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Hodnocení 38. ročníku
matematické olympiády

38. ročník proběhl beze změn v organizaci i bez větších
výkyvů v počtech účastníků. Zúčastnilo se ho stejně jako
předcházejícího ročníku asi 9 500 žáků středních škol, z nich
asi 5 600 prošlo úspěšně prvním kolem. Z tohoto počtu bylo
4 600 žáků pozváno do II. kola. V něm skončilo 1 300 sou-
těžících s diplomem úspěšného řešitele, stejně jako v 37. roč-
niku. Tato čísla hodnotíme kladně. Vždyť není rozumné
požadovat, aby v každém ročníku soutěžilo víc žáků než
v roce předcházejícím, jak tomu často bylo při různých
soutěžích.

Podstatný vliv na průběh každého ročníku MO má výběr
úloh. Úlohy kategorie P připravili převážně pracovníci MO
z Prahy, úlohy kategorií А, В, C vybrali členové předsednictva
ÚV MO, přičemž využili úloh, které zaslali do konkursu
úloh MO učitelé, vědečtí pracovníci v matematice, studenti
matematiky a i někteří žáci. Zdá se, že úlohy byly vybrány
vhodně, na pravidelném hodnocení výběru úloh při příleži-
tosti celostátního kola nebyly vzneseny žádné námitky. Kladně
byla hodnocena návaznost úloh jednotlivých kol, například
úlohy C-II-4 na C-I-6. V některých případech však nebyl
výběr úloh v souladu s osnovami, například úloha B-S-l
se týkala permutací, ty se však probírají až později. Někdy
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se však dá úloha řešit prostředky, které jsou již к dispozici,
i když by se dala později, po probrání další látky, řešit snad-
něji. Týká se to například úlohy B-I-6, která se nemusela
řešit matematickou indukcí. Patří však bezesporu к těžším
úlohám. Pěkné řešení úlohy B-I-2 podal žák gymnázia v Brně,
řešení velmi jednoduché, elegantní. Sám autor úlohy i pří-
slušného komentáře byl tímto pěkným řešením mile překva-
pen. Ačkoli ÚV MO věnuje výběru úloh velkou pozornost,
přesto se občas objeví nějaký šotek. Tentokrát to bylo v textu
úlohy C-I-l, kde se mluví jednou o celých číslech, jednou
o přirozených číslech, správně má být na obou místech stejný
pojem. V této ročence je text již opraven. Naštěstí žáci snadno
chybu objevili.

V celostátním kole MO kategorie A se řeší vždy šest úloh,
za každou může soutěžící získat 7 bodů. Nej těžší byla zřejmě
úloha A-III-4 o těžnicích v trojúhelníku, neboť průměr
dosažených bodů za tuto úlohu byl 1,29. Nejlehčí byla úloha
A-III-1, za ni dosáhli soutěžící průměru 5,12 bodu. Byla to
úloha o tětivovém čtyřúhelníku a byla zařazena i jako pietní
vzpomínka na jejího autora, dlouholetého předsedu ÚV MO
dr. Františka Zítka, CSc., z Matematického ústavu ČSAV.

Při hodnocení 38. ročníku MO není možné nevyzdvihnout
úspěch našich žáků na jubilejní, 30. mezinárodní matematické
olympiádě, která se konala v SRN. Každý československý
účastník získal některou z medailí, z toho byly dvě zlaté
a jedna stříbrná. V neoficiálním pořadí družstev se Českoslo-
vensko umístilo na 6. místě za ČLR, Rumunskem, SSSR,
NDR a USA.
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RNDr. František Zítek, CSc., pracoval v matematické
olympiádě od roku 1962, kdy se konala poprvé mezinárodní
matematická olympiáda v Československu. Od roku 1966 byl
členem ústředního výboru MO, dlouhá léta byl jeho místo-
předsedou a od roku 1983 zastával funkci předsedy. Staral
se především o československou účast na mezinárodních
matematických olympiádách, plně přitom uplatnil své bohaté
jazykové znalosti. Byl předsedou mezinárodní poroty při
25. MMO v Praze a měl velkou zásluhu na jejím pěkném
průběhu. Dr. Zítek byl autorem mnoha úloh i pro českoslo-
venskou matematickou olympiádu. Ačkoli pracoval především
v teorii pravděpodobnosti a v matematické statistice, většina
jeho úloh byla z geometrie. A byly to úlohy náročné, dr. Zítek
se vždy snažil o vysokou úroveň MO. Do edice Škola mladých
matematiků přispěl svazkem Vytvořující funkce, další svazek
už bohužel nedopsal. Zemřel náhle 18. listopadu 1988
ve věku 59 let. Jeho jméno bude navždy spojeno s matematic-
kou olympiádou v Československu.
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O průběhu 38. ročníku
matematické olympiády

38. ročník matematické olympiády pořádalo ministerstvo
školství, mládeže a tělovýchovy ČSR a ministerstvo školství,
mládeže a tělesné výchovy SSR ve spolupráci s Jednotou
československých matematiků a fyziků, Jednotou slovenských
matematiků a fyziků, Matematickým ústavem ČSAV a Soci-
alistickým svazem mládeže. Soutěž řídil ústřední výbor mate-
matické olympiády (ÚV MO) prostřednictvím krajských
a okresních výborů matematické olympiády (KV MO,
OV MO). Členy ÚV MO jmenovala příslušná ministerstva.
V průběhu 38. ročníku MO pracoval ústřední výbor MO
ve stejném složení jako v předcházejícím roce: předsedou
byl RNDr. František Zítek, CSc., z MÚ ČSAV v Praze,
místopředsedy profesor RNDr. Miroslav Fiedler, DrSc.,
člen korespondent ČSAV, z téhož ústavu, a doc. RNDr.
Branislav Rovan, CSc., z MFF UK v Bratislavě. Ministerstvo
školství, mládeže a tělovýchovy ČSR zastupoval RNDr.
Václav Šůla, ministerstvo školství, mládeže a tělesné výchovy
SSR RNDr. Júlia Lukátšová. Funkci tajemníků ÚV MO
vykonávali doc. RNDr. Leo Boček, CSc., z MFF UK v Praze
a RNDr. Karel Horák, CSc., z MÚ ČSAV v Praze. V prů-
běhu 38. ročníku zemřel dlouholetý předseda ÚV MO
dr. František Zítek, CSc. Funkci předsedy ÚV MO pak
vykonával doc. RNDr. Leo Boček, CSc., dosavadní tajemník
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ÚV МО, a práci tajemníka převzal RNDr. Jiří Binder, CSc.,
z pedagogické fakulty UK v Praze. К další změně během
38. ročníku došlo, když RNDr. Ján Lastivka vystřídal
dr. Lukátšovou ve funkci zástupce MŠMTV SSR.

V průběhu 38. ročníku MO se konala dvě zasedání ÚV MO,
první ve dnech 5.-6. prosince 1988 v Praze, druhé 24.-25.
dubna 1989 v Klatovech při celostátním kole MO. Hlavním
bodem obou zasedání bylo hodnocení průběhu soutěže,
zabezpečení celostátních soustředění úspěšných řešitelů MO
včetně soustředění pro přípravu na MMO, korespondenční
seminář ÚV MO a organizace dalších kol soutěže. Byla pro-

jednávána též ediční činnost ÚV MO, především příprava
dalších svazků edice Škola mladých matematiků. Byla disku-
tována vhodnost výběru úloh MO. Pracovní předsednictvo
se scházelo jednou měsíčně a zabývalo se hlavně výběrem
úloh pro všechna kola soutěže.

V organizaci MO nedošlo к žádným změnám. Kategorie A
byla určena žákům 3. a 4. ročníku středních škol, kategorie В
byla pro žáky 2. ročníků a v kategorii C soutěžili žáci 1. roč-
níků. Pro žáky všech tříd středních škol byla určena ještě
kategorie P, zaměřená na úlohy z programování a matematické
informatiky.

V kategoriích А, В, C má I. kolo dvě části, v první části
řeší soutěžící 6 úloh doma nebo v matematických kroužcích
a mohou se přitom radit se svými učiteli, vedoucími kroužků
apod. Druhá část má formu klauzurní práce, v níž řeší žáci
tři úlohy v omezeném čase čtyř hodin.

Řešitelé, kteří úspěšně prošli prvním kolem, jsou pozváni
do druhého (krajského) kola soutěže, kde řeší čtyři úlohy
opět v limitu čtyř hodin.
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V kategoriích A a P se koná ještě třetí, celostátní kolo.
V něm je vlastní soutěž rozdělena do dvou dnů. V kategorii
A řeší soutěžící každý den tři úlohy v časovém limitu čtyři
hodiny, v kategorii P ve stejném limitu vždy dvě úlohy.

Organizací celostátního kola byl ministerstvem školství,
mládeže a tělovýchovy ČSR pověřen Západočeský kraj.
Uskutečnilo se v Klatovech ve dnech 23.—25. 4. 1989 (kat. A)
a 26.-29. 4. 1989 (kat. P). Bylo doprovázeno velmi pěkným
kulturním a společenským programem. Z řady pracovníků,
kteří se zasloužili o vzornou organizaci celostátního kola,
jmenujme alespoň RNDr. Karla Matáska, předsedu organi-
začního výboru, RNDr. Josefa Poláka, CSc., předsedu KV
МО a dr. Marii Ausbergerovou z KPÚ v Plzni.

Vybraná družstva se zúčastnila mezinárodní matematické
olympiády i mezinárodní soutěže v programování. Těmto
soutěžím je věnována samostatná kapitola v závěru brožury.

Hlavní náplň následujících kapitol tvoří texty úloh všech
kategorií včetně jejich řešení. Každá úloha je označena katego-
rií, římskou číslicí udávající kolo nebo písmenem S, které
značí školní, klauzurní část I. kola, a číslem úlohy.

Ve všech krajích naší republiky se i ve školním roce 1988|89
pořádaly různé akce pro vyhledávání a rozvoj žáků talentová-
ných v matematice, převážně spojené s matematickou olympi-
ádou Přehled akcí v jednotlivých krajích:

Praha. Jednou týdně se konaly pracovní přednášky pro
řešitele úloh kategorií А, В i C, celkem se zúčastnilo 52 žáků.
Pro 38 řešitelů korespondenčního semináře a MO se v lednu
konalo třídenní soustředění. Soustředění pro řešitele kategorií
В a C se konalo v červnu, trvalo 5 dní a zúčastnilo se ho
45 žáků.
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Středočeský kraj. Týdenní soustředění pro 36 nejúspěšněj-
ších řešitelů kategorie В a C se konalo v září. Byly provedeny
instruktáže učitelů к úlohám I. kola kat. А, В, C. Pro žáky,
řešitele úloh MO, proběhly instruktáže v osmi školicích
střediscích.

Jihočeský kraj. Letní škola pro úspěšné řešitele MO se
konala v červnu, trvala jeden týden a zúčastnilo se jí 58 řešitelů
kat. А а В a 60 řešitelů kat. C. Instruktáž pro referenty MO
na školách byla jednodenní, zúčastnilo se 46 učitelů. V lednu
se konalo dvoudenní soustředění pro 20 řešitelů úloh katego-
rie A. Korespondenční seminář měl dvě série úloh.

Západočeský kraj. V Plzni, Klatovech a Karlových Varech
se konalo celkem 24 přednášek к úlohám kategorie А, В
a C. Úlohy korespondenčního semináře pro kategorii A řešilo
33 žáků (2 série) a pro kategorie В a C 57 žáků (3 série úloh).

Severočeský kraj. V červnu proběhlo v Krupce soustředění
pro 45 řešitelů kat. А, В a C. Kromě toho se v kraji konalo
v deseti městech celkem 50 seminářů pro řešitele úloh kat. A,
В a C s průměrnou účastí 20 žáků.

Jihomoravský kraj. V Brně a v Jihlavě se konaly pro řešitele
úloh MO semináře, zvlášť pro každou kategorii, průměrná
účast 20 žáků. Jednou týdně se konal seminář pro žáky z třídy
zaměřené na matematiku na gymnáziu v Brně, tř. kpt. Jaroše.
Pro 10 žáků kraje, kteří byli pozváni do celostátního kola
kat. A, se konalo 6 seminářů po 4 hodinách. Týdenní soustře-
dění pro úspěšné řešitele kategorie В a C proběhlo v Jedov-
nicích v květnu. Zúčastnilo se ho celkem 80 žáků. Pro

žáky 2. ročníků tříd gymnázií se zaměřením studijního oboru
01 — Matematika (3 žáci z každé školy, kde jsou tyto třídy
zavedeny) uspořádal KV MO desetidenní soustředění.
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Severomoravský kraj. V září proběhly instruktáže referentů
MO, zúčastnilo se 41 učitelů. Na sobotních besedách MO
byla průměrná účast 37 žáků. Na gymnáziu M. Koperníka
v Bílovci se konaly jednou týdně semináře pro řešitele MO
(25 účastníků). Korespondenční seminář pro kategorie A,
В, C (3 série úloh) řešilo celkem 210 účastníků. Seminář
byl ukončen týdenním soustředěním (duben, 50 účastníků).
V červnu se konalo pro 75 úspěšných řešitelů MO desetidenní
soustředění. V červnu též proběhlo týdenní soustředění žáků
3. ročníků tříd gymnázií se zaměřením na matematiku (30
účastníků).

Bratislava. Pro učitele uspořádal KV MO sedm dvou-
hodinových seminářů. Dále proběhlo šest kol korespondenč-
ního semináře z matematiky a tři kola z programování. Pro
nejúspěšnější řešitele MO a korespondenčních seminářů
bylo uspořádáno celkem pět týdenních soustředění.

Západoslovenský kraj. Instruktáží učitelů a vedoucích krouž-
ků MO (pro kat. А, В, C i P) se zúčastnilo 60 učitelů. Soustře-
dění úspěšných řešitelů MO kat. В a C bylo týdenní a zúčast-
nilo se ho 40 žáků. V korespondenčním semináři řešilo 72
žáků úlohy pěti sérií, z toho 18 nejlepších bylo pozváno na čtyř-
denní soustředění.

Středoslovenský kraj. Krajský korespondenční seminář pro

kategorii A měl 5 sérií, úlohy řešilo 21 žáků. Druhý kores-
pondenční seminář byl určen pro kategorii В a C, 4 série
úloh řešilo 123 žáků. Korespondenční seminář byl organizo-
ván též pro kategorii P (4 série, 36 účastníků) a pro žáky SOU
(6 sérií, 152 účastníků). Pro úspěšné řešitele MO byla uspo-
řádána dvě týdenní soustředění (září, červenec), každé pro
40 účastníků. Pro všechny kategorie proběhly dvoudenní
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instruktáže pro učitele. V Žilině byl organizován matematický
kroužek, 3 žáci byli připravováni individuálně.

Východoslovenský kraj. Pro každou kategorii se uskutečnila
samostatná instruktáž referentů МО a vedoucích kroužků,
instruktáže byly jednodenní a zúčastnilo se jich celkem 230
učitelů. V korespondenčním semináři řešilo 150 žáků osm
sérií po šesti úlohách. Pro nejlepší řešitele úloh semináře
se konala dvě týdenní soustředění (září 1988 a leden 1989),
každé pro 35 účastníků. V Košicích, Prešově a Kežmarku
byly organizovány matematické kroužky pro řešitele úloh
kategorie A, v Košicích též pro kategorii P. Kroužky navště-
vovalo průměrně 20 účastníků. Při KDPaM v Košicích
fungoval Klub mladých matematiků. Scházel se jednou týdně
a navštěvovalo ho 15—20 žáků.

Ústřední výbor MO. Ústřední výbor MO zajišťoval tři
celostátní soustředění. Pro žáky nematurujících ročníků to bylo
již tradiční soustředění 80 řešitelů úloh MO a FO. Proběhlo
ve dnech 15.—28. 6. v Dubnici nad Váhom. Další dvě sou-

středění byla věnována přípravě československého družstva
na mezinárodní matematickou olympiádu. První se konalo
28. 3.—5. 4. v Píle (12 účastníků), druhé 19.—29. 6. v Pardu-
bicích (8 účastníků). ÚV MO též zajišťoval celostátní koře-
spcndenční seminář (semináři je věnována samostatná část
této brožury). V edici Škola mladých matematiků vydává
ÚV MO v nakladatelství Mladá fronta matematické brožury
pro žáky. V průběhu 38. ročníku vyšly tři svazky: J. Tůma:
Matematické hlavolamy a základy teorie grup, I. Korec:
Úlohy o velkých číslech a A. Kufner: Nerovnosti a odhady
(reedice).
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Výsledky celostátního kola 38. ročníku MO
kategorie A

Vítězové

1. Petr Čížek, 4M, G W. Piecka, Praha
2. Ondřej Šuch, 3M, G A. Markuša, Bratislava
3. Ilja Martišovitš, 4MF, G J. Hronca, Bratislava 32 b.
4. Marek Velešík, 4P, G, Koněvova, Brno
5. Tomáš Brodský, 4M, G, tř. kpt. Jaroše, Brno

6.-7. Štěpán Kasal, 2M, G W. Piecka, Praha
Arnošt Kobylka, 4M, G W. Piecka, Praha

8.-9. Pen- Proč, 4M, G W. Piecka, Praha
Štěpán Holub, 4MF, G, Trutnov

10. Petr Hliněný, 3M, G, Bílovec
11. —12. Vladimír Komár, 3M, G, Košice

42 b.

41 b.

30 b.

29 b.

28 b.

28 b.

27 b.

27 b.

26 b.

25 b.

Jan Vomlel, 3M, G J. K. Tyla, Hradec Králové 25 b.
13. Martin Kraus, 3MF, G, Karlovy Vary

14. —16. Martin Durdiak, 4M, G A. Markuša, Bratislava 22 b.
22 b.

23 b.

Ondřej Kalenda, 3M, G W. Piecka, Praha
Vladimír Skalský, 3, G, Prešov

17. — 19. Jaromír Javůrek, 4M, G W. Piecka, Praha
22 b.

21b.

Michal Konečný, 2M, G, tř. kpt. Jaroše, Brno 21 b.
Jozef Skokan, 3M, G, Velká Okružná, Žilina 21b.
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Další úspěšní řešitelé

20.—22. Aleš Černý, 4M, G, Velká Okružná, Žilina
Štefan Dobrev, 4M, G A. Markuša, Bratislava 20 b.

20 b.

20 b.

Stanislav Januschke, 4MF, G J. Hronca,
Bratislava

23.—27. Viliam Búr, 7, ZŠ, K. Šmidkeho, Bratislava 19 b.
Daniel Elleder, 4M, G W. Piecka, Praha
Jan Hannig, 2M, G W. Piecka, Praha
Jakub Těšínský, 2M, G W. Piecka, Praha
Miroslav Vicher, 4MF, G, Karlovy Vary

28. Gabriel Varga, 4P, G, Šamorín
29.—30. Andrej Doboš, 4M, G A. Markuša, Bratislava 17 b.

17 b.

31.—32. Vladimír Glasnák, 2MF, G, V. Okružná, Žilina 16 b.
Petr Tobiška, 2M, G J. K. Tyla, Hr. Králové 16 b.

33.—34. Šimon Kos, 4M, G J. Fučíka, Plzeň
Zbyněk Šír, 4M, G J. K. Tyla, Hr. Králové 15 b.

35.—37. Peter Gvozdiak, 4M, G A. Markuša, Bratislava 14 b.
Robert Mitka, 4M, G, Velká Okružná, Žilina 14 b.
Petr Štěpán, 4M, G W. Piecka, Praha

19 b.

19 b.

19 b.

19b.

18 b.

Jan Macháček, 3, G, Pelhřimov

15 b.

14 b.

U tříd se zaměřením studijního oboru 01 Matematika
je za ročníkem označení M, u žáků z tříd se zaměřením stu-

dijního oboru 02 Matematika a fyzika je za ročníkem označení
MF. Všichni byli žáci gymnázia.
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Pořadí úspěšných řešitelů z tříd,
které nejsou se zaměřením studijního oboru 01 Matematika

1. Ilja Martišovitš, 4, G J. Hronca, Bratislava
2. Marek Velešík, 4, Koněvova, Brno
3. Štěpán Holub, 4, Trutnov
4. Martin Kraus, 3, Karlovy Vary
5. Vladimír Skalský, 3, Prešov
6. Stanislav Januschke, 4, G J. Hronca, Bratislava

7.-8. Viliam Búr, 7, ZŠ, K. Šmidkeho, Bratislava
Miroslav Vicher, 4, Karlovy Vary

9. Gabriel Varga, 4, Šamorin
10. Jan Macháček, 3, Pelhřimov
11. Vladimír Glasnák, 2, Velká Okružná, Žilina
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Výsledky celostátního kola 38. ročníku MO
kategorie P

Vítězové

1. Ilja Martišovitš, 4, G J. Hronca, Bratislava
2,—3. Petr Čížek, 4, G W. Piecka, Praha

Štefan Dobrev, 4, G A. Markuša, Bratislava
4.-5. Václav Bohdanecký, 4, G W. Piecka, Praha

Vladimír Chvátil, 3, G, Koněvova, Brno
6.-7. Petr Brož, 4, G W. Piecka, Praha

Miroslav Vicher, 4, G, Karlovy Vary
8.—9. Martin Čížek, 3, G, Rožnov pod Radhoštěm

Jaroslav Šprongl, 2, G W. Piecka, Praha
10. —12. Andrej Lúčny, 4, G, Piešťany

Robert Mitka, 4, G, Velká Okružná, Žilina
Pavel Vanoušek, 3, G, Cheb

38 b.

37 b.

37 b.

35 b.

35 b.

32 b.

32 b.

30 b.

30 b.

29 b.

29 b.

29 b.

Další úspěšní řešitelé

13. —14. René Pázman, 4, G J. Hronca, Bratislava
Vladimír Šolc, 3, G, Beroun

15. Milan Mosný, 4, G J. Hronca, Bratislava
16. —17. Petr Štěpán, 4, G W. Piecka, Praha

Oldřich Vojtíšek, 3, G, Partyzánská, Liberec

28 b.

28 b.

27 b.

26 b.

26 b.
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18.—21. Jakub Čermák, 3, G, Jírovcova, Č. Budějovice 25 b.
Štěpán Kasal, 2, G W. Piecka, Praha
Vladimír Skalský, 3, G, Prešov
Michal Šmídek, 4, G, tř. kpt. Jaroše, Brno

22.-24. Martin Dindoš, 3, G J. Hronca, Bratislava
Zdeněk Pavlas, 4, G, tř. kpt. Jaroše, Brno
Zbyněk Šír, 4, G J. K. Tyla, Hradec Králové

25 b.

25 b.

25 b.

24 b.

24 b.

24 b.

22



Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С, P

Z každého kraje a z každé kategorie je uvedeno nejvýše
prvních deset řešitelů. Pokud není uvedena škola, byl řešitel
žákem gymnázia. Označení G znamená gymnázium, M, resp.
MF zaměření studijního oboru 01 Matematika, resp. 02 Ma-
tematika a fyzika.

Praha

Kategorie A

1. Petr Čížek, 4M, G W. Piecka, Praha
2. Štěpán Kasal, 2M, G W. Piecka, Praha
3. Petr Brož, 4M, G W. Piecka, Praha
4. Michal Kubeček, 1M, G W. Piecka, Praha

5.-8. Daniel Elleder, 4M, G W. Piecka, Praha
Jan Hannig, 2M, G W. Piecka, Praha
Ondřej Kalenda, 3M, G W. Piecka, Praha
Petr Štěpán, 4M, G W. Piecka, Praha

9. Arnošt Kobylka, 4M, G W. Piecka, Praha
10. —12. Jaroslav Šprongl, 2M, G W. Piecka, Praha

Jakub Těšínský, 2M, G W. Piecka, Praha
Jan Večeř, 3M, G W. Piecka, Praha
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Kategorie В

L—3. Petr Mourek, 2M, G W. Piecka, Praha
Jan Hannig, 2M, G W. Piecka, Praha
Jan Hrůza, 2M, G W. Piecka, Praha

4.-6. Karel Janeček, 2M, G W. Piecka, Praha
Jaroslav Šprongl, 2M, G W. Piecka, Praha
Petr Novotný, 1M, G W. Piecka, Praha

7.-8. Roman Janík, 2M, G W. Piecka, Praha
Jakub Těšínský, 2M, G W. Piecka, Praha

9. Jan Holub, 2, Voděradská, Praha
10. —11. Veronika Hurychová, 2M, G W. Piecka, Praha

Petr Lukšan, 2M, G W. Piecka, Praha

Kategorie C

1 .Jan Vondrák, 1M, G W. Piecka, Praha
2. Michal Motyčka, 1M, G W. Piecka, Praha
3. Pavlína Čapková, 1, Štěpánská, Praha
4. Petr Mitošinka, 1, Nad alejí, Praha

5.-7. Michal Kubeček, 1M, G W. Piecka, Praha
Vit Novák, 8, ZŠ, Na planině, Praha
Martin Špaček, 1, U lib. zámku, Praha

8. —12.Jan Kynčl, 1, Sladkovského n., Praha
Karel Veselý, 1, Nad alejí, Praha
Alena Bičáková, 1M, G W. Piecka, Praha
Jan Kybic, 1M, G W. Piecka, Praha
Jiří Reiterman, 1M, G W. Piecka, Praha
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Kategorie P

1. Petr Čížek, 1M, G W. Piecka, Praha
2. Václav Bohdanecký, 4M, G W. Piecka, Praha

3.—4. Petr Brož, 4M, G W. Piecka, Praha
Štěpán Kasal, 2M, G W. Piecka, Praha

5. Arnošt Kobylka, 4M, G W. Piecka, Praha
6. Adam Holub, 3M, G W. Piecka, Praha

7.-8. Michal Kubeček, 1M, G W. Piecka, Praha
Petr Štěpán, 1M, G W. Piecka, Praha

9. Jaroslav Šprongl, 2M, G W. Piecka, Praha
10. Martin Schnabl, 2M, G W. Piecka, Praha

Středočeský kraj

Kategorie A

1. Vladimír Šolc, 3MF, Beroun
2. Radek Novotný, 4MF, Mladá Boleslav

Kategorie В

1.—2. Tomáš Vrbata, 2MF, Kladno
Tomáš Pračka, 2, Říčany

3. Josef Soukal, 2MF, Ml. Boleslav
4. Miroslav Vaic, 2MF, Kladno

5.-7. Roman Chaloupka, 2MF, Kladno
Lenka Kurzveilová, 2MF, Ml. Boleslav
Jaroslava šulcová, 2MF, Ml. Boleslav
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8.-9. Miroslav Bárta, 2MF, Benešov
Jan Němec, 2, Nymburk

10. — 11. Jan Kala, 2MF, Kralupy
Filip Linhart, 2, Poděbrady

Kategorie C

1. Tomáš Němec, IMF, Beroun
2. Lenka Maršiková, 1, Říčany

3.—5. Tomáš Hendrich, IMF, Beroun
Adrian Trčka, IMF, Beroun
Jiří Sedláček, IMF, Ml. Boleslav

в. Jaroslav Fanfrlík, 1, Říčany
7. Dušan Janovský, 1, Slaný
8. Martin Helmich, IMF, Ml. Boleslav

9. —11. Vladimír Tučan, IMF, Kladno
Jakub Prox, 1, Poděbrady
Petr Burian, 1, Vlašim

Kategorie P

1. Vladimír Šolc, 3MF, Beroun
2. Pavel Šenkyřík, 4, Hořovice
3. Michal Špimr, 2MF, Kolín

Jihočeský kraj

Kategorie A

1. Jan Macháček, 3, Pelhřimov
2. David Boukal, 4M, Jírovcova, České Budějovice
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o.Jan Balák, 3M, Jírovcova, České Budějovice4.Jakub Čermák, 3M, Jírovcova, České Budějovice

Kategorie В

1 .Jan Dvořák, 2M, Jírovcova, České Budějovice2.Petr Fedra, 2M, Jírovcova, České Budějovice
3.—4. Pavel Kopřiva, 2, SPŠ Písek

Milan Šimánek, 2, Pelhřimov5.Hana Šnajdrová, 2, Tábor
6.-9. Peřra Dvořáková, 2M, Jírovcova, České Budějovice

Fontán, 2M, Jírovcova, České Budějovice
Josef Leva, 2M, Jírovcova, České Budějovice
Irena Šindelářová, 2M, Jírovcova, České Budějovice

10. —12.Josef Šilhá, 2, Tábor
Martin Felenda, 2, Soběslav
Zdeněk Petrášek, 2MF, K. Šatala, České Budějovice

Kategorie C

1. Dalibor Jelínek, IMF, K. Šatala, České Budějovice
2.—3. Tomáš Kimmer, IMF, Pelhřimov

Libuše Štěpničková, 1, Písek4.Michael Schenk, 1M, Jírovcova, České Budějovice
5.-9. Stanislav Drdel, 1, SEŠ Písek

Marcel Horváth, 1, SEŠ Písek
Petr Macháček, IMF, Pelhřimov
Petr Ságl, IMF, Pelhřimov
Miroslav Voborník, 1M, Jírovcova, České Budějovice

10, —11. Jiří Čáp, 1, Písek
Ladislav Nagy, 1M, Jírovcova, České Budějovice
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Kategorie P

1. Jan Macháček, 3, Pelhřimov
2. Jakub Čermák, 3M, Jírovcova, České Budějovice
3. Milan Předota, 3M, Jírovcova, České Budějovice
4. Jan Balák, 3M, Jírovcova, České Budějovice
5. Bednář, 3, Soběslav

Západočeský kraj

Kategorie A

1. Martin Kraus, 3MF, Karlovy Vary
2. Miroslav Vicher, 4MF, Karlovy Vary
3. Šimon Kos, 4M, G J. Fučíka, Plzeň
4.Jiří Fiirst, 4M, G J. Fučíka, Plzeň

Kategorie В

1. Martin Čihák, 2MF, Karlovy Vary
2. Miroslav Černý, 2MF, Karlovy Vary
3. Karel Soukeník, 2M, G J. Fučíka, Plzeň
4. Tomáš Kadlec, 2M, G J. Fučíka, Plzeň
5. Petr Zeman, 2M, G J. Fučíka, Plzeň
6. David Faflík, 2MF, Sokolov

7.-8. Radan Slavík, 2MF, Cheb
Zdeněk Valečko, 2M, G J. Fučíka, Plzeň

9. Radek Cibulka, 2, Sokolov
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Kategorie С

1 .Jan Smolík, 1M, G J. Fučíka, Plzeň2.Marek Patky, 1M, G J. Fučíka, Plzeň
3.—4. Martin Marx, IMF, Cheb

Bohumil Nováček, 1M, G J. Fučíka, Plzeň
5. Pavel Loskot, 1M, G J. Fučíka, Plzeň
6. Peřr Chrastina, IMF, Karlovy Vary
7. Jan Ко tas, 1M, G J. Fučíka, Plzeň8.Luboš Мой, IMF, Opavská, Plzeň

Kategorie P1.Pavel Vanoušek, 3MF, Cheb
2.—3. Vítězslav Babický, 4M, G J. Fučíka, Plzeň

Miroslav Vicher, 4MF, Karlovy Vary
4. Martin Bureš, 3M, G J. Fučíka, Plzeř
5. Jakub Vosáhlo, 4MF, Karlovy Vary

6.-7. Petr Mazanec, 2, Klatovy
Jan Štrunc, 3M, G J. Fučíka, Plzeň

Severočeský kraj

Kategorie A

1. Oldřich Vojtíšek, 4M, Liberec
2. Tomáš Brázda, 4MF, Teplice
3. Štěpána Lazarová, 4, Děčín
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Kategorie В

1.—2. Ladislav Šimek, 2MF, Ústí n. L.
Aleš Hácha, 2M, Liberec

3. Radek Škoda, 2M, Liberec
4. Filip Bartl, 2M, Liberec
5. Stanislav Dunaj, 2MF, Ústí n. L.6.—14. Zdeněk Slavík, 2, Děčín

Jiří Fiala, 2M, Liberec
Petra Hájková, 2M, Liberec
Stanislav Lála, 2M, Liberec
Štěpánka Zítková, 2M, Liberec
Milan Cáder, 2M, Liberec
Marta Minářová, 2M, Liberec
Jana Kopalová, 2M, Liberec
Milan Klouček, 2M, Liberec

Kategorie C

1. Petr Jiřička, 1M, Liberec
2. Tomáš Zeller in, IMF, Ústí n. L.
3. Jaromír Kohout, 1, Žatec
4. Radek Lopušnik, IMF, Ústí n. L.
5. Hans Ginzel, 1M, Liberec
6. Martin Stianko, 1M, Liberec
7. Petr Hudský, 1, SPŠ stroj, a el., Ústí n. L.

