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O průběhu 55. ročníku matematické olympiády

Ve školním roce 2005/06 se uskutečnil v České republice již 55. ročník
matematické olympiády. Hlavním pořadatelem soutěže bylo stejně jako
v předešlých letech Ministerstvo školství, mládeže a tělovýchovy CR, dále
Jednota českých matematiků a fyziků a Matematický ústav akademie
věd CR. Chod soutěže zajišťovala nově jmenovaná Ústřední komise MO,
v níž jako staronový předseda stanul doc. RNDr. Jaromír Šimša, CSc.,
a dále místopředsedové RNDr. Jaroslav Švrček, CSc. (pro kategorie A,
В a C), doc. RNDr. Pavel Tlustý, CSc. (pro kategorie Z9-Z5), a doc.
RNDr. Pavel Tópfer, CSc. (pro kategorii P). Funkci tajemníka ÚV MO
vykonává nadále RNDr. Karel Horák, CSc.

Přípravou a výběrem úloh pro jednotlivé kategorie a soutěžní kola
MO jsou Ústřední komisí MO pověřeny dvě úlohové komise (jedna pro

kategorie А, В, C a druhá pro kategorie Z9-Z5). Obě komise se scházejí
pravidelně dvakrát ročně (vždy v listopadu a v květnu). Ve spolupráci
se slovenskými kolegy zabezpečují s ročním předstihem výběr úloh pro
další ročník MO v České republice a na Slovensku. Garanty výběru úloh
v kategoriích А, В, C byli v tomto ročníku soutěže RNDr. Karel Horák,
CSc., doc. RNDr. Pavel Novotný, CSc., a doc. RNDr. Leo Boček, CSc.

Při přípravě soutěžních úloh MO kategorie P se pravidelně střídají
pracovníci Matematicko-fyzikální fakulty Univerzity Karlovy v Praze
a Fakulty matematiky, fyziky a informatiky Univerzity Komenského
v Bratislavě. Tentokrát byli na řadě kolegové ze Slovenska, kteří připra-
vili úlohy pro všechna soutěžní kola 55. ročníku. Pracovníci a studenti
z Matematicko-fyzikální fakulty Univerzity Karlovy v Praze se pak jako
každoročně postarali o opravování a vyhodnocení odevzdaných řešení.

Letáky s úlohami I. kola 55. ročníku MO byly do škol včas rozeslány,
s malým zpožděním pak byly distribuovány komentáře к řešením úloh
I. kola.

Ústřední (III.) kola 55. ročníku matematické olympiády v kategoriích
A a P se uskutečnila v termínu 26. 3.-1.4. 2006 v Litoměřicích. Organizací
obou závěrečných kol soutěže bylo Ústřední komisí MO pověřeno Gym-
názium Josefa Jungmanna v Litoměřicích, které ve spolupráci s Kraj-
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skou komisí МО Ústeckého kraje, pobočkou JCMF v Ústí nad Labem
a městem Litoměřice vytvořilo pod záštitou hejtmana Ústeckého kraje
pro soutěž velmi dobré podmínky. Za zdařilý průběh ústředního kola
patří poděkování především Mgr. Pavle Hofmanové, předsedkyni Kraj-
ské komise MO v Ústeckém kraji, a Mgr. Jitce Putnarové z Gymnázia
Josefa Jungmanna v Litoměřicích.

Na základě jednotné koordinace úloh II. (krajského) kola bylo po-
zváno к účasti ve III. (ústředním) kole kategorie A 42 nejlepších řešitelů
(jeden se však pro nemoc omluvil), v kategorii P pak 20 nejlepších řešitelů
z celé České republiky. Soutěžními dny pro kategorii A byly 27. a 28. bře-
zen 2006, kdy žáci řešili tradičně vždy tři soutěžní úlohy. Na řešení každé
trojice úloh měli vyhrazeny 4,5 hodiny čistého času a přitom každá úloha
byla hodnocena maximálně 7 body. Soutěžními dny III. kola v kategorii P
byly 30. a 31. březen 2006. První soutěžní den řešili soutěžící tři úlohy
teoretické, celý druhý soutěžní den byl vyhrazen řešení dvou praktic-
kých úloh. Za každou teoretickou úlohu mohli soutěžící získat maximálně
10 bodů a za řešení každé praktické úlohy pak maximálně 15 bodů —

celkově tedy maximálně 60 bodů. Při přípravě soutěžních úloh v kate-
gorii P se pravidelně střídají pracovníci Matematicko-fyzikální fakulty
Univerzity Karlovy v Praze a Fakulty matematiky, fyziky a informatiky
Univerzity Komenského v Bratislavě. Pro tento ročník soutěže všechny
úlohy v kategorii P připravili slovenští kolegové.

Slavnostní zahájení III. kola v kategorii A se konalo v neděli 26. března
v aule III. ZŠ v Litoměřicích za účasti PaedDr. Jaroslava Mullnera, ná-
městka ministryně školství, mládeže a tělovýchovy CR, RNDr. Anto-
nína Sochora, DrSc., ředitele Matematického ústavu AV CR, zástupců
města Litoměřice a dalších významných představitelů společenského ži-
vota v Ústeckém kraji. Vlastní soutěž v obou kategoriích se uskutečnila
v prostorách litoměřického gymnázia J. Jungmanna.

Pořadatelé III. kola zajistili pro soutěžící rovněž velmi pěkný dopro-
vodný program. Odpoledne po prvním soutěžním dni absolvovali všichni
soutěžící prohlídku historických památek města Litoměřice, kdy navští-
vili inj. věž Kalich, Máchovu světničku a na závěr také prostory biskup-
ství v Litoměřicích. Poté se soutěžící odebrali do budovy gymnázia, kde
zhlédli prezentaci softwaru MATHEMATICA, kterou garantovali pra-
covníci firmy Elkan. Odpoledne po druhém soutěžním dnu absolvovali
účastníci ústředního kola autobusový zájezd do blízkého okolí, který byl
spojen s výstupem na horu Říp a prohlídkou města Terezín.

Vyhlášení výsledků soutěže proběhlo pro kategorii A ve středu
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29. března 2006 a pro kategorii P v sobotu 1. dubna 2006 opět v aule
III. ZŠ v Litoměřicích. Především díky sponzorům si nejlepší soutěžící
odvezli domů hodnotné ceny.

Všichni vítězové v kategorii A byli pozváni к výběrovému soustředění,
které se uskutečnilo v termínu 10.-14. 4. 2006 v Kostelci nad Černými
lesy v prostorách tamní Lesnické fakulty Zemědělské Univerzity. Závěrem
tohoto soustředění bylo na podkladě dosažených výsledků vybráno šesti-
členné družstvo, které reprezentovalo naši republiku na 47. mezinárodní
matematické olympiádě ve Slovinsku. Podrobnou informaci o ní stejně
jako o 18. mezinárodní olympiádě v informatice najdete na konci této
ročenky.

Ústřední komise MO se během tohoto soutěžního ročníku sešla na

dvou pravidelných jednáních, a to 9. prosince 2005 na Pedagogické fakultě
UK v Praze a dále 27. března 2006 v Litoměřicích u příležitosti konání
ústředního kola MO.

Pro nejlepší řešitele krajských kol v kategoriích В a C uspořádala
Ústřední komise MO v termínu 30. 5.-6.6. 2006 tradiční soustředění, je-
hož se zúčastnilo 40 žáků vybraných ze všech krajů republiky. Lektorsky
se na tomto soustředění podíleli doc. Boček, doc. Calda, doc. Šimša,
dr. Dula, dr. Leischner, dr. Švrček a dr. Hrubý. Podobně pro nejlepší ře-
šitele kategorie A (všichni nematurující řešitelé, kteří se kvalifikovali do
III. kola kategorie A) uspořádala ÚK MO přípravné soustředění v Jan-
ských Lázních (10.-16. 9. 2006), kterého se zúčastnilo celkem 22 pozva-
ných soutěžících. Zaměstnání a přednášky zde vedli členové ÚK MO —

doc. Šimša, dr. Švrček, dr. Horák, doc. Tlustý a dr. Zhouf.
К přípravě našich i slovenských olympioniků se rozhodla každo-

ročně přispívat Společnost Otakara Borůvky (SOB), která ve spolupráci
s Gymnáziem Uherské Hradiště (GUH) uspořádala poprvé ve dnech
19.-23. června 2006 v Hluku u Uherského Hradiště česko-slovenské sou-

středění před MMO. Největší uznání patří řediteli GUH doc. Botkovi
a členům SOB dr. Kaňovskému a doc. Půžovi. Protože šlo o první akci
svého druhu, popišme ji v této ročence podrobněji.

Tato společná pětidenní příprava reprezentačních družstev České
a Slovenské republiky byla plně financována z nestátních prostředků,
které SOB zajistila u sponzorů podporujících rozvoj mladých matema-
tických talentů. Profesor Otakar Borůvka, jeden z největších brněnských
matematiků 20. století, po celý svůj aktivní život podporoval spolupráci
českých a slovenských vědců v matematickém výzkumu. Moravské Slo-
vácko, kde se podle záměru SOB bude česko-slovenské soustředění před
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MMO konat pravidelně, bylo vybráno pro blízkost česko-slovenské hráni-
ce, ale též jako rodný kraj profesora Borůvky (který v letech 1911-1914
uherskohradišťské gymnázium absolvoval). Přednášky v Hluku vedli
dr. Horák, dr. Kaňovský ml., dr. Panák, doc. Šimša a dr. Švrček. Bě-
hem soustředění proběhla též půldenní soutěž a slavnostní odpoledne na
GUH u příležitosti 80. výročí vyřešení tzv. dopravního problému (v ohod-
noceném grafu) O. Borůvkou. Problém byl motivován úkolem projektu
elektrifikace jižní Moravy (1926).

Závěrem této stručné zprávy o průběhu celého 55. ročníku MO se

patří poděkovat všem zainteresovaným učitelům matematiky a informa-
tiky na středních i základních školách za jejich neocenitelnou pomoc při
práci s mladými matematickými a informatickými talenty v České re-

publice. Bez jejich pomoci si zdárný chod nejstarší předmětové soutěže
nelze představit.

8



Projev předsedy Ústřední komise MO
při slavnostním zahájení ústředního kola 55. ročníku MO v Litoměřicích

Dámy a pánové, vážení hosté, milí soutěžící,

ke zpestření programu tohoto slavnostního shromáždění chci přispět
vyprávěním o jednom zajímavém matematickém výsledku z uplynulého
roku 2005. Byl to objev, který sice unikl pozornosti sdělovacích prostřed-
ků, mohu o něm však tady krátce — a věřím, že docela srozumitelně —

promluvit.
Začnu jedním přirovnáním: Současné fyziky i širokou laickou veřejnost

přitahují podivná seskupení hmoty ve vesmíru, kterým říkáme černé díry.
Některé matematiky zase vzrušují tzv. mnohoúhelníkové díry v konečných
množinách bodů v rovině.

Tento pojem si přiblížíme pomocí obr. 1, na kterém vidíte množinu
několika bodří roviny vyznačených puntíky. Body s čísly 1, 2, 3, 4 a 5
tvoří červeně vyznačenou pětiúhelníkovou díru. Proč díru? Uvnitř červené
hranice totiž neleží žádný puntík. Upřesním, že obecně hranice díry musí
být konvexní mnohoúhelník a že všechny body zkoumaných množin musí
být v obecné poloze, tedy žádné tři z nich nesmějí ležet v přímce.

Obr. 1

Od roku 1978 odborníky zajímá otázka, kterou položil světoznámý
matematik Paul Erdós (1913-T99G): Kolik nejméně bodů musí mít mno-
žíná, aby v ní zaručeně existovala /с-úhelníková díra s daným počtem
vrcholů к? Na obr. 2 vidíte příklad množiny devíti bodů bez pětiúhel-
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níkové díry. Podíváte-li se pozorně, objevíte, že puntíky vytvářejí pouze
dva konvexní pětiúhelníky. Nejedná se však o díry, neboť uvnitř každého

/
/

\
\\

\

Obr. 2

z obou pětiúhelníků leží jeden puntík. Všech puntíků na obrázku je de-
vět, kdyby jich bylo více, tedy alespoň deset, pětiúhelníková díra už by
se určitě našla. To by přítomní soutěžící (doufám alespoň někteří) patrně
dokázali, na programu olympiády to však zítra ani pozítří nebude.

Teď prozradím jedno velké překvapení z roku 1983: Kanaďan Joseph
D. Horton sestrojil příklady množin s libovolně velkým počtem bodů,
které nemají žádnou sedmiúhelníkovou díru. Přeskočil jsem však tím vý-
sledkem otázku šestiúhelníkových děr, jak je to s nimi? Už v roce 1980
byla objevena množina 20 bodů bez šestiúhelníkové díry, v roce 1989
množina téže vlastnosti o 2G bodech. V roce 2003 Holanďan Mark Over-

mars objevil pomocí počítače různé množiny 29 bodů bez šestiúhelníkové
díry. .Jednu z nich vám přiblížím na následujícím obr. 3, můžete se přiblí-
žit i vy, budete-li špatně vidět. Kdyby puntíky měly mít kvůli rozlišení
celočíselné souřadnice, potřebovali bychom к nakreslení čtverec o straně
1 2G0 jednotek.

Overmars ve svém článku napsal: program s náhodnými prvky bě-
žel na počítači Pentium III 500 MHz nepřetržitě několik měsíců. Vždy
po několika dnech počítač ohlásil nalezení další maximální množiny bez
šestiúhelníkové díry. Byly to množiny různé, ale všechny měly 29 bodů,
nikdy více. Navíc tyto množiny měly společnou strukturu, jakou vidíte
na obrázku: vnější slupkou byl vždy trojúhelník, další slupkou směrem
dovnitř byl čtyřúhelník, následovaly tři sedmiúhelníky a poslední byl je-
diný bod uprostřed. Já ten obrázek schovám, stejně bychom museli tes-
tovat desítky šestiúhelníků, jejichž vrcholy leží ne na jedné, ale několika
slupkách, abychom prokázali, že žádná šestiúhelníková díra tady neexis-
tuje.
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Vraťme se od počítačových experimentů к původní Erdosově teo-
retické otázce a vysvětleme, proč je rok 2005 mezníkem v její historii.
Podařilo se totiž alespoň principiálně vyřešit otázku existence šestiúhel-
níkových děr. Německý matematik Tobias Gerken dokázal, že šestiúhel-
níkovou díru má každá taková množina bodů, která obsahuje konvexní
devítiúhelník, i když netvoří díru (obr. 4). A to už bylo vyhráno, neboť
od roku 1935 je známo, že pro libovolné číslo к se v libovolné dostatečně
početné množině najde konvexní Zc-úhelník. Konkrétně pro к = 9 stačí,
aby množina měla 1 717 bodů. Pravděpodobně stačí mnohem méně, totiž
129 bodů, ale to je zase jedna z jiných dosud nedokázaných Erdosových
hypotéz. Dnes už tedy s jistotou víme, že šestiúhelníkovou díru má každá
množina o alespoň 1 717 bodech.
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Gerken své tvrzení dokázal zcela elementárními prostředky, důkaz
však zabírá 39 časopiseckých stran. Jednodušší, čtyřstránkový důkaz exis-
tence šestiúhelníkových děr vymyslel zcela nedávno Čech Pavel Valtr,
docent pražské Univerzity Karlovy. „Nevýhodou" Valtrova postupu je,
že jeho algoritmus hledání šestiúhelníkové díry vede к horšímu odhadu
pro minimální počet bodů, než je Gerkenových 1 717. To však tolik neva-

dí, když tento minimální počet bude nejspíše řádově v desítkách (třeba
přesně 3 desítky, jak věří Mark Overmars). Nalezení tohoto čísla je v sou-
časné době patrně beznadějně složitý problém. Pro srovnání uvedu mno-
hem jednodušší otázku z téhož soudku geometrie, na kterou neznáme
odpověď až podezřele dlouhou dobu: kolik nejméně bodů musí mít mno-

žíná, aby v ní existoval konvexní šestiúhelník, když to nyní nemusí být
díra (obr. 5)? Ví se pouze, že hledané číslo je nejméně 17 a nejvíce 37.
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Tím mé vyprávění o mnohoúhelníkových dírách končí. V návaznosti
na ně popřeji vám, milí soutěžící, ať zítra a pozítří sepíšete jen taková
řešení zadaných úloh, která žádné díry (tedy místa postrádající logiku)
obsahovat nebudou. Prohlašuji ústřední kolo 55. ročníku Matematické
olympiády za zahájené.

13



Tabulka 1

Počty žáků středních škol soutěžících v I. kole 55. ročníku MO

Kategorie
Kraj Celkem

A В c p
s и s и s и s и иs

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

8 8
12 8

3 3
0 o
o o
o o
7 5
6 4

330 17699 59
77 39
62 54

98 41 125 68
58 27 29 10381 228

176 13942 34 69 48
3736 18 23 82 7736 155

1710 5 19 14 11 46 30
36 31 46 20 69 7625 151

2164 41 14 49 10 161 50
3738 23 48 26 20 73129

17 7 6744 20 41 23 28 12 125
61 43 31 69 42 6 3 190 119

409 243
294 123

54
70 79150 89 123 131 5 5

87 3093 42 98 41 16 10
1 1

22 21
31 19 42 18 49 18 123 56

78 87 4465 40 252 14641

CR 98 75 2 769 1478866 503 814 412 991 488

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 55. ročníku MO
Kategorie

CelkemKraj PВ CA
U S U S us и s и s

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Кrálovéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

37 17 757 16 29 59 2 160 64
87 18

127 25
69 12

77 738 22 20 3 1
12 40 8 3 151 4 33

30 8 0 018 1 21 3
3014 1 11 3 0 0 45 0
73 7
47 15
73 33
67 26
95 25

224 57
118 22

55 18
136 33

02 22 5 031 0 20
10 3 5 320 4 12 5
20 9 4 223 6 26 16

717 520 23 14 25
7 27 26 6 3 21039

73 22 5 21585 18 61
379 4 10 442 5 29
17 1 018 9 419 5

13 2137 10 39 439 6

CR 421 107 73 26 1361 359487 84 380 142

U ... počet úspěšných řešitelůS ... počet všech soutěžících
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uvedeni
všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium.

Kraj Praha*##*•#*#####•«# ###»####*###•*«

Kategorie A

1. Hoang Vo Viet, G Praha 4, Na Vítězné pláni
2. Adam Přenosil, G Praha 3, Sladkovského

3.-5. Lukáš Malina, G Ch. Dopplera, Praha 5
Roman Smrž, G E. Krásnohorské, Praha 4
Radek Žlebčík, G Ch. Dopplera, Praha 5

6. Miroslav Kolář, G Praha 4, Na Vítězné pláni
7. Ondřej Liška, G J. Heyrovského, Praha 5

8.-9. Tran Mink Hoang, G Ch. Dopplera, Praha 5
Matěj Korvas, G J. Seiferta, Praha 9

10. Vojtěch Horký, G Praha 6, Nad Alejí

Kategorie В

1. Hoang Vo Viet, G Praha 4, Na Vítězné pláni
2. Jan Smejkal, G Praha 6, Arabská
3. Alena Skálová, G Praha 4, Na Vítězné pláni

4.-7. Lukáš Drápal, G Ch. Dopplera, Praha 5
Jan Hajič, AG Praha 2, Korunní
Jakub Marian, G Praha 9, Litoměřická
Markéta Palovská, G Praha 5, Pod Žvahovein

8. František Navrátil, G Praha 9, Litoměřická
9. Zuzana Dortová, G Praha 8, U libeňského zámku
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10.-13. Matěj Peterka, G Praha 6, Nad Alejí
Jakub Marčiny, G Praha 4, Konstantinova
Roman Smrž, G E. Krásnohorské, Praha 4
Pavla Markupová, G J. Nerudy, Praha 1

Kategorie C1.Jakub Topfer, G J. Keplera, Praha 6
2.-3. Karolína Rezková, G Praha 10, Vodčradská

Matěj Veselský, G J. Keplera, Praha 64.Miroslav Olšák, G Praha 5, Pod Žvahovem
5.-7. Vojtěch Kovařík, G J. Nerudy, Praha 1

Karel Pajskr, G J. Keplera, Praha 6
Josef Tkadlec, G J. Keplera, Praha 6

8.-10. Mirka Dřínková, G J. Keplera., Praha 6
Jan Jirků, G Praha 7, Nad Štolou
Jan Strnad, G J. Keplera, Praha 6

Kategorie P

1. Daniel Marek, G Ch. Dopplera, Praha 5
2. Roman Smrž, G E. Krásnohorské Praha 4

Středočeský kraj *•»•*««*•***#

Kategorie A

1. Lenka Slavíková, G Mnichovo Hradiště
2. Tomáš Sixta, G Kolín

3.-5. Lukáš Hermami, GJP Mladá Boleslav
Petr Jakovec, G Kladno, nám. E. Beneše
Ondřej Žižka, G Benešov

6.-7. Václav Gergelits, G Benešov
Vitalij Chalupník, G Slaný

Kategorie В

1. Tomáš Gergelits, G Benešov
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2. Lukáš Beran, G Benešov
3. Matouš Macháček, G Říčany
4. Josef Muller, G Dr. Josefa Pekaře, Mladá Boleslav

5.-6. Martin Beneš, G Mělník
Ota Kukral, G Dr. Josefa Pekaře, Mladá Boleslav

7. Václava Sedlmajerová, G Čáslav

Kategorie C

1. Barbora Musilová, G Dobříš
2. Martin Jedlička, G Benešov
3. Miroslav Mrázek, G Vlašim

Kategorie P1.Lukáš Beran, G Benešov

Jihočeský kraj

Kategorie A

1. Eliška Lehečková, G České Budějovice, Česká
2. Michal Pavelka, G Strakonice
3. Jan Záloha, G Písek
4. Jiří Kníže, G Strakonice

Kategorie В

1. Martina Vaváčková, G P. de Coubertina, Tábor
2. Martin Pecka, G V. Nováka, Jindřichův Hradec
3. Libor Peltan, G České Budějovice, Česká
4. Luděk Mika, G Strakonice

5.-7. František Batysta, G J. V. Jirsíka, České Budějovice
Jakub Reitmajer, GP.de Coubertina, Tábor
Miroslav Vacek, G České Budějovice, Jírovcova

8.-9. Matyáš Kopp, G České Budějovice, Jírovcova
Pečr Petrouš, G České Budějovice, Jírovcova

10.-12. Kamil Pekárek, G V. Nováka, Jindřichův Hradec
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Ondřej Soukup, G České Budějovice, Jírovcova
Ondřej Vlk, G České Budějovice, Jírovcova

Kategorie C

1. Jan Matějka, G České Budějovice, Jírovcova
2. Helena Pučeliková, G Milevsko
3. Pavel Veselý, G Strakonice

4.-5. Jan Kubů, G Strakonice
Tereza Nedvědová, G České Budějovice, Jírovcova

6.-8. Šárka Bohoňková, Cesko-anglické G, České Budějovice
Jan Canda, Biskupské G J.N. Neumanna České Budějovice
Kamil Stuchlík, G České Budějovice, Jírovcova

Kategorie P1.Josef Pihera, G Strakonice

Plzeňský kraj##############

Kategorie A

1. Tomáš Jirotka OkB, G J. Vrchlického, Klatovy

Kategorie В

1. Jindřich Havlík, G Plzeň, Mikulášské nám.
2. Vladislav Richter, G Plzeň, Mikulášské nám.
3. Jiří Kubeš, G L. Pika, Plzeň

Kategorie C

1.-2. Diana Marková, G Plzeň, Mikulášské nám.
Nguyen Van Minh, G Tachov

3. Jakub Krauz, Masarykovo G, Plzeň
4.-5. Kateřina Nová, SPŠE Plzeň

Dalibor Pátek, G Plzeň, Mikulášské nám.
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6.-7. Michal Bugoš, G Plzeň, Mikulášské nám.
Petr Nedvěd, G J. Vrchlického, Klatovy

8. Jana Vavřičková, G Plzeň, Mikulášské nám.

Karlovarský kraj

Kategorie A

1. Eva Černohorská, První české G, Karlovy Vary

Kategorie В

1. Marek Pospíšil, G Cheb

Kategorie C

1. Viktor Lóffelmann, G Mariánské Lázně
2.-3. Tomáš Nguyen, SCHŠ Cheb

Jakub Papež, SCHŠ Cheb

Ústecký kraj

Kategorie В

1. Tomáš Pajma, G Most, Cs. armády
2. Michal Neubauer, G Ústí nad Labem, Jateční

Kategorie C

1. Marcela Hóferová, G V. Hlavatého, Louny
2.-3. Li Wang, G Roudnice nad Labem

Václav Palík, G Ústí nad Labem, Jateční
4.-5. Tuan Le Sy, SPŠ Teplice

Libor Vytlačil, G Roudnice nad Labem
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Liberecký kraj»•*#•••*•*##**

Kategorie A

1. Hana Bendová, G Česká Lípa
2. Jan Hrnčíř, G F. X. Saldy, Liberec
3. Tomáš Kobrle, G Jilemnice

Kategorie В

1. Bohumil Vybíralík, G F. X. Saldy, Liberec
2. Tomáš Nácovský, G a SPeS Liberec, Jeronýmova

3.-5. Pavel Beran, G .Jablonec n. N., U Balvanu
Jan Pešek, G Česká Lípa
Jakub Škoda, G F. X. Saldy, Liberec

Kategorie C1.Jan Indráček, G Tanvald
2.-4. Michaela Dedeciusová, G a SPeS Liberec, Jeronýmova

Klára Holková, G F. X. Saldy, Liberec
Iveta Jeschkeová, G Tanvald

Kategorie P

1. Michal Vaner, G Turnov
2. Jan Hrnčíř, G F. X. Saldy, Liberec
3. Petr Zadražil, G Turnov

Královéhradecký kraj

Kategorie A

1. Jan Voltr, G J.K. Tyla, Flradec Králové
2.-5. Martin Berger, G a SOS Úpice

Pavel Kuchyňa, G B. Němcové, Hradec Králové
Libor Šimůnek, G J. K. Tyla, Hradec Králové
Vendula Uchytilová, G J.K. Tyla, Hradec Králové
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6. Václav Zatloukal, G F. M. Pelcla, Rychnov nad Kněžnou

Kategorie В

1. Lukáš Lánský, G J.K. Tyla, Hradec Králové
2. Alena Peterová, G Dobruška
3. Jakub Zajíc, G J. K. Tyla, Hradec Králové

4.-5. Petr Polák, JG Náchod
Adriana Amidová, G J.K. Tyla, Hradec Králové6.Jiří Maršík, G J. K. Tyla, Hradec Králové

7.-8. Jiří Řičař, G J. K. Tyla, Hradec Králové
Pa,vel Vydra, Jiráskovo G, Náchod

9.-10. Jan Borna, G J.K. Tyla, Hradec Králové
Jakub Kaplan, G J.K. Tyla, Hradec Králové

Kategorie C

1. Vít Hanousek, G Trutnov
2. Martin Aubr, G Nový Bydžov
3. Tomáš Zelenka, G B. Němcové, Hradec Králové

4.-5. Miroslav Miletín, G B. Němcové, Hradec Králové
Jaroslav Stárek, Jiráskovo G, Náchod

6.-7. Jan Lochman, G Nový Bydžov
Hana Austková, G Trutnov

8.-9. Daniel Dvořák, G Hostinné
Jakub Vlček, Jiráskovo G, Náchod

Kategorie P

1. Jakub Kaplan, G J.K. Tyla, Hradec Králové
2. Lukáš Lánský, G J.K. Tyla, Hradec Králové

Pardubický kraj * • •«»**•»•••••*#•

Kategorie A

1. Tereza Klimošová, G Lanškroun
2. Marek Scholle, G Pardubice, Dašická
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3.-5. Jakub Klečka, G Přelouč
Helena Šediváková, G Pardubice, Dašická
Lubomír Štěpánek, G Pardubice, Dašická

Kategorie В

1. František Kalibán, G Litomyšl
2. Matěj Soukup, G Česká Třebová

3.-4. Jiří Novák, G Lanškroun
Petra Širůčková, G Polička

5. Gabriela Šilarová, G Ústí nad Orlicí
6. Lukáš Najman, G Česká Třebová

7.-9. Tomáš Jakl, G Moravská Třebová
Marie Kolářová, G Ústí nad Orlicí
Martin Schmidt, G Česká Třebová

10.—11. Martin Basovník, G Polička
Tomáš Kotlant, G Pardubice, Dašická

Kategorie C

1. Filip Petrásek, G Polička
2. Edita Dvořáková, G Ústí nad Orlicí

Kategorie P

1. Tereza Klimošová, G Lanškroun
2. Marek Scholle, G Pardubice, Dašická

Kraj Vysočina *•**♦•**•##»#•

Kategorie A

1.-2. Ondřej Hoferek, G Zdar nad Sázavou
Marie Kolářová, Biskupské G Ždar nad Sázavou

3. Jan Korbel, G Jihlava
4. Mirek Dočekal, G Jihlava

5.-7. Milan Dvořák, G V. Makovského, Nové Město n. M.
Jakub Filipský, G Moravské Budějovice
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Iveta Selingerová, G Jihlava

Kategorie В

1. Michal Kozák, G Jihlava
2. Marek Nečada, G Jihlava
3. Jan Svíka, G Jihlava
4. Jan Máca, G Třebíč

5.-7. David Chaloupka, G Moravské Budějovice
Matěj Klusáček, G Třebíč
Zuzana Matějů, G Pelhřimov

8.-10. Vojtěch Caha, G Jihlava
Ondřej Marik, G Moravské Budějovice
Tomáš Pejchal, G Žďár nad Sázavou

Kategorie C

1.-2. Michal Koutný, G Třebíč
Jan Nevoral, G Jihlava3.Martin Stehno, Havlíčkovo G, Havlíčkův Brod

4.-5. Petr Glajc, G Ždar nad Sázavou
Adam Růžička, G Třebíč6.Ondřej Pelech, G O. Březiny a SOŠ, Telč

Jihomoravský kraj

Kategorie A

1.-2. Jakub Opršal, G Brno, tř. Kpt. Jaroše
Jan Uhlík, G Brno, tř. Kpt. Jaroše

3. Jaromír Kuběn, G Brno, tř. Kpt. Jaroše
4. Vojtěch Říha, G Brno, tř. Kpt. Jaroše
5. Alexandr Píchá, G Brno, tř. Kpt. Jaroše
6. Zbyněk Konečný, G Brno, tř. Kpt. Jaroše
7. Jiří Zelinka, G Brno, tř. Kpt. Jaroše
8. Martin Křivánek, G Brno, tř. Kpt. Jaroše
9. Jan Rygl, G Brno, tř. Kpt. Jaroše10.Aleš Podolník, G Brno, tř. Kpt. Jaroše
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Kategorie В

1.-2. Petr Fiala, G Brno, tř. Kpt. Jaroše
Martin Frodl, Biskupské G Brno, Barvičova

3.-4. Jan Brandejs, G Brno, tř. Kpt. Jaroše
Petr Zábrodský, G Brno, tř. Kpt. Jaroše

5. Jan Kovář, G Brno, tř. Kpt. Jaroše
6.-8. Ondřej Malach, G Brno, tř. Kpt. Jaroše

Jaroslav Novotný, G Brno, tř. Kpt. Jaroše
Lucie Pospíšilová, G Brno, Žižkova

9.-11. Jaromír Bačovský, G Brno, T. Novákové
Vojtěch Robotka, G Brno, tř. Kpt. Jaroše
Jaroslav Šmíd, G Brno, tř. Kpt. Jaroše

Kategorie C

1. Hana Sormová, G Brno, tř. Kpt. Jaroše
2. Mojmír Vinkler, G Brno, tř. Kpt. Jaroše
3. Peter Novák, G Brno, tř. Kpt. Jaroše
4. Helena Paschkeová, G Brno, T. Novákové

5.-8. Zuzana Komárková, G Brno, tř. Kpt. Jaroše
Antonín Povolný, Biskupské G Brno, Barvičova
Alexander Slávik, G Brno, T. Novákové
Jana Štrosová, G Brno, tř. Kpt. Jaroše

9.-11. Lenka Franců, G Brno, tř. Kpt. Jaroše
Ondřej Hlouša, G Brno, tř. Kpt. Jaroše
Jan Kvarda, G Brno, tř. Kpt. Jaroše

Kategorie P

1. Martin Veškrna, G Brno, Vídeňská
2. Martin Křivánek, G Brno, tř. Kpt. Jaroše

Zlínský kraj ФшттФштттшттт mm

Kategorie A

1. Marek Pechal, G Zlín, Lesní čtvrť
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2. Pavel Salorn, G Rožnov pod Radhoštěm
3. Jan Váňa, G Zlín, Lesní čtvrť
4. Ondřej Pilka, G Zlín, Lesní čtvrť
5. Jan Doleček, G Kroměříž

Kategorie В

1. Martina Rosíková, G Zlín, Lesní čtvrť
2. Martin Zapletal, G L. Jaroše, Holešov
3. Petr Sokola, SPŠ Zlín

4.-5. Radim Sviták, G L. Jaroše, Holešov
Jiří Václavík, Masarykovo G, Vsetín

6.-9. Tomáš Grísa, SPŠS Vsetín
Petra Papežíková, G Holešov
Rostislav Pečena, G Zlín, Lesní čtvrť
Alžběta Pechová, SPŠS Vsetín

Kategorie C

1. Jan Vaňhara, G L. Jaroše, Holešov
2. Jakub Ivanovsky, G Zlín, Lesní čtvrť
3. Jan Vala, G Valašské Meziříčí
4. Veronika Smělá, Masarykovo G, Vsetín

Kategorie P

1. Ondřej Bílka, G Zlín, Lesní čtvrť
2. Jan Pele, G J. A. Komenského, Uherský Brod

3.-4. Michal Čudrnák, G L. Jaroše, Holešov
David Němeček, G Rožnov pod Radhoštěm

Olomoucký kraj

Kategorie A

1.-2. Tomáš Javůrek, G Jeseník
Anežka Faltýnková, G J. Škody, Přerov

3. Martin Přemyslovský, G J. Škody, Přerov
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4.-5. Lukáš Bednařík, Slovanské G, Olomouc
Jozef Crnar, reálné G, Prostějov

Kategorie В

1. Petr Kunc, G Uničov
2. Jan Havlíček, G Zábřeh
3. Pavla Kosová, G Šternberk

4.-6. Lucie Kadrmanová, G Jeseník
Hana Ryšánková, G Šternberk
Lukáš Bednařík, Slovanské G, Olomouc

7.-9. Jakub Tejchman, G Jeseník
Martin Šefl, G Uničov
David Micka,, VOŠ a SPŠ Šumperk

Kategorie C

1. Tomáš Kašpárek, G J. Škody, Přerov
2. Wí Musil, G Šumperk
3. Tomáš Matuška, G Kojetín
4. Jiří Horčička, G Jeseník

Moravskoslezský kraj$###$#######

Kategorie A

1. Jaroslav Hanči, G M. Koperníka, Bílovec
2.-3. Pavel Motloch, G P. Bezruce, Frýdek-Místek

Tomáš Princ, G Ostrava-Poruba, Cs. exilu
4.-5. Tomáš Jeziorský, G M. Koperníka, Bílovec

Michael Kučera, G M. Koperníka, Bílovec
6. Adam Kubetta, G M. Koperníka, Bílovec

Kategorie В

1. Martin Hrtoň, G M. Koperníka, Bílovec
2. Sirui Cheng, Matiční G, Ostrava

26



3.-4. Lukáš Holík, G M. Koperníka, Bílovec
Tomáš Toufar, G M. Koperníka, Bílovec5.Tomáš Radek, G M. Koperníka, Bílovec

6.-10. Michael Čermák, Mcndelovo G, Opava
Vojtěch Kozák, G M. Koperníka, Bílovec
Tomáš Matera, G Ostrava-Poruba
Kristina Pindejová, G Český Těšín
Jana Szewieczková, G J. Kainara, Hlučín

Kategorie C1.Vojtěch Zwardon, G Karviná
2.-4. Hana Bílková, G Frenštát p. R.

Miroslav Klimoš, G M. Koperníka, Bílovec
Tomáš Miketa, G J. Kainara, Hlučín

5.-6. Jan Bajer, G Frýdek-Místek
Jan Kusý, G M. Koperníka, Bílovec

7.-8. Vojtěch Kaluža, G P. Bezruce, Frýdek-Místek
Jitka Novotná, G M. Koperníka, Bílovec

9. Lenka Krupová, G Příbor
10.-13. Tomáš Horák, G Ostrava-Poruba, Čs. exilu

Petr Kaděra, G P. Bezruce, Frýdek-Místek
Lukáš Kotlorz, G Karviná
Lenka Turoňová, G Třinec

Kategorie P

1. Miroslav Klimoš, G M. Koperníka, Bílovec
2. Pavel Motloch, G P. Bezruce, Frýdek-Místek
3. Martin Kupec, Mendelovo G, Opava
4. Zbyněk Sopuch, Masarykovo G, Příbor
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Výsledky ústředního kola 55. ročníku MO

kategorie A

Vítězové

1. Jaromír Kuběn, 4/4, G Brno, tř. Kpt. Jaroše
2. Marek Pechal, 8/8, G Zlín, Lesní čtvrť

3.-4. Jaroslav Hanči, 4/4, G M. Koperníka, Bílovec
Zbyněk Konečný, 3/4, G Brno, tř. Kpt. Jaroše

5. Jakub Opršal, 4/4, G Brno, tř. Kpt. Jaroše
G. Pavel Motloch, 5/6, G P. Bezruče, Frýdek-Místek
7. Anežka Faltýnková, 3/4, G J. Škody, Přerov
8. Marek Scholle, 7/8, G Pardubice

9.-10. Tomáš Jeziorský, 3/4, G M. Koperníka, Bílovec
Vojtěch Říha, 4/4, G Brno, tř. Kpt. Jaroše

39 b.

38 b.

36 b.

36 b.

27 b.

26 b.

20 b.

19 b.

18b.

18 b.

Další úspěšní řešitelé

11.-12. Pavel Šalom, 8/8, G Rožnov pod Radhoštěm
Jan Uhlík, 4/4, G Brno, tř. Kpt. Jaroše

13.-15. Tereza Klimošová, 8/8, G Lanškroun
Adam Přenosil, 8/8, G Praha 3, Sladkovského nám.
Lenka Slavíková, 3/4, G Mnichovo Hradiště

16. Ondřej Hoferek, 8/8, G Žďár n. S.
17.-18. Tomáš Javůrek, 7/8, G Jeseník

Martin Křivánek, 4/4, G Brno, tř. Kpt. Jaroše
19.-22. Michael Kučera, 4/4, G M. Koperníka, Bílovec

Lukáš Malina, 3/4, G Ch. Dopplera, Praha 5
Jiří Řihák, 3/4, G Brno, tř. Kpt. Jaroše
Hoang Vo Viet, 3/6, G Praha 4, Na Vítězné pláni

17 b.

17b.

15 b.

15b.

15 b.

14 b.

13b.

13b.

12 b.

12b.

12 b.

12b.
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Výsledky ústředního kola 55. ročníku MO

kategorie P

Vítězové

1. Daniel Marek, 4/4, G Ch. Dopplera, Praha 5
2. Ondřej Bílka, 4/4, G Zlín, Lesní čtvrť
3. Michal Vaner, 8/8, G Turnov
4. Josef Pihera, 7/8, G Strakonice
5. Jan Hrnčíř, 4/4, G F. X. Saldy, Liberec

55,0b.
37,0 b.
36,8b.
34,7 b.
32,0b.

Další úspěšní řešitelé

6. Lukáš Lánský, 2/4, G J. K. Tyla, Hradec Králové
7. Zbyněk Sopuch, 8/8, G Příbor
8. Martin Křivánek, 4/4, G Brno, tř. Kpt. Jaroše
9. Roman Smrž, 6/8, G E. Krásnohorské, Praha 4

10. Pavel Motloch, 5/6, G P. Bezruce, Frýdek-Místek
11. Miroslav Klimoš, 1/4, G M. Koperníka, Bílovec

30,9 b.
30.8 b.
29,8b.
29,6b.
28.9 b.
25,2b.
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Kategorie С

Texty úloh

C - I - 1

a) Dokažte, že pro každé přirozené číslo m je rozdíl m6
číslem 60.

b) Určete všechna přirozená čísla m, pro která je rozdíl m6 — m2 dělitelný
(J. Moravčík)

m2 dělitelný

číslem 120.

С - I - 2

Kružnice к, l, m se po dvou vně dotýkají a všechny tři mají společnou
tečnu. Poloměry kružnic к, l jsou 3cm a 12 cm. Vypočtěte poloměr kruž-
nice ra. Najděte všechna řešení. (L. Boček)

C - I - 3

Určete počet všech trojic navzájem různých trojmístných přirozených
čísel, jejichž součet je dělitelný každým ze tří sčítaných čísel.

(J. Simša)

С - I - 4

Je dáno přirozené číslo ?i (n ^ 2) a reálná čísla X\,X2, ■.. ,xn, pro která
platí

X\X2 Х2Х3 • • • — Xji—1 Xji — XjiX\ — X.

Dokažte, že

xl + x\ + ... + x„ ^ n.

(J. Švrček)
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С - I - 5

V ostroúhlém trojúhelníku ABC označme D patu výšky z vrcholu C
a P,Q odpovídající paty kolmic vedených bodem D na strany АС a BC.
Obsahy trojúhelníků ADВ, DCВ, DBQ, CDQ označme postupně S\,
S2, S3, S4. Vypočtěte Si : S3, jestliže S\ : S2 = 2 : 3, S3 : S4 = 3 : 8.

(P. Novotný)

C - I - 6

Rozhodněte, které z čísel

\/p + y/q + yJq + y/p, \Jp + Vp+ \Jq + л/ч

(J. Moravčík)je větší, jsou-li p a q různá kladná čísla.

c - s - 1

Hokejového turnaje se zúčastnila čtyři družstva, přičemž každé sehrálo
s každým právě jedno utkání. Počet branek vstřelených v každém utkání
dělí celkový počet branek vstřelených v turnaji, přitom v žádných dvou
utkáních jich nepadl stejný počet. Kolik nejméně mohlo v turnaji padnout
branek? (M. Panák)

C - S - 2

Vrchol C čtverců ABCD a CJKL je vnitřním bodem úsečky AK i úseč-
ky DJ, body E, F, G a H jsou po řadě středy úseček ВС, BK, DK
a DC. Určete obsah čtyřúhelníku EFGH pomocí obsahů S a T čtverců

(P. Leischner)ABCD a CJKL.

C - S - 3

Kružnice к, l, m se dotýkají společné tečny ve třech různých bodech
a jejich středy leží v přímce. Kružnice к a / stejně jako kružnice l a m

mají vnější dotyk. Určete poloměr kružnice l, jestliže poloměry kružnic
к a m jsou 3 cm a 12 cm. (L. Boček)
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С - II - 1

Základna АВ lichoběžníku ABCD je třikrát delší než základna CD.
Označme M střed strany АВ a P průsečík úsečky DM s úhlopříčkou AC.
Vypočítejte poměr obsahů trojúhelníku CDP a čtyřúhelníku MBCP.

(Pavel Novotný)

С - II - 2

Splňují-li reálná čísla a, b, c, d rovnosti

a2 + b2 = b2 + c2 — c2 + d2 = 1

platí nerovnost
ab + ac -f ad + bc + bd + cd ^ 3.

(J. Švrček)Dokažte a zjistěte, kdy přitom nastane rovnost.

