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O průběhu 60. ročníku matematické olympiády

Šedesátý ročník matematické olympiády se uskutečnil v České repub-
lice ve školním roce 2010/11. Hlavním pořadatelem soutěže bylo (stejně
jako v předchozích letech) Ministerstvo školství, mládeže a tělovýchovy
ČR, dále Jednota českých matematiků a fyziků a Matematický ústav
Akademie věd ČR. Průběh soutěže zajišťovala stejně jako v předešlých
ročnících soutěže Ústřední komise MO (ÚK MO), které předsedal doc.
RNDr. Jaromír Šimša, CSc., s místopředsedy RNDr. Jaroslavem Švrčkem,
CSc. (pro kategorie А, В, C), RNDr. Vojtěchem Žádníkem, Ph.D. (pro
kategorie Z9-Z5) a doc. RNDr. Pavlem Tópferem, CSc. (pro kategorii P).
Tajemníkem ÚK MO byl RNDr. Karel Horák, CSc.

Přípravou a výběrem úloh pro jednotlivé kategorie a soutěžní kola
byly pověřeny Ústřední komisí MO dvě úlohové komise (jedna pro kate-
gorie А, В, C a druhá pro kategorie Z). Obě komise se sešly na svých
pracovních seminářích dvakrát ročně (v prosinci 2010 a v květnu 2011).
Ve spolupráci se slovenskými kolegy zabezpečují obě komise s více než
ročním předstihem výběr úloh pro další ročník MO v České republice
i na Slovensku. Garanty výběru úloh pro tento ročník soutěže byli Ja-
roslav Švrček (kategorie A), Martin Panák (kategorie В) a Ján Mazák
(kategorie C).

Krajská (II.) kola v jednotlivých kategoriích se uskutečnila ve stáno-
vených termínech: 18. 1. 2011 v kategorii A, 5. 4. 2011 v kategoriích В
a C a 11. 1. 2011 v kategorii P. Celkové počty účastníků v jednotlivých
krajích každé z uvedených kategorií jsou uvedeny v tabulkách, které tvoří
přílohu této zprávy. V průběhu 60. ročníku MO se na základě účinné
podpory projektu OPVK MATES CZ.1.07/2.3.00/09.0017 v moravských
regionech uskutečnily pravidelné semináře určené řešitelům MO. Konaly
se na PřF UP v Olomouci, dále v Jihlavě a ve Zlíně. Lektorsky se na nich
podíleli především řešitelé projektu MATES.

Ústřední kolo 60. ročníku Matematické olympiády v kategorii A se
uskutečnilo 27.-30. března 2011 v Brně, na ně pak navázalo ústřední
kolo kategorie P (30. března-2. dubna). Organizace závěrečného kola

5



soutěže se v tomto roce ujala Krajská komise MO Jihomoravského kraje
spolu s Gymnáziem v Brně na tř. Kpt. Jaroše.

Záštitu nad závěrečnou částí soutěže v kategoriích A a P převzal Mi-
chal Hašek, hejtman Jihomoravského kraje. Slavnostní zahájení soutěže se
uskutečnilo v neděli 27. března 2011 večer v aule brněnského gymnázia na
tř. Kpt. Jaroše. Kromě soutěžících, členů UK MO a garantů se zahájení
soutěže zúčastnili rovněž pozvaní hosté, mezi nimiž nechyběli zástupci
společenského života v Brně, Masarykovy univerzity v Brně a zástupci
sponzorů (skupina ČEZ, Microsoft, Seznam, Kofola a další). Soutěžící
a členové Ústřední komise MO byli ubytováni v hotelu Amphone přímo
naproti pořádající škole. Vlastní soutěž se pak konala v učebnách Gym-
názia na tř. Kpt. Jaroše v Brně.

Na základě jednotné koordinace úloh krajského (II.) kola v katego-
rii A pozvala ÚK МО к účasti ve III. kole 40 nejlepších řešitelů z celé
České republiky. Svého zástupce v ústředním kole tentokrát neměl pouze

Karlovarský kraj. Soutěžními dny byly 28. a 29. březen 2011. Na řešení
obou trojic soutěžních úloh měli soutěžící vyhrazeno po 4,5 hodinách
čistého času a za každou úlohu mohli získat maximálně 7 bodů.

Brněnští organizátoři připravili pro soutěžící a pro členy ÚK MO
atraktivní doprovodný program. Odpoledne po prvním soutěžním dnu byl
pro všechny účastníky III. kola uspořádán společný zájezd do Moravského
krasu spojený s návštěvou Punkevních jeskyní a propasti Macocha. Večer
strávili soutěžící i členové ÚK MO v příjemném prostředí brněnského
divadla Radost, kde shlédli představení Jak to dělají andělé aneb Stvoření
světa. Druhé volné odpoledne po soutěži měli možnost zájemci navštívit
významné kulturní a historické památky v centru Brna.

Slavnostní vyhlášení výsledků a předání cen nej lepším soutěžícím se
uskutečnilo ve středu 30. března 2011 dopoledne opět v aule pořádající
školy za přítomnosti představitelů města Brna, zástupců MU v Brně
a zástupců skupiny ČEZ. Předseda ÚK MO doc. Jaromír Šimša ve svém
závěrečném projevu poděkoval předsedovi Krajské komise MO v Jiho-
moravském kraji a řediteli Gymnázia Brno na tř. Kpt. Jaroše
Jiřímu Hermanovi, Ph.D., a také všem jeho spolupracovníkům z pořádá-
jící školy, kteří zajišťovali zdárný průběh ústředního kola kategorií A a P
jubilejního ročníku MO.

Na ústřední kolo kategorie A bezprostředně navázalo ústřední kolo ka-
tegorie P. К účasti v závěrečném kole této soutěže bylo tentokrát pozváno
33 nejlepších řešitelů krajského kola, finále soutěže se však zúčastnilo
pouze 29 z nich.

RNDr.
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Soutěžními dny ústředního kola v kategorii P byly 31. březen a 1. du-
ben 2011. První soutěžní den řešili soutěžící tři úlohy teoretické, celý
druhý soutěžní den byl vyhrazen řešení dvou praktických úloh. Za kaž-
dou teoretickou úlohu mohli soutěžící získat nejvýše 10 bodů, za řešení
každé praktické úlohy pak 15 bodů — celkově tedy nejvýše 60 bodů. Na
přípravě soutěžních úloh v kategorii P se podíleli pracovníci Katedry ma-
tematické informatiky Matematicko-fyzikální fakulty Univerzity Karlovy
v Praze.

Devět z jedenácti vítězů soutěže v kategorii A bylo pozváno к výbě-
rovému soustředění v Kostelci nad Černými lesy před 52. mezinárodní
matematickou olympiádou. Ta se uskutečnila v červenci 2011 v Amster-
dámu, hlavním městě Nizozemí. Kromě toho bylo vybráno také družstvo
pro 5. ročník Středoevropské matematické olympiády (MEMO), který se
konal 1.-7. září 2011 v chorvatském Varaždínu. Družstvo pro tuto mezi-
národní soutěž tvořila šestice úspěšných řešitelů ústředního kola katego-
rie A, kteří se nezúčastnili 52. MMO. V polské Gdyni proběhl 18. ročník
Středoevropské olympiády v informatice (CEOI, 7.-12. 7. 2011). V čer-
věnci se pak české reprezentační družstvo zúčastnilo 23. ročníku Meziná-
rodní olympiády v informatice v Thajsku ve městě Pattaya City. Podrob-
nější zprávy o mezinárodních soutěžích jsou uvedeny na konci ročenky.

Ústřední komise MO se během 60. ročníku soutěže sešla na dvou

pravidelných jednáních, a to 10. prosince 2010 v Matematickém ústavu
AV ČR v Praze a dále 28. března 2011 v Brně u příležitosti ústředního
kola MO.

Pro 40 nejlepších řešitelů krajského kola 60. ročníku MO v katego-
riích В a C uspořádala ÚK MO v červnu 2011 tradiční soustředění v Je-
víčku, organizované ředitelem tamějšího gymnázia, dr. Dagem Hrubým.
Lektorsky chod soustředění zabezpečovali doc. Calda, dr. Švrček, dr. Pa-
nák, dr. Calábek, dr. Leischner a dr. Hrubý. Počátkem září téhož roku se
konalo v Janských Lázních na chatě Lovrana ještě výběrové soustředění
nejlepších řešitelů kategorie A. Na tomto soustředění jednotlivé semináře
vedli doc. Šimša, dr. Horák, dr. Švrček, dr. Panák, dr. Calábek, dr. Zhouf
a Michal Rolínek.

Závěrem děkujeme všem nadšeným učitelům matematiky, kteří nad
své pracovní povinnosti připravovali své talentované žáky pro soutěž
v tomto ročníku. Bez nich si lze jen těžko představit úspěšný průběh
nejstarší předmětové soutěže v České republice, kterou je právě matema-
tická olympiáda.
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Projev předsedy Ústřední komise MO
při slavnostním zahájení ústředního kola 60. ročníku MO

v Brně

Dámy a pánové, vážení hosté, milí soutěžící,

dovolte mi, dříve než pronesu očekávanou větu spojenou na sportov-
nich olympiádách se zažehnutím olympijského ohně, malé zamyšlení nad
jubileem naší soutěže.

Dovedu si představit, jak bujaře mohli slavit šedesáté narozeniny staří
Babyloňané, pokud se vysokého základu své číselné soustavy vůbec do-
žívali. Dnes u nás tento životní mezník spadá ještě do etapy pracovní
aktivity člověka. Buďme optimisté a věřme, že к tomu více přispívá náš
zdravý způsob života nežli zhoršená ekonomická situace.

Věnujme se však dále samotné matematické olympiádě. Ta letos po
43 letech vrcholí opět v Brně, když předchozí (a zároveň první) taková
přestávka trvala jen 5 let. V poslední větě jsem řekl dvě prvočísla a vy
můžete dále počítat, kolikrát ještě do konce projevu řeknu nějaké slovo
libovolného druhu, v jehož základě bude prvočíslo. Jako matematik bych
navrhl říkat takovým slovům prvočíslova, ale i bez toho hrozí, že se budu
při čtení zadr-zadrhávat.

Přestávka 43 let je nápadně dlouhá, když cílová místa matematické
olympiády putovala a putují po všech krajích dřívějšího Československa
a dnešní České republiky. Vysvětlení je nasnadě: Jihomoravský kraj měl
dříve větší rozlohu, a tak 27. a 39. ročník vrcholily v tomto kraji, i když
ne v Brně, nýbrž v obou případech v Jihlavě. Uvedené dvě číslovky 27
a 39 sice nejsou prvočísla, ale mají dohromady pouze dva prvočinitele,
což není zrovna moc.

Obraťme však ted pozornost na první léta matematické olympiády.
Teprve vil. ročníku bylo vyvráceno tvrzení, že naše soutěž vrcholí vždy
v Praze. Po pražském období se stalo už jenom jednou, že se ceny vítězům
matematické olympiády udělovaly několik let, konkrétně tři roky po so-

bé, ve stejném městě. Stalo se tak bezprostředně poté, co skončila 411etá
historie MO v důsledku rozpadu společného státu Čechů a Slováků. Naši
slovenští kolegové tak zrovna dnes zahajují své 19. samostatné ústřední
kolo MO. Mnozí z přítomných vědí, že časová shoda termínů soutěže
v obou státech není náhodná. Čeští i slovenští olympionici totiž i na-
dále řeší stejné úlohy, které pro ně připravujeme společně se slovenskými
kolegy.
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Zmíněným, mohii-li tak říct, repetičním městem bylo Jevíčko, poprvé
v roce 1993, rok poté tam naše soutěž opět vrcholila, to už byl její 43. roč-
nik, a do třetice se tak stalo hned v příštím roce 1995. Nejde sice o prvo-

číslo, ale je to zajímavý součin většiny z první sedmice prvočísel. Její
zbylá tři prvočísla mají součin 2 431 a kde se v tomto roce bude konat
olympiáda, není ještě známo.

Tříleté jevíčské období má kromě rozpadu Československa ještě jedno
pádné vysvětlení. Naše školství se v devadesátých letech nacházelo stejně
jako celá naše společnost v neklidném období porevolučních změn. Mate-
matická olympiáda tehdy proto nebyla zrovna středem zájmu školských
i jiných státních institucí, řešících palčivější problémy, a tak naše soutěž
ráda našla útulný azyl v pohostinném městě na malé Hané.

Dnes už je naštěstí reformní období za námi, situace ve školství se
zklidnila a stabilizovala, ničím nerušená náročná a současně pro žáky
přitažlivá výuka se na všude řídí na míru šitými školními vzdělávacími
programy a letos už snad proběhnou (dokonce naostro) státní maturity.

Zpátky však к naší soutěži. Chtěl bych se ve svém projevu také zmínit
o pracovnících, kteří svým úsilím výrazně ovlivnili úspěšný chod různých
etap dlouhé historie naší olympiády. Uvědomil jsem si však, jak je to
nesnadný úkol. Má vůbec smysl jmenovat nějaké představitele ústředí
MO, když o úspěchu soutěže patrně více rozhodovala obětavost desítek
a dnes jistě již stovek bývalých i současných učitelů matematiky, kteří své
žáky pro účast v naší soutěži získali a pak jim v přípravě na ni vydatně
pomáhali? Tak jsem se rozhodl, že z osobností, které dnes už nejsou mezi
námi, vzpomenu jedinou, a to jednoho ze zakladatelů MO, který v prvních
ročnících soutěže, kdy se teprve utvářela její struktura, věnoval přípravě
olympiády nejvíce času a energie ze všech zainteresovaných. Tím člově-
kem byl pan Rudolf Zelinka, vědecký pracovník Matematického ústavu
v Praze, který prvních 13 ročníků zastával funkci ústředního jednatele
naší soutěže. V pomyslné síni slávy MO, do níž by kromě vítězů jednot-
livých ročníků měli být uvedeni i takoví lidé, jako byl Rudolf Zelinka, by
к jeho jménu stačilo připojit jedinou větu: Zasloužil se o matematickou
olympiádu.

Mám velkou radost, že na dnešním slavnostním zahájení jsou pří-
tomny tři významné postavy historie naší soutěže. Především bych vám

i

1 Při projevu nezazněla pozdější informace L. Bočka, že tuto větu o R. Zelinkovi
jako první vyslovil doc. Jan Výšin, který v letech 1959—1983 působil ve 13 roč-
nících matematické olympiády jako její ústřední místopředseda a v 11 ročnících
jako ústřední předseda.
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rád představil člověka, který 11 + 7 let zastával funkci ústředního místo-
předsedy MO. Je jím matematik světového jména, pan profesor Miroslav
Fiedler. Dobu výkonu funkce pana Fiedlera v MO jsem vyjádřil součtem
dvou prvočísel, protože se skutečně jednalo o dvě období, oddělená pře-
stávkou kratší než 7 a delší než 5 let. Druhou vynikající osobností, po
které jsem před 11 lety převzal funkci ústředního předsedy MO, je pan
docent Leo Boček. Pan docent byl předsedou 13 let, když předtím 11 let
vykonával funkci ústředního tajemníka. Třetím matematikem, kterému
jsem to doufám také dobře spočítal, je rekordman, který už 29 let působí
jako ústřední tajemník naší soutěže. Je jím vynikající redaktor všech
textů MO, pan doktor Karel Horák.

Závěr mého zamyšlení nad jubileem naší soutěže mi usnadní jedna
vzpomínka na významného brněnského matematika 20. století, akade-
mika Otakara Borůvku. Nebudu mluvit o jeho vědeckém díle, pojmu to
odlehčené, už tím, že kuriózně zmíním jeho funkci ústředního místopřed-
sedy MO, kterou zastával sice jediný rok, letopočet 1953 se však v mém
projevu počítá.2 Akademik Borůvka jednou při oslavě něčích narozenin
prohlásil, že šedesátiny jsou významnějším životním jubileem než tolik
vyzdvihované padesátiny. Proč? Prostě proto, že číslo 60 spočívá v objetí
prvočíselných dvojčat 59 a 61.

Tím moje svérázné ohlédnutí za historií matematické olympiády kon-
čí. Prohlašuji ústřední kolo 60. ročníku matematické olympiády za zahá-
jené.

2 Zkouška pozornosti posluchačů, neboť 1953, ač zapsáno dvěma prvočísly, je zřejmě
násobek čísla 9.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 60. ročníku MO

Kategorie
CelkemKraj A CВ P
Ss и s и s и s и и

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

73 23 15 324 26885 82 69 134 111
50 21
69 32

7 7775 37
68 37
48 31

12 9 17743
5 3 174 8632 14

7441 20 55 18 9 5 153
2 21 9 0 0

8 5
5 5
0 0
6 3
3 0
7 7

41 168 5 12

17 68 24 146 6526 19 44

62 3421 10 11 6 25 13
28 13
20 15
63 42
81 66
90 27
38 21
95 64

82 4224 15 30 14

32 21 24 15 82 54
72 192 11650 54 24

106 74 246 18352 36
7868 30 56 19 2 2 216

29 19 14 7 2 2 83 49
7 257 17458 42 89 61 15

CR 720 463 584 316 837 476 94 61 2 235 1316

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 60. ročníku MO

Kategorie
CelkemKraj A CВ P

s s s s и s ии и и

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

52 29 26 13 55 24 4 148 70
75 18
80 25
71 29

15
7 236 12 12 3 20 1

36 16 10 3 31 4 3 2
30 14 18 7 18 3 5 5

4 3 2 1 9 1 0 0 15 5
65 17
30 13
42 14
48 16
78 19

171 60
75 23
49 26
85 35

19 9 17 3 24 1 5 4
9 5 5 1 11 3 5 4

15 9 14 3 13 2 0 0
20 10 12 4 13 1 3 1
37 14 14 1 27 0 04
71 39 32 9 62 8 6 4
28 10 18 8 27 4 2 1

719 15 2 21 8 2 1
28 21 23 8 27 3 7 3

CR 358 67404 206 210 66 60 31 1032 370

S ... počet všech soutěžících U ... počet úspěšných řešitelů
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uvedeni
všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium.

Kraj Praha

Kategorie A

1. Tomáš Zeman, G J. Keplera, Praha 6
2. Martin Tópfer, G Praha 7, Nad Štolou

3.-4. Hana Dlouhá, G J. Keplera, Praha 6
Dan Šafka, G J. Keplera, Praha 6

5.-8. Tadeáš Dohnal, G Ch. Dopplera, Praha 5
Dominik Steinhauser, G J. Keplera, Praha 6
Dominik Teiml, Anglické G, Praha 8
Jakub Zika, G Praha 6, Nad Alejí

9. Matouš Hrubeš, G J. Heyrovského, Praha 5
10.-14. Jan Grebík, G J. Nerudy, Praha 1

Vojtěch Havlíček, G Ch. Dopplera, Praha 5
Vít Henych, G Praha 6, Nad Alejí
Anna Chejnovská, G Ch. Dopplera, Praha 5
Lukáš Zavřel, G Praha 9, Chodovická

Kategorie В

1. Hana Dlouhá, G J. Keplera, Praha 6
2.-3. Adam Láj\ G Ch. Dopplera, Praha 5

Martin Čech, G Praha 6, Nad Alejí
4. Ondřej Basler, G J. Keplera, Praha 6
5. Martin Sýkora, G Praha 6, Nad Alejí
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6. Klára Schovánková, G E. Krásnohorské, Praha 4
7. Martin Španěl, Akad. G Praha 2, Korunní

8.-12. Jan Jeliga, G Ch. Dopplera, Praha 5
Luisa Černochová, G Praha 6, Nad Alejí
Ondřej Cífka, G Praha 6, Nad Alejí
Vojtěch Nižňanský, G Praha 6, Spanielova
Dominik Teiml, Anglické G, Praha 8

Kategorie C

1. Jakub Rosier, G Praha 1, Truhlářská
2. Aranka Hrušková, G Ch. Dopplera, Praha 5

3.-5. David Černý, G Ch. Dopplera, Praha 5
Ondřej Hiibsch, G Praha 6, Arabská
Jan Pulec, G Praha 4, Písnická

6.-7. Jelizaveta Lopatina, G Praha 6, Arabská
Vladimir Gasanov, G J. Keplera, Praha 6

8. Barbora Hudcová, PORG Praha 8
9. Dominik Smrž, G E. Krásnohorské, Praha 410.Milan Pultar, G J. Keplera, Praha 6

Kategorie P

1. Ja&n6 Zzfoz, G Praha 6, Nad Alejí
2. Ondřej Hiibsch, G Praha 6, Arabská

3.-4. Jiří Setnička, G Praha 9-Čakovice
Ondřej Cífka, G Praha 6, Nad Alejí

Středočeský kraj

Kategorie A

1. Tomáš Reichel, GaSPgŠ Čáslav
2.-4. Jan ЕйеА;, G Čáslav

Dominik Pěnkava, G Kladno
Jiří Táborský, G Mladá Boleslav

5. Tomáš Martínek, G Vlašim

13



6.-7. Martin Procházka, G V. В. Třebízského, Slaný
Jindřich Skřipko, G Kladno

8. Jan Musil, G Kolín
9.-10. Jan Mikeš, G Kolín

Anna Zavadilová, Klasické G Říčany

Kategorie В

1. Anna Zavadilová, Klasické G Říčany
2. Adéla Nguyenová, G Benešov
3. Linda Tichá, G Benešov

Kategorie C1.Pavel Majtán, G V. B. Třebízského, Slaný

Kategorie P

1.-2. Jan Mašek, G Benešov
Peír Bělohlávek, G J. Barranda Beroun

Jihočeský kraj

Kategorie A

1. David Krška, G J. V. Jirsíka, České Budějovice
2. Krištof Pucejdl, G J.V. Jirsíka, České Budějovice
3. Michal Hruška, G J. V. Jirsíka, České Budějovice
4. Jaromír Vaněček, G Strakonice
5. Vlastimil Labský, SPŠ a VOŠ Písek

6.-7. Martin Mach, G České Budějovice, Jírovcova
Jose/ Válek, G Třeboň

8.-11. František Nesveda, G Strakonice
František Petrouš, G České Budějovice, Jírovcova
Štěpán Sršeň, G Český Krumlov
Lenka Stará, G České Budějovice, Jírovcova
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Kategorie В

1. Moskovka Alexij, G České Budějovice, Jírovcova
2. Mička Ondřej, G České Budějovice, Jírovcova
3. Kroft Patrik, G České Budějovice, Česká

Kategorie C

1. Skříšovský Emil, G České Budějovice, Česká
2. Steinhauserová Anna, G Dačice

3.-4. Guth Jiří, G České Budějovice, Jírovcova
Punčochář Michal, G České Budějovice, Jírovcova

Kategorie P

1. David Krška, G J. V. Jirsíka, České Budějovice
2. Filip Matzner, G J. V. Jirsíka, České Budějovice

Plzeňský kraj

Kategorie A

1. Filip Hlásek, G Plzeň, Mikulášské nám.
2. Michael Bílý, G J. Vrchlického, Klatovy
3. Dung Le Anh, G Tachov

4.-5. David Hruška, G Plzeň, Mikulášské nám.
Michal Nožička, G Plzeň, Mikulášské nám.

6.-8. Martin Bucháček, G L. Pika, Plzeň
Jan Kotrbatý, G Plzeň, Mikulášské nám.
Filip Štědronský, G Plzeň, Mikulášské nám.

9. Jiří Němeček, G Plzeň, Mikulášské nám.
10.—11. Stanislav Skoupý, Masarykovo G, Plzeň

Jakub Suchý, G Plzeň, Mikulášské nám.
12.-14. Michaela Kochmanová, G Plzeň, Mikulášské nám.

Martin Prudek, G Plzeň, Mikulášské nám.
Jakub Ševčík, Masarykovo G, Plzeň
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Kategorie В

1.-2. David Hruška, G Plzeň, Mikulášské nám.
Dung Le Anh, G Tachov

3. Juda Kaleta, G J. Vrchlického, Klatovy
4. Michal Nožička, G Plzeň, Mikulášské nám.
5. David Kubeš, Gymnázium L. Pika, Plzeň
6. Лппа Doležalová, Masarykovo G, Plzeň
7. Thi Tnyeč Trang Nguyen, G J. Vrchlického, Klatovy

Kategorie C

1. Martin Hora, G Plzeň, Mikulášské nám.
2. Jan Holeček, G Plzeň, Mikulášské nám.
3. Lukáš Bystřičky, G Plzeň, Mikulášské nám.

Kategorie P

1. JJ/zp Hlásek, G Plzeň, Mikulášské nám.
2. Juda Kaleta, G J. Vrchlického, Klatovy
3. Jan Škoda, G Plzeň, Mikulášské nám.

4.-5. Michael Bílý, G J. Vrchlického, Klatovy
Filip Štědronský, G Plzeň, Mikulášské nám.

Karlovarský kraj

Kategorie A

1. Josef Hazi, G Cheb
2. Dung Le Quang, G Cheb
3. VJeč Lnn Tran, G Cheb

Kategorie В

1. Jan Kučera, Svobodná chebská škola, Cheb
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Kategorie С1.Milena Těžká, G Cheb

Ústecký kraj

Kategorie A

1. Štěpán Šimsa, G J. Jungmanna, Litoměřice
2. Zuzana Boršiová, G Teplice, Čs. Dobrovolců
3. Lukáš Vacek, G Teplice, Čs. Dobrovolců
4. Michal Mojzík, SPŠ a VOŠ Chomutov
5. Jan Bok, G J. Jungmanna, Litoměřice

6.-9. František Kaván, G Česká Kamenice
Kristýna Pitneyová, G J. Jungmanna, Litoměřice
Otakar Zich, SPŠ a VOŠ Chomutov
Martin Zukerstein, G Lovosice

Kategorie В

1. Štěpán Šimsa, G J. Jungmanna, Litoměřice
2. Daniel Kolář, G dr. V. Smejkala, Ústí nad Labem
3. Martin Šmíd, G Teplice, Čs. Dobrovolců

Kategorie C

1. Hana Turčinová, G J. Jungmanna, Litoměřice

Kategorie P

1. Štěpán Šimsa, G J. Jungmanna, Litoměřice
2. Michal Mojzík, SPŠ a VOŠ Chomutov

3.-4. Daniel Stahr, G J. Jungmanna, Litoměřice
Ondřej Fiedler, G J. Jungmanna, Litoměřice
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Liberecký kraj

Kategorie A

1. Jakub Hrnčíř, G F.X. Saldy, Liberec
2. Matěj Hudec, G Liberec, Jeronýmova
3. Jan Polášek, G Turnov
4. Jiří Erhart, G F. X. Saldy, Liberec
5. Petr Kac, G F.X. Saldy, Liberec

Kategorie В1.Jan Baborák, G Česká Lípa

Kategorie C

1. Tomáš Novotný, G Česká Lípa
2.-3. Jiří Štrincl, G Jablonec nad Nisou, Dr. Randy

Jaroslav Kňap, G Turnov

Kategorie P

1. Jan Polášek, G Turnov
2. Martin Zikmund, G Turnov
3. Karolína Burešová, G Česká Lípa
4. Tomáš Dlask, G Turnov

Královéhradecký kraj

Kategorie A

1. Pavel Potoček, G Dobruška
2.-5. Martina Bekrová, G Trutnov

Petr Jurčo, G Trutnov
Kateřina Medková, Biskupské G B. Balbína, Hradec Králové
Jan Šimbera, Jiráskovo G, Náchod

6. Anetta Sternwaldová, Biskupské G B. Balbína, Hradec Králové
7. Jakub Konrád, G a SOŠ Jaroměř
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8. Josefina Mádrová, G Dobruška
9. Eliška Bucharová, G a SOS Hostinné

Kategorie В1.Vojtěch Erbrt, G J.K. Tyla, Hradec Králové
2.-3. Filip Hautpfleisch, G F. M. Pelcla, Rychnov nad Kněžnou

Dominik Vach, Biskupské G B. Balbína, Hradec Králové

Kategorie C

1. Stanislav Valtera, G Dobruška
2. Vendula Ziková, Lepařovo G, Jičín

Pardubický kraj

Kategorie A

1. Miroslav Koblížek, G Žamberk
Filip Lux, G Žamberk

3. Tomáš Kubelka, G Žamberk
4. Hles Hrabalík, G Litomyšl

5.-7. Tomáš Felcman, G Žamberk
Jan Novotný, G Pardubice, Dašická
Ondřej Tobek, G Litomyšl

8.-9. Dominik Dušek, G Lanškroun
Petr Mareška, G Česká Třebová10.Petr Kouba, G Pardubice, Dašická

Kategorie В

1.-2. Kateřina Jarkovská, G Jevíčko
Kristýna Kohoutová, G Žamberk

3. Jan Baláš, G Žamberk
4. Filip Jeniš, G Jevíčko
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Kategorie С1.Radovan Švarc, G Česká Třebová

Kategorie P1.Dominik Dušek, G Lanškroun

Kraj Vysočina

Kategorie A

1. Ondřej Bartoš, G Zdar nad Sázavou
2. Petr Louša, G Havlíčkův Brod
3. Jan Kuchařík, G Jihlava

4.-5. Jan Klusáček, G Třebíč
Jakub Krásenský, G Jihlava

6.-7. Jan Dvořák, G V. Makovského, Nové Město na Moravě
Adam Kučera, G Chotěboř

8. Eva Havelková, G Zdar nad Sázavou
9.-10. Lukáš Řídký, G Telč

Vojtěch Veselý, G Telč

Kategorie В

1. Filip Murár, G Třebíč

Kategorie C

1. Viktor Němeček, G Jihlava
2. Jiří Janek, G O. Březiny a SOŠ, Telč
3. Anežka Kvasničková, G Jihlava
4. Marie Charvátová, G Jihlava
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Jihomoravský kraj

