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O průběhu 58. ročníku matematické olympiády

Padesátý osmý ročník matematické olympiády se uskutečnil v České
republice ve školním roce 2008/09. Hlavním pořadatelem soutěže bylo
(stejně jako v předchozích letech) Ministerstvo školství, mládeže a tělo-
výchovy CR, dále Jednota českých matematiků a fyziků a Matematický
ústav Akademie věd ČR. Průběh soutěže zajišťovala stejně jako v před-
chozích ročnících soutěže Ústřední komise MO (ÚK MO), které předse-
dal doc. RNDr. Jaromír Simša, CSc., s místopředsedy RNDr. Jarosla-
vem Švrčkem, CSc. (pro kategorie А, В, C), RNDr. Vojtěchem Žádníkem,
Ph.D. (pro kategorie Z9-Z5) a doc. RNDr. Pavlem Tópferem, CSc. (pro
kategorii P). Tajemníkem ÚK MO byl RNDr. Karel Horák, CSc.

Přípravou a výběrem úloh pro jednotlivé kategorie a soutěžní kola
byly pověřeny Ústřední komisí MO dvě úlohové komise (jedna pro ka-
tegorie А, В, C a druhá pro kategorie Z). Obě komise se sešly na svých
pracovních seminářích dvakrát ročně (v listopadu 2008 a v květnu 2009).
Ve spolupráci se slovenskými kolegy zabezpečují obě komise s více než
ročním předstihem výběr úloh pro další ročník MO v České republice
i na Slovensku. Garanty výběru úloh pro tento ročník soutěže byli Pe-
ter Novotný (kategorie A), Pavel Calábek (kategorie В) a Martin Panák
(kategorie C).

Průběh 58. ročníku soutěže byl standardní. Letáky s úlohami а ко-
mentáře к řešením úloh I. kola 58. ročníku MO byly pro všechny katego-
rie soutěže dodány včas. Krajská (II.) kola v jednotlivých kategoriích se
uskutečnila ve stanovených termínech: 20. 1. 2009 v kategorii A, 7. 4. 2009
v kategoriích В a C a 13. 1. 2009 v kategorii P. Celkové počty účastníků
v jednotlivých krajích každé z uvedených kategorií jsou uvedeny v tabul-
kách, které tvoří přílohu této zprávy.

Ústřední kolo 58. ročníku Matematické olympiády v kategorii A se
uskutečnilo 22.-25. března 2009 v Plzni. Organizace závěrečného kola sou-
těže se v tomto roce ujala Krajská komise MO Plzeňského kraje. Vlastní
soutěž se konala v prostorách Západočeské univerzity v Plzni, soutěžící
a členové ÚK MO byli po dobu soutěže ubytováni v Domově mládeže
Středního odborného učiliště elektrotechnického a Hotelové školy v Plzni.
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Slavnostní zahájení ústředního kola proběhlo v neděli 22. března 2009
v Západočeském muzeu v Plzni. Záštitu nad III. kolem soutěže převzali
Mgr. Ondřej Liška, ministr školství, mládeže a tělovýchovy České repub-
liky, doc. MUDr. Milada Emmerová, CSc., hejtmanka Plzeňského kraje,
Ing. Pavel Rodí, primátor města Plzně, doc. Ing. Josef Průša, CSc., rek-
tor Západočeské univerzity, a dále senátoři Ing. Jiří Bis a Mgr. Miroslav
Nenutil. Kromě soutěžících, členů ÚK МО a garantů se zahájení soutěže
zúčastnili rovněž pozvaní hosté, mezi nimiž byli především zástupci spo-
lečenského života v Plzni a dále zástupci sponzorských firem (skupina
CEZ, Vydavatelství Fraus, Komerční banka, a.s., CSOB) a Gymnázia
v Plzni na Mikulášském náměstí.

Na základě jednotné koordinace úloh krajského kola kategorie A po-
zvala ÚK МО к účasti v ústředním kole 50 nejlepších řešitelů z celé
republiky. Svého zástupce v něm tentokrát neměl pouze Karlovarský
a Ústecký kraj. Soutěžními dny byly 23. a 24. březen 2009. Na řešení
obou trojic soutěžních úloh měli soutěžící již tradičně vyhrazeny vždy
4,5 hodiny čistého času a za každou úlohu bylo možno získat maximálně
7 bodů.

Plzeňští organizátoři připravili pro soutěžící a pro členy ÚK MO zají-
mavý doprovodný program. Pondělní odpoledne bylo vyhrazeno nejprve
prohlídce historického centra Plzně, dále pak byla pro všechny účastníky
zajištěna zajímavá exkurze do Plzeňského Prazdroje, a.s. Odpoledne po
druhém soutěžním dni absolvovali soutěžící exkurzi do některých vý-
znamných pracovišť ZCU v Plzni.

Slavnostní vyhlášení výsledků a předání cen nejlepším soutěžícím se
uskutečnilo ve středu 25. března 2009 dopoledne v aule Gymnázia v Plzni
na Mikulášském náměstí opět za přítomnosti představitelů města Plzeň
a zástupců ZCU v Plzni. Předseda ÚK MO ve svém závěrečném pro-

jevu mj. poděkoval také všem, kteří se zasloužili o bezchybnou organi-
zaci ústředního kola kategorie A, především pak předsedkyni Krajské
komise MO v Plzeňském kraji PaedDr. Nadě Kubešové a krátce informo-
val všechny přítomné o ústředním kole nadcházejícího 59. ročníku MO,
které se uskuteční v březnu 2010 v Karlovarském kraji (v Chebu).

Na ústřední kolo kategorie A bezprostředně navázalo ústřední kolo ka-
tegorie P. К účasti v závěrečném kole této soutěže bylo tentokrát pozváno
30 nej lepších řešitelů krajského kola, finále soutěže se však zúčastnilo
pouze 29 z nich.

Soutěžními dny ústředního kola v kategorii P byly 26. a 27. březen
2009. První soutěžní den řešili soutěžící tři úlohy teoretické, celý druhý
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soutěžní den byl vyhrazen tradičně řešení dvou praktických úloh. Za kaž-
dou teoretickou úlohu mohli soutěžící získat nejvýše 10 bodů, za řešení
každé praktické úlohy pak 15 bodů — celkově tedy nejvýše 60 bodů. Na
přípravě soutěžních úloh v kategorii P se podíleli pracovníci Katedry ma-
tematické informatiky Matematicko-fyzikální fakulty Univerzity Karlovy
v Praze.

Devět z deseti vítězů soutěže v kategorii A bylo pozváno к výběro-
věrnu soustředění před 50. mezinárodní matematickou olympiádou. Ta
se uskutečnila v červenci 2009 v německých Brémách. Kromě toho bylo
vybráno také družstvo pro 3. ročník Středoevropské matematické olym-
piády (MEMO), který se konal koncem září 2009 v polské Poznani. Druž-
stvo pro tuto mezinárodní soutěž tvořila šestice úspěšných řešitelů ústřed-
ního kola kategorie A, kteří se nezúčastnili 50. MMO. Počátkem července
2009 se konal v Rumunsku (Tírgu-Mure§) za české účasti také 16. roč-
nik Středoevropské olympiády v informatice (CEOI) a zhruba o měsíc
později se české reprezentační družstvo zúčastnilo již 21. ročníku Me-
zinárodní olympiády v informatice v bulharském Plovdivu. Podrobnější
zprávy o těchto mezinárodních soutěžích jsou uvedeny na konci ročenky.

Ústřední komise MO se během 58. ročníku soutěže sešla na dvou

pravidelných jednáních, a to 12. prosince 2008 v Matematickém ústavu
AV ČR v Praze a dále 23. března 2009 v Plzni u příležitosti ústředního
kola MO.

Pro 40 nejlepších řešitelů krajského kola 58. ročníku MO v kate-
goriích В a C uspořádala ÚK MO v červnu 2009 tradiční soustře-
dění v Jevíčku, organizované ředitelem tamějšího gymnázia, dr. Dagem
Hrubým. Lektorsky chod soustředění zabezpečovali doc. Calda, doc. Во-
ček, doc. Šimša, Mgr. Panák, dr. Švrček a dr. Hrubý. Počátkem září té-
hož roku se konalo v Janských Lázních na chatě Lovrana ještě výběrové
soustředění nejlepších řešitelů kategorie A, jež bylo zároveň i poslední
přípravou reprezentačního družstva pro 3. MEMO v Polsku. Na tomto
soustředění jednotlivé semináře vedli doc. Šimša, dr. Horák, dr. Švrček,
dr. Leischner, Mgr. Panák a dr. Calábek.

Závěrem dovolte poděkovat všem nadšeným učitelům matematiky,
kteří nad své pracovní povinnosti připravovali své matematicky talento-
váné žáky pro soutěž v tomto ročníku. Bez nich si lze jen těžko představit
úspěšný průběh nejstarší předmětové soutěže v České republice, kterou
je MO.
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Projev předsedy Ústřední komise MO
při slavnostním zahájení ústředního kola 58. ročníku MO

v Plzni

Dámy a pánové, vážení hosté, milí soutěžící,
po následující dva dny čekají vás, posledně jmenované, hodiny nesnad-

ného přemýšlení o matematických problémech. Atmosféru napínavého
hledání dílčích poznatků, které by mohly vést к vytčenému cíli, doprová-
zenou pocity objevitelského nadšení z dílčích hypotéz, střídaného často
trpkým poznáním, že to byly pouhé domněnky, vám nyní přiblížím velice
osobním vyprávěním o jednom příběhu s doposud otevřeným koncem.

Loni v červnu v anglicky psané knize Secrets in Inequalities Vietnam-
ského autora Pham Kim Hunga (vydanou rumunským nakladatelstvím
Gil Publishing House v roce 2007) jsem objevil následující úlohu samot-
ného autora knihy:

Dokažte, že pro libovolná kladná čísla a, b, c platí nerovnost

ab bc ca
<1. (1)4a2 + b2 + 4c2 462 + c2 + 4a2 4c2 + a2 4- 4b2

Autorské řešení podané v knize je velmi náročné: nejprve je pro sou-
čet tří hodnot konkávní funkce f(x) = л/х využita Jensenova nerovnost
s rafinovaně vybranými váhovými koeficienty, po následném dvojím užití
AG-nerovnosti je úloha zredukována na důkaz takové nerovnosti:

9(a3(b + c) + b3(c + a) + c3(a + b)) + 3abc(a + b + c) ^
^ 4(a4 + b4 + c4) + 17(a2b2 + b2c2 + c2a2).

I to je však nesnadný úkol řešený v knize tak, že získaná symetrická
nerovnost je nejprve upravena do tvaru se součtem tří analogických sčí-
tanců

E(2“2+2'>2 + ^ 5ab^j (a — b)2 / 0.
cykl

Další úvahy o znaménkách tří velkých závorek a porovnávání jejich ab-
solutních hodnot založená na předpokladu a ^ b ^ c zde nebudu uvádět,
nemá to pro další děj příběhu význam.

Nad takovým postupem jsem si jen povzdechl, že tohle bych sám asi
nikdy nevymyslel. Nepropadl jsem však trudnomyslnosti, protože vím,
jak podobné příklady často autoři vytvářejí, totiž opačným postupem
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od metody důkazu к zadání. S chladnější hlavou a kritičností jsem si
položil otázku, proč vůbec kompetentní autor zapletl do zadání úlohy
odmocniny, když díky známé Cauchyově nerovnosti

(Vw + y/v + \AČ)2^ 3(u + v + w)
mohl dokazovat tvarově jednodušší, a přitom silnější výsledek

, , < I.
4a2 + b2 + 4c2 462 + c2 + 4a2 4c2 + a2 + 462 ~ 3

Možné vysvětlení bylo dvojí: buďto nerovnost (2) pro některé trojice
kladných a, b, c neplatí, nebo autor nebyl schopen obecně platnou ne-
rovnost (2) dokázat (po listování celou zmíněnou knihou bych téměř vy-

loučil, že její autor na nerovnost (2) nepomyslel). Že by v případě druhé
možnosti byl důkaz jednodušší nerovnosti (2) ještě obtížnější než důkaz
složitější nerovnosti (1)?

Poslední otázka způsobila, že jsem měl o letních prázdninách o ušlech-
tilou zábavu vystaráno. Dny, kdy jsem ve chvílích volna usilovně pře-
mýšlel, jak na důkaz (2) navléct všemožné obvyklé postupy a klasické
nerovnosti, se střídaly s dny, kdy jsem na počítači zkusmo hledal trojice
čísel (a, 6, c), pro které nerovnost (2) neplatí. Neúspěchy jednoho druhu
snažení posilovaly následné snažení druhého druhu, a tak se to pravidelně
opakovalo. Už mě to celé dost iritovalo, zejména ta konkrétní čtyřka ve

jmenovatelích zlomků, že jsem pomýšlel, přiznám docela netakticky, i na

obecnější nerovnost

ab bc ca

(2)

ab bc 3ca
< (3)pa2 + b2 + pc2 pb2 + c2 + pa2 pc2 + a2 + pb2 2p + 1

s nezáporným parametrem p, v níž je zlomek na pravé straně sestaven tak,
aby po dosazení a = b = c přešla nerovnost v rovnost (pro záporná p ne-
můžeme kvůli jmenovatelům na obecnou platnost (3) pomýšlet). Slabou
útěchou mi bylo, že takovou nerovnost umím dokázat v jednom konkrét-
ním případě p = 1, kdy zlomky nalevo mají stejný jmenovatel, takže je
mohu snadno sečíst a dostat tak jednoduchou nerovnost

ab + bc + ca

a2+ b2 + c2 =
o které je dobře známo, že skutečně platí. Na druhou stranu, po dosa-
zení do (3) krajního přípustného p = 0 dostaneme nerovnost, která platí
rovněž obecně, ovšem naopak:

b c .
„

7 1 1 ^ 3.
b c a
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Proto má také smysl se ptát, zda pro některá (aspoň malá) kladná p

neplatí obecně opačná nerovnost

ab bc ca
>

pa2 + b2 -f- pc2 pb2 + c2 + pa2 pc2 + a2 + pb2 2p + 1

V listopadu jsem si vzpomněl, že můj přítel, pan docent Jaroslav Hora
ze Západočeské univerzity v Plzni, je expertem na programy počítačové
algebry, a že některé z nich jsou schopny dokazovat polynomické nerov-

nosti, zdůrazňuji symbolicky dokazovat, nikoliv pouze numericky testovat.
Tak jsem mu napsal, zda by dostupnými prostředky nerovnosti (3) a (4)
počítačově nezpracoval. Jako dnes si pamatuji na 27. listopad, kdy mi
kolega Hora poslal email, že nerovnost (3) pro původní parametr p — 4
skutečně platí, jak mu ohlásil počítač po asi 20 minutách výpočtů. Nej-
prve v programu Mathematica 6.1 upravil nerovnost (3) s obecným p na
ekvivalentní nerovnost M(a,6, c, p) ^ 0 pro mnohočlen

M(a, 6, c, p) — —a2b3c — a3bc2 + 3a2b2c2 — ab2c3 — a5bp + 3a4b2p — a3b3p +
+ 3a2b4p — a4bcp — a3b2cp — 2a?b3cp — ab4cp — b5cp+3a4c2p — 2a3bc2p —
— ab3c2p + 3b4c2p — a3c3p — a2bc3p — 2ab2c3p — b3c3p + 3a2c4p — abc4p +
+3b2c4p—ac5p+3a6p2 — 2a5bp2 + 3a4b2p2 — 3a3b3p2 -\-3a2b4p2 — ab5p2 +
+ 3b6p2 — a5cp2 — 2a4bcp2 — 3a3b2cp2 — a2b3cp2 — 2ab4cp2 — 2b5 cp2 +
+ 3a4c2p2 — a3bc2p2 + 9a2b2c2p2 — 3ab3c2p2 + 3b4c2p2 — 3a3c3p2 —

— 3a2bc3p2 — ab2c3p2 — 3b3c3p2-\-3a2c4p2 — 2abc4p2+ 3b2c4p2 — 2ac5p2 —
— bc5p2 + 3c6p2 + 3a4b2p3 — 2a3b3p3 + 3a2b4p3 — 2ab5p3 — 2a5cp3 —
— 2a3b2cp3 — 2a2b3cp3 + 3a4c2p3 — 2a3bc2p3 + 6a2b2c2p3 — 2ab3c2p3 +
+ 3b4c2p3 — 2a3c3p3 — 2a2bc3p3 — 2ab2c3p3 — 2 b3c3p3 + 3a2c4p3 +
+ 3b2c4p3 — 2bc5p3 ,

pak do počítače vložil úkol pro p rovné čtyřem

Reduce[ForAll [{a,b,c},a>0&&b>0&&
c>0,M[a,b,c,4]>=0],{a,b,c},Reals]

a po zmíněném čase dostal kladnou lakonickou odpověď „True“.
Ještě ten den mě napadlo, že bych mohl o nerovnosti (3) za 4 měsíce

tady v Plzni povídat. Než promluvím o dalších počítačových experimen-
těch, které pro mne kolega Hora udělal později, prozradím, že své osobní
marné pokusy a první prohru v důkazovém souboji s počítačem jsem ne-
bral tragicky. Naopak poměrně sebevědomě jsem usoudil, že nic snadného
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ke zdolání nerovnosti (3) jsem snad nepřehlédl, a tak jsem ji v prosinci —

jak s hodnotou p = 4, tak s obecným p — rozeslal současným i minulým
českým reprezentantům na MMO i starším kolegům — úlohářům z Cech,
Moravy, Slovenska i Polska. Do dnešního dne se nikdo z nich neozval, že
by vyřešil problém alespoň pro p rovné čtyřem.

Jaké ovoce přinesly další týdny komunikace s kolegou Horou? Předně
poznání, že opačná nerovnost

ab bc 3ca
> (4)pa2 + b2 + pc2 pb2 + c2 + pa2 pc2 + a2 + pb2 2p + 1

(splněná, jak víme, pro p = 0) nebude platit s obecnými kladnými a, 6, c

pro žádné kladné p. Při zadání najít protipříklad pro p rovné 10~5

Findlnstance [a>0&& b>0&&c>0

&&M[a,b,c,1/100000]>0,{a,b,c},Reals]

dostal kolega Hora z počítače odpověď {a
Po podobném testování ještě menších kladných p pochopil, že bude moci
nechat b = 1/2, c = 1 a dohledávat к danému malému p vhodné malé a.
Proto zaútočil obecně s úkolem

1/32 768, b —> 1/2, c —> 1}.

Reduce[ForAll[p,p>0,Exists[a,a>0,M[a,1/2,1,p]>0]]]

a podle očekávání dostal kladnou odpověď.
Po takové cenné kolegově nápovědě už nebylo obtížné vysvětlit bez

užití počítače, jak je to s nerovností (4). Kdyby platila s určitým klad-
ným p pro všechny trojice kladných a, 6, c, musela by ze spojitosti platit
i pro trojici (0,1/2,1). Pro ni však po dosazení dostáváme nerovnost

2
л ^ 3

4 0 ^ ,

p + 4 - 2p + 1
0 +

která neplatí pro žádné p < 10. Všiml jsem si, že ještě ničivější dopad
má užití trojice (0,1,1), pro niž vyjde nerovnost

1 3
+ 0 >0 +

p + 1 2p+ 1

jež dokonce neplatí pro žádné kladné p. Tím je naděje na obecnou plat-
nost nerovnosti (4) pro nějaké kladné p definitivně zmařena.
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Daleko překvapivější a dodnes nezavršený vývoj událostí se rozvinul
kolem nerovnosti (3). Jak už víme, s hodnotou p — 4 stála na začátku
našeho příběhu a 27.11. byla dokázána na počítači s programem Mathe-
matica. Ten pracoval s nerovností o třech proměnných M(a, 6, c, 4) ^ 0,
kde

M(a, 6, c, 4) = 48(a6 + b6 + c6) — 36(a5b + b5c + c5a) — 144(a5c + b5a +
+ c5b) + 252(a462 + a4c2 + 64a2 -f bAc2 + c4a2 + c4b2) — 3Q(a4bc +
+ b4ca + c4ab) — 180(a363 + 63c3 + c3a3) — 180(a362c + b3c2a + c3a2b) —
— 153(a36c2 + b3ca2 + c3ab2) + 531a262c2.

К dalším pokusům mi kolega Hora především napsal, že jeho počí-
tač nebyl schopen řešit podobný úkol pro čtyři proměnné, tj. vypočítat
všechny hodnoty p dané zadáním

Reduce[ForAll [{a,b,с},a>0&& b>0&&

c>0&&p>0&&M[a,b,c,p]>=0,p,Reals] ,

Takový úkol stroj po určité době vzdal. Co ten jeho počítač utáhl,
ocituji z přítelovy zprávy: Pokud mu dám konkrétní hodnotu parame-
tru p, dostanu po několika desítkách minut odpovědí, zda je mnohočlen M
nezáporný pro všechna kladná a, b, c či nikoliv. Projel jsem několik při-
rozených čísel. Vyšlo mi, že hypotéza platí pro p = 1,2,3,4, 5,6, neplatí
pro p = 7, 8,9,..., 20, 30, 50,100. Pro p = 7 to vyvrací a = 5/2, b = 1/3,
c = 1. Tak jsem zkoušel ještě p mezi šesti a sedmi. Platí to pro 13/2
a 33/5, ne však pro 20/3. Pak jsem ještě zkoušel p v pravém okolí nuly.
Vyhovují 1/2, 1/5, 1/6, 1/7, 1/8 i 1/9, ne však již 1/10. Pro ni to vyvrací
protipříklad a = 3/4, 6 = 3/4, c = 1.

Jistě pochopíte, jaké vzrušení ve mně taková nečekaná zpráva vyvo-
lala a jaký závěr se z poskytnutých informací nabízí. Zdá se, že vyho-
vující hodnoty parametru p vytvoří jeden interval s hranicemi přibližně
0,1 a 6,6. Tato hypotéza mě přivedla к nápadu, zda by se bez počí-
tače nedala vyloučit obecná platnost nerovnosti (3), když je p hodně
malé nebo hodně velké, nějak podobně jednoduše, jako byla vyloučena
všechna kladná p u opačné nerovnosti (4). Tak jsem vsadil na trojice
tvaru (a, 6, c) = (0,ř, 1), kde kladné t hledám v závislosti na daném p,
aby po dosazení platila opačná nerovnost

3t
+ 0 >0 +

pť2 + 1 2p+l

12



Existencí takového t bude obecná platnost nerovnosti (3) pro dané p

vyvrácena. Každý z přítomných (myslím soutěžících) by rychle zjistil,
že vyhovující t nalezneme jenom pro ta kladná p, která splňují jednu
z nerovností

8-3/Ť .
8 + 3\/7 .

= 0,03 nebo p > = 7,97.p <
2 2

Přestože takové meze jsou o dost hrubší, než naznačovaly počítačové
výsledky, jejich jednoduché odvození mě v první chvíli docela uspokojilo;
brzy se však dostavila touha po vylepšení.

Pomohla mi šťastná náhoda. V přítelově zprávě bylo uvedeno, že hod-
notu p = 0,1 vylučuje trojice (3/4, 3/4,1), na které mě zaujala rovnost
a = b. Proto jsem začal zjišťovat, pro které další hodnoty p vyloučím
obecnou platnost nerovnosti (3) jen pomocí trojic (t,t, 1) s vhodným
kladným t. Po dosazení takové trojice vyjdou na levé straně

t2 3t t
<

pt2 + t2 + p pt2 + 1 + pť2 p +12 + pt2 2p + 1

dva krajní zlomky se stejným jmenovatelem, což podstatně zjednodušuje
situaci. Když si navíc uvědomíme, že pro t — 1 musíme dostat rovnost,
dojdeme nakonec к ekvivalentní nerovnosti

(t - l)2 ((4p2 + 4p)t2 - t(2p2 - 3p + 1) + 3p) > 0.
(2pt2 + l)((p + 1 )t2 +p)(2p + 1)

Hodnota p bude tudíž vyloučena, pokud pro ni najdeme takové t, které
poslední nerovnosti nehoví, tedy kladné t s vlastností

(4p2 + 4p)t2 — t{2p2 — 3p + 1) + Sp < 0.

Není obtížné ukázat, že takto vyloučíme interval všech malých hodnot p
s horní hranicí Pq\

0<p< po = 5 — 2VQ = 0,101 020 514.

Protipříkladem všem takovým p je trojice (to, to, 1) s číslem

o + v/ě .

= 0,844 948 974.to —
10
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Výsledek mě nadchl o to více, že nalezená iracionální mez po leží mezi
zlomky 1/10 a 1/9, kam přesnou dolní hranici vyhovujících p umísťovaly
přítelovy experimenty. Proto jsem ho požádal, aby hodnotu po otestoval
úkolem

Reduce[ForAll[{a,b,c},a>0&& b>0&&

c>0,M[a,b,c,5-2*Sqrt[6]]>=0],{a,b,c}, Reals]

Ocituji část jeho odpovědi: Především Ti gratuluji к nalezení meze

Po = 5 — 2\/б- Pokoušel jsem se ji ověřit strojově přímo, výpočetní doba
je ale neúnosná. Dnes jsem měl v práci počítač puštěný přes noc, a když
ještě ani v poledne nebyl výpočtům konec, tak jsem to vzdal. Tak jsi po-
razil stroj K.O., aspoň co se týče programu Mathematica. Zdá se mi, že
problém je v tom, že symbolické výpočty s odmocninami jsou holt krajně
nepříjemné. Tak jsem tu Tvou hranici testoval racionálními čísly p leží-
čími blízko po, posílám to v příloze. Ještě se pokusím asi jinak.

Zmíněné testy racionálních p dopadly dobře, uvedu jen ta dvě nejbližší
testovaná přiblížení: jako vyhovující byla shledána hodnota 0,101 03 větší
než po, naopak jako nevyhovující hodnota 0,101 020 5 menší než po. A tak
jsem mohl vychutnávat pocit vítězství nad počítačem, možná jsem to měl
i nějak oslavit, byla však na to příliš krátká doba: od 3. března 14:43 do
4. března 11:36. To jsem právě dostal z Plzně zprávu, že hodnota po není
vyhovující, ať ji i já sám otestuji na trojici čísel

27433
= 0,845 703, b = — = 0,843 750, c = 1.a =

512 32

S hořkostí jsem ten snadný úkol vyplnil, přítel měl samozřejmě pravdu.
Naplnil poslední větu předchozího citátu, zadal svému počítači úkol

Findlnstance [a>0&& b>0&&c>0

&&M[a,b,c,5-2*Sqrt[6]]<0,{a,b,c>,Reals]

a jeho splnění ve tvaru uvedené trojice přineslo odvetné K.O. druhé stra-
ně. Marná sláva, přesná dolní mez vyhovujících p, číslo nepatrně větší než
5 — 2л/б, je opět neznámá hodnota. Povzdechl jsem si jen, jak blízko je ta
trojice (a, b, 1) trojici se shodnými složkami a, b, kterou jsem dříve tak
šťastně našel a v jejíž rozhodující roli jsem tolik věřil. Tak to prostě při
práci v matematice chodí, radosti střídají zklamání. Musím být příteli
vděčný, že ve své důslednosti nepolevil a nezanechal mě žiti v bludu déle.
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Chtěl bych proto kolegovi Horovi za jeho veškerou dosavadní nezištnou
pomoc ve formě počítačových pokusů vyslovit veřejné poděkování, a pro-
tože je dnes tady s námi, rád bych vám ho představil.

Vážení přítomní, děkuji vám za pozornost, se kterou jste sledovali
mé vyprávění. Nebylo by správné, kdybych se ještě nezmínil o jedné
významné události. Dne 19. února mi můj student Mgr. Miloš Přinosil
oznámil, že z Internetu stáhl dokument Collected Problems About Inequa-
lities pětice autorů Vo Quoc Ba Can, Nguyen Van Thach, Nguyen Phi
Hung, Phan Hong Son, Vo Thanh Van. Kromě anglického názvu je celý
dokument ve vietnamštině a je v něm dokázáno 174 od prvního pohledu
velice zajímavých a obtížných nerovností. Mgr. Přinosil si povšiml úlohy 8
s tímto zadáním:

8. Chung minh rang voi moi so thuc a, b, c, ta co

ab bc 1ca
< 1

4a? + b2 + 4c2 ' 4b2 + c2 + 4a2 ' 4c2 + a2 + 4b2 3

Ano, je to přesně ta nerovnost, která mě v loni červnu nad knihou jiného
vietnamského autora napadla a o které jsem vám dnes povídal! Jak vy-

padá její vietnamsky komentovaný důkaz bez užití počítače i prostředků
vyšší matematiky, co jsem všechno při jeho luštění prožil a proč se mi
zatím nedaří rozšířit jeho působnost na hodnoty parametru p různé od
čísla 4, je námětem na celou poučnou přednášku, kterou bych rád v bu-
doucnu proslovil na nějakém soustředění řešitelů matematické olympiády.
Snad tam budu mít stejně pozorné posluchače, jako jsem je měl dnes
ve vás.

Na úplný závěr svého vystoupení chci jménem Ústřední komise MO
srdečně pogratulovat všem přítomným soutěžícím к postupu do nejvýš-
šího kola letošního ročníku olympiády a popřát jim do obou soutěžních
dopolední co nejvíce dobrých nápadů a štěstí. Prohlašuji ústřední kolo
58. ročníku MO za zahájené.

Dodatek. Díky bývalému olympioniku Michalu Rolínkovi jsme se při
přípravě této ročenky dozvěděli o elegantním důkazu nerovnosti (2), který
pochází z knihy Inequalities with Beautiful Solutions. Tomuto názvu zmí-
něný důkaz plně odpovídá, proto ho zde nyní uvedeme.

Dotyčnou nerovnost

ab bc 1ca
< -

4a2 + b2 + 4c2 ' 462 + c2 + 4a2 ' 4c2 + a2 + 4b2 3

15



pro libovolná kladná a, 6, c dostaneme sečtením dvou nerovností

< I
4a2 + b2 + 4c2 — 3 ’

ab — c2 c2
E = ° а E (5)4a2 + b2 + 4c2
cykl cykl

kde zápis /(a> ^ c) značí součet f(a, 6, c) + /(&, c, a) + f(c, a, 6). Naším
cykl

úkolem je tedy obě nerovnosti v (5) dokázat. První z nich vynásobíme
čtyřmi a poté ke každému zlomku z levé strany přičteme 1. Díky rovnosti

4(a6 — c2) (2a + b)2
+ 1 =

4a2 + b2 + 4c2 4a2 + b2 + 4c2

tak obdržíme ekvivalentní nerovnost

(2a + b)2E ^3,4a2 + b2 + 4c2
cykl

která je součtem tří analogických nerovností

(2a -f b)2 2a2 b2
< (6)4a2 + b2 + 4c2 2a2 + c2 2c2 + b2

jak plyne ze zřejmé úpravy součtu

b2 2 b2 c2 2c2 a22a2
2a2 + c2 ' 2c2 + b2 ' 2b2 + a2 ' 2a2 + c2 ' 2c2 + b2 ' 262 + a2

Jak zdůvodnit nerovnost (6)? Využijeme к tomu Cauchyovu-Schwarzovu
nerovnost

(uxvi + u2v2 + u3v3)2 E (uj + W2 + W3) • (vj +v%+ vl)
s trojicemi čísel

ba a

(ui,u2,u3) =
л/2а2 + c2 ’ \j2a2 + с2 ’ л/2с2 + 62

(vi,i>2,t>3) = (у/2а2 + с2, \/2a2 + c2, \/2c2 + b2)
pro něž platí

{uivi + u2v2 + U3V3)2 =

2 1 2 1 2
щ + u2 + U3 =

(2 CL + 6)2,
2a2 b2

2a2 + c2 ' 2c2 + 62 ’
ví + v2 + v3 ~ 4a2 + fe2 + 4c2,
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takže po vydělení kladným součtem 4a2 + b2 + 4c2 skutečně dostaneme
nerovnost (6). Tím je první z nerovností (5) dokázána.

Protože v druhé nerovnosti (5) vystupují pouze druhé mocniny, pišme
dále a, b, c namísto a2, b2, c2, tj. dokazujme nerovnost

1c

E < z
4a + b + 4c ~ 3

cykl

Vynásobme ji nejprve výrazem 12(a + b + c) a poté zlomky z levé strany
upravme podle vzoru

12c(a + b + c) 9bc
— 3c +

4a + b + 4c4a + b + 4c

Po odečtení 3 (a + 6 + c) od obou stran dostaneme ekvivalentní nerovnost

9bc
E E a + 6 + c,

4a + 6 + 4c
cykl

která je součtem tří analogických nerovností

9bc 2bc bc
< (7)4a + b + 4c 2c + a ' 2a+ 6’

jak plyne ze zřejmé úpravy součtu

26c bc 2ab ab2ca ca

2c + a 2a + 6 2a + b 2b + c 2b + c ' 2c + a

Zbývá tedy dokázat nerovnost (7). Ta je opět důsledkem výše zmíněné
Cauchyovy-Schwarzovy nerovnosti, tentokrát pro trojice

bc bc bc
(ui,U2,U3) = 2a 4~ b2c 4“ a

(vi,V2,v3) — (\/2с + а, л/2с + a, v2a + &)
2c a

neboť pro ně platí

(uiVi + U2V2 + U3V3)2 = (3Vbcf
2 , 2 , 2

Uf + W2 + Щ =
26c 6c

2c + a ' 2a + b

vi+v2+v3 =4a + b + 4c.

Tím je celý důkaz hotov.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 58. ročníku MO
Kategorie

CelkemKraj A В C P
s и s s s и sи и и

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

71 49
66 15
74 28
51 44

128 110
54 32
54 36
57 51

149 129
60 40
64 35
68 60

23 19
5 4
4 3

15 8
0 0
4 4
6 6
1 1

4 4
1 1

15 11
1 1
2 2
9 7

371 307
185 91
196 102
191 163

31 22
135 80
129 43
121 44
103 69
199 111
389 176
254 87

77 41
322 103

12 98 6 5 13
22 18 56 29

43 15
41 13
35 26
57 32

106 54
75 29
19 14

114 39

53 29
46 18
61 19
34 18
78 48

141 58
121 40
32 15

137 34

34 4

18 11
30 21
63 30

127 53
57 17
24 10
62 23

CR 711 331 845 485 1057 552 90 71 2 703 1439

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 58. ročníku MO
Kategorie

CelkemKraj A C PВ
s и ss s и s и ии

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

59 27
38 12

17 7
4 1
3 2
7 2
0 0
4 2
6 6
1 0
4 3
1 1

11 3
1 1
2 0
7 3

157 72
85 25
90 23

147 55
22 10
77 16
40 17
44 19
62 22
86 35

167 58
69 23
41 22
99 35

37 16
14 1

25 5
38 12

8 3
18 0

4 1
11 2
17 1
21 4

49 15
14 2
10 2
21 7

44 22
29 11
29 7 33 9

54 22
9 4

27 5
15 4
19 7
15 4
39 16
56 10
28 4
15 9
32 8

48 19
5 3

28 9
15 6
13 10
26 14
25 14
51 30
26 16
14 11
39 17

CR 68 31 1186 432287 71 392 189 439 141

U ... počet úspěšných řešitelůS ... počet všech soutěžících
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uvedeni
všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium.

Kraj Praha•••••••• ••••••

Kategorie A

1. Josef Tkadlec, G J. Keplera, Praha 6
2. Tomáš Zeman, G J. Keplera, Praha 6
3. Petr Ryšavý, G J. Heyrovského, Praha 5
4. Jáchym Sýkora, G Ch. Dopplera, Praha 5

5.-6. Tomáš Pavlík, G J. Keplera, Praha 6
Karolína Rezková, G Praha 10, Voděradská

7. Van Nhan Nguyen, G Praha 6, Nad Alejí
8. Radek Marciňa, G Ch. Dopplera, Praha 5

9.-10. Miroslav Olšák, G Praha 5, Budanka
Dan Šafka, G J. Keplera, Praha 6

Kategorie В

1. Michal Turek, G J. Keplera, Praha 6
2. Tadeáš Dohnal, G Ch. Dopplera, Praha 5
3. Daniel Šafka, G J. Keplera, Praha 6
4. Matěj Petrouš, G Ch. Dopplera, Praha 5
5. Jakub Zika, G Praha 6, Nad Alejí

6.-7. Vít Henych, G Praha 7, Nad Alejí
David Votava, G Praha 9, Chodovická

8.-9. Ondřej Bajgar, G J. Nerudy, Praha 1
Michal Palaš, G J. Keplera, Praha 610.David Koubek, G J. Keplera, Praha 6
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Kategorie С

1.-2. Matouš Helikar, G Praha 6, Nad Alejí
Martin Tópfer, G Praha 7, Nad Štolou3.Tereza Andršová, G J. Keplera, Praha 6

4.-5. Matouš Hrubeš, G J. Heyrovského, Praha 5
Marie Kvasnicová, G Praha 2, Botičská

6.-7. Jiří Čížek, Akad.G Praha 2, Korunní
Jan Hadrava, G Ch. Dopplera, Praha 5

8.-10. Martin Hrycej, G J. Keplera, Praha 6
Petra Kaštánková, G Praha 10, Omská 1300
Julie Tomišková, Akad.G Praha 2, Korunní

Kategorie P

1. Vlastimil Dort, G Praha 9, Špitálská
2. František Hejl, G J. Nerudy, Praha 1

3.-4. Antonín Novák, G Praha 6, Arabská
Martin Patera, G Praha 6, Arabská

5. Jiří Setnička, G Praha 9, Cakovice
6. Ondřej Pelech, G J. Nerudy, Praha 1
7. Tomáš Vítek, G Praha 6, Arabská

Středočeský kraj••••••••••••• •••••••••••••

Kategorie A

1. Jan Pokorný, G V. B. Třebízského, Slaný

Kategorie В

1. Jan Mikeš, G Kolín
2. John Plechatý, G V. B. Třebízského, Slaný
3. Jan Musil, G Kolín

4.-5. Helena Brandejská, G J. Ortena, Kutná Hora
Tomáš Martínek, G Vlašim
Jana Váňová, G J. Ortena, Kutná Hora
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7.-8. Karolína Kopecká, G J. Barranda Beroun
Jiří Stránský, Dvořákovo G a SOŠE, Kralupy

9. Marek Kettner, G V. B. Třebízského, Slaný
10.-12. Markéta Košťálová, Dvořákovo G a SOŠE, Kralupy

Martin Procházka, G V. B. Třebízského, Slaný
Petra Čápová, G Vlašim

Kategorie C

1. Miroslav Martínek, G Vlašim
2. Jindřich Skřipko, G Kladno
3. Martin Frumar, G dr. J. Pekaře, Mladá Boleslav
4. Michal Berg, G V. Hraběte, Hořovice
5. Dominik Pěnkava, G Kladno

6.-9. Lenka Houdková, G Benešov
Stanislav Hlubocký, G Kolín
Iva Kavková, G Jiřího z Poděbrad, Poděbrady
Jan Kratochvíl, G Příbram, Svatá Hora

10. Tomáš Kumsta, G Benešov

Kategorie P1.Petr Čermák, G Kladno

• Jihočeský kraj

Kategorie A

1. Jan Matějka, G České Budějovice, Jírovcova
2. Pavel Veselý, G Strakonice
3. Martina Vaváčková, GP.de Coubertina, Tábor
4. Adam Jurazsek, G České Budějovice, Jírovcova
5. Jan Moravec, G Český Krumlov

Kategorie В

1. Josef Janoušek, G P. de Coubertina, Tábor
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2.-3. Aleš Flandera, GP.de Coubertina, Tábor
Jan Veselý, G Strakonice4.Petr Kaštánek, G P. de Coubertina, Tábor

5.-7. VYí Kubelka, G J. V. Jirsíka, České Budějovice
Tomáš Masák, G J. V. Jirsíka, České Budějovice
František Petrouš, G České Budějovice, Jírovcova

Kategorie C

1. František Petrouš, G České Budějovice, Jírovcova
2. Martin Mach, G České Budějovice, Jírovcova
3. Michal Hruška, G J. V. Jirsíka, České Budějovice
4. Kateřina Duspivová, G Český Krumlov
5. Lenka Čurnová, G České Budějovice, Jírovcova

6.-7. Lenka Stará, G České Budějovice, Jírovcova
František Vlk, G V. Nováka, Jindřichův Hradec

8. Šárka Voráčková, G České Budějovice, Jírovcova
9. Karel Kotalík, G J. V. Jirsíka, České Budějovice

Kategorie P

1. Pavel Veselý, G Strakonice
2. Jan Matějka, G České Budějovice, Jírovcova

Plzeňský kraj ••••••••••••••••••••••••••••

Kategorie A

1.-2. Filip Hlásek, G Plzeň, Mikulášské nám.
Van Minh Nguyen, G Tachov

3.-5. Trung Ha Due, Masarykovo G, Plzeň
Lukáš Chlad, G Plzeň, Mikulášské nám.
Jakub Klemsa, G Klatovy6.Karel Tesař, VOŠ a SPŠE, Plzeň
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Kategorie В

1.-2. Martin Bucháček, G L. Pika, Plzeň
Filip Hlásek, G Plzeň, Mikulášské nám.

3. Tomáš Bárta, G Plzeň, Mikulášské nám.
4. Václav Fanfule, G Plzeň, Mikulášské nám.

5.-6. Sven Johannes Kiinkel, G Plzeň, Mikulášské nám.
Jakub Suchý, G Plzeň, Mikulášské nám.

7.-8. Vojtěch Matula, G Plzeň, Mikulášské nám.
Jiří Němeček, G Plzeň, Mikulášské nám.

9. Jan Kotrbatý, G Plzeň, Mikulášské nám.
10.-12. Michal Bathory, G Plzeň, Mikulášské nám.

Ondřej Hovjacký, G Plzeň, Mikulášské nám.
Filip Štědronský, G Plzeň, Mikulášské nám.

Kategorie C

1. Kateřina Soukupová, G Plzeň, Mikulášské nám.
2.-4. Eliška Pilátová, G J. Š. Baara, Domažlice

Martin Prudek, G Plzeň, Mikulášské nám.
Jaroslava Ryplová, Masarykovo G, Plzeň

5. Radek Hošek, G Plzeň, Mikulášské nám.
6. František Havránek, G Stříbro

Kategorie P

1. Martin Holeček, G Plzeň, Mikulášské nám.
2. Karel Tesař, VOŠ a SPŠE, Plzeň

Karlovarský kraj• • # • ••••••

Kategorie A

1.-3. Josef Hazi, G Cheb
Jan Humplík, První české G, Karlovy Vary
Martin Kvěš, G Sokolov
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Kategorie В

1. Josef Hazi, G Cheb
2. Miroslav Kozák, G Cheb
3. Dung Le Quang, G Cheb

Kategorie C1.Pham Tat Dat, G Cheb
2.-3. Kateřina Jarosilová, G Sokolov

Emil Minář, G Cheb4.Tran Anh Due, G Cheb

Ústecký kraj ••••••••••••••••••••••••••••

Kategorie В

1.-3. Vojtěch Havel, G Rumburk
Tomáš Holka, G Kadaň
David Kuboň, G Teplice, Cs. Dobrovolců

4. Vojtěch Havlíček, G C. Kamenice
5.-6. Vojtěch Hlavenka, G Teplice, Cs. Dobrovolců

Martin Zukerstein, G Lovosice
7. Michal Mojzík, SPŠ a VOŠ, Školní 50, Chomutov

8.-9. Kristýna Matějová, G V. Hlavatého, Louny
Jindřich bubenský, G Žatec

Kategorie C

1. František Kaván, G C. Kamenice
2. Zuzana Boršiová, G Teplice, Cs. Dobrovolců

3.-4. Markéta Pilnerová, G J. Jungmanna, Litoměřice
Otakar Zich, SPŠ a VOŠ, Chomutov

5. Štěpán Šimsa, G J. Jungmanna, Litoměřice
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Kategorie P

1. Lukáš Kripner, G T. G. Masaryka, Litvínov
2. Karel Král, Podkrušnohorské G, Most

Liberecký kraj

Kategorie A

1. Klára Holková, G F. X. Saldy, Liberec

Kategorie В

1. Jan Polášek, G Turnov
2.-5. Karolína Burešová, G Česká Lípa

Jakub Hrnčíř, G F. X. Saldy, Liberec
Jakub Petr, G F. X. Saldy, Liberec
Ondřej Zlevor, G Turnov

6. Martin Dvořák, G Jablonec nad Nisou, U Balvanu

Kategorie C

1. Martin Zikmund, G Turnov
2. Jiří Erhart, G F. X. Saldy, Liberec

3.-4. Magdalena Nechanická, G Liberec, Jeronýmova
David Pustai, G Jablonec nad Nisou, U Balvanu

Kategorie P

1. Milan Cejnar, G Turnov
2.-3. Jan Polášek, G Turnov

Martin Zikmund, G Turnov
4.-5. Karolína Burešová, G Česká Lípa

Vojtěch Kudrnáč, G Turnov
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Královéhradecký kraj

Kategorie A

1. Petr Pařízek, G B. Němcové, Hradec Králové
2. Anna Chejnovská, G B. Němcové, Hradec Králové

Kategorie В

1. Anetta Sternwaldová, Biskupské G B. Balbína, Hradec Králové
2.-3. Kateřina Medková, Biskupské G B. Balbína, Hradec Králové

Jan Remeš, G Dobruška4.Anna Chejnovská, G B. Němcové, Hradec Králové
5.-6. Jan Fišer, Lepařovo G, Jičín

Jan Simbera, Jiráskovo G, Náchod
7. Vít Baumelt, G Dvůr Králové n. L.

8.-10. Zdeněk Borecký, G a SOŠ, Jaroměř
Marek Stehlík, G B. Němcové, Hradec Králové
Petra Svatoňová, G Dobruška

Kategorie C

1.-3. Petr Bartoň, G J.K. Tyla, Hradec Králové
Petr Jurčo, G Trutnov
Jakub Konrád, G a SOŠ, Jaroměř

4. Kateřina Vlčková, G Broumov
5. Anežka Semrádová, G B. Němcové, Hradec Králové
6. Michal Pokorný, SŠ aplik. kybernetiky, Hradec Králové
7. Josefína Mádrová, G Dobruška

Pardubický kraj

Kategorie A

1. Miroslav Koblížek, G Žamberk

26



Kategorie В

1.-2. Lukáš Charamza, G Litomyšl
Filip Lux, G Žamberk

3.-4. Miroslav Koblížek, G Žamberk
Martin Laštovička, G Pardubice, Dašická

5. Tomáš Klejch, G Litomyšl
6.-8. Jakub Puchýř, G Chrudim

Tereza Soukupová, G Česká Třebová
Ondřej Tobek, G Litomyšl

9. Tomáš Felcman, G Žamberk
10. Zuzana Jedličková, G Lanškroun

Kategorie C

1. Tomáš Kubelka, G Žamberk
2.-3. Nikola Havlasová, G Pardubice, Dašická

Peír Kovář, G Lanškroun
4. Tomáš Horák, G Chrudim

Kategorie P

1. David Vondrák, G Pardubice, Dašická
2.-3. Ondřej Holý, G Chrudim

Jan Tichý, G Pardubice, Dašická

• Kraj Vysočina

Kategorie A

1. Jan Nevoral, G Jihlava
2.-3. Jaromír Karmazín, G Velké Meziříčí

Marek Lanč, G Telč
4. Luboš Vítek, G Jihlava

Kategorie В

1. Kristýna Krejčířová, G O. Březiny a SOŠ, Telč
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2.Petr Louša, Havlíčkovo G, Havlíčkův Brod
3.-4. Tomáš Havelka, G Ždar nad Sázavou

Petra Staňková, G Jihlava
5. Jan Hudeček, Biskupské G Ždar nad Sázavou

6.-7. Dalimil Fišar, G Ždar nad Sázavou
Adam Kučera, G Chotěboř

8. Jakub Prášek, G O. Březiny a SOŠ, Telč
9.-11. Tomáš Karásek, G Ždar nad Sázavou

Lukáš Řídký, G O. Březiny a SOŠ, Telč
Václav Stránský, G Ždar nad Sázavou

Kategorie C

1.-2. Ondřej Bartoš, G Ždar nad Sázavou
Helena Fišarová, G Jihlava

3. Jan Kuchařík, G Jihlava
4. Jan Klusáček, G Třebíč
5. Jan Mazánek, G Ždar nad Sázavou
6. Lucie Zemánková, G Třebíč
7. Filip Murár, G Třebíč
8. Kateřina Zagorová, Havlíčkovo G, Havlíčkův Brod

9.-11. Jana Novotná, G Třebíč
Vlasta Vítková, G Jihlava
Simona Zimová, G Moravské Budějovice

Kategorie P

1. Michal Koutný, G Třebíč

Jihomoravský kraj ••••••••••••••••••••••••••

Kategorie A

1. Samuel Říha, G Brno, tř. Kpt. Jaroše
2. David Klaška, G Brno, tř. Kpt. Jaroše
3. Hana Sormová, G Brno, tř. Kpt. Jaroše
4. Alexander Slávik, G Brno, T. Novákové
5. Bohuslav Zrnek, G Brno, tř. Kpt. Jaroše
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6.—10. František Fiala, G Brno, tř. Kpt. Jaroše
Michal Horák, G Brno, tř. Kpt. Jaroše
Petr Hruška, G Hodonín
Hynek Jemelík, G Brno, tř. Kpt. Jaroše
David Macek, G Hodonín

Kategorie В

1. Hynek Jemelík, G Brno, tř. Kpt. Jaroše
2. Pavel Seveček, G Brno, tř. Kpt. Jaroše
3. František Fiala, G Brno, tř. Kpt. Jaroše
4. Dostál, G Blansko

5.-7. Zdeněk Jakub, Biskupské G Brno
Peír Косг", G Brno, tř. Kpt. Jaroše
Dominik Velan, G Brno, tř. Kpt. Jaroše

8. Jakub Juránek, G Brno, tř. Kpt. Jaroše
9.-11. Markéta Janošová, G Židlochovice

Gabriela Kubíčková, G Brno, Lerchova
Stanislav Schutz, G Kyjov

Kategorie C

1. Václav Raida, G Brno, tř. Kpt. Jaroše
2. Pavel Polcer, G Brno, Křenová

3.-4. Jan Stopka, G Brno, tř. Kpt. Jaroše
Dominik Tělupil, G Brno, tř. Kpt. Jaroše

5. Jana Sotáková, G Brno, tř. Kpt. Jaroše
6.-7. Tomáš Jordán, G Brno, tř. Kpt. Jaroše

Petr Vodička, G Brno, tř. Kpt. Jaroše
8. Jakub Vošmera, G M. Lercha, Brno

9.-10. Klára Janošková, G Strážnice
Bedřich Said, G Brno, tř. Kpt. Jaroše

Kategorie P

1. Hynek Jemelík, G Brno, tř. Kpt. Jaroše
2. David Klaška, G Brno, tř. Kpt. Jaroše
3. Alexander Slávik, G Brno-Řečkovice
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Zlínský kraj ••••••••••••••••••••••••••••••

Kategorie A

1. Jan Vaňhara, G L. Jaroše, Holešov
2. Josef Ondřej, G Rožnov pod Radhoštěm

Kategorie В

1. Adam Vyškovský, Masarykovo G, Vsetín
2. Zuzana Kluková, G Uherské Hradiště
3. Markéta Svehláková, G Kroměříž
4. Eliška Dostálková, G Uherské Hradiště

5.-6. Petr Martišek, G Kroměříž
Petr Pecha, SPŠS Vsetín

7.-10. Matěj Kocián, G Zlín-Lesní čtvrť
David Svoboda, G Zlín-Lesní čtvrť
Petr Tomčík, G Holešov
J/ua Ullrichová, G F. Palackého, Valašské Meziříčí

Kategorie C

1. Jan Mikel, G Rožnov pod Radhoštěm
2. Michal Opler, Masarykovo G, Vsetín
3. Tomáš Juřica, G F. Palackého, Valašské Meziříčí
4. David Šerý, G Rožnov pod Radhoštěm
5. Filip Křenek, G Rožnov pod Radhoštěm

Kategorie P

1. Lukáš Ptáček, G J. A. Komenského, Uherský Brod

Olomoucký kraj ••••••••••••••

Kategorie A

1. Jana Faltýnková, Cyrilometodějské G Prostějov
2. Wí Musil, G Šumperk
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Kategorie В1.Jan Tvrdik, Cyrilometodějské G Prostějov
2.-4. Daniel Frýbort, Cyrilometodějské G Prostějov

Lukáš Kunovský, G Jeseník
Petra Macigová, G Hranice

5. Věra Žitková, G Šternberk
6. Marie Kročová, G J. Škody, Přerov

7.-11. Karel Beneš, G Kojetín
Pavel Francírek, G Kojetín
Kateřina Jaroušové, G Šternberk
Adéla Klárová, G Jeseník
Dominik Lachman, G Olomouc-Hejčín

Kategorie C

1. Jiří Veselý, G J. Wolkera, Prostějov
2. Klára Sládečková, G J. Škody, Přerov
3. Gabriela Olivíková, G J. Škody, Přerov
4. Kateřina Burgetová, G J. Wolkera, Prostějov

5.-6. Šimon Rozsíval, G Šumperk
Josef Uchytil, G Jeseník

7.-8. Eva Gocníková, G J. Škody, Přerov
Vendula Horčičková, G J. Škody, Přerov

9. Tomáš Lázna, G J. Wolkera, Prostějov

• Moravskoslezský kraj • • • •

Kategorie A

1. Miroslav Klimoš, G M. Koperníka, Bílovec
2.-5. Simona Domesová, G M. Koperníka, Bílovec

Lucie Mohelníková, G M. Koperníka, Bílovec
Lenka Sumbalová, G M. Koperníka, Bílovec
Vojtěch Kaluža, G P. Bezruče, Frýdek-Místek

6.-7. Hana Bílková, G Frenštát pod Radhoštěm
Petr Boroš, G M. Koperníka, Bílovec
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Kategorie В

1.-2. Jiří Biolek, G P. Bezruce, Frýdek-Místek
Jakub Solovský, G M. Koperníka, Bílovec

3. Helena Svobodová, G Frýdlant nad Ostravicí
4. Ondřej Vejpustek, Wichterlovo G, Ostrava-Poruba
5. Petra Koščáková, Mendelovo G, Opava
6. Vendula Maulerová, G P. Bezruce, Frýdek-Místek
7. Jakub Štoček, G Havířov-Podlesí

8.-10. Ines Arencibiová, Wichterlovo G, Ostrava-Poruba
Tomáš Bartoněk, G O. Havlové, Ostrava-Poruba
Vojtěch Sindlář, G Havířov-Podlesí

Kategorie C

1. Lukáš Folwarczný, G Havířov, Komenského
2. Michal Kopf, Slezské G Opava
3. Barbora Mólová, G M. Koperníka, Bílovec
4. Ondřej Bouchala, G Havířov, Komenského

5.-7. Sebastián Filip, Mendelovo G, Opava
Tomáš Hadámek, Mendelovo G, Opava
Augustin Žídek, G Frýdlant nad Ostravicí

8. Jakub Dedek, Wichterlovo G, Ostrava-Poruba

Kategorie P

1. Miroslav Klimoš, G M. Koperníka, Bílovec
2. Jitka Novotná, G M. Koperníka, Bílovec
3. Libor Plucnar, G P. Bezruče, Frýdek-Místek
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Výsledky ústředního kola 58. ročníku MO
kategorie A

Vítězové

1.-2. Miroslav Klimoš, 4/4 G M. Koperníka, Bílovec
Josef Tkadlec, 8/8 G J. Keplera, Praha 6

3.-4. Samuel Říha, 4/4 G Brno, tř. Kpt. Jaroše
Tomáš Zeman, 6/8 G J. Keplera, Praha 6

5.-6. David Klaška, 3/4 G Brno, tř. Kpt. Jaroše
Jan Matějka, 8/8 G České Budějovice, Jírovcova

7.-8. Josef Ondřej, 7/8 G Rožnov pod Radhoštěm
Hana Sormová, 4/4 G Brno, tř. Kpt. Jaroše

9. Miroslav Olšák, 7/8 G Buďánka, Praha 5
10. Jan Vaňhara, 8/8 G L. Jaroše, Holešov
11. Яапа Bílková, 8/8 G Frenštát pod Radhoštěm

39 b.

