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Hodnoceni 38. ro¢niku
matematické olympiady

38. ro¢nik probéhl beze zmén v organizaci i bez vétsich
vykyvit v poltech ulastnika. Zucastnilo se ho stejné jako
piedchazejiciho ro¢niku asi 9 500 zaku stiednich $kol, z nich
asi 5 600 proslo Gspéiné prvnim kolem. Z tohoto poétu bylo
4 600 zéka pozvano do II. kola. V ném skonéilo 1 300 sou-
tézicich s diplomem uspé$ného resitele, stejné jako v 37. roc-
niku. Tato ¢isla hodnotime kladné. Vzdyt neni rozumné
pozadovat, aby v kazdém rocniku soutézilo vic zdka nez
v roce predchdzejicim, jak tomu Casto bylo pfi raznych
soutézich.

Podstatny vliv na prubéh kazdého ro¢niku MO mi vybér
uloh. Ulohy kategorie P ptipravili pfevazné pracovnici MO
z Prahy, ulohy kategorii A, B, C vybrali ¢lenové pfedsednictva
UV MO, piitemz vyuzili tloh, které zaslali do konkursu
uloh MO uditelé, védecti pracovnici v matematice, studenti
matematiky a i néktefi z4ci. Zd4a se, ze ulohy byly vybriny
vhodné, na pravidelném hodnoceni vybéru uloh pii prilezi-
tosti celostatniho kola nebyly vzneseny z4dné ndmitky. Kladn&
byla hodnocena navaznost uloh jednotlivych kol, naptiklad
tlohy C-II-4 na C-I-6. V né&kterych pfipadech vSak nebyl
vybér uloh v souladu s osnovami, napfiklad uloha B-S-1
se tykala permutaci, ty se vSak probiraji az pozdé&ji. Nékdy
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se vak d4 dloha fedit prostfedky, které jsou jiz k dispozici,
i kdyZ by se dala pozdéji, po probrini dalsi latky, fesit snad-
né&ji. Tykd se to napiiklad dlohy B-I-6, kterd se nemusela
fedit matematickou indukci. Patii vSak bezesporu k t&Z3im
Glohdm. P&kné fe$eni Glohy B-I-2 podal zZdk gymnézia v Brné&,
feSeni velmi jednoduché, elegantni. Sdm autor tlohy i pfi-
sluiného komentife byl timto péknym feSenim mile piekva-
pen. A¢koli UV MO vénuje vybéru tloh velkou pozornost,
pfesto se oblas objevi néjaky Sotek. Tentokrat to bylo v textu
dlohy C-I-1, kde se mluvi jednou o celych &islech, jednou
o pfirozenych Cislech, spravné m4 byt na obou mistech stejny
pojem. V této roCence je text jiz opraven. Nastésti zici snadno
chybu objevili.

V celostitnim kole MO kategorie A se fesi vzdy Sest tloh,
za kazdou muze soutézici ziskat 7 bodu. NejtéZii byla zfejmé
tloha A-III-4 o té&Znicich v trojahelniku, nebot pramér
dosaZenych bodu za tuto tlohu byl 1,29. Nejleh¢i byla tloha
A-III-1, za ni dosdhli soutéZici praméru 5,12 bodu. Byla to
dloha o tétivovém Ctyfthelniku a byla zafazena i jako pietni
vzpominka na jejiho autora, dlouholetého predsedu UV MO
dr. Frantiska Zitka, CSc., z Matematického ustavu CSAV.

Pfi hodnoceni 38. ro¢niku MO neni mozné nevyzdvihnout
Gspéch nasich z4dka na jubilejni, 30. mezindrodni matematické
olympiddé€, kterd se konala v SRN. Kazdy ceskoslovensky
Glastnik ziskal nékterou z medaili, z toho byly dvé zlaté
a jedna st¥ibrna. V neoficidlnim potadi druzstev se Ceskoslo-
vensko umistilo na 6. mist¢ za CLR, Rumunskem, SSSR,
NDR a USA.



RNDr. Frantiek Zitek, CSc., pracoval v matematické
olympiddé od roku 1962, kdy se konala poprvé mezinirodni
matematicka olympidda v Ceskoslovensku. Od roku 1966 byl
¢lenem tstiedniho vyboru MO, dlouh4 léta byl jeho misto-
piedsedou a od roku 1983 zastdval funkci pfedsedy. Staral
se predeviim o Ceskoslovenskou wlast na mezindrodnich
matematickych olympiddéach, plné pfitom uplatnil své bohaté
jazykové znalosti. Byl pfedsedou mezindrodni poroty pii
25. MMO v Praze a mél velkou zdsluhu na jejim p&€kném
prubéhu. Dr. Zitek byl autorem mnoha tloh i pro &eskoslo-
venskou matematickou olympiddu. Ackoli pracoval pifedevsim
v teorii pravdépodobnosti a v matematické statistice, vétSina
jeho tloh byla z geometrie. A byly to tlohy niro¢né, dr. Zitek
se vzdy snazil o vysokou troveti MO. Do edice Skola mladych
matematika pfispél svazkem Vytvofujici funkce, dalsi svazek
uz bohuzel nedopsal. Zemfel nihle 18. listopadu 1988
ve véku 59 let. Jeho jméno bude navZdy spojeno s matematic-
kou olympiddou v Ceskoslovensku.



O priabéhu 38. roéniku
matematické olympiady

38. ro¢nik matematické olympiddy pofddalo ministerstvo
$kolstvi, mlddeze a t&lovychovy CSR a ministerstvo $kolstvi,
mlddeze a télesné vychovy SSR ve spoluprici s Jednotou
Ceskoslovenskych matematika a fyzika, Jednotou slovenskych
matematik a fyzika, Matematickym tstavem CSAV a Soci-
alistickym svazem mlddeze. Soutéz ¥idil ustfedni vybor mate-
matické olympiddy (UV MO) prostiednictvim krajskych
a okresnich vybori matematické olympiady (KV MO,
OV MO). Cleny UV MO jmenovala ptisluind ministerstva.
V prabéhu 38. ro¢niku MO pracoval ustiedni vybor MO
ve stejném sloZeni jako v predchézejicim roce: pfedsedou
byl RNDr. Frantidek Zitek, CSc., z MU CSAV v Praze,
mistopfedsedy profesor RNDr. Miroslav Fiedler, DrSc.,
len korespondent CSAV, z téhoz ustavu, a doc. RNDr.
Branislav Rovan, CSc., z MFF UK v Bratislavé. Ministerstvo
$kolstvi, mlddeze a télovychovy CSR zastupoval RNDr.
Viclav Sula, ministerstvo $kolstvi, mlddeZe a télesné vychovy
SSR RNDr. Julia Lukéitiovd. Funkci tajemnika UV MO
vykonévali doc. RNDr. Leo Bo¢ek, CSc., z MFF UK v Praze
a RNDr. Karel Horak, CSc., z MU CSAV v Praze. V pri-
béhu 38. ro¢niku zemfiel dlouholety ptedseda UV MO
dr. Frantiek Zitek, CSc. Funkci piedsedy UV MO pak
vykondval doc. RNDr. Leo Bocek, CSc., dosavadni tajemnik
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UV MO, a préci tajemnika pievzal RNDr. Jifi Binder, CSc.,
z pedagogické fakulty UK v Praze. K daldi zméné b&hem
38. rofniku do$lo, kdyz RNDr. Jén Lastivka vystiidal
dr. LukétSovou ve funkci zdstupce MSMTV SSR.

V pribéhu 38. ro¢niku MO se konala dvé zaseddni UV MO,
prvni ve dnech 5.—6. prosince 1988 v Praze, druhé 24.—25.
dubna 1989 v Klatovech pfi celostitnim kole MO. Hlavnim
bodem obou zaseddni bylo hodnoceni prubéhu soutéze,
zabezpeceni celostatnich soustfedéni Uspé$nych fesitelu MO
véetné soustfedéni pro piipravu na MMO, koresponden¢ni
seminat UV MO a organizace dal§ich kol soutéze. Byla pro-
jednavina téz ediéni ¢innost UV MO, predeviim piiprava
dalgich svazki edice Skola mladych matematika. Byla disku-
tovana vhodnost vybéru tloh MO. Pracovni pfedsednictvo
se schizelo jednou mési¢né a zabyvalo se hlavné vybérem
uloh pro vSechna kola soutéze.

V organizaci MO nedoslo k zddnym zméndm. Kategorie A
byla urtena Zzakam 3. a 4. ro¢niku stfednich §kol, kategorie B
byla pro zéky 2. ro¢nika a v kategorii C soutézili z4ci 1. ro¢-
nika. Pro Ziky vSech tfid stfednich $kol byla urlena jeité
kategorie P, zaméfend na tlohy z programovani a matematické
informatiky.

V kategoriich A, B, C m4 I. kolo dvé& &asti, v prvni &4sti
fesi soutézici 6 loh doma nebo v matematickych krouZzcich
a mohou se pfitom radit se svymi uciteli, vedoucimi krouzku
apod. Druhd ¢ast méd formu klauzurni price, v niz fe$i zéci
tfi ulohy v omezeném Case ¢tyf hodin.

Resitelé, ktefi uspésné prodli prvnim kolem, jsou pozvani
do druhého (krajského) kola soutéZe, kde fe$i Ctyfi dlohy
opét v limitu &tyf hodin.



V kategoriich A a P se kond jeSté tieti, celostitni kolo.
V ném je vlastni soutdZ rozd&lena do dvou dnt. V kategorii
A fesi soutézici kazdy den tfi dlohy v Casovém limitu &tyfi
hodiny, v kategorii P ve stejném limitu vzdy dvé& ulohy.

Organizaci celostdtniho kola byl ministerstvem $kolstvi,
mlddeze a t&lovychovy CSR povéien Zipadolesky kraj.
Uskutecnilo se v Klatovech ve dnech 23.—25. 4. 1989 (kat. A)
a 26.—29. 4. 1989 (kat. P). Bylo doprovéizeno velmi péknym
kulturnim a spoletenskym programem. Z fady pracovniku,
kteti se zaslouzili o vzornou organizaci celostitniho kola,
jmenujme alespoiit RNDr. Karla Matdska, pfedsedu organi-
zatniho vyboru, RNDr. Josefa Poldka, CSc., ptedsedu KV
MO a dr. Marii Ausbergerovou z KPU v Plzni.

Vybrand druZstva se zalastnila mezindrodni matematické
olympiddy i mezindrodni soutéZe v programovini. Témto
soutézim je vénovdna samostatnd kapitola v zdvéru broZury.

Hlavni népli nésledujicich kapitol tvofi texty dloh viech
kategorii véetné jejich fefeni. Kazd4 Gloha je oznalena katego-
rii, fimskou d&islici udévajici kolo nebo pismenem S, které
znadi $kolni, klauzurni &¢4st I. kola, a &islem ulohy.

Ve viech krajich na3i republiky se i ve $kolnim roce 1988|839
porddaly ruzné akce pro vyhleddvani a rozvoj z4ku talentova-
nych v matematice, pfevazné spojené s matematickou olympi-
4dou Ptehled akci v jednotlivych krajich:

Praha. Jednou tydné se konaly pracovni piednasky pro
fesitele tloh kategorii A, B i C, celkem se ztlastnilo 52 Zaka.
Pro 38 fesitelu korespondenéniho seminaie a MO se v lednu
konalo tfidenni soustfedéni. Soustifedéni pro fesitele kategorii
B a C se konalo v &ervnu, trvalo 5 dni a zalastnilo se ho
45 zaku.
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Stiedolesky kraj. Tydenni soustiedéni pro 36 nejuspésnéj-
$ich fesitelu kategorie B a C se konalo v zafi. Byly provedeny
instruktdZe uliteltt k Glohdm I. kola kat. A, B, C. Pro Z4ky,
feditele uloh MO, probéhly instruktize v osmi $kolicich
stfediscich.

Jihocesky kraj. Letni $kola pro uspésné fesitele MO se
konala v ¢ervnu, trvala jeden tyden a zGCastnilo se ji 58 FeSitela
kat. A a B a 60 FeSiteld kat. C. InstruktdZ pro referenty MO
na $koldch byla jednodenni, zucastnilo se 46 ulitela. V lednu
se konalo dvoudenni soustfedéni pro 20 fesitela tloh katego-
rie A. Korespondenéni semindf mél dvé série aloh.

Zdpadocesky kraj. V Plzni, Klatovech a Karlovych Varech
se konalo celkem 24 piedndSek k Ulohdm kategorie A, B
a C. Ulohy korespondenéniho seminife pro kategorii A Fesilo
33 z4ku (2 série) a pro kategorie B a C 57 zaku (3 série tloh).

Severolesky kraj. V Cervnu probéhlo v Krupce soustiedéni
pro 45 fesitelt kat. A, B a C. Kromé toho se v kraji konalo
v deseti méstech celkem 50 seminaft pro fesitele tloh kat. A,
B a C s pramérnou ucasti 20 zaku.

Jihomoravsky kraj. V Brné a v Jihlavé se konaly pro fesitele
tloh MO seminéife, zvlast pro kazdou kategorii, pramérna
ucast 20 z4ka. Jednou tydné se konal seminéi pro ziky z tfidy
zaméfené na matematiku na gymnaéziu v Brné, tf. kpt. Jarose.
Pro 10 zika kraje, ktefi byli pozvani do celostidtniho kola
kat. A, se konalo 6 semindft po 4 hodinich. Tydenni soustie-
déni pro Gsp&$né fesitele kategorie B a C probéhlo v Jedov-
nicich v kvétnu. Zucastnilo se ho celkem 80 Z4ka. Pro
zaky 2. ro¢nikua t¥id gymndzii se zaméfenim studijniho oboru
01 — Matematika (3 Zici z kazdé §koly, kde jsou tyto tiidy
zavedeny) uspofddal KV MO desetidenni soustfedéni.
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Severomoravsky kraj. V z&ii probéhly instruktaZe referent
MO, zucastnilo se 41 uditeli. Na sobotnich beseddch MO
byla prameérna Gcast 37 zéka. Na gymnéaziu M. Kopernika
v Bilovci se konaly jednou tydné seminéfe pro feSitele MO
(25 ucastniku). Korespondenini semindf pro kategorie A,
B, C (3 série tloh) fesilo celkem 210 ucastnikdl. Seminaf
byl ukonlen tydennim soustfedénim (duben, 50 Ucastnikd).
V Cervnu se konalo pro 75 uspé$nych Fesitela MO desetidenni
soustfedéni. V ¢ervnu téZ probéhlo tydenni soustfedéni zdku
3. ro¢nika tfid gymnézii se zaméfenim na matematiku (30
castniki).

Bratislava. Pro utitele uspofddal KV MO sedm dvou-
hodinovych seminéit. Déle probéhlo Sest kol korespondenc-
niho semindfe z matematiky a tfi kola z programovéni. Pro
bylo uspofadéno celkem pét tydennich soustfedéni.

Zdpadoslovensky kraj. Instruktdzi uciteld a vedoucich krouz-
ka MO (pro kat. A, B, C1i P) se zG¢astnilo 60 ucitelu. Soustie-
déni Gspésnych fesitela MO kat. B a C bylo tydenni a ztcast-
nilo se ho 40 zakt. V koresponden¢nim seminéfi fesilo 72
zéka tlohy péti sérii, z toho 18 nejlepsich bylo pozvéno na ¢tyi-
denni soustfedéni.

Stiedoslovensky kraj. Krajsky koresponden¢ni semindf pro
kategorii A mél 5 sérii, tlohy fesilo 21 zdku. Druhy kores-
pondenéni seminaf byl uréen pro kategorii B a C, 4 série
uloh fesilo 123 ziku. Koresponden¢ni seminaf byl organizo-
van téZ pro kategorii P (4 série, 36 Gitastnikia) a pro zéky SOU
(6 sérii, 152 Gastnika). Pro Gspésné fesitele MO byla uspo-
fdddna dvé tydenni soustiedéni (zafi, Cervenec), kazdé pro
40 tlastnika. Pro vSechny kategorie probéhly dvoudenni
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instruktaZze pro utitele. V Zilin& byl organizovin matematicky
krouzek, 3 Zzéci byli pfipravovéni individudlné.

Vychodoslovensky kraj. Pro kazdou kategorii se uskutecnila
samostatnd instruktaz referentt MO a vedoucich krouzku,
instruktdZe byly jednodenni a zG¢astnilo se jich celkem 230
utitel. V korespondenénim seminifi fesilo 150 Z4kt osm
sérii po Sesti ulohdch. Pro nejlepsi feSitele tloh seminife
se konala dvé tydenni soustiedéni (zafi 1988 a leden 1989),
kazdé pro 35 ulastniku. V Kosicich, Presové a KeZmarku
byly organizovidny matematické krouzky pro feSitele tloh
kategorie A, v Kosicich téZ pro kategorii P. Krouzky navsté-
vovalo pramérné 20 ucastniku. Pfi KDPaM v Kosicich
fungoval Klub mladych matematika. Schézel se jednou tydné
a navitévovalo ho 15—20 zdka.

Ustiedni vybor MO. Usttedni vybor MO zajistoval t¥i
celostatni soustfedéni. Pro Zdky nematurujicich ro¢niku to bylo
jiz tradi¢ni soustfedéni 80 fesiteltr aloh MO a FO. Probéhlo
ve dnech 15.—28. 6. v Dubnici nad Vdhom. Dalsi dvé sou-
stfedéni byla vénovdna piipravé Ceskoslovenského druZstva
na mezinarodni matematickou olympiddu. Prvni se konalo
28. 3.—5. 4. v Pile (12 Glastnikt), druhé 19.—29. 6. v Pardu-
bicich (8 utastniki). UV MO téZ zajistoval celostdtni kore-
spondenéni seminif (semindfi je vénovdna samostatnd Cast
této brozury). V edici Skola mladych matematiki vyddvi
UV MO v nakladatelstvi Mlad4 fronta matematické brozury
pro zaky. V prabéhu 38. ro¢niku vysly tfi svazky: J. Ttma:
Matematické hlavolamy a zdklady teorie grup, I. Korec:
Ulohy o velkych &islech a A. Kufner: Nerovnosti a cdhady
(reedice).
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Vysledky celostatniho kola 38. roéniku MO
kategorie A

Vitézové
1. Petr Cizek, 4M, G W. Piecka, Praha 42b.
2. Ondrej Such, 3M, G A. Markusa, Bratislava 41 b.
3. Ilja Martisovits, 4MF, G J. Hronca, Bratislava 32 b.
4. Marek Velesik, 4P, G, Konévova, Brno 30b.
5. Tomds Brodsky, 4M, G, tf. kpt. Jarose, Brno 29b.
6.—17. Stépdn Kasal, 2M, G W. Piecka, Praha 28 b.
Arnost Kobylka, 4M, G W. Piecka, Praha 28 b.
8.—9. Petr Broz, 4M, G W. Piecka, Praha 27b.
Stépdn Holub, 4AMF, G, Trutnov 27b.
10. Petr Hlinény, 3M, G, Bilovec 26 b.
11.—12. Viadimir Komdr, 3M, G, Kosice 25b.
Jan Vomlel, 3M, G J. K. Tyla, Hradec Kréalové 25 b.
13. Martin Kraus, 3MF, G, Karlovy Vary 23b.

14.—16. Martin Durdiak, 4M, G A. Markusa, Bratislava 22 b.
Ondrej Kalenda, 3M, G W. Piecka, Praha 22b.
Viadimir Skalsky, 3, G, Presov 22b.

17.—19. Faromir Javirek, 4M, G W. Piecka, Praha 21b.
Michal Koneény, 2M, G, tf, kpt. Jarose, Brno 21b.
Jozef Skokan, 3M, G, Velkd Okruzn4, Zilina 21b.
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Dalst uspésni Fesitelé

20.—22. Ales Cerny, 4M, G, Velkd Okruzn4, Zilina 20b.
Stefan Dobrev, 4M, G A. Marku3a, Bratislava 20 b.

Stanislav Fanuschke, 4MF, G J. Hronca, 20 b.
Bratislava

23.—27. Viliam Bur, 7, Z8, K. Smidkeho, Bratislava  19b.

Daniel Elleder, 4M, G W. Piecka, Praha 19b.

Jan Hannig, 2M, G W. Piecka, Praha 19b.

Jakub Tésinsky, 2M, G W. Piecka, Praha 19b.

Miroslav Vicher, 4AMF, G, Karlovy Vary 19b.

28. Gabriel Varga, 4P, G, Samorin 18 b.

29.—30. Andrej Dobos, 4M, G A. Markusa, Bratislava 17b.

Jan Machdéek, 3, G, Pelhfimov 17b.

31.—32. Viadimir Glasndk, 2MF, G, V. Okruzna, Zilina 16 b.
Petr Tobiska, 2M, G J. K. Tyla, Hr. Krélové 16 b.
33.—34. Simon Kos, 4M, G J. Futika, Plzen 15b.
Zbynék Sir, 4M, G J. K. Tyla, Hr. Kralové  15b.
35.--37. Peter Gvozdiak, 4M, G A. Markusa, Bratislava 14 b.
Robert Mitka, 4M, G, Velkd Okruzn4, Zilina 14 b.
Petr Stépdn, 4M, G W. Piecka, Praha 14b.

U tfid se zaméfenim studijniho oboru 01 Matematika
je za ro¢nikem oznaleni M, u Zzdku z tfid se zaméfenim stu-
dijniho oboru 02 Matematika a fyzika je za ro¢nikem oznaceni
MF. Vsichni byli zici gymnézia.
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Poradi uspéinych Fesitelis z t¥id,
které nejsou se zaméfenim studijniho oboru 01 Matematika

1. Ilja Martisovits, 4, G J. Hronca, Bratislava

2. Marek Velesik, 4, Konévova, Brno

3. Stépan Holub, 4, Trutnov

4. Martin Kraus, 3, Karlovy Vary

5. Viadimir Skalsky, 3, Presov

6. Stanislav fanuschke, 4, G J. Hronca, Bratislava

7.—8. Viliam Bur, 7, ZS, K. Smidkeho, Bratislava

20

Miroslav Vicher, 4, Karlovy Vary
9. Gabriel Varga, 4, Samorin
10. fan Machdcek, 3, Pelhiimov
11. Viadimir Glasndk, 2, Velkd Okruzn4, Zilina



Vysledky celostatniho kola 38. roéniku MO
kategorie P

Vitézové

1. Ilja Martisovits, 4, G J. Hronca, Bratislava 38 b.
2.—3. Petr Cigek, 4, G W. Piecka, Praha 37b.
Stefan Dobrev, 4, G A. Markusa, Bratislava 37b.
4.—5. Viclav Bohdanecky, 4, G W. Piecka, Praha 35b.

Viadimir Chvdtil, 3, G, Konévova, Brno 35b.

6.—7. Petr Broz, 4, G W. Piecka, Praha 32b.
Miroslav Vicher, 4, G, Karlovy Vary 32b.

8.—9. Martin Cizek, 3, G, Roznov pod Radho§tém 30 b.
Faroslav Sprongl, 2, G W. Piecka, Praha 30b.
10.—12. Andrej Lucny, 4, G, Pieitany 29b.
Robert Mitka, 4, G, Velkd Okruzn4, Zilina 29 b.

Pavel Vanousek, 3, G, Cheb 29 b.

Dalsi uspésnt Fesitelé

13.—14. René Pdzman, 4, G J. Hronca, Bratislava 28 b.
Viadimir Solc, 3, G, Beroun 28 b.

15. Milan Mosny, 4, G J. Hronca, Bratislava 27b.
16.—17. Petr Stépdn, 4, G W. Piecka, Praha 26 b.

Oldiich Vojtisek, 3, G, Partyzinsk4, Liberec 26 b.
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18.—21. Yakub Cermdk, 3, G, Jirovcova, C. Budgjovice 25 b.
Stépan Kasal, 2, G W. Piecka, Praha 25b.
Viadimir Skalsky, 3, G, PreSov 25b.
Michal Smidek, 4, G, t. kpt. Jarose, Brno 25b.

22.—24. Martin Dindos, 3, G J. Hronca, Bratislava 24b.
Zdenék Pavlas, 4, G, tf, kpt. Jarose, Brno 24 b.
Zbynék Str, 4, G J. K. Tyla, Hradec Kralové 24 b.
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Nejuspésnéjsi resitelé II. kola MO
v kategoriich A, B, C, P

Z kazdého kraje a z kazdé kategorie je uvedeno nejvyse
prvnich deset fesitela. Pokud neni uvedena $kola, byl feSitel
zédkem gymndézia. OznaCeni G znamend gymndzium, M, resp.
MF zaméfeni studijniho oboru 01 Matematika, resp. 02 Ma-
tematika a fyzika.

Praha

Kategorie A

1. Petr Cisek, 4M, G W. Piecka, Praha
2. $1épdn Kasal, 2M, G W. Piecka, Praha
3. Petr Broz, 4M, G W. Piecka, Praha
4. Michal Kubelek, 1M, G W. Piecka, Praha
5.—8. Daniel Elleder, 4M, G W. Piecka, Praha
Jan Hannig, 2M, G W. Piecka, Praha
Ondrej Kalenda, 3M, G W. Piecka, Praha
Petr Stépdn, 4M, G W. Piecka, Praha
9. Arnost Kobylka, 4M, G W. Piecka, Praha
10.—12. Jaroslav Sprongl, 2M, G W. Piecka, Praha
Jakub Tésinsky, 2M, G W. Piecka, Praha
Jan Veéer, 3M, G W. Piecka, Praha
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Kategorie B

1.—3. Petr Mourek, 2M, G W. Piecka, Praha
Jan Hannig, 2M, G W. Piecka, Praha
Jan Hriza, 2M, G W. Piecka, Praha

4.—6. Karel Janelek, 2M, G W. Piecka, Praha
Faroslav Sprongl, 2M, G W. Piecka, Praha
Petr Novotny, 1M, G W. Piecka, Praha

7.—8. Roman Jantk, 2M, G W. Piecka, Praha
FJakub Té&sinsky, 2M, G W. Piecka, Praha

9. fan Holub, 2, Vodéradska, Praha
10.—11. Veronika Hurychovd, 2M, G W. Piecka, Praha

Petr Luksan, 2M, G W. Piecka, Praha

Kategorie C

1. fan Vondrdk, 1M, G W. Piecka, Praha
2. Michal Motycka, 1M, G W. Piecka, Praha
3. Pavltna Capkovd, 1, Stépénsk4, Praha
4. Petr Mito$inka, 1, Nad aleji, Praha
5.—17. Michal Kubeiek, 1M, G W. Piecka, Praha
Vit Novdk, 8, ZS, Na planing, Praha
Martin Spacek, 1, U lib. zdmku, Praha
8.—12. fan Kynél, 1, Sladkovského n., Praha
Karel Vesely, 1, Nad aleji, Praha
Alena Biédkovd, 1M, G W. Piecka, Praha
Jan Kybic, 1M, G W. Piecka, Praha
Ji¥t Reiterman, 1M, G W. Piecka, Praha
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Kategorie P

1. Petr Cigek, 1M, G W. Piecka, Praha

2. Viclav Bohdanecky, 4M, G W. Piecka, Praha

3.—A4. Petr BroZ, 4M, G W. Piecka, Praha
Stépdn Kasal, 2M, G W. Piecka, Praha
5. Arnost Kobylka, 4M, G W. Piecka, Praha
6. Adam Holub, 3M, G W. Piecka, Praha
7.—8. Michal Kubelek, 1M, G W. Piecka, Praha
Perr Stépdn, 1M, G W. Piecka, Praha
9. Yaroslav Sprongl, 2M, G W. Piecka, Praha
10. Martin Schnabl, 2M, G W. Piecka, Praha

Stfedocesky kraj

Kategorie A

1. Viadimir Solc, 3MF, Beroun
2. Radek Novotny, 4MF, Mlad4 Boleslav

Kategorie B

1.—2. Tomas Vrbata, 2MF, Kladno
Tomds Pracka, 2, Ritany
3. Josef Soukal, 2MF, M. Boleslav
4. Miroslav Vaic, 2MF, Kladno
5.—17. Roman Chaloupka, 2MF, Kladno
Lenka Kurzveilovd, 2MF, MI. Boleslav
Faroslava Sulcovd, 2MF, M. Boleslav
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8.—9. Miroslav Bdrta, 2MF, BeneSov
Fan Némec, 2, Nymburk
10.—11. fan Kala, 2MF, Kralupy
Filip Linhart, 2, Podébrady

Kategorie C

1. Tomds Némec, 1 MF, Beroun
2. Lenka Marsikovd, 1, Ritany
3.—5. Tomd$ Hendrich, 1 MF, Beroun
Adrian Tréka, 1 MF, Beroun
Fi#i Sedldcek, 1 MF, MI. Boleslav
6. Yaroslav Fanfrlik, 1, Ritany
7. Dusan Janovsky, 1, Slany
8. Martin Helmich, 1 MF, MI. Boleslav
9.—11. Viadimir Tucan, 1 MF, Kladno
Jakub Prox, 1, Podébrady
Petr Burian, 1, Vlasim

Kategorie P

1. Viadimir Solc, 3MF, Beroun
2. Pavel Senkyiik, 4, Hotovice
3. Michal Spimr, 2MF, Kolin

Jihocesky kraj

Kategorie A

1. fan Machdcek, 3, Pelhiimov
2. David Boukal, 4M, Jirovcova, Ceské Budéjovice
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3. ¥an Baldk, 3M, Jirovcova, Ceské Budgjovice
4. Yakub Cermdk, 3M, Jirovcova, Ceské Bud&jovice

Kategorie B

1. Yan Dvoidk, 2M, Jirovcova, Ceské Budé&jovice
2. Petr Fedra, 2M, Jirovcova, Ceské Budgjovice
3.—4. Pavel Kop#iva, 2, SPS Pisek
Milan Simdnek, 2, Pelhfimov
5. Hana Snajdrovd, 2, Tabor
6.—9. Petra Dovoidkovd, 2M, Jirovcova, Ceské Budé&jovice
$i#{ Fontdn, 2M, Jirovcova, Ceské Budgjovice
Fosef Lexa, 2M, Jirovcova, Ceské Budgjovice
Irena Sindeldfovd, 2M, Jirovcova, Ceské Budéjovice
10.—12. Josef Silha, 2, T4bor
Martin Felenda, 2, Sobéslav
Zdenék Petrdsek, 2MF, K. Satala, Ceské Budé&jovice

Kategorie C

1. Dalibor Jelinek, 1 MF, K. Satala, Ceské Bud&jovice
2.—3. Tomds Kimmer, 1 MF, Pelhfimov
Libuse Stépnickovd, 1, Pisek
4. Michael Schenk, 1M, Jirovcova, Ceské Budéjovice
5.—9. Stanislav Drdel, 1, SES Pisek
Marcel Horvdth, 1, SES Pisek
Petr Machdcek, 1 MF, Pelhfimov
Perr Sdgl, 1MF, Pelhiimov
Miroslav Vobornik, 1M, Jirovcova, Ceské Budé&jovice
10.—11. #i# Cdp, 1, Pisek
Ladislav Nagy, 1M, Jirovcova, Ceské Bud&jovice
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Kategorie P

1. fan Machdcéek, 3, Pelhfimov

2. Yakub Cermdk, 3M, Jirovcova, Ceské Budéjovice
3. Milan Pfedota, 3M, Jirovcova, Ceské Budg&jovice
4. ¥an Balik, 3M, Jirovcova, Ceské Budéjovice

5. Bedndr, 3, Sobéslav

Zapadocesky kraj

Kategorie 4

1. Martin Kraus, 3MF, Karlovy Vary
2. Miroslav Vicher, 4MF, Karlovy Vary
3. Simon Kos, 4M, G J. Futika, Plzefi
4. ¥iri Fiirst, 4M, G J. Futika, Plzen

Kategorie B

1. Martin Cihdk, 2MF, Karlovy Vary
2. Miroslav Cerny, 2MF, Karlovy Vary
3. Karel Soukenik, 2M, G J. Futika, Plzeni
4. Tomds Kadlec, 2M, G J. Fucika, Plzen
5. Petr Zeman, 2M, G ]. Futika, Plzen
6. David Faflik, 2MF, Sokolov
7.—8. Radan Slavik, 2MF, Cheb
Zdenék Valecko, 2M, G J. Fuctika, Plzen
9. Radek Cibulka, 2, Sokolov



Kategorie C

1. Jan Smolik, 1M, G J. Futika, Plzenl
2. Marek Pathy, 1M, G J. Futika, Plzen
3.—4. Martin Marx, 1 MF, Cheb
Bohumil Novdéek, 1M, G J. Futika, Plzeii

5. Pavel Loskot, 1M, G J. Fucika, Plzeri

6. Petr Chrastina, 1 MF, Karlovy Vary
7.%an Kotas, 1M, G J. Futika, Plzeni

8. Lubos Motl, 1 MF, Opavska, Plzeni

Kategorie P

1. Pavel Vanousek, 3MF, Cheb
2.—3. Vitézslav Babicky, 4M, G J. Futika, Plzeii
Miroslav Vicher, 4AMF, Karlovy Vary
4. Martin Bures, 3M, G J. Futika, Plzer
5. fakub Vosdhlo, 4AMF, Karlovy Vary
6.—17. Petr Mazanec, 2, Klatovy
Fan Strunc, 3M, G J. Futika, Plzeii

Severocesky kraj

Kategorie A

1. Oldfich Vojtisek, 4M, Liberec
2. Tomds Brdzda, 4MF, Teplice
3. Stépdna Lazarovd, 4, Déin
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Kategorie B

1.—2. Ladislav Simek, 2MF, Usti n. L.
Ales Hdcha, 2M, Liberec
3. Radek Skoda, 2M, Liberec
4. Filip Bartl, 2M, Liberec
5. Stanislav Dunaj, 2MF, Usti n. L.
6.—14. Zdenék Slavik, 2, Dé&in
Firt Fiala, 2M, Liberec
Petra Hdjkovd, 2M, Liberec
Stanislav Ldla, 2M, Liberec
Stépdnka Zitkovd, 2M, Liberec
Milan Cdder, 2M, Liberec
Marta Mindfovd, 2M, Liberec
Jana Kopalovd, 2M, Liberec
Milan Kloulek, 2M, Liberec

Kategorie C

1. Perr fificka, 1M, Liberec

2. Tomas Zellerin, 1MF, Usti n. L.

3. Jaromir Kohout, 1, Zatec

4. Radek Lopusnik, 1MF, Usti n. L.

5. Hans Ginzel, 1M, Liberec

6. Martin Stianko, 1M, Liberec

7. Petr Hudsky, 1, SPS stroj. a el., Usti n. L.
8.—9. faroslav Svoboda, 1M, Liberec

Pavel Kiecan, 1M, Liberec
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Kategorie P

1. Old¥ich Vojtisek, 4M, Liberec
2. Petr Jager, 4P, Litoméfice
3. Dan Lukes$, 4M, Liberec

Vychodo&esky kraj

Kategorie A

1. Petr Merta, 4M, G J. K. Tyla, Hradec Kralové
2. Petr Duczynski, 4, Nova Paka
3.—4. Zbynék Sir, 4M, G J. K. Tyla, Hradec Kralové
Fan Vomlel, 3M, G ]J. K. Tyla, Hradec Krélové
5.—7. Stépdn Holub, 4MF, Trutnov
Petr Tobiska, 2M, G J. K. Tyla, Hradec Krélové
Zbynék Vasata, 4M, G J. K. Tyla, Hradec Krélové

Kategorie B

1.—2. Daniela Loskotovd, 2, Havli¢kav Brod
Pavel Fiala, 2MF, Pardubice
3. Petr Tobiska, 2M, G J. K. Tyla, Hradec Krélové
4.—5. firi Komdrek, 2M, G J. K. Tyla, Hradec Kralové
Lenka Elsnerovd, 2, SPSE 1, Pardubice
6.—8: Martin Firman, 2MF, Néachod
Dalimil Kerslager,2M, G J. K. Tyla, Hradec Kr4l.
Cenék Honsa, 2MF, Pardubice
9.—10. fi¥i Formdnek, 2MF, Pardubice
Daniel Benes, 2MF, Pardubice
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1.
2.

