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O pribéhu 36. rocniku
matematické olympiady

Soutéz Matematickd olympidda poradaji pro zaky stied-
nich a zdkladnich $kol ministerstva Skolstvi CSR a SSR ve
spoluprici s Jednotou &eskoslovenskych matematika a fyzi-
ku, Jednotou slovenskych matematika a fyzika, Matematic-
kym tstavem CSAV a Socialistickfm svazem mlddeze.
SoutéZ ¥idi ustiedni vybor matematické olympiady (UV MO)
prostiednictvim krajskych a okresnich vybori matematické
olympiady (KV MO, OV MO). Cleny KV MO a OV MO
jmenuji odbory Skolstvi krajskych a okresnich nédrodnich
vybora, ¢leny UV MO jmenuji ministerstva $kolstvi. Na
zacatku $kolniho roku 1986/87 uréila ministerstva $kolstvi
CSR a SSR na névrh hlavnich vybora JCSMF a JSMF toto
slozeni UV MO na dalsi tfileté obdobi:

Piedsednictvo UV MO

pfedseda: RNDyr. Frantisek Zitek, CSc., MU CSAV,
Praha

mistoptedsedové: prof. RNDr. Miroslav Fiedler, DrSc., ¢len
korespondent CSAV, MU CSAV, Praha
doc. RNDr. Branislav Rovan, CSc., MFF
UK, Bratislava



zéstupce
MS CSR:

zastupkyné
MS SSR:

tajemnici:

dalsi ¢lenové
predsednictva:

RNDr. Viclav Siila

RNDr. filia Lukdtsovd

doc. RNDr. Leo Bolek, CSc., MFF UK,
Praha
RNDr. Karel Hordk, CSc., MU CSAV,
Praha

RNDy. Tomds Hecht, CSc., MFF UK,
Bratislava

RNDr. Milan Koman, CSc., MU CSAV,
Praha

RNDr. Milan Maxian, gymnézium A. Mar-
kusa, Bratislava

doc. RNDr. Radko Mesiar, CSc., SF
SVST, Bratislava

RNDy. Oliver Ralik, Pedagogicka fakulta
Nitra

RNDy. Viadimir Repds, FE SVST, Brati-
slava

RNDr. ¥ifi Sedlicek, CSc., MU CSAV,
Praha

Dal3i ¢lenové UV MO

PhDr. Ludovit Bdlint, CSc., Vyzkumny
ustav pedagogicky, Bratislava



PaedDr: Frantisek Béloun, Praha

RNDr. Lubos Brim, CSc., pfirodovédecka
fakulta UJEP, Brno

prof. RNDr. Lev Bukovsky, DrSc., ptiro-
dovédecka fakulta UPJS, Kosice

RNDr. Ivan Busek, Pedagogicky ustav hl.
m. Prahy

RNDr. Milan Cirjak, Krajsky pedagogicky
ustav, PreSov

RNDr. Viadimir Drizal, pedagogicka fa-
kulta UK, Praha

Ing. Peter Gablo, CSc., ministerstvo $kol-
stvi SSR, Bratislava

doc. RNDr. Jozef Hvorecky, CSc., MFF
UK, Bratislava

RNDr. Viadimir Jodas, gymnazium J. Hron-
ca, Bratislava

RNDry. Jan Kratochvil, MFF UK, Praha
Doc. PhDr. Karol Krifalkovi¢, CSc., Peda-
gogické fakulta Nitra

PhDr. Libuse Krskovd, zdkladni $kola,
Praha 4, Na planiné

prof. RNDr. Alois Kufner, DrSc., MU
CSAV, Praha

PhDr. Helena Ladrovd, ministerstvo $kol-
stvi CSR, Praha

Olga Maiikovd, Néirodni vybor hl. m.
Prahy

RNDr. iri Mida, CSc., pedagogické fakul-
ta UK, Praha



Viasta Michdlkovd, Stanice mladych pii-
rodovédcu, Bratislava

Sylvia Michalovicovd, Krajsky pedagogicky
Gstav, Bratislava

PhDr. Jana Miillerovd, CSc., Vyzkumny
ustav pedagogicky, Praha

Stanislav Rypdcek, gymnazium, Praha 9
RNDy. Bohuslav Sivdk, CSc., Pedagogicka
fakulta Banskéa Bystrica

Ing. Oldiich Skopal, gymnazium, Brno,
tf. kpt. Jarose

PhDr. Kvéta Sovikovd, Pedagogicky ustav
hl. m. Prahy

Ing. Zdenék Strakos, CSc., Sttedisko vypo-
¢tové techniky CSAV, Praha

RNDr. Bohumil Smarda, CSc., ptirodove-
decka fakulta UJEP, Brno

RNDr. faroslav Svrcek, prirodovédecks
fakulta UP, Olomouc

RNDr. Pavel Topfer, MFF UK, Praha
PhDr. Pavel Valent, CSc., gymndzium,
Levice

RNDr. Juraj Vantuch, Vyzkumny tstav
experimentdlni pedagogiky SAV, Bratislava
RNDr. Cyril Vaviik, ministerstvo $kolstvi
SSR, Bratislava

PhDr. Marta Volfovd, CSc., Pedagogicka
fakulta Hradec Kralové



Cleny UV MO jsou také predsedové KV MO

prof. RNDr. Karel Drbohlav, DrSc.,
MFF UK, Praha

Frantisek Sturc, gymnazium, Benesov

doc. RNDr. Ing. Lada Variatovd,
Pedagogick fakulta Ceské Budg&jovice
RNDr. Josef Polik, CSc., VSSE, Plzeit
prof. RNDr. Jan Melichar, CSc., Pedago-
gickd fakulta Ustin. L.

RNDr. Josef Kubdt, gymnazium, Pardubice
doc. RNDr. Yaroslav Bayer, CSc., FE
VUT, Brno

RNDr. Viadimir Vicek, CSc., prirodové-
decka fakulta UP, Olomouc

RNDr. Pavol Cernek, CSc., SF SVST,
Bratislava

prof. RNDr. Ondrej Sedivy, CSc., Peda-
gogicka fakulta Nitra

prof. RNDr. Beloslav Rieéan, DrSc., VV§
CSSP, Liptovsky Mikul4s

doc. RNDr. Jdan Ohriska, CSc.,
piirodovédeckd fakulta UPJS, Kosice

V organizaci MO nedos$lo v prabéhu jejiho 36. ro¢niku
k zddnym zméndm. Kategorie A byla urena zdkam 3. a 4.
ro¢nikua stfednich $kol, kategorie B byla pro zidky 2. ro¢niki
a v kategorii C soutézili Zaci 1. ro¢nika. Pro ziky vsech tfid
stfednich $kol byla urCena jesté kategorie P, zaméfend na
ulohy z programovéni a matematické informatiky. O kate-
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gorii P vCetné mezindrodni souté’e v programovani se
doctete v posledni &4sti této brozurky. Informace o matema-
tické olympiddé na zékladnich $kolich jsou obsaZeny v sa-
mostatné brozurce, tato je vénovina pouze MO na $kolach
strednich.

V kategoriich A, B, C m4 I. kolo dvé &ésti, v prvni &asti
fesi soutézici 6 tloh doma nebo v matematickych krouzcich
a mohou se pfitom radit se svymi uditeli, vedoucimi krouzka
apod. Druhd ¢ast mé formu klauzurni price, v niz fesi Zaci
béhem 4 hodin tfi Glohy. Také v II., krajském kole, fesi
zaci tlohy v omezeném cCase 4 hodin. V kategoriich A
a P se koni jesté III. kolo, celostitni. V celostitnim kole je
vlastni soutéz rozdélena do dvou dnu, kazdy den fesi sou-
tézici tii (dvé) ulohy v ¢asovém limitu 4 hodin. Kazd4 tloha je
oznacena kategorii, fimskou ¢&islici udavajici kolo nebo pisme-
nem S, které znali Skolni klauzurni &ist I. kola, a Cislem
dlohy. Pokud jsou nékteré ulohy oznaCeny 3a a 3b, mél
soutézici moznost volby mezi témito dvéma ulohami.

Celostatni kolo 36. roniku MO kategorie A se konalo
v Usti n. L. ve dnech 7.—10. kvétna 1987. Slavnostni zah4-
jeni se konalo v aule Pedagogické fakulty, kde ucastniky
privital dékan fakulty profesor RNDr. Jan Melichar, CSc.
Vedouci ideologického oddéleni KV KSC dr. J. Busek, CSc.
seznamil Castniky shromédzdéni s historii i soucasnosti Seve-
roeského kraje. Pripomnél mista kraje, jez jsou spojena
s ddvnou historii na$eho lidu (Stadice, Rip), m&s:a Rumburk,
Most a dalsi svéd¢i o bohaté revolu¢ni tradici Severoceského
kraje. V kulturni &asti programu vystoupil div¢i komorni
sbor Domu kultury ROH a posluchali Pedagogické fakulty.
Utastnici celostatniho kola a ¢lenové UV MO navitivili také
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zamek Libochovice a na narodnim hibitové v Tereziné se
poklonili obétem koncentrac¢niho tédbora. Vzornou organizaci
celostatniho kola a velmi pékny kulturné spole¢ensky program
zajistil organizagni vybor v &ele s RNDr. Miroslavem Cer-
vinkou, CSc., vedoucim katedry matematiky Pedagogické
fakulty. Kromé n¢ho se o zdarny prubéh akce nesmirné
zaslouzili doc. dr. M. Svoboda, CSc., z Gstavu marxismu-
-leninismu téZe fakulty, s. Jan Slavik z krajského pedagogic-
kého ustavu a pracovnici katedry matematiky dr. Y. Krdi-
kové, dr. V. Blazek a dr. V. Cech.

Ve vsech krajich nasi republiky se i ve $kolnim roce 1986/87
poradaly ruzné akce pro rozvoj a vyhleddvani zédka talento-
vanych v matematice, pfevazné spojené pravé s matematic-
kou olympiddou. Nase spole¢nost vynaklddd na tuto Cinnost
nemalé prostfedky. Podle pozadavku ministerstva $kolstvi
CSR uvadime piehled akci v jednotlivych krajich.

Praha. Pracovni prednisky pro feSitele tloh kategorie A
(8 hodin), kategorie B (20 hodin) a kategorie C (58 hodin);
celkem se zacastnilo 31 zédka. Pro 18 zdka se konalo v tnoru
tfidenni soustfedéni v Jevanech, pétidenni soustfedéni pro
45 zaka se uskute¢nilo v Cervau.

Stiedocesky kraj. Tydenni soustiedéni pro 30 zaka se
konalo v zafi v Telnici. Instruktdze ulitela se zucastnilo 38
vyucujicich, byla jednodenni. Pro ziky, resitele tloh MO,
probéhly instruktiaze v 8 $kolicich stfediscich, vzdy dvé ho-
diny dvakrét nebo tfikrat v roce.

JthoCesky kraj. Letni Skola pro Uspéiné rfesitele MO se
konala v Cervnu 1986, trvala jeden tyden a zulastnilo se ji
38 zaku. Instruktaz pro referenty MO na $kolach byla jedno-
denni, ztcastnilo se 32 uditelt. V lednu se konalo tydenni
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zimni soustiedéni pro 15 feSiteld dloh kategorie A. Pro
uspésné resitele kategorie P se konalo jednodenni soustie-
déni. Koresponden¢ni semindf pro stfedoSkoldky mél tfi
série uloh.

Zapadocesky kraj. V kraji se konalo celkem 18 dvouhodi-
novych pfednéasek k alohaim MO kategorii A, B, C, pramérni
acast byla 55 zaka. Soustfedéni uUspé$nych fesitela MO,
FO a koresponden¢nich seminaitt se konalo jeden tyden
a bylo na ném 44 zikd. Koresponden¢niho seminaie pro
zaky 1. a 2. ro¢niku stfednich $kol se zGlastnilo 78 Fesitelu,
v pfipadé seminife pro 3. a 4. ro¢niky to bylo 29 fesitela.
Kazdy z téchto semindfa se skladal ze tii sérii uloh.

Severocesky kraj. Koresponden¢ni seminaf byl zaméfen na
kategorii B, zucastnilo se ho 40 zdkt, mél dvé série aloh.
Soustfedéni se konalo v Krupce, trvalo 7 dni a zcastnilo
se 60 zakti. Kromé toho se v kraji konalo v Sesti méstech 12
tiithodinovych prednédsek pro fesitele iloh MO kategorie A,
B, C s prumérnou ucasti 24 zaku.

Vychodocesky kraj. Pied krajskymi koly kategorii A a B
se konala jednodenni soustfedéni vybranych resitelu, zacast-
nilo se 37 a 39 zika. Pro stejné kategorie se poradal kores-
ponden¢ni semindf. V Cervnu probéhlo tydenni soustiedéni
pro nejlepsi fesitele tloh MO a FO, zéky 1.ro¢nika, v Novém
Mésté n. M., zucCastnilo se 32 fesitelad. Organizacné se
KV MO podilel na celostatnim soustfedéni MO a FO v Je-
vicku.

Jithomoravsky kraj. Seminidfe pro feSitele uloh MO se
konaly ve ¢tyfech méstech kraje, zvlast pro kazdou kategorii,
prumérnd ucast 40 zaka. Pro 10 zaka se konal tfikrat semi-
nif na katedfe matematiky pfirodovédecké fakulty UJEP
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v Brné, jednou tydné se konal seminaf pro zdky z tfidy za-
méfené na matematiku na gymndaziu v Brné, ti. kpt. JaroSe.
Zucastnilo se ho 15 zdka. Pro 6 zakua kraje, ktefi byli pozvani
do celostatniho kola kategorie A, se konal dvoudenni seminaf
pfed III. kolem.

Severomoravsky kraj. V zafi probéhly instruktaZe referentt
MO, zuacastnilo se 42 uciteld. Na sobotnich besedich MO
byla pramérni ucast 40 zaka kazdy tyden. Na gymnéziu
M. Kopernika v Bilovci se konaly jednou tydné seminéie
pro vybrané fesitele iloh MO, v kategorii A bylo 12, v ka-
tegorii B 15 a v kategorii C 25 ulastniki. Zajimava byla
setkdni Ucastnikd mezindrodnich matematickych olympidd
s fesiteli uloh MO. Koresponden¢ni seminéi' byl spole¢ny pro
viechny kategorie, 3 série uloh feSilo 40 zdka. Seminéi byl
ukonten tydennim soustfedénim vSech jeho ucastniku.
V Cervenci 1987 se konalo pro 80 uspé$nych fefitela MO
a FO tfitydenni soustfedéni v Bruntéle.

Braztislava. 79 zaku fesilo 6 sérii tloh koresponden¢niho
seminafe, na semindf navazala dvé tydenni soustfedéni, jedno
v Gnoru, druhé v Cervnu, kazdé pro 30 zéka. Kromé toho
pofddal KV MO celoslovensky koresponden¢ni seminaf,
v némz dvé série tloh fesilo 53 zaka. V prosinci se konalo
tydenni soustfedéni pro 20 feSitelu uloh kategorie P, v Cervnu
tydenni soustiedéni pro 30 reSitela tloh kategorii B a C.
KV MO usporadal celkem 7 instruktazi pro vedouci mate-
matickych krouzkia a pro opravovatele uloh MO.

Zapadoslovensky kraj. V Cervnu se konala dvoudenni
instruktdz pro profesory stfednich $kol, obsahem instruktize
byl rozbor uloh vsech kategorii, zulastnilo se 48 ucitela.
Na tomtéz misté, v Budmericich, se konalo téz tydenni
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soustfedéni 40 usp&Snych resitela tloh MO kategorii B, C.
V korespondentnim semindii fesilo 73 zdka ulohy péti
sérii, z toho 20 nejlepsich bylo pozvéno na ¢tyfdenni soustie-
déni, jez se konalo v dubnu 1987.

Stiedoslovensky kraj. Krajsky koresponden¢ni seminaf pro
kategorii A mél 4 série po 5 ulohich, tlohy fesilo 21 zaku.
Druhy koresponden¢ni seminaf byl urfen pro kategorie B
a C, 5 sérii uloh fesilo 67 zdka. Pro uspésné feslitele MO
a krajskych korespondencnich semindiu byla uspofddana dvé
tydenni soustfedéni, kazdé pro 40 ucastnika, konala se
v Terchové a v Lucatiné. Nejvétsi ucast, 113 zdka, mél ko-
respondenéni semindf pro stfedni odborna udiliité. Instruk-
téze pro referenty MO a uditele byly rozdéleny na kategorie
A a P (46 ucastnika) a na kategorie B a C (85 tcastniku).

Vychodoslovensky kraj. Pro kazdou kategorii se uskute¢nila
samostatnd instruktdz referentt MO a.vedoucich krouzku,
instruktiZze byly jednodenni a zalastnilo se jich celkem 195
uditeld. V korespondentnim seminafi fesilo 100 zika osm
sérii uloh. Pro nejlepsi fesitele tloh seminife i dloh MO
se konala tfi tydenni soustiedéni, kazdé pro 35 uclastniku.
Pro zaky kosickych $kol byly organizoviny dva matematické
krouzky, které se schéazely jednou tydné. V krouzku pro
kategorii A pracovalo 10 zaka, v krouzku pro kategorii B 12
zaku.

Ustiedni vybor MO zajidtoval po odborné strance tii celo-
stdtni soustfedéni. Pro zdky nematurujicich ro¢nika to bylo
jiz tradi¢ni soustfedéni 90 fesitelu uloh MO a FO v Jevitku,
konalo se ve dnech 14.—27. ¢ervna 1987. Dalsi dvé soustie-
déni byla vénovana pripravé Ceskoslovenského druzstva na
mezindrodni matematickou olympiddu. Prvni se konalo
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v poslednim bieznovém tydnu v Modré-Pieskoch u Bratisla-
vy pro 15 zaku, druhé se konalo v Cervnu v Pie$tanech, trvalo
tfi tydny a bylo na né pozvino 10 zaka. Po organizacni
strance byla tato dvé soustiedéni ptipravena Ustfednim do-
mem pionyra a mlideze KG v Bratislavé. UV MO zajistoval
téz celostatni korespondenéni seminif, kterému je vénovana
samostatnd &dst této brozury. V edici Skola mladych mate-
matika vyddvda UV MO v nakladatelstvi Milad4 fronta mate-
matické brozurky pro ziky. V prubéhu 36. ro¢niku MO
vysly dva svazky: H. Kistner, P. Gothner - Algebra, kazdy
zatatek je lehky a J. Mordavek, M. Vlach - Oddélitelnost
mnozin (reedice drivéj§iho vydéani). Celkem vyslo jiz 59
svazkii edice SMM. Jsou dobrymi pomocniky sout&Zicim
v MO a vhodnymi publikacemi pro $kolni knihovny.
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VYSLEDKY CELOSTATNIHO KOLA MO

1.
2.
3.
4.
5.
6.— 7.
8.—10.
11.
12.
13.
14.—15.
16.—17.

18.—21.

20

KATEGORIE A

Vitézové

Pavol Guvozdjak, 3 M, G A. Markusa, Bratislava
Viadan Majerech, 4 MF, Pardubice

Roman Sotdk, 4 M, Kosice, Smeralova

Perr Cigek, 2 M, G W. Piecka, Praha

Robert Babilon, 4 M, Bilovec

Stanislav Krajéi, 3 M, Kosice, Smeralova

Maridn Lukdé, 4, Banovce n. B.

Peter Klein, 4 M, G A. Markusa, Bratislava

Ilja Martsovits, 2 MF, G J. Hronca, Bratislava
Tomas Trégl, 4 M, G W. Piecka, Praha

Marcel Polakovié, 4 M, G A. Markusa, Bratislava
Anton Belan, 4 M, G A. Markusa, Bratislava
Stanislav Januschke, 2 MF, G J. Hronca, Bratislava
Frantisek Komora, 3 M, G A. Markusa, Bratislava
Radomir Méch, 3 M, Bilovec

Perr Fencl, 4 MF, Pardubice

Pavol Kolnik, 4, Nové Mesto n. V.

Dalsi uspésni Fesitelé

Stépan Holub, 2, Trutnov



Ondrej Such, 1 M, Zilina, V. Okruzni
Viadimir Vesely, 4 MF, G ]J. Hronca, Bratislava
JiFi Zatloukal, 3 M, Bilovec
22.—23. Tibor Bartos,3 M, G A. Markusa, Bratislava
Dalibor Prochdzka, 3 MF, Karlovy Vary
24. Viadimir Sosovicka, 3 M, Zilina, V. Okruzni
25.—26. Mdrio Drosc, 4, Michalovce
Jana Feskovd, 4 MF, Hradec Kralové, Simkova
27.—28. Peter Elds$, 3 MF, Presov, Konstantinova
Martin Kucera, 2 M, Bilovec
29.—30. Frantisek Klein, 4 MF, Brno, Konévova
Ildiké Vizsonyiovd, 4 MF, mad. G, Komirno
31.—33. Ladislav Fekete, 2 M, G A. Markusa, Bratislava
Pavel Ny¢, 4, Tachov
Zbynék Str, 2 M, G J. K. Tyla, Hradec Krilové
34.—35. Andrej Dobos, 2 M, G A. Markusa, Bratislava
Miroslav Lassik, 4 M, Zilina, V. Okruzni
36.—38. Lenka Bockovd, 4 MF, Praha, Sladkovského
Rébert Kridl, 4 M, G A. Markusa, Bratislava
Tomds$ Kukosa, 3 MF, Brno. tf. kpt. Jarose

U zéka z tiid se zaméfenim studijniho oboru 01 Matematika
je za rotnikem oznaleni M, u zika z tfid se zaméfenim
studijniho oboru 02 Matematika a fyzika je za rocnikem
oznateni MF. VSsichni byli Zzdky gymnazia - G.

21



1.
2.
3.
4.
5.— 6.
7.— 8
9
10.—11
12.
13.—14.
15.
16.—17.

22

Poradf uspésnych resiteli z tFid,
které nejsou se zaméfenim studijniho
oboru 01 Matematika

Viadan Majerech, 4, Pardubice

Maridan Lukdc, 4, Banovce n. B.

Ilja Martisovits, 2, G J. Hronca, Bratislava
Stanislav Januschke, 2, G J. Hronca, Bratislava
Petr Fencl, 4, Pardubice

Pavol Kolnik, 4, Nové Mesto n. V.

. Stépdn Holub, 2, Trutnov

Viadimir Vesely, 4, G J. Hronca, Bratislava

. Dalibor Prochdzka, 3, Karlovy Vary
. Mdrio Drosc, 4, Michalovce

Fana Feskovd, 4, Hradec Kralové, Simkova
Peter Ehas, 3, Presov, KonStantinova
Frantisek Klein, 4, Brno, Konévova

1ldiké Vidzsonyiovd, 4, mad. G, Koméarno
Pavel Ny¢, 4, Tachov

Lenka Bockovd, 4, Praha, Sladkovského
Tomas Kukosa, 3, Brno, tf. kpt. Jaro$e



NEYUSPESNE3YSI RESITELE II. KOLA MO
V KATEGORIICH A, B, C

Z kazdého kraje a kazdé kategorie je uvedeno nejvyse
prvnich deset nejuspésnéjsich resiteld. Pokud neni uvedeno
jinak, byli vSichni uvedeni zéci v kategorii B Zzdky 2. ro¢niku,
v kategorii C zdky 1. ro¢niku. Neni-li uvedena $kola, byl
fesitel zdkem gymndzia- G. Oznaceni M, resp. MF, znamen4
zaméfeni studijniho oboru 01 Matematika, resp. 02 Mate-
matika a fyzika.

Praha

Kategorie A

1. Tomas Trégl, 4 M, G W. Piecka, Praha
- 2. Petr Cizek,2 M, G W. Piecka, Praha

3.— 4. fan Sochor, 4 M, G W. Piecka, Praha

Petr Knobloch, 3 MF, Praha, Vodéradska
. Martin Barhosi, 4 M, G W. Piecka, Praha
. Daniel Kunz, 4 M, G W. Piecka, Praha
. Lenka Bockovd, 4 MF, Praha, Sladkovského

Michal Dostdl, 4 M, G W. Piecka, Praha

@ N
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Kategorie B

Petr Broz, M, G W. Piecka, Praha
Petr Cizek, M, G W. Piecka, Praha
. Jan Lang, M, G W. Piecka, Praha
. Viclav Bohdanecky, M, G W. Piecka, Praha
Daniel Elleder, M, G W. Piecka, Praha

6. Arnost Kobylka, M, G W. Piecka, Praha
7.—10. Filip Kadlec, Praha, U libefiského zimku
Martin Kraus, 1 M, G W. Piecka, Praha
Pavel Pospisil, Praha, Sladkovského
Kamil Vicek, Praha, Litomé&ficka

N W N ==

Kategorie C

Ondiej Kalenda, M, G W. Piecka, Praha
Stépan Kasal, 8. ttida zikladni 3koly Praha 1,
Uhelny trh

. Martin Cinegr, Praha, Vodéradska

Petr Toman, M, G W. Piecka, Praha

. fakub Cvach, M, G W. Piecka, Praha

. Tereza Saxlovd, M, G W. Piecka, Praha

. Rudolf Rdzek, Praha, Litomé&fickd

8.—10. Frantisek Gemperle, M, G W. Piecka, Praha
Irena Houbovd, Praha, Budé&jovicka

Petr Paidar, M, G. W. Piecka, Praha

[\S I

N oD e »

Stredocesky kraj

Kategorie A
1. Karel Chmel, 4, BeneSov

24
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Kategorie B

. Radek Novotny, Mladi Boleslav

Kategorie C

. Yan Sraml, Piibram
. Jan Soubusta, BeneSov
. Petr Dosiar, Kralupy

Michal Gruncl, SPS Kutna Hora
Viadimir Solc, Beroun

. Hana K¥iZovd, Beroun
. Josef Lebeda, Caslav
. Petra Hlouskovd, Mlada Boleslav

Jihocesky kraj

Kategorie A

. David Boukal, 2 M, Ceské Budéjovice, Jirovcova
. Ji¥i Otta, 4, Pelhfimov
. Ji¥i Vesely, 4, Strakonice

Findiich Zapletal, 4, Tébor
Lubomir Zik, 3 MF, G K. Satala, C. Budg&jovice

Kategorie B

. Jana Sonnbergerovd, M, Ceské Budg&jovice, Jirovcova
. Lenka Pulzovd, M, Ceské Budgjovice, Jirovcova

. David Boukal, M, Ceské Budg&jovice, Jirovcova

. Zdenék Kudrna, Pelhfimov

Karel Liska, M, Ceské Budg&jovice, Jirovcova

25



O~ bW

Pavel Pesek, MF, G K. Satala, Ceské Budéjovice
David Votypka, SES Pisek

Kategorie C

. Jan Baldk, M, Ceské Budgjovice, Jirovcova

. Martin Rehout, M, Ceské Budg&jovice, Jirovcova

. Jakub Cermdk, M, Ceské Budgjovice, Jirovcova

. Milan Pfedota, M, Ceské Budgjovice, Jirovcova

. Katerina Trékovd, MF, Strakonice

. Alena Hybsovd, M, Ceské Budg&jovice, Jirovcova
. Milos Plachy, Jindfichuv Hradec

. Bohdana Holdinkovd, Pelhfimov

Zipadocesky kraj

Kategorie A
. Dalibor Prochdzka,3 MF, Karlovy Vary

2. Pavel Ny¢, 4, Tachov

Kategorie B

. Vitézslav Babicky, M, G J. Futika, Plzen
. Pavla Maiikovd, M, G J. Fulika, Plzeni

. Miroslav Vicher, MF, Karlovy Vary
Kategorie C

. Martin Bures, M, G J. Futika, Plzeni

2. Marun Miiller, M, G J. Fulika, Plzen

. Michal Friesel, MF, Plzeni, ul. Pionyra



4

© 00 N oh

10.

2.
3.

. Jiri Smejc, MF, Karlovy Vary

Hana Pajerovd, MF, Cheb

Josef Danék, M, G J. Fuctika, Plzen
Pavel Vanousek, MF, Cheb

Martin Pitterman, M, G J. Futika, Plzeii
Jan Strunc, M, G J. Futika, Plzeil

Milos Brejcha, MF, G ]. Futika, Plzeit

Severocesky kraj

Kategorie A

Daniel Suta, 3, Chomutov

Faromir Krejci, 3 M, Liberec

Perr Bartos, 3 M, Liberec
Kategorie B

Stépdanka Lazarovd, Détin

2. Michal Stépin, M, Liberec

Kategorie C

Vladislav Oslej, SPS stav., Détin
Katerina Jagrovd, M, Liberec
Marie Kovdrovd, M, Liberec
Pavel Simek, M, Liberec

. Jan Folprecht, M, Liberec

Tomas Dolezal, M, Liberec

Patrik Spannbauer, SPS Chomutov
Petr Horéik, M, Liberec

27
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. Monika Axamitovd, M, Liberec
10.

Klira Kovdrovd, M, Liberec

Vychodocesky kraj

Kategorie A

. René Levinsky, 3 M, G J. K. Tyla, Hradec Kralové
. Viadan Majerech, 4 MF, Pardubice

. Petr Fencl, 4 MF, Pardubice

. Jana Jeskovd, 4 MF, Hradec Krilové, Simkova

. Ji7¥i Nerad, 3 M, G ]J. K. Tyla, Hradec Kralové

. Stépan Holub, 2 MF, Trutnov

. Zbynék Sir, 2 M, G J. K. Tyla, Hradec Kralové

Kategorie B

. Zbynék Vasata, M, G J. K. Tyla, Hradec Krélové
. Petr Duczynski, Nova Paka
. Stépdan Holub, MF, Trutnov

Kategorie C

. Jan Vomlel, M, G J. K. Tyla, Hradec Kralové

. Ales Drydk, Novy Bydzov

. Jitka Grégrovd, Trutnov

. Tomds§ Pospichal, M, G J. K. Tyla, Hradec Krélové
. Radek Stépin, M, G J. K. Tyla, Hradec Kralové

. Tomds Klazar, M, G J. K. Tyla, Hradec Kralové
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2
3
4.— 5
1.— 3
4.— 8
1
2
3
4
5— 6
7.—10.

Jihomoravsky kraj

Kategorie A

. Martin Zufan, 2 M, Brno, tf. kpt. Jarose

. Frantisek Klein, 4 MF, Brno, Konévova

. Jaroslav Hora, 4 MF, Brno, ti'. kpt. Jarose
. Tomds$ Kukosa, 3 MF, Brno, tf. kpt. Jarose

Radek Vystavél, 3, Prostéjov

Kategorie B

. Rostislav Caha, M, Brno, tf. kpt. Jarose

David Karkoska, MF, Gottwaldov
Vit Urbanec, MF, Gottwaldov

. Tomas Brodsky, M, Brno, tf. kpt. Jarose

David Klima, M, Brno, tf. kpt. Jarose
Michal Miihlpachr, M, Brno, tf. kpt. Jarose
Martin Ryiinek, MF, Brno, tf. kpt. Jarose
Martin Zufan, M, Brno, tf. kpt. Jarose

Kategorie C

. Viadimir Chvdtil, MF, Brno, Konévova

. David Krdsensky, M, Brno, tf. kpt. Jarose
. Pavel Hordk, MF, Gottwaldov

. Josef Pojsl, M, Brno, tf. kpt. Jarose

. Jiri Fabin, MF, Brno, tf. kpt. Jarose

Jan Velesik, Brno, Konévova
Ales Kienek, M, Brno, tf. kpt. Jarose
Martin Pejchal, MF, Jihlava
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Zdenék Salvet, MF, Uhersky Brod
Pavel Smr#, M, Brno, ti. kpt. Jarose

Severomoravsky kraj

Kategorie A

. Robert Babilon, 4 M, Bilovec
. Pavel Caldbek, 4 M, Bilovec
. Ji¥i Zatloukal, 3 M, Bilovec

Radomir Méch, 3 M, Bilovec
Martin Kulera, 2 M, Bilovec
Tomas Novotny, 4, Frydek-Mistek
Monika Polokovd, 3 M, Bilovec
Radek Porazil, 3 M, Bilovec

Kategorie B

Libor Némecek, M, Bilovec
Martin Kucera, M, Bilovec
Tomdas Schiffauer, M, Bilovec
Martin Sliva, M, Bilovec
Petr Trcalek, M, Bilovec

. Libor Krkoska, M, Bilovec

vvvvv

. Ales Drabek, M, Bilovec

Kategorie C

. Martin Cizek, Roznov p. R.
. Petr Hlinény, M, Bilovec
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. Zdenék Korcdik, SPSE Frenstit p. R.
. Karel Hrubcik, Vsetin

David Kardsek, M, Olomouc, tf. ] z Podébrad
Fan Smid, Ostrava, Smeralova
Petr Urbancik, Ostrava-Poruba

. Tomds Rosinsky, SPSE Frenstit p. R.
. Anna Chlupatd, Ostrava-Hrabuvka

Bratislava

Kategorie A

. Marcel Polakovié, 4 M, G A. Markusa, Bratislava
. Peter Klein,4 M, G A. Markusa, Bratislava
. Frantifek Komora, 3 M, G A. Markusa, Bratislava

Ilja Martisovits, 2 MF, G J. Hronca, Bratislava

. Stanislav Januschke, 2 MF, G J. Hronca, Bratislava
. Tibor Bartos,3 M, G A. Markusa, Bratislava

. Viadimir Vesely, 4 M, G ]. Hronca, Bratislava

. Andrej Kral, 4 MF, G J. Hronca, Bratislava

Rastislav Tamaskovic, 2 MF, G J. Hronca, Bratislava

Kategorie B

. Ilja Martisovits, MF, G J. Hronca, Bratislava
. Rastislav Tamaskovié, MF, G J. Hronca, Bratislava
. Stefan Dobrev, M, G A. Markusa, Bratislava

Stanislav Januschke, MF, G J. Hronca, Bratislava

. Andrej Dobos, M, G A. Markusa, Bratislava
. Mdria Jasekovda, M, G A. Markusa, Bratislava
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Radoslav Tomek, MF, G J. Hronca, Bratislava
Tibor Novosad, M, G A. Markusa, Bratislava
Milan Mosny, MF, G J. Hronca, Bratislava

Hana Krajiidkovd, M, G A. Markus$a, Bratislava

Kategorie C

. Jdn Bajcsy, M, G A. Markusa, Bratislava

. Peter Hudec, M, G. A. Markusa, Bratislava

. Peter Sabo, Bratislava, Makarenkova

. Tomds Szalay, M, G A. Markusa, Bratislava

. Martin Dindo$, MF, G J. Hronca, Bratislava

. Natalie Matydsovd, M, G A. Markusa, Bratislava
. Martin Kollair, M, G A. Markusa, Bratislava

. Milos Medvecky, M, G A. Markusa, Bratislava

. Branislav Durajka, MF, G J. Hronca, Bratislava

Katarina Slobodovd, M, G A. Markusa, Bratislava

Zépadoslovénsky’* kraj

Kategorie A

. Marian Lukac, 4, Banovce n. B.
. Pavol Kolnik, 4, Nové Mesto n. V.

