků, Matematickým ústavem ČSAV a Socia-
listickým svazem mládeže. Soutěž řídí ústřední výbor mate-
matické olympiády (ÚV MO) prostřednictvím krajských
a okresních výborů matematické olympiády (KV MO,
OV MO). Členy ÚV MO jmenují ministerstva školství,
členy KV MO a OV MO příslušné odbory školství KNV
a ONV. Od 31. ročníku MO nedošlo v organizaci МО к žád-
ným změnám. V kategorii A soutěží žáci III. а IV. ročníků
středních škol, v kategorii В žáci II. ročníků, v kategorii C
žáci I. ročníků. Kategorie Z je určena pro žáky nejvyšších
tříd základních škol a dělí se na část Z8, v níž soutěží žáci
osmých tříd, a na část Z7 určenou pro žáky sedmých tříd.
V kategoriích А, В, C má první kolo dvě části, domácí (stu-
dijní) a školní (klauzurní). V II. kole soutěží nejúspěšnější
účastníci I. kola z celého kraje. V kategorii A se koná ještě
kolo III., celostátní. V kategorii Z má I. kolo jen jednu
část, II. kolo je okresní. Pro žáky osmých tříd se koná ještě
krajské, III. kolo.

Ústřední výbor MO pracoval během 34. ročníku MO ve
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stejném složení jako v předcházejícím roce, předsedou byl
RNDr. František Zítek, CSc., z MÚ ČSAV v Praze, místo-
předsedy profesor RNDr. Miroslav Fiedler, člen korespon-
dent ČSAV, z téhož ústavu, a profesor RNDr. Beloslav
Riečan, DrSc., z MFF UK v Bratislavě. Ministerstva školství
zastupovali RNDr. Václav Šůla a RNDr. Julia Lukátšová.
Funkce tajemníků ÚV MO zastávali RNDr. Leo Boček,
CSc., z MFF UK Praha a RNDr. Karel Horák, CSc., z MÚ
ČSAV Praha.

V průběhu 34. ročníku MO se konala dvě zasedání všech
členů ÚV MO, první 10. a 11. prosince 1984 v Praze, druhé
při celostátním kole MO ve dnech 26. a 27. dubna 1985
v Banské Bystrici. Hlavním bodem jednání prvního zasedání
bylo zvýšení péče o žáky talentované v matematice a rozšíření
MO do nižších tříd základní školy. Na dubnovém zasedání
se projednávaly možnosti zavedení zvláštní kategorie MO
zaměřené na programování. Kromě toho předsedové KV MO
hodnotili vhodnost výběru úloh MO a průběh MO v jednot-
livých krajích. Pracovní předsednictvo ÚV MO se scházelo
jednou měsíčně, zabývalo se především výběrem úloh pro
všechna kola soutěže.

Slavnostní zahájení celostátního kola MO se konalo v sále
gymnázia v Tajovského ulici v Banské Bystrici. Soutěžící
i členy ÚV MO přivítal PaedDr. Ján Čakloš, krajský školní
inspektor. Místopředseda ÚV MO profesor RNDr. B. Rie-
čan, DrSc., připomněl ve svém projevu události národně-
osvobozeneckého boje před 40 lety. Rovněž tajemník ОV KSS
s. O. Petro vzpomněl slavných dnů Slovenského národního
povstání. Vyzdvihl péči, kterou naše společnost věnuje
mládeži, rozvoji talentů. Velkou zásluhu v této oblasti vý-
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chovy mají pedagogové na školách všech stupňů. Za ÚV
SSM se slavnostního zahájení celostátního kola zúčastnila
s. Květa Hrubešová, kulturní program předvedl folklórní
soubor Spievanky. O velmi dobrou organizaci celostátního
kola MO se zasloužili hlavně PaedDr. Ján Čakloš, dále učitelé
Pedagogické fakulty v Banské Bystrici prof. RNDr. P.
Kršňák, CSc., doc. RNDr. P. Hanzel, doc. RNDr. A. Haviar,
CSc., RNDr. L. Beracková, RNDr. B. Sivák, CSc., a RNDr.
P. Klenovčan, předseda KV MO Středoslovenského kra-
je, dále ředitel gymnázia Fr. Adamča a s. Vlasta Michál-
ková z Ústředního domu pionýrů a mládeže KG v Bratislavě.

Ve všech krajích se i v školním roce 1984/85 pořádaly
jůzné akce pro rozvoj a vyhledávání žáků talentovaných
v matematice. Podle požadavku ministerstva školství ČSR
a podle hlášení krajských výborů MO uvádíme jejich přehled:

Praha

Pracovní přednášky pro řešitele kategorie Z - celkem 87
přednášek s průměrnou účastí 25 žáků,
pracovní přednášky pro řešitele kategorie A - celkem 15 před-
nášek, průměrná účast 13 žáků,
pracovní přednášky pro řešitele kategorie В - 9 přednášek,
průměrně 14 žáků,
pracovní přednášky pro řešitele kategorie C - celkem 17 před-
nášek s průměrnou účastí 18 žáků.
Korespondenční seminář, pět sérií úloh řešilo 65 žáků.
Soustředění pro úspěšné řešitele úloh korespondenčního
semináře v Jevanech bylo třídenní pro 25 účastníků.
Soustředění pro úspěšné řešitele úloh MO kategorie В, C
se konalo též v Jevanech, trvalo 5 dní, 40 účastníků.
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Středočeský kraj
Krajské soustředění pro 36 nejlepších řešitelů MO a FO
žáků základních škol se konalo jeden týden v červnu v Dubé
u České Lípy.
Krajské soustředění pro 39 nejlepších řešitelů MO a FO
kategorie А, В, C trvalo 10 dní, konalo se v září také v Dubé
u České Lípy. •
Instruktáž pro referenty MO na středních školách byla
jednodenní, stejně tak instruktáž pro předsedy ОV MO.
Přednášky pro řešitele MO kategorie А, В, C se konaly
na střediskových středních školách, každé kategorii byly
věnovány 4 — 6 hodin.
Přednášky pro řešitele MO kategorie Z se konaly jen na

některých základních školách (2 — 6 hodin).

Jihočeský kraj
Pod patronací JČSMF se uskutečnilo 39 přednášek pro
řešitele kategorií А, В, C.
Korespondenční seminář byl tříkolový, zúčastnili se ho
142 žáci, nejlepších 8 účastníků bylo pozváno na soustředění.
Letní škola MO a FO byla uspořádána pro nejlepší řešitele
MO a FO, konala se jeden týden v červnu na Zádově pro
83 žáků.

Západočeský kraj
Přednášky к soutěžním úlohám každé kategorie ve třech
střediscích, pro učitele základních škol v pěti střediscích.
Korespondenční seminář se konal ve dvou kategoriích ve
třech kolech. V kategorii pro 3. a 4. ročníky středních škol
bylo 113 účastníků, žáků 1. a 2. ročníků se zúčastnilo 310.
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Týdenní soustředění pro úspěšné řešitele MO, FO a korespon-
denčního semináře se pro 40 žáků konalo v červnu v Karlových
Varech.

Severočeský kraj
Letní soustředění v Teplicích (společně s FO) bylo týdenní,
zúčastnilo se ho 57 žáků.

Oblastní semináře se konaly v 7 střediscích, celkem 35 semi-
nářů, průměrná účast 20 středoškoláků.
Pro řešitele MO kategorie Z pořádaly různé akce ОV MO.

Východočeský kraj
Soustředění úspěšných řešitelů MO a FO pro žáky 1. roč-
niku středních škol se konalo v Jevíčku, trvalo 8 dní, 32
účastníků.

Soustředění před II. kolem MO
kategorie A — 35 účastníků kategorie В — 35 účastníků.
Doba trvání 2 dny.
Korespondenční seminář pro kategorie A a B, vždy dvě
série úloh, 11 a 13 účastníků.

Jihomoravský kraj
Soustředění úspěšných řešitelů MO a FO v Jedovnicích
pro 60 účastníků, doba trvání 6 dní.
Semináře pro řešitele —

kategorie A - v Brně 20 účastníků, v Jihlavě 11,
kategorie В - v Brně 15 účastníků, v Jihlavě 17,
kategorie C - v Brně 55 účastníků, v Jihlavě 15.
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Severomoravský kraj
Instruktáž předsedů ОV MO - jednodenní, 10 účastníků.
Instruktáže referentů MO na středních školách - jednodenní,
zúčastnilo se 18 středoškolských profesorů.
Přednášky pro řešitele kategorie А, В, C - formou sobotních
besed v Ostravě a v Olomouci v měsících říjen až únor,
průměrná účast 15 žáků v kategorii A, 20 v kategorii В
a 35 v kategorii C.
Krajský korespondenční seminář pro 8 řešitelů.
Krajské soustředění MO a FO se konalo pro 42 žáků ve
dvou desetidenních bězích v Bruntále.

Soustředění žáků tříd gymnázií se zaměřením na matematiku,
45 účastníků, trvalo 12 dní.
Celostátní seminář o práci s talentovanými žáky (ve spo-

lupráci s VÚP Praha a MŠ ČSR, Bílovec, 70 účastníků,
3 dny).

Bratislava

Instruktáže pro učitele základních škol, účast 60 učitelů.
Instruktáže pro profesory středních škol, 4 instruktáží se
zúčastnilo 60 učitelů.

Korespondenční seminář pro středoškoláky, 120 řešitelů -

nejlepší účastníci byli pozváni na dvě týdenní soustředění,
každé pro 35 řešitelů.
Korespondenční seminář pro žáky základních škol, 80 řeší-
telů. Soustředění formou pionýrského tábora (2 týdny).
Týdenní soustředění pro žáky základních škol, úspěšné řeší-
tele MO a FO, celkem 30 účastníků.
Týdenní soustředění pro středoškoláky (kategorie В, C),
30 účastníků.
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Individuální vedení zvlášť nadaných řešitelů MO učiteli
MFF UK Bratislava a SVŠT.

Západoslovenský kraj
Instruktáže referentů MO na středních školách ve všech

okresech kraje.
Instruktáže pro referenty MO na základních školách.
Krajské soustředění pro 46 nejlepších řešitelů MO kategorie
Z, týdenní.
Korespondenční seminář pro žáky středních škol, 5 sérií
úloh po 5 úlohách, řešil 61 žák, 16 nejúspěšnějších se zúčastni-
lo čtyřdenního soustředění v Jelenci.

Středoslovenský kraj
Soustředění pro řešitele kategorie A a krajského korespon-
denčního semináře bylo pětidenní, 50 účastníků.
Soustředění řešitelů MO kategorie В, C pro 30 žáků, čtyř-
denní.

Dvoudenní seminář před II. kolem kategorie A pro 15 stře-
doškoláků.

Týdenní soustředění řešitelů MO kategorie А, В, C spojené
s vyhodnocením 34. a přípravou na 35. ročník MO.
Instruktáž pro referenty MO na středních školách, přítomno
58 učitelů.

Krajský korespondenční seminář, kategorie A 27 řešitelů,
kategorie В, C 98 řešitelů, po 5 sériích úloh.
Krajský korespondenční seminář pro kategorii Z, 83 řešitelé,
7 sérií úloh.

Krajský tábor mladých matematiků pro 35 žáků, 10 dní.
Instruktáže pro referenty MO na základních školách se
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konaly ve všech okresech kraje, průměrně se zúčastnilo
25 učitelů.

Východoslovenský kraj
Instruktáže pro učitele a vedoucí kroužků MO kategorie A,
B, C.
Kroužky MO pro řešitele MO kategorie А, В košických
a blízkých škol.
Klub mladých matematiků při Krajském domě pionýrů
a mládeže.

Korespondenční seminář, 8 sérií úloh, 110 řešitelů.
Soustředění úspěšných řešitelů úloh MO a korespondenčního
semináře, celkem tři soustředění, každé pětidenní pro 35
účastníků.

ÚV xMO zajišťoval po odborné stránce tři celostátní sou-
středění. Pro žáky nematurujících ročníků se konalo společné
soustředění pro matematickou a fyzikální olympiádu v Je-
víčku. Další dvě soustředění byla zaměřena na přípravu
československých žáků na 26. mezinárodní matematickou
olympiádu, první se konalo v Jevanech, druhé v Praze.
Dále pořádal ÚV MO celostátní korespondenční seminář,
s nímž se podrobněji seznámíte na dalších stránkách.

V edici Škola mladých matematiků vydává ÚV MO v nakla-
datelství Mladá fronta brožurky vhodné pro mladé zájemce
o matematiku. V průběhu 34. ročníku MO vyšel již 56. svazek
zmíněné edice, svazek J. Sedláček: Faktoriály a kombinační
čísla. Svazky edice ŠMM jsou dobrou pomůckou pro řešitele
úloh MO a pro práci v matematických kroužcích.
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TABULKA 7

Počty žáků základních škol soutěžících ve 34. ročníku
MO - kategorie Z7

II. koloI. kolo
Kraj

Usиs

252Praha
Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava
Západoslovenský
Středoslovenský
Východoslovenský

749 4771 326
142369499892

184 41283687
103201311622
2445077351 705

1 006
2 509

124335469
1633251 595
156400862 452

65260341683
1517613 366

1 604
3 617

1 909
114731889
1696121 906

ČSR 2 798 1 225
2 364

5 093
5 045

9 609
9 270 499SSR

ČSSR 18 879 10 138 5 162 1 724

S — počet všech soutěžících
U — počet úspěšných řešitelů

22



SEZNAM VÍTĚZŮ A ÚSPĚŠNÝCH ŘEŠITELŮ
CELOSTÁTNÍHO KOLA 34. ROČNÍKU MO

Vítězové

1. Adam Obdržálek, 3., M, G W. Piecka, Praha
2. Radek Adamec, 3., G Kroměříž
3. Vládán Majerech, 2., MF, G Pardubice
4. Pavol Gvozdjak, 1., M, G A. Markuša, Bratislava
5. Milan Horák, 3., M, G W. Piecka, Praha
6. Marcel Polakovič, 2., M, G A. Markuša, Bratislava
7. Vladimír Kordula, 3., M, G M. Koperníka, Bílovec

8.— 9. Petr Hájek, 3., M, G W. Piecka, Praha
Marián Šumšala, 4., M, G A. Markuša, Bratislava

10. Martin Heisler, 3., M, G W. Piecka, Praha
11. —15. Petr Adámek, 4., M, G M. Koperníka, Bílovec

Martin Knor, 4., M, G A. Markuša, Bratislava
Jarmila Ranošová, 4., M, G M. Koperníka, Bílovec
Jan Spousta, 4., SPŠE Praha, Ječná
Petr Šleich, 3., G Děčín

16. Patrik Španěl, 4., M, G W. Piecka, Praha
17. —18. Robert Babilon, 2., M, G M. Koperníka, Bílovec

David Bednárek, 3., M, G W. Piecka, Praha
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Další úspěšní řešitelé

19. —23. Pavel Krtouš, 4., MF, G Liberec
Richard Šeda, 3., G Blansko
Ján Šefčík, 4., M, G A. Markuša, Bratislava
Tomáš Trégl, 2., M, G W. Piecka, Praha
Roman Tůma, 4., M, G W. Piecka, Praha

24.-26. Martin Blatný, 3., M, G M. Koperníka, Bílovec
Vladimír Kliment, 4., M, G A. Markuša, Bratislava
Robert Trávník, 3., MF, G J. Hronca, Bratislava

27.-28. Anton Belan, 2., M, G A. Markuša, Bratislava
Antonín Franěk, 3., M, G M. Koperníka, Bílovec

29. Pavel Calábek, 2., M, G M. Koperníka, Bílovec
30.—32. Igor Bilák, 3., G Prešov, Konštantínova

Ján Lúžny, 4., SPŠE Prešov, Plzeňská
Roman So ták, 2., M, G Košice, Šmeralova

33. Milada Slaninová, 4., M, G M. Koperníka, Bílovec
34. —38. Cyril Beňačka, 4., M, G A. Markuša, Bratislava

Mário Drosc, 2., G Michalovce
Ladislav Hanyk, 4., MF, G Karlovy Vary
Eva Kopecká, 4., MF, G j. Hronca, Bratislava
Peter Mat ta, 3., G Michalovce

39.—41. Martin Foltin, 4., M, G A. Markuša, Bratislava
Michal Hrabák, 3., M, G M. Koperníka, Bílovec
Michal Winner, 3., MF, G Karlovy Vary

G značí gymnázium,
zaměření třídy: M — na matematiku,

MF — na matematiku a fyziku

24



Pořadí žáků z tříd, které nejsou zaměřeny na matematiku

Vítězové celostátního kola

1. Radek Adamec, G Kroměříž
2. Vládán Majerech, G Pardubice

3.— 4. Jan Spousta, SPŠE Praha, Ječná
Petr Šleich, G Děčín

Další úspěšní řešitelé

5.— 6. Pavel Krtouš, G Liberec
Richard Seda, G Blansko

7. Robert Trávník, G J. Hronca, Bratislava
8.— 9. Igor Bilák, G Prešov, Konstantinova

Ján Lúžny, SPŠE Prešov, Plzeňská
10. —13. Mário Drosc, G Michalovce

Ladislav Hanyk, G Karlovy Vary
Eva Kopecká, G J. Hronca, Bratislava
Peter Matta, G Michalovce

14. Michal Winner, G Karlovy Vary
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SEZNAMY NEJÚSPĚŠNĚJŠÍCH ŘEŠITELŮ II. KOLA
KATEGORIÍ А, В, C

Z každého kraje a každé kategorie je uvedeno nejvýše
prvních deset nejúspěšnějších řešitelů. Zaměření tříd je
označeno stejně jako u úspěšných řešitelů celostátního kola.
Soutěžící kategorie C jsou žáky 1. ročníku, soutěžící kate-
gorie В jsou žáky 2. ročníku, pokud není uveden jiný údaj.
Není-li uvedena škola, jde o gymnázium.

Praha

Kategorie A

1. David Bednárek, 3., M, G W. Piecka, Praha
2. Milan Horák, 3., M, G W. Piecka, Praha
3. Tomáš Koumar, 3., MF, Praha 8, U libeňského zámku

4.-6. Filip Friedlaender, 4., M, G W. Piecka, Praha
Adam Obdržálek, 3., M, G W. Piecka, Praha
Roman Tůma, 4., M, G W. Piecka, Praha

7. Petr Loucký, 4., M, G W. Piecka, Praha
8. Patrik Španěl, 4., M, G W. Piecka, Praha
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Kategorie В

1. Jan Sochor, M, G W. Piecka, Praha
2. Michal Dostál, M, G W. Piecka, Praha
3. Jiří Krčil, M, G W. Piecka, Praha
4. Filip Král, M, G W. Piecka, Praha
5. Daniela Košnarová, M, G W. Piecka, Praha

6.— 7. Josef Straka, M, G W. Piecka, Praha
Aleš Škvor, M, G W. Piecka, Praha

8. Michal Kopecký, M, G W. Piecka, Praha
9. Ondřej Šmíd, M, G W. Piecka, Praha10.Martin Gótz, M, G W. Piecka, Praha

Kategorie C

1,— 2. Jan Dvořák, MF, Praha 3, Sladkovského nám.
Petr Marek, MF, Praha 8, U libeňského zámku

3. Marta Sochorová, M, G W. Piecka, Praha
4.— 9. Štěpán Gazda, M, G W. Piecka, Praha

Karel Holubička, Praha 6, Nad alejí
Petr Knobloch, MF, Praha 10, Voděradská
Karel Kuna, M, G W. Piecka, Praha
Marek Polášek, M, G. W. Piecka, Praha
Michal Žemlička, Praha 6, Nad alejí

10. Pavel Peterka, MF, Praha 8, U libeňského zámku

Středočeský kraj

Kategorie A
1. Milan Plaček, 4., Čáslav
2. Karel Kumsta, 4., Říčany

27



Kategorie В
1. Jan Plešingr, Říčany
2. Karel Chmel, Benešov
3. Robert Hetka, Benešov
4. Tomáš Rosický, Kutná Hora

5.-6. Milena Bejdová, Říčany
Jiří Knap, Nymburk

7. Radek Musil, SPŠ Mělník

Kategorie C1.—3. Michael Gráf, SOU Mladá Boleslav
Mirka Chromá, Čáslav
Radek Šanda, SPŠ Kutná Hora

4.-5. Helena Emingerová, Nové Strašecí
Pavel Fric, Poděbrady

6.-7. Jiří Kubeš, Říčany
Jan Malínský, Kralupy

Jihočeský kraj

Kategorie A
1. Petr Jaroš, 3., Pelhřimov
2. Pavel Cabadaj, 4., Pelhřimov
3. Jiří Bořík, 3., SPŠE Písek

Kategorie В
1. Aleš Chrdle, MF, České Budějovice, G K. Šatala

2.—3. Jiří Otta, Pelhřimov
Martin Zítek, Milevsko
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4. Jindřich Zapletal, Tábor
5.-6. Milan Broum, Tábor

Josef Nečas, Písek
7. Veselý, Strakonice

8.-9. Edita Kučerová, Písek
Zdeněk Řanda, Písek

Kategorie C1.Martin Kronika, ÍV1F, České Budějovice, G K. Šatala
2.-6. Soňa Brožová, Milevsko

Čestmír Číhal, SPŠE Písek
Marek Layer, xMF, České Budějovice, G K. Šatala
František Pláteník, SPŠK Bechyně
Václav Vozandych, Strakonice

Západočeský kraj

Kategorie A

1. Ladislav Hanyk, 4., MF, Karlovy Vary
2. Lubomír Perk, 3., MF, Plzeň, G J. Fučíka
3. Michal Winner, 3., MF, Karlovy Vary

4.-6. Jan Boček, 4., Plzeň, ul. Pionýrů
Václav Kohout, 3., Plzeň, ul. Pionýrů
Radovan Osoba, 3., MF, Plzeň, ul. Pionýrů

7. Pavel Samek, 3., MF, Plzeň, G J. Fučíka
8. Daniel Rýpl, 3., MF, Plzeň, ul. Pionýrů
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Kategorie В

1. Roman Libochozvitz, MF, Karlovy Vary
2. Pavel Nýč, Tachov
3. Vladimír Kališ, MF, Plzeň, G J. Fučíka
4. Petra Domalípová, Cheb

5.— 6. Tomáš Mužík, Ostrov n. O.
Jiří Šmíd, Ostrov n. O.

7. Pavla Herciková, MF, Plzeň, G J. Fučíka
8. —10. Martin Černý, MF, Plzeň, ul. Pionýrů

Petr Kozel, MF, Karlovy Vary
Petr Zapletal, Ostrov n. O.

Kategorie C

1. Pavla Maříková, 8. třída, 22. základní škola, Plzeň
2. Barbora Mottlová, MF, Plzeň, G J. Fučíka
3. Dalibor Procházka, MF, Karlovy Vary
4. Vladislav Nevoral, Mariánské Lázně
5. Lukáš Georgiev, M, Plzeň, G J. Fučíka

6.-7. Filip Nebřenský, Ostrov n. O.
Zdeněk Tryner, M, Plzeň, G J. Fučíka

Severočeský kraj

Kategorie A

1. Pavel Krtouš, 4., MF, Liberec
2. —3. Ondřej Pavlata, 3., Jablonec n. N.

Petr Šleich, 3., Děčín
4. Pavel Truhlář, L, M, Liberec
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Kategorie В

1. Jan Klaji, SPŠ stroj, a el., Liberec
2. Petr Slavík, MF, Teplice
3. Radka Zuzánková, Děčín

4.-5. Josef Hrdlička, SPŠE Chomutov
Dana Kunclová, MF, Teplice

6.-8. Karel Hrách, MF, Ústí n. L.
Hana Jirglová, Děčín
Simona Soukupová, Ústí n. L.

