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O prubéhu 55. ro¢niku matematické olympiady

Ve skolnim roce 2005/06 se uskute¢nil v Ceské republice jiz 55. roénik
matematické olympiady. Hlavnim poradatelem soutéze bylo stejné jako
v piedeslych letech Ministerstvo Skolstvi, mladeze a t&lovychovy CR, déle
Jednota ¢eskych matematikii a fyzikti a Matematicky tstav akademie
véd CR. Chod soutéze zajistovala nové jmenovana Ustiedni komise MO,
v niZ jako staronovy piedseda stanul doc. RNDr. Jaromir S'zmsa CSc.,

a dale mistopiedsedové RNDr. Jaroslav Svréek, CSc. (pro kategorie A,
B a C), doc. RNDr. Pavel Tlusty, CSc. (pro kategorie Z9-75), a doc.
RNDr. Pavel Topfer, CSc. (pro kategorii P). Funkei tajemnika UV MO
vykonava nadale RNDr. Karel Hordak, CSc.

Pripravou a vybérem uloh pro jednotlivé kategorie a soutézni kola
MO jsou Ustiedni komisi MO povéfeny dvé tilohové komise (jedna pro
kategorie A, B, C a druha pro kategorie Z9-75). Obé komise se schazeji
pravidelné dvakrat ro¢né (vzdy v listopadu a v kvétnu). Ve spolupraci
se slovenskymi kolegy zabezpecuji s roénim predstihem vybér dloh pro
dalsi roénik MO v Ceské republice a na Slovensku. Garanty vybéru tiloh
v kategoriich A, B, C byli v tomto roéniku soutéze RNDr. Karel Hordk,
CSc., doc. RNDr. Pavel Novotny, CSc., a doc. RNDr. Leo Bocek, CSc.

Pri piipravé soutéznich loh MO kategorie P se pravidelné stridaji
pracovnici Matematicko-fyzikalni fakulty Univerzity Karlovy v Praze
a Fakulty matematiky, fyziky a informatiky Univerzity Komenského
v Bratislavé. Tentokrat byli na fadé kolegové ze Slovenska, kteti pripra-
vili tlohy pro vSechna soutézni kola 55. roéniku. Pracovnici a studenti
z Matematicko-fyzikalni fakulty Univerzity Karlovy v Praze se pak jako
kazdorocéné postarali o opravovani a vyhodnoceni odevzdanych feseni.

Letéaky s tilohami I. kola 55. ro¢niku MO byly do skol véas rozeslany,
s malym zpozdénim pak byly distribuovany komentatre k reSenim tuloh
I. kola.

Ustiedni (IIL.) kola 55. roéniku matematické olympiady v kategoriich
A a P se uskutecnila v terminu 26. 3.-1. 4. 2006 v Litoméricich. Organizaci
obou zavére¢nych kol soutéze bylo Ustredm komisi MO povéreno Gym-
nazium Josefa Jungmanna v Litoméficich, které ve spolupraci s Kraj-
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skou komisi MO Usteckého kraje, pobockou JCMF v Usti nad Labem
a méstem Litométice vytvorilo pod zastitou hejtmana Usteckého kraje
pro soutéz velmi dobré podminky. Za zdafily prubéh tustfedniho kola
patii podékovani predevsim Mgr. Pavle Hofmanové, piedsedkyni Kraj-
ské komise MO v Usteckém kraji, a Mgr. Jitce Putnarové z Gymnéazia
Josefa Jungmanna v LitoméFicich.

Na zakladé jednotné koordinace tloh II. (krajského) kola bylo po-
zvano k ucasti ve IIL. (astfednim) kole kategorie A 42 nejlep$ich fesitelii
(jeden se vSak pro nemoc omluvil), v kategorii P pak 20 nejlep$ich Tesitelt
z celé Ceské republiky. Soutéznimi dny pro kategorii A byly 27. a 28. bfe-
zen 2006, kdy zaci fesili tradicné vzdy tfi soutézni tlohy. Na feseni kazdé
trojice iloh méli vyhrazeny 4,5 hodiny ¢istého ¢asu a pritom kazda tloha
byla hodnocena maximalné 7 body. Soutéznimi dny III. kola v kategorii P
byly 30. a 31. bfezen 2006. Prvni soutézni den fesili soutézici tii tlohy
teoretické, cely druhy soutézni den byl vyhrazen feSeni dvou praktic-
kych tloh. Za kazdou teoretickou tilohu mohli soutézici ziskat maximalné
10 bodi a za feSeni kazdé praktické tlohy pak maximéalné 15 bodd —
celkové tedy maximalné 60 bodu. Pri pfipravé soutéznich tloh v kate-
gorii P se pravidelné stfidaji pracovnici Matematicko-fyzikalni fakulty
Univerzity Karlovy v Praze a Fakulty matematiky, fyziky a informatiky
Univerzity Komenského v Bratislavé. Pro tento ro¢nik soutéze vsechny
tlohy v kategorii P pfipravili slovensti kolegové.

Slavnostni zahajeni I1I. kola v kategorii A se konalo v nedéli 26. brezna
v aule III. ZS v Litomé&¥icich za tcasti PaedDr. Jaroslava Miillnera, né-
méstka ministryné gkolstvi, mladeze a té&lovychovy CR, RNDr. Anto-
nina Sochora, DrSc., feditele Matematického tistavu AV CR, zéastupct
mésta Litomérice a dalsich vyznamnych predstaviteli spolecenského zi-
vota v Usteckém kraji. Vlastni soutéz v obou kategoriich se uskuteénila
v prostorach litométického gymnézia J. Jungmanna.

Poradatelé III. kola zajistili pro soutézici rovnéz velmi pékny dopro-
vodny program. Odpoledne po prvnim soutéznim dni absolvovali vSichni
soutézici prohlidku historickych paméatek mésta Litomérice, kdy navsti-
vili mj. véz Kalich, Machovu svétnicku a na zavér také prostory biskup-
stvi v LitoméFicich. Poté se soutézici odebrali do budovy gymnazia, kde
zhlédli prezentaci softwaru MATHEMATICA, kterou garantovali pra-
covnici firmy Elkan. Odpoledne po druhém soutéznim dnu absolvovali
dastnici tstfedniho kola autobusovy zajezd do blizkého okoli, ktery byl
spojen s vystupem na horu Rip a prohlidkou mésta Terezin.

Vyhlaseni vysledki soutéze probéhlo pro kategorii A ve stiedu



29. biezna 2006 a pro kategorii P v sobotu 1. dubna 2006 opét v aule
III. ZS v Litoméficich. Pfedeviim diky sponzortim si nejlepsi soutézici
odvezli domt hodnotné ceny.

Vsichni vitézové v kategorii A byli pozvani k vybérovému soustiedént,
které se uskutecnilo v terminu 10.-14. 4. 2006 v Kostelci nad Cernymi
lesy v prostorach tamni Lesnické fakulty Zemédélské Univerzity. Zavérem
tohoto soustfedéni bylo na podkladé dosazenych vysledki vybrano Sesti-
¢lenné druzstvo, které reprezentovalo nasi republiku na 47. mezinarodni
matematické olympiadé ve Slovinsku. Podrobnou informaci o ni stejné
jako o 18. mezinarodni olympiddé v informatice najdete na konci této
rocenky.

Ustiedni komise MO se béhem tohoto soutéZniho roéniku sesla na
dvou pravidelnych jednanich, a to 9. prosince 2005 na Pedagogické fakulté
UK v Praze a déle 27. bfezna 2006 v Litoméricich u pfilezitosti konéani
ustfedniho kola MO.

Pro nejlepsi fesitele krajskych kol v kategoriich B a C uspotadala
Usttedni komise MO v terminu 30.5.-6.6. 2006 tradi¢ni soustiedéni, je-
hoZ se zGc¢astnilo 40 zakt vybranych ze vSech kraju republiky. Lektorsky
se na tomto soustfedéni podileli doc. Boécek, doc. Calda, doc. Simsa,
dr. Dula, dr. Leischner, dr. Svréek a dr. Hruby. Podobné pro nejlepsi ie-
sitele kategorie A (vSichni nematurujici fesitelé, ktefi se kvalifikovali do
I1I. kola kategorie A) uspotadala UK MO piipravné sousttedéni v Jan-
skych Laznich (10.-16. 9. 2006), kterého se zucastnilo celkem 22 pozva-
nych soutézicich. Zaméstnani a prednasky zde vedli ¢lenové UK MO —
doc. Simsa, dr. Svréek, dr. Hordk, doc. Tlusty a dr. Zhouf.

K pripravé nasich i slovenskych olympioniki se rozhodla kazdo-
ro¢né prispivat Spole¢nost Otakara Boruvky (SOB), ktera ve spolupréci
s Gymnaziem Uherské Hradisté (GUH) uspofadala poprvé ve dnech
19.-23. ¢ervna 2006 v Hluku u Uherského Hradisté cesko-slovenské sou-
stiedéni pred MMO. Nejvétsi uznani patii fediteli GUH doc. Botkovi
a ¢lenum SOB dr. Kanovskému a doc. Puzovi. Protoze §lo o prvni akci
svého druhu, popisme ji v této rocence podrobnéji.

Tato spoleénd pétidenni priprava reprezentaénich druzstev Ceské
a Slovenské republiky byla plné financovana z nestatnich prostiedki,
které SOB zajistila u sponzort podporujicich rozvoj mladych matema-
tickych talentti. Profesor Otakar Bortivka, jeden z nejvétsich brnénskych
matematiki 20. stoleti, po cely sviij aktivni zivot podporoval spolupréci
Ceskych a slovenskych védci v matematickém vyzkumu. Moravské Slo-
vacko, kde se podle zaméru SOB bude ¢esko-slovenské soustiedéni pred
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MMO konat pravidelné, bylo vybrano pro blizkost ¢esko-slovenské hrani-
ce, ale téz jako rodny kraj profesora Boruvky (ktery v letech 1911-1914
uherskohradistské gymnazium absolvoval). Prednasky v Hluku vedli
dr. Horédk, dr. Katovsky ml., dr. Pandk, doc. Simsa a dr. Svréek. Bé-
hem sousttedéni probéhla téz ptldenni soutéz a slavnostni odpoledne na
GUH u prilezitosti 80. vyroc¢i vyteseni tzv. dopravniho problému (v ohod-
noceném grafu) O. Bortvkou. Problém byl motivovan tkolem projektu
elektrifikace jizni Moravy (1926).

Zaveérem této strucné zpravy o pribéhu celého 55. roéniku MO se
patii podékovat vSem zainteresovanym ucitelim matematiky a informa-
tiky na stfednich i zakladnich skolach za jejich neocenitelnou pomoc pri
praci s mladymi matematickymi a informatickymi talenty v Ceské re-
publice. Bez jejich pomoci si zdarny chod nejstarsi predmétové soutéze
nelze predstavit.



Projev predsedy Ustiedni komise MO
pri slavnostnim zahajeni tstfedniho kola 55. roéniku MO v Litoméricich

Damy a panové, vazeni hosté, mili soutézici,

ke zpestieni programu tohoto slavnostniho shromazdéni chei prispét
vypravénim o jednom zajimavém matematickém vysledku z uplynulého
roku 2005. Byl to objev, ktery sice unikl pozornosti sdélovacich prostred-
ki, mohu o ném vsak tady kratce — a vérim, ze docela srozumitelné —
promluvit.

Za¢nu jednim prirovnanim: Soucasné fyziky i Sirokou laickou verejnost
pritahuji podivna seskupeni hmoty ve vesmiru, kterym rikame cerne diry.
Nékteré matematiky zase vzrusuji tzv. mnohothelnikové diry v koneénych
mnozinach bodt v roviné.

Tento pojem si priblizime pomoci obr. 1, na kterém vidite mnozinu
nékolika bodu roviny vyznacenych puntiky. Body s ¢isly 1, 2, 3,4 a 5
tvori ¢ervené vyznacenou pétitthelnikovou diru. Pro¢ diru? Uvnitf ¢ervené
hranice totiz nelezi zadny puntik. Upfesnim, Ze obecné hranice diry musi
byt konverni mnohothelnik a ze vSechny body zkoumanych mnozin musi
byt v obecné poloze, tedy zadné tii z nich nesméji lezet v pfimce.

Obr. 1

Od roku 1978 odborniky zajima otazka, kterou polozil svétoznamy
matematik Paul Erdis (1913-1996): Kolik nejméné bodt musi mit mno-
zina, aby v ni zarucené existovala k-tthelnikova dira s danym poctem
vrcholi k7 Na obr.2 vidite piiklad mnoziny deviti bodu bez pétithel-
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nikové diry. Podivate-li se pozorné, objevite, ze puntiky vytvareji pouze
dva konvexni pétithelniky. Nejedné se vsak o diry, nebof uvniti kazdého

Obr. 2

z obou pétitthelnika lezi jeden puntik. VSech puntiki na obrazku je de-
vét, kdyby jich bylo vice, tedy alespon deset, pétithelnikova dira uz by
se urc¢ité nasla. To by pritomni soutézici (doufam alespon néktefi) patrné
dokéazali, na programu olympiddy to vSak zitra ani pozitii nebude.

Ted prozradim jedno velké prekvapeni z roku 1983: Kanadan Joseph
D. Horton sestrojil priklady mnozin s libovolné velkym poc¢tem bod,
které nemaji zadnou sedmithelnikovou diru. Preskocil jsem vsak tim vy-
sledkem otézku Sestitthelnikovych dér, jak je to s nimi? Uz v roce 1980
byla objevena mnozina 20 bodu bez Sestitithelnikové diry, v roce 1989
mnozina téze vlastnosti o 26 bodech. V roce 2003 Holandan Mark Over-
mars objevil pomoci pocitace rizné mnoziny 29 boda bez Sestitthelnikové
diry. Jednu z nich vam priblizim na nasledujicim obr. 3, muzete se ptibli-
Zit 1 vy, budete-li Spatné vidét. Kdyby puntiky mély mit kvili rozliseni
celociselné souradnice, potfebovali bychom k nakresleni ¢tverec o strané
1260 jednotek.

Overmars ve svém ¢lanku napsal: program s nahodnymi prvky beé-
zel na pocitaci Pentium III 500 MHz nepfetrzité nékolik mésicti. Vzdy
po nékolika dnech podcitac¢ ohlasil nalezeni dalsi maximalni mnoziny bez
Sestitthelnikové diry. Byly to mnoziny ruzné, ale vsechny mély 29 bodt,
nikdy vice. Navic tyto mnoziny mély spolecnou strukturu, jakou vidite
na obrazku: vngjsi slupkou byl vzdy trojiuhelnik, dalsi slupkou smérem
dovniti byl ¢tyfthelnik, nasledovaly ti sedmitihelniky a posledni byl je-
diny bod uprostfed. Ja ten obrazek schovam, stejné bychom museli tes-
tovat desitky Sestitthelnikt, jejichz vrcholy lezi ne na jedné, ale nékolika
slupkach, abychom prokazali, ze Zadna Sestithelnikova dira tady neexis-
tuje.
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Obr. 3

Vratme se od pocitacovych experimentt k ptivodni Erdésové teo-
retické otazce a vysvétleme, proc¢ je rok 2005 meznikem v jeji historii.
Podatrilo se totiz alespon principialné vyfesit otdzku existence Sestitithel-
nikovych dér. Némecky matematik Tobias Gerken dokazal, Ze Sestitihel-
nikovou diru ma kazda takovd mnozina bodt, kterd obsahuje konvexni
devititthelnik, i kdyZz netvoii diru (obr.4). A to uz bylo vyhrano, nebot
od roku 1935 je znamo, zZe pro libovolné ¢islo k se v libovolné dostatecéné
pocetné mnoziné najde konvexni k-tthelnik. Konkrétné pro k = 9 stadi,
aby mnozina méla 1717 bodu. Pravdépodobné sta¢i mnohem méné, totiz
129 bodu, ale to je zase jedna z jinych dosud nedokazanych Erdésovych
hypotéz. Dnes uz tedy s jistotou vime, Ze Sestitthelnikovou diru méa kazda
mnozina o alespon 1717 bodech.
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Obr. 4

Gerken své tvrzeni dokéazal zcela elementarnimi prostiedky, dikaz
vsak zabira 39 ¢asopiseckych stran. Jednodussi, ¢tytstrankovy dukaz exis-
tence Sestithelnikovych dér vymyslel zcela nedavno Cech Pavel Valtr,
docent prazské Univerzity Karlovy. , Nevyhodou“ Valtrova postupu je,
ze jeho algoritmus hledani Sestitthelnikové diry vede k horsimu odhadu
pro miniméalni pocet bodt, nez je Gerkenovych 1717. To v8ak tolik neva-
di, kdyZ tento minimdlni pocet bude nejspise fadové v desitkach (tfeba
presné 3 desitky, jak véii Mark Overmars). Nalezeni tohoto ¢isla je v sou-
¢asné dobé patrné beznadéjné slozity problém. Pro srovnani uvedu mno-
hem jednodussi otazku z téhoz soudku geometrie, na kterou nezname
odpovéd az podeziele dlouhou dobu: kolik nejméné bodtt musi mit mno-
zina, aby v ni existoval konvexni Sestitthelnik, kdyz to nyni nemusi byt
dira (obr.5)? Vi se pouze, ze hledané ¢islo je nejméné 17 a nejvice 37.

6

Obr. 5
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Tim mé vypravéni o mnohothelnikovych dirach konci. V navaznosti
na né popieji van, mili soutézici, at zitra a pozitii sepiSete jen takova
feseni zadanych uloh, kterd zadné diry (tedy mista postradajici logiku)
obsahovat nebudou. Prohlaguji ustiedni kolo 55. roéniku Matematické
olympiady za zahajené.
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Tabulka 1
Pocty zaku stfednich $kol soutézicich v I. kole 55. ro¢niku MO

) Kategorie

Kraj A B c B Celkem

S U S U S U |S U S U
Praha 99 59 98 41| 125 68 8 8 330 176
Stredocesky 77 39 58 27 81 29|12 8 228 103
Jihocesky 62 54 42 34 69 48 3 3 176 139
Plzensky 36 18 37 23 82 36 0 0 155 77
Karlovarsky 10 5| 19 14| 17 11| 0 O 46 30
Ustccky 36 31 46 20 69 25 0 0 151 76
Liberecky 64 21 41 14 49 10 7 5 161 50
Kralovéhradecky 38 23| 48 26| 37 20| 6 4 129 73
Pardubicky 44 20 41 23 28 17 (12 7 125 67
Vysoc¢ina 61 43 54 31 69 42 6 3 190 119
Jihomoravsky 150 89| 123 70| 131 79 5 & 409 243
Zlinsky 93 42 87 30 98 41|16 10 294 123
Olomoucky 31 19 42 18 49 18 1 1 123 56
Moravskoslezsky 65 40| 78 41| 87 44|22 21 252 146
CR 866 503 | 814 412 | 991 488 | 98 75 | 2769 1478

Tabulka 2
Poéty zaku stFednich Skol soutézicich v II. kole 55. roéniku MO

) Kategorie

Kraj A B C P Celkem

S U S U S ul|s U S U
Praha 57 16 | 37 29 59 17| 7 2 160 64
Stredocesky 38 7| 22 7 20 3|1 7 1 87 18
Jihocesky 51 4| 33 12 40 8| 3 1 127 25
Plzensky 18 1 21 3 30 8 0 0 69 12
Karlovarsky 5 0| 14 1 11 31 0 0 30 4
Ustecky 31 0| 20 2 22 5| 0 0 73 7
Liberecky 20 4 12 5 10 3|1 5 3 47 15
Kralovéhradecky 23 6| 26 16 20 9| 4 2 73 33
Pardubicky 20 5| 23 14 17 2| 7 5 67 26
Vysocina 39 7| 27 10 26 6| 3 2 95 25
Jihomoravsky 85 18| 61 15 73 22| 5 2 224 57
Zlinsky 42 5 29 9 37 4110 4 118 22
Olomoucky 19 5| 18 9 17 4] 1 0 55 18
Moravskoslezsky 39 6| 37 10 39 13|21 4 136 33
CR 487 84 | 380 142 421 107 | 73 26| 1361 359

S ... pocet vSech soutézicich U ... pocet uspésnych fesitelt
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Nejuspésngjsi fesitelé I1. kola MO
v kategoriich A, B, C a P

7 kazdého kraje a z kazdé kategorie jsou dle dostupnych vysledki uvedeni
vSichni uspésni tesiteld, kteii skoncili do desatého mista. Oznadeni G
znamend gymnazium.

R R R KrajPraha R R R R R
Kategorie A

1. Hoang Vo Viet, G Praha 4, Na Vitézné plani

2. Adam Prenosil, G Praha 3, Sladkovského

5. Lukas Malina, G Ch. Dopplera, Praha 5
Roman Smrz, G E. Krasnohorské, Praha 4
Radek Zlebéik, G Ch. Dopplera, Praha 5

6. Miroslav Koldr, G Praha 4, Na Vitézné plani

7. Ondrej Liska, G J. Heyrovského, Praha 5

9. Tran Minh Hoang, G Ch. Dopplera, Praha 5
Matéj Korvas, G J. Seiferta, Praha 9

10. Vojtéch Horky, G Praha 6, Nad Aleji

Kategorie B

1. Hoang Vo Viet, G Praha 4, Na Vitézné plani
2. Jan Smejkal, G Praha 6, Arabska
3. Alena Skalova, G Praha 4, Na Vitézné plani
7. Lukas Drapal, G Ch. Dopplera, Praha 5
Jan Hagi¢, AG Praha 2, Korunni
Jakub Marian, G Praha 9, Litoméficka
Markéta Palovskd, G Praha 5, Pod Zvahovem
8. Frantisek Navratil, G Praha 9, Litoméricka
9. Zuzana Dortovd, G Praha 8, U libenského zamku
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10.-13.

Matéj Peterka, G Praha 6, Nad Aleji
Jakub Marciny, G Praha 4, Konstantinova
Roman Smrz, G E. Krasnohorské, Praha 4
Pavla Markupova, G J. Nerudy, Praha 1

Kategorie C

. Jakub Tépfer, G J. Keplera, Praha 6
. Karolina Rezkovd, G Praha 10, Vodéradska

Matej Veselsky, G J. Keplera, Praha 6

. Miroslav Olidk, G Praha 5, Pod Zvahovem
. Vojtéch Kovarik, G J. Nerudy, Praha 1

Karel Pagskr, G J. Keplera, Praha 6
Josef Tkadlec, G J. Keplera, Praha 6

. Mirka Drinkovd, G J. Keplera, Praha 6

Jan Jirki, G Praha 7, Nad Stolou
Jan Strnad, G J. Keplera, Praha 6

Kategorie P

. Daniel Marek, G Ch. Dopplera, Praha 5

2. Roman Smrz, G E. Krasnohorské Praha 4

¢ 9 Q@6
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Kategorie A

. Lenka Slavikovd, G Mnichovo Hradisté
. Tomas Sizta, G Kolin
. Lukds Hermann, GJP Mlada Boleslav

Petr Jakovec, G Kladno, nam. E. Benese
Ondrej Zizka, G Benesov

. Viclav Gergelits, G Benesov

Vitalij Chalupnik, G Slany

Kategorie B

. Tomds Gergelits, G Benesov

@
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. Lukds Beran, G BeneSov

. Matous Machdcek, G Ricany

. Josef Muller, G Dr. Josefa Pekare, Mlada Boleslav
. Martin Benes, G Mélnik

Ota Kukral, G Dr. Josefa Pekaie, Mlada Boleslav

. Viclava Sedlmagjerovd, G Caslav

Kategorie C

. Barbora Musilovd, G Dobfis

2. Martin Jedlicka, G BeneSov

& 2 2@

N I S

10.-12.

. Miroslav Mrazek, G Vlasim

Kategorie P

. Lukds Beran, G BeneSov

seeseovese JihoCeskykraj eevoseooovsosee

Kategorie A

. Eliska Leheckovd, G Ceské Budéjovice, Ceska
. Michal Pavelka, G Strakonice

. Jan Zdloha, G Pisek

. Jiri Knize, G Strakonice

Kategorie B

. Martina Vavdckovd, G P. de Coubertina, Tabor

. Martin Pecka, G V. Novaka, Jindrichuv Hradec

. Libor Peltan, G Ceské Budé&jovice, Ceska

. Ludék Mika, G Strakonice

. Frantisek Batysta, G J. V. Jirsika, Ceské Budé&jovice

Jakub Reitmajer, G P. de Coubertina, Tabor
Miroslav Vacek, G Ceské Budéjovice, Jirovcova

. Matyds Kopp, G Ceské Budgjovice, Jirovcova

Petr Petrous, G Ceské Bud&jovice, Jirovcova
Kamil Pekarek, G V. Novéka, Jindfichuv Hradec

17
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Ondrej Soukup, G Ceské Budéjovice, Jirovcova
Ondrej VIk, G Ceské Budéjovice, Jirovcova

Kategorie C

. Jan Matéjka, G Ceské Budéjovice, Jirovcova
. Helena Pucéelikovd, G Milevsko

. Pavel Vesely, G Strakonice

. Jan Kubi, G Strakonice

Tereza Nedvedovd, G Ceské Budéjovice, Jiroveova

. Sdrka Bohorikovd, Cesko-anglické G, Ceské Budgjovice

Jan Canda, Biskupské G J.N. Neumanna Ceské Budéjovice
Kamil Stuchlik, G Ceské Budé&jovice, Jirovcova

Kategorie P

. Josef Pihera, G Strakonice

® 068 e000eE8 P]zeﬁsk)’fkraj s e®e s e s006808Es

Kategorie A

. Tomas Jirotka OkB, G J. Vrchlického, Klatovy

Kategorie B

. Jindrich Havlik, G Plzen, Mikuldsské nam.
. Vladislav Richter, G Plzen, Mikulasské nam.
. Jiri Kubes, G L. Pika, Plzen

Kategorie C

. Diana Markovd, G Plzen, Mikulasské nam.

Nguyen Van Minh, G Tachov

. Jakub Krauz, Masarykovo G, Plzen
. Katerina Novd, SPSE Plzeti

Dalibor Pdtek, G Plzen, Mikulasské nam.



6.-7. Michal Bugos, G Plzen, Mikuldsské nam.
Petr Nedvéd, G J. Vrchlického, Klatovy
8. Jana Vavrickovd, G Plzen, Mikulasské nam.
R R R R Karlovarsk}?kraj I EEEEEEEEEEEY

Kategorie A

1. Eva Cernohorskd, Prvni ¢eské G, Karlovy Vary

Kategorie B

1. Marek Pospisil, G Cheb

Kategorie C

1. Viktor Lioffelmann, G Marianské Lazné
2.-3. Tomds Nguyen, SCHS Cheb
Jakub Papez, SCHS Cheb

te o enoeO0O00 S Usteck)'rkraj R Y

Kategorie B

1. Tomds Pajma, G Most, Cs. arméady
2. Michal Neubauer, G Usti nad Labem, Jate¢ni

Kategorie C

1. Marcela Héferovd, G V. Hlavatého, Louny
2.-3. L1 Wang, G Roudnice nad Labem
Viclav Palik, G Usti nad Labem, Jateé¢ni
4.-5. Tuan Le Sy, SPS Teplice
Libor Vytlac¢il, G Roudnice nad Labem
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Kategorie A

. Hana Bendovd, G Ceska Lipa
. Jan Hrnéir, G F.X. Saldy, Liberec
. Tomas Kobrle, G Jilemnice

Kategorie B

. Bohumil Vybiralik, G F.X. Saldy, Liberec
. Tomds Nacovsky, G a SPeS Liberec, Jeronymova
. Pavel Beran, G Jablonec n. N., U Balvanu

Jan Pesek, G Ceska Lipa
Jakub Skoda, G F.X. Saldy, Liberec

Kategorie C

. Jan Indracek, G Tanvald
. Michaela Dedeciusovd, G a SPeS Liberec, Jeronymova

Kldra Holkovd, G F.X. Saldy, Liberec
Iveta Jeschkeova, G Tanvald

Kategorie P

. Michal Vaner, G Turnov
. Jan Hrnéir, G F.X. Saldy, Liberec
. Petr Zadrazil, G Turnov

soesseses Kralovéhradeckykraj ¢ s ¢ s ¢« 0 ¢ ¢ 0 o 2 ¢

Kategorie A

. Jan Voltr, G J. K. Tyla, Hradec Kralové
. Martin Berger, G a SOS Upice

Pavel Kuchyria, G B. Némcové, Hradec Kralové
Libor Siminek, G J.K. Tyla, Hradec Kralové
Vendula Uchytilovd, G J. K. Tyla, Hradec Kralové



6. Vdclav Zatloukal, G F. M. Pelcla, Rychnov nad Knéznou

Kategorie B

1. Lukas Lansky, G J. K. Tyla, Hradec Kralové
2. Alena Peterovd, G Dobruska
3. Jakub Zajic, G J. K. Tyla, Hradec Kralové
4.-5. Petr Polak, JG Néachod
Adriana Smidovd, G J. K. Tyla, Hradec Kralové
6. Jiri Marsik, G J. K. Tyla, Hradec Kralové
7.-8. Jiti Ricar, G J. K. Tyla, Hradec Kralové
Pavel Vydra, Jirdskovo G, Nachod
9.-10. Jan Borna, G J.K. Tyla, Hradec Kralové
Jakub Kaplan, G J. K. Tyla, Hradec Kralové

Kategorie C

1. Vit Hanousek, G Trutnov
2. Martin Subr, G Novy Bydzov
3. Tomas Zelenka, G B. Némcové, Hradec Krélové
5. Miroslav Miletin, G B. Némcové, Hradec Kralové
Jaroslav Starek, Jiraskovo G, Nachod
6.-7. Jan Lochman, G Novy Bydzov
Hana Sustkovd, G Trutnov
8.-9. Daniel Dvordk, G Hostinné
Jakub Vicek, Jiraskovo G, Nachod

Kategorie P

1. Jakub Kaplan, G J. K. Tyla, Hradec Kralové
2. Lukds Ldansky, G J. K. Tyla, Hradec Kralové

8 B F E OB ED OB 66 Pardubick}'lkraj B BB G LD S REEE RS

Kategorie A

1. Tereza Klimosovd, G Lanskroun
2. Marek Scholle, G Pardubice, Dasicka
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10.-11.

. Jakub Klecka, G Prelouc

Helena Sedivdkovd, G Pardubice, Dagicka
Lubomir Stépdnek, G Pardubice, Dagicka

Kategorie B

. Frantisek Kaliban, G Litomysl
. Matéj Soukup, G Ceska Tiebova
. Jiri Novak, G Lanskroun

Petra Sirtickovd, G Policka

. Gabriela Silarovd, G Usti nad Orlici
. Lukds Najman, G Ceska Tiebova
. Tomas Jakl, G Moravska Trebova

Marie Koldrovd, G Usti nad Orlici
Martin Schmidt, G Ceska Tiebova
Martin Basovnik, G Policka

Tomas Kotlant, G Pardubice, DaSicka

Kategorie C

. Filip Petrasek, G Policka

2. Edita Dvofdkovd, G Usti nad Orlici

Kategorie P

. Tereza Klimosovd, G Lanskroun

2. Marek Scholle, G Pardubice, Dasicka

& & & &
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Kategorie A

. Ondiej Hoferek, G Zdar nad Sazavou

Marie Koldrovd, Biskupské G Zdar nad Sazavou

. Jan Korbel, G Jihlava
. Mirek Doéekal, G Jihlava
. Milan Dvordk, G V. Makovského, Nové Mésto n. M.

Jakub Filipsky, G Moravské Budéjovice



Iveta Selingerova, G Jihlava

Kategorie B

1. Michal Kozdk, G Jihlava

2. Marek Necada, G Jihlava

3. Jan Svika, G Jihlava

4. Jan Mdca, G Ttebi¢

7. David Chaloupka, G Moravské Budéjovice
Matéj Klusacek, G Trebic
Zuzana Matéji, G Pelhtimov

8.-10. Vojtéch Caha, G Jihlava

Ondrej Marik, G Moravské Budé&jovice

Tomds Pejchal, G Zdar nad Sazavou

Kategorie C

1.-2. Michal Koutny, G Ttebic¢
Jan Nevoral, G Jihlava
3. Martin Stehno, Havlickovo G, Havlickuv Brod
4.-5. Petr Glaje, G Zdar nad Sazavou
Adam Ruzicka, G Ttebic
6. Ondrej Pelech, G O. Bfeziny a SOS, Tel¢

TR EEE R Jihomoravskykraj YRR
Kategorie A

1.-2. Jakub Oprsal, G Brno, tf. Kpt. Jarose
Jan Uhlik, G Brno, t¥. Kpt. Jarose

. Jaromir Kuben, G Brno, tf. Kpt. Jarose

. Vojtéch Riha, G Brno, tf. Kpt. Jarose

. Alezandr Picha, G Brno, t¥. Kpt. Jarose

Zbynék Konecny, G Brno, tf. Kpt. Jarose

. Jiri Zelinka, G Brno, tf. Kpt. Jarose

. Martin Krivdnek, G Brno, tf. Kpt. Jarose

. Jan Rygl, G Brno, tf. Kpt. Jarose

10. Ales Podolnik, G Brno, t¥. Kpt. Jarose
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Kategorie B

. Petr Fiala, G Brno, t¥. Kpt. Jarose
Martin Frodl, Biskupské G Brno, Barvicova

. Jan Brandejs, G Brno, ti. Kpt. Jarose
Petr Zabrodsky, G Brno, t¥. Kpt. Jarose

. Jan Kovar, G Brno, ti. Kpt. Jarose

. Ondrej Malach, G Brno, tt. Kpt. Jarose
Jaroslav Novotny, G Brno, ti. Kpt. Jarose
Lucie Pospisilovd, G Brno, Zizkova

. Jaromir Bacovsky, G Brno, T. Novakové
Vojtéch Robotka, G Brno, tt. Kpt. Jarose
Jaroslav Smid, G Brno, t¥. Kpt. Jaroge

Kategorie C

. Hana Sormovd, G Brno, tf. Kpt. Jarose

. Mojmir Vinkler, G Brno, tt. Kpt. Jarose

. Peter Novdk, G Brno, tf. Kpt. Jarose

. Helena Paschkeovd, G Brno, T. Novakové

. Zuzana Komdrkovd, G Brno, t¥. Kpt. JaroSe
Antonin Povolny, Biskupské G Brno, Barvicova
Alexander Sldvik, G Brno, T. Novékové
Jana Strosovd, G Brno, t¥. Kpt. Jarose

. Lenka Franci, G Brno, tf. Kpt. Jarose
Ondrej HlouSa, G Brno, t¥. Kpt. Jarose
Jan Kvarda, G Brno, tf. Kpt. Jarose

Kategorie P

. Martin Veskrna, G Brno, Videnska
. Martin Ktivdnek, G Brno, tf. Kpt. Jarose

secovossecooe Zlinskykraj 2o ¢ e o6 v e

Kategorie A

. Marek Pechal, G Zlin, Lesni étvrt
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. Pavel Salom, G Roznov pod Radhostém
. Jan Vina, G Zlin, Lesni ¢tvrt

. Ondrej Bilka, G Zlin, Lesni ¢tvrt

. Jan Dolecek, G Kromériz

Kategorie B

. Martina Rosikovd, G Zlin, Lesni ¢tvrt
. Martin Zapletal, G L. Jarose, Holesov
. Petr Sokola, SPS Zlin

. Radim Svitdk, G L. Jarose, Holesov

Jiri Vidclavik, Masarykovo G, Vsetin

. Tomds Grisa, SPSS Vsetin

Petra Papezikovd, G HoleSov
Rostislav Peceria, G Zlin, Lesni ¢tvrt
Alzbéta Pechovd, SPSS Vsetin

Kategorie C

. Jan Varihara, G L. Jarose, Holesov

. Jakub Ivanovsky, G Zlin, Lesni ¢tvrt

. Jan Vala, G Valasské Mezirici

. Veronika Sméla, Masarykovo G, Vsetin

Kategorie P

. Ondrej Bilka, G Zlin, Lesni ¢tvrt
. Jan Pelc, G J. A. Komenského, Uhersky Brod
. Michal Cudrndk, G L. Jarose, Holesov

David Némecek, G Roznov pod Radhostém

seseesesess Olomouckykraj ecsvecocosence

Kategorie A

. Tomas Javurek, G Jesenik

Anezka Faltynkovd, G J. Skody, Pferov

. Martin Piemyslovsky, G J. Skody, Pferov
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. Lukas Bednarik, Slovanské G, Olomouc

Jozef Cmar, realné G, Prosté&jov

Kategorie B

. Petr Kunc, G Unicov

. Jan Havlicek, G Zabieh

. Pavla Kosovd, G Sternberk

. Lucie Kadrmanovd, G Jesenik

Hana Rysdnkovd, G Sternberk
Lukds Bednarik, Slovanské G, Olomouc

. Jakub Tejchman, G Jesenik

Martin Sefl, G Unicov
David Micka, VOS a SPS Sumperk

Kategorie C

. Tomds Kaspdrek, G J. Skody, Pferov
. Vit Musil, G Sumperk

. Tomads Matuska, G Kojetin

. Jirt Horc¢icka, G Jesenik

#eo»ss9e Moravskoslezskykraj o s e s 2 s s e o 22 »

Kategorie A

. Jaroslav Hanél, G M. Kopernika, Bilovec
. Pavel Motloch, G P. Bezrude, Frydek-Mistek

Tomds Princ, G Ostrava-Poruba, Cs. exilu

. Tomas Jeziorsky, G M. Kopernika, Bilovec

Michael Kucera, G M. Kopernika, Bilovec

. Adam Kubetta, G M. Kopernika, Bilovec

Kategorie B

. Martin Hrton, G M. Kopernika, Bilovec

2. Sirui Cheng, Mati¢ni G, Ostrava
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. Lukas Holik, G M. Kopernika, Bilovec

Tomas Toufar, G M. Kopernika, Bilovec

. Tomas Racek, G M. Kopernika, Bilovec
. Michael Cermdk, Mendelovo G, Opava

Vojtéch Kozdk, G M. Kopernika, Bilovec
Tomas Matera, G Ostrava-Poruba
Kristina Pindejovd, G Cesky T&sin
Jana Szewieczkova, G J. Kainara, Hlu¢in

Kategorie C

. Vojtéch Zwardon, G Karvina

. Hana Bilkovd, G Frenstat p. R.
Miroslav Klimos, G M. Kopernika, Bilovec
Tomas Miketa, G J. Kainara, Hlu¢in

. Jan Bajer, G Frydek-Mistek
Jan Kusy, G M. Kopernika, Bilovec

. Vojtéch KaluZa, G P. Bezruce, Frydek-Mistek
Jitka Novotna, G M. Kopernika, Bilovec

. Lenka Krupovd, G Piibor

. Tomds Hordk, G Ostrava-Poruba, Cs. exilu
Petr Kadéra, G P. Bezruce, Frydek-Mistek
Lukas Kotlorz, G Karvina

Lenka Turonovd, G TFinec

Kategorie P

. Miroslav Klimos, G M. Kopernika, Bilovec

. Pavel Motloch, G P. Bezruce, Frydek-Mistek
. Martin Kupec, Mendelovo G, Opava

. Zbynék Sopuch, Masarykovo G, Ptibor
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11.-12.

13.-15.

16.

17.-18.

19.-22.

28

Vysledky tustfedniho kola 55. roéniku MO
kategorie A

Vitézové

. Jaromir Kuben, 4/4, G Brno, tf. Kpt. Jarose
. Marek Pechal, 8/8, G Zlin, Lesni ¢tvrt
. Jaroslav Hancl, 4/4, G M. Kopernika, Bilovec

Zbynék Koneény, 3/4, G Brno, t¥. Kpt. Jarose

. Jakub Oprsal, 4/4, G Brno, t¥. Kpt. Jarose

. Pavel Motloch, 5/6, G P. Bezrude, Frydek-Mistek
. Anezka Faltynkové, 3/4, G J. Skody, Picrov

. Marek Scholle, 7/8, G Pardubice

. Tomas Jeziorsky, 3/4, G M. Kopernika, Bilovec

Vojtéch Riha, 4/4, G Brno, t¥. Kpt. Jarose
Dalsi uspésni resitelé

Pavel Salom, 8/8, G RoZnov pod Radhostém
Jan Uhlik, 4/4, G Brno, tf. Kpt. Jarose
Tereza Klimosova, 8/8, G Lanskroun

Adam Ptenosil, 8/8, G Praha 3, Sladkovského nam.

Lenka Slavikova, 3/4, G Mnichovo Hradisté
Ondiej Hoferek, 8/8, G Zdar n. S.

Tomas Javurek, 7/8, G Jesenik

Martin Kfivanek, 4/4, G Brno, tf. Kpt. Jarose
Michael Kuéera, 4/4, G M. Kopernika, Bilovec
Lukas Malina, 3/4, G Ch. Dopplera, Praha 5

Ji¥i Rihak, 3/4, G Brno, ti. Kpt. Jarose

Hoang Vo Viet, 3/6, G Praha 4, Na Vitézné plani

39b.
38b.
36b.
36b.
27b.
26 b.
20b.
19b.
18 b.
18b.

17b.
17b.
15Db.
15b.
15b.
14 b.
13b.
13b.
12b.
12b.
12b.
12b.
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Vysledky tstfedniho kola 55. roéniku MO
kategorie P

Vitézové

. Daniel Marek, 4/4, G Ch. Dopplera, Praha 5
. Ondrej Bilka, 4/4, G Zlin, Lesni &tvrt

. Michal Vaner, 8/8, G Turnov

. Josef Pihera, 7/8, G Strakonice

. Jan Hrnéir, 4/4, G F.X. Saldy, Liberec

Dalsi uspésni tesitelé

. Lukds Ldnsky, 2/4, G J. K. Tyla, Hradec Kralové
. Zbynék Sopuch, 8/8, G Piibor

. Martin Krivdnek, 4/4, G Brno, t¥. Kpt. Jarose

. Roman Smrz, 6/8, G E. Krasnohorské, Praha 4
10.
11.

Pavel Motloch, 5/6, G P. Bezruce, Frydek-Mistek
Miroslav Klimos, 1/4, G M. Kopernika, Bilovec

55,0b.
37,0b.
36,8 b.
34,7b.
32,0b.

30,9b.
30,8b.
29,8 b.
29,6 b.
28,9b.
25,2b.
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Kategorie C

Texty tloh

C-1-1

a) Dokazte, Ze pro kazdé piirozené &islo m je rozdil m® — m? délitelny
¢islem 60.

b) Uréete viechna piirozena ¢isla m, pro kterd je rozdil m% —m? délitelny
¢islem 120. (J. Moravcik)

C-1-2

Kruznice k, [, m se po dvou vné dotykaji a vSechny tfi maji spole¢nou
tecnu. Poloméry kruznic k, [ jsou 3cm a 12 cm. Vypoctéte polomér kruz-
nice m. Najdéte vSechna FeSeni. (L. Bocek)

cC-1-3

Urcete pocet vSech trojic navzajem ruznych trojmistnych prirozenych
c¢isel, jejichz soucet je délitelny kazdym ze tii séitanych cisel.

(J. Simsa)
Je déno prirozené ¢islo n (n 2 2) a redlna éisla zy, 29, ..., z,, pro ktera
plati
T1Ty = ToT3 = ... = Tp_1Tp = TpT1 = 1.

Dokazte, ze
ey 42220
x] 5+ ... +axr 2n.

(J. Svréek)
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C-1-5

V ostrotthlém trojihelniku ABC ozna¢me D patu vysky z vrcholu C
a P, Q odpovidajici paty kolmic vedenych bodem D na strany AC a BC.
Obsahy trojuhelnikit ADP, DCP, DBQ, CDQ oznacme postupné Si,
So, Ss, S4. Vypoctéte Sy : Ss, jestlize S;: So =2 :3, 53 : 54 =3:8.

(P. Novotny)

C-1-6

Rozhodnéte, které z &isel

Ve va+ ot VBt vt ot va

je vétsi, jsou-li p a ¢ rizna kladné cisla. (J. Moravéik)

C-S-1

Hokejového turnaje se zucastnila ¢tyfi druzstva, pricemz kazdé sehralo
s kazdym praveé jedno utkani. Podet branek vstielenych v kazdém utkani
déli celkovy pocet branek vstielenych v turnaji, pfitom v zadnych dvou
utkanich jich nepadl stejny pocet. Kolik nejméné mohlo v turnaji padnout
branek? (M. Pandk)

C-§-2

Vrchol C étverct ABC'D a CJK L je vnitinim bodem tsecky AK i Gisec-
ky D.J, body E, F', G a H jsou po fadé stfedy tsecek BC, BK, DK
a DC. Uréete obsah &tyttihelniku EFGH pomoci obsahit S a T ¢tverci
ABCD a CJKL. (P. Leischner)

C-S-3

Kruznice k, I, m se dotykaji spolecné tecny ve tfech riiznych bodech
a jejich stfedy lezi v piimce. KruZnice k a [ stejné jako kruznice [ a m
maji vnejsi dotyk. Urcete polomér kruznice [, jestlize poloméry kruznic
k am jsou 3cm a 12cm. (L. Bocek)
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c-1-1

Zakladna AB lichobézniku ABCD je tiikrat delsi nez zakladna CD.

Oznacme M stied strany AB a P prusecik usecky DM s thloptickou AC.

Vypocitejte pomér obsahii trojuhelniku CDP a ¢tyttuhelniku M BCP.
(Pavel Novotny)

C-1n-2
Spliuji-li redlna cisla a, b, ¢, d rovnosti
A+ =+ =cr+d* =1,

plati nerovnost
ab+ ac + ad + be + bd + cd < 3.

