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O priabéhu 52. ro¢niku matematické olympiddy

Stejné jako v predeslych letech byly hlavnimi poradateli 52. ro¢niku ma-
tematické olympiddy Ministerstvo 8kolstvi, mladeze a télovychovy CR,
Jednota ¢eskych matematiki a fyziki a Matematicky Gstav akademie véd
CR. Organizaci soutéZe je pak povéfen Ustfedni vybor MO, jehoz pied-
sedou je jiz druhym rokem doc. dr. Jaromir Simsa, CSc. O organizaci
kategorii A, B, C, Z5-Z9 a P se staraji mistopiedsedové UV MO — po
fadé dr. Jaroslav Svréek, CSc., doc. dr. Pavel Tlusty, CSc., a doc. dr. Pa-
vel Tépfer, CSc. Funkci tajemnika UV MO vykonaval i v tomto ro¢niku
soutéze dr. Karel Hordk, CSc.

Vybérem tloh pro jednotliva kola kazdého ro¢niku soutéze jsou poveé-
feny dvé ulohové komise; jedna pro tlohy v kategoriich A, B, C a druha
pro ulohy v kategoriich Z. Obé komise se schézeji pravidelné dvakrat bé-
hem $kolniho roku (vzdy v listopadu a v kvétnu) tak, aby v¢as pfipravily
vSechny podklady pro zdarny pribéh nésledujiciho roéniku matematické
olympiady. Ulohy kategorie P pfipravili pro tento roénik soutéze dokto-
randi MFF UK v Praze Zdenék Dvorak, Martin Mare$, Jan Kéara a Daniel
Kral.

Na tomto misté dluZzno podotknout, Ze 52. ro¢nik matematické olym-
piddy se rozbihal ponékud tézkopadnéji nez ro¢niky predeslé. Bylo to
zpusobeno predevsim pozdnim rozeslanim letakd se zadanimi Gloh a také
komentaia k tloham I. kola soutéze. Ucitelé matematiky tak méli prvni
dva mésice nového Skolniho roku k dispozici pouze zadéani uloh zvefejnéné
v Casopise Matematika—fyzika—informatika.

Ustfedni vybor matematické olympiady se seSel b&hem tohoto roéniku
na dvou jednodennich zasedanich, a to v Praze (13. prosince 2002) a po-
druhé u prilezitosti celostatniho kola kategorii A a P v Liberci (31. bfezna
2003). Na obou zasedéanich byly kromé pravidelnych bodi programu fe-
Seny i nékteré vyhledové otazky tykajici se pristich ro¢nikd matematické
olympiady.

III. (celostatni) kolo 52. ro¢niku matematické olympiady (MO) v ka-
tegoriich A a P se uskute¢nilo v terminu 30. biezna— 5. dubna 2003 v Li-
berci. V tomto ro¢niku se jeho organizace ujala liberecka pobo¢ka JCMF
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ve spolupraci s Gymnaziem F.X. Saldy a Technickou univerzitou v Li-
berci, v jejichZ objektech se také konala vlastni soutéz. V8ichni soutézici
(44 v kategorii A a 30 v kategorii P) a dalsi pozvani hosté byli ubytovani
hotelovém domé Aréna pobliz zimniho stadionu.

Oficilni zahéjeni soutéze probéhlo v nedéli 30. biezna v prostorach
TU v Liberci za pritomnosti dr. Jaroslava Miillnera, nAméstka ministryné
gkolstvi mladeze a télovychovy CR, doc. dr. Jaroslava Vilda, CSc., pro-
rektora TU v Liberci, doc. dr. Karla Segetha, CSc., feditele MU AV CR,
a dalsich vyznamnych predstaviteld spolec¢enského zivota v Libereckém
kraji. (Na zavér této zpravy si miizete pfipomenout brilantni proslov
predsedy UV MO.)

Poradatelé zajistili i letos pro soutézici v obou kategoriich zajimavy
doprovodny program. Vzdy druhy soutézni den navstivili soutézici kazdé
z kategorii radnici a vystoupili na jeji véz, poté si mohli vybrat mezi né-
vstévou liberecké zoo a blizké botanické zahrady. Soutézici kategorie A
méli moznost zhlédnout predstaveni opery G. Rossiniho Lazebnik sevill-
sky v Divadle F.X. Saldy.

Hned nésledujici tyden, tj. 7.—11. dubna, probéhlo v Kostelci nad Cer-
nymi lesy vybérové soustfedéni pred 44. MMO. Na toto soustFedéni bylo
pozvéano deset nejlepsich soutézicich III. kola kategorie A. Na zakladé je-
jich vysledki na tomto soustfedéni a dale na zakladé vysledki ve II. a ve
III. kole bylo Sest nejlepsich vybrano do c¢eského reprezentaéniho druz-
stva pro 44. MMO. O vysledcich naSich soutézicich na 44. mezinarodni
matematické olympiadé a na 15. mezinarodni olympiddé v informatice se
doctete v prislusnych kapitolach této rocenky.

Pro nejlepsi fesitele krajskych kol v kategoriich B a C uspofadal UV
MO v terminu 3.-10. ¢ervna 2003 tradi¢ni soustfedéni v Jevicku. Za-
Castnilo se ho 40 zaka z celé republiky. Podobné pro nejlepsi reSitele
kategorie A (vSichni pak byli mezi Gcastniky celostatniho kola) uspora-
dal UV MO 14.-20. z&Fi 2003 v Janskych Laznich vybérové soustiedéni
pred 45. MMO.

Ustiedni vybor matematické olympiady v Ceské republice si dovoluje
na tomto misté co nejupfimnéji podékovat viem tém ucitelim matema-
tiky, ktefi jsou zapojeni do narocné a neocenitelné prace s matematicky
talentovanymi zaky naSich stfednich a zakladnich skol. Bez jejich pomoci
si chod této nejstar$i predmétové olympiddy v Ceské republice nelze vi-
bec predstavit.



Projev piedsedy Ustiedniho vyboru MO
pfi slavnostnim zahdajeni ustfedniho kola 52. roéniku v Liberci

Vézeni hosté, mili soutézici,

je mi cti, Ze vas mohu vSechny pozdravit jménem tymu lidi, ktefi pfi-
pravuji pro matematickou olympiddu soutézni ilohy. Vzletnéji vyjadreno,
bohatost svéta cisel a rozmanitost prostorovych vztahti ndm umoznuji
i po padeséati ro¢nicich soutéze vymyslet stéile relativné nové a zajimavé
matematické tkoly. Délame to se stejnym zaujetim, jako spisovatelé pisi
knihy nebo skladatelé hudebni dila, jen misto ¢tenéait ¢i posluchact mame
véas, mladé resitele uloh.

Mili Gcastnici nejvyssi kategorie A, VA4S prvni soutézni den bude mit
letos datum, které je zapsano tfemi prvodcisly 31, 3 a 2003. Mozna to
pro Vas neni zadna novinka, ze letopocet 2003 je prvnim prvocislem
nového stoleti i tisicileti. Druhym prvociselnym rokem bude rok 2011,
v ném ale nase soutéz patrné zacne v pondéli 28. bfezna, coz je datum
slozené. Prvociselné datum nebudeme asi mit ani ve tfetim prvodcisel-
ném roce 2017, kdy pondéli pfipadne na 27. biezna. Teprve ve ¢tvrtém
prvociselném roce 2027 bude pondéli 29. bfezna. Zajimava je okolnost,
ze v tomto stoleti budeme mit pravé ¢trnact prvociselnych letopoctu a ze
nejdéle budeme na prvociselny Novy rok éekat rovnéz Ctrnact let; za
prvocislem 2039 totiz bude nésledovat prvocislo 2053. Z naseho pohledu
budou bohaté devadesatéd léta tohoto stoleti, kdy lidstvo prozije teore-
ticky nejvyssi mozny prvociselnych let v jedné dekadé. Ano, ¢isla 2081
a 2083 jsou prvociselnd dvojcata, stejné jako ¢isla 2087 a 2089. Posledni
breznové pondéli bude mit v téchto ¢tyrech letech datum 31, 29, 31 a 28,
coz ndm trochu kali radost. Vy mladsi, nezapomefite prosim, ze posledni
prvocéiselny rok v tomto stoleti bude mit (stejné jako ve stoleti minulém)
na konci dvé devitky.

Prejdéme od feti dat a &isel k fedi jazykti. Ceskému terminu prvo-
¢islo odpovida anglické spojeni prime number, nebo téz samotné prime.
Toto slovo ma v angli¢tiné i nékolik dalsich sympatickych vyznami, které
lze vyjadrit ¢eskymi podstatnymi jmény mladi, rozkvét nebo pridavnym
jménem nejlepsi. A proto preji kazdému z vés, mili soutézici, at uz se
na vysledkové listiné octnete u poradového ¢isla, které je prvoéislo, nebo
¢islo slozené, nebo ¢islo 1, abyste se do svych domovii vraceli s pocitem,
ze v Liberci to bylo prima. Dékuji.



Tabulka 1
Pocty Zaku stfednich $kol soutéZicich v I. kole 52. roéniku MO

Kategorie

Oblast A B C P Celkem

S U|S U S U|S U S U
Praha 38 32131 98| 161 109 | 16 16| 346 255
Stiedodesky kraj 78 45(103 47| 160 87| 19 18| 360 197
Jihocdesky kraj 71 42| 63 41 98 53| 20 14| 252 150
Plzenisky kraj 35 27| 37 28 43 27 4 4| 119 86
Karlovarsky kraj 24 10| 32 17 26 17 3 3 85 47
Ustecky kraj 43 25| 42 28 54 33| 2 2| 141 88
Liberecky kraj 50 35| 61 42 64 30 0 o0f 175 107
Krélovéhradecky kraj 35 28| 38 26 49 34 8 3| 130 91
Pardubicky kraj 32 20| 25 13 51 36| 10 5| 118 74
kraj Vysoc¢ina 56 42| 60 47 70 50| 15 10| 201 149
Jihomoravsky kraj 154 120 | 117 88| 160 111 | 22 22| 453 341
Zlinsky kraj 78 38| 64 43 95 53 5 5| 242 139
Olomoucky kraj 51 22| 38 16 69 34 2 2| 160 74
Moravskoslezsky kraj 42 35| 80 50 108 79| 13 13| 243 177
CR 787 521 | 891 584 | 1208 753 | 139 117 | 3025 1975

Tabulka 2
Pocéty Zaku stfednich Skol soutéZicich v II. kole 52. roéniku MO

Kategorie

Oblast A B C P Celkem

S U|S U S U S U S U
Praha 32 9] 92 41 101 45| 16 10| 241 105
Stfedocesky kraj 44 8| 43 10 72 18| 17 4 176 40
JihocCesky kraj 33 8| 30 15 44 22| 12 5| 119 50
Plzenisky kraj 27 8| 27 10 26 9 4 1 84 28
Karlovarsky kraj 10 0] 16 8 13 3 2 0 41 11
Ustecky kraj 25 1| 28 6 33 8 2 0 88 15
Liberecky kraj 34 8| 34 15 19 9 0 0 87 32
Kralovéhradecky kraj 28 7| 26 10 29 10 3 1 86 28
Pardubicky kraj 18 2| 12 4 33 9 4 1 67 16
kraj Vysoéina 36 71 39 15 40 9 8 2 123 33
Jihomoravsky kraj 117 23| 83 26 104 35| 22 9| 326 93
Zlinsky kraj 37 2| 42 17 50 12 0 O0f 129 31
Olomoucky kraj 22 4| 16 8 34 14 2 1 7427
Moravskoslezsky kraj 34 6| 48 21 75 23| 13 4| 170 54
CR 497 93| 536 206 | 673 226|105 38| 1811 563

S ... pocet vSech soutéZicich U ... polet Gspésnych Fesitell



Nejispésnéjsi resitelé I1. kola MO
v kategoriich A, B, Ca P

Z kazdého kraje a z kazdé kategorie jsou dle dostupnych vysledkl uve-
deni vSichni Gspé&sni Fesitelé, ktefi skoncili do desdtého mista. Oznaceni G
znamend gymnéazium, M, resp. MF zaméfeni studijniho oboru 01 Mate-
matika, resp. 02 Matematika a fyzika.

sesvecsecsceosese KrajPraha eescseesceeccecsse

10.-14.

Kategorie A

. Viclav Potocek, SPSST, Praha 1, Panska
. Ondrej Certik, G Ch. Dopplera, Praha 5

Martin Kdldy, G Ch. Dopplera, Praha 5

. Pavel Kocourek, SPSST Panska 3, Praha 1

Jaroslav Trnka, G Praha 3, Nad Ohradou

. Jan BlazZek, G Ch. Dopplera, Praha 5
. Petr Skoda, G Praha 8, Ustavni

Kategorie B

. Petr Cermdk, G Praha 5, Mezi §kolami

Pavel Kocourek, SPSST Panské 3, Praha 1

. Michaela Reiterovd, G Praha 6, Nad Aleji
. Jan Drasnar, GJK, Parléfova, Praha 6
. Jan Lachnitt, G Ch. Dopplera, Praha 5

Tomds Skalicky, ArcG, Praha 2, Korunni
Vojtéch Smolka, ArcG, Praha 2, Korunni
Jan Tomanik, G Praha 6, Nad Stolou

. Helena Svandelikovd, ArcG, Praha 2, Korunni

Viclav Kozmik, G Praha 5, Mezi $kolami
Jaromir Marecek, G Praha 3, Sladkovského nam.
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Ondrej Novdk, G Ch. Dopplera, Praha 5
Petr Sykora, G Ch. Dopplera, Praha 5
Filip Trnka, G Ch. Dopplera, Praha 5

Kategorie C

. Miroslav Koldr, G Praha 4, Na Vitézné plani

Lukd$ Malina, ZS Praha 5, Kuncova
Dan Marek, G Ch. Dopplera, Praha 5

. Jan Pape?, G Praha 8, Ustavni
. Tomd$ Hejda, G Ch. Dopplera, Praha 5

Vojtéch Horky, G Praha 6, Nad Aleji
Martin Macek, G Praha 4, Pisnicka

. Tomd$ Blahovec, G Ch. Dopplera, Praha 5

Ondrej Fremund, GJN, Praha 1, Hellichova
Jan Holinka, G Ch. Dopplera, Praha 5

Jan Kundrdt, G Praha 8, Ustavni

Adam Prenosil, G Praha 3, Sladkovského nam.
Martin Ziegler, G Ch. Dopplera, Praha 5
Radek Zlebcik, G Ch. Dopplera, Praha 5

Kategorie P

. Jan Kadlec, G Ch. Dopplera, Praha 5
. David Matousek, G Ch. Dopplera, Praha 5

Petr Skoda, G Ustavni 400 Praha 8

. Dan Marek, G Ch. Dopplera, Praha 5
. Pavel Kocourek, SPSST Pansk4 3 Praha 1
. Jan Havlicek, G Ch. Dopplera, Praha 5

Dan Lessner, G B. Bolzana, Praha 8

. Ondrej Zarevicky, G Arabskéd 14 Praha 6
. Jdn Zahornadsky, G Ch. Dopplera, Praha 5

Lukds Turek, G Ch. Dopplera, Praha 5



sesceveoceesee StiedoCeskykraj seeeeececceceves

@O)!J;AI\DM
|
O g g Ut Ot w W =

Kategorie A

. Pavel Cizek, GaOA Kralupy nad Vltavou

. Jan Lamaé, G Mnichovo Hradisté

. Pavel Brom, G dr. J. Pekafe, Mlada Boleslav

. Jit'i Palecek, G Kladno

. Jan Prochdzka, G dr. J. Pekare, Mlada Boleslav
. Radka Pickovd, G dr. J. Pekafe, Mlada Boleslav
. Jan Bure$, G4+SPS Caslav

. Jan Vidria, G Kutnd Hora

Kategorie B

. Ondrej Petera, G Kolin

. Petr Balek, G Beroun

. Zdenék Kabdt, G Ricany

. Eva Vyhnalovd, G BenesSov

Michal Vesely, G Cesky Brod

. Emil Macki, G BeneSov

Nikola Vdvra, G Podébrady

. Matéj Outly, G Kolin

Petr Dusek, G Cesky Brod
Jakub Mikulka, G Kladno, nam. E. Benese

Kategorie C

. Lukd$s Hermann, G dr. J. Pekafe, Mlada Boleslav

Marek Scholz, G Neratovice

. Vidclav Gergelits, G BeneSov

Josef Schmidt, G BeneSov

. Jan Korbel, G Ri¢any

Marek Sacha, G Ricany
Renata DolejSovd, G Kladno, ndm. E. BeneSe

. Jan Matousek, G Kolin
. Martin Kadlec, G Kladno, ndm. E. BeneSe

Petr Safrinek, G Podébrady
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2.
3.
4.

eeosvcseecoocese JihoCeskykraj eeveeveoscocoe

8.-11.

12

Kategorie P

Pavel Cizek, GaOA Kralupy nad Vltavou
Martin Krulis, G Kolin

Jiri Palecek, G Kladno, ndm. E. Benese
Jiri Hyldebrant, G Vlasim

Kategorie A

. Jan Kouba, G Cesky Krumlov

. Milan Straka, G Strakonice

. Dana Bartosovd, G Jindfichav Hradec
. Jiri Danihelka, SPS Pisek

Pavel Kubas, G Jindfichiv Hradec

. Ondrej Sedivy, G Ceské Budéjovice, Jirovcova
. Zuzana KoZziskovd, G Tabor

Ondrej Prasnicka, G Ceské Budé&jovice, Jirovcova

Kategorie B

. Karel Vicha, G Cesky Krumlov
. Viaclavik Jiri, G Strakonice
. Radek Pustina, G Ceské Budé&jovice, Ceskéa

Markéta Zikovd, G Ceské Budéjovice, Jirovcova
Jiri Koubek, G Tyn nad Vltavou

. Karel Chromy, G Ceské Budé&jovice, Jirovcova

Viclav Eigner, G Strakonice

Stépdnka Krdlovd, G Tyn nad Vltavou
Michal Bizzarri, G Tyn nad Vltavou
Hana Nuskovd, G Strakonice

Kategorie C

. Jan Zdloha, G Pisek

Tomd3 Chmelik, Biskupské G, Ceské Budgjovice



10.-13.

O b W N~
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. Jiri Knize, G Strakonice

Josef Orel, G Tabor

. Jan Klouda, G Ceské Budgjovice, Jirovcova

Eliska Leheckovd, G Jindfichiv Hradec
Karel Fiser, G Jindfichuv Hradec
Tomds Jindra, G Ceské Budé&jovice, Ceska

. Zuzana Bainovd, G Ceské Budéjovice, Jirovcova

Vojtéch Dusek, G Ceské Budgjovice, Jirovcova
Petr Andél, G Cesky Krumlov

Michal Dojéar, G Prachatice

Vojtéch Kulhavy, G Jindfichtv Hradec

Kategorie P

. Milan Straka, G Strakonice

. Jit{ Danihelka, SPS Pisek

. Jan Kouba, G Cesky Krumlov

. Martin Pildt, G Ceské Budgjovice, Ceska
. Josef Pitera, G Strakonice

eevseocoose Plreniskjkraj eeoseecececcccee

Kategorie A

. Michal Kviz, G Plzen, Mikuld§ské nam.
. Jir'i Reitspies, G Plzen, Mikul4d$ské ndm.
. Josef Mlddek, G Plzeri, Mikula$ské nam.
. Jiri Ajgl, G Plzen, Mikulasské ndm.

Eva Wagnerovd, G Plzen, Mikulasské nam.

. Jaroslav Svoboda, G Plzen, Mikul4asské nam.

Viclav Varvarovsky, G Plzeri, Mikulasské nam.

. Petr Cvachovec, G Plzen, Mikula$ské nam.

Kategorie B

. Jakub Bulin, G Plzen, Mikulasské nam.
. Pavel Huddk, Masarykovo G, Plzen

Libor Nolé, G Plzen, Mikulasské nam.
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4. Jindrich Pergler, G Klatovy
5. Tomds Ibehej, G Plzen, Mikulasské nam.
6. Ondrej Hort, G Plzefi, Mikuldsské nam.
7. Ales Turnovec, G Plzen, MikulaSské nam.
8.-9. Jan Buldnek, G Klatovy
Jirt Pouska, G Plzen, Mikulasské nam.
10. Petr Vasko, Masarykovo G, Plzen

Kategorie C

1. Vojteéch Kolomicenko, G Plzen, Mikula$ské nam.
2. Marie Dostdlovd, G Stfibro
3. Viadimir Sirotek, G L. Pika, Plzen
4.-6. Tomas Jirotka, G Klatovy
Miloslav Kepka, G L. Pika, Plzen
Tomas Koutim, G L. Pika, Plzen
7.-9. Martin Dvotdik, G Plzen, Mikulasské nam.
Marie Matéjovicovd, G Plzen, Mikulasské nam.
Jan Sipek, G L. Pika, Plzen

Kategorie P

1. Stanislav Haviar, G Klatovy

L R BE IR BE BE IR BN BN BN N J Karlovarskf’kraj L IR B B BE IR BN BN BN N BN N J
Kategorie B

1. Eva Cernohorskd, Prvni ¢eské G Karlovy Vary
2. Petr Zdcek, SCHS Cheb
3. Tereza Volnd, G Marianské Lazné
4.-7. Jiri Pépperl, G Sokolov
Radek Pupdk, G Cheb
Jan Rieger, G Ostrov
Stépdn Trojdinek, G Cheb
8. Michaela Bublovd, SCHS Cheb



1.
2.
3.

Kategorie C

Eva Cernohorskd, Prvni ¢eské G Karlovy Vary
Jan Heczko, G Cheb
Jakub Irber, G Cheb

2000 S OSEROSOOQ Usteck)'rkraj soecoocs0oeReeS

N U R W N

Kategorie A

. Vit Sipal, G Usti nad Labem, Jate¢ni

Kategorie B

. Daniel Petrik, G Most
. Jirt Dvordk, G Roudnice nad Labem
. Michal Valach, SPS a VOS Chomutov

Jakub Floridn, G Podbotfany

. Jan Semerdd, G Teplice, Cs. Dobrovolcii

Jan Patera, G Most

Kategorie C

. Vojtéch Kaiser, G Usti nad Labem, Stavbait

. Michal Pelc, G Most

. Jakub Klener, G J. Jungmanna, Litoméfice

. Zdenék Fikar, G Usti nad Labem, Jate¢ni

. Véra Skorkovskd, G Teplice, Cs. Dobrovolcii 11
. Michaela Tichd, G Chomutov

Jirt Sarkady, G J. Jungmanna, LitoméFice

. Jan Krahulik, G V. Hlavatého, Louny

esoevososeoeee Libereckjkraj ececeoosoccocoscs

Kategorie A

. Petr Pisa, G Liberec, Jeronymova
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Marek Sobota, G Liberec, Jeronymova

. Lukds Bajer, GFXS, Liberec

Michal Kollert, GFXS, Liberec

Kategorie B

. Sdrka Vejvodovd, GFXS, Liberec
. Katerina Kapletovd, GFXS, Liberec
. Zdenék Bohm, GFXS, Liberec

Lukds Jezek, GFXS, Liberec

. Jaroslav Jirdk, GFXS, Liberec

Marie Mdrtonovd, GFXS, Liberec
Martin Otava, GFXS, Liberec
Ondrej Soroka, GFXS, Liberec

. Dominik Fiser, G Jablonec, U Balvanu

Jakub Husek, GFXS, Liberec

Tomd$ Jakoubek, G Liberec, Jeronymova
Cenék Jirsdk, GFXS, Liberec

Martin Mordvek, GFXS, Liberec

Vojtéch Ruzicka, GFXS, Liberec

Kldra VitouSovd, GFXS, Liberec

Kategorie C

. Michal Vaner, G Turnov

. Jan Iser, G U Balvanu Jablonec

. Ondrej Kudlacek, G Liberec, Jeronymova
. Pavel Stanék, G Jablonec, U Balvanu

. Katetina Tepld, G Liberec, Jeronymova

Jan Hrnéé, GFXS, Liberec

. Lucie Krtousovd, GFXS, Liberec
. Martin Viéek, G Turnov
. Jiri Toman, G Liberec, Jeronymova

Kategorie P

. Jirt Schejbal, G Turnov



eseosoeeseeee Krilovéhradeckykraj eeo e oo ceooevee

10.

Kategorie A

. Jan Moldéek, GJKT, Hradec Kralové

. Miroslav Hejna, GFMP, Rychnov nad KnéZnou
. Jan Prachat, GFMP, Rychnov nad Knéznou

. Jan Ondru$, GFMP, Rychnov nad KnéZnou

Jan Schindler, G B. Némcové, Hradec Kralové

. Ivo Machek, GJKT, Hradec Kralové

Martin Selecky, G B. Némcové, Hradec Kralové

Kategorie B

. Radek Moravec, G B. Némcové, Hradec Kralové
. Michal Kopecky, GJKT, Hradec Kréalové

Jan Marek, G B. Némcové, Hradec Kréalové

. Josef Benes, G B. Némcové, Hradec Kralové
. Filip Studnicka, G B. Némcové, Hradec Kralové
. Katerina FiSerovd, LG Ji¢in

Sdrka Pdtkovd, GJKT, Hradec Kralové

. Ales Balcar, G B. Némcové, Hradec Kralové

Julie Bratovd, G Nachod
Ondrej Novdk, G B. Némcové, Hradec Kralové

Kategorie C

. Libor Siminek, GJKT, Hradec Kralové
. Karel Vasata, G B. Némcové, Hradec Kréalové

Jan Voltr, GJKT, Hradec Kralové

. Filip Andrs, G Dobruska

Véra Peterovd, G Dobruska

. Petr Adlaf, GJKT, Hradec Krélové

Martin Dolezal, G Novy Bydzov

Adam Jandcek, GaSOS Upice

Vendula Uchytilovd, GJKT, Hradec Kralové
Vojtéch Bene$, GJKT, Hradec Kralové

17



Kategorie P

1. Jan Prachat, GFMP, Rychnov nad Knéznou

sovonosocoeoeee Pardubicky kraj ee s e e eeceesose
Kategorie A

1. Petr Posta, G Pardubice, Dasicka
2. Petr Rezek, G Litomysl

Kategorie B

1. M. Dobroucky, G Moravské Tiebova
2. B. Scholleovd, G Pardubice, Dasickd
3.-4. K. Hauptovd, G Vysoké Myto
M. Benesovd, G Policka

Kategorie C

1.-2. M. Scholle, G Pardubice, Dasicka
K. Stodolovd, G Policka
3. H. Sedivdkovd, G Pardubice, Dasicka
4. Z. Novdk, G Hlinsko
5.-6. T. Hubik, G Pardubice, Dasicka
T. Klimo$ovd, G LanSkroun
7. J. Skotepa, G Pardubice, Dasicka
8.-9. M. Ferjencik, G Ptelouc
L. Serd, G Jevicko

Kategorie P

1. Martin Dobroucky, 6.AV, G Moravska Tfebova

18



sececcsescsescees KrajVysolina eeeceeecvocoseoe

1.-3.

Kategorie A

. Radek Mlada, G Pelhfimov
. Dominik Macds, G Bystfice nad Pern.
. Martin Havlena, G Jihlava

Michal Zavadil, SPS Jihlava

. Viclav Reznicek, G Ttebic
. Martin Bartu$ek, G Jihlava

Michal Fikrle, G Pelhfimov

Kategorie B

Ondrej Krianek, G Ttebic¢
Rostislav Kvds, G Jihlava
Petr Lavicka, G Jihlava

. Petr Housték, G Pelhfimov
. Michaela Krpdlkovd, G Jihlava

Martin Tomec, G Ttebic

. Jaroslav Keznikl, G Zdar nad Saz.

Jan Nowvotny, G Havlickiv Brod

. Katetina Kujanovd, G Zd4r nad Saz.

Ales Rdda, G Pelhfimov

Kategorie C

. Karel Lavicka, G Jihlava
. Ondrej Hoferek, G Zdar nad Séz.
. Marie Koldfovd, G Zd4r nad Séz.

Filip Rosenkranc, G Ttebic

. Jan Sedo, SPS Jihlava
. Jirt Svoboda, G Humpolec
. Vojtéch Fisar, G Zdar nad Saz.

Hana Mddrovd, G Jihlava
Iveta Selingerovd, G Jihlava
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Kategorie P

1.-2. Jakub Sedldk, G Jihlava
Martin Tomec, G Ttebic¢

seooooeeoee oo Jhomoravskykraj seseecseeseccse
Kategorie A

1. Marek Krédl, G Brno, tf. Kpt. Jarose
2.-4. Vitézslav Kala, G Brno, tf. Kpt. Jarose
Veronika Trnkovd, G Brno, t¥. Kpt. Jarose
Pavel Troubil, G Brno, t¥. Kpt. Jarose
5. Jaroslav Zuda, G Brno, t¥. Kpt. Jarose
6. Milan Werl, G Brno, tf. Kpt. JaroSe
7.-9. Viclav Brozek, G Brno, Barvicova
Jaromir Kuben, G Brno, tf. Kpt. Jarose
Jan Nowvotng, G Brno, tf. Kpt. Jarose
10. Jiri Zelinka, G Brno, tf. Kpt. Jarose

Kategorie B

1. Michal Rychnovsky, G Brno, t¥. Kpt. Jarose
2.-3. Vojtéch Kubar, G Brno, tf. Kpt. Jarose
Michaela Neumannovd, G Hustopece
4. Tomds$ Hosek, G Brno, tf. Kpt. Jarose
5.-8. Katerina Fialovd, G Brno, Elgartova
Michala Henzlovd, G Brno, Barvicova
Pavel Turcéinek, G Brno, Videriska
Ondrej Zapletal, G Brno, Kfenova
9.-11. Ondrej Hotovy, G Brno, tf. Kpt. JaroSe
Ondrej Maridk, G Brno, Taborska
Jirt Zelinka, G Brno, t¥. Kpt. JaroSe

Kategorie C

1. Jaromir Kuben, G Brno, tf. Kpt. Jarose
2.-5. Jakub Oprsal, G Brno, tf¥. Kpt. Jarose



Alezandr Picha, G Brno, tf. Kpt. JaroSe
Jakub Pracny, G Brno, tf. Kpt. Jarose
Vojtéch Riha, G Brno, tf. Kpt. Jarose

. Jir{ Rihdk, G Brno, tf. Kpt. Jarose

Jirt Zelinka, G Brno, tf. Kpt. Jarose

. Petr Kadlec, G Brno, t¥. Kpt. Jarose

Zbynék Koneéngy, G Brno, tf. Kpt. Jarose
Ondrej Budik, G Brno, tf. Kpt. Jarose
Lucie Fabrikovd, G Brno, tf¥. Kpt. JaroSe
Marek Filakovsky, G Brno, t¥. Kpt. Jarose
Martin Ko¢i, G Brno, tf. Kpt. Jarose
Martin Ktivanek, G Brno, tf. Kpt. JaroSe
Jakub Skalicky, G Brno, Zizkova

Kategorie P

. Marek Kréal, G Brno, tf. Kpt. Jarose

2. Jiri Stépdnek, G Brno, tf. Kpt. Jarose

. Martin Lopatdr, G Brno, t¥. Kpt. Jarose

Jan Hladky, G Brno, tf. Kpt. Jarose

. Martin Krivdnek, G Brno, tf. Kpt. Jarose
. Martin Vejndr, G Brno, tf. Kpt. Jarose
. Krystof Hoder, G Brno, tf. Kpt. Jarose

Sven Drazan, G Brno, tf. Kpt. JaroSe

. Jana Fabrikovd, G Brno, t¥. Kpt. Jarose

eeoseeveceece Zlinskykraj seceececcsccscose

Kategorie A

. Frantisek Konopecky, G L. JaroSe, HoleSov
. Marek Pechal, G Zlin, Lesni &tvrt
. Martin Cetkovsky, G Zlin, Lesni étvrt

Martin Dungl, G Kroméfiz

. Radovan Polansky, GJAK, Uhersky Brod

Martin Hordadek, G Zlin, Lesni étvrt
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Kategorie B

1.-2. Stanislav Basounik, G Kroméfiz
Frantisek Konopecky, G L. JaroSe, HoleSov
3. Ale$ Holub, G Uherské Hradisté
4. Michal Humpula, GJAK Uhersky Brod
6

7. Martin Konicek, GJAK, Uhersky Brod
8.~10. Ondrej Bilka, G Zlin, Lesni ¢tvrt
Zbynék Savara, GJAK, Uhersky Brod

Kategorie C

1. Marek Pechal, G Zlin, Lesni étvrt
2. Jan Vdna, G Zlin, Lesni étvrt
3. Jirt Machdlek, G L. JaroSe, Holesov
4. Katerina Béhmovd, G Roznov pod Radho$tém
6. Jan Pelc, GJAK, Uhersky Brod
Viclav Vgmola, GJAK, Uhersky Brod
7.-10. Michal Cudrndk, G L. Jaro$e, HolesSov
Marek Chytil, G Zlin, Lesni étvrt
Michal Studeny, G Zlin, ndm. TGM
Pavel Salom, G Roznov pod Radho$tém

evseeoncsoesoseese Olomouckykraj eeeceececcescecsse
Kategorie A

. Helena Kubdtovd, G Olomouc-Hejéin

. Pavel Kaspar, VOS a SPS, Sumperk

. Veronika Chroméikovd, GJS, Pferov
. Lukd$ Peritka, G Hranice

W N

Kategorie B
1. Jan Prusa, GJW, Prostéjov
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. Jaroslav Fibichr, G Sternberk
. Alena Sejkorovd, G Jesenik
. Michal Garlik, G Olomouc-Hej¢in

Jana Sedldckovd, GJS, Pferov

Jirt Horky, GJS, Pferov

Zuzana D¥izgovd, G Lipnik nad Beévou
Martin Rumplik, G Kojetin

Kategorie C

. Jiri Zajicek, RG Prostéjov
. Zdenék Cernohouz, SGO, Olomouc

Jan Srdmek, GJS, Pferov

. Martina Mikovd, G Olomouc-Hej¢in

Martina Brijarovd, GJW, Prostéjov
Martin Premyslovsky, GJS, Pterov

. Jitina Mertovd, G Sumperk
. Rostislav Halas, GJW, Prostéjov

Michal Hapala, G Hranice

Zdenék Mlcoch, G Zabteh

Jana Dvofdkovd, G Zabtfeh

Tomds Jilek, VOS a SPS, Sumperk

Kategorie P

. Jan Matousek, GJW, Prostéjov

eeeeoeoe Moravskoslezskykraj e e s o eeoeeoee

Kategorie A

. Pavel Ludvik, GMK, Bilovec

. Vidclav Cvicek, G P. Bezruce, Frydek-Mistek

. Tomd$ Gavenciak, GMK, Bilovec

. Tomds$ Stanék, G Ostrava-Zéabfeh, Volgogradska
. Ale$ Havel, G Frenstat pod Radhostém

Tomds Andrysek, MOG, Bruntél

. Vojtéch Skubani¢, GMK, Bilovec
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10.-14.

24

. Ondrej Majek, GMK, Bilovec

Pavel Jez, G P. Bezruce, Frydek-Mistek
Jakub Gemrot, GMK, Bilovec

Kategorie B

. Michal Sikora, G Ttinec

. Zuzana Safernova, GMK, Bilovec

. Pavel Zizka, G Ttinec

. Katetina Viriovd, G Ostrava-Poruba, Cs. exilu

Alezandr Zdk, G Ostrava-Poruba, Cs. exilu

. Jan Richter, Masarykovo G Pfibor

Jakub Dvorsky, GMK, Bilovec

Silvie Kafkovd, G P. Bezruce, Frydek-Mistek
Pavel Motloch, G P. Bezruce, Frydek-Mistek
FEva Sobolova, G Ttinec

Kamil Babula, G Ttinec

Jakub Rajman, SPS Moravska Ostrava
Lukd$ Kuna, SPS Moravska Ostrava
Stépdnka Mohylovd, G Ostrava-Poruba, Cs. exilu

Kategorie C

. Jaroslav Hancl, GMK, Bilovec

Jan Uhlik, GMK, Bilovec

. Rostislav Méch, G Frenstat p. R.
. Miloslav Holik, GMK, Bilovec
. Lenka Borisovd, G Opava

Jakub K¥istek, G Ostrava-Poruba, Cs. exilu
Michael Kucera, GMK, Bilovec

Pavel Motloch, G P. Bezruce, Frydek-Mistek
Dita Musalkovd, G Trinec

Petr Sittek, G P. Bezruce, Frydek-Mistek
Roman Vybiral, G Frantiska Hajdy

Josef Zabensky, GMK, Bilovec



Kategorie P

1. Viclav Cvicek, G P. Bezruce, Frydek-Mistek
2. Josef Toman, GMK, Bilovec

3. Pavel Motloch, G P. Bezruce, Frydek-Mistek
4. Tomd$ Gavenciak, GMK, Bilovec
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12.-13.

14.-16.

17.

18.

19.-20.

21.
22.

26

Vysledky celostatniho kola 52. roéniku MO
kategorie A

Vitézove

. Pavel Cizek, 8/8, GaOA Kralupy nad Vltavou

. Marek Krédl, 4/4, G Brno, tf. Kpt. JaroSe

. Petr Posta, 6/6, G Pardubice, Dasicka

. Jaromir Kuben, 1/4, G Brno, t¥. Kpt. Jarose

. Viclav Cvicek, 6/6, G P. Bezruce, Frydek-Mistek

Pavel Kocourek, 2/4, SPSST, Praha 1, Pansk4

. Tomds$ Gavenciak, 3/4, GMK, Bilovec

Martin Kdldy, 4/4, GChD, Praha 5

. Vitézslav Kala, 3/4, G Brno, tf. Kpt. Jarose
. Miroslav Hejna, 8/8, GFMP Rychnov nad Knéznou
. Jan Moldcek, 3/4, GJKT, Hradec Krélové

Dalsi uspésni resitelé

Frantisek Konopecky, 6/8, G HoleSov

Jan Prachat, 8/8, GFMP, Rychnov nad KnéZnou
Marek Pechal, 5/8, G Zlin, Lesni &tvrt

Milan Straka, 4/4, G Strakonice

Veronika Trnkova, 4/4, G Brno, tf. Kpt. Jarose
Pavel Kubas, 8/8, G Jindfichiv Hradec

Jiti Ajgl, 8/8, G Plzen, Mikulasské nam.

Pavel Ludvik, 4/4, GMK, Bilovec

Viclav Potocek, 3/4, SPSST, Praha 1, Panskd
Jiri Danihelka, 4/4, SPS a VOS Pisek

Pavel Dvotik, 4/4, G Brno, ti. Kpt. Jarose

37b.
36b.
29b.
28b.
27b.
27b.
26b.
26b.
25b.
24b.
23b.

22b.
22b.
21b.
21b.
21b.
19b.
18b.
17b.
17b.
16 b.
15b.
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9.-10.
9.-10.
11.-12.
11.-12.
13.-14.
13.-14.

Vysledky celostatniho kola 52. roéniku MO
kategorie P

Vitezove

. Jan Kadlec, 4/4, GChD, Praha 5

. Milan Straka, 4/4, G Strakonice

. Tomads Gavendciak, 3/4, GMK, Bilovec

. Marek Krédl, 8/8, G Brno, tf. Kpt. Jarose

. Martin Krulis, 8/8, G Kolin

. Krystof Hoder, 7/8, G Brno, tf. Kpt. Jarose

. Pavel Cizek, 8/8, GaOA Kralupy nad Vltavou
. Jiri Danihelka, 4/4, SPS Pisek

Dalsi ispésni resitelé

Viclav Cuicek, 6/6, G P. Bezruce, Frydek-Mistek
Martin Vejndr, 6/8, G Brno, t¥. Kpt. Jarose
Sven Drazan, 7/8, G Brno, t¥. Kpt. Jaroge

Jiti Schejbal, 7/8, G Turnov

Dan Marek, 1/4, GChD, Praha 5

JiFi Palecek, 4/4, G Kladno, ndm. E. BeneSe

37b.
36b.
34b.
31b.
30b.
29b.
28b.
27b.

26b.
26b.
24b.
24b.
23b.
23b.
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Kategorie C

Texty uloh

C-1-1

Z péti jednicek, péti dvojek, péti trojek, péti Ctyrek a péti pétek sestavte
pét navzajem riuznych pétimistnych Cisel tak, aby jejich soucet byl co
nejvetsi. (J. Simsa)

C—-1-2

Je dan trojuhelnik ABC s ostrymi vnitfnimi thly pfi vrcholech A a B.
Ozna¢me Q prisecik téznice AD s vyskou C P a E patu kolmice z bodu D
na stranu AB. Déle necht R je bod na polopifimce opa¢né k PC takovy,
ze |PR| = |CQ)|. Dokazte, ze pfimky AD a RE jsou riznobézné a Ze
jejich prusecik lezi na kolmici k pfimce AB prochazejici bodem B.

(J. Surcek)

cC-1-3

Predpoklddejme, ze kazda ze dvou bank A a B bude mit po nasledujici
dva roky stalou roéni irokovou miru. Kdybychom ulozili 5/6 nasich aspor
u banky A a zbytek u banky B, vzrostly by naSe Gspory po jednom roce
na 67000 K& a po dvou letech na 74 900 K¢é. Kdybychom v8ak ulozili 5/6
na8ich Gspor u banky B a zbytek u banky A, vzrostly by naSe tspory
po jednom roce na 71000 K¢&. Na jakou ¢astku by se v takovém pripadé
nade tspory zvysily po dvou letech? (J. Simsa)

C-1-4

Sestrojte lichob&znik ABCD s vyskou 3cm a shodnymi stranami BC,
CD a DA, pro ktery plati: Na zdkladné AB existuje takovy bod E, ze
use¢ka DE mé délku 5cm a déli lichobéZznik na dvé Casti se stejnymi
obsahy. (E. Kovac)
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C-1-5

K pfirozenému éislu m zapsanému stejnymi Cislicemi jsme pricetli Ctyi-
mistné prirozené ¢islo n. Ziskali jsme ¢tyrmistné ¢islo s opa¢nym poradim
islic, nez ma ¢islo n. Urcete vSechny takové dvojice ¢isel m a n.

(J. Zhouf)

C-1-6

V roviné je déna pfimka p a kruznice k. Sestrojte takovy trojihelnik
ABC, aby k byla kruznici jemu vepsanou, jeji stfed lezel ve ¢tvrtiné jeho
t&Znice na stranu AB a aby vrchol C lezel na pfimce p. Provedte diskusi
o poétu feSeni v zavislosti na vzajemné poloze pfimky p a kruznice k.

(P. Cernek)

C-S-1

Odtrhneme-li od libovolného alesponi dvojmistného prirozeného ¢isla ¢is-
lici na misté jednotek, dostaneme ¢islo o jednu ¢islici ,krat$i“. Najdéte
vSechna plvodni ¢isla, kterd se rovnaji absolutni hodnoté rozdilu druhé
mocniny ,krat$tho“ ¢éisla a druhé mocniny odtrzené Cislice. (J. Zhouf)

C-5-2

Na strané CD ¢&tverce ABCD je zvolen bod E tak, ze tthel DAE mé
velikost 30°. Bod P je patou kolmice vedené bodem B na pfimku AFE,
bod @ patou kolmice vedené bodem C na pfimku BP. Rozhodnéte, zda
je obsah lichobézniku PQCE mensi nez tfetina obsahu ¢tverce ABCD.

(L. Bocek)

C-S-3
Z péti jednicek, péti dvojek, péti trojek, péti étyrek a péti pétek sesta-
vime pét pétimistnych Cisel, kterd se ¢tou zepredu stejné jako zezadu

(napf. 32223), a pak tato ¢isla seéteme. Jakou nejmensi a jakou nejvetsi
hodnotu miiZze mit vysledny soucet? (J. Simsa)
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C-n-1

Najdéte nejmensi prirozené ¢islo n, pro které je soucin

2003 -2004-2005- ... - (2003 + n)

délitelny viemi dvojmistnymi prvocisly. (J. Simsa)
C-1-2

V rovineé je dana tisecka AP. Sestrojte pravidelny Sestithelnik ABCDEF

tak, aby bod P byl stfedem jeho strany DE. (J. Svréek)
cC-1-3

Kdyby Karel piij¢il jednomu zndmému p tisic K& s irokem p % a druhému
znamému q tisic K& s arokem ¢q %, kde p a ¢ jsou celd &isla, pfinesly by
obé pljcky Karlovi stejny zisk, jako kdyby jedné osobé pujcil celkovou
Castku s trokem (p + 2,4) %. Kdyby pijcil jednomu zndmému p tisic K&
s urokem 2p % a druhému zndmému q tisic K& s trokem 2q %, pfinesly
by mu tyto pijcky stejny zisk, jako kdyby jedné osobé pijcil celkovou
¢astku s arokem (p + 5,8) %. Urcete &islapa q.  (J. Simsa, J. Zhouf)

C-11-4

Urcete délku ramen rovnoramenného lichobézniku se zakladnami délek
10 a 12 tak, aby délky vSech jeho stran i Ghlopficek byly vyjadreny celymi
Cisly. (P. Cernek)
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Reseni tloh

C~1=1

Nejvétsi mozny soucet by vytvofila pétice Cisel 54321, 54321, 54 321,
54 321, 54321. Jelikoz maji byt ale ¢isla navzdjem riznd, pokusime se
zménit tuto pétici tak, aby se nenarusilo trojcisli 543, tj. aby zména
sou¢tu byla co nejmensi. Tak ale budou jeSté dvé z péti Cisel stejnd,
nebot z ¢islic 1, 2 je mozné sestavit pouze ¢tyfi rizna dvojcisli 11, 12,
21, 22. Zménime proto jedno trojéisli 543 na 542 tak, Zze zaménime Eislici 2
Cislici 3 na misté desitek. Stejné tak na misté jednotek nemize byt vSech
pét jednicek, protoze by posledni troj¢isli nejméné tii pétimistnych cisel
bylo 321. Vyménime proto ¢islici 1 z mista jednotek s ¢islici 2 z mista
stovek a to proto, aby zména souctu pétice Cisel byla co nejmensi. Po
téchto vyménach mohou byt posledni dvojcisli péti ¢isel tato: 31, 22, 21,
21, 11, nebo 31, 21, 21, 21, 12, nebo 32, 21, 21, 21, 11. SnaZime se nyni
rozmistit tato dvojéisli za trojcisli 543, 543, 543, 543, 542. Zjistime, Ze
vyhovuje pouze prvni pétice dvojcisli. Hledana pétice pétimistnych ¢éisel
s nejvétsim moznym souctem je 54 331, 54 322, 54 321, 54 311, 54 221.

C-1-2

Ze zadéani vime, ze |PR| = |CQ)|, proto je i |QR| = |CP| (obr.1). Useé-
ka DEFE je stfedni pfickou trojthelniku CPB, proto je |DE| = %|CP|‘

C
F
Q
Jalwa
A P E B
R
Obr. 1

Je tedy také |[DE| = $|QR)|. Protoze je DE || QR, nemiZou byt tsecky
RE a QD rovnobézné (jinak by byl REDQ rovnobéznik a platilo by
|DE| = |QR]). Proto se pfimky RE a QD protinaji v bodg, ktery je na
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obrazku oznacen jako F, a tsetka DE je stfedni pfic¢kou trojihelnikd
CPB a QRF, jejichz strany CP a QR lezi na stejné pfimce. Proto je
vzdalenost bodli F' a B od pfimky CR stejné, neboli pfimky CR a F'B
jsou rovnob&zné, a tudiz pfimka FB je (stejné jako pfimka CR) kolmé
k pfimce AB.

cC-1-3

Necht naSe vychozi tspory €ni z K& a necht roéni Grokovd mira u
banky A (banky B) je p% (q %), tj. vklad u banky A (banky B) vzroste
po jednom roce a-krat (b-krat), kde a = 1+ p/100 (b = 1+ ¢/100). Podle

zadani plati
5 1
(6 x) e (E z) b = 67000,

[(%z) .a,] a4 [(%x> .b] b= 74900,
<%z) .a+(g.x> -b = 71000,

ra xb
5.2~ 4+ = = 67000,
6 6

a po upraveé

za zb
Rakall 2 b="T49
5 6 a+6 b 00,

za )
— + 5. — = 171000.
6 + 6

Oznacime-li u = %wa av= %xb, prejdou prvni a tfeti rovnice v soustavu

5u + v = 67000,
u + 5v = 71000,

ze které vychazi u = 11000 a v = 12000. Protoze a = 6u/z a b = 6v/z,
Ize druhou rovnici soustavy zapsat jako

5 36u? 1 3602
neboli 2, 62
30“_;'_9_ = 74900,
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odkud pro u = 11000 a v = 12000 vychazi = 60000, tudiz

a_6u_66000_
z 60000
b_6v_72000_
x 60000 7

Hledané ¢astka je proto rovna

1
(6 z-a®+ % -x~b2> K& = (10000 - 1,12 4+ 50000 - 1,2%) K& =

= 84100 K¢.

cC-1-4

Rozbor: Oznagime-li |AB| = a, |CD| = c a vysku lichobé&zniku v (obr. 2),

Obr. 2

muZeme pro jeho obsah S psat

S=-(a+c).

