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O průběhu 36. ročníku
matematické olympiády

Soutěž Matematická olympiáda pořádají pro žáky střed-
nich a základních škol ministerstva školství ČSR a SSR ve

spolupráci s Jednotou československých matematiků a fyzi-
ků, Jednotou slovenských matematiků a fyziků, Matematic-
kým ústavem ČSAV a Socialistickým svazem mládeže.
Soutěž řídí ústřední výbor matematické olympiády (ÚV MO)
prostřednictvím krajských a okresních výborů matematické
olympiády (KV MO, OV MO). Členy KV MO a OV MO
jmenují odbory školství krajských a okresních národních
výborů, členy ÚV MO jmenují ministerstva školství. Na
začátku školního roku 1986/87 určila ministerstva školství
ČSR a SSR na návrh hlavních výborů JČSMF a JSMF toto
složení ÚV MO na další tříleté období:

Předsednictvo ÚV MO

RNDr. František Zítek, CSc., MÚ ČSAV,
Praha

místopředsedové: prof. RNDr. Miroslav Fiedler, DrSc., člen
korespondent ČSAV, MÚ ČSAV, Praha
doc. RNDr. Branislav Rovan, CSc., MFF
UK, Bratislava

předseda:
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zástupce
MŠ ČSR: RNDr. Václav Šůla

zástupkyně
MŠ SSR: RNDr. Júlia Luká tšová

doc. RNDr. Leo Boček, CSc., MFF UK,
Praha

RNDr. Karel Horák, CSc., MÚ ČSAV,
Praha

tajemníci:

další členové

předsednictva: RNDr. Tomáš Hecht, CSc., MFF UK,
Bratislava

RNDr. Milan Koman, CSc., MÚ ČSAV,
Praha

RNDr. Milan Maxian, gymnázium A. Mar-
kuša, Bratislava
doc. RNDr. Radko Mesiar, CSc., SF
SVŠT, Bratislava
RNDr. Oliver Ralík, Pedagogická fakulta
Nitra

RNDr. Vladimír Repáš, FE SVŠT, Brati-
slava

RNDr. Jiří Sedláček, CSc., MÚ ČSAV,
Praha

Další členové ÚV MO

PhDr. Ludovít Bálint, CSc., Výzkumný
ústav pedagogický, Bratislava
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PaedDr-. František Běloun, Praha
RNDr. Luboš Brim, CSc., přírodovědecká
fakulta UJEP, Brno
prof. RNDr. Lev Bukovský, DrSc., příro-
dovědecká fakulta UPJŠ, Košice
RNDr. Ivan Bušek, Pedagogický ústav hl.
m. Prahy
RNDr. Milan Cirjak, Krajský pedagogický
ústav, Prešov
RNDr. Vladimír Dřízal, pedagogická fa-
kulta UK, Praha
Ing. Peter Gabčo, CSc., ministerstvo škol-
ství SSR, Bratislava
doc. RNDr. Jozef Hvorecký, CSc., MFF
UK, Bratislava
RNDr. Vladimír Jodas, gymnázium J. Hron-
ca, Bratislava
RNDr. Jan Kratochvíl, MFF UK, Praha
Doc. PhDr. Karol Križalkovič, CSc., Peda-
gogická fakulta Nitra
PhDr. Libuše Kršková, základní škola,
Praha 4, Na planině
prof. RNDr. Alois Kufner, DrSc., A1Ú
ČSAV, Praha
PhDr. Helena Ladrová, ministerstvo škol-
ství ČSR, Praha
Olga Maříková, Národní výbor hl. m.

Prahy
RNDr. Jiří Mída, CSc., pedagogická fakul-
ta UK, Praha
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Vlasta Michálková, Stanice mladých pří-
rodovědců, Bratislava
Sylvia Michalovičová, Krajský pedagogický
ústav, Bratislava
PhDr. Jana Mullerová, CSc., Výzkumný
ústav pedagogický, Praha
Stanislav Rypáček, gymnázium, Praha 9
RNDr. Bohuslav Sivák, CSc., Pedagogická
fakulta Banská Bystrica
Ing. Oldřich Skopal, gymnázium, Brno,
tř. kpt. Jaroše
PhDr. Květa Sovíková, Pedagogický ústav
hl. m. Prahy
Ing. Zdeněk Strakoš, CSc., Středisko výpo-
čtové techniky ČSAV, Praha
RNDr. Bohumil Šmarda, CSc., přírodovč-
decká fakulta UJEP, Brno
RNDr. Jaroslav Švrček, přírodovědecká
fakulta UP, Olomouc
RNDr. Pavel Tópfer, MFF UK, Praha
PhDr. Pavel Valent, CSc., gymnázium,
Levice

RNDr. Juraj Vantuch, Výzkumný ústav
experimentální pedagogiky SAV, Bratislava
RNDr. Cyril Vavřík, ministerstvo školství
SSR, Bratislava
PhDr. Marta Volfová, CSc., Pedagogická
fakulta Hradec Králové
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Členy ÚV МО jsou také předsedové KV MO

prof. RNDr. Karel Drbohlav, DrSc.,
MFF UK, Praha
František Šturc, gymnázium, Benešov
doc. RNDr. Ing. Lada Vaňatová,
Pedagogická fakulta České Budějovice
RNDr. Josef Polák, CSc., VŠSE, Plzeň
prof. RNDr. Jan Melichar, CSc., Pedago-
gická fakulta Ústí n. L.
RNDr. Josef Kubát, gymnázium, Pardubice
doc. RNDr. Jaroslav Bayer, CSc., FE
VUT, Brno
RNDr. Vladimír Vlček, CSc., přírodově-
decká fakulta UP, Olomouc
RNDr. Pavol Černek, CSc., SF SVŠT,
Bratislava

prof. RNDr. Ondřej Šedivý, CSc., Peda-
gogická fakulta Nitra
prof. RNDr. Beloslav Riečan, DrSc., VVŠ
ČSSP, Liptovský Mikuláš
doc. RNDr. Ján Ohriska, CSc.,
přírodovědecká fakulta UPJŠ, Košice

V organizaci MO nedošlo v průběhu jejího 36. ročníku
к žádným změnám. Kategorie A byla určena žákům 3. a 4.
ročníků středních škol, kategorie В byla pro žáky 2. ročníků
a v kategorii C soutěžili žáci 1. ročníků. Pro žáky všech tříd
středních škol byla určena ještě kategorie P, zaměřená na

úlohy z programování a matematické informatiky. O kate-
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gorii P včetně mezinárodní soutěže v programování se
dočtete v poslední části této brožurky. Informace o matema-
tické olympiádě na základních školách jsou obsaženy v sa-
mostatné brožurce, tato je věnována pouze MO na školách
středních.

V kategoriích А, В, C má I. kolo dvě části, v první části
řeší soutěžící 6 úloh doma nebo v matematických kroužcích
a mohou se přitom radit se svými učiteli, vedoucími kroužků
apod. Druhá část má formu klauzurní práce, v níž řeší žáci
během 4 hodin tři úlohy. Také v II., krajském kole, řeší
žáci úlohy v omezeném čase 4 hodin. V kategoriích A
a P se koná ještě III. kolo, celostátní. V celostátním kole je
vlastní soutěž rozdělena do dvou dnů, každý den řeší sou-
těžící tři (dvě) úlohy v časovém limitu 4 hodin. Každá úloha je
označena kategorií, římskou číslicí udávající kolo nebo pišme-
nem S, které značí školní klauzurní část I. kola, a číslem
úlohy. Pokud jsou některé úlohy označeny За a 3b, měl
soutěžící možnost volby mezi těmito dvěma úlohami.

Celostátní kolo 36. ročníku MO kategorie A se konalo
v Ústí n. L. ve dnech 7. —10. května 1987. Slavnostní zahá-

jení se konalo v aule Pedagogické fakulty, kde účastníky
přivítal děkan fakulty profesor RNDr. Jan Melichar,, CSc.
Vedoucí ideologického oddělení KV KSČ dr. J. Bušek, CSc.
seznámil účastníky shromáždění s historií i současností Seve-
ročeského kraje. Připomněl místa kraje, jež jsou spojena
s dávnou historií našeho lidu (Stadice, Říp), měs a Rumburk,
Most a další svědčí o bohaté revoluční tradici Severočeského

kraje. V kulturní části programu vystoupil dívčí komorní
sbor Domu kultury ROH a posluchači Pedagogické fakulty.
Účastníci celostátního kola a členové ÚV MO navštívili také
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zámek Libochovice a na národním hřbitově v Terezíně se

poklonili obětem koncentračního tábora. Vzornou organizaci
celostátního kola a velmi pěkný kulturně společenský program

zajistil organizační výbor v čele s RNDr. Miroslavem Čer-
vinkou, CSc., vedoucím katedry matematiky Pedagogické
fakulty. Kromě něho se o zdárný průběh akce nesmírně
zasloužili doc. dr. M. Svoboda, CSc., z ústavu marxismu-
-leninismu téže fakulty, s. Jan Slavík z krajského pedagogic-
kého ústavu a pracovníci katedry matematiky dr. Y. Krčí-
ková, dr. V. Blažek a dr. V. Čech.

Ve všech krajích naší republiky se i ve školním roce 1986/87
pořádaly různé akce pro rozvoj a vyhledávání žáků talento-
váných v matematice, převážně spojené právě s matematic-
kou olympiádou. Naše společnost vynakládá na tuto činnost
nemalé prostředky. Podle požadavku ministerstva školství
ČSR uvádíme přehled akcí v jednotlivých krajích.

Praha. Pracovní přednášky pro řešitele úloh kategorie A
(8 hodin), kategorie В (20 hodin) a kategorie C (58 hodin);
celkem se zúčastnilo 31 žáků. Pro 18 žáků se konalo v únoru

třídenní soustředění v Jevanech, pětidenní soustředění pro
45 žáků se uskutečnilo v červnu.

Středočeský kraj. Týdenní soustředění pro 30 žáků se
konalo v září v Telnici. Instruktáže učitelů se zúčastnilo 38

vyučujících, byla jednodenní. Pro žáky, řešitele úloh MO,
proběhly instruktáže v 8 školicích střediscích, vždy dvě ho-
diny dvakrát nebo třikrát v roce.

Jihočeský kraj. Letní škola pro úspěšné řešitele MO se
konala v červnu 1986, trvala jeden týden a zúčastnilo se jí
38 žáků. Instruktáž pro referenty MO na školách byla jedno-
denní, zúčastnilo se 32 učitelů. V lednu se konalo týdenní
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zimní soustředění pro 15 řešitelů úloh kategorie A. Pro
úspěšné řešitele kategorie P se konalo jednodenní soustře-
dění. Korespondenční seminář pro středoškoláky měl tři
série úloh.

Západočeský kraj. V kraji se konalo celkem 18 dvouhodi-
nových přednášek к úlohám MO kategorií А, В, C, průměrná
účast byla 55 žáků. Soustředění úspěšných řešitelů MO,
FO a korespondenčních seminářů se konalo jeden týden
a bylo na něm 44 žáků. Korespondenčního semináře pro

žáky 1. a 2. ročníků středních škol se zúčastnilo 78 řešitelů,
v případě semináře pro 3. a 4. ročníky to bylo 29 řešitelů.
Každý z těchto seminářů se skládal ze tří sérií úloh.

Severočeský kraj. Korespondenční seminář byl zaměřen na

kategorii B, zúčastnilo se ho 40 žáků, měl dvě série úloh.
Soustředění se konalo v Krupce, trvalo 7 dní a zúčastnilo
se 60 žáků. Kromě toho se v kraji konalo v šesti městech 12
tříhodinových přednášek pro řešitele úloh MO kategorie A,
В, C s průměrnou účastí 24 žáků.

Východočeský kraj. Před krajskými koly kategorií А а В
se konala jednodenní soustředění vybraných řešitelů, zúčast-
nilo se 37 a 39 žáků. Pro stejné kategorie se pořádal kores-
pondenční seminář. V červnu proběhlo týdenní soustředění
pro nejlepší řešitele úloh MO a FO, žáky 1. ročníků, v Novém
Městě n. M., zúčastnilo se 32 řešitelů. Organizačně se
KV MO podílel na celostátním soustředění MO a FO v Je-
víčku.

Jihomoravský kraj. Semináře pro řešitele úloh MO se

konaly ve čtyřech městech kraje, zvlášť pro každou kategorii,
průměrná účast 40 žáků. Pro 10 žáků se konal třikrát semi-
nář na katedře matematiky přírodovědecké fakulty UJEP
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v Brně, jednou týdně se konal seminář pro žáky z třídy za-
měřené na matematiku na gymnáziu v Brně, tř. kpt. Jaroše.
Zúčastnilo se ho 15 žáků. Pro 6 žáků kraje, kteří byli pozváni
do celostátního kola kategorie A, se konal dvoudenní seminář
před III. kolem.

Severomoravský kraj. V září proběhly instruktáže referentů
MO, zúčastnilo se 42 učitelů. Na sobotních besedách MO
byla průměrná účast 40 žáků každý týden. Na gymnáziu
M. Koperníka v Bílovci se konaly jednou týdně semináře
pro vybrané řešitele úloh MO, v kategorii A bylo 12, v ka-
tegorii В 15 a v kategorii C 25 účastníků. Zajímavá byla
setkání účastníků mezinárodních matematických olympiád
s řešiteli úloh MO. Korespondenční seminář byl společný pro

všechny kategorie, 3 série úloh řešilo 40 žáků. Seminář byl
ukončen týdenním soustředěním všech jeho účastníků.
V červenci 1987 se konalo pro 80 úspěšných řešitelů MO
a FO třítýdenní soustředění v Bruntále.

Bratislava. 79 žáků řešilo 6 sérií úloh korespondenčního
semináře, na seminář navázala dvě týdenní soustředění, jedno
v únoru, druhé v červnu, každé pro 30 žáků. Kromě toho
pořádal KV MO celoslovenský korespondenční seminář,
v němž dvě série úloh řešilo 53 žáků. V prosinci se konalo
týdenní soustředění pro 20 řešitelů úloh kategorie P, v červnu
týdenní soustředění pro 30 řešitelů úloh kategorií В a C.
KV MO uspořádal celkem 7 instruktáží pro vedoucí mate-
matických kroužků a pro opravovatele úloh MO.

Západoslovenský kraj. V červnu se konala dvoudenní
instruktáž pro profesory středních škol, obsahem instruktáže
byl rozbor úloh všech kategorií, zúčastnilo se 48 učitelů.
Na tomtéž místě, v Budmericích, se konalo též týdenní
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soustředění 40 úspěšných řešitelů úloh MO kategorií В, C.
V korespondenčním semináři řešilo 73 žáků úlohy pěti
sérií, z toho 20 nejlepších bylo pozváno na čtyřdenní soustře-
dění, jež se konalo v dubnu 1987.

Středoslovenský kraj. Krajský korespondenční seminář pro

kategorii A měl 4 série po 5 úlohách, úlohy řešilo 21 žáků.
Druhý korespondenční seminář byl určen pro kategorie В
a C, 5 sérií úloh řešilo 67 žáků. Pro úspěšné řešitele MO
a krajských korespondenčních seminářů byla uspořádána dvě
týdenní soustředění, každé pro 40 účastníků, konala se
v Terchové a v Lučatíně. Největší účast, 113 žáků, měl ко-
respondenční seminář pro střední odborná učiliště. Instruk-
táže pro referenty MO a učitele byly rozděleny na kategorie
A a P (46 účastníků) a na kategorie В a C (85 účastníků).

Východoslovenský kraj. Pro každou kategorii se uskutečnila
samostatná instruktáž referentů MO a vedoucích kroužků,
instruktáže byly jednodenní a zúčastnilo se jich celkem 195
učitelů. V korespondenčním semináři řešilo 100 žáků osm
sérií úloh. Pro nejlepší řešitele úloh semináře i úloh MO
se konala tří týdenní soustředění, každé pro 35 účastníků.
Pro žáky košických škol byly organizovány dva matematické
kroužky, které se scházely jednou týdně. V kroužku pro

kategorii A pracovalo 10 žáků, v kroužku pro kategorii В 12
žáků.

Ústřední výbor MO zajišťoval po odborné stránce tři celo-
státní soustředění. Pro žáky nematurujících ročníků to bylo
již tradiční soustředění 90 řešitelů úloh MO a FO v Jevíčku,
konalo se ve dnech 14.—27. června 1987. Další dvě soustře-

dění byla věnována přípravě československého družstva na
mezinárodní matematickou olympiádu. První se konalo
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v posledním březnovém týdnu v Modré-Pieskoch u Bratisla-
vy pro 15 žáků, druhé se konalo v červnu v Piešťanech, trvalo
tři týdny a bylo na ně pozváno 10 žáků. Po organizační
stránce byla tato dvě soustředění připravena Ústředním do-
mem pionýrů a mládeže KG v Bratislavě. ÚV MO zajišťoval
též celostátní korespondenční seminář, kterému je věnována
samostatná část této brožury. V edici Škola mladých mate-
matiků vydává ÚV MO v nakladatelství Mladá fronta mate-
matické brožurky pro žáky. V průběhu 36. ročníku MO
vyšly dva svazky: H. Kástner, P. Gothner - Algebra, každý
začátek je lehký a J. Morávek, M. Vlach - Oddělitelnost
množin (reedice dřívějšího vydání). Celkem vyšlo již 59
svazků edice ŠMM. Jsou dobrými pomocníky soutěžícím
v MO a vhodnými publikacemi pro školní knihovny.
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VÝSLEDKY CELOSTÁTNÍHO KOLA MO

KATEGORIE A

Vítězové

1. Pavol Gvozdják, 3 M, G A. Markuša, Bratislava
2. Vládán Majerech, 4 MF, Pardubice
3. Roman So ták, 4 M, Košice, Šmeralova
4. Petr Čížek, 2 M, G W. Piecka, Praha
5. Robert Babilon, 4 M, Bílovec

6.— 7. Stanislav Krajči, 3 M, Košice, šmeralova
Marián Lukáč, 4, Bánovce n. B.

8. —10. Peter Klein, 4 M, G A. Markuša, Bratislava
Ilja Martišovitš, 2 MF, G J. Hronca, Bratislava
Tomáš Trégl, 4 M, G W. Piecka, Praha

11. Marcel Polakovič, 4 M, G A. Markuša, Bratislava
12. Anton Belan, 4 M, G A. Markuša, Bratislava
13. Stanislav Januschke, 2 MF, G J. Hronca, Bratislava14.—15. František Komora, 3 M, G A. Markuša, Bratislava

Radomír Měch, 3 M, Bílovec
16. —17. Petr Fencl, 4 MF, Pardubice

Pavol Kolník, 4, Nové Město n. V.

Další úspěšní řešitelé

18.—21. Štěpán Holub, 2, Trutnov
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Ondřej Such, 1 M, Žilina, V. Okružná
Vladimír Veselý, 4 MF, G J. Hronca, Bratislava
Jiří Zatloukal, 3 M, Bílovec

22.—23. Tibor Bartoš, 3 M, G A. Markuša, Bratislava
Dalibor Procházka, 3 MF, Karlovy Vary

24. Vladimír Šošovička, 3 M, Žilina, V. Okružná
25.—26. Mário Drosc, 4, Michalovce

Jana Ježková, 4 MF, Hradec Králové, Šimkova
27.-28. Peter Eliáš, 3 MF, Prešov, Konstantinova

Martin Kučera, 2 M, Bílovec
29.—30. František Klein, 4 MF, Brno, Koněvova

Ildikó Vázsonyiová, 4 MF, mad. G, Komárno
31.—33. Ladislav Fekete, 2 M, G A. Markuša, Bratislava

Pavel Nýč, 4, Tachov
Zbyněk Sír, 2 M, G J. K. Tyla, Hradec Králové

34.—35. Andrej Doboš, 2 M, G A. Markuša, Bratislava
Miroslav Laššák, 4 M, Žilina, V. Okružná

36.—38. Lenka Bočková, 4 MF, Praha, Sladkovského
Robert Krídl, 4 M, G A. Markuša, Bratislava
Tomáš Kukosa, 3 MF, Brno. tř. kpt. Jaroše

U žáků z tříd se zaměřením studijního oboru 01 Matematika
je za ročníkem označení M, u žáků z tříd se zaměřením
studijního oboru 02 Matematika a fyzika je za ročníkem
označení MF. Všichni byli žáky gymnázia - G.

21



Pořadí úspěšných řešitelů z tříd,
které nejsou se zaměřením studijního

oboru 01 Matematika

1. Vládán Majerech, 4, Pardubice
2. Marián Lukáč, 4, Bánovce n. B.
3. Ilja Martišovitš, 2, G J. Hronca, Bratislava
4. Stanislav Januschke, 2, G J. Hronca, Bratislava

5.— 6. Petr Fend, 4, Pardubice
Pavol Kolník, 4, Nové Město n. V.

7,— 8. Štěpán Holub, 2, Trutnov
Vladimír Veselý, 4, G ). Hronca, Bratislava

9. Dalibor Procházka, 3, Karlovy Vary
10. —11. Mário Drosc, 4, Michalovce

Jana Ježková, 4, Hradec Králové, Šimkova
12. Peter Eliáš, 3, Prešov, Konstantinova

13. —14. František Klein, 4, Brno, Koněvova
lldikó Vázsonyiová, 4, mad. G, Komárno

15. Pavel Nýč, 4, Tachov
16. —17. Lenka Bočková, 4, Praha, Sladkovského

Tomáš Kukosa, 3, Brno, tř. kpt. Jaroše
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nejúspěšnější ŘEŠITELÉ II. KOLA MO
V КA TEGORIÍCH А, В, C

Z každého kraje a každé kategorie je uvedeno nejvýše
prvních deset nejúspěšnějších řešitelů. Pokud není uvedeno
jinak, byli všichni uvedení žáci v kategorii В žáky 2. ročníku,
v kategorii C žáky 1. ročníku. Není-li uvedena škola, byl
řešitel žákem gymnázia-G. Označení AI, resp. MF, znamená
zaměření studijního oboru 01 Matematika, resp. 02 Mate-
matika a fyzika.

Praha

Kategorie A

1. Tomáš Trégl, 4 M, G W. Piecka, Praha
2. Petr Čížek, 2 M, G W. Piecka, Praha

3.— 4. Jan Sochor, 4 AI, G W. Piecka, Praha
Petr Knobloch, 3 MF, Praha, Voděradská

5. Martin Barhoň, 4 M, G W. Piecka, Praha
6. Daniel Kunz, 4 M, G W. Piecka, Praha

7.— 8. Lenka Bočková, 4 MF, Praha, Sladkovského
Michal Dostál, 4 M, G W. Piecka, Praha

23



Kategorie В

1. Petr Brož, M, G W. Piecka, Praha
2. Petr Čížek, M, G W. Piecka, Praha
3. Jan Lang, M, G W. Piecka, Praha

4.— 5. Václav Bohdanecký, M, G W. Piecka, Praha
Daniel Elleder, M, G W. Piecka, Praha

6. Arnošt Kobylka, M, G W. Piecka, Praha
7. —10. Filip Kadlec, Praha, U libeňského zámku

Martin Kraus, 1 M, G W. Piecka, Praha
Pavel Pospíšil, Praha, Sladkovského
Kamil Vlček, Praha, Litoměřická

Kategorie C

1. Ondřej Kalenda, M, G W. Piecka, Praha
2. Štěpán Kasal, 8. třída základní školy Praha 1,

Uhelný trh
3. Martin Cinegr, Praha, Voděradská
4. Petr Toman, M, G W. Piecka, Praha
5. Jakub Cvach, M, G W. Piecka, Praha
6. Tereza Saxlová, M, G W. Piecka, Praha
7. Rudolf Rázek, Praha, Litoměřická8.—10. František Gemperle, M, G W. Piecka, Praha

Irena Houbová, Praha, Budějovická
Petr Paidar, M, G. W. Piecka, Praha

Středočeský kraj

Kategorie A

1. Karel Chmel, 4, Benešov
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Kategorie В1.Radek Novotný, Mladá Boleslav

Kategorie C

1. Jan šraml, Příbram
2. Jan Soubusta, Benešov

3.— 5. Petr Doňar, Kralupy
Michal Gruncl, SPŠ Kutná Hora
Vladimír Šolc, Beroun

6. Hana Křížová, Beroun
7. Josef Lebeda, Čáslav
8. Petra Hloušková, Mladá Boleslav

Jihočeský kraj

Kategorie A
1. David Boukal, 2 M, České Budějovice, Jírovcova
2. Jiří Otta, 4, Pelhřimov

3.— 5. Jiří Veselý, 4, Strakonice
Jindřich Zapletal, 4, Tábor
Lubomír Žák, 3 MF, G K. Šatala, Č. Budějovice

Kategorie В
1. Jana Sonnbergerová, M, České Budějovice, Jírovcova
2. Lenka Pulzová, M, České Budějovice, Jírovcova
3. David Boukal, M, České Budějovice, Jírovcova

4.— 7. Zdeněk Kudrna, Pelhřimov
Karel Liška, M, České Budějovice, Jírovcova
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Pavel Pešek, MF, G К. Šatala, České Budějovice
David Votýpka, SEŠ Písek

Kategorie C

1. Jan Balák, Ní, České Budějovice, Jírovcova
2. Martin Řehout, Ní, České Budějovice, Jírovcova
3. Jakub Čermák, Ní, České Budějovice, Jírovcova
4. Milan Předota, Ní, České Budějovice, Jírovcova
5. Kateřina Triková, MF, Strakonice
6. Alena Hybšová, Ní, České Budějovice, Jírovcova
7. Miloš Plachý, Jindřichův Hradec
8. Bohdana Holánková, Pelhřimov

Západočeský kraj

Kategorie A

1. Dalibor Procházka, 3 MF, Karlovy Vary
2. Pavel Nýč, 4, Tachov

Kategorie В

1. Vítězslav Babický, Ní, G J. Fučíka, Plzeň
2. Pavla Maříková, Ní, G J. Fučíka, Plzeň
3. Miroslav Vicher, MF, Karlovy Vary

Kategorie C

1. Martin Bureš, Ní, G J. Fučíka, Plzeň
2. Martin Muller, Ní, G J. Fučíka, Plzeň
3. Michal Friesel, MF, Plzeň, ul. Pionýrů
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4. Jiří Šmejc, MF, Karlovy Vary
5. Hana Pajerová, MF, Cheb
6. Josef Daněk, M, G J. Fučíka, Plzeň
7. Pavel Vanoušek, MF, Cheb
8. Martin Pitterman, M, G J. Fučíka, Plzeň
9. Jan štrunc, M, G J. Fučíka, Plzeň10.Miloš Brejcha, MF, G J. Fučíka, Plzeň

Severočeský kraj

Kategorie A

1. Daniel šuta, 3, Chomutov
2. Jaromír Krejčí, 3 M, Liberec
3. Petr Bartoš, 3 M, Liberec

Kategorie В

1. Štěpánka Lazarová, Děčín
2. Michal Štěpán, M, Liberec

Kategorie C

1. Vladislav Oslej, SPŠ stav., Děčín
2.— 3. Kateřina Jágrová, M, Liberec

Marie Kovářová, M, Liberec
4. Pavel Šimek, M, Liberec
5. Jan Folprecht, M, Liberec
7. Tomáš Doležal, M, Liberec

Patrik Spannbauer, SPŠ Chomutov
8. Petr Hořčík, M, Liberec

6.
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9. Monika Axamitová, M, Liberec
10. Klára Kovářová, M, Liberec

Východočeský kraj

Kategorie A

1. René Levínský, 3 M, G J. K. Tyla, Hradec Králové
2. Vládán Majerech, 4 MF, Pardubice
3. Petr Fend, 4 MF, Pardubice
4. Jana Ježková, 4 MF, Hradec Králové, Šimkova
5. Jiří Nerad, 3 M, G J. K. Tyla, Hradec Králové
6. Štěpán Holub, 2 MF, Trutnov
7. Zbyněk Šír, 2 M, G J. K. Tyla, Hradec Králové

Kategorie В

1. Zbyněk Vašata, M, G J. K. Tyla, Hradec Králové
2. Petr Duczynski, Nová Рака
3. Štěpán Holub, MF, Trutnov

Kategorie C

1. Jan Vomlel, M, G J. K. Tyla, Hradec Králové
2. Aleš Dryák, Nový Bydžov
3. Jitka Grégrová, Trutnov
4. Tomáš Pospíchal, M, G J. K. Tyla, Hradec Králové
5. Radek Štěpán, M, G J. K. Tyla, Hradec Králové
6. Tomáš Klazar, M, G J. K. Tyla, Hradec Králové
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Jihomoravský kraj

Kategorie A

1. Martin Žufan, 2 M, Brno, tř. kpt. Jaroše
2. František Klein, 4 MF, Brno, Koněvova
3. Jaroslav Hora, 4 MF, Brno, tř. kpt. Jaroše

4.— 5. Tomáš Kukosa, 3 MF, Brno, tř. kpt. Jaroše
Radek Vystavěl, 3, Prostějov

Kategorie В

1.— 3. Rostislav Caha, M, Brno, tř. kpt. Jaroše
David Karkoška, MF, Gottwaldov
Vít Urbanec, MF, Gottwaldov

4.— 8. Tomáš Brodský, M, Brno, tř. kpt. Jaroše
David Klíma, M, Brno, tř. kpt. Jaroše
Michal Miihlpachr, M, Brno, tř. kpt. Jaroše
Martin Ryšánek, MF, Brno, tř. kpt. Jaroše
Martin Žufan, M, Brno, tř. kpt. Jaroše

Kategorie C

1. Vladimír Chvátil, MF, Brno, Koněvova
2. David Krásenský, M, Brno, tř. kpt. Jaroše
3. Pavel Horák, MF, Gottwaldov
4. Josef Pojšl, M, Brno, tř. kpt. Jaroše

5.— 6. Jiří Fabin, MF, Brno, tř. kpt. Jaroše
Jan VelesHk, Brno, Koněvova

7. —10. Aleš Křenek, M, Brno, tř. kpt. Jaroše
Martin Pejchal, MF, Jihlava
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Zdeněk Salvet, MF, Uherský Brod
Pavel Smrž, M, Brno, tř. kpt. Jaroše

Severomoravský kraj

Kategorie A

1. Robert Babilon, 4 M, Bílovec
2. Pavel Calábek, 4 M, Bílovec
3. Jiří Zatloukal, 3 M, Bílovec
4. Radomír Měch, 3 M, Bílovec
5. Martin Kučera, 2 M, Bílovec

6.— 8. Tomáš Novotný, 4, Frýdek-Místek
Monika Poloková, 3 M, Bílovec
Radek Porazil, 3 M, Bílovec

Kategorie В

1. Libor Němeček, M, Bílovec
2. Martin Kučera, M, Bílovec
3. Tomáš Schiffauer, M, Bílovec

4.— 5. Martin Slíva, M, Bílovec
Petr Trčálek, M, Bílovec

6. Libor Krkoška, M, Bílovec
7. Martina Rusková, Valašské Meziříčí
8. Aleš Drábek, M, Bílovec

Kategorie C

1. Martin Čížek, Rožnov p. R.
2. Petr Hliněný, M, Bílovec
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3.Zdeněk Korčák, SPŠE Frenštát p. R.
4.— 7. Karel Hrubčík, Vsetín

David Karásek, M, Olomouc, tř. J. z Poděbrad
Jan Šmíd, Ostrava, Šmeralova
Petr Urbančík, Ostrava-Poruba

8. Tomáš Rosinský, SPŠE Frenštát p. R.
9. Anna Chlupatá, Ostrava-Hrabůvka

Bratislava

Kategorie A

1. Marcel Polakovič, 4 M, G A. Markuša, Bratislava
2. Peter Klein, 4 M, G A. Markuša, Bratislava

3.— 4. František Komora, 3 M, G A. Markuša, Bratislava
Ilja Martišovitš, 2 MF, G J. Hronca, Bratislava

5. Stanislav Januschke, 2 MF, G J. Hronca, Bratislava
6. Tibor Bartoš, 3 M, G A. Markuša, Bratislava
7. Vladimír Veselý, 4 M, G J. Hronca, Bratislava

8.— 9. Andrej Král, 4 MF, G J. Hronca, Bratislava
Rastislav Tamaškovič, 2 MF, G J. Hronca, Bratislava

Kategorie В

1. Ilja Martišovitš, MF, G J. Hronca, Bratislava
2. Rastislav Tamaškovič, MF, G J. Hronca, Bratislava

3.— 4. Štefan Dobrev, M, G A. Markuša, Bratislava
Stanislav Januschke, MF, G J. Hronca, Bratislava