Kategorie A

1. Hynek Jemelík, G Brno, tř. Kpt. Jaroše
2.-4. Jan Sopoušek, G Brno-Rečkovice

Jan Stopka, G Brno, tř. Kpt. Jaroše
Helena Valouchová, G Brno, tř. Kpt. Jaroše

5.-6. Dominik Tělupil, G Brno, tř. Kpt. Jaroše
Jakub Vančura, G Brno, tř. Kpt. Jaroše

7.-13. David Bainar, G Brno, tř. Kpt. Jaroše
Л/es Dostál, G Blansko
František Fiala, G Brno, tř. Kpt. Jaroše
Jiří Kozlík, G Hodonín
Gabriela Kubíčková, Cyrilometodějské G Brno, Lerchova
Jana Novotná, G Brno, tř. Kpt. Jaroše
Jana Sotáková, G Brno, tř. Kpt. Jaroše

Kategorie В

1. Jana Novotná, G Brno, tř. Kpt. Jaroše
2.-3. Mark Karpilovsky, G Brno, tř. Kpt. Jaroše

Jakub Vančura, G Brno, tř. Kpt. Jaroše
4. Tomáš Novotný, G Brno, tř. Kpt. Jaroše
5. Tadeáš Kučera, G Brno, tř. Kpt. Jaroše
6. David Bainar, G Brno, tř. Kpt. Jaroše

7.-8. Kristián Kozák, G Matyáše Lercha, Brno
Magdalena Šefferová, G Brno-Řečkovice

9. Albert Stehlík, Biskupské G Brno

Kategorie C

1. Ondřej Muller, G Břeclav
2.-3. Veronika Ambrožová, G Brno, tř. Kpt. Jaroše

Eliška Špačková, Biskupské G Brno
4.-6. Pavel Břoušek, G Brno, tř. Kpt. Jaroše

Nella Fedorowyczová, G Brno, tř. Kpt. Jaroše
Pavel Hranáč, G Brno, tř. Kpt. Jaroše
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7.-8. Kristýna Bukvišová, G Brno, tř. Kpt. Jaroše
Daniel Maršálek, G Brno, tř. Kpt. Jaroše

Kategorie P1.Hynek Jemelík, G Brno, tř. Kpt. Jaroše
2.-3. Vojtěch Hlávka, G a ZUŠ Šlapanice

Bedřich Said, G Brno, tř. Kpt. Jaroše4.Vojtěch Přikryl, G Brno, tř. Kpt. Jaroše

Zlínský kraj

Kategorie A

1. Petr Pecha, SPSS Vsetín
2. Michal Opler, Masarykovo G, Vsetín
3. Adam Vyškovský, Masarykovo G, Vsetín
4. Jan Mikel: G Rožnov pod Radhoštem
5. Daniel Viktorín, G Zlín, nám. TGM
6. Matěj Kocián, G Zlín, Lesní čtvrť
7. Jakub Náplava, G Uherské Hradiště
8. Martin Maňas, G J. A. Komenského, Uherský Brod
9. Tomáš Trčka, G Zlín, Lesní čtvrť

Kategorie В

1.-2. Michal Buráň, G J. A. Komenského, Uherský Brod
Jan Mikel, G Rožnov pod Radhoštem

3.-4. Jťí&a Jamková, G Uherské Hradiště
Barbora Kociánová, G Zlín, Lesní čtvrť

5. Petr Hloušek, G J. A. Komenského, Uherský Brod
6. Jan Mrázek, G Kroměříž

7.-8. Michal Janoušek, G Zlín, nám. TGM
Jakub Konečný, G Uherské Hradiště

Kategorie C

1. Tomáš Lysoněk, G Uherské Hradiště
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2. Jiří Zeman, G Zlín, Lesní čtvrť
3. Martin Balouch, G Uherské Hradiště
4. Lukáš Tomaník, G Zlín, Lesní čtvrť

Kategorie P1.Peír Pecha, SPSS Vsetín

Olomoucký kraj

Kategorie A

1. Jan Tvrdík, Cyrilometodějské G Prostějov
2. Daniel Frýbort, Cyrilometodějské G Prostějov
3. Lubomír Grund, G Zábřeh
4. Jiří Veselý, G J. Wolkera, Prostějov

5.-6. Jan Kostečky, VOŠaSOŠ Šumperk
Dominik Lachman, G Olomouc-Hejčín

7. Pavel Francírek, G Kojetín
8. Kareč Beneš, G Kojetín
9. Eva Gocníková, G J. Škody, Přerov

10.-13. Alena Harlenderová, Slovanské G Olomouc
David Kucharčík, G Šternberk
Jiří Polcr, G Olomouc-Hejčín
Marek Raclavský, G Kojetín

Kategorie В

1. Lubomír Grund, G Zábřeh
2. Jakub Kopřiva, Slovanské G Olomouc

Kategorie C

1. Jana Dobešová, Slovanské G Olomouc
2. Petr Vincena, G J. Škody, Přerov
3. Lukáš Knob, G Kojetín
4. Zuzana Gocníková, G J. Škody, Přerov
5. Markéta Calábková, G J. Škody, Přerov
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6. Tomáš Kremel, G J. Škody, Přerov
7. Vojtěch Hamala, G Zábřeh
8. Ondřej Skácel, G Šternberk

Kategorie P

1. Jiří Eichler, Slovanské G Olomouc
2. Petr Laitoch, G Olomouc-Hejčín

Moravskoslezský kraj

Kategorie A

1.-2. Lukáš Folwarczný, G Havířov, Komenského
Jakub Solovský, G M. Koperníka, Bílovec3.Michal Kopf, Slezské G Opava

4.-6. Jiří Biolek, G P. Bezruce, Frýdek-Místek
Ondřej Bouchala, G Havířov, Komenského
Helena Svobodová, G Frýdlant nad Ostravicí

7. Jiří Skácel, G Příbor
8.-9. Adam Sikora, G Český Těšín

Ondřej Vejpustek: Wichterlovo G, Ostrava-Poruba
10. Pavel Trutman, G M. Koperníka, Bílovec

Kategorie В

1.-2. Kateřina Solovská, G M. Koperníka, Bílovec
Jose/ Svoboda, G Frýdlant nad Ostravicí

3. Matěj Vaněk, G P. Bezruce, Frýdek-Místek
4. Václav Kapsia, G M. Koperníka, Bílovec

5.-6. Albert Štěrba, G P. Bezruce, Frýdek-Místek
Tereza Štefková, G Rýmařov

7.-8. Martin Poloch, Matiční G, Ostrava
Magdaléna Žváčková, G Rýmařov
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Kategorie С1.Martin Raszyk, G Karviná
2.-3. Tadeáš Kmenta, G Frýdlant nad Ostravicí

Daniel Štěrba, Mendelovo G, Opava

Kategorie P

1. Lukáš Folwarczný, G Havířov, Komenského
2. Martin Raszyk, G Karviná
3. Ondřej Bouchala, G Havířov, Komenského
4. Pavel Trutman, G M. Koperníka, Bílovec
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Výsledky ústředního kola 60. ročníku MO
kategorie A

Vítězové

1. Anh Dung Le, 3/6 G Tachov
2. Tomáš Zeman, 8/8 G J. Keplera, Praha 6
3. Michael Bílý, 8/8 G J. Vrchlického, Klatovy
4. Miroslav Koblížek, 8/8 G Žamberk
5. Jan Kuchařík, 3/4 G Jihlava

6.-9. Tadeáš Dohnal, 8/8 G Cli. Dopplera, Praha 5
Filip Hlásek, 8/8 G Plzeň, Mikulášské nám.
Jakub Solovský, 4/4 G M. Koperníka, Bílovec
Štěpán Šimsa, 6/8 G J. Jungmanna, Litoměřice

10.11. Ondřej Bartoš, 7/8 G Zdar nad Sázavou
Dan Šafka, 8/8 G J. Keplera, Praha 6

41b.

37 b.

34 b.

28 b.

25 b.

23 b.

23 b.

23 b.

23 b.

22 b.

22 b.

Další úspěšní řešitelé

12.-13. Jiří Biolek, 6/6 G P. Bezruce, Frýdek-Místek
Lubomír Grund, 6/8 G Zábřeh

14. Jan Sopoušek, 8/8 G Brno-Rečkovice
15.-20. Hana Dlouhá, 6/8 G J. Keplera, Praha 6

Matěj Hudec, 4/4 G Liberec, Jeronýmova
Dominik Steinhauser, 3/4 G J. Keplera, Praha 6
Jan Stopka, 3/4 G Brno, tř. Kpt. Jaroše
Helena Svobodová, 6/6 G Frýdlant nad Ostravicí
Dominik Teiml, 4/6 Anglické G, Praha 8

21b.

21b.

20 b.

19 b.

19 b.

19 b.

19 b.

19 b.

19 b.
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Výsledky ústředního kola 60. ročníku MO
kategorie P

Vítězové

1. Hynek Jemelík, 4/4 G Brno, tř. Kpt. Jaroše
2. Lukáš Folwarczný, 7/8 G Havířov, Komenského
3. Filip Hlásek, 8/8 G Plzeň, Mikulášské nám.
4. Jakub Zika, 8/8 G Praha 6, Nad Alejí
5. Vojtěch Přikryl, 4/4 G Brno, tř. Kpt. Jaroše

6.-7. David Krška, 4/4 G České Budějovice, J. V. Jirsíka
Michal Mojzík, 4/4 SPŠ a VOŠ Chomutov

45 b.

37 b.

36 b.

33 b.

29 b.

27 b.

27b.

Další úspěšní řešitelé

8. Jiří Setnička, 6/6 G Praha 9-Čakovice
9. Jan Polášek, 8/8 G Turnov

10. Štěpán Šimsa, 6/8 G J. Jungmanna, Litoměřice
11.-12. Daniel Stahr, 8/8 G J. Jungmanna, Litoměřice

Martin Zikmund, 7/8 G Turnov
13. Martin Raszyk, 1/4 G Karviná
14. Vojtěch Hlávka, 6/8 G a ZUŠ Šlapanice
15. Ondřej Hiibsch, 1/4 G Praha 6, Arabská

26 b.

25 b.
24 b.

23 b.

23 b.

22 b.

19 b.

18 b.
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Kategorie С

Texty úloh

C - I - 1

Lucie napsala na tabuli dvě nenulová čísla. Potom mezi ně postupně
vkládala znaménka plus, mínus, krát a děleno a všechny čtyři příklady
správně vypočítala. Mezi výsledky byly pouze dvě různé hodnoty. Jaká
dvě čísla mohla Lucie na tabuli napsat? (Peter Novotný)

С - I - 2

Dokažte, že výrazy 23x + y, 19x + 3у jsou dělitelné číslem 50 pro stejné
(Jaroslav Zhouf)dvojice přirozených čísel x, у.

C - I - 3

Máme čtverec ABCD se stranou délky 1 cm. Body К a L jsou středy
stran DA a DC. Bod P leží na straně AB tak, že \BP\ — 2|AP|. Bod
Q leží na straně BC tak, že \CQ\ = 2\BQ\. Úsečky KQ a PL se proti-
nají v bodě X. Obsahy čtyřúhelníků APXK, BQXP, QCLX a LDKX
označíme postupně Sa, Sb, Sc, Sd (obr. 1).
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a) Dokažte, že Sb = Sd-
b) Vypočtěte rozdíl Sc — Sa-
c) Vysvětlete, proč neplatí Sa + Sc = Sb + Sd- (Peter Novotný)

С - I - 4

Ve skupině n žáků spolu někteří kamarádí. Víme, že každý má mezi
ostatními aspoň čtyři kamarády. Učitelka chce žáky rozdělit do dvou nej-
výše čtyřčlenných skupin tak, že každý bude mít ve své skupině alespoň
jednoho kamaráda.
a) Ukažte, že v případě n = 7 lze žáky požadovaným způsobem rozdělit.
b) Zjistěte, zda lze žáky takto rozdělit i v případě n = 8.

(Tomáš Juřík)

С - I - 5

Dokažte, že nejmenší společný násobek [a,b] a největší společný dělitel
(a, b) libovolných dvou kladných celých čísel a, b splňují nerovnost

a • (a, b) + b • [a, b] ^ 2ab.

(Jaromír Šimša)Zjistěte, kdy v této nerovnosti nastane rovnost.

C - I - 6

Je dán lichoběžník ABCD. Střed základny AB označme P. Uvažujme
rovnoběžku se základnou AB, která protíná úsečky AD, PD, PC, BC
postupně v bodech К, L, M, N.
a) Dokažte, že \KL\ = \MN\.
b) Určete polohu přímky KL tak, aby platilo i \KL\ — \LM\.

(Jaroslav Zhouf)

C - S - 1

Po okruhu běhají dva atleti, každý jinou konstantní rychlostí. Jestliže běží
opačnými směry, potkávají se každých 10 minut, jestliže běží stejným
směrem, potkávají se každých 40 minut. Za jakou dobu uběhne okruh
rychlejší atlet? (Vojtech Bálint)
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С - S - 2

Je dán čtverec se stranou délky 6 cm. Najděte množinu středů všech pří-
ček čtverce, které ho dělí na dva čtyřúhelníky, z nichž jeden má obsah
12 cm2. (Příčkou čtverce rozumíme úsečku, jejíž krajní body leží na stra-
nách čtverce.) (Pavel Leischner)

C - S - 3

Nechť x, у jsou kladná celá čísla taková, že obě čísla Зх + by а 5ж + 2у jsou
dělitelná číslem 60. Zdůvodněte, proč číslo 60 dělí také součet 2x + 3y.

(Jaromír Simša)

C - II - 1

Na tabuli jsou napsána právě tři (ne nutně různá) reálná čísla. Víme, že
součet libovolných dvou z nich je tam napsán také. Určete všechny trojice
takových čísel. (Ján Mazák)

С - II - 2

Najděte všechna kladná celá čísla n, pro která je číslo n2 + 6n druhou
mocninou celého čísla. (Vojtech Bálinť)

C - II - 3

Lichoběžník ABCD má základny AB a CD po řadě délek 18 cm a 6 cm.
Pro bod E strany AB platí 2 |AE\ = \EB\. Těžiště K, L, M trojúhelníků
po řadě ADE, CDE, ВСЕ tvoří vrcholy rovnostranného trojúhelníku.
a) Dokažte, že přímky KM a CM svírají pravý úhel.
b) Vypočtěte délky ramen lichoběžníku ABCD. (Pavel Calábek)

С - II - 4

Nechť x, y, z jsou kladná reálná čísla. Ukažte, že čísla x + у + z — xyz a

xy + yz + zx — 3 nemohou být záporná současně.
(Stanislava Sojáková)
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Řešení úloh

C - I - 1

Označme hledaná čísla a, 6. Protože b Ф 0, je nutně a + b ^ a — b. Každé
z čísel a ■ 6, a : b je proto rovno bud a 4- 6, anebo a — b. Stačí tedy rozebrat
čtyři případy a v každém z nich vyřešit soustavu rovnic. Ukážeme si
trochu důmyslnější postup.

Kdyby platilo

a + b = a ■ b a a — b — a : b

anebo

a + b — a : b a a — b = a ■ 6,

vynásobením rovností bychom v obou případech dostali a2 — b2 = a2, což
odporuje podmínce b 7^ 0. Proto jsou čísla a ■ b a a : b bud obě rovna
a + b, anebo obě rovna a — b. Tak či tak musí platit a ■ b = a : 6, odkud
po úpravě a(b2 — 1) = 0. Protože a 7^ 0, nutně b G {1, —1}.

Pokud je tedy 6=1, jsou čtyři výsledky postupně a + 1, a — 1, a, a,
což jsou pro libovolné a tři různé hodnoty.

Pro 6 = — 1 dostáváme výsledky a — 1, a + 1, —a, —a. To budou dvě
různá čísla, právě když a — 1 = —a anebo a + 1 = —a. V prvním případě
dostáváme a = ve druhém a — —

Lucie mohla na začátku na tabuli napsat buď čísla | a -1, anebo
čísla — \ a —1.

С - I - 2

Předpokládejme, že pro dvojici přirozených čísel x, у platí 50 | 23x + y.
Potom pro nějaké přirozené číslo к platí 23ж + у = 50к. Z této rovnosti
dostaneme у = 50A; — 23ж, tedy 19x + 3у = 19x + 3(50/c — 23x) = 150A: —
— 50ж = 50(3A: — x), takže číslo 19x + 3у je rovněž násobkem čísla 50.

Podobně to funguje i z druhé strany. Jestliže pro nějakou dvojici přiro-
zených čísel x, у platí 50 | \9x + 2>y, je 19ж + 3у = 50/ pro nějaké přirozené
číslo l. Z této rovnosti vyjádříme číslo y; dostaneme у = (50/ — 19ж)/3
(další postup by byl podobný, i kdybychom vyjádřili x místo y). Po do-
sazení vyjde

50/ - 19ж
_ 69x + 50/ - 19ж 50 • (x + /)23ж + у = 23a; + 3 3 3

32



O výsledném zlomku víme, že je to přirozené číslo. Čitatel toho zlomku je
dělitelný číslem 50. Ve jmenovateli je jen číslo 3, které je s 50 nesoudělné,
proto se číslo 50 nemá s čím ze jmenovatele zkrátit, tudíž číslo 23x + у

je dělitelné 50.

Jiné řešení. Zřejmě 3 • (23rr + у) — (19ж + 3у) = 50ж, proto jestliže
50 dělí jedno z čísel 23ж + у а 19ж + 3у, dělí i druhé z nich.

C - I - 3

a) Čtyřúhelníky ABQK a DAPL jsou shodné (jeden z nich je obra-
zem druhého v otočení o 90° se středem ve středu čtverce ABCD). Proto
mají i stejný obsah, tedy Sa + Sb = Sa + Sd- Z toho hned dostáváme
Sb — Sd-

b) Snadno se nám podaří vypočítat obsah pravoúhlého lichoběžníku
ABQK, neboť známe délky základen i výšku. Dostaneme Sa + Sb =
— (| + |) • | cm2. Podobně výpočtem obsahu lichoběžníku PBCL
dostaneme Sc + Sb — (\ + §) ' \ = J2 cm2 ■ Odečtením první získané
rovnosti od druhé dostáváme Sc — Sa = j2 ~ ^ = | cm2-

c) Nerovnost mezi obsahy Sa + Sc a Sb + Sd (jejichž přímé výpočty
jsou nad síly žáků 1. ročníku) můžeme zdůvodnit následujícím způsobem.
Součet těchto dvou obsahů je lem2, takže se nerovnají, právě když je
jeden z nich menší než | cm2. Bude to obsah Sb + Sd (rovný 2Sb, jak
už víme), když ukážeme, že obsah Sb je menší než |cm2. Uděláme to
tak, že do celého čtverce ABCD umístíme bez překrytí čtyři exempláře
dotyčného čtyřúhelníku PBQX. Jak, to je patrné z obr. 2, kde M, N značí
středy stran BC, AB a R, S body, jež dělí strany CD, DA v poměru 1 : 2.

L R LC CD D

S s

к M к M

Q Q

A AВ ВP N P N

Obr. 2 Obr. 3
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Jiné řešení části c). Tentokrát místo nerovnosti Sb + Sjj < | cm2
dokážeme ekvivalentní nerovnost Sa + Sc > |cm2. Proto se pokusíme
„přemístit" čtyřúhelník APXK tak, aby ležel při čtyřúhelníku XQCL
a aby se jejich obsahy daly i geometricky sečíst. Uhly AKQ a DLP jsou
shodné a \AK\
ve čtverci ABCD do jeho „rohu" D tak, že se ke čtyřúhelníku XQCL
„přimkne" podél strany LX svou stranou LT, kde Y je průsečík úseček
SM a PL z původního řešení (obr. 3). Obsah Sa + Sc je pak obsahem
šestiúhelníku DSYXQC. Proč je větší než | cm2, lze zdůvodnit například
takto:

\DL\, proto můžeme čtyřúhelník APXK přemístit

Úsečka spojující bod L se středem U úsečky KQ protne úsečku SM
v jejím středu V. Čtyřúhelník UQMV má obsah rovný polovině obsahu
rovnoběžníku КQMS, tedy rovný obsahu trojúhelníku КMS. Proto má
šestiúhelník DSVUQC obsah rovný obsahu čtyřúhelníku KMCD, tj.
polovině obsahu čtverce ABCD. Obsah Sa+Sc je ještě větší, a to o obsah
čtyřúhelníku XUVY. Je tedy vskutku Sa P Sc > \ cm2.

С - I - 4

a) Jediný způsob, jak rozdělit 7 žáků na dvě nejvýše čtyřčlenné skupi-
ny, je mít jednu trojčlennou a jednu čtyřčlennou skupinu. Každý žák ze

čtyřčlenné skupiny přitom bude mít ve své skupině kamaráda při jakém-
koli rozdělení, protože se nemůže stát, že by všichni jeho kamarádi byli
v trojčlenné skupině (jsou aspoň čtyři).

Takže stačí rozdělit žáky tak, aby každý v trojčlenné skupině v ní měl
kamaráda. Proto do ní dáme kteréhokoli ze žáků а к němu některé dva

jeho kamarády.

b) Vezměme si jakékoli rozdělení 8 žáků na dvě čtyřčlenné skupiny
(skupiny s jiným počtem žáků nepřipadají v úvahu). Jestliže toto rozdě-
lení nevyhovuje učitelčině záměru, máme nějakého žáka X, jenž je zle
zařazen má všechny své čtyři kamarády А, Б, C, D ve druhé skupině.
Ukážeme, že umíme vyměnit X a některého ze žáků А, В, C, D tak, že
celkový počet zle zařazených žáků v nově vzniklých skupinách se oproti
původnímu stavu zmenší.

Po libovolné ze čtyř výměn přicházejících do úvahy přestane být X
zle zařazen a všichni tři žáci, kteří se s ním octnou ve skupině, budou
dobře zařazeni, neboť jsou to jeho kamarádi. Žáci K, L, M, kteří byli před
výměnou ve skupině s X, mohou být po výměně zle zařazeni jen tehdy,
pokud byli zle zařazeni i předtím (neboť X není kamarádem ani jednoho
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z nich). Protože žák К má čtyři kamarády a nekamarádí se s X, musí
mít aspoň jednoho kamaráda Y i ve skupině obsahující žáky А, В, C, D.
Právě tento žák Y se hodí pro zamýšlenou výměnu s žákem X, neboť po
ní i on bude mít ve své nové skupině kamaráda

Ukázali jsme tedy, že výměnou žáků X a Y počet zle zařazených
žáků klesne. Dostaneme nějaké nové rozdělení; jestliže v něm je aspoň
jeden žák zle zařazen, můžeme zopakovat předchozí postup a opět snížit
počet zle zařazených žáků. Po nejvýše osmi krocích dostaneme rozdělení,
v němž už nejsou žádní zle zařazení žáci.

Jiné řešení části b). Uvažujme všechna možná rozdělení osmi žáků
do dvou čtyřčlenných skupin. Rozdělení, kde někdo nemá ve své skupině
žádného kamaráda, budeme nazývat zlá, zbylá budou dobrá.

Kolik je zlých rozdělení? Jestliže má žák X aspoň pět kamarádů,
aspoň jeden z nich musí být v jeho skupině. Jestliže má žák X jen čtyři
kamarády a jsou-li všichni ve druhé skupině, máme jen jedno jediné rozdě-
lení s touto vlastností. Celkově tedy к danému žákovi X existuje nejvýše
jedno rozdělení, jež je zlé. Za X můžeme vzít jednoho z 8 různých žáků,
proto zlých rozdělení je nejvýše 8 (některá možná počítáme víckrát). Při-
tom všech rozdělení je (3) = 35, tedy aspoň 27 z nich je dobrých.

totiž žáka K.

С - I - 5

Nerovnost by bylo lehké dokázat, kdyby některý ze dvou sčítanců na levé
straně byl sám aspoň roven pravé straně. Číslo [a, b] je zjevně násobkem
čísla a.

Jestliže [a, b] ^ 2a, pak 5[a, b] ^ 2ab a v dané nerovnosti platí dokonce
ostrá nerovnost, neboť číslo a(a, b) je kladné.

Jestliže [a, b] < 2a, tak nezůstává jiná možnost než [a, b] = a. To však
nastane, jen když b | а. V tomto případě (a, b) = b a v dané nerovnosti
nastane rovnost.

Jiné řešení. Označme d = (a, 6), takže a = ud ab = vd pro nesoudělná
přirozená čísla и, v. Odtud hned plyne, že [a, b] = uvd. Protože

a • (a, b) + b ■ [a, b\ = ud2 + uv2d2 = u( 1 + v2)d2,
2ab = 2uvd2,

je vzhledem к nerovnosti ud2 > 0 nerovnost ze zadání ekvivalentní s ne-
rovností 1 + v2 ^ 2u, tedy (v — l)2 ^ 0, což platí pro každé v. Rovnost
nastane, právě když v = 1, tedy b \ a.
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Jiné řešení. Označme d = (a, b). Je známo, že [a, b\ ■ (a, b) = ab. Po vy-
jádření [a, b] z tohoto vztahu, dosazení do dané nerovnosti a ekvivalentní
úpravě dostaneme ekvivalentní nerovnost d2 + b2 ^ 2bd, která platí, neboť
(d — b)2 ^ 0. Rovnost nastává jen pro d = b, tedy pokud b \ a.

C - I - 6

a) Přímky AB, CD a iúL jsou rovnoběžné, proto v dané situaci do-
vedeme najít vícero dvojic trojúhelníků podobných vždy podle věty uu.

Tyto podobnosti lze výhodně zapsat pomocí poměrů vzdáleností, což
využijeme v důkazu toho, že úsečky KL a MN mají stejnou délku.

Označme x vzdálenost přímek AB a KL а у vzdálenost přímek KL
a CD. Pomocí těchto vzdáleností nyní vyjádříme koeficienty podobnosti
odpovídajících trojúhelníků.

Trojúhelníky APD a KLD jsou podobné, proto

\KL\ У

\AP\ x + y

Trojúhelníky BPC a NMC jsou podobné, proto

\MN\ У

\PB\ x + y

Spojením obou rovností dostáváme

\KL\ \MN\У

\AP | \PB\x + y

a protože \AP\ = \PB\, plyne odtud \KL\ = \MN\.
b) Chceme sestrojit bod L úsečky PD takový, že \KL\ = \LM\. Ro-

zebereme dva případy podle toho, zda je či není přímka PC rovnoběžná
s přímkou AD.

Jestliže je přímka PC rovnoběžná s AD, je APCD rovnoběžník a je-
diný vyhovující bod L je střed úsečky PD neboli průsečík úhlopříček
rovnoběžníku APCD (podmínka \KL\ = \LM\ tu vyjadřuje shodnost
trojúhelníků KLD a MLP, která nastane, právě když \LD\ — \LP\,
obr. 4).

Jestliže se přímky PC a AD protínají v nějakém bodě R (obr. 5), bude
bod L průsečíkem úsečky DP s přímkou, na níž leží těžnice trojúhelníku
APR z vrcholu R. Plyne to z poznatku, že s úsečkou AP jsou podle
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Obr. 5Obr. 4

středu R stejnolehlé všechny v úvahu připadající úsečky KM, a proto
středy všech těchto úseček leží na přímce jdoucí bodem R a středem
úsečky AP.

Z uvedených konstrukcí plyne, že vyhovující bod L je vždy jediný,
existuje tudíž právě jedna rovnoběžka s přímkou AB s požadovanými
vlastnostmi.

Poznámka. Jak jsme uvedli v řešení, pokud jsou přímky PC a AD
rovnoběžné, je hledaným bodem L, pro který platí \KL\ — \LM\, průsečík
úhlopříček rovnoběžníku APCD. Pokud přímky PC a AD rovnoběžné
nejsou, tj. APCD je lichoběžník, je i v tomto případě průsečík jeho úhlo-
příček výborným kandidátem pro takový bod L. Výpočtem s využitím
podobnosti se dá ukázat, že tomu tak vskutku je, takže hledaným bo-
dem L je v každém případě průsečík úhlopříček čtyřúhelníku APCD.

C - S - 1

Označme rychlosti běžců v\ a V2 tak, že v\ > V2 (rychlosti udáváme
v okruzích za minutu). Představme si, že atleti vystartují ze stejného
místa, ale opačným směrem. V okamžiku jejich dalšího setkání po 10 mi-
nutách bude součet délek obou proběhnutých úseků odpovídat přesně
délce jednoho okruhu, tedy 10ui + 10г>2 = 1.

Jestliže běží atleti ze stejného místa stejným směrem, dojde к dalšímu
setkání, jakmile rychlejší atlet zaběhne o jeden okruh víc než ten porna-

lejší. Proto 40vi — 40v2 — 1.

37



Dostali jsme soustavu dvou lineárních rovnic s neznámými v\, V2'.

10ui + 10u2 = 1,

40ui — 40u2 = 1,

kterou vyřešíme například tak, že ke čtyřnásobku první rovnice přičteme
druhou, čímž dostaneme 80vi = 5 neboli v\ = Zajímá nás, jak dlouho
trvá rychlejšímu běžci proběhnout jeden okruh, tedy hodnota podílu l/v\.
Po dosazení vypočtené hodnoty v\ dostaneme odpověď. 16 minut.

Poznámka. Úlohu lze rovněž řešit úvahou: za 40 minut uběhnou at-

leti dohromady 4 okruhy (to plyne z první podmínky), přitom rychlejší
o 1 okruh více než pomalejší (to plyne z druhé podmínky). To tedy zna-

mená, že první za uvedenou dobu uběhne 2,5 okruhu a druhý 1,5 okruhu,
takže rychlejší uběhne jeden okruh za 40/2,5 neboli 16 minut.

C - S - 2

Jestliže příčka dělí čtverec na dva čtyřúhelníky, musejí její koncové body
ležet na protilehlých stranách čtverce. V takovém případě jsou oba čtyř-
úhelníky lichoběžníky nebo pravoúhelníky (pro potřeby tohoto řešení bu-
deme pravoúhelník považovat za speciální lichoběžník). Označme daný
čtverec ABCD, koncové body příčky označme К a L. Předpokládejme,
že bod К leží na straně AD, potom bod L leží na straně BC. Jeden ze

čtyřúhelníků KABL a KDCL má podle zadání obsah 12 cm2; nechť je
to např. lichoběžník KABL.