N =

Obsah trojiahelniku AED je podle zadani roven

|AE]-v

1
==-.8=
2 2

(a+c)v,

N =

+
2
odkud plyne, ze |AE| = %(a + c) (tj. tsetka AE mé délku stejnou jako

stfedni pficka lichob&zniku ABCD). Protoze bod E lezi na tseéce AB,
plati

\EB| = |AB| - |AE| = a — %(a )= %(a o),

33



takZe je a > c. Oznad¢ime-li B’ bod tsetky AB, pro ktery je |AB'| = ¢,
bude |B'B| = a — ¢, a protoZe hledany lichob&Znik ABCD je rovnora-
menny, je rovnoramenny i trojihelnik B’ BC, takze stied E tsecky B'B
je zéaroven patou vySky z vrcholu C' na zékladnu AB (obr.2). Pomoci
Pythagorovy véty vypoclteme, Ze

¢=+/|DE|? —v2 = /52 —32cm = 4cm.

Popis konstrukce:

ADEC; |DC|=4cm, |CE|=3cm, | XECD| = 90°
pip|CD, E€p;

k(D,4cm), I(C,4 cm);

A; A € pnk, Ghel ADC je tupy;

B; B € pnl, thel BCD je tupy.

Uloha mé jediné FeSeni.

Al ol S

C-1-5

Necht je &slo n = abcd = 1000a + 100b + 10c + d, kde a,b,c,d €
€ {0,1,...,9}, a # 0. Cislo m + n je &y¥mistné, proto je &islo m nejvyse
CtyImistné. Rozebereme jednotlivé pripady podle poétu éislic m:

1. Cislo m je jednomistné, tj. m =% = x, kde z € {1,2,...,9}. Podle
zadéni alohy je jednak

m +n = 1000a + 100b + 10c + d + z,

jednak
m +n = 1000d + 100c + 10b + a.

Odtud postupné dostaneme

1000a + 100b + 10c + d + = = 1000d + 100c + 10b + a,
z =999(d — a) + 90(c — b).

Prava strana posledni rovnosti je délitelnd deviti, proto mize byt
jediné z = 9. Po dosazeni této hodnoty do rovnosti a vykraceni deviti
vychézi

1=111(d — a) + 10(c — b),
10(b—¢) + 1 =111(d — a).
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Z nerovnosti —9 < b—c < 9 plyne —89 < 10(b—c)+1 < 91. Mezi é&isly
—89 a 91 je jediny nésobek 111, a to &islo 0. Rovnost 10(b—¢) +1 =10
vSak neni splnéna. Z4dné jednomistné &islo m tedy neni feSenim dané
alohy.

2. Cislo m je dvojmistné, tj. m = 2z = 10z + ¢ = 1lz, kde = €
€ {1,2,...,9}. Analogicky jako v piedchozim pfipadé mizeme postupné
psat

1000a + 100b + 10c + d + 112 = 1 000d + 100c + 10b + a,
11z = 999(d — a) + 90(c — b).

Prava strana posledni rovnosti je délitelnd deviti, proto mize byt

jediné z = 9. Potom je
11 =111(d — a) + 10(c — b),
10(b—c) + 11 =111(d — a).

Zde je —79 < 10(b — ¢) + 11 £ 101, odkud plyne jedind moZnost
10(b—c) + 11 = 0, kterad vSak neplati pro zadné ¢&islice b, c. Zadné
dvojmistné ¢islo m tedy neni reSenim dané ulohy.

3. Cislo m je trojmistné, tj. m = Zzz = 100z + 10z + = = 111z, kde
z € {1,2,...,9}. Opét miZeme psét

1000a + 100b + 10c + d + 111z = 1000d + 100c + 10b + a,
111z = 999(d — a) + 90(c — b),
37z = 333(d — a) + 30(c — b).
Prava strana posledni rovnosti je délitelnéd tfemi a ¢islo 37 neni déli-

telné tfemi, proto musi byt x = 3, nebo x = 6, nebo z = 9.
Necht z = 3. Potom je

37 =111(d — a) + 10(c — b),

10(b — ¢) + 37 = 111(d — a).
Zde je —53 £ 10(b—¢) + 37 £ 127, odkud je bud 10(b —¢) + 37 =0,
nebo 10(b — ¢) + 37 = 111. Ani jedna z poslednich dvou rovnosti vSak

neni splnéna pro zadné Cislice b, c.
Necht z = 6. Potom je

74 = 111(d — a) + 10(c — b),
10(b —¢) + 74 = 111(d — a).
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Zde je —16 £ 10(b — c) + 74 < 164, odkud je bud 10(b —c¢) + 74 = 0,
nebo 10(b — ¢) + 74 = 111. Ani jedna z poslednich dvou rovnosti viak
neni splnéna pro zadné cislice b, c.

Necht z = 9. Potom je:

111 = 111(d — a) + 10(c — b),
10(b—¢) = 111(d — a — 1).

Zde je —90 £ 10(b — ¢) < 90, odkud je jeding 10(b—c) =0 a 111(d —
—a—1) =0, tj. jediné c—b =0ad-a = 1. ReSenim dané tlohy
jsou tedy disla n € {1 bb2,2 bb3, 3 bb4, 4 bb5, 5 bb6, 6 bb7, 7 bb8, 8 bb9} pro
be{0,1,...,9}, tj. celkem 80 &isel. Cislo m je rovno 999.

4. Cislo m je &ty¥mistné, tj. m = 77277 = 1111z, kde 7 € {1,2,...,9}.
Opét mizeme psat

1111z =999(d — a) + 90(c — b).
Opét mize byt jediné z = 9, coz dava rovnost
10(b—¢) + 1111 = 111(d — a).
Plati jednak 10(b—c)+1111 2 1111-90 = 1021, jednak 111(d—a) < 999.

Proto zadné ¢tyrmistné ¢islo m neni reSenim dané tlohy.
Zdver: Uloha mé 80 Fedeni, a to &isla m = 999 a

n € {1bb2,2bb3, 3 bb4,4 bb5, 5 bb6, 6 bb7, 7 bb8, 8 bb9 }
pro b€ {0,1,...,9}.

C-1-6

Rozbor: Predpokladejme, ze pozadovany trojuhelnik ABC' je sestrojen.
Stred kruznice vepsané libovolnému trojihelniku lezi na oséach jeho vniti-
nich Ghli. Podle zadéni lezi stfed kruznice k£ na téZnici t. trojihelniku
ABC, proto osa vnitiniho thlu pfi vrcholu C splyva s téznici t.. Troj-
thelnik ABC je tedy rovnoramenny se zakladnou AB (obr.3). Lezi-li
stfed S kruznice k s polomérem r ve Ctvrtiné téznice t., lezi tedy ve
vzdalenosti 7 od strany AB a ve vzdalenosti 3r od vrcholu C. (Bod S
nemuze mit od vrcholu C vzdélenost %r, nebot by bod C lezel ve vnitini
oblasti kruznice k, kterd je vSak trojuhelniku ABC vepsana, tudiz body
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A, B, C lezi v jeji vnéjsi oblasti.) Bod C je tedy prusecikem piimky p
a kruZnice [ se stfedem S a polomérem 3r.

Obr. 3

Popis konstrukce:
déno: k(S,r), p;
1(S,3r);
C;Cepnl;
X; X €~ CS, |XC|=4r;
z; 21 XC, X € z;
teény a, b z bodu C ke k (napf. pomoci Thaletovy kruZnice nad
primérem CS);
7. A, B;A€exnb, BEzxNa.
Diskuse pro pfipad, ze pofadi vrcholi A, B, C je proti sméru pohybu
hodinovych rucicek:
aloha ma dvé feSeni <= |Sp| < 3r,
aloha m4 jedno feSeni <= |Sp| = 3r,
iloha nem4 zadné fefeni <= |Sp| > 3r.

I e

C-S-1

Oznac¢me hledané &islo 10a + b, kde a, b jsou cel4 ¢isla,a 21,0 < b6 < 9.
Podle zadani mé platit

10a + b = |a® — b|.
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Piedpoklddejme nejprve, ze a = b. V tom piipadé jednoduchymi Gpra-
vami dostavame
10a + b = a* — b7,
a? —10a + 25 = b% + b + 25,
(a—5)* =% +b+25.
Do posledni rovnosti pak postupné dosazujeme b = 0,b =1, ..., b =
= 9 a zjistujeme, zda vyraz b2 + b + 25 je druhou mocninou néjakého
nezaporného celého ¢isla. Rovnici vyhovuji dvojice b = 0, a = 0; b = 0,
a=10;b=17,a=14.
V pfipadé, kdy a < b, obdobnymi tipravami dostaneme
10a + b = b% —a?,
a? +10a + 25 = b2 — b + 25,
(@a+5)>=b%-b+25
a podobné jako v prvnim pfipadé ziskame dvojice b =0,a = 0; b = 1,
a=0;b=8,a=4.
Zdvér: S ptrihlédnutim k podminkam zadani jsou feSenim tulohy tfi
Cisla 48, 100, 147.

C-S§-2

Ozna¢me a délku strany &tverce ABCD. Trojuhelniky AED, BAP
a CBQ jsou podobné podle véty uu, pfi¢emz trojihelniky BAP a CBQ
jsou dokonce shodné (obr.4). Trojthelnik AED je polovinou rovnostran-
ného trojihelniku o strané AE. Oznacime-li |[ED| = z, je |AE| = 2z.

D T E C
60°
OO
2
a a
P
Q
309
50° o 60°
A a B
Obr. 4
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V pravotuhlém trojthelniku AED plati
a=|AD| = /|AE[? — |[ED|? = /4a? — 22 = /3,

odkud z = @a. (Velikost z mtzeme také spocitat uzitim goniometric-
kého vzorce z : a = |ED| : |AD| = tg30° = ?)

Trojahelniky BAP a C'BQ jsou polovinami rovnostranného trojtihel-
niku o strané a. Rovnostranny trojihelnik o stran€ délky a ma vysku ﬁga
a jeho obsah je @az. Soucet obsahi trojihelniki AED, BAP a CBQ

|e tudlZ

2 34Ty 12 %
JelikoZ obsah &tverce ABCD je a?, je pomér obsahti lichob&zniku PQCE
a ¢tverce ABCD roven
a? — 15—2\/3_a2 _ 12— 5v/3
a? 12’

coz je Cislo mensi nez 0,29.
Zdvér: Obsah lichobéZniku PQC'E je mensi nez tfetina obsahu ¢tverce
ABCD.

Pro zajimavost uvedeme jesté€ jedno feSeni, ve kterém ukazeme, ze
zkoumany obsah lze odhadnout pomoci Gvah o vzajemné poloze vhod-
nych bodi (bez vypoctu délek a obsahu).

Jiné FeSeni. Protoze nas zajimaji jen poméry obsahti, mizeme pfed-
pokladat, ze ABCD je ¢tverec o strané 1. Ve stfedové soumérnosti podle
stfedu O é&tverce prejdou body E, P a @ v body, které oznacime G, R
a S (obr.5). Z pravothlého trojihelniku AED s thlem 60° pfi vrcholu E
plyne

1 1 1
DE|= -|AE| > -|AD| = =

takZe pro obsah rovnobézniku AGCE plati nerovnost
1
S(AGCE) < 3

Zaroven se zd4, ze shodné lichobézniky RCES a AGQP maji vétsi obsah
nez ¢tverec PQRS. Pokud tomu tak opravdu je, musi byt S(RCES) >
> 1S(AGCE), takie nutné plati

S(PQCE) = S(AGCE) — S(AGQP) = S(AGCE) — S(RCES) <
< %S(AGCE) < % - % . %
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D E C D EFE X C
7
/ /)
/
5 / S 7/ /7
/ 4 .
// o) R// / R
// ) // PQU
y Q e Q
/ /
// 2
A G B A X' G B
Obr.5 Obr. 6

Tim bude tloha vyfresena.

Strana SR ¢tverce PQRS je soucasné vyskou lichobéZniku RCES.
Proto bude nerovnost S(PQRS) < S(RCES) dokézana, kdyZz ovéii-
me, ze strana ctverce je kratsi nez stfedni pricka lichobézniku. Tou je
usecka X Z, kde Z oznacuje stied Gsecky SR, coZ je zaroven pata vySky
rovnostranného trojahelniku XY D (obr.6). Ozna¢me U priseéik Ghlo-
pricky AC daného ¢tverce s tiseCkou PQ. Timto bodem prochézi i pfimka
DY, kterd je soumérné sdruzend s pfimkou BP pravé podle osy AC, ne-
bot |XYDA| = |xABP| = 30°. To ovSem znamen4, ze bod Y, ktery
je pruseCikem DU a X Z, lezi vné ¢tverce PQRS! Proto je opravdu
1XZ| = |2Y| > |QRI.

Obsah lichobézniku PQCE je tudiZ mensi nez tfetina obsahu ¢tverce
ABCD. '

C-S-3

Oznacme a zapiSme v desitkové soustavé pét pétimistnych ¢isel, ktera se
Ctou zepredu stejné jako zezadu a jsou sestavena z danych Cislic:

arbicibiay =ay -10* + b1 -10% +¢; - 102 + by - 10 + a4,
agbycaboag = ag - 10* + by - 10% 4¢3 - 10% + by - 10 + ag,
asbscsbsas = as - 10* 4 by - 10® + ¢3 - 10% + b3 - 10 + a3,
a4bscsbsas = as - 10 + by - 103 + ¢4 - 102 + by - 10 + ay,
asbscsbsas = as - 10% 4 bs - 10% + ¢5 - 102 + b - 10 + as.

Mezi ¢islicemi ¢y, ¢o, 3, ¢4, C5 je pravé jedna jedniCka, pravé jedna
dvojka, pravé jedna trojka, pravé jedna ctyrka a pravé jedna pétka. Kdyby
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totiz na misté stovek uvazovanych péti ¢isel chybéla napft. jedni¢ka, mu-
sela by se na mistech ostatnich radi vyskytovat v lichém poétu (pétkrat),
coz vzhledem k symetrii uvazovanych ¢isel neni mozné.

Pro soucet S uvazovanych cisel tedy plati

S = aibicibiay + asbacoboas + azbscsbsas + agbscabsag + asbscsbsas =
(a1 + a2 + a3 +ag +as) - (10" +1) +
+ (b + by + b3 + by + bs) - (10> + 10) +
+(c1+cz+ez+cq+es) 102 =
=10001- (a; + az + ag + a4 +as) + 1010 (by + by + bz + by + bs) +
+100- (1+2+3+4+5) =
=10001- (a; +as +as +aq +as) +
+ 1010 (by + ba + b3 + by + bs) + 1 500.

S ohledem na ¢islice, jez mame k dispozici, bude soucet S nejmensi, jest-
lize bude

ai+ax+az+ags+as=14+14+2+2+3=09,
by +bo+b3+bs+bs=5+5+4+4+3=21.

Nejmensi mozny soucet mé tudiz hodnotu
Smin = 10001-9+41010-21+4 1500 =112719
a vznikne napf. jako soucet
Smin = 13131 + 14241 + 24 342 4 25452 + 35 553.
Podobné bude soucet S nejvétsi, pokud bude

a1 +ay+az+as+as=5+5+4+4+3=21,
by +bo+b3+bs+bs=14+1+2+2+3=09.

Nejvétsi mozny soucet ma tudiz hodnotu
Smax = 10001 -214+1010-9 + 1500 = 220611
a vznikne napf. jako soucet

Smax = 53535 + 52425 + 42324 + 41214 + 31 113.
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C-1-1

Pro kazdé z dvojmistnych prvodéisel 97, 89, 83, 79, 73, ... hledame jeho
nejmensi nasobek, ktery prevysuje ¢islo 2003. Vzhledem k tomu, Ze mezi
k po sobé jdoucimi celymi &isly je pravé jedno délitelné k, a protoze je
97 -21 = 2037, 89 - 23 = 2047, 83 - 25 = 2075, 79 - 26 = 2054, musi
byt 2003 +n = 2075, tedy n = 72. Pro takové n mame zaruéeno, Ze
pro kazdé z prvocisel 97, 89, 83, 79 je mezi ¢isly 2003, 2004, 2005, ...,
2003 + n aspon jedno jim délitelné.

Mezi uvedenymi 73 ¢isly 2003 az 2075 je vzdy aspon jedno délitelné
prvocislem 73, aspon jedno délitelné prvocislem 71 atd.

Hledané ¢islo n je tedy 72.

C-1-2

V pravidelném Sestithelniku ABCDEF se stfedem S, v némz Q@ je stfed
strany AB a P je stfed strany DE, zname velikost dhlu PAQ (obr.7),

E P D
F 5 C
A Q B X
Obr. 7

nebot v8echny pravidelné Sestithelniky jsou navzdjem podobné. V pra-

vothlém trojahelniku APQ tedy zndme délku pfepony AP a velikosti

dvou @hli (AQP je pravy thel). Odtud vyplyva postup konstrukce:

1. tsecka AP,

2. Thaletova kruZnice k£ nad primérem AP,

3. polopiimka AX, jez svirad s tiseCkou AP thel velikosti PAQ (ten se-
strojime pomoci libovolného pravidelného Sestitthelniku),

4. bod Q jako prusecik kruznice k s polopfimkou AX),

5. stfed S Gsecky PQ,
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6. kruZnice se stfedem S a polomérem |SQ|,
7. pravidelny Sestitthelnik ABCDEF.

Uloha méa dvé feseni soumérné sdruzens podle osy AP podle toho,
v které poloroviné s hrani¢ni pfimkou AP sestrojime polopfimku AX
(bod 3 konstrukce).

C-1-3
V prvnim pfipadé plati
p q p+24
1000p - — + 1000q - — = 1000 .
000p - 7gg + 10002 75 (P+a) 50
v druhém pripadé plati
2p 2q p+538
Rt SRS | ek S . )
1000p 100 + 1000¢q 100 000(p + q) 100
Upravou obou rovnic ziskdme soustavu
P+ =m@+24)(p+9), (1)

2p* +2¢° = (p+538)(p+q).

Protoze leva strana druhé rovnice je dvojndsobkem levé strany prvni
rovnice, musi platit

2(p+24)(p+4q) =(p+538)(p+9q).

Odtud po vykréceni nenulovym vyrazem p+ q vychéazi p = 1. Dosazenim
této hodnoty napf. do rovnice (1) a po tpravé ziskdme kvadratickou
rovnici

¢ —34¢—-24=0.

Protoze hleddme celociselné kotreny, prepiSeme rovnici do tvaru
q(5¢—17) =12
a snadno zjistime, Ze mezi déliteli ¢isla 12 rovnici vyhovuje jeding q = 4.

cC-1n-4

Ozna¢me F patu kolmice spusténé z vrcholu C na zékladnu AB rovnora-
menného lichobézniku ABCD a jednotlivé délky tsefek oznaéme takto
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(obr.8): |AB| = a =12, |BC| =b, |CD| = ¢ =10, |AC| = u, |CE| = v.
Potom je [BE| = $(a—c) =1, |[AE| = L(a +¢) = 11.

D c C
U v|\b
/]
A Fla+c) 2R
Obr. 8

Podle Pythagorovy véty pro trojihelniky AEC a EBC muzeme tedy
psat
v? =u? - 112 = b* - 12, (1)
neboli
u? —b? =112 — 12 = 120.

Odtud je vidét, ze ¢isla u a b jsou zaroven obé sudé, nebo obé licha, proto
v rozkladu

(u—b)(u+b)=120=2-60=4-30=6-20=10-12

prichéazeji v ivahu jen uvedené rozklady c¢isla 120 na sudé Cinitele.
Uvedenym rozkladim pak odpovidaji ¢tyfi soustavy rovnic pro ne-
znamé u a b:

u—>b=2, u—>b=4, u—b=6, u—b =10,

u+ b= 60; u+b=30; u—+b=20; u+b=12.
Jejich feSenim (nejlépe tak, ze vidy odeéteme druhou rovnici od prvé)
dostaneme pro délku ramene b lichobézniku ABCD ¢tyfi moznosti, b €

€ {29,13,7,1}. Z rovnosti (1) ov8em vidime, Zze musi byt b > 1, Gloze
tedy vyhovuji jen prvni tfi hodnoty.

Odpovéd. Mozné délka ramene lichobézniku je bud 7, nebo 13, nebo 29.
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Kategorie B

Texty uloh

B-1-1
Palindromem rozumime pfirozené Cislo, které se Gte zepredu i zezadu
stejné, napft. 16 261. Najdéte nejvétsi ¢tyfmistny palindrom, jehoZ druhé
mocnina je také palindromem. (E. Kovac)
B-1-2
Najdéte vSechny trojice realnych ¢isel (z,y, z) vyhovujici soustavé rovnic
7 +y° =975,

2y + y?x = 625
(J. Zhouf)

B-1-3

Je dén trojuhelnik se stranami délek a, b, ¢ a obsahem S. DokaZte, Ze
rovnost 2¢? = |a? — b?| plati, pravé kdyZ existuje trojuhelnik se stranami
délek a, b, 2c a obsahem 2S. (P. Cernek)

B-1-4

Krokem budeme rozumét nahrazeni uspofddané trojice celych éisel
(p,q,r) trojici (r + 5¢,3r — 5p,2¢ — 3p). Rozhodnéte, zda existuje celé
&islo k taskové, Ze z trojice (1,3,7) vznikne po konefném poctu kroki
trojice (k,k + 1,k + 2). (P. Cernek)

B-1-5

V roviné je dan pravouhly lichobéZnik ABCD s delsi zakladnou AB
a pravym thlem pfi vrcholu A. KruZnice k; sestrojenéd nad stranou AD
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jako primérem a kruznice ko, kterd prochéazi vrcholy B, C' a dotyka se
primky AB, maji vnéjsi dotyk v bodé P. Dokazte, Ze thly CPD a ABC
jsou shodné. (J. Svrcek)

B-1-6

V kartézské soustavé soufadnic Ouv zndzornéte mnoZinu vSech bodi
[u,v], kde u > 0, pro néz ma rovnice

|z? —uz| +vz—1=0

s nezndmou z praveé tii rizné redlna reseni. (J. Simsa)
B-S-1

Najdéte nejvétsi pétimistné prirozené Cislo, které je délitelné ¢islem 101

a které se Cte zepredu stejné jako zezadu. (J. Simsa)
B-S-2

Je dan konvexni ¢tyrahelnik ABCD. Ozna¢me P prisecik jeho thlopfti-
¢ek a @ prusecik spojnic stfedd jeho protéjsich stran. Lezi-li bod @ na
uhlop¥i¢ce BD, je bod P stfedem thloptitky AC. DokaZte. (E. Kovdc)

B-S-3

Kolik rtznych vysledk miizeme dostat, seCteme-li kazd4 dvé z danych
péti riznych pfirozenych ¢&isel? Pro kazdy mozny pocéet uvedte piiklad
takové pétice &isel. (P. Cernek)

B-1Il-1

Urcete nejvétsi pocet po sobé jdoucich pétimistnych prirozenych cisel,
mezi nimiZz neni Zadny palindrom, tj. ¢islo, které se Cte zepfedu stejné
jako zezadu. (J. Simsa)

B-11-2

V roviné je dan pravouhly trojihelnik ABC, na jehoZ pifeponé AB uva-
zujeme libovolny bod K. KruZnice sestrojend nad tse¢kou CK jako nad
prumeérem protne odvésny BC a C' A ve vnitinich bodech, které oznacime

46



po fadé L a M. Rozhodnéte, pro ktery bod K méa ¢étyiahelnik ABLM
nejmensi mozny obsah. (J. Svrcek)

B-11-3

Urcete v8echna realnd cisla p, pro néz ma rovnice
2 _
(z = 1)* =3|z| — pz
pravé tii rizné feSeni v oboru redlnych &isel. (J. Simsa)

B-11-4

V roviné je dan pravouhly lichobéznik ABCD s delsi zédkladnou AB
a pravym uhlem pfi vrcholu A. Ozna¢me k; kruZnici sestrojenou nad
stranou AD jako nad prameérem a ke kruznici prochazejici vrcholy B, C
a dotykajici se pfimky AB. Maji-li kruznice k1, k2 vnéjsi dotyk v bodé P,
je pfimka BC' te¢nou kruznice opsané trojihelniku C' D P. Dokazte.

(J. Surcek)
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Reseni tiloh

B-1-1

Kazdy ¢tyrmistny palindrom p = abba lze zapsat ve tvaru
p=a-1001+b-110,

kde a € {1,2,...,9} a b € {0,1,2,...,9}. Potom druh& mocnina &isla
abba ma tvar

p? =a?-1002001 + 2ab-110110 + b% - 12100 =
=a?-10°% + 2ab - 10° + (b* + 2ab) - 10* +
+ (20 + 2b%) - 103 + (b* + 2ab) - 10% + 2ab - 10! + a?.

Posledni ¢&islice ¢isla p? je tedy stejna jako posledni &islice &isla a?.

Pro a 2 4 je ¢islo p? nutné osmimistné. Jeho prvni &slice je rovna
jedné z hodnot ¢, c+ 1, c+2, kde c je prvni &islice dvojmistného &isla a?.
(Maximalni pfenos z nizsiho fadu je roven &islu 2.) Je-li v8ak dané ¢islo
opét palindromem, je jeho prvni i posledni éislice stejnd. Porovnanim
prvni a posledni ¢islice u ¢isel 16, 25, 36, 49, 64, 81 vidime, Ze zadné
z nich neni tvaru c(c + 2), ¢(c + 1) nebo ce.

Je-lia=3ab22, je ¢islo p?> opét osmimistné, jeho posledni &islice
je 9 a prvni je 1, nejedna se tedy o palindrom.

Ve vsech ostatnich piipadech je &islo p? sedmimistné. Protoze a? je
pouze jednomistné a zapis &isla p? je symetricky, musi byt nutné vechny
tfi hodnoty 2ab, 2ab + b?, 2a® + 2b% mensi nez 10, aby nedoslo k pienosu
do vyssiho fadu. Diskutujme tfi pripady:

e a = 3: nerovnici 2 - 32 + 2b? < 10 nevyhovuje zadné b,
e a = 2: nerovnici 2 - 22 + 2b? < 10 vyhovuje pouze b = 0,
e a = 1: nerovnici 2 - 12 + 2b% < 10 vyhovuje pouze b =0, b =1,

Zdvér: Nejvétsim Ctyfmistnym palindromem spliujicim podminky
tlohy je ¢islo 2 002.

B-1-2
Pri¢teme-li k prvni rovnici trojndsobek rovnice druhé, ziskdme rovnici
z3 4 322y 4 3xy? 4+ o3 = 2723,
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Jeji Gpravou dostaneme
(x+v)3=(32)3 tj. z4+y=3z
Dosadime-li tento vyraz do levé strany druhé rovnice soustavy, dostaneme
Py +ay’ =ay(z +y) = 3zyz, tj. 3zyz =623,

Rozlisime dva pripady.

Je-li z = 0, je posledni rovnice splnéna pro vSechna z,y € R. Z prvni
rovnice soustavy ziskdme z® + y® = 0, tj. y = —x. ReSenim je kazd4
trojice (t,—t,0), kde ¢ je libovolné redlné ¢islo.

Je-li z # 0, pak zy = 22%. Spole¢né s rovnici  + y = 3z dostavame
soustavu

T +y =3z,

Ty = 222

dvou rovnic o dvou neznamych z,y s parametrem z. Eliminaci napf.
neznamé y dostaneme kvadratickou rovnici

22— 3zz 4222 =0.

Ze vztaht mezi kofeny a koeficienty kvadratické rovnice ziskdme feSeni
ve tvaru T = z,y = 2z nebo r = 2z, y = z. Reenim je tedy kazda trojice
(t,2t,t) a (2t,t,t), kde t je libovolné redlné ¢islo (rtzné od nuly).

Zavér: Soustava ma feSeni (¢, 2t,t) a (2t,t,t) pro kazdét # 0, (¢, —t,0)

......

Jiné reSeni. Prvni rovnici vynasobime dvéma a odeéteme od ni troj-
nasobek rovnice druhé (vylouc¢ime tak nezndmou z). Ziskdme rovnici

223 4+ 2% — 322y — 3zy? = 0.
Levou stranu rovnice postupné upravime na tvar:

2(z +y)(e® —ay +y*) - 3@ +y)zy =0,
(z +y)(22® — 5y + 2y*) = 0,
(z+y)(2z - y)(z - 2y) = 0.
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Mohou tedy nastat tfi pripady:

e z+y = 0, potom y = —z. Dosazenim do prvni rovnice soustavy
dostaneme 92° = 2% + (—z)® =0, tj. z = 0.

e 2x —y = 0, potom y = 2z. Dosazenim do prvni rovnice soustavy
dostaneme 92% = 23 + (22)% = 923, tj. z = z.

e x — 2y = 0, potom z = 2y. Dosazenim do prvni rovnice soustavy
dostaneme 92° = (2y)® + 3 = 943, tj. z = y.

Zdvér: ReSenim jsou viechny trojice (¢, —t,0), (¢,2t,t) a (2t,t,t), kde
t je libovolné realné ¢islo.

B-1-3

Bez Gjmy na obecnosti predpokladejme, Ze plati a = b. Jestlize je ob-
sah trojihelniku A’B’C’ se stranami délek a, b, 2¢ roven dvojnésob-
nému obsahu trojihelniku ABC se stranami délek a, b, c, jsou vysky
CV a C'V' téchto trojuhelnikti shodné. Trojuhelniky ACV a A'C'V’
jsou tedy shodné podle véty Ssu, proto miZzeme oba trojihelniky ABC
a A'B'C’ premistit tak, aby platilo B = B', C = C' a'V = V’; pak uZ
oviem nemiiZe platit A = A’. Jak4 je poloha bodu A a A’ na p¥imce BV?
Protoze b = |AC| = |A'C|, je trojuhelnik AA'C je rovnoramenny a jeho
zédkladna AA’ mé stied v bod& V (obr.9). Pfedpoklad a 2 b znamen3,

c=c

A v=V'" A ¢ B=B
Obr. 9
ze |AC| = |A'C| £ |BC|, takze bod B nelezi na tseéce AA'; protoze
|AB| = c a |A’B| = 2¢, lezi bod B na polopfimce opatné k AA’ tak, Ze
bod A je stfedem tsetky A'B.
Z pravouhlych trojihelnikd AV C a BV C vyplyva

ree- (3.

vP=0% - (%0)2.
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Porovnéanim pravych stran dostaneme po Gpravé
a? — b% =262

Ukézali jsme tak, Ze pokud k danému trojihelniku ABC existuje
trojahelnik se stranami a, b, 2c a obsahem 25, pak pro délky a, b, ¢ musi
byt splnéna rovnost |a? — b%| = 2¢2%.

Predpokladejme naopak, ze pro velikosti stran a, b, ¢ trojahelniku
ABC plati |a® — b?| = 2¢2. Nejprve ukdZeme, 7e trojihelnik se stranami
a, b, 2c existuje, tj. ze plati trojihelnikova nerovnost

a+b>2c>|a—b|

Pro trojthelnik ABC plati trojihelnikova nerovnost a +b > ¢ > |a — b|.
Proto plati 2¢ > ¢ > |a — b|. Vynésobime-li dile obé strany nerovnosti
¢ > |a — b| kladnym vyrazem a + b, obdrzime nerovnost

c(a+b) > |a* — b?| = 2¢%,
z niz po déleni ¢ vyplyva nerovnost
a+b>2c

Piedpokladdejme nyni, Ze v trojihelniku A’B’C’ o stranich a, b, 2¢
plati rovnost 2¢? = a? — b? (opét bez ijmy na obecnosti predpoklddame,
7e a > b — zde nemiiZe byt a = b, protoZe by bylo ¢ = 0).

Vysvétlime, pro¢ pata V vysky z vrcholu C’ na stranu A’B’ padne
dovnitf této strany (a ne na jeji prodlouzeni). K tomu stali ukazat, ze
trojahelnik A’ B'C’' m4 ostré vnitini thly u vrcholt A’ i B’ (obr. 10). Uhel
A'B'C'" je mensi nez tihel B'’A’C’, nebot predpoklddame, ze a > b. Uhel

'
b v a
TV
AI C A C BI
Obr. 10
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B'A'C" je ostry, pravé kdyz plati nerovnost |B'C’|? < |A'B'|? + |A'C"|?,
neboli a? < 4c? 4+ b2. Posledni nerovnost je ale zarucena rovnosti a? =
=b? +2¢%.

Z pravouhlych trojahelniki A’V C’" a B'VC’ plyne, Ze pro délky z =
= |A'V] av =|C"V] plati

’U2=b2—.’L'2,

v? = a? - (2c—z)2.

Porovnanim pravych stran dostaneme po tpravé
4ex = 4c? — (a® — b?)
a dosazenim za a? — b? vyjde
dex =42 - 22 =262, tj.x= %c.
Oznacime-li A (ve shodé s prvni ¢asti) stied strany A’B’, plati
|AC'| = |A'C'| = b,

tudiz trojihelnik AB’'C’ ma strany délek a, b, ¢ a obsah rovny poloviné
obsahu trojihelniku A’B’C’. Tim jsme dokazali opa¢nou implikaci.

Jiné Feseni. Z Heronova vzorce pro obsah S; trojthelniku ABC a pro
obsah S, trojihelniku A’B’'C’ mame

si=3/(@r o - )@ - @),

Sy = %\/((a +b)? —4c?) (4¢ — (a — b)?).

Z podminky S = 257 plyne
((a+b)? —4c®) (4¢®> = (a —b)?) =4((a+b)* = ) (* - (a — b)?).
Z této podminky po tpravé dostaneme
(a® = b?)? = 4ct, ;. |a2 - b2| = 2c2.

Provedené tpravy jsou ekvivalentni, proto je mozno cely postup obréa-
tit. Z rovnosti |a? — b%| = 2c? vyplyva, Ze trojihelnik A’ B'C’ ma dvakrat
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vétsi obsah nez trojihelnik ABC. Existenci trojahelnik lze dokazat stej-
nym postupem jako v prvnim feSeni.

Jiné fefeni. Uvazujme tsetku BC délky a (a > b) a kruZnici k se
stfedem v bodé C a polomérem b (obr. 11).

Obr. 11

Ve stejné poloroving (s hrani¢ni pfimkou BC') uvazujme body A a A’,
pro néz plati |[AB| = ¢, |A'B| = 2c. Lezi-li body B, A a A’ na téze p¥imce,
potom obsah trojihelniku A’BC' je dvojndsobkem obsahu trojihelniku
ABC'. Z mocnosti bodu B ke kruZznici k plyne

|BA|-|BA'| = 26 = a® — B2,

Je-li naopak splnéna posledni rovnost, protne polopfimka opa¢né
k AB kruznici k v bodé, jehoz vzdalenost od bodu B je rovna 2c, timto
bodem je v8ak A’. Odtud jiz plyne tvrzeni pro obsahy trojihelnikt. Exis-
tenci trojahelniki lze dokazat stejnym postupem jako v prvnim feSeni.

B-1-4

Secteme-li vSechna tii ¢isla nové vzniklé trojice, dostaneme
(r+5q)+(3r—>5p)+(2¢—3p) =4r+7¢—8p = 3(r+2q—3p) +(p+q+r).

Toto ¢&islo dava pri déleni tfemi stejny zbytek jako &islo (p + ¢ + r),
tj. zbytek pri déleni tfemi souctu Cisel v trojici zlstava zachovan. Pro
trojici (1,3,7) je zbytek roven dvéma (1+3+7=11=3-3+ 2).
Soucet tii po sobé jdoucich celych ¢isel je vSak délitelny t¥emi, takze
déava zbytek nula. Plyne to z rovnosti k + (k +1) + (k+ 2) = 3(k + 1).

Zavér: Po kone¢ném poctu kroku nemuzeme z trojice (1,3,7) dospét
k trojici po sobé jdoucich celych ¢isel.
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Jiné Feseni. Pfedpokladejme, Ze z néjaké trojice (a, b, c) vznikne v na-
sledujicim kroku trojice po sobé jdoucich ¢isel (aq,bq,c1). Tato tfi éisla
jsou tedy nutné ¢leny aritmetické posloupnosti s diferenci 1. Musi proto
platit

C1 -—bl :b1 —ap.

Dosadime-li sem a; = ¢+ 5b, by = 3¢ — 5a, ¢; = 2b — 3a, dostaneme po
Gpravé
7(a + b) = 5¢.

Odtud nutné plati ¢ = 7k, a + b = 5k pro néjaké celé ¢islo k. Potom ale
a; = 32k — 5a, by = 21k — 5a, ¢; = 10k — 5a. Aby tato trojice tvofila
aritmetickou posloupnost s diferenci jedna, muselo by byt 11k = —1,
tj. k= —11—1. To je spor s predpokladem, ze k je celé ¢islo.

Jiné FeSeni. Zkoumejme, jak se méni parita trojice ¢isel v nasledujicich
krocich. Na zacatku jsou vSechna tfi ¢isla licha. Postupné dostavame:

LD = (s,8,0) = (1,1,s) = (L,LL) — ...

ProtoZe se parita Cisel pravidelné méni dle daného schématu, nemu-
Zeme z trojice lichych ¢isel dospét k trojici (s,l,s), resp. (I,s,l), které
reprezentuji vSechny trojice po sobé& jdoucich ¢isel (za sudym &islem né-
sleduje liché a naopak).

B-1-5

Protoze tsetka AD je prumérem kruznice k;, je thel APD pravy
(obr.12).

D X C

ky

ks
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UvaZzujme spole¢nou teénu ¢t obou kruznic prochazejici bodem P.
Ozna¢me po fadé S a X priseciky teény t s tseckami AB a CD.
Pfimka AB je vSak také spoleénou te¢nou obou kruznic. Plati proto
|SA| = |SP| = |SB|. Bod S je proto stfedem Thaletovy kruznice se-
strojené na stranou AB jako priimérem. Uhel APB je tudiz stejné jako
uhel APD pravy a bod P je tedy vnitinim bodem tusecky BD.

Trojuhelnik BPS je rovnoramenny se zakladnou BP, pro jeho thly
tedy plati |xSBP| = |xSPB|. Uhel SPB m4 navic stejnou velikost jako
thel DPX (dvojice vrcholovych Ghli). Plati proto [« ABP| = |xDPX|.
Soucasné v8ak je ithel X PC Ghlem tsekovym pro tétivu C' P kruznice k.
Z rovnosti obvodového a tisekového Ghlu mame |<xPBC| = |x X PC)|.

Celkové dostavame

|<xABC| = |xABP| + |¥xPBC| = |«xDPX|+ |xXPC| = |xDPC|,
coz jsme chtéli dokazat.

B-1-6

Nulové body vyrazu 22 — uz jsou x = 0 a ¢ = u. Protoze dle zadani
plati u > 0, rozdélime redlnou osu na tfi vzajemné disjunktni intervaly
L = (—00,0), I = (0,u) a I3 = (u, 00).

Na intervalech I; a I3 feSime kvadratickou rovnici

22— (u—v)r—1=0.

Tato rovnice mé kladny diskriminant (u — v)? + 4, a tudiz dva rtzné
realné koreny

T = )
2
u—v++/(u—v)2+4
To = 2

Protoze \/(u —v)?2 +4 > |u — v|, plati z; < 0 a z2 > 0. Znamen4 to, Ze
Cislo z; je vzdy feSenim rovnice (1), nebot I; = (—o0,0), zatimco ¢&islo zo
je feSenim rovnice (1), pravé kdyz plati zo € I3, neboli zo > u.

Na intervalu I feSime kvadratickou rovnici

22— (u+v)r+1=0.
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Tato rovnice m4 diskriminant D = (u+v)? — 4 a p¥ipadné realné koteny

Tr3 =

Tyq =

Ze zadani vyplyva, Ze aspon jeden z kofenu z3, x4 musi byt FeSenim
rovnice (1) (lezicim na intervalu I5). Proto pfedné musi byt diskrimi-
nant D neziporny, z ¢ehoz plyne podminka |u + v| 2 2. Protoze navic
v (u+v)?2 —4 < |u + v|, maji oba kofeny z3, x4 stejné znaménko jako
soucet u+v. Dohromady to znamend, Ze musi platit u+v = 2 (v pfipadé
u+v £ —2 by totiz zadné z ¢&isel z3, z4 neleZelo na I). Za podminky
u+v 2 2 oviem plati 0 < z3 < x4, takZe ze zadani plyne, Ze na intervalu
I, = (0,u) lezi ¢islo z3 (a pfipadné i ¢islo x4).

Z dosavadnich Gvah plyne, Ze nasi tlohou je posoudit otazku, kdy za
podminek

u>0 a ut+v22 (2)

nastane néktery z téchto pripadi:
a) To ¢ I3, {l‘3,fl}4} C Iz, x3 # xy4;
b) T9 € I3, I3 =24 € 12;

C) To € I3, x3 € Iy, x4 ¢ I>.

Ad a. Zjistime, kdy jsou splnény jednotlivé podminky, které tento
pfipad vymezuji (pro lep$i piehled je v textu uvaddime éernymi puntiky).
e 22 ¢ I3, neboli zo < u. Po Gpravé ziskdme nerovnost

Vu-v)2+4=<u+o,

jejiz prava strana je podle (2) kladnd, takze obé strany miZeme umocnit
na druhou. Po dalsi snadné tipravé dostaneme podminku uv 2 1. Proto
plati:
z2 ¢l <= wuv21.
e {z3,24} C I,. Jak vime, za podminek (2) plati 0 < z3 £ x4,
sta¢{ proto pouze zkoumat nerovnost x4 < wu, neboli \/(u +v)2 —4 <
< u — v. Posledni nerovnost miize platit jediné tehdy, kdyz v = v. Pak

po umocnéni stran zkoumané nerovnosti a néasledné tpravé dostaneme
podminku uv £ 1. Proto plati:

{z3,24} C L <= u2v Auwl
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vvvvvv

rovnost £3 = x4 nastane, pravé kdyz u + v = 2. Za podminek (2) tedy
plati
3£ x4 <= u+tv>2

Shrneme nyni vSechny podminky pro zkoumany pfipad A. Z nerov-
nosti uv 2 1 a wv £ 1 plyne uv = 1, neboli v = 1/u. Zbyvajici podminky
jsou pak tvaru u 2 1/u a u+ 1/u > 2 a jsou zfejmé& obé splnény, praveé
kdyZz v > 1. Hledané body [u,v] v pfipadé A tedy tvoii ¢ast hyperboly
v = 1/u uréenou omezenim u > 1 (obr. 13). '

“A
g K
ol 1 >u

Obr. 13

Ad b. Z predchoziho rozboru pfipadu A plyne, Ze za podminek (2)
plati tyto ekvivalence:

o€l < w<l, x4€l, < uZv A w1,
T3 =T4 < u+v=2.

Vidime, ze v pfipadé B musi platit v = 2 — u. Tehdy jsou zbyvajici
podminky tvaru (2 —u)u < 1 au 2 2 — u a jsou ziejmé obé& splnény,
pravé kdyz u > 1. Hledané body [u,v] v pfipadé B tedy tvori polopfimku
urcenou rovnici v = 2 — u a omezenim u > 1.

Ad c. Podminku z3 € Iy lze vyjadfit nerovnosti z3 < wu, kterd je
ekvivalentni s nerovnosti \/(u + v)? — 4 2 v — u, jeZ je splnéna trivialné,
pokud u 2 v. Jak jsme ale ukézali diive, v p¥ipadé u = v plati nejen
z3 € I, ale také x4 € I, coz pripad C vylucuje. V piipadé C tedy nutné
plati u < v a z nerovnosti \/(u + v)2 —4 2 v — u po umocnéni a Gpravé
dostaneme podminku uv 2 1. Jak ale vime, z posledni nerovnosti plyne
x9 ¢ I3, takze piipad C nemtzZe nikdy nastat.
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Zdveér: Mnozinou vSech bodi vyhovujicim zadani je ¢ast hyperboly
v = 1/u a €ast pfimky v = 2 — u, v obou pfipadech ¢asti uréené podmin-
kou u > 1.

Jiné feseni. Rovnici lze fesit také graficky. Zkoumame, kdy budou mit
grafy funkci f(z) = |22 — uz| a g(z) = 1 — vz pravé t¥i spoletné body
(obr. 14).

Y)

Obr. 14

Graf funkce f je sloZen z Gasti paraboly, grafem funkce g je pfimka
prochézejici bodem [0, 1]. Aby tato pfimka méla s grafem f(z) spole¢né
pravé t¥i body, musi byt bud te¢nou paraboly na intervalu (0,u) (potom
u + v = 2, odvozeni je analogické jako v predchozim feSeni — pomoci
diskriminantu), nebo musi prochézet bodem [u,0] a soucasné protinat
graf funkce f ve vnit¥nim bodé intervalu (0, ). Dosadime-li soufadnice
bodu [u, 0] do rovnice pfimky g, dostaneme 0 = 1 —vu, tj. uv = 1. Stejné
jako v pfedchozim feSeni musi platit u > 1, coZ miizeme ovérit nalezenim
druhého pruseéiku primky s parabolou.

B-S-1

Libovolné z uvazovanych pétimistnych ¢isel ma desitkové soustavé zapis
tvaru abcba. Jeho rozvinutim a Gpravou ziskdme rovnost

abcba = 10001a + 1010b + 100c = 101(99a + 10b + ¢) + 2a — c.

Odtud plyne, Ze zkoumané &islo je délitelné 101, pravé kdyz 2a —c =0
(pro libovolné é&islice a, ¢ totiz jisté plati |2a — ¢| < 101). Z rovnosti
2a = c plyne a £ 4, a protoZe hleddme co nejvétsi takové &islo, zvolime
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jeho prvni &islici a = 4, které odpovida Cislice ¢ = 8. Protoze Cislice b
nemé na délitelnost ¢islem 101 vliv, zvolime ji co nejvétsi: b = 9. Hledané
Cislo je tudiz 49 894.

B-S-2

Stiedy stran ¢tyfahelniku ABCD ozna¢me K, L, M, N podle obr. 15.
Protoze tsetky KL a MN jsou stfedni pfi¢ky trojuhelniki ABC

Obr. 15

resp. ACD, plati KL || AC || MN. Obdobné plati LM || BD || KN,
tudiz KLMN je rovnobéznik a bod @ puli Gse¢ku K M. Viimnéme si
nyni trojahelniku KM N. Stiedem @ jeho strany KM prochézi podle
predpokladu tlohy tahlopricka BD, ktera je, jak vime, rovnobézna s dru-
hou stranou K N. Proto i stfed R tfeti strany M N leZi na thlopfi¢ce BD.
Protoze tsecka M N je stejnolehld s tseckou C'A podle stfedu D, pili
ahloptitka BD nejen usetku M N (v bodé R), ale i tsetku AC (v odpo-
vidajicim bodé P).

