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Milípřátelé a spolupracovníci matematické olympiády,

po skončení již pětatřicátého ročníku této soutěže dostá-
váté do rukou soubornou zprávu o jeho průběhu a výsled-
cích. Některé změny v organizaci matematické olympiády
(MO), které byly provedeny právě v tomto ročníku, se pro-

mítly také do uspořádání této ročenky.
Jednou ze změn bylo další postupné rozšiřování MO do

nižších ročníků základní školy. Tento proces trvá již nějaký
čas. Z původní jediné kategorie Z pro žáky nejvyšších roční-
ků základních škol se vyčleňují samostatné kategorie pro osmé,
sedmé, šesté, ... třídy. Ve školním roce 1985/86 byly
soutěže v kategoriích Z 8 a Z 7 pořádány již jednotně v celo-
státním měřítku, nižší kategorie Z 6, Z 5 a Z 4 zatím probí-
hájí pokusně pouze v SSR. Předpokládá se však, že se kate-
gorie Z 6 rozšíří v dohledné době na celou ČSSR.

Druhou závažnou změnou v MO bylo zavedení zcela nové
kategorie P, určené žákům středních škol a orientované na

problematiku z oblasti matematické informatiky. Soutěž v té-
to kategorii byla ve školním roce 1985/86 poprvé uspořádána
celostátně, s přímým využitím zkušeností ze soutěží, seminá-
řů a dalších akcí s informatickou tematikou, které byly v dři-
vějších letech pořádány pouze z iniciativy škol, případně
krajů, převážně v SSR.
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Zavedením kategorie P (programování) se pořadatelé
MO snažili poskytnout těm našim středoškolákům, kteří se
hlouběji zajímají o moderní výpočetní techniku a o matema-
tické problémy spojené s jejím racionálním využíváním, pří-
ležitost změřit své síly a schopnosti formou soutěže. Přitom
nejde — a to je třeba zdůraznit — o soutěž v sestavování kon-
krétních programů v určitém programovacím jazyce, ale
především o problematiku skutečně matematickou. Bližší
údaje jsou ostatně obsaženy v příslušné kapitole této ročenky.

Zavedením nových kategorií se přirozeně zvětšil rozsah prací
i materiálů MO. Ministerstva školství proto rozhodla rozdělit
ročenky MO do dvou svazků. Počínaje tímto 35. ročníkem
MO budou tedy vycházet paralelně ročenky dvě: jedna pro
MO na středních školách, tedy pro kategorie А, В, С a P,
a druhá pro MO na základních školách, tj. kategorie Z 8,
Z 7, Z 6, ... Některé základní údaje o MO jsou přirozeně
společné všem kategoriím, a najdete je proto v obou svazcích.

Ročenka, kterou vám zde předkládáme, obsahuje zevrub-
nou zprávu o průběhu a výsledcích MO v kategoriích А, В
a C, zprávu o nové kategorii P, úlohy z celostátního korespon-
denčního semináře a také obvyklou zprávu o průběhu a vý-
sledcích 27. mezinárodní MO. Vedle svého »historického«

poslání zachovat v tištěné podobě dokumentární informace
o minulých událostech plní ročenky MO ještě druhou neza-
nedbatelnou úlohu. Jsou totiž cenným zdrojem matematických
úloh, jež mohou — bez ohledu na samotnou MO a soutěže
vůbec — prospět každému čtenáři se zájmem o matematiku
к tříbení teoretických znalostí i obratnosti při řešení konkrét-
nich úloh, a mohou tedy obecně přispět к pozdvižení úrovně
matematického vzdělávání v nej širším smyslu.
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Přejeme vám tedy, abyste nad stránkami naší ročenky strá-
vili chvíle zpříjemněné nejenom osvěženými vzpomínkami na
35. ročník MO, ale především oním zvláštním pocitem
známým všem matematikům, kterého dosáhnete, když se vám
podaří samostatně rozřešit problém, jenž se vám zpočátku
zdál obtížný. V tom vám přejeme plný úspěch.

Ústřední výbor MO

6



O průběhu 35. ročníku
matematické olympiády

Soutěž Matematická olympiáda pořádají ministerstva škol-
ství ČSR a SSR ve spolupráci s Jednotou československých
matematiků a fyziků, Jednotou slovenských matematiků a fy-
zikíi, Matematickým ústavem ČSAV a Socialistickým svazem
mládeže. Soutěž řídí ústřední výbor matematické olympiády
(ÚV MO) prostřednictvím krajských a okresních výborů ma-
tematické olympiády (KV MO, OV MO). Členy ÚV MO
jmenují ministerstva školství, v průběhu 35. ročníku MO
pracoval ústřední výbor MO ve stejném složení jako v před-
cházejícím roce—předsedou byl RNDr. František Zítek, CSc.,
z MÚ ČSAV v Praze, místopředsedy profesor RNDr. Miro-
slav Fiedler, DrSc., člen korespondent ČSAV, z téhož ústavu,
a profesor RNDr. Beloslav Riečan, DrSc., z Vysoké vojenské
školy ČSSP v Liptovském Mikuláši. Ministerstva školství za-
stupovali RNDr. Václav Šůla a RNDr. Julia Lukátšová.
Funkci tajemníků ÚV MO vykonávali doc. RNDr. Leo
Boček, CSc., z MFF UK Praha a RNDr. Karel Horák, CSc.,
z MÚ ČSAV v Praze.

Jak jste si již přečetli v předmluvě, došlo v průběhu 35. roč-
niku МО к zavedení kategorie P (programování), v níž soutěží
žáci všech ročníků středních škol. V kategorii A soutěží žáci
III. а IV. ročníků středních škol, v kategorii В žáci II. roční-
ků, v kategorii C žáci I. ročníků. Pro žáky základních škol
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jsou určeny kategorie Z. Zprávou o 35. ročníku MO na
základních školách se zabývá samostatná brožurka, tato
je věnována pouze MO na školách středních.

V průběhu 35. ročníku MO se konala dvě zasedání ÚV MO,
první ve dnech 9. —10. prosince 1985 v Praze, druhé
25.-26. dubna 1986 v Pelhřimově při celostátním kole MO
kategorie A. Na prvním zasedání byla projednávána přede-
vším otázka nově zavedené kategorie P a hodnocen průběh
minulého ročníku MO. Hlavním bodem jarního zasedání
ÚV MO byla příprava 36. ročníku MO, příprava celostátních
soustředění úspěšných řešitelů úloh MO včetně soustředění
nejlepších účastníků MO pro přípravu na mezinárodní ma-
tematickou olympiádu. Byla projednána též ediční činnost
ÚV MO, především příprava dalších svazků edice Škola
mladých matematiků. Předsedové KV MO hodnotili vhodnost
výběru úloh MO a průběh MO v jednotlivých krajích. Pra-
covní předsednictvo ÚV MO se scházelo jednou měsíčně,
zabývalo se hlavně výběrem úloh pro všechna kola soutěže.

Organizací celostátního kola kategorie A 35. ročníku MO
byl ministerstvem školství ČSR pověřen Jihočeský kraj, za
místo konání bylo vybráno město Pelhřimov. Do celostátního
kola postoupilo 82 nejúspěšnějších řešitelů krajských kol, nej-
větší zastoupení měla Bratislava (25 účastníků). Slavnostní
zahájení se konalo 24. dubna 1986. Po vystoupení žákyň
pelhřimovského gymnázia s pěkným kulturním programem

přivítal soutěžící žáky i členy ÚV MO tajemník ОV KSČ
soudruh František Ježek. Ve svém projevu seznámil přítomné
nejen s minulostí Pelhřimova, ale přiblížil jim také současný
hospodářský a kulturní rozvoj města a celého okresu. Předseda
ÚV MO RNDr. František Zítek, CSc., poděkoval organizáto-
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rům za přípravu celostátního kola jubilejního ročníku této
matematické soutěže. Za ÚV SSM vystoupila s. Máňa Tu-
ranová. Poukázala na význam vzdělanosti a na nemalou účast
mládeže při budování naší socialistické společnosti.

Další dva dny byly dopoledne vyhrazeny vlastní soutěži,
odpoledne se seznámili žáci ze všech částí naší republiky
s městem Pelhřimovem a jeho okolím, navštívili památná
místa protifašistického odboje — obce Mnich a Leskovice, dále
zámek Kámen s výstavou motocyklů a zajeli též do Těchobuzi,
kde pobýval významný filozof a matematik Bernard Bolzano.
Na večerní hodiny byl zajištěn kulturní program v klubu
ROH, v němž mimo jiné vystoupili akademický malíř Jiří
Mádlo a herci pražských divadel Blanka Bohdanová a Josef
Langmiler. Členové ÚV MO byli na ONV přijati jeho mís-
topředsedou PaedDr. Janem Říhou, který je podrobně infor-
moval o úspěších průmyslu a zemědělství okresu, o bytové vý-
stavbě a o péči, kterou okresní orgány věnují oblasti školství.

V neděli 27. dubna 1986 se konalo slavnostní vyhlášení
výsledků za účasti tajemníka OV KSČ F. Ježka, místo-
předsedy ONV PaedDr. J. Říhy, zástupkyně KV SSM
s. Krňákové a zástupců ministerstva školství ČSR V. Pecha
a RNDr. Václava Šůly. RNDr. Václav Šůla ve svém závě-
řečném projevu poukázal na vzrůstající úroveň matematické
olympiády a na potěšitelný jev, že se do celostátního kola
probojovali i žáci I. ročníků a umístili se mezi jeho úspěšnými
řešiteli. Jménem ministerstva školství ČSR poděkoval stra-
nickým a státním orgánům Jihočeského kraje, okresu i města
Pelhřimov za vzornou přípravu a organizaci celé akce. Je
třeba poděkovat všem, kteří se zasloužili o pěkný průběh celo-
státního kola MO kategorie A, kteří zorganizovali bohatý
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kulturní program a zařídili mnoho pro uskutečnění soutěže.
Byl to především tajemník OV KSČ s. František Ježek, který
svým elánem a osobní iniciativou byl hybnou pákou celé akce.
Dík patří předsedovi organizačního výboru a řediteli gymnázia
s. Stanislavu Makovcovi a mnoha profesorům všech středních
škol v Pelhřimově, z nichž jmenujme aspoň profesora Ladisla-
va Zrzavého a profesorku Svatavu Matějkovou. Za Krajský
pedagogický ústav v Českých Budějovicích se o dobrý průběh
soutěže velmi zasloužil s. Kamil Flachs. Je samozřejmé, že se
na organizaci podíleli i pracovníci katedry matematiky Peda-
gogické fakulty v Českých Budějovicích, hlavně předsedkyně
KV MO doc. RNDr. ing. Lada Vaňatová.

Ve všech krajích se pořádají akce nejen pro samotné řešitele
úloh MO, ale také pro učitele matematiky, referenty MO na
školách. КV MO v Praze uspořádal v měsících říjen až pro-
sinec 1985 pracovní přednášky pro řešitele, které se konaly
na gymnáziu v Praze 7, Nad štolou. Pro kategorii C probíhaly
podobné přednášky i na gymnáziu v Praze 9. Pro úspěšné ře-
šitele úloh MO proběhla dvě soustředění v Jevanech, první
v lednu a druhé v červnu 1986. Na soustředění byli po-
zváni též nejúspěšnější účastníci korespondenčního seminá-
ře, který pro žáky pražských středních škol organizoval
FV SSM matematicko-fyzikální fakulty UK pod vedením
RNDr. J. Malého.

Středočeský KV MO uspořádal pro referenty MO na
středních školách celodenní instruktáž o řešení úloh MO ka-

tegorií А, В, C v říjnu 1985. Pro řešitele úloh se uskutečnily
přednášky na osmi střediskových školách, každé kategorii bylo
věnováno 4 — 6 hodin. V přednáškách byly použity komentáře
к úlohám MO. Pro 34 nejlepších řešitelů úloh matematické
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a fyzikální olympiády se konalo ve dnech 1. —10. září 1986
soustředění v Telnici v Krušných horách.

V Jihočeském kraji byli referenti MO ze středních škol
informováni o úlohách MO v září 1985 na semináři Krajského
pedagogického ústavu. Pobočka JČSMF uspořádala přednášky
o úlohách MO v jednotlivých městech kraje. Ve dnech 23. až
27. června 1986 proběhla letní škola pro 70 úspěšných řeši-
telů matematické a fyzikální olympiády. Matematické před-
nášky byly zaměřeny na tematické okruhy 36. ročníku MO.
Pro 15 řešitelů krajského kola MO kategorie A proběhlo dvou-
denní soustředění, které vedl RNDr. P. Pech z Pedagogické
fakulty v Českých Budějovicích.

V Západočeském kraji byly zorganizovány pro účastníky
MO dvě přednášky pro každou z kategorií А, В, C ve třech
střediscích (Plzeň, Karlovy Vary a Klatovy). Přednášejícími
byli pracovníci kateder matematiky VŠSE a Pedagogické
fakulty v Plzni. Tito pracovníci vedli též korespondenční se-

minář, který probíhal ve dvou kategoriích. V kategorii 3. a

4. ročníků se ho zúčastnili 54 studenti, v kategorii pro 1. a 2. roč-
niky dokonce 229 žáků. Pro úspěšné řešitele MO a FO a nej-
lepší účastníky korespondenčního semináře se uskutečnilo
týdenní soustředění pro 40 účastníků v Kašperských Horách
v červnu 1986.

Podobné soustředění se konalo pro 51 účastníků v Severo-
českém kraji v Teplicích. Program zajistila pobočka JČSMF
v Ústí n. L. ve spolupráci s КV МО а КV FO. Pro učitele
proběhly semináře к řešením úloh I. kola MO ve čtyřech
oblastech kraje (Liberec, Chomutov, Ústí n. L. a Děčín),
organizoval je Krajský pedagogický ústav. Pro samotné řešitele

11



se uskutečnilo v měsících říjen —prosinec 1985 celkem 33
seminářů v šesti městech kraje.

Ve Východočeském kraji proběhl korespondenční seminář
ve dvou kategoriích. Pro každou z kategorií А, В matematické
olympiády se uskutečnilo pro 35 vybraných řešitelů soustře-
dění před krajským kolem MO, podobné jednodenní sou-
středění proběhlo před celostátním kolem kategorie A. Sou-
středění 34 úspěšných řešitelů úloh MO a FO z I. ročníků
bylo osmidenní, uspořádaly je KV MO, KV FO a KPÚ
v Hradci Králové.

Jihomoravský kraj pořádal pro řešitele úloh MO semináře
pro všechny kategorie, a to nejen v Brně, ale též v Jihlavě,
Třebíči a Ždáru n. S. V průběhu 35. ročníku MO se však
neuskutečnil korespondenční seminář, který byl do jisté míry
nahrazen seminářem na přírodovědecké fakultě Univerzity
J. E. Purkyně v Brně.

KV MO Severomoravského kraje uspořádal pro referenty
MO na středních školách instruktáže к úlohám I. kola, jichž
se zúčastnilo 28 profesorů, převážně z gymnázií. Na 50 střed-
nich školách kraje se pravidelně konají jednou týdně zájmové
kroužky matematiky pro řešitele úloh МО. V Ostravě a v Olo-
mouci se konaly jednou měsíčně besedy к úlohám MO
s průměrnou účastí 20 žáků v kategoriích A, B, v kategorii C
byla účast dvojnásobná. Krajské soustředění se konalo pro
40 vybraných řešitelů úloh MO a FO v červenci v Krnově,
trvalo tři týdny. Zaměstnání vedli jak učitelé vysokých škol,
tak profesoři středních škol a pracovníci KPÚ.

KV MO Bratislava uspořádal korespondenční seminář spo-

jený s dvěma soustředěními a další týdenní soustředění pro

úspěšné řešitele MO kategorií В a C. Velkou pozornost věnují
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v Bratislavě matematickým kroužkům a individuálnímu ve-
dění vybraných studentů pracovníky vysokých škola Akade-
mie věd.

V listopadu 1985 se ve všech okresech Západoslovenského
kraje uskutečnily instruktáže pro referenty MO na středních
školách. Pro žáky středních škol byl zorganizován kores-
pondenční seminář. Zúčastnilo se ho 66 žáků z 24 škol. Na
závěr proběhlo ve dnech 16. —19. dubna 1986 soustředění
17 nejúspěšnějších řešitelů.

Středoslovenský kraj uspořádal tři soustředění řešitelů
úloh MO, v září 1985 pro 40 žáků v Terchové, pro dalších
40 žáků v listopadu v Lučatíně a v červnu 1986 v Piatrové.
Jednodenní instruktáže к úlohám I. kola se zúčastnilo 87
učitelů středních škol. Krajský korespondenční seminář se
uskutečnil ve dvou kategoriích, vždy po pěti sériích úloh.
Zúčastnilo se ho v kategorii A 22 řešitelů, v kategorii В a C
80 žáků.

KV MO Východoslovenského kraje uskutečnil jednodenní
instruktáž pro učitele a vedoucí matematických kroužků MO
podle jednotlivých kategorií. V kategorii A se zúčastnilo 50
učitelů, v kategorii В 70 učitelů a v kategorii C bylo 110
účastníků. Na přírodovědecké fakultě UPJŠ v Košicích
se scházely jednou týdně matematické kroužky, navštěvovalo
je 10 žáků v kategorii A a 12 žáků v kategorii B. Při kraj-
ském domě pionýrů a mládeže pracoval klub mladých
matematiků, který se scházel jednou za 14 dní. Krajského
korespondenčního semináře se zúčastnilo 120 žáků, seminář
měl 7 úloh v každé ze šesti sérií. Každá série obsahovala také

jednu úlohu z programování. Korespondenční seminář byl
během školního roku doplněn třemi týdenními soustředě-
nimi, každé pro 35—40 žáků.
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Ústřední výbor matematické olympiády zajišťoval po obsa-
hové stránce tři celostátní soustředění. Pro žáky nematurují-
cích ročníků to bylo soustředění ve dnech 16,—28. 6. 1986
v Banské Štiavnici, společné pro matematickou a fyzikální
olympiádu. Zaměstnání z matematiky byla věnována kombi-
natorice, teorii čísel, finitní matematice i dějinám matema-

tiky. Přípravě československého družstva na mezinárodní
matematickou olympiádu bylo věnováno týdenní soustředění
v březnu 1986 v Štiříně a třítýdenní soustředění v červnu
1986 v Pardubicích. Prvního soustředění se zúčastnilo 12

žáků, zaměstnání vedli převážně bývalí úspěšní účastníci
MMO. Na druhé soustředění bylo pozváno 14 žáků, z nich
pak byli vybráni členové československého družstva na
27. mezinárodní matematickou olympiádu. O ní se dočtete na
dalších stránkách, rovněž tak o celostátním korespondenčním
semináři, který organizoval ÚV MO.

V edici Škola mladých matematiků, kterou vydává ÚV MO
v nakladatelství Mladá fronta, vyšlo již 57 svazků. Poslední
vyšel během 35. ročníku MO, byl to svazek Nerovnosti
v trojúhelníku od Stanislava Horáka. Svazky edice ŠMM
jsou dobrou pomůckou pro řešitele úloh MO a pro práci
v matematických kroužcích.
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Hodnocení 35. ročníku МО

Porovnáme-li statistiku 35. ročníku MO s ročníkem před-
cházejícím, vidíme, že v účasti škol nedošlo téměř к žádným
změnám. Také celkový počet účastníků soutěže z řad žáků
středních škol zůstal stejný. Avšak počet soutěžících v ka-
tegorii В se zvýšil více než o třetinu, zatímco v kategorii C
byl zaznamenán pokles počtu účastníků o pětinu. Uspěš-
nost ve druhém kole je asi 20 %, nijak se neliší v ČSR a SSR.
Pouze v kategorii C byli opravovatelé úloh na Slovensku asi
přísnější, neboť procento úspěšnosti je v SSR 23, v ČSR 37.
V kategorii A to bylo v celé ČSSR 25 %, velmi nízká úspěš-
nost (12 %) byla ve II. kole kategorie B, v některých krajích
dokonce jen 5 %. Znamená to, že úlohy II. kola kategorie В
byly přece jen dosti náročné. Na tuto skutečnost poukázali
též zástupci KV MO na zasedání ÚV MO v Pelhřimově.
Byly to především důkazové úlohy B-II-3a a B-II-3b, které
byly pro žáky příliš obtížné. Je zajímavé, že špatné výsledky
byly také u úlohy B-II-1, která je sice velmi lehká, avšak
pro žáky trochu neobvyklá. Nejsou totiž zvyklí na funkce,
jejichž definiční obor není množinou čísel. Přitom nová
učebnice matematiky pro I. ročníky gymnázií obsahuje defi-
nici funkce takto šíře chápanou. V kategorii C patřila mezi
obtížnější úloha C-II-2 o rozdělení prostoru rovinami.

Do celostátního kola kategorie A bylo vybráno 82 žáků
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z 31 škol. Větší zastoupení měla samozřejmě gymnázia
s třídami se zaměřením na matematiku. Z gymnázia W.Piecka
v Praze bylo 7 účastníků, z gymnázia M. Koperníka v Bílovci
bylo 9 účastníků celostátního kola a gymnázium A. Markuša
v Bratislavě bylo zastoupeno 10 žáky. Nejvíce účastníků—13—
bylo z gymnázia J. Hronca v Bratislavě. Po pěti žácích bylo
z gymnázia v Brně, tř. kpt. Jaroše, a z gymnázia v Žilině,
Velká Okružná. Čtyřmi žáky bylo zastoupeno gymnázium
v Košicích na Šmeralově třídě a třemi žáky gymnázium
v Pardubicích. Podle organizačního řádu MO obdrželo 19
nej lepších účastníků diplom vítěze, z nich bylo 5 z gymnázia
W. Piecka v Praze, 4 z gymnázia A. Markuša v Bratislavě
a 3 z gymnázia M. Koperníka v Bílovci.

Mezi účastníky celostátního kola byly tři dívky a kromě
jednoho žáka ze střední průmyslové školy byli všichni žáky
gymnázií. Bylo mezi nimi 5 žáků z I. ročníků, z nichž se

jeden umístil mezi vítězi a další tři mezi úspěšnými řešiteli.
Přes náročné úlohy celostátního kola se pěti účastníkům po-
dařilo získat plný počet bodů a stát se tak absolutními vítězi
celostátního kola kategorie A 35. ročníku matematické
olympiády.
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Tabulka 1

Počty středních škol zapojených do 35. ročníku MO

Ostatní střední

školy
Gymnázia

zapojenoz toho zapojeno
Kraj v kategoriiv kategorii

c o S
aSi§

3

alf3, «
»—h )(J
« o
U &

ABC ABC

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
S tředoslovenský
Východos 1 ovenský

3 1

3 15

5 3

2 6

7 12
1 1

8 9

3 6

2 2

16 22

53 74

12 29

321 i 9 15 14
23 22 23 23

18 10 14 12

19 1

23 5 18

15 3 6

15 13 13 12 15 1 6

4 1621 18 20 19

11 27 21

30 32 32

21 32 30

20

35 34 1 2

38 932 0

39 38 0 8

10 8 9 10 10 0 2
37 30 34 28

37 37 37

18 32 33

2237 10

37 I 49
38 ! 3

37 74

3140

:

ČSR 134 176 163 ; 196 ! 15 32 53
93 112 108 122 i 62 83 127

68210

SSR 124 129

ČSSR 334 227 288 271 318 77 115 180 197
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Tabulka 2

Počty žáků středních škol soutěžících v I. kole MO

Kategorie

Celkem
A CВKraj

S U S U s и s и

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

97 75

196 98

103 88

110 68

198 96

162 102

443 236

266 113

115 87

298 223

184 139

545 224

77 46

141 29

109 40

86 51
147 39

73 49

211 113

159 52

120 85

176 120

132 108

202 85

130 53

274 54

96 51

133 42

337 58

189 93

391 197

334 87

95 72

311 201

154 120

963 224

304 174

611 181

308 179

329 161

682 193

424 244

1045 546

759 252

330 244

785 544

470 367

1710 533

ČSR 1 003 419

630 398

1 575 876 1 884 635

1 142 673 1 523 617

4 462 1 930

3 295 1 688SSR

ČSSR 2 717 1 549 Í3 407 1 2521 633 817 7 757 3 618

S ... počet všech soutěžících
U ... počet úspěšných řešitelů
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Tabulka 3

Počty žáků středních škol soutěžících v II. kole MO

1

Kategorie

Celkem
CA ВKraj

S U S U S U | s u

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

43 25

24 2

33 9

43 5

34 8

46 12

91 16

51 20

82 40

116 16

54 10

85 15

67 20

87 5

82 4

68 6

91 12

89 11

192 17

112 21

83 31

218 12

109 9

111 11

52 31

52 6

48 20

42 14

54 19

8639
149 34

86 46

69 28

190 38

87 22

224 45

162 76

163 13

163 33

153 25

179 39

221 62

432 67

249 87

234 99

524 66

250 41

420 71

ČSR 365 97

337 81

788 96

521 63

569 209

570 133

1 722 402

1 428 277SSR

ČSSR 702 178 1 309 159 3150 6791139 342

;

S ... počet všech soutěžících
U ... počet úspěšných řešitelů
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Tabulka 4

Počty účastníků III. kola MO kategorie A

Celkový
počet

účastníků

Počet

úspěšných
řešitelů

Z toho
vítězůKraj

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
J ihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

67 5

01 0

01 o

1 o o

3 1 1

4 38

8 6 1

9 5 3

25 515

34 0

5 07

38 1

ČSR 1338 22

SSR 44 26 6

ČSSR 48 1982
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VÝSLEDKY CELOSTÁTNÍHO KOLA MO

KATEGORIE A

Pořadí, jméno a příjmení, ročník, škola. U žáků z tříd
gymnázií se zaměřením na matematiku je za ročníkem
označení M, u žáků z tříd gymnázií se zaměřením na mate-
matiku a fyziku je uvedeno označení MF. G značí gymnázium.

Vítězové

1. —5. David Bednářek, 4 M, G W. Piecka, Praha
Petr Hájek, 4 M, G W. Piecka, Praha
Vladimír Kordula, 4 M, G M. Koperníka, Bílovec
Adam Obdržálek, 4 M, G W. Piecka, Praha
Petr Šleich, 4, G Děčín

6.-7. Martin Heisler, 4 M, G W. Piecka, Praha
Vládán Majerech, 3 MF, G Pardubice

8.-9. Anton Belan, 3 M, G A. Markuša, Bratislava
Roman So ták, 3 M, G Košice, Šmeralova

10. —11. Radek Adamec, 4, G Kroměříž
Robert Babilon, 3 M, G M. Koperníka, Bílovec
Petr Penci, 3 MF, G Pardubice
Petr Čížek, 1 M, G W. Piecka, Praha

14. —16. Jana Ježková, 3 MF, G Hradec Králové, Šimkova
Ivan Polách, 4 MF, G J. Hronca, Bratislava
Marcel Polakovič, 3 M, G A. Markuša, Bratislava

12.

13.
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17. —19. Tibor Bartoš, 2 M, G A. Markuša, Bratislava
Petr Habala, 3 M, G M. Koperníka, Bílovec
Peter Klein, 3 M, G A, Markuša, Bratislava

Další úspěšní řešitelé

20. —24. Andrej Doboš, 1 M, G A. Markuša, Bratislava
Marián Lukáč, 3, G Bánovce n. B.
Dominik Munzar, 4 MF, G Brno, tř. kpt. Jaroše
Alexander Szabari, 4 M, G Košice, Šmeralova
Tomáš Trégl, 3 M, G W. Piecka, Praha

25.-26. Jozej Čierný, 3 M, G Žilina, Velká Okružná
Libor Skřička, 4 MF, G Brno, tř. kpt. Jaroše

27.-29. Miroslav Bedlek, 4 M, G A. Markuša, Bratislava
Pavol Gvozdjak, 2 M, G A. Markuša, Bratislava
Vladimír Potisk, 4 MF, G J. Hronca, Bratislava

30. —32. Igor Bilák, 4, G Prešov, Konštantínova
František Klein, 3 MF, G Brno, Koněvova
Milan Kubala, 4 M, G Žilina, Velká Okružná

33.—37. Martin Blatný, 4 M, G M. Koperníka, Bílovec
Ján Budinský, 3 M, G A. Markuša, Bratislava
Petr Fuchs, 4 MF, G Brno, tř. kpt. Jaroše
Michal Hrabák, 4 M, G M. Koperníka, Bílovec
Ilja Martišovitš, 1 MF, G J. Hronca, Bratislava
Dušan Hanes, 3 MF, G Prievidza
Petr Krákora, 2 MF, G Trutnov

40. —42. Jaroslav Hora, 3 MF, G Brno, tř. kpt. Jaroše
Pavol Kolník, 3, G Nové Město n. V.
Miroslav Laššák, 3 M, G Žilina, Velká Okružná

38.

39.
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43. —46. Karol Hrivnák, 2 M, G A, Markuša, Bratislava
Stanislav Januschke, 1 MF, G J. Hronca, Bratislava
Igor Melicherčík, 4 MF, G Banská Bystrica,
Tajovského
Vladimír Veselý, 3 MF, G J. Hronca, Bratislava

47.-48. Rudolf Burel, 3, G Trnava
Stanislav Meduna, 4 MF, G J. Hronca, Bratislava

Pořadí úspěšných řešitelů z tříd, které nejsou zaměřeny
na matematiku

Petr Šleich, 4, G Děčín
Vládán Majerech, 3, G Pardubice
Radek Adamec, 4, G Kroměříž
Petr Penci, 3, G Pardubice

5.-6. Jana Ježková, 3, G Hradec Králové, Šimkova
Ivan Polách, 4, G J. Hronca, Bratislava

7.-8. Marián Lukáč, 3, G Bánovce n. B.
Dominik Munzar, 4, G Brno, tř. kpt. Jaroše
Libor Skřička, 4, G Brno, tř. kpt. Jaroše
Vladimír Potisk, 4, G J. Hronca, Bratislava

11. —12. Igor Bilák, 4, G Prešov, Konštantínova
František Klein, 3, G Brno, Koněvova

13. —14. Petr Fuchs, 4, G Brno, tř. kpt. Jaroše
Ilja Martišovitš, 1, G J. FIronca, Bratislava
Dušan Hanes, 3, G Prievidza
Petr Krákora, 2, G Trutnov

17. —18. Jaroslav Hora, 3, G Brno, tř. kpt. Jaroše
Pavol Kolník, 3, G Nové Město n. V.

1.

2.

3.

4.

9.

10.

15.

16.
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19. —21. Stanislav Januschke, 1, G J. Hronca, Bratislava
Igor Melicherčík, 4, G Banská Bystrica, Tajovského
Vladimír Veselý, 3, G J. Hronca, Bratislava

22. —23. Rudolf Burel, 3, G Trnava
Stanislav Meduna, 4, G J. Hronca, Bratislava
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NEJÚSPĚŠNĚJŠÍ ŘEŠITELÉ II. KOLA MO
V KATEGORIÍCH А, В, C

Z každého kraje a každé kategorie je uvedeno nejvýše
prvních deset nejúspěšnějších řešitelů. Pokud není uvedeno
jinak, byli všichni uvedení řešitelé v kategorii В žáky 2. roč-
niku, řešitelé v kategorii C žáky 1. ročníku.

G - gymnázium, M - třída se zaměřením na matematiku,
MF - třída se zaměřením na matematiku a fyziku.

Praha

Kategorie A

1. —2. Petr Hájek, 4 M, G W. Piecka, Praha
Tomáš Trégl, 3 M, G W. Piecka, Praha
David Bednárek, 4 M, G W. Piecka, Praha
Ivo Majetič, 4 M, G W. Piecka, Praha
Adam Obdržálek, 4 M, G W. Piecka, Praha
Petr Čížek, 1 Zvi, G W. Piecka, Praha
Daniela Košnarová, 3 M, G W. Piecka, Praha
Martin Barhoň, 3 M, G W. Piecka, Praha
Petr Palatka, 4 MF, G Praha 3, Sladkovského nám.
Miroslav Pátek, 3 M, G W. Piecka, Praha

3.