39 b.

35 b.

35 b.

28 b.

28 b.

26 b.

26 b.

20 b.

19b.

18b.

Další úspěšní řešitelé

12.-13. Nguyen Van Minh, 6/6 G Tachov
Bohuslav Zrnek, 3/4 G Brno, tř. Kpt. Jaroše

14. Jana Faltýnková, 8/8 Cyrilometodějské G Prostějov
15.-20. Petr Boroš, 3/4 G M. Koperníka, Bílovec

Simona Domesová, 7/8 G M. Koperníka, Bílovec
Vít Musil, 4/4 G Šumperk, Masarykovo nám.
Nguyen Van Nhan, 8/8 G Praha 6, Nad Alejí
Tomáš Pavlík, 8/8 G J. Keplera, Praha 6
Petr Ryšavý, 7/8 G J. Heyrovského, Praha 5

21.-22. Radek Marciňa, 3/4 G Ch. Dopplera, Praha 5
Alexander Slávik, 8/8 G Brno, Terezy Novákové

23.-25. Due Trung Ha, 7/8 Masarykovo G, Plzeň
Zuzana Komárková, 4/4 G Brno, tř. Kpt. Jaroše
Lucie Mohelníková, 4/4 G M. Koperníka, Bílovec

17b.

17b.

16 b.

15 b.

15 b.

15b.

15b.

15b.

15 b.

14 b.

14 b.

13 b.

13 b.

13 b.
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Výsledky ústředního kola 58. ročníku MO
kategorie P

Vítězové

1. David Klaška, 7/8 G Brno, tř. Kpt. Jaroše
2. Miroslav Klimoš, 4/4 G M. Koperníka, Bílovec
3. Vlastimil Dort, 7/8 G Praha 9, Špitálská
4. Karel Tesař, 3/4 VOŠ a SPŠE Plzeň
5. Hynek Jemelík, 2/4 G Brno, tř. Kpt. Jaroše

6.-7. Ondřej Holý, 8/8 G J. Ressela, Chrudim
Jan Polášek, 6/8 G Turnov

8. Libor Plucnar, 6/6 G P. Bezruče, Frýdek-Místek

53 b.

37b.

34 b.

33 b.

32 b.

29 b.

29 b.

28 b.

Další úspěšní řešitelé

9. Martin Holeček, 7/8 G Plzeň, Mikulášské nám.
10.-11. František Hejl, 6/6 G J. Nerudy, Praha 1

Pavel Veselý, 4/4 G Strakonice
12. Petr Čermák, 7/8 G Kladno

13.-14. Lukáš Kripner, 7/8 G T. G. Masaryka, Litvínov
Jitka Novotná, 4/4 G M. Koperníka, Bílovec

15.-16. Jan Matějka, 8/8 G České Budějovice, Jírovcova
Alexander Slávik, 8/8 G Brno-Řečkovice

27b.

24 b.
24 b.

22 b.

21b.

21b.

20 b.

20 b.
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Kategorie С

Texty úloh

C - I - 1

Honza, Jirka, Martin a Petr organizovali na náměstí sbírku na dobročinné
účely. Za chvíli se u nich postupně zastavilo pět kolemjdoucích. První dal
Honzovi do jeho kasičky 3 Kč, Jirkovi 2 Kč, Martinovi 1 Kč a Petrovi
nic. Druhý dal jednomu z chlapců 8 Kč a zbylým třem nedal nic. Třetí
dal dvěma chlapcům po 2 Kč a dvěma nic. Čtvrtý dal dvěma chlapcům
po 4 Kč a dvěma nic. Pátý dal dvěma chlapcům po 8 Kč a dvěma nic.
Poté chlapci zjistili, že každý z nich vybral jinou částku, přičemž tyto
tvoří čtyři po sobě jdoucí přirozená čísla. Který z chlapců vybral nejméně
a který nejvíce peněz? (Peter Novotný)

С - I - 2

Pravoúhlému trojúhelníku ABC s přeponou AB je opsána kružnice. Paty
kolmic z bodů А, В na tečnu к této kružnici v bodě C označme D, E.
Vyjádřete délku úsečky DE pomocí délek odvěsen trojúhelníku ABC.

(Pavel Leischner)

C - I - 3

Najděte všechna čtyřmístná čísla n, která mají následující tři vlastnosti:
V zápise čísla n jsou dvě různé číslice, každá dvakrát. Číslo n je dělitelné
sedmi. Číslo, které vznikne obrácením pořadí číslic čísla n, je rovněž čtyř-
místné a dělitelné sedmi. (Pavel Novotný)

С - I - 4

Je dán konvexní pětiúhelník ABCDE. Na polopřímce BC sestrojte ta-
kový bod G, aby obsah trojúhelníku ABG byl shodný s obsahem daného
pětiúhelníku. (Lucie Růžičková)
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С - I - 5

Z množiny {1, 2, 3,, 99} vyberte co největší počet čísel tak, aby součet
žádných dvou vybraných čísel nebyl násobkem jedenácti. (Vysvětlete,
proč zvolený výběr má požadovanou vlastnost a proč žádný výběr většího
počtu čísel nevyhovuje.) (Jaromír Simša)

C - I - 6

Dokažte, že pro libovolná různá kladná čísla a, b platí

a + b
^ 2 (a2 + ab + b2)

3 (a 4- b)
a2 + b2

< <
2 2

(Jaromír Simša)

C - S - 1

Dokažte, že pro libovolná nezáporná čísla a, b, c platí

(a + bc){b + ac) ^ ab(c + l)2.

(Jaromír Simša)Zjistěte, kdy nastane rovnost.

C - S - 2

V pravoúhlém trojúhelníku ABC označíme P patu výšky z vrcholu C
na přeponu AB. Průsečík úsečky AB s přímkou, která prochází vrcholem
C a středem kružnice vepsané trojúhelníku PBC, označíme D. Dokažte,

(Pavel Leischner)že úsečky AD a AC jsou shodné.

C - S - 3

Jestliže jistá dvě přirozená čísla ve stejném pořadí sečteme, odečteme, vy-
dělíme a vynásobíme a všechny čtyři výsledky sečteme, dostaneme 2 009.
Určete tato dvě čísla. (Vojtech Bálint)
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С - II - 1

Uvažujme výraz
5x4 — 4ж2 + 5

V(x) X4 + 1

a) Dokažte, že pro každé reálné číslo x platí V (ж) ^ 3.
b) Najděte největší hodnotu V(x). (Aleš Kobza)

С - II - 2

V pravoúhlém trojúhelníku ABC označíme P patu výšky z vrcholu C
na přeponu AB a D, E středy kružnic vepsaných po řadě trojúhelníkům
APC, СРВ. Dokažte, že střed kružnice vepsané trojúhelníku ABC je
průsečíkem výšek trojúhelníku CDE. (Pavel Leischner)

C - II - 3

Z množiny {1,2,3,..., 99} je vybráno několik různých čísel tak, že součet
žádných tří z nich není násobkem devíti.
a) Dokažte, že mezi vybranými čísly jsou nejvýše čtyři dělitelná třemi.

(Jaromír Simša)b) Ukažte, že vybraných čísel může být 26.

С - II - 4

Pravoúhlému trojúhelníku ABC s přeponou AB a obsahem S je opsána
kružnice. Tečna к této kružnici v bodě C protíná tečny vedené body A
а В v bodech D a E. Vyjádřete délku úsečky DE pomocí délky c přepony
a obsahu S. (Peter Novotný)
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Řešení úloh

C - I - 1

Dohromady chlapci dostali 3 + 2 + l + 8 + 2- 2 + 2- 4 + 2- 8 = 42 Kč.
Toto číslo lze jednoznačně vyjádřit jako součet čtyř po sobě jdoucích
přirozených čísel: 42 = 9 + 10+11 + 12. Čtyři chlapci tedy (v nějakém
pořadí) vybrali sumy 9, 10, 11 a 12 Kč.

Žádný chlapec nemohl dostat 8 Kč zároveň od druhého i od pátého
kolemjdoucího (jinak by měl alespoň 16 Kč, nejvíce však mohl každý
z chlapců dostat 12 Kč). Takže od druhého a pátého mají tři chlapci po
8 Kč a jeden od nich nedostal nic. Nejvýše jeden z těchto tří chlapců
mohl dostat 4 Kč od čtvrtého kolemjdoucího, jinak by měli už alespoň
dva chlapci alespoň 12 Kč. Čtvrtý kolemjdoucí musel tedy dát 4 Kč právě
jednomu z nich a 4 Kč zbývajícímu chlapci. Bez peněz prvního a třetího
kolemjdoucího tedy mají chlapci vybráno 12, 8, 8 a 4 Kč. Chlapec, který
dostal v součtu od druhého, čtvrtého a pátého kolemjdoucího dvanáct
korun, už nemohl dostat od prvního a třetího kolemjdoucího nic, neboť
by měl více než dvanáct korun. Ten, který dostal v součtu od druhého,
čtvrtého a pátého kolemjdoucího 4 Kč, musel dostat od prvního a třetího
v součtu maximální možnou částku, tj. 3 + 2 = 5 Kč, jinak by měl celkově
méně než 9 Kč (dostal tedy právě 9 Kč a má nejméně). Takže nejméně
vybral Honza, neboť on dostal od prvního kolemjdoucího 3 Kč, a nejvíc
Petr, který od prvního kolemjdoucího nedostal nic.

Úvahy snadno dokončíme a ukážeme, že popsané rozdělení je vskutku
možné. Jak už víme, Honza vybral 9 Kč a Petr 12 Kč, Jirka, který dostal
2 Kč od prvního, nemohl dostat od třetího nic, takže dostal celkem 10 Kč,
a Martin 11 Kč. Všechny úvahy můžeme přehledně uspořádat do tabulky,
kterou postupně doplňujeme:

E4 51 2 3

008

0 0 8

12 —> p0 0 0 4 8
< 9 H0 o3 2 4

2x51 + 2+3 1x5 2x2 2x4
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С - I - 2

Označme odvěsny trojúhelníku ABC obvyklým způsobem a, b a proti-
lehlé úhly a, (3. Střed přepony AB (střed opsané kružnice) označíme O
(obr. 1).

Výška v = CP rozděluje trojúhelník ABC na trojúhelníky ACP
а СВР podobné trojúhelníku ABC podle věty uu (a + (3 = 90°), úsečka
OC je kolmá na DE a navíc \OC\ = \OA\ = r (poloměr opsané kružnice).
Odtud \<OCA\ = \<OAC\ = a a \<DCA\ = 90° - \<OCA\ = (3.

Pravoúhlé trojúhelníky ACP a ACD se společnou přeponou AC se
tudíž shodují i v úhlech při vrcholu C. Jsou proto shodné, dokonce sou-
měrně sdružené podle přímky AC. Analogicky jsou trojúhelníky СВР
a CBE souměrně sdružené podle BC. Je tedy \CD\ = \CE\ — v, tudíž
|DE\ = 2v — 2ab/y/a2 + 62, neboť z dvojího vyjádření dvojnásobku ob-
sáhu trojúhelníku ABC plyne v = ab/\AB\, přičemž \AB\ = Va2 + b2.

Poznámka. Místo dvojího vyjádření obsahu můžeme к výpočtu
výšky CP využít podobnost trojúhelníků СВР a ABC: siná =
= \CP\/\AC\ = \BC\/\AB\.

F,

D, aD
Vc

C c

vc
or E E

b a
r rv

^ (((3r r ra

A O P AВ O В

Obr. 1 Obr. 2

Jiné řešení. Úsečka OC je střední příčkou lichoběžníku DABE, ne-
boť je rovnoběžná se základnami a prochází středem O ramene AB. Je
proto D obrazem bodu E v souměrnosti podle středu C. Obraz F bodu
В v téže souměrnosti leží na polopřímce AD za bodem D (obr. 2). Je
\CF\ = \BC\ = a, úhel ACF je pravý, trojúhelníky AFC a ABC jsou
tedy shodné. Vidíme, že CD je výška v trojúhelníku AFC shodná s výš-
kou vc trojúhelníku ABC, a DE je jejím dvojnásobkem. Velikost výšky
vc dopočítáme stejně jako v předchozím řešení.
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Jiné řešení. Úsečky CD a CE (obr. 3) jsou shodné s výškami rovnora-

menných trojúhelníků ACO, BCO na společnou stranu OC. Protože tyto
dva trojúhelníky mají ve srovnání s třetím trojúhelníkem ABC poloviční
obsah a i jejich společná strana OC je oproti přeponě AB poloviční, jsou
obě výšky na stranu OC trojúhelníků ACO, BCO shodné s výškou na
stranu AB trojúhelníku ABC. Jeho výšku dopočítáme jako v prvním
řešení.

Odpověď. \DE\ = 2ab/\/a2 + b2.

C - I - 3

V řešení budeme ň značit číslo, které vznikne obrácením pořadí číslic
čísla n. Rozlišíme tři případy.

(i) Číslo n má tvar aabb, kde a, 6 jsou různé cifry. Je tedy n — 1100a+
+ 116 a ň = 1 1006+ 11a. Číslo 7 má dělit jak n, tak ň, tedy i jejich rozdíl
n — ň = 1 089(a — 6) a součet n + ň = 1 lll(a + 6). Protože ani číslo
1089, ani číslo 1111 nejsou násobkem sedmi a sedm je prvočíslo, tak
7|a — 6i7|a + 6. Použijeme-li stejnou úvahu ještě jednou, vidíme, že

6) + (a + 6) = 2a а 7 | (a + 6) — (a — 6) = 26, tedy 7 | a а 7 | 6,
neboli a, 6 € {0, 7}. Číslice a, 6 jsou navzájem různé, proto jedna z nich
musí být 0. Ale potom jedno z čísel aa66, bbaa není čtyřmístné. Hledané
číslo n tedy nemůže být uvedeného tvaru.

(ii) Číslo n má tvar abab. Potom 7 | n = 1 010a + 1016 a rovněž
7 | ň = 1 0106 + 101a. Podobně jako v předchozím případě odvodíme, že
7 | n — ň = 909(a — 6)a7|n + ň = l lll(a + 6), a ze stejných důvodů
jako v předchozím případě zjišťujeme, že 7 | a, 7 | 6. Některá z číslic by
tedy musela být 0. Číslo n tak nemůže být ani tvaru abab.
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(iii) Číslo n má tvar abba. Potom obrácením pořadí číslic vznikne
totéž číslo, takže máme jedinou podmínku 7 | 1001a + 1106. Protože
7 | 1001 а 7 { 110, je tato podmínka ekvivalentní s podmínkou 7 | b.
Proto b G {0,7}, a G {1,2,..., 9}, a ^ b. Vyhovuje tak všech 17 čísel,
která právě uvedené podmínky splňují: 1001, 2 002, 3 003, 4 004, 5 005,
6 006, 7 007,8 008,9 009,1 771, 2 772,3 773,4 774,5 775,6 776,8 778,9 779.

С - I - 4

Rozbor: Nejprve uvažme bod F, který je průsečíkem přímky ВС a rov-

noběžky s ЕС jdoucí bodem D (protože E ^ BC, jsou ЕС a BC růz-
noběžky, obr. 4). Obsahy trojúhelníků ECD a ECF jsou shodné (mají
společnou stranu ЕС a shodnou výšku na tuto stranu), obsah pětiúhel-
niku ABCDE je tedy shodný s obsahem čtyřúhelníku ABFE.

Dále uvažme bod G, který je průsečíkem přímky BC a rovnoběžky
s AF jdoucí bodem E. Potom jsou opět obsahy trojúhelníků AFE a AFG
shodné, a jsou proto shodné i obsahy čtyřúhelníku ABFE a trojúhelníku
ABG. Bod G tak má požadovanou vlastnost.

Hledaný bod je na polopřímce BC jediný, neboť pro různé body X, Y
na polopřímce BC mají trojúhelníky ABX a ABY různé výšky na spo-
léčnou stranu AB, mají tedy různé obsahy.

Popis konstrukce:
1. p; p || EC, D G p;
2. F; F G p П BC]
3. q; q || AF, fiGg;
4. G-GeqHBC-,
Úloha má jediné řešení.
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С - I - 5

Čísla od 1 do 99 rozdělíme podle jejich zbytku při dělení číslem 11 do
jedenácti devítiprvkových skupin To, T\, ..., Тю:

T0 = {11, 22, 33,..., 99},
Ti = { 1,12,23,..., 89},

Тю — {Ю, 21, 32,..., 98}.

Vybereme-li jedno číslo z To (víc jich ani vybrat nesmíme) a všechna
čísla z Ti, T2, T3, T4 а T5, dostaneme vyhovující výběr 1 + 5 • 9 = 46 čísel,
neboť součet dvou čísel z 0, 1, 2, 3, 4, 5 je dělitelný 11 jedině v případě
0 + 0, z množiny To jsme však vybrali pouze jedno číslo.

Na druhou stranu v libovolném vyhovujícím výběru je nejvýše jedno
číslo ze skupiny To a nejvýše 9 čísel z každé ze skupin

T1UT10, T2UT9, T3UT8, T4UT7, T5UT6,

neboť při výběru 10 čísel z některé skupiny TjUTn_j by mezi vybranými
bylo některé číslo ze skupiny Ti i některé číslo ze skupiny Tn-ť, jejich
součet by pak byl dělitelný 11. Celkem je tedy ve výběru nejvýše 1 +
+ 5 • 9 = 46 čísel.

C - I - 6

Levou nerovnost dokážeme ekvivalentními úpravami:
a + b

^ 2(a2 + ab + b2)
3(a + b)

3(a + b)2 < 4(a2 + ab + b2),
0 < (a — b)2.

• 6(a + b)<
2

Poslední nerovnost vzhledem к předpokladu aýň platí. Také pravou ne-
rovnost ze zadání budeme ekvivalentně upravovat, začneme umocněním
každé strany na druhou:

4(a2 + ab + b2)2
9(а -I- b)2

8(a2 + ab + b2)2 < 9(a2 + b2)(a + 6)2,
8(a4 + 64 + 2a3b + 2ab3 + 3a2b2) < 9(a4 + 64 + 2a3b + 2a63 + 2a2b2)

6a2b2 < a4 + b4 + 2a3b + 2a63.

a2 + 62
■ 18(a + b)2<

2
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Poslední nerovnost je součtem nerovností 2a2b2 < a4 + b4 а 4a2b2 <
< 2a36 + 2a63, které obě platí, neboť po převodu členů z levých stran na

pravé dostaneme po rozkladu už zřejmé nerovnosti 0 < (a2 — 62)2, resp.
0 < 2ab(a — b)2.

C - S - 1

Roznásobením a dalšími ekvivalentními úpravami dostaneme

ab + b2c + a2c + abc2 ^ abc2 + 2abc -f ab,
b2c + a2c ^ 2abc,

(a — 6)2c ^ 0.

Podle zadání platí c^Oa druhá mocnina reálného čísla a — b je rovněž
nezáporná, takže je nezáporná i levá strana upravené nerovnosti. Rovnost
v ní (stejně jako v původní nerovnosti) nastane, právě když a — b = 0
nebo c = 0, tedy právě když je splněna aspoň jedna z podmínek a — 6,
c — 0.

C - S - 2

V pravoúhlém trojúhelníku ABC s přeponou AB pro velikosti a, f3 úhlů
při vrcholech A, В platí a + /3 = 90°, proto je \<ACP\ — 90° — a = /3
a \^BCD\ = |<D(7P| — |(90° — /3) — neboť přímka CD je
úhlu BCP (obr. 5). Pro vnější úhel ADC trojúhelníku BCD tak zřejmě
platí \<ADC\ - \<DBC\ + \<BCD\ = (3 + = \<DCA\.

osa

A P D В

Obr. 5

Zjistili jsme, že trojúhelník ADC má u vrcholů C, D shodné vnitřní
úhly, je tedy rovnoramenný, a proto \AD\ = \AC\.
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С - S - 3

Pro hledaná přirozená čísla x а у lze podmínku ze zadání vyjádřit rovnicí

(x + y) + (x - y) + (^j +(x-y) = (1)2 009,

ve které jsme dílčí výsledky jednotlivých operací uzávorkovali.
Vyřešme rovnici (1) vzhledem к neznámé x (v níž je, na rozdíl od

neznámé y, rovnice lineární). Vyjde

2 009у
{y +1)2’ (2)x =

Hledáme právě ta přirozená čísla y, pro která má nalezený zlomek
celočíselnou hodnotu, což lze vyjádřit vztahem (у + l)2 | 2 009y. Protože
čísla у а у +1 jsou nesoudělná, jsou nesoudělná i čísla у а (у + l)2, takže
musí platit (у + l)2 | 2 009 = 72 • 41. Protože у + 1 je celé číslo větší
než 1 (a činitelé 7, 41 jsou prvočísla), poslední podmínce vyhovuje pouze
hodnota у = 6, které po dosazení do (2) odpovídá x = 246. (Protože
rovnice (1) a (2) jsou v oboru přirozených čísel ekvivalentní, není zkouška
nezbytná.)

Hledaná čísla v uvažovaném pořadí jsou 246 a 6.

Poznámka. Úvaze o nesoudělnosti čísel у а у +1 se lze vyhnout: z rov-
nice (1) plyne, že podíl x/y je celé číslo. Dosadíme-li do ní x = ky, kde к
je vhodné přirozené číslo, dostaneme po úpravě k(y +1)2 = 2 009, odkud
podle rozkladu čísla 2 009 na prvočinitele zjistíme, že může být jedině
fc = 41ay + l = 7, tedy y = 6ax = ky = 246.

C - II - 1

Výraz V je zřejmě definován pro všechna reálná čísla x.

a) Protože x4 +1 > 0 pro každé x, je nerovnost V(x) ^ 3 ekvivalentní
nerovnosti 5ж4 — 4ж2 + 5 ^ 3(x4 + 1) neboli 2x4 — 4ж2 + 2^0. Výraz na
levé straně je roven 2(ж2 — l)2, takže je nezáporný pro každé x.

b) Využijme následující úpravu:

4ж2Ъх4 — 4ж2 + 5 5(ж4 + 1) 4ж2
х4 + 1 х4 + 1V(x) = X4 + 1

Protože zlomek 4x2/(x4 + 1) je díky sudým mocninám proměnné x pro
libovolné reálné číslo x nezáporný, nabývá výraz V své největší hodnoty
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právě když 4ж2/(ж4 + 1) = O, tedy právě když x = 0. Dostáváme
= V(0) = 5.

Vrmax?

tak Vrmax

С - II - 2

V pravoúhlém trojúhelníku ABC s přeponou AB označme a velikost
vnitřního úhlu při vrcholu A, zřejmě pak platí \<ACP\ = 90° — a,

\<PCB\ — a. Střed D kružnice vepsané trojúhelníku APC leží na ose
úhlu РАС, takže \<DAC\ = ^a, a podobně i \V.PCE\ = Odtud pro
velikost úhlu AUC v trojúhelníku AUC, kde U je průsečík polopřímek
AD a CE (obr. 6), vychází

\<AUC\ = 180° - (90° -<* + !<*)-§« = 90°.
To znamená, že polopřímka AD je kolmá na CE, úsečka DU je tudíž
výška v trojúhelníku DEC. Úplně stejně zjistíme, že i polopřímka BE

A P В

Obr. 6

(jinak osa úhlu ABC) je kolmá na CD. Dostáváme tak, že průsečík po-
lopřímek AD a BE, což je střed kružnice vepsané trojúhelníku ABC, je
zároveň i průsečíkem výšek trojúhelníku DEC.

Jiné řešení. Označme F a G odpovídající průsečíky přímek CD a CE
se stranou AB (obr. 7). Podle tvrzení úlohy C-S-2 je trojúhelník CAG
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rovnoramenný se základnou CG. Osa AD úhlu CAG rovnoramenného
trojúhelníku CAG je tudíž i jeho osou souměrnosti, a je proto kolmá na
základnu CG, tedy i na CE. Podobně zjistíme, že i trojúhelník CBF
je rovnoramenný se základnou CF, takže osa BE úhlu FBC je kolmá
na CF, tedy i na CD. Průsečík obou os AD a BE je tak nejen středem
kružnice vepsané trojúhelníku ABC, ale i průsečíkem výšek trojúhelníku
CDE, což jsme měli dokázat.

C - II - 3

Podle zbytků při dělení devíti rozdělíme všech 99 uvažovaných čísel do
devíti jedenáctiprvkových tříd To,Ti,... ,Tg (do třídy Ti patří všechna
čísla se zbytkem i):

T0 = {9,18,27, ...,99}
Ti = {1,10,19, ...,91}

Ts = {8,17,26,..., 98}.

a) Naším úkolem je dokázat, že v To U T3 U Tq leží nejvýše čtyři
vybraná čísla. Z každé ze tříd To, T3, Тб mohou pocházet nejvýše dvě
z vybraných čísel (součet libovolných tří čísel z jedné takové třídy už
totiž dělitelný devíti je). Protože součet libovolných tří čísel, která po

jednom leží ve třídách То, T3 а Те, je devíti dělitelný, aspoň jedna z těchto
tříd žádné vybrané číslo neobsahuje. Z obou vyslovených závěrů plyne
dokazované tvrzení: vybraných čísel dělitelných třemi je totiž nejvýše
2 + 2+ 0 = 4.

b) Ukažme, že vyhovující výběr může obsahovat 26 čísel. Vybereme
po dvou číslech z То, T3 a po 11 číslech (tedy všechna čísla) z Ti а T2.
Dostaneme tak celkem 2-2 + 2- ll = 26 čísel; přitom součet libovolných
tří z nich dává při dělení devíti zbytek alespoň 0 + 0+1 = 1, nejvýše
však 2 + 3 + 3 = 8, takže devíti dělitelný být nemůže.

С - II - 4

Označme O střed opsané kružnice, tedy střed přepony AB daného pra-
voúhlého trojúhelníku ABC, a v velikost jeho výšky na přeponu (obr. 8).
Trojúhelník EDO je zřejmě rovněž pravoúhlý, protože jeho strany DO
a EO jsou kolmé na odvěsny trojúhelníku ABC; přitom jeho výš-
kou na přeponu je úsečka OC (o velikosti |c). Vzhledem к souměr-
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nosti úsečky АС podle osy OD platí pro jeho úhel při vrcholu D, že
\<CDO\ = 90° - |<COD\ = 90° - \<AOD\ = a. Trojúhelníky EDO
a ABC jsou tudíž podobné (uu). Koeficient к této podobnosti je dán po-
měrem délek odpovídajících výšek na přepony, takže к — \OC\/v = \c/v,
a protože vc = 25, je

c2
к = —

45 ‘
V uvedené podobnosti odpovídá přeponě AB přepona DE, proto pro její
velikost platí

c3
\DE\ = kc=—.

E
/

C /
/

/
D

/
/\

v
/

\ /
N /i

/a \

A O В

Obr. 8

Jiné řešení. Ze souměrnosti tečen z bodu ke kružnici plyne, že
oba trojúhelníky ACD i ВСЕ jsou rovnoramenné, \AD\ — \DC\,
|BE\ = |CE\. Rovnoramenné jsou i trojúhelníky ACO a BCO, kde O
je střed přepony AB (ramena obou trojúhelníků mají velikost poloměru
kružnice opsané pravoúhlému trojúhelníku ABC, což je ^c). Ukážeme,
že jde o dvě dvojice podobných trojúhelníků ACD ~ BCO a ACO ~
~ ВСЕ. К tomu si stačí všimnout, že ve čtyřúhelníku AOCD, který
je složen ze dvou shodných pravoúhlých trojúhelníků, platí |<CDA\ =
= 180° — \<AOC\ = \<COB\. Rovnoramenné trojúhelníky ACD a BCO
jsou tedy podobné podle věty uu. Z této podobnosti plyne rovnost
|CD\ : |Ch4| = \CO\ : \CB\, takže při běžném označení odvěsen dostá-
váme \CD\ — |cb/a, a z podobnosti trojúhelníků ACO а ВСЕ pak
\CE\ = ^ca/b. Celkem tak je

cb2 + ca2 c(a2 + b2) c3
\DE\ = \DC\ + I CE\ = E + ^ = 2-25 45'2b 2 ab2a
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Poznámky. Podobnost zmíněných rovnoramenných trojúhelníků mů-
žeme odvodit také tak, že si všimneme rovnosti odpovídajících úhlů ACO
а ВСЕ při základnách: oba totiž doplňují úhel OCB do pravého úhlu
(ACB, resp. OCE). Proto ACO ~ ВСЕ.

Další možnost skýtá objevení rovnosti \<ADO\ = \<BAC\ = a (ra-
měna jednoho úhlu jsou kolmá na ramena druhého). Z pravoúhlého troj-
úhelníku ODA tak máme \AO\ : \AD\ = tg \<ADO\ = tg a = a : b, takže
\CD\ — \AD\ — |cb/a, a analogicky pro pravoúhlý trojúhelník OEB.
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Kategorie В

Texty úloh

В - I - 1

Na tabuli je napsáno čtyřmístné číslo dělitelné osmi, jehož poslední číslice
je 8. Kdybychom poslední číslici nahradili číslicí 7, získali bychom číslo
dělitelné devíti. Kdybychom však poslední číslici nahradili číslicí 9, získali
bychom číslo dělitelné sedmi. Určete číslo, které je napsané na tabuli.

(Peter Novotný)

В - I - 2

Určete všechny trojice (ж, у, z) reálných čísel, pro které platí

x2 + xy = y2 + z2,
z2 + zy — y2 + x2.

(Jaroslav Švrček)

В - I - 3

Na straně BC, resp. CD rovnoběžníku ABCD určete body E, resp. F
tak, aby úsečky EF, BD byly rovnoběžné a trojúhelníky ABE, AEF

(Jaroslav Zhouf)a AFD měly stejné obsahy.

В - I - 4

Na desce 7x7 hrajeme hru lodě. Nachází se na ní jedna loď 2x3.
Můžeme se zeptat na libovolné políčko desky, a pokud loď zasáhneme,
hra končí. Pokud ne, ptáme se znovu. Určete nejmenší počet otázek, které
potřebujeme, abychom jistě loď zasáhli. (Ján Mazák)
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В - I - 5

Trojúhelníku ABC je opsána kružnice k. Osa strany AB protne kružnici к
v bodě K, který leží v polorovině opačné к polorovině ABC. Osy stran
АС a BC protnou přímku CK po řadě v bodech P a Q. Dokažte, že
trojúhelníky АКР a KBQ jsou shodné. (Leo Boček)

В - I - 6

Najděte všechny dvojice celých čísel (m, n), pro něž je hodnota výrazu

m + 3n — 1

ran + 2n — ra — 2

(Vojtech Bálint)celé kladné číslo.

В - S - 1

V oboru reálných čísel řešte soustavu rovnic

(Jaroslav Svrček)o neznámých x а у a reálném parametru a.

В - S - 2

Pro vnitřní bod P strany AB ostroúhlého trojúhelníku ABC označme К
a L paty kolmic z bodu P na přímky АС a BC. Sestrojte takový bod P,
pro který přímka CP půlí úsečku KL. (Pavel Calábek)

В - S - 3

Číslo nazveme magickým, právě když se dá vyjádřit jako součet trojmíst-
něho čísla m a trojmístného čísla m' zapsaného stejnými číslicemi v opáč-
něm pořadí. Některá magická čísla lze takto vyjádřit více způsoby; napři-
klad 1554 = 579 -I- 975 = 777 + 777. Určete všechna magická čísla, která
mají takových vyjádření m + ra' co nejvíce. (Na pořadí mam' nebereme
zřetel.) (Aleš Kobza)
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В - II - 1

V oboru reálných čísel řešte soustavu rovnic

x + y = 1,

x-y = a,

Aax + áy = z2 + 4

(.Jaroslav Švrček)o neznámých x, y, z a reálném parametru a.

В - II - 2

Na desce 5x5 hrajeme hru lodě. Ze čtyř polí desky je vytvořena jedna
loď některého z tvarů

m m

В ВВ Вш ш

Můžeme se zeptat na libovolné pole desky, a pokud loď zasáhneme, hra
končí.

a) Navrhněte osm polí, na něž se stačí otázat, abychom měli jistotu zá-
sáhu lodě.

b) Zdůvodněte, že žádných sedm otázek takovou jistotu nedává.
(Ján Mazák)

В - II - 3

Je dán ostroúhlý trojúhelník ABC, který není rovnoramenný. Označme
К průsečík osy úhlu ACB s osou strany AB. Přímka CK protne výšky
z vrcholů А а В v bodech, které označíme po řadě P a Q. Předpoklá-
dejme, že trojúhelníky АКР a BKQ mají stejný obsah. Určete velikost

{Ján Mazák)úhlu ACB.

В - II - 4

К libovolnému přirozenému číslu určíme jeho zbytky při dělení každým
z deseti přirozených čísel 2,3,4,...,11a těchto deset zbytků (některé mo-
hou být nulové) sečteme. Určete všechna taková čísla menší než 25 000,
která mají uvedený součet co nejmenší. (Nulu za přirozené číslo nepova-

{Jaromír Šimša)žujeme.)
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Řešení úloh

В - I - 1

Označme n trojmístné číslo určené prvním trojčíslím (zleva) hledaného
čtyřmístného čísla, které se pak rovná 10n + 8. Podle zadání úlohy platí

(1)8 | lOn + 8,
9 | lOn + 7,
7 | lOn + 9.

(2)
(3)

Ze vztahu (1) plyne 8 | lOn neboli 4 | 5n. Čísla 4 a 5 jsou nesoudělná,
proto 4 | n neboli n = Ak, kde к je přirozené číslo. Dosazením n — Ak do
vztahu (2) dostaneme 9 | A0k + 7 neboli 9 | 4fc + 7. Z tabulky zbytků čísel
Ak + 7 při dělení devíti

к 012345678

Ak + 7 726150483

vidíme, že toto číslo je dělitelné devíti, právě když číslo к při dělení devíti
dává zbytek 5. Proto к = 91+3, kde / je celé číslo, takže n = Ak = 36/+20.
Dosazením takového n do vztahu (3) dostaneme 7 | 360/ + 209 neboli
7 | 3/ — 1. Opět sestavíme tabulku zbytků, tentokrát při dělení čísla 3/ — 1
sedmi:

/ 0 1 2 3 4 5 6
3/ - 1 6 2 5 1 4 0 3

Vidíme, že 7 | 3/ — 1, právě když l — 7m + 5, kde m je celé číslo. Odtud
dostáváme, že všechna celočíselná n splňující trojici podmínek (l)-(3)
jsou tvaru n — 36/ + 20 = 252m + 200.

Dodejme, že namísto sestavování tabulek jsme mohli využít úprav

AOk + 7 = 36/c + A(k - 5) + 27,
360/ + 209 = 357/ + 3(/ - 5) + 224,

z nichž bychom jako dříve dostali 9|fc — 5 a 7 | / — 5.
Číslo n — 252m + 200 je trojmístné jedině pro m G {0,1, 2,3}; hle-

dané n je proto z množiny {200,452, 704, 956} a na tabuli bylo napsáno
jedno z čísel 2 008, 4 528, 7048, 9 568. Zkouškou (která ovšem při našem
postupu není nutná) můžeme ověřit, že každé z těchto čtyř čísel vyhovuje
zadání úlohy.
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Jiné řešení. Při druhém postupu budeme úvahy o dělitelnosti výhodně
zapisovat kongruencemi.1 Zápis a = b (mod га) (čteme „a je kongruentní
s b podle modulu m“) znamená, že čísla a, b dávají při dělení číslem ra

stejné zbytky neboli m \ a — b.
Označme N hledané čtyřmístné číslo končící číslicí 8. Protože při její

záměně číslicí 7, resp. 9 dostaneme číslo N — 1, resp. N + 1, všechny
podmínky ze zadání úlohy lze vyjádřit čtyřmi kongruencemi

(4)N = 8 (mod 10)
N = 0 (mod 8),

TV — 1 ее 0 (mod 9),
N + 1 = 0 (mod 7).

(5)
(6)
(7)

Ze vztahu (5) plyne N = 8k, kde к je celé číslo. Dosazením do vztahu
(4) dostaneme 8k = 8 (mod 10) neboli 4/c = 4 (mod 5), což po dělení
číslem 4 (nesoudělným s číslem 5) vede к podmínce к = 1 (mod 5). Proto
к = 5/ + 1, kde / je celé číslo. Dosazením N — 8k = 40/ + 8 do vztahu
(6) obdržíme podmínku 40/ + 7 = 0 (mod 9). Její úpravou dostaneme

40/ = -7 = -7 + 9 • 23 = 200 (mod 9)

a po vydělení číslem 40 (nesoudělným s číslem 9) dojdeme к podmínce
/ = 5 (mod 9). Existuje tedy celé číslo m tak, že / = 9m + 5. Dosazením
N = 40/ + 8 = 360m + 208 do vztahu (7) dostaneme 360m + 209 = 0
(mod 7) neboli 3m = 1 (mod 7). Úpravou

3m = 1 = 1 + 2 • 7 = 15 (mod 7)

po vydělení číslem 3 vyjde m = 5 (mod 7), takže m = 7n + 5, kde n je
celé číslo. Hledané N je proto tvaru N — 360m + 208 = 2 520n + 2 008.
Takové N je čtyřmístné, právě když n € {0,1,2,3}. Na tabuli proto
mohlo být napsáno kterékoliv číslo z množiny {2 008,4 528,7048,9 568}
a žádné jiné.

1 S tímto způsobem počítání se zbytkovými třídami se lze seznámit v brožuře Aloise
Apfelbecka: Kongruence, Mladá fronta, edice Škola mladých matematiků, Praha
1968.
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В - I - 2

Odečtením první rovnice od druhé dostaneme po úpravě

x)(2z + 2x + y) = 0.
Jsou proto možné dva případy, které rozebereme samostatně.

a) Případ z — x = 0. Dosazením z = x do první rovnice soustavy
dostaneme x2 + xy = y2 + x2 neboli y(x — y) =0. To znamená, že
platí у — 0 nebo x = у. V prvním případě dostáváme trojice (x, y, z) =
= (ж,0,ж), ve druhém (x,y,z) = (ж, ж,ж); takové trojice jsou řešeními
dané soustavy pro libovolné reálné číslo ж, jak snadno ověříme dosazením
(i když taková zkouška při našem postupu vlastně není nezbytná).

b) Případ 2z + 2ж + у = 0. Dosazením у = —2ж — 2z do první rovnice
soustavy dostaneme

ж2 + ж(—2ж — 2z) = (—2ж — 2z)2 + z2 neboli 5(ж + z)2 = 0.
Poslední rovnice je splněna, právě když z = —ж, tehdy ovšem у = —2ж —
— 2z — 0. Dostáváme trojice (ж,y,z) = (ж, 0, — ж), které jsou řešeními
dané soustavy pro každé reálné ж, jak ověříme dosazením. (O takové
zkoušce platí totéž co v případě a).)

Odpověď. Všechna řešení (ж, у, z) dané soustavy jsou trojice tří typů:

(ж, ж, ж), (ж, 0, ж), (ж, 0,—ж),

(*

kde ж je libovolné reálné číslo.
Jiné řešení. Obě rovnice soustavy sečteme. Po úpravě dostaneme rov¬

nici

y(x + z- 2y) = 0
a opět rozlišíme dvě možnosti.

a) Případ у = 0. Z první rovnice soustavy ihned vidíme, že ж2 = z2,
neboli г = =Ьж. Zkouškou ověříme, že každá z trojic (ж, 0, ж) а (ж, 0, —ж)
je pro libovolné reálné ж řešením.

b) Případ x + z — 2y = 0. Dosazením у = |(ж + z) do první rovnice
soustavy dostaneme

x(x + z)
_ (x+_z? + z2j poúprav. ж2 = г2ж2 +

Platí tedy z = —ж nebo z = x. Dosazením do rovnosti ж + z — 2y =
= 0 v prvním případě dostaneme у

Odpovídající trojice (ж, 0, —ж) а (ж, ж, ж) jsou řešeními pro každé reálné ж
(první z nich jsme ovšem našli již v části a)).

2

0, ve druhém případě у x.
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В - I - 3

Označme a velikost stran ÁB a CD a v vzdálenost jejich přímek, která je
zároveň rovna výšce trojúhelníku AFD z vrcholu A (obr. 9). Z podmínky
EF BD podle věty uu vyplývá, že trojúhelníky BCD a ECF jsou
podobné; označme к E (0,1) koeficient jejich podobnosti. Jakmile ho
vypočteme, bude úloha vyřešena.

D í1 - k)a F ka C

kv

A a В

Obr. 9

Protože \FC\ = ka, \FD\ (1 — k)a a výšky trojúhelníků ECF,
ABE ze společného vrcholu E mají velikosti kv, resp. (1 — k)v, pro obsahy
trojúhelníků AFD a ABE platí

(1 — k)av a(l — k)vSafd —
= SabEi

2 2

takže oba obsahy se rovnají pro libovolné к E (0,1). Protože obsah troj-
úhelníku ECF má hodnotu Secf = \ka ■ kv = |/c2au a obsah celého
rovnoběžníku ABCD je dán vzorcem Sabcd = av, můžeme obsah troj-
úhelníku AEF vyjádřit takto:

Saef = Sabcd — Sabe — Secf — Safd =

(l — |(1 — k) — \k2 — |(1 — k)) = av (k — \k2) .

Obsahy trojúhelníků ABE, AFD proto budou shodné s obsahem troj-
úhelníku AEF, právě když bude platit

|(1 — к) = к — kk2 neboli к2 — Зк + 1 = 0.
Tato kvadratická rovnice má kořeny

— av

, 3 ± л/5fcl.2 = —2—
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z nichž podmínce к G (0,1) vyhovuje pouze kořen к = ^(3 — л/б)- Do-
dejme, že pro takové к platí

к

1 — к'

Odpověď. Hledané body E, F jsou určeny poměry

\CE\ : \EB\ = \CF\ : \FD\ = (Vb - l) : 2.

Poznámka. Rovnost (1 — к) : 1 = к : (1 —к) ze závěru řešení znamená,
že body E, F dělí příslušné strany rovnoběžníku v tzv. zlatém poměru.
Vyjadřují to rovnosti

\CE\ : \EB\ = \EB\ : \BC\ a \CF\ : \FD\ = \FD\ : \DC\.

В - I - 4

Podle obr. 10 můžeme na desku umístit 8 disjunktních obdélníků 2x3
(střední políčko desky zůstane prázdné). Abychom jistě zasáhli loď, mu-
símě se zeptat na alespoň jedno políčko v každém z osmi vyznačených ob-
délníků, proto je nutný počet otázek alespoň 8.

Na obr. 11 je uveden příklad výběru osmi polí, na která se stačí ptát,
aby se už mimo ně nedala na desku umístit žádná loď 2x3. Proto těchto
8 otázek к zasažení lodě vždy stačí.

Obr. 10 Obr. 11

Z obou uvedených úvah plyne následující závěr.
Odpověď. Nejmenší počet otázek, které potřebujeme, abychom jistě

loď zasáhli, je právě 8.
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В - I - 5

Označme a, (3, 7 obvyklým způsobem velikosti vnitřních úhlů trojúhel-
niku ABC (obr. 12). Bod К leží na ose úsečky AB, proto \AK\ = \KB\.
Trojúhelník AKB je rovnoramenný se základnou AB, jeho vnitřní úhly

při vrcholech А а В jsou tudíž shodné. Podle věty o obvodových úhlech
jsou shodné i úhly BCK a BAK, resp. ACK a ABK, jsou proto shodné
i úhly BCK a ACK. Polopřímka CK je tudíž osou úhlu ACB:

\<ACK\ = \<BCK\ =

Protože bod P leží na ose strany AC, je trojúhelník ACP rovnoramenný
a jeho vnitřní úhly při základně AC mají velikost ^7, takže jeho vnější
úhel APK při vrcholu P má velikost ^7 + 57 = 7. Stejně tak z rovno-
ramenného trojúhelníku BCQ usoudíme, že i velikost úhlu BQK je 7.
Podle věty o obvodových úhlech jsou shodné úhly ABC a AKC, tedy
úhel AKC (neboli úhel AKP) má velikost (3 a
úhel BKQ má velikost a.

V každém z trojúhelníků АКР a BKQ již známe velikosti dvou vnitř-
nich úhlů (P, 7, resp. a, 7), takže vidíme, že zbývající úhly KAP a KBQ
mají velikosti a, resp. /3.

Z předchozího plyne, že trojúhelníky АКР a KBQ jsou shodné po-
dle věty usu, neboť mají shodné strany AK a KB i obě dvojice к nim
přilehlých vnitřních úhlů.

zcela analogicky
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К uvedenému postupu dodejme, že výpočet úhlů KAP a KBQ přes
úhly APK a BQK lze obejít takto: shodnost úhlů KAP a BAC (resp.
KBQ a ABC) plyne ze shodnosti úhlů KAB а РАС (resp. KBA
a QBC).

В - I - 6

Nejprve si všimneme, že jmenovatel zlomku lze postupným vytýkáním
rozložit na součin (m + 2)(n — 1). Proto bude výhodné položit a = m + 2,
6 = n — 1 a pro nová neznámá (nenulová!) celá čísla a, b zkoumat, kdy
je hodnota daného výrazu

(a — 2) + 3(6 + 1) — 1 cl + 36m + 3n — 1
V =

ab abmn + 2n — m — 2

(jak vyžaduje zadání) celé kladné číslo (používejme dále obvyklý termín
přirozené číslo). Uveďme dva možné přístupy k řešení takové otázky.

Při prvním způsobu využijeme rozkladu

a + 36 1 3

ab ba
V =

a zřejmých odhadů

5 <3.iN10 < 0 <
a

Kdyby platilo a < 0, bylo by 3/a < 0, a tudíž V < 1/6 ^ 1, tedy V by
nebylo přirozené číslo. Proto nutně platí a > 0.

Pro a > 6 je 3/a < a tedy V < 1/6 + takže nerovnost V ^ 1
platí, jedině když 1/6 > což splňuje jediné celé 6, totiž 6=1, pro
které pak ovšem je 1 < V < |. Proto musí platit 1 ^ a 6. Těchto šest
možností jednotlivě rozebereme:

> a = 1. Číslo V = 3 + 1/6 je celé jedině pro 6 = ±1, kdy je i klad-
né. V původních neznámých dostáváme dvě řešení (m,n) = (—1,2)
a (m, n) = (—1,0).

o a = 2. Číslo V = | + l/6 je přirozené, právě když 6 = ±2; odpovídající
řešení jsou (m,n) = (0,3) a (m,n) = (0,-1).