Ъ.—9. Jaroslav Svoboda, 1M, Liberec
Pavel Křečan, 1M, Liberec
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Kategorie P

1. Oldřich Vojtíšek, 4M, Liberec
2. Petr Jáger, 4P, Litoměřice
3. Dan Lukeš, 4M, Liberec

Východočeský kraj

Kategorie A

1. Petr Merta, 4M, G J. K. Tyla, Hradec Králové
2. Petr Duczynski, 4, Nová Рака

3.—4. Zbyněk Šír, 4M, G J. K. Tyla, Hradec Králové
Jan Vomlel, 3M, G J. K. Tyla, Hradec Králové

5.-7. Štěpán Holub, 4MF, Trutnov
Petr Tobiška, 2M, G J. K. Tyla, Hradec Králové
Zbyněk Vašata, 4M, G J. K. Tyla, Hradec Králové

Kategorie В

L—2. Daniela Loskotová, 2, Havlíčkův Brod
Pavel Fiala, 2MF, Pardubice

3. Petr Tobiška, 2M, G J. K. Tyla, Hradec Králové
4.-5 .Jiří Komárek, 2M, G J. K. Tyla, Hradec Králové

Lenka Elsnerová, 2, SPŠE 1, Pardubice
6.-8z Martin Jirman, 2MF, Náchod

Dalimil Keršláger, 2M, G J. K. Tyla, Hradec Král.
Čeněk Honsa, 2MF, Pardubice

9. —10.Jiří Formánek, 2MF, Pardubice
Daniel Beneš, 2MF, Pardubice
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Kategorie С

1. Bohumila Píšová, 1MF, Pardubice
2. Rostislav Benák, IMF, Pardubice

3.—4.Jiří Holfeuer, 1, Hlinsko
Jarmil Škop, IMF, Šimkova, Hradec Králové

5.-8. Pavlína Kubátová, IMF, Pardubice
Tomáš Láska, 1, Turnov
Martina Oppltová, IMF, Trutnov
Otto Severýn, 1, Jilemnice

9. —11. Rudolf Mareš, 1M, G J. K. Tyla, Hradec Králové
Petr Sezemský, 1, Polička
Aleš Slabý, IMF, Pardubice

Kategorie P

1. Zbyněk šír, 4M, G J. K. Tyla, Hradec Králové
2. Martin Horký, 3P, Pardubice
3. Petr Merta, 4M, G J. K. Tyla, Hradec Králové
4. TomášJindra, 4MF, Pardubice
5. Štěpán Holub, 4MF, Trutnov
6. Martin Červený, 4, G Šimkova, Hradec Králové

Jihomoravský kraj

Kategorie A

1. Tomáš Brodský, 4M, tř. kpt. Jaroše, Brno
2. Marek Velešík, 4P, Koněvova, Brno
3. Michal Konečný, 2M, tř. kpt. Jaroše, Brno
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4.-5. Michal Bulám, 2M, tř. kpt. Jaroše, Brno
Rostislav Caha, 4M, tř. kpt. Jaroše, Brno6.Martin Holla, 4MF, Kořenová, Brno7.—10. Pavel Horský, 4, Elgartova, Brno
Jan Kasprzak, 2M, tř. kpt. Jaroše, Brno
Jiří Medved, 3MF, Zlín
Zdeněk Pavlas, 4MF, tř. kpt. Jaroše, Brno

Kategorie В

1.—2. Tomáš Туе, 2M, tř. kpt. Jaroše, Brno
Milan Zamazal, 2M, tř. kpt. Jaroše, Brno

3.—4. Oldřich Auda, 2M, tř. kpt. Jaroše, Brno
Milan Konečný, 2M, tř. kpt. Jaroše, Brno

5.-7. Doušková, 2M, tř. kpt. Jaroše, Brno
Michal Hejč, 2M, tř. kpt. Jaroše, Brno
Zdeněk Pezlar, 2M, tř. kpt. Jaroše, Brno8.—10. Jm Kalvoda, 2M, tř. kpt. Jaroše, Brno
Martin Panák, 2M, tř. kpt. Jaroše, Brno
Jaw Stránský, 2, Boskovice

Kategorie C

1. Pavel Růžička, 1M, tř. kpt. Jaroše, Brno
2.—^.Josef Menšík, 1M, tř. kpt. Jaroše, Brno

Michal Stehlík, 1M, tř. kpt. Jaroše, Brno
Pazje/ Vrbacký, 1M, tř. kpt. Jaroše, Brno

5.-6 .Jiří Buráň, 1, Uherský Brod
Jan Štambera, 1M, tř. kpt. Jaroše, Brno

7.-9. Markéta Bauchnerová, 1M, tř. kpt. Jaroše, Brno
Jiří Mucha, 1M, tř. kpt. Jaroše, Brno
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Irena Přibylová, 1, Jihlava
10. —13. Jaw Fikar, 1M, tř. kpt. Jaroše, Brno

Miroslav Kovář, IP, Koněvova, Brno
Filip Miinz, 1M, tř. kpt. Jaroše, Brno
Eva Nováková, 1, Jihlava

Kategorie P

1.—2. Zdeněk Pavlas, 4MF, tř. kpt. Jaroše, Brno
Marek Velešík, 4P, Koněvova, Brno

3. Michal Šmídek, 4, tř. kpt. Jaroše, Brno
4.-5. Vladimír Chvátil, 3, Koněvova, Brno

David Krásenský, 3M, tř. kpt. Jaroše, Brno
6. David Mahdal, 4, Zlín
7. Martin Ryšánek, 4, tř. kpt. Jaroše, Brno

8.-9. Dušan Chromý, 3, tř. kpt. Jaroše, Brno
Michal Kadaňka, 3, tř. kpt. Jaroše, Brno

10. Miroslav Padalík, 4M, tř. kpt. Jaroše, Brno

Severomoravský kraj

Kategorie A

1. Petr Hliněný, 3M, G M. Koperníka, Bílovec
2.—3. Martin Kučera, 4M, G M. Koperníka, Bílovec

Libor Němeček, 4M, G M. Koperníka, Bílovec
4. Aleš Kuběna, 2M, G M. Koperníka, Bílovec

Kategorie В

1.—2. Lukáš Buček, 2, G M. Koperníka, Bílovec

34



Pavel Rychlý, 2, tř. Jiřího z Poděbrad, Olomouc3.—5. David Habrnál, 2, G M. Koperníka, Bílovec
Aleš Kuběna, 2, G M. Koperníka, Bílovec
Petr Waclazvek, 2, Karviná

6.-7. Radim Moric, 2M, G M. Koperníka, Bílovec
Oldřich Doseděl, 2M, G M. Koperníka, Bílovec

8.-9.Jiří Skotnica, 2M, G M. Koperníka, Bílovec
Radek Horenský, 2, tř. Jiřího z Poděbrad, Olomouc

10. —15. Václav Diviš, 2M, G M. Koperníka, Bílovec
Radim Kubacki, 2M, G M. Koperníka, Bílovec
Petr Šindýlek, 2M, G M. Koperníka, Bílovec
Jan Moškoř, 2M, G M. Koperníka, Bílovec
Petr Poměnka, 2M, G M. Koperníka, Bílovec

Kategorie C

1. Ivo Šlosarčík, 1, dr. Šmerala, Ostrava
2.—3. Aleš Kolenovský, 1M, G M. Koperníka, Bílovec

Marta Janebová, 1, Valašské Meziříčí4.-8. Marek Blahu ta, 1M, G M. Koperníka, Bílovec
Radomír Nosek, 1M, G M. Koperníka, Bílovec
Tomáš Přeček, 1, F. Hajdy, Ostrava-Hrabůvka
Jan Janěura, 1, Thálmannova, Ostrava-Poruba
Jana Slívová, 1, M. Majerové, Ostrava-Poruba

9. —15. Ondřej Prusek, 1M, G. M. Koperníka, Bílovec
Roman Koch, 1M, G. M. Koperníka, Bílovec
Alan Bulava, 1M, G. M. Koperníka, Bílovec
Roman Charvot, 1, Karviná
Jan Kovář, 1, Karviná
René Gemel, 1, Karviná
Libor Míša, 1, SPŠ strojní, Přerov
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Kategorie P

1. Robert Myška, 4, tř. Jiřího z Poděbrad, Olomouc
2. Richard Vlach, 4, Rožnov p. Radh.

3.—5. Jiří Suchomel, 3, Zábřeh na Moravě
Martin Čížek, 3, Rožnov p. Radh.
Jiří Rojíček, 4, G. M. Koperníka, Bílovec

6. —8. Roman Liszka, 4, G. M. Koperníka, Bílovec
Hana Jonášová, 4, Rožnov p. Radh.
Mojmír Němeček, 3, Havířov-Bludovice

9. —10. Radek Lučan, 3, Frýdek-Místek
Tomáš Sobek, 2, Opava

Bratislava

Kategorie A

1.—2. Ilja Martišovitš, 4MF, G J. Hronca, Bratislava
Ondřej Šuch, 3M, G A. Markuša, Bratislava

3. Martin Dindoš, 3MF, G J. Hronca, Bratislava
4. Andrej Doboš, 4M, G A. Markuša, Bratislava

5.-7. Štefan Dobrev, 4M, G A. Markuša, Bratislava
Viliam Búr, 7. tř., ZŠ, Medzilaborecká, Bratislava
Igor Baník, 4MF, G J. Hronca, Bratislava

8.-9.Jana Zdražilová, 4M, G A. Markuša, Bratislava
Milan Mosný, 4MF, G J. Hronca, Bratislava

10. Stanislav Januschke, 4MF, G J. Hronca, Bratislava

Kategorie В

L—6. Martin Fedor, 2M, G A. Markuša, Bratislava
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Ján Richter, 2M, G A. Markuša, Bratislava
Vladimír Špitálský, 2M, G A. Markuša, Bratislava
Ivan Červenka, 2, Metodova, Bratislava
Igor Malý, 2MF, G J. Hronca, Bratislava
Martin Vojtko, 2MF, G J. Hronca, Bratislava

7. — 10. Juraj Džubas, 3M, G A. Markuša, Bratislava
Ivan Mavalda, 2M, G A. Markuša, Bratislava
Andrea Šlesárová, 2M, G A. Markuša, Bratislava
Martin Uher, 2M, G A. Markuša, Bratislava

Kategorie C

1.—3. Ladislav Kis, 1M, G A. Markuša, Bratislava
Juraj Lany i, 1, G A. Markuša, Bratislava
Pavol Mederly, 1M, G A. Markuša, Bratislava

4.-8. Richard Kollár, 1M, G A. Markuša, Bratislava
Matěj Kordoš, 1, G J. Hronca, Bratislava
Mariana Makarová, 1, G J. Hronca, Bratislava
Matěj Ondrušek, 8 tř., ZŠ, Košická, Bratislava
Miloš Volauf, 8 tř., ZŠ, Košická, Bratislava

9. Michal Kopčok, 1M, G A. Markuša, Bratislava
10. —12. Miroslav Čik, 1, Tomašíkova, Bratislava

Michal Suchoba, 1, G J. Hronca, Bratislava
Martin Vršanský, 1, G J. Hronca, Bratislava

Kategorie P

1. Ilja Martišovitš, 4MF, G J. Hronca, Bratislava
2. Martin Dindoš, 3MF, G J. Hronca, Bratislava
3. Štefan Dobrev, 4M, G A. Markuša, Bratislava
4. René Pázmán, 4MF, G J. Hronca, Bratislava
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5.Peter Gvozdiak, 4M, G A. Markuša, Bratislava
6.-8. Vladimír Ďuračka, 3MF, G J. Hronca, Bratislava

Stanislav Januschke, 4MF, G J. Hronca, Bratislava
Milan Mosný, 4MF, G J. Hronca, Bratislava

9. Ondřej šuch, 3M, G A. Markuša, Bratislava

Západoslovenský kraj

Kategorie A

1. Gabriel Varga, 4, Šamorin
2. Ondřej Šedivý, 3MF, Párovská, Nitra
3. Eva Fašangová, 4, Želiezovce
4. Zuzana Miškolciová, 4, G E. Gudernu, Nitra
5. Karol Zimmer, 4, G E. Gudernu, Nitra
в. Ján Obrcian, 4MF, Párovská, Nitra
7. Vladimir Králík, 3, Zlaté Moravce
8. 776or Rapant, 3, Trnava
9. /©o Kluvanec, 3MF, Párovská, Nitra10.Radovan Dermišek, 3, Skalica

Kategorie В

1. Michal Slezák, 2, G E. Gudernu, Nitra
2. Ladislav Nagy, 2, Komárno
3. Jaromír Živna, 2, Skalica
4. Peřer Šedík, 2, Trenčín
5. Daniel Vidovič, 2, Partizánske
6. Robert Kadlec, 2MF, Párovská, Nitra
7. Monika Bolebruchová, 2, Nové Město n. Váhom
8. Alexander Tomík, 2P, Piešťany
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Kategorie С

1. Tibor Drinka, 1, Galanta
2. Pavol Mala, 1, Šala
3. Peter Básti, 1, Komárno
4. Zsolt Csandal, 1, Komárno
5. Jaroslav Porubčanský, 1, SFŠ, Nitra
6. Lubomír Salanci, IMF, Párovská, Nitra
l.Jozef Tilandy, 1, Trenčín
8. Norbert Futó, 1, Galanta
9. Štefan Klbik, IMF, Párovská, Nitra

Kategorie P

1. Andrej Lúčny, 4P, Piešťany
l.Jozef Gerhát, 4, Topolčany3.Roland Baranovič, 4, G, E. Gudernu, Nitra

Středoslovenský kraj

Kategorie A

l.Jozef Skokan, 3M, Velká Okr., Žilim
2.-3. Robert Mitka, 4M, Velká Okr., Žilina

Juraj Lórinc, 2M, Banská Bystrica
4. Eduard Omasta, 3, Ružomberok
5. Luboš Ciklamíni, 4M, Velká Okr., Žilina
6. Aleš Černý, 4M, Velká Okr., Žilina
7. Blažej Štrba, 4M, Nová Baňa
8. Vladimír Glasnák, 2MF, Velká Okr., Žilina
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Kategorie В1.Juraj Lorinc, 2M, Tajovského, Banská Bystrica
2. Šimon Malý, 2MF, Žiar nad Hronom
3. Radoslav Harman, 2MF, Liptovský Hrádok
4. Vladimír Glasnák, 2MF, Velká Okr., Žilina
5. Peter Malčovský, 2MF, Prievidza
6. Vojtech Goceliak, 2M, Tajovského, Banská Bystrica
7. Valerián Valášek, 2M, Tajovského, Banská Bystrica
8. Roman Tlsták, 2MF, Liptovský Mikuláš
9. Růžena Zimanová, 2MF, Prievidza10.Rastislav Ilko, 2MF, Považská Bystrica

Kategorie C

1. Lubomír Macek, 1MF, Liptovský Mikuláš
2. Jaroslava Kuciariková, 1M, Velká Okr., Žilina
3. Marián Kučera, 1, Liptovský Hrádok
4. Roman Mackovčák, 1M, Velká Okr., Žilina
5. Peter Nemec, 1M, Tajovského, Banská Bystrica
6. Tomáš Neuberg, 1M, Tajovského, Banská Bystrica
7. Miroslav Skultéty, 1, Březno
8. Adrian Kováč, IMF, VPT, Martin9.Bronislav Kušnierik, IMF, VPT, Martin10.Pavel Kyčina, 1, Liptovský Mikuláš

Kategorie P

1. Gregor Rayman, 4, Banská Štiavnica
2. Róbert Mitka, 4M, Velká Okr., Žilina
3. Eduard Omasta, 3, Ružomberok
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4. Vladimír Glasnák, 2MF, Velká Okr., Žilina
5. Michal Hrabovec, 3MF, Wolkerova, Žilina
6. Roman Grolmus, 4, Banská Štiavnica

Východoslovenský kraj

Kategorie A

1. Vladimír Komár, 3M, Šmeralova, Košice
2. Maroš Rusňák, 4M, Šmeralova, Košice3.Ján Franěk, 4M, Šmeralova, Košice
4. Vladimír Skalský, 3, G T. Ševčenka, Prešov

Kategorie В

1. Radovan Teleki, 2, Spišská Nová Ves
2. Peter Varga, 2, Šrobárova, Košice
3. Marianna Lechmanová, 2, Trebišovská, Košice

4.-6. Ondřej Pajtáč, 2, Míchalovce
Helena Petrovičová, 2M, Šmeralova, Košice
Stanislav Novák, 2M, Šmeralova, Košice7.Marcel Presalovič, 2, Stropkov8.—11. Marek Mikita, 2M, Šmeralova, Košice
Lubor Kušnír, 2, G T. Ševčenka, Prešov
Slavomír Hrinko, 2, Konštantínova, Prešov
Peter Paštéka, 2M, Šmeralova, Košice

Kategorie C

1. Miroslav Chladný, 1M, šmeralova, Košice
2. Herbert Vojčík, 1M, Šmeralova, Košice
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3. Marek Gura, 1, Leninovo nábr., Poprad
4. Imrich Kováč, 1, SPŠ strojní, Spišská Nová Ves

5.-8. Dalibor Michalak, 1, Záp. ulica, Poprad
Luboš Pástor, 1M, Šmeralova, Košice
Marek Soták, 1, Humenné
Marcel Telka, 1, SPŠE, Prešov

9. —11. Gregor Báná, 1, Kuzmányho, Košice
Ján Maňuch, 1M, Šmeralova, Košice
Jana Višňovská, 1M, Šmeralova, Košice

Kategorie P

1. Vladimír Skalský, 3P, G T. Ševčenka, Prešov
2. Slavomír Gmitro, 3, Konštantínova, Prešov
3. Miroslav Bobovský, 3, SPŠ, Poprad
4. Peter Haluška, 3M, Šmeralova, Košice
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Kategorie С

Texty úloh

C-l-1

V magickém čtverci 3x3 jsou vepsána přirozená čísla tak,
že všechny součiny tří čísel v řádcích, sloupcích i úhlopříč-
kách jsou stejné. Dokažte, že je pak součin všech devíti
vepsaných čísel devátou mocninou přirozeného čísla.

С - I - 2

Rovnostranný trojúhelník ABC o délce strany 4 cm otočíme
kolem jeho průsečíku výšek o 90°, dostaneme tak trojúhelník
А'В'С'. Určete obsah průniku trojúhelníků ABC а А'В'С'.

C-l-3

Je dána soustava rovnic

9x + у + z - 83
x + 9y + z = 99
x -f у + 9z = 69,

která má při změně jednoho čísla na pravé straně na jiné dvoj-
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ciferné číslo celočíselné řešení. Najděte toto číslo a příslušné
řešení soustavy.

С - I - 4

Vrcholem C trojúhelníku ABC vedte přímku p tak, aby
součet vzdáleností bodů А, В od přímky p byl největší.

С- I -5

Dokažte, že existuje přirozené číslo k, pro které existuje
právě 1 988 různých pythagorejských trojúhelníků s odvěs-
nou délky k. (Pythagorejský trojúhelník je pravoúhlý troj-
úhelník s celočíselnými délkami stran.)

C- I -6

Jaký největší počet čísel je možné vybrat z čísel 1, 2, ...

..., 1 989, aby žádné z nich se nerovnalo součtu jiných dvou
vybraných čísel ?

C-S-1

Je dán rovnostranný trojúhelník ABC o straně délky 12 cm,
D je střed strany BC. Vypočtěte obsah průniku čtverců
ADKL, ABMN, které neobsahují bod C.

C-S-2

Opravte pravou stranu právě jedné z rovnic x + 2у — 43,
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2x 4- у = 50, x 4- у = 30, x — у = 4 tak, aby opravená
soustava měla řešení v oboru reálných čísel. Napište opravě-
nou soustavu a její řešení.

C-S-3

Ve třídě je 30 žáků, každému je přiřazeno pořadové číslo
podle abecedního seznamu. Učitel vyvolává žáky podle tohoto
pravidla: Sečte pořadová čísla dvou posledně vyvolaných
žáků, a jestliže je součet větší než 30, odečte číslo 30. Výsledek
je pořadové číslo žáka, který bude vyvolán. Dokažte, že nemo-
hou být bezprostředně po sobě vyvoláni Horáček, Šebestová
a Mach v tomto pořadí.

C - II - 1

V oboru reálných čísel řešte soustavu rovnic

л:2 + xy + xz =

xy + У2 4■ yz =

xz 4- yz 4- £2 = —64.

C-ll-2

80

48

Do půlkruhu s poloměrem 4 jsou vepsány dva kruhy
s průměry 4 a d, které se dotýkají (obr. 1). Vypočtěte d.

x

x

Obr. 1
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С - II - 3

Je dán pravidelný dvanáctiúhelník A1A2A3... A12 vepsaný
kružnici s poloměrem 10. Vypočtěte obsah lichoběžníku
A1A2A4A5.

С - II - 4

Množina M se skládá z n + 1 celých kladných čísel men-
ších než 2n. Dokažte, že některé z nich se rovná součtu
nejmenšího čísla z množiny M a některého dalšího čísla
z této množiny.

Řešení úloh

C-l-1

Označme po řadě a, b, c čísla vepsaná do prvního řádku,
podobně d, e, f čísla v druhém a g, A, i čísla v třetím řádku
magického čtverce. Označme dále s součin čísel v řádku,
sloupci nebo na diagonále. Je tedy s — abc = def = ghi =
— adg — beh = cfi = aei = gec. Proto je s4 = (def).(beh).
.(aei).(gec') = (abc).(def).(ghi).e3 = s3^3, odkud plyne s = e3.
Pro součin všech devíti vepsaných čísel pak platí
(abc).(def).(ghi) = s3 = e9, je to tedy devátá mocnina toho
čísla, které stojí uprostřed čtverce.
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С -1 - 2

Označme M průsečík přímek AB a C'AN průsečík
přímek ВС a A'B' (obr. 2), průsečík výšek trojúhelníku
ABC označíme V. Otočení kolem bodu V o pravý úhel
složíme ještě s osovou souměrností podle osy úsečky A'B'.
Výsledné zobrazení zobrazuje bod A na bod B', bod В na
bod A', bod C na bod C', bod V je samodružný, zobrazí
se na sebe. Toto složené zobrazení je tudíž osová souměr-
nost, neboť zobrazuje trojúhelník A VB na trojúhelník B'VA'.
Průsečík L přímky AB a jejího obrazu B'A' je tedy také samo-

družný, bod M se zobrazí na bod N a bod N na bod M.
Označíme-li x = \LB\ = \A'L\, je \LN\ = \ML\ = jc]/3 a
\BN\ = \MA'\ = 2x, neboť trojúhelník LBN je pravoúhlý
a jeho vnitřní úhel při vrcholu В je 60°. Je ovšem též \ AM\ =
= 2x, protože při otočení kolem bodu V o 120°, při kterém
se bod A zobrazí na bod В a bod В na bod C, zobrazí se bod C'

LXM
\2*0

“4'

Obr. 2
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na bod A' a bod A' na bod B', takže se bod M zobrazí na

bod N. Je \AB\ = 4 = \AM\ + \ML\ + \LB\ +

2(3 - 1/3)
+ x]/3 + x = x(3 + |/3), odkud * =

Obsah průniku trojúhelníků ABC, A'B'C' dostaneme,
když od obsahu trojúhelníku ABC odečteme obsah vyšra-
fované části, tj. trojnásobek obsahu trojúhelníku BLN.
Výsledek je 4(3 — j/3).

3

C-l-3

Jsou-li čísla x,jy, z řešením dané soustavy, je 8(y — x) = 16,
8(jy — z) = 30 а 8(* — z) = 14. Poslední dvě rovnice, které
jsme dostali odečtením třetí rovnice od prvních dvou rovnic
soustavy, ukazují, že x, у, z nemohou být celá čísla. Jelikož
máme změnit pravou stranu jen jedné z daných rovnic, musí
to být rovnice třetí, číslo 69 nahradíme zatím neznámým
číslem a. Z prvních dvou rovnic plyne у — x + 2, dosazením
do první a třetí rovnice dostaneme 10* + z — 81, 2x +9z —

— a — 2, odkud 88* = 731 — a = 88.7 + 115 — a. Má-li
být * celé číslo, musí být číslo 115 — a dělitelné číslem 88.
Jelikož má být číslo a dvojciferné, musí být a = 27. Je pak
* = 8, у — 10, z vychází rovněž celočíselné, z = 1.

С - I - 4

Uvažujme nejdříve jen ty přímky, které procházejí bo-
dem C a protínají úsečku AB (obr. 3). Označme E společný
bod přímky p (procházející bodem C) a úsečky AB, paty
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kolmic vedených body А, В na přímku p označíme A', B'.
Je pak \AA'\ + \BB'\ ^ \AE\ + \BE\ = \AB\, přičemž
\AA'\ + \BB'\ — \AB\ právě tehdy, když je přímka p kolmá
к přímce AB a body A', В', E splynou. Uvažujme nyní
přímku p, která nemá společný bod s úsečkou AB (obr. 4)

P Á
> C

D1
/

/
iВ/

//
//

/
//.v /zA ВD

Obr. 4

a prochází samozřejmě bodem C. Opět označíme A', B'
paty kolmic vedených body А, В к přímce p, dále označíme D'
patu kolmice vedené к přímce p středem D úsečky AB.
Úsečka DD' je střední příčkou v lichoběžníku АА'В'В
(je-li přímka p rovnoběžná s přímkou AB, je to ovšem obdél-
nik), proto je \AA'\ + \BB'\ = 2.\DD'\ ^ 2.|CD|. Přitom
\AA'\ + \BB'\ = 2.|CD| právě tehdy, když je přímka p
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kolmá к přímce CD. Doplňme trojúhelník ABC na rovno-
běžník AFBC (obr. 5). Je-li |CF| = 2.|CD| > \AB\, je hle-
danou přímkou přímka/) procházející bodem C kolmo к přím-
ce CF, neboť z |C.F| > \AB\ plyne, že přímka p neprotíná
úsečku AB. Je-li [CF| < \AB\, je hledanou přímkou/) přímka
procházející bodem C a kolmá к přímce AB. Přímka p pak
úsečku AB protíná. Je-li |CF| = \AB\, má úloha dvě řešení,
kolmici vedenou bodem C ke straně AB (ta úsečku AB pro-

tíná) a dále kolmici vedenou bodem С к úhlopříčce CF
obdélníku AFBC (ta úsečku AB neprotíná).

C-l-5

Označme a a c délky druhé odvěsny a přepony pythagorej-
ského trojúhelníku, jehož první odvěsna má délku k. Je tedy
k2 = c2 — a2 = (c — a) (c + a). Čísla c — a, c + a musejí
být obě lichá nebo obě sudá a první je menší než druhé. Naše
úloha bude vyřešena, najdeme-li takové číslo k, jehož druhá
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mocnina se dá právě 1 988 způsoby napsat jako součin dvou
přirozených čísel stejné parity, přičemž první z nich je menší
než druhé. Nejlépe je zkusit vzít nějakou mocninu prvočísla.
Vyhovuje například k = 31988, tedy k2 = 33976. Toto číslo
můžeme právě 1 988 způsoby napsat jako součin dvou
přirozených čísel tak, aby byly splněny výše uvedené pod-
minky. Jde o rozklady k2 = 3a.33976~®, kde a probíhá čísla
0, 1, 2, ..., 1 987. Mohli jsme též zvolit k = 21989, tedy
k2 = 23978. Jediné rozklady splňující požadavky úlohy jsou
k2 = 2b.23978~b, b nabývá hodnot 1, 2, ..., 1 988.

C-l-6

Vybereme-li z daných čísel všechna lichá čísla, těch je 995,
pak se žádné z vybraných čísel nerovná součtu dvou jiných
vybraných, neboť součet každých dvou lichých čísel je číslo
sudé. Ukážeme ještě, že více než 995 vybrat nelze. Před-
pokládejme, že jsme vybrali 996 čísel, od každého z nich
odečteme nejmenší vybrané číslo. Dostaneme tak 995 čísel
menších než 1 989. Spolu s vybranými 996 čísly je jich do-
hromady 1 991. Všechna jsou menší než 1 990. Nutně tedy
existují mezi vybranými 996 čísly aspoň dvě různá čísla x\, x2

tak, že se každé z nich rovná jinému vybranému číslu zmenše-
nému o nejmenší vybrané číslo z, tj. xi = y\

Je zřejmě ф yi ф z, x2 ф y2 ф z. Je-li x\ = z, je x2 ф z,
takže bud čísla xi, yi, z, nebo čísla x-z, y%, z jsou navzájem
různá a xi + z — yi, xo + z = yz. Tím jsme ukázali, že
mezi každými 996 přirozenými čísly menšími než 1 990
existují tři navzájem různá čísla tak, že jedno z nich je součtem
zbývajících dvou. Odpověd na otázku úlohy je 995.

Я, X2 = У2 — я.

51



C-S-1

Je \AD\ = 6]/3 cm, \BD\ = 6 cm, tedy \BK\ = 6(]/3 - 1)
(obr. 6). Označme Pprůsečík úsečekKL a BM. Je|<£ PBK\ =
= 30°, takže \PK\ = \BK\ : J/3
daný obsah dostaneme, když od obsahu čtverce ADKL
odečteme obsah trojúhelníku ADB a obsah trojúhel-
niku PBK, výsledek je (6 j/3)2 - 18]/3~— 12(2]/3 - 3) =
= (144 — 42]/3) cm2.

cm

= (6 - 2 j/3) cm. Hle-cm

C,

D

ВA

К
P

L

N M

Obr. 6

C - S - 2

Z prvních dvou rovnic plyne x = 19, у = 12. Tyto hod-
noty nevyhovují žádné z dalších dvou rovnic. Z toho plyne,
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že je třeba opravit jednu z prvních dvou rovnic. Poslední dvě
rovnice mají řešení x — \1, у = 13. Tyto hodnoty vyhovují
první rovnici, druhou rovnici je třeba opravit na 2x + у — 47,
řešení je x = \l,y = 13.

C-S-3

Označme h, š, m pořadová čísla Horáčka, Šebestové
a Macha, je tedy h < m < š. Kdyby byli bezprostředně
za sebou vyvoláni Horáček, Šebestová a Mach v tomto
pořadí, muselo by platit h + š — m nebo h -f š — 30 = m.
Avšak h 4- š se nerovná m, protože š > m. Druhá rovnost
také nemůže platit, neboť š — 30 se rovná nule nebo je to
číslo záporné, takže h + š — 30 ^ h < m.

C-ll-1

Je-li trojice x, y, z řešením dané soustavy, je x(x + у +
+ z) — 80,y(x + у + z) = 48, z(x + у + z) = —64, takže
x :y : z = 5 : 3 : (—4). Položíme-li tudíž x = 5k, у — 3k,
z = —4&, dostaneme k2 = 4, takže k = 2 nebo k — —2.
Soustava má dvě řešení: х = 10,з> = 6, z = —8 a x = —10,
у = —6, z = 8.

С -11 - 2

Z pravoúhlých trojúhelníků SOP, OPQ (obr. 7) plyne
j.SO|2 - \SP\2 = \OQ\2 - \PQ\2, tj. (2 4- rf - (2 - rf =
— (4 — r)2 — r2, kde r je poloměr menšího kruhu. Odtud
r = 1, d — 2.
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Obr. 7

с-м-з

Označme střed kružnice opsané dvanáctiúhelníku
(obr. 8) a P, Q paty kolmice vedené bodem S к úsečkám
A1A5, A2A4. Je \A2A4\ = 10, |.S<2| — 5]/3. Protože |^CP5^5|
= 60°, je \PS\ = 5 a |^M5| = 2\PA5\ = 2.5]/3 ='
tedy \PQ\ = 5]/3 — 5. Obsah lichoběžníku je 25(]/3 — 1)
Ф + 1) = 50.

A2 Ať

V A ‘^5Г
\ 1\

s

Obr. 8

С-И-4

Označme a nejmenší číslo z množiny M, nechť <zi, a2, ...

..an jsou všechna další čísla z množiny M. Přirozená čísla
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a\, a.2) ..., an, a\ — a, az — a, ..an — a jsou vesměs
menší než 2n a je jich právě 2n. Proto nemohou být navzájem
různá, pro některé i a některéj (j Ф i) musí platit аг- = aj — a,

tj. aj = cii + a, což jsme měli dokázat.
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Kategorie В

Texty úloh

В -1 -1

Dokažte, že v lichoběžníku ABCD neexistuje bod X, pro

který by měly trojúhelníky ABX, BCX, CDX, DAX stejný
obsah.

В - I - 2

Označme S(ri) ciferný součet přirozeného čísla n. Dokažte,
že rovnice S(* + p) = S(x) má alespoň jedno řešení, právě
když je p dělitelné devíti.

B- I -3

Z šachovnice n X n, kde n není dělitelné třemi, odstřih-
neme jedno rohové pole. Dokažte, že zbytek je možné
pokrýt deskami tvaru L složenými ze tří čtverců shodných
s polem šachovnice tak, že se desky nepřekrývají.

В - I - 4

Najděte nejmenší liché prvočíslo n, které dělí součet
2.22 + 3.23 + ... + n.2n.
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3-1-5

V trojúhelníku ABC označme Co střed strany AB a Ci,
Cz průsečíky přímky AB s osami úhlů přímek АС, BC.
Sestrojte trojúhelník ABC, jsou-li dány délky úseček CCo,
CCi, cc2.

B-í-6

Nechť t je přirozené číslo a n = (3l — 1)|2. Dokažte,
že množinu {1, 2, ..n} lze rozdělit na t disjunktních pod-
množin A\, Az, ..At tak, že žádná množina Ai neobsahuje
čísla x, y, z s vlastností x + у — z.