B-S-3

Dané pfirozend ¢isla ozna¢me podle velikosti 7 < 75 < 73 < 74 < 5.
Protoze plati

T+ 22 <21 +23<21+24<T1+25<Ty+2T5<23+T5 <Tq+ s,

je mezi vSemi soucty x; + z; aspon sedm rtznych hodnot. Nevypsany
zlistaly pouze tii z moznych soucti, a to soulty xo + 3, xo+4 a T3+ 4.
Proto pro po¢et p moznych hodnot uvazovanych soudti plati 7 < p < 10.
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Pro kazdou z hodnot p € {7,8,9,10} uvedeme pfiklad pétiprvkové
mnoziny M, pfirozenjch ¢isel, pro kterou uvazované soucty nabyvaji
pravé p riznych hodnot (jejich mnoZinu oznaéime Sp):

M7 = {1a2a3’475}a S7 = {3747 5767 7a 879}7
Ms = {1,2,3,4,6},  Ss={3,4,5,6,7,8,9,10};
Mg = {1,2,3,4,7}, So = {3,4,5,6,7,8,9,10,11};

M10 . {1’ 2) 37 5: 8}a SlO = {374, 5, 6, 7, 8, 9, 10, 11, 13}

B-I1l1-1

Mezi 109 po sobé jdoucimi pétimistnymi Cisly
10902, 10903, ...,10999, 11000,...,11009, 11010

neni zadny palindrom (je mozné uvést i jiné vyhovujici pfiklady 109 pé-
timistnych &isel, my jsme vypsali skupinu nejmensich z nich).

Nejmensi a nejvétsi pétimistné palindromy jsou ¢isla 10001 a 99 999;
pred éislem 10001 je jen jedno pétimistné Cislo, za Cislem 99999 uz do-
konce zadné takové ¢islo neni. UkdZeme nyni, Ze za kazdym pétimistnym
palindromem z,  # 99 999, nasleduje pétimistny palindrom z+ 100 nebo
z + 110 nebo z + 11. Skute¢né, je-li + = abcba, pak v pFipadé ¢ # 9 je
palindromem ¢islo z + 100 = ab(c + 1)ba, v pfipadé ¢ = 9 # b je palin-
dromem ¢&islo = + 110 = a(b + 1)0(b + 1)a, kone¢né v pfipadé c =b =9
(kdy nutné a # 9) je palindromem ¢islo z 4+ 11 = (a + 1)000(a + 1).

Odpovéd. Hledany nejvétsi pocet ¢isel je roven 109.

B-11-2

Protoze thly KLC, KMC a LCM jsou pravé (obr.16), je étyfthelnik
K LCM pravouhelnik a trojihelniky AKM a KBL jsou podobné troj-
dhelniku ABC. Oznaéme jako obvykle a = |BC|, b = |AC|, ¢ = |AB|
a polozme |AK| = kc, kde 0 < k < 1. Pak ovSem |KB| = (1 — k)c
a ze zminéné podobnosti trojihelnik dostavame vyjadieni |AM| = kb,
|LC| = |KM| = ka, |BL| = (1 — k)a a |MC| = |[KL| = (1 — k)b. Proto
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plati

1 1
SaBLm = SaBc — SLmc = Eab -5 ka-(1—k)b=

1 2 1 1\2 3
= — — = - —_ - —_ b
2ab(l k+k*) 2ab((k 2) +4):
1 3 3

>Zab-2 =2

:2054 45ABC,

pfi¢emz rovnost Saprm = %S ABc hastane, pravé kdyz k = %, tedy praveé
kdyZ je bod K stfedem pfepony AB.

A ke K (1-k)c B

Obr. 16

Jiné FeSeni. Ctytiuhelnik ABLM m4 minimélni obsah, pravé kdyz ma
maximalni obsah trojihelnik LM C, ktery je ,polovinou“ pravothelniku
KLCM. Staci proto ukazat, ze obsah Skrcn je maximalni, pravé kdyz
je bod K stfedem piepony AB (kdy ziejmé Skrcm = 3SaBc). Je-li
bod K vybrén tak, ze |AK| < 3|AB|, je usetka KL stiedni piickou
lichobézniku AK'L'C, ktery mé o Sk/1-p mensi obsah neZ trojthelnik
ABC (obr.17a), takze plati

1 1
SkrLcMm = ESAK’L'C < ESABC-

Obr. 17
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Je-linaopak |AK| > %[AB|, vyuzijeme obdobny lichob&znik BK'M'C
(obr.17b) a usoudime, Ze plati

1 1
SkrLcm = 'Q'SBK'M’C < ESABC-

Tim je tvrzeni o maximalnim obsahu Sk o dokdzéano.

Odpovéd. Ctyrthelnik ABLM ma nejmensi mozny obsah, pravé kdyz
bod K lezi uprostfed pfepony AB.

B-1l-3

I kdyz lze danou tulohu Fe$it ndzorné geometrickou tvahou o vzajemné
poloze paraboly y = (z — 1)? a lomené ¢ary y = 3|z| — pz, ddme nejprve
prednost cCisté algebraickému postupu.

Dana rovnice zfejmé nema feSeni x = 0. Po odstranéni absolutni
hodnoty a snadné upravé dostaneme rovnice

2+ (p+1)z+1=0 pro z <0, (1)
2+ (p-5z+1=0 pro z > 0. (2)

Protoze kazda kvadraticka rovnice ma nejvyse dva rizné kofeny, hledame
vSechna ta éisla p, pro ktera m4 jedna z rovnic (1), (2) jeden kofen a druhd
dva rtzné kofeny (a to vzdy pfedepsanych znamének). VSimnéme si, Ze
pro kazdé q € R maji realné kofeny z; » rovnice z2 + gz + 1 = 0 (pokud
vibec existuji) stejné znaménko, které je opacné nez znaménko ¢isla g;
plati totiz ziz2 = 1 a 21 + 22 = —q. Pro rovnice (1), (2) tak pfedné
dostavame podminky

p+1>0 a p—5<0, neboli pe(-1,5).
Kromé toho uZ jen pozadujeme, aby pro diskriminanty obou rovnic
D;=(p+1)%2—-4, Dy=(p-572-4

platilo bud D; = 0 a Dy > 0, nebo D; > 0 a D = 0. Rovnost D; = 0
plati pouze pro p € {—3,1},rovnost D2 = 0 pouze pro p € {3,7}.Z téchto
¢ty hodnot lezi v intervalu (—1,5) pouze Cisla p = 1 a p = 3, pfiGemz
pro p = 1 vychazi Dy = 12 > 0, pro p = 3 zase D; =12 > 0.

Odpovéd. Hledané hodnoty jsou p=1ap = 3.
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Jiné FeSeni. Grafem funkce y = (z—1)? je parabola s vrcholem V'[1, 0],
grafem funkce y = 3|z| — pz je lomend Cara tvofend rameny nékterého
ahlu s vrcholem O[0,0] (obr.18a pro p = 2). Oba grafy maji spole¢né

~—

<
< Yy )
" A y=@-1? A y=@e-1p
\
‘w ¥
\
2
Q\®
/
&
‘\}’//
y=(3B-p)z
ol v z o=V T
a)p=2 b) p=3
Yy
c A v=@-y
\\
Tyhe &
2 /@
sl &
Vi
S
ol v %
op=1
Obr. 18

tfi body, pravé kdyz jedno z ramen zminéného uhlu je tecnou paraboly
a druhé je jeji ,,secnou“. Protoze zkoumand parabola nemé te¢nu rovno-
béZnou s osou y, mizeme rovnice obou teéen prochazejicich bodem [0, 0]
hledat ve tvaru y = kx. Jak je znamo, smérnice k se ur¢i z podminky, zZe
rovnice kz = (z — 1)2 m4 dvojnéasobny koten, tedy nulovy diskriminant.
Ten mé vyjadieni (k + 2)? — 4, takZe hledané hodnoty jsou k; = 0,
ks = —4 a odpovidajici body dotyku 77 = V'[1,0] a T5[—1,4]. Z rovnic
pro smérnice teCnych ramen zkoumanych thli 3 —-p=0a -3 —p=—4
najdeme feSeni p; = 3 a p; = 1 a snadno se pfesvédcime, ze druhé ra-
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meno je v obou piipadech skute¢né se¢nou paraboly (obr. 18b pro p = 3
a obr. 18c pro p = 1).

B-1l-4

Oznacme S; a S stfedy uvazovanych kruznic (obr. 19). Obé tsecky S; A
a S3B jsou kolmé na pfimku AB, jsou tudiZz rovnobé&zné a st¥idavé Ghly

D C/ ko

Sa

Obr. 19

PS;B a PS;D shodné. Podle véty o obvodovych a stfidavych tdhlech
proto plati

1 1
l{PCB| = §|<):P52B| = 5]{P51D| = |<)CPAD|
Oba thly APD a ADC jsou vSak pravé, tudiz
|«PAD| =90° — | xADP| = |xCDP|.

Dohromady dostavame, ze thly PCB a CDP jsou shodné, coZ podle
véty o obvodovém a tsekovém thlu znamena, ze pfimka BC je tecnou
ke kruznici opsané trojuhelniku CDP.

Jiné feseni. Ve stejnolehlosti se stfedem P, pii které kruznice k; prejde
v kruznici k5, musi te¢na C'D kruznice k; prejit v rovnobéznou tecnu AB
kruZnice ko, pfitom se bod dotyku D zobrazi do bodu dotyku B. Bod P
tudiz lezi na thlop¥i¢ce BD (obr.20). Odtud plyne shodnost st¥idavych
thli CDP a PBA (mezi rovnob&zkami AB a CD). Uhel PBA je ale
usekovy thel mezi tétivou BP a tenou AB kruZnice ks, je tedy shodny
s piislu$nym obvodovym thlem PCB. Uhly CDP a PCB jsou proto
shodné, coz jsme potfebovali dokdzat (viz zavér pfedchoziho FeSeni).
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k1

Obr. 20

Poznamka. Podle dlohy B-I-5 jsou shodné thly ABC a CPD
(obr.21). Protoze jsou shodné i stiidavé thly PEB a PCD, kde E je

k1

Obr. 21

prisecik polopfimky CP se stranou AB, lze kyZenou shodnost tthlid CDP
a PCB odvodit z trojuhelniki BCE a PDC.
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Kategorie A

Texty dloh

A-1-1

Posloupnost (z,)52, celych ¢isel s prvnim ¢lenem z; = 1 spliuje pod-
minku
Tn =:i:xn_1 :l::l:l‘l

s vhodnou volbou znamének ,+“ a ,,—“ pro libovolné n > 1, naptiklad

Ty = —T1, T3 = —Tg + X1, Ty = T3 — Ty — X1, ... Pro dané n urcete

v8echny mozné hodnoty z,,. (J. Féldes)
A-1-2

Na pfimce p jsou dany rizné body A, B, C v tomto poradi, kde |AB| =1
a |BC| = h. Uvazujme kruZnice ka, kp, kc, které se dotykaji pfimky p po
fadé v bodech A, B, C. Kruznice k4, kg maji pfitom vnéjsi dotyk v bodé
P a kruznice kg, k¢ vnéjsi dotyk v bodé Q. Urcete vSechny hodnoty
poloméru kruznice kg, pro néz je trojuihelnik BP(Q rovnoramenny.

(J. Zhouf)
A-1-3
Urcete v8echny mozné hodnoty vyrazu
a* +b* +ct
a2b? + a2c2 + 22’
kde a, b, c jsou délky stran trojuhelniku. (P. Kanovsky)

A-1-4

Urcete v8echna pfirozend ¢isla n > 1 takovd, ze v nékteré ciselné sou-
stavé o zdkladu 2 2 5 plati nasledujici kriterium délitelnosti: trojmistné
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Cislo (abc), je délitelné Cislem n, pravé kdyZz je Cislem n délitelné
&islo ¢ + 3b — 4a. (P. Cernek)

A-1-5

V roviné jsou dany tfi rtizné body K, L, M, které v tomto poradi lezi na
primce. V této roviné najdéte mnozinu vSech vrcholi C ¢tverci ABCD
takovych, ze bod K lezi na strané AB, bod L na uhlopfi¢ce BD a bod

M na strang CD. (J. Simsa)
A-1-6
Hraci A a B hraji na desce sloZené ze Sesti poli oéislovanych 1,2,...,6

néasledujici hru. Na zacatku je umisténa na pole s ¢islem 2 figurka a pak
se hazi béznou hraci kostkou. Padne-li ¢islo délitelné t¥emi, posune se
figurka na pole s ¢islem o 1 mens$im, jinak na pole s ¢islem o 1 vét§im. Hra
konéi vitézstvim hrace A resp. B, dostane-li se figurka na pole s ¢islem 1
resp. 6. S jakou pravdépodobnosti zvitézi hra¢ A? (P. Cernek)

A-S-1

Rekneme, 7e tfi navzajem riizna pfirozena &isla tvoii souétovou trojici,
je-li soucet prvnich dvou z nich roven ¢islu tfetimu. Uréete, jaky nejvétsi
pocet souctovych trojic se mize nachazet v mnoziné dvaceti pfirozenych
Cisel. (P. Cernek)

A-S-2
V roviné jsou dany kruZnice k;(S1,71) a ko(S2,72) tak, ze So € ky ary >
> r5. Spolecné tecny obou kruznic se dotykaji kruznice k; v bodech P
a Q. Dokazte, Ze pfimka PQ se dotyka kruznice k. (J. Foldes)
A-S-3

Zjistéte, pro které redlné ¢islo p maji rovnice

3422 -362-p=0,
3 —222 —px+2p=0

spole¢ny kofen. (P. Cernek)
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A-11-1

Najdéte zaklady z vSech ¢iselnych soustav, ve kterych je ¢tyFmistné ¢islo
(1001), délitelné dvojmistnym &islem (41),. (P. Cernek)

A-11-2
Uvnitf strany AB daného ostrothlého trojihelniku ABC zvolte bod S
tak, aby trojihelnik SXY, kde X a Y jsou po rfadé stfedy kruZznic opsa-

nych trojihelnikim ASC a BSC, mél nejmensi mozny obsah.
(P. Cernek)

V oboru reélnych ¢isel feSte soustavu rovnic

log,(y +2) = p,
logy(z + .”l?) =D
log.(z+y)=p

s neznamymi x, y, z a nezdpornym celo¢iselnym parametrem p.

(J. Svrcek)

A-1l1-4

Posloupnost (z,)22; s prvnim ¢lenem z; = 1 spliiuje pro kazdé n > 1
podminku
T, =il 2t 4+ 4!

43

s vhodnou volbou znamének ,+“ a ,—“ v exponentech mocnin.

a) Rozhodnéte, zda néktery ¢len takové posloupnosti musi byt vétsi nez
1000.

b) Zjistéte nejmensi moznou hodnotu ¢lenu 1 9o 00o-

c) Dokazte, ze nerovnost x,, < 4 nemuze platit pro devét ¢lent z,, takové
posloupnosti. (J. Féldes)

A-11-1
V oboru reélnych ¢isel feSte soustavu rovnic
o’ —ay+y? =1,
:c2y + oy = -2.
(J. Féldes)

68



A-1lI1-2

Uvnitf stran BC, CA, AB daného trojuhelniku ABC zvolime po fadé
body D, E, F tak, aby se usecky AD, BE, CF protaly v jednom bodé,
ktery oznacime G. Pokud lze ¢tyfahelnikim AFGE, BDGF, CEGD
vepsat kruznice, z nichz kazdé dvé maji vnéjsi dotyk, pak je trojihelnik
ABC rovnostranny. Dokazte. (M. Tancer)

A-1lI1-3

Posloupnost (2,)$2; s prvnim ¢lenem z; = 1 spliuje pro kazdé n > 1
podminku

Tpn=2(n—-1)zp1*t(n—2)zp_ot...£ 2z + 14

s vhodnou volbou znamének ,+“ a ,,—“. Rozhodnéte, zda je mozné, aby
nerovnost z, # 12 platila pouze pro kone¢né mnoho indexi n.
(P. Cernek)
A-Illl-4

V roviné je dan tupy uhel AKS. Sestrojte trojihelnik ABC' tak, aby jeho
strana BC' lezela na pfimce K.S, bod S byl jejim stfedem a bod K jejim
priseéikem s osou protilehlého thlu BAC. (P. Leischner)

A-1I-5

UkaZte, Ze v Ciselné soustavé s libovolnym zékladem z =2 3 existuji
dvojmistna cisla A a B, kterd se liSi jen porfadim svych &islic a maji
tuto vlastnost: kvadratické rovnice 22 — Az + B = 0 m4 v oboru realnych
¢isel dvojnéasobny koren. Dokazte rovnéz, ze pro dany zaklad z je takova
dvojice A, B jedina. Naptiklad v desitkové soustavé (z = 10) to jsou

jediné ¢isla A = 18 a B = 81. (J. Simsa)
A-1ll-6
Je-li soucin kladnych ¢éisel a, b, ¢ roven 1, pak plati
a b ¢
—+-+-2a+b+c
b ¢ a
Dokazte. (P. Kariovsky)
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Regeni tiloh

A-1-1

Vypisme, jaké hodnoty mohou nabyvat prvni ¢leny uvedené posloupnosti.
Dostaneme

=1, zy€{-1,1}, =z3€{-20,2}, =z4€{—4,-20,24},
x5 € {—8,-6,-4,-2,0,2,4,6,8}.

Vsimnéme si, Ze vSechny ¢leny, které jsme vypsali, jsou cela ¢isla. Déle je
ziejmé, Ze pro ¢ > 2 je kazdy ¢len z; sudé ¢islo. (Dalsi pozorovani je, Ze
pokud najdeme posloupnost, pro kterou z; = a pro néjaké ¢islo a a dané
i > 1, tak existuje i posloupnost, pro kterou x; = —a.)

Zjistéme, jakou nejvétsi a jakou nejmensi hodnotu muze nabyvat
¢islo x,, (v zévislosti na n). Ozna¢me a; nejvétsi hodnotu, kterou muze
nabyvat ¢len z;. Protoze posloupnosti délky ¢ spliwujicich dané vlastnosti
je jen koneény pocet, maximum a; existuje a je zfejmé kladné. K ¢islu a;
musi pro kazdé ¢ > 1 existovat posloupnost z1, ..., x;—1, pro kterou plati

a;=xz; 91 %+... .tz S|+ ] Saim + .-+ ar. (1)

Vime, ze a; = 1, as = 1, a3 = 2. Pomoci predchazejicitho vzorce dokazme,
ze a; = 272 pro kazdé i > 1.

Dikaz provedeme matematickou indukei vzhledem k 1.

1. Tvrzeni plati proi =1 (a1 =1) ai =2 (az = 1).

2. Pfedpoklddejme, ze tvrzeni plati pro kazdé k, 2 < k <i—1, a do-
kazme, Ze tvrzeni plati i pro k = i. Z odhadu (1), indukéniho pfedpokladu
a vzorce pro soucet geometrické fady dostaneme

. 2i—2 -1 .
a; La;_1+...+a; =213 4 424141= ﬁ+1:21_2.

Uvazujme posloupnost z; =1 a x; = x;—1 + ...+ 21 pro kazdé ¢ > 1.
V tomto ptipadé bude podle pfedchoziho platit ; = 212, takze a; = 2172
pro kazdé ¢ > 1.

Podobné dokazeme, Ze nejmensi hodnota, jaké muze x, nabyt, je
_2n—2.

Zjistili jsme, Ze pro kazdé n > 1 lezi ¢len z, libovolné uvazované
posloupnosti v mnozing {—2""2 —2"72 4+ 2 —27=2 4 4 ... 272} kte-
rou ozna¢ime M,. Dokazme nakonec, Ze x,, muze pro n > 1 nabyvat
libovolnou hodnotu z mnoziny M,,.
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Volme znaménka nésledujicim zptsobem: z; = x;_1 + ... + 21 pro
i < n. Pro takovou posloupnost plati z; = 2672 pro 1 < i < n. DokaZme,
7e v rovnosti z, = £2" 3 £2""2 4+ . 41+ 1 lze znaménka vybrat tak,
aby se hodnota z,, rovnala libovolné zvolenému ¢islu z mnoziny M,,.

Diikaz provedeme opét matematickou indukci.

1. Tvrzeni plati pron = 2 (-1 = —z; a 1 = 4z, nebot z; = 1)
an=3(-2=-1-1,0=-1+4+1,2=1+1).

2. Predpokladejme, Ze tvrzeni plati pro k £ n—1,kde n 2 4. Dokazme
tvrzeni pro k = n. Zvolme libovolné ¢islo a z mnoziny M,,. Dokazeme, ze
existuje takova volba znamének + a —, zea = £2"3+£2" "4+ £141.
Rozeberme dvé moznosti.

1. a 2 0. Protoze a € M,,, je a — 2”3 sudé celé &islo z intervalu
(=2n=3 2n=3) ‘atedy a—2""% € M,,_;. Z indukéntho pfedpokladu plyne,
Ze existuje volba znamének + a — takova, ze a — 2" 3 = £27"4 £ 25 4
+...41+1.Potoma=2"34+2""44£2" 54+  4+141, coz jsme chtéli
dokézat.

2. a < 0. Podobné jako v predchazejicim piipadé dokazeme, Ze a se
di napsat ve tvaru a = =273 £ 274 £ 275 4 +1+1.

Tim jsme dokazali, Ze vSechny hodnoty z,, tvori pravé mnozinu M,,.

A-1-2

Zvolime-li velikost 7 > 0 poloméru kruznice kg, jsou uz tim obé dalsi
kruznice k4, k¢ uréeny. K jejich sestrojeni vyuzijeme zdkladni vlastnosti
teCen kruznic.

Predpokladejme, Ze kruznice k4, kg, ko maji vlastnosti popsané v za-
déani. Oznacéime-li napt. K pruseéik vnitfni spole¢né tecny kruznic k4
a kg (v bodé P jejich vné&jsiho dotyku) s pfimkou p, kterd je spole¢nou
vnéjsi te¢nou vSech tii kruznic, musi byt |KA| = |KP| a |KB| = |KP|
(obr. 22). To znamen4, Ze bod K je stfedem usecky AB a zaroven bod P
lezi na Thaletové kruznici nad primérem AB. Zname-li bod P, snadno
uz sestrojime kruznici k4, o niz vime, Ze se dotyka pfimky p v bodé A.
Analogicky sestrojime kruznici kc¢.

Mame zjistit, pro které hodnoty rp je trojuhelnik BP(@ rovnoramen-
ny. Protoze body dotyku P, @ kruznice kp s obéma sousednimi kruz-
nicemi lezi uvniti opa¢nych polorovin uréenych primkou BSpg, jsou oba
uhly BPQ a BQP ostré (pfislusné stfedové thly jsou mensi nez 180°).
Pokud tedy nédhodou vyjde trojihelnik PBQ tupouhly, mize byt rovno-
ramenny, jen kdyz |BP| = |BQ)|. V takovém ptipadé je ale ze soumérnosti

71



ziejmé, ze |AB| = |BC|, tj. h = 1. Trojihelnik BPQ je pak rovnoramenny
pro kazdé rg > 0.

Predpokladejme déle, Zze h # 1. V takovém pripadé miZeme pied-
pokladat, Ze trojihelnik BPQ je ostrouhly (jinak podle pfedchoziho od-
stavce nemuze byt rovnoramenny). Je-li rovnoramenny, je bud |PQ| =
= |BQ)|, anebo |PQ| = |BP)|. Predpokladejme, Ze je napf. |PQ| = |BQ)|
(jak ukdzeme pozdéji, druhy p¥ipad lze FeSit vyuZitim soumérnosti).

Trojihelnik BPQ je soumérny podle spojnice SpSc stfedi obou
kruZnic, kterd prochizi bodem dotyku @ obou kruznic a prisecikem
K teten KB, KP. Oznatme jesté L prusecik spoleéné vnitini teény
kruZnic k¢ a kp s pfimkou p (L je stfed tsecky BC, obr.23) a M
pruselik obou teten KP a LQ (ten je obrazem bodu L v uvedené

Sc
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osové soumérnosti). Trojihelnik K LM je tedy rovnoramenny se stra-
nami |[KL| = |KM| = 1(1+h), |ML| = 2|LQ| = h, jeho obvod je 1+ 2h.
Velikost poloméru rp vepsané kruznice spo¢teme pomoci obsahu: Pro
obsah S trojuhelniku K LM plati

1 [(1+hY  (RY 1
5= I (15 - () = v

a zaroven ,

Odtud vychézi
h

BTt T &

Naopak je-li rg dédno vztahem (1), miZeme sestrojit rovnoramenny
trojahelnik K LM s rameny KL a KM délky 1(1 + h) a zdkladnou ML,
|[ML| = h, pfi¢emz jeho vepsand kruznice kp se bude dotykat ramene
KL v bodé B. Ozna¢me P, @ po fadé body dotyku kruznice kg se stra-
nami KM a LM .Protoze K je stted useCky AB,je |[KA| = |KB| = |KP).
To znamend, Ze kruznice k4 dotykajici se pfimky p v bodé A a pro-
chézejici bodem P se bude dotykat kruznice kg v bodé P. Analogicky
sestrojime i kruznici k¢ dotykajici se pfimky p v bodé C a prochéazejici
bodem Q. Ze soumérnosti trojahelniku K LM podle pfimky K@ plyne,
7e |PQ| = |BQ)|. Tim je prvni pfipad vyFeSen.

V pfipadé rovnosti |PQ| = |BP| miZeme postupovat iplné stejng.
Jednodussi vsak bude, kdyz zménime méritko ptivodniho obrézku v po-
méru 1 : h, takze bude |AB| = b’ = 1/h, |BC| = 1. KdyZ navic proho-
dime oznaleni bodd A a C, tak se z rovnosti |[BP| = |PQ| stane rovnost
|BQ| = |PQ)|. Podle piedchoziho pak pro velikost poloméru r’y = (1/h)rg
dostaneme

% 3
2\/2hl+1 2\/2%+1

17" =rh =
PR

tj.
h
rp = ————. 2
B 9okt k2 @
Anebo jsme mohli fesit tlohu ponékud obecnéji za predpokladu
|AB| = a, |BC| = b, pak bychom misto vztahu (1) dostali
bva? + 2ab

"B= atab) )
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Pro a =1, b = h vyjde za pfedpokladu |PQ| = |BQ| ptvodni vztah (1),
zatimco pro |PQ| = |BP| prohodime oznageni bodt 4, C (a tim i bodd
P, Q) a do vzorce (1') dosadime a = h, b = 1. Dostaneme tak vztah (2).

Zavér: Pro h = 1 je trojuhelnik BP(Q rovnoramenny pro libovolné
rg > 0. Pro h # 1 je trojuhelnik BP(Q rovnoramenny pro rg urcené
vztahem (1) (|[PQ| = |BQ|) nebo pro rp urfené vztahem (2) (|PQ| =
= |BP|).

A-1-3

Nejdrive ukdzeme, Ze Zadnd hodnota zkoumaného vyrazu V neni mensi
nez 1. PouZijeme nerovnosti mezi aritmetickym a geometrickym priameé-
rem (z +y 2 2+/2y) pro viechny dvojice kladnych &sel z, y z mnoziny
{a*,b%,c*}:

__at+bt4et 1 (@ )+ B+t (et
a?b? + a%c? + 62?2 2 a?b? 4+ a%c? + b2c? =

s 1 2-(a?? +b%c® +Pa?)

=2  a®b? +a?c? + b2c?

Nyni ukadzeme, Ze kazda hodnota V' je mensi nez 2. Z Heronova vzorce
pro obsah S trojihelnika se stranami a, b, ¢ vime, ze

5% =s(s—a)(s—b)(s—c),
kde s = £(a + b+ c). Po dosazeni za s a roznasobeni dostaneme
0 < 165% = —a* —b* — c* + 2a°b* + 2b°c® + 2c%a®.
Odtud
a* + bt + ¢t

4,34 4 272 2 2 2.2 :
a® +b* +c* <2a°b” + 2b°c” + 2c”a”, tj. PR IR 1 Ed < 2.

Shriime vysledek tivah prvnich dvou odstavci: zjistili jsme, ze V' €
€ (1,2). Ukazme, Ze v8echny hodnoty V zaplni cely interval V € (1,2).
Zvolime libovolnou hodnotu & € (1,2) a najdeme trojtahelnik, pro ktery
méa vyraz V hodnotu k. Uvazujme trojuhelnik se stranami a, 1, 1, ktery
podle trojihelnikové nerovnosti existuje, pravé kdyz 0 < a < 2. Zjistime,
pro které a je V = k, proto vyfeSime rovnici
at+2
2a2+1 F ()
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s neznamou a. Po substituci a> = b dostaneme kvadratickou rovnici b% —
—2kb+ 2 — k = 0 s neznamou b. Jeji diskriminant je roven D = 4k? —
— 4(2 — k) = 4(k? + k — 2). Na to, aby méla rovnice feSeni, musi byt
diskriminant nezaporny, tedy musi platit k2 + k — 2 2 0. Tato nerovnost
je splnéna pro k € (—oo0, —2) U (1,0), tedy i pro uvazované k € (1,2).
Potfebujeme jesté dokazat, Ze zkoumand rovnice mé aspon jeden kofen
b v intervalu (0,4), nebot b = a% a a € (0,2). Viimnéme si, ze pro oba
kofeny b 2 plati

2k £ 2VEk? + k — 2
2

=k+vVk+k-2%
<k+VE+k-2<k+VkZ=2k<4,

pfiéem?Z jsme vyuzili nerovnost k < 2. Na druhé strané pro kofen b; (se
znaménkem + pred v/ D) plati

bh=k+VE2+k—-22k>0.

Tim jsme ukazali, ze 0 < b; < 4. Existuje tedy ¢&islo a = v/b; spliwjici
rovnici (1).

b2 =

Jiné feSeni. Opakovanym dosazovanim délek stran konkrétnich troj-
ahelniktt dojdeme k hypotéze, ze 1 £ V < 2. Dokazujme nejprve dolni
odhad 1 £V, ktery je ekvivalentni s nerovnosti

a?b? +a’ + b <at + b4 +

Je to bikvadratickd nerovnice s proménnou a, takze po substituci a? =t
dostaneme kvadratickou nerovnici

0 <12 —t(b? +c®) +b* + c* — b2t (2)

Jeji diskriminant je D = (b2 + ¢)? — 4(b* + c* — b2c?) = —3(b* + ¢* —
— 2b%c?) = —3(b? — ¢?)? £ 0. ProtoZe navic je koeficient pfi t? na pravé
strané (2) kladny, je nerovnice (2) splnéna pro vSechna redln4 ¢isla b, c
a t. Tim je nerovnost V 2 1 dok4zéna.

Prejdéme k nerovnosti V' < 2. Danou nerovnici pfendsobme kladnym
jmenovatelem, dostaneme

2(a?b? + a%c® + b2c?) > a* + b* + .
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Je to opét bikvadratickd nerovnice s proménnou a. Po substituci ¢t =
= a? prejde nerovnice do tvaru t2 — 2t(b? + c?) + b* + ¢* — 2b%c% < 0.
Jeji diskriminant je D = 4(b% + ¢?)? — 4(b* + c* — 2b%c?) = 16b%c%.
Protoze koeficient pii t? je kladny, je feSenim této nerovnice interval
ureny nerovnostmi

2(b% + ) —v/D 2(b% 4+ ¢?) — VD
—_— <t < —,
2 2
neboli
(b-c)? <t< (b+c)

Tyto nerovnosti plati, protoze t = a® a |b — c| < a < b+ ¢ podle troja-
helnikovych nerovnosti. Tim je nerovnost V' < 2 dokazéana.

Ze hodnoty V zaplni cely interval (1,2), dokdZeme stejné jako v prv-
nim feSeni.

Jiny dikaz nerovnosti V- < 2. Vyjdéme z trojihelnikové nerovnosti
|a—b| < ¢ < a+b. Po umocnéni na druhou a nésledné apravé dostaneme
—2ab < c? — a® — b% < 2ab, tj. |c? — a® — b?| < 2ab. Po dal$im umocnéni
na druhou dostaneme

ct 4+ b+ a* — 2c%a% — 2¢%6% + 2a%H? < 44?2,
neboli
ct + bt + at < 2c%a? + 2¢%b% + 2a%b2.
Odtud jiz plyne, ze V < 2.

Pozndmky. 1. VSimnéme si, Ze podobné trojuhelniky maji stejnou hod-
notu vyrazu V. Skute¢né, pokud a, b, ¢ jsou strany trojihelniku, jsou ka,
kb, kc pro kazdé redlné k > 0 stranami podobného trojihelniku a plati

(ka)* + (kb)* + (kc)* _oat bt 4t
(ka)2(kb)? + (ka)2(kc)? + (kD)2 (kO)Z — @202 + a2 + 22

To znamené, ze bez Gjmy na obecnosti mizeme predpokladat, ze ¢ = 1.
Maéame tedy zkoumat obor hodnot vyrazu

a* + bt +1
a?b? 4 a? + b?

za predpokladu |a — b] < 1 < a + b, coZ zjednoduSuje a zpiehlediiuje
vypocty.
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2. V druhé &4sti FeSeni jsme méli zjistit obor hodnot funkce f(a) =
_at+2
C2a2+1
ze na intervalu (0, 1) nabyva vSechny hodnoty z intervalu (1, 2).

3. Peclivym rozborem uvedenych dikazi zjistime, Ze nerovnost V 2> 1
plati pro vSechna reédlnd ¢isla a, b, ¢, z nichZ asponi dvé jsou nenulova.

. Z¥ejmé f(1) =1 a f(0) = 2. Ze spojitosti funkce f vyplyva,

A-1-4

Protoze (abc), je &slo az?+ bz + ¢, mame zjistit, kdy obecné plati ekviva-
lence: n | c+3b—4a, pravé kdyz n | az? +bz+c. V ni jsou a, b, c libovolné
Cislice pii zdkladu z, tj. ¢isla z mnoziny {0,1,...,z — 1}. Viimnéme si,
7e z — 1 2 4, nebot pfedpokladame, ze z 2 5.

Zvolime-lia = b = ¢ = 1, dostaneme, ze n | 0, pravé kdyz n | 22 +2z+1.
Protoze nula je délitelna kazdym celym €islem, musi platit n | 22 + z + 1.
Zvolime-lia = 1,b =0 a c = 4, dostaneme, ze n | 0, pravé kdyz n | 22 +4.
Podobnou tivahou jako vyse zjistime, Ze n | 22 + 4.

Pokud né&jaké ¢islo déli dvé ¢isla, musi délit i jejich nejvétsi spoleény
délitel, tedy n | nsd(z? + 4, 22 + z + 1). Tento spole¢ny délitel najdeme
pomoci Fukleidova algoritmu:

nsd(z? + 4,22 +2z+1) =
=nsd(2® +4,22 + 2+ 1— (2> +4)) =nsd(z® +4,2-3) =
= nsd(z? +4—2(2 —3),2—3) =nsd(4+ 32,2 - 3) =
nsd(4 + 3z — 3(z — 3),z — 3) = nsd(13,z — 3).

Il

Zjistili jsme, Ze n | 13. Protoze n > 1, je nutné n = 13. M4-li nékteré n
pozadovanou vlastnost, je to nutné ¢islo n = 13.

Dokazme, ze Cislo 13 skute¢né danou vlastnost ma. Odvozenéd nutna
podminka n | nsd(13, z—3) je pro n = 13 splnéna napf. pro z = 16. Dana
ekvivalence ma pak tvar 13 | c+3b—4a, pravé kdyz 13 | a- 162 +b-16+c.
Dokazeme siln&jsi vlastnost, Ze totiz &isla a-162+b-16+ca c+3b—4a
davaji pri déleni tiinacti stejny zbytek, neboli Ze jejich rozdil je délitelny
tFindcti:

(a-162+b-16+c) — (c + 3b — 4a) = 260a + 13b = 13(20 + b).

Uloha mé jediné feSeni n = 13.

Pozndmka. Podobné jako v zavéru feSeni miZeme dokézat, ze uvedené
kritérium délitelnosti pro n = 13 plati i v libovolné ¢iselné soustavé se
zékladem z = 13k + 3.
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A-1-5

Je-li ABCD libovolny ¢tverec, ktery spliuje podminky tlohy, bude stej-
nym podminkdm vyhovovat i ¢tverec, ktery dostaneme osovou soumér-
nosti podle pfimky M K. Hledanid mnoZina bude tedy osové soumérna
podle této primky a ndm stacéi urcit tu jeji ¢ast, kterd lezi v jedné z obou
polorovin s hrani¢ni pfimkou M K.

Kromé libovolného ¢tverce ABC D, ktery spliiuje podminky tlohy,
uvazujme Ctverec AgBoCoDg s uhloptitkou BoDg = KM (By = K,
Doy = M), pti¢emz vrchol Cy lezi ve stejné poloroviné ohranic¢ené prim-
kou KM jako vrchol C ¢tverce ABCD (obr. 24). (Vrchol Cy zfejmé rov-
néz patii do hledané mnoziny.)

Ci
D M C D M ()
Co C’0
L D
é P
Ao Ao
A K\ B A K\ B
Obr. 24 Obr. 25

ProtoZe trojihelniky K LB a M LD jsou podobné podle véty uu, déli -
bod L uhlopficky obou ¢tverci ve stejném poméru

|BL| : |LD| = |KL| : |LM| = konst.

Velikost thlu LCD (|<LCD| = |xLCyM]|) je urena polohou bodu L na
usefce MK, ma tedy konstantni velikost, takze bod C' lezi na stejném
oblouku « kruznice opsané trojahelniku LCyM nad tétivou LM jako
bod Cj. Navic kruznice opsand trojuhelniku AgK L je shodna s kruznici
opsanou trojuhelniku Co M L, protoZe v jedné z nich je vidét tétivu AgL
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z bodu K pod thlem 45° a v druhé tétivu Co L shodné délky pod stejnym
thlem z bodu M.

Protoze bod M lezi na strané CD, je ziejmé |xLMC| 2 |¥LDC| =
= 45° (pokud M # D, je to vnéjsi ahel trojihelniku DM L, ktery m4 pii
vrcholu D thel 45°). ProtoZe thel LM Cy méfi pravé 45°, lezi bod C na
¢asti oblouku 7 mezi body Cy a M.

Déle si vS§imnéme, ze vrchol D ¢tverce ABCD lezi na oblouku, ze
kterého je vidét isecku LM pod tithlem 45° v poloroviné opa¢né ke K M C.
Sestrojme bod P (obr. 25), ktery lezi na pruseciku piimky AD a kolmice
k pfimce MK v bodé L. Body M, D, L a P lezi na Thaletové kruZnici
s pramérem M P, a protoze | X MPL| = |xMDL| = 45°, je trojuhelnik
M PL rovnoramenny pravouhly. To znamend, ze bod P je jednozna¢né
uréen polohou bodu L na tseéce M K. (Bod P vznikne oto¢enim bodu M
kolem stfedu L o 90°, protoze bod L jako bod thlopticky BD mé od
pfimek CD a DA stejnou vzdélenost, je tedy pfimka DA ve zminéném
otoceni obrazem primky CD; odtud rovnéz plyne rovnost [LM| = |LP|.)

Bod D tudiz musi lezet na oblouku § Thaletovy polokruZznice nad pri-
mérem M P v poloroviné opacné k PM L, zaroven vSak polopfimka DP
(ktera obsahuje vrchol A) nesmi protnout usetku LK. Odtud plyne, Ze
vrchol D miizZe lezet jen v té ¢asti zminéné polokruznice nad primérem
M P, kteréa lezi v poloroviné PK L. Pritom je zfejmé, ze primka PK tuto
polokruznici protne v dalsim bodé rtizném od P, pravé kdyz |[KL| > |LM|
(pro |[KL| = |LM| bude K P te¢nou kruznice nad primérem M P). Ozna-
¢ime-li v takovém pripadé D prisecik K P s polokruznici § a C; prisecik
polopfimky D; M s obloukem 7, je ziejmé, ze vrchol C' padne do ¢asti
CoCy oblouku 7. V opaéném piipadé, tj. pro |K L| £ |[LM|, vyplni ziejmé
vrcholy C' celou ¢ast Co M oblouku 7.

Skutecné. Zvolme libovolny bod C' na ¢asti CoC; oblouku v v prv-
nim pripadé, resp. na CoM v druhém pripadé. Piimka CM protne ob-
louk 6 v bodé, ktery oznacime D. Vrchol A pak sestrojime jako priise-
¢ik polopfimky DP s Thaletovou kruznici nad primérem PK (v prv-
nim pfipadé mame zaruceno, ze bude lezet v poloroviné PK Ay, a ne
v opacné). Protoze jak uz vime, jsou kruZnice opsané trojuhelnikiim
LCyM a LAoK shodné, zjistime snadno z pfislusnych obvodovych thld,
ze | xDAL| = |xDCL]|, takze trojihelniky DAL a DCL jsou shodné, tu-
diz |DA| = |DC|. Protoze poloptimka DL protind usecku M K v bodé L,
protne polopfimka AK polopfimku DL v bodé B za bodem K, pfi¢emz
trojuhelnik DAB je rovnoramenny pravouhly. Je tedy ABCD c&tverec,
ktery spliuje podminky tGlohy.
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Zaver: Hledanou mnozinou vrcholt C ¢tverci ABCD je pro |[ML| <
< |LK| oblouk CyC} kruZnice opsané trojihelniku M LCj a oblouk s nim
osové soumérny podle dané pfimky MK (obr.26), pro |[ML| 2 |LK]| je

Cy

K
Obr. 26

to oblouk CyM stejné kruznice a oblouk s nim osové soumérny podle
pfimky M K (obr.27).

Obr. 27
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A-1-6

Oznaéme p; pravdépodobnost, Zze vyhraje hra¢ A, pric¢emz figurka stoji
na i-tém poli¢ku. Dostaneme soustavu rovnic

_ 1 + 2
P2 = 3 3133,
_ 1 + 2
p3s = 3102 31747
_ 1 + 2
Pa = 3p3 3105,
1
Ds = §P4-

Postupnym dosazovanim z jedné rovnice do druhé dostaneme fFeSeni
P2 = %—? ProtoZe na zadatku stoji figurka na poli¢ku ¢islo 2, je prav-
dépodobnost vyhry hrace A rovna % Podobnym zptsobem sestavime
a vyfeSime systém rovnic pro hrace B a dostaneme tak, ze hra¢ B vy-
hraje s pravdépodobnosti %% Pravdépodobnost remizy je tedy 0. Tim je

tloha vyreSena.

A-S-1

Pro libovolné vybranych dvacet prirozenych cisel
1 <T9<...< Ty

odhadneme, kolik mezi nimi muZze byt souctovych trojic, tedy trojic
{zi,z;,zr} spliyjicich podminky 1 £ i < j <k £ 20 a z; + z; = x,

a to nejprve pii pevném indexu k € {3,4,...,20}. Necht jsou to trojice

{Z4, 50, Tk} {Tia0 @30Tk} - ooy {24, 25,, 21} Pak Lisla
Cllil,le,l‘iz,.’l,‘jm. . .,.'Itip,l'jp

jsou navzajem riiznd a vSechna lezi v mnoziné {z;, s, ..., 251}, takZe

pro jejich pocet 2p plati odhad 2p £ k — 1, odkud p < [1(k — 1)] (kde
[a] znadi celou ¢ast ¢isla a). Proto pocet vSech souctovych trojic nemuize
byt ¢islo vétsi nez soucet

20 E—1
Z[T] =14142+24+343+...49+9=090.
k=3

81



Priklad mnoziny M = {1,2,...,20} ukazuje, Ze pocet 90 souctovych tro-
jic je dosazitelny, nebot pifi kazdém k € {3,4,...,20} miiZzeme za &slo ¢
vybrat libovolné &islo z mnoziny {1,2,...,[3(k — 1)]}; odpovidajici celé
¢islo j = k — i pak skute¢né splituje nerovnosti ¢ < j < k, takze {7, j, k}
je souctova trojice lezici v M.

A-S-2

Ze soumérnosti spole¢nych teCen plyne, Zze body dotyku P a @ jsou sou-
mérné sdruzené podle primky S; Ss, takze plati PQ L S;.S;. P¥imka PQ
proto bude tecnou ke kruznici ko, kdyz ukazeme, Ze prusetik K primek
PQ a 5152 lezi na kruznici k2 (obr. 28). Ozna¢me jesté O priisecik obou

P
k1 R
1
T2 k2
oY o)

S1 | K So

Q

Obr. 28

tefen s pfimkou 5152 a R bod dotyku teény PO s kruznici k2. Z podob-
nych pravouhlych trojihelnikd S;OP a S2OR plyne timeéra

rn_ |SiP _150] _ |50 ri

T2 - ]S2R| - |520| - I510| —7‘1’

odkud |5,0| =

TL—T2

Z Eukleidovy véty o odvésné S; P trojuhelniku S;OP proto vyplyva, ze

2
T
i =|S1P]> = |$1K|-|$:0| = |Si K| —

)

L —T2

tudiz |S1K| = rl—rg,aproto |52K| = |5152|-—|51K| = 7‘1—(7‘1—1‘2) =T9.
To znamend, ze bod K skutecné lezi na kruznici k; a dikaz tvrzeni je
hotov.

Jiné feSeni. Oznalme L pruseéik kruznice ko s tseCkou S;Sz, M
patu kolmice spu$téné z bodu S, na usetku S;P a R bod dotyku
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kruZnice ks s tou spole¢nou te¢nou, kterd prochzi bodem P (obr.29).
Protoze S;RPM je pravouhelnik, plati |MP| = |S2R| = rs, a proto

D

Obr. 29

|S1 M| = |S1P|—|MP| =ry —rs. Stejnou délku r; — ro mé rovnéz tsecka
S1L, nebot r1 = |S1S2| a ry = |S2L|. Trojahelniky S; M S, a Sy LP maji
tudiz shodné thly pfi vrcholu S; i pfilehlé strany, jsou proto shodné podle
véty sus. Plati tedy nejen S1 M L So M, ale také S;L L PL. Bod L ale
leZi na kruZnici ke, takze pfimka PL je jeji teCnou, kterd s ohledem na
soumérnost prochdzi rovnéz bodem Q. Dikaz je ukoncen.

Jiné feSeni. Oznacme O prisecik obou tec¢en, K patu kolmice z bodu

P na OS; (vzhledem k soumérnosti obou tefen podle spojnice S;S; je
to pruse¢ik PQ s 0S;) a R patu kolmice z bodu S; na OP (obr. 30).

P
; R
™ 0
S, |[K S,
—0
Obr. 30

Protoze |S1P| = |S152| = 11, je |xS1PS2| = |x5152P|, proto
|%S2PK| = 90° — | %515, P| =
=90° — |<)151P52| = I{SQPRI,
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takze pravouhlé trojihelniky K.SoP a RSP se shoduji v preponé SsP
a prilehlém thlu u vrcholu P. Je tudiz |SoK| = |S2R| a kruZnice se
stfedem Sy a polomérem ry = |SyR| se dotyka spojnice PQ v bodé K.

A-S-3
Levou stranu druhé rovnice upravime na souéin:
23 =222 —pr+2p=2%(x - 2) —p(z — 2) = (z — 2)(z% — p).

Pro spoleény kofen x obou rovnic tedy plati # = 2 nebo 22 = p. V prvnim
pripadé po dosazeni do prvni rovnice dostaneme

23422 -36-2—p=0, neboli p=—60;

ve druhém piipadé mizeme prvni rovnici zjednodusit na tvar 2° — 36z =
= 0, odkud plyne = 0 nebo x = %6, a proto z podminky p = z? vychazi
p = 0 respektive p = 36.

Dodejme, Ze po nalezeni rozkladu levé strany druhé rovnice jsme
mohli vypsat jeji kofeny x1 = 2, 223 = +,/p a po jejich postupném
dosazeni do prvni rovnice uréit hledané hodnoty p = —60,p = 0 a p = 36.

Jiné feSeni. Z prvni rovnice snadno vyjadiime p = x3 + 22 — 36z a do-
sazenim do druhé rovnice dostaneme rovnici (bez parametru p), kterou
musi splhovat spolecny kofen obou puvodnich rovnic:

x% — 222 — (2® + 2® — 362)z + 2(2® + 22 — 362) = 0.

Po tpravé dostaneme rovnici z# — 223 — 3622 4+ 722 = 0, jejiz kofeny

snadno ur¢ime (jsou to totiz celd ¢isla) naptiklad postupnym rozkladem:

zt — 22% — 3622 + 722 = 2[z%(z — 2) — 36(z — 2)] = z(z — 2)(2® — 36) =
=z(z — 2)(x — 6)(z + 6).

