
52. ročník matematické olympiády na středních školách

52. ročník matematické olympiády na středních školách. Zpráva o řešení úloh ze
soutěže konané ve školním roce 2002/2003. 44. mezinárodní matematická
olympiáda. 15. mezinárodní olympiáda v informatice. (Czech). Praha: Jednota
českých matematiků a fyziků, 2004.

Persistent URL: http://dml.cz/dmlcz/405053

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to
digitized documents strictly for personal use. Each copy of any part of this document
must contain these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/405053
http://dml.cz

52. ročník matematické olympiády
na středních školách

M^
1\

c\ \
\
\

Qx\ \
\\0\ \

\ \
\\\ 4

A \ \
w \ \

\
\ в\
\\

\ \
\ \
■\\

w
w

N

у&'&ЖЖ Р*ШёЖ''»<ТSká?

4;4W

т

..

■8
*'.г

. ■' .

'ř: *у«*-5а", ■

5?

i\$

- £ 'li

.•: ; “. ífe *&j3 ,л &Ч ,

•
, r '»•',* '

PADESÁTÝ DRUHÝ ROČNÍK
MATEMATICKÉ

OLYMPIÁDY
NA STŘEDNÍCH ŠKOLÁCH

Zpráva o řešení úloh ze soutěže konané ve školním roce 2002/2003

44. MEZINÁRODNÍ MATEMATICKÁ OLYMPIÁDA

PATNÁCTÁ MEZINÁRODNÍ OLYMPIÁDA V INFORMATICE

JEDNOTA ČESKÝCH MATEMATIKŮ A FYZIKŮ PRAHA

Za přispění spolupracovníků zpracovali
doc. RNDr. Leo Boček, CSc., RNDr. Karel Horák, CSc.,
RNDr. Tomáš Pitner, Dr., doc. RNDr. Jaromír Šimša, CSc.,
RNDr. Jaroslav Švrček, CSc., doc. RNDr. Pavel Topfer, CSc.
RNDr. Jaroslav Zhouf, PhD.

© Karel Horák, editor, 2004

ISBN 80-7015-960-X

Obsah

O průběhu 52. ročníku matematické olympiády
Nejúspěšnější řešitelé II. kola MO v kategoriích А, В, С a P
Výsledky celostátního kola 52. ročníku MO kategorie A

Výsledky celostátního kola 52. ročníku MO kategorie P

Kategorie C
Texty úloh
Řešení úloh

Kategorie В
Texty úloh
Řešení úloh

Kategorie A
Texty úloh
Řešení úloh

Kategorie P
Texty úloh
Řešení úloh

Přípravná soustředění před 44. MMO
Úlohy zadané na přípravném soustředění
Mezinárodní střetnutí česko-polsko-slovenské
Texty soutěžních úloh
Řešení úloh

44. mezinárodní matematická olympiáda
Texty soutěžních úloh
Řešení úloh

Desátý ročník Středoevropské olympiády v informatice
15. mezinárodní olympiáda v informatice
Texty soutěžních úloh

5
9

26
27

28
28
31

45
45
48

66
66
70

97
97

114

146
147

150
151
152

157
160
161

171

173
175

3

O průběhu 52. ročníku matematické olympiády

Stejně jako v předešlých letech byly hlavními pořadateli 52. ročníku ma-
tematické olympiády Ministerstvo školství, mládeže a tělovýchovy ČR,
Jednota českých matematiků a fyziků a Matematický ústav akademie věd
ČR. Organizací soutěže je pak pověřen Ústřední výbor MO, jehož před-
šedou je již druhým rokem doc. dr. Jaromír Šimša, CSc. O organizaci
kategorií A, B, C, Z5-Z9 a P se starají místopředsedové ÚV MO — po
řadě dr. Jaroslav Švrček, CSc., doc. dr. Pavel Tlustý, CSc., a doc. dr. Pa-
vel Topfer, CSc. Funkci tajemníka ÚV MO vykonával i v tomto ročníku
soutěže dr. Karel Horák, CSc.

Výběrem úloh pro jednotlivá kola každého ročníku soutěže jsou pově-
řeny dvě úlohové komise; jedna pro úlohy v kategoriích А, В, C a druhá
pro úlohy v kategoriích Z. Obě komise se scházejí pravidelně dvakrát bě-
hem školního roku (vždy v listopadu a v květnu) tak, aby včas připravily
všechny podklady pro zdárný průběh následujícího ročníku matematické
olympiády. Úlohy kategorie P připravili pro tento ročník soutěže dokto-
randi MFF UK v Praze Zdeněk Dvořák, Martin Mareš, Jan Kára a Daniel
Král’.

Na tomto místě dlužno podotknout, že 52. ročník matematické olym-
piády se rozbíhal poněkud těžkopádněji než ročníky předešlé. Bylo to
způsobeno především pozdním rozesláním letáků se zadáními úloh a také
komentářů к úlohám I. kola soutěže. Učitelé matematiky tak měli první
dva měsíce nového školního roku к dispozici pouze zadání úloh zveřejněná
v časopise Matematika-fyzika-informatika.

Ústřední výbor matematické olympiády se sešel během tohoto ročníku
na dvou jednodenních zasedáních, a to v Praze (13. prosince 2002) a po-
druhé u příležitosti celostátního kola kategorií A a P v Liberci (31. března
2003). Na obou zasedáních byly kromě pravidelných bodů programu ře-
šeny i některé výhledové otázky týkající se příštích ročníků matematické
olympiády.

III. (celostátní) kolo 52. ročníku matematické olympiády (MO) v ka-
tegoriích A a P se uskutečnilo v termínu 30. března-5. dubna 2003 v Li-
bérci. V tomto ročníku se jeho organizace ujala liberecká pobočka JČMF

5

ve spolupráci s Gymnáziem F. X. Saldy a Technickou univerzitou v Li-
bérci, v jejichž objektech se také konala vlastní soutěž. Všichni soutěžící
(44 v kategorii A a 30 v kategorii P) a další pozvaní hosté byli ubytováni
hotelovém domě Aréna poblíž zimního stadionu.

Oficiální zahájení soutěže proběhlo v neděli 30. března v prostorách
TU v Liberci za přítomnosti dr. Jaroslava Miillnera, náměstka ministryně
školství mládeže a tělovýchovy ČR, doc. dr. Jaroslava Vilda, CSc., pro-
rektora TU v Liberci, doc. dr. Karla Segetha, CSc., ředitele MÚ AV ČR,
a dalších významných představitelů společenského života v Libereckém
kraji. (Na závěr této zprávy si můžete připomenout brilantní proslov
předsedy ÚV MO.)

Pořadatelé zajistili i letos pro soutěžící v obou kategoriích zajímavý
doprovodný program. Vždy druhý soutěžní den navštívili soutěžící každé
z kategorií radnici a vystoupili na její věž, poté si mohli vybrat mezi ná-
vštěvou liberecké zoo a blízké botanické zahrady. Soutěžící kategorie A
měli možnost zhlédnout představení opery G. Rossiniho Lazebník sevill-
ský v Divadle F. X. Saldy.

Hned následující týden, tj. 7.-11. dubna, proběhlo v Kostelci nad Čer-
nými lesy výběrové soustředění před 44. MMO. Na toto soustředění bylo
pozváno deset nejlepších soutěžících III. kola kategorie A. Na základě je-
jich výsledků na tomto soustředění a dále na základě výsledků ve II. a ve
III. kole bylo šest nejlepších vybráno do českého reprezentačního druž-
štva pro 44. MMO. O výsledcích našich soutěžících na 44. mezinárodní
matematické olympiádě a na 15. mezinárodní olympiádě v informatice se
dočtete v příslušných kapitolách této ročenky.

Pro nejlepší řešitele krajských kol v kategoriích В a C uspořádal tJV
MO v termínu 3.-10. června 2003 tradiční soustředění v Jevíčku. Zú-

častnilo se ho 40 žáků z celé republiky. Podobně pro nejlepší řešitele
kategorie A (všichni pak byli mezi účastníky celostátního kola) uspořá-
dal ÚV MO 14.-20. září 2003 v Janských Lázních výběrové soustředění
před 45. MMO.

Ústřední výbor matematické olympiády v České republice si dovoluje
na tomto místě co nejupřímněji poděkovat všem těm učitelům matema-
tiky, kteří jsou zapojeni do náročné a neocenitelné práce s matematicky
talentovanými žáky našich středních a základních škol. Bez jejich pomoci
si chod této nejstarší předmětové olympiády v České republice nelze vů-
bec představit.

6

Projev předsedy Ústředního výboru MO
při slavnostním zahájení ústředního kola 52. ročníku v Liberci

Vážení hosté, milí soutěžící,

je mi ctí, že vás mohu všechny pozdravit jménem týmu lidí, kteří při-
pravují pro matematickou olympiádu soutěžní úlohy. Vzletněji vyjádřeno,
bohatost světa čísel a rozmanitost prostorových vztahů nám umožňují
i po padesáti ročnících soutěže vymýšlet stále relativně nové a zajímavé
matematické úkoly. Děláme to se stejným zaujetím, jako spisovatelé píší
knihy nebo skladatelé hudební díla, jen místo čtenářů či posluchačů máme
vás, mladé řešitele úloh.

Milí účastníci nejvyšší kategorie A, Váš první soutěžní den bude mít
letos datum, které je zapsáno třemi prvočísly 31, 3 a 2003. Možná to
pro Vás není žádná novinka, že letopočet 2003 je prvním prvočíslem
nového století i tisíciletí. Druhým prvočíselným rokem bude rok 2011,
v něm ale naše soutěž patrně začne v pondělí 28. března, což je datum
složené. Prvočíselné datum nebudeme asi mít ani ve třetím prvočísel-
ném roce 2017, kdy pondělí připadne na 27. března. Teprve ve čtvrtém
prvočíselném roce 2027 bude pondělí 29. března. Zajímavá je okolnost,
že v tomto století budeme mít právě čtrnáct prvočíselných letopočtů a že
nejdéle budeme na prvočíselný Nový rok čekat rovněž čtrnáct let; za

prvočíslem 2039 totiž bude následovat prvočíslo 2053. Z našeho pohledu
budou bohatá devadesátá léta tohoto století, kdy lidstvo prožije teore-
ticky nejvyšší možný prvočíselných let v jedné dekádě. Ano, čísla 2081
a 2083 jsou prvočíselná dvojčata, stejně jako čísla 2087 a 2089. Poslední
březnové pondělí bude mít v těchto čtyřech letech datum 31, 29, 31 a 28,
což nám trochu kalí radost. Vy mladší, nezapomeňte prosím, že poslední
prvočíselný rok v tomto století bude mít (stejně jako ve století minulém)
na konci dvě devítky.

Přejděme od řeči dat a čísel к řeči jazyků. Českému termínu prvo-
číslo odpovídá anglické spojení prime number, nebo též samotné prime.
Toto slovo má v angličtině i několik dalších sympatických významů, které
lze vyjádřit českými podstatnými jmény mládí, rozkvět nebo přídavným
jménem nejlepší. A proto přeji každému z vás, milí soutěžící, ať už se
na výsledkové listině octnete u pořadového čísla, které je prvočíslo, nebo
číslo složené, nebo číslo 1, abyste se do svých domovů vraceli s pocitem,
že v Liberci to bylo prima. Děkuji.

7

Tabulka 1

Počty žáků středních škol soutěžících v I. kole 52. ročníku MO

Kategorie
Oblast Celkem

A В C P
s u s и s s и sи и

Praha

Středočeský kraj
Jihočeský kraj
Plzeňský kraj
Karlovarský kraj
Ústecký kraj
Liberecký kraj
Královéhradecký kraj
Pardubický kraj
kraj Vysočina
Jihomoravský kraj
Zlínský kraj
Olomoucký kraj
Moravskoslezský kraj

38 32
78 45
71 42
35 27
24 10
43 25
50 35
35 28
32 20
56 42

154 120
78 38
51 22
42 35

131 98 161 109
160 87
98 53
43 27
26 17
54 33
64 30
49 34
51 36
70 50

160 111
95 53
69 34

108 79

346 255
360 197

16 16
103 47 19 18
63 41
37 28

20 25214 150
4 119 864

32 17 3 3 85 47
42 28 2 2 88141
61 42 0 1750 107
38 26 8 3 130 91
25 13 10 5 118 74
60 47

117 88
64 43

15 10 201 149
22 22 453 341

5 242 1395
38 16 2 742 160
80 50 13 13 177243

CR 787 521 891 584 1208 753 139 117 3 025 1975

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 52. ročníku MO

Kategorie
Oblast Celkem

A CВ P
S u s s и s sи и и

Praha

Středočeský kraj
Jihočeský kraj
Plzeňský kraj
Karlovarský kraj
Ústecký kraj
Liberecký kraj
Královéhradecký kraj
Pardubický kraj
kraj Vysočina
Jihomoravský kraj
Zlínský kraj
Olomoucký kraj
Moravskoslezský kraj

32 9 92 16 1041 101 45
72 18
44 22

241 105
176 40
119 50

84 28
41 11
88 15
87 32
86 28
67 16

123 33
326 93
129 31

74 27
170 54

44 8 43 1710 4
33 8 30 15 12 5
27 8 27 2610 9 4 1
10 0 16 8 13 3

33 8
2 0

25 1 28 26 0
34 8 34 15 19 9 0 0
28 7 26 29 10 310 1
18 2 12 33 9 44 1
36 7 39 815 40 9

104 35
50 12
34 14
75 23

2
117 23 83 2226 9
37 2 42 17 0 0
22 4 16 8 2 1
34 6 48 21 13 4

CR 497 93 536 206 673 226 105 38 1811 563

S ... počet všech soutěžících U ... počet úspěšných řešitelů

8

Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uve-
děni všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium, M, resp. MF zaměření studijního oboru 01 Mate-
matika, resp. 02 Matematika a fyzika.

Kraj Praha

Kategorie A1.Václav Potoček, SPŠST, Praha 1, Panská
2.-3. Ondřej Čertík, G Ch. Dopplera, Praha 5

Martin Káldy, G Ch. Dopplera, Praha 5
4.-5. Pavel Kocourek, SPŠST Panská 3, Praha 1

Jaroslav Trnka, G Praha 3, Nad Ohradou
6. Jan Blažek, G Ch. Dopplera, Praha 5
7. Petr Skoda, G Praha 8, Ústavní

Kategorie В

1.-2. Petr Čermák, G Praha 5, Mezi školami
Pavel Kocourek, SPŠST Panská 3, Praha 1

3. Michaela Reiterová, G Praha 6, Nad Alejí
4. Jan Drašnar, GJK, Parléřova, Praha 6

5.-8. Jan Lachnitt, G Ch. Dopplera, Praha 5
Tomáš Skalický, ArcG, Praha 2, Korunní
Vojtěch Šmolka, ArcG, Praha 2, Korunní
Jan Tomaník, G Praha 6, Nad Štolou

9. Helena Svandelíková, ArcG, Praha 2, Korunní
10.-14. Václav Kozmík, G Praha 5, Mezi školami

Jaromír Mareček, G Praha 3, Sladkovského nám.

9

Ondřej Novák, G Ch. Dopplera, Praha 5
Petr Sýkora, G Ch. Dopplera, Praha 5
Filip Trnka, G Ch. Dopplera, Praha 5

Kategorie C

1.-3. Miroslav Kolář, G Praha 4, Na Vítězné pláni
Lukáš Malina, ZŠ Praha 5, Kuncova
Dan Marek, G Ch. Dopplera, Praha 54.Jan Papež, G Praha 8, Ústavní

5.-7. Tomáš Hejda, G Ch. Dopplera, Praha 5
Vojtěch Horký, G Praha 6, Nad Alejí
Martin Macek, G Praha 4, Písnická

8.-14. Tomáš Blahovec, G Ch. Dopplera, Praha 5
Ondřej Fremund, GJN, Praha 1, Hellichova
Jan Holinka, G Ch. Dopplera, Praha 5
Jan Kundrát, G Praha 8, Ústavní
Adam Přenosil, G Praha 3, Sladkovského nám.
Martin Ziegler, G Ch. Dopplera, Praha 5
Radek Žlebčík, G Ch. Dopplera, Praha 5

Kategorie P

1. Jan Kadlec, G Ch. Dopplera, Praha 5
2.-3. David Matoušek, G Ch. Dopplera, Praha 5

Petr Skoda, G Ústavní 400 Praha 8
4. Dan Marek, G Ch. Dopplera, Praha 5
5. Pavel Kocourek, SPŠST Panská 3 Praha 1

6.-7. Jan Havlíček, G Ch. Dopplera, Praha 5
Dan Lessner, G B. Bolzana, Praha 8

8. Ondřej Zarevúcky, G Arabská 14 Praha 6
9.-10. Ján Zahornadský, G Ch. Dopplera, Praha 5

Lukáš Turek, G Ch. Dopplera, Praha 5

10

Středočeský kraj

Kategorie A1.Pavel Čížek, GaOA Kralupy nad Vltavou
2.-3. Jan Lamač, G Mnichovo Hradiště
2.-3. Pavel Brom, G dr. J. Pekaře, Mladá Boleslav
4.-5. Jiří Paleček, G Kladno
4.-5. Jan Procházka, G dr. J. Pekaře, Mladá Boleslav
6.-7. Radka Picková, G dr. J. Pekaře, Mladá Boleslav
6.-7. Jan Bureš, G+SPŠ Čáslav

8. Jan Váňa, G Kutná Hora

Kategorie В

1. Ondřej Petera, G Kolín
2. Petr Вalek, G Beroun
3. Zdeněk Kabát, G Říčany

4.-5. Eva Vyhnalová, G Benešov
Michal Veselý, G Český Brod

6.-7. Emil Macků, G Benešov
Nikola Vávra, G Poděbrady

8.-10. Matěj Outlý, G Kolín
Petr Dušek, G Český Brod
Jakub Mikulka, G Kladno, nám. E. Beneše

Kategorie C

1.-2. Lukáš Hermann, G dr. J. Pekaře, Mladá Boleslav
Marek Scholz, G Neratovice

3.-4. Václav Gergelits, G Benešov
Josef Schmidt, G Benešov

5.-7. Jan Korbel, G Říčany
Marek Sacha, G Říčany
Renata Dolejšová, G Kladno, nám. E. Beneše

8. Jan Matoušek, G Kolín
9.-10. Martin Kadlec, G Kladno, nám. E. Beneše

Petr Šafránek, G Poděbrady

11

Kategorie P

1. Pavel Čížek, GaOA Kralupy nad Vltavou
2. Martin Kruliš, G Kolín
3. Jiří Paleček, G Kladno, nám. E. Beneše
4. Jiří Hyldebrant, G Vlašim

Jihočeský kraj

Kategorie A

1. Jan Kouba, G Český Krumlov
2. Milan Straka, G Strakonice
3. Dana Bartošová, G Jindřichův Hradec

4.-5. Jiří Danihelka, SPŠ Písek
Pavel Kubas, G Jindřichův Hradec6.Ondřej Šedivý, G České Budějovice, Jírovcova

7.-8. Zuzana Kožíšková, G Tábor
Ondřej Prašnička, G České Budějovice, Jírovcova

Kategorie В

1. Karel Vácha, G Český Krumlov
2. Václavík Jiří, G Strakonice

3.-5. Radek Pustina, G České Budějovice, Česká
Markéta Ziková, G České Budějovice, Jírovcova
Jiří Koubek, G Týn nad Vltavou

6.-7. Karel Chromý, G České Budějovice, Jírovcova
Václav Eigner, G Strakonice

8.-11. Štěpánka Králová, G Týn nad Vltavou
Michal Bizzarri, G Týn nad Vltavou
Hana Nůsková, G Strakonice

Kategorie C

1.-2. Jan Záloha, G Písek
Tomáš Chmelík, Biskupské G, České Budějovice

12

3.-4. Jiří Kníže, G Strakonice
Josef Orel, G Tábor

5.-8. Jan Klouda, G České Budějovice, Jírovcova
Eliška Lehečková, G Jindřichův Hradec
Karel Fišer, G Jindřichův Hradec
Tomáš Jindra, G České Budějovice, Česká

9. Zuzana Bainová, G České Budějovice, Jírovcova
10.-13. Vojtěch Dušek, G České Budějovice, Jírovcova

Petr Anděl, G Český Krumlov
Michal Dojčar, G Prachatice
Vojtěch Kulhavý, G Jindřichův Hradec

Kategorie P

1. Milan Straka, G Strakonice
2. Jiří Danihelka, SPŠ Písek
3. Jan Kouba, G Český Krumlov
4. Martin Pilát, G České Budějovice, Česká
5. Josef Pitera, G Strakonice

Plzeňský kraj

Kategorie A

1. Michal Kvíz, G Plzeň, Mikulášské nám.
2. Jiří Reitspies, G Plzeň, Mikulášské nám.
3. Josef Mládek, G Plzeň, Mikulášské nám.

4.-5. Jiří Ajgl, G Plzeň, Mikulášské nám.
Eva Wagnerová, G Plzeň, Mikulášské nám.

6.-7. Jaroslav Svoboda, G Plzeň, Mikulášské nám.
Václav Varvařovský, G Plzeň, Mikulášské nám.

8. Petr Cvachovec, G Plzeň, Mikulášské nám.

Kategorie В

1. Jakub Bulín, G Plzeň, Mikulášské nám.
2.-3. Pavel Hudák, Masarykovo G, Plzeň

Libor Nolč, G Plzeň, Mikulášské nám.

13

4. Jindřich Pergler, G Klatovy
5. Tomáš Ibehej, G Plzeň, Mikulášské nám.
6. Ondřej Hort, G Plzeň, Mikulášské nám.
7. Aleš Turnovec, G Plzeň, Mikulášské nám.

8.-9. Jan Bulánek, G Klatovy
Jiří Pouska, G Plzeň, Mikulášské nám.

10. Petr Vaško, Masarykovo G, Plzeň

Kategorie C

1. Vojtěch Kolomičenko, G Plzeň, Mikulášské nám.
2. Marie Dostálová, G Stříbro
3. Vladimír Sirotek, G L. Pika, Plzeň

4.-6. Tomáš Jirotka, G Klatovy
Miloslav Керка, G L. Pika, Plzeň
Tomáš Kouřim, G L. Pika, Plzeň

7.-9. Martin Dvořák, G Plzeň, Mikulášské nám.
Marie Matějovicová, G Plzeň, Mikulášské nám.
Jan Šípek, G L. Pika, Plzeň

Kategorie P1.Stanislav Haviar, G Klatovy

Karlovarský kraj

Kategorie В

1. Eva Černohorská, První české G Karlovy Vary
2. Petr Žáček, SCHŠ Cheb
3. Tereza Volná, G Mariánské Lázně

4.-7. Jiří Popped, G Sokolov
Radek Pupák, G Cheb
Jan Rieger, G Ostrov
Štěpán Trojánek, G Cheb

8. Michaela Bublová, SCHŠ Cheb

14

Kategorie С

1. Eva Černohorská, První české G Karlovy Vary
2. Jan Heczko, G Cheb
3. Jakub Irber, G Cheb

* Ústecký kraj

Kategorie A1.Vít Sípal, G Ústí nad Labem, Jateční

Kategorie В

1. Daniel Petřík, G Most
2. Jiří Dvořák, G Roudnice nad Labem

3.-4. Michal Valach, SPŠ a VOŠ Chomutov
Jakub Florián, G Podbořany

5.-6. Jan Semerád, G Teplice, Os. Dobrovolců
Jan Patera, G Most

Kategorie C

1. Vojtěch Kaiser, G Ústí nad Labem, Stavbařů
2. Michal Pele, G Most
3. Jakub Klener, G J. Jungmanna, Litoměřice
4. Zdeněk Fikar, G Ústí nad Labem, Jateční
5. Věra Skorkovská, G Teplice, Os. Dobrovolců 11

6.-7. Michaela Tichá, G Chomutov
Jiří Sarkady, G J. Jungmanna, Litoměřice

8. Jan Krahulík, G V. Hlavatého, Louny

Liberecký kraj

Kategorie A

1.-2. Petr Píša, G Liberec, Jeronýmova

15

Marek Sobota, G Liberec, Jeronýmova
3.-4. Lukáš Bajer, GFXŠ, Liberec

Michal Kollert, GFXS, Liberec

Kategorie В

1. Šárka Vejvodová, GFXŠ, Liberec
2. Kateřina Kapletová, GFXŠ, Liberec

3.-4. Zdeněk Вohm, GFXŠ, Liberec
Lukáš Ježek, GFXŠ, Liberec

5.-8. Jaroslav Jirák, GFXŠ, Liberec
Marie Mártonová, GFXŠ, Liberec
Martin Otava, GFXŠ, Liberec
Ondřej Soroka, GFXŠ, Liberec

9.-15. Dominik Fišer, G Jablonec, U Balvanu
Jakub Hušek, GFXŠ, Liberec
Tomáš Jakoubek, G Liberec, Jeronýmova
Čeněk Jirsák, GFXŠ, Liberec
Martin Morávek, GFXŠ, Liberec
Vojtěch Růžička, GFXŠ, Liberec
Klára Vitoušová, GFXŠ, Liberec

Kategorie C

1. Michal Vaner, G Turnov
2. Jan Iser, G U Balvanu Jablonec
3. Ondřej Kudláček, G Liberec, Jeronýmova
4. Pavel Staněk, G Jablonec, U Balvanu
5. Kateřina Teplá, G Liberec, Jeronýmova
6. Jan Hrnčíř, GFXŠ, Liberec
7. Lucie Krtoušová, GFXŠ, Liberec
8. Martin Vlček, G Turnov
9. Jiří Toman, G Liberec, Jeronýmova

Kategorie P

1. Jiří Schejbal, G Turnov

16

Královéhradecký kraj

Kategorie A

1. Jan Moláček, GJKT, Hradec Králové
2. Miroslav Hejna, GFMP, Rychnov nad Kněžnou
3. Jan Prachař, GFMP, Rychnov nad Kněžnou

4.-5. Jan Ondruš, GFMP, Rychnov nad Kněžnou
Jan Schindler, G B. Němcové, Hradec Králové

6.-7. Ivo Machek, GJKT, Hradec Králové
Martin Selecký, G B. Němcové, Hradec Králové

Kategorie В

1. Radek Moravec, G B. Němcové, Hradec Králové
2.-3. Michal Kopecký, GJKT, Hradec Králové

Jan Marek, G B. Němcové, Hradec Králové
4. Josef Beneš, G B. Němcové, Hradec Králové
5. Filip Studnička, G B. Němcové, Hradec Králové

6.-7. Kateřina Fišerová, LG Jičín
Šárka Pátková, GJKT, Hradec Králové

8.-10. Aleš Balcar, G B. Němcové, Hradec Králové
Julie Brátová, G Náchod
Ondřej Novák, G B. Němcové, Hradec Králové

Kategorie C

1. Libor Simůnek, GJKT, Hradec Králové
2.-3. Karel Vašata, G B. Němcové, Hradec Králové

Jan Voltr, GJKT, Hradec Králové
4.-5. Filip Andrš, G Dobruška

Věra Peterová, G Dobruška
6.-9. Petr Adlaf, GJKT, Hradec Králové

Martin Doležal, G Nový Bydžov
Adam Janáček, GaSOŠ Úpice
Vendula UChytilová, GJKT, Hradec Králové

10. Vojtěch Beneš, GJKT, Hradec Králové

17

Kategorie P1.Jan Prachař, GFMP, Rychnov nad Kněžnou

Pardubický kraj

Kategorie A

1. Petr Pošta, G Pardubice, Dašická
2. Petr Rezek, G Litomyšl

Kategorie В

1. M. Dobroučky, G Moravská Třebová
2. B. Scholleová, G Pardubice, Dašická

3.-4. K. Hauptová, G Vysoké Mýto
M. Benešová, G Polička

Kategorie C

1.-2. M. Scholle, G Pardubice, Dašická
K. Stodolová, G Polička

3. H. Sediváková, G Pardubice, Dašická
4. Z. Novák, G Hlinsko

5.-6. T. Hubik, G Pardubice, Dašická
T. Klimešová, G Lanškroun

7. J. Skořepa, G Pardubice, Dašická
8.-9. M. Ferjenčík, G Přelouč

L. Šerá, G Jevíčko

Kategorie P

1. Martin Dobroucký, 6.AV, G Moravská Třebová

18

Kraj Vysočina

Kategorie A

1. Radek Mlada, G Pelhřimov
2. Dominik Macáš, G Bystřice nad Pern.

3.-4. Martin Havlena, G Jihlava
Michal Zavadil, SPŠ Jihlava5.Václav Řezníček, G Třebíč

6.-7. Martin Bartušek, G Jihlava
Michal Fikrle, G Pelhřimov

Kategorie В

1.-3. Ondřej Křivánek, G Třebíč
Rostislav Kváš, G Jihlava
Petr Lavička, G Jihlava4.Petr Houštěk, G Pelhřimov

5.-6. Michaela Krpálková, G Jihlava
Martin Tomec, G Třebíč

7.-8. Jaroslav Keznikl, G Žďár nad Sáz.
Jan Novotný, G Havlíčkův Brod

9.-10. Kateřina Kujanová, G Žďár nad Sáz.
Aleš Ráda, G Pelhřimov

Kategorie C

1. Karel Lavička, G Jihlava
2. Ondřej Hoferek, G Žďár nad Sáz.

3.-4. Marie Kolářová, G Žďár nad Sáz.
Filip Rosenkranc, G Třebíč

5. Jan Šedo, SPŠ Jihlava
6. Jiří Svoboda, G Humpolec

7.-9. Vojtěch Fišar, G Žďár nad Sáz.
Hana Mádrová, G Jihlava
Iveta Selingerová, G Jihlava

19

Kategorie P

1.-2. Jakub Sedlák, G Jihlava
Martin Tomec, G Třebíč

Jihomoravský kraj

Kategorie A

1. Marek Krčál, G Brno, tř. Kpt. Jaroše
2.-4. Vítězslav Kala, G Brno, tř. Kpt. Jaroše

Veronika Trnková, G Brno, tř. Kpt. Jaroše
Pavel Troubil, G Brno, tř. Kpt. Jaroše

5. Jaroslav Zůda, G Brno, tř. Kpt. Jaroše
6. Milan Werl, G Brno, tř. Kpt. Jaroše

7.-9. Václav Brožek, G Brno, Barvičova
Jaromír Kuběn, G Brno, tř. Kpt. Jaroše
Jan Novotný, G Brno, tř. Kpt. Jaroše

10. Jiří Zelinka, G Brno, tř. Kpt. Jaroše

Kategorie В

1. Michal Rychnovský, G Brno, tř. Kpt. Jaroše
2.-3. Vojtěch Kubáň, G Brno, tř. Kpt. Jaroše

Michaela Neumannová, G Hustopeče
4. Tomáš Hošek, G Brno, tř. Kpt. Jaroše

5.-8. Kateřina Fialová, G Brno, Elgartova
Michala Henzlová, G Brno, Barvičova
Pavel Turčínek, G Brno, Vídeňská
Ondřej Zapletal, G Brno, Křenová

9.-11. Ondřej Hotový, G Brno, tř. Kpt. Jaroše
Ondřej Maňák, G Brno, Táborská
Jiří Zelinka, G Brno, tř. Kpt. Jaroše

Kategorie C

1. Jaromír Kuběn, G Brno, tř. Kpt. Jaroše
2.-5. Jakub Opršal, G Brno, tř. Kpt. Jaroše

20

Alexandr Píchá, G Brno, tř. Kpt. Jaroše
Jakub Pracný, G Brno, tř. Kpt. Jaroše
Vojtěch Říha, G Brno, tř. Kpt. Jaroše

6.-7. Jiří Řihák, G Brno, tř. Kpt. Jaroše
Jiří Zelinka, G Brno, tř. Kpt. Jaroše

8.-9. Petr Kadlec, G Brno, tř. Kpt. Jaroše
Zbyněk Konečný, G Brno, tř. Kpt. Jaroše

10.-15. Ondřej Budík, G Brno, tř. Kpt. Jaroše
Lucie Fabriková, G Brno, tř. Kpt. Jaroše
Marek Filakovský, G Brno, tř. Kpt. Jaroše
Martin Kočí, G Brno, tř. Kpt. Jaroše
Martin Křivánek, G Brno, tř. Kpt. Jaroše
Jakub Skalický, G Brno, Žižkova

Kategorie P

1. Marek Krčál, G Brno, tř. Kpt. Jaroše
2. Jiří Štěpánek, G Brno, tř. Kpt. Jaroše

3.-4. Martin Lopatář, G Brno, tř. Kpt. Jaroše
Jan Hladký, G Brno, tř. Kpt. Jaroše

5. Martin Křivánek, G Brno, tř. Kpt. Jaroše
6. Martin Vejnár, G Brno, tř. Kpt. Jaroše

7.-8. Kryštof Hoder, G Brno, tř. Kpt. Jaroše
Sven Dražan, G Brno, tř. Kpt. Jaroše

9. Jana Fabriková, G Brno, tř. Kpt. Jaroše

Zlínský kraj

Kategorie A

1. František Konopecký, G L. Jaroše, Holešov
2. Marek Pechal, G Zlín, Lesní čtvrť

3.-4. Martin Cetkovský, G Zlín, Lesní čtvrť
Martin Dungl, G Kroměříž

5.-6. Radovan Polanský, GJAK, Uherský Brod
Martin Horáček, G Zlín, Lesní čtvrť

21

Kategorie В

1.-2. Stanislav Basovník, G Kroměříž
František Konopecký, G L. Jaroše, Holešov

3. Aleš Holub, G Uherské Hradiště
4. Michal Humpula, GJAK Uherský Brod

5.-6. Miroslav Blažek, GFP, Valašské Meziříčí
Petra Klimentová, GFP, Valašské Meziříčí

7. Martin Koníček, GJAK, Uherský Brod
8.-10. Ondřej Bílka, G Zlín, Lesní čtvrť

Zbyněk Savara, GJAK, Uherský Brod
Václav Slimáček, GFP, Valašské Meziříčí

Kategorie C

1. Marek Pechal, G Zlín, Lesní čtvrť
2. Jan Vana, G Zlín, Lesní čtvrť
3. Jiří Machálek, G L. Jaroše, Holešov
4. Kateřina Bóhmová, G Rožnov pod Radhoštěm

5.-6. Jan Pele, GJAK, Uherský Brod
Václav Výmola, GJAK, Uherský Brod

7.-10. Michal Cudrnák, G L. Jaroše, Holešov
Marek Chytil, G Zlín, Lesní čtvrť
Michal Studený, G Zlín, nám. TGM
Pavel Salom, G Rožnov pod Radhoštěm

Olomoucký kraj

Kategorie A

1. Helena Kubátová, G Olomouc-Hejčín
2. Pand Kašpar, VOŠ a SPŠ, Šumperk
3. Veronika Chromčíková, GJŠ, Přerov
4. Lukáš Perůtka, G Hranice

Kategorie В

1. Jan Průša, GJW, Prostějov

22

2. Jaroslav Fibichr, G Šternberk
3. Alena Sejkorová, G Jeseník

4.-8. Michal Garlík, G Olomouc-Hejčín
Jana Sedláčková, GJŠ, Přerov
Jiří Horký, GJŠ, Přerov
Zuzana Dřízgová, G Lipník nad Bečvou
Martin Rumplík, G Kojetín

Kategorie C1.Jiří Zajíček, RG Prostějov
2.-3. Zdeněk Čemohouz, SGO, Olomouc

Jan Šrámek, GJŠ, Přerov
4.-6. Martina Miková, G Olomouc-Hejčín

Martina Brijarová, GJW, Prostějov
Martin Přemyslovský, GJŠ, Přerov

7. Jiřina Mertová, G Šumperk
8.-12. Rostislav Halas, GJW, Prostějov

Michal Hapala, G Hranice
Zdeněk Mlčoch, G Zábřeh
Jana Dvořáková, G Zábřeh
Tomáš Jílek, VOŠ a SPŠ, Šumperk

Kategorie P

1. Jan Matoušek, GJW, Prostějov

Moravskoslezský kraj

Kategorie A

1. Pavel Ludvík, GMK, Bílovec
2. Václav Cviček, G P. Bezruče, Frýdek-Místek
3. Tomáš Gavenčiak, GMK, Bílovec
4. Tomáš Staněk, G Ostrava-Zábřeh, Volgogradská

5.-6. Aleš Havel, G Frenštát pod Radhoštěm
Tomáš Andrýsek, MOG, Bruntál

7. Vojtěch Skubanič, GMK, Bílovec

23

8.-10. Ondřej Májek, GMK, Bílovec
Pavel Jež, G P. Bezruce, Frýdek-Místek
Jakub Gemrot, GMK, Bílovec

Kategorie В

1. Michal Sikora, G Třinec
2. Zuzana Safernová, GMK, Bílovec
3. Povel Žižka, G Třinec

4.-5. Kateřina Váňová, G Ostrava-Poruba, Cs. exilu
Alexandr Žák, G Ostrava-Poruba, Cs. exilu

6.-9. Jan Richter, Masarykovo G Příbor
Jakub Dvorský, GMK, Bílovec
Silvie Kafková, G P. Bezruce, Frýdek-Místek
Pavel Motloch, G P. Bezruce, Frýdek-Místek

10.-14. Fva Sobolová, G Třinec
Kamil Babula, G Třinec
Jakub Rajman, SPŠ Moravská Ostrava
Lukáš Kuna, SPŠ Moravská Ostrava
Štěpánka Mohylová, G Ostrava-Poruba, Cs. exilu

Kategorie C

1.-2. Jaroslav Hanči, GMK, Bílovec
Jon Uhlík, GMK, Bílovec

3. Rostislav Měch, G Frenštát p. R.
4. Miloslav Holík, GMK, Bílovec

5.-12. Lenka Borišová, G Opava
Jakub Křístek, G Ostrava-Poruba, Cs. exilu
Michael Kučera, GMK, Bílovec
Pavel Motloch, G P. Bezruce, Frýdek-Místek
Dita Mušálková, G Třinec
Petr Sittek, G P. Bezruce, Frýdek-Místek
Roman Vybíral, G Františka Hajdy
Josef Žabenský, GMK, Bílovec

24

Kategorie P

1. Václav Cviček, G P. Bezruce, Frýdek-Místek
2. Josef Toman, GMK, Bílovec
3. Pavel Motloch, G P. Bezruce, Frýdek-Místek
4. Tomáš Gavenčiak, GMK, Bílovec

25

Výsledky celostátního kola 52. ročníku MO
kategorie A

Vítězové

1. Pavel Čížek, 8/8, GaOA Kralupy nad Vltavou
2. Marek Krčál, 4/4, G Brno, tř. Kpt. Jaroše
3. Petr Pošta, 6/6, G Pardubice, Dašická
4. Jaromír Kuběn, 1/4, G Brno, tř. Kpt. Jaroše

5.-6. Václav Cviček, 6/6, G P. Bezruce, Frýdek-Místek
Pavel Kocourek, 2/4, SPŠST, Praha 1, Panská

7.-8. Tomáš Gavenčiak, 3/4, GMK, Bílovec
Martin Káldy, 4/4, GChD, Praha 5

9. Vítězslav Kala, 3/4, G Brno, tř. Kpt. Jaroše
10. Miroslav Hejna, 8/8, GFMP Rychnov nad Kněžnou
11. Jan Moláček, 3/4, GJKT, Hradec Králové

37b.

36 b.

29 b.

28 b.

27b.

27b.

26 b.

26 b.

25 b.

24 b.

23 b.

Další úspěšní řešitelé

12.-13. František Konopecký, 6/8, G Holešov
Jan Prachař, 8/8, GFMP, Rychnov nad Kněžnou

14.-16. Marek Pechal, 5/8, G Zlín, Lesní čtvrť
Milan Straka, 4/4, G Strakonice
Veronika Trnková, 4/4, G Brno, tř. Kpt. Jaroše

17. Pavel Kubas, 8/8, G Jindřichův Hradec
18. Jiří Ajgl, 8/8, G Plzeň, Mikulášské nám.

19.-20. Pavel Ludvík, 4/4, GMK, Bílovec
Václav Potoček, 3/4, SPŠST, Praha 1, Panská

21. Jiří Danihelka, 4/4, SPŠ a VOŠ Písek
22. Pavel Dvořák, 4/4, G Brno, tř. Kpt. Jaroše

22 b.
22 b.
21b.

21b.

21b.

19b.

18b.

17b.

17b.

16b.

15b.

26

Výsledky celostátního kola 52. ročníku MO
kategorie P

Vítězové

1. Jan Kadlec, 4/4, GChD, Praha 5
2. Milan Straka, 4/4, G Strakonice
3. Tomáš Gavenčiak, 3/4, GMK, Bílovec
4. Marek Krčál, 8/8, G Brno, tř. Kpt. Jaroše
5. Martin Kruliš, 8/8, G Kolín
6. Kryštof Hoder, 7/8, G Brno, tř. Kpt. Jaroše
7. Pavel Čížek, 8/8, GaOA Kralupy nad Vltavou
8. Jiří Danihelka, 4/4, SPŠ Písek

37 b.

36 b.
34 b.

31b.

30 b.

29 b.

28 b.

27 b.

Další úspěšní řešitelé

9.-10. Václav Cviček, 6/6, G P. Bezruce, Frýdek-Místek
9.-10. Martin Vejnár, 6/8, G Brno, tř. Kpt. Jaroše

11.-12. Sven Dražan, 7/8, G Brno, tř. Kpt. Jaroše
11.-12. Jiří Schejbal, 7/8, G Turnov
13.-14. Dan Marek, 1/4, GChD, Praha 5
13.-14. Jiří Paleček, 4/4, G Kladno, nám. E. Beneše

26 b.

26 b.

24 b.

24 b.

23 b.

23 b.

27

Kategorie С

Texty úloh

C - I - 1

Z pěti jedniček, pěti dvojek, pěti trojek, pěti čtyřek a pěti pětek sestavte
pět navzájem různých pětimístných čísel tak, aby jejich součet byl co

největší. (J. Šimša)

С - I - 2

Je dán trojúhelník ABC s ostrými vnitřními úhly při vrcholech А а В.
Označme Q průsečík těžnice AD s výškou CP a E patu kolmice z bodu D
na stranu AB. Dále nechť R je bod na polopřímce opačné к PC takový,
že \PR\ = \CQ\. Dokažte, že přímky AD a RE jsou různoběžné a že
jejich průsečík leží na kolmici к přímce AB procházející bodem B.

(J. Švrček)

C - I - 3

Předpokládejme, že každá ze dvou bank А а, В bude mít po následující
dva roky stálou roční úrokovou míru. Kdybychom uložili 5/6 našich úspor
u banky A a zbytek u banky B, vzrostly by naše úspory po jednom roce
na 67 000 Kč a po dvou letech na 74 900 Kč. Kdybychom však uložili 5/6
našich úspor u banky В a zbytek u banky A, vzrostly by naše úspory
po jednom roce na 71000 Kč. Na jakou částku by se v takovém případě
naše úspory zvýšily po dvou letech? (J. Šimša)

С - I - 4

Sestrojte lichoběžník ABCD s výškou 3cm a shodnými stranami BC,
CD a DA, pro který platí: Na základně AB existuje takový bod E, že
úsečka DE má délku 5 cm a dělí lichoběžník na dvě části se stejnými
obsahy. (E. Kováč)

28

С - I - 5

К přirozenému číslu m zapsanému stejnými číslicemi jsme přičetli čtyř-
místné přirozené číslo n. Získali jsme čtyřmístné číslo s opačným pořadím
číslic, než má číslo n. Určete všechny takové dvojice čísel man.

(J. Zhouf)

C - I - 6

V rovině je dána přímka p a kružnice k. Sestrojte takový trojúhelník
ABC, aby к byla kružnicí jemu vepsanou, její střed ležel ve čtvrtině jeho
těžnice na stranu AB a aby vrchol C ležel na přímce p. Proveďte diskusi
o počtu řešení v závislosti na vzájemné poloze přímky p a kružnice k.

(P. Černek)

C - S - 1

Odtrhneme-li od libovolného alespoň dvojmístného přirozeného čísla čís-
liči na místě jednotek, dostaneme číslo o jednu číslici „kratší“. Najděte
všechna původní čísla, která se rovnají absolutní hodnotě rozdílu druhé
mocniny „kratšího11 čísla a druhé mocniny odtržené číslice. (J. Zhouf)

C - S - 2

Na straně CD čtverce ABCD je zvolen bod E tak, že úhel DAE má
velikost 30°. Bod P je patou kolmice vedené bodem В na přímku AE,
bod Q patou kolmice vedené bodem C na přímku BP. Rozhodněte, zda
je obsah lichoběžníku PQCE menší než třetina obsahu čtverce ABCD.

(L. Boček)

C-S-3

Z pěti jedniček, pěti dvojek, pěti trojek, pěti čtyřek a pěti pětek sesta-
víme pět pětimístných čísel, která se čtou zepředu stejně jako zezadu
(např. 32 223), a pak tato čísla sečteme. Jakou nejmenší a jakou největší
hodnotu může mít výsledný součet? (J. Šimša)

29

С - II - 1

Najděte nejmenší přirozené číslo n, pro které je součin

2 003 • 2 004 • 2 005 • ... • (2 003 + n)

(J. Šimša)dělitelný všemi dvojmístnými prvočísly.

С - II - 2

V rovině je dána úsečka AP. Sestrojte pravidelný šestiúhelník ABCDEF
tak, aby bod P byl středem jeho strany DE. (J. Švrček)

C - II - 3

Kdyby Karel půjčil jednomu známému p tisíc Kč s úrokem p % a druhému
známému q tisíc Kč s úrokem g%, kde p a q jsou celá čísla, přinesly by
obě půjčky Karlovi stejný zisk, jako kdyby jedné osobě půjčil celkovou
částku s úrokem (p + 2,4) %. Kdyby půjčil jednomu známému p tisíc Kč
s úrokem 2p% a druhému známému q tisíc Kč s úrokem 2q%, přinesly
by mu tyto půjčky stejný zisk, jako kdyby jedné osobě půjčil celkovou
částku s úrokem (p 4- 5,8) %. Určete čísla p a q. (J. Šimša, J. Zhouf)

С - II - 4

Určete délku ramen rovnoramenného lichoběžníku se základnami délek

10 a 12 tak, aby délky všech jeho stran i úhlopříček byly vyjádřeny celými
(P. Černek)čísly.