Kategorie C

Bohumila Pisovd, 1 MF, Pardubice
Rostislav Bendk, 1 MF, Pardubice

3.—4. Ji¥i Holfeuer, 1, Hlinsko

Farmil Skop, 1 MF, Simkova, Hradec Krélové

5.—8. Pavlina Kubdtovd, 1 MF, Pardubice

9.—11.

32
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1.
2.
3.

Tomd$ Ldska, 1, Turnov

Martina Oppltovd, 1 MF, Trutnov

Otto Severyn, 1, Jilemnice

Rudolf Mares, 1M, G J. K. Tyla, Hradec Krilové
Petr Sezemsky, 1, Poli¢ka

Ales Slaby, 1 MF, Pardubice

Kategorie P

. Zbynék Str, 4M, G J. K. Tyla, Hradec Krélové
. Martin Horky, 3P, Pardubice

. Petr Merta, 4M, G J. K. Tyla, Hradec Krélové
. Tomds findra, 4MF, Pardubice

. Stépdn Holub, 4MF, Trutnov

. Martin Cerveny, 4, G Simkova, Hradec Kralové

Jihomoravsky kraj

Kategorie A

Tomds Brodsky, 4M, tf. kpt. Jaro$e, Brno
Marek Velestk, 4P, Konévova, Brno
Michal Koneény, 2M, ti. kpt. Jaro$e, Brno



4.—5. Michal Bulant, 2M, tf. kpt. Jaro$e, Brno
Rostislav Caha, 4M, tf. kpt. JaroSe, Brno
6. Martin Holla, 4AMF, Kofenovéd, Brno
7.—10. Pavel Horsky, 4, Elgartova, Brno
Jan Kasprzak, 2M, ti. kpt. Jaro$e, Brno
JiFi Medved, 3MF, Zlin
Zdenék Pavlas, 4MF, tt. kpt. Jaro$e, Brno

Kategorie B

1.—2. Tomds Tyc, 2M, ti. kpt. Jarose, Brno
Milan Zamazal, 2M, tf. kpt. Jaro$e, Brno

3.—4. Oldiich Auda, 2M, tf. kpt. Jaro$e, Brno
Milan Koneény, 2M, tf. kpt. Jaro$e, Brno

5.—17. Lucte Douskovd, 2M, ti. kpt. Jaro$e, Brno
Michal Hej¢, 2M, tf. kpt. Jaro$e, Brno
Zdenék Pezlar, 2M, ti. kpt. Jarose, Brno

8.—10. fi#i Kalvoda, 2M, tf. kpt. Jaro$e, Brno

Martin Pandk, 2M, tf. kpt. Jaro$e, Brno
Jan Strdansky, 2, Boskovice

Kategorie C

1. Pavel Ruzicka, 1M, tt. kpt. Jaro$e, Brno
2.—4. Josef Mensik, 1M, tf. kpt. Jaro$e, Brno
Michal Stehltk, 1M, ti. kpt. Jarose, Brno
Pavel Vrbacky, 1M, ti. kpt. Jarose, Brno
5.—6. Ji¥i Burd#i, 1, Uhersky Brod
Fan Stambera, 1M, tt. kpt. Jarose, Brno
7.—9. Markéta Bauchnerovd, 1M, tf. kpt. JaroSe, Brno
Ji7t Mucha, 1M, ti. kpt. JaroSe, Brno
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Irena Ptibylovd, 1, Jihlava

10.—13. fan Fikar, 1 M, tf. kpt. Jaro$e, Brno
Miroslav Kovd#, 1P, Kon&vova, Brno
Filip Miinz, 1M, tf. kpt. Jaro$e, Brno
Eva Novdkovd, 1, Jihlava

Kategorie P

1.—2. Zdenék Pavlas, 4MF, tf. kpt. Jaro$e, Brno
Marek Velesik, 4P, Konévova, Brno
3. Michal Smidek, 4, . kpt. Jarose, Brno
4.—5. Viadimir Chvdtil, 3, Konévova, Brno
David Krdsensky, 3M, tf. kpt. Jaro3e, Brno
6. David Mahdal, 4, Zlin
7. Martin Ryidnek, 4, tf. kpt. Jaro$e, Brno
9. Dusan Chromy, 3, tf. kpt. Jaro$e, Brno
Michal Kadatika, 3, ti'. kpt. Jaro$e, Brno
10. Miroslav Padalik, 4M, tf. kpt. Jaro$e, Brno

Severomoravsky kraj

Kategorie A

1. Petr Hlinény, 3M, G M. Kopernika, Bilovec
2.—3. Martin Kuéera, 4M, G M. Kopernika, Bilovec
Libor Némelek, 4M, G M. Kopernika, Bilovec

4. Ales Kubéna, 2M, G M. Kopernika, Bilovec

Kategorie B
1.—2. Lukd§ Buéek, 2, G M. Kopernika, Bilovec
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Pavel Rychly, 2, tf. Jifiho z Podébrad, Olomouc
3.—5. David Habrndl, 2, G M. Kopernika, Bilovec
Ales Kubéna, 2, G M. Kopernika, Bilovec
Petr Waclawek, 2, Karvind
6.—7. Radim Moric, 2M, G M. Kopernika, Bilovec
Oldrich Dosedél, 2M, G M. Kopernika, Bilovec
8.—9. #ifi Skotnica, 2M, G M. Kopernika, Bilovec
Radek Horensky, 2, tf. Jifiho z Podébrad, Olomouc
10.—15. Vidclav Divis, 2M, G M. Kopernika, Bilovec
Radim Kubacki, 2M, G M. Kopernika, Bilovec
Perr Sindylek, 2M, G M. Kopernika, Bilovec
Jan Moskot, 2M, G M. Kopernika, Bilovec
Petr Poménka, 2M, G M. Kopernika, Bilovec

Kategorie C

1. Ivo Slosaréik, 1, dr. Smerala, Ostrava
2.—3. Ales Kolenovsky, 1M, G M. Kopernika, Bilovec
Marta Janebovd, 1, Valasské Mezifi¢i
4.—8. Marek Blahuta, 1M, G M. Kopernika, Bilovec
Radomir Nosek, 1M, G M. Kopernika, Bilovec
Tomd§ Preéek, 1, F. Hajdy, Ostrava-Hrabtivka
Jan Janéura, 1, Thilmannova, Ostrava-Poruba
Jana Slivovd, 1, M. Majerové, Ostrava-Poruba
9.—15. Ondfej Prusek, 1M, G. M. Kopernika, Bilovec
Roman Koch, 1M, G. M. Kopernika, Bilovec
Alan Bulava, 1M, G. M. Kopernika, Bilovec
Roman Charvor, 1, Karvind
Jan Kovdr, 1, Karvind
René Gemel, 1, Karvina
Libor Misa, 1, SPS strojni, Pferov
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1.
2.

Kategorie P

Robert Myska, 4, tf. Jitiho z Podébrad, Olomouc
Richard Vliach, 4, Roznov p. Radh.

3.—5. Jifi Suchomel, 3, Zabieh na Moravé

6.—8.

9.—10.

3

4
5.-7
8.—9
10.
1.—6
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Martin Cisek, 3, Roznov p. Radh.

Ji¥i Rojicek, 4, G. M. Kopernika, Bilovec
Roman Liszka, 4, G. M. Kopernika, Bilovec
Hana fondSovd, 4, Roznov p. Radh.

Mojmir Némeéek, 3, Havifov-Bludovice
Radek Luéan, 3, Frydek-Mistek

Tomds Sobek, 2, Opava

Bratislava

Kategorie A

. Ilja Martisovits, 4MF, G J. Hronca, Bratislava

Ondrej Such, 3M, G A. Markusa, Bratislava

. Martin Dindos, 3MF, G J. Hronca, Bratislava
. Andrej Dobos, 4M, G A. Markus3a, Bratislava
. Stefan Dobrev, 4M, G A. Marku3a, Bratislava

Viliam Bur, 7. tf., ZS, Medzilaboreck4, Bratislava
Igor Banik, 4MF, G J. Hronca, Bratislava

. Jana Zdrazilovd, 4M, G A. Markusa, Bratislava

Milan Mosny, 4MF, G ]J. Hronca, Bratislava
Stanislav Januschke, 4MF, G J. Hronca, Bratislava

Kategorie B

. Martin Fedor, 2M, G A. Markus3a, Bratislava



Jdn Richter, 2M, G A. Markusa, Bratislava

Viadimir Spitdlsky, 2M, G A. Markusa, Bratislava

Tvan Cervenka, 2, Metodova, Bratislava

Igor Maly, 2MF, G J. Hronca, Bratislava

Martin Vojtko, 2MF, G J. Hronca, Bratislava
7.—10. Juraj DZubas, 3M, G A. Markus$a, Bratislava

Ivan Mavalda, 2M, G A. Markus$a, Bratislava

Andrea Slesdrovd, 2M, G A. Markusa, Bratislava

Martin Uher, 2M, G A. Markusa, Bratislava

Kategorie C

1.—3. Ladislav Kis, 1M, G A. Marku3a, Bratislava
Juraj Lanyi, 1, G A. Markusa, Bratislava
Pavol Mederly, 1M, G A. Markusa, Bratislava

4.—8. Rickard Kollir, 1M, G A. Markus$a, Bratislava
Matej Kordos, 1, G J. Hronca, Bratislava
Mariana Makarovd, 1, G J. Hronca, Bratislava
Matej Ondrusek, 8 tt., Z8, Kogick4, Bratislava
Milos Volauf, 8 ti., Z8, Kosicka, Bratislava

9. Michal Kopéok, 1M, G A. Markusa, Bratislava
10.—12. Miroslav Cik, 1, Tomasikova, Bratislava
Michal Suchoba, 1, G J. Hronca, Bratislava
Martin Vrsansky, 1, G J. Hronca, Bratislava

Kategorie P

1. Ilja Martisovits, 4MF, G ]J. Hronca, Bratislava
2. Martin Dindo$, 3MF, G ]. Hronca, Bratislava
3. Stefan Dobrev, 4M, G A. Markusa, Bratislava
4. René Pdzmdn, 4MF, G ]J. Hronca, Bratislava
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5. Peter Gvozdiak, 4M, G A. Markusa, Bratislava
6.—8. Viadimir Duratka, 3MF, G J. Hronca, Bratislava
Stanislav Januschke, AMF, G J. Hronca, Bratislava
Milan Mosny, 4MF, G J. Hronca, Bratislava
9. Ondrej Such, 3M, G A. Markusa, Bratislava

Zipadoslovensky kraj

Kategorie A

1. Gabriel Varga, 4, Samorin

2. Ondrej Sedivy, 3MF, Péarovsk4, Nitra

3. Eva Fa$angovd, 4, Zeliezovce

4. Zuzana Miskolciovd, 4, G E. Gudernu, Nitra
5. Karol Zimmer, 4, G E. Gudernu, Nitra

6. fan Obrcian, 4MF, Pirovskd, Nitra

7. Viadimir Krdlik, 3, Zlaté Moravce

8. Tibor Rapant, 3, Trnava

9. Ivo Kluvanec, 3MF, Péarovsk4, Nitra
10. Radovan Dermisek, 3, Skalica

Kategorie B

1. Michal Slezdk, 2, G E. Gudernu, Nitra

2. Ladislav Nagy, 2, Komarno

3. Yaromir Zivna, 2, Skalica

4. Peter Sedik, 2, Trentin

5. Daniel Vidovié, 2, Partizinske

6. Robert Kadlec, 2MF, Parovska, Nitra

7. Monika Bolebruchovd, 2, Nové Mesto n. Vdhom
8. Alexander Tomik, 2P, Piestany
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Kategorie C

1. Ttbor Drinka, 1, Galanta

2. Pavol Mala, 1, Sala

3. Peter Bdsti, 1, Komérno

4. Zsolt Csandal, 1, Komérno

5. Jaroslav Porubansky, 1, SPS, Nitra

6. Lubomir Salanci, 1 MF, Pirovsk4, Nitra
7. Jozef Tilandy, 1, Trendin

8. Norbert Futd, 1, Galanta

9. Stefan Klbik, 1 MF, Parovsk4, Nitra

Kategorie P

1. Andrej Licény, 4P, Piestany
2. Jozef Gerhdt, 4, Topoltany
3. Roland Baranovic, 4, G, E. Gudernu, Nitra

Stiedoslovensky kraj

Kategorie A
1. Jozef Skokan, 3M, Velka Okr., Zilina

2.—3. Rébert Mitka, 4M, Velka Okr., Zilina

Juraj Liorinc, 2M, Bansk4 Bystrica
4. Eduard Omasta, 3, Ruzomberok
5. Lubos Ciklamini, 4M, Velk4 Okr., Zilina
6. Ales Cerny, 4M, Velka Okr., Zilina
7. Blazej Strba, 4M, Nov4 Baria
8. Viadimir Glasndik, 2MF, Velk4 Okr., Zilina
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Kategorie B

1. furaj Lérinc, 2M, Tajovského, Bansk4 Bystrica
2. Simon Maly, 2MF, Ziar nad Hronom
3. Radoslav Harman, 2MF, Liptovsky Hradok
4. Viadimir Glasndk, 2MF, Velka Okr., Zilina
5. Peter Maléovsky, 2MF, Prievidza
6. Vojtech Goceliak, 2M, Tajovského, Bansk4 Bystrica
7. Valeridan Valdsek, 2M, Tajovského, Banské4 Bystrica
8. Roman Tistdk, 2MF, Liptovsky Mikul4s
9. Rugena Zimanovd, 2MF, Prievidza
10. Rastislav Ilko, 2MF, Povazska Bystrica

Kategorie C

1. Lubomir Macek, 1 MF, Liptovsky Mikulds
2. Yaroslava Kuciarikovd, 1M, Velka Okr., Zilina
3. Maridn Kucera, 1, Liptovsky Hradok
4. Roman Mackovédk, 1M, Velka Okr., Zilina
5. Peter Nemec, 1M, Tajovského, Banska Bystrica
6. Tomds Neuberg, 1 M, Tajovského, Banskd Bystrica
7. Miroslav Skultéry, 1, Brezno
8. Adrian Kovaé, 1MF, VPT, Martin
9. Branislav Kusnierik, 1 MF, VPT, Martin
10. Pavel Kyéina, 1, Liptovsky Mikulas

Kategorie P

1. Gregor Rayman, 4, Banskd Stiavnica
2. Rébert Mitka, 4M, Velki Okr., Zilina
3. Eduard Omasta, 3, Ruzomberok



13

W N -

AW N -

8.—11.

. Vladimir Glasndk, 2MF, Velk4 Okr., Zilina
. Michal Hrabovec, 3MF, Wolkerova, Zilina
. Roman Grolmus, 4, Banskéa Stiavnica

Vychodoslovensky kraj

Kategorie A

. Vladimir Komdr, 3M, Smeralova, Kosice

. Maro§ Rustidk, 4M, Smeralova, Kosice

. Jan Franek, 4M, Smeralova, Kosice

. Vladimir Skalsky, 3, G T. Sevtenka, Presov

Kategorie B

. Radovan Teleki, 2, Spisska Novd Ves

. Peter Varga, 2, Srobérova, Kosice

. Marianna Lechmanovd, 2, TrebiSovskd, Kosice
. Ondrej Pajtdc, 2, Michalovce

Helena Petrovicovd, 2M, Smeralova, Kogice
Stanislav Novdk, 2M, Smeralova, Kosice

. Marcel Presalovic, 2, Stropkov

Marek Mikita, 2M, Smeralova, Kogice
Lubor Kusntr, 2, G T. Sevenka, Presov
Slavomir Hrinko, 2, Konstantinova, PreSov
Peter Pastéka, 2M, Smeralova, Kosice

Kategorie C

. Miroslav Chladny, 1M, Smeralova, Kosice
. Herbert Vojéik, 1M, Smeralova, Kosice
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3. Marek Gura, 1, Leninovo nébr., Poprad
4. Imrich Kovdé, 1, SPS strojni, Spisskd Novi Ves
5.—8. Dalibor Michaldk, 1, Zap. ulica, Poprad
Lubo§ Pdstor, 1M, Smeralova, Kogice
Marek Sotdk, 1, Humenné
Marcel Telka, 1, SPSE, Presov
9.—11. Gregor Bdnd, 1, Kuzményho, Kosice
Fdn Masiuch, 1M, Smeralova, Kosice
Fana Vistiovskd, 1M, Smeralova, Kosice

Kategorie P

1. Viadimir Skalsky, 3P, G T. Sev&enka, Predov
2. Slavomir Gmitro, 3, Konstantinova, PreSov
3. Miroslav Bobovsky, 3, SPS, Poprad

4. Peter Haluska, 3M, Smeralova, Kosice
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Kategorie C

Texty uloh

C-1-1
V magickém &tverci 3 X 3 jsou vepsédna pfirozeni Cisla tak,
Ze vSechny souliny tfi Cisel v fadcich, sloupcich i Ghlopfi¢-

kich jsou stejné. Dokazte, Ze je pak soulin vSech deviti
vepsanych Cisel devitou mocninou piirozeného ¢&isla.

C-1-2
Rovnostranny trojihelnik ABC o délce strany 4 cm oto&ime
kolem jeho prisetiku vysek o 90°, dostaneme tak trojuhelnik
A’B’C’. Urtete obsah pruniku trojahelnika ABC a A’B’C’.
C-1-3
Je déna soustava rovnic
9% + vy + =2 =283
x+9 + 2=99
x4+ y+ 92 =69,

kterd m4 pii zméné jednoho ¢&isla na pravé strané na jiné dvoj-
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ciferné Cislo celotiselné feSeni. Najdéte toto Cislo a pfislusné
feSeni soustavy.

c-1-4

Vrcholem C trojuhelniku ABC vedte pfimku p tak, aby
soucet vzdéalenosti bodd 4, B od pfimky p byl nejvetsi.

C-1-5
Dokazte, 7e existuje pfirozené Cislo %, pro které existuje
pravé 1988 ruznych pythagorejskych trojahelnika s odveés-

nou délky k. (Pythagorejsky trojahelnik je pravouhly troj-
thelnik s celo¢iselnymi délkami stran.)

C-1-6
Jaky nejvétsi pocet Cisel je mozné vybrat z &isel 1, 2, ...
..., 1989, aby 74dné z nich se nerovnalo souttu jinych dvou
vybranych ¢&isel ?
C-S-1
Je dan rovnostranny trojahelnik ABC o strané délky 12 cm,
D je stfed strany BC. Vypoltéte obsah pruniku &tverci
ADKL, ABMN, které neobsahuji bod C.
C-S-2

Opravte pravou stranu pravé jedné z rovnic x + 2y = 43,
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2x +y =50, x +y =30, x —y =4 tak, aby opravena
soustava méla feSeni v oboru redlnych ¢isel. Napiste oprave-
nou soustavu a jeji feleni.
C-§-3

Ve tfidé je 30 zakn, kazdému je pfifazeno pofadové Cislo
podle abecedniho seznamu. Utitel vyvoldvé Z4ky podle tohoto
pravidla: Selte pofadovd Cisla dvou posledné vyvolanych
zaku, a jestlize je soucet vétsi nez 30, odelte &islo 30. Vysledek
je poradové Cislo Zz4ka, ktery bude vyvolan. DokaZte, e nemo-
hou byt bezprostfedné po sob& vyvoldni Horacek, Sebestova
a Mach v tomto potadi.

C-1l-1
V oboru redlnych &isel feste soustavu rovnic

x2 +xy +xz= 80
xy +y2 +yz= 48
xz + vz + 22 = —64.

C-11-2

Do ptlkruhu s polomérem 4 jsou vepsiany dva kruhy
s praméry 4 a d, které se dotykaji (obr. 1). Vypocltéte d.

///®
/ X h
r” )

Obr. 1
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C-1l-3

Je dén pravidelny dvanéctiahelnik 414243. . . 412 vepsany
kruznici s polomérem 10. Vypoltéte obsah lichob&Zniku
A1A2A4A5.

Cc-11-4

Mnozina M se skldd4 z n + 1 celych kladnych &isel men-
§ich nez 2n. Dokazte, ze nékteré z nich se rovna soultu
nejmensiho &isla z mnoziny M a n&kterého dalsiho &isla
z této mnoziny.

Reseni tdloh
C-1-1

Oznatme po fad¢ a, b, ¢ &isla vepsan4 do prvniho fddku,
podobné d, e, f ¢isla v druhém a g, A, 7 Cisla v tfetim Fadku
magického Ctverce. Oznalme déle s soudin &isel v fadku,
sloupci nebo na diagondle. Je tedy s = abc = def = ghi =
= adg = beh = cfi = aei = gec. Proto je st = (def).(beh).
.(aet).(gec) = (abc).(def).(ghi).e = s3¢3, odkud plyne s = €3.
Pro sou¢in vSech deviti vepsanych <&isel pak plati
(abc).(def).(ghi) = ® = €9, je to tedy devitd mocnina toho
Cisla, které stoji uprostied Ctverce.
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C-1-2

Oznatme M prusetik pfimek AB a C’4’, N prusetik
piimek BC a A’B’ (obr. 2), prusetik vysek trojuhelniku
ABC oznatime V. Otoleni kolem bodu V o pravy uhel
sloZime je§té s osovou soumérnosti podle osy tsetky A’B’.
Vysledné zobrazeni zobrazuje bod 4 na bod B’, bod B na
bod A4’, bod C na bod C’, bod V je samodruzny, zobrazi
se na sebe. Toto sloZené zobrazeni je tudiz osovd soumér-
nost, nebot zobrazuje trojuhelnik 4V B na trojuhelnik B’VA’.
Prusetik L piimky 4B a jejiho obrazu B’A’ je tedy také samo-
druzny, bod M se zobrazi na bod N a bod N na bod M.
Oznatime-li x = |LB| = |A’L|, je |LN| = |ML| = x]/3 a
|[BN| = |MA’| = 2x, nebot trojuhelnik LBN je pravouhly
a jeho vnitfni Ghel pfi vrcholu B je 60°. Je oviem téz |AM| =
= 2x, protoze pii otoleni kolem bodu V o 120°, pii kterém
se bod A zobrazi na bod B a bod B na bod C, zobrazi se bod C”
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na bod A’ a bod A’ na bod B’, takZe se bod M zobrazi na
bod N. Je |AB| = 4 = |AM| + |[ML| + |LB| = 2x +
2(3 —3)

3 .
Obsah pruniku trojthelnika 4ABC, A’B’C’ dostaneme,
kdyZ od obsahu trojahelniku ABC odelteme obsah vysra-
fované ¢&4asti, tj. trojndsobek obsahu trojuhelniku BLN.

Vysledek je 4(3 — |/3).

+ x]/g + x = x(3 + |/3), odkud x =

C-1-3

Jsou-li &isla x, v, z feSenim dané soustavy, je 8(y — x) = 16,
8(y — 2) = 30 a 8(x — 2) = 14. Posledni dvé rovnice, které
jsme dostali odeltenim tfeti rovnice od prvnich dvou rovnic
soustavy, ukazuji, Ze x, ¥, 2 nemohou byt celd &isla. Jelikoz
mame zménit pravou stranu jen jedné z danych rovnic, musi
to byt rovnice tieti, ¢islo 69 nahradime zatim neznidmym
Cislem a. Z prvnich dvou rovnic plyne y = x + 2, dosazenim
do prvni a tfeti rovnice dostaneme 10x + z = 81,2x + 92 =
=a — 2, odkud 88x = 731 — a = 88.7 + 115 — a. M4-li
byt x celé &islo, musi byt Cislo 115 — a délitelné &islem 88.
JelikoZz ma byt ¢islo a dvojciferné, musi byt a = 27. Je pak
x = 8, y = 10, z vychazi rovnéz celo¢iselné, 2 = 1.

C-1-4
UvaZujme nejdfive jen ty primky, které prochdzeji bo-
dem C a protinaji tse¢ku AB (obr. 3). Oznatme E spoleiny
bod pfimky p (prochézejici bodem C) a use¢ky AB, paty
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Obr. 3

kolmic vedenych body A, B na pfimku p oznatime A’, B’.
Je pak |AA’| + |BB’| < |AE| + |BE| = |AB|, pfitemz
|AA4’| + |BB’| = |AB| pravé tehdy, kdyz je pfimka p kolma
k pfimce AB a body A4’, B’, E splynou. Uvazujme nyni
pfimku p, kterd nem4 spole¢ny bod s usetkou AB (obr. 4)

p

LA

Obr. 4

a prochdzi samozfejm& bodem C. Opét oznalime A4’, B’
paty kolmic vedenych body 4, B k pfimce p, ddle oznatime D’
patu kolmice vedené k piimce p stfedem D usetky AB.
Usetka DD’ je stfedni ptikou v lichob&Zniku AA’B’B
(je-li pfimka p rovnobéZni s pfimkou 4B, je to oviem obdél-
nik), proto je |AA’| + |BB’| = 2.|DD’| = 2.|CD|. Pfitom
|AA’| + |BB’| = 2.|CD| pravé tehdy, kdyZ je pfimka p
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kolm4 k pfimce CD. Dopliime trojuhelnik ABC na rovno-
béZnik AFBC (obr. 5). Je-li |CF| = 2.|CD| > |A4B|, je hle-
danou pfimkou pfimka p prochézejici bodem C kolmo k pfim-
ce CF, nebot z |CF| > |AB| plyne, Zze pfimka p neprotind
usetku AB. Je-li |CF| < | 4B, je hledanou piimkou p piimka
prochizejici bodem C a kolmé k pfimce 4AB. Pfimka p pak
use¢ku AB protind. Je-li |CF| = |AB|, ma tloha dv¢& feSeni,
kolmici vedenou bodem C ke strané 4B (ta useCku 4B pro-
tind) a dale kolmici vedenou bodem C k thlopti¢ce CF
obdélniku AFBC (ta usetku AB neprotina).

Obr. 5

C-1-5

Ozna¢me a a ¢ délky druhé odvésny a pfepony pythagorej-
ského trojuhelniku, jehoZ prvni odvésna ma délku %. Je tedy
B =c—a®=(—a)(c+a) Cisla c—a, c +a museji
byt obé lichd nebo obé sud4 a prvni je mensi nez druhé. Nase
uloha bude vyfeSena, najdeme-li takové &islo &, jehoz druha
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mocnina se d4 pravé 1 988 zpusoby napsat jako soucin dvou
pfirozenych Cisel stejné parity, pfi¢emzZ prvni z nich je mensi
nez druhé. Nejlépe je zkusit vzit néjakou mocninu prvocisla.
Vyhovuje napfiklad & = 31988 tedy k2 = 38976, Toto (islo
muzeme privé 1988 zpusoby napsat jako soudin dvou
piirozenych &isel tak, aby byly splnény vy3e uvedené pod-
minky. Jde o rozklady k%2 = 3¢.33976-a_ kde a probihd Cisla
0,1, 2,..., 1987. Mohli jsme téZ zvolit k = 21989  tedy
k2 = 23978 Jediné rozklady spliiujici pozadavky tlohy jsou
k2 = 2b.23978-0_ p nabyva hodnot 1, 2, ..., 1988.

C-1-6

Vybereme-li z danych ¢isel viechna lich4 ¢&isla, téch je 995,
pak se ?4dné z vybranych Cisel nerovnd sou¢tu dvou jinych
vybranych, nebot soucet kazdych dvou lichych &isel je &islo
sudé. Ukdzeme jesté, ze vice nez 995 vybrat nelze. Pred-
pokladejme, Ze jsme vybrali 996 ¢isel, od kazdého z nich
odetteme nejmensi vybrané Cislo. Dostaneme tak 995 &isel
mensich nez 1 989. Spolu s vybranymi 996 ¢isly je jich do-
hromady 1 991. Vsechna jsou mensi nez 1 990. Nutné tedy
existuji mezi vybranymi 996 &isly aspori dvé ruzna &isla x1, xo
tak, Ze se kazdé z nich rovné jinému vybranému &islu zmense-
nému o nejmensi vybrané &islo 2,tj. x1 = y1 — 2, X3 = yo — 2.
Je zieymé x1 7~ y1 #£ 2z, x2 F Yo £ 2. Je-li x1 = 2, je x2 #~ z,
takze bud ¢&isla x;, yi, 2, nebo &isla xa, V2, 2 jsou navzijem
raznd a x; + 2 = Y1, x2 + 2 = yo. Tim jsme ukdzali, Ze
mezi kazdymi 996 piirozenymi ¢&isly men$imi nez 1 990
existuji tfi navzajem razna Cisla tak, Ze jedno z nich je soutem
zbyvajicich dvou. Odpovéd na otdzku ulohy je 995.
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C-S-1

Je|AD| = 6]/§cm, |BD| =6 cm, tedy |BK| =6(}/3 — 1) cm
(obr. 6). Oznatme P prusetik useCek KL a BM.Je|< PBK| =
= 30° takie |PK|=|BK|:]3 cm = (6 — 2|/3) cm. Hle-
dany obsah dostaneme, kdyz od obsahu &tverce ADKL
odelteme obsah trojihelniku 4DB a obsah trojuhel-
niku PBK, vysledek je (6]3)2 — 18]/3 — 12(2]/3 — 3) =
= (144 — 42]/3) cm2.

Obr. 6

C-S-2

Z prvnich dvou rovnic plyne x = 19, y = 12. Tyto hod-
noty nevyhovuji zZ4dné z dalsich dvou rovnic. Z toho plyne,
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Ze je tieba opravit jednu z prvnich dvou rovnic. Posledni dvé
rovnice maji feSeni x = 17, y = 13. Tyto hodnoty vyhovuji
prvni rovnici, drubou rovnici je tieba opravit na 2x + y = 47,
feSeni je x = 17,y = 13.

C-s-3

Oznatme h, §, m poradovi &isla Horatka, Sebestové
a Macha, je tedy 2 < m < §. Kdyby byli bezprostfedn&
za sebou vyvolini Horatek, Sebestovd a Mach v tomto
pofadi, muselo by platit 2 + § = m nebo % + § — 30 = m.
Avsak & + § se nerovnd m, protoZe § > m. Druh4 rovnost
také nemuze platit, nebot § — 30 se rovnd nule nebo je to
Cislo zdporné, takze h + § — 30 =k < m.

C-ll-1

Je-li trojice x, y, z feSenim dané soustavy, je x(x + y +
+ 2) =80,3(x +y + 2) = 48, 2(x + y + 2) = —64, takZe
x:y:2=5:3:(—4). Polozime-li tudiz x = 5k, y = 3k,
2z = —4k, dostaneme k2 = 4, takZe k2 = 2 nebo k = —2.
Soustava ma dvé feSeni: x = 10,y = 6,2 = —8ax = —10,
y=—6, 2z =28.

C-1-2
Z pravouhlych trojihelnika SOP, OPQ (obr. 7) plyne
|SO2 — |SP]2 = |0Q]* — [PQ%, tj. 2+ 1P —(2—rf=
= (4 —r)> — 12, kde r je polomér mensiho kruhu. Odtud
r=1,d=2.
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C-11-3

Oznatme S stfed kruznice opsané dvanéctiahelniku
(obr. 8) a P, Q paty kolmice vedené bodem S k usekdm

A1ds, AsAs. Je | A2 A4 = 10, |SQ| = 5)/3. Protoze | PSAs|
= 60° je |PS| =5 a|Aids| = 2|PAs| = 2.5]/3 = 10]3,
tedy |[PQ| = 5|3 — 5. Obsah lichob&zniku je 25(}/3 — 1)
()3 + 1) = 50.

C-11-4

Oznaéme a nejmensi &slo z mnoziny M, necht ay, ag, ...
..., ap jsou viechna dalsi &isla z mnoziny M. Pfirozena Cisla
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a1, a2, ..., Apy A1 — A, A3 — Ay ..., dy — A jSOU Vesmés
mensi nez 2n a je jich pravé 2n. Proto nemohou byt navzijem
riiznd, pro nékteré 7 a nékteré ; (j 7 ¢) musi platit a; = a; — a,
tj. a; = a; + a, coZ jsme méli dokdzat.

55



Kategorie B

Texty uloh

B-1-1
Dokazte, Ze v lichob&Zniku ABCD neexistuje bod X, pro
ktery by mély trojuhelniky ABX, BCX, CDX, DAX stejny
obsah.
B-1-2
Oznatme S(n) ciferny soulet pfirozeného Cisla n. DokaZte,
ze rovnice S(x + p) = S(x) m4 alespori jedno feleni, pravé
kdyz je p délitelné deviti.
B-1-3

Z 3achovnice n X n, kde n neni délitelné tfemi, odstfih-
neme jedno rohové pole. Dokazte, Ze zbytek je moZné
pokryt deskami tvaru L sloZenymi ze tii ¢tverct shodnych
s polem 3achovnice tak, Ze se desky nepfekryvaji.

B-1-4

Najdéte nejmensi liché prvolislo n, které déli soulet
22243284 ... 4+n.2n,
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B-1-5

V trojuhelniku ABC oznatme Cy stied strany AB a Cj,
C, prusetiky piimky AB s osami uhlu pfimek AC, BC.
Sestrojte trojuhelnik ABC, jsou-li dédny délky asetek CC,
CC,, CCa.

B-1-6

Necht ¢ je pfirozené &islo a n = (3¢ — 1)|2. Dokaizte,
Ze mnoZinu {1, 2, ..., n} lze rozdélit na ¢ disjunktnich pod-
mnozin Ay, Ag, ..., A tak, Zze Zddnd mnozina A; neobsahuje
Cisla x, y, 2 s vlastnosti x + y = 2.

B-S-1
Je déno pftirozené Cislo n. Urlete polet permutaci (ai,
asz, ..., ay) &sel 1,2, ..., n, pro které je soucin
(a1 —1).(azg —2).....(an —n)
Cislo liché.

B-S-2

Opravte pravou stranu jedné a jen jedné z rovnic x + y =
=41, y + 2 =13, 2 +x = 16, 2x + y + 2z = 55,
x + 2y + 2z = 52 tak, aby opravend soustava rovnic méla
teSeni v oboru redlnych cisel. Napiste opravenou rovnici
a feSeni vysledné soustavy.
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B-S-3

Pro kazdé prirozené ¢&islo n necht je f(n) jednociferné
¢islo, které vznikne z Cisla # koneénym poltem opakovani
operace tvofeni ciferného sou¢tu (napf. f(78569) = f(35) = 8).
Najdéte viechna pfirozend Cisla 7, pro kterd je f(n) = f(3n)
a0 <n<1000.