Kategorie C1.David Swigoň, M, Liberec
2.— 3. Martin Rybka, M, Liberec

Jaroslav Trnka, M, Liberec
4. Petr Tůma, M, Liberec
5. Romana Heinrichová, Děčín
6. Jindřich Šimon, Rumburk
7. Petra Nováková, M, Liberec
8. Jana Špilarová, Podbořany9.—10. Dana Ježdíková, Louny

Pavel Olyšar, M, Liberec

Východočeský kraj

Kategorie A

1. Ivan Picek, 4., MF, Hradec Králové, Šimkova
2. Vládán Majerech, 2., MF, Pardubice
3. Luděk Brukner, 4., MF, Pardubice
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4. Jana Ježková, 2., MF, Hradec Králové, Šimkova
5. Petr Fend, 2., MF, Pardubice

6.-7. Radka Joudalová, 4., MF, Hradec Králové, Šimkova
JVn Moser, 4., MF, Pardubice8.Petr Jelínek, 2., MF, Pardubice

Kategorie В

1. Vládán Majerech, MF, Pardubice
2. Jana Ježková, MF, Hradec Králové, Šimkova
3. Tomáš Klepal, MF, Pardubice
4. Martin Daniel, Havlíčkův Brod
5. Diana Jamborová, Pardubice
6. Petr Eisler, Havlíčkův Brod
7. Zdeněk Kouba, MF, Hradec Králové, G J. K. Tyla
8. Petr Jelínek, MF, Pardubice
9. Richard Kotrba, MF, Hradec Králové, Šimkova10.Petr Vaňkát, Havlíčkův Brod

Kategorie C

1. Petr Krákora, Trutnov
2. René Levínský, M, Hradec Králové, G J. K. Tyla
3. Jan Janoušek, MF, Hradec Králové, Šimkova
4. Hynek Pikhart, MF, Pardubice
5. Miroslav Beneš, M, Hradec Králové, G J. K. Tyla
6. Silvestr Badal, Jevíčko
7. Petr Hellinger, Hořice
8. Kateřina Marešová, MF, Hradec Králové, G J. K. Tyla
9. Petr Novák, Pardubice10.Jan Talafant, M, Hradec Králové, G J. K. Tyla
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Jihomoravský kraj

Kategorie A

1. Libor Skřička, 3., MF, Brno, tř. kpt. Jaroše
2. Dominik Munzar, 3., MF, Brno, tř. kpt. Jaroše
3. Petr Mayer, 4., MF, Brno, Lerchova
4. Richard Šeda, 3., Blansko
5. Bedřich Horný, 3., MF, Brno, tř. kpt. Jaroše
6. Radek Adamec, 3., Kroměříž
7. Michal Krupka, 3., MF, Brno, tř. kpt. Jaroše
8. FYf Kratochvíl, 4., MF, Třebíč
9. Pavel Jančí, 4., Prostějov

Kategorie В

1. František Klein, MF, Brno, Koněvova
2. Jaroslav Hora, MF, Brno, tř. kpt. Jaroše
3. Patrik Munzar, MF, Brno, tř. kpt. Jaroše
4. Vladimír Olšan, Boskovice

5.— 7. Jan Caha, MF, Brno, tř. kpt. Jaroše
Jana Pernicová, MF, Jihlava
Radek Tomčík, Brno, Koněvova

8. —10. Jan Dvořák, Moravské Budějovice
Jaroslav Jelínek, MF, Znojmo
Dagmar Odehnalová, Tišnov

Kategorie C

1. Tomáš Dvořák, M, Brno, tř. kpt. Jaroše
2. Radek Vystavěl, Prostějov
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3. Tomáš Vítek, MF, Jihlava
4. Petr Volák, Otrokovice

5.— 7. Petr Kříž, Blansko
Zdeněk Pytela, M, Brno, tř. kpt. Jaroše
Hana Škavradová, MF, Gottwaldov8.Tomáš Heroudek, Brno, Koněvova9.— 10. Tomáš Hron, Telč
Pavel Kryštof, SPŠE Brno, Leninova

Severomoravský kraj

Kategorie A

1. Jarmila Ranošová, 4., M, G M. Koperníka, Bílovec
2. Petr Adámek, 4., M, G M. Koperníka, Bílovec
3. Martin Blatný, 3., M, G M. Koperníka, Bílovec

4.— 5. Antonín Franěk, 3., M, G M. Koperníka, Bílovec
Pavel Seleši, 3., M, G M. Koperníka, Bílovec

6. Michal Hrabák, 3., M, G M. Koperníka, Bílovec
7. Pavel Calábek, 2., M, G M. Koperníka, Bílovec

8.— 9. Robert Babilon, 2., M, G M. Koperníka, Bílovec
Milan Ling, 2., M, G M. Koperníka, Bílovec10.Miroslav Novák, 3., M, G M. Koperníka, Bílovec

Kategorie В

1. —2. Radan Kuča, M, G M. Koperníka, Bílovec
Tomáš Novotný, Frýdek Místek

3. —4. Robert Babilon, M, G M. Koperníka, Bílovec
František Kašpárek, M, G M. Koperníka, Bílovec
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5. Pavel Calábek, M, G M. Koperníka, Bílovec
6. Petr Slouka, MF, Ostrava-Hrabůvka
7. Petr Habala, M, G M. Koperníka, Bílovec
8. Alena Bartoňová, MF, Ostrava-Hrabůvka
9. Petr Kučera, Zábřeh n. M.

Kategorie C

1. Radomír Měch, M, G M. Koperníka, Bílovec
2.-6. Ondřej Blaha, M, G M. Koperníka, Bílovec

Gabriela Čechová, M, G M. Koperníka, Bílovec:
Rostislav Fukala, M, G M. Koperníka, Bílovec
Martin Krejčí, M, G M. Koperníka, Bílovec
Jiří Polách, M, G M. Koperníka, Bílovec

7. Jiří Zatloukal, M, G M. Koperníka, Bílovec
8. Vládán Vala, Vsetín

Bratislava

Kategorie A

1.— 5. Cyril Beňačka, 4., M, G A. Markuša, Bratislava
Eva Kopecká, 4., MF, G J. Hronca, Bratislava
Martin Ohnheiser, 4., M, G A. Markuša, Bratislava
Marcel Polakovič, 2., M, G A. Markuša, Bratislava
Ján Šefčík, 4., M, G A. Markuša, Bratislava

6.— 7. Pavol Gvozdjak, 1., M, G A. Markuša, Bratislava
Zuzana Reichwalderová, 2., M, G A. Markuša,
Bratislava

8. Vladimír Kliment, 4., M, G A. Markuša, Bratislava
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9. —10. Peter Fedor, 4., Metodovova, Bratislava
Robert Trávník, 3., MF, G J. Hronca, Bratislava

Kategorie В

1. Ján Budinský, M, G A. Markuša, Bratislava
2. Zuzana Reichwalderová, M, G A. Markuša, Bratislava
3. Adrian Liška, M, G A. Markuša, Bratislava
4. Zohdy Hamid, M, G A. Markuša, Bratislava

5.— 6. Jana Koncová, MF, G J. Hronca, Bratislava
Robert Krídl, M, G A. Markuša, Bratislava

7. Anton Belan, M, G A. Markuša, Bratislava
8. Stanislav Párnický, M, G A. Markuša, Bratislava
9. Peter Klein, M, G A. Markuša, Bratislava

10. Renáta Smékalová, M, G A. Markuša, Bratislava

Kategorie C

1. Tibor Bartoš, M, G A. Markuša, Bratislava
2. —3. Andrej Doboš, 8. třída ZŠ, Palackého, Bratislava

Radoslav Tomek, 8. třída ZŠ, Nevádzová, Bratislava
4.-5. Ilja Martišovitš, 8. třída ZŠ, Košická, Bratislava

Zuzana JJhríková, M, G A. Markuša, Bratislava6.Patricia Matyášová, M, G A. Markuša, Bratislava

Západoslovenský kraj

Kategorie A
* 1. Vladimír Uhelský, 4., G E. Gudernu, Nitra

2. Martin Lukáč, 2., Bánovce n. B.
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3. Viktor Bódi;, 1., MF, G E. Gudernu, Nitra
4. Erik Hevesi, 3., Levice
5. András Czekus, 3., mad. G Komárno
6. Peter Mužila, 3., MF, Nitra, Párovská
7. Rudolf Burel, 2., Trnava
8. Robert Zemánek, 4., Skalica
9. Peter Pereszlényi, 3., Šamorín10.Alžběta Stemmerová, 4., mad. G Dunajská Středa

Kategorie В

1. Marián Lukáč, Bánovce n. B.
2. Peter Križalkovič, Nitra, Párovská
3. Ladislav Baráth, Komárno
4. Rudolf Burel, Trnava
5. Pavol Kolník, Nové Město n. V.
6. Oliver Ralík, G E. Gudernu, Nitra
7. Iveta Hercová, Levice
8. Jana Polcová, Levice
9. Iveta Gálisová, Partizánske10.Peter Ratkovský, G E. Gudernu, Nitra

Kategorie C

1. Juraj Šimko, Nitra, Párovská
2. Katalin Kis Petiková, mad. G Komárno
3. Ján Úžik, SPŠE Piešťany
4. Roman Greguš, G E. Gudernu, Nitra
5. Štefan Bakalář, Topolčany
6. Eubica Karepecká, Komárno
7. Ján Pavelka, SPŠE Stará Turá
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8. Miroslava Vávrová, Hlohovec
9. Angelika Lenická, Nitra, Párovská10.Patricia Pornothyová, Levice

Středoslovenský kraj

Kategorie A

1. Igor Melicherčík, 3., MF, Banská Bystrica, Tajovského
2. Dušan Hanes, 2., MF, Prievidza
3. Marián Turac, 4., M, Žilina, Velká Okružná
4. Pavel Šály, 4., Nová Baňa
5. Jozef Šipoš, 3., MF, Prievidza
6. Jozef Čierny, 3., M, Žilina, Velká Okružná
7. Ivan Kohútek, 3., M, Žilina, Velká Okružná
8. Igor Jucha, 4., Povážská Bystrica
9. Richard Nemec, 4., MF, Banská Bystrica, Tajovského

Kategorie В

1. Dušan Hanes, MF, Prievidza
2. Bohuš Bariak, Velký Křtíš
3. Štefan Rakučák, M, Žilina, Velká Okružná
4. Tomáš Kubík, MF, Prievidza
5. Daniel Mašula, MF, Prievidza
6. Miroslav Laššák, M, Žilina, Velká Okružná
7. Anna Kořenová, M, Žilina, Velká Okružná
8. Jaroslav Jaroš, M, Žilina, Velká Okružná
9. Miroslav Pavlák, Dubnica n. V.10.Karol Rozenberg, M, Žilina, Velká Okružná
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Kategorie С

1. Vladimír Šošovička, M, Žilina, Velká Okružná
2. Jozef Radler, MF, Zvolen
3. Pavol Eliáš, MF, Martin
4. Jozef Gemela, MF, Prievidza
5. Milan Grega, Povážská Bystrica
6. Miroslav Šidlík, M, Žilina, Velká Okružná
7. Vladimír Valent, Banská Bystrica, trieda SNP
8. Štefan Poláčik, SOU el., Nižná

Východoslovenský kraj

Kategorie A

1. Roman Soták, 2., M, Košice, Šmeralova
2. Peter Mat ta, 3., Michalovce
3. Igor Bilák, 3., Prešov, Konštantínova
4. Alexander Szabari, 3., M, Košice, Šmeralova
5. Ján Lúžny, 4., SPŠE Prešov

6.— 8. Leonard Bučko, 4., Prešov, Konštantínova
Zuzana Čornáková, 4., M, Košice, Šmeralova
Robert Kazimír, 3., M, Košice, Šmeralova9.—10. Mário Drosc, 2., Michalovce
Radovan Schreiber, 3., Krompachy

Kategorie В

1. Roman Soták, M, Košice, Šmeralova
2. Mário Drosc, Michalovce

39



3.— 4. Jaroslav Dunajský, Košice, Šrobárova
Pavol Hudák, Košice, Šrobárova5.Jozef Micko, M, Košice, Šmeralova

6.— 8. Ján Paralič, Košice, Šrobárova
Rastislav Sendorák, Prešov, Konštantínova
Robert Čiško, Spišská Nová Ves

9. Michal Urban, Prešov, Konštantínova
10. Daniela Soreková, M, Košice, Šmeralova

Kategorie C

1. Stanislav Krajči, M, Košice, Šmeralova
2. Roman Vávra, Rožňava
3. Radoslav Mráz, Spišská Nová Ves

4.-5. Zuzana Bobovská, Poprad, Leninovo nábr.
Peter Eliáš, Prešov, Konštantínova

6. Alena Murová, Košice, Opatovská
7.-8. Olga Katreniaková, Košice, Šrobárova

Slavomír Onderko, Michalovce
9. Gabriel Semanišin, Bardejov
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Kategorie Z7

ÚLOHY I. KOLA

Z7 - I - t

Nahraďte písmena číslicemi tak, aby vznikl správný zápis
sčítání:

PSICI

PSICI

PSICI

HAFANI

Řešení. Zápis přepíšeme do tabulky a označíme sloupce:

! / d b ae c

C IS Ip

Icp S I

S I c Ip

H A F ANI
i
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Ze sloupce a je vidět, že pro I mohou nastat jen dvě mož-
nosti

(1) 1 = 0 nebo 1=5.

Ze sloupců e, d plyne., že

P + P + P + (přenos ze sloupce d) ^ 29,

proto je

(2) H = 1 nebo H = 2.

Protože platí (1), plyne ze sloupců b, a

C + C + C 4- (přenos ze sloupce a) ^ 28.

Proto je

(3) A = I + 1 nebo A = I + 2.

Protože musí být А Ф H, stačí podle (1) a (3) rozlišit šest
případů:

a) I = 0, H = 1, A = 2

bf de c a

SP C0 o

o |s cp o

p s co o

2 ; n2 F1 o
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Odtud postupně dostaneme:
P = 4 (neboť přenos ze sloupce d ^ 2)
S = 3 (S ^ 3, neboť S ^ 1, S ^ 2 a S ^ 3, neboť P = 4)
F = 9

C = 7 (C ^ 7, neboť přenos ze sloupce b je 2,
С Ф 8, neboť P Ф N а С Ф 9, neboť С ф F)

Ale pro C = 7 dostaneme N = 1, což není možné, protože
H = 1. Možnost a) je tedy vyloučena.

b) I = 0, H = 2, A = 1

bdf a ,ce

i

S cp o: 0

csp oo
:

csp o o

NF 02 1 1

Odtud postupně dostaneme:
p = 7, S = 3, F = 9,
C = 6 (С ф 4, neboť N ф 2; С ф 5, neboť C^N;

C^8, neboť podle sloupce cjeC + C + C< 20),
N = 8.
Tím dostáváme řešení:
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7 3 0 6 0

7 3 0 6 0

(4)
7 3 0 6 0

2 19 18 0

С) I = 5, Н = 1, А = 6

df be c a

S CP 5 5

S CP 5 5

S cp 55

F 6 N 51 6

Tento případ vzhledem к sloupci е nenastane, neboť Р^5.

d) I = 5, H = 1, А = 7

/ d bе с а

S Ср 5 5

S Ср 5 5

Р S С5 5

F N7 51 7

Tento případ nemůže opět nastat, neboť P ф 5.
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e) I = 5, H = 2, А = 6

/ d bе с а

S СР 5 5

S Ср 5 5

СР S 5 5

F i 62 N i 56

V tomto případě musí být P = 8 a odtud S — 7 nebo S = 9,
neboť přenos ze sloupce je roven 2. Protože přenos ze sloupce
c je roven 1, dostáváme v prvním případě F = 2, v druhém
případě F = 8. Ale ani jedna z těchto možností nemůže
nastat, neboť číslo 2 je rovno již H a číslo 8 je rovno již P.

f) I = 5, H = 2, A = 7

с I b j adf e

S cp 55

S CP 5 5

CP s 55

2 7 F 7 j N ! 5
! ! I
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Dostaneme P = 9. Odtud a ze sloupců c, b plyne, že C = 8.
Ale to nemůže nastat, neboť N/5.

Závěrem vidíme, že úloha má jediné řešení, které je dané
zápisem (4).

Z7- I - 2

Narýsujte trojúhelník ABC; d(AB) — 5 cm, d(BC) =
= 10 cm, d(AC) = 6 cm. Na straně AC sestrojte bod X
a na straně BC bod Y tak, aby platilo: <-> XY ]| АВ
a současně d(AX) — d(XY).

Řešení. Rozbor. Načrtneme obrázek, na kterém doplníme
přímku o — AY (obr. 1). Protože AX = XY je trojúhelník

C

o

Y, P
X

A В

Obr. 1

AXY rovnoramenný s rameny AX a XY. Proti těmto ra-
menům jsou shodné úhly

<í XAY = <£ XYA.<1)
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Úhly XYA a YAB jsou střídavé úhly vyťaté přímkou o na
rovnoběžkách XY a AB. Proto jsou shodné, takže

<£ XYA £ <£ УЛЯ.(2)

Ze zápisů (1) a (2) vidíme, že

<£ XA Y ~ <£ УЛВ,(3)

tzn. Л У je osou úhlu CAB.
Konstrukce

1. Д ABC
d(AB) = 5 cm, d(BC) =10 cm, d(AC) = 6 cm (íss)

2. o; o je osa <£ C/li?
3. У; Yeon BC
4. />; p || AB, Y £p
5. X; Хер n AC

Zkouška*). Z konstrukce plyne, že platí (3) a (2). Proto
platí i (1), tzn. AAYX je rovnoramenný, takže je skutečně
d(AX) = d(XY).

Z7- I - 3

Představte si, že máte 81 dvoukorun, z nich jednu falešnou.
Falešná mince je lehčí než pravá. К dispozici máte přesné
dvouramenné váhy. Kolik nejméně vážení potřebujete к to-
mu, abyste našli falešnou minci? (Své tvrzení odůvodněte.)

Řešení se skládá ze dvou částí. V první části ukážeme,

*) Od řešitelů nebyla vyžadována.
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že к nalezení falešné mince stačí provést čtyři vážení. V druhé
části pak ukážeme, že počet vážení už nelze zmenšit, tzn.
že tři vážení nestačí к určení falešné mince.

(I) Mince rozdělíme na tři hromádky po 27 kusech.
1. vážením zjistíme, ve které z těchto hromádek je hle-

daná falešná mince. Zvážíme prvé dvě hromádky. Když se
váha vychýlí, je falešná mince na misce vah, která je výše.
Jsou-li váhy v rovnováze, je falešná mince ve třetí hromádce
(obr. 2). Hromádku, ve které je falešná mince, opět rozdě-
líme na tři stejné hromádky po 9 mincích.

FALEŠNÁ FALEŠNÁ

Obr. 2

2. vážením (stejným postupem jako při 1. vážení) zjistíme,
ve které z těchto hromádek se hledaná falešná mince nachází

(obr. 3). Tuto hromádku opět rozdělíme na tři stejné hro-
mádky po 3 mincích.

FALEŠNÁ FALEŠNÁX
i( J

\ i /

Obr. 3
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3. vážením (opět stejným způsobem) určíme, ve které
z těchto hromádek je hledaná falešná mince (obr. 4). Po
třech váženích zůstanou jen tři mince, mezi kterými se fa-
lesná mince musí nacházet.

4. vážením zjistíme, která z těchto tří je falešná (obr. 5).
Tím jsme ukázali, že čtyři vážení budou určitě stačit.

FALEŠNÁ FALEŠNÁ
Hi

. eЖ

Ж

Obr. 4

FALEŠNÁFALEŠNÁ

Obr. 5

(II)*) Nyní dokážeme, že tři vážení nestačí к nalezení
falešné mince.

1. Bez vážení falešnou minci mezi třemi mincemi ne-

poznáme.
2. Jedním vážením nerozeznáme falešnou minci mezi

devíti mincemi. Ať rozdělíme mince jakkoliv na tři hromádky
a dvě z nich dáme na váhy, pak vždy nejméně jedna z těchto

*) Druhá část řešení nebyla od řešitelů požadována.
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hromádek má aspoň tři mince. Může se stát, že po prvním
vážení zjistíme, že falešná mince je právě v této hromádce.
Ale bez druhého vážení falešnou minci nenajdeme.

3. Podobně zjistíme, že dvě vážení nestačí к rozeznání
falešné mince mezi 27 mincemi. Ať rozdělíme mince kte-

rýmkoliv způsobem na misky váhy a zbývající mince, vždy
má aspoň jedna hromádka nejméně 9 mincí. A na vyhledání
falešné mince mezi nimi by zbylo jen jedno vážení.

4. Stejným způsobem zjistíme, že tři vážení nestačí к ro-
zeznání falešné mince mezi 81 mincemi.

Poznámka. Řešení úlohy souvisí s trojkovou soustavou.
Postup stručně naznačíme.
Mince očíslujeme čísly 1, 2, ..., 81 a zapíšeme tato čísla
v trojkové soustavě.

1 = 00013
2 = 00023
3 = ООЮ3
4 = 00113
5 = 00123
6 - 0020з
7 = 0021з
8 = 00223
9 = ОЮО3

10 = OlOlg
11 = 01023
12 = ОПО3
13 = ОШ3
14 = 01123
15 = 0120з
16 = 0121з
17 = 01223
18 = 0200з

19 = 0201з
20 = 02023
21 = О2Ю3
22 = 02113
23 = 02123
24 = 0220з
25 = 02213
26 = 02223
27 = IOOI3

atd.

Mince při prvním vážení rozmístíme podle číslic na posledním
místě takto:
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О [зlevá miska

pravá miska 1 3

mimo váhu .... 21:3

Podobně postupujeme při dalších váženích podle číslic
na dalších místech od konce.

Číslo falešné mince určíme v trojkové soustavě podle pra-
vidla:

Podle výsledku г-tého vážení (i — 1, 2, 3, 4) určíme г-tou
číslici <ii od konce takto:

levá miska je nahoře
levá miska je dole
misky jsou v rovnováze

0

1ai =

2

Vyzkoušejte si to sami.

Z7- i - 4

Anička, Václav, Jakub a Lukáš jsou čtyřčata. Anička ví,
že Lukáš nikdy nelže, naopak Jakub lže vždycky a Václav
ten to střídá: jednou lže, hned potom zase mluví pravdu
a potom zase lže atd.

Jednou odpoledne přiběhli všichni domů a jeden říká
Aničce: »Maminka na tebe čeká v OBUVI.« »Dobře, Lukáši,«
odpověděla Anička. Vtom se bratr zasmál a řekl: »Já jsem
Vádav.«

Můžete říci, který z bratrů vyřídil Aničce matčin vzkaz?
Byl vzkaz pravdivý ?
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Řešení. Lukáš Aničce vzkaz nevyřizoval, neboť vždy mluví
pravdu a neřekl by o sobě, že je Václav. Vzkaz mohl vyřídit
Jakub. V obou tvrzeních lže a vzkaz je tedy nepravdivý.
Vzkaz mohl vyřídit i Václav. Ve svém druhém tvrzení by
mluvil pravdu, tudíž v prvním by musel lhát a vzkaz by byl
opět nepravdivý.

Závěr. Vzkaz je nepravdivý, ale nelze jednoznačně určit,
zda jej vyřídil Jakub nebo Václav (s určitostí pouze víme,
že Lukáš to nebyl).

Z7- I - 5

Kolik čtverečků musíme vyšrafovat na šachovnici sklá-
dající se ze 6 x 6 čtverečků, aby se útvar (kříž) sestavený
z pěti čtverečků nedal nakreslit na zbytek (nevyšrafované)
šachovnice (obr. 6)?

Obr. 6

Řešení. Stačí vyšrafovat čtyři vhodně zvolené čtverečky
a kříž se na šachovnici už nevejde. Šrafování lze provést
dvěma způsoby (obr. 7a, b).

Vyšrafujeme-li jen tři čtverečky (nebo dokonce ještě méně),
vždy lze na šachovnici kříž umístit. Aspoň v jednom ze
4 čtverců 3x3 (viz obr. 8) nebude žádné šrafované pole,
takže se do něho kříž vejde.
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Z7- I - 6

Představte si, že vynásobíte všechna přirozená čísla od 1
do 63. Potom vynásobíte všechna přirozená čísla od 1 do
61. Nakonec tyto součiny odečtete; je tento rozdíl dělitelný
číslem 71 ?

Řešení. Napíšeme rozdíl
R = (1.2.3 61.62.63) - (1.2.3 59.60.61)

Z rozdílu R vytkneme součin 5 = 1.2.3 59.60.61.
Dostaneme

R = s . (62.63

Rozdíl je dělitelný číslem 71.

1) = 5.3905 = 5.71.55.
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ÚLOHY II. KOLA

Z7-II-1

Je dána přímka p a na ní dva různé body X, Y (d(XY) ^
^ 6 cm). Sestrojte takový čtverec ABCD, aby strana AB
procházela bodem X, strana BC procházela bodem Y, aby
úhlopříčka čtverce měla délku 8 cm a aby bod В měl od
přímky p vzdálenost 2,5 cm. Má úloha vždy řešení ? Kolik
může mít úloha nejvýše řešení ?