В - S - 1

Je dáno přirozené číslo n. Určete počet permutací (a\,
az, ..., an) čísel 1, 2, ..., n, pro které je součin

(an — n)(ai — 1) • («2 — 2)

číslo liché.

B-S-2

Opravte pravou stranu jedné a jen jedné z rovnic x + у =
= 41, у + z ~ 13, z + x — 16, 2x + у + z — 55,
x + 2y + z — 52 tak, aby opravená soustava rovnic měla
řešení v oboru reálných čísel. Napište opravenou rovnici
a řešení výsledné soustavy.
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B-S-3

Pro každé přirozené číslo n nechť je f(n) jednociferné
číslo, které vznikne z čísla n konečným počtem opakování
operace tvoření ciferného součtu (např./(78569) = /(35) = 8).
Najděte všechna přirozená čísla n, pro která je f(n) = /(3n)
a 0 < n < 1 000.

B-II-1

Je dáno přirozené číslo n. Najděte celé číslo P tak, aby
existovalo právě n navzájem neshodných obdélníků s celo-
číselnými délkami stran, které mají obsah P.

В - I! -2

Devět judistů se rozhodlo uspořádat vylučovací turnaj
následujícím způsobem: V každém kole se z dosud nepora-

žených judistů určí losem dvojice zápasníků, která se utká.
Vítěz posledního (osmého) zápasu se stává vítězem turnaje.
Zjistěte počet všech možných průběhů takovéto soutěže.

B-ll-3

Určete přirozené číslo, které v číselné soustavě při základu n
má zápis xyzOn a v soustavě při základu 2n zápis yzSm-
(Zápis abcdn značí číslo an3 + bn2 + cn + d, kde 0 ^
^ a, b, c, d < n.)
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В - II - 4

Zjistěte, kolik celočíselných řešení má rovnice

[""[/"14 [ 1989 j jn -f- 1988 ]
[ \ 1989 J ~

19891 jn + 1
+ ...+

= 1990.

([x] značí celou část čísla x, tj. největší celé číslo, které není
větší než číslo x.)

Řešení úloh

В - I - 1

Předpokládejme, že v lichoběžníku ABCD existuje bod X
tak, že jsou si rovny obsahy trojúhelníků ABX, BCX, CDX
a DAX (obr. 9). Označme S obsah lichoběžníku a v3 zv
vzdálenosti bodu X od přímek AB, CD. Z trojúhelníku ABX

\AB\ . v S S
—, podobně dostane-= —

, takže v =plyne 2 2 .\AB\ 5
5

Jelikož výška lichoběžníku je v + w,me zv =
2 . |CD|'

| AB\ + \CD\ S (\AB\ + \CD\f
. (v + w) = — •

plyne (\AB\ — |CDj)2 = 0, tedy \AB\ — |CD|. To je však
ve sporu s tím, že ABCD je lichoběžník.

je 5 = , odkud\AB\.\CD\2
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с

А В

Obr. 9

В-1-2

Velmi pěkné řešení této úlohy, které zde uvádíme, podal
žák 2. ročníku gymnázia v Brně, tř. kpt. Jaroše Tomáš Ttitz.
Předpokládejme nejdříve, že pro přirozené číslo p existuje
přirozené číslo x tak, že S(x + p) — S(x). Jelikož čísla n
a S(ri) dávají stejný zbytek při dělení devíti (platí pro každé
přirozené číslo n), dávají stejný zbytek při dělení devíti
i čísla x + p a x, je tedy jejich rozdíl p dělitelný devíti.
Nechť je obráceně číslo p dělitelné devíti, tj. p = 9k, k při-
rozené číslo. Pak je číslo k řešením rovnice S(x + p) = S(x)}
neboť čísla k a k + p = 10& mají stejný ciferný součet.

В - I - 3

Pro n — 1 je úloha triviální, není vlastně co pokrýt. Úloha
je též lehce řešitelná pro n = 2 a n = 4 (obr. 10). Při n — 5
musíme chvíli zkoušet, než najdeme nějaké řešení, třeba to,
jež je znázorněno na obr. 11. V případě n = 7 oddělíme
od čtverce 7x7 čtverec 5 X 5 (obr. 12), od něho odstřihne-
me jedno rohové pole. Ten pak dovedeme deskami tvaru L
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5x5

Ш
—

Obr. 12Obr. 11

pokrýt, zbytek pokryjeme tak, jak je vidět na obr. 12. Zároveň
vidíme, že obdélník 2x3 můžeme pokrýt právě dvěma deska-
mi tvaru L. Z toho však ihned plyne, že můžeme požadova-
ným způsobem pokrýt každý obdélník o rozměrech 2k, 3/,
kde k, / jsou přirozená čísla, zvláště tedy čtverec o straně
6m, m přirozené číslo. Každý takový obdélník se totiž skládá
z kl nepřekrývajících se obdélníků o rozměrech 2 a 3. Každé
přirozené číslo n větší než 7, jež není dělitelné třemi, se dá
právě jedním způsobem napsat ve tvaru 6m + 2, 6m + 4,
6m + 5 nebo 6m + 7, kde m je přirozené číslo. Čtverec
o straně n, z něhož vynecháme jedno rohové pole, se pak
skládá z čtverce o straně 6m, dvou obdélníků, jejichž jedna
strana je 6m a druhá 2, 4, 5 nebo 7, a čtverce o straně 2, 4, 5
nebo 7, od něhož je odstřiženo jedno rohové pole. Každý
z těchto útvarů dovedeme požadovaným způsobem pokrýt.
Stačí si uvědomit, že obdélník 6X5 můžeme rozdělit na

obdélníky 6 X 2 a 6 X 3, podobně obdélník 6X7.
Jiný důkaz: Pro я = 1,и = 2ая = 5 tvrzení úlohy platí,

viz předcházející postup. Nyní dokážeme, že když je tvrzení
úlohy pravdivé pro číslo n = 3k — 1, je pravdivé též pro
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n = 3k + 1. Čtverec o straně 3k + \ dostaneme totiž z čtver-
се o straně 3k 1 přidáním dvou obdélníků o stranách 2,
3k — 3 a obrazce složeného ze tří čtverců o straně 2 (obr. 13).
Tento obrazec pokryjeme tak, jak je vidět na obr. 13, obdélník
2 X 3(k — 1) dovedeme také pokrýt. Dále dokážeme, že
z platnosti tvrzení úlohy pro n = 3k + 1 plyne i platnost
pro n = 3k + 5. Čtverec o straně 3k + 5 dostaneme z čtverce
o straně 3k -f- 1 přidáním dvou obdélníků o stranách 4 a 3k
a čtverce o straně 5, z něhož je vynecháno jedno rohové pole
(obr. 14). Opět vidíme, že každou z těchto částí lze požado-
váným způsobem pokrýt. Přičteme-li к číslu 2 střídavě číslo
2 a 4, dostaneme všechna sudá přirozená čísla, která nejsou
dělitelná třemi. Pro všechna tato čísla tvrzení úlohy na zá-
kládě předcházejících úvah platí. Přičteme-li к číslu 5 stři-
dávě číslo 2 a 4, dostaneme všechna lichá přirozená čísla,
jež nejsou dělitelná třemi. Tvrzení úlohy platí tedy i pro
tato čísla.

3/c-3 3к5

2

5

З/с-1
ЗА>1З/с-З

3к
шш

4 Зк+1З/с-12

Obr. 13 Obr. 14
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В -1 -4

Je2.22 + 3.23 + ... + n.2n = 2(22 + 23 + ... + 2й) +
+ (23 + • •. + 2n) + (24 + • •. + 2й) + ... + (2й-1 +
+ 2й) 4- (2п) = 2ra+1(w — 1). Stačí několikrát použít vzorec

pro součet prvních členů geometrické posloupnosti. Je-li
n liché prvočíslo, pak nemůže dělit číslo 2n+1. Žádné přiro-
zené číslo n nedělí číslo n — 1. Neexistuje tedy žádné liché
prvočíslo, které by dělilo daný součet. A že se tento součet
rovná (n — 1) . 2n+1, to se dá dokázat též matematickou in-
dukcí.

В - I - 5

Předpokládejme, že jsme trojúhelník ABC již sestrojili.
Označme k kružnici mu opsanou, Co střed strany AB, Ci а C2
průsečíky os přímek АС, BC s přímkou AB (obr. 15). Ozna-
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cení bodů Ci, C2 zvolíme tak, aby bod Ci ležel blíž к bodu Co
než bod Co- Bod Ci pak leží na úsečce AB a přímka CCi
protíná kružnici k v bodě D, který leží na ose úsečky AB.
To vyplývá z věty o obvodových úhlech. Provedený rozbor
nám již ukazuje postup konstrukce. Sestrojíme pravoúhlý
trojúhelník C1CC2 (délky jeho odvěsen jsou dány) a na přímce
C1C2 sestrojíme bod Co tak, aby úsečka CCo měla danou
délku. Průsečík přímky CCi s přímkou o procházející bodem
Co a kolmou к přímce C1C2 označíme D. Přitom musíme
označení bodů Ci, C2 zvolit tak, aby byl bod Ci blíže к bodu Co
než bod C2. Kružnice k se středem na přímce o a prochá-
zející body C, D protíná přímku C1C2 v bodech A, B. Úloha
má tolik řešení, kolik existuje na přímce C1C2 bodů Co
s danou vzdáleností |CCo| od bodu C, které leží mimo úsečku
C1C2. Je-li však trojúhelník C1CC2 rovnoramenný a existu-
jí-li řešení úlohy, jsou to dvě řešení souměrně sdružená
podle osy úsečky C1C2, takže jde vlastně jen o jedno řešení.

B-l-6

Pro malá čísla t můžeme taková rozdělení ihned napsat,
např. t = 1 : (1}
t = 2: {2,3}, {1,4}
l = 3: {1, 4, 10, 13}, {2, 3, 11, 12}, {5, 6, 7, 8, 9}.
Pro t = 3 bychom mohli vzít též rozklad (1, 2}, (3, 4, 5, 6}
a {7, 8, 9, 10, 11, 12, 13}. V každé množině tohoto rozkladu
jsou čísla jdoucí za sebou. Tento postup však už selže při
t — 4. Hledáním rozkladu při t = 4 dojdeme к závěru, že
důležitou roli při zařazení čísla do množiny rozkladu hraje
jeho zbytek při dělení třemi, devíti nebo další mocninou tří.
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Například v množině Ai všech čísel, jež při dělení třemi
dávají zbytek 1, určitě nejsou tři čísla x, y, z s vlastností
x + у = z. Číslo x + у dává totiž při dělení třemi zbytek 2.
Podobně je tomu u množiny A2 všech čísel, která dávají
při dělení číslem 32 = 9 zbytek 2 nebo 3. Množina A3 nechť
je tvořena všemi čísly, jež při dělení číslem 33 = 27 dávají
zbytek 5, 6, 7, 8 nebo 9. Takto pokračujeme, množina Ar
nechť obsahuje všechna přirozená čísla, jež při dělení číslem 3r

3r-i _ i
dávají zbytek větší než , nejvýše však 3r_1. Součet

žádných dvou čísel množiny Ar nepatří do Ar, protože při
dělení tohoto součtu číslem 3r je zbytek větší než 3r_1.
Označme ještě Br, resp. Cr množinu všech čísel, jež při

3r-i _ i
dělení číslem 3r dávají zbytek 1 až 3r_1, resp. 1 až ~ .

Je pak Br = Ar и Cr, Ar n Cr =0. Ukážeme ještě, že
Cr je částí sjednocení množin Bi, B2, ..., Br_i pro každé
r ^ 2. Je-li n 6 Cr, je n = m.3r + k, k 5^ 3r_2 + 3r~3 + ...

... + 3 + 1. Je tedy k = 3r~2 + 3r_3 + ... + 35_1 pro
některé s, 1 s ^ r — 1, nebo je k = 3r_2 -f ... + 3S 4-
-b 0.3S_1 + a.3S-2 + ... + é.3 + c, kde a, ..b, c jsou
z množiny (0, 1, 2} a číslo z = a.3S~2 + ... + 6.3 + c

je nenulové. V prvním případě je n e As, neboť při dělení
číslem 3S dává zbytek 3S_1. V druhém případě se zbytek čísla n

při dělení číslem 3S rovná z, 1 ^ z ^ 3s”1, takže n e Bs.
Nepatří-li do As, patří do Q a můžeme celý proces opakovat.
Vzhledem к tomu, že Ci =0, patří každý prvek množiny Cr
do některé z množin Ai, ..., Ar_i, což jsme chtěli dokázat.
Zvláště je tedy Ct+i c Ai и Aj и .. . u At. Poznamenej-
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me ještě, že zavedené množiny Ai, A2, ... nejsou disjunktní,
například 7 e Ai n A3. Můžeme se však dohodnout, že
do množiny Ar již nedáme ta čísla, která jsou obsažena v někte-
ré z množin Ai, ..., Ar_i, r — 2, 3, ... . Pak budou množi-

ny A i disjunktní. Množina M = |l, 2, ...

3-11
5

2 j je částí

množiny Q+i. Tím je vlastně celé tvrzení úlohy dokázáno.
Stačí vzít za množinu Ai průnik výše zavedené množiny A $

s množinou M, i— 1, 2, ..., t.

Jiný postup využívá matematickou indukci. Pro t = 1
tvrzení úlohy platí, nechť Ai и A2 и ... u A* je požado-

3—1
-—. Definujmeváný rozklad množiny (1,2,..., m}, m =

yc+l _ 1
= {1>2э • • - ,3m + 1}rozklad množiny ji, 2, ..

takto:
A'. = At vj {/ + 2m + 1 I/e Ař) pro i — 1, 2, ..., k,

— {m + 1, m + 2, ..., 2m + 1}. O těchto množinách
pak dokážeme, že tvoří požadovaný rozklad v případě
t = k + 1. Přitom je množina A’. sjednocením množiny A i

a množiny, kterou dostaneme z množiny A i »posunutím«.
Byla to úloha obtížná. Vyžadovala od těch žáků, kteří

ji chtěli řešit samostatně, hodně trpělivosti při hledání roz-
kladu pro malá t, aby se tak dopracovali к obecnému řešení.
Ukázala jim však, jak se i v matematice uplatní induktivní
postup, jak se odhadne obecné řešení, známe-li některá dílčí
řešení.

• ?
2

a;k+i
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B-S-1

Daný součin je číslo liché právě tehdy, když pro liché k
je číslo ajc sudé a obráceně. To je možné pouze při sudém и,

kdy je mezi čísly 1, 2, ..n stejný počet lichých čísel jako
sudých. Čísla a2, a4, ..., an pak musí být lichá, to dává
(и/2)! možností. Je to počet permutací čísel 1,3, ..., n — 1.
Čísla a\, аз, ..., an-\ jsou sudá, jde opět о (и/2)! permutací
čísel 2, 4, ..., и. Celkem dostáváme ((и/2)!)2 permutací
požadované vlastnosti při sudém n. Při lichém и je výsledek 0.

B-S-2

Součet prvních dvou rovnic je ve sporu s pátou rovnicí,
jednu z těchto tří rovnic je tedy třeba opravit. Součet první
a třetí rovnice je ve sporu s čtvrtou, opět je třeba opravit
jednu z těchto tří. Jelikož máme opravit jen jednu, musí to
být rovnice první. Soustava zbývajících rovnic má řešení
x = 21, у — 18, z — —5. První rovnici je třeba opravit
na rovnici x + у — 39.

B-S-3

Číslo /(и) je zbytek při dělení čísla и číslem 9. Pokud
bychom však nulu nepovažovali za jednociferné číslo, bylo
by /(и) = 9 pro všechna čísla и dělitelná devíti, další postup
by byl stejný. Je-li /(и) = /(Зи), dávají čísla иаЗи stejný zby-
tek při dělení devíti, takže Зи — и = 2и je násobek devíti,
takže i číslo и je násobek devíti. Je-li obráceně číslo и násob-
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kem devíti, je i číslo 3n násobek devíti, a tudížf(n) = f(bn) = 0.
Hledaná čísla jsou všechny násobky devíti, které jsou menší
než 1000.

B-ll-1

Rovnice P = xy má mít právě n různých řešení (x, у)
s vlastností x 5S y. Číslo P musí tedy mít právě 2n různých
dělitelů nebo 2n — 1 různých dělitelů, bude-li jedno řešení
mít vlastnost x — у. V tomto případě je P druhou mocninou
přirozeného čísla x. Poznamenejme, že dělitelem rozumíme
v této úloze vždy jen číslo přirozené, ne celé číslo záporné.
Podle výše uvedeného stačí volit například P = p2n-i nebo
p = р2я-25 kde p je prvočíslo, nebo P — pqn~1, kde p, q jsou
různá prvočísla.

В - II - 2

Nejdříve je třeba losem určit první dvojici zápasníků.

To dává I 2 ) možností. Vzhledem к tomu, že může vyhrát
9

9
první, nebo druhý, máme pro průběh prvního kola 2.^
možností. Dál postupujeme již podobně, abychom dostali
celkový počet, musíme počty možností pro průběh jednot-
livých kol mezi sebou násobit.

9 18 3 2
Výsledek je tedy 2.J.2.^2J.2.^2j.. .2. ^J.2.^2j -
= 9.8.8.7.7 3.3.2.2.1 = 9.(8!)2.
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в-п-з

Podle předpokladu má pro x, y, z, n platit

xn3 + yn2 + 2W = y.(2n)2 + z.2n + 5, tedy
w(xw2 — 3yn — z) = 5.

Protože 1 (číslo 1 nemůže být základem číselné soustavy),
je nutně n = 5, a tedy 25x — 15jy — я = 1. Proto je číslo
z + 1 dělitelné pěti, takže z = 4 (v číselné soustavě se zákla-
dem 5 jsou všechny číslice nejvýše rovny 4). Pro x, у pak
máme vztah 5x — 3у = 1. Z celých nezáporných čísel men-
ších než 5 vyhovuje pouze x — 2, у = 3. Úloha má jediné
řešení, je to číslo 345 (v desítkové soustavě), v pětkové sou-
stavě 2 340.

В- II -4

Číslo 0 nevyhovuje, rovněž n = 1 nevyhovuje, neboť by
se pak každý z 1989 sčítanců na levé straně rovnice rov-
nal jedné, jejich součet by nedal 1990. Pro n > 1 je

n + 1 n + 1988
> 1.> ... >n >

2 1989

Sčítanci na levé straně tedy tvoří nerostoucí posloupnost,
každý z nich se rovná aspoň jedné. Jelikož se jejich součet
má rovnat 1990, musí se první rovnat dvěma, všechny
ostatní se musí rovnat jedné. Je tedy nutné a stačí, aby pro n

1989
П + 1

|in ^ 2a < 2, takže 21™» ^ n <platilo 3 >
2

с 21Э9° - 1. To je celkem 21989 -

tolik řešení má daná rovnice.

1 možností pro n, tedy
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Kategorie A

Texty úloh

A - I - 1

Dokažte, že existuje nekonečně mnoho kvádrů tak, že
žádné dva nejsou podobné a jejich hrany a tělesové úhlopříč-
ky mají celočíselnou velikost.

A - I - 2

Najděte nejmenší přirozené číslo r, pro něž existují pod-
množiny Ai, A2, A3, A4, A5 množiny {1, 2, ..r} takové,
že pro všechna z e {1,2, ..., 5} platí

|Aj u Aí+i| = 10 (Ae = Ai).|AŽ| = 5,

А- I -3

Pro každé přirozené číslo n je dána nekonečná množina An,
přičemž každé dvě z nich mají konečný průnik. Dokažte,
že existuje množina B, pro kterou В n An je nekonečná,
právě když n je sudé.
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A -1 - 4

Uvnitř trojúhelníku ABC je dán bod P. Vedeme-li bodem P
rovnoběžky se stranami daného trojúhelníku, dostaneme tři
trojúhelníky a tři rovnoběžníky. Dokažte, že součet obsahů
těchto tří trojúhelníků je roven aspoň jedné třetině obsahu
trojúhelníku ABC.

A -1 - 5

Pro nesoudělná celá čísla p > q > 0 označme

-(■7' •><?}}>;ne {1,2, ..A

В ;n e (1,2, ...

Najděte všechna čísla z množiny {1,2, ...,/>}, jež nepatří
do А и В.

А-1 -6

Na přímce jsou dány tři různé body А, В, C. Sestrojte
kružnici procházející body А, В tak, aby její tečny z bodu C
byly navzájem kolmé.
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A-S-1

Množina M má právě n prvků. Kolik existuje dvojic množin
(В, C) takových, že В с С <= M? (Prázdná množina a mno-
žina X jsou podmnožiny množiny X.)

A - S - 2

Je dán trojúhelník ABC, \AB\ < \AC\. Popište konstrukci
bodu B' na straně AB a bodu C' na straně AC, pro které
platí, že B'C' || ВС a kružnice opsaná trojúhelníku BB'C'
se dotýká přímky AC.

A - S - 3

Dokažte, že neexistuje kvádr, jehož rozměry tvoří tříčlen-
nou aritmetickou posloupnost přirozených čísel, jestliže jeho
tělesová úhlopříčka má mít také celočíselnou délku.

А- II -1

Je dán tětivový lichoběžník ABCD se základnami AB, CD.
Označme E průsečík jeho úhlopříček a F průsečík tečen
sestrojených к opsané kružnici v bodech В a C. Dokažte,
že přímky EF a AB jsou rovnoběžné.

A - II - 2

Určete nutnou a postačující podmínku pro délky a, b, c
stran trojúhelníku ABC, aby byl podobný trojúhelníku PQR
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sc stranami \QR\ = tc, |i?P| — ř&, \PQ\ = ta, což jsou délky
těžnic trojúhelníku ABC.

A - II - 3

Najděte všechny neprázdné disjunktní množiny A, B,
jejichž sjednocení je množina N všech přirozených čísel
a pro které platí: 1989 e A,

x e А,у e A=> x + у e A,
x e В, у e В => xy e B.

A - II - 4

Je dáno n bodů Ai, A%, ..., An v rovině, z nichž žádné tři
neleží v přímce. Každá přímka, která neprochází žádným
z daných bodů, určuje rozklad daných bodů na dvě disjunktní
podmnožiny. Kolik různých rozkladů lze takto dostat ? (Roz-
klady porovnáváme jako neuspořádané dvojice množin.)

A - III -1

V rovině jsou dány tři různé body A, B,C ležící na kružnici
sc středem 5" a přímka p kolmá na AS. Průsečíky přímky p
s přímkami AB, AC označme D a E. Dokažte, že body
В, C, D, E leží na jedné kružnici.

A- III -2

V rovině je dáno mn úseček, které spojují n daných bodů.
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Dokažte, že z nich lze vybrat posloupnost Vo, Vi, ..., Vm
různých bodů tak, že Vi-i a Ví jsou spojeny úsečkou
(1^2^ m).

A- III -3

Pro daná nesoudělná čísla p > q > 0 najděte všechny
dvojice reálných čísel c, d tak, aby pro množiny

A = {[«y];weN} а В = {[cn + d];ne N}
platilo Ап В = 0, А и В = N, kde N = {1, 2, 3, ...}
je množina všech přirozených čísel.

A - III - 4

Délky stran trojúhelníku T' se rovnají délkám těžnic
trojúhelníku T. Shodují-li se trojúhelníky Ta? v jednom
úhlu, jsou podobné. Dokažte.

A- III -5

Uvažujme obdélníkový pás 2 X n a označme Pn počet
všech takových obarvení některých jeho polí, že žádný čtve-
rec 2 X 2 v něm nebude celý obarven. Dokažte, že číslo P\ 939

je dělitelné třemi, a najděte největší mocninu trojky, která
je dělí.
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A - III - 6

Uvažujme konečnou posloupnost a\, <22, ..., an, jejíž členy
jsou přirozená čísla nejvýše rovná n. Určete maximální počet
členů takové posloupnosti, když víte, že každé dva její sousední
členy jsou různé a přitom v ní neexistuje čtveřice členů
taková, že ap = ar Ф aq = as pro p < q < r < s.

Řešení úloh

A - I - 1

Úloha souvisí s řešením diofantické rovnice (tj. hledáme
jen její celočíselná, resp. přirozená řešení)

a2 + b2 + c2 = d2. (1)

Každému jejímu řešení (a, b, c, d) totiž podle Pythagorovy
věty odpovídá kvádr, jehož tři navzájem kolmé hrany mají
délky a, b, c a jehož tělesová úhlopříčka má délku d.

Rovnice (1) však zřejmě souvisí s jinou, poměrně dobře
známou diofantickou rovnicí

x2 + y2 = z2 (2)

(její řešení v přirozených číslech dává tzv. pythagorejské
trojúhelníky, tj. pravoúhlé trojúhelníky s celočíselnou délkou
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stran). Najdeme-li např. nějaké její řešení (x, y, z) takové,
že i rovnice a2 + b2 = x2 má celočíselné řešení, vidíme hned,
že čísla a, b, c = y, d = z jsou řešením původní rovnice (1).

Rovnice (2) však má nekonečně mnoho řešení, která umíme
dobře popsat. Její podrobné řešení můžeme kromě jiného
najít i v ročence 26. ročníku МО (A — P — 1). Každé primi-
tivní řešení rovnice (2), tj. takové řešení, že čísla v, y, z jsou
navzájem nesoudělná, můžeme vyjádřit jako

v = 2uv, у = u2 — v2, z — u2 + v2,

kde u, v jsou nesoudělná přirozená čísla taková, že и > v a sou-
čin uv je sudý. Přitom podmínka sudosti součinu uv jenom
zaručuje, že získaná čísla x, y, z nebudou všechna sudá,
tedy soudělná.

Ale i řešení rovnice a2 + b2 = x2 můžeme analogicky
vyjádřit ve tvaru

a = 2 UV, b = U2 V2, x = U2 + V2

pro vhodná U > V, která zřejmě stačí volit tak, aby U2 +
+ V2 = 2uv bylo sudé číslo.

Vidíme, že vhodnou volbou parametrů и, v, U, V nyní
snadno najdeme nekonečnou množinu řešení rovnice (1)

a = 2 UV, b = U2 - V2, c = u2 - v2, d = u2 + v2.

My však ještě potřebujeme, aby žádné dva z odpovídajících
kvádrů nebyly podobné. Na to stačí, abychom vybrali jen
taková řešení (a, b, c, d), v nichž jsou čísla a, b, c, d nesoudělná.
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Z rovnosti U2 + V2 = 2uv plyne, že čísla U, V musí mít
stejnou paritu. Vezmeme-li však U, V lichá, snadno zjistíme,
že všechna čísla a, b, c, d vyjdou sudá. Zkusme proto volit
U > V sudá a v = 1. Pak určitě vyjde uv — и sudé, и
> v, což už zaručuje nesoudělnost řešení rovnice (2), a tedy
i čísel c = y, d = z.

Poznámka. I při volbě lichých čísel U > V dostaneme ne-
konečně mnoho navzájem nepodobných kvádrů: stačí uvážit,
že množina odpovídajících poměrů

2 >

b U2 — V2

2 UV

je nekonečná.

A - I - 2

Předpokládejme nejprve, že máme dáno číslo r a podmnoži-
ny A i (1 5S i^ 5), které vyhovují úloze. Protože každé dvě
množiny A i, Ař+i jsou podle předpokladu disjunktní, může
libovolný prvek x e A = Ai u A2 u ... и A5 ležet nejvýše
ve dvou z množin Ai, ..., A5.

Uvažujme množinu В všech uspořádaných dvojic (x, i)
takových, že x e Ař-. Protože každá z množin At má právě pět
prvků, je množina В pětadvacetiprvková. Na druhé straně
se množina A skládá ze dvou disjunktních částí podle toho,
zda prvek x e A leží v jedné či ve dvou různých množinách Ai.

Označíme-li tedy příslušné počty n\ a W2, je |A| = n\ + n% a

В! = ni + 2щ ^ 2(«i + Я2) = 2|A|,
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IВ|/2 = 25/2, neboli |A| ^ 13. Protože protakže |A|
r = 13 lze takové množiny Аг- sestrojit, jak ukazuje následující
příklad, jer = 13 hledanénejmenšírs požadovanou vlastností:
A, = {1,2,3,4, 5}, A, = {6,7,8,9,10},
A3 = {4,5,11,12,13}, A4 = {1,2, 6, 7, 8},
A5 = {9,10,11,12, 13).

Jiné řešení. Je-li k přirozené číslo, označme r* nej-
menší přirozené číslo r takové, že existují množiny Ai, ...,

..., A5 <= (1, 2, ..., r) takové, že pro všechna i e {1, 2, ...,

.. ., 5 } platí

! A{| ~ k, A i n Аг+i = 0 (A6 = Ai).

Položíme-li

Ai = Аз = (1, ..., k}, A-2 = Адi = {k + 1, ..., 2&},
A5 = {2k + 1, .. ., 3k},

3k. Naopak z toho, že Ai n A-> = 0vidíme, že rjc
а I Ai| = j Аг| = k, plyne nerovnost 2k ^ r*.

Předpokládejme, že množiny Ai, ..., A5 splňují uvedené
podmínky. Navíc můžeme předpokládat, že Ai = {1, ..., k},
A2 = {k + 1, ...,2k}. Položme proto (vyšrafované části
Vennova diagramu na obr. 16 označují prázdné podmnožiny)

v = IA5 n A\ n a:U = I A3 O A j П A;
z —

2U215

IA4 n A, n A2|

kde čárka označuje doplněk příslušné množiny ve sjednocení
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Ai a2

KAs(7/Ш k-v

A3k-UV//,

ill
5 U *vш

Obr. 16

Ai и ... u A5. Je tedy |A3 n Ai| — k
j A4 n Ai| 5^ и, a analogicky | A5 n A2 j = k — v, takže
IA4 n A2I ^ v, a platí

w, takže

k — IA41 ^ IA4 n Ai| + j A4 n Ao| + i A4 o Aj
<C ц -|- *1) -j-

A2|П

Zároveň je zřejmé, že и + z ^ r — 2k, и + 2: ^ r — 2k,
takže

5& + 2
£:lw + ^ + 25Í 2(r — 2£) — z, neboli r —-— ,

což dává odhady

5k
pro k sudé,Гк

2

5k + 1
Гк ^ pro k liché.2

Snadno zjistíme, že pro 2 = 0, resp. 2 = 1 nastane rovnost.
Pro k = 5 tak vychází Г5 = 13.
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A-5-3

Uvedeme jednu z možných konstrukcí. Její motivace je
následující.

Vezměme nejprve В = Аг и A4 и рак je zřejmě
každá z množin В о A2* = A^k nekonečná. Pro liché
indexy / můžeme psát

В o A; = (A2 n A;) u (A4 n A1) и .. (1)* 3

přičemž každá z množin v závorce má jen konečně mnoho
prvků. Protože se však jedná o sjednocení nekonečného počtu
množin, nemůžeme o jeho počtu prvků nic tvrdit. Změníme-li
ale definici množiny В tak, že od každé z množin Агк odečte-
me všechny množiny s lichými indexy / < 2k, bude v rov-
nosti (1) vystupovat jen konečný počet neprázdných množin.
Provedme tuto úvahu podrobněji:

Položme nyní В = (АгЧСг) еДАДС^ u ..., kde C2к
je sjednocení všech množin A1 s lichými indexy / < 2k. Je tedy

в П A27c c В n (Aoк \ C2к) — A2к \ C2* =
= A2к \ (A2к п C2*),

což je nekonečná množina, neboť jsme z nekonečné množiny
A2* odstranili jen konečně mnoho prvků.

Na druhé straně je pro liché l

В n A; = ((A2 \ C2) п A1) u((A4\ C4) n A1) u ...

... U ((A2fc \ C2к) n Aj) u . . • 3
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přičemž pro 2k > l je (АгДСгл) n Аг =0. Poslední sjed-
nocení tedy obsahuje jen konečný počet neprázdných (koneč-
ných) množin. Tím je úloha vyřešena.

A - I - 4

Při důkazu využijeme následující známé vlastnosti podob-
ných zobrazení: Je-li / podobnost v rovině, existuje kladné
číslo k takové, že pro libovolné dva body X, Y platí
|/(.X)/(Y)| = k\XY\. Pro obsah útvaru U v rovině pak platí
S(í(U)) = k*S(U).

в w Cи v/

Obr. 17

Označme S obsah daného trojúhelníku ABC a Si, S%, S3
obsahy uvažovaných trojúhelníků (obr. 17). Délky úseků,
které sestrojené přímky vytnou na straně BC daného trojúhel-
niku, označme г/, v, w. Z podobnosti uvažovaných trojúhel-
níků danému trojúhelníku plynou následující rovnosti
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2

Si = S,

2V

S% = S,
a

S3 =

Jejich sečtením a dosazením a = и + v + w dostaneme

и2 + v2 + w2
Si + S2 + S3 —

(и + v + w)2

Máme tedy pro kladná reálná čísla u, v, w dokázat nerovnost

1
(1)u2 + v2 + w2 ^ — (u + v + ro)2,

která je, jak zjistíme jednoduchými úpravami, ekvivalentní
nerovnosti

(u — v)2 + (v — w)2 -f (zv — и)2 0.