> a = 3. Číslo V = 1 + 1/6 je přirozené, právě když 6=1, tehdy (m, n) =
= (1,2).
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> a = 4. Číslo V = |+ l/6 je přirozené, právě když 6 = 4, tehdy (га, n) =
= (2,5).

t> a = 5. Číslo V = I + 1/6 zřejmě není celé pro žádné celé 6.
> a = 6. Číslo V = |+ l/6 je přirozené, právě když 6 = 2, tehdy (m, n) =

(4,3).
Odpověď. Existuje právě 7 dvojic celých čísel (m, n), pro které je hod-

nota daného výrazu V celým kladným číslem, jsou to dvojice

(m,n) € {(-1,2), (-1,0), (0,3), (0,-1), (1,2), (2, 5), (4,3)}.

Jiné řešení. Hledáme nenulová celá a, 6, pro něž a + 36 = kab pro
vhodné přirozené k. Označme d ^ 1 největší společný dělitel takových
čísel a, b. Pak a = xd a 6 = yd pro celá nesoudělná čísla x, y, jež splňují
rovnici (x + 3y)d = kxyď2 neboli x + 3y = kxyd. Odtud plyne, že číslo у
dělí nesoudělné číslo x. To je možné, jedině když у = ±1.

V případě у = 1 máme rovnici x + 3 = kxd neboli 3 = x(kd — 1).
Protože platí kděl 1 (čísla k, d jsou přirozená), je buď x — 1 a kd — 1 = 3
(pak kd — 4, a tedy d E {1,2,4}, takže (a, 6) = (d,d) je jedna z dvojic
(1,1), (2, 2), (4,4)), nebo je r = 3 а Ы - 1 = 1 (pak kd = 2, a tedy
d E {1, 2}, takže (a, 6) = (3d, d) je jedna z dvojic (3,1), (6, 2)).

V případě у = — 1 máme rovnici x — 3 = —kxd neboli 3 = ж(1 + &;d),
což vzhledem к nerovnosti 1 + kd ^ 2 znamená, žea: = lal + £;d = 3,
takže je kd = 2, a tedy d € {1, 2}, proto (a, 6) = (d, —d) je jedna z dvojic
(1,-1), (2, -2).

Zjistili jsme, že existuje sedm vyhovujících dvojic (a, 6), vypsat odpo-
vídající řešení (m, n) = (a — 2, 6 + 1) je už nasnadě (viz odpověď výše).

В - S - 1

Sečtením druhé a třetí rovnice dostaneme 2x = 2a + 1, odečtením druhé
rovnice od třetí 2у = —2a + 1. Odtud vyjádříme

y — ~a+\i (1)x = a + 2 ’

a dosadíme do první rovnice původní soustavy. Po úpravě dostaneme
kvadratickou rovnici

a2 — |a — ^ — 0,
která má kořeny a\ — — 1 а аг = §. Pro každou z těchto dvou (jedině
možných) hodnot parametru a již snadno stanovíme neznámé x a у do-
sazením do vzorců (1).

(2)
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Daná soustava rovnic má řešení pouze pro dvě hodnoty parametru
a, jednak pro a = —1, kdy je jejím jediným řešením (x,y) — (—5, f),
jednak pro a = |, kdy (x,y) = (2, —1).

Zkouška dosazením je snadná, lze ji vynechat takovým zdůvodněním:
Soustava dvou rovnic, kterou jsme dostali (a vyřešili) sečtením a ode-
čtením druhé a třetí rovnice, je s touto dvojicí původních rovnic ekviva-
lentní. Zbylá (první) rovnice soustavy je pak ekvivalentní s kvadratickou
rovnicí (2), jejímž řešením jsme našli možné hodnoty parametru a.

В - S - 2

Označme S střed úsečky CP. Podle Thaletovy věty leží body К a L na
kružnici p sestrojené nad průměrem CP. Předpokládejme, že bod P má
požadovanou vlastnost, tj. že průměr CP půlí tětivu KL (obr. 13).

Průměr libovolné kružnice půlí každý jiný průměr téže kružnice a také
všechny tětivy к němu kolmé. A žádnou jinou tětivu půlit nemůže: když
totiž prochází dvěma různými body její osy souměrnosti (totiž středem
tětivy a středem kružnice), musí být — stejně jako tato osa — к dané
tětivě kolmý.

Tětiva KL ovšem nemůže být průměrem kružnice p, protože podle
Thaletovy věty by byl úhel KCL (a tedy i úhel ACB) pravý, což odporuje
zadání, proto je tětiva KL к průměru CP kolmá. V tomto případě jsou
trojúhelníky CKP a CLP souměrně sdruženy podle přímky CP, odkud
již plyne, že úhly KCP a LCP jsou shodné. Polopřímka CP je tedy osou
úhlu ACB.

Je-li naopak polopřímka CP osou úhlu ACB, shodují se pravoúhlé
trojúhelníky CKP a CLP ve společné přeponě CP a ve dvou vnitřních
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úhlech, takže body К a L jsou souměrně sdruženy podle přímky CP.
Proto tětiva CP půlí úsečku KL.

Odpověď. Existuje právě jeden vnitřní bod strany AB ostroúhlého
trojúhelníku ABC, pro který úsečka CP půlí úsečku KL. Je to průsečík
osy vnitřního úhlu při jeho vrcholu C se stranou AB.

В - S - 3

Každé trojmístné číslo má vyjádření m = 100a+106+c, kde a, 6, с, а ф 0,
jsou jeho číslice. Trojmístné číslo zapsané stejnými číslicemi v opačném
pořadí má pak vyjádření m! = 100c + 106 + а, с ф 0. Protože na pořadí
čísel mam' není brán zřetel, pro určitost předpokládejme, že m m'
neboli a ^ c, kde a, c € {1, 2,3,..., 9} a 6 G {0,1, 2,..., 9}.

Pro magické číslo x podle zavedeného označení číslic platí

x — m + m = 101(a + c) + 206.

Vidíme, že hodnota x nezáleží tolik na jednotlivých číslicích a a c jako
na jejich součtu s = a + c, který může nabývat hodnot s G {2, 3,..., 18}.
Dále už budeme pracovat pouze s vyjádřením x = 101s + 206.

Předpokládejme na okamžik, že se jako součet 101s + 206 dá některé
magické číslo x zapsat dvěma různými způsoby:

x = 101s + 206 = 101s' + 206'. (1)

Z rovnosti 101 (s — s') = 20(6 — 6') a nesoudělnosti čísel 101 a 20
vyplývá, že číslo 101 musí dělit číslo 6 — 6'. Protože však 6 a 6' jsou
číslice, platí —9 5Í 6 — 6' ^ 9. V tomto intervalu najdeme jediné číslo
dělitelné číslem 101, a to číslo 0. Je proto 6 — 6' = 0 neboli 6 = 6', a tudíž
i s = s'. To však odporuje předpokladu, že číslo x má dvě různá vyjádření
tvaru (1). Znamená to, že ve vyjádření x = 101s + 206 má každé magické
číslo x jednoznačně určenou číslici 6 i jednoznačně určený součet s.

Počet způsobů, kterými lze magické číslo vyjádřit jako součet m + m'
neboli 101s + 206, se proto rovná počtu způsobů, kterými lze vyjádřit
odpovídající hodnotu s jako součet dvou číslic a a c, kde 1 ^ a ^ c 9.
V množině (2,3,..., 18} má největší počet takových vyjádření číslo s =
= 10, jež se dá vyjádřit právě pěti vyhovujícími součty:

10=1 + 9 = 2 + 8 = 3 + 7 = 4 + 6 = 5 + 5.

Ostatní čísla mají takových vyjádření méně.
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Skutečně: v případě s ^ 9 z rovnosti a + c 5Í 9 a předpokladu a c

plyne a ^ 4, takže menší číslice a nabývá nejvýše čtyř hodnot stejně jako
větší číslice c v případě s ^ 11, kdy ze vztahů a + c ^ 11 a a ^ c plyne
c > 6.

Nejvíce (pěti) součty m + m' se dají vyjádřit magická čísla tvaru
101 • 10 + 206, kde b G {0,1, 2,, 9}, jedná se tedy o čísla z desetiprvkové
množiny

{1010,1030,1050,..., 1 190}.

В - II - 1

Sečtením první a druhé rovnice dané soustavy dostaneme 2x = 1 + a,
odečtením druhé rovnice od první 2y = 1 — a. Odtud

1 1
У = 2^ - a)'

Dosadíme-li za ж а у do třetí rovnice původní soustavy, dostaneme rovnici

—2a(l + a) + 2(1 — a) = z2 + 4 neboli z2 + 2a2 + 4a + 2 = 0,

kterou upravíme na tvar

2(1+o) (1)X =

22 + 2(a+ l)2 = 0.

Oba sčítanci na levé straně poslední rovnice jsou nezáporná čísla. Jejich
součet je 0, právě když z = 0, a = —1. Dosazením těchto hodnot do (1)
dostaneme x = 0, у = 1.

Závěr: Daná soustava rovnic má řešení pouze pro a — — 1, a to ж = 0,
у — 1, z = 0. Zkouška při tomto postupu není nutná.

В - II - 2

a) Stačí se otázat například na černá pole v obr. 14: v každém řádku
i sloupci jsou vedle sebe nejvýše dvě bílá pole, zatímco každá z lodí zabere
v jednom z obou směrů právě tři po sobě stojící pole. Aspoň jedno z nich
tedy bude černé.

Obr. 15
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b) К zásahu lodě na desce o rozměrech 3x2 jsou potřeba alespoň dvě
otázky, protože žádné její pole neleží ve všech lodích, které na tuto desku
můžeme umístit. Na desce 5x5 můžeme vymezit čtyři nepřekrývající se
oblasti 3x2 (obr. 15). I kdyby loď byla umisťována pouze do těchto čtyř
oblastí, sedm otázek na její zásah nestačí — podle předchozí úvahy totiž
potřebujeme aspoň 4x2 = 8 otázek.

В - II - 3

Označme vnitřní úhly v trojúhelníku ABC obvyklým způsobem. Ze shod-
nosti obvodových úhlů ACK a BCK v kružnici opsané trojúhelníku
ABC plyne shodnost odpovídajících tětiv AK a BK, takže bod К půlí
ten z oblouků AB, který leží proti vrcholu C (obr. 16). Podle věty o ob-
vodových úhlech jsou velikosti úhlů AKC а ВКС po řadě rovny /3 a a.
Označme Va, Vb paty výšek příslušných vrcholům A, В trojúhelníku
ABC. Protože ABC je ostroúhlý trojúhelník, jsou body Va a Vb vnitřní
body odpovídajících stran. Velikost úhlu APK je shodná s velikostí vnitř-
ního úhlu při vrcholu P v pravoúhlém trojúhelníku CPVa, je tedy rovna
90° — ^7. Stejnou velikost má analogicky i úhel BQK.

Trojúhelníky АКР a BKQ mají stejný obsah, shodné strany AK
a BK, a tudíž i výšky na ně, a navíc se shodují i v úhlu proti nim.
Z konstrukce trojúhelníku podle dané strany, výšky na tuto stranu a pro-
tilehlého vnitřního úhlu a ze souměrnosti sestrojených řešení plyne, že
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trojúhelník АКР je shodný buď s trojúhelníkem KBQ, anebo s trojúhel-
níkem BKQ. Jelikož trojúhelník ABC není rovnoramenný (tj. a 7^ /5), je
trojúhelník AKP shodný s trojúhelníkem KBQ. Velikost vnitřního úhlu
při vrcholu A trojúhelníku PAK je 180° — /?— (90° — ^7) = 90°—/?+ ^7,
takže z uvedené shodnosti plyne

90° - P + |
Odtud dostáváme 7
= \<BQK\ — 60° a trojúhelníky АКР a KBQ jsou shodné podle věty
usu, mají tedy stejný obsah.

Závěr: Úhel ACB má velikost 60°.

90° + I a + p = 180° -7.neboli= a

60°. Naopak pokud 7 = 60°, je \<APK\

В - II - 4

Uvažujme přirozené číslo n < 25 000 a označme Г2, Г3,..., гц odpoví-
dající mu zbytky po dělení čísly 2,3,..., 11. Jako součet nezáporných
zbytků je příslušný součet z = 7*2 + Г3 + ... + гц rovněž nezáporný.
V daném případě však nemůže být roven 0, protože to by znamenalo, že
číslo n je dělitelné každým z prvků množiny M = {2,3,4,...,11}, jejichž
nejmenší společný násobek je 27 720 > 25 000.

Ukážeme, že nejmenší možný součet je 1, a zároveň najdeme i všechna
čísla n menší než 25 000 s touto vlastností.

Je-li příslušný součet roven 1, jsou všechny zbytky s výjimkou
jednoho rovny 0, a existuje tedy právě jedno d G M tak, že = 1.
Ukážeme, že d = 7 nebo d = 11. Nemůže zřejmě být d ^ 5, to by totiž
nenulový zbytek odpovídal i číslu 2d G M. Kdyby zbytek 1 odpovídal
jednomu z čísel d = 6,8,9,10, odpovídal by nutně i jednomu z čísel 2
nebo 3.

Pokud d — 7, musí být hledané číslo násobkem všech čísel z M \ {7},
tedy násobkem čísla 3 960. Toto číslo dává při dělení 7 zbytek 5, zbytek 1
dává jeho trojnásobek n = 3-3 960 = 11 880, který vyhovuje podmínkám
úlohy, a obecně každý (3 + 7a)-násobek; ovšem další násobek 10 • 3 960
s vyhovujícím zbytkem je už větší než 25 000.

Pokud d = 11, musí být hledané číslo násobkem všech čísel z M \ {11},
tedy násobkem čísla 2 520. Protože toto číslo dává při dělení 11 zbytek 1,
vyhovuje pro d = 11 jedině ono (další násobek (l+ll)-2 520 s vyhovujícím
zbytkem je totiž už větší než 25 000).

Závěr: Hledaná čísla jsou dvě, a to 11880 a 2 520.
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Kategorie A

Texty úloh

A - I - 1

V oboru reálných čísel řešte soustavu rovnic

2 sin x cos(x + у) 4- sin у = 1,
2 sin у cos(y + x) + sin x = 1.

(,Jaroslav Svrček)

A - I - 2

Je dán tětivový čtyřúhelník ABCD. Dokažte, že spojnice průsečíku výšek
trojúhelníku ABC s průsečíkem výšek trojúhelníku ABD je rovnoběžná

(Tomáš Juřík)s přímkou CD.

A - I - 3

Najděte všechny dvojice přirozených čísel x, у takové, že

xy2
x + y

(Ján Mazák)je prvočíslo.

A - I - 4

Uvažujme nekonečnou aritmetickou posloupnost

(*)a,a + d,a + 2d,...,

kde a, d jsou přirozená (tj. kladná celá) čísla.
a) Najděte příklad posloupnosti (*), která obsahuje nekonečně mnoho

fc-tých mocnin přirozených čísel pro všechna к = 2,3,...
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b) Najděte příklad posloupnosti (*), která neobsahuje žádnou k-tou moc-
ninu přirozeného čísla pro žádné к = 2,3,...

c) Najděte příklad posloupnosti (*), která neobsahuje žádnou druhou
mocninu přirozeného čísla, ale obsahuje nekonečně mnoho třetích
mocnin přirozených čísel.

d) Dokažte, že pro všechna přirozená čísla a, d, к (k > 1) platí: Posloup-
nost (*) buď neobsahuje žádnou A:-tou mocninu přirozeného čísla,
anebo obsahuje nekonečně mnoho /с-tých mocnin přirozených čísel.

(Jaroslav Zhouf)

A - I - 5

V každém vrcholu pravidelného 2008úhelníku leží jedna mince. Vybe-
reme dvě mince a přemístíme každou z nich do sousedního vrcholu tak,
že jedna se posune ve směru a druhá proti směru chodu hodinových ruči-
ček. Rozhodněte, zda je možno tímto způsobem všechny mince postupně
přesunout:
a) na 8 hromádek po 251 minci,
b) na 251 hromádek po 8 mincích. (Radek Horenský)

A - I - 6

Je dán trojúhelník ABC. Uvnitř stran АС, BC jsou dány body E, D tak,
že | AE\ = \BD\. Označme M střed strany AB a P průsečík přímek AD
a BE. Dokažte, že obraz bodu P v středové souměrnosti se středem M
leží na ose úhlu ACB. (Ján Mazák)

A - S - 1

Zjistěte, pro které dvojice kladných celých čísel man platí

\/m2 — 4 < 2 y/n < у/m2 — 2.— m

(Jaromír Šimša)

A - S - 2

Nechť ABC je ostroúhlý trojúhelník, v němž vnitřní úhel při vrcholu A
má velikost 45°. Označme D patu výšky z vrcholu C. Uvažujme dále
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libovolný vnitřní bod P výšky CD. Dokažte tvrzení: Přímky АР a BC
jsou navzájem kolmé, právě když úsečky АР a BC jsou shodné.

(,Jaroslav Svrček)

A - S - 3

Určete všechna celá čísla větší než 1, kterými lze krátit některý ze zlomků
tvaru

3p~q

5p + 2q'

(Vojtech Bálint)kde p a, q jsou nesoudělná celá čísla.

A - II - 1

Jisté čtyřmístné přirozené číslo je dělitelné sedmi. Zapíšeme-li jeho číslice
v opačném pořadí, dostaneme větší čtyřmístné číslo, které je rovněž dě-
litelné sedmi. Navíc při dělení číslem 37 dávají obě zmíněná čtyřmístná
čísla stejný zbytek. Určete původní čtyřmístné číslo. (Jaromír Simša)

A - II - 2

Na odvěsnách délek a, b pravoúhlého trojúhelníku leží po řadě středy
dvou kružnic кa, кь- Obě kružnice se dotýkají přepony a procházejí vrcho-
lem proti přeponě. Poloměry uvedených kružnic označme ga, Qb■ Určete
největší kladné reálné číslo p takové, že nerovnost

1 . /1 1\
1 =P\ —^ г)дь V a o/

1

Qa

(Jaroslav Svrček)platí pro všechny pravoúhlé trojúhelníky.

A - II - 3

Určete velikosti vnitřních úhlů a, /3, 7 trojúhelníku, pro něž platí

2sin/3sin(a + (3) — cos a = 1,
2 sin 7 sin (/3 + 7) — cos /3 — 0.

(Jaroslav Svrček)
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A - II - 4

Uvnitř strany ВС ostroúhlého trojúhelníku ABC zvolme bod D a uvnitř
úsečky AD bod P tak, aby neležel na těžnici z vrcholu C. Přímka této
těžnice protne kružnici opsanou trojúhelníku CPD v bodě, který ozna-
číme К (К ф C). Dokažte, že kružnice opsaná trojúhelníku AKP pro-
chází kromě bodu A dalším pevným bodem, který na výběru bodů D
a P nezávisí. (Tomáš Juřík)

A - II» - 1

Jsou-li všechna čísla p, 3p + 2, 5p + 4, 7p + 6, 9p + 8 a lip + 10 prvočísla,
(Pavel Novotný)je číslo 6p + 11 složené. Dokažte.

A - lili - 2

Na kratším z oblouků CD kružnice opsané pravoúhelníku ABCD zvolme
bod P. Paty kolmic z bodu P na přímky AB, AC a BD označme po-

stupně K, L a M. Ukažte, že úhel LKM má velikost 45°, právě když
(Tomáš Juřík)ABCD je čtverec.

A - III - 3

Najděte nejmenší kladné číslo x, pro něž platí: Jsou-li a, 6, c, d libovolná
kladná čísla, jejichž součin je 1, potom

ax + bx + cx + dx Z - + г + - 1
а о c

+ -

ď

(Pavel Novotný)

A - III - 4

Zkoumejme, pro která přirozená čísla n existují právě čtyři přirozená
čísla к taková, že číslo n + к je dělitelem čísla n + k2.
a) Ukažte, že vyhovuje n — 58, a najděte příslušná čtyři k.
b) Dokažte, že sudé n — 2p, kde p ^ 3, vyhovuje, právě když p i 2p + 1

jsou prvočísla.
(Nulu mezi přirozená čísla nepočítáme.) (Jaromír Šimša)
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A - III - 5

V každém z vrcholů pravidelného n-úhelníku A\ A2 ... An leží určitý po-
čet mincí: ve vrcholu Ak je to právě к mincí, 1 к ^ n. Vybereme dvě
mince a přemístíme každou z nich do sousedního vrcholu tak, že jedna se

posune ve směru a druhá proti směru chodu hodinových ručiček. Rozhod-
něte, pro která n lze po konečném počtu takových přemístění docílit toho,
že pro libovolné к, 1 к ^ n, bude ve vrcholu Ak ležet n + 1 — к mincí.

(Radek Horenský)

A - III - 6

V rovině сo jsou dány dva různé body O a T. Najděte množinu vrcholů
všech trojúhelníků, které leží v rovině oj a mají těžiště v bodě T a střed

(.Jaromír Simša)opsané kružnice v bodě O.
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Řešení úloh

A - I - 1

Použitím známých vzorců

cos(x + y) = cos ж cos у — sin x sin у,

sin 2x = 2 sin x cos ж, cos 2ж = 1 — 2 sin2 ж

dostaneme úpravou levé strany první rovnice

2 sin ж соз(ж + ?/) + sin у = 2 sin ж(соз ж cos у — sin ж sin у) + sin у =

— 2 sin ж cos ж cos у + (1 — 2 sin2 ж) sin у =
— sin 2ж cos у + cos 2ж sin у —

= эт(2ж + у).

Podobně je levá strana druhé rovnice rovna sin(2y + ж). Daná soustava
je tedy ekvivalentní soustavě

вт(2ж + у) = 1,
sin(2y + ж) = 1.

(1)

Protože funkce sinus nabývá hodnotu 1 právě v bodech tvaru ^Ti+2kvi,
kde к je celé číslo, budou řešením soustavy právě ty dvojice (x,y), pro
něž existují celá čísla /с, l taková, že

2ж + у = + 2 ku, 2y + ж = + 2/tl (2)

Odtud buď odečtením vhodných násobků rovnic (např. od dvojnásobku
první odečteme druhou), anebo přímým vyjádřením jedné proměnné
z první rovnice a dosazením do druhé rovnice po úpravě dostaneme

ж = ^тс 4- §(2fc — 1)ж, у = |tc + |(2/ — k)n.
Řešením soustavy jsou tedy dvojice (|тг+ §(2/c — l)ti, |(21 — k)), kde
к, l jsou libovolná celá čísla. Není nutné dělat zkoušku, neboť z uvedeného
postupu vyplývá, že takovéto dvojice (x,y) splňují vztahy (2), a tedy
i soustavu (1), která je zadané soustavě ekvivalentní.

Poznámka. Uvedený výsledek se dá zapsat i jinak. Vzhledem к tomu,
ze y — x = \(6l — Qk)n = 2(1 — k)%, můžeme pro m = l — k,n — 2k — l psát
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Ж = + §7171, У
+ |пк + 2?тш), kde m, гг jsou libovolná celá čísla. (Pokud к, l probíhají
všechny možné dvojice celých čísel, platí to i pro čísla m, n.)

x + 2гатт:, řešením jsou tedy dvojice + §nu, §7t +

Jiné řešení. Pokud je řešením dané soustavy dvojice (ж, у), jsou díky
periodicitě funkcí sinus a kosinus s periodou 2tt zřejmě řešením i všechny
dvojice (x + 2/стс, у + 2Ztt) (к, l jsou libovolná celá čísla). Budeme tedy
soustavu řešit jen v oboru (0, 2ti) a na konci nalezená řešení „posuneme“
o (2Zck, 2Ztc), abychom získali obecné řešení.

Odečtením rovnic soustavy získáme po rozkladu levé strany na součin
rovnici

(sin x — sin y) (2 cos(x 4- y) — l) = 0.
Rozlišíme dva případy podle toho, který z činitelů je nulový.

I. Jestliže sin ж = siny, máme vzhledem к podmínce ж, у G (0, 2к) tři
možnosti: buď ж = у, anebo ж + у = it, anebo ж + у = Зп: (obr. 17).

Дж) А

Х2 + У2 = Зт:
/(ж) = sin ж

I71 . У2тг ж2

2ŤŤ0 я?1 i уi
2 я

+ У1 = ^

Obr. 17

Pro ж = у po dosazení do původní soustavy získáme jedinou rovnici

2 sin ж cos 2ж + sin ж = 1.

Z ní použitím vzorce cos 2ж = 1 — 2 sin2 ж a po substituci sin x — t
ekvivalentními úpravami postupně dostaneme

2 втж(1 — 2 sin2 ж) + sin ж = 1,
2í(l - 2t2) + t = 1,

4í3 - 3í + 1 = 0,

(t + l)(2í — l)2 = 0.

Při poslední úpravě jsme „uhodli" kořen t = — 1 a rozklad na součin
získali vydělením mnohočlenu 4t3 — 3ř + 1 kořenovým činitelem t + 1.
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Vzhledem к použité substituci t = siná: jsou řešením poslední rovnice
ta ж G (0,2л), pro která buď siná: = —1, anebo siná: = |, takže ж G
G {|л, |л, |л}. Ve zkoumaném oboru jsou řešením dané soustavy dvojice

(|K4K) a (|K’fK)-
Pro x + y = Ti či x + y — Зк máme соэ(ж -fy) = —1. Dosazením

do původní soustavy (vzhledem к předpokladu siná: = siny) získáme
jedinou rovnici siná: = — 1, a tedy i siny = —1. Ve zkoumaném oboru
tak dostáváme jediné řešení x = у = §л, které jsme našli už prve.

II. Jestliže 2cos(a: + у) — 1 = 0 neboli cos(a: + y) = |, je x + у =
= ±|л + 2ku pro nějaké celé к a některé znaménko. Po dosazení do
původní soustavy dostaneme jedinou rovnici sin ж + siny = 1, která díky
periodě 2 л funkce sinus a následujícímu užití známého vzorce sin(a±fo) =
= sin a cos b ± cos a sin 6, podle něhož

siny = вт(±|л + 2кп — x) = вт(±|л — x) =

= sin(±|7l) cos ж — cos(±|7t) sin ж = cos ж — | ЯПЖ,

přejde do tvaru (zmíněný vzorec uplatníme ještě jednou)

1 = sin ж + siny = cos ж + \ sin ж = s'm(x ± |л).
Ve zkoumaném oboru tak dostáváme ж ± |л = ^ л, takže buď (při „hor-
ním“ znaménku) ж = |л, což vzhledem к rovnosti у = |л — ж + 2/сл
dá jedině у = 4л — |л = |л), nebo (při „dolním“ znaménku) ж = |л
a analogicky dostaneme jediné у = |л. V případě II tedy neexistují jiná
řešení než ta, jež jsme objevili už v případě I.

Závěr. Řešením v oboru (0,2л) jsou dvojice (|л, |л), (|л, |л),
(|тт, Iл). V oboru reálných čísel to pak jsou dvojice

(^л -f 2/сл, ^л -f 21ti), (|(л ~f 2/сл, Цл -I- 2/л), (^л ~f 2/сл, ^л -f 2/л),

kde к а / jsou libovolná celá čísla.

Poznámka. Naznačme ještě jeden možný začátek řešení založený na

tom, že z rovnic zadané soustavy vyloučíme společný „složitý“ člen
соз(ж + у). Dosáhneme toho, když první rovnici vynásobíme siny, dru-
hou rovnici vynásobíme sin ж a vzniklé rovnice odečteme. Dostaneme tak
rovnici

sin2 у — sin2 ж = sin у — sin ж,
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po úpravě
(siná: — siny)(l — sin x — siny) = 0.

Musí tedy platit sin x = sin у nebo sin rr+sin у — 1. V prvním případě dále
postupujeme jako v předchozím řešení, ve druhém případě po dosazení
sin у — 1 — sin x do první rovnice dané soustavy dostaneme první z rovnic

(2cos(a; + y) — l) siná: = 0, (2cos(x + y) — l) siny = 0,

druhou pak odvodíme obdobně. Protože aspoň jeden sčítanec v rovnosti
sin x + sin у = 1 musí být nenulový, vedou předchozí rovnice к závěru, že
cos(:r + y) = takže opět můžeme postupovat stejně jako v předchozím
řešení.

A - I - 2

Označme к kružnici opsanou čtyřúhelníku ABCD. Průsečíky výšek troj-
úhelníků ABC a ABD označme postupně U а V (obr. 18).

Je známo, že obraz průsečíku výšek v osové souměrnosti podle strany
daného trojúhelníku leží na kružnici trojúhelníku opsané. To znamená, že
obraz U' bodu U v osové souměrnosti podle strany AB leží na kružnici k,
která je trojúhelníku ABC opsána. (To platí i pro tupoúhlý trojúhelník
ABC.) Podobně leží na kružnici к i obraz V bodu V v téže osové sou-
měrnosti.

Předpokládejme, že trojúhelníky ABC a ABD jsou ostroúhlé. Body U
а V tedy leží v polorovině ABC. Obě kolmice CU' a DV' na stranu
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AB jsou rovnoběžné, takže čtyřúhelník CU'V'D je tětivový lichoběžník,
který je nutně rovnoramenný. Odtud a z vlastností osové souměrnosti
dostáváme rovnosti

\<CDV'\ = \<U'V'D\ = \<UVV'\.
Protože body C a U leží v téže polorovině vzhledem к přímce V'D, jsou
přímky CD a UV rovnoběžné, což jsme měli dokázat. (V poslední úvaze
jsme využili, že body D, V, V' leží na přímce v tomto pořadí.)

V případě, kdy je aspoň jeden z trojúhelníků ABC a ABD tupoúhlý,
je argumentace velmi podobná. Body C, D, V', U' vždy vytvoří rovno-

ramenný lichoběžník, i když ne nutně s vrcholy v uvedeném pořadí.
Jiné řešení. Pokud je AB průměrem kružnice к opsané danému těti-

vovému čtyřúhelníku ABCD, jsou zřejmě oba trojúhelníky ABC a ABD
pravoúhlé, takže platí U = С, V = D a není co dokazovat.

V opačném případě uvažme osu o kružnice к rovnoběžnou se stranou
AB, о Ф AB. Jak už víme, obrazy U' а V bodů U а V v osové souměr-
nosti podle strany AB leží na kružnici к opsané oběma trojúhelníkům
ABC a ABD. Obě tětivy CU' i DV jsou kolmé na osu o, takže body C
a D jsou obrazy bodů U' а V v osové souměrnosti podle osy o. To zna-

mená, že úsečka CD je obrazem úsečky UV ve složení obou uvedených
osových souměrností. Složením dvou osových souměrností s rovnoběž-
nými osami je ovšem posunutí, takže CD || UV. Tím je tedy tvrzení
úlohy dokázáno.

Jsou to opravdu tětivy? Pokud je příslušný trojúhelník ABC či ABD
ostroúhlý, není o tom pochyb. Podobně i v případě tupého úhlu při vr-
cholu C (a tedy i D); v obou případech jsou body C, U' i D, V odděleny
přímkou AB. Zbývá možnost, kdy je tupý úhel při jednom z vrcholů A
nebo В (s ohledem na symetrii rozebereme pouze druhou možnost,
obr. 19). Je-li C = [/', je trojúhelník UCA souměrný podle přímky AB,
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takže \<BCU\ — \KUAB\ = \kCAB\. Z rovnosti obvodového (CAB)
a úsekového (BCU) úhlu tětivy BC nyní plyne, že výška CU je tečnou
opsané kružnice, bod C = U' tak leží na ose o (je samodružným bodem
zmíněné osové souměrnosti) a postup popsaný v předchozím odstavci je
naprosto korektní.

Jiné řešení. Uvažujme tětivu AB dané kružnice k. Pro libovolný
bod C na jednom z oblouků AB kružnice к označme U průsečík výšek
příslušného trojúhelníku ABC. Ukážeme, že délka úsečky CU nezávisí
na poloze bodu C na zvoleném oblouku AB.

Pokud je AB průměr dané kružnice, je C — U a uvedené tvrzení
zřejmě platí. V opačném případě je U ^ C. Označme К patu výšky
z vrcholu A na stranu BC a L patu výšky z vrcholu C na stranu AB.
Výšky AK a CL zřejmě svírají stejný úhel jako přímky BC a AB, к nimž
jsou kolmé. To znamená, že úhly CUK a ABC mají stejný sinus. Z pra-

voúhlých trojúhelníků UKC a AKC tak máme (při označení velikostí
stran a úhlů obvyklým způsobem)

\CK\ b|cos7| c|cos7|\cu\ sin \KCUK\ sin /3 sin 7

přičemž poslední rovnost plyne ze sinové věty pro trojúhelník ABC.
Délka úsečky CU tedy závisí jen na délce úsečky AB a na velikosti pří-
slušného obvodového úhlu ACB. Protože úsečka AB i oblouk kružnice

jsou dány, délka úsečky CU se nemění.
Vrcholy C a D daného čtyřúhelníku leží na témže oblouku AB opsané

kružnice. Podle předchozí úvahy jsou tedy úsečky CU a DV stejně dlou-
hé. Coby výšky na tutéž stranu jsou navíc rovnoběžné, a to souhlasně
(podle toho, zda je úhel 7 ostrý nebo tupý, má vektor C U stejný směr
jako CL či opačný). Čtyřúhelník CDVU je tedy rovnoběžník, což zna-

mená, že přímky CD a VU jsou rovnoběžné.

A - I - 3

Předpokládejme, že přirozená čísla x, у a prvočíslo p vyhovují rovnici

xy2
(1)= P-

x + y

Největší společný dělitel čísel ж, у označme d. Potom x = da а у — db,
kde přirozená čísla a, b jsou (již) nesoudělná. Po dosazení do rovnosti (1),
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odstranění zlomku násobením a po vydělení kladným číslem d dostaneme

d2ab2 — p(a + b). (2)

Čísla a a b jsou nesoudělná, proto jsou taková i čísla b2, a + b z různých
stran rovnosti (2). To podle známého pravidla1 znamená, že b2 | p. Prvo-
číslo p má pouze dva dělitele: čísla lap, druhé z nich však není druhou
mocninou, proto nutně platí b = 1. Po dosazení do (2) obdržíme

d2a = p(a + 1). (3)

Zopakujme podobnou úvahu jako dříve. Protože a dělí levou stranu rov-
nosti (3), dělí i její pravou stranu, což vzhledem ke zřejmé nesoudělnosti
čísel a, a + 1 vede к závěru, že a \ p. Platí proto buď a — 1, nebo a = p.
Oba případy nyní posoudíme odděleně.

Po dosazení a = 1 do (3) dostaneme d2 = 2p. Protože p je prvočíslo,
číslo 2p je druhou mocninou jedině v případě p = 2. Potom rovněž platí
d = 2 a výsledek vede к první vyhovující dvojici x = da = 2, у = db = 2.

Po dosazení a = p do (3) a vydělení kladným p dostaneme d2 = p + 1
neboli p = (d + l)(d — 1). Takový rozklad prvočísla p na dva činitele
(d — 1 < d + 1) je jediný: d— 1 — 1 a d+ 1 = p. Odtud dostáváme d — 2,
p = 3, takže druhá vyhovující dvojice je x = da — dp = 6 а у — db = 2.

I když můžeme provést zkoušku obou řešení snadným dosazením do
rovnice (1), při našem postupu taková kontrola není nezbytná, neboť jsme
rovnici v daném oboru upravovali ekvivalentně.

Odpověď: Úloze vyhovují právě dvě dvojice (x, у), a to (2, 2) a (6,2).

A - I - 4

a) Položme například a = 1, d = 1. Posloupnost

(*)a, a + d, a + 2d,.. * )

pak má tvar
1,2,3,4,..

tj. obsahuje všechna přirozená čísla. Mezi nimi je samozřejmě nekonečně
mnoho fc-tých mocnin pro každé k. (Vyhovující a, d v této triviální části
úlohy je možné zvolit i mnohými jinými způsoby.)

* )

1 Jsou-li к, l nesoudělná а к \ Im, pak к \ m.
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b)Položme například a — 2, d — 4. Posloupnost (*) pak má tvar

2,6,10,14,.. * 5

tj. je tvořena sudými čísly tvaru 4n + 2, kde n = 0,1, 2,... Tato po-

sloupnost proto určitě neobsahuje žádnou k-tou mocninu lichého čís-
la. Všimněme si, že k-tá mocnina libovolného sudého čísla je dělitelná
číslem 2fc, tedy i číslem 4 (uvažujeme pouze exponenty к él 2), tuto
vlastnost však nemá žádné číslo tvaru 4n + 2. Zvolená posloupnost proto
neobsahuje k-tou mocninu žádného přirozeného čísla, ať je к = 2,3,...
zvoleno jakkoli.

(Podobně můžeme zdůvodnit, že úloze b) vyhovuje každá posloup-
nost, kterou dostaneme volbou a — p, d = p2 pro libovolné prvočíslo p;

popsaný případ odpovídá hodnotě p — 2.)c)Položme například a = 8, d = 16. Posloupnost (*) pak má tvar

8,24,40,56,.. * }

tj. je tvořena lichými násobky osmi tvaru 8(2n + 1), kde n = 0,1,2,....
Vysvětlíme, proč zvolená posloupnost neobsahuje žádnou druhou moc-
ninu přirozeného čísla. Každý její člen 8(2n + 1) má totiž prvočíslo 2 ve
svém rozkladu na prvočinitele zastoupeno třikrát (8 = 23 a číslo 2n + 1
je liché), zatímco každá druhá mocnina má ve svém rozkladu sudý počet
výskytů jakéhokoli prvočísla.

Na druhé straně, ve zvolené posloupnosti jsou zastoupeny všechny
třetí mocniny 8 • l3,8 • 33,8 • 53,..., protože třetí mocnina lichého čísla je
opět číslo liché, tedy tvaru 2n + 1, a všechna čísla tvaru 8(2n + 1) naše
posloupnost obsahuje.

Zvolená posloupnost tedy úloze c) vyhovuje. (Opět jsme mohli čísla
a a d zvolit jinak, např. obecněji a — p3 a d = p4, kde p je libovolné
prvočíslo.)d)Předpokládejme, že pro dané к > 1 se v posloupnosti (*) vy-

skytuje aspoň jedna £;-tá mocnina, řekněme číslo mk, kde m je přiro-
zené. Ze vzorce pro obecný člen aritmetické posloupnosti pak plyne, že
pro některé celé nezáporné číslo n platí rovnost mk — a + nd. Ukaž-
me, že pak v posloupnosti (*) leží (spolu s mocninou mk) všechny
mocniny (m + d)k, (m + 2d)fc, (m + 3d)k, ... (kterých je nekonečně
mnoho).
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Vezměme rovnou obecný člen z vypsaných ft-tých mocnin, tedy moc-
ninu (m + td)k, kde t je celé kladné číslo. Podle binomické věty platí

(m + td)k
k

+ kmk ltd+(^)mk 2t2d2 + ... + kmtk 1dk l-\-tkdk —

k
+ d[kmk~1t + (2)mk~2t2d + ... + kmtk~ldk~2 + tkdk~1) —

k
+ d - M = (a + nd) + dM — a + d(n + M).

= m

= m

= m

Protože M (výraz ve velké závorce) je zřejmě přirozené číslo, hodnota
(■m+td)k = a+d(n+M) je členem posloupnosti (*) pro každé přirozené t.
Tím je požadovaná vlastnost naší posloupnosti dokázána.

Poznamenejme, že namísto binomické věty jsme v posledním odstavci
mohli využít kongruence2. Každá aritmetická posloupnost (*) je totiž
tvořena právě těmi celými čísly x, pro něž platí x = a (mod d) a x ^
^ a. Jak je známo, platí implikace: jestliže x = у (mod d), pak xk =
= yk (mod d) pro každé přirozené k. Díky tomuto pravidlu o umocnění
můžeme celé řešení úlohy d) pojmout takto: má-li pro dané к kongruence
xk = a (mod d) nějaké řešení x = m s vlastností m ^ a, je jejím řešením
i každé takové x, pro něž x = m (mod d). (V původním řešení bychom
mohli tedy vzít i např. mocninu (m — d)k, kdyby platilo a + d m.)

A - I - 5

Očíslujme vrcholy daného mnohoúhelníku po řadě čísly 1, 2, ..., 2 008.

a) Popíšeme rovnou jeden z postupů jak přesouvat mince, abychom
je dostali na 8 hromádek po 251 mincích.

Nejprve mince z prvních 251 vrcholů s čísly 1,2,..., 251 postupně
shromáždíme na jedné hromádce ve vrcholu s číslem 251, přitom jejich
pohyb budeme vyvažovat zřejmým „symetrickým14 přesouváním mincí
z posledních 251 vrcholů s čísly 1 758,1 759,..., 2 008 do vrcholu s čís-
lem 1 758. Takto vytvoříme první dvě požadované hromádky. Podobným
způsobem pak shromáždíme mince z vrcholů 252 až 502 na jedné hro-
mádce ve vrcholu s číslem 502. Jejich pohyb opět symetricky vyvážíme
vytvořením stejně početné hromádky ve vrcholu s číslem rovným rozdílu
1 757—250, tedy s číslem 1 507. Postup zopakujeme ještě dvakrát; poslední

2 S tímto způsobem počítání se zbytkovými třídami se lze seznámit v brožuře Aloise
Apfelbecka: Kongruence, Mladá fronta, edice Škola mladých matematiků, Praha
1968.
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dvě hromádky s 251 mincemi dostaneme v sousedních vrcholech s čísly
1 004 a 1 005.

b) Dokážeme, že žádný postup ke kýženému cíli nevede.
Přiřaďme každé minci číslo vrcholu, v němž se (aktuálně) nachází.

Všimněme si, jak se změní součet S všech 2 008 čísel přiřazených jednot-
livým mincím, když povoleným způsobem přesuneme libovolnou dvojici
mincí. Nenastane-li přitom přesun mince mezi vrcholy s čísly 1 a 2 008,
hodnota součtu S se zřejmě nezmění, neboť jedné z přesouvaných mincí
se přiřazené číslo o 1 zvětší, druhé přesouvané minci se přiřazené číslo
o 1 zmenší (čísla přiřazená ostatním mincím, jež zůstaly na místě, se ne-

změní). Pokud však přesun mezi vrcholy s čísly 1 a 2 008 nastane a nejde-li
přitom o bezvýznamnou výměnu mince z vrcholu 1 za minci z vrcholu
2 008 a naopak, součet S se změní na hodnotu S ± 2 008, neboť čísla
přiřazená přesouvaným mincím se buď obě zvětší, nebo obě zmenší, a to
v obou případech o hodnoty 1 a 2 007.

Naše úvahy o aktuálních hodnotách součtu S přiřazených všem min-
cím můžeme shrnout takto: po libovolném počtu přesunů dvojic mincí
se hodnota S z počáteční hodnoty So = 1 + 2 + . .. + 2 008 dostane na
hodnotu S = So + 2 008fc, kde к je vhodné celé číslo. Snadno určíme
hodnotu So = 1 004 ■ 2 009. Kdybychom připustili, že po určitém počtu
přesunů dvojic mincí vznikne 251 hromádek po 8 mincích ve vrcholech,
jejichž čísla označíme v\, V2, . • ., U251, musela by platit rovnost

1 004 • 2 009 + 2 008к = 8(vi + V2 + ... + +251)

kterou však nesplňuje žádné celé číslo k, neboť její pravá strana je ná-
sobkem osmi, zatímco levá strana nikoliv (číslo 2 008к násobkem osmi je,
číslo 1 004-2 009 nikoliv). Tím je tvrzení o neexistenci hledaného postupu
dokázáno.

Dodejme pro zajímavost, že úvaha o součtu S není v rozporu s vý-
sledkem části a). Postupu popsanému v řešení a) odpovídá rovnice

1 004 • 2 009 + 2 008к = 251(щ + v2 + • •. + v8),

a to dokonce s hodnotou к = 0 (žádný přesun mince mezi vrcholy s čísly
1 a 2 008 jsme neprovedli). Z uvedené rovnice s hodnotou к = 0 plyne,
že čísla vrcholů osmi konečných hromádek musejí splňovat rovnici

v\ + v2 + ... + v8 = 4 • 2 009,
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ať volíme jakýkoli postup bez přesunu mince mezi vrcholy 1 a 2 008. Při
našem postupu za rostoucího pořadí čísel Ví platí

v\ + v8 = V2 + V7 = v3 + v4 = v5 + vq = 2 009.

A - I - 6

Označme Q obraz bodu P ve středové souměrnosti se středem M. Bod
Q bude ležet na ose úhlu ACB, právě když bude mít stejnou vzdálenost
od obou přímek АС a BC. Vzhledem к tomu, že úsečky AE a BD mají
stejnou délku, vidíme, že bod Q bude stejně vzdálen od přímek АС a BC,
právě když trojúhelníky AEQ a BDQ budou mít stejný obsah (obr. 20).
Rovnost jejich obsahů teď dokážeme.

Z konstrukce bodu Q plyne, že AQBP je rovnoběžník, tj. přímka QB
je rovnoběžná s přímkou AD, proto mají trojúhelníky QBD a QBA
stejný obsah (mají shodné výšky na společnou základnu QB). Podobně
z rovnoběžnosti přímek QA a BE plyne rovnost obsahů trojúhelníků
QAE a QAB. Tím je rovnost obsahů trojúhelníků AEQ a BDQ doká-
zána, a tudíž je dokázáno i tvrzení úlohy.

Jiné řešení. Označme O obraz bodu C a Q obraz bodu P ve stře-
dové souměrnosti podle středu M. Dále označme К průsečík přímek C'B
a AD. Průsečíky přímky C'P s přímkami AB a AC označme N a L
(obr. 21).
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Máme dokázat, že bod Q leží na ose úhlu ACB, což je díky vlastnos-
tem středové souměrnosti ekvivalentní tomu, že bod P leží na ose úhlu
АОВ (vnitřního úhlu v trojúhelníku AC'B). Je známo, že toto nastane,
právě když bod N rozdělí úsečku AB v poměru délek úseček АС' а ВО.
Pokusíme se tedy určit poměr \AN\ : \BN\.

Označme \BD\ = \AE\ = x, \CD\ = у a \AC\ — b. Trojúhelníky
ADC а КDB jsou podobné, proto

\BK\ \BD\ x

\AC\ ~ \CD\ ~ у

BK x
takže

\BC'\ у

Ze stejnolehlosti se středem v bodě P tak plyne

Ш = jHj = y’ takže {ЕЦ = v a {АЦ = x + y = = \AC'\-
Konečně z podobnosti trojúhelníků ANL a BNO dostáváme

\AN\
_ \AL\ _ \AO\

\BN\ ~ \BO\ ~ |BO[

To, jak jsme před výpočtem poměru |^iV| : |-BiVj zmínili, znamená, že
přímka ON = OP je osou úhlu АОB. Tím je tvrzení úlohy dokázáno.

81



A - S - 1

Splňují-H přirozená čísla m, n zadané nerovnosti, musí zřejmě platit

m ^ 2 a 2\fn — m > 0, (1)

jinak by zastoupené odmocniny nebyly definovány, resp. prostřední výraz
2sjn — m by byl nekladný, a tak by nemohl být větší než nezáporný výraz
y/m2 — 4.

Předpokládejme, že podmínky (1) jsou splněny a každou ze zadaných
nerovností v jednom sloupci ekvivalentně upravme (při každém ze čtyř
umocňování jsou obě strany definovány a mají nezáporné hodnoty, stejně
tak obě dělení kladným číslem n jsou v pořádku):

2
2\Jn — m < у/m2 — 2 yjm2 — 4 < 2\fn

4n — 4my/n + m2 < m2 — 2 m2 — 4 < 4n — 4my/n + m2
n + \ <

n2 + n + \ < m2n
1 9

П + 1 + — < 77Г

— m

2
m\/ň < n + 1
m2n < n2 + 2n -f 1

2 „ 1m2 < n + 2 H—

: n

4n n

Poslední dvě nerovnosti platí, právě když číslo m2 leží v otevřeném in-
tervalu

1 1

(” + 1+4n
Ten s ohledem na zřejmé nerovnosti 0 < \n~x ^ a 0 < n-1 1
obsahuje jediné celé číslo n + 2. Za předpokladu (1) proto přirozená čísla
m, n splňují původní nerovnosti, právě když platí m2 — n + 2.

Zbývá zjistit, která přirozená čísla m, n vázaná vztahy n

splňují za předpokladu ш ^ 2 i druhou z podmínek (1). Proveďme její
ekvivalentní úpravy:

-—, n + 2 H— ).
n

m2 — 2

2 \/m2 — 2 — m > 0,

2\Jm2 — 2 > m,

4(m2 — 2) > m2,
3m2 > 8.

2

Poslední nerovnost je ovšem pro každé m ^ 2 už splněna.
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Odpověď. Hledané dvojice jsou právě ty tvaru (m,n) = (m, m2 — 2),
kde m ^ 2 je libovolné přirozené číslo.

A - S - 2

Nejdřív dokážeme první implikaci. Nechť AP J_ BC, bod P je pak prů-
sečíkem výšek trojúhelníku ABC. Chceme dokázat, že úsečky АР a BC
jsou shodné, najdeme proto dva shodné trojúhelníky, v nichž si tyto
úsečky jako strany odpovídají.

Označme E průsečík přímky BP se stranou AC, tj. patu výšky z vr-
cholu B. Z pravoúhlého trojúhelníku ABE a dané velikosti úhlu BAC
snadno dopočítáme, že \KPBD\ = 45°. Trojúhelník PDB je tedy právo-
úhlý a rovnoramenný, takže \DP\ = \DB\ (obr. 22). Podobně trojúhelník
ADC je pravoúhlý a vzhledem к velikosti úhlu při vrcholu A i rovnora-

menný, proto \DA\ — \DC\. Podle věty sus jsou pak pravoúhlé trojúhel-
niky APD a CBD shodné a jejich přepony AP, BC proto mají stejnou
délku.

Zbývá dokázat opačnou implikaci. Předpokládejme, že \AP\ = \BC\.
Protože ADC je rovnoramenný pravoúhlý trojúhelník, platí \AD\ —

= \CD\, takže trojúhelníky PAD a BCD jsou shodné podle věty Ssu.
Máme tak \PD\ = \BD\, proto \<ABP\ = 45°. Označme opět E průsečík
přímky BP se stranou АС. V trojúhelníku ABE vychází, že úhel BEA je
pravý, takže přímka BP je výškou trojúhelníku ABC (obr. 22) a bod P
je tak jeho průsečík výšek. Odtud plyne, že AP je výška na stranu BC,
tudíž je na ni kolmá.
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Jiné řešení. Je-li AP J_ BC, je bod P průsečíkem výšek trojúhelníku
ABC. Označme a = \<BAC\ = 45°. Podobně jako v jednom z řešení
úlohy A-I-2 můžeme odvodit, že

|jBCj • cos a\AP I \BC\ • cotg a = \BC\ - cotg45° = \BC\.siná

Nechť naopak \AP\ = \BC\. Označme Q průsečík výšek trojúhelníku
ABC. Z právě dokázané implikace víme, že \AQ\ = \BC\. Všechny body
výšky CD mají ovšem navzájem různou vzdálenost od vrcholu A, proto
může uvnitř úsečky CD ležet nejvýše jeden bod P s vlastností \AP\ —

= \BC\, a tento bod musí být totožný s bodem Q. Je tedy AP _L BC.