Řešení. Rozbor. Načrtneme si obrázek. Bod В leží na přím-
ce q nebo q, které jsou rovnoběžné s přímkou/) a mají od p
vzdálenost 2,5 cm. Dále leží bod В na Thaletově kružnici k
opsané nad průměrem XY. Střed hledaného čtverce leží
na ose úhlu XBY. Bod S má od bodu В vzdálenost rovnou

polovině úhlopříčky, proto je d(BS) — 4 cm (obr. 9).
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Zápis konstrukce
O. p: X, Y Ep, d(X, Y) ^ 6 cm. (Zadání úlohy)
i- q, q : q IIP II я', Kp> q) = q) = 2,5 cm
2. k: Thaletova kružnice s průměrem XY
3. В: В e (q и ?') n k
4. i-> i-> БУ
5. polopřímka и: osa <£ XBY
6. S: S e u, d(BS) = 4 cm
7. ^ _]_ u, S e v
8. A, C: A e i->- Пр,Сс!->БУ n
9. D: č> je střed úsečky 15Z)

10. □ ABCD

Zkouška*). Podle věty usu jsou Д ABS, Д C8<S shodné.
Protože jsou pravoúhlé a úhly při vrcholech В jsou poloviny
pravého úhlu, jsou tyto trojúhelníky rovnoramenné. Úsečky
BS, AS a CS jsou tedy shodné. Také úsečka DS je s nimi
shodná. Ve čtyřúhelníku ABCD jsou úhlopříčky к sobě
kolmé, dlouhé 8 cm a půlí se, proto je tento čtyřúhelník
čtverec.

Zbývá ukázat, že body X, Y leží na stranách čtverce
ABCD jdoucích z vrcholu В, tzn., že BX AB a BY ^ BC.
Můžeme předpokládat, že BX^tBY. Úsečka BX bude
zřejmě nejdelší, bude-li také XY nejdelší, tzn. d(XY) =
= 6 cm (obr. 10). Z pravoúhlého Д OZB vypočítáme podle
Pythagorovy věty délky OZ

d(OZ) = ]/32 - 2,52 = 1/2,75 = 1,67.

*) Od řešitelů se zkouška nepožadovala.
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Nyní určíme délku XZ a podle Pythagorovy věty vypočítáme
z trojúhelníku XZB délku XB.

d(XB) = 1/4,672 + 2,52 = ]/28,06 == 5,30.

Strana čtverce ABCD má délku

d(AB) = 4 . 1/2 = 5,66.

Tedy je skutečně d(AB) > d(XB).
Diskuse. Úloha má bud čtyři, nebo dvě, anebo žádné řešení.

Počet řešení závisí na počtu společných bodů kružnice k
a rovnoběžek q, q .

Z7 - II - 2

Určete číslice x a y, jestliže víte, že trojciferné číslo xyy

je dělitelné sedmi, trojciferné číslo yxy je dělitelné čtyřmi
a trojciferné číslo xyx je dělitelné třemi.

Řešení. Protože číslo yxy je dělitelné čtyřmi, musí být
poslední dvojčíslí xy dělitelné čtyřmi. Napíšeme tabulku
těchto čísel, přitom obě číslice x, у jsou různé od nuly (jinak
by xyy a yxy nebyla trojciferná čísla).
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12 16 24 28 32 36 44 48 52

56 64 68 72 76 84 88 92 96

Protože .ryx je dělitelné třemi, musí být ciferný součet
(2x + y) dělitelný třemi. Z tabulky čísel ponecháme pouze

ta, která splňují tuto podmínku:

52 8828 36 9644

Jim odpovídají čísla xyy:

288 366 444 522 888 966.

Z nich je dělitelné sedmi pouze číslo 966.
Výsledek je x = 9, у = 6.

Z7 - ií - 3

V místě A (obr. 11) vběhla do bludiště vyděšená myší
rodina. Všechny myši šťastně proběhly bludištěm do místa B.
(Hladový kocour prská v místě A.) Z rozhovoru udýchaných
myší se dozvídáme:

У В

шшш

шшш

шшш
А X

Obr. 11
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1. Každá myš běžela po chodbičkách jen směrem doprava
a nahoru;

2. žádné dvě myši neběžely stejnou cestou;
3. kdyby bylo ještě o jednu myš více, pak by některé dvě

myši musely běžet po stejné cestě.
Kolik členů měla myší rodina ?

Řešení. Musíme najít počet cest z A do B, které probíhají
pouze vpravo a nahoru. Tento počet můžeme určit např.
výčtem všech možností. Místo kreslení použijeme »čárkovací
metodu«, při níž např. cestu z obr. 12 zapíšeme takto

/--/-/

(svislé a vodorovné čárky udávají postupně průběh cesty).

Napíšeme tabulku všech cest.

/ / // / /
/ / / / / /

/ / / // /
/ / / / / /
/ / / / - / /(T) // - /
/ - /

/ //
/ / / /

/ / / / / /
/ / / / /

/ / / / /

Těchto cest je celkem 20.
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Počet cest můžeme určit i početně bez tabulky (T). Pou-
žijeme schématu z obrázku 13a sestaveného podle klíče
z obrázku 13b.

Čísla udávají počet cest z bodu A na křižovatku, kde je pří-
slušné číslo uvedeno.*)

Možných cest je 20, a tedy i myší rodina má 20 členů.

Z7 - il - 4

Ivan čekal s otcem a pejskem Haríkem na vlak. Čas si
krátili vážením na osobní váze. Zjistili, že:

*) Čtenáři z tříd s rozšířenou výukou matematice a přírodovědným
předmětům jistě poznávají ve schématu tabulku Pascalových čísel
(sestavenou od zdola). Takže příslušný počet můžeme určit buď
Pascalovým, nebo kombinačním číslem

6.5.4-0-P{3, 3) = 20.3.2.1
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1. Všichni dohromady mají hmotnost 106 kg.
2. Otec je o 50 kg těžší než Ivan s Haríkem.

2
3. Harík má přesně — Ivanovy hmotnosti.

Vypočítejte hmotnost každého z nich.
Řešení 1 - úsudkem. Z podmínky 2 plyne, že otec váží

o 25 kg více než je polovina ze 106 kg. Otec má tedy hmotnost
78 kg (53 + 25). Hmotnost Ivana s Haríkem je dohromady
28 kg (53 — 25). Těchto 28 kg tvoří součet hmotnosti Ivana

2
a — hmotnosti Ivana (= hmotnost Haríka). Proto 28 kg je

5

7
rovno — hmotnosti Ivana. Odtud snadno vypočítáme, že

hmotnost Haríka je 8 kg a hmotnost Ivana 20 kg.
Řešení 2 - rovnicí. Hmotnost Ivana označíme x.

x kgHmotnost Ivana

2
Hmotnost Haríka T x kg

2

5I + 50)kSHmotnost otce x +

106 kgCelkem

Dostaneme rovnici

2 2
—

x + 50 = 106X + _ X + 1 X +
5
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Jejím řešením dostaneme kořen

x = 20.

Ivan má hmotnost 20 kg, Harík 8 kg a otec 78 kg.
Zkouška. Podmínka 1. 20 + 8 + 78 = 106

Podmínka 2. 78 = (20 + 8) + 50
2

Podmínka 3. 8 = — . 20
5
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Kategória Z8

ÚLOHY I. KOLA

Z8 - I - 1

Najděte všechna čtyřciferná přirozená čísla dělitelná číslem
99, která mají tuto vlastnost: vyměníme-li mezi sebou první
dvě cifry, dostaneme čtyřciferné číslo dělitelné číslem 91.

Řešení. Hledaná čtyřciferná čísla mají být dělitelná číslem
99, to znamená, že musí být dělitelná devíti a současně je-
denácti. Uvážíme-li dělitelnost číslem 9 (přirozené číslo
vyjádřené v desítkové soustavě je dělitelné devíti právě
tehdy, když je devíti dělitelný ciferný součet tohoto čísla),
a dále tu skutečnost, že záměnou první a druhé číslice hle-
daných čísel se jejich ciferný součet nezmění, je zřejmé, že
přirozená čísla vzniklá z hledaných čísel záměnou první
a druhé číslice budou dělitelná číslem 9 a podle podmínky
úlohy číslem 91, tj. budou dělitelná čísly 9, 7 a 13, neboť
91 = 7 . 13. Vezmeme tedy všechny čtyřciferné násobky
přirozeného čísla 7.9.13 = 819. Jsou to čísla 1 638, 2 457,
3 276, 4 095, 4 914, 5 733, 6 552, 7 371, 8 190, 9 009 a 9 828.
Dále již snadno zjistíme (například použitím kritéria dělitel-
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nosti číslem 11), že všem podmínkám úlohy vyhovují právě
čísla 6 138, 4 257 a 2 376.

Z8 - I - 2

Je dán obdélník ABCD s obsahem 42 cm'2, jehož rozměry
jsou vyjádřené přirozenými čísly. Nechť M je takový vnitřní
bod obdélníku ABCD, že přímky jím procházející rovno-
běžně se stranami obdélníku rozdělí daný obdélník na čtyři
pravoúhelníky, jejichž rozměry jsou také vyjádřeny přiroze-
nými čísly. Zjistěte všechny možnosti pro polohu bodu M
v případě, že mezi vzniklými pravoúhelníky je alespoň jeden
čtverec a určete velikosti stran všech takových čtverců.

Řešení. Nejdříve je třeba určit rozměry všech obdélníků
s obsahem 42 cm2. Podle zadání mají být tyto rozměry
vyjádřeny přirozenými čísly. Jsou to tyto možnosti:

a) a = 1 cm, b — 42 cm

b) a = 2 cm, b = 21 cm

c) a = 3 cm, b = 14 cm

d) a = 6 cm, b = 7 cm

Případ a) z našich úvah vypustíme, neboť je zřejmé, že
uvnitř obdélníku s těmito rozměry nelze zvolit bod M podle
zadání úlohy.

Případy b) až d). Má-li být mezi pravoúhelníky, které
vzniknou způsobem popsaným v zadání úlohy alespoň jeden
čtverec, jsou tím pro polohu bodu M dány tyto podmínky:

1. Bod M je stejně vzdálen alespoň od dvou sousedních
stran obdélníku.

2. Tyto vzdálenosti jsou vyjádřeny přirozenými čísly.
Strany uvažovaných čtverců jsou rovny těmto vzdálenostem.
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Protože bod M má být vnitřním bodem obdélníku, musí
být strana každého čtverce menší než kratší rozměr obdélníku
a současně musí být její velikost vyjádřena přirozeným číslem.
Co se týče počtu možností polohy bodu M, je třeba vzít
v úvahu, že obdélník má čtyři dvojice sousedních stran.

Případ b). Pro délku strany čtverce je jediná možnost
rovná 1 cm. Pro polohu bodu M jsou pak dvě možnosti.
V obou případech jsou mezi vzniklými pravoúhelníky právě
dva čtverce o straně délky 1 cm. V obr. 14 jsou možné polohy
bodu M označeny M\, M-z.

JmT М2

Obr. 14

Případ c). Pro délku strany čtverce jsou dvě možnosti:
1 cm a 2 cm. Pro to, aby způsobem uvedeným v zadání úlohy
vznikl čtverec o straně délky 1 cm, jsou čtyři možnosti (v obráz-
ku 15 označené Mi — ). Má-li být strana vzniklého čtverce
2 cm dlouhá, jsou pro polohu bodu M čtyři možnosti (v obr.
15 označené M5 — Mg). Celkem je tedy 8 možností polohy
bodu M.

Případ d). Pro délku strany čtverce jsou tyto možnosti:
1 cm, 2 cm, 3 cm, 4 cm, 5 cm.

I Mi M6 My

M2 M5 M8 M3

Obr. 15
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Pro délky stran čtverců 1 cm, 2 cm, 4 cm a 5 cm jsou vždy
čtyři možné polohy bodu M (vzhledem к tomu, že obdélník
ABCD má čtyři dvojice sousedních stran). Při každé poloze
bodu M je mezi vzniklými pravoúhelníky právě jeden čtverec.
Jedná se tedy o 16 možných poloh bodu M.

V případě, že délka strany uvažovaného čtverce je 3 cm,
jsou pro polohu bodu M dvě možnosti. Přitom v obou pří-
pádech vznikají právě dva čtverce o straně délky 3 cm.
Možnosti polohy bodu M v případě, že vznikne čtverec
o straně délky

a) 1 cm jsou v obr. 16 označeny Mi — M4,
b) 2 cm jsou v obr. 16 označeny M5 — Ms,
c) 3 cm jsou v obr. 16 označeny Mg — Мю,
d) 4 cm jsou v obr. 16 označeny Mu — M14,
e) 5 cm jsou v obr. 16 označeny M15 — Mis.
V obdélníku o rozměrech a — 6 cm, b = 7 cm je tedy

18 možností pro polohu bodu M a 5 možností pro délku
strany uvažovaného čtverce.

Mi Ml7n M,6 M,

M5 Mi3 M-12 M8

M10
Mg

M6 M11Mu M7

M 2 M18 M15 M3

Obr. 16
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Z8 -1-3

Je dána úsečka AB. Sestrojte pravoúhlý trojúhelník ABC
s přeponou BC, ve kterém pro patu P výšky z vrcholu A
na stranu BC platí d(BP) : d(CP) = 3:5. Kolik řešení
má úloha ?

Řešení. Rozbor (obr. 17). Bod P leží na Thaletově kružnici
sestrojené nad průměrem AB. Д АВР ~ Д CBA podle

Cl
4

\

N1
A R, В

Obr. 17

věty uu: <£ APB = <)C CAB
jíme-li v trojúhelníku ABP výšku z vrcholu P na stranu AB
a označíme-li její patu Pi, platí d(BP\) : d(AP{) = 3:5.
Platnost tohoto tvrzení plyne z vlastnosti podobného zobra-
zení. Označíme-li k poměr podobnosti., ve které je obrazem
trojúhelníku ABC trojúhelník PBA, platí d(AP\) = k.d(CP),
d{BP\) = k . d(BP) a dále d(BPP) : d(APx) =
= k . d(BP) : k . d{CP) = d{BP) : d(CP) = 3:5.
Bod P\ tedy lze sestrojit. Bod P je pak průsečíkem Thale-
tovy kružnice s kolmicí к přímce AB vedené bodem P\.

R, <£ ABP společný. Sestro-
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Zbývající vrchol C trojúhelníku ABC je pak průsečíkem
přímky PB s kolmicí к přímce AB vedené bodem A.

Konstrukce (obr. 18)

\

/ S
; L

В

A //

P! /

q

ic
Obr. 18l.S; S střed AB

1
2. k; k r = — d(AB)

3. Pi; Pí g AB a cř(PPi) : d(AP{) = 3:5
4. p\ Pi ap J_ AB
5. P; P ep n k
6. <-> PP

7. d 6 g a ? 1 ЛР
8. C\C £ q П <-> BP
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Zkouška. Trojúhelník ABC je pravoúhlý, <^C BAC = R.
Д АВР ~ Д СРВ dle uu. d(BPx) : d(APx) = 3 : 5. Z vlast-
nosti podobnosti pak plyne

d(BP) : d(CP) = d(BPx) : d(APx) = 3:5.
Diskuse. Počet řešení úlohy je dán počtem průsečíků

přímky/) a kružnice k. Tyto průsečíky jsou vždy dva. Dostá-
váme tak dva trojúhelníky vyhovující zadání, které jsou sou-
měrně sdružené podle přímky AB.

Z8- I - 4

Určete všechny dvojice prvočísel p, q, pro které platí

11 p + 13 q = 1985.

Řešení. Víme, že

(1) ll/> + 13 q = 1985

Mohli bychom za p postupně dosazovat malá prvočísla
taková, že 11 p je menší než 1985, vypočítat vždy příslušné q
a zjistit, zda je to prvočíslo. Výpočet si však můžeme usnadnit
touto úvahou: Prvočísla /), q nemohou být obě lichá, neboť
pak by levá strana rovnice (1) byla sudé číslo, zatímco 1985
je číslo liché. Je tedy bud p — 2, nebo q — 2.
Pro p = 2 dostáváme: 11 . 2 + 13 q = 1985

13 q = 1963
q = 151

Číslo 151 je prvočíslo, takže dvojice [2, 151] vyhovuje úloze.
Pro q — 2 plyne z rovnice (1): 11 p + 13 . 2 = 1985

11p = 1959
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Číslo 1959 není dělitelné jedenácti, takže žádná dvojice
tvaru [p , 2] neexistuje.

Vyhovuje jediná dvojice [2, 151].

Z8 - I - 5

Je dán rovnostranný trojúhelník ABC, který je rozdělen
úsečkami KL, KM, LM, kde body K, L, M jsou v uvedeném
pořadí středy stran AB, ВС a dC, na čtyři menší rovnostranné
trojúhelníky, viz obr. 19. Kolika způsoby je možno strany

těchto menších trojúhelníků očíslovat čísly 1, 2, ..., 9 tak,
aby součet tří čísel na stranách každého z menších trojúhelníků
byl stejný a jeden byl očíslován čísly 4, 5, 6 (v libovolném
pořadí).

Poznámka. Dvě číslování jsou různá, jestliže aspoň jedna
z devíti úseček AK, BK, ... je v každém z nich očíslovaná
jiným číslem.
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Řešení. Číslo 15 můžeme napsat jako součet tří navzájem
různých čísel množiny {1, 2, ..., 9} pouze jedním z násle-
dujících 8 způsobů:

15-1 + 5 + 9 = 2 + 6 + 7
-1 + 6 + 8 = 3 + 4 + 8

-2+4+9-3+5+7
= 2 + 5 + 8 - 4 + 5 + 6

(I)

Protože v každém ze zápisů je zastoupeno jedno z čísel
4, 5, 6, musí být čísly 4, 5, 6 očíslován nutně trojúhelník
KLM; kdyby to byl jeden z »rohových« trojúhelníků, ne-

bylo by už zbývající dva »rohové« trojúhelníky čím očíslovat.
Předpokládejme nejprve, že úsečce KM je přiřazeno číslo 4,

úsečce KL číslo 5 a úsečce LM číslo 6. Z tabulky I je vidět,
že úsečky АК a AM potom musí být očíslované čísly 2 a 9
nebo čísly 3 a 8. Rozebereme první případ. Tabulka I říká,
že pak úsečky BK, BL musí být očíslované čísly 3 a 7 a CL,
CM čísly 1 a 8. Protože uvedenými čísly může být očíslovaná
libovolná ze dvou úseček, dostáváme celkem 8 možností;
jedna z nich je nakreslena na obr. 20. Podobně v případě,

8 1

6

2 4 /5 \3

9 7

Obr. 20
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že úsečky AK a AM jsou očíslované čísly 3 a 8, dostáváme
z tabulky I 8 dalších možností; jedna z nich je nakreslena
na obr. 21. Jsou-li úsečkám KM, KL a LM po řadě přiřa-
zená čísla 4, 5 a 6, pak již další možnosti, než ty, které jsme

uvedli, nejsou. Úsečkám KM, KL a LM můžeme však
přiřadit čísla 4, 5, 6 celkem šesti možnými způsoby; každý
z nich dává 16 očíslování všech devíti úseček. Počet možných
očíslování je tedy 16 . 6 = 96.

Existuje 96 možných očíslování úseček.

Z8 - I - 6

Do rovnostranného trojúhelníku ABC se stranou délky
8 cm je vepsán pravoúhelník XYZT tak, že body X, Y
leží na úsečce AB, bod Z na úsečce BC a bod T na úsečce
AC.

a) Vypočítejte obsah pravoúhelníku v závislosti na veli-
kosti úsečky AX a zjistěte, pro kterou její hodnotu \AXo\
je největší.
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b) Najděte vzdálenost \AX\, pro kterou se obsah právo-
3

úhelníku XYZT rovná — obsahu trojúhelníku ABC.8

Řešení, a) Obsah pravoúhelníku XYZT (obr. 22) je
(8 - 2x) x]/3 = 2 j/3 (4x - x2) = 2]/3 (4 - 4 + 4x - *2) =
= 2y3 (4 — (x — 2)2), a tedy největší je pro x = 2 cm.

b) 21/3 (4 - (x

roven

3 1
—8. 4j/3 j,2)2) = 8

4 - (x - 2)2 = 3,
(x - 2)2 = 1;

jestliže x > 2, dostáváme x — 2 = 1, x = 3,
jestliže x < 2, potom 2 — x = 1, x = 1.
Tedy \AX\ — 3 cm nebo 1 cm.
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ÚLOHY II. KOLA

Z3-II-1

Napíšeme-li trojciferné číslo vedle sebe dvakrát, dosta-
neme šesticiferné číslo, které je dělitelné sedmi. Zdůvodněte.

Řešení. Napíšeme-li za nějaké číslo tři nuly, dostaneme
číslo, které je lOOOnásobkem zvoleného čísla. Napíšeme-li
trojciferné číslo vedle sebe dvakrát, dostaneme číslo, které je
lOOlnásobkem zvoleného trojciferného čísla. Je to totiž
totéž číslo, které dostaneme tak, že zvolené trojciferné číslo
vynásobíme číslem 1000 a přičteme ještě zvolené číslo. Jelikož
číslo 1001 je násobkem čísla sedm, je i obdržené šestimístné
číslo násobkem sedmi, tedy dělitelné sedmi.

Z8 - II - 2

V trojúhelníku ABC je |AB\ = 12 cm, úhel při vrcholu
A má velikost 30°, úhel při vrcholu В je 45°. Vypočtěte
obsah trojúhelníku ABC.

Řešení. Označme P patu výšky z bodu C na stranu AB
(obr. 23). Je v — |CP| = \PB\, jelikož při vrcholu В je

C

2v v

30* 45°

A P В

Obr. 23
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úhel 45°. V pravoúhlém trojúhelníku APC je \AC\ — 2v,
tedy podle Pythagorovy věty je \ AP\ = v]!3. Bod P je bodem
úsečky AB, proto je 12 = v]]3 + v, odkud vypočteme
v — 6(] 3 — 1), obsah trojúhelníku je 36(]/3 — 1) = 26,354.

Z8 - li - 3

Uvnitř trojúhelníku ABC je zvolen bod M. Úsečky AB,
BC, CA, AM, BM, CM jsou očíslovány čísly 1, 2, 3, 4, 5, 6
tak, že součet tří čísel, kterými jsou očíslovány strany troj-
úhelníků ABM, BCM, CAM se rovná pro všechny tři
trojúhelníky témuž číslu s. Určete všechny hodnoty, kterých
může nabýt číslo s, ke každé udané hodnotě uvedte příklad
očíslování.

Řešení. Číslo s může nabýt hodnot 9,10,11, 12, příklady
očíslování jsou na obr. 24. Od žáků se nepožadovalo zdůvod-

6BA5BA3BA

Obr. 24

nění, že jiných hodnot s nenabývá. Není to však těžké.
Označíme-li a, b, c čísla přiřazená úsečkám AM, BM, CM,
je 3s = 1 + 2 + ... "f 6 o, b c — 21 -(- и -f- b -)- c.
Součet a + b + c je aspoň 1 + 2 + 3 a nejvýše 4 + 5 + 6,
proto je s aspoň 9 a nejvýše 12.
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Z8- II -4

Může mít lichoběžník strany velikostí 2, 2, 3, 5 ? Které
z těchto hodnot jsou pak délkami jeho základen? Uvedte
všechna řešení.

Řešení. Základny lichoběžníku nemohou mít stejné délky,
jsou tedy myslitelné tyto tři případy: Základny mají délky
3 a 2, ramena 5 a 2, nebo jsou základny 2 a 5 a ramena 2 a 3,
nebo by musel být lichoběžník rovnoramenný s rameny

délky 2 a základnami délek 5 a 3. První případ nemůže nastat,
protože neexistuje trojúhelník o stranách 1, 2, 5, zbývající
dva případy jsou možné, viz obr. 25.

2

2 ,5 5
1

3

ÚLOHY III. KOLA V ČSR

Z8 - Ml - 1

Na číselné ose leží pět navzájem různých bodů. Označte
je А, В, C, D, E tak, aby zároveň platilo:

a) bod A leží mezi body В a E,
b) bod C leží mezi body A a B,
c) bod D neleží mezi body В a E.

Najděte všechna řešení.
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Řešení. Jelikož bod A leží mezi body В a E, je pořadí
těchto tří bodů na číselné ose BAE nebo EAB. Protože bod

C leží mezi body A, B, musí být pořadí bodů A, В, С, E
buď BCAE nebo EACB. Bod D neleží mezi body В, E,
proto musí být bud na začátku celé pětice, nebo na konci.

Úloha má tudíž právě čtyři řešení: DBCAE, BCAED,
DEACB, EACBD.