Odtud také plyne, že rovnost nastane právě tehdy, je-li
и = v — zo — ^\AB\, tj. právě když je bod P těžištěm troj-
úhelníku ABC.

Poznámka. Nerovnost (1) je speciálním případem známé
Cauchyovy nerovnosti
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(2 Кг Vif ^ 2 К? 2 ®?
1=1 /=11=1

pro и = 3, Mi = и, «2 = «з = я;, ©i = V2 = г?з = 1.

А - I - 5

Z definice obou množin А, В plyne, že je А и В <=
<= {1,2, Uvažujme k e (1, 2, .. .3p) takové, že
k ф A uB. Protože A ^ A, je pro nějaké n ^ 0

(1)np < kq < (k + l)q ^ (n + l)p.

Podobně ze vztahu & ^ В plyne, že pro nějaké m ^ 0 je

q) <(k + 1) (p — q) ^ (m + 1 )p,mp < k(p

odkud odečtením kp dostaneme nerovnosti

\)p (k + \)q — p < kq < (k — m)p. (2)(k — m

Z obou nerovností (1) a (2) je vidět, že np = (k — m

je největší celé číslo menší než kq. Navíc odtud plyne, že mezi
čísly np = (k — m — \)p a (n + l)p = (k — m)p, jejichž
rozdíl je />, leží čísla (k + \)q — p a (k + 1)#, jejichž rozdíl
je rovněž p. Musí tedy být (k + l)q = (n + 1 )p, a protože
čísla />, q jsou nesoudělná, musí p dělit číslo k -f 1. Odtud
vychází, že je k — p — 1.

i>
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Číslo p — lv množině A uB skutečně neleží, protože je

P

(?-d7
P

(P-9 - 1) —
P —

< p — 1 a

neboť q < p.

Jiné řešení. Zřejmě je p e A n B. Ukážeme, že je do-
konce A n В = {/>}. Kdyby pro nějaké те {1, 2,
ne {1,2, q} bylo

И-] = [в^]=а’
bylo by

mp а

pro 0 < а < q3 a celé,— a -f-
99

Pnp
pro 0 < (i < p — q, (5 celé,= a +

p-qp-q

takže

np = (p - q) a + P,mp — qa + a,

(m + w)p = pa + a + /?,

a + /?
m -f и = a +

P
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Protože ale je 0 < a + /3 < p, nemůže poslední rovnost
nastat pro celá čísla m, n, a. Sjednocení А и В má tedy cel-
kemp — 1 prvků z množiny {1, 2, .. .,p}. Jediné číslo, které
z ní neobsahuje, je p — 1, neboť (p > q, p > p — q)

—тЫ'-т]
í-V-ll = [p

< p — 1

4p - q\(P <P-i.

A - I - 6

Je zřejmé, že úloha má řešení jen tehdy, neleží-li bod C
mezi body A, B. Předpokládejme, že hledaná kružnice k
existuje, a označme S její střed a 7i, T2 dotykové body jejích
tečen z bodu C (obr. 18). Body C, Ti, S, T2 jsou vrcholy
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čtverce. Pro délku t jeho strany, jež je zároveň poloměrem
hledané kružnice, z mocnosti bodu C ke kružnici k plyne
rovnost t2 — ab, kde a — \CA\, b — |Cfíj. Střed S' hledané
kružnice tedy leží na ose úsečky АВ a zároveň na kružnici
l(A, ť) se středem A a poloměrem t.

Z uvedeného rozboru je zřejmé, že úloha bude mít jedno
řešení pro t — \ \AB\ a dvě řešení, pokud t > \ \AB\. Jinak
úloha řešení nemá. Protože \AB\ = \b — a\, z podmínky
t2 = ab plyne, že úloha má řešení, právě když a2 — 6ab -f
+ b2 ^ 0.

Postup konstrukce rovněž plyne z rozboru. Délku t = ]jab
přitom sestrojíme pro dané délky a, b pomocí jedné z Eukli-
dových vět (obr. 19).

Obr. 19

A-S- 1

Množina M má (£) ^-prvkových podmnožin C. Každá
z těchto množin má zas 2k podmnožin B. Podle binomické
věty je tedy počet všech dvojic (В, C) takových, že В с C c
<= M, roven součtu

20 2k - (1 + 2)n = 3n.
k = 0
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A - S - 2

Sestrojme kružnici k, která se dotýká přímky AC v bodě C
a prochází bodem В (střed S takové kružnice leží na kolmici
к АС v bodě C a na ose úsečky BC, obr. 20). Kružnice k protne
polopřímku AB ještě v bodě D, pro který platí \AD\ > \AB\,
neboť z mocnosti bodu A ke kružnici k plyne, že je
\AD\ .\AB\ = \AC\2.

А В' В D

Obr. 20

Uvažujme stejnolehlost se středem A, která zobrazí bod D
do bodu B. Obrazem kružnice k v této stejnolehlosti bude
kružnice k', která se dotýká přímky AC v bodě C' a stranu
AB trojúhelníku ABC protíná v bodě B'.

Z předchozího rozboru je zřejmé, že bod C' dostaneme
jako průsečík přímky AC s rovnoběžkou vedenou bodem В
к přímce CD. Protože body В', C' jsou obrazy bodů В, C
v uvedené stejnolehlosti, je také В'С' || BC.
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Protože bod В neleží na přímce AC, kružnice k vždy existuje
a úloha má jediné řešení.

A - S - 3

Předpokládejme, že takový kvádr existuje, a označme
a, b, c délky jeho hran а и délku jeho tělesové úhlopříčky.
Protože délky jeho hran mají tvořit tříčlennou aritmetickou
posloupnost, můžeme položit

a = b — d, c — b + d,

kde d je příslušná diference.
Z Pythagorovy věty pak pro tělesovou úhlopříčku dostá-

váme vztah

и2 = 3b2 + 2d2. (1)

Můžeme ovšem předpokládat, že čísla b, d, и jsou nesoudělná,
protože jinak bychom je vydělili jejich největším společným
dělitelem a příslušné podíly by splňovaly tutéž rovnici. Z rov-
nice (1) ale dostaneme, že u2—2d2 je dělitelné třemi, což může
být pravda jen v případě, že obě čísla u, d jsou dělitelná třemi
(stačí probrat všech 9 možných dvojic zbytků mod 3, vše-
obecně je však známo, že čtverec celého čísla dá při dělení
třemi jen zbytek 0 nebo 1). To ale znamená, že 3b2 je dělitelné
devíti, a tedy i b musí být dělitelné třemi. Došli jsme tak
ke sporu, neboť o číslech b, d, и jsme předpokládali, že jsou
nesoudělná.
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Poznámka. Ze vztahu (1) také plyne, že čísla и, b jsou bud
obě lichá, nebo obě sudá. Využijeme-li dělitelnosti dvěma,
resp. čtyřmi, dojdeme v obou případech rychle ke sporu
podobně jako v uvedeném řešení.

A - I! - 1

Označme úhly jako na obr. 21. Úhly ai, a2 jsou obvodové
а аз je úsekový úhel příslušný tětivě БС, uvedené úhly jsou
proto shodné. Protože |CF| = \BF\, je аз = a4. Zároveň ale
je (protože základny AB a CD jsou rovnoběžné)

|<£ AEDI = ai + a2 = a3 + a4 - 180° - |<£ BFC|,

takže čtyřúhelník EBFC je tětivový. Odtud plyne, že a5 =
= a4 = ai, přímky EF a CD jsou tedy rovnoběžné.



Jiné řešení (podle Petra Lindaského, 3.d G M. Ко-
perníka v Bílovci). Thaletova kružnice nad průměrem SF
obsahuje vrcholy В, C daného lichoběžníku. Označíme-li a
velikost úhlu BAC (obr. 22), bude zřejmě |<£ BSC\ = 2a
(odpovídající středový úhel) a také |<£ BEC\ = 2a (jde
o vnější úhel к rovnoramennému trojúhelníku ABE). Odtud
plyne, že body В, C, S, E, F leží na kružnici, a pokud S Ф E,
je podle Thaletovy věty |<£ SEF\ = 90°, neboli EF || AB.

Pokud je S = E, je uvažovaný lichoběžník obdélník
a snadno se přesvědčíme, že uvedené tvrzení platí (SF = EF
je osou souměrnosti obdélníku ABCD).

А- И -2

Podle kosinové věty je

c2 = a2 -f- b2 — 2ab cos y,

a2
t* = -^- + b2 — ab cos y,

takže pro délku těžnice ta dostaneme známý vztah

2b2 + 2c2 - a2
t\ = 4

a cyklickou záměnou získáme další dva vztahy

2c2 + 2a2 - b2 2a2 + 2b2 — c2
4 = «í =4 4
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Aby byly zmíněné trojúhelníky podobné, musí platit
a : b : c — tc : tb : ta, neboli b2t2 = c2t2b a b2t2 = a2rb. Odtud
dostaneme rovnosti

b2(2b2 + 2c2 - a2) = c\2c2 + 2a2 - b2),
(1)

b2(2a2 + 2b2 - c2) = a2(2c2 + 2a2 - b2).

Jejich odečtením vyjde

(c2 - a2) (2b2 - a2 - c2) = 0.

Protože a, 6, c jsou kladná čísla, je bud c = a, anebo
а2 4- c2 = 2b2.

Pro a — c dosazením do (1) vyjde

64 — 2a4 + a2b2 — (b2 — a2) (2a2 -+• b2) = 0,

tj. a = b — c. Rovnostranný trojúhelník samozřejmě má
požadované vlastnosti.

Je-li a2 + c2 = 2b2, dosazením do (1) zjistíme, že obě
rovnosti platí, což znamená, že oba trojúhelníky jsou podobné.

Nutnou a postačující podmínkou pro to, aby uvedené
trojúhelníky byly podobné, je tedy rovnost a2 4- c2 = 2b2
(což je zřejmě splněno i pro rovnostranný trojúhelník).

A - II - 3

Označme m nejmenší prvek množiny A. Zřejmě je m > 1,
protože jinak by vyšlo A = N, В = 0. Číslo m nemůže být
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složené, protože kdyby bylo m = ab, kde 1 < a < m,
1 < b < m, bylo by nutně a e B, b e В, a tedy i m = ab e B.
Proto je m prvočíslo a množina A obsahuje i všechny jeho
kladné násobky, A {km; k e N}.

Dejme tomu, že množina A kromě násobků čísla m obsahuje
i nějaké číslo и nesoudělné s m. Pak A obsahuje všechny
lineární kombinace mx + ny s přirozenými čísly ха у, tedy
všechna dostatečně velká přirozená čísla. Skutečně: protože m
a n jsou nesoudělná, dávají čísla N — n, N — 2n, ..., N —
— mn při dělení číslem m vesměs různé zbytky. Proto pro
každé N > mn mezi těmito m čísly existuje jedno, které je
dělitelné m, tj. existují přirozená čísla i a j, 1 ^ i ^ m, taková,
že N — in = /m, neboli N = jm + ш e А. V tom případě
ale je množina В konečná, a nemůže tedy obsahovat žádné
číslo k > 1, protože jinak by obsahovala nekonečně mnoho
různých čísel tvaru k, k2, k3, .... Může být jen В = {1} a
A = {2,3,4, ...}. Tyto dvě množiny zřejmě vyhovují
podmínkám úlohy.

V opačném případě je A = {km; k e N) а В = {ne N;
m\n\ pro vhodné prvočíslo m. Protože 1989 = 9.13.17,
je 1989 g A pro m e {3, 13, 17}.

Poznámka. Pro nesoudělná čísla m, n vždycky existují celá
čísla x, у taková, že mx + ny = 1, přitom nejvýše jedno
z čísel x,y může být záporné. V případě, že je to např. čísloy,
můžeme pro libovolná přirozená čísla k, t psát

k — k(mx + ny) + mnt — mnt = m(kx — nť) + n(ky + mi).

Přitom čísla kx — nt a ky + rnt budou přirozená, když bude

92



kx — nt ky -f mt^. 1,1,

kx — 11 — ky
tedy pro 0 <

m
. Stačí proto, aby byloř

n

kx — 1 1 — ky
^ 1, neboli k ^ mn + m + n.

n m

A - II - 4

Dokážeme matematickou indukcí, že hledaný počet je
\n (n — 1) + 1.

Pro n — 1 to zřejmě platí. Přidejme к daným bodům
Ai3 Az, ..., An další bod An+1 a uvažujme jednak ty rozklady
množiny {Ai, A2, ..., Anj, které lze realizovat pomocí
přímky procházející bodem An+i (obr. 23), a jednak rozklady,
které takto dostat nelze (obr. 24).

V prvním případě dostaneme z každého rozkladu původní
množiny {Ai, A2, ..., An} dva různé rozklady množiny
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{Ai, ..., An, An+1} tak, že polohu uvedené přímky nepatrně
změníme, aby i nadále neobsahovala žádný z daných bodů,
přičemž bod An+1 padne bud do jedné, či do druhé množiny
rozkladu.

V druhém případě už je jednoznačně určeno, do které
z množin uvažovaného rozkladu množiny {Ai, A2, ..., An}
bod An+1 padne. Vidíme tedy, že přidáním jednoho bodu
к w-prvkové množině bodů se počet možných rozkladů zvětší
o počet rozkladů, které lze realizovat přímkou procházející
bodem An+1. Postupným otáčením přímky od 0 do 180°
zjistíme, že takových rozkladů je právě n. Pro počet p(ri)
rozkladů proto platí

p(n + 1) = p(n) + n, X1) = 1,

n(n 1)
p(n) — (n — 1) + (n 2) + ... +14-1 = + 1.

2

Jiné řešení. Budeme uvažovat jen rozklady na dvě
neprázdné podmnožiny (triviální, rozklad obsahující prázdnou
množinu je jediný). Každý takový rozklad je určen nějakou
přímkou neprocházející žádným z daných bodů. Přiřadme nyní
rozkladu g určenému přímkou p dvojici bodů Ai, Aj takovou,
že oba body leží v opačných polorovinách určených přímkou p
a orientovaný úhel, který svírá přímka p s přímkou AiAj,
je nejmenší možný. Tato dvojice je vždy určena jednoznačně:
daných bodů je jen konečný počet a nemůže se stát, že by
existovaly dvě dvojice AiAj || A^Ai s nejmenším orientova-
ným úhlem (obr. 25), protože orientovaný úhel jedné z úhlo-
příček odpovídajícího lichoběžníku musí být menší.
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Dále si uvědomíme, že je to dobrá definice v tom smyslu,
že dvojice bodů Aj, Aj je určena pouze daným rozkladem
a nezávisí na volbě přímky, která jej realizuje (obr. 26).
Kdyby totiž existovala jiná dvojice bodů Ak,Ai,s níž by např.
přímka q svírala menší orientovaný úhel než s dvojicí A i, Aj,
snadno zjistíme, že by pak i přímka p s ní svírala menší
orientovaný úhel.

Abychom zjistili požadovaný počet rozkladů, stačí nyní
dokázat, že uvedené zobrazení „rozklad и* dvojice bodůCí
je vzájemně jednoznačné (tj. je prosté a je na), protože počet

dvojic dobře známe — těch je

Uvažujme dva rozklady a £2, určené přímkami p\ a pz
kterým v popsaném zobrazení odpovídá stejná dvojice bodů
Aj, Aj. Přesvědčíme se, že obě přímky p±, pz určují tentýž
rozklad, tj. £1 = qz, neboli jinými slovy, že v úhlu mezi obě-
ma přímkami p\, pz, v němž neleží žádný z bodů Aj, Aj, ne-
leží ani žádný další z daných bodů. Protože však každá z pří-
mekpi,/>2 svírá s přímkou AjAj nejmenší možný orientovaný
úhel, nemůže žádný bod ležet (obr. 27) ani v části [1], ani
v části [2] nebo [3] uvedeného úhlu. Uvedené zobrazení je
tedy prosté.

©
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А

[11

\ А РгА /И

AJ

Obr. 27

Abychom ukázali, že každá dvojice bodů Ai, Aj odpovídá
nějakému rozkladu, vezměme přímku p, která prochází
středem úsečky AtAj a svírá s ní orientovaný úhel tak malý,
že v něm už neleží žádný další z daných bodů (to jde, protože
žádné tři body neleží v přímce a daných bodů je jen konečný
počet).

Dokázali jsme tedy, že celkový počet rozkladů je + 1.

A - III - 1

Označme P patu kolmicep na přímku AS a Q další průsečík
přímky AS s danou kružnicí (obr. 28). Podle Thaletovy věty
je |<£ ABQ\ = 90°, takže pokud P Ф A, jsou trojúhelníky
APD a ABQ podobné, tj. \AP\ .\AQ\ = \AB\ .\AD\. Po-
dobně dostaneme pro bod E rovnost \AP\ . \AQ\ =
= \AC\ . \AE|, takže pro body А, В, C, D, E vychází rovnost
\AC\ . \ AE\ = \AB\ . \AD.\ Z mocnosti bodu A ke kružnici
procházející body В, C, D podle poslední rovnosti dostaneme,
že na stejné kružnici leží i bod E.
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Pokud je bod A zároveň i patou kolmice/), je P — A = D =
— E a tvrzení úlohy triviálně platí.

Poznámka. Tvrzení úlohy lze samozřejmě snadno dokázat
pomocí věty o obvodových úhlech, uvedené řešení však má
tu podstatnou výhodu, že v něm není potřeba diskutovat
polohu přímky p.

A- lil -2

Předpokládejme, že pro nějaké m přirozené je n nejmenší
přirozené číslo takové, že tvrzení úlohy neplatí. Kdyby
z každého bodu vycházelo aspoň m úseček, snadno sestrojíme
požadovanou posloupnost (začneme libovolným bodem
a v každém kroku pak máme vždy možnost z m bodů, jež
jsou se zvoleným bodem spojeny úsečkou, vybrat ten, který
se dosud v posloupnosti nevyskytuje).
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Můžeme tedy předpokládat, že existuje bod, z něhož vy-
chází nejvýše m — 1 daných úseček. Odstraníme-li tento bod
spolu se všemi úsečkami, jež z něho vycházejí, dostaneme
aspoň mn — (m — 1) > m(n — 1) úseček spojujících nejvýše
n — 1 bodů. Pro tyto úsečky ovšem uvedené tvrzení rovněž
nemůže platit, což je ve sporu s volbou n. Tím je tvrzení
dokázáno.

Jiné řešení (podle P. Brože, 4. ročník G W. Piecka
v Praze). Máme dokázat, že v libovolném (neorientovaném)
grafu G s n vrcholy a mn hranami existuje cesta délky m

(tj. posloupnost různých vrcholů Vo, V\, ..., Vm grafu G,
jež jsou spojeny hranou).

Přiřadme každému vrcholu grafu G délku nejdelší cesty,
která jím prochází, a označme e(G) součet těchto hodnot pro

všechny vrcholy daného grafu G. Dokážeme, že pro každý
graf G s n vrcholy a h hranami platí

e(G) ^ h — n + 1. O)

Pro n = 1 nerovnost platí, neboť v tomto případě je
e(G) — h = 0. Předpokládejme, že uvedená nerovnost platí
pro každé n ^ m — 1, a uvažujme graf G s n = m vrcholy.
Vezměme v něm nejdelší možnou cestu Vq, V±, ...,K*.
Z vrcholu Vo mohou vést hrany jen do některých vrcholů
V\, ..., V/c, jinak by existovala delší cesta. Odstraníme-li
ted z tohoto grafu vrchol Vo se všemi hranami, jež z něj
vycházejí, dostaneme graf Go s m — 1 vrcholy a aspoň h — k
hranami. Podle indukčního předpokladu je tedy

e(Go) ^ h k — (m — 1) + 1;
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přitom ale zřejmě platí e(Go) ^ e(G) — k (délka cest vedou-
cích libovolným vrcholem se odebráním příslušných hran
určitě nezvětší a odebranému vrcholu Vo odpovídala cesta
délky k). Dostáváme tak nerovnost

e(G) ^ h — m + 2,

takže (1) platí i pro n — m. Tím je důkaz matematickou induk-
cí hotov.

Pro graf splňující předpoklady úlohy podle (1) tedy platí

e(G) > mn n + 1 = n(m — 1) + 1,

podle Dirichletova principu tedy nutně existuje vrchol,
kterým vede cesta délky aspoň m.

A- III -3

(Podle V. Komára, 3. ročník G, Košice, Šmeralova ul.)
Předpokládejme, že čísla c, d splňují podmínky úlohy. Čísla

P
.. zřejmě patří do A, a protože —

4
p, 2p, 3p, . > 1, čísla

P — 1, 2p — 1, 3p — 1, ... do A určitě nepatří, takže leží v B.

hf]’Zároveň je jasné, že pro různá wi, пг jsou také čísla

p1
«2

q J
různá. Je také vidět, že nemůže být c < 0, ale ani

1 (to by В obsahovala všechna přirozená čísla aspoň0 c
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rovná [c -f d]). Je proto c > 1, takže i čísla [c«i -+- d],
[cri2 + d] jsou pro různá wi, ni různá.

Protože kp g A, kp — 1 e B(& e N), je mezi čísly 1,2, ..., kp
právě kq čísel v A a kp — kq čísel v B, takže pro každé k při-
rozené máme

kp — 1 = [ck(p — q) + d],

neboli

kp 1 ^ Kp q) c + d < kp. O)

Pro libovolné přirozené k tudíž platí

— 1 — d <. k [{p — q) c — p] < —d.

P
Odtud ovšem plyne, že (p — q)c —p = 0, a tedy c — —

P Я

Z (1) pak navíc dostáváme, že kp — 1 ^ kp + d< kp, neboli
— 1 ^ d < 0. Podle úlohy A — I — 5 víme, že pro množinu

= {[”p^l];"eN}pIatiB'

A n B' = {kp; kN}.A u B' = N x {kp U ke N},

Vezmeme-li tedy d e < — 1, 0), objeví se v množině В místo
čísel/), 2p, ..., kp, .. . číslap — 1, 2/> — 1, ..., kp — 1, ..

Г P
jinak ale pro n ф k(p — q) musí čísla n + d zůstat

L P — q J

• 5
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v množině В', jinými slovy (protože d < 0) musí pro všechna
n Ф k(p — q) platit

["Д]'P
+ d Фn

p - q

Přitom, je-li r (0 < r < p — q) zbytek čísla np při dělení
číslem p — q, je

nP Г_nP
9 LP

r

+
p - q’p -

- q\

takže pro n ф k(p — q) odtud plyne nerovnost

r

d>
P - q

Čísla/), 2p, ...,(/) — q — \)p dávají ovšem vesměs různé
zbytky při dělení číslem p — q, tj. všechny možné zbytky
1, 2, ...,/> — q — 1, protože čísla p a p — q jsou podle
předpokladu nesoudělná (kdyby p — q dělilo k%p — k\p pro
k\ < kz < p — q, bylo by i číslo k% — k\ < p — q dělitelné
p — q, což nejde!).

1
Zároveň z předchozích úvah vidíme, že pro d e

platí

,0
p — q

В = (B' u {kpi ke N }) \ {kp U ke N),

takže pro množiny А, В je А и В = N, A n В = 0, jak
vyžadovala úloha.
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Jiné řešení (podle P. Čížka, 4. ročník G W. Piecka
Г p ] q

v Praze). Protože \n — ^ m — 1, právě když n < m —, obsa-L q J p
г q~\

huje množina A právej m— | — 1 čísel menších než mapo-

РЧ-Чdobně množina В obsahuje právě

než m. (Zde [x] značí tzv. horní celou část čísla x, tj. nejmenší
celé číslo aspoň rovné číslu x; tuto funkci můžeme definovat
i pomocí známější „dolní celé částicc jako [x] = — [— x].)

Množiny А, В splňují požadavky úlohy, právě když pro
každé přirozené m platí

— 1 čísel menších

IA o {1,2, ..

= m — 1,
w-l}| + |B n (1,2, ..

m — 1 }| =• 3• 3

tj. právě když pro každé m přirozené platí

Г—1 — 1 — m- 1 +

čili

m —

(2)= m + 1.+

fmx + у 1
x, kdyžPro libovolná reálná čísla x,jy platí, že

m -> oc, jak je vidět z nerovností
m
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у \тх + у] У + 1
х + — < ' < X +

т т

Z (2) limitním přechodem dostaneme rovnost

4 1
"1“ — 13

P C

P
. Dosazením do rovnosti (2) vychází pro

P — 9
každé m přirozené

což dává c —

Fmq
P

P — 9 P — 9
= m + 1,- d+ m

P P

\-d ř-^] =
P I P I

’mq~\
P I 1.+

mq
Pišme — = n + r, kde n je celé a re(0, 1). Poslední rov-

P
nost tak můžeme přepsat jako

/-n + [r] + —n — r

a protože И = 1, dostáváme podmínku

9Л[- p — q
d < 0,

P ~
-d- = 0, neboli 1 < —r —

P
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což je ekvivalentní s nerovnostmi

p P
r < d < —(r — 1) •
P-q~ P-q

Protože čísla p, q jsou nesoudělná, nabývá r pro různá m
1 2

(stačí 1 ^ m ^ p) všech možných hodnot —, —, ..1,
P P

takže vychází, že

1/
d g ■ > 0 •\ p - q

ip
Obráceně, je-li c —

p — q
, d G

pro každé m přirozené, že platí (2), což zaručuje, že А и В =
= N, А n В = 0.

,0 1, dostaneme
P — q

A - III-4

Označme А, В, C vrcholy trojúhelníku T a předpokládejme,
že se trojúhelníky T, T' shodují např. v úhlu a. Trojúhelník
ABC doplňme na rovnoběžník ABDC (obr. 29) a středy jeho
stran AB, BD označme K, L. Pak je T = CKL, \KL\ = ta,
| LC\ = tb,\CK\ = tc.

Pokud je [<^C KCL\ a, je podle věty o obvodových úhlech
přímka CL tečnou kružnice opsané trojúhelníku AKC (úhel
KCL je tzv. úsekový úhel příslušný tětivě КС). Uvažme nyní
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bod M, který je průsečíkem přímek AK, CL (obr. 29). Pro
jeho mocnost ke kružnici AKC platí \MK\ . \MA\ — \MC\2,
a protože \MK\ = \CP\ = \AB\ + \AK\ = §c, \MA\ = 2c,
\MC\ = 2tb, plyne odtud rovnost 3c2 = 4t2b.

Pokud je |<£ CKL\ = a, je analogicky přímka KL tečnou
kružnice opsané trojúhelníku AKC, takže z mocnosti bodu N
(obr. 29) ke kružnici AKC vyjde 3b2 = 4t2a. A podobně pro
|<£ KLC\ = a je zase přímka KL tečnou kružnice CLD,
takže z mocnosti bodu P к této kružnici dostaneme rovnost

3c2 = 4 t2a.
Vezměme např. poslední rovnost. Protože (viz např. řešení

úlohy А — II — 2) 41\ = 2b2 + 2c2 — a2, plyne odtud
2b2 = a2 + c2, takže dostaneme

3c2 = 4 ra, 3b2 = 41\, 3d2 = 41],

což znamená, že trojúhelníky Ta T' jsou podobné. Analogicky
postupujeme i ve zbylých dvou případech.
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Jiné řešení (podle J. Vomlela, 3. ročník G J. K. Tyla
v Hradci Králové). Označme A\, B\, Ci středy příslušných
stran trojúhelníku T — ABC, T jeho těžiště a U bod na těž-
ničí CCi takový, že \TU\ = |СГ| (obr. 30). Trojúhelník
UTA je zřejmě podobný uvažovanému trojúhelníku T,
protože délky jeho stran se rovnají dvěma třetinám délek
těžnic trojúhelníku T.

Bez újmy na obecnosti budeme předpokládat, že se oba
trojúhelníky T, T' shodují v úhlu a. Je-li a = |<£ ATU\,
jsou trojúhelníky TC\A, AC\C podobné (shodují se v úhlech
a а co), takže

|rCi| \TA\
\ACi\ ~ \AC\ ’

b
neboli

tc c

Trojúhelníky T a T' jsou tedy podobné (sus).
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Pokud je ca = \^ AUT\, jsou podobné trojúhelníky
TBiC, ACiC (shodují se ještě v úhlu xp), takže

imi irq
\Щ =

tb с

neboli

a konečně pro a = |<£ TAU| zjistíme, že jsou podobné troj-
úhelníky TB\A a AB\B (mají ještě společný úhel xp), takže
vyjde

\TBi\ \TA\
\ABl\ ~ \AB\ 5

btb
neboli

ta c

I v obou těchto případech tak vychází, že trojúhelníky T a T'
jsou podobné (sus). Tím je důkaz hotov.

Jiné řešení (podle I. Martišovitše, 4. ročník G J. Hron-
ca v Bratislavě). Doplňme trojúhelník ABC na rovnoběžník
ABDC a označme postupně E, F, G, H středy jeho stran
DC, CA, AB a BD (obr. 31). Trojúhelníky T a GHC jsou
tedy shodné. O trojúhelnících T, T' budeme opět předpoklá-
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dat, že se shodují v úhlu a, kde a, (3, у jsou příslušné úhly
daného trojúhelníku T = ABC.

Je-li a = |<£ GHC\, pak podle věty o obvodových úhlech
leží body G, H, E, C na kružnici, a protože body С, E leží
oba v polorovině GHC, je |<£ GCH\ = |<£ GEH\ = y.

Pokud je a = |<£ HGC|, dostaneme symetrickou situaci,
když místo trojúhelníku ABC vezmeme shodný trojúhelník
DCВ — analogicky vyjde, že je pak |<£ GHC\ = y.

A pokud o. = |<£ GCH\, leží body G, В, H, C na kružnici,
protože |<£ GBH\ = 180° — a. Pak je ale |<£ CHG\ = (3.
Ve všech třech případech jsme tedy dostali, že se trojúhelníky
T, T shodují ve dvou úhlech, takže jsou podobné.

A - lil - 5

Zřejmě je Pi = 22 = 4, Pa = 24 — 1 = 15. Pokud nejsou
obě poslední pole obarvena, což lze zařídit třemi způsoby,
existuje Pn~i přípustných obarvení zbylých polí uvažovaného
pásu (předpokládáme, že jея^ 3). Jsou-li obě poslední pole
obarvena, jsou opět tři možnosti, jak obarvit dvě předposlední
pole pásu, aniž by vznikl obarvený čtverec 2 X 2, a pro každou
z nich máme Pn~2 přípustných obarvení zbylých polí. Je tedy

COPn — ЗРй-1 + ЪРп-2-

Odtud plyne, že je Pn dělitelné třemi pro n ^ 2.
Dále dokážeme, že pro každé k přirozené jsou čísla Рщ

a Pzk+i dělitelná mocninou 3k, ale 3A+1 už nedělí P^ic+i- Pro
k — 1 uvedené tvrzení platí. Předpokládejme, že tvrzení platí
pro každé k ^ m. Podle indukčního předpokladu je
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P‘2 (m+í) — 3(P2m + P2m+l)

dělitelné číslem 3m+1. Podobně je i

P‘2mVá — 3(Р2те+1 + Pžm+ž)

dělitelné číslem 3m+1, ale není dělitelné vyšší mocninou 3,
protože podle indukčního předpokladu je první sčítanec
dělitelný jen 3m, zatímco druhý je dělitelný aspoň 3m+1.

Nejvyšší mocninou 3, kterou je dělitelné číslo Piggg, je 3994.
Jiné řešení (podle M. Krause, 3. ročník G v Karlových

Varech). Pod každý sloupec obarveného pásu napíšeme 1,
jsou-li obě políčka obarvena, a 0, je-li aspoň jedno z nich
neobarveno. Obarvení pásu tedy vyhovuje úloze, právě když
v získané posloupnosti nejsou dvě 1 vedle sebe.

Pro dané n přirozené označme pn(k) počet n-členných
posloupností, v nichž je k jedniček a n — k nul, přičemž

žádné dvě jednotky nestojí vedle sebe ( zřejmě musí být

"r] . Protože 0 odpovídá třem možným obarve-

ním příslušného sloupce (obr. 32), platí

k

[Ф]
= 2 vPn -к.

к — 0

M=r]Odtud hned vidíme, že 3\Pn pro každé n ^ 2 <

< n I. Navíc pro každé n liché platí
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n + Г
= 1Pn 2

(jediná možná posloupnost je 1010...01. Speciálně je tedy
/>1989(995) = 1, takže h

995

Pl989 = 2P«(£)319"-*
k—0

je dělitelné právě mocninou 3994, ale ne už 3995.

Obr. 32

Jiné řešení (podle J. Vomlela, 3. ročník G J. K. Tyla
v Hradci Králové). Stejně jako v prvním řešení ze vzorce (1)
zjistíme, že Pn je dělitelné třemi pro každé n ^ 2. Opakova-
ným použitím vztahu (1) pak dostáváme

Pl989 = 3(Pi988 + P1 98?) = 32 (Pi gg7 + 2Pi986 + Pl 985) —

=
... = 3994 (P995 + «i P994 + • • • + <2993 P2 + Pl),

kde a1, <22, ..., аээз jsou přirozená čísla. Protože P995, P994, ...

..., P2 jsou dělitelná třemi, ale Pi ne, je 3994 nejvyšší mocnina
trojky, která dělí číslo P1989.