Dokazte a zjistéte, kdy pritom nastane rovnost. (J. Svréek)
C-H-3

Kruznice k, [ s vnéjsim dotykem lezi obé v obdélniku ABC D, jehoz obsah
je 72cm?. KruZnice k se pritom dotyka stran CD, DA a AB, zatimco
kruznice [ se dotyka stran AB a BC. Urcete poloméry kruznic k a [,
jestlize polomér kruznice k je v centimetrech vyjadien celym cislem.

(J. Svrcek)
C-1-4
Najdéte vsechny dvojice prvocisel p a q, pro které plati
p+q* = q+ 145p°.

(J. Moravcik)
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ReSeni tiloh

C-1-1

a) Cislo n = m® —m? = m2(m? — 1)(m? +1) je vidy délitelné étyfmi,
protoZze pii sudém m je m? délitelné &tyimi a p¥i lichém m jsou &isla
m? —1, m? +1 obé suda, jedno z nich je dokonce délitelné étyimi a jejich
soucin je tedy délitelny osmi. Ze t¥i po sobé jdoucich pfirozenych ¢isel
m? — 1, m?, m? + 1 je pravé jedno délitelné tfemi, a proto je i &slo n
délitelné tiemi. Je-li m délitelné péti, je m? délitelné péti, dokonce dvaceti
péti. V opacném pripadé je m tvaru 5k + r, kde r je rovno nékterému
z ¢isel 1,2, 3,4 a k je prirozené nebo 0. Pak je m? = 25k2 +10kr 412 a r?
se rovnd nékterému z ¢isel 1, 4, 9, 16. V prvnim a v poslednim piipads
je ¢islo m? — 1 délitelné péti, v ostatnich dvou p¥ipadech je &islo m? + 1
délitelné péti. Je tedy cislo n vzdy délitelné nesoudélnymi ¢isly 4, 3 a 5,
a tedy i jejich soucinem 60.

b) Uz jsme ukdzali, 7e v piipadé lichého m je soucin (m? —1)(m?+1)
délitelny osmi, a ¢islo n = m8 —m? je tedy délitelné éislem 120 = 8-3-5.
Je-li vsak ¢islo m sudé, jsou &isla m? —1, m?+1 lich4, zadné neni délitelné
dvéma. Cislo n je pak délitelné osmi pouze v piipadé, ze m? je délitelné
osmi, tedy m je délitelné ¢tyimi. Cislo n je pak délitelné Sestnécti, tiemi
a péti, a proto dokonce ¢islem 240.

6 — m? je dolitelné cis-
lem 120, prave kdyz m je liché nebo délitelné ¢tyimi.

Nase vysledky mtizeme shrnout: Cislo n = m

C-1-2

Ozna¢me po radé R, S, T stiedy a A, B, C body dotyku kruznic &, [, m na
spoletné tefné ar = 3,s = 12 a t jejich poloméry (délky a obsahy budeme
pocitat bez jednotek kvili jednodussimu dosazovani). V lichobézniku
(ktery v pripadé rovnosti » = t je ovSem obdélnikem) ARTC (obr.6)
je |RT| = r + t. Oznac¢ime-li U prisecik primky AR a pfimky vedené
bodem T rovnobézné s AC, je |RU| = |r — t|. Z pravouhlého trojuhel-
niku RUT plyne |[UT| = |AC| = /(r + )2 — (r — )2 = 2/7t = 2/3t.
Analogicky bychom z lichob&zniki CTSB a ARSB dostali vztahy
|BC| = 2V/st = 4y/3t a |AB| = 2/rs = 2/3-12 = 12.

Uvazujme nejdfive pfipad, kdy bod C' lezi mezi body A a B. Je
pak 2v/3t + 4/3t = 12, odkud t = %. Jestlize bod A lezi mezi body
C a B, dostaneme obdobné rovnici 2v/3t + 12 = 4v/3t, odkud ¢t = 12.
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" Obr.6

Rovnice 12 4+ 4v/3t = 2v/3t, kterou dostaneme pro polohu bodu B mezi
body A a C, nemé zjevné zadné feSeni. Ze takovy piipad neni mozny,
je vidét 1 z obr.7, protoze kazdd kruznice, ktera se dotyka kruznice k
v bodé¢ X rizném od A a pritom obsahuje bod C' polopfimky opacné
k polopfimce BA, musi ve svém vnitiku obsahovat i tétivu kruznice [
(vyznagenou na obrazku), takze se ji nemize dotykat.

So

Obr.7

Polomér kruznice m je tedy % cm nebo 12 cm.

cC-1-3

Necht z, y, z je takova trojice navzajem riiznych prirozenych ¢isel, pro
kterou plati: Kazdé z nich déli jejich souéet x + y + z, takze x déli y + z,
y déli x + z a z déli  + y. Bez jmy na obecnosti mizeme predpokladat
<y <z Jetedy x+y = kz pro vhodné pfirozené k. Protoze je zaroven
T4y <2z jenutné k=1, x4y =z Daley déli x + z = 22 + y < 3y,
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takze 2x+vy = 2y, y = 2x. TTi pfirozena ¢isla danych vlastnosti maji tedy
tvar x, y = 2z, z = 3z, kde x je pfirozené. Protoze maji byt trojmistnd,
musi byt = 2 100, 3z < 999, takze 100 < x < 333. Hledany podet trojic
je 333 — 99 = 234.

C-1-4

Cisla x1, 2y, ..., 2, jsou podle podminek tlohy nenulova a vSechna s li-
chymi indexy jsou si rovna, rovnaji se nenulovému ¢islu a; vSechna ¢isla
se sudymi indexy jsou si také rovna, rovnaji se 1/a, pfevracené hod-
noté a. Je-li n liché, plyne z rovnice z129 = x,21 rovnost x,, = xs, takze
vSechna z; jsou stejnd, rovnaji se 1 nebo —1, nebot to jsou jediné hod-
noty a, pro néz a = 1/a, takze souet jejich druhych mocnin je n. Je-li
n sudé, rovnd se souet druhych mocnin vSech hodnot x; souétu n/2
hodnot a? a n/2 hodnot 1/a?. Aviak a? + 1/a? = 2 pro kazdé nenulové
¢islo a, coz plyne z nerovnosti (a? — 1)% = 0. Proto je soucet druhych
mocnin vsech ¢isel x; vétsi nebo roven n.

C-1-5

Oznaéme x = |AD|, y = |BD|, v = |CD| (obr.8). Z podobnosti troj-
thelnikt ADP a DCP plyne z? : v2 = S, : S, = 2 : 3. Podobné
z podobnosti trojihelniki DBQ, CDQ plyne y? : v2 = S3: S, = 3: 8.
Odtud 22 : y?> = (2-8) : (3-3) =16 : 9, 2 : y = 4 : 3. Trojahelniky ADC,
DBC maji spole¢nou vysku, proto (S; + S2) : (S3+S4) =z :y=4:3.
Za S9 sem dosadime %Sl, za Sy dosadime %5'3 a po upravé dostaneme
5153:8845

C
3r
8s
v
So
P S,
2r & Q
S A\ 3s
S3
A T D Y B
Obr. 8
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Jiné feSeni. Z poméru obsahi trojihelniku ADP a trojuhelniku CDP
se spolecnou vyskou DP plyne, Ze je |AP| : |CP| =2 : 3, takZe mizeme
psat |AP| = 2r, |CP| = 3r, podobné |BQ| = 3s, |CQ| = 8s. Ozna¢me
x = |AD|, vy = |BD|, v = |CD] a z = |PD| (obr.8). Z pravouhlych
trojihelnikic ADP, ADC, PDC plyne 2% = 4r% 4+ 22, 22 + 9% = 0% =
= 2572 — 22. Odtud 2% = 16r? — 2% = 16r% — (4r? + 2?), neboli 222 =
=12r2, z = r\/6, x = r/10, v = r/15, S; = 21/6. Analogicky bychom
dostali z trojuhelniki BDQ, BDC, QDC, e v = 25v22, y = sv/33,
Sy = 3526, tedy uzitim vztahu v? = 1572 = 88s% dostaneme vysledek
S1:S3 = 88:45.

C-1-6

Dana ¢isla, kterd oznacime po fadé A a B, nebudeme porovnavat primo.
Misto toho porovname jejich druhé mocniny a vyuzijeme poznatku, Ze
pro libovolna kladna éisla u, v plati u > v, pravé kdyz plati u? > v2. Pro
dana ¢isla mame

A =p+ G+ 2/ (0 + /D) 0+ VB) +a+ VB,
B2 =p+p+2\/(0+ VP (0 + V) ++ /a

a vidime, ze mimo ,dlouhych* odmocnin jsou na pravych stranach obou
vyjadieni ¢tyti stejni s¢itanci (v odlisnych poradich). Proto nerovnost
A? > B? plati, pravé kdyz je ,,dlouhd odmocnina® v prvnim fadku vétsi

nez ve druhém radku, neboli kdyz pro odmocnované soudiny plati nerov-
nost

(P+va) @+ vp) > (p+vp) (a+Va)-

Roznasobenim a dalsimi algebraickymi tpravami dostaneme postupné
ekvivalentni nerovnosti

g+ /Pq+ pvp +av/a > pq+ /pq+ pVa + ay/p,
(r—a)vp—(—9vq>0,
(r—a)(/p—+7q) >0.

Vysvétlime, pro¢ posledni nerovnost (a tedy i vychozi nerovnost A > B)
v piipadé p # q vidy plati. Je-li totiz p > ¢, je i \/p > ,/q, takZe oba
¢initelé soucinu (p —q) (/P — /q) jsou kladni; je-li p < g, jsou oba ¢initelé
naopak zaporni, v obou pfripadech je proto dany soucin kladny.

Odpoveéd: Vétsi je prvni z danych dvou éisel.
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C-S-1

Jestlize kazdé druzstvo sehraje s kazdym jedno utkdni, sehraje kazdé
druzstvo v turnaji celkem tfi utkani a pocet viech utkani bude % 4.3 =
= 6. Mame tedy najit Sest ruznych ptirozenych ¢isel (nula nedéli zadné
¢islo) s nejmensim moznym souctem tak, aby byl tento soucet délitelny
kazdym z Sesti sé¢itanci. Nejmensi soucet Sesti riznych prirozenych cisel
je 14+243+4+45+6 = 21, ten vSak neni délitelny napt. dvéma nebo Sesti.
Dalsi moznosti je nahradit ¢islo 6 éislem 7, soudet bude 22. Ten vSak neni
délitelny napf. tfemi. Soudet 23 nemuze vyhovovat, protoze ¢islo 23 je
prvocislo, je délitelné pouze dvéma prirozenymi ¢isly. Konecné ¢islo 24 je
souctem ¢isel 1, 2, 3, 4, 6 a 8, pfitom je ¢islo 24 délitelné kazdym z cisel
1, 2, 3, 4, 6, 8. V turnaji proto mohlo padnout 24 branek, ne vSak méné.

CE—-5-2

Oznatme a = /S, b = /T strany &tverctt ABCD, CJK L. Usecka EH je
stfedni piickou trojthelniku BC'D (obr.9), isecka F'G je stfedni piickou

L K
£; b
D
H C P J
“ E
A B
Obr. 9

v trojthelniku BK D, proto je 2| EH| = 2|FG| = |BD| a Gse¢ky EH, F'G

jsou rovnobézné s BD. Podobné je Gisecka HG stiedni pfickou v trojuhel-

niku DCK a tise¢ka E'F je stiedni p¥ickou v trojuhelniku BCK. Proto je

2|HG| = 2|EF| = |CK| ausetky HG, EF jsou rovnobézné s CK, a tedy

kolmé na JL a BD. Rovnobéznik FFGH je tudiz obdélnik s obsahem
1

1 1 1
|EF|-|FG| = a5v2-b5v2 = zab= 7 /ST
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C-S-3

Vzajemna poloha kruznic a jejich spoleéné teény museji vypadat jako
na obr. 10, kde jsme pismeny K, L, M oznacili body dotyku kruznic k,

m

w

K . V /\ e
DAV AR

K L M
Obr. 10

Va

I, m na spoleéné te¢né, U, V, W jejich sttedy a r polomér kruznice [
(v centimetrech). Z pravothlych lichobézniki KLVU, LMWV, KMWU
plyne podle Pythagorovy véty

KL% = (r+3)2 — (r — 3)% = 12r,

ILM|? = (12+7)% — (12 —r)? = 48r

IKM|* = (34 2r +12)% — (12 — 3)® = 4r° + 60r + 144.
Jelikoz |KL| + |LM| = |K M|, dostaneme z prvnich dvou vztaht

\KM? = ([KL| + |LM|)% = |KL|> + 2| KL||LM| + |LM|? =

=607 +2v12 - 487,

coz spolu s tfetim vztahem dava po tipraveé pro r rovnici
4r? — 48r + 144 = 0.

Protoze 472 — 48r + 144 = 4(r? — 12r 4 36) = 4(r — 6)2, ma tato rovnice
jediné feseni r = 6 a polomér kruznice [ je tedy 6 cm.
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cC-1n-1

Vypocet zalozime na dvou znamych pravidlech:

(1) Jsou-li dva trojtuhelniky podobné s koeficientem podobnosti k, je
pomér jejich obsaht roven k2.

(2) Lezi-li ngjaké t¥i body X, Y, Z v jedné pfimce a bod V' mimo ni,
je pomér obsahti trojuhelnikit XYV a Y ZV roven poméru | XY : |V Z|.

Ze shodnosti stfidavych uhlt mezi rovnobézkami AB a CD ply-
ne, ze trojuhelniky AMP a CDP jsou podle véty uu podobné, a to
s koeficientem |[AM| : |CD| = 3. Oznadime-li S obsah trojihelniku
CDP, je obsah trojuhelniku AMP roven (%)25 = %S a 7z rovnosti
|AP|: |CP| = |MP|:|DP| = 32 plyne, Ze obsah kazdého z trojihelnikii
APD a MPC je roven % obsahu trojuhelniku CDP, tedy %S. Obsahy
trojuhelnikit AMC a BMC jsou stejné, a rovnaji se tedy %S+ %S = %S
(obr.11). Odtud plyne, Ze obsah ¢tyithelniku M BCP je %S+%S = %S,
hledany pomér je proto 4 : 21.

D C

cC-1n-2

7 ptedpokladi plyne ¢ = a2, d% = b2, tedy |c| = |al, |d| = |b].
Je-li ¢ = a a soucasné d = b, dostaneme postupné pro levou stranu L
dokazované nerovnosti

L =ab+ac+ ad+ be+ bd+ cd =
=ab+a?+ab+ab+b*+ab=1+4ab<
<1+2(®+b%) =3,

nebot pro libovolna dvé ¢isla a, b je 2ab < a? + b, coZ plyne ze ziejmé
nerovnosti (a — b)? = 0. Rovnost pak nastane pouze pro dvé ¢&tvefice
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a=b=c=d= i% 2, nebot z podminky a = b a rovnosti a® + b% = 1
plyne a? = %, tj. a = i%\/i

Jelliec=—a,d =0, je L = —a®>+b*> < a®? +b*> = 1 < 3. Podobné
v piipadé ¢ = a,d = —b vyjde L = a®> —b?> < 1, v ptipadé ¢ = —a, d = —b
dokonce L = —a® — b*> 0.

Jiné feSeni. Hodnota souctu
S=(a—b +@—c?+@—d)?+0b-c)?+b—-d)?+(c—d)?

je zfejmé nezaporna. Pro dvojnasobek levé strany L dokazované nerov-
nosti proto plati

2L =3(a® +b* +* 4+ d*) - S < 3(a® + 02+ 2 + d?) =6,

odkud L < 3. Rovnost L = 3 pak nastane, pravé kdyz S = 0, tedy pravée
kdyz ¢isla a, b, ¢, d maji tutéz hodnotu, ktera se ovSem musi rovnat i%\/ﬁ
(viz ptivodni feSent).

C-1n-3

Ozna¢me r, s poloméry kruznic k, [ (v centimetrech) a K, L jejich body
dotyku se stranou AB (obr.12). Je pak |AK| = r, |LB| = s, a jak snadno
spoc¢teme z Pythagorovy véty (viz téz ilohu C-S-3)

|KL| = /(r +5)2 = (r — 5)2 = 24/rs.

D C
k
N
l
r
-
r—s {}\ s s
2 VY Ml
| W,
I |
I I
Il 1
A K L B

Obr. 12
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Pro délky stran obdélniku ABCD plati |AD| = 2r, |AB| = r+2/rs+
+ s = (/7 + /3)2. Podle piedpokladu méa byt

2r (v +/5) =72,
neboli po zkraceni dvéma a odmocnéni

r+/rs =6.

Odtud plyne, ze r < 6, a pro velikost poloméru s dostavame vyjadieni

§ = —". (1)

7 podminek ulohy déle plyne, Ze s nemuze byt vétsi nez r, protoze
jinak by kruznice [ nelezela v daném obdélniku, a protoze i kruznice k
musi lezet v daném obdélniku, musi byt |[AB| 2 |AD| = 2r. Z nerovnosti
s < r podle (1) dostaneme podminku 36 — 12r + 72 < 72, tj. » > 3.
Z nerovnosti |AB| = 2r pak plyne 72 = |AB|-|AD| = 472 neboli r? < 18,
coz pro celociselné r znamena, ze r < 4. Pro polomér » ndm tak vychazeji
jen dvé moznosti, r € {3,4}, odpovidajici hodnoty poloméru s vypocteme
ze vztahu (1).

Uloha mé pravé dvé feSeni: r = s = 3cmar = 4cm, s = 1cm.

C-11-4

Pro prvodisla p, ¢ mé platit ¢(q — 1) = p(145p — 1), takze prvodislo p déli
q(q — 1). Prvocislo p nemtze délit prvocislo ¢, protozZe to by znamenalo,
ze p = q, a tedy 145p = p, coz nejde. Proto p déli ¢ — 1, tj. ¢— 1 = kp pro
néjaké k prirozené. Po dosazeni do daného vztahu dostaneme podminku

k41
P=15 k2

Vidime, Ze jmenovatel zlomku na pravé strané je kladny jediné pro k <
< 12, zaroven vSak pro k < 11 je jeho citatel mensi nez jmenovatel:
E+1 <12 < 24 <145 — k2. Pouze pro k = 12 tak vyjde p pfirozené
a prvodislo, p = 13. Je pak ¢ = 157, coZ je také prvoéislo. Uloha mé
jediné feseni.
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Kategorie B

Texty tloh

B-1-1
Urcete vSechny hodnoty celo¢iselného parametru a, pro néz ma rovnice
(x 4 a)(x + 2a) = 3a
aspon jeden celociselny koten. (J. Zhouf)
B-1-2
V daném trojuhelniku ABC oznaéme D ten bod polopiimky C A, pro
ktery plati |CD| = |CB|. Dale oznac¢me po tadé E, F stfedy tseéek AD

a BC. Dokazte, ze | X BAC| = 2|xCEF|, pravé kdyz |AB| = |BC|.
(P. Leischner)

B-1-3
Rozhodnéte, zda nerovnost
alb+1)+blc+1)+ec(d+1)+d(a+1) 2 3(a+1)(b+1)(c+1)(d+1)

plati pro libovolna kladna ¢isla a, b, ¢, d, ktera vyhovuji podmince
a) ab=cd=1; b)ac=>bd=1. (J. Simsa)

B-1-4

Kazdou z hvézdicek v zapisech dvanactimistnych cisel
A = x88 888 888 888, B=%11111111111

nahradte n&jakou ¢islici tak, aby vyraz |14A — 13B| mél co nejmensi
hodnotu. (J. Simsa)
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B-1-5

Kruh o stiedu S a poloméru r je rozdélen na ¢tyti ¢asti dvéma tétivami,
z nichz jedna ma délku 7 a druhd ma od stfedu S vzdalenost %7'. Dokazte,
ze absolutni hodnota rozdilu obsaht téch dvou ¢asti, které maji spolecny
pravée jeden bod, a pfitom zadna z nich neobsahuje stied S, je rovna jedné
Sestiné obsahu kruhu. (P. Leischner)

Urcete nejmensi prirozené ¢islo n s nasledujici vlastnosti: Zvolime-li n
ruznych prirozenych ¢isel mensich nez 2006, jsou mezi nimi dvé takova,

ze podil souctu a rozdilu jejich druhych mocnin je vétsi nez tii.

(J. Zhouf)

B-S-1

Dokazte, Ze pro libovolna kladna ¢isla a, b a ¢ plati nerovnost

(Do e d) 2

Zjistéte, kdy nastane rovnost. (J. Simsa)

B-S§-2

Na pfeponé AB pravouhlého trojihelniku ABC uvazujme body P a @
takové, ze |[AP| = |AC| a |BQ| = |BC|. Ozna¢me M prusecik kolmice
z vrcholu A na piimku C'P a kolmice z vrcholu B na primku C'Q). Dokazte,
7e primky PM a QM jsou navzajem kolmé. (J. Svreek)

B-S-3

Najdéte vsechny dvojice celych ¢isel a a b, pro néz zadna z rovnic
22 +ar+b=0, y>+by+a=0

nema dva ruzné realné koteny. (E. Kovac)
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B-1l-1

Uréete vSechny dvojice prvocisel p a g, pro néz plati
p+q’=q+p’.
(J. Svréek)

B-1I1l-2

Obdélnik ABCD se stranami délek |AB| = 2008 a |BC| = 2006 je
rozdélen na 2 008 x 2 006 jednotkovych ¢tvercii a ty jsou stiidaveé obarveny
¢ernou, Sedou a bilou barvou podobné jako obdélnik na obrazku: ¢tverce
pii vrcholech A a B jsou ¢erné, étverce pri vrcholech C' a D jsou bilé.
Urcete obsah té ¢asti trojuhelniku ABC, kterd je Seda.

(Pavel Novotny)

B-11-3

V lichobézniku ABC D, jehoZ zékladna AB mé dvakrat vétsi délku nez
zdkladna C' D, ozna¢me E stfed ramene BC'. Dokazte, ze kruznice opsana
trojihelniku CDE prochézi sttedem thlopricky AC, pravé kdyz strany
AB a BC jsou navzajem kolmé. (P. Leischner)

B-1l-4

Dokazte, Ze pro libovolna redlné ¢isla a, b, ¢ z intervalu (0, 1) plati
1<a+b+c+2(ab+bc+ca)+3(1l—a)(l—>b)(1—c)=9.

(J. Simsa)
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Reseni tloh

B-1-1

Po roznédsobeni levé strany a prevedeni ¢lenu 3a z pravé strany na levou
dostaneme kvadratickou rovnici

2% + 3azx + 2a% — 3a = 0.

Jeji koreny (pokud existuji) maji podle zndmého vzorce tvar

—3a++Va? + 12a
5 .

T1,2 =

Hodnota takového vyrazu je celé éislo jen tehdy, je-li ¢islo a?+4-12a druhou
mocninou néjakého celého ¢isla b, o némz mizZeme predpokladat, Ze je
nezdporné. Rovnost b = v/a? + 12a upravime umocnénim a doplnénim
na ctverec do tvaru

(a+6)% =b>+36, neboli (a+6+b)(a+6—0b)=36.

Dostali jsme rozklad ¢isla 36 na soucin dvou celociselnych ¢initel, které
proto museji mit stejné znaménko. Protoze jejich rozdil

(a+6+b)— (a+6—b)=2b

je sudé nezaporné ¢&islo (pripomindme, Ze b = 0), maji oba ¢initelé stejnou

paritu (jsou zaroven suda nebo lichd) a druhy ¢initel neni vétsi nez prvni

¢initel. To vSe dohromady znamenad, Ze jsou jen ¢tyfi moznosti:

(1) a4+6+b=18aa+6 —b=2. Tato soustava rovnic ma jediné reseni
a =4 a b = 8. Zkouska: rovnice (z + 4)(z + 8) = 12 ma kofeny —10
a —2.

(2) a+64+b=6aa+6—b=6.V tomto pfipadé a = 0 a b = 0. Zkouska:
rovnice (z 4 0)(x + 0) = 0 ma dvojnasobny kofen 0.

(3) a+6+4+b=-2aa+6—b= —18.V tomto piipadé a = —16 a b = 8.
Zkouska: rovnice (x — 16)(z — 32) = —48 ma kofeny 20 a 28.

(4) a+6+b=—-6aa+06—b=—6.V tomto pfipadé a = —12 a b = 0.
Zkouska: rovnice (z — 12)(z — 24) = —36 ma dvojnasobny kofen 18.
Odpovéd': Hledané hodnoty parametru a jsou ¢tyfi, a to cisla 4, 0,

—16 a —12.
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Jiné feSeni. Stejné jako v prvnim feSeni upravime rovnici do tvaru
2 ; 2 _
z° + 3ax + 2a” — 3a =0

a pokusime se mnohoélen na levé strané zapsat ve tvaru soucinu dvou
linearnich ¢initela tvaru az + fa + 7. I kdyz takovy rozklad neexistuje,
experimentovanim zjistime, ze ,témér vyhovuje“ soucin

(z+2a+3)(z+a-—23),

ktery se lisi od daného mnohoclenu z? + 3ax + 2a® — 3a pouze v kon-
stantnim ¢lenu; presvédcete se o tom roznasobenim. Zkoumanou rovnici
tak lze zapsat ve tvaru

(x+2a+3)(z+a—3)=-9.

I kdyZ na pravé strané neni nula, pro feSeni v oboru celych ¢isel je kazdy
podobny rozklad cenny, nebot existuje pouze koneény pocet rozkladu
prislusného ¢isla (v nasem pfipadé —9) na soucin dvou celociselnych ¢i-
nitela. Vypisme je:
(1) z+2a+3=9ax+a—-3=—1,neholia=4az=-2,
(2) r+2a+3=3ax+a—3=-3,nebolia=0axz=0,
(3) x+2a+3=1laxz+a—3=-9 nebolia=4az=-10,
(4) +2a+3=—-lax+a—3=9,nebolia=—-16 a z = 28,
(5) r+2a+3=-3ax+a—3=3,nebolia=-12ax=18,
(6) x+2a+3=-9ax+a—3=1,nebolia=—-16az = 20.
Dochazime tak ke stejné odpovédi jako v prvnim feSeni: vyhovujici
hodnoty parametru a jsou ¢isla 4, 0, —12 a —16.

B-1-2

Ozna¢me G ten bod polopfimky opacné k polopfimce AC, pro ktery plati
|AG| = |BC| = |CD] (obr.13 pro situaci, kdy |AC| > |BC|, a obr. 14
pro situaci, kdy |AC| < |BC| — sami nakreslete a rozmyslete situaci,
kdy |AC| = |BC|). V trojuhelniku ABG oznaéme jesté ¢ = |XABG|
a § = |xBGA|. Protoze |[EA| = |ED| a |AG| = |CD|, je bod E stred
usecky CG, tudiz usecka EF je stiedni pricka trojuhelniku BC'G. Plati
proto E'F || GB a z rovnosti souhlasnych thlt BGA a FEC dostavame
| FEC| = 6. Protoze thel BAC je vngjsim uhlem trojihelniku ABG,
pro jeho velikost o = |xBAC| plati @ = € + 6. To znamend, Ze rovnost
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Obr. 13 Obr. 14

a = 20 ze zadani ulohy nastane, pravé kdyz ¢ + 6 = 26, neboli € = §.
Z trojihelniku ABG ovSem plyne, ze rovnost € = § je splnéna, praveé kdyz
|AB| = |AG], neboli |[AB| = |BC|. Tim je ekvivalence rovnosti o = 2§
a |AB| = |BC| dokazéna.

A

Jiné feseni. Misto ,,chytfe* zvoleného pomocného bodu G z prvniho
feSeni sestrojime osu o vnitintho thlu BAC daného trojihelniku ABC
a jeji prusecik se stranou BC oznac¢ime H (obr.15 a obr. 16 pro situace
|AC| > |BC]|, resp. |AC| < |BC|). Vyznam osy o pro feSeni nasi tlohy
je ziejmy: podle souhlasnych uhlt CEF a CAH usoudime, Ze rovnost
|x BAC| = 2|xCEF| ze zadani tlohy nastane, pravé kdyz budou tsecky
AH a EF rovnobé&zné, neboli trojihelniky CAH a CEF podobné. Podle
véty sus jsou trojuhelniky CAH a CEF podobné, pravé kdyz je splnéna
ameéra

|AC|: |HC| = |EC|: |FC]|. (1)
Rovnost |xBAC| = 2|xCEF| je tedy ekvivalentni s podminkou (1),
kterou nyni prozkoumame.

Délky tisecek zastoupenych v (1) nejprve vyjadiime pomoci délek

a=|BC|, b=]|AC|, c=|AB]

stran vychoziho trojuhelniku ABC. Protoze bod F' je stfed tusecky BC
a bod F stied tsecky AD, plati |[FC| = 3|BC| = 1a a

|AC| +|DC| _|AC|+|BC| b+a

IECT = 2 2 2
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D
E
A

B A B
/d
D
Obr. 15 Obr. 16
Zbyva vyjadrit délku tsecky HC. Z rovnosti

|HC|+ |HB| =a, |HC|:|HB|=b:c

(prvni z nich je trividlni, druhd vyjadiuje znamy fakt o poméru, ve kte-
rém osa vnit¥niho tthlu déli protéjsi stranu trojthelniku) dostaneme po
snadném vypoctu vyjadieni

ab
b+c

|HC| =

Dosadme nyni vSechny urcené délky do rovnosti (1) a pak ji dale ekviva-
lentné upravujme:

ab a—}—b.E

"b4c 2 ’
b+c a+b
a  a
b+c=a+b,
c=a.

Dokéazali jsme potfebné: podminka (1) plati, pravé kdyz ¢ = a, neboli
|AB| = |BC.

Jiné TYeSeni. Oznacme Z stied tsecky BD a « velikost thlu BAC.
Usecka EZ je stiedni pficka trojuhelniku ADB a tsecka ZF je stiedni
pricka trojuhelniku CDB (obr.17). Z vlastnosti stfednich pficek plyne
EZ | AB,ZF || AC,|EZ| = }|AB|,|FZ| = %1CD| = 1|BC|,|xCEZ| =
=aa|xEZF|=180°—q.
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E
yd Z
A B
Obr. 17

Protoze velikost vnéjsiho tthlu p¥i vrcholu Z trojthelniku EZF je a,
bude mit thel FEZ velikost %a, pravé kdyz bude trojuhelnik F'EZ rov-
noramenny (se zakladnou F'E), tj. pravé kdyz |EZ| = |ZF|, neboli pravé
kdyz |AB| = |BC/|. Tim je tvrzeni tilohy dokazano.

B-1-3

a) Danou nerovnost budeme ekvivalentné upravovat postupnym roz-
nasobovanim; jakmile se pritom nékde objevi soudin ab nebo cd, nahra-
dime ho ¢islem 1:

20ab+a+bc+b+cd+c+da+td) 2
Z(ab+a+b+1)(ed+c+d+1),
20@d+bc+a+b+c+d+2)2
2 (a+b+2)(c+d+2),
2(ad+bc)+2(a+b+c+d)+4 2
2actad+be+bd+2(a+b+c+d)+4,
ad +be Z ac + bd,
(a—0b)(c—d) £0.

Posledni nerovnost obecné neplati, jak ukazuje priklad a = c=2a b =
=d= % (hodnoty jsou zvoleny tak, aby byly splnén pfedpoklad ab =
=cd =1).

b) Danou nerovnost budeme upravovat s podobnou strategii jako
v Casti a). Protoze vSak tentokrat miiZeme ¢islem 1 nahrazovat souciny ac
a bd, vynasobime na pravé strané nerovnosti nejprve prvni ¢initel s tfetim
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a druhy ¢initel se ¢tvrtym:

2(ab+a+bc+b+cd+c+da+d) 2
2 (ac+a+c+1)(bd+b+d+1),
2(ab+bc+cd+ad+a+b+c+d) 2
2 (a+c+2)(b+d+2),
2(ab+bc+cd+ad) +2(a+b+c+d) 2
2ab+ad+bc+cd+2(a+b+c+d)+4,
ab +bc+ cd + da 2 4,
(a+c)(b+d) 2 4.
Posledni nerovnost plati pro vSechny cétverice kladnych disel a, b, ¢, d
spliujici predpoklad ac = bd = 1, protoze kazdy z obou d¢initeli a + ¢

a b+ d, jsa souc¢tem kladného ¢isla a ¢isla k nému prevraceného, je vétsi
nebo roven ¢islu 2. Tento znamy vysledek

u>0 = u4+-2=2 (%)

plyne pfimo z identické rovnosti
1 2
ut—= <\/" = ———) +2

a poznatku, Ze druhd mocnina libovolného reilného ¢isla je nezaporna.
Odhad (*) lze rovnéz ziskat ze zndmé nerovnosti mezi aritmetickym a geo-
metrickym primérem

A:

a1 +ag + ..
n

« FQpn
- 2 G = /a1Q9 . . . 0

libovolnych nezapornych éisel a;, kdyz zvolime n = 2, a; = v aas = 1/u.
Odpovéd: Zkoumana nerovnost za podminky a) obecné neplati, za
podminky b) plati.

Jiné FeSeni. a) Pouzijeme ,dosazovaci strategii“: z dané podminky
ab = cd = 1 vypoéteme b = 1/a, d = 1/c a takto vyjadiend ¢isla b a d
dosadime do zkoumané nerovnosti. Dostaneme nerovnost s dvéma (jiz

51



nezavislymi) proménnymi a a ¢; nasi ulohou bude zjistit, zda plati pro
libovolné hodnoty a > 0 a ¢ > 0:

(c+1)+c(%+1>+%(a+l)§
%(a+1)(é+1)c+1< +1),
% +e

11 1
IR (2+a+ )(2
a &

+2),

€
2+a+c+a+
c a 1 1 1 1 1 1
2+at+ct-+-+-+=-22+atct-+-+ (ac+ +— )
a ¢ a c a ¢ 2 ac

5 1
£+9-Zac+—,
a ¢ ac
a2 a%? +1,
02 (a* —1)(c* —1).

Vidime, Ze posledni nerovnost pro kladné ¢isla a, ¢ obecné neplati, staci
zvolit napt. hodnoty a = ¢ = 2, kterym odpovidaji hodnoty b = d = %
b) Podobné jako v ¢asti a) z dané podminky ac = bd = 1 vypocteme
tentokrat ¢ = 1/a, d = 1/b a po dosazeni za ¢, d do zkoumané nerovnosti
dostaneme nerovnost s nezavislymi proménnymi a > 0 a b > 0:

a(b+1)+b(%+1>+%(1—1)+1)+%(a+1)g

g%(a+1)(b+l)< )( ),
ab+a+b+%+%+b+é+ib25<2+ + )(
ab+a+b+1+z+z+9+lbz

2 4b4 - )

[SERS
+
+

| =
~—

1 2 2
(4+2a+2b+ab+ +E+

ab+b+b+ib 4.

Posledni nerovnost ovSem zfejmé plati pro libovolna kladna ¢isla a a b,

nebot je sou¢tem dvou nerovnosti

+

o 2
Q| o
1\
)

1
ab+—= 22 a
ab
typu (*) z prvniho FeSeni, a to pro hodnoty u = ab, resp. u = a/b.
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B-1-4

Hvézdicku v ¢isle A nahradime ¢islici a, hvézdicku v ¢isle B &islici b a vy-
jadiime vyraz 14A — 13B algebraicky jako linearni funkei (nezndmych)
Cislic a a b. Protoze plati

99999999999999  10'! —1

11111111111 111 = = ,
9 9

maji ¢isla A a B vyjadieni
n, 8 11 1, 1 11
A=a-10"+5-(10" 1) a B=b-10"+5- (10" - 1),

odkud dostavame

(14 -8 —13)
9
= (l4a — 13b+11) - 10** — 11.

14A — 13B = (14a — 13b) - 10" + S(1ot —1) =

(%)

Jisté si uvédomime, ze absolutni hodnota takového vyrazu je miniméalni,
praveé kdyz je minimalni absolutni hodnota vyrazu 14a—13b+11. Precizné
to zduvodnime nerovnostmi aZ poté, co zjistime, zda pro nékteré ¢islice
a, b dokonce neplati rovnost 14a — 13b + 11 = 0. Vyjadiime-li z takové
rovnice neznamou b,
14a + 11 a—2

b= TR a+1+ 13
a vSimneme si, Ze pro libovolnou é&islici a plati —2 < a — 2 < 7, vidime,
ze hodnota b danad poslednim vzorcem je celociselnd jediné v pripadé
a—2 =0,kdy a = 2 a b = 3. Jediné pro takové dcislice a, b plati
14a — 13b + 11 = 0, takze podle (%) pak mame 144 — 13B| = 11. Pro
libovolnou jinou dvojici ¢islic a, b ovSem plati 14a — 13b + 11 # 0, takze
tentokrat podle (x) usoudime, ze

bud 14a —13b+112>1, atedy 144 —13B =10 — 11 > 11,
nebo 14a —13b+ 11 £ —1, a tedy 144 —13B < —10'! — 11 < —11,

v obou pripadech tedy [14A — 13B| > 11.
Odpovéd: Vyraz |14A — 13B| ma nejmensi moznou hodnotu jediné
tehdy, kdyZz hvézdicky v ¢islech A, B nahradime po radé ¢islicemi 2 a 3.
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B-1-5

Oznac¢me dané tétivy AB a CD jako na obr. 18, kde je rovnéZ vyznacen
stted P tétivy AB, takie podle zadani plati |[SP| = 1r a |CD| = r.

A
¢ D

Obr. 18

Zkoumany rozdil obsahtt dvou svétle vybarvenych ¢asti kruhu se nezmé-
ni, kdyz ke kazdé z nich pfipojime tutéz (tfeti) ¢ast kruhu, jez ma s jeho
hrani¢ni kruznici spole¢ny oblouk AC' a je na obr.18 vybarvena tma-
vé. Tak vzniknou dvé kruhové usece, jedna nad tétivou AB, druha nad
tétivou C'D. Jejich obsahy jsou uréeny velikostmi thla ASB a C'SD.
Z rovnostranného trojihelniku C'SD ihned mame |xCSD| = 60°, takze
obsah S;.usece nad tétivou C'D je roven

? 123

Sl e R

6 4
V pravouhlém trojuhelniku APS plati |AS| : |SP| = 2 : 1, tudiz
|xASP| = 60°, |<xASB| = 2|xASP| = 120°, |AB| = rv/3 a obsah S

usece nad tétivou AB je roven

w2 r2V3
Sy =" _ TV
3 4

Nyni jiz snadno urc¢ime rozdil Sy — Si:

S _ S <n7'2 7“2\/§> <TET‘2 7‘2\/§> nr2
2 —=51=|—% — — = - = —
3 4 6 4

coz je pravé Sestina obsahu celého kruhu.
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Zjistime nejdfive, pro kterd prirozena cisla a, b plati zminénéa nerovnost

a? + b?

P 3. (1)

Aby byl zlomek na levé strané kladny, musi platit a® > b, neboli a > b.
Je-li tato nutnd podminka splnéna, vynasobime obé strany zkoumané
nerovnosti kladnym ¢islem a? — b? a dals$imi ipravami dostaneme

a? +b% > 3(a® - b?),
4b% > 242,
bv2 > a.

Zjistili jsme, ze dvé pfirozena ¢isla a, b vyhovuji podmince (1), pravé
kdy? plati nerovnosti 1 < a/b < /2.

Ptirozenad ¢isla od 1 do 2 005 nyni rozdélime do skupin tak, aby v nich
bylo co nejvice ¢isel a aby podil nejvétsiho a nejmensiho ¢isla kazdé sku-
piny byl mensi nez /2. Provedeme to tak, Ze do skupin budeme postupné

zafazovat ¢isla 1,2,... a k nové skupiné vzdy piejdeme, az to bude ne-
zbytné.! Dostaneme tak téchto dvacet skupin:

Ay = {1}, Ay = {2},

A = {3,4}, Ay ={5,6,7},

As = {8,...,11}, Ag = {12,...,16},

A ={17,...,24}, Ag = {25,...,35},

Ag = {36,...,50}, Ay = {51,...,72},

Ay = {73,...,103}, Ays = {104, ...,147},

Az = {148, ...,209}, Ay = {210,...,296},
Ays = {297,...,420}, Aje = {421,...,595},
Ayr = {596, ...,842}, Az = {843,...,1192},
Ajg ={1193,...,1687}, Ay = {1688,...,2005}.

Vysvétlime napiiklad, jak vznikla skupina A;;. Cislo 73 jsme jiz nemohli
zafadit do skupiny Ajg, nebot pro jeho podil s nejmensim ¢islem 53 této

skupiny plati
73
i 1431...>1414... =72,

1 K porovnavani podilti a/b s &slem /2 vyhodné vyuzijeme tieba kalkulacku.
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Cislo 103 jsme jesté mohli do skupiny A;; zafadit, nebot

103
Tz = LA10.. <1414 = V2,

Jaké ma sestrojené rozdéleni vyznam pro feSeni zadané tlohy? Pro
libovolna dvé ¢isla a, b z téze skupiny A; nerovnost (1) plati. Skupin A;
je dohromady 20; vybereme-li proto libovolné 21 &isel z mnoziny A; U
U Ay U ... U Ay, budou néktera dvé z nich pat¥it do téze skupiny A;,>
tudiz budou spliovat (1). Proto ¢islo n = 21 méa vlastnost ze zadéni
tilohy. Cislo n = 20 ji oviem nema: vybereme-li z kazdé ze skupin A; jeji
nejmensi prvek, dostaneme dvacet disel

1,2, 3, 5, 8, 12, 17, 25, 36, 51,
73, 104, 148, 210, 297, 421, 596, 843, 1193, 1688, (2)

mezi nimiz nejsou zadna dvé ¢isla a, b spliujici (1), nebot podle nasi
konstrukce je podil nésledujiciho ¢isla k ¢islu pfedchozimu vidy veétsi
nez \/5

Poznamenejme, ze pouhé uvedeni dvaceti ¢isel (2) z posledniho od-
stavce nelze povazovat za plné feSeni tlohy, i kdyZ prohlasime, Ze jsme
tuto dvacetici vybrali ,co nejlépe®, tj. aby méla co nejvice prvka a aby
7adné dva z nich nespliiovaly (1).® NemoZnost vybéru podobné skupiny
21 cisel je treba nezpochybnitelné zduvodnit; k tomu nam poslouzil pri-
hradkovy princip uplatnény k sestrojenym skupinam A;.

Odpovéd: Nejmensi piirozené ¢islo s pozadovanou vlastnosti je n =
= 21.

B-S-1

Levou stranu L dokazované nerovnosti nejprve upravime roznasobenim
a vzniklé ¢leny sdruzime do dvojic navzajem prevracenych vyrazu:

L=(CH—%)(b-i—%)(c—%—é):<ab+l+%+i)(c+—2>:

= (abc—!—-a—iz)—l-(a—ké)+(b+—2—)+(0+%>.

2 Tomuto zfejmému poznatku se fika prihrddkovy nebo téz Dirichletiv princip. Obec-
né&ji zni takto: Je-li mk + 1 pfedméti umisténo do m skupin, lezi v nékteré z nich
asponl k + 1 z téchto pfedméti. V nasem pripadé je m =20 a k = 1.

3 K ovéfeni poznatku, Ze ¢islo n = 20 zkoumanou vlastnost nema, mohou poslouzit
i mnohé jiné dvacetice ¢isel. Naptiklad ¢islo 1688 v (2) mizeme zaménit kterym-
koliv jinym ¢islem ze skupiny Agp apod.
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V kazdé z poslednich zavorek je tedy soucet tvaru u + 1/u, kde u > 0,
ktery ma4, jak vime, hodnotu aspon 2, pfi¢emz rovnost ¢islu 2 nastane
jediné pro u = 1. Podle tohoto znamého tvrzeni, které 1ze dokazat napii-

klad apravou
(red) 2= (- ) 2o

pro vyraz L plati L 2 2 +2 + 2+ 2 = 8, coZ jsme méli dokazat. Rovnost
L = 8 ovSem nastane, pravé kdyz plati

1 1
abc+——a+-:b—|— =c+- =2,

Q
>~
o
S| =
o

tedy jak jsme uz vzpomenuli, pravé kdyz abc = a = b = ¢ = 1, tj. pravé
kdyza=b=c=1.

Poznamka. Dodejme, Ze upravena nerovnost

11 1 1
abcta+btet -4+ - +—b—>8
C

plyne okamzité z nerovnosti mezi aritmetickym a geometrickym primé-
rem osmi Cisel

abe, a, b, ¢, —,

1 1
c

1
b’ ¢’ abe’

Q|

nebot jejich souéin (a tedy i geometricky pramer) je roven ¢islu 1, takze
jejich aritmeticky priamér ma hodnotu aspon 1.

Jiné FeSeni. V dokazované nerovnosti se nejprve zbavime zlomk, a to
tak, Ze obé jeji strany vynasobime kladnym ¢islem abe. Dostaneme tak
ekvivalentni nerovnost

(ab+ 1)(bc+ 1)(ac+ 1) = 8abe,
kterd ma po roznasobeni levé strany tvar
a?b?c? + a’be + ab®c + abc® + ab + ac + be + 1 2 Sabe.
Posledni nerovnost lze upravit do tvaru
(abe — 1) + ab(c — 1)® + ac(b — 1)* 4 be(a — 1)* 2 0.
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Tato nerovnost jiz ziejmé plati, nebot na levé strané stoji soudet &ty¥
nezapornych vyrazi, pfitom rovnost nastane, pravé kdyz ma kazdy ze
CtyT téchto vyrazi nulovou hodnotu, tedy pravé kdyz

abc—1=c—-1=b—-1=a—-1=0

nebolia=b=c=1.