B-1l-1

Je déno ptirozené Cislo n. Najdéte celé &islo P tak, aby
existovalo prdvé n navzijem neshodnych obdélnika s celo-
Ciselnymi délkami stran, které maji obsah P.

B-11-2

Devét judista se rozhodlo uspoiadat vylucovaci turnaj
nésledujicim zpisobem: V kazdém kole se z dosud nepora-
zenych judisttt uréi losem dvojice zdpasnika, kterd se utka.
Vitéz posledniho (osmého) zdpasu se stdva vitézem turnaje.
Zjistéte poCet viech moznych prabéhiu takovéto soutéze.

B-11-3

Urcete ptirozené Cislo, které v Ciselné soustaveé pii zakladun
ma zipis xy20, a v soustavé pii zdkladu 2n zdpis y2524.
(Zapis abcd, znali &islo an® + bn® 4+ cn + d, kde 0 =
=a,b,c,d<n)
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B-11-4

Zjistéte, kolik celotiselnych feSeni mé rovnice

[1989 //_]+[1989;/n -+-1]+ +[1989 /n+l9881_
l/" A A ‘/ 1989

= 1990.

([x] znaci celou &ast Cisla x, tj. nejvétsi celé Cislo, které neni
vEétsi nez Cislo x.)

ReSeni dloh
B-1-1

Pfedpoklidejme, Ze v lichob&Zniku ABCD existuje bod X
tak, Ze jsou si rovny obsahy trojihelnikid ABX, BCX, CDX
a DAX (obr. 9). Oznalme S obsah lichob&Zniku a v, »
vzdalenosti bodu X od pfimek AB, CD. Z trojuhelniku ABX

, |[AB].» S " bt
— = — ,tak¥e v = ——— tane-
plyne — 3 > lakZeo 2-|AB|’po obné dostane
mew = 2—|6‘3| Jelikoz vyska lichobézniku je v + w,
_l4B+(CD| S (4Bl +[CDF
jed = 2 (vtw)= 4 |AB[.|CD| , odku

plyne (|AB| — |CD|)?2 = 0, tedy |AB| = |CD|. To je viak
ve sporu s tim, ze ABCD je lichob&Zznik.
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Obr. 9

B-1-2

Velmi pékné feSeni této ulohy, které zde uvadime, podal
zdk 2. ro¢niku gymndzia v Brné, tf. kpt. JaroSe Tomd§ Tiitz.
Ptedpoklddejme nejdiive, Ze pro pfirozené &islo p existuje
piirozené Cislo x tak, ze S(x + p) = S(x). Jelikoz Cisla n
a S(n) davaji stejny zbytek pfi déleni deviti (plati pro kazdé
pfirozené &islo 7), ddvaji stejny zbytek pii déleni deviti
ildisla x +p a x, je tedy jejich rozdil p délitelny deviti.
Necht je obricené &islo p délitelné deviti, tj. p = 9%, k pfi-
rozené ¢islo. Pak je &islo & feSenim rovnice S(x + p) = S(x),
nebot Cisla & a & + p = 10k maji stejny ciferny soucet.

B-1-3

Pro n = 1 je tloha trividlni, neni vlastn& co pokryt. Uloha
je téz lehce fesitelnd pron = 2 an = 4 (obr. 10). Pfin =5
musime chvili zkou$et, nez najdeme néjaké feSeni, tieba to,
jez je zndzornéno na obr. 11. V pfipadé n = 7 oddélime
od ¢tverce 7 X 7 ttverec 5 X 5(obr. 12), od ného odstiihne-
me jedno rohové pole. Ten pak dovedeme deskami tvaru L
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5x5

IN

Obr. 10 Obr. 11 Obr. 12

pokryt, zbytek pokryjeme tak, jak je vidét na obr. 12. Zaroveri
vidime, Ze obdélnik 2 X 3 muZeme pokryt pravé dvéma deska-
mi tvaru L. Z toho v3ak ihned plyne, Ze muZeme poZadova-
nym zpusobem pokryt kazdy obdélnik o rozmérech 2k, 3/,
kde %, / jsou pfirozend &isla, zvlast¢ tedy &tverec o strand
6m, m prirozené Cislo. Kazdy takovy obdélnik se totiz skldd4
z kIl nepiekryvajicich se obdélnikt o rozmérech 2 a 3. Kazdé
prirozené Cislo n v&tsi nez 7, jeZ neni délitelné tfemi, se d4
pravé jednim zpusobem napsat ve tvaru 6m + 2, 6m + 4,
6m + 5 nebo 6m + 7, kde m je piirozené &islo. Ctverec
o strané n, z né¢hoz vynechime jedno rohové pole, se pak
sklad4 z Ctverce o strané 6m, dvou obdélniki, jejichz jedna
strana je 6m a druhd 2, 4, 5 nebo 7, a &tverce o strané 2, 4, 5
nebo 7, od né¢hoz je odstfizeno jedno rohové pole. Kazdy
z téchto utvart dovedeme poZadovanym zpusobem pokryt.
Stali si uvédomit, Ze obdélnik 6 X 5 mliZeme rozdélit na
obdélniky 6 X 2 a 6 X 3, podobné obdélnik 6 X 7.

Jiny dukaz: Pron = 1, n = 2 a n = 5 tvrzeni Glohy plati,
viz predchézejici postup. Nyni dokdZeme, Zze kdyZ je tvrzeni
ulohy pravdivé pro &islo n = 3k — 1, je pravdivé téZ pro
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n = 3k + 1. Ctverec o strané 3k + 1 dostaneme totiZ z &tver-
ce o strané 3k — 1 pfiddanim dvou obdélnikt o stranich 2,
3k — 3 a obrazce slozeného ze t¥i ¢tverct o strané 2 (obr. 13).
Tento obrazec pokryjeme tak, jak je vidét na obr. 13, obdélnik
2 X 3(k — 1) dovedeme také pokryt. Dile dokéZeme, Ze
z platnosti tvrzeni tlohy pro # = 3k + 1 plyne i platnost
pron = 3k + 5. Ctverec o stran& 3%k + 5 dostaneme z &tverce
o strané 3k + 1 pfiddnim dvou obdélnikii o stranich 4 a 3k
a Ctverce o strané 5, z néhoz je vynechédno jedno rohové pole
(obr. 14). Opét vidime, Ze kazdou z téchto Casti lze pozado-
vanym zpusobem pokryt. Pfi¢teme-li k &islu 2 stiidaveé &islo
2 a 4, dostaneme viechna sudéd pfirozend &isla, kterd nejsou
délitelnd tfemi. Pro vSechna tato &isla tvrzeni dlohy na zi-
klad¢ predchazejicich tvah plati. Pfi¢teme-li k &islu 5 stii-
davé &islo 2 a 4, dostaneme vSechna lichd pfirozena (isla,
jez nejsou délitelnd tfemi. Tvrzeni tlohy plati tedy i pro
tato Cisla.

3k-3 5 3k
2
5 4
3k-1 J,
k- f 3k+1
o ¥ i
% )|
2 3k-1 ‘ 4 3k+1
Obr. 13 Obr. 14
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B-1-4

Je2.22 +3.28 + ... 4+ n.27n=2(22 428 4 ... +27)+
+ (B 4+ .o F2n)+ (204 ...+ 27) + o+ (271 4
+ 27) + (27) = 2n+(n — 1). Stali nékolikrat pouZit vzorec
pro soulet prvnich &lent geometrické posloupnosti. Je-li
n liché prvotislo, pak nemuze délit &islo 27+1. Z4dné ptiro-
zené Cislo n nedéli &islo n — 1. Neexistuje tedy Zddné liché
prvolislo, které by délilo dany soulet. A Ze se tento soucet
rovnd (n — 1).27+1 to se d4 dokdzat téZ matematickou in-
dukci.

B-1-5
Pfedpoklédejme, Ze jsme trojuhelnik ABC jiz sestrojili.

Oznalme k kruznici mu opsanou, Cy stfed strany 4B, C; a Cs
prusetiky os ptimek AC, BC s pfimkou 4B (obr. 15). Ozna-
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¢eni bodu Cy, Cs zvolime tak, aby bod C; lezel bliz k bodu Cy
nez bod Cs. Bod C; pak leZi na aseéce AB a pfimka CCy
protind kruznici £ v bod€ D, ktery leZi na ose tiseCky AB.
To vyplyva z véty o obvodovych thlech. Provedeny rozbor
ndm jiz ukazuje postup konstrukce. Sestrojime pravouhly
trojuhelnik C;CCy (délky jeho odvésen jsou ddny) a na pfimce
C1C; sestrojime bod Cy tak, aby usetka CCp méla danou
délku. Prusetik piimky CC; s pfimkou o prochdzejici bodem
Co a kolmou k pfimce C;Cs oznaime D. Pfitom musime
oznaceni bodii C1, Cy zvolit tak, aby byl bod Cj bliZe k bodu Cy
nez bod C,. KruZnice & se stfedem na pfimce o a prochd-
zejici body C, D protind ptimku C;Cs v bodech 4, B. Uloha
mi tolik FeSeni, kolik existuje na pfimce Ci;Cs bodua Cj
s danou vzdalenosti | CCy| od bodu C, které lezi mimo tsetku
C1Cs. Je-li viak trojahelnik C;CC» rovnoramenny a existu-
ji-li feSeni ulohy, jsou to dvé feSeni soumérné sdruZend
podle osy usetky C;Csq, takZe jde vlastné jen o jedno fe¥eni.

B-1-6

Pro malé ¢&isla 1 maZeme takovid rozdéleni ihned napsat,
napi.z =1:{1}
t=2:{2,3}, {1,4}
r=3:{1,4,10,13}, {2,3,11,12}, {5,6,7,8,9}.
Pro ¢ = 3 bychom mohli vzit t7 rozklad {1, 2}, {3,4,5,6}
a {7,8,9, 10, 11, 12, 13}. V kazdé mnozin& tohoto rozkladu
jsou &isla jdouci za sebou. Tento postup viak uZz selze pii
t = 4. Hled4nim rozkladu pii ¢ = 4 dojdeme k zavéru, Ze
dulezitou roli pfi zafazeni &isla do mnoZiny rozkladu hraje
jeho zbytek pii déleni tfemi, deviti nebo daldi mocninou tii.
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Naptiklad v mnozin& A; vSech ¢&isel, jez pfi déleni tfemi
dévaji zbytek 1, urcit€ nejsou tii &isla x, y, z s vlastnosti
x +y = 2. Cislo x + y davé totiz pfi déleni tfemi zbytek 2.
Podobné je tomu u mnoziny Ag viech &isel, kterd dévaji
pii déleni &islem 32 = 9 zbytek 2 nebo 3. MnoZina As necht
je tvofena vSemi Cisly, jez pii déleni Cislem 33 = 27 dévaji
zbytek 5, 6, 7, 8 nebo 9. Takto pokratujeme, mnoZina A,
necht obsahuje vSechna ptirozen4 &isla, jez pfi déleni &islem 37
3r-1 1
2
zadnych dvou Cisel mnoZiny A, nepatii do A,, protoze pfi
déleni tohoto souttu Cislem 37 je zbytek vétsi nez 3r-1.
Oznalme jesté¢ B,, resp. C, mnoZinu viech Cisel, jez pti
3r-1 — 1

dévaji zbytek vétsi nez , nejvyse vsak 3r-1. Soulet

déleni Cislem 37 davaji zbytek 1 az 371, resp. 1 az

Je pak B, = A, UC,, A, nC, = 0. UkiZeme jest&, Ze
C, je &asti sjednoceni mnozin B, By, ..., B,_; pro kazdé
r=22.JellineCyjen=m.3" + k k<32 433 4 |
... +3+4+1. Je tedy =32 +33 4+ ... + 351 pro
nékteré s, 1 <s<r — 1, nebo je e =32 4 ... 4 35 4
+0.351 +a.32+ ... +b.3+¢ kdea, ..., b, ¢ jsou
z mnoziny {0, 1, 2} a ¢&islo 2 =a.352 + ... +b.3 +¢
je nenulové. V prvnim pfipadé je n € A,;, nebot pfi déleni
¢islem 3¢ dava zbytek 35-1. V druhém pfipadé se zbytek &isla n
pfi déleni &islem 3¢ rovnd z, 1 < z = 351, takze n e B,.
Nepatfi-li do Ay, patii do C; a maZeme cely proces opakovat.
Vzhledem k tomu, ze C; = 0, patfi kazdy prvek mnoziny C,
do né&které z mnozin A, ..., Ar_1, coZ jsme chtéli dok4zat.
Zvlasté je tedy Cip = Ar U A2 U ... U A;. Poznamenej-
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me jesté, Ze zavedené mnoziny Ay, Ag, ... nejsou disjunktni,
napiiklad 7 € A; n As. MuaZeme se v3ak dohodnout, ze
do mnoziny A, jiz neddme ta isla, kter4 jsou obsaZena v nékte-
ré z mnozin Ay, ..., Ay_1,r = 2,3, ... . Pak budou mnozi-
3t—1

ny A; disjunktni. Mnozina M = {1, 2, ..., } je Casti

mnoziny C;;1. Tim je vlastn& celé tvrzeni ulohy dokdzino.
Stadi vzit za mnozinu A; prunik vyse zavedené mnoZiny A;

s mnozinou M, i=1,2, ..., ¢
Jiny postup vyuZivd matematickou indukci. Pro 7z =1
tvrzeni Glohy plati, necht A; U Az U ... U Ay je pozado-
3k _
vany rozklad mnoziny{1,2, ..., m}, m = > Definujme

CIRR — |
rozklad mnoZiny {l, 2, ..., 2—-—-} ={1,2,...,3m + 1}

takto:
A=A ufj+2m+1]jeA} pro i=1, 2, ..., k,
A, ={m+1,m+2,...,2m+ 1}. O téchto mnoZinich
pak dokazeme, Ze tvofi pozadovany rozklad v piipadé
t = k + 1. Pfitom je mnoZina A, sjednocenim mnoziny A;
a mnoziny, kterou dostaneme z mnoziny A; »posunutime.
Byla to tloha obtiZzni. Vyzadovala od téch zika, ktefi
ji chtéli fesit samostatné, hodné trpélivosti pfi hleddni roz-
kladu pro mal4 z, aby se tak dopracovali k obecnému feSeni.
Ukézala jim v8ak, jak se i v matematice uplatni induktivni
postup, jak se odhadne obecné feSeni, zndme-li n€ktera dilci
feSeni.
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B-S-1

Dany soutin je &islo liché pravé tehdy, kdyz pro liché %
je Cislo aj sudé a obricené. To je mozné pouze pfi sudém n,
kdy je mezi &isly 1, 2, ..., n stejny pocet lichych &isel jako
sudych. Cisla a2, a4, ..., a, pak musi byt lichd, to dava
(n/2)! moZnosti. Je to polet permutaci &isel 1,3, ..., n — 1.
Cisla ay, a3, ..., ax_1 jsou sudd, jde opét o (#/2)! permutaci
tisel 2, 4, ..., n. Celkem dostidvime ((n/2)!)? permutaci
pozadované vlastnosti pii sudém n. Pfi lichém # je vysledek 0.

B-S-2

Soucet prvnich dvou rovnic je ve sporu s pitou rovnici,
jednu z téchto tii rovnic je tedy tfeba opravit. Soucet prvni
a tfeti rovnice je ve sporu s Ctvrtou, opét je tieba opravit
jednu z téchto t¥i. JelikoZz mdme opravit jen jednu, musi to
byt rovnice prvni. Soustava zbyvajicich rovnic méa feSeni
x =21, y =18, 2 = —5. Prvni rovnici je tfeba opravit
na rovnici x + y = 39.

B-S-3

Cislo f(n) je zbytek pii déleni &isla 7 &islem 9. Pokud
bychom vSak nulu nepovazovali za jednociferné &islo, bylo
by f(n) = 9 pro viechna &isla n délitelnd deviti, dal3i postup
by byl stejny. Je-li f(n) = f(3n), divaji &isla n a 3n stejny zby-
tek pii déleni deviti, takZe 3n — n = 2n je nédsobek deviti,
takze i ¢islo 7 je ndsobek deviti. Je-li obracené &islo 7 ndsob-
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kem deviti, je i ¢islo 3z ndsobek deviti, a tudiz f(n) = f(3n) = 0.
Hledan4 &isla jsou vSechny ndsobky deviti, které jsou mensi
nez 1000.

B-11-1

Rovnice P = xy md mit pravé n raznych feSeni (x, y)
s vlastnosti x < y. Cislo P musi tedy mit pravé 2n riznych
délitela nebo 27 — 1 rtznych délitela, bude-li jedno feSeni
mit vlastnost x = y. V tomto pfipadé¢ je P druhou mocninou
pfirozeného ¢&isla x. Poznamenejme, Ze délitelem rozumime
v této tloze vzdy jen Cislo pfirozené, ne celé Cislo zaporné.
Podle vyse uvedeného sta¢i volit napiiklad P = p2»~1 nebo
P = p27—2 kde p je prvolislo, nebo P = pg"~1, kde p, ¢ jsou
ruzna prvocisla.

B-11-2
Nejdiive je tieba losem uréit prvni dvojici zdpasniku.
9
To déava (2> moznosti. Vzhledem k tomu, e muZe vyhrat

9
prvni, nebo druhy, mime pro prub&h prvniho kola 2.(2)

moznosti. D4l postupujeme jiz podobné&, abychom dostali
celkovy pocet, musime poéty moZznosti pro prubéh jednot-
livych kol mezi sebou nisobit.

9 8 7 3 2
VYSlcdckietedyz. 2 2. 2 2. 2 2. 2 2. 2 =

=9.8.8.7.7. ... .3.3.2.2.1 = 9.(81)
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B-li-3
Podle pfedpokladu ma pro x, y, 2, n platit

xnd + yn? + zn = y.(2n)2 + z.2n + 5, tedy
n(xn? — 3yn — z) = 5.

Protoze n # 1 (¢islo 1 nemuze byt zdkladem &iselné soustavy),
je nutné n = 5, a tedy 25x — 15y — 2 = 1. Proto je (islo
2z + 1 délitelné péti, takze z = 4 (v Ciselné soustavé se zikla-
dem 5 jsou viechny Cislice nejvyse rovny 4). Pro x, y pak
mame vztah 5x — 3y = 1. Z celych nezdpornych ¢isel men-
$ich nez 5 vyhovuje pouze x = 2, y = 3. Uloha m4 jediné
fedeni, je to Cislo 345 (v desitkové soustavé), v pétkové sou-
stavé 2 340.

B-1l-4

Cislo 0 nevyhovuje, rovnéz n = 1 nevyhovuje, nebot by
se pak kazdy z 1989 sCitanci na levé strané rovnice rov-
nal jedné, jejich soucet by nedal 1990. Pro n > 1 je

n+ 1 n 4+ 1988

2 >...>W>1.

Séitanci na levé strané tedy tvoii nerostouci posloupnost,
kazdy z nich se rovnd aspori jedné. Jelikoz se jejich soucet
mé rovnat 1990, musi se prvni rovnat dvéma, vSechny
ostatni se musi rovnat jedné. Je tedy nutné a staci, aby pro n

/n+1

n >

< 2, takze 21989 < 5 <

_ 1989
platilo 3 > 1989|/n > 2 a l

< 21990 — 1, To je celkem 21989 — 1 moznosti pro n, tedy
tolik feSeni ma dand rovnice.
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Kategorie A

Texty aloh

A-1-1

Dokazte, 7e existuje nekonetné mnoho kvadra tak, Ze
74dné dva nejsou podobné a jejich hrany a télesové uhlopfi¢-
ky maji celo¢iselnou velikost.

A-1-2

Najdéte nejmensi pfirozené &islo r, pro néz existuji pod-
mnoziny Aj, Az, As, As, As mnoziny {1, 2, ..., r} takové,
Ze pro viechna i€ {1, 2, ..., 5} plati

Al =5, [AiuAl =10 (As = Ay

A-1-3

Pro kazdé ptirozené Cislo 7 je ddna nekonednd mnoZina Ay,
pfi¢emz kazdé dvé z nich maji kone¢ny priumnik. DokaZte,
7e existuje mnozina B, pro kterou B n A, je nekonecna,
pravé kdyz n je sudé. :
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A-1-4
Uvnitf trojuhelniku ABC je ddn bod P. Vedeme-li bodem P
rovnobézky se stranami daného trojihelniku, dostaneme tii
trojuhelniky a tfi rovnobézniky. DokaZte, Ze souet obsahu

téchto tii trojahelnika je roven aspoil jedné tietiné obsahu
trojihelniku ABC.

A-1-5

Pro nesoudélni celd &isla p > ¢ > 0 oznaCme

A :{[n—z-];ne{lﬂ,...,q}},

B = {[npiq:l sne {l,2, ...,p—q}}.

Najdéte vechna Cisla z mnozZiny {1,2,...,p}, jeZ nepatii

do A U B.

A-1-6
Na ptimce jsou dény tfi razné body A4, B, C. Sestrojte

kruZnici prochazejici body 4, B tak, aby jeji te¢ny z bodu C
byly navzijem kolmé.
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A-S-1

Mnozina M mé pravé n prvka. Kolik existuje dvojic mnozin
(B, C) takovych, 7e B = C = M? (Pr4dzdn4 mnoZina a mno-
zina X jsou podmnoziny mnoziny X.)

A-S-2

Je dén trojthelnik ABC, |AB| < |AC]|. Popiste konstrukci
bodu B’ na strané AB a bodu C’ na strané¢ AC, pro které
plati, ze B’C’ || BC a kruZznice opsani trojihelniku BB’C’
se dotyka ptimky AC.

A-S-3

Dokazte, Zze neexistuje kvadr, jehoZ rozméry tvoii tfi¢len-
nou aritmetickou posloupnost pfirozenych &isel, jestlize jeho
télesova uhlopfitka ma mit také celo¢iselnou délku.

A-11-1
Je dén tétivovy lichobéznik ABCD se zdkladnami 4B, CD.
Oznatme E pruseik jeho uhlopficek a F prusecik tecen
sestrojenych k opsané kruznici v bodech B a C. Dokazte,
ze ptimky EF a AB jsou rovnobézné.

A-11-2

Urlete nutnou a postaCujici podminku pro délky a, b, ¢
stran trojahelniku ABC, aby byl podobny trojuhelniku POR
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se stranami |QR| = 1., |[RP| = tp, |PQ| = 14, coZ jsou délky
téZnic trojahelniku ABC.

A-11-3

Najdéte vSechny neprdzdné disjunktni mnoZiny A, B,
jejichz sjednoceni je mnozina N viech pfirozenych &isel
a pro které plati: 1989 € A,

xeA,yeA=x +yvcA,
xeB,yeB= xyeB.

A-ll-4

Je déno n bodu A1, As, ..., Ay v roving, z nichZ zddné tii
nelezi v pfimce. Kazdd piimka, kterd neprochdzi zddnym
z danych bodu, uréuje rozklad danych boda na dvé disjunktni
podmnoziny. Kolik riiznych rozkladii Ize takto dostat? (Roz-
klady porovnavdme jako neuspoiddané dvojice mnozin.)

A-1llI-1
V roviné jsou dany tfi razné body 4, B, C leZici na kruZnici
se sttedem S a pfimka p kolma na 4S. Pruseciky pfimky p
s pfimkami 4B, AC oznatme D a E. Dokazte, Zze body
B, C, D, E lezi na jedné kruZnici.
A-l1l1-2

V roviné je ddno mn Gsecek, které spojuji n danych bodu.
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Dokazte, Ze z nich lze vybrat posloupnost Vo, Vi, ..., Vi
raznych boda tak, Ze V;; a V; jsou spojeny uselkou
1=i< m).

A-1l1-3

Pro dand nesoudélna &isla p > ¢ > 0 najdéte vSechny
dvojice redlnych c&isel ¢, d tak, aby pro mnoZiny

Az{[n%];neN} a B = {[en+d;neN}

platlo AnB =06, AuB =N, kde N={1, 2, 3, ...}
je mnoZina vSech pfirozenych &isel.

A-lll-4

Délky stran trojihelniku T’ se rovnaji délkim t&Znic
trojahelniku T. Shoduji-li se trojuhelniky T a T’ v jednom
uhlu, jsou podobné. Dokazte.

A-1li-5

Uvazujme obdélnikovy pas 2 X n a oznalme P, poclet
viech takovych obarveni nékterych jeho poli, ze Zadny Ctve-
rec 2 X 2 v ném nebude cely obarven. Dokazte, Ze Cislo Pj gg9
je délitelné tfemi, a najdéte nejvétsi mocninu trojky, ktera
je déli.
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A-1l1-6

UvaZujme kone¢nou posloupnost ay, as, . . ., an, jejiz Cleny
jsou pfirozend Cisla nejvyse rovnd n. Urcete maximélni pocet
¢lent takové posloupnosti, kdyz vite, Ze kazdé dva jeji sousedni
¢leny jsou ruzné a pfitom v ni neexistuje Ctvefice ¢lena
takovd, Ze ap = ar F ag =asprop < g<r <s.

Reseni Gloh
A-1-1

Uloha souvisi s feSenim diofantické rovnice (tj. hleddme
jen jeji celotiselnd, resp. pfirozend feSeni)

a® + b2 + 2 = 42 1)
Kazdému jejimu feseni (a, b, ¢, d) totiz podle Pythagorovy
véty odpovidd kvadr, jehoZ tii navzijem kolmé hrany maji
délky a, b, ¢ a jehoz télesova thlopticka ma délku d.

Rovnice (1) v3ak zfejmé souvisi s jinou, pomérné dobie
znamou diofantickou rovnici

# 4 2 = 22 @

(jeji FeSeni v pfirozenych cCislech déva tzv. pythagorejské
trojahelniky, tj. pravouhlé trojuhelniky s celo¢iselnou délkou
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stran). Najdeme-li napf. né&jaké jeji feSeni (x, y, z) takové,
Ze i rovnice a2 + b2 = x2 m4 celoCiselné feseni, vidime hned,
ze ¢isla a, b, ¢ =y, d = 2 jsou feSenim pavodni rovnice (1).

Rovnice (2) v§ak m4 nekone¢né mnoho feSeni, kterd umime
dobie popsat. Jeji podrobné fe§eni muzeme kromé jiného
najit i v ro¢ence 26. roéniku MO (A — P — 1). Kazdé primi-
tivni feSeni rovnice (2), tj. takové Fefeni, Ze &isla x, y, z jsou
navzijem nesoudélnd, muzeme vyjadiit jako

x =2uv, y =u — 02, 2 = u2 + 02,
kde u, v jsou nesoudélna piirozena ¢isla takova, ze u > v a sou-
¢in uv je sudy. Pfitom podminka sudosti souinu 2 jenom
zarucuje, ze ziskana ¢&isla x, y, z nebudou vSechna sudi,
tedy soudélna.
Ale i feSeni rovnice a2 + b2 = x2 muZeme analogicky
vyjadrit ve tvaru

a=2UV,b=U2—V2 x = U2+ V2
pro vhodnd U > V, kterd ziejmé& stadi volit tak, aby U2 +
+ V2 = 2uv bylo sudé (islo.

Vidime, Ze vhodnou volbou parametri #, v, U, V nyni
snadno najdeme nekone¢nou mnozinu feSeni rovnice (1)

a=2U0V,b=U2—V2 ¢c=u®—22 d=u+ o2
My viak jesté potiebujeme, aby zadné dva z odpovidajicich
kvadrii nebyly podobné. Na to stali, abychom vybrali jen

takov4 fedeni (a, b, ¢, d), v nichZ jsou ¢isla a, b, ¢, d nesoudélna.
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Z rovnosti U2 + V2 = 2uv plyne, ze Cisla U, V musi mit
stejnou paritu. Vezmeme-li v§ak U, V lich4, snadno zjistime,
7e v8echna &isla a, b, ¢, d vyjdou sudi. Zkusme proto volit
U > Vsudiav = 1. Pak urtité vyjde uv = usudé,u = 2 >
> o, coZz uZ zaruCuje nesoudélnost feseni rovnice (2), a tedy
iciselc =y,d = 2.

Pozndmka. 1 pii volbé lichych ¢isel U > V dostaneme ne-
kone¢né mnoho navzdjem nepodobnych kvadri: stali uvazit,
ze mnozina odpovidajicich pomérii

b Uz —p2
a 20V
je nekonecna.
A-1-2

Piedpokladejme nejprve, Ze madme déno ¢&islo » a podmnozZi-
ny A; (1 <7 < 5), které vyhovuji tloze. ProtoZe kazdé dvé
mnoziny A;, A;11 jsou podle pfedpokladu disjunktni, muZe
libovolny prvek x € A = A; U Az U ... U Aj leZet nejvyse
ve dvou z mnozin Ay, ..., As.

Uvazujme mnoZinu B vSech uspofddanych dvojic (x, %)
takovych, Ze x € A;. Protoze kazd4 z mnoZin A; ma pravé pét
prvki, je mnoZina B pétadvacetiprvkovd. Na druhé strané
se mnoZina A skldd4 ze dvou disjunktnich &4sti podle toho,
zda prvek x € A leZi v jedné & ve dvou riznych mnoZinich A;.
Oznalime-li tedy pfisluiné polty ni a na, je |[A| =n + nz a

|B] =m + 2ns = 2(111 + nz) = 2|A|,
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takze |A| = |B|/2 = 25/2, neboli |A| = 13. ProtoZe pro
r = 13 lze takové mnoZziny A; sestrojit, jak ukazuje nésledujici
priklad, je » = 13 hledané nejmensi r s poZadovanou vlastnosti:
A= {1,2,3,4,5}, A:= {6,7,8,9,10},

As = {4,5,11,12,13), A, = {1,2,6,7,8},

As = {9,10,11,12,13}.

Jiné feSeni. Je-li k pfirozené <&islo, oznatme r; nej-
mensi pfirozené Cislo r takové, Ze existuji mnoZiny Ay, ...,
.. As < {1,2,...,r} takové, Ze pro viechna i € {1,2, ...,
..., 5} plati

Al =k AinAi=0 (As= A
Polozime-li

A= A; = {1,...,k}, As = Ay = {k-{— 1,...,2k},
As = {2k+ 1,...,3k},

vidime, Ze r; = 3k. Naopak z toho, ze Ai N Ay = 0
a |A1] = |Aq| = &, plyne nerovnost 2k = 1.
Predpoklddejme, Ze mnoziny Ay, ..., As spliiuji uvedené
podminky. Navic mtzeme ptedpoklddat, ze Ay = {1, ..., k},
A; = {k +1,...,2k}. PoloZme proto (vySrafované Casti
Vennova diagramu na obr. 16 oznacuji prazdné podmnoziny)

u=1|As n AL nA,, v=|As nA] nA,,
z =|Asn A nA),

kde ¢arka oznacuje doplnék pfislusné mnoziny ve sjednoceni
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Aq A,

Asg

A3

e
su V4 sv . )AL

Obr. 16

Al U ... UAs Je tedy |As n Al = kB — u, takze
|[As 0 Ai| = u, a analogicky |As N As| = & — o, takZe
[As N Ag] =< v, a plati

E=Ad = |As 0 A+ [Asn Al + |[As 0 Al 0 A =
<u-+4+v+ 2

Ziroven je ziejmé, ze u + 3 =r — 2k, v + z=1r — 2k,
takze

5k + =
k=u+o +z§2(r—2k)—z,nebolir§~§~—,

coz dava odhady

5k

rE = -2—- pro k sudé,
5k + 1

e = — pro k liché.

Snadno zjistime, Ze pro z = 0, resp. z = 1 nastane rovnost.
Pro & = 5 tak vychéazi 5 = 13.
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A-1-3

Uvedeme jednu z moZnych konstrukci. Jeji motivace je
nésledujici.

Vezméme nejprve B = Ay U Ay U ..., pak je zfejmé
kazdd z mnozin B N Asrz = Asr nekonetnd. Pro liché
indexy / muzeme psit

BﬁAz=(AzﬁAz)U(A4ﬂAl)U..., (1)

pfi¢emz kazdd z mnozin v zdvorce ma jen konetné mnoho
prvkua. ProtoZe se viak jednd o sjednoceni nekone¢ného poctu
mnozin, nemiZeme o jeho potu prvka nic tvrdit. Zménime-1i
ale definici mnoziny B tak, Ze od kazdé z mnoZin Agj odette-
me vSechny mnoZiny s lichymi indexy / < 2k, bude v rov-
nosti (1) vystupovat jen koneény pocet neprazdnych mnozin.
Provedme tuto uvahu podrobnéji:

Polozme nyni B = (A:\Cz) U(As\Cy) U ..., kde Cy
je sjednoceni viech mnozZin A; s lichymi indexy/ < 2k. Je tedy

B nAs< B n(Aw\ Ca) = Ag " Cox =
= Ao \ (Asr 0 Cap),

coZ je nekone¢nd mnoZina, nebot jsme z nekoneéné mnoziny
Agr odstranili jen konené mnoho prvku.
Na druhé strané je pro liché /

B n Al = ((Az \\ Cz) N Al) U((A4 \\\ C4) N Al) L) s s
U((Azk\\ Cz/c) N Al) L) o s
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ptitem? pro 2% > I je (Ask\ Car) N A; = @. Posledni sjed-
noceni tedy obsahuje jen kone¢ny pocet neprazdnych (koned-
nych) mnoZin. Tim je Gloha vyfeSena.

A-1-4

Pti dukazu vyuZijeme nisledujici zndmé vlastnosti podob-
nych zobrazeni: Je-li f podobnost v roving, existuje kladné
Lislo & takové, Ze pro libovolné dva body X, Y plati
|fAX)A(Y)| = k| XY]|. Pro obsah utvaru U v rovin& pak plati
S(f(V)) = k2S(U).

Ozna¢me S obsah daného trojahelniku ABC a S1, Sa, Ss3
obsahy uvaZovanych trojahelnika (obr. 17). Délky useku,
které sestrojené piimky vytnou na strané BC daného trojahel-
niku, oznaéme u, v, w. Z podobnosti uvazovanych trojuhel-
nikt danému trojuhelniku plynou nasledujici rovnosti
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Jejich sectenim a dosazenim a = u + v + w dostaneme

u? + 02 + w?

R o

Maiame tedy pro kladnd redlna ¢isla v, v, w dokazat nerovnost
1
u2+vz+w22~§—(u+v+w)2, €))

kterd je, jak zjistime jednoduchymi Gpravami, ekvivalentni
nerovnosti

(4 — 02 4+ (v —w2 + (w—u2=0.
Odtud také plyne, Ze rovnost nastane pravé tehdy, je-li
u =v =w = }|AB|, tj. pravé kdyz je bod P tézi§tém troj-
thelniku ABC.

Pozndmka. Nerovnost (1) je specidlnim pfipadem zndmé
Cauchyovy nerovnosti
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n n 2 n 2
CuvP=3 u 29
i=1 i=1 =1

pron=3,m =u, us =0, u3 =w, v, =v2 =v3 = L.