Poznámka. Řešením příslušné diferenční rovnice dostane-
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me pro přirozená n vzorec

П-1
3 + 1/213

Pn = 2 + у 1/21 +
2

tt-13 - 1/213
+ 2 -у ]/21 2

A - III - 6

Příklad posloupnosti и, и — 1, ..., 3, 2, 1, 2, 3, ..., п — 1,
п ukazuje, že pro každé n přirozené existuje posloupnost délky
2n — 1. Dokážeme matematickou indukcí, že delší taková
posloupnost neexistuje.

Pro n = 1 je tvrzení zřejmé. Uvažujme tedy posloupnost
splňující dané podmínky pro n ^ 2. Pokud se v ní žádný člen
neopakuje, má nejvýše n ^ 2n — 1 členů. Předpokládejme
tedy, že a* = ak+m je první opakující se člen uvažované
posloupnosti. Protože každé dva její sousední členy jsou
různé, je m > 1 a navíc podle druhého požadavku se žádný
z členů dk+1, ..aic+m-1 již nikde jinde před ak ani po a*+m

nevyskytuje! Vyřazením členů ak+1, ..., ak+m proto
dostaneme posloupnost, která splňuje dané pcdmínky (je
Як+т+1 Ф ак+т = ак); přitom ale i posloupnost ak+1, ..

• • -3dk+m _i, kterou jsme vyřadili, uvedené podmínky rovněž
splňuje a její délka je m — 1. Její členy mohou nabývat r růz-
ných hodnot, které se už v nové posloupnosti nevyskytnou,
přičemž podle indukčního předpokladu m

Délka nové posloupnosti je podle indukčního předpokladu

• ?

1 ^ 2r 1.
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nejvýše 2(n — r)
nejvýše

1, původní posloupnost tedy měla délku

2(n r) + m — 1 2(n — r) + 2r — 1 = 2n — 1.

Tím je tvrzení úlohy dokázáno.
Jiné řešení (podle P. Hliněného, 3. ročník G M. Ко-

perníka v Bílovci). Pro dané přirozené n označme d(n) délku
nejdelší posloupnosti splňující podmínky úlohy. V každé
takové posloupnosti existuje číslo, které se tam vyskytuje
jen jednou: Vezmeme-li totiž dvojici členů ap = aq (p < q)
takovou, že q — p > 1 je nejmenší, leží mezi nimi aspoň
jeden další člen uvažované posloupnosti (aP ф av+1, aq^\ Ф
Ф aq), který se však už nemůže opakovat mezi aP a aq a ne-
může se vyskytovat před av ani za aq (jinak by nebyla
splněna druhá podmínka).

Uvažujme n ^ 2. Bez újmy na obecnosti můžeme před-
pokládat, že ap — n je to číslo, které se v uvažované posloup-
nosti vyskytuje jen jednou.

Pokud je ap-i Ф ap+i, vynecháme z uvažované posloup-
nosti člen aPi pokud ap~i = ap+1, vynecháme oba členy
ар, ap+1. V obou případech dostaneme posloupnost složenou
z čísel nejvýše rovných n — 1, která bude splňovat podmínky
úlohy. Je tedy

d(n) Ф d(n — 1) + 2.

Protože d( 1) = 1, snadno zjistíme, že d(n) Ф 2n — 1.
Příklad posloupnosti n, n — 1, ..., 3, 2, 1, 2, 3, . .., n — 1,
n ukazuje, že pro každé n přirozené je d(n) = 2n — 1.
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Kategorie P

Texty úloh

p-a-i

Ve státě К je N měst A(1), Velké povodně
zničily řadu mostů. Z tohoto důvodu bylo mezi mnoha městy
přerušeno spojení. Je dáno pole £>[1. .N, 1. .N], jehož prvky
mají hodnotu 0 nebo 1. Prvek B[i,j] bude mít hodnotu 1,
jestliže vede přímá cesta z města A(i) do města A(j), a hodno-
tu 0, pokud se z města A(i) do města A(j) přímo nedá dostat.
Uvědomte si, že B[i,;] = B[j, г]. Nalezněte a zdůvodněte
algoritmus, který pro daná i,j zjistí, zda je možné dostat se
z města A(i) do města A(j).

P- 1-2

Na kružnici leží N různých bodů A(1), A(2), ..., A(N)
(N ^ 4) v tomto pořadí ve směru hodinových ručiček. Pro
každé dva body A" a Y na kružnici označíme /АУ/ délku
oblouku z A do V ve směru hodinových ručiček.

Je dáno pole D[l], D[2], ..., D[N] přirozených čísel,
ve kterém
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£>[/] = IA(I)A(I + 1)1
D[N] = /A(N)A(1)/.

pro 1 5^ / < Af,

Nalezněte algoritmus, který zjistí, zda existují indexy
p, q, r, s takové, že

p < q < r < s

a současně

IA(p)A(q)l = IA(q)A(r)/ = jA(r)A(s)í = /A(s)A(p)/.
Při výpočtech, které budete v algoritmu provádět, musí být
všechny výsledky i mezivýsledky celá čísla.

P-l-3

Je dán následující program

V PASCALU V BASICU

var I,J: integer;
A: array [1.. 100]

of integer;
10 DIM A(100)

begin
for /: = 1 to 100 do

read (z3[/j);
20 FOR 1 = 1 TO 100

30 INPUT A(I)
40 NEXT I

50 LET 1 = 1

60 LET J = 1
/: = 1;
J: = 1;
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while I+J ^ 100 do
if A[I] = A[I+J]

then J: =7+1
else /: = /+!;

70 IF I + J> 100 THEN GOTO 100
80 IF A(I) = A(I + J) THEN

LET J = J +1 : GOTO 70
90 LET 1 = 1 + 1 : GOTO 70

100 PRINT Jwriter)
end

Vstupem programu je uspořádané pole (ne nutně různých)
přirozených čísel. Určete a zdůvodněte, co je výsledkem práce
programu (tj. jak souvisí výsledná hcdnota J s hodnotami
pole A a proč).

P- I -4

Nejprve zavedeme některé pojmy, které budeme potřebovat
ve čtvrté úloze. Úlohy podobného charakteru budou i v kraj-
ském a celostátním kole.

Mnohoúhelník je část roviny ohraničená jednou lomenou
čárou, která sama sebe v žádném bodě neprotíná. Body této
lomené čáry patří také do mnohoúhelníku. Mnohoúhelník je
zadán posloupností svých vrcholů uspořádaných proti směru
hodinových ručiček.

Mnohoúhelník je konvexní, jestliže s každými dvěma svými
body obsahuje také úsečku, která je spojuje.

Konvexním obalem N bodů v rovině budeme rozumět

nejmenší konvexní mnohoúhelník, který je všechny obsahuje.
(Nejmenší ve smyslu množinové inkluze.)

Při řešení úloh budete moci kromě příkazů programovacího
jazyka (Pascalu nebo Basicu) využívat také tři funkce:
VPRAVO, VNITŘ a UHEL:
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VPRAVO (XI, Yl, X2, Y2, X3, Y3) - výsledkem bude
logická hodnota »pravda«, jestliže body PI — (XI, Yl)
a P2 = (X2, Y2) jsou různé a bod P3 = (X3, Y3) leží
na přímce procházející body PI a P2 nebo vpravo od ní při
pohledu z bodu PÍ směrem к bodu P2. Jinak bude výsledkem
»nepravda«.

VNITŘ (X, Y, XI, Yl, X2, Y2, X3, Y3) výsledkem
bude logická hodnota »pravda«, jestliže body PI = (XI, Yl),
P2 = (X2, Y2) а P3 = (X3, Y3) neleží na jedné přímce
a bod P = (X, Y) je bodem trojúhelníku PÍ P2 P3. Jinak
je výsledkem »nepravda«.

UHEL (XI, Yl, X2, Y2, X3, Y3)-jestliže P1 = (X1, Yl),
P2 — (X2, Y2) а P3 = (X3, Y3) jsou tři různé body, potom
výsledkem bude velikost úhlu PÍ P2 P3 ve stupních od
0 stupňů do 360 stupňů měřená proti směru hodinových
ručiček.

Soutěžní úloha

a) Nalezněte (co nej lepší) algoritmus, který zjistí, zda daný
mnohoúhelník je konvexní, a zdůvodněte jeho správnost.

b) Nalezněte (co nejlepší) algoritmus, který pro N zadaných
bodů (N > — 4) v rovině najde jejich konvexní obal, a zdů-
vodněte jeho správnost. Souřadnice konvexního obalu uložte
do pole KONOBALX a KONOBALY a počet bodů obalu
do proměnné POČET.

Nalezněte a dokažte (co nej lepší) algoritmus, který pro

nezáporné celé číslo n vypočítá celočíselnou hodnotu f(n),
pro kterou platí:
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/(0) = 1, /(1) = 1, f(2n) = 2/(w), f(2n + 1) = 2f(n + 1)-f(n)
Nepoužívejte rekurzi a minimalizujte spotřebu paměti!

P - II - 2

Je dáno dvojrozměrné pole A (matice) rozměru N X M,
jehož prvky obsahují pouze čísla 0 nebo 1. Nalezněte a dokažte
co nejlepší algoritmus, který v daném poli A nalezne maximál-
ní »obdélník« obsahující samé jedničky (maximální ve smyslu
»obsahující nejvíc jedniček«). Výsledkem práce algoritmu
bude čtveřice čísel I,J,K,L takových, že A[I,J] je prvek
v levém horním rohu a A[K, L] prvek v pravém dolním rohu
nalezeného maximálního obdélníku.

P-II-3

Je dán algoritmus
P: for i : = 1 to N

if A[i) > A[i + 1] then
A[i] : — : A[i + 1]; (výměna dvou sousedních

prvků pole)
Napište a dokažte (co nejlepší) program, který pro dané

celočíselné N-prvkové pole A zjistí, zda by výše uvedený
algoritmus P toto pole vzestupně uspořádal. Výsledný program
nesmí modifikovat pole A ani používat jiné pomocné pole.

1 do

P-ll-4

Nalezněte a dokažte (co nejlepší) algoritmus, který zjistí,
zda se daný bod nachází uvnitř daného mnohoúhelníku.
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Poznámka. Definice základních pojmů a pomocných funkcí,
které je možné při řešení použít, jsou uvedeny u zadání
úlohy P — I — 4.

P-lll-1

Nalezněte a dokažte (co nejlepší) algoritmus, který pro
dva soubory konečných po dvou disjunktních množin při-
rozených čísel P = {PI, P2, ..., Pm} a Q — {Q1, 02, ...,

.. .,Qn] takové, že PÍ и P2 и ... и Pm = Ol и Q2u
U ... и Qn, najde nejmenší počet К operací sjednocení

a rozdělení množin, jimiž se P převede na O■ Operací sjedno-
cení se nahradí dvě množiny v souboru jejich sjednocením.
Operací rozdělení se jedna množina souboru rozdělí na dvě
disjunktní části.

P - III - 2

Řekneme, že matice M X N s prvky 0 a 1 obsahuje »čárový
vzorek«, jestliže každý jedničkový prvek (případně s výjimkou
těch, které leží na okraji matice) má právě dva jedničkové
sousední prvky (soused může být vlevo, vpravo, nahoru nebo
dolů, ne ve směru úhlopříčky).

Nalezněte a dokažte (co nejlepší) algoritmus, který pro
danou matici M X N obsahující čárový vzorek a její daný
nulový prvek A[I,J] »vybarví« (tj. přepíše nuly například
na dvojky) plochu ohraničenou »čarou« z jedničkových prvků
a okraji matice a obsahující prvek A[I,J}.

118



Р-1И-3

Je dán algoritmus P:

for J : = 1 to К do
for I: = 1 to N — 1 do

if A[I] > A[I + 1] then
A[I] : = : A[I +1]; (výměna dvou sousedních prvků)

Napište a dokažte (co nejlepší) program, který pro dané
celočíselné N-prvkové pole A najde nejmenší číslo К takové,
aby výše uvedený algoritmus P vzestupně uspořádal toto pole.
Výsledný program nesmí modifikovat pole A ani používat
jiné pomocné pole.

P - lil - 4

a) Nalezněte a dokažte (co nejlepší) algoritmus, který
rozdělí daný (ne nutně konvexní) mnohoúhelník na nepro-

tínající se trojúhelníky s vrcholy ve vrcholech mnohoúhelníku.
Výstupem algoritmu je množina dvojic vrcholů, jejichž
pospojováním dostaneme takové rozdělení. (Stačí najít jedno
řešení.)

b) Nalezněte a dokažte (co nejlepší) algoritmus, který
zjistí, zda lomená čára zadaná posloupností bodů P(l), ..

..., P(iV), P(l) tvoří mnohoúhelník.
Poznámka. Definice základních pojmů a pomocných funkcí,

které je možné při řešení použít, jsou uvedeny u zadání
úlohy P — I — 4.

• 3
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Řešení úloh

P-l-1

Úlohu lze řešit více různými způsoby. Ukážeme jeden
z těch možných algoritmů, které jsou časově nejefektivnější.
Algoritmus postupně vytváří seznam čísel měst, do nichž
se lze dostat z výchozího města A(i). Na začátku práce
algoritmu je v seznamu uloženo pouze číslo i. V každém kroku
algoritmu vyjmeme ze seznamu jedno (libovolné) číslo К
a místo něj do seznamu zařadíme čísla těch měst, která jsou
přímo spojena s městem A(K). Každé číslo města přitom bude
do seznamu vloženo celkem nejvýše jednou. Vytváření
seznamu ukončíme v okamžiku, kdy do něj zařadíme číslo j
označující cílové město A(j), nebo když již není možné zařadit
do seznamu žádné další číslo města. Výsledek práce algoritmu
je určen tím, zda bylo číslo cílového města zařazeno do sezná-
mu.

Programová realizace uvedeného algoritmu vyžaduje pře-
devším zvolit vhodnou datovou strukturu pro ukládání
vytvářeného seznamu. Vzhledem к tomu, že počet měst N
je předem znám a že do seznamu bude číslo každého města
zařazeno nejvýše jednou, zvolíme pro reprezentaci seznamu

jednorozměrné pole iS[l..iV] a jednu pomocnou proměn-
nou P, která udává momentální délku seznamu (S[P] je vždy
poslední prvek seznamu). Na začátku práce algoritmu je tedy
P = 1 a S[ 1] = i.

Nyní je třeba vyřešit způsob volby čísla K. Na jeho výběru
výsledek práce algoritmu nezávisí, v principu je možné
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zvolit libovolné z čísel uložených momentálně v seznamu.
Z hlediska efektivní programové realizace jsou vhodné dva
způsoby:

1. Za К zvolíme číslo naposledy zařazené do seznamu,
tzn. číslo S[P]. Odstranění tohoto čísla ze seznamu se provede
snadno snížením hodnoty proměnné P o jedničku. Se sezná-
mem v tomto případě pracujeme jako se zásobníkem, což
odpovídá prohledávání stromu všech možných cest z počá-
tečního města A(i) do cílového města A(j) tzv. »do hloubky«.

2. Za К zvolíme číslo ze začátku seznamu. К tomu je
vhodné zavést pomocnou proměnnou Z, která bude v každém
okamžiku udávat momentální začátek platného vytvářeného
seznamu v poli S, takže S[Z] je vždy první prvek seznamu.
Na začátku práce algoritmu je Z = 1. Za К potom vezmeme
číslo S[Z] a odstranění tohoto čísla ze seznamu dosáhneme
zvýšením hodnoty proměnné Z o jedničku. Vybrané číslo
tedy z pole S ve skutečnosti neodstraníme, pouze vyznačíme,
že již nepatří do seznamu. Se seznamem v tomto případě
pracujeme jako s frontou, což odpovídá prohledávání stromu
všech možných cest z počátečního města A(i) do cílového
měst A(j) tzv. »do šířky«.

Obě uvedené strategie jsou stejně dobré a řeší zadanou
úlohu. V našem programu zvolíme například druhou z nich.
Uvedeme ještě dvě poznámky к zavedení pomocné proměn-
né Z. Tato proměnná vyznačující začátek seznamu v poli S
není nutná, bylo by možné vybrané číslo vždy skutečně
odstranit z pole S' a všechna ostatní čísla náležející do seznamu

posunout v poli S o jedno místo. Takové řešení by ovšem bylo
značně pracnější a pomalejší. Postup využívající pomocnou
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proměnnou Z navíc udržuje v poli 5 čísla všech měst, o nichž
již víme, že jsou dosažitelná z města A(i).

Zbývá provést poslední akci pro zvolené město s číslem
К zařadit do seznamu čísla těch měst, která mají přímé
spojení s městem A(K) a která do seznamu dosud nebyla
zařazena. Čísla měst s přímým spojením s městem A(K)
získáme snadno přímo ze zadané matice B. Stačí projít
K-tý řádek této matice a vyhledat indexy těch sloupců, v nichž
je na iC-tém řádku uložena hodnota 1. Z nalezených čísel
měst máme do seznamu zařadit pouze ta, která do něj dosud
zařazena nebyla. Pro tento účel je výhodné zavést pomocné
pole R[ 1.. N], ve kterém se bude o každém z měst evidovat
informace, zda již bylo jeho číslo zařazeno do seznamu.

Údaj = 1 znamená, že číslo L již bylo do vytvářeného
seznamu zařazeno, #[L] = 0 znamená opak. Na začátku
práce algoritmu budou všechny hodnoty pole R nastaveny
na 0, pouze R[i] = 1. Můžeme opět poznamenat, že ve
variantě řešení, kterou jsme zvolili pro naši realizaci (prohle-
dávání »do šířky«, se seznamem se pracuje jako s frontou,
užívá se pomocné proměnné Z к vyznačení začátku seznamu),
není zavedení pole R nezbytné, neboť v poli S se udržují
čísla všech měst zařazených někdy během výpočtu do sezná-
mu. Čísla měst, která již byla ze seznamu vybrána, zůstala
uložena na místech č»[l], ..., S[Z — 1]. Prohledávání celého
pole S' před zařazením každého nového čísla do seznamu

by ovšem bylo značně pracnější než pouhé testování pří-
znaku v poli R.

Následující program přesně realizuje popsaný algoritmus.
Pro jednoduchost je v něm počet měst N zadán přímo jako
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konstanta (není obtížné změnit). Pole В vstupních hodnot
je programem čteno po řádcích.

program MĚSTA (input, output);

const N = 10; (počet měst)

var В: array [1. .N, 1. .N] of integer; (zadaná matice cest)
S, R: array [1. .N] of integer;

(5 — vytvářený seznam měst, R — příznaky}
(indexy seznamu v poli 5}
(začátek a cíl cesty}
(pomocné proměnné}

Z, P: integer;
I,J: integer;
К, U, V: integer;

begin

(Načtení vstupních hodnot:}
for U : — 1 to N do

for V : — 1 to N do

read (B[U, V]);
read

(Inicializace proměnných:}
P: = 1;
Z: = 1;
S[l] : = /;
for U : = 1 to N do

R[U] : = 0;
R[I] : = i;
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{Vlastní výpočet:}
repeat
К : = S[Z];
Z : = Z + 1;
for U : — 1 to N do

if (B[K, U] = 1) and (£[£/] = 0) then
begin
P: = P + 1;
S[P] : - U;
R[U]: = 1
end

until (Z > P) or (R[J] = 1);

(vybráno číslo К ze seznamu]

(zařazení čísla U do seznamu)

if R[J] = i then
writeln (’Cesta je možná.’)

else

writeln (’Cesta není možná.’)

end.

Výpočet podle uvedeného algoritmu je konečný, neboť
do vytvářeného seznamu je každé z N čísel měst zařazeno
nejvýše jednou a při každém kroku algoritmu je ze seznamu

vyřazeno právě jedno číslo. Výpočet skončí nej později po

vyprázdnění celého seznamu, tzn. nejvýše po N krocích.
Popsaný algoritmus má kvadratickou časovou složitost.

Již jsme ukázali, že výpočet vyžaduje provedení nejvýše
N kroků, tj. N průchodů cyklu repeat-until v programu.
V každém kroku se přitom provádí jeden for-cyklus o N prů-
chodech. Celkově tedy výpočet vyžaduje provedení řádově
N * N operací. Z hlediska časové složitosti lepší algoritmus
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než kvadratický není možný, neboť již jenom vstupní data
mají velikost úměrnou hodnotě N * N (velikost zadané
matice B) a pro výsledek úlohy jsou všechny vstupní údaje
významné.

Správnost uvedeného řešení vyplývá přímo z popisu
algoritmu. Do vytvářeného seznamu jsou postupně zařazo-
vána čísla měst, která jsou dosažitelná z výchozího města i.
Pokud je tedy do seznamu zařazeno také číslo cílového města
j a výpočet skončí s hodnotou R[j] — 1, je správně ohlášeno,
že cesta z města A(i) do města A(j) je možná. Jestliže výpočet
skončí v situaci, že se celý seznam vyprázdnil, byla již do
seznamu postupně zařazena (a opět z něj odstraněna) čísla
všech měst, která mají spojení s městem A(i). Je-li tedy
R[j] = 0, je správně ohlášeno, že cesta z města A(i) do města
A(j) není možná.

P- J -2

Úlohu je možné řešit více různými způsoby. Ukážeme zde
algoritmus, který je z hlediska časové efektivity optimální,
neboť je lineární.

Součet zadaných vzdáleností D[l], ...,D[N] sousedních
bodů na kružnici určuje délku kružnice. Mají-li existovat
body dělící kružnici na čtyři stejně velké úseky celočíselné
velikosti, musí být délka kružnice násobkem čtyř. Nejprve
proto zjistíme, zda platí tato základní nutná podmínka.
Jestliže ano, spočítáme délku čtvrtkružnice a označíme ji
ČTVRT. V opačném případě indexy požadovaných vlastností
neexistují a úloha nemá řešení.

Zavedeme pomocné pole £[0.. N], které bude obsahovat
N + 1 hodnot splňujících následující podmínky:
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1. £[0] = О
2. pro i — 1, ..N:

E[i] = j jestliže existuje index j takový, že j > i
a zároveň /A(i) A(j)/ = CTVRT

E[i] = 0 jinak

S využitím tohoto pole E je již řešení zadané úlohy snadné-
Stačí ověřit, zda pro nějakou hodnotu indexu p = 1, ..., N
platí E[E[E[p]]] < > 0. Platnost této nerovnosti pro nějakou
hodnotu p je nutnou i postačující podmínkou existence
požadovaného dělení kružnice na čtyři stejné části. Hledanými
indexy p, q, r, s jsou potom po řadě hodnoty p, E[p], E[E[p]],
E[E[E[p]]\.

Platnost uvedeného tvrzení ihned dokážeme:

a) Jestliže existují indexy p, q, r, s takové, že platí p < q <
< r < s a zároveň/A(p) A(q)/ — /A(q) A(r)/ — /A(r) A(s)/ —

= /A(s) A(p)f, pak podle definice pole E bude E[p] = q,

E[q] = r, E[r] = s, a tedy E[E[E[p]]] = s. Pro hodnotu
indexu p tudíž platí nerovnost E[E[E[p}]\ < > 0.

b) Nechť naopak pro nějakou hodnotu indexu p platí
nerovnost E[E[E[p]]\ <> 0. Označme q — ii[p], r =
= E[E[p]\, s = E[E[E[p]]\. Z předpokladu 5 < > 0 vyplývá
i q < > 0, r < > 0, neboť 2j[0] = 0. Přímo z definice
pole E nyní dostáváme:

P < q

q < r
r < s

!A{p) A(q)/ = CTVRT
/A(q) A(r)/ - CTVRT
/A(r) A(s)/ = CTVRT
/A(s) A(p)/ = CTVRT, neboť

/A(p)A(q)l + /A(q)A(r)/ + /A(r) A(s)/ + /A(s) A(p)/ =
= 4 * CTVRT.

Jistě je také
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Indexy p, q, r, s mají tudíž všechny požadované vlastnosti
ze zadání úlohy.

Dokázali jsme, že algoritmus řešící zadanou úlohu pomocí
hodnot pole E je správný. Výpočet podle tohoto algoritmu
je jistě konečný, nevyžaduje provést více než N porovnání.
Algoritmus je zřejmě lineární, jeho časové nároky jsou úměrné
hodnotě N.

Při ověřování nerovnosti E[E[E[p]]\ < > 0 v algoritmu
navíc není nutné procházet indexem p všechny hodnoty
od 1 do N. Stačí prověřovat hodnoty p od 1 do takového
čísla M, pro které /A(\) A(M)/ < ČTVRT a/A(l) A(M + 1)/
> = ČTVRT. Pro p > M by totiž nemohla být splněna
podmínka p < q < r < s ze zadání úlohy a vzhledem к defi-
nici pole E by jistě platilo E[E[E[p}}\ = 0.

Zbývá navrhnout algoritmus na vytvoření pole E. Snadno
bychom sestrojili kvadratický algoritmus, který postupně
pro všechny hodnoty i—\,...,N připočítáváním délek
jednotlivých elementárních úseků zjišťuje, zda existuje
odpovídající index j, pro nějž platí podmínka z definice
pole E. Ukážeme zde lepší, lineární algoritmus.

Budeme používat tři pomocné proměnné charakterizující
v každém okamžiku jistý sledovaný úsek kružnice (úsek je
pro nás potenciální čtvrtkružnicí): proměnná DÉLKA udává
délku úseku, DOLNÍ je index počátečního bodu a HORNÍ
index koncového bodu tohoto úseku. Stále tedy platí:
/A (DOLNÍ) A (HORN/)/ = DÉLKA. Vždy bude DOLNÍ
< = HORNÍ. Jestliže najdeme dvojici hodnot DOLNÍ,
HORNÍ, pro kterou je DÉLKA = ČTVRT, uložíme do
pole E hodnotu E[DOLNI] = HORNÍ. Pokud pro zvolené
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DOLNÍ takové HORNÍ neexistuje, bude E[DOLNI] = 0.
Toto přesně odpovídá definici pole E.

Výpočet začíná pro DOLNÍ = 1, HORNÍ = 1, DÉLKA =
= 0. Dokud je DÉLKA < ČTVRT, postupně prodlužujeme
sledovaný úsek zvyšováním hodnoty proměnné HORNÍ
(a zároveň počítáme délku úseku v proměnné DÉLKA).
Poté uložíme do pole E správnou hodnotu E[DOLNI].
Optimalizace výpočtu spočívá v tom, že pro další hodnotu
indexu DOLNÍ nebudeme počítat délku úseku opět od nuly,
ale využijeme předchozí hodnoty. Zvětšíme hodnotu pro-
měnné DOLNÍ o 1 a upravíme hodnotu proměnné DÉLKA
odečtením délky příslušného elementárního úseku, který
jsme ze sledovaného úseku tímto vynechali. Výpočet se nyní
bude opakovat. Celý výpočet skončí, jakmile hodnota pro-
měnné HORNÍ překročí hodnotu N. Zbývající dosud nespo-
čtené hodnoty pole E budou rovny 0, jak vyplývá přímo
z definice pole E.

Správnost uvedeného postupu pro výpočet hodnot pole E
není třeba zvlášť zdůvodňovat, jedná se o konstrukci hodnot
pole E přímo podle definice. Výpočet podle uvedeného
algoritmu je jistě konečný, neboť v každém jeho kroku dochází
bud ke zvýšení hodnoty proměnné HORNÍ nebo proměnné
DOLNÍ o 1. Přitom na začátku výpočtu je HORNÍ —

— DOLNÍ = 1, stále platí DOLNÍ < = HORNÍ a výpočet
končí ihned, jakmile hodnota proměnné HORNÍ překročí N.
Vykoná se tedy méně než 2 * N kroků algoritmu. Odtud
také plyne, že i algoritmus na sestrojení pole E je lineární.

program KRUŽNICE (input, output);

const N — 10; (počet zadaných bodů)
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{vstupní data}var D: array [1. .N] of integer;
E: array [0. .N] of integer; (pole E podle rozboru)
ČTVRT, M, DÉLKA, DOLNÍ, HORNÍ: integer;

{proměnné z rozboru úlohy}
{pomocné proměnné}I,J\ integer;

begin
J: =0;
for / : = 1 to N do

begin
read (£>[/]);
J:=J + D[I]
end;

/: = 0;

{načtení vstupních dat}
{výpočet délky kružnice}

{pro ukončení v případěJ mod 4 < > 0 }
ifJ mod 4 = 0 then {základní nutná podmínka ex. řešení}

begin
ČTVRT : = J div 4; {velikost čtvrtkružnice}
{Výpočet hodnot pole E:}
E[0] : = 0;
DOLNÍ: = 1;
HORNÍ: = 1;
DÉLKA : = 0;
while HORNÍ < = N do

if DÉLKA < ČTVRT then

(prodloužit sledovaný úsek}begin
DÉLKA : = DÉLKA + D[HORNI\,
HORNÍ: = HORNÍ + 1
end

else
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{definovat hodnotu pole E ...}begin
if DÉLKA = ČTVRT then

E[DOLNI] : = HORNÍ
else

E[DOLNI] : = 0;
DÉLKA : = DÉLKA - D[DOLNI];

{... a zkrátit sledovaný úsek}
DOLNÍ: = DOLNÍ + 1

end;
for I: = DOLNÍ to N do

E[I] : = 0;
{Výpočet maximálního indexu M:}
M : = 0;
J- = 0;
while J < = ČTVRT do

begin
M : = M + 1;
J: =J + D[M]
end;

{Vlastní výpočet řešení úlohy:}
/: = 1;
while (E[E[E[I]]] = 0) and (I < Af) do

I: = I +1

end;
{Výsledek výpočtu:}
if E[E[E[I}]\ = 0 then

writeln (’Indexy požadovaných vlastností neexistují.’)
else

begin
writeln (’Indexy požadovaných vlastností existují.’);
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writeln (’Vyhovuje například čtveřice indexů:’);
writeln (/ : 10, E[I] : 10, E[E[I]] : 10, E[E[E[I]]] : 10)
end

end.

P-l-3

Výsledkem práce zadaného programu je hodnota proměn-
né J. Ukážeme, že na konci programu proměnná J udává dél-
ku maximálního úseku stejných čísel ve vstupních datech.

Vzhledem к uspořádání pole A musí shodné prvky tvořit
souvislý úsek. Označme délku nejdelšího takového úseku jako
D a výstupní hodnotu proměnné J symbolem V. Dokážeme,
že výpočet programu je vždy konečný a že V = D.

1. Program obsahuje jediný cyklus typu while, a to s pcd-
mínkou / + J < = 100. Na začátku výpočtu má výraz
1 + J hodnotu 2 a při každém průchodu cyklem jeho hodnota
vzroste o 1. Cyklus se tedy provede 99krát a skončí, jakmile
součet I -r J dosáhne hodnoty 101. Výpočet je tudíž konečný.

2. V <= D

Jistě V > = 1, neboť proměnná J má na začátku výpočtu
hodnotu 1 a nikdy se nezmenšuje. Jestliže V — 1, pak
dokazovaná nerovnost V < = D zřejmě platí, neboť D > = 1.
Pokud V > 1, musela proměnná J nabýt hodnoty V zvětše-
ním o 1 z hodnoty V — 1 při splnění podmínky A[I] =
= A[I + V — 1] pro nějaké I. Protože je pole A setříděné,
musí se sobě rovnat také všechny prvky ležící mezi A[I]
a A[I + V - 1], tzn. platí A[I] = A[I + 1] = ... =
= A[I + V — 1]. Existuje tedy úsek stejných čísel v poli A
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délky V a tudíž V < = D. Nerovnost V < = D je tak do-
kázána.

3. V = D

Nechť úsek stejných čísel délky D v poli A začíná prvkem
s indexem M, tj. platí A[M] = A[M + 1] = ... = A[M +
+ D — 1] pro M + D — 1 < = 100. Proměnná I musí
během výpočtu nabýt hodnoty M. Po ukončení výpočtu
je totiž / + J — 101, a kdyby bylo I < M, muselo by platit
J > 101 — M neboli také V > 101 — M. Z nerovností
M -f D — 1 < — 100 a V > 101 — M dostáváme V > D,
což je ve sporu s již dokázanou nerovností V < = D. Jestliže
tedy proměnná I nabude hodnoty M, bude se při dalších prů-
chodech cyklem zvětšovat hodnota proměnné J, dokud bude
platit A[M] — A[M + J]. Vzhledem к rovnosti A[M] =
= A[M + D — 1] získá proměnná J hodnotu D. Již jsme
dokázali, že V < = D, takže J nemůže nabýt hodnoty větší.
Je tedy V = D, což jsme měli dokázat.

P- 1-4

a) Při řešení úlohy využijeme skutečnosti, že mnoho-
úhelník je konvexní právě tehdy, jestliže všechny jeho vnitřní
úhly jsou menší nebo rovny 180 stupňů. Toto tvrzení lze
snadno dokázat jednoduchou geometrickou úvahou. V algo-
ritmu proto stačí zkontrolovat velikost všech vnitřních úhlů
zadaného mnohoúhelníku. To lze velice pohodlně provést
pomocí předdefinované funkce UHEL.