Z8 - Ш -2

Jirka si chce nastříhat stejné obdélníkové kartičky s roz-

měry v celých centimetrech. Počet kartiček chce mít větší
než 20, ale menší než 40, obsah jedné kartičky větší než
10 cm2, ale menší než 20 cm2. Ze všech kartiček chce složit
obdélník tak, aby počet kartiček v řadě byl stejný jako počet
řad. Obsah složeného obdélníku chce mít větší než 550 cm2,
ale menší než 580 cm2. Určete všechny možné rozměry kar-
tiček, které si může Jirka nastříhat.

Řešení. Jelikož Jirka chce kartičky složit do obdélníku
tak, aby v každé řadě byl stejný počet kartiček jako je počet
řad, je počet kartiček druhou mocninou přirozeného čísla.
Má jich být aspoň 21a méně než 40, přicházejí tedy v úvahu
pouze čísla 25 a 36. Kdyby jich bylo 25, byl by celkový obsah
všech kartiček menší než 25 . 20 cm2 = 500 cm2, což by neod-
povídalo dalšímu požadavku úlohy. Počet kartiček musí být
36. Aby byl obsah všech kartiček větší než 550 cm2, musí
být obsah jedné kartičky větší než 550 : 36 cm2, tedy větší
než 15 cm2. Podobně dostaneme, že obsah kartičky musí
být menší než 17 cm2. Proto je obsah jedné kartičky 16 cm2,
její rozměry jsou bud 1 cm a 16 cm, nebo 2 cm a 8 cm. Kar-
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tička o rozměrech 4 cm а 4 cm by byla totiž čtvercová, nebyla
by obdélníková.

Z8 - III -3

Určete všechna čtyřciferná čísla, která jsou dělitelná
patnácti a jsou zapsána pouze ciframi z množiny (3, 4, 5 }.

Řešení. Číslo je právě tehdy dělitelné číslem 15, je-li
dělitelné číslem 5 a zároveň číslem 3. Číslo je dělitelné pěti,
končí-li cifrou 0 nebo 5. Číslo je dělitelné právě tehdy třemi,
je-li jeho ciferný součet dělitelný třemi. Čísla, která máme
určit, musí tedy končit cifrou 5 a součet tří předcházejících
cifer musí při dělení třemi dát zbytek 1. Můžeme ještě rozlišit,
zda bude mezi těmito třemi ciframi jedna, dvě, tři pětky,
nebo nebude na prvních třech místech žádná pětka. Při
jedné pětce musí být obě dvě zbývající cifry 4, při dvou pět-
kách musí být zbývající cifra 3. Samé pětky nevyhovují
a není-li mezi prvními třemi ciframi žádná pětka, musí
to být cifry 3, 3, 4. Na pořadí prvních tří cifer nezáleží,
úloze tudíž vyhovují právě čísla 5 445, 4 545, 4 455, 3 555,
5 355, 5 535, 3 345, 3 435, 4 335.

Z8 -111-4

V lichoběžníku ABCD je AB || CD, \AB\ — 32,3 cm,

\CD\ =5 cm, |<£ DAB\ = 30°, |<£ ABC\ = 45°. Vypočtěte
jeho obsah.

Řešeni. Označme P a Q paty kolmic vedených body D a C
na přímku AB, obr. 26. Výšku lichoběžníku označíme v,

je pak \QB\ = v, \ AP\ — z;j/3, což je možné odvodit podobně
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D С

v v

v/3A P Q v В

Obr. 26

jako v úloze Z-II-2. Dále je \AB\ = 32,3 = \AP\ + \PQ\ +
+ |<25|, |P<2I = |DCj, odkud plyne z>(l + j/3) = 27,3, tedy
v z=z 10, obsah pak je 186,5 cm'2.

ÚLOHY III. KOLA V SSR

Z8- III -1

a) Očíslujte hrany štvorstena piatimi najmenšími nepárny-
mi prvočíslami a číslom 15 tak, aby súčet čísel prislúchajúcich
hranám podstavy se rovnal súčtu čísel prislúchajúcich zvyš-
ným hranám (nepatriacim podstave) a zároveň, aby sa rovnali
súčty čísel prislúchajúcich každej dvojici mimobežných
hrán. Riešenie načrtnite.

b) Nech číslo pripísané ku hrané určuje dížku hrany.
Dá sa potom každý štvorsten vyhovujúci podmienkam
z časti a) vymodelovat’? Svoje tvrdenie zdůvodníte.

Riešenie. a) Hrany budeme číslovat’ číslami 3, 5, 7, 11,
13, 15. Pretože 3 + 5 + 7+11 + 13 +15 -54 a 54 : 2 =
= 27, hrany podstavy móžeme očíslovat’ číslami 3, 11, 13
alebo číslami 5, 7, 15. Pretože 54 : 3 = 18, jednu dvojicu
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mimobežných hrán móžeme očíslovat’ číslami 3, 15, druhů
číslami 7, 11 a tretiu číslami 5, 13. Existujú teda dve riešenia
(obr. 27a, b).

b) Nedá. V 2. riešení by jedna stená musela byť trojuholník
s rozmermi 3, 5, 11 a tie nevyhovujú trojuholníkovej ne-
rovnosti.

Z8 - NI -2

Vo vnútri strany AD rovnoběžníka ABCD zvolte bod M.
Priamka BM přetne priamku CD v bode N. Dokážte, že
súčin dížok d(AM) . d(CN) nezávisí od volby bodu M.

C

b

вA a

Obr. 28
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Riešenie. V rovnoběžníku ABCD (obr. 28) označme

d{AB) = a, d(BC) = b.

Pretože |<£ BNC\ — |<£ MBA\ a |<£ NCB
platí, že Д BCN ~ Д MAB. Potom

[-£ ВАМI,

íř(CN) d(AB) d(CN)
> ~r

а

d(MA) 'J(£C)

Z toho dostáváme, d(CN) . d(MA) = а . b.

Z8 - !M -3

Коска s dížkou hrany 3 cm je poskládaná z 27 rovnakých
malých kociek. Odstránime z nej tri »stípčeky« kociek tak,
ako je na (obr. 29) vyznačené šrafovaním. Vznikne teleso
zložené z 20 kociek. Zistite súčet dížok hrán a súčet ploch
stien takto vzniknutého telesa.

Z

Z

Obr. 29
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Riešenie

Súčet dížok hrán póvodnej коску ... 12 . 3 cm = 36 cm
súčet dížok »vnútorných« hrán
súčet dížok hrán, ktoré vzniknú na stěnách 6.4.1 cm = 24 cm

12.3 cm = 36 cm

celkový súčet 96 cm

súčet ploch »vonkajších« stien 6 . 9 cm2 — 6 cm2 = 48 cm2
súčet ploch »vnútorných« stien ... 6.4.1 cm2 = 24 cm2

celkový súčet 72 cm2

Z8 - Mi - 4

Dané je 3-ciferné číslo. К němu vytvoříme 6-ciferné číslo
nasledujúcim spósobom. Za spomínané 3-ciferné číslo napí-
šeme dalšie 3-ciferné číslo, ktoré dostaneme z póvodného
tak, že každú z jeho cifier změníme na tzv. »komplementárnu«.
(Dve cifry nazveme komplementárně, ak ich súčet je rovný 9.
Napr. к číslu 296 by sme vytvořili číslo 296 703.) Zistite,
pre ktoré 3-ciferné čísla platí, že к nim vytvořené 6-ciferné
čísla sú dělitelné 90-imi.

Riešenie 1. Nech póvodné 3-ciferné číslo má v desiatkovej
sústave zápis abc. К němu vytvořené 6-ciferné číslo má zápis
abc(9 — a) (9 — b) (9 — c).
abc(9 - a) (9 - b) (9 - с) = a . 105 + b . 104 + с . 103 +

+ (9 a) . 102 + (9 - b) . 10 + (9 -

= 99 900a + 9 9906 + 999c + 999 =

c) =

- 90 . (1 110a + 1116 + 11c + 11) + 9c + 9
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Z toho vidíme, že číslo 90 dělí »naše« 6-ciferné číslo právě
vtedy, ked 90|(9c + 9), t.j. právě vtedy, ked c — 9. Hladané
3-ciferné čísla sú tie, ktoré majú na mieste jednotiek číslo 9.

Riešenie 2. Celé číslo je dělitelné 90-imi právě vtedy,
ked je dělitelné 9-imi a 10-imi. Pretože ciferný súčet vy-
tvořeného 6-ciferného čísla je 27 a 9|27 je toto číslo deliteí-
né 90-imi právě vtedy, ked je dělitelné 10-imi, t.j. ked
9 — c = 0. Z toho dostáváme c — 9.
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Kategorie С

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

C-l-1

Dokažte, že pro každý rozklad množiny M = {1, 2, ..15 }
na dvě disjunktní podmnožiny А, В platí: v alespoň jedné
z množin А, В lze nalézt tři navzájem různá čísla x, y, z

tak, že x je největší společný dělitel čísel y, z.
Řešení. Mohli bychom se pokusit vypsat všechny možné

rozklady množiny M na dvě disjunktní podmnožiny А, В
a ukázat přímo, že v každém rozkladu obsahuje aspoň jedna
z množin А, В trojici čísel s popsanou vlastností. Vzhledem
к tomu, že je těch rozkladů přes 16 tisíc, není tento postup
prakticky možný. Zkusíme proto důkaz sporem. Předpoklá-
dejme, že existuje rozklad množiny M na dvě disjunktní
podmnožiny А, В tak, že v žádné z množin А, В neleží
tři navzájem různá čísla x, y, z, pro která je číslo x největším
společným dělitelem čísel y, z. Víme, že jedna z množin
А, В obsahuje číslo 1, nechť je to množina А. V ní pak neleží
žádná dvojice nesoudělných čísel z množiny M, různých
od 1, protože největším společným dělitelem dvou nesou-

dělných čísel je číslo 1. Do množiny В nepatří současně
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čísla 3, 9, 15, rovněž tak nepatří do množiny 8 současně
čísla 2, 4, 14. Musí tedy do A patřit aspoň jedno z čísel 2, 4, 14
a aspoň jedno z čísel 3, 9, 15. To je však spor, neboť v mno-
žíně A neleží žádná dvě nesoudělná čísla větší než 1. Místo

trojice 2, 4, 14 jsme mohli vzít též trojici 2, 8, 14.

C - 1 - 2

Určete rozměry pravidelných čtyřbokých hranolů těchto
vlastností:

(1) délky jeho hran jsou vyjádřeny celými čísly,
(2) velikost objemu hranolu a velikost povrchu hranolu

jsou vyjádřeny týmž číslem.
Řešení. Velikost strany čtvercové podstavy hranolu ozna-

číme a, výšku hranolu označíme b. Pak se objem hranolu
rovná a-b, jeho povrch je 2a2 + 4ab. Máme tedy najít
přirozená čísla a, b tak, aby splňovala rovnici a2b — 2a2 +
+ 4ab, tj. ab — 2a + 4b. Poslední rovnici upravíme na tvar
(a — 4) (b — 2) = 8. Uvážíme-li všechny možné rozklady
čísla 8 na součin dvou přirozených čísel, dostaneme pro

a, b tyto čtyři možnosti:

a — 4 = 1, b — 2 = 8, tj. a — 5, b — 10,
a — 4 = 2, b — 2 = 4, a = b = 6,
a - 4=4, b - 2 = 2,
a — 4 = 8, b — 2 = 1,

a = 8, b — 4,
a — 12, b = 3.

Úloha má čtyři řešení.

84



С - I - 3

Na úhlopříčce АС daného čtverce ABCD zvolme bod E
í

tak, aby \AE\ — — \AC|. Dokažte, že přímka DE protíná

stranu AB v jejím středu.

CD

S ВA

Obr. 30

Řešení. Označme S' průsečík přímek DE a AB (obr. 30).
Z podobnosti trojúhelníků A SE, CDE ihned plyne |ZIS| :

1 11
: |CD| = \AE\ : \CE\ = —, takže \AS\ = ~ \CD\ = — \AB\.

Tím je dokázáno, že S je střed úsečky AB.
Jiný postup důkazu: Označme F střed čtverce. Bod E leží

2
— \AF\, \BF\ = |DF\. Proto jena úsečce AF a platí \AE\
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bod E těžištěm trojúhelníku ABD a přímka DE jeho těžnice.
Ta protíná stranu AB trojúhelníku v jejím středu.

С- I -4

Od pravidelného čtyřstěnu ABCD o hraně \AB\ — 6 cm
oddělíme pravidelný čtyřstěn AB'C'D' o hraně \AB'\ — 2 cm,
kde B' e AB, G e AC, D' e Л1). Vypočtěte povrch tělesa
BCDB'GD'. Oč je tento povrch menší než povrch původního
čtyřstěnu ABCD ?

Řešení. Povrch čtyřstěnu ABCD se rovná čtyřnásobku
obsahu rovnostranného trojúhelníku o straně 6 cm, tj.

36|/3 cm2. Povrch tělesa BCDBG'D' dostaneme z povrchu
čtyřstěnu ABCD tak, že odečteme obsahy trojúhelníků
ABG', ACD', AD'B' (obr. 31) a přičteme obsah trojúhelníku
BG'D'. Jsou to vesměs rovnostranné trojúhelníky o straně
2 cm, takže povrch tělesa BCDB'CD' je 34|/3 cm2 a je
o 2j/3 cm2 menší než povrch čtyřstěnu ABCD.
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С - I - 5

Je dán trojúhelník KLM. Sestrojte rovnoramenný troj-
úhelník KAB tak, aby kružnice mu vepsaná procházela
bodem L a dotýkala se přímky KM v bodě M.

Řešení. Sestrojíme nejdříve kružnici k vepsanou hledanému
trojúhelníku KAB. Její střed S’ leží na ose úsečky ML a na
kolmici к přímce KM vedenou bodem M. Tyto dvě přímky
nejsou rovnoběžné, takže jsou bod S a kružnice k jedno-
značně určeny. Jedna strana trojúhelníku KAB je přímka
KM, další strana je druhá tečna t vedená bodem К ke kruž-
ničí k, její bod dotyku označíme N (obr. 32). Hledaný troj-

\B

úhelník KAB má být rovnoramenný, proto musí být jedna
z přímek KS, MS, NS jeho osou souměrnosti. Je-li to přímka
KS, najdeme ten její průsečík P s kružnicí k, který leží mimo
úsečku KS. Tečna kružnice k v bodě P je třetí strana hledá-
něho trojúhelníku, její průsečíky s přímkami KM, KN jsou
jeho vrcholy A, B. Má-li být přímka NS osou hledaného
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trojúhelníku (obr. 33), je jeho vrchol A průsečíkem přímky
NS a polopřímky KM, bod В je souměrně sdružený к bodu
К podle středu N. Polopřímka KM však protne přímku NS

jen tehdy, je-li |<£ MKN| < 90°. V tom případě dostaneme
další řešení z řešení právě sestrojeného souměrností podle
přímky KS. V něm bude osou přímka MS. Je-li však
|<£ MKN| = 60°, všechna tři řešení splynou. Můžeme shr-
nout: Je-li |<£ MKN\ ^ 90° nebo |<£ MKN\ = 60°, má
úloha právě jedno řešení. V ostatních případech má úloha
tři řešení, z nichž dvě jsou souměrně sdružená podle přímky
KS.

C-l-6

Délky stran pravoúhlého trojúhelníku jsou vyjádřeny
celými čísly, jedno z těchto čísel je 20. Jaké mohou být
délky ostatních stran trojúhelníku?
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Řešení. Nechť je 20 délka přepony, pro odvěsny a, b
pak platí b2 = 202 — a2 ='(2Q — a) (20 + a). Dosadíme-li
za a postupně 1, 2, 3, 19, dostaneme pro b2 hodnoty
19.21, 18.22, 17.23, ..., 1.39. Z těchto čísel jsou však
druhou mocninou přirozeného čísla pouze čísla 8.32 a 4.36.
První dostaneme pro a = 12, je pak b
me pro a = 16, b — 12. Je-li 20 délka jedné odvěsny, platí
pro druhou odvěsnu b a přeponu c vztah 400 = c2 — b2 —

= (c — b)(c + b). Čísla c — 6, c + 6 jsou bud obě lichá, nebo
obě sudá, neboť jejich rozdíl je sudý, rovná se 2b. Kdyby
byla obě lichá, nemohl by se jejich součin rovnat číslu 400,
musí být tedy obě sudá. Rozklady čísla 400 na součin dvou
sudých čísel jsou 2.200, 4.100, 8.50, 10.40, 20.20, к nim
dostaneme postupně tyto možnosti pro dvojice (c, b):
(101, 99), (52, 48), (29, 21), (25, 15), (20, 0). Poslední
dvojice úloze nevyhovuje, délka odvěsny nemůže být nulová.
S výše obdrženou dvojicí (12, 16) má úloha pět řešení.

16, druhé dostane-

ÚLOHY ŠKOLNÍ ČÁSTI I. KOLA

C - S - 1

Najděte všechny dvojice přirozených čísel p, q, pro které
platí

p2 + 4p = q2 + q

a p je prvočíslo.
Řešení. Protože p{p + 4) = q(q + 1), musí být číslo p

sudé, neboť číslo q(q + 1) je vždy sudé. Jediné sudé prvo-
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číslo je p — 2, pak je q(q + 1) =

p = 2, q = 3 je jediné řešení úlohy.
12, tedy q = 3. Dvojice

C - S - 2

Je dán obdélník ABCD o stranách |AB\ = a, |i?C| = b.
Obdélník ABiCíC je sestrojen tak, že jeho strana B\C\
prochází bodem B. Obdobně sestrojíme obdélník AB2C2C1
tak, aby jeho strana B2C2 procházela bodem B\. Vypočtěte
délky stran obdélníku AB2C2C1.

D

-B
A

1

C21

B2 B,
Obr. 34

Řešení. Obdélníky ABCD a AB1C1C mají stejné obsahy,
jelikož trojúhelníky ABC a AB\C mají stejné obsahy. Délka
strany AC je ]/a2 + b2, proto je \AB\\ — abfja2 + b-.
Pokračujeme-li v tomto postupu (obr. 34), dostaneme

\ACi\ = j/a4 + 3a2ž>2 + é4 / Уa2 + b\
\AB2\ = ab]lď^+~bž/ 1/a4 + 3a2é2 + 64.
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С - S - За

Vypočtěte poměr objemů rotačního kužele a koule jemu
vepsané, jestliže je výška kužele dvakrát větší než průměr
koule.

Řešení. Označme poloměr vepsané koule r, výška kužele
e pak v = 4r. Označme ještě x poloměr kružnice, jež je

iV

;

!

T ■I

r

\
xA 0

Obr. 35

podstavou kužele (obr. 35). Z pravoúhlého trojúhelníku
TSV plyne \TV\ = 2r|/2, z pravoúhlého trojúhelníku АО V
pak (я + 2r|/2)2 = *2 + 16r2, tedy x = rj2. Proto je objem

1 3
kužele — t.x2v = — тгг3, hledaný poměr je 2.3 3
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С - S - 3b

Podstavou čtyřbokého jehlanu je kosočtverec o straně a,
bočními stěnami jsou čtyři shodné trojúhelníky o stranách
a, b, c. Vypočítejte jeho objem, je-li a = 5, b = 6, c = 7.

Řešení. Podstavou jehlanu je kosočtverec ABCD, označme
<S jeho střed а V hlavní vrchol jehlanu. Je-li označení vrcho-
lů kosočtverce zvoleno tak, že \AV\ = b, je \BV\ = c, a tedy

|CF| = 6, |DF| = c. Protože \DV\ = |J3F|, |^F| = \CV\,
je pravoúhlým průmětem bodu V do roviny ABC bod S,
VS je výškou jehlanu. Označme IP^SI = v, |zJS| = x, |^<S| =
— y. Je x2 + y2 = a2, x2 + v2 = b2, y2 + v2 = c2 (obr. 36).

1
Objem jehlanu je —. 2xyv. Z předchozích rovností plyne
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2x2 = a2 + b2 — c2, 2y2 = a2 + c2 — b2, 2v2 = b2 + c2 — a2,
takže se objem jehlanu rovná

1
b2 1!b2 + c2 a2 p,- p2 + b2 c2 Уa2 + c2

po dosazení daných hodnot a, b, c vyjde 4] 95.

ÚLOHY II. KOLA

C - Si - 1

Najděte všechny trojice kladných čísel a, b, c, pro které
platí současně rovnice

a3 + b3 + c3 ca

a + b + c c

Řešení. Z první rovnice plyne a3 + b3 — (a + b) c2. Do-
sadíme-li z druhé rovnice c2 — ab, dostaneme a3 + b3 ~

= (a + b) ab, po úpravě (a — b)2 (a + b) = 0. Protože a, b, c

mají být kladná, mohou být řešením dané soustavy rovnic
pouze trojice a = b = c > 0. Zkouškou se přesvědčíme, že
tyto trojice jsou opravdu řešením.

C- ii -2

Sestrojte trojúhelník ABC tak, aby uvnitř strany AC ležel
bod D a uvnitř strany AB bod E s těmito vlastnostmi: Troj-
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úhelník BCD je rovnostranný, trojúhelník BED je rovno-

ramenný a pravoúhlý s pravým úhlem při vrcholu E. Určete
poměr \AC\ : \AE\.

Řešení. Protože trojúhelník BCD má být rovnostranný,
musí se velikost jeho úhlu při vrcholu C rovnat 60°. Sestro-
jíme tedy libovolný rovnostranný trojúhelník BCD, dále
pravoúhlý a rovnoramenný trojúhelník BDE s pravým úhlem
při vrcholu E tak, aby body E, C ležely v opačných polo-
rovinách s hraniční přímkou BD. Průsečík přímek CD a BE
je bod A. Bod A existuje, protože přímky CD, BE nejsou
rovnoběžné, bod D leží mezi body A, C, a trojúhelník ABC
má požadované vlastnosti (obr. 37). Sestrojíme-li к bodu A

C

D В

E

A F

Obr. 37

bod F souměrně sdružený podle přímky CE, dostaneme
rovnostranný trojúhelník CAF. Je pak \AC\ — \AF\ =

= \AE\\j2, tedy \AC\ : \AE\ = j/2~.
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С - и - За

Určete všechny dvojice prvočísel p, q, která splňují rovnici

3p2 + p = q2 + 3q.

Řešení. Pro prvočísla p, q má platit p(3p + 1) = q(q + 3).
Pak musí existovat přirozené číslo k tak, že Ър + 1 = kq,
q + 3 = kp, tedy Зр + 1 = k(kp — 3), po úpravě
(k2 - 3)p = 3k + 1. Pro k > 4 je k2 - 3 > 3k + 1 a ne-
může existovat p splňující poslední rovnici. Z ostatních hod-
not k vyhovuje pouze k = 2, je tedy p = 7, q = 11 jediné
řešení úlohy.

C - И - 3b

Mezi všemi kuželi opsanými kouli o poloměru r — 1 najděte
ty, jejichž objem je dvakrát větší než objem dané koule.
Které kužele opsané této kouli mají objem menší, než je
dvojnásobek objemu koule?

Řešení. Označme x poloměr podstavy a v výšku kužele
opsaného kouli o poloměru r — 1 (obr. 38). Z pravoúhlých
trojúhelníků АО V, STV plyne podle Pythagorovy věty
x2 + v2 = (x + у(v — l)2 — l)2, takže x = v / j/V2 — 2v,

1 ~Z>2
objem kužele je V = —

—

. Tato hodnota se rovná dvoj-2

násobku objemu jednotkové koule právě tehdy, když v splňuje
rovnici v2 = Sv — 16, tj. (v — 4)2 = 0. Z uvažovaných ku-
želů pouze kužel o výšce v = 4 má objem rovný dvojnásob-

3 v —
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nému objemu jednotkové koule. Pro v Ф 4 je vždy číslo

(v — 4)2 kladné, objem kužele je pak větší ~ tu. Žádný kužel

opsaný kouli o poloměru 1 nemá objem menší, než je dvoj-
násobek objemu této koule.
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Kategorie В

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

В - I - 1

Zobrazení f roviny do sebe zobrazuje bod [x, jy] na bod
[ax + by + m, cx + dy + «], přičemž se body [3, 0], [1, 2]
a [ — 1, —1] zobrazí po řadě na body [1, 4], [ — 1, 2] a [2, 0].
Určete koeficienty a, b, c, d, m, n. Ukažte, že f je shodnost
s jediným samodružným bodem, tedy otočení. Vypočtěte
úhel otočení.

