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O prubéhu 53. rocniku matematické olympiady

Hlavnimi pofadateli 53. ro¢éniku matematické olympiady, ktery se usku-
tecnil ve skolnim roce 2003/04, byly podobné jako v letech predeslych
Ministerstvo skolstvi, mladeze a télovychovy CR, Jednota ¢eskych ma-
tematikt a fyziktt a Matematicky ustav akademie véd CR. Organizaci
soutéze byl povéien Ustfedni vybor MO, jehoz predsedou je doc. RNDr.
Jaromir Simsa, CSc. Garanci za chod soutéZe v kategoriich A, B, C, Z
a P pak pfebiraji pfislusni mistopiedsedové UV MO, a to RNDr. Jaroslav
Svré¢ek, CSc., doc. RNDr. Pavel Tlusty, CSc., a doc. RNDr. Pavel Tépfer,
CSc. Funkci tajemnika UV MO vykonaval i v tomto roéniku soutéze
RNDr. Karel Hordk, CSc.

Stejné jako v predeslych letech jsou vybérem uloh pro jednotliva kola
matematické olympiddy v jednotlivych kategoriich povéfeny dvé tlohové
komise — jedna pro kategorie A, B a C, druhd pro kategorie Z. Obé
komise pfipravuji ilohy s ro¢nim predstihem a ¢lenové povéreni garanci
nad jednotlivymi kategoriemi v jednotlivych ro¢nicich soutéze pripravuji
t0z komentafe k tloham I. kola. V prubéhu 53. ro¢niku MO byli ga-
ranty jednotlivych kategorii RNDr. Jaroslav Svréek, CSc. (kategorie A),
doc. RNDr. Pavel Novotny, CSc. (kategorie B) a RNDr. Jaroslav Zhouf,
Ph.D. (kategorie C).

Obé¢ komise se schazeji pravidelné dvakrat béhem skolniho roku, a to
vzdy v listopadu a v kvétnu. Ulohy viech kol kategorie P pfipravili pro
tento ro¢nik soutéze pfipravil tym pracovniku z MFF UK pod vedenim
doc. Topfera.

Na rozdil od predeslého, 52. roéniku MO bylo zajisténi vSech kol sou-
téze provedeno s velkym c¢asovym predstihem, takze v prubéhu 53. roc-
niku se nevyskytly témér zadné komplikace. Oba letaky i komentare
k tloham I. kola se dostaly do skol véas. Ucitelé matematiky méli
navic moznost seznamit se se zadanim uloh I. kola 53. roéniku MO
jesté pred zahdjenim nového skolnitho roku prostfednictvim ¢asopisu
Matematika—fyzika—informatika, na jehoz strankach vzdy v poslednich
dvou dcislech jednotlivych roénika vychéazeji texty tloh 1. kola pro nad-
chazejici ro¢nik MO.



Ustfedni vybor matematické olympiady se sesel béhem tohoto roé-
niku na dvou jednodennich zasedédnich, a to 12. prosince 2003 v Praze
a podruhé tradicné u prilezitosti celostatniho kola kategorii A a P —
29. brezna 2004 v Prerové. Na obou zasedanich byly kromé pravidelnych
bodu programu teSeny i nékteré otazky tykajici se predevsim prubéhu
pristich ro¢nikt matematické olympiady.

Celostatni III. kolo 53. ro¢niku matematické olympiady v katego-
riich A a P se uskutecnilo 28. bfezna— 3. dubna 2004 v Pierové. Ustfedni
vibor MO povéiil organizaci I11. kola Gymnazium Jakuba Skody v Pfero-
vé. Vedeni skoly ve spolupraci s Prirodovédeckou fakultou Univerzity Pa-
lackého v Olomouci, olomouckou pobockou JCMF a piedstaviteli mésta
Prerov vytvorilo pro soutéz mimoradné kvalitni podminky. Vsichni sou-
tézici (43 v kategorii A, 30 v kategorii P) a pozvani hosté byli ubyto-
vani v luxusnim hotelu Jana, v jehoz konferenc¢nich sélech se uskutecnilo
III. kolo kategorie A, teoreticka ¢ast III. kola kategorie P a také zasedéni
UV MO. Prakticka ¢ast III. kola kategorie P pak probéhla ve speciali-
zovanych ucebnach nedalekého Gymnézia J. Skody. Zejména soutézicim
tak byly pripraveny pro vlastni soutéz takika idealni podminky. O mimo-
radné zdafily priubéh celého III. kola soutéze se postaral také organizaéni
tym uditeltt matematiky Gymnazia Jakuba Skody v Pierové pod vedenim
feditele skoly Mgr. Jana Rasky.

Oficidlni zahédjeni soutéze probéhlo v nedéli 28. brezna 2004 v prosto-
rach starobylé auly gymnézia Jakuba Skody za pfitomnosti prof. RNDr.
Lubomira Dvordka, CSc., dékana PiF UP v Olomouci, prof. RNDr. Karla
Segetha, CSc., feditele MU AV CR, doc. RNDr. Jitiho Vanzury, CSc.,
Jindricha Valoucha, starosty mésta Prerova, a dalsich vyznamnych pred-
staviteli spolecenského zivota Olomouckého kraje a mésta Prerova.

Poradatelé zajistili pro ac¢astniky obou III. kol v kategorii A i P hod-
notny doprovodny program. Soutézici obou kategorii navstivili pferovské
Muzeum J. A. Komenského, které se pysni predevsim ojedinélou sbirkou
ucebnic a uebnich pFedméti jiz z dob Rakouska-Uherska, a to aZ po ne-
prilis vzdalenou minulost. Vzdy druhy soutézni den odpoledne absolvovali
soutézici autobusovy zéjezd do blizkého okoli. Ugastnici kategorie A méli
slouzil jako letni sidlo olomouckych arcibiskupt, a rozsahlou zficeninu
hradu Helfstyn. Soutézici kategorie P pak absolvovali polodenni zajezd
za pamatkami mésta Olomouce spojeny s navstévou blizkého Svatého
Kopecku. V ramci III. kola probéhla pro ucastniky soutéze na hostitel-
ském gymnaziu zajimava prezentace matematického softwaru MATHE-
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MATICA americké firmy Wolfram Research, kterou u nas zastupuje praz-
ska firma Elkan.

Cenu profesora Zelinky za originalni feseni ve vysi 5 000 K¢, kterou jiz
podruhé vénoval Igor Puzanov, absolvent byvalého matematického gym-
nazia W. Piecka v Praze, ziskal Martin Selecky z Gymnézia B. Némcové
v Hradci Kralové za hezké a originalni feseni paté ulohy celostatniho ko-
la. Zvlastni cenu dékana PFF UP v Olomouci za jediné bezchybné feSeni
z Gymnézia v Brné na tf. Kpt. Jarose.

Hned v nésledujicim tydnu 5.-9. dubna probéhlo v Kostelci nad Cer-
nymi lesy vybérové soustiedéni ¢lenu ceského reprezentacniho druzstva
pred 45. MMO. Na toto soustfedéni bylo pozvano vSech devét vitézu
III. kola kategorie A. Na zakladé jejich vysledk na tomto soustredéni
a ve IL. a ITI. kole bylo Sest nejlepsich vybrano do ¢eského reprezentaéniho
druzstva pro 45. MMO. Podrobnou informaci o 45. mezindrodni mate-
matické olympiadé a o 16. mezinarodni olympiadé v informatice najdete
v piislusnych kapitolach této rocenky.

Pro nejlepsi fesitele krajskych kol v kategoriich B a C usporadal UV
MO od 1. do 8. ¢ervna tradi¢ni soustfedéni v Jevicku. Zucastnilo se ho
40 zaku z celé republiky. Podobné pro nejlepsi resitele kategorie A uspo-
4dal UV MO v Janskych Laznich 12.~18. zafi soustfedéni §irsiho vibéru
zaka pred 46. MMO.

Ustfedni vybor matematické olympiady v Ceské republice si dovoluje
na tomto misté podékovat vSem sponzorum za poskytnuti hodnotnych
cen pro nejlepsi fesitele III. kola v kategoriich A a P, predevs§im pak
prerovské firmé Emos a prazské firmé Elkan. UV MO dale dékuje prerov-
skym akciovym spole¢nostem Emos a Hanacka kyselka a prazské akciové
spolecnosti Tezas za jejich podporu v souvislosti se zajiSténim jednotného
obleceni ¢lent Ceského reprezentacniho druzstva na 45. MMO. Podéko-
vani patii téz prazské firmé Elkan, ktera se vyraznou finanéni podporou
zaslouzila o vytisténi této rocenky.

Vyznamnym ocenénim nasich ispé$nych olympionikt se uz tradiéné
stava Preemium Bohemiz, které vzdy 4. prosince udéluje Nadace B. Jana
Horacka Ceskému raji. V tomto roce byli mezi ocenénymi ve studentské
kategorii Frantisek Konopecky a Jan Molacek (25000 K¢é za stiibrnou
medaili na 45. MMO), Daniel Marek a Petr Skoda (25000 K¢ za stiibr-
nou medaili na 16. IOI), Vitézslav Kala a Jaromir Kuben (15000 K¢ za
bronzovou medaili na 45. MMO)



Projev piedsedy Ustiedniho vyboru MO
pri slavnostnim zahajeni tustfedniho kola 53. roéniku MO v Pferové

Damy a panové, vazeni hosté, mili soutézici,

ukolem organizatoru kazdého soutézniho zapoleni je pripravit pro jeho
ucastniky vhodné a dustojné podminky, které v pripadé sportovnich sou-
tézi zahrnuji regulérni hiisté s vhodnym vybavenim a tym spravedlivych
rozhodcich. Pro nasi matematickou olympiadu potfebujeme misto spor-
tovniho nacini pékné, dostateéné puvodni a neottelé tlohy, na kterych
si vy, mladi soutézici, vyzkousite svoje znalosti, diuvtip a tvirdl invenci.
Véfim, ze vam feSeni takovych tiloh prinasi mnoho radosti a vzruseni,
byt z malych, ale pfekvapivych a krasnych objevii. Tak se uZ na stiedni
skole presvédcujete, ze matematika je nevycerpatelné rozmanitd a Zivouci
védecka disciplina, ve které je stale mnoho prostoru pro dal$i badéani.

Jsem velmi rad, ze posledni slova mohu potvrdit oznamenim nového
vyznamného vysledku, ktery byl pri lonském tustfednim kole pouhou hy-
potézou, tiebaze starou vice nez 150 let. Cisla 8 a 9 jsou jedinou dvojici
po sobé jdoucich prirozenych cisel, ktera jsou obé mocninami priroze-
nyjch cisel. Cislo 8 je tieti mocninou &sla 2, &slo 9 je druhou mocninou
¢isla 3. V roce 2003 svycarsky matematik rumunského puvodu Preda
Mihailescu dokéazal, ze neexistuje zadna jind dvojice po sobé jdoucich
¢isel, z nichz kazdé by bylo druhou, tfeti, patou nebo vyssi (asi vite, pro¢
jsem vynechal ¢turtou) mocninou prirozeného ¢isla. Znamena to tedy, ze
rovnice a® — ¢? = 1 ma jediné FeSeni v oboru pfirozenych &sel a, b, ¢, d,
predpokladame-li, ze b > 1 a d > 1.

Mili soutézici, zitra a pozitii vam predlozime tlohy, které nebudete
resit desitky let, mésicu ¢i dna, ale pouze nékolik hodin. Budete tedy
bojovat nejen s obtiZnymi zadanimi, ale i s ¢asem. Pfeji vam vSem, abyste
obstali co nejlépe. Ustiedni kolo 53. roéniku MO prohlaguji za zahajené.



Tabulka 1
Poéty Zaku stfednich 3kol soutézicich v I. kole 53. roéniku MO

) Kategorie

Kraj . A B C P Celkem

s U|S U S U S U S U
Praha 151 54 | 128 43 177 115 19 16 475 228
Stredocesky 105 36| 99 41 118 85 18 17 340 179
Jihocéesky 75 35| 55 27 95 60 5 1 230 123
Plzensky 47 12| 43 14 193 61 3 3 286 90
Karlovarsky 30 9| 15 7 15 14 1 1 61 31
Ustecky 45 30| 39 19 68 47 3 3| 155 99
Liberecky 64 27| 35 8 85 68 8 8 192 111
Kralovéhradecky 52 31| 34 15 78 60 8 6| 172 112
Pardubicky 26 18 25 19 49 34 8 5 108 76
Vysocéina 55 41 50 37 100 80 15 10 220 168
Jihomoravsky 188 103 | 81 45 139 121 | 16 16| 424 285
Zlinsky 80 38| 75 21 93 46 6 6 254 111
Olomoucky 46 24| 43 13 54 46 2 2 145 85
Moravskoslezsky 32 12| 60 32 108 93| 20 20 220 157
CR 996 470 | 782 341 [ 1372 930 | 132 114 | 3282 1855

Tabulka 2
Poéty Zaku stfednich 3kol soutéZicich v II. kole 53. roéniku MO
) Kategorie
Kraj A B C P Celkem
S U s U S U|S U S U

Praha 54 25 43 9 101 44 16 11 214 89
Stredocesky 35 5| 41 5 Tro2T | 17 6 170 43
Jihocesky 35 3| 27 5 60 25 1 1 123 34
Plzensky 11 4| 14 4 58 24 3 1 86 33
Karlovarsky 9 2 7 2 14 5 1 0 31 9
Ustecky 30 2 16 0 39 8 3 0 88 10
Liberecky 27 0 8 2 29 13 8 4 72 19
Kralovéhradecky 31 10| 14 2 59 21 6 2 110 35
Pardubicky 16 4 18 3 33 12 5 3 72 22
Vysoéina 35 7| 22 2 70 17 7 3 134 29
Jihomoravsky 97 31 39 11 107 36 16 9 259 87
Zlinsky 37 9 21 3 46 27 6 3 110 42
Olomoucky 24 2| 13 3 44 12 2 1 83 18
Moravskoslezsky 12 71 32 8 93 17| 20 5 157 37
CR 453 111 | 315 59 830 288 | 111 49| 1709 507
S ... pocet vSech soutézicich U ... poclet Uspésnych fesitelt



Nejuspésnéjsi resitelé I1. kola MO
v kategoriich A, B, C a P

Z kazdého kraje a z kazdé kategorie jsou dle dostupnych vysledk uvedeni
vSichni uspésni Fesitelé, ktefi skoncili do desatého mista. Oznadeni G
znamena gymnazium.

soe0veseovecossee KrajPraha soeo0veovseoscessn
Kategorie A

. Alezandr Kazda, G Praha 6, Nad Aleji

. Pavel Kocourek, SPSST, Praha 1, Panska
. Jan Martinek, G Ch. Dopplera, Praha 5
4.-11. Vdclav Potocek, SPSST, Praha 1, Panska
Martin Dolezal, G Praha 10, Omska

Jan Drasnar, G J. Keplera, Praha 6
Miroslav Hlavaé, G Ch. Dopplera, Praha 5
Martin Chudoba, G J. Heyrovského, Praha 5
Ondrej Kvapilik, G Ch. Dopplera, Praha 5
Mikulds Peksa, G Ch. Dopplera, Praha 5
Jan Skampa, G J. Keplera, Praha 6

[OVI NV

Kategorie B

1. Daniel Marek, G Ch. Dopplera, Praha 5
2.-3. Tomds Hejda, G Ch. Dopplera, Praha 5
Radek Zlebéik, G Ch. Dopplera, Praha 5
4. Ondrej Fremund, G J. Nerudy, Praha 1
5.~6. Vojtéch Horky, G Praha 6, Nad Aleji
Adam Prenosil, G Praha 3, Sladkovského nam.
7. Jan Papez, G Praha 8, Ustavni
8.-9. Josef Brechler, G Ch. Dopplera, Praha 5
Jan Verner, G Praha 9, Spitélska
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10.-11.
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Kategorie C

. Sdrka Gregorovd, G Praha 6, Nad Aleji
. Lukds Malina, G Ch. Dopplera, Praha 5
. Michal Jex, G J. Heyrovského, Praha 5

Tomds Kren, G Ch. Dopplera, Praha 5

. Michal Rolinek, G J. Keplera, Praha 6

Jiiit Vackdr, G Praha 8, Ustavni

. Tomd$ Bélka, G Praha 10, Vodéradska
. Tomds$ Tintéra, G Ch. Dopplera, Praha 5
. Pavel Brozek, G Praha 4, Pisnicka

Alena Kubikovd, G Praha 8, Ustavni
Jakub Mrva, G J. Heyrovského, Praha 5

Kategorie P

. Daniel Marek, G Ch. Dopplera, Praha 5
. Petr Skoda, G Praha 8, Ustavni
. Daniel Balas, G Praha 6, Arabska

Jdn Zahornadsky, G Ch. Dopplera, Praha 5

. David Matousek, G Ch. Dopplera, Praha 5
. Zdenék Sojka, SPSST, Praha 1, Panska

. Roman Smrz, G Praha 4, Ohradni

. Martin Bosdk, SPSST, Praha 1, Panska

Tomds Petricek, G Praha 6, Arabska
Martina Tomisovda, G Ch. Dopplera, Praha 5
Petr Sobéslavsky, G J. Heyrovského, Praha 5

seoecseeos Stfedofeskfykraj eecosceovevsovon

Kategorie A

. Jindrich Soukup, G Kladno, nam. E. Benese

Benjamin Vejnar, G Nymburk

. Martin Kozik, G Cesky Brod

Michal Richter, GaSPgS Céslav
Jan Virna, GJO Kutnd Hora
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Kategorie B

1. Lukas Herman, G dr. J. Pekare, Mlada Boleslav
2. Karolina Chmielovd, G BeneSov
4. Vaclav Gergelits, G BeneSov

Marek Scholz, G Neratovice

Kategorie C

1. Vdclav Samal, G Ricany
2. Eva Mysakovd, G Kolin
3. Petr Fojti, G BeneSov
4. Rudolf Rosa, G Kladno, ndm. E. Benese
5. Jiri Spale, G Sedléany
7. Tomas Hubdlek, G Kralupy
Jindrich Libovicky, G Kladno, ndm. E. Benese
8.-9. Pavel Beséec, G Beroun
Michal Holub, G Beroun
10.-11. Milo$ Broulik, G Mlada Boleslav
Tomads Tesar, G Pfibram

Kategorie P

. Petr Svec, G Beroun

. Jaroslav Havlin, GOA SedlCany

. Miroslav Frantes, G BeneSov

. Miroslav Kratochvil, G a SPedS Caslav
. Petr Balek, G Beroun

. Vojtéch Zehnalek, G BeneSov

D UL A W N

sooensoeesoesooocos Jholeskykraj ceevooeoevocsoesne
Kategorie A
1.-2. Lubomir Krémdr, G Ceské Budéjovice, Jirovcova

Martin Pildt, G Ceské Budé&jovice, Ceska
3. Jiri Vidclavik, G Strakonice

12



1

Kategorie B

. Eliska Leheckovd, G Ceské Budéjovice, Ceska

. Jirt Knize, G Strakonice

. Zuzana Bainovd, G Ceské Budéjovice, Jirovcova
Tomds Trnka, G Ceské Budéjovice, Jirovcova

. Vojtéch Dusek, G Ceské Budéjovice, Jirovcova

Kategorie C

. Adam Kabela, G Ceské Budéjovice, Jirovcova
. Radim Hosek, G Ceské Budéjovice, Jirovcova
. Jit{ Blazek, ZS Nerudova, Ceské Budéjovice
. Martin Houstecky, G Ceské Budéjovice, Ceska
Josef Spak, G Ceské Budéjovice, Jirovcova
. Karel Chuchel, G Ceské Budéjovice, Jirovcova
Jaroslav Icha, G Ceské Budéjovice, Jirovcova
Jakub Loucky, G Pisek
. Tomd$ Kouba, G Cesky Krumlov
Josef Pihera, G Strakonice
Martina Urbanovd, G Ceské Budéjovice, Jirovcova

Kategorie P

. Vladimir Cundt, G Ceské Budéjovice, Jirovcova

sov0ses00e0sooe Plzeliskjkraj sovacoocvoovoos

N R

Kategorie A

. Pavel Patdk, G Susice

. Martina Ullrichovd, G Plzeni, Mikulasské nam.
. Petr Cvachovec, G Plzen, Mikula$ské nam.

. Jirt Kohout, G Plzen, Mikula$ské nam.

Kategorie B
. Marie Dostdlovd, G St¥ibro
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2.-3. Vojtéch Kolomicenko, G Plzen, Mikulagské nam.
Vladimir Sirotek, G L. Pika, Plzen
4. Jan Sipek, G L. Pika, Plzen

Kategorie C

1.-2. Tereza Hlavdcovd, G Plzen, Mikulasské nam.
Dora Hordkovd, G Plzen, Mikulasské nam.
3.—4. Stépdn Kropik, SPS elektro, Plzer
Stanislav Simek, SPS elektro, Plzen
5. Jana Horovd, G Plzen, MikulaSské nam.
6.-9. Marek Engelthaler, SPS elektro, Plzeii
Lubomir Jurecka, SPS elektro, Plzei
Jan Sedldk, SPS elektro, Plzen
Radek Vozdk, G Plzen, Mikulasské ndm.
10.-15. Veronika Binderovd, G Plzen, Mikulasské nam.
Daniela Krupickovd, G Plzen, Mikulasské nam.
Petra Nozickovd, G Plzen, Mikulasské nam.
Krystof Touska, G Klatovy
Jan Vaclavik, G Plzen, Mikuldsské nam.
Michal Vahala, G Plasy

Kategorie P

1. Jan Bulanek, G J. Vrchlického, Klatovy

sesovosoeoseses Karlovarskykraj coveoecoceeooe

Kategorie A

—

. Eva Cernohorskd, Prvni ¢eské G Karlovy Vary
2. Petr Dohnal, G Sokolov

Kategorie B

—

. Petr Zdcek, SCHS Cheb
. Bva Cernohorskd, Prvni ¢eské G Karlovy Vary
3. Viadimir Hanzlik, Prvni ¢eské G Karlovy Vary

[\
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Kategorie C

1. Stépdn Masdk, Prvni ¢eské G Karlovy Vary

2. Radek Hdjek, G Cheb

3. Katerina Humplikovd, Prvni ¢eské G Karlovy Vary
4. Tomd$ Bendk, Prvni ¢eské G Karlovy Vary

5. Jakub Korselt, G AS

©ee 000000000000 Usteck)’fkraj ®2 6206000060060 60
Kategorie A

1. Tomds Franc, G Teplice, Cs. Dobrovolcii
2. Vojtéch Kaiser, G Usti nad Labem, Stavbait

Kategorie C

1.-2. Petr Sykora, G Décin, Komenského nam.
Jaroslav Vosdhlo, G Usti nad Labem, Stavbait
3. Pavel Eger, G TGM Litvinov
4. Martin Obr, G Chomutov
6. Jan Reznicek, G Lovosice
Petr Trilety, G Décin, Komenského nam.
. Michal Merganié, G Duchcov
. Daniel Simsa, G J. Jungmanna, Litoméfice

o 3

svoeoeceosooves Libereckykraj s o evsoosevoecososse
Kategorie A

1. Petr Pisa, G a SPeGS Liberec, Jeronymova

2. Michal Kollert, GFXS, Liberec

4

. Lukds Jezek, GFXS, Liberec
Miroslav Kloz, GFXS, Liberec

15



Kategorie B

. Jan Hrnéir, GFXS, Liberec

2. Michal Vaner, G Turnov

=N

o ® 0@

W N
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Kategorie C

. Vaclav Koucky, G Tanvald

. Petr Pavli, SPSSE, Liberec

. Veronika Pocerovd, GFXS, Liberec
. Tomds Kobrle, G Jilemnice

Lukads Nykryn, G Jablonec, U Balvanu

. Hana Schaabovd, G Dr. Randy, Jablonec n. N.
. Michal Hanis, G Frydlant

Antonin Hoskovec, G Jablonec, U Balvanu
Jakub Chmelar, GFXS, Liberec
Veronika Muzickovd, G Dr. Randy, Jablonec n. N.

Kategorie P

. Michal Vaner, G Turnov
. Jiri Schejbal, G Turnov
. Michal Tuldcek, G Liberec, Jeronymova

Jan Kolomaznik, G Turnov

ovewvoeoe Kralovéehradeckykraj oo o e oo o000

Kategorie A

. Jan Molacek, GJKT, Hradec Kralové

. Martin Selecky, G B. Némcové, Hradec Krélové
. Radek Moravec, G B. Némcové, Hradec Kralové
. Ivo Machek, GJKT, Hradec Krélové

Jan Marek, G B. Némcové, Hradec Krélové

. Michal Cernohorsky, G B. Némcové, Hradec Kralové

Jan Ondrus, GFMP, Rychnov nad Knéznou
Filip Studnicka, G B. Némcové, Hradec Kralové
Libor Siminek, GIKT, Hradec Kralové



10.

Pavel Spryriar, G B. Némcové, Hradec Kralové

Kategorie B

. Jan Voltr, GJKT, Hradec Kralové
. Vendula Uchytilovd, GJKT, Hradec Kralové

Kategorie C

. Pavel Kuchyria, G B. Némcové, Hradec Krélové

Martin Petr, GJKT, Hradec Kralové

. Jakub Dunddlek, JG Nachod
. Miloslav Jdra, JG Nachod

Pavlina Kratoskovd, G B. Némcové, Hradec Krélové

. Marek Buday, G B. Némcové, Hradec Krélové

Matéj Kouba, G Hostinné

. Katerina Mudroniovd, GJKT, Hradec Kralové

Jaroslav Stérba, GJKT, Hradec Kralové
Adam Martinek, GJKT, Hradec Kralové

Kategorie P

. Oto Petrik, G Vrchlabi

2. Petr Stovik, GJKT, Hradec Kralové

o e o 0

eeo0e0o0s0s9e Pardubickykraj s e o coooo0o0ecoeo

Kategorie A

. Tereza KlimoSovd, G LanSkroun
. Bdra Scholleovd, G Pardubice, Dasicka
. Vojtéch Novotny, G Chrudim

Marek Scholle, G Pardubice, Dasicka

Kategorie B

. Tereza Klimo$ova, G Lanskroun

17



2.
3.

1.
2.
3.
4.
5.
6.-7.

8.-10.

® e 0 e

Helena Sedivikovd, G Pardubice, Dasickéa
Kristyna Stodolovd, G Policka

Kategorie C

Marek Scholle, G Pardubice, Dasicka
Jirit Hajny, G Chrudim

Jiri Havran, G Policka

Kristyna Hrdinovd, G Zamberk

Eva Dobesovd, G Jevicko

Lenka Balouskovd, G Pardubice, Dasicka
Michal Lerio, G Vysoké Myto

Miroslav Klimos$, G Lanskroun

Z. Mudrurkovd, G Pardubice, Dasicka
Lubomir Stépdnek, G Pardubice, Dasicka

Kategorie P

. Martin Dobroucky, G Moravska Ttebova
. Jind¥ich Flidr, G Lanskroun
. Petr Pascéenko, G Pardubice, Dasicka

soeovoveos KrajVysolina eeocoeooeosovossecoe

Kategorie A

. Ondrej Ktwdnek, G Ttebi¢
. Zdeneék Tichy, G Pelhfimov
. Ludék Gregor, GVM Nové Mésto na Moravé

Dominik Macads, G Bystfice nad Pern.

Petr Pravlovsky, G Jihlava
Kldra Sevéikovd, G Jihlava

Kategorie B

. Ondrej Hoferek, G Zdar nad Sazavou

2. Karel Lavicka, G Jihlava

18



10.-12.
10.-12.
10.-12.

Kategorie C

. Mirek Docekal, G Jihlava
. Helena Dvotdkovd, G Ttebi¢

Tomas Herceg, G Ttebic

. Barbora Stohanzlovd, HG Havlicktv Brod
. Dana Dohnalovd, HG Havlickiv Brod

Milan Dvordk, GVM Nové Mésto na Moravé
Jana Gajdosikovd, G Tiebic¢
Jan Korbel, G Jihlava

. Miloslav Sobotka, G Zdar nad Sazavou

Rostislav Striz, GVM Nové Mésto na Moravé
Karel Trojan, G Jihlava

Kategorie P

. Petr Baudis, G Ad Fontes, Jihlava

Martin Tomec, G Ttebic

. Martin Jonds, SPS Jihlava

so000009e0e Jihomoravskykraj eeececeosoeoeose

Kategorie A

. Vitézslav Kala, G Brno, tf. Kpt. Jarose
. Jaromir Kuben, G Brno, tf. Kpt. Jarose

Alexandr Picha, G Brno, t¥. Kpt. Jarose

. Tomds Hebelka, G Brno, Viderska
. Jan Kretinsky, GML Brno, Zizkova

Jan Novotny, G Brno, tf. Kpt. Jarose

. Jana Fabrikovd, G Brno, t¥. Kpt. Jarose

Pavel Troubil, G Brno, tf. Kpt. Jarose

. Sven Drazan, G Brno, tf. Kpt. Jarose

Jiri Krédl, G Brno, t¥. Kpt. Jarose

19



10.-11.
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Kategorie B

. Jaromir Kuben, G Brno, t¥. Kpt. Jaroge

Vojtéch Riha, G Brno, tf. Kpt. Jarose

. Alezandr Picha, G Brno, tf. Kpt. Jaroge

. Jakub Oprsal, G Brno, ti'. Kpt. Jarose

. Jiri Zelinka, G Brno, ti. Kpt. Jarose

. Jan Rygl, G Brno, tt. Kpt. JaroSe

. Martin Kvivdnek, G Brno, ti. Kpt. Jaroge
. Martin Ko¢i, G Brno, tf. Kpt. Jarose

Jakub Pracny, G Brno, tf. Kpt. Jarose

. Pavlina Novotnd, G Kyjov

Kategorie C

. Petr Bursik, G Brno, tf. Kpt. Jarose

Zbynék Konecény, G Brno, tf. Kpt. Jarose

. Lucie Fabrikova, G Brno, tf. Kpt. Jarose
. Jir{ Rihdk, G Brno, ti. Kpt. Jarose

. Petr Velan, G Brno, tf. Kpt. Jarose

. Petr Fiala, G Brno, tf. Kpt. Jarose

. Petra BureSovd, G Brno, tf. Kpt. Jarose

Tomas Jelinek, G Brno, tf. Kpt. Jarose
Lenka Kosartovd, G Brno, t¥. Kpt. Jarose
Jan Kominek, G Brno, tf. Kpt. Jarose
Jan Kovdr, G Brno, tt. Kpt. Jarose

Kategorie P

. Jiri Stépdnek, G Brno, tf. Kpt. Jarose
. Martin Vejndr, G Brno, tf. Kpt. Jarose
. Martin Ktiwdnek, G Brno, tt. Kpt. Jarose

Pavel Troubil, G Brno, tf. Kpt. Jarose

. Krystof Hoder, G Brno, tt. Kpt. Jarose
. Jana Fabrikova, G Brno, tf. Kpt. Jarose
. Jiri Zelinka, G Brno, tf. Kpt. Jarose

. Martin Lopatdr, G Brno, tf. Kpt. Jarose
. Jiri Appl, G Brno, Vejrostova



® ® 0 0

ooenenvoevsse Zlinskykraj ececosseccsocssns

Kategorie A

. Marek Pechal, G Zlin, Lesni ¢tvrt

. Stanislav Basovnik, G Kromériz

. Frantisek Konopecky, G L. Jarose, Holesov
. Martin Dungl, G Krométiz

Milan Prochdzka, SPSE, Roznov pod Radhostém

. Ales Holub, G Uherské Hradisté

Jan Olsina, G Kromériz
Milan Peceria, G Zlin, Lesni ¢tvrt

. Pavel Salom, G Roznov pod Radhostem

Kategorie B

. Pavel Salom, G Roznov pod Radhostem
. Jan Vidna, G Zlin, Lesni ¢tvrt
. Lukd$ Strnad, G Kromériz

Kategorie C

. Petr Dlabaja, G L. Jaro$e, HoleSov

Martin Tesar, G Zlin, Lesni &tvrt
Jan Urban, G Zlin, Lesni &tvrt

Tomds$ Ehrlich, G L. Jarose, Holesov
Tereza Pechovd, GaOA Valasské Klobouky
Roman Stachori, G Kromértiz

Daniela Veseld, G Zlin, Lesni étvrt

Kategorie P

. Ondiej Bilka, G Zlin, Lesni ¢tvrt
. Stanislav Basovnik, G Kromériz
. Jan Zimmermann, G Zlin, Lesni &tvrt
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cooeosoevsoose Olomouckykraj sevescooovocaose
Kategorie A

1. Jana Hrudikovd, GJS, Pierov
2. Jana Sedldckovd, GJS, Pierov

Kategorie B

1. Jan Srdmek, GJS, Prerov
2.-3. Marek Snyrch, SGO, Olomouc
Zdenék Cernohouz, SGO, Olomouc

Kategorie C

1. Anezka Faltynkovd, GIJS, Pferov
2. Veronika Kuncovd, G Uniov
4. Jakub Zouhar, SGO, Olomouc
Jakub Krizan, GJW, Prostéjov
5. Simona Machdcovd, GJS, Pferov
6.—12. Martin Falticko, SGO, Olomouc
Tomas Javirek, G Jesenik
Ondrej Klabal, GIW, Prostéjov
Markéta Paloncyovd, G Sumperk
Martin Poklop, SGO, Olomouc
Jan Sluse, SPSS, Olomouc
Jakub Suchy, G Sumperk

Kategorie P

1. Jan Matousek, GJW, Prostéjov

EEEEEEREEEEEX) Moravskoslezsk)'rkraj EEEEEEEREEXRX
Kategorie A

1. Tomds Gavenciak, GMK, Bilovec
2. Jaroslav Hancél, GMK, Bilovec

22
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. Jan Uhlik, GMK, Bilovec
. Pavel Motloch, G P. Bezruce, Frydek-Mistek

Vojtéch Skubanié, GMK, Bilovec

. Zuzana Safernovd, GMK, Bilovec

Josef Toman, GMK, Bilovec

Kategorie B

. Hanél Jaroslav, GMK, Bilovec

. Kubetta Adam, GMK, Bilovec

. Uhlik Jan, GMK, Bilovec

. Motloch Pavel, G P. Bezruce, Frydek-Mistek
. Kunéar Jiri, GMK, Bilovec

Zagjac Vit, G Bruntal

. Zabensky Josef, GMK, Bilovec
. Stambachr Jakub, G Ostrava-Poruba, Cs. exilu

Kategorie C

. Sebetovsky Jan, SOS, Kopfivnice

Stufka Miroslav, GMK, Bilovec

. Kuchar Martin, G Karvina, Mirova

Zednik Lukds, G Martinska étvrt

. Slovak Petr, G P. Bezrude, Frydek-Mistek
. Hadamcik Lukds, Mendelovo G

Princ Tomds, G Ostrava-Poruba, Cs. exilu

. Jeziorsky Tomas, GMK, Bilovec

Koval Jakub, G Karvina, Mirova
Tomala Jiri, GMK, Bilovec
Zezula Adam, G P. Bezruce, Frydek-Mistek

Kategorie P

. Tomas Gavenciak, GMK, Bilovec

. Pavel Motloch, G P. Bezruce, Frydek-Mistek
. Ondrej Mdjek, GMK, Bilovec

. Michal Senkyr, GMK, Bilovec

. Vilém Sustr, GMK, Bilovec
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Vysledky celostatniho kola 53. roéniku MO
kategorie A

Vitézove

1.-2. Alezandr Kazda, 8/8, G Praha 6, Nad Aleji 42b.
Pavel Kocourek, 3/4, SPSST, Praha 1, Panska 42b.

3.-5. Frantisek Konopecky, 7/8, GLJ HoleSov 41b.
Jaromir Kuben, 2/4, G Brno, t¥. Kpt. Jarose 41b.

Jan Molacek, 4/4, GJKT, Hradec Kralové 41b.

6. Vitézslav Kala, 4/4, G Brno, tf. Kpt. Jarose 39b.
7.-9. Sven Drazan, 4/4, G Brno, tf. Kpt. Jarose 38b.
Tomads Gavenciak, 4/4, GMK Bilovec 38b.
Marek Pechal, 6/8, G Zlin, Lesni ¢tvrt 38b.

Dalst uspésni tesitelé

10.-11. Jana Fabrikovd, 4/4, G Brno, tf. Kpt. Jarose 30b.
Jan Kretinsky, 8/8, GML Brno, Zizkova 30b.

12.-13. Jakub Oprsal, 2/4, G Brno, tf. Kpt. Jarose 28b.
Michal Rychnousky, 3/4, G Brno, t¥. Kpt. Jarose 28b.

14.-15. Stanislav Basovnik, 7/8, G Kroméfiz, Masarykovo ndm. 23b.
Jan Uhlik, 2/4, GMK Bilovec 23 b.

16.-17. Tomds Hebelka, 8/8, G Brno, Vidernska 22b.
Alezandr Picha, 2/4, G Brno, tt. Kpt. JaroSe 22b.

18. Ondrej Krivdnek, 7/8, G Ttebi¢, Masarykovo nam. 19b.
19.-21. Tereza KlimosSovd, 8/8, G Lanskroun 18b.
Ivo Machek, 4/4, GJKT, Hradec Krélové 18b.

Radek Moravec, 5/6, GBN, Hradec Kralové 18b.
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10.
11.-12.

13.-14.

Vysledky celostatniho kola 53. roéniku MO
kategorie P

Vitézové

. Daniel Marek, 2/4, G Ch. Dopplera, Praha
. Martin Vejnar, 3/4, G Brno, tf. Kpt. Jaroge
. Jindrich Flidr, 8/8, G Lanskroun

Krystof Hoder, 4/4, G Brno, tt. Kpt. Jarose
Petr Skoda, 8/8, G Praha, Ustavni

. Tomd$ Gavenciak, 4/4, G M. Kopernika, Bilovec

David Matousek, 8/8, G Ch. Dopplera, Praha 5

Dalst dspésni fesitelé

. Ondrej Majek, 4/4, G M. Kopernika, Bilovec

Oto Pettik, 6/8, G Vrchlabi

Martin Dobroucky, 7/8, G Moravska Ttebova
Ondrej Bilka, 2/4, G Zlin, Lesni ¢tvrt

Pavel Troubil, 4/4, G Brno, tf. Kpt. Jaroge
Zdenék Sojka, 4/4, SPSST, Praha 1, Panska
Jirt Stépdnek, 4/4, G Brno, t¥. Kpt. Jarose

36b.
35b.
33b.
33b.
33b.
30b.
30b.

©29b.

29b.
28 b.
26b.
26b.
24b.
24b.
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Kategorie C

Texty uloh

C-1-1

Dokazte, ze pro kazdé prirozené Cislo n, které je vétsi nez 3 a neni dé-
litelné tfemi, plati: Sachovnici n x n lze rozfezat na jeden &tverec 1 x 1
a obdélniky 3 x 1. (J. Zhouf)

C-1-2

Je déan obdélnik ABC D. Necht pfimky p a q, které prochazeji vrcholem A,
protinaji polokruznice vné pripsané stranam BC a C D daného obdélniku
po fadé v bodech K a L (B # K # C # L # D) a rovnéz strany BC
a CD po fadé v bodech P a @ tak, Ze trojihelnik ABP m4 stejny obsah
jako trojihelnik KCP a zaroven trojuhelnik AQD ma stejny obsah jako
trojuhelnik CLQ. Dokazte, ze body K, L, C lezi na téze primce.

(J. Svrcek)

C-1-3

Zak mél vypocitat pitklad X - Y : Z, kde X je dvojmistné &islo,
Y trojmistné ¢islo a Z trojmistné ¢islo s ¢islici 2 na misté jednotek.
Vysledkem piikladu mélo byt pfirozené &islo. Zak vsak tecku piehléd]
a souéin X - Y chépal jako pétimistné cislo. Ziskal tak sedmkrat vétsi
vysledek, nez mél vyjit. Jaky ptiklad mél zak pocitat? (P. Cernek)

C-1-4

Necht P je libovolny vnitini bod rovnostranného trojuhelniku ABC'. Uva-
7zujme obrazy K, L a M bodu P v osovych soumérnostech s osami AB,
BC a CA. Uréete mnozinu vsech bodit P takovych, Ze trojthelnik K LM
je rovnoramenny. (J. Zhouf)
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C-1-5

Prirozené ¢islo nazveme magickym, pravé kdyz je lze rozlozit na soucet
dvou trojmistnych ¢isel zapsanych stejnymi ¢éislicemi, ale v opa¢ném po-
fadi. Napriklad ¢islo 1413 je magické, nebot plati 1413 = 756 + 657,
nejmensi magické ¢islo je 202.

a) Urcete pocet vSech magickych cisel.

b) UkaZte, Ze soudet vSech magickych &isel je roven 187000. (J. Simsa)

C-1-6

Ze vsech ¢tyrtuhelnika, jez lze vepsat do kruznice o daném poloméru r
a které maji dvé strany dané délky m, urcete ten, ktery ma nejvétsi obsah.

(P. Leischner)

C-S-1
Urcete pocet vSech trojmistnych ¢isel, kterd jsou devatenactkrat vétsi
neZ soucet jejich &islic. (J. Simsa)
C-S§-2

Je dan étverec o strané délky 5cm. Mezi vSemi ¢tyftahelniky, které lezi
v tomto Ctverci tak, ze dvé jejich strany maji délku 2 cm a lezi na hranici
Ctverce, urcete vSechny ty, které maji maximalni obsah. (P. Leischner)

C-S-3

Dlazdicky A slozené ze t¥i jednotkovych ¢tverct maji tvar &, dlazdicky B
slozené ze &tyt jednotkovych ¢tvercti maji tvar cih. Kolik dlazdicek jednot-
livych typt potfebujeme na vydlazdickovani ¢tverce o strané 6 jednotek?
Pro kazdy moZny podet dlazdicek uvedte piiklad takového pokryti.

(J. Féldes)

C-n-1

V roviné je dan obdélnik ABCD, kde |[AB| = a < b = |BC|. Na jeho
strané BC existuje bod K a na strané CD bod L tak, Ze dany obdélnik
je tseckami AK, KL a LA rozdélen na ¢tyfi navzajem podobné trojihel-
niky. Uréete hodnotu poméru a : b. (J. Svrcek)
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C-1-2

Najdéte vsechny trojice prvocisel p, ¢ a r, pro které plati

u 516
p q r

(P. Novotny)
C-1-3

Do kruznice o poloméru r = 6 vepiste osmithelnik ABCDEFGH, jehoz
strany AB, CD, EF a GH maji po fadé délky 3, 4, 5 a 6 a strany BC,
DE, FG a HA jsou shodné. (P. Novotny)

C-1-4

Zéaci méli vypoditat piiklad = + y - z pro trojmistné &slo = a dvojmistna
¢isla y a z. Martin umi nasobit a s¢itat ¢isla zapsana v desitkové soustavé,
zapomnél v8ak na pravidlo o pfednosti nasobeni ptred séitanim. Proto mu
sice vyslo zajimavé Cislo, které se Cte stejné zleva doprava jako zprava

doleva, spravny vysledek byl ale o 2004 mensi. Urcete éisla z, y a z.
(J. Simsa)
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ReSeni tloh

C-1-1

Budeme-li pfemyslet, jak navrhovat postupy fezéni Sachovnic velkych
rozméru, jisté nas napadne myslenka, ze na obdélniky 3 x 1 lze rozfezat
kazdy ,,pas* Sachovnice tvoreny tfemi sousednimi radky nebo sloupci.
Takové pasy se proto vyplati od Sachovnice opakované odfezavat (dokud
je to mozné), a tak zmensovat jeji rozméry o nasobky tfi. Proto bude pro
nasi tlohu o Sachovnici n x n vyhodné rozlisit, zda dané ¢islo n > 3 dava
pfi déleni tfemi zbytek 1, anebo zbytek 2 (zbytek 0 je zadanim vyloucen).
Kazdy z téchto ptipadl prozkoumame oddélené.

Pripad n = 3k + 1. Nejprve z Sachovnice (3k+1) x (3k+ 1) odfezeme
pés prvnich 3k sloupct, tedy obdélnik (3k+1) x 3k, ktery pak rozfezeme
(po trojicich sloupci) na k péast (3k + 1) x 3 a kazdy z nich koneéné
roziezeme na 3k + 1 obdélnika 1 x 3. Z puvodni Sachovnice nam pak
zustane neroziezdn posledni sloupec; protoze méa 3k + 1 poli, snadno
ho rozfezeme na jeden ¢tverec 1 x 1 a k obdélnikii 3 x 1. Na obr.1 je
znazornéno vysledné rozfezani Sachovnice 7 x 7 (poéatecni odfezani pasu
7 x 6 je vyznaceno Sipkami, zbyly sloupec je Sedy). Ze stejného obrazku
nahlédneme i zpusob FeSeni pro n = 4.

Obr. 1

Pripad n = 3k+2. Kdybychom Sachovnici (3k+2) x (3k+2) dtsledné
sorezavali“ postupem z ivodu FeSeni, dostali bychom (po oddéleni dvou
péast (3k + 2) x 3k a 3k x 2) jako zbytek Sachovnici 2 x 2, kterou vsak
neni mozné roziezat pozadovanym zpusobem (na dily 1 x 1 a 3 x 1). To
je mozné provést az s ,nasledujici“ Sachovnici 5 x 5, jak vidime na obr. 2.

Zbyva popsat, jak kazdou vétsi Sachovnici (3k +2) x (3k+ 2) fezanim
zredukovat na pravé posouzeny ¢tverec 5 x 5. Nejprve oddélime pés (3k +
+ 2) x (3k — 3) tvofeny prvnimi (k — 1) trojicemi sloupci Sachovnice;
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Obr. 2 Obr. 3

ze zbylé Sachovnice (3k + 2) x 5 pak oddélime pas (3k — 3) x 5 tvofeny
jejimi poslednimi (k—1) trojicemi fadki, z pavodni Sachovnice pak zbude
kyzeny Ctverec 5 x 5 v pravém hornim rohu (Sedy na obr. 3 pro Sachovnici
8 x 8).

Dodejme, ze pti feSeni dané tilohy jsme nebrali v ivahu obarveni poli
Sachovnice. Barvy poli se uplatnuji v jinych situacich, zejména tehdy,
kdyz pottebujeme dokazat, Ze roziezani Sachovnice na dily pfedepsaného
tvaru neni mozné (dopliujici tlohy 4 a 5).

C-1-2

Trojthelniky ABP a KCP maji podle zadani stejné obsahy; pfipojime-li
ke kazdému z nich trojthelnik ACP (obr. 4), usoudime, Ze stejné obsahy
maji i trojuhelniky ABC a AKC. Protoze strana AC je obéma témto
trojuhelnikim spole¢nd, obé k ni prislusné vysky musi byt shodné. Body
B a K tudiz maji stejnou vzdalenost od pfimky AC (a lezi ve stejné
poloroviné touto pfimkou uréené). To znamend, ze BK | AC. Podle
Thaletovy véty ovSem plati BK | CK, takze plati rovnéz AC L CK.

L

Obr. 4

30



Podobné z rovnosti obsahii trojuhelniki AQD, CLQ a kolmosti pii-
mek CL a DL odvodime, ze AC | CL. Dohromady to znamen4, Ze uhel
KCL je slozen ze dvou pravych ahlt ACK a ACL. Body K a L tudiz
lezi na pfimce, ktera prochézi bodem C kolmo k thloptiéce AC.

C-1-3

Protoze Y je trojmistné ¢islo, pétimistné cislo se zapisem XY je ¢islo
1000X +Y. Zék tedy poéital ptiklad (1000X +Y) : Z a podle textu tlohy
mu v porovnani s pivodnim ptikladem vySel sedmkrat vétsi vysledek,

tedy
1000X +Y _ XY

Z Z
Odtud po néasobeni éislem Z dostaneme rovnici 1000X + Y = 7XY,
kterou vyfe$ime vzhledem k neznamé Y:

~1000X
X -1

Pro ktera X je posledni zlomek celoédiselny? Jinak vyjadfeno: kdy je
¢islo 1 000X délitelné ¢islem 7X — 17 Protoze ¢isla X a 7X — 1 jsou
nesoudélna (nesoudélnd jsou totiz dvé po sobé jdouci ¢isla 7X — 1 a 7X),
hledame ta X, pro ktera ¢islo 7X — 1 déli ¢islo 1000. Abychom nemuseli
vypisovat vSechny délitele ¢isla 1000, uvédomime si, ze X je dvojmistné,
tudiz 69 £ 7X — 1 £ 692. Rozlozme proto ¢&islo 1000 vSemi zpusoby
na soucin dvou d¢initeli tak, aby jeden (feknéme prvni) z c¢initelu byl
z intervalu (69, 692):

1000 =500-2=250-4=200-5=125-8 =100-10.
7 rovnic
7X—-1=500, 7X—-1=250, 7X—-1=200, 7X—-1=125, 7X -1 =100

mé jediné rovnice 7X —1 = 125 celodiselné feseni X = 18, pro néz vychazi
Y =1000X/(7X —1) = 1000 - 18/125 = 144.

Nyni uréime neznamé ¢islo Z. Vyuzijeme k tomu podminku tlohy, Ze
hodnota vyrazu X - Y : Z je pfirozené cislo. Protoze X = 18 a Y = 144,
jedna se o &islo 18 - 144 : Z, tedy &islo 2° - 3% : Z. Takové &slo je celé,
pravé kdyZ ma ¢islo Z rozklad na prvoéinitele tvaru 23°, kde 0 < a £ 5
a 0 £ b < 4. Exponenty a, b najdeme z podminky, Ze &islo Z = 223 je
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podle zadéni trojmistné a na misté jednotek ma &islici 2. Protoze 3% =
=812a2°-3 =96 musi byt a > 1 a b > 2. Viechna &sla 293%, kde
a€{1,2,3,4,5} abe {2,3,4}, ted vypiseme do tabulky:

a 1 2 3 4 5
2] 18 36 72 144 288
3| 54 108 216 432 864
4] 162 324 648 1296 2592

b

7 vypoctenych ¢isel maji pozadovanou vlastnost pouze ¢isla Z = 432 =
=213% a Z = 162 = 2134,

Odpoved': Uloha ma dvé fedeni. Zak mél pocitat bud piiklad 18-144 :
: 432, nebo priklad 18- 144 : 162.

Jiné FeSeni. Jako v prvnim FeSeni odvodime vyjadieni

1000X
Y
X -1’

tentokrat vsak ziskany zlomek upravime ¢aste¢nym vydélenim ¢isla 1 000
Cislem 7. Na zakladé rovnosti 1000 = 7 - 143 — 1 dostdvame

43(7X 1) + 143 - X 43 -
~1000X  143( ) + gy M3-X

Y_7X—1_ X -1 X -1

Aby bylo Y celé, musi byt posledni zlomek (143— X)/(7X —1) celo¢iselny.
Protoze ¢islo X je dvojmistné, nas zlomek spliuje odhady

143 — 99 - 143 - X - 143 — 10
7-99 -1 77X -1 7-10-1"

Levy zlomek je roven 44/692, pravy je roven 133/69, takZe jedind moznéa
celociselnd hodnota prostfedniho zlomku je rovna 1. Musi tedy byt Y =

= 144. Rovni :
ovnice 43— X

S |
7X —1

pak ma jediné feSeni X = 18. Déle uz postupujeme jako v prvnim feseni.

Dalsi feSeni. Dfive ziskanou rovnici 1 000X +Y = 7XY upravime do
sou€inového tvaruY = X - (7Y —1000). Musi proto platit 7Y —1 000 > 0,
odkud

Y > %)9 > 142, mneboli Y = 143.
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Cislo X je dvojmistné, proto z rovnosti Y = X - (7Y — 1000) vychézi
odhad

10000

Y 210- (7Y —1000), neboli Y < < 145.

Dohromady dostéavame, Ze ¢islo Y je rovno jednomu z Cisel 143 nebo 144.
Rovnice 143 = X - (7 - 143 — 1000) ma fesenl X = 143, coz ovSem neni
dvojmistné éislo; rovnice 144 = X -(7-144—1000) ma feSeni X = 18. Tak
jsme znovu ukézali, ze X = 18 a Y = 144, ¢islo Z urc¢ime jako v prvnim
feSeni.