30

Řešení úloh

C - I - 1

Největší možný součet by vytvořila pětice čísel 54321, 54321, 54321,
54 321, 54 321. Jelikož mají být ale čísla navzájem různá, pokusíme se
změnit tuto pětici tak, aby se nenarušilo trojčíslí 543, tj. aby změna
součtu byla co nejmenší. Tak ale budou ještě dvě z pěti čísel stejná,
neboť z číslic 1, 2 je možné sestavit pouze čtyři různá dvojčíslí 11, 12,
21, 22. Změníme proto jedno trojčíslí 543 na 542 tak, že zaměníme číslici 2
číslicí 3 na místě desítek. Stejně tak na místě jednotek nemůže být všech
pět jedniček, protože by poslední trojčíslí nejméně tří pětimístných čísel
bylo 321. Vyměníme proto číslici 1 z místa jednotek s číslicí 2 z místa
stovek a to proto, aby změna součtu pětice čísel byla co nejmenší. Po
těchto výměnách mohou být poslední dvojčíslí pěti čísel tato: 31, 22, 21,
21, 11, nebo 31, 21, 21, 21, 12, nebo 32, 21, 21, 21, 11. Snažíme se nyní
rozmístit tato dvojčíslí za trojčíslí 543, 543, 543, 543, 542. Zjistíme, že
vyhovuje pouze první pětice dvojčíslí. Hledaná pětice pětimístných čísel
s největším možným součtem je 54331, 54322, 54321, 54311, 54 221.

С - I - 2

Ze zadání víme, že \PR\ = \CQ\, proto je i |Qi?| = \CP\ (obr. 1). Úseč-
ka DE je střední příčkou trojúhelníku СРВ, proto je \DE\ = \\CP\.

Je tedy také \DE\ = P\QR\. Protože je DE || QR, nemůžou být úsečky
RE a QD rovnoběžné (jinak by byl REDQ rovnoběžník a platilo by
\DE\ = \QR\)- Proto se přímky RE a QD protínají v bodě, který je na

31

obrázku označen jako F, a úsečka DE je střední příčkou trojúhelníků
СРВ a QRF, jejichž strany CP a QR leží na stejné přímce. Proto je
vzdálenost bodů FaBod přímky CR stejná, neboli přímky CR a FB
jsou rovnoběžné, a tudíž přímka FB je (stejně jako přímka CR) kolmá
к přímce AB.

C - I - 3

Nechť naše výchozí úspory činí i Kč a nechť roční úroková míra и

banky A (banky B) je p% (q%), tj. vklad u banky A (banky B) vzroste
po jednom roce a-krát (6-krát), kde o = 1 H-p/100 (6=1 + q/100). Podle
zadání platí

^ • rr^ • a + ^ • rr^ • 6 = 67000,
15
- -xj b -6 = 74 900,

• 6 = 71000,

•a • a +6X
51

• cl + 6X6X
a po úpravě

xbxa
- + -= 67000,
6 o

xb
■a + — -6 = 74 900,

6 6
xa

_ xb
-ТГ + 5- —6 6

Označíme-li и = \xa a v = |xb, přejdou první a třetí rovnice v soustavu
5u + v = 67 000,
и + 5v = 71 000,

ze které vychází и = 11000 a v = 12 000. Protože a = 6u/x a 6 = 6v/x,
lze druhou rovnici soustavy zapsat jako

5 36u2 1 36u2
6 x2 6 x2

5 •

5 • —

= 71000.

= 74 900,- • x •

neboli
30u2 + 6v2

= 74900,
x

32

odkud pro и = 11000 a v = 12 000 vychází х = 60 000, tudíž

Qu 66 000
= 1,1,а — —

x 60 000
6v 72 000

b= — = 1,2.
60 000x

Hledaná částka je proto rovna

- • x • b2
1 o 5
- • x • čT + -

6 6
Kč = (10 000- 1,12 + 50 000- 1,22) Kč =

= 84100 Kč.

С - I - 4

Rozbor: Označíme-li \ AB\ = a, \CD\ — с a výšku lichoběžníku v (obr. 2)

CD c

c

A c В

a — c

Obr. 2

můžeme pro jeho obsah S psát

1,-{a + c)v.S =

Obsah trojúhelníku AED je podle zadání roven

\AE\ • v -■S =
1 1

2'2(a + c)v'2 2

odkud plyne, že \AE\ — |(a + c) (tj. úsečka AE má délku stejnou jako
střední příčka lichoběžníku ABCD). Protože bod E leží na úsečce AB,
platí

\EB\ = \AB\ -\AE\ = a-1-(a + c)=1-(a-c)
33

takže je a > c. Označíme-li B' bod úsečky AB, pro který je \AB'\ = c,
bude \B'B\ = a — c, a protože hledaný lichoběžník ABCD je rovnora-
menný, je rovnoramenný i trojúhelník B'BC, takže střed E úsečky В'В
je zároveň patou výšky z vrcholu C na základnu AB (obr. 2). Pomocí
Pythagorovy věty vypočteme, že

c = aJ\DE\2 — v2 = \/b2 — 32 cm = 4 cm.

Popis konstrukce:
1. &DEC-, \DC| = 4cm, \CE\ = 3cm, \<ECD\ = 90°;
2. p; p || CD, E Ep;
3. k(D, 4cm), 1{C, 4cm);
4. Л; Л G p П k, úhel ADC je tupý;
5. B-, В E pDl, úhel BCD je tupý.

Úloha má jediné řešení.

С - I - 5

Nechť je číslo n = abed = 1 000a + 1006 + 10c + d, kde a, b,c,d E
E {0,l,...,9},a/0. Číslo m + n je čtyřmístné, proto je číslo m nejvýše
čtyřmístné. Rozebereme jednotlivé případy podle počtu číslic m:

1. Číslo m je jednomístné, tj. m = x = x, kde x E {1,2,..., 9}. Podle
zadání úlohy je jednak

m + n = 1 000a + 1006 + 10c + d + x,

jednak
m + n = 1 OOOd + 100c + 106 + a.

Odtud postupně dostaneme

1 000a + 1006 ■+■ 10c + d + x — 1 000d -ť 100c 4-106 4- a,

x = 999(d — a) + 90(c — 6).

Pravá strana poslední rovnosti je dělitelná devíti, proto může být
jedině x = 9. Po dosazení této hodnoty do rovnosti a vykráčení devíti
vychází

1 = 111 (cř — a) 4- 10(c — 6),
10(6-c) 4-1 = lll(d-a).

34

Z nerovností — 9 ^ 6—c 5í 9 plyne —89 ^ 10(6—c) + l ^ 91. Mezi čísly
—89 a 91 je jediný násobek 111, a to číslo 0. Rovnost 10(6 — c) + 1 = 0
však není splněna. Žádné jednomístné číslo m tedy není řešením dané
úlohy.

2. Číslo m je dvojmístné, tj. m = xx = 10a; + x = 11a;, kde x G
G {1,2,..., 9}. Analogicky jako v předchozím případě můžeme postupně
psát

1 OOOo A 1006 + 10c + d A 11a; — 1 OOOd + 100c +106 + д,

На; = 999(d — a) + 90(c — 6).

Pravá strana poslední rovnosti je dělitelná devíti, proto může být
jedině x = 9. Potom je

11 = lll(d-a) + 10(c — 6),
10(6-c) + 11 = lll(d-a).

Zde je —79 ^ 10(6 — c) + 11 101, odkud plyne jediná možnost
10(6 — c) + 11 = 0, která však neplatí pro žádné číslice 6, c. Žádné
dvojmístné číslo m tedy není řešením dané úlohy.

3. Číslo m je trojmístné, tj. m = xxx = lOOx + lOx + x = lllx, kde
x G {1,2,..., 9}. Opět můžeme psát

1 OOOd + 1006 + 10c + d + 111ж — 1 000c/ + 100c + 106 + o,

lila: = 999(d — a) + 90(c — 6),
37a; = 333(d — a) + 30(c — 6).

Pravá strana poslední rovnosti je dělitelná třemi a číslo 37 není děli-
telné třemi, proto musí být x = 3, nebo x = 6, nebo x = 9.

Nechť x = 3. Potom je

37= lll(d-o) + 10(c-6),
10(6-c) + 37= lll(d-a).

Zde je -53 ^ 10(6 - c) + 37 ^ 127, odkud je buď 10(6 - c) + 37 = 0,
nebo 10(6 — c) +37 = 111. Ani jedna z posledních dvou rovností však
není splněna pro žádné číslice 6, c.

Nechť x — 6. Potom je

74 = 111 (d — a) + 10(c — 6),
10(6 — c) + 74 = lll(d — o).

35

Zde je —16 ^ 10(6 — c) + 74 ^ 164, odkud je buď 10(6 — c) 4- 74 = 0,
nebo 10(6 — c) 4- 74 = 111. Ani jedna z posledních dvou rovností však
není splněna pro žádné číslice 6, c.

Nechť x = 9. Potom je:

111 = lll(d — a) 4- 10(c — 6),
10(6-c) = 111 (cř — a — 1).

Zde je —90 5í 10(6 — c) ^ 90, odkud je jedině 10(6 -c) = 0alll(d —
— a — 1) = 0, tj. jedině c-6 = 0ad-a = l. Řešením dané úlohy
jsou tedy čísla n £ {1 662,2 663,3 664,4 665,5 666,6 667, 7 668,8 669} pro
6 e {0,1,..., 9}, tj. celkem 80 čísel. Číslo m je rovno 999.

4. Číslo m je čtyřmístné, tj. m = xxxx = 1 lllrr, kde x G {1,2,..., 9}.
Opět můžeme psát

1 lila: = 999(d - a) + 90(c - 6).

Opět může být jedině x = 9, což dává rovnost

10(6-c) +1111 = 111 (oř — a).

Platí jednak 10(6—c) + l 111 ^ 1 111—90 = 1 021, jednak 111 (d—a) ^ 999.
Proto žádné čtyřmístné číslo m není řešením dané úlohy.

Závěr: Úloha má 80 řešení, a to čísla m = 999 a

n E {1 662,2 663,3 664,4 665,5 666,6 667, 7 668,8 669}
pro be {0,1,... ,9}.

C - I - 6

Rozbor: Předpokládejme, že požadovaný trojúhelník ABC je sestrojen.
Střed kružnice vepsané libovolnému trojúhelníku leží na osách jeho vnitř-
nich úhlů. Podle zadání leží střed kružnice к na těžnici tc trojúhelníku
ABC, proto osa vnitřního úhlu při vrcholu C splývá s těžnici tc. Troj-
úhelník ABC je tedy rovnoramenný se základnou AB (obr.3). Leží-li
střed 5 kružnice к s poloměrem r ve čtvrtině těžnice tc, leží tedy ve
vzdálenosti r od strany AB a ve vzdálenosti 3r od vrcholu C. (Bod S
nemůže mít od vrcholu C vzdálenost |r, neboť by bod C ležel ve vnitřní
oblasti kružnice k, která je však trojúhelníku ABC vepsána, tudíž body

36

А, В, C leží v její vnější oblasti.) Bod C je tedy průsečíkem přímky p
a kružnice l se středem S a poloměrem 3r.

Popis konstrukce:
1. dáno: k(S, r), p;
2. l(S, 3r);
3. С; C e pfl/;
4. X; X €—>• CS, \XC\=4r;
5. x\ x±XC, X б x]
6. tečny a, b z bodu C ke /с (např. pomocí Thaletovy kružnice nad

průměrem CS);
7. А, В; A E x П b, В G x П a.

Diskuse pro případ, že pořadí vrcholů А, В, C je proti směru pohybu
hodinových ručiček:

úloha má dvě řešení 4=^ \Sp\ < 3r,
úloha má jedno řešení <í=^ \Sp\ = 3r,
úloha nemá žádné řešení \Sp\ > 3r.

C - S - 1

Označme hledané číslo 10a + 6, kde a, b jsou celá čísla, a^l,05í6^9.
Podle zadání má platit

10a + b — | a2 — b2\.

37

Předpokládejme nejprve, že a ^ b. V tom případě jednoduchými úpra-
vámi dostáváme

10a + b = a2 — 62,
a2 - 10a + 25 = b2 + b + 25,

(a — 5)2 = 62 + 6 + 25.
Do poslední rovnosti pak postupně dosazujeme 6 = 0, b = 1, ..., b —

= 9 a zjišťujeme, zda výraz b2 + b + 25 je druhou mocninou nějakého
nezáporného celého čísla. Rovnici vyhovují dvojice b = 0, a = 0; b = 0,
a = 10; b = 7, a — 14.

V případě, kdy a < 6, obdobnými úpravami dostaneme
10a + b = b2 — a2,

a2 -f- 10a -f" 25 — b2 — b -t- 25,

(a + 5)2 = 62 — 6 + 25
a podobně jako v prvním případě získáme dvojice 6 = 0,a = 0;6 = l,
a = 0; b — 8, a = 4.

Závěr: S přihlédnutím к podmínkám zadání jsou řešením úlohy tři
čísla 48, 100, 147.

C - S - 2

Označme a délku strany čtverce ABCD. Trojúhelníky AED, BAP
a CBQ jsou podobné podle věty au, přičemž trojúhelníky ВАР a CBQ
jsou dokonce shodné (obr. 4). Trojúhelník AED je polovinou rovnostran-
něho trojúhelníku o straně AE. Označíme-li \ED\ — x, je \AE\ = 2x.

38

V pravoúhlém trojúhelníku AED platí

a = \AD\ = y/\AE\2 - \ED\2 = у/4x2 - x2 = xVŠ,
odkud x = ^a. (Velikost x můžeme také spočítat užitím goniometric-
kého vzorce x : a = \ED\ : \AD\ = tg30° = ^.)

Trojúhelníky BAP a CBQ jsou polovinami rovnostranného trojúhel-
niku o straně a. Rovnostranný trojúhelník o straně délky a má výšku ^a
a jeho obsah je ^a2. Součet obsahů trojúhelníků AED, ВАР a CBQ
je tudíž

1 VŽ VŠ 2 5\/3 2
- • -a-a+—a = -

Jelikož obsah čtverce ABCD je a2, je poměr obsahů lichoběžníku PQCE
a čtverce ABCD roven

a .

12

a2 — ^\/3a2 12 — 5л/3
a2 12

což je číslo menší než 0,29.
Závěr: Obsah lichoběžníku PQCE je menší než třetina obsahu čtverce

ABCD.

Pro zajímavost uvedeme ještě jedno řešení, ve kterém ukážeme, že
zkoumaný obsah lze odhadnout pomocí úvah o vzájemné poloze vhod-
ných bodů (bez výpočtu délek a obsahu).

Jiné řešení. Protože nás zajímají jen poměry obsahů, můžeme před-
pokládat, že ABCD je čtverec o straně 1. Ve středové souměrnosti podle
středu O čtverce přejdou body E, P a Q v body, které označíme G, R
a S (obr. 5). Z pravoúhlého trojúhelníku AED s úhlem 60° při vrcholu E
plyne

\DE\ = \\AE\ > \\AD\ = i
takže pro obsah rovnoběžníku AGCE platí nerovnost

S(AGCE) < i.
Zároveň se zdá, že shodné lichoběžníky RCES a AGQP mají větší obsah
než čtverec PQRS. Pokud tomu tak opravdu je, musí být S(RCES) >
> ^S(AGCE), takže nutně platí

S(PQCE) = S(AGCE) - S(AGQP) = S(AGCE) - S(RCES) <

<\s(AGCE)<\-\ = \.3 3 2 3

39

Tím bude úloha vyřešena.
Strana SR čtverce PQRS je současně výškou lichoběžníku RCES.

Proto bude nerovnost S(PQRS) < S(RCES) dokázána, když ověří-
me, že strana čtverce je kratší než střední příčka lichoběžníku. Tou je
úsečka XZ, kde Z označuje střed úsečky SR, což je zároveň pata výšky
rovnostranného trojúhelníku XYD (obr. 6). Označme U průsečík úhlo-
příčky AC daného čtverce s úsečkou PQ. Tímto bodem prochází i přímka
DY, která je souměrně sdružená s přímkou BP právě podle osy AC, ne-
boť \<YDA\ = \<ABP\ = 30°. To ovšem znamená, že bod Y, který
je průsečíkem DU а, XZ, leží vně čtverce PQRSl Proto je opravdu
\XZ\ = \ZY\ > \QR\.

Obsah lichoběžníku PQCE je tudíž menší než třetina obsahu čtverce
ABCD.

C - S - 3

Označme a zapišme v desítkové soustavě pět pětimístných čísel, která se
čtou zepředu stejně jako zezadu a jsou sestavena z daných číslic:

CLibiC\bicii = Ol • 104 + bi • 103 + Ci • 102 4- b\ • 10 -I- ni,

а2^2с2^2а2 = а2 ' 104 + 62 ' 103 + C2 ' 102 + &2 ' Ю + П2,

азЬ3с3Ь3а3 = а3 ■ 104 + b3 • 103 + c3 • 102 + 63 • 10 + аз,

а4&4С4&4а4 = Й4 • 104 + &4 • 103 + C4 • 102 + 64 • 10 + <24,

CL3b3c3b3CL3 = a3 ■ 104 + 65 • 103 + C5 • 102 + 65 • 10 + 05.

Mezi číslicemi ci, C2, C3, C4, C5 je právě jedna jednička, právě jedna
dvojka, právě jedna trojka, právě jedna čtyřka a právě jedna pětka. Kdyby

40

totiž na místě stovek uvažovaných pěti čísel chyběla např. jednička, mu-
sela by se na místech ostatních řádů vyskytovat v lichém počtu (pětkrát),
což vzhledem к symetrii uvažovaných čísel není možné.

Pro součet S uvažovaných čísel tedy platí

S = dibiCibidi + Й2 62C262O2 + 0363036303 + 0464046404 + 0565056505 =

— (oi + 02 + 03 4- 04 + 05) • (104 + 1) +
+ (61 + 62 + 63 + 64 + 65) • (103 + 10) +
+ (ci +02+03+04+05)-102 =

= 10 001 • (oi + 02 + 03 + 04 + 05) + 1 010 • (61 + 62 + 63 + 64 + 65) +

+ 100- (1 + 2 + 3 + 4 + 5) =

— 10 001 • (oi + 02 + 03 + 04 + 05) +

+ 1 010 • (61 + 62 + 63 + 64 + 65) + 1 500.

S ohledem na číslice, jež máme к dispozici, bude součet S nejmenší, jest-
liže bude

01+02 + 03 + 04 + 05 — 1 + 1 + 2 + 2 + 3 — 9,

61 + 62 + 63 + 64 + 65 = 5 + 5 + 4 + 4 + 3 = 21.

Nejmenší možný součet má tudíž hodnotu

Sm[n = 10 001 • 9 + 1 010 • 21 + 1 500 = 112 719

a vznikne např. jako součet

Smin = 13 131 + 14 241 + 24 342 + 25 452 + 35 553.

Podobně bude součet S největší, pokud bude

01 +02+03 + 04 + 05 — 5 + 5 + 4 + 4 + 3 — 21,

61 +62 + 63 + 64 + 65 = l + l + 2 + 2 + 3 = 9.

Největší možný součet má tudíž hodnotu

Smax = 10 001 -21 + 1 010 -9 + 1 500 = 220 611

a vznikne např. jako součet

Smax = 53 535 + 52 425 + 42 324 + 41 214 + 31 113.

41

С - II - 1

Pro každé z dvojmístných prvočísel 97, 89, 83, 79, 73, ... hledáme jeho
nejmenší násobek, který převyšuje číslo 2 003. Vzhledem к tomu, že mezi
к po sobě jdoucími celými čísly je právě jedno dělitelné k, a protože je
97 • 21 = 2 037, 89 • 23 = 2 047, 83 • 25 = 2 075, 79 • 26 = 2 054, musí
být 2 003 + n ^ 2 075, tedy n ^ 72. Pro takové n máme zaručeno, že
pro každé z prvočísel 97, 89, 83, 79 je mezi čísly 2 003, 2 004, 2 005, ...,

2 003 + n aspoň jedno jím dělitelné.
Mezi uvedenými 73 čísly 2 003 až 2 075 je vždy aspoň jedno dělitelné

prvočíslem 73, aspoň jedno dělitelné prvočíslem 71 atd.
Hledané číslo n je tedy 72.

С - II - 2

V pravidelném šestiúhelníku ABCDEF se středem S, v němž Q je střed
strany AB a P je střed strany DE, známe velikost úhlu PAQ (obr. 7),

E P D

C
S

—o

XA Q В

Obr. 7

neboť všechny pravidelné šestiúhelníky jsou navzájem podobné. V pra-
voúhlém trojúhelníku APQ tedy známe délku přepony AP a velikosti
dvou úhlů (AQP je pravý úhel). Odtud vyplývá postup konstrukce:
1. úsečka AP,
2. Thaletova kružnice к nad průměrem AP,
3. polopřímka AX, jež svírá s úsečkou AP úhel velikosti PAQ (ten se-

strojíme pomocí libovolného pravidelného šestiúhelníku),
4. bod Q jako průsečík kružnice к s polopřímkou AX,
5. střed S úsečky PQ,

42

6. kružnice se středem S a poloměrem \SQ\,
7. pravidelný šestiúhelník ABCDEF.

Úloha má dvě řešení souměrně sdružená podle osy AP podle toho,
v které polorovině s hraniční přímkou AP sestrojíme polopřímku AX
(bod 3 konstrukce).

C - II - 3

V prvním případě platí

P + 2,4
1000p' Too +10009 • 155 = 1 00°(p + «) • 100

v druhém případě platí

2q2P p+ 5,8
1000p ‘ loo + 10009' Toó = 1 °00^ + q^ ’ 100

Úpravou obou rovnic získáme soustavu

p2 + q2 - (p + 2,4)(p + g),
2P2 + 2q2 = {p + 5,8) (p + q).

(1)

Protože levá strana druhé rovnice je dvojnásobkem levé strany první
rovnice, musí platit

2{p + 2A)(p + q) = (p + 5,8)(p + q).

Odtud po vykráčení nenulovým výrazem p + q vychází p = 1. Dosazením
této hodnoty např. do rovnice (1) a po úpravě získáme kvadratickou
rovnici

q2 - 3,4q - 2,4 = 0.

Protože hledáme celočíselné kořeny, přepíšeme rovnici do tvaru

q(5q — 17) = 12

a snadno zjistíme, že mezi děliteli čísla 12 rovnici vyhovuje jedině q = 4.

С - II - 4

Označme E patu kolmice spuštěné z vrcholu C na základnu AB rovnora-

menného lichoběžníku ABCD a jednotlivé délky úseček označme takto

43

(obr. 8): \AB\ =a = 12, \BC\ = 6, \CD\ = c = 10, |ЛС| = u, |Cř£7| = v.
Potom je |EE| = |(a — c) = 1, |AE| = |(o 4- c) = 11.

'E В
|(a + c)

Obr. 8

Podle Pythagorovy věty pro trojúhelníky ЛЕС a EEC můžeme tedy
psát

v2 = u2 - ll2 = b2 - l2 (1)
neboli

u2 -b2 = ll2 - l2 = 120.

Odtud je vidět, že čísla и a b jsou zároveň obě sudá, nebo obě lichá, proto
v rozkladu

(u - b)(u + b) = 120 = 2 • 60 = 4 • 30 = 6 • 20 = 10 • 12

přicházejí v úvahu jen uvedené rozklady čísla 120 na sudé činitele.
Uvedeným rozkladům pak odpovídají čtyři soustavy rovnic pro ne-

známé и a b:

и — b = 2,
и + b = 60;

и — b = 4,
и + b = 30;

и — b = 6,
и + 6 = 20;

и — b — 10,
u + 6 = 12.

Jejich řešením (nejlépe tak, že vždy odečteme druhou rovnici od prvé)
dostaneme pro délku ramene b lichoběžníku ABCD čtyři možnosti, b 6
G {29,13,7,1}. Z rovnosti (1) ovšem vidíme, že musí být b > 1, úloze
tedy vyhovují jen první tři hodnoty.

Odpověď. Možná délka ramene lichoběžníku je buď 7, nebo 13, nebo 29.

44

Kategorie В

Texty úloh

В - I - 1

Palindromem rozumíme přirozené číslo, které se čte zepředu i zezadu
stejně, např. 16 261. Najděte největší čtyřmístný palindrom, jehož druhá
mocnina je také palindromem. (E. Kováč)

В - I - 2

Najděte všechny trojice reálných čísel (ar, y, z) vyhovující soustavě rovnic

x3+y3 = 9z3,
x2y 4- y2x = 6z3.

(J. Zhouf)

В - I - 3

Je dán trojúhelník se stranami délek a, b, c a obsahem S. Dokažte, že
rovnost 2c2 = |a2 — b2\ platí, právě když existuje trojúhelník se stranami
délek a, b, 2c a obsahem 25. (P. Černek)

В - I - 4

Krokem budeme rozumět nahrazení uspořádané trojice celých čísel
(p, y,r) trojicí (r + 5y,3r — 5p, 2q — 3p). Rozhodněte, zda existuje celé
číslo к taškové, že z trojice (1,3,7) vznikne po konečném počtu kroků
trojice (Лг,Лг Ч- 1,Лг + 2). (P. Černek)

В - I - 5

V rovině je dán pravoúhlý lichoběžník ABCD s delší základnou AB
a pravým úhlem při vrcholu A. Kružnice k\ sestrojená nad stranou AD

45

jako průměrem a kružnice &2, která prochází vrcholy В, C a dotýká se

přímky AB, mají vnější dotyk v bodě P. Dokažte, že úhly CPD a ABC
(J. Švrček)jsou shodné.

В - I - 6

V kartézské soustavě souřadnic Ouv znázorněte množinu všech bodů

[u,u], kde и > 0, pro něž má rovnice

\x2 — их | + vx — 1 = 0

(J. Šimša)s neznámou x právě tři různá reálná řešení.

В - S - 1

Najděte největší pětimístné přirozené číslo, které je dělitelné číslem 101
a které se čte zepředu stejně jako zezadu. (J. Šimša)

В - S - 2

Je dán konvexní čtyřúhelník ABCD. Označme P průsečík jeho úhlopří-
ček a Q průsečík spojnic středů jeho protějších stran. Leží-li bod Q na

úhlopříčce BD, je bod P středem úhlopříčky AC. Dokažte. (E. Kováč)

В - S - 3

Kolik různých výsledků můžeme dostat, sečteme-li každá dvě z daných
pěti různých přirozených čísel? Pro každý možný počet uveďte příklad
takové pětice čísel. (P. Černek)

В - II - 1

Určete největší počet po sobě jdoucích pětimístných přirozených čísel,
mezi nimiž není žádný palindrom, tj. číslo, které se čte zepředu stejně
jako zezadu. (J. Šimša)

В - II - 2

V rovině je dán pravoúhlý trojúhelník ABC, na jehož přeponě AB uva-

žujeme libovolný bod K. Kružnice sestrojená nad úsečkou CK jako nad
průměrem protne odvěsny ВС a CA ve vnitřních bodech, které označíme

46

po řadě L a M. Rozhodněte, pro který bod К má čtyřúhelník ABLM
(J. Švrček)nejmenší možný obsah.

В - II - 3

Určete všechna reálná čísla p, pro něž má rovnice

(x — l)2 = 3|:r| — px

(J. Šimša)právě tři různá řešení v oboru reálných čísel.

В - II - 4

V rovině je dán pravoúhlý lichoběžník ABCD s delší základnou AB
a pravým úhlem při vrcholu A. Označme k\ kružnici sestrojenou nad
stranou AD jako nad průměrem a &2 kružnici procházející vrcholy В, C
a dotýkající se přímky AB. Mají-li kružnice k\, vnější dotyk v bodě P,
je přímka BC tečnou kružnice opsané trojúhelníku CDP. Dokažte.

(J. Švrček)

47

Řešení úloh

В - I - 1

Každý čtyřmístný palindrom p = abba lze zapsat ve tvaru

p = a ■ 1001 + b • 110

kde a G {1, 2,..., 9} a 6 G {0,1, 2,..., 9}. Potom druhá mocnina čísla
abba má tvar

p2 = a2 • 1002001 + 2a6- 110 110 + b2 -12100 =

= a2 • 106 + 2ab • 105 + (b2 + 2ab) • 104 +
+ (2a2 + 2b2) • 103 + (62 + 2ab) • 102 + 2ab ■ 101 + a2.

Poslední číslice čísla p2 je tedy stejná jako poslední číslice čísla a2.
Pro a ěl 4 je číslo p2 nutně osmimístné. Jeho první číslice je rovna

jedné z hodnot с, c+ 1, c + 2, kde c je první číslice dvojmístného čísla a2.
(Maximální přenos z nižšího řádu je roven číslu 2.) Je-li však dané číslo
opět palindromem, je jeho první i poslední číslice stejná. Porovnáním
první a poslední číslice u čísel 16, 25, 36, 49, 64, 81 vidíme, že žádné
z nich není tvaru c(c + 2), c(c + 1) nebo čč.

Je-li a — 3 a b ^ 2, je číslo p2 opět osmimístné, jeho poslední číslice
je 9 a první je 1, nejedná se tedy o palindrom.

Ve všech ostatních případech je číslo p2 sedmimístné. Protože a2 je
pouze jednomístné a zápis čísla p2 je symetrický, musí být nutně všechny
tři hodnoty 2ab, 2ab + b2, 2a2 -I- 2b2 menší než 10, aby nedošlo к přenosu
do vyššího řádu. Diskutujme tři případy:
• a = 3: nerovnici 2 • 32 + 2b2 < 10 nevyhovuje žádné b,
• a = 2: nerovnici 2 • 22 + 2b2 < 10 vyhovuje pouze b = 0,
• a = 1: nerovnici 2 • l2 + 2b2 < 10 vyhovuje pouze b — 0, b = 1,

Závěr-. Největším čtyřmístným palindromem splňujícím podmínky
úlohy je číslo 2 002.

В - I - 2

Přičteme-li к první rovnici trojnásobek rovnice druhé, získáme rovnici

x3 + 3x2y + 3xy2 + y3 — 21z3.

48

Její úpravou dostaneme

{x + yý = (3z)3, tj. x + у = 3z.

Dosadíme-li tento výraz do levé strany druhé rovnice soustavy, dostaneme

x2y + xy2 = xy(x + y) = 3xyz, 3xyz — 6z3.tj-

Rozlišíme dva případy.
Je-li г = 0, je poslední rovnice splněna pro všechna x,y G R. Z první

rovnice soustavy získáme x3 + y3 = 0, tj. у =

trojice (t, —t, 0), kde t je libovolné reálné číslo.
Je-li z ф 0, pak xy = 2z2. Společně s rovnicí x + у = 3z dostáváme

soustavu

Řešením je každá—x.

x + y = 3z,
= 2z2xy

dvou rovnic o dvou neznámých x,y s parametrem z. Eliminací např.
neznámé у dostaneme kvadratickou rovnici

x2 — 3zx 4- 2z2 — 0.

Ze vztahů mezi kořeny a koeficienty kvadratické rovnice získáme řešení
ve tvaru x — z, у — 2z nebo x — 2z, у = z. Řešením je tedy každá trojice
(t,2t,t) a (2t,t,t), kde t je libovolné reálné číslo (různé od nuly).

Závěr: Soustava má řešení (í, 21, t) a (2í, ř, ť) pro každé t Ф 0, (í, —ř, 0)
pro každé t a žádné jiné řešení nemá.

Jiné řešení. První rovnici vynásobíme dvěma a odečteme od ní troj-
násobek rovnice druhé (vyloučíme tak neznámou z). Získáme rovnici

2a;3 + 2y3 — 3x2y — 3xy2 — 0.

Levou stranu rovnice postupně upravíme na tvar:

2(x + y)(x2 -xy + y2) - 3(x + y)xy = 0,
(x 4- y)(2x2 — 5xy + 2y2) = 0,

(x + y)(2x - y)(x - 2y) = 0.

49

Mohou tedy nastat tři případy:
• x + у = O, potom у = —x. Dosazením do první rovnice soustavy

dostaneme 9z3 = x3 + (—x)3 = 0, tj. z = 0.
• 2x — у = 0, potom у — 2x. Dosazením do první rovnice soustavy

dostaneme 9z3 = x3 + (2x)3 = 9ж3, tj. z = x.
• x — 2у = 0, potom x — 2y. Dosazením do první rovnice soustavy

dostaneme 9z3 = (2y)3 + y3 = 9y3, tj. z = y.

Závěr: Řešením jsou všechny trojice (í, —t, 0), (í, 2ť, t) a (2í, í, í), kde
t je libovolné reálné číslo.

В - I - 3

Bez újmy na obecnosti předpokládejme, že platí a ^ b. Jestliže je ob-
sah trojúhelníku A'B'C se stranami délek a, 6, 2c roven dvojnásob-
nému obsahu trojúhelníku ABC se stranami délek a, b, c, jsou výšky
CV a C"V' těchto trojúhelníků shodné. Trojúhelníky ACV a A'C'V'
jsou tedy shodné podle věty Ssu, proto můžeme oba trojúhelníky ABC
a A'B'C' přemístit tak, aby platilo В ■= В', С = С а V — V'\ рак už
ovšem nemůže platit A = A'. Jaká je poloha bodů A a A' na přímce BV1
Protože b = \AC\ — |Л'С|, je trojúhelník AA'C je rovnoramenný a jeho
základna AA' má střed v bodě V (obr. 9). Předpoklad a ^ b znamená,

А! V = V A c B = B'

Obr. 9

že \AC\ — \A'C\ ^ \BC\, takže bod В neleží na úsečce AA!\ protože
\AB\ — c a \A'B\ = 2c, leží bod В na polopřímce opačné к AA' tak, že
bod A je středem úsečky A'B.

Z pravoúhlých trojúhelníků AVC a BVC vyplývá

2 2
v — a —

(Wv2 = b2 -

50

Porovnáním pravých stran dostaneme po úpravě

a2 -b2 = 2c2.

Ukázali jsme tak, že pokud к danému trojúhelníku ABC existuje
trojúhelník se stranami a, b, 2c a obsahem 25, pak pro délky a, b, c musí
být splněna rovnost \a2 — b2\ = 2c2.

Předpokládejme naopak, že pro velikosti stran a, b, c trojúhelníku
ABC platí |a2 — b2\ = 2c2. Nejprve ukážeme, že trojúhelník se stranami
a, b, 2c existuje, tj. že platí trojúhelníková nerovnost

a + b > 2c > \a — b\.

Pro trojúhelník ABC platí trojúhelníková nerovnost a + b > c> \a — b\.
Proto platí 2c > c > \a — b\. Vynásobíme-li dále obě strany nerovnosti
c > \a — b\ kladným výrazem a + b, obdržíme nerovnost

c(a + b) > \a2 — b2\ = 2c2

z níž po dělení c vyplývá nerovnost

a + b > 2c.

Předpokládejme nyní, že v trojúhelníku А'В'С' o stranách a, b, 2c
platí rovnost 2c2 = a2 — b2 (opět bez újmy na obecnosti předpokládáme,
že a > b — zde nemůže být a = b, protože by bylo c = 0).

Vysvětlíme, proč pata V výšky z vrcholu C na stranu A!B' padne
dovnitř této strany (a ne na její prodloužení). К tomu stačí ukázat, že
trojúhelník А'В'С' má ostré vnitřní úhly u vrcholů A! i B' (obr. 10). Úhel
А'В'С' je menší než úhel B'A'C, neboť předpokládáme, že a > b. Úhel

c A cA! B'

Obr. 10

51

B'A'C je ostrý, právě když platí nerovnost \B'C'\2 < \A'B'\2 -f \A'C'\2,
neboli a2 < 4c2 + b2. Poslední nerovnost je ale zaručena rovností a2 =
= b2 + 2c2.

Z pravoúhlých trojúhelníků A'VC' a B'VC plyne, že pro délky x =
= \A'V\ a v = \C'V\ platí

v2 = b2 — x2,
v2 — a2 — (2c — x)2.

Porovnáním pravých stran dostaneme po úpravě

4ca; = 4c2 — (a2 — b2)

a dosazením za a2 — b2 vyjde

4cx = 4c2 — 2c2 = 2c2, -c.

Označíme-li A (ve shodě s první částí) střed strany A'B\ platí

\AC'\ = \A'C'\ = 6,

tudíž trojúhelník AB'C má strany délek a, 6, c a obsah rovný polovině
obsahu trojúhelníku A!B'C'. Tím jsme dokázali opačnou implikaci.

Jiné řešení. Z Heronova vzorce pro obsah S\ trojúhelníku ABC a pro
obsah S2 trojúhelníku A!B'C' máme

= \\J{(a + b)2 -c2)(c2 - {a-b)2),
= —yj((a + b)2 — 4c2) (4c2 — (a — 6)2).

Si

S2

Z podmínky S2 — 2S\ plyne

((a + b)2 — 4c2) (4c2 - (a - b)2) = 4((a + b)2 c2)(c2 - {a-b)2).
Z této podmínky po úpravě dostaneme

(o2 — b2)2 = 4c4, tj. |a2 — b2\— 2c2.
Provedené úpravy jsou ekvivalentní, proto je možno celý postup obrá-

tit. Z rovnosti |a2 — b2\ = 2c2 vyplývá, že trojúhelník A!B'C má dvakrát

52

větší obsah než trojúhelník ABC. Existenci trojúhelníků lze dokázat stej-
ným postupem jako v prvním řešení.

Jiné řešení. Uvažujme úsečku BC délky a (a > b) a kružnici к se
středem v bodě C a poloměrem b (obr. 11).

Ve stejné polorovině (s hraniční přímkou BC) uvažujme body A a A',
pro něž platí \AB\ = c, \A'B\ = 2c. Leží-li body A a A' na téže přímce,
potom obsah trojúhelníku A'BC je dvojnásobkem obsahu trojúhelníku
ABC. Z mocnosti bodu В ke kružnici к plyne

\BA\ ■ \BA'\ = 2c2 = a2 - b2.

Je-li naopak splněna poslední rovnost, protne polopřímka opačná
к AB kružnici к v bodě, jehož vzdálenost od bodu В je rovna 2c, tímto
bodem je však A!. Odtud již plyne tvrzení pro obsahy trojúhelníků. Exis-
tenči trojúhelníků lze dokázat stejným postupem jako v prvním řešení.

В - I - 4

Sečteme-li všechna tři čísla nově vzniklé trojice, dostaneme

(r + 5g) + (3r - 5p) + (2g - 3p) = 4r + 7q-8p = 3(r + 2q-3p) + {p + q + r).

Toto číslo dává při dělení třemi stejný zbytek jako číslo (p + q + r),
tj. zbytek při dělení třemi součtu čísel v trojici zůstává zachován. Pro
trojici (1,3, 7) je zbytek roven dvěma (1+ 3 + 7=11 = 3- 3 +2).

Součet tří po sobě jdoucích celých čísel je však dělitelný třemi, takže
dává zbytek nula. Plyne to z rovnosti к + (к + 1) + (к + 2) = 3(к + 1).

Závěr: Po konečném počtu kroků nemůžeme z trojice (1,3, 7) dospět
к trojici po sobě jdoucích celých čísel.

53

Jiné řešení. Předpokládejme, že z nějaké trojice (a, 6, c) vznikne v ná-
sledujícím kroku trojice po sobě jdoucích čísel (ai,6i,ci). Tato tři čísla
jsou tedy nutně členy aritmetické posloupnosti s diferencí 1. Musí proto
platit

Ci — b\ — b\ — a\.

Dosadíme-li sem a\ — c + 56, &i = 3c — 5a, ci = 26 — 3a, dostaneme po

úpravě
7(a + 6) = 5c.

Odtud nutně platí c = 7k, a + b = Sk pro nějaké celé číslo k. Potom ale
ai = 32к — 5a, 6i = 21 к — 5a, ci = 10A; — 5a. Aby tato trojice tvořila
aritmetickou posloupnost s diferencí jedna, muselo by být 11 к = — 1,
tj. к = — jj. To je spor s předpokladem, že к je celé číslo.

Jiné řešení. Zkoumejme, jak se mění parita trojice čísel v následujících
krocích. Na začátku jsou všechna tři čísla lichá. Postupně dostáváme:

(Z, Z, Z) —у (5, s, Z) —у (Z, Z, s) —у (Z, Z, Z) —у ...

Protože se parita čísel pravidelně mění dle daného schématu, nemů-
žeme z trojice lichých čísel dospět к trojici (s,Z,s), resp. (Z,s,Z), které
reprezentují všechny trojice po sobě jdoucích čísel (za sudým číslem ná-
sleduje liché a naopak).

В - I - 5

Protože úsečka AD je průměrem kružnice ki, je úhel APD pravý
(obr. 12).

2Ц CD

fp ?

t k2
/

A S В

Obr. 12

54

Uvažujme společnou tečnu t obou kružnic procházející bodem P.
Označme po řadě 5 a X průsečíky tečny t s úsečkami AB a CD.
Přímka AB je však také společnou tečnou obou kružnic. Platí proto
\SA\ = |SP| = \SB\. Bod S je proto středem Thaletovy kružnice se-
strojené na stranou AB jako průměrem. Úhel APB je tudíž stejně jako
úhel APD pravý a bod P je tedy vnitřním bodem úsečky BD.

Trojúhelník BPS je rovnoramenný se základnou BP, pro jeho úhly
tedy platí \<SBP\ = \<SPB\. Úhel SPB má navíc stejnou velikost jako
úhel DPX (dvojice vrcholových úhlů). Platí proto \<ABP\ = \<DPX\.
Současně však je úhel XPC úhlem úsekovým pro tětivu CP kružnice к2.
Z rovnosti obvodového a úsekového úhlu máme \<PBC\ — \<XPC\.

Celkově dostáváme

\<ABC\ = \<ABP\ + \<PBC\ = \<DPX\ + \<XPC\ = \<DPC\

což jsme chtěli dokázat.

В - I - 6

Nulové body výrazu x2 — их jsou x = 0 a x = u. Protože dle zadání
platí и > 0, rozdělíme reálnou osu na tři vzájemně disjunktní intervaly
h = (—co,0), I2 = (0,и) a h = (u,oo).

Na intervalech I\ a /3 řešíme kvadratickou rovnici

x2 — (u — v)x — 1 = 0.

Tato rovnice má kladný diskriminant (и — v)2 + 4, a tudíž dva různé
reálné kořeny

Ц ~ v ~ y/(u - v)2 + 4
xi =

2

и — v + y/(u — v)2 + 4
X2 =

2

Protože y/(u — v)2 + 4 > \u — u|, platí x\ < 0 a x2 > 0. Znamená to, že
číslo xi je vždy řešením rovnice (1), neboť I\ = (—00,0), zatímco číslo x2

je řešením rovnice (1), právě když platí x2 G /3, neboli x2 > u.
Na intervalu I2 řešíme kvadratickou rovnici

x2 — (u + v)x +1 = 0.

55

Tato rovnice má diskriminant D = (u + v)2 — 4 a případné reálné kořeny

u + v- y/(u + n)2 -4
Хз =

2

и + v + yj{u + v)2 - 4
£4 =

2

Ze zadání vyplývá, že aspoň jeden z kořenů £3, £4 musí být řešením
rovnice (1) (ležícím na intervalu /2). Proto předně musí být diskrimi-
nant D nezáporný, z čehož plyne podmínka \u + v\ ^ 2. Protože navíc
yj(u + v)2 — 4 < \u T v|, mají oba kořeny £3, £4 stejné znaménko jako
součet u + v. Dohromady to znamená, že musí platit u + v ^ 2 (v případě
u + v ^ —2 by totiž žádné z čísel £3, £4 neleželo na /2)- Za podmínky
u + v 'ž. 2 ovšem platí 0 < £3 ^ £4, takže ze zadání plyne, že na intervalu
/2 = (0,u) leží číslo £3 (a případně i číslo £4).

Z dosavadních úvah plyne, že naší úlohou je posoudit otázku, kdy za

podmínek
u > 0 a u + v ^2 (2)

nastane některý z těchto případů:
a) £2 i /3, {^3,2:4} С /2, x3 ф £4;
b) £2 6 /3, £3 = x4 e /2;
c) £2 £ /3, £3 G /2, £4 ^ 12-

Ad a. Zjistíme, kdy jsou splněny jednotlivé podmínky, které tento
případ vymezují (pro lepší přehled je v textu uvádíme černými puntíky).

• X2 ^ /3, neboli £2 ^ u. Po úpravě získáme nerovnost

y/(u — v)2 + 4 ^ и + n,

jejíž pravá strana je podle (2) kladná, takže obě strany můžeme umocnit
na druhou. Po další snadné úpravě dostaneme podmínku uv ^ 1. Proto
platí:

£2 h +=+ uv ^ 1.

• {£3, £4} C h- Jak víme, za podmínek (2) platí 0 < £3 ^ £4,
stačí proto pouze zkoumat nerovnost £4 u, neboli y/(u + v)2 — 4 ^
^ и — v. Poslední nerovnost může platit jedině tehdy, když и ^ v. Pak
po umocnění stran zkoumané nerovnosti a následné úpravě dostaneme
podmínku uv й 1. Proto platí:

{£3, £4} C /2 <=> и ^ v A uv ^ 1.

56

• хз ф Х4. Z dřívějšího odvození podmínky и + v ^ 2 je jasné, že
rovnost X3 = x4 nastane, právě když и + v = 2. Za podmínek (2) tedy
platí

X3 ф X4 <=> и + v > 2.

Shrneme nyní všechny podmínky pro zkoumaný případ A. Z nerov-
ností uv ^ 1 a uv ^ 1 plyne uv — 1, neboli v = l/u. Zbývající podmínky
jsou pak tvaru и ^ l/u а и + l/u > 2 a jsou zřejmě obě splněny, právě
když u > 1. Hledané body [w,u] v případě A tedy tvoří část hyperboly
v — 1/и určenou omezením и > 1 (obr. 13).

v
A

1

O

Ad b. Z předchozího rozboru případu A plyne, že za podmínek (2)
platí tyto ekvivalence:

Ж4 E /2 и ^ v A uv ^ 13?2 € /3 WU < 1,

X3 = X4 <=> u + v = 2.

Vidíme, že v případě В musí platit v = 2 — u. Tehdy jsou zbývající
podmínky tvaru (2 — u)u <lau^2 — ua jsou zřejmě obě splněny,
právě když и > 1. Hledané body [u,v] v případě В tedy tvoří polopřímku
určenou rovnicí v = 2 — и a omezením и > 1.

Ad c. Podmínku X3 € /2 lze vyjádřit nerovností X3 ^ u, která je
ekvivalentní s nerovností ^/(u + v)2 — 4 ^ v — u, jež je splněna triviálně,
pokud и ^ v. Jak jsme ale ukázali dříve, v případě и ^ v platí nejen
жз 6 /2, ale také x4 6 /2, což případ C vylučuje. V případě C tedy nutně
platí и < v a z nerovnosti yf(u + v)2 — 4 ^ v — и po umocnění a úpravě
dostaneme podmínku uv 1. Jak ale víme, z poslední nerovnosti plyne
£2 ^ hi takže případ C nemůže nikdy nastat.