A - S - 3

Zlomek lze krátit celým číslem d > 1, právě když je číslo d společným
dělitelem čitatele i jmenovatele uvažovaného zlomku. Předpokládejme
tedy, že platí d \ Зр—q a zároveň d \ 5p+2g, kde p a q jsou nesoudělná celá
čísla. Sčítáním vhodných násobků dvojčlenů 3p — q a 5p + 2q dostaneme

2(3p — q) + (5p + 2q) = 11p a 3(5p + 2q) — 5(3p — q) — 11 q.

Protože obě čísla 3p — q a 5p + 2q jsou dle předpokladu násobky čísla
d, jsou jeho násobky i sestavená čísla 11p a 11 q. Jinak řečeno, číslo d je
společným dělitelem čísel lip a lig. Čísla p a q jsou však nesoudělná
a číslo 11 je prvočíslo, takže čísla lip a lig mají jediného společného
dělitele většího než 1, a tím je číslo 11. Musí tedy platit d — 11.

Řešení ještě není u konce: musíme ukázat, že číslem 11 lze skutečně
některé z uvažovaných zlomků krátit. Jak tedy najít dvojici nesoudělných
čísel p a g tak, aby platilo 11 | 3p — g a zároveň 11 | 5p + 2g? S trochou
trpělivosti objevíme takové hodnoty p a g zkusmým dosazováním; stačí
však vypsat soustavu rovnic

3p —g = llm a 5p + 2g = lln,

najít její řešení (p, g) = (2m + n, 3n — 5m) a pak pohodlně dosazovat:
dvojici nesoudělných čísel p a g určitě dostaneme, když bude q — 3n —
— 5m — 1, tedy např. pro n = 2am = l, kdy (p, g) = (4,1) a uvažovaný
zlomek je 11/22.

Odpověď. Jediné celé číslo větší než 1, kterým lze krátit některý z uve-

děných zlomků, je číslo 11.
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A - II - 1

Označme hledané číslo n — abcd — 1000a+1006+ Юс+d a číslo s opačným
pořadím číslic к = dcba = 1000d + 100c + 106 + a. Protože obě čísla к, n

dávají stejný zbytek při dělení číslem 37, je jejich rozdíl

k-n = (lOOOd + 100c + 106 + a) - (1000a + 1006 + 10c + d) =

= 999(d - a) + 90(c - 6) = 37 • 27(d - a) + 90(c - 6)
(1)

dělitelný číslem 37, odkud 37 | 90(c — 6). Jelikož 37 je prvočíslo a číslo 90
není jeho násobkem, musí platit 37 | c — 6. To je pro číslice 6, c možné
jedině v případě, kdy 6 = c. Naopak, je-li 6 = c, plyne z vyjádření (1),
že bez ohledu na hodnoty číslic a, d je rozdíl к — n dělitelný číslem 37,
takže čísla пак skutečně dávají při dělení 37 stejný zbytek. Můžeme
tedy předpokládat, že n — abbd а к = dbba, a dále se už zabývat pouze

podmínkami úlohy o dělitelnosti sedmi.
Z podmínek 7 | n, 7 | к plyne

7 | к - n = 37 • 27(d - a)

(do vyjádření (1) jsme dosadili 6 = c), odkud vzhledem к nesoudělnosti
čísla 7 se součinem 37 • 27 dostáváme, že 7 | d — a. Protože podle zadání
platí к > n, platí rovněž d > a; takové číslice d, a splňují podmínku
7 | d — a jedině v případě, kdy d — a = 7. Konkrétně je tedy buď a = 1
a d = 8, nebo a — 2 a d = 9. (Možnost a — 0, d = 7 je vyloučena, protože
a je první číslicí čtyřmístného čísla n.)

V případě a — 1, d — 8 budou čísla

n = 1668 = 1 008 + 1106 = 7 • (144 + 156) + 56,
к = 8661 = 8 001 + 1106 = 7 • (1 143 + 156) + 56

dělitelná sedmi, právě když bude platit 7 | 56 neboli 6 E {0, 7}. Dostáváme
tak první dvě řešení n = 1 008 a n — 1 778.

Rovněž v případě a = 2 a d = 9, kdy

n = 2 669 = 2 009 + 1106 = 7 • (287 + 156) + 56,
к = 9 662 = 9 002 + 1106 = 7 • (1 286 + 156) + 56,

vyjde stejná podmínka 7 | 56, která vede ke zbylým dvěma řešením n =
= 2 009 a n = 2 779.
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Hledané čtyřciferné číslo je kterékoli z čísel 1008, 1778, 2 009, 2 779
(a žádné jiné).

Jiné řešení. Zachovejme označení čísel n, к a jejich číslic z původního
řešení. Začneme-li řešení analýzou podmínek 7 | n a 7 | k, zjistíme s ohle-
dem na zbytky řádů 103, 102, 101, 10° při dělení sedmi (jež jsou po řadě
6, 2, 3, 1), že tyto podmínky lze zjednodušit do tvaru

7 | 6a + 26 + 3c 4- d, resp. 7 | 6d + 2c + 36 + a.

Sečtením obou výrazů dostaneme 7 | 5(6 + c) neboli 7 | 6 + c. Zjistíme-li
stejně jako v původním řešení, že platí 2>1 \ k — n <í=> 6 = c, z podmínky
7 | 6 + c vyplyne 6 = c € {0, 7}; z obou zbylých podmínek 7 | 6a + d
a 7 | 6d + a, jež jsou obě ekvivalentní jednomu vztahu 7 | d — a, pak
s ohledem na d > a > 0 najdeme obě vyhovující dvojice číslic (a,d) =

= (1.8) a (a,d) = (2,9).

A - II - 2

Označme vrcholy daného trojúhelníku А, В, C tak, aby vrcholy А, В
ležely postupně proti odvěsnám délek a, 6.

Nejdříve vypočítáme velikosti poloměrů obou kružnic ka а къ■
Označme A! obraz bodu A v osové souměrnosti podle přímky BC.
Kružnice ka je vepsána trojúhelníku A'AB (obr. 23). Rovnoramenný
trojúhelník ABA' má obvod o = 2(6 + c) a obsah S = ab, pro poloměr
Qa kružnice ka tak podle známého vztahu vychází

2S ab
Qa —

6 + C

Podobně vypočítáme i poloměr kružnice кь: vyjde дь
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Pro číslo p a pro libovolný pravoúhlý trojúhelník s odvěsnami a, b
a přeponou c má platit

b + c

< Qa___Qb _ abP = 1 1
- + -

a + c

2л/а2 + b2
a + b

a b ~(- 2cab
= 1 +

a -(- b a -f b
aba

b má poslední výraz hodnotu 1 + л/2, musíProtože v případě a
každé vyhovující číslo p splňovat nerovnost p 1 + л/2. Ukážeme-li nyní,
že pro libovolné dvě kladné hodnoty a, b platí

2Va2 + b2
(1)

a + b

bude výše odvozená nerovnost znamenat, že p = 1 + л/2 je hledané reálné
číslo (a úloha tak bude vyřešena).

Nerovnost (1) pro libovolná kladná a, b snadno převedeme ekviva-
lentními úpravami na nerovnost, která zřejmě platí:

2\ja2 + b2 ^ \Í2(a + 6),
4(a2 + 62) ;> 2(a + b)2,
4a2 + 462 ^ 2a2 + 4a6 + 2b2
2(a — b)2 ^ 0.

Místo takové prověrky bylo možné využít Cauchyovu nerovnost 2 (a2 +
+ b2) ^ (a + b)2 nebo nerovnost mezi kvadratickým a aritmetickým
průměrem

a2 + b2 ^ a + b>
2 2

Obě tyto klasické nerovnosti jsou zřejmě pouze obměněnými zápisy ne-
rovnosti (1).

Odpověď. Hledané číslo p má hodnotu 1 + л/2.
Poznámka. Velikost poloměrů да а дъ je možné vypočítat i jinak:

Dvojím vyjádřením sinu úhlu ABC z pravoúhlých trojúhelníků SaBT
a ABC (obr. 24) dostaneme

bQa

O' Qa C
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odkud plyne ga — ab/(b+ c). Analogicky vypočítáme i дь.

A - II - 3

Z rovnosti a + /3+7 = na ze známých goniometrických vzorců dostáváme

sin(o! + /3) = siny,
cos a = — cos(/3 + 7) = — cos /3 cos 7 + sin /3 sin 7.

Dosaďme tato vyjádření hodnot sin(a + (3) a cos a do první rovnice ze
zadání a výsledek upravme:

2 sin (3 sin 7 — (—cos (3 cos 7 + sin (3 sin 7) = 1,
cos (3 cos 7 + sin /3 sin 7=1,

cos ((3 — 7) = 1.

Poslední rovnost nastane, právě když (3 = 7, neboť rozdíl dvou vnitřních
úhlů trojúhelníku leží v intervalu (—71, ti), v němž má funkce kosinus
hodnotu 1 jedině v bodě nula. Tak jsme ukázali, že první zadaná rovnice
je pro vnitřní úhly trojúhelníku splněna, právě když /3 = 7.

Nyní snadno vyřešíme i druhou ze zadaných rovnic, když do ní za 7
dosadíme /3:

2 sin /3 sin 2/3 — cos /3 = 0,
4 sin2 /3 cos /3 — cos (3 — 0,

(4 sin2 /3—1) cos /3 = 0.

Je tedy buď cos/3 = 0, nebo sin/3 = ±|. Rovnost /3 = 7 však pro úhly
trojúhelníku znamená, že úhel /3 je ostrý, takže cos /3 > 0, a proto musí
platit sin/3 = I (hodnota sin/3 = — | je pro úhel /3 z intervalu (0, ti)
vyloučena). Tak docházíme к jediným možným hodnotám /3 = 7 = 30°,
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z nichž snadno dopočteme a = 120°. Při uvedeném postupu není zkouška
nutná: první zadaná rovnice platí díky rovnosti /3 = 7 a druhou rovnici
jsme za předpokladu /3 = 7 řešili ekvivalentními úpravami.

Jiné řešení. Podobně jako při řešení úlohy domácího kola využijeme
známé goniometrické vzorce к odvození rovnosti

2 sin у sin(x + y) — cos x = 2 sin у (sin x cos у + cos x sin y) — cos x —

= 2 sin у cos у sin x + (2 sin2 у — 1) cos x =

= sin 2у sin x — cos 2у cos a: == — cos(x + 2y)

pro libovolná reálná čísla x: y. Díky tomu můžeme soustavu rovnic ze
zadání přepsat do tvaru

cos(a + 2/3) = — 1
cos(/3 + 2y) = 0.

(1)
(2)

Vnitřní úhly libovolného trojúhelníku leží v intervalu (0, тс), z čehož ply-
nou nerovnosti 0 < a + 2/3 < Зтс.3 Z nich plyne, že rovnice (1) je spi-
něna, právě když a + 2/3 = тс. Porovnáním s obecně platnou rovností
a + (3 + 7 = тс dostáváme ekvivalentní podmínku 7 = /3, za níž (2) přejde
do tvaru

(3)cos 3/3 = 0.

Protože úhel (3 je ostrý (neboť je shodný s úhlem 7 a trojúhelník nemůže
mít dva pravé nebo dva tupé vnitřní úhly), platí nerovnosti 0 < 3/3 < |тг,
při kterých je rovnice (3) splněna, právě když 3/3 = |тг neboli /3 = 7= ^7t.
Stejně jako v prvním řešení dopočítáme ck = tc — /3 — 7 = §tc. Zkouškou
(ani při tomto postupu však není nutná) snadno ověříme, že nalezená
trojice úhlů a, /3, 7 splňuje všechny podmínky zadání úlohy.

Podmínkám úlohy vyhovují pouze trojúhelníky, jejichž vnitřní úhly
mají velikosti a = 120°, /3 = 7 = 30°.

A - II - 4

Označme velikost úhlu, který svírá přímka íc, na níž leží těžnice z vr-
cholu C, s přímkou strany BC daného trojúhelníku. Vzhledem к definici
bodu К budou stejný úhel svírat i přímky КP a AD. To však známe-

ná, že na kružnici opsané trojúhelníku AKP bude ležet i takový bod M

3 Platí dokonce a + 2/3 < 271, neboť a + 2/3 < 2(a + f3 + 7) = 2rc.
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přímky íc, v němž přímka AM protne přímku tc pod úhlem tp. Takovou
vlastnost zřejmě má bod M souměrně sdružený s bodem C podle středu
strany AB (který na volbě bodů úaP rovněž nezávisí, obr. 25).

Dokážeme nyní shora uvedené skutečnosti podrobněji. Označme Q
průsečík těžnice tc s úsečkou AD (Q je tedy „zakázaná44 poloha bodu P).
Bod P leží buď uvnitř úsečky DQ, nebo uvnitř úsečky QA.

V prvním případě leží bod Q vně kružnice opsané trojúhelníku CPD,
bod К tedy padne dovnitř polopřímky QC. Pokud bod К leží uvnitř
úsečky QC, jsou body С a P protilehlými vrcholy tětivového čtyřúhel-
niku CDPK, a tudíž \<APK\ = </?. Navíc body P a M leží vzhledem
к přímce AK v téže polorovině, takže ze shodnosti úhlů AMК а АРК
vyplývá, že čtyřúhelník AMPK je tětivový, proto bod M skutečně leží
na kružnici opsané trojúhelníku AKP.

Pokud bod К uvnitř úsečky QC neleží a je А' ф C (obr. 26), je
\<KPD\ = \<KCD\ = 180° - у?, takže \<KPA\ = <p = \<KMA\.
(Poslední rovnost samozřejmě platí i pro К = C.) Protože body P a M
leží v téže polorovině určené přímkou ATA, leží i v tomto případě bod M
na kružnici opsané trojúhelníku AKP.

Ve druhém případě leží bod К uvnitř polopřímky QM. Pokud bod К
leží uvnitř úsečky QM (obr. 27), leží body P a M v opačných polo-
rovinách vzhledem к přímce AK a z rovnosti obvodových úhlů DCK
a DPK nad tětivou DK plyne \<DPK\ = ip = |<AMA'|, což zaručuje,
že čtyřúhelník AMKP je tětivový, takže bod M leží na kružnici opsané
trojúhelníku AKP.

Pokud bod К uvnitř úsečky QM neleží (obr. 28), vychází \<KPA\ —

= \<KMA\ = 180° — (p. Protože body P a M leží v téže polorovině
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určené přímkou КA, leží i v tomto případě bod M na kružnici opsané
trojúhelníku AKP.

Jiné řešení. Označme body Q a M stejně jako v prvním řešení. Pro
mocnost bodu Q ke kružnici opsané bodům С, P, D, К (bez ohledu na
polohu bodu P) platí \QK\ ■ \QC\ = \QP\ ■ \QD\, takže \QK\ : \QP\ =
= \QD\ : \QC\. Z podobnosti trojúhelníků QDC a QAM, jež plyne z rov-
noběžnosti přímek ВС a AM, dostáváme \QD\ : \QC\ = \QA\ : \QM\.
Platí tedy

\QK\ \QD\ \QA\
\QP\ ~ \QC\ ~ \QM\

takže

\QK\-\QM\ = \QP\-\QA\. (1)
Jak už víme, leží bod Q buď uvnitř, anebo vně obou úseček AP a KM,

proto z právě získané rovnosti vyplývá, že bod M leží na kružnici určené
body A, P, K. Označíme-li totiž M' druhý průsečík přímky QK s touto
kružnicí (M' Ф K), plyne z mocnosti bodu Q vůči této kružnici rovnost
\QK\ ■ \QM'\ = \QP\ ■ \QA\, takže podle (1) je \QM'\ = \QM\, a musí
tudíž být M' - M.

Poznámky. V žádném z obou řešení jsme nevyužili předpoklad, že
daný trojúhelník ABC je ostroúhlý. Za tohoto předpokladu leží bod К
vždy uvnitř úsečky CM. Lze to ukázat úvahami o obvodových úhlech po-

dobně, jako jsme ukázali, že tvrzení úlohy platí i v případech, kdy bod К
padne mimo tuto úsečku. Jiný důkaz dostaneme následující úvahou:

Je-li trojúhelník ABC ostroúhlý, platí ф > p, kde jsme jako ф ozna-
čili velikost úhlu CDA. Tato nerovnost ф > p plyne ze zřejmé nerov-
nosti ф = /3 + \<DAB\ > (3 a z nerovnosti /3 > p>, která je ekvi-
valentní nerovnosti tc > ^|AB| (proti větší straně trojúhelníku leží
větší úhel), což je nerovnost \CM\ > \AB\ mezi délkami úhlopříček
rovnoběžníku CAMB, jehož vnitřní úhel při vrcholu C je dle před-
pokladu ostrý (tuto nerovnost získáme snadno použitím kosinové věty:
\AB\2 < \AC\2 + \CB\2 = \AC\2 + \AM\2 < \CM\2).

Z nerovnosti ф > <p pak pro bod P uvnitř úsečky DQ pro délky stran
trojúhelníků QPK, QCD (obr. 29) vychází, že \QK\ < \QP\ < \QD\ <
< \QC\ (proti většímu úhlu v trojúhelníku leží větší strana), takže bod К
leží uvnitř úsečky QC. Podobně pro bod P uvnitř úsečky QA dostaneme
\QK\ < \QP\ < \QA\ < \QM\, takže bod К leží uvnitř úsečky QM.

Budeme-li úhel p chápat jako orientovaný úhel dvou přímek (tj. úhel,
o který musíme první přímku otočit, aby splynula nebo byla rovnoběžná
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s druhou přímkou), vyplyne tvrzení úlohy z úvah v úvodním odstavci
a z následující charakterizace kružnice: Body А, В, C, D leží na kružnici,
právě když se orientovaný úhel ACB rovná orientovanému úhlu ADB.

A - III - 1

Předpokládejme, že všechna čísla p, 3p + 2, 5p + 4, 7p + 6, 9p + 8 a
11p+ 10 jsou prvočísla. Zkoumejme, jaký zbytek při dělení pěti může
dávat prvočíslo p, tj. pro jaká l z množiny {0,1,2,3,4} a nezáporné celé
číslo к může platit p — 5к + l.

> Je-li p = bk prvočíslo, pak p = 5, tehdy ovšem lip + 10 = 65 není
prvočíslo.

> Je-li p = 5fc + l, pak 3p + 2 = 5(3fc + l) je prvočíslem jedině pro к — 0,
tehdy ovšem platí p — 1, což není prvočíslo.

> Je-li p = 5k + 2, pak 7p + 6 = 5(7к + 4) není prvočíslem pro žádné
celé к ^ 0.

> Je-li p — 5k + 3, pak 9p + 8 = 5(9A; + 7) není prvočíslem pro žádné
celé к ^ 0.

Prvočíslo p tedy musí být tvaru 5к + 4. Pak ovšem 6p + 11 = 5 (6k + 7)
je složené číslo pro každé celé к ^ 0.

Poznámka. Nejmenší prvočíslo p, pro něž jsou i všechna čísla 3p + 2,
5p + 4, 7p + 6, 9p + 8 a lip + 10 prvočísla, je p = 2 099.
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A - МП - 2

Ukážeme, že úhel LKM má stejnou velikost jako úhel CBD (obr. 30).
Odtud dané tvrzení triviálně plyne (úhel CBD má velikost 45°, právě
když \BC\ = \CD\, tj. když ABCD je čtverec).

Body В, К, M, P leží v tomto pořadí na Thaletově kružnici nad
průměrem BP. Pro velikosti obvodových úhlů nad tětivou PM tedy platí
\<PKM\ = \kPBM\. Podobně body А, К, L, P leží v tomto pořadí
na Thaletově kružnici nad průměrem AP a pro velikosti obvodových
úhlů nad tětivou PL máme \$:LKP\ — \š:LAP\. Z obvodových úhlů
nad tětivou CP kružnice opsané pravoúhelníku ABCD tak dostáváme
\<CAP\ = \<CBP\.

Z uvedených rovností vyplývá

\<LKM\ = \<LKP\ + \<PKM\ = \<LAP\ + \<PBM\ =

= \<CAP\ + \<PBD\ = \<CBP\ + \<PBD\ = \<CBD\
což jsme chtěli dokázat.

Poznámka. Uvedený postup se dá použít i v triviálním případě, kdy
P = C anebo P = D\ tehdy mají některé z uvažovaných úhlů nulovou
velikost.

Jiné řešení. Opět dokážeme, že úhly LKM a CBD mají stejnou ve-
likost. Označme N patu kolmice z bodu P na přímku BC. Body К, L,
N leží na Simsonově přímce příslušející bodu P a trojúhelníku ABC
(obr. 31). Na Thaletově kružnici nad průměrem PB leží body К, M i N.
Z obvodových úhlů nad tětivou MN téže kružnice tak máme

\<LKM\ = \<NKM\ = \<NBM\ = \<CBD\.

94



A - III - 3

Nechť a, 6, c, d jsou libovolná kladná čísla, jejichž součin se rovná 1. Podle
nerovnosti mezi aritmetickým a geometrickým průměrem trojice čísel ax,
bx, cx pro libovolné x > 0 máme

ax + bx + cx
^ \Jaxbxcx =

3

Volbou x = 3 dostáváme nerovnost |(a3 + 63 + c3) ^ l/d. Analogicky
platí

|(a3 + 63 + d3) ^ 1/c, |(a3 + c3 + d3) ^ 1/6, |(63 + c3 + d3) ^ l/a.
Sečtením uvedených čtyř nerovností dostaneme

a3 + 63 + c3 + d3 ^ - + \ + i 1
a b c

takže pro x = 3 nerovnost ze zadání úlohy vždy platí.
Ukážeme, že x — 3 je hledanou nejmenší hodnotou, tedy že pro

každé kladné x < 3 daná nerovnost pro některou z uvažovaných čtve-
řic (a, 6, c, d) neplatí. Najdeme takovou čtveřici ve tvaru a = 6 = c = t
a d = 1/t3 pro vhodné t > 1 (závislé na daném x < 3). Pro taková kladná
a, 6, c, d jistě platí abcd = 1,

+ -
ď

1 1 1 1 1 3 o o

—irl (-- = -+ř3>í3.
d t

ax + bx + cx + dx = 3tx + -r- < 4tx a
ba c
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Bude-li proto navíc platit 4tx < í3, nebude nerovnost ze zadání úlohy
splněna. S ohledem na podmínku x < 3 je nerovnost 4tx < t3 ekvivalentní
s nerovností

t > 43-z,

která je pro dostatečně velké t skutečně splněna.
Závěr. Hledané nejmenší kladné číslo je x = 3.
Poznámka. Požadovanou vlastnost má nejen x = 3, ale každé x ^ 3

(a rovněž každé x ^ —1). Vysvětlíme to tak, že jedničky ve jmenova-
telích zlomků na pravé straně uvažované nerovnosti zaměníme výrazem
(■abcd; dostaneme tak homogenní nerovnost

ax + bx + cx+dx^
x — 3. ~^ x-\-1 x — 3 x-\-\ x — 3 x -}-1

^ a 4 (bed) 4 + b 4 (acd) 4 + c 4 (abd) 4
X-3 x+ X

+ d 4 (aoc) 4

což je Muirheadova nerovnost pro čtveřice exponentů

x + 1 x + l x + 1 x-3
4~ ’ 4(ж, 0,0,0) a ^ 4 ’ 4

jejíž uplatnění je v případě x > 0 vázáno jedinou podmínkou |(x — 3) ^
^ 0 neboli x ^ 3 (zatímco v případě x < 0 vychází jediná podmínka
|(ж + 1) ^0 neboli x ^ —1).

A - III - 4

Z rovnosti n + k2 = (k + n)(k
platí, právě když n + к \ n(n + 1). Počet čísel к s touto vlastností je tedy
rovný počtu těch dělitelů čísla D = n(n + 1), které jsou větší než n.

a) V případě n = 58 z rozkladu na prvočinitele příslušného D = 58 •
• 59 = 2 ■ 29 • 59 vidíme, že dělitelé čísla D, jež jsou větší než 58, jsou
právě čtyři: 59, 2 • 59 = 118, 29 • 59 = 1 711 a 2 • 29 • 59 = 3 422. To jsou
hodnoty 58 + k, takže příslušná hledaná к jsou o 58 menší, jsou to tudíž
postupně čísla к — 1, к = 60, к = 1 653 а к = 3 364 = 582. (Dodejme, že
obě čísla к = 1 а к = п2 splňují podmínku п + к \ п + к2 pro každé п.)

b) Pro sudé п = 2р, kde р ^ 3, platí D = 2р(2р +1), takže snadno
vypíšeme čtyři dělitele čísla D, které jsou větší než dané n — 2p:

n) + n(n + 1) vidíme, že n + к \ n + k2

2p + 1 < 2(2p + 1) < p(2p + 1) < 2p(2p + 1). (1)
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Jsou-li obě čísla p, 2p + 1 prvočísla, žádné jiné takové dělitele číslo D
zřejmě nemá, tudíž číslo n = 2p má požadovanou vlastnost.

Je-li naopak aspoň jedno z čísel p, 2p + 1 složené a platí-li předpoklad
p ^ 3 ze zadání úlohy, ukážeme, že příslušné D pak má kromě dělitelů
vypsaných v (1) ještě aspoň jednoho dalšího dělitele většího než 2p. Roz-
lišíme přitom dva případy podle toho, které z čísel p, 2p + 1 je složené.

(i) Je-li složené číslo p, je toto číslo dělitelné některým q, 2 ^ q ^ |p,
a číslo D má pak dělitele 2q{2p + 1), který s výjimkou případu q = \p
leží mezi druhým a třetím dělitelem vypsaným v (1):

2(2p + 1) < 2q(2p + 1) < p(2p + 1).

Nemá-li však číslo p jiného netriviálního dělitele kromě q = |p, platí
nutně p — 4. Tehdy ani druhé číslo 2p + 1 = 9 není prvočíslo, takže
pátého dělitele čísla D (většího než 2p) najdeme v části (ii).

(ii) Je-li složené (liché) číslo 2p+ 1, je toto číslo dělitelné některým q,
3 = q < P, a číslo D má pak dělitele 2pq, který leží mezi druhým a třetím
dělitelem vypsaným v (1):

1 1
2(2p + 1) < 2pq < p(2p + 1) neboť q > 2-|— a q < p -\—.

p 2

Ekvivalence z části b) úlohy je tak dokázána.
Jiné řešení části b). Označme D = 2p(2p + 1). Protože 2p < \[Ď <

< 2p + 1, má D právě čtyři dělitele větší než 2p, právě když má zároveň
právě čtyři dělitele menší než \/~D, celkem tedy právě osm dělitelů. Číslo
D má aspoň dva prvočinitele, takže je buď součinem tří různých prvočísel
(to zřejmě nastane, právě když p a 2p+1 jsou prvočísla), nebo tvaru q3r,
kde q, r jsou různá prvočísla. Druhý případ však nemůže nastat, protože
D = 2p(2p + 1) je sudé, má lichého dělitele 2p + 1 a ještě dělitele p
nesoudělného s 2p + 1, muselo by proto být p = 22, odkud r = 2p + 1 =
= 9, což ovšem není prvočíslo. Tím je požadovaná ekvivalence v části b)
dokázána.

A - III - 5

Přiřaďme každé minci index i vrcholu Ai, na kterém leží (tedy číslo z mno-
žiny {1, 2,... ,n}) a po každém přemístění dvojice mincí čísla přiřazená
mincím aktualizujme. Sledujme nejprve, jak se změní součet S všech n
čísel přiřazených jednotlivým mincím po jednom přemístění.
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Nepřemisťujeme-li žádnou z obou mincí mezi vrcholy A\ a An, sou-
čet S se nezmění, protože jedno z čísel mincí se o 1 zmenší, druhé se
o 1 zvětší (a ostatní se nezmění). Stejně tak se součet S zřejmě ne-

změní, přemístíme-li jednu minci z A\ do An a současně druhou z An
do A\. Přemístíme-li jednu minci z A\ do An a druhou z A* do Aj+i (kde
1 ^ i ^ n — 1), součet S vzroste o(n— 1) + 1 = n. Konečně přemístíme-li
jednu minci z An do A\ a druhou z A* do A*_i (kde 2 5Í i ^ n), součet 5
klesne o n. Z uvedeného úplného rozboru plyne, že zbytek součtu S po
dělení číslem n se nikdy nezmění.

Součet S ve výchozí pozici má hodnotu

in(n + l)(2n + 1)1 • 1 + 2- 2 + ...+71-77, — ^ ( k2
k=1

zatímco v kýžené cílové pozici by měl mít hodnotu

fc(n + 1 — /с) = (n + 1) к — ^ k2
k= 1 fc=l

11 1
—77(77 + l)2 - -77(77 + 1)(2t7 + 1) = -77(77 + l)(n + 2)

к—1

(využili jsme známé vzorce pro součet prvých a druhých mocnin čísel
prvních 77 přirozených čísel). Aby bylo možné zamýšleného cíle dosáh-
nout, musí dvě určené hodnoty S dávat po dělení číslem n stejný zbytek,
neboli jejich rozdíl ^77(77 + 1)(77 — 1) musí být násobkem čísla n. Číslo
I (77+I) (77 — 1) = \{n2 — 1) proto musí být celé. Dosazením všech jednot-
livých zbytků 0 až 5 modulo 6 snadno zjistíme, že nalezená podmínka je
splněna, právě když číslo n dává po dělení šesti zbytek 1 nebo 5. V další
části řešení ukážeme, že pro všechna taková n lze skutečně kýžené cílové
pozice dosáhnout.

Popíšeme jeden z možných postupů. (Jedinou) minci, která je na po-
čátku ve vrcholu Ai, označme M. Všechny mince s výjimkou M budeme
neustále přemisťovat ve stejném společném směru. V opačném směru se

tedy bude přemísťovat jediná mince M, aniž bychom se o její pozici nějak
průběžně „starali". Její konečnou polohu určíme pomocí dříve odvozené
vlastnosti součtu S: index i vrcholu Aj, ve kterém se mince M nakonec
ocitne, je jednoznačně určen tím, že konečná hodnota součtu S dává
po dělení číslem n stejný zbytek jako hodnota výchozí — indexy všech
vrcholů totiž tvoří úplnou soustavu zbytků modulo n.
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Navrženým postupem permanentního přemisťování mince M můžeme
kteroukoliv ze zbylých mincí (nezávisle na ostatních zbylých mincích)
přemístit do libovolného vrcholu, který si zamaneme. Po konečném počtu
vhodných přemístění tedy zřejmě dosáhneme toho, aby všechny mince
různé od M byly v každém vrcholu Ai s indexem г > lv počtu, jaký
nám předepisuje zadání úkolu, tedy n+l — i. Je celkem lhostejno, že je to
právě n + l — i, důležité však je, že celkové počty mincí ve výchozí pozici
i kýžené cílové pozici jsou zřejmě stejné, takže po zmíněném „zajištění“
vrcholů A2, A3,..., An mincemi různými od M bude zbylých n — 1 mincí
různých od M ve vrcholu Ai a poslední mince M se ocitne v některém,
prozatím nezjištěném vrcholu. Kdy to bude vrchol A\, a tudíž cíle bude
dosaženo? Právě tehdy, když počet vrcholů n bude takový, že součet S
pro výchozí pozici dává při dělení n stejný zbytek jako součet pro cílovou
pozici, o kterou přemisťováním usilujeme. A všechna taková n jsme již
našli.

Odpověď. Požadovaného cíle je možné dosáhnout, právě když číslo n
dává po dělení šesti zbytek 1 nebo 5.

Poznámka. Popsaný způsob řešení vede к následujícímu závěru: Jsou-
-li dána dvě rozmístění stejného počtu mincí ve vrcholech n-úhelníku,
pak jedno z nich lze převést na druhé popsaným přemisťováním mincí,
právě když oba součty 5, které odpovídají těmto rozmístěním, dávají po
dělení číslem n stejný zbytek.

A - III - 6

Vezměme nějaký bod A z roviny ш. Aby mohl být vrcholem trojúhel-
niku popsaného v zadání, musí být různý od bodů O a T. Nejprve popí-
šeme obecnou konstrukci trojúhelníku ABC, v němž jsou dány vrchol A,
střed O opsané kružnice a těžiště T (pro trojici navzájem různých bodů
A, O, T). Teprve pak zjistíme, pro které body A takový trojúhelník se-

strojit nelze.
Označme A' střed strany BC. Bod A' je obrazem bodu A ve stej-

nolehlosti se středem T a koeficientem —Pokud А' ф O, leží body В
a C na kolmici p vedené bodem А' к přímce OA' a zároveň na opsané
kružnici к se středem O a poloměrem \OA\ (obr. 32).

К danému bodu A dokážeme vždy sestrojit jeho obraz A! v uvedené
stejnolehlosti. Předpokládejme nejprve, že А' ф O. Abychom dostali dva
různé body В a C, musí být přímka p sečnou kružnice k. To nastane,
právě když \OA'\ < \OA\. Označme O' obraz bodu O ve stejnolehlosti
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se středem T a koeficientem —2. Platí \0'A\ — 2\OA'\, proto konstrukční
podmínku můžeme zapsat ve tvaru \OfA\ < 2\OA\. Bod A proto musí
ležet mimo kruh určený Apollóniovou kružnicí4 m(S; |5T|), kde S je bod
souměrně sdružený s bodem T podle bodu O (obr. 33).

Pokud tedy A' ^ O neboli А ф 0\ dostaneme konstrukcí tři body A,
В, C. Ty budou vrcholy vyhovujícího trojúhelníku, pokud neleží v přím-
ce. Na přímce leží, když je přímka BC totožná s přímkou AT, tj. když
přímka OA! je kolmá na AT. Bod A! proto nesmí ležet na Thaletově
kružnici nad průměrem ОТ a (po „zobrazení14 této podmínky ve stejno-
lehlosti se středem T a koeficientem —2) bod A nesmí ležet na Thaletově
kružnici nad průměrem О'Т (obr. 34).

V případě, že bod A je totožný s bodem O', tj. A! — O, namísto
kolmice p můžeme vzít libovolnou přímku (různou od AT) procházející
bodem O (obr. 35). Dostaneme tak nekonečně mnoho různých trojúhel-

4 Pro dané dva různé body P, Q a kladné číslo к ф 1 je Apollóniova kružnice
množina bodů X, pro něž platí \PX\ = k\QX\. Střed Apollóniovy kružnice leží na
přímce PQ stejně jako dva body kružnice, které dovedeme pro dané к jednoduše
sestrojit.
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níků ABC s pravým úhlem při vrcholu A, které splňují všechny podmínky
zadání.

Závěr. Hledanou množinou bodů je vnější oblast kružnice m kromě
bodů ležících na Thaletově kružnici nad průměrem 0'T, přičemž bod O'
do hledané množiny též patří (obr. 36).
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Kategorie P

Texty úloh

P - I - 1

Učebnice

„Píšeme dějiny, týhletý krajiny, jaký to příběh je... “ prozpěvoval si král
Zloburtus a rozverně upravoval učebnice dějepisu. Přece jen byly napsány
za jeho předchůdce krále Pravdomila III. a ten měl na historii příliš upjaté
názory. Třeba tvrdil, že rod Pravdomilů byl starší a urozenější než rod
Zloburtusů. Což ovšem nebyla pravda a bylo potřeba vše napravit. To je
spousta práce, a tak vás královským rozkazem požádal o program, který
by dokázal nahrazovat nevhodná slova slovy vhodnějšími.

Soutěžní úloha. Pro zadaný seznam nevhodných slov a jejich náhrad
upravte vstupní text tak, že každý výskyt nevhodného slova v textu
nahradíte jeho vhodnějším „ekvivalentem“.

Formát vstupu: Vstupní soubor se jmenuje učebnice, in. Na prvním
řádku souboru se nachází přirozené číslo N (1 ^ ^ 100 000), které
udává počet nevhodných slov. Následuje N řádků, přičemž na každém
z nich se nacházejí vždy dvě slova oddělená mezerou, která jsou tvořena
pouze velkými písmeny. První slovo na každém z těchto N řádků je „ne-
vhodné“ a druhé je jeho vhodnější náhrada. Od (N + 2)-ého řádku až
do konce souboru pak následuje samotný text učebnice. Text je tvořen
pouze velkými písmeny anglické abecedy a mezerami (a konci řádků),
přičemž souvislé úseky písmen tvoří jednotlivá slova. Můžete předpoklá-
dat, že žádné slovo nebude delší než 255 písmen a že V nevhodných slov
je navzájem různých.

Formát výstupu: Výstupní soubor se jmenuje učebnice. out. Výstu-
pem programuje text, ve kterém byla všechna nevhodná slova nahrazena
jejich vhodnějšími ekvivalenty. Ostatní slova, tj. zbytek souboru, musí
zůstat beze změny. Výstupní text musí též zachovávat mezery mezi slovy
a odřádkování podle vstupního souboru.

102



Příklad:

Vstupní soubor učebnice. in:
5

PRAVDOMILuZLOBURTUS
ZLOBURTUSuPRAVDOMIL
DRACKAUDRAKA
ZROUNAuMRACKA
ZBYTECNAuDVOJICE
A PAKuHRDINNYuPRAVDOMILuPRAVDOMILUJICNEuSRAZILuK ZEMIuDRACKAuZROUNA
VSEuLZEuNAJITuVEuFILMUuuHISTORIEuRODUuPRAVDOMILU

V TETOuUCEBNICIuBUDEuHANENuZLOBURTUS

Výstupní soubor učebnice. out:
A PAKuHRDINNYuZLOBURTUSuPRAVDOMILUJICNEuSRAZILuK ZEMIUDRAKAUMRACKA
VSEuLZEuNAJITuVEuFILMUuuHISTORIEuRODUuPRAVDOMILU

V TETOuUCEBNICIuBUDEuHANENuPRAVDOMIL

P - I - 2

Egyptské pyramidy
Amon a Thespis kontrolují bezpečnost pyramid před lupiči ve starově-
kém Egyptě. Amona stavitelé vpustí do nové pyramidy a čekají, jestli
se dostane к některému z ukrytých pokladů. Thespis zůstane venku se
stavebním plánem a voláním Amona naviguje. Ani jeden z nich bohužel
není žádný génius a Thespis často netuší, kam by měl Amona poslat.
U vaší firmy na děrování hliněných destiček si proto objednali návrh
algoritmu na hledání cest v pyramidách.

Pyramidy i jejich interiéry jsou podle odvěké tradice zorientovány po-
dle světových stran a plány se obvykle kreslí na čtverečkovaný papyrus,

přičemž jeden čtvereček odpovídá délce 1 m. Podle nejnovějších bezpeč-
nostních trendů se v pyramidě též vyskytují uzamykatelné dveře a klíče.
Každé z políček plánu pyramidy je chodba, stěna, poklad, dveře nebo
místnost, kde se nachází klíč. Dveře a klíče jsou pro odlišení označeny
červenou, zelenou, modrou a fialovou barvou.

Aby se Amon v pyramidě neztratil, otáčí se jen o násobky devadesáti
stupňů a každý jeho krok měří přesně 1 m, tj. Amon se může pohybovat
pouze vodorovně nebo svisle o jedno pole. Na pole může Amon vstoupit,
pokud je prázdné, je to poklad, místnost s klíčem, nebo pokud jsou to
dveře, ke kterým už má příslušný klíč. Klíč Amon sebere, jakmile vstoupí
na pole, kde se klíč nachází, a klíč mu už poté zůstává po celý zbytek
pohybu v pyramidě. Jedním klíčem může Amon odemknout libovolně
mnoho dveří barvy shodné s barvou klíče.
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Díky magickým formulím vyřčeným faraónskými kouzelníky platí, že
pokud Amon udělá jeden krok doleva z políčka v nejlevějším sloupci
plánku, ocitne se na políčku ve stejném řádku v nejpravějším sloupci. Na
druhou stranu, krok doprava z nejpravějšího sloupce ho přivede do nej-
levějšího sloupce. Podobně krok nahoru z prvního řádku ho přemístí do
posledního řádku a naopak. Jakmile se Amon dostane na políčko s pokla-
dem, dá to hlasitým voláním najevo, a Thespidův úkol navigování uvnitř
pyramidy končí.

Vaším úkolem je napsat program, který pro zadanou mapu pyramidy
najde cestu к některému z pokladů nebo určí, že žádná taková cesta není
možná. Pamatujte, že v pyramidě nemusí být vůbec žádný poklad ukryt,
mohou existovat dveře bez příslušných klíčů a také klíče, ke kterým ne-

existují žádné dveře stejné barvy. Také se může vyskytnout více pokladů
nebo dveří či klíčů stejné barvy. Amonova výchozí pozice je ale na plánu
vždy právě jedna.

Formát vstupu: Vstupní soubor se jmenuje pyramida, in. Na jeho
prvním řádku jsou uvedeny rozměry plánu pyramidy jako dvě přirozená
čísla R (počet řádků) a S (počet sloupců) oddělená jednou mezerou.
Můžete předpokládat, že 1 ^ R x S ^ 1000 000. Na každém z násle-
dujících R řádků je vždy právě S znaků popisujících mapu pyramidy
s následujícími významy:

zeď

volné políčko
Amonova výchozí pozice

červené, zelené, modré nebo fialové dveře

červený, zelený, modrý nebo fialový klíč
poklad

#

CZMF

czmf

$

Mapa pyramidy je ve vstupním souboru orientována jako běžné mapy,

tj. její horní okraj je severní.
Formát výstupu: Výstupní soubor pyramida.out obsahuje jediný řá-

dek, který popisuje některou z nejkratších posloupností kroků, jimiž se
Amon může dostat к některému z pokladů. Posloupnost Amonových
kroků к pokladu je zadána jako posloupnost znaků ,S‘, ,J‘, ,V‘ a ,Z‘,
které udávají, na kterou světovou stranu má Amon udělat následující
krok. Pokud žádná taková posloupnost neexistuje, tj. poklad není možné
získat, výstupní soubor obsahuje pouze slovo ,NELZE4.
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Příklady:
Vstup: Výstup:

NELZE3 5

#####

#*F$#

#####

Vstup:
3 19

Výstup:
zzvvvvvzzzzzzzvvvvvvvvvvvvvzzzzzzzzzzzzzzzz

###################

#$F.zMc.*.Cm.Z.ZZf#

###################

Vstup: Výstup:
S3 1

(Přejdeme přes severní okraj.)

$

P - I - 3

Horský maratón
V jedné hornaté zemi si všimli, že ve velkoměstech získávají na popula-
rite všelijaké maratóny, půlmaratóny a podobné běžecké závody, které se

odehrávají v jejich ulicích. Rozhodli se, že podobný závod uspořádají ve

svých velehorách. Uběhnout více než 42 kilometrů ve vysoké nadmořské
výšce ovšem není žádná legrace. Chtějí proto postavit závod na jiném
principu
dílu mezi nadmořskou výškou startu a cíle.

Protože podobné akce jsou často využívány к propagaci, pořadatelé
stanovili, že trasa tohoto „maratónu" by měla vést po nedávno otevřené
turistické značce, která prochází celým pohořím, a start i cíl by měly být
u některého z rozcestí. Aby však závod měl stále ještě něco společného
s maratónem, potřebují vybrat takovou trasu, aby rozdíl nadmořských
výšek cíle a startu byl pokud možno co nejblíže předem dané hodnotě X,
což bude vhodně zvolený násobek oné maratónské délky 42,195 km.

Organizátoři vás požádali o pomoc s výběrem trasy závodu. Trasa tu-
ristické značky se skládá z N úseků mezi rozcestími. Pro každý z úseků je
zadáno celé číslo a* — rozdíl nadmořských výšek konce a začátku úseku.
Pokud je ai kladné, pak trasa stoupá, pokud je záporné, tak trasa klesá,
a pokud je nulové, tak trasa v tomto úseku vede po rovině. Vaším úkolem

nebude tak dlouhý, ale jeho náročnost bude spočívat v roz-
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je nalézt čísla i a j, 1 ^ i ^ j ^ N, taková, že rozdíl mezi nadmořskou
výškou konce j-tého úseku a začátku i-tého úseku je co nejbližší číslu X.
Jinými slovy, vaším úkolem je nalézt v zadané posloupnosti souvislou
podposloupnost сц,щ+1,..., dj, jejíž součet je S a \X — Sj je co nejmenší
možné.

Při řešení úlohy nepředpokládejte, že by velikost čísel v posloupnosti
byla omezená (přeci jen nevíte, jak přesné údaje vám pořadatelé za-

dají), ale můžete předpokládat, že všechny aritmetické operace vyžadují
čas 0(1).

Příklad: Pro posloupnost 3,5,—2,5,4 délky N — 5 a pro X = 7 je
hledanou podposloupností —2, 5, 4 (tedy i — 3 a j = 5) se součtem 7. Pro
X = 10 jsou možným řešením podposloupnost 3,5, —2,5 se součtem 11
a jiným možným řešením je podposloupnost 5,4 se součtem 9. Váš pro-

gram nemusí nalézt všechna nej lepší řešení — stačí, když vypíše libovolné
z nich.

P - I - 4

Stackal

V letošním ročníku olympiády se budeme setkávat se zásobníkovými počí-
tači. To jsou výpočetní stroje, jejichž paměť je tvořena několika zásobníky.
Každý zásobník obsahuje posloupnost hodnot a umí s nimi provádět tyto
tři operace: přidat hodnotu na konec posloupnosti (uložit ji do zásob-
niku), odebrat hodnotu z konce posloupnosti (vybrat ji ze zásobníku)
a konečně zjistit, zda v zásobníku ještě nějaké hodnoty jsou. Mimo to má
náš počítač ještě pevný počet obyčejných proměnných. Hodnoty uložené
v zásobnících i v proměnných musí mít pevný rozsah nezávislý na veli-
kosti vstupu.

Zásobníkové počítače budeme programovat v jazyku Stackal. To je
jazyk podobný Pascalu, ovšem upravený podle možností našich strojů.
V následujících odstavcích popíšeme, v čem se od klasického Pascalu liší.

Proměnné ve Stackalu mohou být pouze těchto typů: boolean (lo-
gický typ, může nabývat hodnot true a false), char (znak z nějaké
konečné množiny znaků, které budeme říkat abeceda), a. .b (celá čísla
z intervalu od a do 6; jak a, tak b musí být nezáporné konstanty menší
než 100) a stack of t, což je zásobník hodnot typu t (jiného než stack).
Počáteční hodnoty proměnných při spuštění programu nejsou definovány,
výjimku tvoří zásobníky, které jsou na počátku vždy prázdné.
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Vstup a výstup programu jsou vždy posloupnosti znaků (neboli ře-
těžce). Funkce read(c) přečte další znak ze vstupu, uloží ho do pro-
měnné c a vrátí true. Pokud by již na vstupu žádné další znaky nebyly,
vrátí false a proměnnou c nezmění. Na výstup se zapisuje příkazem
write(x), kde x je buďto znak nebo proměnná typu char. Ve vstupu ani
výstupu se není možné vracet ani znaky přeskakovat.

Zásobníky je možno ovládat pomocí speciálních příkazů a funkcí:
Je-li S zásobník, pak příkaz push(5, x) uloží do S hodnotu x (hodnota
samozřejmě musí být správného typu), funkce pop(5) vybere hodnotu
ze zásobníku a vrátí ji jako svůj výsledek a booleovská funkce empty(5)
vrátí true, pokud je zásobník S prázdný, jinak false. Funkci pop je také
možné volat jako proceduru, pokud nás odebraná hodnota nezajímá. Po-
užití funkce pop na prázdný zásobník není povoleno a způsobí zastavení
programu s běhovou chybou. Žádným jiným způsobem nelze se zásobníky
manipulovat.

Příkazy Pascalu máme к dispozici všechny, jediným omezením je,
že nesmíme používat přiřazovací příkaz := na zásobníky. Také můžeme
v programu definovat procedury a funkce, není ovšem dovoleno použí-
vat rekurzi a zásobníky mohou být použity jako parametry pouze tehdy,
jsou-li předávány odkazem.

Časovou a paměťovou složitost programů definujeme obdobně jako
na normálním počítači. Cas budeme měřit počtem provedených příkazů,
paměť největším počtem hodnot, které si program pamatuje v jednom
okamžiku ve svých proměnných a všech zásobnících. Často se budeme
snažit o to, aby program používal co nejmenší počet zásobníků, byť by
kvůli tomu byl pomalejší.

Příklad: Napište program, který zjistí, zda se v zadaném řetězci vy-

skytuje stejný počet znaků ,a‘ jako znaků ,b‘ a podle toho vypíše buď ,T
(když to je pravda), nebo ,0‘ (když ne).

Řešení: Jelikož hodnoty proměnných jsou omezené stovkou, nemů-
žeme si jednoduše počítat výskyty znaků v celočíselné proměnné. Místo
toho využijeme dva zásobníky: do jednoho budeme ukládat a-čka, do
druhého b-čka. Až vstup skončí, budeme vybírat znaky vždy z obou
zásobníků současně a odpovíme 1 právě tehdy, když se oba současně
vyprázdnily.

program rovnost;
var a, b: stack of char;

с: char;
{ dva zásobníky na znaky }
{ právě zpracovávaný znak У

begin
while read(c) do begin { čteme ze vstupu, dokud to jde У
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if c=’a’ then push(a, c); { znak uložíme do správného zásobníku >
if c=’b> then push(b, c);
end;

while not empty(a) and not empty(b) do begin
pop(a);
pop(b);
end;

if empty(a) and empty(b) then { vyšly oba prázdné? }
write(’1’)

{ odebíráme znaky z obou zás. současně }

else

write('O’);
end;

Tento program má lineární časovou i paměťovou složitost a potřebuje
dva zásobníky.

Druhé řešení: Ukážeme si, jak jeden zásobník ušetřit a stále zacho-
vat lineární časovou složitost. Místo jednotlivých počtů znaků budeme
do zásobníku ukládat, o kolik víc jsme viděli a-ček než b-ček. Pokud
je tento rozdíl kladný (a-ček je více), zapamatujeme si příslušný počet
znaků ,+‘. Záporné rozdíly budeme ukládat pomocí znaků .

Rozmysleme si tedy, co se stane, když program přečte znak ,a‘. Tehdy
by měl к rozdílu přičíst jedničku. Proto zkontroluje, jaká hodnota se na-
chůzí na vrcholu zásobníku — to je hodnota, kterou by přečetl následu-
jící pop. Pokud to je tak ho pouze odstraníme. V opačném případě
(,+‘ nebo prázdný zásobník) přidáme nové ,+‘. Znak ,b‘ se zpracovává
obdobně, pouze se к oběma znaménkům chováme opačně.

program rovnost_podruhe;

{ Pomocná funkce, která zjistí, co je na vrcholu zásobníku )-
function look(var s:stack of char): char;
var с: char;
begin

if empty(s) then c := ’O’ { pokud je prázdný, vrátíme nulu >
else begin

с := pop(s);
push(s, c);
end;

look := c;

{ jinak odebereme prvek ze zásobníku }
{ a ihned ho vrátíme zpět }

end;

{ zde je uložen rozdíl a-b }
{ právě zpracovávaný znak }

var r: stack of char;
с: char;

begin
while read(c) do begin

if c=’a’ then begin
if look(r)=’-’ then pop(r)

else push(r, ’ + ’);

{ přečetli jsme ‘a’ => zvyšujeme rozdíl }

end;
if c=,b’ then begin { přečetli jsme ‘b’ => snižujeme rozdíl }
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if look(r)=’+’ then pop(r)
else push(r, *-’);

end;
end;

if empty(r) then writeC’l’) { je rozdil nulový? }
else writeC’O’);

end;

Na zpracování každého znaku potřebujeme konstantně mnoho příka-
zů, takže časová složitost je stále lineární. Na jediném použitém zásobníku
se objeví nejvýše tolik znamének, kolik je znaků na vstupu, takže parně-
ťová složitost je taktéž lineární.