Řešení. Bod [3, 0] se zobrazí na bod [1, 4], musí tudíž
platit 1 = 3a + m, 4 — 3c + n. Pro další dva body a jejich
obrazy dostaneme analogicky další čtyři rovnice. Z obdrže-
ných šesti rovnic vypočteme a — d — 0, b = — 1, c = 1,
m = n = 1. Zobrazení f zobrazuje tudíž bod [x, y] na bod
[—у + 1, x + 1], bod [m, v] se zobrazí na bod [—v + 1,
и + 1]. Protože [(—у + 1) — (—v + l)]2 + [(x + 1) —

— (и + l)]2 = (x — и)2 + (у — v)2, rovná se vzdálenost li-
bovolných dvou bodů vzdálenosti jejich obrazů, zobrazení f
je shodné. Bod [x, y] je právě tehdy samodružný, platí-li
rovnice x = —y + 1, у — x + 1, proto má zobrazení f
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jediný samodružný bod, je to bod [0, 1]. Bod [1, 1] se zobrazí
na bod [0, 2], jde tedy o otočení o úhel 90°.

В- I -2

Nechť jsou a, b nesoudělná přirozená čísla. Určete nej-
menší přirozené číslo m tak, aby pro všechna přirozená čísla
с, c ^ m, měly rovnice ax + by — c řešení v oboru přiro-
zených, tj. celých kladných čísel.

Řešení. Nejdříve si zkusíme určit číslo m pro některou
volbu čísel a, b, například zvolíme a — 2, b = 3 nebo a = 5,
b = 3. To nás vede к domněnce, že m = ab + 1. Ukážeme
nejdříve, že rovnice

ax + by — ab

není řešitelná v oboru přirozených čísel. V opačném případě
by se ax rovnalo b(a — y), tedy číslo b by dělilo číslo ax.
Protože čísla a, b jsou nesoudělná, muselo by být číslo x
násobkem čísla b. To by ale bylo ax ab a nemohlo by platit
ax + by = ab pro přirozené čísloy. Nechť je nyní c ^ ab + 1.
Jelikož a, b jsou nesoudělná, existují celá čísla u, v tak,
že au + bv — 1. Položíme-li x = си, у — cv, je ax +
+ by — c. Jsou-li čísla x, у kladná, je řešitelnost rovnice
ax + by = c v oboru přirozených čísel dokázána. Je-li
například x ^ 0, plyne z rovnosti ax + by — c nerovnost
у > a a platí a(x + b) + b(y — a) = c. Je-li x + b klad-
né, jsme hotovi, v opačném případě je у —a > a a platí
a(x + 2b) + b(y — 2d) = c. Je-li číslo x + 2b přirozené, do-
kázali jsme řešitelnost rovnice ax + by — cv oboru přiroze-
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ných čísel, jinak musíme pokračovat obdobným způsobem. Po
konečném počtu zvětšení čísla v o b a současném zmenšení
čísla у o a dosáhneme toho, že obě čísla budou kladná,
přirozená. Tím je důkaz dokončen.

В - I - 3

Je dána kružnice k. Sestrojte konvexní čtyřúhelník ABCD
s kolmými úhlopříčkami AC, BD a vepsaný kružnici k,
znáte-li velikosti a, /3, y, ó jeho vnitřních úhlů při vrcholech
А, В, C, D. Určete podmínky řešitelnosti.

Řešení. Předpokládejme, že čtyřúhelník ABCD vyhovuje
podmínkám úlohy (obr. 39). Protože je to čtyřúhelník těti-

vový, je a + у — тг a zároveň /3 + д = тс. Označme Р
průsečík úhlopříček čtyřúhelníku. Z pravoúhlého trojúhelníku

71

ABP plyne z + /3 > —, analogicky pro součet každých dvou
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sousedních vnitřních úhlů čtyřúhelníku. Jsou tudíž a + у —

3 c TZ
= + d = 7Z, а + Р>—,Р + у>—,у + д>— а

7t

d + a > — nutné podmínky pro existenci čtyřúhelníku po-

žadovaných vlastností. Ukážeme, že to jsou i podmínky
postačující. Předpokládejme, že jsou splněny. Aspoň jedna

TZ TZ

z hodnot а, у je nejvýše rovna —, nechť je třeba a ^ — (ji-

7Z

пак by bylo у < — a další postup by byl obdobný). Stejně
—

tak můžeme předpokládat p ^ —. Označme ještě S' střed

kružnice kar její poloměr. Protože |<£ ABC\ = fi, je podle
věty o obvodovém a středovém úhlu |<í ASC\ — 2(5. Sestro-
jíme tedy libovolnou tětivu AC kružnice k, ke které přísluší
středový úhel 2(5. Pak sestrojíme tětivu BD kolmou na AC
tak, aby jí příslušel středový úhel 2a. Musíme ještě dokázat,
že se tyto dvě tětivy protnou v bodě vnitřní oblasti kružnice k.
Označme P průsečík přímek AC, BD. Vzdálenost přímky
AC od středu S' je r cos/5, vzdálenost bodu S od přímky
BD je r cosa. Proto je |SP|2 = r2(cos2a + cos2/5). Jelikož je

7C

/5 > — — a, je cos(5 < siná a tedy |SP| < r, takže je bod P

bodem vnitřní oblasti kružnice k. Protože |<£ ^SCj = 2(5,
je |<£ ABC\ = (5 nebo |<£ ABC\ = tz — (5. V druhém pří-
pádě zaměníme označení bodů B, D. Stejně tak zvolíme
označení bodů C, A tak, aby |<£ BAD\ = a. Body А, В, C, D
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pak tvoří čtyřúhelník podle zadání úlohy. Až na shodnost
má úloha právě jedno řešení.

В- I -4

Najděte všechna přirozená čísla n taková, že čísla 1,2, ...

..., n je možno opatřit znaménky + a — tak, aby se pak
jejich součet rovnal nule.

Řešení. Je 1 + 2+ ... + n =
n(n + 1)

. Je-li toto číslo
2

liché, není možné opatřit čísla 1, 2, ..., n znaménky podle
podmínky úlohy. Součet čísel opatřených znaménkem +
by se musel rovnat součtu čísel opatřených znaménkem —

a součet obou těchto součtů by se rovnal lichému číslu, což
n(n + 1)

nemůže být splněno. Aby bylo číslo

být n = Ak nebo n — Ak — 1, kde k je přirozené číslo. Je-li
n = Ak, můžeme čísla 1, 2, ..., k, 3k + 1, 3k + 2, ..., Ak
opatřit znaménkem +, ostatní znaménkem —, pak je součet
všech čísel opatřených takto znaménky nulový. Nebo jsme
mohli čísla 1, 2, ..., Ak rozdělit do k čtveřic za sebou jdoucích
čísel a v každé čtveřici opatřit první a poslední číslo znamén-
kem +, prostřední dvě čísla znaménkem —. V případě
n = Ak — 1 opatříme čísla 1, 2 znaménkem +, číslo 3 zna-
ménkem —, zbývajících 4& — 4 čísel rozdělíme do k — 1
čtveřic za sebou jdoucích čísel, v každé čtveřici opatříme
čísla znaménky výše uvedeným způsobem. Pak bude opět
součet všech takto znaménky opatřených čísel nulový. Úloze
tedy vyhovují právě všechna čísla dělitelná čtyřmi a všechna
čísla, která dávají při dělení čtyřmi zbytek 3.

sudé, musí2
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В - ! - 5

Najděte všechny tětivové čtyřúhelníky ABCD o obsahu
8 cm2, pro které platí \AB\ = \BC\ a součet délek úhlopříček
je 8 cm.

Řešení. Označme S průsečík úhlopříček a p, q, r, s délky
úseček SA, SB, SC, SD (obr. 40). Úhel úhlopříček označí-

1
me cp. Pak se obsah čtyřúhelníku rovná — (pq + qr + rs +

1
+ sp) sinq?, takže má platit 8 = — (/> + r)(q + s) sin cp. Sou-

časně platí/) + r + 9+5 = 8. Pro každá dvě nezáporná
a + b\2

čísla a, b platí ab ^ , dosadíme-li za a, b čísla2

1 1
p + r, q + s, dostaneme 8 = — (p + r) (q + s) sin cp ^ — •2 8

. (/> + r + q + s)2 sin <p — 8 sin cp ^ 8. Protože první hodnota
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se rovná poslední, musí v předcházejícím řádku platit všude
znaménko rovnosti, tedy sin у = 1 a zároveň a = b, tj.
p + r = q + s = 4. Čtyřúhelník ABCD musí mít na sebe
kolmé úhlopříčky stejných délek. Jelikož \AB\ = |J3C|, musí
to být deltoid. A jelikož to má být čtyřúhelník tětivový se

stejně dlouhými úhlopříčkami, musí to být čtverec. Jediný
čtyřúhelník, který splňuje podmínky úlohy, je čtverec o stra-
ně 2]/2.

B- I -6

К, M, N jsou konečné množiny reálných čísel s počtem
prvků po řadě k, m, n. Označme L množinu všech čísel tvaru
x + у + z, kde x e К, у e M, z e N. Ukažte, že množina L
má aspoň k + m + n — 2 prvků.

Řešení. Prvky množiny К označíme X\,
Můžeme předpokládat, že jsme je uspořádali tak, že platí
x± < X2 < ... < xjc. Podobně můžeme předpokládat, že
M = {yi, У2, ■ ■ ■ ,ym }, yi < У2 < ... < Ут - 1 < Ут,
N = {*1, Z2, . . ., Zn-1, Zn }, Zi < Z2 < ... < Zn _ i < Zn.

Pak jsou součty
Xl + У1 + Zi, X2 + У1 + Zly . . ., хк + yi + Zly

Хк + У2 + Zi, Хк + УЗ + Zly . . . , Хк + Ут + Zly

Хк + Ут + Z9, Хк + Ут + З'З, • • •, Хк + Ут + Zn

navzájem různé, každý z nich je větší než předcházející.
V prvním řádku je jich k, v druhém m — 1 a v třetím n — 1.
Tím jsme dokázali, že v množině L je aspoň k + m + n — 2
navzájem různých čísel. Je-li například К = (1,2,
M = {1, 2, ..., m — 1, m), N = {1, 2, ..., n — 1, n },

• • •) ЭСк*

юз



je L = {3, 4, ..., k + m + n], množina L má právě
k + ni + n — 2 prvků.

ÚLOHY ŠKOLNÍ ČÁSTI I. KOLA

В - s - t

Zobrazení f roviny do sebe přiřadí bodu [x, y] bod
[ax + by + m, cx + dy + n\, přičemž se body [ — 1, 3] a

[8, 0] zobrazí po řadě na body [1, — 1] a [4, 8] a bod [4, 3] se
zobrazí na sebe. Určete koeficienty a, b, c, d, m, n a ukažte,
že samodružné body zobrazení f tvoří přímku. (Bod je samo-

družný, jestliže se zobrazí na sebe.)
Řešení. Postupujeme obdobně jako v úloze B-I-l, vyjde

4 8
— —3 n = —. Bod

1
[x, y] je právě tehdy samodružný, platí-li у = — x + 1.

Samodružné body tedy tvoří přímku.

4 33

5* 6a — -, m =

B-S-2

Dokažte, že pro každé přirozené číslo n (n > 1) je možné
čísla 1, 3, 5, ..., 4n — 3, 4n — 1 opatřit znaménky + a —

tak, že se pak jejich součet rovná nule.
Řešení. Máme 2n za sebou jdoucích lichých čísel 1,3, ...,

4и — 1. Tato čísla rozdělíme odzadu do čtveřic. Je-li n sudé,
nezbyde žádné číslo. V každé čtveřici za sebou jdoucích
lichých čísel (2k — 3, 2k — l, 2k + 1, 2^ + 3) můžeme
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к prvnímu a poslednímu dát znaménko + , к prostředním
dvěma znaménko —, součet všech čísel v čtveřici a tudíž
i součet všech uvažovaných čísel se pak rovná nule. Je-li n

liché, postupujeme obdobně. Čísla rozdělíme odzadu do
čtveřic až na prvních šest, které opatříme znaménky takto:
+ 1, + 3, +5, —7, +9, —11.

В - S - 3a

Ukažte, že neexistují přirozená čísla a, b tak, aby bylo
číslo a3 + b3 — 3 dělitelné sedmi.

Řešení. Při dělení čísla a sedmi jsou možné zbytky 0, 1, 2,
3, 4, 5, 6, při dělení čísla a3 sedmi jsou možné zbytky 0, 1, 6.
Totéž platí pro číslo b3, součet a3 + b3 může dát při dělení
sedmi pouze zbytky 0, 1, 6, 2 nebo 5. Proto číslo a3 + b3 — 3
dává při dělení sedmi zbytek 4, 5, 3, 6 nebo 2, nikdy však
zbytek 0, takže není dělitelné sedmi.

В - S - 3b

Je dán lichoběžník ABCD se základnami AB, CD. Úsečka
BC je průměrem kružnice k\, úsečka AD je průměrem kruž-
nice kz. Dokažte, že lichoběžníku ABCD lze vepsat kružnici
právě tehdy, jestliže se kružnice k\, kz vně dotýkají.

Řešení. Středy Si, Sz kružnic ki, kz (obr. 41) splývají se

\AB\ + ]CD|
středy ramen BC, AD, je tudíž

Pro poloměry n, rz kružnic k\, kz platí 2r\ = \BC\, 2rz =
= \AD\. Kružnice k\, kz se vně dotýkají právě tehdy, je-li
n + rz = ISi&l, tedy IAD\ + \BC\ = \AB\ + |CD|. To je

2
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D С

>K2, ' ki
/ S2> I Si

\ \

A В
Obr. 41

však nutná a postačující podmínka pro to, aby byl čtyřúhelník
ABCD tečnový.

ÚLOHY II. KOLA

В - И - 1

Zobrazení h roviny na sebe zobrazuje bod [jc, y] na bod
[ax + by -f m, cx + dy + n], kde a, b, c, d, m, n jsou reálná
čísla. Určete je tak, aby se body [0, 0], [3, 0], [0, 1] zobrazily
po řadě na body [6, 3], [0, 3], [6, 1]. Najděte samodružné
body zobrazení h a rozhodněte, zda h je shodnost, podobnost,
středová souměrnost, stejnolehlost.

Řešení. Postupem stejným jako při řešení úloh B-I-l
a B-S-l vypočteme a = d = —2, b — c = 0, m = 6, n = 3.
Zobrazení h má jediný samodružný bod S[2, 1]. Zobrazení
h není shodnost, tím spíše to není středová souměrnost.
Zobrazení h je stejnolehlost a tedy i podobnost, neboť pro

každý bod Л” ф S jsou polopřímky SX, Sh(X) opačné
a |S/i(AT)| = 2\SX\.
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В- M -2

Najděte všechna řešení soustavy rovnic

x + у + z = 3

jc3 + jy3 + я3 = 27.

Řešení. Dosadíme-li z = 3 — x — у do druhé rovnice,
dostaneme po úpravě rovnici (x + y) (x — 3)(y — 3) = 0.
Je-li x + у = 0, je z = 3. Je-li .r = 3, je z = —y, podobně
pro у = 3 je z = —x. Čísla x, y, z jsou řešením dané sou-

stavy právě tehdy, je-li jedno z nich rovné 3 a zbývající dvě
jsou libovolná dvě opačná čísla.

В - II - За

Je dán pravoúhlý lichoběžník ABCD s pravým úhlem
při vrcholu A, základnami lichoběžníku jsou strany AB,
CD. Dokažte, že kružnice nad průměrem BC se dotýká
ramene AD právě tehdy, když se kružnice nad průměrem
AD dotýká ramene BC.
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Řešení. Kružnice k\ nad průměrem BC se dotýká ramene
AD (obr. 42) právě tehdy, když platí b — a + c, kde a =
= \AB\, b — \BC\, c = \CD\, neboť střední příčka licho-

o, -f- c
běžníku je —2— a poloměr kružnice k\ je —. Dotýká-li se
kružnice kz nad průměrem AD ramene BC, je b = a + c,

jak vyplývá z rovnosti úseků na tečnách vedených bodem B,
případně C, ke kružnici kz. Je-li obráceně b = a + c, můžeme
na úsečce BC zvolit bod T tak, že \CT\ — c, \BT\ = a.
Bodem T vedeme kolmici к přímce BC, její průsečík s přím-
kou AD označíme 61. Ze shodnosti trojúhelníků SCD, SCT
plyne I SD\ = |ST|, stejně tak bychom dokázali, že |5ZÍ| =
= |<ST|. Je tedy bod S střed kružnice kz. Z rovnosti \SD\ =
= \ST\ plyne, že se kružnice kz dotýká ramene BC. Tím
jsme dokázali, že kružnice kz se dotýká ramene BC tehdy
a jen tehdy, je-li b = a + c. Jelikož tato rovnost je též
nutnou a postačující podmínkou pro dotyk kružnice k\
a přímky AD, je tím tvrzení úlohy dokázáno.

b

В - Eí - 3b

Nechť m je dané přirozené číslo. Množinu

M = (1, 2, ..., 2m — 1,2m]

rozložte na dvě disjunktní podmnožiny А, В tak, aby každá
z množin А, В měla právě m prvků a číslo c = max ($(A),
j(B)) bylo co nejmenší. Přitom 5(A), resp. 5(B), značí součet
všech čísel z množiny A, resp. z množiny B. Určete číslo c
v závislosti na m.
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Řešení. Jes(A) + s(B) = 1 + 2+ ... + 2m — m(2m + 1).
Můžeme předpokládat, že je s(A) ^ s(B). Číslo c bude
nejmenší, budou-li se čísla í(A), 5(B) sobě rovnat nebo
bude-li jejich rozdíl co nejmenší, neboť jejich součet je
dán. Je-li m sudé, m = 2k, zkusíme najít takové rozdělení,
aby platilo s(A) = 5(B). Stačí položit A= (1, 2,...,k,
3& + 1, 3k + 2, ..., 4£}, В = [k + 1, ..., 3k], porovnej

m

s úlohou B-I-4. Je pak c = s(A) = 5(B) = — (2m + 1) =

m
= m2 + —. Je-li m liché, je s(A) + 5(B) číslo liché, nemůže

být s(A) = 5(B). Zkusíme najít takové rozdělení, aby s(A) =
= s(B) + 1. Nechť m — 2k + 1. Čísla 1, 2, ..., \k rozdělíme
do množin А, В jako v předcházejícím případě, do množiny A
přidáme ještě číslo \k + 2, do množiny В přidáme číslo
4& + 1. Je pak c — s(A) = k(4k + 1) + 4k + 2 =

m + 1
= rrí1 +

2

109



Kategorie A

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

A - I - t

Nechť M — A1A2... An je konvexní я-úhelník (n ^ 3),
ci, C2, ...,cn reálná čísla. Pro XeM označme

f(x) = 2 Cidh
i 1

kde di je vzdálenost bodu X od přímky AiAi+i, 1 ^ n

(An+1 = A\).
a) Jestliže existují tři body Xi, X2, X3 neležící v přímce

tak, že

f{Xi) =f(X2) =f(X3),

pak je funkce/ konstantní na M.
b) Nalezněte všechny trojúhelníky a čtyřúhelníky, pro

které je funkce / při a = 1 konstantní (tj. součet vzdáleností
bodu X od stran M je konstantní).

Řešení, a) Označme uř jednotkový normálový vektor
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přímky AiAi+i směřující ven z daného я-úhelníku. Vzdá-
lenost di bodu X e M od přímky AíAí+i pak dostaneme
jako skalární součin

di — (XAi, Uf).

Vzhledem к tomu, že

Kx) = 2 cidi = 2 ci (ХАь Uť), je
1 i= l

X] Аг, CfUj) = (XXi, V CfUj)./W -/№) = I (XAi
Í=1 г= 1

Rovnost f(Xi) = /(^2) — /(хз) tedy znamená, že pro vektor
П

u = 2 ciui platí
Í = 1

(XiX2, u) = (X1X3, u) = 0.

Avšak vektory X1X2 а X1X3 jsou lineárně nezávislé, proto-
že body Xi, X2, X3 neleží v přímce. Proto musí být u = o
a pro libovolný bod X e M pak platí

f{X) = (XX,, u) = 0,

neboli/ je na M konstantní.
b) Jak plyne z předcházející části, funkce f je pro ct = 1

konstantní na M, právě když

Úl + U2 + . . . + Un —1 O-
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Umístěme vektory ut do počátku soustavy souřadnic. Je-li
n — 3, musí být (obr. 43)

|OU2| = \ОЩ = \OU23\ = 1,

takže trojúhelník OU2U23 je rovnostranný podobně jako
trojúhelník OU3U23. Vektory Ui, u2, U3 tedy svírají navzájem
úhel 120°, odkud plyne, že M je rovnostranný trojúhelník.

Ui

0
u2-

/
/

/
U3^23

Obr. 43

U2i U127

0// /
U3í U1

L
U 34 Ua

Obr. 44
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Je-li n — 4, musí být (obr. 44) \OUiz\ = 10ř734|3
takže trojúhelníky OU12U2, U34OU3, U12OU1 a O U34 Щ
jsou shodné. Je tedy 112 = — щ a Ui = —113, což ale známe-

ná, -že M je rovnoběžník.
To, že obráceně pro každý rovnostranný trojúhelník a pro

každý rovnoběžník je uvedená funkce/ při a = 1 konstantní,
je zřejmé.

А- I -2

Nechť m je přirozené číslo, p prvočíslo. Označme
mil =1.3.5 m pro m liché,

= 2.4.6 m pro m sudé

tzv. dvojný faktoriál. Určete nejvyšší mocninu prvočísla p,
která ještě dělí číslo m\\.

Řešení. Nejdříve zjistíme, že pro m = 2k sudé je

(2k)!! = 2.4 2k = 2kk\,

pro m = 2k + 1 liché je

(2k + 1)! ml
(2k)\\ = ¥k\ '

(2k + 1)!! = 1.3 (2k + 1) =

Je-li p prvočíslo, je mezi n činiteli čísla и! právě

tvaru />, 2p, 3p, ...,kde [x] označuje největší celé číslo

čísel

nejvýše rovné x. Mezi těmito čísly je ovšem ještě právě
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Г 1
п

čísel dělitelných/)2 a ovšem ještě —
L pA _

konce />3 atd. Celkem můžeme tedy z čísla n\ vytknout pa,

čísel dělitelných do-

kde

.V *nn

+ + ...a =

p2 ,P - Pi ž 1

(přitom uvedený součet má zřejmě jen konečný počet nenu-

lových sčítanců).
Pro m = 2k je tedy

-i
íši1 и

pro p > 2,

~

k "У 4 уа = k + pro p — 2.2* 2l
i ž 1 i > 0

Pro m — 2k + 1 je

2(15
k

pro p > 2,a

P\

íl)—?.(йa = 2 (tživ

km

2\ 2i-1

= 0 pro p = 2,

1 - Й2k + 1
protože pro i ^ 1 je 2*
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Místo posledního výpočtu si ovšem můžeme uvědomit, že
m\\ je pro liché m rovněž liché.

A - I - 3

Dokažte, že
a) v tětivovém pětiúhelníku s vnitřními úhly oq, ..., аз

(v tomto pořadí) platí

ai + ... + as — Зтс,

ai + а3 > тс, а2 + а4 > тс, ..., а5 + а2 > тс;

b) jsou-li ai, . . ., as duté úhly (0 < а* < тс) splňující
všechny uvedené vztahy, pak existuje tětivový pětiúhelník
s vnitřními úhly сц (v tomto pořadí).

Řešení. Část a) je velmi jednoduchá. Snadno zjistíme (roz-
dělením na trojúhelníky), že součet úhlů v libovolném и-úhel-
niku (i nekonvexním, požadujeme pouze, aby se uzavřená
lomená čára určená posloupností vrcholů и-úhelníku nepro-

tínala) je (и — 2)тс. Je tedy speciálně

ai + аз + ... + y-5 — Зтс.

Dále použijeme toho, že čtyřúhelník ABCD je tětivový,
právě když pro jeho úhly platí а + у = /? + д=тг. Pomocí
tohoto vztahu spočteme úhly na obr. 45. Odtud plynou
nerovnosti

ai + аз > тс, а2 + а4 > тс, . . ., а5 + а2 > тс.

b) Splňují-li duté úhly а* uvedené nerovnosti, můžeme
sestrojit trojúhelník A1A2A5 s úhly ai, аз + аз — тс, a2 4-
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+ oc4 — тс a v polorovině opačné к A2A5A1 trojúhelník A2A3A5
s úhly тс — 0C4, тс — ai, ai + 0C4 — тс. Protože |<^C +
+ |<C АзАзАз\ = ai + 7c — ai = 7c, leží vrchol Л3 na kruž-
ničí opsané trojúhelníku A1A2A5. Podobně lze sestrojit
trojúhelník A5A3A4 v polorovině opačné к A3A5A2, a protože
|<£ A5A2A3\ + |<$c АзА4Аз\ — тс, leží vrchol A5 na kružnici
opsané čtyřúhelníku A1A2A3A4. Takto sestrojený pětiúhelník
A1A2A3A4A5 je tedy tětivový a snadno zjistíme, že jeho úhly
jsou ai, a2, ..a5.