C - II - 3

Kružnice к, l s vnějším dotykem leží obě v obdélníku ABCD, jehož obsah
je 72 cm2. Kružnice к se přitom dotýká stran CD, DA a AB, zatímco
kružnice l se dotýká stran AB a BC. Určete poloměry kružnic к a /,
jestliže poloměr kružnice A: je v centimetrech vyjádřen celým číslem.

(J. Švrček)

С - II - 4

Najděte všechny dvojice prvočísel p a g, pro které platí

p + q2 = q + 145p2.

(J. Moravčík)
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Řešení úloh

C - I - 1

a) Číslo n = m6 — m2 = m2(m2 — 1 )(m2 -f 1) je vždy dělitelné čtyřmi,
protože při sudém m je m? dělitelné čtyřmi a při lichém m jsou čísla
m2 — 1, m? +1 obě sudá, jedno z nich je dokonce dělitelné čtyřmi a jejich
součin je tedy dělitelný osmi. Ze tří po sobě jdoucích přirozených čísel
m2 — 1, m2, m2 + 1 je právě jedno dělitelné třemi, a proto je i číslo n
dělitelné třemi. Je-li rn dělitelné pěti, je m2 dělitelné pěti, dokonce dvaceti
pěti. V opačném případě je m tvaru bk + r, kde r je rovno některému
z čísel 1, 2, 3, 4 a A; je přirozené nebo 0. Pak je m2 = 25k2 + 10fcr-f i'2 a r2
se rovná některému z čísel 1, 4, 9, 16. V prvním a v posledním případě
je číslo m2 — 1 dělitelné pěti, v ostatních dvou případech je číslo m2 + 1
dělitelné pěti. Je tedy číslo n vždy dělitelné nesoudělnými čísly 4, 3 a 5,
a tedy i jejich součinem 60.

b) Už jsme ukázali, že v případě lichého m je součin (m2 — l)(m2 +1)
dělitelný osmi, a číslo n — m6 — rn2 je tedy dělitelné číslem 120 = 8-3-5.
Je-li však číslo rn sudé, jsou čísla m2 — 1, m2 -f 1 lichá, žádné není dělitelné
dvěma. Číslo n je pak dělitelné osmi pouze v případě, že m2 je dělitelné
osmi, tedy rn je dělitelné čtyřmi. Číslo n je pak dělitelné šestnácti, třemi
a pěti, a proto dokonce číslem 240.

Naše výsledky můžeme shrnout: Číslo n = m6 — m? je dělitelné čís-
lem 120, právě když m je liché nebo dělitelné čtyřmi.

С - I - 2

Označme po řadě R, S, T středy a A, B,C body dotyku kružnic к, l, m na

společné tečně ar = 3,s = 12aí jejich poloměry (délky a obsahy budeme
počítat bez jednotek kvůli jednoduššímu dosazování). V lichoběžníku
(který v případě rovnosti r = t je ovšem obdélníkem) ARTC (obr. 6)
je \RT\ = r + t. Označíme-li U průsečík přímky AR a přímky vedené
bodem T rovnoběžně s AC, je \RU\ = |r — í|. Z pravoúhlého trojúhel-
niku RUT plyne \UT\ = \AC\ = yj(r + í)2 — (?■ — ť)2 — 2\fři = 2л/з1.
Analogicky bychom z lichoběžníků CTSB a ARSB dostali vztahy
\BC\ = 2y/št = 4л/ЗА a \AB\ = 2^/Ts = 2^3 • 12 = 12.

Uvažujme nejdříve případ, kdy bod C leží mezi body A a B. Je
pak 2y/Št + 4\/3t = 12, odkud t — |. Jestliže bod A leží mezi body
С a B, dostaneme obdobně rovnici 2\/3í + 12 = 4\/3ř, odkud t = 12.
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Rovnice 12 + 4\/31 = 2\/3t, kterou dostaneme pro polohu bodu В mezi
body A a C, nemá zjevně žádné řešení. Že takový případ není možný,
je vidět i z obr. 7, protože každá kružnice, která se dotýká kružnice к
v bodě X různém od A a přitom obsahuje bod C polopřímky opačné
к polopřímce BA, musí ve svém vnitřku obsahovat i tětivu kružnice l
(vyznačenou na obrázku), takže se jí nemůže dotýkat.

5°

X
к

°R
l

A В C

Obr. 7

Poloměr kružnice m je tedy | cm nebo 12 cm.

C - I - 3

Nechť x, y, z je taková trojice navzájem různých přirozených čísel, pro
kterou platí: Každé z nich dělí jejich součet x Ay + z, takže x dělí у + z,

у dělí x + z a z dělí x -f y. Bez újmy na obecnosti můžeme předpokládat
.г < у < z. Je tedy x + y — kz pro vhodné přirozené k. Protože je zároveň
x + у < 2z, je nutně к = 1, x + у — z. Dále у dělí x + z — 2x + у < 3у,
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takže 2x + y = 2у, у = 2x. Tři přirozená čísla daných vlastností mají tedy
tvar x, у = 2x, .z = 3x, kde x je přirozené. Protože mají být trojmístná,
musí být x ^ 100, 3x ^ 999, takže 100 5í x ^ 333. Hledaný počet trojic
je 333 - 99 = 234.

С - I - 4

Čísla x-i, X2, ■ • ■, xn jsou podle podmínek úlohy nenulová a všechna s li-
chými indexy jsou si rovna, rovnají se nenulovému číslu a; všechna čísla
se sudými indexy jsou si také rovna, rovnají se l/a, převrácené hod-
notě a. Je-li n liché, plyne z rovnice xix2 = xnx\ rovnost xn = x2, takže
všechna X{ jsou stejná, rovnají se 1 nebo —1, neboť to jsou jediné hod-
noty a, pro něž a = l/a, takže součet jejich druhých mocnin je n. Je-li
n sudé, rovná se součet druhých mocnin všech hodnot X; součtu n/2
hodnot a2 a n/2 hodnot l/a2. Avšak a2 + l/a2 ^ 2 pro každé nenulové
číslo a, což plyne z nerovnosti (a2 — l)2 ^ 0. Proto je součet druhých
mocnin všech čísel X; větší nebo roven n.

С - I - 5

\BD\, v — |CD\ (obr. 8). Z podobnosti troj-
Si : S2

Označme x = \AD\, у
úhelníků ADP a DCP plyne x2 : v2
z podobnosti trojúhelníků DBQ, CDQ plyne y2 : v2 = S3 : S4 = 3 : 8.
Odtud x2 : y2 — (2 • 8) : (3 • 3) = 16 : 9, x : у — 4 : 3. Trojúhelníky ADC,
DBC mají společnou výšku, proto (SJ + S2) '■ (S3 + S4) = x : у = 4 : 3.
Za S2 sem dosadíme |5i, za S4 dosadíme |5з a po úpravě dostaneme
5i : S3 = 88 : 45.

2:3. Podobně

A D У Вx

Obr. 8
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Jiné řešení. Z poměru obsahů trojúhelníku ADP a trojúhelníku CDP
se společnou výškou DP plyne, že je \AP| : [CPI = 2:3, takže můžeme

37’, podobně \BQ\ — 3s, |CQ| = 8s. Označmepsát \AP\ = 2r, |CP|
x = \AD\, у = \BD\, v = \CD\ a z — \PD\ (obr. 8). Z pravoúhlých
trojúhelníků ADP, ADC, PDC plyne x2 = 4?’2 + z2, z2 + 9r2 — v2 —

— 25?’2 — .T2. Odtud z2 = 16r2 — ж2 = lGr2 — (4?’2 + z2), neboli 2z2 =
= 12r2, 2 = г\/б, a: = r\/To, u = r\/Í5, 5i = ?’2\/6. Analogicky bychom
dostali z trojúhelníků BDQ, BDC, QDC, že v = 2s\/22, у = s\/33,
£3 = 3s2\/6, tedy užitím vztahu u2 = 15?'2 = 88s2 dostaneme výsledek
S1! : P3 = 88 : 45.

C - I - 6

Daná čísla, která označíme po řadě A a B, nebudeme porovnávat přímo.
Místo toho porovnáme jejich druhé mocniny a využijeme poznatku, že
pro libovolná kladná čísla u, v platí и > v, právě když platí u2 > v2. Pro
daná čísla máme

A2 = p + y/q + 2\J(j) + yjq) (q + y/p) + q + y/p,
B2 = p + уф + 2yJ(p + у/p) (q + y/q) + q + y/q

a vidíme, že mimo „dlouhých" odmocnin jsou na pravých stranách obou
vyjádření čtyři stejní sčítanci (v odlišných pořadích). Proto nerovnost
A2 > В2 platí, právě když je „dlouhá odmocnina" v prvním řádku větší
než ve druhém řádku, neboli když pro odmocňované součiny platí nerov-
nost

(p + y/q) (q + Vp) > (p + Vp) (q + Vq)-
Roznásobením a dalšími algebraickými úpravami dostaneme postupně
ekvivalentní nerovnosti

pq + Vpq + pVp + q^q> pq + \fpq + Py/q + q^/p,
Cp-q)Vp ~ (p-q)y/q> o,

(p-q){y/p- y/q) > °-

Vysvětlíme, proč poslední nerovnost (a tedy i výchozí nerovnost A > B)
v případě p ф q vždy platí. Je-li totiž p > q, je i y/p > y/q, takže oba
činitelé součinu (p — q)(y/p— y/q) jsou kladní; je-li p < q, jsou oba činitelé
naopak záporní, v obou případech je proto daný součin kladný.

Odpověď: Větší je první z daných dvou čísel.
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С - S - 1

Jestliže každé družstvo sehraje s každým jedno utkání, sehraje každé
družstvo v turnaji celkem tři utkání a počet všech utkání bude ^ • 4 • 3 =
= 6. Máme tedy najít šest různých přirozených čísel (nula nedělí žádné
číslo) s nejmenším možným součtem tak, aby byl tento součet dělitelný
každým z šesti sčítanců. Nej menší součet šesti různých přirozených čísel
je 1 + 2 + 3 + 4 + 5 + 6 = 21, ten však není dělitelný např. dvěma nebo šesti.
Další možností je nahradit číslo 6 číslem 7, součet bude 22. Ten však není
dělitelný např. třemi. Součet 23 nemůže vyhovovat, protože číslo 23 je
prvočíslo, je dělitelné pouze dvěma přirozenými čísly. Konečně číslo 24 je
součtem čísel 1, 2, 3, 4, 6 a 8, přitom je číslo 24 dělitelné každým z čísel
1, 2, 3, 4, 6, 8. V turnaji proto mohlo padnout 24 branek, ne však méně.

C - S - 2

Označme a = л/Š, b = y/T strany čtverců ABCD, CJKL. Úsečka EH je
střední příčkou trojúhelníku BCD (obr. 9), úsečka FG je střední příčkou

К

v trojúhelníku BKD, proto je 2\EH\ — 2\FG\ = \BD\ a úsečky EH, FG
jsou rovnoběžné s BD. Podobně je úsečka HG střední příčkou v trojúhel-
niku DCК a úsečka EF je střední příčkou v trojúhelníku BCK. Proto je
2\HG\ — 2\EF\ = \CK\ a úsečky HG, EF jsou rovnoběžné sC/(,a tedy
kolmé na JL a BD. Rovnoběžník EFGH je tudíž obdélník s obsahem

111
a - \Í2 • b - \Í2 — -ab = -

2 2 2\EF\ ■ \FG\
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С - S - 3

Vzájemná poloha kružnic a jejich společné tečny musejí vypadat jako
na obr. 10, kde jsme písmeny К, L, M označili body dotyku kružnic k,

l

к
U

MК

Obr. 10

l, rn na společné tečně, U, V, W jejich středy a r poloměr kružnice l
(v centimetrech). Z pravoúhlých lichoběžníků КLVU, LMWV, KMWU
plyne podle Pythagorovy věty

(r - 3)2 = 12r,
- (12 - r)2 = 48r

|/ÚL|2
|LM|2 = (12+ r)2

(r + 3)2

a

\KM\2 = (3 + 2r + 12)2 - (12 - 3)2 = 4r2 + 60r + 144.

\KM\, dostaneme z prvních dvou vztahůJelikož \KL\ + \LM\

\KM\2 = (|iVL| + |LM|)2 = \KL\2 + 2\KL\\LM\ + \LM\2
= 60r + 2л/12 • 48 r,

což spolu s třetím vztahem dává po úpravě pro r rovnici

4r2 — 48?' + 144 = 0.

Protože 4r2 — 48r + 144 = 4(?’2 — 12r + 36) = 4(r — 6)2, má tato rovnice
jediné řešení r — 6 a poloměr kružnice l je tedy 6 cm.
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С - II - 1

Výpočet založíme na dvou známých pravidlech:
(1) Jsou-li dva trojúhelníky podobné s koeficientem podobnosti A;, je

poměr jejich obsahů roven k2.
(2) Leží-li nějaké tři body X, Y, Z v jedné přímce a bod V mimo ni,

je poměr obsahů trojúhelníků XYV a YZV roven poměru \XY\ : \YZ\.
Ze shodnosti střídavých úhlů mezi rovnoběžkami AB a CD ply-

ne, že trojúhelníky AMP a CDP jsou podle věty uu podobné, a to
s koeficientem \AM\ : \CD\ — |. Označíme-li S obsah trojúhelníku

a z rovností

| plyne, že obsah každého z trojúhelníků
APD a MPC je roven | obsahu trojúhelníku CDP, tedy |S. Obsahy
trojúhelníků AMC a BMC jsou stejné, a rovnají se tedy |5 + ^5 = ^S
(obr. 11). Odtud plyne, že obsah čtyřúhelníku MBCP]e fS+^fS =
hledaný poměr je proto 4 : 21.

CDP, je obsah trojúhelníku AMP roven (f)2^1
\AP\ : \CP\ = \MP\ : \DP\

D C

S

P
|5

T5

A M В

Obr. 11

С - II - 2

Z předpokladů plyne c2 = a2, d2 = 62, tedy |c| = |a|, \d\ = \b\.
Je-li с — a a současně d = 6, dostaneme postupně pro levou stranu L

dokazované nerovnosti

L — ab -f" ac dd be “I- bd -|- cd —

= ab + a2 + ab + ab -f b2 + ab — 1 + 4ab A
A 1 + 2 (a2 + 62) = 3,

neboť pro libovolná dvě čísla a, b je 2ab A a2 + b2, což plyne ze zřejmé
nerovnosti (a — b)2 к 0. Rovnost pak nastane pouze pro dvě čtveřice
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b a rovnosti a2 -f b2 — 1a = b = c — d — ±|\/2, neboť z podmínky a
plyne a2 = 4, tj. a = ±|\/2.

Je-li c = —a, d = 6, je L
v případě c = a, d
dokonce L = —a2 — 62 0.

Jiné řešení. Hodnota součtu

—a2 + 62 ^ a2 + b2 = 1 < 3. Podobně
a, d — —bb vyjde L — a2 — b2 ^ 1, v případě c

b)2 + (a — c)2 + (a — d)2 -f (6 — c)2 + (6 — d)2 + (c — d)25 = (a

je zřejmě nezáporná. Pro dvojnásobek levé strany L dokazované nerov-
nosti proto platí

2L = 3(a2 + 62 + c2 + d2) — 5 ^ 3(a2 -f 62 + c2 + d2) = 6,

odkud L ^ 3. Rovnost L = 3 pak nastane, právě když 5 = 0, tedy právě
když čísla a, 6, c, d mají tutéž hodnotu, která se ovšem musí rovnat ±|\/2
(viz původní řešení).

C - II - 3

Označme r, s poloměry kružnic /с, l (v centimetrech) а К, L jejich body
dotyku se stranou HR (obr. 12). Je pak \AK\ = r, \LB\ = s, a jak snadno
spočteme z Pythagorovy věty (viz též úlohu C-S-3)

\KL\ = л/ (r + s)2 — (r — s)2 =
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Pro délky stran obdélníku ABCD platí \ AD\ = 2r, \AB\ = r+2y/řš+
+ s = [y/ř + yfs)2. Podle předpokladu má být

2r[y/r + л/sf = 72,

neboli po zkrácení dvěma a odmocnění

Odtud plyne, že r < 6, a pro velikost poloměru s dostáváme vyjádření

(6-r)2,
(6 — r)2

rs =

(1)

Z podmínek úlohy dále plyne, že s nemůže být větší než 7’, protože
jinak by kružnice l neležela v daném obdélníku, a protože i kružnice к
musí ležet v daném obdélníku, musí být \AB\ A \AD\ = 2r. Z nerovnosti
s 'A r podle (1) dostaneme podmínku 3G — 127’ + r2 A 7’2, tj. v A 3.
Z nerovnosti \AB\ A 2r pak plyne 72 = \AB\-\AD\ A 4r2, neboli r2 ^ 18,
což pro celočíselné r znamená, že r A 4. Pro poloměr r nám tak vycházejí
jen dvě možnosti, r £ {3,4}, odpovídající hodnoty poloměru s vypočteme
ze vztahu (1).

Úloha má právě dvě řešení: r = s = 3cm ar = 4cm, s — 1 cm.

С - II - 4

Pro prvočísla p, q má platit q(q — 1) = p(145p — 1), takže prvočíslo p dělí
q(q — 1). Prvočíslo p nemůže dělit prvočíslo q, protože to by znamenalo,
že p = q, a tedy 145p = p, což nejde. Proto p dělí q — 1, tj. q — 1 = kp pro

nějaké к přirozené. Po dosazení do daného vztahu dostaneme podmínku

к + 1
p =

145 - k2'

Vidíme, že jmenovatel zlomku na pravé straně je kladný jedině pro к ^
5Í 12, zároveň však pro к A 11 je jeho čitatel menší než jmenovatel:
к -f 1 ^ 12 < 24 ^ 145 — k2. Pouze pro к — 12 tak vyjde p přirozené
a prvočíslo, p = 13. Je pak q — 157, což je také prvočíslo. Úloha má
jediné řešení.

42



Kategorie В

Texty úloh

В - I - 1

Určete všechny hodnoty celočíselného parametru a, pro něž má rovnice

(x + a)(x + 2a) = 3a

(J. Zhouf)aspoň jeden celočíselný kořen.

В - I - 2

V daném trojúhelníku ABC označme D ten bod polopřímky CA, pro

který platí \CD\ = \CB\. Dále označme po řadě E, F středy úseček AD
a BC. Dokažte, že \^.BAC\ = 2\^CEF\, právě když \AB\ = |BC\.

(P. Leischner)

В - I - 3

Rozhodněte, zda nerovnost

a(b + 1) -f- 6(c -|- 1) + c(d + 1) + d(a + 1) = ^(a + l)(fo + l)(c ď l)(ď + 1)

platí pro libovolná kladná čísla a, b, c, cř, která vyhovují podmínce
a) ab = cd — 1; b) ac = = 1. (J. Šimša)

В - I - 4

Každou z hvězdiček v zápisech dvanáctimístných čísel

Л = *88888888888, В = *11 111 111 111

nahraďte nějakou číslicí tak, aby výraz 114A
hodnotu.

13P| měl co nejmenší
(J. Šimša)
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В - I - 5

Kruh o středu S a poloměru r je rozdělen na čtyři části dvěma tětivami,
z nichž jedna má délku r a druhá má od středu S vzdálenost ^r. Dokažte,
že absolutní hodnota rozdílu obsahů těch dvou částí, které mají společný
právě jeden bod, a přitom žádná z nich neobsahuje střed S', je rovna jedné

(P. Leischner)šestině obsahu kruhu.

В - I - 6

Určete nejmenší přirozené číslo n s následující vlastností: Zvolíme-li n

různých přirozených čísel menších než 2 00G, jsou mezi nimi dvě taková,
že podíl součtu a rozdílu jejich druhých mocnin je větší než tři.

(J. Zhouf)

В - S - 1

Dokažte, že pro libovolná kladná čísla a, bac platí nerovnost

> 8.

(./. Širnša)Zjistěte, kdy nastane rovnost.

В - S - 2

Na přeponě AB pravoúhlého trojúhelníku ABC uvažujme body P a Q
takové, že |AjP| = \AC\ a \BQ\ = \BC\. Označme M průsečík kolmice
z vrcholu A na přímku CP a kolmice z vrcholu В na přímku CQ. Dokažte,
že přímky PM a QM jsou navzájem kolmé. (.7. Švrček)

В - S - 3

Najděte všechny dvojice celých čísel aab, pro něž žádná z rovnic

y2 + by + a = 0x2 + ax + b = 0

(E. Kováč)nemá dva různé reálné kořeny.

44



В - II - 1

Určete všechny dvojice prvočísel p a q, pro něž platí

p + q2 = q +p3.

(J. Švrček)

В - II - 2

2 008 a \BC\ = 2 006 jeObdélník ABCD se stranami délek \AB\
rozdělen na 2 008 x 2 006 jednotkových čtverců a ty jsou střídavě obarveny
černou, šedou a bílou barvou podobně jako obdélník na obrázku: čtverce
při vrcholech А а В jsou černé, čtverce při vrcholech C a D jsou bílé.
Určete obsah té části trojúhelníku ABC, která je šedá.

(Pavel Novotný)

В - II - 3

V lichoběžníku ABCD, jehož základna AB má dvakrát větší délku než
základna CD, označme E střed ramene BC. Dokažte, že kružnice opsaná
trojúhelníku CDE prochází středem úhlopříčky AC, právě když strany

(P. Leischner)AB a BC jsou navzájem kolmé.

В - II - 4

Dokažte, že pro libovolná reálná čísla a, b, c z intervalu (0,1) platí

1 ý a + fe + c + 2(ab + bc+ ca) + 3(1 — a)(l — 6)(1 — c) ^ 9.

(J. Smisa)
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Řešení úloh

В - I - 1

Po roznásobení levé strany a převedení členu 3a z pravé strany na levou
dostaneme kvadratickou rovnici

x2 + Загс -f 2а2 — 3a = 0.

Její kořeny (pokud existují) mají podle známého vzorce tvar

За + Va2 -f 12a
Xl,2 = 2

Hodnota takového výrazu je celé číslo jen tehdy, je-li číslo а2 + 12а druhou
mocninou nějakého celého čísla b, o němž můžeme předpokládat, že je
nezáporné. Rovnost b = \Ja1 + 12a upravíme umocněním a doplněním
na čtverec do tvaru

(a + 6)2 = b2 -f 36, neboli (a + 6 + b)(a + 6 — b) = 36.

Dostali jsme rozklad čísla 36 na součin dvou celočíselných činitelů, které
proto musejí mít stejné znaménko. Protože jejich rozdíl

(a + 6 + b) — (a + 6 — b) = 2b

je sudé nezáporné číslo (připomínáme, že 6 ^ 0), mají oba činitelé stejnou
par itu (jsou zároveň sudá nebo lichá) a druhý činitel není větší než první
činitel. To vše dohromady znamená, že jsou jen čtyři možnosti:
(1) а + 6 + 6 = 18аа + 6 — b = 2. Tato soustava rovnic má jediné řešení

a = 4 a b = 8. Zkouška: rovnice (ж + 4) (ж + 8) = 12 má kořeny —10
a —2.

(2) a + 6 + 6 = 6aa + 6 — 6 = 6. V tomto případě a = 0 a b = 0. Zkouška:
rovnice (x + 0)(x + 0) = 0 má dvojnásobný kořen 0.

(3) а + 6 + b = —2 a а + 6 — b = —18. V tomto případě a = —16 a b = 8.
16)(x — 32) = —48 má kořeny 20 a 28.

(4) a + 6 + b — —6 a a + 6 — b — —6. V tomto případě a = —12 a b — 0.
Zkouška: rovnice (x — 12)(x — 24) = —36 má dvojnásobný kořen 18.
Odpověď: Hledané hodnoty parametru a jsou čtyři, a to čísla 4, 0,

-16 a -12.

Zkouška: rovnice (x
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Jiné řešení. Stejně jako v prvním řešení upravíme rovnici do tvaru

x2 + 3ax + 2a2 — 3a = 0

a pokusíme se mnohočlen na levé straně zapsat ve tvaru součinu dvou
lineárních činitelů tvaru ax F /За + 7. I když takový rozklad neexistuje,
experimentováním zjistíme, že „téměř vyhovuje" součin

(x + 2a + 3)(x + a — 3)

který se liší od daného mnohočlenu x2 + 3ax + 2a2 — 3a pouze v kon-
stantním členu; přesvědčete se o tom roznásobením. Zkoumanou rovnici
tak lze zapsat ve tvaru

(x + 2a + 3)(x + a — 3) = —9.

I když na pravé straně není nula, pro řešení v oboru celých čísel je každý
podobný rozklad cenný, neboť existuje pouze konečný počet rozkladů
příslušného čísla (v našem případě —9) na součin dvou celočíselných či-
nitelů. Vypišme je:

(1) x + 2a + 3 = 9ax + a — 3 = —1, neboli a = 4 a x = —2,
(2) x + 2a + 3 = 3 a x + a — 3 = —3, neboli a = 0 a x = 0,
(3) x + 2a + 3 = lax + a — 3 = —9, neboli a = 4 a x = —10,
(4) x + 2a + 3 = — 1 a x + a — 3 = 9, neboli a = —16 a x — 28,
(5) x + 2a -f- 3 = —3 a x + a — 3 = 3, neboli a = —12 a x = 18,
(6) x + 2a + 3 = —9 ax + a — 3 = 1, neboli a = —16 a x = 20.
Docházíme tak ke stejné odpovědi jako v prvním řešení: vyhovující

hodnoty parametru a jsou čísla 4, 0, —12 a —16.

В - I - 2

Označme G ten bod polopřímky opačné к polopřímce AC, pro který platí
\AG\ = \BC\ = |CjD| (obr. 13 pro situaci, kdy \AC\ > \BC\, a obr. 14
pro situaci, kdy \AC\ < \BC\ — sami nakreslete a rozmyslete situaci,
kdy \AC\ — \BC\). V trojúhelníku ABG označme ještě e = \<ABG\
a í = \<BGA\. Protože \EA\ = \ED\ a \AG\ — \CD\, je bod E střed
úsečky CG, tudíž úsečka EF je střední příčka trojúhelníku BCG. Platí
proto EF II GB a z rovnosti souhlasných úhlů BGA a FEC dostáváme
\<FEC\ — S. Protože úhel BAC je vnějším úhlem trojúhelníku ABG,
pro jeho velikost a ŠiBACI platí a = e + <5. To znamená, že rovnost
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A

%G

a = 26 ze zadání úlohy nastane, právě když s + 6 — 2S, neboli e = 5.
Z trojúhelníku ABG ovšem plyne, že rovnost e — <5 je splněna, právě když
\AB\ = \AG\, neboli \AB\ — \BC\. Tím je ekvivalence rovností a = 26
a \AB\ — \BC\ dokázána.

Jiné řešení. Místo „chytře1* zvoleného pomocného bodu G z prvního
řešení sestrojíme osu o vnitřního úhlu BAC daného trojúhelníku ABC
a její průsečík se stranou BC označíme H (obr. 15 a obr. 16 pro situace
\AC\ > \BC\, resp. \AC\ < \BC\). Význam osy o pro řešení naší úlohy
je zřejmý: podle souhlasných úhlů CEF a CAH usoudíme, že rovnost
\<BAC\ = 2\šiCEF\ ze zadání úlohy nastane, právě když budou úsečky
AH a EF rovnoběžné, neboli trojúhelníky САН a CEF podobné. Podle
věty sus jsou trojúhelníky САН a CEF podobné, právě když je splněna
úměra

\AC\ : \HC\ = \EC\ : \FC\. (1)
Rovnost \kBAC\ = 2\^CEF\ je tedy ekvivalentní s podmínkou (1)
kterou nyní prozkoumáme.

Délky úseček zastoupených v (1) nejprve vyjádříme pomocí délek

a — \BC\, b=\AC\, c=\AB\

stran výchozího trojúhelníku ABC. Protože bod F je střed úsečky BC
a bod E střed úsečky AD, platí \FC\ = ^\BC\ = \

\AC\ + \BC\
_ b + a

a a

\AC\ + \DC\\EC\ = 2 22
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Zbývá vyjádřit délku úsečky HC. Z rovností

\HC\ + \HB\ = a, \HC\ : \HB\ = b : c

(první z nich je triviální, druhá vyjadřuje známý fakt o poměru, ve kte-
rém osa vnitřního úhlu dělí protější stranu trojúhelníku) dostaneme po
snadném výpočtu vyjádření

ab
\HC\ b + c

Dosaďme nyní všechny určené délky do rovnosti (1) a pak ji dále ekviva-
lentně upravujme:

ab a + b a

2 ' 2’
a + b

b : -

b + c

b + c

aa

b -f- C — CL ~\~

c = a.

Dokázali jsme potřebné: podmínka (1) platí, právě když c = a, neboli
\AB\ = \BC\.

Jiné řešení. Označme Z střed úsečky BD a a velikost úhlu BAC.
Úsečka EZ je střední příčka trojúhelníku ADB a úsečka ZF je střední
příčka trojúhelníku CDB (obr. 17). Z vlastností středních příček plyne
EZ || AB, ZF || AC, \EZ\ = \\AB\, \FZ\ = \\CD\ = \\BC\,\<CEZ\ =

\<EZF\ = 180° — a.= a a
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Obr. 17

Protože velikost vnějšího úhlu při vrcholu Z trojúhelníku EZF je a,
bude mít úhel FEZ velikost |a, právě když bude trojúhelník FEZ
noramenný (se základnou FE), tj. právě když \EZ\ = \ZF\, neboli právě
když \AB\ = \BC\. Tím je tvrzení úlohy dokázáno.

rov-

В - I - 3

a) Danou nerovnost budeme ekvivalentně upravovat postupným roz-

násobováním; jakmile se přitom někde objeví součin ab nebo cd, nahra-
dime ho číslem 1:

2(ab a bc И- b -f- cd c da -|- d) ^
P (ab -Ь я -f- b -f- l)(cd -b c -f- d -Ь 1),

2(ad “I- bc -\~d-\-b-\-c~]^d-\~ 2) ^
^ (a + b + 2)(c + d + 2)

2(ad “b bc) -b 2(a -b b -Ь c -b d) -b 4 ^
^ ac + ad + bc + bd -b 2(a + b + c + d) + 4,

ad + bc ^ ac -b bd,

b)(c — d) ^ 0.(a

Poslední nerovnost obecně neplatí, jak ukazuje příklad a = c = 2ab =
= d = | (hodnoty jsou zvoleny tak, aby byly splněn předpoklad ab =
= cd = 1).

b) Danou nerovnost budeme upravovat s podobnou strategií jako
v části a). Protože však tentokrát můžeme číslem 1 nahrazovat součiny ac
a bd, vynásobíme na pravé straně nerovnosti nejprve první činitel s třetím
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a druhý činitel se čtvrtým:

2 (ab + a + bc + b + cd + c + da + d) ^
^ (ne -(- а -Ь c -f- l)(6d -f" b T d 1)

2 (ab + bc + cd + ad + a + b + c + ď) ^
^ (a + c + 2)(6 + d + 2)

2(ab bc -f- cd -f- ad) -|- 2(u —t— c —d) ^
^ ař> -f ad + bc + cd + 2(a -f 6 T c -f d) + 4,

a6 + bc + cd + da ^ 4,

(a + c)(b + d) ^ 4.

Poslední nerovnost platí pro všechny čtveřice kladných čísel a, 6, c, d
splňující předpoklad ac = bd = 1, protože každý z obou činitelů a + c
a b + d, jsa součtem kladného čísla a čísla к němu převráceného, je větší
nebo roven číslu 2. Tento známý výsledek

1
u+ - > 2 (*)и > 0

и

plyne přímo z identické rovnosti

2
11

и h— = (л/й + 2
л/йи

a poznatku, že druhá mocnina libovolného reálného čísla je nezáporná.
Odhad (*) lze rovněž získat ze známé nerovnosti mezi aritmetickým a geo-

metrickým průměrem

ai + a2 + • • • +
^ G = у/а\й2 ...anA =

n

libovolných nezáporných čísel a*, když zvolíme n = 2, ai = и а «2 = l/u.
Odpověď: Zkoumaná nerovnost za podmínky a) obecně neplatí, za

podmínky b) platí.

Jiné řešení, a) Použijeme „dosazovací strategii14: z dané podmínky
ab = cd = 1 vypočteme b — l/a, d = l/ca takto vyjádřená čísla a d
dosadíme do zkoumané nerovnosti. Dostaneme nerovnost s dvěma (již
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nezávislými) proměnnými a a c; naší úlohou bude zjistit, zda platí pro
libovolné hodnoty a > 0 a c > 0:

aQ+i)+hc+i)+c(l+i)+z(a+1)~
ži(a+i)(i+i)(c+1)(i+1)

i sM(2+av)(2+cv)„ c a i
2 + a + с H— H 1 (-

аса

ca 11. 1
—I— H— ^ 2 + a + c 4—

a

ca. 1
- + - ^ ac
a c ac

c2 + a2 ^ a2c2 + 1,

0^(a2-l)(c2-l).

1 1 ca 1
ac H 1 |

a c ac
2 + a + cH h + - +

2а с a c c

Vidíme, že poslední nerovnost pro kladná čísla a,c obecně neplatí, stačí
zvolit např. hodnoty a = c = 2, kterým odpovídají hodnoty b = d — 1.

b) Podobně jako v části a) z dané podmínky ac — bd = 1 vypočteme
tentokrát c = l/a, d = l/Ьаро dosazení za c, d do zkoumané nerovnosti
dostaneme nerovnost s nezávislými proměnnými a > 0 a b > 0:

a(b+1)++1) + \ (I + 0 + +1) ž
ž/+l)(Hl)(V)(ýl)

b 1
, . 1 1 a

ab a b -1 f 7 + -
a b b

L , 11 Cl b l .

a b b a ab

^ 1 / , ,22 b
= — (4 + 2a 4~ 26 4~ a6 H Ь 7 1—

2 V aba

, a b
ab + — H—

o a

ab = í(2 + a+l)(2 + b+l)4 h —
a

1

b ab

+ ~>4.
ab

Poslední nerovnost ovšem zřejmě platí pro libovolná kladná čísla a a b,
neboť je součtem dvou nerovností

, 1 ^ a b .

ab 4—- / 2 a r í— >2
ab

typu (*) z prvního řešení, a to pro hodnoty и — ab, resp. и — a/b.

b a
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В - I - 4

Hvězdičku v čísle A nahradíme číslicí a, hvězdičku v čísle В číslicí 6 a vy-

jádříme výraz 14A — 13В algebraicky jako lineární funkci (neznámých)
číslic a a b. Protože platí

99 999 999 999 999 1011 - 1
11 111 111 111 111 =

9 9

mají čísla А а, В vyjádření

s

1) а В = b- 1011 + i • (1011A = а • 1011 + - ■ (IQ11 1),

odkud dostáváme

(14 • 8 - 13)14A - 13В = (14a - 136) • 1011 +

= (14a- 136+ 11) • 1011 - 11.

• (IQ11 - 1) =
(*)9

Jistě si uvědomíme, že absolutní hodnota takového výrazu je minimální,
právě když je minimální absolutní hodnota výrazu 14a —136+11. Precizně
to zdůvodníme nerovnostmi až poté, co zjistíme, zda pro některé číslice
a, 6 dokonce neplatí rovnost 14a — 136 + 11 = 0. Vyjádříme-li z takové
rovnice neznámou 6,

14a + 11 a — 2
6 = — a + 1 +

13 ’13

a všimneme si, že pro libovolnou číslici a platí — 2 а

že hodnota 6 daná posledním vzorcem je celočíselná jedině v případě
а — 2

14a — 136 +11 = 0, takže podle (*) pak máme 114+4 — 137?| = 11. Pro
libovolnou jinou dvojici číslic a, 6 ovšem platí 14a — 136 +11^0, takže
tentokrát podle (*) usoudíme, že

2^7, vidíme,

0, kdy a = 2 a 6 = 3. Jedině pro takové číslice a, 6 platí

buď 14a-136+11 ^ 1, a tedy 14A- 13B ž 1011 - 11 > 11,
nebo 14a — 136 + 11 ^ —1, a tedy 14A — 13В —1011 — 11 < —11

v obou případech tedy 114A — 137? | >11.
Odpověď: Výraz |14A — 137? | má nejmenší možnou hodnotu jedině

tehdy, když hvězdičky v číslech А, В nahradíme po řadě číslicemi 2 a 3.
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В - I - 5

Označme dané tětivy AB a CD jako na obr. 18, kde je rovněž vyznačen
střed P tětivy AB, takže podle zadání platí |SP\ = ^ \CD\ =r a r.

Zkoumaný rozdíl obsahů dvou světle vybarvených částí kruhu se nezmě-
ní, když ke každé z nich připojíme tutéž (třetí) část kruhu, jež má s jeho
hraniční kružnicí společný oblouk АС a je na obr. 18 vybarvena tma-
vě. Tak vzniknou dvě kruhové úseče, jedna nad tětivou AB, druhá nad
tětivou CD. Jejich obsahy jsou určeny velikostmi úhlů ASВ a CSD.
Z rovnostranného trojúhelníku CSD ihned máme \<CSD\ — 60°, takže
obsah S\. úseče nad tětivou CD je roven

„ nr2 r2VŽ
1 —

(3 4

V pravoúhlém trojúhelníku APS platí \AS\ : |S'jPI = 2:1, tudíž
\<ASP\ = 60°, \<ASB\ = 2\<ASP\ = 120°, \AB\ = rV3 a obsah S2
úseče nad tětivou AB je roven

7ТГ2 r2\/3
4

Nyní již snadno určíme rozdíl S2 — S\:

ti?’2 r2 л/3 кr2 r2 y/Š Tir2
S2-S1

6 4 63 4

což je právě šestina obsahu celého kruhu.
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В - I - 6

Zjistíme nejdříve, pro která přirozená čísla a, b platí zmíněná nerovnost

a2 + b2
(1)> 3.

a2 — b2

Aby byl zlomek na levé straně kladný, musí platit a2 > b2, neboli a > b.
Je-li tato nutná podmínka splněna, vynásobíme obě strany zkoumané
nerovnosti kladným číslem a2 — b2 a dalšími úpravami dostaneme

a2 + b2 > 3(a2 — b2),
4b2 > 2a2,

bV2 > a.

Zjistili jsme, že dvě přirozená čísla a, b vyhovují podmínce (1), právě
když platí nerovnosti 1 < a/b < \/2.

Přirozená čísla od 1 do 2 005 nyní rozdělíme do skupin tak, aby v nich
bylo co nejvíce čísel a aby podíl největšího a nejmenšího čísla každé sku-
piny byl menší než л/2- Provedeme to tak, že do skupin budeme postupně
zařazovat čísla 1,2,... а к nové skupině vždy přejdeme, až to bude ne-

zbytné.1 Dostaneme tak těchto dvacet skupin:

A = {2}.
A, = {5,6,7},
Ae = {12,..., 16},
Aa = {25,...,35},

Ao = {51,..., 72},
Aí2 = {104,..., 147},
Au = {210,..., 296},
Aie = {421,..., 595},
A18 = {843,..., 1 192},

A\ — {1},
A = {3,4},
A = {8,...,11},
A = {17,..., 24},
A = {36,..., 50},

An = {73,..., 103},
Аз = {148,...,209},
Аз = {297,..., 420},
А17 = {596,..., 842},
A\g - {1 193,..., 1687}, A2o = {1688,..., 2 005}.

Vysvětlíme například, jak vznikla skupina A\\. Číslo 73 jsme již nemohli
zařadit do skupiny A\q, neboť pro jeho podíl s nejmenším číslem 53 této
skupiny platí

73
— = 1,431... > 1,414... = V2;
51

1 К porovnávání podílů a/b s číslem л/2 výhodně využijeme třeba kalkulačku.

55



Číslo 103 jsme ještě mohli do skupiny An zařadit, neboť
103

= 1,410... < 1,414... = y/2.73

Jaké má sestrojené rozdělení význam pro řešení zadané úlohy? Pro
libovolná dvě čísla a, b z téže skupiny nerovnost (1) platí. Skupin Ai
je dohromady 20; vybereme-li proto libovolně 21 čísel z množiny A\ U
U A2 U ... U A20, budou některá dvě z nich patřit do téže skupiny Ai,2
tudíž budou splňovat (1). Proto číslo n — 21 má vlastnost ze zadání
úlohy. Číslo n — 20 ji ovšem nemá: vybereme-li z každé ze skupin Аг její
nejmenší prvek, dostaneme dvacet čísel

1, 2, 3, 5, 8, 12, 17, 25, 36, 51,

73, 104, 148, 210, 297, 421, 596, 843, 1 193, 1688, (2)

mezi nimiž nejsou žádná dvě čísla a, b splňující (1), neboť podle naší
konstrukce je podíl následujícího čísla к číslu předchozímu vždy větší
než v/2.

Poznamenejme, že pouhé uvedení dvaceti čísel (2) z posledního od-
stávce nelze považovat za úplné řešení úlohy, i když prohlásíme, že jsme
tuto dvacetici vybrali „co nejlépe14, tj. aby měla co nejvíce prvků a aby
žádné dva z nich nesplňovaly (l).3 Nemožnost výběru podobné skupiny
21 čísel je třeba nezpochybnitelně zdůvodnit; к tomu nám posloužil při-
hrádkový princip uplatněný к sestrojeným skupinám Ai.

Odpověď: Nejmenší přirozené číslo s požadovanou vlastností je n =
= 21.

В - s - 1

Levou stranu L dokazované nerovnosti nejprve upravíme roznásobením
a vzniklé členy sdružíme do dvojic navzájem převrácených výrazů:

(a+l){b+\){c+l) - (ab+1 + ~c+h)(C+l)L =

) + (а+1) + {Ь+1) + (С+~с)■
1(abc + abc

2 Tomuto zřejmému poznatku se říká přihrádkový nebo též Dirichletův princip. Obec-
něji zní takto: Je-li mk + 1 předmětů umístěno do m skupin, leží v některé z nich
aspoň к + 1 z těchto předmětů. V našem případě je m = 20 а к = 1.

3 К ověření poznatku, že číslo n = 20 zkoumanou vlastnost nemá, mohou posloužit
i mnohé jiné dvacetice čísel. Například číslo 1 688 v (2) můžeme zaměnit kterým-
koliv jiným číslem ze skupiny A20 apod.
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V každé z posledních závorek je tedy součet tvaru и + l/u, kde и > 0,
který má, jak víme, hodnotu aspoň 2, přičemž rovnost číslu 2 nastane
jedině pro и = 1. Podle tohoto známého tvrzení, které lze dokázat napři-
klad úpravou

±Ý
у/й)

pro výraz L platí L^2 + 2-|-2 + 2 = 8, což jsme měli dokázat. Rovnost
L — 8 ovšem nastane, právě když platí

(u + í) ~2“ > 0

1
, 1 1,1

abc -(- —-— — a -j- — — b ~
abc a b

= c+-=2
c

tedy jak jsme už vzpomenuli, právě když abc — a — b — c — 1, tj. právě
když a — b — c — 1.

Poznámka. Dodejme, že upravená nerovnost

, , 111 1 . nabc -Ь а b -f- c — -|- т d~ — -b —~ 8
abcb ca

plyne okamžitě z nerovnosti mezi aritmetickým a geometrickým průmě-
rem osmi čísel

, , 1 1 1 J_abc, a, b, c, , , , ,
abc abc

neboť jejich součin (a tedy i geometrický průměr) je roven číslu 1, takže
jejich aritmetický průměr má hodnotu aspoň 1.