Soutěžní úloha. Napište program pro zásobníkový počítač, který o za-
daném řetězci rozhodne, zda je symetrický. Tak se říká těm řetězcům,
které se pozpátku čtou stejně jako popředu, jinými slovy první znak je
stejný jako poslední, druhý jako předposlední a tak dále.
a) Snažte se o co nejlepší časovou složitost. (5 bodů)
b) Použijte nejmenší možný počet zásobníků. (5 bodů)

P - II - 1

Lesník Jehlička

Pan Jehlička kdysi vysázel krásný a veliký les, stromy rostoucí v přesných
řadách se ani jehličkou neodchylovaly od dokonalosti. Přišel čas, kdy les
již vyrostl, a začalo se s těžbou dřeva. Každý z dřevorubců začal kácet
na jiném okraji lesa a vysekal do něj pořádnou paseku. Když se pan
Jehlička přišel na les podívat, objevil jen jeho zbytek, s hlubokými výseky
od těžby. Pana Jehličku by teď zajímalo, kolik stromů mu vlastně zbylo.
Pomůžete mu s tím?

Soutěžní úloha. Stromy v lese pana Jehličky jsou vysázeny tak, že
rostou v mřížových bodech obdélníkové mřížky. Polohu každého stromu
lze tedy popsat dvojicí celočíselných souřadnic (x,y). To, co z lesa zby-
lo, je vymezeno mnohoúhelníkem (který může být i nekonvexní) tak, že
vrcholy mnohoúhelníku jsou stromy a na všech mřížových bodech uvnitř
i na hranici mnohoúhelníku stále ještě stojí strom. Vaším úkolem je spočí-
tat, kolik mřížových bodů leží uvnitř tohoto mnohoúhelníku, včetně jeho
hranice.

Formát vstupu: První řádek obsahuje přirozené číslo N
cholů mnohoúhelníku (3 5Í N ^ 100 000).

Na následujících N řádcích jsou popsány jednotlivé vrcholy mnoho-
úhelníku. Na г-tém z nich je dvojice celočíselných souřadnic 1 ^ Xi 109,

počet vr-
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1
= Vi = 109 udávající polohu г-tého vrcholu. Vrcholy jsou zadané v po-

řadí, v jakém leží na hranici mnohoúhelníku při obcházení po nebo proti
směru hodinových ručiček.

Formát vstupu: Na jediný řádek výstupu vypište jedno celé číslo před-
stavující počet mřížových bodů uvnitř mnohoúhelníku včetně jeho hra-
nice.

Příklady:
Vstup: Výstup:
3 9

1 1

3 5

3 1

Tri mřížové body tvoří vrcholy trojúhelníku, pět
mřížových bodů leží na hranách a jeden mřížový
bod leží uvnitř.

Výstup:Vstup:
8 28

2 5

3 3

1 1

5 2

6 1

9 2

7 4

8 6

Osm mřížových bodů tvoří vrcholy mnohoúhelníku, dva mřížové body
leží na hranách a osmnáct mřížových bodů leží uvnitř.

P - II - 2

Čínsky nebo česky?

Děd Vševěd zestárl. Nelze se tedy divit tomu, že na všetečné dotazy už
neodpovídá tak rád a ochotně jako dříve. Navíc ho začala zlobit paměť,
takže se tu a tam stává, že něco neví, což je v jeho profesi velmi nemilé.
Proto učinil moudré rozhodnutí — předat své poslání někomu mladšímu,
a to rovnou svému vnukovi.
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Vnuk Vševěd je na svůj věk neskonale moudrý, chytrý a navíc přečetl
všechny encyklopedie i wikipedie. Bohužel se ale nestihl za tak krátkou
dobu naučit dostatek cizích jazyků.

Což o to, s tím by, díky programu TheBestTranslatorOfTheWorld 5.0,
neměl být žádný problém. Nepříjemné je, že tento program sám od sebe
neumí zjistit, z jakého jazyka má překládat, takže je nutné vstupní jazyk
nastavit ručně.

Vyzkoušet všech 109 jazyků, které program umí, by zabralo neúnosně
dlouhou dobu, takže před kanceláří vnuka Vševěda by se tvořily fronty.
Proto by potřeboval ještě jeden program, který by uměl zjistit, v jakém
jazyku je daný text napsaný.

Soutěžní úloha. Vaším úkolem je navrhnout program, který určí ja-
zyk, jehož slova se v daném textu vyskytují nejčastěji. Váš program bude
mít к dispozici dva soubory: slovníky. in, ve kterém jsou uložena slova
jednotlivých jazyků, a text. in, ve kterém je text, který má program ana-

lyžovat. Do souboru jazyk, out váš program zapíše jméno jazyka, jehož
slova jsou v textu nejčastěji obsažena. V případě, že takových jazyků bude
více, měl by program vypsat všechny takové jazyky. Opakované výskyty
téhož slova v souboru text. in se počítají do počtu slov opakovaně.

Formát vstupu — soubor slovníky. in: Na prvním řádku souboru je
číslo N (1 ^ 10 000), které udává počet slovníků v souboru. Dále
následuje N slovníků.

Každý ze slovníků začíná dvěma řádky. Na prvním je uvedeno jméno
jazyka a na druhém číslo S, které udává počet slov v tomto slovníku.
Poté následuje S řádků, přičemž na každém z nich je právě jedno slovo
daného jazyka (každé slovo je kratší než 255 znaků a je tvořeno pouze

malými písmeny anglické abecedy). Tato slova nejsou uvedena v žádném
určitém pořadí, ale jsou navzájem různá. Celkový počet slov ve všech
slovnících dohromady je nejvýše 100 000.

Jméno každého jazyka je tvořeno nejvýše 255 malými písmeny an-

glické abecedy. Můžete předpokládat, že jména jazyků jsou navzájem
různá. Různé slovníky mohou obsahovat stejné slovo.

Formát vstupu — soubor text, in: V tomto souboru je uložen text
určený к analýze. Text je tvořen slovy kratšími než 255 znaků, přičemž
slovem nazýváme souvislý úsek malých písmen anglické abecedy. Slova
jsou oddělena mezerami nebo konci řádků. Text nebude obsahovat více
než 1 000 000 slov. Tato slova nemusí být navzájem různá.

Formát výstupu — soubor j azyk. out: Pokud existuje jeden jazyk, je-
hož slova se vyskytují v zadaném textu nejčastěji, program vypíše do vý-
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stupního souboru jméno tohoto jazyka. V případě, že takových jazyků je
více, program vypíše jména všech takových jazyků na samostatné řádky
(v libovolném pořadí).

Příklad:

slovníkyÁn jazyk, out
čeština

angličtina

text, in

tento text

by nepochopila
ani zebra

co ma auto

3

čeština

4

text

bagr
ahoj
zebra

angličtina
4

zebra

by
hello

car

němčina

3

hallo

auto

sagt

P - II - 3

Cyklistický závod
Po úspěchu horského maratónu se na vás jeho organizátoři obrátili
s prosbou o pomoc při organizaci cyklistického závodu. Trasa závodu by
měla vést z cíle horského maratónu, Vyšných Háků, do hlavního města
Velkého Sumce. Cyklistický závod bude tvořen několika etapami a or-

ganizátoři již určili možné dvojice měst, mezi kterými by mohly vést
jednotlivé etapy závodu. Pro každou takovou dvojici navíc odhadli počet
diváků, kteří by se na závod přišli podívat. Protože rozpočet celého zá-
vodu je omezený, organizátoři by rádi trasu závodu navrhli tak, aby měl
co nejméně etap, a přitom ho vidělo co nejvíce diváků.

Soutěžní úloha. Váš program obdrží seznam dvojic měst, mezi kterými
by mohly vést etapy závodu, a pro každou dvojici odhad počtu diváků,
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kteří by se na danou etapu přišli podívat. Jednotlivé etapy, které tvoří
trasu závodu, musí na sebe v koncových městech navazovat. Program
by měl nalézt trasu závodu vedoucí z Vyšných Háků do Velkého Sumce,
která má co nejméně etap, a mezi všemi takovými trasami určit tu, kterou
shlédne největší počet diváků (počty diváků jednotlivých etap závodu se

sčítají). Pokud je i takových tras více, program může vypsat libovolnou
z nich.

Formát vstupu: První řádek obsahuje dvě přirozené čísla N a M,
2 ^ N й 1000 000 a 1 й M ^ 1 000 000; N je počet měst a M je
počet dvojic měst, mezi kterými by mohla jedna z etap závodu vést.
Města jsou očíslována čísly mezi 1 а V, přičemž Vyšné Háky mají číslo 1
a Velký Sumec má 2. Na každém z M následujících řádků je trojice čísel
A, BaD (1^ A, BŠNaO^D^l 000) popisující jednu z dvojic
měst, mezi kterými by mohla vést jedna etapa závodu: etapa závodu
by mohla vést mezi městy s čísly А а В a očekávaný počet diváků pro
tuto etapu je D. Etapa závodu může vést z města A do města В nebo
naopak.

Můžete předpokládat, že zadané dvojice měst pro etapy závodu umož-
ňují sestavit aspoň jednu trasu závodu. Vstup navíc neobsahuje dva různé
řádky, které by popisovaly etapu mezi stejnou dvojicí měst.

Formát výstupu: Na první řádek výstupu vypište dvě čísla, nej menší
možný počet P etap závodu z města s číslem 1 do města s číslem 2
a největší počet diváků, který by mohl shlédnout takový závod tvořený
P etapami. Na druhý řádek vypište P+1 čísel měst, která tvoří optimální
trasu.

Přiklad:

Vstup: Výstup:
6 9 316

1 6 10

13 8

4 6 2

4 3 7

5 6 0

5 3 4

4 5 100

2 4 1

2 5 2

13 4 2
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P - II - 4

Stackal

К úloze se vztahuje studijní text z úlohy P-I-4.
Soutěžní úloha. Napište program pro zásobníkový počítač, který vy-

hodnotí zadaný logický výraz a vypíše jeho hodnotu na výstup. Program
by měl používat nejmenší možný počet zásobníků.

Logické výrazy zapisujeme pomocí znaků 0, 1, &, |, ( a ). Znaky
0 a 1 slouží jako konstanty (nepravda a pravda), & je logický součin
(0&0 = 0&1 = 1&0 = 0, l&l = 1), | je logický součet (010 = 0,
0 11 = 11 0 = 111 = 1) a závorky fungují běžným způsobem. Pokud
závorky neuvedeme, součin má přednost před součtem, tedy 110&0 | 0 =
= 1| (0&0) 10=11010=1.

p - III - 1

Lesník Jehlička II

V krajském kole pan Jehlička s vaší pomocí a s hrůzou zjistil, že z jeho
kdysi krásného a velikého lesa zbývá jen drobný háj. Aby zabránil jeho
dalšímu zmenšování, najal tlupu strážných trollů. Trollové jsou známí
pro svou sílu, méně pak již pro svou pronikavou inteligenci. Pan Jehlička
se proto rozhodl příkazy pro trolly co možná nejvíce zjednodušit. Každý
troll má přiděleny dva body a mezi nimi pochoduje po rovné čáře.

Během prvního dne bylo však nutné ošetřit takřka všechny trolly
s drobnými zraněními. Pan Jehlička pozapomněl, že se úsečky, po nichž
trollové pochodují, mohou protínat, a ve svých instrukcích nezmínil nut-
nost vyhýbat se srážkám s ostatními trolly. Pokus přidat trollům tento
příkaz narazil na jejich zapomnětlivost. Po několika opakováních obtíž-
ného příkazu „na konci úsečky se otoč“ trollům přetekl zásobník a příkaz
„vyhýbej se srážkám“ se ztratil, s neblahými důsledky pro rozpočet ošet-
řovny.

Pan Jehlička se proto rozhodl všechna křížení označit dopravní znač-
kou „Pozor, troll!“. Vaším úkolem je zjistit, kam tyto značky umístit.

Soutěžní úloha. Úsečka, po níž se г-tý troll pohybuje, je zadána dvojicí
jejích krajních bodu se souřadnicemi (aj,6j), (Ci,di), kde a^, bi, q а
jsou celá čísla. Krajní body úsečky neleží na žádné jiné úsečce. Úlohou je
vypsat souřadnice průsečíků těchto úseček. Každý průsečík vypište pouze

jednou, i když by se v něm protínalo tři nebo více úseček. Předpokládejte,
že průsečíků je málo — podstatně méně než N2.
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Formát vstupu: První řádek obsahuje přirozené číslo N, udávající po-
čet trollů, 0 ^ TV ^ 10 000. Na následujících N řádcích jsou popsány
úsečky, po nichž se trollové pohybují. Na г-tém řádku se nachází čtveřice
celých čísel сц, bi, c* a di, souřadnice krajních bodů (ai,b{) a (ci,di)
úsečky.

Formát výstupu: Na každý řádek výstupu vypište souřadnice jednoho
z průsečíků zadaných úseček. Pořadí průsečíků může být libovolné.

Příklady:
(4,4)

(1,3)
(0,3)

1,2
*(3,2)

(yr\2) (3,1)

(0,0) (2,0)

Vstup: Výstup:
1.2 1.24

0 0 4 4

0 3 2 0

13 3 1

12 3 2

2 2

P - III - 2

Kouzelník Pecivális

Při poklesu zájmu o jeho magická představení v důsledku hospodářské
krize se starý kouzelník Pecivális rozhodl využít nově nabytého času
к procestování vzdálených koutů Země. Klesající tržby však mají ten
nepříjemný důsledek, že si nemůže dovolit konvenční způsoby přepravy
a nezbývá než se spolehnout na (ne)osvědčené metody předků...

Během pátrání v zapomenutých koutech svého obydlí měl Pecivális
štěstí a podařilo se mu najít potřebné svazky zaklínadel. Jejich použití
však není úplně jednoduché — podle nejlepších soudobých poznatků v ob-
lasti cestovní magie (které se za posledních pár set let příliš nezměnily)

115



může sice začít i skončit zaříkání na libovolném místě v knize, není však
záhodno mezitím nějaký text přeskočit a navíc musí magickými slovy
vyvolaná energie dosáhnou některé z potřebných hladin pro kýžený cíl
přesunu. Čím větší bude počet přečtených slov, tím větší je pak šance
úspěšného zakončení. Jelikož však není starý mág v této oblasti čarování
příliš zběhlý, bude potřebovat vaši pomoc.

Soutěžní úloha. Mějme posloupnost slov, z nichž každé je ohodnoceno
celým číslem, které představuje jeho energii. Hledaná energetická hladina
je reprezentována (všemi) násobky daného přirozeného čísla K. Vaším
úkolem je na základě těchto informací najít nejvhodnější začátek a konec
zaříkání, to jest nejdelší souvislý úsek slov, jejichž energie budou v součtu
násobkem čísla К. Předpokládejte, že číslo К je obvykle řádově menší
než počet slov v knize zaříkadel.

Formát vstupu: Na prvním řádku vstupu jsou dvě přirozená čísla N
а К, 1 ^ ^ 1 000 000 a 1 К 50 000, oddělená mezerami; číslo N
udává počet slov v knize zaříkadel. Jak již bylo řečeno, К je obvykle
mnohem menší než N. Na druhém řádku je pak mezerami oddělený se-
znám N nezáporných celých čísel a\,..., an, 0 ^ Oj 1 000 000 000, která
představují energie jednotlivých slov v knize.

Formát výstupu: Program vypíše dvě čísla г a j (1 ^ i ^ j ^ N),
přičemž součet а,{ + сц+1 + aj musí být násobkem čísla К a rozdíl
j — i největší možný mezi všemi dvojicemi i a j, pro něž je součet clí +
+ ai+i + ... + dj násobkem K. Je-li možných dvojic г a j více, můžete
vypsat libovolnou z nich. Pokud naopak žádná taková dvojice neexistuje,
vypište „Nelze zaklínat.".

Přiklad 1:

Vstup: Výstup:
8 5 3 7

12863449

Přiklad 2:

Vstup: Výstup:
Nelze zaklínat.5 8

11111
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P - III - 3

Stackal

К úloze se vztahuje studijní text z úlohy P-I-4.
Soutěžní úloha. Na vstupu je zadán řetězec obsahující pouze znaky

,a‘, ,b‘, ,c‘ a ,d‘. Napište program pro zásobníkový počítač, který zjistí,
zda má v tomto řetězci každý ze znaků ,a‘ až ,d‘ stejný počet výskytů.
Pokud ano, program na výstup zapíše jedničku, jinak nulu.

Zaměřte se na použití co nejmenšího počtu zásobníků, byť za cenu

vyšší časové složitosti.
Příklad: Na vstupy ,abcddcba‘ a ,aaabbbcccddd‘ je správná odpo-

věd’ ,1‘.
Na vstup ,badbadc‘ je správná odpověď ,0‘ (znaky ,a‘, ,b‘ a ,d‘ se

vyskytují dvakrát, ale znak ,c‘ pouze jednou).

P - III - 4

Výlet do Švýcarska

swiss.pas / swiss.c / swiss.cpp
swiss.in

swiss.out

Tibor je vášnivý cyklista. Kromě cyklů v grafech má však také rád
hory. Rozhodl se, že se o prázdninách vypraví s kamarády na kola do Švý-
cárská. Chtěli by podniknout čtyřdenní výlet a spát budou vždy v hotelu
v některém ze švýcarských měst. Vlakem dojedou do jednoho z měst
a odtud vyrazí do strmých kopců a hlubokých údolí. Na internetu si
našli seznam jednodenních tras mezi švýcarskými městy, dokonce i s bo-
hatým hodnocením od ostatních cyklistů. Stejně jako mnoho dalších věcí
v Tiborově životě, i výlet musí tvořit cyklus. Po čtyřech dnech se tedy
musí vrátit zase zpět do města, ze kterého vyrazili. Teď jen naplánovat
tu nejlepší trasu. Tibor však zjistil, že to není tak jednoduché a rád by,
abyste mu pomohli.

Soutěžní úloha. Švýcarská města si pro jednoduchost očíslujeme čísly
od 1 do N a počet tras nalezených na internetu si označíme M. Každá
trasa vždy spojuje dvě různá města a žádné dvě trasy nespojují stejnou
dvojici měst. Navíc má každá trasa ohodnocení, což je přirozené číslo
menší nebo rovné 256. Všechny trasy lze projet oběma směry a ohodno-
cení trasy je pro oba směry stejné. Z každého města vede nejvýše 100 tras.

Program:
Vstup:
Výstup:
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Tibor přirozeně nechce jet žádnou z tras dvakrát. Vaším úkolem je najít
čtyři na sebe navazující trasy takové, že první z nich začíná ve stejném
městě, kde poslední končí, a tyto trasy mají největší součet ohodnocení.
Pokud existuje více řešení, můžete vybrat libovolné z nich.

Formát vstupu: První řádek vstupního souboru swiss.in obsahuje
přirozená čísla N a M, počet měst 4 ^ ^ 10 000 a počet tras 4 ^
йМ S 1 000 000.

Na následujících M řádcích jsou popsány jednotlivé trasy. Na г-tém
řádku jsou přirozená čísla Xi, уi a hi, kde l^xi^N al^ yi^N jsou
čísla měst, které spojuje г-tá trasa, a 1 ^ hi ^ 256 je ohodnocení г-té
trasy. Žádné město se nevyskytuje ve více než 100 trasách.

Formát výstupu: Na první řádek výstupního souboru swiss.out vy-

pište nejvyšší součet hodnocení čtyř tras, které splňují podmínky zadání.
Na druhý řádek vypište pět čísel navštívených měst v pořadí, v jakém je
cyklisté projedou. Dle zadání úlohy musí být první a poslední z těchto
čísel stejná.

Pokud žádné takové čtyři trasy neexistují, výstup bude tvořen jedním
řádkem se slovem „NEEXISTUJEŠ

Příklady:
Vstup: Výstup:

NEEXISTUJE
Výstup: Vstup:

7 96 9 43

2 6 3 5 2 12 1

2 3 1

13 1

3 4 1

3 5 1

5 4 1

5 6 1

6 7 1

2 7 1

12 10

2 5 11

3 1 10

6 3 7

14 3

2 6 15

5 3 10

4 5 5

4 6 9

P - III - 5

Záchranná akce

akce.pas / akce.c / akce.cpp
akce.in

akce.out

Program:
Vstup:
Výstup:
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Do lunární stanice na Měsíci narazil neznámý předmět a jedinou šancí
na záchranu je vyslat teleportem robota s prosbou o pomoc do některé
z dalších stanic na Měsíci. Nejbližší takovou stanicí je stanice Alfa, která
je však kromě jednoho skladiště zcela odstíněna proti teleportaci.

Mapa skladiště je obdélníková mřížka čtvercových polí, kde je každé
pole buď celé zabráno překážkou (a tedy je neprůchozí) nebo je pro robota
celé průchozí. Robot je malý primitivní model, kterého lze ovládat jen
tak, že se mu zadá posloupnost jednoduchých příkazů a on ji neustále
opakuje. Příkazy jsou čtyři: pro otočení robota vlevo a vpravo (o 90°)
a pro pohyb vpřed a vzad (na sousední pole).

Robot se po teleportaci může ocitnout na libovolném políčku na mapě
skladiště, kde není překážka, a je natočen směrem na sever. Pokud se
robot pokusí pohnout na místo s překážkou, zůstane na místě (zarazil se
o ni) a pokračuje následujícím příkazem ze své posloupnosti. Za opuštění
skladiště se považuje překročení libovolného okraje mapy.

Soutěžní úloha. Vaším úkolem je napsat testovací software, který na
základě příkazové sekvence pro robota a mapy skladu ve tvaru čtver-
cové sítě spočítá, z kolika políček lze sklad opustit prováděním zadané
posloupnosti příkazů. Připomeňme, že po provedení posledního příkazu
této posloupnosti robot začne znovu provádět příkazy posloupnosti od
začátku. Navíc pro každé políčko, ze kterého robot skladiště opustí, pro-

gram určí počet příkazů, které robot provede do opuštění skladiště (do
tohoto počtu se započítávají i ty příkazy, které robot nemohl vykonat
kvůli překážce v cestě).

Formát vstupu: Na prvním řádku vstupního souboru akce. in je
délka L (1 L ^ 500) sekvence příkazů pro robota; samotná sekvence
příkazů pro robota je pak uvedena na druhém řádku. Druhý řádek tedy
obsahuje posloupnost čítající L následujících znaků:

o L = otočení robota o 90 stupňů doleva,
o R = otočení robota o 90 stupňů doprava,

posun robota o jedno políčko vpřed vzhledem ke směru jeho> +

natočení

posun robota o jedno políčko vzad vzhledem ke směru jeho na-o

točení.

Na třetím řádku vstupu jsou pak čísla S a V, oddělená jednou meze-
rou. S (1 ^ S 500) udává šířku mapy, tedy počet políček od západu
к východu (vodorovně), а V (1 ^ V ^ 500) reprezentuje výšku mapy,
tj. počet políček od severu к jihu (svisle).
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Na dalších V řádcích následuje samotná mapa. Každý řádek obsahuje
S znaků tečka (.) nebo mříž (#), kde tečky představují volná políčka
a mříže překážky. První znak prvního řádku mapy odpovídá jejímu seve-

rozápadnímu rohu.
Formát výstupu: Na první řádek výstupního souboru akce.out vy-

pište počet políček, ze kterých robot skladiště opustí. Každý z následují-
cích V řádků pak obsahuje S čísel: j-té číslo na г-tém řádku udává počet
robotem vykonaných příkazů do okamžiku, kdy robot opustí skladiště.
Pokud z odpovídajícího políčka nelze skladiště opustit nebo se na něm
nachází překážka, je toto číslo rovno nule.

Přiklad:

Vstup: Výstup:
8 9

+R++LL+R 110 11

9 9 0 4 0

17 0 0 0 3

5 3

Plán skladiště z příkladu:

[i;i]

Z políčka se šedou značkou robot neunikne, pokud dostane posloup-
nost příkazů uvedenou v příkladu.
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Kategorie Z5

Texty úloh

Z5 - I - 1

Učitelka Kadrnožková kupovala v pokladně zoologické zahrady vstu-
penky pro své žáky a pro sebe. Vstupenka pro dospělého byla dražší
než pro školáka, avšak ne více než dvakrát. Učitelka Kadrnožková zapla-
tila celkem 994 Kč. Učitel Hnízdo měl s sebou o tři žáky více než jeho
kolegyně, a tak za své žáky a za sebe zaplatil 1120 Kč.
1. Kolik žáků měl s sebou učitel Hnízdo?

2. Kolik stála vstupenka pro dospělého? (L. Šimůnek)

Z5 - I - 2

František Nudílek se zabýval tím, že psal po sobě jdoucí přirozená čís-
la. Začal takto: 1234567891011... Po čase ho to přestalo bavit, dokončil
právě rozepsané číslo a kriticky se podíval na svůj výtvor. Zjistil, že v po-

sloupnosti číslic, které napsal, se vyskytuje pět jedniček bezprostředně za
sebou.

1. Kolik nejméně po sobě jdoucích přirozených čísel musel František na-

psát?
2. Kolik nejméně číslic musel František napsat? (S. Bednářová)

Z5 - I - 3

Nejvyšší známá sopka na Zemi je Mauna Kea na Havajských ostrovech.
Její výška od úpatí po vrchol je dokonce o 358 metrů větší, než je nadmoř-
ská výška nejvyšší hory světa, Mount Everestu. Nezvedá se však z pev-

niny, ale ze dna Tichého oceánu, z 5 OOOmetrové hloubky. Kdyby mořská
hladina v této oblasti klesla o 397 metrů, byla by ponořená část Mauna
Key přesně stejně vysoká jako část, která by vyčnívala nad hladinu.
1. Jakou nadmořskou výšku má vrchol sopky?
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2. Kolik měří Mauna Kea od úpatí po vrchol?
3. Jakou nadmořskou výšku má Mount Everest?

(Údaje o nadmořských výškách uváděné v různých zdrojích se mohou
lišit, což je způsobeno nepřesnostmi měření, pohyby zemské kůry, vrstvou
sněhové pokrývky apod. Při řešení úlohy proto vycházej pouze z údajů

(S. Bednářová)v ní uvedených.)

Z5 - I - 4

Klasická hrací kostka se převracela naznačeným směrem po plánu na
obr. 37. Na každém políčku zůstaly otisknuty tečky ze stěny, kterou se
kostka plánu dotýkala. Počet všech teček otisknutých na plánu byl 23.

Kolik teček bylo otisknuto na vybarveném políčku?
(Klasická hrací kostka má na stěnách tečky v počtu od 1 do 6 umístěné

tak, že na protilehlých stěnách je vždy dohromady 7 teček. Plán je tvořen
čtverci, které jsou stejně velké jako stěny kostky.) (M. Dillingerová)

Z5 - I - 5

Digitální hodiny ukazují hodiny a minuty, jako například 14:37.
Kolik minut denně svítí na těchto hodinách alespoň jedna pětka?

(M. Volfová)

Z5 - I - 6

Dan si ze čtvercové sítě vystřihl útvar jako na obr. 38. Odstřihni dva
čtverečky sítě tak, aby se výsledný útvar nerozpadl a měl co největší

(M. Dillingerová)obvod. Najdi všechna řešení.
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2 cm

Obr. 38

Z5 - II - 1

Mirek si ze čtvercové sítě s vepsanými čísly vystřihl útvar na obr. 39:

16

212 1

8 7 6

15 2 cm

Obr. 39

Odstřihni dva čtverečky útvaru tak, aby se výsledný útvar nerozpadl,
aby po odstřihnutí obou čtverečků měl stejný obvod jako původně a aby
součet vepsaných čísel byl nejmenší možný.

(M. Petrová, M. Dillingerová)

Z5 — II — 2

Patnáct na sobě položených stejných listů papíru jsem najednou přeložil.
Získal jsem tak „sešit", jehož stránky jsem očísloval po řadě čísly 1 až 60.
Která další tři čísla jsou napsána na stejném listu papíru jako číslo 25?

(L. Šimůnek)

Z5 - II - 3

František Všímálek vypisoval po sobě jdoucí čísla výsledků malé náso-
bilky tří, pěti a devíti. Mezi jednotlivými čísly nepsal mezery a postupoval

123



následovně: nejprve vypsal násobky čísla tři, za posledním z nich začal
hned vypisovat násobky pěti a nakonec násobky devíti. Všiml si, že v jeho
zápisu se objevují souměrná čísla. (Souměrné číslo se čte zezadu stejně
jako zepředu, např. 272, 3553, 98089.) František vypsal všechna souměrná
čísla se třemi a více číslicemi a seřadil je podle velikosti od nejmenšího
po největší. Které číslo bylo v téhle posloupnosti na třetím místě a které
bylo poslední? (L. Hozová)
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Kategorie Z6

Texty úloh

Z6 - I - 1

Na obr. 40 je čtvercová síť, jejíž čtverce mají stranu délky 1 cm. V síti je
zakreslen obrazec vybarvený šedě. Libor má narýsovat přímku, která je
rovnoběžná s přímkou МО a rozděluje šedý obrazec na dvě části o stej-
něm obsahu. V jaké vzdálenosti od přímky MO povede Libor tuto rov-
noběžku? (L. Simůnek)

o—o

M o

Obr. 40

Z6 - I - 2

Do prázdných polí na obr. 41 vepiš čísla 2, 4, 6, 8, 12, 14 a 21 tak, aby
tři čísla zapsaná na jedné úsečce dávala vždy stejný součin. Napiš svůj
postup. (L. Simůnek)

Z6 - I - 3

B-banka vydává bankomatové karty se čtyřmístným PIN kódem, který
neobsahuje číslici 0. Pan Skleróza se bál, že zapomene PIN kód své karty,
proto si ho napsal přímo na ni, avšak římskými číslicemi IIIVIIIXIV, aby
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to případný zloděj neměl tak jednoduché. Svůj nápad prozradil nejlep-
Šímu příteli, panu Odkoukalovi, který byl také klientem B-banky. Ten
záhy se svým PIN kódem udělal totéž a na kartu si napsal IVIIIVI. Ke
svému velkému překvapení však z římského zápisu neuměl svůj PIN kód
určit přesně.
1. Jaký PIN kód má karta pana Sklerózy?
2. Jaký PIN kód může mít karta pana Odkoukala? (S. Bednářová)

Z6 - I - 4

Načrtni všechny možné tvarově různé čtyřúhelníky, které mají vrcholy ve
vrcholech daného pravidelného šestiúhelníku.

Urči, jaké by byly jejich obsahy, kdyby šestiúhelník měl obsah 156 cm2.
(M. Volfová)

Z6 - I - 5

Paní Kučerová byla na sedmidenní dovolené a Káťa jí po celou tuto dobu
věnčila psa a krmila králíky. Dostala za to velký dort a 700 Kč. Po další
dovolené, tentokrát čtyřdenní, dostala Káťa za venčení a krmení podle
stejných pravidel stejný dort a 340 Kč.

Jakou cenu měl dort? (M. Volfová)

Z6 - I - 6

Na každou stěnu hrací kostky jsme napsali jiné prvo-
číslo menší než 20 tak, aby součty dvou čísel na proti-
lehlých stěnách byly vždy stejné. Kostku jsme položili
na první políčko plánu na obr. 42 nejmenším číslem do-
lů. Potom jsme kostku převraceli naznačeným směrem
po plánu. Při každém dotyku kostky s plánem jsme na

odpovídající políčko napsali číslo, kterým se ho kostka
dotkla.

Obr. 42

Kterým číslem se kostka dotkla zbarveného políčka, jestliže součet
všech napsaných čísel byl nejmenší možný?

(Plán je tvořen čtverci, které jsou stejně velké jako stěny kostky.)
(M. Dillingerová)
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Z6 - II - 1

Káťa chce obdarovat své kamarádky a přemýšlí: kdybych každé koupila
sponku za 28 Kč, zbylo by mi ještě 29 Kč, ale kdyby to byl medvídek za
42 Kč, tak by mi 13 Kč chybělo. Kolik má Káťa kamarádek a kolik peněz
na dárky? (M. Volfová)

Z6 - II - 2

Na každou stěnu hrací kostky jsme napsali jiné
prvočíslo menší než 20 tak, aby součty dvou čísel
na protilehlých stěnách byly vždy stejné. Kostku
jsme položili na první políčko plánu na obr. 43
nejmenším číslem dolů. Potom jsme kostku pře-
vraceli naznačeným směrem po plánu. Při kaž-
dém dotyku kostky s plánem jsme na odpovídá-
jící políčko napsali číslo, kterým se ho kostka do-
tkla. Kterým číslem se kostka dotkla zabarveného
políčka, jestliže součet všech napsaných čísel byl
1. nej menší možný,
2. největší možný?

(Plán je tvořen čtverci, které jsou stejně velké jako stěny kostky,
(M. Dillingerová, L. Hozová)

Obr. 43

obr. 43.)

Z6 - II - 3

Tři zahradníci měli velkou úrodu mrkve, a tak zkusili mrkve odšťavovat.
Pak šťávu nalili do 9 skleniček. Všechny byly plné, každá však měla jiný
objem: 1 dl, 2 dl, 3 dl, ..., 9 dl. Chtěli se spravedlivě podělit tak, aby
každý dostal stejný počet skleniček i stejně šťávy. Najdi dva způsoby, jak
to mohli provést. (M. Volfová)
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Kategorie Z7

Texty úloh

Z7 - I - 1

Na každou stěnu hrací kostky jsme napsali jiné prvo-
číslo menší než 20 tak, aby součty dvou čísel na proti-
lehlých stěnách byly vždy stejné. Kostku jsme položili
na první políčko plánu na obr. 44 největším číslem do-
lů. Potom jsme kostku převraceli naznačeným směrem
po plánu. Při každém dotyku kostky s plánem jsme na

odpovídající políčko napsali číslo, kterým se ho kostka
dotkla.

Obr. 44

Kterým číslem se kostka dotkla zbarveného políčka, jestliže součet
všech napsaných čísel byl největší možný?

(Plán je tvořen čtverci, které jsou stejně velké jako stěny kostky.)
(M. Dillingerová)

Z7 - I - 2

Na obr. 45 je čtvercová síť, jejíž čtverce mají stranu délky 1 cm. V síti je

К

7
OM

Obr. 45

zakreslen obrazec vybarvený šedě. Libor má narýsovat přímku, která je
rovnoběžná s přímkou МО a rozděluje šedý obrazec na dvě části o stej-
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ném obsahu. V jaké vzdálenosti od přímky MO povede Libor tuto rov-
noběžku? (L. Šimůnek)

Z7 - I - 3

Turisté plánovali dlouhou túru na tři dny s tím, že každý den ujdou
třetinu celé trasy. To dodrželi jen první den. Druhý den ušli pouze třetinu
zbylé cesty a třetí den, unaveni, jen čtvrtinu zbytku. Posledních 24 km
do cíle je dovezlo terénní auto.

Jak dlouhá měla být celá túra a kolik kilometrů turisté ušli první,
druhý a třetí den? (M. Volfová)

Z7 - I - 4

Pan Horák je o 3 roky starší než jeho žena a jejich prvorozený syn je
o 4 roky starší než jejich druhorozený. Všichni čtyři členové rodiny slaví
narozeniny ve stejný den, nyní mají dohromady 81 let. Před 5 lety bylo
členům této rodiny dohromady 62 let. Urči dnešní stáří rodičů i obou
dětí. (M. Volfová)

Z7 - I - 5

Zuzka napsala pětimístné číslo. Když připsala jedničku na konec tohoto
čísla, dostala číslo, které je třikrát větší než číslo, které by získala, kdyby
napsala jedničku před původní číslo. Které pětimístné číslo Zuzka na-

psala? (L. Hozová)

Z7 - I - 6

Je dán obdélník ABCD. Bodem A vedeme přímku, která protne úsečku
CD v bodě X tak, že pro obsahy vzniklých útvarů platí Saxd '■ Sabcx =
= 1:2. Bodem X vedeme přímku, která protne úsečku AB v bodě Y
tak, že platí Saxy '■ Sybcx = 1:2. Nakonec bodem Y vedeme přímku,
která protne úsečku XC v bodě Z tak, že platí Sxyz ■ Sybcz = 1:2.

Vypočítej poměr obsahů Saxd • Saxzy• (M. Dillingerová)

Z7 - II - 1

Radovan čte zajímavou knížku. Včera přečetl 15 stran, dnes dalších
12 stran. S údivem si uvědomil, že součet čísel stran, které přečetl vče-
ra, je stejný jako součet čísel stran, které přečetl dnes. Kterou stránkou
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začne zítřejší četbu? (Radovan při četbě žádné stránky nepřeskakuje ani
nečte žádnou stránku podruhé. Denní četbu nikdy neskončí rozečtenou
stránkou.) (M. Petrová)

Z7 - II - 2

Tajný agent se snaží rozluštit přístupový kód. Zatím získal tyto infor-
mace:

a) je to čtyřmístné číslo,
b) není dělitelné sedmi,
c) číslice na místě desítek je součtem číslice na místě jednotek a číslice

na místě stovek,
d) číslo vytvořené z prvních dvou číslic kódu (v tomto pořadí) je pat-

náctinásobkem poslední číslice kódu,
e) první a poslední číslice kódu (v tomto pořadí) tvoří prvočíslo.

Stačí mu tyto informace к rozluštění kódu? Svůj závěr zdůvodni.
(M. Petrová)

Z7 - II - 3

Na obr. 46 je čtverec ABCD o straně délky 10 cm a menší čtverec EFGH,
jehož vrcholy E, F, G, H leží na úhlopříčkách AC, BD čtverce ABCD.
Plocha, která leží uvnitř čtverce ABCD a přitom vně čtverce EFGH,
je označena šedě. Přímka p, která je rovnoběžná s AB ve vzdálenosti
6,5 cm a prochází čtvercem EFGH, rozděluje šedou plochu na dvě části.
Obsah jedné této části je o 13,8 cm2 větší než obsah druhé. Vypočítej
délku strany EF. (L. Šimůnek)

CD

GH

V

FE

В

Obr. 46
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Kategorie Z8

Texty úloh

Z8 - I - 1

Myslím si nezáporné číslo ve tvaru zlomku s celočíselným čitatelem a jme-
novatelem 12. Když je napíši ve tvaru desetinného čísla, bude mít před
i za desetinnou čárkou po jedné číslici, obě tyto číslice budou nenulové.
Čísel, která mají obě uvedené vlastnosti, je více. Pokud je však seřadím
od nejmenšího po největší, bude to „moje“ předposlední.

Jaké číslo si myslím? (S. Bednářová)

Z8 - I - 2

Na každou stěnu hrací kostky jsme napsali jiné prvočíslo menší než 20
tak, aby součty dvou čísel na protilehlých stěnách byly vždy stejné.
Kostku jsme položili na první políčko plánu na obr. 47. Potom jsme kostku

Obr. 47

převraceli naznačeným směrem po plánu. Při každém dotyku kostky s plá-
nem jsme na odpovídající políčko napsali číslo, kterým se ho kostka do-
tkla.

Kterým svým číslem se kostka plánu nedotkla, jestliže součet všech
napsaných čísel byl 86?

(Plán je tvořen čtverci, které jsou stejně velké jako stěny kostky.)
(M. Dillingerová)
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Z8 - I - 3

Grafik v redakci novin dostal dva obrázky, aby je umístil к článku. První
originál byl 13 cm široký a 9 cm vysoký, druhý měřil na šířku 14 cm a na

výšku 12 cm. Grafik se rozhodl umístit obrázky na stránku vedle sebe tak,
aby se dotýkaly a aby oba měly stejnou výšku. Po vytištění měly obrázky
dohromady zaujímat šířku 18,8 cm. Obrázky tedy vhodně zmenšil, aniž
by je jakkoli ořezával.

Jaká bude výška vytištěných obrázků? (L. Simůnek)

Z8 - I - 4

Máme dány tři navzájem různé nenulové číslice. Na tabuli napíšeme
všechna trojciferná čísla, která lze složit z těchto číslic, přičemž pro každé
číslo použijeme všechny tři číslice. Součet napsaných čísel je 1 776.

Se kterými třemi číslicemi jsme pracovali? Určete všechna řešení.
(L. Simůnek)

Z8 - I - 5

Na věži radnice jsou hodiny, které mají blízko středu ciferníku dvířka
používaná při údržbě (obr. 48). Dvířka se však otevírají ven, což je ne-
praktické — například přesně v 12:09 zakryje velká ručička dvířka, která
pak nejdou otevřít po dobu, jež končí přesně v 12:21.

Kolik minut denně dvířka nelze otevřít?

(Nezapomeňte, že dvířka může zakrýt i malá ručička; celá dvířka leží
v kruhu, který tato ručička opisuje.) (L. Simůnek)
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Z8 - I - 6

V kvádru ABCDEFGH je umístěno těleso PQRSTUVX, jehož vrcholy
jsou středy hran kvádru (obr. 49).

GH

XI

e/J_SiI / N
/

/ '!
p t-—£4=4 / /V)

?7 1/
/l-R

T
C

v.
Q/ [/

A в

Obr. 49

Vypočtěte objem a povrch tělesa, je-li: |A£?|
\BF\ = 4 cm.

8cm, |BC| = 6cm,
(M. Krejčová)

Z8 - II - 1

U lesa, který měl tvar rovnoramenného trojúhelníku, se u jednoho z jeho
vrcholů utábořili Ivo s Petrem. Uprostřed protilehlé strany byla studánka.
Chlapci se rozhodli, že к ní nepůjdou lesem, ale po jeho obvodu. Každý
vyšel jiným směrem, ale oba rychlostí 4 km/h. Ivo dorazil ke studánce
za 15 minut, Petr za 12. Jak dlouhé byly strany „lesního" trojúhelníku?
(Délky stran zaokrouhlete na celé metry.) (M. Volfová)

Z8 - II - 2

Eva psala po sobě jdoucí přirozená čísla: 1234567891011... Jakou číslici
napsala na 2 009. místě? (M. Volfová)

Z8 - II - 3

Tři daná přirozená čísla jsou seřazena podle velikosti. Určete je na základě
následujících informací:

> aritmetický průměr daných tří čísel je roven prostřednímu z nich,
> rozdíl některých dvou daných čísel je 321,
> součet některých dvou daných čísel je 777. (L. Šimůnek)
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Kategorie Z9

Texty úloh

Z9 - I - 1

Do tří prázdných polí na obr. 50 patří taková přirozená čísla, aby součin
tří čísel na každé straně trojúhelníku byl stejný. Jaké nejmenší a jaké

největší číslo může být za této podmínky vepsáno do šedě vybarveného
pole? (L. Simůnek)

Z9 - I - 2

Alena, Bára, Čeněk a David si společně koupili tandem
pro dva. Na projížďku vyrážejí vždy ve dvojici. Každý jel s každým už
alespoň jednou a nikdo jiný se na tandemu ještě nevezl. Alena byla na

projížďce jedenáctkrát, Bára dvacetkrát, Čeněk jen čtyřikrát.

jízdní kolo

Určete, kolikrát minimálně a kolikrát maximálně mohl být na pro-

jížďce David. (L. Simůnek)

Z9 - I - 3

Ve čtvercové síti, jejíž čtverce mají stranu délky 10 cm (obr. 51), je na-

rýsována kružnice se středem S ve vyznačeném mřížovém bodě a polo-
měrem 20 cm. Body А, В, C a D jsou průsečíky kružnice se síťovými
přímkami. Určete obsah vybarvené plochy ABCD. (L. Simůnek)

134



Z9 - I - 4

Dominik si vyrobil „prvočíselné domino“
jednomu dvojmístnému prvočíslu tak, že na každé polovině kostky byla
jedna číslice tohoto prvočísla. Žádné dvojmístné prvočíslo v dominu ne-

chybělo a žádné prvočíslo nebylo na dvou kostkách.
Dominik se rozhodl, že všechny kostky uspořádá do kružnice tak, aby

každá kostka odpovídala

kostky ležící vedle sebe sousedily stejnou číslicí (obr. 52). Jeho kamarád
Bořek mu řekl, že to nelze provést. Měl Bořek pravdu? (M. Petrová)

D

10 cm

Obr. 51

Z9 - I - 5

Na stole s kruhovou deskou o průměru 0,6 m je „nakřivo" položen čtver-
cový ubrus se stranou 1 m (obr. 53). Jeden cíp ubrusu přečnívá přes hranu
desky stolu 0,5 m, sousední cíp 0,3 m. Určete délku přesahu zbylých dvou
cípů. (S. Bednářová)

0,5 m

Obr. 53
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Z9 - I - 6

Čtyři tatínkové chtěli dětem sponzorovat lyžařský zájezd.
První slíbil: „Dám 11500 Kč,“
druhý slíbil: „Dám třetinu toho, co vy ostatní dohromady/4
třetí slíbil: „Já dám čtvrtinu toho, co vy ostatní dohromady/4
čtvrtý slíbil: „A já dám pětinu toho, co vy ostatní dohromady.44
Kolik korun slíbil druhý, třetí a čtvrtý tatínek? (M. Volfová)

Z9 - II - 1

Do prázdných čtverců na obr. 54 patří taková přirozená čísla, aby součet
tří čísel na každé straně trojúhelníku byl stejný. Kolik různých trojic
přirozených čísel lze do obrázku doplnit? (L. Šimůnek)

Z9 - III - 2

Noční hlídač si psal pro ukrácení času posloupnost čísel. Začal jistým
přirozeným číslem. Každý další člen posloupnosti vytvořil tak, že к před-
chozímu členu přičetl určité číslo: к prvnímu členu přičetl 1, к druhému 3,
ke třetímu 5, ke čtvrtému 1, к pátému 3, к šestému 5, к sedmému 1 a tak
dále. Víme, že se v jeho posloupnosti nacházejí čísla 40 a 874.
1. Které číslo následuje v posloupnosti těsně po čísle 40 a které těsně po

čísle 874?

2. V posloupnosti najdeme dva těsně po sobě jdoucí členy, jejichž součet
je 491. Která dvě čísla to jsou? (L. Šimůnek)
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Z9 - II - 3

V Kocourkově plánovali postavit přes řeku ozdobný most, jehož oblouk
má být částí kružnice. Profil oblouku vymezuje spolu s vozovkou kru-
hovou úseč (obr. 55). V původním návrhu byla ale výška oblouku mostu
příliš velká. Postavili tedy most, jehož výška oblouku byla třikrát menší,
tím se však poloměr příslušné kružnice dvakrát zvětšil. V jakém poměru
byla výška oblouku mostu a poloměr příslušné kružnice u návrhu a v ja-
kém u postaveného mostu? (M. Petrová)

Z9 - II - 4

Na naši zamyšovanou chalupu jsme přivezli myšilovce kocoura Vildu.
V pondělí chytil | všech myší, v úterý | zbylých, ve středu \ těch, co
zbyly po úterním lovu, a ve čtvrtek už jen | zbytku. V pátek se zbylé
myši raději odstěhovaly. Kolik bylo myší na chalupě původně, jestliže
se v pátek odstěhovalo o dvě myši více, než jich Vilda chytil v úterý?
Nezapomeňte ověřit, zda byl každý den uloven celočíselný počet myší.

(M. Volfová, M. Dillingerová)

Z9 - III - 1

Jirka, Vít a Ota na soutěži získali všechny tři medaile. Nechtěli se chlubit,
proto takto žertovali:

Jiří: „Ota získal zlatou!"
Vít: „Ale ne, Ota získal stříbrnou!"
Ota: „Nedostal jsem ani zlatou ani stříbrnou!"
Tělocvikář prozradil, že nositel zlaté medaile mluvil pravdu a nositel

bronzové lhal. Kdo získal jakou medaili? (M. Volfová)
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Z9 - III - 2

Ve čtvercové síti, jejíž čtverce mají stranu délky a, jsou narýsovány dvě
kružnice (obr. 56). Obě mají střed v bodě S a každá prochází čtyřmi
mřížovými body. Šedě vybarvený obrazec je vymezen částmi těchto kruž-
nic a jednou síťovou přímkou. Vyjádřete obsah šedého obrazce pomocí

(L. Simůnek)délky a.

a

Obr. 56

Z9 - III - 3

Adam s Evou hráli šachy.
Adam vyhrál a utěšoval Evu: „To víš, já hraji šachy dlouho, dvakrát

déle než ty!“
Eva se zlobila: „Ale minule jsi říkal, že je hraješ třikrát déle!“
Adam se divil: „To že jsem říkal? A kdy to bylo?“
„ Předloni! “
„No tak to ano, mluvil jsem pravdu
Jak dlouho hraje Adam šachy?

a dnes také.“

(M. Volfová)
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Přípravná soustředění před 50. MMO

V průběhu 58. ročníku se konalo výběrové soustředění pro přípravu na
mezinárodní matematickou olympiádu bezprostředně po skončeném ce-
lostátním kole kategorie A, a to od 20. do 24. dubna 2009 v Kostelci nad
Černými lesy nedaleko Prahy. Na soustředění bylo pozváno 9 nejlepších
řešitelů III. kola kategorie A. Soustředění bylo zaměřeno na přípravu
reprezentantů a ke konečné nominaci šestičlenného družstva.

Úspěšnost jednotlivých studentů ukazuje následující tabulka:

8/8 G J. Keplera, Praha 6
4/4 G Brno, tř. Kpt. Jaroše 14
3/4 G Brno, tř. Kpt. Jaroše 14
8/8 G České Budějovice, Jírovcova
6/8 G J. Keplera, Praha 6
7/8 G Rožnov pod Radhoštěm
8/8 G L. Jaroše, Holešov
4/4 G Brno, tř. Kpt. Jaroše 14
7/8 G Praha 5, Buďánka

Josef Tkadlec

Samuel Říha
David Klaška

Jan Matějka
Tomáš Zeman

Josef Ondřej
Jan Vaňhara

Hana Šormová
Miroslav Olšák

105

81

78

78

72

68

62

61

49

Vzhledem к uvedeným výsledkům bylo do reprezentačního družstva
České republiky pro 50. MMO v Brémách vybráno prvních šest studentů
bez Tomáše Zemana, který odmítl účast na další přípravě v Uherském
Hradišti a na střetnutí s družstvy Slovenska a Polska z důvodu studia
v zahraničí, takže byl jmenován náhradníkem.