Obsah lichoběžníku vypočteme jako součin jeho výšky s délkou
střední příčky. Výška je v našem případě rovna délce strany čtverce, tedy
6 cm. Jeho střední příčka má tudíž délku 2 cm. Z toho plyne, že střed
úsečky KL musí ležet na ose strany AB ve vzdálenosti 2 cm od středu
strany AB. Platí to i naopak: jestliže střed úsečky KL leží v popsané
poloze, bude čtyřúhelník KABL lichoběžník s obsahem 12cm2.

Budeme-li místo lichoběžníku KABL uvažovat lichoběžník KDCL,
vyjde střed příčky KL na osu úsečky CD ve vzdálenosti 2 cm od středu
strany CD.

Pokud příčka KL spojuje body na stranách AB a CD, dostaneme
další dva možné body ležící na spojnici středů úseček AD a BC. Hledanou
množinu tedy tvoří čtyři body, které leží na příčkách spojujících středy
protilehlých stran čtverce ve vzdálenosti 1 cm od jeho středu.
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С - S - 3

Na základě předpokladu ze zadání víme, že existují kladná celá čísla m
a n, pro která platí

Зж + 5у — 60m,

5ж + 2у = 60n.

Na tyto vztahy se můžeme dívat jako na soustavu lineárních rovnic s ne-

známými rai/a parametry man. Vyřešit ji umíme libovolnou stan-
dardní metodou, například od dvojnásobku první rovnice odečteme pěti-
násobek druhé a vyjádříme ж, potom dopočítáme y. Dostaneme

60(5m — 3n)
У = T7. •

60(5n — 2m)
x =

1919

Protože čísla 19 a 60 jsou nesoudělná, jsou obě čísla x а у dělitelná 60.
Proto i součet 2x + 3у je dělitelný 60.

Jiné řešení. Víme, že 60 = 3 • 4 • 5. Přitom čísla 3, 4, 5 jsou po dvou
nesoudělná, proto na důkaz dělitelnosti 60 stačí dokázat dělitelnost jed-
notlivými čísly.

Protože číslo Зж + 5у je dělitelné 5, je i ж dělitelné 5. Podobně z relace
5 | 5ж + 2y plyne 5 | y. Proto 5 dělí i 2x + 3y.

Protože číslo Зж+5у je dělitelné 3, je у dělitelné 3. A protože 3 | 5ж+2у,
je také 3 | 5ж, a tedy 3 | x. Proto 3 dělí i 2x + 3y.

Protože 4 | Зх + by a 4 | 5ж + 2y, je 4 | (Зж + 5у) + (5ж + 2у) = 8ж + 7у,
takže 4 | у. A protože například 4 | Зж + by, je také 4 | Зж neboli 4
Proto 4 dělí i 2ж + 3у.

Jiné řešení. Vyjádříme výraz 2ж+3у pomocí Зж+5у а 5ж+2у. Budeme
hledat čísla р a q taková, že 2ж + 3у — р(Зж + 5у) + q(5ж + 2у) pro každou
dvojici celých čísel ж, у. Jednoduchou úpravou dostaneme rovnici

ж.

(2 — 3p — bq)x + (3 — bp — 2q)y — 0. (*)

Budou-li hledaná čísla p a q splňovat soustavu

3p + bq = 2,

bp + 2q = 3,

bude zřejmě rovnost (*) splněna pro každou dvojici ж, у. Vyřešením sou-
stavy dostaneme p

vyjádření
11/19, q 1/19. Dosazením do (*) dostáváme

19(2ж + 3у) — 11(3ж + by) + (5ж + 2у)
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z něhož plyne, že spolu s čísly 3x + 5y i 5x + 2у je současně dělitelné 60
i číslo 2x + 3y, protože čísla 19 a 60 jsou nesoudělná.

C - II - 1

Označme čísla napsaná na tabuli a, 6, c. Součet a + b se též nalézá na

tabuli, je tedy roven jednomu z čísel a, 6, c. Kdyby a + b bylo rovno a
nebo b, byla by na tabuli aspoň jedna nula. Rozebereme proto tři případy
podle počtu nul napsaných na tabuli.

Jsou-li na tabuli aspoň dvě nuly, snadno se přesvědčíme, že součet
každých dvou čísel z tabule je tam rovněž. Dostáváme, že trojice t, 0,0 je
pro libovolné reálné číslo t řešením úlohy.

Je-li na tabuli právě jedna nula, je tam trojice a, 6,0, kde a i b jsou
nenulová čísla. Součet a + b tudíž není roven ani a, ani 6, musí tedy být
roven 0. Dostáváme tak další trojici t, — ř, 0, která je řešením úlohy pro
libovolné reálné číslo t.

Jestliže na tabuli není ani jedna nula, součet a + b není roven ani a,
ani b, proto a + b — c. Ze stejných důvodů }eb + c = aac + a — b.
Dostali jsme soustavu tří lineárních rovnic s neznámými a, 6, c, kterou
můžeme vyřešit. Ovšem hned z prvních dvou rovnic po dosazení vyjde
6+ (a + b) = a neboli 6 = 0. To je ve sporu s tím, že na tabuli žádná nula
není.

Závěr. Úloze vyhovují trojice t, 0,0 a t, —t, 0 pro libovolné reálné číslo t
a žádné jiné.

С - II - 2

Zřejmě n2 + 6n > n2 a zároveň n2 + 6n < n2 + 6n + 9 = (n + 3)2.
V uvedeném rozmezí leží jen dvě druhé mocniny celých čísel: (n + l)2
a (n + 2)2.

V prvním případě máme n2 + 6n = n2 + 2n + 1, tedy 4n = 1, tomu
však žádné celé číslo n nevyhovuje.

V druhém případě máme n2 + 6n — n2 + 4n + 4, tedy 2n = 4. Dostá-
váme tak jediné řešení n = 2.

Jiné řešení. Budeme zkoumat rozklad n2 + 6n = n(n + 6). Společný
dělitel obou čísel n a n + 6 musí dělit i jejich rozdíl, proto jejich největ-
ším společným dělitelem mohou být jen čísla 1, 2, 3 nebo 6. Tyto čtyři
možnosti rozebereme.
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Kdyby byla čísla n a n + 6 nesoudělná, muselo by být každé z nich
druhou mocninou. Rozdíl dvou druhých mocnin přirozených čísel však
nikdy není 6. Pro malá čísla se o tom snadno přesvědčíme, a pro к ^ 4
už je rozdíl byť i jen sousedních čtverců к2 а (к — l)2 aspoň 7. Vlastnost,
že 1, 3, 5 a 7 jsou čtyři nejmenší rozdíly dvou druhých mocnin, využijeme
i dále.

Je-li největším společným dělitelem čísel n a n + 6 číslo 2, je n —

= 2m pro vhodné m, které navíc není dělitelné třemi. Jestliže n(n + 6) =
= 4m(m + 3) je čtverec, musí být i m(m + 3) čtverec. Čísla m a m + 3
jsou však nesoudělná, musí proto být každé z nich druhou mocninou
přirozeného čísla. To nastane jen pro m — 1 neboli n = 2. Snadno ověříme,
že n(n + 6) je pak vskutku druhou mocninou celého čísla.

Je-li největším společným dělitelem čísel n a n + 6 číslo 3, je n = 3m
pro vhodné liché m. Jestliže n(n + 6) = 9m(m + 2) je čtverec, musejí
být nesoudělná čísla m a m + 2 rovněž čtverce. Takové dva čtverce však
neexistují.

Je-li největším společným dělitelem čísel n a n + 6 číslo 6, je n = 6m
pro vhodné m. Jestliže n(n + 6) = 36m(m + 1) je čtverec, musejí být
čtverce i obě nesoudělná čísla m a m + 1, což nastane jen pro m = 0, my
však hledáme jen kladná čísla n.

Úloze vyhovuje jedině n = 2.

C - II - 3

Čtyřúhelník AECD je rovnoběžník, proto-
že jeho strany AE a CD jsou rovnoběžné
a stejně dlouhé (obě měří 6 cm). Na jeho úhlo-
příčce AC tak leží těžnice trojúhelníku ADE
z vrcholu A i těžnice trojúhelníku CDE z vr-
cholu C, a proto na této přímce leží i body К
a L (obr. 6). Navíc víme, že těžiště trojúhel-
niku dělí jeho těžnice v poměru 2:1, proto
jsou úsečky AK, KL a LC stejně dlouhé.

Bod L je středem úsečky КС, proto
na ose souměrnosti úsečky KM leží nejen
výška rovnostranného trojúhelníku KLM, ale i střední příčka trojúhel-
niku KMC. Proto je přímka CM kolmá na KM.

Zbývá vypočítat délky ramen lichoběžníku ABCD. Označme P střed
úsečky EB. Protože CM je kolmá na KM, je těžnice CP kolmá na

A E P В

Obr. 6
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ЕВ, takže trojúhelník EBC je rovnoramenný, a tudíž i daný lichoběžník
ABCD je rovnoramenný. Délku ramene BC nyní vypočteme z právo-
úhlého trojúhelníku PBC, v němž známe délku odvěsny PB. Pro druhou
odvěsnu CP zřejmě platí

\CP\ = l\CM\ = 3-^-\KM\,
jak snadno plyne z vlastností trojúhelníku KMC. A protože \KM\ =
= ||AP| z podobnosti trojúhelníků KMC a APC, je (počítáno v centi-
metrech)

\CP\ =3~ \KM\ = 3 . ^ ■ \\AP\ = V3 ■ l\AB\ = 12V3.
Potom

\BC\ = y/\PB\2 + \PC\2 = у/36 + 122 • 3 = 6v/TTl2 - 6>/Í3.

Ramena daného lichoběžníku mají délku бЦТЗст.
Alternativní důkaz kolmosti přímek KM a CM: Protože bod L je

středem úsečky КС a zároveň \LK\ = \LM\, neboť trojúhelník KLM
je rovnostranný, leží bod M na Thaletově kružnici nad průměrem КС,
takže trojúhelník KMC je pravoúhlý.

С - II - 4

Ukážeme, že je-li číslo xy + уz + zx — 3 záporné, je číslo x + у + z — xyz
kladné.

Jestliže xy + yz + zx < 3, je aspoň jedno z čísel xy, уz, zx menší než 1,
např. xy. Pak x + у + z — xyz = x + у + z( 1 — xy) je zjevně součet tří
kladných čísel.

Jiné řešení. Ukážeme, že je-li číslo x + у + z — xyz záporné, pak číslo
xy + yz + zx — 3 je kladné.

Předpokládejme, že x + у + z < xyz. Tím spíš x < xyz. Po zkrácení
kladného čísla x dostaneme уz > 1. Podobně odvodíme odhady xy > 1
a zx > 1. Nyní je stačí sečíst a máme xy + yz + zx > 3.

Jiné řešení. Tvrzení úlohy dokážeme sporem. Předpokládejme, že x +
+ у + z < xyz a zároveň xy + yz + zx < 3. Obě tyto nerovnosti jsou
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symetrické, proto můžeme předpokládat, že čísla x, у, z jsou označena
tak, že 2 je nejmenší. Z druhé nerovnosti dostaneme, že xy < 3. Potom
však x + у + z < xyz < 3+ tedy x + у < 2z. To je však spor s tím, že
číslo z je nejmenší.

Jiné řešení. Jsou-li oba výrazy záporné, je x + у + z menší než 3
a xy -j- yz -(- zx menší než xyz. To jsou nerovnosti mezi kladnými čísly,
jejich vynásobením dostaneme, že 3xyz spolu se šesti dalšími kladnými
členy je menší než 3xyz, což je spor.

Poznámka. Dá se dokázat dokonce víc: jestliže x + у + z < xyz, pak
xy + yz + zx > 9. Při důkazu využijeme nerovnost

1
t + - > 2

t -

která platí pro všechna kladná reálná čísla t, neboť pro taková t je ekvi-
valentní s nerovností (t — l)2 ^ 0.

Když si povšimneme, že platí

/ i 1 1 \
x + y + z - xyz = xyz 1 1 1 ,

\xy уz zx /

seznáme, že uvedené tvrzení plyne z obecně platné nerovnosti

1 1 1
1 1

xy yz zx ) (xy + yz + zx) ^ 9.
Poslední nerovnost dokážeme roznásobením levé strany:

1 1 1
1 1

xy yz zx

, ,40, x + y , y + z , Z + X
J (xy + yz + zx) = 3 H — X У

(í + ^) + (^ + r) + (í + r)\y X / Vz у/ \x z/
>= 3 +

^ 3 + 3-2 = 9.
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Kategorie В

Texty úloh

В - I - 1

V oboru reálných čísel vyřešte soustavu

\Jx2 + y2 = z + 1,

\/y2 + z2 = X + 1,

\JZ2 + X2 — у + 1.

(Tomáš Juřík)

В - I - 2

Uvažujme vnitřní bod P daného obdélníku ABCD a označme po řadě <5,
R obrazy bodu P v souměrnostech podle středů A, C. Předpokládejme,
že přímka QR protne strany AB a BC ve vnitřních bodech M a N.
Sestrojte množinu všech bodů P, pro něž platí \MN\ = |A£?|.

(Jaroslav Švrček)

В - I - 3

Necht а, Ь, c jsou reálná čísla, jejichž součet je 6. Dokažte, že aspoň jedno
z čísel

ab + bc, bc + ca, ca + ab

(Ján Mazák)není větší než 8.

В - I - 4

Najděte všechna celá čísla n, pro něž je zlomek

n3 + 2 010
n2 + 2 010

(Pavel Novotný)roven celému číslu.
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В - I - 5

Zabývejme se otázkou, které trojúhelníky ABC s ostrými úhly při vr-
cholech A & В mají následující vlastnost: Vedeme-li středem výšky z vr-
cholu C tři přímky rovnoběžné se stranami trojúhelníku ABC, protnou
je tyto přímky v šesti bodech ležících na jedné kružnici,
a) Ukažte, že vyhovuje každý trojúhelník ABC s pravým úhlem při vr-

cholu C.

b) Vysvětlete, proč žádný jiný trojúhelník ABC nevyhovuje.
(Jaromír Šimša)

В - I - 6

Určete počet desetimístných čísel, v nichž lze škrtnout dvě sousední čís-
líce, a dostat tak číslo 99krát menší. (Ján Mazák)

В - S - 1

V oboru reálných čísel řešte rovnici

\Jx + 3 + y/x = p

(Vojtech Bálinť)s neznámou x a reálným parametrem p.

В - S - 2

Podél kružnice je rozmístěno 16 reálných čísel se součtem 7.
a) Dokažte, že existuje úsek pěti sousedních čísel se součtem aspoň 2.
b) Určete nejmenší к takové, že v popsané situaci lze vždy nalézt úsek

к sousedních čísel se součtem aspoň 3. (Ján Mazák)

В - S - 3

Vně daného trojúhelníku ABC jsou sestrojeny čtverce ACDE, BCGF.
Dokažte, že \AG\ = \BD\. Dále ukažte, že středy obou čtverců spolu se

středy úseček AB a DG jsou vrcholy čtverce. (Pavel Leischner)
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В - II - 1

Součin kladných reálných čísel a, 6, c je 60 a jejich součet je 15. Dokažte
nerovnost

(a + 6) (a + c) ^ 60

a zjistěte, pro která taková čísla a, 6, c nastane rovnost.
(Jaromír Šimša)

В - II - 2

Najděte všechny dvojice kladných celých čísel a, 6, pro něž číslo b je
dělitelné číslem a a současně číslo 3a + 4 je dělitelné číslem 6+1.

{Pavel Novotný)

В - II - 3

Nechť M, N jsou po řadě vnitřní body stran AB, BC rovnostranného
trojúhelníku ABC, pro něž platí \AM\ : \MB\ = \BN\ : \NC\ = 2:1.
Označme P průsečík přímek AN a CM. Dokažte, že přímky BP a AN

{Jaroslav Švrček)jsou navzájem kolmé.

В - II - 4

Zapíšeme všechna pětimístná čísla, v nichž se každá z číslic 4, 5, 6, 7, 8
vyskytuje právě jednou. Pak jedno (libovolné z nich) škrtneme a všechna
zbývající sečteme. Jaké jsou možné hodnoty ciferného součtu takového
výsledku? {Šárka Gergelitsová)
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Řešení úloh

В - I - 1

Umocněním a odečtením prvních dvou rovností dostaneme x2 — z2 =
= (z + l)2 — (x + l)2, což upravíme na 2(x2 — z2) + 2(x — z) = 0 neboli

(1)(x — z)(x + z + 1) = 0.

Analogicky bychom dostali další dvě rovnice, jež vzniknou z (1) cyklic-
kou záměnou neznámých x —> у —> г. Vzhledem к této symetrii (daná
soustava se nezmění dokonce při libovolné permutaci neznámých) stačí
rozebrat jen následující dvě možnosti:

Pokud x = у = z, přejde původní soustava v jedinou rovnici y/2x2 =
— x + 1, jež má dvě řešení x\^
1 ± \/2,1 ± \/2) je zřejmě řešením i původní soustavy.

Pokud jsou naopak některá dvě z čísel x, y, z různá, například x ^ z,

plyne z (1) rovnost x + z = —1. Dosazením i + 1 = -2 do druhé rovnice
soustavy dostáváme у = 0 a poté ze třetí rovnice vyjde x2 + (x + l)2 =
= 1 neboli x(x + 1) = 0. Poslední rovnice tak má dvě řešení x — 0

1, jimž odpovídají 2 = -1 a z = 0. Snadno ověříme, že obě
nalezené trojice (0,0, —1) a (—1,0,0) jsou řešením dané soustavy stejně
jako trojice (0, —1,0), kterou dostaneme jejich permutací.

Daná soustava má celkem pět řešení:

1 ± \/2. Každá z trojic (l ± a/2,

a x —

(0,0,—1), (0, -1,0), (-1,0,0),
(1 + л/2,1 + V2,1 + л/2) a (1-V2,1-V2,1-V2).

В - I - 2

Úhlopříčka AC daného obdélníku ABCD je ze zadání střední přič-
kou v trojúhelníku PQR, a tedy AC || QR, jinak řečeno AC || MN.
Úsečka MN je tak jednoznačně určena tím, že je rovnoběžná s AC, leží
v opačné polorovině určené přímkou AC než bod P a pro její délku platí
\MN\ — \AB\. Konstrukci bodů M a N lze provést několika způsoby.
Lze к tomu například využít rovnoběžník AMNE (obr. 7), v němž platí
\AE\ = \MN\ - \AB\.

Protože úsečka MN zároveň určuje přímku, na níž leží strana QR
trojúhelníku PQR, je zřejmé, že vrchol P musí ležet na přímce p, jež je
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obrazem přímky MN v osové souměrnosti podle přímky AC (obsahu-
jící střední příčku trojúhelníku PQR). Přímka p má s vnitřkem daného
obdélníku společný vnitřek úsečky M'N' (jež je navíc obrazem nalezené
úsečky MN ve středové souměrnosti podle středu daného obdélníku).

Snadno vidíme, že i naopak ke každému vnitřnímu bodu P úsečky
M'N' leží odpovídající body Q, R na přímce MN a body M, N jsou tak
průsečíky přímky QR se stranami AB, BC, takže vyhovují podmínkám
úlohy.

Závěr. Hledanou množinou všech bodů P dané vlastnosti je tedy
vnitřek výše popsané úsečky M'N'.

В - I - 3

Jistě stačí ukázat, že součet zkoumaných tří čísel nepřevyšuje 24:
2

(ab + 6c) + (6c + cd) + (ca + ab) = 2(a6 + 6c + ca) ^ -(a + 6 + c)2 = 24,
O

kde nerovnost je důsledkem nerovnosti

3(a6 + 6c + ca) ^ (a + 6 + c)2 = 36,
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která je ekvivalentní nerovnosti 0 й (a — b)2 + (b — c)2 + (c — a)2, jež je
splněna pro každá tři reálná a, b, c.

Jiné řešení. S ohledem na symetrii předpokládejme, že platí a =
= min{a, 6, c}. Z rovnosti a + 6 + c = 6 pak plyne a^2aHc^4. Proto
třetí zkoumané číslo, rovné a(b + c), má stejné znaménko jako číslo a,
takže je zaručeně menší než 8, platí-li a 5= 0. Je-li naopak 0 < a ^ 2,
všimneme si, že ze zřejmé nerovnosti 0 (u — v)2, platné pro libovolná
reálná u, u, plyne úpravou odhad 4uv ^ (u + u)2; dosadíme-li sem и = 2a
a v = b + c, dostaneme

8a(6 + c) (2a + b + c)2 = (a + 6)2 ^ 82 = 64,

odkud po dělení osmi vychází kýžená nerovnost a{b + c) ^ 8.

В - I - 4

Zlomek
n3 + 2 010

_ 2 010(n — 1)
"

n2 + 2 010n2 + 2 010

je celé číslo, právě když n2 + 2 010 je dělitel čísla 2 010(n — 1) = 2 • 3 • 5 •
• 67(n — 1).

Není-li n násobek prvočísla 67, jsou čísla n2 + 2 010 a 67 nesoudělná,
proto n2 + 2 010 musí být dělitelem čísla 30(n — 1). Protože |30(n — 1) | <
< n2 + 2 010, vyhovuje jenom n — 1.

Nechť n = 67m, kde m je celé. Potom

2 010(n — 1)
_ 30(67m — 1)

n2 + 2 010 67m2 + 30 ‘

Není-li m násobkem pěti, musí být číslo 67m2 + 30 dělitelem čísla
^ 4 tomu tak ale není, zatímco pro ^ 6 je už6(67m — 1). Pro

|6(67m — 1)| < 67m2 + 30. Je tedy m = 5k, kde к je celé. Potom
m \m

30(67m - 1)
_ 6(335к - 1)

67m2 + 30 _ 335/c2 + 6 '

Pro |/c| ^ 7 je absolutní hodnota tohoto zlomku nenulová a menší než 1.
Ze zbylých čísel vyhovují fc = 0 a fc = -6.

Číslo
n3 + 2 010

n2 + 2 010

je tedy celé, právě když je celé n některé z čísel 0,1 nebo —2 010.
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В - I - 5

I když doporučujeme řešit obě části úlohy odděleně (tj. nejprve analýzo-
vat situaci v pravoúhlém trojúhelníku), popíšeme rovnou jejich společné
řešení. Celou úlohu lze totiž formulovat jako důkaz tvrzení, že sestroje-
ných šest bodů leží na kružnici, právě když je úhel ACB pravý.

Uvažujme tedy libovolný trojúhelník ABC s ostrými úhly a, /3 a
označme M střed výšky CP a D, E, F, G, Я, / uvažované průsečíky
tak, aby s vrcholy А, В, C a patou výšky P ležely na hranici trojúhel-
niku v pořadí

A, D, P, F, B, F, G, G, Я, I.

Z konstrukce plyne, že body M, D, / jsou středy stran pravoúhlého troj-
úhelníku ACP a body M, F, F jsou středy stran pravoúhlého trojúhel-
niku BCP. Oba čtyřúhelníky PMID a PMFE jsou tedy pravoúhelníky,
takže i DEFI je pravoúhelník (obr. 8). Jeho vrcholy I), E, F, I proto
vždy leží na jedné kružnici a úsečky DF a El jsou její průměry. Naší
úlohou je proto zjistit, kdy na této kružnici leží i body G a H. To lze
podle Thaletovy věty vyjádřit podmínkou, že úhly DGF a EHI jsou
pravé. Protože DG || AC a EH || BC, jsou oba úhly DGF a EHI
shodné s úhlem ACB a ekvivalence s podmínkou pravého úhlu ACB je
tak dokázána.

C

G
H

\
z

X
\

s
/

A D P E В

Obr. 8

В - I - 6

Nechť n je číslo splňující podmínky zadání. Škrtnutím dvou posledních
číslic zmenšíme n alespoň stokrát, proto se můžeme omezit na škrtání
číslic, které nejsou poslední. Po škrtnutí dvou sousedních číslic zůstanou
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z čísla n dvě části, přitom první část může být prázdná, pokud jsme škrtli
jeho první dvě číslice.

Nechť a je číslo určené první částí čísla n (nula v případě, že první
část je prázdná), b je číslo určené vyškrtnutými dvěma číslicemi a c je
určeno poslední částí čísla n (počet číslic této části označme k). Podle
zadání platí

99(a • 10fe + c) = a • 10fc+2 + b • 10fc + c,

po úpravě 98c = 10fc(a + b). Protože c < 10fc, musí být 98 > a + b. Navíc
číslo 49 dělí a + 6, neboť je samo nesoudělné s 10fc. Kladný celočíselný
podíl (a + 6)/49 je menší než 2, musí tedy být roven 1, takže a + b = 49.
Odtud vyplývá rovnost

10fc к — 1
— = 5 • 10c —

kde číslo к je zároveň určeno počtem číslic čísla a (označíme-li l počet
číslic čísla a, je к = 10 — l — 2, přičemž v případě a = 0 klademe přirozeně
l = 0).

Z uvedeného postupu plyne, že pro každé a G {0,1, 2,... ,49} a b —

= 49 — a existuje právě jedno číslo c, pro něž popsané číslo n splňuje
podmínky zadání, a že jiná vyhovující n neexistují. Ukážeme, že všech
50 takových n (končících sedmi, šesti, nebo pěti nulami) je navzájem
různých.

Sestrojené n končící sedmi nulami je jediné (a = 0). Šesti nulami
končí 9 sestrojených čísel (a G {1,2,..., 9}) a jsou navzájem různá, ne-
boť začínají různými číslicemi. Pěti nulami končí 40 sestrojených čísel
(a G {10,11,..., 49}) a jsou navzájem různá, neboť začínají různými
dvojčíslími.

Pro názornost vypišme ještě několik čísel vyhovujících zadání tak, jak
je dostaneme pomocí našich úvah: pro a = 0 máme b = 49, c = 50 000 000
an = 4950000 000, pro a = 1 je b = 48, c = 5000 000 a n = 1485 000000,
pro a — 2 je n — 2 475 000 000, ..., pro a — 9 je n = 9405 000000, pro
a = 10 je b = 39, c — 500 000 a n = 1 039 500 000, ..., pro a = 49 je b = 0,
c = 500 000 a n = 4 900 500 000.

Závěr. Existuje 50 čísel, jež vyhovují zadání.

В - S - 1

Aby byla levá strana rovnice definována, musejí být oba výrazy pod
odmocninami nezáporné, což je splněno právě pro všechna x ^ 0. Pro
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nezáporná x je pak p = y/x + 3 -f y/x P. y/3} rovnice může tedy mít řešení
pouze pro p ^ y/3.

Upravme nyní danou rovnici:

y/x + y/x + 3 = p,

2x + 3 + 2y/x(x + 3) = p2,
2y/x(x + 3) = p2 — 2ж — 3,

4ж(ж + 3) = (p2 — 2x — 3)2,
4x2 + 12x = p4 + 4ж2 + 9 — 4р2ж — 6p2 + 12ж,

Сp2 - З)2
ж = —.

4р2

Protože jsme danou rovnici umocňovali na druhou, je nutno se přesvědčit
zkouškou, že vypočtené ж je pro hodnotu parametru p ^ у/З řešením
původní rovnice:

(p2 - 3)2 (p2 - 3)2
+ 3 +

4p2 4p2

p4 — 6p2 + 9 + 12p2 (p2 - 3)2
4p2 4p2

p2 + 3 P2(p2 + 3)2 (p2 - 3)2 -3
= p-4p2 4p2 2p 2p

Při předposlední úpravě jsme využili podmínku p ^ \/3 (a tedy i p2 —
— 3 ^ 0 a p > 0), takže у/(p2 — 3)2 = p2 - 3 a ^4p2 = 2p.

Poznámka. Místo zkoušky stačí ověřit, že pro nalezené x jsou všechny
umocňované výrazy nezáporné, tedy vlastně jen že

3 = (p2 - 3) (p2 + 3)p2 — 2x —
> 0.

2p2

Pro p ^ у/З tomu tak opravdu je.

В - S - 2

a) Mezi 16 čísly napsanými podél kružnice se nachází právě 16 úseků
pěti sousedních čísel (vybereme-li libovolně jedno z napsaných čísel a od
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něj označíme čísla podél kružnice postupně jako první, druhé, ..., šest-
nácté, bude první úsek tvořen prvním až pátým číslem, druhý úsek pak
druhým až šestým číslem, ... a poslední šestnáctý úsek bude tvořen šest-
náctým, prvním, druhým, třetím a čtvrtým číslem).

Tvrzení dokážeme sporem. Předpokládejme, že uvažované tvrzení ne-

platí, tedy že čísla v každém z 16 úseků mají součet menší než 2. Celkový
součet S5 všech 16 součtů čísel v jednotlivých pěticích je tak menší než
16-2 = 32. Ovšem každé číslo na kružnici je součástí právě pěti úseků pěti
sousedních čísel, tudíž každé z 16 čísel je v uvedeném součtu započteno
právě pětkrát. Proto je součet S$ zároveň roven pětinásobku součtu všech
čísel na kružnici, což je 35. To je ve sporu s odvozenou nerovností S$ < 32.
Na kružnici tedy musí existovat pět po sobě jdoucích čísel, jejichž součet
je alespoň 2 (dokonce více než 2).

b) Nejprve ukažme, že nemůže být к ^ 6. К tomu stačí podél kružnice
rozmístit 16 shodných čísel se součtem 7. Součet čísel v libovolném úseku
к čísel tak bude

7_ < 42
16 = 16

Nechť nyní к — 7. Zopakováním úvahy z části a) dokážeme, že vhodný
úsek už existuje: Předpokládejme naopak, že součet libovolných sedmi
po sobě jdoucích čísel (z daných šestnácti) je menší než tři. Takových
úseků je podél kružnice šestnáct (jejich počet na čísle к nezávisí!), takže
součet S7 všech 16 součtů čísel v jednotlivých sedmicích je menší než
16 • 3 = 48. Každé z daných 16 čísel je v součtu S7 započteno sedmkrát,
tedy S7 = 7 • 7 = 49, což odporuje předchozímu odhadu S7 < 48.