Jiné řešení. V dokazované nerovnosti se nejprve zbavíme zlomků, a to
tak, že obě její strany vynásobíme kladným číslem abc. Dostaneme tak
ekvivalentní nerovnost

(ab + l)(6c + l)(ac + 1) ^ 8abc,

která má po roznásobení levé strany tvar

a2b2c2 + a2bc + ab2c + abc2 + ab + ac + bc + 1 ^ 8abc.

Poslední nerovnost lze upravit do tvaru

l)2 ^ 0.I)2 + ac(b — l)2 + bc(a(abc — l)2 + ab(c
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Tato nerovnost již zřejmě platí, neboť na levé straně stojí součet čtyř
nezáporných výrazů, přitom rovnost nastane, právě když má každý ze

čtyř těchto výrazů nulovou hodnotu, tedy právě když

abc — 1 = c — 1 — b — 1 = a — 1 = 0

neboli a = b = c = 1.

Další řešení. Danou nerovnost lze dokázat i bez roznásobování její levé
strany. Stačí zapsat tři nerovnosti mezi aritmetickým a geometrickým
průměrem:

Jejich vynásobením dostaneme

odkud po násobení osmi obdržíme dokazovanou nerovnost. Rovnost
v ní nastane, právě když nastane rovnost v každé ze tří použitých
AG-nerovností, tedy právě když se čísla v každé průměrované dvojici
rovnají:

1 1 1
a — c —

a

Z prvních dvou rovností plyne a = c, po dosazení do třetí rovnosti pak
vychází a — c — 1, tudíž i b — 1.

В - S - 2

Podle zadání je trojúhelník APC rovnoramenný, přímka AM prochází
jeho hlavním vrcholem A kolmo к základně CP, je tudíž osou vnitř-
ního úhlu CAP (obr. 19). Body С a P jsou proto souměrně sdružené
podle přímky AM, takže úhly АРМ a ACM jsou shodné. (Jinými slovy
trojúhelníky АРМ a ACM jsou shodné podle věty sus: odpovídající si
strany АС a AP svírají se společnou stranou AM týž úhel díky tomu, že
AM je osou úhlu CAP.) Podobně z rovnoramenného trojúhelníku BQC
odvodíme, že BM je osou úhlu CBQ, takže i úhly BQM a BCM jsou
shodné.
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Obr. 19

Rovnosti |<АРМ| = \<АСМ\ a |<5QM| = |<РСМ| znamenají, že
pro vnitřní úhly trojúhelníku PQM při vrcholech P, Q platí

|<QPM| + \<PQM\ = \<APM\ + \<BQM\ =

= |<ЛСМ| + |<БСМ| = \<ACB\ = 90°,

tudíž vnitřní úhel u třetího vrcholu M je pravý.

Jiný postup. Ze souměrnosti bodů P a C podle přímky AM plyne
|CM|, ze souměrnosti bodů Q a C podle BM plyne \QM\ =

\CM\ a bod M je tak
středem kružnice opsané trojúhelníku PQC. Přitom označíme-li a a /3

PM
— \CM\ (obr. 20). Je tudíž \PM\ \QM\

В

AC

Obr. 20

úhly při vrcholech А а B, je a + /3 = 90° a

(90° - \a) + (90° - \P) -\<PCQ\ = 90°,
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takže \<PCQ\ 45°. To je velikost obvodového úhlu nad tětivou PQ
zmíněné kružnice. Velikost odpovídajícího středového úhlu PMQ je tu-
díž 90°.

Jiný postup. Bod M jako průsečík os úhlů CAB a CBA je střed
kružnice vepsané trojúhelníku ABC, vidíme tedy (obr. 21), že pravoúhlé
trojúhelníky PMT3 = CMT\ a QMT3 = CMT2 jsou vesměs shodné.
Odtud plyne, že trojúhelník PQM je rovnoramenný pravoúhlý s pravým
úhlem při vrcholu M.

В

Ti

c T2 A

Obr. 21

Jiný postup. Bod M jako průsečík os úhlů CAB a CBA leží i na ose

pravého úhlu ACB. Proto úhly ACM a BCM mají oba velikost 45°,
45° a

trojúhelník PQM je rovnoramenný pravoúhlý s pravým úhlem při vr-
cholu M.

takže \<APM\ = \<ACM\ = 45°, \<BQM\ \<BCM\

В - S - 3

Jak víme, kvadratická rovnice má dva různé reálné kořeny, právě když
je její diskriminant kladný. Proto rovnice ze zadání úlohy tuto vlastnost
nemají, právě když jsou jejich diskriminanty

D2 = b2 — 4aDi = a2 — 46,

nekladné, tedy právě když platí

a2 < 4b a b2 < 4a. (1)
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Odtud předně plyne, že obě čísla b i a jsou nezáporná (protože jsou
nezáporná obě čísla a2 a b2). Nyní па (1) pohlédneme jako na soustavu
nerovnic s neznámou b a nezáporným parametrem a a snadno ji v oboru
nezáporných čísel vyřešíme:

a2
— 'š b 'š 2 л/а. (2)

Nalezený interval je neprázdný, právě když pro nezáporný parametr a

platí nerovnost
a2
— N 2л/a, neboli a ^ 4.

Protože čísla a, b jsou podle zadání celá, z odvozených nerovností 0
^ a ^ 4 plyne, že číslo a leží v množině {0,1, 2, 3,4}. Každé takové a
jednotlivě do krajních výrazů v (2) dosadíme a vypíšeme, která celá b
v příslušném intervalu leží:

a = 0: 0<b<0 4=4 b £ {0}
а = 1: \йЬй 2
а = 2: 1 2^2
а = 3: f^b^2V3 4=4 Ъ £ {3},
а = 4: 4<6<4

4=4- b <Е {1, 2},
Ь е {1,2},

4=4 ь е {4}.

Odpověď: Vyhovuje právě sedm dvojic (a,b):

(0,0), (1,1), (1,2), (2,1), (2,2), (3,3) a (4,4).

Poznámka. Z nerovností (1) lze odvodit nejen 0 ^ a ^ 4, ale z důvodu
symetrie rovněž 0 b ^ 4. Proto místo námi popsaného řešení úpravou
na soustavu (2) stačí jednotlivě otestovat 25 dvojic (a, 6), kde a,b £
£ {0,1,2, 3,4}, zda vyhovují soustavě nerovností (1). Takovou úlohu lze
rovněž interpretovat geometricky: v prvním kvadrantu souřadnicového
systému Oab hledáme ty body s celočíselnými souřadnicemi, které leží
uvnitř nebo na hranici oblasti omezené parabolami o rovnicích 4a = b2
a 4b = a2 (obr. 22).

В - II - 1

Danou rovnici upravíme na tvar

q(q- i) =p{p- i)(p +1);

61



Ь a2 = 4bл

b2 = 4a
4

3

2

1

г/
>

0 12 3 4

Obr. 22

odtud plyne nerovnost p < q (kdyby totiž bylo p A q, potom i p — 1 ^
^ q — 1 > O, a protože p + 1 > 1, bylo by p(p — 1 )(p -f- 1) > — 1))
a také to, že q dělí součin p(p — 1 )(p + 1). Protože q je prvočíslo, musí
platit aspoň jeden ze vztahů q \ p, q \ (p — 1), q \ (p + 1). Vzhledem
к podmínkám p < q a p > 1 nemůže q dělit ani p, ani p — 1, a proto
q | (p + 1). Musí tedy platit q ^ p + 1, a to spolu s p < q dává g = p + 1.

Jediná dvě prvočísla lišící se o 1 jsou 2 a 3. Proto p = 2 a q = 3.
Zkouškou ověříme, že skutečně platí 2 + 32 = 3 + 23.

Poznámka. Nerovnost p < q se dá dokázat i následující úvahou:
Zřejmě p Prvočísla pag jsou tedy nesoudělná, a protože p \ q(q — 1),
musí platit p | (q — 1) a odtud p q — 1.

В - II - 2

Šedá část obdélníku ABCD se stranami délek 3n + 1 a 3n — 1, který má
jednotkové čtverce při dvou vrcholech obarveny černou barvou a jednot-
kové čtverce při dalších dvou vrcholech bílou barvou, je souměrná podle
středu obdélníku (stačí si uvědomit souměrnou sdruženost šedých čtverců
nej bližších souměrně sdruženým vrcholům А а. C, resp. В a D, symetrie
na celém obdélníku pak plyne z toho, ze šedé čtverce se v každém řádku
i sloupci opakují s periodou 3). Proto je šedá část trojúhelníku ABC
shodná se šedou částí trojúhelníku CDA, a tedy obsah šedé části troj-
úhelníku ABC je roven polovině obsahu šedé části obdélníku ABCD.

Obdélník ABCD rozdělme na obdélník se stranami délek 3n а Згг — 1

a pás 3n — 1 jednotkových čtverců, v němž jeden koncový čtverec je černý
a druhý bílý. V obdélníku 3n x (3n — 1) je počet černých, bílých i šedých
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jednotkových čtverců stejný, takže šedých je n(3n—1). Kdybychom к pásu
délky 37i — 1 přidali jeden šedý čtverec, byl by tam rovněž stejný počet n

černých, bílých a šedých čtverců; v páse délky 3n — 1 je tedy n — 1 šedých
čtverců. Šedých čtverců v obdélníku ABCD je n(3n—l) + (n—1) = 3n2 —1
a šedá část trojúhelníku ABC má obsah S = |(3n2 — 1); pro obdélník
2 008 x 2 006 je n = 669, takže

1
1) = |-(l'20072 ~1) = |-( 4 028 049

- ■ (3 •6692
4 028 046

S —

3

= 671341.
6

Poznámka. Obsah šedé části trojúhelníku ABC můžeme určit i tak, že
po diagonálách postupně spočítáme šedé čtverce, jež jsou celé obsaženy
v trojúhelníku ABC, a připočteme polovinu počtu čtverců v prostřední
šedé diagonále obdélníku ABCD, která je souměrná podle středu obdél-
niku, takže její část ležící v trojúhelníku ABC je shodná s částí ležící
v trojúhelníku CDA:

1
• 2 006 = 334 ■ 2 007 + 1 003 = 671 341.5 = 3 + 6 + ... + 2 004+ -

В - II - 3

Označme S střed úhlopříčky AC. Úsečka SE je střední příčka trojúhel-
niku ABC, takže \SE\ = ^|AB| = \DC\. Navíc je SE || AB || DC.
Úsečky SE a DC jsou rovnoběžné a shodné, proto je SECD rovnoběž-
nik.

Kružnice opsaná trojúhelníku CDE prochází bodem S právě tehdy,
je-li rovnoběžník SECD tětivový. Čtyřúhelník je tětivový, právě když
je součet velikostí jeho protilehlých úhlů 180°. V rovnoběžníku jsou ale
protilehlé úhly shodné, takže je tětivový, právě když to je pravoúhelník,
neboli když úhel ECD, a tedy i úhel ABC je pravý.

В - II - 4

Nadále předpokládejme, že a, b,c G (0,1). Označme

V = a + 6 + c + 2 (ab + ac + bc) + 3(1 — a)(l — 6)(1 c)
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a nejprve místo nerovnosti V ^ 1 dokažme silnější nerovnost

ft 4~ 6 4~ c 4~ (l — o)(l — 6)(1 — c) ^ 1.

Roznásobením a úpravou levé strany dostaneme

(a. 4~ 6 + c) + (1 — ft)(l — 6)(1 — c) —

= 1 + ab 4- ас + 6c — abc = 1 + ft6(l с) + ас 4- bc ^ 1,

protože v posledním součtu za jedničkou následují vesměs nezáporné sčí-
tance.

К důkazu nerovnosti V ^ 9 stačí vzhledem к tomu, že

2(ab + ftc + bc) й 6,

ověřit nerovnost

ft 4“ b -f~ c 4“ 3(1 ft)(l — b)(l — c) ^ 3.

Uděláme to tak, že zřejmé nerovnosti

(1 -ft)(l -b) <; 1, (1 -ft)(l -c) ^ 1, (l-Ď)(l-c)^l

vynásobíme po řadě (nezápornými) čísly 1 — c, 1 — 6, 1 — a; po sečtení
všech tří získaných nerovností obdržíme

3(1 - ft)(l - 6)(1 — с) й (1 - ft) 4- (1 - 6) 4- (1 c)>

odkud již snadnou úpravou plyne kýžená nerovnost.

Jiné řešení. Zaměňme písmena a, 6, c obvyklejšími písmeny x, y, z
к označení proměnných (v našem případě z intervalu (0,1)). Daný výraz
V — V(x,y,z) je při pevných hodnotách y, z lineární funkcí Ax 4- В
proměnné x s koeficienty

A — 14- 2(y 4~ z) — 3(1 — y)(l — z)
В = y + z + 2yz 4- 3(1 - y)(l - z).

Protože grafem každé lineární funkce na uzavřeném intervalu je úsečka,
budou nerovnosti 1 ^ V(x,y,z) й 9 platit pro každé x € (0,1), právě
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když budou platit pro obě krajní hodnoty x = 0 a x = 1, neboli 1 ^
^ 1/(0, y, z) 9 a 1 1/(1, y, 2) ^ 9. Protože pro libovolná y, 2 E (0,1)
máme

V(0, y, 2) — у -f- 2 + 2yz + 3(1 — y)(l — z) ^ 1 + 1 + 2 + 3
1/(1, y, 2) = 1 + у + z + 2(y + -г + уz) ^ 1 + 1 + 1 + 2-3,

jsou nerovnosti V(0,y,z) ^ 9 a 1 ^ 1/(1, y, 2) ^ 9 zřejmé. К důkazu
zbylé nerovnosti V(0,y,z) ^ 1 si opět povšimneme, že při pevném 2 je
výraz 1/(0, y, 2) lineární funkcí Cy + D proměnné y. Stačí proto pouze

ověřit, že V(0, 0, 2) ^ 1 a zároveň V(0,1, 2) ^ 1. To je ale zřejmé, neboť
pro 2 E (0,1) platí

1/(0,0,2) = 3 - 22 ^ 1 a 1/(0,1,2) = 1 + З2 ^ 1.

Tím je úloha vyřešena. Dodejme ještě, že ze zmíněné linearity výrazu V
v každé z proměnných :r, y, 2 vyplývá, že jak největší, tak i nejmenší
hodnota V 11a množině všech trojic (x,y,z) čísel z intervalu (0,1) musí
být rovna jednomu z osmi čísel

V(0,0,0), V(0,0,1), 140,1,0), 140,1,1),
141,0,0), 141,0,1), 141,1,0), 141,1,1);

s ohledem na symetrii výrazu V stačí vyčíslit pouze hodnoty 1/(0,0,0) =
= 3, 1/(0,0,1) = 1, 1/(0,1,1) = 4 a 1/(1,1,1) = 9.

Jiné řešení. Představme si krychli 1 x 1 x 1 a tři navzájem kolmé
roviny (rovnoběžné se stěnami krychle), které rozdělují hrany vycházející
z každého vrcholu krychle na dvojice úseček délek aal — a, bal — 6,
resp. с а 1 — c. Vidíme, že celou krychli lze pokrýt soustavou čtyř kvádrů
o rozměrech

1x6x1, 1 x 1 x с, (1 — a) x (1 — 6) x (1 c)a x 1 x 1

což vyjádřeno jejich objemy dává geometrický důkaz nerovnosti

а ■ 1 • 1 + 1 • 6 • 1 + 1 • 1 • с + (1 — a)(l — 6)(1 — c) ^ 1,

ze které jsme odvodili závěr V ^ 1 v prvním řešení. К druhému závěru
1/^9 nás tam přivedla nerovnost

а • 1 • 1 + 1 • 6 • 1 + 1 • 1 • c + 3(1 - a)(l - 6)(1 — c) ^ 3,
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která má rovněž jasné „objemové“ zdůvodnění: v součtu na levé straně
je každá část objemu celé krychle započítána nejvýše třikrát. Tím je celé
geometrické řešení úlohy hotovo.

К předchozímu dodejme, že pokud přidáme к uvedeným čtyřem levá-
drům ještě dva exempláře čtvrtého z nich a po dvou exemplářích každého
ze tří kvádrů

a x b x 1, a x 1 x с, 1 x b x c,

bude hodnota V součtem objemů těchto 12 kvádrů, kterými lze „něko-
likanásobně" zaplnit celou krychli. Přitom každá z osmi částí krychle
(rozdělené zmíněnými třemi rovinami) je součástí devíti, tří, čtyř nebo
jednoho z 12 uložených kvádrů. Přesněji to zapíšeme rovností

V = 9abc + 3(1 — a)(l — 6)(1 — c) +
+ 4ab(l — c) + 4ac(l — b) + 46c(l
+ a(l — 6)(1 — c) + b( 1 — a)(l

ci) +

c) + c(l - a)(l - b).

Vzhledem к počtu použitých částí tak pro objem V nutně platí 1 ^ V ^
< 9.
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Kategorie A

Texty úloh

A - I - 1

V oboru reálných čísel řešte rovnici

\/2(sin t + cos ť) = tg3 t + cotg3 t.

(J. Svrček)

A - I - 2

Nechť ABCD je tětivový čtyřúhelník s navzájem kolmými úhlopříčkami.
Označme po řadě p, q kolmice z bodů D, C na přímku AB a dále X
průsečík přímek AC a p a Y průsečík přímek BD a q. Dokažte, že XYCD
je kosočtverec nebo čtverec. (E. Kováč)

A - I - 3

Posloupnost (an)%L0 nenulových celých čísel má tu vlastnost, že pro
každé n ^ 0 platí an+\ = an — bn, kde bn je číslo, které má stejné
znaménko jako číslo an, ale opačné pořadí číslic (zápis čísla bn může
narozdíl od zápisu čísla an začínat jednou nebo více nulami). Například
pro ao = 1 210 je a\ — 1 089, 02 = —8 712, a.3 = —6 534, ...

a) Dokažte, že posloupnost (an) je periodická.
b) Zjistěte, jaké nejmenší přirozené číslo může být ao- (T. Juřík)

A - I - 4

Najděte všechny kubické rovnice P{x) = 0, které mají aspoň dva různé
reálné kořeny, z nichž jeden je číslo 7, a které pro každé reálné číslo t
splňují podmínku: Jestliže P(t) = 0, pak P{t + 1) = 1.

(Pavel Novotný)
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A - I - 5

Jsou dány úsečky délek a, b, c, d. Dokažte, že konvexní čtyřúhelníky
ABCD se stranami délek a, b, c, d (při obvyklém značení) existují a při-
tom úhlopříčky každého z nich svírají jeden a týž úhel, právě když platí
rovnost a2 + c2 = b2 + d2. (J. Šimša)

A - I - 6

Najděte všechny uspořádané dvojice (x, у) přirozených čísel, pro něž platí

x2 + у2 = 2 005 (ж — у).

(J. Moravčík)

A - S - 1

Najděte všechny dvojice celých čísel x a y, pro něž platí

- 10.

(J. Moravčík)

A - S - 2

Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M.
Označme po řadě A\, В i, CJ ty body stran BC, CA a AB, pro něž platí

CA. Průsečíky os úseček MA\, MBi
a MC\ tvoří vrcholy trojúhelníku o obsahu T. Dokažte, že platí S = 3T.

(J. Svrček)

AB, MB i || BC a MCiMA i

A - S - 3

V oboru reálných čísel řešte rovnici

■X + x X — 71
= 0.1 + sin —-

5
• sin

11

(J. Šimša)

A - II - 1

Najděte všechny dvojice celých čísel a, b takových, že součet a + b je
kořenem rovnice x2 + ax + b = 0. (E. Kováč)
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A - II - 2

Posloupnost reálných čísel (an)^=1 splňuje pro každé n ^ 1 rovnost

3 ®n-f2 ®n+3 "k ttn+2

Cln "k 1en_)_x

a navíc platí ац =4, а22 = 2, <233 = 1. Dokažte, že pro každé přirozené
číslo к je součet

a\ + a2 + • • • + U^oo
druhou mocninou přirozeného čísla. (,/. Zhouf)

A - II - 3

Je dán trojúhelník ABC a uvnitř něho bod P. Označme X průsečík
přímky AP se stranou BC a Y průsečík přímky BP se stranou AC.
Dokažte, že čtyřúhelník ABXY je tětivový, právě když druhý průsečík
(různý od bodu C) kružnic opsaných trojúhelníkům ACX a BCY leží
11a přímce CP. (E. Kováč)

A - II - 4

V oboru reálných čísel řešte soustavu rovnic

sin2 x + cos2 у = y2,
sm у + cos x — x .

(J. Švrček)

A - III - 1

Posloupnost (an)“=1 přirozených čísel má tu vlastnost, že pro každé n A 1
platí an+\ — an + bn, kde bn je číslo, které má opačné pořadí číslic než
číslo an (zápis čísla bn může na rozdíl od zápisu čísla an začínat jednou
nebo více nulami). Například pro a\ — 170 platí 02 = 241, аз = 383,
а4 = 766, ... Rozhodněte, zda 07 může být prvočíslo. (Peter Novotný)

A - III - 2

Nechť man jsou přirozená čísla taková, že rovnice

(x + m) (x + n) = x + m + n
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má aspoň jedno celočíselné řešení. Dokažte, že platí
1 m

- < — < 2.
n

(J. Šimša)

A - III - 3

V trojúhelníku ABC, který není rovnostranný, označme К průsečík osy
vnitřního úhlu BAC se stranou ВС a L průsečík osy vnitřního úhlu ABC
se stranou AC. Dále označme S střed kružnice vepsané, O střed kružnice
opsané а V průsečík výšek trojúhelníku ABC. Dokažte, že následující
dvě tvrzení jsou ekvivalentní:
a) Přímka KL se dotýká kružnic opsaných trojúhelníkům ALS, BVS

a BKS.

b) Body А, В, К, L a O leží na jedné kružnici. (T. Juřík)

A - lil - 4

V rovině je dána úsečka AB. Sestrojte množinu těžišť všech ostroúhlých
trojúhelníků ABC, pro něž platí: Vrcholy A a B, průsečík výšek V a
střed S kružnice vepsané trojúhelníku ABC leží na jedné kružnici.

(J. Svrček)

A - III - 5

Najděte všechny trojice navzájem různých prvočísel p, q, r splňující ná-
sledující podmínky:

p | q + r, q | r + 2p, r \ p + 3q.

(M. Panák)

A - III - 6

V oboru reálných čísel řešte soustavu rovnic

tg2 x + 2 cotg2 2у = 1,

tg2 у + 2 cotg2 2z — 1,

tg2 2 + 2 cotg2 2x = 1.

(J. Svrček, P. Calábek)
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Řešení úloh

A - I - 1

Z vlastností funkcí tangens a cotangens vyplývá, že t ф к ■ kde к je
libovolné celé číslo. Označme dále

L = Vz(sinf + cos t) P = tg31 -f cotg3 t.a

S ohledem na periodičnost funkcí sin, cos, tg, cotg stačí rozlišit následující
případy.

> í £ (0; |n): Pro každé takové t platí nerovnosti

1
sin t + cos t 5í л/2 tg31 + cotg3 t = tg3 t + > 2.a

tg3 í -

Dostáváme takRovnost v každé z nich nastává, právě když t
odhad

L ^ \/2 • \/2 — 2 ^ P.

Rovnice L — P je tedy splněna pouze v případě L = P = 2 a jediné
reálné číslo t z uvažovaného intervalu (0; které dané rovnici vy-
hovuje, je t — |k.

> í G Pro každé takové t platí nerovnosti

sin t + cos t > cos t > — 1

a

1

((-tgí)3 +tg31 + cotg3 t — < -2.
(-tg í)3

Pro libovolné t z uvažovaného intervalu pak platí odhady

L > -V2 > -2 ^ P}

což znamená, že na tomto intervalu daná rovnice nemá žádné řešení.
o í G (ji; |k): Pro libovolné t z uvažovaného intervalu jsou obě hodnoty

siní, cost záporné (a hodnoty tgt, cotgt kladné), takže platí nerov-
nosti

tg31 + cotg3 t > 0.sin t + cos t < 0 a
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Odtud L < 0 < P, a tudíž ani na tomto intervalu daná rovnice nemá
žádné řešení.

> t 6 (|tc; 2tc): Podobně jako v druhém případě odvodíme, že pro libo-
volné t z uvažovaného intervalu platí nerovnosti

tg31 + cotg3 t —2.siní + cost > — 1 a

Proto

L > -y/2 > -2 ^ P,

což znamená, že ani v tomto případě nemá daná rovnice žádné řešení.
Závěr. Vzhledem к periodičnosti uvažovaných goniometrických funkcí

jsou řešením dané rovnice všechna reálná čísla t tvaru t = + 2/ctt, kde
к je libovolné celé číslo.

A - I - 2

Označme R průsečík úhlopříček daného čtyřúhelníku a pro jednoduchost
také (/?, ф velikosti úhlů CDRa DCR(obr. 23). Protože úhlopříčky jsou
na sebe kolmé, je </? + ф = 90°. Vzhledem к tomu, že oba vrcholy В, C

leží ve stejné polorovině určené tětivou AD, plyne z rovnosti příslušných
obvodových úhlů, že \kABD\ — ф. A protože DX je kolmá na AB, je
rovněž \<XDB\ = ip. To znamená, že trojúhelník XCD je rovnoramenný
se základnou XC. Úplně stejně ovšem zjistíme, že i trojiihelník YCD je
rovnoramenný se základnou YD. Platí tedy \XD\
DX a CY jsou shodné a rovnoběžné úsečky. To znamená, že XYCD je

\CD\ = |CY|, takže
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rovnoběžník, který jak víme, má tři strany shodné, tudíž je to kosočtverec
nebo čtverec.

Jiné řešení. Využijeme ne zcela běžně známý poznatek, že bod sou-
měrně sdružený s průsečíkem výšek daného trojúhelníku podle jeho libo-
volné strany leží na kružnici trojúhelníku opsané.

Označme R průsečík úhlopříček daného čtyřúhelníku. Podle podmí-
nek úlohy je X průsečík výšek trojúhelníku ABD a Y průsečík výšek
trojúhelníku ABC. Podle předchozího tvrzení je bod C obrazem bodu X
v osové souměrnosti podle přímky BD, takže R je střed úsečky XC.
Analogicky je R střed úsečky YD. Protože úsečky XC a YD jsou na
sebe kolmé, je XYCD kosočtverec nebo čtverec.

A - I - 3

a) Abychom dokázali, že uvažovaná posloupnost (an) je periodická,
stačí ukázat, že existují přirozená čísla no a p taková, že ano+p — a
Protože každý další člen posloupnosti je jednoznačně určen předcházejí-
cím členem, bude už pro každé n ^ no platit an+p — an (posloupnost
bude [počínaje členem ano] periodická s délkou periody p).

Číslo an+i = an — bn má ovšem nejvýše tolik číslic jako číslo an. To je
například vidět z nerovnosti \a — b\ ^ max(|a|, \b\). Má-li tedy počáteční
člen posloupnosti к číslic, budou všechny ostatní členy posloupnosti patřit
do konečné množiny nejvýše 2(10A’ — 1) nenulových celých čísel. Protože
posloupnost je nekonečná, musí obsahovat aspoň dva stejné členy. Odtud
plyne, že uvažovaná posloupnost je periodická.

b) Protože uvažovaná posloupnost neobsahuje žádný člen rovný nule,
nemůže být jejím členem žádné palindromické číslo (číslo, které „pře-
čteme" stejně odpředu i odzadu), speciálně tedy ani číslo jednomístné.

Předpokládejme nejprve, že členem uvažované posloupnosti je kladné
dvojmístné číslo ao = ab = 10a + b, pro které a\ = 9(a — b). Vidíme,
že všechny další členy (zejména tudíž ty, které se budou periodicky opa-

kovat) musí být dělitelné devíti. Stačí proto probrat všechny dvojmístné
násobky devíti 18,... ,99. Jak snadno zjistíme podle následujícího sché-
matu,

no •

81
63

2718
36 45

72 9
54
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pro každé takové číslo se mezi členy posléze objeví jednomístná devítka.
To znamená, že uvažovaná posloupnost nemůže obsahovat ani dvojmístná
čísla. (Čísla ve schématu jsou v absolutní hodnotě, protože příslušná
změna znaménka nemá na právě získaný výsledek vliv. Podobně němu-
símě zvlášť vyšetřovat ani případ záporného dvojmístného čísla ao.)

Předpokládejme dále, že členem uvažované posloupnosti je trojmístné
číslo ao = abc = 100a + 106 + c, pro které a\ — 99(a — c). Opět stačí
prozkoumat jen trojmístná čísla 99, 198,... ,990 (násobky čísla 99). Po-
dobně jako v předchozím případě podle následujícího schématu

891
693

297198
396 495

792 99
594

zjistíme, že pro taková čísla se mezi členy posloupnosti nakonec objeví
dvojmístné číslo 99. Posloupnost tedy nemůže obsahovat ani trojmístná
čísla.

Protože pro čtyřmístné číslo ao = abed = 1 000a+1006+10c+d dostá-
váme a\ = 999(a—d)-f 90(6—c), zjistíme opět, že prvních deset nejmenších
čtyřmístných čísel (pro něž je v příslušném desítkovém zápise 6 = c = 0,
takže jako členy posloupnosti vycházejí jen násobky čísla 999) členem
uvažované posloupnosti být nemůže: pro čísla 1 000 a 1 002 dostaneme
rovnou

dostaneme |ai|
|ai | = 999, číslo 1 001 je palindromické a pro čísla 1 003,..., 1 009

1 998, 2 997,..., 8 991 a podle obdobného schématu

8 991
6 993

2 9971998
4 9953 996

7 992 999
5 994

po několika krocích trojmístné číslo 999. Pro následující čtyřmístné číslo
1010 dostaneme trojmístné číslo 909 a pro 1011 dokonce dvojmístné
číslo —90. Teprve pro číslo 1 012 dostaneme posloupnost čtyřmístných
čísel

1089, 8 712, 6 534, 2 178, -6 534,

která se zřejmě po dalším členu zacyklí.
Závěr. Nejmenší možné číslo ao je 1 012.
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A - I - 4

Podle zadání má mít kubická rovnice P(x) — 0 dva různé reálné kořeny,
označme je x\ = 7 a X2 ф X\ (konkrétní hodnotu x\ = 7 využijeme, jen
když to bude vhodné, jinak budeme raději psát obecně x\). Pro kubický
mnohočlen P(x), jehož koeficient u mocniny x3 označíme a, a ф 0, рак
existuje ještě reálné číslo X3 takové, že platí rozklad

P(x) = a{x — x\)(x — X2) (x — X3)

(nejsou vyloučeny rovnosti X3 = x\ nebo X3 = X2).
Připomeňme, jak existenci třetího reálného kořene X3 zdůvodnit: ku-

bický mnohočlen P(x) je nutně dělitelný mnohočlenem (x — xi)(x — X2),
příslušný podíl je lineární dvojčlen s vedoucím koeficientem a, tedy dvoj-
člen ax -f- b, který lze zapsat jako a(x — X3), zvolíme-li X3

Naší úlohou je najít všechny vyhovující trojice čísel й / 0, X2 ф x\
a X3, pro které mnohočlen (1) s danou hodnotou xi — 7 splňuje pro
každé reálné t implikaci P{t) = 0
podmínky je nezbytné vědět, pro kolik různých hodnot t rovnost P{t) = 0
(a tedy i rovnost P(t + 1) = 1) skutečně platí, tedy kolik je v trojici xi,
X2, X3 různých čísel. A priori mohou nastat pouze následující možnosti
А, В a C.

А. X\, Х2, X3 jsou tři navzájem různá čísla.
Tehdy má kubická rovnice P(x) = 1 tři navzájem různé kořeny xi + 1,

X2 + 1, X3 + 1, takže platí rozklad

(1)

b/a.

P(t + 1) = 1. Pro rozbor takové

P(x) — 1 — a(x — x\ — l)(x — x-2 — l)(x — X3 — 1).
Dosadíme-li sem rozklad (1), dostaneme rovnost mnohočlenů

a(x —x i)(x —хг)(х —X3) — 1 a(x — xi — l)(x —X2 — l)(x — X3 — 1). (2)
Porovnáním koeficientů u mocniny x2 na levé a pravé straně obdržíme
rovnici

-a(xi + x2 + x3 + 3),
0, což odporuje předpokladu aýO,
= 0, kdy má tvar —1 - 0.)

a(xi + x2 + x3)
která je splněna pouze v případě a —

(Navíc rovnost (2) neplatí ani pro a

B. X\ — x3 — 7 ф x2.

Tehdy P(x) = a(x — 7)2(x X2) a rovnost P(x) = 1 musí platit pro
x = 7-f 1 = 8 a pro x = x’2 + 1. Dostáváme tak soustavu dvou rovnic

P(8) = a(8 — X2) = 1 a P(x2 + 1) = a(x2 — 6)2 = 1.

75



Převrácená hodnota čísla a je tedy rovna jak číslu 8 — x2, tak číslu
(x2 — 6)2. Z rovnice

8 - x2 = (x2 - 6)2
dostaneme úpravou rovnici x\ — llx2 + 28 = 0, která má dva kořeny
X2 — 4 a x2 = 7. Druhý kořen nevyhovuje naší podmínce x2 ф xi, takže
nutně platí x2 = 4, odkud a = 4_1 = | a P(x) — |(x — 7)2(x — 4).

C. х\—7ф x2 = x3.

Tehdy P(x) = a(x — 7)(x — x2)2 a rovnost P(x) = 1 musí platit pro
x=7+l=8a pro x = x2 + 1. Dostáváme tak soustavu dvou rovnic

P(8) = 0(8 — x2)2 = 1 a P(x2 + 1) = a(x2 — 6) = 1.

Převrácená hodnota čísla a je tedy rovna jak číslu (8 — x2)2, tak číslu
x2 — 6. Z rovnice

(8 - x2)2 = x2 - 6
dostaneme úpravou rovnici x2 — 17x2 + 70 = 0, která má dva kořeny
x2 = 10 a x2 = 7. Druhý kořen nevyhovuje naší podmínce x2 ф xi, takže
nutně platí x2 = 10, odkud a = 4 \ a P(x) = |(x-1 7)(x - 10)2.

Závěr. Podmínkám úlohy vyhovují pouze dvě kubické rovnice
1 1
-(x - 7)2(x -4) = 0 a -(x - 7)(x - 10)2 = 0.

Poznámka. Možnost A v uvedeném řešení můžeme vyloučit díky ná-
sledující úvaze: Kdyby měl mnohočlen P tři různé kořeny к, l, m, měl
by mnohočlen P — 1 dle předpokladu kořeny к + 1, l + 1, m + 1. To však
není možné, protože součet kořenů mnohočlenu P je stejný jako součet
kořenů mnohočlenu P — 1.

A - I - 5

V libovolném konvexním čtyřúhelníku ABCD označme S průsečík úhlo-
příček a kromě délek stran uvažujme ještě veličiny e

ei = \AS\, e2
kosinové věty platí rovnosti

\AC\,f = \BD\,
|<PS|, fi = |PS|, /2 = \DS\ a <p = \<ASB\. Podle

a2 = e2 + /2 - 2ei/i cos+,

b2 = e\ + f\ + 2e2/i cos <p,

c2 = e\ + fl - 2e2/2 cos ip,

d2 = e2 + f2 + 2ei/2 cos +.

76



Sečteme-li první rovnost s třetí a od výsledku odečteme součet druhé
a čtvrté, dostaneme

(a2 + (?) — (62 + d?) 2(ei/i + e2/2 + e2/i + e\ f2) cos p,

neboli

(a2 + c2) — (62 + d2) — — 2ef cosp.

Odtud plyne takový závěr: platí-li rovnost a2 + c2 = 62+d2, pak v každém
uvažovaném čtyřúhelníku je cos p = 0, tedy úhel p je vždy pravý a délky
stran mají vyjádření

(1)

а2 = е2г + f2, b2 = e\ + f2, c2 = e2 + /22, d2 = e2 + /|. (2)

Abychom uzavřeli první část řešení, zdůvodníme ještě, že takové čtyř-
úhelníky (pro jakékoliv délky a, b, c, d splňující vztah a2 + c2 — b2 + d2)
existují. Jistě můžeme předpokládat, že platí d = min{a, b, c, d}; délku e\
pak zvolíme v intervalu (0,d) libovolně a podle (2) určíme

fi = \Ja2 ~e\ \]d2 - ef,/2

c2 — d2 + e2 \Jb2 — a2 + e2^e2 —

(vzhledem к učiněnému předpokladu je c2 — d2 A 0). Tím je existence vy-
hovujících čtyřúhelníků (s navzájem kolmými úhlopříčkami) prokázána.

V druhé části řešení budeme naopak předpokládat, že aspoň jeden
konvexní čtyřúhelník AqBqCqDq se stranami daných délek a, b, c, d exis-
tuje; z úvahy o drátěném modelu čtyřúhelníku je jasné, že vyhovujících
konvexních čtyřúhelníků ABCD (tvarově blízkých AqBqCqDq) je pak
nekonečně mnoho; jejich vnitřní úhly a, 7 u vrcholů A, C jsou vázány
podmínkou

a2 + d2 — 2adcosa = b2 + c2 — 26c cos 7

(porovnání délky společné strany BD trojúhelníků ABD a BCD). Při-
pusťme, že úhlopříčky všech těchto čtyřhelníků svírají týž úhel a že
levá strana rovnosti (1) je nenulová (podle jejího znaménka je úhel <p
buď ostrý, nebo tupý, takže se nemůže stát, že pro část vyhovujících
čtyřúhelníků má velikost po, a pro ostatní x — po). Pak z rovnosti (1)
můžeme vypočítat součin ef, který je tudíž pro všechny vyhovující čtyř-
úhelníky stejný; ze vzorce pro jejich obsah S — \ef sin p nakonec plyne,

(3)
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že i hodnota S je jedna a táž. Protože obsah S můžeme vyjádřit i vzorcem
S = ^adsiná + \bcsin7, docházíme к závěru: existují takové konstanty
R\ a R2, že všechny vyhovující čtyřúhelníky splňují vztahy

ad cos a — bc cos 7 = R± ad sin a + bc sin 7 = R2

(první vztah je důsledkem (3), ve druhém R2
vyplývá

(bc)2 = (bc cos y)2 + (6c siny)2
= (ad)2 +R2 + R\

2S > 0). Z nich dále

(ad cos a — R\)2 + (R2 — adsin a)2
2ad(Ri cos a -f R2 sin a).

Protože ad ф 0, lze z poslední rovnosti vypočítat hodnotu výrazu

V = Ri cos a + R2 sin a,

která je tudíž pro všechny vyhovující čtyřúhelníky ABCD stejná. To je
možné jedině tehdy, když R\ = R2 = 0, a to je spor s tím, že R2 > 0.
Důkaz druhé části tvrzení je hotov.

Dodejme, že závěr o hodnotách výrazu V plyne ze známého vyjádření

1
1/ = sin(a + lu),

\/Щ + Щ
kde úhel je určen vztahy

Ri R2
sinca =

s/Щ + Ц
cos ca =

Výraz sin(o: + ca) není konstantní, když se úhel a mění v okolí úhlu ao
(jenž odpovídá výchozímu čtyřúhelníku AqBqCqDq z úvodu druhé části
řešení).

A - I - 6

Odvodíme nejprve, jak vypadá každá dvojice (x, y) přirozených čísel,
která vyhovuje rovnici

x2 + y2 = k(x — y) (1)

s daným přirozeným číslem к (a teprve pak všechna tato řešení pro hod-
notu к = 2 005 sestrojíme).
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Předpokládejme, že (ж, у) je libovolné řešení rovnice (1), kterou ob-
vyklým způsobem upravíme do „součinového" tvaru

y(y + k) = x{k — x). (2)

Provedeme rrvahu o soudělnosti zastoupených činitelů: označme d největší
společný dělitel přirozených čísel x a y, takže platí x = dm а у = dn, kde
m a n jsou nesoudělná přirozená čísla. Po vydělení obou stran rovnosti (2)
číslem d, dostaneme „výhodnější" rovnost n(y + k) = m{k — x). Z ní totiž
vzhledem к nesoudělnosti čísel m, n plyne, že přirozené číslo у + к je
násobkem čísla m a číslo к — x stejným násobkem čísla n. Pro vhodné
přirozené q tedy platí rovnosti

у + к = qm а к — x = qn.

Vyjádřeme odtud dvojím způsobem číslo к a obě vyjádření porovnejme:

к — qm — у = qm — dn,
к = qn + x = qn + dm

=> qm—dn = qn+dm => m(q—d) = n(q+d).

Odtud opět z nesoudělnosti čísel m, n plyne, že přirozené číslo q + d je
násobkem čísla m a číslo q — d stejným násobkem čísla n. Pro vhodné
přirozené r tedy platí rovnosti

q + d = rm a q — d — rn.

Jejich sečtením a odečtením dostaneme následující vyjádření čísel q a d
pomocí r, man:

r{m + n) r(m — n)
čt Cl ==9 =

odkud již pro neznámé x, у dostáváme konečné vzorce

r(m — n)m r(m — n)n (3)а у = dn —x - dm —
22

Zjistěme nyní, jak souvisejí parametry r, m, n s daným koeficientem
к z původní rovnice (1). Můžeme postupovat například tak, že odvozené
vzorce dosadíme do rovnosti к = qn + x\

r(m + n)n r(m2 + n2)n)mr(m
к — qn + x = 222
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odkud po násobení dvěma dostaneme hledanou podmínku ve tvaru

2 к = 7’(m2 + n2). (4)

Jiný způsob odvození rovnosti (4), který je současně přímou „zkouš-
kou“ vzorců (3), spočívá v tom, že z nich snadno plynou vyjádření

r2(m n)2(m2 + n2)z2 + y2 =
4

n)2r(m -

x — v —y
2

ze kterých vidíme, že rovnice (1) je pro taková x, у splněna, právě když
je splněna podmínka (4). Než zformulujeme dokázaný výsledek, dodejme
ještě, že podle vzorců (3) musejí čísla m, n splňovat nerovnost m > n.
Proto platí následující věta.

Je-li к dané přirozené číslo, pak řešeními rovnice x2 + y2 = k(x — y)
jsou právě ty dvojice přirozených čísel x a y, které jsou tvaru

n)nr(m n)m
ct

r(m
x — У =

2 2

kde r, m, n jsou přirozená čísla, pro něž platí rovnost 2к = r(m2 + n2),
přičemž čísla rn a n jsou nesoudělná a m > n.

Z dokázané věty plyne recept, jak všechna řešení rovnice x2 + y2 =
= k(x — y) pro daný koeficient к sestrojit: uvážíme všechny možné roz-
klady čísla 2к na dva činitele, 2к = rs, a pro každý z nich pak najdeme
vyhovující čísla m, n z rovnosti m2 + n2 = s. Pak už nezbývá nic jiného,
než že pro konečně mnoho čísel m, jež jsou s číslem s nesoudělná a splňují
nerovnosti m2 < s < 2m2, testujeme, zda rozdíl s — m2 je druhou moc-
ninou přirozeného čísla. Pro dané к = 2 005 = 5 • 401 (401 je prvočíslo)
existují tyto rozklady (protože m2 + n2 ^ 22 +12 = 5, vynecháme rovnou
rozklady, v nichž je činitel s = m2 + n2 menší než 5):

802, m2 + n2 = 5. Zřejmě m = 2 a n — 1, odkud x = 802(0
а у = 401.
r = 401, m2 + n2 = 10. Zřejmě m = 3 a n = 1, odkud x = 1203
а у = 401.

(iii) r = 10, m2 + n2 = 401. Platí 15 5Í m ^ 20, vyhovuje pouze m = 20,
kdy n — 1, x = 1 900 а у = 95.