4.

5.

6.

7.

8.

9.

10.
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Kategorie В

Marta Sochorová, M, G W. Piecka, Praha
Lubomír Ursta, M, G W. Piecka, Praha
Vladimír Valenta, M, G W. Piecka, Praha
David Maxera, G Praha 1, Hellichova
Jan Baštecký, M, G W. Piecka, Praha
Jiří Hub, M, G W. Piecka, Praha
Michal Zemlička, G Praha 6, Nad alejí

8. —10. Lukáš Kencl, M, G W. Piecka, Praha
Petr Knobloch, G Praha 10, Voděradská
Jakub Tayari, G Praha 8, U libeňského zámku

1.

2.

3.

4.

5.

6.

7.

Kategorie C

1.—2. Václav Bohdanecký
Ilja Holub
Miroslav Teichman

4.-5. Martin Dlouhý
Jan Dvořák

6, Petr Čížek7.-8. Daniel Elieder

Ludvík Tesař

všichni M, G W. Piecka, Praha

3.

Středočeský kraj

Kategorie A

1. Martin Jonáš, 4, G Mladá Boleslav
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2. Radek Musil, 3, SPŠ Mělník

Kategorie В

1. Martin Vojáček, G Kolín
2. Radovan Čížek, G Mladá Boleslav
3. Pavel Krejčíř, G Mladá Boleslav
4. Jiří Svoboda, SPŠ Mladá Boleslav
5. Radek Tezaur, G Vlašim

Kategorie C

1. Lenka Novotná, G Kladno
2. Jaroslav Pilner, G Kladno
3. Ladislav Kocour, G Dobříš
4. Martin Černý, G Brandýs n. L.
5. Radek Novotný, G Mladá Boleslav
6. Martin Pánek, SPŠ Kladno-Sítná

Jihočeský kraj

Kategorie A

Aleš Chrdle, 3 MF, G K. Šatala, České Budějovice
Daniel Urban, 3 MF, G K. Šatala, České Budějovice
Petr Jaroš, 4, G Pelhřimov
Milan Stech, 4 MF, G K. Šatala, České Budějovice

5.-7. Jiří Bořík, 4, SPŠ Písek
Petr Holý, 3, G České Budějovice, Jírovcova
Jiří Veselý, 3, G Strakonice

1.

2.

3.

4.
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8.-9. Michal Víta, 3 MF, G K. Šatala, České Budějovice
Jindřich Zapletal, 3, G Tábor

Kategorie В

Roman Polanský, G Písek
2.-4. JosefJirák, G Prachatice

Jaromír Šilhánek, G České Budějovice, Jírovcova
Markéta Zemanová, G České Budějovice, Česká

1.

Kategorie C

1. —2. David Boukal, M, G České Budějovice, Jírovcova
Lenka Pulcová, G Kaplice
Dagmar Malečková, G Strakonice

4.-5. Zdeněk Křenek, SPŠ Písek
Michal Kučera, G K. Šatala, České Budějovice
František Vaněk, SPŠ Písek
Jiří Rataj, G Strakonice

3.

6.

7.

Západočeský kraj

Kategorie A

1. Václav Kohout, 4, G Plzeň, ul. Pionýrů
2. Jiří Pittner, 4 MF, G J. Fučíka, Plzeň
3. Michal Winner, 4 MF, G Karlovy Vary
4. Radovan Osoba, 4 MF, G Plzeň, ul. Pionýrů
5. Kamil Meisl, 4 MF, G J. Fučíka, Plzeň
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Kategorie В

Luboš Černý, M, G J. Fučíka, Plzeň
Zdeněk Tryner, M, G J. Fučíka, Plzeň
Dalibor Procházka, MF, G Karlovy Vary

4.-5. Jan Koudelka, MF, G Karlovy Vary
Dagmar Součková, MF, G Karlovy Vary
Barbora Mottlová, MF, G J. Fučíka, Plzeň

1.

2.

3.

6.

Kategorie C

Vítězslav Babický, M, G J. Fučíka, Plzeň
Kateřina Větrovcová, MF, G Plzeň, ul. Pionýrů
Miroslav Vicher, MF, G Karlovy Vary
Aleš Niebauer, G Mariánské Lázně

5.-6. Štěpánka Hroníková, MF, G J. Fučíka, Plzeň
Ladislav Smejkal, M, G J. Fučíka, Plzeň
Pavla Maříková, M, G J. Fučíka, Plzeň
Milena Řezná, MF, G J. Fučíka, Plzeň

1.

2.

3.

4.

8.

Severočeský kraj

Kategorie A

Petr Šleich, 4, G Děčín
2. —3. Ondřej Pavla ta, 4, G Jablonec

Vladimír Richter, 2 M, G Liberec
Pavel Novák, 4, G Děčín
Pavel Truhlář, 2 M, G Liberec

1.

4.

5.
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Petr Slavík, 3 MF, G Teplice
7.-8. Petr Mandík, 3, G Děčín

Dušan Oslej, 4, SPŠ stav. Děčín

6.

Kategorie В

David Swigoň, M, G Liberec
Pavel Truhlář, M, G Liberec
Daniel Suta, G Chomutov
Jan Dvořák, MF, G Ústí n. L.
Petr Bartoš, M, G Liberec

6.-8. Petr Jakša, M, G Liberec
David Orálek, MF, G Teplice
Jindřich Šimon, G Rumburk

9. —10. Vladimír Richter, M, G Liberec
Jaroslav Trnka, M, G Liberec

1.

2.

3.

4.

5.

Kategorie C

Dan Lukeš, M, G Liberec
Tomáš Brázda, MF, G Teplice

3. —4. Markéta Večerníková, M, G Liberec
Petr Viták, M, G Liberec
Vladimír Saur, M, G Liberec

6.-9. Kateřina Bobková, M, G Liberec
Štěpánka Lazarová, G Děčín
Pavel Noga, G Litoměřice
Oldřich Vojtíšek, M, G Liberec
Zdeněk Novák, M, G Liberec

1.

2.

5.

10.
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Východočeský kraj

Kategorie A

1. Vládán Majerech, 3 MF, G Pardubice
2. René Levínský, 2 M, G J. K. Tyla, Hradec Králové
3. Tomáš Skalický, 4, G Jevíčko
4. Petr Penci, 3 MF, G Pardubice
5. Petr Jelínek, 3 MF, G Pardubice
6. Petr Krákora, 2, G Trutnov
7. Jana Ježková, 3 MF, G Hradec Králové, Šimkova
8. Michal Blažej, 4, G Trutnov

Kategorie В

1. Miroslav Beneš, M, G J. K. Tyla, Hradec Králové
2. Hynek Pikhart, MF, G Pardubice
3. Jan Stařeček, MF, G Pardubice
4. Jiří Martínek, G Ledeč n. S.
5. Věra Keprtová, G Žamberk
6. Silvestr Badal, G Jevíčko
7. René Levínský, M, G J. K. Tyla, Hradec Králové
8. Miroslav Končický, SPŠE Pardubice
9. Libor Kábrt, G Chrudim10.Luboš Halousek, G Chrudim

Kategorie C

1. Karel Waisser, M, G J. K. Tyla, Hradec Králové
2. Tomáš Kučera, SPŠE Pardubice
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3. Zdeněk Slanina, MF, G Hradec Králové, Šimkova
4. Zbyněk Vašata, M, G J. K. Tyla, Hradec Králové
5. Petr Bílý, G Žamberk
6. Kamil Mrštný, G Žamberk
7. Miloš Nosek, M, G J. K. Tyla, Hradec Králové
8. Jaroslav Vejs, M, G J. K. Tyla, Hradec Králové
9. Petr Duczynski, G Nová Рака10.Helena Fikeisová, G Rychnov n. K.

Jihomoravský kraj

Kategorie A

Petr Fuchs, 4 MF, G Brno, tř. kpt. Jaroše
Petr Veselý, 4, G Jihlava
Michal Krupka, 4 MF, G Brno, tř. kpt. Jaroše

4.-5. Radek Adamec, 4, G Kroměříž
Dominik Munzar, 4 MF, G Brno, tř. kpt. Jaroše
Libor Skřička, 4 MF, G Brno, tř. kpt. Jaroše

7.-8. František Klein, 3 MF, G Brno, tř. kpt. Jaroše
Jan Tuček, 4, G Brno, Táborská
Jaroslav Hora, 3 MF, G Brno, tř. kpt. Jaroše
Ondřej Pokluda, 2 M, G Brno, tř. kpt. Jaroše

1.

2.

3.

6.

9.

10.

Kategorie В

Karel Slavíček, M, G Brno, tř. kpt. Jaroše
2. —3. Ondřej Pokluda, M, G Brno, tř. kpt. Jaroše

Tomáš Vítek, MF, G Jihlava
Tomáš Dvořák, M, G Brno, tř. kpt. Jaroše

1.

4.
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Martin Vondráček, M, G Brno, tř. kpt. Jaroše
6. —10. Jan Černooký, G Brno, Koněvova

Tomáš Heroudek, G Brno, Koněvova
Ota Jelínek, MF, G Brno, Táborská
Tomáš Kukora, MF, G Brno, tř. kpt. Jaroše
Hana Škarvadová, MF, G Gottwaldov

5.

Kategorie C

Marek Velešik, G Brno, Koněvova
Michal Šmídek, M, G Brno, tř. kpt. Jaroše
Olga Pilná, G Ždár n. S.
Vít Urbanec, MF, G Gottwa dov
Petr Kachyňa, M, G Brno, tř. kpt. Jaroše
Petr Mejzlík, M, G Brno, tř. kpt. Jaroše
Eva Kolářová, M, G Brno, tř. kpt. Jaroše
Iva Musilová, G Ždár n. S.
Viktor Němec, M, G Brno, tř. kpt. Jaroše
René Samek, G Jihlava

1.

2.

3.

4.

5.

6.

7.-10.

Severomoravský kraj

Kategorie A

1. Vladimír Kordula, 4 M, G M. Koperníka, Bílovec
2. Martin Blatný, 4 M, G M. Koperníka, Bílovec
3. Robert Babilon, 3 M, G M. Koperníka, Bílovec
4. Miroslav Novák, 4 M, G M. Koperníka, Bílovec
5. Tomáš Tkadlec, 4 M, G M. Koperníka, Bílovec
6. Michal Hrabák, 4 M, G M. Koperníka, Bílovec
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7. Radomír Měch, 2 M, G M. Koperníka, Bílovec
8. Vojtěch Šléžka, 3 M, G M. Koperníka, Bílovec
9. Tomáš Novotný, 3 MF, G P. Bezruce, Frýdek-Místek

10. Petr Habala, 3 M, G M. Koperníka, Bílovec

Kategorie В

1. —2. Romana Anýžová, M, G M. Koperníka, Bílovec
Ondřej Blaha, M, G M. Koperníka, Bílovec
Martin Krejčí, M, G M. Koperníka, Bílovec
Gabriela Venhudová, M, G M. Koperníka, Bílovec

5.-7. Petr Miencil, MF, G Ostrava 1, Šmeralova
Radek Porazil, M, G M. Koperníka, Bílovec
Jan Slovák, G Uničov
Ladislav Sedláček, MF, G Olomouc, Tomkova
Radek Krpec, G Frýdlant n. O.
Simona Gebauerová, M, G M. Koperníka, Bílovec

3.

4.

8.

9.

10.

Kategorie C

Martin Kučera, M, G M. Koperníka, Bílovec
Libor Němeček, M, G M. Koperníka, Bílovec
David Šindler, M, G M. Koperníka, Bílovec
Petr Bohumský, M, G M. Koperníka, Bílovec

5.-7. Olga Břečková, G Ostrava, Hladnovská
Petra Rozsívalová, G Zábřeh n. M.
Martin Slíva, M, G M. Koperníka, Bílovec
Vládán Mišun, M, G M. Koperníka, Bílovec
Bohdana Škopcová, MF, G Opava

1.

2.

3.

4.

8.

9.
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Bratislava

Kategorie A

1. —2. Tibor Bartoš, 2 M, G A. Markuša, Bratislava
Pavol Gvozdjak, 2 M, G A. Markuša, Bratislava
Tomáš Fischer, 4 MF, G J. Hronca, Bratislava

4.-6. Miroslav Bedlek, 4 M, G A. Markuša, Bratislava
Stanislav Meduna, 4 MF, G J. Hronca, Bratislava
Vladimír Veselý, 3 MF, G J. Hronca, Bratislava
Stanislav Januschke, 1 MF, G J. Hronca, Bratislava
Pavol Seress, 4, G Bratislava, Tomašíkova

9, —10. Ivan Polách, 4 MF, G J. Hronca, Bratislava
Marcel Polakovič, 3 M, G A. Markuša, Bratislava

3.

7.

8.

Kategorie В

1.—4. Robert Bódi, M, G A. Markuša, Bratislava
Pavol Gvozdjak, M, G A. Markuša, Bratislava
František Komora, M, G A. Markuša, Bratislava
Stanislav Šimunek, M, G A. Markuša, Bratislava

5.-6. Martin Bujdák, M, G A. Markuša, Bratislava
Zuzana Kosorincová, M, G A. Markuša, Bratislava
Miloš Goda, M, G A. Markuša, Bratislava
Branislav Stríženec, MF, G J Hronca, Bratislava
Andrea Škamlová, M, G A. Markuša, Bratislava

7.

8.

9.

Kategorie C

Stanislav Januschke, MF, G J. Hronca, Bratislava1.
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Peter Gvozdjak, M, G A. Markuša, Bratislava
Milan Momý, MF, G J. Hronca, Bratislava
Ilja Martišovitš, MF, G J. Hronca, Bratislava
Rastislav Tamaškovic, MF, G J. Hronca, Bratislava
Mário Střapec, M, G A. Markuša, Bratislava
Jana Zdražilová, M, G A. Markuša, Bratislava
Hana Krajňáková, M, G A. Markuša, Bratislava

9. —10. Štefan Dobrev, M, G A. Markuša, Bratislava
Radoslav Tomek, MF, G J. Hronca, Bratislava

2.

3.

4.

5.

6.
i-*

8.

Západoslovenský kraj

Kategorie A

1. Juraj Marczell, 4, maďarské gymnázium Galanta
2. Marián Lukáč, 3, G Bánovce n. В.
3. Rudolf Burel, 3, G Trnava
4. Pavol Kolník, 3, G Nové Město n. V.
5. Peter Mužila, 4, G Nitra, Párovská
6. Erik Hevesi, 4, G Levice
7. Oliver Ralík, 3, G E. Gudernu, Nitra
8. Ladislav Baráth, 3, G Komárno
9. András Czékus, 4, maďarské gymnázium Komárno

10. Robert Jakubík, 4, G Levice

Kategorie В

1. Viktor Bodi, G E. Gudernu, Nitra
2. Ján Trojan, G Nitra, Párovská
3. Petik Katalin Kis, maďarské gymnázium Komárno
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4. Benedikt Tórok, G Dunajská Středa
5. Ondřej Trubač, G Senec
6. Ladislav Petényi, G Šáhy
7. Martin Holeček, G Levice
8. Peter Jászberenyi, G E. Gudernu, Nitra
9. Jťdia Hamadová, G E. Gudernu, Nitra10.Jana Káčeriková, G Nitra, Párovská

Kategorie C

1. Gabriel Varga, G Šamorín
2. Miklós Gyetvén, SPŠ Komárno
3. Viktor Gréč, G Skalica
4. Eva Fašángová, madarské gymnázium Želiezovce
5. Marián Kocsis, SPŠ stav. Hurbanovo
6. Peter Hladký, G Trenčín
7. Terézia Vančová, G Trnava
8. Jozej Géci, G Levice
9. Daniela Vargová, G Levice10.Karol Zimmer, G E. Gudernu, Nitra

Středoslovenský kraj

Kategorie A

Milan Kubala, 4 M, G Žilina, Velká Okružná
Igor Melicherčik, 4, G Banská Bystrica, Tajovského
Dušan Hanes, 3 MF, G Prievidza
Robert Germič, 4 M, G Žilina, Velká Okružná
Miroslav Laššák, 3 M, G Žilina, Velká Okružná

1.

2.

3.

4.

5.
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Jaroslav Jaroš, 3 M, G Žilina, Velká Okružná
Jozef Čierny, 4 M, G Žilina, Velká Okružná

8.-9. Roman Maslenka, 4, G Banská Štiavnica
Luboš Mikušiak, 4 M, G Žilina, Velká Okružná
Ivan Bereš, 4 MF, G Zvolen

6.

7.

10.

Kategorie В

Vladimír Šosovička, M, G Žilina, Velká Okružná
2, —3. Roman Hric, G Banská Bystrica, Tajovského

Peter Oravec, M, G Žilina, Velká Okružná
Jozef Radler, MF, G Zvolen
Jozef Saniga, M, G Žilina, Velká Okružná
Peter Botek, M, G Žilina, Velká Okružná
Marcel Zanechal, M, G Žilina, Velká Okružná
Zuzana Hellyová, G Žilina, Wolkerova
Ján Waclawek, G Lučenec

1.

4.

5.

6.

7.

8.

9.

Kategorie C

1. — 2. Luboš Ciklamín, M, G Žilina, Velká Okružná
Ondřej Čuch, 8. třída ZŠ Martin, ul. Mládeže
Gregor Rayman, G Žilina, Wolkerova
Robert Mitka, M, G Žilina, Velká Okružná
Aleš Černý, M, G Žilina, Velká Okružná
Peter Korbačka, M, G Žilina, Velká Okružná

7.-8. Luboš Bánik, M, G Žilina, Velká Okružná
Mário Italy, M, G Žilina, Velká Okružná

• 9. —10. Jotis Fotopulos, G Banská Bystrica, Tajovského
Stanislav Matuška, M, G Žilina, Velká Okružná

3.

4.

5.

6.
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Východoslovenský kraj

Kategorie A

1. Roman So ták, 3 M, G Košice, Šmeralova
2. Máňo Drosc, 3, G Michalovce
3. Daniela Gavalcová, 4 M, G Košice, Šmeralova
4. Stanislav Krajči, 2 M, G Košice, Šmeralova
5. Peter Čirip, 4, G Prešov, Konštantínova
6. Igor Bilák, 4, G Prešov, Konštantínova
7. Alexander Szabari, 4 M, G Košice, Šmeralova
8. Vladimír Hašík, 4, SPŠE Košice
9. Zora Mlýnková, 4 M, G Košice, Šmeralova10.Peter Muška, 3 MF, G Poprad, Leninovo nábr.

Kategorie В

Stanislav Krajči, M, G Košiee, Šmeralova
Radoslav Mroz, G Spišská Nová Ves
Olga Katreniaková, G Košice, Šrobárova
Zuzana Bobovská, G Poprad, Leninovo nábr.

5.-6. Roman Vávra, G Rožňava
Roman Vodička, M, G Košice, Šmeralova
Pavol Schreiber, G Krompachy
Zdeno Kalnassy, G Prešov, Konštantínova

9. —10. Rudolf Krajči, G Poprad, Leninovo nábr.
Daniela Pitoňáková, G Poprad, Zápotockého

1.

2.

3.

4.

7.

8.
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Kategorie С

1. Maroš Rusňák, M, G Košice, Šmeralova
2. Zuzana Gajdová, SPŠ dřev., Spišská Nová Ves
3. Martin Kačur, G Vranov
4. Adriana Jancurová, G Humenné
5. Peter Fúsek, G Poprad, Leninovo nábr.
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Kategorie С

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

C - I -1

Uvnitř konvexního sedmiúhelníku A1A2A3A4A5AQA- opsa-
ného kružnici o poloměru r je dán bod X. Vyjádřete r pomocí
délek stran sedmiúhelníku a vzdáleností bodu X od přímek
Л1Л2, A2A3, ..АвАу, A7A1.

Řešení. Označme di vzdálenost bodu X od přímky A, A
(i — l, 2, ..6) a di vzdálenost bodu X od přímky A7Ai.
Celý sedmiúhelník se skládá ze sedmi nepřekrývajících se

trojúhelníků XA1A2, XA2A3, ..XAqAt, XA7A1 (obr. 1).

i+1

A5
7

A 6. x/Xdi
A4\

S

\ /
7A3\

/ \
Ay / v

/
/

A-] A2

Obr. 1
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Jeho obsah se tedy rovná součtu obsahů těchto trojúhelníků,
tj. hodnotě

1
— (\AiA2\ .di + ... + \A(,A-i\.cIq + \A7A\\.d7).

Daný sedmiúhelník je také složen z nepřekrývajících se troj-
úhelníků SA1A2, SA2A3, .. .,SA6A7, SA7A1; kde jsme ozna-
čili střed kružnice sedmiúhelníku vepsané. Všechny tyto
trojúhelníky mají stejně velkou výšku r ke straně А/Ащ
(A7A1), obsah sedmiúhelníku se tudíž rovná také hodnotě

1
--(\A\Ao\ + IA0A31 + ... + \AqA7\ + I A7Ai\)r.

Porovnáním obou výrazů pro obsah sedmiúhelníku dostaneme

IA1A2] . d\ + ... + \ AqA7\ . da + \ A7A\\ . d7
\AiA2\ + ... + \A(>A7\ + IA7 A\ I

r =

С - I - 2

Určete všechna přirozená čísla n, která se nedají napsat ve
tvaru n = 3x + 5y, kde x,y jsou přirozená čísla.

Řešení. Jsou-li x,y přirozená čísla (tj. celá kladná), je číslo
3x + 5у větší než 7. Tím je zřejmé, že čísla 1, 2, 3, ..., 6, 7
nejdou napsat ve tvaru 3x + 5y, kde x,y jsou přirozená čísla.
Čísla 8, 11, 13 a 14 lze napsat v požadovaném tvaru: 8 =
= 3.1 + 5.1, 11—3.2 + 5.1, 13 = 3.1 + 5.2 a 14 =
= 3.3 + 5.1. Čísla 9, 10, 12 a 15 není možné napsat poža-
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dováným způsobem. Kdyby například platilo 15
x, у přirozená čísla, bylo by číslo 5y — 15 — 3x dělitelné

15 - 5y

3x + 5y,

třemi. Pak by však muselo být у ^ 3 a číslo x — —

by nebylo přirozené, protože by nebylo kladné. Snadno si
ověříte, že čísla 16,17,18,19 a 20 lze vyjádřit ve tvaru 3x + 5y,
kde x, у jsou přirozená čísla, například 18 = 3.1 + 5.3.
Každé číslo větší než 20 lze napsat ve tvaru 5k + q, kde
k ^ 3 a q se rovná některému z čísel 1, 2, 3, 4, 5. Pak je
5k + q = 5(k - 3) + 15 + q = 5(k - 3) + r, r e {16, 17,
18, 19, 20}. Víme již, že se číslo r dá napsat ve tvaru 3x + 5y,
kde x,y jsou přirozená čísla, proto to platí i pro číslo 5k + q =
= 3x + 5(y + k — 3). Hledanou množinou přirozených čísel
je tedy množina

{1,2, 3,4, 5, 6, 7,9,10,12, 15}.

To ovšem za předpokladu, že přirozeným číslem rozumíme
číslo celé a kladné. Zahrneme-li mezi přirozená čísla také
nulu, dostaneme jen množinu (1, 2, 4, 7}.

C- i -3

Je dán rovnoběžník ABCD a v jeho rovině dva body K, L.
Uvažujme všechny rovnoběžníky PQRS shodné s rovnoběž-
níkem ABCD, které leží v téže rovině, přímka PQ prochází
bodem К a přímka PS bodem L. Určete množinu všech
vrcholů P takových rovnoběžníků a dokažte, že existují dva
body takové, že úhlopříčka PR každého uvažovaného rovno-
běžníku PQRS prochází aspoň jedním z nich.
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Řešení. Označme a = | <^C DAB|. Do hledané množiny pat-
ří zřejmě bod K. Existují totiž čtyři rovnoběžníky PQRS
shodné s rovnoběžníkem ABCD, pro které splývá bod P
s bodem К a bod S leží na přímce KL (obr. 2). Podobně to
platí pro bod L (obr. 3). Žádný další bod přímky KL nemůže
do hledané množiny patřit, protože by přímky PK, PL sply-
nuly, na přímce PK leží bod Q, na přímce PL bod S, avšak
body Q, P, S neleží na přímce. Hledejme ty body P, které

R Q Q R
v

S S

44



neleží na přímce KL. Předpokládejme tedy, že PQRS je
rovnoběžník požadovaných vlastností a že bod P neleží na

přímce KL. Protože | <C SPQ\ — a a bod К leží na přímce
PQ a bod L na přímce PS, je |<£ KPL\ = a (obr. 4) nebo je
|<£ KPL\ = 180° — a (obr. 5). Podle věty o obvodovém a stře-

dovém úhlu je množinou všech bodů P v rovině, pro které je
|<£ KPL\ = a, množina všech bodů dvou kruhových oblouků
s krajními body K, L. Totéž platí pro ty body P, pro které je
|<£ KPL\ = 180° — a. Všechny tyto čtyři kruhové oblouky
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tvoří spolu s body K, L dvě kružnice procházející body K, L
a souměrně sdružené podle přímky KL. Tyto dvě kružnice
splývají, je-li a = 90° (rovnoběžník ABCD je pravoúhelník).
Je-li obráceně P bod některé z těchto dvou kružnic a různý
od bodů K, L, je | <£ KPL\ = a nebo je | <£ KPL\ — 180° — a.
V prvním případě můžeme na polopřímkách PK a PL (nebo
na polopřímkách opačných) zvolit body Q a S tak, že lze
body P, <2, S doplnit na rovnoběžník PQRS shodný s rovno-
běžníkem ABCD. V druhém případě můžeme se stejným
výsledkem zvolit bod Q na polopřímce PK a bod S na polo-
přímce opačné к polopřímce PL, nebo bod na polopřímce
PL a bod Q na polopřímce opačné к polopřímce PK. Protože
do hledané množiny patří též body K, L, můžeme shrnout
výsledek: Hledanou množinou je množina všech bodů kruž-
nic k\, k% procházejících body K, L, pro jejichž středy 0\,
O2 platí (pro i — 1, 2) |<£ KOiL\ = 2a, jestliže je a =
= |<£ DAB\ ^ 90°, nebo platí |<£ KOJ,| = 2(180° - a)
v případě a > 90°. Je-li a = 90°, kružnice k\, k2 splývají.
Zvolme na kružnici k\ bod U tak, aby pro každý její bod P,
pro který je | <X KPL\ = a, platilo | <£ KPU| = ft, kde ft —

— |<£ BAC\. Je-li PQRS rovnoběžník požadovaných vlast-
ností a bod P leží na kružnici k\, prochází jeho úhlopříčka PR
bodem U, neboť |<£ QPR\ = ft a |<£ KPU\ = ft nebo
|<£ KPU I = 180° — ft (obr. 6, 7, 8), podle toho, na kterém
oblouku kružnice k\ s krajními body K, U bod P leží. V kaž-
dém případě pak leží body R, U, P na jedné přímce. Leží-li
bod P na kružnici k2, prochází přímka PR bodem V souměrně
sdruženým к bodu U podle přímky KL. Tím jsme dokázali
druhou část tvrzení úlohy, že přímka PR prochází bud bodem
U, nebo bodem V.
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С- I -4

Jsou dány různoběžky/), q a na přímce q tři navzájem různé
body А, В, C, A фр. Je-li R ф q libovolný bod přímky p,
označme 51 průsečík přímky/) s přímkou rovnoběžnou s přím-
kou AR a procházející bodem B. Nechť je T průsečík přímek
AR a CS. Dokažte, že vzdálenost bodu T od přímky p ne-
závisí na volbě bodu R.

Řešení. Označme Ci, 7i paty kolmic vedených body С, T
к přímce p (obr. 9). Je pak |7Ti| :|CCi| = |7\S| :|CS|.
Z podobnosti trojúhelníků АТС, BSC plyne |7\S| : |CS| =
= \AB\ :\CB\, takže |rri| = |4B|.|CCi| :\CB\. Poslední
výraz nezávisí na R, což jsme měli dokázat. Mlčky jsme před-
pokládali, že С фр. Je-U bod C průsečíkem přímek p, q, je
T — R a tvrzení platí také.
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С - I - 5

Uvnitř krychle určete středy všech kulových ploch, které se

dotýkají jejích tří sousedních stěn se společným vrcholem
a tří sousedních hran krychle, které v těchto stěnách neleží.

Řešení. Označme danou krychli ABCDEFGH (obr. 10).
Je-li bod M středem kulové plochy, jež se dotýká stěn ABC,
ADH, ABF, leží bod M na tělesové úhlopříčce AG krychle.
Každý bod úhlopříčky AG má od přímek GF, GH, GC stejné
vzdálenosti. Máme tedy najít ty body M úhlopříčky AG, které

GH

i

E Fi

P
, M

x

!d c
>-

x
Q

вa

Obr. 10

mají stejnou vzdálenost od stěny ABC jako od hrany GC.
Označme \AB\ — a, \MQ\ = \MP\ = x, kde je Q pata kol-
mice vedené bodem M к stěně ABC, P je pata kolmice vedené
bodem M к přímce GC. Z podobnosti trojúhelníků GPM3
GCA plyne

x : (a — x) = a]/2 : a = 1/2.
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1
Protože \GM\ : \AM\ GP | :\MQ\ = -=, dělí bod Aíúhlo-

V2
příčku AG v poměru ]/2 : 1. Na každé tělesové úhlopříčce
krychle existují dva body s touto vlastností. Celkem existuje
pro danou krychli osm bodů, jež jsou středy kulových ploch
požadované vlastnosti.

C - I - 6

Je dán mnohoúhelník A1A0A3 . .. An. Každou ze stran
a úhlopříček daného mnohoúhelníku obarvíme červeně nebo
modře tak, že strany A\A% a A2A3 budou červené a strana
A3A4 a všechny úhlopříčky vedoucí z vrcholu A3 budou
modré. Určete n, platí-íi navíc: Při každém takovém obarvení
existuje aspoň 49 dvojbarevných trojúhelníků, přičemž existu-
je obarvení, ve kterém jich je právě 49.

Řešení. Předpokládejme, že je и-úhelník A\A<í.. .An obar-
ven podle podmínek úlohy. Nechť je ze spojnic A2A4, ..

AoAn obarveno k modře a zbývajících n — 3 — k červeně.
Dvoubarevné budou určitě trojúhelníky A4A2A3 а А1А2А/
(j ^ 4), kde je A^Aj obarveno modře (obr. 11, červená úsečka
je vyznačena dvojitě, modrá jednoduše). Dále jsou dvouba-
řevné všechny trojúhelníky АзАзАг, r ^ 4, a všechny troj-
úhelníky АзАгА) (i, j ^ 4), pro které je úsečka AoAj modrá
a úsečka A2Ai červená. Je-li úsečka A2A1 červená (4
je právě jeden z trojúhelníků A1A2A1, A1A3A1 dvoubarevný.
To je dalších n — 3 — k dvoubarevných trojúhelníků. Celkem
máme aspoň m dvoubarevných trojúhelníků, m = 1 + k +
+ (n — 3) + (n — 3 — k) + (n — 3 — k)k = 2n — 5 +
+ k(n — 3 — k). Protože 0 k ^ n — 3, je m ^ 2n — 5,

• У
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přičemž pro k = 0 nebo k — n — 3 ]e m = 2n — 5. Zvolíme-li
obarvení tak, že červené budou pouze úsečky A\A2 а A2A3,
jsou podmínky úlohy splněny a v mnohoúhelníku je právě
2n — 5 dvoubarevných trojúhelníků. Jsou to trojúhelníky
A1A0A3, AiA2Aí, A2A3A1 (i — 4, ..., n). Vidíme, že při
každém obarvení и-úhelníku podle požadavků úlohy existuje
aspoň 2n — 5 dvoubarevných trojúhelníků a existuje obarve-
ní, při kterém jich je právě 2n — 5. Je tedy 2n — 5 = 49,
odkud plyne n = 27.

