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O průběhu 59. ročníku matematické olympiády

Padesátý devátý ročník matematické olympiády se uskutečnil v České
republice ve školním roce 2009/10. Hlavním pořadatelem soutěže bylo
(stejně jako v předchozích letech) Ministerstvo školství, mládeže a tělo-
výchovy ČR, dále Jednota českých matematiků a fyziků a Matematický
ústav Akademie věd ČR. Průběh soutěže zajišťovala stejně jako v přede-
šlých ročnících soutěže Ústřední komise MO (ÚK MO), které předsedal
doc. RNDr. Jaromír Šimša, CSc., s místopředsedy RNDr. Jaroslavem
Švrčkem, CSc. (pro kategorie А, В, C), RNDr. Vojtěchem Žádníkem, Ph.D.
(pro kategorie Z9-Z5) a doc. RNDr. Pavlem Tópferem, CSc. (pro kate-
gorii P). Tajemníkem ÚK MO byl RNDr. Karel Horák, CSc.

Přípravou a výběrem úloh pro jednotlivé kategorie a soutěžní kola
byly pověřeny Ústřední komisí MO dvě úlohové komise (jedna pro kate-
gorie А, В, C a druhá pro kategorie Z). Obě komise se sešly na svých
pracovních seminářích dvakrát ročně (v listopadu 2009 a v květnu 2010).
Ve spolupráci se slovenskými kolegy zabezpečují obě komise s více než
ročním předstihem výběr úloh pro další ročník MO v České republice i na
Slovensku. Garanty výběru úloh pro tento ročník soutěže byli Jaromír
Šimša (A), Pavel Novotný (В) a Pavel Leischner (C).

Krajská (II.) kola v jednotlivých kategoriích se uskutečnila ve stáno-
vených termínech: 19. 1. 2010 v kategorii A, 30. 3. 2010 v kategoriích В
a C a 12. 1. 2010 v kategorii P. Celkové počty účastníků v jednotlivých
krajích každé z uvedených kategorií jsou uvedeny v tabulkách, které tvoří
přílohu této zprávy. V průběhu 59. ročníku MO se na základě účinné
podpory projektu OPVK MATES CZ.1.07/2.3.00/09.0017 v moravských
regionech uskutečnily pravidelné semináře určené řešitelům MO. Konaly
se na PřF UP v Olomouci, dále v Jihlavě a ve Zlíně. Lektorsky se na nich
podíleli především řešitelé projektu MATES.

Ústřední kolo 59. ročníku Matematické olympiády v kategorii A se
uskutečnilo 21.-24. března 2010 v Chebu. Organizace závěrečného kola
soutěže se v tomto roce ujala Krajská komise MO Karlovarského kraje.
Vlastní soutěž se konala v prostorách Západočeské univerzity v Plzni, sou-
těžící a členové ÚK MO byli po dobu soutěže ubytováni v Domově mlá-
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deže Středního odborného učiliště elektrotechnického a Hotelové školy
v Plzni.

Záštitu nad finálovou částí MO převzali PaedDr. Josef Novotný, hejt-
man Karlovarského kraje, MUDr. Jan Svoboda, starosta města Chebu,
a Msgre. František Radkovský, biskup plzeňský, kteří se zúčastnili slav-
nostního zahájení ústředního kola. To se uskutečnilo v neděli 21. března
2010 v prostorách Fakulty ekonomické Západočeské Univerzity v Chebu.
Kromě soutěžících, členů UK MO a garantů se zahájení soutěže zúčastnili
rovněž pozvaní hosté, mezi nimiž byli především zástupci společenského
života v Chebu a v Karlovarském kraji a dále zástupci sponzorů (skupina
ČEZ, ECOVIS Corporate Finance, s.r.o.). Soutěžící a členové Ústřední
komise MO (ÚK MO) byli ubytováni v Domově mládeže Střední zdra-
votnické školy v Chebu. Vlastní soutěž se přitom po oba soutěžní dny
konala v učebnách Gymnázia Cheb.

Na základě jednotné koordinace úloh krajského kola kategorie A po-
zvala ÚK МО к účasti v ústředním kole 51 nej lepších řešitelů z celé
republiky. Svého zástupce v něm tentokrát neměl pouze Liberecký kraj.
Soutěžními dny byly 22. a 23. březen 2010. Na řešení obou trojic soutěž-
nich úloh měli soutěžící již tradičně vyhrazeny vždy 4,5 hodiny čistého
času a za každou úlohu bylo možno získat maximálně 7 bodů.

Chebští organizátoři připravili pro soutěžící a pro členy ÚK MO atrak-
tivní doprovodný program. Odpoledne po prvním soutěžním dnu bylo vy-
hrazeno zájezdu do přírodní rezervace Soos poblíž Františkových Lázní
a prohlídce historického centra Chebu. Následující den odpoledne byla
pro zájemce zajištěna prohlídka zámku Kynžvart spojená s návštěvou
nedalekých Mariánských Lázní.

Slavnostní vyhlášení výsledků a předání cen nejlepším soutěžícím
se uskutečnilo ve středu 24. března 2010 dopoledne v aule FEK ZČU
v Chebu za přítomnosti představitelů města Plzeň a zástupců ZČU
v Plzni. Předseda ÚK MO doc. Jaromír Šimša poděkoval ve svém závě-
reěném slovu všem, kteří se zasloužili o zdárný průběh ústředního kola ka-
tegorie A, především pak předsedovi Krajské komise MO v Karlovarském
kraji Mgr. Josefu Hazimu, a krátce informoval všechny přítomné o ústřed-
ním kole v jubilejním, 60. ročníku MO, které se uskuteční v březnu 2010
v Brně.

Na ústřední kolo kategorie A bezprostředně navázalo ústřední kolo ka-
tegorie P. К účasti v závěrečném kole této soutěže bylo tentokrát pozváno
33 nejlepších řešitelů krajského kola, finále soutěže se však zúčastnilo
pouze 29 z nich.

6



Soutěžními dny ústředního kola v kategorii P byly 25. a 26. březen
2010. První soutěžní den řešili soutěžící tři úlohy teoretické, celý druhý
soutěžní den byl vyhrazen tradičně řešení dvou praktických úloh. Za kaž-
dou teoretickou úlohu mohli soutěžící získat nejvýše 10 bodů, za řešení
každé praktické úlohy pak 15 bodů — celkově tedy nejvýše 60 bodů. Na
přípravě soutěžních úloh v kategorii P se podíleli pracovníci Katedry ma-
tematické informatiky Matematicko-fyzikální fakulty Univerzity Karlovy
v Praze.

Deset z jedenácti vítězů soutěže v kategorii A bylo pozváno к výbě-
rovému soustředění v Kostelci nad Černými lesy před 51. mezinárodní
matematickou olympiádou. Ta se uskutečnila v červenci 2010 v Astaně,
hlavním městě Kazachstánu. Kromě toho bylo vybráno také družstvo
pro 4. ročník Středoevropské matematické olympiády (MEMO), který se
konal 9.-15. září 2010 ve slovenském Strečně. Družstvo pro tuto mezi-
národní soutěž tvořila šestice úspěšných řešitelů ústředního kola katego-
rie A, kteří se nezúčastnili 51. MMO. Na Slovensku proběhl i 17. ročník
Středoevropské olympiády v informatice (CEOI, Košice 12.-19. 7. 2010).
V srpnu se pak české reprezentační družstvo zúčastnilo 22. ročníku Me-
zinárodní olympiády v informatice v kanadském Waterloo. Podrobnější
zprávy o těchto mezinárodních soutěžích jsou uvedeny na konci ročenky.

Ústřední komise MO se během 59. ročníku soutěže sešla na dvou

pravidelných jednáních, a to 11. prosince 2009 v Matematickém ústavu
AV ČR v Praze a dále 22. března 2010 v Chebu u příležitosti ústředního
kola MO.

Pro 40 nejlepších řešitelů krajského kola 59. ročníku MO v katego-
riích В a C uspořádala ÚK MO v červnu 2010 tradiční soustředění v Je-
víčku, organizované ředitelem tamějšího gymnázia, dr. Dagem Hrubým.
Lektorsky chod soustředění zabezpečovali doc. Calda, dr. Švrček, dr. Pa-
nák, dr. Calábek, dr. Leischner a dr. Hrubý. Počátkem září téhož roku se
konalo v Janských Lázních na chatě Lovrana ještě výběrové soustředění
nejlepších řešitelů kategorie A, jež bylo zároveň i poslední přípravou repre-
zentačního družstva pro 4. MEMO na Slovensku. Na tomto soustředění
jednotlivé semináře vedli doc. Šimša, dr. Horák, dr. Švrček, dr. Panák,
dr. Calábek, dr. Zhouf a Michal Rolínek.

Závěrem dovolte poděkovat všem nadšeným učitelům matematiky,
kteří nad své pracovní povinnosti připravovali své matematicky talento-
vaně žáky pro soutěž v tomto ročníku. Bez nich si lze jen těžko představit
úspěšný průběh nejstarší předmětové soutěže v České republice, kterou
je MO.
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Projev předsedy Ústřední komise MO
při slavnostním zahájení ústředního kola 59. ročníku MO

v Chebu

Dámy a pánové, vážení hosté, milí soutěžící,
vám z přítomných, pro které je dnešní setkání s matematickou olym-

piádou spíše výjimečným zážitkem, bych nejprve rád přiblížil charakter
naší soutěže. Pro její účastníky máme na každý ze dvou příštích dnů
připravenu trojici úloh, kterou budou řešit po dobu 4,5 hodin. Náměty
úloh budou pro soutěžící neznámé, takže úkolem našich mladých řešitelů
bude objevit některé utajené rysy a důsledky matematicky popsaných
situací a dobrat se ve vymezeném čase logickými úvahami к cíli, jasně
stanovenému zadáním každé úlohy. Opravovatelský tým pak v odevzdá-
ných protokolech zhodnotí nejen výsledné odpovědi, ale i výklad postupů
řešení a jeho korektnost a úplnost. Není to tedy ani tak soutěž znalostní či
soupeření v rychlosti a správnosti složitých výpočtů, jako spíše klání ná-
pádů, matematické intuice, objevných myšlenek a jejich správného koneč-
nélio podání. Tyto dovednosti přítomní účastníci již projevili ve školním
a krajském kole naší soutěže а к postupu do ústředního kola jim všichni
blahopřejeme. Zítra a pozítří se rozhodne, kteří soutěžící se na základě
podaných výkonů budou ucházet o místo v šestičlenném reprezentačním
družstvu České republiky pro každoroční mezinárodní olympiádu. Té se
v posledních letech účastní středoškoláci ze zhruba sto zemí celého světa
a letos v červenci se bude konat v Kazachstánu.

Když jsem se zamýšlel nad tím, jaké matematické téma zvolit pro
své dnešní vystoupení, uvědomil jsem si, že zadání letošní šestice úloh
pro ústřední kolo je nebývalé, jak se dnes říká, akční V jedné úloze se
bude střílet, pravda jenom do terče, námětem jiné úlohy bude pohádka
o tom, jak čaroděj unese nikoliv princeznu ze zámku, ale zástupce čtyř
nejmenovaných politických stran, v úloze pojmenovaných А, В, C a D.
Tak mne napadlo, že i já bych dnes mohl v obdobném duchu promluvit
o jedné pěkné matematické úloze, konkrétně ve formě příběhu o skákající
bleše. Má následující zadání.

V rovině jsou dány dvě různoběžné přímky а a b. Blecha začne opako-
vaně skákat z jedné přímky na druhou. Všechny její skoky mají stejnou
délku a každý následující skok blecha volí tak, aby nebyl opakováním
předchozího skoku v opačném směru. Stanovte nutnou i postačující pod-
minku, za které se blecha po určitém počtu skoků dostane přesně na

místo, odkud své skákání po přímkách a, b začala.
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Skákavý pohyb blechy nám přibližuje obr. 1. Vidíme na něm úsečku,
která znázorňuje délku jednoho blešího skoku. Blecha zanedbatelných
rozměrů začala popsaný pohyb řekněme v bodě 1 přímky a. První skok
mohla cílit do dvou bodů 2 a 2' přímky b, blecha si vybrala ten bod, který
je označen číslem 2. Dále už blecha neměla na vybranou. Z bodu 2 sice
směřují na přímku a dva skoky dané délky, a to do bodů 1 a 3, aby však
neopakovala předchozí skok v opačném směru, blecha skočila do bodu 3,
ze kterého pak dále skočila na přímku b nikoliv zpět do bodu 2, nýbrž
do bodu 4, dále skočila na přímku a do bodu 5 a tak dále. Zobrazený
pohyb blechy končí částečně znázorněným skokem z bodu 8 do bodu 9
na přímce a, který už na obrázku chybí. Je však vidět, že to ještě není
bod 1, jak bychom si přáli, aby se dráha blechy uzavřela. Z obrázku není
patrné, zda se tak v dané situaci vůbec někdy stane.

b
2'

délka skoku '8V
4

\2
\ a

i

Obrázek 2 jasně vysvětluje, že dráha blechy se uzavře po čtyřech
skocích v případě, kdy přímky a a 6 jsou navzájem kolmé. Stane se tak
bez ohledu na to, ze kterého bodu 1 přímky a blecha svůj pohyb začala.
Jde jen o to, aby své skoky vůbec mohla začít, takže bod 1 musí mít od
průsečíku přímek a, b vzdálenost menší, než je délka jednoho skoku.

b

a

3 1 = 5

4

Obr. 2

9



Daleko zajímavější je situace z obr. 3, v níž přímky a, b svírají úhel 45°.
Zdá se, že dráha blechy se uzavře po osmi skocích, ani velmi přesné rýso-
vání však nedává matematickou jistotu, že tato hypotéza skutečně platí.

'

7 1

К jejímu potvrzení je zapotřebí učinit malý objev, podmíněný tím, že
se na danou situaci podíváme poněkud jinak. Jak, to vysvětluje obr. 4:
odděleně posoudíme skoky z přímky a na přímku b (říkejme jim liché)

3 i

6

4

Obr. 4

a skoky z přímky b na přímku a (ty budou sudé). Může nás pak napad-
nout, že každé dva po sobě jdoucí skoky téže parity leží na dvou navzájem
kolmých přímkách. Dobře je to vidět na lichých skocích 34 a 56, které se

křižují, méně už na lichých skocích 12 a 34, nebo na sudých skocích 23 a 45,
které je třeba protáhnout, abychom sevřené pravé úhly vytušili. Dokázat
takovou dílčí hypotézu o pravých úhlech není těžké. Stačí к tomu využít
dvojice rovnoramenných trojúhelníků, které pro skoky 12 a 34 vidíte na
obr. 5, pro skoky 23 a 45 na obr. 6.
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'4

Po této zkušenosti už není obtížné provést obdobnou úvahu s úpravě-

ným závěrem pro případ obecných přímek a, b a vyřešit tak úplně celou
úlohu, o které tady povídám. Podívejme se jak.

Na obr. 7 jsou znázorněny různoběžky a, b svírající obecný úhel veli-
kosti a a první tři skoky blechy tvořící dráhu 1234. Z rovnoramenného
trojúhelníku 123 plyne, že skoky 12 a 23 představují vektory, které jsou

souměrně sdružené podle přímky a. Podobně z rovnoramenného trojúhel-
niku 234 plyne, že skoky 23 a 34 představují vektory, které jsou souměrně
sdružené podle přímky b. Abychom souměrnost těchto dvojic vektorů lépe
viděli, nakreslil jsem ještě exempláře vektorů 12, 23 a 34 umístěné do
průsečíku přímek a a b. Přítomní soutěžící jistě mají ponětí o skládání
osových souměrností, takže si nepochybně uvědomují, že vektor 34 je
obrazem vektoru 12 v otočení o orientovaný úhel 2a, je-li již zmíněný
úhel a orientován od přímky а к přímce b. To je zásadní objev, který nás
již rychle přivede к řešení úlohy, a to díky tomu, že provedenou úvahu
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můžeme zřejmě zopakovat pro kteroukoliv trojici po sobě následujících
skoků, nejenom pro tu trojici první.

Pozorní diváci si možná povšimli, že na obrázku je kromě os souměr-
nosti dvou trojúhelníků ještě jedna neoznačená přímka. Je to rovnoběžka
s přímkou a, která je obrazem této přímky v posunutí o vektor 34. Do-
kládám na ní ten zřejmý poznatek, že počáteční i koncový bod každého
skoku z jedné konkrétní přímky na druhou, v našem případě skoku 34,
jsou jednoznačně určeny příslušným volným, kdekoliv umístěným vekto-
rem. Proto je dráha blechy uzavřená, právě když je posloupnost lichých
vektorů 12, 34, 56, ... periodická. Shrneme zjištěné poznatky a jejich
důsledky do následující podoby.

Označme a orientovaný úhel otočení, které převede přímku a na

přímku b. V posloupnosti všech skoků z přímky a na přímku b je každý
následující vektor vždy obrazem předchozího vektoru v otočení 1Z o úhel 2a.
Proto je obecně (k + 1 )-ní vektor posloupnosti obrazem prvního vektoru
v k-násobném otočení7Zk o úhel 2ka. S ohledem na jednoznačné umístění
každého vektoru skoku proto platí, že dráha blechy se uzavře po 2к skocích,
právě když je úhel 2ka roven nejmenšímu celočíselnému (řekněme m-)
násobku plného úhlu 360°, tedy 2ka — m ■ 360°. Z upravené rovnosti

(180m\ °
a=(—)

vyčteme hledanou — a poněkud překvapivou — nutnou i postačující pod-
minku pro uzavřenost bleší dráhy: úhel a mezi přímkami a a b je ve

stupních vyjádřen celým číslem nebo zlomkem.
Dokázaný výsledek ilustrujeme pro úhel a = 40°. Z rovnosti 40° =

= (180m/k)° plyne m/k — 2/9, odkud к = 9, takže dráha blechy se
vře po 2 • 9 = 18 skocích, jak uvidíte na myslím docela působivém obr. 8,

uza-

5 13 15

12

6

14 Obr. 8
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kterým své vyprávění o bleše téměř končím. Dodám, že zájemci o tento
námět se mohou sami věnovat rozboru obdobného problému, kdy blecha
skáče po dvou mimoběžkách v prostoru, nebo situaci, kdy blecha skáče po
stranách daného trojúhelníku podle jejich neměnného cyklického pořadí.
Tehdy není obtížné lokalizovat uzavřenou dráhu ze tří skoků, neboť jde
o poměrně jednoduchou úlohu vepsat do daného trojúhelníku ABC rov-

nostranný trojúhelník 123, jak vidíte na obr. 9. Délka strany vepsaného

A 1 = 4 В

Obr. 9

trojúhelníku 123, tedy délka jednoho blešího skoku, ovšem závisí na tvaru
a velikosti daného trojúhelníku ABC. Zato nalezení uzavřené dráhy slo-
žené ze šesti skoků (obr. 10) je patrně velice složitá úloha, o jejímž řešení
nemám sebemenší ponětí. Obtíž spatřuji v tom, že takové uzavřené dráhy
mají nekonečně mnoho různých tvarů a je nesnadné stanovit, která z nich
ve vhodném zmenšení či zvětšení přesně padne svými vrcholy na strany
daného trojúhelníku.

4 1 = 7A В

Obr. 10

Na úplný závěr svého vystoupení chci jménem Ústřední komise MO
a všech přítomných hostů popřát všem soutěžícím do obou soutěžních
dopolední co nejvíce dobrých nápadů, postřehů a třeba i potřebné štěstí
při rozhodování, do kterých hypotéz, jež je napadnou, se pustit. Prohlašuji
ústřední kolo 59. ročníku MO za zahájené.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 59. ročníku MO
Kategorie

Kraj Celkem
A В C P

s u s и s и s и s и

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

87 81
100 48
98 52
45 27
22 15
30 22
59 26
40 28
46 36
71 48

149 90
88 37
39 27
68 46

87 72
66 17
28 23
47 5
12 2
33 17
43 4
34 8
17 3
57 25
67 30

126 102
85 34
60 40
69 33

323 273
262 108
190 119
171 74

54 24
128 73
158 52
118 56
99 68

198 111
365 199
206 75
121 66
241 90

23 18
11 9
4 4

10 9
1 1

10 7
9 7
3 3
6 4
1 0

17 11
4 4
3 3
6 4

19 6
55 27
47 15
41 17
30 25
69 38

132 68
62 25
47 22
98 28

52 9
32 14
69 12

ČR 942 583 644 241 940 480 108 84 2 634 1388

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 59. ročníku MO
Kategorie

CelkemKraj A В C P
S s и ss и s и и и

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

54 45 17 8
9 3
3 2
9 6
1 0
7 4
7 4
3 2
4 1
0 0

11 6
4 4
3 1
4 2

161 84
101 17
110 28

74 35

49 18
46 1
48 4
27 9
15 2
22 3
26 3
27 7
35 3
40 8
90 12
18 1
27 4
43 9

41 13
13 6
19 10

5 3
2 1

16 4
4 3
8 5
2 1

21 11
30 9

9 5
14 8
11 6

733
40 12
33 17

6 6
24 4
13 8
17 13
24 13
30 13
68 28

24 9
69 15
50 18
55 27
65 18
91 32

199 55
54 19
66 23
84 30

23 9
22 10
26 13

CR 195 85 413 198 82 43 1203 410513 84

U ... počet úspěšných řešitelůS ... počet všech soutěžících
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uvedeni
všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium.

Kraj Praha

Kategorie A

1. Tomáš Zeman, G J. Keplera, Praha 6
2. Jáchym Sýkora, G Ch. Dopplera, Praha 5
3. Radek Marciňa, G Ch. Dopplera, Praha 5
4. Lukáš Zavřel, G Praha 9, Chodovická
5. Kateřina Honzáková, G J. Keplera, Praha 6
6. Petr Ryšavý, G J. Heyrovského, Praha 5

7.-9. Jakub Hajič, Akad. G Praha 2, Korunní
Miroslav Olšák, G Budánka, Praha 5
Martin Topfer, G Praha 7, Nad Štolou

10. Tadeáš Dohnal, G Ch. Dopplera, Praha 5

Kategorie В

1. Martin Topfer, G Praha 7, Nad Štolou
2. Stanislav Mach, G J. Keplera, Praha 6

3.-4. Jakub Borovanský, G Ch. Dopplera, Praha 5
Tomáš Rusý, G J. Keplera, Praha 6

5.-6. Matouš Helikar, G Praha 6, Nad Alejí
Petra Kaštánková, G Praha 10, Omská

7. Jakub Krejčí, G Praha 1, Truhlářská
8. Marie Kvasnicová, G Praha 2, Botičská

9.-11. Jan Bydzovský, G J. Heyrovského, Praha 5
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David Janda, G Ch. Dopplera, Praha 5
Alena Preradová, G Praha 4, Konstantinova

Kategorie C

1.-3. Martin Čech, G Praha 6, Nad Alejí
Luisa Černochová, G Praha 6, Nad Alejí
Martin Sýkora, G Praha 6, Nad Alejí

4. Eliška Janásková, G Praha 1, Truhlářská
5.-6. Ondřej Cífka, G Praha 6, Nad Alejí

Michal Kurz, G Budanka, Praha 5
7.-15. Hana Dlouhá, G J. Keplera, Praha 6

Ondřej Košut, Akad. G Praha 2, Korunní
Anežka Kotrbová, G Praha 9, Špitálská
Adam Láj, G Ch. Dopplera, Praha 5
Miloš Prágr, G Praha 10, Voděradská
Jakub Slepička, G Praha 10, Voděradská
Tereza Stopková, PORG, Praha 8
Peřr Tomášek, G Praha 10, Voděradská
Tereza Uhlířová, G Praha 10, Omská

Kategorie P

1. Vlastimil Dort, G Praha 9, Špitálská
2. Tomáš Malý, G Praha 6, Arabská
3. Jin Setnička, G Praha Čakovice
4. Martin Patera, G Praha 6, Arabská

5.-7. Jaroslav Brabec, G Praha 6, Arabská
Martin Kerhart, G Praha 10, Voděradská
Michal Soucha, G Praha 10, Voděradská

8. Tomáš Báča, G Praha 6, Arabská

Středočeský kraj

Kategorie A

1. Petr Čermák, G Kladno
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Kategorie В

1.-2. Lenka Houdková, G Benešov
Miroslav Martínek, G Vlašim

3.-6. Petr Bělohlávek, G J. Barranda Beroun
Stanislav Hlubocký, G Kolín
Matěj Maivald, G J. Barranda Beroun
Jindřich Skřipko, G Kladno

Kategorie C

1.-2. Linda Tichá, G Benešov
Tnna Zavadilová, Masarykovo klasické G Říčany

3. Lncře Konopáčová, G Kolín
4.-5. Pečr Procházka, G Mladá Boleslav

Adéla Šimůnková, G dr. J. Pekaře, Mladá Boleslav
6.-7. Jan Kára, G Mladá Boleslav

Jakub Pešek, G Jiřího z Poděbrad, Poděbrady

Kategorie P

1. Pečr Čermák, G Kladno
2. Vojtěch Kolář, G F. Palackého, Neratovice
3. Vítězslav Plachý, G Jiřího z Poděbrad, Poděbrady

Jihočeský kraj

Kategorie A

1. Martina Vaváčková, G P. de Coubertina, Tábor
2. Pavel Dupal, G České Budějovice, Jírovcova
3. Ondřej 5eje/, SPŠ a VOŠ, Písek
4. Jan Navara, G Strakonice

Kategorie В

1. František Petrouš, G České Budějovice, Jírovcova
2. Marek Lipán, G České Budějovice, Jírovcova
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3.-5. Michal Hruška, G J. V. .Jirsíka, České Budějovice
Štěpánka Šímová, SPŠ a VOŠ, Tábor
Kristýna Zemková, G Prachatice

6.-7. Filip Hermann, G Český Krumlov
Martin Mach, G České Budějovice, Jírovcova

8. Kateřina Duspivová, G Český Krumlov
9. Lenka Čurnová, G České Budějovice, Jírovcova10.Petr Marvan, G P. de Coubertina, Tábor

Kategorie C1.Patrik Kroft, G České Budějovice, Česká
2.-3. Ondřej Matějka, G J. V. Jirsíka, České Budějovice

Alexij Moskovka, G České Budějovice, Jírovcova4.Michal Gabriel, G Strakonice
5.-6. Ondřej Micka, G České Budějovice, Jírovcova

Michaela Štěpánková, G Strakonice7.Lenka Machová, G České Budějovice, Jírovcova
8.-11. Lubomír Bureš, G J. V. Jirsíka, České Budějovice

Markéta Jůzlová, G Strakonice
Mariya Marchuk, G P. de Coubertina, Tábor
Vojtěch Votruba, G Třeboň

12. Jan Daňhel, G Dačice

Kategorie P

1. Filip Matzner, G J. V. Jirsíka, České Budějovice
2. David Krška, G J. V. Jirsíka, České Budějovice

Plzeňský kraj

Kategorie A

1. Michael Bílý, G J. Vrchlického, Klatovy
2. Martin Bucháček, G L. Pika, Plzeň
3. Martin Holeček, G Plzeň, Mikulášské nám.

4.-6. Kamila Bárnetová, G Plzeň, Mikulášské nám.
Trung Ha Due, Masarykovo G, Plzeň
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Jakub Klemsa, G J. Vrchlického, Klatovy
7. Lukáš Chlad, G Plzeň, Mikulášské nám.
8. Filip Hlásek, G Plzeň, Mikulášské nám.
9. Dung Le Anh, G Tachov

Kategorie В1.Jaroslava Ryplová, Masarykovo G, Plzeň
2.-3. Martin Prudek, G Plzeň, Mikulášské nám.

Kateřina Soukupová, G Plzeň, Mikulášské nám.

Kategorie C

1. David Hruška, G Plzeň, Mikulášské nám.
2. Michal Nožička, G Plzeň, Mikulášské nám.

3.-4. Juda Kaleta, G Klatovy
Thi Tuget Trang Nguyen, G Klatovy

5.-6. Kateřina Kinzlová, G Plzeň, Mikulášské nám.
Martin Matas, G L. Pika, Plzeň

7. Karolina Bóhmová, G J. S. Baara, Domažlice
8. Damd K«6eš, G L. Pika, Plzeň

9.-11. Lucie Častorálová, G Plzeň, Mikulášské nám.
Martin Hezoučký, G Klatovy

Kategorie P

1. Karel Tesař, VOŠ a SPŠE, Plzeň
2.-3. Filip Hlásek, G Plzeň, Mikulášské nám.

Filip Štědronský, G Plzeň, Mikulášské nám.
4. Martin Holeček, G Plzeň, Mikulášské nám.
5. Tomáš Faltín, G J. Vrchlického, Klatovy
6. Dana Kodýdková, G J. Vrchlického, Klatovy
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Karlovarský kraj

Kategorie A

1. Josef Hazi, G Cheb
2. Lukáš Jarosti, G Sokolov

Kategorie В1.Pham Tat Dat, G Cheb

Kategorie C

1. Due Anh Mai, G Cheb
2. Karel Guvenčiak, První české G, Karlovy Vary
3. Jan Kučera, Svobodná chebská škola, Cheb
4. Lucie Leňková, G Sokolov

5.-6. Jakub Karaffa, Svobodná chebská škola, Cheb
Jakub Kowalowski, G Sokolov

Ústecký kraj

Kategorie A

1. Štěpán Šimsa, G J. Jungmanna, Litoměřice
2. Michal Mojztk, SPŠ a VOŠ, Chomutov
3. Tadeáš Berkman, G Ústí nad Labem, Jateční

Kategorie В

1. František Wolf G Podbořany
2. Markéta Pitneyová, G J. Jungmanna, Litoměřice

3.-4. František Kaván, G Česká Kamenice
Vojtěch Kubica, G Česká Kamenice

Kategorie C

1. Štěpán Šimsa, G J. Jungmanna, Litoměřice
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2. Hong Thay Le, G Děčín, Komenského nám.
3. Kolář Daniel, G dr. V. Smejkala, Ústí nad Labem
4. Šebesta Karel, G Teplice, Čs. Dobrovolců

Kategorie P

1. Daniel Stahr, G J. Jungmanna, Litoměřice
2. Štěpán Šimsa, G J. Jungmanna, Litoměřice
3. Michal Mojzík, SPŠ a VOŠ, Chomutov
4. Ondřej Fiedler, G J. Jungmanna, Litoměřice

Liberecký kraj

Kategorie A

1. Jan Polášek, G Turnov
2. Martin Zikmund, G Turnov
3. Ondřej Kunc, G Turnov

Kategorie В

1. Martin Zikmund, G Turnov
2. Jiří Erhart, G F. X. Saldy, Liberec
3. Petr Jančík, G Jablonec nad Nisou, U Balvanu

Kategorie C

1. Marcel Tománek, G Jablonec nad Nisou, U Balvanu
2. Jan Baborák, G Česká Lípa
3. Ota Kunt, G F. X. Saldy, Liberec
4. Jakub Chvosta, G Jablonec nad Nisou, Dr. Randy
5. Pavel Buchvald, G Liberec, Jeronýmova
6. Ondřej Čajánek, G Jablonec nad Nisou, U Balvanu
8. Tomáš Muller, G Jablonec nad Nisou, Dr. Randy
9. Miroslav Hanzelka, G Česká Lípa
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Kategorie P

1. Jan Polášek, G Turnov
2. Martin Zikmund, G Turnov
3. Karolína Burešová, G Česká Lípa
4. Ondřej Kunc, G Turnov

Královéhradecký kraj

Kategorie A

1. Pečr Parízek, G B. Němcové, Hradec Králové
2. Jan Voborník, Jiráskovo G, Náchod
3. Tlnna Chejnovská, G B. Němcové, Hradec Králové

4.-5. Kateřina Medková, Biskupské G B. Balbína, Hradec Králové
Tomáš Rubín, G B. Němcové, Hradec Králové

6.-7. Jan Remeš, G Dobruška
Martin Vojtíšek, G B. Němcové, Hradec Králové

Kategorie В

1. .Pečr Jurčo, G Trutnov
2.-3. Josefina Mádrová, G Dobruška

Anežka Semrádová, G B. Němcové, Hradec Králové
4. Kateřina Vlčková, G Broumov
5. Pečr Bartoň, G J. K. Tyla, Hradec Králové

Kategorie C

1. Peír Kujal, G Broumov
2.-6. Vojtěch Erbrt, G J. K. Tyla, Hradec Králové

Matěj Fanta, Jiráskovo G, Náchod
Fz7zp Hauptfleisch, G F. M. Pelcla, Rychnov nad Kněžnou
Pavel Rozdolský, G a SOS Jaroměř
Jan Vávra, G Hořice

7. Eva Brožková, G B. Němcové, Hradec Králové
8. Lenka Šimonová, Lepařovo G, Jičín
9. Daniel Knut Fernet, G Nový Bydžov
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10. Václav Pokorný, Lepařovo G, Jičín

Kategorie P

1. Michal Bilanský, Lepařovo G, Jičín
2. Michael Pokorný, SŠ aplikované kybernetiky, Hradec Králové

Pardubický kraj

Kategorie A

1. Tomáš Kubelka, G Žamberk
2. Miroslav Koblížek, G Žamberk
3. Jan Novotný, G Pardubice, Dašická

Kategorie В

1. Tomáš Kubelka, G Žamberk

Kategorie C

1. Kristýna Kohoutová, G Žamberk
2. Martin Dvořák, SPŠE Pardubice
3. Jiří Malíř, G Pardubice, Dašická

4.-5. Tomáš Kodytek, G Ústí nad Orlicí
Marek Skalický, G Ústí nad Orlicí

6.-8. Kateřina Jarkovská, G Jevíčko
František Filip, G Ústí nad Orlicí
Michal Farník, G Vysoké Mýto

9. Jan Baláš, G Žamberk
10.-12. Jakub Jačisko, G Lanškroun

Filip Jeniš, G Jevíčko
Jiří Trnka, G Polička

Kategorie P

1. David Vondrák, G Pardubice, Dašická
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Kraj Vysočina

Kategorie A

1. Jan Nevoral, G Jihlava
2. Ondřej Bartoš, G Zdar nad Sázavou

3.-4. Jaromír Karmazín, G Velké Meziříčí
Jan Schwarz, G Jihlava5.Petr Louša, G Havlíčkův Brod

6.-7. Ondřej Šalanda, G Zdar nad Sázavou
Jiří Vejrosta, G Třebíč8.Vladislav Větrovec, G Třebíč

Kategorie В

1. Jakub Krásenský, G Jihlava
2. Ondřej Bartoš, G Zdar nad Sázavou

3.-4. Eva Havelková, G Zdar nad Sázavou
Jan Kuchařík, G Jihlava

5. Štěpán Holub, G Jihlava
6. Ondřej Zacha, G Jihlava

7.-8. Lukáš Buchta, G Velké Meziříčí
Helena Fišarová, G Jihlava

9.-11. Josef Bača, G V. Makovského, Nové Město na Moravě
Ludmila Mašterová, G Třebíč

Kategorie C

1. Jakub Sláma, G Třebíč
2. Filip Murár, G Třebíč

3.-4. Pavel Hladký, G Jihlava
Marian Krajíček, G Jihlava

5.-6. Stanislav Kruml, G Chotěboř
Tnna Kubátová, G Chotěboř

7.-8. Jaroslav Fikr, G Zdar nad Sázavou
Jan Hladík, G Pelhřimov

9. Lucie Zemánková, G Třebíč10.Daniel Jurda, G Velké Meziříčí
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Jihomoravský kraj

Kategorie A

1.-2. Hynek Jemelík, G Brno, tř. Kpt. Jaroše
David Klaška, G Brno, tř. Kpt. Jaroše

3.-4. Michal Horák, G Brno, tř. Kpt. Jaroše
Bohuslav Zrnek, G Brno, tř. Kpt. Jaroše

5.-6. Tomáš Pokorný, G Brno, tř. Kpt. Jaroše
Pavel Ševeček, G Brno, tř. Kpt. Jaroše

7.-9. Pavel Čoupek, Biskupské G Brno
Aleš Dostál, G Blansko
Jan Sopoušek, G Brno-Řečkovice

10.-12. Jaromír Kala, G Brno, tř. Kpt. Jaroše
Gabriela Kubíčková, Cyrilometodějské G Brno, Lerchova
Tomáš Lamser, G Brno, tř. Kpt. Jaroše

Kategorie В

1.-3. Pavel Polcer, G Brno, Křenová
Jana Sotáková, G Brno, tř. Kpt. Jaroše
Dominik Tělupil, G Brno, tř. Kpt. Jaroše4.Jan Stopka, G Brno, tř. Kpt. Jaroše

5.-6. Martin Novák, G Hodonín
Václav Raida, G Brno, tř. Kpt. Jaroše

7.-8. Tomáš Effenberg, G Brno, Vídeňská
David Máchal, Biskupské G Brno

9.-10. Michal Pokorný, G Břeclav

Kategorie C

1. Jakub Vančura, G Brno, tř. Kpt. Jaroše
2.-3. Tadeáš Kučera, G Brno, tř. Kpt. Jaroše

Jana Novotná, G Brno, tř. Kpt. Jaroše
4.-5. Vojtech Hlávka, G a ZUŠ Šlapanice

Mark Karpilovsky, G Brno, tř. Kpt. Jaroše
6.-7. Anna Hradecká, G Brno-Řečkovice

Jan Povolný, G Brno, tř. Kpt. Jaroše
8.-10. Kristián Kozák, G Matyáše Lercha Brno
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Tereza Novotná, G a ZUŠ Šlapanice
Oldřich Vlašic, G Brno, tř. Kpt. Jaroše

Kategorie P

1. Hynek Jemelík, G Brno, tř. Kpt. Jaroše
2. David Klaška, G Brno, tř. Kpt. Jaroše
3. Tomáš Lamser, G Brno, tř. Kpt. Jaroše
4. Bohuslav Zrnek, G Brno, tř. Kpt. Jaroše

5.-6. Vendula Poncová, G Brno, tř. Kpt. Jaroše
Vít Stanislav, Pnrkyňovo gymnázium, Strážnice

Zlínský kraj

Kategorie A1.Josef Ondřej, G Rožnov pod Radhoštěm

Kategorie В

1. David Šerý, G Rožnov pod Radhoštěm
2. Filip Křenek, G Rožnov pod Radhoštěm
3. Zdeněk Rafaj, G Zlín-Lesní čtvrť
4. Michal Opler, Masarykovo G, Vsetín
5. Lucie Doležálková, G Uherské Hradiště

Kategorie C

1. Jan Mikel, G Rožnov pod Radhoštěm
2. Adriana Slaníková, G Uherské Hradiště
3. Jitka Jamková, G Uherské Hradiště
4. Lukáš Fušek, G Uherské Hradiště
5. Jan Mrázek, G Kroměříž
6. Petra Křenová, G Uherské Hradiště
7. Michal Janoušek, G Zlín, nám. TGM

8.-9. .Peíra Horák, G Kroměříž
Lenka Šilhánková, G Jana Pivečky, Slavičín
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Kategorie P

1.-2. Aleš Křivák, SPŠH Uherské hradiště
Petr Pecha, SPSS Vsetín

3.-4. Matěj Kocián, G Zlín-Lesní čtvrť
Lukáš Ptáček, G J. A. Komenského Uherský Brod

Olomoucký kraj

Kategorie A

1. Martin Broušek, G J. Škody, Přerov
2. Vojtěch Miloš, G Hranice
3. Lukáš Kunovský, G Jeseník
4. Dominik Lachman, G Olomouc-Hejčín

Kategorie В

1. Eva Gocníková, G J. Škody, Přerov
2.-3. Alena Harlenderová, Slovanské G Olomouc

Klára Sládečková, G J. Škody, Přerov4.Jiří Polcr, G Olomouc-Hejčín
5.-6. Jiří Eichler, Slovanské G Olomouc

Gabriela Olivíková, G J. Škody, Přerov
7. Josef Uchytil, G Jeseník
8. Šimon Rozsíval, G Šumperk

Kategorie C

1.-2. Lubomír Grund, G Zábřeh
Jan Krivošej, G Šumperk

3. A/es Neoral, G Olomouc-Hejčín
4. Matěj Suchánek, G J. Wolkera, Prostějov
5. Adéla Hrdličková, G Šumperk

6.-7. Dominika Fidrová, G Kojetín
Ondřej Krčmář, G Hranice

8.-9. Lukáš Chrněla, G J. Škody, Přerov
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Martina Langerová, G J. Wolkera, Prostějov
10. Kateřina Sloupová, G Jeseník

Moravskoslezský kraj

Kategorie A

1. Petr Boroš, G M. Koperníka, Bílovec
2. Jakub Solovský, G M. Koperníka, Bílovec

3.-4. Jiří Biolek, G P. Bezruce, Frýdek-Místek
Jan Legerský, G Ostrava-Hrabůvka

5. Simona Domesová, G M. Koperníka, Bílovec
6. Miroslav Raška, Wichterlovo G, Ostrava-Poruba
7. Matúš Kopf’ Mendelovo G, Opava
8. Ondřej Bouchala, G Havířov, Komenského
9. Josef Svoboda, G Frýdlant nad Ostravicí

10.—11. Lukáš Folwarczný, G Havířov, Komenského
Lukáš Habrnal, G P. Bezruce, Frýdek-Místek

Kategorie В

1.-3. Ondřej Bouchala, G Havířov
Lukáš Folwarczný, G Havířov
Michal Kopf Slezské G Opava

4. Jan Tofel, Mendelovo G, Opava
5. Barbora Mólová, G M. Koperníka, Bílovec
6. Augustin Zídek, G Frýdlant nad Ostravicí

Kategorie C

1. Josef Svoboda, G Frýdlant nad Ostravicí
2. Stanislav Horák, G M. Koperníka, Bílovec

3.-4. Lukáš Ondráček, G Ostrava-Zábřeh
Matěj Vaněk, G P. Bezruce, Frýdek-Místek

5.-6. Filip Vavera, Biskupské G, Ostrava-Poruba
Magdaléna Žváčková, G Rýmařov

7.-9. Lubomír Hudec, G P. Bezruce, Frýdek-Místek
Lucie Kolčárková, G P. Bezruce, Frýdek-Místek
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Kristýna Mořkovská, G P. Bezruce, Frýdek-Místek
10.-12. Martin Poloch, Matiční G, Ostrava

Ondřej Sikora, G Karviná
Kateřina Solovská, G M. Koperníka, Bílovec

Kategorie P

1. Lukáš Folwarczný, G Havířov, Komenského
2. Tomáš Dočekal, G J. Kainara, Hlučín
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Výsledky ústředního kola 59. ročníku MO
kategorie A

Vítězové

1. David Klaška, 4/4 G Brno, tř. Kpt. Jaroše 14
2. Miroslav Olšák, 8/8 G Buďánka, Praha 5
3. Jáchym Sýkora, 4/4 G Ch. Dopplera, Praha 5

4.-6. Radek Marciňa, 4/4 G Ch. Dopplera, Praha 5
Lukáš Zavřel, 7/8 G Praha 9, Chodovická
Bohuslav Zrnek, 4/4 G Brno, tř. Kpt. Jaroše

7. Petr Ryšavý, 8/8 G J. Heyrovského, Praha 5
8.-9. Filip Hlásek, 7/8 G Plzeň, Mikulášské nám.

Tomáš Zeman, 7/8 G J. Keplera, Praha 6
10. Jakub Solovský, 3/4 G M. Koperníka, Bílovec
11. Michael Bílý, 7/8 G J. Vrchlického, Klatovy

35 b.
34 b.

27 b.

26 b.

26 b.

26 b.

24 b.

23 b.

23 b.

22 b.

21b.

Další úspěšní řešitelé

12.-14. Martin Bucháček, 7/8 G L. Pika, Plzeň
Michal Horák, 4/4 G Brno, tř. Kpt. Jaroše
Jakub Klemsa, 8/8 G J. Vrchlického, Klatovy

15.-19. Ondřej Bartoš, 6/8 G Zdar nad Sázavou
Tadeáš Dohnal, 7/8 G Ch. Dopplera, Praha 5
Kateřina Honzáková, 4/4 G J. Keplera, Praha 6
Josef Ondřej, 8/8 G Rožnov pod Radhoštěm
Martin Topfer, 2/4 G Praha 7, Nad Štolou

20. Jiří Biolek, 5/6 G P. Bezruce, Frýdek-Místek
21.-22. Hynek Jemelík, 3/4 G Brno, tř. Kpt. Jaroše

Petr Pařízek, 6/6 G B. Němcové, Hradec Králové
23. Lukáš Chlad, 8/8 G Plzeň, Mikulášské nám.