Dalsi feSeni. Danou nerovnost lze dokézat i bez roznasobovani jeji levé
strany. Staci zapsat tfi nerovnosti mezi aritmetickym a geometrickym
primérem:

RN (CHENEH O B

Jejich vynédsobenim dostaneme

1(a+1) 1(b+1) 1<+1)> a \/3 c_q
- — o i =l - = =5 — . - =1,
2 b/ 2 c/ 2 a/ —\b c a '
odkud po néasobeni osmi obdrzime dokazovanou nerovnost. Rovnost
v ni nastane, pravé kdyz nastane rovnost v kazdé ze tii pouzitych

AG-nerovnosti, tedy pravé kdyz se disla v kazdé primérované dvojici
rovnaji:

Z prvnich dvou rovnosti plyne a = ¢, po dosazeni do treti rovnosti pak
vychdzia =c=1, tudiz i b = 1.

B-S-2

Podle zadéani je trojuhelnik APC' rovnoramenny, piimka AM prochazi
jeho hlavnim vrcholem A kolmo k zakladné C'P, je tudiz osou vniti-
niho thlu CAP (obr.19). Body C' a P jsou proto soumérné sdruzené
podle primky AM, takze tthly APM a ACM jsou shodné. (Jinymi slovy
trojuhelniky APM a ACM jsou shodné podle véty sus: odpovidajici si
strany AC a AP sviraji se spolecnou stranou AM tyz thel diky tomu, ze
AM je osou thlu CAP.) Podobné z rovnoramenného trojiuhelniku BQC
odvodime, ze BM je osou thlu CBQ), takze i ihly BQM a BCM jsou
shodné.
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Obr. 19

Rovnosti [ APM| = |xACM| a |xBQM| = |xBCM]| znamenaji, ze
pro vnitini tuhly trojihelniku PQM pii vrcholech P, Q plati

|XxQPM|+|xPQM| = |xAPM| + |xBQM| =
= |XxACM| + |xBCM]| = |<xACB| = 90°,

tudiz vnitini thel u tretiho vrcholu M je pravy.

Jiny postup. Ze soumérnosti bodtt P a C podle piimky AM plyne
|PM| = |CM|, ze soumérnosti bodit @ a C' podle BM plyne |[QM| =
= |CM| (obr.20). Je tudiz |PM| = |QM| = |CM]| a bod M je tak
stredem kruznice opsané trojuhelniku PQC. Pfitom oznacime-li o a 3

B
DO\ P
\
\
\
\
M @
=<2\
o A
Obr. 20

thly pii vrcholech A a B, je a+ = 90° a
(90° — o) + (90° — 33) — |x PCQ| = 90°,
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takze |xPCQ| = 45°. To je velikost obvodového thlu nad tétivou PQ
zminéné kruznice. Velikost odpovidajiciho stiedového tthlu PMQ je tu-
diz 90°.

Jiny postup. Bod M jako priisec¢ik os tthlit CAB a CBA je stied
kruznice vepsané trojuhelniku ABC| vidime tedy (obr.21), Ze pravothlé
trojuhelniky PMTs = CMT, a QMT3; = CMT; jsou vesmés shodné.
Odtud plyne, Ze trojuhelnik PQM je rovnoramenny pravouhly s pravym
uhlem p¥i vrcholu M.

Obr. 21

Jiny postup. Bod M jako prusecik os tthlt CAB a CBA leZi i na ose
pravého thlu ACB. Proto thly ACM a BCM maji oba velikost 45°,
takze |XAPM| = |KACM| = 45°, |[xBQM| = |xBCM| = 45° a
trojuhelnik PQM je rovnoramenny pravouhly s pravym thlem pii vr-
cholu M.

B-S-3
Jak vime, kvadratickd rovnice md dva rizné realné koreny, pravé kdyz
je jeji diskriminant kladny. Proto rovnice ze zadani tilohy tuto vlastnost
nemaygi, pravé kdyz jsou jejich diskriminanty
D1:a2—4b, D2:b2—4a
nekladné, tedy pravé kdyz plati

a? <4b a b? < 4a. (1)
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Odtud ptedné plyne, ze obé ¢isla b i a jsou nezédporna (protoZe jsou
nezéporna obé ¢&isla a? a b%). Nyni na (1) pohlédneme jako na soustavu
nerovnic s neznamou b a nezdpornym parametrem a a snadno ji v oboru
nezapornych ¢isel vyresime:

[V

a
4

I

b

A

2V/a. (2)

Nalezeny interval je neprazdny, pravé kdyz pro nezaporny parametr a
plati nerovnost

2
% <2ya, neboli a<4.

Protoze ¢isla a, b jsou podle zadani celd, z odvozenych nerovnosti 0 <
< a £ 4 plyne, Ze ¢islo a lezi v mnoziné {0,1,2,3,4}. Kazdé takové a
jednotlivé do krajnich vyrazi v (2) dosadime a vypiSeme, ktera cela b
v prislusném intervalu lezi:

a=0: 0SbH<0 <= be {0},
=1 1<bp<2 <« be{1,2},
a=2 12b<2V2 < be {12},
a=3 2<b<2V3 < be {3},
a=4 45b<4 < be {4}.

Odpovéd': Vyhovuje pravé sedm dvojic (a,b):

(0,0), (1,1), (1,2), (2,1), (2,2), (3,3) a (4,4).

Pozndmka. Z nerovnosti (1) Ize odvodit nejen 0 < a < 4, ale z divodu
symetrie rovnéz 0 < b < 4. Proto misto nami popsaného feSeni tipravou
na soustavu (2) sta¢i jednotlivé otestovat 25 dvojic (a,b), kde a,b €
€ {0,1,2,3,4}, zda vyhovuji soustavé nerovnosti (1). Takovou tlohu lze
rovndZ interpretovat geometricky: v prvnim kvadrantu soutradnicového
systému Oab hleddme ty body s celo¢iselnymi soufadnicemi, které lezi
uvnitf nebo na hranici oblasti omezené parabolami o rovnicich 4a = b2
a 4b = a? (obr.22).

B-Il-1
Danou rovnici upravime na tvar
q(q—1) =p(p—1)(p+1);
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o1 2 3 4

Obr. 22

odtud plyne nerovnost p < ¢ (kdyby totiz bylo p 2 ¢, potomip—1 2>
2 q—1>0,aprotoze p+1 > 1, bylo by p(p — 1)(p+ 1) > q(q — 1))
a také to, ze ¢ déli soucin p(p — 1)(p + 1). Protoze ¢ je prvodcislo, musi
platit aspon jeden ze vztahti ¢ | p, ¢ | (p — 1), ¢ | (p + 1). Vzhledem
k podminkdm p < ¢ a p > 1 nemuze ¢ délit ani p, ani p — 1, a proto
q | (p+1). Musi tedy platit ¢ < p+1, a to spolus p < g dava ¢ = p+ 1.

Jedina dvé prvocisla lisici se o 1 jsou 2 a 3. Proto p = 2 a ¢ = 3.
Zkouskou ovétime, Ze skutecné plati 2 + 32 = 3 + 22,

Pozndmka. Nerovnost p < ¢ se da dokazat i nasledujici tvahou:
Ziejmé p # q. Prvocisla p a ¢ jsou tedy nesoudélnd, a protoze p | g(q—1),
musi platit p | (¢ — 1) a odtud p < ¢ — 1.

B-1l-2

Seda ¢ast obdélniku ABC D se stranami délek 3n +1 a 3n — 1, ktery ma
jednotkové ¢tverce pri dvou vrcholech obarveny ¢ernou barvou a jednot-
kové ¢tverce pri dalsich dvou vrcholech bilou barvou, je soumérna podle
stfedu obdélniku (staci si uvédomit soumérnou sdruzenost sedych ¢tverct
nejblizsich soumérné sdruzenym vrcholim A a C, resp. B a D, symetrie
na celém obdélniku pak plyne z toho, ze Sedé ctverce se v kazdém radku
i sloupci opakuji s periodou 3). Proto je Seda cast trojuhelniku ABC
shodnd se Sedou ¢asti trojuhelniku CDA, a tedy obsah Sedé ¢asti troj-
thelniku ABC' je roven poloviné obsahu Sedé ¢asti obdélniku ABCD.
Obdélnik ABC D rozdélme na obdélnik se stranami délek 3n a 3n—1
a pas 3n— 1 jednotkovych ¢tverct, v némz jeden koncovy ¢tverec je cerny
a druhy bily. V obdélniku 3n x (3n — 1) je pocet ¢ernych, bilych i Sedych
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jednotkovych ¢tverct stejny, takze Sedych je n(3n—1). Kdybychom k pasu
délky 3n — 1 pridali jeden Sedy ¢tverec, byl by tam rovnéz stejny pocet n
¢ernych, bilych a Sedych ¢tverca; v pase délky 3n—1 je tedy n—1 Sedych
étvercit. Sedych étvercit v obdélniku ABCD je n(3n—1)+(n—1) = 3n*~1
a Seda ¢ast trojuhelniku ABC ma obsah S = %(3712 — 1); pro obdélnik
2008 x 2006 je n = 669, takze

1 1 /1 1 /4028049
S:—-(3~6692—1):~-(—-20072—1):—-(—————~1>:
2 2 \3 2 3

4028046
= ——— =671341.

Pozndmka. Obsah Sedé ¢asti trojuhelniku ABC mtzeme urdit i tak, ze
po diagonélach postupné spocitame Sedé Ctverce, jez jsou celé obsazeny
v trojuhelniku ABC, a pripo¢teme polovinu poctu ¢tverctt v prostiedni
Sedé diagondle obdélniku ABC D, ktera je soumérné podle stfedu obdél-
niku, takze jeji ¢ast lezici v trojuhelniku ABC je shodna s casti lezici
v trojuhelniku CDA:

1
S:3+6+...+2004+§-2006:334-2007+1003=671341.

B-11-3

Oznaéme S stied thlopiicky AC. Usecka SE je stfedni piicka trojihel-
niku ABC, takie |SE| = 1|AB| = |DC|. Navic je SE || AB || DC.
Usetky SE a DC jsou rovnobéiné a shodné, proto je SECD rovnobé-
nik.

KruZnice opsana trojuhelniku CDE prochazi bodem S pravé tehdy,
je-li rovnobéznik SECD tétivovy. Ctyithelnik je tétivovy, pravé kdyz
je soucet velikosti jeho protilehlych tthlt 180°. V rovnobézniku jsou ale
protilehlé tihly shodné, takze je tétivovy, pravé kdyz to je pravouhelnik,
neboli kdyz tthel ECD, a tedy i tthel ABC je pravy.

B-1l-4
Nadéle predpokladejme, ze a,b, c € (0,1). Oznacme
V=a+b+c+2(ab+ac+bc)+3(1 —a)(l—0b)(1—c)
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a nejprve misto nerovnosti V' 2 1 dokazme silnéjsi nerovnost
a+b+c+(1—a)(l-=0)(1—c)2=1.
Roznasobenim a tipravou levé strany dostaneme

(a+b+e)+(1—-a)(l—-0b)(1-c) =
=1+4+ab+ac+bc—abc=1+ab(l —c)+ac+bc=1,

protoze v poslednim souctu za jedni¢kou nésleduji vesmés nezaporné sci-
tance.

K dikazu nerovnosti V' < 9 sta¢i vzhledem k tomu, Ze
2(ab + ac+ be) < 6,
oVérit nerovnost
a+b+c+3(1—a)(l-=0b)(1—-c)<3.
Udélame to tak, Ze zfejmé nerovnosti
l-a)1-b<1, (1-a)l-¢=1, (1-b1-o) =1

vynasobime po fadé (nezapornymi) ¢isly 1 — ¢, 1 — b, 1 — a; po secteni
vSech tTi ziskanych nerovnosti obdrzime

3(1—a)1-b)1—c¢)<(1—a)+(1—b)+(1—c),

odkud jiz snadnou tpravou plyne kyzena nerovnost.

Jiné feSeni. Zaménme pismena a, b, ¢ obvyklejsimi pismeny z, y, z
k oznaceni proménnych (v nasem piipadé z intervalu (0,1)). Dany vyraz
V = V(x,y,2) je pfi pevnych hodnotach y, z linedrni funkci Az + B
proménné x s koeficienty

A=1+2@+2)-3(1-y)1-2),
B=y+z+2yz+3(1—-y)(1-2).

Protoze grafem kazdé linearni funkce na uzavieném intervalu je tsecka,
budou nerovnosti 1 < V(z,vy,2) < 9 platit pro kazdé = € (0,1), prave
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kdyz budou platit pro obé krajni hodnoty x = 0 a = 1, neboli 1 <
SV(0,y,z) £9al<V(1,y,2) £9. Protoze pro libovolna y, z € (0,1)
mame

V(0,y,2) =y+2z+2yz+31—-y)(1—2)S14+1+2+3,
V(Ly,2) =14+y+z+2(y+z+yz) S1+1+1+2-3,
jsou nerovnosti V(0,y,2) £ 9al < V(1,y,z) £ 9 ziejmé. K ditkazu
zbylé nerovnosti V(0,y,z) 2 1 si opét povSimneme, Ze p¥i pevném z je
vyraz V(0,y, z) linearni funkei Cy + D proménné y. Staci proto pouze
ovéfit, ze V(0,0,z) 2 1 a zaroven V(0,1,2) = 1. To je ale zfejmé, nebot
pro z € (0, 1) plati

V(0,0,z) =3—-2z21 a V(0,1,2)=1+322=1.

Tim je tloha vyresena. Dodejme jeSté, Ze ze zminéné linearity vyrazu V
v kazdé z proménnych z, y, z vyplyva, Ze jak nejvétsi, tak i nejmensi
hodnota V' na mnoziné vsech trojic (z,v, z) ¢isel z intervalu (0, 1) musi
byt rovna jednomu z osmi ¢isel

V(0,0,0), V(0,0,1), V(0,1,0), V(0,1,1),
(1,0,0), V(1,0,1), V(1,1,0), V(1,1,1);
s ohledem na symetrii vyrazu V staci vy¢islit pouze hodnoty V(0,0,0) =

=3,V(0,0,1) =1, V(0,1,1) =4 a V(1,1,1) = 9.

Jiné FeSeni. Predstavme si krychli 1 x 1 x 1 a tfi navzdjem kolmé
roviny (rovnobézné se sténami krychle), které rozdéluji hrany vychazejici
z kazdého vrcholu krychle na dvojice tsecek délek a a1 —a, b a 1 — b,
resp. ¢ a 1 — ¢. Vidime, Ze celou krychli lze pokryt soustavou ¢tyt kvadri
o rozmeérech

ax1x1l, 1xbx1l, 1Ixlxe (1—a)x(l—0)x(1l-c),
coz vyjadreno jejich objemy dava geometricky diikaz nerovnosti
a-1-141-b-141-1-c+(1—-a)(l=0b)(1-c) 21,

ze které jsme odvodili zavér V' = 1 v prvnim feSeni. K druhému zavéru
V' <9 néas tam privedla nerovnost

a-1-141-b-141-1-c+31—a)(1—->b)(1—c) <3,
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ktera ma rovnéz jasné ,objemové“ zduvodnéni: v souctu na levé strané
je kazda ¢ast objemu celé krychle zapocitana nejvyse trikrat. Tim je celé
geometrické feSeni tlohy hotovo.

K ptredchozimu dodejme, Ze pokud pridame k uvedenym ¢tyfem kva-
drim jesté dva exemplare ¢tvrtého z nich a po dvou exemplafich kazdého
ze tii kvadru

axbx1l,ax1lxe 1xbxe,
bude hodnota V' sou¢tem objemu téchto 12 kvadru, kterymi lze ,néko-
likanasobné“ zaplnit celou krychli. Pritom kazda z osmi casti krychle
(rozdélené zminénymi tfemi rovinami) je soucasti deviti, tfi, ¢tyt nebo
jednoho z 12 ulozenych kvadri. Piesnéji to zapiSeme rovnosti

V =9abc+3(1 —a)(1-b)(1—-c)+
+4ab(1 — ¢) + 4ac(1 — b) + 4be(1 — a) +
+a(l-=01T=c)+bl—-a)(l—c)+c(l=a)l-=0).

Vzhledem k poétu pouZitych ¢asti tak pro objem V nutné plati 1 £V <
<9.
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Kategorie A

Texty uloh

A-1-1
V oboru realnych ¢isel feste rovnici
V2(sint + cost) = tg®t + cotg® t.
(J. Svréek)

A-1-2

Necht ABCD je tétivovy étyfthelnik s navzajem kolmymi thlopiickami.
Oznac¢me po fadé p, ¢ kolmice z bodu D, C na piimku AB a déile X
prisecik pfimek AC a p a Y prusecik ptimek BD a q. Dokazte, ze XY CD

je kosoctverec nebo étverec. (E. Kovdc)
A-1-3

Posloupnost (a,)5%, nenulovych celych ¢isel ma tu vlastnost, Ze pro

kazdé n = 0 plati an+1 = a, — b,, kde b, je &islo, které ma stejné

znaménko jako ¢islo a,, ale opac¢né poradi ¢islic (zapis ¢isla b, muze
narozdil od zépisu ¢isla a,, za¢inat jednou nebo vice nulami). Napiiklad
pro ap = 1210 je a; = 1089, ay = —8712, a3 = —6534, ...

a) Dokazte, ze posloupnost (a,,) je periodicka.

b) Zjistéte, jaké nejmensi prirozené ¢islo mize byt ao. (T. Jurik)

A-1-4

Najdéte vsechny kubické rovnice P(z) = 0, které maji aspon dva ruzné
realné koreny, z nichz jeden je ¢islo 7, a které pro kazdé realné ¢islo t
spliuji podminku: Jestlize P(t) = 0, pak P(t + 1) = 1.

(Pavel Novotny)
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A-1-5

Jsou dany tusecky délek a, b, ¢, d. Dokazte, Ze konvexni étyithelniky
ABCD se stranami délek a, b, ¢, d (pfi obvyklém znaceni) existuji a pti-
tom thlopricky kazdého z nich sviraji jeden a tyz thel, pravé kdyz plati
rovnost a? + ¢? = b2 + d?. (J. Simsa)

A-1-6
Najdéte vsechny usporadané dvojice (x,y) prirozenych &isel, pro néz plati
z? +y? =2005(z — y).
(J. Moravcik)
A-S-1

Najdéte vSechny dvojice celych éisel x a y, pro néz plati

\/x\/S— \/y\/gz \/6\/5—10.

(J. Moravcik)

A-S-2

Je dan rovnostranny trojuhelnik ABC o obsahu S a jeho vnitini bod M.
Oznacme po tadé Ay, By, Ci ty body stran BC, CA a AB, pro néz plati
MA, || AB, MB, || BC a MC, || CA. Pruseciky os usecek M Ay, M B,
a M C tvori vrcholy trojuhelniku o obsahu T'. Dokazte, Ze plati S = 3T.

(J. Svrcek)

V oboru realnych ¢isel feSte rovnici

r—T

. T+,
1+ sin - sin

=0.
5 11
(J. Simsa)
A-1l1-1
Najdéte vsechny dvojice celych ¢isel a, b takovych, ze soucet a + b je
kofenem rovnice 22 + az + b = 0. (E. Kovdc)
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A-1l1-2

o0

Posloupnost realnych &isel (a,)5° ; spliiuje pro kazdé n = 1 rovnost

An4+3 — Qp42 . an+3 + an+2

Qp — Qn41 Ap + Qg1

a navic plati a;; = 4, ags = 2, azz = 1. Dokazte, ze pro kazdé prirozené
¢islo k je soucet
k k k
ay +ay + ...+ ajy

druhou mocninou prirozeného ¢isla. (J. Zhouf)

A-11-3
Je dan trojuhelnik ABC a uvniti ného bod P. Ozna¢me X prusecik
piimky AP se stranou BC a Y prusecik ptimky BP se stranou AC.
Dokazte, ze ¢tyftuhelnik ABXY je tétivovy, pravé kdyz druhy prusecik
(rizny od bodu C) kruznic opsanych trojihelnikim ACX a BCY lezi
na piimce C'P. (E. Kovac)

A-1l1-4
V oboru redlnych ¢isel feste soustavu rovnic

sin? 2 + cos? Yy = y2,

sin? Y+ cos? ¢ = 22
(J. Svréek)

A-11-1

Posloupnost (a,, )22, pfirozenych ¢isel ma tu vlastnost, ze pro kazdé n = 1
plati a1 = a, + by, kde b, je ¢islo, které ma opacné poradi ¢islic nez
¢islo a,, (zapis ¢isla b, mize na rozdil od zapisu ¢isla a,, zacinat jednou
nebo vice nulami). Naptiklad pro a; = 170 plati ap = 241, ag = 383,
ay = 766, ... Rozhodnéte, zda ay miize byt prvocislo. (Peter Novotny)

A-11-2
Necht m a n jsou prirozend ¢isla takova, ze rovnice
(z+m)(z+n)=x+m+n
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ma aspon jedno celociselné teseni. DokaZte, Ze plati

1 m 9
§<7”L—< s

(J. Simsa)
A-1I1-3

V trojtuhelniku ABC, ktery neni rovnostranny, oznaéme K prusecik osy
vnitiniho ithlu BAC se stranou BC' a L prusecik osy vnitiniho ithlu ABC
se stranou AC. Déle oznac¢me S stied kruznice vepsané, O stred kruZnice
opsané a V prusecik vysek trojuhelniku ABC. DokaZte, ze nasledujici
dveé tvrzeni jsou ekvivalentni:

a) Piimka KL se dotykd kruznic opsanych trojuhelnikim ALS, BV'S

a BKS.
b) Body A, B, K, L a O lezi na jedné kruznici. (T. Jurik)

A-1lll-4

Vv

V roviné je dana tisecka AB. Sestrojte mnoZinu t&zist vsech ostrouhlych
trojuhelnikt ABC, pro néz plati: Vrcholy A a B, prusecik vysek V' a
stfed S kruZnice vepsané trojuhelniku ABC' lezi na jedné kruZnici.

(J. Svréek)

A-1ll-5

Najdéte vsechny trojice navzajem riznych prvocisel p, g,  spliujici na-
sledujici podminky:

pla+r, q|r+2p, r|p+3q
(M. Pandk)

A-1lI1-6
V oboru redlnych ¢isel feste soustavu rovnic

tg? x + 2 cotg? 2y = 1,
tg?y + 2cotg?2z =1,
tg? z + 2 cotg? 2z = 1.

(J. Svréek, P. Caldbek)
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Reseni dloh

A-1-1

7 vlastnosti funkci tangens a cotangens vyplyva, ze t # k - %n, kde k je
libovolné celé ¢islo. Oznac¢me dale

L = V2(sint + cost) a P =tg*t 4 cotg®t.

S ohledem na periodi¢nost funkei sin, cos, tg, cotg staci rozlisit nasledujici
pripady.
> t e (0 %n): Pro kazdé takové t plati nerovnosti

1
sint + cost < /2 a tg3t+cotg3t:tg3t+m22.
g

Rovnost v kazdé z nich nastava, prave kdyz t = %n. Dostavame tak
odhad
L<V2-V2=25P

Rovnice L = P je tedy splnéna pouze v pripadé L = P = 2 a jediné
realné ¢islo ¢ z uvazovaného intervalu (0; 37, které dané rovnici vy-
hovuje, je t = %n.

>te (%T[; n): Pro kazdé takové t plati nerovnosti
sint + cost > cost > —1

a

1
tg®t + cotg®t = ~((~ tgt)® + W) <

Pro libovolné t z uvazovaného intervalu pak plati odhady
L>-V2>-22P

coZ znamena, Ze na tomto intervalu dana rovnice nema zadné reseni.

> t € (m; 7): Pro libovolné ¢ z uvazovaného intervalu jsou obé hodnoty
sint, cost zaporné (a hodnoty tgt, cotgt kladné), takze plati nerov-
nosti
sint + cost <0 a tg3t+cotg3t>0.
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Odtud L < 0 < P, a tudiZ ani na tomto intervalu dané rovnice nemé
zadné teSeni.

>te (%n; 27): Podobné jako v druhém pripadé odvodime, Ze pro libo-
volné ¢ z uvazovaného intervalu plati nerovnosti

sint + cost > —1 a tg®t 4+ cotg®t < —2.

Proto
L>-V2>-22P

coz znamena, ze ani v tomto pfipadé nema dana rovnice zadné reseni.

Zdaver. Vzhledem k periodi¢nosti uvazovanych goniometrickych funkei
jsou feSenim dané rovnice vSechna redlna ¢isla ¢ tvaru ¢t = %T( + 2km, kde
k je libovolné celé ¢islo.

A-1-2

Oznac¢me R prusecik uhlopricek daného ¢tyfihelniku a pro jednoduchost
také ¢, 1 velikosti uhlt CDR a DCR (obr. 23). ProtoZe thlopticky jsou
na sebe kolmé, je ¢ + 1 = 90°. Vzhledem k tomu, Ze oba vrcholy B, C

D
)
P
AR C
XxS<_ 4
\\
N\~
Y
: B
Obr. 23

lezi ve stejné poloroviné uréené tétivou AD, plyne z rovnosti pfislusnych
obvodovych thlt, ze [ ABD| = 1. A protoze DX je kolma na AB, je
rovnéz ¥ X DB| = ¢. To znamena, ze trojuhelnik X C'D je rovnoramenny
se zékladnou X C. Uplné stejné oviem zjistime, Ze i trojthelnik YCD je
rovnoramenny se zékladnou Y D. Plati tedy | X D| = |CD| = |CY|, takze
DX a CY jsou shodné a rovnobé&zné tsecky. To znamend, ze XY CD je
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rovnobéznik, ktery jak vime, ma tii strany shodné, tudiz je to kosoctverec
nebo ¢tverec.

Jiné FeSeni. Vyuzijeme ne zcela bé&Zzné znamy poznatek, Ze bod sou-
mérné sdruzeny s prusecikem vysek daného trojihelniku podle jeho libo-
volné strany lezi na kruznici trojuhelniku opsané.

Oznaéme R pruseéik thlopti¢ek daného c¢tyiuhelniku. Podle podmi-
nek ulohy je X prusecik vysek trojuhelniku ABD a Y prisecik vysek
trojuhelniku ABC'. Podle predchoziho tvrzeni je bod C obrazem bodu X
v osové soumeérnosti podle primky BD, takze R je stied tsecky XC.
Analogicky je R stied usecky Y D. Protoze tsecky XC a Y D jsou na
sebe kolmé, je XY C'D kosoctverec nebo ¢tverec.

A-1-3

a) Abychom dokazali, Ze uvazovand posloupnost (a,) je periodicka,
staci ukazat, ze existuji pfirozend cisla ng a p takova, 7e a,y4p = Gng.
Protoze kazdy dalsi ¢len posloupnosti je jednoznacné urcen predchazeji-
cim ¢lenem, bude uz pro kazdé n = ng platit a,4, = a, (posloupnost
bude [poéinaje ¢lenem a,,] periodickd s délkou periody p).

Cislo an41 = a, — b, ma ovSem nejvyse tolik éislic jako ¢islo a,,. To je
napiiklad vidét z nerovnosti |a — b| < max(|a|, |b]). Ma-li tedy pocatecni
¢len posloupnosti k ¢islic, budou vSechny ostatni ¢leny posloupnosti patrit
do koneéné mnoziny nejvyse 2(10% — 1) nenulovych celjch éisel. Protoze
posloupnost je nekoneéné, musi obsahovat aspon dva stejné ¢leny. Odtud
plyne, Ze uvazovana posloupnost je periodicka.

b) Protoze uvazovana posloupnost neobsahuje zadny ¢len rovny nule,
nemize byt jejim c¢lenem zadné palindromické ¢islo (Cislo, které ,pre-
Gteme” stejné odpredu i odzadu), specialné tedy ani éislo jednomistné.

Predpokladejme nejprve, Ze ¢lenem uvazované posloupnosti je kladné
dvojmistné ¢islo ag = ab = 10a + b, pro které a; = 9(a — b). Vidime,
ze vSechny dalsi ¢leny (zejména tudiz ty, které se budou periodicky opa-
kovat) musi byt délitelné deviti. Staci proto probrat vSechny dvojmistné

nasobky deviti 18,...,99. Jak snadno zjistime podle nasledujiciho sché-
matu,
81 g
18— =
36— 245
__— ~—
72 I
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pro kazdé takové ¢islo se mezi ¢leny posléze objevi jednomistna devitka.
To znamena, zZe uvazovand posloupnost nemiize obsahovat ani dvojmistna
gisla. (Cisla ve schématu jsou v absolutni hodnoté, protoze piislusna
zména znaménka nemé na pravé ziskany vysledek vliv. Podobné nemu-
sime zvlast vySetfovat ani pfipad zaporného dvojmistného é&isla ag.)

Predpokladejme déle, Ze ¢lenem uvazZované posloupnosti je trojmistné
¢islo ag = abc = 100a + 10b + ¢, pro které a; = 99(a — ¢). Opét stadi
prozkoumat jen trojmistna cisla 99, 198,...,990 (nasobky ¢isla 99). Po-
dobné jako v predchozim piipadé podle nasledujiciho schématu

891
198

zjistime, ze pro takova cisla se mezi ¢leny posloupnosti nakonec objevi
dvojmistné ¢islo 99. Posloupnost tedy nemtize obsahovat ani trojmistnd
cisla.

Protoze pro étyfmistné &islo ag = abed = 1000a+100b+10¢+d dosté-
vame a; = 999(a—d)+90(b—c), zjistime opét, Ze prvnich deset nejmensich
Ctyfmistnych ¢isel (pro néz je v prislusném desitkovém zapise b = ¢ = 0,
takze jako ¢leny posloupnosti vychazeji jen nasobky ¢&isla 999) c¢lenem
uvazované posloupnosti byt nemize: pro ¢isla 1000 a 1002 dostaneme
rovnou |a;| = 999, ¢islo 1001 je palindromické a pro ¢isla 1003, ...,1009
dostaneme |a;| = 1998,2997,...,8991 a podle obdobného schématu

2997
67 24995
> 999

po nékolika krocich trojmistné ¢islo 999. Pro nésledujici ¢tyfmistné ¢islo
1010 dostaneme trojmistné ¢islo 909 a pro 1011 dokonce dvojmistné
¢islo —90. Teprve pro ¢islo 1012 dostaneme posloupnost ¢tyfmistnych
cisel

~1089, 8712, 6534, 2178, —6534,

ktera se zfejmé po dalsim ¢lenu zacykli.
Zdvér. Nejmensi mozné ¢islo ag je 1012.
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A-1-4

Podle zadani ma mit kubicka rovnice P(z) = 0 dva rtzné redlné koteny,
oznafme je r1 = 7 a w3 # x1 (konkrétni hodnotu z; = 7 vyuzijeme, jen
kdyz to bude vhodné, jinak budeme radéji psat obecné x1). Pro kubicky
mnohoclen P(z), jeho# koeficient u mocniny z* oznac¢ime a, a # 0, pak
existuje jesté realné cislo zg takové, ze plati rozklad

P(z) = a(z - 21)(x — 2)(x — 72) 1)

(nejsou vylouceny rovnosti x3 = x; nebo x3 = x9).

Pripomernime, jak existenci tretiho redlného kotene x3 zduvodnit: ku-
bicky mnohoélen P(z) je nutné délitelny mnohoélenem (x — z1)(x — x2),
prislusny podil je linearni dvojclen s vedoucim koeficientem a, tedy dvoj-
¢len ax + b, ktery lze zapsat jako a(x — x3), zvolime-li 3 = —b/a.

Nasi tulohou je najit vSechny vyhovujici trojice ¢isel a # 0, o # a1
a xg, pro které mnohoélen (1) s danou hodnotou z; = 7 spliuje pro
kazdé realné ¢ implikaci P(t) = 0 = P(t 4+ 1) = 1. Pro rozbor takové
podminky je nezbytné védét, pro kolik rizniyjch hodnot ¢ rovnost P(t) = 0
(a tedy i rovnost P(t + 1) = 1) skuteéné plati, tedy kolik je v trojici 21,
To, x3 ruznych ¢isel. A priori mohou nastat pouze nasledujici moznosti
A BaC.

A. 1, x9, T3 jsou tFi navzajem riznd cisla.
Tehdy ma kubicka rovnice P(x) = 1 t¥i navzajem rizné kofeny x1+1,
g9 + 1, x3 + 1, takze plati rozklad
Plx)—1l=a(lz—21—1)(z —a2 —1)(z — 23 —1).
Dosadime-li sem rozklad (1), dostaneme rovnost mnohoclentt
alz—x1)(x—20) (T —23) -1 =a(v—21 —1)(r—22 —1)(x—23—1). (2)

Porovnanim koeficientt u mocniny 22 na levé a pravé strané obdrzime
rovnici
—a(zy + x9 + x3) = —a(x; + x2 + 23 + 3),

ktera je splnéna pouze v pripadé a = 0, coz odporuje predpokladu a # 0.
(Navic rovnost (2) neplati ani pro a = 0, kdy mé tvar —1 = 0.)

B.zy =23 ="T7%# xs.

Tehdy P(z) = a(x — 7)%(x — x2) a rovnost P(z) = 1 musi platit pro
r=7+1=28aprox=xy+ 1. Dostavame tak soustavu dvou rovnic

P(8)=a(8—x2)=1 a P(za+1)=a(zs—6)>=1.
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Prevracena hodnota ¢isla a je tedy rovna jak é&islu 8 — x5, tak ¢islu
(2 — 6)2. Z rovnice
8 — 29 = (x5 — 6)2

dostaneme tpravou rovnici 3 — 11xy + 28 = 0, ktera ma dva kofeny
Ty =4 a 29 = 7. Druhy kofen nevyhovuje nasi podmince xy # z1, takie
nutné plati 2o = 4, odkud a =471 =  a P(z) = $(z — 7)%(z — 4).
C.ay=7%# 29 = 3.
Tehdy P(x) = a(z — 7)(x — 22)? a rovnost P(z) = 1 musi platit pro
r=741=8aprox =z + 1. Dostavame tak soustavu dvou rovnic

P(8)=a(8—z9) =1 a P(zy+1)=a(zy —6)=1.

Prevracena hodnota éisla a je tedy rovna jak &islu (8 — 2)?, tak éislu
9 — 6. 7 rovnice
(8—1‘2)2 :IQ—G

dostaneme tipravou rovnici 2% — 1729 4+ 70 = 0, kterd ma dva kofeny

xy = 10 a 29 = 7. Druhy kofen nevyhovuje nasi podmince o # x1, takze

nutné plati 23 = 10, odkud a =471 = 1 a P(z) = 1(x = T7)(z - 10)2.
Zdvér. Podminkam tlohy vyhovuji pouze dvé kubické rovnice

%(”c ~7?(z—-4)=0 a %(m —T)(z —10)2 = 0.

Pozndmka. MoZznost A v uvedeném fesSeni miZzeme vyloucit diky na-
sledujici tvaze: Kdyby mél mnohoélen P tfi rizné koteny k, [, m, mél
by mnohoclen P — 1 dle predpokladu koteny k + 1, [+ 1, m + 1. To vsak
neni mozné, protoze soucet korenii mnohoclenu P je stejny jako soucet
kotent mnohoc¢lenu P — 1.

A-1-5

V libovolném konvexnim ¢tyfuhelniku ABC D ozna¢me S prusecik uhlo-
piicek a kromé délek stran uvazujme jesté veliciny e = |AC|, f = |BD|,
e; = |AS], e = |CS|, f1 = |BS|, fo = |DS| a ¢ = |<ASB|. Podle

kosinové véty plati rovnosti

a’> = el + ff — 2e1ficosp,
b = e + f2 4 2esf1 cos g,
= e% +f22 — 269 f3 cos @,
d? = c% +f22 + 2e1 fo cos p.
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Secteme-li prvni rovnost s tieti a od vysledku odeéteme soudet druhé
a ctvrté, dostaneme

(a® +¢) = (b* +d?) = —2(erfr + eafa + e2f1 + e1f2) cos p,

neboli
(a® +c?) — (b? 4 d*) = —2ef cos . (1)

Odtud plyne takovy zavér: plati-li rovnost a?+¢? = b%+d?, pak v kazdém
uvazovaném ctyftuhelniku je cosp = 0, tedy tihel ¢ je vzdy pravy a délky
stran maji vyjadreni

A=+ fl =2+ f2 P=e2+f2, d*=e+ fL (2)

Abychom uzavieli prvni ¢ast feSeni, zdtivodnime jesté, Zze takové Ctyi-
thelniky (pro jakékoliv délky a, b, ¢, d spliiujici vztah a? + ¢? = b% + d?)
existuji. Jisté mizeme predpokladat, Ze plati d = min{a, b, ¢, d}; délku e;
pak zvolime v intervalu (0, d) libovolné a podle (2) urcime

fi=yJa? —¢€i, fr=\/d*—é},

ey =/c? —d? +é? <: b2—a2+e%)

(vzhledem k u¢inénému predpokladu je ¢? —d? = 0). Tim je existence vy-
hovujicich ¢tyfihelniki (s navzajem kolmymi thlopiickami) prokézana.
V druhé ¢asti feSeni budeme naopak predpokladat, ze aspon jeden
konvexni ¢tyftuhelnik AgBoCy Dy se stranami danych délek a, b, ¢, d exis-
tuje; z ivahy o draténém modelu ¢tyiahelniku je jasné, ze vyhovujicich
konvexnich étyfuhelniki ABC'D (tvarové blizkych AgBoCoDy) je pak
nekoneéné mnoho; jejich vnitini thly «, v u vrcholi A, C jsou vazany

podminkou
a’? + d® — 2ad cosa = b% + ¢* — 2bccosy (3)

(porovnani délky spole¢né strany BD trojihelnikit ABD a BCD). Pii-
pustme, Ze uhlopficky vsech téchto ¢tythelniku sviraji tyz thel ¢ a Ze
levd strana rovnosti (1) je nenulovd (podle jejiho znaménka je thel ¢
bud ostry, nebo tupy, takze se nemlze stat, ze pro ¢ast vyhovujicich
¢tyithelniki méa velikost g, a pro ostatni m — ¢g). Pak z rovnosti (1)
muzZeme vypocitat soucdin ef, ktery je tudiz pro vSechny vyhovujici étyi-
thelniky stejny; ze vzorce pro jejich obsah S = %ef sin ¢ nakonec plyne,
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ze 1 hodnota S je jedna a taz. ProtoZze obsah S miZeme vyjadiit i vzorcem
S = %ad sin o + %bc sin vy, dochazime k zavéru: existuji takové konstanty
Ry a Ry, Ze vSechny vyhovujici ¢tyithelniky spliuji vztahy

adcosa — becosy = Ry, adsina + besiny = Ry
(prvni vztah je dusledkem (3), ve druhém Ry = 2S5 > 0). Z nich dale
vyplyva
(be)? = (becos)? + (besiny)? = (adcosa — Ry)? + (Ry — adsin o)? =
= (ad)® + R} + R3 — 2ad(R; cosa + Ry sin ).
Protoze ad # 0, 1ze z posledni rovnosti vypocitat hodnotu vyrazu
V = Ry cosa + Ry sina,

ktera je tudiz pro vSechny vyhovujici ¢tyiuhelniky ABC D stejna. To je
mozné jediné tehdy, kdyz Ry = Ry = 0, a to je spor s tim, ze Ry > 0.
Dikaz druhé ¢asti tvrzeni je hotov.

Dodejme, ze zavér o hodnotach vyrazu V' plyne ze zndmého vyjadreni

1
V = ———sin(a + w),
R} + R3
kde thel w je urcen vztahy

. Ry os Ry
SIMW = —F/———————— a COSW = —F——————.
VR?+ R2 VvV R? + R3

Vyraz sin(a + w) neni konstantni, kdyz se ihel o méni v okoli tthlu ag
(jenz odpovida vychozimu ¢tyfuhelniku AgBoCoDg z tvodu druhé casti
Feseni).

A-1-6

Odvodime nejprve, jak vypada kazda dvojice (x,y) prirozenych ¢isel,
ktera vyhovuje rovnici

2 +y* = k(z —y) (1)

s danym piirozenym d&islem k (a teprve pak vSechna tato feSeni pro hod-
notu k = 2005 sestrojime).
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Predpokladejme, Ze (x,y) je libovolné feseni rovnice (1), kterou ob-
vyklym zplisobem upravime do ,soucinového tvaru

y(y + k) = z(k — ). (2)

Provedeme uvahu o soudélnosti zastoupenych ¢initelti: ozna¢me d nejvétsi
spoleény ddélitel piirozenych ¢isel x a y, takze plati @ = dm a y = dn, kde
m a n jsou nesoudélna prirozena ¢éisla. Po vydéleni obou stran rovnosti (2)
¢islem d dostaneme ,,vyhodnégjsi“ rovnost n(y+ k) = m(k — ). Z ni totiz
vzhledem k nesoudélnosti ¢isel m, n plyne, ze piirozené ¢islo y + k je
nasobkem ¢isla m a ¢islo k — = stejnym nésobkem ¢isla n. Pro vhodné
prirozené ¢ tedy plati rovnosti

y+k=qm a k—x=qn.
Vyjadfeme odtud dvojim zptsobem ¢islo k£ a obé vyjadieni porovnejme:

k=qm—y=qgm—dn, P d (g—d) (g
= gm—dn = qgn+dm = m(q¢—d) =n .
k=qn-+x=qgn+dm an 1 E E

Odtud opét z nesoudélnosti ¢isel m, n plyne, ze piirozené ¢islo ¢ + d je
nasobkem ¢&isla m a ¢islo ¢ — d stejnym nasobkem ¢isla n. Pro vhodné
prirozené r tedy plati rovnosti

qg+d=rm a q—d=rn.

Jejich sec¢tenim a odectenim dostaneme nésledujici vyjadreni ¢isel ¢ a d
pomoci 7, m a n:
r(m+n)
¢=——F—" a d=—F—7,
2 2
odkud jiz pro neznamé z, y dostavame konecné vzorce

¥ —n)m rm —n)n
£ == DB g, BB TG

5 5 (3)

Zjistéme nyni, jak souviseji parametry r, m, n s danym koeficientem
k z ptivodni rovnice (1). Mizeme postupovat napiiklad tak, Ze odvozené
vzorce dosadime do rovnosti k = gn + a:
r(m+n)n  r(m—n)m  r(m?*+n?)

k: = ] 5
G 5 T 2 2
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odkud po néasobeni dvéma dostaneme hledanou podminku ve tvaru
2k = r(m? + n?). (4)

Jiny zptsob odvozeni rovnosti (4), ktery je soucasné piimou ,zkous-
kou“ vzorci (3), spociva v tom, Ze z nich snadno plynou vyjadieni
2 2 (2 2
9 o r¥(m—=n)*(m*+n?)
Tt + Yyt = s
4
r(m —n)?
2 ¥

T—y=

ze kterych vidime, Ze rovnice (1) je pro takova x, y splnéna, pravé kdyz
je splnéna podminka (4). Nez zformulujeme dokézany vysledek, dodejme
jesté, ze podle vzorct (3) museji Cisla m, n splitovat nerovnost m > n.
Proto plati nasledujici véta.

Je-li k dané prirozené &islo, pak resenimi rovnice 2 + y* = k(x — y)
jsou pravé ty dvojice prirozenych cisel x a y, které jsou tvaru

r(m —n)m r(m —n)n
ST g =
2 2 ’

kde r, m, n jsou prirozend cisla, pro néz plati rovnost 2k = r(m?* + n?),
pricemz ¢isla m a n jsou nesoudélnd a m > n.

7 dokazané véty plyne recept, jak vSechna feeni rovnice z2 + y? =
= k(z — y) pro dany koeficient k sestrojit: uvazime vsechny mozné roz-
klady c¢isla 2k na dva ¢initele, 2k = rs, a pro kazdy z nich pak najdeme
vyhovujici ¢sla m, n z rovnosti m? 4+ n? = s. Pak uz nezbyva nic jiného,
nez ze pro kone¢né mnoho ¢isel m, jez jsou s ¢islem s nesoudélné a spliuji
nerovnosti m? < s < 2m?, testujeme, zda rozdil s — m? je druhou moc-
ninou pfirozeného ¢isla. Pro dané k = 2005 = 5 - 401 (401 je prvocislo)
existuji tyto rozklady (protoze m?+n? 2 22+1% = 5, vynechdme rovnou
rozklady, v nichZ je ¢initel s = m? + n? mensi nez 5):

(i) » = 802, m? + n? = 5. Ziejmé m = 2 a n = 1, odkud = = 802

ay = 401.
(ii) r = 401, m? 4+ n? = 10. Ziejmé m = 3 an = 1, odkud =z = 1203
ay = 401.

(iii) 7 = 10, m? 4+ n? = 401. Plat{ 15 £ m < 20, vyhovuje pouze m = 20,
kdy n =1, 2 =1900 a y = 95.

(iv) 7 =5, m? 4+ n? = 802. Plati 21 < m < 27, probereme pouze lichd m,
vyhovuje jen m = 21, kdy n = 19, z = 105 a y = 95.
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(v) r = 2, m? + n? = 2005. Plati 31 < m < 44, probereme pouze m
nesoudélnd s ¢islem 5, vyhovuje jednak m = 39, kdy n = 22, = = 663
ay = 374, jednak m = 41, kdy n = 18, z = 943 a y = 414.

(vi) 7 = 1, m? + n? = 4010. Plati 45 < m < 63, probereme pouze m
nesoudélna s ¢islem 10, vyhovuje jednak m = 59, kdy n = 23, =z =
= 1062 a y = 414, jednak m = 61, kdy n = 17, x = 1342 a y = 374.

Zdvér. Uloha ma pravé osm feseni (x,y). ZapiSeme je v rostoucim
poradi podle prvni slozky a: (105,95), (663,374), (802,401), (943,414),
(1062, 414), (1203,401), (1342, 374), (1900, 95).