5. Andrej Doboš, M, G A. Markuša, Bratislava
6.— 7. Mária Jašeková, M, G A. Markuša, Bratislava
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Radoslav Tomek, MF, G J. Hronca, Bratislava
8. Tibor Novosad, M, G A. Markuša, Bratislava
9. Milan Mosný, MF, G J. Hronca, Bratislava10.Hana Krajňáková, M, G A. Markuša, Bratislava

Kategorie C

1. Ján Bajcsy, M, G A. Markuša, Bratislava
2. Peter Hudec, M, G. A. Markuša, Bratislava
3. Peter Šabo, Bratislava, Makarenkova
4. Tomáš Szalay, M, G A. Markuša, Bratislava
5. Martin Dindoš, MF, G J. Hronca, Bratislava
6. Natalie Matyášová, M, G A. Markuša, Bratislava
7. Martin Kollár, M, G A. Markuša, Bratislava
8. Miloš Medvecký, M, G A. Markuša, Bratislava9.—10. Branislav Ďurajka, MF, G J. Hronca, Bratislava

Katarina Slobodová, M, G A. Markuša, Bratislava

Západoslovenský kraj

Kategorie A

1. Marián Lukáč, 4, Bánovce n. B.
2. Pavol Kolník, 4, Nové Město n. V.
3. Oliver Ralík, 4, G E. Gudernu, Nitra
4. lldikó Vázsonyiová, 4, mad. G, Komárno
5. Rudolf Burel, 4, Trnava
6. Imrich Lozsi, 4, mad. G, Galanta
7. Juraj Šimko, 3, Nitra, Párovská
8. Andrea Szabóová, 4, mad. G, Komárno
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9. Zoltán Básti, 3, mad. G, Komárno
10. Ján Trojan, 3, Nitra, Párovská

Kategorie В

1. Arnold Pompoš, Levice
2. Miklós Gyetven, SPŠ Komárno
3. Gabriel Varga, mad. G, šamorín
4. Nora Veghová, mad. G, Komárno
5. Daniel Mládek, Nitra, Párovská
6. Marián Valach, Levice
7. Robert Foltán, Partizánske
8. Robert Krištof, SPŠE Piešťany

Kategorie C

1. Ondřej Šedivý, Nitra, Párovská
2. Jozef Mičuch, SPŠE Piešťany
3. Daniel Bršel, Hlohovec
4. Vladimír Králik, Zlaté Moravce
5. Magdaléna Molnárová, mad. G, Dunajská Středa
6. Martin Nehez, Levice
7. Viera Chorvátová, SPŠ Nové Město n. V.
8. Milada Mikesková, Trenčín
9. Renáta Cedulová, mad. G, Komárno10.Petra Sušinová, Trenčín
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Středoslovenský kraj

Kategorie A

1. Ondřej Such, 1 M, Žilina, V. Okružná
2. Miroslav Laššák, 4 M, Žilina, V. Okružná

3.— 6. Dušan Hanes, 4 MF, Prievidza
Dalibor Jakuš, 3 M, Žilina, V. Okružná
Štefan Rakučák, 4 M, Žilina, V. Okružná
Marcel Zanechal, 3, Žilina, V. Okružná

7.— 8. Jozef Saniga, 3 M, Žilina, V. Okružná
Jozef Radler, 3 MF, Zvolen

Kategorie В

1. Robert Mitka, M, Žilina, V. Okružná

Kategorie C

1.— 2. Ondřej Such, M, Žilina, V. Okružná
Jozef Skokan, M, Žilina, V. Okružná

3. Eduard Omasta, Ružomberok
4. Martin Pavlenda, MF, Banská Bystrica, Tajovského
5. Ivana Čierná, Martin
6. Elena Šeresová, MF, Zvolen

7.— 8. Juraj Kodýnek, MF, Banská Bystrica, Tajovského
Dušan Slivka, SPŠ Banská Bystrica

9. Stanislav Ťažiar, MF, Prievidza
10. Ivan Marčák, M, Žilina, V. Okružná
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Východoslovenský kraj

Kategorie A

1. Roman So ták, 4 M, Košice, Šmeralova
2. Ján Paralič, 4, Košice, Šrobárova
3. Mário Drosc, 4, Míchalovce
4. Peter Eliáš, 3 MF, Prešov, Konštantínova
5. Stanislav Krajči, 3 M, Košice, šmeralova

6.— 7. Maroš Rusňák, 2 M, Košice, Šmeralova
Roman Vodička, 3 M, Košice, šmeralova

Kategorie В

1. Maroš Rusňák, M, Košice, šmeralova
2. Ján Franěk, M, Košice, šmeralova

Kategorie C

1.— 2. Vladimír Komár, M, Košice, šmeralova
Vladimír Skalský, Prešov, T. Ševčenka3.Roman Krištof, M, Košice, šmeralova

4.— 5. Peter Haluška, M, Košice, Šmeralova
Vladimír Vodila, M, Košice, Šmeralova

6.— 7. Marta Šlachtovská, SPŠE Míchalovce
Martin Tomko, Košice, šrobárova

8.— 9. Marian Stack, SPŠ stroj., Prešov
Milan Válko, Poprad, Leninovo nábr.

10. Rastislav Hagovský, Spišská Nová Ves
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Kategorie С

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

C-i-1

Na nitěném závěsu se kýve závaží. Šířka rozkmitu je
56 cm, výškový rozdíl nejnižší a nejvyšší polohy závaží je
8 cm. Vypočtěte délku závěsu.

Řešení. Závaží se pohybuje po kružnici o poloměru r,

r

r-8

28 28

8

Obr. 1
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který se rovná délce závěsu. Je to velikost přepony právo-
úhlého trojúhelníku (obr. 1), jehož jedna odvěsna se rovná
polovině rozkmitu a druhá odvěsna má délku r — 8. Podle
Pythagorovy věty je tedy r2 = (V — 8)2 4 282, odkud
r = 53 cm.

С - I - 2

Určete čísla a, b, c tak, aby byla řešeními rovnice

xs — ax2 4 bx — c — 0.

Řešení. Čísla a, b, c jsou právě tehdy řešeními dané
rovnice, platí-li současně vztahy

a3 — a3 -f ab — c = 0
b2 - ab2 4 b2 - c = 0
c3 — ac2 + bc — c = 0.

Musí tedy být c — ab a současně b(b — a) (b 4 1) = 0
a ab(b — 1) (a2b 4 1) = 0. Je tedy nutně b = 0 nebo b = a
nebo b = — 1. Je-li b — 0, je c — 0, a libovolné. Je-li b = — 1,
musí být c = —a a současně a(a2 — 1) = 0, takže a = c — 0,
b = —1, nebo a = 1, b = c — —1, nebo a = b = —1,
c — 1. Je-li b = a, musí být a2(a — 1) (a3 4 1) = 0 а c = a2,
takže je bud a = b = c = 0, nebo a = b = c = 1, nebo
a = b = — 1, c = 1. Zkouškou se můžeme ještě přesvědčit,
že všechny obdržené výsledky vyhovují požadavku úlohy.
Přehledně jsou uvedeny v tabulce.
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Rovniceb Kořenya c

libovolné 0 0 х2(л;
0 —1 0 x(x — l)(x + 1) = 0
1 -1 -1 (* + l)(*-l)2 =0 -1, 1, 1

-1 -1 1 O + 1)2 (jt - 1) = 0 ! -1, -1, 1
1 1 (jc — 1)02 + 1) = 0 1

a) = 0 0, 0, a

0, 1, -1

1

Text úlohy nepožaduje, aby se každý kořen rovnal některému
z čísel a, b, c, například v případě a = c = 0, b — — 1 má
rovnice kromě 0 a —1 ještě kořen +1. V případě a = 1,
b = с = —1 má sice příslušná rovnice kořeny 1 a —1, ale
číslo 1 je tzv. kořenem dvojnásobným, zatímco mezi čísly
a, b, c se vyskytuje číslo 1 jen jednou. Pokud by se v úloze
požadovalo, aby každé z čísel a, b, c bylo tolikanásobným
kořenem dané rovnice, kolikrát se vyskytuje mezi čísly a,

b, c, vyhovovala by jen řešení v prvním a čtvrtém řádku
uvedené tabulky. Dostali bychom je také jako ty trojice
(a, b, c), pro které se rovnají mnohočleny x3 — axl + bx — c
a (x — a) (x — b)(x — c), tj. ty trojice, pro které platí sou-
časně rovnosti a + b + c = a, ab + bc + ca — b, abc = c.

C - I - 3

V rovině je dán konvexní čtyřúhelník ABCD, středy jeho
stran AB, BC, CD, DA označíme po řadě K, L, M, N.
Dokažte, že přímky AC, BD jsou navzájem kolmé právě
tehdy, když je \KM\ = |JVL|. Dokažte, že přímky KM, NL
jsou navzájem kolmé právě tehdy, když je |AC\ = \BDr
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Řešení. Úsečka KL je střední příčkou v trojúhelníku ABC
(obr. 2), úsečka MN je střední příčkou v trojúhelníku ADC.

Je \KL\ = \MN\ = — \AC\, KL\\MN\\AC. Podobně je

1

\NK\ = \ML\ = — jBD\, NK || ML || BD. Úhlopříčky KM

a LN jsou v rovnoběžníku KLMN právě tehdy stejně dlouhé,
když je to pravoúhelník, tedy když je KL J_ NK, tj. AC J_
— BD. Úhlopříčky KM, NL rovnoběžníku KLMN jsou
právě tehdy navzájem kolmé, když je rovnoběžník kosočtverec,
tj. \KL\ = \NK\, tedy \AC\ = \BD\.

С - I - 4

Jakým nejmenším počtem barev je možno obarvit průse-
číky devíti přímek na obr. 3a tak, aby na žádné této přímce
neležely dva body téže barvy ?
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Řešení. Každá z daných přímek protíná šest dalších, je
tedy třeba nejméně šesti barev. Ukážeme však, že šest barev
nestačí. Při šesti barvách by muselo být jednou barvou
obarveno aspoň pět z uvažovaných 27 bodů. Ale každý bod
obarvený touto barvou je průsečíkem dvou daných přímek,
na kterých už nemůže ležet další bod téže barvy. Takže pět
bodů téže barvy by muselo ležet na deseti přímkách, máme
však к dispozici jen devět přímek. Sedm barev však už stačí,
důkazem je rozložení barev znázorněné na obr. 3b (různé
barvy jsou označeny různými číslicemi). Každá barva musí
být zastoupena čtyřikrát, pouze jedna třikrát (je označena
číslicí 7).

С- 1 -5

Nechť m, n jsou libovolná přirozená čísla a platí, že číslo
5 nedělí číslo mn(m 4- n). Potom číslo 52 nedělí číslo
(m 4- nf — m5 — w5. Dokažte.

Řešení. Podle předpokladu nedělí číslo 5 žádné z čísel
rn, n, rn + n. Je (m 4- я)5 — m5 — n5 = 5mn (m 4- n) (m2 4-
4- mn 4- w2). Máme tedy dokázat, že číslo 5 nedělí součet
m2 4- mn + n2. Každé z čísel m, n dává při dělení pěti zby-
tek 1, 2, 3 nebo 4. Dává-li jedno z nich zbytek 1, nemůže
dát druhé zbytek 4, protože by pak byl jejich součet dělitelný
pěti. Podobně je to se zbytky 2 a 3. Mohou být tedy zbytky
při dělení čísel m, n číslem 5 pouze tyto dvojice: (1, 1),
(1, 2), (1, 3), (2, 2), (2, 4), (3, 3), (3, 4), (4, 4). V prvním
případě je m — 5r 4-1, и = 5$ 4- 1, r, 5 jsou přirozená
čísla. Pak je m2 4- mn -f rí- = 5 (5r2 4- 5s2 + 5rs 4- 3r 4-
4- 3í) 4- 3. Vidíme, že toto číslo není dělitelné pěti, jeho
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zbytek při dělení pěti je 3. Podobně se to dokáže ve zbývají-
cích sedmi případech. Důvtipnější, i když trochu vykonstruo-
váný je tento postup: Číslo m2 + mn 4- и2 je právě tehdy
dělitelné pěti, když je dělitelný pěti jeho dvojnásobek 2(m2 +
+ mn + n2) = m2 -f (m + и)2 -f и2. Žádné z čísel m, m -f n,
n není dělitelné pěti, každé dává při dělení pěti zbytek 1, 2,
3 nebo 4, proto jeho druhá mocnina dává při dělení pěti vždy
zbytek 1 nebo 4. Pak však není nikdy součet tří takových
druhých mocnin dělitelný pěti.

C - í - 6

Je dán čtverec ABCD. Zvolme libovolně v rovině čtverce
bod P a označme A', B', C, D' obrazy bodu P v středových
souměrnostech se středy v bodech А, В, C, D. Dokažte, že
A'B'C'D' je čtverec. Určete množinu všech bodů P, pro
které je průnik čtverců ABCD, A'B'C'D' neprázdný.

D
D\

i •

xK.

£l
A I В

i

* A
l_UD__ B0

Á B'
Obr. 4
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Řešení. Úsečka AB je střední příčkou v trojúhelníku
A'B'P (obr. 4) rovnoběžnou s A'B', proto je A'B' || AB,
\A’B'\ — 2\AB\. Obdobně to platí pro úsečky B'C', C'D'
a D'A'. Je tedy A'B'C'D'ctverec, je to obraz čtverce ABCD
v stejnolehlosti se středem v bodě P a koeficientem 2. Před-
pokládejme, že některý bod K' čtverce А'В'CD'\eží současně
ve čtverci ABCD. Pak leží ve čtverci ABCD také střed К

úsečky K'P, je tedy bod P bodem souměrně sdruženým
к bodu K' podle bodu K, přičemž oba body К, K' leží v čtverci
ABCD. Má-li obráceně bod P tuto vlastnost, tj. pro některý
bod K' čtverce ABCD leží střed К úsečky K'P také ve
čtverci ABCD, mají čtverce ABCD, A'B'C'D' neprázdný
průnik, do průniku patří bod K'. Body P popsané vlastnosti
vytvoří čtverec AoBqCqDq, který má s čtvercem ABCD spo-

léčný střed a rovnoběžné strany, přičemž \AqBq\ = 3\AB\.

úlohy Školní části i. kola

C - S - 1

Určete všechna přirozená čísla n, pro která je číslo 2n + 1
druhou mocninou přirozeného čísla.

Řešení. Nechť pro přirozené číslo n platí 2n + 1 = m2,
kde m je také přirozené číslo. Pak je 2n = (m — 1 )(m + 1).
Jsou tedy čísla m — 1, m + 1 mocninou čísla 2 s celým
nezáporným exponentem. Vzhledem к tomu, že se jejich
rozdíl rovná dvěma, je nutně m — 1=2, m + 1=4.
Proto je n — 3 jediné řešení úlohy.
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С - S - 2

Prvky dané množiny M jsou nenulová celá čísla. Mno-
žina M obsahuje aspoň jedno sudé, aspoň jedno liché, aspoň
jedno kladné a aspoň jedno záporné číslo. Dokažte, že v mno-
žině M existují dvě čísla, jejichž součet je číslo liché a součin
je číslo záporné.

Poznámka. Čísla ..., —4, —2, 0, 2, 4, ... jsou.sudá,
čísla ..., —3, —1, 1,3, ... jsou lichá.

Řešení. Nechť a e M, be M, číslo a nechť je sudé, číslo b
liché. Mají-li čísla a, b opačná znaménka, splňují podmínky
úlohy. Mají-li čísla a, b stejné znaménko, existuje v M číslo c

opačného znaménka. Je-li číslo c sudé, splňují podmínku
úlohy čísla b, c, v opačném případě můžeme vzít dvojici
a, c.

C - S - 3a

Do kružnice o poloměru r — 10 je vepsán pravidelný
osmiúhelník ABCDEFGH. Vypočtěte obsah lichoběžníku
ABDE.

Řešení. Je \AE\ = 20 (obr. 5), \BD\ je délka a strany
čtverce vepsaného kružnici o poloměru r — 10, tedy a =

= 10] 2. Výška lichoběžníku se rovná polovině strany
čtverce BDFH, takže hledaný obsah je 50(|/2 -f 1).

C - S - 3b

Najděte všechny pravoúhlé trojúhelníky, pro které je
délka jedné odvěsny aritmetickým průměrem délek druhé
odvěsny a přepony.
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Řešení. Označíme-li c délku přepony a a, b délky odvěsen,
má platit 2a = b + с a současně a2 + b2 = c2. Vyloučením c

4 5
dostaneme 3a2 — 4ab = 0. Jelikož a Ф 0, je a = —6, c = —b.

Úloze vyhovují právě všechny trojúhelníky o stranách 3d,
4d3 5d3 tedy trojúhelníky podobné trojúhelníku o stranách
3, 4, 5.

ÚLOHY II. KOLA

C - II - t

Určete obsah lichoběžníku ABCD se základnami AB, CD,
jsou-li dány délky stran a = \AB\, c = |CD| a délka úhlo-
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příčky и = \BD\, přičemž víte, že úhlopříčky AC, BD jsou
navzájem kolmé.

Řešení. Bodem C (obr. 6) veďme přímku rovnoběžnou
s přímkou BD, její průsečík s přímkou AB označíme E.
Trojúhelníky CDА, ВЕС mají stejné obsahy, neboť \CD\ =
= \BE\ a příslušné výšky se rovnají výšce lichoběžníku.
Proto se obsah S lichoběžníku ABCD rovná obsahu právo-
úhlého trojúhelníku АСЕ, který má přeponu a + c, jedna
jeho odvěsna má délku u. Je tedy nutně a + с > и a 5 =

и
=

у У O + с)3 - И2.

D Сс

\
ч
\
\

ч
ч.U
\

ч

Ч
\
\

4 В с Еа

Obr. 6

С - И - 2

Najděte všechny dvojice přirozených čísel m, n, pro které
w5 dělitelné číslem 56.

Řešení. Podle úlohy С - I - 5 se výraz s = (ni + n)5 —

— w5 — w5 rovná 5mn (m + n) r, r — m2 — mn + и2, a po-
kud číslo 5 nedělí součin mn (m + n), nedělí číslo 5 číslo r

je číslo (m + n)5 — m5
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a tedy není číslo s dělitelné číslem 5°. Jsou-li čísla m, n obě
dělitelná pěti, je číslo s zřejmě dělitelné číslem 56. Je-li právě
jedno z čísel m, n dělitelné pěti, není pěti dělitelné žádné
z čísel m 4- n, r a číslo 5 je dělitelné číslem 56 právě tehdy,
když jedno z čísel m, n je dělitelné číslem 55. Není-li žádné
z čísel m, n dělitelné pěti, ale jejich součet ano, dávají při
dělení pěti zbytky 1 a 4 nebo 2 a 3. V žádném z těchto pří-
pádů není číslo r násobkem pěti. Aby číslo s bylo dělitelné
číslem 5(i, je nutné a stačí, aby byl součet m + n násobkem
čísla 55. Takže číslo í je dělitelné číslem 56, jestliže jsou
čísla m i n dělitelná pěti, nebo je jedno z nich dělitelné číslem
55, nebo je jejich součet dělitelný číslem 55, v žádném dalším
případně není s dělitelné číslem 56.

С - II - 3a

Zjistěte, kolik řešení má soustava rovnic

*1 + *2 4- *3 + *4 + *5 = *6 -f *7 + *8,

|*1 *2 *3 X4 *5 *6 *7 *s| = 1

v oboru celých čísel.
Řešení. Z druhé rovnice plyne, že každé z čísel xi se může

rovnat pouze 1 nebo —1. Je-li xe = *7 = Xg = 1, musí se

jedno z čísel jci, X2, ..., *5 rovnat —1, ostatní -f 1, to je
5 možností. Jestliže se jedno z čísel xe, *7, xg rovná — 1
a zbývající dvě se rovnají + 1 (to jsou tři možnosti), musí

se dvě z čísel xi, ..., ха rovnat —1 a tři 4-1, to je ® - -
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možností, celkem tedy 3.10 =30 možností. Obdobně je
tomu v případě x6 + + х» — — 1 (30 možností) a v pří-
pádě *6 = *7 = *8 = — 1 (5 možností). Celkem má soustava
70 řešení.

С- li -3b

V trojúhelníku ABC označme R poloměr opsané a r po-
loměr vepsané kružnice. Dokažte, že ]BC| + \AC\ — \AB\ =
= 2r právě tehdy, když platí \AB\ = 2R.

Řešení. Označme 5 střed kružnice vepsané trojúhelníku
ABC (obr. 7) a K, L její body dotyku se stranami ВС, AC.

Je pak |SC| + \AC\ - \AB\ = 2|CiC| = 2|CL]. Je tedy
\BC\ + \AC\ - \AB\ = 2r právě tehdy, když je |C/C| = r,
což znamená, že CLSK je čtverec a trojúhelník ABC je
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pravoúhlý s pravým úhlem při vrcholu C. Je-li trojúhelník
pravoúhlý s pravým úhlem při vrcholu C, splývá střed pře-
pony АВ se středem kružnice trojúhelníku opsané a je tedy
\AB\ = 2R. Je-li obráceně \AB\ = 2R, je úsečka AB prů-
měrem kružnice opsané trojúhelníku ABC, který je pak
podle Thaletovy věty pravoúhlý s pravým úhlem při vrcho-
lu C. Tím je celé tvrzení úlohy dokázané.
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Kategorie В

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

В - i - 1

Najděte všechny dvojice (p, k), kde p je prvočíslo a k
přirozené číslo, pro něž má rovnice x2 — 2(pk + 2)x 4-
4- рЫ — 0 řešení v oboru celých čísel.

Řešení. Rovnici upravíme na tvar (я — pk — 2)2 =
= 4(pk + 1). Vidíme, že rovnice má právě tehdy řešení
v oboru celých čísel, když je číslo ]jpk 4- 1 celé, tedy pk =
— m2 — 1 = (m — l)(m 4- 1), pro některé celé číslo m. Pak
musí existovat celá nezáporná čísla a, b tak, že pa — m — 1,
pb — m 4- 1, k = a 4- b. Odečtením prvních dvou rovností
dostaneme pa(pb~a — 1) = 2, a tedy

pa = 1/>« = 2
nebo

pb-a — 1=2.pb-a — 1 = 1

V prvním případě je p — 2, k — 3, v druhém případě je
p — Ъ, k — Jsou to jediná dvě řešení úlohy.
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В-1-2

V každém pravoúhlém trojúhelníku o přeponě c a cd-
vesnách a, b platí 2(au2 + bv2) ^ 5cw2]/2, kde u, v, w jsou
po řadě délky těžnic к stranám a, by c. Dokažte.

Řešení. Vyjádříme si nejdříve u, v, w pomocí a, b, přičemž

víme, že c2 = a2 + b2. Je (obr. 8) и = 1/ ^ 4- b2, v —
b \2 1

+ a2, w = — ]/a2 + b2. Máme tedy dokázat ne-2

rovnost

a:i b> 1
2 I ab2 + — + a2b + — ) й 5j/2 . — (]ja2 + b2f,

kterou upravíme na ekvivalentní tvar

2(a + b) (a2 + 3ab + b2) ^ 5]/2 }'a2 + b2 .(a2 + 62).

Je a -f b ^ }/2 j/a2 + 62, neboť a2 -f 2a6 + ť>2 ^ 2(a2 + b2).
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Dále je 2(a2 + 3ab + b2) ^ 5(a2 + b2), neboť 0 ^ 3(a2 -
— 2ab + b2). Vynásobením těchto dvou nerovností dosta-
neme nerovnost, kterou jsme měli dokázat.

В - I - 3

Jestliže pro kladná čísla a, b, c,p, q, r platí ac ^ b2,pr ^ q2,
tak platí také (a + p)(c + r) ^ (b + q)2. Dokažte. Ukažte
dále, kdy platí v posledním vztahu rovnost.

Řešení. Sečtením obou nerovností z předpokladu dosta-
neme ac + pr ^ b2 + q2, jejich vynásobením a odmocněním
dostaneme nerovnost ]!acpr ^ bq. Pro nezáporná čísla u, v

platí ii + v ^ 2]luv. Položíme-li и = ar, v = cp, máme
ar + cp ^ 2 j arcp ^ 2bq. Sečtením s první odvozenou ne-
rovností dostaneme dokazovanou nerovnost. Rovnost bude

platit právě tehdy, když bude platit ac = b2, pr — q2 a ar =
= cp. Z těchto rovností plyne acpr = 62<?2, dosadíme-li za ar

výraz cp, dostaneme cp — bq — ar, takže a : b : c — p : q : r
a ac — b2. Platí-li obráceně tyto vztahy, platí rovnost

(a + p) (c + r) = (b + q)2.

В - \ - 4

Je dána kružnice k se středem 5 a na ní dva body A, C
(А Ф C). Jaká je nutná a postačující podmínka pro velikost
úhlu ASC, aby existoval rovnoběžník ABCD, jehož obvod
má s kružnicí k šest společných bodů?

Řešení. Předpokládejme, že existuje rovnoběžník ABCD
splňující podmínku úlohy. Označme cp velikost konvexního
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úhlu ASC (obr. 9). Označení bodů В, D můžeme zvolit tak,
aby body D a S ležely v téže polorovině s hraniční přímkou
AC. Označme КL, M, N ty vnitřní body stran AB, BC,
CD, DA rovnoběžníku ABCD, které leží na kružnici k, dále
označme a = | £ NAC\ = | £ LCA\, /3 — | KAC\ —

= | MCA\. Přímka AC svírá s tečnou kružnice k v bodě C
cp (f (f

úhel —, proto je a < —, /3 < —. Také úhel ADC je men-

cp
ší než —, protože bod D leží ve vnější oblasti kružnice k.

(i
Přitom je | ADC| = 180° — a — (3 < —. Sečtením po-

sledních tří nerovností dostaneme 120° < cp. Je-li obráceně
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о Ф
tato nerovnost splněna, můžeme zvolit a tak, aby 90э — — <4

< a< Rovnoběžník ABCD, pro který je pak | £ BCA\ =

= BAC\ = a, splňuje podmínky úlohy. Je pak totiž

|£ ADC\ = 180° — 2a < takže jsou body D, В body

vnější oblasti kružnice k.

В - ! - 5

Najděte všechny uspořádané dvojice (p, q) prvočísel p, q,

pro které platí 3/>2 + 6p — 2q2 + Iq.
Řešení. Rovnici upravíme na tvar

3P(P + 2) — q(2q + 7).

Je vidět, že prvočíslo cj dělí součin 3p(p + 2), takže musí dělit
jedno z čísel 3, p, p + 2. Jestliže q dělí číslo 3, je nutně
<7 = 3, jestliže dělí číslo />, rovná se číslu p. Snadno zjistíme,
že q = 3 ani q = p nevyhovuje. Musí tedy být p + 2 ná-
sobkem čísla q, položme p + 2 = & přirozené číslo.
Dosadíme-li do dané rovnice p = kq — 2, dostaneme
<?(3&2 — 2) = 6k + 7. Jelikož je q > 1, je nutně 3k2 — 2 <
<6^ + 7, po úpravě (& — l)2 < 4. Přicházejí tedy v úvahu
pouze hodnoty k = 1, 2. Vyhovuje však pouze k = 1, pro
které je <7 = 13, p — 11. Dvojice (11, 13) je jediné řešení
úlohy.
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B-l-Ь

К danému čtverci ABCD sestrojíme kružnici k se stře-
dem A a poloměrem \AB\. Na straně BC zvolíme bod E,
na straně CD bod F tak, aby přímka EF byla tečnou kruž-
nice k. Označme G střed úsečky AD, H průsečík přímek
CG, EF а К průsečík přímek AH, CD. Dokažte, že přímka
EK je osou úhlu CEF.

Řešení. Označme L průsečík přímek CG a AB (obr. 10),
T bod dotyku přímky EF a kružnice k a M patu kolmice
vedené bodem К k přímce EF. Protože bod G je středem

ВL A

Obr. 10

úsečky AD, je \AL\ = \AB\ — \AT\. Trojúhelníky ALH
a KCH jsou stejnolehlé, středem stejnolehlosti je bod H.
V téže stejnolehlosti si odpovídají trojúhelníky ATH a KMH.
Jelikož je \AL\ = |AT\, je také |*TC| = \KM\. Pak jsou
ovšem trojúhelníky ECK a EMK shodné, neboť jsou právo-

úhlé, mají společnou přeponu EK a stejně dlouhé odvěsny
KH, КС. Shodují se proto i v úhlech proti těmto odvěsnám,
tj. |< KEM\ = KEC\, což jsme měli dokázat.
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úlohy Školní časti i. kola

В - S - 1

Najděte všechna celá kladná čísla n, pro která je číslo
2n — 1 druhou mocninou celého kladného čísla.

Řešení. Je-li pro přirozená čísla n, ni splněna rovnost
2n — 1 = m2, musí být číslo m2 a tudíž i číslo m liché. Po-
ložme m = 2k — l, k přirozené. Pak je 2n = \k2 — Ak 4- 2.
Pravá strana je dělitelná dvěma, není však dělitelná čtyřmi.
Proto je nutně n — 1, je to jediné řešení úlohy.

B-S-2

Je dáno n reálných čísel *i, X2, ..., xn takových, že

N хг2 = V x? = 1. Dokažte, že У x] — 1.
i=i »Ci

Řešení. Jelikož se součet druhých mocnin daných čísel
rovná jedné, rovná se každé z nich v absolutní hodnotě
nejvýše jedné, tj. |*г| fS 1 pro i = 1, 2, ..., n. Pak je ovšem
X? ís jjcf| ^ xj, přičemž x? = x'f pouze tehdy, je-li xř- = 0
nebo Xi = 1. Podle předpokladu se součet třetích mocnin
daných čísel rovná součtu jejich druhých mocnin, proto se
každé z nich rovná nule nebo jedné. Jelikož se každý z těchto
součtů rovná jedné, rovná se jedné právě jedno z daných
čísel, ostatní se rovnají nule. Pak je ovšem roven jedné i sou-
čet jejich sedmých mocnin.

i— 1
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В - S - За

Uvnitř rovnostranného trojúhelníku leží úsečka PQ délky
10. Úsečku PQ promítneme kolmo na všechny tři strany
trojúhelníku. Při jaké poloze úsečky PQ je součet délek
všech tří průmětů největší ?

Řešení. Svírá-li přímka PQ s některou stranou trojúhel-
niku úhel a ^ 30°, svírá s jednou další stranou úhel 60° — a
a s třetí stranou úhel 60° -f a (obr. 11). Součet délek všech

Obr. 11

tří průmětů je 10[cos a -f cos (60° -f a) -f cos (60°
= 20 cos a. Tento součet je největší při a = 0°. Svírá-li
přímka PQ s některou stranou trojúhelníku úhel větší než
30°, svírá s některou jinou stranou úhel menší než 30° a mú-
žeme tento případ převést na předcházející. Je tedy součet
délek všech tří průmětů největší, právě když je úsečka PQ
rovnoběžná s některou stranou trojúhelníku.

a)] =

В - S - 3b

Na stranách AB, AC trojúhelníku ABC jsou po řadě
zvoleny body M, N tak, že \MB\ — \NC\ a obsah trojúhelníku
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,AMN se rovná jedné polovině obsahu trojúhelníku ABC.
Vyjádřete velikosti úseček AM, AN pomocí b = \AC\,
c = \AB\. Zjistěte, kdy mají trojúhelníky AMC, BMC stejný
obvod.

Řešení. Označme \MB\ = ]iVC| = x, obr. 12. Obsah
1

trojúhelníku ABC je — bc sin a, obsah trojúhelníku AMN

C

К
N

\
N
\

a

A M В

Obr. 12

1
je — (b — x) (c — x) sin a. Z podmínek úlohy plyne pro x

rovnice 2(b — x) (c — x) = bc. Protože musí být x < by

x < c, dostaneme x = — (b + c — ]fb2 + c2). Je pak \AN\ =

1 1
= — (6 - с + У&2 + c2), |^Af| = у(c-b + yž>2 + c2).
Obvody trojúhelníků AMC, BMC jsou právě tehdy stejné,
když je \AC\ + \AM\ = \BC\ + \BM\, tj. a = ]/W+ c2,
tedy když je trojúhelník ABC pravoúhlý s pravým úhlem
při vrcholu A.
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ÚLOHY II. KOLA

B-ll-1

V trojúhelníku ABC určete na straně AC bod P tak, aby
platilo: Jestliže přímka rovnoběžná se stranou АВ protne
úsečky АР, PB, BC po řadě v bodech R, S, T, je \AR\ = |ST\.

Řešení. Nechť P splňuje podmínku úlohy a nechť R, S, T
jsou průsečíky úseček AP, BP, BC s přímkou rovnoběžnou
s přímkou AB. Označme Q průsečík úsečky BC a přímky
vedené bodem P rovnoběžně s AB (obr. 13). Z podobnosti

C

np.