A-1-5
Z definice obou mnozin A, B plyne, Z¢ je A UB <

< {1,2,...,p}. Uvaiujme ke {l1,2,...,p} takové, Ze
k¢ A U B. Protoze k ¢ A, je pro n&jaké n = 0

np < kg <(k+1)g=(n+ 1p. (1
Podobné ze vztahu % ¢ B plyne, Ze pro né&jaké m = 0 je

mp < k(p —¢q) <(k+ 1 —g)=(m+ Dp,

odkud odettenim kp dostaneme nerovnosti
(k—m—1p=(+1)g—p<kqg<(k—mp. (2)

Z obou nerovnosti (1) a (2) je vidét, zenp = (k — m — 1)p
je nejveétsi celé Cislo mensi nez kg. Navic odtud plyne, Ze mezi
tisly mp =(k—m —1)p a (n+ 1)p =(k —m)p, jejichz
rozdil je p, lezi Cisla (k + 1)g — p a (k + 1)gq, jejichz rozdil
je rovnéz p. Musi tedy byt (k + 1)g = (n + 1)p, a protoze
¢isla p, g jsou nesoudélnd, musi p délit &islo £ + 1. Odtud
vychézi, ze je k = p — 1.
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Cislo p — 1 v mnozingé A U B skutené neleZi, protoze je

4 4
g—1)—<p—1 a —g—1)—<p—1,
(¢—1) g 2 ®—q—1 D—g -t
nebot ¢ < p.
Jiné FeSeni. Ziejmé je p € A n B. UkdZeme, Ze je do-

konce A n B = {p}. Kdyby pro né&jaké me {1,2, ...,q},
ne{l,2,...,p — q} bylo

2] 52 -

bylo by
mp o
—=a + — pro 0 <a < g, acelé
q q
np

B
——=a +—— pro 0<fB<p—gq, fcelé
o »—q P B<p—g, fcelé,

takZe
mp=gqa+a np=0p—q9a+/p,
(m + n)p = pa + o + f,

N +oc+ﬁ
m+n=a )
pP
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Protoze ale je 0 < o + f < p, nemuZe posledni rovnost
nastat pro celd &isla m, n, a. Sjednoceni A U B m4 tedy cel-
kem p — 1 prvka z mnoziny {1,2, ...,p}. Jediné &islo, které
z ni neobsahuje, je p — 1, nebot (p > g,p > p — q)

[o=%]--2] <s

e R LR T
A-1-6

Je zfejmé, Ze tloha m4a feSeni jen tehdy, neleZi-li bod C
mezi body A, B. Pfedpoklidejme, Ze hledand kruZnice &
existuje, a oznalme S jeji stted a Ti, T dotykové body jejich
te¢en z bodu C (obr. 18). Body C, T1, S, Tz jsou vrcholy

B
k
9
754_' — ,_\_ S
|
4
|
cyf A
T
Obr. 18
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Ctverce. Pro délku ¢ jeho strany, jeZ je zdroveil polomérem
hledané kruZnice, z mocnosti bodu C ke kruZnici %2 plyne
rovnost 12 = ab, kde a = |CA4|, b = |CB|. Stfed S hledané
kruznice tedy lezi na ose useCky AB a ziroveil na kruZnici
I(A4, 1) se sttedem 4 a polomérem z.

Z uvedeného rozboru je ziejmé, Ze uloha bude mit jedno
feSeni pro z = } |AB| a dvé feleni, pokud ¢ > { |4B|. Jinak
tloha feSeni nemd. Protoze |AB| = |b — a|, z podminky
t> = ab plyne, Zze tGloha mé feSeni, pravé kdyz a2 — 6ab +
+ 8 =<0.

Postup konstrukce rovnéz plyne z rozboru. Délku ¢ = |/ab
pritom sestrojime pro dané délky a, b pomoci jedné z Eukli-
dovych vét (obr. 19).

t=Yab,

a

Obr. 19
A-S-1

Mnozina M ma (}) k-prvkovych podmnozin C. Kazda
z t&chto mnozin m4d zas 2 podmnozZin B. Podle binomické
véty je tedy pocet viech dvojic (B, C) takovych, ze B= C <
< M, roven souttu

z (Z) 2 = (1 + 20 = 3n,

k=0
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A-S-2

Sestrojme kruznici %, kteréd se dotykd pfimky AC v bodé C
a prochizi bodem B (stfed S takové kruZnice leZi na kolmici
k AC v bodé C a na ose tiseCky BC, obr. 20). KruZnice % protne
polopfimku AB jesté v bodé D, pro ktery plati |[AD| > |4B|,
nebot z mocnosti bodu A4 ke kruZnici £ plyne, Ze je
|AD| . |AB| = |ACJ2.

UvaZujme stejnolehlost se stiedem A, ktera zobrazi bod D
do bodu B. Obrazem kruznice k v této stejnolehlosti bude
kruZnice k&', kterd se dotyka pfimky AC v bodé C’ a stranu
AB trojahelniku ABC protind v bodé B’.

Z predchoziho rozboru je ziejmé, 7e bod C’ dostaneme
jako prusetik pfimky 4AC s rovnobézkou vedenou bodem B
k pfimce CD. Protoze body B’, C’ jsou obrazy boda B, C
v uvedené stejnolehlosti, je také B’C’ || BC.
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Protoze bod B nelezi na pfimce AC, kruZnice k vzdy existuje
a tloha m4 jediné feseni.

A-S-3

Predpoklddejme, ze takovy kvadr existuje, a oznalme
a, b, ¢ délky jeho hran a » délku jeho télesové uhlopficky.
Protoze délky jeho hran maji tvofit tfi¢lennou aritmetickou
posloupnost, muzeme poloZit

a=b—d, c=1b+d,

kde d je ptisludnd diference.
Z Pythagorovy véty pak pro télesovou uhlopfi¢ku dosta-
vame vztah

w2 = 362 + 2d2. (1)

Muzeme ovsem predpokladat, Ze Cisla b, d, u jsou nesoudéln4,
protoze jinak bychom je vyd¢lili jejich nejvétsim spole¢nym
délitelem a pfislusné podily by spliiovaly tutéz rovnici. Z rov-
nice (1) ale dostaneme, Ze #2—2d2 je délitelné tfemi, coZ mlize
byt pravda jen v pfipadg, Ze obé &isla u, d jsou délitelnd tiemi1
(stali probrat v§ech 9 moznych dvojic zbytki mod 3, v3e-
obecné je viak zndmo, Ze Ctverec celého &isla d4 pii déleni
tiemi jen zbytek 0 nebo 1). To ale znamen4, Ze 3b2 je délitelné
deviti, a tedy i & musi byt délitelné tfemi. Dosli jsme tak
ke sporu, nebot o Cislech b, d, # jsme pfedpokladali, Ze jsou
nesoudélna.
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Pozndmka. Ze vztahu (1) také plyne, Ze &isla #, b jsou bud
obé lich4, nebo obé& sudd. VyuZzijeme-li délitelnosti dvéma,
resp. tyfmi, dojdeme v obou piipadech rychle ke sporu
podobné jako v uvedeném feSeni.

A-Il-1
Oznatme thly jako na obr. 21. Uhly oy, a2 jsou obvodové
a o3 je usekovy thel ptisluiny t&tivé BC, uvedené uhly jsou
proto shodné. Protoze |CF| = |BF|, je ag = ag. Zéroveil ale
je (protoze zékladny 4B a CD jsou rovnobézné)

|t AED| = oq + o2 = o3 + oq = 180° — |<x BFC],

takze &tyfthelnik EBFC je tétivovy. Odtud plyne, Ze a5 =
= o4 = o, ptimky EF a CD jsou tedy rovnobézné.

Obr. 21 Obr. 22
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Jiné FeSeni (podle Petra Lindaského, 3.d G M. Ko-
pernika v Bilovci). Thaletova kruZnice nad prumérem SF
obsahuje vrcholy B, C daného lichobé&zniku. Oznatime-li «
velikost uhlu BAC (obr. 22), bude ziejmé | BSC| = 2
(odpovidajici stfedovy thel) a také |<C BEC| = 2« (jde
o vnéjsi uhel k rovnoramennému trojuhelniku ABE). Odtud
plyne, Ze body B, C, S, E, F lezi na kruZnici, a pokud S = E,
je podle Thaletovy véty |<C SEF| = 90°, neboli EF || AB.

Pokud je S = E, je uvaZovany lichob&Znik obdélnik
a snadno se presvéd¢ime, Ze uvedené tvrzeni plati (SF = EF
je osou soumérnosti obdélniku ABCD).

A-11-2
Podle kosinové véty je

¢2 = a? + b2 — 2ab cos y,

2 a®
=

— 2
- 4 + b2 — ab cos y,
takze pro délku téznice ¢, dostaneme znamy vztah

282 + 2c2 — @2
t2 —_ ee,——
a 4 bl

a cyklickou zaménou ziskdme dalsi dva vztahy

2c% 4 2a% — b2 5 2a% 4 2b2 — ¢2

2
l, = ° =
b 4 > (5 4
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Aby byly zminéné trojihelniky podobné, musi platit
atb:ic=t:1ty: 1ty neboli b2 = % a b21> = a2r;. Odtud
dostaneme rovnosti

BA28% + 2¢® — a2) = 2(2c + 2a% — b?),

(1)
B(2a2 + 202 — 2) = a%(2c + 2a% — B2).

Jejich odectenim vyjde
(2 —a2)(2b2 — a2 — %) = 0.

ProtoZze a, b, ¢ jsou kladni ¢&isla, je bud ¢ = a, anebo
a? + ¢ = 2b2.
Pro a = ¢ dosazenim do (1) vyjde

bt — 2a* + a?h? = (b2 — a?) (222 + b2) = 0,

tj. a = b = ¢. Rovnostranny trojihelnik samoziejmé ma
pozadované vlastnosti.
Je-li a% + ¢2 = 2b%, dosazenim do (1) zjistime, Ze obé
rovnosti plati, coZ znamen4, Ze oba trojuhelniky jsou podobné.
Nutnou a postatujici podminkou pro to, aby uvedené
trojuhelniky byly podobné, je tedy rovnost a2 + ¢2 = 2b2
(coz je ziejmé splnéno i pro rovnostranny trojahelnik).

A-11-3

Oznatme m nejmensi prvek mnoziny A. Ziejmé je m > 1,
protoZe jinak by vyslo A = N, B = 0. Cislo m nemuze byt

91



slozené, protoze kdyby bylo m =ab, kde 1 <a < m,
1 <b<mbylobynutnéaecB,beB,atedyim = ab € B.
Proto je m prvolislo a mnoZina A obsahuje i viechny jeho
kladné nasobky, A o {km; ke N}.

Dejme tomu, Ze mnozina A kromé ndsobka Cisla m obsahuje
i né&jaké Cislo n nesoudélné s m. Pak A obsahuje vSechny
linedrni kombinace mx + ny s pfirozenymi &isly x a y, tedy
vSechna dostate¢né velkd prirozena &isla. SkuteCné: protoze m
a n jsou nesoudélnd, davaji &sla N —n, N —2n, ..., N —
— mn pii déleni Cislem m vesmés razné zbytky. Proto pro
kazdé N > mn mezi témito i &isly existuje jedno, které je
délitelné m, tj. existuji ptirozend Cislataj, 1 = 7 = m, takova,
7ze N —in = jm, neboli N =jm + ine A. V tom ptipadé
ale je mnoZina B kone¢nd, a nemuze tedy obsahovat Zidné
¢islo £ > 1, protoze jinak by obsahovala nekonetné mnoho
ruznych &isel tvaru k, k2, k3, .... MuZe byt jen B = {1} a
A =1{2,3,4,...}. Tyto dvé mnoziny zfejm& vyhovuiji
podminkim ulohy.

V opatném piipadé je A = {km;ke N} a B = {ne N;
mA n} pro vhodné prvolislo m. Protoze 1989 = 9.13.17,
je 1989 € A pro me {3,13,17}.

Pozndmka. Pro nesoudélna &isla m, n vidycky existuji celd
tisla x, y takova, Ze mx + ny = 1, pfitom nejvySe jedno
z Cisel x, y mUze byt zdporné. V piipadé, Ze je to napf. ¢islo y,
muZeme pro libovolna pfirozena Cisla &, ¢ psat
k = k(mx + ny) + mnt — mnt = m(kx — nt) + n(ky + mz).

Pritom Cisla kx — nz a ky + mt budou pfirozend, kdyz bude
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kx —nt =1, ky + mt =1,

1 —Fky kx — 1
tedy pro 0 <—”~l——~§ [

. Stadi proto, aby bylo

kx —1 1—k
X B yzl
n m

, neboli 2=mn +m + n.

A-l1l1-4

DokédZeme matematickou indukci, Ze hledany pocet je
In(n —1) + 1.

Pro n =1 to zfejm& plati. Pfidejme k danym bodum
Ai, A, ..., Ay daldi bod Ay a uvaZujme jednak ty rozklady
mnoziny {4, As, ..., An}, které lze realizovat pomoci
piimky prochézejici bodem A1 (obr. 23), a jednak rozklady,
které takto dostat nelze (obr. 24).

Obr. 23 Obr. 24

V prvnim piipadé dostaneme z kazdého rozkladu pavodni
mnoziny {4, 4z, ..., An} dva razné rozklady mnoZiny
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{4, ..., An, Aus1} tak, Ze polohu uvedené piimky nepatrné
zménime, aby i nadile neobsahovala Z4dny z danych bodu,
pficemz bod 4.1 padne bud do jedné, ¢ido druhé mnoziny
rozkladu.

V druhém piipadé uz je jednozna¢né urleno, do které
z mnozin uvazovaného rozkladu mnoziny {A4i, 4, ..., Ay}
bod Ap+1 padne. Vidime tedy, Ze pfiddnim jednoho bodu
k n-prvkové mnoziné bodu se potet moznych rozkladt zveétsi
o pocet rozkladi, které lze realizovat pfimkou prochazejici
bodem A;+1. Postupnym otd¢enim pfimky od 0 do 180°
zjistime, Ze takovych rozkladu je prdvé n. Pro pocet p(n)
rozkladil proto plati

p(n + 1) = p(n) + n, p(1) =1,

n(n — 1)

p(n):(n—1)+(n~2)—|—...+1+l:——5—*+1.

Jiné feSeni. Budeme uvazovat jen rozklady na dvé
neprazdné podmnoziny (trivialni, rozklad obsahujici prazdnou
mnozinu je jediny). Kazdy takovy rozklad je uren né&jakou
pfimkou neprochazejici zadnym z danych bodt. Pfifadme nyni
rozkladu p uréenému pfimkou p dvojici bodu A4;, 4; takovou,
ze oba body lezi v opatnych polorovinach uréenych piimkou p
a orientovany uhel, ktery svird pfimka p s pfimkou 4;A4;,
je nejmensi mozny. Tato dvojice je vzdy urcena jednoznalné:
danych bodu je jen kone¢ny polet a nemuze se stit, Ze by
existovaly dvé dvojice 4;4; || AxA; s nejmensim orientova-
nym uhlem (obr. 25), protoZe orientovany thel jedné z dhlo-
pri¢ek odpovidajiciho lichob&éZniku musi byt mensi.
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Obr. 25 Obr. 26

Dile si uvédomime, Ze je to dobr4 definice v tom smyslu,
7e dvojice bodu 4;, 4; je urlena pouze danym rozkladem
a nezévisi na volbé pfimky, kterd jej realizuje (obr. 26).
Kdyby totiz existovala jina dvojice boda Ay, 4;,s niz by napt.
pfimka ¢ svirala mensi orientovany thel nez s dvojici A;, Aj,
snadno zjistime, Ze by pak i pfimka p s ni svirala mensi
orientovany thel.

Abychom zjistili pozadovany pocet rozkladu, stali nyni
dokézat, Ze uvedené zobrazeni ,rozklad +~ dvojice bodu‘*
je vzdjemné jednoznaéné (tj. je prosté a je na), protoze pocet

dvojic dobfe zndme — téch je (Z)

UvaZzujme dva rozklady g1 a g2, urené pfimkami p1 a po
kterym v popsaném zobrazeni odpovidd stejna dvojice bodi
A;, Aj. Piesvéd¢ime se, Zze obé piimKky p1, p2 urluji tentyz
rozklad, tj. 01 = g2, neboli jinymi slovy, Ze v tthlu mezi obé-
ma pfimkami pi, p2, v némz nelezi 724dny z boda 4;, 4;, ne-
lezi ani Z4dny dal3i z danych bodu. Protoze viak kazd4 z pfi-
mek p1, po svird s ptimkou 4;4; nejmensi moZny orientovany
ahel, nemuze za4dny bod lezet (obr. 27) ani v &4sti [1], ani
v Casti [2] nebo [3] uvedeného Ghlu. Uvedené zobrazeni je
tedy prosté.
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Obr. 27

Abychom ukézali, Ze kazd4 dvojice bodu 4;, 4; odpovid4
néjakému rozkladu, vezméme piimku p, kterd prochizi
stiedem uselky A;A4; a svird s ni orientovany uhel tak maly,
Ze v ném uZ nelezi Zddny dalsi z danych bodu (to jde, protoze
Z4dné tfi body nelezi v pfimce a danych bodu je jen konedny
pocet).

Dokaézali jsme tedy, Ze celkovy polet rozkladu je (g) + 1.

A-lll-1

Oznatme P patu kolmice p na piimku A4S a Q dalsi prasecik
pfimky A4S s danou kruZnici (obr. 28). Podle Thaletovy véty
je |<C ABQ| = 90°, takZe pokud P =~ A, jsou trojuhelniky
APD a ABQ podobné, tj. |AP|.|AQ| = |4B|.|AD|. Po-
dobné dostaneme pro bod E rovnost |AP|.|AQ| =
= |AC| . |AE|, takZe pro body 4, B, C, D, E vychézi rovnost
|AC| . |AE| = |AB| .|AD.| Z mocnosti bodu A4 ke kruZnici
prochézejici body B, C, D podle posledni rovnosti dostaneme,
Ze na stejné kruznici leZi i bod E.
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B \D

Obr. 28

Pokud je bod A zéroveri i patou kolmicep,je P = A = D =
= E a tvrzeni udlohy trividlné plati.

Pozndmka. Tvrzeni tlohy lze samoziejmé snadno dokézat
pomoci véty o obvodovych uhlech, uvedené feSeni vSak mad
tu podstatnou vyhodu, Ze v ném neni potieba diskutovat
polohu pfimky p.

A-lil-2

Predpoklidejme, Zze pro néjaké m pfirozené je n nejmensi
piirozené (Cislo takové, Ze tvrzeni ulohy neplati. Kdyby
z kazdého bodu vychizelo aspoil m tselek, snadno sestrojime
pozadovanou posloupnost (zatneme libovolnym bodem
a v kazdém kroku pak mime vzdy moznost z m bodu, jez
jsou se zvolenym bodem spojeny usetkou, vybrat ten, ktery
se dosud v posloupnosti nevyskytuje).
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Muzeme tedy predpoklddat, ze existuje bod, z n&hoZ vy-
chéazi nejvyse m — 1 danych uselek. Odstranime-li tento bod
spolu se vSemi use¢kami, jez z ného vychdzeji, dostaneme
asponi mn — (m — 1) > m(n — 1) usetek spojujicich nejvyse
n — 1 bodu. Pro tyto usetky ovSem uvedené tvrzeni rovnéz
nemuze platit, coz je ve sporu s volbou n. Tim je tvrzeni
dokézano.

Jiné feSeni (podle P. BroZe, 4. rotnik G W. Piecka
v Praze). Mame dokézat, Ze v libovolném (neorientovaném)
grafu G s n vrcholy a mn hranami existuje cesta délky m
(tj. posloupnost ruznych vrchola Vo, V1, ..., V), grafu G,
jez jsou spojeny hranou).

Ptitadme kazdému vrcholu grafu G délku nejdelsi cesty,
kterd jim prochézi, a oznatme ¢(G) soulet téchto hodnot pro
vSechny vrcholy daného grafu G. Dokazeme, Ze pro kazdy
graf G s n vrcholy a % hranami plati

(G)=h—n+1. o)

Pro n = 1 nerovnost plati, nebot v tomto piipadé je
¢(G) = h = 0. Predpokliddejme, Ze uvedend nerovnost plati
pro kazdé n = m — 1, a uvazujme graf G s n = m vrcholy.
Vezméme v ném nejdel§i moznou cestu Vo, Vi, ..., V.
Z vrcholu V) mohou vést hrany jen do nékterych vrchola
Vi, ..., Vi, jinak by existovala deldi cesta. Odstranime-li
ted z tohoto grafu vrchol V), se vSemi hranami, jez z né&j
vychézeji, dostaneme graf Go s m — 1 vrcholy a asponi 2 — &
hranami. Podle induk&niho piedpokladu je tedy

(Go)=h—k—(m—1)+ 1;
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piitom ale ziejmé plati e(Gy) = e(G) — k (délka cest vedou-
cich libovolnym vrcholem se odebrianim pfislu§nych hran
urlité nezvét§i a odebranému vrcholu Vy odpovidala cesta
délky k). Dostavame tak nerovnost

e(G)Y=h —m + 2,

takze (1) plati i pron = m. Tim je duikaz matematickou induk-
ci hotov.
Pro graf spliujici pfedpoklady tlohy podle (1) tedy plati

e(G)y=mn —n+1=nlm—1)+ 1,

podle Dirichletova principu tedy nutné existuje vrchol,
kterym vede cesta délky aspon m.

A-1l1-3

(Podle V. Komira, 3. ro¢nik G, Kosice, Smeralova ul.)
Piedpokléddejme, Ze &isla ¢, d spliiuji podminky tlohy. Cisla

. ?
P,2p,3p, ... ziejmé patii do A, a protoze —; > 1, Cisla
?—1,2p —1,3p — 1, ... do A urdité nepatfi, takze lezi v B.

.. . 4
Ziroven je jasné, Ze pro ruznd ng, ng jsou také Cisla [nl ==
q

P .
[ng 7 ruzné. Je také vidét, ze nemuze byt ¢ < 0, ale ani

0 = ¢ = 1 (to by B obsahovala v§echna pfirozena &isla aspoii

99



rovnd [c + d]). Je proto ¢ > 1, takze i Cisla [cmi + d],
[en2 + d] jsou pro rtizné my, ny razna.

Protoze kpe A kp — 1 € B(ke N),jemeziisly 1,2, ..., kp
pravé kq Cisel v A a kp — kq Cisel v B, takze pro kazdé & pti-
rozené mame

kp — 1 = [ck(p — q) + dI,

neboli

kp — 1 =k(p —q)c +d < kp. €Y)]
Pro libovolné piirozené % tudiz plati
—1—d=k[p—qc—p] <—d

P
Odtud ov$em plyne, ze (p —q)c —p = 0, a tedy ¢ = P_——q .

Z (1) pak navic dostdvame, ze kp — 1 < kp + d << kp, neboli
—1 = d < 0. Podle tlohy A — I — 5 vime, Ze pro mnozinu

B’:{[ni];neN}plati
p—4q
AUB =N {kp—1;keN}, AnB = {kp; ke N}

Vezmeme-li tedy d € ( —1,0), objevi se v mnoziné¢ B misto
ciselp,2p, ..., kp, ... Cislap — 1,2p — 1, ... kp — 1, ...,

jinak ale pro n # k(p — ¢) musi &isla [n + d] zustat

p»—4q
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v mnoziné B’ jinymi slovy (protoze d < 0) musi pro vSechna
n = k(p — q) platit

4 +dg[n i ]
P—9q p—4q

Pfitom, je-lir (0 < v < p — q) zbytek &isla np pfi déleni
tislem p — ¢, je

np [np] r
= -|— :
pP—q p—9q p—q

takze pro n 7 k(p — g) odtud plyne nerovnost

n

r

P—q

d= —

Cisla p, 2p, ...,(p — q — 1)p davaji oviem vesmés razné
zbytky pii déleni &islem p — g, tj. vSechny mozné zbytky
1,2,...,p — q — 1, protoze Cisla p a p — g jsou podle
predpokladu nesoudélna (kdyby p — ¢ délilo ke2p — kip pro
ki < ks < p — g, bylo by i &islo ks — k1 < p — g délitelné
P — g, coz nejde!).

1
Zéroven z predchozich uvah vidime, Ze prod € <—;——— 3 O)

plati
B=(B ukp; ke N\ {kp — 1; ke N},

takZe pro mnoziny A, Bje A U B =N, An B =0, jak
vyzadovala uloha.
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Jiné ¥eSeni (podle P. Cizka, 4. roénik G W. Piecka

p q
v Praze). Protoze [n 7] =m— 1,pravé kdyzn < m—P~ ,obsa-
: . oy g . -
huje mnoZina A pravé I_m —P——I — 1 ¢isel mensich neZ m a po-

m —_—
dobn& mnozina B obsahuje pravé |'Td‘| — 1 ¢&isel mensich

nez m. (Zde [x] znali tzv. horni celou &4st &isla x, tj. nejmensi
celé &islo aspoti rovné Cislu x; tuto funkci muZzeme definovat
1 pomoci zndméjs§i ,,dolni celé <&asti‘‘ jako [x] = —[— x].)

Mnoziny A, B spliiuji pozadavky tlohy, pravé kdyZ pro
kazdé ptirozené m plati

=m—1,

tj. pravé kdyz pro kazdé m prirozené plati

mq m—d
— | =1+ . —1=m-—1,

?
&ili
mq m—d
— +l — | =m+ 1. (2)
P [4
) [mx + y1]
Pro libovoln4 realna &isla x, y plati, Ze T kdyz

m — oc, jak je vidét z nerovnosti
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[mx + y] y+1
—_— < X +T'

IA

y

X 4+ —

m

Z (2) limitnim pfechodem dostaneme rovnost

q 1
p te b

p
coz davd ¢ = ——. Dosazenim do rovnosti (2) vychézi pro

kazdé m piirozené

l’mq’ |“1>—q p~q'|
— |+ | m —d =m+ 1,
? ? ?
m —m -
5[] o[ ] -
?

mq
PiSme —p— =n + r, kde n je celé a r € (0, 1). Posledni rov-

nost tak muizeme piepsat jako

p_
+[T]+|_ n_r—d—"2 =1,
?

a protoze [r] = 1, dostdvime podminku

[—r—d————] =0, neboli f1<~r—deq<0

103



coz je ekvivalentni s nerovnostmi

b
— 49

=1

4
<d< —(r—1
p—q— r=D3

Protoze &isla p, ¢ jsou nesoudélnd, nabyva r pro ruzna m
1
(stati 1 = m = p) vSech moZnjych hodnot i

takze vychazi, ze

. p / 1
Obréceng, je-lic = ——,def{ ——,0, dostaneme
p—4q VP — g
pro kazdé m ptirozené, ze plati (2), coz zarucuje, ze A U B =
=N, AnB=g.

A-ll1-4

Oznatme A4, B, C vrcholy trojahelniku T a pfedpokladejme,
ze se trojahelniky T, T’ shoduji napf. v Ghlu «. Trojahelnik
ABC dopliime na rovnobéznik ABDC (obr. 29) a stiedy jeho
stran AB, BD oznatme K, L. Pak je T = CKL, |KL| = t,,
|LC| = 1, |CK| = t,.

Pokud je |[<¢ KCL| = a, je podle véty o obvodovych thlech
pfimka CL te¢nou kruZnice opsané trojuhelniku AKC (ahel
KCL je tzv. tsekovy thel piisludny tétivé KC). Uvazme nyni
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N Obr. 29

bod M, ktery je pruselikem pfimek AK, CL (obr. 29). Pro
jeho mocnost ke kruznici AKC plati |MK|.|MA| = |MC|2,
a protoze |MK| = |CP| = |A4AB| + |AK| = 3¢, |MA| = 2c,
|IMC| = 21, plyne odtud rovnost 3¢ = 4z7.

Pokud je |<¢ CKL| = «, je analogicky pfimka KL tetnou
kruZnice opsané trojahelniku AKC, takZe z mocnosti bodu N
(obr. 29) ke kruznici AKC vyjde 3b2 = 4z2. A podobn& pro
|t KLC| = o je zase piimka KL tetnou kruznice CLD,
takZe z mocnosti bodu P k této kruZnici dostaneme rovnost
3¢ = 472

Vezméme napi. posledni rovnost. Protoze (viz napf. feeni
Glohy A —II —2) 472 = 2b? + 2¢2 — a2, plyne odtud
2b% = a? + ¢2, takZe dostaneme

3¢ = 422, 3b2 = 413, 3a% = 412,
coz znamend, ze trojuhelniky T a T’ jsou podobné. Analogicky
postupujeme i ve zbylych dvou ptipadech.
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Jiné feSeni (podle J. Vomlela, 3. ro¢nik G J. K. Tyla
v Hradci Kralové). Oznatme A, Bi, C; stiedy pfisluinych
stran trojuhelniku T = ABC, T jeho téZisté a U bod na téz-
nici CC; takovy, ze |TU| = |CT| (obr. 30). Trojahelnik
UTA je ziejmé podobny uvazovanému trojihelniku T’,
protoze délky jeho stran se rovnaji dvéma tfetindm délek
téZnic trojuhelniku T.

Bez ujmy na obecnosti budeme pfedpoklidat, Ze se oba
trojuhelniky T, T’ shoduji v Ghlu «. Je-li o = |<x ATU|,
jsou trojuhelniky 7TC14, AC,1C podobné (shoduji se v thlech
o a w), takze

| TC| |TA| g b
neboli — =—.

|ACy| ~ |4C|”’ e ¢

Trojahelniky T a T’ jsou tedy podobné (sus).

106



Pokud je o = | AUT|, jsou podobné trojahelniky
TB:C, AC,C (shoduji se jesté v uhlu p), takze

| TB| |TC| " tp c
AC,| ~ jAC) neboli b

12

a konetné pro a = |<L TAU| zjistime, Ze jsou podobné troj-
thelniky 7B14 a AB;B (maji je$t¢ spole¢ny uhel p), takZe
vyjde

| TB| |TA| W b
4B, = I—ZEI ,  neboli t_a, -
I v obou téchto pfipadech tak vychazi, Ze trojuhelniky T a T’
jsou podobné (sus). Tim je dukaz hotov.

Jiné ¥eSeni (podle I. MartiSovitse, 4. ro¢nik G J. Hron-
ca v Bratislavé). Dopliime trojahelnik ABC na rovnobé&Znik
ABDC a oznalme postupné E, F, G, H stfedy jeho stran
DC, CA, AB a BD (obr. 31). Trojuhelniky T* a GHC jsou
tedy shodné. O trojahelnicich T, T’ budeme opét ptedpokla-
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dat, Zze se shoduji v thlu «, kde «, f,y jsou pfisluiné ahly
daného trojuhelniku T = ABC.

Je-li & = |<¢ GHC], pak podle véty o obvodovych thlech
lezi body G, H, E, C na kruznici, a protoze body C, E lezi
oba v poloroviné GHC, je |<¢ GCH| = |<L GEH| = y.

Pokud je o = |<¢ HGC|, dostaneme symetrickou situaci,
kdyz misto trojuhelniku ABC vezmeme shodny trojuhelnik
DCB — analogicky vyjde, Ze je pak |<¢ GHC| = y.

A pokud o = |<¢ GCH|, lezi body G, B, H, C na kruZnici,
protoze |<C GBH| = 180° — «. Pak je ale |t CHG| = f.
Ve vsech tfech pfipadech jsme tedy dostali, Ze se trojahelniky
T, T’ shoduji ve dvou uhlech, takZe jsou podobné.

A-1ll-5

Ziejmé je Py = 22 = 4, P, = 24 — 1 = 15. Pokud nejsou
obé posledni pole obarvena, coz lze zafidit tfemi zpusoby,
existuje P,_; pfipustnych obarveni zbylych poli uvazovaného
pasu (pfedpokladdme, Ze je n = 3). Jsou-li obé posledni pole
obarvena, jsou opét tfi moznosti, jak obarvit dvé pfedposledni
pole pasu, aniz by vznikl obarveny ¢tverec 2 X 2, a pro kazdou
z nich mame P, _» pfipustnych obarveni zbylych poli. Je tedy

Pn = 3Pn7]_ + 3Pn_2. (1)

Odtud plyne, ze je P, délitelné tfemi pro n = 2.

Dile dokdZzeme, Ze pro kazdé k prirozené jsou C&isla Po
a P4y délitelnd mecninou 3%, ale 3#+1 uz nedéli Poy41. Pro
k = 1 uvedené tvrzeni plati. Predpoklidejme, Ze tvrzeni plati
pro kazdé & = m. Podle indukéniho predpokladu je
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Poni1y = 3(Pom + Pomi1)
délitelné ¢Cislem 37+1. Podobné je i
P2m+3 - 3(P2m+1 + P2m+2)

délitelné &islem 3m+1) ale neni délitelné vys$si mocninou 3,
protoze podle indukéniho piedpokladu je prvni s&itanec
délitelny jen 3™, zatimco druhy je délitelny asporl 37+1,

Nejvyssi mocninou 3, kterou je délitelné ¢islo Pyggg, je 3994.

Jiné FeSeni (podle M. Krause, 3. ro¢nik G v Karlovych
Varech). Pod kazdy sloupec obarveného pédsu napiSeme 1,
jsou-li ob& politka obarvena, a 0, je-li aspoii jedno z nich
neobarveno. Obarveni pisu tedy vyhovuje tloze, pravé kdyz
v ziskané posloupnosti nejsou dvé 1 vedle sebe.

Pro dané n ptirozené oznalme pn(k) polet n-&lennych
posloupnosti, v nich? je % jedni¢ek a n — & nul, pfiCemz

zadné dvé jednotky nestoji vedle sebe <zi'eimé musi byt

n+1
k= [ > ]) Protoze 0 odpovidd tfem moznym obarve-

nim pfisluiného sloupce (obr. 32), plati
n+1
N
P, = an(k) 1%k 3n-k,
k=0

n+1
Odtud hned vidime, Ze 3| P, pro kazdén = 2<k = [T] <

< n). Navic pro kazdé n liché plati
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n([57]) -

(jedind mozna posloupnost je 1010...01. Specidlné je tedy
P1989(995) = 1, takze e

995
Piogo = 3 pu(k) 31999k
k=0

je délitelné pravé mocninou 3994, ale ne uz 3995,
p s

N

Obr. 32

Jiné FeSeni (podle J. Vomlela, 3. ro¢nik G J. K. Tyla
v Hradci Krélové). Stejné jako v prvnim feSeni ze vzorce (1)
zjistime, ze P, je délitelné tfemi pro kazdé n = 2. Opakova-
nym pouzitim vztahu (1) pak dostavime

Prggg = 3(Progs + Pros7) = 32 (Pros7 + 2P1986 + P1985)=
= ... =3%9(Pygs + a; Pogs + ... + ages Pz + P1),

kde a1, as, . . ., ages jsou prirozena Cisla. Protoze Pygs, Pogy, . . .
..., P2 jsou délitelnd tfemi, ale P; ne, je 399 nejvy$$i mocnina
trojky, ktera déli ¢islo Pl 989.