20 b.

20 b.

20 b.

19b.

19b.

19b.

19b.
19b.

18b.

17b.

17b.

16 b.
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Výsledky ústředního kola 59. ročníku MO
kategorie P

Vítězové

1. Hynek Jemelík, 3/4 G Brno, tř. Kpt. Jaroše
2. David Klaška, 4/4 G Brno, tř. Kpt. Jaroše
3. Vlastimil Dort, 8/8 G Praha 9, Špitálská
4. Jan Polášek, 7/8 G Turnov

5.-6. Filip Hlásek, 7/8 G Plzeň, Mikulášské nám.
Michal Mojzík, 3/4 SPŠ a VOŠ Chomutov

7. Petr Čermák, 8/8 G Kladno

52 b.
51b.

45 b.

41b.

40 b.

40 b.

37 b.

Další úspěšní řešitelé

8.-9. Martin Holeček, 8/8 G Plzeň, Mikulášské nám.
Tomáš Lamser, 8/8 G Brno, tř. Kpt. Jaroše

10.—11. Martin Patera, 4/4 G Praha 6, Arabská
Štěpán Šimsa, 5/8 G J. Jungmanna, Litoměřice

12. Vojtěch Kolář, 8/8 G F. Palackého, Neratovice
13. Bohuslav Zrnek, 8/8 G Brno, tř. Kpt. Jaroše
14. Karel Tesař, 4/4 VOŠ a SPŠE Plzeň

15.-17. Michal Bilanský, 8/8 Lepařovo G, Jičín
Lukáš Folwarczný, 6/8 G Havířov, Komenského
Jiří Setnička, 5/6 G Praha 9, Čakovice

34 b.

34 b.

30 b.

30 b.

29 b.
24 b.

20 b.
19 b.

19 b.

19 b.
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Kategorie С

Texty úloh

C - I - 1

Erika a Klárka hrály hru „slovní logik“ s těmito pravidly: Hráč A si
myslí slovo složené z pěti různých písmen. Hráč В vysloví libovolné slovo
složené z pěti různých písmen a hráč A mu prozradí, kolik písmen uhodl
na správné pozici a kolik na nesprávné. Písmena považujeme za různá,
i když se liší jen háčkem nebo čárkou (například písmena A, Á jsou různá).
Kdyby si hráč A myslel například slovo LOĎKA а В by vyslovil slovo
KOLÁČ, odpoví hráč A, že jedno písmeno uhodl hráč В na správné pozici
a dvě na nesprávné. Zkráceně sdělí „1+2“, neboť se opravdu obě slova sho-
dují pouze v písmenu O včetně pozice (druhé zleva) a v písmenech К a L,
jejichž pozice jsou odlišné. Erika si myslela slovo z pěti různých písmen
a Klárka vyslovila slova KABÁT, STRUK, SKOBA, CESTA a ZÁPAL.
Erika na tato slova v daném pořadí odpověděla 0 + 3, 0 + 2, 1 + 2, 2 + 0
a 1 + 2. Zjistěte, jaké slovo si Erika mohla myslet. (Peter Novotný)

С - I - 2

Vrcholem C pravoúhelníku ABCD veďte přímky pag, které mají s da-
ným pravoúhelníkem společný pouze bod C, přičemž přímka p má od
bodu A největší možnou vzdálenost a přímka q vymezuje s přímkami
AB, AD trojúhelník co nejmenšího obsahu. (Leo Boček)

C - I - 3

Určete všechna reálná čísla x, která vyhovují rovnici 4x — 2[xj — 5.
(Symbol |_xj značí největší celé číslo, které není větší než číslo x, tzv.

(Jaroslav Švrček)dolní celou část reálného čísla x.)
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С - I - 4

Kružnice k(S;r) se dotýká přímky AB v bodě A. Kružnice l(T;s) se
dotýká přímky AB v bodě В a protíná kružnici к v krajních bodech C,
D jejího průměru. Vyjádřete délku a úsečky AB pomocí poloměrů r, s.
Dokažte dále, že průsečík M přímek CD, AB je středem úsečky AB.

(Leo Boček)

С - I - 5

Dokažte, že pro libovolná kladná reálná čísla a, b platí

2(a2 + 3ab + b2) . a + 6л/аЬ ^ <
2 ’5 (a + 6)

a pro každou z obou nerovností zjistěte, kdy přechází v rovnost.
(Ján Mazák)

C - I - 6

Najděte všechna přirozená čísla, která nejsou dělitelná deseti a která
ve svém dekadickém zápisu mají někde vedle sebe dvě nuly, po jejichž

(Jaromír Šimša)vyškrtnutí se původní číslo 89krát zmenší.

C - S - 1

Kružnice £;(5;6cm) a 1(0; 4 cm) mají vnitřní dotyk v bodě B. Určete
délky stran trojúhelníku ABC, kde bod A je průsečík přímky OB s kruž-
ničí к a bod C je průsečík kružnice к s tečnou z bodu A ke kružnici l.

(Pavel Leischner)

C - S - 2

Najděte všechny dvojice nezáporných celých čísel a, 6, pro něž platí a2 +
-\-b-\-‘2 = a~b~b2. (Ján Mazák)

C - S - 3

Dokažte, že pro libovolná celá čísla n а, к větší než 1 je číslo nk+2 — nk
dělitelné dvanácti. (Vojtech Bálinť)
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С - II - 1

Dokažte, že pro libovolná čísla a, b z intervalu (1, oo) platí nerovnost

(a2 + 1)(62 + 1) - (a - 1 )2{b - l)2 ^ 4,

(Jaromír Šimša)a zjistěte, kdy nastane rovnost.

С - II - 2

Je dána kružnice к se středem S. Kružnice l má větší poloměr než kruž-
nice k, prochází jejím středem a protíná ji v bodech M a N. Přímka, která
prochází bodem iV a je rovnoběžná s přímkou MS, vytíná na kružnicích
tětivy NP a NQ. Dokažte, že trojúhelník MPQ je rovnoramenný.

(Tomáš Juřík)

C - II - 3

Určete všechny dvojice reálných čísel ar, y, které vyhovují soustavě rovnic

[x + y\ = 2 010,
[x\-y = p,

jestliže a) p

Symbol L^J značí největší celé číslo, které není větší než dané reálné
(Jaroslav Švrček)

2, b) p = 3.

číslo x (tzv. dolní celá část reálného čísla x).
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Řešení úloh

C - I - 1

Slova ZÁPAL a STRUK nemají společná písmena. Proto se, jak plyne
z odpovědí 1 + 2 a 0+2, mezi jejich písmeny, jež dohromady tvoří množinu
M = {Z, Á, P, A, L, S, T, R, U, K}, nachází všech pět písmen hledaného
slova. Ve slově SKOBA mají být právě tři z hledaných písmen. Jsou to
tedy písmena S, K, A. (Zbývající písmena В a O totiž do množiny M
nepatří.) Ve slově CESTA mají být jen dvě z hledaných písmen, a obě na
správné pozici. Jsou to již nalezená S a A, která tedy patří na třetí, resp.

páté místo hledaného slova (a písmeno T lze z množiny M „vyloučit").
Písmeno К nemůže být ani na prvním, ani druhém místě, jak plyne z od-
povědí pro slova KABÁT (0 + 3) a SKOBA (1 + 2). Je tedy na čtvrtém
místě a zbývá určit první dvě písmena. Ve slově STRUK jsou jen dvě
z hledaných písmen (musí to tedy být S a K), obě v nesprávných pozi-
cích. Proto z množiny M „vyloučíme" i písmena R, U (a T, pokud jsme to
dosud neučinili). Zbývající dvě hledaná písmena proto patří do množiny
{Z,Á,P,L}. Z podmínek pro slovo KABÁT plyne, že jedno z nich je Á.
Ve slově ZÁPAL je právě jedno písmeno ve správné pozici. Kdyby to
bylo Z, neměli bychom kam umístit písmeno Á. Je tedy Á na druhém
místě a navíc lze vyloučit písmeno Z. Na prvním místě hledaného slova
může být L nebo P. Snadno se přesvědčíme, že nalezená slova LÁSKA
i PÁSKA vyhovují všem podmínkám úlohy.

С - I - 2

Pata P kolmice z bodu A na přímku p procházející bodem C leží na
Thaletově kružnici nad průměrem AC. Vzdálenost bodu A od přímky p,

tj. délka úsečky AP, je tedy nejvýše rovna velikosti průměru AC. Přitom
rovnost nastane, právě když je přímka p kolmá na úhlopříčku AC. Přitom
je zřejmé, že taková přímka p má s daným pravoúhelníkem společný pouze
bod C.

Zvolme nyní libovolnou přímku q tak, aby měla s pravoúhelníkem
ABCD společný jen bod C. Její průsečíky s přímkami AB, AD označme
M a N (v uvedeném pořadí). Dále označme M' obraz bodu M v sou-
měrnosti podle přímky ВС a N* obraz bodu N v souměrnosti podle
přímky CD. Protože \<NCD\ + \<MCB\ = 180° - \<BCD\ = 90°,
plyne z právě uvedených souměrností rovnost |+MCM'| = 2\<MCB\ =
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= 2(90° - \<NCD\) = 180° - 2\<NCD\ = 180° - \<NCN*\. Body C,
M' a N* leží tudíž na téže polopřímce s počátkem C. Pro obsah trojúhel-
niku AMN tak vždy platí (obr. 11)

Samn = Sabcd + Sbmc + Sdcn =

= Sabcd + Sm'bc + Sdn*c = ZSabcd,

s rovností, právě když polopřímka CM' = CN* bude procházet vrcho-
lem A daného pravoúhelníku, tj. právě když M' — A = N* (pak budou
ВС a CD středními příčkami trojúhelníku AMN).

q 4N

q N

CD D

N*M M

умA M' AВ В
N*

Obr. 11

Závěr. Přímku q, pro kterou je obsah trojúhelníku AMN minimální,
sestrojíme jako přímku CM, kde M je obraz bodu A v osové souměrnosti
s osou BC. Přímka p s největší možnou vzdáleností od bodu A je za

daných podmínek kolmice na úsečku AC sestrojená v bodě C.
Jiné řešení. Označme P patu kolmice z bodu A na hledanou přímku

p & <p velikost odchylky přímek p a AC. Pro vzdálenost d přímky p od
bodu A platí d = \AP\ = \AC\ siní/? ^ \AC\. Přímka p má tedy největší
možnou vzdálenost od bodu A, právě když je kolmá na AC.

Uvažujme libovolnou přímku q, která má s pravoúhelníkem ABCD
společný jen bod C, a budeme hledat, za jakých podmínek ohraničuje
spolu s přímkami AB a AD trojúhelník nejmenšího obsahu. Použijeme
označení z obr. 11 a zavedeme a = \AB\ = |-DCj, x
= \BC\ а у — |.DjVj. Pomocí těchto veličin vyjádříme obsah trojúhelníku
AMN a odhadneme jej užitím A-G nerovnosti:

+ x)(b + y) = i(a6 + xy + ay + bx) ^

^ ^ (ab + xy + 2 у/ab ■ xy).
Z podobnosti trojúhelníků BMC a DCN dostáváme \DN\/\BC\ —

— \DC\/\BM\, což vzhledem ke zvolenému označení dává xy = ab. Po

\BM\, b = \ AD\ =

Samn =

(1)
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dosazení do (1) a po jednoduché úpravě tak dostaneme Samn = 2a& =
= 2Sabcd• Přitom rovnost nastane, právě když platí ay — bx. Spolu
s podmínkou xy = ab představují oba vztahy soustavu rovnic s nezná-
mými ж, y, jejímž vyřešením dostaneme x = а а у = b. Dospěli jsme tedy
ke stejnému výsledku jako v prvním řešení, kde jsme též uvedli konstrukci
přímky q.

Jiné řešení. Postupujeme stejně jako v předchozím řešení s tím roz-

dílem, že nejprve z podobnosti trojúhelníků BMC ~ DCN určíme
у = ab/x a potom odhadneme obsah trojúhelníku AMN pomocí tvrzení
z úlohy 5.2 takto:

^(a + x)(b + y) = \(a + x)(b+^Samn

1 /
, , a2b\ , 1 , (x a\

= - ( 2ab + bx-\ ) = ab + -abl - + -2 V x / 2 \a x/
> 2ab.

X CL
Rovnost nastává, právě když — = —, což je ekvivalentní s podmínkou

ж
x — a.

C - I - 3

Položme [ж] = a, pak x = a + í, kde t G (0,1), a rovnici 4(a + i) — 2a = 5
ekvivalentně upravme na tvar a = | — 2t. Aby bylo číslo a celé, musí
být 2t = к • |, kde fc je liché číslo. Navíc 21 G (0,2). Je tedy bud 2í = |
a a = 2, nebo 2t = | a a = 1. Původní rovnice má proto dvě řešení:
x\ --- 2,25 а ж2 = 1,75.

Jiné řešení. Rovnici upravíme na tvar 2x— | = |_a:J. Jejím řešením jsou
a>ové souřadnice průsečíků grafů funkcí l: у = 2x — | a p: у = |ycj • Grafy
se protínají ve dvou bodech, jak vidíme na obr. 12. Pro první průsečík
platí [ж] = 1. Po dosazení do původní rovnice dostaneme 4x — 2 = 5
a odtud x\ = | = 1,75. Pro druhý průsečík platí |ycj = 2, takže 4ж — 4 = 5
а Ж2 = | = 2,25.

Jiné řešení. Rovnici upravíme na tvar 2x — | = [ж]. Taková rovnice
bude splněna, právě když číslo 2ж— | bude celé a bude splňovat nerovnosti
ж — 1<2ж— |^ж neboli | < ж |. Pro taková ж hodnoty výrazu
2ж — | zřejmě zaplní interval |<2ж— |^|.V něm leží právě dvě celá
čísla 1 a 2, tudíž hledaná ж najdeme z rovnic 2ж — | = 1 а 2ж — | = 2.
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Obr. 12

С - I - 4

Protože kružnice l má za tětivu průměr CD kružnice к a dané kružnice
nejsou totožné, platí pro jejich poloměry nerovnost s > r. Označíme-li P
patu kolmice z bodu S na úsečku ВТ (obr. 13), pak z Pythagorovy věty

s

a
r

к

r

A M В

Obr. 13

pro pravoúhlé trojúhelníky CST a SPT plyne

|ST|2 — s2 — r2 a |ST|2 = |5P|2 + (s — r)2. (1)
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Odtud pro velikost úsečky SP vychází

\SP\2 = (s2 2) — (s — r)2 = 2r(s r)•— r

A protože ABPS je pravoúhelník, dostáváme

\AB\ = |5P| = y/2r(s - r).

Z pravoúhlých trojúhelníků AMS a MTS dále podle první rovnosti
v (1) plyne

2
= \MT\2 -s2\AM\2 = \SM\2 -r2 = \MT\2 |5Xj2 — r

přitom z pravoúhlého trojúhelníku МВТ máme

\BM\2 = \MT\2 - s2.

Je proto \AM\ = \BM\, a bod M je tedy středem úsečky AB.
Poznámka. Závěr, že M je středem úsečky AB, plyne okamžitě z moc-

nosti bodu M к oběma kružnicím (bod M leží na tzv. chordále obou
kružnic). Tyto pojmy jsou však pro soutěžící kategorie C dosud neznámé
a nebudou nezbytné ani pro řešení dalších soutěžních kol.

С - I - 5

Pravá nerovnost je ekvivalentní nerovnosti

4(a2 + 2>ab + b2) ^ 5(a + b)2

kterou lze ekvivalentně upravit na nerovnost a2 + b2 — 2ab = (a — b)2 ^ 0.
Ta je splněna vždy a rovnost v ní nastane, právě když a = b.

Levou nerovnost zbavíme zlomků a umocníme na druhou,

25ab(a2 -f 2ab + b2) ^ 4(a4 + 9a2b2 + b4 + 6a36 + 6ab3 + 2a262),
25ab(a2 + b2) + 50a262 ^ 4a4 + 464 + 44aV + 24a6(a2 + b2),

takže po úpravě dostaneme ekvivalentní nerovnost

4a4 + 464 — 6a2b2 ^ ab(a2 + b2).
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Po odečtení výrazu 2a?b2 od obou stran nerovnosti se nám podaří na
obou stranách využít úpravy na čtverec. Dostaneme tak (opět ekviva-
lentní) nerovnost

4(a2
Rozdíl čtverců v závorce levé strany ještě rozložíme na součin a vztah
upravíme na tvar 4(a — b)2{a + b)2 ^ ab(a — b)2.

Pokud je a = 6, platí rovnost. Je-li а фЬ, můžeme poslední nerovnost
vydělit kladným výrazem (a — b)2 a dostaneme tak nerovnost 4(a + 6)2 ^
^ ab neboli 4a2 + 4b2 + 7ab ^ 0. Levá strana této nerovnosti je vždy
kladná, proto vyšetřovaná nerovnost platí pro všechna kladná čísla a, b,
přičemž rovnost v ní nastane, právě když a — b.

Jiné řešení. Aritmetický průměr c čísel a, b má tu vlastnost, že se od
něj obě čísla liší o tutéž hodnotu d. Nahradíme-li proměnné a, b v daných
nerovnostech proměnnými c, d, zápis nerovností i důkaz obou vztahů se

zjednoduší. Položme tedy c = |(a + 6), pak a — c + dab — c — d (kde
d — |(a—6), jak se snadno můžeme přesvědčit). Tudíž a?-\-b2 — 2(c24-d2),
ab — c2 — d?, odkud a2 + 3ab + b2 = 5c2 — d2. Označme ještě písmeny m
a n levou a pravou stranu první z dokazovaných nerovností. Potom

b2)2 ^ ab(a — b)2.

= Vab = у/c2 — d?m

a

2(a2 + 3ab 4- b2) 2(5c2 — d2)
5(a + b) 5-2c

i/(c-£)Wca-",2(id2 d2
)25c2/ ‘

Protože z vyjádření kladné hodnoty m vidíme, že d2 < c2, pro výraz
v poslední závorce pod odmocninou platí

2
> 2 d2 2 1

5 ~ 5 _ 25c2 > 5 _ 25 25 '

což znamená, že odmocněnec leží v uzavřeném intervalu mezi čísly c2 — d2
a c2. Odtud vyplývá m n ^ c, přičemž rovnost nastane, právě když
d = 0, tj. když a = b.

Poznámka. Z výsledků soutěžní úlohy plyne, že rozdíl mezi aritmetic-
kým a geometrickým průměrem dvou kladných čísel lze zdola odhadnout
nezáporným lomeným výrazem takto:

a T b j—— ^ a T b 2(o2 4- 3ab 4- 62) (o — 6)2
2 ~ 2 5(a 4- b) 10(a 4- b)

5c

1 >
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Umocněním osamostatněné odmocniny a dalšími úpravami můžeme do-
kázat silnější odhad téhož druhu

a + 6 (a-b)2
4(a + 6)'

Jinou metodu důkazů spolu s dalšími podobnými nerovnostmi najdete
v článku J. Šimši Dolní odhady rozdílu průměrů in Rozhledy matema-
ticko-fyzikální 65 (1986/87), číslo 10, str. 403-407.

\fab ^
2

C - I - 6

a) Předpokládejme nejprve, že nuly jsou na třetím a druhém místě
zprava. Hledané číslo x má pak tvar x = 1 000a + 6, kde a je přirozené
číslo (stejně jako v dalších případech) a b nenulová číslice. Podmínku
zadání 1000a + b = 89(10a + b) upravíme na tvar 5a = 46, z nějž plyne,
že b je násobek pěti. Vyhovuje tak jen b = 5 a a = 4, tedy x = 4 005.

b) Jestliže hledané číslo x má nuly na čtvrtém a třetím místě zprava,

je x — 10 000a+ 6, kde b je dvojmístné číslo. Podmínku zadání 10 000a +
+ b = 89(100a + b) upravíme na tvar 25a = 26, z nějž plyne, že 6 je lichý
násobek čísla 25 (připomínáme, že x, a tedy ani 6 není dělitelné deseti).
Odtud 6 = 25, a = 2 nebo 6 = 75, a = 6, tedy x £ {20 025,60 075}.

c) Jestliže hledané číslo x má nuly na pátém a čtvrtém místě zprava,
je x = 100 000a+ 6, kde 6 je trojmístné číslo. Podmínku zadání 100 000a +
+ 6 = 89(1000a + 6) upravíme na tvar 125a = 6, z nějž plyne, že 6 je
lichý násobek čísla 125. Vyhovují pouze 6 = 125 a a = 1, 6 = 375 a a = 3,
6 = 625 a a = 5, 6 = 875 a a = 7, tedy ж £ {100125,300 375,500 625,
700 875}.

d) Z předchozích případů vidíme, že pro hledané číslo x tvaru x =
= 10n+2a + 6, kde 6 je n-místné číslo, dostáváme podmínku 10n+2a +
+ 6 = 89(10na + 6) neboli 11 • 10na = 886, odkud pro n ^ 4 dostáváme
podmínku 125- 10n~3a = 6, podle níž je 6 násobkem deseti. Žádné další x,
které by vyhovovalo zadání, tedy neexistuje.

Závěr. Hledaná čísla jsou 4 005, 20 025, 60 075, 100125, 300 375,
500 625, a 700 875.

C - S - 1

Označme a/6 původní zlomek. Podle zadání platí rovnosti
a + 2 a 1

6+1 6 “ 20 а 6 + 2 ~ 6 “ 12

a + 1 a 1
(a, 6 £ N)
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ekvivalentní se vztahy

206(a + 1) - 20a(6 + 1) = 6(6 + 1)
a

12b{a + 2) - 12a(6 + 2) = 6(6 + 2)

které upravíme na tvar 196 — 20a = b2 a 22b — 24a = b2. Po odečtení
obou vztahů zjistíme, že 4a = 36, což po dosazení do druhé rovnosti dá
226 — 186 = 62 neboli 62 = 46. Vzhledem к podmínce 6 ф 0 odtud plyne
6 = 4 a a = 3.

Hledané zlomky jsou tedy 3/4, 4/5 a 5/6.
Jiné řešení. Označme a/6 původní zlomek. Ze vztahů

21 1 1 1
a

12 4-3 4-620 4-5

lze odhadnout, že řešením by mohlo být 6 = 4. Pak

4(a + 1) — 5a 1 4(a + 2) — 6a 1
cl : г —

12’4-5 4-620

neboli a = 3. Musíme se však ještě přesvědčit, že úloha jiné řešení nemá.
Podmínky úlohy vedou ke vztahům

1 2(6-a)
_ 2

а

6(6 + 2) ~ 4Й5
6 — a

6(6+1) 4-5

Z podílu jejich levých a pravých stran pak plyne

6 + 2
_ 6

6+1 ~ 5’

čemuž vyhovuje jedině 6 = 4.
Poznámka. V úplném řešení nesmí chybět vyloučení možnosti 6^4.

Například z podobných rovností 1/20 = 30/24 • 25 a 1/12 = 52/24 • 26
bychom mohli hádat, že 6 = 24, což řešením není.
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С - S - 2

Bod dotyku kružnice l s tečnou z bodu A označme D (obr. 14). Z vlast-
ností tečny ke kružnici plyne, že úhel ADO je pravý. Zároveň je pravý

i úhel ACB (Thaletova věta). Trojúhelníky ABC a AOD jsou tak po-
dobné podle věty гш, neboť se shodují v úhlech ACB, ADO a ve společ-
něm úhlu při vrcholu A. Z uvedené podobnosti plyne

\BC\ \AB\
\OD\ \AO\- (1)

Ze zadaných číselných hodnot vychází \OD\ = \OB\
|OS| = \SB\ - \OB\ = 2cm, \OA\ - \OS\ + \SA\ = 8cm a\AB\ = 12cm.
Podle (1) je tedy \BC\ : 4 cm = 12 : 8 a odtud \BC\ = 6 cm.
Z Pythagorovy věty pro trojúhelník ABC nakonec zjistíme, že \AC\ =
= л/122 — 62 cm = 6^3 cm.

4 cm,

C - S - 3

Rovnici přepíšeme do tvaru 2 = (b2 — a2) — (b — a), z nějž po využití
vztahu pro rozdíl čtverců a následném vytknutí výrazu b — a dostaneme
2 = (Ъ — a)(a + b — 1). Protože 2 je prvočíslo, máme pro uvedený součin
následující čtyři možnosti:a)á — a=laa + á—1 = 2, pak a = 1 a b = 2.

b) 6 — a = 2aa + 6—1 = 1, pak a — 0 a b = 2.
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c) b — а — — 1 & а + b — 1 = 2. Druhou rovnici lze přepsat na
tvar a + b — —1, z nějž vidíme, že rovnost nenastane pro žádnou dvojici
nezáporných celých čísel.

d) b — a = — 2 a a + & — 1 = — 1. Druhou rovnici lze přepsat na tvar
a + b = 0, z nějž vidíme, že jí vyhovuje jediná dvojice nezáporných celých
čísel a — b = 0, která však nevyhovuje první rovnici.

Závěr. Úloha má dvě řešení: Buď je a = 1 a b = 2, nebo a = 0a6 = 2.

Poznámka. Místo rozboru čtyř možností můžeme začít úvahou, že
nulová čísla a, b nejsou řešením úlohy, takže a+b—1 ^ 0,a tedy i b—a ^ 0.
Stačí tudíž uvažovat jen možnosti a) a b).

Jiné řešení. Rovnici upravíme na tvar 2 = (b2 — b) — (a2 — a), resp.
na tvar 2 = b(b — 1) — a(a — 1). Z následující tabulky i tvaru čísel x2 —
— x = x(x — 1) je zřejmé, že rozdíly mezi sousedními hodnotami výrazů
x(x — 1) rostou s rostoucím x (snadno se o tom přesvědčíme výpočtem:
(x + 1)ж — x(x — 1) = 2x).

1 2 3 4 50x

x{x - 1) 0 200 2 6 12

Může tedy být jedině b2 — b = 2 a a2 — a = 0. Odtud a G {0,1} a b — 2.
Řešením úlohy jsou tedy dvě dvojice nezáporných celých čísel: a — 0,
b — 2 a a = 1,6 = 2.

C - II - 1

Vzhledem к tomu, že 12 = 3 • 4, stačí ukázat, že číslo a — nk+2 — nk =
= nk{n2 — 1) = (n— l)n(n + l)nfc_1 je dělitelné třemi a čtyřmi. První tři
činitelé posledního výrazu jsou tři po sobě jdoucí přirozená čísla, takže
právě jedno z nich je dělitelné třemi, a proto i číslo a je dělitelné třemi.
A je dělitelné i čtyřmi, neboť při sudém n je v posledním výrazu druhý
a čtvrtý činitel sudý, zatímco při lichém n je sudý první a třetí činitel.
Tím je důkaz proveden.

k
= nk{n2- 1) = (n - l)nfe(n+ 1).

Opět ukážeme, že a je dělitelné čtyřmi a třemi. Je-li n sudé, je nk dělitelné
čtyřmi pro každé celé к ^ 2. Je-li n liché, jsou činitelé n — 1 a n + 1 sudá
čísla, takže a je dělitelné čtyřmi pro každé celé n ^ 2.

Dělitelnost třemi je zřejmá pro n — 31. Je-li n — 31 + 1, kde l je
celé kladné číslo, je třemi dělitelný činitel n — 1 (a tedy i číslo a). Je-li

Jiné řešení. Položme a = nk+2 — n
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n = 31 + 2 (l je celé nezáporné), je třemi dělitelný činitel n + 1. Protože
jiné možnosti vzhledem ke zbytku čísla n při dělení třemi nejsou, je číslo a
dělitelné třemi. Tím je požadovaný důkaz proveden.

С - II - 2

Danou nerovnost ekvivalentně upravujme:

(a2b2 + a2 + b2 + 1) — (a2 — 2a + 1 )(b2 — 2b + 1) ^ 4,
(a2b2 + a2 + b2 + 1)-
-(a2b2 2ab2 + b2) + (2a2b — 4a6 + 2b) — (a2 — 2a + 1) ^4,

2ab(a + b) — 4ab + 2(a + 6) ^ 4,
2(a + b)(ab + 1) ^ 4(ab + 1)

2(a6+ l)(a + 6- 2) ^ 0.

Vzhledem к předpokladu a ^ 1,6^ ljea + 6^2, takže upravená
nerovnost zřejmě platí. Rovnost v ní (a tedy i v zadané) nerovnosti přitom
nastane, právě když a + b = 2 neboli a = b — 1.

Jiné řešení. Při označení m = a2 + 1 a n = b2 + 1 lze levou stranu

dokazované nerovnosti přepsat do tvaru L = mn — (m — 2a) (n — 2b) —

= 2an + 2bm — 2ab — 2ab, z nějž vytýkáním dostaneme L = 2a{n — b) +
-f 2b{m — a).

Čísla a, b jsou z intervalu (1, oo), proto 1 = m — a2 ^ m — a. Odtud
2b(m — a) ^2. Analogicky dostaneme 2a(n — b) ^ 2. Je tedy L ^ 4
a rovnost nastává, právě když a — b — 1.

Jiné řešení. Po substituci a=l+mab = l + n, kde m, n ^ 0, získá
levá strana nerovnosti tvar

2 „2L = (m2 + 2m + 2)(n2 + 2n + 2) — m n .

Po roznásobení, které si stačí pouze představit, se zruší člen m2n2, takže
L bude součtem nezáporných členů, mezi nimiž bude i člen 2-2 = 4. Tím
je nerovnost L ^ 4 dokázána. A protože mezi zmíněnými členy budou
rovněž 4m a 4n, z rovnosti L = 4 plyne m = n = 0, což naopak zřejmě
i rovnost L = 4 zaručuje. To znamená, že rovnost nastává, právě když
a = b = 1.

46



С - II - 3

Poloměr kružnice к označme r. Označení vrcholů P, Q v trojúhelníku
MPQ není důležité, proto bez újmy na obecnosti označme jako P ten
z bodů přímky vedené bodem N rovnoběžně s přímkou MS, který leží
na kružnici k. Bod Q pak leží na kružnici l a čtyřúhelník NQMS je
lichoběžník vepsaný kružnici l (obr. 15). Je tedy rovnoramenný s rameny
MQ a NS délky r. Navíc i úsečky SP a SM mají délku r. Z rovno-
ramenného trojúhelníku NPS a rovnoramenného lichoběžníku NQMS
plyne rovnost úhlů |<SPiV|
protíná přímky SP a MQ pod stejně velkými úhly, a proto (podle věty
o souhlasných úhlech) jsou přímky SP a MQ rovnoběžné. Čtyřúhelník
PQMS je tudíž rovnoběžník, a protože |SM| = \SP\ = r, je to dokonce
kosočtverec. Odtud je již zřejmé, že trojúhelník MPQ je rovnoramenný
s rameny PQ a MQ délky r.

\<SNP\ = \<MQP\. Příčka PQ tedy

Poznámka. Existence tětiv NP a NQ v zadání je zaručena díky před-
pokladu, že kružnice l má větší poloměr než kružnice k. Označíme-li C
střed úsečky SM a E ten průsečík kružnice к s osou úsečky SM, který
leží v polorovině SMO, bude střed O kružnice l ležet na polopřímce CE
až za bodem E (obr. 16). Další průsečík N obou kružnic proto padne
do pásu mezi rovnoběžkami SM a NqE v polorovině OCS, kde N0 je
čtvrtý vrchol kosočtverce s vrcholy S, M, E. К tomu stačí ukázat, že
kružnice l protne polopřímku EN0 až za bodem No, že tedy její poloměr
OS je větší než délka úsečky ONo- Toto srovnání dvou stran trojúhelníku
OSNo snadno plyne z porovnání jeho vnitřních úhlů: úhel u vrcholu No
je největší, neboť oba úhly při protilehlé straně OS jsou menší než 60°
(trojúhelník ESNq je rovnostranný). Snadno nahlédneme, že každá z rov-
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noběžek uvedeného pásu protíná každou z obou kružnic ve dvou bodech
(vždy souměrně sdružených podle příslušné osy kolmé na SM).

Tím je prokázána nejen existence obou tětiv NP a NQ, ale i to, že
jejich krajní body P a Q leží na stejnou stranu od bodu N (jako na
obr. 15), neboť oba body zřejmě leží v polorovině opačné ke zmiňované
polorovině OCS.

С - II - 4

|_x_| — p celé číslo a [x + y\ = [x\ + y.Protože číslo p je celé, je i у
Původní soustava rovnic je tedy ekvivalentní se soustavou

[x\ + у = 2 010,
[x\~y= P,

kterou snadno vyřešíme například sčítací metodou. Obdržíme =
= h(2 010 + p) (což může platit jen pro sudá p) a у = [x\ — p.

a) Pro p — 2 je řešením soustavy libovolné x G (1 006,1 007) а у =
= 1 004.

b) Pro p = 3 nemá soustava řešení.
Jiné řešení. Položme [x\ = а, рак x — а + t, kde t G (0,1).
a) Pro p = 2 soustavu přepíšeme do tvaru у = а — 2 a [2а — 2 + t\ —

= 2 010. Z poslední rovnice plyne 2a — 2 = 2 010, odtud а = 1 006. Jelikož
t G (0,1), vyhovuje původní soustavě každé x G (1006,1007), přičemž
у = 1 004.

b) Pro p = 3 dostáváme у = а — За [2а — 3 + t\ —2 010. Poslední
rovnice je ekvivalentní se vztahem 2a — 3 = 2 010, kterému nevyhovuje
žádné celé číslo a. Pro p = 3 nemá daná soustava rovnic řešení.
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Kategorie В

Texty úloh

В - I - 1

Na stole leží tři hromádky zápalek: v jedné 2 009, ve druhé 2 010 a v po-
slední 2 011. Hráč, který je na tahu, zvolí dvě hromádky a z každé z nich
odebere po jedné zápalce. Ve hře se pravidelně střídají dva hráči. Hra
končí, jakmile některá hromádka zmizí. Vyhrává ten liráč, který udělal
poslední tah. Popište strategii jednoho z hráčů, která mu zajistí výhru.

(Ján Mazák)

В - I - 2

Na tabuli je napsáno čtyřmístné číslo, které má přesně šest kladných
dělitelů, z nichž právě dva jsou jednomístní a právě dva dvojmístní. Větší
z dvojmístných dělitelů je druhou mocninou přirozeného čísla. Určete
všechna čísla, která mohou být na tabuli napsána. (Peter Novotný)

В - I - 3

V rovině je dána úsečka AB. Sestrojte rovnoběžník ABCD, pro jehož
středy stran AB, CD, DA označené po řadě K, L, M platí: body A,
В, L, D leží na jedné kružnici a rovněž body К, L, D, M leží na jedné
kružnici. (.Jaroslav Švrček)

В - I - 4

Najděte 2 009 po sobě jdoucích čtyřmístných čísel, jejichž součet je sou-
činem tří po sobě jdoucích přirozených čísel. (Radek Horenský)

В - I - 5

Uvnitř kratšího oblouku AB kružnice opsané rovnostrannému trojúhel-
niku ABC je zvolen bod D. Tětiva CD protíná stranu AB v bodě E.
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Dokažte, že trojúhelník se stranami délek |AE\, \BE\, \CE\ je podobný
trojúhelníku ABD. (Pavel Leischner)

В - I - 6

Reálná čísla a, b mají tuto vlastnost: rovnice x2 — ax + b — 1 = 0 má
v množině reálných čísel dva různé kořeny, jejichž rozdíl je kladným ко-
řenem rovnice x2 — ax + b + 1 = 0.

a) Dokažte nerovnost b > 3.
b) Pomocí b vyjádřete kořeny obou rovnic. (Jaromír Šimšá)

В - S - 1

Určete všechny hodnoty reálných parametrů p a q, pro něž má každá
z rovnic

x(x — p) = 3 + q, x(x + p) = 3 — q

v oboru reálných čísel dva různé kořeny, jejichž aritmetický průměr je
(Jaromír Šimša)jedním z kořenů zbylé rovnice.

В - S - 2

Jsou dány délky odvěsen a — \BC\, b — \AC\ pravoúhlého trojúhelníku
ABC, přičemž a > b. Označme D střed přepony AB a E (E ф C)
průsečík strany BC s kružnicí opsanou trojúhelníku ADC. Vypočítejte
obsah trojúhelníku EAD. (Pavel Novotný)

В - S - 3

Určete všechny dvojice celých kladných čísel man, pro něž platí 37 +
(Martin Panák)+ 27w = n3.

В - II - 1

Kružnice l(T;s) prochází středem kružnice fc(5;2cm). Kružnice m(U;t)
se vně dotýká kružnic к a l, přičemž USA. ST. Poloměry saí vyjádřené
v centimetrech jsou celá čísla. Určete je. (Pavel Leischner)

В - II - 2

V matematické soutěži bylo zadáno 7 úloh a za každou z nich mohl
soutěžící získat 0, 1 nebo 2 body. Soutěže se zúčastnilo 60 žáků. Za každou
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úlohu bylo uděleno aspoň 95 bodů. Dokažte, že mezi soutěžícími najdeme
dva tak, že každou z úloh vyřešil aspoň jeden z nich za 2 body.

{Ján Mazák)

В - II - 3

V rovině je dán rovnoběžník ABCD. Označme K, L, M po řadě středy
stran AB, CD, AD. Předpokládejme, že body А, В, L, D leží na jedné
kružnici a zároveň i body K, L, D, M leží najedná kružnici. Dokažte, že

{Jaroslav Švrček)\AC\ = 2-\AD\.

В - II - 4

Číslo n je součinem čtyř prvočísel. Jestliže každé z těchto prvočísel zvět-
šíme o 1 a vzniklá čtyři čísla vynásobíme, dostaneme číslo o 2 886 větší
než původní číslo n. Určete všechna taková n. {Jaromír Šimša)
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Řešení úloh

В - I - 1

Jsou-li počty zápalek na jednotlivých hromádkách a, b, c, řekneme, že
hra je v pozici (a, 6, c). Celkový počet zápalek je na začátku sudý a po
každém tahu se zmenší o 2, proto zůstává stále sudý. Zanechá-li některý
hráč po svém tahu pozici (2, 2, c), kde c je nějaké kladné sudé číslo, donutí
soupeře vytvořit aspoň jednu jednozápalkovou hromádku a to mu umožní
dalším tahem vyhrát. Pozice (2, 2,c) mohla vzniknout z pozice (3,3, c)
nebo z pozice (3, 2, c+1), tedy z pozic, v nichž jsou dvě čísla lichá a jedno
sudé.

Dokážeme, že zanechávání pozic se třemi sudými čísly zajistí výhru.
Z takové pozice soupeř jakýmkoliv svým tahem vytvoří pozici se dvěma
čísly lichými a jedním sudým. Odebereme-li potom zápalky ze stejných
hromádek jako v předešlém tahu soupeř, vytvoříme opět pozici se třemi
sudými čísly. Strategie zanechávání pozic se třemi sudými čísly je tedy
realizovatelná (za předpokladu, že celkový počet zápalek je sudý). Cel-
kový počet zápalek se stále zmenšuje a počty zápalek na jednotlivých
hromádkách se po každém tahu zmenší nanejvýš o 1. Proto musí dojít
к situaci, kdy aspoň na jedné hromádce zůstane přesně jedna zápalka. To
se ale může stát jen po soupeřově tahu (číslo 1 je totiž liché). Odebráním
této zápalky spolu s kteroukoliv další hru vítězné zakončíme.

Popsanou strategii může použít hráč, který začíná, odebere-li ve svém
prvém tahu po jedné zápalce z první a třetí hromádky. Pokud ale udělá
jiný tah, může vítěznou strategii uplatnit jeho soupeř.

В - I - 2

Počet kladných dělitelů čísla, jehož rozklad na prvočinitele má tvar n =
= p^p^2 ■ ■ -pícje (/ři + l)(&2 + l)... (Áy + 1). Proto číslo, které má přesně
6 = 3-2 kladných dělitelů, musí mít jeden z tvarů p5 nebo p2q, kde p a q

jsou prvočísla.
Uvažujme nejdříve možnost p5. Toto číslo má dělitele 1, p, p2, p3, p4,

p5; zřejmě 1 < p < p2 < p3 < p4 < p5. Dva nejmenší dělitelé jsou
jednomístní a další dva dvojmístní. Větší z nich, tedy p3, ale není druhou
mocninou přirozeného čísla.
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Hledané číslo má tedy tvar p2g a jeho dělitelé jsou 1, p, p2, q, pq, p2q.
Je-li p > q, potom 1 < q < p < pq < p2 < p2q. Dva dvojmístní dělitelé
by byli p a pq, ale pq není druhou mocninou přirozeného čísla.

Musí tedy být p < q. Ze všech šesti dělitelů jsou druhými mocninami
přirozeného čísla jen lap2. Proto je p2 větší ze dvou dvojmístných dě-
litelů a odtud vyplývá 1 <p<q<p2<pq< p2q. Dělitelé lap jsou
jednomístní, gap2 jsou dvojmístní, pq aspoň trojmístný a p2g čtyřmístný.
Odtud vyplývá p € {5, 7}, 9 < q < p2, pq > 99, 999 < p2g < 10 000.

Pro p — 5 dostáváme 9 < q < 25, 5g > 99 a 999 < 25q < 10 000,
těmto podmínkám žádné prvočíslo g nevyhovuje.

Pro p = 7 dostáváme 9 < g < 49, 7g > 99 a 999 < 49g < 10 000;
těmto podmínkám vyhovují g € {23, 29, 31,37,41,43,47}.

Na tabuli je tedy napsáno jedno ze sedmi čísel 49 • 23 1 127, 49 •

• 29 = 1421, 49 • 31 = 1 519, 49 • 37 = 1 813, 49 • 41 = 2 009, 49 • 43 = 2 107,
49 • 47 = 2 303.

В - I - 3

\AB\, b = \AD\ délky stran hledaného rovnoběžníku
(obr. 17). Lichoběžníku ABLD lze opsat kružnici, proto je rovnoramenný,
a tudíž \BL\ = b. Protože úsečky KB a, DL jsou rovnoběžné a shodné, je
KBLD rovnoběžník, a tedy \KD\ = \BL\ = b. To znamená, že trojúhel-
nik AKD je rovnoramenný, takže bod D musí ležet na ose jeho základny
AK.

Označme а

а

LD C!

b

b bM

«

A Вк

Obr. 17

Úsečka KL je střední příčkou rovnoběžníku ABCD, proto KL || MD;
KLDM je tedy lichoběžník, a jelikož se mu dá opsat kružnice, je rovno-

ramenný a odtud \KM\ = \DL\ ~ \a. Protože KM je střední příčka
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trojúhelníku BDA, má strana BD délku 2 • \KM\
na kružnici se středem В a poloměrem a.

Konstrukce: Sestrojíme střed К úsečky AB, osu o úsečky AK a kruž-
nici к se středem В a poloměrem \AB\. Průsečík této kružnice s osou
úsečky AK je bod D. Bod C je potom průsečík přímek vedených body
D а В rovnoběžně s přímkami AB a AD.

Důkaz: Čtyřúhelník ABCD má protilehlé strany rovnoběžné, je to
tedy rovnoběžník. Označme L a M středy úseček CD a AD. Z to-
ho, že bod D leží na ose úsečky AK, vyplývá \KD\ = \AD\. Pro-
tože KBLD je rovnoběžník, platí \BL\ = \KD\
nik ABDL je tedy rovnoramenný, a proto body A, B, L, D leží na

jedné kružnici. Úsečka KM je střední příčka trojúhelníku BDA, proto
\KM\ = ^\BD\ — \\AB\ = \DL\; KLDM je tedy rovnoramenný li-
choběžník, takže jeho vrcholy leží na jedné kružnici.

Diskuse: Protože přímka o má od bodu В menší vzdálenost než bod
A, protíná kružnici к ve dvou bodech. Úloha má tedy v každé polorovině
s hraniční přímkou AB jedno řešení.

a. Bod D tedy leží

\AD\. Lichoběž-

Jiné řešení. Stejně jako v prvém řešení dokážeme, že \KD\ = \AD\
\AB\. Trojúhelníky AKD a DAB jsou tedy rovnoramen-a \DB\

né, a protože se shodují v úhlu u vrcholu A, jsou podobné. Proto
\AK\/\AD\ = \DA\/\AB\ čili \a/b = b/a a odtud b = \a>/2. Bod D
je tedy průsečíkem kružnic se středy A & К & poloměrem \ayj2.