Oliver Ralik, 4, G E. Gudernu, Nitra

. 1ldiké Vidzsonyiovd, 4, mad. G, Komdirno
. Rudolf Burcl, 4, Trnava

Imrich Lozsi, 4, mad. G, Galanta
Furaj Simko, 3, Nitra, Pérovska

. Andrea Szabéovd, 4, mad. G, Komérno
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Zoltan Bdsti, 3, mad. G, Komérno
Jdn Trojan, 3, Nitra, Parovska

Kategorie B

. Arnold Pompos, Levice

. Miklés Gyetven, SPS Komirno

. Gabriel Varga, mad. G, Samorin
. Nora Veghovd, mad. G, Komarno
. Daniel Mlddek, Nitra, Parovska

. Maridn Valach, Levice

. Rdbert Foltdn, Partizanske

. Rébert Kristof, SPSE Piestany

Kategorie C

. Ondrej Sedivy, Nitra, Parovské
. Jozef Mituch, SPSE Piestany

. Daniel Briel, Hlohovec

. Viadimir Krdlik, Zlaté Moravce
. Magdaléna Molndrovd, mad. G, Dunajskd Streda
. Martin Nehez, Levice
. Viera Chorvdtovd, SPS Nové Mesto n. V.
. Milada Mikeskovd, Trentin
. Rendta Cedulovd, mad. G, Komaérno
. Petra Susinovd, Trencin
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7.— 8
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Sttedoslovensky kraj

Kategorie A

. Ondrej Such, 1 M, Zilina, V. Okruzni
. Miroslav Laisdk, 4 M, Zilina, V. Okruzna
. Dusan Hanes, 4 MF, Prievidza

Dalibor Fakus, 3 M, Zilina, V. Okruzni
Stefan Rakucdk, 4 M, Zilina, V. Okruzna
Marcel Zanechal, 3, Zilina, V. Okruzna

. Jozef Saniga,3 M, Zilina, V. Okruzn4

Fozef Radler, 3 MF, Zvolen

Kategorie B

. Rébert Mitka, M, Zilina, V. Okruzni

Kategorie C

. Ondrej Such, M, Zilina, V. Okruzni

Jozef Skokan, M, Zilina, V. Okruzna

. Eduard Omasta, Ruzomberok

. Martin Pavilenda, MF, Banska Bystrica, Tajovského
. Ivana Ciernd, Martin

. Elena Sereiovd, MF, Zvolen

. Juraj Kodynek, MF, Banska Bystrica, Tajovského

Dusan Shivka, SPS Banskéa Bystrica

. Stanislav Taziar, MF, Prievidza
. Ivan Maréik, M, Zilina, V. Okruzni



N UL N

Vychedoslovensky kraj

Kategorie A

. Roman Sotdk, 4 M, Kosice, Smeralova

. Jdn Parali¢, 4, Kosice, Srobirova

. Mario Drosc, 4, Michalovce

. Peter Ehdas, 3 MF, Presov, Kon§tantinova
. Stanislav Krajéi, 3 M, Kogice, Smeralova
. Maros Rusidk, 2 M, Kosice, Smeralova

Roman Vodicka, 3 M, Kosice, Smeralova

Kategorie B

. Maros Rusidk, M, Kosice, Smeralova
. Jdn Franek, M, Kosice, Smeralova

Kategorie C

. Viadimir Komdr, M, Kosice, Smeralova

Viadimir Skalsky, Presov, T. Sevenka

. Roman Kristof, M, Kogice, Smeralova
. Peter Haluska, M, Kosice, Smeralova

Viadimir Vodila, M, Kosice, Smeralova

. Marta Slachtovskd, SPSE Michalovce

Martin Tomko, Kosice, Srobérova

. Marian Stach, SPS stroj., Presov

Milan Valko, Poprad, Leninovo nébr.

. Rastislav Hagovsky, Spi§ska Nova Ves
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Kategorie C

ULOHY DOMACT CASTI 1. KOLA
C-1-1

Na niténém zivésu se kyve zivazi. Sitka rozkmitu je
56 cm, vy3kovy rozdil nejniZ$i a nejvyssi polohy zavazi je
8 cm. Vypoctéte délku zavésu.

ReSeni. Zivazi se pohybuje po kruZnici o poloméru r,

r
r-8
28 28
\ 8
Obr. 1

36



ktery se rovna délce zavésu. Je to velikost piepony pravo-
uhlého trojahelniku (obr. 1), jehoz jedna odvésna se rovnd
poloviné rozkmitu a druhd odvésna mé délku r — 8. Podle
Pythagorovy véty je tedy r2 = (r — 8)2 + 282, odkud
r = 53 cm.

C-1-2
Urcete Cisla a, b, ¢ tak, aby byla feSenimi rovnice
x3 —ax? + bx — ¢ = 0.

Reseni. Cisla a, b, ¢ jsou privé tehdy feSenimi dané
rovnice, plati-li sou¢asné vztahy

ad—a® +ab—c=0
b —ab?> + b2 —c=0
3 —ac? + bc—c=0.

Musi tedy byt ¢ =ab a souCasné bbb —a)(b+1)=0
a ab(b —1)(a’*h + 1) = 0. Je tedy nutné b = 0 nebo b =a
nebob = —1.Je-lib = 0,jec = 0, alibovolné. Je-lib = —1,
musi byt ¢ = —a a soutasné a(a? — 1) = 0, takzea = ¢ = 0,
b= —1, nebo a=1, b=c= —1, nebo a =b = —1,
c=1.Je-lib =a, musibytaa —1)(a® + 1) =0ac = a2,
takze je bud a =b=¢ =0, nebo a =b =c =1, nebo
a=>b= —1, c = 1. Zkouskou se muzeme jesté presvédcit,
ze vSechny obdrzené vysledky vyhovuji pozadavku tlohy.
Piehledné jsou uvedeny v tabulce.
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a b c Rovnice Koteny
libovolné 0 0 x¥x —a) =0 0, 0, a
0 —1 0 x(x—D@E+1)=0 0, 1,—1]
1 -1 —1 (x+D(x—12=0 —1, 1, 1
—1 —1 1 (x4+12x—-1) =0 —1,—1, 1
1 1 1 (x—D@E+1D) =0 1

Text tlohy nepozaduje, aby se kazdy kofen rovnal nékterému

z Cisel a, b, ¢, napiiklad v pfipadé a = ¢ =0, b = —1 ma
rovnice kromé 0 a —1 je§té kofen +1. V pfipadé¢ a =1,
b = c¢ = —1 ma4 sice pfisluina rovnice kofeny 1 a —1, ale

¢islo 1 je tzv. kofenem dvojnisobnym, zatimco mezi Cisly
a, b, ¢ se vyskytuje &islo 1 jen jednou. Pokud by se v tloze
pozadovalo, aby kazdé z &isel a, b, ¢ bylo tolikandsobnym
kofenem dané rovnice, kolikrit se vyskytilie mezi Cisly a,
b, ¢, vyhovovala by jen feSeni v prvnim a &tvrtém fadku
uvedené tabulky. Dostali bychom je také jako ty trojice
(a, b, ¢), pro které se rovnaji mnohocleny x3 — ax? + bx — ¢
a(x —a)(x —b)(x — ¢), tj. ty trojice, pro které plati sou-
Casné rovnosti a + b + ¢ = a, ab + bc + ca = b, abc = c.

C-1-3

V roviné je din konvexni ¢tyfahelnik ABCD, stiedy jeho
stran 4B, BC, CD, DA oznatime po fadé¢ K, L, M, N.
Dokazte, ze ptimky AC, BD jsou navzijem kolmé prave
tehdy, kdyz je |[KM| = |NL|. DokaZte, ze pfimky KM, NL
jsou navzdjem kolmé pravé tehdy, kdyz je |AC| = |BD|.
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Reseni. Usetka KL je stiedni ptickou v trojihelniku ABC
(obr. 2), usetka MN je stiedni pfickou v trojuhelniku ADC.

1
Je |KL| = |MN| = |AC|, KL|MN||AC. Podobnt je

1 ;
INK| = |ML| = |BDJ|, NK || ML || BD. Uhlopiitky KM

a LN jsou v rovnobézniku KLMN pravé tehdy stejné dlouhé,
kdyzZ je to pravouhelnik, tedy kdyz je KL | NK, tj. AC |
— BD. Uhloptitky KM, NL rovnobézniku KLMN jsou
pravé tehdy navzajem kolmé, kdyzZ je rovnobéznik kosoctverec,
tj. |[KL| = |[NK|, tedy |AC| = |BD|.

C-1-4
Jakym nejmensim poltem barev je mozno obarvit pruse-
¢iky deviti pfimek na obr. 3a tak, aby na zidné této primce

nelezely dva body téze barvy ?
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Reseni. Kazdd z danych pfimek protini 3est dalsich, je
tedy tieba nejméné Sesti barev. Ukazeme vsak, Ze est barev
nestali. Pii Sesti barvach by muselo byt jednou barvou
obarveno aspoil pét z uvazovanych 27 bodu. Ale kazdy bod
obarveny touto barvou je prusetikem dvou danych piimek,
na kterych uz nemuze lezet dalsi bod téze barvy. Takze pét
bodu téze barvy by muselo lezet na deseti pfimkéach, mame
vsak k dispozici jen devét pfimek. Sedm barev viak uz stadi,
dukazem je rozlozeni barev zndzornéné na obr. 3b (ruzné
barvy jsou oznaCeny raznymi Cislicemi). Kazdd barva musi
byt zastoupena Ctyfikrat, pouze jedna tiikrat (je oznalena
&islici 7).

C-i-5

Necht m, n jsou libovolnd prirozena Cisla a plati, Ze Cislo
5 nedéli Cislo mn(m + n). Potom ¢&islo 52 nedéli &islo
(m + n)> — m> — nd. Dokazte.

ResSeni. Podle predpokladu nedéli &islo 5 Zidné z &isel
m, n, m + n. Je (m + n)> —md — n> = 5mn(m + n)(m2 +
+ mn + n?). Mame tedy dokazat, ze C&islo 5 nedéli soulet
m? + mn + n2. Kazdé z Cisel m, n dava pii déleni péti zby-
tek 1, 2, 3 nebo 4. Dévé-li jedno z nich zbytek 1, nemuze
dat druhé zbytek 4, protoze by pak byl jejich soucet délitelny
péti. Podobné je to se zbytky 2 a 3. Mohou byt tedy zbytky
pii déleni &isel m, n Cislem 5 pouze tyto dvojice: (1, 1),
1, 2), (1, 3), (2, 2), (2, 4), (3, 3), (3, 4), (4, 4). V prvnim
piipadé je m =5r + 1, n =55 +1, r, s jsou pfirozen4
Cisla. Pak je m2 4+ mn + n?2 =5(52 + 552 + 5rs + 3r +
+ 35) + 3. Vidime, ze toto &islo neni délitelné péti, jeho
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zbytek pti déleni péti je 3. Podobné se to dokdze ve zbyvaji-
cich sedmi ptripadech. Duavtipnéjsi, i kdyZz trochu vykonstruo-
vany je tento postup: Cislo m2 + mn + n2 je pravé tehdy
délitelné péti, kdyz je délitelny péti jeho dvojnasobek 2(m? +
+ mn + n2) = m? + (m + n)? + n2 Zadné z tisel m, m + n,
n neni délitelné péti, kazdé diva pfi déleni péti zbytek 1, 2,
3 nebo 4, proto jeho druhd mocnina déva pii déleni péti vzdy
zbytek 1 nebo 4. Pak v3ak neni nikdy soucet tii takovych
druhych mocnin délitelny péti.

C-1-6

Je dén &tverec ABCD. Zvolme libovolné v roviné tverce
bod P a oznatme 4, B’, C’', D’ obrazy bodu P v stiedovych
soumérnostech se stfedy v bodech 4, B, C, D. Dokazte, ze
A'B'C'D’ je &tverec. Urlete mnozinu vsech bodu P, pro
které je prunik &tverca ABCD, A'B'C’'D’ nepréazdny.

Dy Co
, D C ,P
D4 _ ] —— 17
i Cls
I K
[ K< |
: A i B
| |
i
VW———— g Bo
A B’
Obr. 4
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Reseni. Usetka AB je stiedni piickou v trojuhelniku
A'B'P (obr. 4) rovnobéznous A'B’, proto je A'B’|| AB,
|A'B’| = 2|AB|. Obdobné to plati pro usetky B'C’, C'D’
a D'A4’'. Je tedy A'B'C’'D'¢tverec, je to obraz ¢tverce ABCD
v stejnolehlosti se stftedem v bodé P a koeficientem 2. Pied-
pokladejme, Ze néktery bod K’ ¢tverce A'B'C’D'lezi soucasné
ve ¢tverci ABCD. Pak lezi ve &tverci ABCD také stied K
useCky K'P, je tedy bod P bodem soumérné sdruzenym
k bodu K’ podle bodu K, pfi¢emz oba body K, K" lezi v ¢tverci
ABCD. Mé-li obracené bod P tuto vlastnost, tj. pro néktery
bod K’ ¢tverce ABCD lezi stted K usetky K'P také ve
¢tverci ABCD, maji ¢tverce ABCD, A'B’'C’'D’ neprazdny
prunik, do pruniku patii bod K'. Body P popsané vlastnosti
vytvoii ¢tverec ApByCoDo, ktery mé s ¢tvercem ABCD spo-
le¢ny stied a rovnobézné strany, pficemz |AgBy| = 3|A4B.

ULOHY SKOLNI CASTI I. KOLA
CcC-S-1

Urcete viechna prirozend Cisla n, pro ktera je Cislo 27 + 1
druhou mocninou ptirozeného ¢&isla.

Reseni. Necht pro prirozené &islo n plati 2% + 1 = m?2,
kde m je také piirozené Cislo. Pak je 2% = (m — 1) (m + 1).
Jsou tedy ¢isla m — 1, m + 1 mocninou ¢&isla 2 s celym
nezapornym exponentem. Vzhledem k tomu, Ze se jejich
rozdil rovnd dvéma, je nutné m —1 =2, m+ 1 = 4.
Proto je n = 3 jediné feSeni Glohy.
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C-S-2

Prvky dané mnoziny M jsou nenulovid celd &isla. Mno-
Zina M obsahuje aspoil jedno sudé, aspon jedno liché, aspori
jedno kladné a aspon jedno zaporné Cislo. DokaZte, Ze v mno-
7iné M existuji dvé &isla, jejichz soucet je Cislo liché a soutin
je Cislo zdporné.

Pozndmka. Cisla ..., —4, —2,0, 2, 4, ... jsou.sudi,
gisla ..., —3, —1, 1,3, ... jsou licha.

Reseni. Necht ac M, be M, &islo a necht je sudé, cislo b
liché. Maji-li &isla a, b opatna znaménka, spliiuji podminky
ulohy. Maji-li ¢isla a, b stejné znaménko, existuje v M ¢&islo ¢
opa¢ného znaménka. Je-li Cislo ¢ sudé, spliuji podminku
alohy ¢&isla b, ¢, v opatném piipadé muzeme vzit dvojici
a, c.

C-S-3a

Do kruznice o poloméru r = 10 je vepsan pravidelny
osmidhelnik ABCDEFGH. Vypoctéte obsah lichobézniku
ABDE.

Reseni. Je |AE| = 20 (obr. 5), |[BD| je délka a strany
¢tverce vepsaného kruznici o poloméru r = 10, tedy a =
= 101_/5. Vyska lichobézniku se rovnd poloviné strany
¢tverce BDFH, takze hledany obsah je 50 (]/E + 1).

C-S-3b
Najdéte vSechny pravothlé trojahelniky, pro které je
délka jedné odvésny aritmetickym pramérem délek druhé

odvésny a prepony.
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Obr. 5

ReSeni. Oznatime-li ¢ délku piepony a a, b délky odvésen,
ma platit 2a = b + ¢ a soucasné a2 + b2 = ¢2. Vyloucenim ¢
4 5
dostaneme 3a2 — 4ab = 0. Jelikoza £ 0,jea = ?b, c= —3—b .
Uloze vyhovuji prévé viechny trojthelniky o stranich 3d,
4d, 5d, tedy trojuhelniky podobné trojthelniku o stranich
3,4,5.

ULOHY II. KOLA
C-1I1-1

Urcete obsah lichobézniku ABCD se zdkladnami 4B, CD,
jsou-li diny délky stran a = |4B|, ¢ = |CD| a délka thlo-
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pricky u = |BD|, pfi¢emz vite, ze thlopfitky AC, BD jsou
navzéjem kolmé.

ResSeni. Bodem C (obr. 6) vedme ptimku rovnob&inou
s pfimkou BD, jeji prusecik s pfimkou AB oznatime E.
Trojuhelniky CDA, BEC maji stejné obsahy, nebot |CD| =
= |BE| a prislusné vysky se rovnaji vysce lichob&zniku.
Proto se obsah § lichobézniku ABCD rovna obsahu pravo-
ahlého trojthelniku ACE, ktery méa pieponu a + ¢, jedna
jeho odvésna ma délku u. Je tedy nutné a + ¢ >ua § =

u S
=—2—]/(a-|—c)2 — ul.

D c C

Obr. 6
C-1-2

Najdéte viechny dvojice pfirozenych ¢&isel m, n, pro které
je &islo (m + n)> — m® — nd> délitelné Cislem 56.

Reseni. Podle tlohy C - I - 5 se vyraz s = (m + n)5 —
— m® — n® rovna 5mn(m + n)r, r = m> — mn + n?, a po-
kud ¢islo 5 nedéli sou¢in mn (m + n), nedéli &islo 5 Cislo r
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a tedy neni &islo s délitelné Cislem 55. Jsou-li Cisla m, n ob&
délitelnd péti, je Cislo s ziejmé délitelné Cislem 56. Je-li pravé
jedno z c&isel m, n délitelné péti, neni péti délitelné zadné
z Cisel m + n, r a Cislo s je délitelné Cislem 56 pravé tehdy,
kdyz jedno z c&isel m, n je délitelné Cislem 5°. Neni-li zddné
z Cisel m, n dé&litelné péti, ale jejich soulet ano, davaji pfi
déleni péti zbytky 1 a 4 nebo 2 a 3. V zadném z téchto pii-
pada neni Cislo r nasobkem péti. Aby ¢islo s bylo délitelné
tislem 59 je nutné a staci, aby byl soucet m + n nasobkem
tisla 55. Takze Cislo s je délitelné Cislem 56, jestlize jsou
&isla m 1 n délitelna péti, nebo je jedno z nich délitelné Cislem
55, nebo je jejich soucet délitelny Cislem 5%, v Zidném dal3im
pfipadné neni s délitelné Cislem 56.

C-1l1-3a
Zjistéte, kolik feSeni ma soustava rovnic

X1 + x2 + x3 + x4 + x5 = X6 + x7 + X,

|x1 X2 x3 x4 X5 x6 X7 x| = 1

v oboru celych ¢&isel.

ResSeni. Z druhé rovnice plyne, ze kazdé z &isel x; se muze
rovnat pouze 1 nebo —1. Je-li x¢6 = x7; = xg = 1, musi se
jedno z &isel x1, xo, ..., x5 rovnat —1, ostatni +1, to je
5 moznosti. Jestlize se jedno z &isel xg, x7, xg rovnid —1
a zbyvajici dvé se rovnaji + 1 (to jsou tfi moZnosti), musi

se dvé z Cisel x1, ..., xsrovnat —1 a tH +1, to je (Z) =10
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moznosti, celkem tedy 3.10 = 30 moZnosti. Obdobné je

tomu v pifipadé x¢ + x7 + xs = —1 (30 moZnosti) a v pii-
padé x¢ = x7 = x3 = —1(5 moZnosti). Celkem m4 soustava
70 feeni.

C-1l-3b

V trojihelniku ABC oznatme R polomér opsané a r po-
lomér vepsané kruznice. DokaZte, Zze |BC| + |AC| — |AB| =
= 2r préavé tehdy, kdyZ plati |AB| = 2R.

ReSeni. Oznatme S stied kruZnice vepsané trojthelniku
ABC (obr. 7) a K, L jeji body dotyku se stranami BC, AC.

Obr. 7

Je pak |BC| + |AC| — |AB| = 2|CK| = 2|CL|. Je tedy
|BC| + |AC| - |AB| = 2r pravé tehdy, kdyZ je |CK| =r,
coZ znamend, z¢ CLSK je &tverec a trojuhelnik ABC je
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pravothly s pravym thlem pii vrcholu C. Je-li trojihelnik
pravouhly s pravym uhlem pfi vrcholu C, splyvé stied pre-
pony AB se stiedem kruZnice trojuhelniku opsané a je tedy
|AB| = 2R. Je-li obricené |AB| = 2R, je usetka AB pru-
mérem kruznice opsané trojuhelniku ABC, ktery je pak
podle Thaletovy véty pravouhly s pravym uhlem pfi vrcho-
lu C. Tim je celé tvrzeni Glohy dokizané.
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Kategorie B

_ ULOHY DOMACI CASTI I. KOLA
B-1-1

Najdéte viechny dvojice (p, k), kde p je prvolislo a %k
prirozené ¢&islo, pro néz ma rovnice x2 — 2(p%F + 2)x +
+ p% = 0 FeSeni v oboru celych &isel.

ReSeni. Rovnici upravime na tvar (x — pk — 2)2 =
= 4(p* + 1). Vidime, Ze rovnice md privé tehdy Feleni
v oboru celych &isel, kdyz je &islo |/p* +1 celé, tedy pF =
=m?2 — 1 =(m — 1)(m + 1), pro n&které celé Cislo m. Pak
musi existovat celd nezapornd &isla a,b tak,ze p* =m — 1,
pb =m + 1, k = a + b. Odettenim prvnich dvou rovnosti
dostaneme p%(pb—2 — 1) = 2, a tedy

P(t =2 P{I =1
nebo
ph—a —1=1 be—a —1= 2.
V prvnim pfipadé je p = 2, £ = 3, v druhém pripadé je

P =3, k= 1. Jsou to jedind dvé feseni ulohy.
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B-1-2

V kazdém pravouhlém trojihelniku o pieponé ¢ a od-

vésnich a, b plati 2(au? + bv?) < 5cw?)/2, kde u, v, w jsou
po fadé délky téznic k strandm a, b, c. DokaZte.

Obr. 8

Reseni. Vyjidiime si nejdfive u, v, w pomoci a, b, piitemz

[ [ a\2
vime, Ze ¢2 = a% + b2 Je (obr.8) u = ] (—-2—> + b, v =

2
e V<—2-) +a w= > J/a% + 2. Méame tedy dokézat ne-
rovnost

a3 b3 -1

2\ ab + r + a%b + r < 51/2.?(]//612 + b2)3,
kterou upravime na ekvivalentni tvar

2a + b)(a? + 3ab + b2) < 5|2 |a® + b2.(a% + b2).

Jea+b=< ]/5 ]/aT}—_l;E, nebot a2 + 2ab + b2 < 2(a% + b2).
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Dile je 2(a? + 3ab + b2) £ 5(a% + b%), nebot 0 < 3(a? —
— 2ab + b?). Vyndsobenim téchto dvou nerovnosti dosta-
neme nerovnost, kterou jsme méli dokdzat.

B-1-3

Jestlize pro kladna Cisla a, b, ¢, p, ¢, r plati ac = b2, pr = ¢2,
tak plati také (a + p)(c + r) = (b + ¢)2. Dokazte. Ukazte
dale, kdy plati v poslednim vztahu rovnost.

ReSeni. Settenim obou nerovnosti z predpokladu dosta-
neme ac + pr = b + g2, jejich vyndsobenim a odmocnénim

dostaneme nerovnost |/

acpr = bq. Pro nezaporna Cisla u, v

plati « + v = 21,"'u'v. Polozime-li # = ar, v = ¢p, miame

ar + cp = 2|larcp = 2bq. Seltenim s prvni odvozenou ne-
rovnosti dostaneme dokazovanou nerovnost. Rovnost bude
platit pravé tehdy, kdyz bude platit ac = b2, pr = g2 a ar =
= ¢p. Z téchto rovnosti plyne acpr = b2¢2, dosadime-li za ar
vyraz cp, dostaneme ¢p = bg = ar,takze a:b:c=p:q:r
a ac = b2 Plati-li obricené tyto vztahy, plati rovnost

(@a+p)(c+1r)=(+q>
B-1-4

Je déna kruznice k se stfedem S a na ni dva body 4, C
(4 # C). Jaka je nutnd a postacujici podminka pro velikost
uhlu ASC, aby existoval rovnobéznik ABCD, jehoz obvod
ma s kruznici & Sest spole¢nych bodu ?

Reseni. Predpoklidejme, Ze existuje rovnobéznik ABCD
spliiujici podminku ulohy. Ozna¢me ¢ velikost konvexniho

52



uhlu ASC (obr. 9). Oznaceni bodu B, D muzeme zvolit tak,
aby body D a S lezely v téze poloroviné s hrani¢ni pfimkou
AC. Oznatme K, L, M, N ty vnitini body stran 4B, BC,
CD, DA rovnobézniku ABCD, které lezi na kruZnici &, dile
oznatme o = | NAC| = |x LCA|, p = |x KAC| =
=[x MCA]. Piimka AC svird s te¢nou kruznice k£ v bodé C

ﬁhel , proto je o << —— ﬂ < i Také uhel ADC je men-

§i nez PX protoze bod D lezi ve vnéjsi oblasti kruznice k.

Pritom je | ADC| =180° —a — f < % Seltenim po-

slednich tfi nerovnosti dostaneme 120° << ¢. Je-li obricené
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L4

tato nerovnost splnéna, mizeme zvolit « tak, aby 90° — 4

<

<a< Z Rovnobéznik ABCD, pro kteryjepak | BCA| =
= |x BAC| = a, spliiuje podminky ulohy. Je pak totiZ
| ADC| = 180° — 2« < —?i, takze jsou body D, B body

vnéj$i oblasti kruznice k.
B-1-5

Najdéte vSechny uspoiddané dvojice (p, g) prvolisel p, g,
pro které plati 3p2 + 6p = 2¢2 + 7q.
Reseni. Rovnici upravime na tvar

3p(p +2) = q(2¢ + 7).

Je vidét, Ze prvocislo ¢ déli soudin 3p(p + 2), takze musi délit
jedno z &isel 3, p, p + 2. Jestlize g déli Cislo 3, je nutné
g = 3, jestlize déli &islo p, rovnd se Cislu p. Snadno zjistime,
ze ¢ = 3 ani ¢ = p nevyhovuje. Musi tedy byt p + 2 na-
sobkem ¢isla ¢, polozme p + 2 = kg, k pfirozené (islo.
Dosadime-li do dané rovnice p = kg — 2, dostaneme
g(3k% — 2) = 6k + 7. Jelikoz je g > 1, je nutné 3k2 — 2 <
< 6k + 7, po upravé (k — 1)2 < 4. Prichazeji tedy v uvahu
pouze hodnoty %k = 1, 2. Vyhovuje viak pouze k2 = 1, pro
které je ¢ = 13, p = 11. Dvojice (11, 13) je jediné FeSeni
ulohy.
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B-1-6

K danému &tverci ABCD sestrojime kruZnici & se stie-
dem A4 a polomérem |AB|. Na strané BC zvolime bod E,
na strané CD bod F tak, aby pfimka EF byla te¢nou kruz-
nice k. Oznalme G stied tGseC¢ky 4D, H prusetik pfimek
CG, EF a K prusetik piimek AH, CD. Dokazte, ze pfimka
EK je osou uhlu CEF.

ReSeni. Oznaéme L prisetik piimek CG a AB (obr. 10),
T bod dotyku pfimky EF a kruznice k2 a M patu kolmice
vedené bodem K k pfimce EF. Protoze bod G je stiedem

D C
T \
/ \ E
GL—"1 -
/ k
/ ’
e /
L A B
Obr. 10

tsetky AD, je |AL| = |AB| = |AT|. Trojuhelniky ALH
a KCH jsou stejnolehlé, stfedem stejnolehlosti je bod H.
V téze stejnolehlosti si odpovidaji trojahelniky ATH a KMH.
Jelikoz je |AL| = |AT|, je také |KC| = |KM|. Pak jsou
ovSem trojuhelniky ECK a EMK shodné, nebot jsou pravo-
uhlé, maji spole¢nou pieponu EK a stejné dlouhé cdvésny
KH, KC. Shoduji se proto i v uhlech proti témto odvésnim,
tji. |x KEM| = |x KEC|, coz jsme méli dokézat.
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ULOHY SKOLNI CASTI I. KOLA
B-S-1

Najdéte vSechna cela kladna C&isla n, pro ktera je <&islo
27 — 1 druhou mocninou celého kladného ¢isla.

ReSeni. Je-li pro piirozena &isla #, m splnéna rovnost
27 — 1 = m?2, musi byt &islo m?2 a tudiz i Cislo m liché. Po-
lozme m = 2k — 1, k ptirozené. Pak je 27 = 4k2 — 4k + 2.
Prava strana je délitelnd dvéma, neni v3ak délitelna ¢tyfmi.
Proto je nutné n = 1, je to jediné feSeni ulohy.

B-S-2

Je ddno n reédlnych C&isel x1, x2, ..., x, takovych, ze
n n n
S x? =3 x} = 1. Dokazte, z2e > x] = 1.
i=1 i—1 i1

ReSeni. Jelikoz se souet druhych mocnin danych &isel
rovnd jedné, rovni se kazdé z nich v absolutni hodnot&
nejvyse jedné, tj. [x;) < 1 proi =1, 2, ..., n. Pak je oviem
x} < |x}| £ x3, ptiCemZ x} = x} pouze tehdy, je-li x; = 0
nebo x; = 1. Podle predpokladu se soucet tfetich mocnin
danych &isel rovnd soultu jejich druhych mocnin, proto se
kazdé z nich rovné nule nebo jedné. JelikoZ se kazdy z téchto
soutdl rovnad jedné, rovnd se jedné pravé jedno z danych
¢isel, ostatni se rovnaji nule. Pak je oviem roven jedné i sou-
et jejich sedmych mocnin.
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B-S-3a

Uvnitit rovnostranného trojuhelniku lezi usetka PQ délky
10. Usetku PQ promitneme kolmo na viechny tii strany
trojuhelniku. Pri jaké poloze dseCky PQ je soulet délek
vSech tii praméta nejvétsi?

ReSeni. Sviri-li pifimka PQ s nékterou stranou trojihel-
niku thel « < 30°, svird s jednou dalsi stranou thel 60° — «
a s tfeti stranou uhel 60° + « (obr. 11). Soucet délek viech

Obr. 11

tii praméti je 10[cos o + cos (60° + o) + cos (60° — a)] =
= 20 cos «. Tento soulet je nejvétsi pifi o = 0°. Svira-li
pfimka PQ s nékterou stranou trojuhelniku whel vétsi nez
30°, svird s nékterou jinou stranou uhel mensi nez 30° a mi-
zeme tento pfipad prevést na piedchazejici. Je tedy soucet
délek vSech tii pramétd nejvétsi, pravé kdyz je usetka PQ
rovnobéznd s nékterou stranou trojihelniku.

B-S-3b

Na stranach AB, AC trojihelniku ABC jsou po fadé
zvoleny body M, N tak, ze |MB| = [NC| a obsah trojahelniku
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AMN se rovni jedné poloviné obsahu trojihelniku ABC.
" Vyjadrete velikosti usetek AM, AN pomoci b = |AC|,
¢ = |AB)|. Zjistéte, kdy maji trojahelniky AMC, BMC stejny
obvod.
ReSeni. Oznatme |MB| = |[NC| = x, obr. 12. Obsah

1
trojuhelniku ABC je ) bc sin o, obsah trojahelniku AMN

Obr. 12

1
je > (b — x) (¢ — x) sin «. Z podminek dlohy plyne pro x
rovnice 2(b — x)(¢c — x) = bc. ProtoZze musi byt x < b,
1 PR
x < ¢, dostaneme x = —2—(6 + ¢ — /b2 + ¢?).Jepak |[AN| =

1 P 1 PR
= (b—c+ |2+ ¢, |[AM| = —2'(0 — b+ |82 + ).
Obvody trojuhelnika AMC, BMC jsou pravé tehdy stejné,
kdyz je |AC| + |AM| = |BC| + |[BM|, 4. a = |/b% + ¢2,
tedy kdyz je trojuhelnik ABC pravothly s pravym uhlem
pfi vrcholu 4.
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ULOHY II. KOLA
B-II-1

V trojuhelniku ABC urdete na strané AC bod P tak, aby
platilo: Jestlize piimka rovnobézna se stranou 4B protne
use¢ky AP, PB, BC po fad¢ v bodech R, S, T, je |AR| =|ST|.