Pozndmka. Reenim piisluiné diferentni rovnice dostane-
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me pro piirozend n vzorec
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A-lil-6

Priklad posloupnostin,n — 1, ...,3,2,1,2,3, ...,n — 1,
n ukazuje, ze pro kazdé n ptirozené existuje posloupnost délky
2n — 1. DokéZeme matematickou indukci, Ze deldi takovi
posloupnost neexistuje.

Pro n =1 je tvrzeni zfejmé. Uvazujme tedy posloupnost
splitujici dané podminky pro n = 2. Pokud se v ni Z4ddny ¢len
neopakuje, mé nejvyse n = 2n — 1 ¢&lent. Predpokliddejme
tedy, Ze ay = apm je prvni opakujici se &len uvaZované
posloupnosti. Protoze kazdé dva jeji sousedni Cleny jsou
ruzné, je m > 1 a navic poedle druhého pozadavku se zadny
z ¢lenl ag41, . . ., Akim-1 jiz nikde jinde pfed ax ani po axim
nevyskytuje! Vyfazenim ¢lent agia, ..., @krm-1, Gk+m Proto
dostaneme posloupnost, kterd spliiuje dané pcdminky (je
Ax+m+1 7 Ag+m = ar); pritom ale i posloupnost ap4i, ...,
<. .s Ar+m-1, kterou jsme vyfadili, uvedené podminky rovnéz
spliluje a jeji délka je m — 1. Jeji ¢leny mohou nabyvat r riiz-
nych hodnot, které se uz v nové posloupnosti nevyskytnou,
pri¢emz podle indukéniho pfedpokladu m — 1 < 2r — 1.

Délka nové posloupnosti je podle indukéniho pfedpokladu
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nejvyse 2(n — r) — 1, pavodni posloupnost tedy méla délku
nejvyse

2m —r)+m—1=2n—r)+2r—1=2n—1.

Tim je tvrzeni tlohy dokédzino.

Jiné feSeni (podle P. Hlinéného, 3. ro¢nik G M. Ko-
pernika v Bilovci). Pro dané pfirozené n oznatme d(n) délku
nejdelsi posloupnosti spliiujici podminky tlohy. V kazdé
takové posloupnosti existuje Cislo, které se tam vyskytuje
jen jednou: Vezmeme-li totiz dvojici ¢lent a, = a4 (p < q)
takovou, ze ¢ —p > 1 je nejmensi, lezi mezi nimi aspoil
jeden dal$i Clen uvazované posloupnosti (ap 7~ api1, ag-1 7
# aq), ktery se viak uz nemuze opakovat mezi ap a az a ne-
muze se vyskytovat pfed a@, ani za a, (jinak by nebyla
splnéna druhd podminka).

Uvazujme n = 2. Bez Ujmy na obecnosti miZzeme pied-
pokladat, ze a, = n je to Cislo, které se v uvazované posloup-
nosti vyskytuje jen jednou.

Pokud je ap_1 7 ap+1, vynechdme z uvaZované posloup-
nosti Clen ap, pokud @, = ap1, vynechime oba cleny
ap, ap+1. V obou ptipadech dostaneme posloupnost sloZzenou
z Cisel nejvyse rovnych n — 1, kterd bude spliiovat podminky
ulohy. Je tedy

din) =dn — 1) + 2.
Protoze d(1) =1, snadno zjistime, ze d(n)= 2n — 1.
Ptiklad posloupnosti n,n —1,...,3,2,1,2,3, ...,n— 1,

n ukazuje, Ze pro kazdé n prirozené je d(n) = 2n — 1.
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Kategorie P

Texty aloh

P-1-1

Ve stité K je N mést A(1), ..., A(N). Velké povodné
znitily fadu mostu. Z tohoto diivodu bylo mezi mnoha mésty
pferudeno spojeni. Je ddno pole B[1..N, 1..N], jehoz prvky
maji hodnotu 0 nebo 1. Prvek B[, ;] bude mit hodnotu 1,
jestlize vede piimé cesta z mésta A(7) do mésta A(j), a hodno-
tu 0, pokud se z mésta A(7) do mésta A(j) pfimo ned4 dostat.
Uvédomte si, ze B[7,;] = B[j,7]. Naleznéte a zduvodnéte
algoritmus, ktery pro dand 1, s zjisti, zda je mozné dostat se
z mésta A(7) do mésta A(j).

P-1-2

Na kruznici lezi N raznych bodu A(1), A(2), ..., A(N)
(N = 4) v tomto pofadi ve sméru hodinovych ruci¢ek. Pro
kazdé dva body X a Y na kruZnici oznalime /XY/ délku
oblouku z X do Y ve sméru hodinovych rucicek.

Je dano pole D[1], D[2], ..., D[N] ptirozenych C<isel,
ve kterém
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D[I] = JA(DA(I + 1)/ prol £1 <N,
D[N] = JA(N)A(1)/.

Naleznéte algoritmus, ktery zjisti, zda existuji indexy
P, q, 1, s takové, ze

p<qg<r<s
a soucasné
[AP)A(q) = |ADA(r) = |AMA(s) = |A(HA(P) .
Pii vypocltech, které budete v algoritmu provadét, musi byt
vSechny vysledky i mezivysledky celd cisla.
P-1-3
Je dén nasledujici program

V PASCALU V BASICU

var I, §: integer;
A: array [1..100] 10 DIM A(100)

of integer;
begin
for I:=1t0100do 20 FOR I=1 TO 100
read (A[I]); 30 INPUT A(I)
40 NEXT I
I:=1; 50 LET I=1
J=1 60 LET J=1
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while I+ < 100do 70 IF I+J>100 THEN GOTO 100
if A[I] = A[I+¥] 80 IF A(I)=A(I+]) THEN

then 7:=7+1 LET J=J+1:GOTO 70
else I:=1+1; 90 LET I=I+1:GOTO 70
write(¥) 100 PRINT ]

end

Vstupem programu je uspofddané pole (ne nutné ruznych)
pfirozenych &isel. Urcete a zdtivodnéte, co je vysledkem prace
programu (tj. jak souvisi vyslednd hcdnota ¥ s hodnotami
pole A4 a pro¢).

P-1-4

Nejprve zavedeme nékteré pojmy, které budeme potiebovat
ve ¢tvrté tloze. Ulohy podobného charakteru budou i v kraj-
ském a celostdtnim kole.

Mnohouihelnik je Cast roviny ohrani¢end jednou lomenou
¢arou, kterd sama sebe v Zddném bodé neprotind. Body této
lomené Cary patii také do mnohothelniku. Mnohothelnik je
zadén posloupnosti svych vrcholu uspofddanych proti sméru
hodinovych rucicek.

Mnohouhelnik je konvexni, jestlize s kazdymi dvéma svymi
body obsahuje také usecku, ktera je spojuje.

Konvexnim obalem N bodii v roviné budeme rozumét
nejmensi konvexni mnohouhelnik, ktery je viechny obsahuje.
(Nejmensi ve smyslu mnozinové inkluze.)

Pii fedeni tloh budete moci kromé piikaza programovaciho
jazyka (Pascalu nebo Basicu) vyuzivat také tii funkce:
VPRAVO, VNITR a UHEL:
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VPRAVO (X1, Y1, X2, Y2, X3, Y3) — vysledkem bude
logickd hodnota »pravda¢, jestlize body PI = (X1, Y1)
a P2 =(X2,Y2) jsou razné a bod P3 = (X3, Y3) leii
na pfimce prochdzejici body PI a P2 nebo vpravo od ni pfi
pohledu z bodu PI smérem k bodu P2. Jinak bude vysledkem
»nepravda.

VNITR (X,Y,X1,Y1, X2 Y2 X3,Y3) — vysledkem
bude logicka hodnota »pravda, jestlize body PI = (X1, Y1),
P2 =(X2,Y2) a P3 = (X3, Y3) nelezi na jedné piimce
a bod P =(X,Y) je bodem trojahelniku PI P2 P3. Jinak
je vysledkem »nepravdac.

UHEL (X1, Y1, X2, Y2, X3, Y3)—jestlize P1=(X1, Y1),
P2 = (X2, Y2)a P3 = (X3, Y3) jsou tfi ruzné body, potom
vysledkem bude velikost thlu PI P2 P3 ve stupnich od
0 stupiit do 360 stuprid méfend proti sméru hodinovych
rucicek.

Soutézni tloha

a) Naleznéte (co nejlepsi) algoritmus, ktery zjisti, zda dany
mnohothelnik je konvexni, a zdvodnéte jeho sprivnost.

b) Naleznéte (co nejlepsi) algoritmus, ktery pro N zadanych
bodi (N > = 4) v roviné€ najde jejich konvexni obal, a zda-
vodnéte jeho spravnost. Soufadnice konvexniho obalu ulozte
do pole KONOBALX a KONOBALY a pocet bodt obalu
do proménné POCET. '

P-Il-1

Naleznéte a dokazte (co nejlepsi) algoritmus, ktery pro
nezdporné celé Cislo n vypocitd celociselnou hodnotu f(n),
pro kterou plati:
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£0) =1, f(1) = 1, f(2n) = 2f(n), f(2n + 1) = 2/(n + 1) — f(n)

Nepouzivejte rekurzi a minimalizujte spotfebu paméti!
P-11-2

Je dino dvojrozmérné pole 4 (matice) rozméru N X M,
jehoZ prvky obsahuji pouze &isla 0 nebo 1. Naleznéte a dokazte
co nejlepsi algoritmus, ktery v daném poli 4 nalezne maxim4l-
ni »obdélnik« obsahujici samé jedni¢ky (maximaélni ve smyslu
»obsahujici nejvic jednitek«). Vysledkem priace algoritmu
bude ¢tvetice Cisel 1, ¥, K, L takovych, ze A[l, ¥] je prvek
v levém hornim rohu a A[K, L] prvek v pravém dolnim rohu
nalezeného maximélniho obdélniku.

P-11-3

Je dan algoritmus
P:fori:=1to N —1do

if A[7] > A[i + 1] then

Ali] : = : A[i + 1]; (vyména dvou sousednich
prvku pole)

- Napiste a dokazte (co nejlepsi) program, ktery pro dané
celotiselné N-prvkové pole A zjisti, zda by vySe uvedeny
algoritmus P toto pole vzestupné uspotadal. Vysledny program
nesmi modifikovat pole 4 ani pouZivat jiné pomocné pole.

P-11-4

Naleznéte a dokazte (co nejlepsi) algoritmus, ktery zjisti,
zda se dany bod nachizi uvnitf daného mnohothelniku.

117



Pozndmka. Definice zékladnich pojma a pomocnych funkci,
které je mozné pii fefeni pouzit, jsou uvedeny u zadini
ulohy P — I — 4.

P-11-1

Naleznéte a dokazte (co nejlepsi) algoritmus, ktery pro
dva soubory kone¢nych po dvou disjunktnich mnoZin pfi-
rozenych &isel P = {P1,P2,...,Pm} a Q = {Q1,02, ...,

..,0On} takové, z2e P1 UP2 U ... UPm =01 u Q22U
U ... U QOn, najde nejmensi polet K operaci sjednoceni
a rozdéleni mnozin, jimiz se P pievede na Q. Operaci sjedno-
ceni se nahradi dvé mnoziny v souboru jejich sjednocenim.
Operaci rozdéleni se jedna mnozina souboru rozdéli na dvé
disjunktni ¢asti.

P-11-2

Rekneme, %e matice M X N s prvky 0 a 1 obsahuje »éarovy
vzorek, jestlize kazdy jedni¢kovy prvek (pfipadné s vyjimkou
téch, které lezi na okraji matice) md pravé dva jednitkové
sousedni prvky (soused muze byt vlevo, vpravo, nahoru nebo
dol, ne ve sméru thlopficky).

Naleznéte a dokazte (co nejlepsi) algoritmus, ktery pro
danou matici M X N obsahujici ¢irovy vzorek a jeji dany
nulovy prvek A[I, J] »vybarvi« (tj. pfepiSe nuly napiiklad
na dvojky) plochu ohrani¢enou »&arou« z jedni¢kovych prvki
a okraji matice a obsahujici prvek A[I, ¥].
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P-111-3
Je dén algoritmus P:

for 7: =1to Kdo
for/: =1to N —1do
if A[I] > A[I + 1] then
A[Il: = : A[I + 1]; (vyména dvou sousednich prvki)

Napiste a dokaZte (co nejlepsi) program, ktery pro dané
celotiselné N-prvkové pole 4 najde nejmensi &islo K takové,
aby vy3e uvedeny algoritmus P vzestupné uspoiiddal toto pole.
Vysledny program nesmi modifikovat pole 4 ani pouzivat
jiné pomocné pole.

P-1l1-4

a) Naleznéte a dokazte (co nejlepsi) algoritmus, ktery
rozdéli dany (ne nutné konvexni) mnohouhelnik na nepro-
tinajici se trojuhelniky s vrcholy ve vrcholech mnohouhelniku.
Vystupem algoritmu je mnoZina dvojic vrcholu, jejichz
pospojovanim dostaneme takové rozdéleni. (Sta¢i najit jedno
feSeni.)

b) Naleznéte a dokazte (co nejlepsi) algoritmus, ktery
zjisti, zda lomend &4ra zadand posloupnosti boda P(1), ..
..., P(N), P(1) tvofi mnohothelnik.

Pozndmka. Definice zdkladnich pojmut a pomocnych funkci,
které je mozné pii fefeni pouzit, jsou uvedeny u zadani
ulohy P — I — 4.

*)
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ReSeni dloh

P-1-1

Ulohu lze fesit vice riznymi zpusoby. Ukdzeme jeden
z téch moznych algoritmu, které jsou Casové nejefektivnéjsi.
Algoritmus postupné vytvaii seznam ¢&isel mést, do nichz
se lze dostat z vychoziho mésta A(7). Na zaldtku préice
algoritmu je v seznamu uloZeno pouze ¢islo 7. V kazdém kroku
algoritmu vyjmeme ze seznamu jedno (libovolné) &islo K
a misto néj do seznamu zafadime Cisla téch mést, kterd jsou
pfimo spojena s méstem A(K). Kazdé &islo mésta pritom bude
do seznamu vlozeno celkem nejvy$e jednou. Vytvafeni
seznamu ukonc¢ime v okamziku, kdy do né&j zaradime ¢&islo ;
oznalujici cilové mésto A(j), nebo kdyz jiz neni mozné zafadit
do seznamu z4dné dalsi ¢islo mésta. Vysledek prace algoritmu
je uréen tim, zda bylo &islo cilového mésta zafazeno do sezna-
mu.

Programova realizace uvedeného algoritmu vyzaduje pie-
devS§im zvolit vhodnou datovou strukturu pro ukliddéani
vytvafeného seznamu. Vzhledem k tomu, Ze polet mést N
je predem zndm a Ze do seznamu bude ¢islo kazdého mésta
zafazeno nejvyse jednou, zvolime pro reprezentaci seznamu
jednorozmérné pole S[1..N] a jednu pomocnou promén-
nou P, kterd uddvd momentélni délku seznamu (S[P] je vzdy
posledni prvek seznamu). Na zatatku préce algoritmu je tedy
P=1a §[] =1

Nyni je tfeba vyfesit zpasob volby ¢isla K. Na jeho vybéru
vysledek prace algoritmu nezavisi, v principu je mozné
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zvolit libovolné z &isel uloZzenych momentdlné v seznamu.
Z hlediska efektivni programové realizace jsou vhodné dva
zpusoby:

1. Za K zvolime ¢&islo naposledy zafazené do seznamu,
tzn. &islo S[P]. Odstranéni tohoto Cisla ze seznamu se provede
snadno sniZzenim hodnoty proménné P o jedni¢ku. Se sezna-
mem Vv tomto piipadé pracujeme jako se zidsobnikem, coZ
odpovidd prohleddvani stromu vSech moznych cest z pola-
te¢niho mésta A(7) do cilového mésta A(j) tzv. »do hloubky«.

2. Za K zvolime (islo ze zalitku seznamu. K tomu je
vhodné zavést pomocnou proménnou Z, kterd bude v kazdém
okamziku udédvat momentélni zatitek platného vytvafeného
seznamu Vv poli S, takZe S[Z] je vzdy prvni prvek seznamu.
Na zacatku préce algoritmu je Z = 1. Za K potom vezmeme
¢islo S[Z] a odstranéni tohoto &isla ze seznamu dosidhneme
zvySenim hodnoty proménné Z o jednitku. Vybrané &islo
tedy z pole S ve skute¢nosti neodstranime, pouze vyznacime,
Ze jiz nepatii do seznamu. Se seznamem V tomto piipadé
pracujeme jako s frontou, coz odpovidd prohled4vani stromu
vSech moznych cest z pocite¢niho mésta A(7) do cilového
mést  A(f) tzv. »do Sifky«.

Obé uvedené strategie jsou stejné¢ dobré a fe$i zadanou
ulohu. V naSem programu zvolime naptfiklad druhou z nich.
Uvedeme je$té dvé poznidmky k zavedeni pomocné promén-
né Z. Tato proménnd vyznacujici zacatek seznamu v poli §
neni nutnd, bylo by mozné vybrané cCislo vidy skuteiné
odstranit z pole S a viechna ostatni ¢isla néleZejici do seznamu
posunout v poli § o jedno misto. Takové feSeni by oviem bylo
znalné pracnéj$i a pomalej$i. Postup vyuZivajici pomocnou
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proménnou Z navic udrzuje v poli S ¢&isla viech mést, o nichz
jiz vime, Ze jsou dosaZitelnd z mésta A(z).

Zbyva provést posledni akci — pro zvolené mésto s Cislem
K zafadit do seznamu ¢isla téch mést, kterd maji pfimé
spojeni s méstem A(K) a kterd do seznamu dosud nebyla
zatazena. Cisla mést s pfimym spojenim s méstem A(K)
ziskdme snadno pifimo ze zadané matice B. Stali projit
K-ty fadek této matice a vyhledat indexy téch sloupcu, v nichz
je na K-tém fidku uloZena hodnota 1. Z nalezenych ¢isel
mést mame do seznamu zafadit pouze ta, kterd do néj dosud
zafazena nebyla. Pro tento ucel je vyhodné zavést pomocné
pole R[1..N], ve kterém se bude o kazdém z mést evidovat
informace, zda jiz bylo jeho ¢islo zafazeno do seznamu.
Udaj R[L] = 1 znamen4, Ze &slo L jiz bylo do vytvifeného
seznamu zafazeno, R[L] = 0 znamend opak. Na zalitku
prace algoritmu budou vSechny hodnoty pole R nastaveny
na 0, pouze R[7] = 1. MuZeme opét poznamenat, 7e ve
varianté fe§eni, kterou jsme zvolili pro nasi realizaci (prohle-
davani »do Sifky«, se seznamem se pracuje jako s frontou,
uzivd se pomocné proménné Z k vyznaceni zatdtku seznamu),
neni zavedeni pole R nezbytné, nebot v poli S se udrzuji
C¢isla vSech mést zafazenych nékdy béhem vypoctu do sezna-
mu. Cisla mést, kterd jiz byla ze seznamu vybrdna, zlstala
uloZena na mistech S[1], ..., S[Z — 1]. Prohled4vani celého
pole S pied zafazenim kazdého nového ¢Cisla do seznamu
by ovSem bylo zna¢né pracnéjs$i nez pouhé testovani pii-
znaku v poli R.

Nasledujici program pfesné realizuje popsany algoritmus.
Pro jednoduchost je v ném pocet mést N zadan piimo jako
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konstanta (neni obtiZzné zménit). Pole B vstupnich hodnot
je programem ¢teno po Fadcich.

program MESTA (input, output);
const N = 10; (pocet mést)
var B:array [1..N,1..N] of integer; (zadan4 matice cest)

S, R: array [1..N] of integer;
{S — vytvafeny seznam mést, R — pfiznaky}

Z, P: integer; {indexy seznamu v poli S}

I, ¥: integer; {zatatek a cil cesty}

K, U, V: integer; {pomocné prom&nné}
begin

{Natteni vstupnich hodnot:}
for U: =1to N do
for V:=1to N do
read (B[U, V1)),
read (1, §);
{Inicializace promé&nnych:}
P:=1;
Z = 1;
S[1]: =1
for U: =1to N do
R[U]: = 0;
R(I]: =1;
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{Vlastni vypocet:}

repeat
K: = S[Z]; {vybrano ¢islo K ze seznamu}
Z:=7Z+1;

for U: =1to Ndo
if (B[K, U] = 1) and (R[U] = 0) then

begin {zatazeni Cisla U do seznamu}
P:=P+1;

S[P]: = U;

R[U]: =1

end

until (Z > P)or (R[¥] = 1);

if R[¥] = 1 then

writeln (’Cesta je mozna.”)
else

writeln (’Cesta neni mozna.”)

end.

Vypocet podle uvedeného algoritmu je konecny, nebot
do vytvafeného seznamu je kazdé z N Cisel mést zafazeno
nejvyse jednou a pifi kazdém kroku algoritmu je ze seznamu
vyfazeno pravé jedno &islo. Vypolet skon&i nejpozdéji po

vyprazdnéni celého seznamu, tzn. nejvyse po N krocich.

Popsany algoritmus md kvadratickou ¢asovou slozitost.
Jiz jsme ukdzali, Ze vypolet vyZaduje provedeni nejvyse
N krokt, tj. N prichoddt cyklu repeat-until v programu.
V kazdém kroku se pfitom provédi jeden for-cyklus o N pri-
chodech. Celkové tedy vypoclet vyzaduje provedeni radové
N * N operaci. Z hlediska tasové slozitosti lepsi algoritmus
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nez kvadraticky neni mozny, nebot jiz jenom vstupni data
maji velikost Gmérnou hodnotd N * N (velikost zadané
matice B) a pro vysledek tlohy jsou viechny vstupni udaje
vyznamné.

Sprivnost uvedeného feSeni vyplyvd piimo z popisu
algoritmu. Do vytvifeného seznamu jsou postupné zafazo-
véna Cisla mést, kterd jsou dosazitelnd z vychoziho mésta 1.
Pokud je tedy do seznamu zafazeno také Cislo cilového mésta
7 a vypolet skonéi s hodnotou R[] = 1, je sprdvné ohldSeno,
Ze cesta z mé&sta 4(7) do mésta A(J) je mozna. Jestlize vypocet
skon&i v situaci, Ze se cely seznam vyprazdnil, byla jiz do
seznamu postupné zafazena (a opét z né&j odstranéna) Cisla
viech mést, kterd maji spojeni s méstem A(7). Je-li tedy
R[j] = 0, je spravné ohlSeno, Ze cesta z mésta A(7) do mésta
A(y) neni moznd.

P-1-2

Ulohu je mo#né fesit vice raznymi zptsoby. UkdZeme zde
algoritmus, ktery je z hlediska asové efektivity optimalni,
nebot je linedrni.

Soutet zadanych vzdalenosti D[1], ..., D[N] sousednich
bodt na kruznici urCuje délku kruznice. Maji-li existovat
body délici kruzZnici na Ctyfi stejné velké useky celociselné
velikosti, musi byt délka kruznice nisobkem Ctyf. Nejprve
proto zjistime, zda plati tato zdkladni nutnid podminka.
Jestlize ano, spolitime délku CtvrtkruZnice a oznalime ji
CTVRT. V opatném piipadé indexy pozadovanych vlastnosti
neexistuji a uloha nema4 feleni.

Zavedeme pomocné pole E[0..N], které bude obsahovat
N + 1 hodnot spliiyjicich nasledujici podminky:
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2.prot=1,...,N:
E[i] =j  jestlize existuje index j takovy, Ze j > 1
a zarovenl /A(1) A(j)) = CTVRT
E[i] =0 jinak

S vyuzitim tohoto pole E je jiz feSeni zadané tlohy snadné.
Sta¢i ovéfit, zda pro né&jakou hodnotu indexu p =1, ..., N
plati E[E[E[p]]] <> 0. Platnost této nerovnosti pro né&jakou
hodnotu p je nutnou i postatujici podminkou existence
pozadovaného déleni kruZznice na ¢tyfi stejné ¢asti. Hledanymi
indexy p, g, r, s jsou potom po fadé hodnoty p, E[p], E[E[p]],
E[E[E[p]]].
Platnost uvedeného tvrzeni ihned dokdZeme:
a) Jestlize existuji indexy p, g, r, s takové, Ze plati p < ¢ <
< r < sazaroven /A(p) A(q) = |A(q) A(r)| = |A@r) A(s) =
= JA(s) A(p)/, pak podle definice pole E bude E[p] = g,
E(q] =r, E[r] =s, a tedy E[E[E[p]]] =s. Pro hodnctu
indexu p tudiz plati nerovnost E[E[E[p]]] <> 0.
b) Necht naopak pro néjakou hodnotu indexu p plati
nerovnost E[E[E[p]]] <> 0. Oznalme q = E[p], r =
= E[E[p]], s = E[E[E[p]]]. Z pfedpokladu s <> 0 vyplyva
ig<>0, r<>0, nebot E[0] =0. Pfimo z definice
pole E nyni dostdvame:
p<q [Alp)A(g9) = CTVRT
g<r |A(q) A(r)) = CTVRT
r<s [A(r) A(s)) = CTVRT

Jisté je také [A(s) A(p)) = CTVRT, nebot

1A(p) A(Q) + 1A(q) A(r)| + A(r) A(s) + [A(s) Ap) =
=4 * CTVRT.
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Indexy p, ¢,r, s maji tudiZ vSechny poZadované vlastnosti
ze zaddni ulohy.

Dokézali jsme, Ze algoritmus fe$ici zadanou tlohu pomoci
hodnot pole E je spravny. Vypotet podle tohoto algoritmu
je jisté konelny, nevyzaduje provést vice nez N porovnéni.
Algoritmus je zfejmé linearni, jeho ¢asové naroky jsou tmérné
hodnoté N.

Pfi ovéfovini nerovnosti E[E[E[p]]] <> 0 v algoritmu
navic neni nutné prochizet indexem p vSechny hodnoty
od 1 do N. Stadi provéfovat hodnoty p od 1 do takového
tisla M, pro které /A(1) AIM)/ < CTVRT a/A(1) AIM + 1)/
> = CTVRT. Pro p > M by totiz nemohla byt splnéna
podminka p < g < r < s ze zadé4ni Glohy a vzhledem k defi-
nici pole E by jisté platilo E[E[E[p]]] = 0.

Zbyvi navrhnout algoritmus na vytvofeni pole E. Snadno
bychom sestrojili kvadraticky algoritmus, ktery postupné
pro viechny hodnoty 7 =1, ..., N piipo¢itavinim délek
jednotlivych elementdrnich useka zji§tuje, zda existuje
odpovidajici index j, pro néjz plati podminka z definice
pole E. Ukédzeme zde lepsi, linedrni algoritmus.

Budeme pouzivat tfi pomocné proménné charakterizujici
v kazdém okamziku jisty sledovany usek kruZnice (Gsek je
pro nds potencidlni ¢tvrtkruznici): proménnd DELKA udava
délku tseku, DOLNI je index pocitetniho bodu a HORNI
index koncového bodu tohoto useku. Stile tedy plati:
[A(DOLNI) A(HORNI) = DELKA. Vidy bude DOLNI
<= HORNI. Jestlize najdeme dvojici hodnot DOLNI,
HORNI, pro kterou je DELKA = CTVRT, ulozime do
pole E hodnotu E[DOLNI] = HORNI. Pokud pro zvolené
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DOLNI takové HORNI neexistuje, bude E[DOLNI] = 0.
Toto presné¢ odpovida definici pole E.

Vypocet za¢ind pro DOLNI = 1, HORNI = 1, DELKA =
= 0. Dokud je DELKA < CTVRT, postupné prodluZujeme
sledovany tusek zvySovdnim hodnoty proménné HORNI
(a zérovenl politdme délku useku v proménné DELKA).
Poté ulozime do pole E spridvnou hodnotu E[DOLNI].
Optimalizace vypoltu spoivd v tom, Ze pro dalsi hodnotu
indexu DOLNI nebudeme potitat délku tseku opét od nuly,
ale vyuzijeme pfedchozi hodnoty. Zvét§ime hodnotu pro-
ménné DOLNI o 1 a upravime hodnotu proménné DELKA
odettenim délky ptislu§ného elementdrniho useku, ktery
jsme ze sledovaného tseku timto vynechali. Vypocet se nyni
bude opakovat. Cely vypocet skonci, jakmile hodnota pro-
ménné HORNI piekroti hodnotu N. Zbyvajici dosud nespo-
¢tené hodnoty pole E budou rovay 0, jak vyplyvd piimo
z definice pole E.

Sprdvnost uvedeného postupu pro vypocet hodnot pole E
neni tfeba zvldst zdtvodilovat, jednéd se o konstrukci hodnot
pole E piimo podle definice. Vypolet podle uvedeného
algoritmu je jisté kone¢ny, nebot v kazdém jeho kroku dochazi
bud ke zvy$eni hodnoty proménné HORNI nebo proménné
DOLNI o 1. Pfitom na zatdtku vypoltu je HORNI =
= DOLNI = 1, stéle plati DOLNI <= HORNI a vypocet
kon¢i ihned, jakmile hodnota proménné HORNI piekro¢i N.
Vykond se tedy méné nez 2 * N kroka algoritmu. Odtud
také plyne, Ze i algoritmus na sestrojeni pele E je linedrni.

program KRUZNICE (input, output);
const N = 10; {poet zadanych bodu }
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var D:array [1..N] of integer; {vstupni data}
E:array [0..N] of integer; {pole E podle rozboru }
CTVRT, M, DELKA, DOLNI, HORNI: integer;
{proménné z rozboru tlohy }

I, §: integer; {pomocné proménné }
begin
F:=0;
for I: =1to Ndo
begin
read (D[I]); {natteni vstupnich dat}
F:=%+ D[] {vypotet délky kruznice}
end;
I:=0; {pro ukoneni v pfipadé ¥ mod 4 <> 0}

if ¥ mod 4 = 0 then {zdkladni nutnd podminka ex. fe3eni}
begin
CTVRT : = ¥ div 4; {velikost ¢tvrtkruznice}
{Vypocet hodnot pole E:}

E[0]: = 0;

DOLNI : = 1;
HORNTI : = 1;
DELKA : = 0;

while HORNI < = N do
if DELKA < CTVRT then
begin {prodlouzit sledovany tsek}
DELKA : = DELKA + D[HORNIJ;
HORNI: = HORNI + 1
end
else
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begin {definovat hodnotu pole E ...}
if DELKA = CTVRT then
E[DOLNI]: = HORNI
else
E[DOLNI]: = 0;
DELKA : = DELKA — D[DOLNI];
{... a zkrétit sledovany usek}
DOLNI : = DOLNI + 1
end;
for I : = DOLNI to N do
E[Il: = 0;
{Vypotet maximalniho indexu M:}
M: = 0;
Ji=0;
while ¥ < = CTVRT do
begin
M:=M+1;
¥:=3+ DIM]
end;
{Vlastni vypoctet fedeni ulohy: }
I:=1;
while (E[E[E[I]]] = 0)and (] < M) do
I:=1+1
end;
{Vysledek vypoltu: }
if E[E[E[I]]] = O then
writeln (’Indexy poZadovanych vlastnosti neexistuji.”)
else
begin
writeln (’Indexy poZadovanych vlastnosti existuji.”);
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writeln (*Vyhovuje napfiklad ¢tvefice indexi:’);
writeln (7 : 10, E[I] : 10, E[E[I]] : 10, E[E[E[I]]] : 10)
end

end.

P-1-3

Vysledkem préce zadaného programu je hodnota promén-
né ¥. UkdaZeme, Ze na konci programu proménnd § udavd dél-
ku maximadlniho dseku stejnych &isel ve vstupnich datech.

Vzhledem k uspofdddni pole A musi shodné prvky tvofit
souvisly usek. Ozna¢me délku nejdel§iho takového useku jako
D a vystupni hodnotu proménné J symbolem V. DokiZeme,
Ze vypocet programu je vzdy kone¢ny a ze V = D.

1. Program obsahuje jediny cyklus typu while, a to s ped-
minkou I + ¥ <= 100. Na zalitku vypoltu md vyraz
I + ¥ hodnotu 2 a p#i kazdém prichodu cyklem jeho hodnota
vzroste o 1. Cyklus se tedy provede 99krat a skonci, jakmile
soucet I + ¥ dosdhne hodnoty 101. Vypocet je tudiz konecny.

2. V<=D

Jist¢ V > = 1, nebot proménnd ¥ mé na zalitku vypoltu
hodnotu 1 a nikdy se nezmen3uje. Jestlize V =1, pak
dokazované nerovnost V< = D zfejmé plati, nebot D > = 1.
Pokud V > 1, musela proménnd § nabyt hodnoty V zvétse-
nim o 1 z hodnoty V' — 1 pfi splnéni podminky A[I] =
= A[I + V — 1] pro n&jaké I. ProtoZe je pole A setfidéné,
musi se sobé rovnat také vSechny prvky lezici mezi A[I]
a A[I+V —1), tzn. plati A[I]=A[I+1]= ... =
= A[I + V — 1]. Existuje tedy usek stejnych ¢isel v poli 4
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délky V a tudiz VV <= D. Nerovnost IV <= D je tak do-
kazana.

3.V=D
Necht asek stejnych &isel délky D v poli 4 zacina prvkem
s indexem M, tj. plati A[M] = AIM + 1] = ... = A[M +

+ D —1] pro M+ D —1 <=100. Proménnd I musi
béhem vypoltu nabyt hodnoty M. Po ukonleni vypoctu
je totiz I + ¥ = 101, a kdyby bylo I < M, muselo by platit
J > 101 — M neboli také V > 101 — M. Z nerovnosti
M+ D—1<=100a V > 101 — M dostavime V > D,
coz je ve sporu s jiz dokdzanou nerovnosti V' < = D. Jestlize
tedy proménné I nabude hodnoty M, bude se pii dalsich pru-
chodech cyklem zvétSovat hodnota proménné ¥, dokud bude
platit A[M] = A[M + ¥]. Vzhledem k rovnosti A[M] =
= A[M + D — 1] ziskd proménnid J hodnotu D. Jiz jsme
dokazali, 2e V' <= D, takze ¥ nemuze nabyt hodnoty vétsi.
Je tedy V = D, coz jsme méli dokézat.

P-1-4

a) Pfi feSeni tulohy vyuzijeme skuteCnosti, ze mncho-
uhelnik je konvexni pravé tehdy, jestlize viechny jeho vnitini
ahly jsou mensi nebo rovay 180 stupni. Toto tvrzeni lze
snadno dokizat jednoduchou geometrickou tvahou. V algo-
ritmu proto staci zkontrolovat velikost viech vnitfnich ahla
zadaného mnohouthelniku. To Ize velice pohodlné provést
pomoci preddefinované funkce UHEL.