Rj
S

A В

Obr. 13

trojúhelníků ABP, RSP a z podobnosti trojúhelníků PBQy
SBT plyne \ AR\ : \AP\ = \BS\ : \BP\ = |5Г| : |P<2|. Z rov-
nosti \AR\ — |ST| plyne \AP\ = \PQ\ a obráceně. Přitom je
|AP\ = \PQ\ právě tehdy, když je trojúhelník APQ rovno-
ramenný se základnou AQ. To nastane zase právě tehdy,
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1

když je | < PAQ\ = — | < CAB\. Bod P tedy určíme takto:
Osa úhlu CAB protne stranu BC v bodě Q, bodem Q vedeme
rovnoběžku s přímkou AB, její průsečík se stranou AC je
bod P, který splňuje podmínku úlohy.

В - II - 2

Spojnice středů protilehlých stran konvexního čtyřúhelníku
rozdělí čtyřúhelník na čtyři čtyřúhelníky. Obsahy tří z nich
jsou 8, 16, 20. Určete obsah čtvrtého.

Řešení. Nechť ABCD je konvexní čtyřúhelník (obr. 14),
K, L, M, N nechť jsou po řadě středy úseček AB, BC, CD, DA

a P průsečík úhlopříček KM, LN rovnoběžníku KLMN.
Trojúhelníky АКР a BKP mají stejný obsah, neboť К je
střed úsečky AB. Totéž platí pro dvojice trojúhelníků BLP
a CLP, CMP a DMP, DNP a ANP. Z toho plyne, že součet
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obsahu čtyřúhelníků AKPN, CLPM se rovná součtu obsahů
zbývajících dvou čtyřúhelníků BKPL a DMPN. Každý

S
z těchto dvou součtů se rovná —, kde 5 značí obsah celého

čtyřúhelníku ABCD. Kromě toho je KL střední příčka
trojúhelníku ABC, proto se obsah trojúhelníku KLB rovná
jedné čtvrtině obsahu trojúhelníku ACB. Obdobně to platí
pro trojúhelníky DMN a DCA a rovněž pro dvojice troj-
úhelníků AKN, ABD a CML, CDB. Jelikož se součet

5
obsahů trojúhelníků KLB a DMN rovná — a součet obsahů

5
čtyřúhelníků PKBL a PMDN je roven —, rovná se obsah

každého z trojúhelníků PKL a PMN a také trojúhelníků
5

PNK a PLM hodnotě —. Na začátku řešení úlohy jsme si

odvodili, že součet obsahů dvou protějších čtyřúhelníků se
rovná součtu obsahů zbývajících dvou protějších čtyřúhel¬

S
níků a každý z těchto součtů se rovná —. Jestliže obsahy tří

z čtyřúhelníků jsou 8, 16 a 20, musí se obsah čtvrtého nutně
rovnat 4 nebo 12 nebo 28, obsah S se pak v uvedených
případech rovná 48 nebo 56 nebo 72. Kdyby se obsah
třeba čtyřúhelníku PKBL rovnal 4, byl by jeho obsah menší

5
než obsah trojúhelníku PKL, který by se rovnal —- = 6, což8

není možné. Stejně tak nevyhovuje hodnota 28, protože
S

jeden z čtyřúhelníků by měl obsah 8 a by bylo 9. Má8
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tedy daný čtyřúhelník obsah S = 56 a obsah čtvrtého čtyř-
úhelníku je 12. Ukážeme si ještě konstrukci takového čtyř-
úhelníku. Zvolíme к tomu libovolný rovnoběžník KLMN

S
o obsahu — = 28. V polorovině opačné к polorovině KNM

vedeme s KN rovnoběžku и tak, aby pro každý její bod A
S

(obr. 15) se obsah trojúhelníku AKN rovnal 8 — — = 1.8

Stejně tak musí bod В ležet na rovnoběžce s přímkou KL
S

tak, aby se obsah trojúhelníku BKL rovnal 12 — — = 5.
O

Protože К musí být středem úsečky AB, leží bod В také
na přímce souměrně sdružené к přímce и podle bodu K.
К bodům B, A již pak sestrojíme body C, D. Čtyřúhelník
ABCD má požadované vlastnosti.
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В - II - За

Jsou-li ai, Х2, ..., у.п v radiánech měřené velikosti vnitřních
úhlů konvexního я-úhelníku an ^ 4, pak platí

1П

2 ž 2)тг2.
i = 1 z

Dokažte a určete, kdy platí znaménko rovnosti.
Řešení. Sečtením nerovností (a,- — a;)2 ^ 0 pro i >/

dostaneme

П

(n - i) 2 A ^ 2 2 w,
г >ji = 1

« / w \ 2

2 <* • ^ ( 2 «* | • Poslední nerovnost plyne též přímo
= 1 \г=1 /

tedy n

z tzv. Cauchyovy nerovnosti. Pro součet vnitřních úhlu
konvexního я-úhelníku platí

V

2 a* = (я - 2) тс,
г'1

tedy
1П

2 a,2 ž -(n-2fv?.
ť=l П

11
Podle předpokladu je я ^ 4, takže — (я — 2)2 ^ — (я — 2),

čímž je nerovnost úlohy dokázána. Rovnost nastane, právě
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když jc n — 4 a všechny vnitřní úhly čtyřúhelníku jsou si
rovny, tedy když je mnohoúhelník obdélník nebo čtverec.

В - II - 3b

Najděte všechna řešení rovnice xyz = 3(x + у + z)
v oboru celých kladných čísel. Řešení, která se liší jen pořa-
dim, nepovažujeme za různá.

Řešení. Je-li trojice x, y, z řešením dané rovnice v oboru
přirozených čísel, je aspoň jedno z čísel x, у, z dělitelné
třemi; nechť je to například x, x — 3k, k přirozené číslo.
Pro čísla k, у, z pak platí kyz = 3k -j- у + z, takže k(yz —
— 3) = у + z. Musí tedy být nutně уz — 3 ^ у -f- z,

tj. (y — 1)(я — 1) rg 4. Bez újmy obecnosti můžeme ještě
4

předpokládat у z. Pro у = 1 je & = 1 + takže
z — 35

jsou možnosti z — 4, k = 5, x = 15 nebo z — 5, k =3,
x = 9 nebo z = 7, k — 2, x = 6. Je-li у = 2, je z ^ 5,

z + 2
”, takže z — 2, k = 4, x = 12 nebo z — 5,

z + 3

3*-35
k — l, x — 3. Pro ^ 4 je 2 ^ 2, což už nemusíme uva-
žovat.

Úloha má 6 řešení: (1, 4, 15), (1, 5, 9), (1, 6, 7), (2, 2, 12),
(2, 3, 5) a (3, 3, 3).

k =
2z -

k = 1, x = 3. Pro у = 3 )č z 3, k = tedy z = 3,
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Kategorie A

ÚLOHY DOMÁCÍ ČÁSTI I. KOLA

A - I - t

Reálná funkce/ je definována na množině všech uspořádá-
ných dvojic (n, x), kde n ^ 1 je přirozené číslo, x je reálné
číslo. Funkce/ splňuje podmínky

(1) /(1, x) = X,

/(2«, x) = n + /(w, x + 1),(2)

(3) f(2n + 1, x) = n +/(n + 1, x + 1).

Dokažte, že pro n ^ 2a každé reálné číslo x platí

(4) f(n, x) — n + X + [log2(n !)]■

(Symbol [x] značí celou část čísla x.)
Řešení. Tvrzení dokážeme matematickou indukcí. Dosa-

zením n — 1 do rovnosti (2) a použitím (1) postupně do-
staneme

65



/(2, x) — 1 f(1, x + 1) — 1 4" # + 1 — 2 -f ^ —

= 2 + x + [legal],

vztah (4) tedy platí pro n = 2 a libovolné reálné x.

Předpokládejme, že rovnost (4) platí pro každé přirozené
k < n a pro všechna reálná x, a dokážeme, že pak platí i pro
k — n a libovolné reálné x.

Je-li я = 2k, je podle (2) a podle indukčního předpokladu
(Ar < n)

f(n, x) =/(2k, x) = k +/(&, x + 1) =

— k 4" (k -(- X -f" 1 4" [l°g2(& ~~ 1)]) —

— 2k x 4- [1 4- log2(& 1)] =

— 2k 4~ x 4~ [log2(2& — 2)] —

= 2k 4- x 4- [\og£2k — 1)] = я 4- x 4- [log2(w — 1)].

Zde jsme využili toho, že [log2w] = a, právě když 2a íg m <
< 2a+1. Pro m — 2k — 2 odtud plyne

2« ^ 2/e - 2 < 2k — 1 ^ 2a+1,

ale 2k — 1 je liché, takže 2a ^ 2k — 1 < 2a+1, a tudíž

[loga(2/% - 1)] = a = [log2(2& - 2)].
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Je-li и = 2k -f 1, je podle (3) a podle indukčního před-
pokladu

f(n, .t) —f(2k 4~ 1, x) — k 4- f(k 4- 13 x 4-1) —

= H(Hl+*4-l4- [log2&]) =

— 2k 4" 1 4 x 4 [log22&] —

= n 4- x 4 [log2(w — 1)].

А- I -2

Funkce / zobrazuje interval I = (—с, c), c > 0, do množi-
ny komplexních čísel tak, že pro každé t e I platí

1/(01 =/(0(cos 1 4- i sin ť),

1/(01 - 1 = 1/(0 - 31

a ke každému t e I lze nalézt s e I tak, že

2I/C0I < 1/(01.

Vypočtěte c (na tři platné číslice) a vypočtěte víte-li,
že |/(ř0)| = 5.

Řešení. Funkce / je komplexní funkce reálné proměnné.
Z podmínky \f(t)\ = /(ř)(cos t 4- i sin ť) je však vidět, že
/(0 = 1/(01 (cos t — i sin t), к určení/ proto stačí určit reál-
nou funkci g, g(t) = |/(0I-
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Umocněním druhé podmínky dostaneme

(g(0 — l)2 = \g(t) cos t — 3 — i g(i) sin t|2,

£2(0 — 2^(0 + 1 = (g(t) cos t — 3)2 + (#(t) sin if =

— £2(í)(cos2í + sin2t) — 6^(t) cos t -f 9,

4
(1) áíO = 3cos t — 1

Aby funkce/byla dobře definována, musí být^(ř) > 0 pro
1

všechna t z definičního oboru I = (—c, c), takže cos t > .3

1 1 1
Proto je (—c,c) c= —arccos —, arccos — Ltj.c < arccos“.

3 5 3 / } ~ 3
Protože pro každé te(—c, c) existuje se(—c, c) tak, že

£(s) > 2^(t), musí být funkce g neomezená. Odtud plyne, že
1

je c = arccos —; == 1,23 (hodnotu určíme pomocí tabulek ne-

bo počítačky).
3

Je-li |/(t0)| = 5, je podle (1) cos to = —, a tedv |sin to| =5

4
=

_ . Odtud plyne, že je /(to) = |/(fo)l (cos to — i sin to) =3

= 3 ± 4i.
3 4

"Чт^т.
Jiné řešení. Hodnoty funkce / leží na větvi hyperboly

určené (v komplexní rovině) rovnicí
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1*1 - к- з| = i

s ohnisky v bodech (s komplexními souřadnicemi) 0 a 3
(obr. 16).

Přitom podle první podmínky je

i sin r) = i/(OI (cos (—ř) + i sin (—ř))}/(0 = 1/(01 (cos t

takže pro ře(-c, c) dostaneme hodnotu f(t) jako průsečík
dané větve hyperboly s polopřímkou s počátkem v 0 a svírající
s reálnou osou úhel t (v obloukové míře). Podle třetí
podmínky úlohy je funkce / neomezená, takže pro |r| = c
uvedené polopřímky už danou větev hyperboly neprotínají,
tj. polopřímky
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z — |-s|e“ic, z — |,a|eic

jsou rovnoběžné s jejími asymptotami. Jak snadno zjistíme,
1

má daná hyperbola hlavní poloosu a = — a excentricitu

3 1a

e ~ ^2 3 ta^e Pro ^°^notu c platí cos c — —
Je-li |/(ř0)| = 5, plyne z rovnice hyperboly |/(ř0) — 3| = 4,

trojúhelník s vrcholy 0, 3, /(to) je tedy, jak snadno zjistíme,
pravoúhlý (obr. 17), a proto f(to) = 3 + 4i.

3 '

№

\
4

50.1 2 3

Obr. 17

A - I - 3

Nechť n je přirozené číslo, 1 ig a\ <22 ^ ^ an, bi, b2,
..., jsou reálná čísla. Kolik řešení má soustava rovnic
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a\x\ -f X2 + ... + xn = h

xi + a2x2 + ... + xn = b2

*1 + X2 + ••• + &nXn — Ьп ?

Provedtc diskusi.
Řešení. Případ n = 1 je triviální, budeme předpokládat,

že и ^ 2. Je-li ai = 1, má první rovnice tvar

(1) XI + *2 + ... + Xn = bi,

dosadíme-li tedy do zbylých rovnic soustavy, dostaneme sou-
stavu

(at — I)** + bi = bi, 2йгйп.

Odtud je vidět, že pro 1 = ai = ... = a* má soustava ře-
šení, jen když bi = b2 = ... = bk. Pak dostaneme k ^ 1
stejných rovnic (1), a pokud k < n a ak+1 > 1, je

bj — b\
(2) k + 1 й j й n.Xj =

aj - 1 ’

Pro q2 > 1 má tedy daná soustava vždy jediné řešení

'ŠT bi — bi
СЦ

xi = bi
Г

i = 2
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bj — bi
a}- — 1

(2 S / á n).Xj =

Pro 1 — ai = ... = a/c (k > 2) má soustava řešení, právě
když bi = 62 = ... = bjc. V tomto případě má soustava ne-
konečně mnoho řešení, neboť neznámé xjtu, ..., xn jsou
jednoznačně určeny vztahem (2), ale pro neznámé jci, ..., jc*
máme jedinou podmínku

*1 + X2 4- • •. + Xk — bi 2 xj.
j a- 1

Je-li ai > 1, tj. 1 < ai ^ d2 ^ ^ dn, dosadíme z první
rovnice

У Xi = bi — (ai l)*i
i = 1

do ostatních rovnic soustavy

v 2 й/йп,(dj — 1 )xj + Xi = bj—

i I

takže dostaneme

bj — bi 4- Oi — l)*i
Xj —

ay — 1

Z první rovnice pak plyne
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ы - h 1
Ol — l)xi -f- V+ Oi — i)*i - h.

£-4 а,- — 1cii — 1
í = i i = 1

Vidíme, že v tomto případě má soustava jediné řešení

bt - hУbí-
cii — 1

* i
xi =

1

2-./ ( CL\
(cil 1) 1 +

- 1
i -1

bi -f- (a i — l)xibi
(2 й j й n).Xj —

Uj — 1

Závěr. Pro n ^ 2 má daná soustava jediné řešení, právě
když a* > 1. Pokud a\ — а% = ... = a* = 1 (k > 2), má sou-
stava nekonečně mnoho řešení, právě když b\ = 62 = • • • =
= 6a,-; jinak nemá žádné řešení.

A - i - 4

Nechť body /Г, i?', C leží na jednotkové kružnici se
středem У opsané trojúhelníku ABC tak, že dvojice vektorů
SA' а BC, SB' a CA, SC' a AB jsou souhlasně rovnoběžné.
Jsou-li P a P' obsahy trojúhelníků ЛРС a A'B'C, pak platí

3

3 / P
г ž

2 2 '
Dokažte.

73



Řešení. Jsou-li a, /9, у úhly daného trojúhelníku ABC,
platí pro úhly trojúhelníků SB'C', SOA', SA'B', jak snadno
plyne z konstrukce bodů А', В', O (obr. 18),

| * B'SCI = 71 - a, I * C'SA'\ = p,

\^A’SB'\ =u -у.

Označme R poloměr kružnice opsané oběma trojúhelníkům
ABC, A'B'O, pro obsah P’ trojúhelníku А'В'О pak platí

1
— R2(sin(7i — a) + sm(n — /9) -f sin(7i — y)) =P' =

(1)
1

= — R2(ún a -f sin /9 -f sin y).
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Obsah P trojúhelníku ABC můžeme vypočítat různě. Tak je
např.

abc1
— ab sin у —P =

4R’

neboť pro tětivu délky c s obvodovým úhlem у platí (obr. 19)
c — 2R sin у. Tak dostaneme i vztah

1
P — —ab sin у = 2R1 sin a sin /5 sin y.(2)

Ze známé nerovnosti

X + у + z
^ УхуZ,(3) 3

která platí pro libovolná tři nezáporná čísla x,y, z, a z rovností
(1) a (2) tak plyne nerovnost
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neboli (R — 1)

3

3 I ' P
P' ž у 2 ’

což je nerovnost, kterou jsme měli dokázat.
Rovnost nastane, právě když nastane rovnost v nerovnosti

(3), tj. právě když sin a = sin / = sin y, tedy právě když
daný trojúhelník ABC je rovnostranný (trojúhelník A'B'G
pak bude také rovnostranný).

A - I - 5

Nechť funkce / je pro j. > 0, t > 0 definována předpisem

ír(l — st)
f(s, 0 =

(1 + *2)( 1 + í2) ■

Dokažte, že tato funkce nabývá svého maxima právě v jed-
nom bodě. Nalezněte tento bod a maximum funkce.

Řešení. Podle známé nerovnosti s2 4- í2 ^ 2st (s, t > 0)
pro funkci / platí

sř(l — st)st( 1 — st) я(1 — st)
Ks, o - (1 + St)2 51 + s2 + ť2 +• s2t2 1 + s2ť2 -f 2st

přičemž rovnost nastane, právě když í = t.
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Funkce / tedy nabývá maxima na některé hyperbole st = и

pro s = t = ]/u (přičemž stačí uvažovat 0 < и < 1, kdy je
f(s, ť) > 0). Funkce

u( 1 — и)
Ku) = (1 + uf

má derivaci

(1 + uf(—2u + 1) — 2(1 + u)(u — u2) ■— 3и -f- 1
h\u) - (1 + uf

1
takže funkce h je na intervalu ^0, — I rostoucí a na intervalu

1 \
—, со I klesající. Odtud plyne, že funkce / nabývá svého

/' 1
maxima v jediném bodě (s, ř), s = t = , a je3

1
/ 8 '

Poznámka. Vhodnou úpravou můžeme využít nerovnosti
(•x + yf

. Je totižxy S 4

u( 1 — u)
(lTufh(u) =

1 2u{\ — u)
2 ' (1 + uf ~ 2(1 + uf ’

1 1 1

j(l+uf = 8 '
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Odtud plyne, že funkce h nabývá svého maxima pro 2и =

1 1
и, tj. и — _ -, takže f(s, t) ^ — s rovností pro 5 =3 o

A - I - 6

Šachovnice se skládá z 8X8 polí vytvářejících čtverec. Věž
je jedna z figur, jimiž se hraje šach. Řekneme, že daná věž je
neohrožena, jestliže v řádku a sloupci, ve kterém se nalézá,
už není jiná věž.

a) Určete počet takových rozmístění 8 věží na šachovnici,
při nichž je každá z nich neohrožena.

b) Určete počet takových rozmístění 8 věží na šachovnici,
při nichž je aspoň jedna z nich neohrožena.

c) Určete počet takových rozmístění 8 věží na šachovnici,
při nichž je aspoň jedna z nich neohrožena a žádné dvě nejsou
v témže řádku.

d) Řešte úlohy b) a c) pro čtvercovou šachovnici skládající
se z nXn polí, přičemž rozmísťujeme k věží (1 ^ k ^ n).

Řešení. Máme-li na šachovnici 8X8 rozmístit 8 věží tak,
aby se žádné dvě neohrožovaly, musí stát v každém sloupci
a v každém řádku právě jedna věž.

Pro umístění věže v prvním sloupci máme 8 možností.
Pro každon z těchto možností máme 7 možností, jak umístit
věž ve druhém sloupci (jeden řádek je blokován věží z prvního
sloupce), pro umístění věží v prvním a druhém sloupci je
tedy 8.7 = 56 možností. Pro každou z nich máme 6 mož-
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ností, jak umístit věž ve třetím sloupci, atd. Celkem je tedy
8.7.6 2.1=8! možností, jak věže rozmístit. (Ke
stejnému výsledku lze dospět také takto: každému rozmístění
věží přiřadíme posloupnost osmi čísel a\, a2, ..., a8 tak, že
v daném rozmístění stojí v z-tém sloupci věž v ař-tém řádku.
Jelikož se věže neohrožují, je posloupnost a\, a2, ..., a8 po-
řadím čísel 1,2, ..., 8; a naopak každé pořadí dává popsaným
způsobem rozmístění neohrožujících se věží. Hledaný počet
rozmístění je tedy roven počtu pořadí osmiprvkové množiny,
tj.8!.)

Dále vyřešíme rovnou obecnou úlohu pro k věží a šachov-
nici nXn. V tomto případě je vhodné nejprve uvažovat věže
rozlišené očíslováním vi, г>2, ... , vic.

Označme A; množinu všech rozmístění, ve kterých je věž vi

neohrožena, i e {1, 2, ..., &}. Chceme určit počet rozmístění,
ve kterých aspoň jedna věž není ohrožována, tj. počet prvků
množiny Ai и Аг и ... u A*. Podle principu inkluze a ex-
kluže (viz např. Vrba, A.: Kombinatorika. 1. vyd. Praha,
Mladá fronta 1980. 5MM, sv. 45) je

(1) |Ai и Аз и ... и А*I — [Ai| -f [Ao[ + ... -t- [Ад-I ——

— |Ai n Ao| — [ Ai n Аз| — ... — I A*—i n A*[ -i-

+ |Ai n A2 n A31 4- ... + [Aa—2 n Afc-i n A*| — ... +

+ (—l)fc_1|Ai n A2 n... n Aa|.

Nechť 1 S j S k- Je-li w /-prvková podmnožina množiny
{1, 2, ..., k), pak I n A/| = [Al П A2 n ... n А/. Stačí

геш

proto určit číslo |Ai n A-г n ... n Ay|, tj. počet rozmístění,
ve kterých jsou věže v±, ..., Vj neohroženy. Věž vi mů-
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žeme umístit n2 způsoby (do kteréhokoli políčka), pro vz

zbývá (n — l)2 možností (jeden řádek a jeden sloupec jsou
blokovány věží v\), atd. až Vj můžeme umístit (n — j + l)2
způsoby. Věže Vj+i, ..vjc již můžeme umístit libovolně ve

zbylých (n — j)2 polích (nesmíme vstoupit do řádků a sloup-
ců použitých pro věže m, ..Vj). Takových rozmístění je

j)\ (počet variací k — j prvků z (n — ;)2-prv-

kové množiny). Je tedy

|Ai пА2 n ... n Aj\ =

= n~(n — l)2 ... (n — j + l)2 fí -7)(k -/)!•

Po dosazení do (1) dostáváme

JAi u A2 u ... и A*| =

■i+vfJIY4= 2c-1)bl(y)”2C” — I)2...(n 7)! =

i i

k

íy-1
i=i

Jestliže nyní zapomeneme na rozlišení jednotlivých věží,
bude vždy k\ rozmístění stejných, takže hledaný počet je

1

ъ-'Н )(;)«■((n — У)2 Ic* 7)1.A!
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Druhou část úlohy d) vyřešíme obdobně. Označme Вг
množinu všech rozmístění, ve kterých není věž ví ohrožena
a přitom žádné dvě věže nestojí ve stejném řádku. Podle
principu inkluze a exkluze pak je

]Biu B2u ... и В#] = |Bi] + |B2I -4- ... + |B*1 —

Bfc-i n B*| + ... 4-— ] Bi o B2I — ...

+ (—l^-ijBi n B2 n ... n B*|.

Protože

] Bi n B2 n ... n B,-| =

= n\n — 1 )2 ... (n — j + 1)2(« —j)k~j(n —j)(n — j — 1) .. •

• • • o k + 1),
je

Bi и B2u ... и Bjt| =

к

=Ъ-^ 5-fl (* -У)-'-
i=i

Stejně jako v předešlém případě (zapomeneme-li na rozlišení
věží) dostaneme hledaný počet rozmístění jako

к

i
/)!.A!

i=i
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Přitom ve všech součtech klademe 0° = 1 (např. pro j = k —

= «)•

ÚLOHY ŠKOLNÍ ČÁSTI I. KOLA

A - S - t

Je dán pravoúhlý trojúhelník ABC. Na kolmici к přeponě
AB procházející bodem В sestrojíme v polorovině opačné
к polorovině ABC bod D tak, aby platilo \BD\ = \AB\.
Na kolmici к ВС bodem В sestrojíme v polorovině opačné
к polorovině BCA bod E tak, aby \BE\ = \BC\. Označme Á

C S -^E
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střed úsečky СЕ, O střed úsečky AD a F průsečík přímek
AE, CD. Dokažte, že čtyřúhelník OBSF je deltoid.

Řešení. Trojúhelník DBC vznikne z trojúhelníku ABE
otočením o pravý úhel kolem bodu В (obr. 20), takže odpo-
vídající si strany CD a EA jsou navzájem kolmé. Body В
a F proto leží jednak na Thaletově kružnici nad průměrem
AD, jednak na Thaletově kružnici nad průměrem CE. Osa
společné tětivy BF obou těchto kružnic prochází jejich středy
О а 51 a čtyřúhelník OBSF je tedy osově souměrný podle

\BE\ | BD\
osy úhlopříčky BF. Protože \BS\ = = \BO\,<

j/2 ]/2
není OBSF kosočtverec, ale deltoid. Jak je vidět z uvedeného
řešení, OBSF bude kosočtverec, právě když \BC\ — \AB\,
jinak vznikne deltoid. Tvrzení pak plyne nejen pro právo-
úhlé trojúhelníky, ale obecně pro libovolný Д ABC, v němž
\AB\ ф |ЯС|.

A-S-2

a) Každé pole čtvercové tabulky 5X5 je obarveno právě
jednou z barev bílá, černá. Dokažte, že v tabulce existují
čtyři pole stejné barvy, jež jsou rohovými poli některého
pravoúhelníku.

b) Ukažte, že v případě tabulky 4X4 existuje takové
obarvení, při kterém žádná čtyři pole stejné barvy nejsou
rohovými poli pravoúhelníku.

Řešení. Tabulka má 25 polí. Jednou z barev, řekněme
bílou, je obarveno aspoň 13 polí. Je-li všech pět polí někte-
rého sloupce obarveno bíle, jsou v aspoň jednom dalším
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sloupci aspoň dvě bílá pole. Ta tvoří spolu s dvěma bílými
poli bílého sloupce čtyři rohová pole pravoúhelníku.

Jestliže jsou v některém sloupci 4 bílá pole, obsahuje
některý další sloupec aspoň 3 bílá pole. Protože řádků je pět,
musí být v uvažovaných sloupcích dvě bílá pole ve stejných
řádcích.

Neobsahuje-li žádný sloupec 4 bílá pole, je rozložení
13 bílých polí do sloupců bud 3, 3, 3, 2, 2, nebo 3, 3, 3, 3, 1.
V prvním případě z nich můžeme utvořit 11 dvojic polí
téhož sloupce, ve druhém případě takových dvojic existuje

dokonce 12. Jelikož v jednom sloupci je jen = Ю dvojic,

musí mezi uvedenými 11 či 12 dvojicemi být aspoň dvě,
jejichž pole leží ve stejných řádcích. Pole těchto dvojic jsou
opět rohovými poli pravoúhelníku. Tím je vyřešena část
a) úlohy. Dva příklady tabulky 4X4 s požadovaným vybar-
vením dvěma barvami ukazuje obr. 21.

jiné řešení. V každém sloupci obarvené tabulky převládá
jedna barva. Stejná barva musí převládat aspoň ve třech
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sloupcích, takže bez újmy na obecnosti můžeme předpoklá-
dat, že bílá barva převládá v prvních třech sloupcích a žo
v prvním sloupci jsou první tři pole bílá. Ve druhém sloupci
pak musí být bílá pole ve 4. a 5. řádku, jinak dostaneme
bílý pravoúhelník. Ve třetím sloupci pak už ale nelze umístit
tři bílá pole tak, aby nevznikl bílý pravoúhelník. Tím je
tvrzení dokázáno.

A - S - 3a

Jsou dána komplexní čísla u, v. Najděte všechna komplexní
čísla w, pro něž je funkce

f(z) = \z — u\2 -f \z — Ví2 + Iz — Ztf|2

konstantní na množině {žgC: |&| = 1}.
Řešení. Je

■ z(u + v -f г?) — ž(u -f v + w) -f
4- |?/!2 + !z>í2 4- M2.

f(z) = 3N2

Je-li tato funkce na množině všech komplexních čísel s absc-
lutní hodnotou 1 konstantní, je /(1) = /(—1) = /(ť). Odtud
postupně plyne, že Re(w + v + w) = 0, Im(u + v 4- w) — 0,
tedy и + v 4- w = 0. Je-li naopak tato podmínka splněna,
je / konstantní na množině všech komplexních jednotek.
Úloze vyhovuje jediné komplexní číslo w — — и —- v.
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A - S - 3b

Zjistěte, pro která celá čísla 6 má soustava rovnic

X\ + bx2

2bx\ + xo + 2bx$ = 2 63
bx2 + xs — 63

= 363

řešení v oboru celých čísel, a pro každé takové b vypište
všechna tato řešení.

Řešení. Daná soustava je ekvivalentní se soustavou

XI = 3 63 — bx2

*3 = 63 — 6.X2
(4é2 - 1)*2 = 2bs(4b - 1)

a pro b celé má celočíselné řešení, právě když číslo 4b2 — 1 =
= (2b — V) (2b + 1) dělí číslo 2bz(Ab — 1). To je splněno
v případě b — 0, pak je x\ = X2 — л*з = 0.

Je-li b Ф 0, jsou lichá čísla 2b — 1, 2b + 1 s číslem 2b3
nesoudělná, takže číslo 4b2 — 1 musí dělit číslo 46 — 1. Je
proto

|462 -1\й |4b - 1|.

Této nerovnici vyhovují pouze celá čísla —1, 0, 1. Pro
b = — 1 není číslo X2 celé, pro 6 = 1 vyjde xi = 1, x% = 2,
*3 = —1.
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ÚLOHY II. KOLA

A - II - t

Nechť p a q jsou prvočísla. Dokažte, že libovolné řešení
(x, y, z) rovnice

xyz = pq(x + у + z)

v oboru přirozených čísel má následující vlastnost: Jedno
z čísel x, у, z dělí součet ostatních dvou.

Najděte prvočísla p, q, r a takové řešení rovnice

xyz = pqr(x + у + z),

které uvedenou vlastnost nemá.

Řešení. Je-li xyz = pq(x + у + z), musí být bud jedno
z čísel x, y, z dělitelné součinem pq> anebo jedno dělitelné
prvočíslem p a jiné dělitelné prvočíslem q. Je-li např. x =
= pqx\ je

x'yz = X + у + z, tj. z(x'y — 1) = X + y3

takže z dělí součet x + y.

Je-li x = px',y — qy', je obdobně

x'y'z = X + у + z, tj. z(x'y' — 1) = ДГ + y}

takže opět z dělí součet x Tím je důkaz hotov, neboť
daná rovnice je symetrická v neznámých x,y3 z.
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Z uvedeného řešení je vidět, že v případě rovnice xyz =
— pqr(x у 4- z) prvočísla p, q, r musí být různá, máme-li
najít nějaké její řešení, které nemá uvažovanou vlastnost.
Vezměme tedy p — 2, q — 3, r = 5. Rovnice

xyz — 30(x + у 4- z)

může mít řešení tvaru

x = 2x', у — 3y', z = 5z',

což vede к rovnici

x'y'z' — 2x + 3y' + 5z'.

Volbou z’ — 1 dostaneme jednodušší rovnici

xV = 2x' + 3y' -f 5,

která má přirozené řešení např. pro x' = 4 (y1 = 13) nebo
pro y' — 3 (x' = 14). Čísla 8, 39, 5 a 28, 9, 5 jsou pak ře-
šením rovnice xyz — 30(x + У + z) a nemají uvažovanou
vlastnost.

A- M -2

Každé pole čtvercové tabulky 12X12 je obarveno jednou
z třech barev. Dokažte, že v tabulce existují čtyři pole stejné
barvy, jež jsou rohovými poli některého pravoúhelníku.