57

Závěr: Množinou všech bodů vyhovujícím zadání je část hyperboly
v = l/u a, část přímky v = 2 — u, v obou případech části určené podmiň-
kou и > 1.

Jiné řešení. Rovnici lze řešit také graficky. Zkoumáme, kdy budou mít
grafy funkcí f(x) = \x2 — ux\ a g{x) = 1 — vx právě tři společné body
(obr. 14).

Obr. 14

Graf funkce / je složen z částí paraboly, grafem funkce g je přímka
procházející bodem [0,1]. Aby tato přímka měla s grafem f(x) společné
právě tři body, musí být buď tečnou paraboly na intervalu (0, u) (potom
и + v — 2, odvození je analogické jako v předchozím řešení
diskriminantu), nebo musí procházet bodem [u,0] a současně protínat
graf funkce / ve vnitřním bodě intervalu (0,u). Dosadíme-li souřadnice
bodu [u, 0] do rovnice přímky g, dostaneme 0 = 1 — vu, tj. uv = 1. Stejně
jako v předchozím řešení musí platit и > 1, což můžeme ověřit nalezením
druhého průsečíku přímky s parabolou.

pomocí

В - S - 1

Libovolné z uvažovaných pětimístných čísel má desítkové soustavě zápis
tvaru abcba. Jeho rozvinutím a úpravou získáme rovnost

abcba — 10 001a + 1 0106 + 100c = 101 (99a + 106 + c) + 2a — c.

Odtud plyne, že zkoumané číslo je dělitelné 101, právě když 2a — c = 0
(pro libovolné číslice a, c totiž jistě platí |2a — c| < 101). Z rovnosti
2a = c plyne a ^ 4, a protože hledáme co největší takové číslo, zvolíme

58

jeho první číslici a = 4, které odpovídá číslice c = 8. Protože číslice 6
nemá na dělitelnost číslem 101 vliv, zvolíme ji co největší: 6 = 9. Hledané
číslo je tudíž 49 894.

В - S - 2

Středy stran čtyřúhelníku ABCD označme K, L, M, N podle obr. 15.
Protože úsečky KL a MN jsou střední příčky trojúhelníků ABC

resp. ACD, platí KL || AC
tudíž KLMN je rovnoběžník a bod Q půlí úsečku KM. Všimněme si
nyní trojúhelníku KMN. Středem Q jeho strany KM prochází podle
předpokladu úlohy úhlopříčka BD, která je, jak víme, rovnoběžná s dru-
hou stranou KN. Proto i střed R třetí strany MN leží na úhlopříčce BD.
Protože úsečka MN je stejnolehlá s úsečkou CA podle středu D, půlí
úhlopříčka BD nejen úsečku MN (v bodě R), ale i úsečku AC (v odpo-
vídajícím bodě P).

MN. Obdobně platí LM || BD || KN,

В - S - 3

Daná přirozená čísla označme podle velikosti x\ < < x$ < X4 < x$.
Protože platí

X\ + X2 < Xi + X3 < Xi + X4 < Xi + X5 < X2 + X5 < X3 + X5 < £4 + £5,

je mezi všemi součty Xi + Xj aspoň sedm různých hodnot. Nevypsány
zůstaly pouze tři z možných součtů, a to součty X2+X3, X2+X4 &X3+X4.
Proto pro počet p možných hodnot uvažovaných součtů platí 7 ^ p ^ 10.

59

Pro každou z hodnot p G {7,8,9,10} uvedeme příklad pětiprvkové
množiny Mp přirozených čísel, pro kterou uvažované součty nabývají
právě p různých hodnot (jejich množinu označíme Sp):

M7 = {1,2,3,4,5}
M8 = {1,2,3,4,6}
M9 = {1,2,3,4,7}

M10 = {1,2,3,5,8}

57 — {3,4,5,6,7,8,9};
58 = {3,4,5,6,7,8,9,10};
59 = {3,4,5,6,7,8,9,10,11};

Sio = {3,4,5,6,7,8,9,10,11,13}.

В - II - 1

Mezi 109 po sobě jdoucími pětimístnými čísly

10902, 10 903,..., 10 999, 11000,..., 11009, 11010

není žádný palindrom (je možné uvést i jiné vyhovující příklady 109 pě-
timístných čísel, my jsme vypsali skupinu nejmenších z nich).

Nejmenší a největší pětimístné palindromy jsou čísla 10001 a 99 999;
před číslem 10 001 je jen jedno pětimístné číslo, za číslem 99 999 už do-
konce žádné takové číslo není. Ukážeme nyní, že za každým pětimístným
palindromem x, x 7^ 99 999, následuje pětimístný palindrom x +100 nebo
x + 110 nebo x + 11. Skutečně, je-li x — abcba, pak v případě с Ф 9 je
palindromem číslo x -f 100 = ab(c + l)6a, v případě c = 9 Ф b je palin-
dromem číslo x + 110 = a(b + 1)0(6 + l)a, konečně v případě c = 6 = 9
(kdy nutně a 7^ 9) je palindromem číslo x + 11 = (a + l)000(a + 1).

Odpověd. Hledaný největší počet čísel je roven 109.

В - II - 2

Protože úhly KLC, KMC a LCM jsou pravé (obr. 16), je čtyřúhelník
KLCM pravoúhelník a trojúhelníky AKM a KBL jsou podobné troj-
úhelníku ABC. Označme jako obvykle a — \BC\, b = \AC\, c = \AB\
a položme \AK\ — kc, kde 0 < к < 1. Pak ovšem \KB\ = (1 — k)c
a ze zmíněné podobnosti trojúhelníků dostáváme vyjádření \AM\ — kb,
\LC\ = \KM\ = ka, \BL\ = (1 - k)a a \MC\ = \KL\ = (1 - k)b. Proto

60

platí

Sablm = Sabc - Slmc — • ka ■ (1 - k)b =

= ±ab(l-k + e) = \ab((k-\)2 + l') >

-|“6'I = iSylSC’
přičemž rovnost Sablm — |Sabc nastane, právě když к = tedy právě
když je bod if středem přepony AB.

C

(1 - k)b ka
M

kb
(1 — k)a

A kc К (1 — k)c В
Obr. 16

Jiné řešení. Čtyřúhelník ABLM má minimální obsah, právě když má
maximální obsah trojúhelník LMC, který je „polovinou" pravoúhelníku
KLCM. Stačí proto ukázat, že obsah Sklcm je maximální, právě když
je bod К středem přepony AB (kdy zřejmě Sklcm = |Sabc)■ Je-li
bod К vybrán tak, že \AK\ < ||AB|, je úsečka KL střední příčkou
lichoběžníku AK'L'C, který má o Sk'L'B menší obsah než trojúhelník
ABC (obr. 17a), takže platí

Sklcm = 7,Sak'vc < ^Sabc•

A В
К К' К' К

а) Ъ)
Obr. 17

61

Je-li naopak |AK\ > ||AB|, využijeme obdobný lichoběžník BK'M'C
(obr. 17b) a usoudíme, že platí

-Sbkwc < £Sabc■Sklcm =

Tím je tvrzení o maximálním obsahu Sklcm dokázáno.

Odpověď. Čtyřúhelník ABLM má nej menší možný obsah, právě když
bod К leží uprostřed přepony AB.

В - II - 3

I když lze danou úlohu řešit názorně geometrickou úvahou o vzájemné
poloze paraboly у — (x — l)2 a lomené čáry у = 3|x| — px, dáme nejprve
přednost čistě algebraickému postupu.

Daná rovnice zřejmě nemá řešení x — 0. Po odstranění absolutní
hodnoty a snadné úpravě dostaneme rovnice

x2 + (p + l)z + 1 = 0
x2 + (p — 5)x + 1 = 0

(1)pro x < 0,

pro x > 0. (2)

Protože každá kvadratická rovnice má nejvýše dva různé kořeny, hledáme
všechna ta čísla p, pro která má jedna z rovnic (1), (2) jeden kořen a druhá
dva různé kořeny (a to vždy předepsaných znamének). Všimněme si, že
pro každé q G IR mají reálné kořeny xij2 rovnice x2 + qx + 1 = 0 (pokud
vůbec existují) stejné znaménko, které je opačné než znaménko čísla q-,

platí totiž X\X2 = 1 a xi + Ж2 = —q. Pro rovnice (1), (2) tak předně
dostáváme podmínky

p+l>0 a p — 5 < 0, neboli (-1,5).

Kromě toho už jen požadujeme, aby pro diskriminanty obou rovnic

r>i = (p+ l)2-4, D2 = {jp-5)2-4

platilo buď Di = 0 a D2 > 0, nebo D\ > 0 a D2 = 0. Rovnost D\ = 0
platí pouze prop G {—3,1}, rovnost D2 = 0 pouze prop G (3, 7}. Z těchto
čtyř hodnot leží v intervalu (—1,5) pouze čísla p = 1 a p = 3, přičemž
pro p = 1 vychází D2 — 12 > 0, pro p = 3 zase D\ — 12 > 0.

Odpověď. Hledané hodnoty jsou p = 1 a p = 3.

62

Jiné řešení. Grafem funkce у = (x— l)2 je parabola s vrcholem V[l, 0],
grafem funkce у = 3|rc| — px je lomená čára tvořená rameny některého
úhlu s vrcholem O[0,0] (obr. 18a pro p — 2). Oba grafy mají společné

У = {х-1)2 У=(х-1)2

^x O xO TX = Vv

b) P = 3a) p = 2

У
y={x-1)2pe A

w
\

T2\^ A
\ Я

/

//
■4

О V

с) Р = 1
Obr. 18

tři body, právě když jedno z ramen zmíněného úhlu je tečnou paraboly
a druhé je její „sečnou“. Protože zkoumaná parabola nemá tečnu rovno-
běžnou s osou y, můžeme rovnice obou tečen procházejících bodem [0,0]
hledat ve tvaru у = kx. Jak je známo, směrnice к se určí z podmínky, že
rovnice kx = (x — l)2 má dvojnásobný kořen, tedy nulový diskriminant.
Ten má vyjádření (k + 2)2 — 4, takže hledané hodnoty jsou k\ — 0,
k2 = —4 a odpovídající body dotyku Ti = [1,0] a T2[—1,4]. Z rovnic
pro směrnice tečných ramen zkoumaných úhlů 3-p = 0a-3-p = -4
najdeme řešení pi = 3 a p2 — 1 a snadno se přesvědčíme, že druhé ra-

63

měno je v obou případech skutečně sečnou paraboly (obr. 18b pro p = 3
a obr. 18c pro p = 1).

В - II - 4

Označme Si a S2 středy uvažovaných kružnic (obr. 19). Obě úsečky
a S2B jsou kolmé na přímku AB, jsou tudíž rovnoběžné a střídavé úhly

S2

A В

Obr. 19

PS2B a PS\D shodné. Podle věty o obvodových a střídavých úhlech
proto platí

\<PCB\ = i\<PS2B\ = ^|<PSi£>| = \<PAD\.
Oba úhly APD a ADC jsou však pravé, tudíž

\<PAD\ = 90° -\<ADP\ = \<CDP\.

Dohromady dostáváme, že úhly PCB a CDP jsou shodné, což podle
věty o obvodovém a úsekovém úhlu znamená, že přímka BC je tečnou
ke kružnici opsané trojúhelníku CDP.

Jiné řešení. Ve stejnolehlosti se středem P, při které kružnice k\ přejde
v kružnici k,2, musí tečna CD kružnice k\ přejít v rovnoběžnou tečnu AB
kružnice &2, přitom se bod dotyku D zobrazí do bodu dotyku B. Bod P
tudíž leží na úhlopříčce BD (obr. 20). Odtud plyne shodnost střídavých
úhlů CDP a PBA (mezi rovnoběžkami AB a CD). Úhel PBA je ale
úsekový úhel mezi tětivou BP a tečnou AB kružnice k2: je tedy shodný
s příslušným obvodovým úhlem PCB. Úhly CDP a PCB jsou proto
shodné, což jsme potřebovali dokázat (viz závěr předchozího řešení).

64

С/k2D

P

A В

Obr. 20

Poznámka. Podle úlohy B-I-5 jsou shodné úhly ABC a CPD
(obr. 21). Protože jsou shodné i střídavé úhly РЕВ a PCD, kde E je

A E В

Obr. 21

průsečík polopřímky CP se stranou ЛР, lze kýženou shodnost úhlů CDP
a PCВ odvodit z trojúhelníků BCE a PDC.

65

Kategorie A

Texty úloh

A - I - 1

Posloupnost (in)“=1 celých čísel s prvním členem x\ = 1 splňuje pod-
minku

xn = ±xn_i ± ... ± a?i

s vhodnou volbou znamének „+“ a “ pro libovolné n > 1, například
X2 — —xi, хз = —X2 -f #i, X4 = хз — X2 — xi, ... Pro dané n určete
všechny možné hodnoty xn. (J. Fóldes)

A - I - 2

Na přímce p jsou dány různé body А, В, C v tomto pořadí, kde \ AB\ = 1
a \BC\ = h. Uvažujme kružnice кд, кв, ke, které se dotýkají přímky p po
řadě v bodech А, В, C. Kružnice ка-, кв mají přitom vnější dotyk v bodě
P a kružnice кв, kc vnější dotyk v bodě Q. Určete všechny hodnoty
poloměru kružnice кв, pro něž je trojúhelník BPQ rovnoramenný.

(J. Zhouf)

A - I - 3

Určete všechny možné hodnoty výrazu

a4 + fe4 + c4
o?b2 -I- a2c2 + b2c2 ’

(P. Kaňovský)kde a, 6, c jsou délky stran trojúhelníku.

A - I - 4

Určete všechna přirozená čísla n > 1 taková, že v některé číselné sou-
stavě o základu z ^ 5 platí následující kriterium dělitelnosti: trojmístné

66

číslo (abc)z je dělitelné číslem n, právě když je číslem n dělitelné
číslo c + 3b — 4a. (P. Černek)

A - I - 5

V rovině jsou dány tři různé body K, L, M, které v tomto pořadí leží na

přímce. V této rovině najděte množinu všech vrcholů C čtverců ABCD
takových, že bod К leží na straně AB, bod L na úhlopříčce BD a bod
M na straně CD. (J. Šimša)

A - I - 6

Hráči А а В hrají na desce složené ze šesti polí očíslovaných 1, 2,... ,6
následující hru. Na začátku je umístěna na pole s číslem 2 figurka a pak
se hází běžnou hrací kostkou. Padne-li číslo dělitelné třemi, posune se

figurka na pole s číslem o 1 menším, jinak na pole s číslem o 1 větším. Hra
končí vítězstvím hráče A resp. 5, dostane-li se figurka na pole s číslem 1
resp. 6. S jakou pravděpodobností zvítězí hráč A? (P. Černek)

A - S - 1

Řekneme, že tři navzájem různá přirozená čísla tvoří součtovou trojici,
je-li součet prvních dvou z nich roven číslu třetímu. Určete, jaký největší
počet součtových trojic se může nacházet v množině dvaceti přirozených
čísel. (P. Černek)

A - S - 2

V rovině jsou dány kružnice &i(5i,ri) a) tak, že 52 G k\ a n >
> Г2. Společné tečny obou kružnic se dotýkají kružnice k\ v bodech P
a Q. Dokažte, že přímka PQ se dotýká kružnice &2. (J. Fóldes)

A - S - 3

Zjistěte, pro které reálné číslo p mají rovnice

x3 + x2 — 36x — p = 0,
x3 — 2x2 — px + 2p = 0

(P. Černek)společný kořen.

67

A - II - 1

Najděte základy z všech číselných soustav, ve kterých je čtyřmístné číslo
(1001)2 dělitelné dvojmístným číslem (41)z. (P. Černek)

A - II - 2

Uvnitř strany AB daného ostroúhlého trojúhelníku ABC zvolte bod S
tak, aby trojúhelník SXY, kde I a Y jsou po řadě středy kružnic opsa-

ných trojúhelníkům ASC a BSC, měl nejmenší možný obsah.
(P. Černek)

A - II - 3

V oboru reálných čísel řešte soustavu rovnic

logx{y + z) =p,

logy(z + x) = p,
logz{x + y) =P

s neznámými x, y, z a nezáporným celočíselným parametrem p.

(J. Švrček)

A - II - 4

Posloupnost (xn)^=1 s prvním členem x\ = 1 splňuje pro každé n > 1
podmínku

— xn-1 + rr±:l + ... + xf :1xn n—2

s vhodnou volbou znamének „+“ a “ v exponentech mocnin,
a) Rozhodněte, zda některý člen takové posloupnosti musí být větší než

1000.

b) Zjistěte nejmenší možnou hodnotu členu £1000 000 •

c) Dokažte, že nerovnost xn < 4 nemůže platit pro devět členů xn takové
posloupnosti. (J. Foldes)

A - III - 1

V oboru reálných čísel řešte soustavu rovnic
x2 - xy + y2 = 7,

x2y + xy2 = —2.

(J. Foldes)

68

A - III - 2

Uvnitř stran ВС, CA, АВ daného trojúhelníku ABC zvolíme po řadě
body D, E, F tak, aby se úsečky AD, BE, CF proťaly v jednom bodě,
který označíme G. Pokud lze čtyřúhelníkům AFGE, BDGF, CEGD
vepsat kružnice, z nichž každé dvě mají vnější dotyk, pak je trojúhelník

(M. Tancer)ABC rovnostranný. Dokažte.

A - III - 3

Posloupnost (xn)“_j s prvním členem x\ — 1 splňuje pro každé n > 1
podmínku

Xn = ±(n - l)x ± (n — 2)xn-2 ± . . . ± 2x2 i X\n—1

s vhodnou volbou znamének „+“ a Rozhodněte, zda je možné, aby
nerovnost xn Ф 12 platila pouze pro konečně mnoho indexů n.

(P. Cernek)

A - III - 4

V rovině je dán tupý úhel AKS. Sestrojte trojúhelník ABC tak, aby jeho
strana BC ležela na přímce KS, bod S byl jejím středem a bod К jejím
průsečíkem s osou protilehlého úhlu BAC. (P. Leischner)

A - III - 5

Ukažte, že v číselné soustavě s libovolným základem z ^ 3 existují
dvojmístná čísla А а В, která se liší jen pořadím svých číslic a mají
tuto vlastnost: kvadratická rovnice x2 — Ах + В = 0 má v oboru reálných
čísel dvojnásobný kořen. Dokažte rovněž, že pro daný základ г je taková
dvojice А, В jediná. Například v desítkové soustavě (z = 10) to jsou
jedině čísla A = 18 а В = 81. (J. Šimša)

A - III - 6

Je-li součin kladných čísel a, b, c roven 1, pak platí

b c
- +
b c a

(P. Kaňovský)Dokažte.

69

Řešení úloh

A - I - 1

Vypišme, jaké hodnoty mohou nabývat první členy uvedené posloupnosti.
Dostaneme

x2 G {-1,1}
%5 G {—8, —6, —4, —2,0, 2,4,6,8}.

z3 G {-2,0,2} x4 G {-4,-2,0,2,4}X\ = 1

Všimněme si, že všechny členy, které jsme vypsali, jsou celá čísla. Dále je
zřejmé, že pro г > 2 je každý člen жг- sudé číslo. (Další pozorování je, že
pokud najdeme posloupnost, pro kterou Xi = a pro nějaké číslo a a dané
i > 1, tak existuje i posloupnost, pro kterou X{ = —a.)

Zjistěme, jakou největší a jakou nejmenší hodnotu může nabývat
číslo xn (v závislosti na n). Označme a; největší hodnotu, kterou může
nabývat člen X{. Protože posloupností délky i splňujících dané vlastnosti
je jen konečný počet, maximum сц existuje a je zřejmě kladné. К číslu a;
musí pro každé i > 1 existovat posloupnost xi,..., X{-\, pro kterou platí

a* = ±Xi-1 ± ... ± xi 5Í \xi-i | + ... + \xi | ^ СЦ-1 + ... + ai.

Víme, že a\ — 1, a2 — 1, a3 = 2. Pomocí předcházejícího vzorce dokažme,
že cii = 2г-2 pro každé i > 1.

Důkaz provedeme matematickou indukcí vzhledem к г.
1. Tvrzení platí pro i = 1 (ai = 1) a i = 2 (a2 = 1).
2. Předpokládejme, že tvrzení platí pro každé &, 2 ^ к й i — 1, a do-

kažme, že tvrzení platí i pro к = i. Z odhadu (1), indukčního předpokladu
a vzorce pro součet geometrické řady dostaneme

2
= 2г_3 + ... + 2 + 1 + 1 = -

(1)

г-2

Cli = Cli— 1 + • • • + Ol
2 - 1

Uvažujme posloupnost xi = 1 a Xi = £;-i + ... + x\ pro každé i > 1.
V tomto případě bude podle předchozího platit Xi = 21-2, takže = 2г-2
pro každé i > 1.

Podobně dokážeme, že nejmenší hodnota, jaké může xn nabýt, je
n—2-2

Zjistili jsme, že pro každé n > 1 leží člen xn libovolné uvažované
posloupnosti v množině {—2
rou označíme Mn. Dokažme nakonec, že xn může pro n > 1 nabývat
libovolnou hodnotu z množiny Mn.

ti—2 + 4,..., 2n~2}, kte-n—2 n—2,-2 + 2,-2

70

Volme znaménka následujícím způsobem: Xi = Xí-i + ... + xi pro
i < n. Pro takovou posloupnost platí Xi = 2l~2 pro 1 < i < n. Dokažme,
že v rovnosti xn = ±2n-3 ± 2n-2 ± ... ± 1 ± 1 lze znaménka vybrat tak,
aby se hodnota xn rovnala libovolně zvolenému číslu z množiny Mn.

Důkaz provedeme opět matematickou indukcí.
1. Tvrzení platí pro n = 2 (—1 = —x\ a 1 = +xi, neboť x\ = 1)

a n = 3 (-2 = -1 - 1, 0 = -1 + 1, 2 = 1 + 1).
2. Předpokládejme, že tvrzení platí pro к ^ n — 1, kde n ^ 4. Dokažme

tvrzení pro к = n. Zvolme libovolné číslo a z množiny Mn. Dokážeme, že
existuje taková volba znamének + a —, že a = ±2n_3 ± 2n~4 ±... ± 1 ±1.
Rozeberme dvě možnosti.

1. a ^ 0. Protože a £ Mn, je a — 2n_3 sudé celé číslo z intervalu
(—2n~3,2n_3), a tedy a — 2n~3 G Mn_i. Z indukčního předpokladu plyne,
že existuje volba znamének + a — taková, že a — 2n~3 = ±2n~4 ± 2n-5 ±
± ... ±1 ± 1. Potom a = 2n~3 ± 2n_4 ± 2n~5 ± ... ± 1 ± 1, což jsme chtěli
dokázat.

2. a < 0. Podobně jako v předcházejícím případě dokážeme, že a se
dá napsat ve tvaru a = —2П_3 ± 2n_4 ± 2n-5 ± ... ± 1 ± 1.

Tím jsme dokázali, že všechny hodnoty xn tvoří právě množinu Mn.

A - I - 2

Zvolíme-li velikost гв > 0 poloměru kružnice кв, jsou už tím obě další
kružnice кa, kc určeny. К jejich sestrojení využijeme základní vlastnosti
tečen kružnic.

Předpokládejme, že kružnice кa, кв, kc mají vlastnosti popsané v za-
dání. Označíme-li např. К průsečík vnitřní společné tečny kružnic кд
а кв (v bodě P jejich vnějšího dotyku) s přímkou p, která je společnou
vnější tečnou všech tří kružnic, musí být \KA\ = \KP\ a \KB\ = \KP\
(obr. 22). To znamená, že bod К je středem úsečky AB a zároveň bod P
leží na Thaletově kružnici nad průměrem AB. Známe-li bod P, snadno
už sestrojíme kružnici кa, o níž víme, že se dotýká přímky p v bodě A.
Analogicky sestrojíme kružnici kc-

Máme zjistit, pro které hodnoty гв je trojúhelník BPQ rovnoramen-

ný. Protože body dotyku P, Q kružnice кв s oběma sousedními kruž-
nicemi leží uvnitř opačných polorovin určených přímkou BSb, jsou oba
úhly BPQ a BQP ostré (příslušné středové úhly jsou menší než 180°).
Pokud tedy náhodou vyjde trojúhelník PBQ tupoúhlý, může být rovno-

ramenný, jen když |PP| = \BQ\. V takovém případě je ale ze souměrnosti

71

zřejmé, že \AB\ — \BC\, tj. h = 1. Trojúhelník BPQ je pak rovnoramenný
pro každé гв > 0.

Předpokládejme dále, že h ф 1. V takovém případě můžeme před-
pokládat, že trojúhelník BPQ je ostroúhlý (jinak podle předchozího od-
stávce nemůže být rovnoramenný). Je-li rovnoramenný, je buď \PQ\ =
= \BQ\, anebo \PQ\ = \BP\. Předpokládejme, že je např. \PQ\ = \BQ\
(jak ukážeme později, druhý případ lze řešit využitím souměrnosti).

Trojúhelník BPQ je souměrný podle spojnice SbSc středů obou
kružnic, která prochází bodem dotyku Q obou kružnic a průsečíkem
К tečen KB, KP. Označme ještě L průsečík společné vnitřní tečny
kružnic kc а кв s přímkou p (L je střed úsečky BC, obr. 23) a M
průsečík obou tečen KP & LQ (ten je obrazem bodu L v uvedené

Sc
M

a
p

p

cА К В L

Obr. 23

72

osové souměrnosti). Trojúhelník KLM je tedy rovnoramenný se stra-
námi \KL\ = \KM\ — |(1 + h), \ML\ = 2\LQ\ = h, jeho obvod je 1 + 2h.
Velikost poloměru гв vepsané kružnice spočteme pomocí obsahu: Pro
obsah S trojúhelníku KLM platí

V ~ 6) = ih'/r+“
1

S = -h
2

a zároveň
1
-гв(1 + 2h).S =

Odtud vychází
h

(1)гв =
2\/2h + 1

Naopak je-li гв dáno vztahem (1), můžeme sestrojit rovnoramenný
trojúhelník KLM s rameny KL a KM délky |(1 + h) a základnou ML,
\ML\ = h, přičemž jeho vepsaná kružnice кв se bude dotýkat ramene
KL v bodě B. Označme P, Q po řadě body dotyku kružnice кв se stra-
námi KM a LM. Protože К je střed úsečky AB, je \KA\ = \KB\ = \KP\.
To znamená, že kružnice кд dotýkající se přímky p v bodě A a pro-

cházející bodem P se bude dotýkat kružnice кв v bodě P. Analogicky
sestrojíme i kružnici kc dotýkající se přímky p v bodě C a procházející
bodem Q. Ze souměrnosti trojúhelníku KLM podle přímky KQ plyne,
že \PQ\ = \BQ\. Tím je první případ vyřešen.

V případě rovnosti \PQ\ = \BP\ můžeme postupovat úplně stejně.
Jednodušší však bude, když změníme měřítko původního obrázku v po-
měru 1 : h, takže bude \AB\ = h' = 1/h, \BC\ = 1. Když navíc proho-
dime označení bodů ЛаС, tak se z rovnosti \BP\ = \PQ\ stane rovnost
\BQ\ = \PQ\. Podle předchozího pak pro velikost poloměru r'B = (1 /К)гв
dostaneme

Ití

2\/2£ + 12y/2h’ + 1

tj-
h

(2)гв =
2V2h + h2 ‘

Anebo jsme mohli řešit úlohu poněkud obecněji za předpokladu
\AB\ — a, \BC\ — b, pak bychom místo vztahu (1) dostali

ř>Va2 + 2ab

2(a + 26) (1')гв =

73

Pro a = 1, b = h vyjde za předpokladu \PQ\ = \BQ\ původní vztah (1),
zatímco pro \PQ\ = \BP\ prohodíme označení bodů A, C (a tím i bodů
P, Q) a do vzorce (!') dosadíme a = h, b = 1. Dostaneme tak vztah (2).

Závěr: Pro h = 1 je trojúhelník BPQ rovnoramenný pro libovolné
гв >0.Proů^lje trojúhelník BPQ rovnoramenný pro гв určené
vztahem (1) {\PQ\ = \BQ\) nebo pro гв určené vztahem (2) (\PQ\ =
= I BP\).

A - I - 3

Nejdříve ukážeme, že žádná hodnota zkoumaného výrazu V není menší
než 1. Použijeme nerovnosti mezi aritmetickým a geometrickým průmě-
rem (x 4- у ^ 2^/xy) pro všechny dvojice kladných čísel x, у z množiny
{a4, b4, c4}:

a4 4- b4 4- c4 1 (a4 4- b4) 4- (64 + c4) + (c4 + a4) >V =
a2b2 -f a2c2 + 62c2

^ 1 2 • (a262 + 62c2 + c2a2) _

a262 + a2c2 + b2c2

a262 + a2c2 4- 62c22

~

2

Nyní ukážeme, že každá hodnota V je menší než 2. Z Heronova vzorce

pro obsah S trojúhelníka se stranami a, 6, c víme, že

S2 = s(s — a)(s — 6)(s — c),

kde s = | (a + b 4- c). Po dosazení za s a roznásobení dostaneme
0 < 16S2 = -a4 - b4 - c4 4- 2a262 + 262c2 4- 2c2a2.

Odtud

a4 4- 64 + c4a4 + 64 4- c4 < 2a2 b2 + 262c2 4- 2c2a2, tj. < 2.
a262 + b2c2 4- c2a2

Shrňme výsledek úvah prvních dvou odstavců: zjistili jsme, že V G
E (1,2). Ukažme, že všechny hodnoty V zaplní celý interval V E (1,2).
Zvolíme libovolnou hodnotu к E (1,2) a najdeme trojúhelník, pro který
má výraz V hodnotu k. Uvažujme trojúhelník se stranami a, 1, 1, který
podle trojúhelníkové nerovnosti existuje, právě když 0 < a < 2. Zjistíme,
pro které a je V = k, proto vyřešíme rovnici

a4 4-2
(1)= к

2a2 + 1

74

s neznámou a. Po substituci a2 = b dostaneme kvadratickou rovnici b2 —

— 2kb + 2 — к = 0 s neznámou b. Její diskriminant je roven D = 4k2 —
— 4(2 — k) = 4(к2 + к — 2). Na to, aby měla rovnice řešení, musí být
diskriminant nezáporný, tedy musí platit к2 + к — 2 ^ 0. Tato nerovnost
je splněna pro к £ (—оо,—2) U (l,oo), tedy i pro uvažované к £ (1,2).
Potřebujeme ještě dokázat, že zkoumaná rovnice má aspoň jeden kořen
b v intervalu (0,4), neboť b = a2 a a £ (0,2). Všimněme si, že pro oba
kořeny 6i52 platí

2к ± 2Vk2 + k-2
= k± Vk2 + k- 2 ^

^ к + \Jk2 + к — 2 < к + Vk? = 2k < 4,

&1,2 — 2

přičemž jsme využili nerovnost к < 2. Na druhé straně pro kořen &i (se
znaménkem + před y/Ď) platí

bi = к + \/k2 + к — 2 ^ к > 0.

Tím jsme ukázali, že 0 < 6i <4. Existuje tedy číslo a = y/b[splňující
rovnici (1).

Jiné řešení. Opakovaným dosazováním délek stran konkrétních troj-
úhelníků dojdeme к hypotéze, že 1 ú V <2. Dokazujme nejprve dolní
odhad 1 ^ V, který je ekvivalentní s nerovností

a2b2 + a2c2 + b2c2 й a4 + b4 + c4.

Je to bikvadratická nerovnice s proměnnou a, takže po substituci a2 = t
dostaneme kvadratickou nerovnici

0 ^ t2 — t(b2 + c2) + 64 + c4 - b2c2. (2)

Její diskriminant je D = {b2 + c2)2 — 4(64 + c4 — b2c2) = —3(64 + c4 —
— 2b2c2) = —3(b2 — c2)2 ^ 0. Protože navíc je koeficient při ť2 na pravé
straně (2) kladný, je nerovnice (2) splněna pro všechna reálná čísla b, c
a t. Tím je nerovnost V ^ 1 dokázána.

Přejděme к nerovnosti V < 2. Danou nerovnici přenásobme kladným
jmenovatelem, dostaneme

2(a262 + a2c2 + b2c2) > a4 + 64 + c4.

75

Je to opět bikvadratická nerovnice s proměnnou a. Po substituci t =
= a2 přejde nerovnice do tvaru t2 — 2t(b2 + c2) + b4 + c4 — 2b2c2 < 0.
Její diskriminant je D = 4(b2 + c2)2 — 4(b4 + c4 — 2b2c2) = 16b2c2.
Protože koeficient při t2 je kladný, je řešením této nerovnice interval
určený nerovnostmi

2(b2 + c2) — VĎ 2(b2 + c2) — y/Ď
< t <

2 2

neboli

(b — c)2 < t < (b + c)2.
Tyto nerovnosti platí, protože t = a2 a |č> — c| < a < b + c podle trojú-
helníkových nerovností. Tím je nerovnost V < 2 dokázána.

Že hodnoty V zaplní celý interval (1,2), dokážeme stejně jako v prv-
ním řešení.

Jiný důkaz nerovnosti V < 2. Vyjděme z trojúhelníkové nerovnosti
\a — b\ < c < a + b. Po umocnění na druhou a následné úpravě dostaneme
—2ab < c2 — a2 — b2 < 2ab, tj. |c2 — a2 — b2\ < 2ab. Po dalším umocnění
na druhou dostaneme

c4 + b4 + a4 — 2c2a2 — 2c2b2 + 2a2b2 < 4a2b2

neboli

c4 + b4 + a4 < 2c2a2 + 2c2b2 + 2a2b2.

Odtud již plyne, že V <2.

Poznámky. 1. Všimněme si, že podobné trojúhelníky mají stejnou hod-
notu výrazu V. Skutečně, pokud o, 6, c jsou strany trojúhelníku, jsou /ca,
kb, kc pro každé reálné к > 0 stranami podobného trojúhelníku a platí

(ka)4 + (kb)4 + (kc)4 a4 + b4 -b c4
a2b2 + a2c2 + b2c2(ka)2(kb)2 + (ka)2(kc)2 + (kb)2(kc)2

To znamená, že bez újmy na obecnosti můžeme předpokládat, že c = 1.
Máme tedy zkoumat obor hodnot výrazu

a4 + b4 + 1

a2b2 + a2 + b2

za předpokladu |a — 6| < 1 < a + b, což zjednodušuje a zpřehledňuje
výpočty.

76

2. V druhé části řešení jsme měli zjistit obor hodnot funkce /(a) =
a4 + 2

“

2a2 + 1'
že na intervalu (0,1) nabývá všechny hodnoty z intervalu (1,2).

3. Pečlivým rozborem uvedených důkazů zjistíme, že nerovnost V ^ 1
platí pro všechna reálná čísla a, 6, c, z nichž aspoň dvě jsou nenulová.

Zřejmě /(1) = 1 a /(0) = 2. Ze spojitosti funkce / vyplývá,

A - I - 4

Protože (abc)z je číslo az2 + bz + c, máme zjistit, kdy obecně platí ekviva-
lence: n \ c + 36 —4a, právě když n | az2 + bz + c. V ní jsou a, 6, c libovolné
číslice při základu z, tj. čísla z množiny {0,1,..., z — 1}. Všimněme si,
že z — 1 ^ 4, neboť předpokládáme, že z ^ 5.

Zvolíme-li a = b = c = 1, dostaneme, že n \ 0, právě když n | z2+z4-1.
Protože nula je dělitelná každým celým číslem, musí platit n\ z2 + z + \.
Zvolíme-li a = l,6 = 0ac = 4, dostaneme, že n \ 0, právě když n \ z2 +4.
Podobnou úvahou jako výše zjistíme, že n \ z2 + 4.

Pokud nějaké číslo dělí dvě čísla, musí dělit i jejich největší společný
dělitel, tedy n | nsd(z2 + 4, z2 + z + 1). Tento společný dělitel najdeme
pomocí Eukleidova algoritmu:

nsd(,z2 + 4, z2 + z + 1) =

= nsd(z2 -I- 4, z2 + z + 1 - (z2 + 4)) = nsd(z2 + 4, z - 3) =
= nsd(z2 + 4 — z(z — 3),z — 3) = nsd(4 + 3z, z — 3) =
= nsd(4 + 3z - 3(z — 3),z — 3) = nsd(13,z — 3).

Zjistili jsme, že n | 13. Protože n > 1, je nutně n = 13. Má-li některé n

požadovanou vlastnost, je to nutně číslo n = 13.
Dokažme, že číslo 13 skutečně danou vlastnost má. Odvozená nutná

podmínka n \ nsd(13, г — 3) je pro n = 13 splněna např. pro 2 = 16. Daná
ekvivalence má pak tvar 13 | c + 3b — 4a, právě když 13 | a ■ 162 + b ■ 16 + c.
Dokážeme silnější vlastnost, že totiž čísla a ■ 162 + b ■ 16 + с a c + 36 — 4a
dávají při dělení třinácti stejný zbytek, neboli že jejich rozdíl je dělitelný
třinácti:

(a • 162 + b ■ 16 + c) - (c + 36 - 4a) = 260a + 136 = 13(20 + 6).
Úloha má jediné řešení n = 13.

Poznámka. Podobně jako v závěru řešení můžeme dokázat, že uvedené
kritérium dělitelnosti pro n = 13 platí i v libovolné číselné soustavě se

základem 2 = 13k + 3.

77

A - I - 5

Je-li ABCD libovolný čtverec, který splňuje podmínky úlohy, bude stej-
ným podmínkám vyhovovat i čtverec, který dostaneme osovou souměr-
ností podle přímky MK. Hledaná množina bude tedy osově souměrná
podle této přímky a nám stačí určit tu její část, která leží v jedné z obou
polorovin s hraniční přímkou MK.

Kromě libovolného čtverce ABCD, který splňuje podmínky úlohy,
uvažujme čtverec AqBqCqDq s úhlopříčkou B0D0 = KM (Во = К,
Do = M), přičemž vrchol Co leží ve stejné polorovině ohraničené přím-
kou KM jako vrchol C čtverce ABCD (obr. 24). (Vrchol Co zřejmě rov-
něž patří do hledané množiny.)

Ci

A VM C

C0/

D i

P,

Ao

A К В

Obr. 25

Protože trojúhelníky KLB a MLD jsou podobné podle věty uu, dělí
bod L úhlopříčky obou čtverců ve stejném poměru

\BL\ : \LD\ = \KL\ : \LM\ = konst.

Velikost úhlu LCD (\<LCD\ = \<LCoM\) je určena polohou bodu L na
úsečce MK, má tedy konstantní velikost, takže bod C leží na stejném
oblouku 7 kružnice opsané trojúhelníku LCqM nad tětivou LM jako
bod Co- Navíc kružnice opsaná trojúhelníku AqKL je shodná s kružnicí
opsanou trojúhelníku CqML, protože v jedné z nich je vidět tětivu AqL

78

z bodu К pod úhlem 45° a v druhé tětivu CqL shodné délky pod stejným
úhlem z bodu M.

Protože bod M leží na straně CD, je zřejmě \<LMC\ 'A \<LDC\ =
= 45° (pokud M ф D, je to vnější úhel trojúhelníku DML, který má při
vrcholu D úhel 45°). Protože úhel LMCq měří právě 45°, leží bod C na
části oblouku 7 mezi body Co a M.

Dále si všimněme, že vrchol D čtverce ABCD leží na oblouku, ze
kterého je vidět úsečku LM pod úhlem 45° v polorovině opačné ke KMC.
Sestrojme bod P (obr. 25), který leží na průsečíku přímky AD a kolmice
к přímce MK v bodě L. Body M, D, L a P leží na Thaletově kružnici
s průměrem MP, a protože \<MPL\ = \<MDL\ = 45°, je trojúhelník
MPL rovnoramenný pravoúhlý. To znamená, že bod P je jednoznačně
určen polohou bodu L na úsečce MK. (Bod P vznikne otočením bodu M
kolem středu L o 90°, protože bod L jako bod úhlopříčky BD má od
přímek CD a DA stejnou vzdálenost, je tedy přímka DA ve zmíněném
otočení obrazem přímky CD; odtud rovněž plyne rovnost \LM\ = \LP\.)

Bod D tudíž musí ležet na oblouku <5 Thaletovy polokružnice nad prů-
měrem MP v polorovině opačné к PML, zároveň však polopřímka DP
(která obsahuje vrchol A) nesmí protnout úsečku LK. Odtud plyne, že
vrchol D může ležet jen v té části zmíněné polokružnice nad průměrem
MP, která leží v polorovině PKL. Přitom je zřejmé, že přímka PK tuto
polokružnici protne v dalším bodě různém od P, právě když \KL\> \LM\
(pro \KL\ = \LM\ bude KP tečnou kružnice nad průměrem MP). Ozna-
číme-li v takovém případě D\ průsečík KP s polokružnici 6 a C\ průsečík
polopřímky D\M s obloukem 7, je zřejmé, že vrchol C padne do části
CoCi oblouku 7. V opačném případě, tj. pro \KL\ ^ \LM\, vyplní zřejmě
vrcholy C celou část CqM oblouku 7.

Skutečně. Zvolme libovolný bod C na části C0C1 oblouku 7 v prv-
ním případě, resp. na CqM v druhém případě. Přímka CM protne ob-
louk 5 v bodě, který označíme D. Vrchol A pak sestrojíme jako průse-
čík polopřímky DP s Thaletovou kružnicí nad průměrem PK (v prv-
ním případě máme zaručeno, že bude ležet v polorovině PKAq, a ne
v opačné). Protože jak už víme, jsou kružnice opsané trojúhelníkům
LCoM a LAqK shodné, zjistíme snadno z příslušných obvodových úhlů,
že \<DAL\ = \<DCL\, takže trojúhelníky DAL a DCL jsou shodné, tu-
díž \DA\ = \DC\. Protože polopřímka DL protíná úsečku MK v bodě L,
protne polopřímka AK polopřímku DL v bodě В za bodem К, přičemž
trojúhelník DAB je rovnoramenný pravoúhlý. Je tedy ABCD čtverec,
který splňuje podmínky úlohy.

79

Závěr: Hledanou množinou vrcholů C čtverců ABCD je pro \ML\ <
< \LK\ oblouk CoCi kružnice opsané trojúhelníku MLCq a oblouk s ním
osově souměrný podle dané přímky MK (obr. 26), pro \ML\ ^ \LK\ je

to oblouk CqM stejné kružnice a oblouk s ním osově souměrný podle
přímky MK (obr. 27).

80

A - I - 6

Označme pi pravděpodobnost, že vyhraje hráč A, přičemž figurka stojí
na г-tém políčku. Dostaneme soustavu rovnic

1 2
P2 =

3 + 3РЗ,
1 2

Рз = 7PP2 + -pa

1 2
Pa = 2Рз + 3P5

1
Po = 7ГР4-

3

Postupným dosazováním z jedné rovnice do druhé dostaneme řešení
p2 = II• Protože na začátku stojí figurka na políčku číslo 2, je prav-
děpodobnost výhry hráče A rovna ||. Podobným způsobem sestavíme
a vyřešíme systém rovnic pro hráče В a dostaneme tak, že hráč В vy-

hraje s pravděpodobností |y. Pravděpodobnost remízy je tedy 0. Tím je
úloha vyřešena.

A - S - 1

Pro libovolně vybraných dvacet přirozených čísel

xi < x2 < ■ ■ ■ < X20

odhadneme, kolik mezi nimi může být součtových trojic, tedy trojic
{xí, Xj, Xk} splňujících podmínky 1 ^ i < j < к ^ 20 a Xi + Xj = Xk,
a to nejprve při pevném indexu к G {3,4,..., 20}. Nechť jsou to trojice
{^r^j, Xji, Xk }) {*Tí2 1 *rj2 j } > • • • 1 {"Tip) •Tjp) *r/c} • Pak čísla

•Tú 1 Xjj , Xí2 , Xj2 , . . . , X{p , Xjl

jsou navzájem různá a všechna leží v množině {x\,x2, ■ ■ ■ ,Xk-i}, takže
pro jejich počet 2p platí odhad 2p ^ к — 1, odkud p ^ [|(fc — 1)] (kde
[a] značí celou část čísla a). Proto počet všech součtových trojic nemůže
být číslo větší než součet

20 ГА--1
E V — l + l-f2 + 2 + 3 + 3 + ...-l-9 + 9 — 90.
k=3

81

Příklad množiny M = {1,2,..., 20} ukazuje, že počet 90 součtových tro-
jic je dosažitelný, neboť při každém к € {3,4,..., 20} můžeme za číslo i
vybrat libovolné číslo z množiny {1,2,..., [|(fc — 1)]}; odpovídající celé
číslo j — к — i pak skutečně splňuje nerovnosti i < j < к, takže {г, j, k}
je součtová trojice ležící v M.

A - S - 2

Ze souměrnosti společných tečen plyne, že body dotyku P a Q jsou sou-
měrně sdružené podle přímky SiS2, takže platí PQ ± SiS2. Přímka PQ
proto bude tečnou ke kružnici k2, když ukážeme, že průsečík К přímek
PQ a S1S2 leží na kružnici k2 (obr. 28). Označme ještě O průsečík obou

tečen s přímkou Si S2 a R bod dotyku tečny PO s kružnicí k2 ■ Z podob-
ných pravoúhlých trojúhelníků S\OP a S2OR plyne úměra

r\|5if| |SiO| |SiO|
r2 |S2fl| |S20| |5iO|-n
Г1

odkud |SiO| =
r 1 - r2

Z Eukleidovy věty o odvěsně SíP trojúhelníku S\OP proto vyplývá, že

r\r\ = I^PI2 = |SiPT| • |S,0| = |S,Jf|
ri - r2 ’

tudíž \SiK\ = Г1-Г2, aproto \S2K\ = |5i52|-|5'i/ť| = ri-(ri-r2) = r2.
To znamená, že bod К skutečně leží na kružnici k2 a důkaz tvrzení je
hotov.