Reseni. Necht P spliiuje podminku alohy a necht R, S, T
jsou pruseliky usetek AP, BP, BC s pfimkou rovnobé&znou
s pfimkou A4B. Oznatme Q pruselik use¢ky BC a pfimky
vedené bodem P rovnobézné s AB (obr. 13). Z podobnosti

Obr. 13

trojuhelniki ABP, RSP a z podobnosti trojuhelnika PBQ,
SBT plyne |AR| : |AP| = |BS| : |BP| = |ST| : |PQ|. Z rov-
nosti |AR| = |ST|plyne |AP| = |PQ| a obrécen&. Ptitom je
|AP| = |PQ| pravé tehdy, kdyZ je trojuhelnik APQ rovno-
ramenny se zdkladnou 4Q. To nastane zase pravé tehdy,
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1
kdyz je | PAQ| = > |« CAB|. Bod P tedy urtime takto:

Osa uhlu CAB protne stranu BC v bodé Q, bodem Q vedeme
rovnobézku s piimkou AB, jeji prusetik se stranou AC je
bod P, ktery splituje podminku ulohy.

B-11-2

Spojnice stfedu protilehlych stran konvexniho ¢tyfuhelniku
rozdéli ¢tyfahelnik na ¢tyfi Ctyfahelniky. Obsahy tii z nich
jsou 8, 16, 20. Urcete obsah ¢tvrtého.

Reseni. Necht ABCD je konvexni Ctyiahelnik (obr. 14),
K, L, M, N necht jsou po fadé stiedy usetek AB, BC, CD, DA

a P prusetik uhlopfitek KM, LN rovnobézniku KLMN.
Trojahelniky AKP a BKP maji stejny obsah, nebot K je
stied useCky AB. Totéz plati pro dvojice trojuhelnika BLP
a CLP, CMP a DMP, DNP a ANP. Z toho plyne, Ze soucet
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obsahu ctyftahelnikd 4KPN, CLPM se rovna souctu obsahtu
zbyvajicich dvou ¢&tyfuhelnikt BKPL a DMPN. Kazdy
z téchto dvou souctu se rovna PY kde S znati obsah celého
¢tyfuhelniku ABCD. Kromé toho je KL stfedni pricka
trojuhelniku ABC, proto se obsah trojuhelniku KLB rovna
jedné Ctvrtiné obsahu trojihelniku ACB. Obdobné to plati
pro trojuhelniky DMN a DCA a rovnéZ pro dvojice troj-
uhelnika AKN, ABD a CML, CDB. Jelikoz se soucet

S
obsah trojuhelnika KZLBa DMN rovné i souet obsahu

S
¢tyfahelnika PKBL a PMDN je roven PX rovnd se obsah

kazdého z trojuhelniki PKL a PMN a také trojahelnika

S
PNK a PLM hodnoté rE Na zacatku FeSeni ulohy jsme si

odvodili, Ze soucet obsahu dvou protéjsich ¢tyfuhelnika se
rovnd souctu obsahu zbyvajicich dvou protéjsich Ctyithel-

nika a kazdy z téchto soucta se rovna P Jestlize obsahy tii

z Ctyfahelnika jsou 8, 16 a 20, musi se obsah ¢tvrtého nutné
rovnat 4 nebo 12 nebo 28, obsah § se pak v uvedenych
piipadech rovnd 48 nebo 56 nebo 72. Kdyby se obsah
tieba Ctyfahelniku PKBL rovnal 4, byl by jeho obsah mensi

nez obsah trojuhelniku PKL, ktery by se rovnal § = 6, coz

neni mozné. Stejné tak nevyhovuje hodnota 28, protoze

S
jeden z Ctyfuhelniki by mél obsah 8 a ry by bylo 9. M4
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tedy dany Ctyiahelnik obsah S = 56 a obsah &tvrtého Ctyi-

thelniku je 12. Ukazeme si je$té konstrukci takového &tyi-

thelniku. Zvolime k tomu libovolny rovnobé&znik KLMN
S

o obsahu 5= 28. V poloroviné opa¢né k poloroving KNM

vedeme s KN rovnob&zku u tak, aby pro kazdy jeji bod 4

S
(obr. 15) se obsah trojuhelniku AKN rovnal 8 — 8 1.

Obr. 15

Stejné tak musi bod B lezet na rovnobézce s pfimkou KL

S
tak, aby se obsah trojuhelniku BKL rovnal 12 — ks
Protoze K musi byt stfedem usetky AB, lezi bod B také
na pfimce soumérné sdruzené k piimce u podle bodu K.
K bodiam B, A jiz pak sestrojime body C, D. Ctytuhelnik
ABCD mai pozadované vlastnosti.
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B-1Il-3a

Jsou-li oy, a2, . . ., a, v radidnech méfené velikosti vniténich
uhla konvexniho n-uhelniku a n > 4, pak plati

7 1
2 %z 5 (n—2)m

=1

Dokazte a urlete, kdy plati znaménko rovnosti.
ReSeni. Seftenim nerovnosti (x; — 2;)2 >0 pro i >;
dostaneme

n n
(n—1)3a 223wy,
i=1 i>j
n n 2
tedy 7 > «f = ( > oti) . Posledni nerovnost plyne téZ pfimo
i1 i=1
z tzv. Cauchyovy nerovnosti. Pro souet vnitfnich uhli
konvexniho n-uhelniku plati

z oA = (fl = 2) T,
i—1
tedy

Za-gn(n 2)%n2.

1 1
Podle piedpokladu je n = 4, takze ~”— (n—22 = Y (n—2),

¢imz je nerovnost ulohy dokazina. Rovnost nastane, pravé
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kdyZz je n = 4 a vSechny vnitini uhly &tyfdhelniku jsou si
rovny, tedy kdyZ je mnohothelnik obdélnik nebo &tverec.

B-Il-3b

Najdéte vSechna feSeni rovnice xyz = 3(x + 3y + 2)
v oboru celych kladnych &isel. ReSeni, kterd se lisi jen pota-
dim, nepovazujeme za raznd.

Reseni. Je-li trojice x, v, z fefenim dané rovnice v oboru
prirozenych ¢&isel, je aspon jedno z Cisel x, y, z délitelné
tfemi; necht je to napfiklad x, x = 3k, k pfirozené (islo.
Pro ¢Cisla &, y, z pak plati kyz = 3k + y + =z, takZe k(yz —
—3) =y + 2. Musi tedy byt nutné yz —3 =y + 2,
tj. (y — 1)(2 — 1) < 4. Bez Gjmy obecnosti muzeme jesté
predpokladat y < 2. Pro y =1jek =1+ ;—j~§, takze
jsou moznosti z =4, k=5, x =15 nebo z =5, k =3,
x=9 nebo z2=7, k=2, x =6. Je-li y =2, je 25,
z+2
%8 —3"

takze z = 2, k=4, x =12 nebo z =5,

+3 s 3
¢ —
32_3333’3 5

k=1, x =3.Proy=4je 2z <2, coZuz nemusime uva-
Zovat.

Uloha mi 6 feseni: (1, 4, 15), (1, 5, 9), (1, 6, 7), (2, 2, 12),
(2,3,5)a (3,3, 3).

F:4
k=1,x=3.Proy=3jez<3, k=7
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Kategorie A

ULOHY DOMACT CASTI I. KOLA
A-1-1
Redlna funkce f je definovdna na mnoziné vSech uspofada-

nych dvojic (n, x), kde n > 1 je pfirozené Cislo, x je redlné
tislo. Funkce f spliiuje podminky

M [, x) = x,
©) f@n, x) =n + f(n, x + 1),
3) fCn +1,x)=n+f(n+1,x + 1).

Dokazte, Zze pro n = 2 a kazdé redlné Cislo x plati
4) f(n, x) =n + x + [logo(n — 1)].
(Symbol [x] znadi celou ¢&ast &isla x.)
ReSeni. Tvrzeni dokiazeme matematickou indukci. Dosa-

zenim n = 1 do rovnosti (2) a pouzitim (1) postupné do-
staneme
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2, x)=1+fL,Lx+1D)=14+x+1=2+x=
=2 + x + [logz1],
vztah (4) tedy plati pro n = 2 a libovolné redlné x.
Predpokliadejme, ze rovnost (4) plati pro kazdé pfirozené
k << n a pro viechna realna x, a dokdZeme, Ze pak plati i pro
k = n a libovolné reilné x.
Je-li n = 2k, je podle (2) a podle indukéniho predpokladu
(k< m)
fn, x) = f2k, ) = k + fk, x + 1) =
=k +k+x+1+ [loglk—1)]) =
=2k + x + [1 + log2(k — 1)] =
=2k + x + [log:(2k — 2)] =

=2k + x + [log2(2k — 1)] = n + x + [loge(n — 1)].

Zde jsme vyuzili toho, ze [logam] = a, pravé kdyz 2¢ < m <
< 2¢"1, Pro m = 2k — 2 odtud plyne

20 < 2k — 2 <2k — 1 < 201
ale 2k — 1 je liché, takze 22 < 2k — 1 < 2271 a tudiz
[loga(2k — 1)] = a = [loge(2k — 2)].
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Je-li n = 2k + 1, je podle (3) a podle indukéniho pted-
pokladu

fin,x) =fCRk+ 1, x) =k +flk+1,x +1)=
=k +(k+1+x+1+ [logk]) =
=2k + 1 + x + [log22k] =
=n + x + [logxn — 1)].
A-1-2

Funkce f zobrazuje interval | = (—¢, ¢), ¢ > 0, do mnozi-
ny komplexnich Cisel tak, ze pro kazdé ¢ € | plati

[f(t)] = f(t)(cos t + isint),
Il —1 =) — 3
a ke kazdému ¢ € | 1ze nalézt s € | tak, Ze

2[f(D)] <|f(s)l.

Vypoctéte ¢ (na tii platné Cislice) a vypoctéte f(z), vite-li,
ze| f(to) = 5.

Reseni. Funkce f je komplexni funkce reilné proménné.
Z podminky |f(z) = f(r)(cos ¢t + isin ) je vSak vidét, Ze
S(t) =|f(?)| (cos t — isin ¢), k ureni f proto staCi urcit real-
nou funkci g, g(z) = | f(2)|.
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Umocnénim druhé podminky dostaneme
(g(1) — 1)* = |g(2) cos t — 3 — i g(1) sin ]2,
g¥ (1) — 28() + 1 = (g(t) cos t — 3)* + (g(r) sin 1)* =

= g¥(t)(cos?t + sinr) — 6g(7) cos t + 9,

3cost — 1

) &) =

Aby funkce f byla dobfe definovina, musi byt g(z) > 0 pro

viechna 7 z defini¢niho oboru | = (—c, ¢), takze cos > Els
) 1 1 1
Protoje (—c,¢) = | —arccos 3> arccos - ,tj. ¢ < arccos 3

Protoze pro kazdé tre(—c¢, ¢) existuje s € (—c, ¢) tak, Ze
g(s) > 2g(1), musi byt funkce g neomezend. Odtud plyne, Ze

je ¢ = arccos = 1,23 (hodnotu ur¢ime pomoci tabulek ne-
bo pocitatky).

3
Je-li | f(20)] = 5, je podle (1) cos 79 = 52 tedy |sin zp| =

4
=g e Odtud plyne, ze je f(20) = | f(20)) (cos g — i sin 29) =
5 . + i : 3+ 4i
A 5 1 5 - —_ 41.
Jiné FesSeni. Hodnoty funkce f lezi na vétvi hyperboly
uréené (v komplexni roviné) rovnici
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gl —z,— 3] =1

s ohnisky v bodech (s komplexnimi soufadnicemi) 0 a 3
(obr. 16).

Obr. 16

Ptitom podle prvni podminky je
f() = ()l (cos t — isin 2) = [f(2) (cos (—1) + isin (*I)),.

takze pro ¢ € (—c, ¢) dostaneme hodnotu f{(z) jako prusetik
dané vétve hyperboly s polopfimkou s pocatkem v 0 a svirajici
s redlnou osou thel —z (v obloukové mife). Podle treti
podminky ulohy je funkce f neomezend, takze pro [t| = ¢
uvedené polopfimky uz danou vétev hyperboly neprotinaji,
tj. poloptimky
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2z = |z|le"ic, z = |z|eic

jsou rovnobézné s jejimi asymptotami. Jak snadno zjistime,
1
mé dand hyperbola hlavni poloosu a = 5 @ excentricitu

a 1

£ =55 takze pro hodnotu ¢ plati cos ¢ = - =3

Je-li [f(20)] = 5, plyne z rovnice hyperboly | f(79) — 3| =4,
trojuhelnik s vrcholy 0, 3, f(2) je tedy, jak snadno zjistime,
pravouhly (obr. 17), a proto f(z9) = 3 + 4i.

5
P!
Obr. 17
A-1-3
Necht n je pfirozené Cislo, 1 £ a1 £ as < ... < ay, by, b,

..., by jsou redlnd Cisla. Kolik feSeni ma soustava rovnic
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ax1 + x2 4+ ... + x5, =b

x1 + asxz + ... + xXp = bo

X1+ x4 ... 4 apxy = by?

Provedte diskusi.
Reseni. Pripad n = 1 je trividlni, budeme predpoklidat,
Zen = 2. Je-li a1 = 1, ma preni rovnice tvar

1 x4+ X2+ ...+ x5 = by,

dosadime-li tedy do zbylych rovnic soustavy, dostaneme sou-
stavu

(ai—l)xi—i—bl:bi, 2§1§n.

Odtud je vidét, ze pro 1 = a; = ... = a; m4 soustava fe-
Seni, jen kdyZz b1 = b2 = ... = b;. Pak dostaneme k> 1
stejnych rovnic (1), a pokud 2 < n a a1 > 1, je

b — b

@ %= k+1=<j=<n

Pro a2 > 1 ma tedy dan4 soustava vidy jediné feSeni

n bi - bl
LR =t
i—=2
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by — by

xXp= 275 ).

v 2=sj=n)
Pro 1 =a = ... = ax (k > 2) mi soustava feSeni, pravé
kdyz by = b = ... = b;. V tomto pfipadé md soustava ne-
kone&n& mnoho feSeni, nebot neznimé xpi1, ..., Xp jsou

jednoznaln& uréeny vztahem (2), ale pro neznamé xi, ..., Xk
méme jedinou podminku

1

x1+x24+ ... +xx=b — Z Xj.
j=k+1

Je-liag >1,t.1 <a1 £ a2 £ ... £ ay, dosadime z prvni
rovnice

n
Z x; = by — (a1 — Dxy
i=1
do ostatnich rovnic soustavy
n

(a; — l)x,- + Z x; = by 2
DN

AN
~.
AN
R

takze dostaneme

b;—b1+(a1~1)xl.
a;—l

Xj =

Z prvni rovnice pak plyne
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(ar — Dx1 + a1 + (a1 —1Dx o1 b
i1 §=1

Vidime, Ze v tomto pfipadé m4d soustava jediné FeSeni

b b;*—bl
1__ at—l
X1 = =1 - ,
ofie 3!
<a1_) + ai—lv
=1
bj — by + (a; — Dx
. @=Dn h<ism.
a;—l

Zdvér. Pro n > 2 ma dana soustava jediné feSeni, pravé
kdyz a> > 1. Pokud ay=ax= ... =a =1 (k> 2), mi sou-
stava nekonecné mnoho feseni, pravé kdyz by = b2

= by; jinak nemd zddné feSeni.

A-1-4

Necht body A4’, B’, C’ lezi na jednotkové kruznici se
sttedem § opsané trojihelniku ABC tak, Ze dvojice vektori
SA”aBC, SB’ a CA, SC’ a AB jsou souhlasné rovnobézné.
Jsou-li P a P’ obsahy trojuhelniki ABC a 4'B’C’, pak plati

HH

N"cl

Dokazte.
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ReSeni. Jsou-li o, f, v uhly daného trojuhelniku ABC,
plati pro uhly trojuhelnika SB'C’, SC'A’, SA'B’, jak snadno
plyne z konstrukce bodu 4’, B’, C’ (obr. 18),

Obr. 18

|x BSC'|l=7n—ua, |xCS4'|=7—§,
|xA'SB'| =7 —y.

Oznatme R polomér kruZznice opsané obéma trojuhelnikim
ABC, A'B'C’, pro obsah P’ trojuhelniku A4'B’C’ pak plati

P o= .%_ R2(sin(m — «) + sin(w — f) + sin(w —y)) =
1

Il

1
> R%(sina + sin f + siny).
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Obsah P trojuhelniku ABC muZeme vypocitat razné. Tak je
napr.

> 1 . abc
=5 absiny = AR’

nebot pro tétivu délky ¢ s obvodovym uhlem y plati (obr. 19)
¢ = 2R sin y. Tak dostaneme i vztah

Obr. 19
1 . . - .
@) = —2—ab siny = 2R? sin « sin f sin y.
Ze znimé nerovnosti
x+y4+z s
3) e

3

kterd plati pro libovolna tfi nezdporna &isla x, y, 2, a z rovnosti
(1) a (2) tak plyne nerovnost
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If

2P V P
—_— o
3R 2R?

neboli (R = 1)

Pl

v

3 s
2

coz je nerovnost, kterou jsme méli dokazat.

Rovnost nastane, pravé kdyZ nastane rovnost v nerovnosti
(3), tj. pravé kdyz sin « = sin = sin y, tedy pravé kdyz
dany trojihelnik ABC je rovnostranny (trojahelnik A'B'C’
pak bude také rovnostranny).

A-1-5
Necht funkce f je pro s > 0, z > 0 definovéna pfedpisem

si(1 — s1)
A+ +e)

fGs, 0) =

Dokazte, ze tato funkce nabyva svého maxima pravé v jed-
nom bodé. Naleznéte tento bod a maximum funkce.

Reseni. Podle znimé nerovnosti s> + 2 > 25z (s, ¢ > 0)
pro funkci f plati

st(l — s1) st(1 — s1) st(1 — s1)
< — =
S22 T L4222 (1 + s’

1) =
f(si ) 1 +
pii¢emz rovnost nastane, pravé kdyz s = ¢.

76



Funkce f tedy nabyva maxima na nékteré hyperbole st = u

pros =1 = ]/; (ptiCemz stali uvazovat 0 << # << 1, kdy je
f(s, ©) > 0). Funkce

ma4 derivaci

A+ w2 (—2u+ 1) —2(1 + u)(u—u?) _ —3u +1
1+ ) M up?

W (u) =

1
takZe funkce 4 je na intervalu <O, —3~> rostouci a na intervalu

1
<~3—, oo) klesajici. Odtud plyne, Ze funkce f nabyva svého
1

/
maxima v jediném bod& (s, 7), s = ¢ = ]/ 5 a e

D)

Pozndmka. Vhodnou upravou muZeme vyuZit nerovnosti

x + )2
xy £ Q Je totiz
4
u(l —u)
hu) = ——— =
() (1 + u)?
1 2u(1 —u) 1 1 1

— < - N
2 A tap = alqup aAFW=7
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Odtud plyne, ze funkce % nabyva svého maxima pro 2u =

1 1
=1—u tju= 30 takze f(s, 1) £ e rovnosti pro s =

A-1-6

Sachovnice se sklddd z 8 X8 poli vytvéiejicich &tverec. V&
je jedna z figur, jimiz se hraje $ach. Rekneme, Zze dand v&z je
neohrozena, jestlize v fadku a sloupci, ve kterém se naléza,
uz neni jina véz.

a) Urcete pocet takovych rozmisténi 8 vézi na Sachovnici,
pfi nichZ je kazd4 z nich neohroZena.

b) Urcete pocet takovych rozmisténi 8 vézi na Sachovnici,
pii nichz je aspoii jedna z nich neohrozena.

c) Urcete pocet takovych rozmisténi 8 vézi na Sachovnici,
pfi nichz je aspoil jedna z nich neohrozena a zddné dvé nejsou
v témze fadku.

d) Reste ulohy b) a ¢) pro &tvercovou $achovnici skladajici
se z nXn poli, pfitemZ rozmistujeme k& vézi (1 < k < n).

ReSeni. Mime-li na 3achovnici 8 X8 rozmistit 8 vézi tak,
aby se z4dné dvé neohroZovaly, musi stit v kazdém sloupci
a v kazdém fadku pravé jedna véz.

Pro umisténi véze v prvnim sloupci midme 8 moZnosti.
Pro kazdou z téchto moZnosti mdme 7 moZnosti, jak umistit
véz ve druhém sloupci (jeden fidek je blokovan vézi z prvniho
sloupce), pro umisténi vézi v prvnim a druhém sloupci je
tedy 8.7 = 56 moznosti. Pro kazdou z nich mame 6 moz-
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nosti, jak umistit véz ve tfetim sloupci, atd. Celkem je tedy
8.7.6. ... .2.1 = 8! moznosti, jak véZe rozmistit. (Ke
stejnému vysledku lze dospét také takto: kazdému rozmisténi
vézi prifadime posloupnost osmi ¢isel aj, ao, ..., as tak, Ze
v daném rozmisténi stoji v 7-tém sloupci véZ v a;-tém Fadku.
Jelikoz se véze neohrozuji, je posloupnost ay, az, ..., as po-
fadim ¢isel 1, 2, . . ., 8; a naopak kazdé poradi davé popsanym
zpusobem rozmisténi neohrozujicich se vézi. Hledany pocet
rozmisténi je tedy roven poctu poradi osmiprvkové mnoziny,
tj. 81.)

Dile vyfesime rovnou obecnou ulohu pro % vézi a Sachov-
nici nXn. V tomto pfipadé je vhodné nejprve uvazovat véze
rozliSené ocislovanim vy, va, ..., k.

Ozname A; mnozinu viech rozmisténi, ve kterych je véz v;
neohroZena, i € {1, 2, ..., k}. Chceme urtit polet rozmisténi,
ve kterych asponi jedna vé€Z neni ohroZzoviana, tj. pocet prvka
mnoziny A; U A2 U ... U Ag. Podle principu inkluze a ex-
kluze (viz napf. Vrba, A.: Kombinatorika. 1. vyd. Praha,
Mladsi fronta 1980. SMM, sv. 45) je

M) ALV AU U Akl = (AL Al e+ A —
— AL N Al — AL N A3l — ... — A DA +
+ At NANA3 + ...+ [Are N A NAL — ... +
+ (=D)AL nAs Nl N AL

Necht 1 <7 < k. Je-li w j-prvkovd podmnoZina mnoZiny

{1, 2, sy k}, pak [NA;] =[Ar NA2 N ... NAy. Stati

proto urdit Cislo |A; N Az N ... N Ay, tj. pocet rozmisténi,
ve kterych jsou véze vy, v2, ..., v; neohrozeny. V&z vy mu-
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Zeme umistit #% zpusoby (do kteréhokoli poli¢ka), pro wzs
zbyvéd (n — 1)2 moznosti (jeden fddek a jeden sloupec jsou
blokoviny vézi v1), atd. aZ v; maZzeme umistit (n — j + 1)2
zpusoby. Véze vj,1, ..., v; jiZ mizeme umistit libovolné ve
zbylych (n — ;)2 polich (nesmime vstoupit do radka a sloup-
¢t pouzitych pro véZe vi, ..., v;). Takovych rozmisténi je

((n ) ) (kB — 7)! (pocet variaci k — j prvka z (n — j)2-prv-

kové mnozmy). Je tedy

A1 NA2 N .. NA; =

— )2
= n¥n — 12 ... (n—j + 1) (<Z 7) ) (B — L.
—J
Po dosazeni do (1) dostdvame

ArtU AsU ... U A =

~§< a(en— 12—y 1e( ) =

S () or(sF)o-

Jestlize nyni zapomeneme na rozliSeni jednotlivych vézi,
bude vidy k! rozmisténi stejnych, takze hledany pocet je

b 2 ) (a7
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Druhou ¢&ast ulohy d) vyfeSime obdobné. Oznatme B;
mnozinu viech rozmisténi, ve kterych neni vé€Z v; ohroZena
a pfitom 74dné dvé véze nestoji ve stejném fadku. Podle
principu inkluze a exkluze pak je

Biu Bou ... U Byl =B + [Bo| + ... + |Bi| —
— By "By — ... — |Bp-1 "Byl + ... +
+<*-1)"'_1|Bl NBN ... (‘\Bk}

Protoze
By "nBanN ... NBy| =
=nn—12...(n—j+ 12(m —)in—j)(n—j—1)...
ce.(n—k+ 1),

je
iBIU BQU s ne LJ B},-,[ =

S () [ v (e

Stejné jako v pfedeslém piipadé (zapomeneme-li na rozliSeni
vézi) dostaneme hledany pocet rozmisténi jako

i i o () () ame - (0 @ =i

j=1
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Pritom ve viech soultech klademe 0° = 1 (napt. proj = k =
=n).

ULOHY SKOLNI CASTI I. KOLA
A-S-1

Je dan pravouhly trojuhelnik ABC. Na kolmici k pfeponé
AB prochézejici bodem B sestrojime v poloroviné opatné
k poloroviné ABC bod D tak, aby platilo |[BD| = |4B|.
Na kolmici k BC bodem B sestrojime v poloroviné opatné
k poloroviné BCA bod E tak, aby |BE| = |BC|. Oznatme S

Obr. 20
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stied useCky CE, O stied useCky AD a F prusetik primek
AE, CD. Dokazte, ze ¢tyithelnik OBSF je deltoid.

Reseni. Trojuhelnik DBC vznikne z trojahelniku ABE
otoenim o pravy uhel kolem bodu B (obr. 20), takze odpo-
vidajici si strany CD a EA jsou navzdjem kolmé. Body B
a F proto lezi jednak na Thaletové kruznici nad prumérem
AD, jednak na Thaletové kruznici nad prumérem CE. Osa
spole¢né tétivy BF obou téchto kruznic prochézi jejich stfedy
O a S a &tyfuhelnik OBSF je tedy osové soumérny podle

|BE| |BD|
osy uhlopfi¢tky BF. Protoze |BS| = —— < —— = |BO|,
2 )2
neni OBSF kosoltverec, ale deltoid. Jak je vidét z uvedeného
feSeni, OBSF bude kosoltverec, pravé kdyz |BC| = |4B|,
jinak vznikne deltoid. Tvrzeni pak plyne nejen pro pravo-
uhlé trojuhelniky, ale obecné pro libovolny /\ ABC, v némz
|4B| # |BC|.

A-S-2

a) Kazdé pole ¢tvercové tabulky 55 je obarveno pravé
jednou z barev bild, ¢ernd. DokaZte, Zze v tabulce existuji
Ctyfi pole stejné barvy, jez jsou rohovymi poli nékterého
pravouhelniku.

b) Ukazte, ze v pfipadé tabulky 4X4 existuje takové
obarveni, pii kterém zddnd Ctyfi pole stejné barvy nejsou
rohovymi poli pravothelniku.

Reseni. Tabulka mi 25 poli. Jednou z barev, feknéme
bilou, je obarveno asponi 13 poli. Je-li viech pét poli nékte-
rého sloupce obarveno bile, jsou v aspont jednom dalsim
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sloupci asponi dvé bild pole. Ta tvori spolu s dvéma bilymi
poli bilého sloupce ¢tyfi rohovéd pole pravouhelniku.

Jestlize jsou v nékterém sloupci 4 bild pole, obsahuje
néktery dalsi sloupec aspoil 3 bild pole. Protoze fadku je pét,
musi byt v uvazovanych sloupcich dvé bild pole ve stejnych
tadcich.

Neobsahuje-li zadny sloupec 4 bild pole, je rozloZeni
13 bilych poli do sloupca bud 3, 3, 3, 2, 2, nebo 3, 3, 3, 3, 1.
V prvnim pfipadé z nich muZeme utvofit 11 dvojic poli
téhoz sloupce, ve druhém pripadé takovych dvojic existuje

. . 5 .
dokonce 12. Jelikoz v jednom sloupci je jen ( 2) = 10 dvojic,

musi mezi uvedenymi 11 ¢ 12 dvojicemi byt aspor dvé,
jejichz pole lezi ve stejnych fadcich. Pole téchto dvojic jsou
opét rohovymi poli pravouhelniku. Tim je vyfeSena Cast
a) ulohy. Dva priklady tabulky 4X4 s pozadovanym vybar-
venim dvéma barvami ukazuje obr. 21.

N AN
N AN N N
N D A\
NN N

Obr. 21

V,

Jiné FeSeni. V kazdém sloupci obarvené tabulky prevldda
jedna barva. Stejnd barva musi prevlddat asponl ve tiech
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sloupcich, takze bez Ujmy na obecnosti muzeme piedpokla-
dat, ze bila barva pievladd v prvnich tfech sloupcich a Z>
v prvnim sloupci jsou prvni tii pole bild. Ve druhém sloupci
pak musi byt bild pole ve 4. a 5. radku, jinak dostaneme
bily pravothelnik. Ve tfetim sloupci pak uz ale nelze umistit
tii bila pole tak, aby nevznikl bily pravothelnik. Tim je
tvrzeni dokdzano.

A-S-3a

Jsou déna komplexni ¢isla u, v. Najdéte vSechna komplexni
¢isla w, pro néz je funkce

fz)=lz—u? + [z — o2 + [z — o

konstantni na mnoziné {zC: [2| = 1}.
Reseni. Je

f2) =32 —x(@ + 7 + @) —Zu + v +w)+
+ 2 + o2 + (w2

Je-1i tato funkce na mnoziné viech komplexnich Cisel s abso-
lutni hodnotou 1 konstantni, je f(1) = f(—1) = f(i). Odtud
postupné plyne, ze Re(u + v + w) = 0, Im(u + v + w) = 0,
tedy # + v + w = 0. Je-li naopak tato podminka splnéna,
je f konstantni na mnoziné vSech komplexnich jednctek.
Uloze vyhovuje jediné komplexni &islow = — u — o.
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A-S-3b
Zjistéte, pro ktera celd Cisla b ma soustava rovnic

x1 + bxo = 353
2bx; + xo + 2bxs = 2b3
bxo + x3 = b3

feSeni v oboru celych &isel, a pro kazdé takové b vypiste
vSechna tato feSeni.

ResSeni. Dand soustava je ekvivalentni se soustavou

X1 = 3173 . bxz
b — bx2
2b3(4b — 1)

X3

(4b2 — l)xz

Il

a pro b celé ma celoCiselné feSeni, pravé kdyz ¢islo 462 — 1=
=(2b —1)(2b + 1) déli cislo 2b%(4b — 1). To je splnéno
v ptipadé b = 0, pak je x1 = x2 = x3 = 0.

Je-li b+ 0, jsou lichd &isla 26 — 1, 26 4+ 1 s Cislem 243
nesoudélna, takze Cislo 462 — 1 musi délit Cislo 46 — 1. Je
proto

462 — 1] < |46 — 1].
Této nerovnici vyhovuji pouze celd &sla —1, 0, 1. Pro

b = —1 neni &islo x2 celé, pro b = 1 vyjde x1 = 1, x2 = 2,
x3 = —1.
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ULOHY II. KOLA
A-1l-1

Necht p a g jsou prvotisla. Dokazte, ze libovolné feSeni
(x, v, 2) rovnice '

xyz = pg(x +y + 2)
v oboru pfirozenych ¢isel ma nésledujici vlastnost: Jedno

z Cisel x, vy, z déli soulet ostatnich dvou. ]
Najdéte prvocisla p, g, r a takové feSeni rovnice

xyz = pgr(x +y + 2),
které uvedenou vlastnost nem4.
ReSeni. Je-li xyz = pq(x + y + 2), musi byt bud jedno
z lisel x, y, z délitelné souCinem pg, anebo jedno délitelné
prvocislem p a jiné délitelné prvolislem ¢. Je-li napf. x =
= pgqx’, je
Xyz=x+y+2 t. z2xy—1)=x+y,

takze z déli soucet x + y.
Je-li x = px’, vy = gqy’, je obdobné

XVz=x+y+2 4. zHxy —1)=x+y,

takze opét z déli soutet x + y. Tim je dukaz hotov, nebot
dana rovnice je symetrickd v neznamych x, y, z.
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Z uvedeného feseni je vidét, Zze v pfipadé rovnice xyz =
= pqr(x + y + 2) prvodisla p, ¢, r musi byt riaznd, mame-li
najit n&jaké jeji feSeni, které nemd uvaZovanou vlastnost.
Vezméme tedy p = 2, ¢ = 3, r = 5. Rovnice

xyz = 30(x +y + 2)
muze mit feSeni tvaru
x =2x",y =3y, 2 =52,
coz vede k rovnici
x'y'z = 2x" + 3y’ + 52.
Volbou 2’ = 1 dostaneme jednodussi rovnici
x'y =2x" + 3y + 5,
ktera ma ptirozené feSeni napf. pro x” = 4 (3’ = 13) nebo
pro vy’ =3 (x" = 14). Cisla 8, 39, 5 a 28, 9, 5 jsou pak fe-
Senim rovnice xyz = 30(x + y + 2) a nemaji uvaZovanou
vlastnost.
A-11-2

Kazdé pole ¢tvercové tabulky 12X 12 je obarveno jedncu
z tfech barev. Dokazte, ze v tabulce existuji Ctyfi pole stejné
barvy, jeZ jsou rohovymi poli nékterého pravothelniku.

Reseni. Oznatime-li a, b, ¢ poéty poli jednotlivych barev
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v né&jakém sloupci tabulky, je a + b + ¢ = 12 a pfitom
g) + (;) dvojic poli
stejné barvy. Z nerovnosti (x + ¥ + 2)2 < 3(x? + 32 + 22),
kterd plati pro libovolna redlnd x, y, 2, plyne

v takovém sloupci najdeme (;) + (

a b cy 1 ) R !
2 +(2 + 2)_..é..<a2 + b2 +c2)— 6= **gl22~6=18.

V kazdém sloupci obarvené tabulky najdeme tedy asport
18 dvojic poli stejné barvy. Celkem tak existuje nejméné
12.18 dvojic fadka, které maji s nékterym sloupcem spole¢na
dvé pole stejné barvy. Pro alespoii tietinu z nich jsou odpo-
vidajici dvojice poli jedné barvy. Protoze

1 (12)
512185,

existuji nutné dva sloupce, v nichz se dvojice poli této barvy
vyskytuji ve stejné dvojici fadku, coz davé tvrzeni dlohy.

2. ¥eSeni. Uvazujme tu z barev, kterou je vybarveno
alesponi 48 (tfetina) poli dané tabulky. Uvazujme vSechny
mozné dvojice poli této barvy v jednotlivych sloupcich,

. - 12
zfejmé staci dokdzat, Ze je jich vzdy vice nez ( 2).