A- ! -4

V 1
/ ( — =2. Pak pro kaž-Nechť xt jsou kladná reálná čísla,

dé celé k,\ ^ k < n, je
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к п

22
i = 1

11
Xi ^ 2.Xi +

(n-kf J£2
* + 1

Dokažte.

Řešení. Položme nejprve

1
1 s .‘S k,Уг = T

1
j>í = ;, л + i ^ i ^ w.

n — К

Máme tedy dokázat nerovnost

ПП

2 y2ixi ^ 2 = У J?i.
1=1i = l

Uvedená nerovnost však plyne z Cauchyovy nerovnosti

-| / П П

I; 2 2
\ i=l i=l

2 aíbí У
i = 1

stačí, když napíšeme

/ уП П

2ylxf2jt’2=2yt=2y,vxi щ=
n

V 1
a protože — =

i = 1 i = 1

2, plyne odtud požadovaná nerovnost.
i = i
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A- \ -5

Najděte nejmenší k taková, že platí: je-li dán libovolný
trojúhelník ABC se stranami a ^ b ^ c, pak existuje

a) rovnoramenný trojúhelník XYZ,
b) pravoúhlý rovnoramenný trojúhelník XYZ,

který obsahuje trojúhelník ABC a pro jehož obsah platí

Вxyz й kb-.

Řešení, a) Uvažujme rovnoramenný pravoúhlý trojúhelník
1

ABC, jeho obsah je Pabc = ~ b2. Pro každý rovnoramenný

trojúhelník XYZ, který obsahuje trojúhelník ABC, je tedy
1 1

Pxyz ^ ~ Ъ~, tedy k ^ —. Zároveň je zřejmé, že ke každému

trojúhelníku ABC se stranami a ^ b ^ c sestrojíme rovno-

ramenný trojúhelník XYZ s vrcholy X = A, Z = C, jehož
dvě ramena mají délku b (obr. 46) a jehož obsah je Pxyz =
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11
= — b2 siny й^Ь2. Odtud plyne, že v tomto případě je

1
k = —

2 '

b) Pro každý pravoúhlý rovnoramenný trojúhelník XYZ,
který obsahuje trojúhelník ABC se stranami a ^ b ^ c,
zřejmě platí, že jeho přepona je alespoň c, je tedy Pxyz ^

1
> — c2.
“

4

Uvažujme rovnoramenný trojúhelník ABC se základnou
c

c a rameny délky b = — + e , s > 0 (obr. 47). Pro takový

trojúhelník pak ale máme Pxyz (b — e)2, což musí platit
pro libovolné e > 0, je tedy k ^ 1.

Je-li nyní ABC ostroúhlý (nebo pravoúhlý) trojúhelník
se stranami a ^ b fí c, pak leží v pravoúhlé kruhové výseči
se středem C a poloměrem b (obr. 48), a pravoúhlý rovno-

ramenný trojúhelník XYZ, který obsahuje uvedenou výseč
a má pravý úhel při vrcholu Z — C, má obsah Pxyz = b2.
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Je-li ABC tupoúhlý trojúhelník se stranami a ^ b ^ c,

pak je bud celý obsažen v pravoúhlém rovnoramenném
trojúhelníku s přeponou c (obr. 49), anebo je obsažen v pra-
voúhlém rovnoramenném trojúhelníku s odvěsnou c (obr. 50).
První případ nastane pro a /5 íS 45°, přičemž Pxyz —

c2
= — ^ b2, protože c íg a + b ^ 2b. V druhém případě je4

c 1
45° < /5 < 90° a i ^ —=, takže Pxyz = — c2 ^ b2. V přípa-

У2 2
dě b) je tedy k = 1.
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Poznámka. Pro ostroúhlý trojúhelník ABC se stranami
a ^ b ^ c můžeme ovšem najít pravoúhlý rovnoramenný

3
trojúhelník XYZ, který splňuje nerovnost Pxyz ú ~62.

/ \
В YX A

Obr. 51
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Je-li a ^ 45°, stačí sestrojit trojúhelník XYZ s vrcholy
X — A, Z = C a pravým úhlem při vrcholu Z. Pro 45° <
< a ^ 60° sestrojíme trojúhelník XYZ s pravým úhlem
při vrcholu Z = C as výškou, která splývá s výškou troj-

3
úhelníku ABC (obr. 51). Pak je Pxyz b2 sin2a < —

-

4

Je pro ostroúhlý trojúhelník ABC konstanta k = — nejmenší?

b2.

3

A - I - 6

Mějme n~ reálných čísel uspořádaných do čtvercové ta-
bulky n X n a nechť je jejich součet roven nule. Označme C
aritmetický průměr čtverců těchto čísel, Sj aritmetický prů-
měr čísel v у-tém sloupci, r* aritmetický průměr čísel v г-tém
řádku tabulky, S bude aritmetický průměr čísel sj a R
aritmetický průměr čísel rf. Potom platí nerovnost

C^ R + S.

Dokažte a zjistěte, kdy nastane rovnost.
Řešení. Označme хц číslo v г-tém řádku a /-těm sloupci

tabulky. Potom platí

11
= o, n = — 2 xíh sí = ~ 2 хц,

n 3=1 n i=1
2 щ

i, 3 = 1

1 1
2 rl S = - I sj.

n i=1

R = —
n i=1
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Zřejmě také platí

1П n n

v 2 ха = 2 Sj = o.2 rt= —
n i,j= 1i = l 3 = 1

takže je

П П n

riSj = 2 n 2 si =
l=l j = l

v
—

U=i

n n n

2 (rf + 2ns] + sj) — 2 (xj + sj)-
i,j= i

2 (n + si)2
i,j= 1 i, i = 1

Zároveň je

1 1/ n n \

( 2 rf+ 2 í)\ *=i j=i /

n

3 2 W + Ý)>П i, 3=1

R+ S = -
n

máme tedy dokázat nerovnost

w

2 fa + fa2 й 2
*» 3 = 1

ij•
i, 3 = 1

Položme

- fa + 5;),

pak je
П П

2 dij = 2 Xij - nSj = 0,
i = 1 i = 1
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n n

2 dij = 2 Xtl - nri =
3=1 i=i

nn

2 хЬ = 2 0*7 + n + ^)2 =
i, 3 = 1i, 3 = 1

П nn

— 2 dfj + 2 (r< + sj)2 + 22 du (ji + sj) —
i, 3 = 1 i, 3 = 1i, 3 = 1

nП П

= 2 4 + 2 (r, + s,y s 2 (r, + s,y,
i, 3 = 1 i, 3 = 1i, 3 = 1

což jsme chtěli dokázat. Přitom rovnost v poslední nerovnosti
nastane, právě když pro všechna i, je {1, 2, ..n] je

dij =-- 0, tj. Xij = Гг + Sj.

ÚLOHY ŠKOLNÍ ČASTI I. KOLA

A-S-1

Dané sú reálne nezáporné čísla ai, «2, h, 62- Dokážte, že
platí

Ol + a2)2 (h + *2)2
OOi + a2b-2) (a\bz + «2^1) ^ 4

Kedy platí rovnosť ?
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Řešení. Pro libovolná dvě reálná čísla platí

O + y)2
xy ^

4

přičemž rovnost nastane, právě když x = y. Položíme-li
x — a\bi + azb2, у = ai&2 + азЬ, dostaneme dokazovanou
nerovnost, přičemž rovnost platí, právě když

aibi + #2^2 = Ul&2 + U261,

což můžeme upravit na tvar

(ai - a2) ([fa — fa) - 0.

V uvedené nerovnosti tedy nastane rovnost, právě když je
a\ = <z2 nebo bi = ž>2-

A - S - 2

Je dán konvexní tětivový pětiúhelník A1A2A3A4A5 s vnitř-
nimi úhly ai, a2, аз, а4, 0C5 (v tomto pořadí). Vypočtěte velí-
kosti jSi, /52, /?з, /J4, /95 úhlů A4A1A3, A5A2A4, A1A3A5,
.Л2Л4.Л1, A3A5A2.

Řešení. Čtyřúhelníky A4A2A3A4 a A1A3A4A5 jsou tětivové.
V trojúhelníku A4A3A4 tedy platí

|<£ А\А4Аз\ — 180° — аг,

|<£ = 180° - as,
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takže

/5i = аг + as — 180°,

ostatní velikosti dostaneme cyklickou záměnou indexů:

/?2 = Z-3 + 7.1 — 180°, /5з = «4 + 72 — 180°,

/§4 = Я5 + 73 — 180°, /55 — 7i + 74 — 180°.

A - S - 3a

V rovině se zvolenou pravoúhlou soustavou souřadnic je
dán rovnostranný trojúhelník se stranou délky 2|/3 a kruh

1
o poloměru —. Dokažte, že existuje aspoň jeden mřížový bod,

který leží uvnitř daného trojúhelníku a neleží uvnitř daného
kruhu. (Mřížový bod je bod, jehož obě souřadnice jsou celá
čísla.)

Řešení. Poloměr kružnice vepsané danému trojúhelníku je
1, proto odpovídající kruh К obsahuje aspoň dva mřížové bo-
dy. Každý bod roviny leží totiž aspoň ve dvou kruzích o polo-
měru 1 se středy v mřížových bodech. Přitom leží bud dva
mřížové body uvnitř kruhu, nebo je středem kruhu К mři-
žový bod a další čtyři mřížové body leží na jeho hranici,
takže nejvýše jeden z nich leží na hranici daného trojúhelníku.
V každém případě leží uvnitř daného trojúhelníku aspoň

1
dva mřížové body. Uvnitř každého kruhu o poloměru —

však leží nejvýše jeden mřížový bod, proto aspoň jeden
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mřížový bod leží uvnitř daného trojúhelníku a neleží uvnitř
daného kruhu.

A - S - 3b

Dokážte, že pre každé prirodzené číslo n je najmenší
spoločný násobok čísel 1, 2, 2n — 1, 2n dělitelný

číslom
'2n

n

(2«)!2n

Řešení. Číslo rozložíme v součin mocnin
n\ n\

prvočísel; nechť v tomto rozkladu je prvočíslo p s exponen-
tem a. Pak je

n

2n n
- 2a

iiP LPi S 1

Protože pro každé reálné číslo x je 0 ^ [2x] — 2[x] ^ 1, rov-
ná se a nejvýše počtu nenulových sčítanců v prvním součtu,
tedy a íS b, kde b je největší celé číslo, pro něž ještě platí
pb 5Š 2n. Číslo pa tedy dělí jedno z čísel 1, 2, ..., 2и, totiž
pb, proto pa dělí i jejich nejmenší společný násobek. Protože

i ž 1

0to platí pro každé prvočíslo p v rozkladu čísla

činitele, je důkaz hotov.

na prvo-

ÚLOHY II. KOLA

A - N - 1

Je-li X vnitřním bodem konvexního čtyřúhelníku ABCD,
označme u, v, x, у jeho vzdálenosti od přímek AB, BC,
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CD, DA. Dokažte, že existují kladná čísla a, /3, y, Ó taková,
že součet аи + /3v + yx + óy je stejný pro všechny vnitřní
body čtyřúhelníku ABCD.

Řešení. Úsečky АХ, BX, CX a DX rozdělí čtyřúhelník
ABCD na čtyři nepřekrývající se trojúhelníky, proto je
\AB\u + \BC\v + \CD\x + \DA\y — 2P, kde P je obsah
čtyřúhelníku ABCD. Uvedený součet tedy nezávisí na volbě
bodu X uvnitř či na hranici čtyřúhelníku, můžeme proto
za a, /3, у а ó vzít velikosti úseček AB, BC, CD a DA, pří-
pádně jejich násobky libovolným kladným číslem k.

Jiné řešení. Můžeme ovšem také použít stejného postupu
jako při řešení úlohy A-I-l. Označíme-li a, b, c, d vnější
normálové (jednotkové) vektory jednotlivých stran čtyřúhel-
niku ABCD (obr. 52), máme dokázat existenci kladných čísel
a, /3, у, d takových, že aa + fib + yc + ód — 0.

Z lineární závislosti čtyř vektorů a, b, c, d v rovině plyne

c CD

d

b
A

/a

В

Obr. 52
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pouze existence reálných konstant. Stačí si však uvědomit,
že vektory a, b, c, d při umístění do počátku nemohou všech-
ny ležet v jedné polorovině (libovolné dva sousední vektory
spolu svírají dutý úhel), existuje tedy přímka (obr. 53),

která prochází počátkem a leží jak mezi vektory a, b, tak
mezi vektory c, d. Vezmeme-li libovolné dva opačné vektory
ve směru uvedené přímky, je zřejmé, že existují kladná čísla
а, /За у, b taková, že

x = aa + /3b, -x = yc + (3d,
tj-

aa + /3b + yc + ód = 0.

Můžeme si ovšem též uvědomit, že vektor a dostaneme
z vektoru АВ otočením o —90° a vynásobením číslem |AB|,
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podobně dostaneme i další vektory b, c, d. Protože АВ 4-
+ ВС + CD + DA = 03 plyne odtud stejný výsledek jako
v prvním řešení.

A- N -2

Dané sú celé čísla n, k také, že n > k > 0. Dokážte, že
existujú celé nezáporné čísla ci, C2, ..., cn také, že

k(c\ + . . . + Cjc) + (ti — k) (Cjc+l 4- ... 4- cn) ^

= P(ci + • • • + cp) + Cn ~ P) (cp+i + ... + c,i)

platí pre všetkyp e {1, 2, ..., n — 1}.

Řešení. Takto formulovaná úloha je vcelku triviální, neboť
za celá nezáporná čísla Ci, co, ..., cn můžeme ve všech ne-
rovnostech volit samé nuly. К osudné záměně s Čísly celými
kladnými došlo až při konečné úpravě textů úloh II. kola,
když se ukázalo, že termín »přirozená čísla« není v současných
školních textech jednotně definován. Pro úplnost uvedme
ještě i »netriviální« řešení.

Podobně jako při řešení úlohy A-I-4 použijeme nerovnost

2

i = 1 i = 1 \г = 1

yt ,

která pro nezáporná reálná čísla Xt, yt, xi ф 0, plyne z Cau-
chyovy nerovnosti. Pro X] = x-2 = ... — xp = p, x^+i =

=
... = xn = n — p (1 ^ p < n) a pro у i = ]jci dostaneme

nerovnosti
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p(c1 + • • • + Cp) + (n — p) fcp+1 + • • • + cn) ^

1
= 2 (VCl + • • • + Mcn )2-

Pro dané k, 0 < k <n, zkusme položit ci — c2 = .

= Cle = A, Cic+I = Cic+2 = ... = cn = B, pak je

1 1
-z (V<1 + ... + ]/c„)2 = - {k]jA + {n-k) \Bf

a

k(c\ + . . . + Cle) + (n — k) (c/c+i + ... + cn) —

= k2A + (n - kJB.

Rovnost

1
- (k)]A + (n - k)]/В )2 = k~A + (n - k)2B,

neboli

(yk\A - (n - k)]/В )2 - 0

je splněna např. pro celá kladná čísla A = (n — k)2, В = k2.
Uvedeným nerovnostem tedy vyhovují např. přirozená

(ti ^0^ Ск+1 ... C'fiČísla Cl = C-2 = ... = Cle

= k2.
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A - II - За

(V)Nájdite všetky celé nezáporné čísla k také, že

je číslo nepárne.
Řešení. Podle definice kombinačního čísla je

(2k - 1)!2k - 1

(k - 1)! k\k

1.3.5 (2k - 1).2.4 (2k - 2)
(k - 1)! k\

2*-i
= (2k - 1)!! k\ '

Číslo (2k — 1)!! je liché a pro nejvyšší mocninu 2a, která
dělí číslo k\, platí (viz řešení úlohy A-I-2)

Ш Г-
12S\’+ ... ++a =

kde 2S ^ k < 2S+1. Zároveň je

a=7+ 4 + ■■■ = ~2‘
k 1

k
= k- — £k-l.

2S

r.“) je liché, právě když a = k — 1, plyneProtože číslo

132



2k - 1
je liché právě pro

všechna přirozená čísla k tvaru k = 2S, kde s je celé ne-

záporné.

z uvedené nerovnosti, že číslo k

A - II -3b

V rovině se zvolenou pravoúhlou soustavou souřadnic je
dán rovnoramenný trojúhelník ABC se základnou AB, úhlem
у při vrcholu C a výškou na základnu

1
= 1/2 1 +Ve

7
sin —

2

Dokažte, že trojúhelník ABC obsahuje aspoň čtyři mřížové
body.

Řešení. Pro poloměr r kružnice vepsané trojúhelníku ABC
platí

. V
sin — = —

2 vc r

takže je

]/2
... 4 .•-+') Vc,

r

neboli r = У2. Ovšem v každém kruhu o poloměru ]/2 leží
aspoň čtyři mřížové body, protože každý bod leží v některém
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jednotkovém čtverci s vrcholy v mřížových bodech a jeho
vzdálenost od každého z vrcholů tohoto čtverce je nejvýše ] 2.

ÚLOHY III. KOLA

A - lil - 1

V rovině je dán pravidelný 1 985-úhelník. Každou jeho
stranou proložme přímku. Určete počet částí, na které tyto
přímky rozdělí rovinu.

Řešení. Uvažujme n přímek v rovině takových, že žádné
dvě nejsou rovnoběžné a žádné tři neprocházejí jedním bodem
(to nastane speciálně i tehdy, proložíme-li přímky stranami
pravidelného и-úhelníku, je-li n liché). Označme p(n) počet
oblastí, na které těchto n přímek rozdělí rovinu. Zřejmě je
р(Ъ) = 7. Je-li nyní p další přímka, která protíná každou
z n uvažovaných přímek, rozdělí n průsečíků přímku p na
n + 1 částí a přitom každá z těchto částí přímky p dělí někte-
rou z p(n) oblastí na dvě části. Je tedy p(n + 1) = p(n) +
+ n + 1. Odtud plyne, že

p(ri) — n + p(n — 1) = и + (и — 1) + ... +4 + р(Ъ) =

n(n + 1)
+ 1.

2

Pro n = 1 985 máme p(l 985) = 1 985 . 993 + 1 =
= 1 971 106.

Poznámka. Soustava přímek v rovině rozdělí rovinu na
části, jejichž počet pro danou soustavu označme s, počet
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průsečíků přímek soustavy označme v a počet hran (tj. těch
částí přímek, na něž jsou přímky rozděleny jednotlivými
průsečíky) označme h. Pak platí (Eulerova věta) s + v = h + 1
(jsme v rovině, nikoli v prostoru!). Protože průsečíky
i hrany můžeme snadno spočítat, dostaneme odtud též před-
chozí výsledek.

Jiné řešení. Uvažujme uvedenou úlohu pro libovolný
pravidelný и-úhelník a označme p(n) počet částí, na které
příslušné přímky rozdělí rovinu. Spočtěme nejprve počet

s(n) těch částí roviny, které leží v úhlu AAiAn, kde A±A
je polopřímka opačná к polopřímce A1A2 (obr. 54). Z veli-
kostí úhlů snadno zjistíme, že vnitřkem úhlu AA\An pro-
chází právě k přímek AjAj+i, kde k je největší celé číslo

2~
takové, že k — < 7r. Ty rozdělí úhel AA\An na k + 1

n
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částí, tedy

Иs(n) = k + 1 =

Všechny vnější části zřejmě dostaneme postupným otá-
2~

čením kolem středu pravidelného и-úhelníku o úhel — ,

je tedy

I n +
p(n) = 1 + n s(n) = 1 + n

Pro n — 1 985 odtud máme p{ 1 985) = 1 985.993 + 1.

А- Ш -2

Nech Ai, A2, A3 sú neprázdné množiny celých čísel také,
že pre {*,/, k] = {1, 2, 3} platí

(x g Ahye Aj) => [(x + y) e Ak, (x - y) g A*].

Dokážte, že aspoň dve z množin Ai, A2, A3 sa rovnajú. Móžu
byť niektoré z týchto množin disjunktně?

Řešení. Nechť {i, j, k} = {1,2,3}. Obsahuje-li některá
z množin Ai, A2, A3 nulu, řekněme A;, pak je zřejmě A % = Ak.
Podle předpokladu je totiž pro libovolné x g Až také
x + 0 g A/c, tj. Ai c A/c, a obráceně, napíšeme-li implikaci
ve tvaru

(x e A/c, у e Aj) => [(x + y) g А/, (x - y) g At],
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dostaneme pro у — 0 zas inkluzi А* с: А/. (Rozmyslete si
dobře tuto formální úvahu, která využívá rovnosti množin
{i, j, k} — {k,j, г}. Je dobře si uvědomit, že při konkrétní
volbě indexů i, j, k dává předpoklad úlohy vlastně tři různé
implikace pro množiny Ai, A3, A3.) Odtud plyne, že pro dvě
z množin Ai, Аг, A3 s neprázdným průnikem, A^ n Ак ф 0,
pak už musí být A1 = Ak, neboť pro у e Ař- n A* z před-
pokladu plyne 0 — у — у e A;. Navíc zřejmě platí x e Ař-,
právě když — л: G Ať-.

Můžeme tedy dále předpokládat, že nula neleží v žádné
z množin Ai, А-i, A3 a že všechny tři množiny jsou navzájem
disjunktní. Označme mi = min (|x|: x e A*} > 0 a zvolme
označení tak, aby platilo гщ > nij > mPak je ale také
mi > mj — nik, to je však spor s definicí čísla шг-, neboť
podle předpokladu je гщ — nik £ Aj. Tím je důkaz hotov.

Je-li L množina všech lichých celých čísel a S množina
všech sudých čísel, mají množiny L, L, S požadované vlast-
nosti a je L n S = 0.

Pokuste se popsat všechny množiny A\, A2, A3, které
splňují podmínky úlohy! Jakou roli tu hraje Euklidův
algoritmus ?

a - ti; - 3

Jsou-li Ui, U2, ..., un vektory v rovině takové, že součet
jejich délek je alespoň 1, pak mezi nimi najdeme vektory,
jejichž součet bude vektor délky alespoň "[/2/8. Dokažte.

Řešení. Zvolme v rovině kartézskou soustavu souřad-
nic a označme (aj, bj) souřadnice vektoru u;-. Je-li M =
= {(ai, b\\..., (a«, bn)}, položme
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Ml = ((»,1)еМ: 1Я á а},
М2 = {(a,í>)eM: |а| S Ь},
М3 = {(a,i)eM:|4| S -а},
М4 = {(а, Ь)е М: \а\ ^ -Ь).