Predpokliddejme, Ze v proménné N je ulozen pocet vrchola
zadaného mnohothelniku a v polich X, Y soufadnice jeho
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vrcholi v potadi (X[1], Y[1]), (X[2], Y[2]),...,(X[N], Y[N]),
Algoritmus fesici zadanou ulohu potom muZeme zapsat
v Pascalu takto:

X[N +1]: = X[1]; Y[N + 1]:
X[N + 2]: = X[2]; Y[N + 2]:
I:=1;
while (I < = N)

and (UHEL (X[I + 2], Y[I + 2], X[I + 1], Y[I + 1],

X[I], Y[I]) <= 180) do

I:=1+1;
if I > N then writeln (" Mnohouhelnik je konvexni.”)
else writeln ("’ Mnohothelnik neni konvexni.”);

Y[1];
Y[2];

Abychom nemuseli zvla3t fesit situaci pro prvni a posledni
vrchol mnohothelniku (tj. vrchely s indexy 1 a N), pfifadili
jsme pfed zahdjenim vlastniho vypoctu soufadnice vrchola
(X[1], Y[1]) a (X[2], Y[2]) do poli X, Y jesté jednou do po-
lozek s indexy N + 1, N + 2.

Spravnost algoritmu piimo vyplyva z uvedeného rozboru.
Je tieba si uvédomit, ze podle definice mnohotihelniku jsou
jeho vrcholy zaddny v pofadi proti sméru hodinovych rudi¢ek
a ze funkce UHEL dava jako svij vysledek velikost uhlu
méfeného také proti sméru hodinovych ruci¢ek. Pro vyjadieni
velikosti vnitfniho thlu mnohothelniku pii vrcholu s indexem
I + 1 je proto v zapisu algoritmu uzito spravného poradi
vrcholu ve volani funkce UHEL.

Algoritmus ma linedrni Casovou slozitost a vypocet podle
néj je kone¢ny, nebot kazdy vnitini uhel je kontrolovin
nejvyse jednou. Vykon4 se proto maximalné N kroku vypoltu,
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poptipadé pii nalezeni né&jakého vnitfniho Ghlu vétsiho nez
180 stuprit konci vypocet jesté diive.

b) Popiseme neformélné ¢innost algoritmu FeSiciho zada-
nou ulohu. Algoritmus nejprve zjisti jeden bod z konvexniho
obalu. Za tento bod zvolime napriklad ten ze zadanych bodu,
ktery m4 nejvétsi x-ovou soufadnici. Je-li takovych bodu vice,
vybereme z nich ten, ktery méd nejvétsi y-ovou soufadnici.
Takto ziskany bod jisté ndleZi do konvexniho obalu.

Znéme-li jiz nékolik (tfeba jen jeden) bodu konvexniho
obalu, dal$i bod ziskdme nésledujicim vypoltem: Necht P
je bod naposledy zafazeny do vytvareného konvexniho obalu
a bod 4 libovolny jiny bod, ktery dosud do obalu nebyl
zafazen (za »nezafazeny« do konvexniho obalu povaZujeme
i pocate¢ni bod s nejvétsi x-ovou soufadnici). Pro vSechny
ostatni body nezafazené do konvexniho obalu nyni budeme
zjistovat, zda né€ktery z nich lezi vpravo od piimky PA pfi
pohledu z bodu P k bodu 4. Pokud najdeme takovy bod B,
budeme nadile totéZ zjisfovat pro bod B a pfimku PB.
Nemusime ale jiz uvazovat body, které lezi vlevo od pfimky
PA, nebot ty jisté lezi vlevo i od pfimky PB. Po otestovani
viech boda nezatazenych do konvexniho obalu tedy ziskime
bod C takovy, Ze 74dny jiny z bodu nezafazenych dosud
do konvexniho obalu nelezi vpravo od ptimky PC pii pohledu
z bodu P k bodu C. Tento bod C nyni zaradime jako dalsi
bod do konvexniho obalu. Je-li bod C shodny s pocitednim
bodem, algoritmus jiz nalezl cely konvexni obal. Jinak
se vypocet dalsiho bodu konvexniho obalu opakuje.

Opét budeme predpokladat, Ze proménnd N udévd poclet
zadanych bodu. Soutadnice téchto bodu jsou ulozeny v polich
X, Y v polozkich s indexy 1,2, ..., N. Podle pozadavka
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tlohy budeme soufadnice bodu nalezeného konvexniho obalu
uklddat do poli KONOBALX, KONOBALY a potet boda
tohoto konvexniho obalu do proménné POCET.

Program bude vyuzivat pomocné pole OBAL[1..N], ve
kterém bude pro kazdy ze zadanych bodu zaznamenéno, zda
byl zafazen do konvexniho obalu. Pokud OBAL[K] = 0, bod
(X[K], Y[K]) do konvexniho obalu dosud nebyl zafazen,
jestlize OBAL[K] = 1, uvedeny bod do konvexniho obalu
zafazen byl. U pocatetniho (a tedy také koncového) bodu
vytvafeného konvexniho obalu je udrZovdna v poli OBAL
hodnota 0 a index tohoto bodu je zaznamendn ve zvlaStni
proménné PB. Soufadnice tohoto bodu jsou vloZeny do poli
KONOBALX, KONOBALY az jako posledni.

program KONOBAL (input, output);
const MAX = 50; {maximélni ptipustny pocet viech bodi}

var X, Y: array [1..MA4X] of real; {soufadnice zadanych
bodu }
KONOBALX, KONOBALY:: array [1.. MAX] of real;
{soufadnice bodu konvexniho obalu}
OBAL: array [1..MAX)] of integer;
{indikace zafazeni bodu do konvex. obalu}
N, POCET, PB: integer;  {potet viech bodu, potet boda
v konv. obalu, potitetni bod }
I, K, B: integer; {pomocné proménné — indexy bodi}
begin
{Natteni vstupnich dat:}
read (N);
for I: =1 to N do read (X[I], Y[I]);
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{Hled4ni potatetniho bodu:}
PB:=1;
for I: =2to Ndo

if X[1] > X[PB] then PB : =

else if (X[I] = X[PBland (Y[I] > Y[PB])then PB :

{Inicializace promé&nnych:}

for I: =1to N + 1do OBAL[I]: = 0;
POCET : =0

K : = PB;

{Vlastni vypocet:}

repeat
{K je zatim posledni bod konvexniho obalu}
B:=1;
while (OBAL[B] =1)or (B =K)doB: =B + 1;

=1

{B oznatuje bod s nejmensim indexem nezafazeny d> obalu }

I:=B+1;
while (OBAL[I] = 1)or (I = K)do I : = I + 1;
{I je dal3i adept na zafazeni do konv. obalu}
while I <= N do

begin

if VPRAVO (X[K], Y[K], X[B), Y[B], X1, Y[I])

then B : =

repeat [ : =1 + 1

until (OBAL[I] <> 1)and (I < > K);

end;
{B zde oznatuje dal3i bod konvexniho obalu }
K: = B;
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POCET : = POCET + 1;

KONOBALX [POCET) : = X[K];
KONOBALY[POCET] : = Y[K];
OBAL[K]: =1

until K = PB;
{Vypséani vysledného konvexniho obalu:}
writeln (’Konvexni obal je tvofen’, POCET : 1, body.”);
writeln (’ Soufadnice bodi konvexniho obalu:”);
for I: =1 to POCET do

writeln (KONOBALX[I] : 10, KONOBALYT[I] : 10)
end.

Spravnost popsaného algoritmu vyplyvd piimo z vyse
uvedeného rozboru. Algoritmus je popsén induktivné, po
krocich, a je ho také mozné matematickou indukci formélné
dokéazat. Z rozboru je ziejmd i koneCnost vypoctu podle
na$eho algoritmu. V kazdém kroku vypoltu je pfiddn jeden
bod do postupné vytvareného konvexniho obalu, konvexni
obal N bodu je tvoien nejvyse témito N body, takze vypocet
skonéi nejpozdé€ji po N krocich.

Popsany algoritmus maé kvadratickou c¢asovou sloZitost.
Vyzaduje provedeni nejvyse N kroku, jak jsme pravé ukazali.
Pritom v kazdém kroku je kazdy z N zadanych bodu pravé
jednou testovan, zda neni prodlouzenim dosud nalezené Céasti
konvexniho obalu. Celkovy pocet operaci nezbytny k vyfeSeni
ulohy je tedy umérny hodnoté N * N.

Pozndmka. V ptipadé, 7e na hrané konvexniho obalu lezi

tfi body (nebo vice bodu), zde uvedeny algoritmus je vSechny
muze ale nemusi zafadit do konvexniho obalu. Protoze oba
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ptipady vyhovuji definici konvexniho obalu ze zad4ni tlohy,
hloubéji se timto piipadem nezabyvéme.

P-1i-1

Hodnotu f(%) pro né&jaké pevné zvolené &islo £ > 1 snadno
vyjadiime pomoci dvou jinych hodnot funkce f. Pfitom
argumenty funkce f odpovidajici témto hodnotim jsou dvé
po sobé nasledujici ¢isla mensi nez k. Pokud je totiz & sudé,
je f(k) = 2.f(k/2), coz mlZeme zapsat také jako f(k) =
= 2.f(k/2) + 0.f(k/2 + 1). Je-li k liché, potom plati rovnost
J(B) = 2.f((k + 1)/2) — f((k — 1)/2). Tyto vztahy jsme ziskali
jednoduchou upravou pfimo z definice funkce f.

Nyni si v§imneme, jak je moZné vyjidfit hodnoty f(%),
f(k + 1) pro dvé po sobé jdouci celd &isla &, £ + 1. Rozli§ime
tii pfipady:

1. R =0... f(k)=f(k + 1) = 1 pfimo podle definice funk-
cef.

2. ksudé, k> 0 ... f(k) = 2.f(k[2) podle definice funkce £,
tislo & + 1 je liché, a proto f(k + 1) = 2.f(k/2 + 1) —
— f(k[2).

3. k liché ... flk) =2.f((k + 1)/2) — f((k — 1)/2) podle defi-

nice, &islo & + 1jesudé, aprotof(k + 1) = 2.f((k + 1)/2).
Tedy pro & = 0 jsou hodnoty f(k),f(k + 1) znidmy a pro
k>0 je mozné vyjadtit ob& hodnoty f(k),f(k + 1) opét
jako vhodnou kombinaci hodnot funkce f odpovidajicich
dvéma men$im po sob& jdoucim Cislim v roli argument
(a to konkrétné ¢&islum % div 2, & div 2 + 1).

Z uvedeného rozboru vyplyva, Ze k vypoltu hodnoty f(n)
pro zadané Cislo #» ndm budou stadit tfi proménné. V jedné
proménné K bude stile uloZena postupné se zmenSujici
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hodnota argumentu — od podite¢ni vstupni hodnoty n aZ
k nule, v kazdém kroku vypoctu celoiselné délena dvéma.
V dalsich dvou proménnych 4 a B se budou potitat koefi-
cienty, jimiZz je tfeba vyndsobit hodnoty f(K), f(K + 1),
abychom ziskali spravny vysledek. Na za¢dtku vypoltu bude
K =mn,4 =1,B = 0.Hodnotavyrazu A.f(K) + B.f(K + 1)
bude b&hem celého vypoctu udrzovina konstantni. Na zatdtku
vypottu mé tento vyraz hodnotu 1.f(n) + 0.f(n + 1) = f(n),
po ukonéeni pfi K = 0 bude mit tvar A.f(0) + B.f(1) =
= A + B. Vyslednou hodnotu f(n) lze tedy ziskat jako soulet
hodnot proménnych 4 a B po ukonéeni vypo&tu.

Zbyva ukdzat, jak musi vypadat pfepocet hodnot promén-
nych K, A, B v kazdém kroku vypoctu, aby se zachovala
konstantni hodnota vyrazu 4.f(K) + B.f(K + 1). VyuZijeme
k tomu dfive odvozené vztahy pro vyjidfeni hodnot f(k),
Sk + 1):

a) je-li hodnota proménné K sud4 kladna:
A.f(K)+ B.(K+1)=A4.2.f(K2) + B.2.f(K/2 + 1) —
— B.f(K/2) = (24 — B).f(K/2) + 2B.f(K/2 + 1)
— tedy hodnota K se zmens$i na polovinu, proménnd A4 ziska
hodnotu 24 — B a hodnota proménné B se zdvojnésobi;
b) je-li hodnota proménné K liché:
A.f(K)+ B.f(K+1)=A4.2.f(K + 1)/2) —
— A.f(K —1)2) + B.2.f(K + 1)2) =
= —A.f(K—1)2)+2.(4 + B).f(K + 1)/2)
— tedy hodnota proménné K se zmensi na (K — 1)/2
nebeli K div 2, hodnota proménné 4 zméni znaménko
a proménnd B ziskd hodnotu 2(4 + B).

Na zikladé uvedeného rozboru snadno zapiSeme hledany

algoritmus na vypocet hodnoty funkce f pro dany argument 7.
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Algoritmus vyjiddiime ve tvaru funkce v programovacim
jazyce Pascal:

function F (K :integer): integer;
var 4, B: integer;

begin
A:=1;
B: = 0;
while K > 0 do
begin
if Kmod 2 = 0 then
begin
A:=2%*A4A — B;
B:=2*B
end
else
begin
B: =2%4 + B);
A:=—4
end;
K:= Kdiv 2
end;
F:=4+B
end;

Spravnost uvedeného algoritmu vyplyva z rozboru ulohy.
Béhem celého vypoltu se udrzuje neménna hodnota vyrazu
A.f(K) + B.f(K + 1), pfitemz pfi vyvolani funkce s argu-
mentem 7 vyjadiuje tento vyraz hledanou hodnotu f(n). Po
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ukonéeni vypoctu while-cyklu v programu je K = 0 a podle
definice funkce f je f(0) = f(1) = 1, takZe hodnotu uvedeného
vyrazu vyjadiuje soucet hodnot proménnych 4 + B. Tento
soucet je proto spravnym vysledkem algoritmu.

Vypoclet probihajici podle naseho algoritmu je jisté kone¢ny,
nebot v kaZzdém kroku vypoltu se hodnota proménné K
celoCiselné déli dvéma a cely vypoCet konci, jakmile K
dosdhne nulové hodnoty.

Algoritmus spliiuje pozadavek ze zadani Glohy na minimalni
pamétovou naro¢nost. K celému vypoctu staci pouzit pouze
tfi proménné. Algoritmus m4 logaritmickou ¢asovou slozitost
a konstantni pamétovou slozitost.

P-11-2

Navrhnout né&jaky, byt pomaly a neefektivni algoritmus
fesici zadanou tlohu je velmi snadné. Sta¢i zkoumat postupné
vSechny obdélniky v dané matici, zda jsou tvofeny samymi
jedniCkami. Obdélnik vzdy vymezime volbou jeho levého
horniho a pravého dolniho rohu. Takovéto feSeni ma oviem
casovou slozitost N3 . M3, nebot pro volbu levého horniho
rohu mame N. M moznosti, pro volbu pravého dolniho rohu
také (prii jiz zvoleném levém hornim rohu je zde moZnosti
o néco méné, ale z hlediska ¢asové slozitosti algoritmu to neni
podstatnd uspora) a prichod zvolenym obdélnikem v matici
o rozmérech N X M predstavuje také fddové N.M operaci.

Kratky program fesici ilohu timto neefektivnim zpusobem
muze vypadat nasledovné:

program OBDEL (input, output);

141



const N = 20; {potet Fadku matice A}
M = 15; {potet sloupcti matice A4}

var A :array [1..N,1..M] of integer;
L ¥ K,L,P,Q :integer; {pracovni indexy}
MI, M¥, MK, ML : integer; {soufadnice max. obdél.}
C: integer; {pro kontrolu obdélniku }
VEL: integer; {velikost zkoumaného obdélniku}
MAX: integer; {maximalni velikost obdélniku}

begin
MAX : = 0;
for I: =1 to N do {nalteni hodnot matice 4}
for ¥: =1 to M do read(A4[1, ¥]);
for I: =1to N do
for ¥ : = 1 to M do {levy horni roh obdélniku A[Z, 7]}
for K: = Ito N do
for L: = ¥ to M do {pravy dolni roh A[K, L]}
begin
VEL:=(K—1+1)*({L —F+ 1)
if VEL > MAX then
begin {obdélnik je v&tsi neZ maximélni }
C:=1;
for P: = Ito K do
for Q:=Fto Ldo
C:=C*A4[P,Q]; {kontrola obdéIniku}

if C = 1 then
begin {obdélnik je tvofen jedni¢kami}
MAX : = VEL;
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MI:=I, Mf: =% MK:=K; ML:=1L
end
end
end;

if MAX = 0 then
writeln (>Zadan4d matice neobsahuje Zddnou jednitku.”)
else
begin
writeln (’ Maximilni obdélnik tvoieny jedni¢kami md’);
writeln (’soufadnice levého horniho rohu:’, MI:7, M¥:6);
writeln (’soufadnice pravého dolniho rohu:’, MK:6, ML:6)
end
end.

Ukazme si nyni jiny algoritmus, ktery fe$i zadanou dlohu
vyrazné rychleji. V prvni fazi feSeni provedeme pomocny
vypolet, pti kterém uréime délky souvislych sloupcu jedni¢ek
v dané matici 4. Vysledky tohoto vypoltu si ulozime pfimo
do pole A tak, ze polozime A[7,7] = k, jestlize prvek A[i,7]
sdm a dalSich pfesné & — 1 prvka pod nim mélo pavodné
hodnotu 1, tzn. jestlize v pavedni matici 4 platilo A[p,j] =1
prop=1t¢1i+1,...,1+k—lanavicbudi + %2 —1 =N
nebo 7 + k —1 < N a pritom A7 + k,j] =0 (kde N je
poet t4dka matice 4). Udaje v zadaném poli 4 tim pozmé-
nime, ale pouze tak, ze v pfipadé pctieby by bylo snadné
zrekonstruovat puvodni podobu pole 4 (nebot Zziadna nula
v poli 4 neubyla ani neptibyla, nenulova &isla jsou ulozena
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na mistech pavodnich jedni¢ek). Vysledek prvni pomocné
faze vypoctu si ukdZeme na piikladu:

ze zadané matice: dostaneme upravenou matici:
11010 34010
1 1101 2 320 3
11111 1 211 2
01 001 01 0 01

Ve druhé fazi vypoctu jiz budeme hledat v poli 4 maximdlni
obdélnik tvofeny jednickami (nyni po Gpravé nenulovymi
¢isly). Postupné budeme zkoumat vSechny mozné pozice
levého horniho rohu takového obdélniku. Pro zvoleny levy
horni roh A[z,7] > 0 musime vyzkouset vSechny pfipustné
polohy pravého horniho rohu A[z, 7]. Prvek A[7,I] maze byt
pravym hornim rohem obdélniku s levym hornim rohem
Ali,j], jestlize vSechna ¢&isla A[i, q] prog =7, 7+ 1,...,1
jsou nenulov4.

Velikost maximalniho obdélniku, ktery je v pavodni ma-
tici A tvofen samymi jedni¢kami a jehoz levy a pravy horni
roh maji soufadnice [z,/], resp. [7, /], nyni jiz snadno ur¢ime
pomoci hodnot, které jsme si pfedem pfipravili v prvni fazi
vypoctu. Takovy obdélnik md totiz Sitku (/ — 7 + 1) a jeho
vyska je rovna minimu z hodnot A[7, gl prog =7,7 + 1, ...,
oLl —1,1

Uvedeny vypocet je mozné opakovat pro viechny mozné
volby levého horniho rohu obdélniku a pfitom si v pomocné
proménné udrzovat velikost maximalniho jiz nalezeného
obdélniku tvofeného v zadané matici samymi jedni¢kami.
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V dalsich ¢tyfech pomocnych proménnych si musime zazna-
mendvat soufadnice levého horniho a pravého dolniho rohu
nalezeného maximaélniho obdélniku. Tyto proménné budou
po ukonceni vypoctu uddvat pozadovany vysledek tlohy.

program OBDELNIK (input, output);

const N = 20;  {potet fidka matice 4}
M =15;  {potet sloupci matice 4}
var A:array[l..N,1..M] of integer;
L, #, L: integer; {pracovni indexy v poli 4}

K: integer; {vyska zkoumaného obdélniku }
MI, M¥, MK, ML: integer; {soufadnice roht max.
obdélniku }
MAX: integer; {velikost maximalniho obdélniku}
VEL: integer; {velikost zkoumaného obdélniku }
begin

{Natteni matice 4:}
for I: =1to N do
for ¥: =1 to M do read (4[I, ¥]);

{Prvni fize vypottu — modifikace pole 4:}
for 7: =1to M do
for I: = N — 1 downto 1 do
if A[1, 7] = 1then A[L ¥]: = A[L J] + Al + 1,¥];

{Druhi fize vypoltu — hledani maximélniho obdélniku:}
MAX : = 0;
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for I: =1to N do
for¥:=1to Mdo

begin {levy horni roh A[I, ¥]}
L:=% {pravy horni roh A[I, L]}
K: = A[l L]
while K > 0 do
begin
VEL:=(L—J+ 1)*K; {velikost zkoumaného
obdélniku }

if VEL > MAX then
begin {je vé&t3i neZ dosud maximélni}
MAX : = VEL; {— > zaznamenat jeho velikost}
MI: =1; M{: =% MKi:=1+K—1; ML: =1L
{— > zaznamenat jeho soufadnice}

end;
L:=L+1; {nov4 poloha prav. horniho rohu}
if L > M then

K:=0 {uZ jsme vn& matice 4}

else if A[I, L] < K then
K: = A[I,L] {sniZeni vy3ky obdélniku z »1«}
end
end;

{Vypséni vysledku vypoltu:}
if MAX = 0 then

writeln (’Zadand matice neobsahuje Z4dnou jedni¢ku.”)
else

begin

writeln (’Maximdlni obdélnik tvofeny jednitkami md’);
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writeln (’soufadnice levého horniho rohu:’, MI: 7, M¥ : 6);
writeln (*soufadnice pravého dolniho rohu:’, MK : 6, ML : 6)
end

end.

Sprévnost algoritmu plyne z uvedeného rozboru. Pokud
zadand matice obsahuje samé nuly, zustane ve druhé fazi
vypottu proménnd MAX s pocatedni hodnotou 0 nezménéna
a na zékladé toho je vypséno pfislu§né hldSeni. Jestlize matice
obsahuje alespon jednu jedni¢ku, musi obsahovat také néjaky
maximélni ot délnik tvofeny jedni¢kami. Dvojice proménnych
I, ¥ béhem vypoltu nabude hodnot odpovidajicich soufad-
nicim levého horniho rohu tohoto maximélniho obdélniku,
nebot pomoci indextt I, J algoritmus postupné prochédzi
vSechny prvky pole 4. Proménnéd L potom jisté nabude také
hedrety slcupcového irdexu pravého horniho rohu maxi-
miélniho ctdélniku z jedni¢ek a pfitem bude proménnd K
uddvat vy$ku tchoto cbdélniku. Za této situace ziska promén-
nd MAX hodnotu udévajici velikost maximalniho obdélniku
tvoifeného jedni¢kami (pokud této hodnoty nenabyla jiz dfive
pii zkoumdni jiného obdélniku stejné velikosti tvofeného
samymi jedni¢kami). Zéroveri jsou do proménnych MI, M¥,
MK, ML zaznameniny soufadnice levého horniho a pravého
dolniho rohu nalezeného maximalniho obdélniku. Vzhledem
k maximalité¢ velikosti tohoto obdélniku jiz nemutze byt
nalezen zadny vét§i obdélnik tvcieny samymi jednitkami
a hodnoty proménnych MAX, MI, M¥, MK, ML proto
zistanou az do ukonceni vypoltu nezménény. Pfi ukonceni
vypoctu jsou proto [MI, M¥] a [MK, ML] soufadnice levého
horniho a pravého dolniho rohu maximilniho obdélniku
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tvofeného samymi jedni¢kami. Jestlize 1ze v zadané matici A
nalézt vice riznych obdélnik ze samych jedniek této maxi-
maélni velikosti, budou proménné MI, M¥, MK, ML udévat
soufadnice rohii jednoho z nich (toho, ktery byl nalezen jako
prvni).

Vypocet podle uvedeného algoritmu je jisté konelny,
nebot polet priichod kazdym z cykla v programu je pfedem
omezen nékterym z rozméra zadané matice. Nadteni hodnot
matice 4 ze vstupu a modifikace obsahu pole 4 v prvni fzi
vypoltu vyZaduji provedeni N.M operaci. Ve druhé féazi
vypoltu se N.M zpusoby voli levy horni roh zkoumaného
obdélniku a pro kazdou takovou volbu se provadi nejvyse M
pruchodu vnitfnim while-cyklem s vlastnim vyhodnocenim
obdélnika. Poclet operaci potfebnych k provedeni celého
vypoltu je proto imérny hodnoté N.M.M.

Cely vypocet je mozné provadét také symetricky tak, Ze
se v prvni fizi uréi délky souvislych vodorovnych fad jedni-
Cek v poli 4. Ve druhé fazi vypoltu by se potom pro kazdou
volbu polohy levého horniho rohu zkoumaného obdélniku
zkouSely vSechny mozné polohy jeho levého dolniho rohu.
V tomto ptipadé by cely vypocet vyzadoval provedeni fddové
N.N.M operaci. Pokud bychom se tedy snazili o maximalni
mozZnou optimalizaci ¢asovych ndrok navrzeného algoritmu,
bylo by moZné volit uvniti algoritmu aZ na zdkladé znalosti
konkrétnich rozméra N, M pole 4 tu variantu feSeni, kterad
by byla vyhodnéjsi (varianta, kterou jsme zde podrobné
rozebrali, je vyhodnéj§i pro N > M).
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P-11-3

Rozborem zadaného algoritmu P snadno zjistime, Ze
&innost algoritmu mtizeme popsat nasledovné: Zadané pole A
se prochdzi sekvenéné zleva doprava. Pfi tomto prichodu
se zapamatuje a cdstrani z pole 4 nejprve prvni prvek. Tento
prvek bude »pfenesen« bezprostfedné za souvisly tsek po
ném nésledujicich Cisel mensich, nez je on sdm. Cely tento
usek &isel se v poli 4 posune o jednu pezici doleva. Jakmile
se pfi priachedu polem narazi na néjaké Cislo vétsi, nezje pravé
zapamatovany a prendSeny prvek, tento pfendeny prvek se
umisti do pole 4. Misto néj se zapamatuje nalezené vétsi
tislo, odstrani se z pole 4 a opét se bude prenaset stejnym
zpuscbem dil. Tente postup se opakuje tak dlouho, dokud
se algoritmus nedostane k pravému okraji pole 4. Tam je pak
umistén naposledy prendSeny prvek a tim je cely vypocet
ukoncen.

Z rozboru je ziejmé, Ze kazdy prvek je umistén na své
vysledné misto v poli 4, jestlize

— bud je posunut o jedno misto doleva a pies néj je pfenese-
no pravé zapamatované vétsi Cislo;

— nebo byl piend$en smérem doprava pres usek mensich
Cisel (tento usek muzZe byt i prdzdny) a nyni je umistovin
za tento usek, nebot algoritmus narazil na vétsi cislo
ulozené v poli 4 nebo na pravy okraj pole 4.

V pribéhu vypocltu jsou umistevany na sva vyslednd mista
prvky pole 4 v takovém poradi, Ze jsou postupné obsazovina
jednotlivd mista v poli 4 zleva doprava. Po ukon¢eni price
algoritmu bude tedy pole 4 vzestupné uspofddino pravé teh-
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dy, jestlize jsou ¢isla umistovana na sva vyslednd mista v poli 4
v neklesajicim pofadi.

Na zikladé rozboru zadaného algoritmu a s vyuZitim
pravé uvedeného tvrzeni nyni jiz muZeme zapsat program
fesici danou Ulohu. Program »modeluje« vypocet algoritmu P,
ale do pole A4 nezasahuje a pouze si udrZuje informaci o hod-
noté pravé zapamatovaného a pienaSeného prvku a o dosud
nejvétsim jiz umisténém prvku pole 4. Zéroveil s napodo-
bovianim vypoctu algoritmu P bude nd§ program sledovat,
zda ¢&isla umistovand do pole 4 nésleduji po sobé v neklesa-
jicim poradi.

program 7RIDENI (input, output);

const N = 100; {velikost pole 4}
var A4: array [1..N] of integer; {zadané pole A}
PREN: integer; {pfend3eny prvek}
MAX: integer; {maximalni jiz umist&ny prvek}
CH: Boolean; {pfiznak chybného uspofadani }
I: integer; {pomocnd proménna — index v 4}
begin
for I: =1 to N do read (4[I]); {natteni pole 4}
CH: = false; {zatim chyba neni }
PREN: = A[1]; {prvni pfenaSeny prvek}
=2 {prachod od prvku A[I]}
MAX: = —maxint; {inicializace maxima }

while (not CH)and (I <= N) do
begin
if A[I] < PREN then {pFenést PREN pies A[I]}
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if A[I] < MAX then

CH: = true {chyba v uspofddéni!}
else
MAX: = A[I] {nové hodnota maxima }
else
begin {narazil na v&t3i &islo nez PREN}

MAX: = PREN; {dosud pfen43eny prvek PREN bu-
de umistén do pole A a stane se tak
novym maximem 2z umisténych
Lisel }

PREN: = A[I] {zapamatuje se nésledujici Cislo
a stane se tak novym prenaSenym
prvkem PREN}
end;
I=1+1 {bude zkoumat dal3i prvek 4}
end;

if CH then

writeln (’ Algoritmus zadané pole neuspofdda.’)
else

writeln (’Algoritmus zadané pole uspotad4.”)
end.

Spréavnost programu vyplyva z provedeného rozboru tlohy.
N4s program provadi zcela obdobny vypocet jako algoritmus P
uvedeny v zaddni udlohy, pouze namisto vlastnich vymén
prvka uloZenych v poli 4 si v pomocnych proménnych PREN
a M AX udrzuje potiebné fidici informace. Pomoci proménné
MAX je zaroveni kontrolovdno, zda bude po ukon¢eni vypoltu
pole A4 vzestupné uspofddéno.
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Vypocet programu je jisté¢ kone¢ny, nebot je tvofen maxi-
malné N kroky (kde N je potet prvki pole 4). Pokud se b&hem
vypoltu zjisti, Ze by pole A nebylo po ukonleni vypoltu
uspofdddno, je vypolet piedCasné ukonen jeSté dfive.
Program ma stejné jako zadany algoritmus P linedrni ¢asovou
slozitost.

P-11-4

Existuje celd fada v principu zcela odli$nych algoritmu,
které fedi tuto tlohu. Nejlep$i z nich maji lineirni ¢asovou
slozitost, tzn. pocet operaci nezbytnych k vyfeSeni ulohy
je tmérny poctu vrchola zadaného mnohouhelniku. Namisto
jednoho detailniho vzorového feSeni ulohy si proto radéji
ukdzeme hlavni myslenky tfi raznych algoritmt (s linedrni
Casovou slozitosti) a moznou programovou realizaci jednoho
z nich.

1. Protoze zndme soufadnice vSech vrcholi daného mno-
houhelniku i soufadnice zkoumaného bodu (oznatme ho B),
miiZeme snadno spocitat vzdélenosti bodu B od jednotlivych
stran mnohothelniku. Zarovent mizeme zjistit, od které strany
mnohothelniku m4d bod B nejmen$i vzdilenost — necht
je to strana A(k) A(k + 1). Nejkratsi spojnici bodu B se
stranou mnohothelniku nemiuze protinat (ani se ji dotykat)
74dn4 jind strana mnohothelniku, kterd by bod B od strany
A(k) A(k + 1) geometricky »oddélila«. K vyfeSeni ulohy
proto staci zjistit, zda bod B lezi napravo nebo nalevo od
use¢ky A(k) A(k + 1). Presnéji feteno, bod B lezi uvnitf
daného mnohotihelniku pravé tehdy, jestlize pomocnd funkce
VPRAVO zavolani se soufadnicemi boda A(k + 1), A(k), B
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na misté parametru (v tomto pciadi) dava hodnotu »pravdac.
Ziména pofadi bodu A(k), A(k + 1) pfi vyvoldni funkce
VPRAVO je nutnd z toho davodu, Ze bod lezici na strané
mnohouhelniku musi byt oznalen jako leZici uvnitf.

2. Ze zkoumaného bodu B povedeme polopfimku libovol-
nym smérem takovym, aby na této polopfimce nelezel Zddny
vrchol zadaného mnohothelniku. Zjistime pocet prusedika
této polopfimky se stranou mnohouhelniku. Budeme-li se
po polopfimce pohybovat ve sméru od bodu B, kazdy pra-
seCik polopfimky se stranou mnohouhelniku bude znamenat
pfechod z oblasti uvniti mnohouhelniku do oblasti vné mno-
houhelniku nebo naopak. Volba takového sméru polopfimky,
aby na ni nelezel Zz4dny vrchol mnohothelniku, ndm odstrani
vSechny nezadouci pfipady, Zze by polopfimka mnohotihelnik
pouze »teCovala« (dotkla by se ho v jednom bodé€ nebo v celé
strané, ale ke zméné oblasti by nedoslo). Polopfimka samo-
ziejmé vede do oblasti vné mnohothelniku, nebct je neko-
necnd, zatimco mnohothelnik je konecny ttvar. Pocet pru-
seCikii polopfimky se stranami mnohothelniku proto jedno-
znalné urluje, zda se vychozi bed B nachdzi uvniti nebo
vné mnohothelniku. Je-1i tento pocet lichy, lezi bod B uvnitf,
je-li sudy, lezi vné zadaného mnohouhelniku.

3. Nejprve zvldst vySetfime, zda zkoumany bod B neni
roven primo nékterému z vrcholi A(z) daného mnoho-
thelniku. Pokud ano, lezi B uvniti mnohothelriku. Jestlize
tomu tak neni, mé smysl hovofit o velikosti ahla A7) B A(1+1),
tzn. o velikosti Ghli, pod nimiZ jsou z bodu B vidét jednotlivé
strany mnohothelniku. Velikosti téchto thli budeme méfit
podle konvence proti sméru hodinovych rudi¢ek (pedobné
jako v pomocné funkci UHEL) a jejich hodnotu budeme udé-
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vat ve stupnich v rozmezi (—180; 180). Jestlize budeme
prochédzet po obvodu mnohouhelniku z bodu A(1) postupné
pres body A(2), A(3), ... az zpét do bodu A(1), tzn. také
proti sméru hodinovych ruci¢ek, a budeme pfitom séitat
uhly méfené vySe uvedenym zpusobem, bude ndm tento
tasteény soudet pro bod A(k) uddvat velikost uhlu 4(1)BA(k).
Hodnota sou¢tu thld po projiti celym obvodem mnoho-
thelniku bude jednozna¢né urcovat polohu bodu B vici
zadanému mnohothelniku. LeZi-li bod B uvnitf mnoho-
Ghelniku, méd vysledny soucet thli hodnotu 360 stupiiu,
v opatném pripadé je nulovy. Volbou hodnoty + 180 stupiit
pro pfimy uhel je zajiSténo, ze bod B lezici na strané mnoho-
uhelniku je spravné vyhodnocen jako lezici uvnitf (pii volbé
—180 stupniti by byl oznacen jako leZici vng).