Hledaným číslem к je číslo 7.

к ■ < 3.

В - S - 3

Protože oba úhly BCG a DCA jsou pravé, uvažujme otočení kolem vr-
cholu C daného trojúhelníku, v němž bod В přejde do bodu G. V něm je
zřejmě obrazem bodu D bod A a obrazem úsečky BD úsečka GA (obr. 9).
Odtud plyne, že \ AG\ = \BD\, a také, že úsečky AG a BD jsou navzájem
kolmé.

Označme po řadě Té, L, M, N středy stran čtyřúhelníku ABGD.
(Body N a L jsou tedy středy uvažovaných čtverců.) Vzhledem к tomu,
že úsečka KL je střední příčkou trojúhelníku AGB a úsečka MN střední
příčkou trojúhelníku AGD1 je \KL\ = ||ЛС7| = \KL\ a zároveň MN ||
II AG II KL. Podobně \KN\ = \\BD\ = \LM\ a zároveň KN || BD ||
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|| LM. To znamená, že KLMN je rovnoběžník. Protože však víme, že
|AG| = \BD\ a navíc AG _L BD, je KLMN čtverec. Tím jsou všechna
tvrzení úlohy dokázána.

Jiné řešení. Úlohu vyřešíme bez úvahy o otočení. Pro důkaz rovnosti
\AG\ = \BD\ ukážeme, že trojúhelníky ACG a DCB jsou shodné podle
věty sus. Skutečně, \AC\ = \DC\, \CG\ = \CB\ a \<ACG\ = \<ACB\ +
+ \<BCG\ = \<ACB\ + 90° = \<ACB\ + \<ACD\ = \<DCB\.

Úsečky AG a BD jako strany shodných trojúhelníků tedy mají stejnou
délku. Abychom ověřili, že jsou navíc navzájem kolmé, označíme P jejich
průsečík a porovnáme vnitřní úhly v trojúhelnících APQ a DCQ, kde
Q je průsečík úseček АС a BD. Při vrcholech A a D jsou úhly shodné
díky ověřené shodnosti trojúhelníků ACG a DCB, úhly při vrcholu Q
se rovněž shodují (jakožto úhly vrcholové), takže se shodují i jejich úhly
při vrcholech P a C, jsou tedy oba pravé.

Z dokázané shodnosti i kolmosti úseček AG a BD odvodíme, že
KLMN je čtverec stejně jako v původním řešení.

Poznámka. Poznamenejme ještě, že jsme vlastně ukázali, že středy
stran libovolného konvexního čtyřúhelníku tvoří vrcholy rovnoběžníku,
jehož strany jsou rovnoběžné s úhlopříčkami daného čtyřúhelníku. To-
muto rovnoběžníku se říká Varignonův rovnoběžník. Je tedy čtyřúhelník
KLMN Varignonův rovnoběžník čtyřúhelníku ABGD.
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В - II - 1

Pomocí rovností abc = 60, a+6+c = 15 daný výraz (a+6)(a+c) upravíme
a pak odhadneme na základě AG-nerovnosti pro dvojici hodnot a a 4/a:

60
(a + b)(a + c) = a2 + (b + c)a + bc — a2 + (15 — a) ■ a H =

>15-2- 60.= 15a + — = 15
a

Nerovnost je dokázána. Rovnost nastane, právě když a = 4/a neboli
a = 2. Ze vztahů 6 + c = 15 — a = 13 a 6c = 60/a = 30 máme {6, c} =
= {3,10}. Rovnost proto splňují právě dvě vyhovující trojice (a, 6, с), a to
(2,3,10) а (2,10,3).

Jiné řešení. Kromě rovností abc = 60, a + b + c

AG-nerovnost pro dvojici hodnot bc a a(a + b + c):
15 využijeme

(a + 6)(a + c) = bc + a(a + b + c) ^
^ 2 • y/6c • a(a + b + c) = 2\/60 • 15 = 60.

Rovnost nastane, právě když bc — a(a + 6 + c) neboli 60/a = 15a, odkud
a = 2, takže závěr je stejný jako v prvním řešení.

В - II - 2

Protože číslo a dělí číslo 6, lze psát b = ka, kde к je kladné celé číslo.
Stačí tedy najít kladná celá čísla a, pro která existuje kladné celé číslo к
takové, že číslo 3a + 4 je (kladným) násobkem čísla ka + 1 (= 6+1).
Z této podmínky dostáváme nerovnost ka + 1 ^ 3a + 4, z níž plyne
к — 3 ^ (k — 3)a ^ 3, a tedy к ^ 6. Navíc pro к ^ 3 je už 2(ka+l) > 3a+4
pro libovolné a ^ 1, takže může být jedině ka + 1 = 3a + 4. Probereme
všech šest možností pro číslo k:
к — 1: a + 1 | 3a + 4, a protože a + 1 | 3a + 3, muselo by platit a + 1 | 1,

což není možné, neboť a + 1 > 1.
к — 2: 2a + 1 | За + 4 = (2a + 1) + (a + 3), tedy 2a + 1 | a + 3. Protože

však pro libovolné přirozené a platí 2-(2а+1)>а + 3, musí být
2а + 1 = a + 3 neboli a = 2 a odtud 6 = ka = 4.

к = 3: За + 1 = За + 4, což není možné.
к = 4: 4а + 1 = За + 4, tedy а = 3, 6 = 12.
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к — 5: 5а + 1 = За + 4, což nesplňuje žádné celé а.
к = 6: 6а + 1 = За + 4, tedy а = 1, b = 6.

Řešením jsou dvojice (1,6), (2,4) a (3,12).

В - II - 3

Ze zadání plyne, že \BM\ = \CN\,\AC\ = \BC\ a\<ACN\ = \<CBM\ =
= 60°, takže trojúhelníky ACN a CBM jsou shodné podle věty sus.
Proto platí i \%.ANC\ = \<CMB\, takže čtyřúhelník BNPM je tětivový
(úhel ANC je doplňkovým úhlem к úhlu ANВ, který je protějším úhlem
к úhlu CMВ ve zmíněném čtyřúhelníku, obr. 10).

Označme S střed strany AB daného rovnostranného trojúhelníku
3 : 2, a protože jeABC. Protože \SB\ = \\AB\, je \SB\ : \MB\

i \CB\ : |7VB| =3:2, jsou trojúhelníky SBC a MBN podobné po-
dle věty sus. Protože úhel CSB je pravý, musí být pravý i úhel NMB.
Kružnice opsaná čtyřúhelníku BNPM je tak Thaletovou kružnicí nad
průměrem BN, a tudíž je pravý i úhel BPN, což jsme chtěli dokázat.

В - II - 4

Výsledný ciferný součet je určen jednoznačně a je jím číslo 33.
Pro vyřešení úlohy bude výhodné nejprve zjistit součet S všech pě-

timístných čísel obsahujících každou z číslic 4, 5, 6, 7, 8. Těchto čísel je
zřejmě právě tolik, kolik je různých pořadí uvedených pěti číslic, tedy
5! = 120. Navíc každá z daných číslic se mezi těmito 120 čísly objevuje
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rovnoměrně v každém řádu, tedy 24krát. Součet S tak můžeme rozepsat
po jednotlivých řádech jako

S = 104 • (24 • 4 + 24 • 5 + 24 • 6 + 24 • 7 + 24 • 8) +
+ 103 • (24 • 4 + 24 • 5 + 24 • 6 + 24 • 7 + 24 • 8) + ... =

= 24 • (4 + 5 + 6 + 7 + 8) • (104 + 103 + 102 + 10 + 1) =

= 24-30- 11 111.

Obraťme nyní pozornost к možným hodnotám ciferného součtu čísla
S — a, kde a je pětimístné číslo zmíněného tvaru, tedy a = 33 333 + 6,
přičemž b je pětimístné číslo obsahující každou z číslic 1, 2, 3, 4, 5. Je
tedy

S-a = 11111 -24-30 -a = 7999920 - 33333 - 6 = 7966587-6.

Při odečítání čísla b však nedochází v jednotlivých řádech к přechodu
přes desítku, proto je ciferný součet čísla S — a roven (7 + Э + 6 + 6 + 5 +
+ 8 + 7) — (1 + 2 + 3 + 4 + 5) = 48 — 15 — 33 pro libovolné pětimístné
číslo a obsahující každou z číslic 4, 5, 6, 7, 8.
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Kategorie A

Texty úloh

A - I - 1

Kořeny rovnice ax4 + bx2 + a = 1 v oboru reálných čísel jsou čtyři po
sobě jdoucí členy rostoucí aritmetické posloupnosti. Přitom jeden z těchto
členů je zároveň řešením rovnice bx2 +ax +a = 1. Určete všechny možné
hodnoty reálných parametrů a, b. (Peter Novotný)

A - I - 2

Nechť к, n jsou přirozená čísla. Z platnosti tvrzení „číslo (n— l)(n + 1) je
dělitelné číslem ku Adam usoudil, že bud číslo n — 1, nebo číslo n + 1 je
dělitelné k. Určete všechna přirozená čísla к, pro něž je Adamova úvaha
správná pro každé přirozené n. (Ján Mazák)

A - I - 3

Jsou dány kružnice к, /, které se protínají v bodech A, B. Označme К,
L po řadě dotykové body jejich společné tečny zvolené tak, že bod В je
vnitřním bodem trojúhelníku AKL. Na kružnicích к a l zvolme po řadě
body N а M tak, aby bod A byl vnitřním bodem úsečky MN. Dokažte,
že čtyřúhelník KLMN je tětivový, právě když přímka MN je tečnou

(Jaroslav Švrček)kružnice opsané trojúhelníku AKL.

A - I - 4

Mějme 6n žetonů až na barvu shodných, po třech od každé z 2n barev.
Pro každé přirozené číslo n > 1 určete počet pn všech rozdělení takových
6n žetonů na dvě hromádky po 3n žetonech, kdy žádné tři žetony téže
barvy nejsou ve stejné hromádce. Dokažte, že pn je liché číslo, právě když

(Jaromír Šimša)n = 2k pro vhodné přirozené k.
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A - I - 5

Na každé stěně krychle je napsáno právě jedno celé číslo. V jednom kroku
zvolíme libovolné dvě sousední stěny krychle a čísla na nich napsaná
zvětšíme o 1. Určete nutnou a postačující podmínku pro očíslování stěn
krychle na počátku, aby po konečném počtu vhodných kroků byla na
všech stěnách krychle stejná čísla. (Peter Novotný)

A - I - 6

Dokažte, že v každém trojúhelníku ABC s ostrým úhlem při vrcholu C
(při obvyklém označení délek stran a velikostí vnitřních úhlů) platí ne-
rovnost

(a2 + b2) cos(a — /3) ^ 2ab.

{Jaromír Šimša)Zjistěte, kdy nastane rovnost.

A - S - 1

Určete všechna reálná čísla c, pro která má rovnice

2 5x2 + -x + c = 0

dva reálné kořeny, jež lze s číslem c uspořádat do trojčlenné aritmetické
posloupnosti. (Pavel Calábek, Jaroslav Švrček)

A - S - 2

Nechť P, Q, R jsou body přepony AB pravoúhlého trojúhelníku ЛВС,
pro něž platí \AP\ = \PQ\ = \QR\ = \RB\ — ||ЛВ|. Dokažte, že průse-
čík M kružnic opsaných trojúhelníkům APC a BBC, který je různý od

(Peter Novotný)bodu C, splývá se středem S úsečky CQ.

A - S - 3

Dokažte, že pro libovolná dvě různá prvočísla p, q větší než 2 platí nerov-
nost

4P
_ Q

q p
>

Vpq

(Jaromír Šimša)
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A - II - 1

Rozhodněte, zda mezi všemi osmimístnými násobky čísla 4 je více těch,
které ve svém desítkovém zápisu obsahují číslici 1, nebo těch, které čís-
liči 1 neobsahují. (Ján Mazák)

A - II - 2

Je dán trojúhelník ABC s obsahem S. Uvnitř trojúhelníku, jehož vrcho-
ly jsou ve středech stran trojúhelníku ABC, je libovolně zvolen bod U.
Označme Л', B', C po řadě obrazy bodů А, В, C v souměrnosti se
středem U. Dokažte, že šestiúhelník АСBA'CB' má obsah 2S.

(Pavel Leischner)

A - II - 3

Určete všechny dvojice (m, n) kladných celých čísel, pro něž je číslo
(Tomáš Juřík)4(mn + 1) dělitelné číslem (m + n)2.

A - II - 4

Nechť M je množina šesti navzájem různých kladných celých čísel, jejichž
součet je 60. Všechna je napíšeme na stěny krychle, na každou právě
jedno z nich. V jednom kroku zvolíme libovolné tři stěny krychle, které
mají společný vrchol, a každé z čísel na těchto třech stěnách zvětšíme o 1.
Určete počet všech takových množin M, jejichž čísla lze napsat na stěny
krychle uvedeným způsobem tak, že po konečném počtu vhodných kroků
budou na všech stěnách stejná čísla. (Peter Novotný)

A - III - 1

Určete velikosti vnitřních úhlů všech trojúhelníků ABC s vlastností:
Uvnitř stran AB, AC existují po řadě body К, M, které s průsečíkem L
přímek AIВ а КС tvoří tětivové čtyřúhelníky AKLM а КBCM se shod-
nými opsanými kružnicemi. (Jaroslav Švrček)

A - III - 2

Určete všechny trojice (p,q,r) prvočísel, pro něž platí

(p + l)(q + 2)(r + 3) = 4pqr.

(Jaromír Šimša)
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A - III - 3

Reálná čísla x, у, z vyhovují soustavě rovnic

x2 + y2 + z2 = 54.x + y + z = 12

Dokažte, že platí následující tvrzení:
a) Každé z čísel xy, yz, zx je alespoň 9, avšak nejvýše 25.
b) Některé z čísel x, у, z je nejvýše 3 a jiné z nich je alespoň 5.

(Jaromír Šimša)

A - III - 4

Uvažujme kvadratický trojčlen P(x) = ax2 + bx + c s reálnými koeficienty
a ^ 2, b ^ 2, c ^ 2. Adam a Boris hrají následující hru: Je-li na tahu
Adam, vybere jeden z koeficientů trojčlenu a nahradí ho součtem zbylých
dvou. Pokud je na tahu Boris, vybere jeden z koeficientů a nahradí ho
součinem zbylých dvou. Adam začíná a hráči se pravidelně střídají. Hru
vyhrává ten, po jehož tahu má rovnice P(x) = 0 dva různé reálné kořeny.
Určete, který z hráčů má vítěznou strategii v závislosti na počátečním
trojčlenu P(x). (Michal Rolinek)

A - III - 5

V ostroúhlém trojúhelníku ABC označme P patu výšky z vrcholu C
na stranu AB, V průsečík výšek, O střed kružnice opsané, D průsečík
polopřímky CO se stranou AB a E střed úsečky CD. Dokažte, že přím-
ka EP prochází středem úsečky OV. (Karel Horák)

A - III - 6

Označme [R+ množinu všech kladných reálných čísel. Určete všechny
funkce /: [R+ —>■ IR+ takové, že pro libovolná x,y 6 IR+ platí

1
f{x) f(y) = f(y) f(xf(y)) + —•

xy

(Pavel Calábek)
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Řešení úloh

A - I - 1

Vzhledem к tomu, že rostoucí aritmetickou posloupnost tvoří čtyři navzá-
jem různá reálná čísla, musí mít první z daných rovnic čtyři různé reálné
kořeny. Je proto a/0.

Označme xo společný kořen obou rovnic. Pak je xo také kořenem
rovnice, která vznikne odečtením druhé z daných rovnic od první, tj.
rovnice ax4 — ax — 0. Tu dále upravíme na tvar ax(x3 — 1) = 0. Pro
společný reálný kořen xo obou daných rovnic odtud plyne xq = 0 nebo
x0 - 1.

Dosazením xq = 0 do první z daných rovnic dostaneme a = 1, takže
tato rovnice je tvaru ж4 -f bx2 = 0. Tato rovnice však pro žádné reálné
číslo b nemá čtyři různé reálné kořeny (číslo 0 je jejím alespoň dvojná-
sobným kořenem), proto Xq ^ 0.

Jediným společným kořenem obou rovnic je tudíž xo = 1. Dosazením
této hodnoty do kterékoli z obou daných rovnic dostaneme 6=1 — 2a.
První rovnici pak lze zapsat ve tvaru ax4 + (1 — 2a)x2 + a — 1 = 0, z něhož
je patrné, že má i kořen —1, a po vytknutí součinu kořenových činitelů
(x — l)(x + 1) dostaneme rovnici

(x — 1) (ж T l)(ax2 a T 1) — 0. (1)

Kvadratický dvojčlen ax2 — (a — 1) má mít dva různé kořeny, kterými
musí být dvě navzájem opačná (nenulová) čísla £ a —£. To je splněno,
právě když (a — l)/a > 0, tj. právě když a > 1 nebo a < 0. Volíme-li
značení tak, že £ > 0, dostáváme pro aritmetickou posloupnost všech čtyř
kořenů dvě možnosti podle toho, zda je 0 < £ < 1 nebo £ > 1.

V prvním případě tvoří čtyři kořeny rovnice (1) aritmetickou posloup-
£, £, 1, která má zřejmě diferenci |, proto £ = 1 — | = |. Toto

číslo £ je kořenem rovnice (1), právě když a
6=1 — 2a = —|.

V druhém případě tvoří čtyři kořeny rovnice (1) aritmetickou posloup-
nost —£, —1, 1, £ s diferencí 2, proto £ = 1 + 2 = 3. Číslo 3 je kořenem
rovnice (1), právě když a = 1/(1 — 32) = —|. Potom 6 = 1 — 2a = |.

Závěr. Úloze vyhovují právě dvě dvojice reálných čísel (a, 6), a to

nost — 1

I. Potomi/а-а N

62



A - I - 2

Ukážeme, že pro nesoudělná přirozená čísla ras, kde r > 2 a s > 2,
existuje přirozené číslo n s vlastností

r | ti — 1 a s | n + 1.

Pro takové číslo n a číslo к = rs není Adamova úvaha správná, protože
z předpokladu, že číslo к dělí číslo (n — l)(n + 1), neplyne, že к dělí n — 1
ani že к dělí n + 1. Kdyby totiž к = rs dělilo např. n — 1, dělilo by číslo s
obě čísla Ti+l i 7i — 1, což vzhledem к rovnosti (71 + 1) — (71 — 1) = 2 není
možné, neboť s > 2.

Existenci čísla n z první věty řešení dokážeme tak, že uvážíme s čísel

2, r + 2, 2r + 2, ..., (s — l)r + 2.

Ta dávají při dělení číslem s vesměs různé zbytky. Kdyby totiž některá
dvě z nich, řekněme ir + 2 a jr + 2 (0 ^ i < j ^ s — 1), dávala při dělení
číslem s stejný zbytek, potom by číslo s dělilo i jejich rozdíl (г — j)r,
a vzhledem к nesoudělnosti čísel ras tudíž i rozdíl i—j, což není možné,
protože \i — j\ < s. Uvedených s čísel tedy dává úplnou soustavu zbytků
modulo s, proto mezi nimi existuje číslo, které při dělení číslem s dává
zbytek 0, nechť je to číslo Ir + 2. Potom ovšem pro číslo n = Ir + 1 platí,
že r dělí 71 — 1 a s dělí 71 + 1.

Uvědomme si, že každé číslo к dělitelné dvěma lichými prvočísly se dá
zapsat jako součin dvou nesoudělných čísel větších než 2. Adamova úvaha
může být tedy správná pouze pro ta čísla k, která jsou dělitelná nejvýše
jedním lichým prvočíslem. To znamená, že číslo к má jeden z následujících
tří tvarů:

к = 2p\
kde p je liché prvočíslo, s celé nezáporné a t přirozené číslo.

Nechť к = 2s, kde s je celé nezáporné číslo. Pro s = 0 není Adamova
úvaha správná, protože číslo к = 2° = 1 dělí každé přirozené číslo, tedy
dělí obě čísla n — 1 i n + 1. Pro s = 1 také není Adamova úvaha správná,
protože pokud к = 21 = 2 dělí číslo (n — 1)(гг + 1), je jeden z činitelů
sudý, ale pak je sudý i druhý činitel. Pro číslo s = 2, tedy pro к = 22 = 4
Adamova úvaha správná je. Pokud totiž 4 dělí číslo (n — l)(n + 1), je
aspoň jeden z obou činitelů sudý, takže jde o dvě po sobě jdoucí sudá
čísla, z nichž právě jedno je dělitelné čtyřmi. Konečně pro libovolné s ^ 3
Adamova úvaha správná není, stačí vzít číslo n = 2S_1 — 1.

tk = 2s к = p
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Nechť к = pť, kde p je liché prvočíslo a t přirozené číslo. Potom je
Adamova úvaha správná, jelikož obě čísla n — 1 a n + 1 nemohou být
současně dělitelná stejným lichým prvočíslem p, a proto je právě jedno
z nich dělitelné číslem pť = k.

Nechť к = 2p*, kde p je liché prvočíslo a t přirozené číslo. Potom je
Adamova úvaha také správná: obě čísla n — 1 a n + 1 jsou nutně sudá
a přitom nemohou být současně dělitelná stejným lichým prvočíslem p,

proto je právě jedno z nich dělitelné číslem 2pl = k.
Závěr. Adamova úvaha je správná pro každé přirozené číslo n pouze

pro přirozená čísla к jednoho z tvarů
t к = 2pl,к = 4, к — p

kde p je liché prvočíslo a t přirozené číslo.

A - I - 3

Z rovnosti obvodového a úsekového úhlu příslušného tětivě AK kružnice к
plyne (obr. 11) \<KNA\ = \<LKA\ a podobně z rovnosti obvodového
a úsekového úhlu příslušného tětivě AL kružnice l plyne \<VLM\ —

= \<LAM\, kde jsme jako V označili nějaký bod polopřímky opačné
к polopřímce LK.

Čtyřúhelník KLMN je tětivový, právě když \<KNA\ = \<VLM\
neboli \<LKA\ = \<LAM\. Poslední rovnost ovšem platí, právě když
je LAM úsekovým úhlem příslušným obvodovému úhlu LKA tětivy LA
kružnice opsané trojúhelníku AKL, tedy právě když je přímka MN teč-
nou této kružnice.

Tím je tvrzení úlohy dokázáno.
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Jiné řešení. Vyřešme úlohu nejprve za předpokladu, že přímky KL
a MN jsou rovnoběžné. V takovém případě jsou zřejmě oba trojúhelníky
ANК a MAL rovnoramenné, protože osy stran A/V, resp. MA procházejí
odpovídajícím vrcholem K, resp. L (jinak bodem dotyku tečny rovno-
běžné s tětivou AN, resp. MA kružnice k, resp. /). Je tedy \LA\ = \LM\
a \KN\ = \KA\. Přitom čtyřúhelník KLMN je tětivový, právě když
je to rovnoramenný lichoběžník, tj. \LM\ = \KN\. To podle předchozí
dvojice rovností nastane, právě když je trojúhelník KLA rovnoramenný
neboli právě když MN je tečnou jeho kružnice opsané ve vrcholu proti
základně KL. (Vzhledem к tomu, že pak jsou trojúhelníky ANК a MAL
shodné, uvedená situace nastane, právě když jsou kružnice к, l shodné.)

Předpokládejme dále, že přímky MN a KL jsou různoběžné, a označ-
me V jejich průsečík (obr. 12). Užitím mocnosti bodu V ke kružnicím к
a l dostaneme

|VAT|2 = \VA\ • \VN\ a |VL|2 = \VM\ ■ \VA\.

N

A

к M

l
\ В /

L V

Obr. 12

Vynásobením obou vztahů obdržíme

|va:|2 • |vl|2 \VN\ ■ |VA|2 • \VM\. (1)

Čtyřúhelník KLMN je ovšem tětivový, právě když platí

\VK\ ■ \VL\ = \VN\ ■ \VM\

s přihlédnutím к (1)neboli právě když platí

\VK\ ■ \VL\ = |РЛ|2.
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Poslední rovnost ovšem platí, právě když přímka MN (procházející bo-
dem A) je tečnou kružnice opsané trojúhelníku AKL. Tím je tvrzení
úlohy dokázáno.

A - I - 4

Žádné tři žetony téže barvy neleží na jedné hromádce, tedy na každé
z hromádek leží alespoň jeden žeton zvolené barvy. Každé vyhovující roz-
dělení žetonů do hromádek je pak charakterizováno tím, na které z nich
leží právě jeden ze tří žetonů té které barvy.

Předpokládejme, že v jedné z hromádek je právě l barev zastoupeno
jedním žetonem a zbylých 2n — l barev dvěma. Jednoduchým výpočtem
l + 2(2n — l) = 3n ovšem zjistíme, že toho lze dosáhnout jen při l = n.
Proto je zkoumaný počet pn roven počtu rozdělení 2n žetonů navzájem
různých barev na dvě (neuspořádané) skupiny po n žetonech, tedy

(2n)\ 2n ■ [2n — 1)!1 (2n

2 V n

2n — 1
(1)Pn = X

2(n!)2 2n ■ (n — 1)! n! n

Zbývá dokázat, že poslední kombinační číslo je liché, právě když je
číslo n mocninou dvou. Tento poznatek (a vlastně i metodu jeho dů-
kazu) lze vypozorovat z dobře známého schématu všech kombinačních
čísel v podobě Pascalova trojúhelníku:

1

ГГШ
10 1

I i i (ГПЛ
1 0 0 0 1

1 1 0 (Q) 1 1
10 10 10 1

[íiii a) tin
1 0 0 0 0 0 0 0 1

1 1 0 0 0 (Ш o 0 1 1
1 0 1 0 0 0 0 0 1 0 1

1 1 1100(0)01 1 1 1
1000 100010001

11001 10© 110011
101010 101010101

I i i i i i i i i Cl) i i i i i i TI

V našem schématu ovšem nejsou samotná kombinační čísla, nýbrž jejich
zbytky 0 či 1 při dělení dvěma. К jejich určení není nutné kombinační
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čísla vůbec počítat, protože z rekurentních vzorců

n — 1 n — 1n П
1 - 1 a í П 1 = (l^z^n-l) (2)+

0 i - 1 in

můžeme postupně po jednotlivých řádcích namísto kombinačních čísel
rovnou psát jejich zbytky při dělení jakýmkoli pevným číslem, v našem
případě číslem 2.

Všimněme si, co naše schéma napovídá. Některé řádky (vyznačené
obdélníčky) jsou sestaveny ze samých jednotek. Díky rekurentním vzor-
cům (2) pod každým takovým řádkem zřejmě vznikne trojúhelník sesta-
vený ze samých nul (tři takové trojúhelníky jsou vyznačeny šedým pod-
tiskem) a olemovaný zleva i zprava samými jednotkami; bezprostředně
pod ním opět leží řádek ze samých jedniček. Protože zbytky všech zkou-
maných čísel (2n~*) (v našem schématu vyznačených kroužky) leží v po-
psaných obdélníčcích nebo trojúhelnících, bude takové kombinační číslo
liché, právě když bude mít pozici v některém obdélníčku.

Naše pozorování nyní popíšeme přesněji a rovnou je ověříme matema-
tickou indukcí.

Řádky ze samých jedniček jsou právě řádky s kombinačními čísly (n~ )
(0 ^ i ^ n — 1), kde n je tvaru n = 2k. Tvrzení triviálně platí pro к = 1.
Předpokládejme tedy, že platí pro nějaké к ČI 1, a označme Pn prvních
n — 2k řádků schématu. Dalších n řádků si můžeme představit jako tři
rovnostranné trojúhelníky čísel: první a třetí s n řádky jsou téže veli-
kosti jako Pn, mezi nimi je pak (n — l)-řádkový trojúhelník (vrcholem
dolů), který je díky jednotkám v základně trojúhelníku Pn a rekurentním
vzorcům (2) sestaven ze samých nul. Proto mají první a třetí trojúhel-
nik jednotky nejen v horních vrcholech a na stranách ležících na hranici
celého schématu, ale i na stranách, kterými se přimykají к druhému troj-
úhelníku, tedy na začátku i konci každého ze svých n řádků. Plyne to
opět ze vzorců (2), které pak ovšem vedou к dalšímu, pro nás hlavnímu
závěru: První a třetí trojúhelník jsou totožné s trojúhelníkem Pn. Můžeme
tedy shrnout, že každý z n — 1 přidaných řádků obsahuje aspoň jednu
nulu, zatímco n-tý řádek (složený ze dvou n-tých řádků trojúhelníku Pn)
obsahuje samé jedničky. Tvrzení tudíž platí i pro 2n = 2 • 2k = 2fc+1
řádků Pascalova trojúhelníku modulo 2, tj. i pro číslo к + 1.

Vzhledem к tomu, že zkoumané číslo pn = (2nn~1) = C^-i) leží vždy
uprostřed sudých řádků Pascalova trojúhelníku, je zřejmé, že leží bud
v některém obdélníčku, anebo v některém šedém trojúhelníku, jež se po-
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stupně střídají. Číslo pn je tedy skutečně liché, právě když n je mocnina
dvou.