В - I - 4

Označme prostřední z hledaných čísel a. Součet čísel a — 1004, a —
- 1003, ..., a + 1003, a + 1004 je 2009a = 41 • 49 • a, přičemž
2 004 ^ a ^ 8 995. Má platit 41 • 49 • a = n(n + l)(n + 2) pro vhodné
přirozené číslo n. Protože

2 009 • 2 004 <; n(n + l)(n + 2) < (n + l)3,

musí platit n + 1 > s/2 009 • 2 004, a tedy n ^ 159. Podobně z nerovností

2 009 • 8 995 ^ n{n + l)(n + 2) > n3

dostáváme n < \/2 009 • 8 995 čili n 262.
Součin n(n-fl)(n + 2) má být dělitelný čísly 41 a 49. Žádný z činitelů

n, n + 1, n + 2 nemůže být dělitelný oběma čísly 41 i 49, neboť 41 • 49 >
> 262 + 2. Sedmi je dělitelný nanejvýš jeden z činitelů n, n + 1, n + 2;
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proto musí být některý z nich dělitelný číslem 49. Budeme tedy mezi čísly
159,160,..., 264 hledat taková dvě, jejichž rozdíl je 1 nebo 2, přičemž
jedno z nich je dělitelné číslem 41 a druhé číslem 49. Násobky čísla 41
v uvedeném rozsahu jsou 164, 205 a 246, násobky čísla 49 jsou 196 a 245.
Vyhovující čísla jsou tedy 245 a 246 a my máme dvě možnosti:

a) n = 245, n + l = 246, n + 2 = 247, a = 245 • 246 • 247/2009 = 7410
a hledaná čísla jsou 6 406,6 407,..., 8 414;

b) n = 244, n+l = 245, n + 2 = 246, a = 244 • 245 • 246/2 009 = 7320
a hledaná čísla jsou 6 316,6 317,..., 8 324.

В - I - 5

Veďme bodem E rovnoběžku se stranou ВС a označme F její průsečík se
stranou AC. Trojúhelník AEF je rovnostranný, proto \EF\ = \AE\ a také
\CF\ — |BE\. Trojúhelník FEC má tedy délky stran |AE\, \BE\, \CE\
(obr. 18), které nás zajímají. Dokážeme, že je podobný trojúhelníku ABD:

Oba trojúhelníky se zřejmě shodují ve vyznačeném tupém úhlu veli-
kosti 120° {\<ADB\ = 180° — \<ACB\). Úhly ACD a ABD jsou obvo-
dové nad tětivou AD, proto jsou shodné. Podle věty uu tedy skutečně
platí AECF ~ AABD.

Jiné řešení. Obvodové úhly DAB a DCB jsou shodné stejně jako
úhly ADC a ABC, proto AADE ~ ACBE. Odtud vyplývá

\AE\
_ \CE\ _ \CE\

\AD\ ~ íČB\ ~ \AB[
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Analogicky jsou podobné i trojúhelníky DEB a AEC, takže

\BE\
_ \CE\ _ \CE\

\BD\ ~ \AC\ ~ \AB\'
Z rovností

\AE\
_ \CE\ _ \BE\

\AD\ ~ \AB\ ~ \BD\
pak vyplývá podobnost trojúhelníku s délkami stran \AE\, \CE\, \BE\
a trojúhelníku ABD.

В - I - 6

Označme x\ menší a x2 větší kořen první rovnice. Potom platí x\ +
+ X2 = а, X1X2 = 6 — 1. Druhá rovnice má kořen Х2 — a protože
součet obou jejích kořenů je (stejně jako 11 první rovnice) roven číslu a,
musí být druhý kořen a — (X2 — x\) = x\ + X2 — X2 + xi — 2x\. Součin
kořenů druhé rovnice je tak (2:2 — xi) ■ 2x\ =6+1. Odtud dostáváme
b = — 1 + 2x1^2 — 2x\ = —1 + 2(6 — 1) — 2x\, a tedy

6 — 3 + 2x\ > 3, (1)

neboť z rovnosti x\ = 0 by vyplývalo 6+1 = 6—1=0.
Protože X2 — X\ > 0 a 6 + 1 > 0, musí být kladný i druhý kořen 2x\

druhé rovnice, tedy X\ > 0; z rovnosti (1) tak máme

6 - 1
_ (b-l)V2

7^3
6-

— a dálexi = X2 =
2 Xl

Kořeny druhé rovnice jsou pak

6+1
a 2xi = \/2(6 — 3).x2 - xi —

VWb - 3)

Jiné řešení. Kořeny prvé rovnice jsou

a + \/a2 —46 + 4a — Va2 — 46 + 4
a x2 =xi =

22

přičemž pro diskriminant platí

D = a2 (2)4(6 - 1) > 0.
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Rozdíl kořenů X2 — x\ = у/a2 — 46 + 4 je kořenem druhé rovnice, proto

a2 — 46 + 4 — ау/a2 — 46 + 4 + 6+1 = 0,
a2 — 36 + 5 = a\/a2 — 46 + 4,

a4 + 2a2 (5 — 36) + (36 - 5)2 = a4 - 4a26 + 4a2
(36 — 5)2 = a2(26 — 6).

(3)

Rovnost a = 0 nastává, právě když 36 — 5 = 0; potom by ale neplatilo
(2). Proto a2 > 0, (36 — 5)2 > 0, a tedy i 26 — 6 > 0 čili 6 > 3. Z (2) a (3)
potom vyplývá a > 0 (pro 6 > 3 je totiž a2 —36+5 > a2 —46+4 = D > 0),
takže

36-5
a —

v/2(i>-3)
dále pak

(36 - 5)236-51
-46 + 4 =xi = -

2(6-3)2 \^ЩЬ^З)
1 f 36-5

2 l
(6-1)72(36 - 5)2 -46 + 4 =ж2 = -

2(6-3) 76^3

Druhá rovnice má kořeny

a — 7a2 — 46 — 4 6+1
= X2 — 3+Жз =

\/2(Ъ — 3)2

а

a + 7a2 — 46 — 4
72(6-3).Ж4 =

2

В - s - 1

Z Viětových vztahů pro kořeny kvadratické rovnice (jež mimochodem
plynou z rozkladu daného kvadratického trojčlenu na součin kořenových
činitelů) snadno zjistíme, že součet kořenů prvé rovnice je p, takže jejich
aritmetický průměr je \p. Toto číslo má být kořenem druhé rovnice, proto

P ty
_ „

2 ' 2 (1)- Q-
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Podobně součet kořenů druhé rovnice je —p, jejich aritmetický průměr
je —\pi a proto

V ( 3p\ _ (2)

Porovnáním obou vztahů (1) a (2) máme 3 — q = 3 + q neboli q = 0
a z (1) pak vyjde p = 2 nebo p = —2.

Obě nalezená řešení vedou na tutéž dvojici rovnic x(x — 2) = 3, x(x +
+ 2) = 3. Kořeny prvé z nich jsou čísla —1 a 3, jejich aritmetický průměr
je 1. Kořeny druhé rovnice jsou čísla 1 a —3, jejich aritmetický průměr
je —1-

В - S - 2

Označme c délku přepony AB, takže \AD\ = \BD\ — \c. Čtyřúhelník
ADEC je tětivový a úhel ЕСA je pravý, proto i protilehlý úhel ADE je
pravý (obr. 19). Pravoúhlé trojúhelníky ABC a EDB mají úhel u vrcholu

В společný, proto AABC ~ AEBD. Odtud

\ED\ \AC 1
\BD\ \BC\

bc
a proto \ED\ = —.2a

Obsah pravoúhlého trojúhelníku EAD je tak (s využitím Pythagorovy
věty)

bc2 b(a2 + b2)1 c bc

2 ’ 2 ’ 2a
S = i ■ \AD\ ■ \ED\ = 8a 8a
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В - S - 3

Rovnici upravíme na tvar 37 = n3 —27m a rozdíl třetích mocnin rozložíme
na součin:

37 = (n-3w)(n2 + n-3m + 9m).
Číslo 37 je prvočíslo a na pravé straně rovnosti je součin dvou celých
čísel, přičemž druhý činitel je větší než 1. Proto musí platit

(3)n - 3W = 1

a

n2 +n- 3W + 9m = 37. (4)
Pro m ^ 2 je n2 + n • 3m + 9W > 92 > 37, takže zbývá jediná možnost

1; z (3) potom plyne n = 1 + 3m = 4. Zkouškou se přesvědčíme,
1, n = 4 vyhovuje

m

že 37 + 271 = 43, nebo ověříme, že dvojice m

podmínce (4).

В - II - 1

Trojúhelník UST je pravoúhlý. Jeho přepona UT má délku s -f t, délky
odvěsen jsou \US\ = t + 2, \ST\ = s (obr. 20). Podle Pythagorovy věty
proto platí

(s + t)2 = (t + 2)2 + s2.
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Úpravami postupně dostáváme

s2 + 2st + t2 = t2 + 4t + 4 + s2
st — 21 2,

t(s - 2) = 2.

Čísla t a s — 2 jsou celá, proto í musí být dělitelem čísla 2. Protože t je
kladné, jsou jen dvě možnosti; jestliže t — 1 cm, potom s — 4 cm, a jestliže
í = 2 cm, potom s = 3 cm.

В - II - 2

Nejdříve dokážeme, že každou úlohu vyřešilo za dva body aspoň 35 žáků:
Kdyby totiž některou úlohu vyřešilo za 2 body a soutěžících, přičemž
a < 35, bylo by za tuto úlohu uděleno nejvýše 2a + 60 — a = a + 60 < 95
bodů, což odporuje zadání.

Z právě provedené úvahy tedy plyne, že celkový počet dvoubodových
řešení je aspoň 7 • 35 = 245. Protože 245 > 4 • 60, musel některý žák
vyřešit za dva body aspoň 5 úloh.

Dále budeme místo „vyřešit úlohu za dva body“ psát stručněji jen
„vyřešit úlohu“. Jestliže některý žák vyřešil všech 7 úloh, stačí к němu do
dvojice přidat libovolného jiného žáka. Jestliže některý žák vyřešil 6 úloh,
přidáme к němu kteréhokoliv ze žáků, kteří vyřešili zbylou úlohu (máme
z čeho vybírat, protože každou úlohu vyřešilo aspoň 35 žáků).

Zbývá tedy uvážit situaci, kdy některý soutěžící A vyřešil přesně
5 úloh. Každou ze dvou zbylých úloh vyřešilo aspoň 35 žáků (jiných
než A). A protože všech žáků jiných než A je 59, musí mezi nimi být
aspoň 2 • 35 — 59 = 11 takových, kteří vyřešili obě tyto úlohy. Stačí tudíž
libovolného z nich přidat к žákovi A.

Jiné řešení. „Vyřešit úlohu“ bude znamenat totéž co v předchozím
řešení.

Za všech 7 úloh dohromady bylo uděleno aspoň 95 • 7 = 665 >
> 60-11 bodů, takže některý žák získal aspoň 12 bodů, a tudíž výře-
šil aspoň pět úloh (žák, který vyřešil právě к úloh, získal totiž nejvýše
2k + (7 — к) = к + 7 bodů). Vyberme tedy žáka A a 5 konkrétních úloh
z těch, které vyřešil. Za zbylé dvě úlohy získalo zbylých 59 žáků aspoň
2 • (95 — 2) = 186 >3-59 bodů, takže jeden z nich, řekněme žák B, získal
4 body, a tudíž vyřešil obě úlohy. Dvojice žáků А, В má požadovanou
vlastnost.
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В - II - 3

Lichoběžníky ABLD a KLDM jsou rovnoramenné, protože jsou těti-
vové. Odtud vyplývá shodnost ramen \AD\ = \BL\ a shodnost úhlopří-
ček \KD\ = \LM\ (obr. 21). Střední příčka KL dělí rovnoběžník ABCD
na dva shodné rovnoběžníky, pro jejichž úhlopříčky platí \KD\ = \BL\.
Úsečka ML je střední příčkou trojúhelníku ACD, proto \ AC\ = 2 • \ML\.
Spojením výše uvedených rovností máme \AC\ — 2 • \ML\ = 2 • \KD\ =
- 2 • \BL\ = 2 • \AD\.

Jiné řešení. Budeme postupovat stejně jako ve druhém řešení třetí
úlohy domácího kola (na domácí kolo se lze odvolat bez dalšího dů-
kazu): Protože ABLD je tětivový (a tudíž rovnoramenný) lichoběž-
nik, je \KD\ = \BL\ = \AD\. Podobně je i lichoběžník KLDM
rovnoramenný, takže \MK\

\AB\. Z podobnosti rovnoramenných trojúhelníků AKD
a DAB (shodují se v úhlu u vrcholu A svých základen) pak plyne, že
\AK\/\AD\ = \DA\/\AB\, odkud po dosazení \AK\ = ||ЛВ| vychází

\AB\ = y/2 ■ \AD\. Nyní využijeme známou rovnoběžníkovou
rovnost |ACj2 + \BD\2 = 2 • \AB\2 + 2- \AD\2. Dosazením za \ AB\ a \DB\
dostaneme\AC\2+2-\AD\2 = 4-\AD\2+2-\AD\2 a odtud\AC\2 = 4-\AD\2
čili \AC\ = 2-\AD\.

\DL\ a \DB\ 2\MK\ = 2\DL\ =

\DC\

\DB\

В - II - 4

Označíme-li a, b, c, d prvočísla, jejichž součinem je číslo n, platí rovnost

(a + 1)(ě> —P 1)(^ “b l)(d 4" 1) = abcd -Ь 2 886.
Kdyby byla všechna čísla a, 6, c, d lichá, bylo by na levé straně této
rovnosti sudé číslo, kdežto na pravé straně číslo liché. Proto je některé
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z prvočísel a, 6, c, d (například a) rovno dvěma. Dosazením dostaneme

3(6 + l)(c + l)(d + 1) = 2bed + 2 886.

Protože čísla 3(6+l)(c+l)(d+l) i 2 886 jsou dělitelná třemi, musí být
dělitelné třemi i 2bed. Proto je některé z prvočísel 6, c, d (například b)
rovno třem. Dosazením dostaneme 12(c + 1 )(d + 1) = 6cd + 2 886, po

vydělení šesti 2(c + l)(d + 1) = cd + 481 a po dalších úpravách cd + 2c +
+ 2d = 479, (c + 2)(d + 2) = 483 = 3-7-23. Předpokládáme-li c ^ d,
máme vzhledem к nerovnosti c + 2 > 3 dvě možnosti:

1. c + 2 = 7, d + 2 = 69, odtud c = 5, d — 67.
2. c + 2 = 21, d + 2 = 23, odtud c — 19, d = 21, což nevyhovuje, neboť

21 není prvočíslo.
Jediné vyhovující n je tedy 2 • 3 • 5 • 67 = 2 010.

Poznámka. Závěrečné úvahy lze také provést pomocí vyjádření

479 - 2c 483

c+2 _ c+ 2
d = -2;

c + 2 tak musí být některý z dělitelů čísla 483, který je větší než 3, tedy
c + 2 € {7,21, 23,69,161,483} a c G (5,19, 21,67,159,481}. Protože c
i d jsou prvočísla, vyhovují pouze možnosti c = 5, d — 67 nebo c = 67,
d = 5.
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Kategorie A

Texty úloh

A - I - 1

V oboru reálných čísel řešte soustavu rovnic

Vх2 ~ У = z-l,
Vy2 ~ z = x-l,

Vz2 — x = у — 1.

(Radek Horenský)

A - I - 2

Kosočtverci ABCD je vepsána kružnice. Uvažujme její libovolnou tečnu
protínající obě strany BC, CD a označme po řadě R, S její průsečíky
s přímkami AB, AD. Dokažte, že hodnota součinu \BR\ • |DSj na volbě
tečny nezávisí. (Leo Boček)

A - I - 3

Na tabuli jsou napsána čísla 1, 2, ..., 33. V jednom kroku zvolíme na
tabuli dvě čísla, z nichž jedno je dělitelem druhého, obě smažeme a na ta-
buli napíšeme jejich (celočíselný) podíl. Takto pokračujeme, až na tabuli
zůstanou jen čísla, z nichž žádné není dělitelem jiného. (V jednom kroku
můžeme smazat i dvě stejná čísla a nahradit je číslem 1.) Kolik nejméně
čísel může na tabuli zůstat? (Peter Novotný)

A - I - 4

V libovolném ostroúhlém různostranném trojúhelníku ABC označme O,
V a S po řadě střed kružnice opsané, průsečík výšek a střed kružnice
vepsané. Dokažte, že osa úsečky OV prochází bodem S, právě když jeden
vnitřní úhel trojúhelníku ABC má velikost 60°. (Tomáš Juřík)
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A - I - 5

V kádi je го ryb, společný úlovek n rybářů. Přicházejí pro svůj díl jednot-
livě, každý si myslí, že se dostavil jako první, a aby si vzal přesně n-tinu
aktuálního počtu ryb v kádi, musí předtím jednu z ryb pustit zpět do
moře. Určete nejmenší možné číslo ro v závislosti na daném n ^ 2, když
i poslední rybář si aspoň jednu rybu odnese. {Dag Hrubý)

A - I - 6

Pro dané prvočíslo p určete počet (všech) uspořádaných trojic (a, b, c)
čísel z množiny (1, 2, 3,..., 2p2}, které splňují vztah

[a, c] + [b, c]
_ p2 + 1

a + b p2 + 2
• c,

kde [x, y\ značí nejmenší společný násobek čísel x a y. (Tomáš Juřík)

A - S - 1

V oboru reálných čísel řešte soustavu rovnic

Vх - У2 = Z-1,
Vy - z2 = x - 1,

VZ — x2 = у — 1.

{Radek Horenský)

A - S - 2

Najděte všechny možné hodnoty podílu

r + g

a + b

kde r je poloměr kružnice opsané a g poloměr kružnice vepsané právo-

{Tomáš Juřík)úhlému trojúhelníku s odvěsnami délek a a b.

A - S - 3

Na tabuli jsou napsána čísla 1,2,..., 33. V jednom kroku zvolíme několik
čísel napsaných na tabuli (aspoň dvě), jejichž součin je druhou mocninou
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přirozeného čísla, zvolená čísla smažeme a na tabuli napíšeme druhou
odmocninu z jejich součinu. Takto pokračujeme, až na tabuli zůstanou
jen taková čísla, že součin žádných z nich není druhou mocninou. Kolik
nejméně čísel může na tabuli zůstat? (Peter Novotný)

A - II - 1

Dokažte, že rovnice x2 + p\x\ = qx — 1 s reálnými parametry p, q má
v oboru reálných čísel čtyři řešení, právě když platí p + |g| + 2 < 0.

(Jaromír Šimša)

A - II - 2

Je dán rovnoběžník ABCD s tupým úhlem ABC. Na jeho úhlopříčce AC
v polorovině ВDC zvolme bod P tak, aby platilo \<BPD\ = \<ABC\.
Dokažte, že přímka CD je tečnou ke kružnici opsané trojúhelníku BCP,
právě když úsečky AB a BD jsou shodné. (Jaroslav Švrček)

A - II - 3

Určete všechna celá kladná čísla m, n taková, že n dělí 2m — lam dělí
(Tomáš Szaniszlo)2n — 1.

A - II - 4

V libovolném trojúhelníku ABC označme O střed kružnice vepsané, P
střed kružnice připsané ke straně BC a D průsečík osy úhlu CAB se
stranou BC. Dokažte, že platí

2 1 1

\AD\ \AO\ \AP[

(Kružnicí připsanou ke straně BC rozumíme takovou kružnici, která se

dotýká jednak strany BC, jednak obou polopřímek opačných к polopřím-
(Pavel Leischner)kám BA a CA.)

A - III - 1

Určete všechny dvojice celých kladných čísel a a b, pro něž platí

4a + 4a2 + 4 = b2.

(Martin Panák)
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A - III - 2

Kruhový terč o poloměru 12 cm zasáhlo 19 střel. Dokažte, že vzdálenost
některých dvou zásahů je menší než 7 cm.

(Vojtech Bálint, Jaromír Šimša)

A - III - 3

Rumburak unesl na svůj hrad 31 členů strany A, 28 členů strany B,
23 členů strany C, 19 členů strany D a každého zavřel do samostatné
kobky. Po práci se občas mohli procházet po dvoře a povídat si. Jakmile
si spolu začali povídat tři členové tří různých stran, Rumburak je za
trest přeregistroval do čtvrté strany. (Nikdy si spolu nepovídali více než
tři unesení.)
a) Mohlo se stát, že po určitém čase byli všichni unesení členy jedné

strany? Které?
b) Určete všechny čtveřice celých kladných čísel, jejichž součet je 101

a které jako počty unesených členů čtyř stran umožňují, aby se Rum-
burákovou péčí časem všichni stali členy jedné strany.

(Vojtech Bálint, Jaromír Šimša)

A - III - 4

Je dána kružnice к s tětivou AC, jež není průměrem. Na její tečně ve-
děné bodem A zvolíme bod X ф A a označíme D průsečík kružnice к
s vnitřkem úsečky XC (pokud existuje). Trojúhelník ACD doplníme na
lichoběžník ABCD vepsaný kružnici k. Určete množinu průsečíků přímek
ВС a AD odpovídajících všem takovým lichoběžníkům.

(Pavel Leischner)

A - III - 5

Na tabuli jsou napsána čísla 1,2, ..., 33. V jednom kroku zvolíme na
tabuli některá dvě čísla, jejichž součin je druhou mocninou přirozeného
čísla, obě zvolená čísla smažeme a na tabuli napíšeme druhou odmocninu
z jejich součinu. Takto pokračujeme, až na tabuli zůstanou jen taková
čísla, že součin žádných dvou z nich není druhou mocninou. (V jednom
kroku můžeme smazat i dvě stejná čísla a nahradit je týmž číslem.) Do-
kažte, že na tabuli zůstane aspoň 16 čísel. (Peter Novotný)
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A - III - 6

Najděte minimum výrazu

[a, b] + [6, c] 4- [c, a]a + 6 + c

a + b + c2

kde proměnné a, b, c jsou libovolná celá čísla větší než 1 a [x,y\ označuje
nej menší společný násobek čísel x, у. (Tomáš Juřík)
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Řešení úloh

A - I - 1

Levé strany daných rovnic mají (jako odmocniny) nezáporné hodnoty,
proto z pravých stran plynou po řadě nerovnosti z^.1, x^.lay^.1.

Odmocnin v rovnicích se zbavíme jejich umocněním:

x2 y=(z- l)2, y2-z = (x-l)2 г2 x = (y- l)2

umocněné rovnice sečteme a výsledek upravíme:

{x2 -y) + {y2 ~z) + {z2 -x) = (z- l)2 + (ж - l)2 + (y- l)2,
(ж2 + у2 + z2) - (ж + у + z) = (z2 + ж2 + у2) - 2(z + ж + у) + 3,

ж + у + z = 3.

Protože však z odvoyených nerovností ж ^ 1, у ^ la 2 ^ 1 sečtením
plyne x + у + z ^ 3, může být rovnost x + у + z = 3 splněna jedině
tak, žeж = y = 2: = l. Zkouškou dosazením se přesvědčíme, že trojice
(ж, ?/, z) = (1,1,1) je skutečně řešením (a to jediným, jak plyne z našeho
postupu).

Dodejme, že pokud si nerovností x,y,z ^ 1 předem nepovšimneme,
avšak vztah x у + z — 3 po sečtení umocněných rovnic odvodíme, mů-
žeme pak určenou hodnotu součtu x+y+z uplatnit při sečtení původních
(neumocněných) rovnic, a získat tak rovnici

2 + \Jz2 — x = 0Vх2 - y+ Vy2

s jasným důsledkem: každá z odmocnin musí být rovna nule.

Jiné řešení. Protože pro trojice (ж,y,z), (y,z, x) a (z,x,y) vyjde sou-
stava zadaných rovnic nastejno, stačí hledat pouze taková řešení (ж, ?/, z)
v nichž je první složka maximální, tj. platí x^ya-x^z.1 Stejně jako
v původním řešení si uvědomme, že ж, у, z ^ 1 (dále nám postačí pouze
fakt, že x,y,z ^ O).2

Z předpokládané nerovnosti ж ^ z plyne pro pravé strany první
a druhé nerovnice srovnání ж — 1 ^ 2 — 1, takže stejnou nerovnost musí

1 Nerovnost у ^ z ovšem předem zaručit nemůžeme. Pořadí neznámých x, y, z totiž
nemůžeme měnit libovolně, ale pouze cyklicky.

2 Nezápornost využijeme к ekvivalencím typu a2 ^ b2 O a ^ b.
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splňovat i odmocniny na levých stranách, tedy i příslušní odmocněnci:
y2 — z x2 — у neboli x2 — у2 ^ у — z. Levá strana té poslední je nezá-
porná (díky předpokladu x^y), takže je taková i pravá strana: у— z ti 0
neboli у ^ z. To ještě upravíme na nerovnost у — 1 ^ z — 1 mezi pravými
stranami první a třetí rovnice, takže podle jejich levých stran dostaneme
z2 — x ^ x2 — у neboli z2 — x2 ^ x — y. Odtud a z předpokladu x ^ у
máme z2 — x2 ^ 0 neboli z ^ x. Dohromady tak platí x ^ у ^ z ^ ж,
musí tedy být x = у = z. Tehdy se zadaná soustava redukuje na jedinou
rovnici \Jx2 — 1 = x — 1. Je snadné ukázat, že její jediné řešení v oboru
reálných čísel je x = 1.

A - I - 2

Nechť U, V, IT, T jsou body dotyku vepsané kružnice po řadě se stranami
AB, BC, -DA a s uvažovanou tečnou RS, jejíž průsečík se stranou BC
pojmenujeme X (obr. 22). Označme a
= \BV\ = \DW\ pevné délky a r — \BR\, s = IDS'! proměnné délky
závislé na volbě tečny RS. Naším cílem je ukázat, že zadaný součin r ■ s =
= \BR\ ■ \DS\ má stálou hodnotu a ■ b.

\AD\, b = \BU\ =\AB |

A rU b В R

Obr. 22

Trojúhelníky ARS, BRX jsou stejnolehlé podle středu R, neboť jejich
strany A51 a leží na rovnoběžných přímkách. Navíc kružnice vepsaná
prvnímu trojúhelníku ARS je připsána straně BX druhého trojúhelníku
BRX. Protože body dotyku vepsané a připsané kružnice jsou souměrně
sdružené podle středu strany, na které oba body leží, můžeme usoudit, že
poměru ISWI : \AR\ v trojúhelníku ARS odpovídá poměr \BV\ : \BR\
v trojúhelníku BRX. To vede к rovnosti, kterou v zavedeném označení
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zapíšeme jako
b + s

= -, odkud r■s — a ■ b.
a v

Tím je důkaz hotov a úloha vyřešena.

r

Jiné řešení. Užijeme stejné označení jako v předchozím řešení.
Označme ještě |i7X| = x a vyjádřeme délky stran obou stejnolehlých
trojúhelníků ARS, BRX na základě triviálního poznatku o rovnosti
úseků tečen z daného bodu к dané kružnici. Pro trojúhelník ARS je to
snadné: platí \AR\ — a + r, |ASj = a + s a

\RS\ = \RT\ + \TS\ = \RU\ + \WS\ = (b + r) + (b + s) = 2b + r + s.

V trojúhelníku BRX předně máme \BR\
vyjádříme takto:

r a délku třetí strany BX

\BX\ = \BV\ + \VX\ =b+ \TX\ = b + (|ДГ| - \RX\) =

— b + \RU\ — x = b + (b + r) — x = 2b -\- r — x.

Pro strany podobných trojúhelníků ARS a BRX tedy platí úměra

(a + r) : (2b + r + s) : (a + s) = r : x : (2b + r x).

Odtud je možné eliminovat x a pak objevit závislost rs = ab. Místo
takového postupu si však povšimněme, že obvod druhého trojúhelníku
nezávisí na x, proto porovnáme poměry obvodu к první straně (na x

nezávislé) v každém z obou trojúhelníků:

r + x + (2b + r ж)(a + r) + (26 T r + s) + (a + s)
a + r r

2(b + s) 2b
2 + = 2 H

a + r r

rs = ab.

Potřebná rovnost je dokázána.

Jiné řešení. Překvapivě jednoduchý důkaz tvrzení úlohy podala stu-
dentka Lenka Polcerová z Gymnázia Křenová v Brně, když ukázala, že
jsou podobné trojúhelníky ODS a RBO, kde O je střed kružnice ve-

psané kosočtverci ABCD (obr. 23). Z této podobnosti totiž plyne úměra
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\DS\ : \D0\ = \BO\ : \BR\ neboli \BR\ • |£>S| - \BO\ • \DO\, což je
konstantní hodnota (na volbě tečny nezávislá).

Protože zmíněné trojúhelníky ODS a RBO se zřejmě shodují ve vnitř-
nich úhlech při vrcholech D a B, stačí к důkazu jejich podobnosti ově-
řit shodnost úhlů (3 — \<OSD\ a 6 = \KROB\. Zavedeme-li ještě úhly
a — \<BAO\ a 7 = \^ARO\, pak z faktu, že kružnice vepsaná kosočtverci
ABCD je zároveň vepsána trojúhelníku ARS, plyne, že vnitřní úhly to-
hoto trojúhelníku jsou 2a, 2(3, 27, takže platí a + (3 + 7 = 90°. Protože
úhel AOB je pravý, vnitřní úhly trojúhelníku AOR mají velikost a, 7,
S + 90°, takže a -f- 7 + 6 = 90°. Porovnáním obou uvedených rovností pro
součet tří úhlů dostáváme kýženou rovnost (3 = 6 a celý důkaz je hotov.

A - I - 3

Na tabuli zřejmě budou stále jen čísla z množiny M = {1, 2,..., 33}.
Prvočísla 17, 19, 23, 29 a 31 tam budou napsána pořád, a to každé je-
denkrát, protože nemají žádného dělitele různého od 1 a množina M ani
neobsahuje žádný jejich násobek (takže nikdy nemohou z tabule zmizet
ani se objevit v dalším exempláři).

Vysvětlíme nyní, proč na tabuli budou kromě uvedených pěti prvočísel
napsána vždy ještě některá dvě další čísla. Součin S všech čísel zapsaných
na tabuli je na počátku roven

S = 33! = 231 • 315 • 57 • 74 • ll3 • 132 • 17 • 19 • 23 • 29 • 31. (1)

V každém kroku zvolíme nějakou dvojici čísel (x,y) s vlastností x | у,

tedy čísla tvaru x = а а у = ka, a nahradíme je jedním číslem y/x = k.
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Součin všech čísel na tabuli se přitom změní z dosavadní hodnoty S na
novou hodnotu S/a2, neboť dva činitelé x, у o součinu xy — ka2 přejdou
v jeden nový činitel к (a ostatní činitelé se nezmění). Je jasné, že při
změně S —> S'/a2 se exponent libovolného prvočinitele p z rozkladu čísla S
buďto zachová (pokud p \ a), nebo sníží o sudé číslo (rovné exponentu p
v rozkladu čísla a2). V žádném případě se tedy nezmění parita (sudost
či lichost) exponentu žádného z prvočinitelů. Proto každé z prvočísel,
které mělo na počátku v rozkladu (1) lichý exponent, bude mít lichý
exponent v rozkladu měnícího se S i po libovolném počtu kroků. Taková
jsou (kromě 17, 19, 23, 29 a 31) rovněž prvočísla 2, 3, 5 a 11. Znamená
to, že na tabuli budou stále zastoupena (ne nezbytně čtyři různá) čísla,
která jsou těmito jednotlivými čtyřmi prvočísly dělitelná. Nemůže to být
ovšem jediné číslo (neboť 2 • 3 • 5 • 11 > 33), takže to musí být aspoň
dvě čísla, například 10 a 33 (nebo 11 a 30 či 15 a 22, jiné možnosti při
celkovém počtu sedmi čísel na tabuli neexistují). Tak jsme dokázali, že
na tabuli bude skutečně vždy napsáno nejméně 7 čísel.

Zbývá popsat nějakou posloupnost kroků, po níž na tabuli 7 čísel zů-
stane. Existuje mnoho možností, můžeme například dát „stranou" prvo-
čísla 17, 19, 23, 29, 31 a čísla 10 a 33, a se zbylými čísly provést následující
kroky:

32,16 —> 2, 30,15 —> 2, 28,14->2, 26,13 —> 2, 24,12 —> 2,

22,11->2, 27,9—>3, 21,7 —> 3, 18,6->3, 25,5 -> 5,

20,4—>5, 8, 2 —> 4, 5,5 —> 1, 4,2^2, 3,3 -> 1,

3,3 —> 1, 2, 2 —> 1, 2, 2 —> 1, 2,2—>1.

Po těchto krocích už je na tabuli (kromě sedmi čísel stranou) už jen
7 jedniček, které všechny odstraníme šesti kroky 1,1
krokem např. 10,1 —> 10.

1 a posledním

A - I - 4

Nejprve ukážeme, že v každém ostroúlilém trojúhelníku ABC platí

(1)7 = 60° \CO\ = \CV\.
К tomu uvážíme trojúhelníky CVAq a COB\, kde A0 je pata výšky z vr-
cholu A a B\ je střed strany AC (obr. 24). Z pravoúhlého trojúhelníku
ACAq plyne

7 = 60° 4=> |СЛ0| = ЦР 4=^ |C.40| = \CB,\.
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Poslední je rovnost délek odvěsen pravoúhlých trojúhelníků CVAq
a COBi, jejichž vyznačené vnitřní úhly VCAq a OCB\ mají shodnou
velikost 90° — (3. (Pro úhel CVAq to plyne z pravoúhlého trojúhelníku
BCCq, kde Co je pata výšky z vrcholu C na stranu AB, pro úhel OCB\
to plyne z rovnoramenného trojúhelníku ACO, který má u hlavního
vrcholu O úhel 2(3 díky větě o obvodovém a středovém úhlu v opsané
kružnici.) Proto je shodnost odvěsen CAq, CB\ ekvivalentní se shodností
přepon CO a CV, což dokazuje (1).

A Со В

Obr. 24

Nyní zapojíme do úvah střed S kružnice vepsané. Ze zmíněné shod-
nosti úhlů VCAq a OCB\ plyne, že v každém ostroúlilém trojúhelníku
ABC je polopřímka CS nejen osou úhlu ACB, ale také osou úhlu OCV.
Tato osa je v případě 7 = 60°, kdy jak víme \CO\ = \CV\, osou základny
OV rovnoramenného trojúhelníku OVC (body О а V jsou různé, neboť
podle zadání úlohy je trojúhelník ABC různostranný), takže střed S na
ose úsečky OV skutečně leží. Stejně tak tomu je i v případech a — 60°,
resp. (3 = 60°.

Připusťme nyní, že střed S leží na ose úsečky OV, avšak žádný z úhlů
a, (3, 7 není 60°. Podle (1) tudíž platí \AO\ Ф \AV\, \BO\ Ф \BV\
а |CO| ф \CV\. Podívejme se znovu na trojúhelník OVC, v němž tedy
osa CS vnitřního úhlu OCV nesplývá s osou protější strany OV, takže
jejich jediný společný bod S leží na kružnici trojúhelníku OVC opsané.
Jinak řečeno, bod C leží na kružnici opsané trojúhelníku OVS. Ze stej-
ných důvodů na této kružnici leží i body A a B, takže se jedná o kružnici
opsanou trojúhelníku ABC, která však nikdy svým středem O neprochá-
zí. Tak jsme dostali spor, který ukazuje, že připuštěná situace nemůže
nastat. Tím je řešení celé úlohy u konce.
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Poznámka 1. Z druhé části řešení vyplývá tento poznatek: má-li úhel 7

(ostroúhlého) trojúhelníku ABC velikost 60°, leží vrcholy A&B najedná
kružnici s průsečíkem výšek, středem opsané kružnice i středem vepsané
kružnice. To ostatně plyne i z vyjádření jednotlivých úhlů v trojúhelníku.

Poznámka 2. Klíčovou ekvivalenci (1) z podaného řešení lze rovněž
dokázat trigonometricky. Platí totiž vzorce

\CO\ = — a \CV\ = —1 1 2 sin 7 1 1
podle kterých jsou úsečky CO a CV shodné, právě když je úhel 7 řešením
rovnice 2 sin 7 = tg 7, která je zřejmě ekvivalentní s rovnicí cos 7 = |, jež
má v intervalu (0°, 90°) jediné řešení 7 = 60°. První ze vzorců (2) plyne
z tzv. rozšířené sinové věty

(2)
tg 75

b ca
— 2r.

sin a sin /3 sin 7

kde r je poloměr kružnice opsané trojúhelníku ABC, druhý vzorec ve (2)
dostaneme dvojím vyjádřením délky |Ch40| = bcos7 = \CV\sin/3, kam
ze sinové věty dosadíme sin/3 = (b/c) siny.

Poznámka 3. Ekvivalenci (1) z podaného řešení můžeme dokázat
i bez velkého počítání: průsečík výšek daného trojúhelníku totiž vždy
leží na kružnici souměrně sdružené s kružnicí trojúhelníku opsanou po-
dle přímky AB (v našem případě). Vzhledem к tomu, že taková kružnice
je zároveň obrazem kružnice opsané v posunutí o vektor Cl/, závisí ve-
likost \CV\ v dané opsané kružnici jen na velikosti tětivy AB (či odpo-
vídajícím obvodovém úhlu), a nikoliv na poloze bodu C. Proto rovnost
\CV\ — r = \CO\ nastane, právě když zmíněná sdružená kružnice pro-
chází středem O kružnice trojúhelníku opsané, tj. právě když příslušná
strana leží proti (obvodovému) úhlu velikosti 60°.

A - I - 5

Pro každé к = 1,2,... ,n označme ту počet ryb v kádi poté, co si fc-tý
rybář odnese svůj díl. Tyto počty jsou podle zadání určeny počáteční
hodnotou ro a rekurentními vztahy

-—-(rfc-1) (A; = 0,1,..
n

n — 1).Гк+1 = • )

Zapišme je ve výhodném tvaru

= q ■ rk + d, kde q= —

1 — n- 1
(1)a d —Гк+1

n n
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Rekurentní rovnice rk+i = q-rk + d (kde q, d jsou konstanty) je poměrně
obvyklá v řadě aplikací. Odvodíme proto nejprve, jaké přímé vyjádření
má každý člen r^ takové posloupnosti ro, ri, 7*2,... při obecných q, d
a dané počáteční hodnotě ro- Teprve poté se vrátíme к naší úloze a do
výsledku dosadíme hodnoty g, d připsané v (1).

Všimněme si předně, že v případě q = 1 dostáváme rovnici rk+i —

= rk + d, podle které je zkoumaná posloupnost aritmetická s diferencí
d, takže její obecný člen má vyjádření r^ — vq + kd. V případě 5 ý 1
z rekurentní rovnice postupně dostaneme

r\ = qr0 + d,
r2 = qri + d = q(qr0 + d) + d = q2r0 + (q + 1 )d,
r3 = qr2 + d = q(q2r0 + (q + l)d) + d = q3r0 + (q2 + q + l)d,
7*4 = <^3 + d = q{q3r0 + (q2 + q + l)d) + d = q4r0 + (q3 + q2 + q + l)d,

Takto nacházíme vyjádření

rk = Qkro + (qк-1 fc-2
+ q + l)d.+ q

Uplatníme-li známý vzorec pro součet к členů geometrické posloupnosti
s kvocientem q 7^ 1, dojdeme к závěru, že pro každé A: ^ 0 je člen dán
přímým vzorcem

(,qk - 1 )d d \ d

q-l) q~ 1
= Qk(r0 +rk = qkr0 +

q- 1

V našem konkrétním případě platí

1 — n

d n
= n — 1

<7—1 n — 1 -1
n

odkud nacházíme vyjádření jednotlivých hodnot ve tvaru

(n — l)fc(r0 T n — 1)
n + 1 (k = 0,1, 2 ..., n).7-fc = nfc

Vzhledem к nesoudělnosti dvojice čísel (n—l)fc, jsou takové hodnoty
celočíselné, právě když je číslo ro + n — 1 dělitelné všemi zastoupenými
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mocninami nfc, z nichž nejvyšší je mocnina nn. Hledaná nutná i postačil-
jící podmínka má proto tvar: pro některé celé j platí ro + n — 1 = j ■ nn
neboli ro = j • nn — n + 1. Pomocí tohoto parametru j pak mají všechny
členy rk vyjádření

fk = j • (n — l)k • nn k — n + 1 (k = 0,1,2 ..., n). (2)

Zbývá zjistit nejmenší celé j ^ 1, při kterém jsou všechna čísla rk daná
vztahy (2) kladná. Protože tato čísla zřejmě tvoří klesající posloupnost,
nejmenší z nich je číslo rn = j ■ (n — l)n — n + 1, což je při n ^ 3 číslo
kladné již při j — 1 (tehdy ro = nn — n + 1), zatímco při n = 2 to platí
až při j — 2 (tehdy ro = 2 • 22 — 1 = 7).

Odpověď: Hledaný nejmenší počet ryb je ro = 7 pro n = 2 a ro =
= nn — n + 1 pro každé n ^ 3.

Jiné řešení. Posloupnost ro, ri,..., rn můžeme počítat i „odzadu“,
tj. pomocí posledního členu rn vyjadřovat členy předchozí. S využitím
rekurentního vztahu

kde q = ——
n — 1

rk = qrk+1 + 1

(kvocient q má nyní převrácenou hodnotu oproti hodnotě v původním
řešení), postupně pro к = n — 1, n — 2,..., 1,0 dostáváme:

rn—i = grn + l,
= qvn—i + 1 = <72rn +9 + 1,

grn_2 + 1 = q3rn + q2 + q + 1,
= qrn-3 + 1 = + 93 + q2 + q + 1,

Гп-2

^n—3 =

Гп-4

Podobně jako v původním řešení (sčítání členů geometrické posloupnosti
a následné dosazení kvocientu q zde vynecháme) tak dospějeme ke vzor-
cům

nk(rn + n — 1) (3)— n + 1 (fc = 0,1,..., n).Tn—k —

(n - l)k
Protože čísla nk a (n — l)k jsou nesoudělná, hodnoty rn-k jsou vesměs
celočíselné, právě když (n — l)n | rn -f n — 1, neboli rn = j ■ (n — l)n —
— n +1, čemuž odpovídá (podle vzorce (3) pro к = n) počáteční hodnota

76



r0 = j ■ пп — п + 1. Так jsme došli ke stejnému závěru jako při původním
postupu.

Poznámka. Nalezení vzorců pro členy rk se při obou postupech značně
zjednoduší, když si všimneme, že pozměněná posloupnost tvořená čísly
r'k = fk + n — lje geometrická.

A - I - 6

V zadané rovnici bude výhodné přejít od nejmenších společných násobků
к největším společným dělitelům, a to pomocí známého vztahu (x,y) •

‘[x,y\ = x • y. Označme proto и = (a, c), v = (6, с) a levou stranu rovnice
přepišme takto:

[a, c] + [6, c] ас/и + bc/v ba c

v) a + ba + b a + b и

Zadanou rovnici lze proto (po vynásobení zlomkem (a + b)/c) zapsat
v ekvivalentním tvaru

a b p2 +1
и v p2 + 2

(1)• (a + b).

Porovnejme odhady velikosti výrazů v (1). Protože p2 > 0, pro zlomek
na pravé straně (1) zřejmě platí

1 p2 + 1
2 ' p2 + 2

<1,- <

takže v důsledku (1) musí být

a + b a b
— T - <C a -f- b. (2)<

2 и v

Díky levé nerovnosti nemohou být obě přirozená čísla u, v větší než 1,
neboť z nerovností u^2at;^2 bychom dostali

£.£< í+1
2и v

Aspoň jedno z čísel u, v je tedy rovno jedné. Pravá nerovnost v (2) však
vylučuje případ и = v = 1. Číslu 1 se tudíž rovná právě jedno z čísel u, v.
S ohledem na symetrii rozebereme pouze případ и — 1 a v ^ 2.
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(6, c), je zlomek b/v rovenProtože číslo v jsme zavedli vztahem v
některému přirozenému číslu b\. Dosadíme nyní hodnoty и = 1 ab = b\v
do (1) a vzniklou rovnici vyřešíme vzhledem к proměnné a:

p2 + 1
p2 + 2

O2 + 2 )(a + bi) = (p2 + l)(a + M),
a = ^i((p2 + l)v - P2 — 2).