ÚLOIIY ŠKOLNÍ ČÁSTI I. KOLA

c - s - 1

Nechť je Z množina všech celých čísel a nechť a, b, c, d
jsou daná přirozená čísla (celá kladná). Jestliže

[a + bt; t e Z} n [с + s e Z} ý: 0,
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pak největší společný dělitel čísel b, d dělí rozdíl a — c. Do-
kažte.

Řešení. Je-li splněn předpoklad úlohy, existují celá čísla
t, s tak, že a + bt — c + ds, tedy ds — bt — a — c. Největší
společný dělitel čísel b, d dělí i číslo ds — bt, tedy číslo a — c.

C-S-2

Vypočtěte poloměr kulové plochy, která je částí krychle
o délce hrany a = 10 cm, dotýká se tří sousedních stěn této
krychle a prochází jejím středem.

Řešení. Střed S kulové plochy, která se dotýká tří soused-
nich stěn krychle, leží na tělesové úhlopříčce krychle. Jeho
vzdálenosti od stěn, jichž se kulová plocha dotýká, se rovnají
poloměru r kulové plochy, jeho vzdálenost od společného
bodu A všech tří stěn je rj/3. Vzdálenost bodu S od středu
krychle je r, protože kulová plocha má středem krychle pro-
cházet. Proto je

=

ууз = 5|/3, г = у (3 - уз).г|/3 + г

Případ, kdy je střed krychle bodem úsečky AS, a tedy
r(] 3 — 1) = 5^3, nevyhovuje, protože by příslušná kulová
plocha nebyla částí krychle.

C - S - 3a

Kolem Měsíce obíhá 25 spojových družic. Každá z nich je
spojena s 30 výzkumnými stanicemi na povrchu Měsíce, při-
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čemž libovolné dvě stanice jsou přímo spojeny nejvýše s jed-
nou společnou družicí. Dokažte, že na Měsíci pracuje alespoň
150 stanic, které mají spojení právě s jednou družicí.

Řešení. Označme Sj množinu všech těch stanic, které jsou
přímo spojeny s г-tou spojovou družicí, / = 1, 2, ..., 25.
Každá z množin S* má podle předpokladu právě 30 prvků.
Pro i Ф j mají množiny S/, Sj nejvýše jeden společný prvek,
v opačném případě by měly dvě stanice přímé spojení s /-tou
i s/-tou družicí. Označme n počet prvků množiny N, která je
sjednocením všech množin Sř-, / = 1, 2, ..., 25, tj. množiny
všech stanic, které mají spojení aspoň s jednou družicí. Zřej-
mě platí

2525

n ^ 2 ls*l - 2 Is* n sí\ >

hi=}»•= i
i< i

přičemž znaménko rovnosti platí právě tehdy, když každé tři
množiny Si, Sj, S/с, i Ф j Ф k Ф i mají prázdný průnik (obr.
12). Zde jsme |Jř| označili počet prvků množiny X. Jelikož
je |Sj| = 30 a |Sj n Sy| ^ 1 pro / Ф j, je n ^ 25.30 —

. 1 = 450. Kdyby nejvýše 149 stanic mělo spojeni

právě s jednou družicí, měly by ostatní stanice množiny N
spojení aspoň s dvěma a platilo by

(?)

149.1 + (n - 149).2 ^ 25.30,

protože 25.30 je počet všech spojení. To by pak platilo
n ^ 449,5, což je spor s odvozeným vztahem n ^ 450.
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с - s - 3b

Sestrojte všechny obdélníky, jejichž úhlopříčky svírají úhel
60° a součet délek jedné strany a úhlopříčky je 12 cm.

Řešení. Rozlišíme dva případy:
a) Nechť je součet délek kratší strany a obdélníku a jeho

úhlopříčky roven 12 cm. Pak je délka úhlopříčky и = 2a,
takže a = 4 cm, и = 8 cm, neboť trojúhelník ABO je rovno-

stranný (O je střed obdélníku, А, В jsou krajní body jeho
kratší strany, obr. 13). Sestrojíme tedy pravoúhlý trojúhelník
ABC o délce odvěsny \AB\ = 4 cm a délce přepony
\AC\ = 8 cm a ten doplníme na obdélník ABCD.

b) Nechť je v obdélníku ABCD součet délek delší strany AB
a úhlopříčky roven 12 cm (obr. 14). Pak je |<£ DBE\ — 150°,
kde je E bod na polopřímce AB, pro který je \ BE\ = |fiDj.
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Trojúhelník DBE je rovnoramenný, tedy |<£ BED\ = 15°.
Sestrojíme tedy pravoúhlý trojúhelník DAE, v němž je
\AE\ = 12 cm, |<£ AED\ = 15° a pravý úhel při vrcholu A.
Osa úsečky DE protne stranu AE v bodě B, body A, B, D
doplníme na obdélník ABCD.

D

В

Obr. 14
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ÚLOHY II. KOLA

С-И-1

Najděte nejmenší přirozené, tj. celé kladné číslo, jehož polo-
vina je druhou mocninou přirozeného čísla a jehož třetina je
třetí mocninou přirozeného čísla.

Řešení. Nechť má hledané číslo tvar m = 2v .3? .c, kde
jsou />, q čísla celá nezáporná a číslo c je přirozené a není děli-
telné ani dvěma, ani třemi. Každé přirozené číslo se dá
zřejmě právě jedním způsobem takto napsat. V našem případě

m

jsou čísla p, q dokonce kladná, protože — = 2p_1 . 3q . c,

m
—

— 2p . 3«_1. c jsou přirozená. Protože — je druhou mocni¬

m

nou přirozeného čísla, musí být čísla/» — 1 a q sudá. Jelikož —

je třetí mocninou přirozeného čísla, musí být čísla p a q — 1
dělitelná třemi. Číslo c musí být z uvedených důvodů druhou
i třetí mocninou. Aby bylo číslo m za těchto podmínek nej-
menší, musí býtp = 3, q = 4, c = 1, tedy m = 23.34 = 648.

С- II -2

Bodem Y prochází pět rovin, z nichž žádné tři neprocházejí
jednou přímkou. Na kolik částí rozdělí tyto roviny celý
prostor ? (Předpokládáme, že rovina dělí prostor na dvě části,
dvě různoběžné roviny na čtyři části apod.)

Řešení. Tři roviny dělí prostor na osm částí, tzv. oktantů.
Čtvrtá rovina protne každou z těchto tří rovin v přímce pro-

56



cházející bodem S. Tyto tři přímky rozdělí tuto čtvrtou ro-
vinu na šest úhlů. Každý z nich rozdělí jeden z osmi oktantů
na dvě části, přibude tedy šest částí. Proto dělí čtyři roviny
daných vlastností celý prostor na 14 částí. Pátá rovina protne
každou z předcházejících čtyř rovin v přímce, tyto čtyři
přímky dělí pátou rovinu na osm částí. Proto dělí pět rovin
prostor na 14 + 8 = 22 částí.

С - II - 3a

Jsou dány navzájem různé body O, P, Q, R tak, že každé
dvě z přímek OP,OQ,OR jsou navzájem kolmé. Délky úseček
OP, OQ, OR označme p, q, r. Vyjádřete obsah trojúhelníku
PQR pomocí p, q, r.
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1
Řešení. Obsah trojúhelníku OPQ ]t~pq (obr. 15), proto se

pq
výška ke straně PQ rovná . Výška w v trojúhelníku

j/p2 + q2
p2q2

POR se proto rovná výrazu w =
-

, hledaný ob-r2 + ~
p2 + q2 ’

1
sah je — ]]p2q2 + p2r2 + q2rl. Mohli jsme též použít Hero-
nův vzorec pro výpočet obsahu trojúhelníku pomocí délek
jeho stran.

С - II - 3b

Je dán trojúhelník ABC a na jeho stranách AB, BC, CA
1

jsou po řadě zvoleny body K, L, M tak, žt\AK\ = — \AB\,
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1 1
\BL\ =— \BC\, \CM\ = — \СА\. Vypočtěte poměr obsahů

trojúhelníků KLM a ABC.
Řešení. Výška ke straně AK v trojúhelníku AKM se

6
rovná —v, kde je v výška ke straně AB v trojúhelníku ABC

(obr. 16). Označíme-li P obsah trojúhelníku ABC, rovná se
6P

obsah trojúhelníku AKM hodnotě — Tentýž výsledek do-

staneme pro obsahy trojúhelníků BLK, CML. Obsah troj-
úhelníku KLM dostaneme z obsahu trojúhelníku ABC ode-
čtením obsahů trojúhelníků AKM, BLK, CML, je tedy hle-

6 31
daný poměr 1 -3,— = — .
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Kategorie В

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

В - I - 1

Do trojúhelníku ABC se stranami a, b, c vepišme kružnici
a sestrojme к ní další tečny rovnoběžné se stranami troj-
úhelníku. Každá z těchto tečen utíná od trojúhelníku ABC po

jednom trojúhelníku. Do každého z těchto tří trojúhelníků
vepišme kružnici. Vyjádřete pomocí a, b, c součet obsahů
všech čtyř kruhů ohraničených uvažovanými kružnicemi.

Řešení. Tečna kružnice vepsané danému trojúhelníku
ABC, která je rovnoběžná se stranou BC, protíná strany AB,
AC v bodech Ci (obr. 17). Trojúhelník AB1C1 je s troj-
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v — 2Q
úhelníkem ABC podobný, koeficient podobnosti je- =

v

2q
, kde je o poloměr kružnice vepsané trojúhelníku

v

ABC a v je výška ke straně BC. Označme P obsah trojúhelní-

ku ABC a s jeho poloviční obvod. Je s.q = P = ~av,

= 1 -

1

2? a

odkud plyne 1 — — = 1 — — . Obsah kruhu vepsaného
v s

a \2
, kde Q je obsahtrojúhelníku ABiCi je tedy Q í 1 — —

kruhu vepsaného trojúhelníku ABC, tj. Q = tcq2. Hledaný
součet obsahů všech čtyř kruhů se tudíž rovná výrazu

c V
2 + e(i-Tj +Q{1—,

P2 a2 + 62 + c2

b \2

í2

(.s — a) (s — b)(s — c)(a2 + b2 + c2)
= 71

s3

(b + c — a) (a + c — b)(a + b — c)(a2 + b2 + c2)
= TU

(a + b + c)3
Přitom jsme použili Heronův vzorec pro obsah trojúhelníku,
podle kterého je P2 = s (s — a)(s — b)(s — c).

В- I -2

Nechť F je zobrazení množiny všech přirozených čísel na
množinu ( — 1, 1), pro které platí F(l) = — 1, F(2k + 1) =
= —F(2k — 1), F(2k) = F(k) pro každé přirozené číslo k.
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Dokažte, že platí
a) F(bk) = — F(k) pro všechna přirozená čísla k,
b) je-li r^Oa 1 ^ у ^ 2r, í ^ 2f_1, pak je F(s + 2r) =

= F(s).
Řešení. Vztahy F(l) = — 1, F(2k + 1) = — F(2k — 1) je

zobrazení F definováno na posloupnosti všech lichých při-
rozených čísel, a to tak, že střídavě nabývá hodnot — 1 a 1,
tedy F(2k + 1) = ( —l)fc+1. Každé přirozené číslo se dá právě
jedním způsobem napsat ve tvaru n = 2p(2q + 1), kde/), q

jsou celá nezáporná čísla. Ze vztahu F(2k) = F(k) pak plyne
F(n) = F(2q + 1) = (-1)*+1. Dále je 3n = 2?<6q + 3) =
= 22>[2(3<? + 1) + 1], takže F(3n) = (-1 )3«+2 = (-l)ff =
= —F(n). Tím jsme dokázah první část tvrzení úlohy.

V druhé části úlohy rozlišíme tři případy:
1. 5 = 2r, pak je F(s + 2r) = F(2r+1) = — 1 = F(s).
2. s = 2v a p < r. Pak je F(s) = —1, F(s + 2r) =

= F(2p(2t~p + 1)) = F(2r~P + 1) = F(2.2r~v~1 + 1) =
= —(—1 )2r'p l. Je-li p — r — 1, rovná se poslední výraz
jedné, jinak hodnotě — 1 = F(s).

3. s — 2P(2q 4- 1), q > 0. Protože je s < 2r,]tp < r — 1.
Je F(s) = (-1)«+1, F(s + 2r) = F(2P(2q + 1 + 2r~v)) =
= F(2(q + 2r-P-1) + 1) - (-l^+i+a^1 = (-1)9+1 =
= m

Tím jsme dokázali i druhou část úlohy.

В - í - 3

Najděte všechny pravoúhlé trojúhelníky s celočíselnými
délkami stran (tzv. pythagorejské trojúhelníky) s obvodem
990.
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Řešení. Označme a, b délky odvěsen a c délku pře-
pony trojúhelníku daných vlastností. Má tedy platit

a2 + b2 = c2, a + b + c — 990.

Dosadíme-li do první rovnice c — 990 — a — b, dostaneme
po úpravě

(990 - a)(990 - b) = 990.495.

Zřejmě je a < 495, jinak by bylo c > 495 a a + b + c > 990.
Stejně tak je b < 495. Proto je 495 < 990 — a < 990,
495 < 990 — b < 990. Máme tudíž součin 990.495 =

= 2.34.52.112 rozložit v součin dvou přirozených čísel,
z nichž je každé větší než 495 a menší než 990. Takové roz-

klady jsou pouze čtyři: 594.825, 550.891, 605.810 a 675.726.
Přitom nepřihlížíme к pořadí činitelů. Bud je totiž jeden z či-
nitelů dělitelný číslem 121, pak přicházejí v úvahu pouze
čísla 605 a 726, nebo je každý z činitelů dělitelný číslem 11.
Pak je zase bud jeden z činitelů dělitelný ještě číslem 25,
tedy číslem 275, přicházejí v úvahu čísla 550 a 825, nebo je
každý z činitelů dělitelný číslem 5.11 =55. V posledním
případě nedostaneme žádné řešení.

Je-li 990 - a = 594, 990 - b = 825, je

a = 396, b = 165, c = 429.

Z dalších tří rozkladů dostaneme další tři řešení úlohy:

a = 440, b = 99, c = 451
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a = 385, b = 180, c = 425

a = 315, b = 264, c = 411

В- I -4

Nechť n je dané přirozené číslo. Určete počet všech po
dvou neshodných trojúhelníků, jejichž všechny strany mají
celočíselnou délku nejvýše rovnou n. Kolik je mezi nimi
rovnoramenných trojúhelníků ?

Řešení. Nejdříve určíme počet s(n) trojúhelníků uvede-
ných vlastností, jejichž největší strana má délku právě n.
Označme strany takového trojúhelníku a, b, c tak, aby bylo

n n

a^b^c — n. Je-li n sudé, nabývá b hodnot— + 1, — + 2,

..., n. Pro a máme pak nutnou a postačující podmínku
a + b > n3 tj. n + 1 — b ^ a ^ b. Takže máme tyto mož-
nosti:

n nn

2 možnosti
2 +1c — n, b — — + 1, a = 2 5

nn nn n

b =
2 + 2>a-~2 _ l> 2’ 2 + h 2 +2

4 možnosti

n možnostíb — n, a = 1,2, ..., n
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я(я + 2)
Celkem jsme dostali s(ri) = 2 + 4+ ... + n —

trojúhelníků. Z nich jsou rovnoramenné ty, pro které je
4

n

a ~ b, těch je —> a pak ještě ty, pro které je b = n, těch

je n. Přitom rovnostranný trojúhelník o stranách n, n, n

je zahrnut v obou případech. Je tedy rovnoramenných
3n

trojúhelníků r(n) =

n + 1

- 1.

-— ^ b ^ n a dostaneme tyto mož-Je-li n liché, je

nosti:

n+ 1
c = n,b = —

n + 1
1 možnost, a = 2

n — 1 n + 1 n + 3

2 5 2 5 2

и + 3
3 možnostib = , e =2

b — n, a — 1,2, ..., n n možností

Celkem dostaneme při n lichém í(«) = 1+ 3+ ... + w =
n + 1

trojúhelníků. Z nich je r(n) = —
(я + l)2

+ я — 1 =
4

Зя - 1
rovnoramenných. Naším úkolem je určit počet2
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S(n) všech trojúhelníků s celočíselnými délkami stran

nejvýše rovnými číslu n. Je tedy S(n) — s(l) + s(2) +
+ ... + s(n), mezi nimi je R(n) = r(l) -f ... + r(n) rovno-
ramenných. Je proto

1 1VS(n) = - (k2 + 2k) + 4 m,
k=i

kde m je počet lichých čísel v množině {1, 2, ..., n), takže
n + 1

m = — pro n sudé, m — —-— pro n liché. Použitím vzorce

n(n + 1)(2« + 1)2'- 6
k=i

dostaneme:

n(n + 2)(2n + 5)
n je sudé, pak je S(ri) = 24

(n + l)(n + 3)(2и + 1)
n je liché, pak je S(n) — 24

ЪгР + 1
Podobně dostaneme R(n) — — pro n sudé, R(n) = —-—

pro n liché.

3W2
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В - I - 5

Dokažte, že funkce

f(x) = cos x cos 2x + cos Ax cos 3Ax,

kde A je iracionální číslo, není periodická.
Řešení. Daná funkce / nabývá v bodě 0 hodnoty 2. Do-

kážeme, že v žádném jiném bodě hodnoty 2 nenabývá.
Kdyby pro některé x Ф 0 platilo 2 = cos x cos 2x +
+ cos Ax cos 3Ax, muselo by platit cos x cos 2x = 1 a zá-
roven cos Ax cos 3Ax — 1, protože cos a cos /9^1 pro
každé a, /5. Pak by ale platilo cos x — cos 2x = 1 a sou-
časně cos Ax = cos 3Ax = ±1, tedy x = 2for, pro k celé

m

nenulové a zároveň Ax — 7zm3 m celé, takže A —

však spor s předpokladem iracionality čísla A.

To je2k'

В - I - 6

Dokažte, že pro přirozená čísla k < m < n platí nerovnost

fc+imim — 1) ... (m — k) 2m — k
<

7l(n — 1) ... (и — k) 2n — k

Řešení. Položíme-li p = m — —

k
= n — — , můžeme2>q

dokazovanou nerovnost psát ve tvaru
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k k k k
P + -2-1)-- ?-T+1 V—2P + ~2

<
k kk k

Í + T-1I...U-T+14+~2 f - T2

p\k+i
<

q

Výraz na levé straně nerovnosti je soudnem k + 1 dniteiů
k k kp — x

— —
. Je-li k sudé,, kde jc = —-

2 2 l>Uraru
q — x

P
rovná se jeden z těchto činitelů zlomku —, ostatní sdružíme

Я
k p2 __ x2p — X p + X

q — x} q + x
, kde # = —. Součindo dvojic

ф — JC2
P2

každých dvou činitelů v dvojici je kladný a menší než — ;
qJ

P (P2\k ÍP
proto je výraz na levé straně menší než — . I — J 2 = ( —
Je-li k liché, je levá strana dokazované nerovnosti součinem

p — x p + x p2 — x2
-— výrazů tvaru . = — , x =
2 q — x q -\- x q2 — x2

k
, každý z nich je kladný a menší než

rovnost dokázána i v případě lichého k.

k + i

k + 1 1 3

2 ’ 2 5

P2
Tím je ne-

q2 '
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ÚLOHY ŠKOLNÍ ČÁSTI I. KOLA

B-S-1

V rovině jsou dány přímky p, q a bod F, který leží na

přímce q a neleží na přímce p. Sestrojte všechny body X
na přímce q, pro které se kružnice se středem X a poloměrem
jXF\ dotýká přímky/).

Řešení. Splňuje-li bod X podmínky úlohy (obr. 18), je
tečna t kružnice k(X, |XF|) v bodě F kolmá na přímku q.
Nejsou-li přímky/), q kolmé, označíme P průsečík přímek p, t.
Kružnice k se pak dotýká přímky p v bodě Y, pro který
platí |PF| — \PF\. Takové body Y jsou na přímce/) právě
dva, ke každému z nich dostaneme právě jeden bod X,
který je řešením úlohy. Je X e q, XY J_ p. Je-li p J_ q, má
úloha právě jedno řešení, je to střed úsečky FQ, kde O =
= P П q.

4t
q

к
F

X

/ p Y

Obr. 18
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В - S - 2

Reálná čísla xi, x2, ..., xrn, y±, y2, ..ym splňují ne-
rovnosti 0 < Xj < yj ^ 1 pro j e {1, 2, ..m). Dokažte,
že platí

m m

2 Xj 2 O; - xj).^ m —
Уi

j— 1 j~ 1

Řešení. Podle předpokladu je 1 — jy/ ^ 0, 1 - >0,
У}

Xj
vynásobením dostaneme nerovnost 1 —

- Уi + xj ^ 0,
У1

Xj
tedy ^ 1 - (yj - Xj) pro j = 1,2, ..

У}

všechny tyto nerovnosti, dostaneme nerovnost, kterou jsme
měli dokázat.

m. Sečteme-li* Э

В - S - 3a

Číslo 8! (osm faktoriál) napište jako součin přirozených
čísel v, y, z tak, aby platilo х ^ у ^ z a číslo x bylo co

největší.
Řešení. Je 8!= 27.32.5.7. Podle podmínek úlohy je

x3 ^ xyz = 8!, tedy x ^ 3 ]/ 8! =4 . 3]/630 < 35. Nemůže být
x = 34 nebo x = 33, protože tato čísla nedělí číslo 8!.
Položíme-li x = 32, je yz — 1 260 a nutně у — 35, z = 36.
Jediné řešení úlohy je 8! = 32.35.36.
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В - S - 3b

Jsou dána reálná čísla p, q, r, pro která platí p > q >
> r > 0. Najděte všechny lichoběžníky, jejichž právě jedna
strana má délku p, právě jedna strana délku q a právě dvě
strany mají délku r. Provedte diskusi.

Řešení. Bud mají obě ramena lichoběžníku délku r,
nebo má menší základna a jedno rameno délku г. V druhém
případě má delší základna délku p a druhé rameno délku q,
obráceně to není možné, neboť neexistuje trojúhelník o délkách
stran r, q — г, p. V obou případech (obr. 19, 20) je nutnou
a postačující podmínkou existence lichoběžníku podmínka
2r > p — q. Je-li tato podmínka splněna, můžeme sestrojit
trojúhelník o délkách stran r, p — q, r nebo r,p — r, q, oba
tyto trojúhelníky doplníme rovnoběžníkem na lichoběžník
s požadovanými délkami základen a ramen

q

г гг

q p-q

Obr. 19

Г

q q r

p-rг

Obr. 20
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ÚLOHY II. KOLA

В - II - 1

Najděte všechny funkce g definované na množině všech
bodů roviny, které mají tuto vlastnost: Jsou-li А, В, C
vrcholy trojúhelníku v dané rovině, jeg(A) + g(B) + g(C) =
= 1.

Řešení. Zvolme v uvažované rovině dva různé body Xy Y.
К nim můžeme vždy zvolit dva různé body А, В tak, že
přímka AB neprochází žádným z bodů X, Y, takže body
А, В, X jsou vrcholy trojúhelníku, rovněž tak body A, B, Y.
Podle předpokladu pro každou hledanou funkci platí g(A) +
+ g(B) + g(X) = g(A) + g(B) + g(Y) = 1, tedy g(X) =
= g( Y). Z toho vyplývá, že každá funkce vyhovující úloze
je konstantní. Protože g(A) + g(B) + g(C) = 1, vyhovuje

1
úloze pouze funkce přiřazující každému bodu AT hodnotu - - ,

1
tj. g(X) = — pro každý bod X roviny.

В- II -2

Funkce / je definována na množině všech přirozených
čísel, přičemž pro všechna přirozená čísla n platí

№))2 + 4
Kn + 1) = 2/(«) •

Jaká je nutná a postačující podmínka pro číslo /(1), aby pro
všechna n ^ 2 platilo f(n) > 2 ?
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Řešení. Je-li/(и) > O, je podmínka f(n + 1) > 2 ekviva-
lentní podmínce (f(n) — 2)2 > 0, tedy podmínce f(n) Ф 2.
Je-li f(n) < 0, je f(k) < 0 pro všechna přirozená čísla k.
Hledanou podmínkou pro / (1) je tudíž podmínka /(1) > 0 A
л /(1) Ф 2.

В - II - За

Dokažte, že neexistují celá kladná čísla x, y, z tak, aby
platilo xx + yv = zz.

Řešení (podle L. Kábrta, 2. roč. G Chrudim). Předpo-
kládejme, že pro celá kladná čísla x, y, z platí xx + yy = zz.
Pak je zřejmě x < z, у < z a

*
У \yJ \z — X z—у1x\*

1 = + 5
zz z z

tedy

i— x— l z—у1 V iv у уУ
+z —

z zz z

Avšak z — x — 1^0, z — у — 1^0, x ^ 1, у ^ 1,
z —y — 11XX У X

tedy je I —< 1,— < 1, < 1, 1,
z z z

z —y — 1

GMŤ Y 1. Odtud plyne z < 1 + 1 — 2,

tedy z — 1. Pak však neexistují celá kladná čísla x, у menší
než z. To je spor, tím je tvrzení úlohy dokázáno.
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в - li -3b

К danému trojúhelníkuТ о délkách stran a,b}c sestrojí-
me trojúhelník T souměrně sdružený podle středu kružnice
vepsané trojúhelníku T. Dokažte, že obvod p šestiúhelníku,
který je průnikem trojúhelníků T, T’, splňuje nerovnost

2(ab + bc + ca)
a + b + c

Řešení. Označme A, В, C vrcholy trojúhelníku T, v jeho
výšku ke straně ВС a o poloměr kružnice vepsané trojúhel-
níkům T, T’ (obr. 21). Průsečíky stran AB, AC s obrazem
£J'B' strany CB v uvažované středové souměrnosti označíme
K, L, podobně dostaneme body M, N a P, Q. Z podobnosti
trojúhelníků AKL, ABC dostaneme obdobně jako v úloze

A

B'С К L.1 ~7Г
/\ /

Q// /
29 /

M
V

i\
/N C3 P\

/\
/

V
A

Obr. 21

74



2o a

B-I-l vztah \KL\ = |BC|^1 - —
a(b + c — a)

a + b + c

šestiúhelníku KLMNPQ je p — 2\KL\ + 2\MN\ + 2\PQ\,
protože \KL\ = \PN\, \MN\ = \KQ\, \QP\ = \LM\, tedy

a(b + c

P= 2.

= 'BCi !-t =

, podobně pro \MN\, \PQ\. Pro obvody

— a) + b(a + c — b) + c{a + b — c)
л + b + c

2ab + 2bc + 2ac — a2 — b2 — c2
= 2 .

<2 + Ь + C

Máme tudíž dokázat nerovnost

2ab + 2bc + 2ac — a2 — b2 — c2 ab + bc + ca,

která je ekvivalentní nerovnosti

0 ^ (a - bf + (ib c)2 + (c — a2),

jež zřejmě platí. Znaménko rovnosti platí právě tehdy, když
je a = b — c, tedy když je trojúhelník T rovnostranný.
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Kategorie A

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

A - I - 1

V rovině jsou dány dva různé body A, C. Pro reálné číslo
2\AC\

sestrojte konvexní čtyřúhelník ABCD s maximál-

ním obsahem, pro který platí \AB\ + |i?C| + |CD| = m.
Řešení. Předpokládejme, že ABCD je hledaný čtyřúhelník

s největším obsahem. Pak je trojúhelník ACD pravoúhlý
s pravým úhlem při vrcholu C a trojúhelník ABC je rovno-

ramenný se základnou AC (obr. 22). Jinak bychom mohli

m >

P

D

m-2x

A C

x x

В

Obr. 22
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obsah trojúhelníku ACD, resp. obsah trojúhelníku ABC
zvětšit, aniž bychom změnili délku strany CD, resp. součet
\AB\ + |BC| = m- \CD\.

První tvrzení je zřejmé; druhé dostaneme např. pomocí
takovéto úvahy: Víme, že pro dané dva body X, Y mají
všechny trojúhelníky XYZ, jejichž vrchol Z leží na rovno-
běžce s přímkou XY, stejný obsah. Ze všech takových troj-
úhelníků má rovnoramenný trojúhelník XYZq (\XZq\ —

= | FZo|) nejmenší obvod (obr. 23). Sestrojíme-li tedy к da-
nému nerovnoramennému trojúhelníku XYZ rovnoramenný
trojúhelník XYZq se stejným obsahem а к němu trojúhelník
XYZ', jehož obvod je stejný jako obvod daného trojúhelníku
XYZ (obr. 23), je obsah trojúhelníku XYZ' větší než obsah
trojúhelníku XYZ.

X Y

Obr. 23

Najdeme nyní mezi čtyřúhelníky ABCD, pro něž platí
\AB\ + |BC| + \CD\ = m, \AB\ = \BC\ = x a AC± CD,
takový, jehož obsah P(x) je největší.
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Označme \AC\ = 2и, pak je

P(x) — u(m — 2x) + и ]jx2 — и2 =

(У** — u2 — 2x}.— um + и

Protože

л:

P'{x) — u
]Jx2 — u2

\AC |2
vidíme, že pro x > 2]/x2 — и2, tj. pro x < и =

Уз 1/3
\AC\

klesá. Čtyřúhelník ABCD

bude mít tedy největší obsah, právě když \AB\ — |БС| =

\AC\. Odtud již snadno plyne

funkce P roste a pro x >
Уз

\AC\ 2
|cz>[ = m —

V3 ’ уз
konstrukce.

Poznámky. Tvrzení, že rovnoramenný trojúhelník má ze
všech trojúhelníků XYZ s danou stranou XY a stejným
obvodem největší obsah, plyne také ze základní vlastnosti
elipsy: Body, které mají od bodů X, Y daný součet vzdále-
ností, leží na elipse s ohnisky Ха Y (obr. 24). Přitom nej-
větší vzdálenost od hlavní osy elipsy má právě její vedlejší
vrchol Zo.

Uvedené tvrzení lze dokázat i algebraicky, použijeme-li
Heronův vzorec pro obsah trojúhelníku, Má-li trojúhelník
XYZ délky stran x} y, z, kde z je pevné a x + у = k, platí
pro jeho obsah P
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Zo

X Y
/

Obr. 24

16P2 = (x + у + z)(x + у — #)(я: — j> + z)( — x + у + z) —

= {(x + y)2 — z2)(z2 — (x — у)2) =
= (&2 — 02)(я2 — (л: — у)2)
^ (&2 — Я2)#2

s rovností, právě když х = у.
Maximum funkce Р můžeme najít i bez derivování. Pro-

tože pro každé x je ]/x2 — u2 — 2x < 0, hledáme nejmenší
/ m \

kladné číslo A takové, aby pro každé x e j u, — I platilo

P(x) — um
—

— [ x2 — u2 — 2x ^ — A
и

a přitom pro nějaké x e\u,— nastala rovnost. Uvedená
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nerovnost je ekvivalentní kvadratické nerovnosti

3x3 — 4Ах + A2 + и2 ^ 0,

která má diskriminant D = 16A2 — 12(A2 + и2) = 4(A2 —
— 3u2). Vidíme, že uvedené požadavky splňuje číslo A =

= ] 3 и a rovnost nastane právě pro x —

I AC\2A 2
— и —

3 Уз 1/3
\AC\

je nutná: funkce P je v intervaluPodmínka m > 2
уз

\AC | m \AC\
— < —— nemá v intervalurostoucí, takže pro —0,

Уз Уз
m

0, j maximum.