Jiné řešení. Označme L průsečík kružnice k2 s úsečkou S\S2, M
patu kolmice spuštěné z bodu S2 na úsečku S\P a R bod dotyku

82

kružnice &2 s tou společnou tečnou, která prochází bodem P (obr. 29).
Protože S2RPM je pravoúhelník, platí \MP\ = \S2R\ = Г2, a proto

\SiM\ = |5iP| — \MP\ = ri —Г2- Stejnou délku r*i — Г2 má rovněž úsečka
SiL, neboť n = |5i52| a r2 = \S2L\. Trojúhelníky 5:M52 a SXLP mají
tudíž shodné úhly při vrcholu S\ i přilehlé strany, jsou proto shodné podle
věty sus. Platí tedy nejen S\M _L S2M, ale také S\L J_ PL. Bod L ale
leží na kružnici к2, takže přímka PL je její tečnou, která s ohledem na
souměrnost prochází rovněž bodem Q. Důkaz je ukončen.

Jiné řešení. Označme O průsečík obou tečen, К patu kolmice z bodu
P na OSi (vzhledem к souměrnosti obou tečen podle spojnice 5i^2 je
to průsečík PQ s 05i) a R patu kolmice z bodu S2 na OP (obr. 30).

Protože \S\P\ = IS1S2I = o, je |<SiPS2| = I^SiS^Pl, proto

|<52PP'| = 90° - |<5i52P| =

= 90°-|<51Р52| = |<52РЛ|,

83

takže pravoúhlé trojúhelníky KS2P a RS2P se shodují v přeponě S2P
a přilehlém úhlu u vrcholu P. Je tudíž \S2K\ = |S2.fí| a kružnice se
středem S2 a poloměrem r2 = |S2.R| se dotýká spojnice PQ v bodě K.

A - S - 3

Levou stranu druhé rovnice upravíme na součin:

x3 — 2a;2 — px + 2p = x2(x — 2) — p(x — 2) = (x — 2) (a;2 — p).

Pro společný kořen x obou rovnic tedy platí x — 2 nebo x2 = p. V prvním
případě po dosazení do první rovnice dostaneme

23 -f 22 — 36 • 2 — p = 0, neboli p = —60;

ve druhém případě můžeme první rovnici zjednodušit na tvar x3 — 36a; =
= 0, odkud plyne x = 0 nebo x = ±6, a proto z podmínky p = x2 vychází
p = 0 respektive p — 36.

Dodejme, že po nalezení rozkladu levé strany druhé rovnice jsme
mohli vypsat její kořeny xi = 2, а;2;з = dbyjp a po jejich postupném
dosazení do první rovnice určit hledané hodnoty p= — 60,p — 0 a p = 36.

Jiné řešení. Z první rovnice snadno vyjádříme p — x3 +x2 —36a; a do-
sazením do druhé rovnice dostaneme rovnici (bez parametru p), kterou
musí splňovat společný kořen obou původních rovnic:

x3 — 2a;2 — (x3 + x2 — 36x)x + 2(a;3 -fa;2 — 36a;) = 0.

Po úpravě dostaneme rovnici x4 — 2x3 — 36a;2 -f 72x = 0, jejíž kořeny
snadno určíme (jsou to totiž celá čísla) například postupným rozkladem:

x4 — 2x3 — 36x2 + 72x — x[x2(x — 2) — 36(a; — 2)] — x(x — 2)(x2 — 36) =

= x(x — 2)(x — 6)(ж -f 6).

Vidíme, že společným kořenem musí být jedno z čísel x\ = 0, a;2 = 2,
а;з = 6, x^ — —6. Dosadíme-li je do původních rovnic, ihned zjistíme
příslušné hodnoty p; jsou to čísla 0, —60 a 36 (poslední odpovídá oběma
kořenům 3:3,4 = ±6).

Jiné řešení. Společné kořeny mnohočlenů

P\ (x) = x3 + x2 — 36a; — p, P2(a;) — x3 — 2x2 — px + 2p

84

(pokud vůbec existují) jsou kořeny mnohočlenu, který je největším spo-
léčným dělitelem mnohočlenů Pi a P2. Najdeme ho Eukleidovým algorit-
mem postupného dělení se zbytkem. V prvních dvou krocích dostaneme
jako zbytky mnohočleny

Рз(х) = Pi(x) - P2{x) = 3x2 + (p- 36)x - 3p,

P4{x) = P2(x) - + 309^) Рз^ = ÍP~36) ((p — 30)a; p
9 3

V případě, kdy p — 36, je algoritmus ukončen; největší společný dělitel
je tehdy roven Рз(х) = 3x2 — 3 • 36 = 3(x — 6)(x + 6), takže mnohočleny
Pi, P2 mají dva společné kořeny x = ±6. Dále proto předpokládejme, že
p Ф 36. Jediný kandidát na společný kořen mnohočlenů P\, P2 je kořen
mnohočlenu P4, tedy číslo x = 3p/(p — 30). Stačí jen zjistit, kdy je toto
číslo kořenem mnohočlenu P3. Protože

9p{p + 60)3p
Рз

{p - 30)2p- 30

mají požadovanou vlastnost pouze hodnoty p — 0 a p = —60 (kterým
odpovídá společný kořen x = 0 respektive x = 2).

A - II - 1

Protože v zápisu dvojmístného čísla vystupuje číslice 4, nutně platí z ^ 5.
Z rozvinutých zápisů (1001)г = z3 + 1 а (41)г = 4z + 1 vyplývá, že
hledáme právě ta přirozená z ^ 5, pro která je číslo z3 +1 násobkem čísla
4z + 1. Pomocí Eukleidova algoritmu najdeme jejich největší společný
dělitel. Můžeme postupovat tak, že nejprve vydělíme oba výrazy jako
mnohočleny a pak se „zbavíme“ zlomků:

2:3 + 1 = (4^ ~ 4^z + 43)(4z + +
43{z3 + 1) = (16z2 -4z + l)(4z + 1) + 63.

/ .4343 ’

(1)
Protože čísla 4 a 4z + 1 jsou nesoudělná, vidíme odtud, že číslo 4z + 1
dělí číslo z3 + 1, právě když dělí číslo 63, tedy právě když 4z + 1 G
E {1,3,7,9,21,63}. Z podmínky z ^ 5 ovšem plyne 4z + 1 ^ 21, takže
4z + 1 = 21 (rovnice 4z + 1 = 63 nemá celočíselné řešení) a z = 5.

Poznámka. Rozklad (1) také snadno odhalíme, využijeme-li známý
vzorec a3 + b3 = (a + b) (a2 — ab + b2): podle něj můžeme rovnou psát

43(z3 + 1) = {43z3 + 1) + 63 = (4z + 1)(1622 - 4z + 1) + 63.

85

A - II - 2

Vnitřní úhly trojúhelníku ABC označme jako obvykle a, /3, 7.
Podle věty o obvodovém a středovém úhlu v kružnici opsané troj-

úhelníku ASC platí (obr. 31) |<SVCj = 2a, tudíž úhel při základně SC

rovnoramenného trojúhelníku SCX má velikost |<V5C| = |(180° —
— 2a) = 90° — a (využili jsme předpokladu, že a je ostrý úhel). Analo-
gicky se odvodí rovnost \<YSC\ = 90° — /3. Protože úhly při vrcholech
A a C trojúhelníku ASC jsou ostré, je střed X vnitřním bodem úhlu
ASC; obdobně je střed Y vnitřním bodem úhlu BSC. Proto lze vyjádřit
velikost úhlu XSY jako součet velikostí úhlů XSC a YSC:

\<XSY\ = |<XSC| + \<YSC\ = (90° - a) + (90° - (3) = 7.

Označíme-li ještě oj = |<ASCj, pak pro poloměry kružnic opsaných
trojúhelníkům ASC a BSC platí vzorce

\BC\\AC\ \BC\|SX| = a \SY\ = 2 sin(180° — lj)2 sin o; 2 sincu

které spolu s dříve určenou velikostí úhlu XSY vedou к následující zá-
vislosti mezi obsahy Ssxy a Sabc trojúhelníků SXY a ABC:

|5X| • \SY\ ■ sin |<А5У|
_ \AC\ • \BC\ - siny _ Sabc

4 sin2 ш

Odtud plyne nerovnost Ssxy = \Sabc, přičemž rovnost nastane, právě
když siná; = 1, neboli ш = 90°. Obsah trojúhelníku SXY je proto

Ssxy —
8 sin2 u>2

86

nejmenší, právě když je bod S patou výšky z vrcholu C ke straně AB.
(Tato pata je vnitřním bodem strany AB díky podmínce, že trojúhelník
ABC je ostroúhlý.)

Jiné řešení. Středná XY obou opsaných kružnic protíná společnou
tětivu CS v jejím středu Sq a kolmé průměty X0, У0 bodů X, Y na
stranu AB jsou středy úseček AS, SB (obr. 32). Je tedy |Х0Уо| = §|AB|
a pro obsah trojúhelníku SXY tudíž platí

\\XY\ • |S„S| ž ||ВД| ■ |S0S| =
= \ ■ \\AB\ ■ ž i ■ \\AB\ ■ ICCol = \sABC

SsXY =

kde CCq je výška trojúhelníku ABC. Rovnost v první z předchozích dvou
nerovností nastane, právě když XY || AB, tj. právě když CS J_ AB,
neboli S = Cq. A právě tehdy přejde v rovnost i druhá nerovnost.

5 C0Y0 ВA X0

Obr. 32

Jiné řešení. Průsečíky C a S kružnic opsaných trojúhelníkům ASC
a BSC jsou souměrně sdružené podle přímky XY, takže pro velikost
úhlu SXY platí (obr. 33)

\<SXY\ = ^\<SXC\ = i • 2\<BAC\ = \<BAC\
obdobně |<5УХ| = \<ABC\. Proto jsou trojúhelníky SXY a CAB po-
dobné podle věty uu, takže jejich obsahy Ssxy a Sabc jsou pomocí koe-
ficientu podobnosti к — |XSj : \AC\ svázány rovností Ssxy — k2SABC•
Protože úsečka AC je tětivou kružnice o poloměru |JČSj, platí nerov-
nost \AC\ ^ 2|X5|, neboli к ^ rovnost к = \ přitom nastane,

87

jen když je strana AC průměrem kružnice opsané trojúhelníku ASC,
což je ekvivalentní s podmínkou CS X AB. Tím je dokázána nerovnost
Ssxy ^ \Sabc i nalezena podmínka, kdy nastane rovnost.

A - II - 3

Rovnice dané soustavy mají smysl, jen když jsou čísla x, y, z kladná
a různá od 1. Pro taková čísla x, y, z (jiná dále neuvažujeme) dostáváme
odlogaritmováním ekvivalentní soustavu rovnic

y + z = xp, z + x = yp, x + у = zp.

Ukážeme nejprve, že v oboru M = (0,1) U (l,oo) je každé řešení
soustavy (1) tvořeno trojicí stejných čísel. Využijeme к tomu známého
poznatku, že pro p ^ 0 je funkce f(t) = tp na množině kladných čísel
t neklesající (přesněji: rostoucí pro p > 0 a konstantní pro p = 0). Při-
pusťme naopak, že pro některé řešení (x,y,z) platí například x <y.

Odečtením prvních dvou rovnic z (1) dostaneme у — x = xp — yp.
Z předpokladu x < у ale plyne xp ú yp, takže у — x > 0 a zároveň
xp — yp X 0, což je ve sporu s předchozí rovností. Podobně odvodíme
spor i v případě, kdy x > у, a v případech, kdy x Ф z resp. у ф z

(soustava (1) je totiž v neznámých x, y, z symetrická).
Soustava (1) se proto redukuje na rovnici x + x = xp, kterou máme

řešit v oboru M = (0,1) U (l,oo). Protože x Ф 0, dostáváme po dělení
číslem x ekvivalentní rovnici 2 = хр~г. Tato rovnice nemá řešení pro

p — 1, pro p — 0 má jediné řešení x = |, pro přirozené p ^ 2 má jediné
řešení x = 2^, které lze pro p ^ 3 zapsat jako x = (Čísla |
i 2p31 zřejmě náležejí do M.)

Odpověď. Daná soustava má pro p = 0 jediné řešení x — у = z = |,
pro p = 1 nemá řešení, pro přirozené p ^ 2 má jediné řešení x = у = z =

= 2p.

(1)

A - II - 4

Úvodem si všimneme, že v důsledku rovnosti x\ — 1 platí

=

x3 = xf1 + = l±l + 1±х = 2.

Protože pro každé x > 0 jsou obě čísla a:+1, x_1 kladná, plyne od-
tud snadno matematickou indukcí, že nerovnost xn ^ 1 je splněna pro

xf1 = 1 ±x -1
(1)

88

-1 ^ rc1, a proto pro každé n ^ 4každé n. Je-li x ^ 1, pak ovšem 0 < x

platí odhady

1 1
+ — + ...+ —

= xn ^1 + 1 + 2 + Ж4 + ... + xn-i, (2)1 + 1 + -
2 rr4 Xn— 1

které využijeme ve všech třech částech řešení.a)Dokážeme (sporem), že existuje k, pro něž Xk > 103. Připusťme
naopak, že pro každé к platí opačná nerovnost Xk ^ 103. Z levé nerovnosti
v (2) pak pro každé n > 4 plyne odhad

3
+ КГ3 + ... + 10“3 = - + (n - 4) • 1СГ3.

у 2
> 5Xn ^ -, + 10

(n—4) krát

Odtud ale vyplývá, že xn > 103 pro každé n > 106 + 4, což je spor.b)Dokážeme nejprve, že z pravých nerovností v (2) vyplývá odhad
xn ^ 2n_2 pro každé n ^ 2. Využijeme indukci: pro n = 2 i pro n = 3
platí podle (1) rovnost xn = 2
A; G {2,3,..., n — 1} platí Xk ^ 2fc-2, potom z (2) dostáváme

n—2. nechť n ^ 4 a nechť pro všechna

xn ^ 1 + (1 + 2 + 22 + ... + 2П_3) = 1 + (2n_2 - 1) = 2n_2.

Tím je důkaz indukcí ukončen.
Dosadíme-li odhady xn ^ 2n-2 do levé nerovnosti v (2), vyjde nám

pro hodnotu x106 dolní odhad

. 1 1
xio6 = 2 + - + 22

To spolu s příkladem vyhovující posloupnosti

1 1
= ч

2io6-3 2lo6~3‘
+ ...+

xn = xn-i + xn—2 + ... + Xi (n G {2,3,..., 106 - 1})
^ÍO6 — X106-1 + ^106_2 + • • • + X2 1 + Xx 1,

pro každé n G {2,3,..., 106 — 1} a x106 = 3 — 23 106ti—2
ve které xn — 2
ukazuje, že nejmenší možná hodnota členu rr106 je rovna 3 — 23_1°6.c)Předpokládejme, že nerovnost xn < 4 platí kromě tří hodnot n G
G {1,2,3} ještě pro některá další n, která označíme п4,П5,Пб,... tak,
že 4 ^ n4 < n5 < riQ < ... (zatím ještě nevíme, zda jde o konečnou či

89

nekonečnou posloupnost). Ukažme, že pro každé takové Пк jsou ve všech
exponentech příslušné rovnosti

xnk = 1 + 1 + 2±: + x^1 + x*1 + ... +

vybrána znaménka „minus“. Pro mocninu 2±l je to zřejmé, neboť xnk <
< 4; z téže nerovnosti dále plyne, že znaménko v exponentu kterékoli
mocniny x^1 (4 ^ j ^ Пк — 1) musí být vybráno tak, aby platilo

±i , 5 3
*i <4"2 = 2'

Tato nerovnost však může být splněna pouze se znaménkem „minus“,
neboť podle (2) máme Xj ^ 5/2. Tím je tvrzení o výběru znamének
dokázáno. Porovnáním dvou za sebou jdoucích rovností

5 1 1
хПк — — H 1 f- •. • +2 X\ £5

5 1 1
Xnk+1 — ;rH 1 Ь • • • ++ 2 X\ хъ

1

ХПк —1

1 1 1
+ + ... +

Xnk — 1 Xnk Xnk +i-l

dostaneme pro všechna к ^ 4 nerovnosti

1
Xnk+1 = Xnk +)

Xnk

které s přihlédnutím к tomu, že funkce f(t) = t + 1/t je na intervalu
t £ (l,oo) rostoucí a že xn4 ^ 2,5, vedou postupně к odhadům

xnt ž /(2,5) = 2,9, xn, S /(2,9) > 3,24, xm > /(3,24) > 3,54,
xn8 > /(3,54) > 3,82, xn9 ^ /(3,82) > 4,08.

Poslední nerovnost je ale ve sporu s podmínkou xnk < 4 určující výběr
indexů Hk ■ Proto nerovnost xn < 4 nemůže platit pro devět indexů n.

A - III - 1

Protože druhou rovnici můžeme upravit na tvar xy(x+y) — —2, upravme
podobně i první rovnici: (x + y)2 — 3xy = 7. Pro čísla s = x + y,p = xy
tak dostáváme ekvivalentní soustavu

s2 - 3p = 7,

sp = -2,
(1)

90

která po vyjádření p = —2/s (zřejmě nemůže být s = 0) z druhé rovnice
vede na kubickou rovnici s3 — 7s + 6 = 0. Ta má celočíselné kořeny
si = 1, s2 = 2 a s3 = —3. Nalezeným hodnotám s odpovídají tyto
hodnoty součinu p = xy: p\ = -2, p2 = — 1, p3 = §. Čísla x, у tvoří
dvojici kořenů kvadratické rovnice t2 — st + p = 0, takže se jedná o jednu
z rovnic

9 2
— 0, t + 3t + —

ó
t2 -t-2 = 0, t2 - 2t - 1 = 0.

Jejich řešením dostaneme (všech) šest řešení dané soustavy:

{x,y} = {~ 1,2}, {x,y} = {l + V2,l - V2}
-9 + V57 -9-л/57

{x,y} = 6 6

A - III - 2

Předpokládejme, že zmíněné čtyřúhelníky mají uvedenou vlastnost. Ze
souměrnosti tečen 2 daného bodu к dané kružnici vyplývá, že strany
trojúhelníku ABC jsou rozděleny body D, E, F a body dotyku kruž-
nic vepsaných uvažovaným čtyřúhelníkům na úseky délek, jež označíme
podle obr. 34. Jsou na něm rovněž vyznačeny body P, Q, R vzájemného
dotyku zmíněných kružnic. Naším cílem je dokázat rovnosti x = у = z
a a = b = c.

A a z p z b В

Obr. 34

Pro úseky tečen z bodu A ke kružnicím při straně BC platí rovnosti
a + 2z = \AP\ = a + 2y, odkud ihned plyne у = z; z důvodů symetrie

91

tudíž skutečně platí x — у — z. (Všude dále budeme psát x namísto у
a z.) Všimněme si nyní trojúhelníků AEG a AFG. Mají společnou stranu
AG a shodné strany AF a AE (délky a + x). Také jejich třetí strany EG
a FG jsou shodné:

\EG\ = \EQ\ + \QG\ =x + \RG\ = \FR\ + \RG\ = \FG\.

Proto AAEG ~ ЛAFG podle věty sss, tudíž úhly BAD a CAD jsou
shodné a polopřímka AD je osou úhlu BAC. Jak víme, osa úhlu trojúhel-
niku protíná protější stranu v poměru délek přilehlých stran. V našem
případě to znamená, že

a + 2x + b b + x

a + 2x + c c + x

Snadnou úpravou dostaneme rovnost (b — c)(a + x) = 0, ze které vidíme,
že b = c. Z důvodů symetrie tudíž platí a = b = c a celý důkaz je hotov.

Jiné řešení. Označme Si, 52, S3 středy vepsaných kružnic (obr. 34).
Stejně jako v předchozím řešení si nejprve všimneme, že platí x — у = z
a že trojúhelníky AEG a AFG jsou shodné. К tomu jsme využili rovnost
\GQ\ = |G-R|, ze které plyne, že podle věty sss jsou shodné i trojúhelníky
SiQG a SiRG. Jelikož R E S1S2 a Q E S1S3, ze souměrnosti podle osy
AD nyní plyne, že přímky AB a 5i52 svírají stejný úhel jako přímky AC
a S1S3, a protože kolmé průměty úseček 5152 a S1S3 na odpovídající
přímky AB, resp. AC jsou shodné (mají délku 2x), je |5х5г| — |5i5з|.
Analogicky |5i521 = 15г5з[, takže trojúhelník 5i5253 je rovnostranný.
Odtud pro poloměry ri, Г2 а Г3 vepsaných kružnic plyne ri 4- Г2 = Г2 +
+ Г3 = Г3 + ri, neboli ri = Г2 — Г3. Kružnice jsou tedy shodné, takže je
AB И 5i52, ВС II S2S3 a CA || S3S1 a trojúhelník ABC je rovnostranný.

Poznámka. К dokončení předchozího důkazu můžeme úvahu o dél-
kách úseček 5;5j nahradit úvahou o tzv. orientovaných úhlech mezi
přímkami. Orientovaný úhel {p, q) přímek p, q (v tomto pořadí) je úhel,
o který musíme v kladném směru otočit přímku q, aby byla rovno-
běžná s přímkou p. Přitom (p,q) = {q,p), právě když (p,q) je náso-
bek 90°. Ze souměrnosti podle os AD, BE a CF tak postupně dostá-
váme (5i53,AC) = (AB,S1S2) = (5253,£C) = (AC,5i53). Protože
obě odpovídající kružnice se středy 5i, S3 mají společnou tečnu AC
a leží v téže polorovině určené přímkou AC, znamená to, že 5i53 a AC
jsou rovnoběžné.

92

A - III - 3

Pokud se nám podaří sestavit podle daného pravidla (к + 3)-člennou
posloupnost

%k — li — *E/c+1 — *E/c+2 — З'/с+З — 12Xi = 1, x2, ar3, .. * 5

můžeme všechny následující členy a++4, a++5, a++6> • • • definovat tak, aby
se rovněž rovnaly číslu 12. Skutečně, s ohledem na matematickou indukci
stačí ukázat, jak s vytčeným cílem vybrat znaménka v rovnosti určující
člen Xk+4- Položme

Xk+4 = + 12(fc + 3) - 12 (к + 2) - 12(к + 1) + 12к ±
±{к- 1)хк-1 ±(к- 2)хк-2 ± ... ± xi,

přitom znaménka v druhém řádku vybereme přesně taková, jaká byla
v součtu určujícím člen Xk = 12. Pak se součet v druhém řádku rovná 12,
takže vychází

Xk+4 = 12(к + 3) - 12(fc + 2) - 12(к + 1) 4- 12fc + 12 = 12.

Vhodný příklad pro к = 8 vypadá takto: = X3 = 1,

X4 — 3 — 2 + 1 — 2,

ж5 — 4 • 2 — 3 — 2 + 1 = 4,

ж6 = 5- 4 — 4-2 — 3 — 2 — 1 =6,

X7 = 6- 6 — 5-4 — 4-2 + 3 — 2 + 1 = 10,

xg = 7-10 — 6-6 — 5-4 — 4-2 + 3 + 2 + 1 = 12,

ar9 = 8-12 — 7-10 — 6-6 + 5- 4 + 4- 2 — 3 — 2 — 1 = 12,

xio = 9-12 — 8-12 — 7-10+ 6- 6 + 5- 4 + 4- 2 + 3 + 2 + 1 = 12,

xn = 10-12 + 9-12 -8-12-7-10-6-6-5-4 + 4-2 -3 + 2-1 = 12.

Dokázali jsme, že jedna z uvažovaných posloupností má pouze prvních
sedm členů různých od čísla 12.

A - III - 4

Rozbor. Předpokládejme, že trojúhelník ABC má všechny požadované
vlastnosti a označme D průsečík kružnice к opsané trojúhelníku ABC

93

s polopřímkou opačnou к rameni КA daného úhlu AKS (obr. 35). Po-
lopřímka AD půlí úhel BAC, proto jsou úhly BAD a CAD shodné,
tudíž jsou shodné i tětivy BD a CD kružnice k. Bod S je proto středem
základny BC rovnoramenného trojúhelníku BCD, takže úhel BSD je
pravý. To znamená, že bod D leží na přímce p, která prochází bodem S
kolmo к danému rameni KS. Střed O kružnice к leží jednak na přímce p

(ose tětivy BC), jednak na přímce o, která je osou tětivy AD.

Konstrukce. Pro daný úhel AKS nejprve proložíme bodem S přímku p
kolmou к rameni KS. Pak sestrojíme průsečík D přímky p s polopřímkou
opačnou к rameni КA. Dále sestrojíme osu o úsečky AD a její průsečík
s přímkou p označíme O. Konečně sestrojíme kružnici к se středem O
a poloměrem r — \OA\ (= \OD\) a její průsečíky s přímkou KS ozna-
číme В a C.

Důkaz konstrukce. Ukážeme, že sestrojený trojúhelník ABC má
všechny požadované vlastnosti. Z posledního kroku konstrukce plyne,
že body В, C leží na přímce KS a, že bod S je středem úsečky BC.
Protože na přímce p, ose úsečky BC, leží i bod D, platí \BD\ = \CD\,
a proto \<BAD\ = \<CAD\ (neboť všechny body А, В, C, D leží na
kružnici k.) Polopřímka AD je tedy osou úhlu BAC a bod К je její
průsečík s úsečkou BC.

Diskuse. Vysvětlíme, proč pro daný tupý úhel AKS je hledaný troj-
úhelník ABC jediný (nepřihlížíme-li к možnosti zaměnit označení vr-
cholů В a C). Protože je úhel AKS tupý, bod D z naší konstrukce zřejmě
existuje a přímky p a o jsou různoběžné, takže i bod O je určen jedno-

94

značně. Zbývá zdůvodnit, proč kružnice к protne přímku KS ve dvou
bodech. Protože bod К je vnitřním bodem základny AD rovnoramen-
něho trojúhelníku ADO, platí \OK\ < \OA\ = \OD\ — r, tudíž bod К
leží ve vnitřní oblasti kružnice к a přímka KS je nutně její sečnou.

A - III - 5

Hledaná dvoumístná čísla А, В mají tvar A = az + b а В = bz + a, kde a,
b jsou jejich (nenulovél) číslice, takže a, b € {1,2,... ,z — 1}. Kvadratická
rovnice z textu úlohy má dvojnásobný kořen xq, právě když platí 2xq =
= A a Xq = B. Z těchto rovností plyne, že číslo x0 je kladné a celé.
Vzhledem к nerovnosti x$ = B<z2 (B je totiž dvojmístné, zatímco z1
je trojmístné) navíc platí xo < z, odkud A — 2xq < 2z, takže číslo A
má jako první číslici jedničku. Platí tedy a = 1 a z rovností 2xq = z + b
a Xq = bz + 1 vyloučením жо dostaneme pro číslici b kvadratickou rovnici
(b — z)2 = 4s dvěma kořeny b\ = z — 2 a 62 = z + 2. Za číslici b lze ovšem
vzít pouze první z nich, takže nutně b — z — 2.

Dokázali jsme, že čísla А, В musejí být tvaru A = z + (z — 2) = 2z — 2
а В — (z — 2)z + 1 = (z — l)2; v soustavě o základě 2 tedy mají zápisy
A = 1(2 — 2) а В = (2 — 2)1. Provedeme ještě zkoušku: kvadratická
rovnice x2 — (22 — 2)x + (2 — l)2 =0 má skutečně dvojnásobný kořen
xq = 2 — 1, neboť její levá strana je rovna (x — 2 + l)2.

Poznámka. Klíčovou rovnost a = 1 lze odvodit i bez úvahy o dvoj-
násobném kořenu xo zkoumané rovnice, když zapíšeme podmínku, že její
diskriminant A2 — 4В je roven nule:

0 = A2 — 4В = (az + b)2 — 4(62 + a) = b2 + 2z (a — 2)6 + a(az2 — 4).

Poslední výraz může mít nulovou hodnotu, jen když je činitel a — 2 zá-
porný, neboť í) 2 1, o ^ 1, 2 2 3 a az2 — 4^ 32 - 4 = 5. Z nerov-
nosti a — 2 < 0 již ovšem plyne a — 1. Pro takové a dostáváme rovnici
0 = b2 — 2zb + (z2 — 4) a závěr je stejný jako v uvedeném řešení.

A - III - 6

К daným kladným číslům a, 6, c splňujícím podmínku abc = 1 zapíšeme
AG-nerovnost pro trojici čísel a/b, a/b a b/c:

a a b1 fa
3 U a.

b b c

95

Platí tedy odhad
b

>— d a.
2a
— +
36 3c ~

Ze stejného důvodu platí i odhady
26 c .

, 2c
3~c + 3~a=b a

Sečtením těchto tří odhadů dostaneme dokazovanou nerovnost.

a
— d c.

3a + 36 “

Jiné řešení. Platí-li pro kladná čísla a, 6, c rovnost abc = 1, pak
max{a,6, с} ^ 1 a min{a,6,c} ^ 1. Protože dokazovaná nerovnost se
nezmění, zaměníme-li trojici (a, 6, c) trojicí (6, c, a) nebo trojicí (c, a, 6),
budeme předpokládat, že čísla a a c jsou z trojice (a, 6, c) nejmenší a nej-
větší (v některém pořadí), takže platí

(a — 1)(1 — c) ^ 0.
Do dokazované nerovnosti dosadíme c = a-16_1 a provedeme několik

ekvivalentních úprav:

(1)

аб-1 -I- ab2 -I- a_26_1 ^ a + 6 + a-16-1, / • a2b
a3 + a363 + 1 ^ a3b + a2b2 + a,

a363 — a262 — a36 + a3 — a + 1 ^ 0,

a3(63 — 62 — 6 + 1) + (a3 — a2)62 — (a — 1) ^ 0,
a3(6 — 1)2(6 + 1) + (a — l)(ab — l)(a6 + 1)^0.

Poslední nerovnost platí, neboť (a — l)(a6 — 1) = (a — l)(a6 — abc) =
= a6(a — 1)(1 — с) a takový součin je podle (1) nezáporný.

Jiné řešení. Pro libovolná kladná čísla Л, В, C jsou trojice (A2, В2, C2)
a (A,B,C) takzvaně souhlasně uspořádané, tudíž platí nerovnost

y42 • A + B2 • В + C2 • C ^ A2 • Я + B2 • С + C2 • A (2)
Dokažme (2) bezprostředně: úpravou dostáváme nerovnost

(A - C)2{A + C) + {B- C)(B2 - A2) Z 0,
která zřejmě platí, pokud В = тах{Л, В, C}, čehož lze vždy dosáhnout
cyklickou permutací dané trojice čísel.

Zvolíme-li v dokázané nerovnosti (2) hodnoty A = y/a/b, В = ^/6/c
a C = y/c/a, obdržíme nerovnost

a 6 c .

Г+-+-žb c a

ze které za předpokladu abc = 1 již plyne dokazovaná nerovnost.

3fl2 62 c2
— + \l—+ \ -7

ab:bc ca

96

Kategorie P

Texty úloh

P - I - 1

Čajovník
Pan Nyi byl dvorním pěstitelem čaje císaře Tiang-tonga. Byl to pěstitel
skutečně vyhlášený a jeho čajové lístky putovaly nejen do blízkých šálků
císaře Tianga, ale i do dalekých zemí za oceánem. Tajemství Nyiho skvě-
lého čaje spočívalo především v pečlivosti, s jakou se o své čajové keře
staral. Nyi byl tak pečlivý, že si o každém svém keři vedl záznamy. Psal si
dokonce i to, kolik větviček vychází z kterého místa keře. Po smrti pana

Nyiho byly záznamy rozkradeny a jeho nástupce pan Myi tak měl práci
o mnoho těžší. Rozhodl se proto, že záznamy získá zpět. Problémem ale
je, že mnoho různých podvodníků mu nabízí záznamy falešné. Ty naštěstí
většinou obsahují nesmyslné počty větvení, a tak se dají snadno odhalit.
Pana Myiho neustálé ověřování pravosti záznamů už unavuje, a proto
vás požádal, abyste mu napsali program, který mu s ověřováním pomů¬
že.

Váš program dostane na vstupu počet významných míst N na údaj-
něm čajovníku. Významným místem na čajovníku je buď místo, kde se

čajovník větví, nebo místo, kde končí nějaká větev čajovníku. Protože
žádné dvě větve čajovníku nemohou srůstat, nemohou vznikat „cykly“
z větví. Dále je na vstupu programu zadáno N kladných celých čísel
ci, C2,..., cjv, kde c* určuje počet částí kmene, které vycházejí z i-tého
významného místa. Na výstup program vypíše zprávu, zda může existo-
vat čajovník, který bude mít takovéto počty větvení.

Formát vstupu: Vstupní textový soubor caj .in obsahuje dva řádky.
Na prvním řádku je uvedeno jediné celé číslo N, 1 ^ ^ 1 000. Druhý
řádek obsahuje celá čísla Ci,C2,... ,сдг oddělená mezerami, 1 ^ C{ ^
^N- 1.

Formát výstupu: Výstupní textový soubor caj .out obsahuje jediný
řádek tvořený buď slovem EXISTUJE, nebo slovem NEEXISTUJE.

97

Přiklad, 1 (obr.):
caj.in caj.out

14 EXISTUJE

14311311314111
lil

V4

z1 131
.3

1 1
4

1

Přiklad 2:

caj.in caj.out
NEEXISTUJE6

3 3 3 1 1 1

P - I - 2

Knihovna

Knihovnice Míla potřebuje objednat další skříň s poličkami do své
knihovny; bohužel však sama neumí spočítat její optimální rozměry. Míla
by ráda do nové skříně umístila N knih. Každá kniha má přiřazen jed-
noznačný číselný kód a tyto kódy určují pořadí knih ve skříni. Kniha
s menším kódem se má nacházet na stejné nebo výše umístěné poličce
než kniha s větším kódem; na každé poličce mají být knihy s menšími
kódy umístěny vlevo od knih s většími kódy. Vstupem vašeho programu
bude posloupnost N čísel уг, 1 ^ i ^ N, kde vt je výška г-té knihy (uspo-
řádáno podle rostoucích kódů). Pro zjednodušení můžete předpokládat,
že všechny knihy mají stejnou tloušťku 1 cm. Váš program by měl ze

zadaných údajů spočítat následující:
t> Šířku skříně — označme ji s.
o Počet poliček ve skříni — označme ho p.
> Výšku Wi i-té poličky pro každé 1 S i = P-
> Rozmístění knih do skříně se spočítanými parametry, které respektuje

požadavky na pořadí knih zmíněné v zadání tohoto příkladu.
Navíc si knihovnice Míla přeje, aby skříň byla co nejužší a přitom aby
se vešla do místnosti vysoké 250 cm. Rozmístění knih, které váš program

nalezne, musí tedy ještě splňovat následující podmínky:
> Výška libovolné z knih umístěných do г-té poličky je nejvýše w%.

98

> Součet tlouštěk knih umístěných do jedné poličky je nejvýše sem,

tj. tato polička obsahuje nejvýše s knih.
p

> Výška skříně, která je rovna]T) Wi 4- (p +1) • 1 cm (předpokládáme, že
г=1

šířka desek oddělujících poličky ve skříni je lem), nesmí přesáhnout
výšku místnosti 250 cm.

> s je nejmenší možné.
Příklad: Předpokládejme, že Míla chce do skříně umístit celkem

11 knih, jejichž výšky jsou v pořadí podle jejich kódů následující: 40 cm,
10 cm, 40 cm, 25 cm, 40 cm, 25 cm, 50 cm, 40 cm, 40 cm, 25 cm a 40 cm.
Jedno z optimálních řešení by mohlo vypadat následovně: Skříň bude
mít šířku pro 3 knihy a celkem 4 poličky s následujícími výškami: 40 cm,
40 cm, 50 cm a 40 cm. Výška skříně je v tomto případě 175 cm. Nalezení
jednoho konkrétního možného umístění knih do skříně je snadné.

P - I - 3

Transformace

Jedna z metod zpracování textu používá následující transformační algo-
ritmus:

Na vstupu mějme n-znakový řetězec С — C1C2 .. .cn, jehož všechny
znaky jsou navzájem různé. Řetězec C — Ck+iCk+2 • • • cnc\.. .Ck nazý-
váme řetězcem C zrotovaným о к (tedy např. eldat je řetězec datel
zrotovaný o 3). Vezměme si zadaný řetězec C a napišme si pod sebe C,
C zrotovaný o 1, ..., C zrotovaný o n — 1. Tím jsme získali tabulku
n řetězců. Ty setřídíme v běžném lexikografickém pořadí (tzn. podle abe-
cedy). Z výsledné tabulky si vybereme poslední sloupec S\ dále si také
zapamatujeme číslo řádku ř, na němž se po setřídění nachází náš původní
řetězec. Dvojice (5, ř) je výsledek transformace zadaného vstupu. Jak-
koli magicky to vypadá, tyto dva údaje stačí к rekonstrukci původního
řetězce.

Příklad: Na vstupu máme slovo datel. Transformace probíhá takto:
ateld

datel *

eldat

ldate

telda

datel

ateld

telda

eldat

ldate

Výsledkem tedy je slovo dltea a informace, že původně zadané slovo je
na druhém řádku setříděné tabulky.

99

Soutěžní úloha. Program dostane na vstupu řetězec S délky n

(1 ^ n ^ 100), jehož všechny znaky jsou navzájem různé (tj. je-li
S = S1S2 ■ ■ ■ sn, pak Si ф Sj pro každá i, ý, г ф j), a číslo ř (1 ^ ř ^ n).
Úkolem je najít řetězec C takový, že dvojice (5, ř) je výsledkem aplikace
výše popsané transformace na řetězec C (máte zaručeno, že takový exis-
tuje).

Uvědomte si, že při použití v praxi se délky zpracovávaných vstupů
pohybují řádově ve stovkách kilobytů; je tedy nevhodné, aby váš program
měl kvadratické časové nebo paměťové nároky.

Formát vstupu: Na prvním řádku vstupního souboru bw. in se nachází
řetězec S (řetězec neobsahuje mezery). Na druhém řádku je jedno celé
číslo ř.

Formát výstupu: Výstupní soubor bw.out je tvořen jedním řádkem
obsahujícím řetězec C (jehož transformací je dvojice (5, ř)).

Příklad: bw. in bw.out

dateldltea

2

P - I - 4

Reverzibilní výpočty: Políčko pole
Při hledání nových, úspornějších polovodičových technologií se zjistilo,
že nejvíce energie se spotřebovává při mazání informací, tudíž že opti-
mální jsou ty výpočty, při nichž se žádné informace neztrácejí. Takovým
výpočtům se říká reverzibilní, protože díky této vlastnosti mohou pro-
bíhat oběma směry — dokáží nejen spočítat ze vstupu výstup, ale také
z výstupu jednoznačně určit vstup. Vydejme se proto i my do tohoto
zvláštního symetrického světa a prozkoumejme, jak se programuje „eko-
logicky14.

Začněme tím nejjednodušším, co se v klasických programovacích jazy-
cích vyskytuje, a to je přiřazovací příkaz. Nic takového si bohužel dovolit
nemůžeme, ztratili bychom totiž původní obsah proměnné, do níž se při-
řazuje. Místo toho zavedeme několik příkazů modifikujících proměnnou
vratně:

přičte hodnotu к proměnné.> proměnná += hodnota
> proměnná -= hodnota — odečte hodnotu od proměnné.
> proměnná ~= hodnota — přixoruje hodnotu к proměnné. (xor je bi¬

tová operace, která má pro jednobitová čísla výsledek 1 právě tehdy,
když jsou oba vstupy různé: OxorO = lxorl = 0, Oxorl = lxorO — 1.

100

Vícebitová čísla se xorují po bitech — г-tý bit prvního čísla s г-tým
bitem druhého dají г-tý bit výsledku: 5xorl5 = (0101)2xor (1111)2 =
= (1010)2 = 10. Obecně pro libovolná čísla гаг/ platí xxorу = yxorx,
x xor x = 0, x xor 0 = x a (x xor у) xor z — x xor (y xor z). Podobně lze
zavést operace and a or: 0 and 0 = 0 and 1 = 1 and 0 = 0,1 and 1 = 1,
0 or 0 = 0, 0 or 1 = 1 or 0 = 1 or 1 = 1, ale ty nejsou reverzibilní, takže
pro nás nebudou tak důležité.)

t> proměnná =: = proměnná — prohodí obsah dvou proměnných.

Abychom se vyhnuli problémům s přetečením (co by pak byla inverzní
operace?), dohodněme se, že budeme počítat pouze s nezápornými celými
čísly v rozsahu 0... maxword (takovým číslům budeme říkat přirozená)
a všechny operace budou vydávat výsledky modulo maxword + 1, tedy
opět přirozené číslo. Příkaz += provedený pozpátku je pak totéž, co -=
a opačně; příkazy ~= a =: = jsou inverzní samy к sobě.

Co všechno ale může být hodnota? Jistě libovolná konstanta nebo
proměnná (ovšem různá od té, do které přiřazujeme, jinak bychom mohli
napsat třeba a -= a, což určitě reverzibilní není). Také bychom měli po-
volit nějaké další aritmetické operace — ty samy nemusí být reverzibilní,
důležité je, aby se jejich výsledek zpracoval reverzibilně. Každý složitější
výraz pak už můžeme přepsat na výrazy s jedinou operací, například
x ~= (a*b) + (c*d) rozepíšeme takto:

tl += a*b;
t2 += c*d;
x ~= tl+t2;
t2 -= c*d;
tl -= a*b;

Zde tl a t2 jsou pomocné proměnné, které jsou na počátku výpočtu
nulové a po dopočítání výrazu se opět к nulovým hodnotám vrátí, takže
je můžeme používat pro všechny výrazy v celém programu. Podobně se

vypořádáme s každým výrazem — nejdříve si spočítáme všechny mezi-
výsledky do pomocných proměnných, pak hlavní výsledek použijeme, na-
čež mezivýsledky opět „odpočítáme41. Takže můžeme používat i složité
výrazy a spolehnout se na překladač, že je sám rozepíše.

Trik s odpočítáváním mezivýsledků a spouštěním částí programu po-
zadu je, zdá se, velice šikovný, tak si rovnou nadefinujeme, že undo příkaz
znamená spustit příkaz pozpátku a wrap příkaz\ on příkaz2 provede nej-
dříve přikáži, pak příkaz2 a nakonec undo přikáži pro odpočítání mezi-
výsledků. Náš příklad s výrazem pak snadno zapíšeme takto:

101

wrap begin
tl += a*b;
t2 += c*d

end

on x ~= tl+t2

Podmíněné příkazy if-then-else můžeme používat bez obav, po-
kud zaručíme, že po provedení podmíněného příkazu dopadne podmínka
úplně stejně jako předtím (třeba proto, že žádná z proměnných, které
v ní vystupují, není v podmíněné části programu měněna). Pak totiž
i při provádění výpočtu pozpátku rozpoznáme, kterou z větví se výpočet
má vydat.

S cykly je situace svízelnější, protože tam si s neměnícími se pod-
mínkami nevystačíme (to by každý cyklus buďto neproběhl nikdy, nebo
by se opakoval do nekonečna). Dalo by se to, pravda, zachránit tím, že
by každý cyklus měl jednu podmínku, která by fungovala současně jako
vstupní i výstupní — sami si rozmyslete, jak by takové cykly vypadaly.
My si ale pro naše účely vystačíme s cykly for, ty určitě reverzibilní jsou,
pokud řídící proměnnou cyklu ani její meze žádný příkaz uvnitř cyklu
nemodifikuje, a to se koneckonců nesmí ani v mnoha jiných programo-
vacích jazycích. Navíc abychom nemuseli řešit, co se v řídící proměnné
musí vyskytovat před začátkem cyklu a co po jeho konci, domluvíme se,
že příkaz for si tuto proměnnou sám vytvoří a na konci ji zase zruší.

Příkaz goto pro jistotu zakážeme úplně.
Procedury mohou také fungovat reverzibilně, ale musíme se vyhnout

kopírování parametrů a výsledků, budeme proto vše vždy předávat od-
kazem (pascalské var). Lokální proměnné budou při spuštění procedury
vždy nulové a procedura sama je musí, než skončí, opět do tohoto stavu
vrátit. Rekurze je bez problémů.

Nyní již máme vše potřebné, abychom si vybudovali reverzibilní pro-

gramovací jazyk. Ten náš bude vzdáleným příbuzným Pascalu. Vypadá
takto:

Datové typy: К dispozici máme typy word (celá čísla bez znaménka),
bit (jednobitové číslo, tedy 0 nebo 1; používá se rovněž pro pravdivostní
hodnoty) a pole array _x. .y] of typ (x а у udávají meze indexů a jsou
to buďto čísla, nebo výrazy, jejichž hodnota se po dobu existence pole
nezmění to si proti Pascalu dovolíme navíc). Prvky polí mohou být
také pole, čímž získáme pole vícerozměrná. Svůj vlastní typ si můžete
zavést deklarací type identifikátor = typ;

Identifikátory slouží к pojmenovávání typů, proměnných a procedur

102

a jsou to libovolné řetězce písmen, číslic a znaků které nezačínají
číslicí a které se neshodují s některým z klíčových slov jazyka (zde sázena
courierem). Malá a velká písmena se nerozlišují.

Procedury se deklarují konstrukcí
procedure identifikátor (parametry);
deklarace lokálních typů, proměnných a procedur
begin
příkazy oddělené středníky
end;

Zde parametry mají syntaxi var jméno-, typ, kde jméno je identifiká-
tor, jímž se lze na předaný parametr uvnitř procedury odkazovat. Pokud
má procedura parametrů více, oddělují se středníky, jsou-li stejného ty-
pu, lze zkracovat, např.: procedure X(var m,n: integer; var Z:array
[1. .n] of bit); Všechny deklarované objekty (parametry, typy, pro-
měnné i procedury) existují pouze během volání této procedury, každá
procedura vidí „své“ lokální proměnné a navíc lokální proměnné všech
procedur, uvnitř kterých je deklarována (zastiňování se řídí stejnými pra-
vidly jako v Pascalu nebo C).

Proměnné jsou pojmenovány identifikátory, musí se vytvořit deklarací
var identifikátor : typ;. Při vstupu do procedury, v níž jsou deklarovány,
mají nulovou hodnotu (v případě pole ji mají všechny jeho prvky), a než
proměnná na konci procedury zanikne, musí být opět nulová. Deklaraci
více proměnných téhož typu lze zkrátit, např. var i\, 12, .. ., in • typ;.

Výrazy mohou obsahovat:
> konstanty (přirozená čísla a maxword reprezentující maximální do-

stupně číslo),
> proměnné,
t> prvky polí (pole [výraz]),
> číselné operace (vstupem i výstupem jsou přirozená čísla) +, -, *,

div (celá část podílu), mod (zbytek po dělení), and, or, xor (bitové
operace viz definice o pár odstavců výše) a not (prohození nulových
a jedničkových bitů), výsledky jsou automaticky modulo maxword +1,

> relační operace (vstupem jsou dvě čísla, výstupem bitová hodnota 1,
když relace platí, 0 pokud nikoliv) <, >, =, <=, >= a <>,

> závorky (pokud nezávorkujeme, operátory mají své obvyklé priority).