Kdyby platilo v ^ 3, dostali bychom z poslední rovnosti odhad

a = (p2 + l)u — p2
a to je ve sporu s nerovností a ^ 2p2 danou oborem, ve kterém podle
zadání úlohy mají hodnoty a, 6, c ležet. Platí tedy opačná nerovnost
v < 3, která spolu s předpokladem v ^ 2 vede к závěru, že nutně v = 2.
Rovnice (3) tak přechází v rovnici

• (a + biv)a + b\ =

(3)

2 ^ 3 (p2 + 1) - p2 - 2 = 2p2 + 1,

a = h(2(p2 + 1) -p2 - 2) =p26i,
kterou v zadaném oboru hodnot a, množině {1, 2,3,..., 2p2}, snadno
vyřešíme.

Protože je tedy a ^ 2p2, je b\ 2. Přitom z podmínek w = (а, с) = 1
a u = (6, c) = 2 plyne, že c je sudé číslo s číslem a nesoudělné. Z rovnosti
a = p2ěi tak plyne, že b\ — 1 a p je /гс/te prvočíslo. Je tudíž a = p2b\ = p2
a b = b\v = 1-2 = 2. Pro číslo c to znamená následující zpřesnění: c je
sudé číslo, které není násobkem daného prvočísla p.

Která c € {1, 2,3,..., 2p2} takovou podmínku splňují a kolik jich
je? Jak už víme, pro p = 2 žádné takové c neexistuje. Pro liché p pak
ze všech p2 možných sudých čísel c = 2,4,6,..., 2p2 vyloučíme všechny
násobky čísla p, tedy právě p čísel 2p, 4p,..., 2p2; vyhovujících hodnot je
proto právě p2 —p. Takový je tedy počet všech hledaných trojic (a, b, c) =
= (p2,2, c) v rozebraném případě, kdy и = 1 a v ^ 2.

Ve druhém možném případě, kdy naopak v
s ohledem na symetrii stejný počet p2 — p vyhovujících trojic, které jsou
tentokrát všechny tvaru (2,p2,c). (Popis vyhovujících trojic zahrneme
i do odpovědi, přestože to zadání úlohy nevyžaduje.)

Odpověď: V případě p = 2 žádné vyhovující trojice neexistují, v pří-
pádě lichého prvočísla p je jich právě 2(p2 — p) a všechny jsou tvaru

(a, 6, c) = (p2, 2, c) nebo (a, 6, c) = (2, p2, c),
kde c G {1,2,..., 2p2} je libovolné sudé číslo, které není násobkem p.

1 a ti ^ 2, existuje
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Jiné řešení. Definujme přirozená čísla u, v, m, n vztahy и = (a, c),
v = (6, c), a = mu a b — nv. Pak [a, c] = mc, [6, c] = nc a po dosazení do
zadané rovnice po malé úpravě včetně zkrácení číslem c dostaneme

(p2 + 2)(m + n) — (p2 + 1 )(m« + nu).

Díky nesoudělnosti čísel p2 + 1 a p2 + 2 existuje přirozené číslo к takové,
že

m + n = Zc(p2 + 1) a mu + nv = fc(p2 + 2).

Vyřešme nyní soustavu rovnic (1) pro neznámé man, pokládaje n
a v za parametry. Zřejmě и ^ v, předpokládejme tedy dále, že и > v

(případ и < v se díky symetrii rozebere stejně). Soustava (1) má jediné
řešení

(1)

k(p2 + 2 — v(p2 + 1)) ^ k(u(p2 + 1) - p2 — 2)
a ti —

и — v

Z nerovností u-u>0am>0 plyne p2 + 2 — v(p2 + 1) > 0 neboli

m —

и — v

p2 + 2
p2 4- 1

1
<2,= 1 +v <

p2 + 1

1 a vzorce pro m, n přejdou do tvarutakže nutně platí v

k(u(p2 + 1) — p2 — 2)
a n = —

и — 1

Kdyby pro číslo и > 1 platilo и ^ 3, měli bychom z poslední rovnosti

к
= m(u(p2 + 1) — p2 — 2).m =

и — 1

n Z u{p2 + 1) - p2 - 2 ^ 3(p2 + 1) - p2 - 2 = 2p2 + 1,

což je ve sporu s tím, že n = nv = b ^ 2p2. Je tedy nutně и = 2 a vzorce

pro m, n získávají definitivní podobu

= /с a n = Zcp2,m

tudíž (s ohledem na nerovnost n ^ 2p2) musí být buď = 1, nebo к — 2.
Je-li к = 1, máme а = mu

podmínky (a, c) = (2, c) = 2 а (6, c) = (p2, c) = 1. Taková čísla c existují,
jen když je prvočíslo p liché, a v zadaném intervalu jich je právě p2 — p.

p2 a číslo c splňuje2, 6 nu
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Je-li к = 2, máme а = 4 a b = 2р2 a číslo с splňuje podmínky
(а, с) = (4, с) = 2 a (6, с) = (2р2,с) = 1. Žádné takové с (které by bylo
sudé i liché) zřejmě neexistuje.

V případě и < v s ohledem na symetrii existuje rovněž p2 — p vyho-
vujících trojic, takže jejich celkový počet je 2(p2 — p) (je-li ovšem p = 2,
žádná zkoumaná trojice neexistuje).

A - S - 1

Hodnoty odmocnin jsou vždy nezáporné a odmocňované hodnoty také,
proto neznámé x, у, z musejí splňovat podmínky x,y,z ^ 1, x ^ y2,
у ^ z2 a 2 ^ x2. Z posledních tří nerovností máme max{:r, y, z} ^
^ max{y2, z2,x2}, opačná (neostrá) nerovnost platí díky tomu, zet ^t2
pro každé t ^ 1. Proto тах{ж, у, z} = max{y2,z2, x2} = 1, tedy x — у —

1 a obě strany všech tří rovnic soustavy jsou rovny nule (to je
zároveň zkouška).

Obměna postupu: namísto úvahy o maximech můžeme po zjištění
z první věty řešení pokračovat následovně: platí x ^ у2 ^ у ^ z2 ^
^ z ^ ж2, nerovnost mezi krajními výrazy ж ^ ж2 již znamená x = 1,
takže i hodnoty y, z z uvedeného řetězce šesti členů jsou rovny 1.

Závěr. Soustava má jediné řešení x = у — z — 1.

= z =

A - S - 2

Pro délky úseků stran obecného trojúhelníku ABC к bodům dotyku
vepsané kružnice (označeným podle obr. 25) platí vzorce

AC U

Obr. 25
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b + с — а а + c-b
\BV\ = \вт\
a + b- с

\ли I = \AV\ = 2 2

|СТ| = |С77| 2

které lze snadno získat vyřešením soustavy rovnic

\AV\ + \BV\ = c, \AU\ + \CU\ = 6, \BT\ + \CT\ = a.

Body С, T, U spolu se středem S vepsané kružnice jsou obecně vrcholy
deltoidu, který je v případě pravého úhlu ACB čtvercem o straně g =
= \SU\ = |<S'Vj. Porovnání s výše uvedenými vzorci pro délky úseků CT,
CU vede ke vztahu

a + b - c
Q =

2

podle Thaletovy věty v takovém pravoúhlém trojúhelníku navíc platí
r = \c. Dohromady dostáváme

c a+b-c a+b
Г+е~2+ 2

Zkoumaný podíl {r + g)/(a + b) má proto v libovolném pravoúhlém troj-
úhelníku jedinou možnou hodnotu, rovnou číslu

Uvedený postup lze obměnit zejména tak, že namísto obecných vzorců
pro úseky stran vyjdeme z rovností \CT\ — \CU\ = g, z nichž plyne
\AV\ = \AU\ = b-g a \BV\ = \BT\ =a-g, tudíž

2

2r = c = \ AB\ = \AV\ + \BV\ = {b- g) + {a- g)

odkud je již závěr nasnadě.
Jiné řešení. Pro obsah P obecného trojúhelníku ABC platí vzorec

2P — g(a + b + c);
к jeho odvození stačí sečíst obsahy trojúhelníků ABS, ACS a BCS se
shodnou výškou g ke stranám původního trojúhelníku. V případě 7 = 90°
je ovšem 2P = ab a kromě toho, jak už jsme zmínili výše, r — \c. Spolu
s Pythagorovou větou c2 = a2 + b2 tak dostáváme

ac + bc + c2 + 2ab ac + bc+ a2 + b2 + 2ab
2 (a + b + c)

(a + b)c + (a + b)2 (a + b)(a + b + c)
2 (a + b + c)

a docházíme tak ke stejnému závěru jako v původním řešení.

ab<■

r+e=ž+ 2 (n T b -(“ cj
a + b

a + b + c

2(ft T b -(- c) 2
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A - S - 3

Součin všech čísel zapsaných na tabuli je roven

S = 231 • 315 • 5 7 • 74 • ll3 • 132 • 17 • 19 • 23 • 29 • 31.

Přítomnost lichých exponentů znamená, že S není druhou mocninou.
Proto nemůžeme smazat v prvním kroku všechna napsaná čísla, prvo-
čísla 17, 19, 23, 29 a 31 dokonce nesmažeme nikdy. Ze všech ostatních
čísel, která se účastnit úprav mohou, vznikne vždy neprázdný soubor
čísel, takže na tabuli bude pořád alespoň 5+1 = 6 čísel. Ukažme, že 6
je hledaný nejmenší počet popisem jednoho (z řady možných) postupů.

Kvůli lichým exponentům u prvočísel 2, 3, 5 a 11 vyčleníme nejdříve
například skupinu čísel A = {2,9,11,22,25} a všechna ostatní čísla různá
od 17, 19, 23, 29 a 31 zařadíme do skupiny

В = {3,4,5, 6, 7,8,10,12,13,14,15,16,18, 20, 21, 24, 26, 27, 28,30,32,33}.

V prvním kroku vybereme všechna čísla z A a nahradíme je číslem

n = \/2 • 9 • 11 • 22 • 25 = V22 • 32 • 52 • ll2 = 2 • 3 • 5 • 11.

• 57-2 • 74 • ll3"2 • 132 =
31-2 15-2Protože součin všech čísel z В je 2

= 229 • 313 • 55 • 74 • 11 • 132, vybereme v druhém kroku číslo n spolu se

• 3

všemi čísly z В a nahradíme je číslem

у/(2 • 3 • 5 • 11) ■ (229 • 313 • 55 • 74 • 11 • 132) = 215 • 37 • 53 • 72 • 11 • 13.

Pak už zůstane na tabuli pouze šest čísel, což je, jak jsme vysvětlili,
nejmenší možný počet.

A - II - 1

Ze zadání je patrné, že číslo 0 není řešením dané rovnice, ať jsou para-

metry p, q jakékoliv. Zbavme se proto absolutní hodnoty v rovnici kon-
statováním, že všechna její řešení jsou kladné kořeny rovnice

x2 -\-px — qx — 1 neboli x2 + (p — q)x +1 = 0, (1)

spolu se zápornými kořeny rovnice

x2 1 neboli x2 (p + q)x + 1 = 0. (2)— px = qx —
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Protože každá kvadratická rovnice má nejvýše dva kořeny, zkoumaná
situace celkového počtu čtyř řešení nastane, právě když rovnice (1) bude
mít dva různé kladné kořeny a zároveň rovnice (2) bude mít dva různé
záporné kořeny. Rozborem těchto podmínek se nyní budeme zabývat.

Předně je jasné, že oba diskriminanty (p — q)2 — 4 a (p + q)2 — 4 rovnic
(1) a (2) musejí mít kladné hodnoty, což vede na nutné podmínky

(p - q)2 > 4 a (p + q)2 > 4. (3)

Jsou-li splněny, stačí zkoumat otázku, kdy menší kořen rovnice (1) je
kladný a zároveň větší kořen rovnice (2) záporný. Podle vzorců pro kořeny
kvadratické rovnice to lze zapsat nerovnostmi

q-p - Víp-q)2 -4 p + q+ \/{p + q)2 -4
< 0. (4)> 0 a

2 2

(Znaménka pro menší, resp. větší kořen jsme vybrali na základě toho, že
jmenovatelé obou zlomků se rovnají kladnému číslu 2.) Z první nerovnosti
zapsané v ekvivalentním tvaru

q-p> уДр - q)2 - 4 (5)

plyne q — p > 0, takže první nerovnost v (3) lze zpřesnit na q — p > 2.
Pak už nerovnost (5) zřejmě platí, neboť

q-p= y/(p- q)2 > \/{p- q)2 - 4.

Tak jsme ukázali, že rovnice (1) má dva různé kladné kořeny, právě když
platí q — p > 2, což je první z podmínek

(6)p — q + 2 < 0, p + q + 2 < 0.

Stejným postupem ověříme, že druhá podmínka v (6) vyjadřuje existenci
dvou různých záporných kořenů rovnice (2). Stačí upravit druhou nerov-
nost z (4) do tvaru

y/(p + q)2 — 4 < ~{p + q) ' (odkud plyne p + q < 0)

a pro záporné číslo p + q tak získat konečnou podmínku ve tvaru p + q <
< —2, což je druhá z nerovností (6), které tak přesně vymezují zkoumanou
situaci.
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К dokončení celého řešení zbývá zdůvodnit ekvivalenci

{P — q + 2 < О Л p + q + 2 < 0) <=> p + \q\ + 2 < 0.

To je snadné, protože ze zřejmé rovnosti |g| = max{—g, q} plyne

p -f \q\ + 2 = max{p - q + 2,p + q + 2}

a maximum ze dvou reálných čísel je záporné, právě když jsou obě zá-
porná.

Jiné řešení. Nejprve postupujme shodně s původním řešením až do
odvození nerovností (3), které, připomeňme, zaručují existenci dvou růz-
nýcli reálných kořenů rovnice (1), resp. rovnice (2). Označíme je po řadě
£1,2 a 3:3,4 a zapíšeme jejich vztah ke koeficientům rovnic, vyjádřený
známými Viětovými vzorci

Xi + X2 = —{p — q)i X\x2 = 1, x3 + X4=p + q, X3X4 — 1. (7)

Z rovnosti X1X2 = 1 plyne, že kořeny xi$ mají stejné znaménko. Jsou
tedy kladné, právě když je kladný jejich součet, který je ovšem podle první
rovnosti v (7) roven —(p — q). Získanou nerovnost p — q < 0 lze spolu
s podmínkou (p — q)2 > 4 vyjádřit jedinou nerovností p — q < — 2 (neboli
p — q + 2 < 0), která je tudíž kritériem toho, kdy rovnice (1) má dva různé
kladné kořeny. Podobně pro existenci dvou záporných kořenů rovnice (2)
dostaneme kritérium p + q + 2 < 0. Závěrečný převod obou nerovností
na jednu ekvivalentní nerovnost s absolutní hodnotou zdůvodníme stejně
jako v předchozím řešení.

Jiné řešení. Stejně jako v předchozích postupech přejdeme k rovnicím
(1) a (2), které jsou obě téhož typu x2+rx+1 = 0. Existenci dvou různých
kladných či záporných kořenů takové rovnice nyní posoudíme úvahou
o příslušné kvadratické funkci f(x) = x2 + rx + 1 s parametrem r, jejímž
grafem je parabola rozevřená vzhůru. Proto má funkce / dva různé nulové
body, řekněme и au, právě když má alespoň jednu zápornou hodnotu,
navíc takové hodnoty se nabývají právě v bodech, které leží mezi и au.
Všimněme si ještě, že bez ohledu na hodnotu parametru r pro případné
nulové body m, v funkce / platí uv = /(0) = 1, takže to jsou dvě navzá-
jem převrácená čísla, jež jsou zároveň kladná či zároveň záporná. Jsou
tedy obě kladná (resp. záporná), právě když mezi nimi leží číslo 1 (resp.
číslo —1). Pro první případ tak dostáváme jedinou podmínku /(1) < 0
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(neboli 2 + r < 0), pro druhý případ jedinou podmínku /(—1) < 0 (neboli
2 — r < 0). Zbývá dodat, že v rovnici (1) je r = p — q a v rovnici (2) je
r = — (p + q), takže znovu dostáváme dvojici nerovností (6).

A - II - 2

Pro lepší přehlednost zmiňme úvodem zřejmé vlastnosti obecného rovno-
běžníku ABCD, které v řešení využijeme: součet úhlů BAD a ABC je
úhel přímý, zatímco úhly DAC a ACB jsou shodné, stejně jako strany
AB a CD.

Podle zadání úlohy přímka BD odděluje body A a P, přičemž platí

\<BAD\ + \<BPD\ = \<BAD\ + \<ABC\ = 180°

čtyřúhelníku ABPD lze tudíž opsat kružnici (obr. 26). V ní jsou proto
shodné obvodové úhly DBP a DAP, z čehož vyplývá

\<DBP\ = \<DAP\ = \<DAC\ = \<ACB\ = \<BCP\.

CD
- к

\
\

/

/ \
/ \

/ v
/
I 1

II
I\

I/\

\

В
xA \ /

/\
ч

*4

Obr. 26

Protože přímka BP odděluje body C a D, lze uplatnit větu o ob-
vodovém a úsekovém úhlu pro tětivu BP kružnice к opsané trojúhel-
niku BCP\ Z odvozené shodnosti úhlů BCP a DBP vyplývá, že přímka
BD je tečnou ke kružnici к (s bodem dotyku В). Po tomto zjištění již
snadno dokážeme obě požadované implikace.
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(i) Je-li přímka CD tečnou ke kružnici k, ze symetrie obou tečen CD
a BD plyne \CD\ = \BD\ neboli \AB\ = \BD\.

(ii) Platí-li naopak \AB\ = \BD\ neboli \CD\ = \BD\, leží bod D
na ose tětivy BC kružnice k, takže její tečnou je nejen přímka BD, ale
i souměrně sdružená přímka CD.

A - II - 3

Hledáme právě ty dvojice celých kladných čísel man, pro něž existují
celá kladná čísla к a l taková, že

(1)2nn — 1 = kn a 2n — 1 = Im.

Pohlédněme na čísla к, l jako na parametry a řešme soustavu lineárních
rovnic (1) pro neznámé m, n. Když například к dvojnásobku první rovnice
přičteme /с-násobek druhé rovnice, eliminujeme tím neznámou n a po

úpravě dostaneme první z rovnic

(2)(4 — kl)m — к + 2 a (4 — ki)n — l + 2;

druhou rovnici získáme analogicky. Protože pravé strany rovnic (2) jsou
kladné, plyne z tvaru levých stran podmínka 4 — kl > 0 neboli kl < 4.
To je pro celá kladná čísla к, l natolik omezující, že jednotlivé možné
případy kl = 1, kl = 2 a kl — 3 snadno postupně rozebereme.

V případě kl — 1 musí být к = l = 1 a z rovnic (2), které přejdou do
tvaru 3m = 3 a 3n = 3, nacházíme první vyhovující dvojici m = n — 1.

Případ kl = 2 vůbec rozebírat nemusíme, protože podle levých stran
rovnic (1) vidíme, že čísla к, l,m,n z pravých stran musí být (v každém,
nejen v tomto případě) lichá.

V případě kl = 3 je nutně {к, /} = {1,3}, což po dosazení do rovnic (2)
dává řešení m = 5 a n = 3, nebo naopak m = 3 a n — 5.

Závěr. Všechny hledané dvojice (m,n) jsou (1,1), (3,5) a (5,3).
Jiná řešení. Nerovnostní úvahy vedoucí к úplnému vyřešení úlohy

můžeme různými způsoby obměňovat. Podívejme se tedy, jakými cestami
se lze od výchozích předpokladů m \ 2n — 1 a n \ 2m — 1 ubírat.

První postup. Kdyby neplatilo m = 2n — 1 ani n = 2m — 1, byla by
čísla 2n — 1 a 2m — 1 alespoň dvojnásobky po řadě čísel man, tudíž
by platily nerovnosti 2n — 1 ^ 2m a 2m — 1 ^ 2n. Ty se však navzájem
vylučují, neboť znamenají 2n > 2m, resp. 2m > 2n. Proto musí platit
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aspoň jedna z rovností m = 2n — 1 či n = 2m — 1. Je-li m = 2n — 1, pak
2ra — 1 = 4n — 3 a zbylá podmínka n | 2m — 1 tak přechází do tvaru
n | 4n —3 neboli n | 3. To splňují pouze čísla n = 1 a n — 3, kterým podle
vzorce m = 2n — 1 odpovídají po řadě hodnoty m — 1 a m = 5. Druhý
případ, kdy n = 2m — 1, se od prvního liší jen záměnou rolí man, takže
při něm dostaneme ještě třetí vyhovující dvojici m = 3an = 5.

Druhý postup. S ohledem na symetrii můžeme předpokládat, že platí
m ^ n, z čehož plyne 2m — 1 ^ 2n — 1 < 2n. Číslo 2m — 1 je tak násobkem
čísla n menším než 2n, musí to tudíž být samo číslo n. Tak jsme odvodili
rovnost 2m — 1 = n. Zbytek úvah je už stejný jako při prvním postupu.

Třetí postup. Všimněme si, že číslo 2m + 2n — 1 je dělitelné každým
z obou čísel man, která jsou navíc nesoudělná, neboť např. číslo m je
dělitel čísla 2n — 1, jež je s číslem n zřejmě nesoudělné. Proto je číslo
2m + 2n — 1 dělitelné i součinem mn, takže platí nerovnost mn ^ 2m +
+ 2n — 1 neboli (m — 2)(n — 2) ^ 3. Odtud vyplývá, že obě čísla m, n
nemohou být větší než 3; s ohledem na symetrii rozebereme pouze případ
m ^ 3. Pro m — 1 z podmínky n \ 2m — 1 plyne n = 1, pro m = 2 je
podmínka m \ 2n — 1 nesplnitelná, pro m — 3 máme podmínky 3 | 2n — 1
a n | 5, které splňuje jedině n = 5.

A - II - 4

Označme obvyklým způsobem délky stran a velikosti vnitřních úhlů
trojúhelníku ABC. Pro poloměry p, ga kružnice vepsané, resp. připsané
straně BC trojúhelníku ABC o obsahu S platí známé vzorce

25 25
7 a

а + o + c

(K jejich odvození stačí uvážit rovnosti 5 = Sbco + Sabo + Saco> resp.
5 = Sacp + Sabp — Sbcp a uvážit, že g, resp. ga je společná výška
zastoupené trojice trojúhelníků ke stranám původního trojúhelníku.)

Protože středy O, P leží na ose vnitřního úhlu BAC, jsou g, ga od-
věsnami protilehlými к úhlu pravoúhlých trojúhelníků s přeponami
AO, resp. AP (obr. 27), takže platí g = |AO|sin^a! a ga = \AP\sin^a.
Dohromady dostáváme vyjádření pravé strany dokazované rovnosti ve
tvaru

Q = Qa —
b + c - a'

sin sin1 1

\AO\ \AP | в Qa

a)) sin \a. (b + c) sin((a + b + c) + (6 + c
25 5
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p
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Q
2a /А jA

A T в и

Obr. 27

Na druhé straně je obsah S součtem obsahů trojúhelníků ABD
a ACD, které vyjádříme pomocí délek jejich stran z vrcholu A a sinu
jimi sevřeného (shodného) úhlu

c\AD\s\n\oi b\AD\sin^a (ib + c)\AD\sin |o!S — Sabd + Sacd

Odtud snadno obdržíme vyjádření
2 2 2

(■b + c) sin |ct2

\AD\ S

z něhož vidíme, že obě strany dokazované rovnosti mají stejnou hodno-
tu. Tím je celý důkaz hotov. Dodejme, že díky vzorci S = Resina =
= bc sin |a cos |a lze získaný výsledek zapsat ve tvaru

b + c

bc cos |a

2 1 1

\AD\ \AO\ \AP\

h(b + c — a) a \AU\ —Jiné řešení. Využijeme rovnosti \AT\
= |(a + 6 + c) pro body T, U dotyku polopřímky s vepsanou,
resp. připsanou kružnicí.3 Vzhledem к rovnostem \AT\ = |t40|cos|q;
a \AU\ — |AF|cos|a dostaneme následující vyjádření pravé strany do-
kazované rovnosti:

1
_ \AO\ + \AP\ 1 _ \AT\ + \AU\ 1

\AO\ ' |ÁP\ ~ \AP\ \AO\ ~ iAU\ \AO\
b + c

1

1
_ 2(b + c) 1

^(й + б + с) |^40| o T 6 + c |tíO|
3 Tyto rovnosti jsou dobře známé a snadno plynou z rovností délek úseků tečen od

vrcholů trojúhelníku к bodům dotyku s příslušnou kružnicí.
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Vidíme, že к dokončení důkazu požadované rovnosti stačí ukázat, že

\AD\ a + b + c

b + c\AO\

Z vlastností osy úhlu však víme, že bod D dělí stranu BC v poměru délek
stran AB a AC, tedy \BD\/\DC\ = c/b, takže \CD\ = ab/(b+c). Podobně
ovšem bod O osy úhlu ACD dělí protější stranu AD trojúhelníku ACD
v poměru

\AO\
_ \AC\ _ b

|OĎ\ ~ \ČĎ\ ~ ~^b_
b + c

b -f c

Odtud
\AD\

_ \AO\ + \OD\ a + b + c
= 1 +

b + c b + c\AO\\AO\

Jiné řešení. Uvedeme trigonometrický postup založený na užití sinové
věty v trojúhelnících ABO, ABD a ABPA Je zřejmé, že tyto trojúhelníky
mají u vrcholu В po řadě úhly |/3, (5 a 90° + \(3, zatímco u vrcholů O,
D, P mají po řadě úhly 90° + ^7, 7+ \a a ^7. Proto sinová věta přináší
rovnosti

\AB\
_ sin(7 + ^Q!) \AB\ _ sin ^7cos ^7I AB\

¥'\AO\ sin \AD\ \AP\sin/? cos

když jsme dvakrát využili vzorec sin(90° +á) = cos <5. Po dosazení do do-
kazované rovnosti tak docházíme к ekvivalentní úloze dokázat pro vnitřní
úhly libovolného trojúhelníku ABC rovnost

2sin(7+|a) cos ^7 sin ^7
sin cos

Po uplatnění vzorce sin/? = 2sin |/?cos |/? a následném vynásobení
obou stran nenulovým výrazem sin ^/?cos |/? přecházíme к úkolu ověřit
jednodušší rovnost

Wsin /?

(l + \a) 1 1
o 1 U

cos -7 • cos -/? + sin -7 • sin -/?.sin

4 Se stejným úspěchem lze využít i trojici trojúhelníků ACO, ACD a ACP.
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To je už docela snadné: výraz napravo je totiž roven cos(|/3 — ^7) a rov-
nost typu siní = cos £ je zaručena, platí-li S + e = 90°. V našem případě
je ovšem í = 7+|aa£=|/3— ^7, tudíž

7 + + i/3 - Í7 = i(a + /^ + 7) = 90°ó + £ =

a celý důkaz je tak hotov.

Jiné řešení. Položme x = |ЛО|, у = \OD\ a z = |jDP| a podle
obr. 28 označme body dotyku T, U, V, W vepsané a připsané kružnice
s přímkami AB, PC. Podle věty uu jsou dvojice trojúhelníků AOT, APU

a

w p

p

z

уoJ^l Qa

BVx
Q

PA
A T В U

Obr. 28

a DOV, DPW podobné, přitom v obou případech je koeficient podob-
nosti roven poměru poloměrů obou kružnic. Odtud pro přepony zrnině-
ných čtyř trojúhelníků plyne úměra5

x У
(1)

X + у + z z

Protože x + y + z > z, a tedy rovněž x > y, uvedeným dvěma zlomkům se
rovná i třetí zlomek sestavený z (kladných) rozdílů čitatelů a jmenovatelů.
Platí tedy

2x
_ x-y

X + у + z (x + у + z) — Z X + у X + у

X x-y -1.

5 Její platnost je zaručena i v případě D — V = W, kdy druhý pár podobných
trojúhelníků degeneruje na dvojici úseček — poloměrů zkoumaných kružnic.
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Odtud po vydělení kladnou hodnotou x dostaneme

21 1

X + у + z x + у X

a po převodu druhého zlomku z pravé strany na levou již obdržíme do-
kazovanou rovnost, neboť

1 2 2 1 11

\AP\' x + y \AD\ a x \AO\x + y + z

Jiné řešení. Body A, O, D, P leží na ose úhlu BAC. Body O, P
navíc leží na vnitřní a vnější ose úhlu ABC, které jsou na sebe kolmé,
takže úhly ОВР a OCP jsou pravé. Body О, В, P, C proto leží na
kružnici n, jejíž střed X je středem úsečky OP (obr. 29), takže zároveň
platí \AP\ + |АО| = 2|AX|. Vzhledem к mocnosti bodu A ke kružnici n

tak dostáváme

\AO\ \AP\ \AP\\AO\ \AX\2-\BX\2'
Odtud plyne, že místo vztahu

2 1 1

\AD\ \AO\ \AP\

stačí dokázat rovnost \AD\ ■ \AX\ = |žLV|2
= \AX\(\AX\ — \AD\) = \AX\-\DX\. Poslední rovnost však plyne z podob-
nosti trojúhelníků AXB a BXD, které se shodují ve společném vnitřním

\BX\2 neboli \BX\2 =
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úhlu u vrcholu X a v odpovídajících úhlech při vrcholech А, В, jež jsou
zároveň obvodovými úhly příslušnými oblouku CX kružnice m.

Jiné řešení. Obě kružnice jsou stejnolehlé podle středů A i D. Obě
stejnolehlosti mají až na znaménko stejné koeficienty a zobrazují bod O
na bod P (obr. 30). Odtud

\DP\ \AP\
\DO\ \AO\

\AP\ -\AD\ \AP\
\AD\ - \AO\ ~ \AO\'

neboli

Úpravou poslední rovnosti dostáváme 2|AP||.AO| = |AD|(|AP| + \AO|)
a po vydělení nenulovým součinem \AP\ • \AO\ • \AD| vyjde vztah, který
jsme chtěli dokázat.

a

p

Dl

O

A В

Obr. 30

A - III - 1

Z rovnice plyne, že b2 je sudé číslo větší než 4a, tudíž b je sudé číslo větší
než sudé číslo 2a. Musí proto platit b ^ 2a + 2, odkud

4a + 4a2 + 4 = b2 ž (2a + 2)2 = 4a + 4 • 2a + 4.

Porovnáním krajních výrazů dostaneme a2 ^ 2a, což znamená, že a ^ 4.
Dokážeme totiž indukcí, že opačná nerovnost a2 < 2a platí pro každé
celé a ^ 5. Pro a — 5 je to tak (25 < 32); platí-li a2 < 2a pro některé
a ^ 5, pak po vynásobení dvěma dostaneme 2a2 < 2a+1, takže kýžená
nerovnost (a+1)2 < 2a+1 je důsledkem nerovnosti (a+1)2 < 2a2, která je
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zřejmá, neboť je ekvivalentní s nerovností 1 < a(a — 2), jež platí triviálně,
ať je a ^ 5 jakékoliv. Tím je důkaz indukcí hotov.

Ukázali jsme, že v každé hledané dvojici (a, b) musí platit a 4.
Postupným dosazením hodnot a = 1,2, 3,4 do rovnice 4a + 4a2 + 4 — b2
zjistíme, že úloha má právě dvě řešení, a to (a, b) = (2,6) a (a, b) = (4,18).

A - III - 2

Označme r = 4\/3cm a celý terč o daném poloměru r\/3 rozdělme na
18 částí. Prvních šest částí budou shodné výseče o středovém úhlu 60°
v kruhu o poloměru r uprostřed terče. Zbylé mezikruží rozdělíme na
12 shodných „mezivýsečí“ o středovém úhlu 30° (obr. 31).

Označme podle obrázku S střed terče а А, В, C vrcholy jedné ze

zmíněných mezivýsečí. Protože kružnice ohraničující tyto části mají po-

loměry r a r\J3 a protože cos 30° = |\/3, je zřejmě trojúhelník SAC
rovnoramenný, takže \AC\ = r; navíc je AC nejdelší stranou v trojúhel-
niku ABC, který má vnitřní úhly 45°, 75° a 60°. Proto je maximální
vzdálenost dvou bodů jedné mezivýseče rovna r stejně jako maximální
vzdálenost dvou bodů každé ze 6 výsečí středového kruhu o poloměru r.
Podle Dirichletova principu některé dva z 19 zásahů leží ve stejné z 18 vy-

tvořených částí, takže jejich vzdálenost je nejvýše r. Důkaz je hotov, pro-
tože platí 4\/3 < 7 (neboli 48 < 49).

Jiné řešení. (Podle Tomáše Zemana z Gymnázia J. Keplera v Praze 6.)
Uvažujme v rovině sít rovnostranných trojúhelníků o straně a = \/l2,
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jejímž vrcholem je i střed S uvažovaného terče. Kromě kruhu (5; a)
budeme uvažovat i šest kruhů o poloměru a se středy ve vrcholech sítě
ve vzdálenosti a\/3 od 5 a dalších 12 kruhů téhož poloměru se středy ve
vrcholech sítě ve vzdálenostech střídavě За a 2a\/3 od středu S (obr. 32).
Označme P jeden z bodů sítě, který už neleží uvnitř útvaru složeného
z uvedených devatenácti kruhů a přitom má od středu S nej menší vzdá-
lenost. Podle Pythagorovy věty je (obr. 32)

Bod P už tedy leží vně terče.

Pokud tedy všechny zásahy neleží ve středním kruhu (S; a) (pak není
co dokazovat), snadno pomocí vhodného otočení celé sítě okolo středu S
dosáhneme toho, že některý ze zásahů bude ležet na vyznačené lomené
čáře. V tom případě bud v jednom z obou kruhů, v jejichž průniku leží
i příslušná úsečka lomené čáry, leží nějaký další zásah (a to ve vzdálenosti
menší než 2a), anebo už žádný další zásah ani v jednom z obou kruhů
neleží. To ovšem znamená, že všech 18 zbývajících zásahů musí ležet ve

zbývajících 17 kruzích, a tak podle Dirichletova principu v jednom z nich
leží aspoň dva zásahy. Tím je tvrzení úlohy dokázáno.

Poznámka. Uvažujme tvrzení: Je-li v kruhu o poloměru r\/3 vybráno
N bodů, je vzdálenost některých dvou z nich nejvýše r. Kdybychom chtěli
takové tvrzení dokázat porovnáním součtu obsahů N shodných kruhů
o průměru r s obsahem kruhu o průměru r( 1 + 2\/3), podaří se nám to,
právě když bude platit

Ttr2(l + 2\/3)2Ttr2
neboli N > 13 + 4л/3 = 19,9.N • >

4 4
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V situaci dané úlohy, kdy je odhad r vzdálenosti dvou bodů zaměněn
větší hodnotou ту = r • 7/4\/3, má podobná podmínka tvar

7i(ri + 2r\/3)27ir\ ( 24\2
po dosazení N > ^1 + — J 19,6.N-r>

Proto nelze takto jednoduchým postupem к řešení úlohy dospět.

4

A - lil - 3

a) Označme a, 6, c, d (proměnné) počty unesených členů stran A, B,
C, D. Počáteční čtveřice (a, 6, c, d) — (31,28,23,19) je podle parity čísel
typu (/, s, l, l), kde l, s označují lichá, resp. sudá číslo. Protože při každé
přeregistraci se parita všech čísel a, b, c, d změní (tři z nich se totiž zmenší
o 1 a čtvrté zvětší o 3), čtveřice typu (/, s, l, l) přejde ve čtveřici (s, l, s, s)
a ta pak zase zpět ve čtveřici (Z, s, Z, Z). Dostaneme-li tedy nakonec čtve-
řici se třemi nulami, musí být tato čtveřice typu (s,l,s,s), takže všichni
unesení tehdy budou členy strany B.

Následující tabulka změn hodnot a, b, c, d ukazuje, že se všichni une-
sení mohou opravdu stát členy strany B:

31 30 29 28 27 26 25 24 23 22 ...

28 27 26 25 24 23 26 29 32 35 ... 101
23 22 25 24 27 26 25 24 23 22 ...

19 22 21 24 23 26 25 24 23 22 ...

0a

b
0c

d 0

b) Ukážeme, že hledané čtveřice (a, b, c, d) jsou právě ty, ve kterých
některá tři čísla dávají při dělení čtyřmi stejný zbytek.

Z rovnosti a + b + c+d = 101 plyne, že tři z čísel a, 6, c, d mají stejnou
paritu a čtvrté paritu opačnou. S ohledem na symetrii hledejme výchozí
čtveřice (a, 6, c, d) za předpokladu

a = b = с ф d (mod 2)

a podle řešení části a) zkoumejme, kdy se všichni členové mohou stát
členy strany D. Z toho, jak se mění počty a, b, c, d při každé přeregistraci
(tři se zmenší o 1 a jedno zvětší o 3), plyne, že rozdíly a — b,a — c, b — c
nemění své zbytky při dělení čtyřmi. Má-li nakonec platit a = b = c = 0,
musí být uvedené tři rozdíly už na počátku dělitelné čtyřmi, takže výchozí
počty a, 6, c musí splňovat podmínku

a = b = c (mod 4). (1)
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Ukažme, že podmínka (1) je pro splnění kýženého cíle a — b = c = 0
i postačující. Zřejmě stačí ukázat, že výchozí čtveřici (a, 6, c, d) splňující
podmínku (1) lze po několika krocích změnit na čtveřici typu (e, e, e,/),
pak už totiž stačí opakovat úpravu (e, e, e, /) —> (e — 1, e — 1, e — 1, / + 3).

Mějme tedy čtveřici celých kladných čísel (a, 6, c, d) se součtem 101,
která splňuje podmínku (1), a předpokládejme, že ještě neplatí a = b =
= c. Ukažme, jak v tomto případě povolenými kroky zvětšit hodnotu d
(o 1 nebo 2). Protože vždy d 101, lze takové zvětšení zopakovat jen
několikrát, pak již dosáhneme vytčeného cíle.

Proceduru zvětšení d jistě stačí popsat v případě, kdy a ^ b ^ c
a a > c, tedy a — c ^ 4 díky podmínce (l).6 Poraďme Rumburakovi
dvojici kroků

(a, 6, c, d) —■> (a — 1, b 1, c + 3, d — 1) —> (<i — 2,6 — 2, c + 2, d + 2),

která zvyšuje hodnotu d o 2. Tuto dvojici kroků nelze provést pouze
v případě 6=1, kdy ovšem z (1) a nerovnosti 6 ^ c plyne rovněž c = 1.
Na takovou čtveřici (a, 1,1, d), kde a ^ 5 a d ^ 2 (nemůže být ještě d = 1,
protože d má odlišnou paritu), použije Rumburak trojici kroků

(a, 1,1, d) -> (a-1,4,0, d-1) (a - 2,3,3, d - 2) -> (a - 3,2,2, d + 1)

která zvyšuje hodnotu d o 1.
Tvrzení o tvaru všech vyhovujících čtveřic z první věty řešení b) je

tak dokázáno.

A - III - 4

Budeme dále uvažovat jen takové lichoběžníky ABCD, ve kterých platí
AB || CD, u ostatních průsečík (rovnoběžných) přímek ВС a AD neexis-
tuje.

Označme O střed kružnice к, E průsečík jejích tečen vedených body
A, C (obr. 33). Jak víme, body A, C leží na Thaletově kružnici r nad
průměrem OE a jsou podle tohoto průměru souměrně sdruženy. Společ-
nou velikost ostrých úhlů při základně AC rovnoramenného trojúhelníku
АСЕ označme ip. Konečně vnitřky kratšího a delšího oblouku AC kruž-
nice к označme ki, resp. &2.

Zdůrazněme, že nevylučujeme rovnost c = 0. Ke čtveřici s nulovým prvkem nás
totiž dovede v další větě popsaná dvojice kroků v případě, kdy 6 = 2.
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a) Zvolme na tečně AE libovolný bod X, X 7-A. Kružnice к zřejmě
protne úsečku XC ve vnitřním bodě D, právě když bod X je buď vnitř-
ním bodem úsečky AE, anebo vnitřním bodem polopřímky opačné к polo-
přímce AE. Oba případy (obr. 33 a obr. 34) nyní posoudíme samostatně.

V prvním případě platí D E k\ а В E k2, takže podle věty o úseko-
vém úhlu je úhel ABC roven ostrému úhlu <p. Stejnou velikost má i úhel
BAD, protože každý tětivový lichoběžník je rovnoramenný. Bod Y, prň-
sečík různoběžných polopřímek ВС a AD, tedy leží v polorovině АСЕ.
Z rovnoramenných trojúhelníků ABY а АСЕ proto plyne, že úhly AYC
a AEC jsou shodné (mají velikost 71 — 2cp). Podle věty o obvodovém úhlu
leží bod Y na oblouku AEC kružnice r, přesněji uvnitř kratšího z jejích
oblouků CE, neboť polopřímka AD leží v úhlu CAE.

Ve druhém případě je úvaha analogická a zapíšeme ji stručně: D E
В E k\, \<ADC\ = <p = \*cBCD\, průsečík Y různoběžných polopřímek
CB a DA leží v polorovině АСЕ, a protože \<AYC\ = \KAEC\, leží
bod Y na kružnici r, a to uvnitř jejího kratšího oblouku AE.

b) Ukážeme nyní, že naopak každý vnitřní bod Y kratších oblouků
CE a AE kružnice r je průsečíkem přímek ВС a AD některého z uvažo-
váných lichoběžníků ABCD. Opět rozlišíme dva případy podle toho, na
kterém z obou oblouků bod Y leží.

Je-li Y vnitřní bod oblouku CE, lze zřejmě sestrojit body D E k\
а В E k2 tak, aby body A, D, Y resp. В, C, Y ležely v uvedeném pořadí
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v přímce. Z D G k\ plyne existence průsečíku X polopřímky CD s vnitř-
kem úsečky AE (bod D pak odpovídá bodu X podle konstrukce ze zadání
úlohy). Zbývá objasnit, proč AB || CD. Protože body О а У leží na růz-
ných obloucích AC kružnice r a přitom \AO\ = \CO\, je polopřímka YO
osou úhlu AYC, takže přímky A(D)Y a B(C)Y jsou souměrně sdružené
podle přímky YO, která je (triviálně) osou souměrnosti kružnice k, neboť
prochází jejím středem. Proto podle této osy musí být souměrně sdruženy
i průsečíky obou zmíněných přímek A(D)Y a B(C)Y s kružnicí k, tedy
(díky určenému pořadí bodů) jednak body A a B, jednak body D a C.
Obě úsečky AB a CD jsou proto kolmé na přímku OY, a jsou tudíž
rovnoběžné.

Je-li У vnitřní bod oblouku AE, sestrojíme body ŮG^aBeb tak,
aby v přímce ležely body v pořadí D, A, Y, resp. С, B, Y. Polopřímka
CD protne přímku AE v potřebném bodě X (protože D ^ A, bude
jistě I ^ i), pokud platí \<AEC\ + \<ECD\ < x. To ověříme tak, že
užijeme větu o obvodovém a úsekovém úhlu v kružnici к, podle které
\<ECD\ = n- \<CAD\ = \<CAY\, a protože \<AEC\ = \<AYC\, je
součet \<AEC\ + \<ECD\ roven součtu dvou úhlů v trojúhelníku ACY.
Ze sdruženosti přímek D(A)Y a C(B)Y podle osy OY úhlu AYC pak
opět plyne požadovaná rovnoběžnost AB || CD.

Závěr. Hledanou množinou je sjednocení vnitřků kratších oblouků CE
a AE Thaletovy kružnice r.