C-1-4
Oznaéme o = | BAP|,0° < a < 60° (obr.5). Protoze thly BAP a BAK

C

Obr. 5

jsou soumérné sdruzené podle osy AB, plati rovnéz | xBAK| = a. Pro-
toze |xCAP| = |xCAB| — |xBAP| = 60° — «, ze soumérnosti podle
osy CA plyne rovnost |[xCAM| = 60° — a. Pro velikost thlu KAM
tudiz plati

| xKAM)| = |xBAK|+|xBAC|+|xCAM| = a+60°+(60° — ) = 120°.

Ze soumérnosti podle os AB a C'A rovnéz plynou rovnosti |[AK| = |AP| =
= |AM/|. Proto je trojahelnik K AM rovnoramenny a jeho thel pfi hlav-
nim vrcholu A mé velikost 120°. Podobné se zdtavodni, proé i trojihelniky
LBK a MCL jsou rovnoramenné a jejich vnitini thly pfi hlavnich vr-
cholech B a C maji velikost 120°.
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P¥i posuzovani podminky, Ze trojthelnik K LM je rovnoramenny, mu-
sime rozlisit, které z jeho stran K L, LM, M K jsou shodné. S ohledem na
symetrii rozebereme podrobné pouze pfipad, kdy |[KL| = |MK|. Z po-
dobnych rovnoramennych trojthelnikit K AM a LBK vyplyva, Ze jejich
zakladny M K a K L jsou shodné, pravé kdyz jsou shodnéa jejich ramena
AK a BK. Zapisme to pomoci délek usecek: rovnost |KL| = |M K| pla-
ti, pravé kdyz plati rovnost |AK| = |BK|, neboli rovnost |AP| = |BP].
Posledni rovnost oviem nastane, pravé kdyz bod P lezi na ose strany
AB. Obdobné se zjist] podminky ekvivalentni rovnostem |M K| = |LM|
a |KL|=|LM|.

Odpovéd: Trojuhelnik K LM je rovnoramenny, pravé kdyz bod P lezi
na aspoin jedné z os stran daného rovnostranného trojihelniku ABC.

Hledand mnozina je proto sjednocenim tii tsecek — vySek trojuhelniku
ABC (bez jejich krajnich bodu).

C-1-5

Na prikladu ¢isla 1413 vidime, Ze nékdy neni snadné poznat, zda dané
trojmistné ¢i Ctyfmistné cislo je magické ¢i nikoliv. Podivame se proto
nejdrive, jak se magické ¢islo z vyjadii pomoci éislic téch trojmistnych
&isel abe a cba, jejichz je soudtem:

x = abc + cba = (100a + 10b + ¢) + (100c + 10b + a) = 101(a + c) + 20b.

Vidime, Ze ¢islo x je uréeno ¢islicemi a, b, ¢ tak, Ze zavisi jen na b a na
sou¢tu a + c. Znamend to, Ze ruzné trojice ¢islic a, b, ¢ mohou urcovat
totéz magické ¢islo z (nemyslime tim pouze trojice lisici se vzdjemnou
vyménou ¢islic a a ¢). Je-li napf. a + ¢ = 14 a b = 9, najdeme tfi rizna
vyjadreni magického ¢isla 1594:

1594 = 599 4 995 = 698 4 896 = 797 4 797.

Existuji jesté jind ,magicka® vyjadfeni ¢isla 15947 Vse zavisi na tom,
zda jsou rovnici 1594 = 101s + 20b hodnoty souctu cislic s = a + ¢
a Cislice b jednoznacné urceny. Z rovnice ihned vidime, Ze ¢islo s konci
Cislici 4, takZe s = 4 nebo s = 14 (jiné hodnoty souctu s = a + ¢ nejsou
&islicemi a, ¢ dosazitelné). Zatimco hodnoté s = 14 odpovida (jak dobte
vime) hodnota b = 9, pro s = 4 dostaneme rovnici 1594 = 404 + 20b,
ktera nema celociselné feseni.

34



Pouceni uvedenym prikladem, pokusime se stanovit pocet magickych
Cisel jako pocet ¢isel tvaru « = 101s+ 20b, kde éislo s (rovné souctu ¢islic
a a ¢, jez jsou nenulové) probihd mnozinu {2, 3,4, ...,18}, zatimco dislice
b probihé (nezavisle na souctu s) mnozinu {0,1,2,...,9}. Protoze ¢islo s
nabyva celkem 17 riiznych hodnot a ¢islo b celkem 10 riznych hodnot, je
pocet viech dvojic (s,b), které mizeme do vzorce z = 101s+ 20b dosadit,
roven ¢islu 17-10 = 170. Ukazeme-li nyni, Ze po dosazeni libovolnych dvou
ruznych dvojic (s1,b1) a (s2,b2) dostaneme dvé riznd magicka cisla

r1 = 101s1 +20b; a x5 = 101s9 + 20b9,

bude to znamenat, ze pocet vSech hodnot z (tedy pocet vsech magickych
¢isel) je rovnéz roven &islu 170.

Pfipustme, Ze pro nékteré dvojice (s1,b1) a (s2,b2) plati z; = za.
Rovnost 101s; + 20b; = 101s2 + 20b2 upravime do tvaru 101(s; — s3) =
= 20(bz — by), z néhoz vzhledem k nesoudélnosti ¢isel 20 a 101 vyplyva,
Ze Cislo by — by je nasobkem ¢isla 101. Musi jit pfitom o nulovy nasobek,
nebot |ba — b1] £ 9 (by a by jsou dislice!). Plati tedy b — by = 0, takze
rovnéz s; — sy = 0, coz dohromady znamena, Ze dvojice (s1,b1) a (s2,b2)
jsou stejné. Jen v tomto pripadé je tedy rovnost r; = x5 mozna.

Soucet vSech magickijch ¢isel (tedy ¢isel tvaru z = 101s+20b) uréime
vyhodné, kdyz ¢isla nejprve usporadame do obdélnikového schématu (po-
dle stejnych hodnot s do fadku a podle stejnych hodnot b do sloupcit)

101-2+420-0 101-2+20-1 101-2420-2 ... 101-2+4+20-9
101-3420-0 101-3420-1 101-3420-2 ... 101-3+420-9
101-4+20-0 101-4+20-1 101-4420-2 ... 101-4+20-9
101-17+4+20-0 101-17+20-1 101-17+20-2 ... 101-17+420-9
101-18+20-0 101-18420-1 101-18+20-2 ... 101-18+420-9

a pak ¢isla se¢teme bud po sloupcich, nebo po fadcich. Rozhodneme se
pro scitani po sloupcich, pfitom budeme brat v tivahu, o kolik se &isla
uvazovaného sloupce lisi od pfislusnych ¢isel prvniho sloupce. Soucet ¢isel
v prvnim sloupci je

101- (243 +...+ 18) = 101 - 170,

ve druhém sloupci je soucet 101 - 170 + 17 -20 - 1, ve tfetim 101 - 170 +
+17-20- 2, atd. az v poslednim (desatém) sloupci je soudet ¢isel roven
101-170 +17-20-9. Soucet vSech magickych ¢isel je tedy roven

10-101-170+17-20- (1 4+ 2+ ...+ 9) = 187000.
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C-1-6

V celém feseni budeme pfedpokladat, ze dané délky m a r spliiuji nerov-
nost m < 2r, jinak zadny c¢tyrthelnik pozadovanych vlastnosti neexis-
tuje. Strany délky m kazdého takového ¢tyfuhelniku jsou totiz tétivami
kruznice o poloméru r a nejvyse jedna z nich muZe byt jejim pramé-
rem.

Zkoumané ctytuhelniky rozdélime do dvou skupin podle toho, zda
jsou jejich strany dané délky m sousedni, nebo protilehlé.

Libovolny ¢tyfahelnik z prvni skupiny oznacéime ABC D tak, aby pla-
tilo |AB| = |BC| = m. Uhlopticka rozdéli tento tétivovy &tyfuhelnik na
dva trojihelniky ABC a ACD (obr. 6), pfitom je jasné, Ze prvni z nich,

D t
D’ k
vpr
UD vpr < Up
A e D c
|
m | om

}

B

Obr. 6

trojuhelnik ABC, je polomérem r opsané kruznice k£ a délkou m dvou
jeho stran uréen (az na shodnost) jednoznacné, takze mé pevné urceny
obsah. Proto bude obsah takového ¢tyftuhelniku ABC D maximélni, pravé
kdyz bude maximalni obsah trojihelniku ACD. Tento trojuhelnik ma
urcenou délku strany AC|, takze jeho obsah bude maximalni, pravé kdyz
bude maximalni jeho vyska vp z vrcholu D. Pri pevné poloze trojihel-
niku ABC bod D probihé ten oblouk AC kruznice k, jenZ neobsahuje
bod B, takze vyska vp je zfejmé nejvétsi, pravé kdyz bod D je stfedem
tohoto oblouku, lezi tedy (stejné jako bod B) na ose tse¢ky AC. (Tvr-
zeni zduvodnime pomoci teény t ke kruznici k, jez prochazi nalezenym
bodem D rovnobézné s pfimkou AC, obr.6). Tak dochizime k zavéru,
ze v prvni skupiné ma maximalni obsah ten ¢tyfahelnik, ktery je deltoid
(je-li m # rv/2), respektive &tverec (je-li m = rv/2).
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Prejdéme nyni ke ¢tyrthelniktum druhé skupiny. Libovolny z nich
oznaéme ABCD tak, aby platilo |AB| = |CD| = m (obr. 7).

Obr. 7

Obrézek ukazuje, jak k takovému étyrtuhelniku ABCD sestrojit po-
mocny &tyfuhelnik ABC’D, ktery mé stejny obsah jako ABCD, je ve-
psan do téZe kruznice k a méa sousedni strany AB a BC’ dané délky m.
Konstrukei ted popiSeme a zminéné vlastnosti ¢tyfthelniku ABC’D po-
drobné zdtvodnime. Bod C’ sestrojime jako obraz bodu C' v soumér-
nosti podle osy o tsecky BD); protoze je kruznice k soumérna podle osy
kazdé své tétivy, plati C’ € k. Trojuhelniky BCD a DC’B jsou soumérné
sdruzené podle osy o, takze maji stejny obsah, tudiz stejny obsah maji
i ¢tyfthelniky ABCD a ABC’D. Ze zminéné soumérnosti rovnéz ply-
nou rovnosti |CD| = |BC’| a |BC| = |DC’|, takze ¢tyruhelniky ABCD
a ABC'D se lisi pouze ,,prohozenim* dvou sousednich stran. Tim jsou po-
tfebné vlastnosti ¢tyfuhelniku ABC’D zdtvodnény. Jak uz vime z pred-
choziho odstavce, ¢tyfthelnik ABC’D ma nejvétsi moZzny obsah, praveé
kdyz plati rovnost |C'D| = |AD|, kterou mliZeme prepsat jako rovnost
|BC| = |AD)|. Ta nastane, pravé kdyz je ¢tyituhelnik ABCD rovnobéznik
(nebot od pocatku pfedpokladdme, ze |AB| = |CDJ). Kazdy rovnobéznik
vepsany do kruZnice je ale pravouhelnik (soucet protilehlych vnitfnich
thlu tétivového étyfuhelniku je 180°, takové thly jsou ale v pripadé rov-
nobézniku shodné, a tedy pravé). Shriime vysledek tohoto odstavce: ve
druhé skupiné ¢tyrthelnikti ma maximalni obsah ten étyrahelnik, ktery
je obdélnik (je-li m # 7v/2), respektive &tverec (je-li m = rv/2).

Celkovy zdvér: Hledané ctyfuhelniky s maximalnim obsahem tvori
v piipadé m < 2r, m # r/2, dvé skupiny: skupinu shodnych deltoidi
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Obr. 8

a skupinu shodnych obdélniki; v ptipadé m = rv/2 jsou viechny hledané
¢tytuhelniky shodné ¢tverce (obr.8). (V ptipadé m 2 2r je mnozina
uvazovanych ¢tyfuhelnikt prazdna.)

C-S-1

Trojmistné ¢islo se zdpisem abc ma pozadovanou vlastnost, pravé kdyz
jeho éislice a, b, ¢ spliuji rovnost

100a + 100+ c=19(a+b+c¢), neboli 9a =1b+ 2c.

Protoze b £ 9 a ¢ £ 9, plati nerovnost b+ 2¢ < 27. Z rovnosti 9a = b+ 2¢
proto plyne odhad a < 3, takze plati a € {1,2,3} (&islice @ = 0 neni na
zaGatku zapisu povolena). Pro a = 1 dostdvame rovnici 9 = b + 2¢, ze
které plyne ¢ < 4; pro kazdé takové ¢ € {0,1,2,3,4} je &islice b urena
rovnosti b = 9 — 2¢. Proto s éislici @ = 1 existuje pravé 5 vyhovujicich
éisel. Prave tolik je i vyhovujicich ¢isel s ¢islici @ = 2: z rovnice 18 = b+2¢
totiz plyne ¢ € {5,6,7,8,9} a b = 18 — 2c. Kone¢né pro a = 3 z rovnice
27 = b+ 2c¢ plyne b = ¢ = 9. Hledany pocet ¢isel je tedy 5+ 5+ 1 = 11.

Jiné FeSeni. Soudet &islic libovolného trojmistného éisla neprevysuje
éislo 27, jehoz devatenactinasobek je 513. Proto kazdé vyhovujici ¢islo
neprevysuje 513, takze soucet jeho &islic je nejvyse 44+9+9 = 22. Protoze
nejmensi trojmistny ndsobek ¢isla 19 je ¢islo 114 = 19 - 6, bude tloha
vyteSena, kdyZ zjistime, kolik &isel tvaru 19s, kde s € {6,7,8,...,22},
mé soudet Cislic rovny pravé ¢&islu s. Rutinni provérkou zjistime, Ze ze
zminénych 17 ¢&isel vyhovuji pravé ¢isla 114, 133, 152, 171, 190, 209, 228,
247, 266, 285 a 399. Téchto cisel je 11.

C-S-2

Ctytfthelnik EFGH miizeme do daného ¢tverce ABCD umistit tfemi
zpusoby:
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1. Dvé strany délky 2 cm lezi na protilehlych stranach daného ¢tverce
(obr.9). Obsah kazdého takového &tyithelniku (rovnobézniku) je S = 5-
-2cm? = 10cm?.

D H G C D C

\

\

HA\)

N\

AFE 2cm F B AE 2cm F B
Obr.9 Obr. 10

2. Obé strany délky 2 cm lezi na sousednich stranach daného ctverce
a pfitom jsou protilehlymi stranami ¢tyfthelniku EFGH (obr.10). Ob-
sah takového ¢tyruhelniku je

B —;-lEF| [JAG| + -;—|GH| JAE| = %-ZCm- |AC| + % .2cm- |AE| <

< (5+(5-2)) em® = 8cm? < 10cm?.

3. Obé strany délky 2 cm lezi na sousednich strandch daného ¢tverce
a pfitom jsou sousednimi stranami ¢tyfahelniku EFGH (obr.11). Ozna-

¢ime-li po fadé z a y vzdalenosti bodu G od stran AB a AD (tedy
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vysku trojuhelniku FFG na stranu EF a vysku trojihelniku EHG na
stranu EH), je obsah takového ¢tyiuhelniku

1 1 1
S:§|EF|-:1:+§|AH[~y§2-5-2-5:10cm2.

Pfitom rovnost nastane, pravé kdyz z = y = 5cm, tj. pravé kdyz G = C.

Zdvér: Nejvétsi mozny obsah (10cm?) maji viechny rovnobézniky,
jejichz dvé strany délky 2 cm lezi na protéjsich strandach daného ctverce,
a Ctyti deltoidy, jejichz jedna uhlopficka je zaroven thloprickou daného
¢tverce.

C—-S-3

Predpoklddejme, ze ¢étverec o strané 6 jednotek je vydlazdickovan a dlaz-
dickami A a b dlazdi¢kami B (nevylu¢ujeme ptipad, ze a = 0 nebo b = 0).
Pro obsah vydlazdickované plochy pak plati rovnost 36 = 3a+4b, ze které
plyne, Ze ¢islo a je nasobkem ¢ty (a ¢islo b ndsobkem t¥i). Proto ma rov-
nice 36 = 3a + 4b v oboru celych nezdpornych ¢isel za feSeni pouze tyto
dvojice (a,b): (0,9), (4,6), (8,3) a (12,0). Posoudime dale, zda pro jed-
notlivé dvojice (a,b) je piislusné vydlazdickovani daného &tverce mozné.
(i) 9 dlazdicek B. Vysvétlime, proé takové vydlazdickovani neexistuje.
Obarvéme jednotkové ¢tverecky celého étverce jako obvyklou Sachov-
nici; ziskdme 18 ¢ernych a 18 bilych , poli“. Kazda dlazdicka B pokryva
tfi pole jedné barvy a jedno pole druhé barvy. Pfipustme, Ze cely ¢tve-
rec pokryva 9 dlazdicek B, pfitom pravé = z nich mé tu vlastnost, Ze
pokryvaji po 3 Cernych polich, takze 9 — z z nich méa tu vlastnost, ze
pokryvaji po 1 ¢erném poli. Pro celkovy pocet ¢ernych poli pak plati
rovnost 18 = 3z + (9 — z), odkud z = 9/2, coz je spor.
(i) 4 dlazdicky A a 6 dlazdi¢ek B. Mozné feSeni vidite na obr.12.
(iii) 8 dlazdi¢ek A a 3 dlazdicky B. MozZné feSeni vidite na obr. 13.
(iv) 12 dlazdi¢ek A. Mozné feseni vidite na obr. 14.

Obr. 12 Obr. 13 Obr. 14
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Pozndmka. Uvedme je$té jiny argument, pro¢ nelze deviti dlazdic-
kami B vyplnit uvazovany ¢tverec. Dlazdicka, kterd pokryva rohové pole,
miiZe byt umisténa (az na soumérnost podle uhlopficky ¢tverce) jedinym
zpusobem, napf. tak jako dlazdicka B v levém dolnim rohu ¢tverce na
obr. 13, pak ale dlazdicka B, kterd v takovém pripadé pokryva druhé pole
zleva v dolni fadé, musi byt v poloze jako na obrazku. Posledni dvé pole
dolni fady pak uz jednou ani dvéma dlazdickami B pokryt nelze.

cC-n-1
V pravothlém trojihelniku ABK oznatme o = |xBAK]|, g =
= |xAKB| = 90° — « (obr.15). Stejné vnitini ahly 90°, «, § maji
D L C
-/
b K
B
@ a
A a B
Obr. 15

i trojuhelniky AKL a ADL, nebot jsou dle zadani trojuhelniku ABK
podobné. Vsimnéme si jejich (ostrych) ahla u spole¢ného vrcholu A.
Protoze |xKAD| = 90° — o = f3, jsou oba thly KAL a LAD mensi
nez [, takZze se rovnaji uhlu «. Pravy thel BAD je tedy polopfim-
kami AK, AL rozdélen na tfi shodné uhly velikosti «, odkud o = 30°
(a B = 60°). Z pravouhlych trojuhelnika ADL a ABK pak vyplyva, Ze
|AK| = |AB|/ cos 30° = 2a/+/3 a |AL| = |AD|/ cos 30° = 2b/+/3. Odtud
s ohledem na podminku a < b plyne nerovnost |AK| < |AL|, tudiz pfepo-
nou v trojthelniku AKL je AL (delsi z obou stran AK, AL). Pro pomér
délek odvésny AK a prepony AL pak plati cos30° = |AK|: |AL| =a: b,
takze a : b= /3 : 2.

Ulohu lze fe$it mnoha obménénymi postupy, napiiklad rozlisit dva
pripady, kdy trojihelnik K AL ma pravy thel pti vrcholu K respektive L,
a v kazdém z nich vyjadfit vnitini Ghly vSech ¢tyf podobnych trojihel-
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niké (ve druhém piipadé pak ale vyjde a : b= 2: /3 > 1, coz odporuje
zadani Glohy).

C-1-2

Vsimnéme si nejdiive, Ze pro Citatele zlomkt z dané rovnice plati vztah
14 + 51 = 65. Proto je feSenim kazdé trojice stejnych prvocisel p = ¢ =
= r a navic pro libovolné fesSeni plati: jsou-li néktera dvé z cisel p, ¢, r
stejnd, je stejné i tieti ¢islo. Budeme tedy déle predpokladat, Ze prvodisla
P, ¢, r spliyjici danou rovnici jsou navzdjem riznd (a tedy navzdjem
nesoudélnd).
Po vynasobeni rovnice sou¢inem pgr dostaneme
14qr + 51pr = 65pq,
odkud vzhledem ke zminéné nesoudélnosti plyne
pl14=2.7, q|51=3-17 a r|65=5-13.
To znamend, ze p € {2,7}, ¢ € {3,17} a r € {5,13}. Nyni mutZeme
sestavit a do rovnice dosadit vSech osm moznych trojic (p, q,r); zjistime
tak, ze vyhovuje jediné trojice (7,17,13).
Provérku dosazovanim muazeme zkratit tak, ze vylouc¢ime kteroukoliv
z hodnot p = 2,q = 3, resp.r = 5. Napriklad po dosazeni r = 5 dostaneme
po vydéleni péti rovnici 14g+51p = 13pg, kterd nema celoc¢iselné reseni p
ani pro ¢ = 3 (14 + 17p = 13p), ani pro ¢ = 17 (14 + 3p = 13p). Jina
moznost: z rovnice 14qr + 51pr = 65pq plyne 2p(q — r) = 7(2qr + Tpr —
—9pq), takZe souéin p(q — r) je délitelny sedmi. Protoze vSak ¢ € {3,17}
ar € {5,13} (viz vySe), neni rozdil ¢ — r délitelny sedmi, proto je sedmi
délitelné ¢islo p. Podobné lze zdtavodnit, proé¢ 17 | g a 13| r.
Jiné FeSeni. Z dané rovnice vyjadiime r pomoci p a g:
65pq 5-13-p-q
r= e )
51p + 14g  5lp + l4q
V poslednim zlomku jsme zvyraznili rozklad ¢itatele na (étyfi) prvoéini-
tele. Takovy zlomek bude roven nékterému prvocislu r, pravé kdyz jeho
jmenovatel bude sou¢inem t¥{ prvoéinitelt z Citatele (jiné kraceni zlomku
neni mozné). Hleddme tedy situace, kdy plati néktery z pripadi:
5lp+14¢=5-13-p a r=gq,
5lp+14¢=5-13-q a r=p,
5lp+14¢g =5-p-q a r =13,
S5lp+14¢g=13-p-q a 7 =05.
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Snadnou tpravou rovnic zjistime, ze prvni dva pfipady nastanou pouze
v situaci, kdy p = ¢ (tehdy ovSem rovnéz p = r). Posledni dva pfipady
vedou k vyjadienim

3-17-p 3-17-p
= esp. = ———"_
=514 P 171314

ze kterych analogickou Gvahou o kraceni zlomku (pfipad p = ¢ jiz mu-
Zeme vynechat) s pfihlédnutim k zfejmym nerovnostem 5p — 14 < 17p
a 13p — 14 < 17p dostaneme rovnice

5p— 14 =3p, resp. 13p— 14 = 3p.

Prvni rovnice ma feSeni p = 7 (kterému odpovida ¢ = 17 a r = 13),
druhd rovnice celociselné feseni nema.

Odpovéd’: Viechna FeSeni (p, q,r) jsou trojice (p,p,p), kde p je libo-
volné prvoéislo, a trojice (7,17,13).

cC-1n-3

Rozbor: Kromé hledaného osmithelniku ABCDEFGH uvazime jesté
pomocny osmithelnik K LM NOPQR, ktery je rovnéz vepsan do kruznice
o poloméru r = 6 a jehoz strany spliiuji podminky: |KL| = 3, |LM| = 4,
|[MN| =5, |NO| = 6, |OP| = |PQ| = |QR| = |RK] (obr.16). Oznad-

Obr. 16

me S, resp. T stfed kruZnice s vepsanym osmithelnikem ABCDEFGH,
resp. KLM NOPQR. Podle véty sss plati shodnosti AABS ~ AKLT,
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ACDS ~ ALMT, AEFS ~ AMNT, AGHS ~ ANOT, a proto jsou
shodné stredové tthly ASB a KTL,CSD a LTM, ESF a MTN, GSH
a NTO. Dale podle véty sss jsou shodné trojiuhelniky BCS, DES, FGS
a HAS, stejné jako trojthelniky OPT, PQT, QRT a RKT. Ze shodnosti
jejich uhla pti hlavnim vrcholu S, resp. T' proto plyne

|xBSC| = ~(360° — |xASB| - |xCSD| — |xESF| - |xGSH|) =

e~ =

1
= (360° — [xKTL| - |xLTM| ~ |xMTN| ~ |xNTO)|) =
|xOTP|.

Vyuzili jsme toho, ze stfedy S a T jsou wnitinimi body obou osmi-
ahelnikt (tudiz soucet vSech osmi stfedovych thlu je v obou ptipadech
360°), nebot v opa¢ném ptipadé by jeden z osmi stfedovych thli byl ro-
ven souctu sedmi ostatnich; musel by to byt thel prislusny tétive délky 6,
ten je vSak zfejmé mensi nez soucet thla prislusnych tétivam délek 3, 4
a 5. Trojuhelniky BCS a OPT jsou proto shodné podle véty sus, tudiz
étverice shodnych stran obou osmithelnikit maji jednu spoleénou dél-
ku. Dokazeme-li proto sestrojit pomocny osmituhelnik K LM NOPQR, je
konstrukce osmituhelniku ABCDFEFGH nasnadé.

Konstrukce: Na libovolné kruznici ¢(7'; 6) sestrojime v jednom sméru
body K, L, M, N a O tak, aby |KL| =3, |LM| =4, | MN|=5a|NO| =
= 6. Uhel KTO (ten, ktery neobsahuje body L, M, N) pak rozdélime na
¢tyti shodné dily: nejprve sestrojime prusecik QQ kruznice t s osou uhlu
KTO, pak pruseciky P, R kruznice t s osami uhli OT'Q resp. QT K.
Poté pristoupime ke konstrukci hledaného osmithelniku ABCDEFGH:
na kruznici k(S, 6) zvolime bod A a pak na ni v jednom sméru sestrojime
postupné body B, C, ..., H tak, aby |AB| = 3, |BC| = |OP]|, |CD| = 4,
|DE| = |OP|, |EF| =5, |[FG| = |OP|, |GH| = 6.

Diikaz sprdavnosti: Ze shodnosti sedmi dvojic trojuhelniki AABS =~
~ AKLT, ABCS ~ AOPT, ..., AGHS ~ ANOT plyne shod-
nost thli HSA a RTK, a tedy i shodnost osmé dvojice trojuhelnika
AHAS ~ ARKT. Proto maji délky stran sestrojeného osmithelniku
ABCDEFGH (shodné se stranami K LM NOPQR) vSechny potfebné
vlastnosti.

Pozndmka. O osmithelniku K LM NOPQR jsme nemuseli v celém
FeSeni viibec mluvit a vést tvahy takto: thly shodné se stfedovymi thly
ASB, CSD, ESF, GSH dokazeme sestrojit, pro spole¢nou velikost w
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shodnych stredovych uhla BSC, DSE, FSG a HSA pak plati rovnice
4w+ |[XASB| 4 [xCSD| + |xESF| + |xGSH| = 360°, (1)

kterou lze snadno konstrukéné vyftesit; osmitthelnik KLMNOPQR je
ovSem k tomuto ucelu idedlni pomtckou.

cC-n-14

Martin vypocital hodnotu (z + y)z misto =+ yz, takze podle zadani plati
(x+vy)z—(z+yz) =2004, neboli z-(z—1)=2004=12-167,

pfi¢emz 167 je prvoéislo. Cinitele = a z — 1 uréime, kdyZ si uvédomime, ze
z je dvojmistné éislo, takze 9 < z — 1 < 98. Vidime, Ze nutné z — 1 = 12
a z = 167, odkud z = 13. Martin tedy vypo¢ital ¢islo V = (167 +y) - 13.
Cislo V je tedy ¢tyfmistné, a ponévadz se te odpfedu stejné jako odzadu,
mé tvar abba = 1001a+ 110b. Protoze 1001 = 13-77, musi platit rovnost
(167 + y) - 13 = 13 - 77a + 110b, z niz plyne, Ze cislice b je délitelna
tfinécti, takze b = 0. Po dosazeni dostaneme (po déleni t¥indcti) rovnost
167 4+ y = 77a, kterd s ohledem na nerovnosti 10 £ y < 99 znamena, Ze
Cislice a se rovna 3, tudiz y = 64.

V druhé ¢asti feSeni jsme mohli postupovat rovnéz nasledovné. Pro
Cislo V' = (167+7y)-13 vychazeji z nerovnosti 10 < y < 99 odhady 2301 £
<V £ 3458. Zjistime proto, ktera z &isel 2bb2, kde b € {3,4,5,6,7,8,9},
a &isel 3bb3, kde b € {0, 1,2, 3,4}, jsou délitelna tiinacti. I kdyZ lze téchto
dvandct Cisel rychle otestovat na kalkuladce, udélejme to obecné jejich
CasteCnym vydélenim tfinacti:

2062 = 2002 + 110b = 13- (154 + 8b) + 6b,
3063 = 3003 + 110b = 13 - (231 + 8b) + 6b.

Vidime, Ze vyhovuje jediné ¢islo 3bb3 pro b = 0, kdy 167 +y = 231, takZe
y = 64.

Odpovéd’: Zéaci méli poéitat piiklad 167 +64-13, tedy = = 167, y = 64
az=13.
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Kategorie B

Texty tloh

B-1-1
Kazdou z hvézdicek na misté jednotek ¢isel ve vyrazu

TUTTTT7T7 77+ 555555555554
TUTTTT7T7 77« 555555555559

nahradte n&jakou ¢islici tak, aby vyraz nabyl co nejmensi hodnoty.
(J. Simsa)
B-1-2
V rovnoramenném lichobézniku ABCD plati |[BC| = |CD| = |DA]
a |[xDAB| = |¥ABC| = 36°. Na zékladné¢ AB je ddn bod K tak, Ze
|AK| = |AD|. DokaZte, Ze kruznice opsané trojuhelnikim AKD a KBC
maji vnéjsi dotyk. (J. Zhouf)
B-1-3

V oboru realnych ¢isel feste rovnici
z|z] —5x4+7=0,

kde |z| znamend dolni celou &ast cisla z, tedy nejvétsi celé ¢islo k, pro
néz plati k < z. (Naptiklad |v2] =1a |-3,1] = —4.) (E. Kovac)

B-1-4

Cislo a, vznikne tak, Ze za sebe napiSeme prvnich n po sobé jdoucich
prirozenych ¢&isel, napiiklad a;3 = 12345678910111 213. Urcete, kolik
¢isel délitelnych 24 se nachézi mezi &isly ay, as, ..., a10000- (P. Cernek)
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B-1-5

Je dana pfimka p a mimo ni bod A. Sestrojte lichobéznik ABCD s mi-
nimélnim obsahem a ramenem BC' na pfimce p tak, aby |BC| = |AC| a
prusecik E jeho uhlopiic¢ek splioval vztah |BE| = 3|DE).

(P. Leischner)

B-1-6

Urdete vSechna prirozena c¢isla M délitelnd 240, pro kterd ma rovnice
M = NSN(z,y) s neznamymi z a y pravé 1 001 feSeni v oboru pfirozenych
&isel. (Symbol NSN(z,y) znadi nejmensi spoleény néasobek ¢isel z a y.)

(P. Cernek)

B-S-1

Zjistéte, kolik FeSeni ma v oboru reilnych ¢isel rovnice

X
z= =]+ 5500

kde |z] oznacuje nejvétsi celé éislo, které neprevysuje cislo z.

(J. Simsa)

B-S-2

Uvedte piiklad mnoziny M dvojmistnych &sel, jeZ ma maximélni pocet

prvki a pfitom spliiuje obé nasledujici podminky:

(i) Kazdé dvé ¢isla z M jsou nesoudélna.

(ii) Zménime-li pofadi &islic libovolného &isla z M, dostaneme opét &islo
z mnoziny M. (J. Foldes)

B-S-3

Je dan lichobéznik ABC D s ostrymi thly pii zékladné AB. Na ni existuje
bod FE takovy, Ze kruznice opsané trojihelnikiim AED a EBC maji vngjsi
dotyk. Dokazte, Zze bod E lezi na kruznici opsané trojuhelniku CDV'| kde
V je prusecik piimek AD a BC. (R. Horensky)

B-1l-1

Cislo a,, vznikne tak, Ze za sebe zapiSeme prvnich n druhych mocnin po
sobé jdoucich pfirozenych ¢isel. Napft. ay; = 149162 536 496 481 100 121.
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Zjistéte, kolik ¢isel délitelnych dvanacti je mezi ¢isly ay,as, ..., a100000-

(P. Cernek)

B-1l-2

Najdéte vsechny kvadratické trojéleny az? + bz + ¢ takové, Ze pokud
libovolny z koeficientt a, b, ¢ zvétsime o 1, dostaneme novy kvadraticky
trojélen, ktery bude mit dvojnasobny kofen. (E. Kovac)

B-11-3

Pro dané ptirozené ¢islo n feSte v oboru kladnych redlnych ¢isel rovnici
|zvn?—1] =nz—1.

(Symbol |r| oznaduje nejvétsi celé &islo, jez nepfevysuje ¢islo r.)

(J. Simsa)

B-I1l-4

Je dan ostrouhly trojuhelnik V BA. Sestrojte te¢novy ¢tyruhelnik ABCD
s minimalnim obsahem tak, aby jeho vrcholy C a D lezely po fadé na
polopfimkach opa¢nych k polopfimkam BV a AV. (P. Leischner)
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Reseni tloh

B-1-1

Oznaéme z a y Cislice, které doplnime do citatele, resp. jmenovatele
prvniho zlomku. Protoze cely vyraz v absolutni hodnoté budeme al-
gebraicky upravovat, kvuli prehlednéjsim zapisim zavedeme oznaceni
N = 111111111110. Jednotliva ¢isla z daného vyrazu pak maji vyja-
dreni:

TTTTTTTTT T = TN + z,

TITTTTTIT Ty = TN + vy,

555555555554 = 5N + 4,

555555555559 = 5N + 9.

Zkoumany vyraz pak lze zapsat a upravit nasledujicim zpusobem:

TN+z 5N+4| |(TN+2)(5N +9) — (5N +4)(7TN +y)| _

TN +y 5N +9| (7N +y)(5N +9) -

|(85N2 + 5zN + 63N + 9z) — (35N2 + 5yN + 28N +4y)|
(TN +y)(5N +9) -

5 (T—y+xz) - N+ 9z — 4y

N (TN +y)(5N +9)

Oznaéme jesté Citatele a jmenovatele ziskaného zlomku:
C=5-T—y+z)-N+9z—4y| a J=(TN+y)5N +9).

Budeme-li za z, y dosazovat rizné dvojice éislic, jmenovatel J bude na-
byvat pouze deseti riznych hodnot v rozmezi

(TN +0)(5N +9) < J < (TN + 9)(5N +9).

Podivejme se nyni, jak velkych ¢i malych hodnot bude nabyvat ¢itatel C.
Protoze ¢islo 92 — 4y je nejvyse dvojmistné, zatimco ¢islo IV dvandcti-
mistné, fad citatele C bude zaviset na tom, zda bude ¢initel (7 — y + )
roven nule ¢i nikoli. Proto tyto dvé moznosti posoudime oddélené.

A. Pfipad 7—y+ z = 0. Tehdy plati y = = + 7 a zkoumany &itatel C
je tvaru

C=15-0-N+ (92 — 4y)| = |9z — 4(z + 7)| = |5z — 28|.
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Jelikoz cislice y (rovnd x + 7) je nejvyse 9, je ¢&islice = rovna 0, nebo 1,
nebo 2, takze vyraz |5z — 28| se rovna 28, nebo 23, nebo 18. Nejmensi
hodnota ¢itatele C' je tudiz rovna 18 a dosdhneme ji jediné pro z = 2
ay = 9. Stastnou ,,shodou okolnosti“ ma zrovna pro y = 9 jmenovatel J
nejuétsi hodnotu, takze

N 18
mm{?} TN+ 9BN+9)

B. Pripad 7—y+z # 0. UkaZme, Ze hodnoty &itatele C (tudiz i hodnoty
zlomku C'/J) jsou v tomto ptipadé ,obrovské“ ve srovnéani s pfipadem A.
Z nerovnosti 7—y + x # 0 plyne odhad |[7T—y+z| 21 (éslo 7T—y+ =z
je celé), tudiz mame

C = 15-(T—y+z)-N+9z—4y| 2 5:|7T—y+z|-N—|9z—4y| = 5N —|9z—4y]|.

Protoze z a y jsou éislice, plati zfejmé |9z — 4y| < 81. Z posledniho
odhadu C a maximalni hodnoty J proto plyne nerovnost

c 5N — 81
J = (TN+9)(5N+9)°

v

Posledni zlomek je ,,mnohokrat“ vétsi nez zlomek v zavéru pfipadu A, ne-
bot oba zlomky maji stejny jmenovatel, zatimco srovnéani &itatelt zfejmé
dopada takto: 5N —81 > 18 (nerovnost 5N —81 > 18 plati jiz od hodnoty
N = 20).

Zdver: Do citatele doplnime ¢islici z = 2, do jmenovatele ¢islici y = 9.

B-1-2

V' rovnoramenném trojuhelniku AKD zndme thel DAK proti za-
kladné K D. Muzeme dopoditat zbylé dva uhly pfi zdkladné (obr.17):
|xADK| = |xAKD| = %(180" — |¥xDAK]) = 72°. Ctyithelnik AKCD
mé prot&jsi strany AK a CD shodné a rovnobézné, takze se jedna
o rovnobéznik, tudiz pfimky KC a AD jsou rovnob&iné. Uhly DAK
a CKB jsou tedy souhlasné a thly CKB a KCD stfidavé, proto
|xCKB| = |xKCD| = 36°. Uhel DKC dopliiuje thly AKD a CKB do
primého Ghlu, jeho velikost je tedy | DKC| = 180° — 36° — 72° = 72°.

50



D C

L

Obr. 17

Na polopfimce opacné k polopfimce KD zvolme bod L tak, Ze
|KL| = |AD|.Potom |x LK B| = |xAKD| = 72° a|xCKL| = |<xLKB|+
+|xCK B| = 108°. Dopo¢itanim thla v lichobéZzniku ABCD dostavame
|¥BCD| = 1(360° — 2-36°) = 144° a mlZeme vyjadFit velikost @hlu
BCK: |¥BCK| = |xBCD| — |« KCD| = 144° — 36° = 108°. Nyni jiz
vime, ze |KL| = |CB| a |XLKC| = |xKCB|, coz znamena, ze LBCK je
rovnoramenny lichobéznik, a lze mu tedy opsat kruznici (shodnou s kruz-
nici opsanou trojthelniku K BC). Déle muzeme z lichobéZniku LBCK
dopoéitat [xKLB| = £(360° — 2-108°) = 72° = |xKDA|. Z této rov-
nosti plyne, ze AD || BL, takze trojuhelniky ADK a BLK jsou vzajemné
stejnolehlé podle stfedu K. Stejnolehlé jsou potom i kruznice jim opsané.
Protoze obé prochazeji sttedem K zminéné stejnolehlosti, maji v tomto
bodé vnéjsi dotyk.

Jiné TeSeni. Stejné jako v prvnim feSeni zjistime, ze |AKD| = 72°.
Ctytihelnik AKCD je rovnobéznik (obr. 18), takze |CK| = |AD|. Z rov-
nosti |CK| = |BC| v trojahelniku KBC' usoudime, ze |xCKB| =
= |xKBC| = 36°. Proto na zdkladné CD existuje bod X tak, Ze
|[AKX| = 108° (a |[¥xBKX| = 72°). Pak |[xDKX| = |¥xAKX]| —
— |xAKD| = 108° — 72° = 36°, a tedy |xDKX| = |xDAK]|, takZe
uhel DK X je usekovym thlem pfislusnym oblouku DAK v kruZznici
opsané trojuhelniku AK D, to znamend, Ze pfimka KX je jeji tecnou.
Podobné |xCK X| = |[xBKX|—|xBKC| = 72°-36° = 36° = |x K BC|,
takze KX je i te¢nou ke kruznici opsané trojuhelniku K BC. KruZnice
opsané trojuhelnikim AKD a K BC maji tedy spoleénou teénu KX
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prochéazejici spoleénym bodem K. Obé kruznice se tudiz v tomto bodé
dotykaji.

Obr. 18

B-1-3

Ozna¢me k = |z], tedy = k + ¢, 0 £ @ < 1. Dané rovnice ma potom
k*—5k+7
WM(b+®k—&k+®+7=OIMmda:——g—f;aHMMmemQ
celd cisla k, pro kterd plati

k? — 5k +7

< =
0= & <1 (%)

KaZdou z téchto nerovnosti vySetfime oddélené. Protoze kvadraticky troj-
&len k2 — 5k + 7 ma zaporny diskriminant, plati k2 —5k+7 = 0 pro kazdé
k € R, takZe leva nerovnost v (%) plati, pravé kdyz 5 — & > 0, neboli
k < 5. VyfeSme pravou nerovnici:

Ié’—sk+7<1
5—k ’

2
k—ﬁk;j;@—k)<Q
W~4k+2<0
5—k ’

(k=2—=V2)(k—-2+2)

o <0.
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Podle polohy &sel 2—+/2, 2+1/2 a 5 na ¢iselné ose zjistime, Ze posledni
nerovnost plati, pravé kdyz k € (2—v/2,2+ v/2) U (5, 00). Nerovnosti ()
tedy plati soucasné, pravé kdyz k € (2 -v2,2+ \/5) Této podmince
vyhovuji pouze tii celd ¢isla k € {1,2,3}. Pro k = 1 dopocteme o = 4§,
pro k =2 vyjde o = % aprok=3jea= % Celkem dostavame tTi reseni

7 7 7
Ty =7,22=3, I3 = 3-

Jiné FeSeni. Jako v prvnim feSeni ozna¢ime k = |z a z rovnice kz —

— 5z + 7 = 0 vyjadiime x ve tvaru z = s Nyni hledame cel cisla

7
k, pro kterd plati k < EE < k + 1. Obé nerovnice jsou splnény jediné

T

pro celd k € {1,2,3}, kterym odpovidaji kofeny z € {3, 3,5}

B-1-4

Pfirozené ¢islo je délitelné cislem 24, pravé kdyz je délitelné soucasné
(navzdjem nesoudélnymi) ¢isly 3 a 8. Pro ciferny soucet prirozeného
&isla k zavedme oznaceni S(k). Cislo a, je délitelné tfemi, pravé kdyz
je tfemi délitelny jeho ciferny soucet, tedy éislo S(1) +.5(2) +...+ S(n).
Zbytek po déleni tfemi tohoto souctu zavisi pouze na zbytcich (po dé-
len{ tfemi) jednotlivych séitanct S(k). Protoze pii déleni tfemi dava
&islo S(k) stejny zbytek jako ¢islo k (viz ndvodnou ulohu 1), dévaji ¢isla
S(1),S(4),S8(7),... zbytek 1, ¢isla S(2),S(5),S5(8),... zbytek 2 a &isla
S(3),5(6),5(9),... zbytek 0. Proto napfiklad ¢&islo S(a14), tedy soucet
S(1)+S(2)+...4+.5(14), dava pti déleni tfemi stejny zbytek jako soucet

1+240)+(1+24+0)+(1+2+0)+(1+2+0)+1+2.

Podle uzéavorkovanych trojic snadno vidime, Ze tento soucet je délitelny
tfemi. Protoze obecné soucet S(3k — 2) + S(3k — 1) + S(3k) je délitelny
tfemi pro kazdé prirozené k, mizeme obdobnym zpusobem uzavorkovat
kazdy soucet

S(1)+S2)+...+S(n)

a zjistit, Ze jeho zbytek pri déleni tfemi
> je roven 1, je-li n = 3k — 2;
> je roven 0, je-li n = 3k — 1 nebo n = 3k.
Cisla a,, tedy budou délitelna tfemi, pravé kdyz n bude tvaru 3k nebo
3k—1(k=1,2,...).
Nyni rozeberme, kdy budou éisla a, navic délitelnd osmi. Pfirozené
¢islo je délitelné osmi, prave kdyz je délitelné osmi posledni trojéisli jeho

53



zapisu v desitkové soustavé. Nase tivahy budou tedy zaviset na poctu
¢islic ¢isla n:

> Alespon trojmistna n. Pro takova n je tedy a, délitelné osmi, pravé
kdyz je délitelné osmi ¢islo n.
Protoze se zbytky ¢isel a, po déleni tfemi opakuji po tfech, zbytky
po déleni osmi po osmi ¢islech a,, budou se zbytky po déleni &is-
lem 24 opakovat po nejmensim spoleéném nasobku téchto period,
tedy po dvaceti ¢tyfech. Pro trojmistnd n snadno zjistime, Ze pod-
mince v tloze vyhovuji ¢isla tvaru 104 + 24k a 120 + 24k (n musi
byt délitelné osmi a davat zbytek dva nebo nula po déleni tfemi). Do
10000 mame 413 &sel tvaru 104 + 24k (413 = | 5, (10000 — 104) | +1)
a 412 cisel tvaru 120 + 24k.

> Dvojmistnd n. Aby bylo éislo a, délitelné osmi, musi byt déli-
telné ¢tyfmi. O délitelnosti ¢tyfmi rozhoduje posledni dvojcisli, takze
¢tyfmi budou délitelna pravé vsechna ta a,, pro kterd je n délitelné
&tyfmi. Cislo n—1 je pak liché, tedy i a,,—; je &islo liché a &islo 100a,_1
davé zbytek ¢tyfi po déleni osmi. Potom éislo a,, = 100a,,_; +n bude
délitelné osmi, pravé kdyz n bude také davat zbytek étyti po déleni
osmi, bude tedy tvaru 8k + 4. Spolu s podminkou na délitelnost tfemi
dostavame, ze vyhovujici dvojmistnd ¢isla n maji (stejné jako vyse)
periodu 24 a jsou tvaru n = 12+ 24k a n = 20 + 24k, k € {0, 1,2, 3}.
Do sta to mame 4 + 4 = 8 ¢isel.

> Jednomistnd n. Snadno zjistime, Ze ze vSech sudych &isel a,, pron < 8
vyhovuje pouze ag = 123 456.
Celkem vyhovuje 834 ¢isel.

B-1-5

Predpokladejme, ze ABCD je hledany lichobéznik a K, L jsou paty kol-
mic z vrcholtt B, D na pfimku AC (obr.19). Z podobnosti pravoihljch
trojihelnikic BKE a DLE plyne, ze délky stran BK a DL, tedy od-
vésen ve zminénych trojahelnicich, jsou ve stejném pomeéru jako délky
jejich pfepon BE a DE, tedy 3 : 1. BK a DL jsou vsak i vysky v troj-
thelnicich ABC a ACD, a to na spole¢nou stranu AC. Obsahy téchto
trojuhelnikt jsou tedy také v pomeéru 3 : 1, takZe obsah lichobézniku
ABCD je roven %P, kde P je obsah rovnoramenného trojuhelniku ABC.
Vyska tohoto trojuhelniku z bodu A na stranu BC je ddna (vzdélenost
bodu A od pfimky p). Obsah trojahelniku ABC bude tedy minimalni,
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bude-li minimalni délka strany BC, tedy i AC, tedy kdyz usecka AC
bude kolmé na p.

Obr. 19

Konstrukce. Nejprve sestrojime bod C (pata kolmice z A na p). Vr-
chol B nalezneme jako prusecik primky p s kruznici k(C, |AC|) (dvé moz-
nosti). Vrchol D je priseéikem piimky m, vedené bodem C' rovnobézné
s AB, a pfimky n rovnobézné s AC ve vzdalenosti %|BC | od vrcholu B
uvnitf poloroviny opaéné k ACB.

Uloha ma celkem dvé feSeni soumérné sdruzené podle pfimky AC L p
(obr. 20).

A

Dy 1

By no | ™1 ma |p, B>

Obr. 20
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B-1-6

Nejprve ukazme, ze pro ¢islo M s prvociselnym rozkladem M = ﬁ P
(pi jsou ruznd prvocisla) je pocet FeSeni rovnice NSN(z,y) = erzolven
ﬁ (2¢; + 1). Vskutku, kazdé fesen{ (z,y) dané rovnice mé tu vlastnost,
Ii:llibovolné prvocislo p; (2 = 1,...,n) déli alesponi jedno z ¢&isel z a y
(a to nejvyse v takové mocniné, v jaké déli M) a zadné jind prvocisla

n n
uZ ani , ani y nedéli; = a y jsou tedy tvaru z = [] p¥, v = [] p¥,
i=1 i=1

a;,b; € Np, a navic max(a;,b;) = ¢;, i = 1,...,n. Cisla z a y tak jedno-

znac¢né uréuji n-tice ¢isel a; a b; a obracené jsou jimi jednozna¢né urcena.

Vsechna feSeni dané rovnice jsou tedy popsana dvojicemi n-tic priroze-

nych ¢isel takovych, Ze na i-té pozici je v obou n-ticich ¢islo z mnozZiny

{0,...,¢;} a alesponl v jedné z nich se ptimo rovna c;. Takovych n-tic
n

je T] (2¢; + 1): Dvé n-tice &isel (a1,aq,...,a,) a (b1, bs,...,b,) mizZeme
i=1
uvazit jako n dvojic ¢isel (aq,b1), (az,b2), ..., (an,by). Libovolna dvojice

(a;, b;) mize nezavisle nabyvat (2¢;+1) riznych hodnot (0, ¢;), (1,¢), ...,
(ci—1,¢), (¢iyci), (ciyei—1), ..., (¢i,1), (¢4, 0). Podle kombinatorického
pravidla souéinu dostdvame vySe uvedeny podcet.

Prvodiselny rozklad ¢isla 1001 je 7-11-13. Aby méla dana rovnice
pravé 1001 feSeni, musi exponenty c¢; z prvociselného rozkladu ¢isla M
(obsahujiciho dle zadéni nejméné tii prvocisla, a to 2, 3 a 5) vyhovovat

n

rovnici [[(2¢; + 1) = 7-11-13. V prvociselném rozkladu ¢isla M tedy
i=1

musi byt zastoupena pravé tii prvocisla, a to v mocninach %(7 —1)=23,
(11 -1) = 5 a $(13 — 1) = 6. ProtoZe M ma byt délitelné &islem
240 = 24.3.5, tedy prvodisly 2, 3 a 5 v odpovidajicich mocninéch, jsou

jediné mo#né volby pro M &isla 2°.33.56 25.36.53 26.35.53 26.33.55

B-S-1

Pfedpokladejme na okamzik, Ze celé Cislo k = |z zndme, dosadme je do
rovnice jako ,parametr® a ziskanou rovnici vyresme:

o by

:k —

=Rt 5 00a

2004z = 2004k + =z,
2004k
2003
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Budeme-li do posledniho vzorce dosazovat jednotliva celd ¢isla k, bude
prislusné x skuteéné rfeSenim zkoumané rovnice, bude-li se jeho celd ¢ast
rovnat pravé ¢islu k, budou-li tedy platit nerovnosti

2004k

k< k41,
= Jo03 <FT

Zjistime, kterad celd k vyhovuji obéma nerovnostem. Leva nerovnost je
ekvivalentni s nerovnosti k¥ 2 0, pravd nerovnost s nerovnosti k£ < 2 003.
Hledana k jsou tedy pravé hodnoty k£ € {0,1,...,2002}, kazda z nich
urcuje jediné feSeni z, takze vSech feSeni z zadané rovnice je praveé 2003.
Dodejme, Ze vyhovujici k lze uréit rovnéz upravou odvozeného vzorce do
tvaru

2003 + 2003’

z néhoz je vidét, Ze ¢islo k je celou ¢asti ¢isla x, pravé kdyz plati nerovnosti

k
2004k b

k
2003

0

A

<1, mneboli 0<k<2003.