Jednotlivé semináře vedli a úlohy připravili:
dr. Karel Horák (20.4.),
dr. Jaroslav Zhouf (21.4.),
Mgr. Martin Panák (22.4.),
dr. Jaroslav Švrček (23.4.)
a doc. Jaromír Simša (24.4.).
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Úlohy zadané na přípravném soustředění

1. Uvažujme krychli 1 x 1 x 1 a označme O a A dva její vrcholy takové,
že OA tvoří stěnovou úhlopříčku. Zjistěte, co je větší: počet cest délky
1 386 začínajících i končících ve vrcholu O, nebo počet cest délky 1 386
začínajících ve vrcholu O a končících ve vrcholu A? (Cesta délky n na
uvažované krychli je posloupnost n + 1 jejích vrcholů, z nichž každé dva
po sobě jdoucí mají vzdálenost 1.)
2. Jsou dány dvě kružnice k\, &2, jež mají vnější dotyk v bodě P. Z libo-
volného bodu A kružnice ki sestrojme obě tečny ke kružnici &2 a označme
M, M' příslušné body dotyku. Jestliže další průsečík přímky AM, resp.
AM' s kružnicí k\ označíme N, resp. N', platí

\PN\ ■ \M'N'\ = \PN'\ • \MN\.

Dokažte.3.V pravoúhlém trojúhelníku ABC označme M střed přepony BC. Na
polopřímce AC zvolme bod D tak, že \AD\ = |AM|. Druhý průsečík
kružnic opsaných trojúhelníkům АМС а ВDC označme P. Dokažte, že
bod P leží na ose úhlu ACB.

4. Je dána konečná množina P prvočísel. Dokažte, že existuje číslo x, jež
se dá pro zvolené prvočíslo p vyjádřit jako součet x = ap + bp s vhodnými
přirozenými čísly a, b, právě když p G P.

5. Na kružnici stojí 2 009 dětí a každé má jeden míček. Každou minutu
každé dítě hodí míček, pokud nějaký má, některému ze dvou nejbližších
sousedů. Pokud se u některého dítěte sejdou dva míčky, jeden z nich
odloží. Za jakou nejmenší dobu může v kruhu zůstat jen jeden míček?

6. Je dán trojúhelník ABC. Na straně AC je libovolně zvolen bod P
a na polopřímkách AB, CB jsou sestrojeny po řadě body N, M tak,
aby velikosti úhlů APN, CPM a ABC byly stejné. Označme Q průsečík
polopřímek AM a CN. Dokažte, že všechny přímky PQ procházejí týmž
bodem.7.Určete všechny funkce /: [R
splněna rovnost

IR takové, že pro všechna x, у G IR je

y(x + y)f(x) siná: + x(x + y)f(y) siny = xyf(-x - у) sin {x + у).
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n—1 n — 28. Mnohočlen P(x) = xn + a\x
n > 1 má n různých reálných kořenů x\, x2, . .

П—1

+ ... 4- an-\x + an stupně
xn. Mnohočlen Q{x) =

+ ... + an_i stupně n — 1 má

+ a2x

* ?

n—2 n—3+ ai(n — 1)ж
reálné kořeny yi, y2,..., yn-i* Dokažte nerovnost

+ a2(n - 2)x= nx

ví + У2 + • • • + yl-1^ + ... + x\
>

n — 1n

9. Řekneme, že dvě kladná celá čísla a, b jsou vzdálena o jeden krok,
jestliže ab + 1 je čtvercem přirozeného čísla. Řekneme, že dvě přirozená
čísla jsou vzdálena o n kroků, jestliže existuje posloupnost kladných ce-

lých čísel a = co, ci, ..., cn — b taková, že každé dva její sousední členy
jsou vzdáleny o jeden krok a přitom neexistuje taková posloupnost kratší
délky než n.

a) Ukažte, že libovolná dvě kladná celá ěísla jsou vzdálena o konečný
počet kroků.

b) Určete, o kolik kroků jsou vzdálena kladná celá čísla m a m + 1
(v závislosti na m)

10. Najděte všechny funkce /: R+ [R+ takové, že

2f(f{x) + f{y))-(x + y)f(f(x)y) = x11.Nechť a, c jsou celá kladná čísla a b celé. Dokažte, že existuje kladné
celé x tak, že

ax + x = b (mod c).
12. Nechť g je poloměr kružnice vepsané trojúhelníku ABC а да: дь,

gc jsou poloměry kružnic vně připsaných jeho stranám. Určete obsah
trojúhelníku ABC, jestliže ga, дь a gc jsou přirozená čísla a g = 1.

13. Nechť ai, a2,..., a2n+\ jsou celá čísla s vlastností: Každých 2n čísel
z nich je možno rozdělit do dvou skupin o n číslech tak, že součet čísel
v obou skupinách je stejný. Dokažte, že a\ = a2 = ... = a2n+i.

14. Je dán tětivový čtyřúhelník ABCD. Nechť S je průsečík jeho úhlo-
příček. Paty kolmic z bodu S к přímkám AB a CD označme po řadě E
a F. Dokažte, že osa úsečky EF prochází středy stran ВС a AD.

15. Uvažujme libovolnou n-prvkovou množinu В bodů v rovině a označ-
me S množinu středů všech úseček s krajními body v В. V závislosti na
čísle n určete nej menší možný počet prvků množiny S.
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16.Reálná čísla a, b mají tuto vlastnost: rovnice

x2 — ax + b — 1 = 0

má v oboru IR dva různé kořeny, jejichž rozdíl je kladným kořenem rovnice

x2 — ax + b + 1 = 0.

Najděte nejmenší možné a.17.Určete největší možný počet různých čísel, které lze vybrat z mno-

žiny {1, 2, 3,..., 1 000} tak, aby součet žádných tří vybraných čísel nebyl
násobkem devíti.18.Na stranách daného trojúhelníku ABC jsou vybrány body K, L a M
tak, že AK = ^AB, BL — |ВС a CM = | CA. Určete, jakou část obsahu
trojúhelníku ABC tvoří obsah trojúhelníku vymezeného úsečkami AL,
BM a CK.
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Mezinárodní střetnutí česko-polsko-slovenské

V rámci závěrečné přípravy před MMO se uskutečnilo již deváté meziná-
rodní střetnutí mezi týmy České republiky, Polska a Slovenska. Jednotlivé
země reprezentovala šestice účastníků, kteří si vybojovali ve svých zemích
postup na 50. MMO v Brémách.

Soutěž se uskutečnila 21.-24. června 2009 na fakultě PEDAS Žilin-
ské univerzity. Všechna tři reprezentační družstva přicestovala na místo
konání již v neděli večer 20.6. 2009. Organizace a průběh soutěže zůstal
zachován z předešlých ročníků — je přizpůsoben stylu III. kola naší MO
a podmínkám na MMO. Soutěžícím byly ve dvou dnech předloženy dvě
trojice soutěžních úloh, přitom za každou z úloh mohli získat nejvýše
7 bodů, tj. celkově (stejně jako na MMO) 42 body. Na každou trojici
úloh měli soutěžící vyhrazeno 4,5 hodiny.

Pořadí Jméno SoučetZemě body
Jakub Očwieja
Tomasz Kociumaka
Damian Orlef
Tomasz Pawlowski
Josef Tkadlec
Jakub Witaszek
Martin Bachratý
David Klaška
Mikoli Fr^czyk
Michal Hagara
Jan Matějka
Filip Sládek
Samuel fiiha
Ladislav Bačo
Eduard Eiben
Jakub Uhrík
Jan Vaňhara
Josef Ondřej

POL1. 777777
770777
707774
707770
607771

770770
701770
170770
401754
700770
700770

601770
600770

701730
401750

401070
200460
701300

42

POL2. 35
POL3. 32
POL4.-6. 28
CZE 28

POL 28
SYK7.-8. 22

CZE 22

POL9.-12. 21

SYK 21

CZE 21

SYK 21

CZE13. 20

SYK14. 18
SYK15. 17
SYK16.-17. 12

CZE 12

CZE18. 11
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Návrh všech šesti úloh (a jejich vzorová řešení) připravili kolegové
ze Slovenské republiky (s využitím jedné polské úlohy), řešení úloh koor-
dinovala mezinárodní porota, kterou tvořili RNDr. Jaroslav Švrček, CSc.,
a Mgr. Martin Panák, PhD., z České republiky, dr. Malgorzata Bednař-
ska a Bartlomiej Bzd^ga z Polska, Mgr. Peter Novotný, PhD., a doc.
RNDr. Pavel Novotný, CSc., ze Slovenska. Organizačně soutěž zabezpe-
čil doc. RNDr. Vojtech Bálint, CSc.

Nejvíc se už tradičně dařilo polskému družstvu, ač tento rok neobsa-
dilo (na rozdíl od posledních dvou) prvních šest příček — v první šestici
mělo pět studentů. Naše družstvo tak soutěžilo především se slovenským,
což byl opět souboj velmi vyrovnaný.

Texty soutěžních úloh1.Označme [R+ množinu všech kladných reálných čísel. Najděte všechny
funkce /: ÍR+ —► IR+, které pro libovolná i,t/G [R+ splňují podmínku

(1 + yf(x)) (1 - yf{x + y)) = 1.
(František Kardoš)

definována2.Pro daná kladná celá čísla а, к je posloupnost (an)^S_1
vztahy

an+1 = an + к ■ g(an) pro n= 1,2,..a\ = a

kde g(m) značí součin všech číslic zápisu čísla m v desítkové soustavě
(například £>(413) = 12, ^(308) = 0 apod.). Dokažte, že existují taková
kladná celá čísla a, k, že posloupnost (an)^L1 obsahuje právě 2 009 růz-
ných čísel.
3. Nechť к je kružnice připsaná straně BC daného trojúhelníku ABC.
Zvolme přímku p rovnoběžnou se stranou BC, která protíná úsečky
AB, AC po řadě v bodech B, E. Kružnici vepsanou trojúhelníku ADE
označme l. Tečny ke kružnici к z bodů D a B, které neprocházejí bo-
dem A, se protínají v bodě P. Tečny ke kružnici l z bodů В a C, které
neprocházejí bodem A, se protínají v bodě Q. Dokažte, že přímka PQ
prochází pevným bodem nezávislým na volbě přímky p. (Tomáš Juřík)
4. Je dána kružnice к a její tětiva AB, která není jejím průměrem. Uvnitř
delšího oblouku AB kružnice к zvolme libovolně bod C. Označme К
bod souměrně sdružený s bodem A podle přímky ВС a L bod souměrně
sdružený s bodem В podle přímky AC. Dokažte, že vzdálenost středů

(Tomáš Juřík)

a

{Peter Novotný)

úseček KL a AB nezávisí na poloze bodu C.
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5. Je dána n-tice celých čísel a\,... ,an splňující následující podmínky:
(i) 1 ^ a\ < a,2 < ■ ■ . < an ^ 50,
(ii) pro každou n-tici kladných celých čísel b\,..., bn existuje kladné

celé číslo m a taková n-tice kladných celých čísel ci,..., cn, že

m-bi = c

Dokažte, že n ^ 16 a určete počet všech různých n-tic ai,..., an splňu-
jících dané podmínky pro n = 16.

6. Nechť n ^ 16 je přirozené číslo. Uvažujme množinu

pro i = 1,..., n.

{Peter Novotný)

G = {{x,y)\ x,y G {1,2,...,n}}
tvořenou n2 body roviny. Je-li A libovolná podmnožina množiny G ob-
sáhující aspoň 4ny/n prvků, dokažte, že existuje aspoň n2 konvexních
čtyřúhelníků, které mají vrcholy v A, a přitom všechny jejich úhlopříčky
procházejí jedním bodem. (Polsko)

Řešení úloh

1. Postupnými úpravami zadané podmínky dostáváme

1 + yf(x) - yf{x + y)~ y2f{x)f{x + y) = 1,
yf{x) ~ yf(x + y) = y2f{x)f{x + y).

Poslední rovnost můžeme vydělit hodnotou у ý 0. Po dalších úpravách
(všechny výrazy, kterými budeme dělit, jsou evidentně nenulové) tak pro
libovolná x, у 6 1R+ dostaneme

f(x) - f{x + y) = yf{x)f{x + y)

f{x + y) =
f(x)

1 + yf{x)
1 1

= У +
f{x + y) /0*0

a tedy i
1 1

= x +
f{y)‘f{y + x)

Odtud
1 1

У + = x +
/0*0 f(y)
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pro všechna kladná x, у. Dosazením у = 1 dostaneme

11 1
f(x)tedy— 1 = x + c,= X +

f(x) /(1) ж + c

kde c je konstanta. Protože f{x) > 0 pro každé x > 0, musí být x + c > 0
pro každé x > 0, tedy c ^ 0.

Snadno ověříme, že každá funkce f(x) = 1 /(x + c), kde c ^ 0, vyho¬
vuje:

x + c + y x + у + c- у(1 + íf^)( У1 - = 1.
x + y + c X + y + cx + c

Jiné řešení. Dosaďme do zadané podmínky x = 1. Při označení a =
— /(1) > 0 úpravami postupně dostáváme

{l + ay){l-yf(y + l)) = 1,
ay - yf(y + 1)(1 + ay) = 0,

^ + 1) = TT—l + ay

Jestliže nyní do dané podmínky dosadíme y = la/(x+l)
vyjde

a/(1 + ax),

a
1 - = 1,:r

1 + ax

1 + ax — a a

f(x) ■ 1 + ax 1 + ax

1 1a

f(x) = 1 + ax — a x + l/a — 1 ж + с

Podobně jako v prvním řešení musí být c ^ 0 a snadno ověříme, že každá
taková funkce vyhovuje.

Poznámka, ftešení se dá zapsat i ve tvaru

a

/0) 1 + {x — 1 )a

kde a = /(1) G (0,1) je reálný parametr.
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2. Posloupnost (an)^1 je evidentně rostoucí až po první člen, v jehož
zápise se vyskytne číslice 0, a počínaje tímto členem je už konstantní.
Naším cílem je tedy najít hodnoty a, k, pro něž se číslice 0 poprvé vy-

skytne v členu агооэ- Úlohu vyřešíme obecně — uvedeme příklad hodnot
а, к, pro něž se číslice 0 poprvé vyskytne v členu am, přičemž m > 4 je
dané celé číslo.

Vezměme

102m-5 _ x m—3к = 10= 11... 1 + 4 = 100... 0 4.a — ,59
2m—5 jedniček m—4 nul

Postupně máme

ai = а = 11... 1

p(ai) = 1
a2 = ai + к = ai + 100_. „04 = U_. „1 2 14_. ._Л 5,

р(а2) - 10,
a3 = а2 + 10fc = a2 + 100. „040 = U_. ._Л 22 11_. „Л55,

р(а3) = 100,

,5

2m-5
5

m—4 m—3 m—4

m—4 m—4 m—5

a* = ai_i + 10i-2fc = 11... 1 22 ... 2 11... 1 55 ... 5,

eM = 10
i-l m—i—1 i-l m—i—2 i-l

5

m—4 к = 122... 2 55... 5,dm—2 — dm—3 4“ Ю

Q(am-2) = Ю
dm— 1 = О‘т—2 4“ Ю

= 22... 2 6 55... 5,
т—3

e(flm-l) =6-10
Чщ — dm — l 4“ 6 ■ 10

= 8 22... 2 50 55... 5,
т—5

m—3 m—3 m — 3
7

m—3 Zc — dm—2 4“ 100 ... 0 4 00 ... 0 —

m—4 m—3

m—3

m—3
9

m — 3 к = am-1 4- 600 ... 0 24 00 ... 0 =

m—5 m—3

m — 3

i?(am) — 0.

Závěr. Posloupnost obsahuje právě 2 009 různých čísel například pro
а - ±(104013 1), к = ÍO2006 + 4.
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Jiné řešení. Zvolme
1

k = 33...34 = - -200...04.a = 611^1,
2007 2007 2007

Potom

a\ — 611... 1
2007

д(а\) = 6, kg(ai) = 200.. .04,
2007

a2 = 26 11... 15
2006

p(a2) = 60, kg(d2) — 2 00.. .0 40,

?

2007

a3 = 22611^.55,
2005

д(аз) = 600, kg(a3) = 2 00 ... 0 400,
2007

a4 = 2226 555,
2004

£>(a4) = 6000, kg(a±) — 2 00 ... 04000,
2007

йг+i = 22 ... 2 6 11... 1 55 ... 5,
2007-г гг

^(ai+i) = 6 0 ... О, Zc£>(aj+i) = 2 00 ... О 4 00 ... О,
2007 гг

<72007 = 22 ... 2 61 55 ... 5,
2006

^(<^2007) — 6 0^0, ^£>(<72007) = 2 00 ... О 4 00 ... О,
2006

<72008 = 22 . ..26 55 ... 5
2007

2006

2007 2006

,5

2007

í*(<72008) = 6 0 .^. О, kg(yci2oo&) — 2 00 ... О 4 00 ... О,
2007

<72009 = 22 ... 2 30 55 ... 5,
2007

^(<72009) = 0, кд(а,2оо9) = О
а dále samozřejmě а2ооэ = <72010 = ^2011 — • •

2007 2007

2007
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Poznámka. Na vyřešení úlohy stačí najít takové hodnoty а, к, aby po-

sloupnost obsahovala aspoň 2 009 různých čísel a zároveň neobsahovala
nekonečně mnoho různých čísel. Jestliže totiž uvedená posloupnost obsa-
huje právě m různých čísel, přičemž m > 2 009, tak posloupnost s prvním
členem am_2008 bude obsahovat právě požadovaných 2 009 různých čísel.
3. Nechť je bod, v němž se kružnice к dotýká strany ВС a Ti je bod,
v němž se kružnice l dotýká strany DE. Ukážeme, že hledaným pevným
bodem je bod Tk.

Nejdříve dokážeme, že body Tk, Ti a P jsou kolineární. Označme
body dotyku kružnice к s přímkami EP, DP postupně U, V, průsečíky
strany BC s těmito přímkami postupně M, N a body dotyku kružnice к
s polopřímkami AB, AC postupně Ti, T2.

Protože ВС II DE, jsou trojúhelníky DEP a NMP podobné a stej-
nolehlost H se středem P a (záporným) koeficientem opačným к číslu
q = \MN\/\ED\ zobrazí úsečku DE na úsečku NM. Na kolineárnost
bodů Tfc, Ti, P stačí dokázat rovnost

\MTk\
= \ET\\

\NTk\ \DT,\'
je-li totiž splněna, zobrazí se ve stejnolehlosti H bod Ti do bodu Tk.

(1)

To
к

c
v%

TkE

d
Ml

ul

ji e D В Ti

Obr. 57

Označme a, b, c délky stran trojúhelníku DEP tak jako na obr. 57.
Dále nechť \AD\ — e, |AEj
úseku mezi vrcholem trojúhelníku a dotykovým bodem vepsané, resp.

připsané kružnice: V trojúhelníku XYZ je vzdálenost vrcholu X od do-
týkového bodu vepsané, resp. připsané kružnice (ležícího na straně XY)

|(|ХУ| + \XZ\ - \YZ\), resp. \{\XY\ + \YZ\ - \XZ\).

d. Připomeňme známé vztahy pro délku

rovna
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Kružnice к je připsanou kružnicí ke straně NM trojúhelníku NMP.
Proto

\MTk\
_ |M7V| + |iVP| - \MP\) _qa + qc-qb

\NTk\ ~ \{\MN\ + \MP\ - \NP\) ~ qa + qb-qc^ a + b-
Kružnice l je kružnicí vepsanou trojúhelníku DEA. Proto

\m\ Wm + \ae\ -\ащ
\DTt\ \{\DE\ + \AD\-\AE\)

Jestliže z nějakého bodu vedeme ke kružnici dvě tečny, vzdálenost obou
dotykových bodů od daného bodu je stejná. Opakovaným použitím to-
hoto faktu dostáváme

a + c —

a + d — e
(3)

a + e — d

e + c + |Př7| e + c+ \PV\ = e + |£>Ti| = |ATi| = \AT2\ =

d+\ET2\=d + b+\PU\,

tedy e + c = d + b. Proto c — b — d — e a dosazením do (2), (3) okamžitě
dostáváme

\MTk\
_ a+ (c - b) _ a + (d — e) _ \ETi\

a — (c — b) a — (d — e) \DT,\’\NTk\
což je požadovaná rovnost (1). Bod P tedy leží na přímce T[Tk.

Podobně dokážeme, že i body Tk, Ti a Q jsou kolineární. Označme
body dotyku kružnice l s přímkami CQ, BQ postupně U', V, průsečíky
strany DE s těmito přímkami postupně M', N' a body dotyku kružnice l
se stranami AD, AE postupně T[, Tý Dále nechť a!, b', c! jsou délky stran
trojúhelníku BCQ, \AB\ — e’, \AC\ — ď (obr. 58).



Analogickými úvahami jako v první části dostáváme (tentokrát jsou
obě kružnice připsané)

\M'Ti\
_ a' + c' — b'

\N'Ti\ ~ a!+ V - d
\CTk\ a' + e'-ď
\BTk\ ~ a' + ď — e'

Porovnáváním délek (obr. 58) máme

d — d — \QU'\ e' - \BT[\
= ď-\CT^\=ď-b'-\QU'\

e' — c' — \QV'\ \AT[ | = \ATÍ\ =

tedy d — b' = e! — d! a následně

\M’T,\
= JСЩ

|JV'T,| \BTky
Ze stejnolehlosti trojúhelníků BCQ a N'M'Q nakonec dostáváme, že
bod Q leží na přímce TiTk.

Přímka PQ (zřejmě P Ф Q) je tedy totožná s přímkou TiTk a prochází
bodem Tk, který na poloze přímky p nezávisí.

4. V trojúhelníku ABC označme S střed strany AB a P, Q paty výšek
z vrcholů A, B. Střed úsečky KL označme M. Body P, Q jsou samozřejmě
středy úseček AK, BL (obr. 59). Proto QS je střední příčkou trojúhelníku
LAB a MP střední příčkou trojúhelníku LAK. Odtud

\QS\ = \\LA\ = \MP\ QS || LA || MP,

tedy SPMQ je rovnoběžník (to zřejmě platí i v případě, jestliže některý
z trojúhelníků LAB, LAK je „degenerovaný44).
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Body P, Q leží na Thaletově kružnici nad průměrem AB, proto
\SP\ = |SQ| = ||AB|. Rovnoběžník SPMQ je tedy kosočtverec a délka
jeho strany nezávisí na poloze bodu C. Abychom dokázali, že ani délka
jeho úhlopříčky SM nezávisí na poloze bodu C, stačí dokázat, že velikost
úhlu, který svírají jeho strany SP, SQ, je pro libovolnou polohu bodu C
na kružnici к stejná (všechny možné kosočtverce SPMQ, a tedy i jejich
úhlopříčky SM jsou pak navzájem shodné).

C

7

Qy

A S

Obr. 60

Jestliže je úhel a trojúhelníku ABC ostrý, leží bod Q uvnitř stra-
ny AC (úhel 7 je podle zadání ostrý vždy) a úhel PSQ je středovým
úhlem к obvodovému úhlu PAQ nad tětivou PQ Thaletovy kružnice
nad průměrem AB (obr. 60). Je tedy

\<PSQ\ = 2\<PAQ\ = 2(90° - 7) = 180° - 27.

Stejné vyjádření dostaneme i v případě, že úhel a není ostrý; tehdy
je totiž ostrý úhel /3 a můžeme namísto úhlu PAQ použít obvodový
úhel PBQ (obr. 61):

\<PSQ\ = 2\<PBQ\ = 2(90° - 7) - 180° - 27.

Protože při pohybu bodu C po kružnici к se velikost úhlu 7 nemění
(je to obvodový úhel nad pevnou tětivou AB), nemění se ani velikost
úhlu PSQ, což jsme chtěli dokázat.

Jiné řešení. Označme a, (3, 7 velikosti vnitřních úhlů trojúhelníku
ABC. Budeme předpokládat, že úhel a je ostrý; případ, kdy a není ostrý,
je analogický (tehdy je ostrý úhel (3). Nechť S, M, U, V jsou postupně
středy úseček AB, KL, AL, BK а Я je průsečík přímek AK a BL
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(obr. 62 a obr. 63). Čtyřúhelník USVM je rovnoběžník (SU || BL || MV,
SV || AK || MU). Zřejmě

|SV| = \AB\sin/?, \MV\ = \SU\ = \AB\siná,
\<SVM\ = \<AHL\ = \<ACB\ = 7.

Použitím sinové věty v trojúhelníku ABC máme

\AC\ 1 \AC\
_ 1 \BC\ \BC\

|5V| ~ \AB\ ' 1МЦЗ ~ \AB\ ' siná ~ \MV\ ’

trojúhelníky SVM a ACB jsou tedy podobné (strany svírající stejný
úhel mají délky v stejném poměru). Jestliže opět použijeme sinovou větu
v trojúhelníku ABC, dostaneme

|5Vj \AB\2sm/3 |^j3|2sin7\SM\ - \AB\ ■ = \AB\ sin7,\AC\ \AC\ \AB\
což je výraz, který zřejmě nezávisí na poloze bodu C.

5. Nejdříve dokážeme, že čísla a\: ..., an jsou navzájem nesoudělná.
Kdyby tomu tak nebylo, měli bychom (a^, aj) = d > 1 pro nějaké i 7^ j.
Nechť ai = и ■ d, aj — v • d. Zvolme b{ = 1, bj = 2. Podle podmínky (ii)
existují m, Ci a Cj taková, že

m ■ b{ = a m • bj tedy m = (c^)d a 2m = (Cj)d.
Odtud 2(cf)d = (Cj)d, což není možné, protože exponent prvočísla 2
v prvočíselném rozkladu pravé strany je násobkem čísla d a v prvočísel-
něm rozkladu levé strany není násobkem čísla d.

„aj
4
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Předpokládejme, že čísla ai,..., an jsou navzájem nesoudělná. Uká-
žeme, že potom je podmínka (ii) splněna. Nechť bi,..., bn je libovolná
n-tice přirozených čísel a pi,... ,pk jsou všechna prvočísla nacházející se
v prvočíselných rozkladech čísel b\,..., bn. Hledejme m ve tvaru

m = Pi1 ■ ... -pjV.

Pro každé i = 1,..., n označme Pij exponent prvočísla pj v prvočíselném
rozkladu bi. Aby číslo m ■ bi bylo a*-tou mocninou, stačí, aby pro každé
j = 1,..., к bylo Oíj + Pij násobkem a*. Každou hodnotu otj tedy stačí
zvolit tak, aby platilo

(*j = -Pij (mod ai), ay = ~p2j (mod a2), ..

(Xj = -Pn,j (mod an).

• 7

Existence takového ay plyne z čínské zbytkové věty (čísla a\,..., an jsou
navzájem nesoudělná).

Dokázali jsme, že podmínka (ii) je splněna, právě když jsou čísla
ai,..., an navzájem nesoudělná. Mezi čísly 1, 2,..., 50 je právě patnáct
prvočísel. Kdyby bylo n ^ 17, existovala by mezi čísly 2 й a2 < аз <
< ... < an ^ 50 určitě aspoň dvě čísla mající v prvočíselném rozkladu
stejné prvočíslo, byla by tedy soudělná. Proto nutně n ^ 16.

Jestliže n = 16, musí být ai = 1 a každé z patnácti čísel a2, аз,..., а\§
musí být mocninou jiného prvočísla. Vypišme, které mocniny prvočísel
můžeme použít:

2,4,8,16,32

3,9,27,

5,25,

7,49,

jen p.

Celkový počet vyhovujících šestnáctic je tedy 5 ■ 3 • 2 • 2 = 60.

6. Označme |A| = m ^ Апу/п. Nechť S je množina všech úseček majících
krajní body v A. Zřejmě |S| = (™). Souřadnice středu každé úsečky z S
jsou celé násobky čísla | a leží v konvexním obalu množiny G. Takových
bodů je (2n — l)2, tedy méně než 4n2. Proto existuje bod H, který je
středem aspoň (^)/(4n2) úseček z S. Nechť P je množina všech úseček
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z S, jejichž středem je B. Potom

(?) m(m — 1)|P| > aaz. =11 = 4n2
>

8n2

4ny/n(4ny/n — 1) 16n3 — 4пл/гг 1
> = 2n — > 2n — 1

2\/ň8n2 8n2

tedy | P | ^ 2n.
Rozdělme P na třídy úseček ležících na jedné přímce. Označme к

počet těchto tříd a počet úseček v г-té třídě pro i — 1,,k. Každá
úsečka mezi úsečkami jedné třídy má krajní body v G a všech 2a*
krajních bodů (které jsou zřejmě různé) úseček jedné třídy leží na jedné
přímce, proto 2сц ^ n. Přitom každé dvě úsečky z P jsou úhlopříčkami
rovnoběžníku, právě když neleží na jedné přímce. Pro počet různých rov-
noběžníků s úhlopříčkami patřícími do P tak dostáváme

E «4 = \((t«1-t<š)
1 4 V’ = 1 7 ť=i 7

>

j((Ž«J-Í> ;)-v 4
г= 1 7 i= 1 7

>i

. / n\ 3
= п(2тг-o) = 2

-n2 > n2.

Existuje tedy více než n2 konvexních čtyřúhelníků (dokonce rovnoběž-
níků) s požadovanou vlastností.
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50. mezinárodní matematická olympiáda

Jubilejní 50. ročník Mezinárodní ma-
tematické olympiády se uskutečnil
10.-22. července 2009 v německém

hansovním městě Brémy. Poprvé po-
čet zemí, které se zúčastnily této nej-
starší mezinárodní předmětové soutěže, překročil stovku. Padl zde také
nový rekord v počtu soutěžících
nilo 565 soutěžících ze 104 zemí (předchozí 49. MMO ve Španělsku se
zúčastnilo 535 soutěžících z 97 zemí). Nechyběli zde žádní tradiční účast-
níci a poprvé se soutěže zúčastnila družstva Mauretánie, Zimbabwe, Sýrie
a Beninu.

České družstvo tvořili v abecedním pořadí tito soutěžící: David Klaška
z Gymnázia v Brně na tř. Kpt. Jaroše, Jan Matějka z Gymnázia v Čes-
kých Budějovicích v Jírovcově ul., Josef Ondřej z Gymnázia v Rožnově
pod Radhoštěm, Samuel Říha z Gymnázia v Brně na tř. Kpt. Jaroše, Josef
Tkadlec z Gymnázia Jana Keplera v Praze 6 a Jan Vaňhara z Gymnázia
Ladislava Jaroše v Holešově. Vedoucím českého družstva a zástupcem
České republiky v mezinárodní jury byl RNDr. Jaroslav Svrček, CSc.,
z Přírodovědecké fakulty Univerzity Palackého v Olomouci, jeho zástup-
cem a pedagogickým vedoucím byl Mgr. Martin Panák, Ph.D., z Příro-
dovědecké fakulty Masarykovy univerzity v Brně.

Vedoucí jednotlivých delegací a další členové jury se sjeli do Německa
již 10. července. Ihned po svém příjezdu do Brém byli všichni odvezeni
autobusy do přístavního města Bremerhaven, které je od Brém vzdáleno
zhruba 60 km. V hotelu Atlantic, kde byli ubytováni, se konala i všechna
jednání jury. Zde byla také vybrána šestice úloh pro vlastní soutěž. Sou-
těžící přicestovali do Brém 13. července a byli po celou dobu ubytováni
v rozsáhlém, modernizovaném kampusu Jacobs Univerzity v Brémách.

Slavnostní zahájení 50. ročníku MMO se uskutečnilo den po příjezdu
všech soutěžících do Brém. V jeho úvodu pozdravila všechny přítomné
z předtočeného videozáznamu kancléřka Spolkové republiky Německo
Angela Merkelová. Osobně všechny účastníky přivítal parlamentní státní
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celkově se 50. ročníku MMO zúčast-
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sekretář ministerstva školství, vědy a výzkumu SRN Andreas Storm
a další významní představitelé společenského a politického života Ně-
mecka včetně zástupců města Brémy.

Vlastní soutěž se konala 15. a 16. července ve velkém pavilónu vý-
staviště v Brémách. Pro následující dva dny připravili organizátoři pro
soutěžící dva autokarové zájezdy. První do nedalekého Hamburku, kde
navštívili atraktivní výstavu významných architektonických zmenšenin
(Miniatur Wunderland), Následující den pak soutěžící navštívili Univer-
sum v Brémách. Po oba tyto dny probíhala zároveň v objektech Jacobs
Univerzity koordinace žákovských řešení.

U příležitosti 50. ročníku MMO uspořádali organizátoři slavnostní
podvečer, který se konal v brémském Divadle hudby. Slavnostní pro-

gram moderovala dvojice významných současných německých matema-
tiků Martin Aigner a Giinter M. Ziegler a vystoupila v něm se svými
příspěvky šestice významných světových matematiků, kteří v minulosti
získali zlaté medaile na mezinárodní matematické olympiádě: Terence
Tao, Béla Bollobás, Timothy Gowers, Stanislav Smirnov, Jean-Christophe
Yocozz a László Lovász, který je v současnosti předsedou Mezinárodní
matematické společnosti a byl protagonistou celého podvečera. Účastníci
se od nich nejen dozvěděli mnoho zajímavého o jejich vědecké práci, ale
měli navíc i ojedinělou příležitost si s nimi pohovořit.

Závěrečný den olympiády se již tradičně konalo slavnostní zakončení
spojené s oficiálním předáním medailí nejlepším soutěžícím. Všechny pří-
tomné přivítala v hudební síni brémské Komorní filharmonie (die Glocke)
ministryně školství, vědy a výzkumu SRN Prof. Dr. Anette Schavanová.
Slavnostní ceremoniál, jehož se zúčastnili i další významní představitelé
společenského života v Brémách, zpestřila brémská Komorní filharmonie
provedením závěrečné části 1. symfonie Ludwiga van Beethovena.

Je potěšitelné, že mezi oceněnými byli i všichni naši studenti. Stříbr-
nou medaili získal Josef Tkadlec a bronzové medaile Jan Matějka a Jan
Vaňhara. Ostatní tři naši soutěžící obdrželi čestná uznání za bezchybné
vyřešení jedné z úloh.

Na zlatou medaili bylo letos potřeba minimálně 32 bodů, na stříbrnou
medaili 24 body a na bronzovou medaili stačilo získat 14 bodů. Jediní
dva soutěžící, Dongyi Wei z Cíny a Makoto Soejima z Japonska, dosáhli
maximálního bodového zisku, tj. 42 bodů.

Za zmínku stojí, že nejmladší účastník soutěže, jedenáctiletý Raúl
Arturo Chávez Sarmiento z Peru, získal bronzovou medaili se ziskem
16 bodů. Stal se tak zároveň druhým nejmladším držitelem medaile v his-

157



torii mezinárodních matematických olympiád; tím úplně nejmladším byl
shora jmenovaný Terence Tao z Austrálie, jenž postupně získal bron-
zovou, stříbrnou a nakonec i zlatou medaili v letech 1986-1988. Další
medaile nezískal zřejmě jen proto, že jako 131etý nastoupil na univerzitu.

Výsledky našich studentů shrnuje následující tabulka:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

117.-129. Josef Tkadlec

249.-263. Jan Matějka
264.-282. Jan Vaňhara

296.-313. David Klaška

314.-334. Samuel Říha
335.-353. Josef Ondřej

7 7 1 7 3 0 25

6 6 1 0 2 0 15

6 0 1 0 7 0 14

7 1 0 0 4 0 12

7 3 0 1 0 0 11

7 3 0 0 0 0 10

II.

III.

III.

HM

HM

HM

Celkem 40 20 3 8 16 0 87

Pro srovnání uveďme i výsledky slovenských reprezentantů, kteří zís-
kali o 14 bodů méně (jejich nejzkušenější reprezentant Michal Spišiak dal
přednost účasti na Mezinárodní fyzikální olympiádě v Mexiku):

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

233.-248. Martin Bachratý
314.-334. Jakub Uhrík

314.-334. Filip Sládek
376.-392. Peter Csiba

393.-415. Eduard Eiben

190.-197. Michal Hagara

7 1 1 7 0 0 16 III.

7 3 1 0 0 0 11 HM

7 2 1 1 0 0 11 HM

7 1 0 0 0 0 8 HM

3 2 0 0 2 0 7

7 7 1 3 2 0 20 III.

Celkem 38 16 4 11 4 0 73

V neoficiálním pořadí zemí se naši reprezentanti umístili na konci
čtvrté desítky (tabulka na následující straně). Ve srovnání s předešlým
ročníkem MMO jsou letošní výsledky našeho družstva o trochu lepší.
Naši reprezentanti přivezli domu o jednu bronzovou medaili víc a i ti
naši soutěžící, kteří na medaili nedosáhli, si domů přivezli aspoň čestná
uznání. Zájemce o detailnější informace o průběhu 50. ročníku MMO
odkazujeme na příslušné oficiální stránky: www.imo2009.de.

Na předposlední den pobytu v Brémách připravili němečtí organi-
zátoři pro všechny účastníky MMO jednodenní výlet na ostrov Wange-
rooge v Severním moři, který byl poměrně nedávno začleněn do seznamu
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I II III body I II III body
ČLR
Japonsko
Rusko
Korea
KLDR
USA

Thajsko
Turecko
Německo
Bělorusko
Itálie

Tchaj-wan
Rumunsko

Ukrajina
Írán
Vietnam
Brazílie
Kanada
Bulharsko
Maďarsko
Velká Británie
Srbsko
Austrálie
Peru
Gruzie
Polsko
Kazachstán
Indie

Hongkong
Singapur
Francie
Chorvatsko

Portugalsko
Turkmenistán

Argentina
Ázerbájdžán
Makedonie

Belgie
Kolumbie
Česká republika
Řecko
Uzbekistán
Indonésie
JAR
Tádžikistán
Izrael
Nizozemsko

Švýcarsko
Litva
Mexiko
Moldavsko
Srí Lanka

Slovensko

Mongolsko
Španělsko
Švédsko
Dánsko

Bangladéš
Rakousko
Lucembursko
Bosna a Hercegovina
Lotyšsko
Norsko
Arménie
Slovinsko

Nový Zéland
Finsko
Macao

Kypr
Chile (4)
Estonsko
Kostarika (4)
Kyrgyzstán
Maroko

Malajsie (2)
Trinidad a Tobago
Tunisko (5)
Ekvádor

Filipíny (4)
Island
Albánie
Honduras (3)
Černá hora (4)
Portoriko
Kuba (1)
Lichtenštejnsko (2)
Pákistán (5)
Uruguay
Irsko

Nigérie
Guatemala (4)
Kambodža

Paraguay (4)
Salvádor (3)
Venezuela (2)
Panama (1)
Bolívie (3)
Mauretánie

Sýrie (5)
Zimbabwe (2)
Benin (2)
Kuvajt (4)
SAE (5)
Alžírsko (4)

600 221 0 0 2 73
5 0 1 212 0 0 3 72
5 1 0 203

0 188
710 0 4
703 3 o 0 2

3 2 183 0 681 1 1
2 0 182 0 0 2 674

1 5 0 181 0 0 2 66
2 4 0 177 0 0 3 65

171 0 0 1 631 4 1

167 0 01 4 1 1 61
2 2 2 165 0 0 2 60

0 01 5 0 165 2 59
2 2 2 163 0 0 1 58

0 03 1 2 162 1 53
0 0
0 0

0 491 4 1 161
492 2 2 161 1

1 3 2 160 0 1 0 45
1 3 2 158 0 1 0 41
1 3 2 157 0 0 0 40

2 3 157 0 0
0 0

1 341
1571 3 2 0 33

1 3 1 153 0 0 0 32
2 2 0 0 311 151 1
0 4 2
0 3 2
0 2 4

0 3 3
0 3 2

144 0 0
0 0

0 28
140 1 27
140 0 0 0 26

0 0 26136 1

130 0 0 0 26
1 2 2 122 0 0 0 24
0 2 3 116 0 0 1 24
0 1 3 112 0 0 230
0 1 4 110 0 0 0 23
0 1 3 99 0 0

0 0
0 0
0 0

1 21
970 1 3 211

0 1 1 93 1 21
0 1 2 91 0 21
0 1 3 91 0 0 0 20

170 1 2 89 0 0 0
0 1 2 88 0 0 0 14
0 1 2 87 0 0 o 14
0 0 3 86 0 0 0 14
0 1 2 85 0 0 0 13
0 0 4 84 0 0 0 13
o o 2 84 0 0 0 12
0 1 2 82 0 0 0 9
0 0 3 80 0 0 0 8
0 1 1 79 70 0 0
o 0 3 79 0 0 0 5
0 771 1 0 0 0 3
o 3 740 0 o o 3
o 0 4 74 0 0 0 3
o o 2 74 0 0 0 2
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přírodních památek UNESCO. Otužilejší účastníci využili během výletu
možnost okoupat se v chladných mořských vodách, které tento ostrov
obklopují.

Ústřední komise МО a vedení českého reprezentačního týmu děkují
následujícím firmám a institucím — Hanácké kyselce, a.s., Nissan Kobliha
Car v Přerově a FJFI ČVUT v Praze za jejich nevšední pomoc při
zabezpečení společného oblečení celého českého týmu na 50. MMO.

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

1. Nechť n je kladné celé číslo a ai,..., (k ^ 2) jsou navzájem různá
celá čísla z množiny {1,..., n} taková, že pro každé i = 1,..., к — 1 je
číslo 1 — 1) dělitelné n. Dokažte, že číslo ak(a\ — 1) není číslem n

(Austrálie)
2. Nechť O je střed kružnice opsané danému trojúhelníku ABC a nechť
P a Q jsou po řadě vnitřní body stran АС a AB. Označme К, L, M
postupně středy úseček BP, CQ, PQ а к kružnici body K, L, M prochá-
zející. Jestliže přímka PQ je tečnou kružnice A:, je \OP\ — \OQ\. Dokažte.

(Rusko)
3. Nechť sbs2,s3,... je rostoucí posloupnost kladných celých čísel tako-
vá, že obě její podposloupnosti

dělitelné.

S8l J ^S2 5 ®S a Ssi+i, ®s2+i, ®s3+i, • • •3 ’ *

jsou aritmetické. Dokažte, že posloupnost si, s2, S3, • • • je rovněž aritme-
tická. (USA)
4. Je dán trojúhelník ABC, v němž\AB\ = \AC\. Osy jeho vnitřních úhlů
při vrcholech А а, В protínají strany ВС a CA po řadě v bodech D a E.
Označme К střed kružnice vepsané trojúhelníku ADC a předpokládejme,
že \<BEK\ — 45°. Najděte všechny možné velikosti úhlu CAB.

(Belgie)
5. Určete všechny funkce / z množiny kladných celých čísel do množiny
kladných celých čísel takové, že pro všechna kladná celá čísla a, b existuje
nedegenerovaný trojúhelník, jehož strany mají délky

a, /0), f(b + f(a) -l).

(Trojúhelník je nedegenerovaný, pokud jeho vrcholy neleží v přímce.)
(Francie)
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6. Nechť cti, й2, ..., an jsou navzájem různá kladná celá čísla a M je mno-
žina n — 1 kladných celých čísel neobsahující číslo s = a\ + 02 + ... + an.
Luční kobylka má skákat podél číselné osy tak, že začne v bodě 0 a ve
směru doprava provede v nějakém pořadí n skoků o délkách a\, <22,..., an.

Dokažte, že pořadí skoků lze zvolit tak, že se kobylka neoctne na žádném
čísle z množiny M. (Rusko)

Řešení soutěžních úloh

1. Daná čísla ai, 0,2, ■ ■ ■, ak splňují následující soustavu kongruencí

aia2 = a\ (mod n)
<2203 = <22 (mod гг)

ak-\ak = Ufc-i (mod n).

Odtud postupně dostáváme

(1)a\ = aia2 = а\й2а^ = ... = aia2 ... ak (mod n)

a (vynecháním první kongruence)

d2 = CL2CL3 = (1203(14 = ... = 02 ■ ■ ■ ak (mod n). (2)

Kdyby číslo ak(a\ — 1) bylo dělitelné číslem n neboli aka\ = ak

(mod n), bylo by zároveň

<2i<22 .. .ak = a2 ... aka\ = 02 ■ ■. ak (mod n),

což podle (1) a (2) dává a\ = <22 (mod n). Dvě různá čísla z množiny
{1,..., n} však nemohou při dělení číslem n dávat stejný zbytek. Tím je
tvrzení úlohy dokázáno.

Jiné řešení. Z kongruencí (1) speciálně dostáváme

a\ = (ai... ak-\)ak = aiak (mod 72).

Protože dvě různá čísla a\, ak z množiny {1,...,тг} nemohou při dě-
lení číslem n dávat stejný zbytek, musí být a\ak ф ak (mod n) neboli
ak(i21 — 1) ф 0 (mod n).
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2. Úsečka MK je střední příčkou trojúhelníku QBP, proto \MK\ —

= \\QB\ a MK || AB. Z rovnosti střídavých úhlů plyne (obr.64)
\<AQP\ — \<KMQ\. Protože PQ je tečnou kružnice k, dostáváme
z rovnosti úsekového a obvodového úhlu příslušného tětivě MK rovnost
\<KMQ\ = \%.KLM\. Dohromady je tedy \<AQP\ — \<KLM\.

A Q в

Obr. 64

Podobně je LM střední příčkou trojúhelníku CPQ, takže \LM\ =
= ^|CP| a LM || CA. To znamená, že \KKML\ = \KBAC\ a troj-
úhelníky PAQ a KML jsou podobné. Pro poměry odpovídajících stran
postupně (po dosazení za délky \KM\ a |LM|) dostáváme

\PA\ \QA\ \PA\ \QA\
\KM\ \LM\' Í\QB\ \\PC\

\QA\ ■ \QB\ = \PA\ ■ \PC\.

Poslední rovnost znamená, že body P a Q mají stejnou mocnost ke
kružnici opsané trojúhelníku ABC (zřejmě oba body leží uvnitř této
kružnice). Proto mají od jejího středu O stejnou vzdálenost neboli
|OP| = \OQ\.

Jiné řešení. Označme Pi, Q\ body souměrně sdružené s body P
a Q podle středů příslušných stran AC, resp. AB (obr. 65). Protože
ML || AC a \ML\ = \\PC\ = \\PiA\ a podobně i MK || AB,
|Miú| = ~\QB\ = llQi^l, jsou trojúhelníky MKL a AQ\P\ stejnolehlé
(s koeficientem |), tudíž P\Q\ || LK.

162



Jestliže je PQ tečnou kružnice opsané trojúhelníku MKL, plyne
z rovnosti úsekového a obvodového úhlu příslušného tětivě MK rov-
nost \<KMQ\ = \KKLM\, takže je také \<AQP\ = \kAP\Q\\. To ale
znamená, že body P, Q, Pi, Q\ leží na jedné kružnici, přitom středem
této kružnice je zřejmě střed O kružnice opsané trojúhelníku ABC, ne-
bot’ osy úseček PP\ a QQ\ jsou zároveň osami stran АС a AB. Proto
\OP\ = \OQ\.

Jiné řešení. Nechť PQ je libovolná příčka stran АС a AB trojúhel-
niku ABC. Označme U střed kružnice opsané trojúhelníku APQ a Oi,
U\ kolmé projekce bodů O a U na přímku AB (obr. 66). Pro kolmou

QOxA U, В

Obr. 66
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projekci vektoru Oil do přímky AB zřejmě platí 0\U\ = |(BA + AQ) =
= |BQ
dobně zjistíme, že projekcí téhož vektoru do přímky AC je vektor LM.
Stejné projekce má ovšem i vektor M'M určený průměrem MM' kruž-
nice к (opsané trojúhelníku KLM). Připomeňme, že vektor v rovině je
jednoznačně určen svými projekcemi do dvou nezávislých směrů. Dostá-
váme tak tedy, že OU = M'M. Protože UMA. PQ, je také M'O A PQ.

Pokud je nyní PQ tečna kružnice k, je M'M _L PQ a bod O leží na
téže kolmici к PQ jako body U a M', což je ovšem osa úsečky PQ. Tím
je tvrzení úlohy dokázáno.

Poznámka. Z předchozích úvah plyne, že obecně je UOM'M rovno-
běžník (redukovaný na úsečku UM', když je PQ tečnou kružnice к),
a protože UMA PQ, je také M'O _L PQ. Označíme-li N patu kolmice
z bodu O na PQ, je zřejmě bod N (podle Thaletovy věty) dalším průsečí-
kem přímky PQ s kružnicí k. Dokázali jsme tak vlastně obecnější tvrzení
(obr. 66):

Je-li O střed kružnice opsané trojúhelníku ABC a P a Q jsou po řadě
vnitřní body stran АС a AB, leží středy úseček BP, CQ, PQ a pata
kolmice z bodu O na PQ na jedné kružnici.

Ukážeme ještě jeden pěkný důkaz tohoto tvrzení. Nechť AA! je průměr
kružnice opsané danému trojúhelníku ABC, takže А'В A AB a A!C A
_L AC. Označme dále V průsečík výšek trojúhelníku APQ a P\, Q2
odpovídající paty výšek (obr. 67). Je-li M' střed úsečky VA!, označme M\
a М2 jeho kolmé průměty do stran AB a AC, potom je M'M\ střední

KM, protože KM je střední příčka trojúhelníku BQP. Po-

Obr. 67
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příčkou lichoběžníku VP\BA' a nutně na ní leží i střed К úsečky PB. Je
tudíž M'K _L MK a podobně i M'L _L ML, což znamená, že MKM'L je
tětivový čtyřúhelník, tedy MM' je průměrem kružnice k. Nyní už vidíme,
že OM' je střední příčkou trojúhelníku AA'V, a protože AV _L PQ, je
také M'O _L PQ. Pata N této kolmice zřejmě leží na kružnici k.

3. Označme D diferenci aritmetické posloupnosti sSl, sS2, sS3,... a pro
každé přirozené i označme di = Sj+i — Sj. Chceme dokázat, že hodnota di
je pro všechna i stejná.

Nejdříve ukážeme, že množina hodnot di je ohraničená. Protože daná
posloupnost je rostoucí, je di ^ 1 pro každé i. Každé dva po sobě jdoucí
členy posloupnosti (Si) zřejmě leží mezi některými dvěma sousedními
členy posloupnosti 1, sSl, sS2, sS3,..., proto s*+i — Sj = max{D, sSl}.

Označme m nejmenší a M největší z hodnot di (jejich existence plyne
z ohraničenosti). Stačí dokázat, že m = M. Předpokládejme naopak, že
m < M.

Nechť n je libovolný takový index, že dn = m. Tedy sn+i — sn = m,
odkud

D = ss

= dSn + dSn+i + ... + dSn+rn-i A M + M 4-... + -M = mM. (1)
Ssn — Ssn+m Ssn —n+l

m-krát

Podobně je-li N libovolný index takový, že d^ — M, je sn+i — sn = M
tedy

D = ss

= dsдг + dSN+1 + ... + dSN-\-m—i = m + m + ... + m = Mm. (2)
ЛГ +1

M-krát

Z (1) a (2) plyne, že D = Mm, a aby platila rovnost, nutně dSn =
— ^s„+1 = • • • = dSn+m_i M a = dSjV-)_i = ... = dSN-(-a/—i ~

Speciálně máme
(3)dSn = M = m.

Z toho, že posloupnost (sn) je rostoucí, plyne sn ^ n. Navíc dokonce
sn > n, neboť kdybychom měli sn = n, bylo by podle (3) m = dn =
= dSri = M, což odporuje předpokladu m < M. Stejně můžeme ukázat,
že sn > N.