Jiné řešení. Počet pn požadovaných rozdělení žetonů určíme stejně
jako v původním řešení vzorcem

(2n)\
Pn

2 (n!)2

který dále upravíme na tvar

2 • 4 • ... • (2n — 2)(2n)
Pn = 1 • 3 • ... • (2n - 1) • 2(n!)2

2nn!
= 1 - 3- ... • (2n- 1) • 2(n!)2

on—1

Pro nejvyšší mocninu 2a, která dělí n\, platí

(3)= 1-3-.

n n n

2J + I.22- + ...+a —

_2m J ’

kde 2m ^ n < 2m+1 a [ж] značí dolní celou část čísla x, tedy největší
celé číslo, které není větší než x. Odtud pro exponent a plyne odhad

1, n n n

“=
2 +2^ + -"+2^ =nů“ 2^

П
< 1

— Sn-1.
2m _

Z vyjádření (3) tedy vidíme, že číslo pn je liché, právě když a = n — 1
neboli n je tvaru 2m.

= n —

A - I - 5

V každém kroku se součet všech čísel na stěnách krychle zvětší o 2, jeho
parita se tedy nezmění. Jsou-li na všech stěnách krychle stejná čísla, je
jejich součet násobkem šesti, a je tudíž dělitelný dvěma. Nutnou podmiň-
kou к tomu, abychom tohoto stavu dosáhli, tedy je, aby i na počátku byl
součet všech čísel na stěnách krychle dělitelný dvěma.

Tato podmínka je zároveň postačující. Předpokládejme, že součet
všech šesti celých čísel na stěnách krychle je na počátku dělitelný dvěma.
Ukážeme, jak po určitém počtu kroků dosáhnout toho, že na všech stě-
nách krychle budou stejná čísla.
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Označme stěny krychle S\, S2, ■ ■ ■, Sq, přičemž stěna Si je proti stě-
ně Sq, stěna S2 proti Sq a S3 proti S4.1 Krok, v němž zvětšíme čísla
na stěnách Si, Sj, budeme značit kij. A protože nás zajímá jen relativní
hodnota očíslování stěn, tj. zda a o kolik se liší od nejmenší hodnoty všech
šesti čísel, budeme dále pracovat jen s těmito relativními hodnotami (což
budou nezáporná celá čísla s nejmenší hodnotou 0).

Posloupností kroků ku, ^23, /С35, /С54, k^\ zajistíme, že se číslo na každé
stěně kromě stěny Se zvětší o 2, což vzhledem к naší úmluvě vlastně
znamená, že jsme (relativní) hodnotu čísla na stěně Sq o 2 zmenšili. Po-
dobným způsobem můžeme o 2 „zmenšit“ číslo na libovolné stěně krychle.
Je tedy zřejmé, že popsaným způsobem dosáhneme toho, že (relativní)
hodnoty čísel na stěnách budou jen 0 nebo 1, nula mezi nimi ovšem
musí být aspoň jedna (podle významu relativních hodnot). Nyní již stačí
prošetřit následující možnosti (připomeňme, že součet všech šesti čísel je
sudý):
a) Na stěnách krychle jsou vesměs 0; tvrzení pak platí triviálně.
b) Na stěnách krychle jsou právě dvě 1 (na ostatních 0). Bez ohledu

na to, zda jsou obě jedničky na sousedních či protilehlých stěnách,
vždy můžeme rozdělit zbývající čtyři stěny s nulami na dvě dvojice
sousedních stěn a ve dvou krocích zvětšit jejich čísla o 1.

c) Na stěnách krychle jsou právě čtyři 1 (na zbývajících dvou stěnách
jsou 0). Tento případ vyřešíme tak, že nejprve snížíme (způsobem
popsaným výše) hodnotu každé stěny s jedničkou o dva, čímž ovšem
(v relativních hodnotách) dostaneme přesně situaci popsanou v b).
Závěr. Dosáhnout toho, že po konečném počtu kroků budou na všech

stěnách krychle napsána stejná čísla, lze, právě když je součet (celých)
čísel na všech šesti stěnách krychle dělitelný dvěma.

Poznámka. Část c) předchozího řešení lze vyřešit i takto: Jsou-li obě
0 na sousedních stěnách, můžeme je jediným krokem zvětšit na 1. Jsou-li
obě 0 na protilehlých stěnách (bez újmy na obecnosti nechť jsou to např.
Si a Sq), pomocí kroků ku, &зб? &15, dosáhneme toho, že na všech
stěnách krychle budou napsána čísla 2.

A - I - 6

Je-li a = b, je a — /3, takže cos(a — /3) = 1 a dokazovaná nerovnost
platí jako rovnost a2 + a2 = 2a2 (dodejme, že bez ohledu na to, zda je

1 Podobně jsou očíslovány i stěny běžné hrací kostky: součet bodů na protilehlých
stěnách dává 7.
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úhel 7 ostrý či nikoli). Protože dokazovaná nerovnost je symetrická v a,
b (kosinus je sudá funkce), můžeme bez újmy na obecnosti předpokládat,
že a > b neboli a > /3.

Je-li tedy a > (3, lze úhel BAC velikosti a rozdělit pomocí bodu D E
E BC na dva úhly CAD a DAB velikostí (За, a — (3 (obr. 13). Trojúhelník
DAC je pak zmenšením trojúhelníku ABC s koeficientem podobnosti
к = b : a, takže \AD\ = bc/a a \DC\ = 62/a, odkud \BD\ — \BC\ —
- \DC\ = (a2 - b2)/a.

A c В

Obr. 13

Vyjádření \AD\, \BD\ dosadíme do rovnosti z kosinové věty pro troj-
úhelník ABD a upravíme:

\BD\2 = \AB\2 + \AD\2
(a2 - b2)2

2\AB\ • \AD\ cos(a — (3),
26c2 cos(a — (3)2 b2c2C2 + —Г-

a2a2 a

kde 8 = a2 + b2(a2 - b2)2 = S • c2,

(Poslední nerovnost plyne z toho, že pro a Ф (3 je cos(a — /3) < 1.)
Vztah (1) spolu s rovností c2 = a2+b2 — 2ab cos j nyní využijeme к úpravě
rozdílu 14 pravé a levé strany dokazované nerovnosti, který navíc ještě
vynásobíme výrazem 2ab:

2abcos(a — /3) > 0. (1)

2ablA = 2ab(2ab — (a2 + b2) cos(a — /5)) =
= 4a262 — (a2 + b2) • 2a6cos(a — (3) =

- 4a262 - (a2 + b2)(a2 + b2 - 6) = ú(a2 + 62) - (a2 - 62)2 -

= 8{a2 + b2) — 8 • c2 = ú(a2 + b2 — c2) = 8 ■ 2abcosj.

Po vydělení výrazem 2ab dostáváme vztah 14 = ácos7, takže s ohledem
na 8 > 0 má výraz !4 stejné znaménko jako cos 7 (zopakujme, že za

předpokladu a фЪ). Odtud plyne, že v případě, kdy 7 < 90° a a ф b, platí
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nerovnost ze zadání úlohy jako ostrá. Tím je úloha vyřešena a odpověď
na její závěrečnou otázku zní: v dokázané nerovnosti (v zadané situaci,
tj. při ostrém úhlu 7) nastane rovnost, právě když a = b.

Poznámka 1. Odvozený vztah lA = 6 cos 7 se bez pomocných označení
přepíše jako identita

2ab — (a2 + b2) cos(o: — /3) = (a2 + b2 — 2abcos(a — /3)) cos 7,

která platí pro libovolný trojúhelník ABC (k našemu odvození stačí při-
dat triviální ověření rovnosti (2) v případě a = b). Výsledek (2) umožňuje
snadnou diskusi o jednotlivých případech relace

(2)

(a2 + b2) cos (a — /3) = 2ab,

neboť první činitel v pravé straně (2) je vždy nezáporný:

a2 + b2 — 2abcos(a — /3) ^ a2 + b2 2ab = (a — b)2 A 0.

b nebo 7 = 90°;Relace dopadá takto: rovnost nastane, právě když a
v případě а ф b pak platí ostrá nerovnost < či > podle toho, zda je
7 < 90° nebo 7 > 90°.

Jiné řešení. Původní řešení je celé založeno na vztahu (1), proto jeho
odlišné odvození nyní uvedeme jako „jiné řešení“. Tvar kladného výrazu á
v (1) je motivací к úvaze o pomocném trojúhelníku, jehož dvě strany mají
délky a, b a svírají úhel velikosti a — /3 (opět předpokládáme, že a > b).
Nás zajímá délka jeho třetí strany, kterou označíme d, takže pro výraz 5
ve vztahu (1), který se chystáme dokázat, budeme mít S = d2. Ukažme, že
takový trojúhelník o stranách a, 6, d je — vedle původního trojúhelníku
o stranách a, 6, c — druhým řešením úlohy sestrojit trojúhelník ABC,
jsou-li dány strany a, b a úhel (3. Konstrukci obou řešení A\BC а A2BC
vidíme na obr. 14. Součet úhlů při vrcholech A\ a A2 (vyznačených ob-

AA2 Вi

Obr. 14

71



loučky) je zřejmě 180°. V jednom z trojúhelníků je to úhel a, ve druhém
tedy úhel 180° — ct, takže úhel při vrcholu C druhého trojúhelníku je
právě a — /3, jak jsme si přáli.2 Úsečky A\B, A2B tedy mají (v některém
pořadí) délky c a d. Z mocnosti bodu В к sestrojené kružnici o středu C
a poloměru b vyplývá rovnost

cd — a2 — b2,

z níž po umocnění na druhou dostáváme c2d2 = (a2 — b2)2. A to je kýžený
klíčový vztah (1) z původního řešení, neboť jak už jsme naznačili, podle
kosinové věty platí

(3)

d2 = a2 + b2 — 2a6cos(ct — /3).
Poznámka 2. V původním řešení jsme ze vztahu (1) odvodili identitu

zapsanou v Poznámce 1 jako (2). Právě uvedený alternativní důkaz (1)
s využitím konstrukční úlohy (a, 6, /3) má zajímavý důsledek: díky „rov-
noprávnosti“ obou řešení z obr. 14 musí platit i identita

2ab — (a2 + b2) cos 7 = c2 cos(a — /3)

získaná z (2) výměnou rolí trojúhelníků s trojicemi stran (a, 6, c)
a (a,b,d), kterou lze odvodit i trigonometricky.

Další řešení. Pomocný trojúhelník se stranami a, b (a > b) svírajícími
úhel a — /3 a třetí stranou d danou vztahem (4) lze využít к řešení úlohy
i bez objevu „mocnostní“ rovnosti (3) následujícím postupem.

Zmíněný trojúhelník lze к trojúhelníku ABC vhodně přikreslit dvěma
způsoby patrnými z obr. 15. Vlevo je to trojúhelník BCD (ten známe už
z předchozího řešení), vpravo to je trojúhelník ВСЕ; snadno pak ověříme,
že oba vyznačené úhly BCD a CBE mají požadovanou velikost a — /3.

(4)

(5)

2 V případě a = 90° sice platí A\ — A2, avšak na celé naší úvaze není třeba nic
měnit: tehdy totiž a — /3 = 7 a c = eř.
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(Oba obrázky odpovídají případu a < 90°, v úplném řešení by neměl
chybět obrázek pro případ a ^ 90°, který zde posuzovat nebudeme, pro-
tože další postup vyžaduje jen nepatrnou obměnu.) Pomocí délky d ze
vztahu (4) nyní upravíme dokazovanou (ostrou) nerovnost:

(■a2 + b2) cos(o: — /3) < 2ab,
(a2 + b2) • 2abcos(a — /3) < Aa2b2,

(a2 + b2)(a2 + b2 - d2) < 4a2b2,
(a2 -b2)2 < (a2 + b2)d2. (6)

Nakonec využijeme Pythagorovu větu pro dvojice pravoúhlých troj úhel-
níků z obr. 15; v obou variantách jak s trojúhelníkem BCD, tak s troj-
úhelníkem ВСЕ pak platí

a2 = (d + x)2 + v2 a b2 = x2 + v2,

takže a2 — b2 — d2 + 2dx = d(d + 2x). Po dosazení do levé strany nerov-
nosti (6) a zkrácení výrazem d2 dostaneme ekvivalentní nerovnost

(d + 2x)2 < a2 + b2 neboli c2 < a2 + b2,

která (díky kosinové větě) přesně vyjadřuje podmínku 7 < 90° ze zadání
úlohy. Tím je celé její řešení hotovo, protože v případě a = b zřejmě
v dokazované nerovnosti nastane rovnost.

Další řešení. Ještě jedním způsobem za předpokladů 7 < 90° a a > b
(neboli a > /3) dokážeme ostrou nerovnost

(a2 + b2) cos(a — /3) < 2ab.

- /3) > 0Nejprve ji ekvivalentně upravíme, když položíme ip
a využijeme vzorec cos 2ip = 1 — 2 sin2 p:

(a2 + b2)( 1 — 2 sin2 <p) < 2ab,
(a — b)2 < 2(a2 + b2) sin2 ip,

2(žS)2<“2^2
To je (podle sinové věty) nerovnost 2r2 < a2 + 62 pro poloměr r kružnice
opsané libovolnému trojúhelníku se stranou a — b a protilehlým vnitřním
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úhlem p. Takový trojúhelník dostaneme, když jako na obr. 16 stranu CA
trojúhelníku ABC prodloužíme za bod A do bodu F tak, aby platilo

\CF\ a (a > b). Potom má trojúhelník ABF stranu AF délky a — b
s protilehlým úhlem ABF, jehož velikost určíme takto: rovnoramenný
trojúhelník BCF má při základně BF shodné úhly 90° — ^7 = + /3),
takže

\<ABF\ = \<CBF\ - \<CBA\ =

Proto je poloměr kružnice opsané trojúhelníku ABF skutečně roven zkou-
mané hodnotě r. Pro ni tak získáme z předpokladu 7 < 90° odhad

P = <P-

\АВ I c c c
<r =

2sin |<v4Fi?| 2sin(90°-|7) 2 sin 45° y/2
neboli 2r2 < c2; ze stejného předpokladu 7 < 90° ovšem vyplývá (díky
kosinové větě pro trojúhelník ABC) další nerovnost c2 < a2 + b2. Dohro-
mady dostáváme 2r2 < c2 < a2 + b2 a kýžená nerovnost 2r2 < a2 + b2 je
tak dokázána.

Dodejme ještě, že v případě 7 > 90° ze stejných důvodů platí 2r2 >
> c2 > a2 + 62, což (za předpokladu а Ф b) dokazuje opačnou nerovnost

(a2 + b2) cos (a — /3) > 2ab.

Poslední řešení. Uvedeme ještě jedno trigonometrické řešení. Pro li-
bovolný trojúhelník ABC platí totiž tzv. Mollweidův vzorec

a — b sin 7}(a —/3)
cos ^7c
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ze kterého plyne následující vyjádření hodnoty cos(a — /3):

2(a — b)2 cos2 ^7P
cos(a — /3) = 1 — 2 sin2 ^ c2

Dosazením do levé strany dokazované nerovnosti dostaneme

(a2 + b2) cos(a — /3) ^ 2ab,
2(a — 6)2 cos2(a2 + 62)^l ^ 2aů,

2(a2 + 62)(a — b)2 cos2 ^7
c2

(a — 6)2 ^ c2

Vidíme, že v případě a — b nastane rovnost. V případě a ^ b po dělení
kladným výrazem (a — b)2 a další zřejmé ekvivalentní úpravě dostaneme

c2 2(a2 + b2) cos2

Dosadíme-li sem z rovností

c2 = a2 + á2 — 2aácos7 a 2 cos2 ^ = 1 + cos 7,

dostaneme po odečtení součtu a2 + b2 od obou stran nerovnost

—2a6cos7 ^ (a2 + b2) cos7 neboli 0 ^ (a -f 6)2 cos 7,

což díky zadanému předpokladu 7 < 90° skutečně platí jako ostrá nerov-
nost. Tím je nerovnost ze zadání úlohy dokázána; rovnost v ní nastane,
právě když a = b.3

A - S - 1

Předpokládejme, že číslo c má požadovanou vlastnost. Diferenci příslušné
aritmetické posloupnosti označme d. Rozlišíme dva případy podle toho,
zda číslo c leží mezi kořeny x\ а X2 dané kvadratické rovnice, nebo ne:

a) Je-li c prostředním členem předpokládané aritmetické posloupnosti,
platí x\ = c — d ai2 = c + d. Pro součet kořenů tak podle Viétova vztahu
dostáváme — | = x\ + X2 = 2c, odkud c = — Navíc pro záporné c

3 I při tomto postupu lze odvodit obecnější závěry uvedené v Poznámce 1 za prvním
řešením.
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je diskriminant dané rovnice kladný, takže má dva reálné kořeny. (Pro
| má daná rovnice kořeny x\^ — ~ § ± |\/5.)

b) Je-li koeficient c krajním členem předpokládané aritmetické po-

sloupnosti, označme kořeny dané rovnice tak, aby platilo x\ = c + d,
X2 = c + 2d. Pro jejich součet tentokrát vychází — | = x\ + X2 = 2c + 3d.
Vyjádříme-li odtud d
a X2 = c + 2d, dostaneme = |(2c — 5), X2 — — |(c + 5). Dosadíme-li
oba výrazy do Viétova vztahu X1X2 = c pro součin kořenů, obdržíme po

úpravě kvadratickou rovnici 2c2 + 23c — 25 = 0, která má kořeny la-y.
(Podmínku na diskriminant tentokrát ověřovat nemusíme, neboť uvede-
ným postupem máme zaručeno, že reálná čísla х\$ odpovídající oběma
nalezeným hodnotám c splňují oba Viétovy vztahy, takže jsou skutečně
kořeny příslušné rovnice. Pro c — 1 má daná kvadratická rovnice kořeny

X2 = —2; pro с — —Щ má rovnice kořeny x\ = —5, X2 — §.)
Závěr. Úloze vyhovují reálná čísla c z množiny {—1}.

c = —

| — |c a dosadíme do vztahů xi = c + d

_ ixi = 2 '

A - S - 2

Označme M' střed úsečky CQ (obr. 17). Protože PM' a RM' jsou
střední příčky trojúhelníků AQC a BQC, které jsou podle Thaletovy
věty rovnoramenné se základnami АС a BC, jsou čtyřúhelníky CAPAť

A ВQP R

Obr. 17

a CBRAť rovnoramenné lichoběžníky a jim opsané kružnice, jež se proti-
nají v bodech С a M', jsou zároveň i opsanými kružnicemi uvažovaných
trojúhelníků APC a BRC. Je tedy M — M' a tvrzení úlohy je tím
dokázáno.

Jiné řešení. Označme c délku přepony AB daného pravoúhlého troj-
úhelníku ABC. Kružnice opsané trojúhelníkům APC a BRC označme
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po řadě к, l (obr. 18). Vzhledem к tomu, že \QP\ ■ \QA\ = \QR\ • \QB\ —

= \c-\c, má střed Q přepony AB stejnou mocnost m = |c- к oběma
kružnicím к i /, a leží proto na jejich chordále CM. Navíc podle Thale-
tovy věty platí \QC\ — \QA\ = \c. Z rovnosti \QM\ • |QC| = m tak plyne
\QM\ = jc = ||QC|, takže M je středem úsečky CQ.

A - S - 3

Protože p, g jsou různá lichá prvočísla, je \p — q\ ^ 2. Pro levou stranu
dané nerovnosti tudíž platí

P2 - 92 \p-q\-(p + q) . 2(p + g)£= £_£
q p

>

pq pq pq

Abychom dokázali požadovanou nerovnost

l>4=,Vpq

stačí dokázat nerovnost p + q > 2y/pq- To je ovšem nerovnost, jež je
triviálním důsledkem nerovnosti (y/p—y/q)2 > 0, která platí pro libovolná
dvě různá kladná čísla p, q. Tím je daná nerovnost dokázána.

A - II - 1

Nejprve určeme počet и všech osmimístných čísel dělitelných čtyřmi.
Každé takové číslo má ve svém zápisu na prvním místě zleva nenulovou
číslici. Máme tak 9 možností. Na následujících pěti místech má libovolnou
číslici desítkové soustavy, tj. pro každou pozici máme 10 možností, a končí
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dvojčíslím, které je dělitelné čtyřmi, tj. 00, 04, 08, 12, 16, 20, 24,..., 96,
celkově tedy 25 možností. Proto je

и = 9- 105- 25 = 22 500 000.

Podobnou úvahu lze provést i při hledání počtu v všech osmimístných
čísel dělitelných čtyřmi, která ve svém desítkovém zápisu neobsahují čís-
licí 1. Pro první pozici zleva máme nyní 8 možností a pro každou další
z pěti následujících pozic máme 9 možností. Na posledních dvou místech
zprava musí být dvojčíslí dělitelné čtyřmi, které však neobsahuje číslici 1.
Jsou to všechna dvojčíslí z předchozího odstavce kromě 12 a 16, tedy
23 možností. Proto

v = 8 • 95 • 23 = 10865016.

Závěr. Protože и > 2v, je mezi osmimístnými násobky čísla 4 více
těch, které ve svém (desítkovém) zápisu číslici 1 obsahují, než těch, které
ji neobsahují.

Poznámka. Počet и všech osmimístných násobků lze také určit jed-
noduchou úvahou: nejmenší násobek je A — 10 000 000, největší je
В = 99999996, takže hledaný počet je — A) + 1 = \(B + 4 —
- A) = 22 500 000.

К důkazu nerovnosti и > 2v není nutné v vyčíslit, protože podíl

9 • 105 • 25 9

8 • 95 • 23 “ 8

10\5 25и

239v

lze dobře odhadnout pomocí binomické věty

/10\5 / 1x5

Ы -(1 + g)
1 136 8 • 171

9 + 10’9Í “ 81
>1 + 5-

92

tudíž

10\5 25 9 8-17 25
_ 17-25 _ 425

~9J ' 23 > 8 ' 92 ' 23 ~ 9-23 ~ 207

9и
> 2.

8v

A - II - 2

Označme T trojúhelník s vrcholy ve středech stran BC, CA, AB daného
trojúhelníku ABC. Obsah trojúhelníku XYZ budeme značit symbolem
Sxyz■
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Protože body A!, В', C jsou zároveň obrazy bodu U ve stejnolehlos-
těch se středy v odpovídajících vrcholech trojúhelníku ABC a koeficien-
tem 2, plyne z předpokladu úlohy, že body A', В', O leží postupně uvnitř
trojúhelníků A0CB, CB0A a BAC0 (to jsou obrazy trojúhelníku T v uve-
děných stejnolehlostech, na obr. 19 je T vyznačen šedou barvou). Hranice
trojúhelníku A'B'C' tudíž protne strany AP, BC, CA postupně v jejich
vnitřních bodech К, L, M, N, O, P.

Bq v

Protože trojúhelník A'B'C' je obrazem trojúhelníku ABC ve středové
souměrnosti podle středu U, jsou navzájem si odpovídající strany rovno-
běžné a v téže souměrnosti si odpovídají dvojice bodů К a N, L a O i M
a P. Proto podle věty uu je každý z trojúhelníků AKP, LBM, ONC
podobný trojúhelníku ABC. Označme &i, &2> koeficienty podobnos-
tí, jež zobrazí trojúhelník ABC postupně na trojúhelníky AKP, LBM,
ONC. Obrazy trojúhelníků AKP, L6M, ONC ve středové souměrnosti
se středem U jsou po řadě trojúhelníky A'NM, OB'P, LKC. Ty jsou
rovněž podobné trojúhelníku ABC, přičemž odpovídající koeficienty po-

dobností, které na ně převedou trojúhelník ABC, jsou opět &i, £3.
Označíme-li c délku strany AP, platí pro délky úseků na straně AP

Ci = |Aiú| = fcíc, c2 = |LP| = k2c, c3 = |iúL| = A;3c,

takže

c = d T c2 + c3 = kic + /c2c + A;3c = (fci + k2 + k3)c
neboli

k\ + k2 + Zc3 — 1.
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Z podobnosti trojúhelníků ABC a LKC dále plyne, že velikost výšky
z vrcholu C ke straně AB v trojúhelníku ABC' je rovna k3vc, kde vc je
velikost výšky z vrcholu C v trojúhelníku ABC. Je tudíž

ic • k3vc = k3(^cvc^j = k3S.Sabc

Analogicky Sbca1 = k\S a Scab> — ^2*5'- Pro obsah S' šestiúhelníku
AC'BA'CB' tak platí

S' = Sabc + Sbca1 + Scab> + Sabc = (1 + k\ + k2 + k3)S = 2S.

Jiné řešení. (Podle Karla Beneše z Gymnázia Kojetín.) Šestiúhelník
АСBA'CB' je středově souměrný podle zvoleného bodu U (obr. 20).

В

O

Obr. 20

Každá z jeho úhlopříček AA', BB\ CC tudíž dělí tento šestiúhelník na
dva shodné čtyřúhelníky, a proto například platí

SAC'BA'CB' = 2 SacвA' •

Stačí tedy dokázat, že čtyřúhelník ACBA' má stejný obsah S jako troj-
úhelník ABC. Protože úsečka AU je těžnicí v trojúhelníku CAC, platí

(1)Sabc — Sabc-

Podobně úsečka BU je těžnicí v trojúhelnících ABA! a CBC', platí tudíž

(2)Sbbc — Sbbc a Sbba' = Sbba•
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Sečtením všech tří rovností ze vztahů (1) a (2) dostaneme

Sauc + Sbuc + Sbua — S,Sacba' — Sauc + Sbuc + Sbua'

což dokazuje platnost daného tvrzení.

Jiné řešení. (Podle Pavla Polcera z G v Brně, Křenová, Kateřiny Med-
kové z BG Bohuslava Balbina v Hradci Králové a Zuzany Boršiové z G
v Teplicích.) Doplňme nejprve trojúhelník ABC na rovnoběžník ADBC
(obr. 21). Vzhledem к tomu, že také АС'А'С je rovnoběžník, je v po-

sunutí určeném vektorem CA obrazem trojúhelníku CBA' trojúhelník
ADC'. Rovněž BCB'C je rovnoběžník, a proto v posunutí určeném vek-
torem CB je obrazem trojúhelníku ACB' trojúhelník DBC'. Platí tedy
rovnosti

Scba' = Sadc a Sacb1 = Sdbcu

které zřejmě znamenají, že obsah zkoumaného šestiúhelníku АС'ВА'СВ'
je roven obsahu rovnoběžníku ADBC, tudíž dvojnásobku obsahu S da-
ného trojúhelníku ABC.

Jiné řešení. (Podle Dominika Lachmana z G v Olomouci-Hejčině.)
Ve shodě s obr. 22 označme ip = \<BUC'\, ф = \<CUA'\ \<AUB'\.а си =
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S ohledem na rovnost sinů vedlejších úhlů lze obsah 5 trojúhelníku ABC
(rovný součtu obsahů trojúhelníků ABU, BCU a CAU) vyjádřit násle-
dujícím způsobem

1 1 1
-\AU\ ■ \BU\ sin ca + - \BU\ ■ \CU\ sin <p+ - \CU\ • \AU\siný.S =

Obsah Q šestiúhelníku AC'BA'CB' je roven (díky souměrnosti podle
středu U) dvojnásobku obsahu čtyřúhelníku ACBA!, který vyjádříme
jako součet obsahů trojúhelníků ACU, C'BU a BA'U. Dostaneme tak

Q = 2 (i \AU\ ■ \C'U\siný + i \C'U\ • \BU\sin + i \BU\ ■ \A'U\sin ta).
A protože \UA\ = \UA'\, \UB\ = a |C/C|
konečně

Q = 2(i |At7|-|Bř7|sinu; + i |Б[/| ■ |Ct/| sin(^+i |Ct/| • |Af/| sin^) =
= 25,

|ř7C"|, dostáváme

což bylo třeba dokázat.
Jiné řešení. Označme AT, L, M středy stran A5, 5(7, (7A. Stejnoleh-

lost se středem A a koeficientem 2 zobrazí trojúhelník MKU na trojúhel-
nik CBA' (obr. 23), proto Scba' — 4-Smku■ Podobně Sacb' = 4-Sklu
a Sbac = 4 • Slmu■ Odtud

Scba' + Sacb1 + Sbac — 4 • Sklm = 5,

takže šestiúhelník АСBACB' má obsah 25.
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Jiné řešení. Je-li bod U totožný s těžištěm T trojúhelníku ABC (U —

= T), je tvrzení úlohy splněno, neboť SA>Bc = STbc, SB'ca = STca
a Scab = Stab (obr. 24).

Předpokládejme nyní, že se bod U pohybuje uvnitř trojúhelníku T
po přímce p rovnoběžné se stranou BC, a ukažme, že se obsah šestiúhel-
niku AC'BA'CB' nemění. Body А', В' a C leží totiž na rovnoběžkách
s přímkou p, a proto se nemění obsah trojúhelníku A'BC ani obsahy
rovnoběžníku BCB'C a trojúhelníku В'С'А (obr. 25). Obsah šestiúhel-
niku AC'BA'CB' tedy na poloze bodu U na přímce p nezávisí. Podobně
lze ukázat, že se obsah šestiúhelníku АСBA'CB' nemění, pohybuje-li se
bod U po rovnoběžce se stranou AC.
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Libovolný vnitřní bod U trojúhelníku T přitom získáme jako obraz
těžiště T trojúhelníku ABC v zobrazení složeném ze dvou posunutí, a to
z posunutí ve směru rovnoběžném se stranou ВС a z posunutí ve směru
rovnoběžném se stranou AC. Proto pro každý bod U uvnitř trojúhelníku
T má šestiúhelník AC'BA'CB' stejný obsah jako šestiúhelník odpovídá-
jící bodu U = T, tedy obsah 25, jak jsme chtěli dokázat.