Pokud jsou v nékterém ze sloupcti méné nez Ctyii pole
zvolené barvy, piesuneme jedno pole ze sloupce, ve kterém
jsou naopak vice nez ¢tyfi pole vybrané barvy (ten existuje,
protoze viech poli této barvy je aspofi 48). Tim pocet viech
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dvojic poli zvolené barvy ve sloupcich jen zmensime, nebot
pro a < 4, b > 4 plati

a b a+1 b—1
(2)+(2)>( 2 )*( 2 )

Tak po konetném poctu krokat dostaneme tabulku, v niz
jsou v kazdém sloupci aspori Ctyfi pole vybrané barvy. Odtud
2) dvojic
poli zvolené barvy ve vSech sloupcich. Néktera ze dvojic se
bude proto opakovat, ¢imZ je existence hledaného pravo-
uhelniku dok4zéna.

3. Fefeni (podle S. Holuba, 2. ro¢. G Trutnov a O. Ra-
lika, 4. ro¢. G Nitra). Protoze 12.12 = 3.48, v tabulce
jisté najdeme 48 poli obarvenych stejnou barvou. Oznatme
jejich pocet v jednotlivych sloupcich x1, x2, ..., x12, x1 +
+ x2 + ... + x12 = 48. V kazdém sloupci tedy najdeme

plyne, Ze v ptivodni tabulce bylo aspoi 12. (g) - (1

aspon (J;Z) dvojic poli zvolené barvy.
Podle Cauchyovy nerovnosti je
12 12
i1 i1
takze pro viechny nalezené dvojice plati

12

12 12
20322
2] 7 2 b ’

i=1 i=1

i=1

[\
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12
=72 = 66.
><2> 66

Odtud plyne, Ze se nékterd z nalezenych dvojic musi opa-
kovat aspon ve dvou sloupcich. Existuje tedy hledany pravo-
uhelnik s vrcholy téZe barvy.

Pozndmka. Nerovnost

CxPsn x,

pouzitd pro n = 3 v 1. feSeni a pro n = 12 ve 3. feseni, je
specidlnim ptipadem Cauchyovy nerovnosti

CuwmP £ 34} 37,

kKlademe-liw; = 1,7, = x; (1 < ¢ £ n).

4. ¥eSeni (podle P. Fencla, 4. ro¢. G Pardubice). Pfedpo-
klddejme, Ze v nékterém fadku ¢i sloupci existuje aspoil 5
poli stejné barvy (A4). Bez Gjmy na obecnosti miZeme pied-
pokladat, Ze je barvou A obarveno prvnich pét poli prvého
fadku. Diéle se budeme zabyvat jen prvnimi péti sloupci
(tj. tabulkou 12X5).

V kazdém dal$im fadku se barva 4 muZe vyskytnout uz
nejvyse jednou, jinak jsme hotovi. Do péti poli jednoho

fadku muzeme umistit dvojici stejnobarevnych poli ( 2) =10
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zpusoby. Na zbyvajicich 11 fadcich tedy bud jednu dvojici
zopakujeme (a dostaneme hledany pravoahelnik), nebo jsou
v nékterém fadku aspon 3 pole jedné barvy (B). Pak nim
(;) = 7 moZnosti, jak umistit dalsi
dvojice poli barvy B do zbylych deseti Fadka, aniz by se
nékterd dvojice opakovala. V takovém piipadé by se zbyld
barva (C) vyskytla ve tfech fadcich aspoil tfikrat. Nyni uz
je vidét (obr. 22), ze takové tfi trojice nelze umistit, aniZ
by vznikl pozadovany pravothelnik.

ale zbyva jen ( g) —

N

Obr. 22

Pokud jsou v kazdém fadku i sloupci pravé Ctyfi pole
kazdé barvy, muzeme piredpoklddat, Ze barvou 4 jsou obar-
vena napf. prvni ¢tyfi pole prvého radku. Kdyby v kazdém
tadku prvych ¢ty sloupct byla barva A4 zastoupena nejvyse
jednou, dostaneme 4 + 11 poli barvy 4, coz odporuje tomu,
ze v Ctyfech sloupcich je celkem 16 poli kazdé barvy. Tim
je tvrzeni dokazano.

5. ¥eSeni (podle M. Lukace, 4. ro¢. G Bénovce nad
Bebravou). Uvazujme barvu A, kterou je vybarveno aspoit
48 poli dané tabulky, takZe existuje fadek, v némz jsou alespoii
Ctyfi pole této barvy. Je ziejmé, ze prehozeni radkua (resp.
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sloupcu) v tabulce nemd na existenci hledaného pravouhelni-
ku vliv stejné jako vymeéna radku za sloupce a naopak. Dej-
me tomu, Ze v dané tabulce pozadovany pravouhelnik ne-
existuje. V takovém pripadé v kazdé jeji Céasti, v niz je
jeden fadek (resp. sloupec) obarven zvolenou barvou, obsa-
huje kazdy dalsi radek (resp. sloupec) uz jen jedno pole té-
to barvy.

Kdyby v nékterém rfadku byla pravé 4 pole barvy A, v od-
povidajicich 4 sloupcich by pak bylo celkem nejvyse 4 + 11 =
= 15 poli této barvy, takze ve zbyvajicich 8 sloupcich by
bylo asponl 33 poli barvy 4. Pak ale zase néktery sloupec
musi obsahovat aspori 5 poli této barvy.

Pokud obsahuje néktery rdadek (¢i sloupec) tabulky pravé
5 poli barvy A, je v odpovidajicich péti sloupcich nejvyse
5 + 11 = 16 poli této barvy. Zbyla tabulka 12)X7 obsahuje
tedy nejméné 32 poli barvy 4 (nikoli uz v prvnim fddku, obr.
23). V nékterém jejim sloupci proto najdeme asponi 5 poli této
barvy a v odpovidajicich péti fadcich je pak nejvyse 11 poli bar-

[ATATATATAL T T T
LI IA T 1
I A T

? AT 56
T A T

|5+ A, !
i ATATAA
S ‘ il
et b o
= e

Obr. 23
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vy A. Ve zbylé tabulce 6X7 je tudiz aspoin 21 poli této
barvy, coZz znamend, ze v nékterém jejim fadku jsou aspon
4 pole barvy A a v odpovidajicich étyfecﬁ sloupcich pak nej-
vyse 9 poli této barvy. Protoze zbyvajicich nejméné 12 poli
barvy A nemuze lezet jen v tabulce 6X2 (obr. 23), vidime,
ze v oznaceném sloupci je aspoii 6 poli zvolené barvy.
Obsahuje-li vSak néktery sloupec (¢i fadek) aspori 6 poli
barvy A, dojdeme analogickym postupem (obr. 24) k tabulce

ALTTTTL

AL L L

I AL O S O A

AL [ 61 ] I

ALy L ‘

Al |

ATAIATATAIATAL [ 1]

[ B o W NS SN Y N

- ? : . | - 1 T__‘ ;11‘ 4
Obr. 24

2X 6, kterd by musela obsahovat nejméné 11 poli této barvy.
To je zfejmé ve sporu s nasim piedpokladem, takze hledany
pravouhelnik vzdy existuje.

A-11-3a

Je dano zobrazeni f intervalu (0, =) do mnoziny komplex-
nich Cisel takové, ze pro kazdé r € (0, =) soucasné plati
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[f(5) >0,
[f(D) + f(2)(sin ¢ + icos £) = 0,
(f(®) + 1] +[f2) + 3] = 4.

Vypoctéte obsah trojuhelniku, jehoZz vrcholy jsou komplexni

] 27
Cisla 0, f <?>, f (—3~>

Reseni. Z prvni rovnosti plyne, Ze je

A1) = f()| (—sin £ + i cos 1),

)45 (2 e2)
)1 (-)

Druhi rovnost znamend, ze hodnoty funkce f lezi na elipse
s ohnisky —3, —1 (komplexni soufadnice) a hlavni polo-

takze

TC
osou velikosti 2. Protoze pro argumenty « = Arg f (—3~>

2
afp=Argf (—3—> obou funkénich hodnot plati

1

J3°

tga = —tgff=—
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5 E A
jea = —f = 6 ™ protoze | f(z)] > 0, lezi body O,f<?>,

/

T
f<3> ve vrcholech rovnostranného trojthelniku (obr. 25).

T
Stali tedy vypotitat jeho vysku |x|, kde f <?> = x + 1y,

Obr. 25

Dosazenim do dané rovnice elipsy dostaneme

1 .
ﬁ (J/4x2 + 6x + 3 + |/4x2 + 18x + 27) =4,

takze po dvojim umocnéni postupné vyjde
(842 + 24x — 18)2 = 4 (4x% + 6x + 3)(4x2 + 18x + 27),
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x(13x + 36) = 0.

36
Odtud vychazi x = — T3 (vime, Ze je x %= 0 a Ze feSeni
existuje), obsah daného trojuhelniku je tedy
P 432
= 260 13.

Pozndmka. Obecné vyjde

12 sin ¢ ) )
. SE(~ sin 7 + i cos ), t € (0, 7).

D=

A-1Il-3b

V roviné jsou dany dva ruzné body E, F. Pro dané (islo
o € (0, 7) uréete mnozinu stieda stran BC vSech trojuhelnika
ABC lezicich v dané rovinég, pro které | < BAC| = « a body
E, F jsou patami jejich vysek z vrcholu B, C.

ReSeni. Piedpoklidejme, Ze trojihelnik ABC splituje
uvedené podminky. Je A4 #% E i A # F, protoze jinak by
musel byt trojihelnik ABC pravouhly s pravym uhlem pfi
vrcholu 4,atedy 4 = E = F,coznejde. Je tedy |x EAF| =

e
= o # o Trojuhelniky BCE, BCF jsou pravouhlé, takze

podle Thaletovy véty lezi body B, C, E, F na kruZnici s pru-
mérem BC.

Je-1i o <= PE lezi pata asporijedné z vysek piislusnych vrcho-
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Obr. 26

lam B, C uvniti cdpovidajici strany AC, resp. AB (obr. 26),
takze aspoil jeden z Ghla ECF, EBF je definovian a ma veli-

T i
kost 2 Podobné pro « > > lezi ob& paty vysek vné

stran AB, AC, takze (obr. 27)

Obr. 27

T
|x EBF| = |x ECF| =e—7

V kazdém pfipadé€ lezi jeden z vrcholu B, C trojuhelniku
ABC na oblouku kruznice s tétivou EF a obvodovym uhlem
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|
2
plyne, ze stfed strany BC je vzdy stiedem kruZznice s téti-

— ot|, pfitom BC je prumérem této kruznice. Odtud

7% |
vou EF a stfedovym thlem 2 5 . Takové kruznice
existuji v roviné dvé€, jejich stiedy S, S’ jsou soumérné
sdruzeny podle osy EF.

T
Obricené, pro dany uhel « € (0, 7), « 7# > ke kazdému

z bodu S, S’ najdeme trojihelnik ABC pozadovanych vlast-
nosti: stali napf. vzit prumér BC sestrojené kruznice rovno-

ki
bézny s EF, pfitem? pro o > 03 orientujeme usetku BC

7
souhlasné s EF (obr. 28a) a pro a < > opacné (obr. 28b).
Ptimky BF a CE se pak protnou v bod& 4, pro ktery ziejmé

Obr. 28a Obr. 28b
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plati, Zze body E, F jsou patami vysek trojuhelniku ABC
z vrchola B, C, a | BAC| = | ABE| + |X BEA| = a,

T
resp. | BAC| = o | % ECF| = a.

ULOHY III. KOLA
A-1-1

Dany lichobéznik rozdélte na dva tétivové Ctyfuhelniky,
jejichz opsané kruznice maji stejny polomér. Udejte pod-
minky fesitelnosti.

Reseni. Je-li lichob&Znik ABCD rozdélen na dva tétivové
Ctyfuhelniky pfimkou protinajici obé zékladny, z rovnosti
odpovidajicich Ghla vyjde, Zze ABCD je rovnobéznik.

Predpoklddejme tedy, Ze U, V jsou body na ramenech
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AD, BC takové, ze ABVU, UVCD jsou tétivové Ctyfuhelni-
ky (obr. 29). Pakje | UVC| == — |x UVB| = |x UAB|:
ProtoZe ob& opsané kruznice maji stejny polomér, plyne
z rovnosti obvodovych ahla |« UAB| = | < UVC| i rovnost
odpovidajicich tétiv |UB| = |UC|. Ze stejného duvodu je pak
i |AV| = |DV|. Kazdy z boda U, V tedy dostaneme jako
prusecik jednoho ramene s osou protéjsiho ramene lichobéz-
niku ABCD.

Uloha mi4 fedeni, privé kdyZ osy obou ramen prochdzeji
vnittkem protéj$iho ramene. V tom piipadé je podle Tha-
letovy véty (obr. 30) ctyfahelnik S$3VS2U, resp. UV S2S;

tétivovy, odtud pak snadno plyne, zZe i ¢tytthelniky ABV U,
UVCD jsou tétivové. Z rovnosti |UB| = |UC| déle plyne,
7e obé opsané kruznice maji stejny polomér.

Ozna¢me strany lichobézniku ABCD tak, aby bylo a > ¢,
b < d. Z kosinové véty pro trojuhelnik EBC (obr. 31) dosta-
neme, ze lichobéznik lze rozdélit na pozadované ¢tyruhelni-
ky, pravé kdyz a << x = |AX]|, kde
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(@ —c2 +d2— b2

d
2x 2d(a — ¢)

Ccas o =

Odrtud plyne jind nutnd a postatujici podminka existence
hledaného rozdéleni

ab? — cd? — aa — c)?> > 0.

(Vzhledem k predpokladu @ >¢, b < d je nutné o« < f§ <
<< 7 — a, takze 1 bod U lezi uvniti AD.)

Jiné FeSeni (podle O. Sucha, 1. ro¢. G Velkd Okruzn4,
Zilina). Je-li lichobéznik ABCD rozdélen piitkou XY na
dva tétivové Ctyfuhelniky, musi body X, Y leZet na rame-
nech AD, BC. Oznatme a, b, c, d strany lichob&zniku ABCD,
x = |AX| ay = |BY]| (obr. 32).

Pro polomér r obou opsanych kruznic <tyfthelnikim
ABYX, XYCD plati
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|BX| ICX]

r=25inm:2sin(7r—m)’

takZe z kosinové véty pro trojihelniky ABX, XCD dostaneme

Va2 + x2 — 2ax cos «

2 sin o

Ve + (d — x)2 — 2¢(d — x) cos (= — @)
2 sin (m — o) ’

Odtud vyjde velikost

¢z 4+ d? — a? + 2cd cos «
(2¢ — 2a) cos o + 2d

X =

Podobné z trojuhelniki ABY a YCD dostaneme
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Ve + (b — 5 — 2b — ¥) cos (= — ),

2 sin(t — )

b2 + 2 —a% + 2bccos

AT (2¢ — 2a) cos B

Tim jsou jednoznalné urfeny oba body X, Y. Pfitom je
vidét, ze dany lichobéznik ABCD lze uvedenym zplusobem
rozdélit, pravé kdyz 0 << x < d,0 <y < b.

A-11-2
Dokazte, Zze rovnice

xyz = p'(x +y + 2),

kde p > 3 je prvotislo a n liché pfirozené ¢islo, ma v oberu
celych kladnych ¢isel asponi 3(n + 1) raznych feeni. (Re-
$eni, ktera se 1i8i jen pofadim, nepovazujeme za razna.)
ResSeni. Nejprve ukazeme, ze v kazdém feSeni (x, y, 2)
dané rovnice jedno z &isel x, y, z déli soulet ostatnich
dvou. Jsou-li x = p*x’, y = p’y', 2 = p’s’ rozklady <&isel
X, ¥, 2 na soudin mocniny prvolisla p a Cisla s p nesoudél-
ného, muzeme vzhledem k symetrii dané rovnice piedpokla-

dat, ze« = f = y = 0. Pak je
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xys =p(p* VX +p7Y + &),

takze 2’ d&lip* "x’ + p’ "y, atedyi z déli x + y.
Predpokliadejme tedy, ze z déli x + y, pak je

) x+y=2zq xy=p"(q+1),

kde ¢ je celé Cislo. Pro ¢ = 1 cdtud dostaneme n + 1 riz-
nych feSeni

2pt, pn=i, 2pf + pri), i€ {0, 1, ..., n}

a pro ¢ = 2 dostaneme opét n + 1 raznych feSeni

1
<3pf, Pty 5 (3p +p"")>, Je{0,1,...,n}

Vyuzijeme tento postup i pro jind ¢: polozme x =r, y =
= s(q + 1), pfitom musi byt ¢ délitelem ¢isla x + y = r +
+ s + sq. Pro ¢ =7r + 5, 3 =5 + 1 tak dostaneme dalsich
n + 1 raznych feSeni

F, p R (ph 4 prk 1), pF + 1), ke {0,1, ..., n}.

Ozna¢me uvedené tfi mnoziny feSeni Py, P2, P3. Je P1 N
N Py = 0, nebot proliché n nemuze byt pro ¢, j€ {0,1, ...,n}

1
2t = Gp? + ")

neboli
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4 = 3pi-i 4 pn-i-i,

Podobné 2pi = pn~* 4 1 muze byt jen pro i =0, k = n,
takze je (2, p*, p* + 2)e P N P3. A P, N P3 = 0, nebot
pro zadna 7, k neni

1
5 G+ ) =prF + 1

Pro liché n jsme tedy nasli 3(n 4+ 1) — 1 feSeni dané
rovnice. Snadno ale najdeme dal$i feSeni. PoloZime-li napf.
v(l) x=13=p%q + 1), vyjde x +y =p"q +p" + 1.

1
Staci tedy vzit ¢ = > (p» + 1) a dostaneme FeSeni

1
<1, > pr(p™ + 3), p* + 2), které nelezi v z4dné z mnozZin

Pi, P2, P3. Celkem jsme tak nalezli 3(n + 1) raznych feSeni.

2. feSeni (podle J. Hory, 4. ro¢. G Brno, tf. kpt. Jarose).
Pro n = 1 a libovolné prvodislo p = 3 najdeme nasledujicich
Sest ruznych feseni dané rovnice

/ 1
(Lp + Lip(p + 2)), (l,p + 2, —2~p<p + 3)>,
1
L5 Gp+1),3) (1,2p + 1, 2p),
1 1
2,p +2,p), 2, —2“(P + 1),31’(;0 +5)].

106



Jsou-li &isla xg, Vo, 20 FeSenim rovnice
xyz = p'(x +y + z),
jsou &isla pxo, pyo, pzo ziejmé FeSenim rovnice
xyz = pt2(x + 3y + 2).
Protoze pro libovolné piirozené n = 3 jsou trojice
(Lp" + L, p" (p" + 2)),
(Lp" + 0" (" + P + 1),

(L p" + 2% 9" (0" +9* + 1)),
@)

1
(l’ "+ 23 —Z_P"<Pu + 3)>>
(L p* + p2, p"2(p" + p*> + 1)),

(2, = (" + 1), *l—p"(p"' + 5))

2 2 Y,
feSenim dané rovnice, plyne odtud tvrzeni tlohy matematic-
kou indukci: Jak jsme jiZz ukdzali, pro n = 1 tvrzeni plati.
Mai-1i dana rovnice pro n = k aspoii 3(k + 1) raznych Fe-
Seni tvaru (xi, i, 2i), 1 £ 1< 3(k + 1), ma rovnice pro
n ==k + 2 kromé& Sesti feSeni (2) i 3(k + 1) feSeni tvaru
(pxi, pvi, p2i), kterd jsou vesmés razna od fefeni (2), nebot
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viechny prvky kazdé takové trojice jsou soud€Iné s p. Celkem
mé tedy pron = k + 2 dandrovnice 3(k + 1) + 6 = 3(k + 3)
ruznych feSeni. Tim je dtikaz hotov.

3. FeSeni (upraveno podle I. Vazsonyiové, 4. ro¢. G mad.,
Komiérno). Pro ke {0, 1, ..., n} polozme x = p*(y + 2).
Pak bude dand rovnice splnéna, pravé kdyz

3) yz = prk(pk + 1).

Vidime, ze pro kazdé % najdeme alesponi n — k& + 1 rlznych
(neuspofadanych) dvojic (v, 2). Méme tedy pro vSechna
ke {0,1,...,n}aic{0,1,...,n — k} celkem

n

E(n—k+1)~—<n+ 1)2(11—{—2)

k=0

feSeni tvaru (pk(pi + pn-i + p’n-i—k‘)’ pi’ P'n~k—i(Pk + 1))- Ta
jsou pro p > 2 vesmés ruznd, nebot kazdd takovd trojice
obsahuje jedinou mocninu prvolisla p kromé ptipadu, kdy
n

p=3,k=0,1= o Davaji-1i tedy d&isla 7, &, resp. ¢/, & dvé
stejné trojice, je nutné 7 = 1’ pak je alei k£ = %', jak se snadno
piesvédcime.

Nasli jsme tak pro libovolné prirozené n a prvocislo p = 3

n+1)(n+2)

nejméné ——— 2) ruznych feSeni. Protoze pron = 4 je

(n + UZ;(E—@ i,
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stadi najit dalsi 3 feSeni pro n = 1 a dalsi 2 feeni pron = 3
(pfipadné i dalsi 3 feSeni pro n = 2, abychom dokézali
tvrzeni ulohy pro kazdé prirozené Cislo 7).

Pro n = 1 najdeme dalsi tfi feSeni tvaru

1 1 1
1
3>P> _5 (3 +P) >
pro n = 2 dal3i tfi feSeni tvaru
1 1
Gp, 20, 0), \ 5 2° +2 +4),2, 50+ 1)),
1 ) 1
@ +5),2, 5 (#* + 1)
a pro n = 3 dalsi dvé feseni tvaru
1 1
?p(P3 +P2 Ea 4)) 2: _2— P2<P = 1) 5
1 1
- P*+50),2p, 5 p(p + 1) ).

Pozndmka. Neni té€zké se presvédcit, ze tak dostaneme
vesmés ruzna feSeni i pro p = 3, takZe jsme tvrzeni dokazali
dokonce pro libovolné piirozené Cislo n a kazdé prvocislo
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p = 3. Vyhodou tohoto fe$eni je, ze obecné dostavame pod-
statné lepsi odhad pro pocet feSeni. Mohli bychom jesté vy-
uzit tu skute¢nost, ze p*¥ + 1 je sudé, takze v (3) dostaneme
dalsi rozklady tvaru

) o P+ 1
i n—k—4 ——
2p'.p >

které daji pro i€ {1,2, ..., n — k} jisté i dalsi feSeni. Ko-
necné spojenim s pifedchozimi vysledky se muzete sami po-
kusit o lepsi odhad. S vét§im poctem fesSeni bude ale i diskuse
toho, zda jsou ruzn4, slozitéjsi.

4. FeSeni (upraveno podle V. Majerecha, 4. ro¢. G Pardu-
bice). Polozme

x=p%, y=p, =z=p%,

kde «, f3,  jsou cela nezaporna Cisla. Pro pfirozena Cisla &, 7,
{ tak vyjde rovnice

Pp* P TEnE = pr(p™E + py + p7O).

Uvazujme o, f3, y takovd, ze o + f +y = n. Pro a = p%,
b = p’ ¢ = p” dostaneme rovnici

4) &yl = aé + by + L.

Nyni kazdému feSeni (&, #, {) rovnice (4) odpovidd FeSeni
x = a&, y = by, 2 = ¢ dané rovnice.
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Najdeme tedy néjaka FeSeni rovnice (4) v prirozenych
Cislech. Vezmeme-li § = 1, vyjde

. a+by

Ty —c
Odtud je vidét, ze pro# = ¢ + 1 dostaneme celoCiselné feseni
& n, ) =0, c+1, a+ bc + b). Tomu odpovidd Feleni
(a, b(c + 1), c(a + bc + b)) dané rovnice.

Dile ukazeme, Ze pro kazdou uspofidanou trojici (o, f3, )
takovou, ze « + f§ + y = n, dostaneme jiné feSeni puvodni
rovnice. Z ¢&isel a, b(c + 1), c(a + bc + b) je jediné a mocni-~
nou prvocisla p, piicemz Cislo

a+be+b=p"+p"" 4 pf =
=p*(L+p" 7 4+ p7), 2= f,
=p'(* PP+ 1), 22 B,

muze byt rovnéz mocninou prvocisla p jen prop = 3, a = f3,
y = 0 (v tom piipadé¢ je n = 2« sudé). Jsou-li tedy («, f3, y),
(o', B’y p") dvé uspofadané trojice, pro néz a + f§ +y =
=o' 4+ f' + 9’ = n, dostaneme stejné feSeni dané rovnice,
jen kdyz a = a’ (tj. « = &') a navic b(c + 1) = b'(c’ + 1),
tedy b = &', ¢ = ¢, anebo

blc +1)=c(a + bc +b),
5)
b(c" + 1) =cla + bc + b).
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V poslednim piipadé by ale muselo byt b = ¢’, b’ = ¢, takze
dl@ +bc +b)=>5ba+ bc+c)=blc+2)>bc+ 1)

To odporuje pfedchozi rovnosti (5).

Zbyva tedy zjistit, kolik existuje uspofddanych rozkladir
¢isla na tii nezdporné s¢itance. To je zndmd kombinatoricka
uloha ekvivalentni tomu, kolika zpusoby lze rozdélit n + 3
predméta v fadé na tfi neprazdné skupiny (ke kazdému sci-
tanci pfiddvdme 1, abychom dostali nenulové &islo). To jde

2
pravé (n ;_ ) zpusoby (vlozenim dvou piepazek do n + 2
mezer).
TR iy s . . . n4 2

Dokazali jsme tudiz, Ze dand rovnice ma alespoii 2

feSeni. (Pro n sudé a p = 3 bez dalsiho rozboru dostaneme

5 2) =3(n+ 1) pro

n = 4, plyne odtud tvrzeni tGlohy pro vSechna licha n = 5
a prvocisla p = 3. Zbyvajici pfipady n = 1 a n = 3 je tieba
opét vysetiit zvlast (jak jsme jiz ucinili v pfedchozim feSeni).
I v tomto feSeni Ize bez velkych obtizi ziskany odhad zlepsit,
viimneme-li si, Ze a + bc je pro liché p sudé &islo, takze rov-
a+ bc + 2b
2 .
Analogicky zjistime, Ze kromé piipadu p” = 3 dostaneme dal-
n + 2) -
2 =

s wr ~ n
ovSem Cislo o 1 mensi.) Protoze(

nice (4) mataké feSenié =1,y =¢c + 2,{ =

Sich ( -2|_ ) feSeni puvodni rovnice. Pfitom 2(

= 3(n + 1) pro vsechna pfirozena n.
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A-II-3

Zobrazeni f mnoziny vSech kladnych redlnych &isel do sebe
splituje pro kazd4 dvé kladna Cisla x, y rovnost

JEf@) + (%) = 2xy.

Dokazte, ze f(x) = x pro kazdé kladné x.

Reseni. Pro x = y z dané rovnosti vyjde
) S(xf(x)) = x2,
coz pro x = 1 dava f(f(1)) = 1, a pro x = f(1) pak dostaneme

f(1)2 =f(f(1)) = 1, takze f(1) = 1. Proy = 1 zase z pivod-
niho vztahu plyne rovnost

S(x) + f(f(x)) = 2x.

Odtud je vidét, Ze zobrazeni f je prosté.

1

Polozme nyni pro libovolné r kladné x = rf(r),y = —,
,

ddstaneme tak rovnost
1 1 ‘
f(rf(r)f (—)) +f<7fof<r>>) = 2/r),

takze podle (1)jef(r) = f(;f(r) f <~1— >> Protoze f je prosté,

je pro kazdé r kladné
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1
@ f(r)f(7,> = 1.

1
Podobné pro y = — dostaneme dosazenim do dané rovnosti
x

(o) o) -2

coz podle (2) mazeme psat jako

i )
f<f(x)> +f( x )‘ %

pficemz podle (2) pro libovolné x kladné soucasné plati

£\ (f%)
f(f(x)>f< x > -t

Soustava rovnic « + f =2, «ff =1 md jediné feSeni o =

= f# = 1, plyne tedy odtud f<%f(x)> = 1,tj. flx) = x pro

kazdé kladné x.

2. feSeni (podle R. Sotika, 4. ro¢. G Kosice, Smeralova
ul.). Stejné jako v pfedchozim fefeni odvedime vztah (1),
z kterého pro x = 1 plyne f(1) = 1.

1
Pro libovolné z kladné oznaime f(z) = a, f (z) = b.
Zrovnosti (1) pak plyne
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b 1
o 1(2) =4

2 22

b
Dosadime-li nyni do pavodni rovnosti x = az, y = — vyjde
2

f (“Z“) + f(bz) = 2ab

1
aprox = —,y = z zase dostaneme
2

(3) f <%> + f(b2) = 2.

>

Porovnanim obou ziskanych rovnosti vidime, e ab =1,
takze jednak pro kazdé kladné x plati

1
) f (7) =1
a specidlné je tedy

@ ()=

jednak muZzeme rovnost (3) piepsat jako

) P s R
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' a R
Z obou rovnosti (4), (5) plyne, Ze je f(~z—) :f<—a—) =1

N 2
aprox =-—-,y = 1 z pavedni rovnosti dostdvime, Ze

=) A

takZe a = z. Pro libovolné z kladné je tedy f(z) = =z.

3. fefeni (podle J. Sochora, 4. ro¢. G W. Piecka, Praha).
Oznatime-li f(1) = a, plyne z daného vztahu pro x =y =1
rovnost f(a) =1 a pro x =y = a dostaneme f(a) = a2, tj.
a? = 1. Protoze f(1) > 0, je f(1) = a = 1.

Pro y = 1 a pro libovolné kladné x z puvodniho vztahu
dostaneme rovnost

(6) J(x) +f(f(x)) = 2x,

tj. x je aritmetickym prumérem Cisel f(x), f(f(x)),

x) +
- RCORE )

Je tedy také

+ /(S
00 _fe) 2ff(f(l)))’ ) = s

Polozme fo(x) = x a fu(x) = f(fu(x)) pro n = 0 celé. Z né-
zoru je ziejmé (obr. 33), Ze pro f(x) # x a k — co vyjde
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o

[ A

£lx) 0 fix)  fix) x flf(x) f,(x)

_—

Obr. 33
Son(x) - —oo pro f(x) < x,
Sa(x) - —oo0 pro f(x) > x.

To odporuje tomu, ze oborem hodnot funkce f je podmnozina
kladnych redlnych Cisel, musi tedy byt f(x) = x pro kazdé x.

Dokazme nase heuristické tvrzeni podrobnéji: Z rovnosti
(7) plyne matematickou indukci pro kazdé £ = 0 rovnost

Srn(x) +fk+2(v)

2

“(x) = B il
coz piepiSeme jako
Jerax) — fer(x) = 2(fi(x) — fia(x)).
Matematickou indukci odtud dostaneme vztah
Jere(x) — frea(x) = (=201 (f(x) — x),

117



takzZe je také

Jiro(%) — fi(%) = fulx) — fern(x) = (=2)(x — f(x))-

Postupné tak dostaneme rovnosti

Ja(x) = 2%-Yx — f(x)) + for—o(x) = ... =

k—1
4k

—1
= x4 D 2 —fl) = x4 (2 — KO,
Saen(x) = =22 (x — f(x)) + foxa(x) = ... =

k—1
= flx) — z 20(x — f(x) =

i=0

2.48 41
=x——F(x — (%)

Je vidét, ze pro x << f(x) je for(x) << O pro dost velké % a pro
x > f(x) zase for11(x) << 0 pro dostate¢né velké k.

4. feSeni (podle P. Cizka, 2. ro¢. G W. Piecka, Praha).
Predpokliadejme, ze pro néjaké x kladné je f(x) = x a uva-
zujme kladnou posloupnost (a,),” , definovanou rekurentné

a1 = flan), ao = x.
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Stejné jako v predchozim feSeni odvodime rovnost (6), ze
které nyni pro x = ay plyne

Sax) + flak1) = 2ay,
neboli

a1 + arr2 = 2ay.
ProtoZe pfislusna charakteristickd rovnice 22 + 1 —2 =0

méa kofeny 4 = 1, A2 = —2, vyhovuji uvedené diferenéni
rovnici pravé vSechny posloupnosti tvaru

an = o + f(—2)n.

Z pocatetnich podminek ap = x, a1 = f(x) vyjde « + f = «x,
a — 2 = f(x), takZe

25 4+ f(x) x— f(x)
a=—7 >0 a f= 3——7:0.

Pro # > 0 vyjde oviem pro lichd n — oo

x

an=cx—2"ﬁ=ﬁ(ﬂ ~2”)—+—oo,

pro f# << 0 zase pro sudd n — o

\

24
ay =o + 2" = —f (— —B— - 2") — —o0.
To odporuje tomu, Ze posloupnost (@) je kladna.
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Poznamka. Obé piedchozi feSeni podstatné vyuzivaji toho,
ze oborem hodnot funkce f je mnozina kladnych realnych
¢isel. Bez tohoto predpokladu bude mit dana funkcionalni
rovnice dvé feSeni f(x) = x a f(x) = —x.

A-111-4

Je dédno pfirozené Cislo n = 3 a prirozena Cisla xp, x2, ...
x, takova, ze

(D) X < X2 << ... < xp < 2x1.