Položme ni = n. Tedy dni = m a podle (3) platí dSn = M. Dále
zvolme П2 = sni > ni. Protože dn2 = M, může П2 vystupovat v po-
zici N, takže podle (3) máme dSri2 —та zároveň sn2 > П2■ Můžeme

a
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sn2 a z (3) (protože П3 může vystupovat v pozici n)proto zvolit П3
dostaneme dSrl3 = M. A tak pomocí předpisu щ+1 = sni postupně se-
strojíme rostoucí posloupnost ni, П2, П3,... takovou, že

(4)= M, dSn2 = m, dSn3 = M, dsds —

m, ...ni n 4

Přitom posloupnost ds , dSri2,... je podposloupností posloupnosti ds
.. Ta má členy, které jsou rozdíly členů aritmetických posloupností

sSl+i, sS2+i, • • • a sSl, sS2, ..., je tedy rovněž aritmetickou posloupností.
Podle (4) se v ní nekonečněkrát opakuje hodnota m (i M), což při m < M
zřejmě není možné.

Protože náš předpoklad vede ke sporu, nutně musí být m = M.

Jiné řešení. Především si uvědomme, že obě uvažované aritmetické
podposloupnosti musejí mít stejnou diferenci. Posloupnosti (sSi+i — sSi)
a (ss
rovněž aritmetické a navíc s opačnými diferencemi. Protože jsou však
zároveň obě nezáporné, musejí být jejich diference nulové (a tudíž jsou
obě „rozdílové44 posloupnosti konstantní).

Označme tedy d společnou diferenci obou posloupností (sSi) a (sSi+i).
Pro ostře rostoucí posloupnost (sí) nepochybně platí \j — k\ 5Í \sj — Sk\,
proto 0 ^ Sk+1 - sk й sSk+1 - sSk = d, takže posloupnost sk+1 - sk je
ohraničená, a nabývá tak pro nějaké N svého maxima s^v+i — Sjv = M
a pro nějaké n minima sn+i — sn = m. Přitom

1 ?

ds2 9 ‘

sSi+i) jsou obě jako rozdíl dvou aritmetických posloupnostíi+i

d(sN+i ~ sn) - dM = (ss sSN)M.N +1SAT + 1 sN

- SgN sčí-Levou stranu této rovnosti můžeme zapsat jako součet ss
tanců tvaru s^+i — s* = M, takže musejí být všechny rovny M, což

N +1

speciálně v případě toho posledního znamená, že sSsjv+i — ss
Jak ale víme z úvodního odstavce, je posloupnost (sSi+i — s8i) konstant-
ní, tudíž sSi+i - ss

Úplně stejně (jen místo N a M budeme psát n a m) ukážeme, že
sSi+i — sSi = m pro všechna i. Je tudíž M — m a tvrzení úlohy je tak
dokázáno.

= M.
3 N

M pro všechna přirozená i.

4. Označme I střed kružnice vepsané trojúhelníku ABC a F její bod do-
tyku se stranou AC. Pokud F — E, tedy osa úhlu při vrcholu В je zároveň
výškou trojúhelníku ABC, je trojúhelník ABC rovnostranný a jeho úhel
při vrcholu A tak má velikost 60°.
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V každém případě je úsečka IF obrazem úsečky ID v souměrnosti
podle osy Cl, takže IF je tečnou kružnice vepsané trojúhelníku ADC.
Přímka KF je tedy osou pravého úhlu a \<IFK\ = 45°.

Pokud jsou body E a F různé a \<IEK\ = \<BEK\ = 45° (obr. 68),
leží body K, E, F, I na (Thaletově) kružnici s průměrem IE. To známe-
ná, že trojúhelník EIK je rovnoramenný pravoúhlý, tudíž \<KIE\ = 45°.
Protože KIE je zároveň vnější úhel rovnoramenného trojúhelníku BCI,
je \<ABC\ = \<BCA\ = 2\<IBC\ = \<KIE\ = 45°, tudíž úhel při
vrcholu A má velikost 90°.

В CD

Obr. 68

V obou případech snadno ověříme, že úhel BEK má velikost 45°.

Jiné řešení. (Podle Martina Bachratého, Slovensko.) Označme I střed
kružnice vepsané trojúhelníku ABC (je to společný bod přímek AD,
BE, CK) a uvažujme kružnice k\, k2 opsané trojúhelníkům IKE,
IKD (obr. 69). Obě mají nad společnou tětivou IK obvodový úhel ve-
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likosti 45°, neboť К leží na ose pravého úhlu ADC. Proto jsou obě
kružnice shodné a odpovídají si v osově souměrnosti podle přímky CL
V téže osově souměrnosti si odpovídají i přímky АС, BC, takže průse-
číky kružnice k\ se stranou AC se zobrazí na průsečíky kružnice /c2 se
stranou BC.

Protože jedním ze společných bodů kružnice k\ a přímky AC je bod E
a jedním ze společných bodů kružnice &2 a přímky BC je bod D, mohou
nastat dva případy.

Je-li obrazem bodu E v osové souměrnosti podle přímky Cl bod D,
je úhel CEI pravý, což znamená, že v trojúhelníku ABC je osa úhlu při
vrcholu В zároveň výškou. Z toho plyne, že trojúhelník ABC je rovno-

stranný, takže \<CAB\ = 60°.
Pokud kružnice /c2 protíná přímku BC ve dvou různých bodech D

a E', přičemž obrazem bodu E v osové souměrnosti podle přímky Cl je
bod E1, je kružnice &2 opsána pravoúhlému trojúhelníku IDE' (obr. 69;
bod E' leží uvnitř úsečky DC, protože trojúhelník DKI je ostroúhlý —

součet dvou jeho ostrých úhlů je totiž 45° + 90° — \\<BCA\ > 90°),
takže úhel E'KI je rovněž pravý. Pro vnější úhel ElК rovnoramenného
trojúhelníku BCI tak dostáváme

\<EIK\ = 45° = \<BCA\.

Odtud už snadno dopočítáme \<CAB\ = 180° — 2\<BCA\ = 90°.
Snadno ověříme, že jak v rovnostranném, tak v pravoúhlém rovnora-

menném trojúhelníku je \<BEK\ = 45°.
Jiné řešení. Označme I střed kružnice vepsané rovnoramennému

trojúhelníku ABC a jeho úhly označme obvyklým způsobem, takže
/5 = 7 = 90° — Bod К je průsečíkem os úhlů trojúhelníku ADC,
proto

\<ECK\ = \<KCD\ = \(5 = 45° - \a a \<CDK\

Z trojúhelníku BEA plyne (obr. 70)

\<KDA\ =45°.

\<BEA\ = 180°-a - i/5,

takže

\<KEC\ = 180° - 45° - \<BEA\ = a + i/5 - 45° = fa.
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в сD

Obr. 70

Pro jednodušší počítání označme x = Z vlastností osy úhlu DK
v trojúhelníku DCI máme

\KI\
_ \DI\

\Щ~\Щ
— tg \<DCI\ — tg(45° - x)

a pomocí sinových vět v trojúhelnících KEI a KEC dostaneme

\KI\
__ \KI\-\EK\

\KC\ ~ \EK\ ■ \KC\ ~ sin(90° - 2x)
sin(45° — x)sin 45°

sin 3x

Spojením obou rovností po zkrácení vychází

cos(45° — x) ■ sin 45° = cos2x • sin3rr.

Levou i pravou stranu upravíme pomocí vzorečku

sin(w + v) + sin(u — v) — 2 sin и cos v,

takže po zřejmých úpravách dostáváme

sin(90° — x) + sin x = sin bx + sin x,

cos x + sin x = sin bx + sin ж,

cos ж = cos(90° — bx).

Protože 0° < a — 4x < 180°, je buďx = 90°—bx neboli a = 60°, nebo
x = bx — 90° neboli a = 90°. Pro obě tyto hodnoty platí \<BEK\ = 45°,
jak snadno ověříme.
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5. Především si uvědomme, že pokud mají tři přirozená čísla 1, m, n

splňovat trojúhelníkovou nerovnost, musí být nn = n.
Označme m = /(1) — 1. Pro a = 1 tak dostáváme tři čísla 1, /(6),

f(b + m), která pro libovolné přirozené b splňují trojúhelníkovou nerov-
nost, jedině když f(b) = f{b + m). Pokud by však bylo m > 0, byla
by funkce / periodická s periodou m, a nabývala by tudíž jen konečný
počet hodnot /(1), /(2),..., /(ra). V takovém případě je ovšem zřejmé,
že pro dostatečně velké přirozené číslo a (větší než dvojnásobek maxima
uvedených hodnot) nemohou čísla a, f(b), f(b + /(a) — 1) splňovat troj-
úhelníkovou nerovnost. Nutně tedy m = 0 neboli /(1) = 1.

Pro 6=1 odtud hned dostáváme, že čísla a, 1, /(/(a)) pro libovolné
přirozené číslo a splňují trojúhelníkovou nerovnost, takže podle úvodního
pravidla

/(/(a)) = a pro všechna přirozená čísla a. (1)
Z vlastnosti (1) navíc plyne, že funkce / je prostá. Je-li totiž f(x) = f(y)
pak nutně ж = = f(f(y)) = y.

Označme к = /(2). Protože /(1) 1 a / je prostá, je к ^ 2. Navíc
f(k) = /(/(2)) = 2. Pro a = 2, b = к tak máme, že čísla 2,2 a f(2k — 1)
splňují trojúhelníkovou nerovnost, proto

takže f(2k — 1) G {1, 2, 3}.

Poněvadž /(1) = 1, f(k) = 2 a 2k— 1 ^ {1, /с}, z prostoty funkce / nutně
plyne f(2k — 1) = 3.

Nyní podobně pro a = 2, 6 = 2/г — 1 dostáváme

takže /(3/г - 2) € {2,3,4};

)/(2* — 1) - 2| < 2,

|/(3* - 2) — 3| < 2,

2 ^ {/г, 2/г — 1}, musí býta protože 2 = /(/г), 3
/(3/г — 2) = 4. Matematickou indukcí tak snadno odvodíme, že

/(2/г - 1) а 3/г

f(nk — (n — 1)) = n + 1

platí pro všechna přirozená čísla n. Speciálně pak pro n = к — 1 dostáváme

/((* -.1)* - (* - 2)) = *,

což vzhledem к prostotě funkce / dává (/г — 1 )k — (k — 2) = 2 neboli
/г(/г — 2) = 0. Je tedy /г = 2, takže indukcí odvozený vztah je tvaru

f(n + 1) = n + 1 pro všechna přirozená čísla n.
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To spolu s rovností /(1) — 1 znamená, že jedinou vyhovující funkcí je
identita f(x)

Snadno ověříme, že tato funkce vyhovuje, neboť \a — b\ < a + b — 1 <
< a + b pro libovolná dvě přirozená čísla a, b.

Jiné řešení. Stejně jako v předchozím řešení zjistíme, že /(1) = 1 a že
funkce / je involutorní, tj. /(/(a)) = a pro libovolné přirozené a, což
zároveň znamená, že funkce / je prostá.

Položme к = /(2) — 1, к ^ 1. Z předpokladů úlohy plyne, že pro
libovolné přirozené číslo b splňuje trojice čísel 2, /(6), /(6+ k) trojúhel-
níkovou nerovnost | /(6 -f k) — f(b) \ < 2. Protože / je prostá, musí být
| f(b + k) — f(b) | = 1, což znamená, že /(6) a f(b+ к) jsou dvě sousední
přirozená čísla. Záměnou b postupně za b + k, b + 2k, ... zjistíme, že
stejnou vlastnost mají i dvojice čísel /(6 + к) a /(6 + 2k), /(6 + 2k)
a /(6 + ЗА:), ... Navíc posloupnost čísel

= x.

f(b), f{b + k), f(b + 2k), /(6 +ЗА:), ... (2)

musí být rostoucí, protože funkce / je prostá (klesající být nemůže, pro-
tože je to nekonečná posloupnost přirozených čísel). Tak docházíme к zá-
věru, že (2) je posloupnost všech (po sobě jdoucích) přirozených čísel
počínaje číslem /(6). Pro 6=1 tak dostáváme všechna přirozená čísla,
proto v takovém případě mezi argumenty funkce / ve (2) nesmí žádné
přirozené číslo chybět. Je tedy к = 1 a f(n) = n pro každé přirozené n.
Zároveň je zřejmé, že tato funkce má požadované vlastnosti.

6. К důkazu využijeme matematickou indukci. Pro n = 1 je tvrzení tri-
viálně splněno. Budeme tedy předpokládat, že n > 1 a že tvrzení úlohy
platí pro všechna přirozená čísla menší než n.

Bez újmy na obecnosti předpokládejme, že a\ = max (ai, a2,..., an),
a označme m = min M. Rozebereme dva případy: m < a\ a a\ ^ m.

Pokud m < a\ a zároveň a\ ^ M, začneme skokem délky ai, kterým
přeskočíme m, a použijeme indukční předpoklad na zbylých n — 1 skoků
a nejvýše n — 2 čísel z množiny M \ {m}, jež leží v intervalu (ai, s).

Pokud m < a\ G M, uvažujme n — 1 dvojic a2, a2 +a±, ..., an, an + a±.
To je celkem 2n — 2 různých čísel, z nichž nejvýše n — 2 může patřit do M
(v M je ai, které mezi nimi určitě není). To znamená, že z n čísel, která
v M neleží, aspoň dvě tvoří jednu z uvedených n — 1 dvojic, řekněme
ai,ai + ai, 2 ^ i ^ n. Budou-li první dva skoky kobylky a^ai, přeskočí
m i a\ z M a zbylé n — 2 skoky najdeme podle indukčního předpokladu
(v množině M zbyla nejvýše n — 3 čísla к přeskočení).
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Pokud cl\ m, uvažujme posloupnost skoků a\ = aCT(i), aCT(2)? • •

aCT(n), kde a je nějaká vhodná permutace čísel 1, 2,..., n taková, že ко-
bylka neskočí na žádné číslo z M \ {m}. Takovou permutaci a doká-
žeme najít podle indukčního předpokladu (máme к dispozici n — 1 skoků

an a nejvýše n — 2 čísel z M větších než m, která leží v intervalu

* ?

a2,.. * 7

(abs)).
Je-li nyní m = ai, stačí prohodit první a druhý skok, tj. skoky délek

cii a U(7(2) •

Pokud v nalezené posloupnosti skoků některý z nich vede do čísla
m > ai, je tedy m — a\ + ... + pro nějaké i e {2,3,..., n — 1}
(obr. 71), prohodíme první a (i + l)-ní skok, tj. skoky délek ai a aff(i+i)-
Tím dosáhneme toho, že číslo m kobylka přeskočí a ostatní čísla, do nichž
vedou její skoky, se změní pouze v intervalu (0, m), kde však žádné číslo
z M neleží.

®<т(г) ®сг(г+1)a i

0 a i m s

Obr. 71

Tím je tvrzení úlohy dokázáno.
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3. středoevropská matematická olympiáda

EUROPEAN
Třetí ročník Středoevropské matematické
olympiády se uskutečnil 24.-29. září 2009
v polské Poznani za účasti 59 studentů z de-
seti zemí středoevropského regionu: z České
republiky, Chorvatska, Litvy, Maďarska, Ně-
mecka, Polska, Rakouska, Slovenska, Slovin-
ska a Švýcarska.

České družstvo tvořili Petr Boroš a Si-
топа Domesová z Gymnázia Mikuláše Ко-
perníka v Bílovci, Radek Marciňa z Gymná-
zia Christiana Dopplera v Praze, Miroslav Olšák z Gymnázia Buďánka
v Praze, Petr Ryšavý z Gymnázia Jaroslava Heyrovského v Praze а Во-
huslav Zrnek z Gymnázia na tř. Kpt. Jaroše v Brně. Vedoucím družstva
byl Mgr. Martin Panák z Přírodovědecké fakulty Masarykovy univerzity
v Brně, jeho zástupcem pak dr. Pavel Calábek z Přírodovědecké fakulty
Palackého univerzity v Olomouci.

Vlastní soutěž probíhala v prostorách Fakulty matematiky a infor-
matiky Univerzity Adama Mickiewicze, a to ve dvou dnech: v sobotu
26. září byla na programu soutěž jednotlivců, v neděli 27. září se pak
konala soutěž družstev. V soutěži jednotlivců řešili žáci v průběhu pěti
hodin čtyři úlohy, v týmové soutěži pak každé národní družstvo mělo
stejný čas na řešení osmi úloh. Příklady do soutěže vybírala z návrhů
jednotlivých účastnických států mezinárodní jury složená z vedoucích
jednotlivých národních delegací.

Absolutním vítězem mezi jednotlivci se stal maďarský student Berta-
lan Bodor, který jako jediný vyřešil všechny čtyři úlohy. V týmové sou-
těži dominovalo družstvo Polska. Česká výprava byla úspěšná, Bohuslav
Zrnek získal stříbrnou medaili, zbylí členové družstva až na Petra Boroše
pak vybojovali medaili bronzovou. V soutěži družstev obsadil český tým
pěkné páté místo.

POZNAŇ
POLAND 2009
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Body za úlohu Body Cena
12 3 4Umístění

52.-55. Petr Boroš

27.-35. Simona Domesová

36.-39. Radek Marciňa

27.-35. Miroslav Olšák
27.-35. Petr Ryšavý
8.-12. Bohuslav Zrnek

0 0 0 1 1

0 0 8 1 9

0 0 8 0 8

0 0 8 1 9

0 0 8 1 9

5 1 8 1 15

bronz

bronz

bronz

bronz

stříbro

Celkem 5 1 40 5 51

Přehled výsledků všech zemí v soutěži jednotlivců je v druhé tabulce.
Země jsou v ní seřazeny podle součtu bodů celého družstva podobně jako
při neoficiálním pořadí zemí na MMO (číslo v závorce označuje menší
počet účastníků).

bodybody I II IIII II III

100 Česká republika
86 Slovensko
75 Rakousko
59 Litva
54 Švýcarsko

Maďarsko
Polsko
Německo
Chorvátsko
Slovinsko (5)

1 4 513 1 2
2 3 1
1 2 2
-23
-23

1 1 48
1 2 39

171
1 16

Nejvíc se tak dařilo družstvům z Polska a Maďarska — Polsko vyhrálo
soutěž družstev a v soutěži jednotlivců získalo dvě zlaté medaile, Maďar-
sko bylo v soutěži družstev druhé a v soutěži jednotlivců získalo tři zlaté
medaile. Celkové výsledky soutěže družstev jsou uvedeny v následující
tabulce.

Body za úlohu
1 2 3 4 5 6 7 8

Body
Umístění

1. Polsko

2. Maďarsko
3. Německo

4. Chorvatsko

5. Česká republika
6. Slovinsko

7.-8. Rakousko

Slovensko

9. Švýcarsko
10. Litva

86888868

65888488

84888808

85858288

8 6 8 8 8 3 1 0

82808028

83432086

7 3 8 6 8 0 1 1

02488008

8 2 4 0 5 0 1 4

60

55

52

52

42

36

34

34

30

24

V pondělí po soutěži studenti navštívili lanové centrum a mnohým
z nich zůstane tato atrakce nesmazatelně vryta do paměti. Po této fyzicky
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náročnější aktivitě následovalo večer slavnostní zakončení soutěže, které
proběhlo v historické budově univerzity v centru Poznaně.

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

Soutěž jednotlivců1.Najděte všechny funkce /: [R —> [R splňující

f(xf{y)) + /(/(ж) + f(y)) = yf(x) + f(x + f(y))
pro libovolná reálná x, y. (U značí množinu reálných čísel.) (Slovinsko)
2. Mějme n ^ 3 různých barev. Nechť f(n) je největší přirozené číslo
s následující vlastností: každou stranu a každou úhlopříčku konvexního
/(n)-úhelníku můžeme obarvit jednou z n barev tak, že

> použijeme aspoň dvě barvy,
> libovolné tři vrcholy mnohoúhelníku jsou spojeny buď úsečkami stejné

barvy, nebo navzájem různých barev.
Dokažte, že f(n) ^ (n — l)2 a že rovnost v této nerovnosti nastává

(Slovinsko)
3. Nechť ABCD je konvexní čtyřúhelník se shodnými stranami AB
a CD, které nejsou rovnoběžné. Označme E, F středy úhlopříček AC
a BD. Přímka EF protíná úsečky AB a CD po řadě v bodech G a H.

(Maďarsko)

v nekonečně mnoha případech.

Ukažte, že \<AGH\ = \<DHG\.
4. Určete všechna přirozená к ^ 2 taková, že pro žádnou dvojici (m, n)

m—1n —1různých kladných celých čísel, nepřevyšujících k, neničíslo n
dělitelné číslem k.

— m

(Švýcarsko)

Soutěž družstev

5. Nechť reálná čísla x, у, 2 splňují podmínku x‘2+y2+z2+9 = 4(x+y+z).
Dokažte, že

x4 + y4 + z4 + 16(ж2 + у2 + z2) ^ 8(x3 + y3 + z3) + 27,
a určete, kdy nastává rovnost. (Slovensko)
6. Nechť a, 6, c jsou reálná čísla taková, že pro každé dvě z rovnic

x2 + cx + a = 0a?2 + clx + 6 = 0, x2 + bx + c = 0,

existuje právě jedno reálné číslo, které je jejich společným řešením. Určete
všechny možné hodnoty výrazu a2 + b2 + c2. (Slovensko)
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7. Na tabuli jsou napsána čísla 0,1, 2,..., n (n ^ 2). V každém kroku
vymažeme číslo, které je aritmetickým průměrem dvou různých čísel,
která ještě na tabuli zůstala. Tyto kroky opakujeme tak dlouho, až už
žádné další číslo na tabuli nemůžeme smazat. Buď g(n) nejmenší možný
počet čísel, která na tabuli mohou zůstat. Pro každé n určete g(n).

(Polsko)
8. Každé políčko hrací desky 2 009 x 2 009 obarvíme jednou z n barev (ne-
musíme použít každou z nich). Barvu nazveme souvislou, jestliže existuje
buď jediné políčko dané barvy, nebo libovolná dvě políčka jsou vzájemně
dosažitelná posloupností tahů šachové dámy takových, že každý z nich
začíná i končí na políčku dané barvy (šachová dáma se po hrací desce
může pohybovat vertikálně, horizontálně a diagonálně). Určete největší n
takové, že pro libovolné obarvení bude alespoň jedna barva použitá na
hrací desce souvislá.

9. Je dán rovnoběžník ABCD, v němž \<BAD\
průsečík jeho úhlopříček. Kružnice opsaná trojúhelníku ACD protíná
přímku BA v bodě К ф A, přímku BD v bodě P ^ D a přímku BC
v bodě L ф C. Přímka EP protíná kružnici opsanou trojúhelníku CEL
v bodech E a M. Dokažte, že trojúhelníky KLM a CAP jsou shodné.

(Slovinsko)
10. Je dán tětivový čtyřúhelník ABCD, v němž \CD\ = \DA\. Body E
a F leží po řadě na úsečkách AB a BC tak, že \-KADC\ = 2\<EDF\.
Úsečka DK je výškou a DM těžnicí trojúhelníku DEF. Nechť L je obraz
bodu К ve středové souměrnosti podle bodu M. Dokažte, že přímky DM
a BL jsou rovnoběžné.

11. Nalezněte všechny dvojice (m,n) celých čísel, které splňují rovnici

(Polsko)
60° a E označuje

(Polsko)

(m + n)4 = m2n2 + m2 + n2 + 6ran.

(Chorvatsko)
12. Najděte všechna řešení rovnice

2X + 2 009 = 3y5z

(Litva)v množině nezáporných celých čísel.
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Řešení úloh

1. Konstantní funkce f(x) = 0 zřejmě vyhovuje. Předpokládejme dále,
že existuje a E IR, pro něž /(а) ф 0. Dokážeme, že funkce / je pak prostá.

/(2/2) pro nějaká 2/1,2/2 £ IR. Postupným dosazením
у = 2/i, у — 2/2 do dané rovnice a odečtením vzniklých rovností dostaneme
yif(x) = у2 f(x) pro všechna x £ IR. Po dosazení x — a můžeme nenulové
/(a) vykrátit, takže 2d = У2 a / je vskutku prostá.

Dosazením 2: = 0, 2/ = 1 do dané rovnice získáme

Nechť /(2/1)

/(0) + /(/(0)+ /(!)) = Д0) +/(/(!))
tedy /(/(0) + /(1)) = /(/(1)) a vzhledem к prostotě / odtud plyne
/(0) + /í1) = /(1) neboli /(0) = 0.

Volbou у = 0 následně z dané rovnice dostaneme /(/(ж)) = /(ж),
odkud opět díky prostotě funkce / plyne f(x) = x pro všechna x E IR.
I tato funkce vyhovuje, o čemž se dosazením snadno přesvědčíme.

Jedinými řešeními jsou tedy funkce f(x) = 0 a f(x) — x.

2. Uvažujme mnohoúhelník, jehož všechny strany i úhlopříčky jsou obar-
vény popsaným způsobem, můžeme ho tedy považovat za úplný graf.
Jeho hrany jsou obarveny n barvami tak, že každý trojúhelník (neboli
úplný podgraf s třemi vrcholy, tzv. 3-klika) je buď jednobarevný, anebo
trojbarevný. Navíc celý graf není jednobarevný.

Uvedená podmínka pro trojúhelníky je vlastně ekvivalentní s násle-
dující podmínkou: Všechny hrany grafu lze rozdělit do několika (alespoň
dvou) jednobarevných klik (úplných podgrafů), přičemž kliky téže barvy
jsou vrcholově disjunktní (za kliku považujeme i podgraf tvořený dvěma
vrcholy neboli jedinou hranou). Otázkou už zůstává jen to, jak velké
takové kliky mohou být a kolik nejvíce jich bude jedné barvy.

Kdyby některá z těchto jednobarevných klik (řekněme modrá) měla
aspoň n vrcholů, musel by mimo ni existovat vrchol v, který by byl s kaž-
dým vrcholem modré kliky spojen jinou než modrou barvou, což však
není možné, protože kromě modré barvy máme к dispozici už jen n — 1
barev. Proto každá jednobarevná klika má nejvýše n — 1 vrcholů.

Jeden vrchol leží nejvýše v n různých klikách (různé barvy) a každá
z nich má nejvýše n — 2 dalších vrcholů. Tento vrchol má tedy nejvýše
n(n — 2) sousedů. Graf má tudíž nejvýše f{n) ^ n(n — 2) + 1 = (n — l)2
vrcholů.

V druhé části řešení najdeme požadované obarvení hran úplného grafu
s (n — l)2 vrcholy n barvami pro nějaké vhodné n.
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Z našeho odvození odhadů pro /(n) plyne, že v hledaném „maximál-
ním“ případě bude každý vrchol právě v n klikách (všech) různých barev,
každá klika bude mít n — 1 vrcholů a od každé barvy jich bude právě n— 1.
Odtud plyne, že každé dvě kliky různých barev budou muset mít spo-

léčný vrchol (kupř. každý vrchol dané modré kliky je v jiné žluté klice,
takže to jsou v souhrnu všechny žluté kliky). Budeme-li proto chápat
jednobarevné kliky jako „přímky" o n — 1 bodech (příslušných vrcholech
grafu), pak každé dvě z těchto „přímek" budou mít vzájemnou polohu
jako rovnoběžky či různoběžky v rovině — podle toho, zda půjde o kliky
stejné barvy či dvou různých barev.

Nabízí se tak možnost umístit všechny body jedné kliky na přímku
jedné barvy. Body kliky jiné barvy budou na přímce nejen jiné barvy, ale
i jiného směru tak, aby průsečík těchto dvou přímek představoval spo-

léčný vrchol obou klik. Dvě kliky téže barvy pak můžeme reprezentovat
rovnoběžkami.

Protože vrcholů je dohromady (n— l)2, zkusíme je rozmístit do čtverce
(vrcholy grafu tak budou všechny body s celočíselnými souřadnicemi
(í,j), kde i,j G Mn = {0,1,...,n — 2}) a pospojovat přímkami růz-
ných směrů. Na každé přímce by mělo ležet právě n — 1 vrcholů grafu.
Takových ideálních přímek sice moc nenajdeme, ale pomůžeme si tím, že
budeme s mřížovými body počítat modulo (n — 1).

Nejprve vrcholy pospojujeme n — 1 svislými přímkami první barvy
a dále n — 1 vodorovnými přímkami druhé barvy. Mezi přímky třetí barvy
zařadíme hlavní úhlopříčku s body (к, к) (к G Mn) a dále přímky s ní
rovnoběžné, tj. (n
kde a postupně volíme z množiny Mn \ {0} (pro a — 0 dostáváme ovšem
hlavní úhlopříčku). To jsou vlastně všechny „přímky" se směrnicí 1, které
jakmile „vyběhnou" vpravo ze čtverce ve výšce k, vrátí se zleva do čtverce
pod stejným úhlem ve výšce к + 1.

Podobně budeme postupovat i dále: kliky další barvy budou tvořit
(n — l)-tice vrcholů všech n — 1 rovnoběžných přímek se směrnicí 2 vy-
cházejících postupně z vrcholů (0,0), (0,1),..., (0, n — 2) (princip kon-
gruence teď uplatníme nejen vodorovně, ale i vertikálně, tedy na obě
souřadnice): na každé z uvedených přímek pak budou ležet vrcholy se
souřadnicemi (a + k,2k) (mod (n — 1)), kde к G Mn, a G Mn. Stejný
postup zopakujeme i pro další směrnice A G {3,4, ...,n — 2}; jed-
notlivé přímky budou obsahovat vrcholy se souřadnicemi (a + k, Ak)
(mod (n — 1)).

Popsanou konstrukcí jsme získali n(n — 1) přímek n různých směrů.

l)-tice bodů (a + к (mod (n — l)),fc) (k G Mn)
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Přitom jsme v každé klice (,,přímcew) obarvili (n21) hran, celkem tedy

n(n- l)2(n-2) (n — l)2n(n — X) (П 2 X) 2 2

hran. To však je přesně počet hran úplného grafu s (n — l)2 vrcholy.
Zbývá už jen zvolit n tak, aby průnikem dvou klik různé barvy byl

právě jeden vrchol. К tomu stačí, aby p = n — 1 bylo prvočíslo, neboť
pak má kongruence

(a + к, Xk) = (b -f l, pi) (mod p) resp. (a, k) = (b + l, pi) (mod p)

pro daná čísla a, 6, X, p E Mn právě jedno řešení. A protože prvočísel
je nekonečně mnoho, našli jsme nekonečně mnoho různých n, pro něž
f(n) = (n — l)2. Tím je úloha vyřešena.
3. Označme K, L středy stran BC, DA. Z vlastností středních příček
trojúhelníků ABC, ABD plyne EK || AB || LF, přičemž |EK\ =
= \LF\ = ||AS| (obr. 72). Podobně platí FK || CD || LE, přičemž
\FK\ = \LE\ = ||CD\. A protože \AB\ — \CD\, je EKFL kosočtverec
nebo čtverec. To ovšem znamená, že trojúhelník FEK je rovnoramenný

(se základnou FE), přičemž z rovnoběžnosti příček v uvedených troj-
úhelnících plyne

\<AGH\ = \<LFH\ = \<LEG\ = \<DHG\.

Jiné řešení. Za počátek soustavy souřadnic zvolme průsečík P přímek
AB a CD (obr. 73). Polohové vektory bodů А, В, O, D označme postupně
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Obr. 73

о, Ь, с, d. Potom směrové vektory přímek AB, CD jsou a — b, d — c,
a protože podle zadání mají stejnou velikost, směrový vektor osy úhlu
mezi nimi je

(a - b) + (d — c)
o = 1 .

Středy E, F úhlopříček AC, BD mají polohové vektory e = ^(o + c),
f = |(b + d). Z rovnosti \AB\ — \CD\ plyne

0 = (o - b)2 - (d - c)2 = ((o - b) - (d - c)) • ((o — b) + (d — c)) =
a + c b + d \ (a — b) + (d — c)

— 4(e — f) o= 4
2 2 2

(všechna uvedená násobení a druhé mocniny vektorů jsou skalární sou-

činy). Osa úhlu sevřeného přímkami AB a CD je tedy kolmá na
přímku EF, takže trojúhelník GHP je rovnoramenný se základnou GH.
Protože body A a D leží v téže polorovině určené přímkou GH, jsou
úhly AGH a DHG shodné (buď jsou oba vnitřními úhly při základně
rovnoramenného trojúhelníku, anebo jsou jejich doplňky do 180°).

4. Podmínka v zadání je ekvivalentní s prostotou funkce

-if{m) = mm mod к

v oboru zbytkových tříd při dělení číslem k.
Pro к = 2 а к = 3 snadno zjistíme, že odpovídající funkce / prostá je.
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Protože pro každé к pro příslušnou funkci / platí /(1) = 1 a f(k) — 0,
je pro libovolné sudé к > 2

k~2
= (-l)fc~2 = 1 = /(1) (mod к)f(k -l) = (k-l)

takže funkce / pro taková к prostá není.
Jestliže se v rozkladu čísla к na prvočinitele vyskytuje liché prvočíslo p

aspoň v druhé mocnině, je q — к/p ^ p ^ 3, a tudíž

_/k\ /k\Q-1
, к (k\(i~3

= 0 = f(k) (mod к).

Zbývá tedy vyšetřit lichá čísla к > 4, která nejsou dělitelná druhou
mocninou žádného prvočísla. Všechny hodnoty

m, f{k — 2), ..., /(3), /(1)

jsou zbytky druhých mocnin přirozeného čísla při dělení číslem k, tzv.
kvadratické zbytky. Kromě nich je kvadratickým zbytkem modulo к
i /(4) = 43 = 82 (mod к). Našli jsme tak celkem \{k 1) + 1 kvad-
ratických zbytků, ale různých kvadratických zbytků je nejvýše \(k + 1),
neboť a2 = (к — a)2 (mod к). Aspoň dvě ze zmíněných hodnot funkce /
musejí být proto stejné, takže ani pro taková к nemůže být funkce /
prostá.

Úloze vyhovují jedině к = 2 а к = 3.

5. Danou podmínku můžeme přepsat do tvaru

x(x — 4) + y(y — 4) + z(z — 4) = —9

a zkoumanou nerovnost zase na nápadně podobný tvar

x2[x - 4)2 + y2(y - 4)2 + z2(z - 4)2 ^ 27.

Poslední nerovnost dostaneme z Cauchyovy nerovnosti (a + b + c)2 ^
^ 3(a2 + b2 + c2) pro hodnoty a = x(x — 4), b = y(y — 4), c = z (z — 4).
Rovnost v Cauchyově nerovnosti nastane, právě když

x(x - 4) = y(y - 4) = z(z - 4),

což vzhledem к dané podmínce vede na rovnosti (x — 2)2 = (y — 2)2 =
— (z — 2)2 = 1. Řešením této soustavy je 8 uspořádaných trojic (1,1,1)
(1,1,3), (1,3,1), (3,1,1), (1,3,3), (3,1,3), (3,3,1), (3,3,3).
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Jiné řešení. S využitím podmínky

x2 + y2 -\- z2 + 9 = 4(ж + у -f z) (1)

můžeme danou nerovnost ekvivalentně upravit na tvar

(a:-2)4 + (j/-2)4 + (Z-2)4S3, (2)

zatímco samotnou podmínku (1) přepíšeme na

(ж - 2)2 + (y- 2)2 + (z - 2)2 - 3.

Vidíme tedy, že nerovnost (2) opět plyne z Cauchyovy nerovnosti
(a + 6 + c)2 š 3(a2 + b2 + c2), tentokrát pro hodnoty a = (x — 2)2,
6 = (у — 2)2, c
= (y~2)2
6. Vyšetříme dva případy.

Pokud mají všechny tři rovnice jeden společný kořen je

(z — 2)2. Rovnost zřejmě nastane, právě když (ж — 2)2 =

(z — 2)2 = 1, což je stejná podmínka jako v prvním řešení.

ж2 + аж1 +6 = 0,
ж2 + бжх + с = 0,
ж2 + СЖ1 + а = 0.

(1)
(2)
(3)

Kombinací rovností (3) — (2) + х\ ((1) — (3)) a následnou úpravou dosta-
neme

с)(ж?
Odtud vzhledem к nenulovosti kvadratického trojčlenu ж2 — x\ + 1 (má
záporný diskriminant) plyne a = c. Cyklickou záměnou dostaneme c =
= 6 = a a jedinou kvadratickou rovnici ж2 + аж + а = 0, která s ohledem
na zadání musí mít dvojnásobný kořen. Pro její diskriminant tak platí
a2 — 4a = a(a — 4) = 0, proto jea = 6 = c = 0 nebo a — b — c = 4. Pro
výraz a2 + 62 + c2 tudíž dostáváme dvě možné hodnoty: 0 a 48.

Druhý případ, kdy první rovnice má kořeny xi, Ж2, druhá Ж2, Ж3 a třetí
жх, Ж3 (přičemž všechny tři kořeny jsou navzájem různé, jinak bychom
měli předchozí případ) je o poznání komplikovanější.

Budeme zkoumat koeficienty mnohočlenu

xi + 1) = 0.(a

(ж2 + аж + 6)(ж2 + bx + с)(ж2 + сж + а), (4)
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o němž víme, že má tři dvojnásobné kořeny xi, Ж2, Ж3, a tedy tvar

(ж3 — px2 + qx — r)2. (5)

Z Viětových vztahů pro původní mnohočleny navíc plyne

2p — 2(xi +X2 + X3) (a + b + c) = ~(x\X2 + ж2ж3 + X1X3) = -q. (6)

Jestliže označíme a + b + c — e, ab + bc + ca — f, abc — g, dostaneme
roznásobením totožných mnohočlenů (4) a (5) a porovnáním jejich koe-
ficientů při mocninách ж5, x4, x3 a x° postupně

2p, e + f = p2 - 4p, e2 - f + g = 4p2 - 2r, g - r2. (7)e — —

Koeficienty při x2 a x sice nejsou symetrické v proměnných a, b, c (a ne-
dají se tedy vyjádřit pomocí e, f, g), ale jejich součet symetrický je, proto
jejich porovnáním po úpravě dostaneme

/ + ef — 3g = 4p2 + 6pr. (8)

Spojením (6), (7) a (8) dostáváme soustavu šesti rovnic o šesti ne-
známých p, q, r, e, /, g. Můžeme ji řešit různými způsoby. Například
dosazením prvních dvou vztahů q = — 2p a e = — 2p do třetí rovnice
dostaneme f — p2 — 2p. Spolu s pátou rovnicí g = r2 teď můžeme za
neznámé g, e, /, g dosadit do čtvrté a šesté rovnice výrazy obsahující jen
neznámé p a r. Po úpravě dostaneme dvě rovnice

2p3 — p2 + 2p(3r + 1) + 3r2 = 0.(r +p)(r -p + 2) = 0,

Nyní stačí vyjádřit r z první rovnice a dosadit do druhé. Pro r
dostaneme rovnici p(p— l)2 = 0, pro r = p — 2 rovnici (p + 6)(p— l)2 = 0.

Pokud by bylo p ф 1, dostaneme v prvním případě p = 0 a také
q = r = 0, což v (5) vede na mnohočlen ж6, který zřejmě nevyhovuje.
Podobně pro p — — 6 vyjde r = —8, q = 12, takže v (5) dostaneme mno-
hočlen (ж + 2)6, který rovněž nevyhovuje. Zbývá tudíž poslední možnost
p = 1, odkud q — —2, r = —1, a mnohočlen v (5) má tvar

p tak

(ж3 2
- 2ж+ l)2. (9)— ж

Snadno nahlédneme, že mnohočlen p(x) = ж3 — ж2 — 2ж + 1 opravdu
má tři různé reálné kořeny, protože p{—2) < 0, p{—1) > 0, p(0) > 0,
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1, a2 + b2 +p(l) < 0, p(2) > 0. Už jen dopočítáme e = —2, /
+ c2 = e2 — 2/ = 6.

Odpověď. Uvedený výraz může nabývat hodnot 0, 6 a 48.
Poznámka. Pro úplné řešení bychom měli ještě ověřit, že к trojici ко-

řenů (a?i, жг, жз) mnohočlenu (9) skutečně přísluší tři kvadratické rovnice
s koeficienty jako v zadání. Jednou z možností, jak to udělat, je ukázat,
že příslušné koeficienty a, 6, c (které jsou podle Viětových vztahů kořeny
mnohočlenu x3 — ex2+fx—g) po dosazení do (4) dají mnohočlen identický
s (5). Protože koeficient při x6 je zřejmě stejný a rovnost koeficientů při
x5, ж4, x3, x° plyne z toho, že p, q, r, e, /, g splňují (7), stačí ukázat
rovnost koeficientů při x2
součet koeficientů při x2 a x je stejný.

-1, 9

Na základě rovnosti (8) však víme, žea x.

7. Krajní hodnoty 0 a n zřejmě nesmažeme nikdy. Kromě toho snadno
ověříme, že

g(l)=g{2) = 2, 9(3) = 3. 9(4) = 2.
Technika mazání použitá pro n = 4 se dá snadno rozšířit na všechna

n tvaru n = 2a (stručně řečeno, nejprve smažeme všechna lichá čísla
jako aritmetický průměr dvou sousedních sudých čísel, zbylá sudá čísla
si představíme jako dvojnásobky čísel od 1 do 2a_1 a smažeme všechny
dvojnásobky lichých čísel atd.), proto je g(2a) = 2 pro všechna přirozená
čísla a.

Mějme nyní n, které není mocninou dvou, takže 2a < n < 2a+1 pro

nějaké přirozené a. Představme si, že i v tomto případě nakonec zůstala
na tabuli jen dvě čísla (nepochybně 0 a n). Při zpětné rekonstrukci (při-
dáváme aritmetický průměr některých dvou čísel, která na tabuli zůstala)
dokážeme přidat vždy jen čísla tvaru tn/2fc, kde t а к ^ 1 jsou přirozená
čísla. Takto však nikdy nevznikne číslo 1, protože není-li číslo n mocninou
dvou, nemůže jí být ani žádný jeho násobek. To je spor.

Naopak pro libovolné takové n dokážeme postupně smazat čísla n — 1,
n — 2, ..., 2° + 1 (číslo n — i je aritmetickým průměrem čísel пап — 2i;
pokud n = 2a + 1, mažeme pochopitelně prázdnou množinu), načež už
popsaným způsobem smažeme všechna čísla mezi 0 a 2a. Na tabuli tak zů-
stanou jen tři čísla 0, 2a, n. Proto není-li n mocninou dvojky, je g{n) = 3.
8. Ukážeme příklad obarvení desky к x к (pro liché к ^ 5) třemi nesou-
vislými barvami 1, 2 a 3.

Nejprve obarvíme políčko (2, к) barvou 1 a políčko (3,1) barvou 2. Na
desce zřejmě existují právě čtyři políčka (2,1), (2, 2), (3, к — 1) a (3, k),
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která jsou dosažitelná tahem dámy z obou zvolených polí zároveň (stačí si
uvědomit, že při běžném černobílém obarvení polí mají při lichém к obě
zvolená pole různou barvu). Uvedená čtyři políčka tedy obarvíme třetí
barvou, zatímco všechna ostatní políčka dosažitelná dámou z (2, k) do-
stanou barvu 2 a naopak políčka dosažitelná dámou z (3,1) barvu 1. Tím
jsme obarvili všechna políčka dosažitelná jedním tahem dámy z políček
(2, k) nebo (3,1), přičemž ani jedna ze tří barev není souvislá. (Následující
tabulka znázorňuje popsanou situaci pro к = 9.)

2 3 2 2 2 2 2 21

2 2 3

12 1 2

22 1 1

22 1 1

2 1 1 2

2 21 1 1

3 1 1 2

1 3 1 1 1 1 1 12

Obarvíme-li dosud neobarvená políčka desky libovolně barvami 1 a 2,
zůstanou políčka (2, к) a (3,1) izolována od ostatních políček své barvy.

Dokážeme nyní, že při libovolném obarvení libovolné desky к x m
dvěma barvami bude jedna z barev souvislá. Případy к = 1 nebo m — 1
jsou jistě triviální. Budeme proto předpokládat, že к ^ m ^ 2. Tvrzení
dokážeme matematickou indukcí vzhledem к součtu к + га.

Předpokládejme, že uvedené tvrzení platí pro libovolnou desku k' x m!
splňující k' + nn! < к + га. Uvažujme libovolné obarvení desky S s roz-

měry kxm dvěma barvami, např. červenou a modrou, a označme 5i, S2,
resp. S3 desky, které dostaneme z S odstraněním prvního sloupce, po-
sledního sloupce, resp. posledního řádku. Podle indukčního předpokladu
je na každé ze tří desek S1, S2, S3 aspoň jedna ze dvou barev souvislá.
Nechť Si, Sj jsou ty dvě z nich, jež mají souvislou stejnou barvu, např.
červenou, a označme dále Ao = Si П Sj, A\ = Sj \ Si a A2 = 5* \ Sj.

Pokud je deska Ao už jednobarevná, je zřejmě její barva souvislá
i na celé desce S. Předpokládejme tedy, že v Ao existuje červené políčko.
V takovém případě je ovšem červená barva souvislá v množině Si U Sj.
Připomeňme, že S1US2 = S, S1US3 = S\{(1, m)}, S2US3 = S\{(k, ra)}.
Pokud {i,j} = {1,2}, jsme hotovi. Pokud např. {i,j} = {1,3} (obě zbylé
možnosti jsou zřejmě symetrické), nebude červená barva souvislá v celé S,
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jedině když políčko (1, m) bude červené a všechna políčka v A\ U A2 C
C Si U Sj naopak budou modrá. Pak je ovšem modrá barva souvislá v S.
Tím je důkaz indukčního kroku hotov.

Odpověď. Hledané největší číslo je n = 2.

9. Protože AK У CD, je AKCD rovnoramenný lichoběžník, takže troj-
úhelník ВКС je rovnostranný (obr. 74). Podobně je rovnostranný i troj-
úhelník BLA. Oba trojúhelníky jsou tak souměrné podle osy úhlu CBK,
odkud plyne rovnost \AC\ — \LK\. Zároveň z rovnosti obvodových úhlů
nad tětivou AC máme \KAPC\ = 60°.

Bod В leží na chordále obou kružnic, proto platí

|AB| • \BK\ = \DB\ ■ \BP\ = \LB\ ■ \BC\ = \EB\ ■ \BM\.

Uvažujme proto zobrazení x, které vznikne složením kruhové inverze po-
dle kružnice se středem В a poloměrem y/\LB\ ■ \BC\ a středové sou-
měrnosti s týmž středem В. V tomto zobrazení si vzájemně odpovídají
dvojice bodů А, К, C, L, D,P a E, M.

Jednou z vlastností kruhové inverze je, že přímku neprocházející stře-
dem inverze zobrazí na kružnici středem inverze procházející (stejnou
vlastnost zřejmě má i složené zobrazení x). Z toho plyne, že obrazem
přímky obsahující body A, E, C v zobrazení x je kružnice opsaná troj-
úhelníku LMK a procházející bodem B, tudíž čtyřúhelník BLMK je
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tětivový. Proto

\<KML\ = 180° - \<KBL\ = 180° - 120° = 60° = \<APC\

a navíc (obr. 74)

\<LKM\ = \<LBM\ = \<ADP\ = \<ACP\.

Trojúhelníky APC, LMK jsou tedy podobné, a protože (jak jsme už
ukázali) \AC\ = \LK\, jsou i shodné. Tím je tvrzení úlohy dokázáno.
10. Jestliže N je obraz bodu A v osové souměrnosti podle DE (obr. 75),
potom

\<CDN\ = \<CDA\ - \<ADN\ =

= 2\<EDF\ - 2\<EDN\ = 2\<FDN\

a \ND\ — \AD\ = \CD\. Bod je tudíž zároveň obrazem bodu C v osové
souměrnosti podle DF. Ze shodnosti dvojic trojúhelníků ADE, NDE
a CDF, NDF, jež si v uvedených osových souměrnostech vzájemně od-
povídají, plyne

\<END\ + \<DNF\ - \<EAD\ + \<DCF\ = 180°

proto bod N leží na úsečce EF.

A ВE

Obr. 75

Uvědomme si ještě, že přímka EF je v souměrnosti podle DE obrazem
přímky AB a v souměrnosti podle DF obrazem přímky BC. Bod D má
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proto od uvedených tří přímek stejnou vzdálenost, a je tedy středem
kružnice k\ připsané straně EF trojúhelníku BEF (obr. 76), a bod К je
tudíž bodem dotyku připsané kružnice se stranou EF.

ВE

Obr. 76

Jak známo, body dotyku vepsané a připsané kružnice jsou souměrně
sdruženy podle středu příslušné strany trojúhelníku, proto je bod L bo-
dem dotyku kružnice к vepsané trojúhelníku BEF.

Označme P obraz bodu L ve stejnolehlosti se středem v bodě В, která
převádí kružnici к vepsanou trojúhelníku BEF na připsanou kružnici k\.
Pak je zřejmě PK průměrem kružnice k\ a DM střední příčkou trojúhel-
niku PLK. Tím je rovnoběžnost přímek DM a BL dokázána.

11. Jestliže je dvojice (m,n) řešením, jsou řešením i symetrické dvojice
(n,m), (—m, —n) a (—n, — m). Pro n = 0 dostaneme rovnici m4 = m2
s řešeními m G { — 1, 0,1}. Ze symetrie tak plyne, že řešením dané rovnice
je pět dvojic

(n,m) € {(0,-1), (-1,0), (0,0), (0.1), (1,0)}.

Uvědomme si, že pro kladná m i n je levá strana řádově větší než
strana pravá. V takovém případě, jak hned ukážeme, žádné řešení ne-

existuje:
Bez újmy na obecnosti nechť 0 < n ^ m. Z dané rovnice ovšem plyne

+ (m + n)2 + 4mn 5Í m4 + 8m2
4m3 + 6m2 + 4ra + 1 8m2,
2m2(2m — 1) + 4m +1^0,

m2n2(m + l)4 ^ (m + n)4 =
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což zřejmě nemůže platit pro žádné přirozené číslo m. Řešením tedy není
žádná dvojice kladných čísel (a ze symetrie) ani žádná dvojice záporných
čísel.

Bez újmy na obecnosti dále předpokládejme, že n
a 0 < к Sí m. Z dané rovnice pak máme

— к je záporné

(m — к)4 — m2k2 = m2 + k2 — 6mk,
к + k2)(m2 — Зтк + к2) — m2 — 6mk + k2,

(m2 — mk + k2){m2 — 3mk + к2 — 1) = —5mk
(m2 — m

Odtud plyne, že
m2 — mk + к2 \ 5mk.

Označme d — (m, k) největší společný dělitel čísel maka nechť к = da,
m = db, kde a, b jsou dvě kladná nesoudělná čísla. Je tedy

b2 — ba + a2 | 5ba.

Zároveň je však zřejmé, že číslo b2 — ba + a2 je nesoudělné jak s a, tak
s b, proto je nesoudělné i se součinem ab obou nesoudělných čísel. Pro
kladné číslo b2 — ba + a2 tak máme jen dvě možné hodnoty: 1 nebo 5.

Jestliže b2 — ba + a2 = 1, má odpovídající kvadratická rovnice s ne-
známou a diskriminant 4 — 3b2, který je čtvercem přirozeného čísla jedině
pro 6=1, takže a — 1 a n = —m. Dosazením do dané rovnice získáme
další dvě řešení

(n.m) e {(2,-2), (-2, 2)}.
Jestliže b2 — ba+a2 — 5, příslušný diskriminant 20 — 362 není čtvercem

přirozeného čísla nikdy. Daná rovnice tedy nemá žádná další celočíselná
řešení.