(iv) r = 5, m2 + n2 = 802. Platí 21 ^ m ^ 27, probereme pouze lichá m,
vyhovuje jen m = 21, kdy n — 19, ж = 105 а у — 95.

(ii)
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(v) г — 2, m2 + n2 = 2 005. Platí 31 ú m fL 44, probereme pouze m
nesoudělná s číslem 5, vyhovuje jednak m = 39, kdy n = 22, x = 663
а у = 374, jednak m = 41, kdy n = 18, x = 943 а у = 414.

(ví) r = 1, ??г2 -f n2 = 4 010. Platí 45 ^ m й 63, probereme pouze m
nesoudělná s číslem 10, vyhovuje jednak m = 59, kdy n = 23, x =
= 1 062 а у — 414, jednak m — 61, kdy n = 17, x = 1 342 а у — 374.

Závěr. Úloha má právě osm řešení (x,y). Zapíšeme je v rostoucím
pořadí podle první složky x: (105,95), (663,374), (802,401), (943,414),
(1062,414), (1203,401), (1342,374), (1900,95).

Poznámky. Všimněme si, že těchto osm dvojic (x, y) má pouze čtyři
různé složky у (každé у je zastoupeno ve dvou dvojicích). To lze vysvětlit
takovým pozorováním: má-li pro některé přirozené у kvadratická rovnice

.г2 - 2 005z + (y2 + 2 005y) = 0

aspoň jedno řešení x v oboru přirozených čísel, má v tomto oboru dvě
různá řešení. Snadné vysvětlení plyne z Viětových vzorců: je-li x\ celočí-
selný kořen této rovnice, je i druhý kořen x<i = 2 005 — x\ celé číslo (různé
od £i); z rovnosti X\X2 — y2 + 2 005y plyne, že oba kořeny x\, Х2 mají
stejné znaménko, neboť y2 + 2 005y > 0.

Nechť dvojice (x, y) přirozených čísel je řešením dané rovnice, takže
x > y. Po úpravě

2(rr2 + y2) — 2-2 005(x — y),
(x + y)2 + (2 005 - x + y)2 = 2 0052 (1)

zjišťujeme, že je navíc 0 < x -f- у < 2 005 a 0 < 2 005 — x + у < 2 005.
Všechna řešení pythagorejské rovnice X2 + Y2 = Z2 dovedeme popsat:
trojice (V, Y, Z) nesoudělných přirozených čísel je řešením uvedené rov-
nice, právě když existují nesoudělná přirozená čísla u, v taková, že и > v,
uv je sudé a až na případnou výměnu čísel X a Y platí rovnosti

X = 2uv, Y = u2 — v2, Z — u2 -f v2.

Odtud plyne další možný postup řešení dané rovnice.
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A - S - 1

Z tvaru dané rovnice ihned plyne, že x > у A 0 (neboť 6\/5 — 10 > 0).
Pro taková x, у můžeme umocnit obě (kladné) strany rovnice na druhou
a provést další ekvivalentní úpravy:

хл/б — 2 \Jbxy + у л/б = 6 л/б — 10,
x — 2 л/ху + у = 6 — 2 \/5,

х + у - 6 = 2 (y/ху - л/б). (1)

Umocněním a další úpravou dostaneme, že pro hledaná celá čísla x, у
musí platit

(x + у - б)2 = 4(xy - 2л/бху + б),
8 л/бxy = 4(ху + 5) — (х + у — б)2. (2)

Z poslední rovnice plyne, že hodnota \Jbxy je racionální, a tedy celé číslo,4
takže 5xy je druhá mocnina nezáporného celého čísla, jež je zřejmě děli-
telné pěti.5 Platí tedy 5xy = (5k)2 neboli xy = 5k2, kde к je nezáporné
celé číslo. Už teď je výhodné dosadit ne do rovnice (2), ale rovnou do
rovnice (1). Dostaneme totiž rovnici

x + у — 6 = 2(л/б к2 — л/б) neboli х + у — б = 2 (к — 1) л/5,

odkud díky iracionalitě čísla y/b vyplývá, že ke splnění rovnice (1) je
nutné a stačí, aby platily obě rovnosti к = 1 a x + y — 6 = 0. Ze soustavy
rovnic

xy = bk — 5, x + у = 6

snadno zjistíme, že {x,y} = {5,1}, tedy x = 5 а у = 1, neboť x > у
podle úvodní úvahy.

Hledaná dvojice (x,y) je jediná, a to (x,y) = (5,1).

A - S - 2

Označme P, Q, R vrcholy vzniklého trojúhelníku. Protože každá z os
úseček MA\, MB\ a MC\ je kolmá na odpovídající stranu trojúhelníku

4 Druhá odmocnina nezáporného celého čísla je buď číslo celé, nebo číslo iracionální.
5 Je-li n celé a n2 je dělitelné pěti, je i n dělitelné pěti.
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ABC, svírají každé dvě ze stran trojúhelníku PQR úhel 60°, takže se

jedná o rovnostranný trojúhelník (obr. 24).

А C\ В

Q

Obr. 24

Ukážeme nyní, že součet délek úseček MAi, MB\ a MC\ je (ne-
závisle na poloze bodu M) roven délce a strany výchozího trojúhelníku
ABC. Označme proto po řadě B2, C2 а A2 průsečíky přímek MA\, MBi
a MC\ se stranami CA, AB a BC. Protože trojúhelníky MA1A2, MB1B2
а MC1C2 jsou rovnostranné, je

\MAi \ + \MBil + IMCil - + \A2C\ + \A,B\ = \BC\ = a.

Pro libovolný (vnitřní) bod rovnostranného trojúhelníku platí, že
součet jeho vzdáleností od všech stran trojúhelníku je roven příslušné
výšce. To je snadno vidět např. z vyjádření obsahu takového trojúhel-
niku jako součtu obsahů tří trojúhelníků tvořených daným (vnitřním)
bodem a dvojicí vrcholů. Protože bod M má od stran (rovnostranného)
trojúhelníku PQR vzdálenosti ~\MA\\, a ^\MC\\, má výška t
tohoto trojúhelníku velikost t = ^(\MAi \ + \MB\ \ + \MCi\) = |a. Pro-
tože pro výšku v rovnostranného trojúhelníku ABC platí v — \a\J3, je
S — Tjdv — ^u2\/3- Podobně pro obsah T trojúhelníku PQR s výškou t
dostáváme

л/З f aQ2 y/3 / v Ý \/3т=Ае -S,
3 ’93 3 2

neboli S — 3T, což jsme chtěli dokázat.
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A - S - 3

Protože všechny hodnoty funkce sinus leží v intervalu ( — 1,1), je součin
dvou hodnot sinu roven číslu —1, jen když je jedna hodnota 1 a druhá
hodnota je —1. Číslo x 6 IR je tedy řešením dané rovnice, právě když
existují čísla k,l 6 Z taková, že platí dvojice rovností

71

2 + 2/ck,
X

~2+ T"
Vyřešíme-li tyto lineární rovnice, dostaneme vyjádření

x + к X + X к
=

~2 + 2Аж’
К

= - + 2Ы.

5 5nebo
х — к X — к

11 11

Зх 7х
— + 10/ск,

у + 22/х,

— + Ю/сх,

^ + 22/тх.
Najdeme nyní všechny dvojice celých čísel (/c,/), pro něž platí

7x _ 13k
,

у + ЮАж = у—Ь 22/к.
Snadnou úpravou těchto rovnic (včetně krácení číslem 2k) dostaneme

x = x = —

nebo<
13k

x — — x =

3k 9k

у + 10ku = — h 22/k, resp.

5/c + 3 = 11/ 5/c - 5 = 11/.resp.

Upravíme-li první rovnici na tvar 5(k — 6) = 11 (/ — 3), pak úvahou o dě-
litelnosti nesoudělnými čísly 5 a 11 zjistíme, že všechna celočíselná řešení
takové rovnice jsou tvaru k = 6 + lln a / = 3 + 5n, kde n G Z. Dosazením
do příslušného vzorce pro x tak dostáváme první skupinu řešení

3k 3k
— + 10/ck = у + 10(6 + 11п)к = 61,5к + 110пк.X =

Podobně z druhé rovnice 5/c — 5 = 11/ upravené do tvaru 5(/c — 1) = 11/
zjistíme, že k = 1 + lln, / = 5n pro libovolné n £ Z, takže druhá skupina
řešení má vyjádření

7к7к
— + 10(1 + 11п)к = 6,5к + 110пк.— + 10/ск -

Shrnuti: Všechna řešení dané rovnice jsou dána vzorci

x =

(1)x = 61,5к + 110пк a x = 6,5к + 110пк, kde n 6 Z.
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no lze všechna řešení zapsat jedním vzorcemProtože 61,5 — 6,5 = 55 = 2 ’

(2)x — 6,5л: + 55пк, kde nG I.

Jiné řešení. Díky goniometrickému vzorci

cos(A — B) — cos(A + B)sin A sin В —

2

lze rovnici 1 + sin A sin В = 0 přepsat do tvaru

cos(A -b B) — cos(A — B) — 2.

S ohledem na obor hodnot funkce kosinus je poslední rovnice splněna,
právě když platí cos(zl + В) = 1 a cos(A — B) = -

z původní rovnice tak dostáváme soustavu rovností
1. Pro zlomky А, В

. n X + KA + B = —— +
5

x + к x —

x —
— = 2/crc,
тс

— = к + 2/k,

11

A - В =

5 11

která musí platit pro vhodná čísla к, l £ T. Sečtením a odečtením dosta-
neine

Х + К к ,, n

6“ =2+(* + í)’'
x — к

= + (k - 0^a
11

odkud dvojím způsobem vyjádříme neznámou x:

9k3k
— + 11 (к — l) tu— + 5 (к + 1)k —x =

Snadno zjistíme, že čísla /с, l jsou zde svázána podmínkou 3(к — 1) = 81,
což znamená, že l = 3n а к — 8n + 1 pro vhodné n G H. Dosazením do
vzorce pro x tak dojdeme ke stejnému vyjádření

13тг
-—Ь 55пл: = 6,5к + 55пл:x —

jako v prvním řešení.
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A - II - 1

Hledáme celá čísla a, b, pro která (a -f b)2 + a(a + b) + b — 0, což je pro
neznámou b kvadratická rovnice b2 -f (3a + l)b + 2a2 = 0s celočíselnými
koeficienty. Ta má celočíselný kořen, jedině když je její diskriminant

D = (3a + l)2 - 4 • 2a2 = (a + 3)2 - 8

úplný čtverec. Ten je přitom o osm menší než jiný úplný čtverec (a -f- 3)2.
Jak snadno zjistíme (rozdíly druhých mocnin dvou sousedních přiroze-
ných čísel postupně rostou), rozdíl 8 mají pouze úplné čtverce 9 a 1, takže
(a + 3)2 = 9, odkud plyne a = — 6 nebo a = 0. Pro a = —6 vychází b = 8
a b — 9, pro a — 0 vychází 6 = 0afe=—1. Dostáváme tak čtyři řešení:
(a, b) je jedna z dvojic (—6, 8), (—6,9), (0, 0), (0, —1).

Poznámky. Zvolíme-li za neznámou a místo 6, vyjde rovnice

2a2 + 3 ba + {b2 + b) = 0

s diskriminantem D' — 9b2 — 8 • (b2 + b) = (6 — 4)2 — 16; úplné čtverce
lišící se o 16 jsou pouze 0, 16 a 9, 25.

Úlohu nalézt dva úplné čtverce x2 aij2 s daným rozdílem d lze pro
malé hodnoty d (jako d — 8 či d = 16 v naší úloze) vyřešit otestováním
několika prvních čtverců 0, 1, 4, 9, ... Pro jakékoli přirozené d lze po-

stupovat tak, že rovnici x2 — y2 — d upravíme na (x — y)(x + y) = d
a vypíšeme všechny rozklady daného čísla d na součin d\d2 dvou celočí-
selných činitelů; z rovnic di = x—y, d2 = x+y pak vypočteme příslušná x
a y.

A - II - 2

Nejdříve dokážeme, že pro členy zkoumané posloupnosti (an)™=í platí:
rovnost an = 0 je splněna pro některé přirozené n, právě když pro totéž n

platí an.|_з = 0. Skutečně, je-li an — 0, pak jmenovatelé zlomků v zadané
rovnosti jsou navzájem opačná (nenulová) čísla, takže takoví musí být
i jejich čitatelé. Z rovnosti

3 2 — i&n-T3 + ^n+ž)

už plyne an+3 = 0. Obráceně, platí-li an+3 = 0, jsou čitatelé zmíněných
zlomků navzájem opačná čísla, takže takoví musí být i jejich jmenovatelé,
odkud an — 0.
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Dokázaná vlastnost má tento důsledek: z podmínky «33 ф 0 plyne
азк ф 0 (pro každé к ^ 1), z a22 ф 0 plyne а3д,+1 /Oazan/О plyne
йзА;+2 ф 0 (vždy pro každé к У 0). Dohromady vychází, že žádný člen an
zkoumané posloupnosti není roven nule.

Z rovnosti ze zadání plyne rovnost

(®n+3 ®n+2j(®n "f" n?x+l) — (®n+3 T ^n-|-2)(®n

z níž po roznásobení a následném zjednodušení dostaneme (pro libovolné
přirozené n)

O-n-f 1 ) )

®n-f-i®n-t-3 — anan-^2 ■

Zvětšímc-li n o 1, dostaneme analogický vztah, který platí pro libovolné
nezáporné celé n:

Пп+2®п + 4 — n?г-l-l®тг-fЗ•

Vynásobíme-li obě rovnosti a výsledek zkrátíme (nenulovým!) číslem
an+ian_|_2tt?i+3) vyjde an+4 = an, tj. daná posloupnost má periodu 4.
Proto ад — «33 = 1, a2 = a22 = 2, аз = ап = 4, 04 = а1«з/а2 = 2, tudíž

25(lfc + 2k + 4k + 2fc) = (5(1 + 2k)f.«1 + «2 + • • • + «loo —

Tím je důkaz hotov.

A - II - 3

Dané čtyři body Л, В, X, У leží na kružnici (obr. 25), právě když

\PA\ ■ \PX\ = \PB\ ■ \PY\.

Kružnice opsaná trojúhelníku ACX protne polopřímku opačnou к polo-
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přímce PC v bodě, který označíme D. Pro tento bod platí

\PA\ • \PX\ = \PC\ • \PD\.

Rovnost z první věty řešení tedy nastane, právě když platí

\PB\ ■ \PY\ = \PC\ ■ \PD\.

Tato rovnost je splněna, právě když bod D leží na kružnici opsané troj-
úhelníku BCY, tedy právě když je bod D ф C druhým průsečíkem kruž-
nic opsaných trojúhelníkům ACX a BCY. Důkaz je hotov.

Poznámky. Úlohu je možné ihned vyřešit na základě poznatku o tom,
jak vypadá množina všech bodů, které mají stejnou mocnost ke dvěma
daným kružnicím. Je to vždy přímka (zvaná chordála), jež je kolmá ke
středné obou kružnic a prochází jejich společnými body (pokud existují).
Rovnost z první věty řešení proto vyjadřuje právě to, že bod P leží na
chordále kružnic opsaných trojúhelníkům ACX a BCY.

A - II - 4

Předně si uvědomme, že s každým reálným řešením (ж, у) dané soustavy
rovnic jsou jejími řešeními také dvojice (x, —у), (—ж, у) а (—ж, —у), Stačí
se proto omezit na řešení v oboru nezáporných reálných čísel. Navíc s kaž-
dým řešením (ж,y) je řešením dané soustavy i dvojice (у,ж). Můžeme
proto dále předpokládat, že О С x C y.

Přepišme nejprve obě rovnice soustavy pomocí téhož známého vzorce
cos2 a — 1 — sin2 a\

sin2 x + 1 — sin2 у = у2,
sin2 у + 1 — sin2 x = x2.

Sečtením obou rovnic pak dostaneme

ж2 T y2 = 2. (1)

Odečteme-li druhou rovnici od první, dostaneme

2 sin2 x — 2 sin2 у = у2 ■Т2,

neboli

2 (sin ж + sin у) (sin ж — siny) = у2 ж2. (2)
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Za uvedeného předpokladu 0 'š. x ^ у ze vztahu (1) navíc plyne, že
0 ú x ^ у ú \/2 < i ту a protože funkce sinus je v intervalu (0, ^ ti) nezá-
porna a rostoucí, vidíme, že pro taková reálná čísla x а у je levá strana
rovnice (2) nekladná, zatímco pravá strana je nezáporná. To znamená, že
musí být y2 — x2 = 0, což za uvedených předpokladů dává x = у a spolu
s (1) tak máme x — у = 1.

V oboru nezáporných reálných čísel má daná soustava rovnic jediné
řešení, a to (x,y) — (1,1).

Závěr. Daná soustava rovnic má právě čtyři řešení v oboru reálných
čísel. Jsou jimi následující dvojice: (1,1), (1, —1), (—1,1) a (—1, —1).

A - III - 1

Dokážeme, že člen <27 je vždy složené číslo dělitelné jedenácti. Klíčem
к řešení úlohy je kritérium dělitelnosti jedenácti. Je-li CkCk-1 ■.. cico zápis
čísla m v desítkové soustavě, dává číslo m při dělení jedenácti stejný
zbytek jako střídavý součet jeho číslic:

zb(m) = co — ci + c2 — ... + (-1 )кск.
Pro zbytek čísla bn, které má opačné pořadí číslic než číslo an, tedy

platí, že je zb(bn) = ±zb(an) podle toho, je-li počet číslic čísla an li-
chý či sudý. Proto je-li některý člen uvažované posloupnosti dělitelný
jedenácti, jsou jedenácti dělitelné i všechny následující členy. Navíc
jakmile má nějaký člen an uvažované posloupnosti sudý počet číslic, je
zb(an) = — zb(6n), takže an+1 = an+bn je už dělitelné jedenácti (a stejně
tak i další členy).

Posloupnost (an) je zřejmě rostoucí. Má-li člen ai sudý počet číslic,
bude již člen a2 složené číslo dělitelné jedenácti s výjimkou případu ai =
= 10, kdy ovšem аз = 22. Stačí tedy ukázat, že i pro čísla a 1 s lichým
počtem číslic bude mezi prvními šesti členy posloupnosti vždy aspoň
jeden člen se sudým počtem číslic. Dokážeme to sporem v následujícím
odstavci.

Předpokládejme naopak, že všechna čísla ai, a2,..., clq mají lichý po-
čet číslic. Označme c první a d poslední číslici čísla a^, takže 1 ^ c ^ 9
a 0 í d í 9 (v případě jednomístného a\ klademe c — d). Číslo b 1 pak
bude formálně začínat číslicí d a končit číslicí c, a protože předpokládáme,
že číslo a2 = ai + 61 má rovněž lichý, tedy stejný počet číslic, musí být
c + d < 10. To bude tedy číslice na jeho posledním místě, zatímco na

prvním místě bude stát c + d nebo c + d + 1 (podle toho, zda při sčítání
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došlo na předposledním místě к přechodu přes desítku), v každém případě
bude na prvním místě číslice aspoň c + d. Podobně postupně zjistíme, že
první číslice čísla = a2 + b2 bude aspoň 2(c -f d), první číslice čísla
04 = аз + 63 bude aspoň 4(c 4 d), první číslice čísla as = 04 + 64 bude
aspoň 8(c + d) a první číslice čísla clq = a$ A 65 bude aspoň 16(c + d).
Protože 1 ^ c + d < 10, nemůže už zřejmě být 16(c + d) < 10. Aspoň
v jednom z čísel 02, аз,..., ciq se tudíž počet číslic zvýšil z lichého počtu
11a sudý.

Tím je úloha vyřešena. Dokázali jsme, že 07 není nikdy prvočíslo.

Poznámka. Pro a\ = 10 220 vyjde a?, — 185 767, což je prvočíslo.

A - III - 2

Ukážeme, že z předpokladu úlohy plynou silnější odhady

<2-41 1 m

+ -<- (1)2 n n n

Danou rovnici nejprve upravíme do tvaru

(x + m — l)(a: + n) = m.

Je-li v této rovnosti x celé číslo, dostáváme rozklad přirozeného čísla m
na součin dvou celých čísel, která tudíž leží obě buď v intervalu (l,m),
nebo v intervalu (—m, —1). V každém případě rozdíl těchto dvou čísel
nepřevyšuje (společnou) délku obou intervalů:

neboli n T 2m — 2,(x + n) — (x + m — 1) ^ m — 1

odkud plyne dolní odhad (1). Vzhledem к symetrické roli čísel man
platí rovněž nerovnost m 2n — 2, která vede na horní odhad (1).

Jiné řešení. S ohledem na symetrii stačí uvažovat případ m ^ n
a dokázat horní odhad (1) z prvního řešení, tedy nerovnost m ^ 2n — 2.

Daná rovnice je tvaru x2 + (m + n — \)x + mn — m — n — 0 a má
diskriminant

D = (m + n — l)2 — 4(mn — m — n) —

2mn + 2m 4- 2n + 1 = (m n + l)2 + 4n.= m2 4- n2

Ten musí být druhou mocninou celého čísla, má-li mít daná rovnice celo-
číselné řešení. Protože 4n je kladné sudé číslo, je číslo D větší než mocnina
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(m — n + l)2 a má stejnou paritu jako její základ (m — n + 1), který je
kladný, neboť uvažujeme pouze případ m ^ n. Proto musí platit D = k2,
kde к je celé číslo splňující podmínky к > m — n + 1 > 0 а к = m — n + 1
(mod 2). Znamená to, že к ^ m — n + 3, takže platí

n + l)2 + 4n = k2 ^
n + 3)2 = (m — n + 1 + 2)2 =

n + l)2+ 4(m — n + 1) + 4.

D = (m
= (m

(m

Odtud plyne nerovnost 4n ^ 4(m — n + 1) + 4, neboli m 2n — 2, což
jsme měli dokázat.

Poznámky. Protože dvojice tvaru (m, n) = (27г — 2, ?г) a (m,n) =
= (m, 2m — 2) vyhovují podmínce úlohy, jsou odhady (1) nejlepší možné.

Je možné popsat všechny dvojice přirozených čísel (m, n), které vy-
hovují podmínce úlohy, a to způsobem uvedeným v následujícím tvrzení.

Věta. Nechť m a n jsou celá čísla. Rovnice (x + m)(x + n) = x + m + n
má aspoň jedno celočíselné řešení, právě když jsou čísla rn, n tvaru

m — (a — 1)6 a n — a{b — 1), kde a, b € Z.

A - III - 3

Označme úhly v trojúhelníku ABC obvyklým způsobem. Z vlastností
bodů К a L je zřejmé (obr. 26), že body А, В, К, L leží na kružnici,
právě když \<KAL\ = \<KBL\, tj. právě když ot = (3.

ВA

Obr. 26
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Přímka KL se dotýká kružnice opsané trojúhelníku BKS (nutně
v bodě K), právě když se rovnají úsekový a obvodový úhel příslušné
tětivě KS (obr. 27): \<LKA\ = \<LBK\ = |/3
rovnost je ovšem ekvivalentní tomu, že body А, В, К, L leží na kružnici,
což jak už víme, je právě když a = (3. (Jak je zřejmé ze symetrie, je
to zároveň ekvivalentní tomu, že se přímka KL dotýká kružnice opsané
trojúhelníku ALS.)

Z uvedených výsledků plyne, že svá další zkoumání můžeme omezit na

rovnoramenné trojúhelníky ABC se základnou AB. Podívejme se nejpr-
ve, kdy kružnice opsaná čtyřúhelníku ABKL obsahuje bod O. Středový
úhel AOB v kružnici opsané trojúhelníku ABC má velikost 27, zatímco
velikost úhlu AKB je 180° — — (3 = 7 + (obr. 28). Bod O přitom

<LBA\. Poslední

ВA

Obr. 28

nemůže ležet na straně AB (když je úhel 7 pravý) ani v polorovině opačné
к ABC (když je úhel 7 tupý), protože v tom případě vyjde

\<AOB\ + \<AKB\ = (360° - 27) + (7 + \ct) =
= 180° + § a + p> 180°.

Body А, В, К, O tedy leží na jedné kružnici, právě když

2y = 7 + ia neboli a = /5 = 27 = 72°.

Zbývá zodpovědět otázku, kdy se kružnice opsaná trojúhelníku BVS
dotýká přímky KL. V polorovině KLB existují dvě kružnice, které ob-
sáhují body BaSa dotýkají se přímky KL (Apolloniova úloha, pro bod
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dotyku T z mocnosti bodu L к takové kružnici platí \LT\2 — \LS\ ■ \ LB\).
Jednu takovou kružnici už známe, je to kružnice opsaná trojúhelníku
BKS, jež se přímky KL dotýká v bodě К. Druhá kružnice se tedy dotýká
přímky KL v bode K' souměrně sdruženém s К podle středu L. Má-li
kružnice l opsaná trojúhelníku BVS ležet v polorovině KLB, musí v ní
ležet i její bod V, který je pak nutně vnitřním bodem úsečky CoCi, jež
je částí osy úsečky AB (obr. 29). Úhel SBV je tedy ostrý (jeho velikost

je nejvýše \(3), proto střed kružnice l leží v polorovině CqC\B a leží tam
i jeho kolmý průmět (případný bod dotyku) na přímku KL. Kružnice l
se tudíž dotýká přímky KL jedině v případě, když je to kružnice opsaná
trojúhelníku BKS, tedy když body В, К, S, V leží na jedné kružnici.
To nastane, právě když \<C\VB\ — \<SKB\ (to platí bez ohledu na
to, zda bod V leží mezi body C\, S, nebo mezi body Co, S] obr. 29).
Z pravoúhlých trojúhelníků ABB\ a BVC\ plyne \<C\VB\ — a, takže
rovnost \kC\VB\ = \<SKB\ platí, právě když

a = 7 + neboli a = /3 = 2y = 72°.

Dokázali jsme, že obě podmínky a) a b) jsou ekvivalentní tomu, že
trojúhelník ABC je rovnoramenný s úhly a — (3 = 72° a 7 = 36°.
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A - III - 4

Protože trojúhelník ABC je ostroúhlý, leží body V a S uvnitř něho.
Označíme-li velikosti úhlů v daném trojúhelníku obvyklým způsobem,
platí (obr. 30)

\<ASB\ = 90° +\<AVB\ = 180° - 7 a

Body А, В, V a S tedy leží na jedné kružnici, právě když \<AVB\ =
= \<ASB\, což je podle uvedených vzorců ekvivalentní s rovností
7 = 60°. Vrchol C tak nutně leží na některém ze dvou kružnicových
oblouků, z nichž je vidět úsečku AB pod úhlem 60°. Protože je trojúhel-
nik ABC ostroúhlý, musí navíc vrchol C ležet uvnitř pásu vymezeného
kolmicemi к přímce AB v bodech A a B. Vrchol C je tedy vnitřním
bodem takto vymezených kružnicových oblouků KL a MN (obr. 31).

L К

\ /
\ /
\ /

< У K!
\

v \ /
\/A В

M1 /C'°4 N'
/ \

\/
/ \

/ \

M N

ВA

Obr. 31Obr. 30

Označme dále Cq střed úsečky AB. Protože těžiště T každého z uva-

žovaných trojúhelníků ABC je obrazem bodu С ve stejnolehlosti se stře-
dem Co a koeficientem je bod T vnitřním bodem jednoho z oblouků
K'L' nebo M'N', jež jsou obrazy oblouků KL a MN v uvažované stej-
nolehlosti.

Protože zmíněná stejnolehlost je vzájemně jednoznačné zobrazení, je
zřejmé, že každý vnitřní bod oblouků K'L' nebo M'N1 má požadovanou
vlastnost, tj. je těžištěm ostroúhlého trojúhelníku ABC s úhlem 60° při
vrcholu C, jehož odpovídající body V a S leží na jedné kružnici s vrcholy
A a B.
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A - III - 5

Hledejme trojice p, q, r podle toho, které z těchto tří čísel je největší:
t> Největší je p.

Pak z podmínky p \ q + r a z nerovnosti q + r < 2p plyne q + r = p.
Z druhé podmínky pak dostaneme q | r + 2p = 3r -f 2q, tedy q | 3?',
což vzhledem к různosti prvočísel znamená, že q = 3. Tedy p — v + 3
a poslední podmínka říká, že r | r + 12, neboli r \ 12, tedy r — 2 (prvočísla
mají být různá). Je tedy p = 5. Tato trojice vskutku splňuje podmínky
ze zadání.

> Největší je q.
Pak podmínka q \ 7’ + 2p a nerovnost r + 2p < 3q dávají r + 2p = q

nebo r + 2p = 2q.
Je-li 2q = r+2p, musí být r sudé. Je tedy r = 2 a z rovnosti 2q = 2+2p

plyne q = p + 1, což pro prvočísla p, q větší než r = 2 není možné.
Je-li q = r + 2p, první podmínka říká, že p | 2?’ -f 2p, tedy p \ 2r,

tudíž p — 2. Poslední podmínka pak dává r | p + 3q = 3r + 7p = 3?’ + 14,
tedy r | 14, takže r — 7. Potom jeg = r + 2p=ll. Tato trojice rovněž
vyhovuje zadání.

> Největší je r.
Pak srovnáme podmínku r \ p + 3q a nerovnost p + 3q < 4r.
Kdyby bylo p + 3g = 3?’, bylo by p = 3(r — q), tedy p — 3, r — q = l,

takže r = 3 a q = 2, což nejsou tři různá prvočísla.
Pokud p + 3q — 2r, dostáváme z první podmínky p | 2(^ + r) = p + 5^,

takže p | 5ř/ a p = 5. Druhá podmínka pak dává q \ 2(7' + 2p) = 2?’ + 20 =
= 3g 4- 25, tedy q — 5, a výslednou trojici netvoří různá prvočísla.

Konečně buď p + 3q = r. První podmínka pak dává p | p + 4g, takže
p | 4í? a p = 2. Druhá podmínka pak říká, že q \ r + 2p = 3q + 6, tedy
q | 6 a q — 3, neboť q ф p — 2. Potom r — p + 3q = 11. Tato trojice také
vyhovuje zadání.

Řešením úlohy jsou tři trojice prvočísel (p, q, r), a to (5,3, 2), (2,11, 7)
a (2,3,11).

A - III - 6

Pro každé přípustné <p platí

cosV-shvVý = 1 2 + cotg2 _ 2)2 sin <p cos p / 2 ^
2 cotg2 2p = 2
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Položme tg2 x = a, tg2 у = b a tg2 2
čísla. Danou soustavu tak převedeme na tvar

c, kde a, b, c jsou kladná reálná

a + Kb+í) ~2,

ЧК) (1)= 2,

1
= 2.a H—

a

Bez újmy na obecnosti předpokládejme, že a ^ b ^ c. Při takovém
uspořádání plyne z předchozí soustavy rovnic

1
^ 1-й°+-

b c

1
a -f- —.b+ -

a

Protože pro každé kladné x platí x + 1/x ^ 2, plyne ze soustavy (1)
navíc 0 < a, b, c ^ 1. Funkce f{x) = x -f 1/x je ovšem na intervalu (0; 1)
klesající, proto platí také nerovnost

1 . . 1
-йь+т
a b

1
< c +

c

To spolu s předchozími nerovnostmi dává a = b = c.

Zbývá tak určit všechna и £ (0; 1), která vyhovují rovnici

1
= 2.и A

и

Po snadné úpravě obdržíme kvadratickou rovnici

3u2 - 4u + 1 = 0, tj. (u - l)(3u - 1) = 0.

Tato kvadratická rovnice má právě dva kladné reálné kořeny u\
a U2 = ^. S ohledem 11a použité substituce a periodičnost funkce tangens
jsou řešením dané soustavy rovnic právě následující trojice (x, у, z) reál-
ných čísel

1

/К К К
, К К , TIN / К , , ТС . ,71

—\- .—h /с2 —,—Ь «з - а ±—1- fciTc, ±—Ь «271, ±-+ К3Т4
V4 24 24 2/ V 6 6 6 )

kde кх, &2, кз jsou libovolná celá čísla a tři znaménka v trojici druhého
typu jsou vybrána libovolně, tj. navzájem nezávisle.
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Kategorie P

Texty úloh

P - I - 1

Pluky
Na monitoru se právě schyluje к velké bitvě mezi armádou hráče a ar-
mádou jeho počítače. Síly jsou vyrovnané, obě armády mají stejný počet
pluků, ovšem jednotlivé pluky mohou být tvořeny různým počtem vo-

jáků. Na začátku bitvy se pluky obou armád seřadí do dvou řad tak,
že proti každému hráčovu pluku stojí právě jeden pluk patřící počítači.
Potom začne vlastní boj. Pluky stojící proti sobě na sebe zaútočí. A pro-
tože v množství je síla, zvítězí ten z nich, který má více vojáků. Pokud
náhodou mají soupeřící pluky stejný počet vojáků, vyhraje pluk patřící
počítači.

Hráčova armáda má schopné špióny, kteří před bitvou zjistili, kolik
vojáků má nepřítel v kterém pluku a jak jsou jeho pluky rozmístěny.
Vaším úkolem je rozmístit na základě těchto informací hráčovy pluky
tak, aby co nejvíce z nich svůj souboj vyhrálo.

Soutěžní úloha. Napište program, který vám poradí, jak nejlépe roz-
místit pluky, které máte к dispozici. Na vstupu dostanete počet pluků
N v každé armádě a počty vojáků v každém z 2N pluků na bojišti.
Výstupem programu bude jediné celé číslo — maximální počet pluků
hráče, které mohou vyhrát svůj souboj při nějakém rozestavení.

Formát vstupu: První řádek vstupního souboru pluky, in obsahuje
jedno celé číslo N (1 N ú 10 000) — počet pluků v každé z armád.
Na druhém řádku je mezerami odděleno N celých čísel A\,..., (1
ú Ai 100 000 000) — počty vojáků v jednotlivých plucích hráče. Na
třetím řádku je mezerami odděleno N celých čísel B\,..., Bn (1 S B{ ^
^ 100 000 000) — počty vojáků v jednotlivých plucích patřících počítači.

Formát výstupu-. Jediný řádek výstupního souboru pluky.out bude
obsahovat jedno celé číslo — maximální počet pluků hráče, které mohou
najednou vyhrát svůj souboj.
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Příklady.
pluky.in pluky.out
5 3

(Pokud hráč rozmístí své pluky správně, zvítězí
jeho pluky velikosti 47, 12 a jeden z pluků vcli-
kosti 7.)

7 12 1 7 47

7 12 1 7 47

pluky.in pluky.out
4 0

(Při jakémkoliv rozestavení všechny pluky hráče
prohrají.)

10 10 10 10

10 10 10 10

pluky.in pluky.out
5 4

(Hráč obětuje svůj nejmenší pluk, pošle ho proti
pluku velikosti 10. Ostatní pluky potom lze
rozmístit tak, aby vyhrály.)

1 3 5 7 9

2 4 6 8 10

P - I - 2

Teleport
Vědcům se konečně podařilo vymyslet efektivní způsob cestování v časo-
prostoru. Jejich testovací středisko se skládá z několika lokalit. V každé
lokalitě je umístěno několik teleportů. Když vstoupíme do teleportu, pře-
místí nás na předem zadanou lokalitu (což bychom od teleportu oče-
kávali), ale navíc nás přemístí také v čase o zadaný počet minut (buď
dopředu, nebo dozadu). Vědci by chtěli zjistit, jak je cestování pomocí
teleportů výhodné. Právě se nacházejí u centrálního počítače a chtěli by
se jít nasvačit do bufetu. A protože čas jsou peníze, chtěli by být v bufetu
co nejdříve. Pohybovat se v čase a prostoru samozřejmě chtějí jen pomocí
již postavených teleportů.

Soutěžní úloha. Program dostane na vstupu počet lokalit N, které
budeme označovat čísly 1 ,...,N. Centrální počítač je umístěn v loká-
litě číslo 1, bufet má číslo N. Následuje celkový počet postavených tele-
portů M a seznam těchto teleportů. Pro každý teleport je určena počá-
teční lokalita, koncová lokalita a změna času v minutách, jež nastane při
průchodu tímto teleportem (kladné číslo znamená posun do budoucnosti,
záporné do minulosti a 0 znamená, že se v koncové lokalitě ocitneme ve

stejném čase, v jakém jsme nastoupili do teleportu).
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Každý teleport se může použít jen tím směrem, který je uveden na

vstupu. Mezi dvěma lokalitami může být vybudováno více teleportů. Do-
konce může existovat i teleport, který nás přesune pouze v čase (tedy
počáteční a koncová lokalita jsou u něj totožné).

Program má určit čas, kdy nejdříve se můžeme dostat do lokality N,
jestliže se v lokalitě 1 nacházíme v čase 0. Pokud tam dokážeme být
libovolně brzo (tzn. můžeme pomocí teleportů cestovat neomezeně do
minulosti), nebo pokud se tam vůbec nemůžeme dostat, program o tom
vydá příslušnou zprávu.

Formát vstupu: První řádek vstupního souboru teleport, in obsa-
huje dvě čísla N a M (2 ^ ^ 1000, 0 5Í M 5Í 50 000) oddělená
mezerou. Následuje M řádků, na každém z nich jsou tři čísla Ai, Bi,
Tj (1 ^ Aí,Bí ^ N, \Ti\ ^ 10 000) popisující teleport z lokality A% do
lokality В i se změnou času Ti minut.

Formát výstupu: Jediný řádek výstupního souboru teleport. out
bude obsahovat zprávu „Vědci umrou hlady“, jestliže se od centrálního
počítače nedá dostat do bufetu, resp. zprávu „Vědci poznaji vznik
vesmiru“, jestliže můžeme cestovat do nekonečna do minulosti. Jinak
bude obsahovat jedno celé číslo představující čas v minutách, kdy nej-
dříve se vědci dokážou dostat do bufetu.

Příklady:
teleport.in teleport.out
3 4 -2

(Prvním teleportem se vědci dostanou do loká-
lity 2 v čase 5, odtud druhým do lokality 3
v čase 5 +(—7) = —2. Ostatní možnosti jsou
horší.)

teleport.out
Vědci poznaji vznik vesmiru
(Dříve než se vědci druhým teleportem přesunou

do bufetu, mohou prvním odcestovat libovolně
daleko do minulosti.)

teleport.out
Vědci umrou hlady
(Poslední teleport nemohou vědci použít na přesun

z lokality 3 do lokality 4,
jedině naopak.)

1 2 5

2 3-7

1 3 -1

1 3 16

teleport.in
2 2

1 1 -1

1 2 0

teleport.in
4 3

1 2 -1

2 3 0

4 3 10
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P - I - 3

Posádky
Žil jednou jeden starý král. Jeho království tvořilo N měst a mezi nimi
vedla sem tam nějaká cesta. Jelikož králové bývají od přírody lakomí,
v celém království nebylo zrovna mnoho udržovaných cest. Přesněji řece-
no, cest bylo právě N — 1 a byly vedeny tak, aby se mezi každými dvěma
městy v království dalo po cestách dojet (ať už přímo, nebo přes jiná
města). V řeči teorie grafů takovéto síti cest říkáme strom.

Na stará kolena krále navštívila teta Paranoia a našeptala mu, že
sousedé chtějí napadnout jeho království. Proto se král rozhodl, že lakota
musí jít stranou a že postaví ve městech vojenské posádky. Paranoia
však šeptala dál: „Zbláznil ses? Když budou dvě posádky v sousedních
městech, budou si mezi sebou posílat zprávy. A víš, jak to dopadne...
Nech hodně vojáků pohromadě a vzbouří se proti tobě!“

Tři dny a tři noci král nespal, až vymyslel následující kompromis:
Vybere několik měst, v nichž postaví vojenské posádky. Aby mu nehrozila
vzpoura, rozhodl se, že nikdy nesmějí být pohromadě více než tři posádky.
Teď sedí nad mapou a vymýšlí, jak je má jenom rozmístit, aby království
bylo co nejlépe zabezpečeno.

Soutěžní úloha. Ještě jednou si formálněji zopakujme, o co královi
vlastně jde.

Na vstupu máte zadán počet měst N a popis cest mezi nimi. Cest
je právě N — 1, nikde se nekřižují, jimi tvořená síť je souvislá a spojuje
všechna města. Pro každé město i známe číslo bi — toto číslo udává, kolik
přidá vojenská posádka v г-tém městě к bezpečnosti království. Králo-
vým (a vaším) úkolem je vybrat množinu měst, v nichž budou umístěny
posádky. Tato množina musí splňovat následující podmínky:

t> Každá její souvislá podmnožina má velikost nejvýše 3. (Množinu měst
nazýváme souvislou, jestliže se mezi libovolnými dvěma městy z této
množiny dá dojet po cestách, aniž bychom při tom navštívili město,
které do této množiny nepatří.)

> Ze všech takovýchto množin má maximální možný součet hodnot bi —

bezpečnost království.
Formát vstupu: První řádek vstupního souboru posádky, in obsahuje

jedno číslo N (1 5Í ./V 100 000) — počet měst v království. Města jsou
očíslována od 1 do A. Každý z následujících N — 1 řádků obsahuje dvě
čísla měst, která jsou spojena cestou. Můžete předpokládat, že síť cest je
souvislá.

100



Poslední řádek vstupního souboru obsahuje N celých čísel 61,..., бдг
(0 5Í bi ^ 10 000), která udávají, kde je jak výhodné umístit vojenskou
posádku.

Formát výstupu: První řádek výstupního souboru posádky, out bude
obsahovat jedno celé číslo — nejlepší dosažitelnou bezpečnost království.
Druhý řádek bude obsahovat několik čísel oddělených mezerami — jednu
vhodnou množinu měst, pro kterou se uvedené bezpečnosti dosáhne.

Příklady:
posádky.in posádky.out
7 6

123567

(Všude je zisk z posádky stejný, chceme jich umis-
tit co nejvíce.)

1 2

2 3

3 4

4 5

5 6

6 7

1111111

posádky.in posádky.out
1011

2 3 5

(Zjevně chceme mít posádku ve městě 5. Potom už
ale můžeme vybrat jen dvě z ostatních měst.)

5

1 5

2 5

3 5

4 5

1 6 5 2 1000

posádky.outposádky.in
165

12 3 4

(Ne vždy se vyplatí vybrat město s nejvyšší hod-
notou bi.)

1 5

2 5

3 5

4 5

4 4 4 4 5

P - I - 4

Paralelizátor

Za sedmero horami a sedmero řekami vymyslel vynálezce Kleofáš podivný
stroj, který nazval paralelizátor. Na první pohled vypadal paralelizátor
jako obyčejný počítač... Byl tu však jeden malý, ale o to důležitější
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rozdíl. Za určitých okolností dokázal paralelizátor paralelně (tj. současně)
spustit více větví programu, aniž by ho to jakkoliv zpomalilo. Kleofáš
rychle pochopil, že jen ze slovního popisu tohoto zázraku by nikdo nebyl
moc moudrý, a tak vymyslel i programovací jazyk, v němž je možné psát
programy pro jeho paralelizátor.

Programy pro paralelizátor se budou od klasických lišit mimo jiné
tím, že nebudou mít žádný výstup. Budeme pouze rozlišovat, zda program
skončil úspěšně nebo neúspěšně. U klasických programů by to znamenalo,
že nás zajímá jen tzv. exit code (návratová hodnota) programu.

Kleofášův programovací jazyk je téměř přesnou kopií jazyka Pascal.
Oproti klasickému Pascalu v něm nemáme к dispozici generátor náhod-
nýcli čísel (a tedy například funkci random), takže je předem dáno, jak
bude výpočet každého programu vypadat. Zato přibyly čtyři nové příka-
zy: Accept, Reject, Both(x) a Some(r) (kde x je proměnná typu integer).