Jiné řešení. Označme U' libovolný vnitřní bod trojúhelníku ABC.
Protože obsah zkoumaného šestiúhelníku je roven součtu obsahů tří čtyř-
úhelníků AC'BU'i BAČU' a CB'AU', bude tvrzení úlohy zřejmě platit,
dokážeme-li bod U' vybrat tak, aby všechny tři zmíněné čtyřúhelníky
byly rovnoběžníky. Protože

A + А В + В' С С С
U =

2 2 2

mají body А, В', С vyjádření

А = 2U- А В' = 2U - В, С' = 2U - С,

takže potřebné rovnosti

А + В С + U' В+ С А + U' С Л-А В' + U'
2 2 2 2 2 2

budou splněny, právě když bod U' bude mít vyjádření U' = A+B+C—2U
neboli U' — 3T — 2U, kde T = ^(A + B + C) je těžiště trojúhelníku ABC.
Odvozená rovnost zapsaná ve tvaru U' — T — 2{T — U) znamená, že ký-
žený bod U' je určen jako obraz bodu U ve stejnolehlosti se středem T
a koeficientem —2. V ní je ovšem obrazem trojúhelníku T výchozí troj-
úhelník ABC, takže vnitřní bod U trojúhelníku T se skutečně zobrazí na
vnitřní bod U' trojúhelníku ABC, jak jsme potřebovali dokázat.

A - II - 3

Předně si uvědomme, že s každou dvojicí (m, n) kladných celých čísel,
která úloze vyhovuje, jí vyhovuje i dvojice (n,m). Proto můžeme bez
újmy na obecnosti předpokládat, že m ^ n.

Pokud kladné celé číslo A — (m + n)2 dělí kladné celé číslo В =
= 4(mn + 1), nutně platí

(m + n)2 í 4(mn + 1) neboli (m — n)2 й 4.
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Proto 0 m — n ^ 2. Nastane tedy právě jedna ze tří následujících
možností:

o m — n, pak A = 4n2, В = 4n2 + 4aá dělí B, právě když 4n2 dělí 4,
tedy n— 1. Dostáváme jedno řešení (m,n) = (1,1).

o m = n + 1, pak A = 4n2 + 4n + 1, В = 4n2 + 4n + 4 = A + 3. Číslo A
dělí В, právě když 4n2 + 4n + 1 dělí 3. Ovšem pro kladná celá čísla n

platí 4n2 + 4n +1 ^ 4 + 4 + 1 = 9, proto v tomto případě nemá úloha
řešení.

t> m = n + 2, pak A = 4n2 + 8n + 4, В = 4n2 + 8n + 4. Vidíme, že
A = B, tedy každá dvojice (m, n) = (n + 2,n) kladných celých čísel
je řešením zadané úlohy.
Závěr. Úloze vyhovuje dvojice (1,1) a dále (s ohledem na symetrii

neznámých m, n) rovněž každá z dvojic (n + 2,n) a (m,m + 2), kde m
a n jsou libovolná kladná celá čísla.

A - II - 4

Označme stěny krychle Si, S2, ■ ■ ■, Sq tak, že stěna S1 je protilehlá
stěně Sq, stěna S2 je proti Sq a S3 je proti S4. Číslo na stěně Si označ-
me Cj. Zřejmě libovolný vrchol krychle patří vždy právě jedné z dvojic
protilehlých stěn. To znamená, že se v každém kroku zvětší o 1 i hodnota
součtů ci + cq, C2 + C5 a C3 + C4 čísel na protilehlých stěnách. Má-li tedy
na konci platit ci = C2 = C3 = C4 = cq — cq, a tedy také

(1)Cl + Cq — C2 + Cq — C3 + C4

musejí být součty čísel na protilehlých stěnách krychle stejné už na po-
čátku (a zůstanou stejné i po každém kroku).

Ukážeme, že podmínka (1) je zároveň postačující. Necht tedy čísla na
stěnách krychle splňují (1). Popíšeme posloupnost kroků, po nichž budou
na všech stěnách krychle stejná čísla. Krok, v němž zvětšíme čísla na
stěnách Si, Sj, Sm, označme kijm. Bez újmy na obecnosti nechť ci = p je
největší ze šesti čísel na krychli. Nyní provedeme (p — C2)-krát krok &246
a (p — C3)-krát krok k3QQ. Dosáhneme tak toho, že na stěnách Si, S2, S3
budou stejná čísla p. Díky podmínce (1) je teď i na stěnách 64, Sq, Sq
totéž číslo, jehož hodnotu označme q. Pokud ještě není p = q, stačí nyní
jen (p — g)-krát provést krok £456, je-li p > q, resp. (q — p)-krát krok /+23,
je-li q > p.
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Naší úlohou je tedy určit počet takových množin M = {ci,C2,C3,C4
С5,Сб} navzájem různých přirozených čísel, pro něž platí

ci + c2 + c3 + c4 + c5 + c6 = 60 a ci + c6 = c2 + c5 = c3 + c4.

Odtud plyne 3(c4 + cq) = 60, tedy

(2)Cl + C6 = c2 + c5 = c3 + c4 = 20.

Bez újmy na obecnosti můžeme zřejmě předpokládat, že ci < c2 < c3 <
< c4 < C5 < cq neboli (vzhledem к rovnostem (2))

Ci < c2 < c3 < 10 < c4 < c5 < c6.

Přitom ke každé trojici (ci,c2,c3) splňující ci < c2 < c3 < 10 zbylá
čísla c4, C5, cq dopočteme z (2). Počet všech vyhovujících množin M je
tedy roven počtu různých trojic přirozených čísel (ci, c2, c3), jež vyhovují
podmínce ci < c2 < c3 < 10, což je

9 9-8-7
= 84.

3 1-2-3

A - III - 1

Čtyřúhelník KBCM je tětivový, právě když \<CMB\ — \<CKB\ neboli
\KAKL\ = \<AML\ (obr. 26). Přitom čtyřúhelník AKLM je tětivový,
právě když \jcAKL\ + \^AML\ = 180°. Ve zkoumaném případě proto
musí být všechny čtyři zmíněné úhly pravé, К a M jsou tak paty výšek
v trojúhelníku ABC, který je tudíž ostroúhlý, a bod L je průsečíkem jeho
výšek. Kružnice opsaná čtyřúhelníku KBCM je Thaletovou kružnicí nad
průměrem ВС a kružnice opsaná čtyřúhelníku AKLM je Thaletovou
kružnicí nad průměrem AL.
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Kružnice opsané uvedeným čtyřúhelníkům jsou shodné, právě když
jsou shodné jejich průměry BC a AL. Označme velikosti vnitřních úhlů
v trojúhelníku ABC obvyklým způsobem a, /3, 7. Pravoúhlé trojúhelníky
СКВ a AKL jsou podobné, protože pro jejich úhly při odpovídajících
vrcholech C a A platí \<BAL\ = \<BCK\ = 90° — /3. Zřejmě proto
platí \BC\ = \AL\, právě když \AK\ — \CK\, tedy AKC je pravoúhlý
rovnoramenný trojúhelník.

Vidíme, že trojúhelník ABC vyhovuje podmínkám úlohy, právě když
je ostroúhlý s úhlem a = 45°. Pro ostré úhly /3 a 7 pak platí /З + 7 = 135°.

Závěr. Řešením jsou právě všechny trojice úhlů (a, /3,7) = (45°, 45° +
+ <p, 90° — <p), kde <p G (0°, 45°).

Jiné řešení. Nechť K, M jsou vnitřní body stran AB, AC trojúhel-
niku ABC, jež vyhovují podmínkám úlohy. Vzhledem к tomu, že kružnice
opsané čtyřúhelníkům AKLM, KBCM jsou shodné, shodují se i pří-
slušné obvodové úhly nad společnou tětivou KM obou kružnic4 (obr. 27).

Odtud \kMBC\ = /3 — a a \KKCB\ =7 — a, tudíž a je nejmenším vnitř-
ním úhlem uvažovaného trojúhelníku.

Protože čtyřúhelník AKLM je tětivový, je vnitřní úhel při vrcholu A
shodný s vnějším úhlem u protějšího vrcholu L, což je zároveň vnější úhel
trojúhelníku BCL, takže platí

a = (/3 — a) + (7 — a) neboli 3a = /3 + 7 = 180° — a.

Odtud vychází a = 45°. Trojúhelník ABAÍ je tedy stejně jako trojúhelník
ACK rovnoramenný pravoúhlý, takže CK a BM jsou výšky trojúhelníku

4 Dvě shodné kružnice se společnou tětivou mohou být buď totožné, anebo souměrně
sdružené podle společné tětivy; první možnost zde nepřichází v úvahu.
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ABC a bod L je jeho průsečíkem výšek. A protože bod L leží uvnitř
trojúhelníku ABC, je trojúhelník ABC ostroúhlý.

Vzhledem к tomu, že a = 45° je nejmenším z vnitřních úhlů trojúhel-
niku ABC, snadno nahlédneme, že hledané trojice (a,/3,7) mají tvar
(45°,45° + <p, 90° — <p), kde pro parametr <p platí 0° < <p < 45°.

Naopak v každém ostroúhlém trojúhelníku ABC s úhlem 45° při
vrcholu A, pro jehož další úhly platí /З+7 = 135°, mají zřejmě paty výšek
К, M z vrcholů С а В požadované vlastnosti, protože oba čtyřúhelníky
AKLM, KBCM jsou tětivové podle Thaletovy věty a z rovnosti úhlů
\<KCM\ = \kKAM\ = 45° nad společnou tětivou KM plyne, že jim
opsané kružnice jsou shodné.

A - III - 2

Ukážeme, že dané rovnici vyhovují právě tři trojice prvočísel (p, q, r), a to
(2,3,5), (5,3,3) a (7,5,2).

Danou rovnici nejprve upravíme do tvaru

И)ИЖЬ 4.

Protože З3 < 4 • 23, musí být aspoň jeden ze tří činitelů na levé straně
upravené rovnice větší než |. Pro prvočísla p, q, r tak nutně platí p < 2
nebo q < 4 nebo r < 6. Vzhledem к tomu, že neexistuje žádné prvočíslo
menší než 2, zbývá vyšetřit následujících pět možností: q £ {2,3} are
E {2,3,5}. Ty nyní rozebereme jednotlivě, přitom uvažovanou hodnotu
q či r vždy dosadíme do dané rovnice, kterou pak (v oboru prvočísel)
vyřešíme pro zbývající dvě neznámé.

t> Pro q = 2 dostaneme (p + l)(r + 3) = 2pr, odkud plyne r = 3 +
+ 6/(p— 1), což je celé číslo pouze pro prvočísla p e {2,3,7}. Jim
však odpovídají r e {9,6,4}, která nejsou prvočísly,

o Pro q = 3 dostaneme 5(p + l)(r + 3) = 12pr, odkud plyne, že p = 5
nebo r = 5. Pro p = 5 dostaneme řešení (5, 3, 3) a pro r — 5 řešení
(2,3,5).

> Pro r = 2 dostaneme 5(p + l)(q + 2) = 8pg, odkud plyne, že p = 5
nebo q — 5. Pro p = 5 nedostaneme žádné řešení v oboru prvočísel,
zatímco pro q = 5 dostáváme třetí řešení dané rovnice, kterým je
trojice (7, 5, 2).

d> Pro r = 3 dostaneme (p + l)(q + 2) = 2pq, odkud q = 2 + 4/(p — 1),
což je celé číslo pouze pro prvočísla p £ {2, 3, 5}. Mezi odpovídajícími
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hodnotami q 6 {6,4,3} je jediné prvočíslo, pro něž dostáváme řešení
(p,q,r) = (5,3,3), které již známe.

> Pro r = 5 dostaneme 2(p + l)(q + 2) = 5pq, odkud plyne, že p = 2
nebo q = 2. Pro p = 2 dostáváme už známé řešení (2,3,5), zatímco
pro q = 2 vychází p = 4.

Jiné řešení. Pro každé prvočíslo q platí nerovnost q + 2 ^ 2q. Pro
prvočísla par tak dostaneme nerovnici 2(p + l)(r + 3) ^ Apr, kterou
upravíme na tvar (p — l)(r — 3) 5Í 6. Protože p—1 ^ 1, musí být r —3 ^ 6
neboli г й 9. Odtud plyne, že nutně r E {2,3, 5, 7}. Postupným rozborem
každé z těchto čtyř možností dospějeme (analogicky jako v předchozím
řešení) ke třem trojicím prvočísel (p, q, r): (2,3, 5), (5,3, 3) a (7,5, 2), které
jsou jedinými řešeními úlohy.

Jiné řešení. Rovnici upravíme na tvar (1 + l/p)(l + 2/g)(l + 3/r) = 4.
Kdyby bylo p ^ 5, q ^ 5, r ^ 5, platilo by

ЮИЖ) . 6 7 8 и< <4.
“555

Proto aspoň jedno z čísel p, q,r je z množiny {2, 3}. Stačí tedy prozkou-
mat šest možností:

o p = 2: Rovnici 3(g+2)(r+3) = 8qr upravíme na (5q—6)(5r—9) = 144,
v oboru prvočísel je řešením q = 3, r = 5.

o p = 3: Rovnici 4(q + 2)(r + 3) = 12qr upravíme na tvar (q — 1) •
• (2r — 3) = 9, v oboru prvočísel nemá řešení.

> q = 2: Rovnici 4(p+l)(r+3) = 8pr upravíme na tvar (p—l)(r—3) = 6,
v oboru prvočísel nemá řešení.

> q = 3: Rovnici 5(p + l)(r + 3) = 12pr upravíme na tvar (7p — 5) •
• (7r — 15) = 180, v oboru prvočísel jsou řešeními p = 5, r = 3ap = 2,
r = 5.

t> r = 2: Rovnici 5(p + l)(q + 2) = 8pq upravíme na tvar (3p — 5) •
• (3q — 10) = 80, v oboru prvočísel je řešením p = 7, q = 5.

> r = 3: Rovnici 6(p + l)(q + 2) = 12pq upravíme na tvar (p — 1) •
• (q — 2) = 4, v oboru prvočísel je řešením p = 5, q = 3.
Závěr. V oboru prvočísel jsou řešením dané rovnice následující trojice

(p,q,r): (2,3,5), (5,3,3) a (7, 5,2).
Poznámka. V oboru kladných celých čísel má rovnice až 28 řešení,

z toho 13 v oboru celých čísel větších než 1: (2,2,9), (2,3,5), (2,6,3),(2.30.2), (3,2,6), (3,4,3), (3,10,2), (4,2,5), (5,3,3), (5,6,2), (7,2,4),(7.5.2), (15,4,2).
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A - III - 3

(12 — z)2 a x2 + y2 — 54 — z2, tedya) Dle zadání platí (ж + у)2

2xy = (ж + у)2 - (ж2 +y2) = (12 — z)2 — (54 — z2) = 2((z-6)2 + 9), (1)

a tudíž

О й (ж - у)2 = x2 + у2 2xy = 54 — z2 — 2 ((z — 6)2 + 9)
— —3((г — 4)2 — 4). (2)

Z (1) plyne xy — {z — 6)2 + 9 ^ 9, z (2) nerovnost (z — 4)2 ^ 4 neboli
2 š z ^ 6. Proto (z — 6)2 ^ (2 — 6)2 = 16, což spolu s (1) dává xy =
= (z — 6)2 + 9 ^ 25. S ohledem na symetrii platí odvozené nerovnosti
9 ^ Ж2/ = 25 i pro součiny yz, zx na místě xy.

b) Z dané soustavy rovnic dostáváme

(ж + у + z)2 — (x2 + y2 + z2) 122 — 54
= 45.xy + уz + zx =

2 2

Dále platí

{x - 3)(y - 3) + (y - 3)(2 - 3) + {z - 3)(ж - 3) =

= xy + 1/2 + 2Ж — 6(x + у + z) + 27 = 45 — 6 • 12 + 27 = 0.

Odtud plyne, že čísla x — 3, y — 3, г — 3 nemohou být současně všechna
kladná, alespoň jedno z čísel ж, у, г je tedy nejvýše 3. Podobně ze vztahu

{x - 5)(y - 5) + (y - 5)(z -5) + (z- 5)(ж - 5) =

= xy + yz + zx — 10(ж + у + z) + 75 = 45 — 10 • 12 + 75 = 0

vidíme, že čísla x — 5, y — 5, z — 5 nemohou být současně všechna záporná,
proto alespoň jedno z čísel ж, у, г je nejméně 5.

Jiné řešení. Obtížnější obrat v části b) předchozího řešení můžeme
nahradit důkazem implikací

(ж > 3) Л (у > 3) =>• г < 3 а (ж < 5) Л (у < 5) => z > 5.

Uvažujme kvadratický trojčlen F(t) = (t — x)(t — y). Jsou-li oba jeho
kořeny ж а у větší než 3, platí F(3) > 0. Ovšem podle zadání a (1) platí

32 —3(ж + у)+жу = 9 — 3(12 — z)F(z — 6)2 + 9 = (z — 3)(z — 6).0 < F{3)
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Z této nerovnosti a z odhadu z ^ 6 dokázaného v části a) předchozího
řešení tak dostáváme požadovaný odhad z < 3. Podobně, jsou-li obě čísla
x а у menší než 5, potom platí F(5) > 0. Ovšem podle zadání a (1) platí

52-5{x+y)+xy = 25 —5(12 —z)+ (2 —6)2+9 = (*-2)(z-5).0 < F(5)

Z této nerovnosti a odhadu г ^ 2 dokázaného v části a) předchozího
řešení tak dostáváme požadovaný odhad 2; > 5.

Jiné řešení, a) Dosazením z první rovnice do druhé dostaneme

x2 + y2 + xy — 12x — 12у + 45 = 0

a odtud
12 - у ± V-3y2 + 24у - 36

2

Proto —3у2 + 24у — 36 ^ 0, takže 2 ^ у ^ 6. Dále máme

2xy = 12у - у2 ± y\/-3y2 + 24у - 36.

y^/—3y2 + 24у — 36 < 18Připusťme, že 2xy < 18. Potom 12у — у2
neboli

18 < y\/—3y2 + 24y — 36,0 < 12у- у2
odkud po umocnění a úpravě dostaneme (у — 3)4 < 0, což není možné.

Podobně z nerovnosti 2xy > 50 by vyplývalo

12у — у2 + y\J—Зу2 + 24y — 36 > 50,

y\J-3y2 + 24у - 36 > у2 12у + 50 > 0,

a po umocnění a úpravě (у2 — 2у + 25)(у — 5)2 < 0, což rovněž neplatí.
Je proto 9 ^ xy 25 a vzhledem na symetrii i 9 ^ yz S 25 a 9 5Š

^ zx ^ 25.

b) Položme x = 4 + a, y = 4 + b, z — 4 + c. Potom а + b + c =
= 0, a2 + b2 + c2 = 6. Bez újmy na obecnosti můžeme předpokládat, že
|a| ^ |6| ^ |c|. Čísla
|a| ^ \[2 (dokonce lze dokázat |a| ^ \/3), a tedy x ^ 4 — y/2 < 3 nebo
x ^ 4 + y/2 > 5. Z nerovnosti |6| < 1 by vyplývalo |c| < 1, ale potom
|a| ^ |6| + |c| < 2 a a2 + b2 + c2 < 6; proto |b| ^ 1. Mohou tedy nastat
dva případy:

b mají pak opačná znaménka a a2 ^ 2, protoa а
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> Pokud a > 0, je b < O, tedy 6^—1; proto x > 5 а у ^ 3.
t> Pokud a < 0, je b > 0, tedy 6^1; proto x < 3 а у ^ 5.

Jiné řešení. Vyřešíme část b) geometricky. V kartézské soustavě sou-
řadnic s počátkem O a osami ж, у, z určuje první rovnice rovinu <r, která
prochází bodem S = [4,4,4] a je kolmá к úsečce OS, zatímco druhá
rovnice je rovnicí kulové plochy K{0,r = \/54). Průnikem obou útvarů
je kružnice k(S,g). Určíme nejprve její poloměr a průsečíky kružnice
s rovinou, podle níž jsou osy ха у souměrně sdruženy.

Označme Sx, Sy a Sz kolmé průměty bodu S do souřadnicových os x,
у a z. Na obr. 28 je řez rovinou OSSz. Platí |OSi| = 4\/2, |OSj = 4\/3
(stěnová a tělesová úhlopříčka krychle o hraně délky 4) a \OA\ = \/54.
Z pravoúhlého trojúhelníku OAS pomocí Pythagorovy věty určíme g =
= |5A|
\US\ = 2 & \AU\ — \/2. Odtud A = [5,5,2] a (díky symetrii podle S)
D = [3,3,6].

y/6 a z podobnosti trojúhelníků SAU ~ OSSi dostaneme

Uz

B[3,6,3]D

a[5,5,2]Q c[2,5, 5]

D[3,3,6jx
Sz S

}F[6,3,3]
£[5,2,5]

Q
Au\- к

x
>■

O Os1 x=y

Obr. 29Obr. 28

Analogickým rozborem pro roviny OSSy a OSSx (nebo jen cyklickou
záměnou, kterou lze vzhledem к symetrii uplatnit) nalezneme jejich prů-
sečíky s kružnicí к:

B = [3,6,3], £=[5,2,5] a C = [2,5,5] £ = [6,3,3].

Nalezené body A, В, С, В, E, F rozdělují kružnici к na šest oblouků
(obr. 29 znázorňuje pohled na kružnici к ve směru osy z), pro jejichž
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body zřejmě platí:

[ж, y, z] G AB => 2 íš z ^ 3, 5 ^ у ^ 6, 3 А ж A 5,

[ж, у, z] G BC => 2 А ж A 3. 5 У = 6, 3^2^ 5,

[ж, у, 2] G CD =4> 2 А ж A 3, 5 А ж A 6, 3^y^5,
[ж, ?/, 2] G DE =Ф- 2 А у A 3, 5 А ж A 6, 3 Аж^ 5,

[ж, у, z] G EF => 2 А у A 3, 5 А ж A 6, 3 А ж A 5,

[ж, у, 2] G FA =Ф> 2 А ж A 3, 5 А ж A 6, 3 ^ ?y A 5.

Tím je ovšem tvrzení b) dokázáno.

A - III - 4

Pokud Adam nahradí koeficient u lineárního členu, získá trojčlen аж2 +
+ (а + с)ж + c, který má dva různé reálné kořeny, právě když je jeho
diskriminant (a + c)2 — 4ac — (a — c)2 kladný. To nastane, právě když
а ^ с. V tomto případě výše popsaným tahem vítězí Adam. Pokud Adam
nahradí koeficient u absolutního členu, získá trojčlen аж2 + bx + (a + 6)
se dvěma různými reálnými kořeny, právě když je jeho diskriminant
62 — 4а(а + b) = (6(1 + \/2) + 2а) (6(\/2 — 1) — 2a) kladný. Vzhledem
к podmínkám úlohy to nastane, právě když 6(л/2 — 1) > 2а. Jelikož dis-
kriminant kvadratického trojčlenu je symetrická funkce koeficientů u kva-
dratického a absolutního členu, nastane stejná situace i v případě, kdy
Adam nahradí koeficient u kvadratického členu.

Shrňme úvahy z předchozího odstavce. Pokud a ^ c nebo 6 >
> 2a/(\/2 — 1) = 2(\/2 + l)a, může Adam prvním tahem vyhrát.

Předpokládejme, že а = c a současně 6 ^ 2(\/2 + l)a. Po Adamovi je
na tahu Boris, který bude nahrazovat koeficienty u jednoho z trojčlenů

a) аж2 + 6ж + (а + 6) nebo (а + 6)ж2 + bx + а, b) аж2 + 2аж + а.

a) Pokud v tomto případě nahradí Boris koeficient u lineárního členu,
dostane jeden z trojčlenů аж2 + а(а + 6)ж + (а + 6) nebo (а + 6)ж2 +
+ а(а + 6)ж + а, jež mají oba diskriminant а2(а + 6)2 — 4а(а + 6) =
= а(а + 6)(а(а + 6) — 4), který je vzhledem к podmínkám а ^ 2, 6 ^ 2
kladný. Proto Boris tímto tahem zvítězí.

b) Pokud Boris nahradí koeficient u lineárního členu, dostane kvadra-
tický trojčlen аж2 + а2ж + a, který má dva reálné kořeny, právě když je
jeho diskriminant a4 —4a2 = a2(a+ 2) (a —2) kladný. Vzhledem к podmiň-
kám úlohy to nastane, právě když a > 2. Kdyby Boris v případě а = 2
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nahradil koeficient u kvadratického nebo absolutního členu, zanechal by
Adamovi jeden z trojčlenů 8ж2+4ж + 2 nebo 2ж2+4ж+8. Z úvah v prvním
odstavci plyne, že v takovém případě by zvítězil Adam. Proto v případě
a — 2 musí Boris, aby neprohrál, nahradit koeficient u lineárního členu,
a zanechá tak Adamovi trojčlen 2x2 + 4x + 2.

Z odstavců a) a b) plyne: Pokud Adam nemůže zvítězit prvním tahem,
může svým tahem zvítězit Boris, právě když а ф 2. V případě a — 2
svým prvním tahem Boris neprohraje, jen když zanechá soupeři trojčlen
2x2 + 4x + 2.

Zatím tedy neznáme vítěznou strategii některého z hráčů, pokud po

prvním Borisově tahu zůstane trojčlen 2x2 + Ax + 2. Z úvah v prvním
odstavci vyplývá, že Adam neprohraje, pokud nahradí koeficient u lineár-
ního členu, takže zanechá soupeři stejný trojčlen. Na tento trojčlen musí
Boris, aby neprohrál, reagovat náhradou koeficientu u lineárního členu,
tudíž i on zanechá stejný trojčlen a hra v tomto případě nemá při správné
hře obou hráčů vítěze.

Závěr. Pro trojčlen ax2 + bx + c platí:
o Pokud а ф c nebo b > 2(\/2+1 )a, má vítěznou strategii Adam a může

prvním tahem vyhrát.
[> Pokud a = c>2a6í 2(\/2 +1 )a, má vítěznou strategii Boris a může

prvním tahem vyhrát.
o Pokud а = с= 2аИ 2(\/2 + l)a, musejí oba hráči, aby neprohráli,

v každém tahu zanechávat trojčlen 2x2 + 4x + 2. V tomto případě
žádný z hráčů nemá vítěznou strategii.

A - lil - 5

Je-li trojúhelník ABC rovnoramenný se základnou AB, leží celá úseč-
ka OV na přímce EP a tvrzení platí triviálně. Můžeme tedy předpoklá-
dat, že |AC| Ф \BC\, takže přímky CV, CO jsou různé.

Jak známo, bod V souměrně sdružený s průsečíkem výšek V po-
dle strany AB uvažovaného trojúhelníku ABC leží na kružnici tomuto
trojúhelníku opsané, proto je bod P středem úsečky VV' (obr. 30). Troj-
úhelník CVO je rovnoramenný s hlavním vrcholem O, a protože střed E
úsečky CD je současně středem kružnice opsané pravoúhlému trojúhel-
niku CPD s přeponou CD, je i trojúhelník CPE rovnoramenný. Oba
rovnoramenné trojúhelníky CVO a CPE jsou přitom stejnolehlé (se
středem stejnolehlosti v bodě C) shodují se totiž ve společném úhlu
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při základně a body С, P, V leží v přímce stejně jako body С, E, O. Je
tudíž PE II VO.

Protože P je středem strany W trojúhelníku VOV, leží na přím-
се PE střední příčka tohoto trojúhelníku, která je rovnoběžná s jeho
stranou VO. Přímka PE tedy protíná úsečku OV v jejím středu, což
jsme chtěli dokázat.

Jiné řešení. Označme S střed úsečky OV a A', B', C postupně středy
stran BC, CA, AB. Bod O je zřejmě průsečíkem výšek ostroúhlého
trojúhelníku A'B'C, který je podobný trojúhelníku ABC. Proto O leží
uvnitř trojúhelníku A'B'C' a bod E leží uvnitř úsečky OC (na jejím
průsečíku s příčkou A'B'). Protože S leží uvnitř úsečky OV a P leží
mimo úsečku CV (obr. 31), к důkazu toho, že body P, S, E leží v jedné

Obr. 31
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přímce, stačí podle Menelaovy věty použité na trojúhelník VOC ukázat,
že součin

_ \VS\ \OE\ \CP\
s ~

jŠO| ' \ĚČ\ ' \PV\ (1)

je roven 1. Avšak \VS\ = |SO|, a pokud označíme P' patu kolmice spuš-
těné z bodu O na příčku A'B', plyne z podobnosti trojúhelníků ABC
a A!B'C' rovnost \CP\ : \VP\ = \C'P'\ : \OP'\ (neboť O je průsečíkem
výšek trojúhelníku A'B'C). Navíc \EC\ = |Z)£7|, takže po dosazení do (1)
dostáváme

\OE\ \C'P'\
\DE\ ' \OP'\

s = 1 • = 1.

Poslední rovnost platí díky tomu, že bod O dělí každou úsečku s jedním
krajním bodem na straně AB a druhým na příčce A'B' (rovnoběžné
s AB) ve stejném poměru, tj. \OE\ : \DE\ = \OP'\ : \C'P'\.

Jiné řešení. Použijme označení bodů zavedené v předešlém řešení.
Odlišným způsobem ukážeme, že součin (1) je roven 1. Označíme-li
velikosti vnitřních úhlů trojúhelníku ABC obvyklým způsobem, bude
\<COA'\ = a, \<OA'E\ = 90° - /3, \<EA'C\ = /3, \<OCA'\ = 90° - a,
takže ze sinových vět v trojúhelnících EOA! а ЕСA' máme

\EA'\
■ sin(90° — /3)\OE\ sin a

— cotg a • cotg /3.\EA'\\EC\
■ sin /3

sin(90° — a)

Avšak \kAVP\ = /3, odkud \VP\ — |AP|/tg/3; a zároveň \CP\ — \AP\ •
■ tg a, tedy \CP\ : \VP\ = tg a; • tg/3. Dohromady dostáváme

s — 1 • cotg a • cotg /3 ■ tg a ■ tg /3 = 1.