Příkazy existují tyto:
> Blok: begin příkazy oddělené středníky end

všech příkazů, které obsahuje, v daném pořadí.
způsobí vykonání

103

> Modifikační příkazy: proměnná += výraz — způsobí vyhodnocení vý-
rázu a přičtení jeho výsledku к dané proměnné (může to být rovněž
prvek pole indexovaný nějakým výrazem). Proměnná, kterou příkaz
modifikuje, (resp. prvek pole) se již nesmí nikde jinde v témže příkazu
vyskytnout. Analogicky příkazy -= a “=.

> Prohazovací příkaz: proměnná =: = proměnná — prohodí obsah dvou
proměnných stejného typu. Pokud se jedná o prvky polí, nesmí se
ve výrazech určujících indexy používat žádné z těchto polí.

> Podmíněný příkaz: if podmínka then přikáži else příkaz2 — výhod-
notí se podmínka, což je výraz s bitovým výsledkem, a pokud je roven

jedné, vykoná se první z příkazů, jinak druhý. Platnost podmínky musí
zůstat po vykonání příkazu nezměněna. Část else je možno vypustit,
v případech typu if x then if у then a else b se pak else vztahuje
vždy к nejbližšímu předchozímu ještě neukončenému příkazu if.

d> Příkaz cyklu: for var identifikátor = d to h do příkaz — založí no-
vou proměnnou daného jména a daný příkaz vykonává pro tuto pro-
měnnou nabývající postupně hodnot ď, d+1,..., ů, načež proměnnou
opět zruší. Meze da/i jsou celočíselné výrazy, pokud d > h, příkaz
se neprovede ani jednou. Příkaz musí zachovávat hodnotu řídící pro-

měnné, jakož i mezí cyklu (to znamená, že je může modifikovat, ale
na konci jednoho průchodu cyklem musí mít obojí opět původní hod-
notu). Též je možno použít h downto d, tehdy cyklus běží pozpátku,
tjj. h ^ h 1d.

> Volání procedury: procedura (parametri, ... , parametru) — zavolá
proceduru se zadanými parametry, což mohou být buďto proměnné,
nebo indexovaná pole (výrazy v indexech ovšem musejí mít po ná-
vratu z procedury stejnou hodnotu jako před jejím zavoláním) a jejich
počet i typy musejí odpovídat deklaraci procedury.

> Příkaz obrácení výpočtu: undo příkaz — provede daný příkaz po-

zpátku podle následujících pravidel:
undo begin pi ;...; p-n end
undo x += у
undo x -= у
undo x ~= у
undo x =:= у
undo if x then у else 2
undo for x = d to h do p
undo P(x1,... ,xn)
undo undo p

Konstrukce begin p ; undo p end tedy nevykoná nic, ač může počítat
poměrně dlouho.

begin undo pn ; ... ; undo p\ end
x -= у
X += у
X ~= у

—> х =:= у
—> if х then undo у else undo z

for x = h downto d do undo p
undo těla procedury (begin ... end)

104

> Příkaz lokálního výpočtu: wrap přikáži on příkazy je zkratkou za kon-
strukci begin příkaz\ ; příkaz2 ; undo přikáži end.

Hlavní program nebudeme zavádět. Abychom se vyhnuli problémům
se vstupy a výstupy, budeme vše vždy programovat jako procedury. Ty
jako své parametry dostanou jak proměnné, které obsahují vstupní da-
ta, tak proměnné, které mají být předepsaným způsobem zmodifikovány
podle výsledku.

Časová a prostorová složitost se definuje podobně jako v klasickém
programování: časovou složitostí výpočtu je počet vykonaných příkazů
modifikujících proměnné, ať již proběhly kterýmkoliv směrem. Množství
paměti využité programem v nějakém okamžiku výpočtu spočítáme jako
součet velikostí všech lokálních proměnných (typy bit a word mají jed-
notkovou velikost, pole má velikost rovnou součtu velikostí svých prvků)
a parametrů (ty se všechny počítají jako jednotka, ať už jsou kterého-
koliv typu, protože jsou předávány odkazem) všech právě zavolaných
procedur + jednotka navíc za každou takovou proceduru. Prostorovou
složitostí programu nazveme pak maximum z využitého množství paměti
přes celou dobu běhu programu. (Pozor, jelikož program je pro nás vždy
procedurou, jeho vstupy a výstupy se do prostorové složitosti započítávají
pouze jednotkově, i když to mohou být velká pole.)

Zbývá maličkost: cokoliv uzavřeného do složených závorek { a > je
komentářem, který je počítačem zcela ignorován, jako kdyby na jeho
místě byla mezera. Komentář nesmí uvnitř obsahovat složené závorky.

Příklad 1: Procedura pro prohození obsahu dvou proměnných (která
ukazuje, že =: = se dá snadno odvodit pomocí ostatních operací). Časová
i prostorová složitost jsou konstantní, tedy 0(1).

procedure Prohod(var x,y:word);
begin { x = X, у = Y (X,Y jsou pův. hodnoty) }

{ x = X xor Y, у = Y }
{ x = X xor Y, у = Y xor (X xor Y) = X }
{ x = (X xor Y) xor X = Y, у = X }

end;

Příklad 2: Procedura pro výpočet maxima ze zadaných n čísel. Je
dáno pole X celých čísel a proměnná max, к níž máme spočtené maxi-
mum přičíst. To dokážeme takto: Nejprve si předpočítáme do M[i\ ma-
ximum z čísel A[l],... ,X[i], pak přičteme M[n] к max a nakonec M[i]
opět vyprázdníme, což snadno zapíšeme pomocí příkazu wrap. Časová
i prostorová složitost jsou 0(n) čili lineární.

105

procedure Maximum(var n:word; var X:array [l..n] of word;
var max:word);

var M:array [0..n] of word;
begin

wrap
for var i=l to n do

if X[i]>M[i-l] then

M[i] += X[i]
else

M[i] += M [i-l]
on max += M[n];

end;

Soutěžní úloha. Napište reverzibilní proceduru Najdi (var n:word;
var X:array [1. .n] of word; var co, kde:word). Tato procedura má
za úkol v n-prvkovém poli X hledat hodnotu co, a pokud se tam tato
hodnota vyskytuje, přičíst к proměnné kde pozici jejího výskytu, tedy i
takové, že X{ = co. Navíc je známo, že pole X je uspořádáno vzestupně,
tedy že pro každé i < j platí X{ < Xj\ proto také může být výskyt
nejvýše jeden. Ve svém řešení se snažte dosáhnout co nejmenší časové
i prostorové složitosti.

P - II - 1

Tajemný obraz
V Chile objevili archeologové tajemný obraz z předkolumbovské doby.
Obraz vypadá jako několik bodů rozmístěných na pomyslné kružnici, při-
čemž každé dva body jsou spojeny rovnou čarou. Každá z čar je buď žlutá
nebo červená. Archeologové dlouho hledali smysl této malby, ale žádný
nemohli nalézt. Až amatérský archeolog a dobrodruh Erik von Katzinken
po dlouhém pátrání vyslovil hypotézu, že obrazec je poselstvím dávných
Inků. Počet jednobarevných trojúhelníků s vrcholy na pomyslné kružnici
prý udává počet dní od namalování obrazce, po nichž mají na Zemi opět
přistát mimozemšťané. Protože obrazec je poměrně velký, rozhodl se Erik
určit počet těchto jednobarevných trojúhelníků pomocí počítače.

Vaším úkolem je napsat program, který dostane na vstupu počet bodů
nakreslených na obrazci N, 3 ^ N, a dále seznam dvojic čísel bodů (body
si očíslujeme od jedné do iV), které jsou propojeny červenou čarou (zbylé
dvojice bodů jsou tedy propojeny žlutou). Na výstup program vypíše
počet jednobarevných trojúhelníků v zadaném obrazci (tzn. takových

106

trojúhelníků, jejichž všechny tři vrcholy leží v bodech vyznačených na
kružnici a jsou spojeny čarami téže barvy).

Příklad. V obrazci s pěti body a červenými čarami mezi body (1,2),
(2,3), (3,4) a (2,4) jsou tři jednobarevné trojúhelníky (jeden červený
a dva žluté). Červený trojúhelník má vrcholy v bodech 2,3,4 a žluté
trojúhelníky v bodech 1,3,5 a 1,4, 5.

P - II - 2

Knihovna

Knihovnice Míla opět potřebuje objednat další skříň do své knihovny.
Bohužel však zase sama neumí spočítat, jak by tato skříň měla být široká,
a tak vás znovu poprosila o pomoc. Míla by ráda do nové skříně umístila
celkem N knih, ale na rozdíl od úlohy P-I-2 z prvního kola je jí jedno,
v jakém pořadí knihy do skříně umístí. Vstupem vašeho programu bude
posloupnost N čísel Ví, 1 ^ i N, kde je výška г-té knihy. Pro
zjednodušení předpokládejme, že všechny knihy mají stejnou tloušťku —

1 cm.

Váš program by měl ze zadaných údajů spočítat následující:
> Šířku skříně — označme ji s.
> Počet poliček ve skříni — označme ho p.
> Výšku Wi i-té poličky pro každé 1 ^ i ^ p.
> Rozmístění knih do skříně se spočítanými parametry.

Rozmístění knih, které váš program nalezne, musí z pochopitelných dů-
vodů splňovat následující:

> Výška libovolné z knih umístěných do г-té poličky je nejvýše Wi.
> Součet tlouštěk knih umístěných do jedné poličky je nejvýše sem,

tj. tato polička obsahuje nejvýše s knih.
v

> Výška skříně, která je rovna Wi + (p+1) • 1 cm (předpokládáme, že
г=1

šířka desek oddělujících poličky ve skříni je 1 cm), nesmí přesáhnout
výšku místnosti 250 cm.

> s je nejmenší možné.
Příklad. Předpokládejme, že Míla chce do skříně umístit celkem

14 knih, z nichž devět má výšku 50 cm a pět má výšku 40 cm. Jedno
z optimálních řešení by mohlo vypadat následovně: Skříň bude mít šířku
pro 3 knihy a celkem 5 poliček — tři z nich budou mít výšku 50 cm a dvě
poličky výšku 40 cm. Nalézt jedno konkrétní možné rozmístění knih do
skříně je snadné.

107

P - II - 3

Transformace

Jedna z metod zpracování textu používá následující transformační al-
goritmus: Na vstupu mějme n-znakový řetězec C = C\C2 ■■.cn. Řetězec
C = Ck+iCk+2 ■ . . cnci... Cfc nazýváme řetězcem C zrotovaným о к (tedy
např. akaabr je řetězec abraka zrotovaný o 3). Vezměme si zadaný ře-
tězec C a napišme si pod sebe С, C zrotovaný o 1, C zrotovaný
o n — 1. Tím jsme získali tabulku n řetězců. Ty setřídíme v běžném
lexikografickém pořadí (tzn. podle abecedy). Z výsledné tabulky si vy-
bereme poslední sloupec 5; dále si také zapamatujeme číslo řádku ř,
na němž se po setřídění nachází náš původní řetězec (je-li těchto řádků
více, libovolný z nich). Dvojice (5, ř) je výsledek transformace zadaného
vstupu. Jakkoli magicky to vypadá, tyto dva údaje stačí к rekonstrukci
původního řetězce.

Příklad. Na vstupu máme slovo abraka. Transformace probíhá takto:
abraka

brakaa

rakaab

akaabr

kaabra

aabrak

aabrak

abraka *

akaabr

brakaa

kaabra

rakaab

Výsledkem tedy je slovo karaab a informace, že původně zadané slovo je
na druhém řádku setříděné tabulky.

Soutěžní úloha. Program dostane na vstupu řetězec S délky n (1 5í
^ n ^ 10 000) a číslo ř (1 ř 5Í n). Úkolem je najít řetězec C takový, že
dvojice (5, ř) je výsledkem aplikace výše popsané transformace na řetězec
C (máte zaručeno, že takový existuje).

Poznámka. Budete-li psát program v Pascalu, můžete předpokládat,
že do stringu se řetězec této délky vejde.

Uvědomte si, že při použití v praxi se délky zpracovávaných vstupů
pohybují řádově ve stovkách kilobytů; je tedy nevhodné, aby váš program
měl kvadratické časové nebo paměťové nároky.

Formát vstupu: Na prvním řádku vstupního souboru bw. in se nachází
řetězec S (řetězec neobsahuje mezery). Na druhém řádku je jedno celé
číslo ř.

Formát výstupu: Výstupní soubor bw.out je tvořen jedním řádkem,
obsahujícím řetězec C (jehož transformací je dvojice (5, ř)).

108

Příklad: Vstupní soubor bw.in:
karaab

Výstupní soubor bw.out:
abraka

2

P - II - 4

Reverzibilní výpočty: Ouřad

(Definice reverzibilních výpočtů je obsažena v textu úlohy P-I-4.)
Oblastní Ouřad sídlí v městě Mvn budovách. Aby si ouředníci sídlící

na různých místech mohli rychle posílat všechny ty dopisy, přípisy, zápisy,
dobropisy, vrubopisy, tiskopisy a vůbec všelijaké spisy s podpisy, vybudo-
váli si potrubní poštu — systém rour spojujících některé dvojice budov.
Těmito rourami se pomocí stlačeného vzduchu posílají zásilky. Aby ne-
docházelo ke kolizím, je každá roura využívána jenom jedním směrem.
Nejsou si ale jisti, jestli již postavili všechna potřebná potrubí, a tak je
zajímá, jak zjistit, zda mezi nějakými dvěma zadanými místy je možné
dopravit zásilku, a to buďto přímo, nebo s přeložením zásilky v nějaké
mezistanici, případně mezistanicích.

Napište reverzibilní proceduru Zkoumej (var n:word; var A:array
[l..n] of array [l..n] of bit; var x,y,d:word), která dostane
jako vstup počet budov n, matici A popisující v prvku A[i][ý], zda vede
(1) či nevede (0) roura z г-té do j-té budovy, a čísla budov x a y. Poté
do proměnné d přičte, s jakým nejmenším počtem přeložení je možno
přepravit zásilku z budovy x do budovy y, případně přičte číslo větší
než n, pokud to možné není. Snažte se dosáhnout co nejmenší prostorové
složitosti výpočtu při zachování polynomiální časové složitosti.

P - III - 1

Hračkářství

V hračkářství Prcek a otec proběhla velká soutěž „O nejhezčí hračku".
Děti měly za úkol nakreslit obrázek své nejoblíbenější hračky. Po úkon-
čení soutěže byla uspořádána výstavka a děti, které nakreslily nejpěknější
obrázky, dostaly od hračkářství nějakou hračku. Jak ale asi víte, ne kaž-
dému dítěti se líbí každá hračka, a tak už před vyhlášením soutěže měl
každý malý výtvarník vyhlédnutou tu odměnu, kterou chtěl za svůj ob-
rázek dostat. Tu a žádnou jinou. Svůj názor pak děti po vyhlášení dávaly
dost hlasitě najevo. Maminky ječících potomků se tedy rozhodly, že děti
si hračky mezi sebou povyměňují tak, aby pokud možno co nejvíce dětí

109

bylo se svou výhrou spokojeno. Situaci ještě navíc komplikuje skutečnost,
že к výměně jsou ochotné pouze ty děti, které nakonec dostanou hračku,
po níž touží. S tak náročným úkolem si maminky nevěděly rady, a tak
poprosily vás, abyste napsali program, který problém vyřeší.

'Váš program dostane na vstupu zadán počet N odměněných dětí
a dále pro každé dítě číslo hračky, kterou dostalo, a číslo hračky, kterou
by chtělo dostat (protože hraček je stejně jako dětí, očíslujeme si je pro

jednoduchost od jedné do N). Na výstup program vypíše největší skupinu
dětí takovou, že když si děti ve skupině mezi sebou vhodným způsobem
vymění hračky, budou všechny spokojené.

P - III - 2

Knihovna

Knihovnice Míla opět potřebuje objednat další skříň do své knihovny,
a protože se jí vaše pomoc osvědčila, opět se na vás obrátila, abyste
jí pomohli spočítat optimální rozměry nové skříně. Nová skříň má mít
P poliček a Míla by do ní ráda umístila celkem N knih. Každá kniha
má přiřazen jednoznačný číselný kód a tyto kódy určují pořadí knih ve
skříni. Kniha s menším kódem se má nacházet na stejné nebo výše umis-
těné poličce než kniha s větším kódem; na každé poličce mají být knihy
s menšími kódy umístěny vlevo od knih s většími kódy. Vstupem vašeho
programu bude celé číslo P a posloupnost N čísel í;, 1 ^ i ^ iV, kde ti
je tloušťka г-té knihy. Můžete předpokládat, že tloušťka ti i-té knihy je
celé číslo z rozmezí od 1 do 50. Výška každé knihy je taková, že ji lze bez
problémů umístit do libovolné z plánovaných P poliček. Váš program by
měl ze zadaných údajů spočítat následující:

> Šířku skříně — označme ji s.
> Rozmístění knih do skříně se spočítanými parametry.

Rozmístění knih, které váš program nalezne, musí z pochopitelných dů-
vodů splňovat následující:

> Součet tlouštěk knih umístěných do jedné poličky je nejvýše s.
> Šířka skříně s je nejmenší možná.

Příklad. Předpokládejme, že nová skříň má mít 3 poličky a má být do
ní umístěno celkem 6 knih s následujícími tloušťkami (seřazeny vzestupně
podle svých kódů): 15, 20, 7, 6, 2 a 4. Minimální možná šířka skříně
v tomto případě je 20
na druhou pouze druhá kniha a zbylé knihy se umístí na poslední třetí
poličku.

na první poličku se dá pouze první kniha,

110

P - III - 3

Reverzibilní výpočty: Sčítání

(Definice reverzibilních výpočtů je obsažena v textu úlohy P-I-4.)
Napište reverzibilní proceduru Add (var nrword; var A,B: array

[0. .n-1] of bit) sloužící ke sčítání dvou n-bitových čísel zapsaných
ve dvojkové soustavě (bit číslo 0 odpovídá řádu jednotek). Tato pro-
cedura přičte číslo uložené v poli В к číslu uloženému v poli A. Vstup
dostane vždy takový, aby nedošlo к přetečení, tedy součet bude vždy
také n-bitový. Snažte se dosáhnout co nejmenší prostorové složitosti své
procedury.

P - III - 4

Poklad kapitána Flinta

poklad.pas / poklad.c / poklad.cpp
poklad.in
poklad.out

Program:
Vstup:
Výstup:

Kapitán Flint si při svých pirátských výpravách přišel к docela pěkné
hromádce zlaťáků. Pirátské výpravy jsou však dosti nejisté a štěstěna
vrtkavá, a proto kapitán zakopal část svého jmění na pustém ostrově
a cestu к pokladu zakreslil na ovčí kůži ve tvaru konvexního iV-úhelníku.
Celou mapu pak rozřezal na mnoho částí, přičemž každý řez vedl přímo
mezi dvěma vrcholy mnohoúhelníku a žádné dva řezy se neprotínaly. Aby
si pojistil věrnost posádky svého škuneru, rozhodl se Flint některé části
darovat nejzdatnějším pirátům. Protože by se ale námořníci mohli snadno
dohodnout, mapu sestavit a poklad vykopat, chce mezi ně kapitán roz-
dělit části mapy tak, aby žádní dva námořníci neměli sousední díly (tedy
takové, které mají společnou hranu). Přitom chce mezi námořníky rozdě-
lit co nejvíce částí mapy. Dokázali byste napsat program, který pomůže
kapitánovi vyřešit jeho problém?

Vstup: Na prvním řádku vstupního souboru poklad.in dostane pro-

gram dvě celá čísla N а M oddělená mezerou, 3 ^ iV ^ 30 000,
0 < M < 30 000 počet vrcholů mapy a počet řezů. Následuje M
řádků popisujících jednotlivé řezy. Každý z těchto řádků obsahuje dvě
čísla А а В oddělená mezerou — čísla vrcholů, mezi kterými vede řez
(vrcholy číslujeme od jedné do N).

111

Výstup: Výstupní textový soubor poklad, out bude obsahovat jediné
číslo udávající maximální počet částí mapy, které lze mezi námořníky
rozdělit tak, aby žádní dva námořníci neměli sousední díly mapy.

Výstupní soubor
poklad.out:

Příklad: Vstupní soubor
poklad.in:
5 2 2

1 3

3 5

P - III - 5

Vážení

váhy.pas / vahy.c / vahy.cpp
váhy.in
váhy.out

Mudrc Tlučhuba se přihlásil do konkurzu na královského rádce v jed-
nom nejmenovaném království. Vzápětí však byl zaskočen podmínkami
tohoto konkurzu: Jako test svých schopností obdrží N mincí, z nichž
některé mají různou a některé stejnou hmotnost. Jeho úkolem bude tyto
mince rozdělit do skupin tvořených mincemi stejné hmotnosti a tyto
skupiny pak seřadit vzestupně podle hmotností mincí tak, aby v první
skupině byly nejlehčí mince a v poslední skupině byly nejtěžší mince.
Bude mít к dispozici dvouramenné váhy, na jejichž misky smí v jednom
okamžiku položit po jedné minci.

Mudrc Tlučhuba vás požádal o pomoc při plnění tohoto úkolu. Chtěl
by, abyste vytvořili program, jenž mu pomůže při rozhodování, které
mince zvážit, jak mince rozdělit do skupin a jak vytvořené skupiny uspo-
řádat. Pro účely programu si mince očíslujeme od 1 do N. Samotné vážení
bude ve vašem programu zastoupeno funkcí porovnej.

Mudrc Tlučhuba musí úkol splnit v časovém limitu, který mu byl
stanoven (tedy v něm musí úkol splnit i váš program). Kromě toho musí
provést všechna nezbytná vážení, tj. nesmí existovat dvě či více možných
řešení konzistentních s odpověďmi funkce porovnej, jinak by byl mudrc
upálen jako čarodějník (jak jinak by mohl vědět, které uspořádání je
správné?). Na druhou stranu nesmí být provedeno žádné zbytečné vážení,
tj. takové, jehož výsledek by již (přímo či nepřímo) vyplýval z předchozích
odpovědí funkce porovnej.

Program:
Vstup:
Výstup:

112

Popis funkce porovnej: Funkce porovnej je definována v knihovně
vahy_lib. Váš program musí obsahovat následující řádek, aby mohl po-
užívat funkci porovnej:

Pascal: uses vahy_lib;
C/C++: #include "vahy_lib.h"

Funkce porovnej je deklarována takto:
Pascal: function porovnej (a,b: longint) : integer;
C/C++: int porovnej (int, int);

Tato funkce očekává jako vstupní parametry čísla dvou mincí. Vrátí hod-
notu —1, pokud mince odpovídající prvnímu parametru je lehčí než mince
odpovídající druhému parametru, +1, pokud je tomu naopak, a 0, pokud
obě mince mají stejnou hmotnost.

Nezapomeňte, že váš program nesmí funkci porovnej volat zbytečně,
tj. výsledek žádného volání funkce porovnej nesmí vyplývat (tedy být
jednoznačně určen) z předchozích volání této funkce. Např. pokud jsme
voláním funkce porovnej zjistili, že mince s číslem 1 je lehčí než mince
s číslem 2 a že mince s číslem 2 je lehčí než mince s číslem 3, nelze již
funkci porovnej zavolat s parametry 1 a 3. Kromě toho váš program
může funkci porovnej zavolat nejvýše 250 000krát.

Vstup: Vstupní soubor váhy. in obsahuje jediný řádek s jediným čís-
lem N, 1 ^ ^ 10 000, které udává počet mincí.

Výstup: Výstupní soubor váhy.out musí obsahovat К řádků, kde
К je počet různých hmotností mincí. Na každém řádku budou uvedena
čísla mincí téže hmotnosti v rostoucím pořadí. Hmotnosti mincí jednotli-
vých řádků tvoří rovněž rostoucí posloupnost, tzn. první řádek obsahuje
všechny nejlehčí mince a poslední řádek všechny nejtěžší mince.

Příklad: Vstupní soubor
váhy. in:
4

Průběh komunikace:

volání porovnej (2,4) vrací -1
volání porovnej (1,2) vrací 1
volání porovnej (3,4) vrací -1
volání porovnej (1,3) vrací 0

Výstupní soubor váhy.out:
2

1 3

4

113

Řešení úloh

P - I - 1

Pro řešení úlohy si vypůjčíme terminologii z teorie grafů. Významná
místa na čajovníku budeme nazývat vrcholy, části kmene čajovníku mezi
dvěma významnými místy pak hrany. Vrcholy spolu s hranami si pojme-
nujeme strom (pokud bychom chtěli být opravdu přesní, měli bychom jej
nazvat grafem. My ale víme, že náš čajovník nemá žádný cyklus a graf
s touto vlastností se nazývá strom). Počet hran, které vedou z nějakého
vrcholu v (tedy vlastně počet částí kmene, které vedou z významného
místa v), nazveme stupněm vrcholu v.

Nejdříve si všimneme, že každý strom s alespoň dvěma vrcholy má
alespoň jeden vrchol stupně jedna (takovýto vrchol se nazývá list). Tento
vrchol můžeme snadno nalézt následovně. Začneme strom prohledávat
v libovolném vrcholu. Pokud ještě nejsme v listu, přejdeme do libovol-
něho sousedního (tzn. připojeného hranou) vrcholu, ve kterém jsme dosud
nebyli. Jelikož ve stromu nejsou cykly, musí takovýto vrchol vždy exis-
tovat. Protože vrcholů je konečný počet, musíme jednou skončit — a to
můžeme pouze v listu.

Nyní ukážeme, že součet stupňů všech vrcholů v libovolném stromu
je 2N — 2 (kde N je počet vrcholů). Naopak platí, že máme-li N kladných
celých čísel se součtem 2N — 2, pak existuje strom s N vrcholy majícími
tyto stupně. Z toho už je jasné, že stačí zjistit, zda je součet čísel na

vstupu roven 2N — 2, a podle výsledku vypsat patřičnou zprávu.
První tvrzení dokážeme indukcí podle počtu vrcholů. Strom o dvou

vrcholech obsahuje jedinou hranu. Součet stupňů vrcholů je tedy 1 + 1=2
a naše tvrzení platí. Pokud má strom více vrcholů, víme z předcho-
zího pozorování, že má list. Když tento list odebereme (tedy zrušíme
vrchol a hranu, která ho připojuje ke zbytku stromu), získáme zřejmě
opět strom. Pro něj z indukčního předpokladu platí, že součet stupňů je
2 • (N — 1) — 2 = 2N — 4. Protože v původním stromu měl jeden vrchol
stupeň o jedna vyšší (ten, ke kterému byl připojen list) a byl v něm navíc
list, je součet stupňů v původním stromu 2N — 4 + 2 = 2N — 2. Tím je
první tvrzení dokázáno.

Druhé tvrzení dokážeme indukcí dle počtu členů posloupnosti: Nechť
máme posloupnost dvou kladných celých čísel, jejichž součet je 2-2—2 = 2.
Tato čísla tedy mohou být pouze dvě jedničky. Pro ně jsou zřejmě odpo-
vídajícím stromem dva vrcholy spojené hranou. Pokud má posloupnost

114

více než dvě čísla, musí zřejmě obsahovat alespoň jednu jedničku (jinak
by součet N čísel byl alespoň 2N a ne 2N—2). Analogicky musí také obsa-
hovat alespoň jedno číslo větší než jedna. Když z posloupnosti vypustíme
jednu jedničku a jedno z čísel větších než jedna snížíme o jedna, získáme
posloupnost čísel o jedna kratší se součtem 2N — 2 — 2 = 2 • (N — 1) — 2.
Dle indukčního předpokladu tedy existuje strom na N — 1 vrcholech
s příslušnými stupni vrcholů. Když do stromu přidáme jeden list a při-
pojíme ho hranou к vrcholu, který odpovídá číslu, jež jsme zmenšovali
o jedničku, získáme přesně strom pro naši původní posloupnost. Tím je
dokázáno i druhé tvrzení.

Časová složitost algoritmu je O(N), paměťová 0(1).
program Čaj;
var

N, i, Suma, Časti : Integer;
vstup, vystup : Text;

begin
Assign(vstup, ’caj.in’);
Assign(vystup, ’caj.ouť);
Reset(vstup);
Rewrite(vystup);
Suma := O;
ReadLn(vstup, N);
for i := 1 to N do begin

Read(vstup, Časti);
Suma := Suma + Časti;

end;
if Suma = 2*(N-1) then

WriteLn(vystup, ’EXISTUJE’)
else

WriteLn(vystup, ’NEEXISTUJE’);
Close(vstup);
Close(vystup);

end.

P - I - 2

Předvedeme si dvě možná řešení této úlohy. Obě jsou založena na me-
todě zvané dynamické programování: Úloha se nejprve vyřeší pro pod-
úlohu velikosti 1. Tohoto řešení se použije pro nalezení řešení podúlohy
velikosti 2. Takto nalezených řešení se použije pro vyřešení podúlohy
velikosti 3 atd. V našem případě bude velikost podúlohy určená počtem
knih, které chceme do skříně umístit.

První řešení je založeno na vytvoření dvojrozměrného pole A o rozmě-
rech N x V, kde N je celkový počet knih, které máme do skříně umístit,
а К je maximální výška skříně; К je v našem případě rovno 250 podle

115

zadání úlohy. Hodnota A[i,j], 0 ^ i ^ iV, 1 ^ j 5í У, udává minimální
možnou šířku skříně výšky j, do které lze umístit prvních i knih. Pokud
do skříně výšky j prvních i knih nelze umístit, tj. některá z těchto knih je
vyšší než j — 2 cm, pak je hodnota A[i, j) rovna nějaké speciální hodnotě,
např. —1. Popíšeme si, jak lze v čase O(N) spočítat hodnotu Л[го, jo],
máme-li již spočítány hodnoty A[i, j] pro г < го- Pokud je го = 0, pak
zřejmě Л[го, jo] = Ocm. Pokud existuje i, 1 ^ i ^ го, takové, že výška Ví
i-té knihy je větší než jo — 2 cm, pak prvních i knih nelze do skříně
výšky jo umístit a A[io, jo] bude rovno —1. Ve zbylých případech určíme
hodnotu Л[г'о, jo] následovně: Pro 0 ^ г < г'о zkusíme umístit na po-
slední poličku skříně (г + l)-ní až го-tou knihu a prvních i knih dáme na
předcházející poličky; výška poslední poličky by tedy musela být alespoň

<k<i0 Vk a můžeme předpokládat, že je právě v. Šířka této po-
ličky musí být alespoň го — г. Pokud А [г, jo — v — 1] je rovno —1, pak nelze
vytvořit skříň výšky jo, která by obsahovala prvních го knih a na poslední
poličce by z nich měla posledních г’о — г. V opačném případě je nejmenší
šířka skříně výšky jo, která obsahuje prvních г'о knih a na poslední poličce
má z nich umístěno posledních Íq — i, rovna тах{А[г, jo — v — 1], г'о — г}.
Nejmenší z těchto výrazů pro 0 5Í г < го bude roven hledané hodnotě
A[io, jo]- Výše popsaný výpočet lze provést v čase 0(N), budeme-li po-
stupovat od г = г'о — 1 к г = 0; v takovém případě lze v = maxi+1<fc<io Vk
spočítat z v pro hodnotu г o 1 větší v konstantním čase. Hodnota pole
A[iV, 250] je hledanou minimální možnou šířkou skříně. Pokud chceme
zároveň nalézt i rozmístění knih do skříně a výšky jednotlivých poliček,
zavedeme si ještě pomocné pole B[i, j], 0 ^ i ^ N, 1 ^ j ^ V, do jehož
položky В [го, jo] si při výpočtu hodnoty A[i0, jo] uložíme to г, pro které
je šířka skříně minimální při výšce jo- Z hodnoty B[N, 250] určíme počet
knih, které jsou v optimálním řešení na poslední poličce; tato hodnota
nám umožní spočítat výšku skříně bez poslední poličky a počet knih
v těchto poličkách. Z příslušné hodnoty v poli В určíme počet knih na

předposlední poličce a takto postupujme, dokud nedosáhneme první po-

ličky. Vzhledem к velikosti pole A jsme si právě popsali algoritmus, jehož
časová složitost je 0(VN2) a paměťová složitost 0(VN).

Nyní si popíšeme druhé možné řešení. Nejprve si ukážeme, jak lze
v čase 0(N2) rozhodnout, zda lze knihy umístit do skříně šířky s
a výšky V. К tomu si vytvoříme pomocné pole А [г], 0 ^ г N,
které udává minimální výšku skříně šířky s, do které lze umístit prv-
nich i knih. Pokud A[N] > V, pak knihy nelze umístit do skříně šířky s
a výšky V; v opačném případě je lze do skříně s těmito rozměry umis-

v = maxг+1

116

tit. К určení hodnot v poli A opět použijeme dynamické programo-
vání. Hodnota ď[0] je 1 cm, což je speciální případ obecného vztahu
„součet výšek poliček 4- (počet poliček + 1) x 1 cm“ pro výšku skříně.
Popíšeme, jak lze určit hodnotu Л[го], pokud známe hodnoty A[i] pro
0 š i < io- Zvolme го — s ^ i < го; na poslední poličku chceme umístit
v takovémto případě posledních io — i knih (proto podmínka i0 — s й i).
Výška skříně je pak rovna A[i] + 1 + maxi<A.<io Vk\ nejmenší z těchto
výrazů pro i, i0 — s 'š i < io, je hledaná hodnota A[i0]- Hodnotu A[io\ lze
spočítat v čase 0(N), pokud budeme postupovat od i = i0 -1 k i = io — s

(potom lze maxi<A.<io Vk spočítat z hodnoty pro i + 1 v konstantním
čase). Popsaná procedura v čase 0(N2) s pamětí O(N) rozhodne, zda
lze zadaných N knih umístit do skříně šířky s a výšky V. Zbývá popsat,
jak lze tuto proceduru použít pro vyřešení původní úlohy. Nejprve zkon-
trolujeme, že výška všech knih je nejvýše V — 2 cm = 248 cm, a tedy že
knihy lze vůbec umístit do nějaké skříně výšky V. К určení minimální
šířky so skříně použijeme metodu zvanou půlení intervalu. Budeme si
udržovat dvě proměnné si 5í 52, které nám budou ohraničovat možný in-
terval, ve kterém je hledaná šířka so, tj. si ^ so = «2- Nejprve položíme
si = 1 a S2 = N. V každém kroku zvolíme s = [|(si + S2)J a pomocí
výše popsané procedury zkontrolujeme, zda lze našich N knih umístit
do skříně výšky V a šířky s. Pokud knihy lze do takové skříně umístit,
položíme 52 = s; v opačném případě položíme 5i = s -f- 1. Celý postup
opakujeme, dokud se hodnoty si a 52 liší, tj. dokud nenalezneme hledanou
hodnotu so- Všimněte si, že v každém kroku se rozdíl 52 — si zmenší ales-
poň o 1 (kdybychom při volbě 5 použili horní celou část místo dolní celé
části, nebylo by toto tvrzení pravdivé) a tento rozdíl se zmenší zhruba
na polovinu. Tedy po O(logiV) krocích nalezneme hledanou optimální
šířku skříně so- Výšky poliček a rozmístění knih lze nalézt podobně jako
v předcházejícím algoritmu zavedením pomocného pole B, do kterého
si budeme ukládat počet knih na poslední poličce v optimálním řešení.
Celková časová složitost právě popsaného algoritmu je tedy 0(N2 log iV)
a paměťová složitost je O(N).

Zbývá vyřešit otázku, který ze dvou popsaných algoritmů je lepší.
Odpověď je, že ani jeden není lepší. Vzhledem k zadání úlohy, kde V je
omezeno, je časová složitost prvního algoritmu sice 0(N2) a paměťová
pouze 0(N), ale multiplikativní konstanta skrytá ve „velkém 0“ je li-
neární s V] na druhou stranu paměťová složitost druhého algoritmu je
pouze 0(N), kde multiplikativní konstanta je nezávislá na výšce. Dle výše
popsaného postupu dokonce druhý algoritmus pracuje s poli, která jsou

117

250krát menší. Stejně v časové složitosti člen log N bude menší než člen V
vyskytující se v časové složitosti prvního algoritmu. První algoritmus je
tedy pro omezenou výšku V asymptoticky lepší, ale ve skutečnosti bude
lepší než druhý popsaný algoritmus až pro velmi velké hodnoty N. Lze
tedy říci, že druhý algoritmus je použitelnější.
program p_l_2;
{ Řešení úlohy P-I-2 verze 1 }
const MAXN=100;

VYSKA_MISTN0STI=250;
var vyska: array[1..MAXN] of word; { výšky knih }

{ počet knih }
A: array[0..MAXN,1..VYSKA.MISTNOSTI] of integer;

{ pole minimálních šířek skříně }
B: array[0..MAXN,1..VYSKA.MISTNOSTI] of word;

{ počty knih na poslední poličce v optimálním řešení }

n: word;

function max(a,b:longint):longint;
begin

if a<b then max:=b else max:=a

end;
procedure vypiš(n: word; v: word);

var i,к:word;
begin

if n=0 then

begin
writeln(’Výška skříně: ’,VYSKA_MISTNOSTI-v+l,’ cm’);
exit;

end;
k:=0;
for i:=n-B[n,v]+1 to n do k:=max(k,vyska[i]);
vypis(n-B[n,v],v-k-l);
writeln;
writeln(’Výška poličky: ’,k,’ cm’);
write(’Knihy na poličce:’);
for i:=n-B[n,v]+l to n do write(’ ’,ivyska [i],’ cm)’);
writeln;

end;
var i,j,k: word;

maxvyska: word;
begin

readln(n);
for i:=l to n do read(vyska[i]);
for i:=l to n do

if vyska[i]>VYSKA_MISTN0STI-2 then
begin

writeln(’Pro zadané rozměry knih neexistuje knihovna!’);
halt;

end;
for j:=1 to VYSKA.MISTNOSTI do A[0,j]:=0;
for i:=l to n do

for j:=1 to VYSKA.MISTNOSTI do
begin

maxvyska:=vyska[i];
A [i,j]:=-l;

118

for k:=l to i do

begin
maxvyska:=max(maxvyska,vyska[i-k+l]);
if maxvyska+2>j then break;
if A[i-k,j-maxvyska-1]=-l then continue;
if (A[i,j]=-1) or (A[i,j]>max(A[i-k,j-maxvyska-1] ,k)) then

begin
A[i,j]:=max(A[i-k,j-maxvyska-1],k);
B[i,j]:=k;

end;
end;
end;

if A[n,VYSKA_MISTN0STI]=-1 then
begin

writeln(’Pro zadané knihy nelze knihovnu navrhnout.’);
halt;

end;
writeln(’Optimální šířka skříně je ’,A[n,VYSKA_MISTNOSTI],’ cm.’);
vypiš(n,VYSKA_MISTNOSTI);

end.

program p_l_2;
{ Řešení úlohy P-I-2 verze 2 }
const MAXN=1000;

VYSKA_MISTN0STI=250;
var vyska: array[1..MAXN] of word; { výšky knih >

n: word;
function lze_skrin(s: word; v: word; vypisovat: boolean):boolean;

var A: array[0..MAXN] of word; { pole s minimálními výškami knihoven }
В: array[1..MAXN] of word; { pole s počty knih na poličkách }
maxvyska: word;
i, j: word;

{ počet knih }

begin
A[0] :=1;
for i:=l to n do

begin
maxvyska:=vyska[i];
A[i]:=A[i-l]+maxvyska+l;
В[i]:=1;
j:=i-l;
while (j>0) and (i-j<s) do

begin
if maxvyska<vyska[j] then maxvyska:=vyska[j];
if A[i]>A[j-l]+maxvyska+l then

begin
A[i] :=A [j-l]+maxvyska+l;
B[i]:«i-j+l;

end;
dec(j);

end

end;
lze_skrin:= A[n] <= v;
if not(vypisovat) then exit;
i: =n;

writeln(’Výška skříně: ’,A[n],’ cm.’);

119

writeln(’Výšky poliček ve skříni a jejich naplnění knihami
’od spodu knihovny:’);

while i>0 do

begin
writeln;
writeln(’Výška poličky: ’ ,A[i]-A[i-B[i]]-l, ’ cm’);
write(’Knihy v poličce:’);
for j:=i-B[i]+l to i do

write(’ ’,j,’(’,vyska[j],’ cm)’);
writeln;
i:=i-B[i];

end

end;
var i:word;

sl,s2:word;
begin

readln(n);
for i:=l to n do read(vyska[i]);
for i:=l to n do

if vyskaCi]>VYSKA_MISTN0STI-2 then
begin

writeln(’Pro zadané rozměry knih neexistuje knihovna!’);
halt;

end;
sl:=l; s2:=n;
while sl<s2 do

if lze_skrin((sl+s2) div 2, VYSKA.MISTNOSTI, false) then
s2:=(sl+s2) div 2

else

sl:=(sl+s2) div 2+1;
writeln(’Optimální šířka skříně je ’,sl,’ cm.’);
lze_skrin(sl,VYSKA.MISTNOSTI,true);

end.

P - I - 3

Máme zadán poslední sloupec setříděné tabulky. Základní myšlenka ce-
lého řešení spočívá v tom, že tímto je dán i první sloupec — stačí se-
třídit písmena posledního sloupce podle abecedy. Nyní využijeme toho,
že jednotlivé řádky tabulky vznikly rotací nějakého řetězce; tedy je-li
na některém řádku v prvním sloupci písmeno x a v posledním sloupci
písmeno y, znamená to, že v původním řetězci bylo písmeno x za pišme-
nem у (bráno cyklicky — tedy za posledním písmenem následuje první).
Vzhledem к tomu, že každé písmeno se v řetězci vyskytuje nejvýše jed-
nou, n řádků tabulky nám již určuje pořadí písmen v původním řetězci
až na rotaci. Navíc máme zadáno, na kterém řádku se vyskytuje námi
hledané slovo; tím máme určeno jeho první písmeno.

120

Sestrojit na základě této myšlenky algoritmus je již jednoduché. Pis-
měna zadaného řetězce si setřídíme podle abecedy (vzhledem к tomu, že
hodnoty jsou z omezeného rozsahu, nabízí se přihrádkové třídění) a vy-
robíme si tabulku, v níž bude každému písmenu přiřazeno jemu odpoví-
dající následující písmeno. Pak začneme od písmene, o němž víme, že je
první, a postupujeme od něj po následnících, přičemž rovnou vypisujeme
výsledek, dokud se к tomuto písmeni nevrátíme.

Časová i paměťová složitost algoritmu jsou zjevně lineární v délce
zadaného řetězce.

program bw;
const MAX = 100;
type slovo = array[1..MAX] of char;
var prvni_sloupec, posledni_sloupec : slovo;

radek : integer;
délka : integer;
buckets : array[char] of boolean;
naslednik : array[char] of char;
s : string;
i, 1 : integer;
ch : char;

begin
readln (s);
delka := length (s);
for i := 1 to delka do

posledni_sloupec [i] := s[i];
readln (radek);

{ načtení zadání }

{ bucket sort }for ch := #0 to #255 do

buckets[ch]:=false;
for i := 1 to delka do

buckets[posledni_sloupec[i]]:=true;
1 := 0;
for ch := #0 to #255 do

if buckets[ch] then
begin

inc (1);
prvni_sloupec[1] := ch;

end;

{ určeni následníků }for i:=l to delka do

naslednik[posledni_sloupec[i]] := prvni.sloupec[i];

ch := prvni_sloupec[radek];
for i := 1 to delka do

begin
write (ch);
ch := naslednik[ch];

{ výpis }

end;
writeln;

end.

121

P - I - 4

Políčit na pozici příslušného prvku prohledáváním pole políčko po políčku
přinese požadovanou proceduru, přesto poněkud pomalou. Pokračujme
proto, přátelé, v přemýšlení:

Sestrojíme reverzibilní verzi binárního vyhledávání, místo tradičního
zápisu pomocí cyklu while ovšem použijeme rekurzi. Zavedeme si pod-
proceduru Hledej (var l,p:word), která bude vyhledávat hodnotu co
v úseku Xi, Xi+i,..., Xp a výsledek přičte к proměnné kde. Zařídí to
tak, že si nejdříve spočte pozici prostředního prvku Xm zadaného úseku
(pokud má úsek sudou délku, zaokrouhlíme libovolným směrem) a po-
dle jeho hodnoty zjistí, ve které polovině úseku má hledání pokračovat:
pokud Xm < co, pak od m + 1 do r, je-li Xm > co, tak od / do m — 1.
Na tento úsek pak zavoláme tutéž proceduru rekurzivně, ale nesmíme
zapomenout, až se vrátí, m ještě odpočítat. Nastane-li kdykoliv při po-
rovnávání rovnost, právě jsme hodnotu co našli a po zvýšení kde o m se
z procedury vracíme. Dospějeme-li v rekurzi к úseku nulové délky (r < /),
vracíme se s prázdnou, tedy aniž bychom kde jakkoliv měnili.

Podle tohoto algoritmu již snadno vytvoříme program, pro odpočítá-
vání v něm použijeme příkaz wrap:

procedure Najdi(var n:word; var X:array [l..n] of word; var co,kde:word);
var one:word;
procedure Hledej(var l,r:word);
var m:word;
begin

{ úsek není prázdný }
{ spočteme střed }

if K=r then

wrap m += (1+r) div 2
on

{ našli jsme }if X[m]=co then
kde += m

else if X[m]<co then begin
wrap m += 1
on Hledej(m,r)
end

else begin
wrap m -= 1
on Hledej(1,m)
end

{ postoupíme do pravého úseku }

{ do levého }

end;
begin

wrap one += 1
on Hledej(one,n)

end;

Postoupime-li v rekurzi o úroveň hlouběji, zmenší se prohledávaný
úsek minimálně o polovinu, takže po nejvýše [log2 n] rekurzivních vo-

122

láních buďto hledanou hodnotu odhalíme, nebo dospějeme к úseku nu-
lově délky, kde rekurze rovněž končí. Časová složitost tedy činí O(logn)
a paměťová taktéž (pro každou úroveň rekurze spotřebujeme konstantní
množství paměti).

P - II - 1

Řešení úlohy nám velmi usnadní následující trik. Nebudeme určovat po-
čet jednobarevných trojúhelníků, ale počet dvoubarevných trojúhelníků.
Požadovaný výsledek pak snadno získáme tak, že od počtu všech troj-
úhelníků s vrcholy v bodech obrazce (těch je ^N(N—1)(N—2)) odečteme
počet dvoubarevných.