Jiné FeSeni. Protoze pro kazdé redlné z plati |z] < z < |z] + 1,
porovnanim se zadanou rovnici dodejme k zjisténi, Ze kazdé feSeni x
musi spliiovat nerovnosti

05m<1 neboli 0§I<2004

Cislo z spliiujici posledni nerovnosti bude feSenim zkoumané rovnice,

prévé kdyz hodnota x — m bude celodiselné. Protoze plati
z 2003z
2004 2004’

lze posledni podminku vyslovit takto: ¢islo 2003z je celoéiselnym nasob-
kem ¢isla 2004. To s ohledem na nerovnosti 0 £ 2003z < 2003 - 2004
znamena, ze Cislo 2003z je rovno nékterému z cisel

0-2004,1-2004,2-2004, ..., 20022004,

takze zkoumana rovnice ma pravé 2 003 feseni

0-2004 1-2004 2-2004 2002 - 2004
2003 7 2003 ° 2003 77 2003
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B-S-2

Kvuli podmince (i) mize byt v mnoZiné M nejvyse jedno z ¢&isel 11,22,
33,...,99 zapsanych dvéma stejnymi ¢islicemi, kterd jsou vesmés déli-
telnd jedenacti. Kvili podmince (ii) a délitelnosti dvéma tam zas nesmi
byt zadné ¢islo zapsané dvéma riznymi sudymi ¢islicemi; s jednou sudou
&islici miize byt v M nejvyse jedna dvojice &isel ab, ba.

Zbyvé posoudit, kolik miize mnozina M obsahovat dvojic &sel ab, ba
zapsanych dvéma raznymi lichymi &islicemi a a b. Zadné z téchto &isel
nesmi byt délitelné tfemi (je-li &fslo ab délitelné tfemi, je takové i &islo ba),
proto v tvahu pfipadé pouze sedm dvojic takovych ¢isel: (13,31), (17,71),
(19,91), (35,53), (37,73), (59,95) a (79,97). Kvili délitelnosti péti, sedmi
a devatenacti vSak muze byt v M pouze jedna z dvojic (19,91), (35,53)
a (59,95), tedy nejvyse pét ze vSech sedmi vypsanych dvojic.

Celkové zjisfujeme, Ze mnozina M obsahuje nejvyse 1 +2+2-5 =13
¢isel. Prikladem tfindctiprvkové mnoziny je

M = {11,23,32,13,31,17,71,35,53,37,73,79,97}.

(Existuji 1 jiné priklady, nase uvahy vSak ukazuji, Ze kazda t¥inactiprv-
kova mnozina M musi obsahovat éisla 13, 31,17, 71, 37, 73, 79, 97 a jednu
z dvojic (35,53) nebo (59,95); dvojice (19,91) je vyloucena, nebot &islo
91 je nasobkem ¢&isla 13.)

B-S-3

Oznaéme « a [ po fadé vnitini Ghly pfi vrcholech A a B (obr.21). Bo-
dem E prochéazi spoleéné tecna obou uvazovanych kruznic, thel DEC

Vv

Obr. 21
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je tedy souctem tusekovych thla prislugnych tétivée DE v jedné kruznici
(s obvodovym uhlem «) a tétivé EC v druhé kruznici (s obvodovym
thlem ). Jeho velikost je tudiz o + 8. A protoze velikost thlu CVD je
180° — (a+ f3), zjistujeme, zZe ve &tyithelniku CVDE se thly u protéjsich
vrcholi E' a V' dopliuji do 180°. To, jak vime, znamena, ze CVDE je té-
tivovy ¢tyrthelnik, tj. bod E lezi na kruznici opsané trojihelniku CDV'.

B-1l-1

Jak vime, kazdé pfirozené c¢islo k dava pri déleni tfemi stejny zbytek
jako &islo S(k) rovné souctu éislic piivodniho é&isla k. Cislo a,, proto dava
pfi déleni tfemi stejny zbytek jako soucet S(12) + S(22) + ...+ S(n?),
tedy rovnéz jako soucdet 12 + 22 + ... 4+ n%. Dvéma zpiisoby ukaZeme, Ze
posledni soucet je délitelny tfemi, pravé kdyz ¢islo n je tvaru 9k — 5,
9k — 1 nebo 9k, kde k je prirozené Cislo.
Pti pronim zpisobu vyuzijeme znadmy vzorec
5 n(n+1)2n+1)

124224 .. . 4n?= - : (1)

z néhoz plyne, Ze zkoumany soucet je délitelny tfemi, pravé kdyz je soucin
n(n + 1)(2n + 1) délitelny deviti. Protoze ¢isla n, n + 1 a 2n + 1 jsou
navzajem nesoudélnd, hleddme pravé ta n, pro kterd je délitelné deviti
jedno z &isel n, n+ 1 nebo 2n+1, a to jsou po fadé ¢isla tvaru 9k, 9k —1,
9k — 5.

Druhgj zpiisob je zaloZen na pozorovani, ze zbytky &isel 12, 22, 32, 42,
52, ... pti déleni tfemi jsou 1,1,0,1,1,0,. .., tedy opakuji se s periodou 3.
Skute¢né, ¢isla (k + 3)? a k? davaji stejny zbytek pii déleni tfemi, nebot
jejich rozdil je &islo 3(2k + 3), coZ je nasobek tfi. S¢itdnim uvedenych
zbytkd dostaneme postupné zbytky prvnich deviti souétt (1): 1,2, 2,0, 1,
1, 2, 0, 0; poté se zbytky dalsich souctt (1) zaénou periodicky opakovat.
(Plyne to z toho, Ze pfedchozi soucet deviti ¢isel davd nulovy zbytek
a zarovei je poCet séitancti ndsobkem periody 3 s¢itanych zbytki.)

Vime jiz, kterd cisla a, jsou délitelnd tfemi; posoudime nyni snazsi
otazku, kterd a, jsou délitelnd ¢tyfmi. Ukazme, Ze to jsou vSechna a,, se
sudym n > 2 (a zadna jina). Cislo a,, s lichym n je totiz liché, &islo as se
rovné 14 a &islo a,, se sudym n > 2 konéi stejnym dvojéislim jako &islo n?,
takze je takové a, (stejné jako zminéné dvojéisli) délitelné étyfmi.

Spojime-li vysledky o délitelnosti tfemi a ¢tyfmi dohromady, dojdeme
k zjisténi, Ze Cislo a, je délitelné dvanacti, pravé kdyz je ¢islo n jednoho
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z tvaru 18k — 14, 18k — 10 nebo 18k, kde k je libovolné prirozené Eislo.
Protoze 100000 = 5556 x 18 — 8, je mezi prirozenymi ¢isly od 1 do 100000
pravé 5556 ¢isel 18k —14, 5556 c¢isel 18k —10 a 5 555 ¢isel 18k, dohromady
je to 16 667 cisel.

B-1l-2

Pro koeficient a musi platit a # 0 a a # —1, aby vSechny uvazované troj-
¢leny byly skutec¢né kvadratické trojéleny. Jak vime, kvadraticky trojclen
mé dvojnasobny kofen, pravé kdyz je jeho diskriminant nulovy. Sestavme
proto diskriminanty v8ech tf{ trojclentu se zvétsenymi koeficienty:

(a+1)z? + bc+ ¢ ma diskriminant D; = b? — 4(a + 1)c,
az? + (b+ 1)z + ¢ mé diskriminant Dy = (b+ 1)? — 4ac,
az® 4+ bz + (c+ 1) ma diskriminant D3 = b? — 4a(c + 1).

Hleddme tedy redlna ¢isla a, b, ¢, pro kterd plati @ # 0, a # —1 a D; =
=Dy = D3 =0.

Z rovnosti D1 = D3 plyne ¢ = a, takie Dy = (b+1)? —4a? = (b +
+1—2a)(b+ 1+ 2a); rovnost Dy = 0 pak znamena, Ze plati b = £2a -1,
aproto Dy = (+£2a—1)2—4(a+1)a = 4a®>Fda+1—4a’—4a = 1F4a—4a,
tudiz D; = —8a + 1 nebo D; = 1. Proto z rovnosti D; = 0 plyne
a=1/8b=2a—1=-3/4ac=a=1/8 (zkouska je snadnd, neni vsak
nutnd, nasim postupem totiZ méame zaruéeny rovnosti D = D3, Dy =0
a D1 = 0).

Odpoveéd: Uloze vyhovuje jeding trojélen %zQ — %x + é.

B-11-3

Kladné éislo z je feSenim rovnice s danym n, pravé kdyz je cislo nz
prirozené a jsou splnény nerovnosti

nr—1Zzvn?2—1<nz.

Pravd nerovnost je splnéna pro kazdé z > 0, nebot zfejmé plati
Vn?2 — 1 < Vn? = n. Zbyva tedy vyftesit levou nerovnici (vzhledem k ne-
znamé z). Po jednoduché tpravé dostavame

z(n—+vn?-1) <1,

1
T ———=n++vn2-1.
n—+vn?2—1

A
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Vyuzili jsme toho, Ze vyraz n — v/n? — 1 je kladny a v souc¢inu se sdru-
Zenym vyrazem n + vn? — 1 dava &islo 1. Po vyndsobeni obou stran
odvozené nerovnosti ¢islem n dostaneme pro prirozené ¢islo k = nz ekvi-

valentni podminku
k<n?+4+nvn? -1,

ktera je splnéna pravé pro k € {1,2,...,2n? — 1}, nebot pro druhy séi-
tanec z pravé strany posledni nerovnosti zfejmé plati celociselné odhady

n?—-1<nyn2—-1<n?

(znovu vyuzivame pouze nerovnost vVn? — 1 < n). VSechna FeSeni dané
rovnice jsou tvaru z = k/n a tvori tak mnozinu zlomku

1 2 2n? -1
iRt IERY - .

B-1l-4

KruZnice vepsanid hledanému ¢&tyfuhelniku je kruznici k pripsanou
strané AB trojuhelniku BAV. Ten ze dvou pruseéiku osy thlu AV B
s kruznici k, ktery je dal od vrcholu V, ozna¢me T (obr.22). Hledané
body C' a D nalezneme jako priseciky teény ¢t v bodé T' ke kruznici k£ po
fadé s pfimkami V' B, VA. Dokazme, ze takto sestrojeny ctyfahelnik ma
ze vSech Ctyrtuhelnikt vyhovujicich podminkdm dlohy nejmensi obsah.

Obr. 22

Oznaéme C’, D’ vrcholy jiného te¢nového étyithelniku s vepsanou
kruznici k (pfimka C’ D’ je te¢nou kruznice k). Bez ijmy na obecnosti mti-
zeme predpokladat, Ze prusecik M tecen t a C’'D’ lezi uvniti tsecky TC.
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To znamena, ze plati |[M D| > |[MC| (obr.22). Oznaéme C” a D" odpo-
vidajici paty kolmic spusténych z bodi C’ a D’ na piimku t; bod C”
lezi uvnitt tsecky M C a D” na polopiimce M D vné usecky M D, takze
[MC"| < |MC| < |MD| < |MD"| a z podobnosti pravouhlych trojahel-
nika MC'C" a M D'D" plyne |C'C"| < |D’D"|. Trojahelnik DM D’ ma
tudiz vétsi obsah neZ trojuhelnik CMC’. Rozdil jejich obsahu je vsak
roven rozdilu obsaht étyiuhelnikit ABC'D’ a ABCD, tedy obsah &tyi-
uhelniku ABC'D’ je vétsi nez obsah ¢tyithelniku ABCD.

Jiné FeSeni. Stejné jako v prvnim feSeni oznacme C, D priseciky
te¢ny t pripsané kruznice k s rameny tthlu VB, V A. Jsou-li C’, D’ vrcholy
jiného tecnového ctyfthelniku s vepsanou kruznici k, plati pro obsahy
teénovych &tyfuhelnikt ABCD a ABC'D’

S(ABCD) = S(VCD) — S(VAB),
S(ABC'D’) = S(VC'D’) — S(VAB).
Staci tedy ukazat, Ze pro libovolnou takovou teénu C’ D', kterd neni kolma
na osu thlu AV B, plati S(VC'D’) > S(VCD). To je viak zfejmé z obr. 23

(oba 8edé trojuhelniky maji diky stfedové soumeérnosti stejny obsah a pfi-
tom S(VC'D") > S(VC,D,) > S(VCD)).

Obr. 23

Jiné FeSeni. Obsah teénového é&tyruhelniku ABCD), jehoz vepsand
kruznice ma polomér r, je S = ir(|AB| + |BC| + |CD| + |DA|) =
= £r(2|AB| + 2|CD|) = r(|AB| 4+ |CD|). Obsah te¢nového &tyFthelniku
ABCD spliujiciho podminky tlohy bude tedy nejmensi, pravé kdyz bude
nejkratsi usecka CD.
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Uvazujme kruZnici pfipsanou strané C’D’ trojuhelniku VC'D’
(obr.24). Z vlastnosti tecen postupné nahlédneme, Ze je |T1C| = 3|CD],

i T2
C
T, c__—
S1
Ty
U
Y DT
Us
Obr. 24

|T>C"| = £|C”D"| a také |C'D’| = |TyT|. Posledni rovnost plyne ze
znamych vlastnosti vepsané a pripsané kruznice, totiz Ze jejich body
dotyku na spolecnou stranu jsou soumérné sdruzené podle stfedu strany;
dikaz ovSem vyzaduje trochu pocitani:

INTe| = O + |C'Te| = |TIC'| + |C'Ty| = [ITTa| + 2| T2C7),
[UUs| = |UyD'| + |D'Us| = |T{D'| + |D'Ty| = |T{T4| + 2|T{D'|.

Ze soumérnosti podle osy uhlu AV B plyne |T1Ts| = |UyUs|, takze
|T5C"| = |T{D’|. Je tedy |C'D’| = |T{T4| + 2|T5C"| = |T1T5|.

Protoze obé kruZnice jsou oddéleny spole¢nou te¢nou C’D’; nemohou
se dotykat, takze |CD| < |C”D"|, neboli |CT;| < |C"T3|. To znamena,
Ze je

|CD| =2ITiC| < [ThC| + |C"T3| < |ThT2| = |C'D),

coz jsme chtéli dokazat.
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Kategorie A

Texty loh

A-1-1

Urcete viechny dvojice (p, q) realnych &isel takové, Ze rovnice 22 + px +
+ ¢ = 0 ma TeSeni v oboru redlnych ¢isel, pficemz plati: Je-li ¢ kofenem

této rovnice, je |2t — 15| rovnéz jejim kofenem. (P. Cernek)
A-1-2

V roviné daného ¢tverce K LM N urcete mnozinu vSech bodt P, pro néz

jsou uhly NPK, KPL a LPM shodné. (J. Svrcek)
A-1-3

Pro libovolné pfirozené éislo n sestavme z pismen A, B vSechna mozna
yslova“ délky n. Rozdélme je do dvou skupin S, a L, podle toho, zda
je v daném slové sudy, resp. lichy pocet ,slabik“ BA (za sudy povazu-
jeme i pocet 0). Napiiklad slova BABBBBA a AAAAAAB patii ob& do
skupiny S7, slova AABBABB a BABAABA patii obé do skupiny L7.
Urcete, pro kterd n maji skupiny .S,, a L, stejny pocet prvk.

(J. Simsa)

A-1-4

Urcete nejmensi redlné ¢islo p takové, Ze nerovnost

1
VI24+14+ V2 +14+ V32414 ... +V/n2+15 5n(n+p)
plati pro kazdé prirozené éislo n. (S. Travnicek)
A-1-5

Necht ABCD je tétivovy étyfthelnik, jehoZ vnitfni thel pfi vrcholu B
mé velikost 60°.
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a) Jestlize |BC| = |CD|, pak plati |CD| + |DA| = |AB|. Dokazte.
b) Rozhodnéte, zda plati opa¢na implikace. (E. Kovdc)
A-1-6

V oboru realnych ¢isel feste soustavu rovnic

(J. Simsa)

A-S-1
Necht P(z) = az?+bz+-c je kvadraticky trojélen s nezdpornymi realnymi

koeficienty. Dokazte, Zze pro libovolné kladné ¢islo = plati

P()-P(3) 2 (P())*

x

(E. Kovdc)

A-S-2

Urcete, jakou nejvétsi délku maze mit thlopticka C'E konvexniho péti-
thelniku ABCDE, jehoz strana AB méa délku 6cm, vnitini thly pri
vrcholech C a E jsou pravé a tthel ADB ma velikost 120°. (P. Cernek)

V oboru redlnych ¢isel feste soustavu rovnic

224+ 2yz=6(y+ 2z —2),
Y2+ 2z =6(z + 1z —2),
22 +2zy =6(z +y—2).

(J. Simsa)

A-1l-1

Urcete pocet vsech pétimistnych palindromt, které jsou délitelné &is-
lem 37. (Palindromem nazyvame ¢islo, jehoz zapis v desitkové soustavé
se Cte zepredu stejné jako zezadu.) (J. Simsa)
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A-1l1-2

Pro libovolné pfirozené ¢islo n sestavme z pismen A a B vSechna moZna
yslova délky n a oznaéme p, pocet téch z nich, kterd neobsahuji ani
trojici AAA po sobé jdoucich pismen A, ani dvojici BB po sobé& jdoucich
pismen B. Urdete, pro ktera pfirozena Cisla n plati, ze obé &isla p, a pri1
jsou suda. (R. Kudera)

A-11-3

Necht K je libovolny vnitfni bod strany AB daného trojuhelniku ABC.
Piimka CK protinad kruznici opsanou trojiahelniku ABC v bodé L (L #
# C). Oznafme k; kruznici opsanou trojthelniku AKL a ko kruZnici
opsanou trojuhelniku BK L.
a) Dokazte, Ze ptimka AC je te¢na kruznice ky, pravé kdyz pfimka BC
je te¢na kruznice k.
b) Predpokliddejme, Ze pfimka AC je sena kruznice k1. Necht P (P # A)
je prusecik pfimky AC' s kruznici k1 a Q (Q # B) prusecik pfimky BC
s kruznici ko. Dokazte, ze bod K lezi na tiseéce PQ).
(J. Simsa, J. Zhouf)

A-11-4

Necht K, L, M jsou po fadé priseciky os vnitinich thld «, 8, v pfi
vrcholech A, B, C daného trojahelniku ABC' s protéjsimi stranami BC,
CA, AB. Dokaizte, ze plati nerovnost

BC| o |CAl B |AB| v
|AK|COSZ+|BL|COS2+|C’M|COS2:3'

(J. Svrcek)
A-1l-1
Urcete vSechny trojice (z,y, z) redlnych ¢isel, pro néz plati
8 8 8
2,2, .2 . 2 2 2
°+y° +z §6+mm{x —— Y s z —2—4}.

(J. Svréek)
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A-1lIl-2

Pro libovolné prirozené ¢islo n sestavme z pismen A a B vSechna moZna
yslova“ délky n a oznaéme p, pocet téch z nich, kterd neobsahuji ani
¢tverici AAAA po sobé jdoucich pismen A, ani trojici BBB po sobé
jdoucich pismen B. Uréete hodnotu vyrazu

P2004 — P2002 — P1999
P2001 + P2000

(R. Kucera)

A-1lI1-3

V roviné je dana kruznice k a 121 jejich secen py, pa, . .., p121. Uvnitf této
kruznice je na kazdé pfimce p; ddn bod A;. Dokazte, Ze na kruznici k
existuje bod X takovy, ze usecka A;X svird s pfimkou p; thel mensi

nez 21° pro nejméné 29 riiznych index 1. (J. Simsa)
A-IlIl-4
Zjistéte, pro kterad pfirozend ¢isla n je soucet
n o n n
i + 21 +...+ ol
Cislo celé. (E. Kovac)
A-I1lIl-5

Necht L je libovolny vnitini bod kratsiho oblouku CD kruznice opsané
¢tverci ABCD. Oznaéme K prusecik pfimek AL a CD, M pruseéik pri-
mek AD a CL a N prusecik pfimek M K a BC. Dokazte, ze body B, L,
M, N lezi na téze kruznici. (J. Svrcek)

A-1l1-6

Necht Ry znaéi mnoZinu vSech kladnych realnych éisel. Uréete vSechny
funkce f: Ry — Ry, které pro libovolna kladna ¢isla z, y spliiuji rovnost

2 (f(z) + f(v) = (z+v) [ (f(2)y).

(P. Karousky)
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Reseni tloh
A-1-1

Necht ¢, s jsou realné koreny dané kvadratické rovnice. Uvazujme nejprve
ptipad, kdy uvazovana kvadratickd rovnice ma dvojnasobny (realny) ko-
fen. Plati tedy ¢t = s a pfitom podle podminek tlohy ¢ = |2t — 15|. Pro

t=> % dostavame rovnici t = 2t—15 s feSenim t = 15 aprot < 125 rovnici
t = —(2t—15) s feSenim ¢t = 5. Jim odpovidajici kvadratické rovnice maji

tvar (z — 5)2 =22 — 10z +25 =0 a (z — 15)? = 2% — 30z + 225 = 0.
Uvazujme nyni pripad, kdy uvazovana kvadraticka rovnice méa dva
ruzné redlné koteny ¢, s. Rozlisime tfi ptripady.
> t = |2t — 15| a soucasné s = |2s — 15|. Reseni obou rovnic (viz vyse)
tvori dvojici {¢,s} = {5,15}. Odpovidajici kvadratickd rovnice mé
tvar (x — 5)(z — 15) = 22 — 20z + 75 = 0.
> t = |2s — 15| a soucasné s = |2t — 15|. ReSenim &tyf soustav rovnic

t=+(2s—15), s=+(2t— 15)

(jez odpovidaji raznym volbdm znamének) dostaneme dvojice (s,t)
rovné (15,15), (5,5), (3,9) a (9,3), z nichZ pouze posledni dvé vy-
hovuji pivodni soustavé a podmince s # t. Dodejme, Ze soustavu
rovnic t = [2s — 15| a s = |2t — 15| lze rovnéz fesit graficky
v roviné Ost, do které zakreslime obé lomené &iry t = |2s — 15|
a s = |2t — 15| (obr. 25). Dvojicim (3,9) a (9, 3) odpovida kvadratickd
rovnice (z — 3)(z — 9) = 22 — 122+ 27 = 0.

Obr. 25
>t = |2t — 15| = |2s — 15|. Jak uZ vime, rovnice t = |2t — 15| mé
feSeni t = 5 a t = 15. Pro t = 5 z rovnice 5 = |25 — 15| plyne s = 5
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nebo s = 10, pro t = 15 z rovnice 15 = |2s — 15| plyne s = 0 nebo

s = 15. S ohledem na podminku s # ¢ tak dostavame dvé feseni

(t,s) = (5,10) a (t,s) = (15,0). Témto feSenim pak odpovidaji po

fadé dvé kvadratické rovnice (z — 5)(z — 10) = 2% — 152 4+ 50 = 0

a(zr—15)z =22 — 152 = 0.

Zdvér: Dané tloze vyhovuje Sest dvojic (p, q) redlnych éisel, a to dvo-
jice (—10,25), (—30,225), (=20,75), (—12,27), (—15,50) a (~15,0).

A-1-2

Oznaéme P hledanou mnozinu bodt a S stred ¢tverce K LM N. Ziejmé
S € P (obr.26).

Dale uréime vSechny hledané body P (P # S), které lezi uvnitf pasu
omezeného rovnobézkami KN a LM . Ukazeme, ze kazdy takovy bod P
lezi v poloroviné opac¢né k poloroviné M N K. Pro kazdy bod P uvazova-
ného pésu, ktery lezi v poloroviné opa¢né k poloroviné K LM, plati totiz
|xKPL| > |xKPN]|, nebot poloptimka PN lezi v thlu K PL. Podobné&
zjistime, zZe zadny bod ¢tverce K LM N kromé jeho stfedu S nema danou
vlastnost.

PZ
M
AN
AN
11\
S AN
AN
AN
AN
AN
N\
N
L
Obr. 26

Lezi-li tedy hledany bod P ve vySrafované oblasti na obr.26, jsou
pfimky PK a PL podle zadani osami thla NPL a KPM. Proto v troj-
thelniku LPN osa PK thlu N PL protina kruznici opsanou tomuto troj-
uhelniku (kromé bodu P) v bodé lezicim na ose strany N L. T{imto bodem
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je ovSem vrchol K ¢étverce KLMN. Body P, N, K, L tedy lezi na téze
kruznici, kterou je kruznice opsané ¢tverci KLM N. (Analogicky vysle-
dek obdrzime, uvazujeme-li osu PL thlu KPM.) Bod P proto lezi na
kratim oblouku [ = M N kruznice opsané ¢tverci K LM N. Naopak pro

kazdy bod P € [ plati podle véty o obvodovych tihlech (pro shodné tétivy
NK, KL, LM)

|xNPK| = |xKPL| = |xLPM| = 45°.

Tim je hledani boda P v pasu mezi rovnobézkami K M a LM ukonceno.

Déle snadno nahlédneme, zZe libovolny vnitini bod P kazdé z polopti-
mek opaénych k polopfimkidm KM, LN, MK, NL mé danou vlastnost.
Ukazeme, ze zadny dalsi bod roviny ¢tverce K LM N uvedenou vlastnost
nemd. Stadi se pritom diky symetrii omezit na jednu z polorovin vyta-
tych osou o strany K L daného ¢tverce. ProtoZe jsme jiz vysetfili cely pas
omezeny rovnobézkami KN a LM, lze (bez 4jmy na obecnosti) zkoumat
jen body poloroviny opac¢né k poloroviné LM N. P¥imky KL, MN, LM,
KM a LN déli tuto polorovinu na pét ¢asti (obr. 27), pfitom zZadny bod
pfimek KL, LM a M N danou vlastnost o¢ividné nema.

I
e
P 11
N } M|
N
- 11
A
l e P
l -
| . :
/. | 3
K | 3
| v
'
Obr. 27
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Ukazeme, 7e zadny vnitini bod kazdé z oblasti I-V roviny &tverce
KLMN neni prvkem mnoziny P. Jestlize P je vnitinim bodem oblasti I,
evidentné plati |[<xKPL| > |¥xLPM| (obr.27). Je-li P vnitfnim bodem
libovolné z oblasti II nebo III, plati naopak |<xKPL| < |<xLPN]|. Pro
libovolny vnitini bod oblasti IV zase plati [« NPK| > |<xKPL| a pro
libovolny vnitfni bod P oblasti V plati naopak |xNPK| < |xKPL|.
Ve vsech péti uvazovanych ptripadech jsme se vSak vzdy dostali do roz-
poru s podminkami tlohy.

Tim jsme prozkoumali vSechny body roviny ¢tverce K LM N.

Zdvér: Hledand mnozina bodu P se skldda ze vSech vnitinich boda
kratsiho oblouku M N kruZnice opsané danému ¢tverci K LM N, ze vSech
vnitfnich bodt polopfimek opacénych k polopfimkam KM, LN, MK
a NL a ze stfedu S daného ¢tverce (obr. 28).

l

N M

Obr. 28

A-1-3

Skupinu S, rozdélme na dvé éasti (SA), a (SB), podle toho, zda slovo
skupiny S, kon¢i pismenem A, resp. B. Skupinu L,, rozdélme analogicky
na dvé ¢asti (LA), a (LB), podle toho, zda slovo skupiny L, konéi
pismenem A, resp. B. Ozna¢me dale s,,, I, (sA)n, (sB)n, ({A)n, (IB),
po fadé pocty prvka skupin S, Ly, (SA)n, (SB)n, (LA),, (LB),. Pro
kazdé prirozené ¢islo n pak podle naseho rozdéleni plati

Sn = (sA)n + (sB)n,

I = (1A)n + (LB)n. M
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Kazdé slovo ze skupiny (SA),4+1 vznikne tak, Ze pfipiSeme pismeno A
bud na konec slova ze skupiny (SA),, nebo na konec slova ze skupiny
(LB)y,. Plati proto

(sA)nt1 = (s4)n + (1B)n.

Analogicky plati rovnéz vztahy

(8B)nt1 = (sA)n + (sB)n,
(1A)nt1 = (sB)n + ({A)n, (2)
(1B)us1 = (LA} + (1B)n.

Pro n = 1 maji skupiny nésledujici tvar
(SA)I = {A}7 (SB)I = {B}1 (LA)I =0, (LB)I =0,

a tedy (SA)l = (SB)1 =1la (ZA)I = (lB)l = 0.

Predpokladejme, Ze pro uréité prirozené Cislo k obsahuji skupiny
(SA)k a (SB)k stejny pocet prvki, ktery oznacime p, a zéroven sku-
piny (LA)r a (LB)) maji stejny pocet prvki, ktery oznacime g. Navic
predpoklddejme, Ze plati p # q, jak je tomu v pfipadé k =1, kdy p =1
a ¢ = 0. Do nésledujici tabulky zapiSme pocty prvkua ve skupinach pro
gislan =k, k+1,k+2,k+ 3,k + 4. Pfitom pro vypo¢ty hodnot uzijeme
vztahy (1) a (2).

n|l k k+1 k+2 k+3 k+4
(sA)n| »p p+q ©p+3g 2p+6g 6p+10g
(sB)n| P 2p 3p+q 4p+4q  6p+10q
q

p+q 3p+gq 6p+2q 10p+ 6q

(IB)n| ¢ 2q p+3q 4p+4q 10p+6q
snl 2p 3p+q 4p+4q 6p+10g 12p+ 20q
ln| 2¢ p+3q 4p+4q 10p+6g 20p+ 12¢q

7 tabulky lze vyéist nékolik poznatki. Protoze p # ¢, plati rovnéz 2p #
# 2q,3p+q # p+ 3q a 6p+ 10¢ # 10p + 6¢. Vidime, Ze si # I,
Sk+1 7 let1s Sk+2 = lkt2, Sk+3 # leys a Ze skupiny (SA)xia a (SB)k4a
obsahuji opét stejny podet prvka a skupiny (LA)kts & (LB)kya opét
stejny podet prvki, pfitom tyto poéty jsou navzdjem razné.

UzZitim matematické indukce usoudime, Ze uvedena tabulka ma
vSechny zminéné vlastnosti pro kazdé k = 4m+1, kde m je celé nezdporné
&islo, takZe rovnost s,, = [, plati, pravé kdyz n = k + 2 = 4m + 3.
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Zdvér: Skupiny S, a L, maji stejny pocet prvka, pravé kdyz n =
= 4m + 3, kde m je celé nezdporné cislo.

Jiné FeSeni. Ze vztahti (1) a (2) plynou pro kazdé n = 2 rovnosti
$nt1 = (8A)n41 + (8B)nt1 = (8A)n + (IB)n + 8n =
=28, + (lB)n - (SB)n =28, +ln_1— Sp_1 =
= 28p — 23n—1 + ln—l + Sp—1-
N ——

Svorkou oznaceny soucet je roven poc¢tu vSech slov délky n — 1, tedy
&islu 2", Znamend to, Ze posloupnost zkoumanych ¢&isel {s,} spliiuje
rekurentni rovnici

Sp41 = 28p — 281 + 2771 (n=2,8,...), (3)

jez (spolu s pocateénimi hodnotami s; = 0, so = 1) umoziiuje postupny
vypocet vSech hodnot s,. Podle teorie rekurentnich rovnic se da najit
feSeni takové ulohy v explicitnim tvaru

- n(n—1
sn=2""1— (V)" 1 COS(T)’
z ného? plyne, %e zkoumand rovnost s, = 2"~ ! nastane pravé pro ta
éisla n, jez jsou tvaru 4m + 3. Bez znalosti této teorie se obejdeme tak-
to: vypocteme pomoci (3) nékolik prvnich hodnot s, a zapiSeme je do
tabulky, kam pro porovnani uvedeme i pfislusné hodnoty 2"~! a rozdil
Sp — 271

n 1] 23] 4] 5] 6] 7] 8] 9] 10] 117...

Sn 0| 1]/4]10[20(36[64][120] 240] 496 [1024]...

o1 1] 24| 8]16([32]64[128] 256 512[1024]...
sp—2r T —1]=1]0] 2] 4] 4] o] =8[—=16|—16 0

Tak pfijdeme k hypotéze, ze hledand n jsou tvaru 4m + 3, a objevime

rovnéZ vlastnosti diferenci s, — 2”1 (jsou to aZ na znaménka mocniny

dvou). Pokusime se proto najit zavislost mezi &isly s,4+4 a s,. Podle (3)

postupné uré¢ime

Sny2 = 28p41 — 25, + 27,

Sn+3 = 28p42 — 28n41 + 2" = 2(28,41 — 28, 4+ 27) — 25,47 + 2" =
= 28p41 — 48p + 2712,

Sn4q4 = 2Sn+3 - 25n+2 + 2n+2 =

= 2(28n41 — 485 + 2"12) — 2(28,41 — 28, + 27) + 272 =

= —4s, + 273 _ontl J ont2 . _4q 4 ont8 4 ontl
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neboli
Snta — 2™3 = —4(s, — 2°71).

Z posledniho vztahu okamzité plyne, Ze rovnost s, 4 = 2™+2 plati, pravé
kdyZ s, = 2"71. ProtoZe z hodnot n = 1,2, 3,4 posledni rovnost plati
pouze pro n = 3, je hypotéza o tom, Ze hledana n jsou pravé é&isla tvaru
n = 4m + 3, dokazana.

A-1-4

Pro n = 1 mé dand nerovnost tvar
1
V2 < 5(+1), neboli p2 2v2 — 1.

Oznaéme p; = 2v/2 — 1. Zjistili jsme, Ze 7adné &islo p mensi nez p,
pozadovanou vlastnost nema. Cislo p; je tedy hledané &islo, pokud uka-
Zeme, Ze pro kazdé n = 1 plati

1
V2414 V2 414+ V2 +1+... 4 n2+1§5n(n+P1). (1)

Dikaz provedeme matematickou indukei.

(i) Pron =1 je nerovnost (1) splnéna diky zptsobu, jakym jsme &islo p;
urdili.

(ii) Predpokladejme, Ze nerovnost (1) plati pro uréité pfirozené &islo n,
a ukdZeme, Ze plati i pro prirozené ¢islo n + 1. Necht tedy

Fin)=v12+14+vV22+14+V32+1+...+Vn2+1<

1 (2)
= 571(71 +p1).
Protoze
Fn+1)=F(n)++/(n+1)2
plati podle indukéniho pfedpokladu (2) a definice p;
1
F(n+1)§§n(n+2\/§——1)+ (n+1)2+1. (3)

Nyni dokazeme nerovnost

(n+2\/_ )+vn+1)2+1 - n+1(n+1+2\/_—1) (4)
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Jeji tpravou dostaneme nerovnost s ni ekvivalentni

\/(n+1)2+1§n+\/§,

o jejiz platnosti se snadno presvédéime po umocnéni obou stran na
druhou:

(n+v2)’ =n?+2v2n+2>n+2n+2=(n+1)2+ 1

Podle (3) a (4) plati
Fn+1)< %(n+1)(n+1+2\/§~1) N %(n+1)(n+1+;01),

coz je nerovnost (1) pro hodnotu n + 1.
Zdvér: Hledanym realnym &islem je &islo p = 2v/2 — 1.

A-1-5

Nejprve zvazme, jak muze takovy tétivovy Ctyfuhelnik ABCD s Sede-
satistupfiovym thlem pfi vrcholu B a se shodnymi stranami BC a CD
vypadat. Ozna¢me k kruznici, jez je ¢tyfahelniku ABCD opséna. Protoze
|« ABC| = 60°, je uz urlena velikost uhlopficky AC, kterd je tétivou od-
povidajici obvodovému tthlu 60°. Vrchol D pak musi byt vnitfnim bodem
kratsiho oblouku AC kruznice k (v poloroviné opaéné k ACB) a vrchol B
je obrazem bodu D v soumérnosti podle ptimky SC' (obr.29), kde S je
stfed kruznice k.

Obr. 29
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Protoze dle piedpokladu |BC| = |CD|, jsou obvodové thly BAC
a CAD prislusné shodnym tétivim shodné. Vidime tedy, Ze polopfimky
AD a AB jsou soumérné sdruzeny dle osy AC. Ozna¢me X obraz bodu D
v této soumeérnosti (obr. 29). Bod X zfejmé lezi uvnitt strany AB (obraz
kratsiho oblouku AC lezi cely ve vnitini oblasti kruznice k), a protoze
|CX| = |CD| = |BC]|, je trojuhelnik X BC rovnoramenny. Trojthelnik
X BC je dokonce rovnostranny, protoze velikost jeho tthlu pfi vrcholu B je
60°. Je proto |BX| = |BC| = |CD]|. Ze soumérnosti navic plyne |DA| =
= | X A|, takze |CD| + |DA| = |BX| + | X A| = |AB], coz je pozadovana
rovnost.

b) Snadno nahlédneme, Ze opa¢nd implikace neplati. Staéi vzit ta-
kovy ctyrthelnik ABCD, ktery spliuje predpoklady tlohy, a zaroven
v ném plati |CD| # |DA| (takovy urdité existuje, jak jsme naznadili
hned v ivodu feSeni). Prohodime-li nyni strany CD a DA, tj. nahra-
dime-li vrchol D vrcholem D’ soumérné sdruzenym s vrcholem D podle
osy uhlopficky AC (obr.30), dostaneme tétivovy étyfthelnik ABCD’
s Sedesatistupnovym uthlem pii vrcholu B, ktery bude i nadéale spliiovat
rovnost |CD’| + |D'A| = |DA| + |CD| = |AB)|, ale bude v ném platit
|BC| = |CD|=|D'A| #|D'C]|.

Obr. 30 Obr. 31

Jiné FeSeni. Uvazujme sinovou vétu v nasledujicim tvaru, ktery plyne
z v8ty o obvodovych thlech: Je-li R polomér kruznice opsané trojuhelniku
ABC, je sina = %a/R, kde a = |BC|. (Doplnime-li cyklicky dalsi dvé
rovnosti, dostaneme odtud snadno bézné znéni sinové véty ze skolnich
udebnic.)

Ozna&ime-li nyni ¢ obvodovy thel pfislusny shodnym tétivim BC
a CD (0° < ¢ < 60°), snadno zjistime, ze tétivé DA pfislusi obvodovy
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thel 60° — ¢ a tétivé AB obvodovy thel 120° — ¢ (obr. 31). Dokazovana
rovnost je pak dle sinové véty ekvivalentni rovnosti

sin ¢ + sin(60° — ¢) = sin(120° — ¢).

Protoze sin(120° — ¢) = sin(60° + ¢), je uvedend rovnost (po jednoduché
upravé) ekvivalentni rovnosti

sin = 2 cos 60° sin ¢,

ktera trivialné plati.

Stejné jako v predchozim feSeni si uvédomime, Ze rovnost |CD| +
+ |DA| = |AB]| zustane zachovéna, i kdyz v daném é&tyfahelniku vy-
ménime obé strany CD a DA. Novy ¢tyfuhelnik ztstane tétivovy, ve-
likost jeho vnitfniho thlu pfi vrcholu B se nezméni, ale misto rovnosti
|BC| = |CD| bude splnéna rovnost |BC| = |DA|.

Jiné FeSeni. Ozna¢me délky stran étyftahelniku ABCD, ktery spliiuje
podminky tlohy, obvyklym zptisobem a, b, ¢, d. ProtoZe vnitini thly pii
vrcholech B a D maji velikost 60°, resp. 120°, z kosinové véty pro troj-
thelniky ABC a CDA plyne dvojim vyjadfenim hodnoty |AC|? rovnost

a?+ b2 —ab=c?+d?+cd (6)
a) Jestlize b = ¢, lze z rovnosti (6) postupné odvodit:

a?+c—ac=c?+d®+cd,
a’?—d?>=ac+cdd,
(a—d)(a+d) =c(a+d),

a—d=c.
Rovnost a = ¢ + d, kterou jsme méli dokazat, tedy plati.
b) JestliZe plati a = c+d, dostaneme po dosazeni za a do rovnosti (6)
(c+d)?+ b2~ (c+d)b=c?+d?+cd.

Odtud po tpravé obdrzime vztah (b — ¢)(b — d) = 0, z néhoZ plyne, Ze
plati b = ¢ nebo b = d. Opac¢nd implikace tedy obecné neplati.
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A-1-6

Jsou-li ¢isla z, y, z FeSenim dané soustavy, ziejmé plati zyz # 0. Vyna-
sobme proto jednotlivé rovnice ¢initeli yz, zx resp. zy a v oboru nenulo-
vych realnych ¢isel feSme ekvivalentni soustavu rovnic

Pyzr=y+z, zyz=zx+z zyt=z+y. (1)

Sectenim levych a pravych stran této soustavy rovnic ziskdme po upravé
rovnici
(zyz —2)(z +y+2) =0.

Odtud vidime, zZe plati zyz = 2 nebo z +y + z = 0.
> Necht zyz = 2. Po dosazeni za soucin zyz v soustavé (1) dostaneme

2r=y+z2, 2y=x+2 2z=2x+y,
coz je ekvivalentni se soustavou
3z=x+y+z 3y=zx+4+y+z 3z=zxz+y+z

Odtud plyne z = y = z. S ohledem na podminku zyz = 2 dostavame
T =y = z = /2. Zkouskou ovéfime, Ze trojice (V2, V2, \3/5) je
skuteéné feseni soustavy (1), a tedy i pavodni soustavy rovnic.
> Necht z + y + z = 0. Z prvni rovnice soustavy (1) plyne z2yz = —x,
odkud s ohledem na podminku z # 0 dostaneme zyz = —1. Ovéfme,
ze kazda trojice nenulovych redlnych &isel (z,y, z) splitujici soustavu
dvou rovnic
z4+y+2z=0, zyz=-1 (2)

je feSenim puvodni soustavy. Z rovnosti (2) totiz plyne

y+z__ —x a:2

1
+;— yz  —1/z

1

)

(s ohledem na symetrii zadané soustavy stacilo ovéfit jednu rovnici).

Soustava rovnic (2) méa v oboru nenulovych realnych ¢isel nekoneéné

mnoho FeSeni, kterd ziskame napfiklad tak, Ze jednu proménnou (napf. z)
zvolime jako parametr. Tim dostaneme soustavu

1
r+y=-—z, xy:—;.
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Po dosazeni za z z prvni rovnice do druhé dostaneme

(y+2)y=

tedy
1
y2+yz—~;:0. (3)
Jednd se o kvadratickou rovnici s neznamou y a parametrem z. Jeji diskri-
minant je roven D = 22 +4/z. Nutnou a postaéujici podminkou k tomu,

aby tato rovnice méla realné koreny, je nerovnost D = 0. VyfeSenim
nerovnice (22 + 4)/z > 0 dostaneme pro parametr z podminku

z € (—o0, —\3/Z> U (0, 00). 4)
Za podminky (4) mé kvadraticka rovnice (3) kofeny

—z+4+ /22 +4/z —z— /22 +4/z

= 2 a Y2 = 2 )

kterym podle vztahu x = —y — z odpovidaji hodnoty

—z—+/22+4/z —z+ /22 +4/z

T = a Iy =
2 2 ’

pfitom pouze v ptipadé z = —V/4 plati (z1,11) = (z2,y2).
Zaver: Dana soustava mé feSeni x = y = z = /2. Vsechna ostatni
FeSeni jsou trojice (z,y, z) tvaru

(I,y,z)=<_zi CRRION zz*“/z,z),

kde z je libovolné ¢islo spliiujici podminku (4).

A-S-1

Protoze P(z) je kvadraticky trojclen s nezdpornymi koeficienty, je nutné
a>0.
Necht z je libovolné kladné redlné ¢éislo a n prirozené. Protoze

2
1 1
OS(\/I"——— =24+ — —2
= \/z_"> 0

79



plati
1
pfitom rovnost nastava, pravé kdyz /zm = 1/y/z", tj. kdyz =z = 1.

Protoze ¢isla ab, bc a ca jsou podle pfedpokladi tlohy nezaporna,
uzitim nerovnosti (1) déle plati

1 ) 11
P(a:)P(;) = (az +bz+c)(a;r—2+bg+c) =
1 1 1
— % a0 | 2 2z L 2, >
a*+b°+c +ab(x+ ac) +bc(z+ a:) —i—ca(m + :v2> 2
2a? +b%4c?+2ab+2bc+2ca= (a+b+c)? = (P(l))2.
Rovnost nastava, pravé kdyz x = 1, nebo ab = bc = ca = 0, coZ s ohledem

na podminku a > 0 déava b =c = 0.
Pro libovolné kladné reilné éislo z tedy plati

P@)-P(3) 2 (PO))’,

pri¢emz rovnost nastdva pravé tehdy, je-li z = 1 nebo b = ¢ = 0.

Pozndmka. Ulohu lze fesit také uzitim Cauchyovy nerovnosti:
1\, 11\
P(z) P(;) = (az +bx+c)(a§ +b—a—: +c> -
2 2 2 VaY b\ 2
= (an) + B+ (7) ( () + (V3) +v@7) 2

va b i 2 2
\/Ex-?+\/ﬂ-\/;+\/?:-\/5 =(a+b+c)® = (P(Q1))".

v

A-S-2

Necht ABCDE je libovolny konvexni pétithelnik s uvazovanymi vlast-
nostmi. Oznaéme P, R po fadé stfedy stran AD, BD trojihelniku ABD
(obr. 32). Pak bude

1 1 1
IPR|=|AB|,  |CR|=3|BD|, |PE|=3|4D, ()
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protoze PR je stfedni pticka trojuhelniku ABD a protoze v pravothlém
trojuhelniku je stfed prepony zaroven stfedem jeho opsané kruznice
(Thaletova véta).

Obr. 32

Z trojuhelnikové nerovnosti je zfejmé, ze pro délku thlopticky CE

plati

|CE| < |CR|+ |RP| + |PE| = s,
kde délka s lomené ¢ary CRPE je podle (1) zaroven rovna poloving
obvodu trojthelniku ABD.

Daéle zkoumejme, kdy bude mit trojihelnik ABD danych vlastnosti
(|JAB| = 6cm, |XADB| = 120°) nejvétsi obvod. Oznaime-li o a 8
(obr. 32) velikosti vnitfnich thla pfi vrcholech A a B trojthelniku ABD
(e + B = 60°), dostaneme ze sinové véty v trojihelniku ABD

sin « sin 3
|BD| = |4B| sin 120°’ |AD| = |AB| sin 120°°

Sectenim obou predchozich rovnosti vyjde

sina+sinf8
sin120°

sin 30° a—f

= 2|AB
AB| ia0s 3
pricemz rovnost v posledni nerovnosti nastava, pravé kdyz cos %(a -p)=
=1, tj. pro @« = [ = 30°. Trojthelnik ABD mé tedy nejvétsi obvod,
pravé kdyz je rovnoramenny a jeho thly pii zdkladné AB maji veli-
kost 30°. Vzhledem k tomu, Ze |[AB| = 6 cm, plat{ pro libovolny pétithel-
nik ABCDE pozadovanych vlastnosti
3
|AB| (1 + 2%) =

|AD| + |BD| = |AB]

<2482,

ICE| < s = 5(|AB| + |AD| +|BD)) <

DN =

1
2
= (3+ 2\/5) cm.
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Pfitom pro uvazovany pétithelnik ABCDE v situaci, kdy je troj-
uhelnik ABD rovnoramenny a vrcholy C, E lezi na ptimce RP, skute¢né
plati |CE| = (3 + 2v/3) cm.

Nejvétsi délka uhlopficky C'E pétithelniku ABCDE vyhovujiciho
podminkam tlohy je tedy (3 + 2v/3) cm.

Pozndmka. V druhé ¢asti feSeni jsme (pro konkrétni hodnotu w =
= 120°) ukézali, Ze trojuhelnik ABD s danou stranou AB a danym
uhlem w pfi vrcholu D mé nejvétsi obvod, pravé kdyz je rovnoramenny
se zakladnou AB. To plyne i z nasledujici avahy:

Bod D probiha oblouk, z néhoz je tsecku AB vidét pod thlem w.
Na polopfimce opa¢né k DA (obr. 33) sestrojme bod K tak, aby |DB|
= |DK]|. Z rovnoramenného trojuhelniku BDK plyne, ze |XAKB| =
e %w. Bod K proto lezi na oblouku, z néhoz je tsecku AB vidét pod
Ghlem iw. Délka |AK| = |AD| + |BD| bude tudiz nejvétsi, pravé kdyz
bude tsecka AK prumérem AK™ zminéného oblouku; tehdy je bod D
stfedem D* pfislusné kruznice, takze plati |AD*| = |BD*| = |D*K*|.

A-S-3

Odeétenim prvni rovnice dané soustavy od druhé dostaneme rovnici

y? —2? 4222 - 2yz=6(z+2—2) — 6(y + z — 2),
kterou upravime na tvar
(z—y)(z+y—22z+6)=0.
Podobné odectenim prvni rovnice soustavy od tfeti dostaneme

(z—-2)(z+2z—-2y+6)=0.
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Dané soustava je proto ekvivalentni se soustavou rovnic

22 +2yz —6(y+2-2) =0,
(z-y)(z+y—22+6)=0, (2)
(z—2)(z+2z—-2y+6)=0.

Vzhledem ke druhé a tfeti rovnici této soustavy je mozno rozlisit étyti
pripady.
1. Necht (z —y =0)A(z — 2z =0). Pak z = y = z a dosazenim za y a z
do prvni rovnice soustavy (2) dostaneme rovnici

322 — 122 +12 =0,

kterd ma dvojnasobny realny kofen z = 2. Proto trojice (z,y,2) =
= (2,2,2) je v tomto pfipadé jedinym feSenim dané soustavy.

2. Necht (z—y=0)A(z+2—-2y+6=0).Paky=zaz=z-6.
Dosazenim do prvni rovnice soustavy (2) dostaneme po Gpraveé rovnici

322 — 24z + 48 =0,

kterd mé dvojndsobny realny kofen z = 4. Proto trojice (z,y,z) =
= (4,4,—2) je v tomto pfipadé jedinym FeSenim dané soustavy.

3. Necht (z+y—22z+6 = 0)A(z—2z = 0). Podobné jako v pfedchézejicim
ptipadé dostaneme jediné feSeni (z,v, z) = (4, —2,4).

4. Necht (z +y—2z4+6 = 0) A (z + 2z — 2y + 6 = 0). Odectenim
druhé rovnice od prvni dostaneme, ze 3y — 3z = 0, tedy y = =z.
Z prvniho pfedpokladu tak médme y = z + 6. Dosazenim do prvni
rovnice soustavy (2) dostaneme po Upravé rovnici

322 + 1224+ 12 =0,

kterd mé dvojnasobny redlny kofen z = —2. Proto trojice (z,y, z) =
= (—2,4,4) je v tomto pfipadé jedinym Fesenim dané soustavy.

Dané soustava ma v oboru redlnych ¢isel ¢tyfi feSeni (z, v, z), kterymi
jsou trojice (2,2,2), (4,4, -2), (4,-2,4) a (—2,4,4).

Poznamka. Pokud si vSimneme, Ze sectenim vSech tf{ rovnic dané
soustavy dostaneme po Upravé

($+y+z—6)2:0,
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pak napf. z podminky z + z — 2y + 6 = 0 pfimo plyne y = 4, coz pred-
chéazejici avahy zjednodusi.

A-I1l-1

Kazdy pétimistny palindrom p se dé zapsat ve tvaru p = abcba, kde a,
b, ¢ jsou éislice v desitkové soustavé, a # 0. Z vyjadieni

p=10001a + 1010b+ 100c = 37(270a + 27b + 3¢) + 11(a + b — c)

plyne, Ze p je délitelné Cislem 37, pravé kdyz je ¢islem 37 délitelné &islo
a+b—c. Vzhledem k tomu, Ze a, b, ¢ jsou ¢islice (a # 0),je -8 S a+b—
— ¢ £ 18. Proto je ¢islo a + b — ¢ délitelné 37, pravé kdyz a +b — ¢ = 0,
neboli ¢ = a + b. Cislice a, b tedy museji spliiovat podminku a + b < 9.

Ke kazdému a € {1,2,3,...,9} lze ¢slici b zvolit 10 — a zpusoby tak,
aby platilo a + b < 9 (b € {0,1,2,...,9 — a}). Cislice ¢ je pak uréena
jednoznacné jako soucet a + b. Palindromi s éislici a = 1 je proto 9,
palindromi s ¢&islici @ = 2 je 8 atd.; koneéné pro ¢islici a = 9 existuje
pravé jeden palindrom.

Pocet vSech pétimistnych palindromu, které jsou délitelné ¢islem 37,
je tedy

9+8+T7+...+1=45.