Řešení. Označíme-li a, b, c počty polí jednotlivých barev
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v nějakém sloupci tabulky, je a + č>4-c=12 a přitom

v takovém sloupci najdeme

stejné barvy. Z nerovnosti (x + у -f z)2 ^ 3(x2 + v2 -f z2),
která platí pro libovolná reálná x} y, z, plyne

(2) + (2) + 0 dvoiic polí

b 1l
+ 6 = 18.

2)

V každém sloupci obarvené tabulky najdeme tedy aspoň
18 dvojic polí stejné barvy. Celkem tak existuje nejméně
12.18 dvojic řádků, které mají s některým sloupcem společná
dvě pole stejné barvy. Pro alespoň třetinu z nich jsou odpo-
vídající dvojice polí jedné barvy. Protože

(a).1
— .12.18 >

existují nutně dva sloupce, v nichž se dvojice polí této barvy
vyskytují ve stejné dvojici řádků, což dává tvrzení úlohy.

2. řešení. Uvažujme tu z barev, kterou je vybarveno
alespoň 48 (třetina) polí dané tabulky. Uvažujme všechny
možné dvojice polí této barvy v jednotlivých sloupcích,

zřejmě stačí dokázat, že je jich vždy více než

Pokud jsou v některém ze sloupců méně než čtyři pole
zvolené barvy, přesuneme jedno pole ze sloupce, ve kterém
jsou naopak více než čtyři pole vybrané barvy (ten existuje,
protože všech polí této barvy je aspoň 48). Tím počet všech

(?)

89



dvojic polí zvolené barvy ve sloupcích jen zmenšíme, neboť
pro a < 4, h > 4 platí

eMSMTMV)
Tak po konečném počtu kroků dostaneme tabulku, v níž

jsou v každém sloupci aspoň čtyři pole vybrané barvy. Odtud

plyne, že v původní tabulce bylo aspoň 12. dvojic

polí zvolené barvy ve všech sloupcích. Některá ze dvojic se
bude proto opakovat, čímž je existence hledaného právo-
úhelníku dokázána.

3. řešení (podle Š. Holuba, 2. roč. G Trutnov a O. Ra-
líka, 4. roč. G Nitra). Protože 12.12 = 3.48, v tabulce
jistě najdeme 48 polí obarvených stejnou barvou. Označme
jejich počet v jednotlivých sloupcích xi, X2, ..., *12, *1 +
4- X2 + ... + X12 = 48. V každém sloupci tedy najdeme

aspoň ^ j dvojic polí zvolené barvy.
Podle Cauchyovy nerovnosti je

1212

(2>f)2 S 12 2 xf,
i 1 i = 1

takže pro všechny nalezené dvojice platí

121212

ŽGK2«-I Xt ^
i= 1 i = li = 1
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12 122
1 1

12 I 2* 2*-

2
i = 1 i = 1

12
= 72>

2
= 66.

Odtud plyne, že se některá z nalezených dvojic musí opa-
kovat aspoň ve dvou sloupcích. Existuje tedy hledaný právo-
úhelník s vrcholy téže barvy.

Poznámka. Nerovnost

(2 *02 ún^xi,

použitá pro n = 3 v 1. řešení a pro n = 12 ve 3. řešení, je
speciálním případem Cauchyovy nerovnosti

(2 «i®*)2 ^2ui2

klademe-li щ — 1, v% — x% (1 ^ i ^ n).
4. řešení (podle P. Fencla, 4. roč. G Pardubice). Předpo-

kládejme, že v některém řádku či sloupci existuje aspoň 5
polí stejné barvy (A). Bez újmy na obecnosti můžeme před-
pokládat, že je barvou A obarveno prvních pěť polí prvého
řádku. Dále se budeme zabývat jen prvními pěti sloupci
(tj. tabulkou 12X5).

V každém dalším řádku se barva A může vyskytnout už
nejvýše jednou, jinak jsme hotovi. Do pěti polí jednoho

řádku můžeme umístit dvojici stejnobarevných polí ^ j = 10
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způsoby. Na zbývajících 11 řádcích tedy bud jednu dvojici
zopakujeme (a dostaneme hledaný pravoúhelník), nebo jsou
v některém řádku aspoň 3 pole jedné barvy (B). Pak nám

ale zbývá jen

dvojice polí barvy В do zbylých deseti řádků, aniž by se
některá dvojice opakovala. V takovém případě by se zbylá
barva (C) vyskytla ve třech řádcích aspoň třikrát. Nyní už
je vidět (obr. 22), že takové tři trojice nelze umístit, aniž
by vznikl požadovaný pravoúhelník.

7 možností, jak umístit další

C Cc

c c c

Obr. 22

Pokud jsou v každém řádku i sloupci právě čtyři pole
každé barvy, můžeme předpokládat, že barvou A jsou obar-
vena např. první čtyři pole prvého řádku. Kdyby v každém
řádku prvých čtyř sloupců byla barva A zastoupena nejvýše
jednou, dostaneme 4 + П polí barvy A, což odporuje tomu,
že v čtyřech sloupcích je celkem 16 polí každé barvy. Tím
je tvrzení dokázáno.

5. řešení (podle M. Lukáče, 4. roč. G Bánovce nad
Bebravou). Uvažujme barvu A, kterou je vybarveno aspoň
48 polí dané tabulky, takže existuje řádek, v němž jsou alespoň
čtyři pole této barvy. Je zřejmé, že přehození řádků (resp.
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sloupců) v tabulce nemá na existenci hledaného pravoúhelní-
ku vliv stejně jako výměna řádků za sloupce a naopak. Dej-
me tomu, že v dané tabulce požadovaný pravoúhelník ne-

existuje. V takovém případě v každé její části, v níž je
jeden řádek (resp. sloupec) obarven zvolenou barvou, obsa-
huje každý další řádek (resp. sloupec) už jen jedno pole té-
to barvy.

Kdyby v některém řádku byla právě 4 pole barvy A, v od-
povídajících 4 sloupcích by pak bylo celkem nejvýše 4 + 11 =
= 15 polí této barvy, takže ve zbývajících 8 sloupcích by
bylo aspoň 33 polí barvy A. Pak ale zase některý sloupec
musí obsahovat aspoň 5 polí této barvy.

Pokud obsahuje některý řádek (či sloupec) tabulky právě
5 polí barvy A, je v odpovídajících pěti sloupcích nejvýše
5 + 11 = 16 polí této barvy. Zbylá tabulka 12X7 obsahuje
tedy nejméně 32 polí barvy A (nikoli už v prvním řádku, obr.
23). V některém jejím sloupci proto najdeme aspoň 5 polí této
barvy a v odpovídajících pěti řádcích je pak nejvýše 11 polí bar-

A A A A A
.

A
A

5+6A
A

j 5+11 A
A.A A.A

■

-4-
A + 5

\
T

T
Obr. 23
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vy A. Ve zbylé tabulce 6X7 je tudíž aspoň 21 polí této
barvy, což znamená, že v některém jejím řádku jsou aspoň
4 pole barvy A a v odpovídajících čtyřech sloupcích pak nej-
výše 9 polí této barvy. Protože zbývajících nejméně 12 polí
barvy A nemůže ležet jen v tabulce 6X2 (obr. 23), vidíme,
že v označeném sloupci je aspoň 6 polí zvolené barvy.

Obsahuje-li však některý sloupec (či řádek) aspoň 6 polí
barvy A, dojdeme analogickým postupem (obr. 24) к tabulce

A
A A A A

6+5

I i 11

Obr. 24

2X6, která by musela obsahovat nejméně 11 polí této barvy.
To je zřejmě ve sporu s naším předpokladem, takže hledaný
pravoúhelník vždy existuje.

A - U - 3a

Je dáno zobrazení / intervalu (0, tz) do množiny komplex-
nich čísel takové, že pro každé t e (0, тг) současně platí
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1/(01 > о,

1/(01 4-/(0 (sin г + i COS г) = 0,

1/(0+ 1 [ +|/(0 + 3| = 4.

Vypočtěte obsah trojúhelníku, jehož vrcholy jsou komplexní

čískO, /(y)./(yj-
Řešení. Z první rovnosti plyne, že je

/(0 = 1/(01 (—sin r + i cos 0,

takže

P 17Г TZ

Аз + '2 )'
p2тг 127Г

Аз 2 1 2 7 ‘

Druhá rovnost znamená, že hodnoty funkce / leží na elipse
s ohnisky —3, —1 (komplexní souřadnice) a hlavní polo-

/
osou velikosti 2. Protože pro argumenty a = Arg / I —

7Г

2tt
а / = Arg /1 — 1 obou funkčních hodnot platí

1
tg a = — tg ft = —

Уз ’
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TC v

je ос = — j8 = уте, a protože |/(f)| > O, leží body О,/! у I,
/2т

/(з ve vrcholech rovnostranného trojúhelníku (obr. 25).

Stačí tedy vypočítat jeho výšku |x|, kde/ I — = X + iy3

1У

x y3-

Dosazením do dané rovnice elipsy dostaneme

— (};4x2 + 6x + 3 + ]/4x2 + 18x + 27) = 4,
p

takže po dvojím umocnění postupně vyjde

(8x2 + 24x - 18)2 = 4 (4x2 + 6x + 3)(4x2 + 18x + 27),
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*(13х + 36) — 0.

36
— (víme, že je .r^O a že řešení

existuje), obsah daného trojúhelníku je tedy

Odtud vychází .v = —

432
уз.P =

169

Poznámka. Obecně vyjde

12 sin t

f(0 = 4 (— sin r + i COS ť), t G (0, Ti).
— sin2 t

A - П - 3b

V rovině jsou dány dva různé body Ey F. Pro dané číslo
a 6 (0, тс) určete množinu středů stran BC všech trojúhelníků
ABC ležících v dané rovině, pro které | £ BAC\ = a a body
E3 F jsou patami jejich výšek z vrcholů By C.

Řešení. Předpokládejme, že trojúhelník ABC splňuje
uvedené podmínky. Je А Ф E i А Ф F, protože jinak by
musel být trojúhelník ABC pravoúhlý s pravým úhlem při
vrcholu A, a tedy A = E = F, což nejde. Je tedy j EAF\ =

TZ
= а Ф —. Trojúhelníky БС£, 5C/7 jsou pravoúhlé, takže

podle Thaletovy věty leží body В, С, E, F na kružnici s prů-
měrem BC.

71

Je-ii a < leží pata aspoň jedné z výšek příslušných vrcho-
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lům В, C uvnitř odpovídající strany AC, resp. AB (obr. 26),
takže aspoň jeden z úhlů ECF, EBF je definován a má velí-

TC 7C

kost — — a. Podobně pro a > — leží obě paty výšek vně

stran AB, AC, takže (obr. 27)

E ,F
/

A ■
/

a
Q-'N

в c

Obr. 27

тс

£ = | •£. ECFj = a 2 ‘

V každém případě leží jeden z vrcholů В, C trojúhelníku
ABC na oblouku kružnice s tětivou EF a obvodovým úhlem
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i 7Г

j— — аI, přitom ВС je průměrem této kružnice. Odtud
plyne, že střed strany BC je vždy středem kružnice s teti-

7Z

vou EF a středovým úhlem 2 j —
existují v rovině dvě, jejich středy S, S' jsou souměrně
sdruženy podle osy EF.

7C

Obráceně, pro daný úhel а e (0, n), а ф —, ke každému

z bodů S, S' najdeme trojúhelník ABC požadovaných vlast-
ností: stačí např. vzít průměr BC sestrojené kružnice rovno-

7Г

běžný s EF, přičemž pro а > — orientujeme úsečku BC

Takové kružnice— а .

souhlasně s EF (obr. 28a) a pro а < — opačně (obr. 28b).

Přímky BF a CE se pak protnou v bodě A, pro který zřejmě
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platí, že body E, F jsou patami výšek trojúhelníku ABC
z vrcholů В, C, a |£ BAC\ = |£ ABE\ + |£ BEA\ = a,

resp. | £ i?HC| = — — | £ iiCF| = a.

ÚLOHY III. KOLA

A - III - 1

Daný lichoběžník rozdělte na dva tětivové čtyřúhelníky,
jejichž opsané kružnice mají stejný poloměr. Udejte pod-
minky řešitelnosti.

Řešení. Je-li lichoběžník ABCD rozdělen na dva tětivové
čtyřúhelníky přímkou protínající obě základny, z rovnosti
odpovídajících úhlů vyjde, že ABCD je rovnoběžník.

Předpokládejme tedy, že U, V jsou body na ramenech
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AD, ВС takové, že ABVU, UVCD jsou tětivové čtyřúhelní-
ky (obr. 29). Pak je | * UVC\ = тс - | * UVB\ = | £ UABl.•
Protože obě opsané kružnice mají stejný poloměr, plyne
z rovnosti obvodových úhlů | £ UABj = | £ t/FCj i rovnost
odpovídajících tětiv | UB\ — \ UC\. Ze stejného důvodu je pak
i \AV\ = |DV\. Každý z bodů U, V tedy dostaneme jako
průsečík jednoho ramene s osou protějšího ramene lichoběž-
niku ABCD.

Úloha má řešení, právě když osy obou ramen procházejí
vnitřkem protějšího ramene. V tom případě je podle Tha-
letový věty (obr. 30) čtyřúhelník S1VS2U, resp. UVS2S1

Obr. 30

tětivový, odtud pak snadno plyne, že i čtyřúhelníky ABVU,
UVCD jsou tětivové. Z rovnosti \UB\ = \ UC\ dále plyne,
že obě opsané kružnice mají stejný poloměr.

Označme strany lichoběžníku ABCD tak, aby bylo a > c,
b ^ d. Z kosinové věty pro trojúhelník EBC (obr. 31) dosta-
neme, že lichoběžník lze rozdělit na požadované čtyřúhelní-
ky, právě když a < x = \AX\, kde
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сD, С

Л
/

ь
d

й
2 '

W.

- .J(,.а'а
ВЕА

Obr. 31

(а — с)2 + d2 — Ь2d
cos а = —

2<а - с)2х

Odtud plyne jiná nutná a postačující podmínka existence
hledaného rozdělení

ab2 — cd2 — а(а — c)2 > 0.

(Vzhledem к předpokladu a c, b ^ d je nutně a ^ /5 <
< 7T — a3 takže i bod Č7 leží uvnitř AD.)

Jiné řešení (podle O. Sucha, 1. roč. G Velká Okružná,
Žilina). Je-li lichoběžník ABCD rozdělen příčkou XY
dva tětivové čtyřúhelníky, musí body X, Y ležet na ráme-
nech AD, BC. Označme a, b, c, d strany lichoběžníku ABCD,
x = \AX\ a у = \BY\ (obr. 32).

Pro poloměr r obou opsaných kružnic čtyřúhelníkům
ABYX, XYCD platí

na
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вА а

Obr. 32

\сх\\вх\
у =

«)’2 sin а 2 sin (тг

takže z kosinové věty pro trojúhelníky ABX, XCD dostaneme

]/a2 + x2 — 2ax cos а
2 sin а

Ус2 + (ť/ - x)2 - 2<J x) cos (t: — a)
2 sin (тс — a)

Odtud vyjde velikost

c2 + d2 — a2 -f 2cd cos x
x =

(2c — 2a) cos x + 2d

Podobně z trojúhelníků a FCD dostaneme
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I/а2 + У2 2ajy cos (3
2 sin fi

I/с2 + (6 — у)г 2c(b — у) cos (тс č)
3

2 sin (тс /8)

62 4- c2 — a2 -f 26c cos /?
У = 26 4- (2c — 2a) cos (3

Tím jsou jednoznačně určeny oba body X, Y. Přitom je
vidět, že daný lichoběžník ABCD lze uvedeným způsobem
rozdělit, právě když 0 < x < d, 0 < у < 6.

A - 111 - 2

Dokažte, že rovnice

xyz — pn(x -f у + z),

kde p > 3 je prvočíslo a n liché přirozené číslo, má v oberu
celých kladných čísel aspoň 3(n + 1) různých řešení. (Ře-
šení, která se liší jen pořadím, nepovažujeme za různá.)

Řešení. Nejprve ukážeme, že v každém řešení (x, y, z)
dané rovnice jedno z čísel x, yy z dělí součet ostatních
dvou. Jsou-li x = p'Áx', у — p^y', z = p 'z rozklady čísel
x, y, z na součin mocniny prvočísla p a čísla s p nesouděl-
ného, můžeme vzhledem к symetrii dané rovnice předpoklá-
dat, že a ^ f> 2; у 0. Pak je
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xyz' = pn(p* 7 x' + p,í! vy' 4- z'),

P~Ytakže z' dělí px 7x 4- p

Předpokládejme tedy, že z dělí x -f- y, pak je
У, a tedy i z dělí x 4- y.

(1) x + у = zq, xy = p«(q + 1),

kde q je celé číslo. Pro q — 1 odtud dostaneme я + 1 růz-
ných řešení

(2/»*', рп~{, 2pi + pn~% ie {0, 1, ..n)

a pro q = 2 dostaneme opět n + 1 různých řešení

1

jQp> +P»-0)./e {0, 1. •3pi, p»-J3

Využijeme tento postup i pro jiná q: položme x = г, у =
= s(g 4- 1), přitom musí být q dělitelem čísla x + у = r +
4- s + s?. Pro q = r + s, z — s + 1 tak dostaneme dalších
n + 1 různých řešení

(pk, pn~k(pk + pn~k + 1), pn~k 4- 1), k E {0, 1,

Označme uvedené tři množiny řešení Pi, P-2, P3. Je Pi n
П P2 — 0, neboť pro liché n nemůže být pro i, je {0,1, ..., n }

1
2pi = — (3pí 4- pn~})

neboli
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4 = 3+ pn~í~K

Podobně 2p* — pn~k + 1 může být jen pro i = 0, k = и,
takže je (2, pn, pn -j- 2) e Pi П P3. A P2 П P3 = 0, neboť
pro žádná j, k není

1
— (3pi + p*~i) = />»-* + 1.

Pro liché и jsme tedy našli 3(w + 1)
rovnice. Snadno ale najdeme další řešení. Položíme-li např.
v (1) x = 1, у = pn(q + 1), vyjde x + у — pnq + pn + 1.

1 řešení dané

1
— (pn + 1) a dostaneme řešeníStačí tedy vzít q —

1
l,—pn (pn + 3), pn + 2 j, které neleží v žádné z množin

Pi, P2, P3. Celkem jsme tak nalezli 3(w + 1) různých řešení.
2. řešení (podle J. Hory, 4. roč. G Brno, tř. kpt. Jaroše).

Pro n = 1 a libovolné prvočíslo p ^ 3 najdeme následujících
šest různých řešení dané rovnice

1
1,P + 2> yX/> + 3) I,(15 P + * э PÍP + 2)),

1
1, у (3j> + 1), 3p l (1, 2p + 1, 2p),

11
2, ~ÍP + \),—p{p + 5)1.(2, P + 2, />),
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Jsou-li čísla лго, уо, £о řešením rovnice

xyz = pn(x + у + z),

jsou čísla pxo, pyoy pzQ zřejmě řešením rovnice

xyz — pn 2 (jc + у + г).

Protože pro libovolné přirozené n ^ 3 jsou trojice

(!,/>»+ 1 ,p»(pn + 2)),

(1 ,Pn +P,Ptl-1(pn + P + 1)),

(1 ,pn + p*,pn~3(pn +p3 + 1)),
(2)

1
1 ,PH + 2, — pn(p)l + 3)1,

(1 ,Pn + P2, Pn -(Pn +P2 + 1)),

5)
1 1

2, у (P" + 1), уpKP* + /

řešením dané rovnice, plyne odtud tvrzení úlohy matematic-
kou indukcí: Jak jsme již ukázali, pro n — 1 tvrzení platí.
Má-li daná rovnice pro n = k aspoň 3(k + 1) různých ře-
šení tvaru yi} z{), 1 ^ i^ 3(k + 1), má rovnice pro
n — k + 2 kromě šesti řešení (2) i 3(k + 1) řešení tvaru
(pXi, pyt, pzi), která jsou vesměs různá od řešení (2), nebcť
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všechny prvky každé takové trojice jsou soudělné sp. Celkem
má tedy pro n = k + 2 daná rovnice 3(k + 1) + 6 = 3(k -f- 3)
různých řešení. Tím je důkaz hotov.

3. řešení (upraveno podle I. Vázsonyiové, 4. roč. G mad.,
Komárno). Pro k e (0, 1, položme x = pk:(y 4- z).
Pak bude daná rovnice splněna, právě když

(3) уz — pn~k'(pk -f 1).

Vidíme, že pro každé k najdeme alespoň n — k 4- 1 různých
(neuspořádaných) dvojic (y, z). Máme tedy pro všechna
k e (0, 1, ..., n] a ie {0, 1, ..., n — k} celkem

Cn + 1) (n + 2)2(n k +1) - 2
к = 0

řešení tvaru (pk(p1 + pn * -f рп~1~к), />*’, рпЧс^1(рк + 1)). Та
jsou pro p > 2 vesměs různá, neboť každá taková trojice
obsahuje jedinou mocninu prvočísla p kromě případu, kdy

p = 3, k = 0, i = Dávají-li tedy čísla i, k, resp. ť, k' dvě2 '

stejné trojice, je nutně i = i', pak je ale i k = k', jak se snadno
přesvědčíme.

Našli jsme tak pro libovolné přirozené n a prvočíslo p ^ 3
(■n + 1 )(n + 2)

nejméně různých řešení. Protože pro n ^ 4 je2

(n -f- l)(w + 2)
ž X» + i),2
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stačí najít další 3 řešení pro n — 1 a další 2 řešení pro n = 3
(případně i další 3 řešení pro n = 2, abychom dokázali
tvrzení úlohy pro každé přirozené číslo и).

Pro n — 1 najdeme další tři řešení tvaru

111
2, 2 (P + *)> 2 ^ ^)’l,y(3í + l),3/.|,

1
3,p, у (3 + p) ),

pro w — 2 další tři řešení tvaru

11

2 P(P2 + P + 4), 2, уp(p + 1) I,(3p, 2p, />),

11

yP2(P2 + 5), 2, — (p* + 1)

a pro n = 3 další dvě řešení tvaru

1 1

у P(P3 + P2 + 4), 2, у p\p + 1) ),
11

— Xp2 +5p), 2p3 у p(p + 1) ).

Poznámka. Není těžké se přesvědčit, že tak dostaneme
vesměs různá řešení i pro p = 3, takže jsme tvrzení dokázali
dokonce pro libovolné přirozené číslo n a každé prvočíslo
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/> 3. Výhodou tohoto řešení je, že obecně dostáváme pod-
statně lepší odhad pro počet řešení. Mohli bychom ještě vy-
užít tu skutečnost, že pk -bije sudé, takže v (3) dostaneme
další rozklady tvaru

Pk + 1
2pi .pn-k-i 2 5

n — k) jistě i další řešení. Ко-které dají pro i e {1, 2, ..

nečně spojením s předchozími výsledky se můžete sami po-

* 5

kusit o lepší odhad. S větším počtem řešení bude ale i diskuse
toho, zda jsou různá, složitější.

4. řešení (upraveno podle V. Majerecha, 4. roč. G Pardu-
biče). Položme

x = />*£, у = p% z = pyC,

kde a, fi, у jsou celá nezáporná čísla. Pro přirozená čísla £, r\,
£ tak vyjde rovnice

p" > f-'fijf = p»(p'ě + p"n + prO-

Uvažujme a, fi, у taková, že a -{- (i + у = n. Pro a = ра,
b — p’, c = pv dostaneme rovnici

(4) — a£ + btj + c£.

Nyní každému řešení (£, r/, £) rovnice (4) odpovídá řešení
x = a£, у = brj, z — c£ dané rovnice.
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Najdeme tedy nějaká řešení rovnice (4) v přirozených
číslech. Vezmeme-li f = 1, vyjde

a 4- hj
ij — c

Odtud je vidět, že pro г/ — c + 1 dostaneme celočíselné řešení
(£, r/, £) = (1, c + 1, a + bc + b). Tomu odpovídá řešení
(a, b(c -f 1), c(a 4- bc 4- b)) dané rovnice.

Dále ukážeme, že pro každou uspořádanou trojici (a, /3, y)
takovou, že a 4- /3 4- у = и, dostaneme jiné řešení původní
rovnice. Z čísel a, b(c 4- 1), c(a 4- bc 4- b) je jedině a mocni-
nou prvočísla p, přičemž číslo

P + Y + Р* =a 4- bc 4- b = p* 4- p

p — a + v + p"-’), *Sft= />41 + p

= až ft

může být rovněž mocninou prvočísla p jen pro p = 3, a = /3,
у = 0 (v tom případě je n = 2a sudé). Jsou-li tedy (a, ,(3, y),
(a', /3', y') dvě uspořádané trojice, pro něž a 4- /3 4- у =
= a' 4- /3' 4- y' = n, dostaneme stejné řešení dané rovnice,
jen když a = a (tj. a = a') a navíc b(c + 1) = b'(c' 4- 1),
tedy b = b', c — c', anebo

b(c + 1) = c'(a! 4- b'd 4- b'\
(5)

b'{c 4- 1) = c{a 4- bc 4- b).
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V posledním případě by ale muselo být b — c', b' = c, takže

c(a' + b'c' + b') = b(a + bc + c) ^ b(c + 2) > b(c + 1).

To odporuje předchozí rovnosti (5).
Zbývá tedy zjistit, kolik existuje uspořádaných rozkladů

čísla na tři nezáporné sčítance. To je známá kombinatorická
úloha ekvivalentní tomu, kolika způsoby lze rozdělit n + 3
předmětů v řadě na tři neprázdné skupiny (ke každému sčí-
tanci přidáváme 1, abychom dostali nenulové číslo). To jde

způsoby (vložením dvou přepážek do n -f 2СПprávě

mezer).

Dokázali jsme tudíž, že daná rovnice má alespoň {"V)
řešení. (Pro n sudé a p — 3 bez dalšího rozboru dostaneme

ovšem číslo o 1 menší.) Protože
n T 2

^ 3(n + 1) pro2

n ^ 4, plyne odtud tvrzení úlohy pro všechna lichá n ^ 5
a prvočísla p 3. Zbývající případy w = lan = 3je třeba
opět vyšetřit zvlášť (jak jsme již učinili v předchozím řešení).

I v tomto řešení lze bez velkých obtíží získaný odhad zlepšit,
všimneme-li si, že a + bc je pro liché p sudé číslo, takže rov-

и + bc + 2b
nice (4) má také řešení | = l,^ = c + 2, £ =

Analogicky zjistíme, že kromě případu pn = 3 dostaneme dal-
2

ších |П + 21 řešení původní rovnice. Přitom 2 ^ ^ ^
^ 3(n + 1) pro všechna přirozená n.
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A - lil - 3

Zobrazení/ množiny všech kladných reálných čísel do sebe
splňuje pro každá dvě kladná čísla x, у rovnost

/(*/60) +Ш*)) = 2хУ-

Dokažte, žef(x) = x pro každé kladné x.

Řešení. Pro x = у z dané rovnosti vyjde

(1) /6/60) = *6

což pro x = 1 dává/(/(1)) = 1, a pro x — /(1) pak dostaneme
/(^)2 —/(/O)) = takže /(1) = 1. Pro у = 1 zase z původ-
ního vztahu plyne rovnost

/60 +/(/(*)) = 2x.

Odtud je vidět, že zobrazení/ je prosté.

Položme nyní pro libovolné r kladné x = r/(r), у = —
r

dostaneme tak rovnost

1

1 1

/6/00/ I - +Д7-/0/00) = 2/6),

1
takže podle (1) je/(r) =fyrf(r)f
je pro každé r kladné

I. Protože / je prosté,
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I
(2) = 1.

1
Podobně pro у = — dostaneme dosazením do dané rovnosti

1 1
+/I-/WI = 2,

což podle (2) můžeme psát jako

4®x

f = 2,
/0),

přičemž podle (2) pro libovolné jc kladné současně platí

/(*)x

fí\ = 1.
,/W JC

Soustava rovnic a + /9 = 2, a/? = l má jediné řešení a =

/ 1
= /5=1, plyne tedy odtud /( —/(x)

každé kladné jc.

2. řešení (podle R. Sotáka, 4. roč. G Košice, šmeralova
ul.). Stejně jako v předchozím řešení odvodíme vztah (1),
z kterého pro x = 1 plyne/(1) = 1.

= l,tj. f(x) = x pro

1
Pro libovolné z kladné označme f(z) = a, /I

Z rovnosti (1) pak plyne

= b.
z
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b 1
Kaz) = z\ /1-1 = z2'

b
Dosadíme-li nyní do původní rovnosti x = az, у = —,vyjde

a

/( — ) +f(bz) - 2ab

1
a pro x — —, у = z zase dostaneme

z

a

(3) /(-)+/(**) = 2.

Porovnáním obou získaných rovností vidíme, že aé = 1,
takže jednak pro každé kladné x platí

1
/«/ - = 1

a speciálně je tedy

a z

(4) / 1,
az

jednak můžeme rovnost (3) přepsat jako

(ť) (ť) -(5) / 2.
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Лт)=/=Z obou rovností (4), (5) plyne, že je 1

z

a pro x — — , у — 1 z původní rovnosti dostáváme, že

+/Míi)=
2z

= / 2,

takže a — z. Pro libovolné я kladné je tedy /(0) = z.
3. řešení (podle J. Sochora, 4. roč. G W. Piecka, Praha).

Označíme-li /(1) =* a, plyne z daného vztahu pro x = у = 1
rovnost f(a) = 1 a pro x = у = a dostaneme /(a) = a2, tj.
a2 = 1. Protože/(1) > 0, je/(1) = a = 1.

Pro у — 1а pro libovolné kladné x z původního vztahu
dostaneme rovnost

/(*) +/(/(*)) - 2x,(6)

tj. x je aritmetickým průměrem čísel/(x),/(/(x)),

/00 + /(/(*))
(7) x =

2

Je tedy také

/(/00) +/(/№)))
, /(/(*)) = • •/00 •3 • •

2

Položme/о(х) = x a fn+i(x) = f(fn(x)) pro n ^ 0 celé. Z ná-
zořu je zřejmé (obr. 33), že pro/(x) ф x a & 00 v)rjde
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I s> x
f5M 0 f3lx) f[x) x f{f(x)) fjx)

Obr. 33

fzk±l(x) — со pro f(x) < X,

hM 00 pro f(x) > X.

To odporuje tomu, že oborem hodnot funkce/je podmnožina
kladných reálných čísel, musí tedy být f(x) = x pro každé x.

Dokažme naše heuristické tvrzení podrobněji: Z rovnosti
(7) plyne matematickou indukcí pro každé k ^ O rovnost

fk+i(x) +fk+2(x)
'M = 2

což přepíšeme jako

fk+2O) —fk+i(x) = 2(Jk{x) —fk+i(x)).

Matematickou indukcí odtud dostaneme vztah

fk+z(x) —fk+i(x) = (-2)k+1(f(x) - x),
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takže je také

Л-+2О) —fk(x) = Л0) —fk+i(x) = (—2)*(x -/(*))•

Postupně tak dostaneme rovnosti

M*) = 22Ar_2(x -/(*)) +/a-2(*) = ... =

£-1

4* - 1
—/(*)) = * + —-— (л —/(л)),2 22í’(jc= * +

ř o

f‘Zk+l(x) = 22/.--i(x —/(x)) +fzk-i(x) — ... =

к-1

V 22ž+1(x -/(*)) -

( = 0

2.4* + 1

3 O —/(*))•= x

Je vidět, že pro x < /(x) je fzk(x) < O pro dost velké k a pro
x >/(x) zase/2*+i(x) < 0 pro dostatečně velké k.

4. řešení (podle P. Čížka, 2. roč. G W. Piecka, Praha).
Předpokládejme, že pro nějaké x kladné je /(x) Ф x a uva-

žujme kladnou posloupnost (а„)ф0 definovanou rekurentně

an+1 —f(.an\ Qq — X.
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Stejně jako v předchozím řešení odvodíme rovnost (6), ze
které nyní pro x — ak plyne

Kak) + f(a/c+i) = 2ak,
neboli

<2/f+i + ak+2 — 2ak.

Protože příslušná charakteristická rovnice 22 + X — 2 = 0
má kořeny 2,1 = 1, /2 = —2, vyhovují uvedené diferenční
rovnici právě všechny posloupnosti tvaru

an — a 4- /?(—2)M.

Z počátečních podmínek a0 = x, a\ = /(#) vyjde % + /5 =
a — 2/5 = /(x), takže

2* + /00 * - /00
^0.a =

3

Pro /5 > 0 vyjde ovšem pro lichá я -> oo

an = у. — 2řř/5 = /8 I — — 2» — 00,
(i

pro /5 < 0 zase pro sudá я ^ 00

= (- 7 -2")Ай — tx -)- 2й/5 — 00.