A - III - 5

V jednom kroku nahrazujeme dvě čísla a, b jedním přirozeným číslem
yfab. Protože pro libovolná a ^ b platí a ^ \fab ú b, je zřejmé, že na
tabuli budou stále zapsána pouze čísla z množiny M = {1,2,...,33}. Je-li
přitom číslo a prvočíslem nebo součinem několika různých prvočísel, musí
tato prvočísla být obsažena i v rozkladu čísla \fab, takže Vab = ka neboli
b = k2a pro některé přirozené k. Je-li к = 1, musí být číslo a na tabuli
zapsáno vícekrát. Je-li к ^ 2, a tedy b = k2a ^ 4a, musí platit 4a ^ 33,
a proto z b = к2a E M plyne i 4a G M. Na tabuli tudíž zůstanou až do
konce jednak všechna prvočísla, která dělí právě jedno z čísel množiny M,
jednak všechna ta a G M, která jsou součinem několika různých prvočísel
a zároveň splňují podmínku 4a > 33 neboli a ^ 9. V souhrnu jde celkem
o 15 nesmazatelných čísel

10,11,13,14,15,17,19, 21, 22, 23,26,29,30,31,33.
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Ukážeme, že kromě nich bude na tabuli vždy zastoupeno aspoň jedno
z čísel množiny S = {6,12,18,24} (na začátku tam jsou všechna). Zvo-
líme-li v jednom kroku čísla a a 6, kde např. a G S, a nahradíme je číslem
n = Vaň, musí být i číslo n násobkem šesti, který díky odhadům а й 24
a b ^ 33 splňuje nerovnost n ^ \/24 • 33 = 6\/22 < 30, takže bude
platit n 6 S. Na tabuli po libovolném počtu kroků tudíž zůstane 15 výše
zapsaných čísel a aspoň jedno číslo z S, tedy alespoň 16 čísel, jak jsme
měli dokázat.

Poznámka. Počtu 16 čísel na tabuli lze například dosáhnout 17 kroky,
popsanými níže tak, že mazaná čísla v každém řádku jsou šedá, zatímco
nově vzniklé číslo je připsáno na konci dalšího řádku:

1-6, 7, 8-27, 28, 29-33;
1-6, 8-13, 14, 15-27, 29-33, 14;

1-4, 5, 6, 8-13, 15-19, 20, 21-27, 29-33, 14;
1-3, 4, 6, 8-13, 15-19, 21-24, 25, 26, 27, 29-33, 14, 10;

1-3, 6, 8, 9, 10, 11-13, 15-19, 21-24, 26, 27, 29-33, 14, 10, 10;
1-3, 6, 8, 9, 11-13, 15-19, 21-24, 26, 27, 29-33, 14, 10, 10;
1-3, 6, 8, 9, 11, 12, 13, 15-19, 21-24, 26, 27, 29-33, 14, 10;
1-3, 6, 8, 9, 11, 13, 15-19, 21-23, 24, 26, 29-33, 14, 10, 18;

1-3, 8, 9, 11, 13, 15-17, 18, 19, 21-23, 26, 29-33, 14, 10, 18, 12;
1, 2, 3, 8, 9, 11, 13, 15-17, 19, 21-23, 26, 29-33, 14, 10, 12, 18;

1, 3, 8, 9, 11, 13, 15-17, 19, 21-23, 26, 29-31, 32, 33, 14, 10, 12, 6;
1, 3, 9, 11, 13, 15, 16, 17, 19, 21-23, 26, 29-31, 32, 33, 14, 10, 12, 6, 16;

1, 3, 9, 11, 13, 15, 17, 19, 21-23, 26, 29-31, 33, 14, 10, 12, 6, 16;
3, 9, 11, 13, 15, 17, 19, 21-23, 26, 29-31, 33, 14, 10, 12, 6, 4;

9, 11, 13, 15, 17, 19, 21-23, 26, 29-31, 33, 14, 10, 6, 4, 6;
11, 13, 15, 17, 19, 21-23, 26, 29-31, 33, 14, 10, 6, 6, 6;

11, 13, 15, 17, 19, 21-23, 26, 29-31, 33, 14, 10, 6, 6;
11, 13, 15, 17, 19, 21-23, 26, 29-31, 33, 14, 10, 6.

A - III - 6

S ohledem na symetrii stačí uvažovat trojice (a, 6, c), ve kterých a ^ b ^ c.
Pro „nejmenší“ z nich (2,2,2), (3,2,2), (3,3,2), (3,3,3) а (4,2,2) má
daný výraz hodnoty 2, 3/2, 17/8, 7/2, resp. 11/4. Ukážeme-li, že pro

všechny ostatní trojice (a, 6, c), které již splňují podmínku a + b + c ^ 9,
platí nerovnost

[a, 6] + [6, c] + [c, a] > 3
a + b 4- c

a + b + c
- 2’2
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bude to znamenat, že hledaná nejmenší hodnota je rovna 3/2. Vypsanou
nerovnost ekvivalentně upravme:

(a + b + c)2 — 2([a, b] + [6, c] + [c, a]) ^ 3(a + b + c),
a2 + b2 + c2 + 2(ab — [a, 6]) + 2(6c — [6, c]) + 2(ca — [c, a]) ^ 3(a + b + c).

Protože zřejmě platí xy ^ [ж, y\ pro libovolná x, у, zanedbáme nezáporné
dvojnásobky v levé straně poslední nerovnosti a dokážeme (silnější) ne-
rovnost

a2 + b2 -f c2 ^ 3(a + b + c).
Z předpokladu a + Hc^9a Cauchyovy nerovnosti 3(a2 + b2 + c2) ^

^ (a + 6 + c)2 plyne

(1)

(a + 6 + c)2 й -(- 6 4- ca2 +b2 + c2 ^ 3(a -f- 6 -(- c) • ^ 3(a + b + c)3 9

a důkaz je hotov.

Poznámky. Místo Cauchyovy nerovnosti jsme mohli přepsat (1) do
tvaru

И)2+И)2+И)2 27
> —

4

a tuto nerovnost zdůvodnit umocněním zřejmých nerovností

Ы
2“2’

3
> 5

2 = 2’
3

> 1- > - a
2~2

b- c —a —

neboť uvažujeme už jen trojice, ve kterých a ^ 4, b ^ c ^ 2.
Postup z řešení vede rovněž к výsledku, že pro libovolná celá čísla a,

6, c větší než 1 platí nerovnost

a + b + c [a, 6] + [b, с] + [с, a] ^ a + b + c>
a + b + c 62
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Kategorie P

Texty úloh

P - I - 1

Malíř Bonifác

Radní v Kocourkově vypsali nedávno výběrové řízení na velmi odpověd-
nou a důležitou činnost: malování chodníku před radnicí. Ve výběrovém
řízení zvítězil malíř Bonifác (jediný uchazeč a zcela náhodou také staros-
tův bratr).

Jak už to bývá, sotva Bonifác podepsal smlouvu, hned začal dostávat
z radnice jeden příkaz za druhým: Tento kus chodníku natřít zelenou
barvou, tento růžovou, potom to skoro celé přetřít na bílo... Netrvalo
dlouho a Bonifác si všiml, že se některé příkazy překrývají. A když si
uvědomil, že ho smlouva zavazuje provést všechny příkazy v tom pořadí,
v jakém je dostal, začaly ho obcházet mdloby.

Naštěstí však přišel na geniální nápad. Kdyby věděl, jak má chodník
vypadat nakonec po provedení všech příkazů, mohl by ho tak namalovat
rovnou a potom se tvářit, že on přece všechny příkazy dodržel. A hlavně
potom radnici všechno vyúčtuje podle původních příkazů a ještě na tom
pořádně vydělá.

Soutěžní úloha. Chodník před radnicí měří К kocourkovských kroků.
Jeden jeho konec bude mít souřadnici 0, opačný konec má souřadnici К.
V současnosti má celý chodník asfaltově černou barvu. Bonifác používá
F jiných barev, očíslovaných od 1 do F. Postupně dostal N příkazů.
Každý z nich zapíšeme ve tvaru ,a^ bi /ý, kde a* a bi jsou souřadnice
začátku a konce úseku a je barva, kterou se má tento úsek obarvit.
Na obarvení jednoho kocourkovského kroku chodníku potřebuje Bonifác
jeden litr barvy. Pro každou z barev spočítejte, kolik litrů bude Bonifác
potřebovat.

Formát vstupu: Vstupní soubor se jmenuje bonifac.in. Na prvním
řádku souboru jsou tři celá čísla N (počet příkazů), F (počet barev)
а К (délka chodníku) oddělená mezerami (1 ^ N ú 100 000, 1 ^ F, К ^
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^ 1 000 000 ООО). Následuje N řádků, z nichž každý popisuje jeden příkaz,
a to v pořadí, v jakém je Bonifác dostal. Přitom г-tý z těchto řádků
obsahuje tři celá čísla a*, b{ a fi oddělená mezerami (0 5Í a* < bi 5Í K,
1 ifii F).

Pro 8 z 10 testovacích vstupů bude navíc platit К ^ 100000. Pro 6
z těchto 8 testovacích vstupů bude navíc N ^ 1 000, a pro 3 z těchto
6 vstupů také К ^ 1 000.

Formát výstupu1. Výstupní soubor se jmenuje bonifac.out. Pro kaž-
dou z F barev (v pořadí jejich čísel) zapište do výstupního souboru jeden
řádek obsahující jedno celé číslo — kolik litrů této barvy bude Bonifác
potřebovat.

Příklad:

Vstupní soubor bonifac. in:

4 5 7

15 1

2 4 3

4 6 4

3 6 2

Výstupní soubor bonifac.out:
1

3

1

0

o

P - I - 2

Čokoláda

Mařenka bude mít brzy narozeniny. Její bratr Jeníček dlouho nemohl
vymyslet, co by jí jenom mohl к narozeninám dát
tajné skrýši na půdě objevil zbytek čokolády, kterou si tam kdysi ukryl.
Pravda, myši už si vybraly svoji daň, ale i tak z čokolády zůstalo ještě
docela dost. Děravé části oláme, aby mu vznikla pěkná čtvercová tabulka,
a tu úhledně zabalí. A zbytek samozřejmě sní.

Soutěžní úloha. Je dán původní počet řádků R a sloupců 5, které čo-
koláda kdysi měla. Dále máme matici Rx S nul a jedniček určující, která
políčka čokolády zůstala celá. Zjistěte, kolika různými způsoby může Jení-
ček uskutečnit svůj plán. Jinými slovy řečeno, spočítejte, kolika způsoby
je možné ve zbytku čokolády vyznačit čtverec (libovolné velikosti) bez
děr. Všechny hrany čtverce musí samozřejmě ležet na hranách políček.
Stejně velké čtverce ležící na různých souřadnicích v tabulce čokolády
považujeme za různá řešení.

Formát vstupu: Vstupní soubor se jmenuje cokolada. in. Na jeho prv-
ním řádku jsou dvě celá celé čísla R a S oddělená mezerou (1 ^ R, S ^

až konečně ve své
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2 500). Následuje R řádků, v r-tém z nich je S mezerami oddělených
celých čísel ary,..., arjs- Je-li políčko čokolády (r, s) celé, je ar^s = 1,
jinak аГ)5 = 0.

Pro 7 z 10 testovacích vstupů bude navíc platit R ú 500. Pro 5 z těchto
7 testovacích vstupů bude R,S ^ 100, a pro 3 z těchto 5 vstupů bude
R,SÚ 20.

Formát výstupu: Výstupní soubor cokolada.out obsahuje jediný řá-
dek a na něm jedno celé číslo — hledaný počet čtverců.

Příklad

Vstupní soubor cokolada.in: Výstupní soubor cokolada.out:
123 5

0 10 10

0 1110

11111

Na obrázku vpravo je nákres-
léna čokoláda popsaná ukázkovým
vstupem. Šedou barvou jsou vyzná-
čena políčka, která chybějí.

Čtverec 1 x 1 na ní můžeme

vyznačit deseti způsoby a čtverec
2x2 dvěma, což je celkem 10 + 2 =
= 12 způsobů.

P - I - 3

Koláč

Zlá ježibaba drží v kleci Jeníčka a Mařenku a snaží se je vykrmit. Právě
pro ně upekla plech ježibabího koláče. Koláč má tvar obdélníka, celý je
odpudivý a navíc je ozdoben ohavnou pečenou ropuchou.

Protože cokoliv je lepší než muset sníst tuto ropuchu, rozhodli se
Jeníček s Mařenkou, že si z jedení koláče udělají hru. Mařenka na něm
lžičkou nakreslila čáry, čímž ho rozdělila na X x Y stejných čtverců. Celá
ropucha sedí na jednom z těchto čtverců.

Jeníček s Mařenkou se nyní budou pravidelně střídat na tahu. Ten
z nich, kdo je na tahu, si vybere některou z vyznačených čar a podél ní
koláč rozřízne na dvě obdélníkové části. Následně sní tu část koláče, ve
které není ropucha. Kdo bude na tahu v okamžiku, kdy už z koláče zbude
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pouze poslední čtverec s ropuchou, prohrál a musí ropuchu sníst. První
tah provádí Mařenka.

(0 ,Y) (X,Y)
H '

(гх,Гу)

(X,0)(0,0)

Soutěžní úloha. Jsou dány rozměry koláče X, Y a souřadnice rx, ry
levého dolního rohu čtverce, v němž je ropucha.

a) (2 body) Rozhodněte, kdo zvítězí v situaci znázorněné na ob-
a popište jednutedy pro {X,Y) = (9,5) a (rx,ry) = (5,3)

možnou strategii, která mu zabezpečí výhru.
b) (8 bodů) Popište co nejefektivnější algoritmus, který pro dané hod-

noty X, Y, rx a ry zjistí, které z dětí hru vyhraje, jestliže budou obě hrát
optimálně.

rázku

Příklady

Vstup:
8 110 V prvním tahu Mařenka pro-

vede řez po přímce x = 3.
Zbude ropucha a okolo ní
z každé strany jeden čtve-
rec. Jeníček sní jeden z nich,
Mařenka druhý, a Jeníčkovi
zůstane ropucha.

Vstup:
5 3 12 V druhém příkladu vyhraje Je-

níček.
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P - I - 4

Počítač Kvak

V letošním ročníku olympiády se budeme setkávat se speciálním počí-
tačem nazvaným Kvak. Ve studijním textu uvedeném za zadáním této
úlohy je popsáno, jak počítač Kvak funguje a jak se programuje.

Soutěžní úloha.a)(3 body) V rouře počítače je jedno číslo. Napište program pro Kvak,
který vypíše 1, jestliže je to prvočíslo, zatímco v opačném případě vy-

píše 0.
Plný počet bodů dostanete za libovolné řešení, které bude mít méně

než 100 příkazů a pro libovolný vstup vykoná méně než 10 000 kroků.b)(4 body) V rouře počítače je posloupnost kladných čísel. Délka této
posloupnosti je menší než 65 000. Napište program pro Kvak, který tuto
délku spočítá a vypíše. Plný počet bodů dostanete za řešení, které bude
mít lineární časovou složitost.c)(3 body) Počítač Kvak se nám poškodil, takže dokáže provést příkaz
put pouze desetkrát a poté se definitivně zastaví. Všechny ostatní příkazy
provádí počítač bez problémů.

V rouře počítače je neprázdná posloupnost čísel. Je možné napsat
program pro takto poškozený Kvak, který bez ohledu na délku vstupní
posloupnosti spočítá a vypíše její maximum? Jestliže ano, napište takový
program. V opačném případě dokažte, že to není možné.

V letošním ročníku olympiády se budeme setkávat se speciálním po-
čítačem zvaným Kvak.

Jediný datový typ, se kterým Kvak pracuje, se nazývá number, což je
celé číslo z rozsahu od 0 do 65 535 včetně.1 Všechny matematické výpočty
provádí Kvak modulo 65 536, takže například hodnotou výrazu 65 530+10
je 4.

Kvak používá 26 proměnných, které nazýváme registry. Registry jsou
označeny písmeny a až z a v každém z nich může být uložena jedna
hodnota typu number. Na začátku výpočtu jsou ve všech registrech nuly.

Kromě registrů má Kvak ještě jednu jednosměrnou rouru neomezené
délky, do které se mohu ukládat hodnoty typu number. Je to jediná datová
struktura, kterou Kvak používá. S rourou lze provádět dvě operace:

D> vložit do ní číslo z registru X příkazem put X,

1 65 535 = 216 — 1, typ number je tedy přesně to, co znáte jako 16bitové celé číslo
bez znaménka.
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> z opačného konce roury odebrat číslo a uložit ho do registru X příka-
zem get X.
Čísla se v rouře počítače nemohou předbíhat, Kvak je tedy bude odebí-

rat ve stejném pořadí, v jakém je do roury vložil.2 Roura má neomezenou

kapacitu, lze do ní vložit libovolné množství čísel. Není-li řečeno jinak,
roura je na začátku výpočtu prázdná.

Počítač Kvak má také možnost vypisovat čísla (výsledky výpočtu) na
výstup.

Příkazy
V následující tabulce jsou shrnuty všechny příkazy, které Kvak umí

provádět a které tedy můžete používat v programech.
příkaz význam příkazu

get X Kvak odebere jedno číslo z roury a uloží ho do registru X.
put X Kvak vloží do roury číslo z registru X.

put číslo Kvak vloží dané číslo do roury.

print Kvak odebere jedno číslo z roury a vypíše ho na výstup.
add sčítání: Kvak odebere dvě čísla z roury a vloží do roury

jejich součet.
sub odčítání: Kvak odebere dvě čísla z roury a vloží do roury

jejich rozdíl (první minus druhé),
mul násobení: Kvak odebere dvě čísla z roury a vloží do roury

jejich součin.
div dělení: Kvak odebere dvě čísla z roury a vloží do roury

celou část jejich podílu (první lomeno druhé),
mod zbytek: Kvak odebere dvě čísla z roury a vloží do roury

zbytek, který dá první z nich po celočíselném dělení dru-
liým.

label L návěstí: Toto místo v programu dostane označení L (kde
L může být libovolný řetězec). Stejné návěstí nesmí být
v programu vícekrát.

jump L skok: Kvak bude pokračovat v provádění programu od
místa, které má označení L.

jz X L skok jestliže nula: Je-li v registru X nula, Kvak provede
příkaz jump L.

jeq X Y L skok jestliže se rovnají: Je-li v registrech X a Y stejná
hodnota, Kvak provede příkaz jump L.

2 Takovou datovou strukturu obvykle nazýváme fronta.
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jgt X Y L skok jestliže je větší: Je-li v registru X větší hodnota než
v registru T, Kvak provede příkaz jump L.

j empty L skok jestliže je prázdná: Není-li v rouře žádné číslo, Kvak
provede příkaz jump L.

stop konec: Kvak ukončí svůj výpočet.
Pokud se během výpočtu stane, že se pokusíme odebrat číslo z roury

počítače a roura přitom bude prázdná, nastane chyba. Chyba nastane
také tehdy, když se pokusíme dělit nulou, počítat zbytek po dělení nulou,
nebo skočit na neexistující místo v programu. Dojde-li výpočet programu
na konec, Kvak po provedení posledního příkazu korektně skončí (jako
kdyby na konci programu byl ještě příkaz stop.)

V zápisu programu můžeme psát více příkazů na jeden řádek, v tako-
vém případě je od sebe oddělujeme středníkem.

Příklad 1

Následující program spočítá a vypíše součet všech čísel od 1 do 20.
put 20
put 0
label start

get a

jz a
end

put a ; put a ; put 1
add

sub

get b ; put b
jump start
label end

print

Pokaždé, když se Kvak při provádění programu dostane ke třetímu
řádku (label start), budou v rouře právě dvě čísla. Jestliže první z nich
označíme N, hodnota druhého bude rovna součtu S = (N + 1) +... + 20.
Poté načteme N do registru a. Je-li N — 0, máme v rouře hledaný součet,
můžeme ho vypsat na výstup a skončit. V opačném případě chceme pro-
vést dvě věci: Přičíst N к dosud získanému součtu, a následně N zmenšit
o 1. Po provedení řádku šest (tři příkazy put) máme v rouře postupně
čísla: 5, iV, N, 1. Příkaz add sečte první dvě, po jeho provedení bude
v rouře trojice čísel N, 1, N + S. Po vykonání dalšího příkazu sub budou
v rouře hodnoty N + S a N — 1. To už je téměř to, co potřebujeme, jenom
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v opačném pořadí. Proto první z nich načteme do registru b a znovu vlo-
žíme do roury.

Příklad 2

V rouře je neprázdná posloupnost čísel. Napíšeme program, který spo-
čítá a vypíše na výstup jejich součet. (Přesněji, jeho zbytek po dělení
65 536.)

Budeme stále opakovat následující postup: Zjistíme, zda jsou v rouře
aspoň dvě čísla. Jestliže ano, některá dvě z nich sečteme a nahradíme je
jejich součtem. Pokud tam už dvě čísla nejsou, zůstalo tam tady už jenom
jediné a to zjevně součtem všech původních čísel. V programu pro počítač
Kvak můžeme tuto myšlenku implementovat například následovně:

label cyklus
get a

jempty konec
put a
add

jump cyklus

label konec

put a

print

Na začátku každé iterace odebereme z roury jedno číslo a vložíme
ho do registru a. Pokud se tím roura vyprázdnila, máme v registru a

hledaný součet, stačí ho už jenom vypsat. Pokud ne, číslo z registru a
vrátíme zpět do roury. V tom okamžiku jsou v rouře alespoň dvě čísla
a můžeme tedy bez obav provést příkaz add.

Časová složitost tohoto řešení je lineární vzhledem к počtu čísel, která
byla na začátku výpočtu v rouře. Každá iterace cyklu totiž provádí jen
konstantní počet příkazů a zmenší nám o jedno počet čísel v rouře.

P - II - 1

Aquapark

V aquaparku mají tři tobogany. Správce aquaparku se rozhodl zjistit,
nakolik je návštěvníci využívají. Má к dispozici následující informace:

o Jak dlouho trvá jedna jízda na každém toboganu (časy Ti, T2, T3).
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> Jak dlouho trvá, než návštěvník dojde od konců toboganů к jejich
začátkům (čas D). Tobogany jsou umístěny tak, že cesta od konce libo-
volného toboganu к začátku libovolného toboganu trvá stejně dlouho.

> Pro každý tobogan fotobuňkou zaznamenané časy, kdy některý z ná-
vštěvníků aquaparku nasedl na tento tobogan.
Z těchto informací se přesný počet návštěvníků využívajících tobo-

gany většinou nedá určit. Můžeme ale určit minimální počet lidí, kteří
mohli tobogany využívat tak, aby to odpovídalo zaznamenaným údajům.

Soutěžní úloha. Na základě informací o délce jízdy na toboganech,
trvání cesty zpět nahoru a časech jednotlivých nasednutí na tobogany
určete minimální možný počet lidí, kteří mohli využívat tobogany.

Jinými slovy, najděte nejmenší číslo К takové, že existuje rozvrh po-

hybu pro К lidí, podle kterého někdo nasedne v každém ze zaznamena-

ných časů na příslušný tobogan. Nezapomeňte, že když někdo nasedne
na tobogan i v čase T, tak další jízdu (na kterémkoliv z toboganů) může
tento člověk začít nejdříve v čase T + Ti + D.

Nezapomeňte také zdůvodnit správnost svého algoritmu.
Formát vstupu: Na prvním řádku vstupu jsou tři čísla Ti, T2, T3 -

délky jízd na jednotlivých toboganech. Na druhém řádku je jedno číslo
D — čas potřebný na výstup od konců toboganů nahoru к jejich za-
čátkům. Následují tři řádky s informacemi o uskutečněných jízdách na

jednotlivých toboganech. Každý z nich začíná číslem Ni, udávajícím po-
čet jízd, které se na toboganu i uskutečnily. Na řádku pak následuje Ni
čísel aij (1 ^ j ^ Ni), která představují časy nasednutí na tento tobogan.
Pro každý tobogan je tato posloupnost časů uspořádána vzestupně.

Platí: 0 ^ ЛЬ, N2, N3 й 1000 000,
1 ^ T1,T2,T3,D,aij й 500 000 000.
Formát výstupu: Vypište jediné číslo — minimální počet návštěvníků

aquaparku, pro něž mohla zaznamenaná situace nastat.

Příklady

Vstup:
12 3

Výstup:
2

1

2 17

3 2 5 11

1 3

Jeden možný způsob, jak mohli dva lidé uskutečnit všechny zazname-
nané jízdy: první z nich jel na prvním, pak na třetím, a opět na prvním
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toboganu (v časech 1, 3 a 7), zatímco druhý člověk absolvoval všechny
tři jízdy na druhém toboganu.

Vstup:
4 5 6

Výstup:
6

10

2 2 3

3 1 7 15

1 5

V tomto případě žádný návštěvník nemohl stihnout dvě jízdy, proto
jich určitě muselo být šest.

P - II - 2

Oplocení farmy

Přemysl se doslechl, že se v zemědělství točí velké peníze, a rozhodl se, že
v něm také začne podnikat. Netrvalo dlouho a už vlastnil rozlehlou farmu,
na níž pěstoval množství zajímavých plodin. Přemyslova zemědělská půda
má obdélníkový tvar a je rozdělena na R x S stejně velkých čtvercových
políček. Na každém políčku se pěstuje jedna plodina.

Nedávno se farma ocitla v nebezpečí, neboť v jejím okolí se přemno-
žili zajíci, kteří si rádi pochutnávají na pěstovaných rostlinách. Proto se

Přemysl rozhodl, že na farmě nechá postavit plot, který ochrání plody
jeho práce.

Jelikož v okolí není velká konkurence v oblasti stavebnictví, Přemys-
lovi se podařilo sehnat pouze jeden kontakt — firmu Čtverce s.r.o., která
se specializuje na stavební práce čtvercového charakteru. Firma Čtverce
s.r.o. nabídla, že postaví na farmě plot, který ochrání zvolenou čtvercovou
část pozemku.

Soutěžní úloha. Přemysl přemýšlí, kde má nechat plot postavit. Plot
může chránit čtvercové území libovolné velikosti. Musí ale vést po hráni-
cích mezi políčky, takže každé políčko ochrání buď celé, nebo vůbec. Pře-
mysl navíc požaduje, aby plot chránil políčka s alespoň dvěma různými
plodinami. Chce mít totiž jistotu, že nezůstane na trhu jenom s jedním
produktem. Pomozte Přemyslovi zjistit, kolik má možností na postavení
plotu.

Formát vstupu: Na prvním řádku vstupu jsou zadány rozměry po-
zemku — počet řádků R a počet sloupců S, a dále počet plodin K, které je
možné na farmě pěstovat. Platí 1 ^ R, S ^ 2 500, 1 ^ К ^ 1 000 000 000.
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Na každém z dalších R řádků vstupu je vždy uvedeno S čísel
které plodiny se pěstují na jednotlivých políčkách. Plodiny jsou označeny
čísly od 0 do К — 1.

Formát výstupu: Vypište jediné číslo — kolika způsoby může Přemysl
postavit na farmě plot, který ohradí čtvercovou oblast, na níž se pěstují
aspoň dvě různé plodiny.

Příklad

popis,

Výstup:Vstup:
3 6 10

100017

200077

300077

8

Máme pět možností, jak lze postavit plot kolem oblasti velikosti 2x2,
a tři možnosti, jak lze postavit plot kolem oblasti velikosti 3x3.

P - II - 3

Omezovač rychlosti

Společnost Expresní pošta doručuje zásilky po celé Evropě. V poslední
době ale její řidiči často přehlíželi dopravní značky a dostávali pokuty
za překročení maximální povolené rychlosti. Ředitel společnosti proto
rozhodl, že nechá do každého auta namontovat omezovač rychlosti. Ten
funguje následovně: řidič si na něm před jízdou nastaví maximální pří-
pustnou rychlost v a přístroj se pak automaticky postará o to, aby auto
během celé jízdy nikdy nepřekročilo tuto rychlost. Ředitel společnosti
navíc vydal nařízení, že si řidič musí před každou jízdou nastavit takové
omezení rychlosti, aby na trase, kterou pojede, nepřekročil žádnou maxi-
mální povolenou rychlost.

Soutěžní úloha. Je dána silniční síť, po níž jezdí řidiči společnosti
Expresní pošta. Tato silniční síť obsahuje N měst, mezi nimiž vede celkem
M různých cest. Každá cesta spojuje dvě města, přičemž cesty se mimo
města kříží pouze mimoúrovňově (tzn. mimo města nelze odbočit z jedné
cesty na jinou). Pro každou cestu známe její délku (v kilometrech) a
maximální povolenou rychlost (v kilometrech za hodinu).

Pro danou dvojici měst x а у může existovat více způsobů, jak lze po
cestách dojet z města x do města y. Napište program, který pro všechny
dvojice měst x а у určí minimální čas potřebný na cestu z města x do
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města у při použití omezovače rychlosti a dodržení nařízení ředitele spo-
lečnosti.

Formát vstupu: První řádek obsahuje dvě kladná celá čísla N, M
(1 й N й 50, 1 й M й 1000)
Jednotlivá města jsou na vstupu označena čísly 1 až N.

Každý z následujících M řádků popisuje jednu cestu a obsahuje čtyři
čísla i, j, d, m. Ta udávají, že cesta spojující města i a j má délku d kilo-
metrů a maximální povolenou rychlost m kilometrů za hodinu. Všechny
cesty jsou obousměrné. Mezi dvěma městy může být postaveno více cest
různé délky a s různou maximální povolenou rychlostí.

Můžete předpokládat, že mezi každou dvojicí měst existuje aspoň
jedna trasa (která může být tvořena více navazujícími cestami).

Všechny vzdálenosti a rychlosti jsou na vstupu uvedeny s přesností
nejvýše na 3 desetinná místa. Pro každou vzdálenost d platí 1 ^ d ^

1 000 000, pro každou maximální povolenou rychlost m platí 5 ^ m ^
^ 100 000.

Formát výstupu: Výstup bude tvořen N řádky, z nichž každý obsahuje
N čísel. Číslo v г-tém řádku a ý-tém sloupci určuje minimální čas (v ho-
dinách) potřebný na jízdu mezi městy i a j. Výsledek uveďte s přesností
na tři desetinná místa.

Při práci s reálnými čísly v počítači mohou vznikat zaokrouhlovací
chyby. Tuto skutečnost můžete ve svém řešení ignorovat -

jako kdyby všechny výpočty, které provádíte, byly přesné.

počet měst a počet cest mezi nimi.

postupujte,

Příklad

Vstup: Výstup:
0.000 0.600 0.200 1.300

0.600 0.000 0.333 0.500

0.200 0.333 0.000 1.300

1.300 0.500 1.300 0.000

4 4

1 2 40.0 60.0

1 3 20.0 100.0

2 3 40.0 120.0

2 4 25.0 50.0

40 km 60^
G>

25 km
50 íf20 km

100 íf 40 km
120

©'
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Z města 1 do města 2 se nejrychleji dostaneme přes město 3: pojedeme
celkem 60 kilometrů rychlostí 100 km/h. Nejrychlejší cesta z města 1 do
města 4 ovšem vede po trase 1-2-4, nikoliv 1-3-2-4.

P - II - 4

Počítač Kvak

К úloze se vztahuje studijní text z úlohy P-I-4.
Soutěžní úloha.

a) (3 body) Lucasova čísla jsou definována následovně: L0 = 2, Li — 1
a pro každé n ^ 2 platí Ln = L

V rouře počítače je jedno číslo n. Napište program pro počítač Kvak,
který spočítá a vypíše hodnotu (Ln mod 65 536).

b) (3 body) V rouře počítače je neprázdná posloupnost kladných čísel.
Napište program pro počítač Kvak, který zjistí, zda se v této posloupnosti
vyskytuje číslo 47, a podle toho vypíše buď číslo 1 (pokud ano), nebo
číslo 0 (pokud tam není).

c) (4 body) V rouře počítače je neprázdná posloupnost kladných čísel.
Napište program pro počítač Kvak, který na výstup vypíše všechna sudá
čísla obsažená ve vstupní posloupnosti. Nezáleží přitom na pořadí, v ja-
kém je vypíše, ale každé sudé číslo musí vypsat přesně tolikrát, kolikrát
se vyskytlo na vstupu.

+ Ln—2-n—1

P - III - 1

Znovu čokoláda

Jeníček bude mít zanedlouho narozeniny. Jeho sestra Mařenka si ještě
dobře pamatuje na olámanou čokoládu, kterou od Jeníčka dostala před
několika měsíci. Rozhodla se proto, že mu dá к narozeninám podobný
dárek. Zašla do sklepa a ze své tajné skrýše vzala čokoládu, kterou si
tam kdysi ukryla. Myši již stihly ohryzat i tuto čokoládu, ale to Mařence
nevadilo — stačí přece ohryzané části olámat.

Mařenka je ovšem šikovnější než Jeníček a uvědomila si, že nemusí
lámáním vytvořit čtverec. Čokolády mají přece často obdélníkový tvar.
Tím získá mnoho nových možností, jak lze vyrobit dárek pro Jeníčka.

Soutěžní úloha. Je dán původní počet řádků R a počet sloupců S
čokolády a matice Rx S nul a jedniček udávající, která políčka čokolády
zůstala zachována celá. Určete, kolika způsoby může Mařenka uskutečnit
svůj plán. Jinými slovy, spočítejte, kolika způsoby lze ve zbytku čokolády
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vyznačit obdélník bez děr. Všechny hrany obdélníka musí samozřejmě
ležet na hranách políček. Stejně velké obdélníky umístěné na různých
místech původní čokolády považujeme za různá řešení.

Formát vstupu1. Na prvním řádku vstupu jsou dvě celá čísla R a S
oddělená mezerou. Následuje R řádků, přičemž na r-tém z nich je S
mezerami oddělených celých čísel агд,..., ar,s- Je-li políčko čokolády na
souřadnicích (r,s) celé, bude аГ;5 = 1, v opačném případě аГ;5 = 0.

Formát výstupu: Program vypíše na výstup jediné číslo — hledaný
počet obdélníků.

Příklad:

Vstup: Výstup:

ЁЭ3 5 33

0 10 10

0 1110

11111

Na obrázku vpravo je zobrazena čokoláda popsaná na vstupu. Šedou
barvou jsou vyznačena políčka, která už myši stihly poškodit.

Obdélník 1 x 1 lze na této čokoládě vyznačit deseti způsoby, 2x1
pěti, 1x2 šesti, 3x1 dvěma, 1x3 čtyřmi, 1x4 dvěma, 2x2 dvěma,
1x5 jedním, a 2 x 3 také jedním způsobem.

P - lil - 2

Šachovnice

„Šach-mat,“ oznámil s úšklebkem Jeníček. Mařenka měla sice dosud ša-
chy velmi ráda, ale už ji to přestává bavit: právě s Jeníčkem prohrála
sedmnáctou partii po sobě. Vymyslela si proto novou, vlastní hru, v níž
Jeníčka určitě porazí.

Hracím plánem je šachovnice, která je směrem doprava a nahoru ne-
konečná. Každé políčko této šachovnice můžeme označit dvojicí nezápor-
ných celých čísel (ж, у). Políčko v levém dolním rohu šachovnice má ozna-
čení (0,0), směrem doprava roste souřadnice x, směrem nahoru vzrůstá
souřadnice y.

Na šachovnici je rozmístěno N šachových koní. Na začátku i kdykoliv
během hry může stát více koní na témže políčku. Koně se pohybují po-
dle šachových pravidel. Jsou povoleny pouze takové tahy, při nichž kůň
neopustí šachovnici a navíc klesne součet obou souřadnic (viz obrázek
na následující straně).
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Hráč, který je na tahu, si vybere několik koní (může si jich vybrat,
kolik chce, ale musí vždy aspoň jednoho) a každým z nich provede jeden
tah. Hráči se ve hře pravidelně střídají. Prohrává ten, kdo nemůže provést
další tah (tzn. nemůže pohnout podle pravidel žádným koněm).

Mařenka si už napsala program, který za ni bude hrát tuto hru op-
timálním způsobem. Jeníček ale programovat neumí, a proto by přivítal
vaši pomoc.

Soutěžní úloha. Je dán počet koní N a jejich počáteční rozmístění na
šachovnici. První tah provádí Jeníček.

Napište program, který zjistí, kdo vyhraje, když budou oba hráči hrát
optimálně. Pokud zvítězí Jeníček, váš program by mu měl také poradit
první tah libovolné vyhrávající strategie.

Jestliže úlohu nedokážete vyřešit pro obecné N, část bodů dostanete
i v případě, že ji vyřešíte pro jednoho koně, případně pro dva koně začí-
nající na souřadnicích mezi (0,0) a (100,100).

L
i(0,0)

Všechny povolené tahy koněm na souřadnicích (3, 2)

Formát vstupu: První řádek vstupu obsahuje počet koní N. Na kaž-
dém z následujících N řádků jsou dvě čísla r* a Sj, která určují řádek
a sloupec, kde se nachází г-tý kůň na začátku hry.

Formát výstupu: První řádek výstupu bude obsahovat jméno hráče,
který vyhraje (Jeniček nebo Mařenka). Jestliže vyhraje Jeníček, vypište
pro každého koně, kterým má Jeníček v úvodním tahu táhnout, řádek
s čísly ra, sa, rb, sb
řádků nezáleží.

původní a nová poloha koně. Na pořadí těchto

Příklad 1:

Vstup: Výstup:
Mařenka1

0 4
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Jeníček musí táhnout na (1, 2), odtud Mařenka táhne koněm na (0,0)
a vyhraje.

Příklad 2:

Vstup: Výstup:
Jeniček

3 110

2 10 0

Po uvedeném tahu Jeníčka Mařenka ihned prohraje, neboť ani jedním
koněm už nemůže pohnout.

Všimněte si, že kdyby Jeníček nechal koně z políčka (3,1) na původ-
ním místě, prohraje. Prohrál by i v případě, že by tohoto koně přesunul
na políčko (1,2), bez ohledu na to, zda by druhým koněm pohnul, nebo

2

3 1

2 1

ne.

P - III - 3

Počítač Kvak

К úloze se vztahuje studijní text z úlohy P-I-4.
Soutěžní úloha.

a) (3 body) V rouře počítače je posloupnost kladných celých čísel.
Označme si je a\, 02, ■ ■ ■, пдг v pořadí, v němž se v rouře nacházejí. Na-
pište program, který zkontroluje, zda je tato posloupnost rostoucí. Pokud
ano, program ukončí výpočet, aniž by cokoliv vypsal. Jestliže posloupnost
není rostoucí, program zjistí a vypíše nejmenší i takové, že ^ «г+i-

b) (7 bodů) V rouře počítače je posloupnost kladných celých čísel.
Víte, že jedno z těchto čísel má v rouře nadpoloviční většinu
se tedy v rouře vyskytuje vícekrát, než všechna ostatní čísla dohromady.
Napište program, který toto číslo najde a vypíše.

toto číslo

P - III - 4

Mravenci

mravenci.pas / mravenci.c / mravenci.cpp
mravenci.in

mravenci.out

Program:
Vstup:
Výstup:

Právě začíná jedna velmi podivná soutěž. Porota si připravila N stej-
ných mřížek obdélníkového tvaru. Mřížka je tvořena R-f 1 vodorovnými
a5+l svislými čarami. Každý soutěžící dostane jednu mřížku a několik
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překážek. Jeho úkolem je rozmístit všechny překážky, které dostal, na
různé mřížové body. Takto upravenou mřížku pak odevzdá porotě.

(0,5)(0,0),
I

o I

I

I

(R,S)
Příklad mřížky pro fí=2aS = 4

Jsou vyznačeny 2 z 5 cest mravenců.

Porota do levého horního rohu mřížky vypustí speciální druh mraven-
ců. Tito mravenci se pohybují pouze směrem dolů a doprava, a to jen po
čarách tvořících mřížku. Mravenci se navíc navzájem nemají rádi, a proto
žádní dva nepůjdu úplně stejnou cestou. Do pravého dolního rohu dorazí
tudíž přesně tolik mravenců, kolik existuje různých cest mezi levým hor-
ním a pravým dolním rohem mřížky. Jelikož tento počet může být velký,
při vyhodnocování soutěže se uvažuje jenom zbytek, který dostaneme po
dělení tohoto počtu číslem 109 + 9.

Soutěžní úloha. Je dáno N mřížek, všechny mají R+l vodorovných a

б'-Ы svislých čar. Pro každou mřížku je dán počet rozmístěných překážek
a jejich souřadnice. Vaším úkolem je určit pro každou mřížku hodnotu
X mod 1000 000 009, kde X je počet různých způsobů, jimiž se lze dostat
z levého horního do pravého dolního rohu příslušné mřížky.

Poznámka. Je možné, že v některých výpočtech bude potřeba používat
64bitová celá čísla (typ long long v C/C++, int64 v Pascalu).

Formát vstupu: Na prvním řádku vstupního souboru mravenci.in
jsou tři kladná celá čísla R, S a N oddělená mezerami. Následuje N po-

pisů jednotlivých mřížek.
Každý popis mřížky začíná řádkem obsahujícím jedno nezáporné celé

číslo К, které představuje počet překážek rozmístěných na této mřížce.
Dalších К řádků popisuje polohy překážek. Každý z nich obsahuje dvě
mezerou oddělená čísla r*, Si (0 S ri ^ R, 0 ^ Si ^ S), přičemž r* je
souřadnice řádku a Si souřadnice sloupce, kde leží г-tá překážka. Žádné
dvě překážky neleží na stejných souřadnicích a žádná překážka neleží na
souřadnicích (0,0), kde mravenci začínají.
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Omezení velikosti proměnných:
V testovacích datech budou proměnné R, S, N а К rovny nejvýše

hodnotám uvedeným v následující tabulce:

č. testu SR N К

1 5 5 5 5
2 7 7 7 7
3 10 10 10 10
4 100 100 50 15
5 1000 1 000

1200 100000
1000 1 000

1000 1000
2 000 2 000

15 000 15000
1000 1 000
2500 2500

20 000 10 000

100 000 100 000

100 000 100 000

50 15
6 1 15
7 1 000 2

8 1000 10

9 200 15
10 50 10
11 1000 50
12 200 100
13 200 50
14 2 30

15 100 50

Formát výstupu: Pro každou mřížku vypište jeden řádek s jedním ce-

lým číslem do souboru mravenci. out: hodnotu X mod 1 000 000 009, kde
X je počet různých způsobů, jimiž lze dojít z levého horního do pravého
dolního rohu této mřížky.

Příklad:

Vstup:
2 4 2

Výstup:
5

2 1

1 2

První mřížka je zobrazena na obrázku.
Ve druhé mřížce vede jediná možná
cesta bodem (2,0).

2 0

2

0 1

1 1
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P - III - 5

Hurikán

hurikán.pas / hurikán.c / hurikán.cpp
hurikán.in

hurikán.out

Souostroví Kiribati je tvořeno N ostrovy. Ještě předevčírem byla mezi
těmito ostrovy postavena celá síť mostů, po nichž se dalo pohodlně přejet
z každého ostrova na libovolný jiný. Včera se ale přehnal přes Kiribati
hurikán Hermano a mnohé mosty zničil, takže jich zbylo pouze M. A co

je ještě horší, К z těchto M mostů má narušenou statiku. Místní statik
zjistil, že v každém z následujících К dní spadne jeden z těchto К poško-
zených mostů.

Místní vláda potřebuje zajistit, aby se obyvatelé i nadále mohli dostat
každý den z libovolného ostrova na libovolný jiný. Rozhodla se proto
najmout několik převozníků. Každý převozník zabezpečí dopravu mezi
jednou konkrétní přidělenou dvojicí ostrovů.

Soutěžní úloha. Program dostane na vstupu popis mostů, které zů-
staly zachovány po řádění hurikánu, a pořadí, v němž spadnou ty z nich,
které jsou poškozeny. Program určí pro dnešek i pro každý z následujících
К dní, jaký nejmenší počet převozníků stačí na příslušný den najmout.

Formát vstupu: První řádek vstupního souboru hurikán. in obsahuje
dvě celá čísla N a M (2 ^ N, 1 5Í M), která udávají počet ostrovů a
počet mostů. Ostrovy jsou očíslovány od 1 do N.

Každý z následujících M řádků popisuje jeden most. Most je určen
dvojicí celých čísel ai bi (1 ^ aj,&i íš N, a* j- bi)
daný most spojuje. Mosty si očíslujeme od 1 po M v pořadí, v němž jsou
zadány na vstupu. Jednu dvojici ostrovů může spojovat i více mostů.