A-I11-2

Pocet vyhovujicich slov délky n = 2, kterd koné¢i dvojicemi pismen AA,
AB, BA oznaéme postupné (aa),, (ab)n, (ba),; podet vyhovujicich slov
délky n 2 1, kterd konéi pismenem A, resp. B, oznaéme ay, resp. b,. Pro
vSechna pfirozena ¢&isla n = 2 plati:

an = (aa)n + (ba)n,
by, = (ab)n,
DPn = an + by = (aa), + (ba),, + (ab),.
Existuji pravé dvé vyhovujici slova délky jedna, a to slova A a B,

a pravé t¥i vyhovujici slova délky dva, a to slova AA, AB, BA, proto
ay =by =1,p1 =2, (aa)z = (ab)2 = (ba)2 = 1, a2 =2, by = 1, pp = 3.
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Kazdé vyhovujici slovo délky n = 3, které konéi dvojici pismen AA,
dostaneme tak, Ze pripiSeme pismeno A na konec slova délky n — 1 kon-
¢iciho dvojici BA. Proto plati

(aa)n = (ba)p—1.
Analogicky zjistime, Ze pro kazdé n 2 3 plati rovnéz vztahy

(ba)n = (ab)p—1,
(ab)n, = (aa)p—1 + (ba)n_1.

ProtoZe néas zajima pouze parita pfirozeného éisla p, a vyrazd, pomoci
kterych ho pocitdme, mizeme na zakladé uvedenych rovnosti sestavit
tabulku ze symbold S a L, jimZ odpovidaji sudé resp. liché éisla. Dosta-

neme
n

(aa)n
(ba)n
(ab)n

| W N w
SN 0 »y
S Wy Uy | an
SN SN0t 0o

Tato tabulka je nutné periodickd, protoZe existuje jen osm raznych uspo-
fadanych trojic pismen S a L, takZe nejdéle po osmi sloupcich se vzhle-
dem k dokazané rekurenci za¢nou hodnoty posloupnosti ((aa),), ((ba)n),
((ab),) opakovat. Hodnoty posloupnosti (an), (bn), (pn) jsou z nich odvo-
zeny, takZe se za¢nou opakovat rovnéz. Z tabulky vidime, Ze jeji perioda
je 7 (prvni dva shodné sloupce jsou pron =2 an =9). A protoZe v pii-
slusném useku tabulky je dvojice sousednich sudych &isel p7, ps jedina,
jsou obé ¢isla p,, a pn+1 sudd, pravé kdyz je ¢islo n délitelné sedmi.

Pozndmky. Z vyse uvedenych vztahtt mizeme odvodit rekurentni rov-
nice pro é&isla a, a b,. Pro viechna pfirozend &isla n = 4 plati
an = (aa)n + (ba)n, = (ba)p—1 + (ab)n—1 =
(ab)n—2 + (ab)n—1 = bp—2 + bp_1,
by, = (ab)n = (aa)p-1 + (ba)n—1 = an-1.

Tyto rovnice také muzeme odvodit nasledujici ivahou. Vyhovujici slovo
konéici pismenem A mé koncovku BA nebo BAA, pocet slov prvniho
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typu je b,_1, slov druhého typu je b, _5. Vyhovujici slovo konéici pisme-
nem B ma nutné koncovku AB a téchto slov je a,_;.

Ze vztahti uvedenych v predchozim odstavci se d4 odvodit rekurentni
rovnice pfimo pro ¢isla p,,. Pro kazdé n = 4 totiz plati

an = bn—l + bn—2 =apn-2 + an-3,

bn =0Qan-1= bn—2 + bn—3~

Vzhledem k tomu, Ze p, = a, + b,, dostaneme sectenim téchto vztahu
rovnici

Pn = DPn—2 + Pn-3,
kterou muzeme odvodit i takto: Kazdé vyhovujici slovo délky n mé pravé
jednu z koncovek ABAA, ABA, BAB, BAAB, ptitom koncovky ABA

a BAB ma préaveé p, _» slov, zatimco koncovky ABAA a BAAB ma pravé
Pn_3 slov.

A-11-3

a) V tétivovém &tyfthelniku ALBC plati « = |xBAC| = |¥BLC|
af =|xABC|=|xALC)| (obr.34). Z rovnosti obvodového a piislusného
tusekového thlu pro tétivu AK v kruznici k; vyplyva, ze primka AC je

9

Obr. 34
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tecnou ke kruznici ky, pravé kdyz plati |xCAK| = |XALK|, tj. pravé
kdyz o = . Z analogickych divodu je pfimka BC te¢nou ke kruznici ko,
pravé kdyz 8 = a. Piimka AC je proto te¢nou ke kruznici k;, pravé kdyz
piimka BC je tecnou ke kruznici ko, coZ jsme chtéli dokazat.

b) Podle ¢asti a) vime, Ze plati @ = |¥BAC| = |¥xBLK| a 3 =
= |XABC| = |<ALK]|. Bez 0jmy na obecnosti muZeme pfedpoklidat,
ze plati a < . Tecna v bodé A ke kruznici ky svirad s tétivou AK use-
kovy thel f > «, proto lezi bod P na polopfimce AC, zatimco bod @
lezi analogicky na polopfimce opacné k BC'. Z tétivovych étyftuhelnika
ALKP a BQLK plynou rovnosti | XK PC| = 8 a |xBQK| = « (obr. 34).
Trojthelniky APK a QBK se proto shoduji ve dvou thlech (u vrcholtt 4,
Q a P, B). Shoduji se tedy i v thlu pfi spole¢ném vrcholu K:

|XAKP|=|xBKQ| (= 8 - ).

Odtud plyne, ze body P, K, Q lezi na téze pfimce. Tim je tvrzeni ¢asti b)
dokazéano.

Pozndmka. Dokazali jsme vlastné nasledujici tvrzeni: Je-li trojihelnik
ABC rovnoramenny s rameny AC, BC, dotykaji se obé ramena odpo-
vidajicich kruznic k1 a ko ve vrcholech A a B; neni-li rovnhoramenny,
protinaji jeho strany AC a BC odpovidajici kruznice k; a ke v dalsich
bodech P a Q (P # A, Q # B), pficemz jejich spojnice PQ prochazi
danym bodem K.

A-I1l1-4
Uzitim sinové véty v trojuhelnicich BK A a CK A dostaneme

|BK| sing a |CK| sing
|AK|  sing |AK| — siny’

Sectenim obou predeslych rovnosti vyjde

|BC| |BK| |CK| .« 1 1
- + =sin—- | — + — .
|AK| |AK| |AK]| 2 \sinf = sinvy
Vynasobime-li obé strany posledni rovnosti vyrazem 2 cos §, obdrzime
po upravé
|BC| a 1 1
2 = .
|AK| cosg Tema sin 8 + siny ()
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Cyklickou zdménou ziskdme dalsi dvé analogické rovnosti

|CA] ﬁ B 1 1
2 |BL| 53 sinff siny * sina /)’ )
IABI T 1 1
2 |C’M| "2 = sma * sin )’ 3)
Sectenim rovnosti (1), (2) a (3) dostaneme po déleni dvéma rovnost
B0 o 1041, 8 1AB] 7
JAK] 7 2 |BL| |C M|

1 /sina sinf 1 /sinfB siny 1 /siny sina

=l t= +tol0—Ft—= )t | —+= .

2 \sinf = sina 2 \siny sinf 2 \sina = sinvy
Vzhledem k tomu, Ze sin ¢, sin 3, sin~y jsou kladnd &isla, miZeme kazdy
ze tfl vyrazu v zavorkach na pravé strané posledni rovnosti odhadnout
zdola ¢islem dvé (vyuzivame zndmou nerovnost a/b+b/a 2 2, kterd je pro

libovoln4 kladné &isla a, b ekvivalentni se zfejmou nerovnosti (a — b)? >
2 0). Odtud plyne pozadovana nerovnost a dikaz je hotov.

A-1ll-1

Vyhovuje-li néjaka trojice (z,y,2) € R® (zyz # 0) podminkam tlohy, je
feSenim néasledujici soustavy nerovnic

8

8
m2+y2+z2§6+z2—g,

5ty +22 56,
T

2 2 2 < 2 8 : 2 8 2 <
¢4+ y +z ._.6+y—E, tj. m—%—E%—z <6,

8 8
22 4+y?+22<56+ 22 - w2+y2+$—4§6.

Sectenim vSech tii nerovnic této soustavy dostaneme nerovnici

8 8 8

—+22 422 )+ (S +2+9? )+ (5 +22+22) <18
4 4 4

T y z

Vyrazy v kazdé ze tii zavorek na levé strané lze odhadnout uzitim ne-
rovnosti mezi aritmetickym a geometrickym primérem trojice kladnych
¢isel. Obdrzime tak postupné

8 8 8
182 (F+I2+I2)+(E+y2+y2> +(;I+22+22> >
8
23\3/%~m2-x2+3f/§4~y2-y2+3\3/—4-z2-z2=18,
. Y z
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Odtud plyne, ze v kazdé ze tii pouzitych nerovnosti mezi aritmetickym
a geometrickym prumérem nastdava rovnost, takze prislusna trojice cisel
ma vzdy tti stejné slozky. Musi tedy soucasné platit

8 8
4 21 4 :yza 4 :Z2’
T Y z
tj.
28 =9yt =2%=38

Z posledni podminky bezprostfedné plyne

(z,9,2) = (e1V2,62V2,63V2), kdee; € {~1;1} proi=1,2,3. (1)

Vzhledem k uzité disledkové upravé je nutno provést zkousku, po-
moci niZ zjistime, Ze vSech 8 trojic redlnych ¢isel uréenych vztahem (1)
vyhovuje podminkdm tlohy.

Jiné Fedeni. Necht trojice (z,y,2) € R® (zyz # 0) je feSenim dané
tlohy. Oznaéme

A =min{z?,y?, 2%} > 0.

Potom plati

8 8 8 8
min{zQ——z,yz——(l,ZQ———} =A-—.
T y

Proto téz
2., .2, .2 : 2 8 o 8 o, 8
A+A+AS2+y* +2°S6+minqz’ — — ¢y — —, 28— — =
T Yy z
8

Po tpravé dostaneme nerovnost, jejiz pravou stranu odhadneme uZitim
nerovnosti mezi aritmetickym a geometrickjm primérem:

8

Ve = 6.

8 3
6§A+A+—A—223 A-A-

To znamen4, zZe ve vSech uzitych nerovnostech musi nastat rovnost, proto

2:A:_’]}2:y2:2’2_
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Zkouskou opét ovérime, Ze vSechny trojice ur¢ené vztahem (1) jsou
feSenim zadané nerovnice.

Pocet vyhovujicich slov délky n, kterd konéi pismenem A, resp. B,
oznaéme a,, resp. b,. Plati

Pn = Qp + by. (1)

Necht n 2 4. Vyhovujici slovo konéici pismenem A ma jednu z kon-
covek BA, BAA, nebo BAAA. Poéet slov prvniho typu je b,_;, druhého
typu b, o, tfetiho typu b, _3. Proto

ap =bn_1 +bp_o+bn_s. (2)

Podobné pro n 2 3 ma vyhovujici slovo koné&ici pismenem B jednu

z koncovek AB, ABB, tudiz
bn =anp-1+ an_2. (3)

Necht dale n 2 6; kazdé z &isel b; ve vztahu (2) vyjadfeme pomoci (3),
dostaneme tak

an = bn—l + bn—2 + bn—3 =
= (an—2 + an—-3) + (an—3 + a'n.-—4) + (an—4 + an—S) — (4)

=an—2+2a,_3+2an_4+ an_s.
Podobné dostaneme

bp =Gn-1+an_2 =
= (b'n.——2 +bn_3+ bn-—4) = (bn—3 +bn—q + bn—S) = (5)
=bn_o+2bp_3+2by_4+bp_s.

Se¢tenim vztaht (4) a (5) dostaneme dle (1)
Pn =DPn-2+ 2p'n—3 + 2pn—4 + DPn—s.
Proto pro libovolné pfirozené &slo n 2 6 plati

Pn — Pn—-2 — Pn-5
Pn—-3 + Pn—s

=2,
tudiz zadany zlomek ma hodnotu 2 i pro n = 2 004.
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A-11-3

Pro libovolné i, 1 < i < 121, oznaéme M; mnozinu vSech bodu X
kruZnice k, pro néz tsefka A;X svird s odpovidajici pfimkou p; thel
velikosti mensi neZz € = 21°. Mnozina M; je zfejmé tvofena dvéma
oblouky X;Y; a U;V; (obr.35). Obéma uvazovanym obloukim kruz-
nice k odpovidad dvojice stfedovych uhld X;SY; a U;SV;, kde S je
stfed dané kruznice k. UkdZeme, Ze pro kazdé ¢ € {1,2,...,121} plati
|x X;SY;| + |xU;SV;| = 4e = 84°.

Obr. 35

V trojthelniku A;Y;U; je soudet velikosti vnitinich thla pfi vrcholech
Y; a U; roven velikosti vedlej$iho thlu pfi vrcholu A;, tj. 2. AvSak soucet
obou uvazovanych vnitinich Ghla v trojihelniku A;Y;U; je roven souctu
obvodovych thlt odpovidajicich oblouktim X,;Y; a U;V;. Ze vztahu mezi
obvodovym a stfedovym thlem dostavame

| X;SY;| + |[xUSV;| = 2 - 26 = 4e = 84°.

Celkové tak 121 uvaZovanym tétivdm p; a jejich bodim A; odpovida
121 dvojic obloukt X;Y; a U;V; kruznice k s celkovou obloukovou dél-
kou 121 - 84° = 10164°. Pokud kazdy bod X kruzZnice k nélezi nejvyse
28 mnozindm M;, musi byt uvedeny soucet vSech obloukovych délek nej-
vyse roven 28 - 360° = 10080°, coz neplati. Proto existuje asponi jeden
bod kruznice k, ktery nélezi soucasné aspon 29 mnozindm M;, coz jsme
méli dokazat.
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Pozndmka. Ze obéma oblouktim X;Y; a U;V; odpovids dohromady
stfedovy thel 4¢, nahlédneme snadno i z obr. 36, nebot oblouky U!Y;
a U;V; jsou shodné.

Obr. 36

A-lll-4

Pron = 1,2,3 je dany soucet roven celym ¢&islim 1, 3, resp. 5. Pfedpo-
kladejme proto déle, ze n > 3. Jednoduchou tipravou dostaneme

n n n n n o

ntat T ey T o AT
_nn-1)-...-24+n(n-1)-...-3+...+n(n—-1)+n+1

B (n—1)! '

Je-li posledni zlomek celé ¢islo, je nutné ¢islo n—1 délitelem jeho citatele.
Proto je ¢islo n — 1 délitelem &isla n + 1. Protoze nejvétsi spolecny délitel
dvou disel je délitelem i jejich rozdilu, je nejvétsi spolecny délitel cisel
n—1an+1 délitelem &isla 2, takze n — 1 € {1,2}, coz je ve sporu
s pfedpokladem n > 3.

Dany soucet je celé &islo pro pfirozend ¢isla n z mnoziny {1, 2, 3}.

A-Illl-5

Uhlopticka AC je pramérem kruZnice opsané étverci ABCD, takze podle
Thaletovy véty je thel ALC pravy (obr.37). Bod K je tak prusecikem
vysek CD a AL v trojuhelniku ACM, takze i pfimka MK je kolmé

92



na AC a protina stranu BC daného ¢tverce v jejim vnitinim bodé N,

nebot MK || DB.

C N B
LL=F
M D A
Obr. 37

Tvrzeni lze tlohy dokdzat nékolika zpusoby.

1. Ctyfthelniky BCLD a KLMD jsou tétivové, proto podle véty
o obvodovych thlech postupné plati

|xNBL| = |¥CBL| = |xCDL|=|xKDL| = |«xKML|=|xNML|.

ProtoZe body B a M leZi v téZe poloroviné vytaté pfimkou N L, lezi body
B, L, M, N na téZe kruznici.

2. Protoze MN | DB, je | xMNC| = 45°, rovnéz tthel BLC nad
tétivou BC kruznice k mé velikost 45° (obr.38), je tedy |¥xBLM| =

C N B
g
//
//
///
L g
. //
//
//
rd
//
b
//
///
e
,/
//
M D A
Obr. 38
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= |xBNM| = 135°. Body L a N zfejmé lezi v téze poloroviné vytaté
primkou M B, proto lezi body B, L, M, N na téze kruZnici.

3. (Ocenéné teseni Martina Seleckého.) Ukdzeme, Ze osy usecek BN,
MN a LM se protinaji v jednom bodé. Ozna¢me X, Y a Z stfedy téchto
tsedek (obr. 39). Osa tsecky BN je zfejmé rovnobéZna s AB. Z rovnosti
obvodovych uhlt |xDAL| = |xDCL| nad tétivou DL kruZnice opsané

c N X, B
L
|
L/ P,
Y 3
Zf:
3\ AN
2N
M D A
Obr. 39

danému Ctverci plyne, Ze trojahelniky DAK a DCM jsou shodné (usu),
takze |M D| = |DK]|. Trojthelnik M DK je tedy pravothly rovnoramen-
ny, takze |<x DM N| = 45°, neboli M N || BD. To znamen4, Ze osa tsecky
MN je rovnobézné s pfimkou S A. Koneéné thel CLA je pravy thel nad
prumérem AC kruZnice opsané danému Ctverci, takze osa tseéky LM
je rovnobéznd s KA. Ozna¢me Py, P, pruseciky os tisecek NB a M N
s thloprickou BD a P prusecik osy tsecky LM s pfimkou M N (obr. 39),
pfitom zfejmeé je Ps stfedem usecky K M. Protoze |[M D| = |Y S| = |NBj,
je také |BPj| = |SPs| = |K Ps| (stali si uvédomit shodnost ptislusnych
pravouhlych rovnoramennych trojihelniki BNP;, & SY P, = DKP3).
Zjistili jsme, Ze osy useCek BN, M N a LM dostaneme po fadé rov-
nobé&znym posunutim primek BA, SA a KA o vektor BP;, a protoze
uvedené primky maji spoleény bod A, je spoleénym bodem vsSech tii os
bod, ktery dostaneme posunutim bodu A o tyz vektor.

4. Ozna¢me P patu vysky z vrcholu M na stranu AC a uvazujme
Ctyfahelniky ABNP, APKD a DKLM (obr.40). Podle Thaletovy véty
jsou vSechny tfi ¢tyrahelniky tétivové. Vrchol C' daného étverce ABCD
lezi vné kazdé ze tii kruznic opsanych uvazovanym tétivovym Ctyithel-
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Obr. 40

nikim, takze uzitim véty o mocnosti bodu C ke kruznicim opsanym po
fadé ¢tyruhelnikim ABNP, APKD, DK LM obdrzime nésledujici tfi
rovnosti

|CN|-|CB| =|CP|-|CA]|,
|CP|-|CA| =|CK]|-|CD|,
ICK|-|CD| =|CL|-|CM],
z nichZ bezprostfedné vyplyva rovnost
[CN|-|CB|=|CL|-|CM]|.
Odtud jiz plyne, ze body B, L, M, N lezi na téze kruZnici.
A-1ll-6

Necht f je libovolna z hledanych funkci. Oznac¢me f(1) = p, vzhledem
k podminkam ulohy plati p > 0.
V daném vztahu poloZzme z = 1, y = 1. Po tpravé dostaneme

p=f(p). (1)
V daném vztahu déle polozme z = p, y = 1. Potom
P (f() +p) = (0 +1)f(f(p)

a podle (1) vyjde
2p° = (p+ 1)p.
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Tato algebraickd rovnice mé t¥i realné kofeny —%, 0, 1. Jediny kofen
vyhovujici podmince p > 0 je p = 1, tedy

faQ) =1 (2)

Necht t je libovolné kladné realné &islo. V daném vztahu poloZme
x =1, y =t, takze vzhledem k (2) dostaneme

1+ f(t) = 1+ 1) f ().
Odtud po tpravé
ft)=<. (3)

Dosazenim snadno ovéfime, ze funkce f(t) = 1/t vyhovuje rovnici ze
zadani.

Funkce uréend vztahem (3) je jediné feseni dané ulohy.

Jiné feSeni. Pfedpokladejme, Ze existuje funkce danych vlastnosti,
a libovolnou z takovych funkci ozna¢me f.

Necht t je libovolné kladné redlné &islo. V daném vztahu poloZme
z =t, y =t. Po Gpravé dostaneme

tf(t) = F(tf(1)).

Odtud plyne, Ze mnoZina P = {p € Ry : p = f(p)} pevnych bodf funk-
ce f je neprazdnd, protoZe pro kazdé kladné redlné &islo t je tf(t) € P.

Predpokladejme, Ze mnozina P obsahuje alespon dvé ruzna disla,
a oznacme je a a b. V daném vztahu polozme z = a, y = b, dostaneme
tak

a®(f(a) + f(b)) = (@ + ) f(f(a)b),
a protoze a = f(a), f(a) + f(b) = a+ b # 0, vyjde po Gpravé
a® = f(ab). (1)
Polozime-li naopak z = b, y = a, dostaneme obdobné
b2 = f(ab). 2)

Protoze a a b jsou kladnd ¢isla, plyne ze vztaht (1) a (2) rovnost a = b,
coz je spor s pfedpokladem, Ze mnozina P obsahuje dvé rizna &isla. Mno-
zina P tedy obsahuje jediné &islo p (p € Ry ). Z pfedchézejicich vztaha
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vyplyva, ze pro kazdé kladné realné &islo ¢ plati tf(t) = p, proto je
funkce f nutné tvaru

Dosadime-li tento predpis do ptvodniho vztahu, dostaneme pro vSechna

T,y € Ry
p D p
xz(_ + —) =(Z+y)p—>
z oy Ly
x
coz po upravé dava p = 1.
Funkce f dand pro vSechna kladné realna cisla t predpisem

f0) =7

je tedy jedina funkce, kterd vyhovuje zadéni.
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Kategorie P

Texty tloh

P-1-1
Sit
Firma Pfipojse poskytovala svym zdkazniktim velmi spolehlivé pfipojeni
na Internet. Vybudovala si pro tento el svou vlastni datovou sit spo-
jujici nékolik nejvétsich mést v zemi. Sif se skldd4 z uzlt umisténych ve
méstech a z linek, které vedou mezi mésty. Kazda linka spojuje nékteré
dva uzly. Sit méla tu vlastnost, Ze v pfipadé preruSeni jedné libovolné
linky ztistala plné funkéni, tzn. zbyvajici linky zajisfovaly propojeni mezi
kazdymi dvéma mésty.

Nedéavno se firma rozhodla rozsirit své sluzby i pro zédkazniky v dalsich
méstech. Zridila proto fadu novych linek, pomoci nichz byla tato mésta
pripojena k jiz existujici siti. Nyni by ve firmé potfebovali védét, zda
je jejich sif stéle jesté dostateéné spolehliva, tj. zda i nadéle existuje
moznost spojeni mezi kazdymi dvéma mésty i v pfipadé vypadku jedné
libovolné linky.

Soutézni uloha. Napiste program, ktery precte ze vstupu seznam uzlt
a linek tvoricich sit a zjisti, zda m4 sit tu vlastnost, Ze pokud se libo-
volna jedna linka prerusi, vSechna mésta v siti mohou mezi sebou nadale
komunikovat pomoci zbyvajicich linek.

Formdt vstupu: Prvni fadek vstupniho textového souboru sit.in ob-
sahuje dvé kladna cela ¢isla n a m, kde n je pocet mést propojenych v siti
am je pocCet linek (n £ 100). Pro jednoduchost jsou mésta oznaéena ¢isly
1,2,...,n. Na kazdém z nésledujicich m fadkt vstupniho souboru jsou
zapséana dvé ¢isla, kterd urcuji mésta spojend linkou.

Muzete predpokladat, Ze je mozné prostiednictvim existujicich linek
komunikovat mezi kazdymi dvéma mésty v siti a zZe zadné dvé linky
nespojuji stejnou dvojici mést.

Formadt vistupu: Vystupni textovy soubor sit.out obsahuje jediny
fadek, na némz je zapsano slovo ,ANO¥, jestlize lze v siti zadané na
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vstupu komunikovat mezi libovolnymi dvéma mésty i po preruseni libo-
volné jedné linky, a slovo ,NE“, pokud sit tuto vlastnost nema.

Priklad 1: Priklad 2:
sit.in sit.out sit.in sit.out
56 ANO 4 4 NE
12 12 (Pokud se prerusi linka
23 23 mezi mésty 3 a 4, tato
31 31 meésta spolu nebudou
34 34 moct komunikovat.)
45
25

P-1-2

AttoSoft

Vasek si zalozil mali¢kou programéatorskou firmu, kterou nazval ptiznaéné
AttoSoft.! Ned4vno se mu kone¢éné podafilo ziskat prvniho klienta. Ten
mu dal za kol napsat N jednoduchych programi.

Vasek je vSak liny sam programovat, a proto si na tuto praci najal
N programéatori. Kdyz rdno vsichni prisli do préace, ukazalo se, ze kazdy
z nich umi naprogramovat pouze jeden z potfebnych programii. Nastésti
kazdy z pozadovanych programt umél nékdo z nich naprogramovat, takze
se mohli pustit do priace. Objevil se vSak dalsi problém. Firma AttoSoft
vlastni pouze jeden pocita¢ a na ném muzZe v jednom okamziku pracovat
jen jeden programaétor.

Vasek si uvédomil, Ze je diilezité zvolit spravné poradi, v némz budou
jednotlivi programatofi pracovat u pocitace. Podle podepsané smlouvy
totiz programatory neplati za vykonanou praci. Kazdého programaétora
plati za cas, ktery uplyne od zac¢atku prace na celé zakazce az do oka-
mziku, kdy tento programator dokonc¢i sviij program. Vasek o kazdém
z programatoru vi, kolik mu musi zaplatit za jednu hodinu a jak dlouho
mu napsani jeho programu bude trvat. Pomozte mu zjistit, v jakém poradi
ma poslat programétory pracovat na pocitaci, aby jim dohromady mohl
zaplatit co nejméné.

Priklad. Méjme tfi programétory A, B, C. Programator A chce 100 K&
za hodinu a na svij program potfebuje 2 hodiny. B dostane 20 K¢& za ho-

1 Mikro je 107%, nano je 10~°, piko je 1012, femto je 10~1° atto je 1018,
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dinu a potfebuje na praci 5 hodin ¢asu. Programator C' pozaduje 500 K&
za hodinu a bude pracovat 20 hodin.

Pokud by programovali v poradi A, B, C, musel by Vasek zaplatit
programatorovi A za 2 hodiny, programatorovi B za 7 hodin a progra-
matorovi C za 27 hodin, coz by ho prislo celkové na 13840 K¢. Jest-
lize budou programovat v poradi C, B, A, bude to Vaska stit jenom
500 x 20 + 20 x 25 + 100 x 27 = 13200 K¢, takze toto potradi je vyhod-
néjsi. (Ale neni to jesté nejlepsi mozné feseni.)

Soutézni uloha. NapiSte program, ktery preéte ze vstupu pocet pro-
gramatory, jejich hodinové mzdy a Casy potfebné na jejich praci a spo-
éita, v jakém poradi ma VasSek nechat programatory pracovat, aby jim
dohromady zaplatil nejmensi moznou c¢astku. Ma-li tloha vice raznych
feSeni, program najde a vypiSe jedno libovolné z nich.

Formadt vstupu: Prvni fadek vstupniho souboru attosoft.in obsa-
huje jedno kladné celé éislo N (1 £ N £ 10000), které udava podet
programéatoru. Nasleduje dalsich IV fadkt; i-ty z nich obsahuje dvé cela
gisla my, t; (0 < my, t; < 30000), kde m; je hodinova mzda i-tého pro-
gramatora a t; je Cas v hodinédch, ktery i-ty programéator potfebuje na
napsani svého programu.

Formadt vystupu: Vystupni textovy soubor attosoft.out obsahuje
N tadka. Na j-tém z nich je zapsdno jedno celé éislo z rozmezi od 1
do N — d&islo programaétora, ktery bude programovat jako j-ty v poradi.

Priklad: attosoft.in attosoft.out
3 1
100 2 3
20 5 2
500 20 (Vasek zaplati 11 740 K¢.)
P-1-3
Soucty

Je dano pole A[1..N] celych &isel. Napiste program, ktery bude umét co
nejrychleji provadét nasledujici ptikazy:
> zmén hodnotu A[z] na v,
> vypiS soucet prvka Alz] + Alz + 1]+ ... + Afy|.
Va$ program si na zacatku vypoétu muze pole A v rozumném case
vhodné predzpracovat.
Formdt wvstupu: Vstupni textovy soubor soucty.in obsahuje pfe-
dem nezndmy pocet fadkt. Na prvnim fadku souboru je uvedeno je-
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diné celé ¢islo N (1 £ N < 2000). Druhy fadek obsahuje ptivodni hod-
noty ulozené v poli A — celd ¢isla aj,as,...,any oddélend mezerami
(0 £ a; £1000000).

Vstupni soubor pokracuje nékolika fadky s prikazy, z nichz kazdy ma
néktery z nasledujicich tvara:

lzy(1<z<N,0< y<1000000) zmén hodnotu A[z] na y
2zy(l<zSysN) vypis hodnotu Afz] + ...+ Ay]

Vstup je ukoncen fadkem obsahujicim jediné éislo 0.

Formadt vystupu: Program musi vykonat vSechny prikazy v poradi,
ve kterém jsou uvedeny na vstupu. Pro kazdy pfikaz na vypsani souctu
n&jakych prvki pole musi do vystupniho souboru soucty.out zapsat
jeden fadek obsahujici jedno celé ¢islo — soucet prislusnych prvk pole A
v daném okamziku.

Priklad: soucty.in soucty.out
14 26
1431131131411 1 8
21 14 8
236 5
120
236
130
236
0

P-1-4

Registrovy poéitac

V této uloze se budeme zabyvat registrovymi pocitaci. Registr je néco
podobného jako proménnd. V registru muze byt ulozeno libovolné velké
nezaporné celé ¢islo. Na rozdil od proménnych, které mezi sebou mtizeme
sCitat, odcitat a nésobit, s registrem lze provadét jen tii jednoduché ope-
race: zvétsit jeho obsah o 1, zmensit jeho obsah o 1 (pokud se pokusime
zmensit obsah registru obsahujiciho hodnotu 0, ztistane v ném 0) a otes-
tovat registr, zda je v ném 0. Na zacatku vypoctu jsou ve viech registrech
nuly.

Registrovy pocita¢ muze pouzivat neomezeny pocet registrii oznace-
nych Ry, Ry, Ry atd. Vedle registrit ma k dispozici jesté konecné velkou
pomocnou pamét.
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Program pro registrovy pocita¢ budeme zapisovat v jazyce velmi po-
dobném programovacimu jazyku Pascal. Programovaci jazyk registrového
pocitace bude oproti Pascalu rozsifen napfiklad o pfikazy pro préci s re-
gistry, naopak nékteré ptikazy z Pascalu v ném budou zakazany.

Registrovy pocita¢ bude fesit lohy nésledujictho typu: poéitaé do-
stane na vstupu zadano slovo (fetézec pismen) a po néjakém case od-
povi, zda je toto slovo sprdvné nebo $patné. Aby ndm mohl odpovédét,
zavedeme do programovaciho jazyka specidlni prikazy Accept a Reject.
Jakmile se béhem vypoctu vykond piikaz Accept, vstupni slovo je spravné
a vypocet konci. Jestlize se provede piikaz Reject, slovo je Spatné a vypo-
et koncl. Pokud se vypocet zacykli nebo pokud skondi, aniZ by se provedl
piikaz Accept nebo Reject, zadané vstupni slovo je rovnéz Spatné.

Prikaz ,pricti 1 k obsahu registru R“ budeme znacit Inc(R), ,odecti 1
od obsahu registru R budeme znacit Dec(R). Vyraz Zero(R) je pravdivy,
jestlize je v registru R nula, v opa¢ném ptipadé je nepravdivy. Na zacatku
vypoctu jsou ve vSech registrech nuly.

V kazdém programu miZzeme pouzit jen koneéné mnoho registri.
Kromé nich mtzeme pouzit uz jen konstantni pocet pomocnych promén-
nych typu byte? (nemtizeme tedy pouZivat pole!) a jednu specidlni pro-
ménnou vstup typu char. Obsah proménné vstup lze ménit pouze prove-
denim pifikazu Read(vstup). JestliZe pocital jesté nedocetl vstupni slovo,
piikaz Read(vstup) z néj precte jedno dalsi pismeno a ulozi ho do pro-
meénné vstup. Pokud pocitac jiz vstupni slovo docetl, pfikaz Read(vstup)
ulozi do proménné vstup specialni znak $.

Jelikoz registrovy pocita¢ mé kromé registrii jen koneéné mnoho pa-
méti, nemize si dovolit pouzivat rekurzi (nemél by si kde pamatovat
navratové adresy). My pro jistotu uplné zakdzeme definovat a pouzivat
v programu procedury a funkce. Zakazano je i voldni vSech standardnich
procedur a funkci jazyka Pascal. V aritmetickych vyrazech lze pouzi-
vat pouze proménné (tedy ne registry!), celo¢iselné konstanty, celoéiselné

operatory +, -, *, div, mod a zavorky. V podminkach se mohou pouzi-
vat vyrazy Zero(R;), bézné relacni operatory (<, <=, ...), logické spojky
a zévorky.

7 klicovych slov jazyka Pascal jsou tedy v programovacim jazyku
registrového pocitace povolena pouze nasledujici: var, begin, end, if,
then, else, case, of, while, do, repeat, until, for, to, downto, div,
mod, and, or, not a xor.

2 Takova proménna obsahuje jedno celé ¢islo z rozmezi od 0 do 255.
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Priklad 1. NapiSte program pro registrovy pocitac, ktery bude fesit
néasledujici tlohu. Na vstupu je zadén Fetézec pismen a, b, c. Necht «
oznacuje pocet téch pismen a ve vstupnim fetézci, za kterymi uz neni
z4dné c. Podobné necht 3 je pocet b, za nimiz neni zadné c. Poéita¢ ma
vstupni fetézec oznalit za spravny pravé tehdy, kdyz o = 3.

Resend. V registru R; si budeme pamatovat aktualni hodnotu o, v re-
gistru Ry hodnotu 3. Pokazdé, kdyz prec¢teme ze vstupu pismeno c, oba
registry vynulujeme. Na konci vypoctu jednoduse porovname hodnoty
uloZené v registrech. Rozmyslete si, ze by stacilo pouzit jen jeden registr
(v némz bychom méli hodnotu « — ().

var vstup:char;
begin
Read (vstup) ;
while (vstup<>’$’) do begin
if (vstup=’a’) then Inc(Ry);
if (vstup=’b’) then Inc(Rj);
if (vstup=’c’) then begin
while not Zero(Ri) do Dec(R1);
while not Zero(Rs) do Dec(Rs);
end;
Read(vstup) ;
end;
while not Zero(Ry) do begin
Dec(Ry);
if (Zero(Ry)) then Reject;
Dec(Rg);

end;

if Zero(Ry) then Accept;
end.

Priklad 2. Napiste program pro registrovy pocitac¢, ktery bude resit
nasledujici lohu. Na vstupu bude zadan Fetézec pismen a. Poéita¢ ho
oznadi za spravny pravé tehdy, kdyz je jeho délka mocninou tii.

Reseni. Piecteme vstupni slovo, pfi¢em% si do R, ulozime jeho dél-
ku. Potrebujeme zjistit, zda je to mocnina tfi. UloZenou hodnotu proto
budeme délit tfemi, dokud to pajde. Jestlize nakonec dostaneme podil 0
a zbytek 1, puvodni ¢islo bylo mocninou tfi, jinak nebylo.

var vstup:char;
zbytek:byte;
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begin
Read(vstup);
while (vstup<>’$’) do begin Inc(R1); Read(vstup); end;
if Zero(Ry) then Reject;
while true do begin
zbytek:=0;
while not Zero(Rj) do begin
Dec(R1);
zbytek:=(zbytek+1) mod 3;
if (zbytek=0) then Inc(Rjy);
end;
if (Zero(Ry) and (zbytek=1)) then Accept;
if (zbytek<>0) then Reject;
while not Zero(Ry) do begin Dec(R3); Inc(Ry); end;
end;
end.

vw_ o,

Soutézni tloha. Napiste program pro registrovy pocitaé, ktery bude
fesit nasledujici tlohu. Vstupem programu bude fetézec pismen a, b, c,
d. Pocita¢ ho oznaci jako spravny praveé tehdy, jestlize obsahuje nejvice
pismen a (tzn. polet pismen a obsaZenych ve vstupnim slové je v&tsi
nez pocet pismen b, zaroven pocet pismen a je vétsi nez pocet pismen c
a zarovern také pocet pismen a je vétsi nez pocet pismen d).

Napftiklad vstupni slovo baacd je tedy spravné, zatimco vstupni slovo
baacdbb je Spatné (nebot obsahuje vice pismen b nez a) a ani vstup ac
neni spravny (nebot pismen a a c je v ném stejny podcet).

Zdkladnim kritériem hodnocent kvality navrZeného programu bude po-
cet registri, které program pouZivd. Pokuste se napsat program, kterému
jich staci co nejméné. Druhym kritériem pak bude doba vypocétu progra-
mu.

P-11-1
Sit

Firma Truhlik a syn ma ve mésté N budov a chce vSechny svoje budovy
propojit poéitacovou siti. Vedeni firmy rozhodlo, ze pro K (1 £ K £ N)
budov zakoupi vysokorychlostni pfipojeni na Internet. Kromé toho mezi
nékterymi dvojicemi budov vybuduji propojeni optickym kabelem.

Dvé budovy se nachazeji v téze komponenté sité, pokud lze mezi nimi
komunikovat pomoci optickych kabeltt (bud maji pfimé spojeni, nebo

104



jsou spojeny nepfimo pfes nékolik jinych budov). Aby bylo mozné ko-
munikovat mezi dvéma budovami lezicimi v raznych komponentéch sité,
musi kazda z téchto komponent obsahovat aspon jeden pocitac pripojeny
na Internet.

Souté&zni uloha. Na vstupu jsou déna ¢isla N a K a pro kazdou dvojici
budov jedno kladné celé ¢islo — cena za vybudovani optického kabelu,
ktery by propojil tuto dvojici budov. Navrhnéte efektivni algoritmus, jenz
urdi, kterych K budov se mé pripojit na Internet a které dvojice budov
se maji propojit optickym kabelem tak, aby mezi kazdymi dvéma budo-
vami bylo mozné komunikovat a pfitom aby celkova cena vybudovanych
optickych kabelt byla co nejmensi.

Priklad:

Vstup: Vystup:

N =4, K =2  Na Internet pfipojime budovy 1 a 2,

Ceny spojeni: kabelem spojime dvojice budov (1, 3), (2,4) a (3, 5).

(1,2): 100 Cena kabelt bude 47.
(1,3): 10
(1,4): 100
(1,5): 300
(2,3): 100
(2,4): 10
(2,5): 300
(3,4): 47
(3,5): 27
(4,5): 74
P-11-2
AttoSoft

Vaskova programatorska firma AttoSoft je znama z lohy P-I-2. Vaskovi
se nyni podafilo ziskat druhého klienta. Ten mu dal opét za tikol napro-
gramovat N jednoduchych programu.

Vasek chce tentokrat uSetfit jesté vice, a proto misto programéatori
zaméstnal NV studentii, na kazdy program jednoho studenta. Firma Atto-
Soft vlastni stdle jen jeden pocita¢ a na ném miize v kazdém okamZiku
pracovat jen jeden student. Hlavni problém ale spoéivéa v tom, Ze studenti
mohou pracovat jen ve volnych chvilich mezi prednaskami.

105



Student i potfebuje p; hodin ¢asu na napsani pridéleného programu,
prijde do firmy v ¢ase s; a musi odejit nejpozdéji v ¢ase t;. Sviij program
nemusi psat najednou, muaze obcas praci prerusit a pocita¢ uvolnit jinym
studenttum.

Soutézni uloha. Napiste program, jenz urci, kdy ma pocita¢ pouzivat
ktery student, aby vsichni stihli napsat své programy za jeden den, nebo
zjisti, Ze to neni mozné.

Priklad 1:

Vstup: Vijstup:

N=3 Student 1 pracuje od 3 do 4.
pr=1,8 =3t =4 Student 2 pracuje od 2 do 3 a od 4
p2:2,82:2,t2:5 do 5.

p3=5,s83=1,1t3 =10 Student 3 pracuje od 5 do 10.
Priklad 2:

Vstup: Vystup:

N=2 Nelze.

P1 = 200, S1 = 300, t; = 500
po = 200, sy = 400, to = 600

P-11-3
Bageta

Kleofas dostal dnes rano hlad a rozhodl se pripravit si oblozenou bagetu
se syrem. Bagetu si mazeme predstavit jako tisecku dlouhou N cm, nebo
presnéji jako uzavieny interval (0, N). Kazdy kousek syra tvori rovnéz
uzavieny interval celociselné délky. Jelikoz Kleofds je pedant, poklada na
bagetu kousky syra tak, aby soufadnice jejich zacatku i konctu byla cela
éisla. Kleofas by chtél, aby bageta byla pokryta syrem pfesné podle jeho
predstav. Na to ale potfebuje jednoduchy pocitacovy program, ktery by
mu pomohl.

Y~ s

SoutéZni tloha. Na vstupu je ddna velikost bagety N (IV je celé ¢islo,
1 £ N £10%). Nasleduje P ptikazi (1 £ P < 10°), pticemZ kazdy z nich
ma jeden z nasledujicich moznych tvari:

PRIDEJ a b Kleofas pridal kousek syra sahajici od a do b.
KOLIK ¢ Program vypise zprdavu, kolik kusu syra lezi na pozici c.

Vas program musi zpracovavat ptikazy v poradi, v jakém jsou uvedeny
na vstupu. Pro kazdy pfikaz KOLIK vypiste jedno ¢islo — pocet dosud
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polozenych kust syra, které lezi nad souradnici c¢. (Jelikoz kousky syra
jsou uzavtené intervaly, pocitaji se i ty kousky, pro néz je ¢ soutfadnice
jejich zacatku nebo konce.)
Priklad: Vstup: Vijstup:

N =20

PRIDEJ 1 10

PRIDEJ 6 12

KOLIK 5 1

KOLIK 6

PRIDEJ 4 14

KOLIK 5 2

KOLIK 16 0

P-1l-4
Registrovy pocitac¢

V této tloze se budeme zabyvat tzv. dvousmérnymi registrovymi podci-
taci. Od registrovych pocitact z tlohy P-I-4 se lisi tim, Ze se pfi ¢teni
vstupniho slova dovedou vracet zpét. Oproti puvodni definici registro-
vych pocitac¢u nyni proménna vstup vzdy obsahuje hodnotu aktudlniho
pismene ze vstupu. Na zadatku vypoctu je aktudlnim pismenem prvni
pismeno zadané na vstupu. Polohu aktudlniho pismene muzeme v pro-
gramu zménit provedenim piikazti Left (aktudlnim se stane predchazejici
pismeno) a Right (aktudlnim se stane nasledujici pismeno). Pokud by se
po provedeni jednoho z téchto prikazti mélo aktudlni pismeno nachézet
mimo zadané vstupni slovo, proménna wstup bude obsahovat specidlni
znak $. (MZeme si pfedstavovat, Ze pfed i za vstupnim slovem je za-
psano dostateéné mnoho znaku $.)

Priklad 1. Napiste program pro dvousmeérny registrovy pocitac, ktery
bude ftesit nasledujici tlohu: Na vstupu bude zadan fetézec pismen a,
b, c. Necht a oznacuje pocet pismen a ve vstupnim fetézci, 3 necht je
pocet b a v pocet c. Pocita¢ mé vstupni fetézec oznacit za spravny prave
tehdy, kdyz o = 8 = 7.

Reseni. Projdeme vstupni slovo zleva doprava a v registrech R; a Ry
si pfitom spocitame hodnoty « a 8. Kdyz vstupni slovo do¢teme, porov-
name obsahy obou registrii. Vratime se na zacatek, pfi druhém prichodu
vstupnim slovem spocitame v R; a Rs hodnoty [ a 7 a opét je porov-
name. Rozmyslete si, Ze by stacilo pouzit jediny registr, v némz bychom
méli hodnotu o — 3, resp. 5 — 7.
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var vstup: char;
begin
while (vstup<>’$’) do begin
if (vstup=’a’) then Inc(Ry);
if (vstup=’b’) then Inc(R3);
Right;
end;
while not Zero(Rji) do begin
Dec(R1); if Zero(Rp) then Reject else Dec(Rj);
end;
if not Zero(Ry) then Reject;
{ bylo stejné ’a’ a ’b’, vratime se na zacatek }
Left; while (vstup<>’$’) do Left;
Right;

while (vstup<>’$’) do begin
if (vstup=’b’) then Inc(Ri);
if (vstup=’c’) then Inc(Rg);
Right;
end;
while not Zero(Ri) do begin
Dec(R1); if Zero(Ry) then Reject else Dec(Rj);
end;
if Zero(Rg) then Accept;
end.

Priklad 2. Napiste program pro dvousmérny registrovy pocitac, ktery
bude fesit nésledujici tlohu: Na vstupu bude zadan fetézec pismen a.
Pocita¢ ho oznadi za spravny pravé tehdy, kdyz je jeho délka mocninou
tE.

Reseni. Redeni bude vypadat stejné jako na jednosmérném registro-
vém pocitadi. Projdeme vstupnim slovem zleva doprava, pficemz si do
registru R; ulozime délku tohoto slova. Potfebujeme zjistit, zda je to
mocnina tfi. UloZzenou hodnotu proto budeme délit tfemi, dokud to pt-
jde. Jestlize nakonec dostaneme podil 0 a zbytek 1, pavodni ¢islo bylo
mocninou t¥i, jinak nebylo.

var vstup: char;
zbytek: byte;
begin
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while (vstup<>’$’) do begin Inc(R1); Right; end;
if Zero(Rj1) then Reject;
while true do begin
zbytek:=0;
while not Zero(Ri) do begin
Dec(R1);
zbytek:=(zbytek+1) mod 3;
if (zbytek=0) then Inc(Rjy);
end;
if (Zero(Rp) and (zbytek=1)) then Accept;
if (zbytek<>0) then Reject;
while not Zero(Ry) do begin Dec(Rp); Inc(R1); end;
end;
end.

SoutéZni uloha. Napiste program pro dvousmérny registrovy pocitac,
ktery bude fesit néasledujici alohu:

Vstupem programu bude fetézec pismen a, b, ¢, d. Po¢ita¢ ho oznadi
jako spravny pravé tehdy, jestlize je to palindrom, tzn. je stejny pri
éteni zepfedu i zezadu. Formalné feceno: slovo ajasas . .. an—1a, je palin-
drom, jestliZe a1 = an, az = an_1, ..., a|n/2] = Q[n/2)- Tedy napiiklad
vstupy bacab a dd jsou palindromy, zatimco vstupy baacdbb a bacabdccc
nejsou.

P-1l-1

Agenti

Jista nejmenovana tajnd spole¢nost ma N agentd. Z divodu utajeni muze
kazdy agent vydavat rozkazy jen nékolika dalsim agentim. Agent, ktery
dostane rozkaz, posle tento rozkaz vSem agentim, jimz muZze vydavat
rozkazy. Séfem spole¢nosti je takovy agent, ktery kdyz vyda rozkaz, tak ho
Casem dostanou vSichni agenti. (Spoleénost muze mit i vice $éft, pfipadné
nemusi mit zddného $éfa.)

Soutézni dloha. Na vstupu je dan pocet agenttt N. Agenti jsou ozna-
Geni &isly od 7 (pfesnéji 007) do N + 6. Pro kazdého agenta je také dan
seznam agentd, kterym muze vydat rozkaz. Navrhnéte efektivni algo-
ritmus, ktery urci $éfa tajné spolecnosti (pokud jich existuje vice, staci
nalézt jednoho libovolného z nich) nebo zjisti, Ze tajnd spoleénost zad-
ného $éfa nema.
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Priklad 1:

Vstup: Vystup:

N=3 Séfem je agent 7.
Agent 7 rozkazuje agentovi 8.

Agent 8 rozkazuje agentovi 9.

Agent 9 rozkazuje agentovi 7.

Priklad 2:

Vstup: Vistup:

N =4 Zadny agent neni $éfem.
Agent 7 nerozkazuje nikomu.

Agent 8 nerozkazuje nikomu.

Agent 9 rozkazuje agentium 7 a 8.

Agent 10 rozkazuje agentum 7 a 8.

P—-1Il-2
Teploty

Meteorologicka stanice méfi kazdou minutu teplotu vzduchu. Meteorolo-
gové by potfebovali program, ktery by jim v kazdém okamziku sdéloval,
tkolem bude napsat tento program.

Na vstupu je dano ¢islo K, nasleduje posloupnost namétrenych teplot
ukonéena hodnotou —1 000. V&S program musi po precteni kazdé teploty
ihned vypsat nejnizsi z poslednich K nactenych teplot (resp. nejnizsi ze
viech nacétenych teplot, jestlize jich dosud bylo méné nez K).

Priklad: Vstup: Vystup:

K=3

teploty:

9,0 9,0
4.7 4,7
53 4,7
2,1 2,1
9,0 2,1
9,8 2,1
17,0 9,0
9,5 9,5
—1000

110



P-1l1-3

Registrovy pocitac

V této tloze se budeme zabyvat tzv. jednosmérnymi registrovymi poci-
taci — stejnymi jako v loze P-I-4 (tam je obsazena i jejich definice).

SoutéZni tiloha. a) Necht R je fetézec tvoreny pismeny a, b, c, A, B,
C. Oznaéme m(R) fetézec tvofeny malymi pismeny obsazenymi v R (ve
stejném potadi, v jakém se vyskytuji v R). Analogicky ozna¢me v(R)
fetézec tvoreny velkymi pismeny v R. Retézec upcase(R) dostaneme z R
tak, Zze nahradime vSechna maléd pismena odpovidajicimi velkymi pisme-
ny.

Naprt. jestlize R = aaAcB, potom m(R) = aac, v(R) = AB
a upcase(R) = AAACB.

NapisSte program pro jednosmérny registrovy pocitac, ktery bude fe-
§it nasledujici ulohu: Na vstupu dostane fetézec R tvoreny pismeny
a, b, c, A, B, C. Poc¢ita¢ ho mé oznacit za spravny pravé tehdy, kdyz
upcase(m(R)) = v(R). (Vyjadfeno slovné: kdyz velkd pismena obsaZena
v R tvofi ,stejné* slovo jako mald.)

Napriklad vstupni fetézce aA, Aa a abAcBaCABb jsou tedy spravné,
zatimco Fetézce aa, BcbC a acACa jsou Spatné.

Va3 program muze pouzit libovolny koneény pocet registrti, hodnoti
se jen jeho spravnost. Pokud si myslite, ze takovy program neexistuje,
dokazte to.

b) Dokazte, ze pro libovolnou tlohu plati: JestliZe umime sestrojit
program pro registrovy pocitac¢, ktery resi danou ilohu pomoci tii regis-
tri, potom dokézeme sestrojit také program, ktery tuto tlohu fesi pomoci
dvou registrii.

Jinymi slovy: Ukazte postup, kterym lze libovolny existujici program
pouzivajicl tii registry prepsat na ekvivalentni program, jenz potfebuje
pouze dva registry. Nezapomeiite zduvodnit spravnost svého postupu.

P-1l1-14
Psici
Program:  psici.pas / psici.c / psici.cpp
Vstup: psici.in
Vystup: psici.out
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»Tak, a ted budete skakat vzdycky, kdyz zapiskdm. A kazdy jinak!“
rozkdzal Konrad svym dvéma psikim. Chudédci mali, musi ted oba po-
skakovat po louce tak dlouho, dokud se oba souc¢asné neschovaji.

Svét je nekonecnd Sestithelnikovd sif. Policka tvorici svét jsou oéis-
lovana pfirozenymi cisly pocinaje od 1 po spirdle. Louku tvoii prvnich
N policek svéta. Na obrazku je ptiklad louky pro N = 26:

Na louce stoji nasi dva psici na polickach S, Ss. Skrys pro prvniho
psika je na policku T}, pro druhého na policku T5. Na M poli¢kéch louky
rostou bodlédky a psici tam za Zddnou cenu neskodi.

Na jedno pisknuti pfesko¢i kazdy psik na libovolné sousedni polié-
ko, pokud na ném nerostou bodldky. Oba psici nemohou nikdy skodit
soucasné stejnym smérem a nemohou také oba dopadnout najednou na
stejné policko. Pti kazdém pisknuti musi kazdy z nich preskodit na jiné
poli¢ko (i kdyby uz stal ve své skrysi).

Vasim tkolem je zjistit, na kolik nejméné pisknuti se mohou oba psici
dostat soucasné do svych skrysi.