12. Snadno nahlédneme, že musí být x^.2ay + z^.l. Uvažujme danou
rovnici modulo 4, dostaneme tak 1 = (—l)y (mod 4), proto у musí být
sudé. Pokud je у > 0, je (—1)ж + 2 = 0 (mod 3), takže x musí být sudé.
Podobně je-li z > 0, máme 2х — 1 = 0 (mod 5), což pro x znamená
dělitelnost čtyřmi. Ovšem aspoň jedno z čísel у, z je kladné, proto x musí
být v každém případě sudé.

Nechť x = 2t а у = 2и. Protože 2 009 = 72 • 41, je

2X + 2 009 = 2х e {1, 2,4} (mod 7)
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zatímco pro liché г platí

З^б2 = 9U(—2)2 e {3,5,6} (mod 7).

Proto musí být i г sudé, z = 2v. Rovnici nyní můžeme přepsat do tvaru

72 • 41 = 2 009 = (3U5W - 2Í)(3W5W + 2ř).

Zřejmě existuje jen jedna dvojice čísel, jejichž součin je 2 009 a rozdíl
je mocninou dvou: 41 a 49. Odtud plyne, že daná rovnice má v oboru
nezáporných celých čísel jediné řešení

x = 4, у — 4, z = 2.
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Šestnáctý ročník Středoevropské olympiády v informatice

Středoevropská olympiáda v informatice se v le-
tošním roce konala ve dnech 8.-14. 7. 2009

v rumunském městě Targu Mures. Ke klasic-
kému zastoupení sedmi středoevropských států
se jako hosté soutěže přidala navíc družstva
Švýcarska, Moldávie, USA a Srbska. Celkem
soutěžilo 44 studentů z 11 zemí a navíc se akce zúčastnilo 13 místních

rumunských studentů mimo oficiální soutěž.
Reprezentační družstvo České republiky bylo sestaveno na základě vý-

sledků dosažených soutěžícími v ústředním kole 58. ročníku Matematické
olympiády — kategorie P. Celosvětové soutěže IOI 2009 v Bulharsku se
zúčastní čtyři nej lepší studenti. Jako obvykle pro účast na CEOI 2009
byli vybráni další čtyři nejlepší studenti, kteří ještě nejsou v maturitním
ročníku. Mohli tak získat zkušenosti, aby úspěšně reprezentovali Českou
republiku na IOI v příštím roce. Letos se CEOI zúčastnili následující
studenti:

Petr Čermák, student Gymnázia v Kladně,
Lukáš Kripner, student Gymnázia T. G. Masaryka v Litvínově,
Martin Patera, student Gymnázia Arabská v Praze,
Jan Polášek, student Gymnázia v Turnově.

Vedoucími české delegace byli jmenováni Mgr. Petr Škoda a Bc. Jan Bu-
lánek, oba z Matematicko-fyzikální fakulty Univerzity Karlovy v Praze.

Již tradičně se účastníci připravovali na olympiádu na týdenním sou-
středěním CPSPC (Czech-Polish-Slovak Preparation Camp). Akci tento-
krát připravili polští organizátoři a účastnili se jí vybraní studenti všech
tří zemí.

Soutěž probíhala jak je obvyklé během dvou soutěžních dnů. V kaž-
dém dni soutěžící řešili tři úlohy, na které měli celkem pět hodin. Každý
soutěžící pracuje na přiděleném osobním počítači s nainstalovaným sou-
těžním prostředím, které umožňuje vyvíjet a testovat programy a odesílat
je к vyhodnocení. Výsledné programy jsou testovány pomocí připravené
sady testovacích dat a se stanovenými časovými limity. Tím je zajištěna
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nejen kontrola správnosti výsledků, ale pomocí časových limitů se také
odliší kvalita použitého algoritmu. Při testování každé úlohy se použí-
vají sady testovacích dat různé velikosti, takže teoreticky správné řešení
založené na neefektivním algoritmu zvládne dokončit výpočet pouze pro

některé, menší testy. Takové řešení je potom ohodnoceno částečným po-
čtem bodů.

V letošním roce organizátoři připravili velmi hezké a originální, ale
také těžké úlohy. Úlohy jsou vždy večer před soutěží přeloženy do ma-
teřského jazyka studentů a čeští studenti tedy dostali jak anglickou, tak
i českou verzi zadání úloh. Soutěž proběhla bez větších problémů.

Kromě soutěže je pro účastníky CEOI také připravován doprovodný
program. Letos jeli účastníci na prohlídku středověkého městečka Sighi-
soara, navštívili solné jeskyně Praid a prošli se po lázních Sovata.

Poslední den proběhlo slavnostní zakončení soutěže s vyhlášením vý-
sledků. Každá ze soutěžních úloh byla hodnocena maximálně 100 bo-
dy, takže celkově bylo teoreticky možné získat až 600 bodů. Vítězem
se stal Američan Wu Neal, který dosáhl výsledku 400 bodů. Podle pra-
videi CEOI obdrží na závěr soutěže lepší polovina účastníků některou
z medailí, přičemž zlaté, stříbrné a bronzové medaile se udělují přibližně
v poměru 1:2:3 (pochopitelně s ohledem na to, aby soutěžící se stej-
ným bodovým ziskem získali stejnou medaili). Letos byly uděleny 3 zlaté,
10 stříbrných a 15 bronzových medailí. Další zlaté medaile získali soutě-
žící z Chorvatska a Polska. Středoevropská olympiáda v informatice je
soutěží jednotlivců, žádné pořadí zúčastněných zemí v ní není vyhlašo-
váno.

Žádný z našich reprezentantů letos medaili nezískal. Naši studenti
dosáhli následujících výsledků:

32. Petr Čermák 80 bodů

40.-42. Lukáš Kripner 20 bodů
40.-42. Martin Patera 20 bodů

43. Jan Polášek 10 bodů

Veškeré informace o soutěži, texty soutěžních úloh i podrobné vý-
sledky všech medailistů lze nalézt na adrese www.ceoi2009.ro. Příští
17. ročník CEOI se bude konat v Košicích na Slovensku.

192



21. mezinárodní olympiáda v informatice

Dvacátý první ročník Mezinárodní olympiády v in-
formatice IOI 2009 se konal ve dnech 8.-15. 8. 2009

v bulharském Plovdivu. Záštitu nad soutěží pře-
vzal osobně bulharský prezident Georgi Parvanov,
který se také zúčastnil slavnostního zahájení spo-
léčně s ministryní školství, mládeže a vědy, paní Jor- \ /
dankou Fandakovou a s dalšími významnými hosty. PLOVDIV

Na olympiádu do Bulharska přijely delegace
z 82 zemí celého světa. Z každé země se olympiády
mohou zúčastnit čtyři soutěžící a dva vedoucí, celkově letos soutěžilo
312 studentů. České družstvo bylo sestaveno na základě výsledků ústřed-
ního kola 58. ročníku Matematické olympiády — kategorie P a bylo tvo-
řeno těmito studenty:

Vlastimil Dort, student gymnázia Špitálská v Praze,
Hynek Jemelík, student gymnázia na tř. Kpt. Jaroše v Brně,
David Klaška, student gymnázia na tř. Kpt. Jaroše v Brně,
Karel Tesař, student VOŠ a SPŠE v Plzni.

Vedoucími české delegace byli doc. RNDr. Pavel Tópfer, CSc.,
a Mgr. Zdeněk Dvořák, Ph.D., oba z Matematicko-fyzikální fakulty Uni-
verzity Karlovy v Praze.

Již tradičně se naši účastníci připravovali na olympiádu společně s re-

prezentanty vybranými pro CEOI (Středoevropská olympiáda v infor-
matice) na týdenním soustředěním CPSPC (Czech-Polish-Slovak Prepa-
ration Camp). Přípravné soustředění letos uspořádali polští organizátoři
a zúčastnili se ho vybraní studenti ze všech tří zemí.

Během prvního dne pobytu v Bulharsku proběhlo slavnostní zahájení
soutěže a studenti měli také příležitost seznámit se podrobně s počí-
tači a se softwarovým prostředím, ve kterém budou pracovat při soutěži.
Vlastní soutěž se konala jako obvykle ve dvou dnech, oddělených jedním
dnem odpočinku. Po druhém soutěžním dnu následoval jeden den věno-
váný výletu к moři a v závěrečném dni pobytu se uskutečnilo vyhlášení
výsledků v historických prostorách antického amfiteátru.

^шт~ 1*7*1 r^i

[S Li L A R 1 A|
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Soutěž probíhá podobným způsobem jako praktická část ústředního
kola naší Matematické olympiády
přidělen osobní počítač, na kterém řeší zadané úlohy. V každém dni
má na práci vymezen čas 5 hodin. Úlohy je třeba dovést až do tvaru
odladěného programu, hotové programy se odevzdávají к vyhodnocení
prostřednictvím soutěžního prostředí. Odevzdané programy se testují po-
mocí předem připravené sady testovacích dat. Prováděné testy jsou navíc
omezeny časovými limity, aby se kromě otestování správnosti odlišila i ča-
sová efektivita algoritmu použitého jednotlivými účastníky soutěže. Při
testování každé úlohy se používají sady testovacích dat různé velikosti,
takže teoreticky zcela správné řešení založené na neefektivním algoritmu
zvládne dokončit výpočet pouze pro některé, menší testy. Takové řešení
je potom ohodnoceno částečným počtem bodů.

Úlohy bývají tradičně dost náročné a stávalo se, že řada účastníků
nevyřešila správně ani jednu z nich. Novinkou letošního ročníku proto
bylo přidání navíc jedné výrazně lehčí úlohy v každém soutěžním dnu.
V každém dnu byly tedy zadány nikoliv tři jako dříve, ale čtyři úlohy.
Tyto přidané snadnější úlohy byly vyhodnocovány ve zvláštním režimu
„s plnou odezvou“ ihned v průběhu soutěže. Jedná se o podobný sys-

tém, jaký používáme od loňska u nás v kategorii P pro praktické úlohy
domácího kola. Krátce po odevzdání vypracovaného programu do vy-
hodnocovacího systému se soutěžící dozví hodnocení svého řešení a má
pak ještě možnost řešení opravit a odevzdat řešení téže úlohy opakovaně
vícekrát. Soutěžící z programátorsky méně vyspělých zemí tak dostali
velmi reálnou šanci vyřešit každý den aspoň některou úlohu, zatímco pro

ty nejlepší nepředstavovala přidaná úloha žádné velké zdržení a mohli se

pak věnovat ostatním, náročnějším problémům.
Každá z osmi soutěžních úloh byla hodnocena maximálně 100 body,

takže celkově bylo možné získat až 800 bodů. To se ovšem nikomu перо-

dařilo, vítěz soutěže Genadii Karatzkevitch z Běloruska dosáhl výsledku
743 bodů. Na základě přesně stanovených pravidel se na IOI podle dosaže-
ných bodů rozdělují medaile. Některou z medailí obdrží nejvýše polovina
účastníků soutěže, přičemž zlaté, stříbrné a bronzové medaile se udělují
přibližně v poměru 1 : 2 : 3 (s ohledem na to, aby soutěžící se stejným
bodovým ziskem získali stejnou medaili). Na letošní IOI bylo rozděleno
celkem 26 zlatých, 50 stříbrných a 73 bronzových medailí. Výsledky na-
šich soutěžících shrnuje následující tabulka.

Mezinárodní olympiáda v informatice je soutěží jednotlivců a žádné
pořadí zúčastněných zemí v ní není vyhlašováno. Podle dosažených vý-

kategorie P. Každý soutěžící má
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stříbrná medaile

bronzová medaile

140. Hynek Jemelík 403 bodů bronzová medaile
260. Karel Tesař

73. David Klaška 497 bodů

94. Vlastimil Dort 458 bodů

179 bodů

sledků bychom se ale jistě umístili v lepší polovině. Nejúspěšnějšími ze-
měmi byly letos Čína a Korea se třemi zlatými medailemi.

Všechny podrobnosti o soutěži, texty soutěžních úloh i jejich řešení
a celkové výsledky lze nalézt na adrese http: //www. ioi2009. org. Příští
ročníky IOI se budou konat v Kanadě (2010), Thajsku (2011), Itálii
(2012) a Austrálii (2013). Pořadatelé IOI 2010 z Kanady na místě po-
zvali všechny delegace zúčastněné na IOI 2009, aby se zúčastnily také
následujícího ročníku soutěže.

Texty soutěžních úloh

1. Lukostřelba

Turnaj v lukostřelbě má následující pravidla. Do řady se postaví N
terčů, očíslovaných zleva doprava od 1 do N. Soutěží 2N lukostřelců.
V každém kole turnaje se u každého terče utkají dva lukostřelci. Po skon-
čení kola se lukostřelci přesunou tímto způsobem:

> Vítězi na terčích 2 až N včetně se posunou o jeden terč doleva
(tj. к terčům 1 až N — 1).

> Poražení na terčích 2 až N včetně a vítěz na terči 1 zůstávají u stej-
něho terče.

o Poražený na terči 1 se přesune к terči N.
Turnaj trvá R kol. Počet kol je větší nebo roven počtu lučištníků

(tj. R г 2N).
Jste jediný účastník, který dorazil přesně na čas, nebo možná dokonce

o pár minut pozdě (jako obvykle). Zbylých 2N — 1 lučištníků zde už je
a jsou seřazeni v pořadí, ve kterém nastoupí к terčům. Zbývá se již jen
mezi ně někam zařadit, a turnaj může začít
nastoupí к terči 1, následující dva к terči 2, a tak dále, až dva nejpravější
lučištníci nastoupí к terči N.

Všichni lučištníci včetně vás jsou oznámkováni dle dovednosti (jako
ve škole, tj. lučištník s nižší známkou je dovednější). Žádní dva lučištníci
nejsou stejně dovední, a když spolu soutěží, ten s nižší známkou vždy
zvítězí.

dva nejlevější lučištníci
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Znáte známky všech soutěžících a chtěli byste se mezi ně zařadit tak,
abyste skončili u terče s co nejmenším číslem. Je-li více možností, jak
toho dosáhnout, vyberte tu, kde začínáte na terči s největším možným
číslem.

Úloha: Napište program, který načte známky všech lučištníků včetně
vás a počáteční pořadí vašich soupeřů a určí pozici, na niž byste se měli
zařadit, splňující výše popsané podmínky.

Omezení:

1 й N S 200 000
2N ^ R ^ 1 000 000 000 počet kol turnaje
1 ^ Sk S ZN

Vstup: Váš program musí načíst ze standardního vstupu následující

počet terčů, roven též polovině počtu lučištníků

známka lučištníků к

data:

o První řádek obsahuje dvě přirozená čísla N a R, oddělená mezerou.
> Následujících 2N řádků obsahuje známky lučištníků. První z těchto

řádků obsahuje vaši známku. Zbytek z nich obsahuje známky va-
šich soupeřů v pořadí, v němž jsou seřazeni (zleva doprava). Každý
z těchto 2N řádků obsahuje jedno přirozené číslo v rozsahu od 1
do 2N. Známka 1 je nejlepší a známka 2N je nejhorší. Žádní dva
lučištníci nemají stejnou známku.

Výstup: Váš program musí na standardní výstup vypsat jediný řádek
obsahující jedno přirozené číslo v rozsahu od 1 do Nvčetně: číslo terče,
na kterém budete v turnaji začínat.

Hodnocení: Pro některé ze vstupů bude N menší nebo rovno 5 000.
Za tyto vstupy můžete získat až 60 bodů. Pro některé z těchto vstupů
navíc bude N menší nebo rovno 200 a za tyto vstupy lze získat až 20 bodů.

Příklady:
Vstup Výstup

34 8

7

4

2

6

5

8

1

3
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Jste druhý nejhorší lukostřelec. Začnete-li na prvním terči, prohra-
jete a přesunete se na terč 4 a tam zůstanete až do konce. Podobně,
začnete-li na terči 2 či 4, zůstanete na něm až do konce. Začnete-li na

terči 3, porazíte nejhoršího lukostřelce, posunete se na terč 2 a tam zů-
stanete.

Vstup
4 9

Výstup
2

2

1

5

8

3

4

7

6

Jste druhý nejlepší lukostřelec. Nejlepší je již na prvním terči a zů-
stane tam až do konce. Kdekoliv začnete, budete se v každém kole posu-
novat o jeden terč doleva, až dorazíte к prvnímu terči. Zde prohrajete,
přesunete se к čtvrtému terči, a opět se začnete přesunovat doleva. Abyste
po 9 kolech byli na terči 1, musíte začít na terči 2.

2. Stavba

Potřebujete najmout dělníky na stavbu. Máte N zájemců, očíslova-
ných od 1 do N. V případě, že zaměstnáte zájemce číslo k, budete mu
muset platit alespoň Sk korun. Navíc, zájemce číslo к má úroveň kvalifi-
kace Qk■ Odbory vyžadují, aby platy byly přímo úměrné úrovni kvalifi-
kace. Zaměstnáte-li například zájemce А а В takové, že Qa = 3<5b, pak
budete muset dělníkovi A platit přesně třikrát tolik, co dělníkovi B. Platy
mohou být i neceločíselné a dokonce je ani nemusí být možné vyjádřit
v desítkové soustavě konečným počtem číslic; je tedy možné dělníkovi
platit například třetinu či šestinu koruny.

Máte к dispozici W korun a chtěli byste najmout co nejvíc dělníků.
Je jen na vás, koho najmete a kolik mu budete platit, ale musíte dodržet
jak požadavky na minimální platy, tak omezení odborů. Všem vybraným
dělníkům samozřejmě nemůžete dohromady platit více než W korun.

Vzhledem к tomu, že tito dělníci stejně budou jen nosit cihly, jejich
kvalifikace pro vás není důležitá a snažíte se pouze maximalizovat počet
najatých dělníků. Existuje-li více než jedna možnost, jak tohoto maximál-
ního počtu dosáhnout, preferujete tu, v níž platíte dělníkům dohromady
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nejméně peněz. Pokud existuje více možností, jak splnit tyto podmínky,
zvolte jednu libovolnou z nich.

Úloha: Napište program, který načte požadavky na minimální mzdy
a úrovně kvalifikace dělníků a částku, kterou disponujete, a určí, které děl-
niky máte najmout. Musíte najmout co nejvíce dělníků, a to tak, abyste
přitom utratili co nejméně peněz a zároveň splnili výše popsané omezení
odborů.

Omezení:

1 ^ й 500 000
1 ^ Sk ^ 20 000
l^Qkú 20000
1 ^ W ^ 10 000 000 000 částka, jíž disponujete

Důležité upozornění: Největší možná hodnota W se nevejde do 32 bi-
tů, musíte proto pro její reprezentaci použít 64-bitový datový typ, napři-
klad long long v C/C++ či int64 v Pascalu.

počet zájemců
minimální mzda požadovaná zájemcem číslo к
úroveň kvalifikace zájemce číslo к

Vstup: Váš program musí načíst následující data ze standardního
vstupu:

[> První řádek obsahuje dvě přirozená čísla N a W, oddělená mezerou.
[> Následujících N řádků popisuje zájemce. Na к-tém z těchto řádků se

nachází dvě přirozená čísla Sk a Qk oddělená mezerou.

Výstup: Váš program musí vypsat na standardní výstup následující
data:

t> První řádek musí obsahovat právě jedno přirozené číslo H, počet děl-
níků, které najmete.

\> Následujících H řádků musí obsahovat čísla dělníků, které jste se
rozhodli zaměstnat. Každý z těchto řádků musí obsahovat jedno při-
rozené číslo mezi 1 a N. Tato čísla musí být navzájem různá. Jejich
pořadí může být libovolné.
Hodnocení: Za daný vstup obdržíte plný počet bodů, jestliže vaše

volba dělníků splňuje všechna omezení, maximalizuje jejich počet a mi-
nimalizuje součet jejich platů. Jestliže váš výstup bude mít správný první
řádek (tj. určíte správně hodnotu H), ale zbytek nebude splňovat pod-
minky zadání, obdržíte 50 % bodů. Stejně budete hodnoceni i v případě,
že zbytek výstupu nebude správně naformátován.

V několika z testovacích vstupů bude N nanejvýš 5 000. Celkově za

tyto vstupy můžete získat až 50 bodů.

Příklady:
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VýstupVstup
4 100

5 1000

10 100

8 10

20 1

Jediný způsob, jak si můžete dovolit najmout dva dělníky, je zamést-
nat zájemce 2 a 3. Zájemci 2 zaplatíte 80 korun a zájemci 3 zaplatíte
8 korun. Celkově zaplacená částka bude menší než 100 korun, které máte
к dispozici.

Vstup
3 4

1 2

1 3

1 3

Zde si můžete dovolit zaměstnat všechny tři zájemce. Prvnímu z nich
zaplatíte 1 korunu a zbylým dvěma 1 korunu a 50 haléřů. Dohromady
jim tedy budete platit 4 koruny, což přesně odpovídá vašemu rozpočtu.

Vstup
3 40

10 1

10 2

10 3

Zde si nemůžete dovolit zaměstnat všechny tři zájemce, jelikož by vás
to stálo 60 korun. Nicméně můžete najmout libovolné dva z nich. Vybe-
rete si zájemce 2 a 3, jelikož na této kombinaci utratíte nejméně. Stačí
vám dělníkovi 2 platit 10 korun a dělníkovi 3 platit 15 korun, dohromady
tedy utratíte 25 korun. Oproti tomu, jestliže byste zaměstnali zájemce
1 a 2, museli byste jim platit 10 a 20 korun, a jestliže byste zaměstnali
zájemce 1 a 3, platili byste jim 10 a 30 korun.

2

2

3

Výstup
3

1

2

3

Výstup
2

2

3

3. POI (úloha s úplnou odezvou)
Místní Plovdivská olympiáda v informatice (POI) má následující ne-

obvyklá pravidla. Soutěží v ní N účastníků a mají za úkol řešit T soutěž-
nich úloh. Každé odevzdané řešení úlohy je testováno s jedinými vstup-
nimi daty, takže za každou úlohu získá každý soutěžící buď plný počet
bodů, nebo nic. Žádné částečné hodnocení neexistuje.

Počet bodů přidělených za správně vyřešenou úlohu se stanoví až
po skončení soutěže a je roven počtu soutěžících, kteří tuto úlohu nevy-
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řešili. Výsledné hodnocení soutěžícího je stanoveno jako součet bodů,
které soutěžící získal za všechny jím vyřešené úlohy.

Filip se zúčastnil soutěže, ale je zmaten složitými pravidly bodování
a nedokáže určit svoje umístění v celkovém pořadí POI. Pomozte Fili-
povi a napište mu program, který určí jeho celkové hodnocení a výsledné
umístění v soutěži.

Před zahájením soutěže obdrželi účastníci jednoznačná identifikační
čísla od 1 do N. Filip má číslo P. Ve výsledkové listině jsou soutěžící
uspořádáni sestupně podle počtu získaných bodů. V případě shody bodů
je ve výsledkové listině umístěn dříve ten soutěžící, který vyřešil více
úloh. Pokud nerozhodne ani toto kritérium, soutěžící se stejnými výsledky
budou uspořádáni vzestupně podle svých identifikačních čísel.

Úloha: Napište program, který určí Filipovo výsledné hodnocení
a jeho pořadí ve výsledkové listině na základě informací, který soutěžící
vyřešil kterou úlohu.

Omezení-.

1 й N <; 2 000
1 ^ T ^ 2 000
1 < P < N

počet účastníků soutěže
počet řešených úloh
Filipovo identifikační číslo

Vstup: Váš program musí přečíst ze standardního vstupu následující
údaje:

> První řádek obsahuje tři celá čísla V, T, P oddělená vždy jednou
mezerou.

> Dalších N řádků popisuje, které úlohy vyřešil který soutěžící. V pořadí
k-tý z těchto řádků určuje, které úlohy vyřešil soutěžící s identifikač-
ním číslem k. Každý takový řádek obsahuje T celých čísel oddělených
mezerami. První z čísel na řádku udává, zda soutěžící к vyřešil první
úlohu, druhé určuje, zda vyřešil druhou úlohu, atd. Každé z těchto
T čísel je rovno 0 nebo 1, přičemž 1 znamená vyřešenou úlohu a 0 zna-
mená nevyřešenou úlohu.

Výstup: Váš program musí zapsat na standardní výstup jediný řádek,
který obsahuje dvě celá čísla oddělená jednou mezerou. První z nich před-
stavuje výsledný počet bodů, které Filip získal v soutěži. Druhé z čísel na

výstupu určuje Filipovo pořadí ve výsledkové listině. Je to číslo z rozmezí
od 1 do N, kde 1 znamená umístění na prvním místě (tj. soutěžící, který
dosáhl nejvyššího bodového hodnocení) a N umístění na posledním místě
(tj. soutěžící s nejnižším hodnocením).
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Hodnocení: V testovacích datech odpovídajících celkovému ohodno-
cení 35 body nebude mít žádný soutěžící v POI stejný výsledný počet
bodů jako Filip.

Příklad:

Vstup
5 3 2

0 0 1

110

10 0

110

110

První úlohu nevyřešil jediný soutěžící, takže bude hodnocena 1 bo-
dem. Druhou úlohu nevyřešili dva soutěžící, bude tedy hodnocena 2 body.
Třetí úlohu nevyřešili čtyři soutěžící, takže je hodnocena 4 body. První
soutěžící tudíž získal celkem 4 body; druhý soutěžící (Filip), čtvrtý a pátý
soutěžící mají všichni po 3 bodech; třetí soutěžící má 1 bod. Soutěžící
s identifikačními čísly 2, 4 a 5 mají nejen shodný počet bodů, ale i stejný
počet vyřešených úloh, takže jejich vzájemné pořadí bude určeno podle
identifikačních čísel. Filip bude tudíž ve výsledkové listině POI na druhém
místě, hned za soutěžícím s číslem 1.

Výstup
3 2

M = 3
4. Rozinky

Cukrářka Bonny potřebuje rozřezat ta-
bulku čokolády s rozinkami. Čokoláda má
tvar obdélníku s dílky uspořádanými do
N řádků a M sloupců. Celkově je tedy tvo-
řena NM dílky. V každém dílku čokolády
je jedna nebo více rozinek, žádná rozinka nepřesahuje hranice dílků.

Na začátku je čokoláda vcelku. Bonny ji potřebuje postupně řezat na
menší a menší části, až nakonec bude čokoláda rozřezána až na jednotlivé
samostatné dílky (tzn. na NM dílků). Bonny má hodně práce a s řezáním
čokolády jí proto pomáhá její asistent Petr. Petr provádí pouze rovné řezy
po hranicích dílků, vždy od kraje ke kraji řezaného kusu čokolády. Za
každý provedený řez dostane Petr odměnu. Bonny nemá po ruce dostatek
peněz, má ale spoustu zbývajících rozinek. Za každý provedený řez proto
Bonny zaplatí Petrovi tolik rozinek, kolik rozinek je obsaženo v řezaném
kusu čokolády.

Bonny chce zaplatit Petrovi za rozřezání celé čokolády na dílky co

nejméně. Zná počet rozinek v každém z NM dílků a může podle toho
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volit pořadí, v jakém dává Petrovi jednotlivé kusy čokolády na řezání,
a určovat, jaký řez má Petr provést (zda vodorovně nebo svisle a kde
přesně). Pomozte Bonny určit, jak má čokoládu nechat řezat, aby zapla-
tila Petrovi za její rozřezání na jednotlivé dílky co nejméně.

Úloha: Napište program, který na základě počtu rozinek obsažených
v jednotlivých dílcích čokolády určí minimální počet rozinek, který musí
Bonny zaplatit Petrovi za rozřezání celé čokolády na dílky.

Omezení:
1 ^ N, M ^ 50 rozměry čokolády (vyjádřeny počtem dílků)
1 ^ Rk.p = 1 000 počet rozinek v dílku v A:-té řadě a p-tém sloupci

Vstup: Váš program přečte ze standardního vstupu následující údaje:
o První řádek obsahuje dvě celá čísla N a M oddělená jednou mezerou.
> Dalších N řádků popisuje, kolik rozinek je obsaženo v jednotlivých

dílcích čokolády. V pořadí k-tý z těchto N řádků popisuje k-tou řadu
čokolády. Každý takový řádek obsahuje M celých čísel oddělených
vždy jednou mezerou. Tato čísla určují počty rozinek obsažených
v jednotlivých dílcích příslušné řady čokolády, a to v pořadí dílků
zleva doprava.

Výstup: Váš program musí zapsat na standardní výstup jeden řádek
obsahující jedno celé číslo: minimální počet rozinek, které musí Bonny
zaplatit Petrovi.

Hodnocení: V několika z testovacích vstupů budou zadané hodnoty
N a M nanejvýš rovny 7. Za tyto vstupy můžete získat celkem 25 bodů.

Příklad:

Vstup Výstup
2 3

2 7 5

19 5

Jeden z více možných způsobů, jak lze dosáhnout ceny 77, vypadá
následovně:

77

SHOD иишдШ 2 i 7 52 i 7 5 2 i 72 i 7 i 5

1[9 ПГ
- + - + -

- + -

ТИШ шиш1 ' 9 i 5 1 i 9 5 1 > 9 5

Bonny nejprve požádá Petra, aby oddělil třetí sloupec od zbytku čo-
kolády. Za to zaplatí Petrovi 29 rozinek.

Potom dá Bonny Petrovi menší z obou kusů čokolády, který je tvořen
dvěma dílky po 5 rozinkách. Petr ho rozdělí za 10 rozinek.
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Dále dá Bonny Petrovi zbývající kus čokolády, který má dílky obsa-
hující 2, 7, 1 a 9 rozinek. Bonny požádá Petra o vodorovný řez a zaplatí
za něj 19 rozinek.

Konečně dá Bonny Petrovi na rozříznutí levý horní blok (řez za 9 ro-

zinek) a pak i levý spodní blok (řez za 10 rozinek).
Celkové cena řezání čokolády je 29 + 10 + 19 + 9 + 10 = 77 rozinek.

Žádné jiné pořadí řezů nevede к levnějšímu rozřezání čokolády na jed-
notlivé dílky.

5. Garáž (úloha s úplnou odezvou)
Ve velké garáži je N parkovacích míst, která jsou očíslována od 1 do

N včetně. Garáž otvírá každé ráno prázdná a je během dne provozována
v následujícím režimu. Kdykoliv do garáže přijede auto, hlídač zkontro-
luje, zda je některé parkovací místo volné. Pokud není, auto musí počkat
u vjezdu do garáže, dokud se nějaké místo neuvolní. Je-li v garáži více
volných míst, auto zaparkuje na volném místě s nejmenším číslem. Jestliže
do garáže přijedou další auta v době, kdy nějaké auto čeká na uvolnění
místa, všechna tato auta se řadí u vjezdu do fronty v tom pořadí, v jakém
přijela. Když se pak uvolní v garáži nějaké parkovací místo, zaparkuje na
něm první auto z fronty (tzn. to z čekajících aut, které přijelo nejdříve).

Cena za parkování (v dolarech) se počítá jako součin váhy auta (v ki-
logramech) a koeficientu, jehož hodnota závisí na použitém parkovacím
místě. Cena nezávisí na tom, jak dlouho auto zůstane v garáži.

Správce garáže ví, že dnes přijede do garáže celkem M aut, a zná také
pořadí jejich příjezdů a odjezdů. Pomozte mu spočítat, kolik dolarů dnes
celkově vybere za parkování.

Úloha: Napište program, který na základě znalosti cenových koefi-
cientů jednotlivých parkovacích míst v garáži a údajů o přijíždějících
autech (váhy aut, pořadí jejich příjezdů a odjezdů) určí celkovou cenu
v dolarech, kterou řidiči parkujících aut zaplatí.

Omezení:
i <; N й 100

1 <; M й 2 000
l^Rsú 100
1 ^ Wk ^ 10000 váha auta к v kilogramech

Vstup: Váš program musí přečíst ze standardního vstupu následující

počet parkovacích míst
počet aut
koeficient parkovacího místa s v dolarech za kilogram

údaje:
> První řádek obsahuje celá čísla N a M oddělená mezerou.
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> Dalších N řádků udává koeficienty parkovacích míst. V pořadí s-tý
z těchto řádků obsahuje jedno celé číslo Rs, koeficient parkovacího
místa číslo s v dolarech za kilogram.

> Následujících M řádků určuje váhy aut. Auta jsou očíslována od 1
do M včetně, a to bez ohledu na pořadí jejich příjezdu do garáže
nebo odjezdu. V pořadí k-tý z těchto M řádků obsahuje jedno celé
číslo Wk, váhu auta číslo к v kilogramech.

> Posledních 2M řádků popisuje chronologicky, jak probíhají příjezdy
a odjezdy jednotlivých aut. Kladné celé číslo i znamená, že auto číslo
i přijíždí do garáže. Záporné celé číslo —i znamená, že auto číslo i od-
jíždí z garáže. Žádné auto nebude odjíždět z garáže dříve, než přijelo,
a číslo každého auta od 1 do M včetně se objeví v této posloupnosti
právě dvakrát — jednou při příjezdu a podruhé při odjezdu. Žádné
auto neodjede z garáže před zaparkováním (tzn. žádné auto neopustí
předčasně frontu, v níž čeká na parkování).
Výstup-. Program musí zapsat na standardní výstup řádek obsahující

jedno celé číslo — částku v dolarech, kterou dnes utrží správce garáže.
Hodnocení: V testovacích datech, za která lze získat hodnocení 40 bo-

dů, bude mít každé přijíždějící auto к dispozici vždy alespoň jedno volné
parkovací místo v garáži. V těchto případech tedy žádné auto nebude
muset čekat na uvolnění místa.

Příklady:
Vstup Výstup

162002 4

5

2

100

500

1000

2000

3

1

2

4

-1

-3

-2

-4
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Auto číslo 3 zaparkuje na místě 1 a zaplatí 1 000 -5 = 5 000 dolarů.
Auto číslo 1 zaparkuje na místě 2 a zaplatí 100 • 2 = 200 dolarů.
Auto číslo 2 přijede a musí čekat u vjezdu.
Auto číslo 4 přijede a musí čekat u vjezdu za autem číslo 2.
Když auto číslo 1 opustí své parkovací místo, auto číslo 2 na něm

zaparkuje a zaplatí 500 -2 = 1 000 dolarů.
Když auto číslo 3 opustí své parkovací místo, auto číslo 4 na něm

zaparkuje a zaplatí 2 000 -5 = 10 000 dolarů.
Výstup
5300

Vstup
3 4

2

3

5

200

100

300

800

3

2

-3

1

4

-4

-2

-1

Auto číslo 3 zaparkuje na místě 1 a zaplatí 300 • 2 = 600 dolarů.
Auto číslo 2 zaparkuje na místě 2 a zaplatí 100 • 3 = 300 dolarů.
Auto číslo 1 zaparkuje na místě 1 (které se uvolnilo po odjezdu auta

číslo 3) a zaplatí 200 • 2 = 400 dolarů.
Auto číslo 4 zaparkuje na místě 3 (poslední zbývající místo) a zaplatí

800 -5 = 4 000 dolarů.

6. Míša
Medvěd Míša objevil tajnou včelí zásobu medu a teď si lebedí a po-

včela! Než se Míšachutnává si na něm. Vtom kde se vzala, tu se vzala
stačil překulit a schovat za strom, včela ho zahlédla jedním ze svých oček
a spustila poplach. Míša ví, že z úlů právě vyrazily hordy včel a pokud
ho dopadnou, zle to s ním dopadne. Musí včas přestat jíst med a utéct
do svého doupěte. Ale med je slaďoučký a Mísoví se od něj vůbec nechce
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odejít. Pomozte mu určit, jak dlouho ještě může zůstat, aby se stihl bez-
pecně vrátit domů.

Míšův les vypadá jako čtvercová mřížka o rozměrech N krát N, orien-
tovaná ve směru světových stran. Na každém políčku je strom, tráva, úl
nebo Míšovo doupě. Dvě políčka sousedí, pokud se jedno z nich nachází
bezprostředně na sever, jih, východ či západ od druhého (ale ne diago-
nálně). Jak jste si již jistě všimli, Míša je velmi mlsný a to se negativně
projevuje na jeho pohybových schopnostech — každým krokem se dokáže
posunout pouze na sousední políčko, a to pouze po trávě (na stromy Míša
lézt nedokáže) či do svého doupěte. Samozřejmě se také nesmí posunout
na políčko obsahující včely. Za jednu minutu Míša ujde nanejvýš S kroků.

V okamžiku, kdy včely vyhlásí poplach, je Míša na políčku obsahují-
cím med a včely jsou na všech políčkách, která obsahují úl (v lese může
být několik úlů). Každou další minutu se odehrají následující události:

t> Jestliže je Míša stále na políčku s medem, rozhodne se, zda zůstane
další minutu nebo zda vyrazí domů. Jestliže zůstane, pak se celou
minutu nepohne. Jinak (v případě, že se rozhodl vyrazit nebo již
políčko s medem opustil) ujde nanejvýš S kroků dle výše popsaných
pravidel.

> Poté, co Míša stráví minutu pojídáním medu či pohybem po lese,
se včelí roj rozšíří o jedno pole do všech světových stran, ale jen po

travnatých políčkách. Přesněji, roj včel se rozšíří na všechna travnatá
políčka sousední s políčky, která již včely obsahují. Míša tedy nesmí
být na žádném z těchto políček. Jakmile na nějakém políčku jsou
včely, už na něm zůstanou až do konce
zvětšuje se.
Na konci první minuty se tedy včely nacházejí na úlech a na trav-

natých políčkách, která s úly sousedí. Na konci druhé minuty jsou včely
navíc na travnatých políčkách, na která se lze z úlů dostat dvěma kroky
po travnatých políčkách ve směru světových stran, a tak dále. Po nějaké
době včely zaplní všechna políčka, na která se z úlů dá dostat.

Ani Míša, ani včely nemohou opustit les. Dle výše popsaných pravidel
Míša bude jíst med celočíselný počet minut.

Úloha: Napište program, který načte mapu lesa a určí maximální
počet minut, které Míša může strávit na své výchozí pozici tak, aby se
stále byl schopen vrátit do doupěte dříve, než ho dostihnou včely.

Omezení:
1 ^ TV ^ 800 velikost (délka strany) lesa

roj se nepřesunuje, ale
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1 S' ^ 1 000 maximální počet kroků, které Míša může urazit za 1 min

Vstup: Váš program musí ze standardního vstupu načíst následující
data:

o První řádek obsahuje celá čísla N a S oddělená mezerou.
t> Mapa lesa je obsažena na následujících N řádcích. Každý z těchto

řádků obsahuje N znaků, z nichž každý popisuje jedno políčko lesa.
Možné znaky a jejich význam:

T označuje strom
G označuje travnaté políčko
M označuje Míšovu počáteční pozici, která je na travnatém políčku
D označuje Míšovo doupě. Na toto políčko smí vstoupit Míša, ale ne

včely.
H označuje úl

Poznámka. Mapa vždy bude obsahovat právě jedno písmeno M, právě
jedno písmeno D a alespoň jedno písmeno H. Také vždy bude existovat
posloupnost sousedících písmen G spojující počáteční pozici Míši s jeho
doupětem a posloupnost sousedících písmen G spojující alespoň jeden
úl s Míšovou počáteční pozicí. Tyto posloupnosti mohou být i prázdné,
jestliže doupě či úl sousedí s Míšovou počáteční pozicí. Všimněte si, že
včely nemohou vstoupit na políčko obsahující doupě, ani skrz něj nemo-
hou projít. Toto políčko se tedy pro ně chová stejně jako strom.

Výstup: Váš program musí na standardní výstup vypsat jediný řá-
dek obsahující jedno celé číslo: maximální počet minut, které Míša může
strávit na své počáteční pozici tak, aby se stačil bezpečně vrátit domů.

Jestliže se Míša nemůže vrátit domů, aniž by ho včely dostihly, váš
program musí místo toho vypsat na standardní výstup číslo —1.

Hodnocení: Za vstupy, pro něž je N nejvýše 60, lze získat až 40 bodů.

Příklady:
Vstup Výstup
7 3 1

TGGGGGT

TGGGGGT

MGGGGGD

TGGGGGT

TGGGGGT

THHHHHT
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Poté, co Míša jí med jednu minutu, vyrazí nejkratší cestou přímo
vpravo a po dvou minutách bezpečně dorazí domů.

Vzorový výstupVzorový vstup
7 3 2

TGGGGGT

TGGGGGT

MGGGGGD

TGGGGGT

TGGGGGT

TGHHGGT

Míša jí med dvě minuty, během třetí minuty provede kroky —>j~—*►,
během čtvrté minuty kroky
minuty.

a nakonec kroky [—* během páté

7. Kraje
Výbor OSN pro rozvoj krajů (VOSNRK) má následující organizační

strukturu: Zaměstnává celkem iVlidí, očíslovaných od 1 do V v klesají-
cím pořadí dle služebního stáří. Služebně nejstarší zaměstnanec (před-
sedá) má tedy číslo 1. Každý zaměstnanec kromě předsedy (zaměstnance
číslo 1) má právě jednoho přímého nadřízeného. Nadřízený je vždy slu-
žebně starší než všichni jeho podřízení. Zaměstnanec A je manažer za-
městnance B, jestliže A je buď přímý nadřízený zaměstnance В, nebo
manažer přímého nadřízeného zaměstnance B. Předseda je tedy mana-
žerem libovolného jiného zaměstnance. Zjevně také není možné, aby dva
zaměstnanci byli navzájem svými manažery.

Každý zaměstnanec pochází z jednoho z R krajů. Kraje jsou očís-
lovány od 1 do R, přičemž jejich pořadí nemá žádný speciální význam.
Úřad OSN pro vyšetřování (ÚOSNV) se zabývá podezřením, že VOSNRK
diskriminuje některé kraje. Aby bylo možné toto podezření potvrdit či
vyvrátit, ÚOSNV potřebuje počítačový system schopný odpovídat na

následující dotazy: Máte dány dva různé kraje r\ а Г2- Kolik existuje
dvojic zaměstnanců e\ a e2 takových, že zaměstnanec e\ pochází z kraje
ri, zaměstnanec в2 pochází z kraje Г2 a e\ je manažer zaměstnance в2?
Každý dotaz má dva parametry (kraje ri а Г2) a odpověď na něj je jedno
celé číslo (počet dvojic e\ a 02 splňujících výše popsané podmínky).

Úloha: Napište program, který načte informace o krajích, z nichž po-
chází zaměstnanci VOSNRK, a o přímých nadřízených těchto zaměst-
nanců a poté interaktivně odpovídá na dotazy výše popsaného typu.
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Omezení:
1 ^ 200 000 počet zaměstnanců
1 ^ R ^ 25 000 počet krajů
1 ^ Q ^ 200 000 počet dotazů, na něž bude muset program odpovědět
1 й Hk i R
1 й Sk < к
1 ^ Г\,Г2 S R čísla krajů, udávající parametry dotazu

Vstup: Váš program musí ze standardního vstupu načíst následující

kraj, ze kterého pochází zaměstnanec к (1 ^ к ^ N)
přímý nadřízený zaměstnance к (2 ^ к ^ N)

data:

> První řádek obsahuje celá čísla N, R a Q oddělená jednotlivými me-
zerami.

t> Následujících N řádků popisuje N zaměstnanců výboru v klesajícím
pořadí dle služebního stáří, tj. k-tý z těchto řádků popisuje zaměst-
nance číslo k. První z řádků (popisující předsedu) obsahuje jedno celé
číslo udávající kraj Hi, ze kterého předseda pochází. Každý z násle-
dujících N — 1 řádků obsahuje dvě celá čísla oddělená mezerou: číslo
Sk přímého nadřízeného zaměstnance к a číslo Hk kraje, z něhož
zaměstnanec к pochází.
Interakce: Poté, co váš program načte výše popsaná vstupní data,

musí střídavě číst dotazy ze standardního vstupu a vypisovat odpovědi
na ně na standardní výstup. Na dotazy (jichž je dohromady Q) je nutno
odpovídat postupně
přečtete následující dotaz.

Každý dotaz je zadán na jednom řádku, obsahujícím dvě navzájem
různá celá čísla r\ а Г2 oddělená mezerou. Odpověď na tento dotaz musí
být vypsána na standardní výstup jako jeden řádek obsahující jedno celé
číslo: počet dvojic zaměstnanců e\ а в2 takových, že zaměstnanec e\

pochází z kraje r\, zaměstnanec в2 pochází z kraje r-i a e\ je manažer
zaměstnance в2-

Poznámka: Vstupní data budou taková, že správnou odpovědí na

každý zadaný dotaz bude číslo menší než 1000 000 000.
Důležitá poznámka: Aby váš program správně komunikoval s vy-

hodnocovačem, je nutné, aby „spláchnul" (flush) standardní výstup po
každé odpovědi. Musí také zabránit zablokování při čtení standard-
ního vstupu, což by mohlo nastat, pokud byste použili například příkaz
scanf ("\°/od\n").

Hodnocení: Za vstupy, pro něž R nepřesáhne 500, lze získat až
30 bodů.

na každý dotaz musíte odpovědět předtím, než
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Za vstupy, pro něž z každého kraje bude pocházet nanejvýš 500 za-

městnanců, lze získat až 55 bodů.
Za vstupy splňující obě podmínky lze získat 15 bodů a za vstupy,

které splňují alespoň jednu z těchto podmínek, lze získat 70 bodů.
Přiklad:

Vstup
6 3 4

Výstup

1

1 2

1 3

2 3

2 3

5 1

1 2

1 [spláchnout standardní výstup]
1 3

3 [spláchnout]
2 3

2 [spláchnout]
3 1

1 [spláchnout]
Testování: Jestliže budete testovat své řešení pomocí rozhraní sou-

těžního prostředí, vstupní soubor, který mu poskytnete, musí obsahovat
vstupní data i dotazy (obdobně jako ve výše uvedeném příkladu, ale bez
prázdných řádků).

8. Obchodní cestující
Obchodní cestující usoudil, že optimální plánování cesty mezi městy

po zemi je výpočetně příliš náročné, a proto přenesl svůj obchod na řeku
Dunaj. Při plánování svých obchodních cest se tak může omezit pouze na

jednorozměrný případ, neboť se pohybuje výhradně podél vodního toku.
Pořídil si velmi rychlý člun, s jehož pomocí se dostane po řece odkudkoliv
kamkoliv v zanedbatelném čase; člun má ovšem značnou spotřebu paliva.
Na každý metr ujetý proti proudu (tzn. směrem к prameni řeky) spotře-
buje palivo v ceně U dolarů, zatímco na každý metr ujetý po proudu
(tzn. směrem od pramene) spotřebuje palivo za D dolarů.

Obchodní cestující by rád navštívil N trhů, které se konají na různých
místech podél řeky. Každý trh se koná pouze jeden den. O každém trhu X
zná obchodní cestující jeho datum Tx (je vyjádřeno počtem dnů od doby,
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kdy si pořídil člun), místo konání Lx (je vyjádřeno jako vzdálenost v me-
třech podél toku od pramene řeky) a předpokládanou tržbu v dolarech
Mxi kterou obchodní cestující získá, pokud tento trh navštíví. Obchodní
cestu musí zahájit i zakončit ve svém domovském přístavu na řece, který
se nachází v místě S (měřeno rovněž v metrech podél toku od pramene

řeky).
Pomozte obchodnímu cestujícímu zvolit, které trhy má navštívit (po-

kud vůbec nějaké) a v jakém pořadí, aby svou obchodní cestou dosáhl
co nejvyššího zisku. Zisk obchodního cestujícího je roven součtu tržeb
(v dolarech), které získá na všech navštívených trzích, minus celková cena
paliva (rovněž v dolarech), které spotřebuje jeho člun při cestování po
řece.

Pamatujte na to, že pokud se trh A koná dříve než trh В, obchodní
cestující je může navštívit jedině v tomto pořadí (tzn. nemůže navštívit
trh В a teprve potom trh A). Jestliže se dva trhy konají ve stejném
dni, obchodní cestující může navštívit oba tyto trhy, a to v libovolném
pořadí. Není nijak omezeno, kolik trhů může obchodní cestující navštívit
v jednom dnu, ale přirozeně nemůže navštívit dvakrát stejný trh a získat
na něm dvakrát tržbu. Může ale projet místem, kde se právě koná trh,
na kterém již dříve byl (bez získání další tržby na tomto trhu).

Úloha: Napište program, který určí maximální zisk, jehož může do-
sáhnout obchodní cestující na své cestě. Vstupem programu jsou údaje
o datu, místu konání a předpokládané tržbě pro všechny probíhající trhy,
o umístění domovského přístavu a o jízdních nákladech člunu.

Omezení:
1 5= N ^ 500 000 počet trhů
1 ^ D U 10 cena paliva (v dolarech) za jeden metr jízdy

proti proudu (U) a po proudu (D)
1 S $ S 500 001 umístění domu obchodního cestujícího
1 ^ Tfc 5Í 500 000 datum konání trhu к
1 5Í Lfc 500001 místo konání trhu к
1 ^ Mfc ^ 4 000 předpokládaná tržba (v dolarech) při návštěvě trhu к

Vstup: Váš program musí přečíst ze standardního vstupu následující
údaje:

> První řádek obsahuje celá čísla N, U, D a S v uvedeném pořadí,
oddělená vždy jednou mezerou.

> Dalších N řádků popisuje všech N trhů (v libovolném vzájemném
uspořádání). V pořadí k-tý z těchto N řádků popisuje trh číslo k;
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obsahuje tři celá čísla oddělená vždy jednou mezerou: datum konání
trhu Tfc, jeho umístění Lk a předpokládanou tržbu obchodního cestu-
jícího Mjfc.
Poznámka: Všechna umístění uvedená na vstupu jsou navzájem

různá. To znamená, že žádné dva trhy se nekonají na stejném místě
a žádný trh se nekoná v místě, kde má obchodní cestující svůj domovský
přístav.

Výstup: Váš program musí zapsat na standardní výstup jeden řádek
obsahující jedno celé číslo: maximální zisk, jakého může obchodní cestu-
jící dosáhnout uskutečněním obchodní cesty.

Hodnocení: V testovacích datech ohodnocených 60 body se žádné
dva trhy nebudou konat ve stejném dni.

V testovacích datech ohodnocených 40 body nebude žádné číslo na

vstupu větší než 5 000.
Obě výše uvedené podmínky budou zároveň splněny v testovacích

datech ohodnocených 15 body.
Alespoň jedna z obou výše uvedených podmínek bude splněna v tes-

tovacích datech ohodnocených 85 body.
Příklad:

Vstup
4 5 3 100

2 80 100

20 125 130

10 75 150

5 120 110

Optimální je navštívit trhy 1 a 3 (tzn. trhy na pozicích 80 a 75).
Pořadí událostí a jejich finanční důsledky budou následující:

> Obchodní cestující pojede 20 metrů proti proudu za 100 dolarů. Do-
savadní zisk: —100

t> Navštíví trh číslo 1, kde utrží 100. Dosavadní zisk: 0
o Pojede 5 metrů proti proudu za 25. Dosavadní zisk: —25
o Navštíví trh číslo 3, kde utrží 150. Dosavadní zisk: 125
> Pojede 25 metrů po proudu, aby se vrátil domů, což stojí 75. Výsledný

zisk: 50

Výstup
50
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