Je-li p prvocislo a r prirozené Cislo takové, ze pr déli soulin
X1X2 ... Xz, pak plati

X1X2 ... Xn !
— -
— ..
pr

(2)

Dokazte.
Reseni. Ozna¢me a,(x) tu ast rozkladu &isla x na prvo-
Cinitele, kterd neobsahuje prvoclislo p. Ziejmé ay(xy) =

= ay(x)ap(y). Je-lipr délitelem Cisla x, pak oviem a,(x) < % :
Kdyby nyni existovala ¢ < j tak, ze ap(x;) = ay(x;), pak by
bylo x; = px; = 2x;, tedy x, = 2x;, coz odporuje pred-
pokladu. Je tudiz au(x;) # a,(x;) pro ¢ # j a plati
ay(x1x2...x,) = nl. Rovnost ale muzZe nastat jen tehdy, jsou-li
Cisla ap(x;) permutaci Cisel 1, 2, ..., n, a navic musi byt
p >n (p nedéli zddné aq,(x;), nemuze tedy délit ani n!),
takze p = 5.
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Je-li ap(x;) = 1, ap(x;) = 2, tj. x; = p%, x; = 2p, pak je
bud s < ¢ Cili x, = 2p' = 2p5 = 2x1, nebo s > 1 a x, =
= p = pitl > 4pt = 2x;. Oba tyto ptipady odporuji pied-
pokladu alohy a rovnost proto nemuze nastat. Tim je dikaz
hotov.

Jiné Feseni. Z nerovnosti (1) predeviim plyne 2x; > x, =

Z2xp1+ 12 ... 2x+n—1,tedy x = n.

Bude stacit, kdyz pozadovanou nerovnost dokiZzeme jen
pro nesoudélnd <&isla xp, x2, ..., x, (n = 3) takovd, Ze
K1XS e xu/p” je celé &islo (pro » < 0 plati tvrzeni tim
spis). Je-li totiz d = (x1, x2, ..., x,) nejvétsi spole¢ny délitel
cisel x1, x2,..., xu, d = p*dy, kde p Vdp, pak pro nesoudélnd

isla x; = x;/d rovnéz plati x, < x, < ... < x, < 2x, aje
. Mot . oy i
X1X2 ... Xp p dix %, ... X, o Ex X,
P pr -0 prne
takZe pro x;x, ... x,/p" "% > n!l je tim spi§ x1x2 ... x,/p" >
> nl.

Pro nesoudélna Cisla dokdzeme tvrzeni ulohy matematickou
indukci. Pro n = 2 a (x1, x2) = 1 zfejmé plati

X1X2

PT

=2 =2
protoze soucin x;x2 obsahuje aspoil dva prvocinitele (je xo >
> x1 = 2)
Pron=3jebud x1 =3, x2o =4, x3=5<2x1 =6 a
X1X2X3

1’)7 = 12 > 31
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anebo x; >3 a

X1X2X3 XjXE
> = x; » > 2lx; 2 2x; >3
Predpoklddejme, Zze tvrzeni ulohy plati pro n — 1 = 3,

a uvazujme nesoudélni &isla x1, x2, ..., X, spliujici nase

predpoklady. ProtoZze nékteré x;, 1 < j < mn, je nesoudélné

s p, je podle indukéniho piedpokladu

X1X2 ... Xp X1 eeo Xj—1Xj41 <+« Xn
s = xy > > xi(n — 1)! =2 nl,

nebot &isla x1, ..., Xj-1, Xj11, - - ., Xp TOVREZ splituji pfedpo-
klady dlohy. Tim je tvrzeni dokazano.

Pozndmka. Snadno zjistime, Ze pro n = 2 nastane rovnost,
pravée kdyzp = 3, x1 = 2.35, x2 =351, s =2 0,r =25 + 1.

A-1ll-5

V tabulce 3X11 je na zatitku prvniho fadku a na konci
druhého fadku napsdna nula. Urlete nejmensi &islo «, pro
které je mozno tabulku vyplnit nezdpornymi redlnymi &isly
tak, aby soucasné platilo:

a) soucet Cisel v kazdém sloupci je 1,

b) soucet kazdych dvou sousednich ¢isel v 1. i 2. fddku je
nejvyse 1,

¢) soucet kazdych dvou sousednich &isel ve 3. fadku je
nejvyse a.
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Reseni. Uvazujme tabulku 3Xn, kde n je liché. Z pod-
minek ulohy plyne, Ze soucet Cisel jak v 1., tak i v 2. fadku je
n—1

nejvyse . Jsou-li ¢1, c2, . . ., ¢y Cisla ve 3. fadku tabulky,

dostaneme ze sloupcovych soultii nerovnost

n
ns > e +n—1
i =1

i-
Pro soucet Cisel ve 3. fadku navic plati
" w—1

23a=a+ 2 (i+an)+m=2a+nm—Da=
i=1

=1 =
= (n + )a,

takZe dohromady je

n

(n 4+ D« 2
1< zci§— , neboli o= ——.
2 n+1

i=1
Snadno se presvéd¢ime, Ze nésledujici tabulka 3X11 pro

o = ; vyhovuje podminkim ulohy:
0 1—ax o 1—2a 2o 1—3a 3a 1—4a 4o 1—5a 5u
l—« a 1—2a 20 1—3« 3¢ 1—4a 4o 1—5a 50 0
o 0 o 0 3 0 3 0 o 0 «a
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A-lil1-6

Jsou dény tfi rovnobé&zné ptimky AA4’, BB', CC’, které
nelezi v jedné roviné. Je-li U prusecik rovin A'BC, AB'C,
ABC’ a V prusetik rovin AB'C’, A’'BC’, A'B'C, pak je
ptimka UV rovnobézna s AA’. Dokazte.

Reseni. Oznatme S pruselik ptimek B'C, BC’ (obr. 34).

Obr. 34

Potom je Ue AS = ABC' Nn AB'Ca Ve 4d'S = ABC' N
N A'B’C. Odtud plyne, ze pfimka UV lezi v roviné 44'S,
kterd je rovnobézna s ptimkou BB’. To ovSem plati, i kdyz
jsou pfimky B'C, BC’ rovnobézné: za bod § pak vezmeme
takovy bod, pro ktery A4S || B'C || BC".

Podobné zjistime, Ze piimka UV leziivroviné BB'T || A4’,
kde T je prusetik piimek A'C, AC’, resp. bod, pro ktery
BT || A'C|| AC'. Prusetnice rovin AA’S, BB'T je pfimka
UV, a protoze AA’ je rovnobéinid s obéma rovinami, je
rovnobéznd i s jejich prasecnici.

Jiné ¥eSeni (podle P. Kolnika, 4. ro¢. G Nové Mesto nad
Vihom). Oznalme S, Sp, Sc¢ stiedy tGsetek A4', BB, CC'.
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Zavedeme kosouhlou soustavu soufadnic s poc¢atkem v bodé
Sisasosami x = AA', vy = SaSp, z = S4Sc¢. V této sou-
fadné soustavé jsou dvojice bodu A4, 4A'; B, B’; C, C' sy-
metrické podle roviny S4SgSc. Proto i dvojice rovin 4'BC,
AB'C’'; AB'C, A’'BC’' a ABC', A’'B'C jsou symetrické po-
dle roviny S4SpSc, a tedy i prusetik U rovin A'BC,
AB'C, ABC' a prusecik V rovin AB'C’, A'BC', A'B'C
jsou symetrické podle roviny S4SpSc. To znamend, ze piim-
ka UV ma smér osy x, tj. UV || A4".

Pozndmka. Obecné uvedené trojice rovin nemusi mit
spole¢ny bod, jak je vidét na obr. 35, kde AX = ABC' N
N AB'C,CY = ABC n AB'Ca AX || CY.

A A

Obr. 35
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Korespondenéni seminar UV MO

Koresponden¢ni seminaf je jednou z forem péce o talento-
vané zdky. Vznikl ve 24. ro¢niku MO proto, aby bylo mozno
vénovat individualni pédi i tém zdkum, ktefi nemaji moznost
navstévovat specidlni $koly a pracovat v tamnich seminafich.
Tyto ukoly vsak jiz plni i krajské koresponden¢ni semindie,
které postupné vznikly ve vSech krajich. Navic specidlni §koly
se zaméfenim na matematiku uz ddvno nejsou vysadou jen
»hlavnich mést« Prahy a Bratislavy, ale najdeme je ted v kaz-
dém kraji. Neucast zaku specialnich $kol se tak v posledni dobé&
stala jistym anachronismem. Z toho plynula i pomérné mala
korelace mezi umisténim v korespondenénim seminafi a vy-
sledky celostatniho kola kategorie A. PUV MO se proto roz-
hodl zaméfit koresponden¢ni seminaf vyraznéji na pfipravu
reprezentantll pro mezinarodni matematickou olympiadu.

K 1casti v koresponden¢nim seminafi jsme tentokrat pc-
zvali vSechny $pickové fesitele kategorie A bez ohledu na
jejich Skolni pfislusnost spolu s témi studenty, ktefi néjak
vynikli v krajskych kolech kategorie B ¢i C predchoziho roc-
niku MO. Vybrali jsme tak téméf 50 studentu, z nichz se
prihlasilo 37 fesitela ze vSech kraju republiky.



Kraj Pha St¢ J¢ Z&¢ S¢ V¢ Jm Sm Bva Zsl Ssl Vsl

V prabéhu 35. ro¢niku MO jim bylo postupné zasldno 5 sérii
pomérné niro¢nych tuloh. Jednotlivé série tentokrit nebyly
monotematické, naopak jsme se snazili pokryt celou proble-
matiku olympiddnich uloh. Dosld feSeni pak byla opravena,
ohodnocena a s rozmnozenym komentdfem vricena ucast-
nikim semindie. VSechna kola seminafe absolvovalo 12 fe-
sitela, nejlep$imi v celkovém hodnoceni byli

Ilja Martisovits, G J. Hronca, Bratislava,
Viadan Majerech, G Pardubice,

Marian Lukdé, G Banovce n. Bebravou,
Zdenék Tryner, G J. Fucika, Plzen,
Stanislav Krajéi, G Kosice, Smeralova,
Petr Cizek, G W. Piecka, Praha,

Ondrej Such, G Zilina, Velka Okruzni.

o1 O DU e 1o =

O ndrocnosti zadanych uloh svéd<i i to, Ze pouze prvnich pét
fesitelu dosdhlo aspon 50 9, moznych bodi.

Koresponden¢ni seminaf byl fizen tajemnikem UV MO
RNDr. Karlem Horikem, ktery se staral o vybér a pripravu
aloh a provadél i redakci komentdfa. Opravu pak zajistovalo
né&kolik pracovnikia MU CSAYV a nékolik studenti a aspiranti
MFF UK Praha (vSichni jsou byvali olympionici). Uvadi-
me znéni viech zadanych uloh.
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1.1 Na povrchu jednotkové koule lezi kruznice yq, 71, - - -,
va poloméru r (n = 3). Kruznice o se dotykd viech kruZnic
V1,25 - . ., VYo @ rovnéz dvojice kruznic y1 a ye, y2ays, ..., ¥a
a y1 se dotykaji. Pro jakd n je to mozné? Spoctéte piisludny
polomér r.

1.2 Je din konvexni Ctyfuhelnik a ¢tyfi kruhy se stiedy
v jeho vrcholech takové, ze ho cely pokryvaji. Dokazte, ze
z danych kruhi mUZzeme vybrat tii tak, Zze pokryvaji troj-
uhelnik urceny jejich stiedy.

1.3 Neékteré stény bilého konvexniho mnohosténu jsou
obarveny Cerné, pfiCemz zadné dvé Cerné stény nemaji spo-
le¢nou hranu. Dokazte, Ze mnohosténu nelze vepsat kulovou
plechu, je-li splnéna aspoii jedna z nésledujicich podminek:

a) Cernych stén je vice nez polovina;
b) obsah ¢ernych stén tvofi vice nez polovinu povrchu mno-
hosténu.

1.4 Je mozné rozlozit rovnostranny trojuhelnik na milién
konvexnich mnohouhelnikii tak, aby jich libovolna pifimka
protinala nejvyse &tyticet? (Rikdme, Ze ptimka protind mno-
houhelnik, jestlize s nim ma spoletny asponl jeden bod.)

1.5 Oznalme s(n) ciferny soucet pfirozeného Cisla n. Pro
jakd prirozend Cisla k existuje kladné Cislo ¢ takové, Ze pro
viechna pfirozend N plati

s(kN)
s(N)

= c?
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Pro dané k najdéte nejvétsi takové cy (napf. pro k& = 8 je
‘ 1
x = ‘é‘ .

1.6 Body P, Q se pohybuji po dvou riznobéznych pfim-
kéch stejnou konstantni rychlosti. Dokazte, Ze v roviné rizno-
bézek existuje bod A4, od néhoz maji body P, Q vzdy stejnou
vzdalenost.

1.7 Dokazte, ze &isla 1, 2, ..., n nelze rozdélit na dveé
skupiny tak, aby se soutin ¢isel v jedné skupiné rovnal sou-
¢inu ¢isel ve druhé skupiné.

2.1 V jedné zemi, kde vlddne prezident Miraflores, maji
byt nové prezidentské volby. V zemi je pravé 20 miliéna vo-
li¢t; z nichz pouze 1 procento (pravidelnd armada) podpo-
ruje Miraflorese. Miraflores pfirozené chce byt opét zvolen,
ale chce také, aby volby probéhly »demokraticky, tj. vSichni
voli¢i jsou rozdéleni do nékolika stejné velkych skupin, kazd4
ze skupin je znovu rozdélena na stejné velké skupiny, atd.;
v téch poslednich, nejmensich skupinach si jeji ¢lenové zvoli
zastupce, pak si zvoleni zéstupci zvoli svého zistupce ve vétsi
skuping, atd. Nakonec zvoleni zdstupci prvnich (nejvétsich)
skupin zvoli nového prezidenta. Miraflores sdim déli volice
do skupin a instruuje své zastince, jak maji hlasovat. MuZe
zorganizovat »demokratické volby« tak, aby byl opét zvolen
prezidentem ? (Pfi rovnosti hlast vitézi opozice.)

129



2.2 Dva hradi hraji nasledujici hru: Z hromadky 25 za-
palek kazdy postupné odebere jednu, dvé nebo tii zdpalky.
Vyhrdva ten, ktery bude mit nakonec (kdyz hromadku ro-
zeberou) sudy pocet zapalek. Kdo vyhraje pfispriavné hie —
zatinajici hra¢, nebo jeho soupeif ? Jak ma hrit, aby vyhral ?
Jak se zméni odpovéd, jestlize vitézem bude ten, ktery ziska
lichy pocet zapalek?

2.3 Je didna tseCka AB. Najdéte mnozinu boda C v ro-
viné takovych, ze v trojahelniku ABC je délka téZnice
z vrcholu 4 rovna vysce z vrcholu B.

2.4 Ve &tvercové tabulce n)Xn jsou zapsina neziaporna &isla
tak, ze soulet Cisel v kazdém fidku a v kazdém sloupci je 1.
Dokazte, Ze muZeme v tabulce najit # kladnych ¢&isel, z nichz
Zzadna dvé nejsou v témze sloupci, ani v témze Fadku.

2.5 Dno obdélnikové krabi¢ky je pokryto destitkami roz-
méra 2X2 a 1X4. Po vysypani desti¢ek se jedna desti¢ka
2X2 ztratila. Misto ni se podatilo opatfit desticku 1X4. Je
mozno pokryt opét celé dno krabicky ? 7

Reste analogickou dlohu pro desticky tvaru | | |
a destic¢ky 1X3.

2.6 Dokazte, ze v tabulce
1
111
12321
1367631
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(kde kazdé Cislo je rovno soultu tii &isel v fadku nad nim) je
v kazdém fadku poéinaje tietim aspofi jedno sudé &islo. Ob-
sahuje kazdy fadek Cislo délitelné tiemi ?

2.7 Necht tii kruznice stejného poloméru prochizeji jed-
nim bodem. Pak tfi dalsi prusetiky jednotlivych kruznic le7{

na kruznici téhoz poloméru. DokaZte.

3.1 Na obr. 36 je rovina pokryta ¢tverci péti barev. Stfedy
Ctverch téze barvy lezi ve vrcholech &tvercové sité, pricemz
ptislu$né Ctvercové sité dostaneme vzdjemnym posunutim.
S jakym poctem barev lze takového pokryti dosihnout ?

Na obr. 37 je rovina pokryta pravidelnymi $estidhelniky

\\\
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sedmi barev tak, ze stfedy Sestithelniki stejné barvy lezi
ve vrcholech previdelné trojihelnikové sité. Pritom jednotlivé
sit¢ dostaneme vzdjemnym posunutim. S jakym pocltem
barev lzetakového pokryti dosdhnout ?

3.2 Jsou-liby, bo, . . ., by nenulova celd Cisla a ay, ag, ..., ay
navzdjem riznd prirozend Cisla, kterd nejsou délitelnd dru-
hou mocninou zddného celého ¢isla razného od 1, pak

bilar + belaz + ... + bullan #O.
Dokazte.

3.3 Je ddna kruZnice k a pfimka p. Oznalme A4 patu kol-
mice spusténé ze stiedu kruznice k2 na piimku p. Zvolme
na pfimce p dva razné body B, C tak, ze |4AB| = |AC|,
a vedme body B a C pfimky, které protnou kruznici £ v bo-
dech P, Q a M, N. Pfedpoklddejme, Zze ptimky PM a QN
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protnou piimku p v bodech R, S, pak je |AR| = |4S].
Dokazte.

3.4 Necht pro kazdé dva body A4, B kone¢né mnoZiny M
bodu v roviné existuje bod Ce M takovy, Ze trojuhelnik
ABC je rovnostranny. Kolik bodid muZze obsahovat mno-
zina M?

3.5 Zjistéte, kolik feSeni ma soustava rovnic

2+y+xy=a

I
o

X2 — 32
pro redlna &isla a, b.

3.6 Na nekonetném listu Ctveretkovaného papiru je 7
¢tvereCku obarveno Cerné. Dokazte, Ze existuje kone¢ny pocet
Ctvercu, pro néz soucasné plati:

a) vybrané Ctverce obsahuji vSechny Cerné ctverecky,

b) v libovolném z vybranych &tvercu zaujimaji Cerné Ctve-

1 3
recky alespon 5 ane vice nez 5 obsahu celého &tverce.

3.7 Rovinny utvar, jehoz zddné dva body nemaji vzdile-
nost 0,001, je ¢asti jednotkového &tverce. Dokazte, Ze obsah
tohoto utvaru je nejvySe 0,34. Pokuste se najit piesnéjsi
odhad a dokdzat analogické tvrzeni v prostoru.
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4.1 Na 44 stromech zasizenych na hranici kruhu sedi 44
ptacka zpévalka (na kazdém stromé jeden). Cas od tasu dva
z nich soucasné preleti na sousedni stromy v opalnych smé-
rech (jeden ve sméru a druhy proti sméru hodinovych ruci-
¢ek). Dokazte, ze nikdy nebudou vsichni ptici na stejném
stromé. A je-1i stromu i ptac¢ka n?

4.2 Jsou dany tii shodné kruznice ki, ko, k3, které se vzi-
jemné dotykaji, a kruznice k, kterd je jim opsédna. Vedeme-li
bodem M < k te¢ny ke kruznicim k1, ke, k3, pak je vzdalenost
bodu M od jednoho z bodu dotyku rovna soutu vzdilenosti
od druhych dvou. Dokazte.

4.3 a) Rovinnému uhlu jsou vepsiny dvé kruznice, které
maji spole¢nou jesté dalsi te¢nu 7372 (s body dotyku T3, Tv),
ktera protind ramena uhlu v bodech 4;, A4». Dokazte, ze
| AL Th| = |A2Tos)|.

b) Uhlu jsou vepsany dv& kruznice, které se dotykaji jeho
ramen v bodech Kj, Ks, resp. L, Ls. Dokazte, ze pfimka
K;Ls vytind na obou kruznicich shodné tétivy.

4.4 Jestlize n-prvkova mnozina E ma m raznych vlastnich
podmnozZin takovych, Ze libovolné dva prvky E jsou pravé
v jedné z uvedenych podmnozin, pak m = n. Dokazte.
V jakych pripadech muze byt m = n?

4.5 Jestlize




a b c
G- te—apt@_ee™

0.
Dokazte.

4.6 a) Z 19 kulicek jsou 2 radioaktivni. Jednim méfenim
Ize zjistit, obsahuje-li zvoleny soubor kuli¢ek néjakou radio-
aktivni & nikoli (ale nelze zjistit pocet radioaktivnich kuli-
¢ek). Dokazte, Ze osmi méfenimi lze urcit obé radioaktivni
kuli¢ky.

b) Z 11 kuli¢ek jsou 2 radioaktivni. DokaZzte, Ze pii méné
nez 7 méfenich nelze zarucit jejich nalezeni.

4.7 Ve vsech polich tabulky 100<100 jsou napsdny plusy.
Je dovoleno zménit soucasné vSechna znaménka jednoho
sloupce nebo fadku. Je mozné po nékolika takovych opera-
cich dostat tabulku s 1 970 minusy ?

5.1 Na nekone¢ném listu ctvereckovaného papiru je n
Ctverecka obarveno cerné. Dokazte, Ze existuje kone¢ny po-
cet disjunktnich ¢tverct s vrcholy v uzlech sité, pro néz
soucasné plati:

a) vybrané Ctverce obsahuji viechny Cerné Ctverecky,

b) v libovolném z vybranych Ctverct zaujimaji Cerné

1
¢tverecky alespon 5 ane vice nez 5 obsahu celého Ctverce.

5.2 Prom > 1 pfirozené feSte v oboru celych nezdpornych
¢isel rovnici
x2 —mxy + 3% = 1.
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5.3 Na Kkartickidch jsou zapsana Cisla 11111, 11112, ...,
99999. At sefadime jednotlivé karti¢ky jakkoli, 444 445-ciferné
Cislo, které tak dostaneme, nebude nikdy mccninou dvojky.
Dokarzte.

5.4 V trojuhelniku ABC oznatme V stied kruznice vepsa-
né a M stied strany BC. Oznatime-li E prusecik vysky AH
trojuhelniku ABC s ptimkou MV, ma uase¢ka AE délku
poloméru kruznice vepsané. Dokazte.

5.5 V roviné jsou dany tii piimky prcchazejicijednim bo-
dem a dalsi bod 4 na jedné z nich. Sestrojte trojahelnik
ABC, jehoz osy uhlu jsou dané piimky.

5.6 Dva mudrci hraji nasledujici hru s ¢isly 0, 1, 2, ...,
1024. Prvni mudrc vyskrtne 512 Cisel, druhy dalsich 256
cisel, pak zas prvni vy$krtne dalSich 128 a druhy 64 cisel, atd.
Patym tahem vySkrtne druhy jedno C(islo, takze zbudou
pravé dvé Cisla, a druhy zaplati prvnimu jejich rozdil. Jak
ma hrat prvni hra¢, aby dostal co nejvic? A jak druhy, aby
platil co nejméné? Kolik mu zaplati, budou-li oba hrat co
nejlépe ?

5.7 V roviné jsou dany body P, Q lezici v téze poloroviné
uréené pfimkou p. Na piimce p najdéte bed M, pro ktery
je vzdilenost pat vySek trojuhelniku POM ke stranam PM
a QM nejmensi.
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28. rofnik meziniarodni matematické olympiady

Dvaciti osma mezinarodni matematicka olympidada (MMO)
se konala ve dnech 5.—16. Cervence 1987 v hlavnim mésté
Kuby - Havané. Utast na ni byla rekordni - v sout&zi byly
zastoupeny 42 zemé: Alzirsko, Austrédlie, Belgie, Brazilie,
Bulharsko, Ceskoslovensko, CLR, Finsko, Francie, fran,
Island, Itilie, Jugosldvie, Kanada, Kolumbie, Kuba, Kuvajt,
Kypr, Lucembursko, Madarsko, Maroko, Mexiko, Mon-
golsko, NDR, Nikaragua, Nizozemi, Norsko, NSR, Panama,
Peru, Polsko, Rakousko, Rumunsko, Recko, SSSR, Spa-
nélsko, Svédsko, Turecko, Uruguay, USA, Velkd Britinie
a Vietnam. Kromé toho byli na 28. MMO pfitomni dva
pozorovatelé, a to z Irska a z Nového Zélandu.

Prubéh 28. MMO odpovidal obvyklému standardu. Mezi-
narocdni porota MMO slozenda z vedoucich jednotlivych
delegaci a predsedy, jimZz byl prof. Miguel Jiménez Pozo
z havanské univerzity, pracovala nejprve v piisné izolaci od
soutézicich v Santa Maria del Mar, kde z navrhu zaslanych
zulastnénymi zemémi vybirala dlohy pro soutéz.

Porota se snazila piedeviim sestavit tematicky vyvazeny
soubor uloh, ktery by dostate¢né provéfil znalosti a schop-
nosti soutézicich. I kdyz se ji to vcelku podatilo, ukdzaly konec-
né vysledky, ze ponékud piecenila obtiznost soutéznich aloh.

137



Pro soutéz bylo vybrano téchto Sest uloh z navrhu, jez
zaslaly NSR (1 a 3), SSSR (2 a 6), Vietnam (4) a NDR (5).

1. Oznatme p,(k), n = 1, k = 0, pocet permutaci / mno-
ziny S, = {1, 2, ..., n} takovych, Ze rovnost f(j) = j plati
pro pravé k hodnot j € S,. Dokazte, Ze

S kpu(k) = nl.
k=0

Pozndmka. Permutaci mnoZiny S, rozumime vzdjemé jednoznad-
né zobrazeni mnoziny S, na S,.

2. Osa thlu BAC ostrothlého trojuhelniku ABC protina
stranu BC v bodé L a kruznici opsanou trojuhelniku ABC
v bodé N, N # A. Oznatme K, M paty kolmic spusténych
z bodu L na strany AB, resp. AC. Dokazte, 7e ¢tyfuhelnik
AKNM a trojahelnik ABC maji tyZ obsah.

3. Necht x1, x2, ..., x; jsou redlnd Cisla takovéd, Ze
5 3 bl a

2

4+ ... +2=1

Dokazte, ze pro kazdé celé Cislo & > 1 lze nalézt celd Cisla
ai, as, ..., a, takova, ze

@) a; 7 0 pro alespori jedno 7, 1 <7 < n,

(ii) laj] £k — 1 proviechna j, 1 <7< n,
R—1  —

(iii) @ + azxe + ...+ awxa] £ 5 U
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4. Dokazte, ze neexistuje funkce f zobrazujici mnoZinu
No = {0, 1,2, ...} viech nezdpornych celych Cisel do Ny ta-
kovd, ze

ff(n)) =n + 1987
pro kazdé n € N,.

5. Dokazte, ze pro kazdé prirozené Cislo n = 3 Ize v roviné
nalézt n bodu tak, aby platilo:
(1) vzdélenost kterychkoli dvou z nich je iraciondlni &islo;
(ii) kterékoli tfi z nich urluji trojuhelnik, jehoz obsah je
kladné raciondlni &islo.

6. Nechtnjecelé &islo,n = 2. Dokazte: Jestlize k2 + k + n
je prvocislo pro kazdé k, 0 < k < |/n/3, potom je k> + k + n
prvodislo pro kazdé 2,0 < k < n — 2.

I kdyz obtiznost aloh byla ruzni, bylo rozhodnuto, jak je
v poslednich letech na MMO zvykem, ocenit spravné feseni
kazdé ulohy sedmi body. Kazdy soutézici mohl tedy ziskat
maximalné 42 body; jak se pak ukazalo, 22 zékam se to sku-
te¢né podatilo.

Price v mezindrodni poroté spojené s vybérem, formulaci
a preklady soutéznich tloh probihaly bez vétSich problému
a byly v nélezitém terminu ukonceny. Mezitim se jiz v Ha-
vané shromdzdili soutézici. Ti byli po celou dobu MMO
ubytovani v interndté¢ Leninova institutu (Instituto Preuni-
versitario Vocacional en Ciencias Exactas V. I. Lenin) na
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okraji Havany. Zde také ve dnech 10. a 11. &ervence probé&hla
vlastni soutéz vcetné slavnostniho zahijeni (10. Cervence
dopoledne), jehoz se zucastnil mj. téz kubédnsky ministr
Skolstvi J. R. Fernandez.

Mezinirodni porota, kterd 10. Cervence odpoledne pie-
sidlila do Havany, sem pak dojizdéla k prici na opravé
a koordinaci hodnoceni zédkovskych feSeni. Koordinace byla
dobie pfipravena a prob&éhla pomérné rychle; uplatiiovana
kritéria nebyla prili§ pfisnd. Na zdvéreném zasedini dne
13. Cervence mohla tak porota jiz schvalit definitivni vysledky
soutéze a rozhodnout o rozdéleni cen: na 28. MMO bylo
udéleno 22 prvnich cen (pouze za maximdilni bodovy zisk -
42 bodu), 42 druhych cen (za vykony ohodnocené 32 —41 bo-
dy) a 56 tietich cen (za 1831 bodu). Z celkového pottu
237 soutézicich tak bylo ocenéno 120, tj. pfiblizné polovina
(50,63 %,). Specidlni ceny nebyly tentokrite udéleny zadné.

Celkové vysledky jednotlivych delegaci jsou patrny z pfi-
pojené tabulky 1.

Slavnostni zakonceni 28. MMO se konalo dopoledne
15. ¢ervence v sale budovy kubdnskych ozbrojenych sil, opét
za ulasti kubdnského ministra 3kolstvi. Vystoupil zde také
zastupce Austrdlie prof. P. ]J. O’Halloran, ktery pozval
vSechny pritomné delegace na 29. MMO, kterd se mi konat
v Cervenci 1988 v Canbefe. Slavnost byla doplnéna vystou-
penim skupiny populdrni hudby.

Vedle odborného pregramu méli soutézici zici dostatek
prilezitosti vyuzit volnych chvil jak k rekreaci a sportu
(pfimo v aredlu institutu), tak i k sezndmeni se s pamétihod-
nostmi Havany. Dne 14. Cervence se pak mohli zacastnit
hromadného autobusového vyletu na Playa Girén.
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Vsichni ucastnici 28. MMO se sesli dne 13. ervence na
recepci, kterou pro né uspofddal kubansky ministr Skolstvi
J. R. Fernéndez.

Pii stdle rostoucim poctu ucastnika je ukol organizovat
MMO velmi naro¢ny. Je tieba konstatovat, Ze se ho kubéan§ti
poradatelé zhostili uspé$né a ze se 28. MMO bezesporu radi
mezi z-'afilé mezindrodni akce.

Ceskoslovenska téast
na 28. MMO

Na 28. MMO vyslalo Ceskoslovensko delegaci ve sloZeni:

vedouci dclegace RNDr. Frantisek Zitek, CSc., MU CSAV,
Praha, pfedseda UV MO

zastupce

vedouciho: RNDr. Tomds Hecht, CSc., MFF UK,
Bratislava, ¢len PUV MO

soutézici zéci: Robert Babilon, 4 M, GMK, Bilovec
Perr Cisek, 2 M, GWP, Praha
Pavol Gvozdjak, 2 M, GAM, Bratislava
Viadan Majerech, 4 MF, G, Pardubice
Marcel Polakovic, 4 M, GAM, Bratislava
Roman Sotdk, 4 M, G, Kosice

Dale byla na 28. MMO pfitomna také RNDr. Julia Lukatso-
va z ministerstva $kolstvi SSR jako pozorovatelka.

Utast delegace silné poznamenaly nepiijemné problémy
s dopravou na Kubu. Namisto puvodné planovaného spolec-
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ného cdletu v sobotu 4. Cervence cestovala nase delegace ve
tiech skupinach 4., 6. a 9. Cervence. Tak se také stalo, ze dva
nasi soutézici, M. Polakovi¢ a R. Sotik, dorazili do Havany
teprve v Casnych rannich hodinidch v patek 10. Cervence,
tedy v prvni soutézni den. Je jenom pfirozené, Ze se tato
skute¢nost nepfiznivé projevila na jejich vykonu v soutézi.

Vysledky nadich zdka na 28. MMO jsou shrnuty v ta-
bulce 2. Jak je z ni vidét, méli nejvétsi potize se Sestou ulo-
hou, kterou nikdo z nich spravné nevyiesil. Sesta tloha byla
také skute¢né nejtézsi tlohou 28. MMO a uspéch pfi jejim
feSeni rozhodoval o umisténi na prednich pozicich.

I pfes zminéné dopravni komplikace a netaspéch u Sesté
ulohy je celkovy vysledek Ceskoslovenské reprezentace na
28. MMO pozitivni. VSichni nasi Z4ci ziskali ceny a v neofi-
cidlnim poradi druzstev podle souctu bodu jsme zaujali de-
vaté misto.