Vstup: Ve vstupnim souboru psici.in nasleduje po sobé popis né-
kolika (maximélné péti) problému. Kazdy problém mé na svém prvnim
fadku dvé &isla N (2 £ N £500), M (0 = M £ N —2), na druhém fadku
&isla policek Sy, T1, Sa, To (v uvedeném pofadi, 1 < 57,71, S52,75 £ N).
Nasleduje dalsich M fadku s &isly poli¢ek, kde rostou bodlédky. Vstupni
soubor je ukonden fadkem obsahujicim dvé nuly (M = N = 0).

Muzete predpokladat, ze vzdy S1 # Sa, T1 # 15 a Ze na polickach
S1, Sa nejsou bodlaky. Na polickach 77 nebo T3 bodldky byt mohou —
v takovém pfipadé vSak uloha jisté nema feSeni.

Vystup: Do vystupniho souboru psici.out zapiste pro kazdy pro-
blém jeden Fadek s nejmensim poctem pisknuti, po némz mohou oba psici
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soucasné stat ve svych skrysich. Pokud neni mozné tohoto vysledného
stavu dosdhnout, vypiste do vystupniho souboru misto poctu pisknuti
fadek se slovem ,nelze“.
Priklad:
Vstupni soubor psici.in Vijstupni soubor psici.out
11 0 2
31067 3
111 nelze
31067
1
10 2
3107 8
2
9
00

P-Ill-5
AttoSoft

Program:  attosoft.pas / attosoft.c / attosoft.cpp
Vstup: attosoft.in
Vystup: attosoft.out

Programatorské firmé AttoSoft se podarilo ziskat dalsiho klienta,
ktery potfebuje naprogramovat N programi. Vaskovi a jeho programa-
tortim se vSak do préace moc nechtélo, a tak kdyz ptisel termin odevzdéni,
programy jesté stale nebyly hotové. Vasek se lekl a zacal studovat smlou-
vu, kterou se zékaznikem podepsal.

Ve smlouvé byl pro kazdy program uveden vzorec, podle kterého se
pocitd pokuta za opozdéné odevzdani programu v zavislosti na délce
zdrzeni. Nastésti neni tfeba zaplatit soudet pokut za vSechny opozdéné
programy, ale jen nejvys$i pokutu ze vSech. VaSek se proto nyni snaZi
naplanovat praci na programech tak, aby zaplatil co mozna nejnizsi po-
kutu. Stejné jako dfive méa i nyni k dispozici jen jeden poéitaé, a proto
neni mozné pracovat na vice programech najednou. Zapocatou praci na
programu neni mozné prerusit.?

3 Sikovnéjsi z vas si po pieéteni zbytku zadani uvédomi, e i kdyby se to smélo, stejné
by se to nevyplatilo.
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Soutézni uloha. Na vstupu je pro kazdy z nedokonéenych programu
uveden vzorec na vypocet pokuty a tudaj, kolik dni prace je zapotiebi na
jeho dokonéeni. Napiste program, ktery uréi rozvrh na dokonceni progra-
mu, pii némz VasSek zaplati nejmensi pokutu. Vzorec na vypocet pokuty
ma tvar polynomu nejvyse t¥etiho stupné az® + bax? + cx + d, ve kterém
jsou koeficienty a, b, ¢, d celo¢iselné nezaporné a x je pocet dni, o néz se
odevzdani programu opozdilo.

Vstup: Prvni fadek vstupniho souboru attosoft.in obsahuje kladné
celé ¢islo N (1 £ N £ 5000) — pocet programi. Nésleduje N fadka,
i-ty z nich obsahuje pét celych &isel 1;, a;, by, ¢;, d; (1 < 1; £100,0 <
< ai, biy i, d; £ 5000) kde I; je pocet dni potfebny na dokondceni i-tého
programu a as;, b;, ¢;, d; jsou koeficienty vzorce na vypocet pokuty. Muzete
predpokladat, ze za 100000 dni se stihnou napsat vSechny programy.

Vijstup: Vystupni soubor attosoft.out obsahuje N ¢isel oddélenych
mezerami nebo konci fadku. Tato ¢éisla predstavuji ¢isla jednotlivych pro-
gramu v pofadi, v némz je tfeba programy dokoncit, aby byla pokuta
nejmensi mozna. Pokud ma tloha vice feseni, vypiste jedno libovolné
7z nich.

Priklad:
Vstupni soubor attosoft.in  Vystupni soubor attosoft.out
3 1
101 000 3
3000 10 2
100650

Zde pokuta za program é&islo 1 dokonéeny po deseti dnech je 103 =
= 1000, za program cislo 2 dokonéeny po 14 dnech je pokuta 10 a za
program ¢islo 3 dokondeny po 11 dnech je 5-11 = 55. Vasek tedy zaplati
pokutu 1000.
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Reseni tiloh

P-1-1

Na tivod pér slov pro ty, kdo dosud neméli pfilezitost seznamit se ales-
poii se zaklady teorie grafi. V nasem chapani je graf tvofen nékolika
body, které budeme nazyvat wvrcholy grafu, nékteré dvojice bodi jsou
spojeny c¢arami, kterym budeme tikat hrany grafu. Formalnéji feceno,
(neorientovany) graf je dvojice G = (V, E), kde V' je mnozina vrcholu
a B C {{x,y}:m,y € V} je mnozina neuspotradanych dvojic vrcholu,
tj. hran. Pravé takovy graf mame v nasi loze zadan na vstupu — mésta
v zemi predstavuji vrcholy grafu a linky jsou hrany vedouci mezi nimi.

Rekneme, 7e graf je souvisly, jestlize se d4 po jeho hranach pfejit
z libovolného vrcholu do libovolného jiného. Podle zadani nasi alohy je
graf zadany na vstupu souvisly. Mame zjistit, zda odstranéni nékteré
hrany souvislost grafu porusi. Hranu s touto vlastnosti nazyvame most.

Jakym zptisobem miZzeme zjistit, zda je zkoumany graf souvisly? Exis-
tuje na to vice raznych algoritmu. Nejcastéjsimu algoritmu fesicimu tento
problém se tika obarvovani vrcholi nebo také prohledavani grafu. Za-
kladni myslenka algoritmu je nasledujici. Za¢neme v néjakém (libovolné
zvoleném) vrcholu grafu a postupné obarvujeme vSechny vrcholy, kam se
dokézeme po hranach grafu dostat. Kdyz uz neni mozné obarvit zadny
dalsi vrchol, sta¢i se podivat, zda jsou obarveny vSechny vrcholy gra-
fu. Vrcholy je samoziejmé tfeba obarvovat systematicky tak, abychom
zadny z dostupnych vrcholt nevynechali. Mizeme postupovat napriklad
prohleddvanim do hloubky.

Prohleddvani do hloubky je podobné postupu, jakym ¢lovék zkouma
neznamé mésto. Zacneme tim, Ze se postavime do néjakého vrcholu
a obarvime ho. Naddle budeme barvit vSechny vrcholy i hrany grafu,
které navstivime. Jestlize z vrcholu, kde pravé jsme, vede néjaka jests
nepouzitd (tj. neobarvend) hrana, vydame se po ni. Pokud pfijdeme do
dosud nenavstiveného (tj. neobarveného) vrcholu, obarvime ho a rekur-
zivné zavolame prohleddvani z néj (tedy opét se snazime najit nepouzitou
hranu, atd.). Kdyz pfijdeme do jiz navstiveného, a tedy obarveného vr-
cholu, okamzité se vratime po té hrané, kterou jsme do néj prisli. Jsme-li
ve vrcholu, z néhoz vedou samé obarvené hrany, vratime se zpét tou
hranou, po které jsme do vrcholu pfisli poprvé. Az se timto zptisobem
budeme chtit vracet z vrcholu, kde jsme zacinali, prohledavani konéi.
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Popsanym postupem projdeme pravé dvakrat (tam a zpét) po kazdé
z hran, k nimz se dokazeme dostat, a navstivime vSechny vrcholy, ke
kterym lze dojit z po¢atecniho vrcholu. Algoritmus je tedy korektni a jeho
Casova slozitost je O(M + N). Algoritmus je mozné snadno rekurzivné
implementovat, jak dokldda program uvedeny na konci tohoto feSeni.

Nejjednodussim FeSenim zadané tlohy by bylo postupné vyzkouset
odstranit kazdou jednotlivou hranu z grafu a vzdy se podivat, zda je
vysledny graf jesté stale souvisly. Takové feSeni by mélo ¢asovou slozi-
tost O(M - (M + N)) — pro kazdou hranu potfebujeme spustit jedno
prohledavéni.

Ukézeme si v8ak jiny algoritmus, ktery lohu vyfesi v ase O(M + N)
(tedy s optimélni ¢asovou slozitosti) a vyhledd pfitom v grafu vsechny
mosty. Tento algoritmus je drobnou modifikaci prohledadvani do hloubky.
Drive nez vysvétlime samotné FeSeni, seznamime se s nékolika potfebnymi
vlastnostmi prohledavani do hloubky. Za¢neme tedy s prohledavanim do
hloubky v naSem souvislém grafu. Vsimnéte si téch hran grafu, jimiz
jsme béhem prohledavani prisli do dosud nenavstiveného vrcholu. Tako-
vych hran je pfesné N — 1 (jedna pro kazdy vrchol grafu kromé toho,
ve kterém jsme zacinali s prohledavanim). Graf jimi tvofeny je strom, ne-
bot je souvisly a neobsahuje kruznice. Tento strom budeme nazyvat DFS
strom (DFS = depth-first search = prohledédvani do hloubky). Vrchol,
z néhoZ jsme graf zacinali prohleddvat, nazveme korenem DFS stromu.
Z kazdého jiného vrcholu z vede po stromovych hrandch (tj. po hranach
DFS stromu) do kofene pravé jedna cesta. Vrcholy lezici na této cesté
budeme nazyvat predky vrcholu z, zatimco o vrcholu x budeme fikat, ze
je jejich potomkem. Specidlné kazdy vrchol je sdm sobé predkem i po-
tomkem. VSichni potomci vrcholu z a stromové hrany vedouci mezi nimi
tvori podstrom s kofenem z.

Ostatni hrany mohou byt teoreticky dvou typu. Jestlize hrana spo-
juje vrchol s néjakym jeho predkem nebo potomkem, budeme ji nazyvat
zpétnd, ostatni hrany nazveme pric¢né. Necht uv je hrana, kterd neni stro-
mova. V§imnéte si podstromii s kofeny u, v. Jsou dvé moznosti — pokud
je jeden z nich podgrafem druhého, hrana uv je zpétna, jinak musi byt
tyto podstromy disjunktni a hrana wv je pfiéna. V DFS stromu vsak
74dné pri¢né hrany nemohou byt. To snadno zd@ivodnime sporem. Necht
uv je pricnd hrana. Bez Gjmy na obecnosti muzeme predpokladat, zZe
b&hem prohleddvani jsme do u pfisli dfive nez do v. VSimnéte si nyni
okamzZiku, kdy se pfi prohledéavani chceme vratit z vrcholu u zpét. Je-li
uv pFiénd hrana, nesméli jsme dosud vrchol v navstivit (jinak by v byl
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potomkem u a hrana uv by byla zpétna). Vrchol v je tedy dosud nena-
vstiveny soused vrcholu u, proto bychom se z u jesté neméli vracet zpét,
ale méli bychom se vydat do v, coz je spor.

Vsechny hrany grafu tedy mazZeme rozdélit na stromové a zpétné. Je
zfejmé, ze lezi-li hrana na néjaké kruznici (cyklu), po jejim odstranéni
graf zlstane souvisly. Kazdd zpétnd hrana wv lezi na kruznici tvorené
hranou uv a cestou z u do v po hrandch DFS stromu. Mosty se proto
mohou nachézet jen mezi stromovymi hranami. Kazdy most rozdéluje
graf na dvé ¢asti, pfi¢emz v jedné z nich se nachézi kofen DFS stromu.

Predstavte si, Ze nas graf zavésime za kofen. Nyni se vyddme z ko-
fene doli po stromovych hranach. Uvazujme jednu konkrétni stromovou
hranu wv, kde u je vrchol lezici blize ke kofeni nez v. Kdy je hrana wv
mostem? Tehdy, kdyZ ji nedokdZeme obejit. Jinymi slovy Feéeno kdyz se
z podstromu s kofenem v nemuzeme dostat do vrcholu u (nebo ekviva-
lentné: do u nebo libovolného jeho predka) bez pouziti hrany uwv.

Budeme tedy chtit pro kazdou hranu uv uréit, zda existuje cesta z v
do u nebo do néjakého jeho predka, kterd nepouziva hranu wv. Hledejme
takovou cestu, kterd pouzivd nejmensi pocet zpétnych hran a ze vSech
takovych cest je nejkratsi. Co o ni umime Fici? Jeji posledni hrana bude
urdité zpétna, nebot po stromovych hranich se do vrcholu u & nad u
nedostaneme. VSechny jeji vrcholy kromé posledniho budou leZet v pod-
stromu s kofenem v, protoze jakmile se dostaneme nad u, skonéime. Do
vSech vrcholi lezicich v podstromu s kofenem v se ale jisté muzeme do-
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stat z v stromovymi hranami. Ukéazali jsme tedy, ze pokud néjaka hledana
cesta existuje, pak existuje i takova, pri niz jdeme nejprve nékolika stro-
movymi hranami a potom jednou zpétnou hranou. Sta¢l nam proto pro
kazdou stromovou hranu v grafu ovérit, zda existuje takovato cesta. Jak
to udélame?

Béhem prohledavani budeme ¢islovat vrcholy v pofadi, v jakém do
nich budeme poprvé vstupovat. Cislo vrcholu x ozna¢ime num(z). Je
ziejmé, ze vSechny vrcholy lezicl v podstromu s kofenem v mayji ¢islo vetsi
nez num(u). Na druhé strané vsichni predci vrcholu v maji ¢islo mensi
nez num(u). Kdybychom pro v znali nejmensi ¢islo vrcholu, do kterého
se miZzeme dostat bez pouziti hrany uv (coz musi byt predek vrcholu v,
nebot pfi¢né hrany neexistuji), méli bychom vyhrdno — hrana uv je
mostem pravé tehdy, kdyz je toto ¢islo vétsi nez num(u). Ukazali jsme si
ale, Zze ndm staci uvazovat cesty, které vedou nejprve nékolika stromovymi
hranami ,dold* a potom jednou zpétnou hranou ,nahoru”. Budeme si
tedy pro kazdy vrchol pfimo béhem prohledavani pocitat nejmensi ¢islo
vrcholu, do kterého se z néj dokdzeme dostat takovouto cestou.

Tim méame algoritmus FeSeni ulohy témér hotov, zbyva uz jen cely
postup shrnout. Budeme prohledavat zkoumany graf do hloubky a za-
roven si pro kazdy vrchol z budeme pocitat dvé ¢isla: num(z) (kolikaty
navstiveny vrchol to je) a up(z) = min{num(y):do y vede z z cesta vyse
uvedeného tvaru}. Jak vypocitat num(z) je zfejmé. Hodnota up(z) je
rovna minimu z num(z), ze véech hodnot up(z;) pro syny vrcholu z a ze
vSech hodnot num(y;) vrchold, do nichz vede z = zpétna hrana. Hodnotu
up(z) tedy umime spocitat v okamziku, kdy se pfi prohledavani vracime
z vrcholu z. V tomto okamziku dokazeme také rozhodnout o hrané ve-
douci z vrcholu z do jeho otce y, zda je mostem — stacéi porovnat hodnoty
up(z) a num(y) (resp. up(x) a num(x)).

program Sit;
var G : array[1..100,1..100] of integer; {graf}
deg,num,up: array[1..100] of integer; {stupné vrchold a obé& &isla pro né}
visited : array[1..100] of boolean; {byl jsem uz v tomto vrcholu?}
N,M,C : integer; {po&et vrchold, hran, navidtivenjch vrchold}
ok : boolean;

procedure Load;
var i,x,y : integer;
begin
read(N,M); fillchar(deg,sizeof (deg),0);
for i:=1 to M do begin
read(x,y);
inc(deg(x]); G[x][deg(x]]:=y;
inc(deglyl); Glyl (deglyl]:=x;
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end;
end;

procedure DFS(v,parent : integer);
var i : integer;
begin
visited[v] :=true;
num(v]:=C; uplv]:=C; inc(C); { nastavime obé& &isla ve vrcholu }
for i:=1 to deglv] do if not visited[G[v][i]] then begin
DFS(G[v] [i],v);
if up[G[v][ill<up(v] then up[v]:=up(Glv][il];
end else begin { zpé&tna hrana }
if G[v][i]<>parent then
if num[G(v] [i]]<up(v] then up(v]:=num[G([v]([i]l];
end;
if num(v]=up(v] then ok:=false; { hrana v-parent je most }
end;

begin
Load;
fillchar(visited,sizeof (visited),0); C:=1; ok:=true;
DFS(1,1);
if ok then writeln(’AN0’) else writeln(’NE’);
end.

P-1-2

Uvazujme libovolné pofadi, v némz budou programatofi pracovat, a po-
divejme se na dva po sob& napsané programy — necht jsou to programy
7 a j. Napsani programu budeme naddale oznacovat jako udalost. Prvni
z naSich udalosti, tedy i, zacne v ase Ty, bude trvat po dobu ¢; a Vasek
za ni proto zaplati éastku (Tp + ¢;) - m;. Druha udélost, j, zacne v Case
To+t; (tzn. ihned po skonceni udalosti ¢) a bude stat (To+t; +1t;)-m; —
kazdého programatora platime nejen za dobu, kdy pracuje, ale od iiplného
zacatku.

Po secteni zjistime, Ze kdyz se obé uvazované udalosti vykonaji v po-
fadi 4, j, Vasek za né bude muset zaplatit ¢astku .S; ; = To - (m; +m;) +
+t;-my + (t +t5) - my.

Co by se stalo, kdybychom zameénili poradi udalosti i a j7 Podobné
jako v predchozim pripadé muzeme spocitat, kolik bude muset Vasek
zaplatit za tyto dvé udalosti. Za prvni z nich (tedy j) to bude (To+t;)-m;
a za druhou (1o +t; +t;) - m;, coz dohromady ¢ini S;; = To - (m; +m;) +
+t-my+ (t; +t;) - my.

Porovnejme nyni tyto dva vysledky. Ozna¢me si pro jednoduchost
jejich spole¢nou ¢ast A := Ty - (m; +m;) +t; - m; + t; - m;. Po snadnych
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upravach dostavame:

t; t;
fﬁgj =A +m;-my - —l—, 534‘22 f1~+'ﬂli “my i
my; Tnj

Zajimé nas, kterd z téchto hodnot je mensi, ale to je zjevné ta, kterd
mé mensi pomér ty/mg. To tedy znamend, ze pokud t;/m; > t;/m;,
vyménou pofadi téchto udélosti dosdhneme nizsi vysledné ¢astky. (Je
ziejmé, Ze zaména poradi dvou po sobé néasledujicich udélosti neovlivni
Castku, kterou zaplatime ostatnim programétorim.)

7 uvedenych avah vyplyva, ze pokud v néjakém poradi udalosti na-
jdeme dvé po sobé jdouci takové, Ze prvni z nich m4 vétsi pomér tx/my
nez druhd, jejich vzajemnou vyménou ziskdme nové poradi udélosti, které
je levnéjsi. Optimalni poradi udalosti bude proto takové, v némz jsou po-
méry tr/my usporadany od nejmensiho po nejvétsi.

Samotny program je potom uz velmi jednoduchy — staci udalosti
utfidit vzestupné podle poméru ti/my, coz dokdZeme provést v prameér-
ném ¢ase O(n - logn) napriklad algoritmem QuickSort.

program AttoSoft;

type Tprg = record
m,t,idx: integer;
tm: real;
end;

var N,i: integer;
prg: array([1..10000] of Tprg;
sum,t: integer;

procedure QSort(l,r: integer);
var y: Tprg;
x: real;
i,j: integer;
begin
i:=1; j:=r; x:=prgl(l+r) div 2].tm;
repeat
while prg(i].tm<x do inc(i);
while x<prg(j].tm do dec(j);
if i<=j then
begin
y:=prglil; prglil:=prg(jl; prgljl:=y;
inc(i); dec(j);
end;
until i>j;
if 1<j then QSort(l, j);

if i<r then QSort(i, r);
end;
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begin
assign(input,’attosoft.in’); reset(input);
assign(output,’attosoft.out’); rewrite(output);

read(N);

for i:=1 to N do

begin
read(prgli].m, prgli].t);
prgli] . idx:=i;
prglil.tm:=prglil .t/prglil .m;

end;

QSort (1,N);

for i:=1 to N do writeln(prgli].idx);

{Vysledna castka:

sum:=0; T:=0;

for i:=1 to N do

begin
sum:=sum+(T+prg[i].t)*prg[i] .m;
T:=T+prglil.t;

end;

writeln(’Vysledna &astka: ’,sum);

}

close(input); close(output);
end.

P-1-3

Pro zjednoduseni dalsich ivah zvétSime nejprve pole A tak, aby jeho
velikost byla rovna nejbliZsi vyssi mocniné dvou. Tim se pole A prodlouzi
maximélné na dvojnasobek ptuvodni délky, takZe tato Gprava neovlivni
¢asovou slozitost vysledného algoritmu. Nadéle tedy predpokladejme, ze
prodlouzené pole ma délku N = 2K,

Predstavme si, Ze nad polem A vybudujeme tplny bindrni strom.
Jeho listy budou odpovidat jednotlivym prvkim pole A, kazdy vyssi
vrchol tohoto stromu odpovida né&jakému intervalu v poli A (pfesnéji
feceno odpovida prvkam pole uréenym listy z jeho podstromu). V kazdém
vrcholu stromu si budeme pamatovat soucet ¢isel v pfislusném intervalu
pole. Tuto datovou strukturu budeme nazyvat intervalovy strom.

V nejspodnéjsi vrstvé naseho stromu se nachdzi N vrchold, v pfedcha-
zejici vyssi vrstvé jich je N/2, ve tfeti odspodu N/4, atd. V celém stromé
je tedy 2N — 1 vrcholt, proto budeme potfebovat na jeho uloZeni pamét
velikosti ©(N) (éti: linedrni). V pribéhu pfedzpracovani pole A musime
tuto pamét naplnit, proto na predzpracovani bude zapotiebi as Q(N)
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(¢ti: aspon linedrni). Snadno zjistime, Ze v linedrnim ¢ase dokazeme nés
strom skutecné vytvorit — staéi ho zapliiovat po vrstvach zdola nahoru.

Co se stane s nasim stromem, kdyz zménime hodnotu prvku A[j]?
Musime zménit zapamatované hodnoty pro vSechny intervaly, v nichZ je
zménény prvek pole obsazen. Ty ale odpovidaji pravé vrcholtim inter-
valového stromu lezicim na cesté z j-tého listu do kofene. Je jich tedy
K +1 = O(log N). Zménit hodnotu v poli A tudiz dokdzeme v logarit-
mickém Case.

Zbyva ukazat, jak lze pomoci intervalového stromu odpovidat na
otazky ze zadani. ReSme nejprve jednodusdi ulohu: Jakou hodnotu ma
soucet S(z) = A[l]+...+ A[x]? Zaéneme v koFeni naseho stromu. Mohou
nastat dvé moznosti: Jestlize interval od 1 do z lezi cely v levém podstro-
mu, zavoldme rekurzivni vypocet pro levého syna. Pokud ne, tak tento
interval zabira cely levy podstrom a jesté ¢dst pravého. Vezmeme proto
soudet vSech prvkia pole odpovidajicich levému podstromu (ten mame
spocitany v levém synovi) a zavoldme rekurzivni vypodcet pro pravého
syna a zbytek intervalu.

Takto postupné v nasem stromu prochazime dolt po cesté od korene
do z-tého listu, pfitom na kazdé trovni vykoname jen konstantni pocet
operaci. Proto pro libovolné = dokdZeme hodnotu S(z) spoéitat v case
O(log N). To je ale vSe, co potfebujeme védét, nebot Afz] + ...+ Afy] =
= S(y) — S(z — 1) (dodefinujeme S(0) = 0).

Pomoci intervalového stromu tedy dokazeme kazdy ptikaz ze zadani
ulohy zpracovat v logaritmickém case. NaSe feSeni potfebuje linearni pa-
mét a linedrni ¢as na predzpracovani.

Nejjednodussi implementaci intervalového stromu je ulozit ho v jed-
nom poli podobné jako haldu. Kofen stromu bude umistén v poli na
pozici 1, synové vrcholu z jsou na pozicich 2z a 2z + 1. Prvky puvodniho
pole A odpovidaji listiim stromu a zacinaji v poli na pozici N. V praxi
se nékdy pamétova sloZitost snizuje na polovinu tim, Ze si ukladdme jen

vivs
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program Soucty;

var T : array[1..10000] of longint; { strom }
oldN,N,prikaz,i : longint;
X,y : longint;
pom : longint;

function Soucet(delka, koren, interval : longint) : longint;
{delka - délka intervalu, jehoZ souet politame
koren - kofen podstromu, ve kterém poclitéame
interval - délka intervalu odpovidajiciho kofenu
(abychom ji nemuseli po&itat)}

 begin
if delka=0 then begin Soucet:=0; exit; end;
if interval=1 then begin Soucet:=T[koren]; exit; end;
if delka<=(interval div 2)
then Soucet:=Soucet(delka,2*koren,interval div 2)
else Soucet:=T[2*koren]+
Soucet (delka-(interval div 2),2*koren+l,interval div 2);
end;

begin
fillchar(T,sizeof(T),0);
read(oldN);
N:=1; while N<oldN do N:=N*2; { upravime velikost pole }
for i:=1 to oldN do read(T[N+i-1]);
for i:=N-1 downto 1 do T[i]:=T[2*i]+T[2*i+1];
read(prikaz) ;
while prikaz>0 do begin
if prikaz=1 then begin
{ mé&nime hodnotu }
read(x,y); i:=x+N-1; pom:=y-T[i];
while i>=1 do begin Inc(T[i],pom); i:=i div 2; end;
end else begin
{ po&itame soulet }
read(x,y);
writeln(Soucet(y,1,N)-Soucet(x-1,1,N));
end;
read(prikaz);
end;
end.

P-1-4

Nejjednodussim TeSenim je pouzit Ctyfi registry a v kazdém si pocitat
pocet pismen jednoho typu. Kdyz doéteme slovo, v Ry mame pocet pre-
¢tenych pismen a, v Ry pocet b, atd. Nyni budeme najednou zmensovat
hodnoty ve vSech ¢étyfech registrech. Accept zavolame pravé tehdy, kdyz
registr Ry zustane nejdéle nenulovy.
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Pocet pouzitych registrit lze snadno snizit na t¥i: Nechf jsme dosud
precetli « pismen a, 5 pismen b, v pismen ¢ a § pismen d. V registrech si
budeme ukladat absolutni hodnoty vyrazu o — 3, o — v, a — 9, ve tfech
proménnych si budeme pamatovat jejich znaménka (napt. 0, pokud je
v prislusném registru nula, 1, pokud tam je kladné ¢islo, a 255, kdyz je
zaporné.) V kazdém okamziku vypoctu pak dokdzeme snadno uréit, zda
bylo dosud na vstupu pismen a nejvice — to plati pravé tehdy, kdyz
jsou v8echny tfi zapamatované hodnoty kladné (tzn. vSechna tfi jejich
znaménka rovna 1).

NasSe feseni bude potfebovat jen dva registry. Je mozZné ukézat
(v tomto vzorovém feSeni to ale neudélame), Ze jeden registr na vyfeseni
této tlohy nestaci. NaSe feSeni bude tudiz vzhledem k poctu registra
optimalni.

V priibéhu vypoétu si v Ry budeme pamatovat &slo 2%385779 ) re-
gistr R; budeme pouzivat pouze na pomocné vypocty. Kdyz napiiklad
precteme ze vstupu jako dalsi pismeno b, pomoci registru R; vynéso-
bime obsah registru Ry tfemi. Po doc¢teni vstupu potfebujeme porovnat
hodnoty «, 8, v a §. Podobné jako v prvnim feSeni je budeme najed-
nou zmensovat (coz v tomto pfipadé znamend délit obsah Ry vhodnym
Cislem) a akceptujeme pravé tehdy, kdyz ndam na konci zistane kladnd
mocnina 2.

Samotny program je sice trochu delsi, ale je jen pfimocarou imple-
mentaci uvedené myslenky.

var c:char;
d,e,f:byte;

begin
{ teme vstup a kédujeme do RO, kolik v ném &eho je }
Inc(RO);
Read(c);
while c<>’$’ do begin
case c¢ of
’a’: d:=2;
’b?: d:=3;
’c?: d:=5;
’d’: d:=7;
end;
while not Zero(RO) do begin {Rl :=RO *xd, RO := 0}
Dec(RO);
for e:=1 to d do Inc(R1);
end;
while not Zero(R1) do begin { RO :
Dec(R1);
Inc(RO);
end;

[}

0}

R1, R1 :
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Read(c);
end;
{ v kazdé iteraci z RO odebereme jedno "a" }
{ a po jednom z dosud zbjvajicich ostatnich pismen }
while true do begin
e := 0; { e := RO mod 210, R1 := RO div 210, RO := 0 }
while not Zero(RO) do begin { (210 = 2%3%5x7) }
Dec(RO);
e := (e+l1) mod 210;
if e=0 then Inc(R1);

end;

d :=1; { zjistime, &im v3im bylo RO je3t& délitelné }
{ ale stadi, kdyz budeme testovat e misto RO }

if e mod 2 = 0 then d := d*2;

if e mod 3 = 0 then d := dx*3;

if e mod 5 = 0 then d := dx*5;

if e mod 7 = 0 then d := dx*7;

if d=2 then Accept; { uz zbyvaji jen a-¢ka, coZ je dobré }

if e mod 2 <> O then Reject;
{ a-¢ka dosla, ale zbyla jind pismena => 3patné }
while not Zero(R1) do begin { V RO md byt pivodni RO div d, coZ ziskame}

Dec(R1); { tak, Ze nejprve spocteme (210 div d) * R1 ... }

for £ := 1 to 210 div d do Inc(RO);
end;
for £ := 1 to e div d do Inc(RO);

{ ... a pak pfi&teme e div d; R1 mame nulové }
end;
end.
P-1l-1

Zadanou ulohu si pfevedeme do feéi teorie grafi. Budovy firmy pfedsta-
vuji vrcholy naSeho grafu, hrany grafu odpovidaji moznym propojenim
optickym kabelem. Ulohu vyfesime nejprve pro pfipad K = 1. V tomto
pripadé je nasim tkolem vybrat takovou mnozinu hran, aby vSechny vr-
choly byly navzéjem propojeny (ne nutné piimo). Takovd mnozina hran
se nazyva kostra grafu, a jelikoz chceme, aby soucet cen hran v kostte byl
co nejmensi, fesime problém hledani minimalni kostry.

Rozmyslete si, Ze miniméalni kostra grafu neobsahuje zadny cyklus —
kdyby totiz néjaky obsahovala, mohli bychom jeho libovolnou hranu od-
stranit. Na druhé strané kdyz do minimélni kostry pfiddme libovolnou
hranu, vznikne ndm cyklus, nebot vrcholy, mezi nimiz vede pfidané hra-
na, byly uz spojeny pomoci né&jakych hran kostry.

Hledani minimalni kostry (Primuv algoritmus). Algoritmus je zalo-
Zen na nasledujici myslence. Vrcholy grafu rozdélime na dvé skupiny: na
pripojené a nepfipojené. Na zacatku algoritmu zvolime libovolny vrchol
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a prohlasime ho za pripojeny, ostatni vrcholy jsou zatim nepfipojené.
V kazdém kroku algoritmu pfipojime jeden vrchol k dosud vytvorené
siti néasledujicim zptisobem. Najdeme nejkratsi hranu spojujici pfipojeny
a neptipojeny vrchol. Tuto hranu pfidame do sité a jeji druhy konec se
stane pripojenym vrcholem. Skonéime ve chvili, kdyZ jsou vSechny vr-
choly pripojeny.

Aby byl algoritmus efektivni, potfebujeme umét rychle nalézt nej-
kratsi hranu spojujici pripojeny a nepripojeny vrchol. To zafidime tak,
ze pro kazdy dosud nepfipojeny vrchol si budeme pamatovat, ze kterého
pripojeného vrcholu k nému vede nejkratsi hrana. Pokazdé, kdyz pridame
k pfipojenym vrcholiim dalsi vrchol, musime si informaci o nejblizsich pti-
pojenych vrcholech aktualizovat. Projdeme vsechny nepfipojené vrcholy
a pokud je nové pripojovany vrchol blizsi, nasi informaci zménime.

Skutecnost, Ze vyslednd mnozina hran tvori kostru, je zfejma. Je vSak
tfeba dokazat, Ze je tato kostra minimdlni. Pfedstavme si libovolnou mi-
nimalni kostru (déle ji budeme oznacovat MK) a porovnavejme ji s vy-
sledkem naseho algoritmu (dale VNA).

Jestlize MK a VNA jsou shodné, VNA je minimélni kostra. Pred-
pokladejme tedy, ze MK a VNA nejsou shodné. Necht T; je mnoZina
pripojenych vrcholt po i-tém kroku naseho algoritmu. Sefadime hrany
ve VNA podle toho, jak jsme je pfidavali, a najdeme prvni hranu, ktera
se vyskytuje ve VNA, ale neni obsaZena v MK. Necht tato hrana byla
pridana v kroku 7 + 1 a necht spojuje vrchol v € T; a vrchol v ¢ T;.

Pridejme hranu (u,v) do MK. Tim vznikne v MK cyklus, ktery zacina
v T;, prejde po hrané (u,v) ven z T; a potom se vrati néjakou cestou zpét
do T; (obr.41). Na této cesté musi existovat aspoii jedna hrana (u’,v’),

Obr. 41. Pfidanim hrany (u,v) vznikne v MK cyklus, ktery zacind v Tj, pfejde po
hrané (u,v) ven z T; a potom se vrati néjakou cestou zpét do Tj.

ktera ma jeden konec v T; a druhy konec mimo 7;. Cena této hrany musi
byt asponl takovd, jako je cena hrany (w,v). V opaéném piipadé by si
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nas algoritmus v kroku 7 + 1 musel vybrat hranu (u’,v’) namisto hrany
(u,v). Proto pokud hranu (v/,v’) odebereme z MK a pridame tam misto
ni hranu (u, v), cena MK se nezvysi. Nemuze se vak ani snizit, nebot MK
je minimélni. Upravena MK bude tedy nadéle minimélni kostrou v grafu.
Navic VNA a MK se nyni shoduji v prvnich ¢ + 1 hrandch. Stejnym
zpusobem postupné preménime MK na VNA, pficemZ nezvySime jeji
cenu, takze VNA musi byt také minimalni kostrou.

Reseni pro obecné K. Dosud jsme predpokladali K = 1. Jestlize
K > 1, nemusime hranami pospojovat vSechny vrcholy. Ke komunikaci
totiz muzeme vyuzit také Internet. Staci, kdyz se naSe sit bude skladat
z K souvislych ¢asti, v kazdé z téchto souvislych c¢asti vybereme jeden
vrchol, ktery pfipojime na Internet, a tak bude moci komunikovat kazdy
vrchol s kazdym.

Takovouto sit miZeme ziskat naptiklad odebranim K — 1 nejdrazsich
hran z minimalni kostry MK. Tim se nam totiz MK rozpadne pravé na K
souvislych ¢asti. Jedinym problémem je ukazat, Ze toto feseni je skutecné
nejlevnéjsi mozné.

Oznaéme tedy symbolem P mnozinu K — 1 nejdrazsich hran kostry
MK. Jejich odebranim z MK dostaneme mnozinu hran @, ktera se sklada
z K souvislych ¢4sti. Nechf existuje levnéjsi mnozina hran T, ktera rovnéz
tvori sit sloZzenou z K souvislych ¢asti.

Budeme uvazovat graf tvoreny kostrou MK a hranami z mnoziny T'.
Jelikoz uz MK je souvisld, tento graf je jisté souvisly. Proto lze zvolit
nékolik hran z MK, jimiz se daji jednotlivé komponenty T pospojovat.
Kazda pridana hrana spoji dvé komponenty do jedné vétsi, takZe staci
pridat K —1 hran. Mnozinu téchto pfidanych hran ozna¢ime symbolem S.

Vsimnéte si nasledujicich dvou skutecnosti:

> Mnozina hran .S ur¢ité neni drazsi nez P, nebot obé obsahuji K — 1
hran z kostry MK, ale P jsme vybrali tak, aby obsahovala nejdrazsi
hrany.

> Podle naseho predpokladu mnozina hran T je levnéj$i neZ mnoZina

hran Q.

Z toho ale vyplyva, ze kostra SUT je levnéjsi nez MK = P U Q, coZ je
spor s tim, ze MK je minimélni kostra. Tim jsme ukazali, Ze k vyfeSeni
ulohy staci z MK odebrat K — 1 nejdrazsich hran.

Casova slozitost. Pfi hledani minimalni kostry se v kazdém kroku
prida jeden vrchol do mnoziny pfipojenych, vykona se tedy celkem N —1
kroki. V kazdém kroku nejprve v case O(N) najdeme nejkratsi hranu
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spojujici pfipojeny a nepfipojeny vrchol. Potom aktualizujeme informaci
o nejbliz§im pripojeném vrcholu pro vsechny dosud nepfipojené vrcholy.
Tato aktualizace predstavuje opét provedeni O(N) operaci. Celkova c¢a-
sové slozitost je proto kvadraticka, tj. O(N?2).

Z vysledné miniméalni kostry potom potiebujeme odebrat K — 1 nej-

vy

drazsich hran. To miZeme udélat tak, ze hrany kostry setfidime. Ttidéni
lze provést v ¢ase O(N log N), v tomto pfipadé ndm ovSem staci pouzit
jednoduché ttidéni pracujici v case O(N?). Celkova &asova slozitost je

O(N?).

program Sit_P_II_1;
const
maxn = 1000;
nekonecno = 10000;

var
N,K: integer; { polet budov, polet komponent }
a: array[1l..maxn,1..maxn] of integer; { ceny spojeni }
sit: array(1..maxn,1..2] of integer; { seznam hran vjsledné sité }

procedure nacti_vstup;
var

i,j: integer;
begin

write(’Po&et budov N:’); readln(N);

write(’Poet internetovjch pfipojeni K:’); readln(K);

for i:=1 to N do

for j:=i+1l to N do begin
write(’Cena (’,i,’,?,j,’):’); readln(ali,jl);

alj,il:=ali,j];
end;
end; {nacti_vstup}

procedure minimalni_kostra;
{najde minimalni kostru a uloZi jeji hrany do pole sit}
var

pripojene: array(l..maxn] of boolean;

nej: array[l..maxn] of integer;

i,j: integer;

min, nejlepsi: integer;

begin

{na za&atku je jenom vrchol 1 pfipojeny}

pripojene[1] :=true;

for i:=2 to N do begin
{v poli nej si budeme pro kazdyj dosud nepfipojeny vrchol
udrZovat nejblizsi pfipojeny vrchol}
pripojene[i]:=false;
nej[i]:=1;

end;

for i:=1 to N-1 do begin
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{najdeme nejkrat3i hranu, kterad spojuje
pfipojeny a nep¥ipojeny vrcholl}
min:=nekonecno;
for j:=1 to N do begin
if not pripojene[j] then begin
if alj,nej[jl]<min then begin
nejlepsi:=j; min:=al(j,nej[j]]
end;
end;
end;

{nalezeny vrchol pfipojime}
pripojene[nejlepsi] :=true;

{spojeni (nejlepsi,nej[nejlepsi]) pat¥i do sité&}
sit[i,1] :=nejlepsi; sit[i,2]:=nej[nejlepsi];

{pfepo&itame pole nej: pro kazdy vrchol zjistime, zda pravé
pfipojeny vrchol nezkrati jeho vzdalenost k pfipojenym vrcholdm}
for j:=1 to N do begin
if not pripojene[j] then begin
if alj,nejl[jl]>alj,nejlepsi] then nej[j]:=nejlepsij;
end;
end;
end;
end; {minimalni_kostra}

procedure utrid_hrany_site;
{setfidi hrany sité& od nejlevn&jsi po nejdrazsi}

var

i,j,k,min: integer;
begin

for i:=1 to N-1 do begin

min:=i;
for j:=i+l to N-1 do begin
if alsit[j,1],sit(j,2]]<alsit[min,1],sit[min,2]] then
min:=j;
end;
k:=sit[min,1]; sit[min,1]:=sit(i,1]; sit[i,1]:=k;
k:=sit[min,2]; sit[min,2]:=sit(i,2]; sit[i,2]:=k;
end;
end; {utrid_hrany_site}

procedure vypis_vysledek;
{vypiSe vysledné hrany sité&}
var
i: integer;
begin
writeln(’Je tfeba vybudovat spojeni mezi nasledujicimi budovami:’);
for i:=1 to N-K do begin
writeln(’(?,sit(i,1],%,7,sit[i,2],7)7);
end;
end; {vypis_vysledek}

begin
nacti_vstup;
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minimalni_kostra;

utrid_hrany_site;

vypis_vysledek;
end.

P—11-2

Uvazujme, ktery ze studentt mé pracovat u pocitace v daném okamziku
t. Zfejmé to musi byt jeden z téch studentii, kterl uz prisli do firmy,
ale jesté nedokonéili svlij program. O téchto studentech fekneme, Ze jsou
aktivni v Case t. Dokazeme, Ze v optimalnim feseni vzdy mtzeme poslat
pracovat na pocitaci toho z aktivnich studenti, ktery musi odejit nejdiive
(necht je to student a). Kdyby totiz existoval rozvrh, ve kterém v case
t pracuje néjaky jiny student b, pak se student a musi dostat k pocitaci
jesté v Case t' nékdy mezi t a éasem odchodu t,. Student b viak odchézi
v ase tp = t,. Proto miZeme sestrojit novy rozvrh, v némZ nechame
studenta a chvili pracovat na podcitaci v Case t a stejné dlouhou dobu
potom nechame studenta b pracovat na pocitaci v case t’. Jestlize byl
ptvodni rozvrh spravny, je spravny i takto modifikovany rozvrh, nebot
kazdy pracuje stejné dlouho jako v ptuvodnim rozvrhu a kazdy pracuje
pred svym odchodem.

Dokézali jsme, Ze v kazdém okamziku muze pracovat ten z aktivnich
studentt, ktery musi nejdiive odejit. Kdy tedy mtZe dojit ke zmé&né ob-
sazeni pocitace? Bud tehdy, kdyz pfijde novy student a potfebuje odejit
dfive, nez student pravé pracujici (v tom pfipadé se vystfidaji u podci-
tace), nebo kdyz néjaky student dokonci sviij program a uvolni pocitac.

Na&s algoritmus bude sestrojovat rozvrh obsazeni pocitace postupné
od zacatku do konce. Studenty sefadime podle ¢asu jejich pfichodu
a u kazdého si zaznamendame, jak dlouho jesté potfebuje pracovat. Bu-
deme si také udrzovat mnozinu aktivnich studenti. V kazdém kroku algo-
ritmu najdeme nejblizsi udalost, jez mize ovlivnit rozvrh. Touto udalosti
je bud prichod studenta nebo ukonéeni préace pravé pracujiciho studenta.
V obou ptipadech zaktualizujeme datové struktury a potom najdeme ak-
tivniho studenta s nejbliZsim odchodem a pridélime mu poéitac. Pokud
tento student jiz neméa dost ¢asu na dokonceni svého programu, oznami-
me, Ze vSechny programy nelze dokoncit. Spravnost tohoto tvrzeni pfimo
vyplyva z dikazu uvedeného vyse.

Sefazeni studentii je mozné provést v ase O(N log N). Pocet udalosti
je 2N, nebot kazdy student jednou pfijde a jednou dokonéi program. Pfi
kazdé udélosti potfebujeme najit aktivniho studenta s nejmensim casem

130



odchodu. Kdybychom kvuli tomu vzdy prochéazeli vSechny aktivni stu-
denty, dostali bychom algoritmus s ¢asovou sloZitosti O(N?). Algoritmus
se vSak da zefektivnit, jestlize ulozime aktivni studenty do haldy uspo-
rfadané podle ¢asu jejich odchodu. V takovém pripadé zpracovani jedné
udalosti trva jen O(log N) — kdyz nékdo prisel, vlozime ho do haldy,
kdyz nékdo dokonéil praci, z haldy ho odstranime. Poté se podivame
na minimum v haldé — studenta, ktery bude od této chvile pracovat
u pocitace. Celkova ¢asova slozitost algoritmu s pouzitim haldy je tedy
pouze O(N log N).
program AttoSoft_P_II_2;
type student =

record

prichod, odchod, zbyva: integer;
end;

const Nekonecno = 10000;

var A: array [1..1000] of student; { pole studentd }
N: integer; { poZet studentd }
Halda: array [1..1000] of integer; { halda podle &asu odchodu }
Halda_N: integer; { pocet studentd v haldé }

procedure trid;
begin

{ vynechana kvili dspofe mista }
end; { trid }

procedure vloz_do_haldy(student: integer);
var i, rodic, tmp: integer;
begin
{ vloZz studenta na konec haldy a posouvej ho nahoru }
Halda_N := Halda_N + 1;
Halda[Halda_N] := student;
i := Halda_N;
while i>1 do begin
rodic := i div 2;
if A[Halda[i]].odchod < A[Halda[rodic]].odchod then begin
tmp := Haldal[i];
Halda[i] := Halda[rodic];
Halda[rodic] := tmp;
end;
i := rodic;
end;
end; { vloz_do_haldy }

procedure vyber_z_haldy;

var i, dite, tmp: integer;

begin
{ prvni prvek nahrad poslednim a posouvej ho dold }
Halda([1] := Halda[Halda_N];
Halda_N := Halda_N - 1;
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i=1;
while i*2<=Halda_N do begin
dite := ix2;
if (i*2+1<=Halda_N)
and (A[Halda[i*2+1]].odchod < A[Halda[dite]].odchod) then begin
dite := i*2+1;
end;
if A[Halda[i]].odchod > A[Halda[dite]].odchod then begin
tmp := Haldal[il;
Halda[i] := Halda[dite];
Halda[dite] := tmp;
end;
i := dite;
end;
end; { vyber_z_haldy }

procedure nacti;
var i: integer;
begin
readln(N);
for i := 1 to N do begin
readln(A[i] .prichod, A[i].odchod, A[i].zbyva);
end;
end; { nacti }

function min(a,b: integer): integer;

begin
if a<b then min := a
else min := b;

end; { min }

var Pracuje, Skonci: integer; { kdo pravé pracuje a kdy skon&i }
Stary_cas, Novy_cas: integer; { aktudlni a pfedchazejici udalost }
i: integer; { index do pole A }
begin
nacti; { naéti studenty do pole A }
A[N+1] .prichod := Nekonecno; { zarazka }
trid; { sefad prvky pole A podle polozky "prichod" }
Pracuje := -1; { nikdo nepracuje }
Skonci := Nekonecno;
Halda_N := 0; { inicializace haldy }
i:=1;
Stary_cas := 0;

while (i <= N) or (i = N+1) and (Pracuje > 0) do begin

{ Najdi novou udalost }

Novy_cas := min(A[i].prichod, Skonci);

writeln(’Cas ’,Novy_cas);

{ Pokud n&kdo pracoval u polita&e, vyhod ho }

if Pracuje > O then begin
writeln(Novy_cas, ’: student ’, Pracuje, ’ od po&itale.’);
A[Pracuje] .zbyva := A[Pracuje].zbyva - (Novy_cas - Stary_cas);
if A[Pracuje].zbyva = 0 then vyber_z_haldy;

end;
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{ JestliZe udalosti je p¥ichod, }

{ vloz do haldy a jdi na dalsi pfichod }

if (i <= N) and (A[i].prichod < Skonci) then begin
vloz_do_haldy(i);
i = i+1;

end;

{ Najdi nového studenta k po&itali }
if Halda_N > O then begin
Pracuje := Halda[1];
Skonci := Novy_cas + A[Pracuje].zbyva;
if Skonci > A[Pracuje].odchod then begin
writeln(’Rozvrh neexistuje!’);

exit;
end;
writeln(Novy_cas, ’: student ’, Pracuje, ’ k po&ita&i.’);
end
else begin
Pracuje := -1;
Skonci := Nekonecno;
end;
Stary_cas := Novy_cas;
end;

end.

P-11-3

Na ptikaz KOLIK ¢ musi nd$ program odpovidat, v kolika dosud zadanych
intervalech ¢ lezi. Na Gvod uvedeme dvé trividlni feseni. Prvni je zalo-
Zeno na tom, Ze si budeme jednoduse pamatovat vSechny dosud zadané
intervaly a pfi kazdém piikazu KOLIK je vSechny projdeme. Paméfova
slozitost tohoto Feseni je O(P), &asova v nejhorsim piipadé az O(P?).
(Prikaz PRIDEJ dokazeme zpracovat v ¢ase O(1), ale na KOLIK potiebu-
jeme v nejhorsim pfipadé az O(P).) Trochu lepsi feSeni vyuZziva pomocné
pole velikosti N + 1, v némz si pro kazdou celoc¢iselnou pozici budeme pa-
matovat pocet intervali, které ji obsahuji. Jeden interval pfidame v Case
O(N), na otdzku odpovime v ¢ase O(1). Vysledna ¢asova slozitost tohoto
algoritmu je O(N - P), pamétova O(N).

Uvédomte si, co vlastné potfebujeme zjistit, kdyz ndm prijde piikaz
KOLIK c. Potfebujeme urcit S — podet intervali, které zacinaji na pozici
< c a konéi na pozici 2 ¢. Necht Z(z) je pocet intervald, které zacinaji na
pozici £ z, a K(z) je podet intervali, které konéi na pozici £ z. Potom
S = Z(c)— K(c—1). (Intervaly, které konéi pfed ¢, jsou zapoéteny v Z(c)
iv K(c—1),a proto je do S nezapoéitdvame.) Stacilo by ndm tedy umét
rychle zjistovat hodnoty Z(z) a K(x).
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V feSeni tlohy budeme vyuzivat myslenku z tlohy P-1-3 — datovou
strukturu, kterou jsme nazvali intervalovy strom.* P¥ipometime si, o co
slo: Predstavte si, ze nad polem A (jehoz délku N jsme zvétsili na nejblizsi
mocninu dvou) vybudujeme uplny binarni strom. Jeho listy budou od-
povidat jednotlivym prvkam pole A, kazdy vyssi vrchol tohoto stromu
bude odpovidat néjakému intervalu v poli A (presnéji bude odpovidat
prvkim urcenym listy z jeho podstromu). V kazdém vrcholu stromu si
budeme pamatovat soucet ¢isel v prislusném intervalu pole. Zménit hod-
notu v poli A (a pfislusné upravit soucty ve vrcholech stromu) dokazeme
v case O(log N), zjistit soucet libovolného intervalu v poli A dokdzeme
rovnéz v ¢ase O(log N).

Z(c) je vlastné souet poCtu intervaldi zacinajicich na pozicich 0,1,
2,...,c. Budeme mit pole, ve kterém si tyto pocty budeme pamatovat,
a nad nim vybudovany intervalovy strom. Kazdé pridani intervalu zméni
jednu hodnotu v poli, tuto zménu dokdzeme uskuteénit v ¢ase O(log N).
Analogicky budeme pouzivat druhé pole (a druhy intervalovy strom) pro
pocty intervali, které na jednotlivych pozicich kon¢i. Pomoci téchto dato-
vych struktur dokdzeme kazdou hodnotu Z a K spocitat v ¢ase O(log IV).