Protože Mi и Мо и Мз и М4 = М, musí podle předpokladu
aspoň pro jednu z uvedených množin platit

1

К + bi ž t ,
V
_

{au b}) e Mк

pišme MA = {(či, d\),..., (cm, dm)}. Protože pro reálná
čísla x, у platí

P
— 1/x2 + y2,
2

max (|x|, \y\) ^

у2 l
= ]l2_

2 4 8

(je-li k e {2, 4}). Vektor

je podle definice množiny bud |2^-| ^ (to

1/2když k e {1, 3}), nebo \^dj\ ^
8

У2(ci, di) + ... + (cm, dm) má tedy délku alespoň

Jiné řešení. Zvolme v rovině kartézskou soustavu souřadnic
a umístěme všechny vektory uj, 1 :g j :g n, do počátku.
Každý z vektorů rozložme na součet dvou vektorů (obr. 55)

8

V; = X; + Уь
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Рз

kde Xj má směr osy л; a y7 má směr osy Protože

[U;-| ^ |X,| + |y,|,

je součet délek všech projekcí X; a y;- rovněž alespoň 1.
Z polopřímek OPí (1 íg i ^ 4) můžeme tedy vybrat takovou,
že příslušné projekce vektorů u;- na ni budou mít součet

1
délek alespoň —. Projekce součtu vektorů na přímku je

součtem jednotlivých projekcí, má tedy součet odpovídajících
1

vektorů na vybranou polopřímku projekci délky alespoň — ,4

]/21
takže tento součet je vektor délky aspoň — >

4

Jiné řešení. Zvolme libovolnou přímku p v dané rovině
a bod O na/> a uvažujme libovolnou přímku p(co) procházející

8
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bodem O a svírající s přímkou p úhel co, co e (0, тс) (obr. 56).
Umístěme všechny vektory U/ do bodu O a označme a/

úhel, který vektor U/ svírá s přímkou p, součet délek projekcí
vektorů uj na přímku p(co) pak je

U/l |cos (co - a/)|.

přičemž pro vektory v jedné z polorovin určených kolmicí
q(co) na přímku p(w) v bodě O je tento součet aspoň

1
- 2 |U;||cos (co - a;)|.
z j=i

Označme S(co) příslušnou množinu indexů těch vektorů,
které leží v uvedené polorovině. Definujeme-li na intervalu
(0, —) funkci/ předpisem

/O) = I 2 u/l,
j eS(<o)
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je zřejmě

1 П

f(oj) ^ — 2 [Uj| |cos (co
2 j=1

a;)!-

Přitom/ je nezáporná funkce, pro kterou platí

1 П КTT

f/(co)ÍCO ^ — 2 Iu;[ .Г |C0S (co -
o z i=i o

y.j)| c/co =

n

= 2 lu;l ^ 1,
3 = 1

neboť funkce |cosco| je periodická s periodou - a je

ТГ71

J |cos (co — ay)[ do — j |cos co| doj = 2.
oo

Z nerovnosti

71

J /(«>) do ^ 1
o

1
Я

я

Obr. 57
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ovšem plyne, že existuje aspoň jedna hodnota co e (0, тг),
1

pro kterou je /(co) ^ — (obr. 57 - jinak by muselo být
7T

71

J /(co) dco < 1), tj. existuje dokonce taková podmnožina
o

množiny vektorů (щ, 112, ..., ura}, pro niž má vektor součtu
1 1 1/2

délku aspoň — > — >

1
Poznámka. Hodnotu — již nelze zlepšit, protože pro mno-

žinu n — 2k vektorů umístěných ve středu pravidelného
2^-úhelníku a s koncovými body v jeho vrcholech se tato
hodnota asymptoticky nabývá. Pro pevné n však obecně lze

8

1
konstantu — ještě zlepšit.

—

A - III - 4

V rovině jsou dány dvě přímky p, q a na přímce q bod F,
F ф p. Určete množinu všech bodů X, které lze dostat touto
konstrukcí:

V rovině zvolíme bod S, který neleží ani na p, ani na q,
a sestrojíme kružnici k se středem S, která se dotýká přímky
p. Na kružnici k zvolíme bod T tak, aby ST || q. Protne-li
přímka FT přímku/) v bodě U, je X průsečík přímek SU a q.

Řešení. Označme V bod dotyku kružnice k s přímkou p,
takže |FF| = \ST\. Označíme-li W kolmý průmět bodu X
na přímku/), pak z podobnosti zřejmě plyne (obr. 58) \XW\ —

= \XF\, bod X tedy leží na parabole s ohniskem F a řídicí
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zи v / w

p

přímkou p. Množina bodů X tedy nezávisí na volbě bodu 5
a je dána pouze vzájemnou polohou přímky q a paraboly
určené bodem F a přímkou p. Pokud je p J_ q, je hledaná
množina jednobodová, v opačném případě dostaneme dva
body, které popsanou konstrukcí snadno sestrojíme.

A- lil -5

Je dána trojúhelníková tabulka s n řádky a n sloupci (na
obr. 59 pro n = 6). V každém políčku tabulky je napsáno
některé z čísel 1, 2, ..., n tak, že pro každé ke {1, 2, ..., n]
se v sjednocení £-tého řádku a &-tého sloupce vyskytují všech-
na čísla 1, 2, ..., n. Dokažte, že v případě lichého n je každé
z čísel 1,2, ...,n napsáno v posledním políčku některého
řádku.

Řešení. Doplňme tabulku na šachovnici n X n (obr. 60).
Pro ie (1, 2, ..., n] označme M množinu těch polí tabulky,
na kterých je napsáno číslo i, a M' množinu souměrně sdru-
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Obr. 60

ženou s М podle úhlopříčky šachovnice procházející levým
horním rohem. Z předpokladu úlohy plyne, že v každém
řádku i v každém sloupci šachovnice leží právě jedno políčko
z množiny M и IT. Označíme-li D množinu polí úhlopříčky,
platí

n = |M и M'| = 2 |M| - |M n D|,
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takže [M n D| je pro liché n rovněž liché číslo a číslo i se

proto na úhlopříčce vyskytuje aspoň jednou. Protože úhlo-
příčka má n políček, je tvrzení úlohy dokázáno.

A- ili -6

Dokážte, že pre každé prirodzené číslo n > 1 existuje
poradie ai, аг, ..an čísel 1,2, ..n také, že číslo aj+i
dělí súčet a± + a2 + ... + aj pre každé j e {1, 2, ..

n — 1}.
Řešení. Snadno je vidět, že platí-ii tvrzení úlohy pro

n > 1. sudé, platí i pro n + 1, protože n + 1 dělí součet
n{n +1)

• 5

, takže stačí pak vzít an+1 =1 + 2 + ... + n =
2

= n + 1.
Nechť tedy n = 2k, pak je 1 + 2 + ... + n = k(2k + 1).

Především musí platit a^k \ kQ-k +1). Zkusme tedy polo-
žit azk = k, pak by mělo být ao/c-i \ k . 2k, vezměme proto
a2*-i = 2£, atd. Takto zjistíme, že pořadí

k T 1,1, k 2, 2, ..., 2k, k

vyhovuje podmínce úlohy. Opravdu, pro 1 ^ i ^ k snadno
spočteme, že je

(&+ 1)"Ь 1 + (& + 2) + ... +(^ + z) —

i(i + 1) i(i - 1)
= i(k + i)= ik + +

2 2

a

(£ + 1) + 1 + (£ + 2) + ... + (Л + z) + í — i(k + г + 1).
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To však není jediné pořadí, které splňuje podmínky úlohy.
Řešením je i pořadí

2k, 2, k + 1,3, ...,2k — 1, 1,

neboť pro 1 i ^ k — 2 je

2k + 2 + (&+1) + 3+ ... + (k + z) —

i'(í + 1)(г + 1) (г + 2)
+ ik += 2k-\ +

2 2

= k(i + 2) + (x + 1)2 - 1 = (x + 2) {k + i)

a

2k + 2 + (^ + 1) + 3 + ... + + i) + (г + 2)
- (x + 2) (A- + x + 1).

Poznámka. Není těžké sestavit všechna vhodná pořadí
pro malá n, řekněme n ^ 8. Jejich prozkoumáním můžeme
odhalit ještě další obecná řešení jako např. následující dvě
pořadí pro lichá n — 2k + 1, která nedostaneme z již uve-

děných pořadí pro n = 2k\

2k -f- 1, 1, 2, k -f- 2, 3, ..., k, 2k, k -t- 11

k 2, 1, k 3, 2, ..., 2k -f- 1, k, k -j- 1.
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Korespondenční seminář ÚV MO

Korespondenční seminář ÚV MO je jednou z forem péče
o talentované žáky, zvláště pak o ty, kteří nemají možnost
navštěvovat speciální školy se zaměřením na matematiku
a pracovat v tamních seminářích. Zásadně však nejsou přijí-
máni studenti pražských škol, ti mají dostatek možností
seznámit se s vybranými okruhy úloh na seminářích řeši-
telů MO.

К účasti v korespondenčním semináři pozvalo předšed-
nictvo ÚV MO na základě návrhů KV MO a individuálního

zájmu téměř 50 žáků, z nichž se přihlásilo 28 řešitelů z celé
republiky:

Kraj Stč Jč Zč Sč Vč Jm Sm Bva Zsi Ssl Vsi

Počet
řešitelů 5 3 3 4 2 1 1 1 2 6

V průběhu 34. ročníku MO jim bylo zasláno pět sérií po-
měrně náročných úloh. Došlá řešení pak byla opravena,
ohodnocena a s rozmnoženým komentářem vrácena účastní-
kům semináře. Korespondenční seminář je řízen tajemníkem
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ÚV МО RNDr. Karlem Horákem, který se stará o výběr
a přípravu úloh a obvykle provádí i redakci komentářů.
Opravu pak zajišťuje několik pracovníků Matematického
ústavu ČSAV a několik studentů a aspirantů MFF UK
v Praze (všichni jsou bývalí olympionici).

Pouze 14 účastníků semináře se nedalo odradit nejobtíž-
nějším 4. kolem. Nejlepšími v celkovém hodnocení byli
Radek Adamec (G Kroměříž), Igor Melicherčík (G Banská
Bystrica), Vladimír Kordula (G M. Koperníka Bílovec),
Vládán Majerech (G Pardubice) a Richard Seda (G Blansko).
Uvádíme znění všech zadaných úloh.

1. Kombinatorika

1.1 Permutací čísel 1, 2, ...,n nazveme každé vzájemně
jednoznačné zobrazení množiny {1,2, ...,w] do sebe.
Permutací inverzní к л nazýváme permutaci яг1 tako-
vou, že n~\n(ij) — i pro každé ze {1,2,..., я}.
Inverzí permutace n nazýváme každou dvojici i < j
takovou, že n{i) > л(7). Dokažte, že pro každou permutaci
л množiny {1,2, ...,«} platí: л а л~х mají stejný
počet inverzí.

1.2 Zjištěte, kolik permutací množiny {1, 2, ...,«} má prá-
vě 1, resp. 2, resp. 3 inverze.

1.3 Nechť Q je množina všech uspořádaných čtveřic utvo-
řených z nul a jedniček. Ukažte, že čtveřice z Q nelze
obarvit třemi barvami (tj. přiřadit každé čtveřici některou
ze tří barev) tak, aby čtveřice, které se liší právě v jedné
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složce, měly různou barvu, a také čtveřice, které se liší
ve všech složkách, měly různou barvu.

1.4 Body roviny jsou obarveny třemi barvami. Ukažte, že
pro každé d > 0 existují dva body se vzdáleností d stejné
barvy.

1.5 Množina X má 1 983 prvků. Předpokládejme, že existuje
takový systém jejích podmnožin Si, So, ...,SWÍ, že
a) sjednocení kterékoli trojice těchto množin je celá

množina X,
b) sjednocení libovolné dvojice má nejvýše I 979 prvků.
Jaká je největší možná hodnota m?

1.6 Každému z vrcholů A\, A*, ..., Aigs3 pravidelného
1 983-úhelníku je přiřazena jedna z hodnot ^ 1. Bod
Ai nazveme dobrým, jestliže součet ohodnocení vrcholů
ležících na libovolné cestě (po obvodu 1 983-úhelní-
ku) vycházející z bodu At je kladný (přitom ohodnocení
bodu At se do součtu nezapočítává). Dokažte, že má-li
aspoň 1 789 bodů ohodnocení + 1, nejméně 1 207 bodů
je dobrých.

1.7 Je dán konvexní mnohostěn. Je známo, že sečteme-li
úhly při všech vrcholech daného mnohostěnu až na jeden,
dostaneme 5 160°. Najděte součet úhlů při zbývajícím
vrcholu.

1.8 Nechť n je liché a X konečná množina s více než n prvky,
А, В podmnožiny X. Dokažte, že je-li pro každou и-prv-
kovou podmnožinu Y с X

|An Y| = |B n Y| (mod 2),

je A = B.
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2. Geometrie2.1Jeden z nej jednodušších mnohobuněčných organismů
válec koulivý se skládá z jednotlivých buněk uspořá-
daných na kulové ploše, takže připomínají mnohostěn.
Tyto buňky mají v podstatě tvar pěti-, šesti- a sedmi-
úhelníků, přičemž v každém »vrcholu« se dotýkají právě
tři buňky (obr. 61). Vyskytují se také jedinci se čtyřúhel-

níkovými a osmiúhelníkovými buňkami, biologové však
zjistili, že pokud váleč tyto nestandardní buňky nemá,
pak je vždy pětiúhelníkových buněk o 12 více než sedmi-
úhelníkových (počet všech buněk dosahuje několika set,
ba i tisíce). Umíte matematicky objasnit tento experi-
mentální výsledek biologů ?2.2Pět hran čtyřstěnu má délku menší než 1. Dokažte, že

1
objem takového čtyřstěnu je menší než2.3Ke čtyřstěnu ABCD existuje pět kulových ploch, z nichž
každá se dotýká šesti přímek AB, BC, CA, AD, BD, CD,
právě když je to pravidelný čtyřstěn. Dokažte.

8 '
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2.4 Dokažte, že řez krychle ABCDEFGH rovinou prochá-
zející jejím středem a kolmou к tělesové úhlopříčce AG
je pravidelný šestiúhelník.

2.5 Určete poloměr největší kružnice, kterou lze celou umístit
uvnitř dané krychle o hraně délky 1.

2.6 Na kulové ploše je dána kružnice k, mimo kulovou plochu
je dán bod P. Spojnice bodu P s body kružnice k protnou
danou kulovou plochu zpravidla ještě v dalším bodě.
Dokažte, že tyto body leží rovněž na kružnici.

2.7 Jsou-li E, F, G, H libovolné čtyři body v prostoru,
označme Pefgh součet délek \EF\ + \EG\ + \EH\ +
+ \FH\ + \FG\ + \GH\, obvod trojúhelníku KLM
budeme značit Pklm a délku lomené čáry g označíme
pg. Dokažte, že pak platí:
a) Není-li obvod stěny KLM čtyřstěnu KLMN menší

než obvod každé jiné stěny, pak Pklmn ík 2 ркьм•
b) Leží-li trojúhelník KLM uvnitř uzavřené lomené

čáry g, pak ркьм к Po-

c) Jsou-li Ay, By, Ci, Di pravoúhlé průměty vrcholů
čtyřstěnu ABCD do roviny o, pak pro obvod p kon-

2
vexního obalu bodů Ai, By, Cy, Dy platí p < — Pabcd-

d) Leží-li čtyřstěn KLMN uvnitř čtyřstěnu ABCD,
4

pak Pklmn < ^ Pabcd-
Ukažte, že poslední nerovnost nelze zlepšit.
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3. Rovnice a funkce

3.1 Nechť n je přirozené číslo. Pro libovolnou zz-tici reálných
čísel (xi, X‘2, ..., xn), kde 0 ^ x* ^ 1, ze {1, 2, ..

uvažujme součet
n),• 3

v IXi - X}\ =
1 5lí<j Sn

= |*1 — *2| + |xi — X3| + ... + |Xi — Xra_i| + [Xi — X„| +
+ |X2 - X3| + ... + |X2 — *»-l| + |*2 — *n| +

+

+ |xra-2 - *n-l| + [*и—2 — *n| +
+ |Хм—i - Xn\.

Najděte největší hodnotu tohoto součtu.

3.2 Určete největší reálné číslo z tak, aby existovala reálná
čísla x, у taková, že

x + у + z = 5,

xy + yz + zx = 3.

3.3 Najděte všechna reálná čísla b, pro něž existují nezáporná
reálná čísla xi, хг, x3, X4, X5 taková, že platí

55 5

2 kxk = ь, 2 &xk = ь2, 2 &хк = ь3.
к= 1 A = 1 * = 1
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3.4 Uvažujme funkci
f(x) = 1 — a cos x — b sin x — A cos 2x — В sin 2x,

kde a, b, А, В jsou daná reálná čísla. Je-li f(x) ^ 0
pro každé reálné x, potom

a2 + 62 ^ 2, Л2 + B2 ^ 1.

Dokažte.

3.5 Určete největší hodnotu, kterou může nabýt součin
několika přirozených čísel, jejichž součet je 1 984.

3.6 Nechť Pi(x) — x2 — 2 a pro je {2, 3, 4, ... } je

Pj(x) = Pi(Pj-i(x)).

Dokažte, že pro každé přirozené n jsou všechny kořeny
rovnice Pn(x) = x reálné a různé.

3.7 Určete všechny kvadratické trojčleny f{x) = ax2 +
+ bx + c, které splňují následující dvě podmínky:
a) 1/0)1 ^ 1 pro *e<-l, 1>,
b) a2 + b2 + c2 = 5.

4. Teorie čísel

m m

4.1 Dokažte, že každý zlomek —, O <— < 1, je možno vy-

jádřit ve tvaru
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m 1 1
= + + ... + ,

n qi q2

1

qr

kde O < q\ < q-г < ... < qr jsou celá čísla a qic dělí
qk+i pro k E (1, 2, .. .,r - 1}.

4.2 Pro každé přirozené číslo k existuje nekonečně mnoho
přirozených čísel N takových, že v jejich dekadickém
zápisu není žádná nula a přitom čísla N a kN mají stejný
ciferný součet. Dokažte.

43 Je-li přirozené číslo dělitelné číslem 10 101 010 101,
pak má jeho dekadický zápis aspoň šest nenulových
číslic. Dokažte.

4.4 Je dáno sedmnácticiferné číslo. Zapišme jeho číslice
v obráceném pořadí a vzniklé číslo přičtěme к číslu
danému. Dokažte, že aspoň jedna z číslic uvedeného
součtu bude sudá.

4.5 Je dáno přirozené číslo n. Všechna přirozená čísla, je-
jichž dekadický zápis má nejvýše n číslic, rozdělíme
do dvou skupin podle toho, je-li jejich ciferný součet
lichý nebo sudý. Je-li 1 ^ k < n, dokažte, že součet
£-tých mocnin všech čísel první skupiny se rovná součtu
£-tých mocnin všech čísel druhé skupiny.

4.6 Dokažte, že mezi libovolnými 200 celými čísly najdeme
100 čísel tak, že jejich součet bude dělitelný stem.

4.7 Je dáno přirozené číslo n > 1 000. Označme ak zbytek
čísla 2n při dělení číslem k, k E (1, 2, ...,«}. Dokažte,
že Uy -(- <32 4" ... -Ь cín -'> 2n.
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5. Kombinatorika

5.1 V jednom městě několik lidí nastydlo, a tak vypukla
chřipková epidemie (v následujících dnech již nikdo
nenastydl, chřipka se šířila kapénkovou nákazou). Nemoc
vypukne druhý den po nákaze a trvá vždy jeden den,
následující den je člověk imunní. Přitom každý zdravý
občan navštíví každý den všechny své nemocné přátele,
přestože se od nich nakazí, pokud není ten den imunní.
Dokažte, že pokud první den epidemie nikdo nebyl
imunní, pak epidemie jednoho krásného dne skončí.
Zůstává tvrzení v platnosti, pokud připustíme, že první
den epidemie mohl být někdo imunní následkem očkování ?

5.2 Ve skupině několika lidí má každý nejvýše tři nepřátele.
Dokažte, že skupinu lze rozdělit do dvou částí tak, aby
každý člověk měl ve své části nejvýše jednoho nepřítele.

5.3 Turnaje v nohejbalu se zúčastnilo n > 2 družstev, přitom
pro každá dvě mužstva se najde třetí, které nad oběma
vyhrálo. Pro jaké n mohla taková situace nastat?

5.4 Na stole je n knih složených v několika hromádkách.
Knihovník je každý den přerovnává - z každé hromádky
odebere jednu knihu a z těchto vytvoří novou hromádku.
Přitom do sešitu zapíše počty knih v jednotlivých hro-
mádkách (seřazené podle velikosti). Dokažte, že platí:
a) Po nějakém čase se zápisy v sešitu začnou pravidelně

opakovat.
b) Jestliže po nějakém čase budou zápisy každý den

stejné, pak n =

Platí tvrzení b) i obráceně ?
(2) ^r0 k-
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5.5 Ve skupině několika lidí má každý právě tři přátele.
Rozhodněte, zda každou takovou skupinu je možno
rozdělit do dvojic tak, aby lidé v každé dvojici byli
přáteli.

5.6 V rovině je dáno n bodů, z nichž žádné tři neleží v přímce.
Kolik nejvýše úseček lze vytvořit spojováním daných
bodů, aby přitom nevznikl žádný trojúhelník (s vrcholy
v daných bodech)?

5.7 V rovině je dáno několik bodů, přitom žádné tři neleží
na jedné přímce. Některé dvojice bodů jsou spojeny
úsečkami tak, že z každého bodu vycházejí nejvýše tři
úsečky. Dokažte, že body je možno obarvit dvěma barvami
tak, že každý bod je úsečkou spojen nejvýše s jedním
bodem téže barvy.
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26. ročník mezinárodní matematické olympiády

Průběh a výsledky

Dvacátá šestá mezinárodní matematická olympiáda (MMO)
se konala ve dnech 29. června —11. července 1985 ve Finsku
za rekordní účasti 209 soutěžících žáků z 38 zemí. V mezi-

národní porotě, jíž předsedal prof. Про Laine z helsinské
univerzity, byly zastoupeny tyto státy: Alžírsko, Austrálie,
Belgie, Brazílie, Bulharsko, Československo, Čína, Finsko,
Francie, Island, Itálie, Izrael, Jugoslávie, Kanada, Kolumbie,
Kuba, Kuvajt, Kypr, Madarsko, Maroko, Mongolsko, NDR,
Nizozemí, Norsko, NSR, Polsko, Rakousko, Rumunsko,
Řecko, SSSR, Španělsko, Švédsko, Tunis, Turecko, USA,
Velká Británie a Vietnam. S francouzskou delegací přicestoval
na MMO navíc jeden íránský žák, který tč. studuje ve Francii.
Na 26. MMO byla dále přítomna pozorovatelka z Indie.

Přípravné práce, tj. výběr úloh, jejich formulace a překlad
do jazyků soutěžících, prováděla mezinárodní porota ve
dnech 30. června - 3. července; sídlila přitom v nevelkém
finském městě Heinola, asi 100 km severně od Helsinek.
Z materiálů zpracovaných finskými organizátory na základě
návrhů došlých z jednotlivých zemí vybrala porota pro soutěž
těchto šest úloh:
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1.Je dán konvexní tětivový čtyřúhelník ABCD a kružnice
k, jejíž střed leží na straně AB a která se dotýká ostatních
tří stran BC, CD, DA čtyřúhelníku. Dokažte, že pak platí

\AD\ + |BC| = \AB\.

2. Nechť n, k jsou daná, navzájem nesoudělná přirozená
čísla, 0 < k < n, a nechť M
prvek j množiny M obarvíme jednou ze dvou barev (modrá
a bílá), a to tak, že
(1) číslo j má vždy touž barvu jako číslo n — j;
(2) každé číslo je M,/ Ф k, má touž barvu jako číslo \k — j\.

Dokažte, že pak všechny prvky množiny M mají touž
barvu.

П

3. Je-li P(x) = ^ djxi, n ^ 0, mnohočlen s celočíselnými
j=o

koeficienty, označme w(P) počet těch jeho koeficientů aj,
které nejsou dělitelné dvěma. Nechť Qj(x) = (1 + x)i pro
J = 0, 1, 2, ... .

Dokažte: jsou-li t2, ..., in celá čísla splňující 0 ^ i\ <
<h < ... < in, pak platí

{1,2, ...,n - 1}. Každý

wÍQň + Qí2 + • • • + QiJ ^ w(.Qh)-

4. Množina M má právě 1 985 prvků. Jsou to vesměs celá
kladná čísla, jejichž prvočinitelé nejsou větší než 26.

Dokažte, že v M lze nalézt čtyři navzájem různá čísla,
jejichž součin je čtvrtou mocninou celého čísla.

5. Je dán trojúhelník ABC a kružnice k se středem O,
kružnice k prochází body A, C a protíná úsečky AB, BC
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v dalších dvou bodech K, resp. N, К ф N. Přitom kružnice
k\, resp. ko, opsané trojúhelníku ABC, resp. BKN, mají
právě dva společné body В a M.

Dokažte, že úhel OMB je pravý.
6. Ke každému reálnému číslu x\ sestrojíme posloupnost

{xn }n=i že položíme

1
Xn+1 — Xn I Xn +

pro každé n — 1, 2, 3, ... .

Dokažte, že existuje právě jedna hodnota x\ taková, že
pro každé n = 1,2,... platí

0 < Xn <C Xfi+1 1.

Tyto úlohy pocházely z návrhů předložených Velkou
Británií, Austrálií, Nizozemím, Mongolském, SSSR a Švéd-
skem.

Ačkoliv se již na několika minulých MMO poukazovalo
na nutnost rozšířit okruh témat, jež se objevují v soutěžních
úlohách MMO, byl i tentokráte výběr omezen na převážně
klasická témata: planimetrii, kombinatoriku, elementární
číselnou teorii. Snad jen šestá úloha byla poněkud netra-
diční.

Jak později také potvrdily výsledky soutěže, byly vybrané
úlohy vcelku vhodné pro MMO. Porota však poněkud pod-
cenila obtížnost třetí úlohy, jejíž řešení vyžadovalo netři-
viální obměnu provedení matematické indukce. Právě tato
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nejtěžší úloha způsobila, že výsledné bodové hodnocení bylo
o poznání nižší nežli např. v loňském roce.