Na zdvér pfedvedeme programovou realizaci jednoho
z algoritmu fesicich danou tulohu. Pro tento tucel zvolime
algoritmus popsany vyse jako 3. v pofadi. Program ocekava
na vstupu nejprve pocet vrcholt mnohothelniku, po ném
nisleduji dvojice soufadnic jeho vrcholi a nakonec dvojice
soufadnic zkoumaného bedu.

program UVNITR (input, output);
const MAX =50; {maximdlni poCet vrcholia mnohouhelniku }

var AX, AY: array [1.. MAX] of real;
{x-ova a y-ova soufadnice vrcholi mnohouhelniku }

N: integer; {potet vrchol mnohouhelniku }
BX, BY: real; {soufadnice zkoumaného bodu}
SOUCET: real; {soucet velikosti thlu}
VYSLEDEK: Boolean; {vysledna poloha bodu B}

I: integer; {pomocna proménna }
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function UHL (X1, Y1, X2, Y2, X3, Y3: real) : real;
{pfedefinovini pomocné funkce UHEL tak, aby ddvala
hodnoty ve stupnich z rozmezi (—180; 180 > }

var U: real;

begin

U: = UHEL (X1, Y1, X2, Y2, X3, Y3);

if U > 180 then U: = U — 360;

UHL: = U

end;

begin

{Natteni vstupnich hodnot:}

read (N); {potet vrchola mnoh. }
for I: = 1to Ndoread(AX[I], AY[I]); {soufadnice vrcholi1}
read (BX, BY); {soufadnice bodu B}

{Kontrola, zda bod B nesplyv4 s vrcholem mnohothelniku:}
VYSLEDEK: = false;
Ii=1;
while not VYSLEDEK and (I <= N) do

begin

if (BX = AX[I])and (BY = AY[I]) then

VYSLEDEK: = true;

I:=1+1

end;
{Stitani velikosti uhla pro cely obvod mnohouhelniku:}
if not VYSLEDEK then

begin

SOUCET: = UHL (AX[N], AY[N], BX, BY,

AX[1], AY[1]);
for: =1to N —1do

155



SOUCET: = SOUCET + UHL (AX[1], AY[I],
BX,BY, AX[I + 1], AY[I + 1]);
if SOUCET = 360 then
VYSLEDEK: = true
end;
{Vypséni vysledku alohy: }
if VYSLEDEK then
writeln "Bod lezi uvnitf mnohothelniku.”)
else
writeln Bod lezi vné mnohothelniku.”)
end.

K uvedenému programu je tfeba poznamenat, Ze pfi sku-
te¢né praktické realizaci zvoleného algoritmu je nutné pro-
vadét jinym zpusobem testovdni rovnosti dvou redlnych
tisel. Zde jsme pro zjednodufeni a pro pfehlednost uvedli
piisludné testy ve tvaru

if (BX = AX[I])and (BY = AY[I]) then ...

if SOUCET = 360 then ...

Tento tvar oviem neni vhodny pro vypoclet, nebot redlna
&isla jsou v potitaci zobrazena piiblizné. Misto pfimého testu
na rovnost dvou reélnych &isel je proto tieba zkoumat, zda
se obé &isla od sebe prili§ nelisi, napfiklad takto:

if (abs(BX — AX[I]) < EPS) and (abs(BY — AY[I])
< EPS) then ... pro vhodnou velmi malou konstantu EPS.
Druhou z uvedenych podminek je v tomto konkrétnim pfi-
padé mozné zapsat také jednoduseji napfiklad jako

if SOUCET > 300 then ...,
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nebot vime, 7¢ po ukonleni vypoltu nabude proménni
SOUCET jedné z dvou moznych hodnot, 360 nebo 0.

P-1-1

Jist& existuje néjakd konetna posloupnost operaci sjedno-
ceni a rozdéleni, kterd pievede P na Q. Jednou z moznych
cest je napfiklad nejprve sjednotit vSechny mnoziny Pi,
i=1,...,m, a takto vzniklou mnozinu potom postupné
rozdélit na mnoziny Qj, j = 1, ..., n. Existuje proto také
néjakd nejkrat$i posloupnost operaci pievadéjici P na Q.

Nejprve ukiZzeme, Ze v takové nejkratsi posloupnosti operaci
mohou byt nejprve provedeny vSechny operace sjednoceni
a potom vSechny operace rozdéleni. K tomu stali dokizat
nésledujici tvrzeni: Pfedchdzi-li v nejkrat$i mozné posloup-
nosti operaci prevadéjici P na Q néjaka operace rozdéleni
operaci sjednoceni, lze pofadi té€chto dvou operaci zaménit
(ptitom se pochopitelné mohou zménit i mnoZiny, s nimiz
se operace provadéji). Platnost tvrzeni dokaZeme rozborem
pripada. Necht je v uvazované posloupnosti operaci rozdéleni
mnoziny 4 na mnoziny Al, A2 néisledovino sjednocenim
mnozin B, C na mnoZinu D.

1. Pokud se 74dnd z mnozin Al, A2 nerovni Zzidné
z mnozin B, C, jsou obé operace zcela nezivislé, a miiZeme
proto zaménit jejich potfadi bez vlivu na vysledek.

2. Pokud {41, A2} = {B, C}, pak se provedenim uvaZo-
vané dvojice operaci obnovi pfesné stejny stav souboru mno-
zin, jaky byl pfed provedenim téchto operaci. Obé operace
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je tudiz mozné vynechat, coz je spor s minimalitou délky
nasi posloupnosti operaci. Tento pfipad tedy nemuZe nastat.

3. Jestlize napiiklad mnoziny 42, C jsou shodné a mnoziny
Al, B razné (obdobné pro ostatni kombinace), muZeme
misto nasi dvojice operaci provést nejprve sjednoceni mnozin
A, B a v dalsim kroku takto vzniklou mnozinu rozdélit
na A1, D. Vysledny soubor mnozin bude stejny jako u ptivoedni
posloupnosti operaci.

Jiny pfipad nemuze nastat. Dokézali jsme tedy, ze existuje
nejkrat§i posloupnost operaci pfevadgjici P na Q, ve které
se nejprve provedou viechna sjednoceni a potom rozdéleni
mnozin.

Mnoziny Pl, P2, ..., Pm budeme nejprve sjednocovat,
az dostaneme soubor mnozin A4 = {Al, A2, ..., Ar},
n < =r < =m. K tomu je tfeba provést m — r operaci sjed-
noceni. Potom mnoziny tohoto socuboru rozdélime na mnoZiny
01, 02, ..., On provedenim n — r operaci rozdéleni. Celkem
se tedy provede K = (m + n) — 2r operaci. Hodnota m + n
je pevné ddna zadanymi soutery mnoZzin P a . Musime proto
hledat co nejvétsi hodnotu ». Pro dal3i ivahy budeme zatim
pfedpoklddat, 7e viechny mnoZiny P1, ..., Pm,Ql, ..., On
jsou neprazdné. Upravu feSeni pro pfipad vyskytu prazdnych
mnozin v zadanych souborech P a Q provedeme v zavéru.

Ka?d4 mnozina Ai (1 = 1,2, ..., r) je sjednocenim néko-
lika mnozin souboru P (nebot tak vznikla) a lze ji vyjadrit
také jako sjednoceni nékolika mnozin souboru Q (tak se bude
délit). Pokud maji mnoziny P, Pj s mnoZinou Q% neprazdny
prunik, musi byt Pz, Pj spojeny v jedné z mnozin souboru 4.
Naopak, bude-li uvedeni podminka splnéna, bude kazda
mnozina Qh podmnoZinou né&jaké mnoziny soutoru 4, a bude
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tedy mozné ziskat Q z A operacemi rozdéleni. Nebudeme
provadét vice sjednoceni, neZ je nezbytné nutné (tj. nez uvadi
tato podminka), nebot na$i snahou je minimalizovat pocet
vSech operaci neboli ziskat soubor A4 tvofeny co nejvétsim
poétem r mnozin.

Navrhneme nyni algoritmus na urleni, které z mnoZin
souboru P je nutné sjednotit vZdy do jedné mnoZiny souboru
A. Pro tento Gcel je mozné pfevést nasi tlohu na jeden stan-
dardni grafovy algoritmus. Soubory mnoZin P a Q muZeme
reprezentovat grafem G o m + n vrcholech odpovidajicich
jednotlivym mnozindm. Vrcholy grafu Pi a Qj jsou spojeny
hranou pravé tehdy, jestlize mnoziny P7 a Qj maji neprazdny
prunik. Jiné hrany v grafu G nejsou (jednd se tedy o tzv.
bipartitni graf). Podle vy$e uvedené podminky na sjednoco-
vani mnoZin souboru P je nutné spojit do jedné mnoZiny
souboru A4 vzdy pravé ty mnoziny, které patii do jedné kom-
ponenty souvislosti grafu G (tzn. ty mnoziny, které jsou v grafu
G spojeny hranami). Hledany pocet mnoZzin r souboru 4
je proto roven po¢tu komponent souvislosti grafu G.

Algoritmus na nalezeni komponent souvislosti daného
grafu je dobfe zndm jako jeden ze standardnich algoritmu
teorie grafii, a nebudeme ho zde tudiz podrobnéji rozebirat.
Je vysvétlen v kazdé zédkladni u€ebnici teorie grafu. Struktura
algoritmu je velmi podobnd algoritmu nalezeni cesty mezi
dvéma vrcholy grafu, ktery je uveden jako vzorové Feleni
dlohy P — T — 1.

Soubory mnozin P, Q mizeme v programu reprezentovat
matici logickych hodnot TT1..m, 1..n] takovou, Ze
T[7,7] = 1, jestlize Pi, Qj maji spole¢ny prvek,

T[i,j] = 0, jestlize Pi, Qj nemaji spole¢ny prvek,
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Matice T ma minimélni moZnou velikost postatujici k uloZeni
vSech informaci o vzdjemnych vztazich mnoZin souborl
P a Q. Zaroveil je vhodnou ¢ésti matice sousednosti grafu G
obsahujici vSechny potiebné informace o grafu G. Na zakladé
matice 7 urime polet komponent souvislosti » grafu G.
Vysledny miniméalni pocet operaci potfebnych k prevedeni
souboru mnozin P na soubor Q je potom dén vyrazem
m+n — 2r.

Zbyva doresit pfipad, Ze se v souborech P a Q mohou
vyskytovat prizdné mnoziny. Necht soubor P obsahuje p
préazdnych mnoZin a soubor Q obsahuje g prazdnych mnoZin.
Potom plati K =(m —p) +(n —q) —2r + |p — q|, kde
Cislo r sestrojime vySe uvedenym postupem ze systémi
P’ Q" vzniklych z P, Q vynechidnim prazdnych mnoZin.
K pfevedeni p priazdnych mnoZin na g pak potiebujeme
provést jesté [p — g| operaci: jestlize p > = g, bude to p — ¢
sjednoceni, pokud p < g, provedeme g — p rozdéleni.

P-1I-2

Podle zad4ni Glohy m4 kazd4 jedni¢ka v matici 4 (pFipadné
s vyjimkou téch, které jsou na okraji matice) pravé dva jed-
ni¢kové sousedni prvky, kde za sousedni povazujeme pouze
pole ve sméru vlevo, vpravo, nahoru a dclt. Tak vznikaji
v matici 4 »4ry« tvofené jedni¢kami, které celou plochu
matice A déli na jednotlivé oblasti tvofené nulovymi prvky.
Jedna z oblasti je zvolena k vybarveni tim, Ze je zaddn jeden
jeji prvek A[I, ¥].

Dva nulové prvky matice 4 patii do téZe oblasti, jestlize
nejsou oddéleny 74dnou »Carouc z jednitek. Z toho vyplyva,
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7e vime-li o prvku A[K, L] = 0, Ze patii do zvolené oblasti,
pak do této oblasti budou patfit také vSechny nulové prvky
pole 4, kterés A[K, L] sousedi ve sméru svislém, vodorovném
nebo Sikmém. Naopak, jestlize prvek A[K, L] = 0 (ruzny
od prvku A[I, ¥]) nesousedi ve sméru svislém, vodorovném
ani §ikmém s Zddnym prvkem oblasti zadané prvkem A[I, ¥],
pak A[K, L] do této oblasti nepatii.

Z uvedeného rozboru plyne nisledujici jednoduchy algo-
ritmus. Vezmeme zadany prvek A[I, ¥] a obarvime ho (tzn.
dosadime do né&j 2). Potom prohlédneme viech osm prvki,
s nimiZ sousedi, a obarvime ty z nich, které jsou dosud nulové.
Pro kazdy z takto nové obarvenych prvki cely postup opa-
kujeme. Vypocet a obarvovani probihd tak dlouho, dokud
je mozné obarvit né&jaky dalsi prvek matice A4.

Algoritmus je moZné realizovat pomoci rekurzivni procedury
nebo tfeba pomoci zdscbniku. Ukdzeme si zde obé reSeni.
Prvni z nich mé krat$i a piehlednéjsi zdpis, druhé bude pra-
covat o néco rychleji.

Reseni pomoci rekurze

program BARVENI 1 (input, output);

const M = 10; {potet fadku matice}
N = 10; {potet sloupcu matice }
var A:array[l..M,1..N] of integer;
K, L: integer; {pomocné proménné}
1, ¥: integer; {zadané vychozi pole}

procedure VYBARVI (X, Y: integer);
{vybarveni prvku A[X, Y] a rekurzivni vyvolani téze pro-
cedury na vSechny prvky v okoli }
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var K, L: integer; {pomocné proménné }
begin
A[X, Y]: = 2; {obarveni prvku A[X, Y]}
for Ki=X—1to X+ 1do
for L: =Y —1toY + 1do
if (K>=1)and (K <= M)and (L >=1)and
(L <= N) then
if A[K, L] = 0 then VYBARVI (K, L)

end; {VYBARVI}

begin
for K: =1to M do
for L: =1to N do
read (4[K, L)); {pFetteni obsahu pole 4}

read (1, ¥); {pfetteni vychoziho prvku}
VYBARVI(I, ¥); {obarveni pole od prvku A[I, ¥]}
for K: =1to M do

begin

writeln;

for L: =1 to N do
write (A[K, L] : 2) {vytisknuti obarveného A4}
end;
writeln
end.
Reseni pomoci zdsobniku
program BARVENI 2 (input, output);
const M = 10; {potet Fadku}
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N =10; {potet sloupci }
MAX = 100; {velikost zdsobniku — max. M X N}

type SOUR = record X, Y: integer end;
{soufadnice prvku uklddané do zdsobniku}
var A:array[l..M,1..N] of integer;

K, L: integer; {pomocné proménné }
1, ¥: integer; {zadéni vychoziho prvku}
X, Y: integer; {soufadnice feSeného prvku}

STACK: array [1. . MAX] of SOUR;
{ zésobnik soufadnic}
SP: integer;  {ukazatel vrcholu zasobniku STACK}

begin
for K: =1 to M do
for L: = 1to Ndo
read (A[K, L)); {pfetteni obsahu pole 4}
read (1, ¥); {pFetteni vychoziho prvku}

STACK[1].X: = I
STACK[1]1.Y:=Y;
SP:=1; {inicializace zésobniku }

while SP > 0 do
begin
X: = STACK [SP).X;
Y: = STACK[SP]. Y;
SP: = SP— 1; {odebrén vrchni prvek ...}
A[X,Y]:=2; {... a obarven na »2«}
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for Ki=X—1toX +1do
forL: =Y —1toY +1do
if(K>=1)and (K <= M)and (L >= 1) and
(L < = N) then
if A[K, L] = 0 then
begin {sousedni prvek je nulovy }
SP: = SP + 1;
STACK [SP].X: = K;
STACK[SP].Y : = L;{... uloZen do zésobniku}
end
end;
for K: = 1to M do

begin
writeln;
for L: =1 to Ndo
write (A[K, L] : 2) {vytisknuti obarveného 4}
end;
writeln

end.

Spravnost navrZzeného algoritmu snadno ukdZeme s pouZi-
tim rozboru uvedeného na zatatku feSeni. Pfi préci algoritmu
bude obarven prvek A[I, ¥] a dile viechny dal$i prvky mati-
ce A, které sousedi s nékterym dfive obarvenym prvkem.
V okamziku, kdy jiZ neni moZné obarvit Zzddny dalsi prvek
a kdy tedy vypoclet podle algoritmu konti, bude proto obar-
vena pravé celd oblast puvodné nulovych prvka matice A4
urend prvkem A[I, ¥]. Pfesné to bylo nadim ukolem.
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Vypocet podle algoritmu je jisté koneény, nebot v kazdém
kroku algoritmu je obarven jeden pavodné nulovy prvek
matice 4. Tato matice m4 kone¢nou velikost, a tedy také
kone¢ny pocet viech nulovych prvka.

Algoritmus mi maximdalni Casovou slozitost Umérnou
hodnoté M.N neboli poltu prvkil matice 4. VyZaduje totiZ
provedeni tolika krokd vypoltu, kolik je v zadané matici A4
nulovych prvka v oblasti uréené prvkem A[Z, ¥]. Ridové
rychlejsi algoritmus feSici zadanou tlohu nemuiZe existovat,
nebot pfi libovolném postupu feSeni musi byt obarven kazdy
nulovy prvek zvolené oblasti a téch muZe byt az M.N. V praxi
se oviem pouzivaji jiné algoritmy, které jsou sice sloZit&jsi
z hlediska zdpisu a vysvétleni, ale maji alespoil v pramérném
pripadé (nikoli v nejhor$im) zna¢né mensi pamétové naroky
a jsou i o néco rychlejdi. Zde popsany algoritmus totiz muze
navstivit a testovat jeden prvek matice A4 az devétkrat (jednou
pfi vlastnim obarvovdni prvku a osmkrit pfi obarvovani
jeho sousedl) a tento pocet je mozné vhodnou organizaci
vypoctu snizit.

P-111-3
Véta: Je-li pred prvkem A[I], 1 < I <= N, tzn. na mistech
v poli 4 s indexem men$im neZ I, celkem P &isel vétSich,
nez je A[I], pak se tato Cisla dostanou za A[I] po pravé P

pruchodech vnéjsiho cyklu algoritmu.

Duakaz: Pfi kazdém pruchodu se za A[I] dostane pravé
jedno z takovych ¢&isel.
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a) NemuzZe jich byt vice, nebot s Cislem A[I] se provede
pouze jedna vyména, kterou se Cislo A[I] dostane v poli 4
o0 jedno misto dopfedu na pozici A[I — 1]. Na tomto novém
misté mze byt nase &islo testovdno opét aZ v dal§im prachodu
cyklem.

b) Jedno z P ¢&isel (pro P > 0) vétsich nez A[I] se za
A[I] jist¢ dostane. Bude to &islo A[S] = max {4[1],...,
..., A[I — 1]}, nebot pro tento prvek A[S] bude vidy
splnéna podminka v programu, takZe se pfi jednom prachodu
cyklem dostane az na pozici A[I — 1],a protoZe je vétsi nez
A[I], bude jesté v témze pruchodu cyklem vyménéno i s &is-
lem A[I].

Pt prvnim prichodu cyklem tedy zustane v poli 4 pfed
na$im sledovanym <&islem je$té P — 1 vétSich Cisel a cely
postup se bude opakovat. Pfesné po P priichodech se viechna
tisla v&tsi nez sledované &islo dostanou v poli 4 za négj, coz
jsme méli dokazat.

K vzestupnému setfidéni celého pole A je tieba, aby se
za kazdy prvek pole 4 dostala vSechna vétsi &isla, kterd jsou
na zalitku préce algoritmu umisténa pfed nim. Podle doka-
zané v&ty kazdy prvek pole 4 vyZzaduje, aby pocet priuchoda K
byl vét3i nebo roven poétu prvkia pole 4 s mensimi indexy,
které jsou vé&tsi nez on sdm. Pro takové K budou pfed kazdym
prvkem stit pouze prvky mensi nebo stejné, coZ je presné
vyjadfeni vzestupného usporadéni prvku pole 4.

V hledaném algoritmu tedy stati pro kazdy prvek pole 4
zjistit, kolik prvku pole 4 s mensim indexem je vétSich nez
on sim, a maximum z téchto &isel vzit za hodnotu K.
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program TRID (input, output);

const N = 10; {velikost pole A}
var A: array [1..N] of integer; {t¥idéné pole 4}
1, 7, K, L: integer; {pomocné proménné}

begin
for I: =1 to N do read (A4[I]); {potate¢ni hodnoty pole 4}
K: =0; {hledan4 hodnota K}
for I: =2 to N do

begin {zkouméme prvek A[I]}

L: =0; {pocet vétsich pfedchadcu }

for j: =1tol —1do
if A[¥] > A{Ilthen L: = L + 1;
{dali vétsi pfedchudce}
if L> Kthen K: =L
end;
writeln (K) {tisk vysledku}

end.

Sprévnost algoritmu plyne z provedeného rozboru. Kone¢-
nost vypoctu je ziejmd, nebot pocet priuchodu kazdym cyklem
je pfedem omezen. Algoritmus mi konstantni paméfové
niroky (nepolitdme-li zadané pole A, které se nesmi ménit)
a kvadratickou ¢asovou sloZitost.

P-111-4
a) Nejrychlej§i zndmé algoritmy provadéjici triangulaci
(tj. rozdéleni na trojuhelniky) daného mnohotihelniku v &ase

N.log (N), nebo dokonce N.log (log (N)), kde N je pocet
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vrcholt mnohoudhelniku, jsou velmi komplikované. UkdZene si
zde proto znacné€ jednodussi kvadraticky algoritmus. Odvo-
zeni algoritmu rozdélime do nékolika krokd.

1. Nejprve ukdzeme, ze do kazdého mnohouhelniku s vice
nez tiemi vrcholy lze umistit diagondlu, tj. useCku, ktera
lezi celd uvnitf mnohothelniku a kterd spojuje dva vrcholy
mnohothelniku, jeZ spolu nesousedi na obvodu. Pro konvexni
mnohouhelnik je toto tvrzeni trividlni, stali spojit libovolnou
dvojici nesousedicich vrcholu. Je-li mnohouhelnik nekon-
vexni, existuje v ném vrchol, u néhoz lezi vnitfni Ghel vétsi
nez 180 stupniu. Pii pohledu z tohoto vrcholu »dovnitf«
mnohouhelniku proto jisté uvidime alespori dvé jeho ruzné
strany. Na pfedélu téchto stran musi byt vrchol mnoho-
thelniku, ktery je z naseho vrcholu také vidét a ke kterému
tudiz muzeme vést diagondlu.

2. Pro libovolny mnohouhelnik (s alespori tfemi vrcholy)
existuje takové jeho triangulace, v niz alesponl jeden z troj-
uhelnika, které rozdélenim mnohouhelniku vzniknou, ma
dvé své strany shodné se stranami mnohothelniku. O takovém
trojuhelniku budeme déle fikat, Ze lezi »na obvodu« mnoho-
uhelniku. Uk4Zeme, jak takovou triangulaci sestrojit, Podle
bodu 1 lze dany mnohouhelnik rozdé¢lit diagondlou na dva
mens$i. Kazdy z nich mé pravé jednu svoji stranu tvoienou
diagonédlou a vSechny zbyvajici jeho strany jsou stranami
puvodniho mnohothelniku. Zvolime libovolny z mensich
mnohouhelniktt a budeme pokraovat v jeho déleni. Opét
podle 1 je mozné rozdélit ho diagonédlou. Ze dvou vzniklych
mensich mnohothelniki jeden znovu spliiuje podminku,
ze jedind jeho strana je diagonédlou puvodniho mnohouhelniku
a zbyvajici jeho strany jsou stranami puvodniho mnoho-
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thelniku. S timto mnohouhelnikem budeme pokraovat
v déleni stejnym zpusobem. Pfi kazdém déleni se zmen3uje
pocet vrcholtd mnohothelniku, s nim? pravé pracujeme,
takze po kone¢né mnoha krocich ziskime trojuhelnik. Ten
mé opét vlastnost, Ze pouze jedna jeho strana je diagonilou
vychoziho mnohouhelniku. Jednd se tudiz o trojahelnik
»na obvodu« mnohouhelniku. Triangulaci zbyvajicich dil¢ich
mnohothelnika, kterymi jsme se dosud nezabyvali, jiz pro-
vedeme libovolné. Existence néjaké triangulace kazdého
mnohothelniku pfimo plyne z 1.

3. Na zdkladé tvrzeni 2 o existenci trojahelniku »na obvodu«
mnohothelniku jiz mlZeme sestrojit algoritmus feSeni
tlohy. Vyjdeme od prvniho vrcholu mnohouthelniku A[1]
a budeme postupovat po obvodu ve zvoleném sméru proti
pohybu hodinovych ruci¢ek (v souladu se zpusobem zadani
mnohouhelniku). P¥itom budeme hledat v pofadi prvni vrchol
mnohouhelniku A[7] takovy, aby trojuhelnik tvofeny vrcholy
A[I — 1], A[1], A[I + 1] byl trojuihelnikem »na obvodu«
mnohouhelniku. To bude splnéno pravé tehdy, jestlize vnitini
thel mnohouhelniku u vrcholu A[7] bude konvexni (tj. mensi
nez 180. stupiit) a jestlize do tohoto trojahelniku nezasahuje
zadny jiny vrchol mnohothelniku. Tvrzeni 2 ndm zarucuje,
ze takovy trojuhelnik existuje, a pfi systematickém zkoumani
vSech vrcholu ho tedy jisté najdeme. Po nalezeni trojihelni-
ku »na obvodu« A[I — 1] A[I] A[I + 1] tento trojahelnik
od mnohothelniku oddélime diagondlou spojujici vrcholy
A[I — 1] a A[I + 1] (stava se souldsti hledané triangulace).
Zbyly mnohothelnik méd o jeden vrchol méné — o vrchol
oznaceny A[I]. V triangulaci budeme pokracovat stejnym zpu-
sobem potinaje od vrcholu A[I — 1] (ten musime znovu
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prozkoumat, nebot vnitfni Ghel u né&j lezici se oddélenim
trojahelniku  A[I — 1]A[I]A[I + 1] zmensil) ve stejném
sméru proti pohybu hodinovych rulitek. Vypolet skonii
v okamZiku, kdy ndm zbude posledni trojahelnik.

4. Sprivnost uvedeného algoritmu plyne z dokizanych
tvrzeni a byla zdtivodnéna zédroverti s odvozovénim algoritmu.
Vypocet skonti po kone¢né mnoha krocich, nebot v kazdém
kroku je od mnohouhelniku oddélen jeden trojuhelnik (je
nalezena jedna diagonéla nélezejici do vysledné triangulace),
takze pocet kroka vypoltu je pfedem zndm. Do mnohothel-
niku o N vrcholech se pfi triangulaci umisti pfesné N — 3
diagonal.

5. Algoritmus m4 kvadratickou &asovou slozitost. Otesto-
vani jednoho vrcholu mnohouhelniku, zda u né&j leZi troj-
uhelnik »na obvodu«, vyzaduje f4dové N operaci (testy na
nalezeni do trojahelniku pro vSechny zbyvajici vrcholy).
Pfitom celd triangulace se provede pfi jednom »obejiti«
po obvodu mnohouthelniku, tzn. pfi provedeni radové N
takovych testovani. Posledni tvrzeni plyne ze zvoleného
pofadi, v jakém vysetfujeme jednotlivé vrcholy. Pfi zkoumadni
vrcholu A[I] totiZ vime, Zze u Z4dného z vrcholu A[1], ...,
A[I — 1] nelezi trojahelnik »na obvodu«. JestliZe nyni
oddélime trojuhelnik A[I — 1] A[I] A[I + 1], mohla se zmé-
na dotknout pouze vrcholu A[I — 1], u kterého se zmensil
vniténi thel. Od tohoto vrcholu se proto pokratuje v prohle-
dévani.

6. Na zavér uvedeme programovou realizaci algoritmu.
Na vstupu programu je olekdvidn nejprve polet vrcholu
mnohouhelniku a déle soufadnice vSech vrcholi. Vystupem
je seznam diagonél tvoficich triangulaci.
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program TRIANGULACE (input, output);

const MAX = 100;

{maximélni potet vrcholu }

var AX, AY: array [0.. MAX] of real;

N: integer;

{soufadnice vrcholu}
{skuteZny potet vrcholi }

NALEZEN: Boolean; {pfiznak nalezeni trojihelniku}
MOZNOST: Boolean; {pfiznak mozného trojuhelniku }

MEZ: integer;
1, ¥, K: integer;

begin

read (N);

for I: =1to N do
read (AX[I], AY[I]);

AX[0]: = AX[N];

AY[0]: = AY[N];

AX[N + 1]: = AX[1];

AY[N + 1]: = AY[1];

I: =1;

MEZ: = N — 3;

for #: = 1 to MEZ do
begin

NALEZEN: = false;

{potet viech diagon4l}
{pomocné proménné }

{ptetteny soufadnice vrcholu }
{kopie prvniho a posledniho ..}
{... vrcholu mnohothelniku ...}
{... z technickych davoda — ..}
{... — pro snaz3i testovani}

{zatneme od vrcholu A[1]}
{potet viech diagonal }

{sestrojime dalsi diagondlu}

while not NALEZEN do {hleddme trojih. »na obvodu«}

begin

if UHEL (AX[I + 1], AY[I + 1], AX[I], AY[I],
AX[I — 1], AY[I — 1]) < 180 then
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begin {konvexni vnitini uhel }
K:=1;
MOZNOST: = true;
while MOZNOST and (K <= N) do
begin
if abs (K — I) > 1 then {vrchol A[K] je ruzny
od A[I] a nesousedi s nim na obvodu}
if VNITR (AX[K], AY[K], AX[I — 1],
AY[I — 1], AX[I), AY[I], AX[I + 1],
AY[I + 1)) then
MOZNOST: = false;  {A[K] leZi uvniti }
K:=K+1
end;
if MOZNOST then NALEZEN: = true
{za4dny jiny vrchol neni uvnit¥
trojuhelniku A[I — 1] A[I] A[I + 1]}

else I: =1 +1 {zkusime dal3i vrchol}
end
else [: =1+ 1 {zkusime dal3i vrchol }
end;

writeln (’Diagonala:>, AX[I—1], AY[I—1], AX[I + 1],
AY[I + 1)); {diag. nalezena a vytiit¢na }
for K: = I'to N do
begin
AX[K]: = AX[K + 1]; {vynechani vrcholu 4[] ...}
AY[K]: = AY[K + 1] {... z mnohouhelniku}
end;
if I =1 then
begin {kopie nového vrcholu A[1]}
AX[N]: = AX[1);
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AY[N]: = AY][1]
end;
if I = N then {kopie nového vrcholu A[N]}
begin
AX[0]: = AX[N — 1];
AY[0]: = AY[N — 1]

end;
N:=N-1; {novy potet vrcholu}
I=1-—1; {novy zkoumany vrchol }
if/ =0thenI: = N

end

end.

b) Lomena ¢4ra spojujici po fadé body P(1), .., P(N), P(1)
je zfejmé uzaviend. Podle definice tedy tvofi mnohouhelnik
pravé tehdy, jestlize sama sebe nikde neprotind. Staéi proto
ovéfit, zda existuje néjakd dvojice stran mnohothelniku,
které spolu na obvodu nesousedi a které piitom maji spole¢ny
bod. Lomena ¢ira P(1), ..., P(N), P(1) tvofi mnohothelnik
pravé tehdy, jestlize takova dvojice useCek neexistuje.

Pii feSeni tlohy budeme vySetfovat vzijemnou polohu
kazdé dvojice raznych spolu nesousedicich tiseCek ze zadané
lomené cary. Spravnost tohoto feSeni je zfejma. Algoritmus
je jisté kone¢ny, nebot viech tisetek je konetné mnoho a kaz-
dou dvojici Gse¢ek budeme vySetfovat pouze jednou. Z toho
zaroven plyne, Ze algoritmus bude mit kvadratickou ¢asovou
slozitost.

Zbyva jesté vyiesit otdzku, jak urcit, zda dvé Gsecky zadané
soufadnicemi svych koncovych bodt maji né&jaky spoleiny
bod. Existuje nékolik riiznych postupi, jak vyhledat spole¢ny
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bod tselek. Jednou moznosti je nepouzit vibec pfeddefino-
vané funkce a cely problém vyfedit prostfedky analytické
geometrie pomoci parametrickych rovnic obou udsecek.
UkdZeme si zde jiné feSeni, vyuzivajici funkci VPRAVO.
Oznatme zkoumané tuseC¢ky 4B, CD a soufadnice jejich
krajnich boda XA, YA, ... atd. Jestlize n&ktery z krajnich
bodu jedné usecky lezi na druhé usecce, pak tselky jisté
maji spole¢ny bod. V opa¢ném piipadé staci vy3etfit, zda oba
body A, B leZi ve stejné poloroving uréené pfimkou CD a zda
oba body C, D lezi ve stejné poloroving uréené pfimkou 4B.
Usetky AB, CD maji spole¢ny bod pravé tehdy, pokud ani
jedna z téchto podminek neplati. K uvedenému vysetfovani
polohy bodu pouzijeme piimo pieddefinovanou funkci VPRA-
VO. Hrani¢ni pfimku jiZ maZeme zahrnout do libovolné
poloroviny, nebot piipad, Ze néktery krajni bod jedné usetky
lezi na druhé uselce, jsme jiz vyfesili diive.