Pozndmky. Vsimnéme si, ze téchto osm dvojic (x,y) ma pouze Ctyfi
ruzné slozky vy (kazdé y je zastoupeno ve dvou dvojicich). To lze vysvétlit
takovym pozorovanim: ma-li pro nékteré prirozené y kvadraticka rovnice

2% — 20052 + (y* +2005y) = 0

aspon jedno feseni x v oboru prirozenych ¢isel, ma v tomto oboru dvé
ruznd feSeni. Snadné vysvétleni plyne z Vietovych vzoreu: je-li x; celoci-
selny kofen této rovnice, je i druhy kofen xo = 2005 — x; celé ¢islo (ruizné
od z1); z rovnosti x122 = y* + 2005y plyne, Ze oba kofeny 1, zo maji
stejné znaménko, nebot y? + 2005y > 0.

Necht dvojice (z,y) ptirozenych éisel je feSenim dané rovnice, takze

x > y. Po upravé

2(z? 4+ y?) = 2-2005(z — y),
(z+y)* 4 (2005 — z + y)? = 2005> (1)
zjistujeme, Ze je navic 0 < z +y < 2005 a 0 < 2005 —x +y < 2005.
Vsechna FeSeni pythagorejské rovnice X2 4+ Y? = Z2 dovedeme popsat:
trojice (X,Y, Z) nesoudélnych prirozenych ¢isel je feSenim uvedené rov-
nice, pravé kdyz existuji nesoudélnd prirozena cisla u, v takova, ze u > v,
uv je sudé a az na pripadnou vymeénu ¢isel X a Y plati rovnosti

X =2u, Y =u? -2, Z =u?+2

Odtud plyne dalsi mozny postup reseni dané rovnice.
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A-S-1

Z tvaru dané rovnice ihned plyne, 7e 2 > y = 0 (nebot 6v/5 — 10 > 0).
Pro takova z, y mizeme umocnit obé (kladné) strany rovnice na druhou
a provést dalsi ekvivalentni tpravy:

V5 — 2/5zy + yv/5 = 6v5 — 10,
x—2/Ty+y=6—2V5,
z+y—6=2(y/zy — V5). (1)

Umocnénim a dalsi upravou dostaneme, 7ze pro hledand cela éisla x, y
musi platit

(z+y—6)* =4(zy — 2y/5zy +5),
8v/5zy = 4(zy +5) — (z +y — 6)% (2)

Z posledni rovnice plyne, Ze hodnota /5y je racionélni, a tedy celé &islo,?
takze 5xy je druhd mocnina nezaporného celého disla, jez je ziejmé déli-
telné péti.®> Plati tedy 5xy = (5k)? neboli zy = 5k2, kde k je nezaporné
celé ¢islo. Uz ted je vyhodné dosadit ne do rovnice (2), ale rovnou do
rovnice (1). Dostaneme totiz rovnici

z+y—6:2(v5k2—\/5) neboli x4y —6=2(k —1)V/5,

odkud diky iracionalité ¢isla /5 vyplyva, ze ke splnéni rovnice (1) je
nutné a staci, aby platily obé rovnosti k =1 a x +vy — 6 = 0. Ze soustavy
rovnic

xy=5k=5 x+y==6

snadno zjistime, ze {z,y} = {5,1}, tedy @ = 5 a y = 1, nebot = > y
podle Givodni tivahy.
Hledana dvojice (x,y) je jedind, a to (x,y) = (5,1).

A-S-2

Oznaéme P, @, R vrcholy vzniklého trojuihelniku. Protoze kazda z os
usecek M Ay, M By a MC} je kolma na odpovidajici stranu trojuhelniku

4 Druha odmocnina nezaporného celého éisla je bud ¢islo celé, nebo ¢islo iracionalni.
5 Je-li n celé a n? je délitelné péti, je i n délitelné péti.
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ABC, sviraji kazdé dvé ze stran trojuhelniku PQR thel 60°, takze se
jedné o rovnostranny trojuhelnik (obr.24).

C

Obr. 24

Ukazeme nyni, ze soucet délek tusecek MA;, MBy a MCy je (ne-
zavisle na poloze bodu M) roven délce a strany vychoziho trojihelniku
ABC. Ozna¢me proto po fadé Bg, Cy a Ay priuseciky piimek M A, M B,
a M C sestranami CA, AB a BC. Protoze trojuhelniky M Ay Ay, M B1Bs
a M C,Cy jsou rovnostranné, je

|MAy|+ [MBy| + [MCy| = |A1As| 4 |A2C| + |A1B| = |BC| = a.

Pro libovolny (vnitini) bod rovnostranného trojuhelniku plati, Ze
soucet jeho vzdalenosti od vsech stran trojtihelniku je roven prislusné
vysce. To je snadno vidét napi. z vyjadieni obsahu takového trojihel-
niku jako souctu obsaht t¥i trojuhelnikt tvorenych danym (vnitinim)
bodem a dvojici vrcholti. Protoze bod M ma od stran (rovnostranného)
trojihelniku PQR vzdalenosti |MA;|, 3|MBy| a 3|MCy|, ma vyska t
tohoto trojtthelniku velikost ¢t = 1 (|M Ay |+ |[M By| + |MCy|) = 3a. Pro-
toze pro vysku v rovnostranného trojuhelniku ABC plati v = %a\/§, je
S = %av = 142,/3. Podobné pro obsah T trojihelniku PQR s vyskou t

3
dostavame

T

3

\/—2 \/—0«2 \/_ v\ 2
= Te=2(5) - g(ﬁ):@’:%s’

neboli S = 3T, coZ jsme chtéli dokazat.
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A-S-3

Protoze vsechny hodnoty funkece sinus lezi v intervalu (—1,1), je soucin
dvou hodnot sinu roven ¢islu —1, jen kdyZ je jedna hodnota 1 a druha
hodnota je —1. Cislo € R je tedy fesenim dané rovnice, pravé kdyz
existuji ¢isla k,l € Z takova, Ze plati dvojice rovnosti

TH+w
= :E+21€K, I+K:—-E+2kn,
J 2 b 5
T — T T l nebo T —T Is l
= —— 2 = — T
11 g Hem T R

Vyftesime-li tyto linedrni rovnice, dostaneme vyjadieni

3 7
x:?n—klOkn, z:——n—*—lOkn,
9 nebo 13§
17‘—‘—3—*—2217{, $:~—2'—+22ZT(

Najdeme nyni vsechny dvojice celych ¢isel (k, (), pro néz plati

3 9 7 13
7“ + 10kn = ~—23 +22ln, resp. — ?“ + 10kn = TK + 221

Snadnou upravou téchto rovnic (véetné kraceni ¢islem 2r) dostaneme
5k +3 =111, resp. bk —5=11L

Upravime-li prvni rovnici na tvar 5(k — 6) = 11(l — 3), pak tvahou o dé-
litelnosti nesoudélnymi ¢isly 5 a 11 zjistime, ze vSechna celoc¢iselna reseni
takové rovnice jsou tvaru k = 6+11n al = 3+ 5n, kde n € Z. Dosazenim
do prislusného vzorce pro z tak dostavame prvni skupinu feseni

3 3
¢ = —; 4 10kn = ?’T +10(6 + 11n)x = 61,57 + 110n~.

Podobné z druhé rovnice 5k — 5 = 111 upravené do tvaru 5(k — 1) = 11/
zjistime, Zze k = 1+ 11n, [ = 5n pro libovolné n € 7, takze druha skupina
FeSeni méa vyjadreni

7 7
5= —Eﬂ + 10kn = *—25 +10(1 + 11n)x = 6,57 + 110nT.
Shrnuti: VSechna feSeni dané rovnice jsou dana vzorci

xr=0615n+110nt a x =651+ 110nt, kden e Z. (1)
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Protoze 61,5 — 6,5 = 55 = %, lze vSechna feSeni zapsat jednim vzorcem

x =651+ 55nx, kdene€ Z. (2)

Jiné feSeni. Diky goniometrickému vzorci

cos(A — B) — cos(A + B)
2

sinAsin B =
lze rovnici 1 + sin Asin B = 0 pfepsat do tvaru
cos(A+ B) —cos(A—B) =2.
S ohledem na obor hodnot funkce kosinus je posledni rovnice splnéna,

pravé kdyz plati cos(A + B) = 1 a cos(A — B) = —1. Pro zlomky A, B
z puvodni rovnice tak dostavame soustavu rovnosti

T+ r r—T

A+ B = =2k
+ 5 + I T,
T+ r—T
A-B= - =1+ 2lx,
5 T

ktera musi platit pro vhodné ¢isla k,[ € 7. Sectenim a odec¢tenim dosta-
neme

Tr+r
5

T T—7 T
—§+(/€—|—l)n a 17 ——§+(k—l)n,

odkud dvojim zpusobem vyjadfime neznamou x:
3 9
= §+5(k+z)n: ——273+11(k_z)n.

Snadno zjistime, Ze ¢isla k, [ jsou zde svazéana podminkou 3(k — 1) = 81,
coz znamena, ze [ = 3n a k = 8n + 1 pro vhodné n € 7. Dosazenim do
vzorce pro x tak dojdeme ke stejnému vyjadieni

13
x = —21 4 550w = 6,57 + 550w

jako v prvnim feseni.
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A-I1l1-1

Hledéme celd &isla a, b, pro ktera (a + b)? + a(a + b) + b = 0, co% je pro
neznamou b kvadratickd rovnice b + (3a + 1)b 4 2a® = 0 s celociselnymi
koeficienty. Ta ma celo¢iselny kofen, jediné kdyZ je jeji diskriminant

D=Ba+1)*-4-2a>=(a+3)2-8

uplny ¢tverec. Ten je pfitom o osm mensi nez jiny Gplny ¢tverec (a + 3)2.
Jak snadno zjistime (rozdily druhych mocnin dvou sousednich piiroze-
nych ¢isel postupné rostou), rozdil 8 maji pouze tiplné ¢tverce 9 a 1, takze
(a+3)? =9, odkud plyne a = —6 nebo a = 0. Pro a = —6 vychazi b = 8
ab=29, proa =0 vychdzi b =0 a b = —1. Dostavame tak étyii feseni:
(a,b) je jedna z dvojic (—6,8), (—6,9), (0,0), (0, —1).

Poznamky. Zvolime-li za nezndmou a misto b, vyjde rovnice
2a* +3ba + (b* +b) =0

s diskriminantem D’ = 9b? — 8 - (b*> + b) = (b — 4)? — 16; Gplné Etverce
lisici se o 16 jsou pouze 0, 16 a 9, 25.

Ulohu nalézt dva tplné &tverce 22 a y? s danym rozdilem d lze pro
malé hodnoty d (jako d = 8 ¢i d = 16 v nasi tloze) vyfesit otestovanim
nékolika prvnich ¢tvercua 0, 1, 4, 9, ... Pro jakékoli pfirozené d lze po-
2 — y? = d upravime na (z — y)(z +y) = d
a vypiSeme vSechny rozklady daného ¢isla d na soucin d;d, dvou celoci-
selnych ¢initeli; z rovnic dy = z—vy, dy = x+y pak vypocteme pfislusna x

stupovat tak, Ze rovnici x

avy.

A-11-2

Nejdrive dokazeme, Ze pro ¢leny zkoumané posloupnosti (a, )0, plati:
rovnost a,, = 0 je splnéna pro nékteré prirozené n, pravé kdyz pro totéz n
plati a,, 43 = 0. Skute¢né, je-li a,, = 0, pak jmenovatelé zlomkt v zadané
rovnosti jsou navzdjem opacnd (nenulova) ¢isla, takze takovi musi byt
i jejich ¢itatelé. Z rovnosti

Up43 — Ap42 = *(an-}-?’ 1 an+2)

uz plyne a, ;3 = 0. Obréacené, plati-li a,,+3 = 0, jsou ¢itatelé zminénych
zlomkii navzajem opac¢nd ¢isla, takze takovi musi byt i jejich jmenovatelé,
odkud a, = 0.
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Dokazana vlastnost ma tento dusledek: z podminky assz # 0 plyne
asi # 0 (pro kazdé k 2 1), z ase # 0 plyne aszry1 # 0 a z a;; # 0 plyne
askyo # 0 (vzdy pro kazdé k = 0). Dohromady vychézi, ze Zddny ¢len a,,
zkoumané posloupnosti neni roven nule.

Z rovnosti ze zadani plyne rovnost

(an+3 - an+2)(an + an-}—l) - (an+3 + an+2)(an - an+1),

z niz po roznasobeni a nasledném zjednoduseni dostaneme (pro libovolné
prirozené n)
An4+10n4+3 = ApQp42.

Zvétsime-li n o 1, dostaneme analogicky vztah, ktery plati pro libovolné
nezaporné celé n:

An4-20n4+4 = Qp410n43.

Vynésobime-li obé rovnosti a vysledek zkratime (nenulovym!) ¢islem
G100 +20n+3, Vyjde aprq = an, tj. dand posloupnost ma periodu 4.
Proto a; = ass =1, as = age = 2, a3 = ay; =4, ag = ayas/ay = 2, tudiz

¥ +af + .. +akyy = 25(1% + 28 + 45 4 2%) = (5(1 + 2%))°.
Tim je dukaz hotov.
A-11-3
Dané ¢tyii body A, B, X, Y lezi na kruznici (obr.25), pravé kdyz
|PA|-|PX|=|PB|-|PY].

Kruznice opsana trojuhelniku AC'X protne poloptimku opa¢nou k polo-

Obr. 25
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primce PC v bodé, ktery oznacime D. Pro tento bod plati
|PA|-|PX| = |PC|-|PD|.

Rovnost z prvni véty feSeni tedy nastane, pravé kdyz plati
|PB|-|PY|=|PC|-|PD|.

Tato rovnost je splnéna, pravé kdyz bod D lezi na kruZnici opsané troj-
thelniku BCY', tedy pravé kdyz je bod D # C druhym priisecikem kruz-
nic opsanych trojuhelnikim ACX a BCY'. Dukaz je hotov.

Pozndmky. Ulohu je mozné ihned vyfesit na zakladé poznatku o tom,
jak vypada mnozina vSech bodu, které maji stejnou mocnost ke dvéma
danym kruznicim. Je to vzdy piimka (zvana chordala), jez je kolma ke
stfedné obou kruznic a prochézi jejich spolec¢nymi body (pokud existuji).
Rovnost z prvni véty feSeni proto vyjadiuje pravé to, ze bod P lezi na
chordale kruznic opsanych trojihelnikim ACX a BCY'.

A-1l1-4

Predné si uvédomme, Ze s kazdym redlnym fesenim (z,y) dané soustavy
rovnic jsou jejimi feSenimi také dvojice (z, —y), (—z,y) a (—x, —y), Stadi
se proto omezit na feSeni v oboru nezapornych realnych ¢isel. Navic s kaz-
dym Tesenim (x,y) je feSenim dané soustavy i dvojice (y,x). MuZeme
proto dale piedpokladat, ze 0 < z < y.

Prepisme nejprve obé rovnice soustavy pomoci téhoz znamého vzorce
cos? v = 1 —sin’ a:

sin2x+1~sin2y= 2,

sin® y+1-— sin®z = 22,
Seétenim obou rovnic pak dostaneme
24+ 9? =2. (1)

Odec¢teme-li druhou rovnici od prvni, dostaneme

2sin2z~2sin2y=y2—1‘2,

neboli
2(sinz + siny)(sinz — siny) = y* — 2”. (2)
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Za uvedeného predpokladu 0 < z < y ze vztahu (1) navic plyne, Ze
0Zz<y<V2< %Tt, a protoze funkce sinus je v intervalu (0, %n) neza-
porné a rostouci, vidime, ze pro takova realna ¢isla  a y je leva strana
rovnice (2) nekladnd, zatimco pravé strana je nezaporna. To znamenad, Ze
musi byt y? — 22 = 0, coz za uvedenych pfedpokladii dava = = 1y a spolu
s (1) tak mame x =y = 1.

V oboru nezédpornych redlnych ¢éisel ma dand soustava rovnic jediné
feseni, a to (z,y) = (1,1).

Zaver. Dana soustava rovnic ma pravé ¢tyfi feSeni v oboru realnych
¢isel. Jsou jimi nasledujici dvojice: (1,1), (1,-1), (=1,1) a (=1, —1).

A-llI-1

Dokazeme, ze ¢len a7 je vidy slozené ¢islo délitelné jedenacti. Klicem
k feseni tilohy je kritérium délitelnosti jedendacti. Je-li ¢rcr 1 ..~ ¢1co zapis
¢isla m v desitkové soustavé, dava ¢islo m pri déleni jedendcti stejny
zbytek jako stiidavy soucet jeho ¢islic:

zb(m) =cog —c1 4¢3 — ...+ (=1)Fey.

Pro zbytek cisla b,,, které ma opacné potadi ¢islic nez ¢islo a,, tedy
plati, ze je zb(b,) = £zb(a,) podle toho, je-li pocet &islic ¢isla a,, li-
chy ¢i sudy. Proto je-li néktery c¢len uvazované posloupnosti délitelny
jedendcti, jsou jedendcti délitelné i vSechny nasledujici ¢leny. Navic
jakmile ma néjaky ¢len a,, uvazované posloupnosti sudy pocet cislic, je
zb(an,) = —zb(b,), takze a, 11 = a,+b, je uz délitelné jedendcti (a stejné
tak i dalsi ¢leny).

Posloupnost (a,,) je zfejmé rostouci. Ma-li ¢len a; sudy pocet ¢islic,
bude jiz ¢len ay slozené ¢islo délitelné jedenacti s vyjimkou pfipadu a; =
= 10, kdy ovSem a3 = 22. Staci tedy ukazat, Ze i pro ¢isla a; s lichym
poc¢tem ¢islic bude mezi prvnimi Sesti ¢leny posloupnosti vzdy aspon
jeden ¢len se sudym poctem c¢islic. Dokazeme to sporem v nasledujicim
odstaveci.

Predpokladejme naopak, ze vSechna ¢isla ay, as, . .., ag maji lichy po-
et ¢islic. Oznaéme ¢ prvni a d posledni éislici ¢isla ap, takze 1 < ¢ <9
a0 <d <9 (v piipadé jednomistného a; klademe ¢ = d). Cislo b; pak
bude formalné zacinat ¢islici d a konéit ¢islici ¢, a protoze predpokladame,
ze Cislo ag = a; + by ma rovnéz lichy, tedy stejny pocet ¢islic, musi byt
¢+ d < 10. To bude tedy ¢islice na jeho poslednim misté, zatimco na
prvnim misté bude stat ¢ + d nebo ¢+ d + 1 (podle toho, zda pfi scitani
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doslo na predposlednim misté k pfechodu pfes desitku), v kazdém pripadé
bude na prvnim misté ¢islice aspori ¢ +d. Podobné postupné zjistime, Ze
prvni Cislice ¢isla ag = as + by bude aspon 2(c + d), prvni dislice éisla
a4 = agz + bz bude aspon 4(c + d), prvni ¢islice ¢isla as = a4 + by bude
aspon 8(c 4 d) a prvni dislice ¢isla ag = as + bs bude aspont 16(c + d).
Protoze 1 £ ¢+ d < 10, nemiZe uz ziejmé byt 16(c + d) < 10. Aspori
v jednom z &isel ag, as, ..., as se tudiz podet ¢islic zvysil z lichého poctu
na sudy.
Tim je uloha vyteSena. Dokéazali jsme, Ze a7 neni nikdy prvocislo.

Pozndmka. Pro a; = 10220 vyjde ag = 185767, coz je prvocislo.

A-1l1-2
Ukazeme, ze z predpokladu tlohy plynou silngjsi odhady
1 1 m 2
-4+ -<—<2- -~ 1
2 N no-on n (1)

Danou rovnici nejprve upravime do tvaru
(z+m—1)(z+n)=m.

Je-li v této rovnosti x celé ¢islo, dostavame rozklad prirozeného ¢isla m
na soucin dvou celych &isel, kterd tudiz lezi obé bud v intervalu (1, m),
nebo v intervalu (—m, —1). V kazdém pfipadé rozdil téchto dvou éisel
neprevysuje (spoleénou) délku obou intervalt:

(z4+n)—(z+m—1)<m—1, neboli n < 2m -2,
odkud plyne dolni odhad (1). Vzhledem k symetrické roli ¢isel m a n
plati rovnéz nerovnost m < 2n — 2, kterd vede na horni odhad (1).

Jiné FeSeni. S ohledem na symetrii stad¢i uvazovat pripad m = n
a dok4zat horni odhad (1) z prvniho feseni, tedy nerovnost m < 2n — 2.

Dana rovnice je tvaru 22 + (m +n — 1)z +mn —m —n = 0 a ma
diskriminant

D:(m+n—1)2~4(mn—m—n):
=m?4+n?—2mn+2m+2n+1=(m-n+1)>+4n.

Ten musi byt druhou mocninou celého ¢isla, ma-li mit dand rovnice celo-
&iselné feSeni. ProtoZe 4n je kladné sudé ¢islo, je ¢islo D vétsi nez mocnina
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(m —n +1)? a m4 stejnou paritu jako jeji zéklad (m —n 4 1), ktery je
kladny, nebot uvazujeme pouze piipad m = n. Proto musi platit D = k2,
kde k je celé ¢islo splnujici podminky s >m—-n+1>0ak=m—-n+1
(mod 2). Znamena to, ze k =2 m — n + 3, takze plati

D=(m-n+1?%+4n=k*2
2m-n+32l=m-n+14+2)?2=

=m-n+1>2+4m—-n+1)+4.
Odtud plyne nerovnost 4n = 4(m —n + 1) + 4, neboli m < 2n — 2, coz
jsme meli dokazat.

Poznamky. Protoze dvojice tvaru (m,n) = (2n — 2,n) a (m,n) =
= (m, 2m — 2) vyhovuji podmince tlohy, jsou odhady (1) nejlepsi mozné.

Je mozné popsat vSechny dvojice pfirozenych ¢isel (m,n), které vy-
hovuji podmince tlohy, a to zptisobem uvedenym v nasledujicim tvrzeni.
Véta. Necht m a n jsou celd ¢isla. Rovnice (xz +m)(z +n) =z +m+n
ma asporn jedno celociselné reseni, pravé kdyz jsou cisla m, n tvaru

m=(a—-10b a n=alb-1), kde a,beZ.

A-11-3

Ozna¢me uhly v trojuhelniku ABC obvyklym zpusobem. Z vlastnosti
bodi K a L je zfejmé (obr.26), ze body A, B, K, L lezi na kruznici,
pravé kdyz | K AL| = |« K BL|, tj. pravé kdyz o = (.

C c

Obr. 27
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Primka KL se dotyka kruznice opsané trojihelniku BKS (nutné
v bodé K), pravé kdyz se rovnaji usekovy a obvodovy thel prislusné
tétive KS (obr.27): |xLKA| = |<LBK| = %ﬁ = |XLBA|. Posledni
rovnost je ovSem ekvivalentni tomu, ze body A, B, K, L lezi na kruZnici,
coz jak uz vime, je pravé kdyz a = (. (Jak je zfejmé ze symetrie, je
to zaroven ckvivalentni tomu, Ze se primka K L dotykd kruznice opsané
trojihelniku ALS.)

Z uvedenych vysledkt plyne, Ze sva dalsi zkoumani mizeme omezit na
rovnoramenné trojuhelniky ABC' se zakladnou AB. Podivejme se nejpr-
ve, kdy kruznice opsana ¢tyithelniku ABK L obsahuje bod O. Stiedovy
uhel AOB v kruznici opsané trojuhelniku ABC ma velikost 2+, zatimco
velikost thlu AK B je 180° — %a —fB=~v+ %a (obr.28). Bod O pritom

C

Obr. 28

nemuze lezet na strané AB (kdyz je thel v pravy) ani v poloroviné opacné
k ABC (kdyz je uhel v tupy), protoze v tom pripadé vyjde

|¥<AOB| + |xAKB| = (360° — 27) + (v + 3a) =
= 180° + Jar + 3 > 180°.

Body A, B, K, O tedy lezi na jedné kruznici, pravé kdyz
2y =vy+ %a neboli «a = =2y ="72°

Zbyvé zodpovedét otazku, kdy se kruznice opsana trojuhelniku BV'.S
dotykéa primky K L. V poloroviné K LB existuji dvé kruznice, které ob-
sahuji body B a S a dotykaji se piimky I L (Apolloniova tiloha, pro bod
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dotyku T z mocnosti bodu L k takové kruznici plati |LT|?> = |LS|-|LB]).
Jednu takovou kruznici uz zname, je to kruznice opsana trojihelniku
BK S, jezse primky K L dotyka v bodé K. Druhd kruznice se tedy dotyka
piimky KL v bodé K’ soumérné sdruzeném s K podle stiedu L. Ma-li
kruznice [ opsana trojuhelniku BV S lezet v poloroviné K LB, musi v ni
lezet 1 jeji bod V, ktery je pak nutné vnitinim bodem tsecky CyC1q, jez
je casti osy tsecky AB (obr.29). Uhel SBV je tedy ostry (jeho velikost

C

je nejvyse %,8), proto stred kruznice [ lezi v poloroviné CyCy B a lezi tam
i jeho kolmy primét (pripadny bod dotyku) na pfimku K L. Kruznice [
se tudiz dotyka primky KL jediné v pripadé, kdyz je to kruznice opsana
trojuhelniku BK S, tedy kdyz body B, K, S, V lezi na jedné kruznici.
To nastane, pravé kdyz |xCVB| = |xSKB| (to plati bez ohledu na
to, zda bod V lezi mezi body Ci, S, nebo mezi body Cy, S; obr.29).
7 pravothlych trojuhelnikt ABB; a BV Cy plyne |xC1V B| = a, takze
rovnost |£C1V B| = |xSK B| plati, prave kdyz

a:7+%a neboli a = =2y ="172°

Dokéazali jsme, Ze obé podminky a) a b) jsou ekvivalentni tomu, Ze
trojuhelnik ABC' je rovnoramenny s thly o = 3 = 72° a v = 36°.
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A-1ll-4

Protoze trojuhelnik ABC' je ostrouhly, lezi body V' a S uvniti ného.

Oznacime-li velikosti thlt v daném trojthelniku obvyklym zptsobem,
plati (obr. 30)

|xAVB|=180° -~ a ;<ASB|:goo+’;7_

Body A, B, V a S tedy lezi na jedné kruznici, pravé kdyz |x AV B| =
= |XASB|, coz je podle uvedenych vzorct ckvivalentni s rovnosti
v = 60°. Vrchol C tak nutné lezi na nékterém ze dvou kruZnicovych
obloukl, z nichz je vidét tisecku AB pod tihlem 60°. ProtoZe je trojthel-
nik ABC ostrouhly, musi navic vrchol C' lezet uvnitt pasu vymezeného
kolmicemi k primce AB v bodech A a B. Vrchol C je tedy vnitinim
bodem takto vymezenych kruznicovych obloukit KL a M N (obr.31).

L K

M N

Obr. 30 Obr. 31

v

7ovanych trojuhelniki ABC' je obrazem bodu C' ve stejnolehlosti se stie-
dem Cj a koeficientem %, je bod T vnitinim bodem jednoho z oblouki
K’L" nebo M'N’, jez jsou obrazy oblouki KL a M N v uvazované stej-
nolehlosti.

ProtoZe zminéna stejnolehlost je vzdjemné jednoznacné zobrazeni, je
zfejmé, ze kazdy vnitini bod obloukt K’L’ nebo M’N’ ma pozadovanou
vrcholu C, jehoZ odpovidajici body V' a S lezi na jedné kruznici s vrcholy
Aa B.
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A-1lII-5

Hledejme trojice p, g, r podle toho, které z téchto tii ¢isel je nejveétsi:
> Nejuétsi je p.

Pak z podminky p | ¢ + r a z nerovnosti ¢ +r < 2p plyne ¢ + 7 = p.
Z druhé podminky pak dostaneme ¢ | r + 2p = 3r + 2q, tedy ¢ | 3r,
coz vzhledem k riznosti prvodéisel znamend, ze ¢ = 3. Tedy p = r + 3
a posledni podminka #ikd, Ze 7 | »+12, neboli 7 | 12, tedy r = 2 (prvodisla
maji byt rizna). Je tedy p = 5. Tato trojice vskutku spliiuje podminky
ze zadani.

> Nejuétsi je q.

Pak podminka ¢ | » + 2p a nerovnost r + 2p < 3¢ davaji r +2p = ¢
nebo r + 2p = 2q.

Je-li 2¢ = r+2p, musi byt r sudé. Je tedy r = 2 a z rovnosti 2¢ = 2+2p
plyne ¢ = p + 1, coz pro prvocisla p, ¢ vétsi nez » = 2 neni mozné.

Je-li ¢ = r + 2p, prvoi podminka ¥iké, ze p | 2r + 2p, tedy p | 2r,
tudiz p = 2. Posledni podminka pak déva r | p+ 3¢ = 3r + 7p = 3r + 14,
tedy r | 14, takze r = 7. Potom je ¢ = r + 2p = 11. Tato trojice rovnéz
vyhovuje zadani.

> Nejuétsi je r.

Pak srovname podminku r | p + 3¢ a nerovnost p 4 3¢ < 4r.

Kdyby bylo p + 3¢ = 3r, bylo by p = 3(r — q), tedy p =3, r — ¢ =1,
takze r = 3 a ¢ = 2, coZ nejsou tii rizna prvocisla.

Pokud p+ 3¢ = 27, dostavame z prvni podminky p | 2(¢+7) = p+ 5¢q,
takze p | 5¢ a p = 5. Druhéd podminka pak dava ¢ | 2(r +2p) = 2r+20 =
= 3q + 25, tedy ¢ = 5, a vyslednou trojici netvori rizna prvocisla.

Koneéné bud p + 3¢ = r. Prvni podminka pak dava p | p + 4q, takze
p | 4¢ a p = 2. Druha podminka pak fika, ze ¢ | r + 2p = 3¢ + 6, tedy
q |6 aq=3,nebot ¢ #p=2. Potom r = p+ 3¢ = 11. Tato trojice také
vyhovuje zadani.

Resenim tlohy jsou tii trojice prvoéisel (p,q,7), ato (5,3,2), (2,11,7)
a (2,3,11).
A-1ll-6

Pro kazdé pripustné ¢ plati

2, — sin? 2 1
2 cotg? 2¢ = 2 M—i—i :—(tg2<p+cotg2<p»2).
2sinpcos ¢ 2
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Polozme tg?x = a, tg?y = b a tg? z = ¢, kde a, b, ¢ jsou kladna realna
¢isla. Danou soustavu tak prevedeme na tvar

a+%(b+%) =2,

b+—;—(c+%):2, (1)
c+%(a+(—1l> = 2.

Bez 0jmy na obecnosti predpokladejme, Zze a = b 2 c¢. Pii takovém
usporadani plyne z predchozi soustavy rovnic

1 1 1
b+-<c+-<a+ ~-.
b c a

Protoze pro kazdé kladné z plati = + 1/x = 2, plyne ze soustavy (1)
navic 0 < a,b, ¢ £ 1. Funkce f(z) = 2 + 1/ je ovem na intervalu (0;1)
klesajici, proto plati také nerovnost

To spolu s pfedchozimi nerovnostmi dava a = b = c.
Zbyva tak uréit vSechna u € (0; 1), ktera vyhovuji rovnici

1 1
u+—(u+—) = 2.
2 U

Po snadné upravé obdrzime kvadratickou rovnici
3u? —4u+1=0, tj. (u—1)(3u—1)=0.

Tato kvadratickd rovnice ma pravé dva kladné realné koteny u; = 1
auy = —é— S ohledem na pouzité substituce a periodi¢nost funkce tangens
jsou fesenim dané soustavy rovnic pravé nasledujici trojice (x,y, z) reél-
nych cisel

i T

<E+k1g,—+k

IS 1Y T IS IS
L -) (:t— kim, £5 4 ko, £5 + k )
4 g tRgtheg) @ FRIm =G F kel e A s

6

kde ki, ko, k3 jsou libovolnd celd éisla a tfi znaménka v trojici druhého
typu jsou vybrana libovolné, tj. navzajem nezavisle.
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Kategorie P

Texty tloh

P-1-1
Pluky

Na monitoru se pravé schyluje k velké bitvé mezi armadou hrace a ar-
madou jeho pocitace. Sily jsou vyrovnané, obé armady maji stejny pocet
plukti, ovSem jednotlivé pluky mohou byt tvoreny rtiznym poctem vo-
jaka. Na zacatku bitvy se pluky obou armad sefadi do dvou rad tak,
ze proti kazdému hracovu pluku stoji pravé jeden pluk patfici pocitaci.
Potom zac¢ne vlastni boj. Pluky stojici proti sobé na sebe zautoci. A pro-
toze v mnozstvi je sila, zvitézi ten z nich, ktery ma vice vojaki. Pokud
nahodou maji souperici pluky stejny pocet vojaktl, vyhraje pluk patiici
pocitaci.

Hracova arméda ma schopné $pidny, kteil pred bitvou zjistili, kolik
vojakl méa nepiitel v kterém pluku a jak jsou jeho pluky rozmistény.
Vasim tkolem je rozmistit na zakladé téchto informaci hracovy pluky
tak, aby co nejvice z nich sviij souboj vyhralo.

Soutézni tloha. Napiste program, ktery vam poradi, jak nejlépe roz-
mistit pluky, které mate k dispozici. Na vstupu dostanete pocet pluku
N v kazdé armadé a pocty vojaku v kazdém z 2N pluk na bojisti.
Vystupem programu bude jediné celé ¢islo — maximalni pocet pluku
hréace, které mohou vyhrat sviij souboj pfi néjakém rozestaveni.

Format vstupu: Prvni fadek vstupniho souboru pluky.in obsahuje
jedno celé ¢islo N (1 £ N < 10000) — pocet plukil v kazdé z armad.
Na druhém radku je mezerami oddéleno N celych éisel Ay,..., Ay (1 £
< A; £ 100000000) — pocty vojakti v jednotlivych plucich hrace. Na
tietim fadku je mezerami oddéleno N celych éisel By, ..., By (1 £ B; <
< 100000 000) — pocty vojaki v jednotlivych plucich patficich pocitaci.

Format vystupu: Jediny fadek vystupniho souboru pluky.out bude
obsahovat jedno celé ¢islo — maximalni pocet plukt hrace, které mohou
najednou vyhrat sviij souboj.
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Priklady:

pluky.in pluky.out

5 3

7121747 (Pokud hra¢ rozmisti své pluky spravné, zvitézi

7121747 Jjeho pluky velikosti 47, 12 a jeden z plukti veli-
kosti 7.)

pluky.in pluky.out

4 0

10 10 10 10 (Pri jakémbkoliv rozestaveni vSechny pluky hrace

10 10 10 10 prohraji.)

pluky.in pluky.out

5 4

13579 (Hréc obétuje sviij nejmensi pluk, posle ho proti

246810 pluku velikosti 10. Ostatni pluky potom Ize

rozmistit tak, aby vyhrély.)

P—1-2
Teleport

Védeiam se koneéné podafilo vymyslet efektivni zptisob cestovani v ¢aso-
prostoru. Jejich testovaci stfedisko se sklada z nékolika lokalit. V kazdé
lokalité je umisténo nékolik teleporti. Kdyz vstoupime do teleportu, pre-
misti nds na pfedem zadanou lokalitu (coz bychom od teleportu odce-
kavali), ale navic nas premisti také v case o zadany pocet minut (bud
doptedu, nebo dozadu). Védci by chtéli zjistit, jak je cestovani pomoci
teleportt vyhodné. Pravé se nachézeji u centralniho pocitace a chtéli by
se jit nasvacit do bufetu. A protoze ¢as jsou penize, chtéli by byt v bufetu
co nejdrive. Pohybovat se v ¢ase a prostoru samoziejmeé chtéji jen pomoci
jiz postavenych teleporti.

Soutézni tloha. Program dostane na vstupu pocet lokalit N, které
budeme oznacovat ¢isly 1,..., N. Centralni pocitac je umistén v loka-
lité ¢islo 1, bufet mé ¢islo N. Nasleduje celkovy pocet postavenych tele-
portit M a seznam téchto teleportii. Pro kazdy teleport je urcena poca-
te¢ni lokalita, koncovéa lokalita a zména ¢asu v minutéach, jez nastane pri
pruchodu timto teleportem (kladné ¢islo znamena posun do budoucnosti,
zaporné do minulosti a 0 znamena, ze se v koncové lokalité ocitneme ve
stejném Case, v jakém jsme nastoupili do teleportu).
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Kazdy teleport se mize pouzit jen tim smérem, ktery je uveden na
vstupu. Mezi dvéma lokalitami mtize byt vybudovéano vice teleporti. Do-
konce muze existovat i teleport, ktery nas presune pouze v case (tedy
pocateéni a koncova lokalita jsou u néj totozné).

Program ma urcit ¢as, kdy nejdiive se mizeme dostat do lokality N,
jestlize se v lokalité 1 nachdzime v case 0. Pokud tam dokaZzeme byt
libovolné brzo (tzn. miZeme pomoci teleport cestovat neomezené do
minulosti), nebo pokud se tam viitbec nemtizeme dostat, program o tom
vyda prislusnou zpravu.

Format vstupu: Prvni fadek vstupniho souboru teleport.in obsa-
huje dvé ¢isla N a M (2 < N <1000, 0 < M < 50000) oddélena
mezerou. Nasleduje M radkl, na kazdém z nich jsou tii ¢isla A;, B;,
T, (1 = A;,B; < N, |T;] £ 10000) popisujici teleport z lokality A; do
lokality B; se zménou casu T; minut.

Format vystupu: Jediny tadek vystupniho souboru teleport.out
bude obsahovat zpravu ,Vedci umrou hlady“, jestlize se od centralniho
pocitace neda dostat do bufetu, resp. zpravu ,Vedci poznaji vznik
vesmiru®, jestlize miZeme cestovat do nekoneéna do minulosti. Jinak
bude obsahovat jedno celé ¢islo predstavujici ¢as v minutach, kdy nej-
dfive se védci dokazou dostat do bufetu.

Priklady:

teleport.in teleport.out

34 -2

125 (Prvnim teleportem se védci dostanou do loka-
23 -7 lity 2 v c¢ase 5, odtud druhym do lokality 3
13-1 v ¢ase 5 + (—7) = —2. Ostatni moznosti jsou
1316 horsi.)

teleport.in
22

11-1

120

teleport.in
43

12 -1
230
4310

teleport.out

Vedci poznaji vznik vesmiru

(Drive nez se védci druhym teleportem presunou
do bufetu, mohou prvnim odcestovat libovolné
daleko do minulosti.)

teleport.out

Vedci umrou hlady

(Posledni teleport nemohou védci pouZzit na presun
z lokality 3 do lokality 4,

Jjediné naopak.)
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P-1-3
Posadky

Zil jednou jeden stary kral. Jeho kralovstvi tvofilo N mést a mezi nimi
vedla sem tam néjaka cesta. JelikoZ kralové byvaji od piirody lakomi,
v celém kralovstvi nebylo zrovna mnoho udrzovanych cest. Presnéji fece-
no, cest bylo pravé N — 1 a byly vedeny tak, aby se mezi kazdymi dvéma
mesty v kralovstvi dalo po cestach dojet (at uz ptimo, nebo pfes jina
mésta). V Tedi teorie grafii takovéto siti cest Fikdme strom.

Na stard kolena kréale navstivila teta Paranoia a naSeptala mu, Ze
sousedé chtéji napadnout jeho kralovstvi. Proto se kral rozhodl, Ze lakota
musi jit stranou a Ze postavi ve méstech vojenské posadky. Paranoia
vsak Septala dal: ,,Zblaznil ses? Kdyz budou dvé posadky v sousednich
meéstech, budou si mezi sebou posilat zpravy. A vis, jak to dopadne...
Nech hodné vojakt pohromadé a vzbouii se proti tobg!“

TFi dny a tfi noci kréal nespal, az vymyslel nasledujici kompromis:
Vybere nékolik mést, v nichz postavi vojenské posadky. Aby mu nehrozila
vzpoura, rozhodl se, Ze nikdy nesméji byt pohromadé vice nez t¥i posadky.
Ted sedi nad mapou a vymysli, jak je ma jenom rozmistit, aby kralovstvi
bylo co nejlépe zabezpeceno.

Soutézni uloha. Jesté jednou si formalnéji zopakujme, o co kralovi
vlastné jde.

Na vstupu méte zadan pocet mést N a popis cest mezi nimi. Cest
je pravé N — 1, nikde se nekfizuji, jimi tvofend sit je souvisld a spojuje
vSechna mésta. Pro kazdé mésto i zname ¢islo b; — toto ¢islo udéava, kolik
piid& vojenska posadka v i-tém mésté k bezpecnosti kralovstvi. Kralo-
vym (a vasim) tikolem je vybrat mnozinu mést, v nichz budou umistény
posadky. Tato mnozina musi spliovat nasledujici podminky:

> Kazda jeji souvisld podmnoZina méa velikost nejvyse 3. (Mnozinu mést
nazyvame souvislou, jestlize se mezi libovolnymi dvéma mésty z této
mnoziny da dojet po cestach, aniz bychom pii tom navstivili mésto,
které do této mnozZiny nepatii.)

> Ze viech takovychto mnoZzin ma maximalni mozny soucet hodnot b; —
bezpec¢nost kralovstvi.

Formdt vstupu: Prvni fadek vstupniho souboru posadky . in obsahuje
jedno ¢islo N (1 £ N £ 100000) — pocet mést v kralovstvi. Mésta jsou
o¢islovana od 1 do N. Kazdy z néasledujicich N — 1 fadkt obsahuje dveé
¢isla mést, kterd jsou spojena cestou. Miizete predpokladat, ze sit cest je
souvisla.

100



Posledni fadek vstupniho souboru obsahuje N celych ¢isel by, ..., by
(0 £ b; < 10000), kterd udavaji, kde je jak vyhodné umistit vojenskou
posadku.

Format vystupu: Prvni fadek vystupniho souboru posadky.out bude
obsahovat jedno celé ¢islo — nejlepsi dosazitelnou bezpecnost kralovstvi.
Druhy radek bude obsahovat nékolik ¢isel oddélenych mezerami — jednu
vhodnou mnozinu mést, pro kterou se uvedené bezpecnosti dosahne.

Priklady:

posadky.in posadky.out
7 6
12 123567
23 (Vsude je zisk z posadky stejny, chceme jich umis-
34 tit co nejvice.)
45
56
67
1111111
posadky.in posadky.out
5 1011
15 235
25 (Zjevné chceme mit posadku ve mésté 5. Potom uz
35 ale mizeme vybrat jen dvé z ostatnich mést.)
45
16521000
posadky.in posadky.out
5 16
15 1234
25 (Ne vzdy se vyplati vybrat mésto s nejvyssi hod-
35 notou b;.)
45
44445
P-1-4
Paralelizator

Za sedmero horami a sedmero fekami vymyslel vynalezce Kleofas podivny
stroj, ktery nazval paralelizator. Na prvni pohled vypadal paralelizator

vvvvvv

jako obycejny pocitac. ..
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rozdil. Za urcitych okolnosti dokazal paralelizator paralelné (tj. soucasné)
spustit vice vétvi programu, aniz by ho to jakkoliv zpomalilo. Kleofs
rychle pochopil, Ze jen ze slovniho popisu tohoto zdzraku by nikdo nebyl
moc moudry, a tak vymyslel i programovaci jazyk, v némz je mozné psat
programy pro jeho paralelizator.

Programy pro paralelizdtor se budou od klasickych ligit mimo jiné
tim, Ze nebudou mit zadny vystup. Budeme pouze rozlisovat, zda program
skonéil ispésné nebo neuspésné. U klasickych programii by to znamenalo,
ze nas zajima jen tzv. exit code (ndvratova hodnota) programu.

Kleofasuv programovaci jazyk je téméi presnou kopii jazyka Pascal.
Oproti klasickému Pascalu v ném neméame k dispozici generator nahod-
nych ¢isel (a tedy naptiklad funkci random), takze je predem déano, jak
bude vypocet kazdého programu vypadat. Zato pribyly ¢tyti nové prika-
zy: Accept, Reject, Both(z) a Some(z) (kde  je proménnd typu integer).

Prikaz Accept ispésné ukonéi bézici program.

Prikaz Reject ukonci bézici program, ale neuspésné. Stejny vyznam
ma i provedeni standardniho Pascalského prikazu Halt a ukonceni vy-
poctu programu prechodem pres koncové End., piikaz Reject definujeme
jen kvili ndzornosti.

V nasledujicim textu budeme vytvorenim kopie programu rozumdét
to, ze se v operacni paméti vytvori plné presna kopie celého programu
véetné obsahu jeho proménnych — vysledek bude stejny, jako kdybychom
uz od zacatku dany program spustili ne jednou, ale dvakrat.

Prikaz Both(x) zastavi aktudlné bézici program. Vytvoii se dvé jeho
identické kopie. V prvni z nich je hodnota proménné x nastavena na 0,
v druhé na 1. Obé kopie programu jsou paralelné spustény, pricemz je-
jich vypocet pokracuje prikazem nésledujicim za prislusnym piikazem
Both.

Pokud obé kopie tspésné skonci, v nésledujicim taktu procesoru
Uspésné skondi i ptuvodni program. Jestlize jedna z kopii skonéi neu-
spésné (druhd pritom skoncit ani nemusi), ptivodni program v nasleduji-
cim taktu skondi také netispésné. Ve vsech ostatnich pfipadech (tj. kdyz
jedna kopie nikdy neskonéi a druhd bud rovnéz nikdy neskoné¢i, nebo
skonéi ispésné) puvodni program nikdy neskondi.