Příkaz Accept úspěšně ukončí běžící program.
Příkaz Reject ukončí běžící program, ale neúspěšně. Stejný význam

má i provedení standardního Pascalského příkazu Halt a ukončení vý-
počtu programu přechodem přes koncové End., příkaz Reject definujeme
jen kvůli názornosti.

V následujícím textu budeme vytvořením kopie programu rozumět
to, že se v operační paměti vytvoří úplně přesná kopie celého programu
včetně obsahu jeho proměnných — výsledek bude stejný, jako kdybychom
už od začátku daný program spustili ne jednou, ale dvakrát.

Příkaz Both(r) zastaví aktuálně běžící program. Vytvoří se dvě jeho
identické kopie. V první z nich je hodnota proměnné x nastavena na 0,
v druhé na 1. Obě kopie programu jsou paralelně spuštěny, přičemž je-
jich výpočet pokračuje příkazem následujícím za příslušným příkazem
Both.

Pokud obě kopie úspěšně skončí, v následujícím taktu procesoru

úspěšně skončí i původní program. Jestliže jedna z kopií skončí neú-
spěšně (druhá přitom skončit ani nemusí), původní program v následují-
círn taktu skončí také neúspěšně. Ve všech ostatních případech (tj. když
jedna kopie nikdy neskončí a druhá buď rovněž nikdy neskončí, nebo
skončí úspěšně) původní program nikdy neskončí.

Příkaz Some(x) funguje podobně. Rovněž zastaví aktuálně běžící pro-
gram. Opět se vytvoří dvě jeho identické kopie, v první z nich je hodnota
proměnné x nastavena na 0, v druhé na 1. Obě kopie programu jsou pa-
ralelně spuštěny, přičemž jejich výpočet pokračuje příkazem následujícím
za příslušným příkazem Some.
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Jakmile některá z kopií úspěšně skončí, v následujícím taktu proce-
soru úspěšně skončí i původní program. Pokud obě kopie skončí neúspěš-
ně, v následujícím taktu procesoru skončí neúspěšně také původní pro-

gram. Ve všech ostatních případech (tj. když jedna kopie nikdy neskončí
a druhá buď rovněž nikdy neskončí, nebo skončí neúspěšně) původní pro-

gram nikdy neskončí.
Slovně můžeme tyto operace popsat následovně: Příkaz Both provádí

„paralelní and“
provádí „paralelní or“

Netrvalo dlouho a Kleofáš si uvědomil, že na takovémto zázračném
zařízení dokáže některé problémy řešit až neuvěřitelně rychle. Například
testování prvočíselnosti je skutečně snadné.

Příklad 1: V proměnné N je přirozené číslo. Napište program pro

paralelizátor, který pro každou hodnotu N skončí, přičemž úspěšně skončí
právě tehdy, když N je prvočíslo.

ŘEŠENÍ. Pomocí volání příkazu Both paralelně vygenerujeme všechna
čísla od 2 do N — 1 a najednou pro každé z nich ověříme, zda dělí N.
Každá větev výpočtu úspěšně skončí, jestliže „její“ číslo nedělí N. Aby
původní program úspěšně skončil, musí úspěšně skončit všechny větve,
tedy žádné z vygenerovaných čísel nesmí dělit N. Časová složitost pro-

gramu je O (log N).
{ VSTUP: N : integer; }

ověří, zda obě větve úspěšně skončí. Příkaz Some
ověří, zda aspoň jedna z větví úspěšně skončí.

var moc2, pocet_cifer : integer;
cislo : integer;
i,x : integer;

begin
{ oetme okrajov ppad >
if N = 1 then Reject;

{ zjistme, kolik m N cifer ve dvojkov soustav }
moc2 := 1;
pocet_cifer := 0;
while moc2 < N do begin

moc2 := moc2 * 2;
inc(pocet_cifer);

end;

{ vygenerujeme sla od 0 do 2~pocet_cifer - 1 }
cislo := 0;
for i:=1 to pocet_cifer do begin

Both(x);
cislo := 2*cislo + x;

end;
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{ moc mal dlitele zkouet nebudeme, prohlsme za dobr }
if cislo <= 1 then Accept;
{ ani pli velk dlitele zkouet nebudeme }
if cislo >= N then Accept;
{ jinak zkoume, zda vygenerován slo dl N }
if N mod cislo <> 0 then Accept;
Reject;

end.

Názorně si ukážeme, jak vypadá výpočet paralelizátoru na tomto pro-

gramu pro N — 3 a pro N = 6. Kopie programu, které vznikají během
výpočtu, budeme číslovat v pořadí, v jakém vznikají.

Pro N — 3 bude výpočet probíhat následovně:
o Spustí se kopie #1 (tedy vlastně originál).
t> Spočítá, že poceLcifer = 2.
D> Spustí se for-cyklus pro i — 1.
t> Kopie #1 se zastaví, vzniknou kopie #2 a #3.
о V kopii #2 je cislo — 0, v kopii #3 je cislo = 1.
о V obou běžících kopiích pokračuje for-cyklus pro i — 2.
> Kopie #2 a #3 se zastaví, z #2 vzniknou #4 a #5, z #3 vzniknou

#6 a #7.
[> V kopiích #4 až #7 bude mít proměnná cislo hodnoty 0 až 3.
o Kopie #4 a #5 úspěšně skončí, neboť čísla 0 a 1 nechceme testovat

jako dělitele.
D> Kopie #2 úspěšně skončí, neboť už úspěšně skončily obě kopie, které

z ní vznikly.
o Kopie #7 úspěšně skončí, neboť ani číslo 3 nechceme testovat,
o Kopie #6 úspěšně skončí, neboť 2 nedělí 3.
t> Kopie #3 úspěšně skončí, neboť už úspěšně skončily obě kopie, které

z ní vznikly.
t> Kopie #1 (tedy původní program) úspěšně skončí, neboť už úspěšně

skončily obě kopie, které z ní vznikly.
Pro N = 6 bude výpočet probíhat následovně:

> Podobně jako při N = 3 se dostaneme do situace, kdy běží kopie #8
až #15, proměnná cislo v nich má hodnoty postupně od 0 do 7.

t> Kopie #8 a #9 (s příliš malým číslem) úspěšně skončí.
> Kopie #4 (z níž vznikly #8 a #9) úspěšně skončí.
> Kopie #14 a #15 (s příliš velkým číslem) úspěšně skončí.
t> Kopie #7 (z níž vznikly #14 a #15) úspěšně skončí.
t> Kopie #10 až #13 skončí — a to: #12 a #13 úspěšně (4 ani 5 ne-

dělí 6), #10 a #11 neúspěšně (2 a 3 dělí 6).
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o Kopie #5 skončí neúspěšně (obě její „děti41 skončily neúspěšně), kopie
#6 skončí úspěšně.

i> Kopie ф2 skončí neúspěšně (neboť kopie #5 skončila neúspěšně), ко-
pie #3 skončí úspěšně.

i> Kopie #1 (tedy původní program) skončí neúspěšně.
Příklad 2: V proměnných N а К jsou přirozená čísla. Napište program

pro paralelizátor, který pro každé N skončí, přičemž úspěšně skončí právě
tehdy, když N má nějakého dělitele z množiny M — {2, 3,..., 2Л — 1}.

ReŠENÍ. Pomocí volání příkazu Some paralelně projdeme všechna
čísla m G M, stačí nám, když libovolné jedno z nich dělí N.

(Jiný pohled na totéž řešení: Pomocí volání příkazu Some „uhod-
neme“ dělitele m G M a ověříme, zda jsme ho uhodli správně. Na náš
program se můžeme dívat tak, že se nevětví, ale každé volání Some
„uhodne44 a do ж dosadí „správnou44 hodnotu. Jestliže tedy N má v mno-
žině M dělitele, najdeme ho, jinak skončíme s nějakým číslem, které N
nedělí.)

Oasová složitost programuje O(K).
{ VSTUP: N, К : integer; >

var cislo : integer;
i,x : integer;

begin
{ paraleln zkoume sla od 0 do 2"K - 1 }
cislo := 0;
for i:=l to К do begin

Some(x);
cislo := 2*cislo + x;

end;

{ 0 a 1 do mnoiny M nepat }
if cislo <= 1 then Reject;
{ zkusme, zda vygenerován slo dl N }
if N mod cislo = 0 then Accept;
Reject;

end.

Soutěžní úlolia. a) V proměnných jehla a seno jsou dva znakové ře-
těžce. Napište co nejrychlejší program pro paralelizátor, který pro každý
vstup skončí, přičemž úspěšně skončí právě tehdy, když se řetězec jehla
nachází v řetězci seno jako souvislý podřetězec. Váš program by tedy měl
úspěšně skončit, jestliže například:

jehla = abcd, seno = aaabcdddaa,

jehla = ddda, seno = aaabcdddaa,
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ale ne v případech:

jehla = abcd, seno = aaabcEdddaa,

jehla — jajsemjehla, seno = vtetokupesenaj ehlaneni.

b) Nad polem přirozených čísel můžeme postavit „pyramidu“. Spodní
řádek pyramidy bude tvořit samotné pole. Každý vyšší řádek bude o 1
kratší než předcházející, přičemž г-tý prvek v novém řádkuje roven součtu
г-tého а (г + l)-ního prvku z řádku pod ním, modulo 10 000 (tzn. pokud
by součet vyšel větší než 9 999, necháme z něho v pyramidě jen jeho
poslední čtyři cifry). Vrchní řádek pyramidy je tvořen jediným číslem.

V proměnné N máme přirozené číslo. V poli A na pozicích 1 až N
máme N přirozených čísel menších než 10 000. V proměnné V je nezá-
porné celé číslo menší než 10 000.

Napište co nej rychlejší program pro paralelizátor, který pro každý
vstup skončí, přičemž úspěšně skončí právě tehdy, když hodnota V je na
vrcholu pyramidy postavené nad polem A.

Příklad:

Vstup:
N = 4

A = (6, 3,9,3)
V = 17

(Pyramida vypadá následovně:)Výstup:
skončí neúspěšně 45

21 24

9 12 12

6 3 9 3

(Pyramida vypadá následovně:)Vstup:
N = 4

Л = (1,2,3,4)
V = 20

Výstup:
skončí úspěšně 20

8 12

3 5 7

12 3 4

P - II - 1

Fotbal

V Absurdistánu právě začíná nový ročník fotbalové soutěže. Tento rok se
ho zúčastní také slavný tým Dynamo Zbicyklu. Jeho trenér už tři noci
pořádně nespal, ale stále ještě nemá připraven plán na tuto sezónu.

Dobře ví, že žádné mužstvo nedokáže vyhrát všechny zápasy, neboť
každá výhra stojí hráče mnoho sil. Vymyslel si proto následující zjedno-
dušení:

Aktuální stav jeho mužstva bude popisovat jedno celé číslo S, které
udává, kolik mají hráči síly. Na začátku sezóny (v den číslo 0) je síla
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mužstva nulová. Každou noc si hráči odpočinou, a proto se jejich síla
zvýší o 1. Pokud chtějí nějaký zápas vyhrát, musí se hodně snažit -

každá výhra je stojí V síly. Mohou samozřejmě také „hrát na remízu,“
což je stojí jenom R síly, případně mohou zápas úplně vypustit a prohrát
ho, což je nestojí nic. (Jestliže chtějí nějaký zápas vyhrát nebo remizovat,
musí 11a to mít dost sil, síla týmu nemůže nikdy klesnout pod nulu.)

Trenér už zná přesný rozpis ligy, ví tedy, ve kterých dnech má jeho
mužstvo volno a kdy hraje nějaký zápas. Napište program, který vypo-

čítá, kolik nejvýše bodů může jeho mužstvo v tomto ročníku ligy získat:
za každou výhru jsou tři body a za remízu jeden.

Formát vstupu: Na vstupu jsou zadána celá čísla V, R (vysvětlená
výše) a počet zápasů N. Následuje N celých čísel — čísla dní, v nichž
hraje naše fotbalové mužstvo zápas.

Můžete předpokládat, že N ^ 10 000 a V > R. Čísla V, R i všechna
čísla dní se vejdou do běžné 32bitové celočíselné proměnné. Čísla dní
jednotlivých zápasů jsou uvedena v rostoucím pořadí.

Formát výstupu: Program vypíše jediné celé číslo
bodů, které může naše mužstvo v soutěži získat.

Příklady:
vstup:
V = 10, R = 3, N = 2
dni zápasů:
3, 13

maximální počet

výstup:
4

(Hráči stihnou nabrat přesně tolik sil,
aby dokázali první zápas remizovat
a druhý vyhrát.)

výstup:vstup:
V = 20, R = 15, TV = 4
dni zápasů:
23, 24, 25, 26

vstup:
V = 30, R = 9, N = 4
dni zápasů:
30, 32, 34, 36

3

(Mužstvo dokáže vyhrát libovolný jeden
z těchto čtyř zápasů.)

výstup:
4

(Ne vždy se vyplatí vyhrát, v tomto pří-
pádě je výhodnější všechny 4 zápasy
remizovat.)

P - II - 2

Housenka

Strom je objekt, který má následující vlastnosti:
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[> Obsahuje konečný počet význačných míst, kterým říkáme vrcholy (je-
jich počet označíme N). Některé dvojice vrcholů jsou spojeny hra-
námi.

t> Je souvislý, tzn. z libovolného vrcholu se můžeme dostat do libovol-
ného jiného vrcholu tak, že postupně projdeme po několika hranách.

t> Obsahuje právě N — 1 hran.
Strom si můžeme představit například jako souvislou silniční síť, kte-

rou tvoří N měst a právě N — 1 silnic mezi nimi.
Na následujícím obrázku je levý graf strom, zatímco zbývající dva

grafy nikoliv — druhý obsahuje příliš mnoho hran a třetí má sice správný
počet hran, ale není souvislý.

Posloupnost na sebe navazujících hran, v níž se žádná hrana neopaku-
je, se nazývá cesta. Všimněte si, že ve stromě vede mezi každými dvěma
vrcholy právě jedna cesta.

Housenka je strom, ve kterém existuje taková cesta (tuto cestu pak
nazýváme tělo housenky), že každý vrchol stromu je buď na této cestě,
nebo sousedí s nějakým vrcholem této cesty (pak ho nazýváme nožička).
Příklad housenky vidíte na následujícím obrázku vlevo.

nožičky

tělo

nožičky

1101001100

Existuje několik způsobů, jak je možné zadat strom. My ho popíšeme
posloupností nul a jedniček: Zvolíme si jeden libovolný vrchol jako vý-
chozí a začneme se z něj po stromě procházet, přičemž chceme navštívit
každý vrchol stromu a chceme projít po každé jeho hraně právě dvakrát
(v každém směru jednou). Během této procházky si budeme zapisovat
nuly a jedničky následovně: Vždy, když přijdeme do vrcholu, ve kterém
jsme ještě nebyli, napíšeme jedničku. Vždy, když se z vrcholu vracíme
zpět (po hraně, kterou jsme do něj přišli), napíšeme nulu. Rozmyslete
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si, že takto dokážeme (aspoň jedním způsobem) popsat libovolný strom
a naopak že z tohoto popisu můžeme strom jednoznačně sestrojit. (Viz
předchozí obrázek vpravo.)

Soutěžní úloha. Na základě zadané posloupnosti nul a jedniček se-

strojte strom a zjistěte, kolik nejméně vrcholů je z něho třeba odstranit,
abychom dostali housenku.

Jinými slovy řečeno, určete v zadaném stromě takovou cestu, pro níž
je množina vrcholů, které na ní neleží ani s ní nesousedí, nejmenší možná.

Formát vstupu: Na vstupu je zadána posloupnost nul a jedniček re-

prezentující strom tak, jak je popsáno výše.
Formát výstupu: Program vypíše jediné celé číslo — minimální počet

vrcholů, které je třeba odstranit z původního stromu, abychom dostali
housenku.

Příklad:

vstup:
110100110100110100

výstup:
2 (Je třeba odstranit 2 vrcholy.)
vstup:
1101101010001011011000

výstup:
0 (Zadaný strom už je housenka.)

Poznámka. V obou uvedených příkladech vstupu procházku začínáme
v „horním" vrcholu stromu a ostatní vrcholy navštěvujeme v pořadí
„zleva doprava."

P - II - 3

Myška
Představte si síť navzájem pospojovaných potrubí. Místa, kde se spojují
konce a začátky potrubí, budeme nazývat uzly. Z každého uzlu může
vést libovolné množství potrubí, podobně do každého uzlu může libo-
volně množství potrubí přicházet. Každé potrubí je upraveno tak, že jím
voda může téci jen jedním směrem. Jednotlivá potrubí mohou mít různý
průřez, takže jimi může protékat za sekundu různé množství vody. (Maxi-
mální množství vody, které může protéci potrubím za sekundu, nazýváme
kapacitou tohoto potrubí.)
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Dva uzly v uvažované síti budou mít speciální význam. Jeden z nich
nazýváme zdroj (a značíme ho s), druhý nazýváme ústí (a označujeme
ho t). Zdroj je jediné místo, kde do naší soustavy potrubí může přitékat
voda, ústí je jediné místo, kde naopak voda může odtékat. Pro jedno-
duchost budeme předpokládat, že do zdroje ani z ústí žádná potrubí
nevedou.

Nyní si představte, že takovouto sítí potrubí necháme protékat vodu
a pro každé potrubí si zapíšeme množství vody, které jím za sekundu
proteče. Tomuto seznamu čísel říkáme tok. Velikost tohoto toku je množ-
ství vody, které za sekundu vyteče ven ústím (nebo ekvivalentně, které
za sekundu přiteče ze zdroje).

a) Příklad sítě potrubí

b) Příklad toku velikosti 2 c) Příklad maximálního toku
Obr. 32

Na obr. 32a) je příklad sítě potrubí, čísla v závorkách představují ka-
pacity jednotlivých potrubí. Na obr. 32b) je vyznačen jeden možný tok
pro naši ukázkovou síť potrubí. Silnou čarou jsou znázorněna potrubí,
kterými teče nějaká voda, čísla u jednotlivých potrubí udávají množství
vody, které za sekundu daným potrubím proteče.

Maximální tok je takový tok, který má pro danou síť potrubí největší
možnou velikost. Jinými slovy řečeno, maximální tok popisuje, jakým
způsobem lze naší sítí potrubí „protlačit14 co největší množství vody za

jednu sekundu. Na obr. 32c) je znázorněn maximální tok v naší ukázkové
síti.

Soutěžní úloha. Představte si, že máte к dispozici krabičku, které za-
dáte popis nějaké sítě potrubí (včetně kapacit jednotlivých potrubí) a ona
vám určí hodnotu maximálního toku. S její pomocí vyřešte následující
problém:
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Na vstupu máte zadáno bludiště
nostmi (vrcholy grafu) a M chodbami (hrany grafu) mezi nimi. V míst-
nosti 1 se nachází myška. V místnosti N je umístěn sýr. Myška unese na-

jednou nejvýše 1 kousek sýra a chce přemístit co nejvíce sýra z místnosti
N do místnosti 1. Nechce ale nikdy vstoupit podruhé do téže místnosti
(samozřejmě kromě místností 1 a N), neboť nechce riskovat, že si tam
na ni počká kocour, který ji tam po prvním průchodu mohl ucítit. Kolik
kousků sýra dokáže myška nejvýše přenést? (Předpokládejte, že místnosti
1 a N nejsou spojeny přímou chodbou, v takovém případě by samozřejmě
myška mohla postupně přenosit všechen sýr.)

Řešením této úlohy je tedy program, v němž můžete volat funkci
NajdiMaximalniTok(...), které zadáte jako parametry popis nějaké sítě
potrubí (počet uzlů, počet potrubí, pro každé potrubí jeho začátek, konec
a kapacitu, a dále informaci, který uzel je zdrojem a který je ústím)
a ona vám vrátí hodnotu maximálního toku v zadané síti. Tuto funkci

nemusíte implementovat, přesný formát parametrů si zvolte tak, jak vám
bude nejlépe vyhovovat.

neorientovaný graf s N míst-

Příklad:

výstup:vstup:
N = 8, M = 101-2, 1-5, 1-7,2-3, 2-4, 3-8,
4-8, 5-6, 6-8,

1

(Myška může jít po cestě 1-2-3-8
pro sýr, 8-7-1 zpět. Mohla by
ještě jít cestou 1-5-6-8 pro sýr,
ale zpět by se už nedostala.)

Toky v grafech (studijní text). V této časti zadání uvádíme formálnější
definice výše uvedených pojmů. Pokud je v zadání úlohy všechno jasné,
tento text číst nemusíte, použijte ho jen v případě nejasností v neformál-
ním popisu.

Začneme několika definicemi: Graf je uspořádaná dvojice (V, E), kde
V je konečná množina vrcholů grafu a i? je konečná množina jeho hran.
Počet vrcholů označme N a počet hran M, hrany označme e\ až ем-
Každá hrana e* spojuje právě dva vrcholy grafu a i a N. Pokud se bude
smět procházet po hraně e* jenom jedním směrem (tj. smíme po ní jít
z vrcholu бii do bi, ale nikoliv opačně), budeme ji nazývat orientovaná
hrana, jinak ji budeme nazývat neorientovaná hrana. Graf nazveme orien-
tovaný, resp. neorientovaný, jestliže jsou všechny jeho hrany orientované,
resp. neorientované.

V grafu budeme mít dva speciální vrcholy. Jeden z nich nazveme

7-8
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zdroj (značíme s) a druhý ústí (značíme t). Dále budeme předpokládat,
že každá hrana má stanovenu svoji kapacitu c* ^ 0. V orientovaném
grafu hrana z a* do bi může mít jinou kapacitu než hrana z b{ do a*, resp.
některá z nich ani nemusí existovat.

Funkci /, která přiřazuje každé hraně množství vody, které touto hra-
nou protéká, nazveme tokem, jestliže splňuje následující podmínky:

> f{ei) G Z pro 1 úi^M. Tedy každou hranou může téci jen celočí-
selné množství vody.

t> 0 ú f(e.i) Ci pro 1 ú i ú M. Tedy žádnou hranou nemůže téci víc
vody, než kolik je její kapacita, ani méně než 0.

t> Nechť a je vrchol různý od zdroje a ústí. Nechť hrany vedoucí z vrcholu
a mají čísla v\, ..., v^. Podobně, nechť hrany vedoucí do vrcholu a

mají čísla plt ..., pt. Potom platí: ^2f(eVi) = £)/(ePť). Tedy ve
i i

„vnitřních1' vrcholech se voda nemůže hromadit.
Tok je tedy taková funkce /, která nám určuje, kolik vody teče kterým

potrubím. Předpokládejme, že do zdroje nevstupují žádné hrany a z ústí
nevystupují žádné hrany. Potom můžeme hodnotu toku f definovat jako
množství vody, které odtéká ze zdroje. Maximální tok je tok s největší
možnou hodnotou pro daný graf.

P - II - 4

Paralelizátor

V zemi je několik měst a každé z nich je označeno nějakým přirozeným
číslem (které se vejde do běžné celočíselné proměnné). Různým městům
jsou přiřazena různá čísla, ale jinak není číslování měst nijak systema-
tické.

Mezi některými dvojicemi měst jsou vybudovány cesty, těchto cest
je celkem M. Všechny cesty jsou jednosměrné. Všechny křižovatky cest
jsou mimoúrovňové, tzn. pokud se vydáme po nějaké cestě, musíme po
ní dojít až do toho města, kde tato cesta končí. Můžete předpokládat, že
v každém městě aspoň jedna cesta začíná nebo končí.

V poli C[0..M — 1][0..1] jsou popsány jednotlivé cesty (г-tá cesta spo-
juje města s čísly C[i — 1] [0] a C[i — 1] [1]).

Soutěžní úloha. Napište co nejrychlejší program pro paralelizátor,
který pro každý přípustný vstup skončí, přičemž úspěšně skončí právě
tehdy, když je síť všech existujících cest silně souvislá tedy pokud
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se z libovolného města můžeme po cestách dostat do libovolného jiného
města.

Poznámka. Úlohu lze řešit v lepším čase než lineárním. Pokud se vám
však takové řešení nepodaří nalézt, část bodů získáte i za pomalejší řešení.

Přiklad 1:

vstup:
M = 5

cesty:
l->2, 2—*3, 3—>1
47 —> 1, 2 —> 47

výstup:
skončí úspěšně
(Po prvních třech cestách můžeme

volně přecházet mezi městy 1, 2
a 3,

díky zbývajícím dvěma se do-
kážeme dostat i do města 47

a z něho zase pryč.)
Příklad 2:

vstup:
M = 3

cesty:
123456 -> 234567, 23 ->47,
345678 ->234567

výstup:
skončí neúspěšně
(Nedokážeme se dostat například

z města 47 do města 123456.)

(Definice paralelizátoru je uvedena v textu úlohy P-I-4.)
Netrvalo dlouho a Kleofáš si uvědomil, že na takovémto zázračném

zařízení dokáže některé problémy řešit až neuvěřitelně rychle. Například
testování prvočíselnosti je skutečně snadné.

Příklad 1: V proměnné N je přirozené číslo. Napište program pro

paralelizátor, který pro každou hodnotu N skončí, přičemž úspěšně skončí
právě tehdy, když N je prvočíslo.

ŘEŠENÍ. Pomocí volání příkazu Both paralelně vygenerujeme všechna
čísla od 2 do N — 1 a najednou pro každé z nich ověříme, zda dělí N.
Každá větev výpočtu úspěšně skončí, jestliže „její“ číslo nedělí N. Aby
původní program úspěšně skončil, musí úspěšně skončit všechny větve,
tedy žádné z vygenerovaných čísel nesmí dělit N. Oasová složitost pro-

gramu je O(logiV).
{ VSTUP: N : integer; }

var moc2, pocet_cifer : integer;
cislo : integer;
i,x : integer;

begin
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{ oetme okrajov ppad }
if N = 1 then Reject;

{ zjistme, kolik m N cifer ve dvojkov soustav }
moc2 := 1;
pocet_cifer := 0;
while moc2 < N do begin

moc2 := moc2 * 2;
inc(pocet_cifer);

end;

{ vygenerujeme sla od 0 do 2~pocet_cifer - 1 >
cislo := 0;
for i:=1 to pocet_cifer do begin

Both(x);
cislo := 2*cislo + x;

end;

{ moc mal dlitele zkouet nebudeme, prohlsme za dobr }
if cislo <= 1 then Accept;
{ ani pli velk dlitele zkouet nebudeme }
if cislo >= N then Accept;
{ jinak zkoume, zda vygenerován slo dl N }
if N mod cislo <> 0 then Accept;
Reject;

end.

Názorně si ukážeme, jak vypadá výpočet paralelizátoru na tomto pro-

gramu pro N — 3 a pro N = 6. Kopie programu, které vznikají během
výpočtu, budeme číslovat v pořadí, v jakém vznikají.

Pro N — 3 bude výpočet probíhat následovně:
t> Spustí se kopie #1 (tedy vlastně originál).
c> Spočítá, že poceLcifer = 2.
o Spustí se for-cyklus pro i = 1.
> Kopie #1 se zastaví, vzniknou kopie #2 a #3.
c> V kopii #2 je cislo = 0, v kopii #3 je cislo = 1.
t> V obou běžících kopiích pokračuje for-cyklus pro i = 2.
> Kopie #2 a #3 se zastaví, z #2 vzniknou #4 a #5, z #3 vzniknou

#6 a #7.
t> V kopiích #4 až ф7 bude mít proměnná cislo hodnoty 0 až 3.
o Kopie #4 a #5 úspěšně skončí, neboť čísla 0 a 1 nechceme testovat

jako dělitele.
> Kopie #2 úspěšně skončí, neboť už úspěšně skončily obě kopie, které

z ní vznikly.
t> Kopie #7 úspěšně skončí, neboť ani číslo 3 nechceme testovat.
r> Kopie #6 úspěšně skončí, neboť 2 nedělí 3.
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o Kopie #3 úspěšně skončí, neboť už úspěšně skončily obě kopie, které
z ní vznikly.

t> Kopie #1 (tedy původní program) úspěšně skončí, neboť už úspěšně
skončily obě kopie, které z ní vznikly.
Pro N — 6 bude výpočet probíhat následovně:

i> Podobně jako při N = 3 se dostaneme do situace, kdy běží kopie #8
až #15, proměnná cislo v nich má hodnoty postupně od 0 do 7.

o Kopie #8 a #9 (s příliš malým číslem) úspěšně skončí.
> Kopie #4 (z níž vznikly #8 a #9) úspěšně skončí.
D> Kopie #14 a #15 (s příliš velkým číslem) úspěšně skončí.
e> Kopie #7 (z níž vznikly #14 a #15) úspěšně skončí.
> Kopie #10 až #13 skončí — a to: #12 a #13 úspěšně (4 ani 5 nedělí

6), #10 a #11 neúspěšně (2 a 3 dělí 6).
> Kopie #5 skončí neúspěšně (obě její „děti“ skončily neúspěšně), kopie

#6 skončí úspěšně.
o Kopie #2 skončí neúspěšně (neboť kopie #5 skončila neúspěšně), ко-

pie #3 skončí úspěšně.
> Kopie #1 (tedy původní program) skončí neúspěšně.

Přiklad 2: V proměnných N а К jsou přirozená čísla. Napište program

pro paralelizátor, který pro každé N skončí, přičemž úspěšně skončí právě
tehdy, když N má nějakého dělitele z množiny M = {2,3,..., 2K — 1}.

Řešení. Pomocí volání příkazu Some paralelně projdeme všechna
čísla m £ M, stačí nám, když libovolné jedno z nich dělí N.

(Jiný pohled na totéž řešení: Pomocí volání příkazu Some „uhod-
neme“ dělitele m £ M a ověříme, zda jsme ho uhodli správně. Na náš pro-

gram se můžeme dívat tak, že se nevětví, ale každé volání Some „uhodne“
a do ж dosadí „správnou11 hodnotu. Jestliže tedy N má v množině M dě-
litele, najdeme ho, jinak skončíme s nějakým číslem, které N nedělí.)

Oasová složitost programuje O(K).

N, К : integer; }-C VSTUP:

var cislo : integer;
i,x : integer;

begin
{ paraleln zkoume sla od 0 do 2~K - 1 }
cislo := 0;
for i:=l to К do begin

Some(x);
cislo := 2*cislo + x;

end;
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{ О a 1 do mnoiny M nepat }
if cislo <= 1 then Reject;
{ zkusme, zda vygenerován slo dl N }
if N mod cislo = 0 then Accept;
Reject;

end.

P - III - 1

Příšery

Na monitoru se zase jednou schyluje к velké bitvě mezi armádou hráče
a armádou jeho počítače.

Každou armádu tvoří N příšer. Každou příšeru můžeme popsat dvěma
přirozenými čísly: první popisuje její útok (útočnou sílu), druhé pak její
obranu (obranné schopnosti). Příšeru s útokem a a obranou b budeme
značit a/b.

Když spolu bojují dvě příšery a útok první je větší než obrana druhé,
druhá příšera je zabita. Může se také stát, že se obě příšery zabijí na-

vzájem nebo že obě přežijí. Příšera vyhraje souboj, pokud zabije druhou
příšeru a sama přežije.

Příšery ovládané počítačem útočí, hráč se musí bránit. Proti každé
z příšer počítače musí poslat právě jednu ze svých příšer. Všechny souboje
probíhají současně.

Úloha. Napište program, který zjistí, kolik mohou hráčovy příšery
maximálně vyhrát soubojů.

Vstup: Na prvním řádku vstupu je celé číslo N (1 N 5Í 10 000) —

počet příšer, které má každý z hráčů к dispozici. Na druhém řádku jsou
uvedeny hráčovy příšery, na třetím pak příšery počítače. Útok i obrana
každé příšery je celé číslo od 1 do 1 000 000 000.

Výstup: Vypište jediné celé číslo — největší počet hráčových příšer,
které mohou najednou vyhrát své souboje.

Příklady:
vstup výstup

23

(Nad příšerou 7/8 vyhraje je-
dině příšera 9/7. Příšeře 1/1
může hráč přiřadit kteroukoliv
ze svých zbylých dvou příšer.)

9/2, 9/7, 8/8
100/100, 1/1, 7/8
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výstupvstup
O4

10/1, 10/1, 10/2, 10/9
10/1, 10/1, 10/2, 10/8
vstup

(Bez ohledu na rozdělení se všechny
příšery zabijí navzájem.)

výstup
44

(Jediné řešení: své příšery hráč při-
řadí postupně třetí, první, druhé
a čtvrté příšeře počítače.)

7/3, 2/12, 47/47, 5/6
10/1, 4/7, 3/G, 1/1

P - III - 2

Biirroland

V Biirrolandu vyřešili otázku nezaměstnanosti po svém — zaměstnali
hromadu úředníků. Aby měli noví úředníci co na práci, začali vydávat
nejrůznější potvrzení, která je potřeba předkládat při různých příležitos-
těch. A jelikož úředníků je mnoho, každý z nich je úzce specializovaný
a vydává pouze jeden typ potvrzení. Stejný typ potvrzení ovšem může
vydávat více úředníků.

Dostat od úředníka potvrzení, které vydává, není nikterak lehké.
Abyste ho dostali, musíte mít potvrzení jiného konkrétního typu а к tomu
ještě musíte úředníkovi předložit několik svých osobních dokladů. (Nezá-
leží na tom, jakých, důležitý je pouze jejich počet.)

Jožin už vlastní jedno potvrzení, ale potřeboval by si vyřídit potvrzení
jiného typu. Nyní ho zajímá, jestli je to vůbec možné a pokud ano, jaký
nejmenší počet osobních dokladů mu к tomu bude stačit. (Pro Jožina je
snazší oběhat pár úředníků navíc než najít ve své rodné bažině rodný
list.)

Úloha. Je dán počet různých typů potvrzení N (2 Sí N ^ 10 000),
počet úředníků M (1 ^ M 'š 1000 000) a číslo К (1 čí К ^ 10 000)
udávající počet různých osobních dokladů existujících v Biirrolandu.

Typy potvrzení jsou očíslované od 1 do N. Jožin vlastní potvrzení
typu 1 a shání potvrzení typu N.

Pro každého úředníka jsou dána tři čísla: typ potvrzení, které mu je
potřeba ukázat, typ potvrzení, které vydává, a počet osobních dokladů,
které je nutné mít s sebou (číslo od 0 do K).

Váš program má vypsat nejmenší počet osobních dokladů, které stačí
к získání potvrzení typu N, a také pořadí, v jakém máme potvrzení vy-
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řizovat. Pokud není možné požadované potvrzení získat, vypište místo
toho zprávu, že to není možné.

Příklad:

Ivstup
N = 4, M = 5, К = 2
1 4 2

1 2 0

2 3 2

3 4 1

1 3 1

Existuje více způsobů, jak získat čtvrté potvrzení. Můžeme ho do-
stát přímo za potvrzení 1 (u prvního úředníka), ale к tomu potřebujeme
dva doklady. Nebo si můžeme nejdříve zařídit potvrzení 2 (u druhého
úředníka), potom 3 (u třetího) a nakonec 4 (u čtvrtého), ovšem к tomu
potřebujeme předložit třetímu úředníkovi také 2 doklady. Nejlepší je zís-
kat potvrzení 3 (u pátého úředníka) a potom 4, na což nám stačí jediný
doklad.

výstup
1

3 4

P - III - 3

Piškvorky

Mach a Šebestová spolu mají rozehranou partii piškvorek. Šebestová
hraje s křížky a začínala.

V proměnných R a C je počet řádků a sloupců hrací plochy, v dvou-
rozměrném poli A je na souřadnicích [i,j] (kde 0 ^ i < R, 0 j < C)
znak ,X‘, ,0‘ nebo (zatím prázdné políčko). V proměnné К je délka
řady potřebné к výhře partie.

Můžete předpokládat, že vstup korektně popisuje rozehranou partii,
ve které je právě na tahu Šebestová. (Čili počet křížků a koleček je stejný
a nikde na hrací ploše se ještě nevyskytuje К stejných znaků v řadě vedle
sebe.)

Soutěžní úloha. Napište co nejrychlejší program pro paralelizátor,
který pro každý přípustný vstup skončí, přičemž úspěšně skončí právě
tehdy, když v zadané pozici má Šebestová vyhrávající strategii (jinými
slovy, pokud existuje postup, který určí, jak má Šebestová hrát a rea-

govat na Machovy tahy tak, aby vždy vyhrála, ať už Mach hraje jakko-
liv).
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Příklady.
I vstup
R = 6, C = 5, К = 4

( \

výstup
skončí úspěšně

(Šebestová začne tahem na políčko
[2,3], čili na políčko v třetím
řádku a čtvrtém sloupci, čímž
dostane tři znaky X vedle se-
be. I když Mach odpoví tahem

políčko [5,0] nebo [1,4], Še-
bcstová může v dalším tahu

vždy táhnout na druhé z nich
a vyhrát.)

A = .0X0.

Vх:::;

na

I vstup
R = 6, C = 5, К = 4

/хохох\
хохох
0X0.0
xo.ox

\oxoxo/

výstup
skončí neúspěšně

(Šebestová prvním tahem řadu čtyř
nevytvoří, dokonce ani nedokáže
zabránit Machovi, aby příštím
tahem vyhrál.)

A =

výstup
skončí neúspěšně

vstup
R = 5, C = 6, К = 6

/ \
(Rada šesti se dá vytvořit jedině

vodorovně. Mach proto snadno
zabrání Šebestové vyhrát. Při
optimální hře obou hráčů partie
skončí remízou.)

Piškvorky (studijní text). Piškvorky jsou hra, kterou hrají dva hráči
na čtverečkovaném papíru obdélníkového tvaru. Na začátku hry se hráči
dohodnou na celém kladném čísle К. Každý hráč má svou značku: hráč,
který začíná, obvykle používá křížek (,X‘), druhý hráč kolečko (,0‘). Hráči
tahají střídavě, v každém tahu hráč zvolí prázdné políčko na hracím plánu
a umístí na něj svou značku. Hra končí, pokud některý z hráčů kdekoliv
na hracím plánu vytvořil souvislou řadu К svých znaků ve vodorovném,
svislém nebo úhlopříčnám směru. Pokud se celá plocha zaplní a nikdo
nevyhrál, hra končí remízou.

(Definice paralelizátoru je uvedena v textu úlohy P-I-4.)

A =

{■■■■■■/
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Netrvalo dlouho a Kleofáš si uvědomil, že na takovémto zázračném
zařízení dokáže některé problémy řešit až neuvěřitelně rychle. Například
testování prvočíselnosti je skutečně snadné.

Příklad, 1: V proměnné N je přirozené číslo. Napište program pro

paralelizátor, který pro každou hodnotu N skončí, přičemž úspěšně skončí
právě tehdy, když N je prvočíslo.

ŘEŠENÍ. Pomocí volání příkazu Both paralelně vygenerujeme všechna
čísla od 2 do N — 1 a najednou pro každé z nich ověříme, zda dělí N.
Každá větev výpočtu úspěšně skončí, jestliže „její“ číslo nedělí N. Aby
původní program úspěšně skončil, musí úspěšně skončit všechny větve,
tedy žádné z vygenerovaných čísel nesmí dělit N. Časová složitost pro-

gramu je 0(\ogN).
N : integer; }{ VSTUP:

var moc2, pocet_cifer : integer;
cislo : integer;
i,x : integer;

begin
{ oetme okrajov ppad }
if N = 1 then Reject;

•C zjistme, kolik m N cifer ve dvojkov soustav }
moc2 := 1;
pocet_cifer := 0;
while moc2 < N do begin

moc2 := moc2 * 2;
inc(pocet_cifer);

end;

{ vygenerujeme sla od 0 do 2~pocet_cifer - 1 }
cislo := 0;
for i:=l to pocet_cifer do begin

Both(x);
cislo := 2*cislo + x;

end;

-[ moc mal dlitele zkouet nebudeme, prohlsme za dobr }•
if cislo <= 1 then Accept;
{ ani pli velk dlitele zkouet nebudeme }
if cislo >= N then Accept;
{ jinak: zkoume, zda vygenerován slo dl N }
if N mod cislo O 0 then Accept;
Reject;

end.

Názorně si ukážeme, jak vypadá výpočet paralelizátoru na tomto pro-

gramu pro iV = 3 a pro N = 6. Kopie programu, které vznikají během
výpočtu, budeme číslovat v pořadí, v jakém vznikají.
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Pro N = 3 bude výpočet probíhat následovně:
> Spustí se kopie #1 (tedy vlastně originál).
> Spočítá, že poceLcifer = 2.
o Spustí se for-cyklus pro i = 1.
o Kopie #1 se zastaví, vzniknou kopie #2 a #3.
t> V kopii #2 je cislo = 0, v kopii #3 je cislo = 1.
[> V obou běžících kopiích pokračuje for-cyklus pro i = 2.
> Kopie #2 a #3 se zastaví, z #2 vzniknou #4 a #5, z #3 vzniknou

#6 a #7.
> V kopiích #4 až #7 bude mít proměnná cislo hodnoty 0 až 3.
> Kopie #4 a #5 úspěšně skončí, neboť čísla 0 a 1 nechceme testovat

jako dělitele.
> Kopie #2 úspěšně skončí, neboť už úspěšně skončily obě kopie, které

z ní vznikly.
> Kopie #7 úspěšně skončí, neboť ani číslo 3 nechceme testovat.
t> Kopie #G úspěšně skončí, neboť 2 nedělí 3.
t> Kopie #3 úspěšně skončí, neboť už úspěšně skončily obě kopie, které

z ní vznikly.
t> Kopie #1 (tedy původní program) úspěšně skončí, neboť už úspěšně

skončily obě kopie, které z ní vznikly.
Pro N — 6 bude výpočet probíhat následovně:

> Podobně jako při Ač = 3 se dostaneme do situace, kdy běží kopie #8
až #15, proměnná cislo v nich má hodnoty postupně od 0 do 7.

> Kopie #8 a #9 (s příliš malým číslem) úspěšně skončí.
> Kopie #4 (z níž vznikly #8 a #9) úspěšně skončí.
d> Kopie #14 a #15 (s příliš velkým číslem) úspěšně skončí.
> Kopie #7 (z níž vznikly #14 a #15) úspěšně skončí.
> Kopie #10 až #13 skončí — a to: #12 a #13 úspěšně (4 ani 5 nedělí

6), #10 a #11 neúspěšně (2 a 3 dělí 6).
> Kopie #5 skončí neúspěšně (obě její „děti“ skončily neúspěšně), kopie

#6 skončí úspěšně.
t> Kopie #2 skončí neúspěšně (neboť kopie #5 skončila neúspěšně), ко-

pie #3 skončí úspěšně.
o Kopie #1 (tedy původní program) skončí neúspěšně.

Příklad 2: V proměnných N а К jsou přirozená čísla. Napište program

pro paralelizátor, který pro každé N skončí, přičemž úspěšně skončí právě
tehdy, když N má nějakého dělitele z množiny M = {2,3,. ..,2^ — 1).

Řešení. Pomocí volání příkazu Some paralelně projdeme všechna
čísla m G M, stačí nám, když libovolné jedno z nich dělí N.

121



(Jiný pohled na totéž řešení: Pomocí volání příkazu Some „uhod-
neme“ dělitele m G M a ověříme, zda jsme ho uhodli správně. Na náš
program se můžeme dívat tak, že se nevětví, ale každé volání Some
„uhodne“ ador dosadí „správnou" hodnotu. Jestliže tedy N má v mno-
žině M dělitele, najdeme ho, jinak skončíme s nějakým číslem, které N
nedělí.)