To odporuje tomu, že posloupnost (<zM) je kladná.
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Poznámka. Obě předchozí řešení podstatně využívají toho,
že oborem hodnot funkce / je množina kladných reálných
čísel. Bez tohoto předpokladu bude mít daná funkcionální
rovnice dvě řešení /(x) = x a /(x) = — x.

A- II! -4

Je dáno přirozené číslo n ž 3 a přirozená čísla xi, x2, .

xn taková, že
• •»

O) XI < A*2 < . . . < Xn < 2xi.

Je-li p prvočíslo a r přirozené číslo takové, že pr dělí součin
X1X2 ... xn, pak platí

JC1X2 ... xn
(2) > n\.

Pr

Dokažte.

Řešení. Označme ap(x) tu část rozkladu čísla x na prvo-

činitele, která neobsahuje prvočíslo p. Zřejmě ap(xy) =
x

= ap(x)ap(y). Je-lipr dělitelem čísla x, pak ovšem ap(x) ^

Kdyby nyní existovala i < j tak, že ap(x{) — ap(xj), pak by
bylo Xj pxt ^ 2xt, tedy xn ^ 2xi, což odporuje před-
pokladu. Je tudíž ap(x{) Ф aP(xj) pro i ф j a platí
ap(x1X2... xn) ^ n!. Rovnost ale může nastat jen tehdy, jsou-li
čísla ap(xi) permutací čísel 1, 2, ..., n, a navíc musí být
p > n (p nedělí žádné ap(xj), nemůže tedy dělit ani я!),
takže p ^ 5.

Pr
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Je-li ap(xi) = 1, ap(xj) = 2, tj. x* — p*, xj = 2p‘, pak je
bud s ^ t čili xn ^ 2p' ^ 2ps ^ 2xi, nebo s > í a xw ^
^ As ^ />ř+1 > 4pl ^ 2xi. Oba tyto případy odporují před-
pokladu úlohy a rovnost proto nemůže nastat. Tím je důkaz
hotov.

Jiné řešení. Z nerovnosti (1) především plyne 2xi > xn ^
^ xn-i + 1^ ... ^ xi + я — 1, tedy xi 2řr. n.
Bude stačit, když požadovanou nerovnost dokážeme jen

pro nesoudělná čísla xi, X2, ..., xn (n ^ 3) taková, že
xjpr je celé číslo (pro r ^ 0 platí tvrzení tím

spíš). Je-li totiž d = (xi, X2, ..., Xn) největší společný dělitel
čísel xi, x->,..., xn, d = p*do, kdep^do, pak pro nesoudělná
čísla X- = xjd rovněž platí x, < x2 < ... < xn < 2x, a je

XlX2

P“*dlx\x2 ... xHXj^X‘2 ... X/i x,x2 ... xn
—n aРГ pr Pr

takže pro x,x2 ... xjp
> и!.

Pro nesoudělná čísla dokážeme tvrzení úlohy matematickou
indukcí. Pro n — 2 a (xi, хг) = 1 zřejmě platí

> nl je tím spíš X1X2 ... xjpr >r—noc

X1X2
£ 2! =2,

Pr

protože součin X1X2 obsahuje aspoň dva prvočinitele (je X2 >
> xi ^ 2).

Pro n = 3 je bud xi =3, X2 = 4, хз = 5 < 2xi = 6 a

X1X2X3
^ 12 > 3!,

Pr
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anebo *1 > 3 a

*1*2*3 *;/*/,-
—" ^ 2Ixi ž 2*i > 3!.
P

= *j
Př

Předpokládejme, že tvrzení úlohy platí pro к — 1 ^ 3,
a uvažujme nesoudělná čísla *i, *2, xn splňující naše
předpoklady. Protože některé Xj, 1 S j S n, je nesoudělné
sp, je podle indukčního předpokladu

X±X2 • • • X}i *1 . . . Xj-iXj+l ... Xn
> *1(n — 1)! ^ n!,— Xj

Pr pr

neboť čísla *1, ..., Xj-1, Xj+1, ..., xn rovněž splňují předpo-
klady úlohy. Tím je tvrzení dokázáno.

Poznámka. Snadno zjistíme, že pro n — 2 nastane rovnost,
právě kdyžp = 3, *1 = 2.3s, *2 = 3S+1, s ^ 0, r = 2s + 1.

A - lil - 5

V tabulce 3X11 je na začátku prvního řádku a na konci
druhého řádku napsána nula. Určete nejmenší číslo a, pro
které je možno tabulku vyplnit nezápornými reálnými čísly
tak, aby současně platilo:

a) součet čísel v každém sloupci je 1,
b) součet každých dvou sousedních čísel v 1. i 2. řádku je

nejvýše 1,
c) součet každých dvou sousedních čísel ve 3. řádku je

nejvýše a.
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Řešení. Uvažujme tabulku 3X«, kde n je liché. Z pod-
mínek úlohy plyne, že součet čísel jak v 1., tak i v 2. řádku je

n — 1
nejvýše —-—. Jsou-li ci, сг,.. .,си čísla ve 3. řádku tabulky,

dostaneme ze sloupcových součtů nerovnost

П

n й 2 Ci + n — 1.
i =1

Pro součet čísel ve 3. řádku navíc platí

n —1

2 2 c* — ci + 2 (с* 3" й+i) 4- ^ 2a + (w — l)a —
Í= 1 i = l

= (n + l)a,

takže dohromady je

П

(ti -\~ l)a
Ci ^ — , neboli a ^

2

2i й
n + 1

i=l

Snadno se přesvědčíme, že následující tabulka 3X11 pro
1

vyhovuje podmínkám úlohy:6
a =

0 1—a a 1—2a 2a 1—3a 3a 1—4a 4a 1—5a 5a

1—a a 1—2a 2a 1—3a 3a 1—4a 4a 1—5a 5a 0

0 0 0 0 0a a a a a a
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A - Ml -6

Jsou dán}7 tři rovnoběžné přímky AA', BB', CG, které
neleží v jedné rovině. Je-li U průsečík rovin A BC, AB'C,
ABC a V průsečík rovin AB'C', A'BG, A'B'C, pak je
přímka UV rovnoběžná s AA'. Dokažte.

Řešení. Označme S průsečík přímek B'C, BG (obr. 34).

Potom je Ue AS = ABC n AB'C a VeA'S = A'BG n
n A’B'C. Odtud plyne, že přímka UV leží v rovině AA'S,
která je rovnoběžná s přímkou BB'. To ovšem platí, i když
jsou přímky B'C, BG rovnoběžné: za bod pak vezmeme

takový bod, pro který AS || B'C |[ BG.
Podobně zjistíme, že přímka UV leží i v rovině BB' T | | AA',

kde T je průsečík přímek A'C, AG, resp. bod, pro který
ВТ\\ A'C || AG. Průsečnice rovin AA'S, BB'T je přímka
UV, a protože AA' je rovnoběžná s oběma rovinami, je
rovnoběžná i s jejich průsečnicí.

jiné řešení (podle P. Kolníka, 4. roč. G Nové Město nad
Váhom). Označme Sa, Sb, Sc středy úseček AA', BB’, CG.
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Zavedeme kosoúhlou soustavu souřadnic s počátkem v bodě
SU a s osami jc = AA', у = SaSb, z = SaSc- V této sou-
řádné soustavě jsou dvojice bodů А, А'; В, ВС, C sy-
metrické podle roviny SaSbSc. Proto i dvojice rovin A'BC,
AB'C; AB'C, A'BC' a ABC, А'В'С jsou symetrické po-
dle roviny SaSbSc, a tedy i průsečík U rovin A'BC,
AB'C, ABC' a průsečík V rovin AB'C', A'BC, А'В'С
jsou symetrické podle roviny SaSbSc. To znamená, že přím-
ka UV má směr osy x, tj. UV || AA'.

Poznámka. Obecně uvedené trojice rovin nemusí mít
společný bod, jak je vidět na obr. 35, kde AX — ABC П
n AB'C, CY = A'BC n AB'C a AX CY.

A A'

B'
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Korespondenční seminář ÚV MO

Korespondenční seminář je jednou z forem péče o talento-
vane žáky. Vznikl ve 24. ročníku MO proto, aby bylo možno
věnovat individuální péči i těm žákům, kteří nemají možnost
navštěvovat speciální školy a pracovat v tamních seminářích.
Tyto úkoly však již plní i krajské korespondenční semináře,
které postupně vznikly ve všech krajích. Navíc speciální školy
se zaměřením na matematiku už dávno nejsou výsadou jen
»hlavních měst« Prahy a Bratislavy, ale najdeme je ted v kaž-
dém kraji. Neúčast žáků speciálních škol se tak v poslední době
stala jistým anachronismem. Z toho plynula i poměrně malá
korelace mezi umístěním v korespondenčním semináři a vý-
sledky celostátního kola kategorie A. PÚV MO se proto roz-
hodí zaměřit korespondenční seminář výrazněji na přípravu
reprezentantů pro mezinárodní matematickou olympiádu.

К účasti v korespondenčním semináři jsme tentokrát pc-
zvali všechny špičkové řešitele kategorie A bez ohledu na

jejich školní příslušnost spolu s těmi studenty, kteří nějak
vynikli v krajských kolech kategorie В či C předchozího roč-
niku MO. Vybrali jsme tak téměř 50 studentů, z nichž se

přihlásilo 37 řešitelů ze všech krajů republiky.
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Pha Stč Jč Zč Sč Vč Jm Srn Bva Zsl Ssl VsiKraj

Počet
řešitelů

1 2 2 2 4 7 4 3 6 12 3
'

V průběhu 35. ročníku MO jim bylo postupně zasláno 5 sérií
poměrně náročných úloh. Jednotlivé série tentokrát nebyly
monotematické, naopak jsme se snažili pokrýt celou proble-
matiku olympiádních úloh. Došlá řešení pak byla opravena,
ohodnocena a s rozmnoženým komentářem vrácena účast-
níkům semináře. Všechna kola semináře absolvovalo 12 ře-

šitelů, nej lepšími v celkovém hodnocení byli

1. Ilja Martišovitš, G J. Hronca, Bratislava,
2. Vládán Majerech, G Pardubice,
3. Marian Lukáč, G Bánovce n. Bebravou,
4. Zdeněk Tryner, G J. Fučíka, Plzeň,
5. Stanislav Krajči, G Košice, Šmeralova,
6. Petr Čížek, G W. Piecka, Praha,
7. Ondřej Šuch, G Žilina, Velká Okružná.

O náročnosti zadaných úloh svědčí i to, že pouze prvních pět
řešitelů dosáhlo aspoň 50 % možných bodů.

Korespondenční seminář byl řízen tajemníkem ÚV MO
RNDr. Karlem Horákem, který se staral o výběr a přípravu
úloh a prováděl i redakci komentářů. Opravu pak zajišťovalo
několik pracovníků MÚ ČSAV a několik studentů a aspirantů
MFF UK Praha (všichni jsou bývalí olympionici). Uvádí-
me znění všech zadaných úloh.
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1.1Na povrchu jednotkové koule leží kružnice yo, yi, ..

yn poloměru r (n ^ 3). Kružnice yo se dotýká všech kružnic
уi, y2, ..., yn a rovněž dvojice kružnic y\ a уг, уг а уз, .. ,,yn
a yi se dotýkají. Pro jaká n je to možné? Spočtěte příslušný
poloměr r.

• У

1.2Je dán konvexní čtyřúhelník a čtyři kruhy se středy
v jeho vrcholech takové, že ho celý pokrývají. Dokažte, že
z daných kruhů můžeme vybrat tři tak, že pokrývají troj-
úhelník určený jejich středy.1.3Některé stěny bílého konvexního mnohostěnu jsou
obarveny černě, přičemž žádné dvě černé stěny nemají spo-
léčnou hranu. Dokažte, že mnohostěnu nelze vepsat kulovou
plochu, je-li splněna aspoň jedna z následujících podmínek:

a) černých stěn je více než polovina;
b) obsah černých stěn tvoří více než polovinu povrchu mno-

hoštěnu.1.4Je možné rozložit rovnostranný trojúhelník na milión
konvexních mnohoúhelníků tak, aby jich libovolná přímka
protínala nejvýše čtyřicet ? (Říkáme, že přímka protíná mno-

hoúhelník, jestliže s ním má společný aspoň jeden bod.)1.5Označme s(n) ciferný součet přirozeného čísla n. Pro
jaká přirozená čísla k existuje kladné číslo c& takové, že pro
všechna přirozená N platí

s(kN)
^ ck ?

s(N)
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Pro dané k najděte největší takové c& jnapř. pro k — 8 je

c* = t)-
1.6 Body P, Q se pohybují po dvou rúznoběžných přím-

kách stejnou konstantní rychlostí. Dokažte, že v rovině různo-
běžek existuje bod A, od něhož mají body P, Q vždy stejnou
vzdálenost.

1.7 Dokažte, že čísla 1, 2, ..., n nelze rozdělit na dvě
skupiny tak, aby se součin čísel v jedné skupině rovnal sou-
činu čísel ve druhé skupině.

2.1 V jedné zemi, kde vládne prezident Miraflores, mají
být nové prezidentské volby. V zemi je právě 20 miliónů vo-

ličů, z nichž pouze 1 procento (pravidelná armáda) podpo-
ruje Miraflorese. Miraflores přirozeně chce být opět zvolen,
ale chce také, aby volby proběhly »demokratičký«, tj. všichni
voliči jsou rozděleni do několika stejně velkých skupin, každá
ze skupin je znovu rozdělena na stejně velké skupiny, atd.;
v těch posledních, nejmenších skupinách si její členové zvolí
zástupce, pak si zvolení zástupci zvolí svého zástupce ve větší
skupině, atd. Nakonec zvolení zástupci prvních (největších)
skupin zvolí nového prezidenta. Miraflores sám dělí voliče
do skupin a instruuje své zastánce, jak mají hlasovat. Může
zorganizovat »demokratické volby« tak, aby byl opět zvolen
prezidentem ? (Při rovnosti hlasů vítězí opozice.)
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2.2Dva hráči hrají následující hru: Z hromádky 25 zá-
pálek každý postupně odebere jednu, dvě nebo tři zápalky.
Vyhrává ten, který bude mít nakonec (když hromádku ro-

zeberou) sudý počet zápalek. Kdo vyhraje při správné hře —

začínající hráč, nebo jeho soupeř? Jak má hrát, aby vyhrál?
Jak se změní odpověd, jestliže vítězem bude ten, který získá
lichý počet zápalek?2.3Je dána úsečka AB. Najděte množinu bodů C v ro-

vině takových, že v trojúhelníku ABC je délka těžnice
z vrcholu A rovna výšce z vrcholu B.2.4Ve čtvercové tabulce nXn jsou zapsána nezáporná čísla
tak, že součet čísel v každém řádku a v každém sloupci je 1.
Dokažte, že můžeme v tabulce najít n kladných čísel, z nichž
žádná dvě nejsou v témže sloupci, ani v témže řádku.2.5Dno obdélníkové krabičky je pokryto destičkami roz-
měrů 2X2 a 1X4. Po vysypání destiček se jedna destička
2X2 ztratila. Místo ní se podařilo opatřit destičku 1X4. Je
možno pokrýt opět celé dno krabičky ? j

Řešte analogickou úlohu pro destičky tvaru I |
a destičky 1X3.2.6Dokažte, že v tabulce

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1
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(kde každé číslo je rovno součtu tří čísel v řádku nad ním) je
v každém řádku počínaje třetím aspoň jedno sudé číslo. Ob-
sáhuje každý řádek číslo dělitelné třemi?

2.7 Nechť tři kružnice stejného poloměru procházejí jed-
ním bodem. Pak tři další průsečíky jednotlivých kružnic leží
na kružnici téhož poloměru. Dokažte.

3.1 Na obr. 36 je rovina pokryta čtverci pěti barev. Středy
čtverců téže barvy leží ve vrcholech čtvercové sítě, přičemž
příslušné čtvercové sítě dostaneme vzájemným posunutím.
S jakým počtem barev lze takového pokrytí dosáhnout?

Na obr. 37 je rovina pokryta pravidelnými šestiúhelníky
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sedmi barev tak, že středy šestiúhelníků stejné barvy leží
ve vrcholech previdelné trojúhelníkové sítě. Přitom jednotlivé
sítě dostaneme vzájemným posunutím. S jakým počtem
barev lzetakového pokrytí dosáhnout ?

3.2 Jsou-li b\y• • - ,bn nenulová celá čísla a a\, a2, ..., an

navzájem různá přirozená čísla, která nejsou dělitelná dru-
hou mocninou žádného celého čísla různého od 1, pak

bijai + 62j/a2 + • • • 4- bn\jan ф 0.
Dokažte.

3.3 Je dána kružnice k a přímka p. Označme A patu kol-
mice spuštěné ze středu kružnice k na přímku p. Zvolme
na přímce p dva různé body В, C tak, že \AB\ = \AC|,
a vedme body В a C přímky, které protnou kružnici k v bo-
dech P, <2 a M, N. Předpokládejme, že přímky PM a QN
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protnou přímku p v bodech R, S, pak je \AR\ = |z2S|.-
Dokažte.3.4Nechť pro každé dva body А, В konečné množiny M
bodů v rovině existuje bod CeM takový, že trojúhelník
ABC je rovnostranný. Kolik bodů může obsahovat mno-
žina M ?3.5Zjistěte, kolik řešení má soustava rovnic

x2 + У2 -f xy = a

x2 — y2 = b

pro reálná čísla a, b.3.6Na nekonečném listu čtverečkovaného papíru je n
čtverečků obarveno černě. Dokažte, že existuje konečný počet
čtverců, pro něž současně platí:

a) vybrané čtverce obsahují všechny černé čtverečky,
b) v libovolném z vybraných čtverců zaujímají černé čtve-

1 3
rečky alespoň — a ne více než — obsahu celého čtverce.3.7Rovinný útvar, jehož žádné dva body nemají vzdále-
nost 0,001, je částí jednotkového čtverce. Dokažte, že obsah
tohoto útvaru je nejvýše 0,34. Pokuste se najít přesnější
odhad a dokázat analogické tvrzení v prostoru.
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4.1Na 44 stromech zasázených na hranici kruhu sedí 44
ptáčků zpěváčků (na každém stromě jeden). Čas od času dva
z nich současně přeletí na sousední stromy v opačných smě-
rech (jeden ve směru a druhý proti směru hodinových ruči-
ček). Dokažte, že nikdy nebudou všichni ptáci na stejném
stromě. A je-li stromů i ptáčků n?4.2Jsou dány tři shodné kružnice k\, kz3 ks, které se vzá-
jemně dotýkají, a kružnice k, která je jim opsána. Vedeme-li
bodem M e k tečny ke kružnicím k\, ks, ks, pak je vzdálenost
bodu M od jednoho z bodů dotyku rovna součtu vzdáleností
od druhých dvou. Dokažte.4.3a) Rovinnému úhlu jsou vepsány dvě kružnice, které
mají společnou ještě další tečnu T\Ts (s body dotyku Ti, T2),
která protíná ramena úhlu v bodech A\, A2. Dokažte, že
|-4l7i| = \А%Т2\.

b) Úhlu jsou vepsány dvě kružnice, které se dotýkají jeho
ramen v bodech K\, K2, resp. L\, L2. Dokažte, že přímka
K1L2 vy tíná na obou kružnicích shodné tětivy.4.4Jestliže я-prvková množina E má m různých vlastních
podmnožin takových, že libovolné dva prvky E jsou právě
v jedné z uvedených podmnožin, pak m ^ n. Dokažte.
V jakých případech může být m = я ?

4.5Jestliže
ba c

-0,+ +
a — bb — c c — a

tak
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ba с
= 0.+ +

(b - с)2 О а)2 (а — b)2
Dokažte.

4.6 a) Z 19 kuliček jsou 2 radioaktivní. Jedním měřením
lze zjistit, obsahuje-li zvolený soubor kuliček nějakou radio-
aktivní či nikoli (ale nelze zjistit počet radioaktivních kuli-
ček). Dokažte, že osmi měřeními lze určit obě radioaktivní
kuličky.

b) Z 11 kuliček jsou 2 radioaktivní. Dokažte, že při méně
než 7 měřeních nelze zaručit jejich nalezení.

4.7 Ve všech polích tabulky 100X100 jsou napsány plusy.
Je dovoleno změnit současně všechna znaménka jednoho
sloupce nebo řádku. Je možné po několika takových opera-
cích dostat tabulku s 1 970 minusy ?

5.1 Na nekonečném listu čtverečkovaného papíru je n
čtverečků obarveno černě. Dokažte, že existuje konečný po-
čet disjunktních čtverců s vrcholy v uzlech sítě, pro něž
současně platí:

a) vybrané čtverce obsahují všechny černé čtverečky,
b) v libovolném z vybraných čtverců zaujímají černé

1 4
čtverečky alespoň — a ne více než — obsahu celého čtverce.

5.2 Pro m > 1 přirozené řešte v oboru celých nezáporných
čísel rovnici

x2 — mxy + у2 ~ 1.
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5.3Na kartičkách jsou zapsána čísla 11111, 11112, ..

99 999. Ať seřadíme jednotlivé kartičky jakkoli, 444 445-ciferné
číslo, které tak dostaneme, nebude nikdy mocninou dvojky.
Dokažte.

• У

5.4V trojúhelníku ABC označme V střed kružnice vepsa-
né a M střed strany BC. Označíme-li E průsečík výšky АН
trojúhelníku ABC s přímkou MV, má úsečka AE délku
poloměru kružnice vepsané. Dokažte.5.5V rovině jsou dány tři přímky procházející jedním bo-
dem a další bod A na jedné z nich. Sestrojte trojúhelník
ABC, jehož osy úhlů jsou dané přímky.5.6Dva mudrci hrají následující hru s čísly 0, 1, 2, ..

1 024. První mudrc vyškrtne 512 čísel, druhý dalších 256
čísel, pak zas první vyškrtne dalších 128 a druhý 64 čísel, atd.
Pátým tahem vyškrtne druhý jedno číslo, takže zbudou
právě dvě čísla, a druhý zaplatí prvnímu jejich rozdíl. Jak
má hrát první hráč, aby dostal co nejvíc? A jak druhý, aby
platil co nejméně? Kolik mu zaplatí, budou-li oba hrát co

nejlépe ?

“ У5.7V rovině jsou dány body P, O ležící v téže polorovině
určené přímkou p. Na přímce p najděte bed M, pro který
je vzdálenost pat výšek trojúhelníku POM ke stranám PM
a QM nejmenší.
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28. ročník mezinárodní matematické olympiády

Dvacátá osmá mezinárodní matematická olympiáda (MMO)
se konala ve dnech 5. —16. července 1987 v hlavním městě

Kuby - Havaně. Účast na ní byla rekordní - v soutěži byly
zastoupeny 42 země: Alžírsko, Austrálie, Belgie, Brazílie,
Bulharsko, Československo, ČLR, Finsko, Francie, Írán,
Island, Itálie, Jugoslávie, Kanada, Kolumbie, Kuba, Kuvajt,
Kypr, Lucembursko, Madarsko, Maroko, Mexiko, Mon-
golsko, NDR, Nikaragua, Nizozemí, Norsko, NSR, Panama,
Peru, Polsko, Rakousko, Rumunsko, Řecko, SSSR, špa-
nělsko, Švédsko, Turecko, Uruguay, USA, Velká Británie
a Vietnam. Kromě toho byli na 28. MMO přítomni dva
pozorovatelé, a to z Irska a z Nového Zélandu.

Průběh 28. MMO odpovídal obvyklému standardu. Mezi-
národní porota MMO složená z vedoucích jednotlivých
delegací a předsedy, jímž byl prof. Miguel Jiménez Pozo
z havanské univerzity, pracovala nejprve v přísné izolaci od
soutěžících v Santa Maria del Mar, kde z návrhů zaslaných
zúčastněnými zeměmi vybírala úlohy pro soutěž.

Porota se snažila především sestavit tematicky vyvážený
soubor úloh, který by dostatečně prověřil znalosti a schop-
nosti soutěžících. I když se jí to vcelku podařilo, ukázaly koneč-
né výsledky, že poněkud přecenila obtížnost soutěžních úloh.
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Pro soutěž bylo vybráno těchto šest úloh z návrhů, jež
zaslaly NSR (1 a 3), SSSR (2 a 6), Vietnam (4) a NDR (5).1.Označme pn(k), n ^ 1, k 2: 0, počet permutací / mno-

žiny Sn = {1, 2, ..n} takových, že rovnost f(j) = j platí
pro právě k hodnot j e Sn. Dokažte, že

2kpn(k) = и!.
к - 0

Poznámka. Permutací množiny Sn rozumíme vzájemě jednoznač-
né zobrazení množiny Sn na Sn.2.Osa úhlu BAC ostroúhlého trojúhelníku ABC protíná
stranu BC v bodě L a kružnici opsanou trojúhelníku ABC
v bodě N, N Ф A. Označme К, M paty kolmic spuštěných
z bodu L na strany AB, resp. AC. Dokažte, že čtyřúhelník
AKNM a trojúhelník ABC mají týž obsah.3.Nechť *i, X2, ..., xn jsou reálná čísla taková, že

-Yí + X2 + • • • + xn — ^ •

Dokažte, že pro každé celé číslo k > 1 lze nalézt celá čísla
ai, <22, ..., an taková, že

(i) aj ф 0 pro alespoň jedno /, 1 ^ ^ n,

\aj\ = k — 1 Pro všechna j, 1 j = n,
k - 1

(H)

уИ ■(iii) \a\x\ + a2x2 + . -. + anxn\ й kn — 1
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4.Dokažte, že neexistuje funkce / zobrazující množinu
N0 = {0, 1,2, ... } všech nezáporných celých čísel do N() ta-
ková, že

/(/(«)) = n + 1 987

pro každé n e N(>.5.Dokažte, že pro každé přirozené číslo n ^ 3 lze v rovině
nalézt n bodů tak, aby platilo:
(i) vzdálenost kterýchkoli dvou z nich je iracionální číslo;
(ii) kterékoli tři z nich určují trojúhelník, jehož obsah je

kladné racionální číslo.6.Nechť n je celé číslo, n ^ 2. Dokažte: Jestliže k2 + k + n

je prvočíslo pro každé k, 0 ^ k ^ j w/3, potom je k2 + k + n
prvočíslo pro každé k, 0 ^ k ^ n — 2.

I když obtížnost úloh byla různá, bylo rozhodnuto, jak je
v posledních letech na MMO zvykem, ocenit správné řešení
každé úlohy sedmi body. Každý soutěžící mohl tedy získat
maximálně 42 body; jak se pak ukázalo, 22 žákům se to sku-
tečně podařilo.

Práce v mezinárodní porotě spojené s výběrem, formulací
a překlady soutěžních úloh probíhaly bez větších problémů
a byly v náležitém termínu ukončeny. Mezitím se již v Ha-
vaně shromáždili soutěžící. Ti byli po celou dobu MMO
ubytováni v internátě Leninova institutu (Institute Preuni-
versitario Vocacionaí en Ciencias Exactas V. I. Lenin) na
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okraji Havany. Zde také ve dnech 10. a 11. července proběhla
vlastní soutěž včetně slavnostního zahájení (10. července
dopoledne), jehož se zúčastnil mj. též kubánský ministr
školství J. R. Fernández.

Mezinárodní porota, která 10. července odpoledne pře-
sídlila do Havany, sem pak dojížděla к práci na opravě
a koordinaci hodnocení žákovských řešení. Koordinace byla
dobře připravena a proběhla poměrně rychle; uplatňovaná
kritéria nebyla příliš přísná. Na závěrečném zasedání dne
13. července mohla tak porota již schválit definitivní výsledky
soutěže a rozhodnout o rozdělení cen: na 28. MMO bylo
uděleno 22 prvních cen (pouze za maximální bodový zisk -

42 bodů), 42 druhých cen (za výkony ohodnocené 32—41 bo-
dy) a 56 třetích cen (za 18—31 bodů). Z celkového počtu
237 soutěžících tak bylo oceněno 120, tj. přibližně polovina
(50,63 %). Speciální ceny nebyly tentokráte uděleny žádné.

Celkové výsledky jednotlivých delegací jsou patrny z při-
pojené tabulky 1.

Slavnostní zakončení 28. MMO se konalo dopoledne
15. července v sále budovy kubánských ozbrojených sil, opět
za účasti kubánského ministra školství. Vystoupil zde také
zástupce Austrálie prof. P. J. O'Halloran, který pozval
všechny přítomné delegace na 29. MMO, která se má konat
v červenci 1988 v Canbeře. Slavnost byla doplněna vystou-
pěním skupiny populární hudby.

Vedle odborného programu měli soutěžící žáci dostatek
příležitostí využít volných chvil jak к rekreaci a sportu
(přímo v areálu institutu), tak i к seznámení se s pamětihod-
nostmi Havany. Dne 14. července se pak mohli zúčastnit
hromadného autobusového výletu na Playa Girón.

140



Všichni účastníci 28. MMO se sešli dne 13. července na

recepci, kterou pro ně uspořádal kubánský ministr školství
J. R. Fernández.

Při stále rostoucím počtu účastníků je úkol organizovat
MMO velmi náročný. Je třeba konstatovat, že se ho kubánští
pořadatelé zhostili úspěšně a že se 28. MMO bezesporu řadí
mezi zdařilé mezinárodní akce.

Československá účast

na 28. MMO

Na 28. MMO vyslalo Československo delegaci ve složení:

vedoucí delegace: RNDr. František Zítek, CSc., MÚ ČSAV,
Praha, předseda ÚV MO

zástupce
vedoucího: RNDr. Tomáš Hecht, CSc., MFF UK,

Bratislava, člen PÚV MO
Robert Babilon, 4 M, GMK, Bílovec
Petr Čížek, 2 M, GWP, Praha
Pavol Gvozdjak, 2 M, GAM, Bratislava
Vládán Majerech, 4 MF, G, Pardubice
Marcel Polakovič, 4 M, GAM, Bratislava
Roman So ták, 4 M, G, Košice

soutěžící žáci:

Dále byla na 28. MMO přítomna také RNDr. Júlia Lukátšo-
vá z ministerstva školství SSR jako pozorovatelka.

Účast delegace silně poznamenaly nepříjemné problémy
s dopravou na Kubu. Namísto původně plánovaného společ-
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ného cdletu v sobotu 4. července cestovala naše delegace ve
třech skupinách 4., 6. a 9. července. Tak se také stalo, že dva
naši soutěžící, M. Polakovič a R. Soták, dorazili do Havany
teprve v časných ranních hodinách v pátek 10. července,
tedy v první soutěžní den. Je jenom přirozené, že se tato
skutečnost nepříznivě projevila na jejich výkonu v soutěži.

Výsledky našich žáků na 28. MMO jsou shrnuty v ta-
bulce 2. Jak je z ní vidět, měli největší potíže se šestou úlo-
hou, kterou nikdo z nich správně nevyřešil. Šestá úloha byla
také skutečně nejtěžší úlohou 28. MMO a úspěch při jejím
řešení rozhodoval o umístění na předních pozicích.

I přes zmíněné dopravní komplikace a neúspěch u šesté
úlohy je celkový výsledek československé reprezentace na
28. MMO pozitivní. Všichni naši žáci získali ceny a v neofi-
ciálním pořadí družstev podle součtu bodů jsme zaujali de-
váté místo.