Tabulka 5
Celkové vysledky 28. MMO

Pocet

Zemé - T N T

zaku bodu I.cenIl.cenIII.cen
Alzirsko 6 29 0 0 0
| Australie 6 143 0 3 0
| Belgie 6 74 0 0 1
| Brazilie 6 116 1 0 2
Bulharsko 6 210 1 3 2
Ceskoslovensko 6 192 0 4 2
CLR 6 200 2 2 2
Finsko 6 69 0 0 2
| Francie 6 154 0 3 2

|
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Tabulka 5 - pokracovani

fran
Island
Italie
Jugoslavie
Kanada
Kolumbie
Kuba
Kuvajt
Kypr
Lucembursko
Madarsko
Maroko
Mexiko
Mongolsko
NDR
Nikaragua
Nizozemi
Norsko
NSR
Panama
Peru
Polsko
Rakousko
Rumunsko
Recko
SSSR
Spanélsko
Svédsko
Turecko
Uruguay
USA

| Velka Britanie

Vietnam

bodu

I.cenII.cenIIl. cen

70
45
35
132
139
68 |
83
28
42
27
218
88 -
17
67
231
13
146
69
248 |
i 7 i
41
55
150
250
111
235
91
134
94
27
220
182 |
172 |

CHNOOOOWOUVIOOOOARCOONDODODOQOOSOCOCO~=OOCOO
HFNRWOONOWORNOOONOFOWOOOUVMIOCCOCOOO~=-OOQ
VN~ ONNROBROUWUNOOOCOROHFHOOWHOON M- WmO -
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¥
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Tabulka 6

Vysledky &s. zdku na 28. MMO

Pocet bodu
Jméno ) Cena
1 zza ;logu 5 6 celkem
Babilon 73 77 71 32 II.
Cizek 7771770 35 11.
Gvozdjak 77 7 7 7 3 38 II.
Majerech 77 7 77 2 37 II1.
Polakovi¢ 70 0 770 21 I11.
Sotak 73 0 775 29 II1.
Celkem |42 27 28 42 42 11 192
|
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Reseni dloh 28. MMO

1. VSech permutaci f mnoziny S, je n!, v kazdé z nich je
urdity pocet k (k =0, 1, 2, ..., n) prvka 7, pro néz plati

) JG) =1,
odtud plyne rovnost
"
@) S pu(k) = nl.
£—0

Z n-prvkové mnoziny S, lze k prvku vybrat pravé (Z) zpu-

soby; plati-li pro téchto %k vybranych prvkua (1) a pro ostatni
n — k pak f(j)# j, dostaneme permutaci f zapoltenou
v pn(k). Médme tak rovnost

) 2ut8) = () pu-a®

platnou pro viechnan > 1, k = 0.
Jestlize je & > 0, pak

() =i 20):

145



takze vidime, Ze v dusledku (3) a (2) je

z kpalh) = Z kpu(k) = Z () po-st0) =
=n Z (: )p,,_L(O) =n an () = n(n —1)! = nl,

k=1

coz jsme méli dokazat.
Pozndmka. Rovnost

4) kpu(k) = npua(k — 1)

se dd odvodit i bez pouziti (3) pfimou kombinatorickou
uvahou:

Vybereme si nékterou z p,(k) permutaci f's pravé & prvky;
splitujicimi (1) a potom si z téchto & prvka zvlast vyznalime
jeden (coz lze ulinit & zpusoby); celkem mame k.p,(%)
moznosti volby. Ke stejnému vysledku vsak dospéjeme,
jestlize nejprve vybereme jeden prvek jo z mnoziny S,
(tento vybér lze provést n zpusoby) a potom ur¢ime permu-
taci f tak, ze polozime f(jo) = jo, kdezto pro ostatnich n — 1
prvka j € S, definujeme f tak, aby pravé £ — 1 z nich spliio-
valo (1). Takovychto permutaci mnoziny S,/ {jo} je cviem
pn-1(k — 1), celkem tedy mame np,-1(k — 1) moznosti. Tim
je rovnost (4) dokazéna.

Jiné feSeni dlohy 1 vyuziva znamého vzorce

n 1y
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Mime pak podle (3)

n—k

ikpn(k):i () n—k)’z i”i =
k=0 k=0

-0

n n—k

_nvZZ(—l)’(k+; )(k+zl""r)g:

-14=0

n—fl

= I'ZH)’( )=

2. Ponévadz trojuhelnik ABC je ostrouhly, lezi stied S
kruznice jemu opsané uvnitf ného. Bez ujmy na obecnosti
muZeme predpokliadat, Ze je |AB| = |AC|, takie také
| BAS| < | CAS|, a tedy

[¥ BAS| = |x BAL| — | x SAL|

| CAS| = |x BAL| + | x SAL|.

Ponévadz KL | AB a KM | AL a |KL| = |LM|, je
|« MKL| = |x BAL| a obsah trojahelniku ABC se di

vyjadrit ve tvaru

|[AB| + |AC|

KL 2
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Ponévadz KM | AN, je obsah c¢tyfuhelniku AKNM

1
roven 2 |AN|.|KM]|. Plati

IKL| ("; |AB| + —;_— iAci) -

= |KL|.|AS|(cos |« BAS| + cos | CAS)) =

= |AS|.|KL|2cos |« BAL|.cos | SAL| =
1
= |AN|.|KL| cos |« MKL| = > |[AN|.|KM|;

trojuhelnik ABC a ¢tyfthelnik AKNM maji tedy skuteén&
tyZ obsah.

Jiné FeSeni druhé ulohy vyuziva Ptolemaiovy véty, po-
dle niz v térivovém Etyiuhelniku ABNC plati
1) |AB|.|CN| + |AC|.|BN| = |AN|.|BC]|.
Z rovnosti |¥ BAN| = |x CAN]| plyne |BN| = |CN|, ale

také | CBN| = | BAN|. V rovnoramenném trojuhelniku
BCN tedy plati '

|BC| = 2.|BN|.cos | < BAN|.
Dosazenim do (1) dostdvame
|AB| + |AC| = 2 |AN| cos |« BAN)|
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a odtud pro obsah S; trojthelniku 4BC

St

1
—2—(|AB{ + |4C)).|AL| sin | BAN| =

= |AL|.|AN|sin | ¥ BAN]|.cos |¥ BAN|.
Obdebné pro obsah Sp ¢tyfuhelniku AKNM je

1

Se = 2

(|AK| + |AM)) |AN| sin | % BAN| =

= |AL| cos |« BAN|.|AN|sin | BAN|;
oba obsahy jsou si tedy rovny.

3. Je ziejmé, ze Glohu stali vyfesit pro piipad nezipornych
cisel x1, x2, ..., xpn, nebot pii zdporném x; plati

n j1 n
E_ AnXp = 2 amXm + (_af) }x}i + Z AmXy.

<
w1 m=—1 m—=j+1

V dal$im tedy predpoklidime x, = 0 pro viechna m =
=1,2,...,n

Pro kazdou n-tici nezdpornych celych &isel ay, as, ..., an
vyhovujici podminkim (i) a (ii) plati

n

0= T amxm = (k - l) Z Xm.

m m=1
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Pocet vsech takovychto n-tic je k" — 1, proto nutné existuji

dvé z nich - oznalme je a;, a,, ..., a,aa,,a,, ..., a, - tak,
ze
n n

0 < \’ a,/,xm X am’fm

jm—1 i l

kR—1 1
< \Am
= kr— 1,

Polozime-li pak a,, = a;, a, (m=1, 2, ..., n), bude

n-tice celych &isel aj, aj, ..., a, vyhovovat podminkam (i),
(i1) i (iii), nebot podle Cauchyovy nerovnosti je

Lo Y
[ m—=1

n — n —
z xm < Vn 1/ S X2 = Vn.

m=1

4. Predpoklddejme, Ze takova funkce f existuje; z tohoto
predpokiadu odvodime spor.
Pro funkci f zfejmé plati

(1) flx + 1987) = f(f(f(x))) = f(x) + 1987,

odtud déle indukci snadno dokézeme platnost rovnosti
(2) flx + £.1987) = f(x) + k.1987

pro vsechna x € Ng, k&€ Ng. Funkce f je tedy jednoznatné
urlena svymi hodnotami na mnoziné M = {0,1,2,...,1986}.

Na mnoziné M definujeme novou funkci g takto: pro
x € M vyjadfime f(x) ve tvaru

3 flx) =y +p.1987,
kde y € M, p € Ny, a pak polozime g(x) =
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Ponévadz podle (2) je

x + 1987 = f(f(x)) = f(y + p.1987) = f(y) + p.1987,
je nutné

(4) f(3) = x + (1 — p).1987 € Ny,

tzn. ze v (3) je vzdy 0 < p < 1. Ze (4) pak vyplyva g(v) = x;
je tedy g involuce na M:

8(e(x)) = x

pro kazdé x e M.

Ponévadz pocet prvkd mnoziny M je lichy, totiz 1987,
musi existovat xg € M, pro které je g(xo) = xo. To viak podle
definice funkce g znameni, Ze je bud f(xo) = x¢, anebo
f(x0) = x9 + 1987. V prvém pfipadé je pak

xo + 1987 = f(f(x0)) = f(x0) = xo,
ve druhém pfipadé je
x0 + 1987 = f(f(x0)) = f(xo + 1987) = x9 + 3974.

V obou pripadech jsme dospéli ke sporu - funkce f pozadc-
vanych vlastnosti tedy nemuze existovat.

5. V roviné zavedeme kartézskou soustavu soufadnic a pro
dané pfirozené Cislon = 3 v ni vezmeme body By, Be, ..., By

o soufadnicich

151



Bj = [].:].2]5 .’ == 1; 2, NS (8

Pctom je vzddlenost dvou bedu B;, By (1 =<7 <k < n)
rovna

V(b =77 + (R — 22 = (k =) [k + ) + 1.

Ponévadzk +j = 3,je(k +7 + 12 >k +72 + 1 >(k +
+ /)2, takze &islo |/(k + 7)? + 1 je nutné iracionélni (odmoc-
nina z pfirozeného ¢&isla je bud celé ¢islo, anebo iraciondlni).

Obsah § trojuhelniku s vrcholy Bj, Bi, By, (1 257 <k <
< m £ n) lze vyjadfit zndmym vzorcem

1
S=‘2*IAL
kde
ji?
A= |k R 1|,
mm? 1

coz je jisté raciondlni Cislo.

Mnozina boda By, Bs, ..., B, tedy vyhovuje podminkdm
ulohy.

Pozndmka. Racionalita obsahu trojahelniku s vrcholy
v bodech s celoCiselnymi soufadnicemi vyplyvd rovnéz ze
znamé Pickovy formule.

6. Necht 7 je libovolné aviak pevné dané prirozené (islo;
prok =0, 1,2, ... pak polozme

(1) fB)y =k +k +n



Ozna¢me m nejmens$i nezdporné celé Cislo takové, ze f(m)
neni prvocislo. Ponévadz f(0) = n, je m = 0, neni-li n samo
prvocislo. Ponévadz f(n — 1) = n2, coz neni nikdy prvo-
islo, je zfejmé m < n — 1. Médme nyni dokazat, Ze neni
mozné, aby platilo

(2) /~3—§m§n—2.

Pro n = 1 je toto tvrzeni zfejmé, nebot pak
n—2=—-1<0=m.

Pii n = 2 je f(m) nutné Cislo sloZzené; oznalime p nejmensi
prvocinitel &isla f(m), takze f(m) = pg, kde g je celé &islo,

q=0p-
Z definice (1) vyplyva, ze

3) f(k) = f(k + rp) (mod p)
pro kazdé celé nezaporné r, k.

Dokézeme si nejprve, ze nemuze byt p < m. Méli bychom
totiz

0m—p<<m—2<m

a podle definice Cisla m by f(m — p) bylo prvotislo. Podle (3)
vSak ziroven .

Sfim — p) = f(m) = 0 (med p),
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coz je mozné jen tehdy, jestlize f(m — p) = p. Aviak potom
by bylo

mzp=fim—p)=m—p?+@m—p)+nzn,

coz neni mozné.

Predpoklidejme tedy, ze plati m < p < 2m. Potom je
0<p-—m—1=< m — 1 a podle definice &isla m je
f(p — m — 1) prvotislo. Zarover je

pg=fm)=fp —m—1)+2m —p + Lp,
takze prvocislo f(p — m — 1) je délitelné prvocislem p, coz

znamena, ze f(p — m — 1) = p. Je tedy

p=@P-—m—12+p—m—1+n,
takze

m=mn-—1)+@p-—m—12z2n—1
a (2) neplati. Je dokonce m =n — 1l ap = n.

Zbyva jesté vysettit pfipad, kdy 2m < p. Zde viak mame
m? +m +n=fm)=pgzp?=(2m—1)7=

= 4m? + 4m + 1,
a tedy
n=3m?+ 3m + 1 > 3m2,

takze (2) opét neplati.
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Ukézali jsme tedy, Ze (2) neplati v zddném piipadé, a to
pro kterékoli pfirozené n.

Pozndmka. Z elementirni Ciselné teorie je zndm mnoho-
¢len

x2 + x + 41,

ktery pro x =0, 1, ..., 39 nabyvd vesmés prvocliselnych
hodnot. Podobnych mnoho¢lenu existuje ziejmé vice; nase
uloha naznacuje, ze pii vhodné zvoleném p (napi. p = 17,
41, 107, ...) nabyvd mnohoClen x2 4+ x + p prvociselné
hodnoty az pro p — 1 po sobé jdoucich celych hodnot
x(x=0,1,...,p —2).
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Kategorie P

Ve 36. rotniku matematické olympiady se jiz podruhé
soutézilo také v kategorii P (programovini). Tato kategorie
je urCena vSem zdkam stfednich $kol bez rozdilu véku,
ulohy zde zaddvané jsou zaméfené na tvorbu a analyzu algo-
ritmu. Oproti lofiskému ro¢niku zdjem o kategorii P znacné
vzrostl. Zatimco ve 35. ro¢niku MO se do soutéze zapojilo
asi 250 studentu, o rok pozdéu jich fesilo ulohy domaéciho
kola vice nez 400.

SoutéZ je organizovana tfikolové, soutézi se v domicim,
krajském a celostditnim kole. Re3eni tloh doméciho kola
museli soutéZici odevzdat do 5. 2. 1987. Uspésni fesitelé byli
pozvani do krajského kola, které se konalo ve stfedu 8. 4. 1987.
Padesat nejlepsich acastnika krajského kola se seslo ve dnech
14.—17. 5. 1987 v Praze na celostitnim kole MO katego-
rie P, jehoz poradatelem byl KV MO Praha.

Po odborné striance je kategorie P matematické olympiady
zajidtovana odbornymi centry na vysokych Skolich - na
MFF UK Praha, PiF UJEP Brno a MFF UK Bratislava.
Pracovnici téchto center opravovali feSeni uloh ve vSech
tiech kolech soutéze, podileli se na pfipravé studentii na
soutéz, na zabezpeleni krajskych kol i kola celostitniho.
Odbornym garantem kategorie P 36. ro¢niku matematické
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olympiddy bylo centrum na katedi'e kybernetiky a informatiky
MFF UK Praha, ze kterého také pochazeji zadéni vSech ulch.

Tabulka 7

Poéty zaku soutézicich v kategorii P 36. ro¢niku MO

; Kolo |
| — e o e ]
Kraj ‘ domaci | krajské celostatni |
| | sjuisfuls|u,
o T t |
Praha 56 | 42 | 42 | 24 | 8 7
Stiedodesky 25 10 | 9 |3 | 3 1
| Jihotesky 260 | 13 13 | 3 | 3 1
| Zapadocesky 6 0, 0 0o 0 0 |
Severo&esky 21 8 8 | 3| 3 1!
Vychodogesky 32 | 15 | 13 6 3 c ol
| Jihomoravsky 24 17 | 15 7 ‘ 4 3
| Severomoravsky 35 28. 20 | 14 ‘ 6 2
| Bratislava 53 31 | 30 | 16 ‘ 12 6
| Zapadoslovensky 32 14 14 | 2 2 2
j Sttedoslovensky 43 23 1 23 | 3 1 1
| Vychodoslovensky 61 34 | 34 | 9 5 | 2
— S S T T
| i | | i [
| CSR 225 | 133 i 120 60 30 | 18 |
SSR 189 | 102 j 101 30 ‘ 20 | 1 ‘
: ! ‘ ! ! |
. L T T
| CSSR '414 | 235 221 9% 50 | 29 |
L . S o ]
S — pocet viech scutézicich

U — pocet uspésnych resitelt



VYSLEDKY CELOSTATNIHO KOLA MO

1.
2.
3.
4
5.
6.
7.— 8.
9.—12.
13.—14.
15.—18.
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KATEGORIE P

Vitézové

Pavel Kozlovsky, 3., G Jindfichav Hradec
Viadan Majerech, 4., G Pardubice

Branislav StriZenec, 3., G J. Hronca, Bratislava
Viadimir Vesely, 4., G J. Hronca, Bratislava
Peter Klein, 4., G A. Marku3a, Bratislava
Pavol Kolnik, 4., G Nové Mesto nad Vihom
Rudolf Burcl, 4., G Trnava

Rastislav Senderdk, 4., G PreSov

Ilja Martisovits, 2., G J. Hronca, Bratislava
Marcel Polakovic, 4., G A. Markusa, Bratislava
Viadimir Solnicky, 3., G Opava

Petr Steinmetz, 4., G Brno, Konévova ul.

Dalsi uspésni resitelé

Petr Broz, 2., G W. Piecka, Praha

Robert Hetka, 4., G BeneSov

Tibor Bartos, 3., G A. Markusa, Bratislava
Perr Cisek, 2., G W. Piecka, Praha

Lucie Kdrnd, 4., G W. Piecka, Praha

Petr Mandik, 4., G D&in



19.
20.—-22.
23.-29.

Radek Porazil, 3., G Bilovec

Viclav Bohdanecky, 2., G W. Piecka, Praha
Arnost Kobylka, 2., G W. Piecka, Praha
Jan Sochor, 4., G W. Piecka, Praha
Michal Dostdl, 4., G W. Piecka, Praha
Petr Fencl, 4., G Pardubice

JiFi Jaruska, 4., G Pardubice

Pavel Kafka, 4., G Ttebic

Richard Krajéoviech, 4., G Povazska Bystrica
Rado Mréz, 3., G Spisska Nova Ves
Marek Velesik, 2., G Brno, Konévova ul.
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PORADIf USPESNYCH RESITELU
KRAYSKEHO KOLA MO KATEGORIE P

V seznamu je uvedeno nejvySe prvnich deset uspé$nych
fesitela z kazdého kraje. Typ Skoly neni uvddén, viichni jsou
studenty gymnézia.

Praha

Michal Dostal, 4., W. Piecka, Praha 2, fan Sochor, 4., W. Piec-
ka, Praha 2, Arnost Kobylka, 2., W. Piecka, Praha 2, Filip
Pejsa, 4., Vodéradska, Praha 10, Perr Cizek, 2., W. Piecka
Praha 2, Petr BroZ, 2., W. Piecka, Praha 2, Vdclav Bohda-
necky, 2., W. Piecka, Praha 2, Lucie Kdrnd, 4., W. Piecka,
Praha 2, Michal Kopecky, 4., W. Piecka, Praha 2, fan Dvo-
ik, 3., Sladkovského nam., Praha 3. ‘

StfedocCesky kraj

Petr Vyhiidak, 3., Mlada Boleslav, Robert Hetka, 4., BeneSov,
Viadimir Solc, 1., Beroun.

Jiho&esky kraj

Pavel Kozlovsky, 3., Jindfichav Hradec, Martin Zitek, 4.,
Milevsko, Yakub Cermdk, 1., Jirovcova, Ceské Budé&jovice.
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Severocesky kraj

Dan Lukes, 2., Partyzanské, Liberec, Petr Mandik, 4., Décin,
§i#i Martinek, 3., Usti nad Labem.

Vychodocesky kraj

Jirt Faruska, 4., Pardubice, Viadan Majerech, 4., Pardubice,
Petr Fencl, 4., Pardubice, Petr Kousal, 3., Tylovo nab., Hra-
dec Kralové, Petr Krdkora, 3., Trutnov, Radko Martinek,
3., Jicin.

Severomoravsky kraj

Radek Porazil, 3., Bilovec, David Jedelsky, 3., Ostrava-Hra-
buvka, Viadimir Solnicky, 3., Opava, fan Hiebicek, 4., Va-
Tomds Ldtal, 3., Olomouc-Hejéin, Radek Vingrdlek, 4.,
Olomouc, David Sindler, 2., Bilovec, Marek Hiibner, 3.,
Karvind, Antonin Dvordk, 3., Prerov.

Jihomoravsky kraj

Pavel Kafka, 4., Ttebic, Petr Steinmetz, 4., Konévova, Brno’
Miloslav Hledik, 3., Ivantice, Marek Velesik, 2., Konévova’
Brno, Jan Dvoidk, 4., Moravské Bud&jovice, Radek Svenda’
2., Uhersky Brod, Zdenék Vonsky, 2., Ivantice, Robert Maar
4., Zdir nad Sazavou, Miroslav Mindrik, 4., Jihlava, Perr
Kolenéik, 1., Konévova, Brno.

Bratislava

Viadimir Vesely, 4., J. Hronca, Ncvchradské, Bratislava,
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Branislav Strigenec, 3., ]J. Hronca, Bratislava, Ilja Martiso-
2115, 2., J. Hronca, Bratislava, Stanislav Pdrnicky, 4., A. Mar-
kusa, Cervenej arméady, Bratislava, Tibor Bartos, 3., A. Mar-
kua, Bratislava, Miroslav Srol, 3., J. Hronca, Bratislava,
Anton Belan, 4., A. Markusa, Bratislava, Martin Bujddk,
3., A. Markusa, Bratislava, Marcel Polakovié, 4., A. Marku-
Sa, Bratislava, René Pdzman, 2., J. Hronca, Bratislava.

Zapadoslovensky kraj

Pavol Kolnik, 4., Nové Mesto nad Vahom, Rudolf Burcl,
4., Trnava.

Stiedoslovensky kraj

Richard Krajéoviech, 4., Povazska Bystrica, Silvia Baddkovd,
4., Prievidza, Jozef Gomela, 3., Prievidza.

Vychodoslovensky kraj

Madrio Drosc, 4., Michalovce, Rado Mrdz, 3., Spisskd Nova
Ves, Roman Sotdk, 4., Smeralova, Kosice, Martin Lieskov-
sky, 4., PreSov, Rastislav Senderdk, 4., PreSov, Peter Fekete,
4., Michalovce, Zdeno Kadlndssy, 3., PreSov, Robert Mrdz,
3., Poprad, Ladislav Steffko, 4., Srobirova, Kosice.
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ULOHY DOMACIHO KOLA

P-1-1

Konetnou posloupnost ¢isel nazveme symetrickou, jestlize
se nezméni, kdyz zapiSeme jeji prvky v obriceném poradi.
Naleznéte a dokazte (co nejlepsi) algoritmus, ktery pro libo-
volnou kone¢nou posloupnost &isel ur¢i délku jejiho nejdel-
$iho souvislého useku, ktery je symetrickou posloupnosti.

Pf.: Pro posloupnost 3, 1,2, 3,2, 1,4, 2,1 je tato délka 5
(tsek 1, 2, 3, 2, 1).

Reseni. Pocet isel v zadané kone¢né posloupnosti ozna-
¢ime N. Rychly algoritmus vykona pii prohleddvani posloup-
nosti délky N fadové N2 operaci. Vétsina Fesiteld nalezla
néktery z dalsich spravnych algoritmu, oviem se slozitosti N=.

Symetrickd pcdposloupnost maximalni délky muze obsa-
hcvat bud lichy, nebo sudy pocet &isel. Podle toho je jejim
sttedem bud néktery z prvka zadané posloupnosti, nebo pozice
mezi sousednimi prvky. Budeme postupné vysetiovat vSech
2N — 1 mist (N prvka, N — 1 mezer mezi nimi), kde muze
lezet stfed maximalni symetrické podposloupnosti. Pro kazdé
z téchto mist ur¢ime délku maximalniho symetrického tseku
se sttedem v tomto misté. Toto uréeni je snadné: porovnavime
postupné od zvoleného stiedu smérem k obéma okrajum
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posloupnosti dvojice ¢isel tak dlouho, dokud jsou porovnavana
¢isla shodnd nebo dokud nenarazime na okraj posloupnosti.
Pro kazdy ze zvolenych stfeda se vykond maximdlné N/2
porovnini. Vysledkem algoritmu je maximum z délek, které
jsme ziskali pro jednotlivé stfedy symetrické podposloupnosti.

Algoritmus zapi§eme v programovacim jazyce Pascal. Bu-
deme pfedpokladat, Ze proménnd N obsahuje délku posloup-
nosti a ze v poli 4 jsou jako prvky A[1], ..., A[N] uloZzeny
prvky posloupnosti. Diéle predpoklddame deklaraci celo-
¢iselnych proménnych I a MAX. Proménnéd I je pomocn4,
vysledna délka bude uloZena v proménné MAX.

procedure TEST (J, K: integer);
var OKRAJ: Boolean;
DELKA: integer;
begin
OKRA]J := false;
while (A[J] = A[K]) and not OKRA]J do
begin
{zde vidy plati: usek A[J],..., A[K] je symetricky}
J:=T—-LK:=K+ 1;
if (J = 0)or (K = N + 1) then OKRA]J := true
end; {zde plati: Gsek A[J + 1],..., A[K — 1] je
symetricky, ale jiz ho nelze prodlouzit}
DELKA:=K -] —-1;
if DELKA > MAX then MAX := DELKA
end; ‘
begin
if N = 0 then MAX := 0
else if N = 1 then MAX := 1
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else

begin

MAX := 0;

forI:=1toN — 1do
begin TEST (I, I); {licha délka}

TEST (I, I + 1) {sudé4 délka}

end '

end

end

Uvedeny algoritmus je mozné jesté dale vylepSovat, ale
zrychleni vypcctu jiz nebude piili§ vyznamné a zdpis algorit-
pedposloupnosti od stiedu celé posloupnosti soubézné smé-
rem k obéma okrajum a vypocet ukoncit jiz ve chvili, kdy
momentalni hodnota proménné MAX dosihne dvojnisobku
vzdalenosti pravé uvazovaného stfedu podposloupnosti od
okraje posloupnosti (nebot dédle uz neni mozné hodnctu pro-
ménné MAX zlepsit).

Dukaz spravnosti algoritmu vyplyva pfimo z jeho popisu.
Vypocet podle algoritmu je kone¢ny, nebot algoritmus je
tvofen pouze cykly s pevné omezenym poctem opakovani
(for-cyklus v hlavnim programu se provede piesné N — 1krat,
while-cyklus v proceduie TEST se vykona vzhledem k ome-
zeni délky posloupnosti hodnotou N maximélné N/2krdt).
Zadana posloupnost jisté obsahuje néjakou maximalni sy-
metrickou pcdposlcupnost. Ma-li tato pedposloupnost li-
chy pecet ¢lent a jejim stifedem je prvek A[S], bude nalezena
pfi S-tém pruchodu for-cyklem (pro I = S) pii vyvolani
TEST(I, I). Mé-li sudy pocet ¢lenu a jeji stied lezi mezi
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prvky A[S]a A[S + 1], bude nalezena pfi S-tém priachodu
for-cyklem pfi vyvoldni procedury TEST (I, I + 1). Do
proménné MAX se ukladd maximum z délek vSech naleze-
nych symetrickych podposloupnosti, které jiz nelze prodlou-
zit. Také nejdelsi z nich bude jednou nalezena a v proménné
MAX proto zistane na zavér algoritmu jeji délka.

P-1-2

Sjednoceni kone¢né mnoziny uzavienych intervala na redl-
né piimce je mnozina, kterd je slozena z konetného poctu
disjunktnich souvislych dseki, z nichz kazdy je opét uzavieny
interval.

Naleznéte a dokazte (co nejlepsi) algoritmus, ktery pro libo-
velnou kone¢nou mnozinu uzavienych intervald zjisti pocet
disjunktnich souvislych tseku jejich sjednoceni (tj. skute¢ny
pocet intervala). Intervaly jsou zaddny vyctem dvojic &isel,
které v daném pofadi urcuji jejich dolni a horni mez.

Reseni. Oznatme posloupnost dolnich mezi D a hornich
mezi H, obé maji délku N. K feSeni ulohy lze uzit nékolika
odlisnych algoritmt. Zikladem téch nejlepSich je vhodné
setfidéni zadanych intervalt. K tomu je tfeba provést fadové
N .logs N operaci (to je Casova slozitost nejlepsich tridicich
algoritmu). Timto vyrazem je pak urlena i efektivita celého
algoritmu, nebot po setfidéni sta¢i jednou sekvenéné projit
vSechny intervaly a pfi.tomto prichodu provést prislusné
vypoclty.

Algoritmus feSeni popiSeme slovné:

1. Pokud N = 1, poloz POCET = 1 a jdi na 8.
2. Setfid zadané intervaly vzestupné podle hodnoty dolni
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meze. Maé-li vice intervali stejnou dolni mez, na jejich

porfadi nezilezi. Po setiidéni tedy bude platit: D[1] <

< D[2] £ ... £ D[N]. Pozn.: tiidime nejen dolni meze,

ale celé intervaly, tzn. soubézné se zménami poradi v po-

sloupnosti D pfemistujeme i hodnoty hornich mezi v po-

sloupnosti H.

Poloz POCET =1, HORMEZ = H[1],I = 2.

. Jestlize D[I] > HORMEZ, zvétsi POCET o 1.

Jestlize H[I] > HORMEZ, poloz HORMEZ = H[I].

. Zvétsil o 1.

. Jestlize I < N, jdi na 4.

. Vysledny pocet souvislych disjunktnich intervald je v pro-
ménné POCET. Konec.

Algoritmus zvlast fesi pfipad jediného intervalu na vstupu -
- bod 1. Je-li na vstupu vice intervala, provede jejich setfidéni
podle hodnot dolnich mezi - bod 2. Ttidici algoritmus uvede-
me na konci feSeni. Potom postupné prochézi vSechny inter-
valy. Dokud intervaly patifi do jednoho souvislého useku,

(<IN B~ NE R NN

pouze aktualizuje horni mez jejich sjednoceni (proménna
HORMEZ) - bod 5. Jakmile méa néktery interval prazdny
prunik s intervaly zpracovavaného useku, algoritmus zare-
gistruje ukon&eny souvisly tsek (proménnd POCET) a zatne
vytvaret dalsi - bod 4.

Zbyva podat zduvodnéni spravnosti algoritmu. Algoritmus
jisté skon¢i vypocet po konetné mnoha krocich, nebot setfi-
déni N intervalu je kone¢ny proces a v cyklu (body algoritmu
4 az T) roste pii kazdém prichodu hodnota proménné I od 2
do N, takze pruchodu bude méné nez N.

Je-li zaddn jediny interval (N = 1), bude mit proménnd
POCET spravnou hodnotu 1 z bodu 1. Tvofi-li viechny za-
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dané intervaly jediny souvisly tsek, bude mit proménni
POCET hodnotu 1 z bodu 3. Hodnota proménné POCET se
zv€tsuje o 1 pouze v bodu 4, a to presné tehdy, kdyZz zpraco-
vavany I-ty interval méd dolni mez vét$i, nez je maximum
hornich mezi vSech pfedchozich intervala (ulozené v pro-
ménné HORMEZ). Vzhledem k vzestupnému setfidéni dol-
nich mezi intervala plati nerovnosti

HORMEZ < D[I1< D[I + 1] < ... < D[N]

Cili také viechny nasledujici intervaly maji dolni mez vétsi,
nez je hcdnota HORMEZ. Proto I-tym intervalem skute¢né
zaCina dalsi souvisly asek.

Na zavér se vratme k problému tfidéni. Mame za tkol
uspofadat N &isel vzestupné podle velikosti. T¥idicich alge-
ritmu existuje celd fada. Nejrychlejs$i z nich vyzaduji prove-
deni fadové N.logs N porovnini. Ukdzeme si jeden z ta-
kovych tfidicich algoritmu. Chceme settidit &isla D[1], D[2],
..., D[N]ulozenav poli D. Rozdélime pole D do dvou usekit
D[1],...,D[(N + 1)div2]aD[(N + 1)div2 + 1],...,D[N].
Oba useky maji délku stejnou nebo lisici se jen o 1. Kazdy
z téchto useku zvlast setfidime rekurzivnim vyvoldnim téhoz
tiidiciho algoritmu. Ze setfidénych Gseku pak jiz snadno vy-
tvofime jedinou uspofddanou posloupnost vsech Cisel. Do
vysledné posloupnosti vzdy zafadime to z prvnich Cisel v Gse-
cich, které je mensi. Toto &islo zdroven vynechime z jeho
useku. Pcstup opakujeme, dokud do posloupnosti neni zata-
zeno viech N Cisel.

Popsany algoritmus zapiSeme v Pascalu ve tvaru rekurzivni
procedury SORT. Pro utfidéni celého pole D bude tato

168



procedura voldna s parametry SORT(1, N). Déle piedpo-
kladame, Ze je deklarovdno pomocné globalni pole A4 stejného
typu jako je pole D.

procedure SORT (J, K: integer);
var P, I, I1, I2: integer;
begin
if ] < K then
begin
P:= (J + K) div 2;
SORT (J, P);
SORT (P + 1, K);
[:=1];
I1:=];12:=P + 1;
while I <= K do
if D[I1] << D[I2] then
begin
A[I] := D[I1];
I:=1+1;11:=11 + 1;
if I1 > P then
while I <= K do
begin
A[l] := D[I2];
I:=1+1;12:=12 + 1;
end
end
else
begin
A[I] := D[I2];
I:=1+1;12:=12+41;
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if 12 > K then
while I <= K do
begin
AllI] := D[I1];
I:=I1+1;I1:=11+4+1

end
end;
for I := J to K do D[I] := A[I]
end
end;

Procedura SORT je rekurzivné voldna vzdy k setfidéni useku
priblizné polovi¢ni délky. Za¢iname-li od pole délky N, zna-
mena to, ze rekurze se bude provadét do hloubky asi logs N.
Na kazdé arovni hloubky rekurze vyzaduje spojeni setiidé-
nych useku cisel do Gseku dvojnasobné délky nejvyse N po-
rovnani Cisel. Celkem je tedy k setfidéni N &isel uvedenym
algoritmem zapotiebi fadové N.loge N porovnéni.

P-1-3

Je déan Euklidav algoritmus pro vypocet nejvétsiho spo-
le¢ného délitele celych ¢isel 4 a B, kde 4 > B > 0.

PASCAL BASIC
while B<<>0 do 10 IF B = 0 THEN 60
begin C:= AmodB; 20LETC=AMODB
A := B; 30LETA=B
B:=C 40LETB=C
end; 50 GOTO 10
NSD := A 60 LET NSD = A
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Operace A MOD B znamen4 zbytek po celotiselném déleni
Cisla A cislem B. Dokazte, ze pocet opakovani cyklu v algo-
ritmu je vzdy mensi nez 2.logs 4.

ResSeni. Mezi spravnymi feSenimi této ulohy se objevily
v podstaté dva zdkladni postupy. My si zde ukidzeme ndzor-
néjsi a jednodussi z nich, ktery je zalozen na Gvahich o zmé-
nach hednoty proménné 4 v prubéhu vypoctu. Druhy postup
feSeni vychdzi ze srovnani posloupnosti hodnot proménné 4
béhem vypoltu s Fibonacciho posloupnosti a dale Fibonacciho
posloupnosti s posloupnosti (27/2).

Nejprve dokdzeme pomocné tvrzeni: Jestlize 4, B jsou
libovoln4 piirozena &isla, 4 > B > 0, potom 4 mod B << 4/2.
Dukaz provedeme rozborem pfipada:

a) B> A/2...pakAmodB =4 — B< A — A2 = 42,

b) B = A4/2 ... pak A mod B = 0 a z pfedpokladu 4 >0
plyne vysledek 4 mod B < A4/2,

c) B < A/2 ... vzdy plati A mod B < B, tedy pro B < A/2
pfimo vyplyvé vysledek.