Piikaz Some(z) funguje podobné. Rovnéz zastavi aktualné bézici pro-
gram. Opét se vytvori dvé jeho identické kopie, v prvni z nich je hodnota
proménné x nastavena na 0, v druhé na 1. Obé kopie programu jsou pa-
ralelné spustény, pricemz jejich vypocet pokracuje prikazem nasledujicim
za prislusnym prikazem Some.

102



Jakmile néktera z kopii ispésné skonéi, v nasledujicim taktu proce-
soru uspésné skonci i puvodni program. Pokud obé kopie skonéi netispés-
né, v nasledujicim taktu procesoru skonci netspésné také puvodni pro-
gram. Ve vSech ostatnich pripadech (tj. kdyz jedna kopie nikdy neskonci
a druha bud rovnéz nikdy neskonéi, nebo skonéi netispésné) ptivodni pro-
gram nikdy neskonci.

Slovné muzeme tyto operace popsat nasledovné: Prikaz Both provadi
yparalelni and“ — ovéri, zda obé vétve tspésné skonci. Prikaz Some
provadi ,paralelni or — ovéri, zda aspon jedna z vétvi tspésné skondi.

Netrvalo dlouho a Kleofas si uvédomil, Ze na takovémto zazracném
zafizeni dokaze nékteré problémy fesit az neuvéritelné rychle. Napriklad
testovani prvociselnosti je skuteéné snadné.

Priklad 1: V proménné N je prirozené ¢islo. Napiste program pro
paralelizator, ktery pro kazdou hodnotu N skonci, pricemz uspésné skonci
pravé tehdy, kdyz N je prvocislo.

RESENI. Pomoci volani piikazu Both paralelné vygenerujeme viechna
¢isla od 2 do N — 1 a najednou pro kazdé z nich ovéiime, zda déli N.
Kazda vétev vypoctu tspésné skondi, jestlize ,jeji ¢islo nedéli N. Aby
ptvodni program uspé$né skoncil, musi uspésné skoncit vSechny vétve,
tedy zadné z vygenerovanych ¢&isel nesmi délit N. Casova sloZitost pro-
gramu je O(log N).

{ VSTUP: N : integer; }
var moc2, pocet_cifer : integer;

cislo : integer;
i,x : integer;

begin
{ oetme okrajov ppad }
if N = 1 then Reject;

{ zjistme, kolik m N cifer ve dvojkov soustav }
moc2 := 1;
pocet_cifer := O;
while moc2 < N do begin
moc2 := moc2 * 2;
inc(pocet_cifer);
end;

{ vygenerujeme sla od O do 2 pocet_cifer - 1 }

cislo := 0;

for i:=1 to pocet_cifer do begin
Both(x);
cislo := 2*cislo + Xx;

end;
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{ moc mal dlitele zkouet nebudeme, prohlsme za dobr }
if cislo <= 1 then Accept;

{ ani pli velk dlitele zkouet nebudeme }

if cislo >= N then Accept;

{ jinak zkoume, zda vygenerovan slo dl N }

if N mod cislo <> O then Accept;

Reject;

end.

Nazorné si ukazeme, jak vypada vypocet paralelizdtoru na tomto pro-

gramu pro N = 3 a pro N = 6. Kopie programu, které vznikaji béhem
vypoctu, budeme ¢islovat v potadi, v jakém vznikaji.

v vV VvV VvV VvV VvV V

v

v vV vV VvV V

Pro N = 3 bude vypocet probihat nasledovné:

Spusti se kopie #1 (tedy vlastné original).

Spocita, ze pocet_cifer = 2.

Spusti se for-cyklus pro i = 1.

Kopie #1 se zastavi, vzniknou kopie #2 a #3.

V kopii #2 je cislo = 0, v kopii #3 je cislo = 1.

V obou bézicich kopiich pokracuje for-cyklus pro i = 2.

Kopie #2 a #3 se zastavi, z #2 vzniknou #4 a #5, z #3 vzniknou
#6 a #7.

V kopiich #4 az #7 bude mit proménna cislo hodnoty 0 az 3.
Kopie #4 a #5 uspé&sné skonci, nebot ¢isla 0 a 1 nechceme testovat
jako délitele.

Kopie #2 tispésné skondéi, nebotf uz spésné skonéily obé kopie, které
z ni vznikly.

Kopie #7 ispédné skonci, nebof ani ¢islo 3 nechceme testovat.
Kopie #6 ispésné skonéi, nebot 2 nedéli 3.

Kopie #3 tispésné skonci, nebot uz tspésné skoncily obé kopie, které
z ni vznikly.

Kopie #1 (tedy piivodni program) spésné skonéi, nebot uz tispésné
skoncily obé kopie, které z ni vznikly.

Pro N = 6 bude vypocet probihat nasledovné:

Podobné jako pii N = 3 se dostaneme do situace, kdy bézi kopie #8
aZ #15, proménnd cislo v nich mé hodnoty postupné od 0 do 7.
Kopie #8 a #9 (s prilis malym ¢islem) uspésné skonci.

Kopie #4 (z niz vznikly #8 a #9) uspésné skonci.

Kopie #14 a #15 (s ptilis velkym ¢islem) tspésné skondi.

Kopie #7 (z niz vznikly #14 a #15) uspésné skonci.

Kopie #10 az #13 skonéi — a to: #12 a #13 Uspésné (4 ani 5 ne-
déli 6), #10 a #11 nelspésné (2 a 3 déli 6).
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> Kopie #5 skonéi netspésné (obé jeji ,déti“ skonéily netspésné), kopie
#6 skonci uspésné.

> Kopie #2 skonéi netispésné (nebot kopie #5 skoncila netispésné), ko-
pie #3 skondi ispésné.

> Kopie #1 (tedy puvodni program) skonci neuspésné.

Priklad 2: V proménnych N a K jsou prirozena ¢isla. Napiste program
pro paralelizator, ktery pro kazdé N skon¢i, pricemz uspésné skonci prave
tehdy, kdyZ? N ma néjakého délitele z mnoziny M = {2,3,...,2K —1}.

RESEN{. Pomoci volani piikazu Some paralelné projdeme vechna
¢isla m € M, staci nam, kdyz libovolné jedno z nich déli N.

(Jiny pohled na totéz feSeni: Pomoci volani piikazu Some ,uhod-
neme“ délitele m € M a ovéfime, zda jsme ho uhodli spravné. Na nas
program se muzeme divat tak, Ze se nevétvi, ale kazdé volani Some
yuhodne* a do x dosadi ,spravnou” hodnotu. Jestlize tedy N ma v mno-
ziné M délitele, najdeme ho, jinak skon¢ime s néjakym cislem, které N
nedéli.)

Casova slozitost programu je O(K).

{ VSTUP: N, K : integer; }

var cislo : integer;
i,x : integer;

begin
{ paraleln zkoume sla od 0 do 27K - 1 }
cislo := 0;
for i:=1 to K do begin
Some (x) ;
cislo := 2#*cislo + x;
end;

{ 0 a1 do mnoiny M nepat }

if cislo <= 1 then Reject;

{ zkusme, zda vygenerovan slo dl1 N }

if N mod cislo = O then Accept;

Reject;
end.

Soutézni uloha. a) V proménnych jehla a seno jsou dva znakové fe-
tézce. Napiste co nejrychlejsi program pro paralelizator, ktery pro kazdy
vstup skondi, pficemz uspésné skonéi pravé tehdy, kdyz se tetézec jehla
nachazi v fetézci seno jako souvisly podretézec. VAs program by tedy mél
uspésné skoncit, jestlize napriklad:

jehla = abcd, seno = aaabcdddaa,

Il

jehla = ddda, seno = aaabcdddaa,
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ale ne v pripadech:

jehla = abcd, seno = aaabcEdddaa,

jehla = jajsemjehla, seno = vtetokupesenajehlaneni.

b) Nad polem pfirozenych ¢isel miizeme postavit ,,pyramidu“. Spodni
fadek pyramidy bude tvofit samotné pole. Kazdy vyssi fadek bude o 1
kratsi nez predchézejici, pficemz i-ty prvek v novém fadku je roven souétu
i-té¢ho a (i 4+ 1)-niho prvku z fadku pod nim, modulo 10000 (tzn. pokud
by soucet vysel vétsi nez 9999, nechame z ného v pyramidé jen jeho
posledni ¢ty¥i cifry). Vrchni fadek pyramidy je tvoien jedinym ¢islem.

V proménné N mame pfirozené ¢éislo. V poli A na pozicich 1 a7z N
mame [N prirozenych ¢isel mensich nez 10000. V proménné V je neza-
porné celé ¢islo mensi nez 10 000.

Napiste co nejrychlejsi program pro paralelizator, ktery pro kazdy
vstup skonci, pficemz uspésné skonci pravée tehdy, kdyz hodnota V' je na
vrcholu pyramidy postavené nad polem A.

Priklad:
Vstup: Vystup: (Pyramida vypada ndsledovné:)
N =4 skon¢i netispésné 45
A=(6,3,9,3) 21 24
V=17 9 12 12

6 3 9 3
Vstup: Vystup: (Pyramida vypada nasledovné:)
N =4 skonci tispésné 20
A=(1,2,3,4) 8 12
V =20 3 5 7

1 2 3 4

P-1l-1

Fotbal

V Absurdistanu pravé zac¢ind novy roc¢nik fotbalové soutéze. Tento rok se
ho zucastni také slavny tym Dynamo Zbicyklu. Jeho trenér uz tii noci
poradné nespal, ale stile jesté nemd piipraven plan na tuto sezénu.

Dobte vi, ze 7zadné muzstvo nedokéze vyhrat vsechny zépasy, nebot
kazda vyhra stoji hra¢e mnoho sil. Vymyslel si proto nasledujici zjedno-
duseni:

Aktudlni stav jeho muZstva bude popisovat jedno celé ¢islo S, které
udava, kolik maji hraci sily. Na zacatku sezény (v den ¢islo 0) je sila
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muzstva nulova. Kazdou noc si hraci odpocinou, a proto se jejich sila
zvysi o 1. Pokud chtéji néjaky zapas vyhrat, musi se hodné snazit —
kazda vyhra je stoji V sily. Mohou samoziejmé také ,hrat na remizu,“
coz je stoji jenom R sily, pfipadné mohou zapas uplné vypustit a prohrat
ho, coz je nestoji nic. (Jestlize chtéji néjaky zapas vyhrat nebo remizovat,
musi na to mit dost sil, sila tymu nemtze nikdy klesnout pod nulu.)

Trenér uz zna presny rozpis ligy, vi tedy, ve kterych dnech ma jeho
muzstvo volno a kdy hraje néjaky zapas. Napiste program, ktery vypo-
¢ita, kolik nejvyse bodi muze jeho muzstvo v tomto roc¢niku ligy ziskat:
za kazdou vyhru jsou t¥i body a za remizu jeden.

Format vstupu: Na vstupu jsou zadana cela cisla V', R (vysvétlena
vyse) a pocet zapasu N. Nasleduje N celych ¢isel — ¢isla dni, v nichz
hraje nase fotbalové muzstvo zapas.

Miizete piedpokladat, ze N < 10000 a V > R. Cisla V, R i vSechna
¢isla dni se vejdou do bézné 32bitové celoéiselné proménné. Cisla dni
jednotlivych zapast jsou uvedena v rostoucim poradi.

Format vystupu: Program vypiSe jediné celé ¢islo — maximalni pocet
bodt, které mize nase muzstvo v soutézi ziskat.

Priklady:

vstup: vystup:

V=10,R=3,N=2 4

dni zapasu:
3,13

vstup:
V=20,R=15N=4
dni zapast:

23, 24, 25, 26

vstup:
V=30,R=9N=4
dni zapasu:

30, 32, 34, 36

(Hraci stihnou nabrat presné tolik sil,
aby dokazali prvni zapas remizovat
a druhy vyhrat.)

vystup:

3

(Muzstvo dokéze vyhrat libovolny jeden
z téchto Ctyr zapasu.)

vystup:

4

(Ne vzdy se vyplati vyhrat, v tomto pri-
padé je vyhodnéjsi vsechny 4 zapasy
remizovat.)

P-11-2
Housenka

Strom je objekt, ktery ma nasledujici vlastnosti:
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> Obsahuje koneény pocet vyznac¢nych mist, kterym fikame vrcholy (je-
jich pocet oznacime N). Nékteré dvojice vrcholl jsou spojeny hra-
nami.
> Je souvisly, tzn. z libovolného vrcholu se miizeme dostat do libovol-
ného jiného vrcholu tak, Ze postupné projdeme po nékolika hranach.
> Obsahuje pravé N — 1 hran.
Strom si mizeme predstavit napiiklad jako souvislou silniéni sit, kte-
rou tvori N mést a pravé N — 1 silnic mezi nimi.
Na nasledujicim obrazku je levy graf strom, zatimco zbyvajici dva
grafy nikoliv — druhy obsahuje ptili§ mnoho hran a tfeti ma sice spravny
pocet hran, ale neni souvisly.

Posloupnost na sebe navazujicich hran, v niz se zadna hrana neopaku-
je, se nazyva cesta. V8imnéte si, ze ve stromé vede mezi kazdymi dvéma
vrcholy pravé jedna cesta.

Housenka je strom, ve kterém existuje takova cesta (tuto cestu pak
nazyvame télo housenky), ze kazdy vrchol stromu je bud na této cesté,
nebo sousedi s néjakym vrcholem této cesty (pak ho nazyvame nozicka).
Priklad housenky vidite na nasledujicim obrazku vlevo.

nozmky /1' 5
‘ 0
N

1101001100

.

i

télo @

!

noz1cky

Existuje nékolik zptisobt, jak je mozné zadat strom. My ho popiseme
posloupnosti nul a jedni¢ek: Zvolime si jeden libovolny vrchol jako vy-
chozi a zacneme se z néj po stromeé prdchézet, pri¢emz chceme navstivit
kazdy vrchol stromu a chceme projit po kazdé jeho hrané prave dvakrat
(v kazdém sméru jednou). Béhem této prochazky si budeme zapisovat
nuly a jednicky nasledovné: Vzdy, kdyz prijdeme do vrcholu, ve kterém
jsme jesté nebyli, napiSeme jednicku. Vzdy, kdyZz se z vrcholu vracime
zpét (po hrané, kterou jsme do né&j prisli), napiseme nulu. Rozmyslete
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si, ze takto dokdZeme (asponl jednim zptisobem) popsat libovolny strom
a naopak ze z tohoto popisu miZeme strom jednoznacné sestrojit. (Viz
predchozi obrazek vpravo.)

Soutézni uloha. Na zikladé zadané posloupnosti nul a jednicek se-
strojte strom a zjistéte, kolik nejméné vrcholi je z ného tieba odstranit,
abychom dostali housenku.

Jinymi slovy feceno, urcete v zadaném stromeé takovou cestu, pro niz
je mnozina vrchol, které na ni nelezi ani s ni nesousedi, nejmensi mozna.

Format vstupu: Na vstupu je zadana posloupnost nul a jednicek re-
prezentujici strom tak, jak je popsano vyse.

Format vystupu: Program vypiSe jediné celé ¢islo — minimalni pocet
vrchola, které je tieba odstranit z puvodniho stromu, abychom dostali
housenku.

Priklad:

vstup:

110100110100110100

vystup:

2 (Je tieba odstranit 2 vrcholy.)

vstup:

1101101010001011011000

vystup:

0 (Zadany strom uz je housenka.)

Pozndmka. V obou uvedenych prikladech vstupu prochazku zaciname
v ,hornim“ vrcholu stromu a ostatni vrcholy navstévujeme v poradi
»zleva doprava.”

P-11-3

Myska

Predstavte si sit navzajem pospojovanych potrubi. Mista, kde se spojuji
konce a zadatky potrubi, budeme nazyvat uzly. Z kazdého uzlu muze
vést libovolné mnozstvi potrubi, podobné do kazdého uzlu mize libo-
volné mnozstvi potrubi prichdzet. Kazdé potrubi je upraveno tak, ze jim
voda muliZe téci jen jednim smérem. Jednotlivd potrubi mohou mit razny
priifez, takZe jimi miZe protékat za sekundu rizné mnozstvi vody. (Maxi-
malni mnozstvi vody, které miZe protéci potrubim za sekundu, nazyvame
kapacitou tohoto potrubi.)
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Dva uzly v uvazované siti budou mit specialni vyznam. Jeden z nich
nazyvame zdroj (a znac¢ime ho s), druhy nazyvame tsti (a oznacujeme
ho t). Zdroj je jediné misto, kde do nasi soustavy potrubi miize pritékat
voda, usti je jediné misto, kde naopak voda mtize odtékat. Pro jedno-
duchost budeme predpokladat, ze do zdroje ani z tusti Zadna potrubi
nevedou.

Nyni si predstavte, ze takovouto siti potrubi nechdme protékat vodu
a pro kazdé potrubi si zapiSeme mnoZstvi vody, kteréd jim za sekundu
protece. Tomuto seznamu ¢isel fikame tok. Velikost tohoto toku je mnoz-
stvi vody, které za sekundu vytece ven ustim (nebo ekvivalentné, které
za sekundu pritece ze zdroje).

-

b) Priklad toku velikosti 2 c¢) Priklad maximélniho toku
Obr. 32

Na obr. 32a) je priklad sité potrubi, ¢isla v zavorkach predstavuji ka-
pacity jednotlivych potrubi. Na obr.32b) je vyznaden jeden mozny tok
pro na$i ukdzkovou sit potrubi. Silnou ¢arou jsou znézornéna potrubi,
kterymi tece né&jaka voda, ¢isla u jednotlivych potrubi udavaji mnozstvi
vody, které za sekundu danym potrubim protece.

Mazimdlni tok je takovy tok, ktery mé& pro danou sif potrubi nejvétsi
moznou velikost. Jinymi slovy fedeno, maximalni tok popisuje, jakym
zpusobem lze nasi siti potrubi ,protlacit co nejvétsi mnozstvi vody za
jednu sekundu. Na obr. 32¢) je znazornén maximalni tok v nasi ukédzkové
siti.

Soutézni uloha. Predstavte si, ze mate k dispozici krabicku, které za-
déate popis n&jaké sité potrubi (veetné kapacit jednotlivych potrubi) a ona
vam urél hodnotu maximalniho toku. S jeji pomoci vyteste nasledujici
problém:
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Na vstupu mate zadano bludisté — neorientovany graf s N mist-
nostmi (vrcholy grafu) a M chodbami (hrany grafu) mezi nimi. V mist-
nosti 1 se nachazi myska. V mistnosti NV je umistén syr. Myska unese na-
jednou nejvyse 1 kousek syra a chce premistit co nejvice syra z mistnosti
N do mistnosti 1. Nechce ale nikdy vstoupit podruhé do téze mistnosti
(samoziejmé kromé mistnosti 1 a N), nebof nechce riskovat, Ze si tam
na ni pocka kocour, ktery ji tam po prvnim prichodu mohl ucitit. Kolik
kouski syra dokaze myska nejvyse prenést? (Predpoklddejte, ze mistnosti
1 a N nejsou spojeny piimou chodbou, v takovém ptipadé by samoziejmée
myska mohla postupné prenosit vSechen syr.)

Resenim této ulohy je tedy program, v némZ miZete volat funkci
NajdiMazimalniTok (. ..), které zadate jako parametry popis néjaké sité
potrubi (pocet uzli, pocet potrubi, pro kazdé potrubi jeho zacatek, konec
a kapacitu, a dale informaci, ktery uzel je zdrojem a ktery je tstim)
a ona vam vrati hodnotu maximalniho toku v zadané siti. Tuto funkci
nemusite implementovat, presny format parametru si zvolte tak, jak vam
bude nejlépe vyhovovat.

Priklad:

vstup: vystup:

N =8 M=10 1

1-2, 1-5, 1-7, (Myska muze jit po cesté 1-2-3-8
2-3, 2-4, 3-8, pro syr, 8-7-1 zpét. Mohla by
4-8, 5-6, 6-8, jesté jit cestou 1-5-6-8 pro syr,
7-8 ale zpét by se uz nedostala.)

Toky v grafech (studijni text). V této casti zadani uvadime formalnéjsi
definice vyse uvedenych pojmii. Pokud je v zadani tilohy vSechno jasné,
tento text ¢ist nemusite, pouzijte ho jen v ptripadé nejasnosti v neformal-
nim popisu.

Zacneme nékolika definicemi: Graf je usporadana dvojice (V, E), kde
V' je konecnd mnozina vrcholi grafu a E je koneéna mnozina jeho hran.
Pocet vrcholi oznacme N a pocet hran M, hrany oznacme ey az ep;.
Kazd4 hrana e; spojuje pravé dva vrcholy grafu a; a b;. Pokud se bude
smét prochézet po hrané e; jenom jednim smérem (tj. smime po ni jit
z vrcholu a; do b;, ale nikoliv opa¢né), budeme ji nazyvat orientovand
hrana, jinak ji budeme nazyvat neorientovanad hrana. Graf nazveme orien-
tovany, resp. neorientovany, jestlize jsou vSechny jeho hrany orientované,
resp. neorientované.

V grafu budeme mit dva specidlni vrcholy. Jeden z nich nazveme
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zdroj (znacime s) a druhy st (znacime t). Dale budeme ptedpokladat,
ze kazdd hrana ma stanovenu svoji kapacitu ¢; = 0. V orientovaném
grafu hrana z a; do b; miiZze mit jinou kapacitu nez hrana z b; do a;, resp.
nékterd z nich ani nemusi existovat.
Funkei f, ktera prifazuje kazdé hrané mnozstvi vody, které touto hra-
nou protéka, nazveme tokem, jestlize spliiuje nésledujici podminky:
> f(e;) € Z prol < i< M. Tedy kazdou hranou miize téci jen celoéi-
selné mnozstvi vody.
> 0= f(e;) £ ¢ prol <4 < M. Tedy Zadnou hranou nemtize téci vic
vody, nez kolik je jeji kapacita, ani méné nez 0.
> Necht a je vrchol riizny od zdroje a tisti. Necht hrany vedouci z vrcholu
a maji ¢isla vy, ..., vg. Podobné, necht hrany vedouci do vrcholu a
maji ¢isla py, ..., pi. Potom plati: 3" f(e,,) = 3 f(ep,). Tedy ve
3

wvnitinich® vrcholech se voda nemﬁielhromadit.

Tok je tedy takova funkce f, ktera nam urcéuje, kolik vody tece kterym
potrubim. Predpokladejme, 7Ze do zdroje nevstupuji zadné hrany a z tsti
nevystupuji zadné hrany. Potom mizeme hodnotu toku f definovat jako
mnozstvi vody, které odtékéa ze zdroje. Mazimdlni tok je tok s nejvétsi
moznou hodnotou pro dany graf.

P-1l-4
Paralelizator

V zemi je nékolik mést a kazdé z nich je oznadeno néjakym prirozenym
¢islem (které se vejde do bézné celociselné proménné). Riznym méstiim
jsou prifazena ruzna éisla, ale jinak neni ¢islovani mést nijak systema-
tické.

Mezi nékterymi dvojicemi mést jsou vybudovany cesty, téchto cest
je celkem M. VSechny cesty jsou jednosmérné. Vsechny krizovatky cest
jsou mimoturovnové, tzn. pokud se vydame po néjaké cesté, musime po
ni dojit az do toho mésta, kde tato cesta konci. Muzete predpokladat, ze
v kazdém mésté aspon jedna cesta zacind nebo kondi.

V poli C[0..M — 1][0..1] jsou popséany jednotlivé cesty (i-ta cesta spo-
juje mésta s ¢isly C[i — 1][0] a C[i — 1][1]).

SoutéZni tloha. Napiste co nejrychlejsi program pro paralelizator,
ktery pro kazdy pripustny vstup skondéi, pficemz tspésné skonci prave
tehdy, kdyz je sif vSech existujicich cest silné souvisla — tedy pokud
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se z libovolného mésta muzeme po cestach dostat do libovolného jiného
mésta.

Pozndmka. Ulohu lze fesit v lepsim €ase nez linearnim. Pokud se vam
vsak takové feSeni nepodaii nalézt, ¢ast bodu ziskate i za pomalejsi Feseni.
Priklad 1:

vstup: vystup:

M =5 skon¢i ispésné

cesty: (Po prvnich tfech cestdch miizeme
1—-2,2—-3,3—1, volné prechazet mezi mésty 1, 2
47 — 1,2 — 47 a3,

diky zbyvajicim dvéma se do-
kéazeme dostat i do mésta 47
a z ného zase pryc.)

Priklad 2:

vstup: vystup:

M =3 skonc¢i netspésné

cesty: (Nedokazeme se dostat napriklad
123456 — 234567, 23 — 47, z mésta 47 do mésta 123456.)

345678 — 234567
(Definice paralelizatoru je uvedena v textu tlohy P-I1-4.)

Netrvalo dlouho a Kleofas si uvédomil, Ze na takovémto zdzracném
zafizeni dokaze nékteré problémy fesit az neuvéritelné rychle. Napiiklad
testovani prvociselnosti je skute¢né snadné.

Priklad 1: V proménné N je pfirozené ¢islo. NapiSte program pro
paralelizator, ktery pro kazdou hodnotu N skonci, pfi¢emz uspésné skonci
pravé tehdy, kdyz N je prvodislo.

RESENI. Pomoci volani piikazu Both paralelné vygenerujeme viechna
éisla od 2 do N — 1 a najednou pro kazdé z nich ovéfime, zda déli V.
Kazd4 vétev vypoctu tspésné skondi, jestlize , jeji* ¢islo nedéli N. Aby
puvodni program uspésné skoncil, musi tspésné skoncit vsechny vétve,
tedy 74dné z vygenerovanych ¢isel nesmi délit N. Casova slozitost pro-
gramu je O(log V).

{ VSTUP: N : integer; }
var moc2, pocet_cifer : integer;

cislo : integer;
i,x : integer;

begin
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{ oetme okrajov ppad }
if N = 1 then Reject;

{ zjistme, kolik m N cifer ve dvojkov soustav }
moc2 := 1;
pocet_cifer := 0;
while moc2 < N do begin
moc2 := moc2 * 2;
inc(pocet_cifer);
end;

{ vygenerujeme sla od 0 do 2"pocet_cifer - 1 }

cislo := 0;

for i:=1 to pocet_cifer do begin
Both(x); )
cislo := 2x*cislo + x;

end;

{ moc mal dlitele zkouet nebudeme, prohlsme za dobr }
if cislo <= 1 then Accept;

{ ani pli velk dlitele zkouet nebudeme }

if cislo >= N then Accept;

{ jinak zkoume, zda vygenerovan slo dl N }

if N mod cislo <> O then Accept;

Reject;

end.

Nazorné si ukazeme, jak vypadd vypocet paralelizitoru na tomto pro-

gramu pro N = 3 a pro N = 6. Kopie programu, které vznikaji béhem
vypoctu, budeme ¢islovat v poradi, v jakém vznikaji.

v vV VvV VvV VvV VvV V

v

Pro N = 3 bude vypocet probihat néasledovné:

Spusti se kopie #1 (tedy vlastné original).

Spocita, ze pocet_cifer = 2.

Spusti se for-cyklus pro i = 1.

Kopie #1 se zastavi, vzniknou kopie #2 a #3.

V kopii #2 je cislo = 0, v kopii #3 je cislo = 1.

V obou bézicich kopiich pokracuje for-cyklus pro i = 2.

Kopie #2 a #3 se zastavi, z #2 vzniknou #4 a #5, z #3 vzniknou
#6 a #7.

V kopiich #4 az #7 bude mit proménna cislo hodnoty 0 az 3.
Kopie #4 a #5 Gspé&sné skondi, nebof ¢isla 0 a 1 nechceme testovat
jako délitele.

Kopie #2 Gspé&sné skondi, nebof uz tspésné skondcily obé kopie, které
z ni vznikly.

Kopie #7 ispésné skonéi, nebot ani ¢islo 3 nechceme testovat.
Kopie #6 sp&sné skondi, nebot 2 nedéli 3.
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> Kopie #3 spésné skonci, nebot uz uspésné skoncily obé kopie, které
z ni vznikly.
> Kopie #1 (tedy pivodni program) tispésné skonéi, nebot uz ispésné
skoncily obé kopie, které z ni vznikly.
Pro N = 6 bude vypocet probihat nasledovné:
> Podobné jako pti N = 3 se dostaneme do situace, kdy bézi kopie #38
az #15, proménna cislo v nich ma hodnoty postupné od 0 do 7.
Kopie #8 a #9 (s prili§ malym ¢islem) tGspésné skondi.
Kopie #4 (z niz vznikly #8 a #9) uspésné skondi.
Kopie #14 a #15 (s prilis velkym ¢&islem) Gspésné skonéi.
Kopie #7 (z niz vznikly #14 a #15) Gspésné skonci.
Kopie #10 az #13 skonéi — a to: #12 a #13 Uspésné (4 ani 5 nedéli
6), #10 a #11 netspésné (2 a 3 déli 6).
> Kopie #5 skon¢i netispésné (obé jeji ,,déti“ skondily neuspésné), kopie
#6 skonci uspésné.
> Kopie #2 skonéi netispésné (nebot kopie #5 skoncila netispésné), ko-
pie #3 skonci uspésné.
> Kopie #1 (tedy ptvodni program) skon¢i netispésné.

Priklad 2: V proménnych N a K jsou prirozena ¢isla. Napiste program
pro paralelizator, ktery pro kazdé N skonéi, pricemz uspésné skonc¢i praveée
tehdy, kdyz N mé né&jakého délitele z mnoziny M = {2,3,...,2K —1}.

RESENI. Pomoci volani piikazu Some paralelné projdeme vSechna
éisla m € M, staci nam, kdyz libovolné jedno z nich déli N.

(Jiny pohled na totéz teSeni: Pomoci volani ptikazu Some ,uhod-
neme® délitele m € M a ovéfime, zda jsme ho uhodli spravné. Na nas pro-
gram se muzeme divat tak, Ze se nevétvi, ale kazdé volani Some ,,uhodne
a do z dosadi ,spravnou® hodnotu. Jestlize tedy N ma v mnoziné M deé-
litele, najdeme ho, jinak skonéime s n&jakym ¢islem, které N nedéli.)

Casova slozitost programu je O(K).

v vV v VvV V

{ VSTUP: N, K : integer; }

var cislo : integer;
i,x : integer;

begin
{ paraleln zkoume sla od 0 do 2°K - 1 }
cislo := 0;
for i:=1 to K do begin
Some (x) ;
cislo := 2*cislo + Xx;
end;
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{ 0 a1 do mnoiny M nepat }
if cislo <= 1 then Reject;
{ zkusme, zda vygenerovan slo dl1 N }
if N mod cislo = O then Accept;
Reject;

end.

P-1ll1-1
Prisery
Na monitoru se zase jednou schyluje k velké bitvé mezi armadou hrace
a armadou jeho pocitace.

Kazdou armédu tvori N priser. Kazdou pfiseru miZzeme popsat dvéma
prirozenymi ¢isly: prvni popisuje jeji dtok (itocnou silu), druhé pak jeji
obranu (obranné schopnosti). PfiSeru s utokem a a obranou b budeme
znacit a/b.

Kdyz spolu bojuji dvé pfisery a titok prvni je vétsi nez obrana druhé,
druhd prisera je zabita. Muze se také stat, ze se obé priSery zabiji na-
vzajem nebo ze obé preziji. Prisera vyhraje souboj, pokud zabije druhou
piiSeru a sama prezije.

PriSery ovladané pocitacem ttoci, hra¢ se musi branit. Proti kazdé
z priSer pocitace musi poslat pravé jednu ze svych priser. VSechny souboje
probihaji soucasné.

Uloha. Napiste program, ktery zjisti, kolik mohou hracovy piisery
maximalné vyhrat souboju.

Vstup: Na prvnim fadku vstupu je celé ¢islo N (1 £ N < 10000) —
pocet piiSer, které ma kazdy z hract k dispozici. Na druhém radku jsou
uvedeny hracovy pifsery, na tietim pak piisery pocitace. Utok i obrana
kazdé prisery je celé cislo od 1 do 1000000 000.

Vystup: Vypiste jediné celé ¢islo — nejvétsi pocet hracovych priser,
které mohou najednou vyhrat své souboje.

Priklady:

vstup vystup

3 2

9/2,9/7,8/8 (Nad priserou 7/8 vyhraje je-
100/100, 1/1, 7/8 diné prisera 9/7. Prisere 1/1

muze hrac¢ prifadit kteroukoliv
ze svych zbylych dvou pfiser.)
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vstup vystup

4 0

10/1, 10/1, 10/2, 10/9 (Bez ohledu na rozdéleni se vSechny
10/1, 10/1, 10/2, 10/8 priSery zabiji navzdjem.)

vstup vystup

4 4

7/3,2/12,47/47,5/6 (Jediné resent: své prisery hrac¢ pri-
10/1,4/7,3/6,1/1 fadi postupné treti, prvni, druhé

a Ctvrté prisefe pocitace.)

P—-1l-2
Biirroland

V Biirrolandu vyfesili otdzku nezaméstnanosti po svém — zaméstnali
hromadu turednikt. Aby méli novi turednici co na praci, zacali vydavat
nejriznéjsi potvrzeni, ktera je potieba predkladat pfi ruznych prilezitos-
tech. A jelikoz rednikli je mnoho, kazdy z nich je tzce specializovany
a vydava pouze jeden typ potvrzeni. Stejny typ potvrzeni ovSem muze
vydavat vice ufedniki.

Dostat od trednika potvrzeni, které vydava, neni nikterak lehké.
Abyste ho dostali, musite mit potvrzeni jiného konkrétniho typu a k tomu
jesté musite ufednikovi predlozit nékolik svych osobnich doklad. (Neza-
lezi na tom, jakych, dilezity je pouze jejich pocet.)

Jozin uz vlastni jedno potvrzeni, ale potfeboval by si vyfidit potvrzeni
jiného typu. Nyni ho zajima, jestli je to viibec mozné a pokud ano, jaky
nejmensi pocet osobnich dokladi mu k tomu bude stacit. (Pro Jozina je
snaz$i obéhat par urednik navic nez najit ve své rodné baziné rodny
list.)

Uloha. Je dan pocet rtiznych typt potvrzeni N (2 < N < 10000),
pocet urednikit M (1 £ M < 1000000) a ¢islo K (1 < K < 10000)
udavajici pocet ruznych osobnich dokladu existujicich v Biirrolandu.

Typy potvrzeni jsou ocislované od 1 do N. Jozin vlastni potvrzeni
typu 1 a shani potvrzeni typu V.

Pro kazdého tufednika jsou dana t¥i ¢isla: typ potvrzeni, které mu je
potieba ukazat, typ potvrzeni, které vydava, a pocet osobnich dokladi,
které je nutné mit s sebou (¢islo od 0 do K).

VAas program ma vypsat nejmensi pocet osobnich dokladi, které staci
k ziskadni potvrzeni typu N, a také poradi, v jakém mame potvrzeni vy-
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fizovat. Pokud neni mozné pozadované potvrzeni ziskat, vypiste misto
toho zpravu, ze to neni mozné.

Priklad:

I vstup vystup

N=4 M=5K=2 1

142 34

120

232

341

131

Existuje vice zpusobi, jak ziskat ¢tvrté potvrzeni. MtiZeme ho do-
stat pfimo za potvrzeni 1 (u prvniho afednika), ale k tomu potiebujeme
dva doklady. Nebo si mtzZeme nejdiive zafidit potvrzeni 2 (u druhého
ufednika), potom 3 (u tietiho) a nakonec 4 (u ¢tvrtého), ovsem k tomu
potfebujeme predlozit tfetimu ufednikovi také 2 doklady. Nejlepsi je zis-
kat potvrzeni 3 (u patého tifednika) a potom 4, na coZ ndm staci jediny
doklad.

P—-1l1-3

Piskvorky

Mach a Sebestova spolu maji rozehranou partii piskvorek. Sebestova
hraje s kiizky a zacinala.

V proménnych R a C je pocet fadku a sloupct hraci plochy, v dvou-
rozmérném poli A je na soufadnicich [i,7] (kde 0 S 1 < R, 0= 5 < C)
znak X, ,0° nebo ,.* (zatim prazdné policko). V proménné K je délka
rady potrebné k vyhie partie.

Muzete predpokladat, ze vstup korektné popisuje rozehranou partii,
ve které je pravé na tahu Sebestova. (Cili podet kifzki a kolecek je stejny
a nikde na hraci ploSe se jesté nevyskytuje K stejnych znaki v fadé vedle
sebe.)

SoutéZni tuloha. Napiste co nejrychlejsi program pro paralelizator,
ktery pro kazdy pripustny vstup skonéi, pricemz tuspésné skonci prave
tehdy, kdyz v zadané pozici ma Sebestova vyhravajici strategii (jinymi
slovy, pokud existuje postup, ktery uréi, jak ma Sebestova hrat a rea-
govat na Machovy tahy tak, aby vzdy vyhréla, at uz Mach hraje jakko-
liv).
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Priklady:
I vstup
R=6,C=5K=4

A= | oxo.
X
I vstup
R=6,C=5K=4
X0X0X
X0X0X
__ | oxo0.0
A= X0.0X
) S
0X0X0
vstup

R=50C=6K=6

vystup
skondéi tispésné

(Sebestové zac¢ne tahem na policko
(2,3], ¢ili na policko v tietim
radku a c¢tvrtém sloupci, ¢imz
dostane tri znaky X' vedle se-
be. I kdyz Mach odpovi tahem
na policko [5,0] nebo [1,4], Se-
bestova miize v dal$im tahu
vzdy tahnout na druhé z nich
a vyhrat.)

vystup

skonéi netspésné

(Sebestova prvnim tahem fadu étyi
nevytvori, dokonce ani nedokaze
zabranit Machovi, aby pfistim
tahem vyhrél.)

vystup

skonéi netspésné

(Rada Sesti se da vytvofit jediné
vodorovné. Mach proto snadno
zabrani Sebestové vyhrat. Pri
optimalni hie obou hraci partie
skon¢i remizou.)

Piskvorky (studijni text). Piskvorky jsou hra, kterou hraji dva hraci

na ¢tvereckovaném papiru obdélnikového tvaru. Na zacatku hry se hraci
dohodnou na celém kladném ¢isle K. Kazdy hra¢ ma svou znacku: hrac,
ktery zacind, obvykle pouziva kfizek (,X‘), druhy hrac kolecko (,0°). Hraci
tahaji stfidave, v kazdém tahu hrac zvoli prazdné policko na hracim planu
a umisti na néj svou znacku. Hra kon¢i, pokud néktery z hract kdekoliv
na hracim planu vytvoril souvislou fadu K svych znakt ve vodorovném,
svislém nebo thlopficném sméru. Pokud se celda plocha zaplni a nikdo
nevyhral, hra kon¢i remizou.

(Definice paralelizatoru je uvedena v textu tlohy P-1-4.)

119



Netrvalo dlouho a Kleofas si uvédomil, Ze na takovémto zazra¢ném
zafizeni dokaze nékteré problémy fesit az neuvétitelné rychle. Napriklad
testovani prvociselnosti je skuteéné snadné.

Priklad 1: V proménné N je prirozené cislo. NapiSte program pro
paralelizator, ktery pro kazdou hodnotu N skondi, pricemz uspésné skonci
pravé tehdy, kdyz N je prvocislo.

RESENI. Pomoci volani piikazu Both paralelné vygenerujeme viechna
¢isla od 2 do N — 1 a najednou pro kazdé z nich ovérime, zda déli N.
Kazda vétev vypoctu uspésné skonci, jestlize , jeji“ ¢islo nedéli N. Aby
puvodni program Uspésné skoncil, musi uspésné skoncit vsechny vétve,
tedy zadné z vygenerovanych ¢éisel nesmi délit N. Casova slozitost pro-
gramu je O(log N).

{ VSTUP: N : integer; }

var moc2, pocet_cifer : integer;
cislo : integer;
i,x : integer;

begin
{ oetme okrajov ppad }
if N = 1 then Reject;

{ zjistme, kolik m N cifer ve dvojkov soustav }
moc2 := 1;
pocet_cifer := 0;
while moc2 < N do begin
moc2 := moc2 * 2;
inc(pocet_cifer);
end;

{ vygenerujeme sla od 0 do 2"pocet_cifer - 1 }

cislo := 0;

for i:=1 to pocet_cifer do begin
Both(x);
cislo := 2xcislo + x;

end;

{ moc mal dlitele zkouet nebudeme, prohlsme za dobr }
if cislo <= 1 then Accept;
{ ani pli velk dlitele zkouet nebudeme }
if cislo >= N then Accept;
{ jinak zkoume, zda vygenerovan slo dl N }
if N mod cislo <> O then Accept;
Reject;
end.

Néazorné si ukdzeme, jak vypadéa vypocet paralelizatoru na tomto pro-
gramu pro N = 3 a pro N = 6. Kopie programu, které vznikaji béhem
vypoctu, budeme ¢islovat v potradi, v jakém vznikaji.
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Pro N = 3 bude vypocet probihat nasledovné:

Spusti se kopie #1 (tedy vlastné original).

Spocita, ze pocet_cifer = 2.

Spusti se for-cyklus proi = 1.

Kopie #1 se zastavi, vzniknou kopie #2 a #3.

V kopii #2 je cislo = 0, v kopii #3 je cislo = 1.

V obou bézicich kopiich pokracuje for-cyklus pro i = 2.

Kopie #2 a #3 se zastavi, z #2 vzniknou #4 a #5, z #3 vzniknou

#6 a #7.

V kopiich #4 az #7 bude mit proménnd cislo hodnoty 0 az 3.

> Kopie #4 a #5 Gspésné skondi, nebot ¢&isla 0 a 1 nechceme testovat
jako délitele.

> Kopie #2 tspésné skondi, nebotf uz ispésné skoncily obé kopie, které
z ni vznikly.

> Kopie #7 uspésné skondi, nebot ani ¢islo 3 nechceme testovat.

> Kopie #6 tspésné skondi, nebot 2 nedéli 3.

> Kopie #3 ispésné skondi, nebot uz spésné skondcily obé kopie, které
z ni vznikly.

> Kopie #1 (tedy ptvodni program) tispésné skonci, nebot uz spésné
skoncily obé kopie, které z ni vznikly.
Pro N = 6 bude vypocet probihat nasledovné:

> Podobné jako pfi NV = 3 se dostaneme do situace, kdy bézi kopie #8

az #15, proménnéa cislo v nich ma hodnoty postupné od 0 do 7.

Kopie #8 a #9 (s prili§ malym c¢islem) uspésné skonéi.

Kopie #4 (z niz vznikly #8 a #9) ispésné skondi.

Kopie #14 a #15 (s piilis velkym ¢islem) ispésné skondi.

Kopie #7 (z niz vznikly #14 a #15) Gspésné skondi.

Kopie #10 az #13 skon¢i — a to: #12 a #13 spésné (4 ani 5 nedéli

6), #10 a #11 netspésné (2 a 3 déli 6).

> Kopie #5 skonéi netspésné (obé jeji ,,déti“ skoncily neuspésné), kopie
#6 skonci tspésné.

> Kopie #2 skonéi netispésné (nebot kopie #5 skoncila netispésné), ko-
pie #3 skondi tspésné.

> Kopie #1 (tedy ptivodni program) skoné¢i netspésné.

v v vV VvV VvV VvV ¥V

v

v vV VvV VvV VvV

Priklad 2: V proménnych N a K jsou pfirozena ¢isla. Napiste program
pro paralelizator, ktery pro kazdé N skondi, pricemz ispésné skonéi prave
tehdy, kdy? N ma né&jakého délitele z mnoziny M = {2,3,...,25 —1}.

RESENI. Pomoci volani piikazu Some paralelné projdeme vsechna
¢isla m € M, sta¢i nam, kdyz libovolné jedno z nich déli V.
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(Jiny pohled na totéz feseni: Pomoci volani piikazu Some ,uhod-
neme® délitele m € M a ovéiime, zda jsme ho uhodli spravné. Na nés
program se muzeme divat tak, Ze se nevétvi, ale kazdé volini Some
suhodne“ a do @ dosadi ,spravnou® hodnotu. Jestlize tedy N ma v mno-
ziné M délitele, najdeme ho, jinak skon¢ime s né&jakym ¢islem, které N
nedeéli.)

Casova slozitost programu je O(K).

{ VSTUP: N, K : integer; }

var cislo : integer;
i,x : integer;

begin
{ paraleln zkoume sla od 0 do 2°K - 1 }
cislo := 0;
for i:=1 to K do begin
Some (x) ;
cislo := 2xcislo + x;
end;

{ 0 a1 do mnoiny M nepat }

if cislo <= 1 then Reject;

{ zkusme, zda vygenerovan slo d1 N }
if N mod cislo = O then Accept;

Reject;
end.
P-1ll-4
Nasobek
Program:  nasobek.pas / nasobek.c / nasobek.cpp
Vstup: nasobek.in
Vystup: nasobek.out

Nejmensi kladny nasobek ¢isla 13, ktery je tvofen jen Cislicemi 1 a 2,
je 221. I ¢islo 997 ma nasobky zapsané jen pomoci ¢islic 1 a 2, nejmen-
$im z nich je 1121222212 = 997 x 1124 596. Nejmensim nasobkem tii,
ve kterém mohou byt pouzity pouze Cislice 4 a 7, je ¢islo 444.

Vasi tlohou je napsat program, ktery bude takova ¢isla hledat.

Vstup: Na prvnim radku vstupniho souboru je uveden fetézec R tvo-
feny minimalné jednou a maximalné deseti ¢islicemi (od 0 do 9). VSechny
tyto Cislice jsou navzajem ruzné.