Počet dvoubarevných trojúhelníků určíme následovně: Uvažujme ně-
jaký bod v, z něhož vede kv červených hran a N — 1 — kv hran žlutých.
Celkem je tento bod součástí |(iV — l)(N — 2) trojúhelníků (počet způ-
sobů, jak zvolit zbylé dva vrcholy trojúhelníku) a z nich je kv(N — 1 — kv)
zaručeně dvoubarevných — to jsou ty, u nichž jsme zvolili jeden vr-
chol připojený červenou a druhý žlutou čarou. Když sečteme tyto počty
zaručeně dvoubarevných trojúhelníků přes všechny vrcholy, dostaneme
dvojnásobek počtu dvoubarevných trojúhelníků (každý z dvoubarevných
trojúhelníků jsme totiž započítali právě u dvou bodů).

Z výše uvedeného rozboru je algoritmus již zřejmý. Nejdříve si u kaž-
dého bodu spočítáme červené čáry. Potom podle uvedeného postupu ur-
číme počet všech dvoubarevných trojúhelníků a následně již snadno do-
počítáme i počet jednobarevných trojúhelníků. Algoritmus má časovou
složitost 0(M + N), kde M je počet červených čar, a paměťovou složitost
O(N).
program obraz;
const

MAXN = 100;
var

Cervene : Array[1..MAXN] of Integer; {Počet červených čar z bodů]
N : Integer; {Počet bodů}

{Načtení vstupu do pole}
procedure Načti;
var

i : Integer;
А, В : Integer;

begin
Write(’Počet bodu: ’);
ReadLn(N);
for i := 1 to N do

Cervene[i] := 0;

{Konce načítané spojnice}

123

while true do begin
Write(’Počátek cervene cary: ’);
ReadLn(A);
if A = 0 then {Konec?}

break;
Write(’Konec cervene cary: ’);
ReadLn(B);
Inc(Cervene [A]);
Inc(Cervene[B]);

end;
end;

{Spočte jednobarevné trojúhelníky}
function Spočti : Integer;
var

i : Integer;
Dvoj : Integer;

begin
Dvoj := 0;
for i := 1 to N do

Dvoj := Dvoj + Cervene[i]*(N-l-Cervene [i]);
Dvoj := Dvoj div 2;
Spočti := N*(N-l)*(N-2) div 6 - Dvoj;

{Počet dvoubarevných trojúhelníků}

end;

begin
Načti;
WriteLn(’Počet jednobarevných trojuhelniku: ’, Spočti);

end.

P - II - 2

Nejprve učiňme následující pozorování: Nechť so je šířka optimální skříně
a nechť má tato skříň p poliček. Potom existují výšky w\ ^ ^ wp poli-
ček a rozmístění knih do skříně se šířkou so a poličkami výšky wi,..., w

takové, že výšky knih v této skříni v pořadí seshora dolů a v každé poličce
zleva doprava tvoří nerostoucí posloupnost (první polička je ta nejvýše
umístěná).

První část pozorování, o existenci výšek w\ ^ ... ^ wp, je jedno-
duchá — pokud výšky poliček ve skříni seshora dolů netvoří nerostoucí
posloupnost, stačí poličky (i s jejich obsahem) ve skříni přeuspořádat.
Nyní dokážeme, že existuje rozmístění knih ve skříni takové, že výšky
knih tvoří nerostoucí posloupnost. Bez újmy na obecnosti můžeme před-
pokládat, že vi ^ ... ^ пдг- Uvažme rozmístění knih do skříně takové, že
první polička obsahuje so nejvyšších knih, druhá so nejvyšších knih mezi
zbylými knihami atd. a v každé z poliček výšky knih tvoří nerostoucí po-

sloupnost. Tvrdíme, že výška nejvyšší knihy v г-té poličce je nejvýše W{,

v

124

tj. V(í-i)s0+i = wi■ Pokud tomu tak není, pak ((i — l)so + l)-tá kniha musí
být v optimálním řešení na jedné z prvních i — 1 poliček, ale pak některá
z (г — l)$o nejvyšších knih (řekněme ta s výškou Vk, 1 ^ к й (г — l)s0)
není v optimálním řešení na jedné z prvních i — 1 poliček — je tedy na

j-té poličce, j ^ i. Potom ale Wj Vk, a tedy Wi ^ t>(i_1)So+1, což je
požadovaná nerovnost.

Všimněme si, že jsme v předchozím odstavci vlastně dokázali, že ve

výše popsaném optimálním řešení jsou všechny poličky až na tu poslední
plné, tj. obsahují přesně so knih. Základem našeho programu bude funkce
existuje (s: integer), která pro danou šířku s rozhodne, zda existuje
knihovna maximální výšky 250 cm a šířky s, do které lze umístit všechny
knihy. Optimální hodnotu Sq nalezneme pak metodou půlení intervalu,
kterou lze nalézt v popisu řešení úlohy P-I-2 domácího kola. Samotná
funkce zvolí za výšku г-té poličky výšku t(í_1)So+1, což je výška nejvyšší
knihy, kterou uložíme do г-té poličky v řešení popsaném v minulém od-
stávci. Naše funkce z výšek jednotlivých poliček snadno spočte výšku celé
knihovny a ověří, zda je nejvýše 250 cm.

Nyní odhadněme časové a paměťové nároky výše popsaného progra-
mu. Nejprve potřebujeme setřídit N čísel, což lze učinit užitím některého
ze standardních algoritmů v čase O(iVlogiV). Časová složitost funkce
existuje je 0(N/s), neboť je v ní potřeba sečíst [jV/s] čísel. Odtud již
plyne, že časové nároky celého našeho algoritmu jsou majorizovány funkcí
0(N log N). Pokud si uvědomíme, že s = N/2 při prvním volání funkce
existuje, s = N/4 při druhém, atd., pak lze časové nároky algoritmu
bez úvodního setřídění výšek knih dokonce odhadnout funkcí O(N). Pa-
měťové nároky algoritmu lze odhadnout funkcí O(N), neboť potřebujeme
pole velikosti N na uložení výšek jednotlivých knih.

program knihovna;
const MAXN=100;

VYSKA_MISTNOST1=250;
var vyska: array[1..MAXN] of word; { výšky knih }

{ počet knih }
procedure utrid_vysky(il,i2:word); { quicksort >

var pivot: word;
w: word;
jl, j2: word;

n: word;

begin
if il>=i2 then exit;
pivot:=vyska[(il+i2) div 2];
jl:=il; j2:=i2;
while (j1<j2) do

begin
while (vyska[j1]>pivot) do inc(jl);

125

while (vyska[j2]<pivot) do dec(j2);
w:=vyska [j1]; vyska[j1]:=vyska[j 2]; vyska[j 2]:=w;
inc(jl); dec(j2);

end;
utrid_vysky(il,j2);
utrid_vysky(jl,i2);

end;
function existuje(s:word):boolean;

var v:word;
i:word;

begin
v:=l; i:=l;
repeat

v:=v+vyska[i]+1;
i:=i+s;

until i>n;
existuje:=v<=VYSKA_MISTNOSTI

end;
var i:word;

si,s2:word;
v:word;

begin
readln(n);
for i:=l to n do read(vyska[i]);
utrid_vysky(1,n);
if vyska[1]>VYSKA_MISTN0STI-2 then

begin
writeln(’Pro zadané rozměry knih neexistuje knihovna!’);
halt;

end;
sl:=l; s2:=n;
while sl<s2 do

if existuje((sl+s2) div 2) then
s2:=(sl+s2) div 2

else

sl:=(sl+s2) div 2+1;
writeln(’Optimální šířka skříně je ’,sl,’ cm.’);
writeln(’Počet poliček ve skříni: ’,(n+sl-1) div sl);
i:=1; v:=l;
while (i<=n) do

begin
v:=v+vyska[i]+l;
writeln(’Výška poličky: ’,vyska[i],’ cm’);
write(’Výšky knih na poličce:’);
repeat

if (i>n) then break;
write(’ ’,vyska[i],’ cm’);
inc(i);

until (i mod sl)=l;
writeln;

end;
writeln(’Výška skřině: ’,v,’ cm’);

end.

126

P - II - 3

Použijeme myšlenku podobnou té z řešení úlohy P-I-3 domácího kola;
problém ovšem je, že když se nám nyní mohou písmena opakovat, ná-
sledníci nemusí být jednoznačně určeni. Provedeme následující úvahu:

Máme dán poslední sloupec, jeho setříděním dostaneme první sloupec.
Dále máme dánu pozici slova, které bylo zakódováno, v setříděné tabulce,
tedy známe jeho první písmeno; nechť je to x. Toto písmeno se nám může
v prvním sloupci vyskytovat vícekrát, na pozicích odpovídajících slovům
xvi, xv-2, xvk, kde xv\ ^ XV2 ^ ... ^ xvk- Z toho ovšem plyne
také v\x ^ V2X й ... ^ VkX, a tedy je-li xvj zakódované slovo, wx
j-té (v abecedním pořadí) slovo končící na x, musí platit w = Vj. Nyní
můžeme celý postup opakovat (pozice, na níž je první písmeno zbytku
zakódovaného slova, je ta, na níž je v posledním sloupci j-té písmeno x).

Algoritmus je již pouze přímočarým přepisem této myšlenky. Imple-
mentace tohoto algoritmu je poměrně jednoduchá; místo komplikované
práce s dvojicemi (písmeno, pozice) je výhodnější si písmena v posled-
ním sloupci očíslovat (písmenu přiřadíme jeho index v posledním sloupci)
a po setřídění (přihrádkovým tříděním, abychom dosáhli lineární časové
složitosti) pracovat pouze s těmito indexy.

Časová i paměťová složitost algoritmu jsou opět lineární.
program transformace;
const MAX = 10000;
var prvni_sloupec : array[1 .. MAX] of integer;

posledni_sloupec : string;
radek, délka, i, 1 : integer;
buckets: array[char] of integer;
ch : char;

begin
{načteni a ocislovani}
readln (posledni_sloupec);
readln (radek);
delka := length (posledni_sloupec);
for ch := #0 to #255 do buckets[ch] := 0;
for i := 1 to delka do

inc (buckets[posledni_sloupec[i]]);

{setrideni}
1 := 1;
for ch := #0 to #255 do

begin
i := 1;
inc (1, buckets[ch]);
buckets[ch] := i;

end;
for i := 1 to delka do

begin

127

ch := posledni_sloupec[i];
1 := buckets[ch];
inc (buckets[ch]);
prvni_sloupec[1] := i;

end;

{vypiš}
for i:=l to délka do

begin
write (posledni_sloupec[prvni_sloupec[radek]]);
radek := prvni_sloupec[radek];

end;
writeln;

end.

P - II - 4

Podobnost úlohy s počítáním vzdálenosti vrcholů (tj. délky nejkratší
cesty mezi nimi) v orientovaném grafu jistě není náhodná, držme se proto
i my grafové analogie: Jednotlivé budovy Ouřadu jsou pro nás vrcholy,
potrubí mezi nimi orientovanými hranami grafu a A není ničím jiným než
maticí sousednosti grafu. Nabízí se použít prohledávání grafu do šířky,
ovšem musíme je náležitě upravit, aby bylo reverzibilní.

Vrcholy grafu si rozdělíme do vrstev: i-tá vrstva Wi bude obsahovat
právě ty vrcholy, jejichž vzdálenost od vrcholu x je rovna i. Vrstev je
proto nejvýše n a můžeme je snadno zkonstruovat indukcí: do Wo padne
vrchol x a žádný další; když máme sestrojeny vrstvy Wo až Wi-1, tak
do Wi patří právě ty vrcholy w, do kterých vede hrana z nějakého vrcholu
v E Wi-1 (tedy existuje cesta délky i z x do w) a w qL Wj pro j < i
(neexistuje žádná kratší cesta).

To je bezpochyby reverzibilní postup při konstrukci vrstvy nijak
neměníme vrstvy už spočítané; nakonec najdeme číslo vrstvy, do které
padl vrchol y, to vydáme jako výsledek a všechny informace o vrstvách
opět odpočítáme. Tak dostaneme řešení s časovou složitostí 0(n3) a pro-
storovou složitostí 0(n2). Všimněme si ještě dvou drobností:
1. Ačkoliv vrstev může být ažnav každé z nich až n — 1 vrcholů, lze

je uložit efektivněji, protože ve všech vrstvách dohromady je nejvýše
n vrcholů. Stačí je všechny naskládat za sebe do jednoho pole (říkejme
mu třeba V) a nechat druhé pole S ukazovat, kde v poli V která vrstva
začíná. Vrcholy ve vrstvě Wi tedy budou uloženy v prvcích Vsť až
VSi+l-i.

2. Reverzibilita programu není příliš nakloněna značkování vrcholů.
Když si totiž budeme v nějakém poli pro každý vrchol pamatovat,

128

zda jsme v něm již byli, a případně jej pak označkujeme, řekněme
takto:

if UžJsemTamByl[i]=0 then begin
{ objevil jsem nový vrchol a někam si ho zapíšu }
UžJsemTamByl[i] += 1;
end;

dostaneme se do sporu s reverzibilitou podmínek: po ukončení pří-
kazu if nepoznáme, zda byla podmínka splněna či nikoliv, protože
UžJsemTamByl [i] bude vždycky jednička. To přesně náš jazyk zaka-
zuje. Naštěstí nás zachrání jednoduchý trik: pokud dokážeme zajistit,
abychom v rámci jedné vrstvy na každý vrchol narazili nejvýše jed-
nou, stačí si u každého vrcholu zapamatovat (k tomu budeme používat
pole L), ve které vrstvě byl objeven, a pokud dosud objeven nebyl,
tak nějaké dostatečně velké číslo inf. Test se změní na

if L [i] >= TatoVrstva then begin
{ objevil jsem nový vrchol a někam si ho zapíšu }
L[i] -= inf - TatoVrstva;
end;

a to už je korektní: platnost podmínky v této vrstvě se totiž přena-
stavením L[i] nezmění, ale v dalších vrstvách již správně poznáme,
že vrchol byl zpracován.
Zde je program využívající oba popsané triky:

procedure Zkoumej(var n:word; var A:array [l..n] of array [l..n] of bit;
var x,y,d:word);

var inf,cnt:word;
var L,V,S:array [0..n] of word;
begin

wrap begin
inf += n+1; { "nekonečná vzdálenost" }

-C L[i] = inf >for var i = 1 to n do

L[i] += inf;
V[0] += x;

L[x] -= inf;
S[l] += 1;
for var i = 1 to n-1 do begin

S[i+1] += S [i];
for var w = 1 to n do

if L[w] >= i then

{ nultá vrstva: vrchol x... }
{ ...ve vzdálenosti 0... }
{ ...a žádný další }
{ hledáme další vrstvy }
{ zatím prázdná >

{ nezařazený vrchol }
wrap

for var j = S[i-1] to S [i]—1 do
{ vede do něj hrana z vrstvy i-1? }

if A[V[j]][w]=l then
cnt += 1

on if cnt>0 then begin { ano => přidat do i-té vrstvy }

129

V[S[i+l]] += v;

S[i+1] += 1;
L[w] -= inf-i
end

{ L[w] >= i stále platí }

end

end

on d += L[у] { vrátíme výsledek }
end;

Zbývá ještě dodat, že prostorová složitost procedury je lineární a ča-
sová kvadratická (inicializace je lineární, vše mimo cyklu řízeného pro-
měnnou j kvadratické a vnitřek zbylého cyklu se provede pro každý vr-
chol j právě n-krát, takže je dohromady také kvadratický).

Poznámka. Pokud bychom se vzdali polynomiální časové složitosti,
existovala by prostorově ještě efektivnější řešení. Jedno z nich je založeno
na následující úvaze: hledám-li cestu délky l z x do y, pak je buďto
l < 2 (tehdy je úloha triviální), nebo cesta musí mít nějaký střední
vrchol ve vzdálenosti [|/J. Vyzkouším proto postupně všechny vrcholy
a pro každý z nich si rekurzivním zavoláním téže funkce pro obě poloviny
cesty a poloviční l ověřím, zda existuje příslušná polovina cesty. Hloubka
rekurze je maximálně [log2= O(logn), dosáhneme tedy prostorové
složitosti O(logn) za cenu drastického zpomalení na n°(log n).

P - II! - 1

Při řešení úlohy si nejdříve uvědomíme, že ze zadaných čísel hraček mů-
žeme snadno odvodit, které dítě chce hračku po kterém dítěti. Situaci si
představíme jako orientovaný graf, kde vrcholy odpovídají dětem a od
vrcholu i vede hrana к vrcholu ý, pokud dítě i chce hračku po dítěti j.
Protože dítě je ochotno vyměnit hračku pouze tehdy, když dostane tu
svou vytouženou, mohou si děti vyměňovat hračky pouze po cyklech —

aby se dítě i\ vzdalo své hračky, musí dostat hračku od *2, to od i3 a tak
dále, až nějaké dítě dostane hračku od i\. Chceme tedy nalézt v grafu
množinu disjunktních kružnic (pro snazší vyjadřování budeme nadále
považovat za kružnici i vrchol se smyčkou), které dohromady obsahují co
nejvíce vrcholů. Hledání těchto kružnic je usnadněno tím, že každé dvě
kružnice v našem grafu jsou disjunktní — kdyby nějaké dvě kružnice měly
společný vrchol, musely by se v nějakém místě také od sebe oddělovat.
Z příslušného vrcholu by tedy musely vést dvě hrany, což ovšem v našem
grafu není možné.

A nyní jak budeme kružnice hledat: Začneme v libovolném vrcholu
(třeba prvním) a půjdeme po hranách (z každého vrcholu vede právě

130

jedna hrana, takže postup je jednoznačný), dokud se nevrátíme do něja-
kého vrcholu, ve kterém jsme už byli (to poznáme snadno, když si budeme
označovat navštívené vrcholy). Tím jsme v grafu nalezli nějakou kružnici,
tu můžeme vypsat a její vrcholy označit za vyřešené. Vrcholy, které jsme
prošli předtím, než jsme se dostali na kružnici, pro změnu zaručeně na
žádné kružnici neleží (jinak by z nějakého vrcholu musely vést alespoň dvě
hrany). Proto se těmito vrcholy už nikdy nemusíme zabývat a můžeme
je rovněž označit jako vyřešené. Nyní vezmeme další dosud nevyřešený
vrchol a opět se z něj vydáme hledat kružnici. Pokud narazíme na nějaký
již vyřešený vrchol, hledání ukončíme a prošlé vrcholy označíme jako vy-
řešené — nemohou totiž zřejmě ležet na žádné kružnici. Když už nezbude
žádný nevyřešený vrchol, máme nalezeny všechny kružnice a výpočet
ukončíme. Jediným nedořešeným problémem zůstává, jak rychle hledat
dosud nevyřešené vrcholy. To můžeme snadno dělat tak, že při hledání
dalšího nevyřešeného vrcholu začneme hledat od naposledy nalezeného
vrcholu (před ním jistě žádné nevyřešené již nejsou). Díky tomu s hledá-
ním vrcholů strávíme dohromady čas O(N), a protože na nalezení kružnic
potřebujeme dohromady též O(N) (každou hranou projdeme nejvýše jed-
nou), je celková časová složitost O(N). Paměťová složitost je také O(N).
/* Hračkářství */
♦include <stdio.h>

/* Maximální počet dětí */♦define MAXD 100

/* Počet dětí */
/* Číslo hračky, kterou příslušné dítě má */
/* Dítě, které vlastní příslušnou hračku */
/* Dítě, jehož hračku příslušné dítě chce */
/* Už jsme dítě řešili? */

int N;
int Ma [MAXD];
int Vlastni [MAXD];
int Chce[MAXD];
int Hotovo [MAXD];

/* Načte vstup */
void nacti(void)

int i;

scanf ("%d", &N);
for (i = 0; i < N; i++) {

printf("Dite '/,d: ", i+1);
scanf ("*/,d */,d", &Ma[i], &Chce[i]);
Ma[i]—; Chce[i]—;
Vlastni[Ma[i]] = i;

>
/* Převedeme odkazy na hračky na odkazy na děti */
for (i = 0; i < N; i++)

Chce[i] = Vlastni[Chce[i]];
>

131

/* Projde děti a zjistí největší spokojenou skupinu */
void res(int act)
{

int start = act;

/* Projde děti a najde cyklus */
while (!Hotovo[act]) {

Hotovo[act] = 1;
act = Chce[act];

>
/* Vypíše cyklus */
while (Hotovo[act] != 2) {

Hotovo [act] = 2;
printf(" %d", act+1);
act = Chce[act];

>
/* Ještě označíme zbylé prošlé vrcholy */
act = start;
while (Hotovo[act] != 2) {

Hotovo [act] = 2;
act = Chce[act];

}
>

int main(void)
{

int i;

načti();

printf("Spokojené děti:");
for (i = 0; i < N; i++)

if (!Hotovo[i])
res(i);

printf("\n");
return 0;

/* Zatím jsme dítě neřešili? */

У

P - III - 2

Základem našeho řešení bude funkce existuje(s: integer), která pro
zadanou šířku s rozhodne, zda existuje knihovna s P poličkami, do
které lze umístit všech N knih. Označme T součet tlouštěk knih,
tj. T = t\ + ... + řjv- Potom minimální šířka knihovny s P poličkami pro
dané knihy je alespoň T/P. Na druhou stranu, určitě existuje knihovna
šířky T/P +1
time na poličky tak, že každých prvních к poliček obsahuje nejmenší
možný počet knih takový, aby součet tlouštěk knih na těchto poličkách
byl alespoň kT/P. Snadno nahlédneme, že šířka každé poličky je nejvýše
T/P+ t

je maximální tloušťka knihy: Knihy rozmís-kde tmax ? max

a tedy existuje knihovna takové šířky. Optimální šířku skříněmaxi

132

pak nalezneme vyzkoušením všech hodnot mezi T/P a T/P + t
možné šířky skříně. Takových hodnot je ale konstantně mnoho kvůli ome-
zení na tloušťku knihy ze zadání úlohy.

Samotná funkce existuje bude fungovat následovně: Pro zadané s
ú

nalezne největší i\ takové, že ti й s; je jasné, že i\ je maximální
i—1

možný počet knih, které lze umístit do první poličky. Poté nalezneme
Í2

největší Í2 takové, že ti = s, tedy největší možný počet knih Í2,
+1

které lze umístit do prvních dvou poliček, atd. Pokud se nám podaří
umístit všechny knihy, tj. ip = iV, pak existuje knihovna šířky s, do
které lze všechny knihy uložit; v opačném případě taková knihovna zjevně
neexistuje.

Zbývá domyslet, jak rychle hledat čísla ik, 1 ^ к ^ P, ve funkci
existuje. Za tímto účelem si nejprve vytvoříme pomocné pole, ve kte-
rém budou uloženy součty tlouštěk prvních j knih pro 1 ^ j й N. Při
počítání hodnoty i к metodou půlení intervalu vyhledáme v tomto po-

jfc-i
mocném poli největší číslo i' takové, že ^ ti — ^ ti ^ 5; zřejmě i' je
hledaná hodnota ik-

Nyní odhadněme časovou a paměťovou složitost našeho algoritmu.
Funkce existuje provede P vyhledávání v poli velikosti N, tj. doba
jejího běhu je majorizována funkcí 0(P log N). Celková doba běhu našeho
programuje tedy O (iV + P log TV); čas O(N) spotřebujeme kromě načtení
dat také na vytvoření pomocného pole popsaného v minulém odstavci.
Pokud by platilo, že PlogiV > N, lze výše popsanou funkci existuje
nahradit jednodušší funkcí pracující v čase O(N), která místo P binárních
vyhledávání projde pole sekvenčně. Časová složitost našeho programu je
tedy majorizována funkcí O(N). Paměťová složitost je O(N)
velikosti N je potřeba na uložení tlouštěk jednotlivých knih a stejná je
i velikost pomocného pole.

program knihovna;
const MAXN=1000;
var tloustka: array[1..MAXN] of word;

součet: array[0..MAXN] of word;
n: word;
p: word;

function vyhledej(s: word): word;
var il,i2: word;
begin

il:=0; i2:=n;
while il<i2 do

jakomax

i'

i—1 i= 1

pole

{ tloušťky knih }
{ součty tlouštěk knih }
{ počet knih >
{ počet poliček }

133

if součet[(Í1+Í2+1) div 2]>s then
i2:=(il+i2+l) div 2-1

else

il:=(il+i2+l) div 2;
vyhledej:=il

end;
function existuje(sirka: word):boolean;

var i,j: word;
begin

i :=0;
for j:=l to p do i:=vyhledej(součet[i]+sirka);
existuje:=i=n;

end;
var i: word;

si, s2: word;
tmax: word;

begin
readln(n,p);
tmax:=0;
for i:=l to n do

begin
read(tloustka[i]);
if tmax<tloustka[i] then tmax:=tloustka[i]

end;
součet[0]:=0;
for i:=1 to n do součet[i]:=soucet[i-l]+tloustka[i] ;

sl:=soucet[n] div p;
s2:=soucet[n] div p+tmax;
while sl<s2 do

if existuje((sl+s2) div 2) then
s2:=(sl+s2) div 2

else

sl:=(sl+s2) div 2+1;
writeln(’Optimální šířka skříně: ’,sl,’ mm’);
i :=1;
while i<=n do

begin
write(’Knihy na poličce:’);
s2:=0;
while (i<=n) and (s2+tloustka[i]<=sl) do

begin
write(’ ’,i,’(’,tloustka[i] ,’ mm)’);
s2:=s2+tloustka[i];
inc(i);

end;
writeln;

end

end.

P - III - 3

První řešení. Inspirujeme se tradičním algoritmem pro sčítání čísel „pod
sebou“ a uvědomíme si, že není závislý na použité číselné soustavě (zvěda-

134

vější povahy obětují 5 minut na důkaz indukcí). Pokud bychom uměli spo-
čítat přenosy mezi řády, je samotné sečtení triviální: A[= AixorBíxoyPí,
kde Pí je přenos z (i — l)-ního do г-tého řádu (xor funguje úplně stejně
jako sčítání dvou bitů modulo 2). Pokud jsme ochotni obětovat paměť
na všechna Pí, můžeme je spočítat postupně: Po = 0; pro i > 0 je Pí = 1,
když buďto Ai-1 a P;_i jsou současně jedničky, nebo když alespoň jedno
z nich je jednička a P;_i je jednička. Z toho okamžitě dostáváme program
s lineární časovou i prostorovou složitostí:

procedure Add(var nrword; var A,B:array [О..п-l] of bit);
var P:array [0..n] of bit;
begin

wrap
for var i = 0 to n-1 do

P[i+1] ~= (A [i] and В [i]) or ((A [i] or В[i]) and P[i])
on

for var i = 0 to n-1 do
A [i] ~= B[i] xor P[i]

end;

My se ovšem s lineárním množstvím paměti nespokojíme a zkusíme
být při výpočtu přenosů šetrnější. Celý problém je v tom, že na spočtení
Pí potřebujeme P;_i, a to musí být dostupné i v okamžiku, kdy budeme
Pí odpočítávat (pokusy o odpočítávání Pí pomocí Pí+i selhávají na tom,
že když už jsme si jednoho ze sčítanců přepsali výsledkem, nelze určit, zda
jednička z výsledku vznikla z jedničky v přepsaném sčítanci nebo z nuly
a přenosu z nižšího řádu). Takže si musíme P;_i celou dobu pamatovat
a prostorová složitost prostě musí být vždy alespoň lineární a naše první
řešení je optimální... a nebo přeci jen ne? Nešlo by na Pí-\ zapome-

nout, a až budeme chtít Pí odpočítat, tak si Pi-\ spočítat znovu? To by
fungovalo, ale musíme to provést šikovně, abychom rekurzivním voláním
výpočtů předchozích Pj nespotřebovali více paměti, než jsme ušetřili.
Tak získáme

Druhé řešení. Sestrojíme si proceduru Přenos (i, 1, in, out), která
pro nějaký úsek čísel А а, В (konkrétně od г-tého řádu do (i +1 — l)-ního)
za předpokladu, že přenos do našeho úseku z nižších řádů Pí = in, spo-
čítá přenos Pí+i do vyšších řádů a přixoruje jej к proměnné out. Pokud
je úsek jednoprvkový, udělá to již dobře známým způsobem z našeho
prvního řešení (v konstantní paměti). Větší úsek si rozdělí na poloviny,
rekurzivně si spočítá přenos mid z nižší poloviny do vyšší, pak rekurzivně
spočítá přenos z vyšší poloviny „ven“ a nakonec mid třetím rekurzivním
zavoláním odpočítá. To se dá jako obvykle snadno zapsat pomocí příkazu
wrap:

135

procedure Prenos(var i,l:word; var in,out:bit);
var 11,12,j:word;
var mid:bit;
begin

{ jednobitový přenos }
out ~= (A[i] and В [i]) or ((A[i] or B[i]) and in)

else wrap begin
11 += 1 div 2;
12 += 1-11;
j += i+11;
Přenos(i,11,in,mid)
end

on Prenos(j,12,mid,out)

if 1=1 then

{ ll=délka dolní poloviny }
{ 12=délka horní poloviny }
{ j=začátek horní poloviny }
{ přenos přes dolní polovinu }

{ přenos přes horní polovinu }
end;

Jelikož při každém rekurzivním volání klesne l minimálně na polo-
vinu, je hloubka rekurze nejvýše [log2 Z], takže procedura Přenos do-
sáhuje prostorové složitosti O(logZ). Se složitostí časovou je to trochu
obtížnější: Označíme-li čas strávený touto procedurou T(Z), bude pla-
tit T(l) = 1 + 3T(//2): procedura vykoná nějakou konstantní práci (je-
likož nás složitost zajímá jen asymptoticky, můžeme předpokládat, že
jednotkovou), načež třikrát zavolá sama sebe na vstup poloviční délky.
Dosadíme-li tento vztah do sebe sama, dostaneme T(l) = 1 + 3(1 +
+ 3T(//4)) = 1 4- 3 + 9T(//4) a když budeme dosazovat dál, po к
krocích dojdeme к T(I) = 1 + 3 + .. .-t- 3fc_1 + 3kT(l/2k). My ale ví-
me, že T(1) = 1, takže pro к = log2 l (naše hloubka rekurze) vyjde
T(l) = 1 + 3 + ... + 3log2 /_1 + 3log2l. To je ovšem geometrická řada se
součtem |(3fe+1 — 1) = 0(3k) = 0(3log2/), což můžeme ještě zjednodušit:
3iog2z _ 3ýog21 — 2^°g2 3iog21 _ ^21о82^1о823 — d°g23 < Z1’59. Z toho
plyne, že časová složitost celé procedury je T(Z) = 0(Z1,59).

Teď bychom mohli rekurzivní výpočet přenosů zapojit do naší pů-
vodní sčítací procedury (musíme ovšem sčítat pozadu, abychom si ne-

přepsali hodnoty, ze kterých budeme přenosy ještě potřebovat) a získat
tak sčítání s logaritmickou prostorovou složitostí v čase 0{n • n1,59) =
= О (гг2,59), ale neuděláme to, protože si všimneme, že každý z blokových
přenosů bychom zbytečně počítali mnohokrát.

Místo toho zkonstruujeme podobnou rekurzivní proceduru, která
bude provádět současně sčítání a počítání přenosu. Nazveme ji Sečti
a bude mít úplně stejné parametry jako procedura Přenos. Nejdříve si
zavolá proceduru Přenos pro výpočet přenosu z dolní poloviny bloku
(ten opět přixoruje к proměnné mid), pak rekurzivním zavoláním sebe
samé sečte horní polovinu čísla a nakonec rekurzivně zavolá sebe samu

136

pro dolní polovinu čísla, čímž ji jednak sečte a jednak odpočítá přenos
mid. Triviální případ sčítání jednobitových čísel opět vyřešíme klasicky.

procedure Secti(var i,l:word; var in,out:bit);
var 11,12,j:word;
var mid:bit;
begin

{ jednobitové sčítání }if 1=1 then begin
out ~= (A[i] and В[i]) or (CA[i] or B[i]) and in);
A[i] ~= В [i] xor in
end

else wrap begin
11 += 1 div 2;
12 += 1-11;
j += i+H
end

on begin
Prenos(i,ll,in,mid);
Secti(j,12,mid,out);
Secti(i,11,in,mid)
end

{ opět počítáme, kde jsou poloviny }

{ přenos přes dolní polovinu }
{ sečteme horní polovinu }
{ sečteme dolní a odpočteme přenos }

end;

Časová i prostorová složitost naší sčítací procedury bude stejná jako
u procedury Přenos, protože až na ošetřování triviálních případů, které je
konstantní, vypadají obě procedury úplně stejně. Sčítáme tedy v prostoru
O(logn) a čase 0(n1,59). Program vypadá takto:

procedure Add(var n:word; var A,B:array [О..п-l] of bit);
{ Zde jsou vloženy procedury Přenos a Secti }
var zero:word;
var in,out:bit;
begin

Secti(zero,n,in,out); { víme, že out vyjde nulový }
end;

Třetí řešení. A nešlo by to ještě lépe? Zkusme vyřešit jednodušší pro-
blém: jak к danému číslu přičíst jedničku, tedy nalézt maximální souvislý
úsek jedniček na nejnižších řádech, tyto jedničky změnit na nuly a bez-
prostředně předcházející nulu změnit na jedničku. Jinak řečeno změnit
ty číslice, za kterými již nenásleduje žádná nula. To se ovšem dá snadno
zařídit následujícím trikem: Nejdříve postupujeme od nejnižšího řádu
к nejvyššímu a za každou nulu si do počítadla přičteme jedničku, a pak
projdeme pole ještě jednou v opačném směru, počítadlo za každou nulu
o jedničku snižujeme, a jakmile dospěje do nuly, začneme všechny bity,
přes které přejdeme, negovat:

procedure AddOne(var n:word; var A:array [О..п-l] of bit);
var i,c:word;
begin

for var i=0 to n-1 do

if A[i]=0 then c += 1;

137

for var i=n-l downto 0 do begin
if A[i]=0 then c -= 1;
if c=0 then A[i] ~= 1;
end;

end;

Dokážeme to tedy v lineárním čase a konstantním prostoru. Jenže
když umíme přičíst jedničku, dokážeme přičíst i libovolnou mocninu
dvojky — stačí začít u jiného než nejnižšího řádu, a tím pádem také libo-
volné jiné číslo, protože ho můžeme rozložit na mocniny dvojky a každou
přičíst zvlast:

procedure Add(var n:word; var A,B:array [О..п-l] of bit);
var i,j,c:word;
begin

for var i=0 to n-1 do

if B[i]=l then begin
for var j=i to n-1 do

if A[j]=0 then c += 1;
for var j=n-l downto i do begin

if A[j]=0 then с -= 1;
if c=0 then A[j] “= 1;
end;

end;
end;

Tak dosáhneme časové složitosti 0(N2) při prostorové složitosti 0(1).
Poznámka na závěr. Řešení v konstantním prostoru těží z toho, že

jsme v našem výpočetním modelu nadefinovali prostorovou složitost po-
někud nedbale a neměříme ji v bitech, nýbrž ve wordech. Kdybychom
počítali opravdu precizně, nebyla by prostorová složitost třetího řešení
konstantní, nýbrž logaritmická, zatímco druhé řešení by se dalo snadno
upravit tak, aby mělo stále logaritmickou složitost (stačí si uvědomit, že
je lze naprogramovat nerekurzivně, čímž se zbavíme závislosti prostoru
na lokální proměnné). Ovšem časové složitosti zůstanou zachovány, takže
druhé řešení bude pracovat v témže prostoru rychleji.

P - III - 4

Úloha, převedená do podoby v matematice běžnější, zní: Je dán konvexní
iV-úhelník a M jeho neprotínajících se tětiv dělících TV-úhelník na díly.
Nalezněte maximální počet dílů, z nichž žádné dva nemají společnou
stranu.

Uvažujme následující graf G. Vrcholy grafu budou odpovídat jednot-
livým dílům iV-úhelníku, přičemž dva vrcholy budou spojeny hranou,
pokud jim odpovídající díly mají společnou stranu. Graf G zřejmě bude

138

souvislý a navíc nebude obsahovat žádný cyklus. Uvnitř cyklu by totiž
ležela alespoň jedna stěna grafu G. Té musí odpovídat nějaký průsečík
v nakresleném iV-úhelníku. Tento průsečík však rozhodně nemůže ležet
na okraji iV-úhelníku, a máme tak spor s tím, že žádné dvě tětivy se

neprotínají.
Souvislý graf bez cyklů je strom a naše úloha se tím zjednodušuje

na nalezení maximální nezávislé množiny vrcholů (tj. takové množiny
vrcholů, že žádné dva vrcholy z této množiny nejsou spojeny hranou) ve
stromu. Maximální nezávislou množinu můžeme určit prohledáváním do
hloubky. Na počátku si označíme všechny vrcholy jako přijatelné do ne-
závislé množiny. Začneme v libovolném vrcholu prohledávat strom. Když
se vracíme z nějakého vrcholu, který je označen jako přijatelný, přidáme
ho do nezávislé množiny a jeho otce odznačíme. Když takto projdeme
celý graf, máme vybranou maximální nezávislou množinu. Nezávislost
vybrané množiny je zřejmá. Proč ale bude vybraná množina maximální?
Označme si vybranou nezávislou množinu A a dále si vezměme maximální
nezávislou množinu В, která se od naší vybrané množiny liší v nejméně
vrcholech. Nyní se podívejme na takový vrchol v, ve kterém se А а В liší
a který je nejvzdálenější od vrcholu, ve kterém začalo prohledávání do
hloubky. Případ, kdy v je v В a ne v A, nastat nemůže, protože když jsme
nějaký vrchol v nevzali do A, tak pouze proto, že byl sousedem nějakého
vrcholu и pod ním zařazeného do A. Protože v je nejvzdálenější vrchol,
ve kterém se А а В liší, musí být и obsažen i vB,a tedy В také nemůže
obsahovat v. Může tedy nastat pouze situace, že v je obsažen v A a není
obsažen v В. Pokud ale v přidáme do В a z В vyřadíme otce v (pokud
v ní byl), bude В stále maximální nezávislá množina a přitom se bude lišit
v méně vrcholech, což je spor s výběrem B. Vybraná nezávislá množina A
musí být proto skutečně maximální.

Zkonstruovat výše popsaný graf a na něm pak provést prohledání do
hloubky je zbytečně pracné. My budeme graf prohledávat bez jeho ex-

plicitní konstrukce. Nejdříve si tětivy zorientujeme tak, aby každá tětiva
začínala ve vrcholu s nižším číslem a přidáme pomocnou tětivu začínající
v prvním a končící v posledním vrcholu. Tětivy si pomocí přihrádkového
třídění setřídíme vzestupně podle jejich počátku, tětivy začínající ve stej-
ném vrcholu pak sestupně podle jejich konce. Nyní postupně procházíme
vrcholy iV-úhelníku v pořadí od vrcholu s číslem jedna po vrchol s čís-
lem N. Při procházení si udržujeme zásobník s tětivami, od nichž jsme
viděli začátek, ale ne konec. U každé tětivy na zásobníku si navíc parna-

tujeme, zda je přijatelná. Vždy, když začneme zpracovávat nový vrchol,

139

nejdříve ze zásobníku odebereme tětivy, které v tomto vrcholu končí. Po-
kud je odebíraná tětiva označena jako přijatelná, zvětšíme velikost nezá-
vislé množiny a odznačíme tětivu pod ní v zásobníku. Po odebrání všech
končících tětiv přidáme na zásobník všechny tětivy začínající v daném
vrcholu a označíme je jako přijatelné. Pak pokračujeme do dalšího vrcholu
iV-úhelníku. Výpočet skončíme po průchodu všemi vrcholy iV-úhelníku.

Uvedený algoritmus přesně odpovídá dříve popsanému prohledávání
do hloubky. Každá tětiva totiž jednoznačně koresponduje s hranou v gra-

fu, která spojuje vrcholy odpovídající dílům odděleným tětivou. Uložení
pomocné tětivy (l,iV) na zásobník odpovídá vstupu do vrcholu, ze kte-
rého začínáme prohledávání. Uložení další tětivy na zásobník odpovídá
přechodu po odpovídající hraně dolů (směrem od vrcholu, ve kterém
začalo prohledávání), vybrání tětivy ze zásobníku, pak návratu zpět po
hraně. Při prohledávání do hloubky jsme si označovali vrcholy, které lze
přidat do nezávislé množiny. V upraveném algoritmu místo vrcholu zna-
číme tu hranu, po které jsme do vrcholu poprvé vstoupili. Algoritmus
má časovou i paměťovou složitost O(N) (tětiv nikdy nemůže být více
než N — 3).
#include <stdio.h>
•include <stdlib.h>

•define MAXV 30000 /* Maximální počet vrcholů */
•define MAXR 30000 /* Maximální počet řezů */

/* Struktura pro jeden řez */
struct rez {

int a, b;
};

/* Počet řezů a vrcholů */int řezu, vrcholu;
struct rez r[MAXR]; /* Jednotlivé řezy */
int vpoc[MAXV]; /* Počty řezů začínajících v jednotlivých vrcholech */

/* Načte vstup */
void nacti(void)

int pom, i;
FILE *vstup;

if (!(vstup = fopenC'poklad.in", "r")))
exit(l);

fscanf (vstup, "%d y.d" , &vrcholu, &rezu);
for (i = 0; i < řezu; i++) {

fscanf (vstup, "'/od %d", &r[i] .a, &r[i].b);
r[i] .a—; r[i] .b—;
if (r[i] .a > r[i] .b) {

pom = r[i].a;

140

r[i] .а = r[i].b;
г[i].b = pom;

}
}
fcloseCvstupj;
/* Přidáme ještě fiktivní řez mezi prvním a posledním vrcholem */
r[rezu].a = 0;
r[rezu].b = vrcholu-1;
rezu++;

}

/* Setřídí řezy podle počátku a konce */
void setrid(void)
{

struct rez rl[MAXR]; /* Jednotlivé přeskládané řezy */
int vrchind[MAXV];
int vrchpoc[MAXV];
int i;

/* Index, kde začínají řezy z/do daného vrcholu */
/* Počty řezů z/do daného vrcholu */

/* První průchod třídění */
for (i = 0; i < vrcholu; i++)

vrchpoc[i] = 0;
/* Spočteme počty řezů do jednotlivých vrcholů */
for (i = 0; i < řezu; i++)

vrchpoc[r[i].b]++;
vrchind[0] = 0;
for (i = 1; i < vrcholu; i++)

vrchind[i] = vrchind[i-l] + vrchpoc[i—1];
/* Přerovnáme řezy podle cílového vrcholu */
for (i = 0; i < řezu; i++)

rl[vrchind[r[i]-b]++] = r[i];

/* Druhý průchod třídění */
for (i = 0; i < vrcholu; i++)

vrchpoc [i] = 0;
for (i = 0; i < řezu; i++)

vrchpoc[rl [i].a]++;
vrchind [0] = 0;
for (i = 1; i < vrcholu; i++)

vrchind[i] = vrchind[i-l] + vrchpoc[i-1];
/* Přerovnáme řezy podle zdrojového vrcholu

(bereme je sestupně podle cílového vrcholu) */
for (i = rezu-1; i >= 0; i—)

r [vrchind [rl [i] .a]++] = rl[i];
>

/* Spočte, kolik částí mapy může kapitán rozdat */
int spocti(void)
{

/* Počet částí */
/* Vrchol zásobníku */

int časti = 0;
int zasvrch = 0;
int zas[MAXR];
int zasuzit[MAXR]; /* Značka, že příslušná část mapy může být rozdána */
int actvrch = 0, actrez =0; /* Aktuální vrchol a řez mnohoúhelníku */

/* Zásobník na zpracovávané řezy */

141

while (actvrch < vrcholu) {
while (zasvrch && r[zas[zasvrch-1]].b == actvrch) {

if (zasuzit[zasvrch-1]) {
/* část oddělená tímto řezem může být použita? */

casti++;
if (zasvrch > 1)

zasuzit[zasvrch-2] = 0;
}
zasvrch—;

>
while (actrez < řezu && r[actrez].a == actvrch) {

zas[zasvrch] = actrez++;
zasuzit[zasvrch++] = 1;

}
actvrch++;

>
return časti;

>

int main(void)
{

FILE *vystup;

načti();
setridQ ;

if (!(vystup = fopen("poklad.out", "w")))
exit(l);

fprintf (vystup, "°/.d\n" , spočti());
fclose(vystup);
return 0;

}

P - III - 5

Použijeme upravený třídící algoritmus mergesort. V programu si budeme
vytvářet jednosměrné spojové seznamy, jež budou mít svým jednotlivým
prvkům přiřazeny mince. Váhy mincí budou od počátku ke konci seznamu
tvořit rostoucí posloupnost. Mince stejné hmotnosti budou přiřazeny té-
muž prvku seznamu. Tento seznam budeme realizovat tak, že každý jeho
prvek bude obsahovat ukazatel na následující prvek seznamu a na strom,
který obsahuje mince (téže hmotnosti) přiřazené tomuto prvku. Samotný
strom bude binární strom, ve kterém má každý prvek žádného nebo dva
syny. Čísla mincí ve stromu budou uchovávána v jeho listech a každý uzel
tohoto stromu bude obsahovat číslo některé mince ze svého podstromu
(v naší implementaci to bude nej menší číslo mince ve stromu).

Základem bude rekurzivní procedura vytvoř (první .poslední),
která vytvoří jednosměrný spojový seznam popsaný v prvním odstav-

142

ci. Tento seznam bude obsahovat všechny mince s čísly od první do
poslední. Pokud jsou čísla první a poslední shodná, procedura vy-
tvoří jednoprvkový seznam. Jeho jediný prvek bude ukazovat na strom
tvořený jedním uzlem, který bude obsahovat číslo první = poslední.
Pokud jsou čísla první a poslední různá, procedura nejdříve rozdělí in-
terval tvořený čísly od první do poslední na dva intervaly polovičních
délek a na každý z nich se rekurzivně zavolá. Takto získáme dva lineární
spojové seznamy s vlastnostmi popsanými v prvním odstavci. Z nich naše
procedura vytvoří jeden.