Následuje řádek obsahující celé číslo К (1 ^ К ^ M), které před-
stavuje počet poškozených mostů. Na posledním řádku vstupu je К me-
zerami oddělených čísel
spadnou.

Omezení velikosti proměnných:
Ve všech testovacích vstupech bude platit M, N ^ 200 000. V sadách

testovacích dat 1 až 4 bude platit N íš 1 000. V sadách 1 až 7 bude platit
К ^ 100.

Formát výstupu: Program vypíše do souboru hurikán.out К + 1
řádků obsahujících vždy jedno celé číslo. Číslo na г-tém řádku výstupu

Program:
Vstup:
Výstup:

čísla ostrovů, které

čísla poškozených mostů v pořadí, v jakém
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udává minimální počet převozníků, kteří jsou zapotřebí, když spadne
prvních г-l poškozených mostů.

Příklad:

Vstup: Výstup:
4 4 0

1 2 0

3 2 1

1 3 2

3 4

3

2 4 3

Dnes je ještě možné přejít po mostech mezi každými dvěma ostrovy.
Bude to možné i zítra, až spadne most 3-2. Až pozítří spadne most 3-4,
bude již třeba najmout jednoho převozníka, aby nebyl ostrov 4 izolovaný
od ostatních. Po pádu mostu 1-3 zůstane stát jediný most 1-2. Tehdy už
bude zapotřebí zaměstnávat dva převozníky.
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Kategorie Z5

Texty úloh

Z5 - I - 1

Housenka Leona spadla doprostřed čtvercové sítě. Rozhodla se, že poleze
„do spirály" tak, jak je naznačeno na obr. 35; na žádném čtverečku nebude
dvakrát a žádný čtvereček nevynechá.

3

4
2

■

I
1
7—8— 9—HO

Obr. 35

Z prvního čtverečku na druhý lezla směrem na východ, z druhého na
třetí směrem na sever, ze třetího na čtvrtý směrem na západ, ze čtvrtého
na pátý rovněž na západ, z pátého na šestý na jih... Kterým směrem
lezla z 81. na 82. čtvereček? (M. Petrová)

Z5 - I - 2

Míša si z papíru vystřihla dva stejné čtverce, jeden obdélník o rozměrech
10 cm x 24 cm a ještě jeden obdélník. Jaké rozměry mohl mít tento obdél-
nik, pokud šlo ze všech čtyř útvarů složit čtverec, aniž by se jednotlivé
díly překrývaly? Takových obdélníků lze nalézt několik, uveď alespoň
čtyři. (L. Šimůnek)
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Z5 - I - 3

Vyřeš následující algebrogram a najdi všechna řešení. Stejná písmena
nahraď stejnými číslicemi, různá různými.

OSEL

SEL

EL

L

1 00 34

(M. Volfová)

Z5 - I - 4

Nina dostala od paní učitelky následující kartičky:

: 6

+1 : 4•3

Má z nich všech sestavit příklad pro své spolužáky. Pomoz Nině a sestav
jeden takový příklad tak, aby každé dělení vyšlo beze zbytku. Jaký bude
výsledek? (M. Petrová)

Z5 - I - 5

Naše tři třídy, celkem 84 žáků, šly do kina. Lístek sice stál 50 Kč, ale
každý 12. žák měl poloviční slevu a každý 35. vstup zdarma. Kolik stálo
vstupné pro všechny žáky? (M. Volfová)

Z5 - I - 6

Kluci našli starý plán minového pole (obr. 36). Čísla jsou na polích, kde
žádné miny nejsou, a udávají počet zaminovaných sousedících polí. Urči,
kolik je v poli celkem min a kde jsou. (Pole sousedí tehdy, mají-li společný
vrchol nebo stranu.) (M. Volfová)
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Z5 - II - 1

Matěj a jeho kamarádi šli koledovat. Kromě jablíček, oříšků a perníků
dostal každý z chlapců i pomeranče. Jarda dostal jeden pomeranč, Milan
také. Po dvou pomerančích dostali Radek, Patrik, Michal a Dušan. Matěj
dostal dokonce čtyři pomeranče, což bylo nejvíc ze všech chlapců. Ostatní
chlapci dostali po třech pomerančích. Kolik chlapců šlo na koledu, když
všichni dohromady dostali 23 pomerančů? (M. Volfová)

Z5 — II — 2

Ruměnice Josefína dopadla na stůl doprostřed čtvercové sítě tvořené
81 čtverečky (obr. 37). Rozhodla se, že z ní nepoleze pryč přímo, ale násle-

dujícím způsobem: nejprve jeden čtvereček na jih, pak jeden na východ,
dále dva na sever, poté dva na západ a opět jeden na jih, jeden na východ,
dva na sever, dva na západ... Na kterém čtverečku byla těsně předtím,
než slezla z této sítě? Po kolika čtverečcích této sítě lezla? (M. Petrová)
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Z5 - II - 3

Jura má tyčky délek 2 cm, 3cm, 3cm, 3cm, 4 cm, 5 cm, 5 cm, 5 cm, 6 cm,
6 cm a 9 cm. Skládá z nich strany trojúhelníků tak, že žádná tyčka není
součástí strany dvou a více trojúhelníků. Může použít tolik tyček, ко-
lik chce, ale nesmí je lámat a použité tyčky musí ležet celé na hranici
trojúhelníku. Jura tvrdí, že se dají použít na poskládání stran tří troj-
úhelníků se stejnými obvody. Má pravdu? Jaký největší obvod by měly

(M. Dillingerová)tyto trojúhelníky?
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Kategorie Z6

Texty úloh

Z6 - I - 1

Jeníček s Mařenkou chodí к babičce, která má cukrárnu a prodává perní-
ky. Oba dva jí samozřejmě pomáhají, hlavně se zdobením. Za dobu, kdy
babička ozdobí pět perníků, ozdobí Mařenka tři a Jeníček dva. Při po-
slední návštěvě ozdobili všichni tři dohromady pět plných táců. Mařenka
s babičkou zdobily po celou dobu, Jeníček kromě zdobení rovnal perníky
po dvanácti na jeden tác a odnášel je do spíže. Všichni tři ve stejnou
dobu začali i skončili.

1. Kolik perníčků ozdobil Jeníček?
2. Jak dlouho jim celá práce trvala, když babička ozdobí jeden perníček

za 4 minuty?
3. Jak dlouho pomáhal Jeníček zdobit? (M. Petrová)

Z6 - I - 2

Čtyřmístný PIN kód Rastislavova mobilu je zajímavý:
> jednotlivé číslice tvoří prvočísla,
> 1. a 2. číslice v tomto pořadí vytvoří prvočíslo,
[> 2. a 3. číslice v tomto pořadí vytvoří prvočíslo,
[> 3. a 4. číslice v tomto pořadí vytvoří prvočíslo.

Rastislav zapomněl svůj PIN kód, ale pamatuje si všechny výše uve-
děné vlastnosti a snaží se zaktivovat vypnutý mobil. Která čísla by měl
vyzkoušet? (M. Petrova)

Z6 - I - 3

Na následujícím obr. 38 je útvar složený ze sedmi stejných čtyřúhelníko-
vých dílků stavebnice. Jaký je obvod tohoto útvaru, jestliže obvod jed-
noho čtyřúhelníkového dílku je 17 cm? (К. Pazourek)
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Obr. 38

Z6 - I - 4

Tatínek se rozhodl, že bude dávat svému synovi Mojmírovi vždy jedenkrát
za měsíc kapesné. První kapesné dostal Mojmír v lednu. Tatínek každý
měsíc kapesné zvyšoval vždy o 4 Kč. Kdyby Mojmír neutrácel, měl by
po dvanáctém kapesném před Vánocemi 900 Kč. Kolik Kč dostal Mojmír
při prvním kapesném v lednu? (L. Hozová)

Z6 - I - 5

Doplňte místo hvězdiček číslice tak, aby součet výsledků následujících
dvou příkladů byl 5 842:

2*9*
— * 2 * 4

*2*7

3*4*

4*00 *54*

(M. Dillingerová)

Z6 - I - 6

Na školní olympiádu vytvořili žáci 6.В stupně vítězů z dřevěných krychlí
(obr. 39). Kolik krychlí celkem použili?

:[ ív

Obr. 39
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Sestavené stupně natřeli po celém povrchu (kromě podstavy) na bílo
a po vyhlášení výsledků svůj výtvor rozebrali. Kolik krychlí mělo 6, kolik
5, 4, 3, 2, 1 či žádnou stěnu bílou? (M. Dillingerová, M. Volfova)

Z6 - II - 1

Určete obsah obdélníku, když víte, že šířka je rovna | jeho délky a obvod
měří 148 cm. (M. Volfova)

Z6 - II - 2

Myslím si čtyřmístné číslo, jehož každá číslice je jiná. Když škrtnu po-
slední dvě číslice v tomto čísle, dostanu prvočíslo. Stejně tak dostanu
prvočíslo i v případě, kdy vyškrtnu druhou a čtvrtou číslici, a dokonce
i v případě, kdy vyškrtnu prostřední dvě číslice. Mé myšlené číslo ovšem
prvočíslo není
tyto vlastnosti, je víc. To mé je ale největší z nich. Které číslo si myslím?

(M. Petrová)

můžeme ho beze zbytku dělit třemi. Čísel, která mají

Z6 - II - 3

Krabička tvaru krychle o hraně 4 cm je zcela naplněna srovnanými hra-
čími kostkami, krychličkami s hranou délky 1 cm. Vymyslete všechny
různé krabičky tak, aby měly čtvercové dno a do každé z nich se všechny
kostky přesně vešly. Napište jejich rozměry. (M. Krejčová)
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Kategorie Z7

Texty úloh

Z7 - I - 1

Do prodejny vína se v noci vloupal kocour. Vyskočil na polici, na níž byly
v dlouhé řadě vyrovnány lahve s vínem první třetina lahví zkraje stála
po 160 Kč, následující třetina lahví stála po 130 Kč a poslední třetina po
100 Kč. Nejprve kocour shodil na zem láhev za 160 Kč, která stála úplně
na začátku řady, a pak postupoval dále a shazoval bez vynechání jednu
láhev za druhou. Než ho to přestalo bavit, srazil 25 lahví a ty se všechny
rozbily. Ráno majitel zalitoval, že kocour nezačal se svým řáděním na
druhém okraji police. I kdyby totiž rozbil stejný počet lahví, byla by
škoda o 660 Kč menší. Kolik lahví bylo původně na polici?

(L. Šimůnek)

Z7 - I - 2

Na tabuli jsou napsaná tři přirozená čísla a, 6, c, pro která platí:
o největší společný dělitel čísel a, b je 15,
o největší společný dělitel čísel 6, c je 6,
d> součin čísel 5, c je 1 800,
> nej menší společný násobek čísel a, b je 3 150.

Která to jsou čísla? (L. Šimůnek)

Z7 - I - 3

Ve čtyřúhelníku KLMN známe vyznačené úhly a víme, že platí \KN\ =

(L. Hozová)= \LM\ (obr. 40). Jaká je velikost úhlu KNM7

Z7 - I - 4

Krychle byla složena z 64 krychliček o hraně 2 cm. Pak bylo několik krych-
liček z viditelné strany odebráno (obr. 41).
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LК

Obr. 41Obr. 40

1. Jaký je objem a jaký povrch získaného tělesa?
2. Těleso bylo po celém povrchu natřeno červeně, pak rozebráno na pů-

vodní krychličky. Kolik z nich mělo 6, kolik 5, 4, 3, 2, 1 či žádnou
stěnu červenou? (M. Volfová)

Z7 - I - 5

Na číselné ose jsou znázorněna čísla 12a; a —4a; (obr. 42). Znázorni na
této ose nulu a číslo x. (M. Petrová)

1+

Obr. 42

Z7 - I - 6

Doplňte místo hvězdiček číslice tak, aby součet výsledků následujících
dvou příkladů byl 5 842:

2*9*

-*254

* 2 * 7

3*4*

4*0* * 5 * *

Úloha má více řešení, určete alespoň dvě. (M. Dillingerová)

Z7 - II - 1

Křemílek a Vochomůrka našli bedničku s pokladem. Každý z nich si
nabral do jedné kapsy stříbrné mince a do druhé kapsy zlaté mince.
Křemílek měl v pravé kapse díru a cestou polovinu svých zlatek ztratil.
Vochomůrka měl díru v levé kapse a cestou domů ztratil polovinu svých
stříbrňáků. Doma věnoval Vochomůrka třetinu svých zlatek Křemílkovi
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a Křemílek čtvrtinu svých stříbrňáků Vochomůrkovi. Každý potom měl
přesně 12 zlatek a 18 stříbrňáků. Kolik zlatek a kolik stříbrňáků si vzal

(M. Dillingerová)každý z nich z nalezeného pokladu?

Z7 — II - 2

Na tabuli jsou napsána tři přirozená čísla x, у & z. Určete která, pokud
víte, že současně platí:

i> x je z nich největší,
c> nejmenší společný násobek čísel x а у je 200,
i> nejmenší společný násobek čísel у a 2 je 300,
t> nejmenší společný násobek čísel ж a z je 120.

(L. Šimůnek)

Z7 - II - 3

Pravidelná šesticípá hvězda ABCDEFGHIJKL se středem S, znázor-
něná na obr. 43, vznikla sjednocením dvou rovnostranných trojúhelníků,
z nichž každý měl obsah 72cm2. Vypočítejte obsah čtyřúhelníku ABCS.

(S. Bednářová)
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Kategorie Z8

Texty úloh

Z8 - I - 1

Napište číslo 75 jako součet několika po sobě bezprostředně jdoucích
přirozených čísel. Najděte aspoň čtyři řešení. (M. Volfová)

Z8 - I - 2

Tři kamarádky se sešly na chalupě a vyrazily na houby. Našly celkem
55 hřibů. Po návratu si udělaly smaženici, rozdělily ji na čtyři stejné
porce a pozvaly na ni kamaráda Pepu. Líba dala na smaženici šest ze

svých hřibů, Maruška osm a Šárka pět. Každé pak zbyl stejný počet
hřibů. Pepa jim daroval bonboniéru, kde bylo 38 bonbonů, a řekl, že se

mají spravedlivě rozdělit podle toho, jak přispěly na jeho jídlo.
1. Kolik hřibů našla každá?

2. Jak se měly podle Pepy podělit? (M. Volfová)

Z8 - I - 3

Sedadla v divadelním sálu jsou rozdělena do tří kategorií podle jejich
vzdálenosti od jeviště. „I. místa“ jsou nejblíže jevišti, tvoří dvě pětiny
kapacity sálu a prodávají se za 220 Kč. „II. místa“ tvoří další dvě pětiny
sálu a prodávají se za 200 Kč. Zbývající „III. místa“ se prodávají za
180 Kč. Před zahájením předprodeje na slavnostní premiéru bylo roz-
dáno 150 vstupenek zdarma zvaným hostům. Vstupenky byly rozdávány
postupně od předních míst sálu dozadu. Všechny ostatní vstupenky pak
byly prodány. Kdyby se však volné vstupenky rozdávaly postupně od
zadních míst dopředu, byla by tržba o 4 320 Kč větší. Kolik míst bylo
v sálu? (L. Šimůnek)

131



Z8 - I - 4

Dostali jsme krychli, která měla délku hrany vyjádřenou v centimetrech
celým číslem. Všechny její stěny jsme obarvili na červeno a poté jsme ji
rozřezali beze zbytku na krychličky o hraně 1 cm.

c> Lukáš tvrdí, že krychliček se dvěma obarvenými stěnami je desetkrát
více než těch se třemi obarvenými stěnami.

d> Martina říká, že krychliček se dvěma obarvenými stěnami je patnáct-
krát více než těch se třemi obarvenými stěnami.

Pravdu má však pouze jeden — kdo? A kolik měřila hrana původní krycli-
(L. Šimůnek)le?

Z8 - I - 5

Ze čtverce o straně 6 cm odřízneme od každého vrcholu shodné rovnora-

menné pravoúhlé trojúhelníky tak, aby se obsah čtverce zmenšil o 32 %.
Jakou velikost mají odvěsny? (M. Krejčová)

Z8 - I - 6

Ve dvou místnostech vzdělávacího centra se konaly přednášky. Průměrný
věk osmi lidí přítomných v první místnosti byl 20 let, průměrný věk
dvanácti lidí ve druhé místnosti byl 45 let. V průběhu přednášky odešel
jeden účastník a tím se průměrný věk všech osob v obou místnostech
zvýšil o jeden rok. Kolik let bylo účastníkovi, který odešel?

(L. Hozová)

Z8 - II - 1

Průměrný věk rodiny Kebulových, kterou tvoří otec, matka a několik dětí,
je 18 let. Přitom průměrný věk rodiny bez tatínka, kterému je 38 let, je
14 let. Kolik dětí mají Kebulovi? (L. Hozová)

Z8 - II - 2

Kolik existuje šestimístných přirozených čísel, která mají na místě stati-
síců číslici 1, na místě tisíců číslici 2 a na místě desítek číslici 3 a jsou
beze zbytku dělitelná číslem 45? {L. Simůnek)
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Z8 - II - 3

Na obr. 44 je šestiúhelník ABEFGD. Čtyřúhelníky ABCD a EFGC jsou
shodné obdélníky a čtyřúhelník BEGD je také obdélník. Určete poměr
obsahů bílé a šedé části šestiúhelníku, jestliže \AB\ = 5 cm a trojúhelník

(К. Pazourek)ВЕС je rovnostranný.

GD

G

A F

В E

Obr. 44
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Kategorie Z9

Texty úloh

Z9 - I - 1

Dostal jsem zadána dvě přirozená čísla. Poté jsem je obě zaokrouhlil na

desítky. Určete, která čísla jsem měl zadána, pokud víte, že:
> podíl zaokrouhlených čísel je stejný jako podíl čísel původních,
o součin zaokrouhlených čísel je o 295 větší než součin původních čísel,
> součet zaokrouhlených čísel je o 6 větší než součet původních čísel.

(L. Šimůnek)

Z9 - I - 2

Pat a Mat byli na výletě. Vyšli ráno po osmé hodině, kdy velká a malá
ručička na Patových hodinkách ležely v opačných polopřímkách. V opáč-
ných polopřímkách byly ručičky Patových hodinek, i když se oba přátelé
před polednem vrátili. Mat dobu výletu měřil na stopkách. Určete i vy
s přesností na sekundy, jak dlouho trvala cesta. Předpokládejte, že Patový
hodinky a Matový stopky šly přesně. (M. Volfová)

Z9 - I - 3

Na obr. 45 je krychle o hraně 2 cm tvořená osmi krychličkami s hranou
1 cm. Osm stěn krychliček je obarveno černě, ostatní jsou bílé. Přitom
z nich lze složit krychli, jejíž povrch je bílý. Kolika způsoby mohou být
krychličky obarveny? Předpokládejte, že stejně obarvené krychličky ne-
dokážeme odlišit, mohou se tedy zaměnit. (К. Pazourek)

У У

Obr. 45

134



Z9 - I - 4

Adam a Eva dostali košík, ve kterém bylo 31 jablek. První den snědla
Eva tři čtvrtiny toho, co snědl Adam. Druhý den snědla Eva dvě třetiny
toho, co snědl týž den Adam. Druhého dne večer byl košík prázdný. Kolik
jablek snědla z košíku Eva? (Adam i Eva jablka jedí celá a nedělí se o ně.)

(L. Hozová)

Z9 - I - 5

Řidič převáží mléko v cisterně tvaru válce. Průměr podstavy je 180cm,
délka cisterny je 4 m. Kolik hl mléka je v cisterně, jestliže je naplněna do
tří čtvrtin průměru (obr. 46)? (M. Krejčová)

A
i
i

/

Obr. 46

Z9 - I - 6

V lichoběžníku ABCD se základnami AB a CD délky 7 cm a 4 cm jsou
body S a T středy stran AD a BC (obr. 47). Bod X je průsečík úseček AC
a ST, bod Y je průsečík úsečky AB a přímky DX. Obsah čtyřúhelníku
AYCD je 12 cm2. Vypočtěte obsah lichoběžníku ABCD.

(M. DU lingerová)

CD

A ВY

Obr. 47
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Z9 - II - 1

Doplňte do prázdných políček obr. 48 čísla tak, aby v každém políčku byl
součet čísel ze všech s ním přímo sousedících světlejších políček. Tedy ve
světle šedém políčku je součet čísel ze všech bílých sousedních políček,
v tmavě šedém políčku je součet čísel ze všech světle šedých sousedních
políček. (S. Bednářová)

Z9 - III - 2

Šárka nalila džus do skleničky a hrnku a obě nádoby doplnila vodou.
Hrnek měl dvakrát větší objem než sklenička. Poměr džusu a vody ve skle-
ničce byl 2 : 1 a v hrnku 4:1. Poté přelila obsah skleničky i obsah hrnku
do džbánu. Jaký byl poměr džusu a vody ve džbánu? (L. Hozová)

Z9 - II - 3

Dostal jsem zadána dvě dvojmístná přirozená čísla. Poté jsem je obě za-
okrouhlil na desítky. Určete, která čísla jsem měl zadána, jestliže současně
platí:

> rozdíl zaokrouhlených čísel je stejný jako rozdíl čísel původních,
o součin zaokrouhlených čísel je o 184 větší než součin čísel původních.

(L. Šimůnek)

Z9 - III - 4

Do rovnostranného trojúhelníku ABC je vepsán pravidelný šestiúhelník
KLMNOP tak, že body К, L leží na straně AB, body M, N leží na
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straně ВС a body О, Р leží na straně АС. Vypočtěte obsah šestiúhelníku
KLMNOP, jestliže obsah trojúhelníku ABC je 60 cm2. (K. Pazourek)

Z9 -111-1

Paní učitelka potřebovala vymyslet příklady na rovnice do písemky. Proto
si vypsala všechny rovnice tvaru

a ■ x + b = 13,

kde a a b jsou jednomístná přirozená čísla. Ze všech vybrala ty rovnice,
jejichž kořen x byl 3. Do každé skupiny dala jednu rovnici. Kolik skupin
mohlo být nejvíce? (K. Pazourek)

Z9 - III - 2

Do naší školy se žáci dopravují různě. Domácí chodí pěšky. Počet do-
mácích a dojíždějících žáků je v poměru 3 : 1. U dojíždějících je poměr
počtu těch, kteří využívají veřejnou dopravu, a těch, kteří jezdí sami na
kole nebo s rodiči autem, 3 : 2. U veřejné dopravy je poměr počtu těch,
kteří jezdí vlakem, a těch, kteří jezdí autobusem, 7 : 5. Dále víme, že
poměr počtu těch, kteří dojíždějí na kole, к počtu těch, které vozí rodiče
autem, je 5 : 3. O kolik více žáků dojíždí vlakem oproti těm, které vozí
rodiče, když veřejnou dopravou jich jezdí 24? Kolik žáků má naše škola?

(M. Volfová)

Z9 - III - 3

Dostali jsme krychli, která měla délku hrany vyjádřenou v centimetrech
celým číslem větším než 2. Všechny její stěny jsme obarvili na žluto a poté
jsme ji rozřezali beze zbytku na krychličky o hraně délky 1 cm. Tyto krych-
ličky jsme roztřídili do čtyř hromádek. V první byly krychličky s jednou
žlutou stěnou, ve druhé se dvěma žlutými stěnami a ve třetí se třemi. Ve
čtvrté hromádce pak byly krychličky bez žluté stěny. Určete délku hrany
původní krychle, pokud víte, že aspoň jedno z následujících tvrzení je
pravdivé:

D> Počty kostek v první a čtvrté hromádce byly v poměru 4:9.
> V první hromádce bylo třikrát více kostek než ve druhé.

(L. Šimůnek)
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Z9 - III - 4

Do rovnostranného trojúhelníku ABC je vepsán pravidelný šestiúhelník
KLMNOP tak, že body К, M, O leží po řadě ve středech stran AB,

а AC. Vypočtěte obsah šestiúhelníku KLMNOP, jestliže obsah troj-
úhelníku ABC je 60 cm2. (K. Pazourek)
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Přípravná soustředění před 51. MMO

V průběhu 59. ročníku se konalo výběrové soustředění pro přípravu na
mezinárodní matematickou olympiádu bezprostředně po skončeném celo-
státním kole kategorie A, a to od 12. do 16. dubna 2010 v Kostelci nad
Černými lesy nedaleko Prahy. Na soustředění bylo pozváno 11 nejlepších
řešitelů III. kola kategorie A. Soustředění bylo zaměřeno na přípravu
reprezentantů a ke konečné nominaci šestičlenného družstva.

Úspěšnost jednotlivých studentů ukazuje následující přehled:

4/4 G Brno, tř. Kpt. Jaroše
8/8 G Buďánka, Praha 5
7/8 G J. Keplera, Praha 6
4/4 G Ch. Dopplera, Praha 5
8/8 G J. Heyrovského, Praha 5
4/4 G Ch. Dopplera, Praha 5
7/8 G Plzeň, Mikulášské nám.
7/8 G Praha 9, Chodovická
7/8 G J. Vrchlického, Klatovy
3/4 G M. Koperníka, Bílovec

David Klaška

Miroslav Olšák
Tomáš Zeman

Jáchym Sýkora
Petr Ryšavý
Radek Marciňa

Filip Hlásek
Lukáš Zavřel

Michael Bílý
Jakub Solovský

94

87

76

67

63

60

58

58

53

48

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo prvních šest vybráno do reprezen-
tačního družstva a sedmý byl určen jako náhradník. Toto družstvo nás
částečně (bohužel museli být povoláni dva náhradníci) reprezentovalo i na
již tradičním střetnutí s družstvy Slovenska a Polska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Martin Panák (12.4.),
dr. Jaroslav Zhouf (13.4.),
dr. Karel Horák (14.4.),
dr. Jaroslav Švrček (15.4.),
a doc. Jaromír Šimša (16.4.).
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Úlohy zadané na přípravném soustředění

1. Posloupnost (an)n>i Je definována vztahy ai = 3, a2 — 11 a an =
= 4an_i — an-2 pro n ^ 3. Dokažte, že každý člen této posloupnosti je
tvaru a2 + 2b2 pro nějaká celá kladná a, b (ne nutně různá).
2. Nechť An značí pro libovolné celé kladné n množinu všech pořadí
(ni, a2) • • •) an) množiny {1, 2,..., n} splňujících

к | 2(ai + a2 + ... + о/s) pro libovolné 1 ^ к ^ n.

V závislosti na n určete počet prvků An.3.Řešte rovnici

m! + n\ = mn

v oboru celých kladných čísel.

4. Máme к dispozici a) šest, b) sedm různých barev a čtverečkovaný papír.
Najděte nejmenší počet čtverečků, které musíme barvami označit (každý
čtvereček jinou barvou) tak, aby pro každé dvě různé barvy existovaly
dva čtverečky se společnou stranou označené těmito barvami.

5. Je dán trojúhelník ABC a střed M strany AB. Na polopřímce opačné
к polopřímce MC zvolíme bod N (zde ho pro zjednodušení volme pouze
tak, aby \MN\ < \MC\). Bodem N vedeme přímku, která protne vnitřek
úsečky AM v bodě P a vnitřek strany AC v bodě Q. Průsečík přímek
QM a NB označme R, průsečík přímek AB a CR označme S. Dokažte
rovnost \PM\ — \MS\.
6. Nechť pro kladná reálná čísla a, 6, с, а ф c platí rovnost a+ ym + y/c =
= c + \Jb + л/а. Dokažte, že pak platí 40ac < 1.
7. Nechť P je mnohočlen s reálnými koeficienty, pro který platí

P(n) = l2010 + 22010 + ... + n
2010

pro každé přirozené číslo n. Určete P{—|).8.Jsou dány dvě soustředné kružnice ki, k2, přičemž poloměr je dvoj-
násobkem poloměru k\. Do kružnice k\ je vepsán čtyřúhelník Л1Л2А3А4.
Jestliže postupně označíme Вi, B2, S3, В4 průsečíky polopřímek A4A1,

^2^3 a A3A4 s kružnicí bude dvojnásobek obvodu A1A2A3A4
nejvýše roven obvodu S1S2S3S4. Dokažte.
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9. V ostroúhlém trojúhelníku ABC je nad výškou BK jako průměrem
sestrojena kružnice k. Označme E, F její průsečíky se stranami AB, BC.
Tečny sestrojené ke kružnici к v bodech E a F se protínají na těžnici
trojúhelníku ABC z vrcholu B. Dokažte.
10. Zjistěte, zda je možno rozmístit přirozená čísla od 1 do 21 do jedna-
dvaceti kroužků na obrázku tak, aby v libovolném řádku kromě prvního
bylo každé z čísel rovno absolutní hodnotě rozdílu obou čísel nad ním
(tj. c = \a — b\).

oooooo
o o © © o
oo©o
ooo
oo
o

11. Vrcholy pětiúhelníku ABCDE se shodnými stranami AB a AE leží
na kružnici k. Označme P průsečík přímek AD, CE a Q průsečík přímek
AC, BD. Průsečíky přímky PQ s kružnicí к označme X a Y. Dokažte,
že platí \AX\ = \AY\.
12. Určete nejmenší možnou hodnotu výrazu

4b 8ca A 3c
о, T 2 b Ac ci A b T 2c ci A b A 3c

kde a, b, c jsou libovolná kladná čísla.13.V konvexním šestiúhelníku ABCDEF jsou splněny následující pod-
minky: \AD\ = \BC\ + \EF\, \BE\ = \AF\ A\CD\ a \CF\ = \DE\ + \AB\.
Dokažte, že platí

\AB\ \CD\ \EF\
\ĎW\ ~ \AF\ ~ |BC[14.Kružnice vepsaná rovnoramennému lichoběžníku ABCD se dotýká

jeho ramena BC v bodě M a protíná vnitřky úseček AM, DM po řadě
v bodech K, L. Najděte všechny možné hodnoty výrazu

\AM\ \DM\
\DL\ ■\AK\15.Najděte podmínku na čísla a,b E U nutnou i postačující к tomu, aby

rovnice Ax A B[x\ = Ay + В[y\ měla v oboru IR i jiná řešení než x — y.
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16. V dekadickém zápise některých N přirozených čísel vystupují pouze
číslice 3 a 0, součet těchto N čísel je roven číslu zapsanému 2 010 pětkami.
Najděte nej menší možné N.

17. Určete nejmenší kladné číslo k, při kterém platí nerovnost

c)(b — c) | < к ■ s3|(a-6)(a

pro strany a, b, c libovolného trojúhelníku s obvodem 2s (= a + b + c).
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Mezinárodní střetnutí česko-polsko-slovenské

V rámci závěrečné přípravy před MMO se uskutečnilo již čtvrté meziná-
rodní střetnutí mezi týmy České republiky, Polska a Slovenska. Jednotlivé
země reprezentovala šestice účastníků, kteří si vybojovali ve svých zemích
postup na 51. MMO v Kazachstánu.

Soutěž se uskutečnila ve dnech 21.-22.6. 2010 v severomoravském Bí-
lovci. Všechna tři reprezentační družstva přicestovala na místo konání již
v neděli večer 20. 6. 2010. Organizace a průběh soutěže zůstal zachován
z předešlých ročníků — je přizpůsoben stylu III. kola naší МО a pod-
mínkám na MMO. Soutěžícím byly ve dvou dnech předloženy dvě trojice
soutěžních úloh, přitom za každou z úloh mohli získat nejvýše 7 bodů,
tj. celkově (stejně jako na MMO) 42 body. Na každou trojici úloh měli
soutěžící vyhrazeno 4,5 hodiny.

body SoučetPořadí Jméno Země

Damian Orlef
Martin Vodička
Piotr Suwara

Szymon Kanonowicz
Jakub Konečný
Martin Bachratý
Filip Borowiec
Jáchym Sýkora
Michal Zajčjv
Ladislav Bačo

Miroslav Olšák
Michal Hagara
Marián Horňák
Michal Miškiewicz
Radek Marciňa
Petr Ryšavý
Jakub Solovský
Petr Boroš

POL 777770
777770
767702
677700
717700

707700
777000
770007
770700
757100
607700
707000
600700
700005
700100
700000

700000
000000

35

SVK 35

POL 293.
POL4. 27

SVK 225.

SVK 216.-9.
POL 21

CZE 21

POL 21

SVK 2010.-11.
CZE 20

SVK 1412.

SVK 1313.

POL14. 12

CZE15. 8

CZE16.-17. 7

CZE 7
CZE18. 0

Na výsledku českého družstva se bohužel projevila neúčast dvou repre-

zentantů, vítěze celostátního kola Davida Klašky a dále Tomáše Zemana.
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Návrh všech šesti úloh (a jejich vzorová řešení) připravili členové úlo-
dr. Jaroslav Švrček a doc. Jaromírhové komise z České republiky

Šimša. Úlohy koordinovala mezinárodní komise ve složení Jaromír Šimša,
Jaroslav Švrček, Pavel Calábek a Martin Panák za Českou republiku,
Peter Novotný a Ján Mazák za Slovensko a Jerzy Bednarczuk, Andrzej
Grzesik a Michal Pilipczuk za Polsko.

Texty soutěžních úloh1.Určete všechny trojice (a, b, c) kladných reálných čísel, které vyhovují
soustavě rovnic

aVb — c =

6\/č — a = b,

cy/a — b — c.

a,

(Michal Takács)2.V kruhu o poloměru 1 uvažujme libovolných 60 bodů. Dokažte, že na
hranici kruhu existuje takový bod, že součet jeho vzdáleností od všech
60 uvažovaných bodů není větší než 80. (Jaromír Šimša)3.Nechť p je prvočíslo. Dokažte, že na šachovnici o rozměrech p2 x p2
je možno zvolit p3 polí tak, že středy žádných čtyř z nich nejsou vrcholy
pravoúhelníku se stranami rovnoběžnými s okraji šachovnice.

(.Bartlomiej Bzd^ga)4.Určete největší celé číslo k, pro něž platí následující tvrzení: Je dáno
2 010 libovolných nedegenerovaných trojúhelníků. Strany každého troj-
úhelníku jsou obarveny tak, že jedna je modrá, jedna je červená a jedna
je bílá. Pro každou barvu zvlášť uspořádáme délky stran. Dostaneme tak
posloupnosti

b\ ^ č>2 = • • • = &20io Pro délky modrých stran,

r\ š Г2 š ... š r2oio pro délky červených stran,

a

W\ š ui2 ú • • ■ = ГС2010 pro délky bílých stran.

Pak existuje к indexů j takových, že lze zkonstruovat nedegenerovaný
trojúhelník se stranami délek bj, rj, Wj. Dokažte. (Michal Rolínek)
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5. Nechť x, у, 2 jsou libovolná kladná reálná čísla, pro něž platí x + y +
+ 2^6. Určete nejmenší možnou hodnotu výrazu

2У2 2 2
X + ^ + Z +

y2 + z + l~r z2+ x + l~rx2 + y + l

(Ján Mazák)
6. Nechť ABCD je konvexní čtyřúhelník, pro který platí

\AB\ + \CD\ = >/2-\AC\ a \BC\ + \DA\ = V2 ■ \BD\.

(Jaromír Šimša)Dokažte, že ABCD je rovnoběžník.

Řešení úloh

1. Bez újmy na obecnosti předpokládejme, že a = max{a, 6, с]. Z první
rovnice soustavy dostaneme

c(Vb — l) = a(Vb — 1) = c, tedy 6^4.

Podobně máme z druhé rovnice soustavy

6(Vc — l) = a ^ 6, tedy c ^ 4.

Použitím těchto nerovností dohromady s třetí rovnicí dostaneme

4 ^ c ^ c(\/c — l) ^ c(y/a — l) = b ^ 4,

odkud plyne a = 6 = c = 4.

Odpověď. Jediným řešením soustavy je trojice (a, 6, c) = (4,4,4).
2. Do hraniční kružnice vepišme rovnostranný trojúhelník PQR. Jestliže
dokážeme, že libovolný bod X nalézající se v kruhu splňuje nerovnost

\PX\ + \QX\ + \RX\ й 4, (1)

dostaneme sečtením nerovností (1) pro X = Xk, 1 ^ к 60,

60 60 60

Y \PXk\ + Y \QXk\ + I] \RXk\ ^ 4 • 60 = 240.
k= 1 fc=1 k= 1
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Z toho plyne, že aspoň jedna suma na levé straně je menší nebo rovna
240 : 3 = 80, tedy aspoň jeden z bodů P, Q, R má požadovanou vlastnost.

S ohledem na symetrii stačí (1) dokázat pro případ, kdy X leží ve

výseči PSQi kde S označuje střed kruhu. Ukážeme, že v takovém případě
platí

\PX\ + \QX\ й 2,
což dohromady s triviální nerovností \RX\ ^ 2 dává (1).

Označme S' střed kratšího oblouku PQ (obr. 49). Čtyřúhelník PS'QS
je zřejmě kosočtverec, stačí tedy nerovnost (2) dokázat pro body X
v úseči PS'Q (ohraničené úsečkou PQ a obloukem PS'Q).

Jestliže a = \<XPQ\, (3 = \<XQP\, pak a + (3 ^ 60° a ze sinové
věty v trojúhelníku PQX máme

(2)

|P(5|(sino! + sin/5) \/3-2sin^i^
sin(o + (3)
cos

a—(iCOS
2\PX\ + |QX|

2 sin cos —2
a+(3

Vš- Vš-i a + (32_ < < 30°.neboť= 2,
cos ^ Ul 2

iTím jsme dokázali (2).

Poznámka. Ve druhé části řešení lze postupovat i takto: Pro libovolný
bod X v uvedené úseči uvažujme takový bod Q' na polopřímce PX mimo
úsečku PX, že \XQ'\ = \XQ\. Protože úhel QXQ' má nejvýše 60°, máme

1 Pro úplnost je potřeba dodat, že pokud bod X leží na úsečce PQ, tj. trojúhelník
PQX neexistuje, a nelze tedy použít sinovou větu, je \PX\ + \QX\ = \/3 < 2.
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\^XQQ'\ = \<XQ'Q\ ^ 60°, takže Q' leží v kruhu, který je obrazem
daného kruhu v osové souměrnosti podle PQ (obr. 50). Proto

\PX\ + \XQ\ = \PX\ + \XQ'\ = \PQ'\ й 2-

Další možností je využít skutečnost, že výseč PSQ leží v oblasti ohra-
ničené elipsou s ohnisky P a Q, která je množinou všech bodů X splňu-
jících \PX\ + \XQ\ й |Р5'| + \QS'\ = |PSj + |QSj = 2.
3. Označme p2 řádků šachovnice dvojicemi (a, 5), kde a, b G {0,1,...,
p — 1}. Každý řádek tak bude označen jinou dvojicí.2 Podobně označme
takovými dvojicemi i všech p2 sloupců.

Políčko ležící v řádku (a, b) a v sloupci (c, d) budeme nazývat pěkné,
právě když

(1)ac = b + d (mod p).
Ke každé dvojici (a, b) existuje zřejmě právě p dvojic (c, d) splňují-
cích (l).3 V každém řádku je tudíž p pěkných políček a na celé šachovnici
jich je p3.

Stačí dokázat, že žádná čtyři pěkná políčka nemají vlastnost popsa-
nou v zadání. Předpokládejme sporem, že čtyři políčka ležící na průniku
řádků (ai, 6i) Ф (a2,62) se sloupci (ci, d\) ф (сг, d2) jsou všechna pěkná.
Potom

pro libovolná i,j G {1,2}.

Odečtením dvou kongruencí (2) s daným i (v jedné položíme j — 2,
ve druhé j — 1) získáme

(2)diCj = bi + dj (mod p)

a;(c2 - ci) = d2 - di (mod p)

a po odečtení obou kongruencí (3) vyjde

(a2 - ai)(c2 - ci) = 0 (mod p).

pro i G {1,2} (3)

Proto ai = a2 nebo ci = c2. Vzhledem к symetrii můžeme předpokládat,
že ci = c2. Potom z (3) plyne d\ = d2, a tedy (ci,di) = (с2,^2), což je
spor.

2 Například můžeme označit prvních p řádků dvojicemi tvaru (0,0), (0,1), ...,

(0,p — 1), dalších p řádků (1, 0), (1,1), ..., (1 ,p— 1), atd., až posledních p řádků
dvojicemi (p — 1, 0), (p — 1,1), ..., (p — l,p — 1). Ve skutečnosti však v našem
řešení vůbec nezáleží na pořadí, v němž řádky označíme.

3 Ke každému c existuje právě jedno d splňující (1) a c můžeme zvolit p způsoby.
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Poznámka. Řádky (a, b) odpovídají bodům afinní roviny F2, kde F
je pole o p prvcích, sloupce (c, ď) přímkám této roviny o rovnicích cx —
— у — d = 0 (jde o všechny přímky, jež nejsou rovnoběžné s osou у).
Pole je pěkné, právě když bod odpovídající jeho řádku leží na přímce
odpovídající jeho sloupci. Dvěma různými body nemohou procházet dvě
různé přímky.
4. Dokážeme, že hledaná největší hodnota je к = 1.

Nejdříve ukážeme, že 62010, ^2010, ^2010 jsou vždy stranami trojúhelní-
ku. Bez újmy na obecnosti nechť W2010 ^ Г2010 = 62010- Stačí dokázat, že
62010 + ^2010 > ^2010- Podle zadání existuje trojúhelník se stranami délek
w, 6, r, které mají postupně bílou, modrou a červenou barvu, přičemž

w. Z trojúhelníkové nerovnosti máme 6 + r > w a vzhledemW2010

к danému uspořádání platí 62010 ^ 6 а Г2010 = r■ Odtud už přímo plyne

62010 + ^2010 = 6 + r > w — 102010 •

Zbývá sestrojit posloupnost takových trojúhelníků, že Wj, bj, rj
nejsou pro žádné j < 2 010 délkami stran trojúhelníku. Pro každé
j — 1,2,..., 2 010 uvažme trojúhelník Tj, který má

t> modrou stranu s délkou 2j,
o červenou stranu s délkou j pro j ^ 2 009 a s délkou 4 020 pro j =

= 2 010,
o bílou stranu s délkou j + 1 pro j ^ 2 008, s délkou 4 020 pro j = 2 009

a s délkou 1 pro j = 2 010.
Protože

pro j 5Í 2 008,
pro j = 2 009,

pro j = 2 010,

{j + l)+j>2j >(j + l)-j=l
2ý + J > 4 020 > 2j — j

4020 + 1 >2j > 4020 - 1 = 4019

= 3

strany každého trojúhelníku Tj splňují trojúhelníkové nerovnosti. Navíc
Wj — j, rj = j a bj — 2j pro 1 + j + 2 009. Odtud

Wj +rj = j +j = 2j = bj,

tedy Wj, bj a rj nejsou stranami trojúhelníku pro žádné 1 j ^ 2 009.
5. Z nerovnosti mezi aritmetickým a geometrickým průměrem trojice
kladných čísel x2/14, x/(y2 + z + 1) a 2(y2 + z + 1)/49 máme

-^{У2 + z+ 1) ^ 3
31 2

— x2 +
X

—

-x.

y2 + z+1 ' 49 714
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Cyklickou záměnou x —> у —> г —> x odvodíme dvě podobné nerovnosti
a sečtením všech tří nerovností po úpravě dostaneme

r H / 99 9ч x у z 6.
L=¥&(X +V +Z)+ y2 + z+l + Z1+x + l + Xl+y+l+WZ

. 19.
= Tři\x + У + z).49

Z Cauchyovy nerovnosti (anebo z jednoduché úpravy na součet tří čtver-
ců) plyne

1
x2 + y2 + z2 ěl -(x + у + z)2 ^ 12.

O

Dohromady tak dostáváme

x2 + y2 + z2 H—
y2 + z + 1 ' Z2 + Ж + 1

= ^ (ж2 + у2 + z2) + L -

2У

X2 + y + 1

У >
49 —

^ 87. 2 O o\ 19, . 6 .

= 98(a: +V +Z) + 49{X + V + Z)~49-
98

19 6
• 12 + — - 6- -

90
> —

-

98 49 71!)

Závěr. Nejmenší možná hodnota daného výrazu je ^ a získáme ji pro
x = у — z = 2.

6. Dané tvrzení triviálně plyne z následujícího poznatku:
Pro libovolný čtyřúhelník ABCD platí

(\AB\ + \CD\)2 + {\BC\ + |DA|)2 ^ 2|Ж7|2 + 2\BD\2
s rovností, právě když je ABCD rovnoběžník.