Na druhém fadku je uvedeno jedno kladné celé ¢islo N (1 £ N <
< 1000000).
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Vystup: Vypiste jediny radek a v ném jediné celé cislo — nejmensi
kladny nésobek ¢isla N, ve kterém se vyskytuji pouze cislice z fetézce R.
(Pozor, toto ¢islo miize mit mnoho dislic.)

Pokud éislo N Zadny takovy nasobek nema, vypiste misto toho fetézec

,neexistuje“.
Priklad: nasobek.in nasobek.out
12 1121222212
997
Priklad: nasobek.in nasobek.out
1379 neexistuje
2
Priklad: nasobek.in nasobek.out
7654321 47
47
P-1Ill-5
Stranka
Program:  stranka.pas / stranka.c / stranka.cpp
Vstup: stranka.in
Vystup: stranka.out

Rozhodli jsme se, Ze zacneme konkurovat svétoznamym vyhledava-
¢um, jako jsou napiiklad Google a Yahoo. Hlavnim klicem k uspéchu
bude samoziejmé prezentace nalezenych stranek uzivateli. Presnéji, chtéli
bychom z kazdé nalezené stranky ukazat co nejkratsi tsek obsahujici
vSechna slova, kterd uzivatel hledal. Vasi tlohou bude napsat program,
ktery takovy tsek v dané strance nalezne.

Soutézni tloha. Je dano N slov, kterd uzivatel zadal. Také je dan
text stranky obsahujici M slov. Napiste program, ktery najde nejkratsi
usek stranky, v némz se vyskytuji vSechna zadana slova (kazdé alespon
jednou).

Usek stranky tvoii nékolik po sobé jdoucich slov. Délka tseku je rovna
souctu jejich délek plus jejich pocet minus 1 (za mezery mezi nimi). Tedy
naptiklad tisek ,Toto je usek“ ma délku 12.

Vstup: Na prvnim fadku vstupniho souboru je jediné celé ¢islo N —
pocet vyhledavanych slov. Nasleduje N radku, na kazdém z nich je jedno
vyhledavané slovo. Vsechna tato slova jsou navzajem razna.
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Na dalsim fadku se nachézi celé ¢islo M — pocet slov na strance.
Nasleduje M tadki, na kazdém z nich je jedno slovo textu stranky, v po-
fadi, v jakém jsou na strance uvedena.

Omezeni: Kazdé slovo je fetézec tvoreny 1 az 100 malymi pismenky
anglické abecedy. '

Pro podet vyhledavanych slov N plati 1 < N < 5000. Soucet délek
vyhledavanych slov neprekroci 100 000.

Pro pocet slov na strance M plati 1 < M < 200000. Soucet délek
slov na strance neptekroci 1000 000.

Vystup: Vypiste nejkratsi usek stranky, v némz se kazdé vyhledavané
slovo vyskytuje alespon jednou. Pokud je takovych tseku vice, vypiste
ten, ktery je nejblize k zacatku stranky. Usek vypisujte tak, jak je uveden
na vstupu, tedy kazdé slovo na samostatném radku.

Pokud se nékteré vyhledavané slovo v textu stranky nenachdzi, vy-
piste jediny fadek s textem ,,Chybna stranka!“ (bez uvozovek).

Priklad: stranka.in stranka.out

3 nasi
nasi k vasim
vasi aby
prisli prisli
20 vasi
poslali

me

nasi

k vasim

aby

prisli

vasi

k nasim

kdyz

neprijdou

vasi

k nasim

tak

neprijdou

nasi

k vasim
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Kategorie Z5

Texty tloh

Z5-1-1

Doplii do prazdnych policek pfirozena ¢isla od 1 do 20 (kazdé ¢islo muzes
pouzit jen jednou) tak, aby platily matematické vztahy:

;2 + 4 -3 7
x 4 —2 12 +2
+6 -2 -1 14
X5 -1 27 x 4
(M. Smitkova)
25 —-1-2

Blecha Skakalka skace po ¢iselné ose. Dokaze vSak jen dva druhy skoki.

Jednim preskoci o 14 ¢isel doprava nebo doleva, druhym pteskoci o 18 ¢i-

sel doprava nebo doleva. Prave stoji na cisle 2.

a) Najdi zptisob, jak ma blecha skakat, aby se dostala pravé ¢tyrmi skoky
na desitku.

b) Blecha tvrdi, Ze vcera byla na tfinactce. Mluvi pravdu, nebo lze?
Zduvodni. (M. Dillingerovd)

Z5-1-3

Pohadkovy nafukovaci ¢tverec, ktery umi mluvit, mél pred 5 minutami
délku strany 8 cm. Pri kazdé 171 zvétsi sviij obvod dvojnasobné, pti kazdé
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vyslovené pravdé se zmensi délka kazdé jeho strany o 2 cm. Za poslednich
5 minut dvakrat lhal a dvakrat mluvil pravdu.

a) Jaky nejvétsi obvod muze ted mit?

b) Jaky nejmensi obvod muze ted mit? (S. Bodldkova)

Z5-1-4

Pepa na pouti koupil ¢tyti auticka — bilé, dervené, zelené a modré. Bilé
stalo dvakrat tolik co Cervené, zelené trikrat tolik co bilé a za modré za-
platil tolik, co za cervené a bilé dohromady. Pfitom cervené stalo o 70 K¢
méné nez zelené. Kolik stala jednotliva auticka? (S. Ptickovd)

Z5—-1-5

Maéama stonozka méa dvé déti a manzela. Kazdy z nich mé sto nohou
a vSichni si berou denné ¢isté ponozky. V sobotu rano v 6:00 zacala mama
stonozka davat $pinavé ponozky do pracky. Najednou se ji do pracky
vejde 357 ponozek. Tato jedna varka se vypere za dvé a pul hodiny.
Zjisti, kdy skon¢i s pranim, pokud vis, ze ponozky pere jenom jednou
za tyden, ulozeni ponozek do pracky ji trva 2 minuty a jejich vyndani
3 minuty. (S. Bedndrova)

Z5-1-6

Maminka ma v lednici cihlu syra, ktera je zndzornéna na obr.33. Po-
stupné z ni odfezava 1cm silné platky na smazeni. Nejprve odrizla ze-
predu platek s rozméry 21 ecm, 8 cm, 1 cm pro tatinka. Pak zboku odfizla
pro Jifika, zezadu pro sebe a nakonec z druhého boku pro Anicku. Napis,
jaké rozméry maji jednotlivé platky. Urci rozméry zbytku syra.

(M. Dillingerovd)
/sobé

8cm
Jitikovi

Anicce -
- -

el 12cm

21 cm

tatinkovi

Obr. 33
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Z5-11-1

Dopln do prazdnych policek prirozena ¢isla od 1 do 16 (kazdé ¢islo muzes
pouzit jen jednou) tak, aby platily matematické vztahy:

+2 19 +12
—5 13 -7
3 +3 3
+7 ) 2
(M. Smitkovad)
Z5-11-2

Petr slepil 17 hracich kostek do hada (jako na obr. 34). Kostky lepil vzdy
tak, Ze slepil stény se stejnym poctem tecek. Potom si hada prohlédl
ze vsech stran a spravné spocital vSechny tecky na jeho povrchu. Kolik
mu vyslo? (Soudet tecek na protilehlych sténach hraci kostky je 7.)

(S. Bodldkova, M. Dillingerovad)

Obr. 34

Z5-11-3

Myslim si trojmistné prirozené ¢islo mensi nez 200. Pokud jeho trojna-
sobek zaokrouhlim na stovky, zvétsi se o 36. Které ¢islo si myslim?
(M. Dillingerova)
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Kategorie Z6

Texty tloh

Z6 -1-1

Doplii do prazdnych poli¢ek ptirozena ¢isla od 1 do 20 (kazdé ¢islo mtizes
pouzit jen jednou) tak, aby platily matematické vztahy:

22 +4 -3 2 7
X 4 -2 12 + 2
+6 -2 -1 4
X5 —1 27 x 4
(M. Smitkovd)
26 -1-2

Snehurka se sedmi trpasliky sbirala liskové orisky. Méla jich tolik, kolik
vsichni trpaslici dohromady. Kdyz se vraceli, potkali veverku Loudilku.
Snéhurka i kazdy trpaslik ji dali stejny pocet ofisku. Kdyz pak trpaslici
a Snéhurka vysypali zbylé ofisky na stul, zapsal Préfa jejich pocty: 120,
316,202,185, 333,297,111 a 1 672. Kolik ofisk( dostala veverka Loudilka?

(L. Hozova)

Z6 -1-3

KdyZ jsme ¢isla 80 a 139 vydélili stejnym prirozenym ¢islem, ziskali jsme
zbytky 8 a 13. Jakym c¢islem jsme délili? (M. Volfova)
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Z6 -1-4

Obvod trojuhelniku je 16 cm. Jak dlouhé muze mit strany, kdyz jsou to
v centimetrech prirozend cisla a soucet délek dvou stran je o 6 cm veétsi
nez délka tteti strany? (L. Hozova)

Z6-1-5

Maruska dostala pét rizné tézkych kolact. Priumérna hmotnost jednoho
kolace byla 200 gramu. Maruska jeden kolac snédla a prumérna hmotnost
zbylych kolact pak byla 160 grami. Jakou hmotnost mél kolac, ktery

Maruska snédla? (B. Stastnd)
Z6-1-6
Uréi obsah sedé plochy vypliujici ¢dst atvaru mezi dvéma ctverci (roz-
méry na obr. 35 jsou v centimetrech). (P. Tlusty)
4
1
4
3
3 1
Obr. 35
Z6 - 11 -1

Pan Kutil chtél v koupelné vybarvit hvézdicové ornamenty na 20 dlazdi-
cich. Na plechovce s barvou bylo napsano, ze barva vysta¢i na 750 cm?.
Kolik nejméné plechovek musel pan Kutil koupit, pokud jeden ¢tverecek

sité ma obsah 1cm?? Ornament na jedné dlazdici vidite na obr. 36.
(L. Hozovd)
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Obr. 36

Z6 - 1l - 2

V jeskyni zZije pét obri. Jejich priumérna vyska je 45504,63 cm. Obr Dro-
becek méti 174,53 m, obr Kulihrach 173530,5 mm, obr Zlobr 1 745,23 dm,
obr Hrompac 0,017 34 km.
a) Zjisti, kolik méri paty obr Kolodé;.
b) Setfad obry podle velikosti od nejmensiho po nejvétsiho.

(S. Bedndrova)

Z6 - 11 -3

Snéhurka dala kazdému trpaslikovi stejny pocet kuli¢ek. Trpaslici hazeli
hraci kostkou. Kolik jim padlo tecek, tolik kulicek museli vratit Snéhurce.
Kazdému z Sesti trpaslik padl jiny pocet tecek. Kolik tec¢ek padlo sed-
mému trpaslikovi, kdyz trpaslikim zbylo dohromady 46 kulicek? Kolik
kuli¢ek dala Snéhurka kazdému trpaslikovi na zacatku? (L. Hozova)
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Kategorie Z7

Texty tloh

Z7 -1-1

Pat a Mat upravovali novy asfalt na cesté. Nejprve s valcem jeli 10m
dopfedu, potom 7m couvli. Pak opét popojeli 10 m doptedu a 7m couvli
atd. Takto pokracovali, nez poprvé sjeli z nového asfaltu.

a) Kolik metrt ujeli na novém 540 m dlouhém tseku cesty?

b) Kolikrat ptejeli po 19. metru nového asfaltu? (M. Dillingerova)

Z7 - 1-2

Zjisti obsah a velikosti vnitinich tthltt mnohothelniku znazornéného v ko-
soCtvercové siti na obr. 37, jestlize vis, ze pfimky sité sviraji uhel 80°
a jeden maly kosoc¢tvereéek ma obsah 1cm?. (Pozor, obr. 37 je nepiesny!)

(S. Bedndrova)

/

JAVA
JAVA
/[ /

VAV
yrh
VAVA
AVA

VA
yAVAVA
//// [ L7/

Obr. 37

Z7-1-3

Na obr.38 vidi§ tzv. kvadrolddu (specidlni druh rolady). Je vyrobena
z bilé a hnédé marcipanové hmoty, pficemz obé hmoty maji stejnou
tloustku, a to 1cm. Celd kvadroldda ma délku 15cm. Prodava se roz-
krajend na 10 shodnych platku. Zjisti
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a) rozméry jednoho platku,
b) kolik grami hnédé hmoty a kolik gramt bilé hmoty je tieba na jeji
piipravu, jestlize vi§, Ze 1 em® marcipanu ma hmotnost 2 gramy.
(S. Bedndrovd)

lcm

15cm

Obr. 38

lcm
Z7 -1-4
Najdi vSechna pétimistna prirozena éisla, kterd se Skrtnutim prvni a po-
sledni ¢islice zmensi 250krat. (L. Simiinek)
Z7 -1 -5

Pavel mél za domaéci kol vyjadrit desetinnymi ¢isly zlomky % a 1—75 Chtel
udélat pani ucitelce radost a misto do sesitu psal na latky skolniho plotu.
Nejprve vyjadioval % , takZe nahoru na prvni latku napsal nulu, na druhou
desetinnou ¢arku, na tfeti 4. Takto pokracoval, dokud nenapsal ¢islici na
posledni latku. Potom vyjadfoval T7§ Na prvni latku dolit napsal nulu, na
druhou desetinnou ¢arku, na treti 5 atd. Kolik bylo v ploté latek, vis-li, ze
&islici 5 napsal piesné 667krat a Ze na 668 latkach byla dvojice stejnych
céislic? (P. Tlusty, M. Dillingerova)

Z7T-1-6

V Kocourkové jsou dvé sménarny. V soucasnosti maji tyto kurzy:

1. sménarna 2. sménarna
Nakupujeme | Prodavame Nakupujeme | Prodavame
1 euro 123 Kk 132 Kk 1 euro 134 Kk 143 Kk
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Slavek Mazany mél nékolik eur. V druhé sménarné je vymeénil za kocour-
kovské koruny a ty potom vymeénil v prvni sménarné zpét za eura. Takto
vydélal 1 euro. Kolik eur mél piavodné? (S. Bedndrouvd)

Z7 -11-1

Sit na obr.39 je slozena ze shodnych rovnora-
mennych trojthelniki, z nichz kazdy m&a obsah
2 cm?, pii¢em? néktery z vnitinich thla trojuhel-

niku meri 100°. Zjistéte obsah a velikost vnitinich >
uhli mnohothelniku znazornéného v této troju-
helnikové siti. (Pozor, obrazek mize byt velmi ne-

presny.) (S. Bednarova)
Z7 - 11 -2
Najdi vSechna ¢tyrmistna cisla, ktera se po skrt- <
nuti prostiednich dvou cifer zmensi 120krat.
(5. Bedndrova) Obr. 39
Z7 -1 -3

Kral Original I. si sém navrhl a nechal vybudovat bazén. Na obr. 40 vidi-
te, jak vypada pri pohledu shora. Dno je pokryté ¢tvercovymi dlazdicemi
o strané délky 2 metry, betonové stény jsou 3 metry vysoké a 0,5 metru
silné. Zjistéte, kolik kilogram betonu spotfebovali na stény bazénu, jest-
lize 1 m® betonu vazi 2000 kg. (S. Bedndrova)

Obr. 40
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Kategorie Z8

Texty uloh

Z8-1-1

Soucin ciferného souc¢inu a ciferného souc¢tu dvojmistného piirozeného
¢isla je 126. Které cislo to je? Najdéte viechna moZna feseni.
(M. Raabova)

Z8 - 1-2

Pani Zruéna se uchazela o misto v pernikarné. Pii pohovoru s vedoucim
chtéla fici, za kolik minut ozdobi kolik pernikti. Byla nervézni, a proto
omylem prohodila pocet minut s poctem pernikii. Vedouci podle vyslech-
nutych udaju spocital, kolik pernikii by méla pani Zruéné stihnout ozdo-
bit za pétihodinovou pracovni dobu, a tolik ji dal ikolem. Pani Zrucné
vsak trvala prace o 2 hodiny a 12 minut déle. Kolik pernikt ozdobila?

(L. Simiinek)

Z8-1-3

Na obr.41 vidi§ tzv. kvadrolddu (specidlni druh rolady). Je vyrobena
z bilé a hnédé marcipanové hmoty, pricemz obé hmoty maji stejnou
tloustku, a to 1cm. Celd kvadroldda ma délku 15cm. Prodava se roz-
krajena na 10 shodnych platku. Zjisti
a) rozméry jednoho platku,
b) kolik gramt hnédé hmoty a kolik gramt bilé hmoty je tfeba na jeji
piipravu, jestlize vis, Zze 1 cm® marcipanu ma hmotnost 2 gramy.
(S. Bednarova)

Z8-1-14

Roman psal na list papiru celd ¢éisla do tady tak, ze kazdé nasledu-
jici ziskaval z predchoziho stfidavé nasobenim dvéma a odecitanim tri.
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lcm

15cm

lcm

Obr. 41

(Napt. rada ¢isel 1, 2, —1, —2, —5, —10 vyhovuje jeho pravidlu, ale fada
10, 7, 4, 8, 16, 32 jeho pravidlo nespliuje.) Po chvili secetl poslednich
5 ¢isel, kterd napsal, a vyslo mu 114. Kterych pét ¢isel napsal naposledy?

(M. Raabova)

Z8 -1-5
Uréete polomér vétsi kruznice, vite-li, ze malé kruznice maji polomér 1 cm
(kruznice maji celkem osm vzajemnych dotykii, obr.42). (P. Tlusty)
Obr. 42
Z8 -1-6

74k Pazout mél v loriském ro¢niku prameér viech znamek 4,15. Z nich byly
pouze Ctyii jednicky, zato pravé jedna tfetina byly pétky. Kolik znamek
musel Pazout minimélné dostat? (L. Simimek)
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Z8 -11-1

Kazdé pismeno tabulky nahrazuje uréité ptirozené éislo (stejna pismena
predstavuji stejna ¢isla). Zname souc¢ty hodnot ve tietim Fadku, ve étvr-
tém radku a v prvnim sloupci. Uréete alespori jednu vyhovujici étvefici
¢isel, jimiz lze nahradit pismena A, B, C, D.
D
C
B
D
85 |

QW
B WO Q
QW
)

>
ot

(S. Ptdckovd)

Z8 - 11 -2

Méme obrazec ve tvaru T slozeny z 22 ¢tverecki o strané 1 cm (obr. 43).
Bodem V prochazi primka p, ktera rozdéluje obrazec na dvé éasti, bilou
a Sedou. Urcete, v jakém poméru rozdéluje primka p tisecku AB, vite-li,

ze obsahy bilé a Sedé plochy jsou stejné. (L. Siminek)
A vV | —DP
| —]
L —]
—B
Obr. 43
Z8 - 11-3

Majka vytvofila posloupnost ¢isel, ve které je kazdé nasledujici ¢islo
sou¢tem druhych mocnin éislic predchazejiciho éisla. Vypiste prvnich
10 ¢lentt této posloupnosti, pokud je jeji prvni ¢len ¢islo 29. Které ¢islo
je v posloupnosti na 2 006. misté? (M. Dillingerova)

136



Kategorie Z9

Texty tloh

Z29-1-1
Urcete pocet prirozenych ¢isel od 100 do 999, ktera maji praveé dvé stejné
Cislice. (P. Tlusty)
Z9-1-2

Na obr.44 jsou tii rovnostranné trojuhelniky, t¥i malé polokruznice
dotykajici se jedné velké polokruznice o poloméru 1dm. Urcete délku
usecky AB. (P. Tlusty)

P N

Obr. 44

Z9-1-3

V soustavé soufadnic jsme znazornili body A[3,2], B[—1,1], C[—2,4] a je-
jich obrazy A’, B’, C’ ve stfedové soumérnosti se stiedem v pocéatku
soustavy souiadnic. Vypoéitejte obsah Sestitthelniku ABC A’B'C".

(S. Bednarova)

Z29-1-4

Stary podnikatel zemfel a zanechal po sobé dva bankovni uéty, jeden
dluh a zavét. V zavéti je psano, Ze penize z prvniho uctu si maji rozdélit
prvni a druhy syn v poméru 1 : 2, penize z druhého U¢tu prvni a tieti

137



syn v poméru 1 : 3 a dluh maji zaplatit druhy a treti syn v poméru 2 : 3.
Zjistéte, kolik korun bylo na prvnim, kolik na druhém ucétu a jaky dluh
museli synové zaplatit, vite-li, Ze v kone¢ném diisledku kazdy z nich ziskal
123456 korun. (S. Bedndrovd)

Z9-1-5

Dva rovnostranné papirové trojhelniky, z nichZz mensi ma obsah 60 cm?,
jsme polozili pres sebe tak, ze jejich prunikem byl pravouhly trojuhelnik
s obsahem 30 cm?. Jaky nejmensi obsah mohl mit vétsi z rovnostrannych
trojihelnika? (S. Bednarova)

Z9-1-6

Provérka obsahovala 26 otazek, jez byly rozdéleny podle obtiZznosti do tii
skupin. V prvni byla kazda spravna odpovéd hodnocena tfemi body, ve
druhé péti body a ve tfeti osmi body. Maximalni pocet bodu byl 111.
Kolik otazek mohlo byt v jednotlivych skupinach? (L. Siminek)
Petr a Honza sli plavat. Vzdalenosti, které uplavali, byly v poméru
4 : 5, Honza uplaval vice. Dalsi den §li znovu, tentokrat Petr uplaval
0 200 metri méné a Honza o 100 metru vice nez predchozi den a pomér
vzdalenosti byl 5 : 8. Kolik metrit uplavali Honza a Petr prvni den?
(B. Stastnd)

Z9 -11-1
Uréete obsah Sedé plochy na obr. 45, pokud vite, ze kruznice se navzajem

dotykaji a maji polomér 1 cm a tsecky, které plochu ohranicuji, jsou jejich
spole¢né tecny. (P. Tlusty)

Obr. 45
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Z9-11-2

Marek si hraje s jednoduchou kalkulackou. Na papir si napsal jedno éislo.
Zadal je do kalkulacky a pak postupné mackal tlacitka: plus, étyti, déleno,
Ctyti, minus, ¢tyti, krat, ¢tyfi. Vysledek opsal na papir. Poté s timto
¢islem postupoval stejné jako s predchazejicim, tedy zase: plus, ¢tyfi,
déleno, ¢tyri, minus, ¢tyti, kréat, étyii. Vysledek si opét opsal na papir.
Cely postup s timto nové ziskanym c¢islem zopakoval a opét vysledek
opsal na papir. Poté zjistil, Ze soucet ¢tyt ¢isel zapsanych na papite je 80.
Ktera ¢isla a v jakém poradi napsal Marek na papir? (M. Raabova)

Z9 -11-3

V' rovnostranném trojihelniku oznacte kazdy bod, jehoz vzdélenost
od nejblizsiho vrcholu je mensi nez vzdélenost od tézisté. Kolik procent
plochy rovnostranného trojihelniku zaujimaji body se zminénou vlast-

nosti? (L. Simiinek)

Z9-11-4

Dopliite do ¢tverecku prirozena ¢isla tak, aby: soucet vSech doplnénych
cisel byl 44, soucet ¢isel v kazdém ¢&tyictvereckovém ctverci byl stejny,
nejmensi doplnéné ¢islo bylo liché, uprostied c¢tverce bylo jednociferné
¢islo.

7

(S. Bednarova)

Z9 - 111 -1

Urcete obsah Sedého mésicku z obr. 46, pokud vite, Ze prumér AB vétsi
polokruznice ma délku 2 cm, prumér C'D mensi polokruznice ma délku
lcm a plati AB || CD. (P. Tlusty)

Z9 -1l -2

Kuba nasel ve sklepé tii krabice tvaru kvadru se ¢tvercovou podstavou.
Prvni byla dvakrat vyssi nez druhd. Druha byla 1,5krat Sirsi nez prvni.
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Obr. 46

“TYeti byla trikrat vyssi neZ prvni a dvakrat uzsi nez prvni. V jakém
pomdéru jsou objemy krabic? (M. Raabova)

Z9 - 111 -3

P1i prijimacich zkouskach na univerzitu je kazdému zajemci o studium
pridélovan kryci kéd slozeny z péti ¢islic. Zkousky organizoval dukladny,
le¢ povércivy docent, ktery se pred pridélovanim kédua rozhodl vytadit
ze vSech moznych kédu (tj. 00000 az 99999) ty, které v sobé obsahovaly
¢islo 13, tedy dislici 3 bezprostfedné nasledujici po ¢islici 1. Kolik kédu
musel docent vytradit? (L. Siminek)
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Pripravna soustredéni pred 47. MMO

Vybérové soustiedéni pro pripravu na mezinarodni matematickou olym-
piadu probéhlo od 10.-14. dubna v Kostelci nad Cernymi lesy. Na soustie-
déni bylo pozvano 8 nejlepsich fesitelu III. kola kategorie A s vyjimkou
téch, ktefi se rozhodli dat prednost tcasti na Mezinarodni fyzikalni olym-
piadé (Pechal, Scholle a Motloch). Nepozvali jsme také vitéze letosniho
celostatniho kola, protoze v dobé Mezinarodni matematické olympiady
dosahne 20 let, a tak se dle uznavanych pravidel nemuze této soutéze
zOCastnit. Soustfedéni bylo zaméfeno na pripravu reprezentanti a po-
slouzilo ke kone¢né nominaci Sesticlenného druzstva.
Uspé&snost jednotlivych studentii ukazuje nasledujici tabulka:

Jaroslav Hancl 4/4 GMK Bilovec 89,5
Jakub Oprsal 4/4 G Brno, ti. Kpt. Jarose 80
Zbynék Koneény 3/4 G Brno, ti. Kpt. Jarose 79,5
Vojtéch Riha 4/4 G Brno, tf. Kpt. Jarose 64,5
Pavel Salom 8/8 G Roznov pod Radhostém 56,5
Jan Uhlik 4/4 G Brno, ti. Kpt. Jarose 48
Anezka Faltynkova 3/4 GJS Pierov 475
Tomas Jeziorsky 3/4 GMK Bilovec 40

Na zékladé uvedenych vysledk, v nichz jsou zapocitany i vysledky
oblastniho a celostatniho kola, bylo prvnich Sest vybrano do reprezen-
ta¢niho druzstva a sedmy byl uréen jako ndhradnik. Toto druzstvo nas
reprezentovalo i na jiz tradi¢nim stietnuti s druzstvy Slovenska a Polska.

Jednotlivé seminare vedli a ulohy pripravili:
dr. Jaroslav Zhouf (10.4.),

dr. Karel Hordk (11.4.),

dr. Pavel Caldabek (12.4.),

dr. Jaroslav Svrcek (13.4.)

a doc. Jaromir Simsa (14.4.).

141



Ulohy zadané na piipravnych soustiedénich

1. Na tabuli jsou napsana tfi ¢tyfmistnd prirozend cisla. Jestlize v je-
jich zapise zaménime vSechny dvojky trojkami, bude soucet novych ¢isel
roven 10972. Jestlize v zapise plivodnich ¢isel zaménime viechny étytky
sedmickami, bude soucet novych ¢isel roven 11 654. Cemu se rovné soudet
puvodnich tii ¢isel?

2. Ve mésté vede kazd4 ulice bud ze severu na jih, nebo z vychodu na za-
pad. Automobil pravé dokonéil projizdku méstem, pii které odbodil prave
stokrat doleva. Kolikrat pritom mohl odbocit doprava, jestlize zadné
misto neprojel dvakrat a nakonec se vratil na vychozi misto? Kazda ulice
je prujezdna v obou smérech.

3. Necht je dana funkce f(x) = ax?® + bx + ¢, kde a, b, ¢ jsou celd &isla,
a # 0. Dale vime, Ze rovnice f(z) = 0 mé aspon jeden celo¢iselny kofen.
Uréete f(1), jestlize f(f(1)) = 1.

4. V trojuhelniku ABC (|AB| < |BCY) je bod I stfed kruznice vepsané,
M je stred strany AC, N je stfed oblouku ABC' opsané kruznice. Do-
kazte, ze |xIMA| = |xINB].

5. Dokazte, ze pro kazdé prirozené ¢islo n existuje n-mistné ¢islo délitelné
57, jehoz vSechny ¢islice jsou liché.

6. Je dan trojuhelnik ABC' a kruznice obsahujici jeho vrcholy A, B, ktera
protind tsecky AC a BC' postupné v bodech D a | pti¢emz polopiimky
BA a ED se protinaji v bodé F. Ozna¢me M prusecik ptimek BD a C'F.
Dokaite, ze |[MF| = |MC|, pravé kdyz |M B| - |M D| = |MC|?.

7. V roviné je dan trojihelnik ABC a uvniti bod P. Oznac¢me postupné
D, E, F priuseciky ptimek PA, PB, PC se stranami BC, CA, AB. Do-
kazte, ze

[PAF] + [PBD] + [PCE) = %{ABC],

pravé kdyz bod P lezi na nékteré téZnici trojuhelniku ABC. (Symbol
[XY Z] oznaguje obsah trojuhelniku XY Z.)

8. Naleznéte vSechny funkce f: N — N takové, ze
f(m+n)f(m —n) = f(m?)
plati pro vSechna m,n € N.
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9. Necht S je mnozina vSech funkei f:[0,1] — [0,40c0) takovych, ze
f(1) =1 a plati

f@)+ f(y) £ f(x+y) provsechnaz,y € [0,1], z+y < 1.

Urcete nejmensi cislo k tak, ze pro vSechny funkce f € S a pro vSechna
x € [0,1] plati f(z) < ka.

10. Urcete vSechna prirozena ¢isla m, n tak, ze plati

{mQJ [an [m nJ
—+t|—|=|—+—]| +mn.

n m nom

11. Necht p je prvodislo a ¢ mnohodélen s celociselnymi koeficienty takovy,
ze pro kazdé ptirozené cislo k plati, Ze zbytek po déleni ¢isla ¢(k) ¢islem
p je bud 0, nebo 1. Déle plati ¢(0) = 0 a ¢(1) = 1. Dokazte, ze stuperl
mnohoclenu ¢ je alespon p — 1.

12. Nechf 2z, vy, z jsou kladna realné &sla, pro néz plati =2 + y? + 22 +
+ 2zyz = 1. Dokazte, Ze pro né plati nerovnost

2(r+y+2) < 3.

Kdy nastane rovnost?

13. V roviné uvazujme kruznice ki a ko, které se protinaji v bodech A, B.
Tecéna ke kruznici ko sestrojend v bodé A protina kruznici &y v bodé Cy
(Cy # A); tetna ke kruznici ky sestrojena v bodé A protina kruznici ks
v bodé Cy (Cy # A). Piimka CyCy protind kruznici k1 v bodé D (Cy #
# D # B). Dokazte, ze pfimka BD prochazi stfedem tsecky ACS.

14. Uvazujme pravouhly trojuhelnik ABC s preponou AB. Nechf P je
priisecik osy vnitiniho thlu pii vrcholu C' s preponou AB, dale necht I,
znadi stfed kruznice vné pfipsané preponé AB uvazovaného pravouhlého
trojuhelniku. Dokazte, Ze plati nerovnost

CP| » 1=
|PIC|:f2 1.

Kdy nastane rovnost?
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15. Zapiste v desitkové soustavé ¢iselnou hodnotu zlomku

L () 2 () 43 () 4+ 2006 (3000
(30 (500) (o + () o+ o)’

16. Osa vnitfniho thlu BAC trojuhelniku ABC' protne stranu BC
v bodé¢ K. Vyjadiete |AK| pomoci délek a,b, c stran AABC' ve tvaru

_ VLi1LoL3L4
|AK| = ————
Ls
s vhodnymi ¢initeli L; = u;a + v;0 + w;c s redlnymi koeficienty w;, v;, w;.

17. Napiste ptiklad tii prirozenych ¢isel a, b, ¢ tak, aby ¢islo a bylo na-
sobkem deviti, ne vSak nasobkem jedendcti, aby ¢islo b bylo nasobkem
jedendcti, ne vak nasobkem deviti, a aby platilo a®® 4 b% = 190,

18. Méame n minci My, Mo, ..., M,, jejichZz strandm fikame ,hlava“ a
yorel“. Pro kazdé k = 1,2,...,n je mince My natolik falesna, ze pii jejim

hodu padne ,hlava“ s pravdépodobnosti 1 : (2k + 1). Hodime-li kazdou
z téchto n minci jedenkrat, s jakou pravdépodobnosti padne ,hlava“ lichy
pocet krat? Odpovéd zapiste ve tvaru P(n) : Q(n), kde P(n) a Q(n) jsou
mnohodleny proménné n (tedy jejich stupné a koeficienty jsou na cisle n
nezavislé).

19. Rozhodnéte, zda lze vybrat 2006 ruznych ptirozenych ¢isel mensich
nez 100000 tak, aby zZadné z nich nebylo rovno aritmetickému priuméru
jinych dvou vybranych cisel.

20. Bod M je sttedem strany AC daného trojuhelniku ABC. Na pro-
dlouzeni strany BC' za bod B je vybran bod D tak, ze |BD| = |BA|. Osa
uhlu ABC protne piimku M D v bodé P. Dokazte, ze thly BAP a ACB
jsou shodné.

21. Na listé papiru narysujeme vSechny strany a thlopficky nékterého
konvexniho n-tthelniku. Tyto tsecky pak postupné odstranujeme maza-
nim podle nasledujici procedury: Vybereme libovolné étyfi razné vrcholy
A, B, C, D takové, ze tsecky AB, BC, CD, DA jsou (zatim) narysovany,
a jednu z téchto éty¥ tsecek umazeme. Proceduru opakujeme tak dlouho,
dokud to je mozné. Pro dané n = 4 urcete nejmensi mozny pocet usecek,
které nakonec v n-tthelniku ztstanou narysovany.
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Mezinarodni stfetnuti ¢esko-polsko-slovenské

ZILINA, 26.—28. CERVNA 2006
V ramci zavéreéné pripravy pred MMO se uskutecnilo jiz Sesté mezina-
rodni stfetnuti mezi tymy Ceské republiky, Polska a Slovenska. Jednotlivé
zemé reprezentovaly Sestice ti¢astniki, ktefi si vybojovali ve svych zemich
postup na 47. MMO v Lublani.

Organizace a prubéh soutéze zustal zachovan z predeslych ro¢nikia —
je prizpusoben stylu III. kola nasi MO a podminkdm na MMO. Soutézi-
cim byly ve dvou dnech piedloZeny dvé trojice soutéznich tloh, pritom
za kazdou z loh mohli ziskat nejvyse 7 bodd, tj. celkové (stejné jako na
MMO) 42 body. Na kazdou trojici tloh méli soutézici vyhrazeno 4,5 ho-

e

diny.

Poradi| Jméno Zemé| Body |Soudet]

“1. | Michat Pilipczuk POL [772776| 36

2. [Frantisek Simanéik  |SVK |761277 | 30

3. | Michal Burger SVK |771 2/7*5/ 29

4.-5. | Pavel Kocourek CZE |7 0/7'7“ 25 28

Tomasz Kulczynski POL | 772075 28

6.| Tomasz Warszawski |POL7| 761247 | 27

7.-8. | Frantisek Konoﬁ'ec[_cy QZE 707073 24

Marek Pechal | CZE |701574 24

9.| Ondrej Budac SVK | 702077 | 23

10. | Jaromir Kube'g}""" CZE. [607207 | 22

11.-12. | Jozef Bodnar SVK 231275 20

Wo jcieg){‘émietanka POL [661700 | 20

13.-14. | Nadb6r Drozd POL [701074 | 19

Jakub Zavodny SVK [702271N_19

15.| Jakub Oprsal CZE [701270

_16. | Peter Cerno SVK |702200| 11

) /" 17.| Piotr Achinger POL [101260 10

P 18. | Jaroslav Hancl CZE [100030 4

AN

Hodnoceni vyfesenych tloh koordinovala mezinarodni komise ve slo-
zeni Jaroslav Svréek a Jaroslav Zhouf za Ceskou republiku, Vojtech Bd-
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lint, Peter Novotny a Jan Mazdk za doméci Slovensko a Jozef Kalinowski
a Tomasz Szymezyk za Polsko.

Texty soutéznich uloh

1. Na kruznici o poloméru r lezi pét riznych bodua A, B, C, D, E v tomto
poradi, pficemz plati |AC| = |BD| = |CE| = r. Dokazte, 7e trojuhelnik,
jehoz vrcholy tvori priseciky vysek trojuhelniki ACD, BCD a BCE, je
pravouhly. (Tomas Jurik)
2. Kolem okrouhlého stolu sedi n déti. Erika je z nich nejstarsi a ma
n bonbont. Ostatni déti zadné bonbony nemaji. Erika se rozhodla, ze
bonbony rozdéli, a stanovila nasledujici pravidla. V kazdém kole zdvihnou
ruce vSechny déti, jez maji u sebe aspon dva bonbony. Erika jednoho
z prihlasenych vybere a ten da kazdému svému sousedovi jeden bonbon.
(V prvnim kole se tedy pfihlasi jen Erika a d& svym dvéma sousediim po
bonbonu.) Zjistéte, pro které n = 3 mize déleni po koneéném poctu kol
skoncit tak, ze kazdé dité bude mit pravé jeden bonbon.

(Peter Novotny)

3. Soucet ¢tyf realnych cisel se rovna 9, soucet jejich druhych mocnin se
rovna 21. DokaZte, ze dand ¢isla je moZno oznadit a, b, ¢ a d tak, aby
platila nerovnost ab — c¢d = 2. (Jaromir Simsa)
4. Dokazte, Ze pro kazdé prirozené éislo k = 1 existuje prirozené Cislo n
takové, ze v zapise ¢isla 2™ v desitkové soustavé se nachazi blok prave k
po sobé jdoucich nul, tj.

2" = ...a00...0b...,
—
k nul
pricemz cislice a, b jsou nenulové. (Peter Novotny)

5. Zijistéte, kolik existuje posloupnosti celych ¢isel (a,)52, takovych, ze
pro kazdé prirozené cislo n plati
a,, + 2006
-1 a Qpig = —————.
Qn 7é +2 Ant1 +1

(Peter Novotny)
6. Zjistéte, zda existuje konvexni pétitthelnik A As A3 A4As takovy, ze
pro kazdé ¢ = 1,2,3,4,5 jsou piimky A;A;13, Ait1Ai42 riznobéiné
a protinaji se v bodé B;, pticemz body Bi, Ba, Bs, B4, Bs lezi v pfimce.
(Klademe Ag = Aj, A7 = A a Ag = A3.) (Waldemar Pompe)
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Redeni soutdZnich tloh

1. V libovolném tupothlém trojihelniku XY Z s tupym thlem pfi vr-
cholu Z a prusecikem vysek W maji thly XY Z a XW Z stejnou velikost,
oba jsou totiz doplnkem do 90° tthlu Y XW (obr. 47). Navic body Y a W
lezi v opaénych polorovinach uréenych piimkou X Z.

4

Al
S
|

I

|

|

|

|

|

|

|

Obr. 47

Oznacme pruseéiky vySek uvazovanych trojuhelnikt postupné P,
@, R. Ukazeme, ze thel PQR je pravy.

Ztejmé vsechny tfi uvedené trojuhelniky maji pfi vrcholu C tupy
uhel. Body P, Q, R tedy lezi ve vnéjsi oblasti dané kruznice (obr. 48).
Z rovnosti |AC| = |BD| plyne, Ze jsou ptimky BC a AD rovnobéziné.
Protoze poloptimka BD lezi v konvexnim tthlu CBE a pritom

CPLAD | BC, CQLBD, CRLBE,

je zfejmé nejen to, Ze poloptimka CQ lezi ,mezi“ polopfimkami CP
a C'R, tj. v konvexnim thlu PCR, ale také to, ze |xPCR| = |xCBE| =
= 30°, nebot tétivé C'E velikosti poloméru piislusi stfedovy tihel 60°.

Podle tvrzeni z ivodniho odstavce lezi body @ a R v téze poloroviné
urcené primkou BC a plati

|xBEC| = |xBRC| a |xBDC|=|xBQC|.

Pritom thly BEC a BDC maji stejnou velikost, ponévadz se jedné o ob-
vodové tihly nad spole¢nou tétivou BC'. Je tedy také |« BRC| = |<BQC|,
takze ctyriuhelnik BCRQ je tétivovy. Pro velikost ihlu CRQ proto plati
|xCRQ| = 180°—|xQBC| = 120° (z |BD| = |CE] totiz plyne CD || BE,
coz spolus @B L CD dava |xQBE| = 90°, neboli |xQBC| = 60°).
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Obr. 48

Analogicky zjistime, ze 1 ¢tyithelnik DCPQ je tétivovy a plati
[<CPQ| = 180° — |[xQDC| = 120° (PD je vyska na stranu AD, pii¢emz
velikost thlu ADC' nad tétivou AC je 30°). Dopo¢itanim thlu PQR ve
ctyfuhelniku PCRQ) dostavame |X PQR| = 360° — 30° — 2 - 120° = 90°.
Tim je tvrzeni tlohy dokazano.

2. Nejprve ukdzeme, ze pro sudé n déleni nikdy nemiize skoncit poza-
dovanym zpiisobem. V kazdém kole se zméni poloha jen dvou bonbonii,
pricemz se posunou ,opacénymi sméry“. To nas vede ke zkoumani, jak
se méni celkovy soucet vzdalenosti bonbonii od daného ditéte, feknéme
od Eriky. Ozna¢me jednotlivd mista po sméru hodinovych rudicek ¢isly
od 0 do n — 1 podle vzdalenosti (v tomto sméru) od Eriky. Po kazdém
kole sec¢téme vzdalenosti vsech bonbont od Eriky a oznac¢me soucdet S
(tj. s kazdym bonbonem zahrneme do S ¢islo mista, kde sedi jeho ak-
tualni drzitel). Pokud v daném kole vybere Erika dité na misté s ¢islem &
(1 £k £n—2), hodnota S se nezméni — namisto 2k bude v souctu
(k—1)+(k+1) = 2k. Pokud vybere dité na misté s ¢islem n—1, v S misto
2(n—1) = 2n — 2 bude (n — 2) + 0, hodnota souctu se tedy zmensi o n.
A koneéné pokud vybere sebe, misto 20 bude v soudtu (n —1) +1 = n,
takze se hodnota S o n zvétsi. Protoze na zadatku je S = 0 a mlze se
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ménit jen o hodnotu +n, zistane S po kazdém kole délitelné ¢islem n, tj.
S/n bude stale celé ¢islo. OvSem pokud by kazdé dité mélo pravé jeden
bonbon, vysledny soucet by byl

e ] S —
S:O+1+2+...+(n—1):ﬁ(—n—2———), neboli = = - !
n

coz pro suda n neni celé ¢islo. Takova situace tedy nastat nemize.

Vénujme se ted lichym hodnotdm n. UkéZeme, Ze existuje déleni,
které skonéi tak, ze kazdé dité bude mit pravé jeden bonbon. Necht
n = 2k + 1. Vhodné déleni sestrojime indukci; presnéji, dokdzeme, ze
pro kazdé ¢ = 0,1,...,k umime dostat pozici, v niz Erika ma n — 2i
bonbont a prvnich ¢ déti sedicich nalevo a zaroven i prvnich ¢ déti na-
pravo mé po jednom bonbonu. Hodnota i = 0 pfedstavuje pocatek déleni,
hodnota i = 1 stav po prvnim kole (a tedy prvni indukéni krok) a hod-
nota ¢ = k stav, kdy ma kazdy jeden bonbon. Predpokladejme, Ze se
nam podarilo dostat se do popsané pozice pro néjakou hodnotu i = m,
pticemz 1 £ m < k (a prosli jsme pfitom vSemi pozicemi pro i < m).
V této situaci postupujme nésledovné: Nejprve da Erika po bonbonu
dvéma svym sousedtim (protoze m < k, ma aspoi t¥i bonbony a muze
to udélat). Dalsi kola jsou znazornéna v nasledujicim schématu. (Cisla
znamenaji po¢ty bonbonti u Eriky a déti napravo od ni, situace nalevo
je symetricka.)

n—2m,1,...,1,0,... - n—-2m-2,2,1,...,1,0,... —
—— N e’
m m—1
- n—-2m,0,2,1,...,1,0,... —- n—-2m,1,0,2,1,...,1,0,... —
—— N——r
m—2 m—3
- n-—2m,1,1,0,2,1,...,1,0,... —» ... —
——
m—4
— n—-—2m,1,...,1,0,2,0,... —- n—2m,1,...,1,0,1,0,...
—— ——
m—2 m—1

Dostali jsme se tak do pozice, kdy Erika ma n — 2m bonboni, prvnich
m — 1 déti napravo i nalevo ma po jednom bonbonu, m-té dité po obou
strandch nema zadny bonbon a déti vzdéalené o m+1 mist maji po jednom
bonbonu. Abychom dosahli pozice pro i = m + 1, stac¢i doplnit bonbony
pravé détem na mistech vzdalenych od Eriky o m. Na to vSak mtzeme
vyuzit indukéni predpoklad. Pokud si totiz odmyslime bonbony u déti
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vzdalenych o m + 1 mist, dostaneme pozici pro ¢ = m — 1 (jen Erika ma
o dva bonbony méné, avsak stdle ma aspon tii, miuzeme tedy ucinit tytéz
kroky). Odtud se uz umime dostat do situace pro i = m. Vratime-li zpét
odmyslené bonbony, dostaneme pozici pro i = m + 1.

Nakonec se nam proto podari dosdhnout i pozice pro ¢ = k, tj. pro
licha n déleni muze skoncit tak, ze kazdé dité mé pravé jeden bonbon.