Vidime, Ze spoleénym korenem musi byt jedno z ¢isel 1 = 0, 2o = 2,

x3 = 6, x4 = —6. Dosadime-li je do plivodnich rovnic, ihned zjistime

prislusné hodnoty p; jsou to ¢isla 0, —60 a 36 (posledni odpovid4 ob&ma
kofentim z3 4 = £6).

Jiné FeSeni. Spoletné koreny mnohoclent
Pi(z) =2 +22-36x—p, Po(z)=2°-222—pr+2p
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(pokud viibec existuji) jsou kofeny mnohoclenu, ktery je nejvétsim spo-
le¢nym délitelem mnohoc¢lent P; a P,. Najdeme ho Eukleidovym algorit-
mem postupného déleni se zbytkem. V prvnich dvou krocich dostaneme
jako zbytky mnohocleny

Ps(z) = P(z) — Py(z) = 32° + (p — 36)x — 3p,

Puw) = Pio) - (24 252 o) = (-39 (L2202 - ).
V pripadé, kdy p = 36, je algoritmus ukoncen; nejvétsi spolecny délitel
je tehdy roven P3(z) = 3z — 3 - 36 = 3(z — 6)(z + 6), takZe mnohocleny
Py, P, maji dva spole¢né kofeny = = £6. Déle proto predpokladejme, ze
p # 36. Jediny kandidat na spole¢ny koren mnohodlenti P;, P, je koren
mnohoélenu Py, tedy ¢islo z = 3p/(p — 30). Staéi jen zjistit, kdy je toto
¢islo korenem mnohodélenu P3. Protoze

< 3p )_9p(p+60)
*\p-30) ~ (p—302"

maji poZzadovanou vlastnost pouze hodnoty p = 0 a p = —60 (kterym
odpovida spoleény kofen x = 0 respektive = = 2).

A-1l1-1

Protoze v zapisu dvojmistného ¢&isla vystupuje &islice 4, nutné plati z 2 5.
Z rozvinutych zdpist (1001), = 2% + 1 a (41), = 4z + 1 vyplyva, Ze
hleddme praveé ta piirozend z = 5, pro kter je &islo 22 + 1 nasobkem &isla
4z + 1. Pomoci Eukleidova algoritmu najdeme jejich nejvétsi spoleény
délitel. Mizeme postupovat tak, Ze nejprve vydélime oba vyrazy jako
mnohocleny a pak se ,zbavime“ zlomki:
B+l= (if - Zlfz+ )(4z+1) Zi’, /43
4322 +1) = (162% — 42+ 1)(4z + 1) + 63. (1)

ProtozZe ¢isla 4 a 4z + 1 jsou nesoudélnd, vidime odtud, Ze &islo 4z + 1
déli &islo 23 + 1, pravé kdyz déli ¢islo 63, tedy pravé kdyz 4z + 1 €
€ {1,3,7,9,21,63}. Z podminky z = 5 oviem plyne 4z + 1 = 21, tak¥e
4z + 1 = 21 (rovnice 4z + 1 = 63 nema celociselné feseni) a z = 5.
Pozndmka. Rozklad (1) také snadno odhalime, vyuZijeme-li zndmy
vzorec a® + b3 = (a + b)(a® — ab + b?): podle n& mizeme rovnou psat

B +1)= 4322 +1)+63=(42+1)(162%2 — 42+ 1) + 63.
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A-11-2

Vnitini Ghly trojihelniku ABC oznalme jako obvykle a, 3, .
Podle véty o obvodovém a stfedovém thlu v kruZnici opsané troj-
thelniku ASC plati (obr.31) |xSXC| = 2a, tudiz thel pii zdkladné SC

(0]

A5 B

90° —a  90° —

Obr. 31

rovnoramenného trojihelniku SCX ma velikost [xXSC| = 1(180° —
— 2a) = 90° — « (vyuzili jsme pfedpokladu, zZe a je ostry ahel). Analo-
gicky se odvodi rovnost |xY SC| = 90° — 3. Protoze ahly pfi vrcholech
A a C trojuhelniku ASC jsou ostré, je stfed X vnitinim bodem uhlu
ASC,; obdobné je stfed Y vnitfnim bodem thlu BSC'. Proto lze vyjadrit
velikost thlu X SY jako soucet velikosti ihli X.SC a Y SC:

|xXSY|=|xXSC|+|xYSC|=(90° —a) + (90° — B) = ~.

Oznadime-li je§té w = |KASC|, pak pro poloméry kruZnic opsanych
trojuhelnikim ASC a BSC plati vzorce

|AC|

B
. sy|— —1BC___ 18]
2sinw

X|= = =
|5 2sin(180° —w)  2sinw’

které spolu s drive ur¢enou velikosti thlu X .SY vedou k nasledujici za-
vislosti mezi obsahy Ssxy a Sapc trojihelniki SXY a ABC:

_|SX|-|SY]| sin|xXSY| |AC|-|BC|-siny  Sapc

Ssxy = .
2 8sin? w 4sin® w

Odtud plyne nerovnost Ssxy = iS ABC, PTiCemz rovnost nastane, pravé
kdyZ sinw = 1, neboli w = 90°. Obsah trojihelniku SXY je proto
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nejmensi, pravé kdyz je bod S patou vysky z vrcholu C ke strané AB.
(Tato pata je vnitinim bodem strany AB diky podmince, Ze trojihelnik
ABC je ostrothly.)

Jiné feSeni. Stfednd XY obou opsanych kruznic protina spole¢nou
tétivu CS v jejim stfedu Sy a kolmé prameéty Xy, ¥y bodid X, Y na
stranu AB jsou stiedy tsec¢ek AS, SB (obr.32). Je tedy |XoYo| = %|AB|
a pro obsah trojihelniku SXY tudiz plati

1 1
Ssxy = ilXYI 1S0S| 2 §IX0Y0| -1S0S| =
11 1 1 1 1
=_.- . = P e i = -
> 31ABI - 5ICS| 2 7 - 5|AB|-1CCol = {Sasc,
kde CCy je vyska trojuhelniku ABC'. Rovnost v prvni z predchozich dvou

nerovnosti nastane, pravé kdyz XY | AB, tj. pravé kdyz CS L AB,
neboli S = Cy. A préavé tehdy prejde v rovnost i druhé nerovnost.

Obr. 33

Jiné feSeni. Pruseciky C' a S kruZnic opsanych trojahelnikim ASC
a BSC jsou soumérné sdruzené podle prfimky XY, takZze pro velikost
ahlu SXY plati (obr. 33)

1 1
|[XSXY| = 5|xSXC| = 5 - 2xBAC| = |xBAC|,

obdobné | SY X| = |<ABC|. Proto jsou trojihelniky SXY a CAB po-
dobné podle véty uu, takze jejich obsahy Ssxy a Sapc jsou pomoci koe-
ficientu podobnosti k = | X S| : |AC| svazény rovnosti Ssxy = k*Sapc.
Protoze tsecka AC je tétivou kruznice o poloméru |X S|, plati nerov-
nost [AC| £ 2|XS|, neboli k& 2 1; rovnost k = % pfitom nastane,
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jen kdyz je strana AC primérem kruZnice opsané trojihelniku ASC,
coz je ekvivalentni s podminkou C'S L AB. Tim je dokézana nerovnost
Ssxy 2 415' ABc 1 nalezena podminka, kdy nastane rovnost.

A-11-3

Rovnice dané soustavy maji smysl, jen kdyZz jsou ¢&isla z, y, z kladnd
aruznd od 1. Pro takova ¢isla z, y, z (jind dile neuvazujeme) dostdvame
odlogaritmovanim ekvivalentni soustavu rovnic

y+z=2P, z+zx=9y?, z+y=2zP. (1)

Ukazeme nejprve, ze v oboru M = (0,1) U (1,00) je kazdé feSeni
soustavy (1) tvofeno trojici stejnych ¢isel. VyuZijeme k tomu zndmého
poznatku, Ze pro p 2 0 je funkce f(t) = t? na mnoziné kladnych &isel
t neklesajici (pfesné&ji: rostouci pro p > 0 a konstantni pro p = 0). Pri-
pustme naopak, Ze pro nékteré ¥eSeni (z,y, z) plati naptiklad z < y.

Odectenim prvnich dvou rovnic z (1) dostaneme y — z = a? — yP.
Z ptredpokladu = < y ale plyne 2 < yP, takze y — x > 0 a zaroveh
P — yP < 0, coZ je ve sporu s predchozi rovnosti. Podobné odvodime
spor i v pripadé, kdy « > y, a v pripadech, kdy = # z resp. y # 2
(soustava (1) je totiz v nezndmych z, y, z symetrickd).

Soustava (1) se proto redukuje na rovnici z + z = zP, kterou mame
fesit v oboru M = (0,1) U (1,00). Protoze  # 0, dostdvame po dé&leni
&slem z ekvivalentni rovnici 2 = 2P~!. Tato rovnice nemd feSeni pro
p =1, pro p = 0 mé jediné feSeni z = %, pro pfirozené p 2 2 mé jediné
feSeni z = 25-1, které lze pro p > 3 zapsat jako ¢ = V2. (Cisla $
i 27T zfejmé nélezeji do M.)

Odpovéd. Dand soustava mé pro p = 0 jediné feSeni z =y = z =
pro p = 1 nem4 feSeni, pro pfirozené p = 2 mé jediné fefeni z =y = 2

1
= 2p-1,

N[

Il

A-1l1-4
Uvodem si viimneme, Ze v diisledku rovnosti z; = 1 plati
Ty = a:itl =1 =1

(1)

zs3 :xgzl +$i§:1 — 1:!:1 +1:!:1 =92.

Protoze pro kazdé x > 0 jsou obé ¢&isla x7!, 27! kladna, plyne od-
tud snadno matematickou indukeci, Ze nerovnost z,, = 1 je splnéna pro
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kazdé n. Je-li z > 1, pak oviem 0 < 7! < 2!, a proto pro kazdé n > 4
plati odhady

Sz, S14142424+ ...+ 201, (2)

1 1
I+1+-4+—+... 4
2 Ty

Tn—-1
které vyuzijeme ve vSech tfech Castech resSeni.

a) Dokézeme (sporem), Ze existuje k, pro néz x, > 103. Pfipustme
naopak, Ze pro kazdé k plati opa¢na nerovnost z, < 103. Z levé nerovnosti
v (2) pak pro kazdé n > 4 plyne odhad

fn =

5
+107°4+107° 4. +107% =2 + (n~4) - 107%,

(n—4) krat

N | Ut

Odtud ale vyplyva, ze z,, > 103 pro kazdé n > 10° + 4, coz je spor.

b) Dokézeme nejprve, ze z pravych nerovnosti v (2) vyplyva odhad
x, £ 2"°2 pro kazdé n = 2. VyuZijeme indukci: pron = 2ipron =3
plati podle (1) rovnost x, = 2"2; necht n > 4 a necht pro vSechna
ke {2,3,...,n— 1} plati zx < 2*¥~2, potom z (2) dostavame

T S14+(14+2+224+... +2" ) =14+(2"2-1)=2""2

Tim je dikaz indukei ukoncen.
Dosadime-li odhady z, < 2"~2 do levé nerovnosti v (2), vyjde ndm
pro hodnotu z,¢s dolni odhad

1 1 1

1
z10622+§+2—2+...+2106_3 =3—2105_3-

To spolu s prikladem vyhovujici posloupnosti

Ty =Tp_1 +Tpn2+...+71 (n€{2,3,...,10° —1}),

_ -1 -1 -1 -1
T106 = Tyge_q T Tyge_o +-- -+ 2o +27 7,

ve které z, = 2"~2 pro kazdé n € {2,3,...,105 — 1} a ;0o = 3 — 23-10°)
ukazuje, 7e nejmensi mozna hodnota &lenu z,06 je rovna 3 — 23-10°,

c) Predpokladejme, Ze nerovnost z, < 4 plati kromé t¥i hodnot n €
€ {1,2,3} jesté pro nékterd dalsi n, kterd ozna¢ime ng4,ns,ng, ... tak,
7e 4 S ny < ns <ng < ... (zatim je§té nevime, zda jde o kone¢nou ¢&i
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nekonecnou posloupnost). Ukazme, Ze pro kazdé takové ny jsou ve vSech
exponentech prislu$né rovnosti

Top =1+1+2% 4 of! 42 4 42!

nk—l

vybrana znaménka ,minus“. Pro mocninu 2*! je to ziejmé, nebot z,,, <
< 4; z téze nerovnosti dale plyne, Ze znaménko v exponentu kterékoli
mocniny a:jil (4 £ j £ ng — 1) musi byt vybréno tak, aby platilo
5 3
+1
T <4—=-=-.
J 2 2
Tato nerovnost vSak muZe byt splnéna pouze se znaménkem ,minus",
nebot podle (2) mdme z; 2 5/2. Tim je tvrzeni o vybéru znamének
dokazano. Porovnanim dvou za sebou jdoucich rovnosti

5 1 1 1
Ty = ot —+—+...+ :

2 x4 s Ty —1
g = o Ly L
T2 T my x5 Tngml Ta Tyt

dostaneme pro vSechna k 2 4 nerovnosti

znk+1 g .’Enk + )
Nk

které s pfihlédnutim k tomu, ze funkce f(t) = ¢t + 1/t je na intervalu
t € (1,00) rostouci a Ze z,, = 2,5, vedou postupné k odhadtim
Tns 2 f(2,5) =29, Tng 2 f(2,9) > 3,24, zn, > (3,24) > 3,54,
Tng > f(3,54) > 3,82, n, = f(3,82) > 4,08.

Posledni nerovnost je ale ve sporu s podminkou z,, < 4 urcujici vybér
indextd ng. Proto nerovnost z, < 4 nemiize platit pro devét indexu n.

A-1ll-1

Protoze druhou rovnici miZeme upravit na tvar zy(z+y) = —2, upravme
podobné i prvni rovnici: (z +y)? —3zy = 7. Proé&islas =z +y, p = 2y
tak dostavame ekvivalentni soustavu

s2-3p=1,

o s (1)
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kterd po vyjadfeni p = —2/s (zfejmé nemize byt s = 0) z druhé rovnice
vede na kubickou rovnici s> — 7s + 6 = 0. Ta m4 celo&iselné koteny
s1 = 1, 89 = 2 a s3 = —3. Nalezenym hodnotdm s odpovidaji tyto
hodnoty sou¢inu p = zy: p1 = -2, p2 = —1, p3 = % Cisla z, y tvofi
dvojici kotenti kvadratické rovnice t? — st + p = 0, takZe se jedné o jednu
z rovnic

2-t-2=0, t2-2t-1=0, t2+3t+_§_:0'

Jejich fesenim dostaneme (vSech) Sest feSeni dané soustavy:

oy} ={-1,2}, {o.y}={1+V21-3},

{z,y} = {_92\/5_7, _9_6\/5}-

A-11-2

Predpoklddejme, Zze zminéné Etyiuhelniky maji uvedenou vlastnost. Ze
soumérnosti teCen z daného bodu k dané kruznici vyplyva, ze strany
trojuhelniku ABC' jsou rozdéleny body D, E, F' a body dotyku kruz-
nic vepsanych uvazovanym ¢tyfuhelnikiim na tseky délek, jez oznaime
podle obr. 34. Jsou na ném rovnéz vyznaceny body P, QQ, R vzijemného
dotyku zminénych kruznic. Nasim cilem je dokazat rovnosti z = y = 2
aa=b=c.

A @ 2 F z b B
Obr. 34

Pro tGseky tecen z bodu A ke kruznicim pfi strané BC plati rovnosti
a+ 2z = |AP| = a + 2y, odkud ihned plyne y = z; z diivodid symetrie
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tudiz skutecné plati z = y = z. (VSude déle budeme psit z namisto y
a z.) V& imnéme si nyni trojihelniki AEG a AFG. Maji spole¢nou stranu
AG a shodné strany AF a AE (délky a+ ). Také jejich tfeti strany EG
a F'G jsou shodné:

|EG| = |[EQ| + |QG| = ¢ + |RG| = |FR| + |RG| = |FG]|.

Proto AAEG ~ AAFG podle véty sss, tudiz thly BAD a CAD jsou
shodné a polopiimka AD je osou thlu BAC'. Jak vime, osa thlu trojuhel-
niku protind protéjsi stranu v poméru délek prilehlych stran. V naSem
pripadé to znamena, ze

a+2x+b btz
a+2zx+c cH+z’

Snadnou tpravou dostaneme rovnost (b —c)(a + z) = 0, ze které vidime,
ze b = c. Z dlivodi symetrie tudiz plati a = b = ¢ a cely dikaz je hotov.

Jiné feSeni. Oznacme S, Sy, S3 stfedy vepsanych kruZnic (obr. 34).
Stejné jako v predchozim feSeni si nejprve vSimneme, ze plati z =y = z
a ze trojihelniky AEG a AFG jsou shodné. K tomu jsme vyuzili rovnost
|GQ| = |GR|, ze které plyne, Ze podle véty sss jsou shodné i trojihelniky
S1QG a S1RG. Jelikoz R € 5152 a Q € 5153, ze soumérnosti podle osy
AD nyni plyne, ze primky AB a S;S> sviraji stejny thel jako pfimky AC
a 51953, a protoze kolmé priaméty usecek S1.5; a S1S3 na odpovidajici
piimky AB, resp. AC jsou shodné (maji délku 2z), je |S1Sz2| = |S153].
Analogicky |S1S2| = |S2Ss]|, takze trojahelnik S;.52S3 je rovnostranny.
Odtud pro poloméry ry, ro a r3 vepsanych kruznic plyne r; + 7o = ry +
+r3 = r3 + 71, neboli r; = ro = r3. Kruznice jsou tedy shodné, takze je
AB || 5182, BC || S2S5 a CA || S351 a trojihelnik ABC je rovnostranny.

Poznamka. K dokonceni predchoziho dikazu miZeme tvahu o dél-
kach tsefek S;S; nahradit Gvahou o tzv. orientovanych tuhlech mezi
piimkami. Orientovany thel (p,q) piimek p, ¢ (v tomto poradi) je thel,
o ktery musime v kladném sméru otocit primku ¢, aby byla rovno-
b&zna s primkou p. Pifitom (p,q) = (g,p), pravé kdyz (p,q) je néso-
bek 90°. Ze soumérnosti podle os AD, BE a CF tak postupné dosté-
vame <5153,AC’) = (AB,5152> = <S2S3,BC) = <AC,Sl.S'3> Protoze
obé odpovidajici kruznice se stfedy Sp, S3 maji spoletnou tecnu AC
a lezi v téze poloroviné urcené primkou AC, znamena to, ze S;.53 a AC
jsou rovnobézné.
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A-1l1-3

Pokud se ndm podafi sestavit podle daného pravidla (k + 3)-¢lennou
posloupnost

z1 =1, 3, T3, ..., Tk1, Tk = Th41 = Thy2 = Tp43 = 12,

muZzeme v8echny néasledujici ¢leny zy44, Tk+s5, Tk+6, - - - definovat tak, aby
se rovnéz rovnaly ¢islu 12. Skutecné, s ohledem na matematickou indukci
sta¢i ukéazat, jak s vytcenym cilem vybrat znaménka v rovnosti urcujici
¢len xk4y4. Polozme

Thpa = +12(k +3) —12(k+2) — 12(k+ 1) + 12k +
(k- 1Dzg—1 £ (k—2)zp_2 £ ... L2y,

pfitom znaménka v druhém radku vybereme presné takovéa, jakd byla
v sou¢tu uréujicim ¢len z, = 12. Pak se soucet v druhém fadku rovna 12,
takze vychazi

Trya = 12(k+3) — 12(k +2) — 12(k+ 1) + 12k + 12 = 12.
Vhodny priklad pro k = 8 vypada takto: 1 = zo = 23 =1,

T4=3-2+1=2,

75 =4-2-3-2+1=4,

T6=54-4-2-3-2-1=6,

27 =6-6-5-4—4.24+43—-2+1 =10,

25 =7-10—6-6—-5-4—4-2+3+2+1=12,

2o =8-12—-7-10—6-6+5-4+4-2-3-2—-1=12,
210=9-12-8-12—7-10+6-6+5-4+4-2+3+2+1 =12,

217 =10-124+9-12-8-12-7-10-6-6—5-4+4-2—3+2—1=12.

Dokézali jsme, ze jedna z uvazovanych posloupnosti ma pouze prvnich
sedm ¢lent ruznych od ¢isla 12.

A-1l1-4

Rozbor. Predpokladejme, zZe trojihelnik ABC ma vSechny pozadované
vlastnosti a ozna¢me D prisec¢ik kruznice k opsané trojuhelniku ABC
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s polopfimkou opacnou k rameni KA daného thlu AKS (obr.35). Po-
lopfimka AD puli thel BAC, proto jsou thly BAD a CAD shodné,
tudiz jsou shodné i tétivy BD a CD kruZnice k. Bod S je proto stfedem
zdkladny BC' rovnoramenného trojihelniku BC D, takze tthel BSD je
pravy. To znamend, ze bod D lezi na primce p, kterd prochézi bodem S
kolmo k danému rameni KS. Stfed O kruznice k lezi jednak na pfimce p
(ose tétivy BC), jednak na piimce o, kterd je osou tétivy AD.

k A
)7~
o1~~/,

S
N
D
p
Obr. 35

Konstrukce. Pro dany thel AK S nejprve prolozime bodem S primku p
kolmou k rameni K S. Pak sestrojime prusecik D primky p s polopfimkou
opacnou k rameni K A. Déle sestrojime osu o tsecky AD a jeji prusecik
s pfimkou p oznac¢ime O. Konec¢né sestrojime kruznici k se stfedem O
a polomérem r = |OA| (= |OD|) a jeji priseéiky s pfimkou KS ozna-
¢ime B a C.

Diikaz konstrukce. Ukazeme, ze sestrojeny trojuhelnik ABC mé
vSechny pozadované vlastnosti. Z posledniho kroku konstrukce plyne,
ze body B, C lezi na pfimce KS a ze bod S je stfedem usecky BC.
Protoze na pfimce p, ose tseCky BC, lezi i bod D, plati |BD| = |CD|,
a proto |XxBAD| = |xCAD| (nebot vSechny body A, B, C, D lezi na
kruZnici k.) Polopfimka AD je tedy osou thlu BAC a bod K je jeji
prusecik s tseckou BC.

Diskuse. Vysvétlime, pro¢ pro dany tupy thel AKS je hledany troj-
Ghelnik ABC jediny (nepfihlizime-li k moznosti zaménit oznaceni vr-
choli B a C). Protoze je ihel AK S tupy, bod D z nasi konstrukce z¥ejmé
existuje a primky p a o jsou riznobézné, takze i bod O je urlen jedno-
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znacné. Zbyva zdavodnit, pro¢ kruznice k protne pfimku KS ve dvou
bodech. Protoze bod K je vnitinim bodem zakladny AD rovnoramen-
ného trojuhelniku ADO, plati |OK| < |OA| = |OD| = r, tudiz bod K
lezi ve vnitifni oblasti kruznice k a pfimka KS je nutné jeji sefnou.

A-Il1-5
Hledana dvoumistné ¢isla A, B maji tvar A = az+ba B = bz+a, kde a,
b jsou jejich (nenulove!) Cislice, takze a,b € {1,2,...,z—1}. Kvadraticka

rovnice z textu tlohy mé dvojnasobny kofen zg, pravé kdyz plati 2z¢ =
= A a 23 = B. Z téchto rovnosti plyne, ze &islo ¢ je kladné a celé.
Vzhledem k nerovnosti 23 = B < 2% (B je totiz dvojmistné, zatimco 22
je trojmistné) navic plati g < z, odkud A = 2z < 2z, takze ¢islo A
ma jako prvni éislici jednicku. Plati tedy @ = 1 a z rovnosti 2zo = 2z + b
a 3 = bz + 1 vyloucenim z¢ dostaneme pro &slici b kvadratickou rovnici
(b—2)? = 4 s dvéma kofeny by = z—2 a by = z+ 2. Za &islici b Ize oviem
vzit pouze prvni z nich, takze nutné b = z — 2.

Dokézali jsme, ze Cisla A, B museji byt tvaru A = z+ (2 —2) =22 -2
aB=(z-2)z+1=(z—1)?% v soustavé o zakladé z tedy maji zapisy
A = 1(z—2) a B = (z—2)1. Provedeme jesté zkousku: kvadraticka
rovnice 72 — (2z — 2)z + (2 — 1) = 0 mé4 skute¢né dvojnasobny kofen
xo = z — 1, nebot jeji leva strana je rovna (z — z + 1)2.

Pozndmka. Klicovou rovnost a = 1 lze odvodit i bez tvahy o dvoj-
néasobném kofenu xo zkoumané rovnice, kdyz zapiSseme podminku, Ze jeji
diskriminant A% — 4B je roven nule:

0=A?—-4B = (az + b)? — 4(bz + a) = b* + 22(a — 2)b + a(az® — 4).

Posledni vyraz mitize mit nulovou hodnotu, jen kdyz je ¢initel a — 2 z4-
porny, nebot b > 1,a 2 1,z = 3 a az’> —4 2 32 —4 = 5. Z nerov-
nosti a — 2 < 0 jiz ovSem plyne a = 1. Pro takové a dostdvame rovnici
0 =b% — 22b+ (22 — 4) a zavér je stejny jako v uvedeném Fedeni.

A-1lI1-6

K danym kladnym ¢islim a, b, ¢ spliiujicim podminku abc = 1 zapiSeme
AG-nerovnost pro trojici ¢isel a/b, a/ba b/c:

Lfa a bYsafa ab_sja® o/a
3\b b ¢)=Vb b c Vobc Vabe
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Plati tedy odhad
2a b

— 4 — 2>
3% 3=
Ze stejného divodu plati i odhady
2b ¢ 2c a
—+—2b —+ = 2c
3 t3.5° ? 3 Tgp=C
Sec¢tenim téchto tfi odhadt dostaneme dokazovanou nerovnost.

Jiné teSeni. Plati-li pro kladna ¢isla a, b, ¢ rovnost abc = 1, pak
max{a,b,c} 2 1 a min{a,b,c} < 1. ProtoZze dokazovana nerovnost se
nezméni, zaménime-li trojici (a, b, ¢) trojici (b, ¢, a) nebo trojici (c, a, b),
budeme predpokladat, ze ¢isla a a ¢ jsou z trojice (a, b, c) nejmensi a nej-
vétsi (v nékterém poradi), takze plati

(a-1)1-¢c)20. 1)

Do dokazované nerovnosti dosadime ¢ = a~1b~! a provedeme nékolik

ekvivalentnich dprav:
ab ™' +ab® +a ' 2a+b+a bl /-a%
a® +a®® +1 2 a®b+ a?b® + a,
a®b® —a?b? —aPb+a®—a+120,

A= —b+1)+ (a® —a®)b?* - (a—1) 20,

a®(b—1)%(b+ 1)+ (a—1)(ab—1)(ab+1) 2 0.
Posledni nerovnost plati, nebot (a — 1)(ab — 1) = (a — 1)(ab — abc) =
= ab(a — 1)(1 — ¢) a takovy souéin je podle (1) nezéporny.

Jiné feseni. Pro libovolna kladn4 ¢isla A, B, C jsou trojice (4%, B2, C?)
a (A, B, C) takzvané souhlasné uspoiddané, tudiz plati nerovnost

A2 . A+B?.B+C*.C2A*. B+B*.C+C?- A (2)
DokaZme (2) bezprostfedné: ipravou dostavime nerovnost
(A-C)*(A+C)+(B-0C)(B*- A% 20,

kterd zfejmé plati, pokud B = max{A, B,C}, ¢ehoz lze vzdy dosdhnout
cyklickou permutaci dané trojice cisel.

Zvolime-li v dokdzané nerovnosti (2) hodnoty A = {/a/b, B = /b/c
a C = {/c/a, obdrzime nerovnost

a b ¢ sf/a® 5/b%  /c?
— — - > — — .
b+c+a: bc+ ca+ ab’

ze které za predpokladu abc = 1 jiz plyne dokazovand nerovnost.
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Kategorie P

Texty tloh

P-1-1
Cajovnik

Pan Nyi byl dvornim péstitelem ¢aje cisare Tiang-tonga. Byl to péstitel
skute¢né vyhlaseny a jeho cajové listky putovaly nejen do blizkych salka
cisafe Tianga, ale i do dalekych zemi za oceanem. Tajemstvi Nyiho skvé-
lého Caje spocivalo predevsim v peclivosti, s jakou se o své Cajové kere
staral. Nyi byl tak peclivy, Ze si o kazdém svém kefi vedl zdznamy. Psal si
dokonce i to, kolik vétvicek vychazi z kterého mista kefe. Po smrti pana
Nyiho byly zédznamy rozkradeny a jeho nastupce pan Myi tak mél préci
o mnoho téz§i. Rozhodl se proto, ze zdznamy ziska zpét. Problémem ale
je, ze mnoho ruznych podvodnik mu nabizi zdznamy falesné. Ty nastésti
vétsinou obsahuji nesmyslné pocty vétveni, a tak se daji snadno odhalit.
Pana Myiho neustalé ovérovani pravosti zdznamt uz unavuje, a proto
vas pozadal, abyste mu napsali program, ktery mu s ovéfovanim pomi-
ze.

V&s program dostane na vstupu pocet vyznamnych mist N na tdaj-
ném &ajovniku. Vyznamnym mistem na ¢ajovniku je bud misto, kde se
cajovnik vétvi, nebo misto, kde konc¢i néjakd vétev cajovniku. Protoze
zadné dvé vétve Cajovniku nemohou sristat, nemohou vznikat ,cykly*
z vétvi. Déle je na vstupu programu zadano N kladnych celych cisel
c1,C2,...,CN, kde ¢; urCuje pocet Casti kmene, které vychazeji z i-tého
vyznamného mista. Na vystup program vypiSe zpravu, zda mize existo-
vat ¢ajovnik, ktery bude mit takovéto pocéty vétveni.

Formadt vstupu: Vstupni textovy soubor caj.in obsahuje dva radky.
Na prvnim fddku je uvedeno jediné celé éislo N, 1 £ N < 1000. Druhy
fadek obsahuje celd &isla ¢, co,...,cy oddélend mezerami, 1 < ¢; <
<SN-1

Formadt vystupu: Vystupni textovy soubor caj.out obsahuje jediny
fadek tvofeny bud slovem EXISTUJE, nebo slovem NEEXISTUJE.
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Priklad 1 (obr.):

caj.in caj.out
14 EXISTUJE
14311311314111

Priklad 2:
caj.in caj.out
6 NEEXISTUJE
333111
P-1-2
Knihovna

Knihovnice Mila potfebuje objednat dalsi skfin s polickami do své
knihovny; bohuzel vS§ak sama neumi spocitat jeji optimalni rozméry. Mila
by rada do nové skiiné umistila N knih. Kazd4 kniha ma pfifazen jed-
noznacny Ciselny kéd a tyto kddy urcuji poradi knih ve skfini. Kniha
s mensSim kédem se ma nachédzet na stejné nebo vySe umisténé policce
nez kniha s vétSim kédem; na kazdé poli¢ce maji byt knihy s mensimi
kédy umistény vlevo od knih s vét§imi kédy. Vstupem vaseho programu
bude posloupnost N &isel v;, 1 £ i £ N, kde v; je vyska i-té knihy (uspo-
fadano podle rostoucich kédir). Pro zjednoduSeni mizete pfedpokladat,
7e vSechny knihy maji stejnou tloustku 1cm. V4§ program by mél ze
zadanych tdaji spocitat nasledujici:

> Sifku skiiné — oznaéme ji s.

> Pocet policek ve skiini — oznac¢me ho p.

> Vysku w; i-té policky pro kazdé 1 <1 < p.

> Rozmisténi knih do skfiné se spoditanymi parametry, které respektuje

pozadavky na poradi knih zminéné v zadani tohoto pfikladu.

v

Navic si knihovnice Mila pfeje, aby skfifi byla co nejuzsi a pfitom aby
se vesla do mistnosti vysoké 250 cm. Rozmisténi knih, které vas program
nalezne, musi tedy jesté spliiovat nasledujici podminky:

> Vyska libovolné z knih umisténych do i-té policky je nejvyse w;.
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> Soucet tlousték knih umisténych do jedné policky je nejvyse scm,
tj. tato policka obsahuje nejvyse s knih.
> Vyska skfing, kterd je rovna i w;+ (p+1)-1cm (pfedpokladédme, ze
sitka desek oddélujicich poliék;f ve skfini je 1cm), nesmi pfesdhnout
vysku mistnosti 250 cm.
> s je nejmensi moZné.
Priklad: Pfedpokladejme, Ze Mila chce do skfiné umistit celkem
11 knih, jejichz vysky jsou v pofadi podle jejich kddu nésledujici: 40 cm,
10cm, 40 cm, 25cm, 40 cm, 25 cm, 50cm, 40 cm, 40cm, 25cm a 40 cm.
Jedno z optimélnich feSeni by mohlo vypadat nasledovné: Skiini bude
mit §itku pro 3 knihy a celkem 4 poli¢ky s nasledujicimi vyskami: 40 cm,
40 cm, 50 cm a 40 cm. Vyska skfiné je v tomto pfipadé 175 cm. Nalezeni
jednoho konkrétniho mozného umisténi knih do skfiné je snadné.

P-1-3
Transformace

Jedna z metod zpracovani textu pouziva nasledujici transformaéni algo-
ritmus:

Na vstupu méjme n-znakovy fetézec C' = cjca...cn, jehoz vSechny
znaky jsou navzéjem rizné. Retézec C' = Ck+4+1Ck+2 - - - CnC1 - - . Ck, NAZY-
vame Fetézcem C zrotovanym o k (tedy napf. eldat je Fetézec datel
zrotovany o 3). Vezméme si zadany fetézec C a napiSme si pod sebe C,
C zrotovany o 1, ..., C zrotovany o n — 1. Tim jsme ziskali tabulku
n Fetézcl. Ty setfidime v b&Zném lexikografickém potadi (tzn. podle abe-
cedy). Z vysledné tabulky si vybereme posledni sloupec S; déle si také
zapamatujeme Cislo fadku 7, na némz se po setfidéni nachazi nas ptivodni
fetézec. Dvojice (S,7) je vysledek transformace zadaného vstupu. Jak-
koli magicky to vypada, tyto dva tidaje staci k rekonstrukci pivodniho
Tetézce.

Priklad: Na vstupu mame slovo datel. Transformace probiha takto:

datel ateld
ateld datel =*
telda — eldat
eldat ldate
ldate telda

Vysledkem tedy je slovo dltea a informace, Ze ptivodné zadané slovo je
na druhém fadku setfidéné tabulky.
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SoutéZni tuloha. Program dostane na vstupu fetézec S délky n
(1 £ n £ 100), jehoz vechny znaky jsou navzdjem rizné (tj. je-li
S = 5182...5n, pak s; # s; pro kazda i, j, ¢ # j), a ¢islo ¥ (1 £ 7 < n).
Ukolem je najit fetézec C takovy, ze dvojice (S,#) je vysledkem aplikace
vySe popsané transformace na fetézec C' (méate zaruceno, ze takovy exis-
tuje).

Uvédomte si, ze pii pouziti v praxi se délky zpracovavanych vstupt
pohybuji radové ve stovkach kilobyti; je tedy nevhodné, aby vas program
mél kvadratické ¢asové nebo pamétové naroky.

Format vstupu: Na prvnim radku vstupniho souboru bw. in se nachazi
fetézec S (fetézec neobsahuje mezery). Na druhém radku je jedno celé
¢islo 7.

Format vystupu: Vystupni soubor bw.out je tvoren jednim radkem
obsahujicim Fetézec C' (jehoz transformaci je dvojice (S, 7)).

Pfiklad: bw.in bw.out
dltea datel
2
P-1-4

Reverzibilni vypoéty: Policko pole

Pfi hledani novych, tspornéjsich polovodi¢ovych technologii se zjistilo,
Ze nejvice energie se spotfebovavad pifi mazani informaci, tudiz Ze opti-
malni jsou ty vypocCty, pii nichz se zadné informace neztraceji. Takovym
vypocétim se Tikd reverzibilni, protoze diky této vlastnosti mohou pro-
bihat obéma sméry — dokazi nejen spoditat ze vstupu vystup, ale také
z vystupu jednozna¢né urcit vstup. Vydejme se proto i my do tohoto
zvlastniho symetrického svéta a prozkoumejme, jak se programuje ,eko-
logicky*“.

Zacnéme tim nejjednodussim, co se v klasickych programovacich jazy-
cich vyskytuje, a to je prifazovaci piikaz. Nic takového si bohuzel dovolit
nemuzeme, ztratili bychom totiz ptivodni obsah proménné, do niz se pfi-
fazuje. Misto toho zavedeme nékolik prikazi modifikujicich proménnou
vratné:

> proménnd += hodnota — pri¢te hodnotu k proménné.

> promeénnd -= hodnota — odecte hodnotu od proménné.

> proménnd ~= hodnota — pfixoruje hodnotu k proménné. (zor je bi-
tova operace, kterd mé pro jednobitova Cisla vysledek 1 pravé tehdy,
kdyz jsou oba vstupy razné: Oxor0 = 1xorl = 0, 0xorl = 1xor0 = 1.
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Vicebitovéa ¢isla se xoruji po bitech — i-ty bit prvniho ¢isla s i-tym
bitem druhého daji i-ty bit vysledku: 5xor15 = (0101)sxor (1111)s =
= (1010)2 = 10. Obecné pro libovolna ¢isla z a y plati zxory = yxorz,
zxorz =0, zxor0 = z a (z xory)xor z = zxor (y xor z). Podobné lze
zavést operace and a or: 0and0) =0and1 =1and0 =0, land1 =1,
Oor0=0,00orl=10r0=1orl =1, ale ty nejsou reverzibilni, takze
pro nas nebudou tak dulezité.)
> proménnd =:= proménnd — prohodi obsah dvou proménnych.

Abychom se vyhnuli problémiim s prete¢enim (co by pak byla inverzni
operace?), dohodnéme se, Ze budeme pocitat pouze s nezapornymi celymi
&sly v rozsahu 0. .. mazword (takovym ¢islim budeme fikat prirozend)
a v3echny operace budou vydéavat vysledky modulo mazword + 1, tedy
opét prirozené Cislo. Piikaz += provedeny pozpatku je pak totéz, co -=
a opalné; piikazy ~= a =:= jsou inverzni samy k sobé.

Co v8echno ale muze byt hodnota? Jisté libovolnd konstanta nebo
proménnd (ovSem rizné od té, do které pfifazujeme, jinak bychom mohli
napsat tfeba a -= a, coz urcité reverzibilni neni). Také bychom méli po-
volit néjaké dalsi aritmetické operace — ty samy nemusi byt reverzibilni,

vvvvv

vyraz pak uz muzeme prepsat na vyrazy s jedinou operaci, napriklad

x “= (axb)+(c*d) rozepiSeme takto:
tl += axb;
t2 += cxd;
X "= tl+t2;
t2 -= cx*d;
tl -= axb;

Zde t1 a t2 jsou pomocné proménné, které jsou na pocatku vypoctu
nulové a po dopo¢itani vyrazu se opét k nulovym hodnotam vrati, takze
je miZeme pouzivat pro vSechny vyrazy v celém programu. Podobné se
vyporaddame s kazdym vyrazem — nejdrive si spocitdme vSechny mezi-
vysledky do pomocnych proménnych, pak hlavni vysledek pouzijeme, na-
Cez mezivysledky opét ,odpocitame“. Takze muzeme pouzivat i slozité
vyrazy a spolehnout se na prekladac, Ze je sdm rozepise.

Trik s odpocitavanim mezivysledkt a spousténim ¢asti programu po-
zadu je, zd4 se, velice Sikovny, tak si rovnou nadefinujeme, Ze undo prikaz
znamend spustit prikaz pozpatku a wrap prikaz; on pfikaz provede nej-
dfive pfikaz , pak pFikaze a nakonec undo prikaz; pro odpocCitani mezi-
vysledki. Nas priklad s vyrazem pak snadno zapiSeme takto:
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wrap begin

t1l += axb;
t2 += c*d
end

on x "= tl+t2

Podminéné prikazy if-then—else muZeme pouzivat bez obav, po-
kud zarucime, ze po provedeni podminéného ptikazu dopadne podminka
uplné stejné jako predtim (t¥eba proto, Ze zadnd z proménnych, které
v ni vystupuji, neni v podminéné ¢asti programu ménéna). Pak totiz
i pfi provadéni vypocétu pozpatku rozpozname, kterou z vétvi se vypocet
ma vydat.

S cykly je situace svizelnéjsi, protoze tam si s neménicimi se pod-
minkami nevystac¢ime (to by kazdy cyklus budto neprobéhl nikdy, nebo
by se opakoval do nekone¢na). Dalo by se to, pravda, zachranit tim, Ze
by kazdy cyklus mél jednu podminku, ktera by fungovala soucasné jako
vstupni i vystupni — sami si rozmyslete, jak by takové cykly vypadaly.
My si ale pro nase tcely vystacime s cykly for, ty urcité reverzibilni jsou,
pokud fidici proménnou cyklu ani jeji meze zadny piikaz uvnitt cyklu
nemodifikuje, a to se koneckonct nesmi ani v mnoha jinych programo-
vacich jazycich. Navic abychom nemuseli fesit, co se v fidici proménné
musi vyskytovat pred zac¢atkem cyklu a co po jeho konci, domluvime se,
ze prikaz for si tuto proménnou sam vytvori a na konci ji zase zrusi.

Prikaz goto pro jistotu zakadZeme Gplné.

Procedury mohou také fungovat reverzibilné, ale musime se vyhnout
kopirovani parametrt a vysledkd, budeme proto vSe vzdy predavat od-
kazem (pascalské var). Lokalni proménné budou pfi spusténi procedury
vzdy nulové a procedura sama je musi, nez skon¢i, opét do tohoto stavu
vratit. Rekurze je bez problémi.

Nyni jiz mame vSe potiebné, abychom si vybudovali reverzibilni pro-
gramovaci jazyk. Ten nas$ bude vzdalenym ptibuznym Pascalu. Vypada
takto:

Datové typy: K dispozici mame typy word (celd ¢isla bez znaménka),
bit (jednobitové ¢éislo, tedy 0 nebo 1; pouZiva se rovnéz pro pravdivostni
hodnoty) a pole array [z..y] of typ (z a y udavaji meze indext a jsou
to budto ¢isla, nebo vyrazy, jejichz hodnota se po dobu existence pole
nezméni — to si proti Pascalu dovolime navic). Prvky poli mohou byt
také pole, ¢imz ziskdme pole vicerozmérna. Sviij vlastni typ si muzete
zavést deklaraci type identifikdtor = typ;

Identifikatory slouzi k pojmenovavani typl, proménnych a procedur
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a jsou to libovolné fetézce pismen, Cislic a znaka ‘_’, které nezacinaji
Cislici a které se neshoduji s nékterym z klicovych slov jazyka (zde sdzena
courierem). Mald a velkd pismena se nerozliduji.

Procedury se deklaruji konstrukci

procedure identifikator ( parametry ) ;

deklarace lokélnich typd, proménnych a procedur

begin

prikazy oddélené stredniky

end;
Zde parametry maji syntaxi var jmeno:typ, kde jméno je identifika-
tor, jimz se lze na predany parametr uvniti procedury odkazovat. Pokud
méa procedura parametra vice, oddéluji se stfedniky, jsou-li stejného ty-
pu, lze zkracovat, napr.: procedure X(var m,n:integer; var Z:array
[1..n] of bit); VSechny deklarované objekty (parametry, typy, pro-
meénné i procedury) existuji pouze b&hem volani této procedury, kazda
procedura vidi ,,své“ lokdlni proménné a navic lokdlni proménné vSech
procedur, uvnitf kterych je deklarovana (zastiovani se ¥idi stejnymi pra-
vidly jako v Pascalu nebo C).

Proménné jsou pojmenovany identifikatory, musi se vytvorit deklaraci
var identifikditor : typ;.Pfi vstupu do procedury, v niz jsou deklarovany,
maji nulovou hodnotu (v pfipadé pole ji maji vSechny jeho prvky), a nez
proménnd na konci procedury zanikne, musi byt opét nulova. Deklaraci
vice proménnych téhoz typu lze zkratit, napt. var iy, ia, ..., in : typ;.

Vyrazy mohou obsahovat:

> konstanty (pfirozend ¢isla a maxword reprezentujici maximélni do-
stupné ¢islo),

> promeéenné,

> prvky poli (pole[vyraz]),

> Ciselné operace (vstupem i vystupem jsou prirozend Cisla) +, -, *,

div (celd ¢ast podilu), mod (zbytek po déleni), and, or, xor (bitové

operace viz definice o par odstavci vySe) a not (prohozeni nulovych

a jednickovych biti), vysledky jsou automaticky modulo mazword +1,

> relacéni operace (vstupem jsou dvé &isla, vystupem bitova hodnota 1,
kdyz relace plati, 0 pokud nikoliv) <, >, = <=, >= a <>,
> zdvorky (pokud nezavorkujeme, operatory maji své obvyklé priority).

Prikazy existuji tyto:
> Blok: begin prikazy oddélené stfedniky end — zptsobi vykonéni

vSech prikazi, které obsahuje, v daném poradi.
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> Modifikacni prikazy: proménnd += vyraz — zpusobi vyhodnoceni vy-
razu a pri¢teni jeho vysledku k dané proménné (muZe to byt rovnéz
prvek pole indexovany néjakym vyrazem). Proménné, kterou piikaz
modifikuje, (resp. prvek pole) se jiz nesmi nikde jinde v témZe piikazu
vyskytnout. Analogicky pfikazy -= a ~=.

> Prohazovaci prikaz: proménnd =:= proménnd — prohodi obsah dvou
proménnych stejného typu. Pokud se jednd o prvky poli, nesmi se
ve vyrazech urcujicich indexy pouzivat zadné z téchto poli.

> Podminény prikaz: if podminka then prikaz; else prikaz, — vyhod-
noti se podminka, coz je vyraz s bitovym vysledkem, a pokud je roven
jedné, vykona se prvni z prikazi, jinak druhy. Platnost podminky musi
ziistat po vykonani piikazu nezménéna. Cést else je mozno vypustit,
v pripadech typu if x then if y then a else b se pak else vztahuje
vzdy k nejblizsimu predchozimu jesté neukoncéenému prikazu if.

> Prikaz cyklu: for var identifikitor = d to h do prikaz — zalozi no-
vou proménnou daného jména a dany piikaz vykonava pro tuto pro-
ménnou nabyvajici postupné hodnot d,d+1, ..., h, nacez proménnou
opét zrusi. Meze d a h jsou celoCiselné vyrazy, pokud d > h, piikaz
se neprovede ani jednou. Prikaz musi zachovavat hodnotu ridici pro-
meénné, jakoz i mezi cyklu (to znamend, Ze je mtze modifikovat, ale
na konci jednoho prichodu cyklem musi mit oboji opét ptivodni hod-
notu). Téz je mozno pouzit h downto d, tehdy cyklus bézi pozpatku,
tj. h,h—1,...,d.

> Volani procedury: procedura(parametry, ..., parametr,) — zavola
proceduru se zadanymi parametry, coz mohou byt budto proménné,
nebo indexované pole (vyrazy v indexech ovSem museji mit po né-
vratu z procedury stejnou hodnotu jako pred jejim zavoldnim) a jejich
pocet i typy museji odpovidat deklaraci procedury.

> Pfikaz obrdceni vypoctu: undo pfikaz — provede dany prikaz po-
zpatku podle nésledujicich pravidel:
undo begin p; ; ... ; pn end — begin undo p, ; ... ; undo p; end
undo T +=y T -=y
undo x -= y T =y
undo x "=y T "=y
undo x =:=y T ==y

undo if = then y else 2
undo for z =d to hdop
undo P(zy,...,Zn)

undo undo p

if x then undo y else undo z
for x = h downto d do undo p
undo téla procedury (begin ... end)

P
Konstrukce begin p ; undo p end tedy nevykond nic, a¢ mize pocitat
pomérné dlouho.

LELELLLY
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> Prikaz lokdlniho vypoctu: wrap prikaz on prikaz je zkratkou za kon-
strukci begin prikaz ; prikaz ; undo prikaz; end.