Předpokládejme, že v proměnné N je uložen počet vrcholů
zadaného mnohoúhelníku a v polích X, Y souřadnice jeho
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vrcholů v pořadí (*[1], Y[l]),(X[2], У[2]),.. .,(X[N], Y[N]),
Algoritmus řešící zadanou úlohu potom můžeme zapsat
v Pascalu takto:

X[N + 1] : = *[1]; Y[N + 1] : = Y[ 1];
X[N + 2]: = X[2]; Y[N + 2] : = Y[2];
/: = 1;
while (7 < = N)

and (UHEL (X[I + 2], У[7 + 2], A[7 + 1], У[7 + 1],
A[7], У[/]) < = 180) do

7: = 7+1;
if I > N then writeln (’Mnohoúhelník je konvexní.’)

else writeln (’Mnohoúhelník není konvexní.’);

Abychom nemuseli zvlášť řešit situaci pro první a poslední
vrchol mnohoúhelníku (tj. vrcholy s indexy 1 a N), přiřadili
jsme před zahájením vlastního výpočtu souřadnice vrcholů
(AT[1], У[1]) a (X[2], Y[2]) do polí X, Y ještě jednou do po-
ložek s indexy N + 1, N + 2.

Správnost algoritmu přímo vyplývá z uvedeného rozboru.
Je třeba si uvědomit, že podle definice mnohoúhelníku jsou
jeho vrcholy zadány v pořadí proti směru hodinových ručiček
a že funkce UHEL dává jako svůj výsledek velikost úhlu
měřeného také proti směru hodinových ručiček. Pro vyjádření
velikosti vnitřního úhlu mnohoúhelníku při vrcholu s indexem
7+1 je proto v zápisu algoritmu užito správného pořadí
vrcholů ve volání funkce UHEL.

Algoritmus má lineární časovou složitost a výpočet podle
něj je konečný, neboť každý vnitřní úhel je kontrolován
nejvýše jednou. Vykoná se proto maximálně N kroků výpočtu,
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popřípadě při nalezení nějakého vnitřního úhlu většího než
180 stupňů končí výpočet ještě dříve.

b) Popíšeme neformálně činnost algoritmu řešícího zada-
nou úlohu. Algoritmus nejprve zjistí jeden bod z konvexního
obalu. Za tento bod zvolíme například ten ze zadaných bodů,
který má největší x-ovou souřadnici. Je-li takových bodů více,
vybereme z nich ten, který má největší jy-ovou souřadnici.
Takto získaný bod jistě náleží do konvexního obalu.

Známe-li již několik (třeba jen jeden) bodů konvexního
obalu, další bod získáme následujícím výpočtem: Nechť P
je bod naposledy zařazený do vytvářeného konvexního obalu
a bod A libovolný jiný bod, který dosud do obalu nebyl
zařazen (za »nezařazený« do konvexního obalu považujeme
i počáteční bod s největší x-ovou souřadnicí). Pro všechny
ostatní body nezařazené do konvexního obalu nyní budeme
zjišťovat, zda některý z nich leží vpravo od přímky PA při
pohledu z bodu P к bodu A. Pokud najdeme takový bod В,
budeme nadále totéž zjišťovat pro bod В a přímku PB.
Nemusíme ale již uvažovat body, které leží vlevo od přímky
PA, neboť ty jistě leží vlevo i od přímky PB. Po otestování
všech bodů nezařazených do konvexního obalu tedy získáme
bod C takový, že žádný jiný z bodů nezařazených dosud
do konvexního obalu neleží vpravo od přímky PC při pohledu
z bodu P к bodu C. Tento bod C nyní zařadíme jako další
bod do konvexního obalu. Je-li bod C shodný s počátečním
bodem, algoritmus již nalezl celý konvexní obal. Jinak
se výpočet dalšího bodu konvexního obalu opakuje.

Opět budeme předpokládat, že proměnná N udává počet
zadaných bodů. Souřadnice těchto bodů jsou uloženy v polích
X, Y v položkách s indexy 1,2, . ..,iV. Podle požadavků
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úlohy budeme souřadnice bodů nalezeného konvexního obalu
ukládat do polí KONOBALX, KONOBALY a počet bodů
tohoto konvexního obalu do proměnné POČET.

Program bude využívat pomocné pole OBAL[\. .N], ve
kterém bude pro každý ze zadaných bodů zaznamenáno, zda
byl zařazen do konvexního obalu. Pokud OBAL[K] = 0, bod
(X[K], F[iC]) do konvexního obalu dosud nebyl zařazen,
jestliže ОВАЦК] — 1, uvedený bod do konvexního obalu
zařazen byl. U počátečního (a tedy také koncového) bodu
vytvářeného konvexního obalu je udržována v poli OBAL
hodnota 0 a index tohoto bodu je zaznamenán ve zvláštní
proměnné PB. Souřadnice tohoto bodu jsou vloženy do polí
KONOBALX, KONOBALY až jako poslední.

program KONOBAL (input, output);
const MAX = 50; (maximální přípustný počet všech bodů}

var X, Y: array [1. .MAX] of real; (souřadnice zadaných
bodů}

KONOBALX, KONOBALY: array [1 ..MAX] of real;
(souřadnice bodů konvexního obalu}

OBAL: array [1. .MAX] of integer;
(indikace zařazení bodu do konvex. obalu}

N, POČET, PB: integer; (počet všech bodů, počet bodů
v konv. obalu, počáteční bod}

/, К, В: integer; (pomocné proměnné — indexy bodů}
begin
•(Načtení vstupních dat:}
read (ЛГ);
for / : = 1 to N do read (X[I], F[/]);
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{Hledání počátečního bodu:}
PB : = 1;
for 7 : — 2 to N do

if X[I] > X[PB] then PB : = 7
elseif(AT[7] - X[PB] and (Y[I] > Y[PB]) then PB : = 7

|Inicializace proměnných:}
for 7 : = 1 to N + 1 do ОВАЦ1] : = 0;
POČET : = 0;
К : = PB;

{Vlastní výpočet:}
repeat

{К je zatím poslední bod konvexního obalu}
B: = 1;
while (ОВАЦВ] = 1) or (Б = 7C) do Б : = 5 + 1;
{.В označuje bod s nejmenším indexem nezařazený d3 obalu}
/: = В + 1;
while (ОВАЦ1] = 1) or (/ = К) do / : = / + 1;
{/ je další adept na zařazení do konv. obalu}
while I < = N do

begin
if VPRAVO (A[iq, Y[K], X[B], Y[B], X[I], F[7])

then В : = 7;
repeat 7 : = 7 + 1
until (ОВАЦ1] <>1) and (7 < > К);
end;

{Б zde označuje další bod konvexního obalu}
К: = Б;
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POČET : = POČET + 1;
KONOBALX [POČET] : = X[K];
KONOBAL Y[POCET] : = Y[K];
ОВАЦК] : = 1

until К = PB;
{Vypsání výsledného konvexního obalu:}
writeln (’Konvexní obal je tvořen’, POČET : 1,’ body.’);
writeln (’Souřadnice bodů konvexního obalu:’);
for I: = 1 to POČET do

writeln (KONOBALX[I] : 10, KONOBALY[I] : 10)
end.

Správnost popsaného algoritmu vyplývá přímo z výše
uvedeného rozboru. Algoritmus je popsán induktivně, po

krocích, a je ho také možné matematickou indukcí formálně
dokázat. Z rozboru je zřejmá i konečnost výpočtu podle
našeho algoritmu. V každém kroku výpočtu je přidán jeden
bod do postupně vytvářeného konvexního obalu, konvexní
obal N bodů je tvořen nejvýše těmito N body, takže výpočet
skončí nejpozději po N krocích.

Popsaný algoritmus má kvadratickou časovou složitost.
Vyžaduje provedení nejvýše N kroků, jak jsme právě ukázali.
Přitom v každém kroku je každý z N zadaných bodů právě
jednou testován, zda není prodloužením dosud nalezené části
konvexního obalu. Celkový počet operací nezbytný к vyřešení
úlohy je tedy úměrný hodnotě N * N.

Poznámka. V případě, že na hraně konvexního obalu leží
tři body (nebo více bodů), zde uvedený algoritmus je všechny
může ale nemusí zařadit do konvexního obalu. Protože oba
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případy vyhovují definici konvexního obalu ze zadání úlohy,
hlouběji se tímto případem nezabýváme.

P-ll-1

Hodnotu f(k) pro nějaké pevně zvolené číslo k > 1 snadno
vyjádříme pomocí dvou jiných hodnot funkce /. Přitom
argumenty funkce / odpovídající těmto hodnotám jsou dvě
po sobě následující čísla menší než k. Pokud je totiž k sudé,
je f(k) = 2.f(k/2), což můžeme zapsat také jako f(k) =
= 2.f(k/2) + 0.f(k/2 + 1). Je-li k liché, potom platí rovnost

f(k) = 2.f((k + l)/2) — f((k — l)/2). Tyto vztahy jsme získali
jednoduchou úpravou přímo z definice funkce /.

Nyní si všimneme, jak je možné vyjádřit hodnoty f(k),
f(k + 1) pro dvě po sobě jdoucí celá čísla k,k + 1. Rozlišíme
tři případy:
1. k = 0... f(k) =f(k + 1) = 1 přímo podle definice funk-

се/.
2. k sudé, k > 0 ... f(k) = 2.f(k/2) podle definice funkce/,

číslo k + 1 je liché, a proto f(k + 1) = 2.f(k/2 + 1) —

-Лк/2).
3. k liché .. ./(&) = 2.f((k + l)/2) -f((k - l)/2) podle defi-

nice, číslo k + 1 je sudé, a proto/(& + 1) = 2.f((k + l)/2).
Tedy pro k — 0 jsou hodnoty f(k),f(k + 1) z:námy a pro
k > 0 je možné vyjádřit obě hodnoty f(k),f(k + 1) opět
jako vhodnou kombinaci hodnot funkce / odpovídajících
dvěma menším po sobě jdoucím číslům v roli argumentů
(a to konkrétně číslům k div 2, k div 2 + 1).

Z uvedeného rozboru vyplývá, že к výpočtu hodnoty f(n)
pro zadané číslo n nám budou stačit tři proměnné. V jedné
proměnné К bude stále uložena postupně se zmenšující
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hodnota argumentu — od počáteční vstupní hodnoty n až
к nule, v každém kroku výpočtu celočíselně dělena dvěma.
V dalších dvou proměnných А а В se budou počítat koefi-
cienty, jimiž je třeba vynásobit hodnoty f(K), f(K + 1),
abychom získali správný výsledek. Na začátku výpočtu bude
К = n, A — 1, В — 0. Hodnota výrazu A.f(K) + B.f(K + 1)
bude během celého výpočtu udržována konstantní. Na začátku
výpočtu má tento výraz hodnotu 1 .f(ri) + 0 .f(n -f 1) = f(n),
po ukončení při К = 0 bude mít tvar A.f(0) + B.f(1) =
= A -f B. Výslednou hodnotu f(n) lze tedy získat jako součet
hodnot proměnných А а В po ukončení výpočtu.

Zbývá ukázat, jak musí vypadat přepočet hodnot proměn-
ných К, А, В v každém kroku výpočtu, aby se zachovala
konstantní hodnota výrazu A .f(K) -f B.f(K + 1). Využijeme
к tomu dříve odvozené vztahy pro vyjádření hodnot f(k),
f(k + 1):
a) je-li hodnota proměnné К sudá kladná:
A.f(K) + B.f(K + 1) = A.2.f(Kl2) + B.2.f(K/2 + 1) -
- B.f(K/2) = (2A - B).f(K/2) + 2B.f(K/2 + 1)
— tedy hodnota К se zmenší na polovinu, proměnná A získá

hodnotu 2A —Ba hodnota proměnné В se zdvojnásobí;
b) je-li hodnota proměnné К lichá:

A.f(K) + B.f(K + 1) - A.2.f((K + l)/2) -
- A.f((K - l)/2) + B.2.f((K + l)/2) =
= -A.f((K - l)/2) + 2.(A + B).f((K + l)/2)
— tedy hodnota proměnné К se zmenší na (K — l)/2

neboli К div 2, hodnota proměnné A změní znaménko
a proměnná В získá hodnotu 2(A + В).

Na základě uvedeného rozboru snadno zapíšeme hledaný
algoritmus na výpočet hodnoty funkce/pro daný argument n.
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Algoritmus vyjádříme ve tvaru funkce v programovacím
jazyce Pascal:

function F (К : integer): integer;

var A, В: integer;

begin
A: = l;
В : = 0;
while К > 0 do

begin
if i^mod 2=0 then

begin
A : = 2 * A — B;
В : = 2 * В

end

else

begin
В : = 2*(A + B);
A: = -A

end;
К: = К div 2

end;
F: = A + В
end;

Správnost uvedeného algoritmu vyplývá z rozboru úlohy.
Během celého výpočtu se udržuje neměnná hodnota výrazu
A.f(K) + B.f(K + 1), přičemž při vyvolání funkce s argu-
mentem n vyjadřuje tento výraz hledanou hodnotu /(и). Po
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ukončení výpočtu while-cyklu v programu je К = 0 a podle
definice funkce/ je/(0) = /(1) = 1, takže hodnotu uvedeného
výrazu vyjadřuje součet hodnot proměnných A + B. Tento
součet je proto správným výsledkem algoritmu.

Výpočet probíhající podle našeho algoritmu je jistě konečný,
neboť v každém kroku výpočtu se hodnota proměnné К
celočíselně dělí dvěma a celý výpočet končí, jakmile К
dosáhne nulové hodnoty.

Algoritmus splňuje požadavek ze zadání úlohy na minimální
paměťovou náročnost. К celému výpočtu stačí použít pouze
tři proměnné. Algoritmus má logaritmickou časovou složitost
a konstantní paměťovou složitost.

P - I! - 2

Navrhnout nějaký, byť pomalý a neefektivní algoritmus
řešící zadanou úlohu je velmi snadné. Stačí zkoumat postupně
všechny obdélníky v dané matici, zda jsou tvořeny samými
jedničkami. Obdélník vždy vymezíme volbou jeho levého
horního a pravého dolního rohu. Takovéto řešení má ovšem
časovou složitost N3 . M3, neboť pro volbu levého horního
rohu máme N.M možností, pro volbu pravého dolního rohu
také (při již zvoleném levém horním rohu je zde možností
o něco méně, ale z hlediska časové složitosti algoritmu to není
podstatná úspora) a průchod zvoleným obdélníkem v matici
o rozměrech N X M představuje také řádově N.M operací.

Krátký program řešící úlohu tímto neefektivním způsobem
může vypadat následovně:

program OBDEL (input, output);
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{počet řádků matice A }
{počet sloupců matice A }

const N = 20;
M = 15;

var A : array [1. .N, 1. .M] of integer;
I, J, К, L, P, Q : integer; {pracovní indexy)
MI, MJ, MK, ML : integer; {souřadnice max. obdél.)
C: integer;
VEL: integer; {velikost zkoumaného obdélníku)
MAX: integer; {maximální velikost obdélníku)

{pro kontrolu obdélníku)

begin
MAX : = 0;
for I: = 1 to N do {načtení hodnot matice A )

for J : = 1 to M do read(A[I,J])',
for I: — 1 to N do

for J : - 1 to M do {levý horní roh obdélníku A[I,J]}
for К : — I to N do

for L : ------ J to M do
begin
VEL : = (К — I + 1)*(L-J+ 1);
if VEL > MAX then

begin
C: = 1;
for P : — I to К do

for Q : — J to L do
C : = C * A[P, Q]; {kontrola obdélníku)

if C = 1 then

begin
MAX : = VEL;

{pravý dolní roh A[K, L])

{obdélník je větší než maximální)

{obdélník je tvořen jedničkami)
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MI: = I; MJ:
end

Ji MK : = K; ML: = L

end

end;

if MAX = 0 then

writeln (’Zadaná matice neobsahuje žádnou jedničku.’)
else

begin
writeln (’Maximální obdélník tvořený jedničkami má’);
writeln (’souřadnice levého horního rohu:’, MI:7, MJ:6);
writeln (’souřadnice pravého dolního rohu:’, MK:6, ML:6)
end

end.

Ukažme si nyní jiný algoritmus, který řeší zadanou úlohu
výrazně rychleji. V první fázi řešení provedeme pomocný
výpočet, při kterém určíme délky souvislých sloupců jedniček
v dané matici A. Výsledky tohoto výpočtu si uložíme přímo
do pole A tak, že položíme A[i,j] = k, jestliže prvek A[i,j]
sám a dalších přesně k — 1 prvků pod ním mělo původně
hodnotu 1, tzn. jestliže v původní matici A platilo A[p,j] — 1
pro p — *, i + 1, ..., i + k
nebo i + k - 1 < N a přitom A [i + k,j\ = 0 (kde N je
počet řádků matice A). Údaje v zadaném poli A tím pozmě-
níme, ale pouze tak, že v případě potřeby by bylo snadné
zrekonstruovat původní podobu pole A (neboť žádná nula
v poli A neubyla ani nepřibyla, nenulová čísla jsou uložena

1 = N1 a navíc bud i + k
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na místech původních jedniček). Výsledek první pomocné
fáze výpočtu si ukážeme na příkladu:

ze zadané matice: dostaneme upravenou matici:

110 10

1110 1

11111

0 10 0 1

3 4 0 1 0

2 3 2 0 3

12 112

0 10 0 1

Ve druhé fázi výpočtu již budeme hledat v poli A maximální
obdélník tvořený jedničkami (nyní po úpravě nenulovými
čísly). Postupně budeme zkoumat všechny možné pozice
levého horního rohu takového obdélníku. Pro zvolený levý
horní roh A[i,j] > 0 musíme vyzkoušet všechny přípustné
polohy pravého horního rohu A[i, 1]. Prvek A[i, 1] může být
pravým horním rohem obdélníku s levým horním rohem
A[i,j], jestliže všechna čísla A[i, q\ pro q — j, j + 1, ..1
jsou nenulová.

Velikost maximálního obdélníku, který je v původní ma-
tici A tvořen samými jedničkami a jehož levý a pravý horní
roh mají souřadnice [*,/], resp. [i, /], nyní již snadno určíme
pomocí hodnot, které jsme si předem připravili v první fázi
výpočtu. Takový obdélník má totiž šířku (/ — j + 1) a jeho
výška je rovna minimu z hodnot A[i, q\ pro q — /,/ + 1, ..

...,/- 1,/.
Uvedený výpočet je možné opakovat pro všechny možné

volby levého horního rohu obdélníku a přitom si v pomocné
proměnné udržovat velikost maximálního již nalezeného
obdélníku tvořeného v zadané matici samými jedničkami.

* 5
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V dalších čtyřech pomocných proměnných si musíme zazna-
menávat souřadnice levého horního a pravého dolního rohu
nalezeného maximálního obdélníku. Tyto proměnné budou
po ukončení výpočtu udávat požadovaný výsledek úlohy.

program OBDÉLNÍK (input, output);

const N = 20; (počet řádků matice AJ
M = 15; (počet sloupců matice AJ

var A: array [1.. N, 1.. M] of integer;
I,J,L: integer; (pracovní indexy v poli AJ

(výška zkoumaného obdélníku]K: integer;
MI, MJ, MK, ML: integer; (souřadnice rohů max.

obdélníku}
(velikost maximálního obdélníku}
{velikost zkoumaného obdélníku)

MAX: integer;
VEL: integer;

begin
(Načtení matice A:}
for I: = 1 to N do

for J : = 1 to M do read (^[7,^]);

(První fáze výpočtu — modifikace pole A:}
for J : — 1 to M do

for I: = N — 1 downto 1 do

1 then A[IJ] : = A[IJ] + A[I + IJ];if A[I,J]

(Druhá fáze výpočtu
MAX : = 0;

hledání maximálního obdélníku:}
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for I: = 1 to N do

for J : = 1 to M do
begin
L : = J;
K: = A[I,L];
while К > 0 do

{levý horní roh A[I,J]}
{pravý horní roh A[I, L]}

begin
VEL : = (L — J + 1) * K\ (velikost zkoumaného

obdélníku)
if VEL > MAX then

(je větší než dosud maximální)
> zaznamenat jeho velikost)

begin
MAX : = VEL; {
MI: = I; MJ: =J; MK: = I + К - 1; ML: = L

{— > zaznamenat jeho souřadnice)
end;

L: = L + 1;
if L > M then

К: = О

else if A[I, L] < К then
K: = A[I, L] {snížení výšky obdélníku z »1«)

{nová poloha prav. horního rohu)

{už jsme vně matice A )

end

end;

{Vypsání výsledku výpočtu:)
if MAX = 0 then

writeln (’Zadaná matice neobsahuje žádnou jedničku.’)
else

begin
writeln (’Maximální obdélník tvořený jedničkami má’);
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writeln (’souřadnice levého horního rohu:’, MI: 7, MJ : 6);
writeln (’souřadnice pravého dolního rohu:’,MřC: 6, ML : 6)
end

end.

Správnost algoritmu plyne z uvedeného rozboru. Pokud
zadaná matice obsahuje samé nuly, zůstane ve druhé fázi
výpočtu proměnná MAX s počáteční hodnotou 0 nezměněna
a na základě toho je vypsáno příslušné hlášení. Jestliže matice
obsahuje alespoň jednu jedničku, musí obsahovat také nějaký
maximální obdélník tvořený jedničkami. Dvojice proměnných
I, J během výpočtu nabude hodnot odpovídajících souřad-
ničím levého horního rohu tohoto maximálního obdélníku,
neboť pomocí indexů 1,J algoritmus postupně prochází
všechny prvky pole A. Proměnná L potom jistě nabude také
hodnoty sloupcového indexu pravého herního rohu maxi-
málního obdélníku z jedniček a přitom bude proměnná К
udávat výšku tohoto obdélníku. Za této situace získá proměn-
ná MAX hodnotu udávající velikost maximálního obdélníku
tvořeného jedničkami (pokud této hodnoty nenabyla již dříve
při zkoumání jiného obdélníku stejné velikosti tvořeného
samými jedničkami). Zároveň jsou do proměnných MI, MJ,
MK, ML zaznamenány souřadnice levého horního a pravého
dolního rohu nalezeného maximálního obdélníku. Vzhledem

к maximalitě velikosti tohoto obdélníku již nemůže být
nalezen žádný větší obdélník tvořený samými jedničkami
a hodnoty proměnných MAX, MI, MJ, MK, ML proto
zůstanou až do ukončení výpočtu nezměněny. Při ukončení
výpočtu jsou proto [MI, MJ] a [MK, ML] souřadnice levého
horního a pravého dolního rohu maximálního obdélníku
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tvořeného samými jedničkami. Jestliže lze v zadané matici A
nalézt více různých obdélníků ze samých jedniček této maxi-
mální velikosti, budou proměnné MI, MJ, MK, ML udávat
souřadnice rohů jednoho z nich (toho, který byl nalezen jako
první).

Výpočet podle uvedeného algoritmu je jistě konečný,
neboť počet průchodů každým z cyklů v programu je předem
omezen některým z rozměrů zadané matice. Načtení hodnot
matice A ze vstupu a modifikace obsahu pole A v první fázi
výpočtu vyžadují provedení N.M operací. Ve druhé fázi
výpočtu se N.M způsoby volí levý horní roh zkoumaného
obdélníku a pro každou takovou volbu se provádí nejvýše M
průchodů vnitřním while-cyklem s vlastním vyhodnocením
obdélníků. Počet operací potřebných к provedení celého
výpočtu je proto úměrný hodnotě N.M.M.

Celý výpočet je možné provádět také symetricky tak, že
se v první fázi určí délky souvislých vodorovných řad jedni-
ček v poli A. Ve druhé fázi výpočtu by se potom pro každou
volbu polohy levého horního rohu zkoumaného obdélníku
zkoušely všechny možné polohy jeho levého dolního rohu.
V tomto případě by celý výpočet vyžadoval provedení řádově
N.N.M operací. Pokud bychom se tedy snažili o maximální
možnou optimalizaci časových nároků navrženého algoritmu,
bylo by možné volit uvnitř algoritmu až na základě znalosti
konkrétních rozměrů N, M pole A tu variantu řešení, která
by byla výhodnější (varianta, kterou jsme zde podrobně
rozebrali, je výhodnější pro N >M).
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P- il -3

Rozborem zadaného algoritmu P snadno zjistíme, že
činnost algoritmu můžeme popsat následovně: Zadané pole A
se prochází sekvenčně zleva doprava. Při tomto průchodu
se zapamatuje a odstraní z pole A nejprve první prvek. Tento
prvek bude »přenesen« bezprostředně za souvislý úsek po
něm následujících čísel menších, než je on sám. Celý tento
úsek čísel se v poli A posune o jednu pozici doleva. Jakmile
se při průchodu polem narazí na nějaké číslo větší, než je právě
zapamatovaný a přenášený prvek, tento přenášený prvek se
umístí do pole A. Místo něj se zapamatuje nalezené větší
číslo, odstraní se z pole A a opět se bude přenášet stejným
způsobem dál. Tento postup se opakuje tak dlouho, dokud
se algoritmus nedostane к pravému okraji pole A. Tam je pak
umístěn naposledy přenášený prvek a tím je celý výpočet
ukončen.

Z rozboru je zřejmé, že každý prvek je umístěn na své
výsledné místo v poli A, jestliže
— bud je posunut o jedno místo doleva a přes něj je přenese-

no právě zapamatované větší číslo;
— nebo byl přenášen směrem doprava přes úsek menších

čísel (tento úsek může být i prázdný) a nyní je umisťován
za tento úsek, neboť algoritmus narazil na větší číslo
uložené v poli A nebo na pravý okraj pole A.

V průběhu výpočtu jsou umisťovány na svá výsledná místa
prvky pole A v takovém pořadí, že jsou postupně obsazována
jednotlivá místa v poli A zleva doprava. Po ukončení práce
algoritmu bude tedy pole A vzestupně uspořádáno právě teh-
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dv, jestliže jsou čísla umisťována na svá výsledná místa v poli A
v neklesajícím pořadí.

Na základě rozboru zadaného algoritmu a s využitím
právě uvedeného tvrzení nyní již můžeme zapsat program
řešící danou úlohu. Program »modeluje« výpočet algoritmu P,
ale do pole A nezasahuje a pouze si udržuje informaci o hod-
notě právě zapamatovaného a přenášeného prvku a o dosud
největším již umístěném prvku pole A. Zároveň s napodo-
bováním výpočtu algoritmu P bude náš program sledovat,
zda čísla umisťovaná do pole A následují po sobě v neklesá-
jícím pořadí.

program TRIDENI (input, output);

{velikost pole A }
(zadané pole A }
(přenášený prvek}

(maximální již umístěný prvek}
(příznak chybného uspořádání}
(pomocná proměnná — index v A }

const N = 100;
var A: array [1. .N] of integer;

PŘEN: integer;
MAX: integer;
CH: Boolean;
I: integer;

begin
for I: = 1 to N do read (/![/]);
CH: — false;
PREN: = A[ 1];
/: - 2;
MAX: — — maxint;

(načteni pole A}
(zatím chyba není}

I první přenášený prvek }
(průchod od prvku A[I\]
(inicializace maxima }

while (not CH) and (/ < — N) do
begin
if A[I] < PREN then (přenést PREN přes A[I\]
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if A[I] < MAX then
CH: — true {chyba v uspořádání!}

else

(nová hodnota maxima}MAX: = A[I]
else

(narazil na větší číslo než PŘEN}
{ dosud přenášený prvek PŘEN bu-
de umístěn do pole A a stane se tak
novým maximem z umístěných
čísel}
(zapamatuje se následující číslo
a stane se tak novým přenášeným
prvkem PŘEN}

begin
MAX: = PŘEN-

PŘEN: = A[I]

end;
I: = I + 1
end;

{ bude zkoumat další prvek A }

if CH then

writeln (’Algoritmus zadané pole neuspořádá.’)
else

writeln (’Algoritmus zadané pole uspořádá.’)
end.

Správnost programu vyplývá z provedeného rozboru úlohy.
Náš program provádí zcela obdobný výpočet jako algoritmus P
uvedený v zadání úlohy, pouze namísto vlastních výměn
prvků uložených v poli A si v pomocných proměnných PŘEN
a MAX udržuje potřebné řídicí informace. Pomocí proměnné
MAX je zároveň kontrolováno, zda bude po ukončení výpočtu
pole A vzestupně uspořádáno.
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Výpočet programu je jistě konečný, neboť je tvořen maxi-
málně N kroky (kde N je počet prvků pole A). Pokud se během
výpočtu zjistí, že by pole A nebylo po ukončení výpočtu
uspořádáno, je výpočet předčasně ukončen ještě dříve.
Program má stejně jako zadaný algoritmus P lineární časovou
složitost.

P - II - 4

Existuje celá řada v principu zcela odlišných algoritmů,
které řeší tuto úlohu. Nejlepší z nich mají lineární časovou
složitost, tzn. počet operací nezbytných к vyřešení úlohy
je úměrný počtu vrcholů zadaného mnohoúhelníku. Namísto
jednoho detailního vzorového řešení úlohy si proto raději
ukážeme hlavní myšlenky tří různých algoritmů (s lineární
časovou složitostí) a možnou programovou realizaci jednoho
z nich.

1. Protože známe souřadnice všech vrcholů daného mno-

hoúhelníku i souřadnice zkoumaného bodu (označme ho B),
můžeme snadno spočítat vzdálenosti bodu В od jednotlivých
stran mnohoúhelníku. Zároveň můžeme zjistit, od které strany
mnohoúhelníku má bod В nejmenší vzdálenost — nechť
je to strana A(k) A(k + 1). Nejkratší spojnici bodu В se
stranou mnohoúhelníku nemůže protínat (ani se jí dotýkat)
žádná jiná strana mnohoúhelníku, která by bod В od strany
A(k) A(k + 1) geometricky »oddělila«. К vyřešení úlohy
proto stačí zjistit, zda bod В leží napravo nebo nalevo od
úsečky A(k) A(k + 1). Přesněji řečeno, bod В leží uvnitř
daného mnohoúhelníku právě tehdy, jestliže pomocná funkce
VPRAVO zavolaná se souřadnicemi bodů A(k + 1), A(k), В
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na místě parametrů (v tomto pořadí) dává hodnotu »pravda«.
Záměna pořadí bodů A(k), A(k +1) při vyvolání funkce
VPRAVO je nutná z toho důvodu, že bod ležící na straně
mnohoúhelníku musí být označen jako ležící uvnitř.

2. Ze zkoumaného bodu В povedeme polopřímku libovol-
ným směrem takovým, aby na této poiopřímce neležel žádný
vrchol zadaného mnohoúhelníku. Zjistíme počet průsečíků
této polopřímky se stranou mnohoúhelníku. Budeme-li se

po poiopřímce pohybovat ve směru cd bodu В, každý prů-
sečík polopřímky se stranou mnohoúhelníku bude znamenat
přechod z oblasti uvnitř mnohoúhelníku do oblasti vně mno-
hoúhelníku nebo naopak. Volba takového směru polopřímky,
aby na ní neležel žádný vrchol mnohoúhelníku, nám odstraní
všechny nežádoucí případy, že by polopřímka mnohoúhelník
pouze »tečovala« (dotkla by se ho v jednom bodě nebo v celé
straně, ale ke změně oblasti by nedošlo). Polopřímka samo-

zřejmě vede do oblasti vně mnohoúhelníku, neboť je neko-
nečná, zatímco mnohoúhelník je konečný útvar. Počet prů-
sečíků polopřímky se stranami mnohoúhelníku proto jedno-
značně určuje, zda se výchozí bed В nachází uvnitř nebo
vně mnohoúhelníku. Je-li tento počet lichý, leží bod В uvnitř,
je-li sudý, leží vně zadaného mnohoúhelníku.

3. Nejprve zvlášť vyšetříme, zda zkoumaný bod В není
roven přímo některému z vrcholů A (i) daného mnoho-
úhelníku. Pokud ano, leží В uvnitř mnohoúhelníku. Jestliže
tomu tak není, má smysl hovořit o velikosti úhlů A(i) В A(i+1),
tzn. o velikosti úhlů, pod nimiž jsou z bodu В vidět jednotlivé
strany mnohoúhelníku. Velikosti těchto úhlů budeme měřit
podle konvence proti směru hodinových ručiček (podobně
jako v pomocné funkci UHEL) a jejich hodnotu budeme udá-
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vat ve stupních v rozmezí (—180; 180). Jestliže budeme
procházet po obvodu mnohoúhelníku z bodu A(1) postupně
přes body A(2), A(3), ... až zpět do bodu A(1), tzn. také
proti směru hodinových ručiček, a budeme přitom sčítat
úhly měřené výše uvedeným způsobem, bude nám tento
částečný součet pro bod A(k) udávat velikost úhlu A(l)BA(k).
Hodnota součtu úhlů po projití celým obvodem mnoho-
úhelníku bude jednoznačně určovat polohu bodu В vůči
zadanému mnohoúhelníku. Leží-li bod В uvnitř mnoho-

úhelníku, má výsledný součet úhlů hodnotu 360 stupňů,
v opačném případě je nulový. Volbou hodnoty +180 stupňů
pro přímý úhel je zajištěno, že bod В ležící na straně mnoho-
úhelníku je správně vyhodnocen jako ležící uvnitř (při volbě
— 180 stupňů by byl označen jako ležící vně).