А- I -2

Je dáno přirozené číslo n. Určete počet všech množin
M c {1, 2, ..., и} X { — 1, 1}, pro něž existuje taková
n-tice reálných čísel [<zi, a>, ..., an], že

[i,j] g M <=> jm > 0

platí pro všechny dvojice [i, j] e {1, 2, X { — 1, 1}-
Řešení. Označme M, množinu všech množin M vyhovují-

cích podmínce úlohy. Je-li M e |M a [ai, az, ..., an] e

odpovídající я-tice, pak pro každé i e {1, 2, .. ., n} nastane
právě jedna ze tří možností:
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си > О <£> [z, 1] e M a [i, — 1] ф M

ai<Oo [i, 1] ф M a [i, — 1] e M

си = O o [z, 1] ф M a [z, — 1] ф M

Přiřadme každé množině M e M w-tici

z( M) = [sign ai, sign a-2, sing an}& { -1, 0, 1}»,
kde

— 1 pro a < 0,

sign a — 0 pro a — 03

1 pro a > 0.

Zobrazení z je zřejmě prosté a obrazem množiny jM je
množina všech uspořádaných я-tic z množiny { — 1, 0, 1}:
Je-li [x1} X2, ..xn] e (-1, 03 \ }n, je

M = {[*, Xi]: i e {1,2, ..n}3 xt Ф 0} e M .

Zobrazení 2:jMj -> { — l, 0, 1 }n je tedy vzájemně jedno-
značné. A protože množina { — 1, 0, \}n má 3n prvků, je
počet všech množin M, jež splňují podmínku úlohy, 3n.

A - 1 - 3

Je dáno číslo a e (0, -). Najděte reálné číslo r s touto
vlastností: Je-li A množina bodů libovolného rovinného úhlu
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velikosti a s vrcholem v počátku kartézské soustavy souřadnic,
pak pro každý bod AT e A existuje bod Me As celočíselnými
souřadnicemi, který má od bodu X vzdálenost nejvýše r.

Řešení. Každý bod roviny má od nej bližšího mřížového

P
bodu vzdálenost nejvýše —- , protože množina všech kruhů

P
se středy v mřížových bodech a poloměrem — pokrývá

rovinu. Je-li Ze A, nemusí ovšem tento mřížový bod ležet
v úhlu A.

1/2
Označme К ten kruh o poloměru — , který leží celý v mno-

žině A a je nejblíže počátku soustavy souřadnic. Pro vzdále-
nost v jeho středu S od počátku platí

2v ’

takže

P 1
v —

yi- cos a

2sinT
Je-li nyní X libovolný bod množiny A, označme Ax mno-
žinu bodů, která vznikne z úhlu A posunutím o vektor OX
/ p
(obr. 25). V kruhu KY o poloměru — vepsaném úhlu AY

leží aspoň jeden mřížový bod Ao, pro který platí
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|**o|^© + ý .

1/2
Stačí tedy položit r = г? + 2 '2 VI — cos a

Úlohu najít nejmenší takové r v závislosti na daném čísle z

vyřešil student 4. ročníku gymnázia v Kroměříži Radek
Adamec. Jeho řešení se všemi důkazy zabíralo ovšem 23
strany čistopisu. Uvádíme ho proto v zestručněné a poněkud
upravené formě.

Jiné řešení (podle R. Adamce). Pro dané a £ (0, rz)
najdeme nejmenší číslo r takové, že libovolný rovinný úhel A
velikosti a s vrcholem v počátku O je pokryt kruhy o polo-
měru r se středy v mřížových bodech ležících v A. Zřejmě
se můžeme omezit jen na úhly, jejichž osa leží v 1. oktantu
(tj. v té části roviny, kde platí x ^ у ^0).

83



1/5
Zřejmě pro žádné a nemůže být r < —, protože vždycky

najdeme úhel A(a) s vrcholem v počátku tak, aby existoval bod
X e A(a), jehož vzdálenost od nej bližšího mřížového bodu

P
v A(a) je libovolně blízká — (obr. 26). Zároveň si uvědomme,

že v každém úhlu A pro dostatečně velké xo najdeme mři-
žové body na všech pořadnicích x = a, kde a ^ xo je celé

(stačí vzít xo takové, aby délka úsečky {(x,.y) e A: x = xo}
byla aspoň 1). Pro tuto část úhlu к pak platí, že ji lze pokrýt

1/5kruhy o poloměru se středy v mřížových bodech ležících

v A. Skutečně, vezměme tu část úhlu A, která je omezena
dvěma takovými sousedními celočíselnými pořadnicemi
(obr. 27), přičemž V\, V2, ..., Vm (m ^ 1) jsou všechny
mřížové body pořadnice x = a + 1 ležící v A. Čtverce
UiVíVi+iUi+i pro z'e{l, ..., m— 1} pokryjeme kruhy
se středy V\, ..., Vm. Vzhledem к předpokladu, že osa
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ÍAlVm.1<fAm+1

i Um Vm^A
O

Um.i Jv».,
i

l

V, 6AUi

|V0ÍA

x = a+1x = a

Obr. 27

úhlu A leží v 1. oktantu, vidíme, že tu část čtverce
UmVmVm+iUm+i3 která leží v A, pokryjeme bud z bodů
Um, Vm (pokud Um e A), nebo z bodu Vm (když Um ф A).
Tu část čtverce UoFoFiř7i, která může ležet v A, vyšetří-
me podobně: Pokud příslušné rameno úhlu A svírá s osou x

záporný (orientovaný) úhel, je situace stejná jako v před-
chozím případě; v případě kladného úhlu pokryjeme čtverec
U() Vo V\ U\ z bodů Uo, V\ (pokud í/o e A), anebo z bodů
C/i, V\ (když Uo ф A — protože osa úhlu A leží v 1. ok-
tantu, musí být U± e A).

/ TU

Z právě dokázaného tvrzení plyne, že pro úhly a e I —, tz
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1/5
je hledané číslo r = — . Budeme ted hledat poloměr r pro

7Г

taková čísla ae|0,-
cotg a = n > 1. Svírá-li jedno z ramen takového úhlu A
s osou x dostatečně malý kladný úhel, je (n, 1) mřížový bod,
který je v A nejblíže počátku. Je to jediný mřížový bod
(Ф O), který leží v A ve vzdálenosti nejvýše jIn2 + 1 od
počátku. Ukážeme, že takovýto případ je jaksi nejméně
příznivý, tj. že г; libovolném lihlu A(oc) s vrcholem v počátku,
kde a = arccotg n, leží aspoň jeden mřížový bod (Ф O) ve

vzdálenosti nejvýše s = j n2 + 1 od počátku. К tomu nám
stačí dokázat, že mezi všemi polopřímkami v 1. oktantu
s počátkem O a procházejícími nějakým dalším mřížovým
bodem v kruhu К = (O, s) nejsou dvě sousední, jež by
svíraly úhel větší než a.

Pro malá n skutečně snadno najdeme systém polopřímek
takový, že libovolné dvě sousední polopřímky svírají úhel
nejvýše a. Uvažujme např. polopřímky se směrnicemi

, jejichž kotangens je přirozené číslo,

k - 1

k 5 15
1 1 1 2 3

(1)o, —,
n - 1 5'"’ 2 5 3 4 5 "

• 5

1) g K, (k + 1, k) ф K. Pro tangenty úhlůkde (k, k
sousedních polopřímek pak platí

1 1

i + 1 1
Cli =

i (j + 1) + 1 51
1 +

i(i + 1)
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i - 1I

i + 1 1г

bt =
2í‘2i - 1

1 + T
1

l + 1
a je

11
щ 5/ — pro 2 ^ i 5Í n — 1, bt ^ — pro 2 ^ г ^ Ь- 1,7 o

Dále stačí uvažovat & takové, že současně platí

£ - 1

£ 11
< tg a =£ - 1 2£ — 1 и

1 +
k

a přitom (&, k — 1) e K, tj.

(k - l)2 + & ^ n2 + ! = 52.

Obě nerovnosti jsou ekvivalentní nerovnostem

«2 ^ (2& - 1)2 ^ 2n2 + 1,

n + 1
^

stačí proto vzít k = —-— pro liché n a k = — + 1 pro sudé

n ^ 2.
Směrnice (1) dávají tedy hledaný systém polopřímek pro

2 3/1 2

“a5V3<5<

n

n^l. Přidáme-li к nim ještě směrnice —
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1 3 2 \
< — < — < —- I, zjistíme, že takovýto systém polopřímek

2 5 3 /

vyhovuje pro 6 ^ n 12 (to se nám bude ještě hodit).
Obecný důkaz uvedeného tvrzení, který ted následuje, je

klíčem к řešení celé úlohy. Připomeňme zde ještě jedno tvrze-
ní (známé jako Pickův vzorec), které budeme v důkazu po-
třebovat:

Obsahuj e-H mnohoúhelník s vrcholy v mřížových bodech h
mřížových bodů na hranici а и mřížových bodů uvnitř, je
jeho obsah

h
S = -2 4- u — 1.

Uvažujme tedy dvě polopřímky OA, OB v 1. oktantu, které
procházejí mřížovými body А, В v kruhu K, přičemž uvnitř
úhlu АОВ žádný mřížový bod z kruhu К neleží. Předpoklá-
dejme rovnou, že uvnitř úseček OA, OB již žádné mřížové
body neleží. Kdyby navíc v kruhu К ležely i oba mřížové
body C, D, které dostaneme z bodů А, В stejnolehlostí se
středem O a koeficientem 2 (obr. 28), ležel by v kruhu К

0 s

Obr. 28
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a uvnitř úhlu АОВ také střed E úsečky CD, který je rovněž
mřížovým bodem. Můžeme tedy předpokládat, že např. po-
lopřímka OA obsahuje v kruhu К kromě počátku právě jeden
mřížový bod A a polopřímka OB právě m mřížových bodů
(obr. 29), takže pro délky d — \OB\ a \OA\ platí

md 5^ s < (m + l)d, 2\OA\ > s. (2)

Nyní máme dokázat, že je (p = |<£ AOB| a, neboli

1
sin (f ^ sin a = — .

Pro obsah trojúhelníku AOB z Pickova vzorce plyne

1 1

S(AOB) = —d\OA\ sin у = —-,

takže

1
sin (p = d\OA\ '

\

В
A

Ф

0 s x

Obr. 29
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Použijeme-li odhadů (2), dostaneme nerovnost

2(m + 1)
Sin (fj < í2

takže stačí dokázat, že 2(m + 1) s, neboli

5

(3)m

Z první nerovnosti v (2) máme pro m odhad m ^ — , přičemž
a

d jako vzdálenost dvou mřížových bodů může nabývat jen
diskrétních hodnot 1, j/2, j/5, . .. Hodnoty d — 1, d = |/2 ,

které odpovídají ose x a ose 1. kvadrantu, nás už nemusejí
1 k-l

zajímat, protože pro ně jsme našli směrnice—a —,—
n k

polopřímek, které s nimi svírají úhel nejvýše a.

Můžeme tedy dále předpokládat, že d ^ j/5 , takže m ^

a pro platnost (3) nám stačí ověřit, zda je
s

P ’
s 1 s

<

1/5 ! “ 2
(4)

Nerovnost

s s
- 1

V5
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platí, právě když n2 + 1 ^ 20(9 + 4]/5), tj. pro n ^ 19.
Nicméně nerovnost (4) platí i pro menší hodnoty n, jak zjistí-
me výpočtem.

n2 + 1s sn

~2 1 < 2
- 1n

V? 5

П/65] = 8
[1/58] = 7
[У£М] = 7
[1/45Д = 6
Ц/39,4] = 6
Ц/34] = 5

818

7,517

716

6,515

614

5,513

12 jsme tvrzení již dokázali,Vzhledem к tomu, že pro n
ukončili jsme tabulku hodnot. Snadno zjistíte, že nerovnost
(4) je splněna i pro hodnoty ne {4, 6, 8, 10, 11, 12}. Nikoli
však pro n = 9. Systém polopřímek nalezený pro 6 ^ n

je tedy důležitý zejména pro n = 9. Z dokázaného tvrzení
navíc plyne, že v každém úhlu A velikosti a existuje mřížový

12

5

bod ležící zároveň v mezikruží K' — í X e R2: -<|OJř|gs}I

(protože stejnolehlost se středem v počátku a celočíselným
koeficientem zachovává mřížové body). Vidíme tedy, že
prakticky celou část úhlu A, která leží v kruhu K, můžeme
pokrýt dvěma kruhy se středy v počátku a v nalezeném mři-
žovém bodě ležícím v K', přičemž pro jejich poloměr R platí
(obr. 30):
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Vše bude v pořádku, bude-li uvedený mřížový bod ležet
v útvaru JJTYZ cr K', který má průměr R*). To ale plyne

z toho, že v mezikruží {X e R2: — <|OX| < R} žádný mři-

žový bod neleží. Kdyby tam totiž nějaký mřížový bod (/>, q)
ležel, bylo by pro />, q celá

(и2 + l)2s \2 П2 + 1
< p2 + q2 < R2 = 4n22 4

n2 + 1 1 1
++

4 4w2"4

*) Průměr rovinného útvaru je nejmenší číslo d takové, že vzdálenost
libovolných dvou jeho bodů je nejvýše d. Z trojúhelníkové nerovnosti
snadno plyne, že je-li d průměr dané uzavřené množiny, pak na její
hranici existují dva body ve vzdálenosti d a v nich opěrné přímky
kolmé na spojnici obou bodů.
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1
1 (mod 4) a —- +Pro každé n je však n2 = O nebo ri2

21 1 S

a R2 žádné ceié číslo^ — , takže mezi čísly I —4n2

ležet nemůže.

Spojením obou dosavadních výsledků ted už snadno do-
staneme, že každý úhel A s vrcholem v počátku a velikosti oc,
kde cotg a = n ^ 2, můžeme pokrýt kruhy o poloměru R =

1 1
se středy v mřížových bodech ležících v A.

Při důkazu se omezíme jen na úhly A, které leží celé v 1. ok-
tantu, protože úhel A, který obsahuje přímku x = у nebo
osu x, umíme podle prvního tvrzení pokrýt kruhy o poloměru

n +
2 n

^-<R.
2

Nechť T je ten z bodů úhlu A, který leží na kružnici (O, s)
a má od osy x největší vzdálenost. Jeho vzdálenost od druhého
ramene úhlu A je aspoň 1. Leží-li T na celočíselné pořadnici,

není již co dokazovat ( jak An K, tak i A n {(x,jy): x ^ xt }

p
pokryjeme kruhy o poloměru R > —

lo, označme E, F průsečíky pořadnice x = [xr] s rameny p, q
úhlu A (obr. 31). Pokud \EF\ ^ 1, jsme hotovi, protože
úsečka EF obsahuje mřížový bod. Pokud EF neobsahuje
žádný m řížový bod, leží v úhlu A mřížový bod M se souřad-
ničí хм = [xt] + l, přičemž

. Není-li xt celé čís-

Ум — 1 < Уе < yF < Ум-
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У

хО [ХТ] КМ
Obr. 31

Část úhlu {(я, у) е А: [лгу] ^ ^ [хт] + 1} můžeme tedy
pokrýt kruhem se středem M a poloměrem j/2. Poslední
úvaha nevyhovuje pro n — 2, protože v tomto případě je

5
— < | 2 . Mřížový bodM = (2,1) je však obsažen v libo-

volném úhlu A velikosti a = arccotg 2 ležícím v 1. oktantu
(obr. 32). V tomto případě tu část úhlu A, která zůstala zatím

R =

94



nepokryta, pokryjeme kruhem se středem M a poloměrem
5

1 < R = — .

4

Naše úloha bude vyřešena, jakmile ukážeme, že nalezené R
je pro dané a (cotg a = n) skutečně nejmenší. To však plyne
z obr. 33, kde úhel A vznikne otočením úhlu, jehož ramena
tvoří osa x a polopřímka О V, o dostatečně malý úhel ó. Je-li

Z bod na ose v takový, že | OZ | 2 V n)\ZV\ = R

arccotg n umíme sestrojit takovývidíme, že pro dané a
úhel A a v něm bod Z', jehož vzdálenost od nej bližšího mři-
žového bodu V bude libovolně blízká číslu R.

U(n-1,n)
>V=(n,1) д

Z'
xn-1 nZ0

Obr. 33

TU

Je-li konečně a e ^0, —J takové, žen — 1 < cotg a ^ n, tj.
arccotg n ^ cr. < arccotg (n — 1), vidíme, že každý úhel A
velikosti a s vrcholem v počátku můžeme pokrýt kruhy o polo-

11
měru R = —-

2

cích v A. Je-li totiž X e A, sestrojíme libovolný úhel А' с A
velikosti arccotg n s vrcholem v počátku takový, že Z e A',
V něm (a tedy i v A) existuje mřížový bod, jehož vzdálenost
od X je nejvýše R.

I a se středy v mřížových bodech leží-n +
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Z obr. 33 je zároveň patrné, že pro takové a je uvedené
r = R nejmenší: Je-li A úhel velikosti a s ramenem x a V e A,
pak není U e A; stačí tedy volit úhel <5 tak malý, aby bod V
byl mřížovým bodem s nejmenší vzdáleností od počátku.

Závěr. Pro každý bod X rovinného úhlu A velikosti a
s vrcholem v počátku existuje mřížový bod Me A takový, že
\MX\ ^ r(a), kde

P Ti

r(x) = Y pro a e < — , тг >
1 1 Ti

=

У ( [cotg a] + pro a eí 0, — J;[cotg a]

přitom pro každé r < r(a) existuje úhel A velikosti a s vrcho-
lem v počátku a bod X e A tak, že pro každý mřížový bod
Me A je \MX\ > r.

p
Poznámka. Zřejmě je r(a) = — i pro а e (тг, 27г), г(2тг) =

— —
. Funkce [я] jetzv. horní celá část čísla x, tj. nejmenší

2

celé číslo větší nebo rovné x.

A- I -4

Najděte nejmenší přirozené n takové, že existují dva ne-
shodné pythagorejské trojúhelníky s přeponou délky n.

(Trojúhelník se nazývá pythagorejský, je-li pravoúhlý a délky
jeho stran jsou vyjádřeny celými čísly.)

Řešení. Najdeme nejdříve všechny trojice přirozených čísel
x, у. z takové, že
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x2 + у2 — z2. (1)

То je klasická úloha, jejíž podrobné řešení najdete např. v ro-
čence XXVI. MO, úloha A-P-l.

Všechna řešení rovnice (1) mají tvar

x = k(a2 — b2), у = 2kab, z = k(a2 + b2), (2)

kde a, b jsou nesoudělná přirozená čísla taková, že a > b,
2\ab, a k je libovolné přirozené číslo. Každé číslo z, pro něž
má rovnice (1) dvě různá řešení (řešení lišící se pořadím x
а у nepovažujeme za různá), se dá vyjádřit dvěma způsoby
ve tvaru (2),

z = k(a2 + b2) = l(c2 + ď2),

a je tedy společným násobkem čísel á2 + b2} c2 + i2, kde čísla
a, b i c, d jsou nesoudělná a součiny ab, cd sudé. Nejmenší
přirozené číslo n splňující podmínky úlohy tak najdeme mezi
nejmenšími společnými násobky čísel l2 + 22 = 5,22 + 32 =
= 13, l2 + 42 = 17, 32 + 42 = 25, 22 + 52 = 29, ... Vidí-
me, že n = 25 a příslušné pythagorejské trojúhelníky mají
délky stran 15, 20, 25 a 7, 24, 25.

A- I -S

Je dán mnohočlen

P(x) = a0xn + axx71-1 + ... + an-\x + an,

který nabývá jen nezáporných hodnot. Označme
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Q(x) — a0xn + 2a\xn~1 + ... + nan-ix + (n + 1 )an.

Je-li P(1) = O, pak je také 2(1) = 0. Dokažte.
Řešení. Je-li P(l) = 0, má nezáporný mnohočlen P v bodě 1

lokální minimum, takže P'(l) = 0, tj.

nao + (n — l)ai 4- . . . + an-1 = 0.

Je tedy

2(1) — #o 4- 2ai + ... 4- na.fi—i 4- (n 4- 1 )an —

— (n + l)(uo + a± 4- ... + %) —

— (na0 + (n — l)ai 4- ... + an-1) =

= (n 4- 1) P(l) - P'(l) = 0.

Poznámka. Řešení s použitím derivace je elegantní a krátké.
Můžeme ale uvažovat i takto: Je-li P(l) = 0, tj.

ao + a± + ... + an — 0,

je

P(x) = P(x) - P(l) =

= ao(xn — 1) + ai(*w-1 — 1) + ... + an-i(x — 1) =

= (x — lXao(*w-1 4- xn~2 + ... + 1) 4-

+ a\(xn~^ 4- ... 4- 1) + ... + an—i) —

— (x — 1) R(x).
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Protože P(x) ^ 0 pro všechna x, je R(x) ^ 0 pro л: > 1
a R(x) 0 pro x < 1. Je tudíž R( 1) = 0, tj.

nao + (n — l)ai + ... 4- an-1 = 0.

А- I -6

Pro vnitřní úhly trojúhelníku ABC platí

/>У a p
sin —- = 2 sin sin —- .

2 2 2

Určete vztah mezi stranami a, b, c takového trojúhelníku.

Řešení. Ze vztahu cos a = 1 — 2sin2 — a z kosinové věty

dostáváme rovnost

a2 — (b — c)2 (5 — 6)(s — c)
sin2 -- =

2 4 bc bc

a podobně (cyklickou záměnou)

i> (s — á)(s — c) 0 - Ф ~ b)
sin2 — =

2 abac

ci + b + c
kde s — . Z dané rovnosti pak tedy plyne2

c2 = 4(i — cf
neboli

2c = a + b.
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ÚLOHY ŠKOLNÍ ČÁSTI I. KOLA

A-S-1

Pro libovolné přirozené číslo n > 1 existuje n navzájem ne-

shodných pythagorejských trojúhelníků se stejným obvodem.
Dokažte.

Řešení. Využijeme toho, že existuje nekonečně mnoho
navzájem nepodobných pythagorejských trojúhelníků (všech-
ny primitivní pythagorejské trojúhelníky jsou navzájem ne-

podobné). Pro dané číslo n označme s/c = + fa- +
(1 k n) obvody n takových trojúhelníků. Je-li 5 =
= $iS2 ... sn, jsou trojúhelníky se stranami

J* ’ b'l~h ft.’ Ct~Ct st
ak ~ ak

rovněž navzájem nepodobné (tedy neshodné) pythagorejské
trojúhelníky, jejichž obvod je s.

Jiné řešení. Jsou-li u, v, k přirozená čísla, jsou čísla

a — k(u2 — v2), b = 2kuv, c = k(u- + v2)

strany pythagorejského trojúhelníku, jehož poloviční obvod
je s = ku(u + v). Abychom našli dostatečné množství
pythagorejských trojúhelníků se stejným obvodem, stačí
zvolit za 5 číslo, které má dostatečně velký počet dělitelů.

Pro dané n položme např. i = (и + 3)! a r = 1, takže je

(и + 3)!
k =

u(u+ 1)
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n + 2} dostaneme pythagorejské troj-Pro и g {2, 3, ..

úhelníky s odvěsnami
* 5

2(n + 3)!и — 1
(n + 3)! a

и M —1

Dva takovéto trojúhelníky mohou být shodné, jen když pro

nějaká iy j e { 2, 3, ..., w + 2 } platí

2í = (/ - IX/ + 1)

neboli

ij = i + У + 1.

Pro 2 ^ i < j dostaneme rovnost jen pro i ~ 2, j — 3.
Našli jsme tedy n neshodných pythagorejských trojúhelníků
s obvodem 2(n + 3)!.

A-S-2

Najděte všechna reálná čísla p, pro něž jsou všechny kořeny
xiy xo, хз rovnice x3 — 12л:2 + px — 64 = 0 reálné a nezá-
porné.

Řešení. Pro kořeny x-2, л:з dané kubické rovnice platí
(Viětovy vztahy)

*i + л:2 + л:3 = 12,

*1*2 + ^2Л:з + *3*1 = Ру

х\хчхз = 64,
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jak plyne z rovnosti koeficientů v rozkladu na kořenové
činitele. Protože

*1 + *2 + *3
- = 31/Xl*2*3 = 4,3

nastává ve známé nerovnosti mezi aritmetickým a geometrie-
kým průměrem tří nezáporných čísel x\, %2, хз rovnost.
Je tedy xi = X2 = хз = 4 a p = x\x% + *2*3 + X3X1 =.48.

A - S - За

Zjistěte, zda existují čtyři celá čísla x4, X2, хз, X4, pro něž
je číslo

|Ol — X2)(xi — Хз)(Х1 - x4)(x2 — X3XX2 — х4)(хз - X4)|

mocninou čísla 2 s celým nezáporným mocnitelem.
Řešení. Taková čísla neexistují. Kdyby existovala, byl by

každý z činitelů |jcí — Xj\ (i Ф j) nezápornou mocninou
čísla 2, takže bychom pro vhodná celá nezáporná čísla a, b, c
dostali rovnosti

X\ — X2 = 2a,

0)X2 x3 — 2b,

X3 — x4 = 2C,
čili

x4 — X3 = 2a + 2l>, X2 — x4 = 2Ь + 2C.
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Čísla 2a + 2b, 2b + 2C jsou ovšem celou mocninou čísla 2
jen pro a — b — c. Pak ale sečtením vztahů (1) dostaneme

.xi — #4 — 3.2a,

což není celočíselná mocnina čísla 2 pro žádné a.

Jiné řešení (podle V. Veselého, 3. roč., G J. Hronca,
Bratislava). Mezi libovolnými čtyřmi celými čísly x\>
xs, X4 existují dvě, která dávají při dělení třemi stejný zbytek.
Jejich rozdíl, a tedy i uvedený součin je dělitelný třemi,
proto nemůže být nezápornou mocninou čísla 2. Žádná
taková celá čísla tedy neexistují.

A - S - 3b

V rovině s kartézskou soustavou souřadnic jsou dány kruhy
ki = (6í, r{), hi — (6*2, гг), pro jejichž vzdálenost středů s
platí.

max(ri, r-i) ^ s ^ ri + r% — 2.

Dokažte, že průnik těchto kruhů obsahuje aspoň dva body
s celočíselnými souřadnicemi.

Řešení. Protože s < r\ + Г2, je průnik obou kruhů ne-

prázdný, a protože max(n, Г2) ^ 5, není jeden z kruhů částí
druhého. Označme d délku té části úsečky 5*1 £2, která leží
v průniku k\ n kz (obr. 34). Protože n + Г2 = s + d, je
podle předpokladu

d = n + r2 — s ^ 2,
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takže do průniku k\ n k± lze umístit kruh o poloměru 1.
Každý takový kruh však obsahuje aspoň dva mřížové body,
neboť množina všech jednotkových kruhů se středy v mřížo-
vých bodech pokrývá každý bod roviny aspoň dvakrát.

Jiný argument: Střed £ libovolného jednotkového kruhu
leží v jednom ze čtyř pravoúhlých trojúhelníků, na které
úhlopříčky rozdělí příslušný jednotkový čtverec s vrcholy
v mřížových bodech (obr. 35). Vzdálenost bodu 5 od obou
vrcholů příslušného trojúhelníku je nejvýše 1.
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ÚLOHY II. KOLA

A- II - 1

Najděte všechny pythagorejské trojúhelníky s přeponou
menší než 1 986 a s jednou odvěsnou o 675 menší než pře-
pona.

Řešení. Máme řešit v přirozených číslech soustavu rovnic

x2 + y2, — z2
z = у + d,

kde d = 675, z < 1 986. Dosazením za z z druhé rovnice
dostáváme

x2 - d2
У = ~2d

takže musíme najít všechna x > d celá, pro něž je у celé
a zároveň

x2 + d2
- < 1 986.z =

2d

Sečtením posledních dvou rovností dostaneme

я2
У + z=—.d ’
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X21
pro o musí d dělit x2. Protože z = — + dj a d je liché,

x2
musí být -- liché. Číslo d = 675 — 33.52 dělí x2, právě když

32.5 — 45 dělí x, takže musí být x = 45č, kde k je liché.
Z podmínek úlohy plyne jednak

675 < 45Č, tj. k > 15,

jednak

452č2 + ď2 1
= — (3Č2 + 675) < 1 986,2d

neboli

k ^ []/l 099] = 33.

Proč e {17,19, ..., 33} dostáváme tedy devět řešení tvaru

1 1
x = 45č, у = — (3Č2 - 675), 2 - — (3Č2 + 675).

A- li -2

V rovině s kartézskou soustavou souřadnic umístěme dva

útvary A a B. Útvar A je kruh o poloměru |/5, útvar В je
sjednocením čtyř kruhů průměru 1 se středy ve vrcholech
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p
čtverce o délce strany — . Dokažte, že při každém umístění

útvarů А, В existuje aspoň 10 bodů s celočíselnými souřad-
nicemi, které leží v A a neleží uvnitř B.

Řešení. Uvažujme množinu všech kruhů se středy v mři-
žových bodech a poloměrem j/5. Každý bod roviny leží aspoň
ve 14 takových kruzích: Leží-li totiž bod ve čtverci s vrcholy
v mřížových bodech А, В, C, D (obr. 36), pokrývají ho kruhy
se středy v mřížových bodech K, L, M, N, O, P, Q, R
a čtyři kruhy se středy ve vrcholech čtverce ABCD, dále
aspoň jeden z kruhů se středy U, V a aspoň jeden z kruhů
se středy X, Y.

Útvar В je sjednocením čtyř kruhů o průměru 1. Kdyby
uvnitř В ležely více než čtyři mřížové body, ležely by aspoň

U 4 % Y

4-Q D C
oo

O<>

R BiA M

0

L VКX

Obr. 36
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v jednom z těchto kruhů dva mřížové body. Ty by musely
být krajními body průměru uvažovaného kruhu, neboť jejich
vzdálenost je aspoň 1. Pak však nemohou být oba vnitřními
body útvaru B. Do kruhu A tedy patří alespoň 14 — 4 = 10
mřížových bodů, které neleží uvnitř B.

Jiné řešení. Uvažujme vnitřek jednotkového čtverce spolu
s vnitřkem dvou sousedních stran a jejich společným vrcho-
lem (obr. 37). Každý takový »čtverec«, jehož strany jsou

rovnoběžné s osami souřadnic, zřejmě obsahuje právě jeden
mřížový bod. Kruh o poloměru ]/5 obsahuje 12 takových
»čtverců« (obr. 38); kromě toho jeden z »trojúhelníků« ABU,
EFX (a podobně i jeden z »trojúhelníků« CD V, GHY)
obsahuje mřížový bod, právě když ho obsahuje »čtverec«
AX'BU (resp. CY'DV). Libovolný kruh o poloměru |/5
tedy obsahuje aspoň 14 mřížových bodů.

Útvar В je sjednocením čtyř otevřených kruhů o průměru 1
doplněných bodem 5 (obr. 39). Protože každý takový »kruh«
může obsahovat nejvýše jeden mřížový bod (vzdálenost
dvou mřížových bodů je alespoň 1), leží uvnitř útvaru В
nejvýše čtyři mřížové body. Tím je důkaz hotov.
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A - II - За

Jsou dána celá čísla p, q. Určete nejmenší přirozené číslo
n, pro které existuje mnohočlen / stupně n s reálnými koefi-
cienty takový, že současně platí

a)/(/0=/(f) = 0,
b) f(m) > 0 pro všechna celá čísla m, p Ф'т Ф q.
Řešení. Uvažujme mnohočlen

/O) = (x - pf(x - q)2.

Zřejmě / vyhovuje podmínkám úlohy, takže hledané nej-
menší přirozené n existuje a je n ^ 4. Mějme mnohočlen g
třetího stupně,

g(x) = ax3 + bx2 + cx + d {а Ф 0).

Je-li ая < —(|а| + |6| + [c| 4- |i|), 1 ^ j л: [, je

g(x) ^ ax3 + \b\ |x|2 + [c|\x\ + \d\ ^

^ ax3 + *2(|ž>| + |c|*+ |i|) <

< x2(ax + \a\ + \b\ + |c| + |J|) < 0,

takže n Ф 3. Dále je zřejmé, že n Ф 1. Zbývá tedy zjistit,
kdy může být n — 2.