Hlavni program nebudeme zavadét. Abychom se vyhnuli problémtim
se vstupy a vystupy, budeme vSe vzdy programovat jako procedury. Ty
jako své parametry dostanou jak proménné, které obsahuji vstupni da-
ta, tak proménné, které maji byt predepsanym zpusobem zmodifikovany
podle vysledku.

Casovd a prostorovd sloZitost se definuje podobné jako v klasickém
programovéani: ¢asovou sloZitosti vypocétu je pocet vykonanych prikazi
modifikujicich proménné, at jiz prob&hly kterymkoliv smérem. MnoZstvi
paméti vyuzité programem v néjakém okamziku vypoctu spocitame jako
soucet velikosti vSech lokélnich proménnych (typy bit a word maji jed-
notkovou velikost, pole mé velikost rovnou sou¢tu velikosti svych prvki)
a parametri (ty se vSechny pocitaji jako jednotka, at uz jsou kterého-
koliv typu, protoZe jsou piedaviany odkazem) vSech pravé zavolanych
procedur + jednotka navic za kazdou takovou proceduru. Prostorovou
slozitosti programu nazveme pak maximum z vyuzitého mnozstvi paméti
pres celou dobu b&hu programu. (Pozor, jelikoZ program je Pro nas vzdy
procedurou, jeho vstupy a vystupy se do prostorové slozitosti zapocitavaji
pouze jednotkové, i kdyZ to mohou byt velka pole.)

Zbyva malickost: cokoliv uzavieného do slozenych zavorek { a } je
komentarem, ktery je pocitacem zcela ignorovan, jako kdyby na jeho
misté byla mezera. Komentar nesmi uvniti obsahovat slozené zavorky.

Priklad 1: Procedura pro prohozeni obsahu dvou proménnych (ktera
ukazuje, ze =:= se d4 snadno odvodit pomoci ostatnich operaci). Casova
i prostorova slozitost jsou konstantni, tedy O(1).

procedure Prohod(var x,y:word);

begin {x=X%X,y=Y (X,Y jsou piiv. hodnoty) }

x"=y; {x=XzxorY,y=Y}

y "= x; {x=XzxorY, y=Yxor (X xor Y) =X}

x "=y {x=XzxorY) xor X=Y, y=X1}
end;

Priklad 2: Procedura pro vypocet maxima ze zadanych n Cisel. Je
déno pole X celych ¢isel a proménna maz, k nizZ mame spoctené maxi-
mum pficist. To dokadZeme takto: Nejprve si pfedpoéitdme do M[i] ma-
ximum z &isel X[1],..., X[i], pak pfi¢teme M[n] k maz a nakonec M [i]
opét vyprazdnime, coZ snadno zapiSeme pomoci piikazu wrap. Casova
i prostorova slozitost jsou O(n) ¢ili linearni.
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procedure Maximum(var n:word; var X:array [1..n] of word;
var max:word) ;
var M:array [0..n] of word;
begin
wrap
for var i=1 to n do
if X[i]>M[i-1] then
M[i] += X[il]
else
M[i] += M[i-1]
on max += M[n];
end;

SoutéZni uloha. Napiste reverzibilni proceduru Najdi(var n:word;
var X:array [1..n] of word; var co, kde:word). Tato procedura ma
za tkol v n-prvkovém poli X hledat hodnotu co, a pokud se tam tato
hodnota vyskytuje, ptic¢ist k proménné kde pozici jejiho vyskytu, tedy ¢
takové, ze X; = co. Navic je znadmo, ze pole X je usporadano vzestupné,
tedy Ze pro kazdé i < j plati X; < Xj; proto také muze byt vyskyt
nejvyse jeden. Ve svém feSeni se snazte dosdhnout co nejmensi ¢asové
i prostorové slozitosti.

P-lI-1
Tajemny obraz

V Chile objevili archeologové tajemny obraz z predkolumbovské doby.
Obraz vypada jako nékolik bodid rozmisténych na pomyslné kruznici, pfi-
¢emz kazdé dva body jsou spojeny rovnou ¢arou. Kazda z ¢ar je bud Zluta
nebo Cervend. Archeologové dlouho hledali smysl této malby, ale Zadny
nemohli nalézt. Az amatérsky archeolog a dobrodruh Erik von Kitzinken
po dlouhém patrani vyslovil hypotézu, Ze obrazec je poselstvim davnych
Inkt. Pocet jednobarevnych trojuhelniki s vrcholy na pomyslné kruznici
pry udava pocet dni od namalovani obrazce, po nichZ maji na Zemi opét
pristat mimozemstané. ProtoZe obrazec je pomérné velky, rozhodl se Erik
uréit pocet téchto jednobarevnych trojihelniki pomoci pocitace.

Va$im tkolem je napsat program, ktery dostane na vstupu pocet bodu
nakreslenych na obrazci N, 3 < N, a déle seznam dvojic ¢isel bodd (body
si o¢islujeme od jedné do N), které jsou propojeny ervenou ¢arou (zbylé
dvojice bodl jsou tedy propojeny Zlutou). Na vystup program vypise
pocet jednobarevnych trojihelnikdi v zadaném obrazci (tzn. takovych
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trojahelniki, jejichZ v8echny tfi vrcholy lezi v bodech vyznafenych na
kruZnici a jsou spojeny ¢arami téZe barvy).

Priklad. V obrazci s péti body a Cervenymi ¢arami mezi body (1,2),
(2,3), (3,4) a (2,4) jsou tfi jednobarevné trojuhelniky (jeden Cerveny
a dva zluté). Cerveny trojthelnik mé& vrcholy v bodech 2,3,4 a Zluté
trojuhelniky v bodech 1,3,5 a 1,4, 5.

P-11-2
Knihovna

Knihovnice Mila opét potfebuje objednat dalsi skifin do své knihovny.
Bohuzel vSak zase sama neumi spocitat, jak by tato skifih méla byt Siroka,
a tak vas znovu poprosila o pomoc. Mila by rdda do nové skiiné umistila
celkem N knih, ale na rozdil od dlohy P-I-2 z prvniho kola je ji jedno,
v jakém poradi knihy do skfiné umisti. Vstupem vaseho programu bude
posloupnost N ¢&isel v;, 1 £ i £ N, kde v; je vyska i-té knihy. Pro
zjednoduseni predpokladejme, Ze vSechny knihy maji stejnou tloustku —
1lcm.
V48 program by mél ze zadanych tdaji spocitat nasledujici:
> Sitku skiiné — oznacme ji s.
> Pocet poli¢ek ve skiini — ozna¢me ho p.
> Vysku w; i-té policky pro kazdé 1 £ i < p.
> Rozmisténi knih do skifiné se spocitanymi parametry.
Rozmisténi knih, které va$ program nalezne, musi z pochopitelnych di-
vodu spliiovat nasledujici:
> Vyska libovolné z knih umisténych do i-té poli¢ky je nejvyse w;.
> Soucet tlousték knih umisténych do jedné policky je nejvySe scm,
tj. tato poli¢ka obsahuje nejvyse s knih.
> Vyska skfinég, kterd je rovna Zp: w;+ (p+1)-1cm (pfedpokladiame, Ze
i=1
gitka desek oddélujicich policky ve skiini je 1cm), nesmi pfesdhnout
vysku mistnosti 250 cm.
> s je nejmensi mozné.
Priklad. Predpokladejme, ze Mila chce do skfiné umistit celkem
14 knih, z nichz devét ma vysku 50cm a pét ma vysku 40cm. Jedno
z optimélnich feSeni by mohlo vypadat nasledovné: Skiinn bude mit $ifku
pro 3 knihy a celkem 5 poli¢ek — tfi z nich budou mit vy$ku 50 cm a dvé
poli¢ky vysku 40 cm. Nalézt jedno konkrétni mozné rozmisténi knih do
skiiné je snadné.
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P-11-3
Transformace

Jedna z metod zpracovani textu pouZziva nésledujici transformacni al-
goritmus: Na vstupu méjme n-znakovy fetézec C = cjcy ... cn. Retézec
C' = Ck+1Ck+2 - - - CnC1 - - . Ck, Nazyvame Fetézcem C zrotovanym o k (tedy
napf. akaabr je fetézec abraka zrotovany o 3). Vezméme si zadany fe-
tézec C' a napiSme si pod sebe C, C zrotovany o 1, ..., C' zrotovany
o n — 1. Tim jsme ziskali tabulku n fetézcti. Ty setfidime v béZném
lexikografickém poradi (tzn. podle abecedy). Z vysledné tabulky si vy-
bereme posledni sloupec S; dale si také zapamatujeme cislo rfadku 7,
na némz se po setfidéni nachazi nas ptvodni fetézec (je-li téchto radku
vice, libovolny z nich). Dvojice (S,7) je vysledek transformace zadaného
vstupu. Jakkoli magicky to vypada, tyto dva tdaje sta¢i k rekonstrukci
pavodniho retézce.

Priklad. Na vstupu mame slovo abraka. Transformace probiha takto:

abraka aabrak
brakaa abraka *
rakaab — akaabr
akaabr brakaa
kaabra kaabra
aabrak rakaab

Vysledkem tedy je slovo karaab a informace, ze ptivodné zadané slovo je
na druhém fadku setfidéné tabulky.

Souté&Zni tloha. Program dostane na vstupu fetézec S délky n (1 £
<n £10000) a &slo # (1 £ # < n). Ukolem je najit fetézec C takovy, ze
dvojice (S, ) je vysledkem aplikace vySe popsané transformace na retézec
C (méate zaruleno, ze takovy existuje).

Pozndamka. Budete-li psat program v Pascalu, mizete predpokladat,
ze do stringu se retézec této délky vejde.

Uvédomte si, Ze pfi pouziti v praxi se délky zpracovavanych vstupu
pohybuji fadové ve stovkach kilobyti; je tedy nevhodné, aby vas program
mél kvadratické ¢asové nebo pamétové naroky.

Format vstupu: Na prvnim fadku vstupniho souboru bw. in se nachazi
fetézec S (Fetézec neobsahuje mezery). Na druhém fadku je jedno celé
¢islo 7.

Formadt vystupu: Vystupni soubor bw.out je tvoren jednim radkem,
obsahujicim fetézec C (jehoZ transformaci je dvojice (S, 7)).
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Priklad: Vstupni soubor bw.in: Vystupni soubor bw.out:
karaab abraka
2

P-1l-4
Reverzibilni vypocty: Ouiad

(Definice reverzibilnich vypoctt je obsaZzena v textu tlohy P-I-4.)

Oblastni Oufad sidli v mésté M v n budovach. Aby si oufednici sidlici
na ruznych mistech mohli rychle posilat vSechny ty dopisy, pfipisy, zapisy,
dobropisy, vrubopisy, tiskopisy a viibec vselijaké spisy s podpisy, vybudo-
vali si potrubni postu — systém rour spojujicich nékteré dvojice budov.
Témito rourami se pomoci stlateného vzduchu posilaji zésilky. Aby ne-
dochézelo ke kolizim, je kazda roura vyuzivdna jenom jednim smérem.
Nejsou si ale jisti, jestli jiz postavili vSechna potfebna potrubi, a tak je
zajima, jak zjistit, zda mezi néjakymi dvéma zadanymi misty je moZné
dopravit zasilku, a to budto pfimo, nebo s preloZenim zasilky v néjaké
mezistanici, pfipadné mezistanicich.

NapisSte reverzibilni proceduru Zkoumej(var n:word; var A:array
[1..n] of array [1..n] of bit; var x,y,d:word), kterd dostane
jako vstup poéet budov n, matici A popisujici v prvku A[i][j], zda vede
(1) ¢ nevede (0) roura z i-té do j-té budovy, a &isla budov z a y. Poté
do proménné d pricte, s jakym nejmensim poctem pielozeni je mozno
prepravit zasilku z budovy z do budovy y, pfipadné pficte ¢islo vétsi
nez n, pokud to mozné neni. Snazte se dosdhnout co nejmensi prostorové
sloZitosti vypoctu pri zachovani polynomiélni ¢asové slozitosti.

P-1l1-1
Hrackarstvi

V hrackarstvi Prcek a otec probéhla velkd soutéZz ,,O nejhezéi hracku®.

wevs

Déti mély za tkol nakreslit obrazek své nejoblibenéjsi hracky. Po ukon-
Ceni soutéze byla uspofddéana vystavka a déti, které nakreslily nejp&kné&;jsi
obréazky, dostaly od hrackafstvi néjakou hracku. Jak ale asi vite, ne kaZ-
dému ditéti se libi kazda hracka, a tak uz pfed vyhlaSenim soutéZe mél
kazdy maly vytvarnik vyhlédnutou tu odménu, kterou chtél za sviij ob-
rézek dostat. Tu a zaddnou jinou. Svij nazor pak déti po vyhlaSeni davaly
dost hlasité najevo. Maminky jeéicich potomk se tedy rozhodly, ze déti

si hracky mezi sebou povymeénuji tak, aby pokud mozno co nejvice déti
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bylo se svou vyhrou spokojeno. Situaci jesté navic komplikuje skuteénost,
ze k vymeéné jsou ochotné pouze ty déti, které nakonec dostanou hracku,
po niz touzi. S tak naroénym tkolem si maminky nevédély rady, a tak
poprosily vas, abyste napsali program, ktery problém vyfesi.

‘Vas program dostane na vstupu zadidn pocet N odménénych déti
a dale pro kazdé dité ¢islo hracky, kterou dostalo, a ¢islo hracky, kterou
by chtélo dostat (protoze hracek je stejné jako déti, o¢islujeme si je pro
jednoduchost od jedné do N). Na vystup program vypisSe nejvétsi skupinu
déti takovou, ze kdyz si déti ve skupiné mezi sebou vhodnym zptisobem
vyméni hracky, budou vSechny spokojené.

P—-1l-2

Knihovna

Mrv

Knihovnice Mila opét potfebuje objednat dalsi skiin do své knihovny,
a protoze se ji vaSe pomoc osvédc¢ila, opét se na vas obratila, abyste
ji pomohli spocitat optimalni rozméry nové skiiné. Nova skiii ma mit
P policek a Mila by do ni rdda umistila celkem N knih. Kazda kniha
ma pfifazen jednoznacny ciselny kéd a tyto kddy urcuji poradi knih ve
skfini. Kniha s mensim kédem se mé nachéazet na stejné nebo vyse umis-
téné policce nez kniha s vétsim kddem; na kazdé poli¢ce maji byt knihy
s mensimi kédy umistény vlevo od knih s vét$imi kédy. Vstupem vaseho
programu bude celé ¢&islo P a posloupnost N éisel t;, 1 £ i £ N, kde t;
je tloustka i-té knihy. MuZete predpokladat, Ze tloustka ¢; i-té knihy je
celé ¢islo z rozmezi od 1 do 50. Vyska kazdé knihy je takova, Ze ji lze bez
problémt umistit do libovolné z planovanych P policek. VA4S program by
mél ze zadanych udaji spocitat nasledujici:

> Sitku skiiné — oznaéme ji s.

> Rozmisténi knih do skfiné se spocitanymi parametry.
Rozmisténi knih, které vas program nalezne, musi z pochopitelnych di-
vodu splhovat nésledujici:

> Soucet tlousték knih umisténych do jedné policky je nejvyse s.

> Siika skifné s je nejmensi mozn4.

Priklad. Ptedpokladejme, ze nova skiin ma mit 3 policky a mé byt do
ni umisténo celkem 6 knih s nésledujicimi tloustkami (sefazeny vzestupné
podle svych kédid): 15, 20, 7, 6, 2 a 4. Minimalni moZzné $itka skiiné
v tomto pfipadé je 20 — na prvni policku se d& pouze prvni kniha,
na druhou pouze druhd kniha a zbylé knihy se umisti na posledni treti
policku.
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P-1IlI1-3
Reverzibilni vypocty: S¢itani

(Definice reverzibilnich vypocti je obsazena v textu tGlohy P-1-4.)

NapiSte reverzibilni proceduru Add(var n:word; var A,B:array
[0..n-1] of bit) slouZici ke s¢itdni dvou n-bitovych ¢isel zapsanych
ve dvojkové soustavé (bit ¢islo 0 odpovida Fadu jednotek). Tato pro-
cedura, pricte ¢islo ulozené v poli B k ¢islu uloZzenému v poli A. Vstup
dostane vzdy takovy, aby nedoslo k preteceni, tedy soucet bude vzdy
také n-bitovy. Snazte se dosdhnout co nejmensi prostoroveé slozitosti své
procedury.

P—1ll-4
Poklad kapitana Flinta

Program:  poklad.pas / poklad.c / poklad.cpp
Vstup: poklad.in
Vystup: poklad.out

Kapitan Flint si pfi svych piratskych vypravach prisel k docela pékné
hromédce zlataka. Piratské vypravy jsou vSak dosti nejisté a Stésténa
vrtkava, a proto kapitdn zakopal Cast svého jméni na pustém ostrové
a cestu k pokladu zakreslil na ov¢i kizi ve tvaru konvexniho N-thelniku.
Celou mapu pak roziezal na mnoho ¢asti, pricemz kazdy rez vedl primo
mezi dvéma vrcholy mnohothelniku a zadné dva fezy se neprotinaly. Aby
si pojistil vérnost posadky svého Skuneru, rozhodl se Flint nékteré ¢asti
darovat nejzdatnéjsim pirdtim. Protoze by se ale ndmotnici mohli snadno
dohodnout, mapu sestavit a poklad vykopat, chce mezi né kapitan roz-
delit ¢asti mapy tak, aby zadni dva ndmotnici neméli sousedni dily (tedy
takové, které maji spole¢nou hranu). Pfitom chce mezi ndmoiniky rozdé-
lit co nejvice ¢asti mapy. Dokazali byste napsat program, ktery pomize
kapitanovi vyresit jeho problém?

Vstup: Na prvnim fadku vstupniho souboru poklad.in dostane pro-
gram dvé cela Cisla N a M oddélend mezerou, 3 < N < 30000,
0 £ M £ 30000 — pocet vrcholti mapy a polet fezli. Nasleduje M
radkd popisyjicich jednotlivé rezy. Kazdy z téchto radka obsahuje dvé
Cisla A a B oddélend mezerou — ¢isla vrcholli, mezi kterymi vede fez
(vrcholy ¢islujeme od jedné do N).
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Vystup: Vystupni textovy soubor poklad.out bude obsahovat jediné
¢islo udavajici maximalni polet ¢asti mapy, které lze mezi ndmorniky
rozdélit tak, aby Zadni dva ndmotnici neméli sousedni dily mapy.

Priklad: Vstupni soubor Vystupni soubor
poklad.in: poklad.out:
5 2 2
13
35
P-1ll1-5
Vazeni

Program:  vahy.pas / vahy.c / vahy.cpp
Vstup: vahy.in
Viystup: vahy.out

Mudrc Tluchuba se prihlasil do konkurzu na kralovského radce v jed-
nom nejmenovaném krélovstvi. Vzapéti vSak byl zaskoten podminkami
tohoto konkurzu: Jako test svych schopnosti obdrzi N minci, z nichz
nékteré maji riznou a nékteré stejnou hmotnost. Jeho tkolem bude tyto
mince rozdélit do skupin tvofenych mincemi stejné hmotnosti a tyto
skupiny pak seradit vzestupné podle hmotnosti minci tak, aby v prvni
skupiné byly nejleh¢i mince a v posledni skupiné byly nejtéZsi mince.
Bude mit k dispozici dvouramenné vahy, na jejichz misky smi v jednom
okamziku polozit po jedné minci.

Mudrc Tluchuba véas pozadal o pomoc pri plnéni tohoto kolu. Chtél
by, abyste vytvorili program, jenZ mu pomuze pii rozhodovani, které
mince zvazit, jak mince rozdélit do skupin a jak vytvorené skupiny uspo-
radat. Pro Gcely programu si mince ocislujeme od 1 do V. Samotné vaZzeni
bude ve vaSem programu zastoupeno funkci porovnej.

Mudrc Tlu¢huba musi kol splnit v ¢asovém limitu, ktery mu byl
stanoven (tedy v ném musi kol splnit i v48 program). Kromé toho musi
provést vSechna nezbytnd vazeni, tj. nesmi existovat dvé ¢i vice moznych
feSeni konzistentnich s odpovédmi funkce porovnej, jinak by byl mudre
upélen jako ¢arodéjnik (jak jinak by mohl védét, které uspofadani je
spravné?). Na druhou stranu nesmi byt provedeno zZadné zbyteéné vazent,
tj. takové, jehoz vysledek by jiz (pfimo ¢ nepfimo) vyplyval z pfedchozich
odpovédi funkce porovnej.
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Popis funkce porovnej: Funkce porovnej je definovana v knihovné
vahy_1lib. Va$ program musi obsahovat nasledujici fadek, aby mohl po-
uzivat funkci porovnej:

Pascal: uses vahy_lib;

C/C++: #include "vahy_lib.h"

Funkce porovnej je deklarovana takto:

Pascal: function porovnej(a,b: longint): integer;

C/C++: int porovnej(int, int);

Tato funkce ocekava jako vstupni parametry ¢isla dvou minci. Vrati hod-
notu —1, pokud mince odpovidajici prvnimu parametru je leh¢i nez mince
odpovidajici druhému parametru, +1, pokud je tomu naopak, a 0, pokud
obé mince maji stejnou hmotnost.

Nezapomenite, Ze vas program nesmi funkci porovnej volat zbyteéné,
tj. vysledek zadného volani funkce porovnej nesmi vyplyvat (tedy byt
jednoznalné urcen) z piedchozich volani této funkce. Napt. pokud jsme
voladnim funkce porovnej zjistili, Ze mince s ¢islem 1 je leh¢i nez mince
s Cislem 2 a ze mince s Cislem 2 je leh¢i nez mince s Cislem 3, nelze jiz
funkci porovnej zavolat s parametry 1 a 3. Kromé toho va$ program
muze funkci porovnej zavolat nejvyse 250 000krat.

Vstup: Vstupni soubor vahy.in obsahuje jediny fadek s jedinym ¢is-
lem N, 1 < N £10000, které udava pocet minci.

Vystup: Vystupni soubor vahy.out musi obsahovat K radki, kde
K je pocet riznych hmotnosti minci. Na kazdém fadku budou uvedena
¢isla minci téZze hmotnosti v rostoucim poradi. Hmotnosti minci jednotli-
vych radki tvori rovnéz rostouci posloupnost, tzn. prvni fadek obsahuje

vy,

vSechny nejlehéi mince a posledni fadek vSechny nejtézsi mince.

Priklad: Vstupni soubor
vahy.in:
4
Pribéh komunikace:
volani porovnej(2,4) vraci -1
volani porovnej(1,2) vraci 1
volani porovnej(3,4) vraci -1
volani porovnej(1,3) vraci 0
Vystupni soubor vahy.out:
2
13
4
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Reseni tiloh

P-1-1

Pro feSeni tlohy si vypuj¢ime terminologii z teorie grafi. Vyznamnd
mista na ¢ajovniku budeme nazyvat vrcholy, ¢asti kmene ¢ajovniku mezi
dvéma vyznamnymi misty pak hrany. Vrcholy spolu s hranami si pojme-
nujeme strom (pokud bychom chtéli byt opravdu piesni, méli bychom jej
nazvat grafem. My ale vime, Ze na$ ¢ajovnik neméd zadny cyklus a graf
s touto vlastnosti se nazyva strom). Pocet hran, které vedou z né&jakého
vrcholu v (tedy vlastnd pocet ¢asti kmene, které vedou z vyznamného
mista v), nazveme stupném vrcholu v.

Nejdrive si v8imneme, Ze kazdy strom s alespoii dvéma vrcholy ma
alespoii jeden vrchol stupné jedna (takovyto vrchol se nazyva list). Tento
vrchol mizeme snadno nalézt nasledovné. Za¢neme strom prohledavat
v libovolném vrcholu. Pokud jesté nejsme v listu, pfejdeme do libovol-
ného sousedniho (tzn. pfipojeného hranou) vrcholu, ve kterém jsme dosud
nebyli. JelikoZ ve stromu nejsou cykly, musi takovyto vrchol vzdy exis-
tovat. Protoze vrcholu je koneény pocet, musime jednou skonéit — a to
muzeme pouze v listu.

Nyni ukaZzeme, Ze soucet stupnu vSech vrchold v libovolném stromu
je 2N —2 (kde N je pocet vrcholil). Naopak plati, Ze mame-li NV kladnych
celych Cisel se sou¢tem 2N — 2, pak existuje strom s N vrcholy majicimi
tyto stupné. Z toho uz je jasné, ze staci zjistit, zda je soucet Cisel na
vstupu roven 2N — 2, a podle vysledku vypsat patficnou zpravu.

Prvni tvrzeni dokdzeme indukci podle poétu vrchold. Strom o dvou
vrcholech obsahuje jedinou hranu. Soucet stupni vrcholi je tedy 1+1 = 2
a naSe tvrzeni plati. Pokud mé strom vice vrcholl, vime z piedcho-
ziho pozorovéni, Ze mé list. KdyZz tento list odebereme (tedy zrusime
vrchol a hranu, kterd ho pfipojuje ke zbytku stromu), ziskdme zfejmé
opét strom. Pro néj z indukéniho predpokladu plati, Ze soucet stupnu je
2-(N —=1)—2=2N — 4. Protoze v pivodnim stromu mél jeden vrchol
stupeii o jedna vy$si (ten, ke kterému byl pfipojen list) a byl v ném navic
list, je soulet stupitt v puvodnim stromu 2N —4 + 2 = 2N — 2. Tim je
prvni tvrzeni dokazano.

Druhé tvrzeni dokdzeme indukci dle poctu ¢lenti posloupnosti: Necht
mame posloupnost dvou kladnych celych ¢isel, jejichz soucet je 2-2—2 = 2.
Tato ¢isla tedy mohou byt pouze dvé jednicky. Pro né jsou zfejmé odpo-
vidajicim stromem dva vrcholy spojené hranou. Pokud mé posloupnost
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vice nez dvé Cisla, musi ziejmé obsahovat alespon jednu jedni¢ku (jinak
by soulet N &isel byl alespoii 2V a ne 2N —2). Analogicky musi také obsa-
hovat alespon jedno ¢islo vétsi nez jedna. Kdyz z posloupnosti vypustime
jednu jednicku a jedno z ¢isel vétSich nez jedna snizime o jedna, ziskdme
posloupnost ¢isel o jedna kratsi se souétem 2N —2—-2=2-(N —-1) — 2.
Dle indukéniho predpokladu tedy existuje strom na N — 1 vrcholech
s pfisludnymi stupni vrcholt. Kdyz do stromu pfidame jeden list a pfi-
pojime ho hranou k vrcholu, ktery odpovida ¢islu, jez jsme zmenSovali
o jednicku, ziskdme presné strom pro nasi pivodni posloupnost. Tim je
dokézéano i druhé tvrzeni.
Casova slozitost algoritmu je O(N), pamé&tova O(1).

program Caj;
var
N, i, Suma, Casti : Integer;
vstup, vystup : Text;
begin
Assign(vstup, ’caj.in’);
Assign(vystup, ’caj.out’);
Reset (vstup) ;
Rewrite(vystup);
Suma := 0;
ReadLn(vstup, N);
for i := 1 to N do begin
Read(vstup, Casti);
Suma := Suma + Casti;
end;
if Suma = 2*(N-1) then
WriteLn(vystup, ’EXISTUJE’)
else
WriteLn(vystup, ’NEEXISTUJE’);
Close(vstup);
Close(vystup);
end.

P—1-2

Predvedeme si dvé mozna FeSeni této tlohy. Obé jsou zaloZena na me-
tod& zvané dynamické programovéani: Uloha se nejprve vyfesi pro pod-
ulohu velikosti 1. Tohoto feSeni se pouzije pro nalezeni feSeni podilohy
velikosti 2. Takto nalezenych feSeni se pouZzije pro vyfeSeni podilohy
velikosti 3 atd. V naSem pripadé bude velikost podilohy uréend poétem
knih, které chceme do skifiné umistit.

Prvni feSeni je zaloZeno na vytvoreni dvojrozmérného pole A o rozmé-
rech N x V, kde N je celkovy pocet knih, které mame do skiiné umistit,
a V je maximalni vySka skfiné; V' je v nasem pfipadé rovno 250 podle
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zadani tlohy. Hodnota A[i,j],0 £ ¢ < N,1 £ j £V, uddvd minimalni
moznou Sifku skfiné vysky 7, do které lze umistit prvnich ¢ knih. Pokud
do skfiné vysky j prvnich 7 knih nelze umistit, tj. nékteré z téchto knih je
vySsi nez j — 2 cm, pak je hodnota A[i, j] rovna néjaké specidlni hodnoté,
napf. —1. PopiSeme si, jak lze v Case O(N) spocitat hodnotu Alig, jo],
mame-li jiz spocitany hodnoty A[i, j] pro ¢ < ig. Pokud je ig = 0, pak
zfejmé Alio, jo] = 0 cm. Pokud existuje ¢, 1 £ i < g, takové, ze vyska v;
i-té knihy je vétsi nez jo — 2cm, pak prvnich ¢ knih nelze do skfiné
vysky jo umistit a A[ig, jo] bude rovno —1. Ve zbylych ptipadech urc¢ime
hodnotu Alig, jo] nasledovné: Pro 0 £ i < ip zkusime umistit na po-
sledni poli¢ku skfiné (i + 1)-ni aZ ip-tou knihu a prvnich ¢ knih ddme na
predchézejici policky; vyska posledni policky by tedy musela byt alespon
v = max;y<j<;, Uk a mizeme predpokladat, Ze je pravé v. Sifka této po-
licky musi byt alespoii ig — i. Pokud A[i, jo —v — 1] je rovno —1, pak nelze
vytvorit skiih vysky jo, kterd by obsahovala prvnich iy knih a na posledni
poli¢ce by z nich méla poslednich ig —i. V opacném pripadé je nejmensi
sirka skiiné vysky jo, kterd obsahuje prvnich ¢y knih a na posledni poli¢ce
ma z nich umisténo poslednich ig — 7, rovna max{A[i, jo — v — 1], 40 — i}.
Nejmensi z téchto vyrazt pro 0 £ i < ip bude roven hledané hodnoté
Alio, jo]. VySe popsany vypocet lze provést v ¢ase O(N), budeme-li po-
stupovat od ¢ = ig—1 k i = 0; v takovém ptipadé Ize v = max, 1 <p<;, Uk
spocditat z v pro hodnotu 7 o 1 vétsi v konstantnim ¢ase. Hodnota pole
A[N,250] je hledanou minimalni moznou Sifkou skfiné. Pokud chceme
zaroven nalézt i rozmisténi knih do skiiné a vysky jednotlivych policek,
zavedeme si je§té pomocné pole B[i,j],0<i < N, 1< j £V, do jehoz
polozky Blio, jo] si pfi vypoctu hodnoty A[io, jo] uloZime to %, pro které
je 8ifka skfiné miniméalni pfi vysce jo. Z hodnoty B[N, 250] uréime pocet
knih, které jsou v optimalnim reSeni na posledni poli¢ce; tato hodnota
nam umozni spocitat vysku skiiné bez posledni policky a pocet knih
v téchto polickach. Z prislusné hodnoty v poli B urc¢ime pocet knih na
predposledni poliéce a takto postupujme, dokud nedoséhneme prvni po-
licky. Vzhledem k velikosti pole A jsme si pravé popsali algoritmus, jehoz
¢asova slozitost je O(V N?) a pamétova slozitost O(V N).

Nyni si popiSeme druhé mozné reSeni. Nejprve si ukazeme, jak lze
v ¢ase O(N?) rozhodnout, zda lze knihy umistit do skiiné iiky s
a vysky V. K tomu si vytvorime pomocné pole Afi], 0 < i £ N,
které udava minimdalni vysku skfiné S$itky s, do které lze umistit prv-
nich ¢ knih. Pokud A[N] > V, pak knihy nelze umistit do skiiné sitky s
a vySky V; v opa¢ném pripadé je lze do skfiné s témito rozméry umis-
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tit. K uréeni hodnot v poli A opét pouzijeme dynamické programo-
vani. Hodnota A[0] je 1cm, coz je specidlni piipad obecného vztahu
soucet vysek poli¢ek + (pocet policek + 1) x 1cm“ pro vysku skiiné.
PopiSeme, jak lze ur¢it hodnotu A[io], pokud zndme hodnoty A[i] pro
0 £1 < ip. Zvolme ig — s £ i < ip; na posledni poli¢ku chceme umistit
v takovémto piipadé poslednich ig — i knih (proto podminka ig — s < 7).
Vyska skiiné je pak rovna A[i] + 1 + max;_j<; vx; nejmensi z téchto
vyrazi pro i, io — s < i < io, je hledana hodnota A[io]. Hodnotu Alio] lze
spocditat v ¢ase O(IN), pokud budeme postupovat od i = ig—1ki =1ip—s
(potom lze Max; <, Uk spocCitat z hodnoty pro ¢« + 1 v konstantnim
¢ase). Popsana procedura v ¢ase O(N?) s paméti O(N) rozhodne, zda
lze zadanych N knih umistit do skiiné Sitky s a vysky V. Zbyva popsat,
jak lze tuto proceduru pouZit pro vyieSeni puvodni tlohy. Nejprve zkon-
trolujeme, Ze vyska vSech knih je nejvySe V — 2cm = 248cm, a tedy Ze
knihy lze vibec umistit do néjaké skiiné vysky V. K urceni minimalni
sitky so skfiné pouzijeme metodu zvanou pileni intervalu. Budeme si
udrzovat dvé proménné s; < so, které ndm budou ohranicovat mozny in-
terval, ve kterém je hledana $itka sg, tj. s1 < so £ s2. Nejprve polozime
s1 =1 a sy = N.V kazdém kroku zvolime s = |1(s1 + s2)| a pomoci
vySe popsané procedury zkontrolujeme, zda lze naSich N knih umistit
do sk¥iné vysky V a &ifky s. Pokud knihy lze do takové skiiné umistit,
polozime sy = s; v opacném pripadé polozime s; = s + 1. Cely postup
opakujeme, dokud se hodnoty s; a ss 1isi, tj. dokud nenalezneme hledanou
hodnotu sg. V8imnéte si, ze v kazdém kroku se rozdil s, — s; zmensi ales-
pon 0 1 (kdybychom pfi volbé s pouzili horni celou ¢ast misto dolni celé
¢asti, nebylo by toto tvrzeni pravdivé) a tento rozdil se zmensi zhruba
na polovinu. Tedy po O(log N) krocich nalezneme hledanou optimdlni
sitku skiiné sg. Vysky polic¢ek a rozmisténi knih 1ze nalézt podobné jako
v predchazejicim algoritmu zavedenim pomocného pole B, do kterého
si budeme ukladat pocet knih na posledni poli¢ce v optimalnim reSeni.
Celkové ¢asova slozitost pravé popsaného algoritmu je tedy O(N? log N)
a pamétova sloZitost je O(N).

Zbyvéa vyresit otazku, ktery ze dvou popsanych algoritmi je lepsi.
Odpovéd je, Ze ani jeden neni lepsi. Vzhledem k zadani Glohy, kde V' je
omezeno, je ¢asové slozitost prvniho algoritmu sice O(N?) a pamétova
pouze O(N), ale multiplikativni konstanta skrytd ve ,velkém O“ je li-
nearni s V; na druhou stranu pamétova slozitost druhého algoritmu je
pouze O(N), kde multiplikativni konstanta je nezavisla na vysce. Dle vyse
popsaného postupu dokonce druhy algoritmus pracuje s poli, kterd jsou
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250krat mensi. Stejné v Casové slozitosti ¢len log N bude mensi nez ¢len V
vyskytujici se v ¢asové slozitosti prvniho algoritmu. Prvni algoritmus je
tedy pro omezenou vysku V asymptoticky lepsi, ale ve skutecnosti bude
lepsi nez druhy popsany algoritmus az pro velmi velké hodnoty N. Lze
tedy Fici, Ze druhy algoritmus je pouzitelné&jsi.
program p_1_2;
{ ReSeni dlohy P-I-2 verze 1 }
const MAXN=100;
VYSKA_MISTNOSTI=250;
var vyska: array[1..MAXN] of word; { vy3ky knih }
n: word; { polet knih }
A: array[0..MAXN,1..VYSKA_MISTNOSTI] of integer;
{ pole minimalnich 3ifek skf¥in& }
B: array[0..MAXN,1..VYSKA_MISTNOSTI] of word;
{ potty knih na posledni polifce v optimadlnim FeSeni }
function max(a,b:longint):longint;
begin
if a<b then max:=b else max:=a
end;
procedure vypis(n: word; v: word);
var i,k:word;
begin
if n=0 then
begin
writeln(’Vyska skfin&: ’,VYSKA_MISTNOSTI-v+1,’ cm’);
exit;
end;
k:=0;
for i:=n-B[n,v]+1 to n do k:=max(k,vyskal[i]);
vypis(n-B[n,v],v-k-1);
writeln;
writeln(’Vyska poliZky: ’,k,’ cm’);
write(’Knihy na polilce:’);
for i:=n-B[n,v]+1 to n do write(’ ’,i,’(’,vyskalil,’ cm)’);
writeln;
end;
var i,j,k: word;
maxvyska: word;
begin
readln(n);
for i:=1 to n do read(vyskal[il);
for i:=1 to n do
if vyska[i]>VYSKA_MISTNOSTI-2 then
begin
writeln(’Pro zadané rozm&ry knih neexistuje knihovna!’);
halt;
end;
for j:=1 to VYSKA_MISTNOSTI do A[O0,j]:=0;
for i:=1 to n do
for j:=1 to VYSKA_MISTNOSTI do
begin
maxvyska:=vyskal[i];
Ali,jl:=-1;
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for k:=1 to i do
begin
maxvyska:=max (maxvyska,vyska[i-k+1]);
if maxvyska+2>j then break;
if A[i-k,j-maxvyska-1]=-1 then continue;
if (A[i,jl=-1) or (A[i,jl>max(A[i-k,j-maxvyska-1],k)) then

begin
Ali,j]:=max(A[i-k, j-maxvyska-1],k);
B[i,j]:=k;
end;
end;
end;
if A[n,VYSKA_MISTNOSTI]=-1 then
begin
writeln(’Pro zadané knihy nelze knihovnu navrhnout.’);
halt;
end;

writeln(’Optimalni 3ifka sk¥iné& je ’,A[n,VYSKA_MISTNOSTI],’ cm.’);
vypis(n,VYSKA_MISTNOSTI) ;
end.

program p_1_2;
{ Re3eni tlohy P-I-2 verze 2 }
const MAXN=1000;
VYSKA_MISTNOSTI=250;
var vyska: array[1..MAXN] of word; { vy3ky knih }
n: word; { poZet knih }
function lze_skrin(s: word; v: word; vypisovat: boolean):boolean;
var A: array[0..MAXN] of word; { pole s minimadlnimi vyskami knihoven }
B: array[1..MAXN] of word; { pole s po&ty knih na polikach }
maxvyska: word;
i, j: word;
begin
A[0]:=1;
for i:=1 to n do
begin
maxvyska:=vyskal[il;
A[i]:=A[i-1]+maxvyska+1;
B[i]:=1;
ji=i-1;
while (j>0) and (i-j<s) do
begin
if maxvyska<vyska[j] then maxvyska:=vyskal[j];
if A[i]>A[j-1]+maxvyska+l then

begin
A[i]:=A[j-1]+maxvyska+1;
B[i]:=i-j+1;
end;
dec(j);
end
end;

1ze_skrin:= A[n] <= v;

if not(vypisovat) then exit;

i:=n;

writeln(’Vy3ka skfiné: ’,A[n],’ cm.’);
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writeln(’Vy3ky polifek ve skfini a jejich napln&ni knihami °’,
’od spodu knihovny:’);
while i>0 do
begin
writeln;
writeln(’Vyska poliZky: ’,A[i]-A[i-B[i]]-1,’ cm’);
write(’Knihy v poli&ce:’);
for j:=i-B[i]+1 to i do
write(’ ?,j,”(’,vyskal[jl,’ cm)?);
writeln;
i:=i-B[i];
end
end;
var i:word;
sl,s2:word;
begin
readln(n);
for i:=1 to n do read(vyskal[il);
for i:=1 to n do
if vyska[i]>VYSKA_MISTNOSTI-2 then
begin
writeln(’Pro zadané rozméry knih neexistuje knihovna!’);
halt;
end;
sl:=1; s2:=n;
while s1<s2 do
if 1ze_skrin((s1+s2) div 2, VYSKA_MISTNOSTI, false) then
s2:=(s1+s2) div 2
else
sl:=(s1+s2) div 2+1;
writeln(’Optimalni $ifka sk¥in& je ’,sl,’ cm.’);
lze_skrin(s1,VYSKA_MISTNOSTI,true);
end.

P-1-3

Mame zadéan posledni sloupec setfidéné tabulky. Zakladni myslenka ce-
lého reSeni spocivd v tom, Ze timto je dan i prvni sloupec — staéi se-
tFidit pismena posledniho sloupce podle abecedy. Nyni vyuZijeme toho,
ze jednotlivé radky tabulky vznikly rotaci néjakého retézce; tedy je-li
na nékterém radku v prvnim sloupci pismeno z a v poslednim sloupci
pismeno y, znamena to, Ze v puvodnim Fetézci bylo pismeno z za pisme-
nem y (brano cyklicky — tedy za poslednim pismenem nésleduje prvni).
Vzhledem k tomu, Ze kazdé pismeno se v fetézci vyskytuje nejvyse jed-
nou, n fadku tabulky ndm jiz urcuje poradi pismen v puvodnim fetézci
az na rotaci. Navic mame zadino, na kterém radku se vyskytuje nami

hledané slovo; tim mame uréeno jeho prvni pismeno.
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Sestrojit na zakladé této myslenky algoritmus je jiz jednoduché. Pis-
mena zadaného Fetézce si setfidime podle abecedy (vzhledem k tomu, Ze
hodnoty jsou z omezeného rozsahu, nabizi se pfihradkové tfidéni) a vy-
robime si tabulku, v niz bude kazdému pismenu pfifazeno jemu odpovi-
dajici nasledujici pismeno. Pak za¢neme od pismene, o némz vime, Ze je
prvni, a postupujeme od néj po naslednicich, pfiéemz rovnou vypisujeme
vysledek, dokud se k tomuto pismeni nevratime.

Casova i pamétova slozitost algoritmu jsou zjevné linearni v délce
zadaného Tetézce.

program bw;

const MAX = 100;

type slovo = array[1..MAX] of char;

var prvni_sloupec, posledni_sloupec : slovo;
radek : integer;
delka : integer;
buckets : array[char] of boolean;
naslednik : array[char] of char;
s : string;
i, 1 : integer;

ch : char;
begin
readln (s); { na&teni zadani }

delka := length (s);

for i := 1 to delka do
posledni_sloupec[i] := s[il];

readln (radek);

for ch := #0 to #255 do { bucket sort }
buckets[ch] :=false;
for i := 1 to delka do
buckets[posledni_sloupec[i]]:=true;
1 :=0;
for ch := #0 to #255 do
if buckets[ch] then
begin
inc (1);
prvni_sloupec[l] := ch;
end;

for i:=1 to delka do { urZeni naslednikd }
naslednik[posledni_sloupec[i]] := prvni_sloupec[i];

ch := prvni_sloupec[radek]; { vypis }
for i := 1 to delka do
begin
write (ch);
ch := naslednik[ch];
end;
writeln;
end.
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P-1-4

Poli¢it na pozici prislusného prvku prohledavanim pole policko po policku
prinese pozadovanou proceduru, piesto ponékud pomalou. Pokracujme
proto, pratelé, v premysleni:

Sestrojime reverzibilni verzi binarniho vyhledavani, misto tradi¢niho
zéapisu pomoci cyklu while ovSem pouzijeme rekurzi. Zavedeme si pod-
proceduru Hledej(var 1,p:word), kterd bude vyhleddvat hodnotu co
v useku X, Xi41,...,X, a vysledek pricte k proménné kde. Zaridi to
tak, Ze si nejdfive spocte pozici prostfedniho prvku X,, zadaného tseku
(pokud mé tsek sudou délku, zaokrouhlime libovolnym smérem) a po-
dle jeho hodnoty zjisti, ve které poloviné iseku ma hledani pokracovat:
pokud X,, < co, pak od m + 1 do r, je-li X,,, > co, tak od [ do m — 1.
Na tento Usek pak zavolame tutéZ proceduru rekurzivné, ale nesmime
zapomenout, az se vrati, m jesté odpocitat. Nastane-li kdykoliv pii po-
rovnavani rovnost, pravé jsme hodnotu co nasli a po zvySeni kde o m se
z procedury vracime. Dospéjeme-li v rekurzi k tiseku nulové délky (r < 1),
vracime se s prazdnou, tedy aniz bychom kde jakkoliv ménili.

Podle tohoto algoritmu jiz snadno vytvofime program, pro odpocita-
vani v ném pouzijeme prikaz wrap:
procedure Najdi(var n:word; var X:array [1..n] of word; var co,kde:word);

var one:word;

procedure Hledej(var 1,r:word);

var m:word;
begin

if 1<=r then { tsek neni prazdny }
wrap m += (1l+r) div 2 { spotteme stfed }
on
if X[m]=co then { na3li jsme }
kde += m

else if X[m]<co then begin { postoupime do pravého tuseku }
wrap m += 1
on Hledej(m,r)

end
else begin . { do levého }
wrap m -= 1
on Hledej(1l,m)
end
end;
begin

wrap one += 1
on Hledej(one,n)
end;

Postoupime-li v rekurzi o troven hloubé&ji, zmensi se prohledavany
isek minimalné o polovinu, takZze po nejvyse [log, n] rekurzivnich vo-
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lanich budto hledanou hodnotu odhalime, nebo dosp&jeme k tiseku nu-
lové délky, kde rekurze rovnéz konéi. Casova slozitost tedy &ini O(logn)
a pamé&tova taktéz (pro kazdou aroven rekurze spotfebujeme konstantni
mnozstvi paméti).

P-1l-1

Resgeni tlohy ndm velmi usnadni nésledujici trik. Nebudeme urcovat po-
éet jednobarevnych trojihelniki, ale pocet dvoubarevnych trojihelniki.
Pozadovany vysledek pak snadno ziskame tak, Ze od poctu vSech troj-
thelniki s vrcholy v bodech obrazce (téch je N (N —1)(N —2)) odeéteme
pocet dvoubarevnych.

Pocet dvoubarevnych trojihelniki uréime nasledovné: UvaZujme né-
jaky bod v, z néhoz vede k, Cervenych hran a N — 1 — k,, hran Zlutych.
Celkem je tento bod souéasti (N — 1)(N — 2) trojuhelnikd (pocet zpt-
sobi, jak zvolit zbylé dva vrcholy trojthelniku) a z nich je k, (N —1—k,)
zaruCené dvoubarevnych — to jsou ty, u nichz jsme zvolili jeden vr-
chol pfipojeny éervenou a druhy zlutou ¢arou. Kdyz sefteme tyto poéty
zaru¢ené dvoubarevnych trojahelnikd pies vSechny vrcholy, dostaneme
dvojnasobek poétu dvoubarevnych trojihelnikt (kazdy z dvoubarevnych
trojthelnikd jsme totiz zapocitali pravé u dvou bodi).

Z vys$e uvedeného rozboru je algoritmus jiz zfejmy. Nejdiive si u kaz-
dého bodu spoditame Cervené ¢ary. Potom podle uvedeného postupu ur-
¢ime pocet vSech dvoubarevnych trojihelniki a nasledné jiz snadno do-
poditdme i pocet jednobarevnych trojihelnik. Algoritmus mé ¢asovou
slozitost O(M + N), kde M je pocet Cervenych ¢ar, a pamétovou slozitost
O(N).
program obraz;
const

MAXN = 100;
var

Cervene : Array[1..MAXN] of Integer; {Pofet Eervenyjch Zar z bodfi}
N : Integer; {Poket bodt}

{NaZteni vstupu do pole}
procedure Nacti;
var

i : Integer;

A, B : Integer; {Konce naZitané spojnice}
begin

Write(’Pocet bodu: ’);

ReadLn(N);

for i := 1 to N do

Cervene[i] := 0;
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while true do begin
Write(’Pocatek cervene cary: ’);
ReadLn(A);
if A = 0 then {Konec?}

break;

Write(’Konec cervene cary: ’);
ReadLn(B) ;
Inc(Cervene[A]);
Inc(Cervene([B]);

end;

end;

{Spotte jednobarevné trojihelniky}
function Spocti : Integer;
var
i : Integer;
Dvoj : Integer; {PoZet dvoubarevnjch trojihelnika}

begin
Dvoj := 0;
for i := 1 to N do
Dvoj := Dvoj + Cervene[i]*(N-1-Cervenel[i]);

Dvoj := Dvoj div 2;
Spocti := N*(N-1)*(N-2) div 6 - Dvoj;
end;

begin

Nacti;

WriteLn(’Pocet jednobarevnych trojuhelniku: ’, Spocti);
end.