Na závěr předvedeme programovou realizaci jednoho
z algoritmů řešících danou úlohu. Pro tento účel zvolíme
algoritmus popsaný výše jako 3. v pořadí. Program očekává
na vstupu nejprve počet vrcholů mnohoúhelníku, po něm
následují dvojice souřadnic jeho vrcholů a nakonec dvojice
souřadnic zkoumaného bodu.

program UVNITŘ (input, output);
const MAX = 50; (maximální počet vrcholů mnohoúhelníku}
var AX, AY: array [1. .MAX] of real;

(x-ová a+-ová souřadnice vrcholů mnohoúhelníku}
(počet vrcholů mnohoúhelníku}
(souřadnice zkoumaného bodu}
(součet velikostí úhlů}

VÝSLEDEK: Boolean; (výsledná poloha bodu В}
(pomocná proměnná}

N: integer;
BX, BY: real;
SOUČET: real;

I: integer;
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function UHL (XI, Y1, X2, Y2, X3, Y3: real) : real;
(předefinování pomocné funkce UHEL tak, aby dávala
hodnoty ve stupních z rozmezí ( — 180; 180 > }

var U: real;
begin
U: = UHEL (XI, Yl, X2, Y2, X3, 73);
if U > 180 then U: = U - 360;
UHL: = U

end;

begin
(Načtení vstupních hodnot:}
read (N); (počet vrcholů mnoh.}
for I: = 1 to N do read(^ Л 7[/]); (souřadnice vrcholů}
read (BX,BY)-, (souřadnice bodu £}

(Kontrola, zda bod В nesplývá s vrcholem mnohoúhelníku:}
VÝSLEDEK: = false;
/: = 1;
while not VÝSLEDEK and (I <= N) do

begin
if (BX = АХЩ) and (BY = AY[I]) then

VÝSLEDEK: = true;
I: = I + 1

end;
(Sčítání velikostí úhlů pro celý obvod mnohoúhelníku:}
if not VÝSLEDEK then

begin
SOUČET: - UHL (AX[N]> AY[N], BX, BY,

AX[1], AY[l])i
for I: = 1 to N — 1 do
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SOUČET: = SOUČET + UHL (.AX[1\ AY[I],
BX, BY, ЛХ[/ + 1], AY[I + i]);

if SOUČET = 360 then
VÝSLEDEK: = true

end;
{Vypsání výsledku úlohy:}
if VÝSLEDEK then

writeln (’Bod leží uvnitř mnohoúhelníku.’)
else

writeln (’Bod leží vně mnohoúhelníku.’)
end.

К uvedenému programu je třeba poznamenat, že při sku-
tečné praktické realizaci zvoleného algoritmu je nutné pro-
vádět jiným způsobem testování rovnosti dvou reálných
čísel. Zde jsme pro zjednodušení a pro přehlednost uvedli
příslušné testy ve tvaru

if (BX = АХЩ) and (BY = AY[I)) then . ..

a

if SOUČET = 360 then ...

Tento tvar ovšem není vhodný pro výpočet, neboť reálná
čísla jsou v počítači zobrazena přibližně. Místo přímého testu
na rovnost dvou reálných čísel je proto třeba zkoumat, zda
se obě čísla od sebe příliš neliší, například takto:

if (abs(BX - AX[I]) < EPS) and (abs(J3Y
< EPS) then ... pro vhodnou velmi malou konstantu EPS.
Druhou z uvedených podmínek je v tomto konkrétním pří-
pádě možné zapsat také jednodušeji například jako

if SOUČET > 300 then ..

AY[I})

* 3
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neboť víme, že po ukončení výpočtu nabude proměnná
SOUČET jedné z dvou možných hodnot, 360 nebo 0.

P - l!I -1

Jistě existuje nějaká konečná posloupnost operací sjedno-
cení a rozdělení, která převede P na Q. Jednou z možných
cest je například nejprve sjednotit všechny množiny Pi,
i — 1, a takto vzniklou množinu potom postupně
rozdělit na množiny Qj, j — 1, ..., n. Existuje proto také
nějaká nejkratší posloupnost operací převádějící P na Q.

Nejprve ukážeme, že v takové nejkratší posloupnosti operací
mohou být nejprve provedeny všechny operace sjednocení
a potom všechny operace rozdělení. К tomu stačí dokázat
následující tvrzení: Předchází-li v nejkratší možné posloup-
nosti operací převádějící P na Q nějaká operace rozdělení
operaci sjednocení, lze pořadí těchto dvou operací zaměnit
(přitom se pochopitelně mohou změnit i množiny, s nimiž
se operace provádějí). Platnost tvrzení dokážeme rozborem
případů. Nechť je v uvažované posloupnosti operací rozdělení
množiny A na množiny AI, A2 následováno sjednocením
množin В, C na množinu D.

1. Pokud se žádná z množin AI, A2 nerovná žádné
z množin В, C, jsou obě operace zcela nezávislé, a můžeme
proto zaměnit jejich pořadí bez vlivu na výsledek.

2. Pokud {Al,A2j = {В, C}, pak se provedením uvažo-
váné dvojice operací obnoví přesně stejný stav souboru mno-

žin, jaký by^l před provedením těchto operací. Obě operace
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je tudíž možné vynechat, což je spor s minimalitou délky
naší posloupnosti operací. Tento případ tedy nemůže nastat.

3. Jestliže například množiny A2, C jsou shodné a množiny
AI, В různé (obdobně pro ostatní kombinace), můžeme
místo naší dvojice operací provést nejprve sjednocení množin
А, В a v dalším kroku takto vzniklou množinu rozdělit
na AI, D. Výsledný soubor množin bude stejný jako u původní
posloupnosti operací.

Jiný případ nemůže nastat. Dokázali jsme tedy, že existuje
nejkratší posloupnost operací převádějící P na Q, ve které
se nejprve provedou všechna sjednocení a potom rozdělení
množin.

Množiny PI, P2, ..., Pm budeme nejprve sjednocovat,
až dostaneme soubor množin A = {AI, A2, ..., Ar},
n < = r < — m. К tomu je třeba provést m — r operací sjed-
nocení. Potom množiny tohoto souboru rozdělíme na množiny
Ol, Q2, .. ., Qn provedením n — r operací rozdělení. Celkem
se tedy provede К = (m + ri) — 2r operací. Hodnota m + n
je pevně dána zadanými soubory množin P a Q. Musíme proto
hledat co největší hodnotu r. Pro další úvahy budeme zatím
předpokládat, že všechny množiny Pl, ..., Pm, Q1, ..., Qn
jsou neprázdné. Úpravu řešení pro případ výskytu prázdných
množin v zadaných souborech P a Q provedeme v závěru.

Každá množina Ai (i = 1, 2, .. ., r) je sjednocením něko-
lika množin souboru P (neboť tak vznikla) a lze ji vyjádřit
také jako sjednocení několika množin souboru Q (tak se bude
dělit). Pokud mají množiny Pi, Pj s množinou Qh neprázdný
průnik, musí být Pi, Pj spojeny v jedné z množin souboru A.
Naopak, bude-li uvedená podmínka splněna, bude každá
množina Qh podmnožinou nějaké množiny souboru A, a bude
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tedy možné získat Q z A operacemi rozdělení. Nebudeme
provádět více sjednocení, než je nezbytně nutné (tj. než uvádí
tato podmínka), neboť naší snahou je minimalizovat počet
všech operací neboli získat soubor A tvořený co největším
počtem r množin.

Navrhneme nyní algoritmus na určení, které z množin
souboru P je nutné sjednotit vždy do jedné množiny souboru
A. Pro tento účel je možné převést naši úlohu na jeden stan-
dardní grafový algoritmus. Soubory množin P a Q můžeme
reprezentovat grafem G o m + n vrcholech odpovídajících
jednotlivým množinám. Vrcholy grafu Pi a Qj jsou spojeny
hranou právě tehdy, jestliže množiny Pi a Qj mají neprázdný
průnik. Jiné hrany v grafu G nejsou (jedná se tedy o tzv.
bipartitní graf). Podle výše uvedené podmínky na sjednoco-
vání množin souboru P je nutné spojit do jedné množiny
souboru A vždy právě ty množiny, které patří do jedné kom-
ponenty souvislosti grafu G (tzn. ty množiny, které jsou v grafu
G spojeny hranami). Hledaný počet množin r souboru A
je proto roven počtu komponent souvislosti grafu G.

Algoritmus na nalezení komponent souvislosti daného
grafu je dobře znám jako jeden ze standardních algoritmů
teorie grafů, a nebudeme ho zde tudíž podrobněji rozebírat.
Je vysvětlen v každé základní učebnici teorie grafů. Struktura
algoritmu je velmi podobná algoritmu nalezení cesty mezi
dvěma vrcholy grafu, který je uveden jako vzorové řešení
úlohy P — I — 1.

Soubory množin P, Q můžeme v programu reprezentovat
maticí logických hodnot T[\. .m, 1. .n] takovou, že
T[i,j] = 1, jestliže Pi, Qj mají společný prvek,
T[i,j] = 0, jestliže Pi, Qj nemají společný prvek.

159



Matice T má minimální možnou velikost postačující к uložení
všech informací o vzájemných vztazích množin souborů
P a Q. Zároveň je vhodnou částí matice sousednosti grafu G
obsahující všechny potřebné informace o grafu G. Na základě
matice T určíme počet komponent souvislosti r grafu G.
Výsledný minimální počet operací potřebných к převedení
souboru množin P na soubor Q je potom dán výrazem
m + n — 2r.

Zbývá dořešit případy že se v souborech P a O mohou
vyskytovat prázdné množiny. Nechť soubor P obsahuje p

prázdných množin a soubor Q obsahuje q prázdných množin.
Potom platí К = (m — p) + (n — q) — 2r + \p — q\, kde
číslo r sestrojíme výše uvedeným postupem ze systémů
P', Q' vzniklých z P, Q vynecháním prázdných množin.
К převedení p prázdných množin na q pak potřebujeme
provést ještě |p — q\ operací: jestliže/) > = q, bude to p — q

sjednocení, pokud p < q, provedeme q — p rozdělení.

P - III - 2

Podle zadání úlohy má každá jednička v matici A (případně
s výjimkou těch, které jsou na okraji matice) právě dva jed-
ničkové sousední prvky, kde za sousední považujeme pouze

pole ve směru vlevo, vpravo, nahoru a dclů. Tak vznikají
v matici A »čáry« tvořené jedničkami, které celou plochu
matice A dělí na jednotlivé oblasti tvořené nulovými prvky.
Jedna z oblastí je zvolena к vybarvení tím, že je zadán jeden
její prvek

Dva nulové prvky matice A patří do téže oblasti, jestliže
nejsou odděleny žádnou »čarou« z jedniček. Z toho vyplývá,
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že víme-li o prvku A[K, L] = 0, že patří do zvolené oblasti,
pak do této oblasti budou patřit také všechny nulové prvky
pole A, které s A[K, L] sousedí ve směru svislém, vodorovném
nebo šikmém. Naopak, jestliže prvek A[K, L\ = 0 (různý
od prvku A[I,J]) nesousedí ve směru svislém, vodorovném
ani šikmém s žádným prvkem oblasti zadané prvkem A[I, J],
pak A[K, L] do této oblasti nepatří.

Z uvedeného rozboru plyne následující jednoduchý algo-
ritmus. Vezmeme zadaný prvek A[I,J] a obarvíme ho (tzn.
dosadíme do něj 2). Potom prohlédneme všech osm prvků,
s nimiž sousedí, a obarvíme ty z nich, které jsou dosud nulové.
Pro každý z takto nově obarvených prvků celý postup opa-

kujeme. Výpočet a obarvování probíhá tak dlouho, dokud
je možné obarvit nějaký další prvek matice A.

Algoritmus je možné realizovat pomocí rekurzívní procedury
nebo třeba pomocí zásobníku. Ukážeme si zde obě řešení.
První z nich má kratší a přehlednější zápis, druhé bude pra-
covat o něco rychleji.

Řešení pomocí rekurze

program BARVENI 1 (input, output);

(počet řádků matice]
(počet sloupců matice)

var A: array [1.. M, 1. .N] of integer;
(pomocné proměnné]
(zadané výchozí pole)

procedure VYBARVI (X, Y: integer);
(vybarvení prvku A[X, Y] a rekurzívní vyvolání téže pro-
cedury na všechny prvky v okolí)

const M = 10;
N= 10;

К, L: integer;
I,J: integer;
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{pomocné proměnné }var K, L: integer;
begin
A[X, Y]: = 2;
for К: = X — 1 to X + 1 do

{obarvení prvku A[X, Y]}

for Li — Y — 1 to Y + 1 do
if (К > = 1) and (К < = М) and (L > = 1) and
(L <= N) then

if A[K, L]= 0 then VYBARVI (К, L)
end; {VYBARVI}

begin
for K: = 1 to M do

for L: = 1 to N do
read (A[K, L]);

read (IJ);
VYBARVI (IJ);
for К: — 1 to M do

begin
writeln;
for L: = I to N do

write (A[K, L] : 2) {vytisknutí obarveného A}
end;

writeln
end.

{přečtení obsahu pole A }
{přečtení výchozího prvku}
{obarvení pole od prvku A[I,J]}

Řešení pomocí zásobníku

program BARVENI 2 (input, output);

{počet řádků }const M = 10;
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(počet sloupců}
MAX = 100; (velikost zásobníku — max. M X N]
N = 10;

type SOUR = record X, Y: integer end;
(souřadnice prvku ukládané do zásobníku}

var A: array [1.. M, 1.. N] of integer;
К, L: integer;
I,J\ integer;
X, Y: integer;
STACK: array [1. .MAX] of SOUR;

(zásobník souřadnic}
(ukazatel vrcholu zásobníku STACK}

(pomocné proměnné}
(zadání výchozího prvku}
( souřadnice řešeného prvku }

SP: integer;

begin
for К: = 1 to М do

for L: — 1 to N do

read (A[K,L]y
read (IJ);

(přečtení obsahu pole A }
(přečtení výchozího prvku}

STACK [l].X: = /;
STACK [\].Y : = J-,
SP: = 1; (inicializace zásobníku}

while SP > 0 do

begin
X: = STACK [SP].X;
Y: = STACK [SP]. У;
SP: = SP- 1;
A [X, Y] : = 2;

(odebrán vrchní prvek ... }
(... a obarven na »2«}
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for К: = X - 1 to Z + 1 do
for L: = Y - 1 to Y + 1 do

if (К > = 1) and (K < - Af) and (L > — 1) and
(L < = N) then

if Л[JT, L] = 0 then
begin
SP: = SP + 1;
5ГЛЖ[5Р].АГ: = К;
STACK [5Р]. Y : = L; { ... uložen do zásobníku}
end

(sousední prvek je nulový}

end;
for К: = 1 to M do

begin
writeln;
for L: — 1 to N do

write (A[K, L] : 2) (vytisknutí obarveného A}
end;

writeln

end.

Správnost navrženého algoritmu snadno ukážeme s použi-
tím rozboru uvedeného na začátku řešení. Při práci algoritmu
bude obarven prvek A[I, J] a dále všechny další prvky máti-
ce A, které sousedí s některým dříve obarveným prvkem.
V okamžiku, kdy již není možné obarvit žádný další prvek
a kdy tedy výpočet podle algoritmu končí, bude proto obar-
vena právě celá oblast původně nulových prvků matice A
určená prvkem A[I,J], Přesně to bylo naším úkolem.
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Výpočet podle algoritmu je jistě konečný, neboť v každém
kroku algoritmu je obarven jeden původně nulový prvek
matice A. Tato matice má konečnou velikost, a tedy také
konečný počet všech nulových prvků.

Algoritmus má maximální časovou složitost úměrnou
hodnotě M.N neboli počtu prvků matice A. Vyžaduje totiž
provedení tolika kroků výpočtu, kolik je v zadané matici A
nulových prvků v oblasti určené prvkem A[I,J]. Řádově
rychlejší algoritmus řešící zadanou úlohu nemůže existovat,
neboť při libovolném postupu řešení musí být obarven každý
nulový prvek zvolené oblasti a těch může být až M.N. У praxi
se ovšem používají jiné algoritmy, které jsou sice složitější
z hlediska zápisu a vysvětlení, ale mají alespoň v průměrném
případě (nikoli v nejhorším) značně menší paměťové nároky
a jsou i o něco rychlejší. Zde popsaný algoritmus totiž může
navštívit a testovat jeden prvek matice A až devětkrát (jednou
při vlastním obarvování prvku a osmkrát při obarvování
jeho sousedů) a tento počet je možné vhodnou organizací
výpočtu snížit.

Р-Ш-3

Věta: Je-li před prvkem A[I], 1 < I < = N, tzn. na místech
v poli A s indexem menším než /, celkem P čísel větších,
než je A[I], pak se tato čísla dostanou za A[I] po právě P
průchodech vnějšího cyklu algoritmu.

Důkaz: Při každém průchodu se za A[I] dostane právě
jedno z takových čísel.
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a) Nemůže jich být více, neboť s číslem A[I] se provede
pouze jedna výměna, kterou se číslo A[I] dostane v poli A
o jedno místo dopředu na pozici A[I — 1]. Na tomto novém
místě může být naše číslo testováno opět až v dalším průchodu
cyklem.

b) Jedno z P čísel (pro P > 0) větších než A[I] se za
A[I] jistě dostane. Bude to číslo v2[é>] = max {A[1], ..

..., A[I — 1]}, neboť pro tento prvek bude vždy
splněna podmínka v programu, takže se při jednom průchodu
cyklem dostane až na pozici A[I — 1], a protože je větší než
A[I], bude ještě v témže průchodu cyklem vyměněno i s čís-
lem A[I~\.

Při prvním průchodu cyklem tedy zůstane v poli A před
naším sledovaným číslem ještě P — 1 větších čísel a celý
postup se bude opakovat. Přesně po P průchodech se všechna
čísla větší než sledované číslo dostanou v poli A za něj, což
jsme měli dokázat.

К vzestupnému setřídění celého pole A je třeba, aby se
za každý prvek pole A dostala všechna větší čísla, která jsou
na začátku práce algoritmu umístěna před ním. Podle doká-
zané věty každý prvek pole A vyžaduje, aby počet průchodů К
byl větší nebo roven počtu prvků pole A s menšími indexy,
které jsou větší než on sám. Pro takové К budou před každým
prvkem stát pouze prvky menší nebo stejné, což je přesně
vyjádření vzestupného uspořádání prvků pole A.

V hledaném algoritmu tedy stačí pro každý prvek pole A
zjistit, kolik prvků pole A s menším indexem je větších než
on sám, a maximum z těchto čísel vzít za hodnotu K.

• У
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program TRID (input, output);

{velikost pole A }
var A: array [1. .N] of integer; (tříděné pole A}

I,J, K, L: integer;

const N = 10;

(pomocné proměnné}
begin
for 7: = 1 to N do read (Л[7]); (počáteční hodnoty pole A]
К: = 0;
for 7: = 2 to N do

(hledaná hodnota К)

(zkoumáme prvek A[I])
(počet větších předchůdců}

begin
L: = 0;
for J: = 1 to 7 — 1 do

if A[J] > A[I] then L: — L + 1;
(další větší předchůdce}

if L > К then К: = L

end;
writeln (К) (tisk výsledku}
end.

Správnost algoritmu plyne z provedeného rozboru. Koneč-
nost výpočtu je zřejmá, neboť počet průchodů každým cyklem
je předem omezen. Algoritmus má konstantní paměťové
nároky (nepočítáme-li zadané pole A, které se nesmí měnit)
a kvadratickou časovou složitost.

P - III - 4

a) Nejrychlejší známé algoritmy provádějící triangulaci
(tj. rozdělení na trojúhelníky) daného mnohoúhelníku v čase
AT.log (N), nebo dokonce 77.log (log (N)), kde N je počet
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vrcholů mnohoúhelníku, jsou velmi komplikované. Ukážene si
zde proto značně jednodušší kvadratický algoritmus. Odvo-
zení algoritmu rozdělíme do několika kroků.

1. Nejprve ukážeme, že do každého mnohoúhelníku s více
než třemi vrcholy lze umístit diagonálu, tj. úsečku, která
leží celá uvnitř mnohoúhelníku a která spojuje dva vrcholy
mnohoúhelníku, jež spolu nesousedí na obvodu. Pro konvexní
mnohoúhelník je toto tvrzení triviální, stačí spojit libovolnou
dvojici nesousedících vrcholů. Je-li mnohoúhelník nekon-
vexní, existuje v něm vrchol, u něhož leží vnitřní úhel větší
než 180 stupňů. Při pohledu z tohoto vrcholu »dovnitř«
mnohoúhelníku proto jistě uvidíme alespoň dvě jeho různé
strany. Na předělu těchto stran musí být vrchol mnoho-
úhelníku, který je z našeho vrcholu také vidět a ke kterému
tudíž můžeme vést diagonálu.

2. Pro libovolný mnohoúhelník (s alespoň třemi vrcholy)
existuje taková jeho triangulace, v níž alespoň jeden z troj-
úhelníků, které rozdělením mnohoúhelníku vzniknou, má
dvě své strany shodné se stranami mnohoúhelníku. O takovém
trojúhelníku budeme dále říkat, že leží »na obvodu« mnoho-
úhelníku. Ukážeme, jak takovou triangulaci sestrojit. Podle
bodu 1 lze daný mnohoúhelník rozdělit diagonálou na dva
menší. Každý z nich má právě jednu svoji stranu tvořenou
diagonálou a všechny zbývající jeho strany jsou stranami
původního mnohoúhelníku. Zvolíme libovolný z menších
mnohoúhelníků a budeme pokračovat v jeho dělení. Opět
podle 1 je možné rozdělit ho diagonálou. Ze dvou vzniklých
menších mnohoúhelníků jeden znovu splňuje podmínku,
že jediná jeho strana je diagonálou původního mnohoúhelníku
a zbývající jeho strany jsou stranami původního mnoho-
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úhelníku. S tímto mnohoúhelníkem budeme pokračovat
v dělení stejným způsobem. Při každém dělení se zmenšuje
počet vrcholů mnohoúhelníku, s nímž právě pracujeme,
takže po konečně mnoha krocích získáme trojúhelník. Ten
má opět vlastnost, že pouze jedna jeho strana je diagonálou
výchozího mnohoúhelníku. Jedná se tudíž o trojúhelník
»na obvodu« mnohoúhelníku. Triangulaci zbývajících dílčích
mnohoúhelníků, kterými jsme se dosud nezabývali, již pro-
vedeme libovolně. Existence nějaké triangulace každého
mnohoúhelníku přímo plyne z 1.

3. Na základě tvrzení 2 o existenci trojúhelníku »na obvodu«
mnohoúhelníku již můžeme sestrojit algoritmus řešení
úlohy. Vyjdeme od prvního vrcholu mnohoúhelníku A[ 1]
a budeme postupovat po obvodu ve zvoleném směru proti
pohybu hodinových ručiček (v souladu se způsobem zadání
mnohoúhelníku). Přitom budeme hledat v pořadí první vrchol
mnohoúhelníku A[I] takový, aby trojúhelník tvořený vrcholy
A[I — 1], A[I], A[I + 1] byl trojúhelníkem »na obvodu«
mnohoúhelníku. To bude splněno právě tehdy, jestliže vnitřní
úhel mnohoúhelníku u vrcholu A[I] bude konvexní (tj. menší
než 180 stupňů) a jestliže do tohoto trojúhelníku nezasahuje
žádný jiný vrchol mnohoúhelníku. Tvrzení 2 nám zaručuje,
že takový trojúhelník existuje, a při systematickém zkoumání
všech vrcholů ho tedy jistě najdeme. Po nalezení trojúhelní-
ku »na obvodu« A[I — 1] A[I] A[I + 1] tento trojúhelník
od mnohoúhelníku oddělíme diagonálou spojující vrcholy
A[I — 1] a A[I + 1] (stává se součástí hledané triangulace).
Zbylý mnohoúhelník má o jeden vrchol méně — o vrchol
označený А[1]. V triangulaci budeme pokračovat stejným způ-
sobem počínaje od vrcholu A[I — 1] (ten musíme znovu

169



prozkoumat, neboť vnitřní úhel u něj ležící se oddělením
trojúhelníku A[I — 1 ]A[I]A[I + 1] zmenšil) ve stejném
směru proti pohybu hodinových ručiček. Výpočet skončí
v okamžiku, kdy nám zbude poslední trojúhelník.

4. Správnost uvedeného algoritmu plyne z dokázaných
tvrzení a byla zdůvodněna zároveň s odvozováním algoritmu.
Výpočet skončí po konečně mnoha krocích, neboť v každém
kroku je od mnohoúhelníku oddělen jeden trojúhelník (je
nalezena jedna diagonála náležející do výsledné triangulace),
takže počet kroků výpočtu je předem znám. Do mnohoúhel-
niku o N vrcholech se při triangulaci umístí přesně N — 3
diagonál.

5. Algoritmus má kvadratickou časovou složitost. Otesto-
vání jednoho vrcholu mnohoúhelníku, zda u něj leží troj-
úhelník »na obvodu«, vyžaduje řádově N operací (testy na
náležení do trojúhelníku pro všechny zbývající vrcholy).
Přitom celá triangulace se provede při jednom »obejití«
po obvodu mnohoúhelníku, tzn. při provedení řádově N
takových testování. Poslední tvrzení plyne ze zvoleného
pořadí, v jakém vyšetřujeme jednotlivé vrcholy. Při zkoumání
vrcholu A[I] totiž víme, že u žádného z vrcholů A[ 1], ..

A[I — 1] neleží trojúhelník »na obvodu«. Jestliže nyní
oddělíme trojúhelník A[I — 1] A[I] A[I -f 1], mohla se zrně-
na dotknout pouze vrcholu A[I — 1], u kterého se zmenšil
vnitřní úhel. Od tohoto vrcholu se proto pokračuje v prohle-
dávání.

6. Na závěr uvedeme programovou realizaci algoritmu.
Na vstupu programu je očekáván nejprve počet vrcholů
mnohoúhelníku a dále souřadnice všech vrcholů. Výstupem
je seznam diagonál tvořících triangulaci.

• У
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program TRIANGULACE (input, output);
const MAX = 100; (maximální počet vrcholů }

var AX, A Y: array [0.. MAX] of real;
(souřadnice vrcholů}
(skutečný počet vrcholů}N: integer;

NALEZEN: Boolean; (příznak nalezení trojúhelníku}
MOŽNOST: Boolean; (příznak možného trojúhelníku}
MEZ: integer; (počet všech diagonál)
I,J, К: integer; (pomocné proměnné}

begin
read (N)i
for I: = 1 to N do

read (AX[/], AF[/]); (přečteny souřadnice vrcholů}
(kopie prvního a posledního .. }
(... vrcholu mnohoúhelníku ... }

AX[0]: = AX[N];
AY[0]: = A F[iV];
AX[N -f 1] : = AX[ 1]; (... z technických důvodů — .. }
AY[N + 1] : = AY[ 1]; (.. . — pro snazší testování}

(začneme od vrcholu A[1]}
(počet všech diagonál}

/: = 1;
MEZ: = N - 3;
for J: = 1 to MEZ do

begin (sestrojíme další diagonálu}

NALEZEN: = false;
while not NALEZEN do (hledáme trojúh. »na obvodu«}

begin
if UHEL (AX[I + 1 ],AY[I + 1], AX[I], AY[I],

AX[I - 1], AY[I - 1]) < 180 then
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{konvexní vnitřní úhel}begin
К: = 1;
MOŽNOST: = true;
while MOŽNOST and (К < — N) do

begin
if abs (К — I) > 1 then {vrchol A[K] je různý

od A[I] a nesousedí s ním na obvodu}
if VNITŘ A Y[K], AX[I - 1],
A Y[I — 1 ], ЛВД, Л У[7], л*[/ + 1L
AY[I + 1]) then
MOŽNOST: = false; {A[K] leží uvnitř}

К: = К + 1
end;

if MOŽNOST then NALEZEN: = true

{žádný jiný vrchol není uvnitř
trojúhelníku A[I - 1] A[I\ A[I + 1]}

{zkusíme další vrchol}else I: = / + 1
end

else I: = I + 1

end;
writeln (’Diagonála:’, AX[I- 1], AY[I— 1], AX[I + 1],

AY[I+ 1]);
for К: = I to N do

begin
AX[K]: ----- AX[K +1]; {vynechání vrcholu A[I] ... }
AY[K]: — AY[K +1] { . .. z mnohoúhelníku}
end;

if / = 1 then

{zkusíme další vrchol}

{diag. nalezena a vytištěna}

{kopie nového vrcholu ví[l]}begin
AX[N]: = AX[ 1];
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AY[N]: - AY[ 1]
end;

if I = N then

begin
АХЩ: = AX[N - 1];
A F[0]: = ЛУ[ЛГ- 1]
end;

N: = N - 1;
/: = / — 1;
if / = 0 then I: = N

end

{kopie nového vrcholu zl[iV]}

{nový počet vrcholů}
{nový zkoumaný vrchol)

end.

b) Lomená čára spojující po řadě body P(l), .P(N), P(1)
je zřejmě uzavřená. Podle definice tedy tvoří mnohoúhelník
právě tehdy, jestliže sama sebe nikde neprotíná. Stačí proto
ověřit, zda existuje nějaká dvojice stran mnohoúhelníku,
které spolu na obvodu nesousedí a které přitom mají společný
bod. Lomená čára P( 1), ..., P(N), P(l) tvoří mnohoúhelník
právě tehdy, jestliže taková dvojice úseček neexistuje.

Při řešení úlohy budeme vyšetřovat vzájemnou polohu
každé dvojice různých spolu nesousedících úseček ze zadané
lomené čáry. Správnost tohoto řešení je zřejmá. Algoritmus
je jistě konečný, neboť všech úseček je konečně mnoho a kaž-
dou dvojici úseček budeme vyšetřovat pouze jednou. Z toho
zároveň plyne, že algoritmus bude mít kvadratickou časovou
složitost.

Zbývá ještě vyřešit otázku, jak určit, zda dvě úsečky zadané
souřadnicemi svých koncových bodů mají nějaký společný
bod. Existuje několik různých postupů, jak vyhledat společný
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bod úseček. Jednou možností je nepoužít vůbec předdefino-
váné funkce a celý problém vyřešit prostředky analytické
geometrie pomocí parametrických rovnic obou úseček.
Ukážeme si zde jiné řešení, využívající funkci VPRAVO.
Označme zkoumané úsečky AB, CD a souřadnice jejich
krajních bodů XA, YA, ... atd. Jestliže některý z krajních
bodů jedné úsečky leží na druhé úsečce, pak úsečky jistě
mají společný bod. V opačném případě stačí vyšetřit, zda oba
body А, В leží ve stejné polorovině určené přímkou CD a zda
oba body C, D leží ve stejné polorovině určené přímkou AB.
Úsečky AB, CD mají společný bod právě tehdy, pokud ani
jedna z těchto podmínek neplatí. К uvedenému vyšetřování
polohy bodů použijeme přímo předdefinovanou funkci VPRA-
VO. Hraniční přímku již můžeme zahrnout do libovolné
poloroviny, neboť případ, že některý krajní bod jedné úsečky
leží na druhé úsečce, jsme již vyřešili dříve.