Oasová složitost programuje 0(K).
{ VSTUP: N, К : integer; }

var cislo : integer;
i,x : integer;

begin
{ paraleln zkoume sla od 0 do 2~K - 1 }
cislo := 0;
for i:=l to К do begin

Some(x);
cislo := 2*cislo + x;

end;

{ 0 a 1 do mnoiny M nepat }
if cislo <= 1 then Reject;
{ zkusme, zda vygenerován slo dl N }
if N mod cislo = 0 then Accept;
Reject;

end.

P - III - 4

Násobek

násobek.pas / násobek.с / násobek.cpp
násobek.in

násobek.out

Program.:
Vstup:
Výstup:

Nejmenší kladný násobek čísla 13, který je tvořen jen číslicemi 1 a 2,
je 221. I číslo 997 má násobky zapsané jen pomocí číslic 1 a 2, nejmen-
ším z nich je 1 121 222 212 = 997 x 1 124 596. Nejmenším násobkem tří,
ve kterém mohou být použity pouze číslice 4 a 7, je číslo 444.

Vaši úlohou je napsat program, který bude taková čísla hledat.
Vstup: Na prvním řádku vstupního souboru je uveden řetězec R tvo-

řený minimálně jednou a maximálně deseti číslicemi (od 0 do 9). Všechny
tyto číslice jsou navzájem různé.

Na druhém řádku je uvedeno jedno kladné celé číslo N (1 ^ ^
^ 1000 000).
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Výstup: Vypište jediný řádek a v něm jediné celé číslo nej menší
kladný násobek čísla N, ve kterém se vyskytují pouze číslice z řetězce R.
(Pozor, toto číslo může mít mnoho číslic.)

Pokud číslo N žádný takový násobek nemá, vypište místo toho řetězec
„neexistuje".

Příklad: násobek.in násobek.out

112122221212

997

Příklad: násobek.in

1379

násobek.out

neexistuje
2

Příklad: násobek.in

7654321

násobek.out

47

47

P - III - 5

Stránka

stranka.pas / stranka.c / stranka.cpp
stranka.in

stranka.out

Program:
Vstup:
Výstup:

Rozhodli jsme se, že začneme konkurovat světoznámým vyhledává-
čům, jako jsou například Google a Yahoo. Hlavním klíčem к úspěchu
bude samozřejmě prezentace nalezených stránek uživateli. Přesněji, chtěli
bychom z každé nalezené stránky ukázat co nejkratší úsek obsahující
všechna slova, která uživatel hledal. Vaší úlohou bude napsat program,

který takový lišek v dané stránce nalezne.
Soutěžní úloha. Je dáno N slov, která uživatel zadal. Také je dán

text stránky obsahující M slov. Napište program, který najde nejkratší
úsek stránky, v němž se vyskytují všechna zadaná slova (každé alespoň
jednou).

Úsek stránky tvoří několik po sobě jdoucích slov. Délka ťíseku je rovna
součtu jejich délek plus jejich počet minus 1 (za mezery mezi nimi). Tedy
například úsek „Toto je úsek" má délku 12.

Vstup: Na prvním řádku vstupního souboru je jediné celé číslo N —

počet vyhledávaných slov. Následuje N řádků, na každém z nich je jedno
vyhledávané slovo. Všechna tato slova jsou navzájem různá.

123



Na dalším řádku se nachází celé číslo M počet slov na stránce.
Následuje M řádků, na každém z nich je jedno slovo textu stránky, v po-

řadí, v jakém jsou na stránce uvedena.
Omezení: Každé slovo je řetězec tvořený 1 až 100 malými písmenky

anglické abecedy.
Pro počet vyhledávaných slov N platí 1 ^ 5 000. Součet délek

vyhledávaných slov nepřekročí 100 000.
Pro počet slov na stránce M platí 1 ^ M 200 000. Součet délek

slov na stránce nepřekročí 1 000 000.
Výstup: Vypište nejkratší úsek stránky, v němž se každé vyhledávané

slovo vyskytuje alespoň jednou. Pokud je takových úseků více, vypište
ten, který je nejblíže к začátku stránky. Úsek vypisujte tak, jak je uveden
na vstupu, tedy každé slovo na samostatném řádku.

Pokud se některé vyhledávané slovo v textu stránky nenachází, vy-

pište jediný řádek s textem „Chybná stránka!“ (bez uvozovek),
stranka.inPříklad: stranka.out
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Kategorie Z5

Texty úloh

Z5 - I - 1

Doplň do prázdných políček přirozená čísla od 1 do 20 (každé číslo můžeš
použít jen jednou) tak, aby platily matematické vztahy:

: 7

(M. Smitková)

Z5 - I - 2

Blecha Skákalka skáče po číselné ose. Dokáže však jen dva druhy skoků.
Jedním přeskočí o 14 čísel doprava nebo doleva, druhým přeskočí o 18 čí-
sel doprava nebo doleva. Právě stojí na čísle 2.
a) Najdi způsob, jak má blecha skákat, aby se dostala právě čtyřmi skoky

na desítku.

b) Blecha tvrdí, že včera byla na třináctce. Mluví pravdu, nebo lže?
Zdůvodni. (M. Dillingerová)

Z5 - I - 3

Pohádkový nafukovací čtverec, který umí mluvit, měl před 5 minutami
délku strany 8 cm. Při každé lži zvětší svůj obvod dvojnásobně, při každé
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vyslovené pravdě se zmenší délka každé jeho strany o 2 cm. Za posledních
5 minut dvakrát lhal a dvakrát mluvil pravdu.
a) Jaký největší obvod může teď mít?
b) Jaký nejmenší obvod může teď mít? (S. Bodláková)

Z5 - I - 4

Pepa na pouti koupil čtyři autíčka
stálo dvakrát tolik co červené, zelené třikrát tolik co bílé a za modré za-

bílé, červené, zelené a modré. Bílé

platil tolik, co za červené a bílé dohromady. Přitom červené stálo o 70 Kč
méně než zelené. Kolik stála jednotlivá autíčka? (Š. Ptáčková)

Z5 - I - 5

Máma stonožka má dvě děti a manžela. Každý z nich má sto nohou
a všichni si berou denně čisté ponožky. V sobotu ráno v 6:00 začala máma
stonožka dávat špinavé ponožky do pračky. Najednou se jí do pračky
vejde 357 ponožek. Tato jedna várka se vypere za dvě a půl hodiny.
Zjisti, kdy skončí s praním, pokud víš, že ponožky pere jenom jednou
za týden, uložení ponožek do pračky jí trvá 2 minuty a jejich vyndání

(S. Bednářová)3 minuty.

Z5 - I - 6

Maminka má v lednici cihlu sýra, která je znázorněná na obr. 33. Po-
stupně z ní odřezává 1 cm silné plátky na smažení. Nejprve odřízla ze-

předu plátek s rozměry 21 cm, 8 cm, 1 cm pro tatínka. Pak zboku odřízla
pro Jiříka, zezadu pro sebe a nakonec z druhého boku pro Aničku. Napiš,
jaké rozměry mají jednotlivé plátky. Urči rozměry zbytku sýra.

(M. Dillingerová)

8 cm

Jiříkovi
Aničce

Z 12 cm

21 cm

tatínkovi

Obr. 33
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Z5 - II - 1

Doplň do prázdných políček přirozená čísla od 1 do 16 (každé číslo můžeš
použít jen jednou) tak, aby platily matematické vztahy:

+ 2

• 7

(M. Smitková)

Z5 - II - 2

Petr slepil 17 hracích kostek do hada (jako na obr. 34). Kostky lepil vždy
tak, že slepil stěny se stejným počtem teček. Potom si hada prohlédl
ze všech stran a správně spočítal všechny tečky na jeho povrchu. Kolik
mu vyšlo? (Součet teček na protilehlých stěnách hrací kostky je 7.)

(S. Bodláková, M. Dillingerová)

/ /' X PI ZZ71

Obr. 34

Z5 - II - 3

Myslím si trojmístné přirozené číslo menší než 200. Pokud jeho trojná-
sobek zaokrouhlím na stovky, zvětší se o 36. Které číslo si myslím?

(M. Dillingerová)
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Kategorie Z6

Texty úloh

Z6 - I - 1

Doplň do prázdných políček přirozená čísla od 1 do 20 (každé číslo můžeš
použít jen jednou) tak, aby platily matematické vztahy:

- 2

(M. Smitková)

Z6 - I - 2

Sněhurka se sedmi trpaslíky sbírala lískové oříšky. Měla jich tolik, kolik
všichni trpaslíci dohromady. Když se vraceli, potkali veverku Loudilku.
Sněhurka i každý trpaslík jí dali stejný počet oříšků. Když pak trpaslíci
a Sněhurka vysypali zbylé oříšky na stůl, zapsal Prófa jejich počty: 120,
316, 202,185, 333, 297, 111 a 1 672. Kolik oříšků dostala veverka Loudilka?

(L. Hozová)

Z6 - I - 3

Když jsme čísla 80 a 139 vydělili stejným přirozeným číslem, získali jsme
zbytky 8 a 13. Jakým číslem jsme dělili? (M. Volfová)
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Z6 - I - 4

Obvod trojúhelníku je 16 cm. Jak dlouhé může mít strany, když jsou to
v centimetrech přirozená čísla a součet délek dvou stran je o 6 cm větší
než délka třetí strany? (L. Hozová)

Z6 - I - 5

Maruška dostala pět různě těžkých koláčů. Průměrná hmotnost jednoho
koláče byla 200 gramů. Maruška jeden koláč snědla a průměrná hmotnost
zbylých koláčů pak byla 160 gramů. Jakou hmotnost měl koláč, který
Maruška snědla? (В. Šťastná)

Z6 - I - 6

Urči obsah šedé plochy vyplňující část útvaru mezi dvěma čtverci (roz-
měry na obr. 35 jsou v centimetrech). (P. Tlustý)

Z6 - II - 1

Pan Kutil chtěl v koupelně vybarvit hvězdicové ornamenty na 20 dláždi-
cích. Na plechovce s barvou bylo napsáno, že barva vystačí na 750cm2.
Kolik nejméně plechovek musel pan Kutil koupit, pokud jeden čtvereček
sítě má obsah 1 cm2? Ornament na jedné dlaždici vidíte na obr. 36.

(L. Hozová)
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Z6 - II - 2

V jeskyni žije pět obrů. Jejich průměrná výška je 45 504,03 cm. Obr Dro-
beček měří 174,53m, obr Kulihrach 173 530,5mm, obr Zlobr 1 745,23dm,
obr Hrompac 0,017 34 km.
a) Zjisti, kolik měří pátý obr Koloděj.
b) Seřaď obry podle velikosti od nejmenšího po největšího.

(S. Bednářová)

Z6 - II - 3

Sněhurka dala každému trpaslíkovi stejný počet kiiliček. Trpaslíci házeli
hrací kostkou. Kolik jim padlo teček, tolik kuliček museli vrátit Sněhurce.
Každému z šesti trpaslíků padl jiný počet teček. Kolik teček padlo sed-
mému trpaslíkovi, když trpaslíkům zbylo dohromady 46 kuliček? Kolik
kuliček dala Sněhurka každému trpaslíkovi na začátku? (L. Hozová)
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Kategorie Z7

Texty úloh

Z7 - I - 1

Pat a Mat upravovali nový asfalt na cestě. Nejprve s válcem jeli 10 m

dopředu, potom 7 m couvli. Pak opět popojeli 10 m dopředu a 7m couvli
atd. Takto pokračovali, než poprvé sjeli z nového asfaltu.
a) Kolik metrů ujeli na novém 540 m dlouhém úseku cesty?
b) Kolikrát přejeli po 19. metru nového asfaltu? (M. Dillingerová)

Z7 - I - 2

Zjisti obsah a velikosti vnitřních úhlů mnohoúhelníku znázorněného v ко-
sočtvercové síti na obr. 37, jestliže víš, že přímky sítě svírají úhel 80°
a jeden malý kosočtvereček má obsah 1 cm2. (Pozor, obr. 37 je nepřesný!)

(S. Bednářová)

Obr. 37

Z7 - I - 3

Na obr. 38 vidíš tzv. kvadroládu (speciální druh rolády). Je vyrobena
z bílé a hnědé marcipánové hmoty, přičemž obě hmoty mají stejnou
tloušťku, a to lem. Celá kvadroláda má délku 15cm. Prodává se roz-

krájená na 10 shodných plátků. Zjisti
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a) rozměry jednoho plátku,
b) kolik gramů hnědé hmoty a kolik gramů bílé hmoty je třeba na její

přípravu, jestliže víš, že 1 cm3 marcipánu má hmotnost 2 gramy.

(S. Bednářová)

1 cm г
15 cm

Obr. 38 1 cm

Z7 - I - 4

Najdi všechna pětimístná přirozená čísla, která se škrtnutím první a po-
slední číslice zmenší 250krát. (L. Šimůnek)

Z7 - I - 5

Pavel měl za domácí úkol vyjádřit desetinnými čísly zlomky | a Chtěl
udělat paní učitelce radost a místo do sešitu psal na laťky školního plotu.
Nejprve vyjadřoval |, takže nahoru na první laťku napsal nulu, na druhou
desetinnou čárku, na třetí 4. Takto pokračoval, dokud nenapsal číslici na

poslední laťku. Potom vyjadřoval yk. Na první laťku dolů napsal nulu, na
druhou desetinnou čárku, na třetí 5 atd. Kolik bylo v plotě latěk, víš-li, že
číslici 5 napsal přesně 667krát a že na 668 laťkách byla dvojice stejných
číslic? (P. Tlustý, M. Dillingerová)

Z7 - I - 6

V Kocourkově jsou dvě směnárny. V současnosti mají tyto kurzy:

2. směnárna1. směnárna

Nakupujeme ProdávámeNakupujeme Prodáváme
134 Kk 143 Kk123 Kk 132 Kk 1 euro1 euro
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Slávek Mazaný měl několik eur. V druhé směnárně je vyměnil za kocour-
kovské koruny a ty potom vyměnil v první směnárně zpět za eura. Takto
vydělal 1 euro. Kolik eur měl původně? (S. Bednářová)

Z7 - II - 1

Síť na obr. 39 je složena ze shodných rovnora-

menných trojúhelníků, z nichž každý má obsah
2 cm2, přičemž některý z vnitřních úhlů trojúhel-
niku měří 100°. Zjistěte obsah a velikost vnitřních
úhlů mnohoúhelníku znázorněného v této trojil-
helníkové síti. (Pozor, obrázek může být velmi ne-

(S. Bednářová)přesný.)

Z7 - II - 2

Najdi všechna čtyřmístná čísla, která se po škrt-
nutí prostředních dvou cifer zmenší 120krát.

(S. Bednářová)

Z7 - II - 3

Král Originál I. si sám navrhl a nechal vybudovat bazén. Na obr. 40 vidí-
te, jak vypadá při pohledu shora. Dno je pokryté čtvercovými dlaždicemi
o straně délky 2 metry, betonové stěny jsou 3 metry vysoké a 0,5 metru
silné. Zjistěte, kolik kilogramů betonu spotřebovali na stěny bazénu, jest-
lize 1 m3 betonu váží 2 000 kg. (S. Bednářová)

Obr. 40
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Kategorie Z8

Texty úloh

Z8 - I - 1

Součin ciferného součinu a ciferného součtu dvojmístného přirozeného
čísla je 126. Které číslo to je? Najděte všechna možná řešení.

(M. Raabová)

Z8 - I - 2

Paní Zručná se ucházela o místo v perníkárně. Při pohovoru s vedoucím
chtěla říci, za kolik minut ozdobí kolik perníků. Byla nervózní, a proto
omylem prohodila počet minut s počtem perníků. Vedoucí podle výslech-
nutých údajů spočítal, kolik perníků by měla paní Zručná stihnout ozdo-
bit za pětihodinovou pracovní dobu, a tolik jí dal úkolem. Paní Zručné
však trvala práce o 2 hodiny a 12 minut déle. Kolik perníků ozdobila?

(L. Šimůnek)

Z8 - I - 3

Na obr. 41 vidíš tzv. kvadroládu (speciální druh rolády). Je vyrobena
z bílé a hnědé marcipánové hmoty, přičemž obě hmoty mají stejnou
tloušťku, a to 1 cm. Celá kvadroláda má délku 15 cm. Prodává se roz-

krájená na 10 shodných plátků. Zjisti
a) rozměry jednoho plátku,
b) kolik gramů hnědé hmoty a kolik gramů bílé hmoty je třeba na její

přípravu, jestliže víš, že 1 cm3 marcipánu má hmotnost 2 gramy.

(S. Bednářová)

Z8 - I - 4

Roman psal na list papíru celá čísla do řady tak, že každé následu-
jící získával z předchozího střídavě násobením dvěma a odečítáním tří.
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1 cm

15 cm

1 cm

Obr. 41

(Např. řada čísel 1, 2, —1, —2, —5, —10 vyhovuje jeho pravidlu, ale řada
10, 7, 4, 8, 16, 32 jeho pravidlo nesplňuje.) Po chvíli sečetl posledních
5 čísel, která napsal, a vyšlo mu 114. Kterých pět čísel napsal naposledy?

(M. Raabová)

Z8 - I - 5

Určete poloměr větší kružnice, víte-li, že malé kružnice mají poloměr 1 cm

(kružnice mají celkem osm vzájemných dotyků, obr. 42). (P. Tlustý)

Z8 - I - 6

Žák Pažout měl v loňském ročníku průměr všech známek 4,15. Z nich byly
pouze čtyři jedničky, zato právě jedna třetina byly pětky. Kolik známek
musel Pažout minimálně dostat? (L. Simůnek)
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Z8 - II - 1

Každé písmeno tabulky nahrazuje určité přirozené číslo (stejná písmena
představují stejná čísla). Známe součty hodnot ve třetím řádku, ve čtvr-
tém řádku a v prvním sloupci. Určete alespoň jednu vyhovující čtveřici
čísel, jimiž lze nahradit písmena Л, В, C, D.

D А С В
С В D A
В С В C
D A A A

50

45

85

(S. Ptáčkova)

Z8 - II - 2

Máme obrazec ve tvaru T složený z 22 čtverečků o straně 1 cm (obr. 43).
Bodem V prochází přímka p, která rozděluje obrazec na dvě části, bílou
a šedou. Určete, v jakém poměru rozděluje přímka p úsečku AB, víte-li,
že obsahy bílé a šedé plochy jsou stejné. (L. Šimůnek)

PA V

В

Obr. 43

Z8 - II - 3

Majka vytvořila posloupnost čísel, ve které je každé následující číslo
součtem druhých mocnin číslic předcházejícího čísla. Vypište prvních
10 členů této posloupnosti, pokud je její první člen číslo 29. Které číslo

(M. Dillingerová)je v posloupnosti na 2 006. místě?
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Kategorie Z9

Texty úloh

Z9 - I - 1

Určete počet přirozených čísel od 100 do 999, která mají právě dvě stejné
číslice. (P. Tlustý)

Z9 - I - 2

Na obr. 44 jsou tři rovnostranné trojúhelníky, tři malé polokružnice
dotýkající se jedné velké polokružnice o poloměru 1 dm. Určete délku
úsečky AB. (P. Tlustý)

Obr. 44

Z9 - I - 3

V soustavě souřadnic jsme znázornili body A[3,2], 5[—1,1], C[—2,4] a je-
jich obrazy A', B', C ve středové souměrnosti se středem v počátku
soustavy souřadnic. Vypočítejte obsah šestiúhelníku ABCА'В'C.

(S. Bednářová)

Z9 - I - 4

Starý podnikatel zemřel a zanechal po sobě dva bankovní účty, jeden
dluh a závěť. V závěti je psáno, že peníze z prvního účtu si mají rozdělit
první a druhý syn v poměru 1:2, peníze z druhého účtu první a třetí
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syn v poměru 1:3a dluh mají zaplatit druhý a třetí syn v poměru 2 : 3.
Zjistěte, kolik korun bylo na prvním, kolik na druhém účtu a jaký dluh
museli synové zaplatit, víte-li, že v konečném důsledku každý z nich získal

(S. Bednářová)123 45G korun.

Z9 - I - 5

Dva rovnostranné papírové trojúhelníky, z nichž menší má obsah GO cm2,
jsme položili přes sebe tak, že jejich průnikem byl pravoúhlý trojúhelník
s obsahem 30cm2. Jaký nejmenší obsah mohl mít větší z rovnostranných

(S. Bednářová)trojúhelníků?

Z9 - I - 6

Prověrka obsahovala 26 otázek, jež byly rozděleny podle obtížnosti do tří
skupin. V první byla každá správná odpověď hodnocena třemi body, ve
druhé pěti body a ve třetí osmi body. Maximální počet bodů byl 111.
Kolik otázek mohlo být v jednotlivých skupinách?

Petr a Honza šli plavat. Vzdálenosti, které uplavali, byly v poměru
4:5, Honza uplaval více. Další den šli znovu, tentokrát Petr uplaval
o 200 metrů méně a Honza o 100 metrů více než předchozí den a poměr
vzdáleností byl 5:8. Kolik metrů uplavali Honza a Petr první den?

(B. Šťastná)

(L. Šimůnek)

Z9 - II - 1

Určete obsah šedé plochy na obr. 45, pokud víte, že kružnice se navzájem
dotýkají a mají poloměr 1 cm a úsečky, které plochu ohraničují, jsou jejich
společné tečny. (P. Tlustý)

Obr. 45
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Z9 - II - 2

Marek si hraje s jednoduchou kalkulačkou. Na papír si napsal jedno číslo.
Zadal je do kalkulačky a pak postupně mačkal tlačítka: plus, čtyři, děleno,
čtyři, minus, čtyři, krát, čtyři. Výsledek opsal na papír. Poté s tímto
číslem postupoval stejně jako s předcházejícím, tedy zase: plus, čtyři,
děleno, čtyři, minus, čtyři, krát, čtyři. Výsledek si opět opsal na papír.
Celý postup s tímto nově získaným číslem zopakoval a opět výsledek
opsal na papír. Poté zjistil, že součet čtyř čísel zapsaných na papíře je 80.
Která čísla a v jakém pořadí napsal Marek na papír? (M. Raabová)

Z9 - II - 3

V rovnostranném trojúhelníku označte každý bod, jehož vzdálenost
od nejbližšího vrcholu je menší než vzdálenost od těžiště. Kolik procent
plochy rovnostranného trojúhelníku zaujímají body se zmíněnou vlast-

(L. Simůnek)ností?

Z9 - II - 4

Doplňte do čtverečků přirozená čísla tak, aby: součet všech doplněných
čísel byl 44, součet čísel v každém čtyřčtverečkovém čtverci byl stejný,
ncjmenší doplněné číslo bylo liché, uprostřed čtverce bylo jednociferné
číslo.

7
8 4

2

(S. Bednářová)

Z9 - III - 1

Určete obsah šedého měsíčku z obr. 46, pokud víte, že průměr AB větší
polokružnice má délku 2 cm, průměr CD menší polokružnice má délku
1 cm a platí AB || CD. (P. Tlustý)

Z9 - III - 2

Kuba našel ve sklepě tři krabice tvaru kvádru se čtvercovou podstavou.
První byla dvakrát vyšší než druhá. Druhá byla l,5krát širší než první.
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A В

Obr. 46

'Třetí byla třikrát vyšší než první a dvakrát užší než první. V jakém
poměru jsou objemy krabic? (M. Raabová)

Z9 - III - 3

Při přijímacích zkouškách na univerzitu je každému zájemci o studium
přidělován krycí kód složený z pěti číslic. Zkoušky organizoval důkladný,
leč pověrčivý docent, který se před přidělováním kódů rozhodl vyřadit
ze všech možných kódů (tj. 00000 až 99999) ty, které v sobě obsahovaly
číslo 13, tedy číslici 3 bezprostředně následující po číslici 1. Kolik kódů
musel docent vyřadit? (L. Similnek)
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Přípravná soustředění před 47. MMO

Výběrové soustředění pro přípravu na mezinárodní matematickou olym-
piádu proběhlo od 10.-14. dubna v Kostelci nad Černými lesy. Na soustře-
dění bylo pozváno 8 nejlepších řešitelů III. kola kategorie A s výjimkou
těch, kteří se rozhodli dát přednost účasti na Mezinárodní fyzikální olym-
piádě (Pechal, Scholle a Motloch). Nepozvali jsme také vítěze letošního
celostátního kola, protože v době Mezinárodní matematické olympiády
dosáhne 20 let, a tak se dle uznávaných pravidel nemůže této soutěže
zúčastnit. Soustředění bylo zaměřeno na přípravu reprezentantů a po-
sloužilo ke konečné nominaci šestičlenného družstva.

Úspěšnost jednotlivých studentů ukazuje následující tabulka:

4/4 GMK Bílovec
4/4 G Brno, tř. Kpt. Jaroše
3/4 G Brno, tř. Kpt. Jaroše

Jaroslav Haněl

Jakub Opršal
Zbyněk Konečný
Vojtěch Říha
Pavel Šalom
Jan Uhlík

Anežka Faltýnková 3/4 GJŠ Přerov
Tomáš Jeziorský 3/4 GMK Bílovec

89,5
80

79,5
4/4 G Brno, tř. Kpt. Jaroše
8/8 G Rožnov pod Radhoštěm 56,5
4/4 G Brno, tř. Kpt. Jaroše

64,5

48

47,5
40

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo prvních šest vybráno do reprezen-
tačního družstva a sedmý byl určen jako náhradník. Toto družstvo nás
reprezentovalo i na již tradičním střetnutí s družstvy Slovenska a Polska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Jaroslav Zhouf (10.4.),
dr. Karel Horák (11.4.),
dr. Pavel Calábek (12.4.),
dr. Jaroslav Svrček (13.4.)
a doc. Jaromír Simša (14.4.).
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Úlohy zadané na přípravných soustředěních

1. Na tabuli jsou napsána tři čtyřmístná přirozená čísla. Jestliže v je-
jich zápise zaměníme všechny dvojky trojkami, bude součet nových čísel
roven 10 972. Jestliže v zápise původních čísel zaměníme všechny čtyřky
sedmičkami, bude součet nových čísel roven 11 654. Čemu se rovná součet
původních tří čísel?

2. Ve městě vede každá ulice buď ze severu na jih, nebo z východu na zá-
pad. Automobil právě dokončil projížďku městem, při které odbočil právě
stokrát doleva. Kolikrát přitom mohl odbočit doprava, jestliže žádné
místo neprojel dvakrát a nakonec se vrátil na výchozí místo? Každá ulice
je průjezdná v obou směrech.

3. Nechť je dána funkce f(x) = ax2 + bx + c, kde a, b, c jsou celá čísla,
a ^ 0. Dále víme, že rovnice f{x) — 0 má aspoň jeden celočíselný kořen.
Určete /(1), jestliže /(/(1)) = 1.
4. V trojúhelníku ABC (|AP| < \BC\) je bod I střed kružnice vepsané,
M je střed strany AC, N je střed oblouku ABC opsané kružnice. Do-
kažte, že |</MA| = \$:INB\.
5. Dokažte, že pro každé přirozené číslo n existuje n-místné číslo dělitelné
5n, jehož všechny číslice jsou liché.

6. Je dán trojúhelník ABC a kružnice obsahující jeho vrcholy A, B, která
protíná úsečky АС a BC postupně v bodech D a E, přičemž polopřímky
BA a ED se protínají v bodě F. Označme M průsečík přímek BD a CF.
Dokažte, že \MF\ = |A7Cj, právě když \MB\ • \MD\ = \MC\2.7.V rovině je dán trojúhelník ABC a uvnitř bod B. Označme postupně
D, E, F průsečíky přímek PA, BB, BC se stranami BC, CA, AB. Do-
kažte, že

\{ABC][BAF] + [PBD] + [PCE]

právě když bod P leží na některé těžnici trojúhelníku ABC. (Symbol
[XYZ] označuje obsah trojúhelníku XYZ.)8.Nalezněte všechny funkce /: tki PJ takové, že

n) = /O2)f(m + n)f (m

platí pro všechna m, n 6 fU
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[O, +oo) takových, že9.Nechť S je množina všech funkcí /: [0,1]
/(1) = 1 a platí

f(x) + f(y) C fix + y) pro všechna x,y G [0,1], x + у й 1-

Určete nejmenší číslo к tak, že pro všechny funkce f € S a pro všechna
x G [0,1] platí f(x) ^ kx.10.Určete všechna přirozená čísla m, n tak, že platí

2 П2III III п
— + — + ran.

a m mn

11. Nechť p je prvočíslo a q mnohočlen s celočíselnými koeficienty takový,
že pro každé přirozené číslo к platí, že zbytek po dělení čísla q(k) číslem
p je buď 0, nebo 1. Dále platí q(0) = 0a <7(1) = 1. Dokažte, že stupeň
mnohočlenu q je alespoň p — 1.

12. Nechť x, y, z jsou kladná reálná čísla, pro něž platí x2 + y2 + z2 +
+ 2xуz — 1. Dokažte, že pro ně platí nerovnost

2{x + y + z) ú 3.

Kdy nastane rovnost?

13. V rovině uvažujme kružnice k\ a &2, které se protínají v bodech A, B.
Tečna ke kružnici k^ sestrojená v bodě A protíná kružnici k\ v bodě C\
(Ci ф A)] tečna ke kružnici k\ sestrojená v bodě A protíná kružnici
v bodě C2 (C2 ф A). Přímka C1C2 protíná kružnici k\ v bodě D (C\ ф
Ф D ф В). Dokažte, že přímka BD prochází středem úsečky AC2-

14. Uvažujme pravoúhlý trojúhelník ABC s přeponou AB. Nechť В je
průsečík osy vnitřního úhlu při vrcholu C s přeponou AB, dále nechť Ic
značí střed kružnice vně připsané přeponě AB uvažovaného pravoúhlého
trojúhelníku. Dokažte, že platí nerovnost

|CP| йу/2-l.
\PIc\

Kdy nastane rovnost?

143



15.Zapište v desítkové soustavě číselnou hodnotu zlomku

1 ■ (T)2 + 2 ■ (T)2 + 3 • (2°3°6)2 + • ■ ■ + 2006 ■ O2
/200642 . /200642 . /200642 , /200642 , . /200642
loi + l 1 j + l 2 j + l 3 J +•■■ + I20O6J16.Osa vnitřního úhlu BAC trojúhelníku ABC protne stranu BC

v bodě K. Vyjádřete \AK\ pomocí délek a, 6, c stran AABC ve tvaru

VL1L2L3L4
\AK\ U

s vhodnými činiteli Li — ща + Vib + WiC s reálnými koeficienty щ, Ví, W{.

17. Napište příklad tří přirozených čísel a, b, c tak, aby číslo a bylo ná-
sobkem devíti, ne však násobkem jedenácti, aby číslo b bylo násobkem
jedenácti, ne však násobkem devíti, a aby platilo a" + 6" = c100.
18. Máme n mincí M\, М2,..., Mn, jejichž stranám říkáme „hlava“ a

„orel". Pro každé к = 1,2,..., n je mince Mk natolik falešná, že při jejím
hodu padne „hlava“ s pravděpodobností 1 : (2/c + 1). Hodíme-li každou
z těchto n mincí jedenkrát, s jakou pravděpodobností padne „hlava" lichý
počet krát? Odpověď zapište ve tvaru P{n) : Q(n), kde P(n) a Q(n) jsou
mnohočleny proměnné n (tedy jejich stupně a koeficienty jsou na čísle n

nezávislé).
19. Rozhodněte, zda lze vybrat 2 006 různých přirozených čísel menších
než 100 000 tak, aby žádné z nich nebylo rovno aritmetickému průměru
jiných dvou vybraných čísel.

20. Bod M je středem strany AC daného trojúhelníku ABC. Na pro-
dloužení strany BC za bod В je vybrán bod D tak, že \BD\ = \BA\. Osa
úhlu ABC protne přímku MD v bodě P. Dokažte, že úhly ВАР a ACB
jsou shodné.

21. Na listě papíru narýsujeme všechny strany a úhlopříčky některého
konvexního n-úhelníku. Tyto úsečky pak postupně odstraňujeme mazá-
ním podle následující procedury: Vybereme libovolné čtyři různé vrcholy
A, В, C, D takové, že úsečky AB, BC, CD, DA jsou (zatím) narýsovány,
a jednu z těchto čtyř úseček umažeme. Proceduru opakujeme tak dlouho,
dokud to je možné. Pro dané n ^ 4 určete nejmenší možný počet úseček,
které nakonec v n-úhelníku zůstanou narýsovány.
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Mezinárodní střetnutí česko-polsko-slovenské

ŽlLINA, 26.-28. ČERVNA 2006
V rámci závěrečné přípravy před MMO se uskutečnilo již šesté meziná-
rodní střetnutí mezi týmy České republiky, Polska a Slovenska. Jednotlivé
země reprezentovaly šestice účastníků, kteří si vybojovali ve svých zemích
postup na 47. MMO v Lublani.

Organizace a průběh soutěže zůstal zachován z předešlých ročníků —

je přizpůsoben stylu III. kola naší МО a podmínkám na MMO. Soutěží-
cím byly ve dvou dnech předloženy dvě trojice soutěžních úloh, přitom
za každou z úloh mohli získat nejvýše 7 bodů, tj. celkově (stejně jako na

MMO) 42 body. Na každou trojici úloh měli soutěžící vyhrazeno 4,5 ho-
diny.

Pořadí Jméno Země Body Souček
POLMichal Pilipczuk

František Simančík
Michal Burger
Pavel Kocourek
Tomasz Kulczyňski
Tomasz Warszawski
František Konopecký
Marek Pechal

Ondřej Budáč
Jaromír Kuběn
Jozef Bodnár

Wojciegk Šmietanka
Nadbór Drozd
Jakub Závodný
Jakub Opršal
Peter Černo
Piotr Achinger
Jaroslav Hanči

772776

761277
7 7 1 2}K
7 0 7 72 5

2 0 75
761247

1,
30SYK2.

SYK 293.

CZE 284.-5.

POL 28

POD 276.

CZE7.-8. 707073
701574

702077
607207
231275

661700
7 01074
702271
701270

702200
101260
100030

24

č CZE 24

"SYK
CZE

9. 23

2210.

SYK 2011.-12.

POL 20

POL13.-14. 19
N

SYK 19

CZE15.

SYK16. 11

X 17. POL 10

CZE18. 4
/

Hodnocení vyřešených úloh koordinovala mezinárodní komise ve slo-
žení Jaroslav Švrček a Jaroslav Zhouf za Českou republiku, Vojtech Bá-
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lint, Peter Novotny a Ján Mazák za domácí Slovensko a Józef Kalinowski
a Tomasz Szymczyk za Polsko.

Texty soutěžních úloh1.Na kružnici o poloměru r leží pět různých bodů А, В, C, D, E v tomto
pořadí, přičemž platí \AC\ = \BD\ — \CE\ = r. Dokažte, že trojúhelník,
jehož vrcholy tvoří průsečíky výšek trojúhelníků ACD, BCD а ВСЕ, je
pravoúhlý. (Tomáš Juřík)2.Kolem okrouhlého stolu sedí n dětí. Erika je z nich nejstarší a má
n bonbonů. Ostatní děti žádné bonbony nemají. Erika se rozhodla, že
bonbony rozdělí, a stanovila následující pravidla. V každém kole zdvihnou
ruce všechny děti, jež mají u sebe aspoň dva bonbony. Erika jednoho
z přihlášených vybere a ten dá každému svému sousedovi jeden bonbon.
(V prvním kole se tedy přihlásí jen Erika a dá svým dvěma sousedům po

bonbonu.) Zjistěte, pro které n E 3 může dělení po konečném počtu kol
skončit tak, že každé dítě bude mít právě jeden bonbon.

(Peter Novotný)
3. Součet čtyř reálných čísel se rovná 9, součet jejich druhých mocnin se
rovná 21. Dokažte, že daná čísla je možno označit a, b, c a d tak, aby

(Jaromír Šimša)
4. Dokažte, že pro každé přirozené číslo к E 1 existuje přirozené číslo n

takové, že v zápise čísla 2n v desítkové soustavě se nachází blok právě к
po sobě jdoucích nul, tj.

platila nerovnost ab — cd E 2.

2n = ...a 00... 0 6.. * 1

к nul

(Peter Novotný)přičemž číslice a, b jsou nenulové.5.Zjistěte, kolik existuje posloupností celých čísel (an)^S=1 takových, že
pro každé přirozené číslo n platí

an + 2 006
an ~f~ 1 a Йп+2 =

ttn+l + 1
(Peter Novotný)6.Zjistěte, zda existuje konvexní pětiúhelník A1A2A3A4A5 takový, že

pro každé i
a protínají se v bodě Bi, přičemž body В i, B2, B3, В.4, В5 leží v přímce.

(Waldemar Pompě)

1,2, 3,4, 5 jsou přímky AiAi+3, Ai+iAi+2 různoběžné

(Klademe Aq = A\, Ar = A2 a A& — A3.)
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Řešení soutěžních úloh

1. V libovolném tupoúhlém trojúhelníku XYZ s tupým úhlem při vr-
cliolu Z a průsečíkem výšek W mají úlily XYZ a XWZ stejnou velikost,
oba jsou totiž doplňkem do 90° úhlu YXW (obr. 47). Navíc body У a W
leží v opačných polorovinách určených přímkou XZ.

> W

У

Obr. 47

Označme průsečíky výšek uvažovaných trojúhelníků postupně P,
Q, R. Ukážeme, že úhel PQR je pravý.

Zřejmě všechny tři uvedené trojúhelníky mají při vrcholu C tupý
úhel. Body P, Q, R tedy leží ve vnější oblasti dané kružnice (obr. 48).
Z rovnosti \AC\ = \BD\ plyne, že jsou přímky ВС a AD rovnoběžné.
Protože polopřímka BD leží v konvexním úhlu CBE a přitom

CPYAD || BC, CQYBD, CRYBE,

je zřejmé nejen to, že polopřímka CQ leží „mezi“ polopřímkami CP
a CR: tj. v konvexním úhlu PCR, ale také to, že |<PCP| = |<CPP| =
= 30°, neboť tětivě CE velikosti poloměru přísluší středový úhel 60°.

Podle tvrzení z úvodního odstavce leží body Q a R v téže polorovině
určené přímkou BC & platí

\<BEC\ = \<BRC\ \<BDC\ = \<BQC\.a

Přitom úhly ВЕС а ВDC mají stejnou velikost, poněvadž se jedná o ob-
vodové úhly nad společnou tětivou BC. Je tedy také |<PPCj = \^BQC\,
takže čtyřúhelník BCRQ je tětivový. Pro velikost úhlu CRQ proto platí
\<CRQ\ = 180°-|<QPC| = 120° (z \BD\ = \CE\ totiž plyne CD || BE,
což spolu s QB _L CD dává \kQBE\ = 90°, neboli \<QBC\ — 60°).
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DQC■Jí" ~

P

у и

Obr. 48

Analogicky zjistíme, že i čtyřúhelník DCPQ je tětivový a platí
\KCPQ\ — 180° — \ kQDC\ = 120° (PD je výška na stranu AD, přičemž
velikost úhlu ADC nad tětivou AC je 30°). Dopočítáním úhlu PQR ve

čtyřúhelníku PCRQ dostáváme \kPQR\ = 360° — 30° — 2 ■ 120° = 90°.
Tím je tvrzení úlohy dokázáno.

2. Nejprve ukážeme, že pro sudé n dělení nikdy nemůže skončit poža-
dováným způsobem. V každém kole se změní poloha jen dvou bonbonů,
přičemž se posunou „opačnými směryTo nás vede ke zkoumání, jak
se mění celkový součet vzdáleností bonbonů od daného dítěte, řekněme
od Eriky. Označme jednotlivá místa po směru hodinových ručiček čísly
od 0 do n — 1 podle vzdálenosti (v tomto směru) od Eriky. Po každém
kole sečtěme vzdálenosti všech bonbonů od Eriky a označme součet S
(tj. s každým bonbonem zahrneme do S číslo místa, kde sedí jeho ak-
tuální držitel). Pokud v daném kole vybere Erika dítě na místě s číslem к
(1 'А к A n

(k — l) + (k + l) = 2k. Pokud vybere dítě na místě s číslem n —1, v S místo
2(n — 1) = 2n — 2 bude (n — 2) + 0, hodnota součtu se tedy zmenší o n.
A konečně pokud vybere sebe, místo 2 • 0 bude v součtu (n — 1) + 1 = n,
takže se hodnota Son zvětší. Protože na začátku je S = 0 a může se

2), hodnota S se nezmění namísto 2к bude v součtu
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měnit jen o hodnotu ±n, zůstane S po každém kole dělitelné číslem n, tj.
S/n bude stále celé číslo. Ovšem pokud by každé dítě mělo právě jeden
bonbon, výsledný součet by byl

n(n - 1) S n — 1
S — 0 + l + 2 + .- . + (n — 1) — , neboli

2 2n

což pro sudá n není celé číslo. Taková situace tedy nastat nemůže.
Věnujme se teď lichým hodnotám n. Ukážeme, že existuje dělení,

které skončí tak, že každé dítě bude mít právě jeden bonbon. Nechť
n — 2k + 1. Vhodné dělení sestrojíme indukcí; přesněji, dokážeme, že
pro každé i — 0,1,.... к umíme dostat pozici, v níž Erika má n — 2i
bonbonů a prvních i dětí sedících nalevo a zároveň i prvních i dětí na-

právo má po jednom bonbonu. Hodnota i = 0 představuje počátek dělení,
hodnota i = 1 stav po prvním kole (a tedy první indukční krok) a hod-
nota i = к stav, kdy má každý jeden bonbon. Předpokládejme, že se
nám podařilo dostat se do popsané pozice pro nějakou hodnotu i = m,

přičemž 1 5Í m < к (a prošli jsme přitom všemi pozicemi pro i < m).
V této situaci postupujme následovně: Nejprve dá Erika po bonbonu
dvěma svým sousedům (protože m < k, má aspoň tři bonbony a může
to udělat). Další kola jsou znázorněna v následujícím schématu. (Čísla
znamenají počty bonbonů u Eriky a dětí napravo od ní, situace nalevo
je symetrická.)

n — 2rn, 1,..., 1, 0,... n — 2m — 2,2,1,..., 1,0,...
m — 1rn

n — 2m, 0,2,1,..., 1,0,... n - 2m, 1,0,2,1,..., 1,0,...
m—2 m — 3

n — 2m, 1,1,0, 2,1,..., 1,0,...
m—4

n — 2m, 1,..., 1,0, 2,0,... n — 2m, 1,..., 1, 0,1, 0,...
m — 2 m— 1

Dostali jsme se tak do pozice, kdy Erika má n — 2m bonbonů, prvních
m — 1 dětí napravo i nalevo má po jednom bonbonu, m-té dítě po obou
stranách nemá žádný bonbon a děti vzdálené o m+1 míst mají po jednom
bonbonu. Abychom dosáhli pozice pro i = m + 1, stačí doplnit bonbony
právě dětem na místech vzdálených od Eriky o m. Na to však můžeme
využít indukční předpoklad. Pokud si totiž odmyslíme bonbony u dětí
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vzdálených о m + 1 míst, dostaneme pozici pro i = m — 1 (jen Erika má
o dva bonbony méně, avšak stále má aspoň tři, můžeme tedy učinit tytéž
kroky). Odtud se už umíme dostat do situace pro i = m. Vrátíme-li zpět
odmyšlené bonbony, dostaneme pozici pro i = m + 1.

Nakonec se nám proto podaří dosáhnout i pozice pro i = k, tj. pro
lichá n dělení může skončit tak, že každé dítě má právě jeden bonbon.