Je-li P = q, vyhovuje podmínkám úlohy mnohočlen
(.x — p)2, takže n — 2. Podobně pro \p — q\ = 1 vyhovuje

110



mnohočlen (я — p)(x — q), takže je rovněž n = 2. Nakonec
nechť \p — q\ It 2. Ukážeme, že podmínkám úlohy nevy-

hovuje žádná kvadratická funkce. Vzhledem к a) by takový
kvadratický trojčlen musel mít tvar f(x) = a(x — p){x — q),
kde аф 0. Přitom ale je pro p < q

f(q — 1) = -a(q - 1 - p) < 0 pro a > 0,

f(q + 1) = a(q + 1 — p) < 0 pro a < 0.

A podobně i pro p > q. V případě \p — q\ Tž. 2 je tedy
n — 4.

А - II -3b

Pro w přirozené označme Mw množinu všech jednoprvko-
vých a dvouprvkových podmnožin množiny {1, 2,
Je-li я ^ 3, lze ke každé (и — 2)-prvkové podmnožině P
množiny Mw najít dvouprvkovou podmnožinu (г, /} mno-
žiny {1, 2, ..n}3 pro kterou je

{{«•}. W. M)nř = ».

Dokažte.

Řešení. Nechť P obsahuje k (0 ^ k я — 2) dvou-
prvkových а и — 2 — £ jednoprvkových podmnožin množiny
{1, 2, ..., я}; v množině {1, 2, ..., и} tedy zbývá k + 2

čísel i takových, že {*} ф P. Z nich můžeme utvořit
^ + 2

2
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dvouprvkových podmnožin, stačí tedy ověřit, že vždy platí

k + 2
> k,2

neboli

(k + 2){k + 1) > 2k.

Tato nerovnost zřejmě platí pro každé k ^ 0.
Jiné řešení. Předpokládejme, že tvrzení úlohy neplatí, tj.

že existuje taková (n — 2)-prvková podmnožina P c Mřl, že

P n {{г}, {/}, {i,j}} Ф 0

pro každou {i, /} c: {1, 2, ..., n}. Kdyby pro nějaké
me {1, 2, ..., n) nebylo {m} e P, pak by pro každé j Ф m
muselo být {/} e P nebo {/, m] e P, takže by P obsahovala
více než n — 2 prvků. Je tedy {m} e P pro libovolné
me {1, 2, n], což je opět spor s předpokládaným
počtem prvků množiny P.

Jiné řešení (podle T. Ledvinky, 4. roč. SPŠE, Praha 2,
Ječná a M. Wittnera, 4. roč. G Karlovy Vary). Zapišme
všechny prvky množiny Mw do trojúhelníkové tabulky

{n}{1} {3} ...

{1,2} {1,3} ...

{2,3} ...

{2}

{!,»}

{2, n)

{n ~ 1, n}
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Protože P má n — 2 prvků, existují aspoň dva sloupce, které
neobsahují žádný prvek z P (i < j):

{<•} w

{W}{M}

0 - i» *} 0 - i,j}

{U}

takže P n {{/}, {/}, 0',/}} =0.

ÚLOHY III. KOLA

A - III - 1

Nechť n je přirozené číslo ajS množina podmnožin mno-
žiny {1, 2, ..., n) s touto vlastností: Pro každé dvě množiny
Mi e | S j, М2 e j S, má množina (Mi и М2) \(Mi n M2) sudý
počet prvků. Určete největší možný počet prvků množiny | S |.

Řešení. Protože

|(Miu Ma)\(Mi n Ma)| = 1MX| + JM2| — 2|Mi n M2|,
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má uvedený symetrický rozdíl množin sudý počet prvků,
právě když obě množiny Mi, M-2 mají stejný počet prvků
modulo 2. Musí mít tedy všechny množiny v |Sj bud
sudý, anebo všechny lichý počet prvků. Odtud plyne, že
největší možný počet prvků množiny j S je 2й-1 (polovina
všech podmnožin dané množiny má totiž sudý počet prvků
a polovina lichý počet prvků).

A- lil -2

Nechť n ^ 3 jsou přirozená čísla. Je dán mnoho-
člen p stupně m s celočíselnými koeficienty takový, že p{a\) =
= y(a2) = ... — p(an) = 1 pro n různých celých čísel
a\, a2, ..., an. Dokažte, žep nemá žádný celočíselný kořen.

Řešení. Protože čísla ai, a<z, ..., an jsou kořeny mnoho-
členu p — 1, je

P(x) — 1 = (x — a{%x — az) ... (x — an) q (x),

n' s celočíselnými koefi-kde q je mnohočlen stupně m

cienty. Kdyby bylo p(a) = 0 pro nějaké a celé, dostali
bychom rovnost

-1 = (a — ai)(a — a2) ... (a — an) q(á).

V takovém případě by muselo být | a — щ | = 1 pro tři různá
celá čísla a±, a2, аз. To nejde, takže mnohočleny nemůže mít
celočíselné kořeny.
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A - Ш - 3

Předpokládejme, že máme nekonečně mnoho stejných
stavebnicových dílů složených ze sedmi krychlí (obr. 40).
Dokažte, že je možno těmito díly vyplnit beze zbytku celý
prostor.

Obr. 40

Řešení. Uvažujme krychlovou síť v prostoru tvořenou
navzájem rovnoběžnými vrstvami krychlí stejné velikosti
jako u daných dílů. Zvolme jednu vrstvu, označme ji nulou
a všechny ostatní vrstvy očíslujme postupně celými čísly
tak, aby nad w-tou vrstvou byla (n + l)-ní vrstva. Roz-
místíme-li nyní středové krychle jednotlivých dílů v nulté
vrstvě podle obr. 41 na místa označená nulou, zůstanou
nevyplněny právě všechny dvojice sousedních krychlí na
místech označených —1 a 1. Přitom rozmístěné díly zaplní
ještě místa označená 0 v —1. a 1. vrstvě. Rozmístíme-li
další díly v 1. vrstvě tak, aby středové krychle jednotlivých
dílů byly na místech označených 1, a podobně v —1. vrstvě
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Obr. 41

do míst označených — 1, bude nultá vrstva vyplněna beze
zbytku. Pokračujeme-li analogicky i v dalších vrstvách (tj.
díly se středy v и-té vrstvě posuneme např. o dvě krychle
doleva a pak je zvedneme do následující vrstvy), vidíme, že
takto vyplníme beze zbytku každou vrstvu, a tedy i celý
prostor.

Poznámka. Není těžké zjistit, že po sedmi vrstvách se
rozmístění dílů v jednotlivých vrstvách začne periodicky
opakovat.
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Jiné řešení. Uvažujme nejprve obdobnou úlohu v rovině
pro útvary složené z pěti čtverců (obr. 42). Již z názoru je
patrné, že těmito útvary lze vyplnit rovinu. Pokusme se

přesto o přesný důkaz tohoto tvrzení.

Uvažme kartézskou soustavu souřadnic takovou, že čtverce
tvořící jednotlivé díly budou jednotkové a jejich středy
budou mřížové body. Stačí si pak uvědomit (obr. 43), že

X+2y=1
X+2y=-1

x+2y=2
x+2y=0
x + 2y=-2

Obr. 43
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středy jednotlivých dílů budou např. všechny mřížové body
ležící na přímce s rovnicí x + 2y = 0. Podobně středy
ostatních čtverců budou ležet na přímkách x + 2у = +1,
resp. x + 2у — ±2. Umístíme-li tedy středy jednotlivých
dílů tak, aby jejich souřadnice (x, y, z) byly celočíselné
a ležely na přímkách x + 2y = 5k, kde k je celé číslo, budou
středy ostatních čtverců ležet na přímkách x + 2y = 5k ± 1,
resp. x + 2y = 5k ± 2. Přitom se žádné dva díly nemohou
překrývat a každý mřížový bod leží na některé z přímek
x + 2у — m pro nějaké m celé.

Právě naznačené řešení ted snadno přeneseme do prostoru:
Uvažujme kartézskou soustavu souřadnic v prostoru tako-
vou, že krychle tvořící daný díl budou jednotkové a jejich
středy budou mřížové body. Jsou-li (xo, уo, zo) souřadnice
středu daného dílu a (x, y, z) souřadnice středu libovolné
z jeho krychlí, platí

\x — X0| + Iу —yo\ + \z — *o| ^ 1. (1)

Umístěme nyní středy jednotlivých dílů tak, aby jejich
souřadnice byly celočíselné a číslo x + 2y + 3z bylo děli-
telné sedmi. Jsou-li (xi, jyi, si), (х*>, уг, z?) souřadnice středů
dvou různých dílů, je číslo (xi — x£) + 2(jvi — У2) +
+ 3(01 — Z2) nenulové a dělitelné sedmi, takže musí být
jxi — X2I + \yi — y2\ + |^i — Z2\ ^ 3, podle (1) se tedy
žádné dva díly nepřekrývají. A naopak každý mřížový bod
se souřadnicemi (ř, u, v) je pokryt některým dílem, jehož
střed bude mít souřadnice

(ř, u, v), když t + 2u + 3v = 0 (mod 7),

118



(г + 1, и, v), když t + 2и + 3v = +1 (mod 7),
(t, и + 1, v), když t + 2u + 3v = +2 (mod 7),
(t, u, v dl 1), když t + 2u + 3v = +3 (mod 7).

A - 111 - 4

V rovině je dána omezená konvexní množina A a tři
navzájem disjunktní polopřímky s počátky v A. Doplňkem
sjednocení těchto čtyř útvarů jsou tři navzájem disjunktní
oblasti. Nechť množiny В a C jsou konvexní a disjunktní se
všemi třemi polopřímkami, přičemž každá z množin В, C
má neprázdný průnik s každou z uvedených tří oblastí.
Dokažte, že množiny В a C mají neprázdný průnik.

Řešení. Pokud počátky A\, A2, As uvedených tří polo-
přímek leží v přímce, neexistují konvexní množiny В, C
požadovaných vlastností. Uvažujme trojúhelník A1A2A3 c A.
Pokud jedna z polopřímek protíná stranu trojúhelníku
Л1А2А3, množiny В, C požadovaných vlastností neexistují

A3

B-

B2,

a2B3A-i
Obr. 44
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Předpokládejme tedy, že dané polopřímky mají s trojúhelní-
kem A1A2A3 společné právě jeho vrcholy. Množina В pak
nutně obsahuje nějaký trojúhelník B1B2B3 a množina C
trojúhelník C1C2C3 s vrcholy B\, B>, B3, Ci, C2, C3 uvnitř
stran trojúhelníku A1A2A3. Nechť např. C± e B1A3 (obr. 44).
Protože C3 e A1A2 a množiny В, C jsou konvexní, je В n С Ф
Ф0-

A- III -5

Nechť funkce / zobrazuje množinu N všech přirozených
čísel do sebe tak, že je /(1) = 1 a pro každé n e N platí

f(n + 2) = 2f(n + 1) - f(n) + 2.

Dokažte, že pro každé n e N existuje m e N takové, že

f(ri)f(n + 1) =/(w).

Řešení. Protože

f(n + 2) - f(n + 1) —f(n + 1) - f(n) + 2,

platí pro každé n ^ 1

f(n + 1) -f(ri) =/(2) -1+2(n - 1),

takže

/(n) =/(1) + (n - 1ХД2) - 1) + 2(1 + 2 + ... + n - 2) =

= (я - l)/(2) + (Я - 2)2.
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Součin

f(n)f(n + 1) — (n — l)w(/(2))2 + f(2)(n(n — 2)2 + (n — l)3) 4-

+ ((n — 2)(n — l))2

bychořn chtěli pro libovolné n přirozené vyjádřit jako
(m — l)/(2) + (m — 2)2. Položme m — l — af{2) + b, pak
dostaneme

a(a + 1) = (n — 1 )n,

(b - i)2 - ((n - 2){n - l))2,

2a(b - 1) + b = 2n3 - 7«2 + In - 1.

Těmto podmínkám vyhovují čísla a = w — 1, b =
= (n — 2)(n — 1) + 1 = n2 — 3w + 3, takže m =
— (w — l)/(2) + w2 — 3n + 4 = /(w) + n. Je tedy

f(n)f(n + 1) =/(/(«) + я).

A- III -6

Nechť A je taková množina celých kladných čísel, že pro
každé dva její různé prvky x, у platí nerovnost

xy
\x -y\ ^ 25 '

121



Dokažte, že množina A obsahuje nejvýše 9 prvků. Rozhodně-
te, zda taková devítiprvková množina A existuje.

Řešení. V množině A existuje nejvýše jeden prvek větší

než 24, jinak by pro 25 ^ у < x bylo |x — y\ < x ^
což je ve sporu s předpokladem. A je tedy konečná.

Nechť A = (xi, X2, .. ., xjv}, kde x\ < x-z < ... < xn
a X]\r—i < 25. Pro je {1, 2, ..., N — 1} označme dj —

= Xj+i — Xj, pak platí

xy

25 5

Xj(xj + dj)XjXj :-l
dj - 25 25

neboli

9

*/
dj ^ 25 — xj

25
Zřejmě x5 ^ 5, pak ale ^ — > 1, neboli xe ^ 7, dále

49 100
d<s ^ — > 2, neboh X7 ^ 10, dj ^ —г > 6, neboli x8 ^ 17,1518

289
> 36, tedy xg ^ 54. Musí tedy být N ^ 9. Zároveň

ale vidíme, že množina {1, 2, 3, 4, 5, 7, 10, 17, 54} vyhovuje
naší úloze.

Poznámka. Není těžké popsat všechny množiny A výhovu-
jící dané podmínce. Např. množiny

dg ^
8
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{1, 2, 3, 4, 5, 7, 10, 17, ai}, kde ai ^ 54,
{1, 2, 3, 4, 5, 7, 10, 18, a2}, kde a2 ^ 70,
{1, 2, 3, 4, 5, 7, 10, 19, a3}, kde a3 ^ 80,
{1, 2, 3, 4, 5, 7, 10, 20, <24}, kde a4 ^ 100,
{1, 2, 3, 4, 5, 7, 10, 21, a5}, kde a5 ^ 132,
{1, 2, 3, 4, 5, 7, 10, 22, a6}, kde a6 ^ 184,
{1, 2, 3, 4, 5, 7, 10, 23, <27}, kde a7 Sí 288,
{1, 2, 3, 4, 5, 7, 10, 24, a3}, kde a3 ^ 600,
{1, 2, 3, 4, 5, 7, 11, 20, ag}, kde <29 ^ 100,
{1, 2, 3, 4, 5, 7, 11, 21, aio), kde a10 ^ 132,
{1, 2, 3, 4, 5, 7, 11, 22, au}, kde au ^ 184,
{1, 2, 3, 4, 5, 7, 11, 23, ai2}3 kde ai2 ^ 288,
{1, 2, 3, 4, 5, 7, 11, 24, a13}, kde ai3 ^ 600,
(1, 2, 3, 4, 5, 7, 12, 24, ai4}, kde ai4 ^ 600,
(1, 2, 3, 4, 5, 8, 12, 24, ai5), kde ai5 ^ 600,
(1, 2, 3, 4, 6, 8, 12, 24, ai6}, kde aie ^ 600

jsou všechny devítiprvkové množiny, které vyhovují dané
podmínce.
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Hodnotenie a zdóvodnenie
35. ročníka МО — kategória P

Velký záujem o novovytvorenú kategóriu P (programovanie)
bol příjemným překvapením pre všetkých organizátorov Ma-
tematickej olympiády. Súťaže sa zúčastnilo zhruba 250 účast-
níkov, čo je - vzhladom na vysokú obtiažnosť riešených úloh -

velmi vysoký počet. Do súťaže sa zapojili študenti středných
škol z celej republiky, i ked nie rovnoměrně. V pomere
к počtu študentov a škol najhojnejšia bola účasť zo Slovenska,
potom z Moravy a relativné najnižšia z českých krajov.

Priebeh súťaže poukázal na dva důležité momenty:
a) К programovaniu na špičkovej úrovni třeba značné védo-

mosti z matematiky.
b) Samotné vědomosti z »klasickej« matematiky nepostačujú

к úspěšnému vyriešeniu úloh v kategorii P. Na to třeba
mať aj istú (a nie malú) dávku bezprostředných skúseností
z práce s počítačmi a najma rozvinuté algoritmické mysle-
nie.

Prvý poznatok potvrdzuje, že kategória P právom patří do
Matematickej olympiády ako jej harmonická zložka. Obohacu-
je túto súťaž o nové prúdy a impulzy, súvisiace s najnovšími
trendami vo vede a technike. Súťažiaci mohli vidieť a po-

chopit’ hlbšie súvislosti prepojenia matematiky s praxou, než
sú dostupné z bežnej školskej látky ako v matematike, tak
v programovaní.
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Z druhého konštatovania zase vyplývá, že zavedenie samo-

statnej kategorie bolo oprávněné, lebo algoritmické myslenie
má svoje špecifiká, ktoré sa dajú vystihnúť vhodnou volbou
príkladov. Je oprávněná nádej, že v súvislosti s realizáciou
dlhodobého komplexného projektu elektronizácie v rezorte
školstva sa úroveň algoritmického myslenia žiakov podstatné
zvýši a zároveň s tým porastie aj záujem o túto kategóriu.
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O priebehu 35. ročníka МО

kategória P

Definitivně rozhodnut ie usporiadať kategóriu P ako novů
súťažnú kategóriu od 35. ročníka MO padlo poměrně neskoro
— na zasadnutí ÚV MO v máji 1985 v Banskej Bystrici. Prí-
činou váhania boli (do istej miery oprávněné) obavy o spósob
organizácie a V3^hodnocovania súťaže. Nie v každom kraji je
totiž dostatok kvalifikovaných odborníkov, ktorí by mohli
úlohy opravovat a tak vybrat najlepších pre postup do vyš-
ších kol.

Z viacerých návrhov sa nakoniec vybral »triparitný« model,
v ktorom sa ťarcha organizácie rozdělila na zástupcov troch
fakúlt, vychovávajúcich špecialistov v odbore teoretická ky-
bernetika, matematická informatika a teória systémov. MFF
UK Praha sa zaviazaia zaistiť priebeh súťaže v českých kra-
joch, PřF UJEP Brno na Moravě a MFF UK Bratislava na
Slovensku. MFF UK Bratislava bola súčasne aj hlavným
garantom výběru a rozmnožovania úloh pre celý ročník a orga-
nizátorom celostátneho kola.

Súťaž bola trojkolová. Prvého, domáceho kola sa zúčastnilo
výše 250 študentov středných škol. Z nich 100 najlepších bolo
vybraných do krajských kol, ktoré sa uskutočnili naraz s kraj-
skými kolami kategorií В a C. 50 najlepších (20 z českých
krajov, 10 z Moravy a 20 zo Slovenska) postúpilo do celo-
štátneho kola, ktoré sa konalo 12. —15. mája v Medzinárod-
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nom pionierskom tábore SÚV SZM v Kováčové pri Štúrove.
Súťaž slávnostne otvorila námestníčka ministra školstva SSR

Dr. Marta Vlačihová, CSc., za účasti zástupcov ÚDPM KG,
ZsKNV a ÚV MO. Vdaka patří aj profesorom a študentom
Gymnázia v Štúrove, ktorí sa postarali o kultúrny program
na slávnostnom otvorení a vychádzku do Chránenej krajinnej
oblasti Kováčovské kopce. Súťažiaci tak malí příležitost’
zoznámiť sa s týmto málo navštěvovaným, ale krásným kútom
našej vlasti medzi Hronom, Iplom a Dunajom.

Na výraznom úspěchu slovenských účastníkov majú velký
podiel RNDr. Andrej Blaho a RNDr. Peter Tomcsányi z Ústa-
vu aplikované) matematiky a výpočtové) techniky Univerzity
Komenského v Bratislavě a RNDr. Ondřej Demáček z Gym-
názia Jura Hronca v Bratislavě, ktorí už po tri roky organizujú
Korešpondcnčný seminář z programo.vania ako celoročnú
súťaž a pre jej najlepších účastníkov aj letné a zimné týždenné
sústredenia. Táto starostlivost’ sa odrazka na dobrom písom-
nom prejave, vyňaliezavosti i formuláciách slovenských účast-
níkov. Výsledky potvrdzujú, že podobnú formu přípravy by
bolo vhodné uplatniť aj v dalších krajoch Prvou laštovičkou
je zaradovanie úloh z programovania do korešpondenčného
seminára z matematik}'', organizovaného Přírodovědeckou fa-
kultou UPJŠ v Košiciach.

Žial, pre nedostatok kvalifikovaných nadšencov nebolo za-
tia! možné organizovat’ inštruktáže pre učitelov, běžné v iných
kategóriách MO.

Na závěr hodnotenia kategorie P vyměňujme tú hrstku
nadšencov, vdaka ktorým sa súťaž v tejto kategorii uskutočnila:
Praha: Doc. RNDr. Jiří Demner, CSc., RNDr. Petr Savický,

RNDr. Pavel Tópfer
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Brno: RNDr. Luboš Brim, CSc., RNDr. Tomáš Havlát, CSc.
Bratislava: RNDr. Andrej Blaho, doc. RNDr. Jozef Hvo-

řecký, CSc., RNDr. Peter Tomcsányi

Tabulka 5

Počty účastníkov III. kola kategorie P

Počet

úspěšných
riešitelov

Celkový
počet

Z toho

víťazovKraj

Praha

Středočeský
Juhočeský
Západočeský
Severočeský
Východočeský
Juhomoravský
Severomoravský
Bratislava

Západoslovenský
Stredoslovenský
Východoslovenský

8 3 2:

0 0 0

2 2 0

0 o o

5 2 1

3 1 1

35 0

4 0 0

78 4

4 2 1

24 1

4 3 1

iČSR 427 11

SSR 20 14 7

ČSSR 2547 11
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Výsledky celoštátneho kola MO
kategória P

Vífázi

Zohdy Hamid, 3, G A. Markuša, Bratislava
Alexander Szabari, 4, G Košice, Šmeralova
Roman Dudek, 4, G Nitra, Párovská
Peter Klein, 3, G A. Markuša, Bratislava
Vládán Majerech, 3, G Pardubice
Marcel Polakovič, 3, G A. Markuša, Bratislava
Petr Šleich, 4, G Děčín
Vladimír Veselý, 3, G J. Hronca, Bratislava
Filip Zavoral, 4, G Praha 10, Voděradská
Richard Krajčcviech, 3, G Považská Bystrica
Tomáš Trégl, 3, G W. Piecka, Praha 2

1.

2.

3.

4.

5.-6.

7.

8.-9.

10. —11

Ďalší úspěšní riešitelia

Pavel Kozlovský, 2, G Jindřichův Hradec
13. —15. Michal Dostál, 3, G W. Piecka, Praha 2

Mario Drosc, 3, G Michalovce
Robert Germič, 3, G Žilina, Velká Okružná
Ivan Polách, 4, G J. Hronca, Bratislava
Petr Veselý, 4, G Jihlava
Jiří Martínek, 2, G Ústí nad Labem

19.—20. Peter Muška, 3, G Poprad
Ladislav Zejda, 4, G Jihlava

12.

16.

17.

18.
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21. —22. Pavol Kolník, 3, G Nové Město nad Váhom
Marián Szabo, 3, G J. Hronca, Bratislava

23.—25. Stanislav Párnický, 3, G A. Markuša, Bratislava
Petr Steinmetz, 3, G Brno, Koněvova
Martin Zítek, 3, G Milevsko

NAJÚSPĚŠNĚJŠÍ RIEŠITELIA II. KOLA MO
KATEGÓRIA P

Praha

1, —2. Tomáš Trégl, G W. Piecka
Michal Dostál, G W. Piecka
Ivan Libicher, G Budějovická
Pavel Plachký, G W. Piecka
Jiří Hnát, G W. Piecka

6.-7. Filip Závoral, G Voděradská
Lucie Kárná, G W. Piecka
Martin Barhoň, G W. Piecka
Jan Sochor, G W. Piecka

3.

4.

5.

8.

9.

Středočeský kraj

Žiaden úspěšný riešitel.

Juhočeský kraj

Pavel Dvořák, G K. Šatala, České Budějovice1.
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2. —3. Vít Pavlík, SPŠSE České Budějovice
Martin Zítek, G Milevsko
Pavel Kozlovsky, G Jindřichův Hradec4.

Západočeský kraj

Žiaden úspěšný riešitel.

Severočeský kraj

1. —2. Petr Šleich, G Děčín
Jiří Martinek, G Ústí nad Labem
Vítězslav Nový, G Most
Petr Mandik, G Děčín
Pavel Novák, G Děčín

3.

4.

5.

Východočeský kraj

Petr Penci, G Pardubice
2. —3. Radim Dlouhý, G Dvůr Králové nad Labem

Vládán Majerech, G Pardubice

1.

Juhomoravský kraj

1. Pavel Kolařík, SPŠ Gottwaldov
2. Petr Veselý, G Jihlava
3. Petr Steinmetz, G Brno, Koněvova
4. Michal Blažke, G Brno, Koněvova
5. Ladislav Zejda, G Jihlava
6. Jan Matějka, G Třebíč
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Severomoravský kraj

1. Martin Novotný, G Ostrava-Hrabůvka
2. Jan Hřebíček, G Valašské Meziříčí
3. Vladimír Solničky, G Opava
4. David Jedelský, G Ostrava-Hrabůvka
5. Miróslav Novák, G M. Koperníka, Bílovec
6. Robert Komanec, G M. Koperníka, Bílovec

Bratislava

Tomáš Hatrák, G A. Markuša
Zohdy Hamid, G A. Markuša
Peter Klein, G A. Markuša
Marcel Polakovič, G A. Markuša
Marián Szabó, G J. Hronca
Stanislav Párnický, G A. Markuša
Ivan Polách, G J. Hronca
Vladimír Veselý, G J. Hronca
Marek Belluš, G J. Hronca
Torsten Tórok, G A. Markuša
Anton Belna, G A. Markuša
Miroslav Beldek, G A. Markuša
Zuzana Reichwalderová, G A. Markuša
Marián Valent, G A. Markuša

1.

2.-5.

6.

7.-8.

9.

10.-14.

Západoslovenský kraj

1. —2. Pavol Kolník, G Nové Město nad Váhom
Zdenko Mikláš, G Piešťany
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3.—4. Roman Dudek, G Nitra, Párovská
Milan Mancel, G Piešťany
Iván Vermes, mad. G Komárno
Peter Eliáš, SPŠE Stará Turá

7.-9. András Csékus, mad. G Komárno
Andrej Demovič, G Trnava
Ladislav Maitz, mad. G Komárno

5.

6.

Stredoslovenský kraj

1. Robert Germič, G Žilina, Velká Okružná
2. Miroslav Laššák, G Žilina, Velká Okružná
3. Richard Krajčoviech, G Považská Bystrica
4. Rastislav Řehák, G Žilina, Velká Okružná

Východoslovenský kraj

Martin Lieskovský, G Prešov, Konštantínova
Alexander Szabari, G Košice, Šmeralova
Mário Drosc, G P. Horova, Michalovce
Peter Muška, G Poprad, Leninovo nábr.
Peter Fekete, G P. Horova, Michalovce
Peter Matta, G P. Horova, Michalovce

7.-8. Marián Geroč, G Poprad, Leninovo nábr.
Rastislav Senderák, G Prešov, Konštantínova

1.

2.

3.

4.

5.

6.
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Kategória P

ÚLOHY I. KOLA

P - I - 1

Máme presne N lístkov papiera. Na každý lístok napíšeme
z každéj strany jedno prirodzené číslo od 1 po N (čísla na

opačných stranách lístka móžu byť rožne) tak, že každé číslo
je napísané právě dva rázy.

a) Dokážte, že pre lubovolný spósob rozpísania čísel na

lístky je možné poukladať lístky na stol tak, že na ich vrchnej
straně vidíme právě čísla 1 až N.

b) Nájdite algoritmus (předpis pre člověka), pomocou kto-
rého je možné poukladať lístky tak, aby spínali podmienku
z bodu a). Algoritmus zapište v prirodzenej řeči za pomoci
matematických symbolov a označení tak, ako by ste ho vysvet-
íovali (zasvátenému) kamarátovi. Dávajte však pozor na to,
aby bol přesný, jednoznačný a logický. Dokážte, že algorit-
mus pracuje pre íubovolné rozpísanie čísel.

Riešenie. a) Dokážeme, že lístky možno vždy pootáčať tak,
aby sme viděli všetky čísla od 1 po N, matematickou indukciou
vzhladom na N.
1. Ked N = 1, lístok móžeme položiť Libovolné, t. j. úloha je

vyriešená.
2. Ukážeme, že ked vieme rozložiť N lístkov s lubovofným

rozpísaním čísel, tak vieme rozložiť aj N + 1 lístkov.
V jednoduchšom případe je číslo N + 1 na oboch stranách
jedného lístka. V tom případe rozmiestnime najprv lístky
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s číslami 1 až N a nakoniec N + 1-vý lístok položíme lubo-
volnou stranou navrch.

V opačnom případe je N + 1 na dvoch róznych lístkoch.
Tieto dva lístky »zlepíme« číslami N + 1 к sebe. Tým vznikne
sada N lístkov s číslami 1,2, ..., N, ktorú podlá indukčného
předpokladu vieme rozložit’. Potom zlepený lístok rozlepíme
a na stol položíme oba lístky tak, aby ten, ktorý bol v zlepenej
dvojici »dolu«, mal na hornej straně číslo N + 1 a ten, ktorý
bol »hore«, mal na hornej straně to isté číslo ako vtedy, ked
boli lístky zlepené. Tým sme požadovaným spósobom rozložili
všetkých N + 1 lístkov.

b) Na základe predchádzajúceho dokážu možno navrhnúť
nasledujúci algoritmus:
1. Označ všetky lístky ako nezaradené.
2. Medzi nezaradenými lístkami vyhladaj lístky s číslom N.
3. Ak si našiel len jeden lístok (t. j. číslo je na jeho oboch stra-

nách), tak ho polož medzi zaradené, pokračuj krokom 5.
4. Ak si našiel dva lístky, potom ich polož na seba tak, aby

číslo N bolo na vnútornej straně »zlepenia«. Takto vznik-
nutú dvojicu lístkov považuj za jeden a polož ho medzi
nezaradené.

5. Zníž N o 1 a ak N je váčšie ako 0, pokračuj krokom 2.
6. Teraz sú všetky lístky zaradené. Tie, ktoré sa skladajú

z viacerých na sebe položených lístkov, rozlož na jednotlivé
lístky tak, aby sa přitom žiaden z nich nepřevrátil. Vtedy
sa bude každé číslo nachádzať na vrchnej straně právě raz,
čo sme chceli dosiahnuť. Tým teda algoritmus končí.
Uvedený algoritmus pracuje presne podlá myšlienky uve-
denej v predchádzajúcom dókaze, takže dalšie dokazovanie
je zbytočné.
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P- I -2

Def. 1: Konečnú postupnost’ A(0), A(l), ..., A(N), kde N
je prirodzené číslo a platí А(г) = 0 alebo 1 pre

všetky i, nazveme »dobrou«, ak pre všetky i platí

A(i) = 0 alebo A(i + 1) — 0.

Def. 2: Nekonečná postupnost prirodzených čísel F(i) je
definovaná vzťahmi:

F(0) = F(l) = 1

F(ť + 2) = F(í + 1) + F(*) pre i ^ 0

Def. 3: Ku každej konečnej postupnosti A

A(0), A(l), ..A(N)

přiřadíme číslo H(A, N) podlá předpisu

H(A, N) = A(0).F(0) + A(1).F(1) + ... + A(N).F(N).

Def. 4: Dve konečné postupnosti A:

A(0), A(l), ..., A(N)

a B:

B(0), B(l), ..., B(M)
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nazveme příbuznými, ked platí

H(A, N) = H(B, M).