Tabulka 5

Celkové výsledky 28. MMO

Počet

Země
I. cen II. cen III. cenžáků bodů

Alžírsko
Austrálie
Belgie
Brazilie
Bulharsko

í Československo
ČLR
Finsko

j Francie

29 0 0 06
143 3 06 0

06 74 0 1
116 0 26 1

3 2210 16
192 4 26 0
200 2 226

69 0 0 26
154 3 26 0
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Tabulka 5 - pokračování

Počet

Země
bodůžáků I. cen II. cen III. cen

Írán
Island
Itálie

Jugoslávie
Kanada
Kolumbie
Kuba
Kuvajt
Kypr
Lucembursko
Maďarsko
Maroko
Mexiko
Mongolsko
NDR

Nikaragua
Nizozemí
Norsko
NSR
Panama
Peru
Polsko
Rakousko
Rumunsko
Řecko
SSSR
Španělsko
Švédsko
Turecko
Uruguav
USA
Velká Británie
Vietnam

706 0 0 1
454 0 0 0
354 0 I0

132 36 0 1
139 1 16 1
686 0 0 1
83 0 26 0
28 00 06

6 42 00 0
27 01 0 1

6 218 0 5 1
88 36 0 0

5 17 0 00
676 0 0 0

231 26 3 1
136 0 0 0

146 0 46 1
6 69 00 0
6 248 2 04

06 7 0 0
41 06 0 0

2553 0 0
6 150 30 2
6 250 5 1 0
6 111 40 0
6 235 3 3 0
6 91 30 0

134 2 26 0
94 26 00
274 0 00

6 220 32 1
6 182 2 21
6 172 50 1

56
(42) 237 22 42

(120)
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Tabulka 6

Výsledky čs. žáků na 28. MMO

Počet bodů

CenaJméno
za úlohu

1 2 3 4 5 6
celkem

Babi Ion
Čížek
Gvozdjak
Majerech
Polákovič
Soták

II.7 3 7 7 7 1
7 7 7 7 7 0
7 7 7 7 7 3
7 7 7 7 7 2
7 0 0 7 7 0
7 3 0 7 7 5

32
II.35
II.38
II.37

III.21
III.29

Celkem 19242 27 28 42 42 11
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Řešení úloh 28. MMO

1. Všech permutací / množiny S,ř je n\, v každé z nich je
určitý počet k (k = 0, 1,2,..., я) prvků j, pro něž platí

(1) /(;) =/,

odtud plyne rovnost

(2) IPn(k) = ni.
lc = 0

Z я-prvkové množiny S„ lze k prvků vybrat právě způ-

soby; platí-li pro těchto k vybraných prvků (1) a pro ostatní
n — k pak /(/) Ф j, dostaneme permutaci / započtenou
v pn(k). Máme tak rovnost

- Q Pn-t(0)(3) Pn(k)

platnou pro všechna n ^ 1, k ^ 0.
Jestliže je k > 0, pak

*0 "(::»•
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takže vidíme, že v důsledku (3) a (2) je

2 kpn(k)=2 kp„(k)=2 kÍ^\
к О /.• 1 к 1

Рп-к(0) =

п — 1

= п 2 рп-к(0) = п ^Рп-l(k) п(п — 1)! = nl,
к = 0к -- I

což jsme měli dokázat.
Poznámka. Rovnost

(4) kpn(k) = npn-i(k — 1)

se dá odvodit i bez použití (3) přímou kombinatorickou
úvahou:

Vybereme si některou z pn(k) permutací /správě k prvky/
splňujícími (1) a potom si z těchto k prvků zvlášť vyznačíme
jeden (což lze učinit k způsoby); celkem máme k.p„(k)
možností volby. Ke stejnému výsledku však dospějeme,
jestliže nejprve vybereme jeden prvek jo z množiny S/ř
(tento výběr lze provést n způsoby) a potom určíme permu-
taci / tak, že položíme /(/o) = jo, kdežto pro ostatních n — 1
prvků je Sn definujeme / tak, aby právě k — 1 z nich spino-
válo (1). Takovýchto permutací množiny Snj {/o} je ovšem
Pn-i(k — 1), celkem tedy máme npn-i(k — 1) možností. Tím
je rovnost (4) dokázána.

Jiné řešení úlohy 1 využívá známého vzorce

2(-^-pn(0) = n\
i o
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Máme pak podle (3)

n кnn

(-1)*2^kP,(k)=2^kínÁ(n-ky.y í!
к 0 i 0jfc=0

n n — к
1k + i— 1

(k +1-1)!i
*■=--1 i = 0

n — 1

n\.

i 0o

2. Poněvadž trojúhelník ABC je ostroúhlý, leží střed 5
kružnice jemu opsané uvnitř něho. Bez újmy na obecnosti
můžeme předpokládat, že je |AB\ ^ \AC\, takže také
! < BAS\ fž | £ CAS\, a tedy

* BAS| = I* BAL\ < SAL
a

|+ CAS\ = |+ BAL\ + I* SAL\.

Poněvadž KL _]_ AB a KM J_ /ÍL a |/CL| = jLAÍJ, je
| <£ MKL\ = | + S/lLj a obsah trojúhelníku ABC se dá
vyjádřit ve tvaru

\AB\ + | AC
KLI

2
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Poněvadž KM J_ AN, je obsah čtyřúhelníku AKNM
1

roven _ AN' . KM . Platí
2

-\KL\ (-■- \AB\ + — \AC\
= \KL\. И5! (cos i £ БЛ£| + cos | * CAS\) =

= |Л5|. \KL\ 2 cos 1 £ BAL| .cos | SAL\ =

1
= \AN\.\KL\ cos |£ AfKL| = у |i4N|.|.KAÍ|;

trojúhelník ABC a čtyřúhelník AKNM mají tedy skutečně
týž obsah.

jiné řešení druhé úlohy využívá Ptolemaiovy věty, po-
dle níž v tětivovém čtyřúhelníku ABNC platí

AB . CN + \AC\.\BN\ = \AN\.\BC\.(I)

Z rovnosti |< BAN\ = i£ CAN| plyne \BN\ = \CN\, ale
také | ■£ CBN| = | BANV rovnoramenném trojúhelníku
BCN tedy platí

BC = 2.\BN\.cos I* BANj.

Dosazením do (1) dostáváme

\AB\ + \AC\ = 2 HiV| cos |* BAN\
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a odtud pro obsah Si trojúhelníku ABC

1
Si = у(|/Ш| 4- \AC\).\AL\ sin |* BAN| =

= \AL\.\AN\ sin I4: BAN|.cos |* BAN|.

Obdobně pro obsah 62 čtyřúhelníku AKNM je

1
S, = У (|ЛЛГ| 4- \AM\) \AN\ sin li: BAN\ =

— \AL\ cos |i: BAN\.\AN\ sin | i; BANj-

oba obsahy jsou si tedy rovny.

3. Je zřejmé, že úlohu stačí vyřešit pro případ nezáporných
čísel xi, X2, ..., xn, neboť při záporném Xj platí

j—tП П

2 amxm — 2 O-mxm 4" ( &]) |#/| 4" 2
m—j-h 1m — 1 m = 1

V dalším tedy předpokládáme xw ^ 0 pro všechna m =

1,2, ..., w.
Pro každou w-tici nezáporných celých čísel ai, aa, ..an

vyhovující podmínkám (i) a (ii) platí

11 П

v i) 2o ^ amxm ~ (k
m = 1 »! = 1
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Počet všech takovýchto и-tic je kn — 1, proto nutně existují
dvě z nich - označme je a,, a2, ..an а a]', a'2, . .., an - tak,
že

«
„ k

2 amxm —0 < 2 V

k" -1 „2»*=i\m

Položíme-Ii pak am — a'm — am (m = 1, 2, ..и), bude
и-tice celých čísel a*, a*2, ..a* vyhovovat podmínkám (i),
(ii) i (iii), neboť podle Cauchj^ovy nerovnosti je

iíV5
\ m -

2 xi = Vn.2 xm d
m -1

4. Předpokládejme, že taková funkce / existuje; z tohoto
předpokladu odvodíme spor.

Pro funkci/ zřejmě platí

(1) f(x + 1 987) =/(/№))) =/0) + 1 987,

odtud dále indukcí snadno dokážeme platnost rovnosti

f(x + k. 1 987) = f(x) + k. 1 987(2)

pro všechna jc g N0, k e N0. Funkce / je tedy jednoznačně
určena svými hodnotami na množině M — (0, 1,2, ..., 1 986}.

Na množině M definujeme novou funkci g takto: pro
jc g M vyjádříme/(jc) ve tvaru

f(x) =y+p. 1 987,(3)

kde у e M, p g N0, a pak položíme £(jc) = y.
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Poněvadž podle (2) je

* + 1987 =/(/(*)) =f(y+p. 1987) =/0) +P.1987,

je nutně

f(y) = x+(l — р)Л 987 e N0,(4)

tzn. že v (3) je vždy 0 ^ p ^ 1. Ze (4) pak vyplývá £(jy) = x;

je tedy g involuce na M:

g(g(*)) — X

pro každé xeM.
Poněvadž počet prvků množiny M je lichý, totiž 1 987,

musí existovat xo £ M, pro které je g(xo) = xo- To však podle
definice funkce g znamená, že je bud f(xo) = xo, anebo
f(xo) = xo + 1 987. V prvém případě je pak

x0 + 1 987 =/(/(xo)) =/(x0). = x0,

ve druhém případě je

xo + 1 987 =f(f(x0)) =/(xo + 1 987) = x0 + 3 974.

V obou případech jsme dospěli ke sporu - funkce/ požadc-
váných vlastností tedy nemůže existovat.

5. V rovině zavedeme kartézskou soustavu souřadnic a pro
dané přirozené číslo n ^ 3 v ní vezmeme body В], Д>, ..., Bn
o souřadnicích
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Bi = [j,ř], / = 1, 2, ..., n.

Potom je vzdálenost dvou bodů Bj,Bk(\ j < k ti)
rovna

K* -/)2 + (*2 -z2)2 = (* -/) l'(* +/)2 +1.

Poněvadž k + j ^ 3, je (& + j + l)2 > (£ 4 /)2 -f 1 > (k -f

4- /)2, takže číslo ]/(& 4 /)2 4- 1 je nutně iracionální (odmoc-
nina z přirozeného čísla je bud celé číslo, anebo iracionální).

Obsah S trojúhelníku s vrcholy Bj, Bk, Bm (1 < k <
< m ^ n) lze vyjádřit známým vzorcem

1
5 =

2

kde

]' У2 1
k 1

m m2 1
Д =

což je jistě racionální číslo.
Množina bodů i?i, ..., Bn tedy vyhovuje podmínkám

úlohy.
Poznámka. Racionalita obsahu trojúhelníku s vrcholy

v bodech s celočíselnými souřadnicemi vyplývá rovněž ze
známé Pickovy formule.

6. Nechť n je libovolné avšak pevně dané přirozené číslo;
pro k — 0, 1, 2, ... pak položme

(1) f(k) = № + k 4 n.
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Označme m nejmenší nezáporné celé číslo takové, že f(m)
není prvočíslo. Poněvadž /(0) = n, je m — 0, není-li n samo

prvočíslo. Poněvadž f(n — 1) — n2, což není nikdy prvo-

číslo, je zřejmě m ^ n — 1. Máme nyní dokázat, že není
možné, aby platilo

IV
/m = n(2) - 2.

Pro n = 1 je toto tvrzení zřejmé, neboť pak

n — 2 — — l<0 = m.

Při и ^ 2 je f(m) nutně číslo složené; označíme p nejmenší
prvočinitel čísla f(m), takže f(m) = pq, kde q je celé číslo,
Я^Р-

Z definice (1) vyplývá, že

(3) f(k) =f(k + rp) (mod p)

pro každé celé nezáporné r, k.
Dokážeme si nejprve, že nemůže být p ^ m. Měli bychom

totiž

0 ^ m — p ^ m — 2 < m

a podle definice čísla m by f(tn — p) bylo prvočíslo. Podle (3)
však zároveň

f(tn — p) = f(m) ss 0 (mod p),
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což je možné jen tehdy, jestliže f(m — p) = p. Avšak potom

by bylo

m p — f(m — p) — (m — p)2 + (rn — p) -f- n ^ n,

což není možné.

Předpokládejme tedy, že platí m < p ^ 2w. Potom je
0 ^ p — m — 1 ^ ш — 1 a podle definice čísla m je
/(/> — m — 1) prvočíslo. Zároveň je

pq =f(m) =f(p - m 1) + (2m —p + 1>,

takže prvočíslo f(p — m

znamená, že f(p — m — 1) = p. Je tedy
1) je dělitelné prvočíslem p, což

p = (p — m l)2 + p — m — 1 + n,

takže

m — (n — 1) + (p — m — l)2 ^ и — 1

a (2) neplatí. Je dokonce m = n — l a p = n.

Zbývá ještě vyšetřit případ, kdy 2m < p. Zde však máme
m2 + m + n — f(m) — pq ^ p2 ^ (2m — l)2 =

— 4WÍ2 _(_ 4W _)_

a tedy
я ^ 3w2 + Зт + 1 > 3m2,

takže (2) opět neplatí.
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Ukázali jsme tedy, že (2) neplatí v žádném případě, a to
pro kterékoli přirozené n.

Poznámka. Z elementární číselné teorie je znám mnoho¬
člen

x2 -f x + 41,

který pro x — 0, 1, ..., 39 nabývá vesměs prvočíselných
hodnot. Podobných mnohočlenů existuje zřejmě více; naše
úloha naznačuje, že při vhodně zvoleném p (např. /> = 17,
41, 107, ...) nabývá mnohočlen x2 -f x + p prvočíselné
hodnoty až pro p — 1 po sobě jdoucích celých hodnot
x(x = 0, 1, 2).
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Kategorie P

Ve 36. ročníku matematické olympiády se již podruhé
soutěžilo také v kategorii P (programování). Tato kategorie
je určena všem žákům středních škol bez rozdílu věku,
úlohy zde zadávané jsou zaměřené na tvorbu a analýzu algo-
ritmů. Oproti loňskému ročníku zájem o kategorii P značně
vzrostl. Zatímco ve 35. ročníku MO se do soutěže zapojilo
asi 250 studentů, o rok později jich řešilo úlohy domácího
kola více než 400.

Soutěž je organizována tříkolově, soutěží se v domácím,
krajském a celostátním kole. Řešení úloh domácího kola
museli soutěžící odevzdat do 5. 2. 1987. Úspěšní řešitelé byli
pozváni do krajského kola, které se konalo ve středu 8. 4. 1987.
Padesát nejlepších účastníků krajského kola se sešlo ve dnech
14. —17. 5. 1987 v Praze na celostátním kole MO katego-
rie P, jehož pořadatelem byl KV MO Praha.

Po odborné stránce je kategorie P matematické olympiády
zajišťována odbornými centry na vysokých školách - na
MFF UK Praha, PřF UJEP Brno a MFF UK Bratislava.
Pracovníci těchto center opravovali řešení úloh ve všech
třech kolech soutěže, podíleli se na přípravě studentů na

soutěž, na zabezpečení krajských kol i kola celostátního.
Odborným garantem kategorie P 36. ročníku matematické
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olympiády bylo centrum na katedře kybernetiky a informatiky
MFF UK Praha, ze kterého také pocházejí zadání všech úloh.

Tabulka 7

Počty žáků soutěžících v kategorii P 36. ročníku MO

Kolo

domácíKraj krajské celostátní

S U s s ии

' Praha

j Středočeský
1 Jihočeský
; Západočeský
| Severočeský
| Východočeský

J ihomoravský
Severomoravský
Bratislava

! Západoslovenský
Středoslovenský
Východoslovenský

756 42 42 24 8
25 3 110 9 3

1326 13 3 3 1
6 0 0 00 o

1

21 38 8 3 1
3 i32 15 13 36
324 17 15 | 7 4

35 28- 20 214 6
30 12 653 31 16

32 14 2 2 i14 2
43 23 23 3 1 1

2 I61 34 34 9 5

CSR ! 225 i 133 j 120 ! 60
i 189 ! 102 101 ! 30

18
11

30
SSR 20

ČSSR 90 ! 50 í 29414 i 235 i 221
■

S — počet všech soutěžících
U — počet úspěšných řešitelů
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VÝSLEDKY CELOSTÁTNÍHO KOLA ЛЮ

KATEGORIE P

Vítězové

1. Pavel Kozlovský, 3., G Jindřichův Hradec
2. Vládán Majerech, 4., G Pardubice
3. Branislav Stríženec, 3., G J. Hronca, Bratislava
4. Vladimír Veselý, 4., G J. Hronca, Bratislava
5. Peter Klein, 4., G A. Markuša, Bratislava
6. Pavol Kolník, 4., G Nové Město nad Váhom
8. Rudolf Burel, 4., G Trnava

Rastislav Senderák, 4., G Prešov
12. Ilja Martišovitš, 2., G J. Hronca, Bratislava

Marcel Polakovič, 4., G A. Markuša, Bratislava
Vladimír Solničky, 3., G Opava
Petr Steinmetz, 4., G Brno, Koněvova ul.

7.

9.

Další úspěšní řešitelé

14. Petr Brož, 2., G W. Piecka, Praha
Robert Hetka, 4., G Benešov

18. Tibor Bartoš, 3., G A. Markuša, Bratislava
Petr Čížek, 2., G W. Piecka, Praha
Lucie Kárná, 4., G W. Piecka, Praha
Petr Alandík, 4., G Děčín

13.

15.
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19. Radek Porazil, 3., G Bílovec
20.—22. Václav Bohdanecký, 2., G W. Piecka, Praha

Arnošt Kobylka, 2., G W. Piecka, Praha
Jan Sochor, 4., G W. Piecka, Praha

23.—29. Michal Dostál, 4., G W. Piecka, Praha
Petr Penci, 4., G Pardubice
Jiří Jaruška, 4., G Pardubice
Pavel Kafka, 4., G Třebíč
Richard Krajčoviech, 4., G Považská Bystrica
Rado Mráz, 3., G Spišská Nová Ves
Marek Velešik, 2., G Brno, Koněvova ul.
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POŘADÍ ÚSPĚŠNÝCH ŘEŠITELŮ
KRAJSKÉHO KOLA MO KATEGORIE P

V seznamu je uvedeno nejvýše prvních deset úspěšných
řešitelů z každého kraje. Typ školy není uváděn, všichni jsou
studenty gymnázia.

Praha

Michal Dostály A., W. Piecka, Praha 2, Jan Sochor, 4., W. Piec-
ka, Praha 2, Arnošt Kobylka, 2., W. Piecka, Praha 2, Filip
Pejša, 4., Voděradská, Praha 10, Petr Čížek, 2., W. Piecka
Praha 2, Petr Brož, 2., W. Piecka, Praha 2, Václav Bohdá-
necky, 2., W. Piecka, Praha 2, Lucie Kárná, 4., W. Piecka,
Praha 2, Michal Kopecký, 4., W. Piecka, Praha 2, Jan Dvo-
řák, 3., Sladkovského nám., Praha 3.

Středočeský kraj

Petr Vyhňák, 3., Mladá Boleslav, Robert Hetka, 4., Benešov,
Vladimír Šolc, 1., Beroun.

Jihočeský kraj

Pavel Kozlovský, 3., Jindřichův Hradec, Martin Zítek, 4.,
Milevsko, Jakub Čermák, 1., Jírovcova, České Budějovice.
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Severočeský kraj

Dan Lukeš, 2., Partyzánská, Liberec, Petr Mandík, 4., Děčín,
Jiří Martinek, 3., Ústí nad Labem.

Východočeský kraj

Jiří Jaruška, 4., Pardubice, Vládán Majerech, 4., Pardubice,
Petr Penci, 4., Pardubice, Petr Kousal, 3., Tylovo náb., Hra-
dec Králové, Petr Krákora, 3., Trutnov, Radko Martínek,
3.,Jičín.

Severomoravský kraj

Radek Porazil, 3., Bílovec, David Jedelský, 3., Ostrava-Hra-
bůvka, Vladimír Solničky, 3., Opava, Jan Hřebíček, 4., Va-
lašské Meziříčí, Michal Heřmanský, 4., Valašské Meziříčí,
Tomáš Látal, 3., Olomouc-Hejčín, Radek Vingrálek, 4.,
Olomouc, David Šindler, 2., Bílovec, Marek Hiibner, 3.,
Karviná, Antonín Dvořák, 3., Přerov.

Jihomoravský kraj

Pavel Kafka, 4., Třebíč, Petr Steinmetz, 4., Koněvova, Brno’
Miloslav Hledík, 3., Ivančice, Marek Velešík, 2., Koněvova’
Emo, Jan Dvořák, 4., Moravské Budějovice, Radek Švenda’
2., Uherský Brod, Zdeněk Vonský, 2., Ivančice, Robert Maar}
4., Ždár nad Sázavou, Miroslav Minárik, 4., Jihlava, Petr
Kolenčík, I., Koněvova, Brno.

Bratislava

Vladimír Veselý, 4., J. Hronca, Novohradská, Bratislava,
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Branislav Striženec, 3., J. Hronca, Bratislava, Ilja Martišo-
vitš, 2., J. Hronca, Bratislava, Stanislav Párnický, 4., A. Mar-
kuša, Červenej armády, Bratislava, Tibor Bartoš, 3., A. Mar-
kuša, Bratislava, Miroslav Šrol, 3., J. Hronca, Bratislava,
Anton Belan, 4., A. Markuša, Bratislava, Martin Bujdák,3.,A. Markuša, Bratislava, Marcel Polakovič, 4., A. Marku-
ša, Bratislava, René Pázman, 2., J. Hronca, Bratislava.

Západoslovenský kraj

Pavol Kolník, 4., Nové Město nad Váhom, Rudolf Burel,
4.,Trnava.

Středoslovenský kraj

Richard Krajčoviech, 4., Považská Bystrica, Silvia Badáková,4.,Prievidza, Jozef Gomela, 3., Prievidza.

Východoslovenský kraj

Mário Drosc, 4., Michalovce, Rado Mráz, 3., Spišská Nová
Ves, Roman Soták, 4., šmeralova, Košice, Martin Lieskov-
ský, 4., Prešov, Rastislav Senderák, 4., Prešov, Peter Fekete,
4., Michalovce, Zdeno Kálnássy, 3., Prešov, Robert Mráz,
3., Poprad, Ladislav Šteffko, 4., Šrobárova, Košice.
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ÚLOHY DOMÁCÍHO KOLA

P - I - 1

Konečnou posloupnost čísel nazveme symetrickou, jestliže
se nezmění, když zapíšeme její prvky v obráceném pořadí.
Nalezněte a dokažte (co nejlepší) algoritmus, který pro libo-
volnou konečnou posloupnost čísel určí délku jejího nejdel-
šího souvislého úseku, který je symetrickou posloupností.

Př.: Pro posloupnost 3, 1, 2, 3, 2, 1, 4, 2, 1 je tato délka 5
(úsek 1, 2, 3, 2, 1).

Řešení. Počet čísel v zadané konečné posloupnosti ozna-
číme N. Rychlý algoritmus vykoná při prohledávání posloup-
nosti délky N řádově N2 operací. Většina řešitelů nalezla
některý z dalších správných algoritmů, ovšem se složitostí N3.

Symetrická pcdposloupnost maximální délky může obsa-
hcvat bud lichý, nebo sudý počet čísel. Podle toho je jejím
středem bud některý z prvků zadané posloupnosti, nebo pozice
mezi sousedními prvky. Budeme postupně vyšetřovat všech
2N — 1 míst (N prvků, N — 1 mezer mezi nimi), kde může
ležet střed maximální symetrické podposloupnosti. Pro každé
z těchto míst určíme délku maximálního symetrického úseku
se středem v tomto místě. Toto určení je snadné: porovnáváme
postupně od zvoleného středu směrem к oběma okrajům
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posloupnosti dvojice čísel tak dlouho, dokud jsou porovnávaná
čísla shodná nebo dokud nenarazíme na okraj posloupnosti.
Pro každý ze zvolených středů se vykoná maximálně N/2
porovnání. Výsledkem algoritmu je maximum z délek, které
jsme získali pro jednotlivé středy symetrické podposloupnosti.

Algoritmus zapíšeme v programovacím jazyce Pascal. Bu-
deme předpokládat, že proměnná N obsahuje délku posloup-
nosti a že v poli A jsou jako prvky A[ 1], ..., A[N] uloženy
prvky posloupnosti. Dále předpokládáme deklaraci celo-
číselných proměnných I a MAX. Proměnná I je pomocná,
výsledná délka bude uložena v proměnné MAX.

procedure TEST (J, K: integer);
var OKRAJ: Boolean;

DÉLKA: integer;
begin

OKRAJ := false;
while (A[J] = A[K]) and not OKRAJ do

begin
(zde vždy platí: úsek A[J],..., A[K] je symetrický}
J := J - 1;K := К + 1;
if (J = 0) or (К = N + 1) then OKRAJ := true
end; (zde platí: úsek A[J + 1],..., A[K — 1] je
symetrický, ale již ho nelze prodloužit}

DÉLKA := К — J — 1;
if DÉLKA > MAX then MAX := DÉLKA

end;
begin

if N = 0 then MAX : = 0

else if N = 1 then MAX : = 1
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else

begin
MAX := 0;
for I := 1 to N — 1 do

begin TEST (I, I); [lichá délka}
TEST (I, I + 1) [sudá délka}

end

end

end

Uvedený algoritmus je možné ještě dále vylepšovat, ale
zrychlení výpočtu již nebude příliš významné a zápis algorit-
mu se stane složitějším. Je možné například vybírat středy
pcdposloupností od středu celé posloupnosti souběžně smě-
rem к oběma okrajům a výpočet ukončit již ve chvíli, kdy
momentální hodnota proměnné MAX dosáhne dvojnásobku
vzdálenosti právě uvažovaného středu podposloupnosti od
okraje posloupnosti (neboť dále už není možné hodnotu pro-
měnné MAX zlepšit).

Důkaz správnosti algoritmu vyplývá přímo z jeho popisu.
Výpočet podle algoritmu je konečný, neboť algoritmus je
tvořen pouze cykly s pevně omezeným počtem opakování
(for-cyklus v hlavním programu se provede přesně AT—1 krát,
while-cyklus v proceduře TEST se vykoná vzhledem к ome-
zení délky posloupnosti hodnotou N maximálně N/2krát).
Zadaná posloupnost jistě obsahuje nějakou maximální sy-
metrickou pcdposlcupnost. Má-li tato pcdposloupncst li-
chý počet členů a jejím středem je prvek zl[5], bude nalezena
při 5-tém průchodu for-cyklem (pro I = S) při vyvolání
TEST(I, /). Má-li sudý počet členů a její střed leží mezi
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prvky /1[5] a zl[5 + 1], bude nalezena při 5-tém průchodu
for-cyklem při vyvolání procedury TEST (/, I + 1). Do
proměnné MAX se ukládá maximum z délek všech naleze-
ných symetrických podposloupností, které již nelze prodlou-
žit. Také nejdelší z nich bude jednou nalezena a v proměnné
MAX proto zůstane na závěr algoritmu její délka.

P - I -2

Sjednocení konečné množiny uzavřených intervalů na reál-
né přímce je množina, která je složena z konečného počtu
disjunktních souvislých úseků, z nichž každý je opět uzavřený
interval.

Nalezněte a dokažte (co nejlepší) algoritmus, který pro libo-
volnou konečnou množinu uzavřených intervalů zjistí počet
disjunktních souvislých úseků jejich sjednocení (tj. skutečný
počet intervalů). Intervaly jsou zadány výčtem dvojic čísel,
které v daném pořadí určují jejich dolní a horní mez.

Řešení. Označme posloupnost dolních mezí D a horních
mezí H, obě mají délku N. К řešení úlohy lze užít několika
odlišných algoritmů. Základem těch nejlepších je vhodné
setřídění zadaných intervalů. К tomu je třeba provést řádově
NAogzN operací (to je časová složitost nejlepších třídících
algoritmů). Tímto výrazem je pak určena i efektivita celého
algoritmu, neboť po setřídění stačí jednou sekvenčně projít
všechny intervaly a při. tomto průchodu provést příslušné
výpočty.

Algoritmus řešení popíšeme slovně:
1. Pokud N = 1, polož POČET = 1 a jdi na 8.
2. Setřid zadané intervaly vzestupně podle hodnoty dolní
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meze. Má-li více intervalů stejnou dolní mez, na jejich
pořadí nezáleží. Po setřídění tedy bude platit: D[l] ^
^ D[2] ^ ... ^ D[N]. Pozn.: třídíme nejen dolní meze,
ale celé intervaly, tzn. souběžně se změnami pořadí v po-

sloupnosti D přemísťujeme i hodnoty horních mezí v po-

sloupnosti H.
3. Polož POČET = 1, HORMEZ = H[l], I = 2.
4. Jestliže D[I] > HORMEZ, zvětši POČET o 1.
5. Jestliže H[I] > HORMEZ, polož HORMEZ = tf[/].
6. Zvětši I o 1.

7. Jestliže I ^ N, jdi na 4.
8. Výsledný počet souvislých disjunktních intervalů je v pro-

měnné POČET. Konec.

Algoritmus zvlášť řeší případ jediného intervalu na vstupu -
- bod 1. Je-li na vstupu více intervalů, provede jejich setřídění
podle hodnot dolních mezí - bod 2. Třídící algoritmus uvede-
me na konci řešení. Potom postupně prochází všechny inter-
vály. Dokud intervaly patří do jednoho souvislého úseku,
pouze aktualizuje horní mez jejich sjednocení (proměnná
HORMEZ) - bod 5. Jakmile má některý interval prázdný
průnik s intervaly zpracovávaného úseku, algoritmus zare-

gistruje ukončený souvislý úsek (proměnná POČET) a začne
vytvářet další - bod 4.

Zbývá podat zdůvodnění správnosti algoritmu. Algoritmus
jistě skončí výpočet po konečně mnoha krocích, neboť setři-
dění N intervalů je konečný proces a v cyklu (body algoritmu
4 až 7) roste při každém průchodu hodnota proměnné I od 2
do N, takže průchodů bude méně než N.

Je-li zadán jediný interval (N = 1), bude mít proměnná
POČET správnou hodnotu 1 z bodu 1. Tvoří-li všechny za-
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dané intervaly jediný souvislý úsek, bude mít proměnná
POČET hodnotu 1 z bodu 3. Hodnota proměnné POČET se

zvětšuje o 1 pouze v bodu 4, a to přesně tehdy, když zpraco-

vávaný /-tý interval má dolní mez větší, než je maximum
horních mezí všech předchozích intervalů (uložené v pro-
měnné HORMEZ). Vzhledem к vzestupnému setřídění dol-
nich mezí intervalů platí nerovnosti

HORMEZ < £>[/] ^ D[I + 1] ^ ... ^ D[N)

čili také všechny následující intervaly mají dolní mez větší,
než je hodnota HORMEZ. Proto /-tým intervalem skutečně
začíná další souvislý úsek.

Na závěr se vraťme к problému třídění. Máme za úkol
uspořádat N čísel vzestupně podle velikosti. Třídících aígc-
ritmů existuje celá řada. Nejrychlejší z nich vyžadují prove-
dění řádově N .log-? N porovnání. Ukážeme si jeden z ta-
kových třídících algoritmů. Chceme setřídit čísla Z)[l], D[2],
..., D[N] uložená v poli D. Rozdělíme pole D do dvou úseků
Z)[l], . ..,D[(N + 1)div2ja D[(N -}- 1) div 2 + 1], ...,D[N].
Oba úseky mají délku stejnou nebo lišící se jen o 1. Každý
z těchto úseků zvlášť setřídíme rekurzívním vyvoláním téhož
třídícího algoritmu. Ze setříděných úseků pak již snadno vy-
tvoříme jedinou uspořádanou posloupnost všech čísel. Do
výsledné posloupnosti vždy zařadíme to z prvních čísel v úse-
cích, které je menší. Toto číslo zároveň vynecháme z jeho
úseku. Postup opakujeme, dokud do posloupnosti není zařa-
zeno všech N čísel.

Popsaný algoritmus zapíšeme v Pascalu ve tvaru rekurzívní
procedury SORT. Pro utřídění celého pole D bude tato

168



procedura volána s parametry SORT(1, N). Dále předpo-
kládáme, že je deklarováno pomocné globální pole A stejného
typu jako je pole D.

procedure SORT (J, K: integer);
var P, I, II, 12: integer;
begin

if J < К then
begin
P : = (J + K) div 2;
SORT (J, P);
SORT (P + 1, K);
I := J;
II := J; 12 : = P + 1;

while I < = К do
if D[I1] < D[I2] then

begin
A[I] := D[II];
I := 1 + I; И := II + 1;
if II > P then

while I < = К do

begin
A[I] := D[ 12j;
I := I + 1; 12 := 12 + 1;
end

end

else

begin
A[I] := D[ 12];
I := I + 1; 12 := 12 + 1;
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if 12 > К then
while I < = К do

begin
A[I] := D[I1];
I := I + 1; II := II + 1
end

end;
for I := J to К do D[I] := A[I]
end

end;

Procedura SORT je rekurzívně volána vždy k setřídění úseku
přibližně poloviční délky. Začínáme-li od pole délky N, zna-
mená to, že rekurze se bude provádět do hloubky asi log2 N.
Na každé úrovni hloubky rekurze vyžaduje spojení setřídě-
ných úseků čísel do úseků dvojnásobné délky nejvýše N po-
rovnání čísel. Celkem je tedy k setřídění N čísel uvedeným
algoritmem zapotřebí řádově N.log2 N porovnání.

P- I -3

Je dán Euklidův algoritmus pro výpočet největšího spo-
léčného dělitele celých čísel A a B, kde A > В > 0.