Uvedené fefeni dil¢iho problému spole¢ného bodu dvou
Gsetek nyni naprogramujeme. Pomocnd lokdlni funkce
NAUSECCE (X1, Y1, X2, Y2, X3, Y3) d4va logickou vy-
stupni hodnotu podle toho, zda na usetce s krajnimi body
Pl =(X1, Y1) a P2 = (X2, Y2) lezi bod P3 = (X3, Y3).
Hodnota vysledné logické funkce PRUSECIK (XA, YA, XB,
YB, XC, YC, XD, YD) je pak urlena tim, zda Gse¢ky AB,
CD maji spoletny bod.

function PRUSECIK (XA, YA, XB, YB, XC, YC, XD,
YD :real): Boolean;

function NAUSECCE (X1, Y1, X2, Y2, X3, Y3: real):
Boolean;
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begin
NAUSECCE: = VPRAVO (X1,Y1,X2,Y2, X3,Y3)and
VPRAVO (X2,Y2,X1,Y1, X3, Y3)and
(X3 > = min (X1, X2)) and
(X3 < = max (X1, X2))and
(Y3 >=min (Y1, Y2))and
(Y3 <=max (Y1, Y2))
end; {NAUSECCE}
begin
if NAUSECCE (XA, YA, XB, YB, XC, YC) or
NAUSECCE (XA, YA, XB, YB, XD, YD) or
NAUSECCE (XC, YC, XD, YD, XA, YA) or
NAUSECCE (XC, YC, XD, YD, XB, YB) then
PRUSECIK: = true
else
PRUSECIK: = not(
(VPRAVO (XA, YA, XB, YB XC, YC) =
VPRAVO (XA, YA, XB, YB, XD, YD))
or
(VPRAVO (XC, YC, XD, YD, XA, YA) =
VPRAVO (XC, YC, XD, YD, XB, YB)))
end; {PRUSECIK}

Na zavér uvedeme cely program fesici nasi ulohu. Program
vyuzivd vyse uvedenou funkci PRUSECIK. Na vstupu
programu je oCekdvina nejprve hodnota N a za ni postupné
soufadnice vSech vrcholu zadané lomené &iry. Vystupem je
sdé€leni, zda tato lomend Cdra tvofi mnohothelnik.

program MNOHOUHELNIK (input, output);
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const MAX = 100; {max. délka lomené &4ry}

var PX,PY:array[l..MAX]ofreal; {soufadnice bodu }

N:integer; {potet bodu }
SPOLECNY: Boolean; {pfiznak spole¢. bodu}
I, ¥: integer; {pomocné proménné }

function PRUSECIK (XA, YA, XB, YB, XC, YC, XD,
Y D: real): Boolean;
external;

begin

read (N);

for I: =1 to N do read (PX[I], PY[I]); {pfetteny soufad.}
PX[N + 1]: = PX[1];

PY[N + 1]: = PY[1];

SPOLECNY: = false;

I: =1;

while (not SPOLECNY)and (I <= N — 2) do
begin {testujeme tGsetku P(I) P(I + 1)}
F=I+42;

while (not SPOLECNY) and
(¥ < N)or((I > 1)and (Jf = N))) do
begin {druhou usetkou je P(¥) P(¥ + 1)}
SPOLECNY: = PRUSECIK(PX[I],PY[I],PX[I + 1],
PYII + 1], PX[J), PY[Y), PX[Y + 11, PY[J + 1]);
F=5+1
end;
I.=1+1
end;
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write ’Zadan4 lomen4 &4ra’);

if SPOLECNY then write (’ne’);
writeln ("tvofi mnohouhelnik.”)
end.
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Korespondenéni seminaifr UV MO

Koresponden¢ni seminéf je jednou z forem péce o talento-
vané Z4ky. Vznikl ve 24. ro¢niku MO proto, aby bylo moZno
vénovat individudlni péci i tém zdkam, ktefi neméli moZnost
navstévovat specidlni §koly a pracovat v tamnich seminéafich.
Nyni, kdy existuji i krajské koresponden¢ni seminédie a kdy
specidlni $koly s tfidami zaméfenymi na matematiku najdeme
v kazdém kraji, je cilem tohoto seminiie zlep$it individudlni
pfipravu vSech studentd, ktefi prokizali své schopnosti
a matematicky talent v pfedchozich ro¢nicich matematické
olympiddy. Korespondenini seminaf tak nadile zustdvé
dulezitou souldsti pfipravy na mezinirodni matematickou
olympiadu.

K Gtasti v korespondenénim seminéfi jsme pozvali viechny
$pickové fesitele kategorie A spolu s témi studenty, ktefi
né&jak vynikli v krajskych kolech kategorii B a C pfedchoziho
ro¢niku MO. V prabéhu 38. ro¢niku MO jim bylo postupné
zasldno 5 sérii pomérné& naro¢nych uloh, jejichZ texty najdete
v tlohové &4sti této roCenky (bez FeSeni). Dosld FeSeni pak
byla opravena, ohodnocena a s rozmnoZenym komentifem
vracena Glastnikim seminéfe. Nejlep$imi v celkovém hodno-
ceni byli:
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. Petr Hlinény, 3. ro¢nik G M. Kopernika, Bilovec

. Ilja Martisovits, 4. ro¢nik G J. Hronca, Bratislava

. Ondrej Kalenda, 3. ro¢nik G W. Piecka, Praha

. Ondrej Such, 3. roénik G A Markusa, Bratislava

. Martin Dindds, 3. ro¢nik G J. Hronca, Bratislava

. Marek Velesik, 4. ro¢nik G, Konévova ul., Brno

. Vladimir Komdr, 3. ro¢nik G, Smeralova ul., Kosice
. Eduard Omasta, 3. ro¢nik G, RuZzomberok

Petr Cizek, 4. ro¢nik G W. Piecka, Praha

Martin Cizek, 3. roénik G, Roznov pod Radhoitém

© ® NN AW N

e
=

Korespondenéni seminif je fizen tajemnikem UV MO
RNDr. Karlem Hordkem, CSc., ktery se staral o vybér tloh
a provadél i redakci komentafu. Opravu pak zajistovalo né-
kolik pracovniki MU CSAV a né&kolik student a aspiran-
tat MFF KU Praha (v8ichni jsou byvali olympionici).

Ulohy koresponden¢niho seminéie

1.1 Na vysce BH trojihelniku ABC je ddn bod P. Oznalme
K a L prusetiky pfimek AP, BC a piimek CP, AB.
Dokarzte, ze usetky KH a LH sviraji s vy§kou BH shodny
uhel.

1.2 Jsou déna kladn4 &isla 4, o, f a posloupnost (xy),> ,splitu-
jici nésledujici rovnosti:
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x()’—‘l, x1:;L,

(0 4+ P)rxp = o xy x0 + 01 f 21 %1 +
+ o 22 xu0x0 + ... + [P xoxn(n>1).

Najdéte x, a zjistéte, pro které n je x, nejveétsi.

1.3 Na piimce je ddno 50 usetek. Dokazte, Ze plati alespoil
jedno z nasledujicich tvrzeni:
a) existuje 8 usetek se spolenym bodem;
b) existuje 8 uselek, z nichz kazdé dvé jsou disjunktni.

1.4 Je déano nékolik ¢&tvercu, jejichz celkovy obsah je 1.
Dokazte, ze je mozno je umistit do ¢tverce s obsahem 2,
aniz by se prekryvaly.

1.5 Na kruznici je ddna mnozina F oblouku, pro kterou plati,
Ze pti libovolném ototeni R kolem stfedu dané kruznice
maji mnoziny F a R(F) spoletny bod. Jaky nejmensi
soucet délek mohou mit oblouky z mnoziny F, je-It
pocet oblouku » ?

1.6 Necht strany trojuhelniku 4BC jsou zakladnami rovno-
ramennych trojuhelniktt AB1C, BA;C a AC1B. Dokazte,
ze kolmice vedené z boda 4, B, C k odpovidajicim
ptimkéam B1Ci, Ci14;, A1B1 prochizeji jednim bodem.
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1.7 Najdéte viechna feSeni rovnice

ann —an + nl’x"zan — x" = q,
je-li a redlné a n > 1 pfirozené.

2.1 Zjistéte, pro kterd n plati: Je-li ddn pravidelny n-uhelnik
(n = 3), v jehoz vrcholech jsou rozmistény Cerné a bilé
kameny, pak existuji tfi kameny stejné barvy leZici
ve vrcholech rovnoramenného trojahelniku.

2.2 Jezero v Kocourkové m4 tvar nekonvexniho n-thelniku.
Dokazte, ze bud z zddného jeho bodu neni vidét vSechny
biehy, anebo mnozina takovych bodu tvofi vnitfek kon-
vexniho m-thelniku, kde m = n.

2.3 Predstavme si nekonetnou Sachovnici ve tvaru horni
poloroviny: na bilych polich Sachovnice jsou zapsidna
néjaka4 &isla tak, aby pro kazdé Cerné pole platilo, Ze soucet
tisel v levém a pravém sousednim poli je stejny jako
soucet v hornim a spodnim sousednim poli. Je-li dino
n&jaké &islo d, stojici v n-té fadé, kolik nejméné C&isel
stojicich v prvnich dvou fadich Sachovnice musime
jesté znét, abychom mohli urdit Cislo stojici v (n + 2). fa-
dé nad ¢&islem d), ?

2.4 Vime-li, Ze na i-tém vyleté turistického oddilu (1 = ¢ = n)
bylo «;.100%, chlapci, kolik nejvyse procent chlapcu

je v oddile? (Kazdy se zG¢astnil aspoil jednoho vyletu,)
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2.5 Necht K je stfed hrany 4B dolni podstavy pravidelného
komolého jehlanu a L stfed nékteré hrany CD jeho horni
podstavy. Dokazte, Ze pruméty obou tselek AB, CD
na pfimku KL maji stejnou délku.

2.6 V roviné jsou diny dva bedy A4, B a pfimka p prochazejici
bodem A a neprochézejici bodem B. UvaZzujme libovol-
nou kruZnici se sttedem O prochézejici body 4, B a oznac-
me C jeji prusetik s piimkou p. Najdéte geometrické
misto stfed tsetek OC.

2.7 Jsou déna ¢&isla 1, 2, 3, ..., 1000. Najdéte nejvétsi m
takové, Ze po vyskrtnuti libovolnych m &isel mezi zbylymi
1000 — m &isly existuji dvé, z nichZ jedno déli druhé.

3.1 Pro ptirozend Cisla & < n rozestavte &isla 1, 2, 3, ..., n?
do tabulky n X n tak, aby v kazdém fadku cisla rostla
a pfitom soucet Cisel v k-tém sloupci byl
a) nejmensi;
b) nejvetsi.

3.2 Jsou dana piirozend Cisla & a m. Mezi celotiselnymi
feSenimi (x1, xg, ..., Xx) rovnice

X1+ X2+ ... +xp=m
vyberme N takovych, ze 0 < x; =< m (1 =< i =< k) a kazdé
dvé z nich se li¥i na v3ech mistech. Zjistéte, jaké je nej-

vét$i mozné N.
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3.3 V roviné jsou ddny dvé raznob&zky a, b. V bodé 4y € a ve
vzdalenosti mensi nez 1 od pfimky & sedi blecha. Blecha
postupné poskakuje do bodu By, 41, B, A2, Ba, ... podle
nésledujicich pravidel (obr. 33):

Obr. 33

1. body 4o, A1, ... lezi na pfimce a, body By, Bi, ... na
piimce b;

2. IA()B()] = IBOAll == !AlBll = ]BlA2| = ... = 1;

3. Apy1 = An, jen kdyz AuBn | a, a By = By,
jen kdyz BpAni1 | b.

Dokazte, ze je-li velikost Ghlu pfimek a, b racionalni

(ve stupniové mife), bude cesta blechy periodické (tj. do-

stane se opét do bodu Ay a pak zas bude pokratovat

do boda By, Ai, ...); a je-li iraciondlni, nedostane se

blecha do zddného bodu vic nez dvakrat.

3.4 Jsou déna dvé nesoudélnd pfirozend &isla a, b. Jak zndmo,
kazdé celé &islo lze vyjadtit jako ax + by s celymi x a y.
Uvazujme mnozinu M téch celych &isel, kterd jsou tvaru
ax + by pro celd nezdporni x, y.

a) Jaké je nejvétdi celé &islo ¢, které nepatii do M?
b) Dokazte, Ze z Cisel n a ¢ — n (n je celé) jedno patii
do M a druhé ne.
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3.5 Je dan trojuhelnik ABC. Kolik existuje bodu D takovych,

ze Ctyfahelniky ADBC, ABDC a ABCD maji stejny
obvod ?

3,6 Na obr. 34 je Sest bodu lezicich po tfech na ¢tyfech
pfimkédch. DokaZte, Ze existuje pravé 24 riiznych zobraze-
ni, kterd pfevadéji uvedenych Sest bodl na sebe, pfitemz
kazd4 trojice bodu lezicich v pfimce se zobrazi na trojici
bodu lezicich v pfimce. Zjistéte, kolik takovych zobrazeni
existuje pro konfigurace na obr. 35 a 36 (9 bodti na 9 pfim-
kich a 10 boda na 10 piimkach).

3.7
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Obr. 34 Obr. 35 Obr. 36

Uvazujme posloupnost (a,)>% &islic 1, 2 a operaci, kterd

umoziluje prohodit dvé libovolné sousedni trojice ¢&islic.
Vsechny takové posloupnosti rozdélme do disjunktnich
tfid, pfiCemz v jedné tfidé budou vSechny posloupnosti,
které lze na sebe prevést pomoci nékolika uvedenych
operaci. Kolik existuje takovych tfid ?



4.1 Pro libovolny nepravotihly trojuhelnik T ozna¢me H(T)
trojuhelnik, jehoZ vrcholy jsou paty vysek trojahelniku T
(tzv. tupatnicovy trojuhelnik). UvaZujme posloupnost
trojuhelnikd Ty = H(T), T2 = H(T1), ... . Jaké musi
byt uhly trojuhelniku T, aby
a) trojuhelnik H(T) byl ostrouhly,

b) v posloupnosti T1, Tz, ... se vyskytl pravothly troj-
uhelnik T, (takZe T,41 neni definovéan),

¢) trojuhelnik T; = H(T) byl podobny trojahelniku T ?

Pro kazdé n pfirozené zjistéte, kolik existuje navzijem

nepodobnych trojuhelnika T, pro néZ je trojahelnik T,

podobny trojihelniku T.

4.2 Najdéte vSechna celodiselnd feSeni rovnice

1 1 1
—+—+—=1

x v z
takova, ze zadné z &isel x, y, 2 neni rovno 1.

4.3 V roviné jsou diny dva body 4, B. Najdéte mnoZinu
v3ech vrchola C trojahelniktt ABC, pro néZ maji stejnou
délku
a) vyska AA’ a strana BC;

b) téznice A4, a strana AC;
c) téZnice AA4; a strana BC;
d) vyska CC’ a téZnice BB;;
e) vyska BB’ a téznice CCj.
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4.4 Oznatme o, f3, y vnitini Ghly trojuhelniku ABC a polozme

o B v4
=tg2— 2 — 4 tg2—.
S=tg 5 T e

a) Je-li trojuhelnik ABC ostrouhly &i pravouhly,
je S < 2;
b) je-li trojahelnik ABC tupothly s tupym uhlem asporl

4
2 arctg 30 je § = 2;

T 4
¢) mezitrojihelniky s tupym Ghlem Yy <y<2arctg 3
existuji takové, pro néz S < 2, i takové, pro néz
S > 2. Dokazte.

4.5 Na neckone¢ném listu bilého Ctvereckovaného papiru
je n ¢tverecku obarveno Cerné. V jednotlivych okamzicich
t =1, 2, ... zménime barvy vSech ctverecka podle
nasledujiciho pravidla: kazdy &tvereCek obarvime podle
pfevladajici barvy v trojici, kterou s danym Ctvereckem
tvofi jeho horni a pravy soused. Dokazte, Ze nejpozdéji
v Case ¢t = n Cerné CtvereCky zmizi.

4.6 Je dan konvexni n-thelnik, jehoZ Zadné dvé strany nejsou
rovnob&zné, a uvnitf ného bod. Dokaite, Ze existuje
nejvyse n piimek prochizejicich danym bodem a délicich
dany mnohouhelnik na dvé &4sti stejného obsahu.
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4.7 Ve stiedu ¢tverce stoji policajt a v jednom z vrcholu
pachatel. Policajt se muizZe pohybovat po celém (tverci
rychlosti nejvyse u, zatimco pachatel se muZe pohybovat
jen po stranich Ctverce nejvy$e rychosti v. Zjistéte, pro
jaky pomér rychlosti u/v se policajtovi muze podafit
dostat se s pachatelem na stejnou stranu ¢tverce, piestoze
pachatel se tomu snazi zabrénit.

5.1 Je-li O bod uvnitf trojuhelniku ABC takovy, ze | <L BOC|—
— |<t BAO| = 90°,0zna¢me M a N paty kolmic spusténych
z bodu O na strany 4B a AC a P prusetik ptimek BO,
MN. Potom je |<tBPC| = 90°. Dokazte.

5.2 V obdélnikové tabulce m X n je zapsano mn kladnych
¢isel. Uvazujme soudiny m Cisel v kazdém sloupci a soucet
S v8ech n takovych soudinti. Pferovndme-li &isla v kazdém
radku podle velikosti, nebude vysledny soucet S nové
tabulky mensi. Dokazte.

5.3 Pro libovolné ptirozené n najdéte soucet

(5]
Sa = ;(—1)70 (" N k) ;};.

5.4 V prostoru jsou dany Ctyfi body, které neleZi v jedné
roviné. Kolik existuje raznych rovnobéZnosténi, jejichZ
¢tyii vrcholy tvori dané body?
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5.5 Je ddna kone¢nd mnoZina boda v roving, v niz kazdé tii
body urluji tupouhly trojahelnik. Dokazte, Zze k takové
mnoziné lze vzdy pfidat dal$i bod tak, aby uvedend
vlastnost zistala zachovdna. Plati analogické tvrzeni
i pro nekone¢nou mnozinu bodl v roviné s uvedenou
vlastnosti ?

5.6 Jestlize

1+ x + 22 + x3 + x4)196 =
=ap+ax+ ... + + al984 x1984

urdete nejvetsi spoleCny délitel &isel ag, ag, a13 . . ., a1 983-
Zirovenl dokaZte, Ze plati 10340 < gggo < 10347,

5.7 Zjistéte, zda existuje 100 piimek v roving, které maji
pravé 1985 raznych praseciki.
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30. medzindrodnda matematicka olympiada
Braunschweig (SRN) 13, — 24, jul 1989

SRN sa stala hostitelom 30. medzindrodnej matematicke;j
olympiady. Zuacastnilo sa jej 291 sutaziacich z 50 krajin, ¢o
je rekordom v doterajsej histérii MMO. Kazd4 krajina mohla
vyslat 6-Clenné druZstvo, ¢o prevaznd vilsina Stitov aj vy-
vzila. Olympidda sa konala v tichom asi 250-tisicovom Braun-
schweigu, v Dolnom Sasku. Mesto m4 matematické tradicie,
posobil tu okrem inych matematikov aj C. F. Gauss a je sidlom
technickej univerzity a inych vysokych $kol.

Jury zalala svoju ¢innost 13. jula vyberom a prekladom
sataznych Gloh do rodnych jazykov ziakov. Medzi 32 tlohami,
ktoré sa dostali do uZ3ieho vyberu, bola aj 1 Ceskoslovenska
uloha. 16. jula bolo nakoniec vybranych 6 sutaznych tloh —
po jednej tlohe z Australie, Islandu, Holandska, Filipin,
Svédska, Polska.

Sutaziaci spolu s pedagogickymi vedtcimi pricestovali do
Braunschweigu 16. jula. Boli ubytovani na viacerych miestach,
Ceskoslovenské druzstvo byvalo v internite nedaleko stredu
mesta. 17. jula bolo sldvnostné zahijenie olympiaddy za ucasti
predstavitelov krajinskej i spolkovej vlady. 18. a 19. jula
boli sttazné dni, v rdmci ktorych Studenti dostali po 3 ulohy.
Na rieSenie kazdej trojice uloh mali 4,5 hodiny Cistého Casu.
Nasledujtce dni sa konala oprava a koordindcia oprav Zziac-
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kych rieSeni. 23. jula bolo sldvnostné vyhlisenie vysledkov
za Ucasti spolkového ministra pre vyuku a vedu Méllemanna,
ktory aj odovzddval zlaté medaily, krajinského ministra
H. Horrmanna a predsedu jury A. Engela. Zostavajuce dni boli
pre ziakov urené na spoznavanie hostitelskej krajiny. Hosti-
telia zorganizovali celodenny vylet do Hannoveru s nezabud-
nutelnym kultirnym programom v Herrenhausen Garten,
vylet do Gifhornu s nav§tevou muzea veternych mlynov,
prehliadku Braunschweigu, exkurzie do vyrobnych podnikov.
Diia 24. jula sme sa spolo¢ne vratili do vlasti.

Tabulka 5
Krajina ;:Zlig:’ Body il. cena|2. cena|3. cena|¢. uzn.
Australia | 6 119 2 2
Belgicko 6 111 3 2
Brazilia 6 64 3
Bulharsko 6 195 1 3 2
Cyprus | 6 [ 24 1
Ceskoslovensko | 6 I 202 2 1 3
Cina 6 237 4 | 2
Filipiny j 6 45 | 1
Finsko 6 58 | 3
Francuzsko 6 156 | 1 5
Grécko 6 122 1 3 2
Holandsko 6 92 1 1 2
Hong Kong 6 127 2 1 1
India 6 107 | 4 1
Indonézia 6 | 21 |
Iran 6 147 | 2 3 1
Irsko 6 37 2
Island 4 33 2
Izrael 6 105 | 2 1
Juhosldvia 6 | 170 1 3 1 1
Ju?na Kérea 6 J 97 | 1 4
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(pokracovanie tabulky 5)

Krajina ;i:lif)tv body |1.cena|2.cena|3.cena ¢. uzn.
Kanada 6 123 1 3 2
Kolumbie 6 119 1 2 3
Kuba 6 69 1 3
Kuwait 6 31
Luxemburg 3 65 1 1
Madarsko 6 175 4 1 1
Maroko 6 63 1 3
Mexiko 6 79 1 3
NDR 6 216 3 2 1
Norsko 4 64 1 2
Novy Zéland 6 69 2 2
NSR 6 187 1 3 2
Peru 6 51 3
Polsko 6 157 3 3
Portugalsko 6 39 4
Rakusko 6 111 2 1 1
Rumunsko 6 223 2 4
Singapur 6 143 4 2
Spanielsko 6 61 1 4
Svédsko 6 73 2 1
Taliansko 6 124 1 2 3
Thajsko 6 54 1 2
Tunis 6 81 1 2
Turecko 6 133 1 4 1
USA 6 207 1 4 1
Velk4 Britdnia 6 122 2 1 2
Venezuela 4 6
Vietnam 6 183 2 1 3
ZSSR 6 217 . 3 2 1

Kazdy sutaziaci mohol ziskat maximalne 42 bodov. 1. cena
bola udelovani za 38 —42 bodov (20 G&.)., 2. cena za 30—37
bodov (55 u¢.) a 3. cena za 18—29 bodov (72 GZ&.), Cestné
uznanie za vyrieSenie aspoil jedného prikladu za 7 bodov.
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Hodnotenie Ceskoslovenskej tdasti:

Ceskoslovenské druzstvo tvorili Tomds Brodsky zo 4. rot.
Gymnézia na tr. kpt. Jaro$a v Brne, Petr Ciek zo 4. roc.
Gymnazia W. Piecka v Prahe, Petr Hlinény z3.ro¢. Gymnizia
v Bilovci, Viadimir Komdr z 3. ro€. Gymnazia na Smeralovej
ulici v Kogiciach, Ondrej Such z 3. roé. Gymnézia A. Markusa
v Bratislave a Marek Velesik zo 4. ro¢. Gymnézia na Konevo-
vej v Brne. V. Komdr sa zG&astnil namiesto I. MartiSovit3a,
ktory tesne pred odchodom ochorel.

Veducim delegicie bol doc. RNDr. Leo Boéek, CSc., z MFF
UK v Prahe, zdstupcom vedaceho doc. RNDr. Tomas Hecht,
CSc., z MFF UK v Bratislave.

Vysledky jednotlivych Ziakov vidno z tabulky:

Tabulka 6

Meno al.1|al.2 4l 3| al.4|al5 | dl 6 |sacet cenaj
[ |

Brodsky 1 7 0 7 7 7 |20 3
Cizek 7 7 7 7 7 7 | 42 | 1.
Hlinény 7 7 1 7 7 7 136 | 2.
- Komar 7T 0 0 7 6 | 27 | 3.
Such 707 1717176 |a/|1
‘ Velesik ) 6 | 0 0 7 7 7 | 27 | 3.

Je to né3 najlepsi vysledok za posledné roky. V neoficidlnom
hoednoteni druZstiev sme skonlili na peknom 6. mieste (za
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Cinou, Rumunskom, ZSSR, NDR a USA). Ziskali sme
2 zlaté medaily, pricom P. CiZek ziskal plny potet bodov.
Ukéazali sa vysledky systematickej pripravy S$tudentov na
MMO (2 ststredenia, kore$ponden¢né semindre, priprava
v triedach so zameranim na matematiku, ré6zne pomocné akcie,
$irokd béza olympiddy). Treba vSak povedat, Ze vybrané
tlohy na$im ziakom »sadli¢, boli to témy tradi¢ne sa vysky-
tujice v domadcej sutazi, resp. precvi¢ované na sustredeniach.
Dobry vysledok je zaroven zdvizkom do budicnosti.

Texty sutaznych aloh

1. Dokézte, Ze mnozina {1, 2, ..., 1989} sa d4 napisat ako
zjednotenie po dvoch disjunktnych mnozin 4;, 4o, ...,
Aui7 tak, ze st splnené nasledujice podmienky:

(1) kazda z mnozin 4; ma prave 17 prvkov,
(2) sucet vietkych Cisel z mnoziny 4; je pre vietky
i€ {1, 2, ..., 117} rovnaky.

2. Osi vnutornych uhlov pri vrcholoch A, B, C ostrouhlého
trojuholnika 4ABC pretinaju jemu opisanu kruZnicu po
rade v bodoch 4;, B;, Cy. Priamka AA; pretina osi von-
kajsich uhlov pri vrcholoch B, C trojuholnika ABC v bo-
de Ap. Analogicky st urené body By, Co. Dokazte, ze
a) Sap,c, = 2 Sac,a,cB,

b) Sas,co = 4 Sascs
kde S4,8,c.» Sac,pa,cB,> Sapc znatia obsahy trojuhol-
nika AgByCy, Sestuholnika AC1BA1CB; a trojuholnika
ABC.
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4

. Nech n, k st prirodzené Cisla (n = k) a S je mnoZina n

bodov roviny s tymito vlastnostami:

(i) ziadne tri body mnoziny S neleZia na priamke,

(ii) ku kazdému bodu P € § existuje v S aspoii & navzijom
roznych bodov rovnako vzdialenych od bodu P.

Potom k < 1/2 + |/2n . Dokézte!
Pre strany AB, AD a BC konvexného $tvoruholnika ABCD
plati [AB| = |AD| + |BC|. Vo vnutri tohto $tvoruholnika
existuje bod P tak, e |AP| = h + |AD|a|BP| = h +
+ |BC|, kde % je vzdialenost bodu P od priamky CD.
Dokézte, Ze
1 1 1

—_—— — .

J = V4D " iBC

. Ku kazdému prirodzenému <&islu n existuje n za sebou

idacich prirodzenych &isel tak, Ze Ziadne z nich nie je
mocninou prvodisla s celo¢iselnym exponentom. Dokézte!

. Permutaciu (x1, xg, ..., x2,) &isel 1, 2, ..., 2n nazveme

peknou, ak plati |x; — x441] = n pre aspoil jedno i€
€{1,2,...,2n — 1}. Dokazte, Ze pre kazdé n je viac ako
polovica permuticii peknych.

RieSenia aloh

1. Problém ulohy spociva v tom, Ze 17 je neparne Cislo.

Nebol by napr. Ziadny problém rozdelit mnoZinu {1, 2, ...,
.., 1000} do 50 dvadsatprvkovych mnoZin predpisanym
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sposobom, vytvorili by sme totiz 500 dvojciat {k£, 1001 — &},
ke {l,2,...,500} a do kazdej z 50 mnoZin by sme dali
po 10 dvoj¢iat. Tato myslienku vyuZzijeme aj v rieSeni naSej
ulohy. Rozdelime mnozinu {1, 2, ..., 351} do 117 (disjunkt-
nych) trojprvkovych mnoZin s rovnakym su¢tom. Potom
rozdelime mnoZinu {352, 353, ..., 1989} do 117 Strnist-
prvkovych mnozin s rovnakym stétom metédou »dvojéiat«
{k, 2341 —k}, ke {352, 353, ..., 1170}. Zjednotenim
vzdy jednej trojprvkovej a jednej 14-prvkovej mnoziny ziska-
me pozadovand 17-prvkovi mnoZinu. Zostdva popisat rozde-
lenie mnoziny {1, 2, ..., 351}. To vidno z nasledujuceho
predpisu:

{1,176, 351} {60, 118, 350}
{2,177, 349} {61, 119, 348}
{3, 178, 347} {62, 120, 346}
(58, 233, 237} {116, 174, 238}
{59, 234, 235} {117, 175, 236}

2. a) Ozna¢me I priese¢nik osi (vnutornych) uhlov (obr. 37).
Potom |IAy| = |41 Ao|. Vyplyva to napr. z toho, Zze AyA,
ByB, CyC st vysky trojuholnika 49ByCo, teda kruznica opisan4
trojuholniku ABC je kruznica deviatich bodov (Feuerbachova
kruznica) pre trojuholnik AoBoCy, to znamend, Ze rozpoluje
usetku IA4p. (Iny dokaz: |I4:| = |A1B|, lebo |<¢ A1IB| ~
~ | IBA4,| a |A1B| ~ |A1do| zo zhodnosti prisluinych
uhlov v trojuholniku A49A4;B.) Z tohoto dostaneme

obsah A IA;B = obsah A AyA1B.
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Obr. 37

Ak tento argument zopakujeme postupne pre vsetkych
6 trojuholnikov s vrcholom I a rovnosti s¢itame, dostaneme a).
b) Oznaéme H priese¢nik vy$ok trojuholnika ABC, X obra
bodu H v osovej sumernosti podla priamky BC, Y podla
priamky AC a Z podla priamky AB. Potom X, Y, Z lezia
na kruZnici opisanej trojuholniku ABC (pretoze |<¢ CXB| =
= |<C CHB| = 180 — a). Pretoze A4; je stred oblika BC,je
obsah A BA;C = obsah A BXC. Potom S,c,pa,cB, =
= Suzpxcy = 2(Spuc + Scra + Sang) = 2Sapc,¢o doka-

zuje nase tvrdenie.

3. Tvrdenie dokdZeme sporom. Predpokladajme £ = 1/2 +

\

—_— . k
+ }/2n. Ku kazdému bodu Pe S existuje najmenej (2)

dvojic bodov A4, B, prektoré |AP| = |BP|. Teda mame aspoil
n.(k|2) dvojic bodov A4, B, pre ktoré na osi useCky AB lezi
aspoti jeden bod z mnoziny S. Pocitajme:
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PretoZe mdme len (721) roznych dvojic bodov 4, B (4,B € S),

tak musi existovat dvojica bodov A4, B, ktora je zapolitana
aspoil trikrit, t.j. na osi usetky 4B leZia aspoii 3 rézne body
z S. To je viak spor s predpokladom.

4. Uvazujme $tvoruholnik ABCD s vlastnostami (i) a (ii)
pre rozne hodnoty k. Oznalme |AD| = R, |BC| = r. Skon-
$truujme trojuholnik ABP so stranami R + 7, R + h,r + h.
Dalej skonstruujme kruZnice k1 = (4, R), k2 = (B, r), ks =
= (P, k). Body C a D lezia po rade na kruZniciach %;, k2 a CD
je dotyénicou ku k3. Z toho plynie, Ze # nadobida maximalnu
hodnotu vtedy, ked CD je ziroveni spoloénou doty¢nicou
ku kruZniciam k1, k2. UkédZeme, Ze v tomto pripade

11
Jk ~yiap " yiBor

z ¢oho plynie okamzite dokazovana nerovnost. Oznaéme M
pétu kolmice spustenej z bodu P na priamku CD (obr. 38),
N pitu kolmice spustenej z bodu B na priamku AD. Z pravo-
uhlého trojuholnika ABN dostaneme:

ICD| = J(R + 2 — (R — r)? = 2]/Rr.
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Obr. 38

Dalej

|CD| = |CM| + |MD| = |(r +hR—(r — kP +
+ J(R + k) — (R — h)? = 2|/rh + 2]/Rh

Odtial dostaneme:
VRr = |rh + I/El;

a po predeleni ]/m pozadovany vztah.

5. Cislo nie je mocninou prvodisla prave vtedy, ked je
deliteIné aspori dvoma réznymi prvoéislami. To vyuZzijeme
v dokaze. Tvrdenie dokdzeme matematickou indukciou podla
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n. Pre n = 1 tvrdenie plati, sta¢i napr. vziat Cislo 6. Pred-
pokladajme, ze &islaa + 1,a + 2, ...,a + ntvorian za sebou
idtcich prirodzenych ¢&isel, z ktorych Ziadne nie je mocninou
prvodisla. Nech p1, p2, ..., pr su vietky prvolisla, ktoré sa
vyskytuja v ich rozkladoch a py+1, pr+2 st prvolisla, rozne od
1, P2, - .., pr. Dalej oznatme M = py, po, ..., px. Zrejme

pilc=pilc+ Mprei=1,2,...,k, ceN. ™

Teraz nijdeme se€ N tak, aby &islo a +n + 1 + sM bolo
deliteIné py11 (to ide, pretoze Cisla pr11 a M st nesudeliteIné).
Oznatme P = M.pyi1. Néjdime eSte re N tak, aby Cislo
a+n+ 1+ sM + t.P bolo deliteIné py2 (d4 sa to, pretoZe
Cisla pr42 a P st nesudeliteIné). Oznalme eSte Q = a + sM +
+ tP. Potom ¢isla Q + 1, Q + 2, ..., Q +n + 1 tvoria
n + 1 ¢isel pozadovanej vlastnosti — prvych # je deliteInych
aspoil dvomi prvolislami z mnoziny p1, pe, . . ., pr na zaklade
indukéného predpokladu (*) a &islo Q + n + 1 je delitelné
Pr+1 - Pr+2, Co dokazuje tvrdenie.

6. Nech ¢islo 7 je dané pevne. Nahradme po rade &isla
n+1,n+2,...,2n&slami 1, 2, ..., n. Potom moZno ulo-
hu preformulovat takto:

Maiéme #n dvojiciek 1, 1, 2, 2,. .., n, n a z tychto 2n &isel bu-
deme vytvarat 2n-¢lenné postupnosti. Ktorych postupnosti
je viac: tych, ktoré obsahuja vedla seba rovnaké ¢&isla, alebo
takych, ¢o ich neobsahuja?

Postupnost xi, x2, ..., X2, je typu A, ak sa vedla seba ne-
vyskytuja rovnaké ¢&isla, typu B, ak sa rovnaké &isla vedla
seba vyskytuji. Oznatme 4, pocet 2n-¢lennych postupnosti
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typu 4 a B, pocet 2n-tlennych postupnosti typu B. Z postup- Y
nosti typu 4 s ¢lenmi 1,1,2,2, ..., n,n mozno pridanim dv?-.
2n + 1
2
typu A (Cisla vlozime do réznych medzier medzi ¢lenmi
povodnej postupnosti) a 2n + 1 sposobmi postupnost typu B |
(¢islan + 1, n + 1 vlozime do tej istej medzery). Z postup-
nosti typu B na 2n-prvkovej mnozine mozno vyrobit postup-
nost typu A nanajvy§ 2n sposobmi (jednym cCislom n + 1
oddelime rovnaké &isla, druhé vloZime do niektorej zo zvys$- |
nych 2n medzier, avSak ak je vedla seba viac dvojitiek, tak

‘)
jice n + 1, n + 1 ( ) sposobmi vyrobit postupnost

. 2 .
spdsobov je menej) a asponl 2n + 1 + (:) spOsobmi

postupnost typu B (¢isla n + 1, n + 1 vlozime do tej istej.
medzery alebo do réznych medzier, aviak neporusime existu-
jucu dvoji¢ku). Z tychto Gvah vyplyvaju vztahy:

Apyi =n(2n + 1) A, + 2n B,
By = (2'1 + 1) An + (2”2 +n + 1>Bn
Teraz u? vidime, 7e ak B, = A, > 0, tak By1 > Ani1.
Naozaj:

By, =02n2 +3n+2)B, —(2n + 1)(By — An) >
> (2n2 + 3n) By, — (2n2 + n)(Byp — An) = Apn

f

K dokazu si teraz stali uvedomit, ze 4; = 0, By = 1. Bude
teda B, > A, aj pre vietky n = 2. Postupnosti typu B )c
teda ozaj viac ako polovica, ¢o sme mali dokézat.
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