Jiné řešení. Zvolme v rovině kartézskou soustavu souřadnic s počát-
kem v bodě P, a s ж-ovou osou na přímce AB. Je tedy P = [0,0] a pro
vhodná a<0, b > 0 a c > 0 platí A = [a, 0], В = [6,0], С = [0,c]. Po-
stupně vypočítáme souřadnice bodů V, O, D, E a středu S úsečky VO
(zřejmě žádný ze jmenovatelů není nulový):

a + 6 ab + c2 'c2(a + 6) '
c2-ab ’ ’

ab
v= 0, , 0 =

c2(a + 6) c

_2(c2 — a6) ’ 2J ’

D =

2 ’ 2cc

a + b c2 — ab
S =E =

4c4
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Ověření, že bod S leží na přímce PE, se tak redukuje na ověření triviální
identity

c2(a + 6) c a + b c2 — ab
2(c2 - a6) : 2 4 4c

Jiné řešení. Zvolme v rovině kartézskou soustavu souřadnic tak, že
A = [0,0], В = [1,0], C = [ci,c2], přičemž c2 > 0, 0 < C\ < 1. Potom

1 cl + Cl - c?''1 c? - Cl + c^' Cl - c?' Cl
o = k"= Cl, S -

[1 + 4
2cf — 2cf + c2 c2

2 (ci - c? + c|) ’ 2

2 2c2 4c2C2

~cj + c\ - cf - Cic^ ■
C2 + Cl - cf

Stačí už jen ověřit lineární závislost vektorů S — P a E — P, tedy rovnost

P — [ci, 0], D E =

2c2 — 2cf + cf1 Cl - Cl
2 (ci - cj + c|)4 2

c2 + ci - cf C2

24c2

Jiné řešení. Je-li b = |ACj = |PCj = a, leží všechny čtyři body P, E,
О, V na jedné přímce a na ní leží i střed úsečky OV.

Nechť tedy například b > a. Platí \š.ACO\ = \<PCB\ = 90° — /3,
a tedy IKDCP\ = (3 — a. Bod E je střed přepony CD pravoúhlého
trojúhelníku CDP, proto \<DPE\ — \<PDE\ — 90° + a — (3.

Označme r poloměr kružnice opsané trojúhelníku ABC, S střed
úsečky OV a F, G paty kolmic z bodů O, S na přímku AB. Potom

rcosy = ^c cotg 7, \PB\ = acos/3, \PV\ = acos/3cotga,
|5G| = \{\OF\ + \PV\) = Iccotgy + cos/3 cotg a, \GP\ — |(|FB| -
— |PP|) — \c— |a cos/3,

|OF|

|ccotg7 + |acos/3cotga|5G|tg|<GPS|
|c — ^acos/3\GP\

1 1 Q
-c cotg 7 -| cos/3 cos a
4 2 sm 7 cos 7 + 2 cos a cos /3

1 1 c sin a sin 7 — 2 sin a cos /3
cos /34C 2 sin 7

cos(a + /3) + 2 cos a cos /3
— cotg(/3 - a) = tg |<DPFj;sin(o! + /3) — 2 sin a cos (3

odtud |<GPSj = |<DPP|, a tudíž body 5, P а E leží na jedné přímce.
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A - III - 6

Ukážeme, že jediná funkce /, která splňuje podmínky úlohy, je

1
/0*0 = 1 + -.

X

Ze zadání plyne, že f(y) ^ 0 pro libovolné у > 0, tudíž

1
f(xf{y)) = /0*0 (1)xyf(y)'

Označme /(1) = a > 0. Volbou x = 1, resp. у = lv rovnici (1)
postupně dostaneme

1 1
/(/Ы) = /(i) (»e R+), (2)yf(y) a yf(y)

(x e K+).
i

f(ax) = f(x) (3)
ax

Volbou x = 1 v rovnici (3) obdržíme

1 1
f(a) = /(!) - - = a ~ ~ (4)

a

Volbou x = a v rovnici (1) a užitím (4) dostaneme

1 1 1
f(af(y)) = /(a) (ž/ e K+)

a ayf{y)

zatímco pomocí vztahů (3) a (2) můžeme levou stranu předchozí rovnice
upravit na tvar

1 1 1
f(af{y)) = f(M) af{y) a yf(y) af(y)'

Porovnáním pravých stran předchozích dvou rovnic vypočítáme

f(y) = i + -—- {yeu+).
У

(4)

Pokud tedy existuje řešení dané rovnice, musí mít tvar (4). Dosazením
do rovnice v zadání a následnou úpravou zjistíme, že pro všechna kladná
reálná ха у má platit (a — l)2 1. Vzhledem к předpokladu a > 0
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je tato rovnice splněna, právě když a — 2. Tímto krokem jsme zároveň
provedli zkoušku správnosti nalezeného řešení.

Jiné řešení. Vztahy (1) a (2) z předchozího řešení můžeme využít
i následujícím způsobem. Pro libovolné reálné číslo t je f(t) > 0. Volbou
x = f(t) v rovnici (1) obdržíme pomocí (2)

11 1
t,y £ U+.

f(t)yf(y) a tf(t) f(t)yf(y)

Záměnou proměnných t а у odtud získáme

11
(t,y 6 R+).f(f(v)№) = a yf(y)

Jelikož výrazy na levých stranách předchozích dvou rovnic jsou shodné,
musí být shodné i výrazy na pravých stranách, takže platí

1 1 11
(t,ye R+).a

tf{t) f(t)yf{y) a yf{y) f(y)tf{t)

Úpravou dostaneme

t(f(t) - 1) = y{f{y) - 1) (t, у e№+).

Volbou t = lv předchozí rovnici získáme rovnost

/(») = ! + — OeR+).
У

kterou využijeme stejně jako v předešlém řešení.
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Kategorie P

Texty úloh

P - I - 1

Indiana a poklad
Po dlouhé a nebezpečné cestě plné dobrodružství se konečně před India-
nou rozprostřel pohled na starodávné pohřebiště aztéckých králů. Byl to
hrob vedle hrobu podél dlouhé cesty, některé se lišily výškou, ale jinak
byly stejné. Na prvním kameni byl následující nápis:

Jsi-li moudrý, pochopíš,
kde můj poklad našel skrýš.
Se zlou však se potáže,
kdo špatný hrob ukáže.

Výklad těchto veršů je prostý: pokud otevřete hrob s pokladem, tak
tento poklad získáte, v opačném případě nezískáte nic a nejspíš vás něco
rozmáčkne. Verše naštěstí pokračovaly:

Kdo volí z prostředních, neprohloupí,
pokud si nakonec největší koupí.

No a ted už je jistě jasné i vám, kde se poklad nachází. Stačí jen najít
největší z prostředních výšek hrobů a poklad bude objeven.

Soutěžní úloha. Je zadána posloupnost N kladných celých čísel v\,

V2i - , vn a celé liché číslo К. Vaším úkolem je najít maximum ze všech
mediánů souvislých podposloupností délky К. Medián získáte pro danou
podposloupnost tak, že všechna její čísla seřadíte podle velikosti a zvolíte
prostřední prvek (tzn. \(K + l)-tý prvek). Například pro posloupnost
výšek hrobů 4, 5, 1, 3, 2, 4 а К — 3 tak získáte posloupnost mediánů 4,
3, 2, 3, a hledaným výsledkem je tedy číslo 4.

Formát vstupu: Program načte vstupní data ze standardního vstupu.
První řádek vstupu obsahuje dvě celá čísla IV a iů, počet hrobů a délku
uvažovaných podposloupností, 1 ^ 1000 000 a 1 ^ К ^ 10000.
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Každý z následujících N řádků obsahuje výšku jednoho z hrobů (v pořadí
Vi, V2, ■ . ., vn). Výšky jsou přirozená čísla menší než 1000000000. Můžete
předpokládat, že pro 40% vstupů platí К < 100.

Formát výstupu: Na standardní výstup vypište jedno číslo, které je
rovno maximu ze všech mediánů souvislých úseků délky К v posloupnosti
čísel zadaných na vstupu.

Příklad:

Výstup:Vstup:
6 3 4

4

5

1

3

2

4

P - I - 2

Poklad podruhé
Poté co Indiana našel největší z prostředních hrobů, zjistil, že nápis nebyl
úplně přesný. Místo pokladu však byl pod kamenem jen vchod do další
chodby. Ta byla vydlážděna čtvercovými dlaždicemi a hned na první
dlaždici byl vyrytý tento nápis:

Šlápneš-li na každou z nás právě jednou,
Tvé ruce nad hlavu poklady zvednou.
Tou hlavou však zaplatit musíš,
když sestru s lebkou poškádlit zkusíš.

Chodba měla na šířku přesně 3 dlaždice a dlouhá byla, kam až oko
dohlédlo. Na některých z dlaždic byly namalované lebky, na jiných dláždi-
cích pak ležely skutečné lebky (pravděpodobně předchozích archeologů).

musí na každou dlaždiciIndiana velmi rychle nápis pochopil
(kromě těch zakázaných) šlápnout právě jednou, jen tak vede cesta к po-
kladu. V tu chvíli ale začal litovat toho, že má tak velké nohy. Ať se snažil,
jak chtěl, nikdy se mu nepodařilo stoupnout jenom na jednu dlaždici, ale
vždycky stoupnul na dvě sousední. To úkol samozřejmě zkomplikovalo.

Soutěžní úloha. Na vstupu je dána délka chodby A7”, tzn. chodbu tvoří
3 x N dlaždic. Z těchto dlaždic je К zakázaných, na které Indiana nesmí
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vstoupit. Vaším úkolem je určit, kolika způsoby lze tuto chodbu pokrýt
stopami velikosti 1x2 dlaždice tak, aby každá nezakázaná dlaždice byla
pokryta právě jednou stopou a žádná zakázaná dlaždice nebyla pokryta.
Protože výsledné číslo může být velmi velké, vypište zbytek po dělení
tohoto čísla zadaným číslem L.

Formát vstupu: Program načte vstupní data ze standardního vstu-
pu. Na prvním řádku jsou zadána přirozená čísla V, К a L, 1 ^
й 10 000000, 1 й К й min(3V - 1,1000000) а 2 í L ^ 1000 000.
Následuje К řádků, přičemž na každém z nich je dvojice čísel 1, а V,
l^Vj^3al^V^V, které udávají souřadnice г-té zakázané dlaždice.
Vždy bude platit, že Fi ^ V2 = • • • = Yk-

Můžete předpokládat, že 20% vstupů bude splňovat 1 ^ ^ 40.
Formát výstupu: Na standardní výstup vypište jediný řádek, který

obsahuje počet možností, kolika způsoby lze chodbu pokrýt. Toto číslo je
uvedeno modulo L. Všimněte si, že pro některé vstupy nemusí existovat
žádné řešení — v takovém případě vypište nulu.

Příklad:

Vstup:
5 3 13

Výstup:
3

3 1

1 2

2 4

P - I - 3

Reka

Za devatero horami se nachází rozsáhlý prales, kterým protéká dlouhá
řeka. I přes svou obrovskou délku nemá řeka žádné přítoky a ani se nikde
nerozvětvuje.

V pralese roste mnoho vzácných druhů stromů, a proto není divu, že
u řeky leží dřevorubecké tábory. Vždy, když dřevorubci pokácí dostatečné
množství stromů, sestaví z nich vor a pošlou ho dolů po řece.

Kromě dřevorubeckých táborů se u řeky také nacházejí pily. Zamést-
nanci každé pily sledují řeku, a když к nim dorazí vor, odchytí ho
a všechno dřevo spotřebují. Občas je pila zavřená kvůli údržbě, v té
době ignoruje vory a nechává je plout dále po řece.

Zaměstnancům pil vadí, že nevědí dopředu, kdy mají očekávat do-
dávku dřeva a zbytečně tráví čas pozorováním řeky. Pomozte jim a na-

102



pište program, který jim bude posílat upozornění na blížící se zásilku
dřeva.

Soutěžní úloha. Řeka má délku TV kilometrů a pozice bodů na ní
budeme označovat vzdáleností od pramene. V každém z bodů 1,..., TV se
nachází buď dřevorubecký tábor, nebo pila. Umístění pil na řece je dáno
na začátku výpočtu. Víte, že pil je poměrně mnoho vzhledem к délce
řeky; můžete předpokládat, že počet pil P je řádově stejný jako délka
řeky.

Váš program bude dostávat události následujícího typu: „pila v bodě b
zahajuje údržbu“, „pila v bodě b je opět v provozu“ a „z tábora v bodě t
byl odeslán vor“. Pro každý odeslaný vor váš program odpoví, ve které
pile bude zpracován. Předpokládejte, že řeka teče natolik rychle, aby
mezi odesláním voru a jeho zachycením nebyla v žádné pile zahájena
ani ukončena údržba.

Formát vstupu: Program načte vstupní data ze standardního vstupu.
První řádek obsahuje přirozená čísla TV, P a M, udávající délku řeky,
počet pil na řece a počet událostí (1 ^ TV ^ 100000, l^P^TVal^
^ M ^ 1000000). Na následujících P řádcích jsou popsány polohy pil:
na г-tém z těchto řádků se nachází číslo щ (1 ^ TV), udávající, že г-tá
pila se nachází ve vzdálenosti n* od pramene řeky. Můžete předpokládat,
že 1 5= ni ^ rtp ů TV.

Dále následuje M řádků popisujících události v chronologickém pořa-
dí. Na každém z těchto následujících řádků se nachází popis jedné udá-
losti:

t> písmeno U následované mezerou a přirozeným číslem d (1 ^ d
pila ve vzdálenosti d od pramene zahajuje údržbu. Můžete

^ předpokládat, že číslo d je jedno z čísel ni,..., np.
písmeno К následované mezerou a přirozeným číslem d (1 ^ d

pila ve vzdálenosti d od pramene končí údržbu. Můžete
> předpokládat, že číslo d je jedno z čísel ni,..., np.

písmeno V následované mezerou a přirozeným číslem t (1 5Í t ^
z tábora ve vzdálenosti t od pramene řeky je odeslán vor.

^ TV)

^ TV)

U TV)
Můžete předpokládat, že t je odlišné od všech čísel n\,... ,np.
Formát výstupu: Program vypíše na standardní výstup tolik řádků,

kolik vorů bylo celkem odesláno. Každý řádek bude obsahovat jedno celé
číslo, které udává vzdálenost pily, která zpracuje vor, od pramene řeky.
Pokud vor nebude zpracován žádnou pilou na řece, vypište 0.
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P - I - 4

Grafový počítač
V tomto ročníku olympiády budeme pracovat se speciálním grafovým

počítačem. V následujícím studijním textuje popsáno, jak takový počítač
funguje a jak se programuje.

Běžné počítače počítají s čísly. Železniční
inženýři v Tazmánii si jednoho dne všimli, že
většina problémů, které potřebují řešit, se týká
grafů. Proto během jedné polední přestávky vy-
nalezli grafovou jednotku, která umí provádět
všechny běžné operace s grafy, a to dokonce
v konstantním čase. Sice zatím nevymysleli, jak
ji sestrojit, ale i tak si můžeme v tomto ročníku
olympiády vyzkoušet, jak se na takovém grafo-
vém počítači programuje.

Nejdříve definujme, s čím grafový počítač
pracuje.

Graf si můžeme představovat třeba jako
body v rovině (těm budeme říkat vrcholy
grafu), jejichž některé dvojice jsou spojeny hra-
nou. Může to tedy třeba být mapa železniční
sítě: vrcholy jsou zastávky, dvě zastávky jsou
spojeny hranou, pokud mezi nimi vede přímá trať. Pokud se hrany kříží,
předpokládáme, že se jedná o mimoúrovňová křížení.

Řečeno formálně, graf je dvojice (V, E) taková, že V je libovolná ко-
nečná množina (jejím prvkům se říká vrcholy) a i? je množina neuspořá-
daných dvojic prvků z V (tedy hran).

Upřesněme ještě, že mezi dvěma různými vrcholy může vést maxi-
málně jedna hrana a že nejsou povoleny hrany, jejichž oběma konci je
tentýž vrchol.

Dále ke grafu můžeme přidat ohodnocení. Vrcholům a hranám může
být přiřazeno nezáporné celé číslo. V případě hran může znamenat na-

příklad délku kolejí, v případě vrcholů může popisovat mýtné, které se

platí za průjezd. Někdy jím také můžeme značit různé vlastnosti: napři-
klad u našeho železničního příkladu může být vrchol odpovídající stanici
ohodnocen jedničkou, zatímco vrcholy v zastávkách dvojkou.

Příklad:

Vstup:
6 3 9

Výstup:
2

2 4

4 6

6 4

V 1 2

V 3 0

V 5

U 2

V 1

К 2

V 1

U 6

V 5
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Reprezentace grafu
Grafový počítač ukládá grafy tak, že vrcholy jsou určeny přirozenými

čísly od 1 do počtu vrcholů. Těmto číslům budeme říkat identifikátory
(zkráceně id) vrcholů.

Hrany budeme vždy identifikovat pomocí čísel vrcholů, které hrana
spojuje.

Každý vrchol a každá hrana mají své ohodnocení. To má bud hodnotu
nezáporného celého čísla nebo speciální hodnotu undef (tzn. nedefino-
váno). Aby se to nepletlo, budeme číslům na hranách říkat váhy hran,
zatímco těm ve vrcholech značky vrcholů.

К programování grafového počítače použijeme běžný programovací
jazyk, například Pascal nebo C, který rozšíříme o několik datových typů
a funkcí. Zde je budeme ukazovat v syntaxi Pascalu, v C budou obdobné.

Datové typy
> Typ Graph do tohoto typu se dá uložit jeden (celý, libovolně velký)

graf. Mezi proměnnými a hodnotami tohoto typu funguje obvyklé
přiřazování a porovnávání na rovnost.

t> Typ Value popisuje ohodnocení vrcholu nebo hrany. Lze do něj uklá-
dat nezáporná celá čísla a konstantu undef. Hodnoty tohoto typu
různé od undef jsou kompatibilní s pascalským typem Integer, v pří-
pádě jazyka C s typem int.

Operace se strukturou grafu
> Konstanta EmptyG. V této konstantě je uložen prázdný graf. To je

takový, který nemá žádné vrcholy (tedy ani hrany).
> Funkce AddV(G,z) přidá do grafu G nový vrchol ohodnocený znač-

kou t. Do přidaného vrcholu zatím nevedou žádné hrany. Nový vrchol
bude zařazen jako poslední, tedy jeho id bude nejvyšší. Funkce vrací
toto id.

o Procedura DelV(G,id) smaže vrchol s daným id. Zbývající vrcholy
„srazí doleva", aby nevznikla díra (tedy z id + 1 se stane id, z id+ 2
se stane id + 1 atd.). Zároveň odstraní všechny hrany, které končily
ve smazaném vrcholu.

o Procedura AddE(G,x,y,w) vytvoří hranu mezi vrcholy s id x а у,
ohodnocenou vahou w. Hrana nesmí před voláním této procedury
existovat.

o Procedura DelE(G,x,y) odstraní hranu mezi vrcholy ж а у (nesmí
být volána, pokud hrana neexistuje).

o Funkce TestE(G,x,y) zjistí, jestli mezi vrcholy x а у vede hrana.
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Manipulace s ohodnocením
t> Funkce GetV(G,id) vrací značku zadaného vrcholu.
t> Procedura SetV(G,id,z) nastaví značku zadaného vrcholu,
o Procedura SetAllV(G,z) ji nastaví všem vrcholům grafu.
t> Procedura ReplaceV(G,zold,znew) všem vrcholům, které měly znač-

ku žold, ji změní na znew.
D> Obdobně fungují GetE(G,x,y), SetE(G,x,y,w), SetAllE(G,w) a

ReplaceE(G,wold,wnew). Pracují s vahami hran místo značek vrcho-
lů. Pro identiňkaci hrany se používají id vrcholů x a y, mezi kterými
vede. Procedura SetE hranu založí, pokud ještě neexistuje.

Statistické funkce
> Funkce CountV(G) odpoví, kolik vrcholů se nachází v grafu,
o Funkce SumV (G) vrací součet značek všech vrcholů, přičemž undef se

počítá jako 0. Pokud graf nemá žádné vrcholy, vrací 0.
o Funkce CountE(G) aSumE(G) fungují obdobně pro hrany a jejich váhy.

Globální operace
D> Funkce Iso(G,H,veq,eeq) zjistí, jestli jsou grafy G a H isomorfní.

Isomorfismem myslíme, že lze jednomu z grafů přečíslovat vrcholy tak,
aby se shodoval s druhým grafem. Dva grafy jsou shodné, pokud mají
stejné množiny vrcholů i hran; navíc se jim musí shodovat značky vr-
cholů a váhy hran podle toho, jak určují parametry veq (pro vrcholy)
a eeq (pro hrany). Tyto parametry mohou nabývat následujících hod-
not:

* any

nehledí).
* value —

libovolné dva vrcholy/hrany se rovnají (na ohodnocení se

odpovídající si vrcholy/hrany musejí mít stejné ohodno-
cení. Hodnotu undef ale považujeme za „žolíka“, který se rovná
libovolné hodnotě.

vrcholy/hrany musejí mít stejné ohodnocení,* value_strict
undef se rovná jen undef u.

vrcholy/hrany musejí mít stejné ohodnocení,
ale undef se nerovná ničemu, ani undefu.

vrcholy musejí mít stejná id (toto lze aplikovat jen na vrcho-
ly, nebot hrany nemají id). Jinými slovy, zakazujeme přečíslovávat
vrcholy, ale na jejich ohodnocení nehledíme.

* none — žádné dva vrcholy/hrany nejsou identické. Ač to vypadá
neužitečně, tuto možnost použijeme v dalších funkcích.

* value_defined

* id
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Jak isomorfismus funguje, je vidět na následujícím obrázku. Čísla
před závorkami jsou id vrcholů, v závorkách jejich značky (otazník značí
undef). Všechny hrany mají váhu undef. Grafy jsou isomorfní (čárko-
váné čáry ukazují, který vrchol odpovídá kterému), pokud veq nastavíme
na value nebo any a eeq na any, value nebo value_strict. V ostatních
případech isomorfní nejsou.

t> Funkce Find(G,H,veq,eeq) najde podgraf grafu G (tedy takový graf,
který lze získat z G odstraněním některých vrcholů a hran) isomorfní
s grafem H. Výsledkem funkce bude tento podgraf, přičemž vrcholy
budou očíslované podle grafu H a ohodnocení vrcholů a hran bude
pocházet z grafu G. Pokud hledaný podgraf neexistuje, funkce vrátí
EmptyG. Parametry veq a eeq určují stejně jako u funkce Iso, jak se
chová isomorfismus.
Pokud existuje více isomorfních podgrafů, funkce Find nalezne nej-
lehčí z nich (takový, který má nej menší součet vah hran, jak by ho
spočítala funkce SumE). Pokud i tak existuje více řešení, Find vrátí
libovolné z nich.

> Funkce Common(G,H, veq,eeq) najde největší společný podgraf grafů
G a H. Přesněji, najde graf, který je isomorfní (podle veq a eeq) s ně-
kterým podgrafem G i některým podgrafem H. Ze všech možných
řešení si navíc vybere takové, které má největší možný počet vrcholů,
a z takových pak to s největším počtem hran. Pokud i těch je více,
vybere si libovolně.
Výsledný graf bude mít id vrcholů ve stejném pořadí, jako je měl
odpovídající podgraf v G (jen „sražená к sobě“). Ohodnocení vrcholů
a hran bude také zděděno z grafu G.
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4(4) 5(7) 6(8) 7(9)
-ч

\3(3)5(5)
V (?)

? (?) 4 (?)G
Н/

1(1) / 3(?)2(2)ч

Dvojice grafů na předchozím obrázku má největší společný podgraf
při veq = value obtažený tučně. Čárkovaně je naznačeno jedno z mož-
ných přiřazení vrcholů. Při veq — any přibude do společné části ještě
vrchol 5 a tečkovaná hrana {3,4} nalevo, která může odpovídat kte-
rékoli z hran {1,5}, {1,6} a {1,7} napravo.

O Funkce Join(G,H,veq,eeq) sloučí grafy G a H. Můžete si to před-
stavit tak, že je „slepí za jejich největší společný podgraf.“ Udělá to
tak, že nejprve nalezne největší společný podgraf (tak jako ve funkci
Common), pak к němu doplní zbývající vrcholy grafu G a nakonec
vrcholy grafu H (id vrcholů výsledného grafu tedy budou v tomto
pořadí). Hrany, váhy a značky přitom zdědí z obou grafů, přičemž
pokud se nějaký vrchol nebo hrana vyskytují v obou grafech, řídí se
ohodnocením z grafu G.
Join grafů z předchozího obrázku vypadá následovně:

5(4) 4(4)

3(3) .-6(7) 3(3) ..6(8)
4(5) 5(5)

7(8)
/8 (9) • 7(9)//

/
// veq — value veq = any

//

1(1) 1(1) 2(2)2(2)

Tučně je vyznačena společná část (všimněte si rozdílů v id vrcholů),
tenké nepřerušované hrany pocházejí z grafu G, čárkované hrany
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z grafu H. (Zde jsme nakreslili jeden z možných výsledků, ostatní se
budou lišit tím, který vrchol v grafu H je ve společné části, případně
otočením nebo překlopením čtyřúhelníku.)
Všechny operace předpokládají, že dostanou korektní vstup

tedy například povoleno volat je s id neexistujícího vrcholu nebo úpravo-
vat grafovou proměnnou, do které jste ještě nepřiřadili, a podobně.

Všechny grafové operace trvají konstantní čas.
Abychom vám usnadnili ladění programů, vytvořili jsme simulátor

grafového počítače. Najdete ho od září na webových stránkách olympiády.

není

Příklad 1: Tvorba cesty
Ukážeme, jak vytvořit cestu délky n. To je graf o n + 1 vrcholech

a n hranách, ve kterém je každý vrchol spojen hranou s následujícím.
Zajisté bychom cestu mohli vytvářet postupně, například takto:

function cesta(n: Integer): Graph;
var

i, poslední, novy: Integer;
g: Graph;

begin
g := EmptyG;
poslední := AddV(g, 0);
for i := 1 to n do begin

novy := AddV(g, 0);
AddE(g, poslední, novy, undef);
poslední := novy;

0 12 3 4

end;
cesta := g;

end;

Začínáme s jediným vrcholem (má id 1) a pak n-krát přidáme nový
vrchol a hranu do něj. (Vrcholům dáváme značky 0, hranám nedefinované
váhy, což se bude hodit později.) Celý postup tedy trvá lineárně dlouho
a vytvoří cestu začínající ve vrcholu s id 1 a končící vrcholem s id n + 1.
Nešlo by to rychleji?

Představme si na chvilku, že máme v g již část cesty, řekněme о к vr-
cholech. Pomocí Join(g,g,none,none) vytvoříme nový graf, který obsa-
huje dvě kopie této cesty (jednu s id 1,,k, druhou s id к + 1,...,2к).
Stačí tedy přidat hranu z к do к + 1 a máme cestu délky 2k. Toho vyu-

žijeme v následujícím (rekurzivním) řešení úlohy:
function cesta(n: Integer): Graph;
var
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výsledek: Graph;
půlka: Integer;

begin
if n = 0 then begin { Cesta délky O je snadná }

výsledek := EmptyG;
AddV(výsledek, 0);

end else begin
{ Rekurzivně vytvořime cestu poloviční délky }
půlka := (n-1) div 2;
výsledek := cesta(pulka);
{ Vyrobíme 2 kopie a spojíme je }
výsledek := Join(vysledek, výsledek, none, none);
AddE(výsledek, pulka+1, pulka+2, undef);
{ Když polovina nevyšla celočíselně, přidáme ještě hranu }
if n mod 2=0 then begin

AddV(výsledek, 0);
AddE(výsledek, n, n+1, undef);

end

end;
cesta := výsledek;

012345678

end;

Při každém rekurzivním volání se n zmenší alespoň dvakrát, časová
složitost tohoto řešení je tedy d(logn).

Ukážeme ještě jedno řešení, tentokrát založené na spojování cest za vr-
chol. Budeme vytvářet cesty, jejichž počáteční vrchol bude mít značku 1,
koncový vrchol značku 2 a všechny ostatní vrcholy undef. Když chceme
dvě cesty spojit do jedné, přeznačíme koncový vrchol první a počáteční
vrchol druhé na 3 a zavoláme Join s veq = value_def ined. Tím způsobí-
me, že se vrcholy označené trojkou ztotožní a vznikne cesta dvojnásobné
délky (kdybychom místo value_def ined použili value, ztotožnily by se
i vnitřní vrcholy cest, což nechceme). Pak ještě odstraníme pomocnou
značku 3 a přepíšeme ji na undef. Program tentokrát pro jednoduchost
napíšeme pouze pro n = 2k:

function cesta(n: Integer): Graph;
var

(3) (3) (2)(1)
g, tl, t2: Graph;

begin
if n = 1 then begin

g := EmptyG;
AddV(g, 1);
AddV(g, 2);

+

I

(1) (3) (2)
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AddE(g, 1, 2, undef);
end else begin
tl := cesta(n div 2);
t2 := tl;

ReplaceV(tl, 2, 3);
ReplaceV(t2, 1, 3);
g := Join(tl, t2, value_defined, гшу);
ReplaceV(g, 3, undef);

end;
cesta := g;

end;

Časová složitost tohoto řešení je opět logaritmická.

Příklad 2: Obchodní cestující
Všichni známe vykutálené obchodníky. Prodávají kdovíco a nejraději

by, kdyby je po prodeji kupující již nikdy nenašel.
Představme si takového obchodníka. Nyní se nachází ve městě (vr-

cholu) číslo 1. Chce projet celou zemi (graf) po silnicích (hranách) tak,
aby navštívil každé město právě jednou a pak se vrátil domů. Navíc při
tom chce najezdit co nejméně, takže by celková váha použitých hran měla
být co možná nejmenší.

Na obvyklém počítači tento problém neumíme vyřešit v polynomiál-
ním čase, ale pokud máme к dispozici grafový počítač, půjde to velice
efektivně.