Jako obvykle, byla každá úloha ohodnocena sedmi body,
takže každý soutěžící mohl získat v soutěži nejvýše 42 bodů.
Podrobná kritéria pro hodnocení řešení porota tentokráte
nepřipravovala a přenechala tuto nelehkou úlohu finským
koordinátorům, kteří se jí zhostili velmi dobře.

Ještě dříve nežli porota dokončila přípravu soutěžních
úloh, přicestovali do Finska soutěžící žáci. Byli ubytováni
v rekreačním středisku Joutsenlampi v motelu Rantasipi,
uprostřed překrásné finské přírody. Vlastní soutěž se pak
konala v nedalekém městečku Joutsa. Slavnostní zahájení
26. MMO proběhlo ve středu 3. července dopoledne v místní
škole za účasti mezinárodní poroty, která sem proto přijela
z Heinoly.

Další dva dny, 4. a 5. července, byly soutěžní: každé do-
poledne řešili žáci po třech úlohách. V pátek 5. července
přesídlila také porota do Joutsenlampi, kde se pak vykonaly
veškeré práce spojené s opravou a koordinací hodnocení
žákovských řešení. Díky dobré přípravě kolektivu finských
koordinátorů proběhla koordinace velmi hladce a rychle,
takže porota mohla na svém zasedání v neděli 7. července
bez dlouhých debat schválit konečné výsledky.

Zároveň zde bylo rozhodnuto udělit 14 prvních cen (za ře-
šení ohodnocená 34 — 42 body), 35 druhých cen (za 22 — 32
bodů) a 52 třetích cen (za 15 — 21 bodů). Celkem tak získalo
některou z cen 101 žáků, tedy necelých 50 % z celkového
počtu 209 soutěžících. Tyto počty cen odpovídají tradičním
podmínkám MMO.

Po prozkoumání návrhů předložených koordinátory bylo
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na dalším zasedání poroty rozhodnuto, že na 26. MMO
nebudou uděleny žádné zvláštní ceny za originální řešení
jednotlivých úloh.

Přehledné údaje o počtech cen a součtech bodů získaných
jednotlivými delegacemi jsou uvedeny v připojené tabulce.

Vedle části matematické obsahoval program MMO jako
obvykle také část kulturně-poznávací. Pro účastníky MMO
bylo uspořádáno několik výletů: do města Jyváskylá (pouze
pro žáky), do Lahti (s návštěvou sportovního stadionu a pivo-
varu), к jezerům v okolí Joutsy (s ukázkou rybolovu), na

typický finský statek (s ukázkou folklóru), prohlídka města
Helsinki a projížďka lodí podél pobřeží s nezapomenutelnými
pohledy na Helsinky z moře.

Závěr 26. MMO probíhal v Helsinkách, kam se všichni
účastníci přemístili 9. července. Ceny byly žákům rozděleny
na slavnostním zakončení 26. MMO ve středu 10. července

odpoledne v aule helsinské univerzity za přítomnosti finské
ministryně školství paní Kaariny Suomio. Ocenění žáci
dostali diplomy a medaile, ostatní jen diplomy účastníků.
Šesti nejlepším věnovala firma Nokia osobní počítače.

Na slavnostním zakončení vystoupil také vedoucí polské
delegace prof. A. M^kowski, který pozval všechny zúčastně-
né na 27. MMO, která se má konat v červenci 1986 ve Varšavě.

MMO byla pak ukončena večeří na rozloučenou spojenou
s improvizovaným kulturním programem. Ve čtvrtek 11. čer-
vence již začaly zahraniční delegace opouštět Helsinki.
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Československá účast na 26. MMO

Do soutěže na 26. MiM.0 vyslalo Československo šest
žáků gymnázií vybraných na základě výsledků dosažených
v domácí МО a na přípravných soustředěních, seminářích
a podobných pomocných akcích. Jména šesti soutěžících
spolu s bodovým hodnocením jejich řešení soutěžních úloh
MMO jsou uvedena v připojené tabulce.

Po nevýrazném úspěchu československého družstva na
25. MMO byly výsledky našich žáků na 26. MMO očekávány
s nadějemi, které se však tak docela nesplnily. Ani zisk tří
druhých cen a jedné třetí - což je lepší než na 25. MMO -

nemůže zakrýt skutečnost, že bylo v silách našich žáků podat
celkově lepší výkony. Relativní pořadí soutěžících na MMO
lze považovat za poměrně signifikantní ukazatel, ať jsou sou-
těžní úlohy obtížné nebo snažší: mezi 209 účastníky 26. MMO
se naši žáci umístili na 38. —39., 44 — 46., 47.-49., 75.—83.,
119.-128., a 156.-159. pořadí.

Pokud se týče jednotlivých úloh, nejsou jasné příčiny ně-
kterých neúspěchů při řešení první úlohy, která svou ná-
ročností rozhodně nepřesáhla běžnou středoškolskou úroveň.
Také pátá úloha, к jejímuž řešení vedlo několik různých cest,
mohla dopadnout lépe.

Pátráme-li pro příčinách neúspěchů, objevuje se znovu

význam psychického faktoru. Našim reprezentantům na
MMO nechybějí, jak se zdá, ani tak konkrétní znalosti z ma-

tematiky, jako spíše pohotovost při jejich uplatňování.
Všichni jistě ovládají elementy trigonometrie (první úloha),
všichni jistě znají Dirichletův princip (čtvrtá úloha). Je však
třeba se přizpůsobit tomu, že úlohy na MMO nejsou prostá
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cvičení v aplikaci známých pouček, ale vyžadují vedle teore-
tických znalostí také vytrvalost a trochu zručnosti.

Případ šesté a do značné míry i třetí úlohy ilustruje ten-
dence MMO к zařazování atypických úloh s elementy ma-
tematické analýzy.

Účast Československa na 26. MMO se ovšem neredukovala

jen na soutěžící žáky. Československo přispělo už к přípravám
MMO zasláním návrhu čtyř úloh pro soutěž. Jednu z nich
zařadili finští organizátoři do výběru 18 úloh předkládaných
mezinárodní porotě, a to jako alternativu к úloze navrhované
Mongolském: při definitivním rozhodování pak byla přijata
mongolská úloha (čtvrtá soutěžní).

Také na práci mezinárodní poroty v průběhu MMO
mělo Československo aktivní podíl: předložilo několik inicia-
tivních návrhů, například reformulace textu šesté úlohy,
uspořádání soutěžních úloh atd., jež byly porotou přijaty.
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Celkové výsledky 26. MMO

Součet
bodů

Cena
I. И. III.

Počet
I účastníků

Země

360 006Alžírsko - DZ
Austrálie - AU
Belgie - BE
Brazílie - BR
Bulharsko - BG
Československo - CS
Čína - CN
Finsko - FI
Francie - FR
Irán - IR
Island - IS
Itálie - IT
Izrael - IL
Jugoslávie - YU
Kanada - CA
Kolumbie - CO
Kuba - CU
Kuvajt - KW
Kypr - CY
Maďarsko - HU
Maroko - MA
Mongolsko - MN
NDR-DD
Nizozemí - NL
Norsko - NO
NSR - DE
Polsko - PL
Rakousko - AT
Rumunsko - RO
Řecko - GR
SSSR - SU
Španělsko - SP
Švédsko - SE
Tunis - TN
Turecko - TR

2 1171 16
6011 06

2 83006
16502 36
1051306
270 12 0
2500 06

1252 306
2800 11
130 002
200 05 0
810106
682006

1051 406
542006
740 206

70 005
270 106

1682 226
602006
621 006

1363 3o6
720 1o6
340 oo6

1391 416
1014106
770 306

2013 036
691 106

1402 216
250 004
6500 16
4600 24
5420 06
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Součet
bodů

Cena
I. II. III.

Počet
účastníků

Země

USA - US
Velká Británie - GB
Vietnam - VN

2 4 0 1806
2 3 12106

1441 3 16

3114Celkem 14 35 52209

*

165



3
о

га
ьн* ни"га

и

5
jj cg

cg
in
cg

Г-го
cg О

13
и

О г- гоо in cg
cg

оin о о С'--

о з
-55
га£ о о 1^- ГС ш
cd
N

о
3cg

% сс-5 О О о о о
Я

О'3 ’8га
С-l о‘3 о Г4* ГО г-

>N

СЛ
>у

о о 1> с- cg
cg

-я

JJ

>

*

jd >0 as

>1
"jL ■< Г3
га > У JSл
га оS-Sи :Н

Гт1 >Ut
Н >о
s £
< 8

2 ,N 2
^ Рч ^ Рч
й С* й Рч

,t> га ь.

3§ °
ь J М J
£сс‘ <СС-

СОо

‘О

>
>У}

5 cd03<£ гага 2га

šl §1Р§Q й га<<
ь;о о га Р130 гао1$ £ >t)>ся8 г

cd и
в J

в -
« ^ gS сд‘ '-Г,

166



Řešení úloh 26. MMO

1. Označme 5 střed kružnice k, r její poloměr a E, F, G
po řadě body, v nichž se k dotýká stran BC, CD, DA. Platí

\EC\ = \FC\, \FD\ = \GD\,

SE J_ BC, SF _L CD, SG _L AD,

takže

к CS^I = |<£ CSF\, К DSGI = К DSF|.

Jelikož čtyřúhelník ABCD je tětivový, platí

|<£ BCD\ + |<£ BAD\ = ti = К ADC| + \<$. ABC\.

Označíme-li a velikost úhlu CSE a /3 velikost úhlu DSG,
bude |<£ BAD\ = 2a, |<£ ABC| = 2/3. Pro délky stran
pravoúhlých trojúhelníků ASG, DSG, ВSE, CSE dostaneme
pak tato vyjádření:

r

\AS\ = \BS\ = sin 2/3 5sin 2a 5
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\AG\ — r cotg 2a, | BE\ = r cotg 2/?,

I CE\ = rtga, [DG| = r tg/?.

Z rovnosti

sin a cos 2a sin2 a + cos2 a 1
tg a + cotg 2a = +

2 sin a cos asin 2 a sin 2acos a

vyplývá rovnost

[Л51 = \AG\ + \CE\;

obdobně odvodíme i rovnost

\BS\ = \BE\ + \DG |

a sečtením obou těchto rovností pak dostaneme dokazovanou
rovnost

\AB\ = \AD\ + \BC\.

2. Skutečnost, že čísla i, j mají touž barvu, budeme značit
i ~ j; relace ~ je ekvivalence na množině {1, 2, ..., n — 1},
pro kterou platí

pro/ = 1,2, .. .,n - 1;(1) J ~n - j

pro j = 1,2, ..., n - 1,/ ф k.(2) j~\k-j\
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Relaci ~ rozšíříme na množinu Z všech celých čísel, a to
tak, že položíme jednak

(3) 0 ~k,

jednak

pro všechna je Z.(4) j + n ~J

Snadno se přesvědčíme, že po tomto rozšíření platí

(П j ~n - j

pro všechna je Z. Skutečně, je-li je Z, / = np + r, p e Z,
0 ^ r < n, je

j = np + r~r~n — r ~ n — r — np = n — ].

Dokážeme nyní, že pro každé qe Z je

(5) qk k.

Vztah (5) platí triviálně pro q = 1, podle (3) pro q — 0;
podle (Г) a (4) je pak

— k '—' n — k ^ k3

takže (5) platí také pro q = — 1.
Dále postupujeme indukcí. Předpokládejme, že (5) platí

pro všechna qeT., \q\ ^ m, kde m ^ 1, a dokážeme, že (5)
platí také pro q = m + 1 a pro q = —m— 1.
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Nechť (m + 1 )k — np + r, O ^ r < n, takže podle (4) je
(m + X)k ~ r. Je-li r — k, máme vztah (5). Je-li r > k,
je podle (2) r ~ r — k, avšak r — k ~ np + r — k — mk ~ k.
Je-li konečně r < k, je podle (2) r ~ k — r, ale k — r —
—• k — np — r = —mk ~ k.
Pro q = m + 1 tedy (5) platí.

Obdobně nechť ( — m — \)k — np + r, 0 ^ r < n, takže
(— m — 1)^ — r '—■ n — r. Je-li n — r = k, platí (5). Je-li
n — r > k, je podle (2) n — r ~ n — r — k, avšak podle (4)
je pak n — r — k— n — r — k — n(p + 1)
— np = — k + (m + 1)£ = mk ~ k. Je-li n — r < k, je pod-
dle (2) n — r r-j k — n + r dále podle (4)k — n + r~k —
— n + r + n(p + 1) — k + np + r= —mk ~ k. Opět tedy
vždy platí (5).

Poněvadž čísla n, k jsou nesoudělná, lze každé celé číslo
z G Z vyjádřit ve tvaru

— r — k —

z = ak + bn,

kde a e Z, ře Z. Podle (4) a (5) platí pak pro každé ze Z

я = a& + bn ~ ak ~

v ekvivalenci ~ patří všechna čísla do jediné třídy - tj. mají
všechna touž barvu.

3. Při 0 < k < 2W, m ^ 1, je číslo sudé, platí totiž

Пт - n
* =2“(*-i)-
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Mnohočlen Q2m(x) = (1 + x)2'n tedy můžeme psát ve tvaru

0.2™(.Xs) — 1 + Rm(x) + X2 ,

kde Rm je mnohočlen stupně 2m — 1, jehož koeficienty jsou
vesměs sudá čísla.

Je-li P libovolný mnohočlen stupně n, n < 2m, pak

P(x)Q2m(x) = P(x) + P(x)Rm(x) + X2"1 P(x),(1)

takže

w(P . Q2m) = 2w(P).(2)

Nerovnost

™(Qi1 + • • • + Qin) ^ ™(QiX(3)

kde 0 ^ i\ < ... < in, dokážeme nyní indukcí podle stupně
in. Pro in — 0, in = 1 je ovšem (3) triviální. Předpokládejme
tedy, že (3) platí, jakmile in < 2m, 1, a dokážeme, že
potom platí také, když 2m ^ in < 2m + *.

Rozlišíme dva případy:
I. Nechť

2m <zii< ... < in < 2m + !.

Potom

Qh + • • • + Qi„ — O2™ (Qh—2™ + • • • + 0in—2"*)

a podle (2) a indukčního předpokladu je
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w(Qi, + • • • + Qin) — 2w(Qíl-2™ + • ■ • + Qin—2”) =

^ МЙ4-) = «<2,0;

nerovnost (3) tedy platí.

II. Nechť

Íl< ... < iq - 1 < 2m й iq < ... <in < 2m + 1

pro některé q, 1 < q ^ n. Potom

(4) Qh + • • + Qi«-i

je mnohočlen stupně menšího než 2m, a tedy

(5) 42ň + • • • + 2,v0 = wiQO-

Mnohočlen

in

(6) Qíq(x) + ... + Qin(x) = 2 cixj
j= O

můžeme vyjádřit ve tvaru

22«(*) \.Qiq-2m(x) + . . . + Qin—2»n(^)] —

= [1 + Rm(x) + X" J [2z'3—2«(x) + . . . + 2řn—

Z tohoto vyjádření je vidět, že ke každému lichému číslu
Cj(0 ^ j < 2m) lze přiřadit rovněž liché číslo cj+2m. Proto

172



se přičtením mnohočlenu (6) к mnohočlenu (4) číslo zv ne-
zmenší:

w(Qh + ... + QiJ ^ ™(Qh + • • • + Qiq - ,)•

Podle (5) tedy nerovnost (3) platí i v tomto případě.

4. Každé číslo с e M lze vyjádřit ve tvaru

c = 2kl Ý2 5*3 lki ll*5 13*6 17*7 19*8 23*%(1)

kde £9 jsou nezáporná celá čísla. Také součin
libovolného počtu čísel z množiny M je možno vyjádřit ve
tvaru (1). Přitom číslo c z (1) je druhou resp. čtvrtou mocninou
celého čísla právě tehdy, jsou-li exponenty k\,kz, ...,£9
vesměs čísla sudá, resp. dělitelná čtyřmi.

Poněvadž 29 = 512, najdeme v každé množině P obsahující
alespoň 513 (různých) čísel tvaru (1) minimálně dvě čísla
c, c' taková, že pro jejich exponenty £1, kz, ..., £9, resp.

klt k2, ..., k9 z vyjádření (1) platí:

pro každé j — 1, 2, ..., 9 je číslo kj + k- sudé.(2)

Potom je ovšem součin cc' těchto čísel čtvercem celého čísla
cc' — d2, přičemž číslo d lze opět vyjádřit ve tvaru (1).

Z množiny Mol 985 prvcích takto můžeme postupně
1 985 - 511

získat = 737 dvojic čísel с, c, resp. 737 čísel d

(d2 = cc') tvaru (1). Poněvadž 737 > 512, je opět možno
mezi čísly d najít minimálně dvě (ve skutečnosti alespoň 113)

2
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čísla d, ď taková, že pro jejich exponenty kis kz, ..., &э,
resp. kl,k2, ...,k9 platí (2). Je tedy opět dď čtvercem
celého čísla b, dď = b2, takže ď2ď2 je jeho čtvrtou mocninou
d2ď2 = 64. Avšak J2 a stejně tak ď2 je součinem dvou čísel
z množiny M - získali jsme tak čtyři (navzájem různá) čísla
z M, jejichž součin je čtvrtou mocninou celého čísla.

5. Trojúhelník ABC nemůže být rovnoramenný se základ-
nou AC, neboť pak by kružnice k\ a kz měly společný jediný
bod B. Můžeme proto bez újmy obecnosti předpokládat, že

(1) \<BAC\ < |<£ BCA\,

takže |<£ BAC\ < 90°.
Označme střed kružnice k\ a R střed kružnice kz. Doká-

žeme nejprve, že SORB je rovnoběžník.
Poněvadž čtyřúhelník AKNC je tětivový, platí

|<£ BNK\ = |<£ BAC|.

Trojúhelníky BCS a BKR jsou rovnoramenné a platí v nich

jednak
1

|<£ SBN\ = |<£ <SJ5C[ = 90° - - |<^C BSC\ =

= 90° - |<£ BAC\ = 90° - |<£ BNK|,

takže nutně BS _L NK, jednak
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1
RBK\ = 90° - - |<£ BRK| = 90° - |^C BNK\ -

= 90° - |<£ BAC\,

takže BR J_ AC.
Avšak SO _L AC a RO JL KN, neboť společná tětiva

dvou kružnic je vždy kolmá na spojnici jejich středů.
Je tedy skutečně SO || BR a S.S||^0, takže SORB je
rovnoběžník.

Označme nyní B' bod kružnice kz takový, že BB' je jejím
průměrem. Potom ovšem je také SOB'R rovnoběžník.

Je-li M = B', je OM = OB' || SR _L BM. Je-li M ф В',
je jednak BM J_ B'M (Thales), jednak OB' |[ SR _L BM.
To však znamená, že bod B' leží na přímce OM a OM _[_ BM.

6. Označme M množinu všech posloupností (x
ných čísel splňujících

klad-n )n= i

1
(1) Xn+l — Xn 1 Xn +

pro všechna n e N = (1, 2, 3, ... }; vztah (1) lze vyjádřit
také ve tvaru

1
— фп*Хп+1 +1-1).(2) Xn =

Z (1) a (2) je ihned vidět, že pro posloupnosti {xre}e M,
{yn } e M platí tato tvrzení:
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(i) jestliže xn = yn pro některé n £ N, potom xn = yn pro
všechna n e N;

(ii) jestliže xn<yn pro některé weN, potom xn<yn
pro všechna n e N;

(iii) к libovolným číslům c > 0, m e N existuje v M posloup-
nost {xn }”=1 taková, že xm = c.

Ke každému k e N tedy najdeme v M posloupnost [kxn } ”= i,

ve které je кХк = 1, a posloupnost {*лга}“=15 ve které je
1

= 1 — — Podle (ii) je pak j-xn < kxn pro všechna n e N,k

zejména tedy < kx\.
Zároveň máme podle (1) pro kN

кХк

1
= 1 < 1 + — = кХк+1

k
к+1 •**+1

а

11
*+i**+i = 1 — — кХк+lik + 1

takže platí

**i < *+i*i < fc+1*i < kx\(3)

pro každé k e N. Posloupnosti {a'jci}*Lx a {**i}*Li jsou
tedy monotonní a omezené, tudíž konvergentní a platí

lim **i ^ lim **i;
к —>■ oo CO
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existuje tedy kladné číslo z takové, že

lim ícXi ^ z ^ lim A'xi.
к -» oo

(4)
& co

Podle (3) je ovšem

kXi < z < kXi

pro každé & e N, takže pro posloupnost {xn}™=1 e M, v níž
j e ЛГ1 = z, platí

n — 1
(5) — nxn Xn < — 1

n

pro každé n e N, resp. podle (1)

(6) O < Xn < Xn + 1 < 1.

Kdyby v M existovaly dvě různé posloupnosti {л:и}
a {xn}3 xn < xn, obě splňující (6) pro všechna n e N,
platilo by podle (5)

1
= (x'n - Xn) Xn + xn + —

\ n
>xn + 1

1
> (*» - Xn) xn - Xn

pro n 6 N, na druhé straně však také

n — 1 1
Xn - Xn < 1 -

n n
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což vede ke sporu. Existuje tedy právě jedna kladná hodnota
*i, (cca 0,446 534 914 ...) taková, že posloupnost {xw} e M
s prvním členem splňuje (6) pro všechna n e N.
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Hodnocení 34. ročníku МО

Na úrovni středních škol, tj. v kategoriích А, В a C, pro-

bíhají poslední ročníky MO v poměrně stabilizované formě,
bez mimořádných výkyvů.

I když statistické údaje o počtech účastníků z jednotli-
vých krajů nebyly očištěny od vlivu populačních trendů,
lze z nich vysledovat určitý vzestup zájmu o MO, především
v kategorii C a částečně i B.

Ve srovnání s předchozím 33. ročníkem MO vzrostl v tomto
roce počet účastníků 1. kola kategorie C zhruba o třetinu,
2. kola pak až o polovinu. Svědčí to o pozitivním vývoji
v práci s mladými matematickými talenty, a to již od základní
školy. Z tohoto vývoje lze čerpat určité naděje pro příští
léta i pro vyšší kategorie MO.

V kategorii В jsou zjištěné přírůstky sice menší (zhruba
desetiprocentní, resp. třicetiprocentní), avšak stále patrné.
Naproti tomu se oproti loňsku příliš nezměnily počty gym-
nazistů z vyšších tříd soutěžících v kategorii A. Teprve příští
ročníky ukáží, zda nárůst v účasti dospěje postupně až sem.

Porovnávání procenta úspěšnosti v MO v různých kolech,
kategoriích a ročnících je velice složitou záležitostí, nemá-li
ulpívat jen na povrchu; к solidním výsledkům nelze dospět
bez hlubšího rozboru všech působících faktorů.
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Nicméně však zkušenosti z posledních MMO nasvědčují
tomu, že naší MO, jejíž úroveň je všeobecně velmi dobrá,
chybí náročnější závěrečné vyvrcholení: úroveň obtížnosti
3. kola kategorie A je zřetelně nižší nežli úroveň obvyklá
na MMO. Tento rozpor bude třeba řešit, i když prosté
zvýšení obtížnosti úloh 3. kola by patrně nebylo optimálním
řešením.

Ve věkových kategoriích žáků základních škol je situace
v MO charakterizována určitými organizačními diskrepancemi
mezi ČSR a SSR. Ve 34. ročníku MO se podařilo zorganizovat
celostátně soutěž vedle tradičních osmých tříd ještě také pro
sedmé třídy. Pro páté a šesté třídy se MO pořádala (expe-
rimentálně) jen v SSR.

Dosavadní zkušenosti ukazují dostatečný zájem žáků sed-
mých tříd o soutěž; počty účastníků kategorie Z7 jsou při-
měřeně srovnatelné s počty žáků v Z8.

Změny v organizaci bezpochyby ovlivnily (a ještě v bu-
doucnu ovlivní) zájem žáků základních škol o MO a porno-
hou - doufejme - udržet jej i ve vyšších kategoriích.

Kategorie Z, resp. nyní Z8 a Z7, jsou záměrně pojímány
jako soutěž s mnohem širší základnou nežli kategorie středo-
školské, jsou tedy přirozeně citlivější к vlivům populačních
trendů.

Všechny tyto faktory je třeba brát v úvahu při hodnocení
účasti v 34. ročníku MO. Není tedy nutné hodnotit určitý
pokles v počtu účastníků kategorie Z8 oproti 33. ročníku
jednoznačně negativně.
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