P-1l-2

Nejprve u¢inme nasledujici pozorovani: Necht sq je Sifka optimélni skfiné
a necht m4 tato skiii p poli¢ek. Potom existuji vysky wi 2 ... 2 w, poli-
ek a rozmisténi knih do skiiné se $itkou so a polickami vysky wy, ..., w,
takové, Ze vysky knih v této skfini v poradi seshora dolt a v kazdé poli¢ce
zleva doprava tvori nerostouci posloupnost (prvni policka je ta nejvyse
umisténa).

Prvni ¢ast pozorovani, o existenci vySek w; 2 ... 2 wp, je jedno-
duchd — pokud vysky policek ve skiini seshora dol netvoii nerostouci
posloupnost, staéi politky (i s jejich obsahem) ve skiini preusporddat.
Nyni dokazeme, Ze existuje rozmisténi knih ve skfini takové, ze vysky
knih tvori nerostouci posloupnost. Bez Gjmy na obecnosti miZeme pied-
pokladat, ze v; 2 ... 2 vy. UvazZme rozmisténi knih do skiiné takové, ze
prvni policka obsahuje so nejvyssich knih, druhd sg nejvyssich knih mezi
zbylymi knihami atd. a v kazdé z poli¢ek vysky knih tvori nerostouci po-

vy s

sloupnost. Tvrdime, Ze vySka nejvyssi knihy v i-té policce je nejvyse w;,
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tj. V(i—1)so+1 < w;i. Pokud tomu tak neni, pak ((i—1)so+1)-t4 kniha musi
byt v optiméalnim feSeni na jedné z prvnich ¢ — 1 policek, ale pak néktera
z (i — 1)so nejvyssich knih (Feknéme ta s vyskou v, 1 £ k < (i — 1)so)
neni v optimalnim feSeni na jedné z prvnich ¢ — 1 policek — je tedy na
j-té poliCce, j 2 i. Potom ale w; < vk, a tedy w; < v(;_1)sy41, COZ je
pozadovana nerovnost.

Vsimnéme si, Ze jsme v predchozim odstavci vlastné dokazali, ze ve
vySe popsaném optimalnim feseni jsou vSechny policky aZ na tu posledni
plné, tj. obsahuji presné so knih. Zakladem naseho programu bude funkce
existuje(s:integer), kterd pro danou Sifku s rozhodne, zda existuje
knihovna maximalni vysky 250 cm a 8ifky s, do které lze umistit v8echny
knihy. Optimalni hodnotu sy nalezneme pak metodou puleni intervalu,
kterou lze nalézt v popisu feSeni tlohy P-I-2 doméciho kola. Samotné
funkce zvoli za vysku i-té policky vysku v(;_1)s,41, c0Z je vySka nejvyssi
knihy, kterou uloZime do i-té policky v feSeni popsaném v minulém od-
stavci. NaSe funkce z vySek jednotlivych policek snadno spocte vysku celé
knihovny a ovéri, zda je nejvyse 250 cm.

Nyni odhadnéme ¢asové a pamétové naroky vyse popsaného progra-
mu. Nejprve potiebujeme setfidit NV ¢isel, coz lze uéinit uzitim nékterého
ze standardnich algoritm@ v ¢ase O(N log N). Casova slozitost funkce
existuje je O(N/s), nebot je v ni potieba selist [N/s] &isel. Odtud jiz
plyne, Ze ¢asové naroky celého naSeho algoritmu jsou majorizovany funkeci
O(N log N). Pokud si uvédomime, ze s = N/2 pfi prvnim volani funkce
existuje, s = N/4 pfi druhém, atd., pak lze ¢asové naroky algoritmu
bez Gvodniho setfidéni vysek knih dokonce odhadnout funkci O(N). Pa-
métové naroky algoritmu lze odhadnout funkci O(N), nebot pot¥ebujeme
pole velikosti N na uloZeni vysek jednotlivych knih.
program knihovna;
const MAXN=100;

VYSKA_MISTNOSTI=250;
var vyska: array[1..MAXN] of word; { vysky knih }
n: word; { potet knih }

procedure utrid_vysky(il,i2:word); { quicksort }
var pivot: word;

w: word;
j1, j2: word;
begin

if i1>=i2 then exit;
pivot:=vyska[(i1+i2) div 2];
jl:=i1; j2:=i2;
while (j1<j2) do
begin
while (vyskal[j1]>pivot) do inc(j1);
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while (vyska[j2]<pivot) do dec(j2);
w:=vyska[j1]; vyska[j1]:=vyska[j2]; vyska[j2]:=w;
inc(j1); dec(j2);
end;
utrid_vysky(il,j2);
utrid_vysky(j1,i2);
end;
function existuje(s:word):boolean;
var v:word;
i:word;
begin
vi=1; i:=1;
repeat
vi=vi+vyska[il+1;
i:=i+s;
until i>n;
existuje:=v<=VYSKA_MISTNOSTI
end;
var i:word;
sl,s2:word;
v:word;
begin
readln(n);
for i:=1 to n do read(vyskal[il);
utrid_vysky(1,n);
if vyska[1]>VYSKA_MISTNOSTI-2 then
begin
writeln(’Pro zadané rozm&ry knih neexistuje knihovna!’);
halt;
end;
sl:=1; s2:=n;
while s1<s2 do
if existuje((si1+s2) div 2) then
s2:=(s1+s2) div 2
else
s1:=(s1+s2) div 2+1;
writeln(’Optimalni 3ifka sk¥in& je ’,s1,’ cm.’);
writeln(’Polet poliek ve sk¥ini: ’,(n+si-1) div s1);
i:=1; v:=1;
while (i<=n) do
begin
vi=v+vyskal[i]+1;
writeln(’Vyska poliZky: ’,vyska[i],’ cm’);
write(’Vy3ky knih na poli&ce:’);
repeat
if (id>n) then break;
write(’ ’,vyska[il,’ cm’);
inc(i);
until (i mod si1)=1;
writeln;
end;
writeln(’Vyska skfin&: ’,v,’ cm’);
end.
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P-11-3

Pouzijeme myslenku podobnou té z feSeni ulohy P-I-3 domaciho kola;
problém ovSem je, Ze kdyZ se ndm nyni mohou pismena opakovat, na-
slednici nemusi byt jednozna¢né urceni. Provedeme nésledujici ivahu:
Maéame dén posledni sloupec, jeho setfidénim dostaneme prvni sloupec.
Déale mame dénu pozici slova, které bylo zakédovéano, v setfidéné tabulce,
tedy zndme jeho prvni pismeno; necht je to . Toto pismeno se ndm muze
v prvnim sloupci vyskytovat vicekrat, na pozicich odpovidajicich slovim
V1, TV, ..., TV, kde zv; £ zvs £ ... £ zvg. Z toho oviem plyne
také viz < vor £ ... £ vz, a tedy je-li zv; zakdédované slovo, wz
j-té (v abecednim pofadi) slovo konéici na z, musi platit w = v;. Nyni
miizeme cely postup opakovat (pozice, na niZ je prvni pismeno zbytku
zakddovaného slova, je ta, na niz je v poslednim sloupci j-té pismeno z).
Algoritmus je jiz pouze piimocarym prepisem této myslenky. Imple-
mentace tohoto algoritmu je pomérné jednoduchd; misto komplikované
prace s dvojicemi (pismeno, pozice) je vyhodnéjsi si pismena v posled-
nim sloupci o&islovat (pismenu pfifadime jeho index v poslednim sloupci)
a po setiidéni (pfihrddkovym t¥idénim, abychom doséhli linedrni Casové
sloZitosti) pracovat pouze s témito indexy.
Casova i pamétova slozitost algoritmu jsou opét line4rni.
program transformace;
const MAX = 10000;
var prvni_sloupec : array[1i .. MAX] of integer;
posledni_sloupec : string;
radek, delka, i, 1 : integer;
buckets: array[char] of integer;
ch : char;
begin
{nacteni a ocislovani}
readln (posledni_sloupec);
readln (radek);
delka := length (posledni_sloupec);
for ch := #0 to #255 do buckets[ch] := 0;

for i := 1 to delka do
inc (buckets[posledni_sloupec[il]);

{setrideni}
1 :=1;
for ch := #0 to #255 do
begin
i=1;
inc (1, buckets([ch]);
buckets[ch] := i;
end;
for i := 1 to delka do
begin
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ch := posledni_sloupec[i];

1 := buckets[ch];

inc (buckets[ch]);

prvni_sloupec[1l] := i;
end;

{vypis}
for i:=1 to delka do
begin
write (posledni_sloupec[prvni_sloupec[radek]]);
radek := prvni_sloupec[radek];
end;
writeln;
end.

P-1l-4

Podobnost tlohy s poéitinim vzdélenosti vrcholt (tj. délky nejkratsi
cesty mezi nimi) v orientovaném grafu jisté neni ndhodnd, drzme se proto
i my grafové analogie: Jednotlivé budovy Oufadu jsou pro nés vrcholy,
potrubi mezi nimi orientovanymi hranami grafu a A neni ni¢im jinym nez
matici sousednosti grafu. Nabizi se pouzit prohledavani grafu do Sitky,
ovSem musime je nalezité upravit, aby bylo reverzibilni.

Vrcholy grafu si rozdélime do vrstev: i-t4 vrstva W; bude obsahovat
pravé ty vrcholy, jejichz vzdalenost od vrcholu z je rovna i. Vrstev je
proto nejvyse n a mizeme je snadno zkonstruovat indukei: do Wy padne
vrchol z a zadny dalsi; kdyZ méame sestrojeny vrstvy Wy az W;_q, tak
do W; patii pravé ty vrcholy w, do kterych vede hrana z néjakého vrcholu
v € W;_1 (tedy existuje cesta délky i z z do w) a w ¢ W pro j < ¢
(neexistuje zaddna kratsi cesta).

To je bezpochyby reverzibilni postup — pfi konstrukei vrstvy nijak
neménime vrstvy uz spocitané; nakonec najdeme ¢islo vrstvy, do které
padl vrchol y, to vydame jako vysledek a vSechny informace o vrstvach
opét odpo¢itdme. Tak dostaneme feSeni s Gasovou sloZitosti O(n?) a pro-
storovou slozitosti O(n?). Viimnéme si jesté dvou drobnosti:

1. Ackoliv vrstev muze byt az n a v kazdé z nich az n — 1 vrchold, lze
je ulozit efektivnéji, protoze ve vSech vrstvach dohromady je nejvyse

n vrcholu. Stadi je vSechny naskladat za sebe do jednoho pole (Fikejme

mu tfeba V') anechat druhé pole S ukazovat, kde v poli V' ktera vrstva

zatind. Vrcholy ve vrstvé W; tedy budou uloZeny v prvcich Vs, az

VSi+1—1'

2. Reverzibilita programu neni prili§ naklonéna znackovani vrchold.

Kdyz si totiz budeme v néjakém poli pro kazdy vrchol pamatovat,
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zda jsme v ném jiz byli, a pfipadné jej pak oznackujeme, feknéme
takto:

if UzJsemTamByl[i]=0 then begin
{ objevil jsem novy vrchol a n&kam si ho zapi3u }
UzJsemTamByl[i] += 1;
end;

dostaneme se do sporu s reverzibilitou podminek: po ukonceni pri-
kazu if nepozname, zda byla podminka splnéna ¢ nikoliv, protoze
UzJsemTamByl[i] bude vzdycky jednicka. To presné nas jazyk zaka-
zuje. Nastésti nas zachrani jednoduchy trik: pokud dokazeme zajistit,
abychom v rdmci jedné vrstvy na kazdy vrchol narazili nejvyse jed-
nou, sta¢i si u kazdého vrcholu zapamatovat (k tomu budeme pouzivat
pole L), ve které vrstvé byl objeven, a pokud dosud objeven nebyl,
tak né&jaké dostatetné velké ¢islo inf. Test se zmeéni na

if L[i] >= TatoVrstva then begin
{ objevil jsem novy vrchol a n&kam si ho zapisu }
L[i] -= inf - TatoVrstva;
end;

a to uz je korektni: platnost podminky v této vrstvé se totiz prena-
stavenim L[i] nezmeéni, ale v dalSich vrstvach jiz spravné pozname,
ze vrchol byl zpracovan.

Zde je program vyuzivajici oba popsané triky:

procedure Zkoumej(var n:word; var A:array [1..n] of array [1..n] of bit;
var x,y,d:word);

var inf,cnt:word;

var L,V,S:array [0..n] of word;

begin
wrap begin

inf += n+1; { "nekone&na vzdalenost" }
for var i = 1 to n do { L[i] = inf }

L[i] += inf;
V[0] += x; { nulta vrstva: vrchol x... }
L[x] -= inf; { ...ve vzdalenosti 0... }
S[1] += 1; { ...a zadny dalsi }
for var i = 1 to n-1 do begin { hledéme dal3i vrstvy }

S[i+1] += S[il; { zatim prazdna }

for var w = 1 to n do

if L[w] >= i then { nezafazeny vrchol }
wrap

for var j = S[i-1] to S[i]-1 do
{ vede do né&j hrana z vrstvy i-17 }
if A[V[jl][w]l=1 then
cnt += 1
on if cnt>0 then begin { ano => pfidat do i-té vrstvy }
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VIS[i+1]] += w;

S[i+1] += 1;
L[w] -= inf-i { L[w] >= i stale plati }
end
end
end
on d += L[y] { vratime vjsledek }

end;

Zbyva jesté dodat, Ze prostorova slozitost procedury je linearni a ¢a-
sova kvadratickéd (inicializace je linedrni, v§e mimo cyklu ¥izeného pro-
ménnou j kvadratické a vnitiek zbylého cyklu se provede pro kazdy vr-
chol j pravé n-krat, takze je dohromady také kvadraticky).

Pozndmka. Pokud bychom se vzdali polynomiélni ¢asové sloZitosti,
existovala by prostorové jesté efektivnéjsi feseni. Jedno z nich je zaloZeno
na nasledujici avaze: hledam-li cestu délky [ z = do y, pak je budto
l < 2 (tehdy je tloha trividlni), nebo cesta musi mit n&jaky stiedni
vrchol ve vzdalenosti |$1]. Vyzkousim proto postupné viechny vrcholy
a pro kazdy z nich si rekurzivnim zavoldnim téZe funkce pro obé poloviny
cesty a polovi¢ni ! ovéfim, zda existuje pfislusna polovina cesty. Hloubka
rekurze je maximalné [log,!] = O(logn), dosdhneme tedy prostorové
slozitosti O(logn) za cenu drastického zpomaleni na n®U°g™)

P-1ll-1

Pri reSeni Glohy si nejdfive uvédomime, Ze ze zadanych ¢isel hra¢ek mi-
zeme snadno odvodit, které dité chce hracku po kterém ditéti. Situaci si
predstavime jako orientovany graf, kde vrcholy odpovidaji détem a od
vrcholu ¢ vede hrana k vrcholu j, pokud dité ¢ chce hracku po ditéti j.
Protoze dité je ochotno vyménit hracku pouze tehdy, kdyz dostane tu
svou vytouzenou, mohou si déti vyménovat hracky pouze po cyklech —
aby se dité i; vzdalo své hracky, musi dostat hracku od is, to od i3 a tak
déle, az néjaké dité dostane hracku od i;. Chceme tedy nalézt v grafu
mnoZinu disjunktnich kruZnic (pro snaz$i vyjadfovani budeme nadale
povaZovat za kruZznici i vrchol se smyckou), které dohromady obsahuji co
nejvice vrchold. Hledani téchto kruznic je usnadnéno tim, Ze kazdé dvé
kruZnice v naSem grafu jsou disjunktni — kdyby né&jaké dv& kruznice mély
spole¢ny vrchol, musely by se v néjakém misté také od sebe oddé&lovat.
Z ptislusného vrcholu by tedy musely vést dvé hrany, coz ovSem v nasem
grafu neni mozné.

A nyni jak budeme kruznice hledat: Za¢neme v libovolném vrcholu
(t¥eba prvnim) a pujdeme po hranich (z kazdého vrcholu vede pravé
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jedna hrana, takze postup je jednoznacény), dokud se nevratime do né&ja-
kého vrcholu, ve kterém jsme uZ byli (to pozndme snadno, kdyZ si budeme
oznacovat navstivené vrcholy). Tim jsme v grafu nalezli néjakou kruznici,
tu miZeme vypsat a jeji vrcholy oznacit za vyfeSené. Vrcholy, které jsme
prosli predtim, nez jsme se dostali na kruznici, pro zménu zarucené na
Zadné kruznici nelezi (jinak by z néjakého vrcholu musely vést alespon dvé
hrany). Proto se témito vrcholy uz nikdy nemusime zabyvat a mtzZeme
je rovnéz oznacit jako vyreSené. Nyni vezmeme dalsi dosud nevyfeSeny
vrchol a opét se z néj vydame hledat kruznici. Pokud narazime na néjaky
jiz vyteSeny vrchol, hledani ukon¢ime a proslé vrcholy oznac¢ime jako vy-
feSené — nemohou totiz ziejmé leZet na zadné kruznici. Kdyz uz nezbude
zéddny nevyfeSeny vrchol, mame nalezeny vSechny kruZnice a vypocet
ukonéime. Jedinym nedofeSenym problémem zustava, jak rychle hledat
dosud nevyfteSené vrcholy. To mizeme snadno délat tak, Ze pfi hled4ni
dalsiho nevyreSeného vrcholu za¢neme hledat od naposledy nalezeného
vrcholu (pfed nim jisté Zddné nevyreSené jiz nejsou). Diky tomu s hled4-
nim vrcholt stravime dohromady ¢as O(N), a protoZe na nalezeni kruznic
potiebujeme dohromady téz O(N) (kazdou hranou projdeme nejvyse jed-
nou), je celkova Casova slozitost O(IN). Pamétova sloZitost je také O(N).
/* HraZkarstvi */

#include <stdio.h>

#define MAXD 100 /* Maximdlni polet d&ti */

int N; /* Polet d&ti */

int Ma[MAXD]; /* Cislo hra&ky, kterou pfislu3né dit& ma */
int Vlastni[MAXD]; /% Dité&, které vlastni pfislu3nou hratku */
int Chce[MAXD]; /* Dité&, jehoZ hrafku prislu3né dité& chce */

int Hotovo[MAXD]; /* UZ jsme dit& Fe3ili? */

/* Na&te vstup */
void nacti(void)
{

int i;

scanf ("%d", &N);
for (i = 0; i < N; i++) {
printf("Dite %d: ", i+1);
scanf ("%d %d", &Ma[i], &Chcel[il);
Ma[i]--; Chce[i]--;
Vlastni[Ma[i]] = i;
}
/* Pfevedeme odkazy na hratky na odkazy na d&ti */
for (i = 0; i < N; i++)
Chce[i] = Vlastni[Chce[i]];
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/* Projde dé&ti a zjisti nejv&t3i spokojenou skupinu */
void res(int act)
{

int start = act;

/* Projde d&ti a najde cyklus */

while ('Hotovol[act]) {
Hotovo[act] = 1;
act = Chcel[act];

}

/* VypiZe cyklus */

while (Hotovo[act] !'= 2) {
Hotovo[act] = 2;
printf (" %d", act+1);
act = Chcelact];

}

/* Je3t& oznafime zbylé pro3lé vrcholy */

act = start;

while (Hotovo[act] != 2) {
Hotovo[act] = 2;
act = Chcelact];

}

}

int main(void)
{
int i;
nacti();

printf ("Spokojene deti:");
for (i = 0; i < N; i++)

if ('Hotovo[i]) /* Zatim jsme dit& nefedili? */
res(i);
printf("\n");
return O;
}
P-1l-2

Zakladem naSeho FeSeni bude funkce existuje(s:integer), kterd pro
zadanou Sifku s rozhodne, zda existuje knihovna s P poli¢kami, do
které lze umistit v8ech N knih. Oznafme T soulet tlousték knih,
tj. T =t1 + ...+ tny. Potom minimdlni Sitka knihovny s P poli¢kami pro
dané knihy je alesponr T'/P. Na druhou stranu, uréité existuje knihovna
§itky T/P + tmax, kde tmax je maximdalni tloustka knihy: Knihy rozmis-
time na policky tak, ze kazdych prvnich k policek obsahuje nejmensi
mozny pocet knih takovy, aby soucet tlousték knih na téchto polickach
byl alespon kT'/ P. Snadno nahlédneme, ze §itka kazdé policky je nejvyse

A Y%

T/ P+ tmax, a tedy existuje knihovna takové §itky. Optimalni §itku sk¥iné
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pak nalezneme vyzkouSenim vSech hodnot mezi T/P a T/P + tmax jako
mozné §itky skiiné. Takovych hodnot je ale konstantné mnoho kvili ome-
zeni na tloustku knihy ze zadani alohy.

Samotnd funkce existuje bude fungovat néasledovné: Pro zadané s

i1
nalezne nejvétsi i; takové, ze > t; < s; je jasné, Ze i; je maximélni
=1
mozny pocet knih, které lze umistit do prvni policky. Poté nalezneme
2
nejvétsi ip takové, ze > t; < s, tedy nejvétdi mozny poclet knih iy,
i=i14+1
které lze umistit do prvnich dvou policek, atd. Pokud se ndm podafri
umistit vSechny knihy, tj. ip = N, pak existuje knihovna Sitky s, do
které lze v8echny knihy ulozit; v opa¢ném piipadé takova knihovna zjevné
neexistuje.

Zbyvéa domyslet, jak rychle hledat ¢&isla i, 1 £ k < P, ve funkci
existuje. Za timto Gcelem si nejprve vytvorime pomocné pole, ve kte-
rém budou uloZeny soucty tlousték prvnich j knih pro 1 £ j £ N. Pii
poéitani hodnoty i metodou ptleni intervalu vyhleddme v tomto po-

i’ ik—1

mocném poli nejvétsi &islo i’ takové, ze Y t; — > t; < s; ziejmé i’ je
hledan hodnota ix. I

Nyni odhadnéme ¢asovou a pamétovou sloZitost naseho algoritmu.
Funkce existuje provede P vyhleddvani v poli velikosti IV, tj. doba
jejiho b&hu je majorizovéna funkei O(P log N). Celkova doba béhu naseho
programu je tedy O(N + Plog N); ¢as O(N) spotfebujeme kromé naéteni
dat také na vytvoreni pomocného pole popsaného v minulém odstavci.
Pokud by platilo, ze Plog N > N, lze vyse popsanou funkci existuje
nahradit jednodus$i funkeci pracujici v ¢ase O(N), kterd misto P bindrnich
vyhledavéni projde pole sekvenéné. Casova slozitost naseho programu je
tedy majorizovdna funkci O(N). Pamétova slozitost je O(N) — pole
velikosti N je potfeba na ulozeni tlousték jednotlivych knih a stejna je
i velikost pomocného pole.
program knihovna;

const MAXN=1000;
var tloustka: array[1..MAXN] of word; { tloustky knih }

soucet: array[0..MAXN] of word; { sou&ty tlouZt&k knih }
n: word; { potet knih }
p: word; { potet polikek }

function vyhledej(s: word): word;
var i1,i2: word;
begin
i1:=0; i2:=n;
while i1<i2 do
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if soucet[(i1+i2+1) div 2]>s then
i2:=(i1+i2+1) div 2-1
else
i1:=(i1+i2+1) div 2;
vyhledej:=i1l
end;
function existuje(sirka: word):boolean;
var i,j: word;
begin
i:=0;
for j:=1 to p do i:=vyhledej(soucet[i]+sirka);
existuje:=i=n;
end;
var i: word;
sl, s2: word;
tmax: word;
begin
readln(n,p);
tmax:=0;
for i:=1 to n do
begin
read(tloustkali]);
if tmax<tloustka[i] then tmax:=tloustkal[i]
end;
soucet [0]:=0;
for i:=1 to n do soucet[i]:=soucet[i-1]+tloustkal[i];
sl:=soucet[n] div p;
s2:=soucet[n] div p+tmax;
while si1<s2 do
if existuje((s1+s2) div 2) then
s2:=(s1+s2) div 2
else
sl:=(s1+s2) div 2+1;
writeln(’Optimalni ¥ifka sk¥in&: ’,sl,’ mm’);
i:=1;
while i<=n do
begin
write(’Knihy na poli&ce:’);
s2:=0;
while (i<=n) and (s2+tloustkal[i]<=s1) do
begin
write(’ ’,i,’(’,tloustkali],’ mm)’);
s2:=s2+tloustkali];
inc(i);
end;
writeln;
end
end.

P-1l1-3

Prvni FeSeni. Inspirujeme se tradi¢nim algoritmem pro séitani ¢isel ,pod
sebou a uvédomime si, Ze neni zavisly na pouZité éiselné soustavé (zvéda-
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véjsi povahy obé&tuji 5 minut na dikaz indukei). Pokud bychom uméli spo-
Citat prenosy mezi fady, je samotné seCteni trividlni: A} = A;xor B;xor P;,
kde P; je prenos z (i — 1)-niho do i-tého fadu (zor funguje Gplné stejné
jako s¢itani dvou bitt modulo 2). Pokud jsme ochotni obétovat pamét
na vSechna P;, muzeme je spocCitat postupné: Py = 0; proi > 0 je P; = 1,
kdyz budto A;_; a B;_; jsou soutasné jednicky, nebo kdyz alespon jedno
z nich je jednicka a P;_; je jednicka. Z toho okamzité dostavame program
s linedrni Casovou i prostorovou slozitosti:
procedure Add(var n:word; var A,B:array [0..n-1] of bit);
var P:array [0..n] of bit;
begin
wrap
for var i = 0 to n-1 do
P[i+1] "= (A[i] and B[i]) or ((A[i] or B[i]) and P[il)
on
for var i = 0 to n-1 do

A[i] ~= B[i] xor P[il

end;

My se ovSem s linedrnim mnozstvim paméti nespokojime a zkusime
byt pfi vypoctu prenost Setrnéjsi. Cely problém je v tom, Ze na spocteni
P; pottebujeme P;_;, a to musi byt dostupné i v okamziku, kdy budeme
P; odpotitavat (pokusy o odpotitadvani P; pomoci P;y; selhdvaji na tom,
ze kdyZ uz jsme si jednoho ze s¢itanct prepsali vysledkem, nelze urcit, zda
jednicka z vysledku vznikla z jedni¢ky v pfepsaném séitanci nebo z nuly
a prenosu z niz§iho faddu). TakZe si musime P;_; celou dobu pamatovat
a prostorova slozitost prosté musi byt vzdy alespon linedrni a naSe prvni
feSeni je optimélni... a nebo preci jen ne? Neslo by na P;_; zapome-
nout, a az budeme chtit P; odpocitat, tak si P;_; spoéitat znovu? To by
fungovalo, ale musime to provést Sikovné, abychom rekurzivnim voldnim
vypoctd predchozich P; nespotfebovali vice paméti, nez jsme uSetfili.
Tak ziskdme

Druhé feSeni. Sestrojime si proceduru Prenos(i,l,in,out), kterd
pro né&jaky usek &isel A a B (konkrétné od i-tého faddu do (i + [ — 1)-niho)
za predpokladu, Ze prenos do naseho tseku z nizsich fada P; = in, spo-
Cita prenos P;4; do vyssich radia a prixoruje jej k proménné out. Pokud
je tsek jednoprvkovy, udéla to jiz dobfe zndmym zptisobem z naSeho
prvniho FeSeni (v konstantni paméti). Vétsi tsek si rozdéli na poloviny,
rekurzivné si spocita prenos mid z nizsi poloviny do vyssi, pak rekurzivné
spolitd prenos z vyssi poloviny ,ven“ a nakonec mid t¥etim rekurzivnim
zavolanim odpocité. To se dé jako obvykle snadno zapsat pomoci piikazu
wrap:
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procedure Prenos(var i,l:word; var in,out:bit);
var 11,12, j:word;
var mid:bit;
begin
if 1=1 then { jednobitovy pfenos }
out "= (A[i] and B[i]) or ((A[i] or B[i]) and in)
else wrap begin

11 += 1 div 2; { 11=délka dolni poloviny }
12 += 1-11; { 12=délka horni poloviny }
j += i+11; { j=zatatek horni poloviny }
Prenos(i,11,in,mid) { ptenos pfes dolni polovinu }
end

on Prenos(j,12,mid,out) { pfenos pfes horni polovinu }

end;

Jelikoz pri kazdém rekurzivnim volani klesne ! miniméalné na polo-
vinu, je hloubka rekurze nejvyse [log,!], takze procedura Prenos do-
sahuje prostorové slozitosti O(logl). Se slozitosti ¢asovou je to trochu
obtizné&jsi: Oznacime-li ¢as straveny touto procedurou 7'(l), bude pla-
tit T'(1) = 1 + 37'(1/2): procedura vykona né&jakou konstantni praci (je-
likoZz nés slozitost zajima jen asymptoticky, miZeme piedpokladat, ze
jednotkovou), nacez trikrat zavold sama sebe na vstup polovi¢ni délky.
Dosadime-li tento vztah do sebe sama, dostaneme T'(l) = 1 + 3(1 +
+ 3T(1/4)) = 1+ 3+ 9T(l/4) a kdyz budeme dosazovat dél, po k
krocich dojdeme k T'(I) = 1+ 3 + ... 4+ 3*¥~1 4+ 3¥T(1/2%). My ale vi-
me, ze T(1) = 1, takze pro k = log,! (naSe hloubka rekurze) vyjde
T() =143+ ...+ 3le2l=1 4 3log2! Tp je oviem geometricka fada se
soutem (3k+! —1) = O(3%) = O(3'°821), coz miizeme jedté zjednodusit:
3log2l — (210g2 3)10g2l — 210g2310g2l — (210g2l)10g23 — llog23 é l1,59. 7 toho
plyne, Ze &asova slozitost celé procedury je T'(I) = O(I*5%).

Ted bychom mohli rekurzivni vypocet prenosi zapojit do nasi pu-
vodni séitaci procedury (musime ovSem séitat pozadu, abychom si ne-
piepsali hodnoty, ze kterych budeme pienosy jesté potfebovat) a ziskat
tak s¢iténi s logaritmickou prostorovou slozitosti v &ase O(n - n!®%) =
= 0(n?%?), ale neud&lame to, protoZe si viimneme, ze kazdy z blokovych
prenost bychom zbyte¢né pocitali mnohokrat.

Misto toho zkonstruujeme podobnou rekurzivni proceduru, kterad
bude provadét soucasné scitani a pocitani prenosu. Nazveme ji Secti
a bude mit Gplné stejné parametry jako procedura Prenos. Nejdrive si
zavold proceduru Prenos pro vypocet prenosu z dolni poloviny bloku
(ten opét prixoruje k proménné mid), pak rekurzivnim zavolanim sebe
samé secte horni polovinu ¢isla a nakonec rekurzivné zavola sebe samu
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pro dolni polovinu ¢isla, ¢imz ji jednak seCte a jednak odpocita prenos
mid. Trividlni pfipad s¢itani jednobitovych ¢isel opét vyresime klasicky.
procedure Secti(var i,l:word; var in,out:bit);
var 11,12, j:word;
var mid:bit;
begin
if 1=1 then begin { jednobitové sZitani }
out "= (A[i] and B[i]) or ((A[i] or B[i]) and in);
A[i] ~= B[i] xor in
end
else wrap begin
11 += 1 div 2; { op&t poZitéame, kde jsou poloviny }
12 += 1-11;
j += i+l1
end
on begin
Prenos(i,1l1,in,mid); { pfenos pfes dolni polovinu }
Secti(j,12,mid,out); { setteme horni polovinu }
Secti(i,1l1,in,mid) { setteme dolni a odpo&teme pfenos }
end
end;

Casova i prostorova slozitost nasi s¢itaci procedury bude stejna jako
u procedury Prenos, protoze az na oSetfovani trividlnich pripadi, které je
konstantni, vypadaji obé procedury tiplné stejné. Scitame tedy v prostoru
O(logn) a &ase O(n'®°). Program vypad4 takto:

procedure Add(var n:word; var A,B:array [0..n-1] of bit);
{ Zde jsou vloZeny procedury Prenos a Secti }
var zero:word;
var in,out:bit;
begin

Secti(zero,n,in,out); { vime, Ze out vyjde nulovy }
end;

Yy s

Treti FeSeni. A neslo by to jesté 1épe? Zkusme vytFesit jednodussi pro-
blém: jak k danému ¢islu pficist jednicku, tedy nalézt maximéalni souvisly
tsek jednicek na nejnizsich fadech, tyto jedni¢ky zménit na nuly a bez-
prostfedné predchézejici nulu zménit na jedni¢ku. Jinak fefeno zménit
ty Cislice, za kterymi jiz nenésleduje zadna nula. To se ovSem da snadno
zafidit nasledujicim trikem: Nejdfive postupujeme od nejnizsiho fadu
k nejvyssimu a za kazdou nulu si do pocitadla pfi¢teme jednicku, a pak
projdeme pole jesté jednou v opa¢ném sméru, pocitadlo za kazdou nulu
o jednic¢ku snizujeme, a jakmile dospéje do nuly, zacneme vSechny bity,
pres které prejdeme, negovat:

procedure AddOne(var n:word; var A:array [0..n-1] of bit);
var i,c:word;
begin
for var i=0 to n-1 do
if A[i]=0 then c += 1;
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for var i=n-1 downto O do begin
if A[i]=0 then c -= 1;
if ¢=0 then A[i] "= 1;
end;

end;

Dokazeme to tedy v linearnim case a konstantnim prostoru. Jenze
kdyz umime pfi¢ist jednicku, dokazeme pricist i libovolnou mocninu
dvojky — staci zacit u jiného nez nejnizsiho fadu, a tim padem také libo-
volné jiné ¢islo, protoze ho mizZeme rozlozit na mocniny dvojky a kazdou
pricist zvl4st:

procedure Add(var n:word; var A,B:array [0..n-1] of bit);

var i,j,c:word;

begin

for var i=0 to n-1 do
if B[i]=1 then begin
for var j=i to n-1 do
if A[j]=0 then c += 1;
for var j=n-1 downto i do begin
if A[j]=0 then c¢ -= 1;
if ¢=0 then A[j] "= 1;
end;
end;
end;
Tak dosdhneme ¢asové slozitosti O(N?) pti prostorové slozitosti O(1).

v

Pozndmka na zdvér. ReSeni v konstantnim prostoru t&Zi z toho, ze
jsme v naSem vypocletnim modelu nadefinovali prostorovou sloZitost po-
nékud nedbale a nemérime ji v bitech, nybrz ve wordech. Kdybychom
pocitali opravdu precizné, nebyla by prostorova sloZitost tfetiho reseni
konstantni, nybrz logaritmicka, zatimco druhé feSeni by se dalo snadno
upravit tak, aby mélo stéle logaritmickou slozitost (sta¢i si uvédomit, ze
je lze naprogramovat nerekurzivné, ¢im? se zbavime zavislosti prostoru
na lokélni proménné). Ov8em ¢asové slozitosti zlistanou zachovény, takze
druhé feSeni bude pracovat v témze prostoru rychleji.

P-1lIl-4

Uloha, pfevedena do podoby v matematice b&zné&jsi, zni: Je dan konvexni
N-thelnik a M jeho neprotinajicich se tétiv délicich N-thelnik na dily.
Naleznéte maximéalni pocet dili, z nichz Zadné dva nemaji spole¢nou
stranu.

Uvazujme nésledujici graf G. Vrcholy grafu budou odpovidat jednot-
livym dilim N-thelniku, pficemz dva vrcholy budou spojeny hranou,
pokud jim odpovidajici dily maji spole¢nou stranu. Graf G zfejmé bude
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souvisly a navic nebude obsahovat zadny cyklus. Uvnitf cyklu by totiz
lezela alespon jedna sténa grafu G. Té musi odpovidat néjaky priseéik
v nakresleném N-thelniku. Tento prisecik vSak rozhodné nemiZe lezet
na okraji N-thelniku, a mame tak spor s tim, ze zZadné dvé tétivy se
neprotinaji.

Souvisly graf bez cykli je strom a naSe uloha se tim zjednodusuje
na nalezeni maximéalni nezavislé mnoziny vrcholt (tj. takové mnoZiny
vrchold, ze zadné dva vrcholy z této mnoziny nejsou spojeny hranou) ve
stromu. Maximalni nezavislou mnozinu mizeme uréit prohledavanim do
hloubky. Na pocatku si oznacime vSechny vrcholy jako prijatelné do ne-
zavislé mnoziny. Za¢neme v libovolném vrcholu prohledavat strom. Kdyz
se vracime z néjakého vrcholu, ktery je oznacen jako pfijatelny, pfidime
ho do nezavislé mnoziny a jeho otce odznacime. Kdyz takto projdeme
cely graf, mdme vybranou maximalni nezavislou mnozinu. Nezavislost
vybrané mnoziny je zfejméa. Pro¢ ale bude vybrana mnozina maximalni?
Oznacdme si vybranou nezavislou mnozinu A a déle si vezméme maximalni
nezévislou mnozinu B, ktera se od nasi vybrané mnoziny li§i v nejméné
vrcholech. Nyni se podivejme na takovy vrchol v, ve kterém se A a B lisi
a ktery je nejvzdélenéjsi od vrcholu, ve kterém zacalo prohledavani do
hloubky. Pfipad, kdy v je v B a ne v A, nastat nemuze, protoze kdyz jsme
néjaky vrchol v nevzali do A, tak pouze proto, ze byl sousedem néjakého
vrcholu v pod nim zarazeného do A. Protoze v je nejvzdalenéjsi vrchol,
ve kterém se A a B 1isi, musi byt u obsazen i v B, a tedy B také nemiize
obsahovat v. Muze tedy nastat pouze situace, Ze v je obsaZen v A a neni
obsazen v B. Pokud ale v priddme do B a z B vytradime otce v (pokud
v ni byl), bude B stle maximalni nezavisla mnozina a pfitom se bude lisit
v méné vrcholech, coz je spor s vybérem B. Vybrana nezavisla mnozina A
musi byt proto skute¢né maximalni.

Zkonstruovat vyse popsany graf a na ném pak provést prohledani do
hloubky je zbytecné pracné. My budeme graf prohleddvat bez jeho ex-
plicitni konstrukce. Nejdfive si tétivy zorientujeme tak, aby kazda tétiva
zacinala ve vrcholu s nizsim ¢islem a pfiddme pomocnou tétivu zaéinajici
v prvnim a konéici v poslednim vrcholu. Tétivy si pomoci pfihrddkového
tFidéni setfidime vzestupné podle jejich pocatku, tétivy zacéinajici ve stej-
ném vrcholu pak sestupné podle jejich konce. Nyni postupné prochazime
vrcholy N-thelniku v poradi od vrcholu s ¢éislem jedna po vrchol s &s-
lem N. Pri prochazeni si udrzujeme zasobnik s tétivami, od nichZ jsme
vidéli zacatek, ale ne konec. U kazdé tétivy na zdsobniku si navic pama-
tujeme, zda je prijatelnd. Vzdy, kdyz zacneme zpracovavat novy vrchol,
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nejdrive ze zasobniku odebereme tétivy, které v tomto vrcholu kondi. Po-
kud je odebirana tétiva oznacena jako pfijatelnd, zvétsime velikost neza-
vislé mnoziny a odznacime tétivu pod ni v zasobniku. Po odebrani vSech
koncicich tétiv pfiddme na zasobnik vSechny tétivy zacinajici v daném
vrcholu a oznacime je jako prijatelné. Pak pokracujeme do dalsiho vrcholu
N-thelniku. Vypocet skonc¢ime po prichodu vSemi vrcholy N-thelniku.

Uvedeny algoritmus piesné odpovida dfive popsanému prohleddvani
do hloubky. Kazda tétiva totiz jednozna¢né koresponduje s hranou v gra-
fu, ktera spojuje vrcholy odpovidajici dilim oddélenym tétivou. Ulozeni
pomocné tétivy (1, N) na zadsobnik odpovida vstupu do vrcholu, ze kte-
rého zacindme prohledavani. Ulozeni dalsi tétivy na zésobnik odpovida
pfechodu po odpovidajici hrané doli (smérem od vrcholu, ve kterém
zalalo prohledavéni), vybrani tétivy ze zasobniku, pak névratu zpét po
hrané. Pfi prohledavéani do hloubky jsme si oznacovali vrcholy, které 1ze
pfidat do nezavislé mnoziny. V upraveném algoritmu misto vrcholu zna-
¢ime tu hranu, po které jsme do vrcholu poprvé vstoupili. Algoritmus
mé ¢asovou i pamétovou slozitost O(N) (tétiv nikdy nemiZze byt vice
nez N — 3).

#include <stdio.h>
#include <stdlib.h>

#define MAXV 30000 /*
#define MAXR 30000 /x*

/* Struktura pro jeden
struct rez {
int a, b;

};

int rezu, vrcholu; /%
struct rez r[MAXR]; /*
int vpoc[MAXV]; /*

/* Natte vstup */
void nacti(void)
{
int pom, i;
FILE *vstup;

if (!(vstup = fopen("
exit(1);

fscanf (vstup,

for (i 0; i < rezu;

Maximdlni po&et vrchold
Maximalni polet Fezfl */

fez */

PoZet Fezfl a vrchold */
Jednotlivé fezy */
Polty Fezfl zafinajicich

poklad.in", "r")))

"%d %d", &vrcholu, &rezu);

i++) {

fscanf (vstup, "%d %d", &r[i].a, &r[i].b);

r(i].a--; r[i].b--;

if (rfil.a > r[il.b) {

pom = r[i].a;
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}

r[i].a = r[i].b;
r[i].b = pom;
}
}
fclose(vstup);

/* Pridame jest& fiktivni fez mezi prvnim a poslednim vrcholem */
r[rezu].a = 0;

r[rezu] .b = vrcholu-1;

rezut+;

/* Setf¥idi fezy podle potatku a konce */
void setrid(void)

{

}

struct rez ri[MAXR]; /* Jednotlivé preskladané fezy */

int vrchind [MAXV]; /* Index, kde zafinaji fezy z/do daného vrcholu */
int vrchpoc [MAXV]; /* Potty fezl@ z/do daného vrcholu */
int i;

/* Prvni prfichod t¥idéni */
for (i = 0; i < vrcholu; i++)
vrchpoc[i] = 0;
/* Spolteme polty fezfi do jednotlivych vrchold */
for (i = 0; i < rezu; i++)
vrchpoc[r[i].b]++;
vrchind[0] = 0;
for (i = 1; i < vrcholu; i++)
vrchind[i] = vrchind[i-1] + vrchpoc[i-1];
/* Pferovname fezy podle cilového vrcholu */
for (i = 0; i < rezu; i++)
ri[vrchind[r[i].b]++] = r[i];

/* Druhy prfichod t¥id&ni */
for (i = 0; i < vrcholu; i++)
vrchpoc[i] = 0;
for (i = 0; i < rezu; i++)
vrchpoc[ri[i].a]++;
vrchind[0] = 0;
for (i = 1; i < vrcholu; i++)
vrchind[i] = vrchind[i-1] + vrchpoc[i-1];
/* Pferovname fezy podle zdrojového vrcholu
(bereme je sestupn& podle cilového vrcholu) */
for (i = rezu-1; i >= 0; i--)
rlvrchind[r1[i].a]++] = ri1[i];

/* Spotte, kolik Zasti mapy mfize kapit&n rozdat */
int spocti(void)

{

int casti = 0; /* Polet &asti */
int zasvrch = 0; /* Vrchol zasobniku */
int zas[MAXR]; /* Zasobnik na zpracovavané rezy */

int zasuzit[MAXR]; /* Znacka, Ze pfislu3nd &ast mapy miZe byt rozdana */
int actvrch = 0, actrez = 0; /* Aktualni vrchol a ¥ez mnohoihelniku */
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while (actvrch < vrcholu) {
while (zasvrch && r[zas([zasvrch-1]].b == actvrch) {
if (zasuzit[zasvrch-1]) {
/* Cast odd&lena timto fezem miiZe bjt pouZita? */
casti++;
if (zasvrch > 1)
zasuzit[zasvrch-2] = 0;
}
zasvrch--;
}
while (actrez < rezu && r[actrez].a == actvrch) {
zas[zasvrch] = actrez++;
zasuzit[zasvrch++] = 1;
}
actvrch++;
}
return casti;

}

int main(void)
{
FILE *vystup;

nacti();
setrid();

if (!(vystup = fopen("poklad.out", "w")))
exit(1);

fprintf (vystup, "%d\n", spocti());

fclose(vystup) ;

return O;

P-1IlIl1-5

Pouzijeme upraveny tridici algoritmus mergesort. V programu si budeme
vytvéret jednosmérné spojové seznamy, jez budou mit svym jednotlivym
prvkim pfifazeny mince. Vahy minci budou od pocatku ke konci seznamu
tvorit rostouci posloupnost. Mince stejné hmotnosti budou pfirazeny té-
muz prvku seznamu. Tento seznam budeme realizovat tak, ze kazdy jeho
prvek bude obsahovat ukazatel na nasledujici prvek seznamu a na strom,
ktery obsahuje mince (téZe hmotnosti) pfifazené tomuto prvku. Samotny
strom bude binarni strom, ve kterém mé kazdy prvek zadného nebo dva
syny. Cisla minci ve stromu budou uchovavana v jeho listech a kazdy uzel
tohoto stromu bude obsahovat ¢islo nékteré mince ze svého podstromu
(v nasi implementaci to bude nejmensi éislo mince ve stromu).
Zakladem bude rekurzivni procedura vytvor(prvni,posledni),
kterd vytvori jednosmérny spojovy seznam popsany v prvnim odstav-
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ci. Tento seznam bude obsahovat vSechny mince s Cisly od prvni do
posledni. Pokud jsou ¢isla prvni a posledni shodnd, procedura vy-
tvori jednoprvkovy seznam. Jeho jediny prvek bude ukazovat na strom
tvofeny jednim uzlem, ktery bude obsahovat ¢islo prvni = posledni.
Pokud jsou ¢isla prvni a posledni riznd, procedura nejdiive rozdéli in-
terval tvoreny Cisly od prvni do posledni na dva intervaly polovi¢nich
délek a na kazdy z nich se rekurzivné zavold. Takto ziskdme dva linearni
spojové seznamy s vlastnostmi popsanymi v prvnim odstavci. Z nich nase
procedura vytvori jeden.

Vysledny seznam budeme vytvaret od zacatku, a to nasledujicim zpi-
sobem: Na nékterou z minci ve stromu hlavy (tj. prvniho prvku) prvniho
ze seznamu a na nékterou z minci ve stromu hlavy druhého seznamu
zavolame funkci porovnej. Pokud je mince hlavy prvniho seznamu leh¢i,
odpojime hlavu od prvniho seznamu a pripojime ji na konec vysledného
seznamu; poté pokracujeme porovnanim hlav nové vzniklé dvojice se-
znamu. Pokud je naopak mince hlavy druhého seznamu leh¢i, pfipojime
na konec vysledného seznamu hlavu druhého seznamu a pokracujeme
s druhym seznamem bez jeho pivodni hlavy. Zbyva ptripad, kdy mince
obou hlav maji stejnou hmotnost. V tomto pripadé pripojime na konec
vysledného seznamu prvek, ktery ukazuje na strom, jehoz levy podstrom
je strom hlavy prvniho seznamu a pravy podstrom je strom hlavy dru-
hého seznamu; od obou seznami nésledné odpojime jejich hlavy. Takto
pokracujeme, dokud jeden nebo oba z nasich dvou seznamt nejsou prazd-
né. Pokud je jeden z nich neprazdny, nezapomeneme ho pripojit na konec
vysledného seznamu.