Poznamky. Pro sudé n, jez neni délitelné ¢tyfmi, se da tvrzeni doka-
zat jednoduseji. V takovém pripadé staci totiz prislusna mista obsazena
détmi stridavé obarvit bilou a ¢ernou. Je zfejmé, ze parita poctu bon-
bonti u vSech déti na bilych mistech (kterych je pro takové n lichy podet)
se neméni. Na zacatku je tato hodnota suda, zatimco v situaci, kdy by
kazdé dité mélo pravé jeden bonbon, by byla licha. Proto neni mozné se
do takové situace dostat.

D4 se ukazat, ze v pripadé lichého n déleni dokonce musi vzdy (bez
ohledu na to, jako déti vybirame) po koneéném poétu kroku skoncit tak,
ze kazdé dité ma prave jeden bonbon. Je-li n = 2k + 1, pocet kol, po
nichZ to nastane, je vidy 12 + 22 4+ ... + k2.

3. Oznaéme dand ¢isla p, q, v, s tak, aby p =2 ¢ =1 2 s.
UvaZzujme nejprve piipad p + ¢ = 5. Potom

PP+ 42225 =4+ "+ ¢ +17 +5°) 244" +¢* +2rs,

odkud mame pg —rs = 2. V tomto pripadé tedy tvrzeni plati.
Predpokladejme tedy, Ze p + ¢ < 5; potom

4<9—(p+q)=r+s<p+q<5b. (1)
Vsimnéme si, ze
(pq +7s) + (pr +qs) + (ps +qr) =
(Pta+r+s)?— (P2 +¢+1"+5%) _

= = 30.
2

Navic
pq+rs 2 pr+qs 2 ps+qr,

protoze (p — s)(g —r) 2 0 a (p —q)(r —s) 2 0. Odtud dostavame, ze
pq+1s=10.Z (1) vyplyva 0 < (p+ q) — (r + s) < 1, takze

(P+a)? -2+ q)(r+s)+(r+s)* <1
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Kdyz tuto nerovnost pficteme ke zfejmé rovnosti

P+ +20p+q)(r+s)+ (r+s)* =9

dostaneme
(p+q)°+(r+s)* <4l

Proto
41=2142-10S (P + ¢+ +5%) + 2(pg + rs) =
=(p+q?+(r+s)?<4l,

coz je spor. Takovy pripad tedy nastat nemuze.
Jiné FeSeni. Z rovnosti a + b+ c+d = 9 pti usporadania 2 b =2 ¢ 2 d
nejprve vyplyva, ze aritmetické priméry dvojic ¢éisel a, b, resp. ¢, d maji

pro vhodné 1 2 0 vyjadieni

a+b_9+6 c+d 9 A
2 4 T2 T h
Odtud zase vyplyva vyjadreni ¢isel a, b, ¢, d ve tvaru
9+ + b 9+e € - e1+e d -
a=-+4e1+e¢ = - - c=-— =—-—g1—¢
4 1 2, 4 1 2, 4 1 3 4 1 3

pro vhodna e5,e3 = 0. Nerovnost b 2 ¢ znamena, 7e

€1 — €9 2 —€1 + €3, neboli &9 +e3 < 2eq.

7 rovnosti
2, 32 2 2 9 4 2 9 = 2
21 = (a” +b%) + (c +d):2~(2+51> +252+2-(Z—51> +2e5 =

92 1
=4-( ) +4e] +2e] + 263 =20+ +2- (2} + 5+ €3)

zjistime, Ze nezdporna Cisla ¢; spliuji vztah

25%—}—6%—{—5325. (2)
Vzhledem k nerovnostem ey + €3 < 25 a €3 + €2 < (g3 + e3)? vyplyva
z (2) odhad
<26 4 (62 4+ €3)% £ 263 4 47 = 6¢3,

| w
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odkud €2 > % . -:85 = 1—16, neboli e 2 % Pro zkoumany vyraz ab — cd plati

9 S 9 S 2, 2
ab —cd = (Z+El) _62_<Z_€1> + €3 =9e1 — €5 +€5.

Dosadime-li za €} vyjadieni z (2), dostaneme

3 3
ab—cd:951—<§~25%—6§)+£§:951+25%—§+28§§

1 1 3
29.242. ——==2
SR I TR

Tim je tvrzeni dokazéano.

4. Nejprve ukazeme, Ze v zapisech mocnin éisla 2 se nalézaji libovolné
dlouhé bloky nul. Aby v zapise ¢isla 2" byl blok aspo7i k nul, musi to byt
¢islo tvaru y- 10m** 4 2 kde y, z jsou pfirozena a z ma nejvyse m &islic,
tj. z < 10™. Stadi tedy najit takova n a m, aby bylo 2 > 10™+* a zbytek
éisla 2" po déleni &islem 10™** byl mensi nez 10" . Podle Eulerovy véty
pro kazdé prirozené t plati

296" =1 (mod 5').

(Vyuzili jsme, Ze ¢isla 2 a 5° jsou nesoudélnd.) Vyndsobenim této kon-
gruence ¢islem 2¢ dostaneme

20490 = 2' (mod 10%), neboli 2¢+¢(") =y .10 + 2!

pro néjaké prirozené y. Podle predchozich tivah volme n = t + ¢(5) a
m = t—k. P¥itom ¢ musi mit takovou hodnotu, aby bylo jednak 2¢+#(") >
> 10" neboli 2¢6") > 5! (coz ziejmé plati pro kazdé ¢ = 1, nebot (5) =
= 4-5'"1), jednak 2* < 10*~*. Takové t urcité existuje, staci napiiklad
vzit t = 2k (nebot 2%* = 4% < 10%). Z uvedeného vyplyva, 7Ze v ¢isle

22k+¢(52‘~') —y. 102k 4 92k

se nachazi blok aspon k nul.
Vezméme tedy pro dané k takovou mocninu dvojky (oznacme ji 2™),
jez obsahuje blok pravé r nul, pficemz r 2 k. Zkoumejme, co se s blokem
dgje, kdyz bereme dal$i mocniny, tj. kdyz ¢islo s blokem postupné naso-
bime dvéma. Vzhledem k tomu, Ze méame (a, b oznacuji néjaké nenulové
Cislice)
2" =...a00...0b...
o=~

Yy 7 nul z

=y 1075 4 2,
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dostaneme 2"+! = 2y. 107 4 22. Ptitom ¢islo 2z ma ziejmé bud s éislic
(stejné jako ¢islo z), anebo s+ 1 ¢islic. Z ,pravé strany“ se tedy blok nul
bud nezmensi, anebo se zmensi o jednu. Z ,levé strany“ se blok miize jen
prodlouzit (pokud je y délitelné péti). Celkové se tak délka bloku bud
zmens$i o jednu, nebo se nezméni, nebo se zvétsi. Budeme-li dal nasobit
dvéma, délka bloku se v kazdém kroku zmensi nejvyse o jednu. Tedy
jedind moznost, kdy blok nikdy nedosahne délky k, je, Ze blok bude mit
stale délku vétsi nez k. To vsak neni mozné. Cislo y ma totiz ve svém
prvociselném rozkladu pétku s néjakym exponentem, feknéme . Kdyz 2™
vynasobime a-krat dvéma, pii dalsim nasobeni se uz blok zfejmé zleva®
prodluzovat nebude. A ,zprava“ se blok minimalné po kazdém ¢tvrtém
nasobeni zkrati (nebot 2% > 10). A tak po dostate¢ném poctu krokit
dostaneme mocninu ¢isla 2, kterd obsahuje blok pravé k nul.

5. Kazda posloupnost spliiujici podminky zadani je urcena prvnimi dvé-
ma ¢leny — vSechny dalsi vypocitame z rekurentniho vztahu. Hledame
tedy takové dvojice (a1, as), pro néz jsou vsechny ¢leny posloupnosti celd
¢isla. NapiSme dany vztah pro nékolik malych hodnot n. Po odstranéni

zlomkt dostaneme
ag(az + 1) =a] + 2006,

a4(a3 + ].) = ay + 2006,
a5(a4 + ].) = a3 + 2006,

Odectéme sousedni rovnosti, abychom se zbavili ¢isla 2 006. Po preuspo-
rfadani ¢lenu ziskdme rovnosti

a3 —ay; = (ag —+ 1)(&4 — CLQ),
ag — az = (ag + 1)(as — ag),

as — az = (a5 + 1)(as — ayq), (1)

Protoze podle zadani jsou vsechny zavorky (a, + 1) nenulové, mohou
nastat dvé moznosti. Pokud a3 — a; = 0, postupnym dosazovanim do
predeslych rovnosti dostaneme také ay —as =0, a5 —asz =0, ..., tj.

a1 =az3=as=... a ay =a4 =0 = ... (2)

Na druhé strané, pokud az —a; # 0, stejnym dosazovanim odvodime,
7e ag —ag # 0, a5 — a3z # 0, ... Vénujme se nejprve druhé moznosti.
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Z rovnosti (1) mame pro kazdé n =2 1 vztah

1
0 <lants — ant1| = |ant2 — an - m S lanye —anl. (3)

Dostavame tak nerostouci posloupnost kladnych celych ¢isel
laz —a1]| 2 |ag —az| 2 |as —a3| 2 ...

Tato posloupnost je zfejmé od urcitého ¢lenu pocinaje konstantni (jinak
bychom z ni mohli vybrat nekonecnou klesajici posloupnost kladnych
celych ¢isel, coz neni mozné). Existuje tedy takovy index N a hodnota d,
ze pro kazdé n = N je |ap42 — an| = d. Podle (3) potom |a, 2 + 1] =1,
tj. pro kazdé n = N + 2 mame a,, € {0, —2}. AvSak podle zadani

an+2 + 2006
ant3 +1

aN+4

neboli ay 44 nabyva jedné z hodnot

0+ 2006 042006
——— = 2006, —F—— = —2006,
0+1 -2+1
-2+ 2006 — 2004, —2 42006 — 2004,
0+1 —2+1

coz odporuje tomu, Ze ayi4 € {0,—2}. V tomto piipadé zadna posloup-
nost podminkam zadani nevyhovuje.

Kazd4 vyhovujici posloupnost proto spliiuje (2). Dosazenim n = 1
a a3 = a; do dané rovnosti dostaneme

a; + 2006

a] =
a2+1

. neboli ajas =2006=2-17-59.

Berouce do uvahy ay,as # —1, dostavame

2006
a1 € {1,£2,%17,£34, %59, £118,31003,2006} a ap= .
1

Snadno ovéiime, Ze kazda takovato posloupnost aj,aq, a1, a9, a1,. ..
podminky zadani spliiuje. Hledanych posloupnosti je tudiz 14.
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6. Zkusme pétithelnik s popsanymi vlastnostmi najit. Prekazkou je, Ze
pétinhelniky soumérné podle néjaké osy (pro néz by snad mohlo byt jed-
nodussi ukazat, ze popsané body lezi v pfimce) maji vzdy aspon jednu
dvojici primek A;A;4+3, Aiy1Aito rovnobéznou. Zaénéme tedy s jedno-
dussi tlohou — hledejme pétithelnik A A A3 Ay As takovy, ze jen Ctyri
z bodu B; budou lezet v primce. Takovy si uz muzeme dovolit hledat
mezi osové soumérnymi pétithelniky. Abychom situaci jesté zjednodusi-
li, pfedpokladejme, ze body As, Az, A4 jsou vrcholy ¢tverce QAs Az Ay
o strané délky 1 a body Ay, As lezi postupné na stranach QAs a QA, ve
vzdalenosti p od vrcholu @ (obr. 49). Ze soumérnosti (pétitthelnik je sou-

Ay 1 A

Ay

By

Obr. 49

mérny podle osy QAs) je ziejmé, ze ptimky By Ba, B3 Bs jsou rovnobézné.
Snadno vypozorujeme, Ze v pfipadé, kdy p nabyva malé hodnoty, tj. kdyz
body Aj, As jsou blizko bodu @, nachazi se primka B3 Bs; mnohem bliz
bodu @ nez piimka BjBs. Naopak pro hodnoty p blizké 1 jsou body
A1, As blizko bodit As, A4 a bliz bodu @ je primka By By (dokonce pro
p= % bod @ obsahuje a pro p > % budou obé piimky lezet na opacnych
stranédch od bodu Q) nez primka B3Bs. Da se proto ocekavat, ze pro
néjakou hodnotu p € (0,1) jsou obé primky totozné a body Bi, By, B,
Bs tak lezi na jedné primce. Naleznéme takové p.
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Ozna¢me |B5Q| = |B3Q| = g a|By As| = r. Z podobnosti trojihelniki
BsQAs a Bs Ay A3 méme ¢ : p = (¢+1) : 1 neboliq = 1_p___ 7 podobnosti
-p

trojuhelnikt By A2A; a BiAsAs méme r : (1 —p) = (r + 1) : 1 neboli
1—

r= =% Konen& k tomu, aby bod Bj lezel na primce Bs B, staci, aby
p

byly podobné trojiuhelniky BsQ B3 a Bs Ay By, tj. aby trojuhelnik Bs Ay B,

byl také rovnoramenny, neboli ¢ +1 = r. Po dosazeni pfedchozich vztahti

a jednoduché upravé ziskdme kvadratickou rovnici

pP—3p+1=0.

Ta mé v intervalu (0,1) jediné feseni p = 1(3 — /5). Pro nalezené p
tedy body Bj, Bs, Bs, By lezi na jedné pfimce. Navic primky A;As
a AsAyg (které by se, kdyby nebyly rovnobé&zné, protinaly v bodé Bj)
jsou s ni rovnobézné. V jistém smyslu se tedy tyto tfi pfimky protinaji
,V nekonecnu® v ,bodeé“ By a vSechny body B; tak ,lezi“ na jedné pfimce.

Abychom vyhovéli podminkdam zadéni, staci najit vhodné zobrazeni,
které ,bod z nekone¢na“ zobrazi na konkrétni bod (a zachova vsechny
ostatni potfebné vlastnosti, tj. zobrazi pfimky na pfimky). Takovym zob-
razenim je stfedové promitani (obr.50). Uvazujme kartézskou soustavu

Y
A
A3:Aé
\\\\i‘ ,//// B
e A
v’ il L
U A_l5__::::—::,‘:‘2-:£¢¢— p
PR S :
Ay = Ay~ ] i
Ay
z

Obr. 50

soutadnic v prostoru. Pétitthelnik A; AsA3A4A; = U vloZme do roviny
Oyz s bodem Ay = O v podatku a s body A;, Az postupné na kladnych
poloosach z, y. Zvolme jako stied promitani naptiklad bod P[2,0,—1].
Kazda piimka P A; protne rovinu Ozy v bodé, ktery oznacime A.. Dosta-
neme tak pétithelnik A} A4 AL A} AL = U’. Pfimo z vlastnosti pouzitého
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zobrazeni vyplyva, Zze U’ spliiuje podminky zadani. Kazda pfimka rov-
nobéznda s hloprickou As A4 se totiz promitne do primky jdouci bodem
B[2,1,0], ktery je proto i prisecikem ptimek A} AL a A A/,

O tom se muzeme presvédcit i vypoctem. Snadno totiz zjistime, ze
v roviné Oxy maji jednotlivé body soutradnice

Ay =[3-V5,0], Ay=[0,0,, A,=[1,0]
p=[14], AL =185

a nasledné ovérit, ze prislusné body Bi, Bj, B, Bj, Bf lezi v piimce
(obr.51).

B Obr. 51

Pozndmka. Uloha se d4 fesit i bez konstruovani pétithelniku, v némsz
odpovidajici ¢tyti z bodu B; lezi v pfimce. Za promitany utvar U staci
vzit pravidelny pétithelnik. Ten ma totiz vSechny dvojice primek A; A, 3,
Ait14Ai42 rovnobézné; po vhodném promitnuti budou tedy priseciky B
lezet v mnozing, kterda v daném promitani nema vzor. Takovou mnozinou
je vSak primka.
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47. mezinarodni matematicka olympiada

47. mezinarodni matematicka olym- 4 h INTERNATIONAL
piada se uskutecnila 6.-18. dervence MATHEMATICAL
2006 ve slovinském hlavnim mésté gg\%Zi\AD 2006

Ljubljani. Slovinsko, které méa zhruba

2 miliony obyvatel, se tak stalo dosud nejmensi zemi, v niz se tato vy-
znamna celosvétova soutéz nejlepsich stfedoskolskych matematiki usku-
tecnila. Letos se soutéze ztucastnilo celkem 498 soutézicich z 90 zemi svéta.

Ceské reprezentaéni druzstvo pro 47. MMO bylo jiz tradiéné sesta-
veno na zakladé vysledka III. (astfedniho) kola 55. ro¢niku ceské MO
v kategorii A a dale na zakladé vysledku vybérového soustfedéni, které
se uskutecnilo v poloviné dubna v Kostelci nad Cernymi lesy. Dluzno
zminit, ze vybér ¢eského druzstva pro letosni MMO byl podstatnym zpii-
sobem ovlivnén skutecnosti, ze se terminy MMO a MFO prekryvaly. Tti
z vitézu ustfedniho kola MO v kategorii A dali prednost atraktivnimu
prostiedi jihoasijského Singapuru, kde se MFO konala, a navic absolutni
vitéz II1. kola prekrocil povolenou vékovou hranici pro u¢ast na MMO. Na
vybérové soustfedéni pied 47. MMO byli proto kromé zbyvajicich Sesti
vitézt 55. ro¢niku MO v kategorii A prizvani také dva nejlepsi tispésni
fesitelé I1I1. kola.

Préavo reprezentovat Ceskou republiku na 47. MMO ve Slovinsku
si nakonec vybojovala nasledujici Sestice nasich sttedoskolakt: Jaroslav
Hanél z Gymnézia M. Kopernika v Bilovci, Zbynék Konecny, Jakub Opr-
Sal, Vojtéch Riha a Jan Uhlik z Gymnazia v Brné na ti. Kpt. Jarose
a Pavel Salom z Gymnézia v RoZnové pod Radhostém. Vedoucim eské
delegace a zastupcem v jury MMO byl RNDr. Jaroslav Svréek, CSc.,
z Piirodovédecké fakuly UP v Olomouci. Jeho zastupcem a pedagogickym
vedoucim deského druzstva byl RNDr. Jaroslav Zhouf, Ph.D., z Pedago-
gické fakulty UK v Praze.

UK MO a vedeni éeského druzstva si na tomto misté dovoluji upfimné
podékovat pierovské akciové spolecnosti Precheza za nezistnou pomoc pri
vybaveni celého reprezenta¢niho tymu jednotnym oblecenim.
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Oficialni zahéajeni soutéze se uskutecnilo 11. ¢ervence v kongresovém
sale hotelu Union v Ljubljani (v pfedveder prvniho soutéZniho dne). N&-
sledujici dva dny byly soutézicim predlozeny dvé trojice tloh, které z do-
§lych navrhi vybrala mezinarodni jury na svém jednani ve slovinském
primotském letovisku Portoroz pred zahdjenim soutéze. Na feseni kazdé
trojice lloh méli zaci jako obvykle 4,5 hodiny ¢istého casu a za kazdou
tlohu méli moznost ziskat maximalné 7 bodt. Po koordinaci zakovskych
feSeni, kterd probéhla nasledujici dva dny ihned po soutézi, stanovila
mezinarodni jury bodové hranice pro zisk medaili: 15-18 bodu pro bron-
zové medaile, 19-27 bodu pro stiibrné medaile a 28-42 bodu pro zlaté
medaile. Maximalniho bodového zisku (42 body) dosahli pfitom pouze
t¥i soutézici: Zhiyu Liu (Cina), Jurij Borejko (Moldavsko) a Alexander
Magazinov (Rusko).

Vysledky nasich jsou uvedeny v nasledujici tabulce:

Body za lohu Body Cena

Umisténi 1 23 456

161.-188. Zbynék Konecény 7107 10 16 I11.
161.-188. Pavel Salom 710710 16 I11.
189.-253. Jaroslav Hancl 7107 00 15 II1.
319.-334. Vojtéch Riha 710300 11 HM
335.-363. Jakub Oprsal 71 0 2 0 0 10 HM
364.-387. Jan Uhlik 701100 9 HM

Celkem 42 5 127 2 0 77

Pro srovnani uvedme i vysledky slovenskych reprezentanti, ktefi si vedli
nesrovnatelné lépe (zejména stoji za pozornost vynikajici vysledek On-
dreje Budace):

Body za tlohu Body Cena

Umisténi 1 23 456

16.-20. Ondrej Budac T 7T 17 7 1 30 I
98.-108. Samuel Hapak 6 707 10 21 1I.
109.-116. Jaroslav Knebl 751700 20 1I.
150.-160. Jan Mikulas 6 107 3 0 17 II1.
189.-253. Istvan Estélyi 7107 00 15 III
189.-253. Michal Takécs 710 6 1 0 15 III.

Celkem 4422 24112 1 118

Nase druzstvo dosahlo v leto$nim roce jen prumeérného vysledku. T¥i
nasi soutézici vsak v silné konkurenci ziskali bronzové medaile — Zby-
nék Konecny a Pavel Salom (oba 16 bodt) a Jaroslav Hanél (15 bodt).
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Zbyvajici tTi nasi reprezentati privezli domu ¢estna uznani za bezchybné
vyteseni jedné (u vSech tii nasich soutézicich prvni) soutézni lohy. Umis-
téni ceského druzstva v neoficidlnim potradi zemi vSak nelze povazovat
za lichotivé. Celkovy zisk 77 bodii nés po loniském vynikajicim vysledku,
kdy ceské druzstvo skoncilo mezi nejlepsimi dvaceti zemémi, odsunul az

do stfedu tabulky:

I II III  body I II III body
CLR 6 0 0 214 Mongolsko 0 0 2 80
Rusko 3 30 174  Spanélsko 0 1 2 80
Korea 4 2 0 170  Portugalsko 0 0 3 78
Némecko 4 0 2 157  Azerbajdzan 01 1 77
USA 2 4 0 154  Ceskd republika 0 0 3 7
Rumunsko 3.1 2 152 Albanie 0 1 1 76
Japonsko 2 3 1 146  Kolumbie 0 0 2 76
Iran 3 30 145  Belgie 0 0 1 75
Moldavsko 2 1 3 140  Lotyssko 0 0 3 75
Tchaj-wan 1 5 0 136 Sri Lanka (5) 0 0 3 71
Polsko 1 2 3 133 Recko 0 0 2 69
[talie 2 20 132 Uzbekistan 0 0 2 68
Vietnam 2 2 2 131  Novy Zéland 0 0 2 66
Hongkong 1 3 2 129  Island 0 0 1 63
Kanada 0 5 1 123  Macao 0 0 2 63
Thajsko 1 3 2 123 Turkmenistén (5) 01 1 59
Madarsko 0 5 1 122 JAR 0 0 0 57
Slovensko 1 2 3 118  Makedonie 0 0 1 57
Turecko 0 4 1 117 Nizozemsko 0 0 0 57
Velka Britanie 0 4 1 117 Maroko 0 0 0 55
Bulharsko 0 4 1 116  Norsko 0 0 1 52
Ukrajina 1 2 2 114 Irsko 0 0 0 49
Bélorusko 0 3 2 111  Paraguay (4) 0 1 0 47
Mexiko 1 21 110  Dénsko 0 0 0 45
Argentina 0 2 2 109  Ekvador 0 0 1 40
Izrael 0 3 1 109  Malajsie 0 0 1 40
Australie 0 3 2 108  Tadzikistan 0 0 0 35
Singapur 0 2 3 100  Trinidad a Tobago 0 0 0 34
Francie 1 0 3 99  Venezuela (4) 0 0 0 34
Brazilie 0 0 6 96  Panama (4) 0 0 0 33
Kazachstan 0 1 4 95  Pakistan (5) 0 0 0 32
Svycarsko 1 1 0 95  Kirgizie 0 0 0 31
Gruzie 0 1 3 94  Salvador (3) 0 0 0 27
Litva 0 1 2 94  Bangladés (4) 0 0 0 22
Indie 0 0 5 92  Kypr 0 0 0 19
Arménie 01 1 90  Chorvatsko (2) 0 0 0 13
Slovinsko 01 3 90  Lucembursko (2) 0 0 0 12
Srbsko a Cerna Hora 0 0 5 88  Uruguay (2) 0 0 0 12
Finsko 0 0 4 86  Nigérie 0 0 O 11
Kostarika 01 2 86  Portoriko 0 0 0 11
Peru 01 1 85  Bolivie (2) 0 0 0 5
Bosna a Hercegovina 0 1 2 84  Kuvajt (4) 0 0 0 5
Rakousko 0 0 3 83  Saudska Arabie (4) 0 0 0 3
Svédsko 0 0 3 82  Lichtenstejnsko (1) 0 0 0 2
Estonsko 0 0 2 80 Mozambik (3) 0 0 0 0
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Pro tcastniky 47. MMO pripravili organizatotri hodnotny doprovodny
program. V ramci jednodenniho vyletu navstivili soutézici slovinska pri-
moftska letoviska Portoroz a Piran. Béhem zpatecni cesty do Ljubljané si
prohlédli svétoznamé aragonitové jeskyné Postojna, které jsou verejnosti
pristupné od roku 1818, a blizky Podjamsky hrad. Na zavér pobytu ve
Slovinsku absolvovali vsichni ucastnici 47. MMO spoleény jednodenni
vylet k Bledskému jezeru a do oblasti Julskych Alp. Dopoledni program
byl spojen s prohlidkou Bledského hradu, ktery se ty¢i piimo nad jezerem,
a kratkou prochazkou kolem tohoto jezera. Odpoledne pak stravili vsichni
ucastnici MMO ve znamém alpském stredisku Krangjska Gora a jeho okoli.
Béhem cesty bylo mj. mozno spatiit také vrcholky dvou nejvyssich hor
Julskych Alp, kterymi jsou Triglav a Skrlatica.

Slavnostni vyhlaseni vysledki 47. MMO se konalo 17. éervence v Pa-
laci kultury v Ljubljani (Cankarjev dom) za ucasti Dr. Janeze Potocnika,
evropského komisafe pro védu a vyzkum. Zavéreéného ceremonialu se z0-
castnili také predni predstavitelé spolecenského Zivota ve Slovinsku v ¢ele
s Dr. Milanem Zverem, ministrem $kolstvi a sportu Slovinska.

Hostitelskymi zemémi p¥istich olympiad budou Vietnam a Spanélsko.

Texty soutéznich aloh
(v zévorce je uvedena zemé, kterd ulohu navrhla)

1. Necht I je stied kruznice vepsané trojihelniku ABC a P jeho vnitini
bod, pro ktery plati

|xPBA| + |<PCA| = |xPBC| + |xPCB|.
Dokazte, ze |AP| = |Al|, pficemZ rovnost nastane, pravé kdyz P = I.
(Korea)
2. Necht P je pravidelny 2 006thelnik. Jeho thlop¥icka je lichd, jestlize jeji
koncové body déli hranici mnohotuhelniku P na dvé ¢asti, z nichz kazda
je tvorena lichym pocétem jeho stran. Kazda strana mnohothelniku P je
rovnéz licha.

Predpokladejme, Ze mmnohouhelnik P je rozdélen na trojihelniky
2003 thloptickami, z nichz zadné dvé se uvniti P neprotinaji. Urcete,
jaky je nejvétsi mozny poclet rovnoramennych trojihelniki, které maji
v uvazovaném rozdéleni mnohotihelniku P dvé liché strany. (Srbsko)

3. Urcete nejmensi realné ¢islo M takové, Ze nerovnost
lab(a? — b?) 4 be(b? — ¢2) + ca(c® — a®)| £ M(a® + b* + c*)?

plati pro vSechna redlna ¢isla a, b, c. (Irsko)
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4. Urcete vSechny dvojice (x,y) celych ¢isel, pro néz plati

(USA)

5. Nechf P je mnohoclen stupné n > 1 s celo¢iselnymi koficienty a k necht
je prirozené cislo. Uvazujme mnohoclen Q(z) = P(P(...P(P(z))...)),
kde P je v zapise pouzito k-krat. Dokazte, Ze existuje nejvyse n celych
¢isel t, pro néz plati Q(t) = t. (Rumunsko)

6. Kazdé stran¢ a konvexniho mnohothelniku P prifadime maximéalni
obsah trojihelniku, ktery cely lezi v P a jehoz jedna strana je a. Dokazte,
ze soucet obsaht prifazenych viem strandm mnohothelniku P neni mensi
nez dvojnasobek obsahu mnohothelniku P. (Srbsko)

Reseni soutéznich tloh

1. Oznacme velikosti vnitinich uhlu pti vrcholech A, B, C uvazovaného
trojuhelniku po radé «, 3, . Protoze soucet velikosti vSech ¢tyt thlu
v dané rovnosti je 8 + v, musi platit |[xPBC| + |xPCB| = (8 + 7),
takze |« BPC| = 180° — 1(8+7) = 90° + o Jak se snadno pfesvédéime,
stejnou velikost m4 i thel BIC' (obr. 52). Protoze P a I jsou vnitini body
trojuhelniku ABC' (lezi v poloroving BC'A), lezi body B, C, I a P na
téZe kruznici. Stfedem této kruznice je stfed M toho oblouku BC kruz-
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nice opsané trojuhelniku ABC, ktery neobsahuje vrchol A (to je znamé
tvrzeni, které snadno ovéfime dopocitanim thld v [rovnoramenném]| troj-
thelniku CTM). Pfitom bodem M prochazi i polopiimka AI, nebot je
to osa vnitfniho tthlu pii vrcholu A.

Tim je nerovnost |AP| 2 |Al| v podstaté dokdzana, protoze bod I ma
ze vSech bodu kruznice opsané trojuhelniku IBC od bodu A nejkratsi

vzdéalenost. Bezprostfedné to plyne z trojihelnikové nerovnosti v troj-
thelniku APM:

|AP| +|PM| 2 |AM| = |AI| + |IM| = |AI| + |PM]|.

Je tedy |AP| = |AI|, ptiCemZ rovnost nastane, pravé kdyz je P bodem
usecky AM, tj. praveé kdyz P = I.

2. (Podle Ondreje Budace, Slovensko.) Ozna¢me rovnoramenny trojihel-
nik jako lichy, pokud méa (pravé) dvé strany liché. (Je jasné, ze takovy
rovnoramenny trojihelnik ma licha ramena a ,sudou“ zdkladnu.)

Rozeberme nejprve specialni pripad. Misto vSech 2006 vrcholit mno-
hothelniku P budeme uvaZovat jen takovou ¢ast jeho hranice s n vr-
choly (n 2 2), ze krajni body pfislusného oblouku opsané kruznice svi-
raji se stfedem mnohothelniku P thel nejvyse 180° (tj. n < 1004).
Téchto n vrcholi tvori mnohothelnik X. Ozna¢me f(n) maximalni mozny
pocet lichych trojuhelniki, které mohou vzniknout popsanym rozdéle-
nim X neprotinajicimi se uhlopfickami na trojihelniky. Snadno ovérime,
ze f(2) =0, f(3) =1, f(4) =1, f(5) = 2, ... Dokdzeme matematickou
indukci, Ze

< |25

Prvni indukéni krok jsme uz uéinili. Predpokladejme, ze tvrzeni plati
pro kazdé n < k, a uvazujme oblouk obsahujici n = k+1 vrcholfi. Krajni
body tohoto oblouku ozna¢me A a B. Predpokladejme, ze mnohothel-
nik X je rozdélen thloprickami na trojuhelniky s maximalnim moznym
poétem lichych trojuhelnikii. Usecka AB je stranou néjakého trojihelniku
ABC v tomto rozdéleni.

Je-1i trojuhelnik ABC lichy, je AB vzhledem k podmince n < 1004
nutné jeho zakladna a BC', C'A jeho lichd ramena, takZze oblouk AB se
sklada ze dvou stejnych obloukt lichych délek (obr.53). Proto k = 2
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(mod 4). Z indukéniho predpokladu tak dostavime

f(k+1)§1+2f(¥) §1+2F—M__22)_:_1.J _

:1+2[§J:1+2-%2:ﬁ: [(]H—;)*—l}

tvrzeni tedy platiipron =k + 1.

Obr. 53 Obr. 54

Pokud trojuhelnik ABC neni lichy, mame oblouky AC, CB s pocty
vrcholu p, ¢, pfi¢emz p +q =k + 2, p,q = 2 (obr.54). Je tudiz

fk+1) = fp)+ fla)=fp) + f(k+2-p) =
p—1 k+2—p—1
<[]+ E

2 2 =
< tp_l +k+2—p—1J _ {(kﬁ—l)—lJ
- 2 2 2
(vyuzili jsme zndmou nerovnost
lz] + ly] £ = +y], (1)

ktera plati pro libovolnd kladna ¢isla x, y). I v tomto ptipadé jsme tedy
tvrzeni pro n = k + 1 dokézali. Tim je dtikaz indukei ukoncen.

Vratme se ted k ptivodni tloze. V rozdéleni mnohothelniku P na
trojuhelniky uréité existuje trojihelnik ABC, ktery obsahuje (uvnitt ¢&i
na hranici) jeho stied S. Oblouky AB, BC, C'A obsahuji p, ¢, r vrchold,
pricemz p,q,7 <1004 a p+q+r =2006+3 = 2009. V piipadé, ze ABC
neni lichy, existuje v rozdéleni nejvyse

1)+ 1@+ 10 < |55+ |5+ |57 <

< {p—l+q~2~l+r~1J:1003

lichych trojthelnikd (opét vyuzivame nerovnost (1)).
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Je-li naopak ABC lichy, jsou prave dvé z cisel p, ¢, r sudd, bez jmy na
obecnosti predpokladejme, Ze jsou to p a ¢q. Potom je v rozdéleni nejvyse

e 7)+ s+ fe S B |+ | S =
< Pztre-2Erol g0
= 2

lichych trojuhelnik.

Ukazali jsme tedy, Ze maximdalni mozny pocet lichych trojuhelnik
je 1003. Tato hodnota sa d4 dosahnout, jak ukazuje obr.55 (po obvodé
pravidelného 2 006uhelniku ,,odfezeme” 1003 rovnoramennych trojuhel-
nickn s rameny tvorenymi sousednimi stranami mnohothelniku a zbytek
rozdélime libovolné).

Obr. 55

Jiné FeSeni. Podobné jako v predchozim feSeni rovnoramenny troj-
thelnik s dvéma lichymi stranami v rozdéleni mnohotuhelniku P jeho
thloprickami nazveme lichy.

Necht ABC je lichy trojuhelnik s lichymi stranami AB a BC. To
znamena, ze se jak mezi vrcholy A a B, tak i mezi vrcholy B a C na-
chazi lichy pocet stran mnohotihelniku P. Rekneme, Ze tyto strany patii
lichému trojuhelniku ABC.

Aspon jedna strana v kazdé z téchto dvou skupin nepatii zadnému ji-
nému lichému trojuhelniku, jehoz vrcholy lezi mezi vrcholy A a B, resp. B
a C. Kazdy takovy lichy trojihelnik ma totiz dvé shodné strany, takze do-
hromady existuje sudy pocet stran, které mu patii. Vylouc¢ime-li vSechny
strany patrici lichym trojuhelnikim v této ¢asti, musi zustat aspon jedna
strana, ktera nepatii zadnému z nich. Pfifadme tyto dvé strany (jednu
v kazdé z obou skupin) trojuhelniku ABC.

Kazdému lichému trojthelniku jsme takto priradili dvojici stran, pri-
¢emz zadné dva trojuhelniky nemaji pfifazenu stejnou stranu. Protoze
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takovych dvojic muzeme vytvorit nejvyse 1003, je to zaroven maximalni
mozny pocet lichych trojuhelniki. Tento pocet miuzeme dosahnout, jak
jsme uz ukazali v prvnim feSeni.

3. Uvazujme kubicky mnohoclen
P(t) = tb(t? — b%) + be(b* — ) + ct(c — t?).
Snadno nahlédneme, ze P(b) = P(c) = P(—b — ¢) = 0, proto plati
P(t) = (b— )t~ b)(t— Ot +b + <),

nebot koeficient pii ¢ je b — ¢. Levou stranu dokazované nerovnosti lze
tedy upravit na tvar

lab(a® — b?) + be(b? — c2) 4 ca(c® — a?)| = |P(a)| =
=|(a=b)(b——c)(c—a)a+b+c)|

Dana tloha je tak prevedena na problém nalézt nejmensi realné ¢islo M,
pro néz plati nerovnost

a=b)b—c)c—a)a+b+a)| £ M@+ +)2 (1)

Obé strany vztahu (1) jsou symetrické vyrazy v proménnych a, b, c.
Bez ijmy na obecnosti lze proto predpokladat, ze a < b < c. Na zéklade
tohoto predpokladu a uzitim nerovnosti mezi aritmetickym a geometric-
kym primérem dostavame

—a c—b)\* c—a)?
(a=0)0 -0 = - ae-p s (L= =) _emeh g

kde rovnost nastane, pravé kdyz b — a = ¢ — b, tj. kdyz 2b = a + ¢. Déle
plati

(c—a)? _ ((b—a>+(c—b>>2< (b—a)* + (c—b)?
4 2 = 2 ’

Odtud snadnou Upravou dostaneme ekvivalentni nerovnost
3(c—a)? £ 2[(b—a)® + (c = b)* + (c — a)?], (3)
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v niZ také nastane rovnost, kdykoliv 2b = a + ¢. Ze vztaht (2) a (3) pak
plyne

(b= )a—b)a—c)(atb+o)l <
<

Vie—a)(a+b+c)? <

\/(2[(1) —a) (e b)?+ (e a)2]>3 (a+b+e)?=

(e~ a)*(a—c)(a+btc) =

RN

A
N

3
2

V3 V(@_@2+@—m2+@~@2

; Y.m+b+q2

Uzitim nerovnosti mezi aritmetickym a geometrickym priumérem konecné
dostaneme nerovnost pozadovaného tvaru:

(b~ c)a—b)a—)a+b+o) <
i?<@—aV+%c—bV+wc—aV+%a+b+cV>2

<
-2 4
%9@“w%m%2 (4)

Nerovnost (1) tedy plati pro M = %\/5, pri¢emz rovnost nastane, pravé
kdyz 2b = a + ¢ a soucasné

(b—a)?+ (c—0)%+ (c —a)?
3

=(a+b+c)
Dosazenim b = 3(a + ¢) do posledni rovnosti dostaneme
2(c —a)? = 9(a + ¢)°.
Rovnost ve (4) tudiz nastane, pravé kdyz soucasné plati
2b=a+c a (¢ —a)* = 18b°.

Volbou b = 1 dostaneme a = 1 — %\/5 ac= 1+%\/§. Je tedy M = % 2
skutecné nejmensi realné ¢islo, pro néz je dand nerovnost splnéna. Rov-
nost pak nastdva pro trojice (a,b,c) = (¢, t — %t\/ﬁ,t + %t\/i) a jejich

permutace, pri¢emz t je libovolné realné cislo.
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4. Pokud (z,v) je dvojice celych éisel, ktera vyhovuje dané rovnici, je
jejim feSenim také dvojice (z, —y). Staci se tedy omezit na y 2 0. Protoze
leva strana je vétsi nez 1, stac¢i uvaZzovat jen y = 2. Dale pro celodiselné
hodnoty z rozlisime tii pripady.

Je-li x zadporné celé ¢islo, plati

1< 14274 2%+! <1+%+}2-=2,
avSak pro zadné pfirozené &islo y neplati 1 < y? < 2. Neexistuje tedy
zadné teSeni dané rovnice, pro néz je z zaporné celé dislo.
Je-li x = 0, ma dand rovnice pravé dvé feSeni v oboru celych &isel.
Jsou jimi dvojice (0,2) a (0, —2).
Je-li @ prFirozené ¢islo, upravime danou rovnici na tvar

2°(1+ 2" = (y — 1) (y + 1). (1)

Odtud plyne, ze y je liché ¢islo. Ziejmé pravé jedno z dvou po sobé
jdoucich sudych ¢isel y — 1, y + 1 je délitelné ¢tyimi. Soucdin obou ¢&i-
sel na pravé strané (1) je tedy délitelny aspon osmi, a proto je x = 3.
Z rovnosti (1) plyne, 7Ze bud é&islo y — 1 je délitelné 277!, avsak neni
délitelné 27, nebo &islo y + 1 je délitelné 271, ale neni uz délitelné 2*.
Plati tedy y = 277 'm + ¢, kde m je nezadporné liché &islo a e € {—1,1}.
Dosazenim za y do (1) dostaneme

27(1 +2°t) = (2" Im 4+ £)? = 1 = 227 2m2 + 2%me.
Odtud plyne
1+ 27t =227 2,2 | e,

neboli
1 —me =2"2(m? - 8). (2)

Pro € = 1 musi byt m? — 8 < 0. Tuto nerovnost spliiuje jediné ne-
zaporné liché ¢slo m = 1, po dosazeni do (2) viak vyjde 0 = —7 - 2772
a tomu nevyhovuje zadné x.

Pro e = —1 mame 1 +m = 2°~2(m? — 8) = 2(m? — 8) (nebot z = 3).
Odtud po snadné tpravé dostaneme kvadratickou nerovnici

2m? —m — 17 £ 0.
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Této nerovnici vyhovuji pravé dvé nezaporna licha cisla, a to m = 1
a m = 3. Pro prvni z nich vSak v (2) dostaneme riizna znaménka. Pro
m = 3 vyjdou x = 4 a y = 23, ktera jsou fesenim dané rovnice.

Dana rovnice méa tedy celkem 4 feSeni. Jsou jimi nasledujici dvojice
celych ¢isel: (0,2), (0,—2), (4,23) a (4,—23).

Jiné FeSeni. Stejné jako v predchozim feSeni vyloucime moznost, Ze
by z bylo zaporné, a najdeme dvé feseni (0, 2), (0, —2) pro x < 2. Protoze
leva strana uvaZované rovnice je pro x 2 3 lich4, polozme y = 2k + 1,
kde k je prirozené. Po jednoduché upravé dostavame

27(1 + 27 = 4k(k + 1).

To znamend, Ze k/2%~2 nebo (k + 1)/2%~2 musi byt celé kladné éislo.

Jestlize je tedy k = 2% 2a pro vhodné piirozené a, dostaneme po
dosazeni do ptivodni rovnice a po tipravé rovnici a —1+2272(a% —8) = 0.
Ta zfejmé nema feSeni pro zadné prirozené a.

Podobné pro k = 2772a — 1 vyjde rovnice a + 1 = 2~ 2(a® — 8), kterd
miZe mit feseni jediné proa < 3 (proa =>4 jea? —824a—8>a+1).
Moznosti @ = 1 a a = 2 snadno vylou¢ime a pro a = 3 najdeme TeSeni
@ = 4. Dostavame tak dalsi dvé feSeni ptivodni rovnice: (4, 23) a (4, —23).

Jiné feSeni. Jak snadno zjistime, pro z < 2 ma dand rovnice jedina
dvé teseni (0,2), (0,—-2). Predpokladejme tedy, ze x = 3.
7 dané rovnice zfejmé plyne

22041 = (v2.27)" < y? < (14 V2 -27)°,

takze y = L\/i : 2”’J + 1. Protoze nejvétsi spoleény délitel éisel y — 1, y+1
je 2, vidime z jiz dfive odvozeného vztahu (1), ze pravé jedno z ¢isel y —1,
y+1 je délitelné mocninou 2!, To znamena, ze v dvojkové soustavé ma
¢islo y—1 zapis koncici x — 1 nulami nebo = —2 jednotkami a nulou (je y—
—1 = y+1—(10)3). Protoze v/2 ma v dvojkové soustavé rozvoj 1,01101 . . .
anasobeni mocninou 27 jen posouva ,,dvojkovou“ ¢arku o x mist doprava,
vidime, 7e cela ¢ast &sla v/2-2* mize mit pozadovany zépis jen pro = < 4.

5. Pro libovolna cela ¢isla a, b a libovolny mnohoclen P s celociselnymi
koeficienty plati a — b | P(a) — P(b). Jsou-li u, v celd ¢isla, pro néz plati
Q(u) = u a Q(v) = v (tzv. pevné body mnohoclenu Q), a pouzijeme-li
pro né vyse uvedeny vztah k-krat, dostaneme

w—v| P(u) ~ P(v) | P(P(u)) = P(P()) | ... | Q(u) — Qv) = u—v.
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Pro libovolné dva celociselné pevné body u, v mnohoclenu Q proto plati
lu—v| = |P(u) = P(v)]. (1)

Jsou-li ¢, u, v tfl navzdjem rtzné celodéiselné pevné body mnoho-
clenu @, pricemz t > u > v, plati pravé jedna z postupnych nerovnosti

P(t) > P(u) > P(v) nebo P(t) < P(u) < P(v). (2)

Kazdé jiné usporadani hodnot P(t), P(u) a P(v) vede totiz s ohledem
na (1) ke sporu.

Pripustme, Ze mnohoélen Q méa n + 1 celo¢iselnych pevnych bodu
to,t1,...,ty, pro néz plati tg > t; > ... > t,. Podle (2) je pak nutné bud

P(tyg) > P(t;) >...> P(t,), nebo P(ty) < P(t1) <...< P(t,).

Podle (1) plati pro ¢ = 1,2,...,n rovnost [tg — t;| = |P(to) — P(t;)|, coz
v prvnim ptfipadé vede k rovnosti tg — t; = P(to) — P(t;). UvaZme nyni
mnohoclen

R(z) = P(z) — P(to) + to — =,

ktery je stejné jako P stupné n, pritom vSak ma n + 1 redlnych kofenti
to,t1,...,tn. To je spor. Zcela analogickym zplusobem dojdeme ke sporu
i v druhém pripadeé.

Mnohoclen @ ma tedy nejvyse n celociselnych pevnych bodu. Tim je
dikaz hotov.