Označme a = AB, b = BC, c = CD, d — DA. Jestliže umocníme na

druhou trojúhelníkové nerovnosti

|b| + \d\ ^ |b- d|, (1)|o| + |c| ^ |o — c|

sečteme je a přepíšeme výrazy pomocí skalárního součinu, dostaneme

(\AB\ + ICL»!)2 + (\BC\ + \DA\)2 Z
A \a - c\2 + \b - d\2 = |o|2 + |b|2 + |c|2 + |d|2 - 2 a ■ c - 2 b ■ d =

= \a + b|2 + |c + d|2 - 2(o + d) • (b + c) =

= 2\AC\2 -2 DB BD = 2\AC\2 + 2\BD\2.
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Tím je uvedená nerovnost dokázána. Pokud v ní platí rovnost, musejí
rovnosti nastat i v (1), což je možné jedině v případě, kdy a || c a b || d.
Obě dvojice protilehlých stran čtyřúhelníku ABCD jsou tedy rovnoběž-
né, což je možné jedině pro rovnoběžník.

Naopak, jestliže ABCD je rovnoběžník, je \AB\ = \CD\, \BC\ =
= \DA\ a dokazovaná nerovnost se změní ve známou rovnoběžníkovou
rovnost (k jejímu důkazu stačí v našem řešení nahradit nerovnosti v (1)
rovnostmi).

Jiné řešení. Odlišným způsobem dokážeme úvodní tvrzení předcho-
zího řešení. Strany čtyřúhelníku ABCD označme obvyklým způsobem.
Dále nechť \AC\ = e, \BD\ = /. Trojúhelníky ABC, ADC doplňme na
rovnoběžníky ABKC, ADLC (obr. 51).

L

A Вa

Obr. 51

Úsečka AC je shodná a rovnoběžná s úsečkami BK a DL, takže
BKLD je rovnoběžník a podle rovnoběžníkové rovnosti máme

2\BK\2 + 2\BD\2 = \BL\2 + \DK\2.2e2 + 2f2

Odtud už s využitím trojúhelníkových nerovností \BL\ ^ b + d, \DK\ ^
^ a + c plyne

2e2 + 2f2 <; (b + d)2 + {a + c)2.
Rovnost nastane, právě když nastane v použitých trojúhelníkových ne-

rovnostech, tedy právě když body J5, C, L leží na jedné přímce a zároveň
body D, С, К leží na jedné přímce, což je zřejmě splněno jedině tehdy,
je-li ABCD rovnoběžník.
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Poznámka. Podmínkám zadání vyhovují (navzájem nepodobné) rov-

noběžníky ABCD splňující

t2- 1
(1 StS l + y/2).\AB\ = 1, \BC\ = t a coe\<ABC\ 21

Jiné řešení. (Podle Jáchyma Sýkory.) Užitím vektorů o, b, c, d z prv-
ního řešení zapíšeme umocněné rovnosti ze zadání ve tvaru

2|ACj2 = (o + b)2 + (c + d)2 = (|o| -f |c|)2,
2\BD\2 = {b + c)2 + (t/ + o)2 - (|b| + \d\)2.

Po sečtení těchto dvou rovností a úpravách dostaneme

(o + b + c + d)2 2(o ■ c + b - d) = 2(|o||c| + |b||t/|),

odkud vzhledem к rovnosti a + b+ c + d = 0 vychází

(|o||c| + o • c) + (|b||ť/| + b ■ d) = 0.

Podle Cauchyovy-Schwarzovy nerovnosti jsou ovšem sčítanci v obou zá-
vorkách nezáporní, takže se musejí rovnat nule. To znamená, že jak úhel
mezi vektory o, c, tak úhel mezi vektory b, d má velikost 180°, tudíž
zkoumaný čtyřúhelník ABCD je rovnoběžník.
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51. mezinárodní matematická olympiáda

Padesátý první ročník Mezinárodní
matematické olympiády se uskuteč-
nil od 2. do 14. července 2010 v Ka-

zachstánu. Olympiády se zúčastnilo
522 soutěžících z 98 zemí, méně než
v předchozím roce.

České družstvo tvořili tito soutě-

žící: David Klaška z Gymnázia na
tř. Kpt. Jaroše v Brně, Radek Mar-
ciňa z Gymnázia Christiana Dop-
plera v Praze, Miroslav Olšák z Gym-
názia Budanka v Praze, Petr Ryšavý
z Gymnázia Jaroslava Heyrovského
v Praze, Jáchym Sýkora z Gymnázia Christiana Dopplera v Praze a To-
máš Zeman z Gymnázia Jana Keplera v Praze. Vedoucím českého druž-
štva a zástupcem České republiky v mezinárodní jury byl dr. Martin
Panák z Přírodovědecké fakulty Masarykovy univerzity v Brně, jeho zá-
stupcem a pedagogickým vedoucím byl dr. Pavel Calábek z Přírodově-
decké fakulty Univerzity Palackého v Olomouci.

Kazachstán je devátou největší zemí na světě (co se týče rozlohy)
a organizátoři to dali účastníkům pocítit. Vedoucí jednotlivých národ-
nich družstev zahajovali program v městě Almaty (dříve Alma-Ata, do
roku 1997 hlavní město Kazachstánu). Po výběru úloh a jejich překladu
do národních jazyků následoval asi tisícikilometrový letecký přesun do
současného hlavního města Astany. Tam proběhlo 5. července v Paláci
nezávislosti slavnostní zahájení olympiády, kterého se zúčastnil i kazašský
ministr školství a vědy Zhanseit Tuimebayev. Zahájení bylo velkolepé, ve

stylu nám dobře známých estrád. Na pódiu se vystřídalo několik folk-
lórních souborů oblečených v bohatých kazašských krojích, místní „folk-
lór-metalová“ kapela a zpěvák se „zlatým hlasem“. Nechyběla společná
píseň všech vystoupivších na závěr. Po zahájení následoval pro vedoucí
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delegací půlhodinový přesun do hotelu. Pro soutěžící byl přesun osmiho-
dinový (v autobusech), a to do dětského tábora Baldauren, ležícího v pěk-
něm prostředí národního parku, asi 250 km od Astany. Již o půlnoci před
soutěží se dostala většina řešitelů do svých pokojů, ti průbojnější pak
dostali i večeři. Aby po takto náročném dni soutěžící náhodou nezaspali,
zajistili organizátoři následujícího (prvního soutěžního) dne operativně
budíček na půl sedmou, což se setkalo s velkým ohlasem.

V Baldaurenu se konala i vlastní soutěž, která jako vždy probíhala
ve dvou dnech, přičemž každý den soutěžící řešili během čtyř a půl ho-
diny tři úlohy. O bezpečnost soutěžících bylo výborně postaráno, tábor
střežila policie a nikdo nesměl tam ani ven (k řešitelům nesměli ani pe-
dagogičtí vedoucí, kteří byli ubytování odděleně). Také podmínky měli
řešitelé v podstatě stejné: všem byly odebrány vlastní rýsovací potřeby
a každý z účastníků dostal od organizátorů pravítko a kružítko. Pravda,
některá kružítka měla místo tradiční konstrukce s jednou špicí a jednou
tuhou špice dvě, což někteří řešitelé nelibě nesli. Mnohým proto byla
tato novátorská kružítka vyměněna za klasická. O těchto věcech se jury
dozvídala na začátku obou soutěžních dní v době vyhrazené na otázky
soutěžících (na jiných mezinárodních olympiádách bývá zvykem, že sou-
těžící pokládají zejména otázky související s textem soutěžních úloh).

Na této olympiádě došlo rovněž к výměně v čele Poradního výboru
(Advisory Board) mezinárodní matematické olympiády, což je orgán,
který zajišťuje fungování mezinárodní olympiády, zvláště pak jedná s těmi
zeměmi, které mají o případné uspořádání této soutěže zájem. Kromě vý-
měny řadových členů výboru nastala změna i v osobě předsedy: dlouho-
letého předsedu Józsefa Pelikána z Maďarska nahradil ruský matematik
Nazar Agachanov.

Dva dny před ukončením olympiády vedoucí i účastníci společně na-
vštívili „dostihové" závodiště. Nicméně hlavním programem nebyly dosti-
hy, ale vystoupení kazašské artistické skupiny, která na koních předváděla
neuvěřitelné dovednosti. Zvláště srdce obdivovatelů krásy koní zaplesalo
a zážitek z tohoto vystoupení dal zapomenout na předchozí příhody.

Slavnostní zakončení olympiády se neslo v podobném duchu jako za-

hájení, dostavil se však i kazašský premiér Karim Massimov. Na závěr
byla slavnostně předána vlajka Mezinárodní matematické olympiády zá-
stupcům hostitelské země příští olympiády. Ta proběhne v Amsterdamu
v Nizozemí.

Ačkoliv české družstvo získalo v tomto roce celkem 84 bodů, což je jen
o tři body méně než v roce předchozím, v celkovém pořadí zemí to stačilo
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jen na 48. místo (proti čtyřicátému místu na 50. MMO), což nás i tak řadí
do první poloviny soutěžního pole. V individuálním hodnocení dosáhli
studenti David Klaška a Miroslav Olšák shodným bodovým ziskem na
bronzové medaile, Radek Marciňa, Jáchym Sýkora a Tomáš Zeman získali
čestná uznání udělovaná za alespoň jednu bezchybně vyřešenou úlohu.
Všichni tři vyřešili bezchybně dokonce dvě úlohy, na bronzovou medaili
jim však bohužel ještě jeden bod chyběl.

V tradičně sledovaném česko-slovenském duelu jsme tentokrát našim
východním bratrům podlehli (umístili se na děleném 39. místě). Zejména
stojí za zmínku výkon talentovaného Martina Vodičky z Košic, který coby
patnáctiletý získal zlatou medaili.

Závěrem lze říci, že organizátoři vložili do pořádání olympiády nemalé
úsilí a ještě více ňnančních prostředků, což bylo patrno doslova na každém
kroku. Buď jak buď, tato olympiáda zanechala u všech účastníků hluboké
zážitky, na které budou dlouho vzpomínat.

V následujícím přehledu můžete zjistit celkové absolutní pořadí jed-
notlivých účastníků českého a slovenského družstva:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

175.-187. David Klaška

267.-313. Radek Marciňa
175.-187. Miroslav Olšák

446.-461. Petr Ryšavý
267.-313. Jáchym Sýkora
267.-313. Tomáš Zeman

7 1 0 3 7 0 18

7 0 0 7 0 0 14

7 2 0 2 7 0 18

6 0 0 0 0 0

7 0 0 7 0 0 14

7 0 0 7 0 0 14

III.

HM

III.

6

HM

HM

Celkem 41 3 0 26 14 0 84

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

200.-226. Ladislav Bačo

314.-337. Martin Bachratý
227.-266. Michal Hagara
352.-366. Marián Horňák

367.-386. Jakub Konečný
42.-47. Martin Vodička

III.7 2 0 7 0 0 16

7 3 0 3 0 0 13

7 0 0 7 1 0 15

7 1 0 3 0 0 11

7 0 0 3 0 0 10

7 1 0 7 6 6 27

HM

III.

HM

HM

I.

Celkem 42 7 0 30 7 6 92
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V následující tabulce uvádíme neoficiální pořadí jednotlivých zemí.
I II III bodyI II III body

CLR
Rusko
USA
Korea
Kazachstán

Thajsko
Japonsko
Turecko
Německo
Srbsko
Itálie
Vietnam
Kanada
Maďarsko
Austrálie
Írán
Rumunsko
Peru

Tchaj-wan
Hongkong
Bulharsko

Singapur
Ukrajina
Polsko
Velká Británie
Uzbekistán

Belgie
Ázerbájdžán
Nový Zéland
Francie
Indonésie
Chorvatsko
Mexiko
Gruzie
Brazílie
Indie
ftecko
Nizozemsko

Argentina
Litva
Moldavsko
Slovensko
Švýcarsko
Turkmenistán
Dánsko

Španělsko
Rakousko
Česká republika

Bělorusko

Mongolsko
Slovinsko
Srí Lanka
Izrael (5)
Malajsie
Portugalsko
Tádžikistán

Lotyšsko
JAR
Makedonie
Bolívie
Arménie

Kypr
Estonsko

Kyrgyzstán
Kolumbie (4)
Kambodža
Maroko
Saudská Arábie

197 0 0 2 80
0 0 2 79
0 0 2 78
0 0 1 78
0 11 76
0 11 75
0 0 1 75
0 10 73
0 0 2 72
0 0 2 69
0 10 69
0 0 0 64
0 0 1 63
0 0 1 62
0 0 0 61
0 11 61
0 0 3 60
0 0 0 58
0 0 1 55
0 0 2 55
0 0 1 54
0 10 54
0 0 0 53
0 0 1 52
0 0 0 52
0 10 45
0 0 0 41
0 0 1 39
0 10 37
1 0 0 34
0 0 1 32
0 0 2 32
0 0 0 31
0 10 31
0 0 0 29
0 0 1 27
0 10 26
0 0 0 26
0 0 0 25
0 10 21
0 0 0 19
0 0 0 18
0 0 0 16
0 0 0 12
0 0 0 11

6 0 0
4 2 0 169

1683 3 0
4 2 0 156
3 2 0 148
1 5 0 148
2 3 0 141

1391 3 2
1381 3 2

1 3 2 135
3 2 1331
4 1 1331

2 1 2 129
2 2 1 129

3 1 1281

1270 4 2
1272 1 2

3 1 1241
3 1 1231
2 3 1211

Bangladéš (5)
Pobřeží slonoviny (5)

1 2 3 118
1170 4 1
117 Island1 2 3

Finsko
Švédsko
Filipíny (3)
Norsko
Ekvádor
Trinidad a Tobago (5)
Portoriko (2)
Kostarika (3)
Panama (2)
Lucembursko (3)
Tunisko (2)
Sýrie
Nigérie (5)
Kuba (1)
Paraguay (4)
Salvádor (3)
Honduras (1)
Pákistán (5)
Irsko
Venezuela (2)
Guatemala (2)
Albánie (4)
Bosna a Hercegovina (4) 0
Černá Hora (4)
Kuvajt (5)

2 1 1 116
1 1 2 114
0 4 1
0 2 3
0 3 2
0 2 4
0 3 1

112
110
109
106
105
1050 1 4

0 2 3 103
1020 1 4

0 2 2 101
0 2 1 99
0 2 1 98
0 2 0 95
0 0 5 94
0 1 2 92
0 1 3 92
0 1 3 92
1 0 2 92
0 0 3 92
0 1 2 91
1 0 2 90

20 1 89 0 0 8
87 71 0 1 0 0 0

0 0 2 84 0 0 0 2
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Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)1.Určete všechny funkce f:U —> Ш splňující

f(lxly) = f{x)[f(y)\
pro libovolná reálná x, y. (Symbol [z\ značí největší celé číslo nepřevy-

(Francie)2.Nechť I je střed kružnice vepsané а к kružnice opsaná trojúhelníku
ABC. Nechť přímka AI protíná kružnici к v bodě D (D 7^ A). Dále
nechť na oblouku BDC je dán bod E a na straně BC bod F tak, že platí

šující z.)

1
\<BAF\ = \<CAE\ < -\<BAC\.

Konečně nechť G je středem úsečky IF. Dokažte, že průsečík přímek DG
a El leží na kružnici k.3.Nechť N je množina všech celých kladných čísel. Určete všechny funkce
g: N —> N takové, že pro libovolná celá kladná m, n je číslo

{Hongkong)

{g{m) + n){m + g{n))

{USA)druhou mocninou celého kladného čísla.4.Uvnitř trojúhelníku ABC je dán bod P. Přímky AP, BP a CP proti-
nají kružnici к opsanou trojúhelníku ABC po řadě v bodech K, L a M
(různých od А, В, C). Tečna ke kružnici к v bodě C protíná přímku AB
v bodě S. Dokažte, že pokud mají úsečky SC a SP stejnou délku, pak
jsou stejně dlouhé i úsečky MK a ML. {Polsko)5.V každé ze šesti schránek Bi, B2, B3, B4, B$ a Bq je na počátku jedna
mince. Se schránkami můžeme provádět následující dvě operace:

1) Vybrat neprázdnou schránku Bj, kde 1 ^ j ^ 5, odebrat z ní jednu
minci a přidat dvě mince do schránky Bj+1.

2) Vybrat neprázdnou schránku Вк, kde 1 ^ к íš 4, odebrat z ní jednu
minci a navzájem vyměnit obsahy (případně prázdných) schránek
Bk+1 a Bk+2-

Rozhodněte, zda je možné pomocí konečného počtu těchto operací dosáh-
nout toho, aby schránky Вi, -Вз, В4 а В5 byly prázdné a schránka
В6 obsahovala právě 2010

Z i
10201020 mincí. (Připomínáme, že ab° — o/6^.)

{Nizozemsko)
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6. Je dána posloupnost ai, й2, йз,... kladných reálných čísel. Nechť s je
kladné celé číslo takové, že pro všechna n > s platí

an = maxjafc + an_fc: 1 ^ к ^ n — 1}.

Dokažte, že pak existují kladná celá N a l (l ^ s) taková, že an = й/+йп_/
pro všechna n ^ N. (Irán)

Řešení soutěžních úloh

1. Dosazením x = 0 do dané rovnosti po úpravě dostaneme

(1)/(0)-(i- L/(y)J) = 0.

Rozebereme dva případy.
Jestliže /(0) Ф 0, pak z (1) plyne [f(y)\ = 1 pro všechna у € IR.

Danou rovnost tak můžeme přepsat do tvaru

/(№) - f(x) pro všechna x, у £ IR

a po dosazení у — 0 získáme f(x) = /(0) pro všechna x G IR. Funkce / je
tedy konstantní a vzhledem к rovnosti [f(y)\ = 1 to musí být konstanta
z intervalu (1,2). Snadno ověříme, že všechny funkce f(x) — c pro 1 ^
^ c < 2 vyhovují.

Předpokládejme dále, že /(0) = 0. Dosazením x = а, у = a, přičemž
0 < a < 1, dostaneme

0 = /(0) = f([a\a) - /(a)[/(a)J.

Jestliže f(a) ф 0, je |_/(a)J = 0, a po dosazení x = 1, у = a do dané
rovnosti vyjde f(a) = /(l)L/(a)J = c°ž je spor. Je tudíž f(a) = 0 pro
všechna 0 ^ a < 1.

Nechť z je libovolné reálné číslo. Zřejmě existuje celé číslo m takové,
žeO^,z/m< l.1 Dosazením x = m, у = z/m do původní rovnosti s vy-
užitím předchozího poznatku pro každé г e IR dostaneme

/(г) = / (™ • ý) = / (m • ý) = /(•») • [f (ф)\ = 0-
Je tedy f(x) = 0 a snadno se přesvědčíme, že tato funkce vyhovuje.

Závěr. Vyhovují jen konstantní funkce f(x) = c, přičemž c = 0 nebo
c€<1,2).

1 Stačí m zvolit se stejným znaménkem jako z a v absolutní hodnotě větší než z.
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2. Průsečík přímky AF s kružnicí к (různý od A) označme К, průsečík
přímek AI a BC označme L. Podle zadání \<BAK\ = |<CAE|, proto
mají tětivy ВК, CE kružnice к stejnou délku a platí BC || KE (obr. 52).

Označme T průsečík přímek DG a. AF. Podle Menelaovy věty pro

trojúhelník AFI a přímku DG máme

\AT\ |FG| | Щ
\TF\ \GI\ \DA\

odkud vzhledem к rovnosti \FG\ = \GI\ po úpravě plyne

\AT\
_ \DA\

W\~W\'
Protože Cl je osou úhlu trojúhelníku ALC, dělí jeho stranu AL v po-

měru \AI\ : \IL\ = \CA\ : \LC\. Trojúhelníky ADC a CDL jsou po-
dobné, neboť se shodují ve společném úhlu při vrcholu D a z rovnosti
obvodových úhlů plyne \<DCL\ = \<DAB\ = — \<DAC\. Je tedy
\CA\ : \LC\ = \DA\ : \DC\. Je známo, že \DC\ = |/T>|.2 Podle (1) tak
máme

(1)

\AI\ \CA\ \DA\
_ \DA\ _ \AT\

m-w\-\6č\~w\~w\
2 To plyne např. z toho, že trojúhelník CID má při vrcholu C i při vrcholu I vnitřní

úhel velikosti |a + ^7, takže je rovnoramenný.
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což znamená, ze TI || FL. Odtud vzhledem к rovnoběžnosti BC || KE
plyne TI || KE.

Průsečík přímky El s kružnicí к (různý od E) označme X a prů-
sečík přímek DX a AF označme T' (obr. 53). Protože AD je osou
úhlu BAC a úhly BAF, CAE mají podle zadání stejnou velikost, je

také \<KAD\ = \<DAE\. Z rovnosti obvodových úhlů nad tětivou DE
máme \<DAE\ = \<DXE\, proto

\<T'AI\ = \<KAD\ = \<DAE\ = \<DXE\ = \<T'XI\,

a tak body T', /, А, X leží na jedné kružnici. Z obvodových úhlů nad
tětivami IA a EA potom plyne

\<AT'I\ = \<AXI\ = \<AXE\ = \<AKE\,

odkud T'I || KE.
Rovnoběžka s přímkou KE procházející bodem / však může protínat

přímku AF jen v jednom bodě. Proto je T — Tý přímka DG je totožná
s DT' a bod X leží na přímkách DG, El i na kružnici &, čímž je úloha
vyřešena.

3. Všechny funkce tvaru g(n)
vyhovují, protože tehdy (g(m) + n) (m + g(n)) = (m-fn + c)2. Dokážeme,
že žádná jiná funkce nevyhovuje. Použijeme při tom následující tvrzení:

n + c, kde c je nezáporné celé číslo,
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Jestliže p je prvočíslo, к, l jsou přirozené čísla a p | g(k) — g(l), pak
p | к — l.

Předpokládejme nejprve, že p2 \ g(k) — g(l). Potom g(l) — g(k) +
+ p2a pro nějaké celé číslo a. Vezměme dostatečně velké přirozené číslo d
(takové, že pd > ma,x{g(k), g(l)}), které není násobkem p, a položme
n — pd — g(k). Čísla

n + 9{k) = pd a n + g(l) = pd + (g(l) — g(k)) = p(d + pa)

jsou obě násobkem p, ale nejsou dělitelná p2. Podle zadání jsou obě čísla
(g(k) + n)(g(n) k) i (g(l) + n)(g(n) + l) čtverce, a protože jsou to
násobky p, musejí být dělitelná číslem p2. Odtud plyne, že oba činitelé
g(n) + k, g(n) + l musejí být násobky p, tedy

V I (ff(n) + k) - (g(n) + l) = k-l.

Zbývá případ, kdy p | g{k) — g(l) a zároveň p2 \ g(k) — g(l). Vezměme
stejné d a položme n = p3d — g(k). Potom je g(k) + n = p3d dělitelné
číslem p3 (ne však p4) a g(l) + n — p3d + (g(l) — g(k)) je dělitelné číslem p

(ne však p2). Analogicky proto dostáváme, že čísla g{n) + k, g{n) + l
musejí být násobky p а p \ к — l. Tím je naše úvodní tvrzení dokázáno.

Vraťme se к zadané úloze. Předpokládejme, že g(k) = g(l) pro nějaká
k,l G í^. Podle uvedeného tvrzení je potom к — l dělitelné libovolným
prvočíslem, což je možné jedině v případě к = l. Funkce g je tudíž prostá.

Podívejme se nyní na čísla g(k) a g(k+1). Protože číslo (k+l) — k = 1
není dělitelné žádným prvočíslem, nemůže mít podle uvedeného tvrzení
žádného prvočinitele ani číslo g(k + 1) — g(k), takže

\g(k + l) - g(k)\ = 1.

Označme g(2) —g( 1) = q G { — 1,1}- Dokážeme matematickou indukcí, že
g{n) = g(l) + (n — 1 )q. Pro n = 1, 2 to triviálně platí. Podle indukčního
předpokladu pak pro n > 1 máme

g(l) + nq,

g{ 1) + (n- 2)q.
g(n + 1) = g{n) ±q = g( 1) + {n-l)q±q

5f(l) + (n — 2)q, je jedinou možnostíProtože g{n + 1) 7^ g(n — 1)
g(n + 1) = ^(1) + nq a důkaz indukcí je hotov.

Je tedy g(n) = g( 1) + (n — 1 )q. Určitě však q 7^ —1, jinak bychom
totiž pro n ^ g(l) + 1 dostali g(n) ^ 0, což není možné. Je tedy q = 1
a g(n) = g( 1) + n — 1 = n + c, přičemž c = ^(1) — 1 ^ 0.
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4. Bez újmy na obecnosti nechť bod S leží na polopřímce AB. Z mocnosti
bodu S ke kružnici к plyne \SB\ • \SA\ = |5Cj2 = \SP\2, odkud vychází
\SB\ : |5P| = |SP\ : |S54|. Ti'ojúhelníky SBP, SPA jsou tedy podobné
(úhel při vrcholu S mají společný a odpovídající strany svírající tento
úhel mají délky ve stejném poměru). Z této podobnosti a z vlastností
obvodových úhlů nad tětivou ВК (obr. 54) máme dohromady3

\<SPB\ = \<SAP\ = \<BAK\ = \<BLK\,

což znamená rovnoběžnost přímek LK, PS.

Označme O střed kružnice k. Tečny t a CS kružnice к vedené krajními
body tětivy MC zřejmě svírají s MC úhly stejných velikostí4 (obr. 54).
Stejnou velikost má však i úhel CPS, neboť trojúhelník CPS je podle
zadání rovnoramenný. Ze souhlasných úhlů tak dostáváme PS || t. Do-
hromady máme

LK || PS || t _L OM.

Tětiva LK je tedy kolmá na poloměr OM kružnice k, z čehož už přímo
plyne \ML\ = \MK\.

3 Rovnost \-KSPB\ = I^S'TPl můžeme odůvodnit i takto: Protože \SB\ ■ |ÍŮ4| =
= ISPI2, z mocnosti bodu S ke kružnici opsané trojúhelníku ABP plyne, že SP
je tečnou této kružnice. Rovnost úhlů SPB a SAP je tedy rovností úsekového
a obvodového úhlu, jež oba příslušejí tětivě BP této kružnice.

4 Jsou to doplňky do 90° к úhlům při základně rovnoramenného trojúhelníku MCO.
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5. Odpověď na otázku ze zadání je „Ano“. Ukážeme, jak postupovat,
abychom dosáhli ve schránkách požadovaného počtu mincí. Pro jednodu-
chost budeme každou konkrétní situaci, tj. kolik se právě nalézá mincí
v jednotlivých schránkách, označovat šesticí čísel (každé z čísel bude od-
povídat počtu mincí v příslušné schránce).

Na začátku tedy máme šestici (1,1,1,1,1,1) (v každé schránce je
jedna mince). Posloupností dovolených operací chceme dosáhnout šestice
(0,0,0,0,0,2010
volené operace činí. První operací vybereme ze schránky jednu minci, tu
„rozdvojíme“ a obě vzniklé mince dáme do schránky vpravo. Při druhé
operaci vybereme ze schránky jednu minci, tu „zahodíme44 a vyměníme
obsah dvou schránek nalézajících se bezprostředně vpravo od schránky,
z níž jsme minci vybrali.

Postupovat můžeme například následovně. Nejdříve použijeme první
operaci na 5. schránku (v 5. schránce tedy jedna mince ubyde a do 6. dvě
přibydou):

2010

). Nejdříve připomeňme, co přesně s mincemi do-2010

(u, u, i,i)
Nyní použijeme druhou operaci na 4. schránku, odebereme tedy minci ze
4. schránky a vyměníme mince mezi 5. a 6. schránkou:

(1,1,1,1,0,3).

(1,1,1,1,0,3)-(l, 1,1,0,3,0).
Totéž postupně zopakujeme pro 3., 2. a 1. schránku (ubereme minci a vy-
měníme obsah schránek napravo):

(1,1,1,0,3,0) - (1,1,0,3,0,0) -»(1,0,3,0,0,0) (0,3,0,0,0,0).
Tak se nám podařilo vyprázdnit všechny schránky až na jednu, kde zů-
staly tři mince. Protože chceme do jediné schránky dostat „obrovský44
počet mincí, ukážeme nyní, jak dosáhnout většího počtu mincí v jediné
neprázdné schránce (necháváme na čtenáři, aby ověřil, že jde o dovolené
operace):

(0,3,0,0,0,0) -» (0, 2, 2,0,0,0) -> (0, 2,1,2,0,0) -*> (0, 2,0,4,0,0) -»

- (o, 1,4,0,0,0) -> (0,1,3,2,0,0) -> (0,1,3,1,2,0) - (0,1,3,0,4,0) -
-> (0,1,2,4,0,0) - (0,1,2,3,2,0) (0,1, 2,2,4,0) - (0,1,2,1,6,0) ->

-» (0,1,2,0, 8,0) -» (0,1,1,8,0,0) -* (0,1,1,7,2,0) — (0,1,1,6,4,0) —

—(0,1,1, 5,6,0) —+ (0,1,1,4,8,0) -(0,1,1,3,10,0) -
-* (o, 1,1, 2,12,0) —> (0,1,1,1,14,0) —. (0,1,1,0,16,0) -»

-+ (0,1,0,16,0,0) (0,0,16,0,0,0).
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Podařilo se nám tedy trojku zvětšit na číslo 16. Všimněme si přitom
posloupnosti šestic od 5. po 23. Ze šestice (0,1,4,0,0,0) jsme dostali šes-
tici (0,1,0,16,0,0) a přitom jsme vůbec nezasahovali do první, druhé ani
šesté schránky (počty mincí se v nich neměnily). Dostali jsme tak vlastně
z trojice (4,0,0) trojici (0,16,0) = (0,24,0). Něco takového lze udělat
obecně: Jestliže a je kladné celé číslo, dovedeme z trojice (a, 0,0) (tedy
ze tří po sobě jdoucích schránek bez zasahování do ostatních) vytvořit
trojici (0,2a,0), a to následujícími kroky (posloupnost operací, kdy jen
všechny mince z jedné schránky pomocí první operace „rozdvojujeme" do
sousední schránky vpravo, zapíšeme jako jeden krok, který znázorníme
znakem „=>“):

1,0,4) -» (a-2,4,0) =>

-3,0,16) -> (a-4,16,0) =*

(o-l),2“-\0)=>

(a, 0,0) —> (či — 1,2,0) => (a —

=> (a — 2,0,8) —» (a — 3,8,0) => (a
=> (a - 4,0,32) -> (a - 5,32,0) =» ...

=► (a - (a - 1), 0,2°) -> (a - a, 2a, 0) = (0,2a, 0).
(a

Vraťme se к šestici (0,0,16,0,0,0), již jsme dostali v předchozím odstavci.
Budeme pokračovat dál, přičemž posloupnost kroků, kdy z nějaké trojice
(a, 0,0) vyrobíme trojici (0,2°, 0), budeme zkráceně označovat ,,-w“:

(0,0,16,0,0,0) -> (0,0,15, 2,0,0) -w (0,0,15,0,22,0)
(0,0,14,22,0,0) (0,0,14,0, 22 ,0) -> (0,0,13,22 ,0,0)

-w (0,0,13,0,222\o) -* (0,0,12,22'2,0,0) ... ->

22
22

(0,0,0, 22 0,0).

Ve čtvrté schránce už máme obrovské číslo, které pro zjednodušení dal-
šího zápisu označíme P\q. Toto číslo je už větší než číslo 2010
zadání. Je totiž

'

> i
2010

ze

22
Pi = 2, P2 = 22 = 4, P3 = 22" = 24 = 16, P4 = 22" = 216 = 65 536

a už následující číslo P$ = 265536 má 19 729 číslic. Mnoho číslic však
má i číslo 2 OlO2010

2010

které pro zjednodušení označíme A. Dokázat, že
Pi6 je větší než A, musíme proto jinak. Formální důkaz může vypadat
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následovně:
2010 2010 2010 .-и ; о

2010 2010 ^211^2010 11-2010А = 2 010 < 2 048 = 2 <

2010 2011 2011 2(211) 2011 11-20112010-2010 2010 2048 22< 2 = 2 < 2

2»’91522
ol6

2222 121 32 768
= 22 < 22 22 = Pq < P\Q •

Všechny uvedené nerovnosti jsou zřejmé. Zbývá už jen dokončit přeměnu
šestice (0,0,0, Pi6,0,0) na šestici (О, О, О, О, О, А). К tomu stačí mnoho-
krát použít na čtvrtou schránku druhou operaci, přičemž budeme stále
„měnit“ obsahy prázdné páté a šesté schránky, takže se kromě snižování
počtu mincí ve čtvrté schránce nebude nic dít. Budeme to dělat až do
okamžiku, kdy dostaneme šestici (0,0,0, A/4,0,0) (zřejmě číslo A je dě-
litelné čtyřmi a A/4 < A < Pie, takže takovouto šestici lze opravdu
dostat). Nakonec už jen opakovaně použijeme první operaci nejdříve na
čtvrtou a poté na pátou schránku, až dostaneme

= 2 < 2

(0,0,0, A/4,0,0) =*► (0,0,0,0, A/2,0) (0,0,0,0,0, A).
Tím je úloha vyřešena.
6. (Podle Martina Vodičky z Košic.) Podle zadání pro libovolné n > s
platí an — ai + aj, přičemž i j = n — i. Ukážeme nejprve, že lze najít
dokonce takový rozklad, v němž i ^ s. Kdyby totiž bylo an CLi i T CLj
kde i\ > s, bylo by podle zadání — aj2 + aj2, přičemž г2 + ý2 = h,
tedy г2 < i\, a navíc zřejmě aj2+j1 ^ aj2 + aJX, protože ji2 + ji > i\ > s.
To znamená, že

11

cLn — T ciji ítj2 T flj2 T aj1 ^ a^2 T aj2Jrji,
ale protože n = г2 + (j2 + ji), platí an ^ ai2 + aj2+J1, tedy nutně a
= ai2 +aj2+j1. Kdyby pořád ještě bylo г2 > s, mohli bychom celou úvahu
zopakovat a najít гз < г2 takové, že an = ai3 + aj3+j2+j1 atd. Protože
proces „zmenšování" nemůže probíhat donekonečna, najdeme tak index
i = ir 5= s takový, že an

Je jasné, že pokud j > s, ii,... ,ir = s, n = j + i\ + ... + ir, pak
CLn = aj + a^i + ... + air,

П

air + ajr+...+jl.

(1)
neboť

dj T dli = CLjj-i1 i

CLj+ii T Uf2 = CLj-\-i1-\-i2

CLjj-ii+.-.+ir—i T CLir ^ ^j+n+.-.+ir —
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Vezměme nyní takový index i 6 {l,...,s}, pro nějž je hodnota
CLi/i maximální (jestliže je takových více, vezmeme libovolný z nich),
a označme ho /. Ukážeme, že toto / má spolu s vhodným N vlastnost
požadovanou zadáním úlohy.

Zapišme číslo an (pro libovolné n > s) s opakovaným využitím úvod-
ního tvrzení ve tvaru

(2)&п — CLii ~t~ &ji — &ii -|- ah — ... — cijj + ... + air djr

přičemž ^ s, jr > s a ajr už se dá rozložit na součet dvou
členů posloupnosti s oběma indexy nejvýše rovnými s. (S rozkladem na
součet tedy skončíme právě o jeden krok dřív, než dostaneme všechny
indexy nejvýše rovné s. Připouštíme i možnost r = 0 neboli jr — n, což
by znamenalo, že už první rozklad an = + aj1 splňoval i\ ^ j\ ^ s.)

Jestliže se v součtu (2) mezi hodnotami {ii,...,ir} nalézá ně-
který index i aspoň /-krát, nahradíme / jeho výskytů i výskyty in-
dexu /. Dostaneme tak množinu indexů {i[,..., přičemž zřejmě
i[ +... + i'r, — ii +... + ir. Protože ai/l ^ а*/г, máme г • сц ^ l ■ a*, takže

an — aix + . . . + CLir + a,jr ^ «г' + . . . + <V, + ajr •

Podle (1) však platí i opačná nerovnost, proto

ttn — <hj + • • • + <V , + ajr

přičemž aspoň jeden z indexů i\
Samozřejmě pro dostatečně velké n se v součtu (2) nějaký index musí

nacházet aspoň /-krát; stačí vzít například n > s2(l — 1) + 2s = N.5 Pro
každé n > N proto umíme an zapsat ve tvaru (po přeuspořádání indexů)

.., i'r, je roven /.15 •

(3)fln — 0>l + 0,ť2 + • • • + ČV, + CLjr.

Podle (1) (jestliže n nahradíme hodnotou n — /) však máme

On-/ = di'2 + • • • + <V, + CLjr:

odkud podle (3) plyne an ^ а/ + an_j. Ze zadání triviálně platí an ^ щ +
-j- ап_/, takže musí být an — сц + ап_/.

5 Různých indexů je jen s, zároveň jr ^ 2s, a kdyby i bylo všech po l — 1, měli
bychom n = ii + ... + ir + jr ^ (1 + 2 + ... + s)(l — 1) + 2s ^ s2(l — 1) + 2s < n,
což je spor.
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4. středoevropská matematická olympiáda

EUROPEAN

Čtvrtá středoevropská matematická olympiáda
(Middle European Mathematical Olympiad, zkrá-
ceně MEMO) se uskutečnila od 9. do 15. září 2010
v obci Strečno na Slovensku za účasti šedesáti
studentů z deseti zemí středoevropského regionu,
jmenovitě z Česka, Chorvatska, Litvy, Maďarska,
Německa, Polska, Rakouska, Slovenska, Slovinska
a Švýcarska. Soutěž je určena studentům střed-
nich škol, kteří se v daném kalendářním roce neúčastnili mezinárodní
matematické olympiády (MMO) a díky svému věku ještě stále mají šanci
zúčastnit se MMO v roce příštím. Výjimku tvoří slovinští účastníci, kteří
vzhledem к relativně malému počtu obyvatel své země nejsou předchozí
účastí na MMO vázáni.

České družstvo tvořili Michael Bílý z Gymnázia Klatovy, Martin
Bucháček z Gymnázia Luďka Pika v Plzni, Filip Hlásek z Gymnázia
Plzeň na Mikulášském náměstí, Martin Tópfer z Gymnázia Nad Štolou
v Praze, Radek Marciňa z Gymnázia Christiana Dopplera v Praze, Ja-
kub Solovský z Gymnázia Mikuláše Koperníka v Bílovci a Lukáš Zavřel
z Gymnázia Praha 9 na Chodovické. Vedoucím družstva byl dr. Mar-
tin Panák z Přírodovědecké fakulty Masarykovy univerzity v Brně, jeho
zástupcem pak dr. Pavel Calábek z Přírodovědecké fakulty Palackého
univerzity v Olomouci.

Všechny týmy byly ubytovány ve školicím středisku Slovenských že-
leznic, kde se odehrávala i část vlastní soutěže. Olympiáda probíhala po-
dle již zavedeného modelu. První den po příjezdu vybírala jury složená
z vedoucích národních delegací příklady pro soutěž, zatímco soutěžící na-
vštívili hrad Strečno. Druhý den byla na pořadu soutěž jednotlivců, která
proběhla v přednáškové místnosti zmíněného střediska, kde měli studenti
pět hodin času na řešení čtyř úloh. Týmová soutěž pak proběhla další den,
tedy v neděli v prostorách Žilinské univerzity. V týmové soutěži má každé
národní družstvo к dispozici jednu místnost, kde společně řeší po dobu
pěti hodin osm úloh. Již v sobotu večer započala koordinace oprav úloh

STREČNO
SLOVAKIA 2010
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(úlohy jsou opraveny jednak vedoucími národních týmů a nezávisle i tý-
mem opravovatelů zajištěným organizátory; při koordinaci se výsledky
oprav porovnají a případné neshody se vyřeší) a pokračovala i během ne-
děle. V pondělí dopoledne se jury domluvila na rozdělení medailí, které
se řídí podobnými pravidly jako na mezinárodní matematické olympiádě.
Odpoledne pak následovala společná plavba s řešiteli na pltích po řece
Váhu. V úterý byl program olympiády završen výletem do krásné přírody
Malé Fatry a slavnostním zakončením, kterého se zúčastnila mimo jiné
významné hosty i rektorka Žilinské univerzity Tatiana Čorejová.

Výsledky českého družstva byly následující: Jakub Solovský a Filip
Hlásek získali bronzové medaile (Jakubovi chyběl pouze jeden bod ke
stříbrné medaili), Martin Bucháček, Martin Tópfer a Lukáš Zavřel pak
získali čestná uznání zajeden bezchybně vyřešený příklad. V týmové sou-
těži snad lze za úspěch považovat to, že jsme porazili slovenské družstvo.

Body za úlohu Body Cena
12 3 4Umístění

52.-54. Michael Bílý
40.-49. Martin Bucháček

29.-30. Filip Hlásek
16. 22. Jakub Solovský
40.-49. Martin Topfer
40.-49. Lukáš Zavřel

2 10 3 6

0 0 0 8 8 H.M.

4 0 0 8 12

0 0 8 8 16

0 0 0 8 8 H.M.

0 0 0 8 8 H.M.

bronz

bronz

Celkem 6 1 8 43 58

Detailní výsledky českých studentů včetně bodových zisků za jednot-
livé úlohy lze vyčíst z předchozí tabulky, přehled výsledků všech zemí
v soutěži jednotlivců je v druhé tabulce. Země jsou v ní seřazeny podle
součtu bodů celého družstva podobně jako při neoficiálním pořadí zemí
na MMO (číslo v závorce označuje menší počet účastníků).

I II III HM body I II III HM body
Maďarsko
Německo
Polsko
Chorvatsko
Slovensko

112 Slovinsko
90 Litva
83 Rakousko
77 Česká republika
70 Švýcarsko (5)

702 3 1
3 3
2 3

1111
-112

113
2 3

63
59

4 58
3 2 1 19

Nejlépe se tak dařilo družstvům Maďarska, Polska a Německa — Ma-
darsko vyhrálo jak soutěž družstev, tak soutěž jednotlivců, v níž získalo
dvě zlaté medaile. Družstva Polska a Německa zůstala tentokrát bez zla-
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tých medailí. Celkové výsledky soutěže družstev jsou uvedeny v následu-
jící tabulce.

Body za úlohu
1 2 3 4 5 6 7 8

Body
Umístění

1. Maďarsko

2. Polsko

3. Německo

4. Rakousko

5. Chorvatsko

6. Litva

7. Slovinsko

8. Česká republika
9. Slovensko

10. Švýcarsko

80848888

1 2 8 8 8 0 8 8

7 2 1 3 8 8 8 3

2 8 1 3 8 6 8 1

60838082

1 2 0 3 8 8 8 0

6 0 7 2 8 0 3 1

1 2 3 3 8 0 8 1

20348050

0 0 1 2 0 1 0 0

52

43

40

37

35

36

27

26

22

4

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

Soutěž jednotlivců

IR takové, že pro všechna x, у £ IR platí1. Určete všechny funkce f: U

f(x + y) + f{x)f(y) = f(xy) + {y + 1 )f(x) + (x + l)f(y).

(Česká republika)2.Na tabuli jsou napsáni všichni kladní dělitelé kladného celého čísla N.
Dva hráči А а В hrají hru, při které se střídají v tazích. V prvním tahu
hráč A smaže číslo N. Bylo-li naposled smazáno číslo d, v následujícím
tahu je nutno smazat bud dělitele, nebo násobek čísla d. Hráč, který
nemůže táhnout, prohrává. Určete všechna čísla N, pro která hráč A
může vyhrát nezávisle na tazích hráče B. (Polsko)3.Je dán tětivový čtyřúhelník ABCD a bod E na jeho úhlopříčce AC
takový, že \AD\ — \AE\ a \CB\ = \CE\. Nechť M je středem kružnice к
opsané trojúhelníku BDE. Kružnice к protíná přímku AC v bodech E
a F. Dokažte, že přímky FAř, AD a BC procházejí týmž bodem.

(,Švýcarsko)4.Nalezněte všechna kladná celá čísla n, která vyhovují následujícím
dvěma podmínkám:
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(i) číslo n má alespoň čtyři různé kladné dělitele,
(ii) pro libovolné dva dělitele a, b čísla n takové, že 1 < a < b < n, dělí

(Slovinsko)jejich rozdíl b — a číslo n.