Nájdite algoritmus, ktorý pre danú konečnú postupnosť A(z),
i = 0,1, ..., N nájde príbuznú »dobrú« postupnosť B(/),
j = 0,1, ..., M. Přitom predpokladajte, že nie je možné vy-

počítať hodnotu H(A, N), lebo by mohla byť příliš velká.
Dokážte, že pre každú zadanú postupnosť dá algoritmus

požadovaný výsledok.
Riešenie. V texte riešenia sa bude všade namiesto termínu

»postupnosť núl a jedničiek A(z), i = 0, 1, ..., N« používať
termín »postupnosť A«. Podobné miesto »postupnosť núl
a jedničiek В(/),/ — 0, 1, ..., M« budeme písať »postupnosť
B«.

Algoritmus1.Skopíruj postupnosť A do postupnosti B, tj. vytvoř novů
postupnosť В takú, že

A(z) = В(z) pre i = 0,1, ..., N,

a polož M = N.
2. Ak je postupnosť В dobrá, koniec.
3. Nech k je najváčšie také číslo, že

■B(k) = B(k - 1) = 1.

4. Ak k — M, polož M = M + 1 a B(M) = 0.
5. Polož B(£) = B(č - 1) = 0, polož B(£ + 1) = 1, po-

kračuj krokom 2.
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Dókaz. Dokaž rozložíme na dve časti. Najprv dokážeme, že
ak výpočet algoritmu skončí, tak dá požadovaný výsledok
(táto vlastnost’ algoritmu sa nazýva čiastočná správnost). Potom
dokážeme, že algoritmus skončí pre lubovolnú konečnú po-

stupnosť A (táto vlastnosť sa nazýva konečnost algoritmu).
Čiastočná správnost. Třeba dokázať, že ak výpočet skončí

(v kroku 2), tak postupnosť В bude »dobrá« a zároveň postup-
nosti А а В budú příbuzné.

a) To, že po skončení výpočtu bude postupnosť В »dobrá«,
je zřejmé. Algoritmus končí v kroku 2 iba za předpokladu, že
В je »dobrá« postupnosť.

b) Teraz stačí dokázať, že postupnosti А а В sú příbuzné
vždy, ked vykonáváme příkaz 2. Platia dve tvrdenia, z kto-
rých příbuznost’ А а В vyplývá podlá matematickej indukcie:
1. Ked do 2 prídeme z 1, tak sú postupnosti А а В určité

příbuzné, lebo sú identické.
2. Ak sú pri vykonávaní 2. kroku algoritmu postupnosti A

а В příbuzné, tak budú příbuzné aj po vykonaní cyklu
pozostávajúceho z krokov 3, 4, 5, 2 v uvedenom poradí.
To vyplývá zo skutočnosti, že
— příkaz 3 sa vykonává len v tom případe, ked postupnosť

В nie je »dobrá«. Teda zaručené existuje také k, že

B(£) = B(k - 1) = 1,

— příkaz 4 nezmení hodnotu H(B, M),
— před vykonáním 5 platí, že B(& + 1) = 0. V opačnom

případe by k nebolo najváčšie číslo, pre ktoré B(&) =
= B(£ - 1) = 1.
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— V příkaze 5 sa hodnota H(B, M) nezmení, lebo pre

členy postupnosti F platí

F(k + 1) = F(k) + F(k - 1).

Konečnost. Činnosť algoritmu skončí, ked je zaručené, že
skončí vykonávanie každého cyklu, ktorý obsahuje. Náš algo-
ritmus obsahuje jediný cyklus 2 — 5.

V tomto cykle sa pri každom přechode zaručené vykoná prí-
kaz 5. V ňom sa dve jednotky v postupnosti В nahradia jednou
— teda pri každom přechode cyklom sa počet jednotiek o jednu
zmenší. Toto znižovanie nemóže trvať nekonečne dlho, lebo
postupnost’, ktorá obsahuje iba jednu jednotku, je zaručené
dobrá. Cyklus teda skončí najneskór po N krokoch.

Zhrnutie. Podařilo sa dokázat’, že
— ak sa výpočet podlá algoritmu skončí, tak dá správný vý-

sledok pre lubovolnú vstupnú postupnost’ A;
— výpočet podlá algoritmu skončí pre každú postupnost A.

Z toho vyplývá, že výpočet skončí a dá správný výsledok
pre lubovolnú vstupnú postupnost A.

Este poznamenáváme, že takto formulovaný algoritmus je
dostatočne přesný pre »ručné« spracovanie. Pre výpočet na

počítači by bolo třeba presnejšie špecifikovať krok 3. Hladanie
čísla k totiž nemusí vždy začínat od konca, ale od toho miesta,
kde sme naposledy našli dve jednotky vedla seba (túto hod-
notu udává premenná i). Ked zaměníme dve jednotky za

jednu, stačí prevent, či sme tým nevytvořili novů dvojicu.
Dokaž správnosti takto modifikovaného algoritmu by bol
podobný, iba by obsahoval viac technických detailov.
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Na závěr uvádzame takto upravený algoritmus v jazyku
Basic:

110 FOR I = 1 TO N
120 LET B(l) = A(l)
130 NEXT I
140 M = N
150 FOR I = N TO 2 STEP -1

LET К = I
IF B(K) = 0 OR В(К - 1) = 0 THEN GOTO

160
170

240
IF К = M THEN LET M = M + 1
В(К) = 0
В(К - 1) = 0
В(К + 1) = 1
К = К + 2
GO ТО 170

180
190
200
210
220
230
240 NEXT I

Р- I -3

Nasledujúci program v jazyku Basic hladá v N-prvkovom
poli čísel úsek, ktorého súčet je maximálny:

100 LET M = 0
110 FOR DLZ = 1 TO N

FOR ZAC = 1 TO N - DLZ + 1
LET S = 0
FOR I = ZAC TO ZAC + DLZ - 1

LET S = S + A(l)

120
130
140
150

NEXT I
IF S > M THEN LET M = S

NEXT ZAC

160
170
180
190 NEXT DLZ
200 END
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Označme S(N) počet vykonaní priradovacieho příkazu v riad-
ku 150. Vyjádříte S(N) ako funkciu zadaného N.

Riešenie. V dalšom texte budeme namiesto »cyklus pre
DLZ v riadkcch 110 až 190« písať »cyklus pre DLZ« (a po-
dobne pre ZAC a I).

Program začneme analyzovat’ od najvnútornejšieho cyklu.
Cyklus pre I sa vykoná DLZ-krát, pričom v každom priebehu
cyklom sa vykoná právě jedno sčítanie. Teda v celom cykle
pre I sa vykoná DLZ sčítaní. Cyklus pre ZAC sa vykonává
N — DLZ + 1 rázy, teda v celom cykle pre ZAC sa vykoná

(N - DLZ + 1).DLZ

sčítaní. Hladaný počet - funkciu S(N) zistime, ked vyjádříme
počet sčítaní v cykle pre DLZ.

Cyklus pre DLZ sa vykonává od 1 po N. Teda počet sčítaní
S(N) je vyjádřený sumou:

S(N) = (N - 1 + l).l + (N - 2 + 1).2 + ... +

+ (N - N + 1).N

Roznásobením každej zátvorky dostáváme vztah:

S(N) = (N + l).l - 1.1 + (N + 1).2 - 2.2 +

+ ... + (N + 1). N - N. N

Jednotlivé členy zdrúžíme takto:
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S(N) = (N + 1).(1 + 2 + 3+ ... + N) —

— (I2 + 22 + 32 + ... + N2)
(S)

Teraz vyjádříme zvlášť každý člen rozdielu.
Prvý člen obsahuje súčet aritmetickej postupnosti s dife-

renciou 1. Teda

(N + 1).(1 + 2 + 3... +N) = (N+ 1). N.(N + l)/2
(Sl)

Druhý člen (súčet druhých mocnin) označíme ako D(N).
Zo známej rovnosti

A2 — B3 = (A - B).(A2 + A.B + B2)

vieme, že

l3 - O3 = 1.(12 + 1.0 + O2)

23 _ 13 — i.(22 + 2.1 + l2)

З3- 23 = l.(32 + 3.2 + 22)

N3 - (N - l)3 = l.(N2 + N.(N - 1) + (N - l)2.

Sčítáním všetkých týchto rovností dostáváme:
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N3 — О3 =

= D(N) + (1.0 + 2.1 + 3.2 + ... + N.(N - 1)) +

+ D(N - 1)
Vieme, že platí

N.(N - 1) = N2 - N

a

D(N) = D(N - 1) + N2.

Preto

N3 = D(N) + (D(N) - (1 + 2 + 3 ... + N)) +

+ D(N) - N2.

Už sme ukázali, že

1 + 2 + 3+ ... + N = N.(N + l)/2,
takže

N3 = 3.D(N) - N2 - N.(N + l)/2.

Z tohoto vztahu určíme D(N):

3. D(N) = N. (N2 + N + (N + l)/2) =

= N.(N + 1)(2N + l)/2
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N.(N + 1).(2N + 1)
(S2)D(N) = 6

Po dosadení vzťahov (SI) a (S2) do (S) dostáváme

S(N) = N(N + 1)(N + l)/2 - N(N+1X2N + l)/6,

a teda

N3 + 3№ + 2N
S(N) = 6

Poznámka. Vztah

12 + 22 + 32 + ...+№ = N.(N + 1).(2N + l)/6

stačilo nájsť v literature a dokázat’ indukciou. My sme sa
snažili podat’ jeho konstruktivný dokaž, lebo móže poslúžiť
ako návod na odvodenie podobných súčtov v budúcnosti.

P - 1 - 4

Modifikovaný Minského stroj (MMS) je teoretický model
jednoduchého počítača. Pozostáva z konečného, dostatočne
velkého počtu pomenováných premenných (mená sú oby-
čajné identifikátory) a »riadiacej jednotky«. Obsahom každej
premennej je nezáporné celé číslo. Riadiaca jednotka dokáže
manipulovať s premennými, ale vykonává len velmi jedno-
duché operácie:
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— připočítat’ к premennej jednotku, čo označujeme
»meno premennej« + ,

— odčítat’ od premennej jednotku, čo označujeme
»meno premennej« —,

— testovať obsah premennej na rovnost’ nule a podlá výsled-
ku riadiť další výpočet. Existujú dva testy:
»meno premennej« = 0,
resp.
»meno premennej« Ф 0.

Poznamenáváme, že
— rozsah čísel nie je zhora ohraničený,
— od premennej s hodnotou nula móžete odčítať jednotku-

výsledkom je nula v premennej (t. j. jej hodnota sa ne-

změní),
— MMS nepoužívá žiaden příkaz vstupu ani výstupu.

Všetky údaje potřebné к výpočtu musia byť v premenných
dané vopred a výpočet skončí s výsledkami vo vopred
určených premenných.

Modifikovaný Minského stroj sa programuje tak, že sa

postupné vytvárajú předpisy na stále zložitejšie činnosti.
Takýto postup predvedieme:
Činnost’ »NULUJ X«
rob pokial X Ф 0

rob X— koniec

koniec

Táto činnost’ pozostáva len z elementárnych akcií, známých
MMS. Avšak zo skór definovaných činností možno skladať
komplikovanejšie; popíšeme činnost’, ktorá presume obsah
premennej A do premennej В a súčasne premennú A vynu-
luje:

145



Činnost’ »PRESUŇ A
rob NULUJ B;

B«

... В sa dosadilo za X pomocou
skór definované) činnosti

pokia! A^O
rob A —; B + koniec

koniec

Takto by sme mohli pokračovat a naprogramovat velmi
zložité činnosti. Jazyk na zápis týchto činností stručné de-
finujeme:
— príkazmi sú elementárne činnosti, napr. A—, G+ atd;
— podmienky smú byť len typu »premenná = 0« alebo

»premenná Ф 0«, logické operácie AND, OR atd. nie sú
к dispozícii;

— z riadiacich štruktúr sú povolené následujúce:
— zloženy příkaz

rob

(postupnost príkazov oddělených bodkočiarkami)
koniec

— příkaz vetvenia
ak (podmienka) tak (příkaz) inak (příkaz)
resp.
ak (podmienka) tak (příkaz)

— dva příkazy cyklu (s podmienkou na začiatku a s pod-
mienkou na konci)
pokia! (podmienka)

(zložený příkaz)
Vykonávanie těla cyklu (zloženého příkazu, obsahujúceho
povinné zátvorky rob — koniec) sa opakuje tak dlho,
pokiaI podmienka cyklu platí. Teda vykonávanie skončí
vtedy, ked podmienka pri testovaní je prvýkrát neprav-
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divá. Druhým príkazom cyklu je
opakuj

ýzoznam príkazov, oddělených bodkočiarkami)
ýpodmienka)kým

ktorého vykonávanie sa skončí, ked podmienka prvýkrát
platí (t. j. návrat na začiatok cyklu sa uskutoční, ked
podmienka neplatí).

Ak chcete použit’ cyklus FOR, musíte ho simulovat’ vhodné
definovanou činnosťou. (Činnost definujeme názvom a zlo-
ženým príkazom, ktorý opisuje túto činnost’ a odvolává sa
iba na skór definované činnosti.)

Zadanie úloh

1. V premennej A je číslo X. Napište činnost’ (jednu hlavnú
a niekolko pomocných), ktorá vypočítá celú časť z druhej
odmocniny čísla X a uloží ju do A.
(Pozn.: Hodnoty ostatných premenných nás nezaujímajú.)

2. V premennej A je číslo P. Napište činnost’, ktorá do pre-

mennej В uloží hodnotu 1, ak je P prvočíslo, inak do В
uloží nulu.

Riešenie

1. Prístupov к riešeniu móže byť velmi mnoho. Predvedieme
riešenie, založené na jednoduchom tvrdení:

1 + 3 + 5 + 7 ... + (2N - 1) = N2,

ktoré pre prirodzené N možno Iahko dokázat’ matema-
tickou indukciou. V tomto vztahu N je jednak počet
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sčítancov a jednak »celá časť druhej odmocniny N2«.
To využijeme v nasledujúcom algoritme:
činnost’ »do A daj celu časť odmocniny z A«

... počet sčítancov

... sčítanec

N : = 0;
I: = 1;
pokiaí А Ф 0

rob

N : = N + 1;
cdčítaj I od A;
I : = I + 2;

koniec;
ak výsledok _ odčítania _ je _ záporný tak N : = N — 1;
A : = N;
koniec;

Algoritmus nie je zapísaný v jazyku MMS. Na přepis do
jazyka MMS potřebujeme dodefinovať činnost’ »odčítaj
A OD B«, ktorá okrem odčítania indikuje zápornosť výsledku.

To realizujeme tak, že pomocnú premennú CHYBA nasta-
víme na 1, ak výsledok odčítania je záporný (a teda výsledok,
ktorý získáme pri odčítaní, je chybný).

Činnost’ »ODČÍTAJ A OD B«
rob NULUJ CHYBA;

NULUJ POM1;
pokiaí А Ф 0

rob ak В = 0 tak rob CHYBA + ;

NULUJ A koniec
inak rob А — ; В —;
POM1— koniec

koniec;
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PŘESUŇ РОЛИ -> А

koniec;
Teraz už Iahko přepíšeme algoritmus do jazyka MMS:
Činnost’ »DO A DAJ CELU ČASŤ ODMOCNINY
Z A«

rob NULUJ N;
NULUJ I ; I + ;

pokial’ A^O

...N: = 0

.. .1 : = 1

...N : = N + 1

ODČÍTAJ I OD A;
...A: = A - I

rob N+ ;

(s »chybou«)
I + ;I+ ...I: = I + 2

koniec;
ak CHYBA ф 0 tak N — ;
PŘESUŇ N A

koniec

2. Pri riešení druhého problému postupujeme podobné.
Prvočíselnosť zisťujeme hladaním delitela len medzi
číslami menšími, nanajvýš rovnými ako celá časť druhéj
odmocniny A.
Činnost’ »DO В DAJ 1, AK A JE PRVOČÍSLO, INAK
DAJ 0«
rob X := A;

DO Y DAJ CELU ČASŤ
ODMOCNINY Z X;
NULUJ В ; В + ;

pokial’ X^O

.. .to umožní

urýchliť výpočet
...В : = 1

rob DO C DAJ A MODULО X;
X- ; .. .zmenši Xa presved-
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či sa, či si nedelil
číslom 1

ak X ф 0 tak
ak C = 0 tak .. .ked nie, vyšetři

dělitelnost'

rob B- ; NULUJ X koniec
.. . A nie je prvočíslo

koniec;
koniec;

Dodefinujeme činnost’ na výpočet zvyšku po celočíselnom
delení.

Činnost’ »DO C DAJ A MODULO B«
rob POMl:= A;

pokial’ POM2 7^ 0
rob С := POM2;

ODČÍTAJ В
OD POM2;
koniec

ak CHYBA = 0

tak NULUJ C

. . .tu je výsledok
víedy, ked zvyšok
je nenulový

.. .tu sa přiřadí
výsledok pri
nulovom zvyšku

koniec

a činnosť Y : = X

Činnost’ »Y : = X«

rob NULUJ Y;
NULUJ POM3;
pokial’ X Ф 0

... pomocné premenné

rob X— ; Y+ ; POM3+ koniec
PŘESUŇ POM3 X

koniec
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ÚLOHY II. KOLA

P - il - 1

Najmenším nasledovníkom prirodzeného čísla A nazveme

najmenšie také číslo B, ktoré splňa nasledujúce podmienky:
— číslo В sa skládá z tých istých cifier ako A(t. j. В vznikne

nějakou permutáciou cifier čísla A);
— číslo В je váčšie ako A.
Sformulujte (slovami) a dokážte algoritmus, ktorý pre dané
prirodzené číslo A nájde najmenšieho následovníka. Před-
pokladajte, že číslo A je zadané v poli C »rozbité po cifrách«,
teda, že

A = C(l).10N-i + C(2). 10N-2 + ...

+ C(N - 1). 10 + C(N).

Výsledok — číslo В stačí vytvořit’ v tom istom poli.
Příklad. Pre číslo 123 542 je jeho najmenší následovník

číslo 124 235.

Riešenie. Použijeme toto označenie:
budú polia, v poli C' bude následovník C;
označuje i-tý prvok póla;
označuje postupnosť prvkov póla C(í),
Q7 + 1), ...,C(/);

VYMĚŇ (C, i, j) bude pole, ktoré vznikne z póla C výme-
nou prvkov C(i) a C(/);

C(i : j) ^ C(k) znamená, že všetky prvky z intervalu
C(i : j) sú menšie, nanajvýš rovné prvku
ОД;

C, resp. C'
C(0
C(* :/)
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OTOČ C(z:У) je operácia, ktorá změní poradie prvkov
v intervale C(z: /) na opačné, t. j. na C(/),
c(j - i),..од.

Algoritmus pracuje takto:
Najprv nájdeme číslo z, pre ktoré platí

су) < c(i + i)

tak, aby C(z + 1 : N) bola nerastúca postupnost’ (t. j. i je
najváčší index, pre ktorý platí vyššie uvedená nerovnost’).
Ked takéto z neexistuje, potom postupnost’ C(1 : N) je
nerastúca a pre ňu najmenší následovník neexistuje. V tomto
případe algoritmus končí.

Rozoberme preto iba případ, že také z existuje. Aby sme
našli najmenšieho následovníka, musí platit’, že

C( 1 : z* — 1) = C(1 : z — 1)

a prvok C'(z) musí byť najmenší z prvkov v postupnosti
C(z + 1 : N), ktorý je váčší ako C(z). Taký prvok určíte
existuje. Ked ich je viac, zoberieme ten, ktorý má najváčší
index — označme ho j.

Teraz vyměníme v poli C z-tý a j-tý prvok operáciou
VYMEŇ(C, i,j), a takto ich vložme do póla C'. Teda postup-
nosť C'(l : i) má váčšiu hodnotu ako C(1 : z), ale ide o»naj-
menšie možné zváčšenie«, aké sme mohli dosiahnuť.

Potřebujeme už iba vytvoriť zvyšok postupnosti
C'(z + 1 : N). Mohlo by sa zdať, že čísla v tejto postupnosti
třeba usporiadať podlá velkosti (aj to by totiž viedlo к rie-
šeniu). Stačí však omnoho menej. Pretože z je najvyšší index,
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pre ktorý platí

C(0 < с(i + 1),

znamená to, že všetky ostatné čísla sú usporiadané klesajúco.
Stačí teda ich poradie obrátit’ operáciou OTOČ C(i + 1 : N).

Výsledný algoritmus má teda podobu:
1. Urči i a j.
2. VYMEŇ(C, ij).
3. OTOČ C (i + 1 : N).
V tomto případe dostanete následovníka v tom istom poli.

P - II - 2

Nasledujúci program v jazyku Pascal počítá pre zadané
prirodzené čísla А а В ich súčin:
program NÁSOB (input, output);

А, В, К, SÚČIN, POČET, PRÍRASTOK: integer;
begin readln(A, В);

К : = 0; SÚČIN := 0: POČET := 0;
PRÍRASTOK := 0;
while К < В do

begin

var

PRÍRASTOK := PRÍRASTOK + A;
POČET := POČET + 1;
К : = К + POČET;
SÚČIN := SÚČIN + PRÍRASTOK

end;
while К Ф В do

begin SÚČIN := SÚČIN - A;
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К := К - 1

end;
writeln (SÚČIN)

end

Ten istý program napíšeme aj v jazyku Basic:
10 REM PROGRAM NASOBENIA
20 INPUT А, В
30 К = 0 : SUCIN = 0 : POČET = 0 :

PRIRASTOK = 0
40 IF К > В THEN GOTO 100

PRIRASTOK = PRIRASTOK + A
POCET = POCET + 1
К = К + POCET
SUCIN = SUCIN + PRIRASTOK

90 GOTO 40
100 REM KONIEC PRVÉHO CYKLU
110 IF К = В THEN GOTO 150

SUCIN = SUCIN - A
j

140 GOTO 110
150 PRINT SUCIN

50
60
70
80

120
130

Program pracuje tak, že v prvom cykle (v Basicu riadky
40 — 90) sa vypočítá súčin K.A, kde К ^ В, a v druhom
cykle sa robí korekcia na hodnotu B.A niekoíkonásobným
odčítáním A od premennej SÚČIN.

Prirodzené číslo Во nazveme najhorším prípadom, ak pre
zadané lubovolné А а В = Во platí po skončení prvého
cyklu pri realizácii programu na počítači

К = В + POČET - 1.

Inak povedané, pri poslednom připočítávání
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SÚČIN : - STJČIN + PRÍRASTOK

sme hodnotu súčinu »prestrelili« najviac, ako sme mohli.
Najhoršími prípadmi sú například čísla 4 a 4 657.

a) Vyjádříte explicitně (tj. nějakým vzorcom) všetky naj-
horšie případy.

b) Nech В je najhorší případ. Nazvime S(B) počet aritme-
tických operácií (t.j. počet skutočne vykonaných sčítaní
a odčítaní), ktoré sa vykonájú pri výpočte podlá programu

pre lubovoíné A a pevné B. (Všimnite si, že počet operácií
nezávisí od A.) Vyjádříte S(B) ako funkciu B.

Riešenie. Uvedme najprv niekolko přípravných úvah:1.Pre priebeh výpočtu sú významné změny hodnot pre-

mennej K. Hodnota К však vzniká ako súčet

K = l+ 2 + 3+ ... + n pre n — 1, 2, ...

2. Výpočet prvého cyklu skončí vtedy, ked К ^ B.
3. Najváčší počet krokov spáť v druhom cykle třeba vykonať

pre také Во, pre ktoré z posledného prírastku К musíme
odpočítat’ (n — l)-krát.

a) Z (1) a (3) vyplývá, že najhorší případ nastáva pri číslach
tvaru:

(*)B0 = (1 + 2 + 3 + ... + n) — (n — 1)

B0 = (1 + 2 + 3 ... + (n — 1)) + 1

n.(n — 1) w2 — n + 2
Во = + 1 =

22
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b) Ked sa teraz vrátíme ku vztahu (*) a rozoberieme
význam jeho členov, vidíme, že prvých и členov súčtu vy-

jádruje prírastky К v jednotlivých krokoch prvého cyklu
(t. j.prvý cyklus sa opakuje presne и-krát). Posledný člen je
zhodný s počtom opakovaní druhého cyklu. Je teda třeba
určiť hodnotu n v závislosti od B.

Z tvrdení 1 a 2 vyplývá nerovnica

1 + 2 + 3+ ... + и ^ B,

ktorej najmenšie kladné celočíselné riešenie (ak existuje)
udává tú hodnotu n, pri ktorej prvý cyklus končí. Hodnota
o jednotku menšia je potom počet opakovaní druhého cyklu
pre najhorší případ. Po úpravách dostáváme

n.(n + 1)
^ В

2

и2 + и — 2B ^ О

“—1 + 1/1 + 8В
и =

2

kde [я] je horná celá časť čísla x.
Pretože prvý cyklus obsahuje štyry sčítania a druhý cyk-

lus dve odčítania, tak hladaná funkcia S(B) má tvar

- 1 + 1/1 + 8B[S(B) = 4.и + 2.(и - 1) = 6 .
- 2.

2
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Pre dostatočne velké В stačí uvádzať približnú hodnotu

3.yi + 8B.S(B)

P - II - 3a

Napište program v lubovolnom vyššom programovacom

jazyku, ktorý prečítá postupnost’ zloženú z núl a jedničiek,
ktorá je ukončená číslom 2. Program vypíše »ÁNO«, ak
postupnosť obsahovala párny počet núl a zároveň nepárny
počet jedničiek. V opačnom případe program vypíše »NIE«.

Na program sa kladie jedno podstatné obmedzenie: Smie
sa použit’ len jediná premenná Z, v ktorej je vždy uložená
hodnota jediného načítaného čísla (0, 1 alebo 2). Obsah
premennej Z sa móže meniť len tým spósobom, že sa do nej
zo vstupu prečíta dalšie číslo. Čísla sa móžu čítat’ len v tom
poradí, v akom sú zapísané v postupnosti, t. j. nie je dovolené
vracať sa к číslam už raz prečítaným, ani ich přeskakovat’.

Pre jednoduchost předpokládájte, že čísla vstupujú zapí-
sáné vždy jedno v jednom riadku. Přitom vstupná postup-
nosť neobsahuje iné čísla než 0, 1 a 2. Program preto móže
skončit’ svoju činnost’, ked prečíta znak rózny od nuiy a jed-
notky.

Příklady. Pre postupnosť 0011011012 (ktorú sme pre

úsporu miesta zapísali v jednom riadku) program vypíše
»ÁNO«. Pre postupnosť 0011002 program vypíše »NIE«, pre

postupnosť 1112 program vypíše »ÁNO«, lebo aj nula je
párne číslo.

Riešenie. Algoritmus, ktorý spracováva vstupnú postup-
nosť, sa nachádza vždy v jednom zo štyroch možných stavov:
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1. Doposial načítal párny počet núl a párny počet jednotiek.
2. Doposial načítal párny počet núl a nepárny počet jednotiek.
3. Doposial načítal nepárny počet núl a nepárny počet jed-

notiek.
4. Doposial načítal nepárny počet núl a párny počet jednotiek.
Vzájomné přechody medzi týmito štyrmi stavmi sa usku-
točňujú v závislosti na tom, či sa načíta nula alebo jednotka.
Ak však načítáme číslo 2, tak »ÁNO« vytlačíme iba v případe,
ked sa právě nachádzame v stave č. 2. V ostatných prípadoch
vypíšeme »NIE«. Z toho vyplývá i činnost’ nasledujúcich
programov.

Program v Basicu:
10 INPUT Z : REM STAV 1
11 ON Z + 1 GOTO 40, 20, 200
20 INPUT Z : REM STAV 2
21 ON Z + 1 GOTO 30, 10, 100
30 INPUT Z : REM STAV 3
31 ON Z + 1 GOTO 20, 40, 200
40 INPUT Z : REM STAV 4
41 ON Z + 1 GOTO 10, 30, 200

100 PRINT »ÁNO«
101 STOP
200 PRINT »NIE«
201 STOP

Program v Pascale:
program POSTUPNOST(input, output);
var Z: integer;
procedure S2; forward;
procedure S3; forward;
procedure S4; forward;
procedure SI;
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begin readln(Z);
case Z of 0: S4; 1: S2; 2: writeln(»NIE«) end

end;
procedure S2;
begin readln(Z);

case Z of 0: S3; 1: SI; 2: writeln(»ÁNO«) end
end;
procedure S3;
begin readln(Z);

case Z of 0: S2; 1: S4; 2: writeln(»NIE«) end
end;
procedure S4;
begin readln(Z);

case Z of 0: Si; 1: S3; 2: writeln(»NIE«) end
end;
begin

SI
end.

P - И - 3b

Naprogramujte pre Modifikovaný Minského stroj (vid
P - I - 4) nasledujúcu úlohu:

V premenných А, В, C sú prirodzené čísla. Napište
činnost’ »triedenie«, ktorá do premenných А, В, C uloží
takú permutáciu ich póvodných hodnot, že bude platiť

ASBíC,

teda, že na konci výpočtu budú ich hodnoty usporiadané
vzostupne.
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Riešenie. Popíšeme jedno z možných riešení. Najprv však
definujeme pcmccnú činnost’ ZORAĎ na správné zoradenie
dvoch premenných.
(Využijeme aj činnosti, definované pri riešení úlohy P - I - 4.)
Činnost’ »ZORAĎ X Y«;
rob POMX := X; .. .uložíme póvodné

hodnoty X a Y
POMY := Y;
ODČÍTAJ X OD Y;
ak CHYBA = 0

tak rob
...t. j.akX^ Y
... ponechaj póvodné

hodnoty
X := POMX;
Y : = POMY

koniec

inak rob Y := POMX; j .. .vyměň obsahy
X := POMY j premenných

koniec

koniec

Pcmocou tejto činnosti lahko definujeme činnost’ UTRIEĎ,
ktorá usporiada obsahy všetkých troch premenných:
Činnost’ »UTRIEĎ А В C«

rob ZORAĎ A B;
ZORAĎ A C;
ZORAĎ В C;

... A íg В

.. .A ^ C

.. .B ^ C
koniec

Eahko sa možno přesvědčit’, že teraz platí

A <; в íg c.
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ÚLOHY III. KOLA

P - Ш - 1

Dané sú dve prázdné nádoby. Prvá má objem M litrov,
druhá N litrov, kde M a N sú prirodzené čísla. Máme к dis-
pozícii neobmcdzený zdroj vody.
Povolené sú následujúce operácie:

NAPLŇ I,
kde 1 = 1 alebo 2, znamená naplnit’ vodou zo zdroja I-tú
nádobu až po okraj.

PRELEJ z I do J,
kde I Ф J, pričom I, J = 1 alebo 2, znamená preliať obsah
I-tej nádoby do J-tej tak, že buď J-tú nádobu naplníme až
po okraj (ak je v I-tej dostatok vody), alebo I-tú nádobu
úplné vyprázdníme (ak je v nej menej).

VYLEJ I,
kde 1 = 1 alebo 2, znamená vyliať obsah I-tej nádoby do
kanála.

Postupom prelievania nazveme Iubovolnú konečnú postup-
nosť zloženú z vyššie uvedených operácií. Určité:

a) Pre aké prirodzené čísla M, N а К existuje taký postup
prelievania, že po jeho vykonaní zostane v niektorej z nádob
presne К litrov vody ?

b) Zostavte algoritmus ktorý pre zadané prirodzené čísla
M, N а К navrhne taký postup prelievania, že po jeho vyko-
naní ostane v niektorej nádobě právě К litrov vody. Ak taký
postup existuje, tak ho algoritmus vypíše a na jeho konci
uvedie

VÝSLEDOK JE V NÁDOBĚ L
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Ak taký postup neexistuje, algoritmus vydá správu
POSTUP PRELIEVANIA NEEXISTUJE!
Příklad. Pre M = 9, N = 5 а К = 2 je postup nasledujúci:

i

Obsah nádob

Příkaz

1. 2.