BASIC

10 IF В = 0 THEN 60

20 LET C = A MOD В
30 LET A = В
40 LET В = C
50 GOTO 10
60 LET NSD = A

PASCAL

while B<>0 do

begin C := A mod B;
A := B;
В := C

end;
NSD := A
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Operace A MOD В znamená zbytek po celočíselném dělení
čísla A číslem B. Dokažte, že počet opakování cyklu v algo-
ritmu je vždy menší než 2.1og2 A.

Řešení. Mezi správnými řešeními této úlohy se objevily
v podstatě dva základní postupy. My si zde ukážeme názor-
nější a jednodušší z nich, který je založen na úvahách o zrně-
nách hodnoty proměnné A v průběhu výpočtu. Druhý postup
řešení vychází ze srovnání posloupnosti hodnot proměnné A
během výpočtu s Fibonacciho posloupností a dále Fibonacciho
posloupnosti s posloupností (2H/2).

Nejprve dokážeme pomocné tvrzení: Jestliže А, В jsou
libovolná přirozená čísla, A > В > 0, potom A mod В < A/2.
Důkaz provedeme rozborem případů:
a) В > A/2 ... pak A mod В = A — В < A — A/2 — А/2,
b) В = A/2 ... pak A mod В — 0 a z předpokladu A > 0

plyne výsledek A mod В < А/2,
c) В < А/2 ... vždy platí A mod В < В, tedy pro В < А/2

přímo vyplývá výsledek.

Nyní již můžeme přikročit к důkazu tvrzení ze zadání úlo-
hy. Nebudeme zde zabíhat do formálních podrobností a těch-
nických detailů, zaměříme se jen na hlavní myšlenky důkazu.
Na základě našeho pomocného tvrzení je možné snadno uká-
zat, že vždy po dvou průchodech cyklem v Euklidově algo-
ritmu se hodnota proměnné A zmenší na méně než polovinu
své původní hodnoty. Proměnná A totiž po dvou průchodech
cyklem nabude hodnoty A mod В, která je podle pomocného
tvrzení vždy menší než A/2. Kdyby se hodnota proměnné A
zmenšovala po dvou průchodech cyklem vždy jen na polo-
vinu až do hodnoty 1 (tj. na začátku by bylo A tvaru A = 2k
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a pak vždy po dvou průchodech 2k~1, 2k~2, ..1), bylo by
těchto dvojic průchodů cyklem třeba vykonat k = loga A.
Celkem by se tedy vykonalo 2.loga A průchodů cyklem. Ve
skutečnosti se hodnota proměnné A zmenšuje rychleji vzhle-
dem к ostré nerovnosti A mod В < A/2. Navíc výpočet ne-
musí končit až při A = 1, může i dříve. Proto se při celém
výpočtu provede celkem méně než 2 .loga A průchodů cyklem.

P - I -4

Zapište ve zjednodušeném jazyce LISP definice následu-
jících funkcí:
a) MEMBER [X;S]

S musí být seznam
hodnotou funkce je T, jestliže výraz X je prvkem sezná-
mu S, jinak je hodnotou F

b) DELETE [X;S]
S musí být seznam
hcdnctou funkce je seznam, který vznikne vypuštěním
prvku X ze seznamu S (vypouští se pouze první výskyt);
není-li X prvkem seznamu S, je hcdnctou funkce pú-
vodní seznam S.

Při řešení můžete nejprve definovat jednodušší pomocné
funkce a s jejich využitím pak funkce hlavní.

Poznámka. V každém kole obdrželi soutěžící shodný krátký
studijní text o zjednodušené verzi programovacího jazyka
LISP. Tento text nyní uvádíme v plném znění. U úloh
P-II-4 a P-III-4 zde v ročence studijní text již neopakujeme.
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Zjednodušený LISP

Definujeme zjednodušenou verzi programovacího jazyka
LISP. Data v tomto jazyce mají tvar tzv. symbolických výra-
zů. Nej jednoduššími výrazy jsou atomy, které jsou dvou typů:
číselné a nečíselné. Zápis číselných atomů je stejný jako zápis
celých čísel, např. —125, +3, 10. Nečíselné atomy jsou
shodné s identifikátory.

Složitější symbolické výrazy nazýváme seznamy. Seznam
může být prázdný nebo neprázdný. Neprázdný seznam je
tvořen jedním nebo více prvky, uzavřenými v okrouhlých zá-
vorkách. Přitom záleží na pořadí prvků a stejný prvek se může
v seznamu vyskytovat několikrát. Každý prvek seznamu je
sám výrazem, bud je to atom, nebo opět seznam. Prázdný
seznam neobsahuje žádný prvek a zapisuje se znaky ( ).

Příklady seznamů:
O prázdný seznam

seznam obsahující jediný prvek - atom X
tříprvkový seznam tvořený atomy X, Y a Z

(X)
(X Y Z)
((X) (Y Z)) dvouprvkový seznam tvořený dvěma prvky,

z nichž první je jednoprvkový seznam obsahující
atom X, a druhý je dvouprvkový seznam tvoře-
ný atomy Y a Z

Pro zpracovávání symbolických výrazů je v jazyce LISP
zavedeno několik elementárních funkcí:

S musí být neprázdný seznam, hodnotou funk-
ce je první prvek seznamu S
S musí být neprázdný seznam, hodnotou funk-

CAR[S]

CDR[S]
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ce je seznam, který vznikne z S vynecháním
prvního prvku

CONS[R;S j S musí být seznam (neprázdný nebo i prázdný);
hodnotou CONS[R;S] je nově vytvořený se-

znám, jehož prvním prvkem je výraz R a všech-
ny další prvky vzniknou překopírováním všech
prvků seznamu S
R, S musí být atomy; jsou-li atomy R a S
identické, je hodnotou funkce atom T (true),
jinak je hodnotou atom F (false)
hodnotou je T, je-li S atom, jinak je hodnotou F
argumentem funkce musí být seznam; hodno-
tou funkce je T, když seznam je prázdný, jinak
je hodnotou F

EQ[R;S]

ATOM[S]
NULL[S]

Příklady:
CAR[(A В C)] = A
CDR[(A В С)] = (В C)
CONS[A;(B С)] = (А В C)
CONS[(A В); (C D)] = ((А В) C D)
EQ[1;2] = F
EQ[X;0] = T, jestliže X = 0, F jinak
ATOM[(A)j - F
CONS[A;( )] = (A)
CAR[(A)j = A
CDR[(A)] = ( )

Z elementárních funkcí lze složit užitím podmíněného vý-
rázu a definice funkce složitější funkce. Podmíněný výraz
zapisujeme ve tvaru
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[PI -» El; P2 E2; ...; Pn EnJ,

kde PI, P2, ..Pn jsou symbolické výrazy, které mají vý-
znám podmínek a které smějí nabývat pouze hodnot T a F.

Tyto podmínky jsou vyhodnocovány postupně zleva do-
prava tak dlouho, dokud se nenarazí na první podmínku,
která má hodnotu T. Nechť je to Pk. Pak hodnotou podmí-
něného výrazu je hodnota Ek. To může být atom, seznam,

podmíněný výraz nebo volání funkce. Aby měl podmíněný
výraz smysl, musí aspoň jeden z výrazů Pk nabývat hodnoty T.
К zajištění tohoto požadavku bývá zvykem na místě poslední
podmínky Pn psát přímo atom T.

Novou funkci zadefinujeme tak, že napíšeme:

NÁZEV [SEZNAM PARAMETRŮ] = VÝRAZ

Parametry v seznamu oddělujeme středníky. Výraz v definici
musí být podmíněný výraz nebo volání funkce. V definicích
funkcí lze libovolně užívat rekurzívního volání funkcí. Je to
obrat velmi častý a u řady funkcí nezbytný. Znamená to, že
v definici funkce můžeme použít libovolné elementární i slo-
žitější definované funkce včetně té, kterou právě definujeme,
jak to ukazuje i následující příklad.

Př.: Chceme definovat funkci EQUAL[X;Y] takovou,
že její hodnotou je T, jsou-li X a Y stejné symbolické výrazy,
jinak je hodnotou F.

Definice:

EQUAL[X;Y] = [ATOM[X] -> [ATOM[Y] -> EQ[X;Y];
T —>F];

ATOM[Y] -» F;
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NULL[X] -> NULL[Y];
NULL[Y] -> F;
EQUAL[CAR[X]; CAR[Y]] ->

EQUAL[CDR[X]; CDR[Y]];
T^F]

Význam jednotlivých částí definice funkce je následující:
1. Je-li X atom, pak rozlišujeme dva případy. Je-li také Y

atom, pak výsledek závisí na tom, zda jsou si rovny, jinak
(není-li Y atom) je hodnota F.

2. Jestliže nenastal případ 1 (není-li X atom) a přitom Y je
atom, je výsledek F.

3. Víme již, že X a Y jsou seznamy. Je-li první seznam prázd-
ný, tak výsledek závisí na tom, je-li prázdný i druhý seznam.

4. Jestliže nenastal případ 3 a druhý seznam je prázdný, pak
je výsledkem F (první seznam byl neprázdný).

5. Víme již, že X a Y jsou neprázdné seznamy. Porovnáme
jejich první prvky a jestliže se rovnají, je nutno porovnat
i zbytky seznamů. (V obou případech využíváme rekurzív-
ního volání právě definované funkce. Jejími argumenty
jsou však kratší seznamy.)

6. Poslední případ může nastat jedině tehdy, když se první
členy seznamů X a Y nerovnají, takže výsledkem je F.

Řešení soutěžní úlohy P - I - 4. V řešení úlohy budeme
využívat pomocnou funkci EQUAL [X;Y]. Její hodnotou je
atom T, jsou-li X a Y stejné symbolické výrazy, jinak je
hodnotou F. Popis této funkce je uveden jako příklad ve

studijním textu, proto ho zde neopakujeme.
a) Definujeme funkci MEMBER[X;S]; předpokládáme, že

S je seznam:

176



MEMBER[X;S] = [NULL[S] -> F;
EQUAL[X;CAR[S]] -> T;
T -> MEMBER[X;CDR[S]]]

1. Je-li S prázdný seznam, neobsahuje žádný prvek, tedy
ani X. Hodnotou funkce MEMBER je proto F.

2. Pokud se výraz X rovná prvnímu prvku seznamu S, pak X
je v S obsažen a hodnotou funkce je T.

3. V opačném případě budeme zkoumat, jestli se X nachází
ve zbytku S po vynechání prvního prvku. Funkce MEM-
BER je rekurzívně volána na kratší seznam.

b) Definujeme funkci DELETE[X;S], předpokládáme, že
S je seznam:

DELETE[X;S] = [NULL[S] -> S;
EQUAL[X;CAR[S]] -> CDR[S];
T -> CONS[CAR[S];

DELETE[X;CDR[S]]]]

1. Je-li S prázdný seznam, jistě X neobsahuje a hodnotou
funkce je opět prázdný seznam.

2. Jestliže se výraz X rovná prvnímu prvku seznamu S, vy-

pustíme ho. Hodnotou funkce DELETE pak bude zby-
tek seznamu S bez prvního prvku.

3. V opačném případě bude hodnotou funkce seznam, který
vznikne spojením prvního prvku původního seznamu S
a zbytku seznamu S s vypuštěným prvním výskytem vý-
rázu X. Vypuštění prvního výskytu X ze zbytku S do-
sáhneme rekurzívním voláním funkce DELETE na zkrá-

cený seznam CDR[S].
Jestliže výraz X nebude v seznamu S vůbec obsažen, bude
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hodnotou funkce seznam totožný s původním seznamem S.
(Nikdy se neuplatní příkaz na 2. řádku v definici funkce.)

Existuje i celá řada zcela odlišných správných řešení úlohy.
Většinou jsou ale podstatně složitější na zápis i z hlediska
rychlosti výpočtu, často jsou také složitější na pochopení. Ne-
můžeme je zde všechny rozepisovat, ale uvedeme ještě alespoň
základní myšlenku, jak je také možné zapsat funkci DELETE.
Můžeme využít tří pomocných funkcí následujících vlast-
ností. První pomocná funkce na základě parametrů S a X
vytvoří seznam, který vznikne jako část seznamu S od prvního
prvku až do prvního výskytu výrazu X (již bez výrazu X)
nebo až do konce, pokud se X v S nevyskytuje. Druhá po-
mocná funkce naopak z S vypustí tento počáteční úsek až do
prvního výskytu X a vypustí ještě i samotný prvek X (pokud
se v S vyskytuje). Jestliže se výraz X v seznamu S nevysky-
tuje, bude výsledkem této pomocné funkce prázdný seznam.
Konečně třetí pomocná funkce provádí spojení dvou sezná-
mů za sebe. Příklad takové funkce najdeme v řešení úlohy
P-III-4. V definici funkce DELETE je pak volána tato
třetí pomocná funkce tak, že za její parametry jsou dosazeny
seznamy vzniklé výpočtem prvních dvou pomocných funkcí
(s hodnotami parametrů X a S).
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ÚLOHY KRAJSKÉHO KOLA

P-II-1

Nalezněte a dokažte (co nejlepší) algoritmus, který pro li-
bovolnou konečnou posloupnost čísel nalezne maximální К
tak, že existuje nějaká posloupnost délky К, která se v zadané
posloupnosti vyskytuje alespoň na dvou různých místech
jako souvislý úsek. Tyto úseky se mohou částečně překrývat.

Př.: Pro posloupnost 6, 2, 3, 2, 3, 2, 3, 1, 7 je К = 4.
(Dvakrát se opakuje posloupnost 2, 3, 2, 3.)

Řešení. Úlohu je možné řešit více různými algoritmy.
Jednoduchý algoritmus (s časovou složitostí N3) jistě na-

padne každého. Stačí brát postupně všechny dvojice čísel
v posloupnosti a pro každou takovou dvojici zjišťovat, jak
dlouhé shodné úseky těmito zvolenými čísly začínají. Ze všech
takto nalezených délek se vezme maximum - a to je hledané
číslo K.

Předvedeme zde jiný algoritmus, jehož zápis a popis je
o trochu složitější. Z hlediska efektivity je to ale lepší algo-
ritmus, má časovou složitost úměrnou N2. Základní myš-
lenka algoritmu je následující. Předpokládejme, že zadanou
posloupnost čísel máme uloženou v poli z2[l..N]. Budeme
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postupně měnit vzdálenost (tj. rozdíl indexů v poli A) mezi
porovnávanými prvky, a to v cyklu od 1 do N — 1. Pro každou
takovou pevnou vzdálenost projdeme celou posloupnost po-
mocí dvou souběžně zvětšovaných indexů. Při tomto prů-
chodu stále počítáme délky souvislých shodných úseků. Ma-
ximum z takto získaných délek se ukládá do proměnné К
a je výsledkem úlohy.

Algoritmus zapíšeme v programovacím jazyce Pascal.
U obou příkazů while-cyklu jsou v komentářích uvedeny pod-
minky, kterými je možné výpočet ještě mírně zrychlit. Tyto
podmínky využívají již získanou hodnotu K.

begin
К := 0; VZDAL := 1;
while VZDAL < N do {zde je možné drobné vylepšení:

VZDAL < N - K)
begin
I := 1; РОС := 0;
while I < = N — VZDAL do {zde je možné drobné

vylepšení: I < = N —

VZDAL - К + РОС}
begin
if A[I] - A[I + VZDAL] then

begin
РОС : = РОС + 1; {zde-vždy platí: úseky délky

РОС začínající prvky A[I]
a A[I + VZDAL] jsou
shodné}

if РОС > К then К := РОС
end
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else РОС := 0;
I := I + 1

end;
VZDAL := VZDAL + 1
end

end

Popsaný algoritmus jistě skončí výpočet po konečně mnoha
krocích. V těle vnitřního cyklu je zvyšována řídicí proměnná /
a bez ohledu na průběh výpočtu se vzhledem к podmínce
v příkazu while bude tento cyklus opakovat nejvýše AT-krát.
Obdobně ve vnějším cyklu se zvyšuje hodnota proměnné
VZDAL, tělo vnějšího cyklu se bude provádět méně než
ЛГ-krát. Počet průchodů jednotlivými příkazy programu je
tedy předem omezen.

Hodnota proměnné К je měněna vždy v okamžiku, když
algoritmus najde dvojí výskyt souvislého úseku délky větší
než K. Na závěr výpočtu tedy v К bude skutečně délka nej-
delšího souvislého úseku, který byl nalezen s dvojím výsky-
tem v dané posloupnosti. Zbývá ukázat, že algoritmus při
svém výpočtu skutečně najde dvojí výskyt pcdposloupnosti
maximální délky, jaká se v dané posloupnosti nachází. To ale
je patrné přímo z popisu algoritmu. Oba tyto výskyty musí
být vůči sobě posunuty o jistý počet prvků a proměnná
VZDAL této hodnoty při výpočtu jednou nabude (nabývá
všech hodnot od 1 do N 1). Pro tuto hodnotu VZDAL se

pak ve vnitřním cyklu shcdné úseky maximální délky jistě
naleznou (prochází se v něm celá posloupnost).
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P- II -2

Nalezněte a dokažte (co nejlepší) algoritmus, který pro libo-
volnou konečnou množinu uzavřených intervalů na reálné
přímce nalezne číslo, které patří do maximálního počtu zada-
ných intervalů, a určí tento počet. Intervaly jsou zadány vý-
čtem svých dolních a horních mezí.

Řešení. Stejně jako u ostatních úloh na návrh algoritmu
existuje celá řada různých řešení. Nejefektivnější z nich jsou
založeny, podobně jako v úloze P - I - 2, na vhodném setřídění
vstupních dat a mají proto časovou složitost úměrnou N.logoN

složitost nejlepších třídicích algoritmů). Je možné na-
vrhnout jednoduché algoritmy bez třídění, ovšem s časovou
složitostí přinejlepším úměrnou N2. Stačí například brát
postupně horní (nebo dolní) meze všech intervalů, každé
z těchto N čísel testovat do kolika ze zadaných intervalů
patří, a z takto získaných hodnot vzít maximum. My si zde
ukážeme rychlejší algoritmus.

Algoritmus řešení této úlohy zapíšeme slovně:
1. Setřid vzestupně všech 2N čísel ze vstupu, dolní i horní

meze intervalů dohromady (kde N je počet zadaných inter-
valů). Přitom si u každého čísla pamatuj, zda jde o horní
nebo o dolní mez nějakého intervalu. Není třeba pamatovat
si, která horní mez patří ke které dolní mezi intervalu.
Opakuje-li se nějaká hodnota mezi zadanými 2N čísly
vícekrát, budou v setříděné posloupnosti dolní meze umístě-
ny před horními.

2. Setříděnou posloupnost 2N čísel postupně procházej od
nejmenších к největším číslům. Přitom v proměnné
POČET eviduj počet právě otevřených intervalů. Maxi-

(
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mální dosaženou hodnotu proměnné POČET udržuj v pro-
měnné MAX. Vždy současně se zvětšením hodnoty pro-
měnné MAX aktualizuj hodnotu proměnné CISLO, ve
které se udržuje jedno z čísel patřících do maximálního
počtu intervalů.

3. Po ukončení výpočtu jsou požadované výsledné hodnoty
v proměnných CISLO a MAX.

Bod 1 představuje některý ze standardních třídicích algo-
ritmů, bod 3 je triviální. Rozepíšeme proto podrobněji již
jen bod 2. Budeme dále předpokládat, že hodnoty mezí jsou
po setřídění uloženy v poli M[ 1. .2N].
2.1. Polož POČET = 0, MAX = 0,1= 1.
2.2. Jestliže M[I] je dolní mez, polož POČET = POČET +

-f 1 a jdi na 2.6.
2.3. Jestliže POČET ^ MAX, jdi na 2.5.
2.4. Polož MAX = POČET, CISLO = M[I]
2.5. Polož POČET = POČET - 1.

2.6. Polož 7=7 + 1.
2.7. Jestliže 7 ^ 2N, jdi na 2.2.

Algoritmus skončí výpočet po konečně mnoha krocích,
neboť intervalů je konečně mnoho, třídicí algoritmus je ко-
nečný a dále se už jen sekvenčně procházejí všechny meze
všech intervalů. Průchod setříděnou posloupností 2N čísel
v bodu 2 popsaného algoritmu vlastně představuje projití
celé číselné osy s vyznačenými intervaly. V proměnné POČET
je přitom stále uložen údaj, do kolika ze zadaných intervalů
patří ten bod číselné osy, ve kterém se právě nacházíme. Ke
změnám tohoto údaje může dojít jedině v počátečních a kon-
cových bodech intervalů, stačí proto průchod provádět pouze
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přes tyto body. Proměnná MAX nabývá největší hodnoty,
jakou proměnná POČET při průchodu získala (MAX se

testuje a případně zvyšuje pokaždé, kdy se má snížit hodnota
proměnné POČET). Zároveň se zvýšením hodnoty proměnné
MAX se dosazuje nová hodnota do proměnné CISLO, takže
po ukončení výpočtu obsahuje dvojice proměnných CISLO
a MAX správné výsledky podle zadání úlohy.

Je třeba zmínit se ještě o situaci, že dolní mez nějakého
intervalu Д je rovna horní mezi jiného intervalu /2. Podle
zadání se jedná o uzavřené intervaly, takže h a /2 mají spo-

léčný bod a při průchodu přes tento jejich společný bod je
třeba zvýšit hodnotu proměnné POČET (a hned ji zase sní-
žit, ale mezitím to může ovlivnit hodnotu proměnných MAX
a CISLO). Toto je zajištěno uspořádáním zadaných 2N čísel
podle bodu 1 algoritmu - dolní meze jsou umístěny před
herními mezemi téže hodnoty.

P - li - 3

Je dán následující úsek programu se vstupními celočísel-
nými proměnnými X a Y. Zjistěte, jaká hodnota bude po

provedení algoritmu v proměnné Z, a svoje tvrzení dokažte.

PASCAL: Z := 1;
while Y > 0 do

begin
if Y mod 2 = 1 then Z := Z*X;
Y := Y div 2;
X := X*X

end
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BASIC: 10 LET Z = 1
20 IF Y < = 0 THEN 70
30 IF Y MOD 2 = 1 THEN LET Z = Z * X
40 LET Y = Y DIV 2
50 LET X = X * X
60 GO TO 20
70 REM KONEC

Operace A DIV В znamená celočíselný podíl čísel A a B,
operace A MOD В znamená zbytek po celočíselném dělení.
Tedy platí A = (A DIV B)*B + (A MOD В)

Řešení. Pokud bude mít proměnná У .hodnotu zápornou
nebo nulovou, z celého popsaného algoritmu se provede pouze
dosazovací příkaz Z : — 1 a po ukončení algoritmu bude
proto Z = 1. Ukážeme, že pro У > 0 nabude proměnná Z
hodnoty XY.

Počáteční hodnotu proměnné У (označme ji y) si můžeme
představit zapsanou ve dvojkové soustavě:

у — 2 aí ■ 2*3 cii — 0 nebo 1 pro i = 0,1, ...,« — 1,

an - 1.
г = 0

К násobení Z : = Z*X dochází při /-tém průchodu cyklem
právě tehdy, když ve dvojkovém zápisu čísla у je v řádu j
cifra 1 (tj. když — I). Test У mod 2 totiž zjišťuje hod-
notu poslední cifry dvojkového zápisu momentální hodnoty
proměnné У a příkaz Y Y div 2 mění hodnotu proměnné У
tak, že odebírá z jejího dvojkového zápisu poslední cifru.

1
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Při každém průchodu cyklem se provede příkaz X: = X*X.
Označíme-li počáteční hodnotu proměnné X jako x, bude
v proměnné X na začátku y-tého průchodu cyklem hodnota
x'2JDohromady to znamená, že proměnná Z s počáteční
hodnotou 1 je přinásobena číslem x21 právě tehdy, když
aj = 1 pro j = 0, ..., n. Pro hodnotu proměnné Z po
ukončení výpočtu proto platí:

Z = П aj.xr1
j = o

Tento výraz můžeme dále upravit (připomínáme, že koefi-
cienty aj, j = 0, ..., n jsou cifry dvojkové soustavy, tedy
čísla 0 nebo 1):

2 a{2 J
Z = xj=0

V exponentu jsme získali výraz У aj.21, který je přímo
j — 0

roven vyjádření počáteční hodnoty у proměnné Y. Platí tedy
skutečně, že po ukončení výpočtu uvedeného algoritmu je

Z = ху.

P - II -4

Definici zjednodušeného jazyka LISP nyní ještě doplníme.
Další elementární funkce slouží к provádění aritmetických
výpočtů s celými čísly:
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ADD[A;B] — součet A + В
SUB[A;B] - rozdíl A - В
MUL[A;B] — součin А.В
DIV[A;B] - podíl A div В
MOD[A;B] — zbytek po dělení, tj. A mod В
GT[A;B]
GE[A;B]
Argumenty А, В všech těchto funkcí musí být číselné atomy.
Funkční hodnotou je číselný atom, jehož hodnota odpovídá
výsledku příslušné aritmetické operace, v případě funkcí GT,
GE pak atom T nebo F podle platnosti porovnání.

Zadání úlohy
Zapište ve zjednodušeném jazyce LISP definice následují-

cích funkcí:

a) AVER[S]
S je neprázdný seznam tvořený číselnými atomy, hod-
notou funkce je jejich aritmetický průměr.

b) MAX[S]
S je neprázdný seznam tvořený číselnými atomy, hod-
notou funkce je hodnota největšího z nich.

c) PREVOD[X;S]
X, S jsou číselné atomy s hodnotou X ^ 0, S > 1;
hodnotou funkce je seznam cifer, který reprezentuje
zápis čísla X v číselné soustavě se základem S. Prvním
prvkem seznamu je cifra nejvyššího řádu.
Př.: Pro X = 11, S=2je hodnotou funkce seznam

(10 1 1).
Řešení, a) Funkci AVER[S] pro výpočet aritmetického

průměru číselných atomů v seznamu S nejsnáze zapíšeme
pomocí dvou pomocných funkcí:

— porovnání A > В
— porovnání А ^ В
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DELKAÍS] kde S je jako v zadání úlohy, hodnotou
funkce je počet prvků v seznámil S:

DELKA[S] = [NULL[S] 0;
T -> ADD[1; DELKA[CDR[SJ]j]

SOUCET[S] kde S je jako v zadání úlohy, hodnotou
funkce je číselný atom, jehož hodnota od-
povídá součtu hodnot prvků v seznamu S:

SOUCET[S] = [NULL[S] 0;
ADD[CAR[S]; SOUCET[CDR[S]]]]T ->

Potom stačí napsat

AVER[S] = DIV[SUM[S]; DELKA[S]].

Upozorňujeme, že do zjednodušeného jazyka LISP jsme za-
vedli práci pouze s celými čísly, takže funkce AVER[S] po-
čítá vlastně celou část z aritmetického průměru.

b) MAX[S] = [NULL[CDR[S]J -> CAR[S];
GT[CAR[S]; CAR[CDR[S]]]

MAX[CONS[CAR[S];
CDR[CDR[S]]]];

T MAX[CDR[S]]]

Maximální hodnotou jednoprvkového seznamu je hodnota
jeho jediného prvku. Jinak se vynechá menší z prvních dvou
prvků seznamu. Tím vznikne seznam o jeden prvek kratší

188



(se stejným maximem hodnot prvků, jaké měl původní se-

znám), na který se rekurzívně zavolá funkce MAX.
c) Nejprve definujeme pomocnou funkci APPEND[S;X],

kde S je seznam. Výsledkem této funkce je seznam, který
vznikne přidáním výrazu X do seznamu S na konec (tj. za-
řazením za poslední prvek seznamu S):

APPEND[S;X] = [NULLJS] -» CONS[X;( )];
T -* CONS[CAR[S];

APPEND[CDR[S]; X]]]

Nyní již můžeme přistoupit к řešení zadané úlohy. Poslední
číslicí zápisu čísla X v soustavě se základem S získáme jako
zbytek po celočíselném dělení čísla X číslem S, tedy jako
X mod S. Předcházející číslice jsou rovny cifrám zápisu čísla
X div S v soustavě se základem S. Postup převádění čísla
X do soustavy se základem S proto vypadá následovně: Pc-
stupně číslo X celočíselně dělíme hodnotou S a zaznamenává
me zbytky po těchto celočíselných děleních. Tyto zbytky
jsou odzadu jednotlivými ciframi hledaného zápisu. Uvedený
postup snadno zapíšeme v programovacím jazyce LISP:

PREVOD[X;S] = [GT[S;X] -> CONS[X;( )];
T -> APPENDjPREVODj DlV[X;S];S];

MOD[X;S]]]

Je-li X < S, je číslo X v číselné soustavě se základem S
reprezentováno číslicí X. Jinak uplatňujeme výše uvedený
postup výpočtu. Ke skládání jednotlivých číslic do výsledného
seznamu se používá pomocná funkce APPEND. Zde není
možné použít standardní funkci CONS, neboť cifry je třeba
do seznamu připojovat na konec.
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ÚLOHY CELOSTÁTNÍHO KOLA

P - 1N - 1

Nalezněte a dokažte (co nejlepší) algoritmus, který pro libo-
volnou konečnou posloupnost čísel a čísla K, L určí, zda daná
posloupnost obsahuje souvislý úsek délky К, který se v ní
vyskytuje alespoň L-krát. Jednotlivé výskyty se mohou čá-
stečně překrývat.

Př.: Pro posloupnost 1, 2, 1, 2, 1, 2, 1 а К — 3, L = 3
je odpověd »ANO«, protože se v ní třikrát vyskytuje úsek
1,2, 1.

Řešení. Označíme-li délku zadané posloupnosti čísel jako
N, je možné úlohu vyřešit provedením řádově N2 operací po-
rovnání dvou čísel. Je zajímavé, že při soutěži na tento algo-
ritmus nikdo nepřišel, všechna odevzdaná správná řešení
obsahovala algoritmy pomalejší.

Nejprve vysvětlíme základní myšlenky algoritmu. Před-
stavme si čtvercovou tabulku o rozměrech NxN, jejíž řádky
i sloupce jsou označeny postupně jednotlivými čísly ze zadané
posloupnosti (shora dolů a zleva doprava). Pro příklad ze
zadání úlohy tedy bude situace vypadat podle obr. 38. Nyní
tuto tabulku vyplníme čísly 0 a 1 podle jednoduchého pra-
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12 12 12 1
1

2

1

2

1

2

1

Obr. 38

vidla. Číslo 1 bude v tabulce zapsáno v těch políčkách, která
mají stejně označené řádky a sloupce. V ostatních políčkách
tabulky bude nula. V našem příkladu ukazuje vyplnění ta-
bulky obr. 39. V takto vyplněné tabulce budou jistě na hlavní
diagonále samé jedničky. Dále se budeme zajímat pouze
o polovinu tabulky nad hlavní diagonálou (polovina pod hlavní

12 12 12 1
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diagonálou je s horní polovinou symetrická podle diagonály
a nepřináší proto žádnou další informaci).

Pro řešení naší úlohy nás budou zajímat ty souvislé řady
jedniček v tabulce, které mají směr rovnoběžný s hlavní diago-
nálou (klesají odshora dolů zleva doprava). Příklad takové
řady jedniček ukazuje obr. 40. Pomocí těchto šikmých řad

12 12 12 1
1 0 1

2 1 0

1 1

2

1

2

1 i

Obr. 40

jedniček v tabulce již můžeme snadno zformulovat, jak získá-
mc výsledek řešené úlohy. Jedničkám v jednom řádku ta-
bulky totiž odpovídají opakující se výskyty čísel v zadané
posloupnosti, klesajícím souvislým šikmým řadám jedniček
proto odpovídají opakující se úseky v zadané posloupnosti.
Jestliže existuje takových К po sobě jdoucích řádku tabulky,
že jimi prochází alespoň L souvislých šikmých řad jedniček,
algoritmus má odpovědět »ANO«, jinak je výsledkem »NE«.
V našem příkladu na obr. 40 pro zadané К — 3, L = 3 bude
odpovědí skutečně »ANO«, prvními třemi řádky tabulky pro-
cházejí tři šikmé řady jedniček (jedna je na hlavní diagonále,
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jedna je vyznačena, další leží uprostřed mezi prvními dvěma).
Další úpravy jsou již jen technického rázu, jejich cílem je

usnadnit činnost algoritmu. Naši tabulku budeme vyplňovat
po řádcích. Přitom můžeme do tabulky zapisovat nejen znaky
0 a 1, ale obecně celá nezáporná čísla, a tím můžeme (vždy
s využitím obsahu předchozího řádku) zároveň počítat délky
souvislých šikmých řad »jedniček«. Vyplněnou tabulku v na-
šem příkladu po této úpravě ukazuje obr. 41.