Poznámky. Pro sudé n, jež není dělitelné čtyřmi, se dá tvrzení doká-
zat jednodušeji. V takovém případě stačí totiž příslušná místa obsazená
dětmi střídavě obarvit bílou a černou. Je zřejmé, že parita počtu bon-
bonů u všech dětí na bílých místech (kterých je pro takové n lichý počet)
se nemění. Na začátku je tato hodnota sudá, zatímco v situaci, kdy by
každé dítě mělo právě jeden bonbon, by byla lichá. Proto není možné se

do takové situace dostat.

Dá se ukázat, že v případě lichého n dělení dokonce musí vždy (bez
ohledu na to, jako děti vybíráme) po konečném počtu kroků skončit tak,
že každé dítě má právě jeden bonbon. Je-li n = 2k + 1, počet kol, po
nichž to nastane, je vždy l2 + 22 + ... + k2.
3. Označme daná čísla p, q, r, s tak, aby p ^ q ^ r ^ s.

Uvažujme nejprve případ p -f q ^ 5. Potom

p2 + q2 + 2pq ^ 25 = 4 + (p2 + q2 + r2 + s2) ^ 4 -f p2 + q2 + 2rs

odkud máme pq — rs ^ 2. V tomto případě tedy tvrzení platí.
Předpokládejme tedy, že p + q < 5; potom

4<9-(p + g)=r + síp + g<5. (1)

Všimněme si, že

(pq + rs) + (pr + qs) + (ps + g?’) =

(p + q + r + s)2 — (p2 + q2 + r2 + s2)
= 30.

2

Navíc

pq -f rs ^ pr + qs ^ ps + qr,

protože (p — s)(q — r) ž 0 a (p - q)(r
pq + rs ^ 10. Z (1) vyplývá 0 ^ (p + q) — (r + s) < 1, takže

s) ^ 0. Odtud dostáváme, že

2(p + q)(r + s) + (r + s)2 < 1.(p + q)2
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Když tuto nerovnost přičteme ke zřejmé rovnosti

(p + q)2 + 2 (p + q)(r + s) + (r + s)2 = 92
dostaneme

(p + q)2 + (r + s)2 < 4i.

Proto

41 = 21 + 2 • 10 S {p2 + Q2 + r2 -f s2) + 2(pg + rs) —

= (p + g)2 + (r + s)2 < 41,

což je spor. Takový případ tedy nastat nemůže.

Jiné řešení. Z rovnosti a + b + c + d = 9 při uspořádání a ^ b ^ c ^ d
nejprve vyplývá, že aritmetické průměry dvojic čísel a, b, resp. c, d mají
pro vhodné £\ ^ 0 vyjádření

c + d 9a + b 9
4+£l

Odtud zase vyplývá vyjádření čísel a, 6, c, d ve tvaru

2 2 4

, 9
d — - — £ i — £3

9 9
c — — — £1+63- +£i +£2

4

pro vhodná £2,£з = 0. Nerovnost b ^ c znamená, že

- + £l — £2
4

a =
44

£1 - e2 ^ —£1 + £3, neboli £2 T £3 = 2£i.

Z rovnosti

21 = (a2 + b2) + (c2 + d?) = 2 • ^ + £1) + 2s2 + 2 • ^ + 2£2 =
— 4 ■ ^ —^ T 4£2 + 2e2 + 2s2 — 20 + — + 2 • (2£2 + £2 + £2)

zjistíme, že nezáporná čísla Ei splňují vztah

2£i + £2 + £3 — g- (2)

Vzhledem к nerovnostem £2 + £3 = 2si a e\ + £2 ^ (£2 + £з)2 vyplývá
z (2) odhad

? й 2e\ + (£2 + £з)2 ^ 2£2 + 4£2 = б£2,8
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odkud č:^ ^ i • I = jk, neboli E\ ^ Pro zkoumaný výraz ab — cd platí
N 2

J + £3 = 9£1 ~ £2 + £3ab — cd —

Dosadíme-li za £3 vyjádření z (2), dostaneme

(- — 2e\ - £3^ + £3 — 9£i + 2e\ - - + 2e\ P
>9--

ab — cd = 9£i —

1 3

16 ~ 83+2' - = 2.

Tím je tvrzení dokázáno.

4. Nejprve ukážeme, že v zápisech mocnin čísla 2 se nalézají libovolně
dlouhé bloky nul. Aby v zápise čísla 2n byl blok aspoň к nul, musí to být
číslo tvaru у ■ Ютп+к -f 2, kde y, 2 jsou přirozená a 2 má nejvýše m číslic,
tj. 2 < 10m. Stačí tedy najít taková n a m, aby bylo 2n ^ iQm+k a zbytek
čísla 2n po dělení číslem 10m+fc byl menší než 10m. Podle Eulerovy věty
pro každé přirozené t platí

2^(5 ) = 1 (mod 5*).

(Využili jsme, že čísla 2 a 5( jsou nesoudělná.) Vynásobením této kon-
gruence číslem 2l dostaneme

2í+¥,(5‘) = 2ř (mod 10ř), neboli 2t+íp{5>) = у • 10* + 2*

pro nějaké přirozené y. Podle předchozích úvah volme n — t + <^(5*) a
m = t — k. Přitom t musí mít takovou hodnotu, aby bylo jednak 2t+'p(d>') ^
^ 10* neboli 2íp(5 ) ^ 5* (což zřejmě platí pro každé t ^ 1, neboť c/?(5ř) =
= 4 • 5Í_1), jednak 2* < 10t_fc. Takové t určitě existuje, stačí například
vzít t — 2k (neboť 22k — 4k < 10fc). Z uvedeného vyplývá, že v čísle

22&+</>(52А _ у _ \Q^k 22k

se nachází blok aspoň к nul.
Vezměme tedy pro dané к takovou mocninu dvojky (označme ji 2n),

jež obsahuje blok právě r nul, přičemž r ^ k. Zkoumejme, co se s blokem
děje, když bereme další mocniny, tj. když číslo s blokem postupně náso¬
bíme dvěma. Vzhledem к tomu, že máme (a, b označují nějaké nenulové
číslice)

2n = ... a 00 ... 0 b ... = у • 10r+s + 2,

r nul
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dostaneme 2n+1 = 2у • 10r+s + 2z. Přitom číslo 2z má zřejmě buď s číslic
(stejně jako číslo z), anebo s + 1 číslic. Z „pravé strany" se tedy blok nul
buď nezmenší, anebo se zmenší o jednu. Z „levé strany'1 se blok může jen
prodloužit (pokud je у dělitelné pěti). Celkově se tak délka bloku buď
zmenší o jednu, nebo se nezmění, nebo se zvětší. Budeme-li dál násobit
dvěma, délka bloku se v každém kroku zmenší nejvýše o jednu. Tedy
jediná možnost, kdy blok nikdy nedosáhne délky k, je, že blok bude mít
stále délku větší než k. To však není možné. Číslo у má totiž ve svém
prvočíselném rozkladu pětku s nějakým exponentem, řekněme a. Když 2n
vynásobíme a-krát dvěma, při dalším násobení se už blok zřejmě „zleva"
prodlužovat nebude. A „zprava" se blok minimálně po každém čtvrtém
násobení zkrátí (neboť 24 > 10). A tak po dostatečném počtu kroků
dostaneme mocninu čísla 2, která obsahuje blok právě к nul.
5. Každá posloupnost splňující podmínky zadání je určena prvními dvě-
ma členy — všechny další vypočítáme z rekurentního vztahu. Hledáme
tedy takové dvojice (oi, <22), pro něž jsou všechny členy posloupnosti celá
čísla. Napišme daný vztah pro několik malých hodnot n. Po odstranění
zlomků dostaneme

аз(а2 + 1) — fti + 2 006,

U4(tt3 + 1) = Й2 ď 2 006,
a5(a4 + 1) = a3 + 2 006,

Odečtěme sousední rovnosti, abychom se zbavili čísla 2 006. Po přeuspo-
řádání členů získáme rovnosti

&3 — «i = («3 + 1)(«4 ~ «2)7
n4 - a2 — (a4 + l)(a5 - a3),
^5 — «з = {a 5 + 1)(«6 — ^4), (1)

Protože podle zadání jsou všechny závorky (an + 1) nenulové, mohou
nastat dvě možnosti. Pokud a3 — ai

předešlých rovností dostaneme také a4 — <22 = 0, <25 — a3 = 0, ..., tj.
0, postupným dosazováním do

(2)a2 = 0,4 = CLq = . .a\ = аз = й5 — • • a

Na druhé straně, pokud а3 — a i 7^ 0, stejným dosazováním odvodíme,
že а4 — й2 ф 0, CZ5 — a3 7^ 0, ... Věnujme se nejprve druhé možnosti.
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Z rovností (1) máme pro každé n ± 1 vztah

1
0 + |ttn_|_3 |&n-|-2 On | T |an+2 - a (3)n •

i^n+2 ± 1|

Dostáváme tak nerostoucí posloupnost kladných celých čísel

|<23 — <2i| ^ |й4 — Й2| ^ I<3-5 — аз| ^ .

Tato posloupnost je zřejmě od určitého členu počínaje konstantní (jinak
bychom z ní mohli vybrat nekonečnou klesající posloupnost kladných
celých čísel, což není možné). Existuje tedy takový index N a hodnota cl,
že pro každé n ± N je |on+2 — an\ = d. Podle (3) potom |an+2 + 1| = 1,
tj. pro každé n ^ Ar + 2 máme an £ {0, —2}. Avšak podle zadání

o-n+2 T 2 00G
CIN+4 =

aN+3 + 1

neboli адг+4 nabývá jedné z hodnot

0 + 2 006 0 + 2 006
= 2 006 = -2 006,

-2 + 1
-2 + 2 006

0 + 1
-2 + 2 006

2 004,= 2 004
-2 + 10 + 1

což odporuje tomu, že адг+4 £ {0, —2}. V tomto případě žádná posloup-
nost podmínkám zadání nevyhovuje.

Každá vyhovující posloupnost proto splňuje (2). Dosazením n — 1
a аз = ai do dané rovnosti dostaneme

ai + 2 006
a2 + 1

neboli 0i02 = 2 006 = 2 • 17 • 59.Ol =

Berouce do úvahy 01,02 ф —1, dostáváme

2 006
oi £ {1, ±2, ±17, ±34, ±59, ±118, ±1003, 2 006} a a 2 =

Ol

Snadno ověříme, že každá takováto posloupnost 01,02,0,1,02,01,...

podmínky zadání splňuje. Hledaných posloupností je tudíž 14.
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6. Zkusme pětiúhelník s popsanými vlastnostmi najít. Překážkou je, že
pětiúhelníky souměrné podle nějaké osy (pro něž by snad mohlo být jed-
nodušší ukázat, že popsané body leží v přímce) mají vždy aspoň jednu
dvojici přímek AíAí+3, Aí+iAí+2 rovnoběžnou. Začněme tedy s jedno-
dušší úlohou — hledejme pětiúhelník A1A2A3A4A5 takový, že jen čtyři
z bodů Bi budou ležet v přímce. Takový si už můžeme dovolit hledat
mezi osově souměrnými pětiúhelníky. Abychom situaci ještě zjednoduší-
li, předpokládejme, že body A2, A3, A4 jsou vrcholy čtverce QA2A3A4
o straně délky 1 a body A\, A 5 leží postupně na stranách QA2 a QA4 ve
vzdálenosti p od vrcholu Q (obr. 49). Ze souměrnosti (pětiúhelník je sou-

měrný podle osy QA3) je zřejmé, že přímky B1B2, B3B5 jsou rovnoběžné.
Snadno vypozorujeme, že v případě, kdy p nabývá malé hodnoty, tj. když
body A\, A$ jsou blízko bodu Q, nachází se přímka Б3Б5 mnohem blíž
bodu Q než přímka B1B2■ Naopak pro hodnoty p blízké 1 jsou body
A\, As blízko bodů A2, A4 a blíž bodu Q je přímka B1B2 (dokonce pro

p = I bod Q obsahuje a pro p > \ budou obě přímky ležet na opačných
stranách od bodu Q) než přímka Д3.В5. Dá se proto očekávat, že pro
nějakou hodnotu p £ (0,1) jsou obě přímky totožné a body В i, B2, B,3,
Bs tak leží na jedné přímce. Nalezněme takové p.
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Označme \B$Q\ = \B3Q\ — q a I-B1A2I — r. Z podobnosti trojúhelníků
P

BbQA$ а В^А2А3 máme <7 : p = (g+1) : 1 neboli q — . Z podobnosti
1 -P

trojúhelníků B\A2A\ a B\A3A4 máme r:(l — p) = (r + l):l neboli
——. Konečně к tomu, aby bod B\ ležel na přímce B3B5, stačí, aby

byly podobné trojúhelníky B5QB3 a B^A2B1, tj. aby trojúhelník B5A2B\
byl také rovnoramenný, neboli q + 1 = r. Po dosazení předchozích vztahů
a jednoduché úpravě získáme kvadratickou rovnici

r =

p2 — 3p + 1 = 0.

^(3 — \/5). Pro nalezené pTa má v intervalu (0,1) jediné řešení p

tedy body В i, B3, B$, B2 leží na jedné přímce. Navíc přímky A\A5
a A2A4 (které by se, kdyby nebyly rovnoběžné, protínaly v bodě B4)
jsou s ní rovnoběžné. V jistém smyslu se tedy tyto tři přímky protínají
„v nekonečnu" v „bodě" В4 a všechny body Bt tak „leží" na jedné přímce.

Abychom vyhověli podmínkám zadání, stačí najít vhodné zobrazení,
které „bod z nekonečna" zobrazí na konkrétní bod (a zachová všechny
ostatní potřebné vlastnosti, tj. zobrazí přímky na přímky). Takovým zob-
razením je středové promítání (obr. 50). Uvažujme kartézskou soustavu

У
n

A3 = A3
В--v

A4
A'4

U' :-2-
A's

A 5 ^
x%^A.'2"" A[

A 1

Obr. 50

souřadnic v prostoru. Pětiúhelník A1A2A3A4A5 = U vložme do roviny
Oyz s bodem A2 = O v počátku a s body A1, A3 postupně na kladných
poloosách 2, y. Zvolme jako střed promítání například bod P[2,0, —1].
Každá přímka РАг protne rovinu Oxy v bodě, který označíme A'. Dosta-
neme tak pětiúhelník AjA^A^A^Ag = U'. Přímo z vlastností použitého
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zobrazení vyplývá, že U' splňuje podmínky zadání. Každá přímka rov-
noběžná s úhlopříčkou А2Л4 se totiž promítne do přímky jdoucí bodem
B[2,1,0], který je proto i průsečíkem přímek A'^A'^ a A'2A'a.

O tom se můžeme přesvědčit i výpočtem. Snadno totiž zjistíme, že
v rovině Oxy mají jednotlivé body souřadnice

4 = [3-Vš.o], a'2 = [0,0], 4 = [1,0]
4 =[n|]A'

Zi4

a následně ověřit, že příslušné body B[, B2, B'3, B'4, B'5 leží v přímce
(obr. 51).

Poznámka. Úloha se dá řešit i bez konstruování pětiúhelníku, v němž
odpovídající čtyři z bodů Bi leží v přímce. Za promítaný útvar U stačí
vzít pravidelný pětiúhelník. Ten má totiž všechny dvojice přímek AiAi+3,
Aí+\Aí+2 rovnoběžné; po vhodném promítnutí budou tedy průsečíky B[
ležet v množině, která v daném promítání nemá vzor. Takovou množinou
je však přímka.
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47. mezinárodní matematická olympiáda

47. mezinárodní matematická olym- A 7^INTERNATIONAL ú=|5fe=r
piáda se uskutečnila 6.-18. července MATHEMATICAL /шШЩ}
2006 ve slovinském hlavním městě SLOVEN^ 2006 / '—
Ljubljani. Slovinsko, které má zhruba
2 miliony obyvatel, se tak stalo dosud nej menší zemí, v níž se tato vý-
znamná celosvětová soutěž nejlepších středoškolských matematiků usku-
tečnila. Letos se soutěže zúčastnilo celkem 498 soutěžících z 90 zemí světa.

České reprezentační družstvo pro 47. MMO bylo již tradičně sesta-
základě výsledků III. (ústředního) kola 55. ročníku české MO

v kategorii A a dále na základě výsledků výběrového soustředění, které
se uskutečnilo v polovině dubna v Kostelci nad Černými lesy. Dlužno
zmínit, že výběr českého družstva pro letošní MMO byl podstatným způ-
sobem ovlivněn skutečností, že se termíny MMO a MFO překrývaly. Tři
z vítězů ústředního kola MO v kategorii A dali přednost atraktivnímu
prostředí jihoasijského Singapuru, kde se MFO konala, a navíc absolutní
vítěz III. kola překročil povolenou věkovou hranici pro účast na MMO. Na
výběrové soustředění před 47. MMO byli proto kromě zbývajících šesti
vítězil 55. ročníku MO v kategorii A přizváni také dva nejlepší úspěšní
řešitelé III. kola.

Právo reprezentovat Českou republiku na 47. MMO ve Slovinsku
si nakonec vybojovala následující šestice našich středoškoláků: Jaroslav
Hanči z Gymnázia M. Koperníka v Bílovci, Zbyněk Konečný, Jakub Opr-
šal, Vojtěch Říha a Jan Uhlík z Gymnázia v Brně na tř. Kpt. Jaroše
a Pavel Šalom z Gymnázia v Rožnově pod Radhoštěm. Vedoucím české
delegace a zástupcem v jury MMO byl RNDr. Jaroslav SvrčeŘ CSc.,
z Přírodovědecké fakuly UP v Olomouci. Jeho zástupcem a pedagogickým
vedoucím českého družstva byl RNDr. Jaroslav Zhouf, Ph.D., z Pedago-
gické fakulty UK v Praze.

ÚK MO a vedení českého družstva si na tomto místě dovolují upřímně
poděkovat přerovské akciové společnosti Precheza za nezištnou pomoc při
vybavení celého reprezentačního týmu jednotným oblečením.

véno na
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Oficiální zahájení soutěže se uskutečnilo 11. července v kongresovém
sále hotelu Union v Ljubljani (v předvečer prvního soutěžního dne). Ná-
sledující dva dny byly soutěžícím předloženy dvě trojice úloh, které z do-
šlých návrhů vybrala mezinárodní jury na svém jednání ve slovinském
přímořském letovisku Portorož před zahájením soutěže. Na řešení každé
trojice úloh měli žáci jako obvykle 4,5 hodiny čistého času a za každou
úlohu měli možnost získat maximálně 7 bodů. Po koordinaci žákovských
řešení, která proběhla následující dva dny ihned po soutěži, stanovila
mezinárodní jury bodové hranice pro zisk medailí: 15-18 bodů pro bron-
zové medaile, 19-27 bodů pro stříbrné medaile a 28-42 bodů pro zlaté
medaile. Maximálního bodového zisku (42 body) dosáhli přitom pouze
tři soutěžící: Zhiyu Liu (Čína), Jurij Borejko (Moldavsko) a Alexander
Magazinov (Rusko).

Výsledky našich jsou uvedeny v následující tabulce:
Body za úlohu Body Cena
1 2 3 4 5 6Umístění

7 10 7 10 16 III.
7 10 7 10 16 III.

7 1 0 7 0 0 15 III.

7 1 0 3 0 0 11 HM
7 1 0 2 0 0 10 HM
701100 9 HM

161.-188. Zbyněk Konečný
161.-188. Pavel Šalom
189.-253. Jaroslav Hanči

319.-334. Vojtěch Říha
335.-363. Jakub Opršal
364.-387. Jan Uhlík

Celkem 42 5 1 27 2 0 77

Pro srovnání uveďme i výsledky slovenských reprezentantů, kteří si vedli
nesrovnatelně lépe (zejména stojí za pozornost vynikající výsledek On-
dreje Budáče):

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

7 7 1 7 7 1 30 I.

6 7 0 7 1 0 21 II.

7 5 1 7 0 0 20 II.

6 1 0 7 3 0 17 III.

7 1 0 7 0 0 15 III.

7 10 6 10 15 III.

16.-20. Ondřej Budáč
98.-108. Samuel Hapák

109.-116. Jaroslav Knebl
150.-160. Ján Mikuláš

189.-253. István Estélyi
189.-253. Michal Takács

Celkem 44 22 2 41 12 1 118

Naše družstvo dosáhlo v letošním roce jen průměrného výsledku. Tři
naši soutěžící však v silné konkurenci získali bronzové medaile — Zby-
něk Konečný a Pavel Šalom (oba 16 bodů) a Jaroslav Hanči (15 bodů).
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Zbývající tři naši reprezentati přivezli domů čestná uznání za bezchybné
vyřešení jedné (u všech tří našich soutěžících první) soutěžní úlohy. Umis-
tění českého družstva v neoficiálním pořadí zemí však nelze považovat
za lichotivé. Celkový zisk 77 bodů nás po loňském vynikajícím výsledku,
kdy české družstvo skončilo mezi nejlepšími dvaceti zeměmi, odsunul až
do středu tabulky:

i li ni body I II III body

Clr
Rusko
Korea
Německo
USA
Rumunsko
J aponsko
Irán
Moldavsko

Tchaj-wan
Polsko
Itálie
Vietnam

Hongkong
Kanada

Thajsko
Maďarsko
Slovensko
Turecko
Velká Británie
Bulharsko

Ukrajina
Bělorusko
Mexiko

Argentina
Izrael
Austrálie

Singapur
Francie
Brazílie
Kazachstán

Švýcarsko
Gruzie
Litva
Indie
Arménie
Slovinsko
Srbsko a Černá Hora
Finsko
Kostarika
Peru
Bosna a Hercegovina
Rakousko
Švédsko
Estonsko

Mongolsko
Španělsko
Portugalsko
Ázerbájdžán
Česká republika
Albánie
Kolumbie

Belgie
Lotyšsko
Srí Lanka (5)
Řecko
Uzbekistán

Nový Zéland
Island
Macao
Turkmenistán (5)
JAR
Makedonie
Nizozemsko
Maroko
Norsko
Irsko

Paraguay (4)
Dánsko
Ekvádor

Malajsie
Tádžikistán
Trinidad a Tobago
Venezuela (4)
Panama (4)
Pákistán (5)
Kirgizie
Salvádor (3)
Bangladéš (4)
Kypr
Chorvatsko (2)
Lucembursko (2)
Uruguay (2)
Nigérie
Portoriko
Bolívie (2)
Kuvajt (4)
Saudská Arábie (4)
Lichtenštejnsko (1)
Mozambik (3)

806 0 0
3 3 0
4 2 0
4 0 2
2 4 0
3 12
2 3 1
3 3 0
2 1 3
1 5 0
1 2 3
2 2 0
2 2 2
1 3 2
0 5 1
1 3 2
0 5 1
1 2 3
0 4 1
0 4 1
0 4 1
12 2
0 3 2
1 2 1
0 2 2
0 3 1
0 3 2
0 2 3
1 0 3
0 0 6
0 1 4
1 1 0
0 13
0 1 2
0 0 5
0 1 1
0 13
0 0 5
0 0 4
0 1 2
0 11
0 1 2
0 0 3
0 0 3
0 0 2

214 0 0 2
0 1 2
0 0 3
0 1 1
0 0 3
0 1 1
0 0 2
0 0 1
0 0 3
0 0 3
0 0 2
0 0 2
0 0 2
0 0 1
0 0 2
0 1 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 1

0 0 0
0 1 o
0 0 0
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

174 80

170 78
157 77

77154
76152
76146
75145
75140
71136
69133
68132
66131

129 63
63123
59123
57122
57118
57117

117 55
52116
49114
47111
45110
40109
40109
35108
34100
3499
3396
3295
3195
2794
2294
1992
1390
1290
1288
1186
1186

585
584
383
282
080
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Pro účastníky 47. MMO připravili organizátoři hodnotný doprovodný
program. V rámci jednodenního výletu navštívili soutěžící slovinská pří-
mořská letoviska Portorož a Piran. Během zpáteční cesty do Ljubljaně si
prohlédli světoznámé aragonitové jeskyně Postojná, které jsou veřejnosti
přístupné od roku 1818, a blízký Podjamský hrad. Na závěr pobytu ve
Slovinsku absolvovali všichni účastníci 47. MMO společný jednodenní
výlet к Bledshému jezeru a do oblasti Julských Alp. Dopolední program

byl spojen s prohlídkou Bledského hradu, který se tyčí přímo nad jezerem,
a krátkou procházkou kolem tohoto jezera. Odpoledne pak strávili všichni
účastníci MMO ve známém alpském středisku Kranjska Gora a jeho okolí.
Během cesty bylo mj. možno spatřit také vrcholky dvou nejvyšších hor
Julských Alp, kterými jsou Triglav a Skrlatica.

Slavnostní vyhlášení výsledků 47. MMO se konalo 17. července v Pa-
láci kultury v Ljubljani (Cankarjev dom) za účasti Dr. Janeze Potočnika,
evropského komisaře pro vědu a výzkum. Závěrečného ceremoniálu se zú-
častnili také přední představitelé společenského života ve Slovinsku v čele
s Dr. Milanem Zverem, ministrem školství a sportu Slovinska.

Hostitelskými zeměmi příštích olympiád budou Vietnam a Španělsko.

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)1.Nechť / je střed kružnice vepsané trojúhelníku ABC a P jeho vnitřní

bod, pro který platí

\<PBA\ + \<PCA\ = \<PBC\ + \<PCB\.
Dokažte, že \AP\ ^ \AI\, přičemž rovnost nastane, právě když P — I.

(Korea)2.Nechť P je pravidelný 2 OOGúhelník. Jeho úhlopříčka je lichá, jestliže její
koncové body dělí hranici mnohoúhelníku P na dvě části, z nichž každá
je tvořena lichým počtem jeho stran. Každá strana mnohoúhelníku P je
rovněž lichá.

Předpokládejme, že mnohoúhelník P je rozdělen na trojúhelníky
2 003 úhlopříčkami, z nichž žádné dvě se uvnitř P neprotínají. Určete,
jaký je největší možný počet rovnoramenných trojúhelníků, které mají
v uvažovaném rozdělení mnohoúhelníku P dvě liché strany. (Srbsko)3.Určete nejmenší reálné číslo M takové, že nerovnost

|a6(a2 — b2) + bc(b2 — c2) + ca(c2 — a2)| й M(a2 -f b2 + c2)2
platí pro všechna reálná čísla a, b, c. (Irsko)
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4.Určete všechny dvojice (x,y) celých čísel, pro něž platí

1 + T + 22x+1 = y2.

(E/&4)5.Nechť P je mnohočlen stupně n > 1 s celočíselnými koficienty а /с nechť
je přirozené číslo. Uvažujme mnohočlen Q(x) = P(P(. ■ ■ P(P(x))...)),
kde P je v zápise použito fc-krát. Dokažte, že existuje nejvýše n celých

[Rumunsko)čísel t, pro něž platí Q(t) = t.6.Každé straně a konvexního mnohoúhelníku P přiřadíme maximální
obsah trojúhelníku, který celý leží v P a jehož jedna strana je a. Dokažte,
že součet obsahů přiřazených všem stranám mnohoúhelníku P není menší
než dvojnásobek obsahu mnohoúhelníku P. (Srbsko)

Řešení soutěžních úloh

1. Označme velikosti vnitřních úhlů při vrcholech А, В, C uvažovaného
trojúhelníku po řadě a, /3, 7. Protože součet velikostí všech čtyř úhlů
v dané rovnosti je j3 + 7, musí platit \kPBC\ + \<PCB\ = ^[/3 + 7),
takže \%.BPC\ = 180° —^(/3 + 7) = 90o + |a- Jak se snadno přesvědčíme,
stejnou velikost má i úhel BIC (obr. 52). Protože Pal jsou vnitřní body
trojúhelníku ABC (leží v polorovině BCA), leží body В, С, I a P na
téže kružnici. Středem této kružnice je střed M toho oblouku BC kruž-
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nice opsané trojúhelníku ABC, který neobsahuje vrchol A (to je známé
tvrzení, které snadno ověříme dopočítáním úhlů v [rovnoramenném] troj-
úhelníku CIM). Přitom bodem M prochází i polopřímka AI, neboť je
to osa vnitřního úhlu při vrcholu A.

Tím je nerovnost \ AP\ A \AI\ v podstatě dokázána, protože bod / má
ze všech bodů kružnice opsané trojúhelníku IBC od bodu A nejkratší
vzdálenost. Bezprostředně to plyne z trojúhelníkové nerovnosti v troj-
úhelníku АРМ:

\AP\ + \PM\ A \AM\ = \AI\ + \IM\ = \AI\ + \PM\.

Je tedy \AP\ A \AI\, přičemž rovnost nastane, právě když je P bodem
úsečky AM, tj. právě když P = /.

2. (Podle Ondřeje Budáče, Slovensko.) Označme rovnoramenný trojúhel-
nik jako lichý, pokud má (právě) dvě strany liché. (Je jasné, že takový
rovnoramenný trojúhelník má lichá ramena a „sudou“ základnu.)

Rozeberme nejprve speciální případ. Místo všech 2 006 vrcholů mno-
hoúhelníku P budeme uvažovat jen takovou část jeho hranice s n vr-

choly (n A 2), že krajní body příslušného oblouku opsané kružnice sví-
rají se středem mnohoúhelníku P úhel nejvýše 180° (tj. n ^ 1004).
Těchto n vrcholů tvoří mnohoúhelník X. Označme f(n) maximální možný
počet lichých trojúhelníků, které mohou vzniknout popsaným rozděle-
ním X neprotínajícími se úhlopříčkami na trojúhelníky. Snadno ověříme,
že /(2) = 0, /(3) = 1, /(4) = 1, /(5) — 2, ... Dokážeme matematickou
indukcí, že

- 1
Пп)й -

- 2

První indukční krok jsme už učinili. Předpokládejme, že tvrzení platí
pro každé n ^ к, a uvažujme oblouk obsahující n = k +1 vrcholů. Krajní
body tohoto oblouku označme A a B. Předpokládejme, že mnohoúhel-
nik X je rozdělen úhlopříčkami na trojúhelníky s maximálním možným
počtem lichých trojúhelníků. Úsečka AB je stranou nějakého trojúhelníku
ABC v tomto rozdělení.

Je-li trojúhelník ABC lichý, je AB vzhledem к podmínce n ^ 1 004
nutně jeho základna a BC, CA jeho lichá ramena, takže oblouk AB se

skládá ze dvou stejných oblouků lichých délek (obr. 53). Proto к = 2
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(mod 4). Z indukčního předpokladu tak dostáváme

|(fc + 2) — 1/(fc + l)žl + 2/(t±?) gi + 2
к - 2

= 1 + 2 - = 1 + 2- ——
L4J 4

2

(fc + 1) — 1к

2 2

tvrzení tedy platí i pro n = к + 1.

180° 180°

'"O"" '"O""
S 5

Obr. 53 Obr. 54

Pokud trojúhelník ABC není lichý, máme oblouky АС, CB s počty
vrcholů p, q, přičemž p + q = к + 2, p, q^.2 (obr. 54). Je tudíž

f(k + 1) й f(p) + f(q) = f(p) + + 2 -p) S
к + 2 — p — 1- 1

<+
L 2 2

(fc + l)-lк + 2 — p — 1
2 2 2

(využili jsme známou nerovnost

L+l + [у\ й L-T + У\i (1)
která platí pro libovolná kladná čísla x, у). I v tomto případě jsme tedy
tvrzení pro n = к + 1 dokázali. Tím je důkaz indukcí ukončen.

Vraťme se teď к původní úloze. V rozdělení mnohoúhelníku P na

trojúhelníky určitě existuje trojúhelník ABC, který obsahuje (uvnitř či
na hranici) jeho střed S. Oblouky AB, BC, CA obsahují p, q, r vrcholů,
přičemž p,q,r 'A 1 004 a p + q + r = 2 006 + 3 = 2 009. V případě, že ABC
není lichý, existuje v rozdělení nejvýše

P- 1 9-1 r — 1
fip) + /(9) + f{r) й <

2 2 2

p —1+g — 1+r — 1< = 1003
2

lichých trojúhelníků (opět využíváme nerovnost (1)).
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Je-li naopak ABC lichý, jsou právě dvě z čísel p, r sudá, bez újmy na
obecnosti předpokládejme, že jsou to p a q. Potom je v rozdělení nejvýše

i + f(p) + /(9) + /0) ^ 1 + 1^y~ + ~
p — 2 + <7 — 2 + ?’ — 1

- 1 r — 1
+

- 2 L 2 J

^1 + = 1003
2

lichých trojúhelníků.
Ukázali jsme tedy, že maximální možný počet lichých trojúhelníků

je 1 003. Tato hodnota sa dá dosáhnout, jak ukazuje obr. 55 (po obvodě
pravidelného 2 OOGúhelníku „odřežeine“ 1 003 rovnoramenných trojiihel-
níčků s rameny tvořenými sousedními stranami mnohoúhelníku a zbytek
rozdělíme libovolně).

Jiné řešení. Podobně jako v předchozím řešení rovnoramenný troj-
úhelník s dvěma lichými stranami v rozdělení mnohoúhelníku P jeho
úhlopříčkami nazveme lichý.

Nechť ABC je lichý trojúhelník s lichými stranami AB a BC. To
znamená, že se jak mezi vrcholy A a B, tak i mezi vrcholy В a C na-
chází lichý počet stran mnohoúhelníku P. Řekneme, že tyto strany patří
lichému trojúhelníku ABC.

Aspoň jedna strana v každé z těchto dvou skupin nepatří žádnému ji-
nému lichému trojúhelníku, jehož vrcholy leží mezi vrcholy A a B, resp. В
a C. Každý takový lichý trojúhelník má totiž dvě shodné strany, takže do-
hromady existuje sudý počet stran, které mu patří. Vyloučíme-li všechny
strany patřící lichým trojúhelníkům v této části, musí zůstat aspoň jedna
strana, která nepatří žádnému z nich. Přiřaďme tyto dvě strany (jednu
v každé z obou skupin) trojúhelníku ABC.

Každému lichému trojiihelníku jsme takto přiřadili dvojici stran, při-
čemž žádné dva trojúhelníky nemají přiřazenu stejnou stranu. Protože
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takových dvojic můžeme vytvořit nejvýše 1 003, je to zároveň maximální
možný počet lichých trojúhelníků. Tento počet můžeme dosáhnout, jak
jsme už ukázali v prvním řešeni.

3. Uvažujme kubický mnohočlen

P(t) = tb(t2 — b2) -f bc{b2 — c2) + cí(c2 — t2).

Snadno nahlédneme, že P(6) = P(c) = P(—6 — c) = 0, proto platí

P(t) = (b — c)(t — b)(t — c)(t + b + c)

neboť koeficient při t3 je b — c. Levou stranu dokazované nerovnosti lze
tedy upravit na tvar

|ab(a2 — b2) + bc{b2 — c2) + ca(c2 — a2)| = |P(a)| =

= |(a — b)(b — c)(c — a) (a + b + c)|.

Daná úloha je tak převedena na problém nalézt nejmenší reálné číslo M
pro něž platí nerovnost

a)(a + b + c)| M(a2 + b2 + c2)2.(a — b) (b — c)(c (1)

Obě strany vztahu (1) jsou symetrické výrazy v proměnných a,
Bez újmy na obecnosti lze proto předpokládat, že a b ^ c. Na základě
tohoto předpokladu a užitím nerovnosti mezi aritmetickým a geometrie-
kým průměrem dostáváme

c.

(b - a) + (c - b)\2 a)2(cb)(b — c) j = (6 — a)(c — b) ^|(a 2

kde rovnost nastane, právě když b — a — c — b, tj. když 2b = a + c. Dále
platí

{b - a) + (c - 6) \2 {b - a)2 + {c - b)2a)2(c <
4 2 2

Odtud snadnou úpravou dostaneme ekvivalentní nerovnost

3(c — a)2 2[(6 — a)2 + (c — 6)2 + (c a)2], (3)
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v níž také nastane rovnost, kdykoliv 26 — a + c. Ze vztahů (2) a (3) pak
plyne

| (6 — c)(a — b) (a c) (a + 6 + c)|

c) (a + 6 + c) | = i л/(с — a)6(a + 6 + c)2 ^
1

a)2(a< -|(c-

4 lv

a)2]\32[(6 — a)2 + (c — 6)2 + (c1
• (a + b + c)2< _

-

4 3

2

a)2\3V2 4 ((b- a)2 + (c b)2 + (c
• (a + 6 + c)2 .2 3

Užitím nerovnosti mezi aritmetickým a geometrickým průměrem konečně
dostaneme nerovnost požadovaného tvaru:

|(6 — c)(a — 6)(a — c)(a + 6 + c)| 5Í

< \[2 í (b - a)2 + (c - b)2 + (c - a)2 + (a + b + c)2 \ 2
4

9\/2
(a2 + 62 + c2)2 (4)

32

Nerovnost (1) tedy platí pro M = j^\/2, přičemž rovnost nastane, právě
když 26 = a + c a současně

(6 — a)2 + (c — 6)2 -f (c — a)2 (a + 6 + c)2.3

Dosazením 6 = 4(a -j- c) do poslední rovnosti dostaneme

a)2 = 9(a + c)2.2(c

Rovnost ve (4) tudíž nastane, právě když současně platí

a)2 1862.(c26 = a + c а

1 + |\/2- Je tedy M = ^л/2Volbou 6=1 dostaneme a — 1 — | \/2 a c =
skutečně nejmenší reálné číslo, pro něž je daná nerovnost splněna. Rov-
nost pak nastává pro trojice (a, 6,c) = (í,t — |t\/2,t + |í>/2) а jejich
permutace, přičemž t je libovolné reálné číslo.
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4. Pokud (ж, у) je dvojice celých čísel, která vyhovuje dané rovnici, je
jejím řešením také dvojice (x, —y). Stačí se tedy omezit na у ^ 0. Protože
levá strana je větší než 1, stačí uvažovat jen у ^ 2. Dále pro celočíselné
hodnoty x rozlišíme tři případy.

Je-li x záporné celé číslo, platí

1 < 1 + 2X +22x+1 <1 + \ + \ = 2,

avšak pro žádné přirozené číslo у neplatí 1 < y2 < 2. Neexistuje tedy
žádné řešení dané rovnice, pro něž je x záporné celé číslo.

Je-li x = 0, má daná rovnice právě dvě řešení v oboru celých čísel.
Jsou jimi dvojice (0, 2) a (0, —2).

Je-li x přirozené číslo, upravíme danou rovnici na tvar

2X(1 + 2X+1) = (y — l)(y + 1). (1)

Odtud plyne, že у je liché číslo. Zřejmě právě jedno z dvou po sobě
jdoucích sudých čísel у — 1, у + 1 je dělitelné čtyřmi. Součin obou čí-
sel na pravé straně (1) je tedy dělitelný aspoň osmi, a proto je x ^ 3.
Z rovnosti (1) plyne, že buď číslo у — 1 je dělitelné 2X_1, avšak není
dělitelné 2X, nebo číslo у + 1 je dělitelné 2X_1, ale není už dělitelné 2X.
Platí tedy у = 2x_1m + e, kde m je nezáporné liché číslo a£€í{ —1,1}.
Dosazením za у do (1) dostaneme

2X(1 + 2X+1) = (2x_1m + ef - 1 = 2
2.T-2 m2 + 2xms.

Odtud plyne
l-p2x+1 = 2x 2m2 + me,

neboli

1 — те = 2х 2(m2 — 8). (2)

Pro £ = 1 musí být m2 8^0. Tuto nerovnost splňuje jediné ne-

záporné liché číslo m = 1, po dosazení do (2) však vyjde 0 = —7 • 2X_2
a tomu nevyhovuje žádné x.

Pro e — —1 máme 1 + m = 2x_2(m2 — 8) ^ 2(m2 — 8) (neboť x ^ 3).
Odtud po snadné úpravě dostaneme kvadratickou nerovnici

2m2 — m — 17 < 0.
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Této nerovnici vyhovují právě dvě nezáporná lichá čísla, a to m = 1
3. Pro první z nich však v (2) dostaneme různá znaménka. Pro

m = 3 vyjdou x = 4 а у — 23, která jsou řešením dané rovnice.
Daná rovnice má tedy celkem 4 řešení. Jsou jimi následující dvojice

celých čísel: (0,2), (0,-2), (4,23) a (4,-23).
Jiné řešení. Stejně jako v předchozím řešení vyloučíme možnost, že

by x bylo záporné, a najdeme dvě řešení (0, 2), (0, —2) pro x 5ří 2. Protože
levá strana uvažované rovnice je pro x ^ 3 lichá, položme у = 2k + 1,
kde к je přirozené. Po jednoduché úpravě dostáváme

a m

2X(1 -f 2X+1) =4k(k + l).

To znamená, že k/2x~2 nebo (к + 1)/2X_2 musí být celé kladné číslo.
2x-2a pro vhodné přirozené a, dostaneme po

dosazení do původní rovnice a po úpravě rovnici a — 1 + 2x~2(a2 — 8) = 0.
Ta zřejmě nemá řešení pro žádné přirozené a.

Podobně pro к — 2x~2a — 1 vyjde rovnice a + 1 = 2x-2(a2 — 8), která
může mít řešení jedině pro a ^ 3 (pro a áí 4 je a2 — 8^ 4a — 8 > a + 1).
Možnosti a = 1 а a = 2 snadno vyloučíme a pro a = 3 najdeme řešení
x — 4. Dostáváme tak další dvě řešení původní rovnice: (4, 23) a (4, —23).

Jiné řešení. Jak snadno zjistíme, pro x 2 má daná rovnice jediná
dvě řešení (0, 2), (0, —2). Předpokládejme tedy, že x ^ 3.

Z dané rovnice zřejmě plyne

Jestliže je tedy к

22x+1 = (y/2 ■ 2X)2 < y2 < (1 + \Í2 • 21)2
takže у — [л/2 • 2хJ + 1. Protože největší společný dělitel čísel у — 1, у +1
je 2, vidíme z již dříve odvozeného vztahu (1), že právě jedno z čísel у — 1,
y +1 je dělitelné mocninou 2X_1. To znamená, že v dvojkové soustavě má
číslo у — 1 zápis končící x — 1 nulami nebo x — 2 jednotkami a nulou (je у —
— 1 = у+1 — (10)2). Protože \[2 má v dvojkové soustavě rozvoj 1,01101...
a násobení mocninou 2X jen posouvá „dvojkovou“ čárku o x míst doprava,
vidíme, že celá část čísla \/2-2x může mít požadovaný zápis jen pro x ^ 4.

5. Pro libovolná celá čísla a, b a libovolný mnohočlen P s celočíselnými
koeficienty platí a — b \ P(a) — P(b). Jsou-li u, v celá čísla, pro něž platí

и a Q(v) = v (tzv. pevné body mnohočlenu Q), a použijeme-li
pro ně výše uvedený vztah /с-krát, dostaneme
Q(u) =

v I P(u) - P(v) I P(P(u)) - P(P(v)) I ... I Q(u) - Q(v) = ии —
— v.
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Pro libovolné dva celočíselné pevné body u, v mnohočlenu Q proto platí

v\ = | P(u) — P(v) |. (1)и —

Jsou-li t, u, v tři navzájem různé celočíselné pevné body mnoho-
členu Q, přičemž t > и > v, platí právě jedna z postupných nerovností

P(t) > P(u) > P{v) nebo P{ť) < P(u) < P(v). (2)

Každé jiné uspořádání hodnot P(í), P(u) a P(v) vede totiž s ohledem
na (1) ke sporu.