Výsledný seznam budeme vytvářet od začátku, a to následujícím způ-
sobem: Na některou z mincí ve stromu hlavy (tj. prvního prvku) prvního
ze seznamů a na některou z mincí ve stromu hlavy druhého seznamu
zavoláme funkci porovnej. Pokud je mince hlavy prvního seznamu lehčí,
odpojíme hlavu od prvního seznamu a připojíme ji na konec výsledného
seznamu; poté pokračujeme porovnáním hlav nově vzniklé dvojice se-
znamů. Pokud je naopak mince hlavy druhého seznamu lehčí, připojíme
na konec výsledného seznamu hlavu druhého seznamu a pokračujeme
s druhým seznamem bez jeho původní hlavy. Zbývá případ, kdy mince
obou hlav mají stejnou hmotnost. V tomto případě připojíme na konec
výsledného seznamu prvek, který ukazuje na strom, jehož levý podstrom
je strom hlavy prvního seznamu a pravý podstrom je strom hlavy dru-
hého seznamu; od obou seznamů následně odpojíme jejich hlavy. Takto
pokračujeme, dokud jeden nebo oba z našich dvou seznamů nejsou prázd-
né. Pokud je jeden z nich neprázdný, nezapomeneme ho připojit na konec
výsledného seznamu.

Vytvořit celý program je nyní již snadné: Nejprve ze souboru váhy. in
načteme počet mincí N. Poté zavoláme proceduru porovnej s parametry
prvni = 1 a poslední — N. Nakonec vypíšeme čísla v listech stromů
(zleva doprava) ve výsledném seznamu; každý strom vypíšeme na samo-
statný řádek souboru váhy. out, a to v pořadí, v jakém stromy odpovídají
prvkům seznamu. Čísla na každém řádku jsou setříděna (z konstrukce
stromů patřícím prvkům seznamu) a hmotnosti mincí v pořadí dle řádků
jsou rostoucí (dle vlastností vytvářeného seznamu). Zbývá si rozmyslet,
že náš algoritmus neprovádí zbytečné volání funkce porovnej, a určit
jeho časovou složitost.

Nejprve dokážeme indukcí dle délky intervalu určeného parametry
při volání procedury vytvoř, že náš program neprovádí zbytečné volání
funkce porovnej. Procedura vytvoř volá funkci porovnej pouze na dvo-
jice prvků z intervalu specifikovaného parametry procedury vytvoř. Po-

143

kud je tento interval jednoprvkový, dokazované tvrzení platí z triviálních
důvodů. V opačném případě se nejprve vytvoří dva seznamy rekurziv-
ním voláním procedury vytvoř a ty se následně sloučí. Při slučování
dvou seznamů je funkce porovnej volána pouze na dvojice mincí z růz-
ných seznamů (tedy výsledek takového volání není určen výsledky volání
funkce porovnej při rekurzi). Vzhledem к tomu, že porovnáváme z kaž-
dého seznamu minci s nejmenší vahou (a mince s menšími vahami jsme
zařadili již do výsledného seznamu), nemůže být vztah hmotností mincí
z dotazované dvojice určen předchozími dotazy. Můžeme tedy uzavřít, že
žádné volání funkce porovnej není zbytečné.

Hloubka rekurzivního volání procedury vytvoř je O (log V) (N je
počet mincí), neboť při každém volání se délka intervalu specifikovaného
parametry funkce zmenší na polovinu. Na sloučení dvou seznamů je třeba
čas úměrný délce výsledného seznamu. Protože na každé úrovni volání
se libovolná mince vyskytuje právě v jednom seznamu, je čas strávený
algoritmem během procedur vytvoř na jedné úrovni rekurze lineární,
tj. O(N). Celková časová složitost je tedy 0(N log N). Libovolná mince
se vyskytuje při běhu programu vždy právě v jednom seznamu, a tedy
paměťová složitost programu je O(N).
#include <stdio.h>
#include <stdlib.h>
♦include "vahy_lib.h"

struct tuzel {
int prvek;
struct tuzel *levy, *pravy;
};

struct tseznam {
struct tuzel *strom;
struct tseznam *dalsi;
1;

struct tseznam *vytvor(int prvni, int posledni) {
struct tseznam *vysledek, *seznaml, *seznam2, **ocas, *pomocna;
if (prvni==posledni) {

vysledek=malloc(sizeof(struct tseznam));
vysledek->dalsi=NULL;
vysledek->strom=malloc(sizeof(struct tuzel));
vysledek->strom->prvek=prvni;
vysledek->strom->levy=vysledek->strom->pravy=NULL;
return výsledek;
>

seznaml=vytvor(prvni,(prvni+posledni)/2);
seznam2=vytvor((prvni+posledni)/2+l.posledni);
ocas=&vysledek;
while (seznaml&&seznam2) {

switch (porovnej(seznaml->strom->prvek,seznam2->strom->prvek)) {
case 0:

144

(*ocas)=malloc(sizeof(struct tseznam));
(*ocas)->strom=malloc(sizeof(struct tuzel));
(*ocas)->strom->prvek=seznaml->strom->prvek;
(*ocas)->strom->levy=seznaml->strom;
(*ocas)->strom->pravy=seznam2->strom;
pomocna=seznaml; seznaml=seznaml->dalsi; free(pomocná);
pomocna=seznam2; seznam2=seznam2->dalsi; free(pomocná);
break;

case 1:

*ocas=seznaml; seznaml=seznaml->dalsi;
break;

case -1:

*ocas=seznam2; seznam2=seznam2->dalsi;
break;
}

ocas=&((*ocas)->dalsi);
>

*ocas=seznaml?seznaml:(seznam2?seznam2:NULL);
return výsledek;
>

void vypis_strom(FILE *soubor, struct tuzel *uzel) {
if (uzel->levy) {

vypis_strom(soubor,uzel->levy);
vypis_strom(soubor,uzel->pravy);
}

else

fprintf (soubor, "°/.d " ,uzel->prvek);
}

void vypis_seznam(FILE *soubor, struct tseznam *seznam) {
while (seznam) {

vypis_strom(soubor, seznam->strom);
fprintf(soubor,"\n");
seznam=seznam->dalsi;
>

>

int main(void) {
FILE *soubor;
int N;
struct tseznam *seznam;
soubor=fopen("vahy.in","r");
fscanf(soubor,"%d",&N);
fclose(soubor);
seznam=vytvor(l,N);
soubor=fopen("váhy.out","w");
vypis_seznam(soubor,seznam);
fclose(soubor);
return 0;
>

145

Přípravná soustředění před 44. MMO

V průběhu 52. ročníku se konalo výběrové soustředění pro přípravu na
mezinárodní matematickou olympiádu bezprostředně po skončeném ce-
lostátním kole kategorie A, a to od 7. do 11. dubna 2003 v Kostelci nad
Černými lesy nedaleko Prahy. Na soustředění bylo pozváno 10 nejlep-
ších řešitelů III. kola kategorie A s výjimkou těch, kteří se rozhodli dát
přednost účasti na Mezinárodní fyzikální olympiádě. Soustředění bylo za-
měřeno na přípravu reprezentantů a ke konečné nominaci šestičlenného
družstva.

Úspěšnost jednotlivých studentů ukazuje následující tabulka:

3/4, GJKT Hradec Králové
8/8, G Kralupy nad Vltavou
3/4, G Brno, tř. Kpt. Jaroše
4/4, G Brno, tř. Kpt. Jaroše
2/4, SPŠST, Praha 1, Panská
1/4, G Brno, tř. Kpt. Jaroše
6/8, G Holešov
4/4, GChD, Praha 5
3/4, GMK, Bílovec
5/8, G Zlín, Lesní čtvrť

Jan Moláček
Pavel Čížek
Vítězslav Kala

Marek Krčál

Pavel Kocourek
Jaromír Kuběn
František Konopecký
Martin Káldy
Tomáš Gavenčiak
Marek Pechal

77

74

70

69

66,5
65,5
61

56

53

53

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo prvních šest vybráno do reprezen-
tačního družstva a sedmý byl určen jako náhradník. Toto družstvo nás
reprezentovalo i na již tradičním střetnutí s družstvy Slovenska a Polska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Karel Horák (7.4.),
dr. Jaroslav Zhouf (8.4.),
dr. Martin Panák (9.4.),
dr. Jaroslav Švrček (10.4.)
a doc. Jaromír Šimša (11.4.).

146

Úlohy zadané na přípravném soustředění

1. Je dán tětivový čtyřúhelník ABCD. Označme К průsečík přímky BC
s tečnou ve vrcholu A a L průsečík přímky AD s tečnou ve vrcholu В
ke kružnici opsané danému čtyřúhelníku. Jestliže \AL\ = \AD\ a \BK\ =
= \BC\, je ABCD lichoběžník. Dokažte.
2. Nechť mnohočleny P, Q, R s reálnými koeficienty, mezi nimiž je mno-
hočlen druhého a mnohočlen třetího stupně, splňují rovnost

P2 + Q2 = R2.

Dokažte, že pak jeden z mnohočlenů třetího stupně má vesměs reálné
kořeny.

3. V rovině je dán konečný počet modrých a červených přímek, přičemž
žádné dvě nejsou rovnoběžné a každým průsečíkem dvou přímek téže
barvy prochází i přímka druhé barvy. Dokažte, že všechny přímky pro-

cházejí jedním bodem.

4. Nechť n ^ 2 je přirozené číslo a pro kladná reálná čísla ■.. ,xn

platí rovnost
1 11

= 1.+ ...+
1+^1 1 + X2 1 “b З'П

Dokažte, že
X1X2 ...Xn^(n— 1)П.

5. Nechť v trojúhelníku ABC je V průsečík výšek a S střed kružnice
opsané a nechť přímky AV a AS protínají kružnici opsanou postupně
v bodech M a N. Označme postupně P, Q a R průsečíky přímek BC
a,VN, BC a SM, VQ a SP. Dokažte, že ASRV je rovnoběžník.

6. Je dána množina M = {1,2,3,..., 2 002,2 003}. Dokažte, že existuje
14 podmnožin množiny M takových, že pro každé n G M mezi nimi
existuje právě sedm množin takových, že n je jejich společným prvkem.

7. Na kruhu je dáno 4n bodů střídavě obarvených modře a červeně.
Modré body jsou libovolně rozděleny do n párů a body v každém páru
jsou spojeny modrou tětivou. Podobně červené body jsou libovolně roz-

děleny do n párů a body v každém páru jsou spojeny červenou tětivou.
Body leží na kruhu tak, že žádné tři tětivy neprocházejí jedním bodem.
Dokažte, že existuje aspoň n bodů, v nichž některá modrá tětiva protíná
některou červenou tětivu.

147

8. Dokažte, že {п\/з} > -^д pro libovolné přirozené n. (Symbol {n}
značí tzv. zlomkovou část čísla n.)
9. Nechť n je přirozené číslo a f(x) = ama:rn + .. . + aix + a0 je mnohočlen
s celočíselnými koeficienty takový, že:
(i) každé z čísel <22, аз,..., am je dělitelné všemi prvočísly dělícími n,

(ii) fli an jsou nesoudělná.
Dokažte, že pro libovolné přirozené к existuje přirozené c tak, že /(c) je
dělitelné číslem nk.

10. Nechť xi, #2, ... je nekonečná náhodná posloupnost nul a jedniček.
Co je pravděpodobnější:
(i) posloupnost 110 se v ní vyskytne před posloupností 010,
(ii) posloupnost 010 se v ní vyskytne před posloupností 110?

11. Nechť pro kladná čísla x, y, z platí xyz(x+y+z) = 1. Určete nejmenší
hodnotu výrazu V = (x + y)(y + z).
12. Nechť M je střed strany AB daného trojúhelníku ABC. Sestrojte
rovnoběžku p se stranou AB tak, aby její průsečíky E a F po řadě se
stranami BC a AC tvořily vrcholy pravoúhlého trojúhelníku EFM s pře-
ponou EF.

13. Nechť T je těžiště a M libovolný bod trojúhelníku ABC. Označme
Ai, f?i, Ci průsečíky přímky MT po řadě s přímkami ВС, CA, AB.
Dokažte, že platí nerovnost

\МАг\■ \MBi\■ \MC,\ g \TA,\■ |TB,| • |TC,|.

14. Nechť ABCD je tětivový čtyřúhelník se středem S kružnice jemu
opsané a P průsečík jeho úhlopříček. Kružnice opsané trojúhelníkům
ABP a CDP se protínají v bodě Q (Q ф P). Jestliže jsou body 5, Q, P
navzájem různé, pak přímky SQ a PQ jsou navzájem kolmé. Dokažte.

15. Určete počet těch čtveřic (a, 6, c, d) přirozených čísel, pro které platí

l^a<6<c<d^30 a a + d = b + c.

Výsledek uveďte jedním číslem zapsaným v desítkové soustavě.16.Označme q(T) ten z poměrů délek dvou stran daného trojúhelníku T,
který je nejblíže číslu 1. Určete nejmenší kladné číslo C takové, že pro

každý trojúhelník T platí nerovnost |1 — q(T) | ^ C.

148

17. Vnitřním bodem daného trojúhelníku ABC vedeme rovnoběžky
s jeho stranami. Tyto přímky vytnou na trojúhelníku ABC tři úsečky
téže délky. Vyjádřete ji pomocí délek a, 6, c stran trojúhelníku ABC.
Výsledek zapište ve tvaru podílu dvou mnohočlenů proměnných a, b, c.

18. V rovině je dána konečná množina bodů M a osm kružnic k\,
&2,..., kg tak, že kružnice kj prochází právě j body množiny M pro každé
j E {1,2,..., 8}. Určete nejmenší možný počet prvků (bodů) množiny M.
19. Nechť x, y, z jsou navzájem různá celá čísla splňující rovnici

(x - y)(y - z)(z - x) = X + y + z.

Najděte nejmenší možnou hodnotu \x + у + z\.20.Pro každé n ^ 4 určete největší číslo Cn, při kterém nerovnost

di d2 dn
ŽC.+ ...+

d-n + d2 fli T a3 fln-i + dl

platí pro libovolná kladná čísla ai, й2 ,.. dn.•)

149

Mezinárodní střetnutí česko-polsko-slovenské

ŽlLINA, 16.-17. ČERVNA 2003
V rámci závěrečné přípravy před MMO se uskutečnilo již třetí meziná-
rodní střetnutí mezi týmy České republiky, Polska a Slovenska. Jednotlivé
země reprezentovala šestice účastníků, kteří si vybojovali ve svých zemích
postup na 44. MMO v Tokiu.

Soutěž se uskutečnila v termínu 17.-18.6. 2003 ve slovenské Žilině.
Všechna tři reprezentační družstva přicestovala na místo konání již v ne-
děli večer 15.6. 2003. Organizace a průběh soutěže zůstal zachován z pře-
dešlých ročníků — je přizpůsoben stylu III. kola naší МО a podmínkám
na MMO. Soutěžícím byly ve dvou dnech předloženy dvě trojice soutěž-
nich úloh, přitom za každou z úloh mohli získat nejvýše 7 bodů, tj. celkově
(stejně jako na MMO) 42 body. Na každou trojici úloh měli soutěžící vy-
hrazeno 4,5 hodiny.

Pořadí Jméno Země body Součet

Péter Koltai
Marcin Pilipczuk
Aleksander Zablocki
Pawel Januszewski
Jan Moláček
Hana Budáčova
Tomáš Váňa
Vítězslav Kala
Pavel Kocourek
Michal Burger
Kamil Duszenko
Marek Krčál
Witold R^bacz
Jakub Závodný
Jaromír Kuběn
Michal Lasoú
Pavel Čížek
František Simančík

SVK 777777
777777
777777
727777
726772
771771
770772
777072
770772
720776
727760

725770
770750
721771

727070
727070

726070
700770

42

POL 42

POL 42

POL4. 37
CZE5. 31

SVK6.-9. 30
SVK 30

CZE 30

CZE 30
SVK10.-11. 29
POL 29
CZE12. 28
POL13. 26
SVK14. 25
CZE15.-16. 23

POL 23

CZE17. 22

SVK18. 21

150

Úlohy pro letošní soutěž vybrali slovenští organizátoři — většinou
z úloh, jež prošly společnou česko-slovenskou úlohovou komisí. Jejich
koordinaci prováděla mezinárodní jury, kterou tvořili Rafal Lochowski
a Paulina Domagalska z Polska, prof. dr. Jozef Moravčík a doc. Oli-
ver Ralík ze Slovenska a dr. Karel Horák a dr. Jaroslav Švrček za Ces-
kou republiku. Na zdárném průběhu celé soutěže, která proběhla vesměs
na půdě Vysoké školy dopravní v Žilině, má nepřehlédnutelnou zásluhu
doc. Vojtech Bálint, vedoucí příslušné katedry matematiky.

Texty soutěžních úloh1.Nechť n ^ 2 je přirozené číslo. V oboru reálných čísel řešte soustavu
rovnic

max{l, rri} = X2

max{2, X2} = X3

max{n — l,a;n_i} = (n — 1)жп,
тах{п,жп} — nx\.

2. Je dán ostroúhlý trojúhelník ABC, v němž velikost vnitřního úhlu
při vrcholu В je větší než 45°. Nechť D, E, F jsou po řadě paty výšek
z vrcholů A,B,C a nechť К je takový bod úsečky AF, že platí \<DKF\ =
= \<KEF\. Dokažte, že
a) takový bod К vždy existuje;
b) platí rovnost \KD\2 - \FD\2 + \AF\ • \BF\.
3. Jestliže pro reálná čísla p, q, r z intervalu (|, |) platí pqr = 1, pak
existují dva trojúhelníky o stejném obsahu, z nichž jeden má strany a,

6, с a druhý má strany pa, qb, rc. Dokažte.
4. Je dán trojúhelník ABC a jeho vnitřní bod P, který leží na těžnici
z vrcholu C. Označme X průsečík přímky AP s přímkou ВС a Y průsečík
přímky BP s přímkou AC. Je-li čtyřúhelník ABXY tětivový, potom je
trojúhelník ABC rovnoramenný. Dokažte.

5. Určete všechna přirozená čísla n ^ 2, pro něž jsou všechny binomické
koeficienty

n n n
* * í

1 2 n — 1

sudá čísla.

151

6. Určete všechny funkce /: !R -* IR, které pro všechna x,y £ IR splňují
rovnici

/(/(s) + y) = 2x + f(f{y) - ж).

Řešení úloh

1. Ukážeme nejprve, že pro každé i £ {1,2,..., гг} platí Xi 5Í i. Důkaz
provedeme sporem. Předpokládejme, že Xi > i pro nějaké i.

Je-li xi >1, plyne z poslední rovnice dané soustavy nerovnost
max{n,:rn} = nx\ > n, takže xn > n. Jestliže dále pro nějaké i > 1
je Xi > г, pak тах{г- l,x;_i} = (i — 1)xí > (i — 1)г > i - 1. Je tedy také
Xi-1 > i — 1. Odtud plyne, že pokud nerovnost Xi > i platí pro některé
i £ {1,2, ...,n}, pak platí už pro každé i £ {1,2, V takovém
případě má však daná soustava tvar

Xn-1 — %n — ПХ\.Xi = x2, x2 = 2x3, .. * 5

Vynásobením těchto rovnic dostaneme X\X2 ■ ■ ■ xn = n! X\X2 ... xn, což
neplatí pro žádné přirozené n ^ 2. Všechna Xi jsou totiž kladná čísla. To
je spor.

Pro všechna i £ {1,2,..., n} je tudíž Xi ^ i. Proto

i = тах{г,Жг) = га^+х,

Odtud již snadno získáme jediné reálné řešení dané soustavy:

kde klademe xn+i = x\.

Xl — X2 = • • • = xn = 1.

2. a) Označme velikosti vnitřních úhlů daného trojúhelníku ABC ob-
vyklým způsobem a uvažujme Thaletovu kružnici sestrojenou nad prů-
měrem BC. Vzhledem к tomu, že trojúhelník ABC je ostroúhlý, leží
paty výšek E, F v polorovině BCA. Z vlastností tětivového čtyřúhelníku
BCEF plyne (obr.36), že je \<AFE\ = 7 a \<AEF\ = (3. Podobně
z tětivového čtyřúhelníku AFDC plyne, že \<DFB\ = 7. Je-li К = A,
je \<DKF\ = \<DAF\ = 90° - (3 a \<KEF\ = \<AEF\ = (3.

Jestliže se bod К bude spojitě pohybovat po úsečce AF od bodu
А к bodu F, poroste velikost úhlu DKF spojitě od hodnoty 90° — (3
к hodnotě 7 (v ostroúhlém trojúhelníku je 90° — (3 < 7) a současně
bude velikost úhlu KEF spojitě klesat, a to od velikosti (3 > 90° —

— (3 к hodnotě 0°. Existuje proto na úsečce AF bod К, pro který platí
\<DKF\ = \<KEF\.

152

b) Nechť D' je obraz bodu D v osové souměrnosti podle přímky AB.
Protože \<AFE\ = \<DFB\ — 7, leží body E, F a D' najedná přímce.

Přímka KD' je podle věty o úsekovém úhlu tečnou kružnice к opsané
trojúhelníku KFE, neboť \<D'KF\ = \<DKF\ = \<KEF\. Pro moc-
nost bodu D' ke kružnici к platí

\KD'\2 = \D'F\ ■ \D'E\ = \D'F\{\D'F\ + \FE\) =

= \D'F\2 + \D'F\ • \FE\.

Nyní stačí využít rovnosti \FD\ = \D'F\ a \KD\ = \KD'\, které plynou
ze souměrnosti bodů D a D' podle AB, a mocnost bodu F ke kružnici
s průměrem AB, která je

(1)

\EF\ ■ \FD'\ = \AF\ ■ \BF\.

Dosazením do (1) tak dostaneme \KD\2 = |FD|2 -|- \AF\ ■ \BF\, což jsme
chtěli dokázat.

3. Ze zadání úlohy plyne, že některá dvě z čísel p, q, r jsou buď nejvýše
rovna 1, anebo jsou aspoň 1. Můžeme je proto označit tak, že nastane
jeden z následujících dvou případů:

(i) p ^ q ^ 1 й r,

(ii) r ^ 1 ^ p ^ q.

(i) Položme a — q, 6=l,c = pq, potom platí pa = pq = c, qb = q = a,
rc = pqr = 1 — 6. Trojúhelníky, jejichž strany mají velikosti a, 6, c a pa,

153

pb, pc, jsou tedy shodné (pokud existují). Ukážeme, že trojúhelník se
stranami délek q, 1, pq existuje. Protože pq ^ q ^ 1, stačí ověřit jedinou
trojúhelníkovou nerovnost, a to pq + q > 1. Ze vztahů

1
< 5pq — - a r S -
-

2 иН-plyne
r

Vzhledem к tomu, že p ^ q, platí rovněž

a tedy pq + q > 1 •

(ii) Položme opět a = q, b = l, c = pq. Ukážeme, že i v tomto případě
existuje trojúhelník se stranami délek g, 1, pq. Protože nyní pq ^ q ^ 1,
stačí ověřit nerovnost pq < q + 1. Z nerovnosti p й q vyplývá yjpq ^ q\
stačí proto ověřit silnější nerovnost pq < yjpq + 1, tj. že t = yjpq splňuje
kvadratickou nerovnost ť2 — t — 1 < 0, neboli že — | < yjpq < |. Ze
vztahů

1
> 2a r > - plynepq= - ~

5r

a navíc je yjpq ^ 1. Tím je důkaz hotov.
4. Označme délky stran trojúhelníku ABC obvyklým způsobem a, b, c
a D střed strany AB. Z mocnosti bodu C ke kružnici opsané čtyřúhelníku
ABXY dostaneme \CA\ • \CY\ = \CB\ ■ \CX\, tedy a ■ \CX\ = b ■ \CY\.
Z Cěvovy věty pak vyplývá

\BXl\CY\
\XC\ • \YA\ ’

\AD 1 • \BX\ • 1СУ|
|Т>Б| • \XC\ ■ \YA\

takže dosazením a ■ \CX\ = b ■ \CY\ dostáváme dále a ■ \BX\ = b ■ \AY\.
Sečtením rovností

a ■ \BX\ = b ■ \AY\a-\CX\ = b-\CY\ a

dostaneme a2 = b2, neboli a = b. Trojúhelník ABC je tedy rovnoramen-

ný.

Jiné řešení. Je-li čtyřúhelník ABXY je tětivový, jsou trojúhelníky
ABC a XYC podobné (uu), platí proto a • \CX\ = b ■ \CY\.

154

Označme Sefg obsah trojúhelníku EFG. Pro obsahy trojúhelníků
zřejmě platí

Sapc
_ \AC| _ b"

\AY\ " \AY\
\BC\Sbpc a

a

\BX\ I вхуSbpxSapy

Protože bod P leží na těžnici z vrcholu C trojúhelníku ABC, platí také
SUpc = Sbpc, což s oběma předešlými vztahy dává

T7T Sapy = ттгттт Sbpx ■ay i bxi

Z rovnosti obvodových úhlů АХВ а ЛУБ a dále z rovnosti vrcholových
úhlů při vrcholu P plyne podobnost trojúhelníků APY a BPX (uu).
Platí tedy Sapy ■ Sbpx = |ЛУ|2 : \BX\2, což ve spojení s předchozím
vztahem dává a • |-BX| = b ■ \AY\. Dále pokračujeme jako v předešlém
řešení.

5. Ukážeme, že podmínkám úlohy vyhovují všechna přirozená čísla n,
která jsou mocninami čísla 2, tj. všechna přirozená čísla tvaru n = 2m,
kde m je přirozené číslo.

Pro každé ke {1,2,..., 2m — 1} je

2TO • (2m — 1) •... • (2m - k + 1)'2m
(1)к l-2-...-k

Libovolné přirozené číslo r £ {1,... ,k — l}lze zapsat ve tvaru 2al, kde
l je liché číslo a a < m je celé nezáporné číslo. Proto každý ze zlomků

2m-a _ t2m — r

lr

má po zkrácení v čitateli i jmenovateli lichá čísla. Podobně i číslo к lze
zapsat ve tvaru 2al, proto zlomek na pravé straně rovnosti

2m e^rn — OL

к l

má v čitateli sudé a ve jmenovateli liché číslo. Součin všech těchto zlomků
pro r = 1,2,..., fc je roven kombinačnímu číslu (1), což je tudíž sudé číslo.
Tím jsme dokázali, že každé kombinační číslo tvaru (1) je sudé.

155

Nechť naopak n není mocninou čísla 2, tj. n = c ■ 2m, kde c ^ 3 je
liché číslo. Ukážeme, že kombinační číslo

c • 2w(c • 2m - 1) •... • (c • 2W - 2m + 1)c • 2m
(2)2m 1 • 2 • 3•... •2m

je liché. Podobně jako prve ukážeme, že pro všechna r E {1,2,..., 2m — 1}
má každý ze zlomků

c • 2m - r c ■ 2m
a také = c

2mr

po zkrácení v čitateli i jmenovateli lichá čísla. Součin všech těchto zlomků
je roven kombinačnímu číslu (2), které je proto liché.

Dané úloze vyhovují všechna přirozená čísla n, která jsou mocninou
čísla 2.

6. Pro každé c E IR je funkce f(x) = x + c řešením dané funkcionální
rovnice (obě její strany jsou pak rovny x + у + 2c). Ukážeme, že jiná
řešení daná rovnice nemá.

Nejprve dokážeme, že funkce / je surjektivní. Volbou у — —f{x)
v dané rovnici dostaneme

/(0) -2x = f (f(-f(x)) - x) .

Protože každé reálné číslo lze vyjádřit ve tvaru /(0) — 2x, existuje pro
každé у E IR takové г E IR, že platí у = f(z). Speciálně pak existuje
a E IR, pro něž platí /(a) = 0. Volbou x — a v dané funkcionální rovnici
dostaneme

f(y) = 2a + f(f(y) - a) f{y)~a — f(f{y)~a) + a.tj-

Protože funkce / je surjektivní, existuje pro každé x E IR takové у E IR,
že x = f(y) — a. Odtud plyne, že pro každé x reálné platí x = f(x) + a,
tj. /(x) =x-a.

Tím je úloha vyřešena.

156

44. mezinárodní matematická olympiáda

|J\ATИЕщ
'o

44th <

тоrpni mejjщоар souteze usporadala
Foundation ofmapan za podpory ja-

ly a technologie, Ja-
levnosti pro matematické
obě od 7. do 19. července

O
L \

V pořadí již 44. ro|gíík
společnost MathemdĚc|j
ponského Ministerstr%£\
ponské matematické spo
vzdělávám v hlavním městjp ^
2003. Každou zemi гергеге^Ц^Я!у^|р^е šest soutěžících; letošního
ročníku MMO se zúčastnilo 457 studentů z 82 zemí.

Výběr soutěžících za Českou republiku byl proveden v Kostelci nad
Černými lesy na závěrečném soutěžním soustředění deseti nejúspěšněj-
ších účastníků celostátního kola. Vybraní soutěžící se pak ještě zúčast-
nili trojutkání ve slovenské Žilině mezi Českou republikou, Slovenskem
a Polskem, kde soutěžili reprezentanti zúčastněných zemí za podmínek
podobných jako při soutěži na MMO. Po této přípravě odjela do Japon-
ska tato šestice soutěžících: Pavel Čížek z Gymnázia v Kralupech nad
Vltavou, Vítězslav Kala, Marek Krčál a Jaromír Kuběn z Gymnázia na
tř. Kpt. Jaroše v Brně, Pavel Kocourek z SPŠST v Panské ulici v Praze 1
a Jan Moláček z Gymnázia J. K. Tyla v Hradci Králové. Vedoucím české
delegace byl RNDr. Karel Horák, CSc., z Matematického ústavu Akade-
mie věd v Praze, zástupcem vedoucího byl doc. RNDr. Jaromír Šimša,
CSc., z Masarykovy Univerzity v Brně. Vedoucí delegace přicestoval do
Tokia kvůli výběru úloh již 7. července, ostatní čeští účastníci pak o čtyři
dny později.

Téměř vše se odehrávalo v moderním areálu budov Národního olym-
pijského střediska, postaveném pro obdobná sportovní, kulturní a vzdělá-
vací setkání v místě, kde se v roce 1964 konaly letní olympijské hry. Jen
začátek soutěže od příletu soutěžících až do odpoledne druhého soutěž-
ního dne strávila mezinárodní jury složená z vedoucích národních týmů
v nedalekém Makuhari.

Den po příletu soutěžících se konalo slavnostní zahájení. Vlastní sou-

těž pak proběhla v neděli a v pondělí 13. a 14. července. Každý z těchto
dnů řešili soutěžící trojici úloh po dobu 4,5 hodiny. Za každou úlohu
mohli získat maximálně 7 bodů.

55
n, kultury, §&ortu,
ti a Jap<

157

O náročnosti soutěžních úloh svědčí i nízké hranice pro zisk medailí:
na bronzovou medaili stačilo 13 bodů, stříbro se udělovalo za 19-28 bodů
a zlato za alespoň 29 z možného počtu 42 bodů. Výsledky našich jsou
uvedeny v následující tabulce:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

269.-291. Pavel Čížek,
8. roč. gymnázia,
Kralupy nad Vltavou

231.-246. Vítězslav Kala,
3. roč. gymnázia,
Brno, tř. Kpt. Jaroše

179.-196. Pavel Kocourek,
2. roč. SPŠST,
Panská ulice, Praha 1

269.-291. Marek Krčál,
4. roč. gymnázia,
Brno, tř. Kpt. Jaroše

138.-162. Jaromír Kuběn,
1. roč. gymnázia,
Brno, tř. Kpt. Jaroše

93.-97. Jan Moláček,
3. roč. GJKT,
Hradec Králové

7 1 0 0 1 0 9 HM

7 0 0 3 1 0 11 HM

0 7 0 7 0 0 14 III.

700200 9 HM

7 10 7 10 16 III.

5 7 0 7 1 0 20 II.

Celkem 33 16 0 26 4 0 79

Jak je z tabulky vidět, zklamali oba naši maturanti, shodou okol-
ností první dva vítězové letošního celostátního kola. Přitom nejlepší náš
účastník, Jan Moláček z Gymnázia v Hradci Králové, skončil v celostát-
ním kole až na 11. místě a do reprezentačního výběru se dostal jen díky
neúčasti několika vítězů, kteří dali přednost přípravě na Mezinárodní fy-
zikální olympiádu. Stejně jako vloni získal 20 bodů, kdy to stačilo jen na
bronzovou medaili, tentokrát však stejný bodový zisk znamenal stříbro.
Podobně i Vítězslav Kala téměř zopakoval svůj loňský výsledek: získal
o dva body méně, a zatímco vloni mu к bronzové medaili chyběl jen jeden
bod, letos to byly body dva. V celkovém pořadí se však posunul o dvě
příčky výše.

158

Každý z našich soutěžících vyřešil aspoň jednu z úloh za plný počet
bodů a získal tak Honorary mention (HM), ocenění, které je zvykem
udělovat od 29. ročníku MMO. Žádný bod neztratili jen tři soutěžící:
Yunhao Fu z Číny (ten dosáhl stejného úspěchu už na loňské 43. MMO
ve skotském Glasgow) a dva soutěžící Hung Viet Bao Le a Trong Canh
Nguyen z Vietnamu.

i ii ni body I II III body
Norsko
Arménie
Bosna a Hercegovina
JAR

Španělsko
Makedonie
Švédsko
Itálie

Kirgizie
Lotyšsko
Litva
Uzbekistán
Estonsko
Finsko
Maroko

Nový Zéland
Macao
Rakousko
Peru (4)
Turkmenistán (4)
Island
Trinidad a Tobago
Nizozemsko

Uruguay (5)
Dánsko (5)
Malajsie (5)
Švýcarsko
Lucembursko (2)
Albánie (4)
Kypr
Portoriko (3)
Portugalsko
Irsko
Slovinsko
Kuba (1)
Ekvádor
Venezuela (3)
Filipíny
Kuvajt (3)
Srí Lanka (4)
Paraguay (1)

Bulharsko
CLR
USA
Vietnam
Rusko
Korea
Rumunsko
Turecko

Japonsko
Maďarsko
Velká Británie
Kanada
Kazachstán

Ukrajina
Indie

Tchaj-wan
Írán
Německo
Bělorusko

Thajsko
Izrael (5)
Polsko
Srbsko a Černá Hora 0
Francie

Mongolsko
Austrálie
Brazílie

Argentina
Hongkong
Moldavsko
Řecko
Gruzie
Chorvatsko
Česká republika
Slovensko

Singapur
Belgie
Indonézie
Kolumbie

Ázerbájdžán
Mexiko

6 0 0 227 0 1 0 62
0 0 3
0 0 2
0 0 3

5 1 0 211 61
4 2 0 188 61

172 602 3 1
1673 2 1 0 0 1 59

2 4 0 157 0 0 2 54
1 4 1 143 0 0 1 52
1 3 1 133 0 0 501
1 3 2 131 0 0 2 50

3 1 128 0 0 11 50
1 2 3 128 0 0 2 49
2 0 3 119 0 1 1 49

2 2 119 0 0 0 471
1 2 3 118 0 0 1 43
0 4 1 115 0 0 0 43
1 2 2 114 0 0 0 43
0 3 2 112 0 20 40

2 1 112 0 01 0 38
2 2 1111 0 0 1 37

31 1 111 0 0 1 37
0 2 3 103 0 0 1 33

1021 2 0 0 0 0 33
3 1 101 0 0 0 30

0 2 2 95 0 0 0 29
3 930 1 0 0 0 27

0 2 2 92 0 0 0 26
0 3 921 0 0 0 26
1 1 2 91 0 0 1 25

2 2 910 0 0 0 23
0 2 881 0 0 0 23
0 4 881 0 0 1 23
0 2 861 0 0 0

0 0 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

22
0 3 800 21

2 790 1 18
770 0 4 14
710 0 2 11
700 1 1 10
700 0 2 9

0 0 3 67 8
0 1 1 66 4
0 0 3 64 0

Jak je patrno z tabulky zúčastněných států, na první místo v ne-
oficiálním pořadí jednotlivých zemí podle celkového bodového zisku se

159

tentokrát vyšvihlo Bulharsko, další místa obsadily tradičně výborná druž-
štva Cíny, Spojených států, Vietnamu a Ruska. (Případná čísla v závorce
upozorňují na nižší počet reprezentantů.)

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)1.Nechť A je podmnožina množiny S = {1,2,..., 1 000 000} obsahující

právě 101 prvků. Dokažte, že v 5 existují čísla Í2? • • •, two taková, že
množiny

Aj = {x + tj : x e A} pro j = 1,2,..., 100

jsou navzájem disjunktní.2.Určete všechny dvojice přirozených čísel (a, b) takových, že

(Brazílie)

a2
2ab2 — b3 + 1

(.Bulharsko)je přirozené číslo.3.Je dán konvexní šestiúhelník, jehož libovolné dvě protější strany mají
následující vlastnost: vzdálenost jejich středů je \/3/2násobek součtu je-
jich délek. Dokažte, že všechny úhly daného šestiúhelníku jsou stejné.

(Konvexní šestiúhelník ABCDEF má tři dvojice protějších stran:
AB a DE, BC a EF, CD a FA.) (Polsko)4.Nechť ABCD je tětivový čtyřúhelník. Označme postupně P, Q a R
paty kolmic z bodu D na přímky BC, CA a AB. Dokažte, že \PQ\ =
= |QR|, právě když se osy úhlů ABC a ADC protínají na přímce AC.

(Finsko)
xn reálná čísla taková, že x\5. Nechť n je přirozené číslo aii,^,..

X2 й • • • = xn-

(a) Dokažte, že

* ?

/ n n \ 2

(E H i1-' - xj\)\=i j=i '

2(n2_i)^^
—

■

<
3

i— 1 j= 1

(b) Ukažte, že rovnost platí, právě když x\, X2, ■ ■ ■, xn je aritmetická po-
sloupnost. (Irsko)

6. Nechť p je prvočíslo. Dokažte, že existuje prvočíslo q takové, že pro
žádné celé n není číslo np — p dělitelné q. (Francie)

160

Řešení úloh

1. Vytvořme množinu všech rozdílů D = {x — y: x,y G A}. Protože A má
101 prvků, obsahuje D kromě nuly nejvýše 2 • (1°1) = 101 • 100 = 10100
dalších (kladných i záporných) čísel. Všimněme si, že dvě z uvažovaných
množin A i, Aj jsou disjunktní, právě když x + ti ф у + tj pro libovolná
x,y G A, tedy právě když ti — tj ^ D. Naším úkolem je proto vybrat
čísla ti, Í2» • • • > two £ S tak, aby žádný jejich rozdíl nepadl do „zakázané11
množiny D.

Zmíněný výběr provedeme induktivně. První číslo ti vybereme v S
libovolně. Předpokládejme, že jsme již pro některé к й 99 vybrali čísla
íi,Í2, • • • Лк £ S tak, že ti — tj £ D pro libovolná různá г, j € {1,2,..., Ar)
(pro к = 1 je to splněno triviálně). Číslo tk+i musíme v S zvolit tak,
aby platilo tk-)-i — ti £ D pro každé i G {1,2,..., Л;}. Pro pevné i tak
má číslo tk-)-i právě tolik „zakázaných" hodnot ti + d, kolik je všech čísel
d G D. Těch je, jak víme, nejvýše 1 + 101 • 100 = 10101. Pro všechna
i G {1,2,..., A:} tak dostaneme celkem nejvýše к ■ 10101 zakázaných
hodnot, což je nejvýše 99 • 10101 = 999 999 čísel. V množině S je však
106 čísel, takže výběr čísla tk+i je možný.

Poznámka. Hodnota |S| = 106 je zbytečně velká (v předchozím řešení
jsme zanedbali skutečnost, že v množině D leží s každým číslem i číslo
opačné). Dá se ukázat, že pro libovolnou fc-prvkovou podmnožinu A mno-

žiny S = {1,2,... , n} platí: je-li m přirozené číslo takové, že

n>(m-i)(Q)+1)
existují v množině S čísla t\,t2,... ,tm taková, že množiny Aj = {x + tj :
x G A} {j = 1,2, ...,m) jsou navzájem disjunktní. (Pro к = 101 stačí
tedy uvažovat množinu S = {1,2,..., 500 051}.)
2. (Podle Jana Moláčka.) Ukážeme, že řešeními jsou právě všechny dvo-
jice (a, b) tvaru (8fc4 — к, 2к), (к, 2к) а (к, 1), kde к G N je libovolné.

Hledáme přirozená čísla a, b, n, pro která platí

a2
(1)= n.

2ab2 - 63 + 1

Rovnost (1) lze upravit do tvaru kvadratické rovnice s neznámou a:

a2 — 2nb2a + n(b3 — 1) = 0.

161

Jejími kořeny jsou čísla

= nb2 ± \J(nb2)2 — n(63 — l) (2)<21,2

Protože jeden z kořenů je roven hledanému přirozenému číslu a,
odmocněnec ve vzorci (2) musí být „úplný kvadrát", tedy tvaru

(nb2)2 — n(63 — l) = d2
pro vhodné celé d ^ 0. Takové číslo d zaručeně existuje, pokud 6=1
(pak 63 — 1 = 0, takže d = nb2). Zabývejme se však nejprve obsažnějším
případem, kdy 6 > 1. Ukažme, že pro takové 6 z (3) plynou odhady

n62 _ < d < nb2
2

Protože oba krajní výrazy jsou kladné, můžeme obě nerovnosti umocnit;
po dosazení d2 a snadných algebraických úpravách dostaneme dvojici
nerovností

(3)

6-1
(4)2

(6 4- l)2 < 4n(62 4-1) a (6 — l)2 4- 4n(62 — 1) > 0,
které zřejmě platí, neboť n ^ 1 a 6 > 1. Tím jsou odhady (4) dokázány.

Všimněme si nyní, že rozdíl obou krajních výrazů v (4) je roven jedné.
Pro liché 6 by se tyto výrazy dokonce rovnaly dvěma po sobě jdoucím
přirozeným číslům, takže by žádné celé d splňující podmínku (4) neexis-
tovalo. Číslo 6 je proto sudé, tedy 6 = 2k pro vhodné к E N; jediné celé d
vyhovující nerovnostem (4) je pak tvaru

d = nb2 — - = 4nk2 — k.
2

Pro taková 6 a d přejde rovnost (3) do tvaru

(4nfc2)2 — n(8k3 — 1) = (4nA;2 — к)2,
ze které snadno plyne n = k2; vzorce (2) pak dávají vyjádření

ai = 8 fc4 — к a <22 = k.
Protože obě vypočtené hodnoty jsou přirozená čísla (pro každé к 6
E N), dostáváme dvě (nekonečné) skupiny řešení (a, 6) = (8A;4 — k,2k)
a (a, 6) = (к, 2fc), kde к E N.

Zbývá rozebrat případ, kdy 6 = 1. Tehdy má zlomek ze zadání úlohy
tvar

a2 a2 a

2ab2 - b3 4-1 2a 2 ’
takže je roven přirozenému číslu, právě když a = 2k pro vhodné к E N.
Třetí (a poslední) skupinou řešení jsou tedy dvojice tvaru (a, 6) = (к, 1),
kde к E N.

162

3. Označme А, В, С, D, Е, F vrcholy daného šestiúhelníku a uvažujme
tři úhlopříčky AD, BE a FC. Některé dvě z nich nutně svírají úhel aspoň
60°. Bez újmy na obecnosti předpokládejme, že jsou to úhlopříčky AD
a BE. Označme P jejich průsečík a M, N středy protějších stran AB
a DE (obr. 37).

Protože \<APB\ = \<EPD\ ^ 60°, leží bod P uvnitř kruž-
nice opsané rovnostrannému trojúhelníku ABP' (obr. 38), takže platí
\MP\ ^ \MP'\ = \\/b\AB\ s rovností, právě když P = P', neboli
právě když je trojúhelník ABP rovnostranný. Podobně odvodíme, že
\NP\ ^ |\/3\DE\ s rovností, právě když je trojúhelník DEP rovnostran-
ný. Pro vzdálenost středů obou protějších stran AB, DE tak dostáváme
odhad

|MiV| ^ \MP\ 4- \NP\ s \Vb{\AB\ + \DE\).

Z předpokladů úlohy tedy plyne, že oba trojúhelníky ABP a DEP jsou
rovnostranné a úhlopříčky AD, BE svírají úhel 60°.

Zbývající úhlopříčka CF musí s jednou z úhlopříček AD, BE svírat
úhel aspoň 60°. Opět můžeme bez újmy na obecnosti předpokládat, že se

jedná např. o úhlopříčku AD, průsečík úhlopříček CE, AD označme Q.
Úplně stejně jako v předchozím případě zjistíme, že trojúhelníky FAQ
a CDQ jsou rovnostranné. Označíme-li nakonec R průsečík úhlopříček
BE a CF, které dle předchozího svírají nutně úhel 60°, zjistíme, že i troj-
úhelníky BCR a EFR jsou rovnostranné. Odtud plyne tvrzení úlohy.

Jiné řešení. Označme А, В, C, D, E, F vrcholy daného šestiúhelníku
a a = AB, b = BC,... ,f = FA vektory určené jeho stranami, přitom
a + b + ... + f = 0. Označíme-li M, N středy protějších stran AB, DE,

163

Obr. 39

můžeme příslušný vektor MN vyjádřit dvěma způsoby (obr. 39):

MN = |o + b + c + a MN = —|o — f — e — |cř,

odkud

M/V = |(b + c-e-0- (1)

Podle předpokladu platí

л/3 V3
|МЛ/| = -y|o + í/| ^ -\a-d\. (2)

Položme x = o — d, у = c — z = e — b, z (1) a (2) tak dostaneme

|y - z| ^ \/3|x|
a podobně

|z -x| ^ л/3|у|,
Iх ~ y| = V^jzl.

Právě uvedené nerovnosti můžeme pomocí skalárních součinů ekviva-
lentně přepsat jako

|y|2-2(y,z) + |z|2^3|x|2,
|2|2-2(z,x) + M2S3|y|2,
|x|2-2(x,y) + |y|2^3|z|2.

Sečtením všech tří nerovností vyjde

|x|2 - |y|2 - |z|2 - 2(y,z) - 2(z, x) - 2(x,y) § 0.

164

neboli — |x + у 4- z|2 ^ 0. Odtud ovšem plyne, že x + у + z = 0 a že ve
všech předchozích nerovnostech platí rovnost. Je tedy jednak

\y-z\ = VŠ\x\
k-*l = v%|
\x-y\ = Vž\z\

jednak díky rovnosti v (2) a v dalších dvou analogických nerovnostech
i о II ť/ II x, с || /■ || у, e || Ь II z.