Uvedené řešení dílčího problému společného bodu dvou
úseček nyní naprogramujeme. Pomocná lokální funkce
NA USECCE (XI, Y1, X2, Y2, X3, Y3) dává logickou vý-
stupni hodnotu podle toho, zda na úsečce s krajními body
PI = (XI, Y1) a P2 = (X2, Y2) leží bod P3 = (X3, Y3).
Hodnota výsledné logické funkce PR USECIK (XA, YA, XB,
YB, XC, YC, XD, YD) je pak určena tím, zda úsečky AB,
CD mají společný bod.

function PRŮSEČÍK (XA, YA, XB, YB, XC, YC, XD,
YD : real): Boolean;

function NAUSECCE (XI, Yl, X2, Y2, X3, Y3: real):
Boolean;
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begin
NAUSECCE: = VPRAVO (XI, Y1,X2, Y2,X3,Y3)and

VPRAVO (X2, Y2, XI, Yl, X3, Y3) and
(X3 > = min (XI, X2J) and
(X3 < = max (XI, X2)) and
(Y3>= min (Yl, Y2)) and
(Y3 <= max (Yl, Y2))

end; {NAUSECCE}
begin
if NAUSECCE(XA, YA,XB, YB,XC, YC) or

NAUSECCE(XA, YA, XB, YB, XD, YD) or
NA USECCE (XC, YC, XD, YD, XA, YA) or
NAUSECCE (XC, YC, XD, YD, XB, YB) then

PRUSECIK: = true

else

PRUSECIK: = not (
(VPRAVO (XA, YA, XB, YB XC, YC) =
VPRAVO (XA, YA, XB, YB, XD, YD))

or

(VPRAVO (XC, YC, XD, YD, XA, YA) =

VPRAVO (XC, YC, XD, YD, XB, YB)))
end; {PRUSECIK}

Na závěr uvedeme celý program řešící naši úlohu. Program
využívá výše uvedenou funkci PRUSECIK. Na vstupu
programu je očekávána nejprve hodnota N a za ní postupně
souřadnice všech vrcholů zadané lomené čáry. Výstupem je
sdělení, zda tato lomená čára tvoří mnohoúhelník.

program MNOHOÚHELNÍK (input, output);
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{max. délka lomené čáry)const MAX = 100;

var PX, PY: array [1..MAX\ of real; (souřadnice bodů}
{počet bodů)

SPOLEČNÝ: Boolean; {příznak společ. bodu)
{pomocné proměnné}

N: integer;

I,J: integer;

function PRŮSEČÍK (XA, YA, XB, YB, XC, YC, XD,
YD: real): Boolean;

external;

begin
read (N);
for I: = 1 to N do read (PX[I], PY[I]); {přečteny souřad.}
PX[N + 1]: = PX[iy,
PY[N + 1]: = РУ[1];
SPOLEČNÝ: = false;
I: = 1;
while (not SPOLEČNÝ) and (I <= N — 2) do

{testujeme úsečku P(7) Р(/ +1)}begin
= I + 2;

while (not SPOLEČNÝ) and
((J < N) or ((/ > 1) and (J = N))) do

{druhou úsečkou je P(J) P(J + 1)}
SPOLEČNÝ: = PRUSECIK(PX[I],PY[I],PX[I + 1],

PY[I + 1], PX[J], PY[J), PX[J + 11, PY[J + 1]);
1

end;
I: = I + 1
end;

begin
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write (’Zadaná lomená čára’);
if SPOLEČNÝ then write (’ne’);
writeln (’tvoří mnohoúhelník.’)
end.
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Korespondenční seminář ÚV MO

Korespondenční seminář je jednou z forem péče o talento-
váné žáky. Vznikl ve 24. ročníku MO proto, aby bylo možno
věnovat individuální péči i těm žákům, kteří neměli možnost
navštěvovat speciální školy a pracovat v tamních seminářích.
Nyní, kdy existují i krajské korespondenční semináře a kdy
speciální školy s třídami zaměřenými na matematiku najdeme
v každém kraji, je cílem tohoto semináře zlepšit individuální
přípravu všech studentů, kteří prokázali své schopnosti
a matematický talent v předchozích ročnících matematické
olympiády. Korespondenční seminář tak nadále zůstává
důležitou součástí přípravy na mezinárodní matematickou
olympiádu.

К účasti v korespondenčním semináři jsme pozvali všechny
špičkové řešitele kategorie A spolu s těmi studenty, kteří
nějak vynikli v krajských kolech kategorií В a C předchozího
ročníku МО. V průběhu 38. ročníku MO jim bylo postupně
zasláno 5 sérií poměrně náročných úloh, jejichž texty najdete
v úlohové části této ročenky (bez řešení). Došlá řešení pak
byla opravena, ohodnocena a s rozmnoženým komentářem
vrácena účastníkům semináře. Nejlepšími v celkovém hodno-
cení byli:
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1. Petr Hliněný, 3. ročník G M. Koperníka, Bílovec
2. Ilja Martišovitš, 4. ročník G J. Hronca, Bratislava
3. Ondřej Kalenda, 3. ročník G W. Piecka, Praha
4. Ondřej Such, 3. ročník G A Markuša, Bratislava
5. Martin Dindós, 3. ročník G J. Hronca, Bratislava
6. Marek Velešík, 4. ročník G, Koněvova ul., Brno
7. Vladimír Komár, 3. ročník G, Šmeralova ul., Košice
8. Eduard Omasta, 3. ročník G, Ružomberok
9. Peřr Čížek, 4. ročník G W. Piecka, Praha10.Martin Čížek, 3. ročník G, Rožnov pod Radhoštěm

Korespondenční seminář je řízen tajemníkem ÚV MO
RNDr. Karlem Horákem, CSc., který se staral o výběr úloh
a prováděl i redakci komentářů. Opravu pak zajišťovalo ně-
kolik pracovníků MÚ ČSAV a několik studentů a aspiran-
tů MFF KU Praha (všichni jsou bývalí olympionici).

Úlohy korespondenčního semináře

1.1 Na výšce BH trojúhelníku ABC je dán bod P. Označme
К a L průsečíky přímek АР, ВС a přímek CP, AB.
Dokažte, že úsečky KH a LH svírají s výškou BH shodný
úhel.

1.2 Jsou dána kladná čísla X, a, (3 a posloupnost (x^^QSplňu-
jící následující rovnosti:
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*1 = Á,Xo = 1,

(a + /5)ге xra = xn xn *o + aw_1 /9 xw_i Xi +
+ an_2 /32 х„_2 x2 + ... + /5” x0 хи (и > 1).

Najděte хи a zjistěte, pro které и je xn největší.1.3Na přímce je dáno 50 úseček. Dokažte, že platí alespoň
jedno z následujících tvrzení:
a) existuje 8 úseček se společným bodem;
b) existuje 8 úseček, z nichž každé dvě jsou disjunktní.1.4Je dáno několik čtverců, jejichž celkový obsah je 1.
Dokažte, že je možno je umístit do čtverce s obsahem 2,
aniž by se překrývaly.1.5Na kružnici je dána množina F oblouků, pro kterou platí,
že při libovolném otočení R kolem středu dané kružnice
mají množiny F a R(F) společný bod. Jaký nejmenší
součet délek mohou mít oblouky z množiny F, je-li
počet oblouků n ?1.6Nechť strany trojúhelníku ABC jsou základnami rovno-

ramenných trojúhelníků AB\C, BA\C a AC\B. Dokažte,
že kolmice vedené z bodů А, В, С к odpovídajícím
přímkám B\C\, CjAj, A\B\ procházejí jedním bodem.
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1.7 Najděte všechna řešení rovnice

an + npa» - xn = a.n]/xn

je-li a reálné a n > 1 přirozené.2.1Zjistěte, pro která и platí: Je-li dán pravidelný и-úhelník
(и ^ 3), v jehož vrcholech jsou rozmístěny černé a bílé
kameny, pak existují tři kameny stejné barvy ležící
ve vrcholech rovnoramenného trojúhelníku.2.2Jezero v Kocourkově má tvar nekonvexního и-úhelníku.
Dokažte, že bud z žádného jeho bodu není vidět všechny
břehy, anebo množina takových bodů tvoří vnitřek kon-
vexního m-úhelníku, kde m ^ n.2.3Představme si nekonečnou šachovnici ve tvaru horní

poloroviny: na bílých polích šachovnice jsou zapsána
nějaká čísla tak, aby pro každé černé pole platilo, že součet
čísel v levém a pravém sousedním poli je stejný jako
součet v horním a spodním sousedním poli. Je-li dáno
nějaké číslo dn stojící v и-té řadě, kolik nejméně čísel
stojících v prvních dvou řadách šachovnice musíme
ještě znát, abychom mohli určit číslo stojící v (и + 2). řa-
dě nad číslem dn ?2.4Víme-li, že na г-tém výletě turistického oddílu (1 ^ i ^ n)
bylo a*. 100% chlapců, kolik nejvýše procent chlapců
je v oddíle ? (Každý se zúčastnil aspoň jednoho výletu.)
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2.5Nechť К je střed hrany AB dolní podstavy pravidelného
komolého jehlanu a L střed některé hrany CD jeho horní
podstavy. Dokažte, že průměty obou úseček AB, CD
na přímku KL mají stejnou délku.2.6V rovině jsou dány dva body А, В г přímka^ procházející
bodem A a neprocházející bodem B. Uvažujme libovol-
nou kružnici se středem O procházející body А, В a označ-
me C její průsečík s přímkou p. Najděte geometrické
místo středů úseček OC.2.7Jsou dána čísla 1, 2, 3, ..., 1000. Najděte největší m

takové, že po vyškrtnutí libovolných m čísel mezi zbylými
1000 — m čísly existují dvě, z nichž jedno dělí druhé.

3.1 Pro přirozená čísla k < n rozestavte čísla 1, 2, 3, ..., n2
do tabulky n X n tak, aby v každém řádku čísla rostla
a přitom součet čísel v &-tém sloupci byl
a) nejmenší;
b) největší.

3.2 Jsou dána přirozená čísla k a m. Mezi celočíselnými
řešeními (jci, xz, ..., xjc) rovnice

xi + X2 + ... + xic = m

vyberme N takových, že 0 ^ xt ^ m (1 ^ i ^ k) a každé
dvě z nich se liší na všech místech. Zjistěte, jaké je nej-
větší možné N.
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3.3 V rovině jsou dány dvě různoběžky a, b. V bodě Ao e a ve
vzdálenosti menší než 1 od přímky b sedí blecha. Blecha
postupně poskakuje do bodů Bo, A\, Bi, A%, B2, ... podle
následujících pravidel (obr. 33):

1. body Ao, A\, ... leží na přímce a, body Во, B\, ... na

přímce b;
2. IAoBo\ = \BqA\\ = \A\B\\ = \BiA*\ = ... = 1;
3. An+i = An, jen když AnBn J_ a, a Bn+1 = Bn,

jen když BnAn+1 _L b.
Dokažte, že je-li velikost úhlu přímek a, b racionální
(ve stupňové míře), bude cesta blechy periodická (tj. do-
stane se opět do bodu Ao a pak zas bude pokračovat
do bodů Во, A\, ...); a je-li iracionální, nedostane se
blecha do žádného bodu víc než dvakrát.

3.4 Jsou dána dvě nesoudělná přirozená čísla a, b. Jak známo,
každé celé číslo lze vyjádřit jako ax + by s celými ха у.

Uvažujme množinu M těch celých čísel, která jsou tvaru
ax + by pro celá nezáporná x, y.

a) Jaké je největší celé číslo c, které nepatří do M ?
b) Dokažte, že z čísel n a c — n (n je celé) jedno patří

do M a druhé ne.
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3.5Je dán trojúhelník ABC. Kolik existuje bodů D takových,
že čtyřúhelníky ADBC, ABDC a ABCD mají stejný
obvod ?3.6Na obr. 34 je šest bodů ležících po třech na čtyřech
přímkách. Dokažte, že existuje právě 24 různých zobraze-
ní, která převádějí uvedených šest bodů na sebe, přičemž
každá trojice bodů ležících v přímce se zobrazí na trojici
bodů ležících v přímce. Zjistěte, kolik takových zobrazení
existuje pro konfigurace na obr. 35 a 36 (9 bodů na 9 přím-
kách a 10 bodů na 10 přímkách).3.7Uvažujme posloupnost (ай)^ číslic 1, 2 a operaci, která
umožňuje prohodit dvě libovolné sousední trojice číslic.
Všechny takové posloupnosti rozdělme do disjunktních
tříd, přičemž v jedné třídě budou všechny posloupnosti,
které lze na sebe převést pomocí několika uvedených
operací. Kolik existuje takových tříd ?
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4.1Pro libovolný neprávoúhlý trojúhelník T označme H( T)
trojúhelník, jehož vrcholy jsou paty výšek trojúhelníku T
(tzv. úpatnicový trojúhelník). Uvažujme posloupnost
trojúhelníků Ti = H(T), T2 = H(Ti), ... . Jaké musí
být úhly trojúhelníku T, aby
a) trojúhelník H(T) byl ostroúhlý,
b) v posloupnosti Ti, T2, ... se vyskytl pravoúhlý troj-

úhelník Tn (takže Tra+i není definován),
c) trojúhelník Ti = H(T) byl podobný trojúhelníku T?
Pro každé n přirozené zjistěte, kolik existuje navzájem
nepodobných trojúhelníků T, pro něž je trojúhelník Jn
podobný trojúhelníku T.4.2Najděte všechna celočíselná řešení rovnice

1 1 1
—+—+—=1

3’

taková, že žádné z čísel x, y, z není rovno 1.4.3V rovině jsou dány dva body A, B. Najděte množinu
všech vrcholů C trojúhelníků ABC, pro něž mají stejnou
délku

a) výška AA' a strana BC;
b) těžnice AA\ a strana AC;
c) těžnice AA\ a strana BC;
d) výška CC' a těžnice BB\;
e) výška BB' a těžnice CCi.
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4.4Označme ос, /5, у vnitřní úhly trojúhelníku ЛБС a položme

/5 у
^ = tg2 у + tg2 у + tg2 у.

а

a) Je-li trojúhelník ABC ostroúhlý či pravoúhlý,
je 5 g 2;

b) je-li trojúhelník ABC tupoúhlý s tupým úhlem aspoň
4

2 arctg —, je S^2;

4TZc)mezi trojúhelníky s tupým úhlem у,— <y< 2 arctg —,

existují takové, pro něž č> < 2, i takové, pro něž
S > 2. Dokažte.4.5Na nekonečném listu bílého čtverečkovaného papíru

je n čtverečků obarveno černě. V jednotlivých okamžicích
t = 1, 2, ... změníme barvy všech čtverečků podle
následujícího pravidla: každý čtvereček obarvíme podle
převládající barvy v trojici, kterou s daným čtverečkem
tvoří jeho horní a pravý soused. Dokažte, že nejpozději
v čase t = n černé čtverečky zmizí.4.6Je dán konvexní n-úhelník, jehož žádné dvě strany nejsou
rovnoběžné, a uvnitř něho bod. Dokažte, že existuje
nejvýše n přímek procházejících daným bodem a dělicích
daný mnohoúhelník na dvě části stejného obsahu.
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4.7 Ve středu čtverce stojí policajt a v jednom z vrcholů
pachatel. Policajt se může pohybovat po celém čtverci
rychlostí nejvýše u, zatímco pachatel se může pohybovat
jen po stranách čtverce nejvýše rychostí v. Zjistěte, pro

jaký poměr rychlostí u/v se policajtovi může podařit
dostat se s pachatelem na stejnou stranu čtverce, přestože
pachatel se tomu snaží zabránit.5.1Je-li O bod uvnitř trojúhelníku zl i?C takový, že \<^BOC\ —

— |<£ ВAO I = 90°, označme M а N paty kolmic spuštěných
z bodu O na strany AB а АС a P průsečík přímek ВО,
MN. Potom je \<^BPC\ = 90°. Dokažte.5.2V obdélníkové tabulce m X n je zapsáno mn kladných
čísel. Uvažujme součiny m čísel v každém sloupci a součet
S všech n takových součinů. Přerovnáme-li čísla v každém
řádku podle velikosti, nebude výsledný součet S nové
tabulky menší. Dokažte.5.3Pro libovolné přirozené n najděte součet

И 1in — k\И * )Sn 4 a- •
k= 05.4V prostoru jsou dány čtyři body, které neleží v jedné

rovině. Kolik existuje různých rovnoběžnostěnů, jejichž
čtyři vrcholy tvoří dané body?
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5.5Je dána konečná množina bodů v rovině, v níž každé tři
body určují tupoúhlý trojúhelník. Dokažte, že к takové
množině lze vždy přidat další bod tak, aby uvedená
vlastnost zůstala zachována. Platí analogické tvrzení
i pro nekonečnou množinu bodů v rovině s uvedenou
vlastností ?

5.6Jestliže

(1 + X + X2 + X3 + X4)496 =
= (Zo + «1 x + ... + + a1984 x1984,

určete největší společný dělitel čísel a3, a8, ai3 ..., ai 983.

Zároveň dokažte, že platí 10340 < а992 < 10347.5.7Zjistěte, zda existuje 100 přímek v rovině, které mají
právě 1985 různých průsečíků.
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30. medzirtárodná matematická olympiáda
Braunschweig (SRN) 13. — 24. júl 1989

SRN sa stala hostitelom 30. medzinárodnej matematickej
olympiády. Zúčastnilo sa jej 291 súťažiacich z 50 krajin, čo
je rekordom v doterajšej historii MMO. Každá krajina mohla
vyslať 6-členné družstvo, čo převážná váčšina štátov aj vy-
užila. Olympiáda sa konala v tichom asi 250-tisícovom Braun-
schweigu, v Dolnom Sasku. Město má matematické tradicie,
pósobil tu okrem iných matematikov aj C. F. Gauss a je sídlom
technickej univerzity a iných vysokých škol.

Jury začala svoju činnosť 13. júla výberom a prekladom
súťažných úloh do rodných jazykov žiakov. Medzi 32 úlohami,
ktoré sa dostali do užšieho výběru, bola aj 1 československá
úloha. 16. júla bolo nakoniec vybraných 6 súťažných úloh —

po jednej úlohe z Austrálie, Islandu, Holandska, Filipín,
Švédská, Polska.

Súťažiaci spolu s pedagogickými vedúcimi přicestovali do
Braunschweigu 16. júla. Boli ubytovaní na viacerých miestach,
československé družstvo bývalo v internáte nedaleko středu
města. 17. júla bolo slávnostné zahájenie olympiády za účasti
predstavitelov krajinskej i spolkovej vlády. 18. a 19. júla
boli súťažné dni, v rámci ktorých študenti dostali po 3 úlohy.
Na riešenie každej trojice úloh mali 4,5 hodiny čistého času.
Nasledujúce dni sa konala oprava a koordinácia opráv žiac-
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kych riešení. 23. júla bolo slávnostné vyhlásenie výsledkov
za účasti spolkového ministra pre výuku a vedu Móllemanna,
ktorý aj odovzdával zlaté medaily, krajinského ministra
H. Horrmanna a předsedu jury A. Engela. Zostávajúce dni boli
pre žiakov určené na spoznávanie hostitelskej krajiny. Hosti-
telia zorganizovali celodenný výlet do Hannoveru s nezabud-
nutelným kultúrnym programom v Herrenhausen Garten,
výlet do Gifhornu s návštěvou muzea veterných mlynov,
prehliadku Braunschweigu, exkurzie do výrobných podnikov.
Dňa 24. júla sme sa spoločne vrátili do vlasti.

Tabulka 5

Počet
žiakov Body jl.cenaKrajina 2. cena 3. cena č. uzn.

2 2Austrália
Belgicko
Brazília
Bulharsko
Cyprus
Československo
Čína
Filipíny
Finsko

i Francúzsko
Grécko
Holandsko
Hong Kong
India
Indonézia
Irán
Irsko
Island
Izrael
Juhoslávia
Južná Kórea

6 119
26 111 3

64 36
195 3 26 1
24 16

3202 2 16
2237 46

45 16
3586

1 51566
23122 16
292 1 16

2 1127 16
4 16 107

6 21
2 3 16 147

2376
2334

2 11056
13 1170 16
41976
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(pokračovanie tabulky 5)

počet
žiakovKrajina body 1. cena 2. cena 3. cena. č. uzn.

Kanada
Kolumbie
Kuba
Kuwait
Luxemburg
Maďarsko
Maroko
Mexiko
NDR
Norsko
Nový Zéland
NSR
Peru
Polsko
Portugalsko
Rakúsko
Rumunsko
Singapur
španielsko
Švédsko
Taliansko
Thajsko
Tunis
Turecko
USA
Velká Británia
Venezuela
Vietnam
ZSSR

1236 1 3 2
26 119 31

6 69 1 3
316
653 1 1

6 175 4 1 1
63 36 1

6 79 31
216 3 26 1

64 24 1
69 2 26

187 3 26 1
36 51

6 157 3 3
6 39 4
6 111 2 1 1
6 223 2 4
6 4143 2
6 61 1 4
6 73 2 1

124 2 36 1
6 54 1 2
6 81 21
6 133 1 4 1
6 207 41 1

26 122 21
4 6
6 183 2 1 3
6 217 3 2 1

Každý súťažiaci mohol získať maximálně 42 bodov. 1. cena
bola udělovaná za 38—42 bodov (20 úč.)., 2. cena za 30—37
bodov (55 úč.) a 3. cena za 18—29 bodov (72 úč.), čestné
uznanie za vyriešenie aspoň jedného příkladu za 7 bodov.

191



Hodnotenie československej účasti:
Československé družstvo tvořili Tomáš Brodský zo 4. roč.

Gymnázia na tr. kpt. Jaroša v Brně, Petr Čížek zo 4. roč.
Gymnázia W. Piecka v Prahe, Petr Hliněný z 3. roč. Gymnázia
v Bílovci, Vladimír Komár z 3. roč. Gymnázia na Šmeralovej
ulici v Košiciach, Ondřej Šuch z 3. roč. Gymnázia A. Markuša
v Bratislavě a Marek Velešík zo 4. roč. Gymnázia na Konevo-
vej v Brně. V. Komár sa zúčastnil namiesto I. Martišovitša,
ktorý tesne před odchodom ochorel.

Vedúcim delegácie bol doc. RNDr. Leo Boček, CSc., z MFF
UK v Prahe, zástupcom vedúceho doc. RNDr. Tomáš Hecht,
CSc.} z MFF UK v Bratislavě.

Výsledky jednotlivých žiakov vidno z tabulky:

Tabul’ka 6

úl. 4 úl. 5 úl. 6 súčet cenaI Měno úl. 1 úl. 2 | úl. 3
i

7 7Brodský

Čížek

1 7 3.7 0 29

77 7 7 7 427 1.

Hliněný 7 7 1 7 7 36 2.7

Komár 77 7 0 0 27 3.6

Šuch 7 7 67 7 7 41 1.

Velešík 7 7 27 3.6 0 0 7

Je to náš najlepší výsledok za posledně roky. V neoficiálnom
hcdnotení družstiev sme skončili na peknom 6. mieste (za
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Čínou, Rumunskom, ZSSR, NDR a USA). Získali sme
2 zlaté medaily, pričom P. Čížek získal plný počet bodov.
Ukázali sa výsledky systematickej přípravy študentov na
MMO (2 sústredenia, korespondenčně semináře, příprava
v triedach so zameraním na matematiku, rožne pomocné akcie,
široká báza olympiády). Třeba však povedať, že vybrané
úlohy našim žiakom »sadli«, boli to témy tradičné sa vysky-
tujúce v domácej súťaži, resp. precvičované na sústredeniach.
Dobrý výsledok je zároveň závázkom do budúcnosti.

Texty súťažných úloh

1. Dokážte, že množina {1, 2, ..., 1989) sa dá napísať ako
zjednotenie po dvoch disjunktných množin A\, A2, ..

Am tak, že sú splněné nasledujúce podmienky:
(1) každá z množin A i má právě 17 prvkov,
(2) súčet všetkých čísel z množiny A i je prc všetky

i e (1, 2, ..., 117} rovnaký.
2. Osi vnútorných uhlov pri vrcholoch А, В, C ostrouhlého

trojuholníka ABC pretínajú jemu opísanú kružnicu po
radě v bodoch A±, B\, C\. Priamka AA\ přetíná osi von-

kajších uhlov pri vrcholoch В, C trojuholníka ABC v bo-
de Ao. Analogicky sú určené body Bo, Co- Dokážte, že
a) Sa,b,c0 — 2 SACiBAicb1,
b) SAeB§c, ^ 4 SABC,

kde 5A,B,C,> SaC^AíCBo SABC značia obsahy trojuhol-
nika AoBoCo, šesťuholníka AC\BA\CBi a trojuholníka
ABC.
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3. Nech n, k sú prirodzené čísla (n ^ k) a S je množina n
bodov roviny s týmito vlastnosťami:
(i) žiadne tri body množiny S neležia na priamke,
(ii) ku každému bodu P e S existuje v S aspoň k navzájom

róznych bodov rovnako vzdialených od bodu P.
Potom k < 1/2 -f- у2n . Dokážte!

4. Pre strany AB, AD a BC konvexného štvoruholníka ABCD
platí \AB\ = \AD\ + |j3C|. Vo vnútri tohto štvoruholníka
existuje bod P tak, že \AP\ = h + \AD\ a \BP\ = h +
+ |-SC[, kde h je vzdialenosť bodu P od priamky CD.
Dokážte, že

1 1 1

]/h 1\AD\ + yj£C| '5.Ku každému prirodzenému číslu n existuje n za sebou
idúcich prirodzených čísel tak, že žiadne z nich nie je
mocninou prvočísla s celočíselným exponentom. Dokážte!6.Permutáciu (xi, *2, • • - 3 *2w) čísel 1, 2, 2n nazveme

pěknou, ak platí | xi — Xf+i| = n pre aspoň jedno i e
e {1,2, ..., 2n — 1}. Dokážte, že pre každé n je viac ako
polovica permutácií pěkných.

Riešenia úloh

1. Problém úlohy spočívá v tom, že 17 je nepárne číslo.
Nebol by napr. žiadny problém rozdeliť množinu {1, 2, ...,

..., 1000} do 50 dvadsaťprvkových množin predpísaným
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spósobom, vytvořili by sme totiž 500 dvojčiat [k, 1001 — &},
k g (1, 2, ..., 500} a do každej z 50 množin by sme dali
po 10 dvojčiat. Túto myšlienku využijeme aj v riešení našej
úlohy. Rozdělíme množinu (1, 2, ..., 351} do 117 (disjunkt-
ných) trojprvkových množin s rovnakým súčtom. Potom
rozdělíme množinu (352, 353, ..., 1989} do 117 štrnásť-
prvkových množin s rovnakým súčtom metodou »dvojčiat«
{k, 2341 -&}, &e{352, 353, ..., 1170}. Zjednotením
vždy jednej trojprvkovej a jednej 14-prvkovej množiny získá-
me požadovanú 17-prvkovú množinu. Zostáva popísať rozde-
lenie množiny (1, 2, ..., 351}. To vidno z nasledujúceho
předpisu:

(1, 176, 351}
(2, 177, 349}
(3, 178, 347}

(60, 118, 350}
{61, 119, 348}
{62, 120, 346}

(58, 233, 237}
{59, 234, 235}

{116, 174, 238}
{117, 175, 236}

2. a) Označme I priesečník osí (vnútorných) uhlov (obr. 37).
Potom \IA\\ = \A± Ao\. Vyplývá to napr. z toho, že AqA,
BqB, CoC sú výšky trojuholníka AqBqCq, teda kružnica opísaná
trojuholníku ABC je kružnica deviatich bodov (Feuerbachova
kružnica) pre trojuholník AoBoCo, to znamená, že rozpoluje
úsečku IA0. (Iný dokaž: \IA\\ — \A\B\, lebo |<£ A\IB\ ^
~ |< IBA\\ a \A\B\ ^ \AiAo\ zo zhodnosti příslušných
uhlov v trojuholníku AoAiB.) Z tohoto dostaneme

obsah Д IAiB = obsah Д AqAiB.
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Ak tento argument zopakujeme postupné pre všetkých
6 trojuholníkov s vrcholem / a rovnosti sčítáme, dostaneme a)^

b) Označme H priesečník výšok trojuholníka ABC, X obra
bodu H v osovej súmernosti podia priamky BC, Y podlá
priamky АС a Z podlá priamky AB. Potom X, Y, Z ležia
na kružnici opísanej trojuholníku zíBC(pretože |<£ CXB\ =
= |<£ CHB\ = 180 — a). Pretože A\ je střed oblúka BC3 je
obsah Д BAiC
^ Sazbxcy — 2(Sbhc + Scha + SAhb) = 2Sabc,čo doka-
zuje naše tvrdenie.

obsah Д BXC. Potom SACiBa1cb1 ^

3. Tvrdenie dokážeme sporom. Predpokladajme k ^ 1/2 +

+ ]/2w. Ku každému bodu P e S existuje najmenej
dvojíc bodov A, B, prektoré \ AP\ = \BP\. Teda máme aspoň
n.(k|2) dvojíc bodov A, B, pre ktoré na osi úsečky AB leží
aspoň jeden bod z množiny S. Počítá jme:
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k(k-l) 1 1k
-

2 V2" + 2"•2 = n
2

1
>2

2
= n . \n

8

róznych dvojíc bodov Л, В (А, В е S'),Pretože máme len

tak musí existovať dvojica bodov A, B, ktorá je započítaná
aspoň třikrát, t.j. na osi úsečky AB ležia aspoň 3 rožne body
z S. To je však spor s predpokladom.

4. Uvažujme štvoruholník ABCD s vlastnosťami (i) a (ii)
pre rožne hodnoty h. Označme \AD\ — R, |5C[ = r. Skon-
štruujme trojuholník ABP so stranami R + r3 R + h, r + h.
Ďalej skonštruujme kružnice k\ = (A, R), kz = (В, r), ks =
= (P, h). Body C a D ležia po radě na kružniciach k±, ks a CD
je dotyčnicou ku &3. Z toho plynie, že h nadobúda maximálnu
hodnotu vtedy, ked CD je zároveň spoločnou dotyčnicou
ku kružniciam ki, ks. Ukážeme, že v tomto případe

1 11

1/A ]j\AD\ +\\BC\’
z čoho plynie okamžité dokazovaná nerovnosť. Označme M
patu kolmice spustenej z bodu P na priamku CD (obr. 38),
N patu kolmice spustenej z bodu В na priamku AD. Z právo-
uhlého trojuholníka ABN dostaneme:

\CD\ = ]/(R + rf -(R- rf = 2]/Rr.
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Obr. 38

Ďalej

I CD\ = |CAÍ| + |AfD| = ]/(r + A)2 - (r - A)2 +
+ f(R + A)2 - (R - hf = 2 ]/řh + 2 ]/Řh
Odtial dostaneme:

|jRr = ]/rA + |iRh

a po predelení ]jRrh požadovaný vztah.
1 1 1

]/h ]/r + ]!R

5. Číslo nie je mocninou prvočísla právě vtedy, ked je
dělitelné aspoň dvorná róznymi prvočíslami. To využijeme
v dókaze. Tvrdenie dokážeme matematickou indukciou podlá
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n. Pre n = 1 tvrdenie platí, stačí napr. vziať číslo 6. Před-
pokladajme, že čísla a + 1, a + 2, ..., a + и tvoria n za sebou
idúcich prirodzených čísel, z kterých žiadne nie je mocninou
prvočísla. Nech pi, />2, ..., pk sú všetky prvočísla, ktoré sa

vyskytujú v ich rozkladoch a Pk+i, Pk+2 sú prvočísla, rožne od
Pi, />2, .. .,Pk- Ďalej označme M = pí, pz, .. .,pk. Zrejme

pi I c opi I c -f M pre i — 1, 2, ..., k, c e N. (*)

Teraz nájdeme s e N tak, aby číslo a + n + 1 + sM bolo
dělitelné pk+i (to ide, pretože čísla рк+\ a M sú nesúdelitelné).
Označme P = M.pk+1. Nájdime ešte teN tak, aby číslo
a + n + 1 + sM + t.P bolo dělitelné pk+2 (dá sa to, pretože
čísla pk+z a Psú nesúdelitelné). Označme ešte Q = a + sM +
+ tP. Potom čísla Q + 1, Q + 2, ..., Q + n + l tvoria
n + 1 čísel požadovanej vlastnosti — prvých n je dělitelných
aspoň dvomi prvočíslami z množiny pi, />2, ...,/>* na základe
indukčného předpokladu (*) a číslo 2 + n + 1 )e dělitelné
Pk+i -pk+2, čo dokazuje tvrdenie.

6. Nech číslo и je dané pevne. Nahradme po radě čísla
n + 1, n + 2, .. ., 2n číslami 1, 2, ..., n. Potom možno úlo-
hu přeformulovat’ takto:

Máme n dvojičiek 1, 1, 2, 2,..., n, n a z týchto 2n čísel bu-
deme vytvárať 2w-členné postupnosti. Ktorých postupností
je viac: tých, ktoré obsahujú vedla seba rovnaké čísla, alebo
takých, čo ich neobsahuj ú?

Postupnosť xi, X2, ..., xzn je typu /4,ak sa vedla seba ne-

vyskytujú rovnaké čísla, typu B, ak sa rovnaké čísla vedla
seba vyskytujú. Označme An počet 2n-členných postupností
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. t

typu A a Bn počet 2/z-členných postupností typu B. Z postup-:
nosti typu A s členmi 1,1, 2, 2, . . ., n, n možno přidáním dvo- ч

jice n + 1, n + 1 rn sposobmi vyrobit' postupnost

typu A (čísla vložíme do róznych medzier medzi členmi
póvodnej postupnosti) a 2n 4- 1 sposobmi postupnost typu В
(čísla n 4- 1, n + 1 vložíme do tej istej medzery). Z postup-
nosti typu В na 2«-prvkovej množině možno vyrobit’ postup-
nosť typu A nanajvýš 2n sposobmi (jedným číslom w 4- 1
oddělíme rovnaké čísla, druhé vložíme do niektorej zo zvyš-
ných 2n medzier, avšak ak je vedla seba viac dvojičiek, tak*'

sposobmi

r

Йspósobov je menej) a aspoň 2n 4- 1 +

postupnost typu В (čísla n + 1, n + 1 vložíme do tej istej'
medzery alebo do róznych medzier, avšak neporušíme existu-
júcu dvojičku). Z týchto úvah vyplývajú vztahy:

<

n(2n -f- 1) Ап 2я B-ц
Bn-i-1 ^ (2n -f 1) An + (2n2 4- n 4- 1) В

An+1

Teraz už vidíme, že ak Bn ^ An > 0, tak Bn+i > An+i■
Naozaj:

(2«2 4-3n + 2)Bn -(2n + 1 )(Bn An) >
> (2ril 4" 3n) Bn — (2n- 4" w) (Bn An) — An+i

В n 1-1

К dókazu si teraz stačí uvědomit, že Ai = 0, J5i = 1. Bude
teda Bn > An aj pre všetky n ^ 2. Postupností typu В je
teda ozaj viac ako polovica, čo sme mali dokázat.
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