6. Nejdiiv dokazeme, Ze v libovolném konvexnim 2n-tthelniku s obsa-
hem S existuje strana AB a vrchol V tak, Ze obsah trojihelniku ABV
je aspon S/n.

Uhlopticky, jez rozdéluji 2n-uhelnik na dvé ¢asti se stejnym poctem
stran, budeme nazyvat hlavni. Pro libovolnou stranu a = AB uvazo-
vaného 2n-tthelniku oznac¢me A’, B’ piislusné ,protgjsi“ vrcholy obou
hlavnich thlopiicek AA’, BB’ a P jejich prusecik. Sjednoceni vsech 2n ta-
kovych trojihelniki ABP, A’B’P, jez dostaneme pro jednotlivé strany,
pokryva cely 2n-thelnik.

Je-li totiz X libovolny vnitini bod 2n-tihelniku, ktery nelezi na zadné
hlavni thlopti¢ce (body lezici na hranici a na hlavnich thloprickach po-
psanym sjednocenim ziejmé pokryté jsou), uvazujme posloupnost (orien-
tovanych) hlavnich thlopricek AA’, BB',CC", ..., pficemz B,C, ... jsou
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po sobé jdouci vrcholy lezici v opacné poloroviné uréené piimkou AA’
nez bod X. Bez ijmy na obecnosti necht bod X lezi ,nalevo” od AA’.
Pak se v této posloupnosti na misté s poradovym dcislem n + 1 na-
chézi thlopricka A’A, kterd ma bod X  napravo“. Proto v posloupnosti
A,B,C, ..., A existuji po sobé jdouci vrcholy K a L takové, 7e X lezi
ynalevo* od KK’, ale ,napravo“ od LL'. To vSak znamena, 7e X lezi
v trojuhelniku pfislusném strané K'L’ (obr.56). Trojthelniky piislusné
jednotlivym stranam tedy skutecné pokryvaji cely 2n-uhelnik. Soucet
jejich obsaht je proto aspon S.

!
p A
L
K
K’
C
A B
Obr. 56

7 predeslého vyplyva, ze existuji dvé protilehlé strany a = AB,
a' = A'B’ (pticemz AA’, BB’ jsou hlavni B
uhlopiicky protinajici se v bodé P) takové, A’
ze soufet obsahu jim prislusnych trojuhel-

niktt S(ABP) + S(A'B'P) je aspoti S/n. Bez P

Gjmy na obecnosti necht |PB| = |PB’|. Po- B’ A

tom (obr.57) Obr.57
S(ABA') = S(ABP) + S(PBA') 2

> S(ABP) + S(PB'A’) = S(ABP) + S(A'B'P) =z S/n.
Tim je tvodni tvrzeni dokazano.

Uvazujme nyni libovolny konvexni mnohothelnik P s obsahem S,
ktery ma m stran ai,...,a,, a pro kazdé i (1 < 7 £ m) oznacme S;
obsah nejvétsiho trojihelniku, ktery mé stranu a; a je cely obsazen v P.
Predpokladejme naopak, Ze tvrzeni ze zadani neplati, tj. Ze

mSi
— < 2.
2.5
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Potom existuji raciondlni éisla q1,. .., ¢, takova, ze

m S
Zqzt =2 a g> gl pro kazdé ;
i=1

stacl napriklad pro ¢ < m vzit za ¢; libovolné raciondlni ¢islo z intervalu

a polozit ¢, =2 — (@1 + ... + @m-1)-

Zapisme zlomky q1, ..., gy ve tvaru ¢; = k;/n, kde n je jejich spolecny
jmenovatel. Mame tedy > k; = 2n. Rozdélme kazdou stranu a; mnoho-
uhelniku P na k; shodnych usekt, vytvorime tak konvexni 2n-thelnik
s obsahem S (nékteré jeho vnitini thly mohou mit velikost 180°). Podle
tvrzeni, které jsme dokéazali na zacatku, existuje v tomto novém mnoho-
thelniku strana AB a vrchol V, pro néz S(ABV) =2 S/n. Je-li AB &asti
strany a; mnohouhelniku P (obr. 58), pak pro obsah trojihelniku T se
stranou a; a vrcholem V' dostavame

S(T)=ki - S(ABV) 2 k;-S/n=q;-S > Si,

coz odporuje volbé hodnot S;. Tim je tloha vyfeSena.

%

Obr. 58

Jiné feseni. Ke kazdému vrcholu A daného mnohothelniku existuje
na jeho hranici bod A’ tak, ze ise¢ka AA’ rozdéluje mnohothelnik na dva
mnohothelniky stejného obsahu. Pridame-li vSechny tyto body k vrcho-
Itim mnohotihelniku P, dostaneme mnohotihelnik P’ se stejnym obsahem,
jehoz nékteré vnitini ihly mohou byt 180°. Na tvrzeni ilohy to nema vliv
(staci si uvédomit, ze pokud je ABV néjaky trojuhelnik s maximalnim
obsahem prislusny strané AB ptvodniho mnohothelniku P, pak i kazdy
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trojihelnik s danymi dvéma vrcholy na strané AB bude mit maximalni
obsah, kdyz jeho tfetim vrcholem bude pravé vrchol V).

Jsou-li nyni A, B dva sousedni vrcholy mnohothelniku P’ a A’, B’
prislusné |, protéjsi vrcholy, pro néz usecky AA’” a BB’ rozdéluji mnoho-
thelnik P na dva mnohothelniky stejného obsahu, a P jejich prusecik,

maji trojuhelniky ABP a A’B’P stejny obsah. Plati tedy
|PA|-|PB| = |PA'|-|PB'|.

To ovSem znamend, ze je |PA| £ |PA'| nebo |PB| < |PB'|. V prv-
nim pripadé S(ABA') = S(APB) + S(PA'B) =2 25(ABP), v druhém
S(ABB') = S(APB) + S(APB') =2 2S(ABP). V kazdém piipadé je
tedy maximalni obsah trojuhelniku ptislusného strané A B roven nejméné
dvojnasobku obsahu trojuhelniku ABP. Stejné jako v prvnim feSeni neni
tézké ukazat, ze vSechny takové trojuhelniky ABP pokryvaji cely mno-
hotihelnik P” = P. Tim je tvrzeni dokazano.

Pozndmka. Soucet pritazenych obsaht muze byt pravé dvojnasobkem
obsahu mnohothelniku P. Plati to pro vSechny stfedové soumérné mno-
hotihelniky. (V takovém pfipadé ma stfed S mnohothelniku tu vlastnost,
7e maximalni obsah pfifazeny podle zadani tlohy kazdé strané AB mno-
hotihelniku je vzdy dvojnasobkem obsahu trojihelniku ABS.)
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Trinacty rocnik Stfedoevropské olympiady v informatice

Trinacta stfedoevropska olympidda v informatice CEOI 2006 se ko-
nala v chorvatském Vrsaru na poloostrové Istria ve dnech 1. az 8. Cer-
vence 2006. Vzhledem k tomu, ze olympidda probihala o prazdninach,
bylo mozné pouzit k zahajovacimu a ukoncovacimu ceremonialu, soutézi
i schiuzkam vedoucich druzstev prostory zakladni skoly ,,Vladimir Nazor®.
Jednotliva druzstva byla ubytovana v apartmanech po celém Vrsaru.

Soutéz probiha naprosto stejné jako mezinarodni olympiada v infor-
matice. Soutézi se ve dvou dnech, v kazdém z nich fesi studenti u pocitact
tfi naro¢né priklady, sva reseni programuji v nékterém z programovacich
jazyku Pascal, C nebo C++-. Aby se studenti pfedem sezndamili s pro-
sttedim, probiha pred soutézi samotnou zkuSebni predkolo, ve kterém
mohou Ucastnici vyfesit dvé primitivni ulohy. Protoze je stiedoevropska
olympiada v informatice pro své obtizné a zajimavé ulohy znama i mezi
Fesiteli mezinarodni olympiady, probiha soucasné s klasickou soutézi jesté
internetova varianta soutéze pro verejnost.

Vyhodnocovani a testovani studentskych feseni se na CEOI jiz nékolik
let provadi stejné jako na IOI automatickym vyhodnocovacim systémem.
Ten testuje programy na pripravené sadé vstupnich dat, vSechny prova-
déné testy maji dobu vypoctu omezenu predem znamym ¢asovym a pa-
méfovym limitem. Jednotliva testovaci vstupni data maji navic rtiznou
velikost a slozitost, coz dohromady umoznuje bodové rozlisit programy
podle kvality pouzitého algoritmu. Za kazdou ulohu lze ziskat maximalné
100 bodt, éasto se pouziva 20 sad testovacich dat po 5 bodech. U nékte-
rych tloh lze vyftesit jen ¢ast zadani (napiiklad pti hledani nejkratsi cesty
staci nalézt pouze jeji délku a nevypisovat cestu jako takovou) a ziskat za
takové Teseni odpovidajici ¢ast bodu (v pripadé zminéné nejkratsi cesty
bylo za nalezeni jeji délky 80 % bodi).

Trinacté stfedoevropské olympiady v informatice se zucastnilo sedm
zemi, kazd4 méla jedno ¢tyiclenné druzstvo, takze soutézilo 28 studenti.
Pouze poradajici Chorvaté méli v soutézi tii druzstva I, IT a III, pricemz
se ale do vysledného poradi zapocitaval pouze tym ¢islo I. Ceska republika
vyslala do soutéze druzstvo ve slozeni
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Miroslav Klimos, student Gymnézia M. Kopernika v Bilovei,
Martin Krivdanek, student Gymnéazia Brno, tiida Kpt. Jarose,
Lukas Lansky, student Gymnazia J. K. Tyla v Hradci Kralové,
Roman Smrz, student Gymnazia E. Krasnohorské v Praze.

Nasi soutézici byli vybrani na zédkladé vysledku dosazenych v tstied-
nim kole 55. ro¢niku matematické olympiady — kategorie P (programo-
vani). Vedenim druZstva byli povéteni Milan Straka a Petr Skoda, oba
z Matematicko-fyzikalni fakulty Univerzity Karlovy v Praze.

Medaile se na stredoevropské olympiadé v informatice se udéluji podle
stejného klice, jaky se pouziva i na mezinarodni olympiadé v informatice.
Prvni polovina soutézicich obdrzi néjakou medaili. Tato prvni polovina
se rozdéll v poméru 1 : 2 : 3 a tyto skupiny studentt dostanou po radé
zlatou, stiibrnou a bronzovou medaili. Letos se rozdavalo 14 medaili,
z toho 2 zlaté, 5 stiibrnych a 7 bronzovych. Zlatou medaili ziskali tento-
krat studenti z Polska (1. misto) a potadajictho Chorvatska (2. misto).

Stejné jako napiiklad Slovensko a Madarsko vysila i Ceska republika
na stiedoevropskou olympiadu spise studenty mladsi, jejichz hlavnim ci-
lem je sbirani zkuSenosti (a jejich uplatnéni v pristich letech na mezi-
narodni olympiadé v informatice). Presto se ¢eskym studenttun podafilo
ziskat dvé bronzové medaile (pro porovnani Madarsko ziskalo jednu bron-
zovou a Slovensko zadnou medaili). Miroslav Klimo$ skon¢il navic hned
za posledni st¥ibrnou prickou. Vysledky ceského druzstva:

8. Miroslav Klimos 190 bodii  bronz

13. Roman Smrz 142 body  bronz
24. Martin Kfivanek 46 bodu -
28. Lukas Lansky 4 body -
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18. mezinarodni olympiada v informatice

THE LGTel IOTEHAT AL QLteapiaD in I OeATIES
Ve dnech 13.-20. 8. 2006 se konala v Mexiku 18. mezinarodni olympiada
v informatice I0I 2006 (IOI — International Olympiad in Informatics).
Soutéz probéhla ve mésté Mérida v provincii Yucatan, tedy na stejném
misté, kde se o rok dfive konala i mezinarodni matematicka olympidda.

Olympiady se zucastnilo 284 soutézicich ze 76 zemi celého svéta.
Kazdé druzstvo je tvofeno nejvyse ¢tyfmi soutézicimi studenty a je do-
provazeno dvéma pedagogickymi pracovniky jako vedoucimi. Ceskou re-
publiku letos reprezentovalo druzstvo ve sloZeni:

Jan Hrnéir, absolvent gymnazia F. X. Saldy v Liberci,
Daniel Marek, absolvent gymnézia Ch. Dopplera v Praze 5,
Josef Pihera, student gymnézia ve Strakonicich,

Michal Vaner, absolvent gymnazia v Turnové.

Nasi soutézici byli vybrani na zakladé vysledktt dosazenych v celo-
statnim kole 55. ro¢niku Matematické olympiady — kategorie P. Jako
piiprava vybranych reprezentantii na soutéz poslouzilo zejména tradicni
tydenni ¢esko-polsko-slovenské pripravné soustredéni, které se tentokrat
konalo v ¢ervnu na Slovensku. Vedoucimi ¢eské delegace byli jmenovani
Mgr. Martin Mares a doc. RNDr. Pavel Tépfer, CSc., oba pracovnici
Matematicko-fyzikalni fakulty Univerzity Karlovy v Praze.

Ubytovani vSech ucastnik bylo zajisténo v nékolika hotelich neda-
leko centra Méridy, ve stejném misté probihala i vSechna jednani spojena
s organizaci soutéze a pripravou soutéznich tloh. Vlastni soutéz studenti
u pocitaci byla usporadana v modernim konferenénim stredisku Yucatan
SIGLO XXI na severnim okraji mésta.

Soutéz 101 probiha vzdy ve dvou soutéznich dnech, v kazdém z nich
soutézici fesi po dobu péti hodin tii zadané ulohy. Kazdy ucastnik mé pro
svoji praci pridélen osobni pocita¢ s nainstalovanymi prekladaci progra-
movacich jazyki Pascal, C a C++ a s interaktivnim webovym rozhranim
pro komunikaci soutéziciho s fidicim a vyhodnocovacim systémem sou-
téze. To umoznuje zalohovat data, tisknout vypisy programi, ovérovat
spravnost chovani programu a zejména pak predavat vytvorené programy
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na vyhodnoceni. VSechny souténi tilohy jsou algoritmického charakteru
a je nutné dovést je az do podoby kompletniho odladéného programu,
podobné jako je tomu tfeba i v praktické ¢asti celostatniho kola nasi
Matematické olympiddy — kategorie P. Odevzdané programy jsou vzdy
po skonceni soutézniho dne automaticky testovany pomoci predem pfi-
pravené sady testovacich dat, aby se ovérila jejich spravnost. Dilezitou
soucasti téchto testi jsou casové limity. Je pevné stanoveno, jak nejdéle
muze program pocitat pro kazda vstupni data. Timto zptusobem se mezi
spravné fungujicimi programy rozlisi, na jak dobrém algoritmu je ktery
program zalozen. Néktera vstupni data zadavana pii testovani jsou ma-
14, takze vypocet s nimi stihne v ¢asovém limitu i pomalejsi algoritmus,
naopak jina vstupni data jsou rozsahla a vcas je zvladne zpracovat jediné
program vyuzivajici dostatecné efektivni algoritmus.

Pro vsechny ucastniky 101 2006 byl pripraven i zajimavy doprovodny
program. Ve volném dnu oddélujicim oba soutézni dny nam organizatoti
nabidli celodenni vylet do znamé rekreacni oblasti Progresso spojeny
s koupanim v moii a fadou dalsich sportovnich ¢éinnosti. Po ukonceni
soutéze jsme na zavér naseho pobytu v Mexiku méli moznost navstivit
jedno z archeologickych nalezist se zachovalymi paméatkami staré mayské
kultury — asi 120 km vzdalené stredisko Chichén Itza.

Soutézni tlohy letosniho roéniku olympiady byly algoritmicky zaji-
mavé a dobfe pripravené, jejich narocnost byla vcelku primérena této
soutézi. Za kazdou tlohu bylo mozné ziskat maximalné 100 bodi, tj. cel-
kové v soutézi 600 bodu. To se ovSem nikomu ze studentti nepodarilo,
celkovy vitéz ziskal 480 bodi. Na zékladé dosazenych vysledki se na 101
udéluji mediale tak, ze polovina ucastnikt obdrzi nékterou z medaili,
pricemz pocet zlatych, stfibrnych a bronzovych mediali je v rdmci moz-
nosti priblizné v poméru 1 : 2 : 3. Letos bylo udéleno 24 zlatych medaili
(soutézicim, ktefi dosahli alesponi 385 bodil), 51 stiibrnych medaili (za
zisk alespon 314 bodu) a 70 bronzovych medaili (pro ty, kdo v soutézi
ziskali minimalné 219 bodu).

Reprezentanti CR si vedli v soutézi dobie, ziskali jednu st¥ibrnou
a dvé bronzové medaile. Vysledky naSich studentt:

57. Josef Pihera 339 bod  stiibrna medaile

85. Daniel Marek 296 bodti  bronzova medaile
144. Michal Vaner 219 bodt  bronzova medaile
255. Jan Hrnéir 41 bodu
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Mezinarodni olympidda v informatice je soutézi jednotliven, takze
zadné oficidlni poradi narodnich druzstev se v ni nevyhlasuje. Neni ani
stanoveno, zda by se mélo urcovat podle souc¢tu dosazenych bodu, souc¢tu
mémi leto$niho roéniku IOI byly Cina (4 zlaté medaile), Polsko a Rusko
(po 3 zlatych medailich), rovnéz celkovy vitéz 101 byl z Polska. Slovensko
ziskalo na IOI 2006 t¥i stfibrné medaile.

19. mezinarodni olympidda v informatice se bude konat v chorvatském
Zagrebu.

Texty soutéZnich tloh

1. Mayské pismo

Lusténi pisma starych Mayt se ukazalo byt ponékud tvrdsim ofiskem,
nez se zprvu zdalo. Po dvou staletich vesmés marného zkoumani teprve
poslednich 30 let ptineslo jakési vysledky.

Mayské pismo je zalozeno na malych obrazcich neboli glyfech, které
odpovidaji jednotlivym zvuktm. Mayska slova se obvykle zapisuji néko-
lika glyfy poskladanymi k sobé.

Jednim z mnoha problému pii ¢teni mayskych napist je urcit spravné
poradi glyfi. Stafi pisafi se totiz pro vzajemnou polohu glyfi tvoficich
slovo ¢asto nerozhodovali podle néjakych pravidel, ale spis podle svého
uméleckého citéni. I kdyz vyslovnost mnohych glyfa je jiz znama, ¢asto
nevime, jak vyslovit jimi zapsané slovo.

Badatelé zrovna v napisech hledaji urcité slovo W. Védi, z jakych
je sloZeno glyfi, ale doposud neobjevili vSechny moznosti, jak je k sobé
Mayové skladali. A jelikoZ se doslechli o vasem véhlasu, pozadali vas
o pomoc. Dostanete od nich g glyfa tvoticich slovo W a posloupnost
glyfit S; tyto glyfy tvoii pravé studovany népis (v poradi, jak jsou na-
malovéany). Pomozte jim spoéitat vechny mozné vyskyty slova W v na-
pisu S.

Uloha: Napiste program, ktery dostane glyfy slova W a posloupnost
glyfti S a vypise viechny mozné vyskyty slova W v posloupnosti S, ¢ili
viechny posloupnosti g po sobé jdoucich glyfii v posloupnosti S, které
jsou permutaci glyft tvoficich slovo W.

Omezeni: 1 < g <3000 — pocet glyfi slova W,
g < |S| < 3000000, kde |S| je pocet glyfit v posloupnosti S.

Vstup: Program bude ¢ist vstupni data ze souboru writing.in:
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writing.in Popis:

4 11 1. Tadek: obsahuje dvé cela ¢isla oddélena mezerou: g

cAda a|S|.

AbrAcadAbRa 2. 7ddek: obsahuje g po sobé jdoucich znaku popisu-
jicich glyfy slova W. Jsou povoleny znaky a-z a A-Z;
velkd a mald pismena povazujeme za ruzna.

3. tddek: obsahuje |S| po sobé jdoucich znakt popisuji-
cich glyfy v posloupnosti S. Opét jsou povoleny znaky
a-z a A-Z a rozlisuje se velikost pismen.
Vystup: Program zapiSe do vystupniho souboru writing.out nésle-
dujici ndaje:
writing.out Popis:

2 Jediny radek: obsahuje pocet moznych vyskyta W v S.

Hodnoceni: Cést testovacich vstupt (dohromady za 50 bodtl) bude
spliiovat podminku g < 10.

Upozornéni pro Pascalisty: Freepascalsky typ string je implicitné
omezen na 255 znakt. Pokud byste chtéli pouzivat delsi stringy, pfipiste
si tésné za fadek program ... direktivu {$H+}.

2. Pyramida

Poté, co kral Jaguar zvitézil ve veliké bitvé, rozhodl se postavit py-
ramidu, ktera poslouzi nejen jako pamatnik jeho slavného vitézstvi, ale
také coby hrobka vojaki v bitvé padlych. Pyramidu postavi na bojisti.
Bojisté ma tvar obdélnika, ktery si mizeme predstavit jako ¢tvercovou
sit m x n polidek (m sloupctt v n fadcich) a jsou v ném ¢éetné terénni
nerovnosti. Kralovsti stavitelé pro kazdé policko sité zmeérili jeho vysku.

Zakladnou pyramidy bude obdélnik o velikosti a x b policek (sloupce x
x Fadky). Uvnitf bude na trovni terénu mensi obdélnikova komora veli-
kosti ¢ x d policek (opét sloupce x Fadky), v niz spoc¢inou téla a zbrané
padlych bojovniku.

Jelikoz obzvlastni prizni krale se t&si cela cisla, bude jak pyrami-
da, tak komora mit pudorys slozeny z policek zminéné Ctvercové sité.
Zatimco terén policek, na nichz je umisténa pohiebni komora, zistane
v puvodni Urovni, zbyvajici policka tvorici zakladnu pyramidy budou
srovnana do stejné vysky presouvanim zeminy z vyssSich policek na niz-
§i. Vysledna vyska zdkladny bude rovna aritmetickému praméru ptavod-
nich vysek vSech polic¢ek tvoricich zakladnu kromé poli¢ek pod komorou.
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Stavitelé mohou komoru umistit kdekoliv uvnitt pyramidy, pokud bude
ze vsech stran obklopena zdmi Sirokymi alespon 1 policko.

Pomozte stavitelim vybrat nejlep$i umisténi pyramidy a pohfebni
komory. To je takové, pfi némz bude zdkladna v nejvétsi mozné vysce.
Pritom je nutné dodrzet pozadované rozméry pyramidy i komory.

Obrazek 59 ukazuje piiklad bojisté. Cisla v jednotlivych polickach
udéavaji jejich vysky. Seda policka predstavuji zakladnu pyramidy, za-
timco jimi obklopeny bily obdélnik znac¢i mozné umisténi komory. Na ob-
razku je jedno z optimalnich feSeni.

1 2 3 4 5 6 7 8
111]15)1013|7|1 5
216112414133 |1]5
31214131 (6|61(19(8
4111113412 |4|5
516161333 |2]2]2

Obr. 59

Uloha: Napiste program, ktery pro dané rozméry bojisté, pyramidy
a komory a pro dané vysky vSech policek bojisté najde umisténi pyramidy
na bojisti a komory v pyramidé takové, ze vyska zakladny bude nejvétsi
mozZna.
Pokud existuje vice optiméalnich feSeni, vypiste libovolné jedno z nich.
Omezeni: 3 < m <1000, 3<n <1000,
3<as<m, 3<b<n,
1<c<a—-2, 15d<bh-2.
Vsechny vysky jsou cela ¢isla od 1 do 100.
Vstup: Program bude ¢ist vstupni data ze souboru pyramid.in:

pyramid.in Popis:

855321 1. 7ddek: obsahuje 6 celych ¢isel oddélenych meze-
151037 125 ramiim,n,a,b,c, d.

6 12 4 4 3 3 1 5 Nadsledujicich n 7ddki: Tyto Fadky popisuji jed-
243166 19 8 notlivé fadky ctvercové sité v pofadi od prvniho
11134245 k n-tému. Kazdy z nich obsahuje m celych ¢isel od-
66333222 délenych mezerami. Tato ¢isla popisuji vysky po-

licek v piislusném radku sité v pofadi od prvniho
sloupce k m-tému.
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Vystup: Program zapiSe do vystupniho souboru pyramid.out nasle-
dujici udaje:

pyramid.out Popis:
41 1. 7ddek: obsahuje dvé cela c¢isla oddélena mezerou.
6 2 Tato ¢isla udavaji souradnice levého horniho rohu

zdkladny pyramidy (v poradi sloupec, Fadek).

2. radek: obsahuje dvé cela ¢isla oddélena mezerou.
Tato ¢isla udavaji souradnice levého horniho rohu
komory (v potradi sloupec, fadek).

Hodnoceni: Cést testovacich vstupt (dohromady za 30 bodt) bude
spliovat podminky 3 < m,n < 10.

3. Zakazany podgraf

Dva grafy G a H nazveme isomorfni, pokud maji stejny pocet vrchol
a vrcholtum grafu G lze prifadit navzajem ruzné vrcholy grafu H tak, aby
pro kazdou dvojici vrcholu v grafu G platilo, Zze mezi nimi vede hrana
pravé tehdy, vede-li hrana také mezi jim odpovidajici dvojici vrcholu
v grafu H.

Kuptikladu oba grafy na obr.60 jsou isomorfni, prestoze na prvni
pohled je kazdy uplné jiny. MiZeme totiz jejich vrcholy pfifadit napiiklad
takto: a-1, b-6, ¢-8, d-3, g-5, h-2, i-4, j-7.

a g 1 2

b h \5—————6/
| |

c i 8§ —7

d J 4/ \3

Obr. 60

Podgrafem grafu G nazveme libovolny graf, jehoz mnoziny vrcholi
a hran jsou podmnozinami mnozin vrcholi a hran grafu G. Obr. 61 uka-
zuje priklad grafu a jeho podgrafu.

I~.__ | -
| l

8 ——17
4/ \3 \
Obr. 61
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Rekneme, 7e graf G obsahuje graf H, existuje-li v grafu G alespoit
jeden podgraf H', ktery je isomorfni s grafem H (obr.62).

1\5—6/2 T 1\ /2
| |
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Uloha: Pro zadané neorientované grafy G a H najdéte podgraf G’
grafu G takovy, aby G a G’ mély stejny pocet vrcholt a graf G’ neobsa-
hoval graf H.

Podgrafii s zadanymi vlastnostmi piirozené mize byt mnoho. Ukolem
je nalézt jeden z téch, které maji co mozna nejvétsi pocet hran.

Zakladnt algoritmus: Podgrafy neobsahujici graf H je mozné hledat
napiiklad nasledujicim primitivnim zptsobem: Budeme prochazet hrany
grafu G v poradi, v jakém jsou popsany vstupnim souborem, a postupné
je pridavat do G'. V kazdém kroku ptitom budeme ovétovat, zda H neni
obsazen v G’. Spravna implementace tohoto hladového algoritmu néjaké
body ziskd, ovSem existuji i mnohem lepsi strategie.

Omezeni: 3 < m < 4 — podet vrcholl grafu H,

3 < n <1000 — pocet vrcholi grafu G.

Vstup: Dostanete deset vstupnich soubori forbiddenl.in az
forbidden10.in, kazdy z nich v nasledujicim tvaru:

forbiddenkK .in Popis:

[é)]

1. rddek: obsahuje 2 cela ¢isla oddélend mezerou:
man.

Nasledujicich m rddku: Kazdy z téchto radka ob-
sahuje m celych ¢isel oddélenych mezerami a popi-
suje jeden vrchol grafu H. Vrcholy jsou oc¢islovany
od 1 do m. Na j-tém fadku tohoto bloku vstupu je
1-té ¢islo rovno 1, pokud vrcholy ¢ a j jsou spojeny
hranou, jinak je rovno 0.

Nasledujicich n vadki: Kazdy z téchto radku ob-
sahuje n celych ¢isel oddélenych mezerami. Tato
&isla obdobnym zpisobem popisuji graf G.

O O O Fr OO Fr OWw
O O r O = Or
O r O P O O - O

= O = O O
O »r O O O
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PovSimnéte si, ze s vyjimkou prvniho fadku obsahuje vstup matice
sousednosti grafi H a G.

Vystup: Odevzdejte 10 soubortt, pro kazdy ze vstupnich souboru je-
den. Kazdy soubor necht obsahuje nasledujici:

forbiddenk .out Popis:
#FILE forbidden K 1. rddek: hlavicka souboru. Musi obsahovat

> idden K

01000 #FILE forbidden

10000 kde K je ¢islo od 1 do 10 identifikujici vstup,
00000 ke kterému tento vystup patii.

00000 2. radek: obsahuje jediné celé ¢islo n.
00000 Nasledujicich n tadki: Kazdy fadek obsahuje n

mezerami oddélenych celych cisel, ktera popisuji
graf G’ vy$e uvedenym zpusobem.
Povsimnéte si, ze kromé radka 1 a 2 vystup odpovida matici sou-
sednosti grafu G’ a ze vySe uvedeny ukdzkovy vystup je spravny, ale
ne optimalni.

Hodnoceni: Pocet bodu, které ziskate, bude zaviset na poctu hran
vaseho grafu G’ a bude stanoven takto: Nenulovy pocet bodi muzete
ziskat pouze tehdy, bude-li vystup spliovat zadani. Pokud spliuje, ozna-
¢ime si £, pocet hran ve vasem reSeni, £, pocet hran v feseni nalezeném
zékladnim algoritmem, F,, pocet hran v nejlepsim ze vSech odevzdanych
feSeni a pouzijeme nésledujici vzorec:

E,
30 f./’ pokud E, < FEy,
body = b B B
30 + 70 m, pokud Ey > Eb.

4. Mexicka dolina

Mexico City stoji v malebném udoli znamém jako Mexicka dolina.
V davnych casech bylo na jeho misté jezero, ale okolo roku 1300 se aztécti
veleknézi usnesli, ze ve stfedu jezera vytvori ostrov, na kterém vybuduji
centrum celé fiSe. Dnes uz z jezera nezbylo nic.

Pred prichodem Aztéku stdlo na biehu jezera ¢ mést. Nekteré dvojice
meést uzavriely obchodni dohody, podle nichz prevazely zbozi na lodich
mezi témito mésty. Trasa lodi vedla vzdy po tsecce.
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Jak uz to byva, kralové mést se rozhodli obchod zorganizovat. Navrhli
obchodni cestu spojujici vSechna mésta stojici okolo jezera. Cesta méla
nasledujici vlastnosti:

> zacinala v nékterém mésté, navstivila kazdé z ostatnich mést a skon-
¢ila v mésté razném od pocatecniho;

> cesta kazdé mésto navstivila pravé jednou;

> kazda dvojice mést jdoucich na cesté po sobé méla spolu uzavienu
obchodni dohodu;

> kazda takova dvojice mést byla spojena lodni trasou vedouci po tisec-
ce;

> aby se lodé nesrazely, zadné dvé lodni trasy se nekiizily.

Obr. 63 ilustruje jezero a mésta viikol. Usecky odpovidaji obchodnim
dohodam, tucné je vyznacena obchodni cesta, kterd zadina v mésté 2
a konci v meésté 5. Tato cesta sama sebe nikde nektizi. Nebylo by napii-
klad mozné, aby cesta z mésta 2 vedla do mésta 6 a pak do mést 5 a 1,
protoze tehdy by se kfizila.

Obr. 63

Maésta jsou o¢islovana od 1 do ¢ ve sméru hodinovych rucicek.

Uloha: Napiste program, jenz pro zadany po¢et mést a seznam ob-
chodnich dohod mezi nimi sestroji obchodni cestu spliiujici vyse uvedené
podminky.

Omezeni: 3 < ¢ <1000 pocet mést okolo jezera.

Vstup: Program bude ¢ist vstupni data ze souboru mexico.in:
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mexico.in  Popis:

1. tadek: obsahuje jediné celé ¢islo c.

2. Tadek: obsahuje jediné celé ¢islo n — pocet obchodnich
dohod.

Nasledugich n radki: Tyto tadky popisuji jednotlivé ob-
chodni dohody. Kazdy z nich obsahuje dvé cela ¢isla od-
délena mezerou — ¢isla mést, kterd uzaviela dohodu.

PN WD O OO N
~N O O W o N

Vystup: Program zapiSe do vystupniho souboru mexico.out nasle-
dujici ndaje:
mexico.out Popis:

Pokud je mozné sestrojit obchodni cestu, soubor obsahuje
¢ fadki, na nichz jsou uvedena ¢isla vSech mést v poradi,
jak jdou po sobé na obchodni cesté. Pokud pozadovana
cesta neexistuje, soubor obsahuje jediny radek s ¢islem -1.

O O NP P WwN

Poznamka: Pokud existuje vice cest spliujici zadané podminky, vy-
piste libovolnou z nich.

Hodnoceni: Cést testovacich vstuptt (dohromady za 40 bod) bude
spliiovat podminky 3 < ¢ < 20.

5. Spojovana

Spojovand (Joining Points) je hra pro jednoho hrace. Zac¢ina tim, ze
si zvolite dvé celd ¢isla g = 2 ar 2 2. Poté nakreslite ¢tyfi body ve vrcho-
lech ¢tverce: horni dva zelené, dolni dva ¢ervené. Pokracujete v kresleni
zelenych a ¢ervenych bodd uvniti ¢tverce tak, aby Zadné t¥i body (véetné
prvnich ¢tyt) nelezely v jedné piimce. Takto nakreslite celkem g zelenych
a r Cervenych bodt.

Po nakresleni vSech bodii je zacnete spojovat tseckami. Dva body
muzete spojit, pokud:

> oba body jsou téze barvy, a zaroven
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> nova usecka neprotind zadnou jiz nakreslenou tsecku jinde neZ v kraj-
nich bodech.

O dvou bodech u, v fekneme, Ze lezi v téze komponenté, pokud je
mozné dojit z bodu u do bodu v po nakreslenych tseckach.

Hru vyhrajete, pokud se vam podari vSechny zelené body spojit
do jedné komponenty pomoci pravé g — 1 tsecek a také vsechny ¢ervené
body do jedné komponenty pomoci pravé r — 1 tsecek. Lze dokazat, ze
at uz jsou body zadany jakkoliv, hru lze vidy vyhrdt.

Dostanete ¢tvercovy hraci plan o rozmérech s x s obsahujici g zelenych
a r cervenych bodi, nakreslenych na souradnicich (25, y;), kde ; a y; jsou
celd cisla. Zelené body ocislujeme od 1 do g, pficemz bod v levém hornim
rohu ¢tverce na soutadnicich (0, s) dostane ¢islo 1, bod v pravém hornim
rohu na soufadnicich (s,s) ¢éislo 2 a body uvnitf ¢tverce ¢isla 3 az g.
Cervené body oé¢islujeme od 1 do 7, levy dolni na soutfadnicich (0,0)
bude mit ¢islo 1, pravy dolni na (s,0) ¢islo 2, vnitini body ¢isla 3 az r.

Obr. 64 ilustruje jeden priklad zadani a vyhravajiciho reseni. VSechny
zelené body jsou spojeny do jedné komponenty a vSechny ¢ervené do dru-
hé. Povsimnéte si, ze zadné tii body nelezi v téze piimce a zZe se zadné
dveé usecky neprotinaji s vyjimkou svych koncovych bodu.

1 2

Obr. 64

Uloha: Napiste program, ktery pro zadané soufadnice g zelenych
a r ¢ervenych bodt uréi, jak nakreslit g — 1 zelenych a r — 1 Cervenych
usecek tak, aby byly vsechny zelené body spojeny do jedné komponenty,
viechny ¢ervené do druhé a zadné dvé usecky se neprotinaly.
Omezeni: 3 < g < 50000 pocet zelenych bodi,
3 <7 <50000 pocet cervenych bodi,
0 <5 <200000000  velikost hraciho planu.
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Vstup: Program bude &ist vstupni data ze souboru points.in:

points.in

6

0 1000
1000 1000
203 601
449 212
620 837
708 537
8

00
1000 0
185 300
314 888
416 458
614 622
683 95
838 400

Popis:

1. 7adek: obsahuje jediné celé ¢islo g.

Nasledugicich g tadki: Tyto fadky popisuji jednotlivé ze-
lené body v poradi od bodu 1 do bodu g. Na kazdém fadku
se nachéazeji dvé mezerou oddélena celé ¢isla x; a vy, sou-
fadnice i-tého zeleného bodu.

(g + 2)-hy Tddek: obsahuje jediné celé ¢islo 7.
Nasledugicich r 7ddki: Tyto fadky popisuji jednotlivé cer-
vené body v potradi od bodu 1 do bodu r. Na kazdém
radku se nachéazeji dvé mezerou oddélena cela ¢isla x; a y;,
soufadnice i-tého ¢erveného bodu.

Vystup: Program zapiSe do vystupniho souboru nasledujici idaje:

points.out Popis:

w
[08]

0 NN = = DO W W
N OO 3OON NN O =
H 0@ HKOM@OM@HK R K K

L

Vystupni soubor obsahuje (g — 1) + (r — 1) tadk, z nichz
kazdy popisuje jednu tisecku spojujici dva body.

Na kazdém tadku jsou tii mezerou oddélené udaje: dvé
celé ¢isla a znak reprezentujici barvu usecky. Cisla oznacuji
body spojené tiseckou, znak ma hodnotu g, pokud jsou oba
body zelené, nebo r, jsou-li cervené.

Nezélezi na poradi, ve kterém tsecky uvedete, ani na po-
fadi bodu v popisu usecky.

Hodnoceni: Cast testovacich vstupiti (dohromady za 35 bodi) bude
spliiovat podminky 3 < ¢, r < 20.

6. Cerna skiiiika
Pojdte, zahrajeme si hru s ¢ernou skiittkou. Na stole lezi skiiika

ve tvaru ¢tverce. Na kazdé strané skiinky je n otvort (celkem v ni je tedy
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4n otvoru), do nichz lze hazet kulicky. Kazda vhozena kulicka po ¢ase
vypadne nékterym z otvort ven, mozné i otvorem, jimz jsme ji vhodili.

Vnitrek skiitiky si mizeme pfedstavit (a také nakreslit, obr.65) jako
miizku n x n poli¢ek. Otvory jsou umistény na obou koncich viech fadka
a sloupcu mrizky. Kazdé policko miizky je budto prazdné, nebo obsahuje
odrazec. To je zafizeni, které méni smér pohybu kulicky o 90°.

rT T T T 1

| 1
dira —> S

I 1
. \ 1 odrazed

. L L L L 4

Obr. 65

Vhozena kulicka se uvniti skiinky pohybuje pfimo, nez budto narazi
do odrazece, nebo ze skiinky vypadne nékterym z otvori. Pokud narazi
do odrazece, kulicka zméni sviij smér pohybu a odrazed se otoc¢i o 90°.
Obr. 66 ukazuje ¢innost odrazece:
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a) b) c)
Obr. 66

a) Kulic¢ku jsme vhodili otvorem. Kulicka narazi do odrazece a méni smér
pohybu.

b) Po priletu prvni kulicky zménil odrazec svij smér. Vhodili jsme dalsi
kulicku do stejného otvoru, ta se od téhoz odrazece odrazi v opacném
sméru nez prvni kulicka.

c¢) Odrazec se otaci pokazdé, kdyz je zasazen.
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Pri kazdém narazu kulicky do odraZece se ozve pipnuti. Pocdet narazt
vhozené kulicky do odrazecu pri priletu skiinikou lze tedy snadno zjistit
spocitanim pipnuti. Lze dokazat, ze kulicka vzdy ze skiiiky vypadne.
Skrinka je vybavena tlacitkem, které vSechny odrazece oto¢i do pocatec-
niho stavu, a druhym tlacitkem, jimz muzeme vSechny odrazece otocit
0 90°.

Uloha: Dostanete 15 ¢ernych skiinék, které miizete ovlddat pomoci
knihovny funkeci. Zjistéte vnitini usporadani vsech skiinék co nejpiesndji
a odevzdejte soubory popisujici jednotlivé skiinky. Rovnéz budete mit
k dispozici prostfedky pro definovani svych vlastnich testovacich ¢ernych
skfinek.

Omezeni: 1 < n < 30.

Vystup: Odevzdejte 15 soubort, pro kazdou ¢ernou skfiniku jeden.
Kazdy soubor necht obsahuje néasledujici:

blackbox K .out Popis:
#FILE blackbox K 1. rddek: hlavicka souboru. Musi obsahovat

#FILE blackbox K

oo/

AL kde K je ¢islo od 1 do 15 identifikujici ¢ernou skiin-
o/ ku, ke které tento vystup patii.

.77 Nasledujicich n tadki: Kazdy tadek popisuje jeden

fadek cerné skiinky, v poradi od horniho radku
po spodni. Na kazdém radku je presné n znak;
kazdy znak odpovida jednomu polic¢ku radku (v po-
fadi zleva doprava):
> .7 znaci, ze policko je prazdné,
> ¢/’ znadli, ze policko obsahuje odrazec s poca-
teénim stavem ‘/’,
> ‘\’ znadi, Ze policko obsahuje odraze¢ s poc¢a-
teénim stavem ‘\’,
> ‘7’ znadi, ze jste nezjistili obsah policka.

Knihovna: Dostanete knihovnu, ktera poskytuje nasledujici funkce:

Pascal:
function Initialize(box: integer):integer;

Inicializuje knihovnu. Tuto funkci je tfeba zavolat pravé jednou na po-
¢atku vaSeho programu. Funkce vraci pocet otvori na kazdé strané
skiinky (n).
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C/C++:
int Initialize(int box);

Parametr boz obsahuje jedno celé ¢islo v rozsahu 1 az 15 urcujici
skrinku, kterou cheete zkoumat, nebo nulu, pokud si obsah sktinky cheete
zadat sami.

Pascal:

function throwBall(holeIn, sideIn: integer;
var holeOut, sideOut: integer): longint;

C:

int throwBall(int holeIn, int sideln,
int *holeOut, int *sideOut);

C++:

int throwBall(int holeIn, int sideln,

int &holeOut, int &sideOut);

Vhodi do skiinky kulicku otvorem holeln na strané sideln. Strany
jsou ¢islovany takto: 1 — horni, 2 — prava, 3 — dolni, 4 — leva. Otvory
jsou cislovany zleva doprava a shora doli, na kazdé strané od jednicky.
V holeOut a sideOut se dozvite otvor a stranu, kudy kulicka ze skiinky
vypadla. Funkce throwBall vraci pocet pipnuti, ktera se béhem pokusu
ozvala.

Pascal: Otoc¢i vSechny odrazece do pocatec-
procedure ResetBox; niho stavu.

C/C++:

void ResetBox();

Pascal: Otoci kazdy odrazec ve skiince o 90°.
procedure ToggleDeflectors;

C/C++:

void ToggleDeflectors();

Pascal: Ukoncéi komunikaci se skiinkou. Tuto
procedure Finalize; funkci byste méli zavolat na konci
C/C++: svého programu.

void Finalize();

Vynechavame zde popis pouziti knihoven, protoZe nejsou k dispozici
prislusné soubory. ..

Ukdzka komunikace s knihovnou: S ernou skiifikou z obr. 66a by bylo
prostiednictvim knihovny mozné komunikovat napiiklad takto:
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Initialize(0); Pokud zadame skfinku z obrazku, funkce vrati hod-

notu 5.
Pascal:
throwBall(3, 4, holeOut, sideOut);
oF
throwBall(3, 4, &holeOut, &sideOut);
C++:

throwBall(3, 4, holeOut, sideOut);

Kulicku vhazujeme do otvoru ¢. 3 (tfeti shora) na levé strané. Funkce
vrati 1, coz znamena, Ze kulicka narazila do jednoho odrazece. Po navratu
z funkce je holeOut = 2 a sideOut = 3, ¢ili Ze kulicka vypadla otvorem
¢. 2 (druhy zleva) na dolni strané skiinky.

Testovani: Pokud funkci Initialize zavoldte s parametrem O,
knihovna si obsah skfinky pfecte ze souboru blackbox.in. Takto miizete
s knihovnou experimentovat. Soubor ma nasledujici format:

blackbox.in Popis:

5 1. 7adek: obsahuje jediné celé ¢islo n — pocet ot-
3 vort na kazdé strané skrinky.

2 3\ 2. 1adek: obsahuje jediné celé ¢islo d — pocet od-
42 / razeCu uvnitt skrinky.

44 / Nasledujich d tadki: Tyto fadky popisuji jednot-

livé odrazece. Kazdy z nich obsahuje dvé celd ¢isla
oddélena mezerou — sloupec a fadek polohy odra-
zeCe. Za nimi nasleduje mezera a jeden znak, ktery
popisuje pocatecni stav odrazeCe a muze mit hod-
notu ‘/” nebo ‘\.
Poznamka: Uvedeny ptiklad vstupu popisuje skiinku z obr. 66a.
Hodnoceni: Pro kazdou skiinku odevzdejte textovy soubor co nejlépe
popisujici vnitiek této skiinky. Hodnocen bude takto:
> Pokud v&as soubor obsahuje znak ¢.’, ¢/’ nebo ‘\’ na chybné pozici,
dostanete za tuto skfinku 0 bodi.
> Oznacime-li B,,, maximalni pocet spravné rozpoznanych policek mezi
vSemi spravnymi feSenimi Gcastniki, a B, pocet policek spravné roz-
poznanych vasim FeSenim, dostanete za tuto skiinku
M procent maximéalniho poc¢tu bodi.
Bm
Pozndmka: Vzorové feSeni této tlohy dokaze automaticky uréit 100 %
pocateéniho obsahu vsech zadanych skiinék za méné nez 8 minut.
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