Soutěž družstev

5. Jsou dány tři rostoucí posloupnosti

bl, &2 5 Ьз,..

kladných celých čísel. Každé kladné celé číslo je členem právě jedné
z těchto tří posloupností. Dále pro každé kladné celé číslo n platí:
(i) can — bn J- 1,
(ii) dn-f-l > bn,
(iii) číslo cn+icn — (n + l)cn+i — ncn je dělitelné dvěma.

Určete čísla <22010, ^2010 a C2oio-

6. Pro každé celé číslo n t 2 určete největší reálnou konstantu Cn tako-
vou, že pro všechna kladná reálná čísla a\,..., an platí

a\ + •. • + dn

ci, c2, c3,...«1,^2, a3, • • * 5* ?

(Litva)

) + Cn(a\
<2i + ... + an anf->

n n

(Švýcarsko)7.V každém vrcholu pravidelného n-úhelníku stojí pevnost. Ve stejný
okamžik každá pevnost vystřelí na jednu ze dvou nejbližších pevností
a zasáhne ji. Výsledkem střelby rozumíme množinu zasažených pevností,
přičemž nerozlišujeme, zda pevnost byla zasažena jednou nebo dvakrát.
Označme P(n) počet všech možných výsledků střelby. Ukažte, že pro
všechna celá čísla к it. 3 jsou čísla P(k) a P(k + 1) nesoudělná.

(Česká republika)8.Nechť n je kladné celé číslo. Čtverec ABCD je rozdělen na n2 jednot-
kových čtverců. Každý z nich je dále rozdělen úhlopříčkou rovnoběžnou
s BD na dva trojúhelníky. Některé z vrcholů jednotkových čtverců jsou
obarveny červeně tak, že každý z 2n2 získaných trojúhelníků má alespoň
jeden vrchol červený. Určete nejmenší možný počet červených vrcholů
takového obarvení. (Slovinsko)9.Kružnice vepsaná trojúhelníku ABC se dotýká stran BC, CA, AB po
řadě v bodech D, E, F. Nechť bod К je souměrně sdružený s bodem D
podle středu vepsané kružnice a přímky DE, FK se protínají v bodě S.
Dokažte, že přímky AS a BC jsou rovnoběžné. (Polsko)

169



10. Jsou dány body А, В, C, D, E tak, že čtyřúhelník ABCD je tětivový
a čtyřúhelník ABDE je rovnoběžník. Označme S průsečík úhlopříček AC,
BD a F průsečík polopřímek AB, DC. Dokažte, že |<AF5j = \<ECD\.

(Chorvatsko)
11. Nechť n je nezáporné celé číslo. Označme an číslo s desítkovým zápi-
sem

10...020...020...01.

Ukažte, že |an lze vyjádřit jako součet dvou třetích mocnin kladných
celých čísel, ne však jako součet dvou druhých mocnin celých čísel.

(Švýcarsko)12.Je dáno kladné celé číslo n, které není mocninou čísla 2. Dokažte, že
existuje kladné celé číslo m s následujícími dvěma vlastnostmi:
(i) číslo m je součinem dvou po sobě jdoucích kladných celých čísel,

(ii) desítkový zápis čísla m je tvořen dvěma shodnými bloky n číslic.
(Polsko)

Řešení úloh

1. Dosazením у = 0 získáme

0 = f(0)(f(x) - x - 2).
Snadno lze ověřit, že funkce f(x) = x + 2 není řešením, proto /(0) = 0.
Zvolme nyní v zadané rovnici x = 1, у = — 1. Dostaneme

o =/(-!)(/(!)-3),

tedy /(—1) = 0 nebo /(1) = 3.
Jestliže /(—1) = 0, po dosazení x = 2, у — — 1 vyjde /(—2) = /(1).

Následně volbou x = —2, у = 1 dostaneme /(—2)/(l) = 3/(—2) — /(1),
odkud vzhledem к rovnosti /(—2) = /(1) plyne /(1) G {0,2}.

Celkem je tedy /(1) = a e {0,2,3}. Položíme-li v zadané rovnici
у — 1, dostaneme pro všechna reálná ж

f(x + 1) = (3 - a)f(x) + a(x + 1).
Volbou у = 1 + l/ж, kde ж 7^ 0 je libovolné, pak máme

(1)

f(x+1x + 1)+f{x)f(c1) =
f(x + !) + (— + 2^/(ж) + /(— + 1^(ж + 1)
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S využitím (1) proto platí

(8 - a) (/ (* + i) + /(*)/ (i) - (* + l)/0) =
+ 2a + аж.=/(ж)(б-2а-(a-l)i)

Odtud s využitím vyjádření, které dostaneme ze zadané rovnice po dosa-
zení у = l/ж, po úpravě dostaneme

(3 — a) (a + /(ж) ^1 H—^ = /(ж) ^5 — 2а — (a — 1) • — ^ + 2a + ax,
2\ 2—2 + a H— I = a + ax — a.f0)( x

Postupným dosazováním a E {0, 2,3} už snadno odvodíme jednotlivá
řešení /(ж) = 0, /(ж) = x2 + ж, /(ж) = Зж.1 (Zkoušky dosazením do
původní rovnice jsou triviální.)
2. Necht N = je prvočíselný rozklad čísla TV. V každém
tahu hráč smaže nějakého dělitele čísla N, jehož lze reprezentovat fc-ticí
(6i,..., bfc), přičemž bi ^ a* (taková &-tice odpovídá číslu • • • Р^к)• Po-
dle pravidel hry po k-tici (&i,..., bk) může následovat (ci,..., Ck), právě
když je buď Ci ú bi pro všechna i, anebo «i = Q = Ы pro všechna i
(samozřejmě jen v případě, že taková A;-tice je ještě na tabuli).

Je-li aspoň jedno z čísel a* liché — bez újmy na obecnosti nechť je
to a\ —, má vítěznou strategii hráč B. Tehdy totiž stačí, když na každý
tah (6i,..., bk) hráče A odpoví hráč В tahem

(ai — bi, &2, • • •,bk).

Ukažme, že je to skutečně jeho vítězná strategie: Všechny fc-tice odpo-
vídající číslům, která jsou zpočátku na tabuli, lze totiž roztřídit do dvojic
uvedeného typu, a pokud A smaže /с-tici z nějaké dvojice, В smaže druhou
£:-tici z téže dvojice (ai — b\ ф 6i, protože ai je liché).

Jestliže jsou všechna a* sudá, má naopak vítěznou strategii hráč A.
Pokud В setře /с-tici (6i,..., bk), přičemž aspoň jedno z čísel bi je menší
než di ((6i,..., bk) ф (ai,...,afc), neboť to byl první tah hráče A),

1 Stejný předpis platí vždy i pro hodnotu x z rovnosti —2 + a + 2/x — 0, jak lze
ověřit podle rovnosti (1), když v ní zaměníme x + 1 za x a pro novou hodnotu
x — 1 využijeme již odvozený předpis.
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označme j nejmenší index takový, že bj < aj. Potom strategickou od-
povědí hráče A bude k-tice

(^11 • • • ? bj—i, dj bj 1, bjj-i,...,

I v tomto případě lze všechny původní Zc-tice (kromě prvního tahu
(«i, n2? • • •, cbk)) roztřídit do dvojic výše popsaného typu, a pokud
В smaže nějakou fc-tici, A smaže druhou z téže dvojice (aj — bj — \ф bj,
protože aj je sudé).

Podmínka, že všechna a* jsou sudá, je zřejmě splněna právě pro ta N,
která jsou druhou mocninou celého čísla. Právě pro ně hráč A tedy může
vyhrát bez ohledu na tahy hráče B.

3. Předpokládejme, že bod A leží na úsečce CF (případ, kdy na úsečce
AF leží bod C, je analogický). Označme P průsečík přímek ВС a AD
(obr. 55). Protože \MB\ = \ME\, \BC\ = \CE\ a \ME\ = \MF\, jsou

P

Obr. 55

trojúhelníky MBC a MEC shodné a trojúhelník EFM rovnoramenný,
takže pro velikosti úhlů máme

\<MBC\ = \<MEC\ = 180° - \<MEF\ = 180° - \<MFC\.

Odtud plyne, že body M, P?, C, F leží na jedné kružnici. Protože
\ME\ — \MD\ a \AE\ = \AD\, jsou trojúhelníky MEA, MDA shodné
a \<AEM\ — \<ADM\, tedy \<MDP = \-KMBP\ a čtyřúhelník MPBD
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je tětivový. Dohromady s tětivovostí čtyřúhelníků ABCD, FMBC tak
dostáváme

\<PMB\ = \<PDB\ = \<ADB\ = \<ACB\
= \<FCB\ = 180° - \<FMB\.

Proto body F, M, P leží v přímce, a přímky AD, BC a FM se tak
protínají v jednom bodě (v bodě P).

Jiné řešení. Stejně jako v prvním řešení dokážeme, že čtyřúhelník
FMBC je tětivový. Protože body M, A leží na ose úsečky DE, platí
\<MDA\ = \<MEA\. Z rovnosti \ME\ = \MF\ dále plyne \<MFA\ =
= \<MEA\, takže čtyřúhelník MADF je tětivový.

Přímky FM, AD, BC jsou tedy chordálami kružnic opsaných tětivo-
vým čtyřúhelníkům FMBC, BCDA, ADFM, z čehož podle známého
tvrzení plyne, že se protínají v jednom bodě (který má ke všem třem
kružnicím stejnou mocnost).
4. Prvočísla, druhé mocniny prvočísel a číslo 1 nesplňují první podmínku,
z dalších úvah je proto vynecháme.

Nejprve předpokládejme, že n je sudé, tj. n = 2x pro nějaké xgN.
Potom podle druhé podmínky x
než x = \n je nejvýše roven |n. Proto x
Postupným ověřením všech přípustných hodnot x snadno zjistíme, že
vyhovují n = 6, n = 8 a n — 12.

Dále předpokládejme, že n je liché. Nechť n = px, přičemž p je nej-
menší netriviální dělitel čísla n. Číslo p je zřejmě liché prvočíslo ap+1 \ n,
neboť p + 1 je sudé, proto x ^ p + 1. Protože 1 < p < x < n, máme
x — p | px.

Jestliže p \ x, jsou čísla x — p a x nesoudělná, nutně tedy x — p \ p,
odkud x — p 5Š p. Avšak x Ф p + 1, tedy x — p ^ p (neboť p je nejmenší
netriviální dělitel čísla n). Proto musí platit x — p = p, což je ve sporu
s tím, že n — px je liché.

Jestliže p | x, je x = py pro nějaké celé číslo у > 1. Z minimálnosti
prvočísla p plyne, že у ^ p. Podle druhé podmínky py — p
neboli у — 1 | py. Protože у — 1 а у jsou nesoudělná, nutně у
odkud у ^ p + 1. Kdyby bylo у
čísla n, což nejde. Kdyby bylo у — p, bylo by to ve sporu s podmínkou
у — 1 | p (protože p ^ 3). Jiné možnosti vzhledem к nerovnosti у ^ p

nejsou.

2 dělí n. Každý dělitel čísla n menší
2 С \n = |ж, odkud x ^ 6.

n = p2y
1 I p,

p + 1, bylo by у sudým dělitelem

Odpověď. Oběma podmínkám vyhovují jen čísla 6, 8 a 12.
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5. Protože posloupnost (cn) je rostoucí, platí zřejmě cn ^ n, a proto
i Can ^ an pro všechna n £ N. Posloupnosti však neobsahují stejné členy,
nutně tedy

(1)Can > CLn pro všechna n € N.

Posloupnosti budeme „naplňovat“ induktivně. Nejdříve dokážeme, že
d\ = 1. Kdyby naopak platilo a\ > 1, muselo by být bud C\ — 1, anebo
&i = 1. Druhá možnost nepřipadá v úvahu, protože podle (i) a (1) máme
b\ = cai — 1 > a4 — 1, tedy b\ > a4 (neboť b± ф ai). Kdyby bylo c\ = 1,
bylo by b\ Ф 2 (neboť ěi > ai), C2 7^ 2 (díky (iii) pro n — 1), muselo
by tedy být a\ = 2. Potom však <12 ф 3 (neboť <22 > ěi), ^1 7^ 3 (neboť
v takovém případě by bylo C2 = cai = b\ + 1 = 4 a neplatilo by (iii) pro
n = 1) a též C2 7^ 3 (neboť c2 = cai = 61 + 1 7^ 3).

Nyní najdeme v posloupnostech místo pro číslo 2. Kdyby bylo й2 = 2,
platilo by podle (ii) 2 = <22 > 61, což není možné. Kdyby bylo c\ = 2,
měli bychom podle (i) 2 = c\ = cai = b\ + 1, tedy 61 = 1, což také není
možné. Zbývá jen možnost 62 = 2. Potom podle (i) dostaneme c\ = cfll =
= 61 + 1 = 3.

1 2 3 4 5n

1

bn 2

3Cn

Díky (iii) je C2 ф 4. Také 62 ф 4, neboť jinak by podle (1) a (i) bylo
^2 < ca2 = 62 + 1 = 5 a pro <22 by už nezůstala žádná hodnota. Je tudíž
a2 = 4. Následně podle (ii) máme 03 / 5 a také 62 7^ 5, neboť jinak
by podle (i) bylo c4 = ca2 = b2 + 1 = 6 a pro C2, c3 by už nezbyly
žádné hodnoty. Proto C2 = 5. Stejnou úvahou dostaneme a3 Ф 6, 62 ф 6,
tedy c3 = 6. Dále a3 Ф 7 (podle (ii)), c4 Ф 7 (neboť jinak by podle (i)
bylo 7 = c4 = ca2 =&2 + l neboli č>2 = 6)5 tedy 62 = 7. Je tudíž
C4 = ca2 = b2 + 1 = 8.

1 2 3 4 5n

1 4
2 7
3 5 6 8

^n
Cn

Nyní můžeme znovu zopakovat úvahy z předchozího odstavce:
Díky (iii) máme c5 ф 9. Z (1) a (i) plyne 63 ф 9 (jinak by bylo
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аз < саз = Ьз + 1 = 10 a nezůstala by volná hodnota pro аз). Proto
аз = 9. Podle (ii) je а4 Ф 10. Z (i) dostaneme cg = саз — 63 4- 1,
proto 63 Ф 10 (jinak by nezůstaly volné hodnoty pro C5,..., cg). Je tudíž
C5 = 10. Podobně

a4 Ф 11, 63 ф 11
а4 Ф 12, 63 ф 12 =>■ C7 = 12,
а4 Ф 13, 63 ф 13

Konečně, а4 Ф 14 (z (ii)), cg ф 14 (jinak by podle (i) bylo 14 = cg = саз =
= 6з + 1, tedy 63 = 13, což neplatí), tedy 63 = 14 a cg = саз =63 + 1 = 15.

nl 2 3 4 5 6 7 8 9...

c6 = И

c8 = 13.

1 4 9
2 7 14
3 5 6 8 10 11 12 13 15

bn
Cn

Zformulujeme tvrzení, které lze jednoduše dokázat matematickou in-
dukcí. (Formální důkaz, který je triviálním zobecněním předešlých dvou
odstavců, vynecháme.) Pro každé к eN a г = 1,2,..., 2Л: — 2 platí

C(fc — 1)2+г ^ "F b
ck 2 = k2 + 2/c.

Na základě toho už snadno dopočítáme požadované hodnoty:
= 2 0102, 62oio = 2 0102 + 2 • 2 010 - 1,

c20io = c442 +74 = 452 + 74 = 2 099.
6. Pro 1 ^ i < j ^ n označme Xij — clí — aj. Výrazy

a\ + ... + an

ak - k2,
bk — к2 + 2k — 1

®2010

aj + • • • + a2
a

n n

budeme zkráceně označovat /С (kvadratický průměr) a Л (aritmetický
průměr). Rozdíl jejich čtverců (vyskytující se v zadání) lze po vynásobení
číslem n2 upravit na

n2(/C2 .A2) — гг(а2 + ... + а2) — (ai + ... + an)2
П

2—1 i<j
n—1

4= 4* + +4) + ^2 4-
i<j i=2 1 <i<j<n
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Poslední suma je evidentně nezáporná a pro součet uprostřed platí podle
triviální nerovnosti a2 + b2 ^ |(a + b)2 odhad

n—1 -ilí n — 2
+ x2in) = 2

i=2 2 — 2

Dohromady tak máme

n2(/C2

přičemž rovnost zřejmě nastane, právě když a>2 = ... = an_i = ^(ai+an).
Největší možná hodnota je tudíž

- 2
Л2) Zx\n + —

П
( \2

2 ' (ai an) ix\n

1
_ 1

n2 2n'

7. Každou zasaženou pevnost označme černou barvou, zbylé (nezasa-
ženě) pevnosti bílou. Protože každá pevnost zasáhne jednu ze soused-
nich pevností, je vyloučeno, aby některá pevnost měla dva bílé sousedy.
Číslo P(n) je tedy počtem takových obarvení n pevností černou a bílou
barvou, že neexistují dvě bílé pevnosti, které by mezi sebou měly právě
jednu pevnost. Na druhou stranu pokud takové dvě bílé pevnosti ne-

existují, snadno najdeme odpovídající způsob střelby, který к takovému
obarvení vede: stačí zajistit, že do každé černé pevnosti střelí přinejmen-
šířil ta pevnost, která s ní sousedí po směru otáčení hodinových ručiček.

Pospojujeme-li nyní pevnosti ob jednu, dostaneme v případě lichého n

„kružnici", na níž žádné dvě sousední pevnosti nebudou bílé. V případě
sudého n dostaneme takovým spojením „kružnice" dvě (každé z nich bude
patřit právě polovina pevností), na nichž také žádné dvě sousední pev-
nosti nebudou bílé. Označíme-li K(m) počet obarvení m pevností na kruž-
nici černou a bílou barvou tak, že žádné dvě sousední pevnosti nejsou bílé,
bude zřejmě platit P(n) = K(ri) pro liché n a P(n) = K(|n)2 pro sudé n.

Pro hodnoty K(n) odvodíme rekurentní vztah:
Počet vyhovujících obarvení s n-tou pevností černou je totiž roven

počtu vyhovujících obarvení n—1 pevností (jednoduše vložíme černou
pevnost mezi první a (n — l)-ní pevnost) zvětšenému o počet obarvení
n—1 pevností nemajících žádné dvě sousední pevnosti bílé kromě první
a (n— l)-ní (vložením černé pevnosti mezi tyto dvě bílé pevnosti získáme
vyhovující obarvení). Počet možností v druhém případě je vlastně stejný
jako počet vyhovujících obarvení n — 2 pevností s první pevností bílou
(stačí spojit ony dvě sousední bílé pevnosti do jedné).
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Počet vyhovujících obarvení s n-tou pevností bílou je roven počtu
takových obarvení n— 1 pevností, že žádné dvě sousední nejsou bílé a prvá
a (n — l)-ní jsou černé (bílou pevnost můžeme vložit jen mezi dvě černé).
Tento počet je roven počtu vyhovujících obarvení n — 2 pevností, v nichž
je první černá (opět můžeme dvě sousední černé pevnosti spojit do jedné).

Dohromady tedy

K(n) = K{n - 1) + Kh{n - 2) + Kc(n - 2) =

= K(n-l) + K(n-2),
přičemž K\t a Kc je počet vyhovujících obarvení s první pevností bílou,
resp. černou.

Přímo dovedeme spočítat hodnoty K(2) = 3, K{3) = 4, K(4) = 7,
tedy

K(2) = F(4) - F(0), F(3) = F(5) - F(l), F(4) = F(6) - F(2)
a indukcí snadno dokážeme, že K(n) = F(n + 2) — F(n — 2), přičemž F(fc)
je fc-tý člen Fibonacciho posloupnosti (F(0) = 0, F(l) = F(2) = 1, ...).
Navíc (K(2), K(3)) = 1 a pro n ^ 3 máme

(F(n), F(n - 1)) = (F(n) - K(n - 1), F(n - 1)) =

= {K(n-2),K(n-l)) = ... = 1.
Podobně ukážeme, že pro každé sudé n = 2a je číslo P(n) = К (a)2

nesoudělné s oběma čísly P{n + 1) = K(2a + 1) a P(n — 1) = K(2a — 1):
{K(a),K(2a + 1)) = (K(a), F{2)K{2a) + F(l)K(2a - 1)) =

= (F(a), F(3)K(2a - 1) + F(2)F(2a - 2)) = ... =

= (K{a), F(a + 1 )K{a + 1) + F(a)K{a)) = (F(a), F(a + 1)) =

= (F(a + 2) - F(a - 2), F(a + 1)) =

= (F(a + 2) - F(a + 1) — F(a — 2), F(a + 1)) —

= (F(a) - F(a - 2), F(a + 1)) = (F(a - 1 ),F(a + 1)) =

= (F(o-l),F(o)) = l,

(K(a), K(2a - 1)) = (K(a),F(2)K(2a - 2) + F(l)K(2a - 3)) =

= (K(a), F(3)K(2a - 3) + F(2)K(2a - 4)) = ... =

= (K(a), F(a)K(a) + F(a - 1 )K(a - 1)) = (K(a),F(a - 1)) =

- (F(a + 2) - F(a - 2), F(o - 1)) = (F(a + 2) - F(a), F(a - 1)) -
= (F(a + 2) - F(a + 1), F(a - 1)) = (F(a), F(a - 1)) = 1,

čímž je úloha vyřešena.
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8. Nejmenší možný počet červených vrcholů je

(n + l)2
3

Nejdříve ukážeme vyhovující obarvení s tímto počtem. V druhé části
dokážeme, že menší počet červených vrcholů není možný.

Místo čtverce budeme uvažovat kosočtverec ABCD, v němž namísto
pravoúhlých rovnoramenných trojúhelníků budou rovnostranné trojúhel-
niky. Kosočtverec pokryjeme pravidelnými jednotkovými šestiúhelníky
tak, aby vrchol A ležel ve vrcholu šestiúhelníku. Střed každého šestiúhel-
niku obarvíme červenou (na obr. 56 šedou). Zřejmě každý rovnostranný
trojúhelník leží v některém šestiúhelníku, a má tedy červený vrchol.

Označme an počet červených vrcholů při tomto obarvení. Stranu
AB rozdělme body Ai, A2,..., An_i na n jednotkových úseků. Podobně
označme Вi,..., -Bn-i body na BC, C±,, Cn-1 na CD aDi,..., Dn_1
na DA.

Každý z n vrcholů na přímce A\Bn-.\ je červený (obr. 57). Rov-
noběžky A2-Bn-2, АзВп_о nemají žádné červené vrcholy. Rovnoběžka
A^Bn-i obsahuje o 3 červené vrcholy méně než AiBn_i, tj. n — 3. Po-
dobně leží červené vrcholy na přímkách A-jBn_7, Aio-Bn-io> atd. Jejich
počet pokaždé klesne o 3. Z druhé strany úhlopříčky AC máme n — 1
červených vrcholů na u — 4 na C^Dn-^ atd.
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Celkový počet červených vrcholů je tedy

= (n + (n — 3) + (n — 6) + ...) + ((n — 1) + (n — 4) + (n — 7) + ...).
Je-li n — + 1, je an = |n(n + 2), takže pro n — 3k + 2 dostaneme
an — |(n + l)2 a pro n = ЗА; + 3 pak an — \n(n + 2). Obecně můžeme
tento počet vyjádřit vztahem an

Označme bn nejmenší možný počet červených vrcholů. Zřejmě b\ = 1.
V každém rovnostranném trojúhelníku složeném ze čtyř jednotkových
trojúhelníků (obr. 58) musejí být zřejmě obarveny červenou aspoň dva
vrcholy. Každý z malých vyznačených trojúhelníků na obr. 59 musí obsa-
hovat aspoň jeden červený vrchol a větší vyznačené trojúhelníky aspoň
dva. Proto ё2 = 2 + 1 = За6з^1 + 1 + 1 + 2 = 5.

О'п

Obr. 59

Pro n G {1,2,3} jsme ukázali, že bn ^ an, nutně tedy bn = an.
Pro zbylé hodnoty n použijeme matematickou indukci, jejíž první krok
jsme už učinili. V druhém kroku dokážeme, že pokud 6n_3 = an_3, pak
bn = a ti •
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Nechť n = 3k + 2. Jak ukazuje obr. 60a, potřebujeme aspoň 3 +
+ (2к + 1)&2 červených vrcholů, tj.

(n — 2)2 (n + l)2bn = bn—3 + (2fc + 1) • 3 — + 2n — 1 = — ttro-
3 3

Je-li n = 3fc + 3, dostáváme odhad (obr. 60b)

bn = bn—3 + 2/c&2 + 2 + 1 + 1 + 1 —

(n-2)2 (n+l)2
+ 2(n - 3) + 5 — on-

3 3

7 Ш1\

Obr. 60a Obr. 60b

Konečně, je-li n — 3k + 1, máme podle obr. 60c

bn = bn—3 + (2(k — 1) + 1)&2 + 1 + 1 + 1 + 1
(n + l)2(n-2)2

J- 2n — 1 —
— On •

3 3

Ve všech případech platí bn ^ an, je tudíž bn — a n ‘

Obr. 60c
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9. Nechť S' je průsečík přímky FK a rovnoběžky se stranou BC vedené
bodem A. Naší úlohou je dokázat, že body S', D, E leží na jedné přím-
ce. Průsečík strany AB s tečnou к vepsané kružnici vedenou bodem К
označme Q (obr. 61). Zřejmě KQ || BC. Proto

\<AS'F\ = \<QKF\ = \<QFK\,

odkud |AS"| = \AF\ = \AE\. Platí též \DC\ = \EC\ a BC || AS', proto

\<CDE\ = \<CED\ = \<AES'\ = \<AS'E\,

takže body S', D, E vskutku leží na jedné přímce (příčce rovnoběžek
BC || AS').

C

S'

E.

D

К

A Q F В

Obr. 61

Jiné řešení. Označme a = \-KBAC\, /3 = \<ABC\ а I střed vepsané
kružnice. Pro úhly v tětivovém čtyřúhelníku IFBD platí

\<IDF\ = \<IFD\ = \(3= |<AFS|.

Protože \^cFDS\ — \\<FIE\ = 90° — \a (IEAF je rovněž tětivový)
a \KFIA\ — 90° — \a, jsou trojúhelníky AFI a SFD podobné. Pro
poměr podobnosti máme |AF| : \FS\ = \IF\ : |DF\, a tak z rovnosti
|<AF5j = \-KlFD\ plyne podobnost trojúhelníků AFS, IFD, odkud
|AF| = \AS\ = |AE\. Z podobnosti trojúhelníků ASE, CDE pak dostá-
váme \<SAE\ = 180° — a — /3, a tedy \<BAS\ + \<ABC\ = 180°.
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10. Označme M а N paty kolmic z bodu S na přímky AB a CD. Čtyř-
úhelník SMFN je tětivový, protože dva jeho úhly jsou pravé (obr. 62).

Z obvodových úhlů nad tětivou SM opsané kružnice plyne |<AF5j =
= \<MFS\ = \<MNS\. Potřebujeme dokázat, že \<MNS\ = \<ECD\.
К tomu stačí ukázat podobnost trojúhelníků MSN a EDC.

Protože čtyřúhelník ABCD je tětivový, trojúhelníky ABS a DCS
jsou podobné. Úsečky SM, SN jsou výškami těchto trojúhelníků, proto
\SM\ : |57V| = \AB\ : \CD\ = \ED\ : \CD\. Pro velikosti úhlů navíc
máme

|<M57V| = 180° - \<AFD\ = \<EDF\ = \<EDC\
takže trojúhelníky MSN a EDC jsou vskutku podobné.

Jiné řešení. Přímka FS protíná přímky AD, DE postupně v bo-
dech, které označíme X a Z (obr. 63). Dále označme \KBAD\ = a,

\<ADF\ — S, \AB\ = a, \CD\ = c. Protože ZD || AF, stačí dokázat, že
trojúhelníky CDE a ZDF jsou podobné. Tyto trojúhelníky mají jeden
úhel společný, takže zbývá ukázat, že \ZD\ : \FD\ = \CD\ : \ED\ = c : a.

Podle sinové věty v trojúhelníku BFC platí \CF\ : \BF\ = siná :
: siná, neboť

\<FBC\ = 180° - \<ABC\ = \<CDA\ = S,
\<FCB\ = 180° - \<BCD\ = \<BAD\ = a.

Z Cěvovy věty pro trojúhelník AFD a bod S plyne

\DX\ \AB\ \FC\
\XA\ ' \BF\ ' \CD\

\DX\ a siná
\XA\ c siná

(1)1 =
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Z podobnosti trojúhelníků AFX, DZX máme \ZD\ = |AF| • |.DX|/|AXj
a ze sinové věty v trojúhelníku AFD dostáváme \FD\ = \AF\ -siná/ sin 6.
Pro zkoumaný poměr \ZD\ : \FD\ tak s využitím (1) platí

\ZD\
_ sin6 \DX\ _ c

\FD\ siná \AX\ a

11. Nejdříve dokážeme, že |an není pro žádné n součtem dvou čtverců.
Druhé mocniny dávají při dělení čtyřmi jen zbytky 0 a 1, takže čísla, která
jsou součtem dvou čtverců, mohou po dělení čtyřmi dávat jen zbytky 0,
1 nebo 2. Číslo ^an však dává zbytek 3, neboť an dává zbytek l.2

Po chvíli zkoušení najdeme vztah

10n+1 +2Y3 2 • 10n+1 + 1 \3
+

3 3 3

který po triviální úpravě plyne z vyjádření an — l()3n+3 + 2 • l()2n+2 +
+ 2 • 10n+1 + 1. Obě čísla v závorkách jsou přirozená, neboť 10n+1 = 1
(mod 3), takže |an se dá vždy vyjádřit jako součet dvou třetích mocnin.
12. Podle Mihailescuovy věty3 jediným řešením rovnice xa — yb
v oboru celých čísel větších než 1 jsou čísla x = 6 = 3, у — a — 2.

1

2 Jinou možností, jak určit zbytek 1an po dělení čtyřmi, je uvědomit si, že toto
číslo pro n íí 1 vždy končí dvojčíslím 67.

3 Je též známa jako Catalanova hypotéza, dokázána byla v roce 2002.
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Proto 10n + 1 nemůže být druhou ani vyšší mocninou prvočísla. Podle
zadání má n aspoň jednoho lichého dělitele к ^ 3. Jestliže n = kl, je

10n + 1 = (10l)k + 1 = (Юг + 1) ((ÍO1)*"1 (ÍO*)*-2 + ... - 10* + 1)

takže 10n + 1 má netriviálního dělitele I0l + 1, a nemůže to tudíž být
prvočíslo. Z uvedeného plyne, že existují nesoudělná čísla a, b větší než 1
taková, že 10n + 1 = ab.

Naší úlohou je dokázat existenci takových přirozených čísel t a s, že

(10n + l)ř = abt = s(s — 1)m =

přičemž dekadický zápis čísla t obsahuje právě n číslic.
Nejdříve ukážeme, že existuje přirozené číslo s dělitelné číslem a, pro

které s = 1 (mod b). Čísla a, 2a, ..., (b— l)a, ba jsou všechna násobky a
a vzhledem к nesoudělnosti čísel a, b dávají při dělení číslem b různé
zbytky. Proto právě jedno z nich dává zbytek 1 a můžeme ho vzít jako s.
Podobně najdeme s', které je násobkem b a splňuje s' = 1 (mod a).

Čísla s, s' jsou kladná a menší než 10n. Obě čísla s(s — 1) a s'(s' — 1)
jsou dělitelná číslem ab a menší než 102n. Navíc s+s' = 1 (mod ab). Číslo
s+s' je větší než 1 a menší než 2-10n. Nutně tedy s+s' = ab+l = 10n + 2,
takže aspoň jedno z čísel s, s' je větší než 5- ÍO71-1. Bez újmy na obecnosti
předpokládejme, že je to číslo s. Potom s(s—1) > 25-102
má právě 2n číslic a splňuje všechny potřebné podmínky.

n—2 takže s(s—1)
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17. středoevropská olympiáda v informatice

Ve dnech 12.-19. 7. 2010 se konal v Košicích

na Slovensku 17. ročník Středoevropské olym-
piády v informatice (CEOI 2010 - Central Eu-
ropean Olympiad in Informatics). Soutěže se
zúčastnilo 40 studentů - čtyřčlenná družstva
ze všech sedmi zemí středoevropského regionu
(Česká republika, Chorvatsko, Maďarsko, Ně-
mecko, Polsko, Rumunsko, Slovensko) a navíc
jako hosté družstva z Bulharska a Švýcarska
a druhé soutěžní družstvo pořádající země.

Reprezentační družstvo České republiky bylo sestaveno na základě vý-
sledků dosažených soutěžícími v ústředním kole 59. ročníku Matematické
olympiády - kategorie P (programování). Zatímco čtyři nejlepší řešitelé
ústředního kola MO kategorie P pojedou soutěžit na celosvětovou soutěž
IOI 2010 v srpnu do Kanady, pro účast na CEOI 2010 bylo jako obvykle
vybráno družstvo složené z dalších úspěšných řešitelů naší národní olym-
piády, kteří letos ještě nebudou maturovat a na CEOI tak mohu získat
cenné zkušenosti, které uplatní v různých programátorských soutěžích
v průběhu dalšího školního roku. České družstvo pro 17. středoevropskou
olympiádu v informatice mělo následující složení:

Lukáš Folwarczný, student Gymnázia v Havířově,
Filip Hlásek, student Gymnázia na Mikulášském nám. v Plzni,
Michal Mojzik, student SPŠ a VOŠ v Chomutově,
Štěpán Šimsa, student Gymnázia Josefa Jungmanna v Litoměřicích.

Vedoucími české delegace byli jmenováni doc. RNDr. Daniel Král,
Ph.D., a doc. RNDr. Pavel Tópfer, CSc., oba z Matematicko-fyzikální
fakulty Univerzity Karlovy v Praze.

Vlastní soutěž CEOI 2010 byla jako obvykle rozdělena do dvou soutěž-
nich dnů, v každém z nich studenti řešili tři soutěžní úlohy a na práci měli
vymezen čas 5 hodin. Každý soutěžící pracuje na přiděleném osobním
počítači s nainstalovaným soutěžním prostředím, které umožňuje vyvíjet
a testovat programy a odesílat je к vyhodnocení. Výsledné programy
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jsou testovány pomocí připravené sady testovacích dat a se stanovenými
časovými limity. Tím je zajištěna nejen kontrola správnosti výsledků, ale
pomocí časových limitů se také odliší kvalita použitého algoritmu. Při
testování každé úlohy se používají sady testovacích dat různé velikos-
ti, takže teoreticky správné řešení založené na neefektivním algoritmu
zvládne dokončit výpočet pouze pro některé, menší testy. Takové řešení
je potom ohodnoceno částečným počtem bodů.

Pořadatelé olympiády připravili soutěžní úlohy velmi pečlivě, takže
celý proces přípravy úloh, upřesnění jejich formulací a překladu zadání
úloh do národních jazyků večer před soutěží probíhal velmi rychle. Sou-
těžící měli jen minimum dotazů к zadání úloh a neobjevily se ani žádné
oprávněné protesty proti hodnocení. Soutěžní úlohy byly dobře navrženy,
byly věcně zajímavé, ale byly výrazně obtížnější než obvykle.

Pro všechny účastníky CEOI připravují pořadatelé vždy také dopro-
vodný program. Absolvovali jsme prohlídku historického centra Košic a
místních památek, navštívili jsme i zajímavé letecké muzeum v Košicích.
Jeden celodenní turistický výlet mířil do oblasti Vysokých Tater a druhý
na zámek Krásna Horka a do Zádielské doliny. V obou případech si mohl
každý účastník sám zvolit jednu ze dvou nabízených variant náročnosti
výletu.

Večer před odjezdem se konalo slavnostní zakončení soutěže spojené
s vyhlášením výsledků. Každá ze soutěžních úloh byla hodnocena maxi-
málně 100 body, takže celkově bylo teoreticky možné získat až 600 bodů.
To se ovšem vzhledem к velké náročnosti úloh nikomu nepodařilo, celkový
vítěz dosáhl výsledku 460 bodů. Podle pravidel CEOI obdrží na závěr sou-
těže lepší polovina účastníků některou z medailí, přičemž zlaté, stříbrné
a bronzové medaile se udělují přibližně v poměru 1:2:3 (pochopitelně
s ohledem na to, aby soutěžící se stejným bodovým ziskem získali stejnou
medaili). Letos byly uděleny 3 zlaté, 7 stříbrných a 10 bronzových medailí.
Z reprezentantů České republiky získal medaili pouze Filip Hlásek, který
se umístil na 17. místě. Výsledky našich soutěžících:

17. Filip Hlásek
21. Štěpán Šimsa

26. 28. Lukáš Folwarczný
Michal Mojzík

210 bodů

125 bodů
95 bodů

95 bodů

bronz

Zlaté medaile získali reprezentanti Polska, Bulharska a Chorvatska.
Středoevropská olympiáda v informatice je soutěží jednotlivců, žádné po-
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řadí zúčastněných zemí v ní není vyhlašováno. Veškeré informace o soutě-
ži, texty soutěžních úloh i podrobné výsledky všech účastníků lze nalézt
na adrese http://ceoi2010.ics.upjs.sk/.

Následující, v pořadí 18. ročník CEOI se bude konat v červenci 2011
v Polsku. Tamní organizátoři již nyní pozvali všechny země zúčastněné
na CEOI 2010 к účasti v příštím ročníku soutěže. Další středoevropské
olympiády v informatice uspořádají Madarsko v roce 2012 a Chorvatsko
v roce 2013, v následujícím roce 2014 připadne pořadatelství na Českou
republiku.
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22. mezinárodní olympiáda v informatice

; J
O

Dvacátý druhý ročník Mezinárodní
olympiády v informatice IOI 2010 se
konal od 14. do 21. srpna 2009 ve
Waterloo v Kanadě.

Na olympiádu do Waterloo při-
jely delegace z 84 zemí celého svě-
ta. Z každé země se IOI mohou zúčastnit čtyři soutěžící a dva vedoucí,
celkově letos soutěžilo 300 studentů. České družstvo bylo sestaveno na
základě výsledků ústředního kola 59. ročníku Matematické olympiády -

kategorie P a bylo tvořeno těmito studenty:

Vlastimil Dort, absolvent Gymnázia v Praze 9, Špitálská,
Hynek Jemelík, student Gymnázia v Brně, tř. Kpt. Jaroše,
David Klaška, absolvent Gymnázia v Brně, tř. Kpt. Jaroše,
Jan Polášek, student Gymnázia v Turnově.

Vedoucími české delegace na IOI 2010 byli jmenováni Mgr. Zdeněk
Dvořák, Ph.D., a Bc. Zbyněk Falt, oba z Matematicko-fyzikální fakulty
Univerzity Karlovy v Praze.

Již tradičně se naši účastníci IOI připravovali na olympiádu společně
s reprezentanty vybranými pro Středoevropskou olympiádu v informa-
tice na týdenním soustředění CPSPC (Czech-Polish-Slovak Preparation
Camp), které bylo letos pořádáno na Matematicko-fyzikální fakultě UK
v Praze a zúčastnili se ho vybraní studenti ze všech tří zemí.

Během prvního dne pobytu v Kanadě proběhlo slavnostní zahájení
soutěže a studenti měli také příležitost seznámit se podrobně s počí-
tači a se softwarovým prostředím, ve kterém budou pracovat při soutěži.
Vlastní soutěž se konala jako obvykle ve dvon dnech, oddělených jedním
dnem odpočinku. Po druhém soutěžním dnu následoval jeden den věno-
váný výletu к Niagarským vodopádům a v závěrečném dnu pobytu se
uskutečnilo slavnostní vyhlášení výsledků.

Soutěž IOI probíhá podobným způsobem, jako praktická část ústřed-
ního kola naší Matematické olympiády - kategorie P. Každý soutěžící
má přidělen osobní počítač, na kterém řeší zadané úlohy. V každém dni

O

WATERLOO
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má na práci vymezen čas 5 hodin. Úlohy je třeba dovést až do tvaru
odladěného programu, hotové programy se odevzdávají к vyhodnocení
prostřednictvím soutěžního prostředí. Odevzdané programy se testují po-
mocí předem připravené sady testovacích dat. Prováděné testy jsou navíc
omezeny časovými limity, aby se kromě otestování správnosti odlišila i ča-
sová efektivita algoritmu použitého jednotlivými účastníky soutěže. Při
testování každé úlohy se používají sady testovacích dat různé velikosti,
takže teoreticky zcela správné řešení založené na neefektivním algoritmu
zvládne dokončit výpočet pouze pro některé, menší testy. Takové řešení
je potom ohodnoceno částečným počtem bodů.

Novinkou oproti minulým letům bylo průběžné vyhodnocování výsled-
ků, kdy již během soutěže měli soutěžící možnost si nechat úlohu ohod-
notit a ověřit si, kolik bodů za ni získají. Jedná se o podobný systém,
jaký používáme v posledních letech u nás v Matematické olympiádě -

kategorie P pro praktické úlohy domácího kola. Krátce po odevzdání
vypracovaného programu do vyhodnocovacího systému se soutěžící dozví
hodnocení svého řešení a má pak ještě možnost řešení opravit a odevzdat
řešení téže úlohy opakovaně vícekrát. Divákům (ale nikoliv soutěžícím)
pak byla к dispozici i průběžná výsledková listina.

Další změnou bylo rozdělení úloh do několika podúloh, lišících se
velikostmi vstupních dat či omezeními na jejich strukturu. Za každou
takovou podúlohu bylo možné získat body pouze tehdy, když program

odpověděl na všechny její testovací vstupy korektně a v daném časovém
limitu. Jedna z podúloh každé úlohy byla záměrně velmi jednoduchá. Sou-
těžící z programátorsky méně vyspělých zemí tak dostali velmi reálnou
šanci vyřešit každý den aspoň část z každé úlohy. To se také projevilo na

neobvykle vysokých bodových hranicích nutných pro získání ceny.
Každá z osmi soutěžních úloh byla hodnocena typicky maximálně

100 body. Výjimkou byly dvě úlohy, pro něž není známo optimální řešení
a které byly bodovány relativně vůči nejlepšímu řešení známému orga-

nizátorům; za ně bylo možno získat až 110 bodů (v jedné z těchto úloh
skutečně nejlepší z účastníků překonali hranici 100 bodů). Vítěz soutěže
Gennadij Karotkěvič z Běloruska dosáhl výsledku 778 bodů. Na základě
přesně stanovených pravidel se na IOI podle dosažených bodů rozdělují
medaile. Některou z medailí obdrží nejvýše polovina účastníků soutěže,
přičemž zlaté, stříbrné a bronzové medaile se udělují přibližně v poměru
1 : 2 : 3 (s ohledem na to, aby soutěžící se stejným bodovým ziskem
získali stejnou medaili). Na letošní IOI bylo rozděleno celkem 25 zlatých,
52 stříbrných a 73 bronzových medailí.
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Výsledky našich soutěžících:

8. David Klaška 709 bodů zlato

16. Hynek Jemelík 693 bodů zlato
49. Vlastimil Dort 656 bodů stříbro

101. Jan Polášek 596 bodů bronz

Mezinárodní olympiáda v informatice je soutěží jednotlivců a žádné
pořadí zúčastněných zemí v ní není vyhlašováno. V neoficiálním pořadí
zemí by však letos Českou republiku předstihli pouze USA, Rusko, Čína
a Bulharsko. Jedná se o náš nejlepší výsledek dosažený na IOI od roku
1995.

Všechny podrobnosti o soutěži, texty soutěžních úloh i jejich řešení
a celkové výsledky lze nalézt na adrese http: //www. ioi2010. org. Příští
ročníky IOI se budou konat v Thajsku (2011), Itálii (2012), Austrálii
(2013), Tchaj-wanu (2014) a Kazachstánu (2015). Pořadatelé IOI 2011
z Thajska na místě pozvali všechny delegace zúčastněné na IOI 2010,
aby se zúčastnily také následujícího ročníku soutěže. Ten proběhne ve
dnech 22.-29. 7. 2011 ve městě Pattaya.
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