Detailnéjsi popis obou operaci s intervalovym stromem a jeho imple-
mentaci v poli najdete v feSenich P-I-3. Casova slozitost naseho vzo-
rového feSeni je O(Plog N) a pamétova O(N). VSimnéte si, ze by nam
stacilo udrzovat jedno pole. Pfidani intervalu (a,b) by znamenalo napr.
zvySeni hodnoty na pozici a a snizeni hodnoty na pozici b + 1.
program Bageta P_II_3;
var ZZ,KK: array[0..2100000] of longint; { stromy pro Z a K }

N,o0ldN,a,b,c,kde: longint;
prikaz,pom: char;

function
Soucet(var T: array of longint; delka, koren, interval: longint): longint;

4 Neplést si s intervaly ze zadani!
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{T - pole, v némZ politame souty (v3imnéte si: "var T", ne "T" - pro&?)
delka - délka intervalu, jehoZ soucet poCitéme
koren - kofen podstromu, ve kterém ho pocitéame
interval - délka intervalu odpovidajiciho kofenu
(abychom ji nemuseli poé&itat)}
begin
if (delka=0) then begin Soucet:=0; exit; end;
if (interval=1) then begin Soucet:=T[koren]; exit; end;
if (delka<=(interval div 2))
then Soucet:=Soucet(T,delka,2*koren,interval div 2)
else Soucet:=T[2*koren]+Soucet(T,delka-(interval div 2),
2%koren+1,interval div 2);
end;

begin
fillchar(ZZ,sizeof(Z2Z),0);
fillchar (KK,sizeof (KK),0);
readln(oldN); N:=1; while (N<oldN+1) do N:=N*2; {upravime velikost pole}

while not eof do begin
read(prikaz); pom:=prikaz; while (pom<>’ ’) do read(pom);
if (prikaz=’P’) then begin
readln(a,b);
kde:=a+N; while (kde>=1) do begin Inc(ZZ[kde]); kde:=kde div 2; end;
kde:=b+N; while (kde>=1) do begin Inc(KK[kde]); kde:=kde div 2; end;
end else begin
readln(c);
writeln(Soucet(ZZ,c+1,1,N) - Soucet(KK,c,1,N));
end;
end;
end.

P-1l-4

Predstavte si, Ze bychom kromé registrii méli k dispozici jesté jeden zd-
sobnik®. Potom bychom jiz tlohu dokézali snadno vyfesit: Prochidzime
vstupnim slovem zleva doprava a prectena pismena vkladame do zasobni-
ku. AZ potom budeme ze zasobniku pismena odebirat, budeme je dostavat
v opa¢ném pofadi, nez v jakém byla do zasobniku vlozena. Vratime se
proto na zacatek slova a budeme porovnavat, zda je slovo stejné odpredu
jako odzadu. Vzdy precteme jedno pismeno ze vstupu, vyzvedneme jedno
pismeno ze zasobniku a porovname je. Skonc¢ime, kdyz nékdy dostaneme
dvé rizné pismena (slovo je Spatné) nebo kdyz docteme celé vstupni slovo
(slovo je spravné).

Kdybychom tedy méli k dispozici zasobnik, mame tlohu vyfeSenou.
Zasobnik si v§ak dokdZeme simulovat v jednom registru (s pomoci dru-

5 Zasobnik je datova struktura, ktera podporuje operace ,vloz prvek“ a ,odeber
naposledy vlozeny prvek®.
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hého)! Jak na to? Pismena a, b, ¢, d budou odpovidat ¢&islicim 1, 2, 3,
4. Cislo ulozené v registru R; bude pfedstavovat obsah zésobniku —
kdyz ho zapiSeme v poziéni soustavé o zdkladu 5, jednotlivé cifry bu-
dou predstavovat hodnoty vlozené do zasobniku (cifra na misté jedno-
tek bude naposledy vlozena hodnota). Naptiklad kdyz do prazdného
zasobniku vlozime postupné pismena a, c, b, a, bude v R; hodnota
ax5%+ex524+bx5+a=1x53+3x5242x5+1 = 125+ 7541041 = 211.

Jak ale s takovymto registrem-zasobnikem pracovat? Vlozit novou
hodnotu z je jednoduché — pomoci registru Ro vynasobime obsah R;
péti a potom ho z-krat zvétsime o 1. Vyzvednout naposledy vloZenou
hodnotu také neni tézké — je to presné opacna operace. Vydélime obsah
registru R; péti, zbytek po déleni je naposledy vlozend hodnota, podil
(ktery dostaneme v Rs) je novy obsah zasobniku bez této hodnoty.

Mame tedy funkéni feSeni dlohy, které potfebuje dva registry. Poku-
sime se vSak nalézt TeSeni jesté lepsi. Jen s jednim registrem se nam uz
nepodafi simulovat zasobnik a musime proto vymyslet néco jiného.

Nejprve trochu terminologie: aktudlni pismeno se bude v naSem fe-
Seni pohybovat sem a tam po vstupnim slové. Kvuli ndzornosti misto
yaktudlni je i-té pismeno vstupniho slova®, resp. ,,pfesuneme aktuélni pis-
meno doleva/doprava® budeme fikat  stojime na pozici %, resp. , jdeme
doleva/doprava‘. Délku vstupniho slova budeme znacit n.

Predstavte si, Ze stojime na pozici ¢ (pfi¢emz ale 7 si nijak nepamatuje-
me, v Ry je nula). Chtéli bychom pismeno na této pozici porovnat s jemu
odpovidajicim pismenem na pozici n + 1 — 7. Na§ program ovSem nezna
n ani i. Jak na to? Pismeno na nasi pozici si zapamatujeme v proménné.
Nyni si zjistime i. Jdeme doleva, dokud nepfijdeme na zaéatek vstupniho
slova, a zvySujeme R;. Odpovidajici pismeno je i-té od konce. Neni tedy
tézké dojit k nému — prejdeme na konec slova, potom zmensujeme R,
a jdeme doleva, dokud v R; neni nula. Pismena porovname, a jsou-li
ruzné, konéime. Jinak se potfebujeme vratit zpét na pozici, kde jsme za-
¢inali. K tomu pouZijeme tplné stejny postup: Cestou doprava spocitdme
v registru R; potfebny pocet krokt, presuneme se na zacatek slova a vy-
koname stejny pocet krokt smérem doprava. Tim jsme se dostali do stejné
situace, v niz jsme zacinali, jen mame porovnané aktualni pismeno s jemu
odpovidajicim pismenem. Cely tento postup budeme nazyvat porovndni.

Chtéli bychom postupné porovnat vsechny navzajem si prislusejici
dvojice pismen. To ale neni problém. Zac¢indme na prvnim pismenu
vstupu a provedeme porovnadni. Pokud neni prvni pismeno stejné jako po-
sledni, skondili jsme, jinak pokrac¢ujeme. Pfesuneme se doprava (na druhé
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pismeno) a vykoname dalsi porovndni. Takto pokracujeme tak dlouho,
dokud neporovndme n-té pismeno s prvnim (a nezjistime, Ze pravé po-
rovnané pismeno bylo jiz poslednim pismenem vstupniho slova).

var vstup: char;
pismeno: byte;
begin
while (vstup<>’$’) do begin
{ v R méme nulu, za&iname porovmnani }
if (vstup=’a’) then pismeno:=1;
if (vstup=’b’) then pismeno:=2;
if (vstup=’c’) then pismeno:=3;
if (vstup=’d’) then pismeno:=4;
{ spocitame, kde jsme }
while (vstup<>’$’) do begin Inc(R;); Left; end;
{ pfejdeme na pravy konec }
Right;
while (vstup<>’$’) do Right;
{ pfejdeme na odpovidajici pozici }
while not Zero(R;) do begin Dec(R1); Left; end;
{ kontrola }
if (pismeno=1) and (vstup<>’a’) then Reject;
if (pismeno=2) and (vstup<>’b’) then Reject;
if (pismeno=3) and (vstup<>’c’) then Reject;
if (pismeno=4) and (vstup<>’d’) then Reject;
{ navrat zpét }
while (vstup<>’$’) do begin Inc(R;); Right; end;
Left;
while (vstup<>’$’) do Left;
while not Zero(R;) do begin Dec(R;); Right; end;
{ posun na dalsi pismeno, které je tieba zkontrolovat }
Right;
end;
Accept; { vZechno spravné }
end.

P-1-1

Ulohu si mtizeme reprezentovat pomoci orientovaného grafu. Agenti pred-
stavuji vrcholy grafu. Skutecnost, Ze agent a muzZe vydat rozkaz agen-
tovi b, vyjadfime orientovanou hranou (a,b). Nasim tkolem je nalézt
v tomto grafu vrchol, z néhoz se muzeme dostat do vSech ostatnich vr-
cholu.

Zacneme prohledavanim grafu do hloubky z libovolného zvoleného
vrcholu. Jestlize pti tomto prohleddvani navstivime vSechny vrcholy, na-
sli jsme 8éfa — je jim vrchol, kterym jsme prohleddvani zacali. V opaé-
ném pripadé pokracujeme tak, ze zahajime nové prohledavani do hloubky
v jednom z vrcholi, které jsme dosud nenavstivili (diive navstivené vr-
choly grafu pritom nechdme oznacené jako navstivené). To opakujeme
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tak dlouho, dokud nenavstivime vSechny vrcholy naseho grafu. Necht r
je vrchol, v némz jsme zahajili posledni prohledavéani.

Tvrzeni. Ma-li nas graf aspon jednoho $éfa, potom vrchol r je séfem.

DUKAz. Pfedpokladejme, Ze nas graf ma $éfa a ze vrchol r neni §éfem.
Necht je $éfem vrchol s. Musime uvazovat dvé moznosti:
> Vrchol s byl navstiven pri poslednim prohleddvani. To by ale zna-
menalo, ze se do tohoto vrcholu mizeme dostat z vrcholu 7 (nebot
vrchol r je poc¢atkem posledniho prohledavani), tudiz se mizeme do-
stat z vrcholu r do libovolného jiného vrcholu grafu pies s, coz je vSak
v rozporu s nasim predpokladem, Ze r neni $éfem.
> Vrchol s byl navstiven drive nez pri poslednim prohleddavdani. Jelikoz
se vS8ak z vrcholu s da dojit do libovolného vrcholu, museli bychom
také vrchol r navstivit ve stejném prohledavani jako s, takze vrchol r
nemuze byt zacatkem posledniho prohledavani.
Zbyva tedy uz jen ovérit (opét prohleddvanim do hloubky), zda r je
skutecné $éfem grafu; v opa¢ném piipadé graf nema zadného $éfa. Casova
slozitost celého algoritmu je O(M + N), kde N je pocet vrcholu a M je
pocet hran grafu.

program Agenti;

const MAXM = 10000;
MAXN = 100;

var rozkazuje: array [1..MAXM] of integer;
ind_od, ind_do: array [1..MAXN] of integer;
{agent i+6 rozkazuje agentim rozkazuje[ind_od[i]]...
rozkazuje[ind_do[i]]}
N: integer;
navstiven: array [1..MAXN] of boolean;

procedure Nacti;
var i,M,agent: integer;
begin
write(’Polet agentid:’); readln(N);

M:=0;
for i:=1 to N do begin
write(’Agent ’,i+6,’ rozkazuje: (ukonéi -1)’);
ind_od[i] :=M+1;
read(agent) ;
while (agent>0) do begin
M:=M+1;
rozkazuje[M] :=agent-6;
read(agent) ;
end;
ind_do[i] :=M;
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end;
end; {procedure Nacti}

procedure Prohledej(i: integer);
var j: integer;
begin
if not navstiven[i] then begin
navstiven[i] :=true;
for j:=ind_od[i] to ind_do[i] do begin
Prohledej(rozkazuje[jl);
end;
end;
end; {procedure Prohledej}

var i,posledni: integer;
je_sef: boolean;

begin
Nacti;
for i:=1 to N do navstiven[i] :=false;
for i:=1 to N do begin
if not navstiven([i] then begin
posledni:=ij;
Prohledej(i);
end;
end;

for i:=1 to N do navstiven[i] :=false;
Prohledej(posledni);

je_sef:=true;
for i:=1 to N do je_sef:=je_sef and navstiven[i];

if je_sef then
writeln(’Séfem je agent ’, posledni+6)
else
writeln(’Zadny agent neni 3éfem’);
end. {program Agenti}

P—-1l-2

Snadno sestrojime feseni, které potfebuje cas O(K) na zpracovani jedné
hodnoty ze vstupu. Stadi si v cyklicky prepisovaném poli pamatovat po-
slednich K vstupnich hodnot. Pokazdé, kdyz precteme dalsi éislo ze vstu-
pu, pole jednoduse projdeme a vypiSseme nejmensi z hodnot uloZenych
v poli.

Vzorové feseni vystaci s ¢asem O(log K) na zpracovani jednoho éisla.
Predstavme si, ze bychom si aktualnich K hodnot udrZovali v haldé.
Novou hodnotu do této haldy lehce pfidame v case O(log K'). Pfedtim,
nez vypiseme minimum (které je ulozeno v kofeni haldy), potfebujeme
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vSak jesté z haldy odstranit nejstarsi hodnotu. Jak ale mame védét, ktera
z nich to je?

Pomuzeme si tim, Ze hodnoty, které nam budou prichazet, vlozime
nejen do haldy, ale také do fronty. Mezi témito dvéma datovymi struktu-
rami si budeme udrzovat vzajemné odkazy, abychom v kazdém okamziku
dokazali o kazdém prvku fronty fici, kde je v haldé, a naopak.

Kdyz tedy prijde nova hodnota, vlozime ji do haldy a na konec fronty.
Nasledné ze zacatku fronty odstranime nejstarsi hodnotu, pomoci odkazu
ji najdeme v haldé a odstranime ji také odtamtud. Nyni uz jen vypiSeme
hodnotu ulozenou v koteni haldy.

Obé operace s haldou maji ¢asovou slozitost O(log K'), zbyvajici ope-
race dokdZeme provést v konstantnim c¢ase. Pamét spotfebovana haldou
i frontou je O(K).

#include <stdio.h>

#define MAXK 100047

#define INFTY 1el0

#define SWAP(x,y) pom=(x); (x)=(y); (y)=pom

typedef struct { double val; int ptr; } tZaznam;

int K; // ze zadani
tZaznam H[MAXK],Q[MAXK]; // halda a fronta
int gs; // za&atek fronty

tZaznam pom;

void init(void) { // naplnime haldu i frontu "nekoneiné&" velkymi hodnotami
int i;
qs=0; H[0].val=-10000;
for (i=0;i<K;i++)
{ Qi].val=H([i+1].val=INFTY; Q[i].ptr=i+1; H[i+1].ptr=i; }
}
void bubbleup(int idx) { // bublej prvkem nahoru v haldé
int next=idx,pl,p2;
if (H[idx/2].val > H[idx].val) next=idx/2;
if (next!=idx) {
pl=H[idx] .ptr; p2=H[next].ptr;
SWAP(H[idx] ,H[next]);
Qlp1] .ptr=next; Q[p2].ptr=idx;
bubbleup (next) ;
}
}
void bubbledown(int idx) { // bublej prvkem dold v haldé
int next=idx,pl,p2;
if (2*idx<=K) if (H[2*idx J].val < H[next].val) next=2*idx;
if (2%idx+1<=K) if (H[2*idx+1].val < H[next].val) next=2*idx+1;
if (next!=idx) {
pil=H[idx].ptr; p2=H[next].ptr;
SWAP(H[idx] ,H[next]);
Qp1].ptr=next; Q[p2].ptr=idx;
bubbledown(next) ;
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}
¥

int main(void) {

int delptr;

double x;

scanf ("%d ",&K); init();

while (1) {
scanf ("%1f ",&x); if (x==-1000) break;
delptr=Q[qs].ptr; // najdeme hodnotu, kterou je tfeba vymazat z haldy
Hldelptr].val=H[K].val; H[delptr].ptr=H[K].ptr; Q[H[K].ptr].ptr=delptr;
K--; bubbledown(delptr); bubbleup(delptr); K++;

// smaZeme a upravime haldu

Qlgs] .val=H[K] .val=x; Q[qs].ptr=K; H[K].ptr=qs; bubbleup(K); // vloZime
gqs=(qs+1)%K;
printf("%g\n",H[1].val);

}

return O;

}

P-11-3

a) Na tvod si pfipomenme, Ze v feSeni krajského kola jste se mohli
kromé jiného docist, jak lze pomoci dvou pocitadel simulovat zasobnik.
Pro jistotu si zopakujeme, jak na to:

Zasobnik si mizeme simulovat v jednom registru (s pomoci druhého).
Pismena a, b, c budou odpovidat &isltim 1, 2, 3. Cislo uloZené v registru R,
bude predstavovat nas zasobnik — kdyz ho zapiSeme v pozi¢ni soustavé
o zékladu 4, jednotlivé cifry budou predstavovat vlozené hodnoty (cifra
na misté jednotek bude naposledy vlozena hodnota). Napriklad kdyz do
prazdného zasobniku vlozime postupné pismena a, c, b, a, bude v R
hodnotaax 43 +cx4?+bx4+a=1x4*4+3x42+2x4+1=64+
+48+8+1=121.

Jak ale s takovymto registrem-zasobnikem pracovat? Vlozit novou
hodnotu z je jednoduché — pomoci registru R, vynasobime obsah R;
¢tyfmi a potom ho z-krat zvétsime o 1. Rovnéz odebrani naposledy vlo-
zené hodnoty neni tézké — je to presné opacna operace. Vydélime obsah
registru R; ¢tyfmi. Zbytek po déleni je naposledy vloZena hodnota, podil
(ktery dostaneme v Rjy) je obsah zasobniku bez této hodnoty.

Nyni muzeme jiz prikrodcit k FeSeni zadané Glohy. Jednou mozZnosti je
simulovat (pomoci dvou zasobnikt) frontu, v niZ si udrZzujeme ta pismena,
jejichz pér jsme jesté nevidéli. Toto FeSeni je pomérné komplikované a jeho
zékladni myslenka spociva v tom, ze prichédzejici pismena vkladame do
prvniho zdsobniku, pismena na kontrolu vybirame z druhého zasobniku
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a vzdy, kdyz se nam druhy zasobnik vyprazdni, do néj presypeme obsah
prvniho zasobniku.

Ukézeme si radéji jednodussi reseni. Budeme opét pouzivat dva za-
sobniky. Do prvniho budeme vkladat vSechna prichazejici mald pismena
(jako hodnoty 1, 2, 3), do druhého velka (také jako hodnoty 1, 2, 3). Po
docteni vstupniho slova jednodu$e porovname obsahy obou zasobniku.
Vstupni slovo bylo spravné pravé tehdy, je-li jejich obsah stejny. To jiz
snadno ovérime.

var vstup: char;
i,co: byte;
begin
Read(vstup) ;
while vstup<>’$’ do begin
if vstup>=’a’ then begin
if vstup=’a’ then co:=1;
if vstup=’b’ then co:=2;
if vstup=’c’ then co:=3;
while not Zero(R;) do
begin Dec(R;1); for i:=1 to 4 do Inc(Rp); end;
while not Zero(Rp) do begin Dec(Rp); Inc(R;); end;
while co>0 do begin Inc(R;1); co:=co-1; end;
end else begin
if vstup=’A’ then co:=1;
if vstup=’B’ then co:=2;
if vstup=’C’ then co:=3;
while not Zero(R2) do
begin Dec(R32); for i:=1 to 4 do Inc(Rp); end;
while not Zero(Rp) do begin Dec(Rp); Inc(R2); end;
while co>0 do begin Inc(R32); co:=co-1; end;
end;
Read(vstup) ;
end;
while not Zero(R;) and not Zero(R2) do begin Dec(R;1); Dec(R2); end;
if Zero(Rj1) and Zero(R2) then Accept;
end.

b) Pro zvyseni prehlednosti oznacime puvodni registry R, Ra, Rs
a nové registry Q1, Qs.

Pouzijeme myslenku, kterou zname jiz z feSeni ulohy P-I-4. Zakédu-
jeme obsah vSech tii registri do jediného, druhy registr budeme pouzivat
jako pomocny pri praci s prvnim. Misto tii registra s obsahem a, b, ¢ bu-
deme mit tedy jeden registr Q, s obsahem 2%3%5¢. P¥i simulovani kazdé
operace pouzijeme Q2 jako pomocny registr. Na zacatku i po provedeni
kazdé operace v ném bude uloZena nula.

Operaci Inc (R,) v puvodnim programu nahradime tim, ze obsah no-
vého registru Q1 vynasobime 2, 3, resp. 5. Podobné piikaz Dec (R, ) na-
hradime pfislusnym délenim.
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Nahradit podminku Zero (R,) bude trochu komplikovanéjsi. Béhem
vyhodnocovani néjaké slozené podminky totiz nemuzeme provadét ope-
race s registry — zjistit, zda je v R, nula, tedy musime pred vyhodno-
cenim prislusné podminky. Navic drobné problémy zpusobi skutecnost,
7e tato podminka se muze vyskytovat i v podmince pro piikaz while,
kde bude vyhodnocovana pii kazdé iteraci (nejen pfed prvnim volanim
while), a Ze v jedné podmince miZeme testovat vice proménnych.

Definujme si ,makro* (kus vypoctu) SpocitejZ, které bude fungovat
nasledovné: Pro kazdy registr R, nastavi proménnou z, tak, aby v ni
byla kladnd hodnota pravé tehdy, je-li v R, nula, jinak bude z, = 0.
Vypocet makra zacne tim, Ze obsah Q1 vydélime prislusnym prvodcislem,
pfidemz si (v proménné z,) zapamatujeme zbytek, ktery jsme dostali pfi
tomto déleni. Vratime obsah ;1 do puvodniho stavu. Jestlize obsah @
byl délitelny pfislusnym prvodéislem (tedy neplati Zero (R;)), bude v z,
nula, jinak tam bude kladny zbytek. Vyraz Zero(R,) mé tedy v tomto
okamziku stejnou pravdivostni hodnotu jako vyraz (z, > 0).

Kazdy piikaz ,,if P then prikazy;“ nahradime makrem SpocitejZ
a piikazem ,if P’ then prikazy;“, kde podminka P’ vznikla z P tak,
Ze jsme v ni misto vech vyskytt vyrazu Zero (R, ) dali vyraz (z, > 0).

Kazdy prikaz ,while P do prikazy;*
SpocitejZ pred cyklem a na konci kazdé iterace, tedy nasledujicim kusem

nahradime volanim makra

vypoctu: ,,SpocitejZ ; while P’ do begin prikazy; SpocitejZ; end;*“

Nova ,makra®* Inc, Dec (jimiz nahradime kazdy vyskyt téchto pii-
kaz v ptvodnim programu) a SpocitejZ (na simulaci Zero) budou tedy
vypadat nasledovné:

var x,y,z1,22,23,1: byte;
{nové proménné, které nebyly v plvodnim programu}

{ Inc(Rgz) — z je v proménné x, piedpokladame, ze Q2 =0 }
if x=1 then y:=2 else if x=2 then y:=3 else y:=5;
{vynasobime obsah (1 &islem y}
while not Zero((Q1) do begin

Dec(Q1);
for i:=1 to y do Inc(Q2);
end;
while not Zero((Q)2) do begin
Dec(Q2); Inc(Q1);

end;

{ Dec (Rz) — z je v proménné x, predpokladame, ze Q2 =0 }
if x=1 then y:=2 else if x=2 then y:=3 else y:=5;
z:=0;

{vyd&lime obsah (); &islem y}
while not Zero(Q1) do begin
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Dec(Q1);
if Zero(Q)1) then begin z:=1; break; end; {v R, byla nula}
for i:=1 to y-1 do Dec(Q1);
Inc(Q2);
end;
if z=1 then begin
{obnovime pivodni stav )1 - nic se neméni}
while not Zero(Q2) do begin
Dec(@2); for i:=1 to y do Inc(Q1);
end;
Inc(Q1);
end else begin
{pfesuneme do (); podil}
while not Zero(Q2) do begin
Dec(Q2); Inc(Q1);
end;
end;

{ SpocitejZ — predpokladame, ze Q2 =0 }
{nejdfive chceme spo&itat z;, &ili budeme dé&lit dvéma}

y:=2;
{vydélime obsah Q1 &islem y}
21:=0;
while not Zero(Q1) do begin
Dec(Q1);
z1:=2z1+1;
if z1=y then begin 21:=0; Inc(Q2); end;
end;

{vratime zpét pivodni hodnotu do Q1}
while not Zero(Q2) do begin

Dec(Q2); for i:=1 to y do Inc(Q1);
end;
for i:=1 to 23 do Inc(Q1);

{a v proménné z; mame hledany zbytek}
{opakujeme totéz pro zo, y:=3 a z3, y:=5}

Dva dilezité detaily, kterych jste si mohli povSimnout:

1. Nesmime zapomenout oSetfit situaci, Ze registr R; obsahuje nulu.
V tom pripadé i po provedeni Dec (R;) musi v R; (podle definice)
zustat nula.

2. Kdyz jsme pfi simulovéani pfikaza Inc, Dec a Zero potfebovali pouZit
proménné, muselo se jednat o nové proménné, které se dosud v pro-
gramu nevyskytovaly. (Co kdyby napfiklad ptivodni program obsa-
hoval ¢ast ,for i:=1 to 3 do Inc(R;)“ a my bychom pfi simulaci
Inc (Ry) pouzili proménnou i?) Volnych jmen pro nové proménné
mame k dispozici nekone¢né mnoho, lehce tedy najdeme néjaké ne-
pouzité.

Snadno nahlédneme, ze kdyz timto zptisobem upravime libovolny pro-

gram, bude upraveny program ekvivalentni s puvodnim — tj. bude dé-
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vat pro kazdy vstup stejny vystup jako puvodni program. Pfitom pokud
puvodni program pouzival tfi registry, upraveny program uz pouziva jen
dva.

Uvédomte si, ze aplikovanim tohoto postupu na program pouzivajici
k > 3 registru dostaneme program pouzivajici k — 1 registru. Proto plati
pomérné prekvapivy vysledek: K libovolné tloze, kterou dokdzeme resit
na registrovém pocitaci, existuje program, jemuz na jeji feseni staci dva
registry.

P-1ll-4

Na poskakovani psiklt se mizeme divat jako na hru. Stav hry lze jedno-
znalné popsat pozici obou psikii. Skok psiki predstavuje tah. Kdyz oba
psici skoéi, zméni stav hry. Povolené stavy hry budou ty, které odpovidaji
povolenym pozicim psikii. Pro kazdy stav hry budeme zkoumat, kolika
tahy se do ného da dostat z pocateéniho stavu (kdyz jsou oba psici na
vychozich mistech). Tento pocet tahtt budeme oznacovat jako vzdalenost
daného stavu.

Vzdalenost pocatecniho stavu je 0. VSechny stavy, do nichz se lze
z ného dostat jednim tahem, budou ve vzdélenosti 1. Nyni projdeme
vSechny stavy ve vzdélenosti 1 a hledame, do kterych novych stava se
z nich dostaneme — ty budou zjevné ve vzdalenosti 2. Takto muzeme
analogicky pokracovat pro stavy ve vzdalenosti 3,4, ... Skonéime, kdyz
najdeme koncovy stav (oba psici jsou na svych cilovych mistech), nebo
kdyZ uz nenajdeme zadny novy stav. Tato technika prohledévani stavta
se nazyva prohledavani do sirky.

Otéazkou zustava, jak pro kazdy stav urcit, do kterych dalsich (sou-
sednich) stava se z ného lze dostat jednim tahem. Pomohlo by nam,
kdybychom uméli pro kazdé policko na louce uréit ¢isla jeho sousedi.
Sousedni stavy bychom potom urcili snadno. Ze vSech moznych pohybu
obéma psiky 6 sméry (36 moZnosti) vyskrtdme skdkani stejnym smérem,
skakani na bodlaky, skok nékterého psika mimo louku a soucasny skok
obou psikt na totéz policko.

Abychom nasli sousedni policka snadnéji, ukdzeme si, jak se da Ses-
tithelnikovy plan louky reprezentovat v obyéejném dvojrozmérném poli.
Na policku 1 si zvolime dva sméry. Jeden urcuje rostouci smér prvni sou-
fadnice, druhy smér druhé souradnice. Takto jsme prifadili kazdému po-
licku soutadnice z, y, kterym odpovidaji indexy v oby¢ejném dvojrozmér-
ném poli. V dvojrozmérném poli je uz nalezeni sousedt lehké. Konkrétné
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pfi nasi volbé soutfadnicovych os budou mit sousedi policka (z,y) soufad-
nice (z,y+1), (z—1,y), (x—1,y—1), (z,y—1), (z+1,y) a (z+1,y+1).

Jak zjistime pro policko s ¢islem k jeho souradnice? Vsimnéte si,
Ze spiralu muzeme rozlozit na vrstvy Sestithelnikového tvaru. Nejprve
uréime, na kolikaté vrstvé spirdly se k nachéazi, potom stranu na této
vrstvé, pozici policka na strané a je to.

Nulta vrstva spirdly obsahuje 1 policko, i-t4 vrstva pak 6i, jelikoz
kazda vrstva md 6 stran a na kazdé strané je 7 policek. Celkovy pocet
policek ve spiralach 0...v je tedy 1 + ZU: 6i = 3v? + 3v + 1.

=1
A jak zjistime, kde se nachézi policko k? Nejdrive spocteme vrstvu —

najdeme kladné feSeni rovnice £ = 3v%+3v+1 a zaokrouhlime ho nahoru.
Po vyfesSeni dostaneme v = [—% +4/3k — & |. (Jednodus§i a trochu
pomalejsi postup: zvySujeme v, dokud pocet poli¢ek nedosdhne k.)

Kdyz uz vime vrstvu v, kde se policko nachézi, poradové ¢islo policka
ve vrstvé (Gislovano od 0) dopoéitame snadno: odecteme od k celkovy
strana v policek, rozdil tedy staéi vydélit v. Cislo strany s bude podil,
pozice na strané p bude zbytek po tomto déleni.

Jiz umime pro dané policko k spocitat jeho vrstvu v, stranu s a pozici
na strané p. Z téchto hodnot dostaneme soufadnice podle nasledujici

tabulky (plati pro v 2 1):

s T Yy

0 4v—-1-p +Hv

1 —-1-p +v—-1-p
2 —w —-1-p

3 —v+1l+4+p —v

4 +1+p ~v+1+4p
5 +wv +1l+p
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Implementace: Stav hry je jednoznacné reprezentovan soufadnicemi
T1, Y1, T2, Y2 obou psiki. Pii prohleddavani do $itky si pamatujeme seznam
stavi, které jsme jiz dosahli, ale jesté jsme z nich nezkouseli prohledavat
nové vrcholy. K tomu nam poslouzi fronta. Dale potfebujeme umét pro
kazdy stav rychle zjistit, zda jsme ho jesté nevidéli, uz vidéli, nebo zda
se do néj nedd jit (bodlaky). K tomu pouzivame ¢tyfrozmeérné pole, kde
je to pfimo zapsano. (Presné totéz se dalo reprezentovat dvojrozmérnym
polem, které bychom indexovali pivodnimi souradnicemi. Navic bychom
ale potfebovali umét ze soufadnic ur¢it ptuvodni ¢islo policka.)

Abychom nemuseli pfi prohledavani do sifky stéale kontrolovat, zda se
nedostaneme ven z louky, postavime okolo celé louky bodlaky. Zakazeme
také stavy, v nichz by byli oba psici na stejném misté.

Prohledavéme prostor velikosti fadové O(N?), kde N je velikost louky.
Casové i pamétova slozitost prohledavani je linearni vzhledem k velikosti
tohoto prostoru, tedy O(N?).

program Psici;

const
EPS = 1.0E-6; {max. chyba vznikla v realnych &islech}
MAX_V = 16; {nejvétsi mozna vrstva (i se zaraZkou)}

MAX_STAVU = MAX_V*MAX_V*MAX_V*MAX_V;
INF = 299999; {nejvét3i mozny pocet skokii}
MAX_SMER = 6;  {polet smérd, jimiZ se mohou psici hybat}

type
TSour = record x,y : integer; end; {soufadnice jednoho psika}
TStav = record pl, p2 : TSour; end; {soufadnice dvou psiki}
{prostor pro 2 psiky: [x1,y1,x2,y2] fika, zda tam mohou bjt}
TMrizka = array [-MAX_V..MAX_V,-MAX_V..MAX_V,
-MAX_V..MAX_V,-MAX_V..MAX_V] of integer;

function dekVrstvu(k: integer): integer; {¢islo vrstvy, kde se k nachazi}
begin

dekVrstvu:= trunc(0.5 + sqrt(k/3.0 - 1.0/12.0 - EPS) );
end;

function zakVrstvu(v: integer): integer; {posledni prvek na dané vrstvé}
begin

zakVrstvu:= 3%vxv - 3%v +1;
end;

function dekoduj(k: integer): TSour; {Dekéduj &islo politka na soufadnice}
var v, pv, s, ps: integer;
sour: TSour;
begin
if k=1 then begin {pro k=1 (vrstva 0) naSe vzorce nefunguji}
sour.x:= 0;
sour.y:= 0;
end else begin
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= dekVrstvu(k);
pv:= k - (3xvxv - 3xv + 1); {pozice ve vrstvé}

= pv div v; {strana Sestiuhelnika, kde se pv nachazi}
ps:= pv mod v; {pozice na strané Sestithelnika}

case s of

0: begin sour.x:= +v-1-ps; sour.y:= +v ; end;
1: begin sour.x:= -1-ps; sour.y:= +v-1-ps; end;
2: begin sour.x:= -v ; sour.y:=  -1-ps; end;
3: begin sour.x:= -v+l+ps; sour.y:= -v ; end;
4: begin sour.x:= +1+ps, sour.y:= -v+l+ps; end;
5: begin sour.x:= +v sour.y:= +1+ps; end;
else writeln(’Velka chyba v dekoduj’);
end;
end;
dekoduj:=sour;
end;
var
n, m, sl, t1, s2, t2: integer; {vstup}
v: integer; {max. pouZita vrstva pro dané n}
A: TMrizka; {prohledavany prostor}
F: array [0..MAX_STAVU] of TStav; {fronta}

{zakaZe vsechny situace, kde se nachazi bodlak na daném misté}
procedure pridejBodlak(b: TSour);
var x, y: integer;

begin
for x:= -v to v do for y:= -v to v do begin
Alx, y, b.x, b.y]l:= INF; {2. psik stoji na bodlaku}
Alb.x, b.y, x, yl:= INF; {1. psik stoji na bodlaku}
end;
end;

{vy&isti cely prohledavany prostor}
procedure inicializace;
var x1, y1, x2, y2, i, last: integer;

begin
{vy&isténi prostoru}
for x1:= -v to v do for yl:= -v to v do
for x2:= -v to v do for y2:= -v to v do

Alx1, y1, x2, y2]:= -
{zarazky pfi okrajich - pfidame umé&lé bodléaky}
last:= zakVrstvu(v+1);
for i:=n+1 to last do pridejBodlak(dekoduj(i));
{zakéZeme byt obéma psikim na stejném misté&}
for x1:= -v to v do for yl:= -v to v do A[x1, y1, x1, y1]:= INF;
end;

{posunuti soufadnice danym smérem}

function pohyb(a: TSour; s: integer): TSour;

const smer: array [1..MAX_SMER] of TSour = (
(x: 0; y: 1), (x:-1; y: 0), (x:-1; y:-1),
(x: 0; y:-1), (x: 1; y: 0), (x: 1; y: 1) );

begin
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a.x:= a.x+smer([s].x; a.y:= a.y+smer(s].y; pohyb:=a;
end;

function pracuj: integer;
{prohledavani prostoru, kde se mohou psici nachéazet}
var
zac: integer; {pozice prvniho prvku ve fronté&}
kon: integer; {pozice za poslednim prvkem ve fronté = volné misto}
i, j, vzd: integer;
pl, p2, q1, q2: TSour;
ptl, pt2: TSour; {dekédované pozice skrysi pro psiky}
begin
zac:=0; kon:=1; {pfidame pocatek do fronty}
pl:= dekoduj(sl);
p2:= dekoduj(s2);
Flzac].pl:= pi1; F[zac].p2:
Alpl.x, pl.y, p2.x, p2.yl:

P2;
0; {zadiname ve vzdalenosti 0}

n

ptl:=dekoduj(t1); pt2:=dekoduj(t2);

while zac<>kon do begin
{vybereme stav z fronty a najdeme k nému vzdalenost}
pl:=F[zac].pl; p2:=F[zac].p2;
vzd:= Alpl.x, pl.y, p2.x, p2.yl;
inc(zac);

{zkousime vSechny kombinace smért, kam mohou skakat}
for i:=1 to MAX_SMER do for j:=1 to MAX_SMER do begin
if i=j then continue; {nemohou skéakat stejné&}

{nové pozice psiki}
ql:= pohyb(pl, i); q2:= pohyb(p2, j);

{jiz navitivend pozice resp. zarazka 7}
if Alql.x, ql.y, 92.x, gq2.y] >= O then continue;

{nové objeveny stav -> pfidame do fronty}
Alql.x, ql.y, 92.x, q2.y):= vzd+1;

Flkon] .pl:=ql; Fl[kon].p2:=q2;

inc (kon) ;

{nasli jsme koncovy stav?}
if (ptl.x=ql.x) and (ptl.y=ql.y) and (pt2.x=q2.x) and (pt2.y=q2.y)
then begin pracuj:=vzd+1l; exit; end;
end;
end;
pracuj:= -1;
end;

var x, i: integer;
begin
while true do begin
read(n, m);
if (n=0) and (m=0) then break;
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v:= dekVrstvu(n);
inicializace();

read(sl, ti1, s2, t2);
for i:=1 to m do begin read(x); pridejBodlak(dekoduj(x)); end;
if (s1=t1) and (s2=t2) then x:=0 {specialni pfipad} else x:=pracuj;
if x>=0 then writeln(x) else writeln(’nelze’);
end;
end.

P-IllIl-5

N
Ozna¢me S = Y [; pocet dni, které AttoSoft potfebuje na dokonéeni

vSech programﬁl. Igosledni program tedy dokonc¢ime po S dnech.

Pro kazdy program spocitame pokutu, kterou bychom za néj zaplatili,
kdybychom ho dokonéili az po S dnech. Program s nejmensi takovou
pokutou zaradime do rozvrhu jako posledni. Je-li to program déislo 4,
zbyva ndm naplanovat vSechny zbyvajicl programy na prvnich S — [;
dni, coz provedeme stejnym zpusobem (tzn. opét vybereme jako posledni
program s nejnizsi pokutou po S —[; dnech, atd.)

Spravnost uvedeného algoritmu dokazeme indukei vzhledem k pocétu
programii, které potfebujeme dokoncit. Pokud je tfeba dokoncit jeden
program, existuje jen jediny mozny rozvrh, a nas algoritmus tedy funguje
jisté spravné.

Necht tedy podet programti, které je tieba dokoncit, je N a nechf
pro libovolny mensi pocet programu nas algoritmus funguje spravné.
Ozname G FeSeni ziskané nasim algoritmem (v tomto feSeni je poslednim
programem program ¢islo ). Necht existuje jiné, levnéjsi feSeni O, které
konéi programem ¢islo j. Jestlize i = j, pak rozdil mezi G a O musi byt
v poradi prvnich NV — 1 programu. Podle indukéniho pfedpokladu vsak
toto poradi v feSeni G je optimalni, proto feSeni O nemuze byt levnéjsi.

V opac¢ném pripadé vytvorfime novy rozvrh O’ néasledujicim zptiso-
bem. Necht rozvrh O dokonéuje programy v potadi 01,09, ...,0N a necht
or = i. Podle rozvrhu O’ dokonéime programy v néasledujicim pofadi:
01,02, ..,0k_1,0ks1,---,0N,1. Viimnéte si, ze TeSeni O je nejvyse tak
drahé, jako feseni O. Pokuta za programy o41,...,0nN je totiz nizsi nez
v feseni O, nebot je dokonéime difve (pokuta roste s po¢tem dni po
terminu). Navic pokuta za program ¢ dokonceny po S dnech urcité ne-
presahuje pokutu za program oy dokonceny po S dnech, jelikoz program
7 jsme vybrali tak, aby tato pokuta byla nejmensi mozna.
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Reseni O’ ale nemiize byt levnéjsi nez feseni G (plati tu stejny argu-
ment, jako v predchozim pfipadé). Proto ani feSeni O nemuze byt levnéjsi
nez G. Dokéazali jsme, Ze zadné levnéjsi TeSeni nez GG neexistuje, reseni
ur¢ené nasim algoritmem je tedy optimalni.

V kazdém kroku algoritmu musime spocitat ptislusnou pokutu pro
kazdy program, ktery jsme dosud nezatadili do rozvrhu. Proto ¢asova
slozitost algoritmu je O(N?).

Pii vypoctu si jesté musime ddvat pozor na to, Ze pokuta muze byt
a% 5000 - 100 000® 4 5000 - 100 0002 + . .. 4+ 5000, tedy piiblizng 5 - 10'8,
a tak velké ¢islo se jiz nevejde do longintu a nemuzeme si dovolit pouzit
ani typ real, jelikoZ potfebujeme i u tak velkych éisel rozliSovat rozdily
na fadu jednotek. Vétsina prekladaci nastésti nabizi 64bitovy celociselny
typ — v Turbo Pascalu je to typ comp, ve Free Pascalu naptiklad typ
QWord.

program Attosoft;
const MAXN = 10000;

var a,b,c,d,l: array [1..MAXN] of longint;
pouzite: array [1..MAXN] of boolean;
N,S: longint;

function Cena(prog:integer; den: comp): comp;

begin
cena:=((a[prog]*den+b[prog])*den+c[prog])*den+d[prog] ;

end; {function Cena}

procedure Nacti;
var i: integer;
begin
readln(N);
S:=0;
for i:=1 to N do begin
readln(1(i],alil,b[i],c[i],d[i]);
S:=S+1[i];
end;
end; {procedure Nacti}

procedure Spocitej_rozvrh(d: longint);
var minprog: integer;
min,cc: comp;
i: integer;
begin
{najdi nepouzity program, kterj md nejniZsi pokutu po d dnech}
minprog:=-1;
for i:=1 to N do begin
if not pouzite[i] then begin
cc:=Cena(i,d);
if (minprog=-1) or (cc<min) then begin

151



min:=cc;
minprog:=i;
end;
end;
end;

if minprog>-1 then begin
{ozna¢ program jako pouzity}
pouzite [minprog] :=true;
{sestav zbytek rozvrhu}
Spocitej_rozvrh(d-1[minprog]);
{vypis posledni program na konci rozvrhu}
writeln(minprog) ;

end;

end; {procedure Spocitej_rozvrh}

var i:integer;

begin
Nacti;
for i:=1 to N do pouzite[i]:=false;
Spocitej_rozvrh(S);

end.
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Pripravna soustredéni pred 45. MMO

V pribéhu 53. roéniku se konalo vybérové soustiedéni pro pfipravu na
mezindrodni matematickou olympiddu bezprostfedné po skonceném ce-
lostatnim kole kategorie A, a to od 5. do 9. dubna 2004 v Kostelci nad
Cernymi lesy nedaleko Prahy. Na soustfedéni bylo pozvano 9 nejlepsich
fesitelt III. kola kategorie A. Soustfedéni bylo zaméfeno na piipravu
reprezentantii a ke konecné nominaci Sesticlenného druZstva.

Uspésnost jednotlivych studenti ukazuje nasledujici tabulka:

Vitézslav Kala 4/4 G Brno, ti. Kpt. Jarose 14 90
Jan Moléacek 4/4 GJKT, Hradec Kralové 90
Marek Pechal 6/8 G Zlin, Lesni ¢tvrt 1364 87,5
Jaromir Kuben 2/4 G Brno, tf. Kpt. Jarose 14 85,5
Frantisek Konopecky 7/8 GLJ HoleSov, Palackého 524 84,5
Alexandr Kazda 8/8 G Praha 6, Nad Aleji 84
Pavel Kocourek 3/4 SPSST Praha 1, Panské 82
Tomas Gavenciak 4/4 GMK Bilovec 80,5
Sven Drazan 4/4 G Brno, tf. Kpt. Jaroge 14 67

Na zakladé uvedenych vysledkt, v nichZ jsou zapoditany i vysledky
oblastniho a celostatniho kola, bylo prvnich Sest vybrano do reprezen-
ta¢niho druzstva a sedmy byl uréen jako nahradnik. Toto druzstvo nés
reprezentovalo i na jiz tradi¢nim stfetnuti s druzstvy Slovenska a Polska.

Jednotlivé seminare vedli a ulohy pfipravili:
dr. Jaroslav Zhouf (5.4.),

dr. Karel Hordk (6.4.),

dr. Pavel Caldbek (7.4.),

dr. Jaroslav Svréek (8.4.)

a doc. Jaromir Simsa (9.4.).
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Ulohy zadané na piipravném soust¥edéni

1. Na stole lezi n = 3 listtt papiru, které jsou ocislovany od 1 do n.
Pak jsou listy libovolné rozdéleny na dvé hromadky (jedna hromadka
muze byt prazdna) a hledame v aspon jedné hromdadce pravé dva listy,
jejichz ¢isla dévaji v souc¢tu druhou mocninu néjakého prirozeného ¢isla.
Dokazte, ze

a) kdyZ je n = 15, pak takové dva listy mohou byt vzdy nalezeny,

b) kdyz je n < 14, pak takové dva listy nemuseji byt nutné nalezeny.

2. Najdéte vSechna pfirozena éisla n takova, Ze zaroven plati
(a) n ma pravé Sest rtiznych délitelt 1, d, da, ds, dy, n,
(b) l1+n= 5(d1 + do +d3+d4).

3. Necht ABCD je te¢novy ¢tyfuhelnik. Prisecik pfimek AB a CD
ozna¢me E| prisecik piimek DA a BC ozna¢me F. (Necht B lezi mezi
AaFE, Clezimezi DaFE, Alezi mezi D a F, B lezi mezi C a F.) Stfedy
kruznic vepsanych trojuhelnikim AF B, BEC a ABC ozna¢me postupné
I, Ir a I3. Pruseciky ptimky I I3 s pfimkami FA a ED ozna¢me K a L,
pruseciky primky I5/3 s pfimkami F'C a F'D ozna¢me M a N. Dokazte,
ze plati |EK| = |EL|, pravé kdyz plati |FF'M| = |F'N|.

4. Dokazte, ze

3
|
—

n

ket <4

=

=1
pro kazdé prirozené &islo n = 2.

5. V roviné jsou dany dvé kruznice ki, ks s poloméry 71, ro (r1 < 72),
jez se vné dotykaji. Jejich spole¢nd teéna t; se dotykd k; v bodé A a ks
v bodé D. Oznaéme to druhou te¢nu kruznice k; rovnobéznous t; a E, F
jeji pruseciky s kruznici ko. Jestlize poloptimka z bodu D protne protne
piimku t2 v bodé B a kruznici ko v bodé C| je t; tecnou kruznice opsané
trojuhelniku ABC'. Dokazte.

6. Uvazujme abecedu {a,b, ¢,d} a slova sloZena z n pismen této abecedy.
Slovo povazujeme za sloZité, jestlize obsahuje dvé stejné skupiny pismen
za sebou (napf. caab nebo cababdc jsou slozita slova, ale slovo abcab neni).
Slovo, které neni slozité, nazveme jednoduché. Dokazte, Ze jednoduchych
slov slozenych z n pismen je vice nez 2™.

7. V daném trojthelniku ABC ozna¢me O stfed opsané a V' stfed ve-
psané kruznice. Dale ozna¢me K a M body dotyku pfipsané kruznice w,,
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ktera lezi v thlu BAC' a strany BC se dotyka v bodé N. Jestlize stied
P tGsecky KM lezi na opsané kruznici trojuhelniku ABC| lezi body O,
V a N v primce. Dokazte.

8. Nechf R je mnozina vSech realnych cisel. Urcete vSechny funkce f,g:
R — R takové, ze pro vSechna realna cisla x, y plati

f(@) = fy) = (z —y)g(z +y).

9. Urcete pocet vSech nekonec¢nych posloupnosti aj,as,as,... ¢isel +1
a —1, které vyhovuji soucasné podminkam:
(i) Pro vSechna pfirozend ¢isla m, n plati

Amn = AmQn.
(ii) V kazdé trojici po sobé jdoucich ¢lentt (an, Gni1, ant2) se vyskytuje
soucasné jak ¢islo +1, tak ¢islo —1.

10. Urcete vSechny funkce f: (1,400) — (1, +00) takové, ze pro viechna
realnd éisla z,y > 1 a pro vSechna kladné redlna cisla m, n plati

1 1

f@™y") = f(z)3 fy)a=.

11. Urcete vSechna pfirozend ¢isla n majici tuto vlastnost: Necht p je
mnohoclen s celoéiselnymi koeficienty takovy, ze 0 < p(k) < n pro k =
=0,1,2,...,n+ 1, potom plati

p(0)=p(1)=p(2)=...=p(n+1)=0.

12. Necht I je stfedem kruZnice vepsané danému trojuhelniku ABC.
Uvazujme kruznici se stfedem v bodé I, kterd protind strany BC, C'A,
AB po tadé vzdy ve dvou vnitinich bodech D a P, E a Q, F a R.
Necht dale dvojice tseéek EF a QR, FD a RP, DE a PQ se protinaji
po fadé v bodech S, T, U. Dokazte, ze kruznice opsané trojuhelnikim
FRT, DPU a EQS prochézeji spolenym bodem.

13. Dokazte, ze kazdém tétivovém ¢tytthelniku ABCD plati nerovnost
||AC'[ — |BD|] < l|AB} — |CD||.
Urcete, kdy nastane rovnost.
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14. V obdélniku o rozmeérech 20 x 25 je umisténo 120 jednotkovych ¢tver-
cu. Dokazte, ze v tomto obdélniku existuje kruznice o poloméru %, ktera
neprotind zadny z jednotkovych ctvercu.

15. Cisla z — 2004 a y — 2004 jsou druhé mocniny dvou po sobé jdoucich
celych cisel. Urcete nejvétsi moznou hodnotu nejvétsiho spolec¢ného déli-
tele Cisel z a y.

16. Uréete nejmensi hodnotu vyrazu 22 +4xy+4y?+ 222, kde z, y, z jsou
kladné realna cisla spliujici podminku zyz = 32.

17. Rovnobéznik ABCD mé vnitini thel 60° u vrcholu A. Ozna¢me O
stfed kruznice opsané trojuhelniku ABD a predpokladejme, Ze polo-
pfimka AO protne osu vnéjsiho thlu pfi vrcholu C' rovnobézniku v bodé
K # C. Najdéte mozné hodnoty poméru |AO| : |OK]|.

18. Urdete nejmensi prirozené ¢islo n, pro které plati: Z libovolné n-tice
navzajem ruznych celych ¢isel lze vybrat ¢tyfi riazna cisla a, b, ¢, d, pro
ktera je ¢islo a + b — ¢ — d délitelné dvaceti.

19. Sachovnice (n — 1) x (n — 1) ma (n — 1)? &vercovych poli, kterd
maji dohromady n? vrcholii. Kolika zpiisoby lze téchto n? bodi obarvit
cervenou a modrou barvou tak, aby kazdé pole mélo dva modré a dva
éervené vrcholy?

156



Mezinarodni stretnuti c¢esko-polsko-slovenské

BiLovEc, 21.-22. CERVNA 2004
V rameci zavéreéné pripravy pred MMO se uskutecnilo jiz ¢tvrté mezina-
rodni stfetnuti mezi tymy Ceské republiky, Polska a Slovenska. Jednotlivé
zemé reprezentovala Sestice ucastniki, ktefi si vybojovali ve svych zemich
postup na 45. MMO v Athénéch.

Soutéz se uskutecénila v terminu 21.-22.6. 2004 v severomoravském
Bilovci. VSechna tfi reprezentacni druzstva pricestovala na misto konani
jiz v nedéli vecer 20. 6. 2004. Organizace a prubéh soutéze zustal zachovan
z predeslych ro¢niktt — je pfizpusoben stylu III. kola nasi MO a pod-
minkdm na MMO. Soutézicim byly ve dvou dnech predlozeny dvé trojice
soutéznich uloh, pritom za kazdou z uloh mohli ziskat nejvyse 7 bodt,
tj. celkové (stejné jako na MMO) 42 body. Na kazdou trojici tloh méli
soutézici vyhrazeno 4,5 hodiny.

Poradi | Jméno Zemé | body |Soudcet
1. | Mateusz Michalek POL |676775 38
2.-3. | Vitézslav Kala CZE |671777 35
Frantisek Simancik SVK |761777 35
4.-5. | Kamil Duszenko POL |670777 34
Toméas Vana SVK |571777 34
6. | Frantisek Konopecky |CZE |570777 33
7.-8. | Jaromir Kuben CZE [770717 29
Jan Moldéek CZE |701777 29
9. | Alexandr Kazda CZE |370477 28
10.-11. | Marek Pechal CZE |610577 26
Michatl Pilipczuk POL 401777 26
12. | Andrzej Grzesik POL [570713 23
13. | Ondrej Budac¢ SVK (401663 20
14. | Hana Budacova SVK [201716 17
15. | Peter Cerno SVK |500217 | 15
16. | Piotr Danilewski POL |000706 13
17. | Jakub Kallas POL |000217 10
18. | Jozef Bodnar SVK |301203 9
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Névrh vSech Sesti tloh (a jejich vzorova reseni) pripravili ¢lenové tilo-
hové komise z Ceské republiky — dr. Jaroslav Svréek a doc. Jaromir
Simsa. Ulohy koordinovala mezinarodni komise ve slozeni Jaromir Simsa,
Jaroslav Svréek a Karel Hordk za Ceskou republiku, Pavol Novotny a Jdn
Mazadk za Slovensko a Waldemar Pompe a Adam Osekowski za Polsko.