NAPLŇ 1

PRELEJ 1 2
VYLEJ 2
PRELEJ 1 2
NAPLŇ 1

PRELEJ 1 2
VYLEJ 2
PRELEJ 1 2
VYLEJ 2
PRELEJ 1 2
NAPLŇ 1

PRELEJ 1 2
VYLEJ 2
PRELEJ 1 2

9 0

4 5

4 0

40

9 4

8 5

8 0

53

3 0

o 3

39

57

7 0

52

VÝSLEDOK JE V NÁDOBĚ 1

Riešenie. Najprv urobme niektoré jednoduché úvahy,
ktoré sú na prvý pohlad zřejmé a umožňujú skrátiť dlžku
algoritmu:
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1. Dve operácie—NAPLŇ a VYLEJ—zanechajú v nádobách
maximálny, resp. nulový obsah. Z toho vyplývá, že ked
chceme v niektorej nádobě dosiahnuť iný (netriviálny)
počet litrov vody, nesmieme do tejto nádoby nalievať zo

zdroja, resp. vylievať jej (netriviálny) obsah do kanála.
2. Zbytočné je prelievať vodu z jednej nádoby do druhéj

a zase naspáť.
3. Nemóže sa stať, že by obidve nádoby obsahovali netři-

viálny počet litrov vody. (Po VYLEJ a NAPLŇ je to
zřejmé, operáciou PRELEJ bud jednu nádobu naplníme
až po okraj, alebo druhů celkom vyprázdníme.)

4. Výsledné množstvo К litrov vody máme získat’ v jednej
z nádob. Nutnou podmienkou existencie riešenia preto
bude platnosť vžťahu »K je menšie, nanajvýš rovné
váčšiemu z čísel M a N«.

Z toho vyplývá, že účelné využitie nádob je také, že jedna
(a to například váčšia) bude slúžiť iba na naberanie vody zo
zdroja a na prelievanie do druhej a druhá iba na vylievanie
do kanála a na prijímanie vody z prvej.

Bez újmy na všeobecnosti předpokládájme, že M ^ N.
Pochopitelné, nádoba s obsahom M litrov bude tá, do ktorej
budeme nalievať, nádoba s obsahom N litrov tá, z ktorej
budeme vylievať vodu do kanála. Povedané inak, hladáme
čísla x а у také, že po л; naliatiach vody do nádoby Ma poy
vyliatiach z nádoby N budeme mať presne К litrov vody.
To vyjadřuje například vztah

M.x — N.jy = К

z riešenia Marcela Polakoviča, G A. Markuša, Bratislava.
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Teda

M.x = N/y + К
M.x = К (mod N)

л; = K.M1 (mod N)

kde M-1 je inverzný prvok k M v grupě zvyškových tried
modulo N. Taký prvok existuje pre všetky К iba vtedy,
ked M a N sú nesúdelitelné, inak existuje len pre tie К,
které sú dělitelné NSD(M, N). To je vlastně odpoved na

prvú otázku.
Naznačili sme už i optimálny algoritmus. Nalievať třeba

vždy do váčšiej nádoby. Z nej potom prelievať vodu tak dlho
do menšej, kým sa váčšia nevyprázdni (menšiu, ked sa zaplní,
pochopitelné třeba vyliať), alebo kým vo váčšej nebude
presne К litrov vody. Postup opakujeme a přitom sústavne
sledujeme počet litrov vody vo váčšej nádobě — v nej bude
totiž na konci výsledok.

Existuje ešte jeden možný, velmi podobný postup, ktorý
spočívá v prelievaní vody opačným smerom — z menšej ná-
doby do váčšej. Samozřejmé, menšia nádoba sa pri úplnom
vyprázdnění napíňa zo zdroja, váčšiu po úplnom naplnění
vylievame. Pre každú trojicu К, M, N, pre ktorú riešenie
existuje, je možné použiť obidva postupy. Pre niektoré tro-
jice vedie rýchlejšie k výsledku prvý postup, pre niektoré
druhý.

Prakticky všetky správné riešenia odhalili súvislosť medzi
postupom prelievania a deliteínosťou a viac-menej sledovali
niektorý z uvedených algoritmov.
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P- III -2

Daný je algoritmus, ktorého vstupom sú prirodzené čísla
А а В a výstupom ich súčin. Najprv ho uvedieme v Pascale:

program CELOŠTÁTNE KOLO (input, output);
var А, В, K, SÚČIN, POČET, PRÍRASTOK: integer;
begin readln(A, В);

К := 0; SÚČIN := 0;
POČET := 1; PRÍRASTOK := A;
while К Ф В do

if К + POČET ^ В
then begin К := К + POČET;

POČET := POČET + POČET;
SÚČIN := SÚČIN +

PRÍRASTOK;
PRÍRASTOK : =

PRÍRASTOK + PRÍRASTOK
end

else begin POČET 1;
PRÍRASTOK :=A

end;
v.riteln(SÚČIN)

end

Verzia v Basicu:

10 INPUT А, В
100 К = 0 : SÚČIN = 0 : POČET = 1 :

PRÍRASTOK = A
110 IF K = В THEN GOTO 180
120 IF К + POČET > В THEN GOTO 160
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к = К + POČET : POČET = POČET +
POČET
SÚČIN = SÚČIN + PRIRASTOK :
PRÍRASTOK = PRÍRASTOK + PRIRASTOK
GOTO 170
POČET = 1 : PRÍRASTOK = A

170 GOTO 110 : REM NÁVRAT NA ZAČIATOK
CYKLU

180 PRINT SÚČIN

130

140

150
160

Najhorším prípadom nazveme výpočet pre takú hodno-
tu B(), pri ktorej sa vetva else podmieneného příkazu v cykle
(v Basicu riadok 160) vykoná viackrát než pre ktorékolvek
В < B0.

a) Vyjádříte explicitně (t. j. nějakým vzorcom) všetky tie
hodnoty B0, pre ktoré bude výpočet algoritmu najhorším
prípadom.

b) Vyjádříte explicitně (t. j. ako funkciuB) skutočný počet
prechodov
— vetvou then (riadky 130 a 140)
— vetvou else (riadok 160)
podmieneného příkazu v najhoršom případe.

Poznamenáváme, že počet prechodov cyklom nezávisí
od hodnoty A.

Riešenie. Najprv ukážeme riešenie časti a). Z něho dobré
vidieť aj postup, ktorý umožní vyriešiť časť b).

a) Pre priebeh výpočtu sú charakteristické změny premen-

nej POČET. Obsahom sú to vždy mocniny dvojky, a to
v takomto poradí:

1,2, 4, 8, ...,2‘, 1,2, 4, 8, ...,2i, 1,2, ...
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Přitom musí vždy platiť i ^ j. Přitom všade, okrem posled-
ných dvoch členov, platí ostrá nerovnost’ i > j. Keby totiž
j — i + 1, tak by člen 2i+1 musel nasledovať hned po prvom
člene 2*’. Z toho súčasne vyplývá, že súčet zvyšných členov
postupnosti po 2l musí byť menší ako 2i+1 (pretože inak by
sme opáť mohli 2i+1 pripočítať po 2*). A pretože

1 + 2 + 4 + 8 + ... + 2': = 2i+1 - 1,

rovnosť

* =J

móže nastať len pri posledných dvoch i a /, lebo vtedy (a len
vtedy) nenásleduje po 2i dalšia jednotka.

V dósledku toho budú najhoršími prípadmi tie hodnoty Во,
pri ktorých К vzniká ako súčet

B0 = (1 + 2 + 4 + ... + 20 +

+ (1+2 + 4+ ... + 2*-1) +
(*)

+ (1+2 + 4+ ... + 2*'-2) +

+ ... + (1 + 2) + 1 + 1.

Teda

By = (2<+i - 1) + (2ť - 1) + (2<-i - 1) + ... +
+ (22 - 1) + (2i - 1) + 2°.
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Tento výraz obsahuje i + 1 zátvoriek. Sčítajme zvlášť ich
prvé členy (a pridajme к nim 2°) a zvlášť druhé členy:

B0 = (2í+1 + 2* + 2*-i + ... + 22 + 21 + 2°) - (i + 1) =

= (2*+2 - 1) - (i + 1) = 2*+2 - (í + 2),

kde i = 0. Po vhodnej substitúcii móžme vztah pre všetky
najhoršie případy prepísať do tvaru

Во = 2n — n, kde n ^ 2.

Zo vzorca (*) vidieť velmi pekne i priebeh výpočtu, takže
sa oň budeme opierať v riešení časti b) tejto úlohy.

b) Krátká analýza programu ukáže, že
— počet přechodov vetvou else je rovný počtu jednotiek vo

vzorci (t. j. i + 2),
— počet prechodov vetvou then je rovný počtu sčítancov
vo vzorci, t. j.

e» (i + l)(i + 2) í2 + 3í + 4
+ 1 = + 1 -

2 2

Vela účastníkov zbytočne stratilo body na tom, že oba vzorce

ponechali v takomto tvare. Text úlohy bol totiž formulovaný
tak, že výsledok mal vyjadřovat’ počet prechodov týmito
vetvami v závislosti od (teda ako funkciu) premennej B.
A pretože sme vyššie ukázali, že
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В = 2*'+2 - (г + 2)

pre najhoršie případy, tak móžeme (přibližné) tvrdit’, že pre
dostatočne velké i platí

В =£= 2i+2.

Takže počet vykonaní vetvy else je zhruba

i log‘2 В

a počet vykonaní vetvy then

1

2 log| B.

(V druhom případe sme zanedbali lineárny a absolútny člen.)
Oba vzorce je možné určiť úplné presne. Pri analýze algo-
ritmu sa však obyčajne uspokojujeme s dostatočne přesným
přiblížením.

P - III - 3

a) Napište program v Iubovolnom vyššom programovacom

jazyku, ktorý prečíta lubovolnú postupnost pozostávajúcu
z čísel 1, 2 a 3, ukončená číslom 0. Program vypíše »ÁNO«,
ked postupnost’ obsahovala rovnaký počet čísel 1,2 aj 3.
V opačnom případe program vypíše »NIE«.

Na program sa kladie jedno podstatné obmedzenie. Smiete
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použiť len dve premenné Z a P. V premennej Z je vždy ulo-
žená hodnota jediného načítaného čísla (0, 1, 2 alebo 3).
Obsah Z sa móže meniť len tým spósobom, že sa do nej zo

vstupu prečíta dalšie číslo. Čísla sa móžu čítať len v tom
poradí, v akom sú zapísané v postupnosti. Teda nie je dovo-
lené čísla přeskakovat’ ani vracať sa к prv prečítaným. Druhá
celočíselná premenná P obsahuje Iubovolne velké celé číslo.
Povolené sú všetky aritmetické operácie s premennými
a konstantami.

Předpokládájte, že čísla vstupujú napísané vždy jedno
v riadku. Přitom vstupná postupnost’ neobsahuje iné čísla
než 0, 1, 2 a 3, teda program musí ukončiť činnost’, ked
prečíta číslo 0. Ďalej predpokladajte, že na vstupe móže byť
vopred neohraničený počet čísel.

Příklady. Pre postupnosť 1232231310 (pre úsporu miesta
sme čísla zapísali do riadku) program vypíše »ÁNO«. Pre
postupnosť 23320 program vypíše »NIE«. Pre prázdnu
postupnosť 0 program vypíše »ÁNO«.

b) Zovšeobecnite riešenie predchádzajúcej úlohy takto:
Program prečíta lubovolnú postupnosť zloženú z čísel 1,

2, 3, .. ., N, ktorá je ukončená číslom 0. Počet vstupujúcich
čísel N je vopred známa konštanta (známa aj programáto-
rovi). Program zistí, či postupnosť obsahuje rovnaký počet
každého z čísel 1 až N. Obmedzenie na 2 premenné Z a P
zostáva presne to isté.

Příklady. Pre postupnosť čísel 1 až 5: 44351215320 program,

zostavený pre N = 5, vypíše »ÁNO«, program, zostavený
pre N = 6, vypíše »NIE« (podobné programy pre N = 7,
8, ...).
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Riešenie. Na jčastějším riešením tejto úlohy bolo riešenie
založené na myšlienke prvočíselného rozkladu prirodzených
čísel.

Ako je známe, každé prirodzené číslo sa dá jediným spó-
sobem rozložit’ na súčin prvočísel. Pretože máme iba jednu
celočíselnú premennú, bude v P uložené číslo, ktoré vytvo-
ríme z uvažovanej postupnosti súčinom prvočísel. V časti a)
stačia prvé tri, v časti b) potřebujeme prvých N:

q1 = 2, q% = 3, qz = 5, ..., qs = N-té prvočíslo

Hodnotou premennej P bude číslo, ktoré vznikne tak, že po
načítaní čísla i do premennej Z vynásobíme obsah P г-tým
prvočíslom. Teda prvá časť programu bude mať v Pascale
tento tvar:

begin readln(Z); P := 1;
while Z ф 0 do

begin if Z = 1 then P := 2*P;
if Z = 2 then P := 3*P;
if Z = 3 then P := 5*P;

if Z = N then P := qN*P;
readln(Z)

end

V póvodnej postupnosti sa nachádza rovnaký počet čísel
1, 2, 3, ..., N iba v tom případe, keď výsledné číslo P je de-
litelné číslom

2 * 3 * 5 * ... * qN.
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Teda na konci programu (po výstupe z cyklu) stačí skontro-
lovať dělitelnost’ v příkaze
if P MOD (2*3*5*... * qN) = 0

then writeln ('Postupnost’ mala požadovaný tvar.')
else writeln ('Postupnost’ nemala požadovaný tvar.')

end

V skutočnosti však riešenie nevyžaduje, aby čísla v ňom
vystupujúce boli prvé prvočísla, dokonca ani to, aby to boli
prvočísla. Stačí, aby boli relativnými prvočíslami (teda, aby
ich najváčší spoločný delitel bol pre všetky dvojice rovný 1).
Toto využil napr. Petr Veselý z gymnázia v Jihlavě. Vo svo-
jom programe použil prvočísla 3, 5 a 7 pri riešení časti a).
Vdaka tomu namiesto zložitého rozhodovania mohol použit’
jediný priradovací příkaz

P : = P * (2 * Z + 1).

Zaujímavú (i ked nekorektnú) obměnu vyššie uvedeného
riešenia použil Jan Hřebíček z gymnázia vo Valašskom Mezi-
řičí. Ignoroval požiadavku celočíselnosti P a připustil sčítanie
nekonečne dlhých reálných čísel (s absolútnou presnosťou).
Takto mohol vyívárať hodnotu P sčítáním (!) vhodných
iracionálnych čísel. V prvej časti úlohy použil napr. 1, тс, e.
V tomto případe je v postupnosti rovnaký počet čísel vtedy,
ked vytvořené číslo P je celočíselným násobkom súčtu
iracionálnych čísel (t. j. 1 + тс +e v jednoduchšom případe).

Dalšie správné riešenie využívá híbku rekurzie ako po-
mocnú premennú popři premennej P. Je však vhodné iba
pre postupnosti z troch čísel. Takto riešili úlohu dvaja
súťařiaci. Jedným z nich bol Robert Germič z gymnázia
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v Žiline. Uvádzame ukážku jeho riešenia. Riešenie využívá
fakt, že hoci v Basicu rekurzia nie je oficiálně povolená,
existencia systémového zásobníka ju umožňuje. Tu je pro-

gram:

99 LET P = 0
100 INPUT Z
110 IF Z = 1 THEN GOSUB 200 : GOTO 100
120 IF Z = 2 THEN GOSUB 300 : GOTO 100
130 IF Z = 3 THEN P = P + 1 : GOTO 100
140 IF P = 0 THEN PRINT »ANO« : STOP
150 PRINT »NIE« : STOP
200 INPUT Z
210 IF Z = 1 THEN GOSUB 200 : GOTO 200
220 IF Z = 2 THEN P = P - 1 : RETURN
230 IF Z = 3 THEN P - P +1 : GOTO 200
240 PRINT »NIE« : STOP
300 INPUT Z
310 IF Z = 1 THEN P = P — 1 : RETURN
320 IF Z = 2 THEN GOSUB 300 : GOTO 300
330 IF Z = 3 THEN P = P + 1 : GOTO 300
340 PRINT »NIE«

Ak by takýto program nebol písaný s komentárom, bolo
by asi vylúčené zistiť, čo vlastně autor zamýšlal. Zvlášť zá-
hadné by boli dvojice príkazov

GOSUBi : GOTO i

v riadkoch 210 a 320. Autor však podal jednoduché vysvet-
lenie:

V přemennej P si budeme památať rozdiel medzi
počtom troj ok a dvojíc (1, 2). Ak je v niektorom okamihu
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počet dvojek váčší ako počet jednotiek, program pokračuje
od příkazu 300 (bude hladať к prevyšujúcej jednotke dvojku).
V případe prevyšujúcej dvojky bude к nej hladať jednotku
(teda bude v časti za príkazom 200). Z týchto častí sa vrátí
iba vtedy, ked sa počty jednotiek a dvojok vyrovnajú do
časti za príkazom 100. Ak program skončí v časti 100 a P = 0,
tak je počet dvojíc (1, 2) rovnaký ako počet trojok. V každom
inom případe sa po prečítaní nuly vytlačí »NIE«.

P - III - 4

Naprogramujte pre Modifikovaný Minského stroj (definícia
vid příklad P - I - 4) následujúcu úlohu:

V premenných А а К sú prirodzené čísla. Napište činnosť
»CIFRA К A«, ktorá do premennej D uloží K-tú cifru
čísla A. Počet К počítáme od začiatku čísla A.

Příklad. Činnosť

»CIFRA 2 5728«

vloží do premennej D hodnotu 7.
Riešenie. Táto úloha dala opravovate lom celoštátneho

kola najviac práce. Máloktorý účastník si dal totiž dost’ ná-
mahy s komentármi к programom, váčšina z nich sa sústredila
iba na príkazovú časť. Ako sme už ukázali pri riešení minulej
úlohy, takto vytvořené texty možu byť priam »nedešifrovateI-
né« bez podrobnejšieho popisu. Pochopitelné, nezrozumitel-
nosť textu sa prejaví stratou bodov pri hodnotení riešenia.

Výběr Modifikovaného Minského stroja ako úlohy, ktorá
prechádzala systematicky celým ročníkom, však nebol ná-
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hodný. Primitivné prostriedky na změnu hodnot premenných,
jediná možnost’ testovať ich (na nulu) totiž sledovali doležitý
ciel — analyzovat’ schopnost’ súťažiacich vybudovat’ si systém
podprogramov, zaručujúcich úplné vyriešenie úlohy. Přitom
iba málo súťažiacich si uvědomilo, že systém podprogramov
sa nedá účelne budovat’ od najjednoduchších (na MMS
realizovatelných) »programíkov«, že totiž cielavedomý postup
je obyčajne presne opačný. Uvědomili si to však tí najlepší.
Například Alexander Szabari z gymnázia v Košiciach začal
svoje riešenie slovami:

»Ked máme vziať 7C-tú cifru od konca, vtedy je program
velmi jednoduchý. Preto náš program bude pozostávať z dvoch
vacsich časti:

1. výměna cifier čísla К (napr. z čísla 5138 urobíme 8315),
2. zistenie K-tej cifry od konca.
Obe časti spolu umožňujú nájsť K-tú cifru od začiatku.«

Je teda jasné, že hladaný program može mať tvar
ČINNOSŤ »CIFRA К A«

rob PREVRÁŤA;
URČI К A

koniec

Skutočnosť, že ani jedna z vnútorných činností nie je zatial
definovaná, sice može vadiť MMS pri výpočte, nie však člo-
veku pri rozmýšlaní!

V takto navrhnutom programe je viac-menej jedno, ktorú
jeho časť budeme upřesňovat’ skór — sú totiž nezávislé. Začne-
me hociktorou a dalej ju rozkládáme, až dovtedy, kým všetky
činnosti vyjádříme príkazmi MMS. Přitom sa može stať, že
podprogramy vytvořené v jednej časti sa dajú priamo alebo
po miernej úpravě použit’ i v inej časti. Aby sme ukázali, že
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na poradí rozvíjania činností naozaj nezáleží, začneme pod-
prcgramom pre URČI К A, uvedeným ako druhý.

Poznamenáváme, že kým spósob zápisu programu bol
presne definovaný, spósob jeho komentovania bol ponechaný
na lubovóli autora. V zásadě možno použit’ tieto spósoby:
a) najprv uviesť program a vzápátí komentár,
b) najprv si (slovné) určit’ ciel a potom ho realizovat’ progra-

mom,

c) paralelné sprevádzať program komentármi,
d) napísať program v známejšom jazyku a potom ho »prelo-

žiť«.

Postupné uvedieme příklady na všetky spósoby.
Program URČI najprv zapíšeme v tvare

ČINNOSŤ »URČI К A«
rob K —;

pokial’ К ф 0
rob DEE A 10;

K-

koniec;
MOD A 10;
PŘESUŇ A D

koniec

a vzápátí ho popíšeme komentárom:
»Každé číslo má aspoň jednu cifru. Preto sme najprv

zmenšili Kol, aby výsledok testu vychádzal správné. Potom
(pokial hladaná cifra nie je poslednou v čísle A) delíme A celo-
číselne desiatimi, čím vždy odtrhneme momentálně poslednú
cifru. Nakoniec vypočítáme tuto poslednú cifru ako A(mod 10)
a výsledok uložíme do premennej D.«
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Našou dalšou úlohou bude teda vytvořit’ činnosti DEE
a MOD. Začneme pcdprogramom pre DEE, ktorý uvedieme
s kcmentárom na začiatku, vytyčujúcim ciel programu:

Deliť na MMS móžeme iba pomocou odčítania. Teda de-
lenie nahradíme úlohou »zistiť, kolkokrát možno 10 odčítať od
čísla A«. Podiel budeme zhromaždovať v premennej Q (jej
hcdnctu zvačšíme o 1 po zmenšení A o 10). Pri hraničných
hodnotách by však mohlo dójsť к ohybe (třeba, aby vyšlo
10/10 = 1), takže na začiatku zvačšíme A o 1 a na konci Q
o 1 zmenšíme. Teda píšeme
ČINNOST »DEE A 10«

rob NULUJ Q;
A +;
opakuj А—; А—; А — ; А—; А—; А—; А—; A—;

А—;A—;
Q+;

kým A = 0;
Q-;
PŘESUŇ Q -> A

koniec

Z tohoto programu velmi jednoduchou modifikáciou získá-
me program na výpočet zvyšku po delení. Tento program
uvedieme s komentárom, paralelným s programom.

ČINNOSŤ »MOD A 10«

rob A+; ... Jedno pričítanie kvóli hraničnému případu
priradenie C := A

A — ; A — ; A-; A-; A-; A-; A-; A—;
A—; A—;

opakuj PŘESUŇ A C;
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... Od A odčítáme 10, v C je teraz A + 10.
Posledná cifra A sa odčítáním desiatich

nezmení.

kým A = 0;
C-5 ... V A je nula, v C bolo číslo od 1 do 10.

Teraz sme vyrovnali počiatočné zváčšenie
A o 1.

PŘESUŇ C A ... V A bude výsledok.
koniec

Tým sme dokončili rozklad činnosti URČI К A. Podobné
budeme postupoval i pri definícii činnosti PREVRÁŤ A.
V tomto případe úlohu vyriešime najprv v známom progra-
movacom jazyku (v Pascale) a potom ho přeložíme do jazyka
MMS a zohladníme přitom jeho špecifiká.

Zmeniť poradie cifier v čísle na opačné móže tento pascalov-
ský program:
begin CHVOST := A MOD 10; ... posledná cifra

čísla A bude prvou
cifrou OPAK-u

OPAK := CHVOST;
A := A DIV 10;

... v A sú všetky cifry
okrem poslednej

while A > 0 do

begin CHVOST := A MOD 10;
... posledná cifra A
OPAK := (OPAK * 10) + CHVOST;
... přilep ju na koniec čísla OPAK
A := A DIV 10
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... znovu odsekni poslednú cifru
end

end

Pri překlade nesmieme zabudnúť najma na to, že MMS
»ničí« obsahy premenných. Teda operácie MOD a DEE
(ako sme ich definovali vyššie) nezachovájú obsah premennej
A. Preto vytvoříme program KOPÍRUJ A B, ktorý skopíruje
A do В a přitom obsah A zachová (použitím tretej premennej).
Takže tú istú myšlienku vyjadřuje podprogram v jazyku
MMS:

ČINNOSŤ »OBRÁŤ A«

rob KOPÍRUJ A B; ... skopíruje obsah A do В
a zachová hodnotu A

... v В bude posledná cifra A

... realizuje
OPAK := A MOD 10

... známy podprogram

MOD В 10;
PŘESUŇ В OPAK;

DEE A 10;
pokial’ А ф 0

rob KOPÍRUJ А В;
MOD В 10;
PŘILEP В OPAK;

... realizuje OPAK : =
:= (OPAK * 10) + В

DEE A 10

koniec;

PŘESUŇ OPAK A
koniec

... dá obrátenú hodnotu do A
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Ostali už len dve nedefinované činnosti: KOPÍRUJ a PRI-
LEP. Na základe toho, čo sme povedali už skór, však nemóže
byť problémom ich doplnit’. (Naviac KOPÍRUJ А В je
zhodné s príkazom В := Av úlohe P-I-4.)
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Korespondenční seminář ÚV MO

Korespondenční seminář ÚV MO je jednou z forem péče
o talentované žáky, zvláště pak o ty, kteří nemají možnost
navštěvovat speciální školy se zaměřením na matematiku
a pracovat v tamních seminářích. Tak až dosud nebyli při-
jímáni studenti pražských škol, protože mají možnost sezná-
mít se s vybranými okruhy úloh na seminářích řešitelů MO.

К účasti v korespondenčním semináři pozvalo předšed-
nictvo ÚV MO na základě návrhů KV MO a individuálního

zájmu téměř 50 žáků, z nichž se přihlásilo 26 řešitelů z celé
republiky:

Stč Jč Zč Sč Vč Jm Sm Zsl Ssl VsiKraj

Počet řešitelů 4214342222

V průběhu 35. ročníku MO jim bylo zasláno pět sérií poměrně
náročných úloh. Došlá řešení pak byla opravena, ohodnocena
a s rozmnoženým komentářem vrácena účastníkům semináře.
Korespondenční seminář je řízen tajemníkem ÚV MO
RNDr. Karlem Horákem, který se stará o výběr a přípravu
úloh a provádí redakci komentářů. Opravu pak zajišťuje
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několik pracovníků Matematického ústavu ČSAV a několik
studentů a aspirantů MFF UK v Praze (všichni jsou bývalí
olympionici).

Pouze 13 řešitelů vydrželo až do posledního 5. kola. Nej-
lepšími v celkovém hodnocení byli:
1. Radek Adamec (4, G Kroměříž)
2. Igor Melicherčík (4, G B. Bystrica)
3. Dominik Munzar (4, G kpt. Jaroše Brno)
4. Libor Skřička (4, G kpt. Jaroše Brno)
5. Marián Lukáč (3, G Bánovce n. Bebr.)

Dále uvádíme znění všech zadaných úloh.

84 bodů

81 bodů

71 bodů

62 bodů

56 bodů

1. Posloupnosti a mnohočleny1.1Dokažte vztah

arccotg mi = arccotg м2 + arccotg м3 + ..

kde Mi = 1, м2 = 2 a un+1 = Ъип — un-i, n ^ 2.1.2Ukažte, že číslo

• У

”

J . 1 9732 + ...
. 1 973 ++

je pro n přirozené násobkem čísla 2n~x.1.3Ukažte, že posloupnost (vn)n = o uroená podmínkami

vn > 0,

у (n + k\*-o' k )Vn
iVn-к pro n e (0, 1, .. • i

j e posloupností celých čísel.
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1.4 Najděte zbytek při dělení mnohočlenu (x + 1)и mno-
hočlenem (x — l)3, kde n je přirozené číslo.

1.5 Ukažte, že mnohočleny pn určené vztahy

pl(x) = 1, p-l(x) = l + X,

pn(x) = pn-l(x) + Xpn^(x), n ^ 3,

mají pro и ^ 2 všechny kořeny reálné.
1.6 Ukažte, že nenulový mnohočlen s celočíselnými koefi-

cienty, který má kořeny x — l a x = 2, musí mít aspoň
jeden koeficient menší než —1.

1.7 Najděte všechny mnohočleny/) (s reálnými koeficienty)
takové, že pro všechna (reálná) x platí

/>(x2) + p(x)p(x + a) = 0.

Provedte diskusi vzhledem к reálnému parametru a.

2. Planimetrie

2.1 Ke které ze stran trojúhelníku ABC je nejblíže průsečík
jeho výšek, je-li a < /5 < y? A ke kterému vrcholu?

2.2 Vedme libovolným bodem P osy úhlu a trojúhelníku
ABC kolmice PAi, PBi, PC\ ke stranám BC, CA, resp. AB.
Je-li R průsečík přímek PA± a B\C\, dokažte, že přímka
AR dělí stranu BC na dvě stejné části.

2.3 Na stranách trojúhelníku ABC jsou jako na základnách
sestrojeny rovnoramenné trojúhelníky AB\C, BA\C, AC±B.
Dokažte, že kolmice vedené body А, В, С к odpovídajícím
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přímkám В\С\, CiAí} AiB\ se protínají v jednom bodě.
2.4 Dokažte, že součet obsahů pěti trojúhelníků, které

dostaneme z dvojic sousedních stran a úhlopříček konvexního
pětiúhelníku, je větší než obsah celého pětiúhelníku.

2.5 Je-li tětivový čtyřúhelník ABCD takový, že tečny
sestrojené к opsané kružnici v bodech A a C se protínají na

přímce BD, pak
a) tečny v bodech В a D se protínají na přímce AC;
b) osy vnitřních úhlů а а у čtyřúhelníku ABCD se proti-

nají na úhlopříčce BD.
Dokažte.

2.6 V ostroúhlém trojúhelníku ABC se osa úhlu a, těžnice
na stranu АС a výška příslušná vrcholu C protínají v jednom
bodě. Dokažte, že úhel BAC je větší než 45°.

2.7 Dva shodné obdélníky jsou umístěny v rovině tak, že
jejich obvody se protínají v osmi bodech. Dokažte, že obsah
společné části obou obdélníků je větší než polovina obsahu
jednoho z nich.

3. Teorie čísel

3.1 Jaké nejmenší kladné hodnoty může nabývat součet
tvaru

£l. I5 + £2.25 + £3.35 + ... + £1 985-1 9855,

kde £{G { — 1, 1} ?
3.2 Dokažte, že součin pěti po sobě jdoucích přirozených

čísel není úplným čtvercem.
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33.3Zlomek — lze napsat jako součet dvou kladných zlomků

3 1 1
s čitatelem 1 právě dvěma způsoby: +

10 5 10

1 31
. Kolika způsoby lze zapsat ? Existuje čí-+

19844 20

3
slo n nesoudělné se třemi a takové, že

1 984 způsoby ?
3.4 Nechť p je liché prvočíslo а a\, ач, ..., dp+i jsou

2

vesměs různá přirozená čísla menší než p. Dokažte, že pro
každé k e {1, 2, ..p — 1} existuje dvojice čísel a*, aj tak,
že aid) = k (mod p) (může být případně i = /).

3.5 Pro n přirozené označme ст(п) = ^ d součet všech

lze zapsat právě
n

d | n

dělitelů čísla n (včetně 1 a n). Číslo m nazveme »bohatým«,
e(m)к a(k)

m — 1} platí —<

Dokažte, že existuje nekonečně mnoho »bohatých« čísel.3.6Označme co(n) počet činitelů v rozkladu přirozeného
čísla n na prvočinitele. Dokažte, že pro m ^ 2 existuje aspoň

jestliže pro každé k e {1, 2, ..
• 5

m

— čísel k e {1, 2, ..., m) s vlastností co(k) = co(k + 1)

(mod 2).3.7Dokažte, že rovnice

x2 _|_ y2 — Zll

má v oboru přirozených čísel řešení pro každé přirozené n.
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4. Kombinatorická geometrie

4.1 Uvnitř jednotkového čtverce je rozmístěno několik
kružnic, které mají součet obvodů 10. Dokažte, že pak exis-
tuje přímka, která protíná alespoň čtyři z těchto kružnic.