Sestrojíme-li trojúhelník PQR tak, že PQ = x, QR = y, RP = z (což
můžeme díky rovnosti x + у + z = 0), bude některý z jeho vnitřních úhlů
mít velikost aspoň 60°. Nechť je to např. úhel PRQ (obr. 40). Pro střed
M strany PQ pak platí \MR\ = ||y — z| = |\/3|x| = |\/3|PQ|, což
znamená, že trojúhelník PQR je rovnostranný. Pro vnitřní úhly daného
šestiúhelníku to vzhledem к dokázané rovnoběžnosti jeho protějších stran
s odpovídajícími vektory x, у a z znamená, že všechny jeho vnitřní úhly
mají velikost 120°.

r

/
/

/
/

/
R у-z

z У

X

P M Q

Obr. 40

Poznámka. Z uvedeného řešení je zřejmé, že libovolný šestiúhelník spi-
ňující předpoklady úlohy dostaneme tak, že z některého rovnostranného
trojúhelníku „odřízneme4' při každém jeho vrcholu shodný rovnostranný
trojúhelník.
4. Označme po řadě X\, X2 průsečíky osy úhlu ABC a osy úhlu ADC
s úhlopříčkou AC daného tětivového čtyřúhelníku ABCD (obr. 41). Ze
známé vlastnosti osy úhlu plyne jednak \AXi\/\CXi\ = |AB|/|C.B|
(v trojúhelníku ABC), jednak IAX2I/ICX2I = |AD|/|C.D| (v trojúhel-
niku ACD). Osy úhlů ABC a ADC se tedy protnou na úhlopříčce AC,
právě když X\ = X2, neboli právě když |AD| • |CJ3| — \AB\ ■ \CD\.

165

Podle Thaletovy věty leží paty P a Q na kružnici s průměrem CD
takže pro velikost tětivy PQ této kružnice platí

\PQ\ = \CD\sin\<PCQ\ = \CD\ sin 7,

kde 7 = <ACB (bez ohledu na to, zda pata P padne dovnitř strany BC
či nikoli). Podobně leží paty R a Q na kružnici s průměrem AD, takže
pro velikost tětivy QR této kružnice platí

\QR\ = \AD\sin\<RAQ\ = |AD|sina,

kde a = <BAC. Vidíme tedy, že rovnost \PQ\ = \QR\ je ekvivalentní
rovnosti \CD\ siny = \AD\ siná, což je podle sinové věty pro trojúhelník
ABC ekvivalentní s rovností \AD\ ■ \CB\ = \AB\ ■ \CD\. Tím je tvrzení
úlohy dokázáno.

Jiné řešení. (Podle Marka Krčála, bohužel až po soutěži.) Označme M
a N body, v nichž osa úhlu ABC, resp. osa úhlu ADC protne kružnici к
opsanou danému tětivovému čtyřúhelníku ABCD (obr. 42). Vzhledem
к tomu, že každý z bodů M, N půlí příslušný oblouk AC kružnice к, je
MN osou úhlopříčky АС a zároveň průměrem kružnice k. Označme O
střed úsečky AC. Bez újmy na obecnosti předpokládejme, že úhel BAD
není tupý (jinak bychom prohodili označení vrcholů iaC), takže pata P

166

kolmice z bodu D na BC padne mimo úsečku BC. Z vlastností tětivového
čtyřúhelníku plyne \<DCP\ = \<BAD\ a z rovnosti obvodových úhlů
nad tětivou BD rovnost \<BMD\ — \<BAD\. Jsou tedy trojúhelníky
ARD a CPD podobné.

Předpokládejme, že průsečík X obou zmíněných os úhlů leží na

přímce AC. Protože MN je průměr kružnice fc, je podle Thaletovy věty
\<XDM\ = \<NDM\ = 90°, takže čtyřúhelník OXDM je tětivový.
Je tedy také \<XOD\ = \<XMD\ = \<BMD\ a vidíme, že trojúhelník
OQD je podobný trojúhelníkům ARD a CPD. Uvažujme spirální podob-
nost, jež vznikne složením otočení kolem středu D o úhel 90° — \<BAD\
a stejnolehlosti se středem D a koeficientem \DR\/\DA\. Tato podobnost
zobrazí bod A do bodu R, bod C do bodu P a bod O do bodu Q. Pro-
tože O je střed úsečky AC, je jeho obraz v této podobnosti, tedy bod Q
středem úsečky PR, jež je obrazem úsečky AC.

Obráceně, je-li Q střed úsečky PR, je obrazem bodu O v uvedené
podobnosti, takže trojúhelník OQD je podobný trojúhelníkům ARD
a CPD (ty jsou podobné vždy). Označíme-li nyní jako X průsečík přímky
BM s úhlopříčkou AC, bude XDMO tětivový, a tudíž velikost úhlu
XDM bude 90°. Odtud plyne, že bod X leží na ND, ose úhlu ADC.

167

5. Obě strany dokazované nerovnosti nezmění hodnotu, když ode všech
členů Xi odečteme totéž číslo c. Vybereme-li za c aritmetický průměr
dané n-tice členů Xi, bude „posunutá11 posloupnost členů Xi := Xi — c

splňovat podmínku
П

= 0. (1)
1=1

Dodejme, že zmíněné „posunutí11 zachová rovněž uspořádání čísel X{ po-
dle velikosti a nezmění ani nic na tom, zda dotyčná n-tice tvořila arit-
metickou posloupnost či nikoliv.

Za předpokladu (1) upravíme oba součty z dokazované nerovnosti:

71 П

\xi - xí\= 2 5Z (xj -Xí)
i— 1 j= 1

n

2 ^2((! + ••• + IQ ~ (! + ••• + l))xj
(i—1) krát (n—i) krát

n

2]Г(2г-п- 1)xí
1=1

71 71 n n n n

~ xóf -n ~2 5ZXi xí+n H xj =
г= 1 j=l г= 1 г=1 i=l 3=1

n

г=1

Po dosazení a krácení čtyřmi zjistíme, že máme dokázat nerovnost

(±(2i-n-vJá^-V 2̂Zxl (2)3
i=l

Ukažme, že (2) je Cauchyova nerovnost

/ n ч 2 n n

[Y,X‘V‘)
'г=1 ' г=1 г=1

(3)

168

pro n-tici členů yi = 2i — n — 1, i = 1,2,... ,n. Skutečně, pro takovou
n-tici platí

Vi = J^(2i ~ n - l)2 = 4 Yj г1 - 4(n + 1) ^2i + n(n + l)2
2=1 2=12=1 2=1

_4 n(n + l)(2n + l)
(n2 - l)n

n(n + 1)
+ n(n + l)2 =— 4(n + 1) • 26

3

Tím je důkaz nerovnosti (2) hotov.
Jak je dobře známo, rovnost v Cauychově nerovnosti (2) nastane,

právě když existuje reálné číslo p, pro které platí n-tice rovností

Xi = pyi = p(2i — n — 1) (г = 1,2,... ,n). (4)

Ověřme, že tuto podmínku za předpokladu (1) splňují právě ty konečné
posloupnosti X\,X2, • • • ,#n, jež jsou aritmetické. Skutečně, platí-li rov-
nosti (4), je konečná posloupnost xi, x2,..., xn aritmetická s diferencí 2p.
Obráceně, je-li posloupnost x\,X2, ■ ■ ■ ,xn aritmetická a značí-li d její di-
ferenci, pak pro každé i = 1,2, ...,n platí rovnost Xi = x\ + (г — l)cř
a součet všech členů Xi je dán vzorcem

П

n(x 1 + xn)Y,x' = 2
2=1

Podmínka (1) tudíž znamená, že x\ +xn = 0, neboli x\ +rri + (n — 1)d =
= 0. Odtud dostáváme rri = |d(1 — n), proto členy X{ mají pro každé i
vyjádření

(1 — n + 2i — 2)d (2i — n — 1)dd(l ~n) ,

Xi = h (г - l)d - 2 2

což je (4) pro p = d/2.
6. Připomeňme nejdříve vlastnosti mocnin n1 ,n2,... ,nk,... při dělení
prvočíslem q: je-li n celé číslo nesoudělné s (/, pak nq~l = 1 (mod q)
(tzv. malá Fermatova věta), navíc množina těch přirozených k, pro která
nk = 1 (mod q), je tvořena všemi násobky nejmenšího z nich (což je buď
číslo q — 1, nebo některý jeho dělitel).

169

Uvažujme proto rozklad

pp — 1 = (p - 1)5, kde S = pP 1 + pP 2 + ...+p+l (1)

a za „kandidáta" na vhodné prvočíslo q vyberme některé z prvočísel
dělících součet 5 (v pravou chvíli upřesníme, jakou doplňující vlastnost
prvočinitele q čísla 5 budeme ještě potřebovat a proč takové q vůbec
existuje). Protože q \ 5 a 5 \ (pp — 1), platí q \ (pp — 1), tj. pp = 1
(mod q).

Připusťme, že pro vybrané q tvrzení úlohy neplatí, tedy existuje celé
n s vlastností np = p (mod q). Umocněním této kongruence na p dosta-
neme np2 = pP (mod q), což spolu s kongruencí ze závěru předchozího
odstavce znamená, že np =1 (mod q). Číslo n je tedy nesoudělné s čís-
lem q a podle poznatků připomenutých v úvodu řešení víme, že nejmenší
přirozené к s vlastností nk = 1 (mod q) musí být dělitel čísla p2, tedy
jedno z čísel 1, p, p2. Toto číslo musí být zároveň dělitelem čísla q — 1
(malá Fermatova věta), takže to nebude číslo p2, nebude-li číslo p2 dělit
číslo q — 1, tedy pokud q ф 1 (mod p2). To je právě ona doplňující vlast-
nost prvočísla q, o které jsme se dříve zmínili; odložme na chvíli důkaz
existence takového prvočísla q a dokončeme úvahy o mocninách čísla n.

Pokud tedy q ф 1 (modp2), platí kongruence nk = 1 (mod q) pro
к = 1 nebo pro к — p, v obou případech máme np = 1 (mod q). Porov-
náním s kongruencí np = p (mod q) pak dostaneme p = 1 (mod q), takže
každá z p mocnin p7 ze součtu 5 je kongruentní s číslem 1 (modulo q),
tudíž 5 = p (mod q). Protože však q \ 5, platí 5 = 0 (mod q). Porovná-
ním vychází p = 0 (mod q), což je spor s tím, že p = 1 (mod q). Proto
žádné celé n s vlastností np = p (mod q) neexistuje, splňuje-li prvočíslo q

podmínku q ^ 1 (mod p2). Existenci takového prvočinitele q (z rozkladu
čísla 5) nyní dokážeme.

Určeme zbytek součtu 5 při dělení číslem p2: protože p2 | p7 (j ^ 2),
platí

5 = pP 1 + pP 2 + ...+p+l = 0-|-0 + ... + 0+ p+l (mod p2),

tedy 5 = p + 1 ф 1 (mod p2). Odtud již plyne, že aspoň jeden z prvo-
činitelů qj čísla 5 = <7i<72 • • -qr není kongruentní s 1 (modulo p2). (Vy-
násobením r kongruencí qj = 1 (mod p2) bychom totiž dostali 5 = 1
(mod p2).)

Důkaz je hotov a úloha vyřešena.

170

Desátý ročník Středoevropské olympiády v informatice

Ve dnech 5.-12. července 2003 proběhl v německém Miinsteru jubilejní
10. ročník Středoevropské olympiády v informatice (Central European
Olympiad in Informatics, CEOI 2003).

Vedoucím české reprezentace byl jmenován RNDr. Tomáš Pitner, Dr.,
z Masarykovy univerzity v Brně, Fakulty informatiky. Úloha zástupce ve-
doucího týmu byla svěřena Mgr. Martinu Marešovi z Univerzity Karlovy
v Praze, Matematicko-fyzikální fakulty.

Kromě toho byl z rozhodnutí řídicího výboru soutěže organizátory
za českou stranu pozván doc. RNDr. Václav Sedláček, CSc., dlouholetý
vedoucí českých reprezentací na mezinárodních a středoevropských olym-
piádách v informatice a dalších soutěžích, prezident (předseda organi-
začního výboru) CEOI v roce 1999 v Brně a spoluzakladatel iniciativy
vedoucí к založení tradice Středoevropských olympiád v informatice. Po-
zváni bylo vyjádřením uznání dlouholetých zásluh doc. Sedláčka o pod-
póru mladých talentů v informatice a současně potvrzením stabilní po-
zice České republiky mezi zeměmi střední Evropy, které jsou schopny
a ochotny podobné akce organizovat.

Vlastní soutěž probíhala regulérně podle pravidel CEOI za maxi-
mální podpory především Spolkového ministerstva školství, vědy a vý-
zkumu, Ministerstva školství spolkové země Nordrhein-Westfalen a složek
místní a regionální veřejné správy (Bezirks Regierung Munster). Dal-
šími hlavními sponzory byly Gesellschaft fiir Informatik e.V., Fraunho-
fer Gruppe Informations- und Kommunikationstechnik, sd&m a Siemens
Business Services (SBS). Hlavním výkonným organizátorem bylo sdru-
žení Spolková soutěž v informatice (Bundewettbewerb Informatik) ve-
děné Dr. Wolfgangem Pohlem, který byl rovněž prezidentem letošního
ročníku CEOI. Na organizaci se dále podílely střední školy z Můn-
steru a okolí, jejichž učitelé působili v organizačním výboru a stu-
denti/studentky jako průvodci (guides) jednotlivých týmů. Podstatnou
roli v odborné části programu sehrál Scientific Committee, tvořený pře-
vážně bývalými aktivními účastníky podobných mezinárodních soutěží
z hostitelské země.

171

Vlastní soutěž se konala na gymnáziu Paulinum v Míinsteru. Hmotné
i personální zabezpečení akce bylo na velmi vysoké úrovni.

Stejně jako v minulém roce bylo při vlastní soutěži (po vzoru 101)
používáno modernizované vývojové a testovací prostředí. Soutěžící pra-
covali ve třicetidvoubitových prostředích Windows 98 nebo Linux s pře-
kladači GNU C++ (gcc) a Free Pascal s vývojovým prostředím RHIDE.
Novinkou letošní CEOI bylo použití webového systému pro zasílání ře-
šení к vyhodnocení. Vyhodnocení se provádělo plně automaticky „tes-
tovačem“ běžícím v OS Debian Linux pomocí předem připravených sad
testovacích dat. Proces vyhodnocení proběhl korektně, maximálně objek-
tivně a bez problémů.

Reprezentační tým ČR na základě výsledků letošního celostátního
kola kategorie P tvořili (v abecedním pořadí): Sven Dražan a Kryštof
Hoder, oba z Gymnázia Brno, tř. Kpt. Jaroše; Daniel Marek z Gymnázia
Ch. Dopplera Praha a Jiří Schejbal z Gymnázia Turnov. Členové čes-
kého týmu nezískali žádnou z medailí a obsadili místa v poslední třetině
startovního pole.

172

15. mezinárodní olympiáda v informatice

Hostitelem 15. mezinárodní olympiády v informa-
tice IOI 2003 byly Spojené státy americké. Soutěž
se uskutečnila ve dnech 16.-23. 8. 2003 v univer-

žitním kampusu University of Wisconsin-Parkside
nedaleko města Kenosha. Organizátoři zvolili ter-
min konání v době univerzitních prázdnin, takže pro potřeby olympiády
mohli využít dočasně vyprázdněné studentské ubytovny a jídelny, univer-
žitní posluchárny pro vlastní soutěž i pro různá probíhající jednání, aulu
pro slavnostní zahájení a zakončení soutěže, ale také rozsáhlá sportoviště
pro aktivní využití volného času všech účastníků.

Olympiáda byla výborně připravena po stránce organizační, po
stránce počítačového vybavení i z hlediska kvality přípravy soutěžních
úloh. V každém ze dvou soutěžních dnů řešili soutěžící studenti u počí-
tačů tři poměrně náročné příklady. Se svými počítači i jejich softwarovým
vybavením se přitom všichni mohli podrobně seznámit den před vlastní
soutěží, kdy probíhalo neoficiální tréninkové předkolo. Při soutěži bylo
možné programovat v některém z programovacích jazyků Pascal, C nebo
C++, každý si mohl zvolit podle svých předchozích zkušeností pracovní
prostředí operačních systémů Windows nebo Linux. O oba uvedené sys-

témy byl mezi účastníky přibližně stejný zájem.
К testování a hodnocení vytvořených programů se na IOI již řadu

let používá automatické vyhodnocování pomocí připravené sady vstup-
nich dat. Všechny prováděné testy mají dobu výpočtu omezenu předem
známým časovým limitem a jednotlivá testovací vstupní data mají růz-
nou velikost a různou složitost, což dohromady umožňuje bodově rozlišit
programy podle kvality použitého algoritmu. Za každou úlohu lze zís-
kat maximálně 100 bodů, nejčastěji bývá při hodnocení zadáno 20 sad
testovacích dat 5 bodech. U některých soutěžních úloh se hodnotí také
dosažení optimality nalezeného řešení. Za nalezení nejlepšího možného
řešení soutěžící dostane pro daná testovací data plný počet bodů, zatímco
o něco horší řešení je hodnoceno méně body podle předem známého klíče
(v hodnocení některých úloh se tak objevují i desetiny bodů).

173

Patnácté mezinárodní olympiády v informatice se zúčastnilo 265 sou-
těžících studentů ze 69 zemí celého světa. Počtem zúčastněných zemí tak
IOI již dostihla ostatní mezinárodní předmětové olympiády středoško-
láků a její velikost a význam rok od roku stále narůstá. Českou repub-
liku reprezentovalo čtyřčlenné družstvo ve složení Pavel Čížek (absolvent
Dvořákova gymnázia v Kralupech nad Vltavou), Tomáš Gavenčiak (stu-
dent gymnázia M. Koperníka v Bílovci), Jan Kadlec (absolvent gymnázia
Ch. Dopplera v Praze 5) a Milan Straka (absolvent gymnázia ve Strakoni-
cích). Naši soutěžící byli vybráni na základě výsledků dosažených v celo-
státním kole kategorie P (programování) 52. ročníku Matematické olym-
piády. Vedením družstva byli pověřeni doc. Pavel Tdpfer a RNDr. Daniel
Král’ oba z Matematicko-fyzikální fakulty Univerzity Karlovy v Praze.

Na mezinárodní olympiádě v informatice se udělují ocenění podle po-
dobného klíče, jaký se používá například také na mezinárodní matema-
tické olympiádě. Nejvýše polovina soutěžících obdrží některou z medailí,
přičemž zlaté, stříbrné a bronzové medaile se dělí přibližně v poměru
1 : 2 : 3. Na letošní IOI 2004 bylo rozděleno celkem 132 medailí, z toho
24 zlatých, 45 stříbrných a 63 bronzových. O velké vyrovnanosti světové
špičky svědčí skutečnost, že o udělených 24 zlatých medailí se podělili
reprezentanti z 19 zemí, mezi nimi i naši. Pouze pět letos nejúspěšnějších
států získalo po dvou zlatých medailích (Korea, USA, Rumunsko, Švédsko
a Polsko), žádná země nemá tři zlaté medaile.

Naši studenti si vedli v soutěži velmi dobře, získali jednu zlatou, jednu
stříbrnou a jednu bronzovou medaili. Podobného výsledku, tj. jedné zla-
té, jedné stříbrné a jedné bronzové medaile, dosáhla také reprezentace
Slovenska. Mezinárodní olympiáda v informatice je podle svých stanov
soutěží jednotlivců, žádné oficiální pořadí zúčastněných zemí není vy-
hlašováno a není ani stanoveno, podle jakého kritéria by se mělo takové
pořadí určovat (zda podle počtu získaných medailí, součtu bodů všech
reprezentantů příslušné země či například podle součtu pořadí ve vý-
sledkové listině). Při jakémkoliv způsobu počítání by se naše výprava
umístila kolem 12.-13. místa, což je velmi dobrý výsledek. Následující
tabulka shrnuje výsledky všech českých studentů v soutěži:

375.5 bodů zlatá
306,1 bodů stříbrná
195,0 bodů bronzová
162.5 bodů -

14. Milan Straka

43. Pavel Čížek
111. Tomáš Gavenčiak

146. Jan Kadlec

174

Příští, v pořadí šestnáctá mezinárodní olympiáda v informatice
IOI 2004 se uskuteční v Athénách v první polovině září 2004. Pořa-
datelé z Řecka již nyní pozvali všechny země zúčastněné na IOI 2003,
aby se zúčastnily i příštího ročníku soutěže. V roce 2004 se bude konat
také 11. ročník Středoevropské olympiády v informatice CEOI 2004, a to
v první polovině července ve Varšavě. Rovněž od polských pořadatelů
jsme obdrželi pozvání к účasti.

Texty soutěžních úloh

1. Wisconsinské krávy (interaktivní úloha)
Krávy farmáře Johna se volně pohybují mezi N (1 ^ 200) pastvi-

námi, které jsou očíslovány od 1 do N. Pastviny jsou navzájem odděleny
lesem. Krávy udržují systém cest mezi pastvinami tak, aby kdykoliv bylo
možné přejít po udržovaných cestách mezi libovolnými dvěma pastvina-
mi. Po všech cestách je možné chodit oběma směry.

Krávy ve skutečnosti cesty samy nevytvářejí. Místo toho používají
stezky lesní zvěře. Pro každý týden si vyberou některé ze stezek, které
znají, a ty pak udržují jako cesty mezi pastvinami.

Krávy jsou zvířata od přírody velmi zvědavá. Na začátku každého
týdne objeví jednu novou stezku. Ze stezek, které znaly z dřívějška,
a z nově objevené stezky, pak vyberou množinu stezek, které budou v nad-
cházejícím týdnu udržovat jako cesty. Výběry stezek pro jednotlivé týdny
jsou navzájem zcela nezávislé.

Stezku, která je udržována, mohou krávy ihned používat jako cestu
mezi pastvinami. Pokud stezka přestane být udržována, není ji již nadále
možné používat jako cestu. Krávy chtějí udržovat vždy takovou soustavu
cest, aby součet délek udržovaných cest byl nejmenší možný.

Stezky lesní zvěře bývají klikaté. Proto může existovat více stezek
různých délek, které spojují stejnou dvojici pastvin. I když se dvě cesty
v lese kříží, krávy vždy pokračují v chůzi po původně zvolené cestě.

Vaším úkolem je pro každý týden určit nejmenší možný součet délek
udržovaných cest. Váš program bude postupně dostávat informace o no-

vých stezkách objevených krávami. Po načtení popisu každé nové stezky
musí váš program vypsat optimální součet délek udržovaných cest.

Vstup: standardní vstup (standard input)
t> První řádek obsahuje dvě celá čísla N a, W oddělená jednou mezerou.

N určuje počet pastvin (1 й N й 200) a W udává počet týdnů,
v nichž činnost krav sledujeme (1 5Í W 6 000).

175

> Pro každý týden pak následuje samostatný řádek, který popisuje nově
objevenou stezku. Tento řádek je tvořen třemi celými čísly oddělenými
jednou mezerou, která udávají čísla pastvin spojených novou stezkou
a její délku (1... 10 000). Každá stezka spojuje dvě různé pastviny.

Výstup: standardní výstup (standard output)
Popis další stezky nelze načíst, dokud váš program nevypíše řešení pro

současnou množinu stezek. Pro každý týden, váš program vypíše jedno
celé číslo na samostatném řádku: Toto číslo udává nejmenší možný součet
délek cest, které je třeba udržovat, aby byla zachována propojenost všech
pastvin. Pokud takový systém cest neexistuje, program vypíše číslo -1.

Program musí skončit po vypsání řešení pro poslední sledovaný týden.
Příklad komunikace:

Vstup Výstup Vysvětlení
4 6

1 2 10

Žádná stezka nespojuje pastvinu č. 4 s ostatními
pastvinami.

-1

13 8

Žádná stezka nespojuje pastvinu č. 4 s ostatními
pastvinami.

-1

3 2 3

Žádná stezka nespojuje pastvinu č. 4 s ostatními
pastvinami.

-1

14 3

Systém cest je tvořen stezkami 14 3, 1 3 8 a 3 2 3.14

13 6

Systém cest je tvořen stezkami 143, 1 3 6 a 3 2 3.12

2 12

Systém cest je tvořen stezkami 14 3, 2 1 2 a 3 2 3.8

konec programu

Omezení: Časový limit ls CPU

Paměťový limit 64 MB
Hodnocení. Za každý testovací vstup obdržíte plný počet bodů, po-

kud váš program vypíše správný výstup. V opačném případě je testovací
vstup hodnocen 0 body.

2. Ukradený kód
Společnost Racine Business Networks (RBN) se rozhodla zažalovat

společnost Heuristic Algorithm Languages (HAL). RBN tvrdí, že HAL

176

vykradla část jejího zdrojového kódu RBN UNIX™ a začlenila ho do
svého operačního systému HALnix.

Obě společnosti RBN a HAL používají stejný programovací ja-
zyk. Každá instrukce je uvedena na samostatném řádku a všechny
mají jednotný formát: STOREA = STQREB + STOREC, kde STOREA, STOREB
a STOREC jsou jména proměnných. Jméno první proměnné začíná v prv-
ním sloupci, pak následuje jedna mezera, rovnítko a další mezera.
Poté je uvedeno jméno druhé proměnné následované jednou mezerou,

plusem a další mezerou. Řádek je ukončen jménem třetí proměnné.
Jedna proměnná se může na témže řádku vyskytovat několikrát. Jména
proměnných jsou tvořena 1 až 8 velkými písmeny anglické abecedy
(A,..., Z).

RBN tvrdí, že programátoři společnosti HAL okopírovali souvislé
kusy jejího kódu a provedli pouze následující změny, aby zamaskovali
svůj odporný zločin: Programátoři HAL vždy vzali několik po sobě ná-
sledujících řádků z kódu firmy RBN a v něm změnili jména některých
proměnných. Nikdy se však nestalo, že by dvě různé proměnné měly po

přejmenování totéž jméno. Programátoři HAL také občas zaměnili pořadí
sčítanců na pravé straně instrukce. Tedy instrukci STOREA = STOREB +
STOREC nahradili instrukcí STOREA = STOREC + STOREB. Pořadí jednot-
livých instrukcí však zůstalo zachováno.

Vaším úkolem je v programu společnosti HAL najít nejdelší souvislý
kus kódu, který mohl být vykraden z programu společnosti RBN výše
popsaným způsobem. Odpovídající si kusy kódu mohou v každém z pro-

gramů začínat na různých řádcích.
Vstupní soubor: code, in

> První řádek obsahuje dvě celá čísla R a H oddělená jednou mezerou

(1 ^ R ^ 1000; 1 ^ H ^ 1000). R udává počet řádků programu
společnosti RBN a H programu společnosti HAL.

> Následujících R řádků obsahuje kód programu společnosti RBN.
> Dalších H řádků pak obsauje kód programu společnosti HAL.

Příklad vstupního souboru: 4 3
RA = RB + RC

RC = D + RE

RF = RF + RJ

RE = RF + RF

HD = HE + HF

HM = HN + D

HN = HA + HB

177

Výstupní soubor: code.out
Výstupní soubor musí být tvořen jediným řádkem obsahujícím jedno

celé číslo. Toto číslo udává počet řádků nejdelšího souvislého kusu kódu,
který mohl být vykraden z programu společnosti RBN.

Příklad výstupního souboru: 2
Řádky 1 a 2 programu společnosti RBN odpovídají řádkům 2 a 3

programu společnosti HAL (RAHM, RB -> D, RC —» HN, D —> HA,
RE —> HB). Žádné tři po sobě jdoucí řádky programu společnosti RBN
neodpovídají třem řádkům programu společnosti HAL.

Omezení: Časový limit 2 s CPU

Paměťový limit 64 MB
Hodnocení. Za každý testovací vstup obdržíte plný počet bodů, po-

kud váš program vytvoří správný výstupní soubor. V opačném případě
je testovací vstup hodnocen 0 body.

3. Posloupnost (open-data úloha)
Vaším úkolem je vytvořit program pro počítač TOM. Počítač TOM

má 9 paměťových registrů, jejichž hodnoty lze nastavit na začátku vý-
počtu. Registry jsou očíslovány čísly od 1 do 9 a každý z nich může
uchovávat jedno celé číslo z intervalu 0 ... 1000. Počítač má implemento-
vány pouze následující dvě instrukce:

Do registru j přiřadí hodnotu registru i zvýšenou o 1.
Čísla i a j mohou být stejná.

S i j

Vytiskne na výstup hodnotu uloženou v registru i.P i

Program počítače TOM je tedy tvořen počátečním nastavením hodnot
registrů a posloupností instrukcí. Vaším úkolem je vytvořit pro zadané
celé číslo N (0 ^ ^ 255) program, který vypíše posloupnost čí-
sel N, N — 1, N — 2,..., 0. Snažte se, aby počet po sobě následujících
S-instrukcí ve výsledném programu byl nejmenší možný.

Příklad programu pro počítač TOM pro N = 2 a průběh jeho výpo-
čtu:

Obsah registrů VýstupInstrukce
123456789

Počáteční hodnoty
P 2

S 1 3

020000000

020000000

021000000

021000000

021000000

2

1P 3

0P 1

178

Testovací data jsou očíslována od 1 do 16. Vstupní soubory, které je
obsahují, si můžete stáhnout ze soutěžního serveru.

Formát vstupních souborů:
> První řádek obsahuje jedno celé číslo K, které udává pořadové číslo

testovacích dat.
> Druhý řádek obsahuje číslo N.

Příklad vstupního souboru: 1

2

Formát výstupních souborů:
První řádek výstupního souboru musí obsahovat řetězec „FILÉ

reverse K“, kde К je pořadové číslo testovacích dat.
Druhý řádek má obsahovat 9 celých čísel navzájem oddělených me-

zerami. Tato čísla představují počáteční hodnoty uložené v registrech
(první v registru 1, druhé v registru v 2, atd.).

Zbytek výstupního souboru obsahuje kód programu pro počítač
TOM. Každý řádek obsahuje právě jednu instrukci. Instrukce na posled-
ním řádku programu by měla vytisknout na výstup číslo 0. Kód programu

by měl být ve tvaru jako v následujících příkladech.
Příklad výstupu #2
(plný počet bodů):
FILE reverse 1

021000000

P 2

P 3

P 1

Příklad výstupu #1
(část bodů):
FILE reverse 1

020000000

P 2

S 1 3

P 3

P 1

Hodnocení. Počet bodů, které obdržíte za testovací data, závisí na

správnosti a optimalitě odevzdaného řešení.
Správnost: 20%
Program počítače TOM je korektní, pokud nevykoná více než 131

po sobě následujících S-instrukcí a zároveň na výstup vypíše postupně
ÍV +1 čísel v pořadí od TV do 0. Pokud během výpočtu programu některá
S-instrukce způsobí přetečení registru, pak je program považován za ne-
korektní.

Optimalita: 80%
Úkolem je minimalizovat největší počet po sobě následujících 5-in-

strukcí. Optimalita odevzdaného programu je porovnávána s nejlepším
programem pro daný testovací vstup, který je к dispozici.

179

4. Není kráva jako kráva (interaktivní úloha)
Farmář John chce ustájit svých TV (1 ^ TV ^ 50) krav. Krávy jsou

očíslovány celými čísly od 1 do TV. Bohužel jsou si navzájem velmi po-
dobné a není jednoduché rozlišit je mezi sebou. Protože je každá kráva
zvyklá na své místo ve stáji, musí být John schopný rychle je rozeznávat.

Krávy lze rozeznávat podle P (1 ^ P ^ 8) rozlišovacích znaků,
např. podle barvy visačky v uchu. Jednotlivé rozlišovací znaky si pro

přehlednost očíslujeme čísly od 1 do P. Každý z rozlišovacích znaků na-

bývá u každé krávy jedné ze tří možných hodnot, které pro jednoduchost
označme písmeny »X«, »Y« a »Z«. Můžete předpokládat, že každé dvě
krávy se liší v aspoň jednom znaku.

Vaším úkolem je napsat program, který farmáři Johnovi pomůže
rozpoznat zvolenou krávu z jeho stáda. Program může položit farmáři
Johnovi nejvýše 100 otázek typu: „Patří hodnota rozlišovacího znaku
s pořadovým číslem T do množiny S?“, kde S je podmnožina množiny
{X, Y, Z}. Na základě odpovědí na položené otázky váš program pak určí
číslo krávy. Snažte se, aby počet otázek potřebných pro určení krávy byl
co nejmenší.

Vstupní soubor: guess, in
> První řádek obsahuje dvě celá čísla TV a P oddělená jednou mezerou.

TV (1 ^ TV ^ 50) je počet krav aP(l^P^8)je počet rozlišovacích
znaků.

o Každý z následujících TV řádků popisuje jednu krávu ze stáda farmáře
Johna. Druhý řádek souboru popisuje krávu s pořadovým číslem 1,
třetí řádek krávu s číslem 2, atd. Každý z těchto řádků obsahuje
P písmen navzájem oddělených vždy jednou mezerou. První písmeno
na řádku udává hodnotu rozlišovacího znaku s pořadovým číslem 1,
druhé znaku s číslem 2, atd.

Příklad vstupního souboru: 4 2
X Z

X Y

Y X

Y Y

Interaktivní komunikace: standardní vstup a výstup (standard input
and output)

Komunikace vašeho programu s farmářem Johnem probíhá přes stan-
dardní vstup a výstup.

180

Program položí otázku vypsáním řádku na standardní výstup v ná-
sledujícím formátu: Prvním znakem řádku je velké písmeno Q následo-
vane jednou mezerou, pořadovým číslem rozlišovacího znaku, na který se

ptá, a jednou nebo více jeho hodnotami. Všechny hodnoty jsou odděleny
na řádku mezerami. Např. „Q 1 Z Y“ reprezentuje otázku „Je hodnota
prvního rozlišovacího znaku dané krávy z množiny {Z, У}?“ Číslo roz-
lišovacího znaku musí být z intervalu 1... P. Každá z možných hodnot
znaku může být uvedena v jedné otázce nejvýše jednou a musí být re-

prezentována jedním z písmen »X«, »Y« a »Z«.
Poté, co program položí otázku, načte odpověď ze standardního vstu-

pu. Odpověď je reprezentována číslem 1 nebo 0: Číslo 1 znamená, že
rozlišovací znak má jednu z hodnot uvedených v otázce, zatímco číslo 0
znamená opačnou odpověď.

Nakonec váš program vypíše řádek s pořadovým číslem krávy. Tento
řádek musí začínat písmenem »C«, po kterém následuje jedna mezera
a pořadové číslo krávy.

Příklad komunikace (pro výše uvedený vstupní soubor):
Vstup Výstup Vysvětlení

Q 1 X Z
Může být kráva 3 nebo 4.0

Q 2 Y
Je to kráva 4!1

C 4

program skončil

Omezení: Časový limit ls CPU

Paměťový limit 64 MB

Hodnocení. Správnost: 30% bodů
Za daný testovací vstup získáte body za korektnost, pokud váš pro-

gram položí nejvýše 100 otázek, správně určí pořadové číslo krávy a v oka-
mžiku ukončení výpočtu existuje jediná kráva, jejíž rozlišovací znaky jsou
konzistentní s odpověďmi na otázky programu.

Počet položených otázek: 70% bodů
Zbývající body získáte podle počtu položených otázek. Rozhodující je

počet položených otázek v nejhorším případě (podle zákona schválnosti
všechny případy budou ty nejhorší možné). Část bodů bude přidělena
i řešením, jejichž počet otázek bude blízký optimu.

181

5. Roboti
Stali jste se (ne)šťastnými majiteli dvou robotů, kteří jsou zrovna

umístěni ve dvou bludištích. Každé z bludišť je obdélníkového tvaru.
Představujme si každé z nich jako čtverečkovou síť tvořenou jednotli-
vými poli. Pole se souřadnicemi (1,1) je umístěno v levém horním rohu
bludiště.

V г-tém bludišti (i = 1,2) se nachází Gi strážců (0 ^ G{ 10), kteří
se snaží chytit roboty. Každý ze strážců se stále pohybuje po přímé trase
tam a zpět. Trasa strážce je tvořena několika sousedními poli bludiště. Va-
ším úkolem je napsat program, který nalezne posloupnost příkazů, které
vyvedou oba roboty z bludiště, aniž by byli chyceni některým ze strážců.

Na začátku každé minuty vyšlete stejný příkaz oběma robotům. Pří-
kaz udává jeden ze čtyř směrů: nahoru, dolů, doprava, doleva (north,
south, east, west). Robot se pak posune v zadaném směru o jedno pole,
pokud mu v pohybu nebrání zeď bludiště. Jestliže je v daném směru zeď
bludiště, robot žádný pohyb v následující minutě nevykoná, ale instrukce
je považována za korektní. Robot opustí bludiště, pokud vykoná krok
vedoucí mimo obdélníkovou síť popisující bludiště. Po opuštění bludiště
robot další příkazy ignoruje.

Každý ze strážců se na začátku každé minuty posune o právě jedno
pole. Výchozí pozice a natočení strážců jsou zadány na vstupu programu.
Strážce nejprve vykoná tolik kroků, kolik je počet polí jeho trasy změn-

šený o jedna. Na posledním poli se strážce otočí a začne se pohybovat
zpět ke svému výchozímu poli, kde se opět otočí o 180° a takto hlídkuje,
dokud oba roboti neopustí svá bludiště.

Trasa každého strážce je zvolena tak, že neprotíná zeď bludiště a ani
nevychází z bludiště ven. Trasy různých strážců se mohou protínat, ale
jejich pohyb je zvolen tak, že se nikdy nesrazí, tj. nikdy nebudou dva
strážci na konci některé minuty stát na stejném poli a ani si během
některé z minut nevymění vzájemně své pozice. Počáteční pozice strážců
jsou zvoleny tak, že se žádný z nich nenachází na poli, kde stojí robot.

Strážce chytí robota, pokud se nachází na konci některé minuty na

stejném poli jako robot nebo když si během některé z minut s robotem
vymění svou pozici.

Váš program obdrží popis dvou bludišť, každé o rozměrech nejvýše
20 x 20 polí, spolu s počátečními pozicemi robotů a trasami jednotlivých
strážců. Úkolem programu je najít posloupnost instrukcí, společnou pro
oba roboty, podle které oba roboti opustí bludiště, aniž by byli chyceni
některým ze strážců. Snažte se, aby čas, kdy poslední robot opustí své

182

bludiště, byl co nejmenší. Oas, kdy první z robotů opustí bludiště, je ne-

podstatný. Minimalizujte tedy čas, který uplyne od začátku do okamžiku,
kdy se oba roboti nacházejí mimo svá bludiště.

Vstupní soubor: robots, in
Vstupní soubor je tvořen dvěma částmi. První z nich popisuje první

bludiště, pozici robota v něm a trasy strážců. Podobně druhá část sou-
boru popisuje druhé bludiště.

> První řádek obsahuje dvě celá čísla R\ a C\ oddělená jednou mezerou.

Ri je počet řádků prvního bludiště a C\ je počet jeho sloupců.
> Následuje R\ řádků, z nichž každý obsahuje C\ znaků. Tyto řádky

tvoří mapu bludiště. Počáteční pozice robota je označena písmenem
»X«, znak ».« představuje volné pole a znak »#« zeď. V popisu biu-
diště je právě jedno písmeno »X«.

t> Další řádek obsahuje celé číslo Gi (0 ^ Gi ^ 10). Toto číslo udává
počet strážců v prvním bludišti.

> Následuje Gi řádků, z nichž každý popisuje počáteční pozici jednoho
ze strážců. Každý z těchto řádků obsahuje tři celá čísla a jeden znak
navzájem oddělené mezerami. První dvě čísla představují řádkovou
a sloupcovou souřadnici strážce, třetí číslo počet polí jeho trasy a po-
slední znak počáteční nastavení směru pohybu strážce. Počet polí
tvořících trasu strážce je 2, 3 nebo 4. Poslední znak na řádku je jedno
z písmen »N«, »S«, »E«, »W« (north, south, east, west — nahoru, dolů,
doprava, doleva).
Vstupní soubor poté obsahuje popis druhého bludiště ve stejném

tvaru.

Příklad vstupního souboru: 5 4
####

#X.#

#. .#

. . .#

##.#

1

4 3 2 W

4 4

####

#. . .

#X.#

####

0

183

N

W E

S

Obr. 43

Výstupní soubor: robots.out
První řádek výstupního souboru musí být tvořen právě jedním ce-

lým číslem К (К ^ 10 000), které udává délku nalezené posloupnosti
instrukcí. Je zaručeno, že pokud existuje posloupnost instrukcí, která vy-
vede oba roboty z bludišť, potom existuje i taková posloupnost s nejvýše
10 000 instrukcemi. Následujících К řádků bude obsahovat vámi naleze-
nou posloupnost instrukcí. Každý z těchto řádků je tvořen jedním znakem
z množiny »N«, »S«, »E«, »W«. Pokud žádná taková posloupnost instrukcí
neexistuje, výstupní soubor bude obsahovat jediný řádek s číslem -1.

Oba roboti se musí po provedení posloupnosti instrukcí uvedené ve

výstupním souboru nacházet mimo bludiště. Poslední instrukce nalezené
posloupnosti musí být právě ta, po níž poslední robot (nebo oba najed-
nou) opustí bludiště.

Pokud existuje více optimálních řešení, můžete vypsat jedno libovolné
z nich.

Příklad výstupního souboru: 8
E

N

E

S

S

S

E

S

Omezení: Časový limit 2s CPU

Paměťový limit 64 MB

184

Hodnocení. Za testovací vstup, pro který neexistuje řešení, lze získat
pouze plný nebo nulový počet bodů. Ostatní testovací vstupy budou
hodnoceny, jak je popsáno níže.

Správnost: 20% bodů
Body za správnost získáte, pokud tvar výstupního souboru odpovídá

popisu uvedenému v zadání této úlohy, nalezená posloupnost instrukcí má
délku nejvýše 10 000, po jejím provedení se oba roboti nacházejí mimo svá
bludiště a poslední instrukce nalezené posloupnosti způsobí, že alespoň
jeden robot opustí své bludiště.

Optimalita: 80% bodů
Body za optimalitu získáte, pokud lze výstup považovat za správný

dle minulého odstavce a nalezená posloupnost instrukcí má nejmenší mož-
nou délku. V opačném případě nezískáváte za optimalitu žádné body.

6. Ohrada
Farmář Dan se rozhlíží po ohradě kolem svého čtvercového pole o roz-

měrech N x TV metrů (2 ^ й 500000), jehož mapu máte к dispozici.
Protilehlé rohy ohrady mají na mapě souřadnice (0,0) a (N, N) a hranice
pole jsou rovnoběžné s V-ovou a У-ovou osou.

Pletivo ohrady je upevněno na mnoha kůlech. V každém rohu je umis-
těn jeden kůl a podél každé strany pole jsou kůly umístěny vždy v roze-

stupech po 1 metru. Celkem tedy ohrada obsahuje 4N kůlů. Kůly jsou
svislé a jejich průměr považujeme za nulový. Dan chce určit, kolik kůlů
uvidí ze zvolené pozice uvnitř svého pole.

Pole si můžeme představovat jako rovinu, na které se nachází R
(1 5Í R ^ 30 000) skal, které Danovi omezují výhled. Skály mají podobu
kolmých hranolů, jejichž podstavy mají tvar konvexních mnohoúhelníků.
Skály jsou na poli umístěny tak, že stojí na své podstavě. Skály se navzá-
jem neprotínají ani nedotýkají a ani se nedotýkají ohrady. Pozice farmáře
Dana je zvolena tak, že se nedotýká ani jedné ze skal nebo ohrady a Dan
ani na žádné skále nestojí.

Váš program obdrží rozměry pole, pozici farmáře Dana, umístění
a tvar jednotlivých skal. Vaším úkolem je spočítat, kolik kůlů lze ze
zadané pozice vidět. Farmář se rozhlíží do všech stran, tj. „vidí“ celý
interval 360°. Nevidí však ty kůly, mezi nimiž a jím se nachází některá ze
skal. Pokud vrchol podstavy skály leží přesně na spojnici kůlu a pozice
farmáře Dana, předpokládáme, že Dan tento kůl také nevidí.

Vstupní soubor: boundary. in
> První řádek souboru obsahuje dvě celá čísla N a R oddělená mezerou.

185

N (2 й N 'š 500 000) je délka jedné strany pole a R (1 ^ R й 30 000)
je celkový počet skal, které se nacházejí na poli.

> Další řádek vstupního souboru obsahuje dvě celá čísla X a Y oddě-
lená jednou mezerou. X a Y udávají souřadnice pozice farmáře Dana
uvnitř jeho pole.

> Zbytek vstupního souboru tvoří popis R skal, které se nacházejí na

poli:
K> Popis г-té skály začíná řádkem obsahujícím číslo pi (3 S Pi = 20),

které představuje počet vrcholů podstavy této skály.
h> Následuje pi řádků, z nichž každý obsahuje dvě celá čísla X a Y

oddělená jednou mezerou. Tato čísla udávají souřadnice vrcholů
podstavy skály proti směru pohybu hodinových ručiček.

Přiklad vstupního souboru:
100 1

60 50

(100,100)

Farmář Dan
5

*b70 40

75 40

80 40

80 50

70 60

t
Skála

(0,0)

Obr. 44

Povšimněte si, že podstava skály obsahuje tři kolineární vrcholy:
(70,40), (75,40) a (80,40).

Výstupní soubor: boundary, out
Výstupní soubor musí být tvořen jedním řádkem obsahujícím jedno

celé číslo. Toto číslo udává počet kůlů, které farmář vidí ze své pozice.

Příklad výstupního souboru: 319

Omezení: Časový limit ls CPU

Paměťový limit 64 MB

Hodnocení. Za každý testovací vstup obdržíte plný počet bodů, po-
kud váš program vytvoří správný výstupní soubor. V opačném případě
je testovací vstup hodnocen 0 body.

186

RNDr. Karel Horák, CSc.,
RNDr. Tomáš Pitner, Dr., doc. RNDr. Jaromír Šimša, CSc.,
RNDr. Jaroslav Švrček, CSc., doc. RNDr. Pavel Topfer, CSc.

RNDr. Jaroslav Zhouf, PhD.

PADESÁTÝ DRUHÝ ROČNÍK
MATEMATICKÉ OLYMPIÁDY

NA STŘEDNÍCH ŠKOLÁCH

Vydala Jednota českých matematiků a fyziků,
Žitná 25, 11710 Praha 1

jako svou publikaci č. 57-551-04
Sazbu programem T^X připravil Karel Horák

Vytisklo Polygrafické středisko
Univerzity Palackého v Olomouci

1. vydání
Praha 2004

ISBN 80-7015-960-X

■
■ ■ ‘

.
. ;' *='

gMfc.flč •• Л./';'

■•; 0 -’. .

-*'• %
"■■ .. >

,

к|Г;1 J

к

matematická
olympiáda

iff

ISBN ŮD-VOlS-^bQ-X

ISBN 80-7015-960-Х 9 788070 159606