1 2 12 1 2 1
1 1 0 1 0 1 0 1

2 2 0 2 0 2 0

1 В o 3 o 3

2 4 0 4 0

1 5 0 5

2 6 0

1 7

Obr. 41

Pravidlo pro vyplňování tabulky je tedy nyní následující.
Vyplňujeme-li políčko (1,/), 1 S J ík N, zapíšeme do něj 1,
jestliže označení j-tého sloupce je stejné jako označení prv-
ního řádku, jinak zapíšeme 0. Vyplňujeme-li políčko (/,/),
1 < i ^ N, i N, zapíšeme do něj hodnotu políčka
(/ — 1, j — 1) zvětšenou o 1, jestliže označení г-tého řádku
a /-tého sloupce jsou stejné, jinak zapíšeme 0.

Určení výsledku je potom snadné. Algoritmus odpoví
»ANO« právě tehdy, jestliže je v některém řádku tabulky
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alespoň L čísel větších nebo rovných K. Jak je vidět, pro
stanovení odpovědi není ani třeba procházet znovu celou ta-
bulku, hodnoty větší nebo rovné К je možné na každém řád-
ku počítat již při zaplňování tabulky (a v případě nalezení
odpovědi »ANO« ani není třeba vyplňovat zbytek tabulky).
Důsledkem těchto úvah je ještě jedno vylepšení algoritmu.
Jestliže už nemusíme zaplněnou tabulku znovu procházet,
není ani nutné celou ji ukládat. Vždy stačí pamatovat si pouze
obsah předchozího řádku. Nebudeme proto vytvářet čtverco-
vou tabulku s velkým paměťovým nárokem N2, stačí pracovat
pouze s jedním vektorem délky N, do kterého budeme po-

stupně počítat a ukládat jednotlivé řádky naší tabulky.
Popsaný algoritmus řešení zadané úlohy nyní ještě zapíše-

me v programovacím jazyce Pascal. Budeme předpokládat, že
danou posloupnost čísel délky N máme uloženou v poli
A[ 1..N] a že proměnné K, L obsahují vstupní údaje podle
zadání úlohy. Jednotlivé řádky tabulky se budou vytvářet
v poli T[l. .N]. Tyto řádky jsou počítány a ukládány do T
odzadu (zprava doleva) proto, abychom si hodnotami nově
vytvářeného řádku nepřepsali ty hodnoty předchozího řádku,
které ještě budeme potřebovat. Zároveň je v proměnné
POČET sledován počet čísel větších nebo rovných К na řád-
ku. Najde-li se jich L, výpočet ihned skončí. Proměnné laj
jsou pomocné, určují vždy řádkový a sloupcový index právě
počítaného políčka v tabulce.

begin
I := 1; J := N; POČET := 0;
while (I < = N) and (POČET < L) do

begin
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POČET := 0;
while (J > = I) and (POČET < L) do

begin
if A[I]<>A[J] then T[J] := 0
else if I = 1 then T[J] := 1
else T[J] := T[J - 1] + 1;
if T[J] > = К then POCET := POCET + 1;
J := J - 1
end; -v

I := I + 1; J := N
end;

if POCET > = L then write (’ANO’) else write (’NF)
end

Výpočet podle algoritmu jistě skončí, neboť postupně se za-

plňuje a testuje méně než N2 políček tabulky. Každý z cyklů
v uvedeném programu se bude opakovat nejvýše iV-krát.
Zbývá ukázat, že popsaný algoritmus skutečně najde L výsky-
tů podposloupnosti délky К v zadané posloupnosti. Nechť
tyto shodné podposloupnosti mají následující indexy v poli A:

první: pi,pi + 1, .. .,pi + К — 1
druhá: pz, pz + 1, .. .,pz + К — 1

L-tá:

přičemž všechny tyto indexy mají hodnoty mezi 1 a N (včetně)
a platí pi < pz < ... < Pl (podposloupnosti jsou vypsány
✓ pořadí jejich výskytu).

Při vyplňování naší tabulky dojdeme к řádku p\ (v pro-

gramu I = pí). Na tomto řádku se jistě objeví kladná čísla
ve sloupcích pi, p2, . . ., Pl, neboť je A[pi] = A[pz\ — ...

Pl, Pl + 1, • • •, Pl + К — 1
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... = A[Pl] (v programu to znamená, že hodnoty T[p{\,
T[p2], ..., Т[рь] budou kladné). V následujícím řádkuj -f 1
(v programu: pro / = Pi + 1) nastane shoda A[p\ + 1] =
= A[p2 + 1] = ... = А[ръ + 1], čísla ve sloupcích p\ + 1,

P2 + 1, ..Pl + 1 proto budou kladná a vzhledem к obsa-
zení předchozího />i-tého řádku budou větší nebo rovna 2
(v programu: hodnoty T[p\ + 1], T[p2 + 1], ..T[pL + 1]
budou ^ 2). Tato situace se opakuje i pro další řádky tabulky
až do řádku />i + К — 1 včetně. V řádku číslo />1 + ^—1
budou ve sloupcíchp\ + К — l, P2 + К — 1, ...,pj, + К — 1
zapsána čísla všechna větší nebo rovna hodnotě К (v progra-
mu: T[pi + К — 1], T[p2 + К — 1], ..., T\pL -f К — 1]
budou mít po vyhodnocení řádku I = p\ + К — 1 hodnotu
větší nebo rovnu К). V řádku p\ + К — 1 tedy bude nalc-
zeno L čísel větších nebo rovných К a algoritmus proto
správně odpoví »ANO«. Stejným způsobem se ukáže, že ne-

existuje-li v zadané posloupnosti L výskytů podposloupnosti
délky K, algoritmus nikdy v jednom řádku nenapočítá L čísel
větších nebo rovných К a odpoví proto »NE«.

P- III -2

Je dán následující úsek programu se vstupními reálnými
proměnnými X a A, kde X > 1, A > 1.

PASCAL:Z := A;
К := 1;
Y := 0;
while X > = Z do

begin
Z := Z*Z;
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К := 2*К

end;
while К > 1 do

begin
{X*A f Y = konst. & X < Z}
Z := SQRT(Z);
К := К div 2;
if X > = Z then

begin
X := X/Z;
Y := Y + К
end

end

BASIC: 10 LET Z = A
20 LET К = 1
30 LET Y = 0
40 IF X < Z THEN 80
50 LET Z = Z * Z
60 LET К = 2 * К
70 GOTO 40
80 IF К < = 1 THEN 160
90 REM X * A f Y = KONST. & X < Z

100 LET Z = SQR (Z)
110 LET К = К / 2
120 IF X < Z THEN 150
130 LET X = X/Z
140 LET Y = Y + К
150 GOTO 80
160 REM KONEC
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Dokažte, že výraz X*A f Y má stejnou hodnotu při všech
průchodech výpočtu místem programu, kde je v komentáři
zapsán, a že v tomto místě je zároveň vždy splněna podmínka
X < Z. Na základě toho zjistěte, jaké hodnoty nabývá pro-
měnná Y po ukončení výpočtu, a svoje tvrzení dokažte.

Řešení (upravené řešení Radka Porazila z gymnázia
v Bílovci).

Nejprve ukážeme, že po úvodní inicializaci na řádku 10
a 20, po změnách na řádku 50 a 60 i na řádku 100 a 110
stále platí vztah

Z - AK,CD

kde symboly Z, А, К označují po řadě momentální hodnoty
proměnných Z, A, K. Obsah proměnné A se v programu
nemění. Uvedený vztah platí vždy po změně obou proměn-
ných Z, К (provedení dvou po sobě jdoucích přiřazovacích
příkazů).

Dokážeme platnost vztahu Z = AK pro změny na řádcích
40 a 50. К tomu označme Ко, Z0 hodnoty proměnných K, Z
před prvním testováním podmínky na řádku 40. Dále označ-
me Kn, Zn hodnoty proměnných K, Z po w-tém průchodu
řádkem 60. Dokazujeme matematickou indukcí podle n:
1. Pro výchozí hodnoty Kq, Zq, A vztah Zo = Ah° zřejmě

platí, neboť podle dosazení na řádku 10 a 20 je Zo = A,
Ко = 1.

2. Nechť platí Zn = AKn pro n ^ 0. Chceme dokázat, že po-
tom Zn+1 = AKn+1. Podle řádku 50 je Z№+1 = Z^, podle
řádku 60 platí Kn+1 = 2.Kn. Odtud plyne:
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Zn-vi = Zl = (Лк’02 = A2Kn = AK”+1

Tím je tvrzení dokázáno.

Obdobně bude vypadat důkaz vztahu Z = AK pro změny
na řádku 100 a 110. Nyní bude značit Ко, Zo hodnoty pro-

měnných K, Z před prvním testováním podmínky na řádku
80 a Kn, Zn hodnoty proměnných K, Z po w-tém průchodu
řádku 110. Opět dokazujeme matematickou indukcí:
1. Platnost vztahu pro Ко, Zo plyne z předchozího důkazu,

neboť Ко, Zo jsou poslední hodnoty proměnných K, Z,
které vznikly při změnách na řádku 40 a 50.

2. Indukční předpoklad: Zn = AKn pro nějaké n ^ 0. Máme
dokázat, že Zn+i = AKn+1. Podle řádku 100 je ZM+i = Z}*2,
podle řádku 110 je Kn+1 = KJ2. Platí:

Zn+i = ZAI2 = (Ak'‘)V2= AKnl2 - AKn+1,

což jsme měli dokázat.
Nyní můžeme přikročit к důkazu invariantu uvedeného

v zadání úlohy. Nejprve ukážeme, že X.AY = konst. Po-
čáteční hodnoty proměnných X, Y označíme po řadě Xo, Fo,
platí To = 0 (podle dosazení na ř. 30). Při prvním vyhodno-
cení invariantu (tj. prvním průchodu řádkem 90) mají pro-
měnné X, Y hodnoty Xq, Yo. Výraz X.AY nabývá proto
hodnoty Xq.Ay° = ^Yo (neboť Yo = 0). Budeme proto do-
kazovat platnost tvrzení

Xn.Ar* = Xo,(2)
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kde Xn, Yn označují hodnoty proměnných X, Y po n-tém
průchodu tělem cyklu (řádky 100 až 150). Tvrzení dokážeme
matematickou indukcí:

1. Pro Xo, Уо jsme platnost vztahu (2) dokázali již při'jeho
odvození.

2. Nechť platí Xn.AVn = Xq pro jisté n ^ 0. Dokážeme, že
také Xn+i.AYn+' = Xo. Při (n + l)-ním průchodu tělem
cyklu na řádku 100 až 150 mohou nastat dvě možnosti:
a) platí Xn < Z' (kde Z' je momentální hodnota pro-
měnné Z) .. . pak se hodnoty proměnných X, Y nezmění,
bude Xn+i = Xn, Yn+i = Yn a platnost dokazovaného
vztahu plyne přímo z indukčního předpokladu.
b) platí Xn > Z' ... potom podle řádku 130 bude
Xn+1 = XJZ' a podle řádku 140 platí Yn+1 = Yn + K',
kde K', Z' jsou hodnoty proměnných K, Z v okamžiku
průchodu řádky 130 a 140. Podle (1) platí rovnost Z' = AK
Nyní bude s využitím uvedených rovností:

Xn+1.AYn+l = (XJZ').AY"-K' = (Xn/AA").AFn.AA" = ■

= Xn • AYn = Xo

Tím je vztah (2) dokázán.

Dále dokážeme druhou část invariantu, totiž to, že při kaž-
dém průchodu řádkem 90 platí

(3) X < Z.

Symboly Xo, Zo budou značit hodnoty proměnných X, Z při
prvním průchodu řádkem 90, symboly Xn, Zn hodnoty X, Z
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při (и + l)-ním průchodu. Dokazujeme opět matematickou
indukcí:

1. Jistě platí Xo < Zo, neboť na řádek 80 se výpočet dostane
až po splnění této podmínky (test na řádku 40).

2. Nechť platí Xn < Zn pro jisté n ^ 0. Dokážeme, že
Xn+i < ZH+1. Na řádku 100 se v těle cyklu nejprve určí nová
hodnota proměnné Z: Zra+1 = Zn1/2. Dále mohou nastat
dvě možnosti jako v předchozím důkazu:
a) Xn < Zn+i ... potom bude Xn+\ = Xn, a tedy jistě
také Xn+1 < Zn+i.
b) Xn ^ Zn+1 ... potom Xn+i = Xn/Zn+1 (podle řádku
130). Můžeme psát:

Xn+i = XjZn+i = XjZn'/z = Xn.ZnW/Zn -

— Xn. Zfi+i/Zn — (XnJZn). Zn+i < Zn+1,

což jsme měli dokázat.
Poznámka, poslední nerovnost plyne z indukčního před-

pokladu.

Tím je ukončena první část úlohy - důkaz platnosti inva-
riantu. Na základě dokázaného invariantu můžeme vyslovit
následující hypotézu: V proměnné Y bude po ukončení vý-
počtu hodnota celé části logaritmu X při základu A. Tuto
hypotézu nyní dokážeme.

Při posledním průchodu řádkem 90 platí Kn~\ = 2,
Zn-1 — A2 a Xn-i.A1"-1 = Xo, přičemž Xn-i < A2 (vyplývá
z (2) a (3)), kde Xn-\, Yn~i, Kn-1 Zn~\ jsou hodnoty pro-

měnných X, Y, K, Z při posledním průchodu řádkem 90.
Těsně před provedením řádku 120 je již К = 1, Z = A.
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a) Je-li Xn-1 < Л, jistě také platí lcg,,*A«-i < 1. V tcmto
případě bude Xn — Xn-1, Yn = Yn-i (na základě testu
na řádku 120). Platí Xn.Ar" = Ao, odtud po zlogaritmo-
vání dostáváme

lcgAX„ + YH = log.i A0.

Jedná se o poslední průchod tělem cyklu, takže Yn je vý-
sledná hodnota proměnné Y. Hodnota proměnné Y se
v programu vytváří jako součet celých čísel, Yn je tedy také
celé číslo. Protože logAXn je nezáporné číslo menší než 1,
je jistě Yn celou částí hodnoty log^Ao, což jsme měli do-
kázat.

b) Jestliže Xn-1 ^ A (a z invariantu Xn ~i < Л2), dosta-
neme po zlogaritmování nerovnosti

log. (Л ^ log,iX/-i < logaA2

1 ^ log.t Aý i < 2

iViůžeme tedy log^A^-i zapsat ve tvaru 1 + v, kde 0 ^
^ v < 1. Dále podle řádku 140 je Y„ — Yn-1 + 1 a zlcga-
ritmováním vztahu Хп~1.АУп Х — Ao dostaneme

logjAV-i + Yn-1 = log.iAo.

Dosadíme-li do této rovnosti za log.i Awi výraz 1 -f v a za

Yn-i výraz Yn — 1, dostaneme

Yv + v = log.tA,.
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Protože Yn je celé číslo a hodnota v je nezáporná menší
než 1, je hodnotou Yn celá část z Icgj^ů).

Tím je hypotéza o výsledné hodnotě proměnné Y doká-
zána.

P - 111 - 3

Nalezněte a dokažte (co nejlepší) algoritmus, který z libo-
volné konečné množiny uzavřených intervalů na reálné přímce
vybere skupinu po dvou disjunktních invervalů, která ze
všech takových skupin obsahuje největší možný počet inter-
valů.

Řešení (upravené řešení Pavla Kozlovského z gymnázia
v Jindřichově Hradci).

Dolní a horní meze intervalů uložíme do pole M[ 1.. N,
1. .2], kde N je počet intervalů a druhý index určuje druh
meze invervalů (1 - dolní, 2 - horní). Potom intervaly zapsa-
né v poli M setřídíme podle hodnot dolní meze vzestupně,
tzn. bude platit Aí[l,l] íS M[2, 1] ^ ... ^ M[N, 1]. Další
částí algoritmu je jednoprůchcdové prohledání pole M.
Zvlášť jsou přitom vždy uschovány hodnoty mezí »posled-
níhc« zpracovaného intervalu (na počátku výpočtu to jsou
meze prvního intervalu, tj. M[ 1, 1] a M[ 1, 2]). Při zpraco-
vání dalšího intervalu v pořadí může nastat několik možností:
1. Zpracovávaný interval je obsažen v posledním intervalu.

Do výsledné skupiny bude výhodnější vybrat menší
z nich (má méně společných bodů s dalšími intervaly).
Poslední interval proto zapomeneme a zpracovávaný
interval prohlásíme za poslední.

2. Zpracovávaný a poslední interval jsou disjunktní. Protože
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pole je setříděné podle dolních mezí, jsou všechny dosud
nezpracované intervaly disjunktní s posledním interva-
lem. Poslední interval zapíšeme do výstupu a zpracová-
váný interval prohlásíme za poslední.

3. Zpracovávaný a poslední interval mají neprázdný průnik,
ale zároveň neplatí inkluze z bodu 1. Do výsledné skupiny
nelze vybrat oba intervaly. Vybereme proto ten, který
má nižší hodnotu horní meze (vzhledem к umístění dosud
nezpracovaných intervalů je to výhodnější). Tím je jistě
poslední interval, jinak by nastal případ 1. Poslední inter-
val tedy zůstává beze změn, zpracovávaný interval zapo-
meneme.

Po zpracování všech intervalů se ještě poslední interval
zapíše do výstupu.

Rychlost výpočtu tohoto algoritmu je dána rychlostí tří-
dění a je tedy řádově N.logzN, další zpracování intervalů
má již lineární složitost.

Algoritmus nyní zapíšeme ve tvaru úseku programu v pro-

gramovacím jazyce Pascal. Předpokládejme, že N udává
počet intervalů na vstupu a že máme deklarováno dvouroz-
měrné pole 1..2] tak, jak je uvedeno v úvodu
řešení. Dále budeme předpokládat, že v poli M jsou uloženy
hodnoty mezí intervalů a že tyto intervaly jsou již setříděné
vzestupně podle dolních mezí. К tomuto setřídění by se

použil některý ze standardních třídicích algoritmů (zde
neuvádíme). Platí tedy M[ 1, 1] ^ Af[2, 1] ^ ... ^ M[N, 1]
a M[K, 1], M[K, 2] jsou dolní a horní mez .řč-tého intervalu
pro celá К, 1 rg К ^ N. Pomocné proměnné L, H slouží
к uložení dolní a horní meze »posledního« intervalu.
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L := M[l, 1];
H := M[l, 2];
for I := 2 to N do

if M[I, 2] < H then
begin {případ 1}
L : = M[I, 1];
H := M[I, 2];
end

else if M[I, 1] > H then
begin (případ 2}
writeln (L, H);
L := M[I, 1];
H := M[I, 2];
end; {v případě 3 se nic neprovádí}

writeln (L, H);
Zdůvodnění správnosti algoritmu:
1. Výpočet programu skončí, neboť počet provádění

jednotlivých operací je předem omezen hodnotou N (tělo
cyklu se opakuje méně než N-krát).

2. Vybraná skupina obsahuje pouze po dvou disjunktní
intervaly. Interval poznamenaný jako »poslední« (v pro-

měnných L, H) je totiž zapsán na výstup právě tehdy, je-li
disjunktní s právě zpracovávaným intervalem, a vzhledem
к uspořádání intervalů podle hodnot dolní meze je proto
disjunktní i se všemi dalšími dosud nezpracovanými intervaly.
Dále platí, že interval je prohlášen za »poslední«, bud je-li
disjunktní s intervalem právě zapisovaným na výstup, nebo
je-li podmnožinou dosud posledního intervalu. Protože je
pole intervalů setříděno, je poslední interval disjunktní i se
všemi již vybranými a vytištěnými intervaly.
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3. Vybraná skupina intervalů obsahuje největší možný
počet intervalů. Při průchodu všemi setříděnými intervaly
totiž interval do výsledné skupiny nevybereme a »zapome-
neme« ho pouze ve dvou případech, kdy je to nezbytné, aby
vybraná skupina obsahovala pouze po dvou disjunktní inter-
vály:

a) Je-li některý z intervalů částí jiného, je nutné jeden
z nich vynechat. Algoritmus vynechá větší z obou intervalů,
což je jistě výhodnější z hlediska možných společných bodů
s dalšími intervaly.

b) Mají-Ii dva intervaly neprázdný průnik, ale nenastává
přitom případ a), musí být jeden z nich vynechán. Algo-
ritmus vynechá ten z obou intervalů, který má větší horní
(a tudíž i dolní) mez, neboť to je výhodnější z důvodu pří-
pádných společných bodů s následujícími intervaly (kon-
flikty s předchozími intervaly jsou již vyřešeny, neboť inter-
vály jsou při procházení setříděné).

P - III - 4

Zapište ve zjednodušeném jazyce LISP definice náslcdu-
jících funkcí:
a) REVERSE [X]

X musí být seznam
hodnotou funkce je seznam tvořený stejnými prvky jako
seznam X, ale v opačném pořadí.

b) DIFELEM [S]
S je seznam atomů
hodnotou funkce je seznam všech různých prvků sezná-
mu S.
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c) LINEAR [S]
S musí být seznam
hodnotou funkce je seznam všech atomů, které se

vyskytují někde v S bez ohledu na úroveň vnoření
seznamů a jejich pořadí.

Řešení, a) Nadefinujeme pomocnou funkci PŘESUN
[X; Y], kde X, Y jsou seznamy. Tato funkce přesune všech-
ny prvky ze seznamu X v opačném pořadí na začátek se-
známu Y:

PRESUN [X; Y] = [NULL [X] -> Y;
T PŘESUN [CDR[X]; CONS

[CAR[X]; Y]]]

S využitím této funkce již snadno zapíšeme požadovanou
funkci REVERSE [X]:

REVERSE [X] = PRESUN [X; ()]

b) Pomocná funkce MEMBER [X; S] zjišťuje, zda je
atom X prvkem seznamu atomů S (viz úloha P - I - 4):

MEMBER [X; S] = [NULL [S] -> F;
EQ [X; CAR[S]]->T;
T -> MEMBER [X; CDRÍS]]]

Dále definujeme pomocnou funkci DIFEL [S; Y], kde
S, Y jsou seznamy atomů. Tato funkce zpracovává seznam
atomů S a vytváří pomocný seznam atomů Y následujícím
způsobem: do seznamu Y přesouvá ty prvky ze seznamu S,
které ještě v Y nejsou. Jestliže se projde celý seznam S, vydá
se vytvořený seznam Y jako výsledek funkce DIFEL:
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DIFEL [S; Y] = [NULL [S] Y;
MEMBER [CAR[S]; Y]
-> DIFEL [CDR[S]; Y];
T ->■ DIFEL [CDR[S];
CONS [CAR[S]; Y]]]

Výslednou funkci DIFELEM[S] požadovaných vlastností
nyní snadno vyjádříme jako volání funkce DIFEL s prázd-
ným seznamem dosazeným za parametr Y:

DIFELEM[S] = DIFEL[S; ()]

Pro zajímavost uvádíme již bez podrobnějšího komentáře
ještě jiné řešení úlohy, které nepoužívá pomocnou funkci
DIFEL a nevyužívá triku s pomocným, na počátku prázdným
seznamem. Zápis tohoto druhého řešení je kratší, ale výpo-
čet by byl o něco pomalejší:

DIFELEM [S] = [NULL [S] -> S;
MEMBER [CAR[R];
CDR[S]J -> DIFELEM [CDR[S]j;
T -> CONS [CAR[S];
DIFELEM [CDR[S]]]]

c) Nejprve nadefinujeme pomocnou funkci CONNECT
[R; S], jejíž hodnotou je seznam vzniklý spojením seznamů
R a S za sebe:

CONNECT [R; S] = [NULL [R] -* S;
T -> CONS [CAR[Rj;
CONNECT [CDR [R] ; S]]]
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S použitím této pomocné funkce pak již zapíšeme výslednou
funkci LINEAR [S]. Postupně procházíme všechny prvky
seznamu S. Je-li takový prvek seznamu S atom, je připojen
přímo do vytvářeného seznamu atomů a funkce LINEAR je
rekurzívně volána na zpracování zbytku seznamu S bez
prvního prvku. Je-li prvním prvkem seznamu S seznam, je
funkce LINEAR volána dvakrát - na první prvek seznamu S
i na zbytek seznamu S - a oba takto vzniklé seznamy atomů
jsou propojeny pomocí funkce CONNECT:

LINEAR [S] = [NULL [S]
ATOM[CAR[S]] -* CONS[CAR[S];
LINEAR[CDR[S]]];
T -* CONNECT [LINEAR[CAR[S]];
LINEAR[CDR[S]]j]

S;

Úlohu je možné řešit i mnoha jinými způsoby. Pro ilustraci
uvádíme, již bez komentářů, ještě jedno řešení:

LINE [S; YJ = [NULL [S] -> Y;
ATOM[CAR[S]] -> LINE[CDR[S];
CONS[CAR[S]; YJ];
T -> LINE[CDR[S];
LINE[CAR[S]; Y]J]

LINEAR [S] = LINE [S; ()]
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MEZINÁRODNÍ OLYMPIÁDA V PROGRAMOVÁNÍ

Ve školním roce 1986/87 se uskutečnil také 1. ročník me-
zinárcdní olympiády v programování. Tato soutěž vznikla
z iniciativy slovenských organizátorů kategorie P matema-
tické olympiády. Mezinárodní olympiády v programování
se zúčastnila družstva ze SSSR (8 účastníků), z BLR (6
účastníků) a z ČSSR (7 účastníků), přítomni dále byli pozo-
rovatelé z NDR, MLR a z PLR. Olympiáda probíhala
v Bratislavě a v Modré ve dnech 23.—30. 8. 1987. Vlastní

soutěž se konala po dva dny, v každém z těchto dnů měli
soutěžící čtyři hodiny času na vyřešení dvou soutěžních
úloh. Výběr i opravování úloh probíhaly pod vedením mezi-
národní jury stejným způsobem, jaký je obvyklý u meziná-
rodní matematické olympiády.

SOUTĚŽNÍ ÚLOHY

1. Pro přirozená čísla A' a Y budeme říkat, že X se vysky-
tuje v Y, jestliže se dá binární zápis čísla X získat z binárního
zápisu Y vyškrtnutím (vyloučením) žádné, jedné nebo více
cifer. (Například X = 1010 se vyskytuje v Y = 1001100.)

Vytvořte algoritmus, který pro daná dvě přirozená čísla
А а В najde maximální číslo C, které se vyskytuje v A i v B.
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2.Je dáno n karet, které jsou očíslovány 1, 2, ..n (každé
číslo se vyskytuje právě jednou). Vytvořte algoritmus, který
pro libovolnou posloupnost AI, A2, ..., An těchto karet
najde nejmenší počet К prostých výměn karet nutný na

jejich uspořádání podle rostoucích hodnot jejich čísel. (Pod
prostou výměnou se rozumí vzájemná záměna pozic libovcl-
ných dvou karet.)

PřPro posloupnost 1, 5, 3, 2, 4 je výsledek К — 2,
protože prostými výměnami karet s číslem 5 a 2 a pak karet
s číslem 4 a 5 dostaneme uspořádanou posloupnost 1, 2, 3,
4,5.3.Je dáno prvních N2 přirozených čísel (N>2) 1,2,... ,N2.
Sestavte algoritmus, který rozdělí tato čísla do N skupin tak,
aby byly současně splněny následující tři podmínky:

1. každá skupina obsahuje právě N čísel,
2. každé číslo se nachází právě v jedné skupině,
3. součet čísel v každé skupině je stejný.4.Uvažujme následující hru. Pro pevně dané přirozené

číslo N > 1 hráč A zvolí přirozené číslo A', 1 ^ X ^ N.
Cílem hráče В je uhodnout toto číslo X pomocí dotazů typu
»Je X větší, nebo rovno Kť«, kde К je libovolné přirozené
číslo. Hráč A musí odpovídat na dotazy pravdivě a nesmí
během hry měnit X. Hráč В platí hráči A za každou cdpo-
věd. Za cdpověd »ANO« platí 2 Kčs, za odpověd »NE«
platí 1 Kčs.

Určete pro dané N nejmenší množství Kčs P(N), které
zaručeně stačí na uhodnutí libovolného přirozeného čísla X,
1 ^ A" ^ N.
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Vytvořte takový algoritmus, podle kterého má hráč В
klást dotazy tak, aby uhodl číslo X a zaplatil přitom nejvýše
P(N) Kčs (tj. algoritmus určující vhodné К v dotazech).

Řešení každé úlohy bylo hodnoceno maximálně 10 body.
Následující tabulka ukazuje, kolik z 21 účastníků soutěže
získalo jaký počet bodů za řešení jednotlivých úloh.

Počet bodu

Úloha
0123456789 10

22021334031
00021224352
1 0 1 1 3 3 2 1 1 3 5

11 0000122320

1
2
3
4

Průměrné bcdové hodnocení jednotlivých úloh bylo násle-
dující:

Úloha Průměrné hodnocení

5,241
2 7,10
3 6,48
4 3,48

Nejlepším řešitelům udělila jury celkem dvě I. ceny, tři
II. ceny a pět III. cen. Naši studenti si vedli v soutěži velice
dobře, získali jednu I. cenu, jednu II. cenu a dvě III. ceny.
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Soutěžící ze Sovětského svazu obdrželi jednu I. cenu a tři
III. ceny, bulharští studenti pak dvě II. ceny. Bodové zisky
jednotlivých zúčastněných družstev jsou shrnuty do násle-
dujicí tabulky.

ČSSR
SSSR

celkem 168 bodů
celkem 176 bodů
celkem 126 bodů

průměr 24 bodů na žáka
průměr 22 bodů na žáka
průměr 21 bodů na žákaBLR

SLOŽENÍ A VÝSLEDKY
ČESKOSLOVENSKÉHO DRUŽSTVA

Vládán Majerech, 4., G Pardubice
— 1. místo, 38 bodů (9, 10, 10, 9), I. cena

Pavel Kozlovský, 3., G Jindřichův Hradec
— 3. místo, 33 bodů (10, 6, 10, 7), II. cena

Pavol Kolník, 4., G Nové Město nad Váhom
— 7. místo, 23 bodů (1, 9, 5, 8), III. cena

Rudolf Burel, 4., G Trnava
— 10. místo, 21 bodů (4, 5, 6, 6), III. cena

Peter Klein, 4., G A. Markuša, Bratislava
— 12. —15. místo, 19 bodů (1, 5, 7, 6)

Rastislav Senderák, 4., G Prešov
12.-15. místo, 19 bodů (7, 3, 9, 0)

Branislav Stríženec, 3., G J. Hronca, Bratislava
— 20. místo, 15 bodů (5, 8, 2, 0)

213



Hodnocení 36. ročníku МО

V organizaci soutěží MO nedošlo v tomto roce к žádným
převratným změnám - to spíše v konsolidaci a ustálení již
zavedených forem.

To se týká především nové kategorie P, která byla ve škol-
ním roce 1986/87 v celostátním měřítku uspořádána teprve
podruhé. Její průběh byl veskrze úspěšný, včetně pěkného
celostátního kola, které se konalo v Praze. Kromě toho se

podařilo uspořádat i první mezinárodní soutěž v tomto
oboru - proběhla v srpnu 1987 v Bratislavě. Kategorie P tak
plně prokázala svou oprávněnost a životaschopnost.

Potěšující je i skutečnost, že se zavedení nové a bezpochy-
by velice atraktivní kategorie neprojevilo nepříznivě na zájmu
žáků o »klasickou« kategorii А. V seznamech úspěšných
řešitelů nacházíme ovšem v A i v P často stejná jména.

Vcelku lze proto zavedení kategorie P považovat za pozi-
tivní přínos к MO a z dosavadních zkušeností vyvozovat
povzbuzení pro pokračování v nastoupené cestě.

Zájem o MO je na středních školách relativně stabilní, což
lze sice ocenit kladně, zároveň však tento fakt svědčí o tom,
že se MO v poslední době nedaří významně rozšiřovat své
působení. Zvláště v nejvyšší kategorii A je patrná relativní
převaha škol, resp. tříd se zaměřením na matematiku.

214



Zkušenosti z 36. ročníku MO rovněž znovu potvrdily nut-
nost velmi uvážlivé volby úloh pro vyšší kola soutěže, zvláště
v kategoriích В a C, kde ještě nemůže převládnout ryze sou-
těžní přístup. Není-li výběr úloh přizpůsoben znalostem
a možnostem žáků, projeví se to ihned poklesem úspěšnosti
a následně pak i poklesem zájmu o MO; tomu je třeba zabrá-
nit. Pro příští ročník byly proto navrženy určité úpravy.

Zájem o MO na středních školách je ovšem silně ovlivněn
také zkušenostmi, které s MO získají žáci už na základních
školách. Kategorie Z se postupně rozšiřují a osamostatňují;
popis jejich průběhu a hodnocení je obsaženo v samostatné
ročence.
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