Nyni jiz mazeme prikrocit k dikazu tvrzeni ze zadéni ulo-
hy. Nebudeme zde zabihat do formélnich podrobnosti a tech-
nickych detailt, zaméfime se jen na hlavni myslenky dakazu.
Na zakladé na§eho pomocného tvrzeni je mozné snadno uka-
zat, ze vzdy po dvou pruachodech cyklem v Euklidové algo-
ritmu se hodnota proménné 4 zmen$i na méné nez polovinu
své puvodni hodnoty. Proménnd A4 totiz po dvou pruchodech
cyklem nabude hodnoty 4 mod B, kteri je podle pomocného
tvrzeni vzdy mensi nez 4/2. Kdyby se hodnota proménné 4
zmenS$ovala po dvou prachodech cyklem vzdy jen na polo-
vinu az do hodnoty 1 (tj. na zalatku by bylo 4 tvaru 4 = 2%
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a pak vzdy po dvou prachodech 2K-1) 26-2° 1), bylo by
téchto dvojic pruchedti cyklem tieba vykonat % = logz A.
Celkem by se tedy vykonalo 2.logs 4 pruchedu cyklem. Ve
skute¢nosti se hodnota proménné A4 zmensSuje rychleji vzhle-
dem k ostré nerovnosti 4 mod B < A/2. Navic vypocet ne-
musi kon¢it az pii 4 = 1, muze i dfive. Proto se pii celém
vypoctu provede celkem méné nez 2.1loge A pruchcdu cyklem.

P-1-4

Zapiste ve zjedncduSeném jazyce LISP definice nasledu-
jicich funkci:
a) MEMBER [X;S]
S musi byt seznam
hodnotou funkce je T, jestlize vyraz X je prvkem sezna-
mu S, jinak je hodnotou F
b) DELETE [X;S]
S musi byt seznam
hcdnotou funkce je seznam, ktery vznikne vypusténim
prvku X ze seznamu S (vypousti se pouze prvni vyskyt);
neni-li X prvkem seznamu S, je hednctou funkce pu-
vodni seznem S.
Pii feSeni muZete nejprve definovat jednodus$i pomccné
funkce a s jejich vyuzitim pak funkce hlavni.

Pozndmka. V kazdém kole obdrzeli soutézici shodny kratky
studijni text o zjedncdusené verzi programovaciho jazyka
LISP. Tento text nyni uvidime v plném znéni. U uloh
P-11-4 a P-1II-4 zde v rcCence studijni text jiz neopakujeme.
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Zjednoduseny LISP

Definujeme zjednodu$enou verzi programovaciho jazyka
LISP. Data v tomto jazyce maji tvar tzv. symbolickych vyra-
zl. Nejjednodussimi vyrazy jsou atomy, které jsou dvou typu:
¢iselné a neciselné. Zdpis Ciselnych atomu je stejny jako zipis
celych ¢isel, napt. —125, +3, 10. Neciselné atomy jsou
shodné s identifikdtory.
muze byt prazdny nebo neprizdny. Neprizdny seznam je
tvofen jednim nebo vice prvky, uzavienymi v okrouhlych za-
vorkéch. Pfitom zalezi na pofadi prvku a stejny prvek se mize
v seznamu vyskytovat nékolikrdt. Kazdy prvek seznamu je
sdm vyrazem, bud je to atom, nebo opét seznam. Prazdny
seznam neobsahuje zddny prvek a zapisuje se znaky ().

Priklady seznamu:

@) prézdny seznam

(X) seznam obsahujici jediny prvek - atom X

(XY Z) tiiprvkovy seznam tvofeny atomy X, Y a Z

((X)(Y Z)) dvouprvkovy seznam tvofeny dvéma prvky,
z nichz prvni je jednoprvkovy seznam obsahujici
atom X, a druhy je dvouprvkovy seznam tvoie-
ny atomy Y a Z

Pro zpracovévani symbolickych vyraza je v jazyce LISP
zavedeno nékolik elementirnich funkci:

CAR|[S] S musi byt neprdzdny seznam, hodnotou funk-
ce je prvni prvek seznamu S
CDRJ[S] S musi byt neprédzdny seznam, hodnotou funk-
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CONSIR;S]

EQ[R;S]

ATOM[S]
NULL[S]

Priklady :

ce je seznam, ktery vznikne z S vynechinim
prvniho prvku

S musi byt seznam (neprazdny nebo i prazdny);
hodnotou CONS[R;S] je nové vytvofeny se-
znam, jehoz prvnim prvkem je vyraz R a vSech-
ny dalsi prvky vzniknou piekopirovanim viech
prvka seznamu S

R, S musi byt atomy; jsou-li atomy R a S
identické, je hodnotou funkce atom T (true),
jinak je hodnotou atom F (false)

hodnotou je T, je-1i S atom, jinak je hodnotou F
argumentem funkce musi byt seznam; hodno-
tou funkce je T, kdyZ seznam je prazdny, jinak
je hodnotou F

CAR[(ABC) = A

CDR[(A B C)] = (B C)
CONS[AB C)] = (AB C)
CONS[(A B); (C D)] = (A B) C D)

EQ[1;2] = F

EQ[X;0] = T

, jestlize X = 0, F jinak

ATOM[(A)] = F
CONS[A;()] = (A)
CAR[(A)] = A
CDR[(A)] = ()

Z elementéarnich funkci lze slozit uzitim podminéného vy-
razu a definice funkce slozitéjsi funkce. Podminény vyraz
zapisujeme ve tvaru
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[P1 — El; P2 — E2; ...; Pn — En],

kde P1, P2, ..., Pn jsou symbolické vyrazy, které maji vy-
znam podminek a které sméji nabyvat pouze hodnot T a F.

Tyto podminky jsou vyhodnocovany postupné zleva do-
prava tak dlouho, dokud se nenarazi na prvni podminku,
kterda ma hodnotu T. Necht je to Pk. Pak hodnotou podmi-
néného vyrazu je hodnota Ek. To muze byt atom, seznam,
podminény vyraz nebo volini funkce. Aby mél podminény
vyraz smysl, musi aspoil jeden z vyraza Pk nabyvat hodnoty T.
K zajisténi tohoto pozadavku byva zvykem na misté posledni
podminky Pn psat pfimo atom T.

Novou funkci zadefinujeme tak, ze napiSeme:

NAZEV [SEZNAM PARAMETRU] = VYRAZ

Parametry v seznamu oddélujeme stiedniky. Vyraz v definici
mhusi byt podminény vyraz nebo voldni funkce. V definicich
funkci lze libovolné uZzivat rekurzivniho voldni funkci. Je to
obrat velmi Casty a u fady funkci nezbytny. Znamena to, ze
v definici funkce mtizeme pouzit libovolné elementérni i slo-
7it&jsi definované funkce v¢etné té, kterou pravé definujeme,
jak to ukazuje i nasledujici ptiklad.

Pr.: Chceme definovat funkci EQUAL[X;Y] takovou,
ze jeji hodnotou je T, jsou-li X a Y stejné symbolické vyrazy,
jinak je hcdnotou F.

Definice:

EQUAL[X;Y] = [ATOM[X] — [ATOM[Y] — EQ[X;Y];
T —F];
ATOM[Y] — F;
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NULL[X] — NULLJ[Y];
NULL[Y] — F;
EQUAL[CAR[X]; CAR[Y]] —

EQUAL[CDR[X]; CDR[Y]];
T — F]

Vyznam jednotlivych ¢asti definice funkce je nasledujici:

1.

o

Je-li X atom, pak rozliSujeme dva pfipady. Je-li také Y
atom, pak vysledek zavisi na tom, zda jsou si rovny, jinak
(neni-li Y atom) je hodnota F.

Jestlize nenastal piipad 1 (neni-li X atom) a pfitom Y je
atom, je vysledek F.

Vime jiz, ze X a Y jsou seznamy. Je-li prvni seznam prazd-
ny, tak vysledek zavisi na tom, je-1i prdzdny i druhy seznam.
Jestlize nenastal pfipad 3 a druhy seznam je prdzdny, pak
je vysledkem F (prvni seznam byl neprazdny).

Vime jiz, ze X a Y jsou neprdzdné seznamy. Porovndme
jejich prvni prvky a jestlize se rovnaji, je nutno porovnat
i zbytky seznami. (V obou pfipadech vyuzivime rekurziv-
niho voldni privé definované funkce. Jejimi argumenty
jsou vSak krat$i seznamy.)

. Posledni ptipad muZe nastat jediné tehdy, kdyz se prvni

Cleny seznami X a Y nerovnaji, takze vysledkem je F.

ResSeni soutézni tlohy P-1-4. V feSeni tlohy budeme

vyuzivat pomocnou funkci EQUAL [X;Y]. Jeji hodnotou je
atom T, jsou-li X a Y stejné symbolické vyrazy, jinak je
hodnotou F. Popis této funkce je uveden jako piiklad ve
studijnim textu, proto ho zde neopakujeme.

a) Definujeme funkci MEMBER[X;S]; predpokldddme, Ze

S je seznam:
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MEMBER[X;S] = [NULL[S] - F;
EQUAL[X;CAR[S]] — T;
T -> MEMBER[X;CDR[S]]]

. Je-li S prazdny seznam, neobsahuje zddny prvek, tedy

ani X. Hodnotou funkce MEMBER je proto F.

. Pokud se vyraz X rovna prvnimu prvku seznamu S, pak X

je v S obsazen a hodnotou funkce je T.

. V opa¢ném piipadé budeme zkoumat, jestli se X nachazi

ve zbytku S po vynechéni prvniho prvku. Funkce MEM-
BER je rekurzivné voldna na krat$i seznam.
b) Definujeme funkci DELETE[X;S], ptedpoklddame, Ze

S je seznam:
DELETE[X;S] = [NULL[S] — S;

1.

2.

EQUAL[X;CAR[S]] - CDR[S];
T - CONS[CAR][S];
DELETE[X;CDR[S]]]]

Je-li S prazdny seznam, jist¢ X neobsahuje a hodnotou
funkce je opét priazdny seznam.

Jestlize se vyraz X rovnd prvnimu prvku seznamu S, vy-
pustime ho. Hodnotou funkce DELETE pak bude zby-
tek seznamu S bez prvniho prvku.

. V opatném piipadé bude hodnotou funkce seznam, ktery

vznikne spojenim prvniho prvku puvodniho seznamu S
a zbytku seznamu S s vypu$ténym prvnim vyskytem vy-
razu X. Vypusténi prvniho vyskytu X ze zbytku S do-
sahneme rekurzivnim voldnim funkce DELETE na zkra-
ceny seznam CDR[S].

Jestlize vyraz X nebude v seznamu S vibec obsazen, bude

177



hodnotou funkce seznam totozny s puvodnim seznamem S.
(Nikdy se neuplatni pfikaz na 2. fadku v definici funkce.)

Existuje i celd fada zcela odlisnych spravnych feseni ulohy.
Vétsinou jsou ale podstatné slozitéjsi na zapis i z hlediska
rychlosti vypoctu, Casto jsou také slozit¢jsi na pochopeni. Ne-
muzeme je zde viechny rozepisovat, ale uvedeme jesté alespon
zékladni myslenku, jak je také mozné zapsat funkci DELETE.
Muazeme vyuzit tii pomocnych funkci nasledujicich vlast-
nosti. Prvni pomocna funkce na zdkladé parametrit S a X
vytvoii seznam, ktery vznikne jako ¢ast seznamu S od prvniho
prvku az do prvniho vyskytu vyrazu X (jiz bez vyrazu X)
nebo az do konce, pokud se X v S nevyskytuje. Druhd po-
mocni funkce naopak z S vypusti tento pocatecni asek az do
se v S vyskytuje). Jestlize se vyraz X v seznamu S nevysky-
tuje, bude vysledkem této pomocné funkce prazdny seznam.
Koneéné tfeti pomocni funkce provadi spojeni dvou sezna-
mu za sebe. Priklad takové funkce najdeme v feSeni ulohy
P-I11-4. V definici funkce DELETE je pak volana tato
tfeti pomocnd funkce tak, ze za jeji parametry jsou dosazeny
seznamy vzniklé vypoctem prvnich dvou pomccnych funkci
(s hodnotami parametra X a S).
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ULOHY KRAJSKEHO KOLA

P-11-1

Naleznéte a dokazte (co nejlepsi) algoritmus, ktery pro li-
bovolnou konecnou posloupnost ¢isel nalezne maximalni K
tak, Ze existuje néjaka posloupnost délky K, ktera se v zadané
posloupnosti vyskytuje alespoil na dvou raznych mistech
jako souvisly usek. Tyto tiseky se mohou ¢aste¢né prekryvat.

PF.: Pro posloupnost 6, 2, 3,2, 3,2, 3, 1,7 je K= 4.
(Dvakrat se opakuje posloupnost 2, 3, 2, 3.)

ReSeni. Ulohu je mo7né fedit vice ruznymi algoritmy.
Jednoduchy algoritmus (s ¢asovou slozitosti N3) jisté na-
padne kazdého. Stali brit postupné viechny dvojice Cisel
v posloupnosti a pro kazdou takovou dvojici zjitovat, jak
dlouhé shodné useky témito zvolenymi Cisly zacinaji. Ze viech
takto nalezenych délek se vezme maximum - a to je hledané
Cislo K. _

Predvedeme zde jiny algoritmus, jehoZ zipis a popis je
ritmus, ma Casovou slozitost iimérnou N2. Zdkladni mys-
lenka algoritmu je nésledujici. Pfedpoklidejme, Ze zadanou
posloupnost ¢isel mame uloZzenou v poli 4[1..N]. Budeme
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postupné ménit vzdalenost (tj. rozdil indexa v poli 4) mezi
porovndvanymi prvky, a to v cykluod 1 do N — 1. Pro kazdou
takovou pevnou vzdélenost projdeme celou posloupnost po-
moci dvou soubéZné zvétSovanych indext. Pfi tomto pru-
chodu stile pocitame délky souvislych shodnych tseka. Ma-
ximum z takto ziskanych déiek se uklidd do proménné K
a je vysledkem ulohy.

Algoritmus zapiSeme v programovacim jazyce Pascal.
U obou pfikaza while-cyklu jsou v komentarich uvedeny pod-
minky, kterymi je mozné vypocet jesté mirné zrychlit. Tyto
podminky vyuzivaji jiz ziskanou hodnotu K.

begin
K := 0; VZDAL := 1;
while VZDAL << N do {zde je mozné drobné vylep3eni:
VZDAL < N — K}
begin
I:=1;POC:= 0;
while I <= N — VZDAL do {zde je mozné drobné
vylepSeni: I <= N —
VZDAL — K + POC}
begin
if A{I] = A[I + VZDAL] then
begin
POC := POC + 1; {zde vidy plati: Gseky délky
POC zatinajici prvky A[I]
a A[lI + VZDAL] jsou
shodné}
if POC > K then K := POC
end
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else POC := 0;

I:=1+1
end;
VZDAL := VZDAL + 1
end
end

Popsany algoritmus jisté skonci vypocet po kone¢né mnoha
krocich. V téle vnitiniho cyklu je zvy$ovana fidici proménna
a bez ohledu na prubéh vypoltu se vzhledem k podmince
v pifikazu while bude tento cyklus opakovat nejvyse N-krat.
Obdobné ve vnéjsim cyklu se zvySuje hodnota proménné
VZDAL, télo vnéjsiho cyklu se bude provadét méné nez
N-krat. Pocet pruchodu jednotlivymi pfikazy programu je
tedy pfedem omezen.

Hodnota proménné K je ménéna vzdy v okamziku, kdyz
algoritmus najde dvoji vyskyt souvislého tseku délky vétsi
nez K. Na zavér vypoctu tedy v K bude skute¢né délka nej-
delsiho souvislého useku, ktery byl nalezen s dvojim vysky-
tem v dané posloupnosti. Zbyvéd ukdzat, ze algoritmus pii
svém vypoltu skute¢né najde dvoji vyskyt podposloupnosti
maximalni délky, jakd se v dané posloupnosti nachazi. To ale
je patrné pfimo z popisu algoritmu. Oba tyto vyskyty musi
byt vuci sobé posunuty o jisty polet prvkal a promeénni
VZDAL této hodnoty pfi vypoltu jednou nabude (nabyvia
vsech hodnot od 1 do N — 1). Pro tuto hodnotu VZDAL se
pak ve vnitinim cyklu shedné Useky maximalni délky jiste
naleznou (prochazi se v ném celd posloupnost).
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P-1i-2

Naleznéte a dokazte (co nejlepsi) algoritmus, ktery pro libo-
volnou koneénou mnozinu uzavienych intervalli na reilné
pfimce nalezne Cislo, které patfi do maximalniho poltu zada-
nych intervald, a urci tento pocet. Intervaly jsou zadény vy-
¢tem svych dolnich a hornich mezi.

ReSeni. Stejné jako u ostatnich uloh na navrh algoritmu
existuje celd fada ruznych feSeni. Nejefektivngjsi z nich jsou
zalozeny, podobné jako v tloze P - I - 2, na vhodném setfidéni
vstupnich dat a maji proto ¢asovou slozitost imérnou N.logaN
(= slozitost nejlepsich tridicich algoritmu). Je moZné na-
vrhnout jednoduché algoritmy bez tfidéni, oviem s Casovou
slozitosti pfinejlepS$im umérnou N2. Stali napiiklad brat
postupné horni (nebo dolni) meze vsech intervala, kazdé
z téchto N (isel testovat do kolika ze zadanych intervala
patfi, a z takto ziskanych hodnot vzit maximum. My si zde
ukazeme rychlejsi algoritmus.

Algoritmus feseni této tlohy zapiSeme slovné:

1. Setfid vzestupné vSech 2N ¢&isel ze vstupu, dolni i horni
meze intervala dohromady (kde N je pocet zadanych inter-
valr). Pritom si u kazdého ¢isla pamatuj, zda jde o horni
nebo o dolni mez néjakého intervalu. Neni tfeba pamatovat
si, kterd horni mez patii ke které dolni mezi intervalu.
Opakuje-li se néjakd hodnota mezi zadanymi 2N Cdisly
vicekrat, budou v setfidéné posloupnosti dolni meze umisté-
ny pied hornimi.

2. Setfidénou posloupnost 2N &isel postupné prochizej od
nejmensich k nejvétsim <islam. Pfitom v proménné
POCET eviduj pocet pravé otevienych intervala. Maxi-
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mélni dosaZzenou hodnotu proménné POCET udrzuj v pro-
ménné MAX. Vidy soucasné se zvétSenim hodnoty pro-
ménné MAX aktualizuj hodnotu proménné CISLO, ve
které se udrzuje jedno z ¢isel patficich do maximalniho
pocltu intervalu.

3. Po ukonteni vypoltu jsou pozadované vysledné hodnoty
v proménnych CISLO a MAX.

Bod 1 pfedstavuje néktery ze standardnich tfidicich algo-
jen bod 2. Budeme dile pfedpokladat, ze hodnoty mezi jsou
po setfidéni uloZeny v poli M[1..2N].

2.1. Poloz POCET = 0, MAX =0,1 = 1.

2.2. Jestlize M[I] je dolni mez, poloz POCET = POCET +
+ 1 a jdi na 2.6.

2.3. Jestlize POCET £ MAX, jdi na 2.5.

2.4. Poloz MAX = POCET, CISLO = M[I]

2.5. Poloz POCET = POCET — 1.

2.6. Poloz I =1 + 1.

2.7. Jestlize I £ 2N, jdi na 2.2.

Algoritmus skon¢i vypolet po konetné mnoha krocich,
nebot intervali je kone¢né mnoho, tfidici algoritmus je ko-
ne¢ny a dile se uz jen sekventné prochézeji vSechny meze
vSech intervala. Prichod setfidéncu posloupnosti 2N Cisel
v bodu 2 popsaného algoritmu vlastné piedstavuje projiti
celé Ciselné osy s vyzna¢enymi intervaly. V proménné POCET
je pfitom stéle ulozen udaj, do kolika ze zadanych intervala
patii ten bod ¢iselné osy, ve kterém se pravé nachizime. Ke
zménam tohoto tdaje muze dojit jediné v pocate¢nich a kon-
covych bodech intervali, stali proto pruchod provadét pouze
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pres tyto bedy. Proménnd MAX nabyva nejvétsi hodnoty,
jakou proménnid POCET pii pruchodu ziskala (MAX se
testuje a piipadné zvySuje pokazdé, kdy se ma snizit hodnota
proménné POCET). Zaroven se zvy$enim hodnoty proménné
MAX se dosazuje nova hodnota do proménné CISLO, takze
ro ukonceni vypoctu obsahuje dvojice proménnych CISLO
a MAX spravné vysledky podle zadani tlohy.

Je tfeba zminit se jesté o situaci, ze dolni mez néjakého
intervalu I, je rovna horni mezi jiného intervalu . Pedle
zadéni se jednd o uzaviené intervaly, takze I; a I> maji spo-
le¢ny bod a pfi prichodu pies tento jejich spole¢ny bod je
tfeba zvysit hodnotu proménné POCET (a hned ji zase sni-
zit, ale mezitim to muze ovlivnit hodnotu proménnych MAX
a CISLO). Toto je zajisténo uspofadanim zadanych 2N ¢&isel
podle bodu 1 algoritmu - dolni meze jsou umistény pied
hornimi mezemi téze hodnoty.

P-li-3

Je dan nésledujici Gsek programu se vstupnimi celoisel-
nymi proménnymi X a Y. Zjistéte, jakd hodnota bude po
provedeni algoritmu v proménné Z, a svoje tvrzeni dokazte.

PASCAL: Z:=1;
while Y > 0 do

begin
if Y mod 2 = 1 then Z := Z¥X;
Y := Y div 2;
X 1= X*X

end
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BASIC: 10LET Z =1
20IFY < =0THEN 70
30IFYMOD2=1THENLETZ=Z* X
40LETY=YDIV2
SOLET X =X *X
60 GO TO 20
70 REM KONEC

Operace A DIV B znamend celotiselny pedil ¢isel 4 a B,
operace A MOD B znamend zbytek po celo¢iselném déleni.
Tedy plati A = (A DIV B)*B + (A MOD B)

Reseni. Pokud bude mit proménnd Y hodnotu zdpornou
nebo nulovou, z celého popsaného algoritmu se provede pouze
dosazovaci piikaz Z := 1 a po ukonleni algoritmu bude
proto Z = 1. Ukazeme, ze pro Y > 0 nabude proménni Z
hodnoty XY.

Polate¢ni hodnotu proménné Y (oznaCme ji y) si miZeme
predstavit zapsanou ve dvojkové soustavé:

n
y= > a.2), ¢ =0nebolproi=0,1,...,n—1,
-0

a, = 1.

K nisobeni Z:= Z*X dochdzi pii j-tém prichodu cyklem
pravé tehdy, kdyz ve dvojkovém zépisu Cisla y je v faduj — 1
cifra 1 (tj. kdyz a; 1 = 1). Test ¥ mod 2 totiz zjidtuje hod-
notu posledni cifry dvojkového zapisu momentalni hodnoty
proménné Y apiikaz Y := Y div 2 méni hodnotu proménné Y’
tak, Ze odebird z jejiho dvojkového zapisu posledni cifru.
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Pfi kaZdém prichodu cyklem se provede pfikaz X := X*X.
Oznalime-li pocate¢ni hodnotu proménné X jako x, bude
v proménné X na zalitku j-tého pruchodu cyklem hodnota
x%"". Dohromady to znamen4, Ze proménna Z s pocateéni
hodnotou 1 je prindsobena ¢&islem x> pravé tehdy, kdyz
aj=1pro j=0, ..., n. Pro hodnotu proménné Z po
ukonceni vypoctu proto plati:

n
Z=1 a;.x“”

i=0

Tento vyraz muzeme déle upravit (pfipomindme, Ze koefi-
cienty a;, j = 0, ..., n jsou cifry dvojkové soustavy, tedy
¢isla 0 nebo 1):

n
> a2]

Z = xi=0

n

V exponentu jsme ziskali vyraz > @;.27, ktery je pfimo
j=0

roven vyjadfeni pocate¢ni hodnoty y proménné Y. Plati tedy

skute¢né, ze po ukonleni vypoltu uvedeného algoritmu je
Z = xY.
P-li-4
Definici zjednoduseného jazyka LISP nyni je§té doplnime.
Dalsi elementarni funkce slouzi k provadéni aritmetickych

vypoctua s celymi Cisly:
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ADD[A;B] — soutet A + B
SUB[A;B] — rozdilA — B
MUL[A;B] — soutin A.B
DIV[A;B] — podil A divB
MODI[A;B] — zbytek po déleni, tj. A mod B
GTI[A;B] — porovnani A > B
GE[A;B] — porovnani A = B
Argumenty A, B vSech téchto funkci musi byt ¢iselné atomy.
Funkéni hodnotou je ¢iselny atom, jehoz hodnota odpovida
vysledku piisluiné aritmetické operace, v pfipadé funkci GT,
GE pak atom T nebo F podle platnosti porovnéni.
Zadéni tlohy
Zapiste ve zjednoduseném jazyce LISP definice nésleduji-
cich funkci:
a) AVER[S]
S je neprazdny seznam tvoreny Ciselnymi atomy, hod-
notou funkce je jejich aritmeticky prameér.
b) MAX[S]
S je neprézdny seznam tvoreny &fselnymi atomy, hod-
notou funkce je hodnota nejvétsiho z nich.
c¢) PREVODI[X;S]
X, S jsou c¢iselné atomy s hodnotou X > 0, S > 1;
hodnotou funkce je seznam cifer, ktery reprezentuje
zapis Cisla X v Ciselné soustavé se zdkladem S. Prvnim
prvkem seznamu je cifra nejvys$siho fadu.
Pf.: Pro X =11, S = 2 je hodnotou funkce seznam
(1011).
ResSeni. a) Funkci AVER[S] pro vypodet aritmetického
pruméru Ciselnych atom@ v seznamu S nejsnize zapiSeme
pomoci dvou pomocnych funkei:
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DELKA[S] — kde S je jako v zad4ni ulohy, hcdnotou
funkce je pocet prvka v seznamu S:

DELKA[S] = [NULL[S] -> 0;
T -~ ADD[1; DELKA[CDR(S]]]]

SOUCET][S] — kde S je jako v zadani ulohy, hodnotou
funkce je Ciselny atom, jehoz hodnota od-
povidéd soutu hodnot prvka v seznamu S:

SOUCET]S] = [NULL[S] - 0;
T -~ ADD[CAR[S]; SOUCET[CDR[S]]]]

Potom staci napsat
AVER([S] = DIV[SUM][S]; DELKA[S]].

Upozortiujeme, Ze do zjednoduseného jazyka LISP jsme za-
vedli prici pouze s celymi ¢isly, takze funkce AVER([S] po-
¢itd vlastné celou ¢ést z aritmetického pruméru.

b) MAX[S] = [NULL[CDR[S]] - CAR[S];
GT[CAR[S]; CAR[CDR(S]]] -
—~ MAX[CONS[CAR[S];
CDR[CDR([S]]]];
T - MAX[CDR[S]]]

Maximdlni hodnotou jednoprvkového seznamu je hodnota
jeho jediného prvku. Jinak se vynechd mensi z prvnich dvou

prvka seznamu. Tim vznikne seznam o jeden prvek kratsi
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(se stejnym maximem hodnot prvki, jaké mél pavodni se-
znam), na ktery se rekurzivn€ zavold funkce MAX.

¢) Nejprve definujeme pomocnou funkci APPEND|S;X],
kde S je seznam. Vysledkem této funkce je seznam, ktery
vznikne pfiddnim vyrazu X do seznamu S na konec (tj. za-
fazenim za posledni prvek seznamu S):

APPEND(S;X] = [NULL[S] > CONS[X;( )];
T -~ CONS[CAR([S];
APPEND|[CDRI[S]; X]]]

Nyni jiz muzeme piistoupit k feSeni zadané ulohy. Posledni
Cislici zapisu Cisla X v soustavé se zakladem S ziskdme jako
zbytek po celotiselném déleni Cisla X Cislem S, tedy jako
X mod S. Pfedchézejici &islice jsou rovny cifram zépisu Cisla
X div S v soustavé se zdkladem S. Postup pievadéni cisla
X do soustavy se zdkladem S proto vypada nasledovné: Po-
stupné ¢islo X celo¢iselné délime hodnotou S a zaznamenava
me zbytky po téchto celotiselnych délenich. Tyto zbytky
jsou odzadu jednotlivymi ciframi hledaného zipisu. Uvedeny
postup snadno zapiSeme v programovacim jazyce LISP:

PREVOD[X;S] = [GT[S;X] - CONS[X;()];
T -~ APPEND[PREVOD|DIV[X;S];S];
MOD[X;S]]]

Je-li X <= S, je &islo X v <Ciselné soustavé se zdkladem S
reprezentovano Cislici X. Jinak uplatiiujeme vySe uvedeny
postup vypoctu. Ke skladdni jednotlivych &islic do vysledného
seznamu se pouzivd pomocnid funkce APPEND. Zde neni
mozné pouzit standardni funkci CONS, nebot cifry je tfeba
do seznamu pfipojovat na konec.
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ULOHY CELOSTATNIHO KOLA

P-11-1

Naleznéte a dokazte (co nejlepsi) algoritmus, ktery pro libo-
volnou kone¢nou posloupnost &isel a ¢isla K, L uréi, zda dana
posloupnost obsahuje souvisly tsek délky K, ktery se v ni
vyskytuje alesponi L-krat. Jednotlivé vyskyty se mohou &i-
ste¢né prekryvat.

P¥.: Pro posloupnoest 1,2,1,2,1,2,1a K =3, L = 3
je odpovéd »ANO«, protoze se v ni téikrat vyskytuje Gsek
1,2, 1.

Reseni. Oznatime-li délku zadané posloupnosti &isel jako
N, je mozné ulohu vyfesit provedenim fadové N2 operaci po-
rovnani dvou &isel. Je zajimavé, Ze pfi soutéZi na tento algo-
ritmus nikdo nepfiSel, vSechna odevzdana spriavna feSeni
obsahovala algoritmy pomalejsi.

Nejprve vysvétlime zdkladni myslenky algoritmu. Pred-
stavme si ¢tvercovou tabulku o rozmérech N X N, jejiz fadky
i sloupce jsou oznaceny postupné jednotlivymi &isly ze zadané
posloupnosti (shora dolu a zleva doprava). Pro priklad ze
zadéni Glohy tedy bude situace vypadat podle obr. 38. Nyni
tuto tabulku vyplnime ¢isly 0 a 1 podle jednoduchého pra-
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_ N N s N

Obr. 38

vidla. Cislo 1 bude v tabulce zapsino v téch politkich, ktera
maji stejné oznaené fadky a sloupce. V ostatnich poli¢kach
tabulky bude nula. V nafem pfikladu ukazuje vyplnéni ta-
bulky obr. 39. V takto vyplnéné tabulce budou jisté na hlavni
diagondle samé jedni¢ky. Ddle se budeme zajimat pouze
o polovinu tabulky nad hlavni diagonélou (polovina pod hlavni

1212121
111{0|1|0|1|0|1
2(011]0(1]0(1]0
1M11]0]1{0[1]0]1
2/0{1{0}1(0]1|0
111(0[1/0[1]0]1
2{0(1(0[1]0[1]0
111[0(1]0]1]0]1
Obr. 39
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diagonalou je s horni polovinou symetrickd podle diagonaly
a neprindsi proto zadnou dalsi informaci).

Pro feSeni nadi dlohy nds budou zajimat ty souvislé fady
jedniCek v tabulce, které maji smér rovnobézny s hlavni diago-
nalou (klesaji odshora dola zleva doprava). Priklad takové
fady jednitek ukazuje obr. 40. Pomoci téchto Sikmych fad

12 121 21
111]o0{1]{0[140]1
2l |1]o]1]07190
1 110]1(0}1
2 110/1]0
1 1101
2| 1110
1 1
Obr. 40

jednicek v tabulce jiz maZeme snadno zformulovat, jak ziské-
me vysledek fefené tlohy. Jedni¢kdm v jednom fadku ta-
bulky totiz odpovidaji opakujici se vyskyty Cisel v zadané
posloupnosti, klesajicim souvislym $ikmym faddm jednicek
proto odpovidaji opakujici se useky v zadané posloupnosti.
Jestlize existuje takovych K po sob& jdoucich radkua tabulky,
Ze jimi prochazi alespori L souvislych Sikmych fad jednicek,
algoritmus méd odpovédét »ANOg, jinak je vysledkem »NE«.
V nasem prikladu na obr. 40 pro zadané K = 3, L = 3 bude
odpovédi skute¢né »ANOg, prvnimi tfemi fddky tabulky pro-
chizeji tfi §ikmé fady jedniCek (jedna je na hlavni diagonile,
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jedna je vyznatena, dal3i lezi uprostied mezi prvnimi dvéma).

Dalsi Gpravy jsou jiz jen technického razu, jejich cilem je
usnadnit ¢innost algoritmu. Nasi tabulku budeme vypliiovat
po Fadcich. Pfitom muzeme do tabulky zapisovat nejen znaky
0 a 1, ale obecné celd nezdporné &isla, a tim muzeme (vzdy
s vyuzitim obsahu pfedchoziho fddku) zéroven poditat délky
souvislych $ikmych fad »jednicek«. Vyplnénou tabulku v na-
Sem piikladu po této upravé ukazuje obr. 41.

12121 21
111(o{1]{0of1]0]1
20 [2]0]2]0]2]0
1 3{0[3]0]3
2 L{0|4]0
1 5/015
2 6|0
1 7
Obr, 41

Pravidlo pro vypliiovani tabulky je tedy nyni nésledujici.
Vyplitujeme-li poli¢ko (1,7), 1 £ j < N, zapiSeme do n&j 1,
jestlize oznaleni j-tého sloupce je stejné jako oznaceni prv-
niho fadku, jinak zapiSeme 0. Vyplilujeme-li poli¢ko (7, 5),
1<i= N, i<;< N, zapiSeme do né& hodnotu politka
(1 — 1, j — 1) zvétdenou o 1, jestlize oznaleni i-tého fadku
a j-tého sloupce jsou stejné, jinak zapiseme 0.