Připusťme, že mnohočlen Q má n + 1 celočíselných pevných bodů
t0,tu pro něž platí to > ti > ... > tn. Podle (2) je pak nutně buď

P(t0) > P(ti) > ... > P(í„), nebo P(t0) < P(ti) < ... < P(tn).

Podle (1) platí pro i = 1,2,..., n rovnost |to — P| = |P(ío) — P(íi)|, což
v prvním případě vede к rovnosti to — ti = P{to) — P(p)- Uvažme nyní
mnohočlen

R(x) = P{x) - P(to) + É0 — X,

který je stejně jako P stupně n, přitom však má n + 1 reálných kořenů
ío, t\,..., tn. To je spor. Zcela analogickým způsobem dojdeme ke sporu
i v druhém případě.

Mnohočlen Q má tedy nejvýše n celočíselných pevných bodů. Tím je
důkaz hotov.

6. Nejdřív dokážeme, že v libovolném konvexním 2n-úhelníku s obsa-
hem S existuje strana AB a vrchol V tak, že obsah trojúhelníku ABV
je aspoň S/n.

Úhlopříčky, jež rozdělují 2n-úhelník na dvě části se stejným počtem
stran, budeme nazývat hlavní Pro libovolnou stranu a = AB uvažo-
váného 2n-úhelníku označme A', B' příslušné „protější“ vrcholy obou
hlavních úhlopříček AA\ BB' a P jejich průsečík. Sjednocení všech 2n ta-
kových trojúhelníků APP, А'Р'Р, jež dostaneme pro jednotlivé strany,
pokrývá celý 2n-úhelník.

Je-li totiž X libovolný vnitřní bod 2n-úhelníku, který neleží na žádné
hlavní úhlopříčce (body ležící na hranici a na hlavních úhlopříčkách po-
psaným sjednocením zřejmě pokryté jsou), uvažujme posloupnost (orien-
tovaných) hlavních úhlopříček AA', BB', CC,..., přičemž В, C,... jsou
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po sobě jdoucí vrcholy ležící v opačné polorovině určené přímkou AA'
než bod X. Bez újmy na obecnosti nechť bod X leží „nalevo" od AA'.
Pak se v této posloupnosti na místě s pořadovým číslem n + 1 na-
chází úhlopříčka A'A, která má bod X „napravo". Proto v posloupnosti

A' existují po sobě jdoucí vrcholy К a L takové, že X leží
„nalevo" od KK', ale „napravo" od LL'. To však znamená, že X leží
v trojúhelníku příslušném straně K'L' (obr. 56). Trojúhelníky příslušné
jednotlivým stranám tedy skutečně pokrývají celý 2n-úhelník. Součet
jejich obsahů je proto aspoň S.

A, B,C,.. * )

Z předešlého vyplývá, že existují dvě protilehlé strany a
a' = A'B' (přičemž AA\ BB' jsou hlavní
úhlopříčky protínající se v bodě P) takové, A'
že součet obsahů jim příslušných trojúhel-
níků S(ABP) + S{A'B'P) je aspoň S/n. Bez
újmy na obecnosti nechť \PB\ ^ \PB'\. Po- B'
tom (obr. 57)

S(ABA') = S(ABP) + S(PBA') ^
;> S(ABP) + S(PB'A') = S(ABP) + S(A'B'P) P S/n.

Tím je úvodní tvrzení dokázáno.
Uvažujme nyní libovolný konvexní mnohoúhelník P s obsahem S,

který má m stran ai,...,am, a pro každé i (1 ^ i Sí rn) označme S{
obsah největšího trojúhelníku, který má stranu a* a je celý obsažen v P.
Předpokládejme naopak, že tvrzení ze zadání neplatí, tj. že

Obr. 57

m c

Í= 1
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Potom existují racionální čísla qi,... ,qm taková, že

m

Sr^ — 2 pro každé г;qi> -77a
S

i= 1

stačí například pro i < m vzít za qi libovolné racionální číslo z intervalu

Si &
< T7 +•S' S

2 — (<?1 + • • • +a položit qrn

Zapišme zlomky qi,..., qrn ve tvaru qi = /c,/n, kde n je jejich společný
jmenovatel. Máme tedy Y^ki = 2n. Rozdělme každou stranu clí mnoho-
úhelníku P na ki shodných úseků, vytvoříme tak konvexní 2n-úhelník
s obsahem S (některé jeho vnitřní úhly mohou mít velikost 180°). Podle
tvrzení, které jsme dokázali na začátku, existuje v tomto novém mnoho-
úhelníku strana AB a vrchol V, pro něž S(ABV) ^ S/n. Je-li AB částí
strany clí mnohoúhelníku P (obr. 58), pak pro obsah trojúhelníku T se
stranou cii a vrcholem V dostáváme

S(T) = ki • S(ABV) A ki ■ S/n = qi-S> Si,

což odporuje volbě hodnot Si. Tím je úloha vyřešena.

cti

Obr. 58

Jiné řešení. Ke každému vrcholu A daného mnohoúhelníku existuje
na jeho hranici bod A' tak, že úsečka AA' rozděluje mnohoúhelník na dva
mnohoúhelníky stejného obsahu. Přidáme-li všechny tyto body к vrcho-
lům mnohoúhelníku P, dostaneme mnohoúhelník P' se stejným obsahem,
jehož některé vnitřní úhly mohou být 180°. Na tvrzení úlohy to nemá vliv
(stačí si uvědomit, že pokud je ABV nějaký trojúhelník s maximálním
obsahem příslušný straně AB původního mnohoúhelníku P, pak i každý
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trojúhelník s danými dvěma vrcholy na straně AB bude mít maximální
obsah, když jeho třetím vrcholem bude právě vrchol V).

Jsou-li nyní А, В dva sousední vrcholy mnohoúhelníku P' a A', B'
příslušné „protější" vrcholy, pro něž úsečky AA' a BB1 rozdělují mnoho-
úhelník P na dva mnohoúhelníky stejného obsahu, a P jejich průsečík,
mají trojúhelníky АВР а А'В'Р stejný obsah. Platí tedy

\PA\ ■ \PB\ = \PA'\ ■ \PB'\.

To ovšem znamená, že je \PA\ A \PA'\ nebo \PB\ А \PB'\. V prv-
ním případě S(ABA') = S(APB) + S{PA'B) A 2S(ABP), v druhém
S(ABB') = S(APB) + S(APB') A 2S{ABP). V každém případě je
tedy maximální obsah trojúhelníku příslušného straně AB roven nejméně
dvojnásobku obsahu trojúhelníku ABP. Stejně jako v prvním řešení není
těžké ukázat, že všechny takové trojúhelníky ABP pokrývají celý mno-
hoúhelník P' = P. Tím je tvrzení dokázáno.

Poznámka. Součet přiřazených obsahů může být právě dvojnásobkem
obsahu mnohoúhelníku P. Platí to pro všechny středově souměrné mno-

hoúhelníky. (V takovém případě má střed S mnohoúhelníku tu vlastnost,
že maximální obsah přiřazený podle zadání úlohy každé straně AB mno-
hoúhelníku je vždy dvojnásobkem obsahu trojúhelníku ABS.)
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Třináctý ročník Středoevropské olympiády v informatice

Třináctá středoevropská olympiáda v informatice CEOI 2006 se ко-
nala v chorvatském Vrsaru 11a poloostrově Istria ve dnech 1. až 8. čer-
vence 2006. Vzhledem к tomu, že olympiáda probíhala o prázdninách,
bylo možné použít к zahajovacímu a ukončovacímu ceremoniálu, soutěži
i schůzkám vedoucích družstev prostory základní školy „Vladimir Nazor“.
Jednotlivá družstva byla ubytována v apartmánech po celém Vrsaru.

Soutěž probíhá naprosto stejně jako mezinárodní olympiáda v infor-
matice. Soutěží se ve dvou dnech, v každém z nich řeší studenti u počítačů
tři náročné příklady, svá řešení programují v některém z programovacích
jazyků Pascal, C nebo C++. Aby se studenti předem seznámili s pro-

středím, probíhá před soutěží samotnou zkušební předkolo, ve kterém
mohou účastníci vyřešit dvě primitivní úlohy. Protože je středoevropská
olympiáda v informatice pro své obtížné a zajímavé úlohy známa i mezi
řešiteli mezinárodní olympiády, probíhá současně s klasickou soutěží ještě
internetová varianta soutěže pro veřejnost.

Vyhodnocování a testování studentských řešení se 11a CEOI již několik
let provádí stejně jako 11a IOI automatickým vyhodnocovacím systémem.
Ten testuje programy na připravené sadě vstupních dat, všechny prová-
děné testy mají dobu výpočtu omezenu předem známým časovým a pa-

měťovým limitem. Jednotlivá testovací vstupní data mají navíc různou
velikost a složitost, což dohromady umožňuje bodově rozlišit programy

podle kvality použitého algoritmu. Za každou úlohu lze získat maximálně
100 bodů, často se používá 20 sad testovacích dat po 5 bodech. U někte-
rých úloh lze vyřešit jen část zadání (například při hledání nejkratší cesty
stačí nalézt pouze její délku a nevypisovat cestu jako takovou) a získat za
takové řešení odpovídající část bodů (v případě zmíněné nejkratší cesty
bylo za nalezení její délky 80% bodů).

Třinácté středoevropské olympiády v informatice se zúčastnilo sedm
zemí, každá měla jedno čtyřčlenné družstvo, takže soutěžilo 28 studentů.
Pouze pořádající Chorvaté měli v soutěži tři družstva I, II a III, přičemž
se ale do výsledného pořadí započítával pouze tým číslo I. Česká republika
vyslala do soutěže družstvo ve složení
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Miroslav Klimoš, student Gymnázia M. Koperníka v Bílovci,
Martin Křivánek, student Gymnázia Brno, třída Kpt. Jaroše,
Lukáš Lánský, student Gymnázia J. K. Tyla v Hradci Králové,
Roman Smrž, student Gymnázia E. Krásnohorské v Praze.

Naši soutěžící byli vybráni na základě výsledků dosažených v ústřed-
ním kole 55. ročníku matematické olympiády — kategorie P (programo-
vání). Vedením družstva byli pověřeni Milan Straka a Petr Skoda, oba
z Matematicko-fyzikální fakulty Univerzity Karlovy v Praze.

Medaile se na středoevropské olympiádě v informatice se udělují podle
stejného klíče, jaký se používá i na mezinárodní olympiádě v informatice.
První polovina soutěžících obdrží nějakou medaili. Tato první polovina
se rozdělí v poměru 1:2:3a tyto skupiny studentů dostanou po řadě
zlatou, stříbrnou a bronzovou medaili. Letos se rozdávalo 14 medailí,
z toho 2 zlaté, 5 stříbrných a 7 bronzových. Zlatou medaili získali tento-
krát studenti z Polska (1. místo) a pořádajícího Chorvatska (2. místo).

Stejně jako například Slovensko a Maďarsko vysílá i Česká republika
na středoevropskou olympiádu spíše studenty mladší, jejichž hlavním cí-
lem je sbírání zkušeností (a jejich uplatnění v příštích letech na mezi-
národní olympiádě v informatice). Přesto se českým studentům podařilo
získat dvě bronzové medaile (pro porovnání Maďarsko získalo jednu bron-
zovou a Slovensko žádnou medaili). Miroslav Klimoš skončil navíc hned
za poslední stříbrnou příčkou. Výsledky českého družstva:

8. Miroslav Klimoš

13. Roman Smrž
24. Martin Křivánek

28. Lukáš Lánský

190 bodů bronz

142 body bronz
46 bodů -

4 body -
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18. mezinárodní olympiáda v informatice

!
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Ve dnech 13.-20. 8. 2006 se konala v Mexiku 18. mezinárodní olympiáda
v informatice IOI 2006 (IOI
Soutěž proběhla ve městě Mérida v provincii Yucatán, tedy na stejném
místě, kde se o rok dříve konala i mezinárodní matematická olympiáda.

Olympiády se zúčastnilo 284 soutěžících ze 76 zemí celého světa.
Každé družstvo je tvořeno nejvýše čtyřmi soutěžícími studenty a je do-
provázeno dvěma pedagogickými pracovníky jako vedoucími. Českou re-

publiku letos reprezentovalo družstvo ve složení:

International Olympiad in Informatics).

Jan Hrnčíř, absolvent gymnázia F. X. Saldy v Liberci,
Daniel Marek, absolvent gymnázia Ch. Dopplera v Praze 5
Josef Pihera, student gymnázia ve Strakonicích,
Michal Vaner, absolvent gymnázia v Turnově.

Naši soutěžící byli vybráni na základě výsledků dosažených v celo-
kategorie P. Jakostátním kole 55. ročníku Matematické olympiády

příprava vybraných reprezentantů na soutěž posloužilo zejména tradiční
týdenní česko-polsko-slovenské přípravné soustředění, které se tentokrát
konalo v červnu na Slovensku. Vedoucími české delegace byli jmenováni
Mgr. Martin Mareš a doc. RNDr. Pavel Tópfer, CSc., oba pracovníci
Matematicko-fyzikální fakulty Univerzity Karlovy v Praze.

Ubytování všech účastníků bylo zajištěno v několika hotelích nedá-
leko centra Méridy, ve stejném místě probíhala i všechna jednání spojená
s organizací soutěže a přípravou soutěžních úloh. Vlastní soutěž studentů
u počítačů byla uspořádána v moderním konferenčním středisku Yucatan
SIGLO XXI na severním okraji města.

Soutěž IOI probíhá vždy ve dvou soutěžních dnech, v každém z nich
soutěžící řeší po dobu pěti hodin tři zadané úlohy. Každý účastník má pro

svoji práci přidělen osobní počítač s nainstalovanými překladači progra-
inovacích jazyků Pascal, C a C++ a s interaktivním webovým rozhraním
pro komunikaci soutěžícího s řídicím a vyhodnocovacím systémem sou-
těže. To umožňuje zálohovat data, tisknout výpisy programů, ověřovat
správnost chování programu a zejména pak předávat vytvořené programy
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na vyhodnocení. Všechny soutěžní úlohy jsou algoritmického charakteru
a je nutné dovést je až do podoby kompletního odladěného programu,

podobně jako je tomu třeba i v praktické části celostátního kola naší
Matematické olympiády — kategorie P. Odevzdané programy jsou vždy
po skončení soutěžního dne automaticky testovány pomocí předem při-
pravené sady testovacích dat, aby se ověřila jejich správnost. Důležitou
součástí těchto testů jsou časové limity. Je pevně stanoveno, jak nejdéle
může program počítat pro každá vstupní data. Tímto způsobem se mezi
správně fungujícími programy rozliší, na jak dobrém algoritmu je který
program založen. Některá vstupní data zadávaná při testování jsou ma-

lá, takže výpočet s nimi stihne v časovém limitu i pomalejší algoritmus,
naopak jiná vstupní data jsou rozsáhlá a včas je zvládne zpracovat jedině
program využívající dostatečně efektivní algoritmus.

Pro všechny účastníky IOI 2006 byl připraven i zajímavý doprovodný
program. Ve volném dnu oddělujícím oba soutěžní dny nám organizátoři
nabídli celodenní výlet do známé rekreační oblasti Progresso spojený
s koupáním v moři a řadou dalších sportovních činností. Po ukončení
soutěže jsme na závěr našeho pobytu v Mexiku měli možnost navštívit
jedno z archeologických nalezišť se Zachovalými památkami staré mayské
kultury — asi 120 km vzdálené středisko Chichén Itzá.

Soutěžní úlohy letošního ročníku olympiády byly algoritmicky zají-
mavé a dobře připravené, jejich náročnost byla vcelku přiměřená této
soutěži. Za každou úlohu bylo možné získat maximálně 100 bodů, tj. cel-
kově v soutěži 600 bodů. To se ovšem nikomu ze studentů nepodařilo,
celkový vítěz získal 480 bodů. Na základě dosažených výsledků se na IOI
udělují mediale tak, že polovina účastníků obdrží některou z medailí,
přičemž počet zlatých, stříbrných a bronzových medialí je v rámci mož-
ností přibližně v poměru 1:2:3. Letos bylo uděleno 24 zlatých medailí
(soutěžícím, kteří dosáhli alespoň 385 bodů), 51 stříbrných medailí (za
zisk alespoň 314 bodů) a 70 bronzových medailí (pro ty, kdo v soutěži
získali minimálně 219 bodů).

Reprezentanti CR si vedli v soutěži dobře, získali jednu stříbrnou
a dvě bronzové medaile. Výsledky našich studentů:

57. Josef Pihera 339 bodů

85. Daniel Marek 296 bodů
144. Michal Vaner 219 bodů

255. Jan Hrnčíř 41 bodů

stříbrná medaile

bronzová medaile

bronzová medaile
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Mezinárodní olympiáda v informatice je soutěží jednotlivců, takže
žádné oficiální pořadí národních družstev se v ní nevyhlašuje. Není ani
stanoveno, zda by se mělo určovat podle součtu dosažených bodů, součtu
umístění nebo třeba podle počtu získaných medailí. Nejúspěšnějšími ze-
měmi letošního ročníku IOI byly Čína (4 zlaté medaile), Polsko a Rusko
(po 3 zlatých medailích), rovněž celkový vítěz IOI byl z Polska. Slovensko
získalo na IOI 2006 tři stříbrné medaile.

19. mezinárodní olympiáda v informatice se bude konat v chorvatském
Zagrebu.

Texty soutěžních úloh

1. Mayské písmo
Luštění písma starých Mayů se ukázalo být poněkud tvrdším oříškem,

než se zprvu zdálo. Po dvou staletích vesměs marného zkoumání teprve
posledních 30 let přineslo jakési výsledky.

Mayské písmo je založeno na malých obrázcích neboli glyfech, které
odpovídají jednotlivým zvukům. Mayská slova se obvykle zapisují něko-
lika glyfy poskládanými к sobě.

Jedním z mnoha problémů při čtení mayských nápisů je určit správné
pořadí glyfů. Staří písaři se totiž pro vzájemnou polohu glyfů tvořících
slovo často nerozhodovali podle nějakých pravidel, ale spíš podle svého
uměleckého cítění. I když výslovnost mnohých glyfů je již známa, často
nevíme, jak vyslovit jimi zapsané slovo.

Badatelé zrovna v nápisech hledají určité slovo W. Vědí, z jakých
je složeno glyfů, ale doposud neobjevili všechny možnosti, jak je к sobě
Mayové skládali. A jelikož se doslechli o vašem věhlasu, požádali vás
o pomoc. Dostanete od nich g glyfů tvořících slovo W a posloupnost
glyfů S] tyto glyfy tvoří právě studovaný nápis (v pořadí, jak jsou na-

malovány). Pomozte jim spočítat všechny možné výskyty slova W v ná-
pisu S.

Úloha: Napište program, který dostane glyfy slova W a posloupnost
glyfů S a vypíše všechny možné výskyty slova W v posloupnosti S, čili
všechny posloupnosti g po sobě jdoucích glyfů v posloupnosti S, které
jsou permutací glyfů tvořících slovo W.

Omezeni: 1 ^ g ^ 3 000 — počet glyfů slova W,
g й |Sj ^ 3 000 000, kde \S\ je počet glyfů v posloupnosti S.
Vstup: Program bude číst vstupní data ze souboru writing, in:
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Popis:writing.in 1.řádek: obsahuje dvě celá čísla oddělená mezerou: g4 11

cAda

AbrAcadAbRa
a|S|.
2. řádek: obsahuje g po sobě jdoucích znaků popisu-
jících glyfy slova W. Jsou povoleny znaky a-z a A-Z;
velká a malá písmena považujeme za různá.
3. řádek: obsahuje \S\ po sobě jdoucích znaků popisují-
cích glyfy v posloupnosti S. Opět jsou povoleny znaky
a-z a A-Z a rozlišuje se velikost písmen.

Výstup: Program zapíše do výstupního souboru writing, out násle-
dující ridaje:

writing.out Popis:
Jediný řádek: obsahuje počet možných výskytů W v S.

Hodnocení: Část testovacích vstupů (dohromady za 50 bodů) bude
splňovat podmínku g 5Í 10.

Upozornění pro Pascalisty: Freepascalský typ string je implicitně
omezen na 255 znaků. Pokud byste chtěli používat delší stringy, připište
si těsně za řádek program ... direktivu {$H+}.

2

2. Pyramida
Poté, co král Jaguár zvítězil ve veliké bitvě, rozhodl se postavit py-

ramidu, která poslouží nejen jako památník jeho slavného vítězství, ale
také coby hrobka vojáků v bitvě padlých. Pyramidu postaví na bojišti.
Bojiště má tvar obdélníka, který si můžeme představit jako čtvercovou
síť m x n políček (m sloupců v n řádcích) a jsou v něm četné terénní
nerovnosti. Královští stavitelé pro každé políčko sítě změřili jeho výšku.

Základnou pyramidy bude obdélník o velikosti a x b políček (sloupce x
x řádky). Uvnitř bude na úrovni terénu menší obdélníková komora velí-
kosti c x d políček (opět sloupce x řádky), v níž spočinou těla a zbraně
padlých bojovníků.

Jelikož obzvláštní přízni krále se těší celá čísla, bude jak pyrami-
da, tak komora mít půdorys složený z políček zmíněné čtvercové sítě.
Zatímco terén políček, na nichž je umístěna pohřební komora, zůstane
v původní úrovni, zbývající políčka tvořící základnu pyramidy budou
srovnána do stejné výšky přesouváním zeminy z vyšších políček na niž-
ší. Výsledná výška základny bude rovna aritmetickému průměru původ-
nich výšek všech políček tvořících základnu kromě políček pod komorou.
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Stavitelé mohou komoru umístit kdekoliv uvnitř pyramidy, pokud bude
ze všech stran obklopena zdmi širokými alespoň 1 políčko.

Pomozte stavitelům vybrat nejlepší umístění pyramidy a pohřební
komory. To je takové, při němž bude základna v největší možné výšce.
Přitom je nutné dodržet požadované rozměry pyramidy i komory.

Obrázek 59 ukazuje příklad bojiště. Čísla v jednotlivých políčkách
udávají jejich výšky. Šedá políčka představují základnu pyramidy, za-
tímco jimi obklopený bílý obdélník značí možné umístění komory. Na ob-
rázku je jedno z optimálních řešení.

1 2 3 4 5 6 7 8

1 71 5 10 3 1 2 5

2 6 12 4 3 3 54 1

3 66 82 4 3 1 19

4 1 1 1 3 4 2 4 5

5 6 6 3 3 3 2 2 2

Obr. 59

Úloha: Napište program, který pro dané rozměry bojiště, pyramidy
a komory a pro dané výšky všech políček bojiště najde umístění pyramidy
na bojišti a komory v pyramidě takové, že výška základny bude největší
možná.

Pokud existuje více optimálních řešení, vypište libovolné jedno z nich.
Omezení'. 3 ^ m 1 000, 3 С n С 1 000,

3 ú a íš m,

1 íš c íš a — 2

Všechny výšky jsou celá čísla od 1 do 100.
Vstup: Program bude číst vstupní data ze souboru pyramid, in:

Popis:
1. řádek: obsahuje 6 celých čísel oddělených meze-
rami: m, n, a, 6, c, d.
Následujících n řádků: Tyto řádky popisují jed-
notlivé řádky čtvercové sítě v pořadí od prvního
к n-tému. Každý z nich obsahuje m celých čísel od-
dělených mezerami. Tato čísla popisují výšky po-
líček v příslušném řádku sítě v pořadí od prvního
sloupce к m-tému.

3 b n,
1 < d < b- 2.

pyramid.in
8 5 5 3 2 1

15 10 37125

6 12 443315

243166 19 8

11134245

66333222
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Výstup: Program zapíše do výstupního souboru pyramid, out násle-
dující údaje:
pyramid.out
4 1

6 2

Popis:
1. řádek: obsahuje dvě celá čísla oddělená mezerou.
Tato čísla udávají souřadnice levého horního rohu
základny pyramidy (v pořadí sloupec, řádek).
2. řádek: obsahuje dvě celá čísla oddělená mezerou.
Tato čísla udávají souřadnice levého horního rohu
komory (v pořadí sloupec, řádek).

Hodnocení: Část testovacích vstupů (dohromady za 30 bodů) bude
splňovat podmínky 3 m,n ^ 10.3.Zakázaný podgraf

Dva grafy G a H nazveme isomorfní, pokud mají stejný počet vrcholů
a vrcholům grafu G lze přiřadit navzájem různé vrcholy grafu H tak, aby
pro každou dvojici vrcholů v grafu G platilo, že mezi nimi vede hrana
právě tehdy, vede-li hrana také mezi jim odpovídající dvojicí vrcholů
v grafu H.

Kupříkladu oba grafy na obr. 60 jsou isomorfní, přestože na první
pohled je každý úplně jiný. Můžeme totiž jejich vrcholy přiřadit například
takto: a-1, b-6, c-8, d-3, g-5, h-2, i—4, j-7.

2

65

8

34

Obr. 60

Podgrafem grafu G nazveme libovolný graf, jehož množiny vrcholů
a hran jsou podmnožinami množin vrcholů a hran grafu G. Obr. 61 uka-
zuje příklad grafu a jeho podgrafu.

22

66 55

88

334

Obr. 61
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Řekneme, že graf G obsahuje graf H, existuje-li v grafu G alespoň
jeden podgraf Hr, který je isomorfní s grafem H (obr. 62).

2 2a

65 6 5

b
7 78 8

d 4 34 3 c
G H

Obr. 62

Úloha: Pro zadané neorientované grafy G a H najděte podgraf G'
grafu G takový, aby GaG' měly stejný počet vrcholů a graf G' neobsa-
hoval graf H.

Podgrafň s žádanými vlastnostmi přirozeně může být mnoho. Úkolem
je nalézt jeden z těch, které mají co možná největší počet hran.

Základní algoritmus: Podgrafy neobsahující graf H je možné hledat
například následujícím primitivním způsobem: Budeme procházet hrany
grafu G v pořadí, v jakém jsou popsány vstupním souborem, a postupně
je přidávat do G'. V každém kroku přitom budeme ověřovat, zda H není
obsažen v G'. Správná implementace tohoto hladového algoritmu nějaké
body získá, ovšem existují i mnohem lepší strategie.

počet vrcholů grafu H,
počet vrcholů grafu G.

Vstup: Dostanete deset vstupních souborů f orbiddenl. in až
forbiddenlO. in, každý z nich v následujícím tvaru:
forbiddenК. in

Omezení: 3 T m ú 4
3 < n < 1 000

Popis:
1. řádek: obsahuje 2 celá čísla oddělená mezerou:
m a n.

Následujících m řádků: Každý z těchto řádků ob-
sáhuje m celých čísel oddělených mezerami a popi-
suje jeden vrchol grafu H. Vrcholy jsou očíslovány
od 1 do m. Na j-tém řádku tohoto bloku vstupu je
г-té číslo rovno 1, pokud vrcholy i a j jsou spojeny
hranou, jinak je rovno 0.
Následujících n řádků: Každý z těchto řádků ob-
sáhuje n celých čísel oddělených mezerami. Tato
čísla obdobným způsobem popisují graf G.

3 5

0 10

10 1

0 10

0 10 0 0

10 10 0

0 10 10

0 0 10 1

0 0 0 1 0
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Povšimněte si, že s výjimkou prvního řádku obsahuje vstup matice
sousednosti grafů H a G.

Výstup: Odevzdejte 10 souborů, pro každý ze vstupních souborů je-
den. Každý soubor nechť obsahuje následující:

Popis:
#FILE forbidden К 1. řádek: hlavička souboru. Musí obsahovat

f orbidden/ť. out

5
#FILE forbidden К

0 10 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

kde К je číslo od 1 do 10 identifikující vstup,
ke kterému tento výstup patří.
2. řádek: obsahuje jediné celé číslo n.

Následujících n řádků: Každý řádek obsahuje n
mezerami oddělených celých čísel, která popisují
graf G' výše uvedeným způsobem.

Povšimněte si, že kromě řádků 1 a 2 výstup odpovídá matici sou-
sednosti grafu G' a že výše uvedený ukázkový výstup je správný, ale
ne optimální.

Hodnocení: Počet bodů, které získáte, bude záviset na počtu hran
vašeho grafu G' a bude stanoven takto: Nenulový počet bodů můžete
získat pouze tehdy, bude-li výstup splňovat zadání. Pokud splňuje, ozna-
číme si Ey počet hran ve vašem řešení, Ef, počet hran v řešení nalezeném
základním algoritmem, Em počet hran v nejlepším ze všech odevzdaných
řešení a použijeme následující vzorec:

Ev
30 ^ pokud Ey š Еь,Eb

body
Ey — Еь
Em - Еь ’ pokud Ey > Еь.30 + 70

4. Mexická dolina

Mexico City stojí v malebném údolí známém jako Mexická dolina.
V dávných časech bylo na jeho místě jezero, ale okolo roku 1300 se aztéčtí
velekněží usnesli, že ve středu jezera vytvoří ostrov, na kterém vybudují
centrum celé říše. Dnes už z jezera nezbylo nic.

Před příchodem Aztéků stálo na břehu jezera c měst. Některé dvojice
měst uzavřely obchodní dohody, podle nichž převážely zboží na lodích
mezi těmito městy. Trasa lodí vedla vždy po úsečce.
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Jak už to bývá, králové měst se rozhodli obchod zorganizovat. Navrhli
obchodní cestu spojující všechna města stojící okolo jezera. Cesta měla
následující vlastnosti:

> začínala v některém městě, navštívila každé z ostatních měst a skon-
čila v městě různém od počátečního;

o cesta každé město navštívila právě jednou;
> každá dvojice měst jdoucích na cestě po sobě měla spolu uzavřenu

obchodní dohodu;
o každá taková dvojice měst byla spojena lodní trasou vedoucí po úseč-

ce;

t> aby se lodě nesrážely, žádné dvě lodní trasy se nekřížily.
Obr. 63 ilustruje jezero a města vůkol. Úsečky odpovídají obchodním

dohodám, tučně je vyznačena obchodní cesta, která začíná v městě 2
a končí v městě 5. Tato cesta sama sebe nikde nekříží. Nebylo by napři-
klad možné, aby cesta z města 2 vedla do města 6 a pak do měst 5 a 1,
protože tehdy by se křížila.

Města jsou očíslována od 1 do c ve směru hodinových ručiček.
Úloha: Napište program, jenž pro zadaný počet měst a seznam ob-

chodních dohod mezi nimi sestrojí obchodní cestu splňující výše uvedené
podmínky.

Omezeni: 3 < c < 1 000 počet měst okolo jezera.

Vstup: Program bude číst vstupní data ze souboru mexico. in:
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mexico.in Popis:
1. řádek: obsahuje jediné celé číslo c.
2. řádek: obsahuje jediné celé číslo n — počet obchodních
dohod.

Následujích n řádků: Tyto řádky popisují jednotlivé ob-
chodní dohody. Každý z nich obsahuje dvě celá čísla od-
dělená mezerou — čísla měst, která uzavřela dohodu.

7

9

1 4

5 1

1 7

5 6

2 3

3 4

2 6

4 6

6 7

Výstup: Program zapíše do výstupního souboru mexico.out násle-
dující údaje:
mexico.out Popis:

Pokud je možné sestrojit obchodní cestu, soubor obsahuje
c řádků, na nichž jsou uvedena čísla všech měst v pořadí,
jak jdou po sobě na obchodní cestě. Pokud požadovaná
cesta neexistuje, soubor obsahuje jediný řádek s číslem -1.

2

3

4

1

7

6

5

Poznámka: Pokud existuje více cest splňující zadané podmínky, vy-

pište libovolnou z nich.
Hodnocení: Část testovacích vstupů (dohromady za 40 bodů) bude

splňovat podmínky 3 ^ c ^ 20.

5. Spojovaná
Spojovaná (Joining Points) je hra pro jednoho hráče. Začíná tím, že

si zvolíte dvě celá čísla g к 2ar к 2. Poté nakreslíte čtyři body ve vrcho-
lech čtverce: horní dva zelené, dolní dva červené. Pokračujete v kreslení
zelených a červených bodů uvnitř čtverce tak, aby žádné tři body (včetně
prvních čtyř) neležely v jedné přímce. Takto nakreslíte celkem g zelených
a r červených bodů.

Po nakreslení všech bodů je začnete spojovat úsečkami. Dva body
můžete spojit, pokud:

> oba body jsou téže barvy, a zároveň
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> nová úsečka neprotíná žádnou již nakreslenou úsečku jinde než v kraj-
nich bodech.
O dvou bodech u, v řekneme, že leží v téže komponentě, pokud je

možné dojít z bodu и do bodu v po nakreslených úsečkách.
Hru vyhrajete, pokud se vám podaří všechny zelené body spojit

do jedné komponenty pomocí právě g — 1 úseček a také všechny červené
body do jedné komponenty pomocí právě r — 1 úseček. Lze dokázat, že
ať už jsou body zadány jakkoliv, hru lze vždy vyhrát.

Dostanete čtvercový hrací plán o rozměrech sxs obsahující g zelených
a r červených bodů, nakreslených na souřadnicích (Xi, yt), kde X{ а уг jsou
celá čísla. Zelené body očíslujeme od 1 do g, přičemž bod v levém horním
rohu čtverce na souřadnicích (0, s) dostane číslo 1, bod v pravém horním
rohu na souřadnicích (s, s) číslo 2 a body uvnitř čtverce čísla 3 až g.
Červené body očíslujeme od 1 do r, levý dolní na souřadnicích (0, 0)
bude mít číslo 1, pravý dolní na (s,0) číslo 2, vnitřní body čísla 3 až r.

Obr. 64 ilustruje jeden příklad zadání a vyhrávajícího řešení. Všechny
zelené body jsou spojeny do jedné komponenty a všechny červené do dru-
hé. Povšimněte si, že žádné tři body neleží v téže přímce a že se žádné
dvě úsečky neprotínají s výjimkou svých koncových bodů.

Úloha: Napište program, který pro zadané souřadnice g zelených
a r červených bodů určí, jak nakreslit g — 1 zelených a r — 1 červených
úseček tak, aby byly všechny zelené body spojeny do jedné komponenty,
všechny červené do druhé a žádné dvě úsečky se neprotínaly.

počet zelených bodů,
počet červených bodů,
velikost hracího plánu.

Omezení: 3 g ^ 50 000
3 <í г й 50 000

0 < s < 200 000 000
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Vstup: Program bude číst vstupní data ze souboru points. in:

Popis:
1. řádek: obsahuje jediné celé číslo g.

Následujících g řádků: Tyto řádky popisují jednotlivé ze-
lené body v pořadí od bodu 1 do bodu g. Na každém řádku
se nacházejí dvě mezerou oddělená celá čísla Xi а уi, sou-
řadnice г-tého zeleného bodu.

(g 4- 2)-hý řádek: obsahuje jediné celé číslo r.

Následujících r řádků: Tyto řádky popisují jednotlivé čer-
vené body v pořadí od bodu 1 do bodu r. Na každém
řádku se nacházejí dvě mezerou oddělená celá čísla x; а уi,

souřadnice г-tého červeného bodu.

points.in
6

О 1000

1000 1000

203 601

449 212

620 837

708 537

8

0 0

1000 0

185 300

314 888

416 458

614 622

683 95

838 400

Výstup: Program zapíše do výstupního souboru následující údaje:
point s. out Popis:

Výstupní soubor obsahuje (g — 1) + (r — 1) řádků, z nichž
každý popisuje jednu úsečku spojující dva body.
Na každém řádku jsou tři mezerou oddělené údaje: dvě
celá čísla a znak reprezentující barvu úsečky. Čísla označují
body spojené úsečkou, znak má hodnotu g, pokud jsou oba
body zelené, nebo r, jsou-li červené.
Nezáleží na pořadí, ve kterém úsečky uvedete, ani na po-
řadí bodů v popisu úsečky.

1 3 g
3 1 r

3 5 r

4 6 r

6 5 r

4 6 g
1 2 g
1 2 r

5 2 g
2 6 g
7 8 r

8 2 r

Hodnocení: Část testovacích vstupů (dohromady za 35 bodů) bude
splňovat podmínky 3 ^ g,r ^ 20.

6. Černá skříňka

Pojďte, zahrajeme si hru s černou skříňkou. Na stole leží skříňka
ve tvaru čtverce. Na každé straně skříňky je n otvorů (celkem v ní je tedy
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4n otvorů), do nichž lze házet kuličky. Každá vhozená kulička po čase
vypadne některým z otvorů ven, možná i otvorem, jímž jsme ji vhodili.

Vnitřek skříňky si můžeme představit (a také nakreslit, obr. 65) jako
mřížku n x n políček. Otvory jsou umístěny na obou koncích všech řádků
a sloupců mřížky. Každé políčko mřížky je buďto prázdné, nebo obsahuje
odražeč. To je zařízení, které mění směr pohybu kuličky o 90°.

г n

/-*díra

\ odražeč

L J

Obr. 65

Vhozená kulička se uvnitř skříňky pohybuje přímo, než buďto narazí
do odražeče, nebo ze skříňky vypadne některým z otvorů. Pokud narazí
do odražeče, kulička změní svůj směr pohybu a odražeč se otočí o 90°.
Obr. 66 ukazuje činnost odražeče:

r u г~1 “1

I/ / /1
/ \\

J // /
JJ J LL L

c)b)a)
Obr. 66

a) Kuličku jsme vhodili otvorem. Kulička naráží do odražeče a mění směr
pohybu.

b) Po průletu první kuličky změnil odražeč svůj směr. Vhodili jsme další
kuličku do stejného otvoru, ta se od téhož odražeče odrazí v opačném
směru než první kulička.

c) Odražeč se otáčí pokaždé, když je zasažen.
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Při každém nárazu kuličky do odražeče se ozve pípnutí. Počet nárazů
vhozené kuličky do odražečů při průletu skříňkou lze tedy snadno zjistit
spočítáním pípnutí. Lze dokázat, že kulička vždy ze skříňky vypadne.
Skříňka je vybavena tlačítkem, které všechny odražeče otočí do počáteč-
ního stavu, a druhým tlačítkem, jímž můžeme všechny odražeče otočit
o 90°.

Úloha: Dostanete 15 černých skříněk, které můžete ovládat pomocí
knihovny funkcí. Zjistěte vnitřní uspořádání všech skříněk co nejpřesněji
a odevzdejte soubory popisující jednotlivé skříňky. Rovněž budete mít
к dispozici prostředky pro definování svých vlastních testovacích černých
skříněk.

Omezení: 1 íjLnú 30.

Výstup: Odevzdejte 15 souborů, pro každou černou skříňku jeden.
Každý soubor nechť obsahuje následující:

Popis:
#FILE blackbox К 1. řádek: hlavička souboru. Musí obsahovat

blackbox/ů. out

#FILE blackbox К

kde К je číslo od 1 do 15 identifikující černou skříň-
ku, ke které tento výstup patří.
Následujících n řádků: Každý řádek popisuje jeden
řádek černé skříňky, v pořadí od horního řádku
po spodní. Na každém řádku je přesně n znaků;
každý znak odpovídá jednomu políčku řádku (v po-
řadí zleva doprava):

> ‘’ značí, že políčko je prázdné,
o 7’ značí, že políčko obsahuje odražeč s počá-

tečním stavem 7’,
о ‘V značí, že políčko obsahuje odražeč s počá-

tečním stavem 4V,
> 4?’ značí, že jste nezjistili obsah políčka.

Knihovna: Dostanete knihovnu, která poskytuje následující funkce:

v.

? ?

Pascal:

function Initialize(box: integer):integer;
Inicializuje knihovnu. Tuto funkci je třeba zavolat právě jednou na po-

čátku vašeho programu. Funkce vrací počet otvorů na každé straně
skříňky (n).
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C/C+ +:
int Initialize(int box);

Parametr box obsahuje jedno celé číslo v rozsahu 1 až 15 určující
skříňku, kterou chcete zkoumat, nebo nulu, pokud si obsah skříňky chcete
zadat sami.

Pascal:

function throwBall(holeln, sideln: integer;
var holeOut, sideOut: integer): longint;

C:

int throwBall(int holeln, int sideln,
int *holeOut, int *sideOut);

C++:
int throwBall(int holeln, int sideln,

int &holeOut, int fesideOut);
Vhodí do skříňky kuličku otvorem holeln na straně sideln. Strany

jsou číslovány takto: 1 — horní, 2 — pravá, 3 — dolní, 4 — levá. Otvory
jsou číslovány zleva doprava a shora dolů, na každé straně od jedničky.
V holeOut a sideOut se dozvíte otvor a stranu, kudy kulička ze skříňky
vypadla. Funkce throwBall vrací počet pípnutí, která se během pokusu
ozvala.

Otočí všechny odražeče do počáteč-
ního stavu.

Pascal:

procedure ResetBox;
C/C++:
void ResetBoxQ ;

Pascal:

procedure ToggleDeflectors;
C/C++:
void ToggleDeflectors();

Otočí každý odražeč ve skříňce o 90°.

Ukončí komunikaci se skříňkou. Tuto

funkci byste měli zavolat na konci
svého programu.

Pascal:

procedure Finalize;
C/C++:
void Finalize();

Vynecháváme zde popis použití knihoven, protože nejsou к dispozici
příslušné soubory...

Ukázka komunikace s knihovnou: S černou skříňkou z obr. 66a by bylo
prostřednictvím knihovny možné komunikovat například takto:
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Pokud zadáme skříňku z obrázku, funkce vrátí hod-
notu 5.

Initialize(0);

Pascal:

throwBall(3, 4, holeOut, sideOut);
C:

throwBall(3, 4, &hole0ut, fesideOut);
C++:

throwBall(3, 4, holeOut, sideOut);
Kuličku vhazujeme do otvoru č. 3 (třetí shora) na levé straně. Funkce

vrátí 1, což znamená, že kulička narazila do jednoho odražeče. Po návratu
z funkce je holeOut = 2 a sideOut = 3, čili že kulička vypadla otvorem
č. 2 (druhý zleva) na dolní straně skříňky.

Testování: Pokud funkci Initialize zavoláte s parametrem 0,
knihovna si obsah skříňky přečte ze souboru blackbox. in. Takto můžete
s knihovnou experimentovat. Soubor má následující formát:

Popis:blackbox.in

1. řádek: obsahuje jediné celé číslo n — počet ot-
vorů na každé straně skříňky.
2. řádek: obsahuje jediné celé číslo d
ražečů uvnitř skříňky.
Následujích d řádků: Tyto řádky popisují jednot-

5

3

počet od-2 3 \
4 2/
4 4/

livé odražeče. Každý z nich obsahuje dvě celá čísla
oddělená mezerou sloupec a řádek polohy odra-
žeče. Za nimi následuje mezera a jeden znak, který
popisuje počáteční stav odražeče a může mít hod-
notu ‘/’ nebo ‘V-

Poznámka: Uvedený příklad vstupu popisuje skříňku z obr. 66a.
Hodnocení: Pro každou skříňku odevzdejte textový soubor co nejlépe

popisující vnitřek této skříňky. Hodnocen bude takto:
o Pokud váš soubor obsahuje znak ‘/’ nebo ‘V na chybné pozici,

dostanete za tuto skřínku 0 bodů.

o Označíme-li Bm maximální počet správně rozpoznaných políček mezi
všemi správnými řešeními účastníků, a By počet políček správně roz-
poznaných vaším řešením, dostanete za tuto skříňku

100 • By
procent maximálního počtu bodů.

Poznámka: Vzorové řešení této úlohy dokáže automaticky určit 100 %
počátečního obsahu všech zadaných skříněk za méně než 8 minut.

Bm
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