4.2 Dokažte, že n bodů v rovině můžeme vždy pokrýt ně-
kolika disjunktními kruhy, které budou mít součet průměrů
menší než n, přičemž vzájemná vzdálenost každých dvou
kruhů bude větší než 1. (Vzdáleností dvou kruhů rozumíme
vzdálenost jejich nejbližších bodů.)

4.3 Čtvercový list papíru rozřízneme na dvě části (podle
nějaké přímky). Jednu ze vzniklých částí opět rozřízneme
atd. Jaký nejmenší počet řezů musíme učinit, abychom mezi
vzniklými kusy nalezli právě sto dvacetiúhelníků ?

4.4 Rozdělme každou stranu pravidelného trojúhelníku na
n stejných částí a sestrojme jednotlivými body uvedeného
dělení rovnoběžky se stranami trojúhelníku. Dostaneme tak
rozdělení trojúhelníku na n2 trojúhelníčků. Nazvěme »ře-
tězem« takovou posloupnost trojúhelníčků, v níž se žádný
trojúhelníček nevyskytuje dvakrát a každý následující má
s předchozím společnou stranu. Jaký je největší možný počet
trojúhelníčků v řetězu ?

4.5 Předpokládejme, že vrcholy pravidelného я-úhelníku
jsou obarveny několika barvami (každý jednou) tak, že vrcho-
ly stejné barvy tvoří vrcholy pravidelného mnohoúhelníku.
Dokažte, že mezi těmito mnohoúhelníky existují dva shodné.

4.6 Je dán čtverec a devět přímek. Nechť každá z devíti pří-
mek dělí čtverec na dva čtyřúhelníky, jejichž obsahy jsou
v poměru 2:3. Dokažte, že alespoň tři z těchto devíti pří-
mek procházejí jedním bodem.
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4.7 Na každém poli šachovnice je zapsáno jedno z čísel
1, 2, ..., 64, přičemž na různých polích jsou různá čísla.
Pomocí jedné otázky můžeme (určením množiny polí) zjistit
množinu čísel stojících na polích zvolené množiny. Jaký je
nejmenší počet otázek potřebných к určení polohy jednotli-
vých čísel na šachovnici ?

5. Nerovnosti a odhady

5.1 Nechť rozdíl mezi největším a nejmenším z n reálných
čísel ai, a2, ..., an je d a nechť součet )> |сц — a,j| absolutních

i <j

í П\hodnot všech ( ^ ) rozdílů těchto čísel je s. Pak je
n2

(n — 1 )d ^ s ^ 4 '

Dokažte.

5.2 Dokažte, že pro přirozená čísla x± < X2 < ... < xn

(n ^ 2) platí

]/x3 - X2 j X и Xn—\}lx2 - Xl
+ ... ++ <

*2 *3 Xa

111
< 1 +

2 + 3
+ ... +

n2

5.3 Je dán lichoběžník ABCD se základnami \AB\ = a,

\CD\ = b. Sestrojme úsečku A\B\} spojující středy úhlopříček
lichoběžníku ABCD, dále sestrojme úsečku A2B2, která spo-

juje středy úhlopříček lichoběžníku AyBxCD. podobně se-
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strojíme úsečky A3B3, A4B4 atd. Může se v posloupnosti
délek úseček (\AicBk\) vyskytnout nějaké číslo dvakrát? Bude
tato posloupnost monotónní? Má uvedená posloupnost li-
mitu?5.4Dokažte, že součet 45 čísel

tg 1° + tg 5° + tg 9° + ... + tg 173° + tg 177°

je 45.5.5Jestliže pro čísla p\, qi, рг, q% platí

(qi — qz)2 + (pi — p2)(Piq2 — Pzqi) < 0,

pak mají kvadratické trojčleny

x2 + pix + qi, x2 + p-2X + q-2

reálné kořeny a mezi kořeny každého z nich leží kořen druhého
trojčlenu. Dokažte.

5.6 Na kružnici je napsáno několik reálných čísel. Jest-
liže pro některá čtyři za sebou jdoucí čísla a, b, c, d platí
(a — d)(b — c) < 0, pak smíme čísla b, c vyměnit. Dokažte,
že vždy můžeme provést jen konečný počet takových operací.

5.7 Několik lidí pozorovalo v rozpětí t minut lezoucího
hlemýždě. Každý z nich ho pozoroval přesně 1 minutu a zjistil,
že za tu dobu ulezl přesně 1 metr. Ani v jednom okamžiku
nebyl hlemýžd »bez dozoru«. Jakou nejmenší a jakou největší
dráhu mohl hlemýžd za uvedenou dobu t minut urazit ?
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27. mezinárodní matematická olympiáda

1. PRŮBĚH MMO

Dvacátá sedmá mezinárodní matematická olympiáda
(MMO) se konala ve Varšavě ve dnech 4. —15. července 1986.
Zúčastnilo se jí 210 soutěžících středoškoláků, kteří tu repre-
zentovali 37 zemí celého světa: Alžírsko, Austrálii, Be)gii,
Brazílii, Bulharsko, Československo, ČLR, Finsko, Francii,
Island, Itálii, Izrael, Jugoslávii, Kanadu, Kolumbii, Kubu,
Kuvajt, Kypr, Lucembursko, Maďarsko, Maroko, Mongolsko,
NDR, Norsko, NSR, Polsko, Rakousko, Rumunsko, Řecko,
SSSR, Španělsko, Švédsko, Tunisko, Turecko, USA, Velkou
Británii a Vietnam. Z tradičních účastníků tedy tentokrát
chybělo Nizozemí.

Uvedené země měly také své zastoupení v mezinárodní po-

rotě, jejímž předsedou byl (stejně jako na 14. MMO v roce

1972) prof. S. Balcerzyk z Toruně. Členové poroty se sjeli
do Varšavy v pátek 4. července a zahájili přípravné práce spo-

jené s výběrem a formulací soutěžních úloh. Z návrhů 79
úloh zaslaných třiadvaceti zeměmi ze třiceti sedmi zúčastně-
ných zemí připravili polští organizátoři předběžný výběr 21
úloh, z nichž pak porota v poměrně krátké době vybrala sou-
těžní šestici. Oč rychleji proběhl vlastní výběr, o to více času
spotřebovala debata o formulaci textů, kdy se střetávala
značně odlišná stanoviska. Konečné znění (zvláště textu
čtvrté úlohy) je výsledkem určitého kompromisu, který ne-
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odpovídá vždy zvyklostem naší MO, kde bychom texty for-
mulovali patrně poněkud jinak.

Pro 27. MMO byly tak vybrány tyto úlohy:
1. Nechť d je kladné celé číslo, různé od 2, 5, 13. Dokažte,

že v množině {2, 5, 13, d} lze nalézt dva různé prvky a, b
takové, že ]/ab — 1 není celé číslo.

2. V rovině je dán trojúhelník A1A2A3 a libovolný bod Po-
Položme Ак+з—Ак pro k — 1, 2, 3, ... a sestrojme posloup-
nost bodů Po, Pi, P2, -. - tak, že pro každé k = 1, 2, 3, ...

bude bod Pk obrazem bodu Pk-1 při otočení o úhel 120°
(v záporném smyslu) okolo středu Ak.
Jestliže P1986 = Po, pak trojúhelník A1A2A3 je rovnostran-
ný; dokažte.

3. Každému vrcholu pravidelného pětiúhelníku je přiřa-
zeno celé číslo; součet těchto pěti čísel je kladný. Jestliže
třem po sobě jdoucím vrcholům jsou přiřazena čísla x, y, z,

přičemž у < 0, je dovoleno provést tuto operaci: čísla x,y, z
nahradíme po řadě čísly x + y, —y, z + y. Takovéto operace

provádíme tak dlouho, dokud je aspoň jednomu z vrcholů při-
řazeno záporné číslo.
Rozhodněte, zda tento proces nutně vždy skončí po koneč-
ném počtu kroků.

4. Je dán pravidelný и-úhelník, и ^ 5; označme А а В dva
jeho sousední vrcholy, O jeho střed. V rovině и-úhelníku se

pohybuje trojúhelník XYZ, shodný s trojúhelníkem OAB,
a to tak, že nejprve X = O, Y = A, Z = В a potom Y a Z
probíhají oba celý obvod и-úhelníku, přičemž X leží stále
uvnitř и-úhelníku.

Určete množinu všech možných poloh vrcholu X.
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5. Určete všechny funkce /, které zobrazují množinu R+
všech nezáporných reálných čísel do R+ a splňují podmínky

= /(* + У) pro x e R+, у e R+, (1)

/(2) - 0, (2)

f(x) Ф 0 pro 0 ^ x < 2. (3)

6. V rovině se souřadnou soustavou je dána konečná mno-

žíná M bodů s celočíselnými souřadnicemi. Rozhodněte, zda
je vždy možné obarvit některé body z M červenou a ostatní
pak bílou barvou tak, aby pro každou přímku p rovnoběžnou
s některou ze souřadných os se počet červených bodů ležících
na p lišil od počtu bílých bodů na p nejvýše o 1.

Tyto úlohy pocházely z návrhů, jež zaslaly ČLR (2.),
Island (4.), NDR (3. a 6.), NSR (1.) a Velká Británie (5.).
Každá z úloh byla pak, jak je v posledních letech na MMO
zvykem, ohodnocena sedmi body, takže každý soutěžící mohl
získat maximálně 42 bodů.

Soutěžící žáci a zástupci vedoucích delegací přijeli do
Varšavy většinou v pondělí 7. července. Stejně jako členové
poroty byli i žáci ubytováni ve Varšavě, ovšem dostatečně da-
leko od poroty. Zástupci vedoucích byli tentokrát po celou
dobu společně s porotou, takže žáci byli svěřeni výhradně péči
polských průvodců.

V sobotu 5. července byli členové poroty přijati polskou
ministryní osvěty a výchovy paní J. Michalovskou-Gumow-
skou. V úterý 8. července odpoledne se konalo slavnostní za-

hájení 27. MMO v kinosále odborné školy elektroniky na

Žoliboři; v jeho programu zhlédli účastníci ukázky polských
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lidových tanců v provedení tanečního kroužku žáků školy.
Vlastní soutěž 27. MMO proběhla ve dnech 9. a 10. čer-

vence; každý den měli soutěžící čtyři a půl hodiny na řešení
tří soutěžních úloh; během první půlhodiny mohli klást pí-
semné dotazy, jestliže něčemu v textu úloh neporozuměli.
Oprava a koordinace hodnocení žákovských řešení zabíraly
pak celý pracovní čas poroty až do sobotního večera, kdy byly
schváleny definitivní výsledky. Porota se rozhodla udělit
celkem 107 cen, z toho 18 prvních (žákům, kteří získali
34 — 42 bodů), 41 druhých (za zisk 26 — 33 bodů) a 48 třetích
(za 17 — 25 bodů). Vedle toho bylo rozhodnuto udělit jednu
zvláštní cenu J. Keaneovi z USA za originální řešení třetí
úlohy.

V průběhu pobytu ve Varšavě měli všichni účastníci mož-
nost prohlédnout si obnovený královský zámek. V neděli
13. července se pak všichni zúčastnili autobusového výletu,
jehož cílem byl Nieborów (prohlídka zámku) a Želazowa
Wola (Chopinův památník).

V pondělí 14. července odpoledne se (opět v kinosále školy)
konalo slavnostní rozdílení diplomů a cen. Diplomy předá-
vala ministryně osvěty a výchovy J. Michalowska-Gumowska.
Věcné ceny tvořily broušené skleněné vázy a poháry. V průbě-
hu tohoto zasedání vystoupil také vedoucí kubánské delegace
prof. Luis J. Davidson, který pozval všechny zúčastněné země
na 28. MMO, která se konala v červenci 1987 v Havaně.

27. MMO byla zakončena společnou večeří uspořádanou
v menze vysoké školy zemědělské na Ursynově (nedaleko
kolejí téže školy, v nichž byli ubytováni vedoucí delegací
a jejich zástupci). Nazítří, 15. července, se pak zahraniční de-
legace začaly rozjíždět do svých domovů.
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2. VÝSLEDKY 27. MMO

Celkový obraz o výsledcích jednotlivých delegací podává
připojená tabulka 5. Z tohoto přehledu i z detailní výsledkové
listiny lze vyčíst některé zajímavé údaje:

— ze všech 210 soutěžících dosáhli pouze tři žáci maximál-
ního zisku 42 bodů: dva sovětští a jeden madarský účast-
nik,

— s opačným extrémem nulového bodového zisku skončil
pouze jeden soutěžící z Brazílie,

— průměrný bodový zisk připadající na jednoho žáka byl
18,138 bodu, na šestičlenné družstvo tedy 108,829 bodu,

— sedm delegací odjíždělo z Varšavy bez cen a naopak
v šesti družstvech měl i žák s nejhorším výsledkem aspoň
třetí cenu,

— průměrný bodový zisk žáka odměněného první cenou

byl 37,944, druhou cenou 29,293 a třetí cenou 20,208,
— průměrný bodový zisk žáka za první úlohu byl 3,910, za

druhou 4,114, za třetí 0,838, za čtvrtou 3,252, za pátou 4,195
a za šestou 1,929.

3. ČESKOSLOVENSKÁ ÚČAST NA 27. MMO

Československo se aktivně podílelo na všech fázích příprav
a průběhu 27. MMO. Již na jaře byly polským organizátorům
zaslány návrhy tří úloh pro soutěž. Jedna z nich byla zahrnuta
do výběru 21 úloh předložených mezinárodní porotě; uvažo-
válo se pak o ní jako o alternativě к první úloze, které však
nakonec byla dána přednost.
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Tabulka 5

Celkové výsledky 27. MMO

Počet Počet získaných cen Celkový
žáků 1. 2. 3. součet

bodů
Země

Alžírsko

Austrálie

Belgie
Brazílie

Bulharsko

Československo
ČLR
Finsko
Francie

Island

Itálie

Izrael

Jugoslávie
Kanada

Kolumbie
Kuba

Kuvajt
Kypr
Lucembursko

Maďarsko
Maroko

Mongolsko
NDR

Norsko
NSR

Polsko

6 2 80

6 5 117

6 1 2 79

6 691

6 1 3 2 161

3 36 149

6 3 1 1 177

16 60

2 1316 1 1

374

2 493

6 2 2 119

2 846

6 2 1 112

586

516

5 48

6 531

222

2 1516 1 2

6 2 901

546

17226 31

6816

1966 2 4

9336
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Tabulka 5 - pokračování

Celkový
součet

bodů

Počet Počet získaných cen
žáků 1. 2. 3.Země

Rakousko

Rumunsko

Řecko
SSSR

Španělsko
Švédsko
Tunisko

Turecko
USA

Velká Británie

Vietnam

26 2 127

6 2 2 1 171

6 2 63

26 4 203

4 1 2 78

6 1 57

6 1 85

6 55

6 3 3 203

6 2 3 141

6 2 14621

Celkem 18 41 48 3 809210

Jedinou zvláštní cenu získal žák Joseph Keane z USA za
řešení třetí úlohy; jeho celkový výkon byl ohodnocen první
cenou za zisk 41 bodů.

V průběhu debat o formulaci úloh podporovala čs. delegace
stanoviska zdůrazňující požadavek přesnosti a jednoznačnosti
textu před snahami o názornost. Většinový systém rozhodová-
ní v porotě si však často vynucoval kompromisy.

Do soutěže vyslalo Československo šest žáků, resp. čerst-
vých absolventů gymnázií, vesměs vítězů 3. kola naší MO
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kategorie A. Před odjezdem na MMO absolvovali tito žáci
třítýdenní přípravné soustředění (8.-27. června 1986 v Par-
dubicích), kde soustavně řešili úlohy olympiádního typu.
Šestice reprezentantů byla vybrána na základě výkonů na
tomto soustředění i v předchozích kolech a ročnících MO
a vzbuzovala naděje na vyrovnané výsledky na slušné úrovni.

Výsledky našich reprezentantů na 27. MMO shrnuje ta-
bulka 6. Vcelku lze říci, že v soutěži obstáli: zisk tří druhých
a tří třetích cen odpovídal našim možnostem v porovnání
s ostatními zeměmi.

Z tabulky je vidět, že naši žáci neměli potíže s úlohami
s klasickou olympiádní tematikou, jakou je geometrie (2. a

(4. úloha), kombinatorika (6. úloha) či funkcionální rovnice
(5. úloha). Poněkud překvapil neúspěch při řešení první
úlohy, jež byla všeobecně považována za lehkou. Sami naši
žáci uváděli jako důvod nedostatečné soustředění na začátku
soutěže: za druhý soutěžní den získali zhruba dvojnásobek
bodů z prvního dne. Potvrdila se tak známá skutečnost, že
pro tak náročnou soutěž, jakou dnes MMO je, nestačí jen
faktické znalosti, ale že je potřebná i dobrá psychická kondice.

Největší, ba nepřekonatelné potíže měli naši žáci se třetí
úlohou. V tom se příliš nelišili od ostatních soutěžících: tuto
úlohu správně vyřešilo jen jedenáct z 210 účastníků. Naproti
tomu zvládli naši reprezentanti celkem dobře šestou úlohu
a zařadili se v ní mezi světovou špičku.

Ve světle výsledků 27. MMO můžeme přípravu našich re-

prezentantů hodnotit pozitivně co do obsahové stránky, určité
rezervy jsou stále v takticko-psychologické přípravě na ná-
ročné podmínky velké soutěže.
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Tabulka 6

Výsledky čs. žáků na 27. MMO

Počet bodů

za úlohu č.

1 2 3 4 5 6

Žák Celkem Cena

Petr Hájek
4. r., GWP Praha

II.0 7 0 7 7 7 28

i Vladimír Kordula
4. r., GMK Bílovec

II.2 7 0 7 7 7 30

7 7 0 6 6 0 27Marcel Polakovič

3. r., GAM Bratislava
II.

i

3 7 0 0 6 5 III.Roman Soták

3. r., GŠ Košice
21

Petr Šleich
i 4. r., G Děčín

III.2 0 0 3 6 7 18

'

Adam Zach

4. r., GWP Praha
III.0 7 1 7 3 7 25

Družstvo celkem 14 35 1 31 35 33 149
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4. ŘEŠENÍ ÚLOH 27. MMO

1. Volíme-li prvky a, b z množiny (2, 5, 13}, je ]/ab — 1
vždy celé číslo. Máme tedy dokázat, že pro každé kladné celé
číslo d alespoň jedno z čísel 2d — 1, 5d — 1, 13d — 1 není
čtvercem celého čísla. Předpokládejme naopak, že existují
kladná celá čísla d, x, y, z taková, že zároveň platí

2d - 1 = x2, (1)

5d — 1 = у2, (2)

I3d - 1 = *2; (3)

z tohoto předpokladu odvodíme spor.
Z (1) je vidět, že x musí být liché, položme tedy x = 2v + 1,

v je celé nezáporné číslo. Potom je d = 2v(y + 1) + 1, takže
d je nutně liché číslo. Z (2) a (3) však potom vyplývá, že čísla
y, z jsou obě sudá, můžeme je tedy psát jy = 2p, z — 2q, kde
p, q jsou kladná celá čísla. Odečtením (2) od (3) dostaneme
rovnost 8d — z2 — у2 neboli 2d = q2 — p2 = (q + p){q — p).
Čísla/) + q a q — p jsou bud obě sudá,nebo obě lichá. Kdyby
byla obě lichá, muselo by být liché i číslo 2d, což není. Kdyby
byla obě sudá, muselo by být sudé i číslo d, což také není.
V obou případech jsme tak dospěli ke sporu a tím je tvrzení
dokázáno.

2. Označme Oj(j =1, 2, 3) operaci otočení o úhel 120°
(v záporném smyslu) okolo středu Aj. Složením těchto tří
otočení dostaneme zobrazení, které lze vyjádřit jako složení
otočení o 360° okolo jistého středu S s jistým posunutím P.
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Otočení о 360° je však identita, zbývá tedy jen posunutí P.
Podle znění úlohy opakujeme sled tří otočení Oi, 02) O3
celkem 662krát (1986 = 3.662). Výsledná operace je tedy
662násobné posunutí P. Poněvadž však Pi986= Po, musí být
toto posunutí nulové.

Máme tedy dokázat toto tvrzení: jestliže složením tří ope-
raci otočení Oi, 02, O3 (o úhel 120° okolo středů A±, A2, A3)
vznikne identita, je trojúhelník A\A2A2 rovnostranný.

Označme A' obraz bodu A\ při otočení 02 a A" obraz
bodu A' při otočení 03. Poněvadž obrazem bodu A\ při oto-
čení Oi je zřejmě bod A\ sám a poněvadž složením otočení
Oi, O2, 03 vznikne identita, musí být A" — A\. To je však
možné právě tehdy, je-li A3 obrazem bodu A2 v osové sy-
metrii s osou AA'. Je tedy \AiAs\ = \AiA2\ a zároveň

А2А\Аз = 2.<£ A2A\A’ = 60°. Trojúhelník A1A2A3 je
tedy rovnostranný.

3. Pro každou pětici čísel x3y, z3 u, v přiřazenou vrcholům
pětiúhelníku (v daném pořadí) vypočteme hodnotu součtů

S(x, y, z, u, v) = x + у + z + и + v — S,

2(x, У, Z, u, v) =

— (x — z)2 + (y — и)2 + (z — v)2 + (u — x)2 + (y — y)2.

Předpokládejme nyní, žejy < 0 a že provedeme operaci po-

psanou v textu úlohy, tzn. že pětici (x, y, z, и, v) nahradíme
pěticí (x + у, —у, у + z, u, v). Ihned je vidět, že součet
se při tom nezmění:
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S(x + У, -У, У + и, v) =

— х+у—y+y+z + u + v = S

Naproti tomu bude nová hodnota druhého součtu

К* + У, -У,У + *, u, v) =

z)2 + (u + у)2 + {z + у — v)2 + (x + у — w)2 += O

+ (v + y)2.

Porovnáním dostaneme

2(х,У, z, u, v) - J(x + y, -y,y + z, u, v) = -2yS.

Podle předpokladu je S’ > 0, у < 0. Při provedení operace

záměny se tedy hodnota 2 zmenší. Avšak 2 )e součet čtverců
celých čísel; je to tedy vždy nezáporné celé číslo. Poněvadž
neexistuje žádná nekonečná klesající posloupnost nezápor-
ných celých čísel, musí se proces po konečném počtu kroků
zastavit —všechna čísla při vrcholech pětiúhelníku pak budou
nezáporná.

Jiné řešení — předložené na 27. MMO soutěžícím
J. Keanem z USA a odměněné zvláštní cenou — spočívá
v tom, že místo součtu 2 vezmeme funkci

F(x,y, z, u, v) = |*| + |y\ + |*| + \u\ + |w| + I* + y\ +

+ \y + *| + I* + u\ + \u + v\ 4- \v + *| + I* + у + z\ +
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+ \y + z + u\ + \z + и + v\ + \u + v + x\ +

+ \v + X + y\ + \x + у + z + u\ + \y + z + и + v\ +

+ \z + u + v + x\ + \u + v + x+y\+\v + x+ y+z\.

Porovnáním zjistíme, že provedení operace opět snižuje hod-
notu F, neboť

F(x, y, z, u, v) - F(x + у, -у, у + z, u, v) =

= |2г + и + г» + .г| — \x + 2y + z + и + v\ =

= |S -y\ - \S + y\ > 0.

Další postup je stejný.

Poznátnka. Funkce ^ a F nejsou přirozeně jediné funkce,
které lze v této souvislosti použít; stejně dobře poslouží např.
funkce

o(x,y, Z, U, v) — X2 + y2 + z2 + u2 + v1 + (x + у + z)2 +

+ (У + z + u)2 + (z + u + v)2 + (u + v + x)2 +

+ (y + x + y)2 = ^(x, y, z, u, v) + 2S2

a řada dalších.
Odlišnou cestu к řešení této úlohy nalezl náš bývalý velmi

úspěšný olympionik z let 1978 — 81 dr. Jan Nekovář. Úlohu
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nejprve zobecnil tak, že místo pěti celých čísel vzal n reálných
čísel xi, X2, ..., xn s kladným součtem S = x\ + x% + ... +
+ xn. Jejich cyklickou permutací lze vždy docílit toho, že
součty Aic — xi + ... + xje jsou kladné pro k = 1, 2, .. ., n,

(An = S). Operaci přechodu od trojice xjc-i, я*, x^+i s x/c < 0
к trojici Xk-1 + xjc3 —xjc, jc* + va:+i pak odpovídá prostá zá-
měna dvou sousedních součtů Ajc-1, Ak, spojená v případě

П

k = n s určitou modifikací, při které se součet Дь sníží
& = i

alespoň o S. Operace lze provádět jen pokud 1 > Ац-;
П

v případě k < n se součet 2 nezmění, ale po konečném
k=i

počtu kroků se odstraní všechny inverze i > (k < n),
v případě k = n poklesne součet V A/c alespoň o S, avšak
čísla Ajc jsou vesměs kladná. Je tedy vidět, že operaci nelze
provést nekonečně mnohokrát. Lze dokonce snadno odvodit
horní odhad počtu kroků.

4. Nechť А, В, C jsou tři po sobě jdoucí vrcholy w-úhelníku
a nechť k je kružnice jemu opsaná. Na straně AB zvolme libo-
volný bod Y. К němu sestrojíme bod Rek tak, aby YR \ \ OB
a aby bod R ležel na kratším z obou kruhových oblouků AB.
К bodu R pak dále sestrojíme bod Y' tak, aby Y' e AB
a R Y' 11 OA (při n ^ 5 lze takový bod Y' nalézt). Trojúhel-
niky OAB a RY'Y jsou podobné, takže |-RF'| = |2?У|.

Označme 0 operaci otočení se středem O, které převádí
bod A v bod B. Obrazy bodů R, Y, Y' při tomto otočení
označme po řadě R!, Z', Z. Zřejmě je \R'Z\ = \RY\ a zároveň
R'Z\\OB\\RY. Je tedy také | YZ\ = \RR’\ = \AB\.

Označme nyní X obraz bodu O při posunutí o vektor R Y.
Trojúhelník XYZ je ovšem shodný s trojúhelníkem ORR',
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a tedy také s trojúhelníkem OAB. Přitom Y e AB, Z e BC
a X leží uvnitř и-úhelníku.

Bod X leží na přímce OB; bod O odděluje body В, X.
Maximální vzdálenost bodu X od bodu O odpovídá takové
poloze bodu Y na AB, při které je \RY\ maximální. Je to
zřejmě tehdy, je-li R středem (kratšího) oblouku AB. Je pak

-.'i* Г*’!}.'

• • ÍW,.

( tz

\OX\ = \RY\ = \OB\ .(seci -
\ n

- !)•

Obráceně lze pak ke každému bodu X takovému, že

~

\BX\ - \OB\ = \ox\ \OB.(seci- -1),

nalézt na straně AB bod Y tak, aby obraz bodu Y při posu-
nutí o vektor XO ležel na kružnici k. Provedeme-li pak právě
popsanou konstrukci s výchozím bodem F, dostaneme X
jako vrchol trojúhelníku splňujícího podmínky úlohy.

Stejné úvahy lze provést pro libovolnou dvojici sousedních
stran я-úhelníku. Hledanou množinou je tedy sjednocení n
úseček О Vi, О V*, ..., OVn ležících v polopřímkách opáč-
ných к polopřímkám OA, OB, ... a majících stejnou délku

—

;OJ7i| = \OV2\ - ... - |OF„| = \OA\ .(sec -V n
-!)•

5. Položíme-li v (1) = 2, dostaneme pro libovolné x e R+
rovnost f(x + 2) = 0; funkce / je tedy nutně rovna nule
v intervalu <2, + co).
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Vezměme nyní у z intervalu O 5^ у < 2, x e R+. Podle
předchozího a (3) je f(x.f(y)).f(y) = 0 právě tehdy, jestliže
x./(jy) = 2. Zároveň však také platí/(x + y) = 0 právě tehdy,
když x + у ^ 2. V důsledku (1) jsou tedy nerovnosti x.f(y) ^
^2ax+y^2 ekvivalentní pro každé x e R+. Jsou tedy

2
ekvivalentní také nerovnosti x ^ a x ;> 2 — у, a to pro

r e R', 0^jy<2. To je však možné jen tehdy, jestliže
f(y)

2
Ау) = i

—

pro 0 ^ у < 2.

Dokázali jsme tedy, že jedinou funkcí, která může vyhovět
podmínkám (1), (2) a (3), je funkce / definovaná v R^~ rov-
nostmi

2
(4)/(*) pro 0 x < 2,2 — x

pro 2 ^ x < oo.= O

Zbývá dokázat, že takto definovaná funkce podmínky úlohy
skutečně splňuje. Splnění podmínek (2) a (3) je zřejmé ze (4).
Při ověřování podmínky (1) rozlišíme několik případů.

а) у ^ 2. Potom je ovšem f(y) = O, ale také x + у ^ 2,
takže f(x + y) — 0. Podmínka (1) je tedy splněna pro každé
x e R+.

2
- y. Zde máme/O) = —b) О ^ у < 2, O x < 2

~ У
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2x
a tedy x.f(y) = < 2, takže je

2 -y

2 2 2
/(*•/00)-/OO = 2x ’ 2 — у 2 - x - у

- У
2

Zároveň je také x + у < 2, a tedy f(x + y) =

Podmínka (1) je tedy opět splněna.
2 — x —у

2
, avšakc) 0 ^ у < 2, 2 - y< x. Tu je f(y) = —

x.f(y) = ^ -2, a tedy /(x ./(*)) ./(y) = 0. Zároveň je

x + у ^ 2, takžef(x + y) = 0. Podmínka (1) je opět splněna.
Funkce/ definovaná v (4) je tedy (jediným) řešením úlohy.
6. Popsané obarvení je vždy možné. Důkaz provedeme

indukcí podle počtu bodů množiny M.
Obsahuje-li množina M nanejvýše dva body, je zřejmé, jak

se mají obarvit, aby podmínky úlohy byly splněny. Předpo-
kládejme tedy, že dovedeme obarvit každou množinu, která
má méně než n bodů (n ^ 3), a uvažujme množinu o n bo-
dech. Rozlišíme následující případy:

a) Jestliže neexistuje přímka rovnoběžná s některou ze sou-

řádných os taková, že na ní leží alespoň dva body množiny M,
je lhostejné, jak body obarvíme.

b) Nechť tedy naopak existuje přímka p rovnoběžná s ně-
kterou z os, obsahující dva body А, В г množiny M. Potom
bud

-y
2x
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ba) na přímkách kolmých к p a procházejících body A,
В neleží žádné další body z M. Potom obarvíme množinu
M \ {А, В} o n — 2 prvcích tak, aby obarvení vyhovovalo
podmínkám, a body А, В pak obarvíme každý jinou barvou ;

podmínky zůstanou přitom zachovány.
Anebo

bb) existuje přímka q kolmá k/> a jdoucí např. bodem A
taková, že na ní leží vedle A ještě další bod С e M. Body A,
В, C jsou tedy vrcholy pravoúhlého trojúhelníku s pravým
úhlem při vrcholu A. Vezměme bod D takový, že ABCD je
pravoúhelník.

bba) Jestliže D e M, obarvíme množinu M\ {А, В, C,
D) ve shodě s podmínkami a pak obarvíme jednou barvou
body A, D a druhou barvou body В, C. Podmínky obarvení
zůstanou zachovány.

bbb) Jestliže D ф M, pak obarvíme množinu Mu{D}\
\{A,B, C} on — 2 prvcích podle podmínek úlohy a potom
obarvíme body В a C stejnou barvou, jakou je obarven bod
D, kdežto bod A obarvíme druhou barvou. Obarvení mno-

žiny M bude pak opět splňovat podmínky úlohy.
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