Texty soutéznich uloh

1. Dokazte, Ze redlna ¢isla p, ¢, v splnuji podminku

pg—7)?+2p*(q+7)+1=p",
pravé kdyz kvadratické rovnice

2 _ 2 _

z°+pr+q=0, ¥y —-py+r=0

maji readlné kofeny (ne nutné rtzné), které lze oznacit z1 2 resp. yi o
v takovém poradi, ze plati rovnost z1y; — xoys = 1. (J. Simsa)

2. Dokazte, ze pro kazdé prirozené ¢islo k existuje nejvyse koneéné mnoho
takovych trojic navzajem ruznych prvocisel p, ¢, r, pro néz je éislo gr — k
nasobkem p, ¢islo pr — k ndsobkem ¢ a soucasné ¢islo pg — k nasobkem 7.

3. Uvnitf tétivového ¢tyfuhelniku ABCD je dan bod P tak, Ze plati
|xBPC| = |¥xBAP|+ |xPDC|.

Ozna¢me E, F, G paty kolmic z bodu P po fadé na ptimky AB, AD
a DC. Dokazte, Ze trojihelnik FEG je podobny trojthelniku PBC.
(Toshio Seimiya)

4. V oboru realnych &isel feste soustavu rovnic

1 1 z

Loz Lovy Loz
xy oz yz T zr Y

(J. Féldes)

5. Uvniti stran AB, BC, C'A daného trojuhelniku ABC' jsou zvoleny po
fadé body K, L, M tak, ze plati

|AK| B |BL| B |C M|
KB| ~ |LC| ~ [MA

Dokazte, ze trojuhelniky ABC a K LM maji spolecny prusecik vysek,
pravé kdyz je trojuhelnik ABC rovnostranny. (P. Cernek)
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6. Na stole lezi k hromadek o 1,2, ...,k kamenech, kde £ = 3. V prvnim
kroku vybereme tfi libovolné hroméadky na stole, slou¢ime je do jedné
a 7 této nové hromadky odstranime jeden kdmen (pry¢ ze stolu). Ve
druhém kroku opét slouc¢ime nékteré tti hromadky do jedné a pak z ni
odebereme dva kameny. Obecné v i-tém kroku slouc¢ime libovolné tii hro-
madky, ve kterych je dohromady vice nez i kament, do jedné hromadky
a pak z ni 7 kament odstranime. Pfedpokladejme, Ze po nékolika krocich
zustane na stole jedind hromadka, v niz je p kament. Dokazte, ze ¢islo p
je uplny kvadrat, praveé kdyz obé ¢isla 2k+2 a 3k +1 jsou uplné kvadraty.
Déle pak najdéte nejmensi k, pro které je ¢islo p uplny kvadrat.

(R. Kucera)

Reseni iloh
1. Predpokladejme, Ze uvazované kofeny obou danych rovnic spliiuji rov-
nost z1y; — x2y2 = 1. Podle znamého vzorce je
—-p+ K p+L

12 = ——F— a Yi,2 = Tv (1)

kde realna ¢isla K, L spliiuji rovnosti K2 = p? —4q a L? = p?—4r (¢islam
q

K, L ptfifadime znaménka podle oéislovani kofent). Potom

1= N _(p+EK)p+L)-(-p-K)(p-L) p(K-1L)
=T1Y1 — X2Y2 = 1 = 2 »

odkud p # 0 a K — L = 2/p. Dosadime-li to do rovnosti

(K+L)(K-L)=K?>-L*= (p* —4q) — (p* — 4r) = 4(r — q),

vyjde ndm K + L = 2p(r — q). Ze ziskanych vyjadfeni ¢isel K+L a K —L
dostaneme K = 1/p — p(q — r), po umocnéni K? = 1/p? —2(q —r) +
+ p*(¢ — 7)?. Porovname-li to s rovnosti K? = p? — 4¢, obdrzime po
snadné Gpravé pozadovanou podminku

plla—r)?+2p%(q+7)+1=p" (2)

Predpokladejme naopak, ze plati rovnice (2). Pak zfejmé p # 0. Rov-
nici upravime dvéma obdobnymi zptsoby do tvart

pr—q)* +2p%(r —q) + 1 = p* — 4p’q

pHg =7’ +2p*(q— 1)+ 1 =p* — 4p*r;
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odtud po vydéleni é&slem p? zjistujeme, Ze diskriminanty uvazovanych
kvadratickych rovnic maji vyjadreni

2 B 12 20, 2
Zg_4q:<p(rp®+-> azﬂ_4r:<p(q ﬂ+1>’
p

takZe to jsou nezdpornd ¢isla a prislusné (redlné) kofeny maji tvar (1),
kde . 5
- 1 . 1
gopl-g+1t . pla-r+1

p p

Znaménka ¢isel K a L jsme zvolili tak, aby vyslo (viz dikaz 1. implikace)

p(K — L) P_Cﬂr—®+1+P%q_m+1>=L

Ily1—$2y2=———2—=§ D p
2. Navzdjem ruzna prvocisla p, ¢, r vyhovuji podminkam tlohy, pravé
kdyz ¢islo pg + gr + rp — k je délitelné kazdym z cisel p, g, r, neboli
jejich sou¢inem pqr. Rovnost pq + qr + rp — k = n - pgr pro vhodné
celé n prepiSme do tvaru k = pg + qr + p — n - pqr. Je-li n < 0, plyne
z posledni rovnosti, ze max{pq, pr,qr} < k; pak ovSem kazdé z prvocisel
P, q, T je nejvyse %k a takovych trojic je koneény pocet. Je-li n = 1,
dostadvame odhad k < pq + qr +rp — pqr. Zfejmé mizeme piedpokladat,
zZe2Sp<qg<r.
Kdyby bylo r = 7, dostali bychom
pq+qr+rp—nmpgr 1 1 1 1 1 1

4 i4-—p<-4i4--1<0,
e StoTinS3t3tzn

coz nejde. Muze tedy byt jediné r =5, ¢g=3 ap=2.

3. Oznacme k kruZnici opsanou &tyfthelniku ABCD a ki, ko kruZnice
opsané trojuhelnikim PAB, PCD. Uvnitf thlu BPC uvazujme takovou
polopfimku PT', pro niz plati |« BPT| = | < BAP)|. Podle zadéani pak plati
(obr. 42)

|xCPT| = |¥BPC| — |xBPT| = |xBPC| — |xBAP| = |xPDC)|.

Pfimka PT je tudiz spolecnou vnitini te¢nou obou kruznic kq a ks.
Uvazujme nejprve pripad, kdy strany AB a CD uvazovaného téti-

vového ¢tyfuhelniku nejsou rovnobézné. Vzhledem k tomu, Ze usecky

AB a CD jsou spoletnymi tétivami odpovidajicich dvojic kruznic kq,
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Obr. 42

k a ko, k, existuje jediny bod ), ktery ma stejnou mocnost ke vSem tfem
kruznicim k, k1 a ko. Timto bodem @ je spoleény bod vSech tii piimek
(chorddl) AB, CD a PT. Bez ujmy na obecnosti predpoklddejme, Ze
bod @ lezi na polopfimce BA za bodem A (obr.42).

Podle Thaletovy véty jsou ziejmé ctyfuhelniky AEPF, FPGD
a QFE PG tétivové. Z rovnosti ptislusnych obvodovych thla tak plyne

|xFEG| = |<xFEP| — |<xGEP| = |xFAP| — |xGQP| =
= |¥DAP| — |xDQP| = |xQDA| — |xQPA|,

nebot thly pfi vrcholech A, P a thly pii vrcholech D, Q v nekonvex-
nim ¢tyfthelniku APQD dévaji stejny soudet: |XDAP| + |[xQPA| =
= |[¥QDA| + |xDQP)|. Pro tisekovy uhel QPA navic plati |xQPA| =
= |xPBA|, takze

|xFEG| = |<QDA| — |<xQPA| = |¥QDA| — |xPBA| =
= |%QBC| - |xPBA| = |xPBCl|.

Analogicky dokdzeme, Ze je |XFGE| = |xPCB|. Trojuhelniky FEG
a PBC se tedy shoduji ve dvou vnitinich tihlech a jsou podobné (uu).
Jsou-li pfimky AB a CD rovnobézné, je ABCD rovnoramenny li-
chobéznik se zékladnami AB a CD. Odtud plyne, Ze body E, P, G lezi
na ose soumérnosti lichobézniku ABCD a trojuhelniky APD a BPC
jsou shodné. Jak snadno plyne z vlastnosti obvodovych thla tétivovych
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ctyruhelnikit AEPF a FPGD, jsou trojuhelniky EFG a APD podobné
(je [xFEG| = |xPAD| a | xEGF| = |xADP|). Odtud jiz plyne podob-
nost trojthelniki FEG a PBC. Tim je dtikaz ukoncen.

Pozndmka. V predvedeném Feseni jsme potfebovali ukazat, Ze se troj-
thelniky FEG a PBC shoduji ve dvou uhlech. Rovnost thla |x EFG| =
= |xBPC/| plyne témét okamzité z rovnosti pfislusnych obvodovych thla
v tétivovych ¢tyrtuhelnicich AEPF, FPGD.

4. 7 tvaru rovnic plyne podminka zyz # 0. Dvé z éisel x, y, z museji mit
stejné znaménko, pak je kladna prava strana rovnice, ve které jsou tato
dvé ¢isla v podilu, proto je kladna i prislusné leva strana, takze zbyvajici
z Cisel z, y, z mé totéZ znaménko jako prva dvé. Plati tedy bud z,y, z > 0,
nebo z,y,z < 0.

Zabyvejme se pouze prvnim piipadem, druhy se totiz prevede na
prvni zménou feSeni (z,vy, z) na feSeni (—z, —y, —z). Prvni dvé rovnice
soustavy vynasobme vyrazem zyz a odetéme je, po upravé dostaneme
z —x = y(z? — y2). Je-li trojice (z,y, z) feSenim, jsou feSenimi i trojice
(y,z,x) a (z,z,y), které dostaneme cyklickou zdménou. Proto mizeme
pfedpokladat, Ze z = max{z,y, z}. Potom z — 2 < 0 a 22 — yz > 0 (neza-
pometime, Ze x,y, z > 0), takZe z rovnosti z — x = y(22 — yz) a podminky
y > 0 plyne z — z = 22 — yz = 0, coZ znamend r = y = z. Mame tedy
jedinou rovnici 1/22 = 1 + 1, kterd méa (jediny) kladny kofen z = %\/5

Odpovéd. Soustava mé pravé dvé feSeni z =y = z = i%\/—i

5. Bod V roviny trojuhelniku ABC je prusecikem jeho vysek, pravé kdyz
plati zaroven AV 1 BC a BV 1 AC, neboli AV-BC =0a BV-AC = 0.
Po dosazeni BC = BV —CV, AC = AV — CV a snadné upravé dostaneme

ekvivalentni podminku ve formé rovnosti skalédrnich sou¢intt
AV-BV =BV .-CV=CV-AV. (1)

Nasim tkolem je tedy zjistit, kdy plati soustava (1) zérover s obdobnou
soustavou

KV . LV =LV -MV =MV KV, (2)
kterd vyjadiuje, ze bod V je prisecikem vysek trojuhelniku K LM. Vyja-

diime vektory z (2) jako linedrni kombinace vektort z (1). Podle zadéni
existuje ¢islo A\, 0 < A < 1, pro které plati

AK =)XAB, BL=)BC, CM=)\CA
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Dosadime-li do prvni rovnosti AK = AV — KV a AB = AV — BV, dosta-
neme po upravé prvni z rovnosti

KV =(1-\NAV+ABV, LV=(1-)\BV+ACV,
MV = (1-\)CV + \AV;

druhé dvé rovnosti odvodime analogicky. Odtud vynasobenim dostaneme

KV .- LV = (1-)\?2AV-BV + A1 - \AV-CV + A(1 - \)BV? =
=(1—=Ns+A1-NBV?

kde pismeno s oznacuje spoleénou hodnotu souéintt z (1). Analogicky
plati

KV-MV = (1-N)s+A1-NAV? a LV-MV = (1-)\)s+A(1-\)BV?.
Vidime, Ze soustava (2) je ekvivalentni se soustavou rovnosti
A1 = NAVZ = \(1 - \)BV? = \(1 - \)CV?,

kterd je s ohledem na A(1 — A) # 0 splnéna, pravé kdyz |AV| = |BV| =
= |CV|. Tato podminka znamen4, Ze prusecik vysek V trojihelniku ABC
splyva se stfedem kruznice opsané. To nastane, pravé kdyz je trojuhelnik
ABC rovnostranny.

Jiné FeSeni. Je-li trojihelnik ABC rovnostranny, oznaéme O stfed
jeho kruznice opsané. Pti jedné z rotaci o 120° kolem bodu O plat{ A
— B+— Cw+— Aarovnéz K — L — M — K, nebot napiiklad body
K, resp. L déli ve stejném poméru useéku AB, resp. tsecku BC, jez je
obrazem prvni tsecky ve zminéné rotaci. To znamend, Ze i trojuhelnik
K LM je rovnostranny a bod O je stfedem (a tedy i prusecikem vysek)
obou trojuhelnikit ABC a KLM.

Jestlize ABC neni rovnostranny trojthelnik, je stted O jeho opsané
kruZnice riizny od téZisté T'. Snadno ukazeme, ze bod T = 1(A+B+C) je
tézistém i trojuhelniku K LM: podle zadani totiz existuje ¢islo A € (0,1)
tak, Ze

K=X+(1-XNB, L=XAB+(1-\NC, M=XC+(1-MNA,
odkud okamzité plyne rovnost 3(K + L+ M) = (A + B + C).
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Piipustme, Ze trojihelniky ABC a K LM maji kromé t&zisté T spo-
leéné i ortocentrum, které oznac¢ime H. Podle znamé véty lezi body H,
T, O v uvedeném poradi na jedné ptimce (zvané Eulerova ptimka troj-
thelniku ABC), pficemz plati |[HT'| : |TO| = 2 : 1. Stfed kruznice opsané
pfimce trojthelniku K LM tak zjistujeme, Ze bod O je nejen stiedem
kruznice opsané trojihelniku ABC, ale i stfedem kruznice opsané troj-
thelniku K LM . Body K, L, M maji proto stejnou vzdalenost od bodu O,
takze maji i stejnou mocnost ke kruznici opsané trojuhelniku ABC. Tyto
mocnosti se rovnaji veli¢inam

~|AK| - |BK| = —p(1 - p)|ABJ?,
~|BL|-|CL| = —p(1 - p)| BC?,
~|CM| - |AM] = —p(1 - p)|AC?,

jejichZ porovnénim dostaneme rovnosti |AB| = |BC| = |CA]| (nebot
X ¢ {0,1}). To je ve sporu s predpokladem, Ze trojuhelnik ABC' neni
rovnostranny.

6. Po 7 provedenych krocich bude na stole & — 2i hromadek; ztstane-li
proto nakonec na stole jedina hromadka, bylo ¢islo & liché a celkovy pocet
krok byl %(k —1). Rozlisime, zda ¢islo k déva pri déleni ¢tyfmi zbytek 1,
nebo zbytek 3.

Pripad k = 4c+ 1. Na zadétku leZi na stole 1+ ...+ k = 1k(k+ 1) =
= (4¢+ 1)(2¢ + 1) kament, ve vSech 2¢ krocich odstranime celkem 1 +
+...42¢c = ¢(2¢+ 1) kament, takze pocet kament v posledni hromddce
bude

p=(4c+1)(2c+1) —c(2c+1) = (2c+ 1)(3c + 1).

Cisla 2¢+1 a 3¢+1 jsou ovem nesoudélna, takZe p je Gplny kvadrat, pravé
kdyZ jsou plné kvadraty obé cisla 2c¢ + 1 a 3¢+ 1, tedy pravé kdyz jsou
uplné kvadréty jejich étyfnasobky 4(2¢+1) = 2k+2a 4(3¢c+1) = 3k+1.

P¥ipad k = 4c+ 3. Na zacatku leZi na stole 1+...+k = k(k+1) =
= 2(c + 1)(4c + 3) kament, ve vSech 2¢ + 1 krocich odstranime celkem
14+...4+(2¢+1) = (¢+1)(2¢+1) kament, takZe pocet kamenti v posledni
hroméadce bude

p=2(c+1)(4c+3) - (c+1)(2c+1) = (¢ + 1)(6c + 5).

Kdyby bylo ¢islo p tplny kvadrat, musela by byt Gplnymi kvadraty obé
nesoudélnd &sla ¢ + 1 a 6¢ + 5. Ukazme, Ze to nen{ mozné: pripustme
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existenci piirozenych é&isel z, y takovych, Ze ¢ +1 = 2% a 6¢ + 5 = y>.
7 rovnosti 622 — 42 = 1 plyne, Ze &islo y je liché, tudiz ¢islo y? dava
pii déleni osmi zbytek 1. Cislo 622 pak pii déleni osmi dava zbytek 2,
odkud plyne, Ze &islo 322 pii déleni étyfmi dava zbytek 1, coz neni mozné.
V pripadé k = 4c + 3 tedy p nikdy neni uplny kvadrat, stejné jako neni
uplny kvadrat ani ¢islo 3k + 1 = 12¢ + 10 (sudé &islo, jez neni délitelné
CtyFmi).

Najdeme nyni nejmensi ¢islo k = 4¢+1, ¢ = 1, pro které jsou obé ¢isla
2c+ 1 a 3¢+ 1 aplné kvadréty. Z rovnosti 2¢ + 1 = 22 a 3¢+ 1 = y? pro
vhodna celd z,y > 1 plyne 322 — 2y? = 1, takZe x je liché, &islo 2y? pak
pri déleni ¢tyfmi dava zbytek 2, takze i y je liché. Polozme x = 2a + 1,
y = 2b+ 1 (a,b celé kladna) a dosadme do rovnosti 3z2 — 2y? = 1. Po
upravé dostaneme vztah 3a(a+1) = 2b(b+ 1), kam postupné dosazujeme
pfirozena éislaa = 1,2, .... Najdeme tak rychle nejmensi vyhovujicia = 4
a b =05, kterym odpovidaji z =9, y = 11, ¢ = 40 a k = 161.
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45. mezinarodni matematicka olympiada

INTERNATIONAL
MATHEMAT](AI. OLYMPIAD

m*ﬂ!—a—nm

T

30; i jw‘:w i

LLAS 2004

Zhruba mésic pred zahajenim letnich
olympijskych her se v dobé od 4. do
18. cervence 2004 uskutecnil v hlav-
nim mésté Recka Athénach i 45. rod-
nik mezinarodni matematické olympia-
dy. Olympiady se tentokrat ztcastnilo 486 studentt z 85 zemi (kazdou
zemi reprezentuje vzdy nejvyse Sest soutézicich).

V}'Ibér soutéiicich za C’eskou republiku byl proveden v Kostelci nad

vvvvvv

ucastnikn tstfedniho kola kategorie A. Vybrani reprezentanti se pak jesté
zacastnili trojutkan{ v severomoravském Bilovci mezi Ceskou republikou,
Polskem a Slovenskem, kde soutézili reprezentanti zacastnénych zemi za
podminek podobnych jako pfi soutézi na MMO. Po této ptipravé od-
jela do Athén tato Sestice soutézicich: Vitézslav Kala a Jaromir Kuben
z Gymnézia na tf. Kpt. Jarose v Brné, Frantisek Konopecky z Gymndzia
Holesov, Jan Molacek z Gymnézia J.K. Tyla v Hradci Kralové a Ma-
rek Pechal z Gymnézia ve Zling, Lesni ¢tvrf. Vedoucim ceské delegace
byl RNDr. Karel Hordk, CSc., z Matematického tstavu Akademie véd
v Praze, jeho zastupcem a pedagogickym vedoucim byl RNDr. Jaroslav
Svréek, CSc., z Univerzity Palackého v Olomouci.

Mezinarodni jury sloZend z vedoucich jednotlivych ztc¢astnénych zemi
stravila prvnich Sest dntt vybérem tloh a pfipravou jejich textt v narod-
nich jazycich v Delfach. Den po priletu soutézicich se konalo slavnostni
zahdjeni v athénském Paldci kultury (Megaro Mousikis). Vlastni soutéz
pak probéhla v pondéli a v utery 12. a 13. Cervence ve dvou velkych
sdlech Matematického tstavu Athénské univerzity. Kazdy z téchto dnu
fesili soutézici trojici tloh po dobu 4,5 hodiny. Za kazdou tlohu mohli
ziskat maximélné 7 bodu.

Kromeé vlastni soutéze byl pro studenty pripraven dalsi zajimavy pro-
gram: mimo prohlidku starovékych Athén s Akropoli po soutézi vsichni
Gcastnici béhem celodenniho vyletu navstivili slavné Mykény, primorské
méstecko Nauplios a anticky amfiteatr v Epidauru.
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Vysledky nasich jsou uvedeny v néasledujici tabulce:

Body za tlohu Body Cena

Umisténi 1 23 456
143.-158. Vitézslav Kala 6 6 06 3 1 22 IIIL
351.-366. Alexandr Kazda 050300 8
93.-100. Frantisek Konopecky T2 177 2 26 II.
124.-142. Jaromir Kuben 6 307 70 23 II1.
113.-123. Jan Molacek 7307 6 1 24 II.
382.-395. Marek Pechal 220020 6
Celkem 2821 13025 4 109

Jak je z tabulky vidét, z naSich si nejlépe vedli Frantisek Konopecky
z Gymnézia Holesov a Jan Moldicek z Gymnazia v Hradci Kralové. Ten
zopakoval sviij Gspéch z predchozi MMO a opét pfivezl stfibrnou medai-
li. Nezklamali ani maturant Vitézslav Kala, ktery oproti predeslé MMO
ziskal dvojnasobny pocet bodi, a student teprve 2. roéniku Jaromir Ku-
ben, oba z Gymnazia na t¥. Kpt. Jarose v Brné. Stfibro jim uteklo jen
o chloupek.

O nérocnosti soutéznich uloh zpravidla svédél hranice pro zisk me-
daili, ptipadné pocet absolutnich vitéz: na bronzovou medaili tentokrat
stacilo 16 bodd, stfibro se udélovalo za 24-31 bodu a zlato za alespon
32 z mozného pocétu 42 bodu. Plny pocet bodu ziskali ¢tyfi soutézici:
Kanadan Jacob Tsimerman, Madar Bela Andras Racz a dva soutéZici
Ruska Andrej Badzjan a Michail Dubasinskij.

Jak dopadli nasi slovensti kolegové, je nejlépe vidét z nasledujici ta-
bulky. Za pozornost stoji zejména bezchybny vykon slovenského druZstva
v prvni tloze, kterd byla opravdu nejlehéi, a nds mize jen mrzet, Ze jsme
za ni ziskali o 14 bod méné.

Body za tlohu Body Cena

Umisténi 1 2 3 45 6

244.-263. Jozef Bodnar 72 0141 15 HM
113.-123. Ondrej Budéc 722760 24 IL.
244.-263. Hana Budacova 713130 15 HM
244.-263. Peter Cerno 700710 15 HM
101.—112. Frantisek Simancik 7 4 17 3 3 25 II.
101.-112. Tomas Vana 75 07 6 0 25 1I.

Celkem 4214 63023 4 119
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I II III body I II III body
CLR 6 0 0 220 Estonsko 00 2 85
USA 5 1 0 212 Uzbekistan 0 0 3 79
Rusko 4 1 1 205  Svédsko 0 0 3 75
Vietnam 4 2 0 196  Azerbajdzan 0 1 0 72
Bulharsko 330 194  Makedonie 0 0 1 71
Tchaj-wan 3 3 0 190  Italie 0 0 2 69
Madarsko 2 31 187  Slovinsko 0 0 2 69
Japonsko 2 4 0 182  Litva 0 0 0 65
Iran 1 50 178  Kirgizie 0 0 1 63
Rumunsko 1 4 1 176  Lotyssko 0 0 1 63
Ukrajina 1 5 0 174  Indonézie 0 0 1 61
Korea 2 2 2 166  Albanie 0 0 1 57
Bélorusko 0 4 2 154  Spanélsko 0 0 1 57
Indie 0 4 2 151  Svycarsko 0 0 2 57
Izrael 1 1 4 147  Novy Zéland 0 0 2 56
Polsko 2 1 1 142  Norsko 0 0 O 55
Moldavsko 2 0 4 140  Rakousko 0 0 1 55
Singapur 0 3 3 139  Nizozemsko 0 0 O 53
Mongolsko 0 3 2 135  Turkmenistan 0 0 2 52
Velka Britanie 1 1 4 134 Finsko 0 0 1 49
Brazilie 0 2 4 132 Kypr 0 0 1 49
Kanada 1 0 3 132 Peru (3) 0 0 2 49
Kazachstan 2 0 2 132 Irsko 0 0 1 48
Srbsko a Cerna Hora 0 2 3 132 Uruguay 0 00 47
Némecko 0 3 1 130  Dansko 0 0 1 46
Recko 0 2 3 126 Portoriko (5) 010 43
Australie 1 1 2 125 Bosna a Hercegovina 0 0 0 40
Gruzie 0 0 5 123 Lucembursko (3) 01 0 36
Kolumbie 0 2 2 122 Island 0 0 O 35
Hongkong 0 2 2 120  Malajsie 0 0 1 34
Slovensko 0 3 0 119  Sri Lanka 0 0 O 33
Turecko 0 2 3 118  Tunisko 0 0 O 31
Jihoafricka republika 0 3 1 110  Trinidad a Tobago (5) 0 0 0 29
Ceskd republika 0 2 2 109  Portugalsko 0 0O 26
Thajsko 0 0 4 99  Kuba (1) 0 0 1 17
Arménie 0 0 4 98  Filipiny (5) 0 0 O 16
Mexiko 0 0 3 96  Venezuela (2) 0 0 0 15
Francie 0 0 4 94  Ekvédor 0 0 O 14
Argentina 1 0 2 92  Mozambik (3) 0 0 0 13
Chorvatsko 0 0 3 89  Paraguay (3) 0 0 0 13
Maroko 0o 0 3 88 Kuvajt 0 0 0 5
Belgie 0 1 2 86  Saudska Arabie 0 0 0 4
Macao 0 0 2 86

Jak je patrno z tabulky zucastnénych stata, na celnych mistech se

zadné prekvapeni nekonalo. Nase i slovenské druzstvo se opét nedostalo
ani do tfeti desitky, o moc lépe se zato vedlo Polaktum. (Pfipadna &isla
v zé&vorce upozoriiuji na nizsi pocet reprezentantii.)
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Texty soutéznich tloh
(v zavorce je uvedena zemé, ktera tlohu navrhla)

1. Necht ABC' je ostrothly trojthelnik, v némz |AB| # |AC|. Kruz-
nice nad priumérem BC protind strany AB a AC po fadé v bodech M
a N. Oznacme O stied strany BC. Osy thlu BAC a MON se protinaji
v bodé R. Dokazte, ze kruznice opsané trojuhelnikim BMR a CNR
prochézeji spole¢nym bodem leZicim na strané BC. (Rumunsko)

2. Najdéte vSechny mnohocleny P(z) s redlnymi koeficienty, jez spliiuji
rovnost

Pla=b)+Plb—-c)+Plc—a)=2P(a+b+c)
pro vSechna redlnd ¢isla a, b, ¢ takova, ze ab + bc + ca = 0. (Korea)

3. Nazvéme dlaZdici obrazec vytvoreny ze Sesti jednotkovych ¢&tvercu
jako na obrazku

anebo libovolny obrazec vznikly jeho otocenim ¢i soumérnosti. Urcete
vSechny pravothelniky m x n, které 1ze dlazdicemi pokryt tak, ze
> pravouhelnik je pokryt bez mezer a prekryti;
> zadnd ¢ast dlazdice nepokryva plochu vné pravouhelniku.
(Estonsko)
4. Necht n = 3 je celé &islo. Necht t1,ts,...,t, jsou kladna redlna &isla
takova, ze
1 1 1
n?+1> (& +t2+...+tn)<—+—+...+——)_
o i th
Ukazte, Ze t;, t;, tx jsou délky stran trojuhelniku pro vSechna 4, j, k, kde
1fi<j<kZn. (Korea)
5. V konvexnim ¢tyftahelniku ABCD thlopficka BD neptli ani jeden
z thla ABC, CDA. Bod P lezi uvnitt ABCD a spliiuje rovnosti
|¥xPBC|=|xDBA| a |xPDC|=|xBDA,|.
Dokazte, ze ABCD je tétivovy, pravé kdyz |AP| = |CP). (Polsko)
6. Prirozené ¢islo nazveme pruhované, jestlize kazdé dvé sousedni &islice
v jeho desitkovém zapise maji ruznou paritu. Najdéte vSechna prirozenda
¢isla n takova, Ze n méa pruhovany nasobek. (Irdn)
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ReSeni tloh
1. Oznacme S stied tsecky M N a P prusecik osy thlu BAC se stra-
nou BC. Protoze trojihelniky AMN a ACB jsou podobné (to plyne
z vlastnosti tétivového ¢tyfuhelniku BCN M), pri¢emz téznici AS odpo-
vidd téZnice AO, je |xBAO| = |xCAS| (obr.43), takze osa thlu BAC
je zaroven i osou uhlu OAS. Proto

|RS|  |AS]
|RO| — |AO|"
7 uvedené podobnosti dale plyne

|AS| |MN| |MS| |MS]|
|AO| ~ |BC|  |BO| |MOJ’

coz spolu s predchozi rovnosti znamend, ze M R je osou tthlu OMS.

Obr. 43

Ozna¢me vnitini thly trojihelniku ABC obvyklym zptisobem. Pro-
toze |OM| = |OB]|, tedy | BMO| = 3, a protoze | XAMN| = |xBCA| =
= 7, vychazi velikost thlu OM N jako «. Je tudiz |[xBMR| = (5 + %a =
= |xCPA]|. Dostali jsme, ze étyftahelnik BPRM je tétivovy. Analogicky
je tétivovy i ¢tyfthelnik CPRN. Je tedy bod P € BC spole¢nym bodem
obou kruznic opsanych trojuhelnikim BM R a CN R, coz jsme méli do-
kézat.

Jiné feSeni. (Podle Frantiska Konopeckého.) Protoze body M a N lezi
na kruznici se sttedem O, je |OM| = |ON|. Trojahelnik M NO je tedy
rovnoramenny a osa jeho tthlu M ON je zaroveri osou tsecky M N. Bod R,
ktery je priise¢ikem osy tthlu M AN s osou protéjsi strany M N trojuhel-
niku AMN, lezi proto na kruznici trojuhelniku AM N opsané. Ptitom
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obé osy splynou, jen kdyz |[AM| = |AN]|, coz vzhledem k predpokladu
|AB| # |AC| nelze, nebot z vlastnosti tétivového ¢tyrahelniku BCN M
snadno plyne, Ze trojihelniky AMN a ACB jsou podobné (shoduji se
ve dvou thlech).

Z mocnosti bodu A ke kruznici s prumérem BC plyne, Ze bod A
ma stejnou mocnost i k obéma kruznicim opsanym trojihelnikim BM R
a CNR (obr.44). Oznac¢ime-li P druhy spole¢ny bod téchto dvou kruznic
(jednim je bod R), musi bod A leZet na jejich spolecné secné PR (to je
pravé mnozina vSech bodu, jez maji k obéma kruznicim stejnou mocnost).
Abychom ukézali, Ze bod P lezi na strané BC, spoc¢teme velikost (thlu
BPC z tétivovych étyfthelnikt BPRM a CPRN:

|xBPC| = |¥xBPR| + |xCPR| = |xAMR| + |xANR| = 180°,

nebof AMR a ANR jsou protéjsi thly tétivového ¢tyfthelniku AMRN.
Tim je tvrzeni tlohy dokéazano.

A
M

R N

P c

Obr. 45

Jiné FeSeni. Stejné jako v predchozim FeSeni ukdZeme nejprve, Ze
bod R lezi na kruznici opsané trojuhelniku AM N. Ozna¢me déle P ten
bod strany BC, v némz ji protne osa AR thlu BAC (obr.45). Protoze
¢tyithelnik AMRN je tétivovy, je [XARM| = |xANM| = |xABC|,
coz znamend, ze i ¢tyfuhelnik BPRM je tétivovy. Analogicky ukéZeme,
ze i ¢tyruhelnik PCNR je tétivovy. Bod P na tseéce BC je pak ovsem
prisecikem kruznic opsanych trojthelnikim BM R a CN R, jak jsme maéli
dokézat.

Poznamky. V pfedchozich dvou feSenich jsme nijak nevyuZili, Ze stied
kruznice opsané ¢étyfthelniku BCNM je zaroven stiedem strany BC.
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Tvrzeni ve skutecnosti plati pro libovolnou kruznici s tétivou BC, pokud
neni opsana trojihelniku ABC (pak by bylo M = N = A = R). Uvedend
situace je vlastné specidlnim pripadem tzv. Miquelovy véty, kdyz za jeden
z bodi zvolime prusecik osy uhlu s protéjsi stranou: Je-li na kazdé strané
daného trojuhelniku zvolen bod, tfi kruznice urcéené dvojicemi bodi na
sousednich strandch a jejich spoleénym vrcholem maji spole¢ny bod.
Pokud ovsem predpokladame, ze stted O kruznice opsané ¢tytuhel-
niku BCN M je stfedem strany BC, vyplyva z prvniho feSeni, Ze uva-
zovany bod R je stfedem kruznice vepsané trojuhelniku M NO. V tom
pripadé jsou body M a N patami vySek trojuhelniku ABC. Kruznice nad
prumérem AH, kde H je prusecik obou vysek, je tedy kruznici opsanou
trojihelniku AM N (obr.46). Paty vysek, stfedy stran a stfedy spojnic

Obr. 46

pruseciku vysek s vrcholy lezi na tzv. kruznici deviti bodi daného troj-
thelniku. Pro trojthelnik ABC jsou ¢tyfmi z téchto deviti bodu body M,
N, O a stted FE tsecky AH, a protoze |EM| = |EN|, je to zaroven stied
prislusného oblouku M N kruznice opsané trojihelniku M NO. Ten ma
viak tu vlastnost, Ze lezi jednak na ose thlu M ON, jednak mé od stfedu
kruznice vepsané trojuhelniku M NO stejnou vzdélenost jako od obou
vrcholt M, N (tuto vlastnost hezky vyuziva napf. feSeni 2. tlohy na
43. MMO, viz roCenku 51. roéniku MO), tj. lezi na kruznici opsané troj-
thelniku AM N. Jak uz vime, timto bodem je bod R.

2. (Podle Alezandra Kazdy.) UkéZeme, Ze FeSenim jsou jen mnohocleny
P(z) = a12% + asz? pro libovolnd redlnd a; a as.

Necht mnohoéclen P spliiuje podminky tlohy. Je-li a = b = 0, je
ab + be + ca = 0 pro kazdé redlné cislo c¢. Dostavame proto

P(O—-0)+PO0—¢)+ P(c—0)=2P(0+0+¢),
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neboli

P(0) + P(—c) = P(c)

pro libovolné reélné c. Dosazenim ¢ = 0 dostaneme P(0) = 0, takZe
P(c) = P(—c) pro viechna realna c. Mnohoclen P je tudiz suda funkce
a musi byt tvaru

2n—2

P(z) = anz®™ + an_17 + .. 4 az?, ar,....an €R, ay, # 0.

UkéaZeme nyni, Ze stupenn mnohoclenu P je nejvyse 4.

Rovnost ab+bc+ca = 0 je homogenni, proto ji s trojici (a, b, ¢) splituje
i kazd4 trojice (ta,tb,tc) pro libovolné redlné t. Protoze ab + bec + ca =
= ab+ (a+b)c, vidime, Ze pro a+b = 1, ¢ = —ab je ab+bc+ca = 0, takze
pro libovolna redlna ¢isla s a t uvedenou rovnost spliuje i trojice a = st,
b= (1—-s)t, c=—ab= (52— s)t. Dosazenim této trojice do rovnosti ze
zadani dostaneme pro vSechna reilna s a t rovnost

P((2s—1)t)+ P ((1—sH)t) + P ((s* —2s)t) = 2P ((s* — s + 1)t) .

Pro pevné s ji miZeme povazovat za rovnost mnohoclent v proménné .
Porovnanim vedoucich koeficient? (u mocnin ¢2*) na obou stranich do-
stavame pro vSechna realna s rovnost

(25 —1)2" + (1 — s2)? 4 (5% — 25)2" = 2(s% — s + 1)2". (1)

Porovnejme nyni koeficienty u mocnin s4"~2. Na pravé strané je dle po-
lynomické véty mnohoclen

Z ”(2#(_1)1‘5214]‘,
o i1 (2n —1i—j)!

pridemZ 2i + j = 4n — 2 jediné pro j = 0, ¢ = 2n — 1 a pro j = 2,
i = 2n — 2 (5 musi byt sudé a z podminky 7 + j £ 2n diky rovnosti
i=(2i+j)— (i +7j) plyne ¢ 2 2n — 2, tudiz j < 2). Zminénad mocnina
mé tedy na pravé strané koeficient

() (3)] e

zatimco na levé strané rovnosti (1) dostaneme podle binomické véty koe-
ficient

2n >24n_2 3 (2n> N (2n> 02 _ {6 pron =1,
2—-2n 1 2 8?2 —6n pron = 2.

173



Vidime, Ze rovnosti obou koeficientit vyhovuje n = 1, a pro n = 2 dosta-
vame rovnici 4n(n —2) = 0, které vyhovuje n = 2. Podminkam tlohy tak
mohou vyhovét jeding mnohoéleny tvaru P(z) = a;2? + aza? pro redlna
a1 a as.

Nyni ukdZeme, Ze kazdy mmnohoclen uvedeného tvaru spliuje pod-
minky tulohy. Abychom to ovérili, uvédomme si nejdiive, ze libovolna
linearni kombinace dvou mnohoclent, jez spliuji podminky tlohy, je rov-
néZz splituje. Stadi to tedy ovéfit pro mnohodcleny x2 a z.

To, 7e vyhovuje 22, vyplyva z rovnosti

(a=b)2%+(b—-c)?+(c—a)® —2(a+b+c)? = —6(ab+ bc+ ca).

Ovéfme pozadovanou rovnost i pro jednoélen z4. Necht ab + bc + ca = 0
a poloZme p=a—b,q=b—car = c— a. Pfi ovéfovani 22 jsme vlastné
ukéazali, ze
PP+ +r*=2(a+b+c)?

Protoze p + g + r = 0, postupné dostaneme:

pa+gr+rp=—3(*+¢° +r%) = —(a+b+0)?
(pq)? + (¢r)* + (rp)® = (pq + qr +rp)> = 2pqr(p + ¢ +7) = (a + b+ ¢)*,
takze
p'+at+rt = (0" + ¢+ =2 ((pg)® + (ar)® + (rp)?) = 2(a+b+ )",
coz je pozadovand rovnost.

Jiné FeSeni. Vratme se k rovnosti (1) pfedchoziho feseni. Volbou s =
= —2 vyjde 52" + 32" 4+ 82" = 2. 72" takie 82" < 2. 7?". Ale uz pro
n = 3 plati 82" > 2. 7?7 (823 = 262144 > 235298 = 2- 7%3), tim spis to
plati pro n > 3. TakZe n < 2, coZ znamena, Ze P(z) = a1z? + asz? pro
redlnd aq a ag. Zbyva jen ovéfit, ze vSechny mnohocleny tohoto tvaru
uloze vyhovuji, coz uéinime stejné jako v predchozim feSeni.

Jiné FeSeni. Pro kazdé redlné ¢ splituje trojice (a,b,c) = (6t, 3t, —2t)
podminku ab + be + ca = 0. Dosazenim do dané rovnosti dostavame

P(3t) + P(5t) + P(—8t) = 2P(Tt).

Pokud tedy P(z) = anz™ + ...+ a1z + ao, plati nutné pro kazdé i =
=0,1,2,... rovnost

(3° 45"+ (—8)" —2-7) a; = 0.
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Vyraz v zavorkach je zaporny pro licha ¢ a kladny pro « = 0 a pro
vSechna suda ¢ = 6. Jen pro ¢ = 2 a i = 4 je vyraz nulovy. Proto musi
byt P(z) = a2 + agz?® pro redlnd a; a as. Zbyva jen ovérit, ze viechny
mnohoéleny tohoto tvaru tloze vyhovuji, coz u¢inime stejné jako v prv-
nim feseni.

Jiné FeSeni. (Podle Tony Zhanga.) Jak jsme uz zjistili v Gtvodu prvniho
feSeni, je hledany mnohoclen P suda funkce s nulovym absolutnim ¢le-
nem, je tedy tvaru P(z) = 22 f(2?) pro vhodny mnohoé¢len f. UkaZeme,
7e jeho stupen je nejvyse 1.

Dané podminka mé pro mnohoélen f tvar

(@=b)?f((a=b)?) + (b -)?f((b-0)*) +

+(c—a)2f((c—a)2):2(a+b+c)2f((a+b+c)2). (2)
Mezi éisly a, b, ¢, jeZ spliiuji rovnost ab+bc+ ca = 0, najdeme takové, pro
néz bude a—b = b—c, tj. a+c = 2b, takze 0 = (a+c)b+ca = 2b*+(2b—a)a.
7 této kvadratické rovnice vyjde a = b£by/3, takze do (2) miZeme dosadit
a=(1-+3)bac=(1++3)ba dostaneme

6b% f(3b%) + 120 f(12b%) = 18b% £(9b?),
coz muzeme piepsat jako
1267 (f(12b%) — £(9b%)) = 6b*(f(9b%) — F(3b?)),

anebo pro b # 0 jako

f(120%) — £(96%)  f(9b) — f(3b?)
352 - 6b2 ' (3)

Protoze 3b2 je libovolné kladné &fslo, plati podle (3) pro kazdé realné

x > 0 rovnost 1 . .

Obé strany (4) jsou (po zkraceni) mnohoéleny proménné z, takze musi jit
o stejné mnohodcleny. Je-li mnohoé¢len f stupné k& = 1 s vedoucim ¢lenem

az®, jsou obé strany (4) mnohoéleny stupné k — 1 s vedoucimi ¢leny

3k —1
a(4® — 3%)zF1 resp. —a(——z———-):ck_l.

Porovnanim téchto ¢lent s ohledem na « # 0 dostaneme po tupravé rov-
nici 2 - 4% = 3k*1 — 1, ktera je splnéna pouze pro k = 1, nebot pro k = 2
mame 2 - 4* > 35+1 jak snadno ovéiime indukci. Mnohoélen f je tudiz
nejvyse linearni, f(z) = a1 + agz a P(z) = 2%2f(2?) = a12% + apzt.
Zbyva jen ovérit, ze vSechny mmnohocleny tohoto tvaru tloze vyhovuji,
coz u¢inime stejné jako v prvnim feseni.
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3. Predpoklddejme, ze pravouhelnik m x n je pokryt dlazdicemi dle zadéa-
ni. Ke kazdé dlazdici v pokryti pfislusi jedno étvercové pole pravotihelni-
ku, které dlazdice nepokryva, které je viak zdroven ze ti{ stran obklopeno
jejimi ¢tverci. Takové pole oznaéime jako ,vnitini pole* dlazdice. Ziejmé
tedy ke kazdé dlazdici A v pokryti miZeme prifadit dlazdici B, kterd
pokryva ,vnitini pole“ dlazdice A. Jsou jen dvé moznosti (az na otoceni
a soumérnost), jak takto dlazdici B k dlazdici A pfilozit (obr. 47); v obou
pripadech dlazdice A ,reciprocné“ pokryva vnitini pole dlazdice B. To
znamend, ze v pokryti jsou vSechny dlazdice jednoznac¢né rozdéleny do
dvojic, z nichz kazda vytvaii bud obdélnik 3 x 4, nebo nekonvexni osmi-
thelnik znazornény na obr. 47 vpravo. Dany pravouhelnik lze tedy dlazdi-
cemi pokryt, pravé kdyz ho lze pokryt dvojutvary slozenymi z 12 ¢tverct
na obr. 47.

B B

Obr. 47

Dale je vidét, Zze zadné ze stran daného pravouhelniku nemuze mit
délku 1, 2 ¢ 5 ¢tverch (fadek ¢i sloupec podél takové strany pravothel-
niku nedokdzeme zZadnym zptsobem pokryt).

Naopak je zfejmé, ze jen pomoci obdélniku 3 x 4 dokazeme pokryt
kazdy pravouhelnik 3a x 4b, specidlné tedy i pravothelnik 12¢ x 3 a 12¢ X
x 4. A protoze kazdé ¢islo d = 6 lze napsat jako soucdet nékolika trojek
a nékolika ¢tyfek, 1ze pokryt i kazdy pravouhelnik 12¢ x d, pokud d ¢
¢ {1,2,5}. Ukazeme, Ze tim jsou vSechny mozné pravothelniky, jez lze
danymi dlazdicemi pokryt, vycerpany.

Jestlize pravotuhelnik m x n je pokryt dvojatvary slozenymi z 12 ¢tver-
cu, je jeho obsah mn délitelny dvanacti. Nasim jedinym tukolem je do-
kézat, ze aspon jedno z Cisel m, n musi byt délitelné ¢tyimi. Predpokla-
dejme, ze tomu tak neni. Protoze mn je délitelné 4, jsou obé ¢isla m,
n suda. Ukazeme-li, Ze pocet dvojutvara v pokryti musi byt sudy, bude
sou¢in mn délitelny dvaceti ¢tyfmi, coz odporuje predpokladu, ze ani
jedno z ¢isel m, n neni ¢tyfmi délitelné.

Prvni zpusob. Oznac¢me v pravouhelniku ¢tvercova pole kazdého ¢tvr-
tého sloupce a kazdého ¢tvrtého fadku jednotkami, pfiéemz na pole v pri-
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se¢iku oznacenych fadkt a sloupcit misto dvou jednotek napiseme dvojku
(obr.48 pro m = n = 18, fadky pocitdme odspodu jako u Sachovnice).
Protoze pocet fadki i sloupcit pravothelniku je sudy, je soucet viech cisel
v ném sudy. Na druhé strané obdélnik 3 x 4 pokryje cisla se souctem 3
nebo 7, zatimco osmithelnikovy Gtvar z obr. 47 pokryje cisla se souc¢tem 5
nebo 7. To znamena, Ze pocet viech dvojutvart v pokryti je sudy.

1 1 1 1
1 1 1 1
T{afa2fafafa]2[1f1f1]2]1{1f1f{2f1f1
1
1
1
{1212 |1]2[1(1f1]2]1]1f1{2f1f1

Obr. 48 Obr. 49

Druhy zptsob. Misto ¢isel obarvime ¢tvercova pole v kazdém ¢tvrtém
sloupci a v kazdém étvrtém fadku, pricemz spoleénd pole v jejich prise-
¢iku ponechdme neobarvend (obr.49). Jestlize m = 4i + 2, n = 47 + 2,
bude celkovy poéet tmavych poli i(35 + 2) + j(3i + 2) = 2(3ij + 7 + j),
coz je sudé &islo. Zaroven neni tézké se presvédcit, ze kazdy dvojatvar
pokryje 3 nebo 5 obarvenych étvercii. Jejich pocet proto musi byt sudy.

Obr. 50

T¥eti zptisob. Dvojutvary v poloze na obr. 50 muzZeme charakterizovat
nasledujicim zptisobem: V kazdém ze ¢ty fadku jsou tii ctverce a v kaz-
dém sloupci je sudy pocet ¢tverct. Jestlize v daném pravothelniku obar-
vime kaZzdy ¢tvrty fadek (obr.51), bude pocet obarvenych ¢tverca sudy.
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Pritom dvojutvary z obr. 50 (v této poloze) pokryji kazdy praveé tii obar-
vené Ctverce, zatimco dvojutvary, jez z nich vzniknou otodenim o 90°,
jich diky uvedené charakterizaci pokryji sudy pocet. Poéet dvojutvart
z obr.50 v daném pokryti je tedy sudy. Podobné obarvime-li v daném
pravouhelniku kazdy ¢tvrty sloupec, zjistime, Ze i podet dvojutvari, jez
vzniknou z téch na obr. 50 oto¢enim o 90°, je sudy.

Obr. 51

Jiné feseni. Predpoklddejme, Ze existuje pokryti pravotithelniku m x n,
kde m = n = 2 (mod 4). Pomoci nékolika riznjych obarveni ukdzeme, ze
pocet vSech osmithelnikovych dvojutvara musi byt sudy i lichy zaroven,
coz samoziejmé nelze.

Obr. 52

Uvazujme dvé riizna obarveni daného pravouhelniku (obr. 52), v nichz
jsou st¥idavé obarveny obdélniky 2 x 1, pfi¢emz druhé obarveni se od
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prvého lisi jen posunutim® o jeden sloupec doprava. V kazdém z nich
je stejny pocet tmavych i svétlych poli (pocet fadku je sudy). Zatimco
kazdy z obdélnikt 3 x 4 pokryje ¢tyfi tmava a ctyfi svétla pole, pro
osmithelnikové dvojutvary to vzdy neplati. Zalezl totiz na jejich poloze
vuci zvolenému obarveni. Podivejme se na né jako na ¢tverce 4 x 4, z nichz
jsme odrizli dva protéjsi rohy 2 x 1 (orientované stejné jako obdélniky
zminéného obarveni). Oba odfiznuté obdélniky zfejmé odkryvaji stejné
obarvena pole (obr.53), proto v piipadé, ze maji viechna ¢ty¥i pole stej-
nou barvu, bude se pocet tmavych a svétlych poli pokrytych takovym
dvojutvarem lisit o ¢tyfi. Pocet utvaru, které vykazuji tuto asymetrii
v jednom obarveni, musi tedy byt sudy. Totéz plati pro dvojutvary, které
vykazi stejnou asymetrii v ,posunutém® obarveni (obé mnoZiny jsou
zjevné disjunktni!). Podobné i poéet dvojatvart orientovanych ,svisle®,
tj. s odfiznutymi obdélniky 1 x 2, je sudy (pouzijeme analogické obarvent,
v némz jsou stiidaveé obarveny ,svislé“ obdélniky 1 x 2).

Obr. 53

Obarvéme nyni dany pravouhelnik podle obr. 54. Pocet tmavych poli
je v ném lichy, pfitom kazdy obdélnik 3 x 4 pokryje dvé nebo ¢ty¥i tmava
pole, tj. sudy pocet, zatimco osmithelnikové dvojutvary pokryji vzdy tii

Obr. 54
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tmavé pole. Odtud ovsem plyne, Ze jejich celkovy pocet musi byt lichy.
Dosli jsme ke sporu.

vodu bylo patrné i to, ze obvykly argument s vhodnym obarvenim poli
pravouhelniku sice funguje, ale jak ukazuji predvedend feseni, jeden zpu-
sob obarveni Casto nestacl. Prestoze hledana mnozina je totozna s mno-
zinou vsech pravouhelnik, jez lze pokryt pouze obdélniky 3 x 4, neni
pravda, Ze by neexistovala pokryti vyuzivajici osmithelnikovy dvojutvar
(obr. 55).

Obr. 55

4. Vzhledem k symetrii staci ukdzat, ze za danych predpokladu plati t; <

< to+t3. Podle nerovnosti mezi aritmetickym a geometrickym prumeérem
je

1 1 2
il .ty +ts = 2/ats, (1
to t3 Viats )
ti :
= 4+ 2 >2 pro vsechna i, j.
t; 1

Upravou pravé strany dané nerovnosti tak dostdvame

t; t;
2 i j
+1>n+ (_+_>

1Si<jsn 7
11 1 t ot
= t(— —)+—t + t3) + (—+—)2
n+ 1 t2+t3 t1(2 3) Z i t,) =

Vitats t1

2 2
=2a+ —+n° —4,

a

t Vit
>n 42—t +2 23+2Kn>—2}=
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kde jsme oznacili a = t1/+v/tats. Z posledni tpravy vychazi nerovnost

2 1, . 1
0>2a+=-—-5=-(2a>-5a+2)==(2a—1)(a—2),
at - —5==>(2 ~5a+2) = ~(20-1)(a2)
odkud plyne a < 2. Je tedy t1 = a\/tatz < 2/tats < to + t3 (jesté jednou
jsme vyuzili druhou nerovnost v (1)), coz jsme chtéli dokézat.