Vytvorit cely program je nyni jiz snadné: Nejprve ze souboru vahy.in
nacteme pocet minci N. Poté zavolame proceduru porovnej s parametry
prvni = 1 a posledni = N. Nakonec vypiSeme ¢isla v listech stromt
(zleva doprava) ve vysledném seznamu; kazdy strom vypiSeme na samo-
statny radek souboru vahy.out, a to v poradi, v jakém stromy odpovidaji
prvkim seznamu. Cisla na kazdém fadku jsou setiidéna (z konstrukce
stromt pat¥icim prvkim seznamu) a hmotnosti minci v poradi dle fadku
jsou rostouci (dle vlastnosti vytvareného seznamu). Zbyva si rozmyslet,
Ze nas algoritmus neprovadi zbytecné volani funkce porovnej, a uréit
jeho ¢asovou slozitost.

Nejprve dokdzeme indukci dle délky intervalu uréeného parametry
pii volani procedury vytvor, Ze nas$ program neprovadi zbyte¢né volani
funkce porovnej. Procedura vytvor volé funkci porovnej pouze na dvo-
jice prvki z intervalu specifikovaného parametry procedury vytvor. Po-
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kud je tento interval jednoprvkovy, dokazované tvrzeni plati z trividlnich
divodi. V opacném piipadé se nejprve vytvori dva seznamy rekurziv-
nim voldnim procedury vytvor a ty se nasledné slouc¢i. Pti slucovani
dvou seznamu je funkce porovnej volana pouze na dvojice minci z riz-
nych seznamu (tedy vysledek takového volani neni urcen vysledky volani
funkce porovnej pfi rekurzi). Vzhledem k tomu, Ze porovnavame z kaz-
dého seznamu minci s nejmensi vahou (a mince s mensimi vahami jsme
zaradili jiz do vysledného seznamu), nemuze byt vztah hmotnosti minci
z dotazované dvojice urcen predchozimi dotazy. MizZeme tedy uzavrit, ze
zadné volani funkce porovnej neni zbytecné.

Hloubka rekurzivniho voldni procedury vytvor je O(log N) (N je
pocet minci), nebot pii kazdém volani se délka intervalu specifikovaného
parametry funkce zmensi na polovinu. Na slouéeni dvou seznamt je tieba
Cas umérny délce vysledného seznamu. Protoze na kazdé drovni volani
se libovolna mince vyskytuje pravé v jednom seznamu, je Cas straveny
algoritmem béhem procedur vytvor na jedné Grovni rekurze linearni,
tj. O(IN). Celkova ¢asova slozitost je tedy O(N log N). Libovolna mince
se vyskytuje pfi béhu programu vzdy pravé v jednom seznamu, a tedy
pamétovéa slozitost programu je O(N).

#include <stdio.h>

#include <stdlib.h>
#include "vahy_lib.h"

struct tuzel {
int prvek;
struct tuzel *levy, *pravy;
};
struct tseznam {
struct tuzel *strom;
struct tseznam *dalsi;
};
struct tseznam *vytvor(int prvni, int posledni) {
struct tseznam *vysledek, *seznaml, *seznam2, **ocas, *pomocna;
if (prvni==posledni) {
vysledek=malloc(sizeof (struct tseznam));
vysledek->dalsi=NULL;
vysledek->strom=malloc(sizeof (struct tuzel));
vysledek->strom->prvek=prvni;
vysledek->strom->levy=vysledek->strom->pravy=NULL;
return vysledek;
}
seznaml=vytvor (prvni, (prvni+posledni)/2);
seznam2=vytvor ((prvni+posledni)/2+1,posledni);
ocas=&vysledek;
while (seznaml&&seznam2) {
switch (porovnej(seznaml->strom->prvek,seznam2->strom->prvek)) {
case 0:
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(*ocas)=malloc(sizeof (struct tseznam));
(*ocas)->strom=malloc(sizeof (struct tuzel));
(*ocas)->strom->prvek=seznaml->strom->prvek;
(*ocas)->strom->levy=seznaml->strom;
(*ocas)->strom->pravy=seznam2->strom;
pomocna=seznaml; seznaml=seznaml->dalsi; free(pomocna);
pomocna=seznam2; seznam2=seznam2->dalsi; free(pomocna);
break;
case 1:
*ocas=seznaml; seznaml=seznaml->dalsi;
break;
case -1:
*ocas=seznam?; seznam2=seznam2->dalsi;
break;
}
ocas=&((*ocas)->dalsi);
}
*ocas=seznaml?seznaml : (seznam2?seznam2:NULL) ;
return vysledek;

void vypis_strom(FILE *soubor, struct tuzel *uzel) {
if (uzel->levy) {
vypis_strom(soubor,uzel->levy);
vypis_strom(soubor,uzel->pravy);
}
else
fprintf (soubor,"%d ",uzel->prvek);

void vypis_seznam(FILE *soubor, struct tseznam *seznam) {
while (seznam) {
vypis_strom(soubor, seznam->strom);
fprintf (soubor,"\n");
seznam=seznam->dalsi;
}
}

int main(void) {
FILE *soubor;
int N;
struct tseznam *seznam;
soubor=fopen("vahy.in","r");
fscanf (soubor,"%d",&N);
fclose(soubor) ;
seznam=vytvor(1,N);
soubor=fopen("vahy.out","w");
vypis_seznam(soubor,seznam) ;
fclose(soubor) ;
return 0;

}
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Pripravna soustredéni pred 44. MMO

V pribéhu 52. ro¢niku se konalo vybérové soustfedéni pro pfipravu na
mezinarodni matematickou olympiddu bezprostfedné po skonéeném ce-
lostatnim kole kategorie A, a to od 7. do 11. dubna 2003 v Kostelci nad
Cernymi lesy nedaleko Prahy. Na soustfedéni bylo pozvano 10 nejlep-
§ich resitela III. kola kategorie A s vyjimkou téch, kteri se rozhodli dat
prednost Gc¢asti na Mezindrodni fyzikalni olympiadé. Soustfedéni bylo za-
méfeno na pripravu reprezentanti a ke koneéné nominaci Sesti¢lenného
druzstva.
Uspésnost jednotlivych studentt ukazuje nasledujici tabulka:

Jan Molacek 3/4, GJKT Hradec Kralové 7
Pavel Cizek 8/8, G Kralupy nad Vltavou 74
Vitézslav Kala 3/4, G Brno, tf. Kpt. JaroSe 70
Marek Kréal 4/4, G Brno, t¥. Kpt. Jarose 69
Pavel Kocourek 2/4, SPSST, Praha 1, Panska 66,5
Jaromir Kuben 1/4, G Brno, tf. Kpt. Jarose 65,5
Frantisek Konopecky 6/8, G Holesov 61
Martin Kéaldy 4/4, GChD, Praha 5 56
Tomas Gavenciak 3/4, GMK, Bilovec 53
Marek Pechal 5/8, G Zlin, Lesni &tvrt 53

Na zékladé uvedenych vysledkd, v nichz jsou zapocitany i vysledky
oblastniho a celostatniho kola, bylo prvnich Sest vybrano do reprezen-
ta¢niho druzstva a sedmy byl uréen jako ndhradnik. Toto druZstvo néas
reprezentovalo i na jiZ tradiénim stfetnuti s druzstvy Slovenska a Polska.

Jednotlivé seminare vedli a ulohy pfipravili:
dr. Karel Hordk (7.4.),

dr. Jaroslav Zhouf (8.4.),

dr. Martin Pandk (9.4.),

dr. Jaroslav Svréek (10.4.)

a doc. Jaromir Sim$a (11.4.).
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Ulohy zadané na piipravném soust¥edéni

1. Je dan tétivovy &tyftahelnik ABCD. Oznaéme K prisedik pfimky BC
s tenou ve vrcholu A a L prisecik piimky AD s te¢nou ve vrcholu B
ke kruznici opsané danému ¢étyfahelniku. Jestlize |AL| = |AD| a |BK| =
= |BC|, je ABCD lichobé&znik. Dokazte.

2. Necht mnohoéleny P, @, R s redlnymi koeficienty, mezi nimiz je mno-
hoclen druhého a mnohoclen tfetiho stupné, spliuji rovnost

P’ +Q* =R
DokaZte, Zze pak jeden z mnohoclent tretiho stupné méa vesmés realné
koreny.

3. V roviné je dan koneény pocet modrych a ¢ervenych pfimek, pricemz
z4dné dvé nejsou rovnobéziné a kazdym prasefikem dvou primek téze
barvy prochazi i pfimka druhé barvy. Dokazte, Ze vSechny pfimky pro-
chézeji jednim bodem.

4. Necht n 2 2 je pfirozené ¢islo a pro kladné realné &isla z1, o, ..., 2,
plati rovnost
L, o
1+x; 14z 7 14z,

Dokazte, ze
T1T2...Tp 2 (n—1)".

5. Necht v trojuhelniku ABC je V prusecik vysek a S stfed kruZznice
opsané a necht pfimky AV a AS protinaji kruZnici opsanou postupné
v bodech M a N. Ozna¢me postupné P, @ a R prisediky pfimek BC
aVN, BCaSM,VQ a SP. Dokazte, ze ASRV je rovnobé&znik.

6. Je ddna mnozina M = {1,2,3,...,2002,2003}. Dokazte, Ze existuje
14 podmnozin mnoziny M takovych, Ze pro kazdé n € M mezi nimi
existuje pravé sedm mnozin takovych, Ze n je jejich spoleénym prvkem.

7. Na kruhu je dano 4n bodu stiidavé obarvenych modfe a Cervené.
Modré body jsou libovolné rozdéleny do n part a body v kazdém péru
jsou spojeny modrou tétivou. Podobné ¢ervené body jsou libovolné roz-
déleny do n part a body v kazdém péaru jsou spojeny ervenou tétivou.
Body lezi na kruhu tak, Ze zadné tfi tétivy neprochézeji jednim bodem.
Dokazte, Ze existuje aspon n bodd, v nichz néktera modra tétiva protina
nékterou Cervenou tétivu.
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8. Dokazte, ze {nv3} > n_l'\/g pro libovolné pfirozené n. (Symbol {n}
znadi tzv. zlomkovou €ast ¢isla n.)

9. Necht n je pfirozené ¢islo a f(z) = amz™+. ..+ a1z +ag je mnohoclen
s celoCiselnymi koeficienty takovy, zZe:

(i) kazdé z &isel aq,as, ..., an je délitelné viemi prvocisly délicimi n,
(ii) a1 a n jsou nesoudélna.
Dokazte, Ze pro libovolné prirozené k existuje prirozené c tak, ze f(c) je

délitelné &islem nk.

10. Necht z;, xo, ...je nekoneéna ndhodné posloupnost nul a jednicek.
Co je pravdépodobnéjsi:

(i) posloupnost 110 se v ni vyskytne pied posloupnosti 010,

(ii) posloupnost 010 se v ni vyskytne pied posloupnosti 1107

11. Necht pro kladnd ¢isla z, y, z plati zyz(x+y+2z) = 1. Uréete nejmensi
hodnotu vyrazu V = (z + y)(y + 2).

12. Necht M je stfed strany AB daného trojuhelniku ABC. Sestrojte
rovnobézku p se stranou AB tak, aby jeji prusetiky E a F po fadé se
stranami BC' a AC tvofily vrcholy pravothlého trojahelniku EF M s pie-
ponou EF.

13. Necht T je tézisté a M libovolny bod trojihelniku ABC. Oznaéme
Ay, By, Cy priseciky pfimky MT po tadé s pfimkami BC, CA, AB.
Dokazte, Ze plati nerovnost

[MAy| - |MBy|-|MCy| £ |TA:|-|TBy|-|TCl.

14. Necht ABCD je tétivovy Ctyithelnik se stfedem S kruZnice jemu
opsané a P prusecik jeho whlopficek. Kruznice opsané trojuhelnikiim
ABP a CDP se protinaji v bodé Q (Q # P). JestliZe jsou body S, Q, P
navzajem ruzné, pak primky SQ a PQ jsou navzijem kolmé. DokaZte.

15. Uréete pocet téch Etvetic (a, b, ¢, d) pFirozenych Cisel, pro které plati
1fa<b<c<d£30 a at+d=b+c

Vysledek uvedte jednim ¢&islem zapsanym v desitkové soustavé.

16. Ozna¢me ¢(T') ten z poméri délek dvou stran daného trojthelniku T,
ktery je nejblize ¢islu 1. Urcete nejmensi kladné ¢islo C' takové, ze pro
kazdy trojahelnik T plati nerovnost |1 — ¢(T)| £ C.
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17. Vnitinim bodem daného trojihelniku ABC vedeme rovnobézky
s jeho stranami. Tyto pfimky vytnou na trojihelniku ABC tii tGsecky
téze délky. Vyjadrete ji pomoci délek a, b, ¢ stran trojiuhelniku ABC.
Vysledek zapiste ve tvaru podilu dvou mnohoclent proménnych a, b, c.

18. V roviné je dana konecnd mnozina bodd M a osm kruznic ki,
ka, ..., ks tak, ze kruznice k; prochézi pravé j body mnoziny M pro kazdé
j €{1,2,...,8}. Urdete nejmensi mozny pocet prvki (bodl) mnoziny M.

19. Necht z, y, z jsou navzajem ruzné celd ¢isla splhujici rovnici
z-y)@y—-2)z—2)=z+y+2.

Najdéte nejmensi moZznou hodnotu |z + y + z|.

20. Pro kazdé n = 4 urlete nejvétsi ¢islo C,,, pfi kterém nerovnost

a a a
= g
an, + a2 a) +as Ap—1 + a1
plati pro libovolna kladné ¢isla aq,asz, ..., an.
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Mezindrodni stfetnuti cesko-polsko-slovenské

ZILINA, 16.—~17. CERVNA 2003
V réamci zavére¢né pripravy pfed MMO se uskuteé¢nilo jiz tfeti mezina-
rodni stietnuti mezi tymy Ceské republiky, Polska a Slovenska. Jednotlivé
zemé reprezentovala Sestice GCastnikd, ktefi si vybojovali ve svych zemich
postup na 44. MMO v Tokiu.

Soutéz se uskutecnila v terminu 17.-18.6. 2003 ve slovenské Ziliné.
VSechna tii reprezentacni druzstva pricestovala na misto konani jiz v ne-
déli vecer 15. 6. 2003. Organizace a pribéh soutéze zistal zachovan z pie-
deslych ro¢nikit — je pfizpusoben stylu III. kola nasi MO a podminkam
na MMO. Soutézicim byly ve dvou dnech predloZeny dvé trojice soutéz-
nich tloh, pritom za kazdou z loh mohli ziskat nejvyse 7 bod, tj. celkové
(stejné jako na MMO) 42 body. Na kazdou trojici iloh méli soutéZici vy-
hrazeno 4,5 hodiny.

Poradi | Jméno Zemé| body |Soucet
1.-3. | Péter Koltai SVK | 777777 42
Marcin Pilipczuk POL (777777 42
Aleksander Zabtocki |POL (777777 42
4. Pawet Januszewski POL |727777 37
5. Jan Molacek CZE |726772 31
6.-9. | Hana Budacova SVK (771771 30
Toméas Vana SVK (770772 30
Vitézslav Kala CZE |777072 30
Pavel Kocourek CZE [770772 30
10.-11. | Michal Burger SVK |720776 | 29
Kamil Duszenko POL (727760 29
12. Marek Kréal CZE (725770 28
13. Witold Rebacz POL [770750 26
14. Jakub Zavodny SVK [721771 25
15.-16. | Jaromir Kuben CZE (727070 23
Michatl Lason POL |727070 23
17. | Pavel Cizek CZE |726070 | 22
18. Frantisek Simancik SVK (700770 21
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Ulohy pro letosni soutéZ vybrali slovensti organizatofi — vétsinou
z uloh, jez prosly spolecnou cesko-slovenskou tlohovou komisi. Jejich
koordinaci provadéla mezinarodni jury, kterou tvorili Rafal Lochowski
a Paulina Domagalska z Polska, prof. dr. Jozef Moravcik a doc. Oli-
ver Ralik ze Slovenska a dr. Karel Hordk a dr. Jaroslav Surcek za Ces-
kou republiku. Na zdarném pribéhu celé soutéze, kterd probéhla vesmeés
na ptudé Vysoké skoly dopravni v Ziling, m4 nepiehlédnutelnou zasluhu
doc. Vojtech Bdlint, vedouci prislusné katedry matematiky.

Texty soutéZnich tiloh

1. Necht n 2 2 je pfirozené ¢&islo. V oboru redlnych isel feste soustavu
rovnic

max{1l,z1} = x2,

max{2,z2} = x3,

max{n —1,z,—1} = (n — 1)z,

max{n, z,} = ne;.

2. Je dan ostrotuhly trojuhelnik ABC, v némz velikost vnitfniho thlu
pfi vrcholu B je vétsi nez 45°. Necht D, E, F jsou po fadé paty vysek
z vrcholi A, B, C anecht K je takovy bod tsecky AF', Ze plati | x DK F| =
= |xK EF|. Dokazte, Ze

a) takovy bod K vidy existuje;

b) plati rovnost |[KD|?> = |FD|* + |AF| - |BF)|.

3. Jestlize pro realnd ¢isla p, ¢, r z intervalu (%, %) plati pgr = 1, pak

existuji dva trojihelniky o stejném obsahu, z nichz jeden ma strany a,
b, ¢ a druhy ma strany pa, gb, rc. Dokazte.

4. Je dan trojuhelnik ABC a jeho vnitfni bod P, ktery lezi na téZnici
z vrcholu C. Oznacme X prusecik piimky AP s pfimkou BC a Y pruseéik
piimky BP s primkou AC. Je-li ¢tyfuhelnik ABXY tétivovy, potom je
trojuhelnik ABC rovnoramenny. Dokazte.

5. Urlete v8echna prirozend ¢isla n 2 2, pro néz jsou vSechny binomické

koeficienty
n n n
1)7\2)" 77 \n—-1

suda cisla.
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6. Urcete vSechny funkce f: R — R, které pro v8echna z,y € R spliuji
rovnici

F(Ff@) +y) =22+ f(f(v) — 2).

Reseni tloh

1. UkéZeme nejprve, ze pro kazdé i € {1,2,...,n} plati z; < 7. Dikaz
provedeme sporem. Pfedpokladdejme, ze z; > i pro né&jaké i.

Je-li z; > 1, plyne z posledni rovnice dané soustavy nerovnost
max{n,z,} = nz; > n, takie z, > n. Jestlize dale pro n&jaké i > 1
jex; > i, pakmax{i—1,z;-1} = (i—1)x; > (i—1)i > i—1. Je tedy také
z;—1 > ¢ — 1. Odtud plyne, Ze pokud nerovnost z; > i plati pro nékteré
i € {1,2,...,n}, pak plati uz pro kazdé i € {1,2,...,n}. V takovém
pripadé ma vSak dana soustava tvar

Ty =g, T2 =2x3, ..., Tpn-1 = (n—1)x,, T,=nz.

Vynasobenim téchto rovnic dostaneme z12s ...z, = n!'z125...2,, cOZ
neplati pro zadné pfirozené n 2 2. Viechna z; jsou totiz kladn4 ¢&isla. To
je spor.

Pro v8echna i € {1,2,...,n} je tudiz z; < i. Proto

1= Ina,X{’L,.’L‘,,} — ’ifl?,;_,.l, kde klademe Tnt+1 = 1.
Odtud jiz snadno ziskdme jediné redlné feSeni dané soustavy:
Ty =Ty =...=xT, =1.

2. a) Oznalme velikosti vnit¥nich Ghli daného trojihelniku ABC ob-
vyklym zptisobem a uvazujme Thaletovu kruznici sestrojenou nad pri-
mérem BC. Vzhledem k tomu, Ze trojahelnik ABC je ostrouhly, lezi
paty vySek E, F' v poloroviné BCA. Z vlastnosti tétivového ¢tyithelniku
BCEF plyne (obr.36), ze je | XAFE| = v a |XAEF| = [. Podobné
z tétivového ¢tyfthelniku AFDC plyne, Ze |xDFB| = v. Je-li K = A,
je |[xDKF|=|xDAF|=90° - B a |xKEF|=|xAEF|=p.

Jestlize se bod K bude spojité pohybovat po tsecce AF od bodu
A k bodu F, poroste velikost thlu DK F' spojité od hodnoty 90° — 3
k hodnoté v (v ostrotihlém trojahelniku je 90° — B < +) a soulasné
bude velikost thlu K EF' spojité klesat, a to od velikosti 3 > 90° —
— B k hodnoté 0°. Existuje proto na tsecce AF bod K, pro ktery plati
|xDKF|=|<KEF)|.
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Obr. 36

b) Necht D’ je obraz bodu D v osové soumérnosti podle pfimky AB.
Protoze |XAFE| = |xDFB| = v, lezi body E, F a D’ na jedné pfimce.

Piimka K D' je podle véty o tisekovém tihlu te¢nou kruznice k opsané
trojahelniku K FE, nebot |xD'KF| = |xDKF| = |<xKEF|. Pro moc-
nost bodu D’ ke kruznici k plati

|KD'|* = |D'F|-|D'E| = |D'F|(|D'F| + |FE|) =

1
=|D'F|*> + |D'F| - |FE)|. @

Nyni staéi vyuzit rovnosti |[FD| = |D'F| a |KD| = |KD'|, které plynou
ze soumérnosti bodi D a D’ podle AB, a mocnost bodu F' ke kruZnici
s prumérem AB, ktera je

|EF|-|FD'| = |AF| - |BF)|.

Dosazenim do (1) tak dostaneme |KD|? = |FD|? + |AF|-|BF)|, coz jsme
chtéli dokazat.

3. Ze zadani alohy plyne, Ze nékterd dvé z Cisel p, g, r jsou bud nejvyse
rovna 1, anebo jsou aspon 1. Mlzeme je proto oznacit tak, Ze nastane
jeden z néasledujicich dvou pripadi:

(i) pSgs1=,

(i) rs1spsq

(i) Polozme a = ¢, b = 1, ¢ = pq, potom plati pa = pg = ¢, gb = ¢ = a,
rc = pqr = 1 = b. Trojthelniky, jejichz strany maji velikosti a, b, ¢ a pa,
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pb, pc, jsou tedy shodné (pokud existuji). UkaZeme, Ze trojihelnik se
stranami délek g, 1, pq existuje. ProtoZze pg £ q £ 1, staéi ovéfit jedinou
trojahelnikovou nerovnost, a to pg + ¢ > 1. Ze vztaht

[S23 1 \V]

1
pg=- a r<-  plyne pg2
r 2

Vzhledem k tomu, Ze p < ¢, plati rovnéz

2 3
qg\/;>g, atedy pg+q>1

(ii) Polozme opé&t a = ¢, b = 1, ¢ = pq. Uk&Zeme, Ze i v tomto pripadé
existuje trojihelnik se stranami délek ¢, 1, pq. ProtoZe nyni pg 2 ¢ 2 1,
stali ovéfit nerovnost pg < ¢ + 1. Z nerovnosti p < q vyplyva /pq < g;
stac¢i proto ovérit silnéjsi nerovnost pg < \/pq + 1, tj. Ze t = /pq spliiuje
kvadratickou nerovnost t2 —t — 1 < 0, neboli ze —% < /pg < g Ze
vztahi

1
pg=- a rz2
r

5 5
pme VIS 2< 2,

o] N

a navic je \/pq 2 1. Tim je dtikaz hotov.

4. Ozname délky stran trojuhelniku ABC obvyklym zptsobem a, b, ¢
a D stred strany AB. Z mocnosti bodu C ke kruznici opsané ¢tyrtuhelniku
ABXY dostaneme |CA|-|CY| = |CB|-|CX]|, tedy a-|CX|=1b-|CY]|.
Z Cevovy véty pak vyplyva

|AD| - |BX|-|CY| _ |BX|-|CY] _
|DB[-|XC|-|[YA] ~ |XC|-|[YA]

takZe dosazenim a - |CX| =b-|CY| dostdvame déle a - |BX|=b-|AY|.
Sectenim rovnosti

a-|CX|=b-|CY| a a-|BX|=b-]AY]

dostaneme a? = b2, neboli a = b. Trojahelnik ABC je tedy rovnoramen-
ny.

Jiné Fefeni. Je-li étyfuhelnik ABXY je tétivovy, jsou trojihelniky
ABC a XYC podobné (uu), plati proto a - |CX| =b-|CY]|.
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Oznacme Sgrg obsah trojuhelniku EFG. Pro obsahy trojahelniki
ziejmeé plati

Sapc _ |AC| _ b a Sepc _ |BC| __a
Sapy  |AY] |AY| Sppx |BX| |BX|

ProtoZe bod P lezi na téznici z vrcholu C trojahelniku ABC, plati také
Sapc = Sepc, coz s obéma predeSlymi vztahy dava

b a
TAY]| Sapy = BX]| SBpx-

Z rovnosti obvodovych thld AXB a AYB a déle z rovnosti vrcholovych
Ghlt pfi vrcholu P plyne podobnost trojihelniki APY a BPX (uu).
Plati tedy Sapy : Sppx = |AY|? : |BX|?, coz ve spojeni s predchozim
vztahem dava a - |BX| = b-|AY|. Dale pokraujeme jako v piedeslém
feSeni.

5. Ukazeme, Ze podminkdm tlohy vyhovuji vSechna pfirozena ¢isla n,
kterd jsou mocninami ¢isla 2, tj. vSechna pfirozena éisla tvaru n = 2™,
kde m je pfirozené ¢islo.

Pro kazdé k € {1,2,...,2™ — 1} je

o™\ gm.(@m 1)L (2" —k+1)
(k)_ T2k ‘ (1)

Libovolné pfirozené &islo r € {1,...,k — 1} lze zapsat ve tvaru 2%, kde
[ je liché ¢islo a a < m je celé nezdporné ¢islo. Proto kazdy ze zlomki

mé po zkréceni v Citateli i jmenovateli licha ¢isla. Podobné i ¢&islo k lze
zapsat ve tvaru 2¢[, proto zlomek na pravé strané rovnosti

2m 2m—a

k l

ma v Citateli sudé a ve jmenovateli liché ¢islo. Soudin vSech téchto zlomki
pror =1,2,...,k je roven kombina¢nimu ¢islu (1), coZ je tudiz sudé &islo.
Tim jsme dokazali, Ze kazdé kombina¢ni ¢islo tvaru (1) je sudé.
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Necht naopak n neni mocninou &isla 2, tj. n = ¢- 2™, kde ¢ 2 3 je
liché ¢islo. UkéZeme, Ze kombinaéni ¢islo

c-2™\ ¢ 2™(c-2m—-1)-...-(c-2m -2 +1) @)
om ) 1-2-3.....2m

je liché. Podobné jako prve ukdZeme, %e pro véechnar € {1,2,...,2m -1}
ma kazdy ze zlomk
c-2™m—r c-2m

a také
r 2m

=cC

po zkraceni v ¢itateli i jmenovateli lich4 ¢isla. Souéin vSech téchto zlomki
je roven kombina¢nimu ¢islu (2), které je proto liché.

Dané tloze vyhovuji vSechna pfirozena ¢isla n, ktera jsou mocninou
éisla 2.

6. Pro kazdé ¢ € R je funkce f(xr) = = + ¢ FeSenim dané funkcionalni
rovnice (obé& jeji strany jsou pak rovny z + y + 2¢). UkdZeme, Ze jina
feSeni dan4 rovnice nema.

Nejprve dokéZeme, 7e funkce f je surjektivni. Volbou y = —f(z)
v dané rovnici dostaneme

£(0) =2z = f (f(~f(2)) — =)

Protoze kazdé realné ¢islo lze vyjadfit ve tvaru f(0) — 2z, existuje pro
kazdé y € R takové z € R, Ze plati y = f(z). Specidlné pak existuje
a € R, pro n&z plati f(a) = 0. Volbou z = a v dané funkcionalni rovnici
dostaneme

f@)=2a+f(f)—a) ti. f@)—a=F(fy)—a)+a.

ProtoZe funkce f je surjektivni, existuje pro kazdé x € R takové y € R,
%e £ = f(y) — a. Odtud plyne, %e pro kazdé z redlné plati z = f(z) + a,
tj. f(z) =z —a.

Tim je tloha vyfeSena.
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44. mezinarodni matematicka olympiada

«

d~< soutéze usporadala
j%apan za podpory ja-
ponského Ministerst% J gdy a technologie, Ja-
ponské matematické spoleg ) ] osti pro matematické
vzdéldvani v hlavnim mést} g kiydobé od 7. do 19. Cervence
2003. Kazdou zemi reprezeﬁﬁeyz We Sest soutézicich; letosniho
roéniku MMO se ztcastnilo 457 studentt z 82 zemi.

Vibér soutézicich za Ceskou republiku byl proveden v Kostelci nad
Cernymi lesy na zavéreéném soutéZnim soustfedéni deseti nejlisp&sné;j-
§ich acéastnikl celostatniho kola. Vybrani soutézici se pak jeSté zucast-
nili trojutkani ve slovenské Ziliné mezi Ceskou republikou, Slovenskem
a Polskem, kde soutéZili reprezentanti zGc¢astnénych zemi za podminek
podobnych jako pfi soutézi na MMO. Po této pripravé odjela do Japon-
ska tato Sestice soutéZicich: Pavel CiZek z Gymnézia v Kralupech nad
Vltavou, Vitézslav Kala, Marek Krédl a Jaromir Kuben z Gymnazia na
t¥. Kpt. Jarose v Brné, Pavel Kocourek z SPSST v Panské ulici v Praze 1
a Jan Moldéek z Gymnazia J. K. Tyla v Hradci Kralové. Vedoucim ceské
delegace byl RNDr. Karel Hordk, CSc., z Matematického tstavu Akade-
mie véd v Praze, zastupcem vedouciho byl doc. RNDr. Jaromir Simsa,
CSc., z Masarykovy Univerzity v Brné. Vedouci delegace pficestoval do
Tokia kvili vybéru tloh jiz 7. ervence, ostatni cesti Géastnici pak o ¢tyfi
dny pozdéji.

Téméf vse se odehravalo v modernim arealu budov Ndrodniho olym-
pijského strediska, postaveném pro obdobna sportovni, kulturni a vzdéla-
vaci setkani v misté, kde se v roce 1964 konaly letni olympijské hry. Jen
zaCatek soutéze od priletu soutézicich az do odpoledne druhého soutéz-
niho dne stravila mezinarodni jury slozena z vedoucich narodnich tymi
v nedalekém Makuhari.

Den po pfiletu soutézicich se konalo slavnostni zahajeni. Vlastni sou-
téZ pak probéhla v nedéli a v pondéli 13. a 14. Cervence. Kazdy z téchto
dnt fesili soutézici trojici tloh po dobu 4,5 hodiny. Za kazdou tlohu
mohli ziskat maximalné 7 boda.

V poradi jiz 44. ro
spolec¢nost Mathem
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O néroc¢nosti soutéZnich tloh svédci i nizké hranice pro zisk medaili:
na bronzovou medaili stacilo 13 bodd, st¥ibro se udélovalo za 19-28 bodu
a zlato za alespon 29 z mozného pocétu 42 boda. Vysledky nasich jsou
uvedeny v nasledujici tabulce:

Body za ilohu Body Cena
Umisténi 123456

269.-291. Pavel Cizek, 710010 9 HM
8. ro¢. gymnazia,
Kralupy nad Vltavou

231.-246. Vitézslav Kala, 700310 11 HM
3. ro¢. gymnazia,
Brno, tf. Kpt. Jarose

179.-196. Pavel Kocourek, 070700 14 II1.
2. ro¢. SPSST,
Panska ulice, Praha 1

269.-291. Marek Krcal, 700200 9 HM
4. ro¢. gymnazia,
Brno, tf. Kpt. Jarose

138.-162. Jaromir Kuben, 710710 16 II1.
1. ro¢. gymnazia,
Brno, ti. Kpt. JaroSe

93.-97. Jan Molacek, 570710 20 II.

3. ro¢. GJKT,
Hradec Kralové

Celkem 3316 026 4 0 79

Jak je z tabulky vidét, zklamali oba na$i maturanti, shodou okol-
nosti prvni dva vitézové letosniho celostatniho kola. Pritom nejlepsi nas
ucastnik, Jan Moldicek z Gymnazia v Hradci Kralové, skoncil v celostat-
nim kole az na 11. misté a do reprezenta¢niho vybéru se dostal jen diky
netcasti nékolika vitézu, kteri dali prednost pripravé na Mezindrodni fy-
zikalni olympiddu. Stejné jako vloni ziskal 20 bodi, kdy to stacilo jen na
bronzovou medaili, tentokrat vSak stejny bodovy zisk znamenal stiibro.
Podobné i Vitézslav Kala témér zopakoval svij lonsky vysledek: ziskal
o dva body méné, a zatimco vloni mu k bronzové medaili chybél jen jeden
bod, letos to byly body dva. V celkovém potadi se vSak posunul o dvé
pricky vyse.
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Kazdy z naSich sout

Nguyen z Vietnamu.

vy

’

&zici
bodl a ziskal tak Honorary mention (HM), ocenéni, které je zvykem
udélovat od 29. roéniku MMO. Zadny bod neztratili jen t¥i soutézici:
Yunhao Fu z Ciny (ten doséhl stejného tispéchu uz na lofiské 43. MMO
ve skotském Glasgow) a dva soutézici Hung Viet Bao Le a Trong Canh

h vyresil aspon jednu z tloh za plny pocet

I II IIT body I II III body
Bulharsko 6 0 0 227  Norsko 010 62
CLR 5 1 0 211 Arménie 0 0 3 61
USA 4 2 0 188 Bosna a Hercegovina 0 0 2 61
Vietnam 2 31 172 JAR 0 0 3 60
Rusko 3 21 167  Spanélsko 0 0 1 59
Korea 2 40 157  Makedonie 0 0 2 54
Rumunsko 1 4 1 143 Svédsko 0 0 1 52
Turecko 1 3 1 133 Itélie 0 0 1 50
Japonsko 1 3 2 131  Kirgizie 0 0 2 50
Madarsko 1 3 1 128  Lotyssko 0 0 1 50
Velka Britanie 1 2 3 128  Litva 0 0 2 49
Kanada 2 0 3 119  Uzbekistan 0 1 1 49
Kazachstan 1 2 2 119  Estonsko 0 0O 47
Ukrajina 1 2 3 118  Finsko 0 0 1 43
Indie 0 4 1 115 Maroko 0 0O 43
Tchaj-wan 1 2 2 114  Novy Zéland 000 43
fran 0 3 2 112 Macao 0 0 2 40
Némecko 1 21 112 Rakousko 0 0 0 38
Bélorusko 1 2 2 111 Peru (4) 0 0 1 37
Thajsko 11 3 111  Turkmenistén (4) 0 0 1 37
Izrael (5) 0 2 3 103  Island 00 1 33
Polsko 1 2 0 102  Trinidad a Tobago 0 0 0 33
Srbsko a Cernd Hora 0 3 1 101  Nizozemsko 0 0O 30
Francie 0 2 2 95  Uruguay (5) 0 0 0 29
Mongolsko 01 3 93  Dansko (5) 0 0 0 27
Australie 0 2 2 92  Malajsie (5) 0 0 0 26
Brazilie 01 3 92  Svycarsko 0 0 0 26
Argentina 11 2 91  Lucembursko (2) 0 0 1 25
Hongkong 0 2 2 91  Albénie (4) 0 0 0 23
Moldavsko 01 2 88 Kypr 0 0 0 23
Recko 0 1 4 88  Portoriko (3) 0 0 1 23
Gruzie 01 2 86  Portugalsko 0 0 0 22
Chorvatsko 0 0 3 80 Irsko 00 0 21
Ceskd republika 01 2 79  Slovinsko 0 0O 18
Slovensko 0 0 4 77 Kuba (1) 0 0 1 14
Singapur 0 0 2 71  Ekvador 0 0 0 11
Belgie 01 1 70  Venezuela (3) 0 0 0 10
Indonézie 0 0 2 70  Filipiny 0 0 0 9
Kolumbie 0 0 3 67 Kuvajt (3) 0 0 0 8
Azerbajdzan 0 1 1 66  Sri Lanka (4) 0 0 0 4
Mexiko 0 0 3 64 Paraguay (1) 0 0 0 0

Jak je patrno z tabulky zucastnénych stati, na prvni misto v ne-
oficidlnim poradi jednotlivych zemi podle celkového bodového zisku se
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tentokrat vySvihlo Bulharsko, dalsi mista obsadily tradi¢né vyborné druz-
stva Ciny, Spojenych stat{, Vietnamu a Ruska. (P¥ipadn4 &isla v zavorce
upozoriiuji na nizsi pocet reprezentanta.)

Texty soutéZnich tiloh
(v zévorce je uvedena zemé, kterd lohu navrhla)

1. Necht A je podmnozina mnoziny S = {1,2,...,1000000} obsahujici
pravé 101 prvku. Dokazte, ze v S existuji ¢isla tq,ts,...,t100 takova, ze
mnoziny

Aj={z+tj:z€ A} proj=1,2,...,100

jsou navzijem disjunktni. (Brazilie)
2. Urcete vSechny dvojice ptirozenych &isel (a,b) takovych, Ze

a?

2ab2 — b3 +1
je prirozené {islo. (Bulharsko)

3. Je dan konvexni Sestitthelnik, jehoz libovolné dvé protéjsi strany maji
néasledujici vlastnost: vzdalenost jejich stfedt je v/3/2nasobek souétu je-
jich délek. Dokazte, ze vSechny ahly daného Sestitthelniku jsou stejné.
(Konvexni Sestitthelnik ABCDEF mé tii dvojice prot&jsich stran:
AB a DE, BC a EF,CD a FA.) (Polsko)

4. Necht ABCD je tétivovy Ctyrahelnik. Ozna¢me postupné P, Q a R
paty kolmic z bodu D na pfimky BC, CA a AB. Dokaite, ze |PQ| =
= |QR)|, pravé kdyz se osy thli ABC a ADC protinaji na piimce AC.

(Finsko)
5. Necht n je pfirozené &islo a x1, x2,. .., T, realna &isla takova, Ze z; <
Sz L. .Sz,
(a) Dokazte, ze
n n 2 n n
2(n?-1) 5
(XX i—ml) s 22305
i=1 j=1 i=1 j=1
(b) UkaZte, ze rovnost plati, pravé kdyz z;, s, ..., z, je aritmetickd po-
sloupnost. (Irsko)

6. Necht p je prvodislo. Dokazte, ze existuje prvocislo ¢ takové, Ze pro
z4dné celé n neni ¢éislo n? — p délitelné q. (Francie)
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Reseni tloh

1. Vytvofme mnozinu v8ech rozdila D = {x —y: z,y € A}. ProtoZe A ma
101 prvkd, obsahuje D kroms nuly nejvyse 2 - (') = 101-100 = 10100
dalsich (kladnych i zdpornych) ¢isel. VSimnéme si, ze dvé z uvazovanych
mnozin A;, A; jsou disjunktni, pravé kdyz = + t; # y + t; pro libovolna
z,y € A, tedy pravé kdyz t; — t; ¢ D. Nasim tkolem je proto vybrat
Cisla t1,ta,...,t100 € S tak, aby zadny jejich rozdil nepadl do ,zakdzané“
mnoziny D.

Zminény vybér provedeme induktivné. Prvni éislo ¢; vybereme v S
libovolné. Pfedpokladejme, Ze jsme jiz pro nékteré k < 99 vybrali &isla
t1,ta,...,tx € Stak, Ze t; —t; ¢ D pro libovolnd riznd 4,5 € {1,2,...,k}
(pro k = 1 je to splnéno trividlng). Cislo tx+; musime v S zvolit tak,
aby platilo tx41 — t; ¢ D pro kazdé ¢ € {1,2,...,k}. Pro pevné i tak
ma &islo tx41 pravé tolik ,zakadzanych®“ hodnot ¢; + d, kolik je vSech cisel
d € D. Téch je, jak vime, nejvyse 1 + 101 - 100 = 10101. Pro vSechna
i € {1,2,...,k} tak dostaneme celkem nejvySe k - 10101 zakazanych
hodnot, coz je nejvyse 99 - 10101 = 999999 ¢isel. V mnoziné S je vSak
108 &isel, takze vybér &sla ty4; je moZny.

Pozndmka. Hodnota |S| = 106 je zbyte¢nd velk4 (v predchozim reseni
jsme zanedbali skutec¢nost, ze v mnoziné D lezi s kazdym cislem i ¢islo
opaéné). D4 se ukézat, Ze pro libovolnou k-prvkovou podmnozinu A mno-

ziny S = {1,2,...,n} plati: je-li m p¥irozené &islo takové, ze
k
n>(m-—1) 9 +1],
existuji v mnoziné S &isla tq,1a, ..., tn takovd, Ze mnoziny A; = {x +¢;:

z € A} (j = 1,2,...,m) jsou navzajem disjunktni. (Pro k¥ = 101 stai
tedy uvaZzovat mnozinu S = {1,2,...,500051}.)

2. (Podle Jana Moldcka.) Ukazeme, Ze feSenimi jsou pravé viechny dvo-
jice (a,b) tvaru (8k* — k, 2k), (k,2k) a (k,1), kde k € N je libovolné.
Hleddme pfirozena Cisla a, b, n, pro kterd plati

a2

2ab? — b3 +1 )

Rovnost (1) 1ze upravit do tvaru kvadratické rovnice s nezndmou a:
a? — 2nb%a +n(b® — 1) = 0.

161



Jejimi kofeny jsou ¢isla

arz = nb? 1/ (n82)? — (6 — 1). D)
Protoze jeden z kofenl a;2 je roven hledanému pfirozenému dislu a,
odmocnénec ve vzorci (2) musi byt ,aplny kvadrat®, tedy tvaru

(nb?)® —n(* —1) = d (3)
pro vhodné celé d = 0. Takové &slo d zarucené existuje, pokud b = 1
(pak b% — 1 = 0, takZe d = nb?). Zabyvejme se viak nejprve obsazn&jsim
pripadem, kdy b > 1. Ukazme, Ze pro takové b z (3) plynou odhady

nb2-?—gl<d<nb2-—§;. (4)

ProtoZe oba krajni vyrazy jsou kladné, mizeme obé nerovnosti umocnit;
po dosazeni d? a snadnych algebraickych tGpravich dostaneme dvojici
nerovnosti

(b+1)2<4n@®®+1) a (b-1)2+4n(d*-1)>0,
které zfejmé plati, nebot n 2 1 a b > 1. Tim jsou odhady (4) dokazany.
Vsimnéme si nyni, Ze rozdil obou krajnich vyrazi v (4) je roven jedné.
Pro liché b by se tyto vyrazy dokonce rovnaly dvéma po sobé jdoucim
pfirozenym ¢islim, takZe by zZadné celé d spliujici podminku (4) neexis-
tovalo. Cislo b je proto sudé, tedy b = 2k pro vhodné k € N; jediné celé d
vyhovuyjici nerovnostem (4) je pak tvaru

b

d=nb2——2- = 4nk? — k.

Pro takova b a d pfejde rovnost (3) do tvaru
(4nk?)? — n(8k® — 1) = (4nk® — k)2,

ze které snadno plyne n = k?; vzorce (2) pak davaji vyjadreni

a1:8k4—k a ay =k
Protoze obé vypoctené hodnoty a; 2 jsou prirozend &isla (pro kazdé k €
€ N), dostdvidme dvé (nekone¢né) skupiny Feseni (a,b) = (8k* — k, 2k)
a (a,b) = (k,2k), kde k € N.

Zbyvé rozebrat pripad, kdy b = 1. Tehdy ma zlomek ze zadéani tlohy

tvar

a? a® a

22 -3 +1 2a 2
takZe je roven pfirozenému éislu, pravé kdyz a = 2k pro vhodné k € N.
Tteti (a posledni) skupinou fegeni jsou tedy dvojice tvaru (a,b) = (k,1),
kde k € N.
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3. Oznaéme A, B, C, D, E, F vrcholy daného Sestithelniku a uvazujme
t¥i Ghlopficky AD, BE a FC. Nékteré dvé z nich nutné sviraji thel aspon
60°. Bez Gijmy na obecnosti predpokladejme, ze jsou to uhlopficky AD
a BE. Oznacme P jejich pruseCik a M, N stiedy protéjsich stran AB
a DE (obr. 37).

E

N
D
F
A M B
Obr. 37 Obr. 38
Protoze |XAPB| = |XxEPD| 2 60° lezi bod P uvnitf kruz-

nice opsané rovnostrannému trojahelniku ABP’ (obr.38), takZze plati
IMP| £ |MP'| = 1V3|AB| s rovnosti, pravé kdyz P = P’, neboli
pravé kdyz je trojihelnik ABP rovnostranny. Podobné odvodime, Ze
|INP| £ 1/3|DE| s rovnosti, pravé kdyz je trojahelnik D EP rovnostran-
ny. Pro vzdalenost stfed obou protéjsich stran AB, DE tak dostdvame
odhad

IMN| < |MP|+|NP| £ 1V3(|AB| + |DE)).

Z predpokladi ulohy tedy plyne, Ze oba trojihelniky ABP a DEP jsou
rovnostranné a uhlopficky AD, BE sviraji thel 60°.

Zbyvajici thlopficka CF musi s jednou z thlopfi¢ek AD, BE svirat
thel aspon 60°. Opét mizeme bez jmy na obecnosti predpokladat, Ze se
jednd napft. o thlopricku AD, prusecik Ghlopficek CE, AD oznatme Q.
Uplné stejné jako v predchozim piipadé zjistime, Ze trojihelniky FAQ
a CDQ jsou rovnostranné. Oznacime-li nakonec R pruseéik thlopficek
BE a CF, které dle pfedchoziho sviraji nutné ahel 60°, zjistime, Ze i troj-
thelniky BCR a EF'R jsou rovnostranné. Odtud plyne tvrzeni tlohy.

Jiné feseni. Oznacme A, B, C, D, E, F vrcholy daného Sestithelniku
aa= AB,b = BC,...,f = FA vektory urcené jeho stranami, pfitom
a+b+...4+f=0.Oznatime-li M, N stfedy proté&jsich stran AB, DE,
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A M a B
Obr. 39

miizeme piislusny vektor MN vyjadrit dvéma zptisoby (obr. 39):
MN=1a+b+c+id a MN=-la-f-e—id,

odkud
MN =1(b+c—e—f). (1)

Podle predpokladu plati

3 3
|M~|=‘§|a+d|z§|a—d1. (2)

Polofme x =a—d,y=c—f,z=e— b, z (1) a (2) tak dostaneme

ly — 2| 2 V3|x|
a podobné

|z - x| 2 V3yl,

x - y| Z V3|2|.

Pravé uvedené nerovnosti muZeme pomoci skalarnich soucint ekviva-
lentné prepsat jako

yI* = 2(y,2) +|z* 2 3|,
|21 = 2(z,x) + |x|* 2 3|y,
XI? = 2(x,y) + |y[* 2 3|z|*.

Sectenim vSech tfi nerovnosti vyjde
—|X|2 - |y‘2 - |Z|2 - 2(y,Z) - 2(Z,X) - Z(X’y) z 0,
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neboli —|x + y + z|> 2 0. Odtud ovSem plyne, 7e x +y + z = 0 a ze ve
vSech predchozich nerovnostech plati rovnost. Je tedy jednak

ly — 2| = V3|x|,
|Z - Xl = \/glyla
Ix -yl = V3],

jednak diky rovnosti v (2) a v dalSich dvou analogickych nerovnostech
ialld|xcl|fllyelb]|z

Sestrojime-li trojihelnik PQR tak,7e PQ = x, QR =y, RP = z (coz
miZeme diky rovnosti x + y + z = 0), bude néktery z jeho vnit¥nich hld
mit velikost asponi 60°. Necht je to napf¥. thel PRQ (obr.40). Pro stied
M strany PQ pak plati [MR| = |y — z| = 3V3|x| = IV3|PQ), coz
znamena, ze trojuhelnik PQR je rovnostranny. Pro vnitini thly daného
Sestitthelniku to vzhledem k dokazané rovnobéznosti jeho protéjsich stran
s odpovidajicimi vektory x, y a z znamen4, Ze vSechny jeho vnitini thly
maji velikost 120°.