UrCeni vysledku je potom snadné. Algoritmus odpovi
»ANO« pravé tehdy, jestlize je v n&kterém Fadku tabulky
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alesponn L cCisel vétSich nebo rovnych K. Jak je vidét, pro
stanoveni odpovédi neni ani tieba prochédzet znovu celou ta-
bulku, hodnoty vétsi nebo rovné K je mozné na kazdém fad-
ku pocitat jiz pii zaplilovani tabulky (a v pfipadé nalezeni
odpovédi »ANO« ani neni tfeba vypliiovat zbytek tabulky).
Dusledkem téchto uvah je jesté jedno vylepSeni algoritmu.
Jestlize uz nemusime zaplnénou tabulku znovu prochézet,
neni ani nutné celou ji ukladat. Vzdy sta¢i pamatovat si pouze
obsah piedchoziho fadku. Nebudeme proto vytvéret ¢tverco-
vou tabulku s velkym pamétovym nirokem N2, stali pracovat
pouze s jednim vektorem délky N, do kterého budeme po-
stupné pocitat a ukladat jednotlivé fadky nasi tabulky.

Popsany algoritmus FeSeni zadané Glohy nyni jesté zapiSe-
me v programovacim jazyce Pascal. Budeme pfedpokladat, ze
danou posloupnost ¢isel délky N mame uloZzenou v poli
A[l..N] a ze proménné K, L obsahuji vstupni udaje podle
zadédni tUlohy. Jednotlivé fadky tabulky se budou vytvaret
v poli T1..N]. Tyto fadky jsou pocitiany a uklddiany do T
odzadu (zprava doleva) proto, abychom si hodnotami nové
vytvafeného fadku nepiepsali ty hodnoty piedchoziho radku,
které jest¢ budeme potiebovat. Ziroven je v proménné
POCET sledovén pocet &isel vétSich nebo rovnych K na fad-
ku. Najde-li se jich L, vypocet ihned skon¢i. Proménné I a ¥
jsou pomocné, urtuji vzdy fddkovy a sloupcovy index pravé
pocitaného policka v tabulce.

begin

I:=1;] := N; POCET := 0;

while (I < = N) and (POCET < L) do
begin
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POCET := 0;
while (J > = I) and (POCET < L) do
begin
if A[I]<> A[]J] then T[]J] := 0
else if I = 1 then T[]] := 1
else T[J] := T[] — 1] + 1;
if T[J] > = K then POCET := POCET + 1;

J:=7-1

end; -
I:=1+1;]J:=N
end;

if POCET > = L then write CANQO’) else write CNE’)
end

Vypocet podle algoritmu jisté skonci, nebot postupné se za-
pliiuje a testuje méné nez N2 poli¢ek tabulky. Kazdy z cykla
v uvedeném programu se bude opakovat nejvySe N-krat.
Zbyva ukazat, zZe popsany algoritmus skute¢né najde L vysky-
tt podposloupnosti délky K v zadané posloupnosti. Necht
tyto shodné podposloupnosti maji nésledujici indexy v poli 4:

prvni: pi,p1 + 1, ..., + K—1

druhd: po,po + 1, ...,p2 + K — 1

L-ta: pr.pr+ 1, ...,p + K—1
pfi¢emz vSechny tyto indexy maji hodnoty mezi 1 a N (v¢etng)
a plati p1 < p2 < ... << pr, (podposloupnosti jsou vypsany
v pofadi jejich vyskytu).

Pii vypliiovani nasi tabulky dojdeme k fadku p; (v pro-
gramu I = p1). Na tomto fadku se jisté objevi kladnd disla
ve sloupcich pi, p2, ..., pr, nebot je A[p1] = A[p2] = ...
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.. = A[pr] (v programu to znamend, Ze hodnoty T7[p],
T(p2], - .., T[pr] budou kladné). V nésledujicim fadku p; + 1
(v programu: pro I = p; + 1) nastane shoda A[p + 1] =
= Alps + 1] = ... = A[pr + 1], &sla ve sloupcich py + 1,
p2 + 1, ..., pr, + 1 proto budou kladni a vzhledem k obsa-
zeni pfedchoziho pi-tého fddku budou véts§i nebo rovna 2
(v programu: hodnoty T[p1 + 1], T[p2 + 1], ..., T[pr + 1]
budou > 2). Tato situace se opakuje i pro dalsi fadky tabulky
az do fadku py + K — 1 v&etné. V fadku &islo p; + K — 1
budou ve sloupcichpy + K—1,ps + K—1,...,p, + K—1
zapsdna Cisla v§echna vétsi nebo rovna hodnoté K (v progra-
mu: T[pr + K —1], T[ps + K — 1], ..., T[pr, + K — 1]
budou mit po vyhodnoceni tddku I = p; + K — 1 hodnotu
vétsi nebo rovnu K). V fadku p; + K — 1 tedy bude nale-
zeno L ¢isel vétsich nebo rovnych K a algoritmus proto
spravné odpovi »ANO«. Stejnym zpusobem se ukdZe, Ze ne-
existuje-li v zadané posloupnosti L vyskyti podposloupnosti
délky K, algoritmus nikdy v jednom fadku nenapotita L &isel
vétsich nebo rovnych K a odpovi proto »NEc«.

P-1l-2

Je dén nésledujici usek programu se vstupnimi redlnymi
proménnymi X a 4, kde X > 1,4 > 1.

PASCAL: Z := A;
K:=1;
Y := 0
while X > = Z do
begin
Z:= Z%Z;
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K := 2*K
end;
while K > 1 do

begin

{X*A 1Y = konst, & X < Z}

Z := SQRT(Z);

K:= Kdiv 2;

if X > = Z then
begin
X := X/Z;
Y:=Y+K
end

end

BASIC:  10LETZ =A

20 LET K = 1

30 LETY =0

40 IF X < Z THEN 80
50LETZ=2*Z

60 LET K = 2 * K

70 GOTO 40

80 IF K <= 1 THEN 160

90 REM X *A | Y = KONST. & X < Z
100 LET Z = SQR (2)
110 LETK = K /2

120 IF X < Z THEN 150

130 LET X = X/ Z
140 LETY =Y + K

150 GOTO 80

160 REM KONEC
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Dokazte, 7e vyraz X*A4 4 Y ma stejnou hodnotu pfi viech
prachodech vypoctu mistem programu, kde je v komentéfi
zapsén, a ze v tomto misté je zdroven vzdy splnéna podminka
X < Z. Na zikladé toho zjistéte, jaké hodnoty nabyva pro-
ménnd Y po ukoneni vypoltu, a svoje tvrzeni dokazte.

ReSeni (upravené fefeni Radka Porazila z gymnazia
v Bilovci).

Nejprve ukdzeme, Ze po uvodni inicializaci na fadku 10
a 20, po zméndch na fadku 50 a 60 i na fadku 100 a 110
stale plati vztah

(1 Z = 4K,

kde symboly Z, 4, K oznacuji po fadé momentalni hodnoty

proménnych Z, A, K. Obsah proménné 4 se v programu

neméni. Uvedeny vztah plati vzdy po zméné obou promén-
nych Z, K (provedeni dvou po sobé jdoucich pfifazovacich
ptikazu).

DokéZeme platnost vztahu Z = A4X pro zmény na fadcich
40 a 50. K tomu oznatme Ky, Zy hodnoty proménnych K, Z
pfed prvnim testovinim podminky na fadku 40. Déle oznac-
me K, Z, hodnoty proménnych K, Z po n-tém pruchodu
fadkem 60. Dokazujeme matematickou indukci podle 7:

1. Pro vychozi hodnoty Ky, Zo, A vztah Zy = A% ziejmé
plati, nebot podle dosazeni na fadku 10 a 20 je Zy = 4,
Ky = 1.

2. Necht plati Z, = A% pron = 0. Chceme dokézat, Ze po-
tom Zy = AE. Podle tadku 50 je Z,41 = Z7, podle
fadku 60 plati K,11 = 2.Kj,. Odtud plyne:
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Zpi1 = 72 = (AK11)2 = A2 Krn — 4Ean
n

Tim je tvrzeni dokdzano.

Obdobné bude vypadat dukaz vztahu Z = AK pro zmény
na fddku 100 a 110. Nyni bude znatit Ky, Zy hodnoty pro-
ménnych K, Z pted prvnim testovanim podminky na fadku
80 a K, Z, hodnoty proménnych K, Z po n-tém pruchodu
fadku 110. Opét dokazujeme matematickou indukci:

1. Platnost vztahu pro Ky, Zo plyne z piedchoziho dukazu,
nebot Ky, Zy jsou posledni hodnoty proménnych K, Z,
které vznikly pfi zménéach na fadku 40 a 50.

2. Indukéni predpoklad: Z, = A" pro n&jaké n > 0. Médme
dokézat, ze Z,11 = A" Podle fadku 100je Z, 11 = Z!*,
podle fadku 110 je K11 = K,/2. Plati:

Y ¢ /2
Zp1 = Zy? = (A}\")l/lz AFP = 4K 1:

coz jsme méli dokazat.

Nyni muzeme piikroc¢it k dukazu invariantu -uvedeného
v zaddni ulohy. Nejprve ukazeme, ze X.AY = konst. Po-
¢atecni hodnoty proménnych X, Y ozna¢ime po fadé Xy, Yo,
plati Yy = 0 (podle dosazeni na f. 30). Pfi prvnim vyhodno-
ceni invariantu (tj. prvnim pruchodu fadkem 90) maji pro-
ménné X, Y hodnoty Xy, Yi. Vyraz X.AY nabyva proto
hodnoty Xj.A" = X, (nebot Y, = 0). Budeme proto do-
kazovat platnost tvrzeni

) X,. A" = X,,
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kde X, Y, oznacuji hodnoty proménnych X, Y po n-tém

pruchodu télem cyklu (fadky 100 az 150). Tvrzeni dokdZeme

matematickou indukei:

1. Pro Xp, Yo jsme platnost vztahu (2) dokézali jiz pfi jeho
odvozeni.

2. Necht plati X,,. A" = X, pro jisté n > 0. DokiZeme, Ze

také Xp41.4""" = Xo. P¥i (n + 1)-nim pruchodu t&lem
cyklu na fddku 100 az 150 mohou nastat dvé mozZnosti:
a) plati X, < Z’ (kde Z’ je momentilni hodnota pro-
ménné Z) ... pak se hodnoty proménnych X, Y nezméni,
bude X, = Xu, Yny = Y, a platnost dokazovaného
vztahu plyne pfimo z induk¢niho predpokladu.
b) plati X, > Z’ ... potom podle fddku 130 bude
Xp1 = Xy/Z’ a podle fadku 140 plati Y, = Y, + K/,
kde K’, Z’' jsou hodnoty proménnych K, Z v okamZiku
priuchodu F4dky 130 a 140. Podle (1) plati rovnost Z' = AX
Nyni bude s vyuzitim uvedenych rovnosti:

Xy A0 = (XulZ'). A K = (X AK). A" 4K =
- Xn.AYn = X()

Tim je vztah (2) dokdzin.

Dile dokdZeme druhou &ést invariantu, totiz to, Zze pfi kaz-
dém pruchodu fidkem 90 plati

3) X< Z

Symboly Xp, Zy budou znatit hodnoty proménnych X, Z pii
prvnim prichodu fadkem 90, symboly X, Z, hodnoty X, Z
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pii (n + 1)-nim prachodu. Dokazujeme opét matematickou

indukci:

1. Jisté plati Xy << Zy, nebot na fddek 80 se vypocet dostane
az po splnéni této podminky (test na fadku 40).

2. Necht plati X, < Z, pro jist¢ n = 0. Dokizeme, zZe
Xu1 < Zy1. Natadku 100 se v téle cyklu nejprve uréi nové
hodnota proménné Z: Z,,; = Z,'/2. Dile mohou nastat
dvé moznosti jako v pfedchozim dikazu:

a) Xy < Zuyy1 ... potom bude X, 1 = X, a tedy jisté
také X1 < Zpi1.

b) Xu = Zys1 ... potom Xpy1 = Xu/Zy (podle fadku
130). Muzeme psat:

Xunn = Xo/Zp = Xnl 22 = Xy 22y =
- X7L-Z')’lr+1/Z‘IL s <X71,/Z71).Zn+1 < Z"A_;l,

coz jsme méli dokazat.
Pozndmka. posledni nerovnost plyne z indukéniho pied-
pokladu.

Tim je ukoncena prvni ¢dst ulohy - dukaz platnosti inva-
riantu. Na zdkladé¢ dokdzaného invariantu muzeme vyslovit
nisledujici hypotézu: V proménné Y bude po ukonceni vy-
poctu hodncta celé ¢ésti logaritmu X pii zdkladu 4. Tuto
hypotézu nyni dokdzeme.

Pti poslednim prachodu fadkem 90 plati K, 1 = 2,
Zy1=A%a Xy 1.4 = Xy, pticemz X, 1 < A2 (vyplyva
z (2) a (3)), kde X, 1, Yu1, Ky1 Zu1 jsou hodnoty pro-
ménnych X, Y, K, Z pii poslednim pruchodu fadkem 90.
Tésné¢ pred provedenim fadku 120 je jiz K =1, Z = A.
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a) Je-li X1 << 4, jisté také plati leg.X,—1 < 1. V temto
pfipadé bude X, = Xy 1, Y, = Y, (na zikladé testu
na fadku 120). Plati X,.4"" = Xo, odtud po zlogaritmo-
vani dostaviame

10gAXii + Y, = lOgAXO-

Jedna se o posledni pruched télem cyklu, takze Y, je vy-
slednd hodnota proménné Y. Hodnota proménné Y se
v programu vytvéri jako soucet celych cisel, Y, je tedy také
celé Cislo. Protoze logsX, je nezdporné Cislo mens$i nez 1,
je jisté Y, celou &asti hodnoty logy Xy, coz jsme méli do-
kazat.

b) Jestlize X, 1 = 4 (a z invariantu X, | < 42), dosta-
neme po zlogaritmovani nerovnosti

logad = loga X, 1 < loga A2

—
IIA

log4X,—1 < 2

Muzeme tedy logsX, 1 zapsat ve tvaru 1 + v, kde 0 <
< v < 1. Déle podle fadku 140 je Y, = Y1 + 1 a zloga-
ritmovanim vztahu X, 1.4V = X, dostaneme

logAanl + Yy = logAXO-

Dcsadime-1i do této rovnosti za logs X, 1 vyraz 1 + v a za
Yu-1 vyraz Y, — 1, dostaneme

Y, + v = logaXo.

b
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Protoze Y, je celé Cislo a hodnota v je nezdpcornd mensi
nez 1, je hocdnotou Y, celd &ast z logaXp.

Tim je hypctéza o vysledné hcdnoté proménné Y doka-
zdna.

P-11-3

Naleznéte a dokazte (co nejlepsi) algoritmus, ktery z libo-
volné kone¢né mnoziny uzavienych intervala na redlné piimce
vybere skupinu po dvou disjunktnich invervala, ktera ze
vSech takovych skupin obsahuje nejvétsi mozny pocet inter-
valu.

Reseni (upravené feSeni Pavla Kozlovského z gymnizia
v Jindfichové Hradci).

Dolni a horni meze intervala ulozime do pole M[1..N,
1..2], kde N je pocet intervali a druhy index urcuje druh
meze invervalu (1 - dolni, 2 - horni). Potom intervaly zapsa-
né v poli M setiidime podle hodnot dolni meze vzestupng,
tzn. bude platit M[1,1] < M[2,1] < ... < M[N, 1]. Dalsi
¢asti algoritmu je jednopruchodové prohleddni pole M.
Zv1ast jsou pritom vzdy uschoviny hodnoty mezi »posled-
nihc« zpracovaného intervalu (na pocatku vypoltu to jsou
meze prvniho intervalu, tj. M[1, 1] a M[1, 2]). Pfi zpraco-
vani dalsiho intervalu v pofadi muZe nastat nékolik moZnosti:
1. Zpracovavany interval je obsazen v poslednim intervalu.

Do vysledné skupiny bude vyhodné&jsi vybrat mensi

z nich (ma méné spole¢nych bodu s dal$imi intervaly).

Posledni interval proto zapomeneme a zpracovivany

interval prohlasime za pesledni.

2. Zpracovavany a posledni interval jsou disjunktni. Protoze
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pole je setiidéné podle dolnich mezi, jsou vSechny dosud
nezpracované intervaly disjunktni s poslednim interva-
lem. Posledni interval zapiSeme do vystupu a zpracovi-
vany interval prohldsime za posledni.

3. Zpracovavany a posledni interval maji nepriazdny prunik,
ale zaroven neplati inkluze z bodu 1. Do vysledné skupiny
nelze vybrat oba intervaly. Vybereme proto ten, ktery
ma4 niz8i hodnotu horni meze (vzhledem k umisténi dosud
nezpracovanych intervala je to vyhodnéjsi). Tim je jisté
posledni interval, jinak by nastal pfipad 1. Posledni inter-
val tedy zustdva beze zmén, zpracovavany interval zapo-
meneme.

Po zpracovani vSech intervala se jesté posledni interval
zapiSe do vystupu.

Rychlost vypoctu tohoto algoritmu je déna rychlosti t¥i-
déni a je tedy fadové N.logeN, dalsi zpracovani intervalu
ma jiz linedrni slozitost.

Algoritmus nyni zapiSeme ve tvaru useku programu v pro-
gramovacim jazyce Pascal. Predpokliddejme, Ze N udava
pocet intervalt na vstupu a Ze méame deklarovdno dvouroz-
mérné pole M[1..N, 1..2] tak, jak je uvedeno v uvodu
feSeni. Dale budeme predpoklddat, ze v poli M jsou uloZeny
hodnoty mezi intervala a Ze tyto intervaly jsou jiz setfidéné
vzestupné podle dolnich mezi. K tomuto setfidéni by se
pouzil néktery ze standardnich tfidicich algoritmu (zde
neuvddime). Plati tedy M[1, 1] < M[2,1] < ... £ M[N, 1]
a M[K, 1], M[K, 2] jsou dolni a horni mez K-tého intervalu
pro cela K, 1 £ K< N. Pomocné proménné L, H slouzi
k ulozeni dolni a horni meze »posledniho« intervalu.
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L := M[L, 1];
H:= M[l, 2];
for I := 2 to N do
if M[1, 2] < H then
begin {pfipad 1}

L := M[], 1];
H:= M[], 2];
end

else if M[I, 1] > H then
begin {pfipad 2}
writeln (L, H);
L := M[], 1];
H := M[], 2];
end; {v pfipad¢ 3 se nic neprovadi}
writeln (L, H);

Zduvodnéni spravnosti algoritmu:

1. Vypocet programu skon¢i, nebot pocet provadéni
jednotlivych operaci je piedem omezen hodnctou N (télo
cyklu se opakuje méné nez N-krait).

2. Vybrana skupina obsahuje pouze po dvou disjunktni
intervaly. Interval poznamenany jako »posledni« (v pro-
ménnych L, H) je totiz zapsdn na vystup pravé tehdy, je-li
disjunktni s privé zpracovavanym intervalem, a vzhledem
k uspofadéani intervala podle hodnot dolni meze je proto
disjunktni i se viemi dal$imi dosud nezpracovanymi intervaly.
Dile plati, ze interval je prohldSen za »posledni«, bud je-li
disjunktni s intervalem pravé zapisovanym na vystup, nebo
je-li podmnozinou dosud posledniho intervalu. Protoze je
pole intervalu setfidéno, je posledni interval disjunktni i se
vSemi jiz vybranymi a vytisténymi intervaly.

205



3. Vybrana skupina intervali obsahuje nejvétsi mozny
pocet intervala. Pii prichedu viemi setfidénymi intervaly
totiz interval do vysledné skupiny nevybereme a »zapome-
neme« ho pouze ve dvou pfipadech, kdy je to nezbytné, aby
vybrand skupina obsahovala pouze po dvou disjunktni inter-
valy:

a) Je-li néktery z intervali Césti jiného, je nutné jeden
z nich vynechat. Algoritmus vynechd vétsi z obou intervala,
coz je jisté vyhodnéjsi z hlediska moznych spole¢nych boda
s dal3imi intervaly.

b) Maji-li dva intervaly neprdzdny prunik, ale nenastdvd
pfitom piipad a), musi byt jeden z nich vynechdn. Algo-
ritmus vynechd ten z obou intervala, ktery ma vétsi horni
(a tudiz i dolni) mez, nebot to je vyhodnéjsi z davodu pti-
padnych spole¢nych bodu s nasledujicimi inter{faly (kon-
flikty s predchozimi intervaly jsou jiz vvieSeny, nebot inter-
valy jsou pfi prochézeni setfidéné).

P-111-4

Zapiste ve zjednodu$eném jazyce LISP definice nésledu-

jicich funkei:

a) REVERSE [X]
X musi byt seznam
hodnotou funkce je seznam tvofeny stejnymi prvky jako
seznam X, ale v opa¢ném pofadi.

b) DIFELEM [S]
S je seznam atomu
hodnotou funkce je seznam viech ruznych prvku sezna-
mu S.
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c) LINEAR [S]
S musi byt seznam
hodnotou funkce je seznam vSech atomu, které se
vyskytuji nékde v S bez ohledu na uroven vnofeni
seznamu a jejich poradi.

Reseni. a) Nadefinujeme pomocnou funkci PRESUN
[X; Y], kde X, Y jsou seznamy. Tato funkce piesune vSech-
ny prvky ze seznamu X v opatném pofadi na zalitek se-
znamu Y:

PRESUN [X; Y] = [NULL [X] > Y;
T - PRESUN [CDR[X]; CONS
[CAR[X]; Y]]]

S vyuzitim této funkce jiz snadno zapiSeme pozadovanou
funkci REVERSE [X]:

REVERSE [X] = PRESUN [X; ()]

b) Pomocnd funkce MEMBER [X; S] zjituje, zda je
atom X prvkem seznamu atomu S (viz uloha P - I - 4):

MEMBER [X; S] = [NULL [S] - F;
EQ [X; CAR[S]] > T;
T -~ MEMBER [X; CDR[S]]]

Diéle definujeme pomocnou funkci DIFEL [S; Y], kde
S, Y jsou seznamy atomu. Tato funkce zpracovéva seznam
atom S a vytvadfi pomocny seznam atomi Y nasledujicim
zpusobem: do seznamu Y pfesouvd ty prvky ze seznamu S,
které jesté v Y nejsou. Jestlize se projde cely seznam S, vyda
se vytvoreny seznam Y jako vysledek funkce DIFEL:
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DIFEL [S; Y] = [NULL [S] > Y;
MEMBER [CAR[S]; Y] —
— DIFEL [CDR[S]; YJ;
T — DIFEL [CDR[S];
CONS [CAR[S]; Y]]

Vyslednou funkci DIFELEM[S] poZadovanych vlastnosti
nyni snadno vyjadiime jako volani funkce DIFEL s prazd-
nym seznamem dosazenym za parametr Y:

DIFELEM[S] = DIFEL[S; ()]

Pro zajimavost uvidime jiz bez podrobnéjsiho komentaie
jesté jiné feSeni ulohy, které nepouzivd pomocnou funkci
DIFEL a nevyuzivé triku s pomocnym, na po¢atku prazdnym
seznamem. Zapis tohoto druhého feSeni je kratsi, ale vypo-
Cet by byl o néco pomalejsi:

DIFELEM [S] = [NULL [S] — S;
MEMBER [CAR[R];
CDR(S]] -~ DIFELEM [CDR[S]J;
T -~ CONS [CAR[S];
DIFELEM [CDR[S]]]]

¢) Nejprve nadefinujeme pomocnou funkci CONNECT
[R; S], jejiz hodnotou je seznam vznikly spojenim seznami
R a S za sebe:

CONNECT [R; S] = [NULL [R] > S;

T — CONS [CAR[R];
CONNECT [CDR [R] ; S]]]
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S pouzitim této pomocné funkce pak jiz zapiSeme vysledncu
funkci LINEAR [S]. Postupné prochidzime vsechny prvky
seznamu S. Je-li takovy prvek seznamu S atom, je pfipojen
ptimo do vytvafeného seznamu atomu a funkce LINEAR je
rekurzivné voldna na zpracovani zbytku seznamu S bez
prvniho prvku. Je-li prvnim prvkem seznamu S seznam, je
funkce LINEAR voldna dvakrat - na prvni prvek seznamu S
i na zbytek seznamu S - a oba takto vzniklé seznamy atomi
jsou propojeny pomoci funkce CONNECT:

LINEAR [S] = [NULL [S] - S;
ATOM[CAR([S]] -~ CONS[CAR[S];
LINEAR[CDR[S]]];

T - CONNECT [LINEAR[CAR[S]];
LINEAR[CDR[S]]]]

Ulohu je mozné fedit i mnoha jinymi zpusoby. Pro ilustraci
uvadime, jiz bez komentain, jesté jedno feleni:

LINE [S; Y] = [NULL [S] > Y;
ATOM[CAR[S]] - LINE[CDR][S];
CONS[CAR[S]; Y]I;
T - LINE[CDR[S];
LINE[CAR([S]; Y]]

LINEAR [S] = LINE [S; ()]



MEZINARODNI{ OLYMPIADA V PROGRAMOVANT{

Ve $kolnim roce 1986/87 se¢ uskute¢nil také 1. roénik me-
zinarodni olympiddy v programovani. Tato soutéz vznikla
z iniciativy slovenskych organizitort kategorie P matema-
tické olympiddy. Mezindrodni olympiddy v programovéni
se¢ zacastnila druzstva ze SSSR (8 tuclastnika), z BLR (6
Glastnika) a z CSSR (7 Gcastnika), piitomni dale byli pozo-
revatelé z NDR, MLR a z PLR. Olympiada probihala
v Bratislavé a v Modre ve dnech 23.—30. 8. 1987. Vlastni
soutéz se konala po dva dny, v kazdém z téchto dna méli
soutézici Ctyfi hodiny c¢asu na vyfeSeni dvou soutéznich
uloh. Vybér i opravovani uloh probihaly pod vedenim mezi-
narodni jury stejnym zpusobem, jaky je obvykly u mezind-
redni matematické olympiddy.

SOUTEZNI ULOHY

1. Pro pfirozend &isla X a Y budeme Fikat, ze X se vysky-
tuje v Y, jestlize se dd bindrni zapis Cisla X ziskat z bindrniho
zipisu Y vySkrtnutim (vyloucenim) zddné, jedné nebo vice
cifer. (Naptiklad X = 1010 se vyskytuje v Y = 1001100.)

Vytvofte algoritmus, ktery pro dand dvé piirozend (isla
A a B najde maximalni Cislo C, které se vyskytuje v Aiv B.
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2. Je dano n karet, které jsou ocislovany 1, 2, ..., n (kazdé
tislo se vyskytuje pravé jednou). Vytvoite algoritmus, ktery
pro libovolnou posloupnost A1, A2, ..., An téchto karet
najde nejmensi pocet K prostych vymén karet nutny na
jejich uspofddani podle rostoucich hodnot jejich &isel. (Pod
prostou vyménou se rozumi vzdjemnd ziména pozic libovol-
nych dvou karet.)

PF.: Pro posloupnost 1, 5, 3, 2, 4 je vysledek K = 2,
protoze prostymi vyménami karet s Cislem 5 a 2 a pak karet
s Cislem 4 a 5 dostaneme uspofadanou posloupnost 1, 2, 3,
4, 5.

3. Jeddno prvnich N2ptirozenych ¢isel (N >2)1,2,...,N2
Sestavte algeritmus, ktery rozdéli tato ¢isla do N skupin tak,
aby byly soucasné splnény nésledujici tfi podminky:

1. kazda skupina obsahuje pravé N Cisel,

2. kazdé cislo se nachézi pravé v jedné skupiné,

3. soucet Cisel v kazdé skupiné je stejny.

4. Uvazujme nasledujici hru. Pro pevné dané pfirozené
¢islo N > 1 hra¢ A zvoli pfirozené &islo X, 1 £ X < N.
Cilem hréce B je uhodnout toto ¢&islo X pomoci dotaza typu
»Je X vétsi, nebo rovno K72, kde K je libovolné piirozené
¢islo. Hra¢ A musi odpovidat na dotazy pravdivé a nesmi
béhem hry ménit X. Hr4d¢ B plati hra¢i A za kazdou cdpo-
véd. Za odpovéd »ANO« plati 2 K&s, za odpovéd »NEc«
plati 1 K¢s.

Uréete pro dané N nejmensi mnozstvi Kés P(N), které
zaruCené stai na uhodnuti libovelného pfirozeného Cisla X,
1< X=N.
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Vytvoite takovy algoritmus, podle kterého méd hrac B
klast dotazy tak, aby uhcedl &islo X a zaplatil pfitom nejvyse
P(N) K¢s (tj. algoritmus urcujici vhodné K v dotazech).

Reseni kazdé ulohy bylo hodncceno maximalné 10 bedy.
Niésledujici tabulka ukazuje, kolik z 21 WGcastniki soutéZe
ziskalo jaky pocet bodu za feSeni jednotlivych tloh.

I Pocet bodu
Uloha \

| 0 1 2 3 4 5 6 7 8 9 10
|
} 1 2 2 0 2 1 3 3 4 0 3 1

2 0O 0 0 2 1 2 2 4 3 5 2
| 3 1 0 1 1 3 3 2 1 1 3 5
5 4 11 0O o0 O O 1 2 2 3 2 0

Pramérné bedové hodnoceni jednotlivych uloh bylo nasle-
dujici:

Uloha 1 Pramérné hodnoceni

‘ |
| |
| |
1 ' 5,24 |
2 | 7,10 |
3 } 6,48 |
| |
| \

Nejlep$im feSitelam udélila jury celkem dvé I. ceny, tii
II. ceny a pét III. cen. Nasi studenti si vedli v soutézi velice
dobre, ziskali jednu I. cenu, jednu II. cenu a dvé III. ceny.
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Soutézici ze Sovétského svazu obdrzeli jednu I. cenu a tfi
ITI. ceny, bulhar$ti studenti pak dvé II. ceny. Bodové zisky
jednotlivych zacastnénych druzstev jsou shrnuty do nésle-
dujici tabulky.

CSSR celkem 168 bodu ! prumér 24 bodu na zéka

|
; SSSR celkem 176 bodu prumér 22 boda na zaka
1 BLR celkem 126 bodu pramér 21 bodu na zéka

SLOZENI A VYSLEDKY
CESKOSLOVENSKEHO DRUZSTV A

Viadan Majerech, 4., G Pardubice

— 1. misto, 38 bodu (9, 10, 10, 9), I. cena
Pavel Kozlovsky, 3., G Jindfichuv Hradec

— 3. misto, 33 bodu (10, 6, 10, 7), II. cena
Pavol Kolnik, 4., G Nové Mesto nad Vahom

— 7. misto, 23 bodu (1, 9, 5, 8), III. cena
Rudolf Burcl, 4., G Trnava

— 10. misto, 21 bodu (4, 5, 6, 6), III. cena
Peter Klein, 4., G A. Markus3a, Bratislava

— 12.—15. misto, 19 bodu (1, 5, 7, 6)
Rastislav Senderdk, 4., G Presov

— 12.—15. misto, 19 bodu (7, 3, 9, 0)
Branislav StriZenec, 3., G ]J. Hronca, Bratislava

— 20. misto, 15 bodu (5, 8, 2, 0)
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Hodnoceni 36. roéniku MO

V organizaci soutézi MO nedoslo v tomto rcce k zddnym
pirevratnym zméndm - to spiSe v konsolidaci a ustaleni jiz
zavedenych forem.

To se tyka predev§im nové kategorie P, ktera byla ve $kol-
nim roce 1986/87 v celostitnim méfitku uspofidina teprve
podruhé. Jeji prubéh byl veskrze uspéiny, vcetné pékného
celostatniho kola, které se konalo v Praze. Kromé toho se
podafilo uspofadat i prvni mezinirodni soutéz v tomto
oboru - probéhla v srpnu 1987 v Bratislavé. Kategorie P tak
plné prokazala svou opravnénost a Zivotaschopnost.

Poté&sujici je i skute¢nost, Ze se zavedeni nové a bezpochy-
by velice atraktivni kategorie neprojevilo nepfiznivé na zdjmu
zaku o »klasickou« kategorii A. V seznamech uspé$nych
feSitell nachdzime oviem v A i v P Casto stejnd jména.

Vcelku lze proto zavedeni kategorie P povazovat za pozi-
tivni pfinos k MO a z dosavadnich zkuSenosti vyvozovat
povzbuzeni pro pokraovani v nastoupené cesté.

Zijem o MO je na stiednich $kolich relativné stabilni, coz
Ize sice ocenit kladné, zaroven viak tento fakt svéd¢i o tom,
ze se MO v posledni dob& nedaii vyznamné rozsifovat své
pusobeni. ZvIa$té v nejvyssi kategorii A je patrna relativni
prevaha 3kol, resp. tiid se zaméfenim na matematiku.
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Zkusenoesti z 36. ro¢niku MO rovnéz znovu potvrdily nut-
nost velmi uvazlivé volby aloh pro vyssi kola soutéze, zvlasté
v kategoriich B a C, kde jesté nemuze prevladnout ryze sou-
tézni piistup. Neni-li vybér uloh pfizpusoben znalostem
a moznostem zdkn, projevi se to ihned pcklesem uspés$nosti
a nisledné¢ pak i poklesem zajmu o MO; tomu je tieba zabra-
nit. Pro pfisti re¢nik byly proto navrzeny urcité upravy.

Zijem o MO na stiednich $kolach je ovSem silné ovlivnén
také zkuSenostmi, které s MO ziskaji Zdci uz na zdkladnich
Skolach. Kategorie Z se postupné rozsifuji a osamostatiiuji;
popis jejich prubéhu a hodncceni je obsazeno v samostatné
rocence.
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