Jiné feSeni. (Podle Arne Smeetse z Belgie, ktery ziskal stfibrnou me-
daili.) Dokézeme tvrzeni sporem, a to nejprve pro n = 3. Podle znamé
nerovnosti mezi aritmetickym a harmonickym primeérem

a—i—b2 2

+1 4
2

b= a+b

v

neboli

IS

S| =

SN

.+.

pro tii kladna ¢isla a = t1, b = to, ¢ = t3 plati

!
b

b

1>:5+ 4c a+b

+%)§(a+b+c)( += 3

1
b+o)(-
(a+b+c¢) ot P
takZe pokud pfedpokldadame, Ze ¢ = a + b, je podle nerovnosti mezi arit-
metickym a geometrickym primeérem

1 1 1 ct a+b
T O — .
(a+b+c)(a+b+c>:5+5 (a+b)?* ¢

>5+4+5=10. (2)

To odporuje dané nerovnosti (pro n = 3 je n? + 1 = 10), takZe kladna
éisla a, b a ¢ spliuji trojuhelnikovou nerovnost ¢ < a + b.

Pron 2 4 ozname a = t1, b =ty, c =13, S = > . t;, T = > 1/t;

iz4 i24
a piedpokladejme opét, Ze ¢ = a + b. Soucin na pravé strané dané nerov-
nosti muzeme pak vyjadrit jako
P:(a+b+c)(l+l+ l) +s(1+3+1) +T(a+b+c)+ST.
a b ¢ a b ¢

Podle Cauchyovy nerovnosti je ST 2= (n — 3)2, podle nerovnosti mezi
aritmetickym a geometrickym primeérem a podle (2) pak je

1 1 1 1 1 1
T T > — =]
S<a+ b+ c) +diasbta) :2\/ST(a+b+C)(a+ b i c) -

> 2(n — 3)V10 > 6(n — 3).
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To dohromady dava
P 210+ 2(n—3)V10 + (n — 3)2 =n% +1,

coz opét odporuje dané nerovnosti.

Pozndmka. 7 piedchoziho vypoétu je vidét, ze misto n? + 1 mohl byt
na levé strané predpokladané nerovnosti i vyraz

10 + 2v/I0(n — 3) + (n — 3)2 = (n — 3+ VI10)°,

ktery je vétsi nez n® + 1 pro kazdé n = 4 (pro n = 3 se oba vyrazy
rovnaji).

5. Protoze vymezeni bodu P je symetrické vaci vrcholim B a D, mi-
Zeme bez 1jmy na obecnosti pfedpokladat, ze bod P lezi v trojuhelniku
ACD. Podobné i podminka rovnosti pfislusnych thlia charakterizujici
bod P je symetrickd vaci vrcholim A a C (|¥xPBC| = |xDBA|, pravé
kdyz |xPBA| = |« DBC|). Mzeme tedy predpoklddat, ze bod P lezi
v trojuhelniku BCD.

Predpokladejme nejprve, ze Ctyfthelntk ABCD je tétivovy a oznac-
me K, L pruseéiky thlopricky AC' s polopfimkami PB a DP (obr.56).
7 rovnosti prislusnych obvodovych thla nad tétivami AB a AD plyne, ze
trojuhelniky DAB, DLC a CK B jsou podobné. Z rovnosti vnéjsich thlu
pti vrcholech L a K poslednich dvou uvedenych trojuhelnikt dostdvame,
Ze trojthelnik PKL je rovnoramenny, takze |PK| = |PL|.

D
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Trojuhelniky ADL, BDC jsou také podobné: ziejmé se shoduji v tthlu
pfi spole¢ném vrcholu D a v obvodovych uhlech nad tétivou CD. Vyuzi-
tim podobnosti ADL ~ BDC a DAB ~ CK B pak muzeme psat

AL| _ |AD| _|CK]
|BC| N |BD]| N |BC|’

takze |AL| = |CK|. To spolu s rovnosti |PK| = |PL| dava |[AP| = |CP)|.

Obracené necht |AP| = |CP|. Sestrojme kruznici opsanou trojihel-
niku BCP a ozna¢me X, Y dalsi pruseciky této kruznice s poloptimkami
DC a DP (obr.57). Protoze BCXP je tétivovy, je | xPXD| = |¥xPBC]|,
takze trojuhelniky PDX a ADB jsou podobné. 7 této podobnosti navic
plyne spiralni podobnost trojuhelniki ADP ~ BD X . Nakonec z rovnosti
obvodovych thla nad tétivou PX dostavame podobnost DPC ~ DXY .
Vyuzitim poslednich dvou podobnosti pak mame

|AP| _|DP| _|PC|
|BX| |DX| |XY|

takze |BX| = |XY|. V uvazované kruznici jsme nasli shodné tétivy se
spoleénym krajnim bodem X). Tétivé BX pitislusi obvodovy tthel BCD,
a protoze ve zvolené konfiguraci je | BCD| < |xY CD|, shoduje se s ob-
vodovym thlem X PY nad tétivou Y X, ktery je vnéj$im thlem pfi vr-
cholu P trojihelniku PDX shodnym s vnéjsim thlem pfi vrcholu A
trojuhelniku ADB. Plati tedy |xBCD| = 180° — | xBAD)| a ¢tytthelnik
ABCD je tétivovy, jak jsme chtéli dokézat.

Obr. 57
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Jiné TeSeni. (Podle Frantiska Konopeckého.) Vzhledem k tomu, ze
uhlopficka BD neni osou ani jednoho z vnitinich ahlt ABC, CDA, shod-
nosti thlt uréujici polohu bodu P znamenaji, Ze bod P nemtize leZet na
uhlopricce BD.

Predpokladejme nejprve, ze ABCD je tétivovy. Ozna¢me B’ a D’
pruseciky opsané mu kruznice s polopfimkami opaénymi k PD, resp.
k PB. Shodnost thldt ABD a PBC' (obr.58) tak znamena shodnost pii-
slusnych obloukt AD a CD’. Podobné se shoduji i oblouky AB a CB’.
To ale znamen4, ze bod B’ je obrazem bodu B a bod D’ obrazem bodu D
v osové soumérnosti podle osy o tsecky AC. V této osové soumérnosti je
tak tsecka BD’ obrazem usecky B’D, a jejich prusecik P proto leZi na
ose uhlopricky AC. Tudiz |AP| = |CP)|.

Obr. 58 Obr. 59

Obracené necht |AP| = |CP|. Uvazujme kruznici k£ opsanou troj-
thelniku ABD a oznaé¢me B’ a D’ jeji priseciky s polopfimkami opaé-
nymi k PD, resp. k PB (obr.59). Ze shodnosti obvodovych thla nad
tétivou BB’ resp. DD’ vyplyva, Ze trojuhelniky BPD a B’PD’ jsou
podobné podle véty uu. Zminéné shodnosti navic znamenaji, ze i troju-
helniky BDC a B’D’A se shoduji ve dvojicich thlt pfi strandch BD
a B'D’, takze jsou podobné se stejnym pomérem podobnosti jako troj-
thelniky BPD a B'’PD’. A protoze v této podobnosti si odpovidaji dvé
shodné tsecky CP a AP, jedna se o shodnost (snadno nahlédneme, Ze se
jednd o osovou soumérnost). Tato shodnost prevadi kruznici k opsanou
trojuhelniku ABD na sebe, proto bod C| ktery je obrazem bodu A, lezi
rovnéz na této kruznici, a ¢tyfthelnik ABCD je tedy tétivovy.
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Jiné FeSeni. DokaZzeme obracenou implikaci trochu jinak nez v pred-
chozim feSeni. Piedpokladejme, ze |[AP| = |C'P| a ozna¢me k; kruznici
opsanou trojuhelniku ABD a ko kruznici opsanou trojihelniku BCD.
Ozna¢me dale B, D priseciky polopiimek DP a BP s kruznici ki a B,
D’ s kruznici ko (obr.60). Z rovnosti uhla |x PBC| = |xDBA| plyne, ze

Obr. 60

piislusné oblouky DA kruznice ki a D’C kruZnice ko maji stejnou délku
v obloukové mife, a podobné diky rovnosti |xPDC| = |¥BDA| maji
stejnou délku i oblouky AB kruznice k; a B'C kruznice ky. Existuje tedy
nepiima podobnost f, jez zobrazuje kruznici k1 na ks, pfi¢emz bodam
D, A, B v této podobnosti postupné odpovidaji body D’, C a B’ a dale
bodim B, D pak body B a D (i odpovidajici oblouky BB, B'B a DD,
DD’ maji o¢ividné stejnou obloukovou miru). Protoze bod P je pruse-
¢ikem pifmek BD a BD, zobrazi se podobnosti f na prisedik pfimek
B’'D a BD', coz je opét bod P. A protoze |AP| = |CP| = |f(A)f(P)], je
pomér podobnosti f roven 1, takze je také |PB’| = |f(P)f(B)| = |PB|
a podobné i |[PB| = |PB|. Body B’ a B tak nutné splyvaji a kruznice
ki, ko jsou totozné.

Jiné feseni. Ozna¢me po fadé E, F', G, H kolmé priméty bodu P na
jednotlivé strany AB, BC, CD a DA daného ¢tyfuhelniku. Ctyfahelnik
EBFP je ziejmé tétivovy, takze |XxBEF| = |« BPF|. Oznacime-li S
prusecik pricky EF' s thloptickou BD (obr.61), vidime, Ze trojuhelniky
EBS, PBF jsou podobné, nebot dle predpokladu |xEBS| = |¥FBP].
To znamend, ze |XBSE| = |xBFP| = 90°, neboli pricka EF je kolmd
na uhlopticku BD. Analogicky zjistime, ze i pficka GH je kolma na BD.
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WA\
B
Obr. 61 Obr. 62

Oznacime-li B’ stfed tsecky PB a D’ stfed usecky PD, bude B’D’
stfedni pfickou trojihelniku BPD, takze usecka B’D’ je stejné jako
usecka BD kolmé na obé ptricky EF a GH. Body B’ a D’ jsou ovSem
zaroven stfedy ptislusnych Thaletovych kruznic nad praméry PB a PD,
takze B'D’ je osou obou pti¢ek EF'i GH, EFGH je tudiZ rovnoramenny
lichobéznik se zakladnami FF', GH. 7Z dalsich dvou tétivovych étytuhel-
nikit FEAHP a FCGP tak dostavame nésledujici rovnosti:

|AP| - sin|xBAD| = |EH| = |FG| = |CP| - sin|x BCD)|.

Rovnost |AP| = |CP| je tudiz ekvivalentni rovnosti sin|<BAD| =
= sin|xBCD)|. Vzhledem k podminkdm ulohy nemuze bod P leZet na
thlopfi¢ce BD. Oznacime-li pro jednoduchost « a « thly pfi vrcholech
A, C a ¢, ¢ oba thly vystupujici v definici bodu P (obr. 62), dostavame
pro velikost ithlu BPD ve ¢tyithelniku BCDP

|xBPD|=|xCPB|+ |xCPD| =360°—v— (¢ +¢) =
=180° — v+ a.

Vidime tedy, Ze za danych pfedpokladt nemutze byt o = ~, takZe rovnost
|AP| = |CP)| je ekvivalentni rovnosti a + v = 180°, coZ je ekvivalentni
tomu, Ze ¢tyfthelnik ABCD je tétivovy.

6. Pruhovanych ¢isel je mnoho, obecné je vsak tézko dokazeme popsat
tak, aby bylo vidét, ¢im jsou délitelna. Zamérme se proto na pomérné tz-
kou skupinu pruhovanych ¢isel obsahujicich jen nuly a jednicky, o nichz
dokaZeme zjistit vic. Pfesnéji feCeno, budeme se snazit pro dané ¢islo n
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vytvorit pruhované ¢islo tvaru s = 1010...101, kde k& je pocet jedni-
¢ek v jeho desitkovém zapisu, které bude nasobkem n. Mezi pruhova-
nymi Cisly si, S2,. .., Sp+1 najdeme diky Dirichletovu principu uréité dvé
ruzna, kterd davaji pri déleni ¢islem n stejny zbytek, takze jejich rozdil
je nasobkem n. Pfitom pro k > [ je

sk — s =1010...101—1010...101 = 1010...10100...00 = s_; - 10%.

k jednicek l jednicek k—1 jednicek 2l nul

Pro kazdé n umime tedy najit k a [ tak, ze n | sp_;-10%. Pokud je &islo n
s Cislem 10 nesoudélné, tak dokonce m | sk_;, tudiZ n ma pruhovany
nasobek.

Vidime, Ze problém je s ¢isly n, kterd jsou sudd nebo délitelna péti.
Pro né musime pruhované nasobky hledat v jiném tvaru.

Pokusme se je nejprve najit pro ¢isla n, jez jsou mocninou ¢isla 5, tj.
pro ¢&isla n = 5%. Pro malé hodnoty a snadno nachazime, Ze ¢isla

5, 25 =52 125=53 8125=13-5% 78125=25.5° (1)

jsou pruhované nasobky mocnin 5!, 52, 53, 54 a 55, Pro vétsi o vytvorime
pruhovany nasobek ¢isla 5% indukci. Predpokladejme, Ze mame pruho-
vany nasobek Ay &isla 5%, ktery mé k &islic, pfi¢emz prvni zleva muze
byt i nula, coz nijak nevadi, naopak je to pro nas postup vyhodné, kdyz
nemusime tuto ,zbyte¢nou“ éislici brat do avahy pfi rozhodovani o pru-
hovanosti daného &isla, a vytvoime pruhovany nasobek ¢isla 551 tak, ze
na zacatek Ay pripiseme néjakou vhodnou éislici. Je-1i tedy

A = arax_1...a1 :5k~d, deN, ay,as,...,ax € {0,1,2,...,9},

takovy pruhovany nédsobek, pfipojenim éislice ar+1 na jeho zacatek do-
staneme

Ag+1 = ap+14k = apy1 - 10% + A = 10’“ak+1 +5*d = 5k(2kak+1 +d).

Aby Ajy1 bylo pruhované a zaroven nasobek 551 stadi ay,; zvolit tak,
aby mélo opac¢nou paritu nez aj a aby 2*ax,1 + d bylo délitelné péti.
To ziejmé jde vzdy, protoze pro volbu ary; mame 5 riznych moznosti
(podle parity prvni ¢islice éisla A bud déislice 1, 3, 5, 7, 9, anebo 0, 2,
4, 6, 8) a pro kazdou z nich davé &islice ax,1, a tedy i ¢islo 2%ag,; + d
jiny zbytek pfi déleni péti (&isla 2% a 5 jsou nesoudélna). Jeden z téch
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zbytki tedy musi byt nulovy a v tom piipadé je 2Fay 1 +d péti délitelné.
Ukéazali jsme, Ze vSechny mocniny péti maji pruhované nasobky. Pfitom
z uvedeného postupu vyplyva, Ze pro dané n = 5% umime pruhovany
nasobek vytvorit tak, aby mél sudy pocet ¢islic (véetné pripadné nuly na
zacatku) a kondil ¢islici 5.

Vénujme se ted mocnindm ¢&isla dvé. Opét ukazeme, Ze pro kazdé
n = 2P existuje jeho pruhovany nasobek. Postup bude obdobny jako
pri mocninach péti, budeme vSak priddavat az dvé ¢islice a na vytvarena
¢isla budeme klast ptisnéjsi pozadavky. Presnéji, dokazeme, Ze pro kazdé
prirozené k existuje (2k — 1)-ciferné pruhované ¢islo By, které je délitelné
&islem 228~ ale neni délitelné &islem 22F a jeho# viechny sudé &slice jsou
dvojky. Pro prvni krok indukce mame pruhovana ¢isla

By =2, By=232=2%.29 B;=27232=2%.851,
B, =2127232=2".16619.

Predpokladejme tedy, Ze mame pruhované ¢islo

By = bog_1bog—n...by = 2%71 .4,
d € N liché ,by; € {1,3,5,7}abgi_y =2prol <i < k

(protoze By je pruhované a sudé, je i ¢islice bog_1 sudd). Checeme najit
(dvojmistné) &islo b = 2bay (bor € {1,3,5,7}) tak, aby

Biy1 = bBg = b-10%*"1 4 By = 10%%~1p 4 22%-14 = 22k-1(52k-1p, 4 )

bylo délitelné ¢islem 225+ ale nebylo délitelné éislem 22542, Potfebujeme
tedy, aby 52*~1b4-d bylo délitelné ¢tyfmi, ale nebylo délitelné osmi. Podle
predpokladu je d liché, dava tedy pti déleni osmi jeden ze zbytku 1, 3,
5 nebo 7. Za b proto stac¢i zvolit jedno z ¢isel 21, 23, 25 anebo 27 tak,
aby 52%=1p davalo pfi déleni osmi takovy zbytek, ktery po pFicteni d da
zbytek 4 (tj. dava-li d zbytek 1, volime b tak, aby 52*~1b davalo zbytek 3,
dava-li 3, chceme zbytek 1, pro zbytek 5 zbytek 7 a pro zbytek 7 zbytek 5).
Protoze 52¢~1 je nesoudélné s 8 a &isla 21, 23, 25 a 27 déavaji pii déleni
osmi rizné liché zbytky, dostaneme pro jednu z hodnot b € {21, 23, 25,27}
pii déleni &isla 52%~1b osmi potiebny zbytek. Nasli jsme tedy pruhované
nasobky i pro mocniny dvou. Pfitom kdyz pred By pripiSeme libovolnou
lichou é&slici, dostaneme pruhované &islo, které je rovnéz nasobkem 22+-1,
protoze By mé 2k—1 &islic (pfi¢itame b-102%~1). Umime tedy ke kazdému
n = 27 najit pruhované &islo, které ma sudy podet &islic.
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Takto vyzbrojeni muzeme ptejit k obecnému piipadu, kdy n = 5 -
.28 .m, pfi¢emz m neni délitelné dvéma ani péti. Pro o = 3 = 0 jsme uz
tlohu vytesili (¢islo n ma pruhovany nasobek z nul a jednicek).

Uvazujme piipad, kdy B = 0. Cislo 5 ma pruhovany nasobek
se sudym poctem C¢islic, ozna¢me ho M. Zfejmé i ¢islo

Sp=MM...M
———
k cisel M

je pruhovanym nasobkem 5. Stejnou tivahou jako na zacatku najdeme
k al tak, Ze m | Sx—;. Pak je Si_; pruhovanym nasobkem n.

Uplné stejné najdeme pruhovany nasobek n i v piipadé, kdy o = 0.

Je-li 8 =1aa =1,stadi k éislu Si_, které jsme nasli pro n = 5%-m,
pfipsat zprava nulu. Dostaneme pruhované ¢islo (M, a tedy i Si—; konéilo
¢islici 5), které bude ndsobkem dvou i ¢isla 5% - m, tj. bude nidsobkem
5%. 21 . m.

Zustal pripad, kdy 8 =2 2 a o 2 1. V takovém pripadé je ale n = 5% -
-28.m nasobkem &isla 20, jehoz kazdy nasobek konéi nékterym z dvojéisli
00, 20, 40, 60, 80, takze neni nikdy pruhovany.

Odpovéd. Hledanymi &isly jsou vSechna ¢isla, kterd nejsou nasobkem
¢isla 20.

Jiné FeSeni. (Podle Tiankai Liu (USA), ktery ziskal zlatou medaili.)
Protoze kazdy nasobek 20 kon¢i dvéma sudymi ¢islicemi, nemohou mezi
hledana ¢isla patfit nasobky 20. Ukdzeme, ze kazdé jiné prirozené ¢islo ma
pruhovany nasobek. Protoze délitel takového ¢isla ma stejnou vlastnost,
muzeme dale predpokladat, Ze n je sudé.

Nejprve ukdzeme, zZe pro &isla n tvarun = 2% nebon =2-5% (a 2 1)
existuje pruhovany nasobek X (n), ktery mé n ¢islic. Polozme (pro n

sudé)

ottt —10
M:———99 = 101010...10.
—

n éislic

To je zfejmé pruhované ¢islo a pruhované bude i ¢islo

kde e; jsou sudé dislice a k < n — 1. Navic pomérné snadno ovéiime, Ze
podle toho, zda bylo n = 2% nebo 2 - 5%, dokdzeme vybrat posloupnost
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cislic eg, eq,...,en—1 € {0,2,4,6,8} tak, ze pro kazdé k < n — 1 je vyse
uvedené ¢&islo délitelné éislem 2%+2) resp. 2 - 5++1,

Krétce naznacime, jak lze pfi vybéru vhodnych ¢islic e; postupovat
napf. pro n = 2 -5 (zajima nas samoziejmé jen délitelnost ¢islem 5%+1,
protoze se jedna vesmés o cisla sudd). Protoze ¢isla 0, 2, 4, 6, 8 tvori
uplnou soustavu zbytkia modulo 5, snadno uréime eg tak, aby bylo M +
+ €90 = 0 (mod 5); to znamena, ze modulo 5% davd M + eo néktery ze
zbytkua 0, 5, 10, 15, 20. Z ¢isel 0, 2, 4, 6, 8, jez davaji modulo 5 vSechny
mozné zbytky 0, 1, 2, 3 a 4, tedy dokazeme vybrat e; tak, Ze ¢islo 10e;
bude mit modulo 52 zbytek opa¢ny, tj. M +eo-+10e; = 0 (mod 52). A tak
pokracujeme dale. Podobné postupujeme i pro n = 2%, kde samoziejmé
vystacime s volbou e; € {0,2}.

Specialné tedy umime pro kazdé uvazované m najit dcislice eg,
€1,--.,en—1 € {0,2,4,6,8} tak, ze ¢islo

n—1
X(n)=M + Zei-mi
i=0

bude pruhované a n-mistné.

Je-li n obecné sudé cislo, které neni délitelné dvaceti, miazeme je za-
psat ve tvaru n’m, kde n’ = 2% nebo n’ = 2.5, pfiéemz m je nesoudélné
s 10. Vezméme N 2 n’ takové, ze 10" = 1 (mod m) (takové N existuje,
protoze 109(™) = 1 (mod m), kde ¢ je tzv. Eulerova funkce, takze pro
dané m za N stadi vzit dostatecné velky nasobek éisla ¢(m)). Necht

B 102mN+1 —-10

10 N — 7
M = 99 10" + X (n’) = 101010...10 X (n’).

2mN éislic
Protoze existuje k € {0,1,2,...,m — 1}, pro néz M = —2k (mod m), je
¢islo®
k
X(n)=M+) 2-10"
i=1

nejen pruhované, ale i délitelné m a samozfejmé i ¢islem n’, nebot jak
n = 2% tak in’' =2 -5 dé&li 10%, takze d&li i 10" a 10V. Takto zvolené
X (n) je tedy hledanym pruhovanym nésobkem ¢&isla n.

6 Méné zkuSeného ctenafe upozornujeme, Ze pfi prazdné mnoziné scitacich indext
povazujeme pfislusnou sumu za nulu; takova situace v nasledujici formuli nastane
pro k = 0, kdy skute¢né nepotfebujeme nic pridavat.

190



Jedenacty rocnik Stredoevropské olympiady v informatice

Hostitelem jedenacté Stfedoevropské olympiady v informatice CEOI
2004 bylo Polsko. Soutéz se uskutecnila ve dnech 12.-18.7. 2004 na Uni-
verzité informacnich technologii a managementu v Rzeszowé. Olympiada
probihala v dobé prazdnin, takze na soutéz mohly byt vyuzity univerzitni
pocitacové laboratofe a na zahajovaci a zavéreény ceremonial i na pri-
béznd jednani volné poslucharny. Ubytovani a stravovani bylo zajisténo
v hotelu nedaleko univerzity.

Olympiada byla skvéle pfipravena po strance organizacni, po strance
pocitacového vybaveni i z hlediska kvality pfipravy soutéznich uloh.
V kazdém ze dvou soutéznich dni studenti fesili u pocitact tii narocné
priklady. Se svymi podcitaci i soutéZnim prostiedim se pfitom vsichni
mohli sezndmit den pred vlastni soutézi, kdy probihalo tréninkové pred-
kolo. P1i soutézi bylo mozné programovat v nékterém z programovacich
jazyku Pascal, C nebo C++, kazdy si mohl zvolit podle svych zkuSenosti
pracovni prostiedi operacnich systémt Windows nebo Linux. O oba uve-
dené systémy byl mezi castniky priblizné stejny zajem. Soucasné s kla-
sickou soutézi probihala i soutéz po Internetu pro verejnost.

K testovani a hodnoceni vytvorenych programu se na CEOI jiz néko-
lik let pouziva automaticky vyhodnocovaci systém testujici programy na
pripravené sadé vstupnich dat. VSechny provadéné testy maji dobu vy-
poc¢tu omezenu predem znamym ¢asovym limitem a jednotliva testovaci
vstupni data maji ruznou velikost a rtznou slozitost, coz dohromady
umoznuje bodové rozlisit programy podle kvality pouzitého algoritmu.
Za kazdou ulohu 8lo ziskat maximalné 100 bodt, nejcastéji bylo zadano
10 sad testovacich dat po 10 bodech. Nékteré sady se skladaly z nékolika
vstupt, coz umoziovalo vyloucit jednoducha feSeni, kterd vzdy vypisi
stejnou odpovéd.

Jedenacté stredoevropské olympiady v informatice se zudastnilo
40 soutézicich studentt z 8 zemi stfedni Evropy. Z Polska se ucastnily
tfi tymy, z nichz se ale do celkovych vysledki zapocitaval pouze jeden,
z ostatnich stétii se Gcastnil vidy jeden tym. Ceskou republiku repre-
zentovalo ¢tyiclenné druzstvo ve slozeni Ondrej Bilka (student gymnéazia
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Lesni étvrt ve Zliné), Jan Buldnek (student gymnéazia J. Vrchlického
v Klatovech), Martin Dobroucky (student gymnazia v Moravské Trebové)
a Daniel Marek (student gymnazia Ch. Dopplera v Praze). Nasi soutézici
byli vybrani na zakladé vysledkt dosazenych v celostatnim kole 53. roé-
niku Matematické olympiddy — kategorie P (programovéni). Soutéze se
mél puvodné misto Jana Buldnka tcastnit Oto Pettik, ktery ovSem pied
soutézi onemocnél. Jan Buldanek byl proto pozvéan jako prvni ndhradnik.
Vedenim druzstva byli povéfeni Mgr. Jan Kdra a Milan Straka, oba
z Matematicko-fyzikélni fakulty Univerzity Karlovy v Praze.

Na stfedoevropské olympiadé v informatice se udéluji ocenéni podle
podobného klice, jaky se pouziva napiiklad na mezinidrodni olympiddé
v informatice. NejvySe polovina soutézicich obdrzi nékterou z medaili,
pricemz zlaté, stiibrné a bronzové medaile se déli pfiblizné v poméru
1:2:3. Na letosni CEOI 2004 bylo rozdéleno celkem 19 medaili, z toho
4 zlaté, 5 stiibrnych a 10 bronzovych. O ¢tyfi zlaté medaile se letos ne-
tradiéné podélily pouze dva staty — Chorvatsko (1. a 3. misto) a Polsko
(2. a 4. misto).

Nasi studenti letos ziskali pouze jednu bronzovou medaili, coz je ¢éas-
tecné zpusobeno tim, Ze na stfedoevropskou olympiddu jsou vysilani
mladi studenti, aby ziskali zkuSenosti, které v nasledujicich letech mohou
zuroCit na olympiadé mezindrodni. Také slovenska reprezentace ziskala
jen dvé bronzové medaile. Nasledujici tabulka shrnuje vysledky vsech
deskych studentt v soutézi:

19. Daniel Marek 107 bodi  bronzova
29.-33. Ondrej Bilka 60 bodu -
29.-33. Jan Buldnek 60 boda -

29.-33. Martin Dobroucky 60 boda —

Pristi, v poradi dvandcta, stfedoevropska olympiada v informatice
CEOI 2005 se uskute¢ni ve mésté Sarospatak v Madarsku v prvni polo-
viné Cervence 2005.
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16. mezinarodni olympiada v informatice

Ve dnech 11.-18.9. 2004 se konala v Athénach
v Recku 16. mezinarodni olympiada v informatice
I0I 2004 (International Olympiad in Informatics).
Soutéze se zucastnilo 300 studentt ze 77 zemi ce-
lého svéta. Ceskéa narodni delegace byla sestavena
na zakladé vysledku celostatniho kola 53. rocniku
Matematické olympiddy v kategorii P (programovani). Nase druzZstvo
mélo nasledujici slozeni:

g gy T Y
o ag:;' n '{ig vl
bt B IR LIS A

Jgy

Tomds Gavendiak, absolvent gymnézia M. Kopernika v Bilovci,
Daniel Marek, student gymnézia Ch. Dopplera v Praze 5,

Petr Skoda, absolvent gymnazia v Praze 8, Ustavni,

Martin Vejndr, student gymnézia na tf. Kpt. JaroSe v Brné.

Vedoucimi ¢eské delegace byli doc. RNDr. Pavel Topfer, CSc. a Mgr. Mar-
tin Mares, oba z Univerzity Karlovy v Praze, Matematicko-fyzikalni fa-
kulty.

Zvlastnosti letosniho roéniku Mezinarodni olympiady v informatice
byla jeji pfima ndvaznost na sportovni letni olympijské hry. Soutéz se
konala jen asi dva tydny po skonceni olympijskych her v objektu nové
vybudovaném jako doc¢asné sidlo sportovnich novinafa v tésném soused-
stvi hlavniho olympijského stadionu. Thned po skonéeni IOI v Athénach
pro zménu zac¢inala paralympiada télesné postizenych sportovcu.

Mezinarodni olympiada v informatice byla organizatory vyborné za-
jisténa. Po strance odborné pripravili poradatelé soutéze kvalitni lohy
primétrené obtiznosti, z hlediska celkového pobytu pak vhodnym zpuso-
bem doplnili odborny program dvéma zajimavymi vylety pro vSechny

Gcéastniky — mezi obéma soutéznimi dny se konal puldenni vylet na
Akropolis, po skonéeni soutéze pak celodenni plavba lodi mezi feckymi
ostrovy.

Vlastni soutéz probihala jako vzdy ve dvou soutéznich dnech. V kaz-
dém z nich dostali studenti zadany vzdy tii soutézni dlohy a na jejich
vyfeSeni 5 hodin ¢asu. Po tuto dobu mohli pracovat na pridéleném osob-
nim poéitaci vybaveném zakladnim systémovym prostfedim a ptrekladaci
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programovacich jazykt Pascal, C a C++. Cilem kazdé tlohy je zvladnout
zadany problém algoritmicky a navrzeny algoritmus pak také naprogra-
movat. Vytvofené programy se testuji pomoci predem pripravené sady
vstupnich dat, takze prace musi byt skutecné dovedena az do podoby
spolehlivé odladéného programu. Vsechny testy jsou navic vazany na
predem znamé casové limity. Tim je zajisténo, Ze program zaloZeny na
méné efektivnim algoritmu stihne véas dobéhnout jen pro mald vstupni
data, zatimco pfi vypoctu s velkymi daty je béh programu predcéasné
prerusen, aniz by se program dobral k vysledku a jeho autor obdrzel za
prislusny test body. Jednotliva testovaci data (zpravidla se pouziva 20 sad
dat hodnocenych po 5 bodech) se lisi ve své velikosti i slozitosti, takze
teoreticky spravny, ale pomaly program ziska ve vysledném hodnoceni
jen cast z celkového dosazitelného mnozstvi bodi.

Za kazdou z Sesti soutéznich tloh bylo mozné ziskat nejvyse 100 bo-
di, celkové tedy az 600 bodu. Skutec¢né bodové zisky vétsiny tcastnikt
byly ale samoziejmé vyrazné nizsi. Podle poc¢tu dosazenych bodia bylo
stanoveno vysledné potradi. Lepsi polovina uc¢astnikt olympiady byla oce-
néna medailemi, pricemz zlaté, stfibrné a bronzové medaile se rozdéluji
priblizné v poméru 1 : 2 : 3. Celkem bylo letos udéleno 26 zlatych, 49 st¥i-
brnych a 71 bronzovych medaili.

Nasi studenti se podobné jako v minulych letech umistili mezi tspés-
néjsimi tymy, i kdyz dosazené vysledky jsou letos o néco horsi nez loni:

67.~72. Petr Skoda 370 bodu  stribrnd medaile
73.—75. Daniel Marek 365 bodu  stribrnd medaile
Martin Vejnar 220 bodu -

Tomas Gavenciak 145 bodu -

Mezinarodni olympidda v informatice je soutézi jednotlivct a zadné
oficidlni poradi zucastnénych zemi se v ni nevyhlasuje. Podle dosazenych
vysledkit bychom se vsak fadili ptiblizné na 25.-30. misto v celkovém
pofadi zemi. Nejispéinéjsimi zemémi byly letos Cina a Rusko se &tyfmi
zlatymi medailemi, dalsi v pofadi jsou USA, Polsko, Iran, Rumunsko,
Bulharsko, Slovensko, Lotyssko a Tchaj-wan.

Pristi, v poradi jiz 17. mezinarodni olympiada v informatice IOI 2005
se uskuteéni v polském mésté Nowy Sacz nedaleko Krakowa ve dnech
18.-25.8. 2005.
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Texty soutéznich uloh

1. Polygon

Polygon, ¢ili tézZ mnohouhelnik jisté vsichni znate. Ujasnéme si jen,
ze za jeho body povazujeme jak body lezici na hranici, tak body uvnitr.
Polygon je konvexni pravé tehdy, kdyz pro libovolné dva jeho body X
a Y plati, ze vSechny body tusecky XY jsou soucasti polygonu. Kazdy
polygon v této tloze bude konvexni, bude mit alespon dva vrcholy, pfi-
¢emz vSechny jeho vrcholy budou navzajem rizné a budou mit celociselné
soufadnice. Zadné tii vrcholy polygonu neleZi na jedné piimce.

Minkowského soucet polygoni A a B se sklada ze vSech bodu ve
tvaru (z1 + z2,y1 + y2), kde (z1,y1) je bod polygonu A a (z2,y2) je
bod polygonu B. Laskavy, ale trpélivy ¢tenar si muze snadno dokazat, ze
Minkowského soucet dvou polygont je opét polygon. Nasledujici obrazek
ukazuje pfiklad dvou trojihelniku a jejich souctu:

Y

My se zaméfime na inverzni operaci k Minkowského souétu. Pro za-
dany polygon P budeme hledat dva polygony A a B takové, ze:
> P je Minkowského souctem polygont A a B,
> A mé 2 az 4 vrcholy, ¢ili je to budto tsecka (2 vrcholy), trojihelnik
(3 vrcholy), nebo étyfuhelnik (4 vrcholy),
> A ma nejvétsi mozny pocet vrcholu, ¢ili:
> A musi byt ¢tyfahelnik, pokud to je mozné;
0> jinak to musi byt trojtihelnik;
o> kdyz neni mozné ani to, musi to byt tsecka.
Je zfejmé, Ze ani A, ani B nemuze byt roven P, nebot druhy séitanec
by musel byt bod, coz neni polygon.
Dostanete nékolik vstupnich souborti, z nichz kazdy obsahuje popis
jednoho polygonu P. Pro kazdy vstupni soubor naleznéte polygony A
a B podle pravidel uvedenych vyse a vytvorte vystupni soubor s popisem
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polygonti A a B. Pro kazdy vstupni soubor bude feseni existovat. Pokud
existuje vice feSeni, popiste libovolné jedno z nich.
Neodevzdavejte zadny program, pouze vystupni soubory.

Vstup: Dostanete 10 vstupnich soubort pojmenovanych postupné
polygonl.in az polygonl0.in, pricemz ¢islo na konci jména souboru
je ¢islo vstupu. Kazdy vstupni soubor vypada nésledovné. Prvni fadek
obsahuje jediné celé ¢islo N: pocet vrcholt zadaného polygonu. Nésle-
dujicich N radka popisuje jednotlivé vrcholy polygonu v poradi proti
sméru hodinovych rucicek. (I + 1)-ni fadek (pro 1 £ I £ N) se sklada
ze dvou nezapornych celych ¢isel X; a Y7 oddélenych jednou mezerou,
ktera udavaji z-ovou a y-ovou soutadnici I-tého vrcholu polygonu.

Vystup: Odevzdejte 10 vystupnich souborta odpovidajicich jednotli-
vym vstupnim souborum. Kazdy z téchto vystupnich soubori bude obsa-
hovat popis polygonu A a B pro pfislusny vstupni polygon. Tento popis
musi zacinat fadkem ve tvaru:

#FILE polygon [

kde celé ¢islo I (1 < I < 10) je pofadové &islo vstupniho souboru.

Zbytek vystupniho souboru je v podobném tvaru, jako soubor vstup-
ni. Druhy fadek obsahuje jedno celé ¢islo N 4: pocet vrchola polygonu A
(2 £ N4 £ 4). Nésleduje N4 radka popisujicich jednotlivé vrcholy poly-
gonu A v poradi proti sméru hodinovych ruéicek. (I + 2)-hy fadek (pro
1 £ 1 £ N4) obsahuje dvé celd ¢isla X a Y oddélena jednou mezerou,
coz jsou soufadnice I-tého vrcholu polygonu A.

(N4 + 3)-ti tddek pak obsahuje jediné celé ¢islo Np pocet vrcholt
polygonu B (2 £ Np). Nasledujicich Np fadka popisuje vrcholy poly-
gonu B v porfadi proti sméru hodinovych ruciéek. (N4 + J + 3)-ti fadek
(pro 1 £ J £ Np) obsahuje dvé cela ¢isla X a Y oddélend jednou meze-
rou, coZ jsou soufadnice J-tého vrcholu polygonu B.

Priklad vstupu a vystupu:

polygon0O.in A
5

= N N O O
N - O O

Y
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Pro tento vstupni soubor jsou spravné oba nasledujici vystupni sou-
bory (viz téZ obréazky). V obou ptipadech je A trojuhelnik a nemuze to
byt ctyruhelnik.

#FILE polygon O

0

O O NP N O W
[

Y

#FILE polygon O

0

O O W rFr N O W
[aey

Y

2. Artemis
Zeus obdaroval bohyni lovu Artemis obdélnikovym tGzemim, aby tam
mohla vysadit les. JelikoZ Zeus byl tak trochu pedant, levy okraj uzemi
byl rovnobézny s y-ovou soufadnou osou a dolni okraj s z-ovou osou,
pri¢emz levy dolni roh byl v bodé (0,0). Navic Artemidé dovolil stromy
sazet pouze do bodu s celoCiselnymi souradnicemi. Artemis se snazila,
aby jeji les vypadal alespori trochu prirozené, a proto stromy sézela tak,
aby zddné dva nemély stejnou z-ovou ani y-ovou souradnici.
Jednoho dne si Zeus usmyslil, Ze pro néj Artemis musi porazit nékolik
stromd, a to nasledovné:
1. musi jich byt porazeno alespon T,
. musl byt porazeny pravé vSechny stromy v néjakém obdélniku,
. strany obdélnika musi byt rovnobézné se souradnymi osami,
. v protilehlych vrcholech obdélnika musi rist stromy a ty budou také
porazeny.
Artemis méa ale stromy moc rada, takze chce tyto podminky splnit
a pfitom porazit co mozna nejméné stromu. Vas pozadala, abyste napsali

=W N
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program, ktery pro zadané rozmisténi stromt a minimélni pocet stromi
k porazeni T nalezne prislusny obdélnik, kde se ma porézet.

Vstup: Vstupni soubor se jmenuje artemis.in. Jeho prvni fadek ob-
sahuje jediné celé ¢islo N: pocet stromu v lese. Druhy fadek obsahuje
rovnéz jediné celé Cislo T': minimélni pocet stromu, které maji byt po-
razeny. Nasledujicich N rfadku popisuje polohy jednotlivych stromu: na
kazdém z nich jsou dvé celd ¢isla X a Y, kterd predstavuji z-ovou a y-ovou
soutadnici pfislusného stromu.

Vystup: Vystupni soubor se jmenuje artemis.out. Je tvofen jedinym
fadkem, na némZ jsou dvé celd ¢isla I a J oddélend jednou mezerou.
Rikaji, Ze Artemis mé kécet stromy v obdélniku, v jehoZ protilehljch
vrcholech jsou stromy s ¢isly I a J (popsané na fadcich I +2 a J + 2 ve
vstupnim souboru). Na pofadi stromi I, J ve vystupu nezalezi. Pro kazd4d
vstupni data existuje alespoini jedno feSeni, pokud jich je vice, vypiste
jedno libovolné z nich.

Priklad vstupu a vistupu:

artemis.in artemis.out
3 12

2

11

23

56

Omezeni: Pro vSechny vstupy plati: 1 < N £ 20000,0 £ X,Y <
<64000a 1< T < N. Navic v 50% vstupti je 1 < N < 5000.

3. Hermes

I fe¢ti bohové jdou s dobou. Neddvno se z vrcholu Olympu presté-
hovali do velkomésta s pravotihlou siti ulic rovnobéznych se souradnymi
osami. Ulice maji celo¢iselné souradnice a pro kazdé celé Cislo existuje
svisld i vodorovnd ulice s timto ¢islem. Dvojice celych ¢isel pak urcuji
kiizovatky ulic. Horké letni dny bohové travi v kavarnidch umisténych
pravé na téchto kiizovatkich. Posel bohtt Hermes dostal za kol dorudit
odpodivajicim bohtim svételné signily. Muze se pfi tom pohybovat pouze
ulicemi mésta. Kazdy signdl je uréen jedinému bohovi, ale nevadi, kdyz
ho spatii i nékteti z ostatnich boh.

Hermes dostane soufadnice jednotlivych kavaren v pofadi, v jakém do
nich maji byt signaly dorudeny. Svou cestu zacne v bodé (0,0). Bohové
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signaly vidi na libovolnou vzdalenost, ale pouze podél ulic. Ma-li tedy
Hermes dorucit signal bohovi do kavarny na krizovatce (X;,Y;), stac¢l mu
dostat se do libovolného bodu na téze vodorovné ulici (s y-ovou soutrad-
nici Y;) nebo na téze svislé ulici (s z-ovou souradnici X;). Kdyz odesle
posledni signal, jeho mise kondi.

Napiste program, ktery dostane zadanou posloupnost soufadnic kfi-
zovatek a nalezne délku nejkratsi cesty, pfi niz Hermes doruci vSechny
signaly.

Vstup: Vstupni soubor se jmenuje hermes.in. Jeho prvni fadek obsa-
huje jediné celé ¢islo N: pocet signali k doruceni. Nasledujicich N fadki
obsahuje soufadnice N kfizovatek, na které maji byt jednotlivé signaly
doruceny. Poradi fadkt odpovida poradi dorucovani. Na kazdém z téchto
N tadku se nachézeji dvé cela ¢isla: nejprve z-ova a pak y-ova souradnice
prislusné kfizovatky.

Vistup: Vystupni soubor se jmenuje hermes.out. Obsahuje jediny
radek s jednim celym ¢islem: minimalni vzdéalenosti, kterou musi Hermes
urazit, aby dorucil vSechny signaly.

Priklad vstupu a vystupu:

hermes.in hermes.out
5 11

8 3

T -7

81

-2 1

6 -5

Omezeni: Ve vech vstupech je 1 < N < 20000, —1000 £ X,;,Y; <
< 1000. Mimo to je v 50 % vstupi 1 £ N < 80.

4. Empodia
Starovéky matematik a filosof Pythagoras véril, Ze prava podstata
tohoto svéta je matematicka. Soucasni biologové také obcas kracdeji v jeho
stopach. Mimo jiné studuji vlastnosti biosekvenci. To jsou posloupnosti
M celych ¢isel, které:
> obsahuji kazdé z ¢isel 0,1,..., M — 1,
> zacinaji nulou a kon¢i éislem M — 1,
> neobsahuji Zadny prvek E bezprostfedné nasledovany prvkem E + 1.
Souvislym podposloupnostem biosekvenci se tika segmenty. Ohrani-
éeny interval (déle jiz jen interval) je takovy segment, ktery obsahuje
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vsechna celd ¢isla z rozmezi od hodnoty prvniho prvku tohoto segmentu
do hodnoty posledniho prvku segmentu. Navic prvni prvek musi byt nej-
mensim prvkem segmentu a posledni prvek nejvétsim. Prvni a posledni
prvek musi byt ruzné. Interval, ktery neobsahuje zadny kratsi interval,
se nazyva empodio.

Kupftikladu biosekvence (0,3,5,4,6,2,1,7) je sama o sobé interval.
Jelikoz ale obsahuje segment (3,5, 4, 6), ktery je také intervalem, neni celd
tato biosekvence empodio. Interval (3, 5, 4, 6) jiz empodio je, jelikoz zadny
kratsi interval neobsahuje. Zadna jind empodia v uvazované biosekvenci
nejsou.

Napiste program, ktery pro danou biosekvenci vypise vSechna empo-
dia v ni obsazena.

Vstup: Vstupni soubor se jmenuje empodia.in. Jeho prvni fadek ob-
sahuje jediné celé ¢islo M: pocet ¢isel ve vstupni biosekvenci. Nésleduji-
cich M fadkh obsahuje jednotlivé prvky biosekvence, coz jsou cela ¢isla
v poradi, jak po sobé v biosekvenci nasleduji.

Vystup: Vystupni soubor se jmenuje empodia.out. Na jeho prvnim
rfadku je jediné celé ¢islo H: pocet empodil vyskytujicich se ve vstupni
biosekvenci. Nasleduje H radkua popisujicich jednotlivd empodia v poradi
uréeném tim, kde v biosekvenci zac¢inaji. Kazdy z téchto fadka obsahuje
dvé celd ¢isla A a B (v tomto poradi) oddélend jednou mezerou, kde A je
poradové ¢islo prvniho prvku empodia v biosekvenci a B potadové ¢islo
posledniho prvku empodia.

Priklad vstupu a vystupu:

empodia.in empodia.out
8 1

0 25

3

5

4

6

2

1

7

Omezeni: Ve viech vstupech mimo jednoho je 1 < M < 60000.V jed-
nom vstupu je 1000000 < M < 1100000. Mimo to, v 50 % vstupt je
M < 2600.
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5. Sedlak

Byl jednou jeden sedlak. Mél nékolikero poli lemovanych cypriSovymi
stromy (inu, Fecky sedldk). Na kazdém ze svych dalsich pozemki vysazel
jesté jednu samostatnou alej, tvorenou jednou fadou cyprist. Jak kolem
poli, tak v alejich ovSem mezi kazdymi dvéma sousednimi cyprisi stoji
jesté jeden olivovnik. Jiné cypriSe ani olivovniky uz nastésti nema.

Roky plynuly a zivot starého sedldka se zvolna chylil ke konci. Jednoho
dne si zavolal svého nejstarsiho syna a pravil: ;Dam ti libovolnych Q
cyprish, které si vyberes, a s nimi dostanes i kazdy olivovnik, ktery sousedi
se dvéma tebou vybranymi cypfisi.“ Z kazdého pole a kazdé aleje si syn
muze vybrat libovolnou kombinaci cypfisia. Miluje ovSem olivy, a proto si
chce vybrat takovych Q cyptisa, aby s nimi ziskal co nejvice olivovnik.

[ ] [ ]

1. pole: 13 cyprisu 2. pole: 4 cyprise 3. pole: 8 cyprisu

1. alej: 4 cypfise

2. alej: 8 cyprisu

3. alej: 6 cyprisu

Obr. 63. Priklad rozmisténi cypfist. Olivovniky nejsou zobrazeny.

V prikladé vyobrazeném na obr. 63 si ma syn vybrat Q = 17 cyprist.
Aby ziskal co nejvice olivovniki, vybere si vSechny cypfiSe na 1. a 2. poli
a dostane s nimi 17 olivovnika.

Napiste program, ktery na zdkladé ¢isla () a idaji o polich a alejich
spocCte maximalni mozny pocet olivovniku, které muze syn ziskat.

Vstup: Vstupni soubor se jmenuje farmer.in. Jeho prvni fadek ob-
sahuje tii celé ¢isla Q, M a K. Cislo Q udava pocet cypiisa, které si syn
ma vybrat, M urcuje pocet sedldkovych poli a K pocet aleji. Na druhém
radku je M celych ¢isel Ny, Na, ..., Nj, kde N; uréuje pocet cypfisi na
I-tém poli. Tteti fadek obsahuje K celych éisel Ry, Ro, ..., Rk, pficemz
Ry udava pocet cyprisu v J-té aleji.
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Vystup: Vystupni soubor se jmenuje farmer.out. Obsahuje jediny
radek s jedinym celym ¢islem, které udéava maximalni pocet olivovniki,
jez muze syn ziskat.

Priklad vstupu a vystupu:

farmer.in farmer.out

17 3 3 17

13 4 8

4 86

Omezeni: Ve vSech vstupech je 0 £ Q < 150000, 0 < M < 2000,
0< K <2000,3<N <150,3< N, <150, ..., 3 < Ny < 150,

2 < Ry £150,2 £ Ry £150, ..., 2 £ Rig < 150. Celkovy pocet vsech
cypfisi je alesporni Q. Mimo to, v 50 % vstupti je Q < 1500.

6. Phidias

Slavny fecky sochaf Phidias (u nds od nepaméti znamy spise pod
jménem Feidias) se chystd stvorit dalsi z divi svéta. Proto potiebuje
obdélnikové desky z mramoru o velikostech W1 x Hy, Wy x Ho, ..., Wy X
X HN.

Pred péar dny Phidias pfipadl na velky obdélnikovy blok mramoru.
Rozhodl se ho roztezat, aby ziskal desky pozadovanych velikosti. Jakykoli
kus mramoru (at uz to je ptivodni blok nebo ¢ésti z néj nafezané) mize
prefiznout svisle nebo vodorovné na dvé obdélnikové ¢asti s celodiselnou
sitkou i vyskou, pficemz fez musi vzdy byt rovny a vést od jednoho
okraje k druhému. Nijak jinak fezat nelze a ani neni moZné nafezané
kusy slepovat k sobé. A jelikoZ povrch mramoru mé kresbu, nelze kusy
ani otacet: pokud Phidias ufizne ¢ast o rozmérech A x B, nemiiZe ji pouZit
jako desku velikosti B x A, leda Ze by bylo A = B. Od kazdé pozadované
velikosti mize vyrobit libovolny, tfeba i nulovy pocet desek.

Odpadem jsou ty desky, které po provedeni vSech fezli nemaji Zddnou
z pozadovanych velikosti. Phidias by rad védél, jak ma svij blok roziezat,
aby se do odpadu dostalo co nejméné mramoru.

Napriklad na nize uvedeném obrazku mame blok o $ifce 21 a vysce 11.
Pottebujeme desky o velikostech 10 x 4, 6 x 2, 7 x 5 a 15 x 10. Tehdy je
nejmensi mozné plocha odpadu 10 a obr. 64 ukazuje jedno moZné rozte-
zani s timto mnozstvim odpadu.

Vasim ukolem je napsat program, ktery pro zadanou velikost ptvod-
niho bloku a pozadované velikosti desek spoc¢te nejmensi moznou plochu
odpadu.
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10 x 4 : 10 x 4

6x2 || 6x2 || 6x2

7x5 7x5 7%x5

Obr. 64

Vstup: Vstupni soubor se jmenuje phidias.in. Jeho prvni faddek ob-
sahuje dvé celd ¢isla: nejprve W, §itku ptvodniho bloku, a nasledné H,
jeho vysku. Druhy fadek obsahuje jediné celé ¢islo N: pocet poZzado-
vanych velikosti desek. Na nasledujicich N fadcich jsou popsany jed-
notlivé pozadované velikosti desek. Na kazdém z téchto fadku jsou dvé
cela cisla udavajici prislusnou velikost: §itka W; nasledované vyskou H;
(1<i<N).

Vystup: Vystupni soubor se jmenuje phidias.out. Obsahuje jediné
celé ¢islo: minimélni moznou plochu odpadu.

Priklad vstupu a vystupu:

phidias.in phidias.out
21 11 10

&

10 4

6 2

75

15 10

Omezeni: Ve v8ech vstupech je 1 £ W < 600,1 £ H £ 600, 0 <
<N £200,1<W; £Wal< H; £ H. Navic 50% vstupt ma W < 20,
H<20a N <5.
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