Obr. 40

Pozndmka. Z uvedeného reSeni je ziejmé, ze libovolny Sestitthelnik spl-
nujici predpoklady tlohy dostaneme tak, Ze z nékterého rovnostranného
trojahelniku ,jodfizneme* pfi kazdém jeho vrcholu shodny rovnostranny
trojahelnik.

4. Oznacme po fadé X;, X» priseCiky osy thlu ABC a osy uhlu ADC
s Ghloptickou AC daného tétivového Ctyfthelniku ABCD (obr.41). Ze
znamé vlastnosti osy thlu plyne jednak |AX;|/|CX:| = |AB|/|CB|
(v trojihelniku ABC), jednak |AX,|/|CX2| = |AD|/|CD| (v trojthel-
niku ACD). Osy thlt ABC a ADC se tedy protnou na thloptiéce AC,
pravé kdyz X, = X, neboli pravé kdyz |AD| - |CB| = |AB|-|CD|.
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Obr. 41

Podle Thaletovy véty lezi paty P a @ na kruznici s primérem CD,
takze pro velikost tétivy PQ této kruznice plati

|PQ| = |CD|sin |xPCQ| = |CD|sin~,

kde v = ¥ ACB (bez ohledu na to, zda pata P padne dovnit¥ strany BC
& nikoli). Podobné lezi paty R a @ na kruZnici s prumérem AD, takZe
pro velikost tétivy QR této kruznice plati

|QR| = |AD|sin |xRAQ| = |AD|sina,

kde o = ¥ BAC. Vidime tedy, Ze rovnost |PQ| = |QR)| je ekvivalentni
rovnosti |CD|siny = |AD|sin a, coZ je podle sinové véty pro trojihelnik
ABC ekvivalentni s rovnosti |AD| - |CB| = |AB| - |CD|. Tim je tvrzeni
tlohy dokazano.

Jiné FeSeni. (Podle Marka Krédla, bohuZel az po soutézi.) Ozna¢me M
a N body, v nichZ osa thlu ABC, resp. osa thlu ADC protne kruznici k
opsanou danému tétivovému ¢&tyfthelniku ABCD (obr.42). Vzhledem
k tomu, Ze kazdy z bodi M, N puli pfislusny oblouk AC kruznice k, je
M N osou thlopricky AC a zadroven prumeérem kruznice k. Oznaéme O
stfed tsecky AC. Bez ijmy na obecnosti predpokladejme, Ze ithel BAD
neni tupy (jinak bychom prohodili oznaceni vrcholi A a C), takZe pata P
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kolmice z bodu D na BC padne mimo usecku BC'. Z vlastnosti tétivového
Ctyftahelniku plyne |xDCP| = |xBAD| a z rovnosti obvodovych Ghla
nad tétivou BD rovnost [ xBMD| = |<xBAD)|. Jsou tedy trojihelniky
ARD a CPD podobné.

Obr. 42

Predpokladejme, ze prusecik X obou zminénych os dhli lezi na
pfimce AC. Protoze M N je prumér kruZnice k, je podle Thaletovy véty
|« XDM| = |[xNDM| = 90°, takze ¢tyfuhelnik OXDM je tétivovy.
Je tedy také |xXOD| = |xXMD| = |xBMD| a vidime, Ze trojihelnik
0OQD je podobny trojuhelnikim ARD a C PD. UvaZzujme spiralni podob-
nost, jez vznikne slozenim otoceni kolem stfedu D o Ghel 90° — |<BAD|
a stejnolehlosti se stfedem D a koeficientem |DR|/|DA|. Tato podobnost
zobrazi bod A do bodu R, bod C do bodu P a bod O do bodu Q. Pro-
toze O je stied Gsecky AC, je jeho obraz v této podobnosti, tedy bod Q
stfedem tsecky PR, jeZ je obrazem usecky AC.

Obréacené, je-li Q stred tsecky PR, je obrazem bodu O v uvedené
podobnosti, takze trojuhelnik OQD je podobny trojihelnikim ARD
a CPD (ty jsou podobné vzdy). Oznaéime-li nyni jako X priisecik pfimky
BM s tuhloptickou AC, bude XDMO tétivovy, a tudiz velikost thlu
X DM bude 90°. Odtud plyne, Zze bod X lezi na ND, ose tthlu ADC.
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5. Obé strany dokazované nerovnosti nezméni hodnotu, kdyZ ode vsech
Clend z; odecteme totéz Cislo c. Vybereme-li za ¢ aritmeticky primér
dané n-tice ¢lent z;, bude ,posunutd“ posloupnost ¢lent z; := z; — ¢
splhovat podminku

i=1

Dodejme, Ze zminéné ,posunuti“ zachova rovnéz usporadani &isel z; po-
dle velikosti a nezméni ani nic na tom, zda dotyéna n-tice tvofila arit-
metickou posloupnost ¢i nikoliv.

Za predpokladu (1) upravime oba souéty z dokazované nerovnosti:

ZZI%—%IJ S (a5 - )

=1 j=1 1<1<]<n
_22 ((1+. —(14...+ 1))z =
- (i— 1) krat (n—i‘)rkra’\t

= 2i(2i —n—1)z;,
i=1
2:2:(.1:5—3%)’2 :nix? —Zixizn:zj+niz? .
3 i=1 i=1 j=1 j=1
= 2n2n:zf
i=1

Po dosazeni a kraceni ¢tyfmi zjistime, Ze mame dokazat nerovnost

(Xnﬁ(% -n- 1)xi)2 < (—’ﬁ;—l)" Zm2 (2)

i=1 i=1

Ukazme, Ze (2) je Cauchyova nerovnost

n 2 n n
(zxy) <S a2y 3)
i=1 i=1 i=1
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pro n-tici €lent y; = 2i —n — 1,4 = 1,2,...,n. Skutecné, pro takovou
n-tici plati

ny Z(2z—n—1 —422 —4(n+1) Zz+nn+1)
=1 =1 1=1 =1
1 1
_ (n?=1)n
—s

Tim je dikaz nerovnosti (2) hotov.
Jak je dobfe zndmo, rovnost v Cauychové nerovnosti (2) nastane,
pravé kdyz existuje realné ¢islo p, pro které plati n-tice rovnosti

z; =pyi=pRi-n—-1) (i=12,...,n). (4)

Ovéime, Ze tuto podminku za pfedpokladu (1) spliiuji pravé ty kone¢né
posloupnosti z1,Ts2,...,ZT,, jéz jsou aritmetické. Skuteéné, plati-li rov-
nosti (4), je koneéné posloupnost z1, za, . . . , T, aritmeticka s diferenci 2p.
Obréacené, je-li posloupnost z1, za, ..., x, aritmeticka a znadi-li d jeji di-
ferenci, pak pro kazdé ¢ = 1,2,...,n plati rovnost z; = z1 + (i — 1)d
a soucet vSech ¢lent z; je dan vzorcem

Z‘” n(zy +xn)
i = .

Podminka (1) tudiZ znamena, ze 1 +z, = 0, neboli z; + 21+ (n—1)d =
= 0. Odtud dostavéme z; = $d(1 — n), proto leny z; maji pro kazdé i
vyjadreni

dl-n) . (1-n+2i—2d (2i—-n-1)d
= = ]. d = e ’
‘ g Ti-1 2 2
coz je (4) pro p=d/2.
6. Pfipomenime nejdiive vlastnosti mocnin n',n2,... n*, ... p¥i déleni

prvodislem ¢: je-li n celé &islo nesoudélné s ¢, pak n?9~! = 1 (mod q)
(tzv. mald Fermatova véta), navic mnoZina téch pfirozenych k, pro ktera
n* =1 (mod g), je tvofena vSemi nasobky nejmensiho z nich (coz je bud
¢islo ¢ — 1, nebo néktery jeho délitel).
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UvaZujme proto rozklad
pPP—1=(p-1)S, kdeS=p" 14+pP2+... +p+1, (1)

a za ,kandidata“ na vhodné prvocislo ¢ vyberme nékteré z prvocisel
délicich soucet S (v pravou chvili upfesnime, jakou dopliujici vliastnost
prvocinitele g ¢isla S budeme jesté potfebovat a pro¢ takové g vibec
existuje). Protoze ¢ | S a S| (p?» — 1), plati ¢ | (p? = 1), tj. p» = 1
(mod q).

Pfipustme, Ze pro vybrané ¢ tvrzeni Glohy neplati, tedy existuje celé
n s vlastnosti n? = p (mod ¢). Umocnénim této kongruence na p dosta-
neme n?’ = pP (mod q), coz spolu s kongruenci ze zavéru predchoziho
odstavce znamena, Ze n?’ =1 (mod q). Cislo n je tedy nesoudélné s &is-
lem g a podle poznatkt pfipomenutych v vodu feSeni vime, Ze nejmensi
pfirozené k s vlastnosti n* = 1 (mod ¢) musi byt délitel &sla p?, tedy
jedno z ¢&isel 1, p, p?. Toto &slo musi byt zaroven délitelem ¢&isla ¢ — 1
(mal4 Fermatova véta), takze to nebude &islo p?, nebude-li &slo p? délit
&slo g — 1, tedy pokud ¢ Z 1 (mod p?). To je pravé ona dopliwujici vlast-
nost prvodisla g, o které jsme se dfive zminili; odlozme na chvili dikaz
existence takového prvocisla ¢ a dokon¢eme ivahy o mocninach éisla n.

Pokud tedy ¢ # 1 (mod p?), plati kongruence n* = 1 (mod q) pro
k =1 nebo pro k = p, v obou pfipadech mame n? = 1 (mod ¢). Porov-
nénim s kongruenci n? = p (mod ¢) pak dostaneme p = 1 (mod q), takZe
kazd4 z p mocnin p’ ze soutu S je kongruentni s &islem 1 (modulo q),
tudiz S = p (mod q). ProtoZe v8ak ¢q | S, plati S =0 (mod q). Porovna-
nim vychéazi p = 0 (mod ¢), coz je spor s tim, Ze p = 1 (mod g). Proto
zadné celé n s vlastnosti n? = p (mod ¢) neexistuje, spliuje-li prvocislo ¢
podminku ¢ Z 1 (mod p?). Existenci takového prvocinitele ¢ (z rozkladu
¢isla S) nyni dokdZeme.

Uréeme zbytek sou¢tu S pii déleni &slem p?: protoze p? | p? (j 2 2),
plati

S=pP 4 pP 24 . 4+p+1=0+0+...+0+p+1 (mod p?),

tedy S = p+1 # 1 (mod p?). Odtud jiz plyne, 7e aspoi jeden z prvo-
Ciniteld g; ¢isla S = qiq ... g, neni kongruentni s 1 (modulo p?). (Vy-
nasobenim r kongruenci ¢; = 1 (mod p?) bychom totiz dostali S = 1
(mod p?).)

Dikaz je hotov a tloha vyfeSena.
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Desaty rocnik Stredoevropské olympiddy v informatice

Ve dnech 5.-12. ¢ervence 2003 probéhl v némeckém Miinsteru jubilejni
10. ro¢nik Stfedoevropské olympiddy v informatice (Central European
Olympiad in Informatics, CEOI 2003).

Vedoucim Ceské reprezentace byl jmenovan RNDr. Tomds Pitner, Dr.,
z Masarykovy univerzity v Brné, Fakulty informatiky. Uloha zastupce ve-
douciho tymu byla svéfena Mgr. Martinu MareSovi z Univerzity Karlovy
v Praze, Matematicko-fyzikalni fakulty.

Kromé toho byl z rozhodnuti ridiciho vyboru soutéze organizitory
za Ceskou stranu pozvan doc. RNDr. Véclav Sedlacek, CSc., dlouholety
vedouci Ceskych reprezentaci na mezinarodnich a stfedoevropskych olym-
piddach v informatice a dalsich soutézich, prezident (pfedseda organi-
za¢niho vyboru) CEOI v roce 1999 v Brné a spoluzakladatel iniciativy
vedouci k zaloZeni tradice Stfedoevropskych olympiad v informatice. Po-
zvani bylo vyjadienim uznéani dlouholetych zasluh doc. Sedlacka o pod-
poru mladych talent v informatice a souéasné potvrzenim stabilni po-
zice Ceské republiky mezi zemémi stiedni Evropy, které jsou schopny
a ochotny podobné akce organizovat.

Vlastni soutéZ probihala regulérné podle pravidel CEOI za maxi-
mélni podpory predeviim Spolkového ministerstva $kolstvi, védy a vy-
zkumu, Ministerstva Skolstvi spolkové zemé Nordrhein-Westfalen a slozek
mistni a regiondlni verejné spravy (Bezirks Regierung Miinster). Dal-
$imi hlavnimi sponzory byly Gesellschaft fiir Informatik e.V., Fraunho-
fer Gruppe Informations- und Kommunikationstechnik, sd&m a Siemens
Business Services (SBS). Hlavnim vykonnym organizatorem bylo sdru-
zeni Spolkova soutéZ v informatice (Bundewettbewerb Informatik) ve-
dené Dr. Wolfgangem Pohlem, ktery byl rovnéZz prezidentem leto$niho
roéniku CEOI. Na organizaci se déale podilely stiedni Skoly z Miin-
steru a okoli, jejichz ucitelé pusobili v organizaénim vyboru a stu-
denti/studentky jako priivodci (guides) jednotlivych tymé. Podstatnou
roli v odborné ¢asti programu sehral Scientific Committee, tvofeny pie-
vazné byvalymi aktivnimi ucastniky podobnych mezindrodnich sout&zi
z hostitelské zemé.
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Vlastni soutéz se konala na gymndaziu Paulinum v Miinsteru. Hmotné
i personalni zabezpeceni akce bylo na velmi vysoké trovni.

Stejné jako v minulém roce bylo pfi vlastni soutézi (po vzoru IOI)
pouZivdno modernizované vyvojové a testovaci prostfedi. Soutézici pra-
covali ve tficetidvoubitovych prostfedich Windows 98 nebo Linux s pfe-
klada¢i GNU C++ (gcc) a Free Pascal s vyvojovym prostfedim RHIDE.
Novinkou letosni CEOI bylo pouziti webového systému pro zasilani fe-
Seni k vyhodnoceni. Vyhodnoceni se provadélo plné automaticky ,tes-
tovacem“ bézicim v OS Debian Linux pomoci pfedem pfipravenych sad
testovacich dat. Proces vyhodnoceni prob&hl korektné, maximalné objek-
tivné a bez problémi.

Reprezenta¢ni tym CR na zakladé vysledki leto$niho celostatniho
kola kategorie P tvofili (v abecednim pofadi): Sven DraZan a Krystof
Hoder, oba z Gymnézia Brno, t¥. Kpt. JaroSe; Daniel Marek z Gymnazia
Ch. Dopplera Praha a Jii Schejbal z Gymnézia Turnov. Clenové &es-
kého tymu neziskali zddnou z medaili a obsadili mista v posledni tfetiné
startovniho pole.
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15. mezinarodni olympiada v informatice

Hostitelem 15. mezindrodni olympiddy v informa-
tice IOI 2003 byly Spojené staty americké. Soutéz
se uskutecnila ve dnech 16.-23. 8. 2003 v univer-
zitnim kampusu University of Wisconsin-Parkside
nedaleko mésta Kenosha. Organizatofi zvolili ter-
min konani v dobé univerzitnich prazdnin, takze pro potieby olympiady
mohli vyuzit doCasné vyprazdnéné studentské ubytovny a jidelny, univer-
zitni poslucharny pro vlastni soutéz i pro riizna probihajici jednéani, aulu
pro slavnostni zahajeni a zakonceni soutéze, ale také rozsahla sportovisté
pro aktivni vyuziti volného ¢asu vSech Gcastniki.

Olympidda byla vyborné pfipravena po strance organizacni, po
strance pocitacového vybaveni i z hlediska kvality pfipravy soutéZnich
tloh. V kazdém ze dvou soutéznich dnu fesili soutézici studenti u podi-
tacl tfi pomérné naro¢né piiklady. Se svymi pocitadi i jejich softwarovym
vybavenim se pfitom vSichni mohli podrobné seznamit den pfed vlastni
soutézi, kdy probihalo neoficialni tréninkové predkolo. Pfi soutézi bylo
mozné programovat v nékterém z programovacich jazyki Pascal, C nebo
C++, kazdy si mohl zvolit podle svych predchozich zkuSenosti pracovni
prostfedi operac¢nich systémi Windows nebo Linux. O oba uvedené sys-
témy byl mezi Gcastniky pfiblizné stejny zajem.

K testovani a hodnoceni vytvofenych programi se na IOI jiz fadu
let pouziva automatické vyhodnocovani pomoci pfipravené sady vstup-
nich dat. Vsechny provadéné testy maji dobu vypoctu omezenu pfedem
znadmym casovym limitem a jednotliva testovaci vstupni data maji riz-
nou velikost a riznou slozitost, coz dohromady umoziiuje bodové rozlisit
programy podle kvality pouzitého algoritmu. Za kazdou tlohu lze zis-
kat maximalné 100 bodi, nejéastéji byva pfi hodnoceni zaddno 20 sad
testovacich dat 5 bodech. U nékterych soutéznich iloh se hodnoti také
dosazeni optimality nalezeného feSeni. Za nalezeni nejlepsiho mozného
feSeni soutézici dostane pro dand testovaci data plny pocet bodt, zatimco
o néco horsi feseni je hodnoceno méné body podle pfedem znamého klice
(v hodnoceni nékterych tloh se tak objevuji i desetiny bodi).
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Patnacté mezinarodni olympiddy v informatice se ztcastnilo 265 sou-
tézicich studentt ze 69 zemi celého svéta. Po¢tem zGcastnénych zemi tak
IOI jiz dostihla ostatni mezindrodni predmétové olympiddy stiedosko-
14kt a jeji velikost a vyznam rok od roku stale nariista. Ceskou repub-
liku reprezentovalo ¢ty¥élenné druzstvo ve slozeni Pavel CiZek (absolvent
Dvordkova gymnéazia v Kralupech nad Vltavou), Tomds Gavenciak (stu-
dent gymnézia M. Kopernika v Bilovci), Jan Kadlec (absolvent gymnézia
Ch. Dopplera v Praze 5) a Milan Straka (absolvent gymnézia ve Strakoni-
cich). Nasi soutézici byli vybréani na zékladé vysledk dosaZzenych v celo-
statnim kole kategorie P (programovani) 52. roéniku Matematické olym-
piaddy. Vedenim druzstva byli povétreni doc. Pavel Topfer a RNDr. Daniel
Kral, oba z Matematicko-fyzikalni fakulty Univerzity Karlovy v Praze.

Na mezinarodni olympiadé v informatice se udéluji ocenéni podle po-
dobného klice, jaky se pouziva naptiklad také na mezinarodni matema-
tické olympiadé. Nejvyse polovina soutézicich obdrzi nékterou z medaili,
pricemz zlaté, stfibrné a bronzové medaile se déli pfiblizné v poméru
1:2: 3. Na letos$ni I0I 2004 bylo rozdéleno celkem 132 medaili, z toho
24 zlatych, 45 stfibrnych a 63 bronzovych. O velké vyrovnanosti svétové
$picky svédéi skutecnost, Ze o udélenych 24 zlatych medaili se podélili
stati ziskalo po dvou zlatych medailich (Korea, USA, Rumunsko, Svédsko
a Polsko), zddné zemé& nem4 t¥i zlaté medaile.

Nasi studenti si vedli v soutézi velmi dobfe, ziskali jednu zlatou, jednu
stfibrnou a jednu bronzovou medaili. Podobného vysledku, tj. jedné zla-
té, jedné stiibrné a jedné bronzové medaile, dosdhla také reprezentace
Slovenska. Mezindrodni olympidda v informatice je podle svych stanov
soutézi jednotlivcl, zadné oficidlni poradi zacCastnénych zemi neni vy-
hlaSovano a neni ani stanoveno, podle jakého kritéria by se mélo takové
poradi uréovat (zda podle poétu ziskanych medaili, sou¢tu bodd vsech
reprezentantii prislu$né zemé & napiiklad podle souctu poradi ve vy-
sledkové listing). P¥i jakémkoliv zptsobu poéitani by se naSe vyprava
umistila kolem 12.-13. mista, coz je velmi dobry vysledek. Nasledujici
tabulka shrnuje vysledky vSech ¢eskych studentd v soutézi:

14. Milan Straka 375,5 boda  zlata

43. Pavel Cizek 306,1 boda  stfibrné
111. Toméa$ Gavenciak 195,0 bodd  bronzova
146. Jan Kadlec 162,5 boda -
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Pristi, v poradi Sestndctd mezindrodni olympidda v informatice
I0I 2004 se uskute¢éni v Athénach v prvni poloving zafi 2004. Pora-
datelé z Recka jiz nyni pozvali vechny zemé zidastnéné na IOI 2003,
aby se zucastnily i pristiho ro¢niku soutéze. V roce 2004 se bude konat
také 11. ro¢nik Stredoevropské olympiddy v informatice CEOI 2004, a to
v prvni poloviné Cervence ve VarSavé. Rovnéz od polskych poradateli
jsme obdrzeli pozvani k Gcasti.

Texty soutéZnich tloh

1. Wisconsinské kravy (interaktivni loha)

Kravy farmére Johna se volné pohybuji mezi N (1 £ N < 200) pastvi-
nami, které jsou ocislovany od 1 do N. Pastviny jsou navzijem oddéleny
lesem. Kravy udrzuji systém cest mezi pastvinami tak, aby kdykoliv bylo
mozné piejit po udrzovanych cestdch mezi libovolnymi dvéma pastvina-
mi. Po v8ech cestach je mozné chodit obéma sméry.

Kravy ve skutecnosti cesty samy nevytvareji. Misto toho pouzivaji
stezky lesni zvére. Pro kazdy tyden si vyberou nékteré ze stezek, které
znaji, a ty pak udrzuji jako cesty mezi pastvinami.

Kravy jsou zvirata od pfirody velmi zvédava. Na zacatku kazdého
tydne objevi jednu novou stezku. Ze stezek, které znaly z drivéjska,
a z noveé objevené stezky, pak vyberou mnozinu stezek, které budou v nad-
chéazejicim tydnu udrzovat jako cesty. Vybéry stezek pro jednotlivé tydny
jsou navzdajem zcela nezavislé.

Stezku, kterad je udrzovana, mohou kravy ihned pouzivat jako cestu
mozné pouzivat jako cestu. Kravy chtéji udrzovat vidy takovou soustavu
cest, aby soucet délek udrzovanych cest byl nejmensi mozny.

Stezky lesni zvére byvaji klikaté. Proto muZe existovat vice stezek
raznych délek, které spojuji stejnou dvojici pastvin. I kdyz se dvé cesty
v lese kiizi, kravy vzdy pokracuji v chizi po ptivodné zvolené cesté.

Vasim tkolem je pro kazdy tyden urcit nejmensi mozny soucet délek
udrZovanych cest. Va§ program bude postupné dostavat informace o no-
vych stezkich objevenych kravami. Po nacteni popisu kazdé nové stezky
musi va$ program vypsat optimalni soucet délek udrzovanych cest.

Vstup: standardni vstup (standard input)
> Prvni fadek obsahuje dvé cela ¢isla N a W oddélend jednou mezerou.
N uréuje poCet pastvin (1 £ N £ 200) a W udava pocet tydni,

v nichZ ¢innost krav sledujeme (1 £ W < 6000).
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> Pro kazdy tyden pak nasleduje samostatny radek, ktery popisuje nové
objevenou stezku. Tento fadek je tvofen tfemi celymi ¢isly oddélenymi
jednou mezerou, kterd udavaji ¢isla pastvin spojenych novou stezkou
a jeji délku (1...10000). Kazd4 stezka spojuje dvé riizné pastviny.

Viystup: standardni vystup (standard output)

Popis dalsi stezky nelze nacist, dokud vas program nevypiSe feSeni pro
soucasnou mnozinu stezek. Pro kazdy tyden, vas program vypiSe jedno
celé ¢islo na samostatném radku: Toto ¢islo udéva nejmensi mozny soucet
délek cest, které je tfeba udrZovat, aby byla zachovéna propojenost viech
pastvin. Pokud takovy systém cest neexistuje, program vypise ¢islo -1.

Program musi skon¢it po vypséni feSeni pro posledni sledovany tyden.

Priklad komunikace:

Vstup | Vystup | Vysvétleni
4 6
1210
-1 Z4dn4 stezka nespojuje pastvinu ¢. 4 s ostatnimi
pastvinami.
138
-1 Z4dn4 stezka nespojuje pastvinu &. 4 s ostatnimi
pastvinami.
323
-1 Z4dn4 stezka nespojuje pastvinu &. 4 s ostatnimi
pastvinami.
143
14 Systém cest je tvoren stezkami 14 3,138 a3 2 3.
136
12 Systém cest je tvoren stezkami 14 3,136 a3 2 3.
212
8 Systém cest je tvoren stezkami 14 3,212a3 2 3.
konec programu

Omezeni: | Casovy limit |1s CPU
Pamétovy limit | 64 MB

Hodnoceni. Za kazdy testovaci vstup obdrZite plny pocet bodd, po-
kud v4as program vypiSe spravny vystup. V opa¢ném piipadé je testovaci
vstup hodnocen 0 body.

2. Ukradeny kéd
Spole¢nost Racine Business Networks (RBN) se rozhodla zazalovat
spoletnost Heuristic Algorithm Languages (HAL). RBN tvrdi, ze HAL
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vykradla &ast jejtho zdrojového kédu RBN UNIX™ g zaglenila ho do
svého opera¢niho systému HALnix.

Obé spoleénosti RBN a HAL pouzivaji stejny programovaci ja-
zyk. Kazda instrukce je uvedena na samostatném radku a vSechny
maji jednotny formét: STOREA = STOREB + STOREC, kde STOREA, STOREB
a STOREC jsou jména proménnych. Jméno prvni proménné zacind v prv-
nim sloupci, pak néasleduje jedna mezera, rovnitko a dalsi mezera.
Poté je uvedeno jméno druhé proménné nasledované jednou mezerou,
plusem a daldi mezerou. Radek je ukonden jménem tieti proménné.
Jedna proménna se muize na témze fadku vyskytovat nékolikrat. Jména
proménnych jsou tvofena 1 az 8 velkymi pismeny anglické abecedy
(A,...,7Z).

RBN tvrdi, Ze programéatoii spolecnosti HAL okopirovali souvislé
kusy jejtho kédu a provedli pouze nésledujici zmény, aby zamaskovali
svij odporny zlo¢in: Programatoii HAL vzdy vzali nékolik po sobé né-
sledujicich fadkid z kédu firmy RBN a v ném zménili jména nékterych
proménnych. Nikdy se vSak nestalo, Ze by dvé rizné proménné mély po
prejmenovani totéz jméno. Programatori HAL také obcas zaménili pofadi
sCitancti na pravé strané instrukce. Tedy instrukci STOREA = STOREB +
STOREC nahradili instrukci STOREA = STOREC + STOREB. Poradi jednot-
livych instrukci vSak ztistalo zachovano.

Vasim tkolem je v programu spole¢nosti HAL najit nejdelsi souvisly
kus kédu, ktery mohl byt vykraden z programu spole¢nosti RBN vyse
popsanym zpusobem. Odpovidajici si kusy kédu mohou v kazdém z pro-
gramt zafinat na rtznych radcich.

Vstupni soubor: code.in

> Prvni fddek obsahuje dvé celd ¢isla R a H oddélend jednou mezerou
(1 £ R<1000; 1 £ H £1000). R udava pofet radki programu
spole¢nosti RBN a H programu spole¢nosti HAL.

> Nasledujicich R radkt obsahuje kéd programu spole¢nosti RBN.

> Dalsich H radkua pak obsauje kéd programu spole¢nosti HAL.

Priklad vstupniho souboru: 4 3

RA = RB + RC
RC =D + RE
RF = RF + RJ
RE = RF + RF
HD = HE + HF
HM = HN + D
HN = HA + HB
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Vistupni soubor: code.out

Vystupni soubor musi byt tvoren jedinym fadkem obsahujicim jedno
celé ¢islo. Toto ¢islo udava pocet fadku nejdelsiho souvislého kusu kédu,
ktery mohl byt vykraden z programu spole¢nosti RBN.

Priklad vystupniho souboru: 2

Radky 1 a 2 programu spole¢nosti RBN odpovidaji fadkéim 2 a 3
programu spole¢nosti HAL (RAHM, RB — D, RC — HN, D — HA,
RE — HB). Z4dné t¥i po sobé& jdouci fa4dky programu spole¢nosti RBN
neodpovidaji tfem faddkim programu spole¢nosti HAL.

Omezeni: | Casovy limit [2s CPU
Pamétovy limit | 64 MB

Hodnoceni. Za kazdy testovaci vstup obdrzite plny pocet bodi, po-
kud va$ program vytvori spravny vystupni soubor. V opa¢ném pifipadé
je testovaci vstup hodnocen 0 body.

3. Posloupnost (open-data tloha)

Vasim tkolem je vytvofit program pro pocita¢ TOM. Pocita¢ TOM
mé 9 pamétovych registri, jejichz hodnoty lze nastavit na zacatku vy-
poctu. Registry jsou odislovany ¢isly od 1 do 9 a kazdy z nich muze
uchovavat jedno celé ¢islo z intervalu 0. ..1000. Pocita¢ mé implemento-
vany pouze néasledujici dvé instrukce:

S i j | Do registru j pfifadi hodnotu registru ¢ zvySenou o 1.
Cisla i a j mohou byt stejna.
Pi Vytiskne na vystup hodnotu ulozenou v registru .

Program pocitace TOM je tedy tvofen pocateénim nastavenim hodnot
registri a posloupnosti instrukci. Vagim tkolem je vytvorit pro zadané
celé ¢islo N (0 £ N £ 255) program, ktery vypiSe posloupnost &i-
sel NN —1,N — 2,...,0. SnaZte se, aby pocet po sobé nasledujicich
S-instrukci ve vysledném programu byl nejmensi mozny.

Priklad programu pro pocita¢ TOM pro N = 2 a pribéh jeho vypo-
ctu:

Instrukce Obsah registri Vystup
123456789

Pocatecni hodnoty {0 2 0 0 0 0 0 0 0

P2 020000000 (2

S13 021000000

P 3 0210000001

P1 0210000000
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Testovaci data jsou ocisloviana od 1 do 16. Vstupni soubory, které je
obsahuji, si mizete stdhnout ze soutézniho serveru.

Format vstupnich soubori:

> Prvni fadek obsahuje jedno celé ¢islo K, které udava poradové ¢islo
testovacich dat.

> Druhy radek obsahuje ¢islo V.
Priklad vstupniho souboru: 1

Format vystupnich soubori:

Prvni fadek vystupniho souboru musi obsahovat fetézec ,FILE
reverse K kde K je poradové ¢islo testovacich dat.

Druhy fadek mé obsahovat 9 celych ¢isel navzajem oddélenych me-
zerami. Tato ¢isla predstavuji pocatecni hodnoty ulozené v registrech
(prvni v registru 1, druhé v registru v 2, atd.).

Zbytek vystupniho souboru obsahuje kéd programu pro pocitacé
TOM. Kazdy radek obsahuje pravé jednu instrukei. Instrukce na posled-
nim fadku programu by méla vytisknout na vystup ¢islo 0. Kéd programu
by mél byt ve tvaru jako v nasledujicich ptrikladech.

Priklad vystupu #1 Priklad vystupu #2
(G4st bodi): (plny pocet bodi):
FILE reverse 1 FILE reverse 1
020000000 021000000
P2 P 2

S13 P 3

P 3 P1

P1

Hodnoceni. Pocet bodu, které obdrzite za testovaci data, zavisi na
spravnosti a optimalité odevzdaného reseni.

Spravnost: 20 %

Program pocitace TOM je korektni, pokud nevykond vice nez 131
po sobé nasledujicich S-instrukei a zaroven na vystup vypiSe postupné
N +1 cisel v poradi od N do 0. Pokud béhem vypoctu programu nékterd
S-instrukce zpisobi preteeni registru, pak je program povazovan za ne-
korektni.

Optimalita: 80 %

Ukolem je minimalizovat nejvétsi poet po sob& nasledujicich S-in-
strukci. Optimalita odevzdaného programu je porovnivéna s nejlepSim
programem pro dany testovaci vstup, ktery je k dispozici.
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4. Neni krava jako krava (interaktivni dloha)

Farmar John chce ustdjit svych N (1 £ N £ 50) krav. Kravy jsou
ocislovany celymi ¢isly od 1 do N. Bohuzel jsou si navzdjem velmi po-
dobné a neni jednoduché rozlisit je mezi sebou. Protoze je kazda kréva
zvykl4 na své misto ve staji, musi byt John schopny rychle je rozeznévat.

Kravy lze rozeznavat podle P (1 £ P < 8) rozliSovacich znaki,
napi. podle barvy visacky v uchu. Jednotlivé rozliSovaci znaky si pro
prehlednost oéislujeme &isly od 1 do P. Kazdy z rozliSovacich znaki na-
byva u kazdé kravy jedné ze tfi moznych hodnot, které pro jednoduchost
oznacme pismeny »X«, »Y« a »Z«. Muzete predpokladat, ze kazdé dvé
kravy se lisi v aspon jednom znaku.

Vasim tkolem je napsat program, ktery farmari Johnovi pomiZze
rozpoznat zvolenou kravu z jeho stdda. Program muze polozit farméari
Johnovi nejvyse 100 otazek typu: ,Patii hodnota rozliSovaciho znaku
s poradovym ¢islem 7' do mnoziny S7“, kde S je podmnoZina mnoZiny
{X,Y, Z}. Na zéklad& odpovédi na poloZené otazky vas program pak uréi
Cislo kravy. Snazte se, aby pocet otazek potfebnych pro urceni kravy byl
co nejmensi.

Vstupni soubor: guess.in

> Prvni fadek obsahuje dvé cela ¢isla N a P oddélend jednou mezerou.
N (1 £ N £50) je pocet krav a P (1 £ P < 8) je pocet rozlisovacich
znakd.

> Kazdy z nasledujicich NV fadki popisuje jednu kravu ze stada farmare
Johna. Druhy fadek souboru popisuje kravu s pofadovym ¢&islem 1,
treti radek kravu s Cislem 2, atd. Kazdy z téchto radku obsahuje
P pismen navzajem oddélenych vzdy jednou mezerou. Prvni pismeno
na fadku udéva hodnotu rozliSovaciho znaku s poradovym ¢islem 1,
druhé znaku s ¢islem 2, atd.

Priklad vstupniho souboru: 4 2
X Z
XY
Y X
YY

Interaktivni komunikace: standardni vstup a vystup (standard input
and output)

Komunikace vaSeho programu s farmarem Johnem probiha pres stan-
dardni vstup a vystup.
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Program polozi otdzku vypsadnim radku na standardni vystup v na-
sledujicim formatu: Prvnim znakem fadku je velké pismeno Q néasledo-
vané jednou mezerou, pofadovym ¢islem rozliSovactho znaku, na ktery se
pté, a jednou nebo vice jeho hodnotami. VSechny hodnoty jsou oddéleny
na fadku mezerami. Napt. ,Q 1 Z Y“ reprezentuje otdzku ,,Je hodnota
prvniho rozliSovaciho znaku dané kravy z mnoziny {Z,Y}?* Cislo roz-
liSovaciho znaku musi byt z intervalu 1... P. KaZzda z moZznych hodnot
znaku miZze byt uvedena v jedné otdzce nejvyse jednou a musi byt re-
prezentovana jednim z pismen »X«, »Y« a »Z«.

Poté, co program poloZi otdzku, nacte odpovéd ze standardniho vstu-
pu. Odpovéd je reprezentovéna &islem 1 nebo 0: Cislo 1 znamens, Ze
rozliSovaci znak mé jednu z hodnot uvedenych v otézce, zatimco &islo 0
znamend opa¢nou odpovéd.

Nakonec va$ program vypiSe fadek s poradovym ¢islem kravy. Tento
fadek musi zadinat pismenem »C«, po kterém ndsleduje jedna mezera
a poradové ¢islo kravy.

Priklad komunikace (pro vySe uvedeny vstupni soubor): -
Vstup | Vystup | Vysvétleni
Q1X7Z
0 Mize byt krava 3 nebo 4.
Q2Y
1 Je to krava 4!
C 4

program skoncil

Omezeni: | Casovy limit 1s CPU
Pamétovy limit | 64 MB

Hodnoceni. Sprdvnost: 30 % bodi

Za dany testovaci vstup ziskdte body za korektnost, pokud vas pro-
gram polozi nejvyse 100 otazek, spravné urci poradové ¢islo kravy a v oka-
mziku ukonceni vypoctu existuje jedind krava, jejiz rozliSovaci znaky jsou
konzistentni s odpovédmi na otazky programu.

Pocet poloZenych otdzek: 70 % bodu

Zbyvajici body ziskate podle poctu polozenych otazek. Rozhodujici je
pocet polozenych otdzek v nejhor$im piipadé (podle zdkona schvalnosti
viechny piipady budou ty nejhordi mozné). Cast bodi bude pFidélena
i feSenim, jejichZ pocet otdzek bude blizky optimu.
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5. Roboti

Stali jste se (ne)Stastnymi majiteli dvou robott, ktefi jsou zrovna
umisténi ve dvou bludiStich. Kazdé z bludist je obdélnikového tvaru.
Predstavujme si kazdé z nich jako étvereCkovou sit tvorfenou jednotli-
vymi poli. Pole se soufadnicemi (1, 1) je umisténo v levém hornim rohu
bludisté.

V i-tém bludisti (¢ = 1,2) se nachazi G; strazct (0 £ G; < 10), ktefi
se snazi chytit roboty. Kazdy ze strazct se stile pohybuje po primé trase
tam a zpét. Trasa strazce je tvofena nékolika sousednimi poli bludisté. Va-
Sim tkolem je napsat program, ktery nalezne posloupnost piikazi, které
vyvedou oba roboty z bludisté, aniZ by byli chyceni nékterym ze strazcu.

Na zacatku kazdé minuty vyslete stejny prikaz obéma robotim. Pyi-
kaz uddva jeden ze Ctyf smért: nahoru, doli, doprava, doleva (north,
south, east, west). Robot se pak posune v zadaném sméru o jedno pole,
pokud mu v pohybu nebréni zed bludisté. Jestlize je v daném sméru zed
bludisté, robot Zadny pohyb v nésledujici minuté nevykond, ale instrukce
je povazovana za korektni. Robot opusti bludisté, pokud vykond krok
vedouci mimo obdélnikovou sit popisujici bludi§té. Po opusténi bludisté
robot dalsi prikazy ignoruje.

Kazdy ze strazct se na zacatku kazdé minuty posune o pravé jedno
pole. Vychozi pozice a natoceni strazcti jsou zadany na vstupu programu.
Strazce nejprve vykona tolik kroku, kolik je pocet poli jeho trasy zmen-
Seny o jedna. Na poslednim poli se strazce oto¢i a zacne se pohybovat
zpét ke svému vychozimu poli, kde se opét oto¢i o 180° a takto hlidkuje,
dokud oba roboti neopusti sva bludisté.

Trasa kazdého strazce je zvolena tak, Ze neprotina zed bludisté a ani
nevychézi z bludi§té ven. Trasy ruznych strazci se mohou protinat, ale
jejich pohyb je zvolen tak, Ze se nikdy nesrazi, tj. nikdy nebudou dva
strdzci na konci nékteré minuty stat na stejném poli a ani si béhem
nékteré z minut nevymeéni vzdjemné své pozice. Pocatecni pozice strazcu
jsou zvoleny tak, Ze se zadny z nich nenachézi na poli, kde stoji robot.

Strazce chyti robota, pokud se nachazi na konci nékteré minuty na
stejném poli jako robot nebo kdyz si béhem nékteré z minut s robotem
vymeéni svou pozici.

Va$ program obdrzi popis dvou bludist, kazdé o rozmérech nejvyse
20 x 20 poli, spolu s pocateénimi pozicemi robotl a trasami jednotlivych
strazct. Ukolem programu je najit posloupnost instrukei, spole¢nou pro
oba roboty, podle které oba roboti opusti bludisté, aniz by byli chyceni
nékterym ze strazcl. Snazte se, aby ¢as, kdy posledni robot opusti své

182



bludisté, byl co nejmensi. Cas, kdy prvni z robott opusti bludistg, je ne-
podstatny. Minimalizujte tedy Cas, ktery uplyne od zafatku do okamziku,
kdy se oba roboti nachéizeji mimo své bludisté.

Vstupni soubor: robots.in
Vstupni soubor je tvofen dvéma ¢astmi. Prvni z nich popisuje prvni
bludisté, pozici robota v ném a trasy strazci. Podobné druhé ¢ast sou-
boru popisuje druhé bludisté.
> Prvni fadek obsahuje dvé cela ¢isla R; a C; oddélend jednou mezerou.
R; je pocCet fadki prvniho bludisté a C; je pocet jeho sloupcit.
> Nasleduje R; fadkd, z nichz kazdy obsahuje C; znaki. Tyto fadky
tvofi mapu bludisté. Pocatecni pozice robota je oznaCena pismenem
»X«, znak » .« predstavuje volné pole a znak »#« zed. V popisu blu-
disté je pravé jedno pismeno »X«.
> Dal3i fddek obsahuje celé éislo G; (0 £ G; £ 10). Toto &slo udava
pocet strazct v prvnim bludisti.
> Nasleduje G, fadku, z nichz kazdy popisuje pocateéni pozici jednoho
ze strazci. Kazdy z téchto radkl obsahuje tfi cela ¢isla a jeden znak
navzdjem oddélené mezerami. Prvni dvé éisla predstavuji fadkovou
a sloupcovou souradnici strazce, tfeti ¢islo pocet poli jeho trasy a po-
sledni znak pocate¢ni nastaveni sméru pohybu strizce. Polet poli
tvoricich trasu strazce je 2, 3 nebo 4. Posledni znak na fadku je jedno
z pismen »N«, »S«, »E«, »W« (north, south, east, west — nahoru, dold,
doprava, doleva).
Vstupni soubor poté obsahuje popis druhého bludi§té ve stejném
tvaru.

Priklad vstupniho souboru: 5 4
####
#X.#
#..#
LW #
##.#
1
432W
4 4
#iHH
#iss
#X.#
#i##
0
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Obr. 43

Vystupni soubor: robots.out

Prvni faddek vystupniho souboru musi byt tvofen pravé jednim ce-
Iym éislem K (K < 10000), které udava délku nalezené posloupnosti
instrukci. Je zaruceno, Ze pokud existuje posloupnost instrukci, kterd vy-
vede oba roboty z bludist, potom existuje i takova posloupnost s nejvyse
10000 instrukcemi. Nasledujicich K fadkid bude obsahovat vami naleze-
nou posloupnost instrukci. Kazdy z téchto radku je tvofen jednim znakem
z mnoziny »N«, »S«, »E«, »W«. Pokud zddné takova posloupnost instrukeci
neexistuje, vystupni soubor bude obsahovat jediny fadek s ¢islem -1.

Oba roboti se musi po provedeni posloupnosti instrukci uvedené ve
vystupnim souboru nachazet mimo bludisté. Posledni instrukce nalezené
posloupnosti musi byt pravé ta, po niz posledni robot (nebo oba najed-
nou) opusti bludisté.

Pokud existuje vice optimalnich feSeni, miZete vypsat jedno libovolné
z nich.

Priklad vystupniho souboru:

Omezeni: [ Casovy limit [2s CPU
Pamétovy limit | 64 MB
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Hodnoceni. Za testovaci vstup, pro ktery neexistuje feSeni, lze ziskat
pouze plny nebo nulovy pocet bodt. Ostatni testovaci vstupy budou
hodnoceny, jak je popsano nize.

Sprdvnost: 20 % bodi

Body za spravnost ziskate, pokud tvar vystupniho souboru odpovida
popisu uvedenému v zadani této tlohy, nalezena posloupnost instrukci ma
délku nejvyse 10000, po jejim provedeni se oba roboti nachazeji mimo sva
bludisté a posledni instrukce nalezené posloupnosti zptisobi, Ze alespon
jeden robot opusti své bludisté.

Optimalita: 80 % bodi

Body za optimalitu ziskate, pokud lze vystup povazovat za spravny
dle minulého odstavce a nalezena posloupnost instrukci ma nejmensi moz-
nou délku. V opaéném piipadé neziskavate za optimalitu zadné body.

6. Ohrada

Farmai Dan se rozhlizi po ohradé kolem svého ¢tvercového pole o roz-
mérech N X N metrt (2 < N < 500000), jehoZz mapu mate k dispozici.
Protilehlé rohy ohrady maji na mapé soufadnice (0, 0) a (N, N) a hranice
pole jsou rovnobézné s X-ovou a Y-ovou osou.

Pletivo ohrady je upevnéno na mnoha ktlech. V kazdém rohu je umis-
tén jeden kul a podél kazdé strany pole jsou kily umistény vzdy v roze-
stupech po 1 metru. Celkem tedy ohrada obsahuje 4N kula. Kiily jsou
svislé a jejich primér povazujeme za nulovy. Dan chce urcit, kolik kula
uvidi ze zvolené pozice uvniti svého pole.

Pole si miZeme predstavovat jako rovinu, na které se nachdzi R
(1 £ R £ 30000) skal, které Danovi omezuji vyhled. Skily maji podobu
kolmych hranolt, jejichz podstavy maji tvar konvexnich mnohotuhelnik.
Skély jsou na poli umistény tak, Ze stoji na své podstavé. Skaly se navza-
jem neprotinaji ani nedotykaji a ani se nedotykaji ohrady. Pozice farmare
Dana je zvolena tak, Ze se nedotykd ani jedné ze skal nebo ohrady a Dan
ani na zadné skale nestoji.

V&s$ program obdrzi rozméry pole, pozici farméafe Dana, umisténi
a tvar jednotlivych skal. Vasim tkolem je spoditat, kolik kilu lze ze
zadané pozice vidét. Farmar se rozhlizi do vSech stran, tj. ,vidi“ cely
interval 360°. Nevidi vSak ty kily, mezi nimiz a jim se nachédzi néktera ze
skal. Pokud vrchol podstavy skaly lezi pfesné na spojnici kiilu a pozice
farméfe Dana, pfedpokladame, Ze Dan tento kil také nevidi.

Vstupni soubor: boundary.in
> Prvni fadek souboru obsahuje dvé cela ¢isla N a R oddélena mezerou.
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N (2 £ N £500000) je délka jedné strany pole a R (1 < R < 30000)
je celkovy pocet skal, které se nachézeji na poli.
> Dalsi fadek vstupniho souboru obsahuje dvé cela ¢isla X a Y oddé-
lend jednou mezerou. X a Y udavaji soufadnice pozice farméafe Dana

uvnitf jeho pole.

> Zbytek vstupniho souboru tvofi popis R skal, které se nachézeji na

poli:

o> Popis i-té skaly zac¢ind fadkem obsahujicim ¢islo p; (3 < p; < 20),

které predstavuje pocet vrcholi podstavy této skaly.

0> Nasleduje p; fadki, z nichz kazdy obsahuje dvé celd ¢isla X a Y
oddélena jednou mezerou. Tato ¢isla udavaji soufadnice vrchold
podstavy skaly proti sméru pohybu hodinovych rucicek.

Priklad vstupniho souboru:
100 1

60 50

5

70 40

75 40

80 40

80 50

70 60

A

Farméai Dan

Y

(0,0)

X
Obr. 44

(100, 100)

PovSimnéte si, ze podstava skaly obsahuje tfi kolinearni vrcholy:

(70, 40), (75,40) a (80, 40).

Vystupni soubor: boundary.

out

Vystupni soubor musi byt tvofen jednim fadkem obsahujicim jedno
celé cislo. Toto ¢islo udava pocet kalt, které farmar vidi ze své pozice.

Priklad vystupniho souboru:

319

Omezeni: | Casovy limit

1s CPU

Pamétovy limit

64 MB

Hodnoceni. Za kazdy testovaci vstup obdrzite plny pocet bodi, po-
kud vas program vytvofi spravny vystupni soubor. V opac¢ném pfipadé
je testovaci vstup hodnocen 0 body.
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