Stačí totiž vyrobit cyklus z n hran a funkcí Find nalézt jeho nejlehčí
výskyt v grafu popisujícím mapu. Cyklus vytvoříme tak, že podle před-
chozího příkladu vytvoříme cestu o n — 1 hranách očíslovanou 1,... ,n
a poté spojíme hranou její první vrchol s posledním. To bude trvat logarit-
micky dlouho a funkce Find pak konstantně. I program bude jednoduchý:

function cestujici(mapa: Graph): Graph;
var trasa: Graph;
begin

trasa := cesta(CountV(mapa)-l);
AddE(trasa, 1, CountV(mapa), undef);
cestujici := Find(mapa, trasa, any, гшу);

end;

Soutěžní úloha.

a) (5 bodů) Loukoťové kolo je graf, který vznikne z cyklu o n vrcho-
lech přidáním jednoho vrcholu (osy) spojeného s každým vrcholem cyklu
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hranami (loukotěmi). Loukoťové kolo velikosti n má tedy n + 1 vrcholů
a 2n hran.

Napište funkci pro grafový počítač, která
pro zadané n takové kolo zkonstruuje. Na ob-
rázku vpravo vidíte příklad takového kola pro
n = 9.

b) (5 bodů) Mějme graf popisující silniční
sít: vrcholy jsou města, hrany silnice ohod-
nocené nezápornými vzdálenostmi v kilomet-
rech. Silnice jsou propojeny pouze ve městech,
všechna ostatní křížení jsou mimoúrovňová. Bude nás zajímat, jakou nej-
menší vzdálenost musíme ujet, abychom se dostali z města x do města y.

Jinými slovy, máme v grafu nalézt cestu mezi x a y, na které bude celkový
součet vah hran nej menší.

Napište funkci pro grafový počítač, která dostane na vstupu graf sil-
niční sítě a identifikátory dvou různých vrcholů ж, у, a odpoví vzdáleností
mezi těmito vrcholy.

P - II - 1

Vlak

Na nákladním nádraží stál vlak. Sice bez lokomotivy, ale tu měli vzápětí
připojit, když tu přišel přednosta stanice, prohlédl si seřazené vagóny
a oznámil železničářům nepříjemnou zprávu. Nový předpis mu přikazuje
poslat do cílové stanice zprávu, v jakém pořadí budou ve vlaku vagóny
řazeny, ale neví, kolikrát vlak na cestě změní směr, takže potřebuje, aby
vypadal stejně v obou směrech.

Navíc železničáři nesmí vagóny vyměňovat. Jediné, co mohou, je vagón
vyřadit (to jim nařizuje jiný předpis). Dopravce chce zároveň na každém
vlaku vydělat co nejvíce, což znamená, že je třeba do jednoho vlaku
zařadit co nejvíce vagónů.

Soutěžní úloha. Na vstupu dostanete posloupnost písmen. Každé
z těchto písmen představuje typ vagónu. Výstupem vašeho programu
bude výpis pozic vagónů (písmen), které musejí být odstraněny, aby vý-
sledný vlak (posloupnost písmen) po jejich odstranění byl stejný při čtení
zepředu i zezadu (tedy aby výsledný řetězec písmen byl palindromem).

Pokud existuje více možností, nalezněte a vypište tu, kde je třeba
odstranit nejmenší možný počet vagónů. Pokud je takových možností
více, můžete vypsat libovolnou z nich.
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Formát vstupu: Vstup je tvořen dvěma řádky. První obsahuje celé čís-
lo N (1 ^ ^ 50 000), které udává původní počet vagónů vlaku. Druhý
řádek pak obsahuje posloupnost N znaků, které reprezentují jednotlivé
typy vagónů.

Formát výstupu: Výstup je tvořen dvěma řádky. První obsahuje jediné
číslo К (0 ^ К ú N — 1), které udává, kolik vagónů je potřeba z vlaku
odstranit, aby vlak vypadal stejně z obou směrů. Druhý řádek pak ob-
sáhuje К různých čísel od 1 do N určujících pořadí vagónů, které mají
být z vlaku odstraněny. Pokud posloupnost znaků na vstupu je stejná při
čtení zepředu i zezadu, pak na první řádek vypište číslo 0 a druhý řádek
bude prázdný.

Příklady:
Vstup: Výstup:
6 1

3ABCDBA

Odstraněním třetího písmene vznikne vlak s vagóny ABDBA. Jiné opti-
mální řešení je odstranit čtvrté písmeno, kdy vznikne vlak s vagóny
ABCBA.

Výstup:Vstup:
7 2

ABECEDA

Odstraněním druhého a šestého písmene vznikne vlak s vagóny AECEA.

2 6

Výstup:Vstup:
7 4

ABECADA

Odstraněním třetího, čtvrtého, šestého a sedmého písmene vznikne vlak
s vagóny ABA. V tomto případě je však optimálních řešení mnohem více.

3 4 6 7

P - II - 2

Jabloňový sad
V jednom malém království vyrostl strom se zlatými jablky. Král byl prak-
tický člověk, a tak přikázal zahradníkům, ať z takových jabloní vypěstují
celý sad. Ale к jejich nemilému překvapení většina stromů urodila jen
obyčejná kyselá jablka. Alchymisté však objevili zvláštní formuli, která
říkala, kdy a kam zasadit semínko stromu, aby měl opět zlatá jablka.
Prvních N stromů, které takto zasadili, bylo skutečně zlatých, a tak si
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král nechal vypracovat seznam, podle něhož má stromy v příštích letech
sázet.

Ač stromy rostly překvapivě rychle, ruce nenechavců a zlodějíčků byly
ještě rychlejší. Dlouho netrvalo a král začal se stavbou oplocení. Odhad
účtu za pletivo byl však zdrcující. Poddaní se totiž rozhodli oplotit čtvrt
království, aby všechny stávající i budoucí stromy rostly uvnitř. Krále
napadlo, že zřejmě bude lepší oplotit jen nynější stromy a pak podle
potřeby rozšiřovat plot i na nové stromy. Aby se ušetřilo, část stávají-
čího oplocení se rozebere a použije spolu s nově nakoupeným množstvím
pletiva. Král si tedy sehnal Vás coby projektanta a netrpělivě očekává
vyhotovený rozpočet za pletivo na příštích deset let. Vám je jasné, co
musíte spočítat nejdříve: kolik pletiva musíte koupit na počátku a potom
se zasazením každého nového stromu. Alchymisté, vidouce Vaše zděšení,
Vám však ještě dali jednu radu: Minimální nutná délka plotu se s přidá-
ním nového stromu nikdy nezmenší.

Soutěžní úloha. Na začátku dostanete kartézské souřadnice N bodů

(jabloní) v rovině ([Xi,Yi], ..., [Хдг,Удг]) a musíte zjistit nejmenší
možný obvod obrazce, který je všechny bude obsahovat (tj. délka oplo-
cení). Postupně obdržíte M dalších bodů zadaných souřadnicemi v rovině.
Tyto body budete přidávat ke stávajícím v pořadí od prvního do M-tého
(sázejí se nové stromy). Po přidání každého z nich musíte spočítat, о ко-
lik se zvětšil obvod nejmenšího obrazce, který obsahuje všechny původní
i dosud přidané body. Výsledkem může být i 0, pokud nově přidaný bod
již leží uvnitř obrazce obklopujícího dříve přidané body. Vámi spočítaný
údaj tedy odpovídá tomu, kolik pletiva je třeba přikoupit.

M očekávejte jako velké číslo, takže abyste králi mohli dát rozpočet
včas, musíte umět potřebnou délku nového pletiva po přidání stromu
spočítat rychle. Bude tedy dobrý nápad při přidání každého bodu využít
dříve spočítané hodnoty.

Formát vstupu-. Na prvním řádku vstupu bude číslo N, které udává
počáteční počet jabloní (bodů). Následuje N řádků, kde na г-tém řádku
(1 ^ i ^ N) jsou dvě čísla Aý а У) oddělená mezerou (souřadnice již
zasazených stromů). Další řádek obsahuje číslo M. Následuje M řádků,
kde na г-tém řádku (1 ^ i ^ M) jsou dvě čísla X[ a Y[ oddělená mezerou,
která udávají souřadnice nově vysazovaných stromů.

Formát výstupu: Na výstupu vypíšete celkem M+ l řádků. Na prvním
řádku bude počáteční délka oplocení, tj. obvod nejmenšího obrazce, který
obsahuje všechny body [AÚ,Yi], ..., [Хдг,Удт]- Následuje M řádků, na
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ý-tém z nichž (1 j = M) bude uvedeno, o kolik se musí obvod obrazce
zvětšit po přidání bodu [XpYj] к předchozím (tj. kolik nového pletiva je
zapotřebí). Výsledky vypisujte s přesností na 5 desetinných míst.

Program musí výstup vypisovat průběžně. Pokaždé, když ze vstupu
přečte polohu dalšího vysazovaného stromu, musí vydat příslušný řádek
výstupu, aniž by čekal, až budou zadány všechny stromy.

Příklad:

Vstup: Výstup:
52.36068

7.63932

4.14213

4

0 0

0 10

20 0

3 4

2

20 10

-5 5

Počáteční situace:

[o, 10]
Délka plotu = 10 + 20 + y/W2 + 202 « 52,360 68

‘[3.4]
[0.0] [20,0]

Po přidání bodu [20,10]:

[20,10]
Délka plotu = 10 + 20 + 20 + 10 = 60

Rozdíl « 7,639 32

Po přidání bodu [—5, 5]:

Délka plotu =
= 10 + 20 + 20 + 2V52 + 52 «
« 64,14214

Rozdíl « 4,142 14

1—5,5] #
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P - II - 3

Mažoretky
Kromě stromů se zlatými jablky mají v království ještě jednu zvlášt-
nost. Příchod každého dne slaví v hlavním městě průvodem N mažoretek.
V průvodu kráčí mažoretky v jedné řadě za sebou.

Aby se poddaní nenudili, tak v každém dni v roce pochodují ma-

žoretky v jiném pořadí. A protože rok má v království přesně A”! = 1 •

•2 ■ ... ■ N dní, tak během roku pochodují v každém svém možném pořadí
právě jednou.

Pořadí, v jakém mažoretky pochodují, se určují během roku následov-
ně. Každá mažoretka má své číslo od 1 do N. Jejich pořadí v konkrétním
dnu si tedy můžeme představit jako posloupnost N navzájem různých
čísel od 1 do N. Pokud (ai,..., йдг) a (&i,..., b^) jsou dvě takové po-
sloupnosti, pak mažoretky pochodují v pořadí (ai,..., адг) v jednom roce
dříve než v pořadí (bi,... ,&tv), jestliže pro nejmenší index i s сц ф
platí a,i < h. Pokud například N = 4, pak v pořadí (3,1,2,4) budou
mažoretky pochodovat dříve, než v pořadí (3,4,1,2).

Pro N — 3, budou mažoretky v jednom roce pochodovat postupně
v pořadí (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) a (3,2,1).

Soutěžní úloha. Vstup obsahuje dva řádky. Na prvním řádku je jedno
celé číslo N ^ 2, které udává počet mažoretek. Druhý řádek obsahuje
N navzájem různých celých čísel od 1 do N. Tato čísla určují pořadí
mažoretek. Na výstup vypište dva řádky, které obsahují:

a) (3 body) pořadí mažoretek v následující den,
b) (7 bodů) pořadí mažoretek přesně za půl roku.

Příklad:

Vstup: Výstup:
1 4 3 2 5

4 12 5 3

5

1 4 2 5 3

P - II - 4

Grafový počítač na kliku
К úloze se vztahuje studijní text z úlohy P-I-4.

Soutěžní úloha, a) Napište funkci pro grafový počítač, která pro za-
dané číslo n zkonstruuje úplný graf Kn. To je graf s n vrcholy, jehož každý
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vrchol je spojený hranou s každým. Pokud to neumíte pro obecné n, vy-
řešte úlohu alespoň pro ta n, která jsou mocninami dvojky.

b) Napište funkci pro grafový počítač, která spočítá klikovost zada-
ného grafu. To je největší možný počet vrcholů zadaného grafu, které
jsou spojeny každý s každým. Jinak řečeno, je to největší n, pro které je
Kn podgrafem daného grafu.

P - III - 1

Básník Honzík

Honzík Nerudů si spokojeně hověl v lavici a v duchu se procházel po
Malé Straně. „Jene, chytej!“, vytrhl ho ze zadumání výkřik spolužačky
Božky Němcové a náraz boty do jeho hlavy. Být to kdokoli jiný, jistě by
neušel spravedlivému trestu, jenže Boženka byla jeho tajnou láskou už
od třetí třídy. Jak rád by ji pozval na procházku podél Vltavy. Leč když
se opovážil požádat ji, se smíchem ho odbyla slovy:

Jelikož jsem romantička,
obměkčí mě jen básnička.
Zveršuj tedy žádost svou,
a projdem se nad Vltavou.

Jenže Honzík měl ze slohu vždycky čtyřku a paní učitelce stoupaly
vlasy hrůzou, jen se chopil pera. Naštěstí měl dobrého kamaráda Járu
Cimrmana. Ten mu pověděl, že psát básně je strašně jednoduché a stačí
jen dosáhnout toho, aby se verše co nejvíce rýmovaly (později bude tato
teorie publikována pod názvem absolutní rým). To byla sice dobrá rada,
ale hledání co nejvíce se rýmujících slov je často velmi obtížné, a tak
požádal o pomoc vás.

Soutěžní úloha. Máte dán seznam obsahující N slov skládajících se
z malých písmen anglické abecedy. Vaším úkolem je zodpovídat Honzí-
kovy dotazy, což znamená, že pro jím zadané slovo s máte najít slovo r
ze seznamu, které má největší společný koncový úsek se slovem s. Např.
slova Zbyněk a pelynek mají společný koncový úsek ynek délky 4.

Pokud je v seznamu více takových slov, vyberte z nich lexikograficky
nejmenší (lexikografické uspořádání je to, které se používá ve slovnících:
nejdříve podle prvního písmena, pak podle druhého atd.; ch uvažujeme
jako dvě písmenka). Pokud naopak v seznamu není žádné slovo se spo-

léčným koncovým úsekem délky alespoň 1, vypište NELZE.
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Protože dotazů může být hodně, snažte se optimalizovat rychlost od-
povědi na dotaz i za cenu delšího předzpracování seznamu slov.

Poznámka: Pokud úlohu nedokážete vyřešit efektivně, zkuste popsat
alespoň řešení, které z vyhovujících slov vypíše libovolné namísto lexiko-
graficky nej menšího.

Formát vstupu: Na prvním řádku budou dvě čísla N а К, po kterých
následuje N slov seznamu, každé na samostatném řádku. Následuje К
slov, К ^ 104, opět každé na samostatném řádku, která reprezentují
Honzíkovy dotazy. Součet délek všech slov seznamu nepřesáhne 106 zna-

ků, tedy speciálně N ^ 106. Žádné slovo v seznamu ani žádné z К slov
к vyhledání nebude mít víc jak 104 znaků.

Formát výstupu: Pro každý z К Honzíkových dotazů vypište na samo-

statný řádek slovo s maximálním společným koncovým úsekem (případně
lexikograficky nejmenší, pokud jich je víc) mezi slovy v seznamu. Pokud
žádné takové slovo neexistuje, vypište NELZE.

Přiklad:

Vstup: Výstup:
NELZE

lituj i
listuj i

5 3

pluji
listuj i
lituj i
nepřej i
basnik

bagr
kvituj i
dekuj i

Pro slovo dekuji máme na výběr mezi slovy pluji, listuji a

lituji, která mají stejnou délku společného koncového úseku (určitý
společný koncový úsek má i se slovem nepřeji, ale ten má délku pouze

dva); listuji je z nich lexikograficky nejmenší.

P - III - 2

Úřad
Úřad pro minimalizaci byrokracie zaměstnává několik tisíc úředníků. Ti
jsou pro zvýšení efektivity své práce hierarchicky uspořádaní, tj. každý
z nich má právě jednoho přímého nadřízeného; jedinou výjimkou je mi-
nistr pro minimalizaci byrokracie, který je nejvýše postaveným úřední-
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kem a žádného nadřízeného nemá. Každý z úředníků smí vykonávat právě
jeden úkon (někteří smí dávat pouze kulatá razítka, někteří pouze hra-
natá, někteří mají na starosti styk s veřejností, atd.). Výjimkou je opět
ministr, o kterém legendy tvrdí, že je schopen vykonávat všechny funkce
poskytované úřadem.

Potřebuje-li tedy někdo něco zařídit na úřadě, nejprve si vybere ně-
jakého úředníka, který smí komunikovat s veřejností. Ten už ale nesmí
vykonávat žádný jiný úkon, a není mu tedy schopen přímo pomoci. Proto
ho pošle za svým nadřízeným. Může-li nadřízený požadovaný úkon pro-

vést, učiní tak, jinak zájemce přepošle za svým nadřízeným. A toto se

opakuje, dokud zájemce nedorazí к někomu schopnému ho obsloužit.
Ted jsou volby na dohled a voliči si stěžují, že někteří úředníci nic

nedělají. Například dává-li úředník a všichni jeho přímí podřízení ku-
látá razítka, pak se к němu nikdy žádný požadavek nedostane. Obdobně
úředník, jehož žádný (ani nepřímý) podřízený nemá na starosti styk s ve-
řejností, nikdy nemusí nic dělat. Potřebovali bychom tedy nalézt všechny
takové nezaměstnané úředníky, abychom je mohli povýšit.

Poznamenejme ještě, že ministra nikdy za zbytečného nepovažujeme.

Soutěžní úloha. Úředníci jsou očíslováni přirozenými čísly l,...,iV,
kde úředník číslo 1 je ministr. Pro každého z nich až na ministra máme
zadáno číslo jeho nadřízeného, které je vždy menší než číslo úředníka. Pro
každého úředníka až na ministra také máme zadáno číslo úkonu, který
smí vykonávat. Úkony jsou očíslovány přirozenými čísly 1 ,...,M, kde
úkon číslo 1 je styk z veřejností. Vypište čísla všech úředníků, kteří nikdy
nic nedělají. Úředník číslo к, který smí vykonávat úkon číslo u, něco dělá,
jestliže и — 1 nebo existuje posloupnost čísel к = a\ < а>2 < ■ ■ ■ < at

taková, že:
> úředník číslo a* je přímý nadřízený úředníka i pro 1 i ^ t — 1,
> úředník at má na starosti styk s veřejností,
> žádný z úředníků <22, аз, ..., at-1 nevykonává úkon u.

Formát vstupu: Program načte vstupní data ze standardního vstupu.
První řádek obsahuje přirozená čísla N a M, udávající počet úředníků
a počet typů úkonů. Na následujících TV — 1 řádcích jsou popsáni úředníci
kromě ministra. Na г-tém z těchto řádků se nachází dvě čísla щ a щ

(1 ^ ^ г, 1 ^ U{ ^ M), kde щ je číslo přímého nadřízeného úředníka
číslo i + 1 a Ui je číslo úkonu, který smí vykonávat.

Můžete předpokládat, že počet úkonů M je řádově menší než počet
úředníků N.
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Formát výstupu: Program vypíše na standardní výstup čísla úředníků,
kteří nic nedělají, v libovolném pořadí, oddělená mezerami.

Příklad:

Vstup: Výstup:
2 3 710 3

1 2

2 3

2 2

2 2

1 2

6 2

6 1

4 1

5 1

P - III - 3

Grafový počítač v potrubí
К úloze se vztahuje studijní text z úlohy P-I-4.

A právě takový počítač umožnil nový způsob komunikace: potrubní
poštu. Taková potrubní pošta sestává z mnoha stanic. Některé dvojice
stanic jsou propojeny potrubím, které lze použít к přepravě zpráv v obou
směrech. Stanice jsou samozřejmě schopné zprávy předávat dál, takže
zásilky obvykle putují do cílové stanice několika na sebe navazujícími
rourami.

Potrubí bylo postaveno a ještě než došlo к vyřízení všech povolení,
nahromadilo se mnoho zpráv, které je třeba doručit. A protože je to
systém nový, rozhodli se poštmistři, že začnou posílat od těch nejkratších
zpráv, aby zjistili, jestli se v potrubí nezasekávají.

Navíc se po dobu vyřizování formalit v potrubí usadily myši. Myši sa-

mozřejmě každé procházející psaní hned zhltnou, proto je potřeba poslat
potrubím napřed kočku. Protože však kočka je mnohem těžší než psaní,
je také nákladnější ji potrubím profouknout. Proto bylo rozhodnuto, že
budou vyčištěny jen některé roury, a to tak, aby jejich celková délka byla
co nej menší a přitom bylo možno poslat psaní z libovolné stanice do
libovolné jiné.

Soutěžní úloha, a) (3 body) Napište funkci pro grafový počítač, která
seřadí zprávy podle délky. Vstupem funkce bude pole celých čísel — délek
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zpráv. Úkolem je toto pole setřídit od nejmenšího po největší. Můžete
při tom využít toho, že délky zpráv se vejdou do typu Value grafového
počítače.

Řešení s časovou složitostí 0(n log n) může získat nejvýše 1 bod, po-

malejší řešení nedostanou žádné body.
b) (7 bodů) Dostanete na vstupu popis potrubí jako souvislý ohodno-

cený graf (stanice jsou vrcholy, trubky jsou hrany a jejich váhy odpovídají
délkám trubek). Vraťte podgraf obsahující právě ty hrany, které mají být
vyčištěny. Jinými slovy podgraf, ve kterém vede mezi každou dvojicí vr-
cholů cesta a který má ze všech takových grafů nej menší možný součet
vah hran.

Pokud vám to pomůže, můžete předpokládat, že neexistuje žádná dvo-
jice stejně dlouhých rour.

I u této podúlohy bude při hodnocení kladen důraz na to, zda je
vaše řešení rychlejší než řešení, která se dají naprogramovat na klasickém
počítači.

P - III - 4

Asfalt istán

asfalt.pas / asfalt.c / asfalt.cpp
asfalt.in

asfalt.out

Program:
Vstup:
Výstup:

V Asfaltistánu zjistili, že mají jedno velké území dosud nedotčené
asfaltem. Rozhodli se to napravit tak, že napříč územím postaví silnici.
Nicméně ministr financí si klade podmínky. Silnice musí být sjízdná pro
auta a musí být postavena co nejlevněji. Je totiž krize a musí se šetřit.

Projektanti si rozdělili území na R x S čtverců o straně 1 km a pro

zjednodušení si pro každý čtverec spočítali jeho průměrnou nadmořskou
výšku. Zjistili, že silnice mezi dvěma sousedními čtverci je sjízdná, pokud
je rozdíl jejich nadmořských výšek maximálně 1 obří sáh.

Navíc můžou stavět mosty a tunely — mostem je možno propojit dva
čtverce ve stejném sloupci nebo řádku, pokud je jejich nadmořská výška
shodná a nadmořská výška všech čtverců mezi nimi je nižší. Tunelem je
také možno propojit dva čtverce o stejné nadmořské výšce ve stejném
sloupci nebo řádku, jen nadmořská výška všech čtverců mezi nimi musí
být vyšší.
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Vaším úkolem je najít nejlevnější silnici mezi políčkem (0,0) a polič-
kem (R — 1, S — 1). Silnice musí být na políčkách (0,0) a (R — 1, S — 1)
na povrchu, tedy ne na mostě ani v tunelu.

Poznamenejme, že na jednom políčku může jeden most/tunel končit
a současně další začínat. Také si všimněte, že je teoreticky možné, že se
na optimální cestě budou dva mosty nebo tunely křižovat. To je povolené,
šikovní asfaltistánští inženýři to dokáží vyřešit tak, aby se auta nesrážela.

Formát vstupu: Na vstupu dostanete na prvním řádku celá čísla R, S,
cs, см a ct- Čísla cs, см a ct udávají ceny za postavení jednoho políčka
silnice, mostu a tunelu (v asfaltových dolarech).

Cena za políčko mostu nebo tunelu se počítá jen za políčka uvnitř,
čili začátek a konec tunelu/mostu se nepočítá.

Na každém z dalších R řádků dostanete S čísel ht)J oddělených meze-
nadmořské výšky jednotlivých políček v obřích sázích. Na г-tém

řádku v j-tém sloupci je uvedeno číslo hij.
Formát výstupu: Na první řádek výstupu vypište celkovou cenu silnice

v asfaltových dolarech. Na následující řádky vypište trasu silnice; na

každý řádek dvojici (ik,jk) udávající políčko, přes které silnice prochází.
Políčka, která se nachází pod mostem nebo nad tunelem, vynechte. První
souřadnice vždy udává řádek a druhá sloupec. Pokud řešení neexistuje,
vypište na jediném řádku výstupu slovo NEEXISTUJE.

Všimněte si, že celková cena může být značně velké číslo, které se do
32bitové proměnné nemusí vejít.

Velikost vstupu: Ve všech vstupech použitých při testování platí 1 ^
^ R,S й 1000, 1 й csi cM i ст й 1000 000 a 0 ^ hifj й 1000 000.

Ve vstupech za alespoň 5 bodů mimo to platí 1 R, S ^ 50.
Ve vstupech za alespoň 5 bodů také platí, že alespoň jedna z nejlev-

nějších silnic neobsahuje žádný tunel ani most. Tyto vstupy nemusejí být
různé od těch uvedených v předchozím odstavci.

rou

Příklady:
Vstup:
2 7 1 1 20

5 1 1 5 5 5 5

5 5 5 5 9 9 5

Výstup:Výstup: Vstup:
2 7 1 20 1

5115555

5 5 5 5 9 9 5

8 8

0 0 0 0

0 3 1 0

0 4 1 1

0 5 1 2

1 30 6

1 61 6
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Výstup:
NEEXISTUJE

Výstup: Vstup:
3 3 111

42 32 32

32 22 12

22 12 2

Vstup:
2 7 1 20 20

5115555

5555995

10

0 0

1 0

1 1

1 2

1 3

0 3

0 4

0 5

0 6

1 6

P - III - 5

Básník Honzík II

basnik.pas / basnik.c / basnik.cpp
basnik.in

basnik.out

Program:
Vstup:
Výstup:

Honzík poté, co jste mu včera pomohli pozvat Boženku na procház-
ku, zjistil, že v sobě ukrývá velký básnický talent, a chtěl by po vás
poradit ještě jednou. Rozhodl se totiž, že složí nejkrásnější báseň všech
dob. Sousedovic Kája Máchů mu poradil, že v nej krásnějších básních má
každá sloka dva verše. Pak od svého kamaráda Jardy Seifertíka zjistil,
že každá správná básnička má mít přesně N slok. Nakonec se od Elišky
Hezkohorské dozvěděl, že tyto básně mají takzvaný cyklický sdružený
rým. To znamená, že mají schéma ab bc cd de ef... yz za, tedy že druhý
verš každé sloky se rýmuje s prvním veršem té následující; výjimku tvoří
druhý verš poslední sloky, který se rýmuje s prvním veršem první sloky.

Honzík má skutečně bohatou fantazii a navíc i váš včerejší program,
takže pro něj nebyl problém vymyslet jednotlivé sloky i jejich pozici v bás-
ni. Co ale čert nechtěl, od některých slok vymyslel několik různých variant,
které sice vyjadřují stejnou myšlenku, ale obsahují jiné dvojice rýmů.

A právě s výběrem jednotlivých slok do výsledné básně by chtěl porno-
ci. Pro každou z N výsledných slok dostanete Si variant, které Honzík
vymyslel, a vaším úkolem je sestavit básničku tak, aby měla cyklický
sdružený rým.
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Abyste si nemuseli lámat hlavu s tím, které verše se rýmují a které
ne, očísloval Honzík všechny možné rýmy přirozenými čísly. Každou sloku
pak popsal dvojicí (x,y) obsahující čísla rýmů v obou verších. Za slokou
(ж, у) se tedy může vyskytovat sloka (a, b) právě tehdy, když у = a.

Soutěžní úloha. Napište program, který pro každou sloku číslo i (1 ^
^ i ^ TV) dostane Si možných variant a z nich sestaví básničku, která
splňuje požadované schéma rýmů.

Formát vstupu: První řádek vstupního souboru obsahuje přirozené
číslo TV, které udává počet slok básničky. Následuje TV skupin řádků, při-
čemž skupina i začíná řádkem obsahujícím číslo Si následované Si řádky,
každý s dvěma čísly А а В. Číslo A udává rým, na který končí první verš
varianty, a číslo В udává rým, na který končí druhý verš.

Formát výstupu: Program vypíše do výstupního souboru buď řádek
s řetězcem NEEXISTUJE, pokud básničku sestavit nelze, nebo TV řádek,
přičemž г-tý řádek bude obsahovat číslo к (1 ^ к 5Š Si), které určuje
vybranou variantu pro sloku číslo i. Pokud existuje více řešení, vypište
libovolné z nich.

Velikost vstupu: Všechny vstupy použité při testování mají TV 5Í 1 000,
1 ^ Si ^ 1000 pro všechna i a 1 íš А, В íš 109.

Ve vstupech celkem ohodnocených 5 body mimo to platí TV ^ 10
a Si ^ 10.

Příklady:
Vstup: Výstup:
5 1

1 2

21 1

2 1

21 5

1 6 Jednotlivé sloky básničky budou
mít rýmy 11 16 63 38 81.2

5 2

6 3

Výstup:
NEEXISTUJE

Vstup:1

23 8

13

2 110 2

18 1

1 34 2
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Kategorie Z5

Texty úloh

Z5 - I - 1

Vítek má napsána dvě čísla, 541 a 293. Z šesti použitých číslic má nejprve
vyškrtnout dvě tak, aby součet dvou takto získaných čísel byl největší
možný. Poté má z původních šesti číslic vyškrtnout dvě tak, aby rozdíl
dvou takto získaných čísel byl nej menší možný (odečítá menší číslo od
většího). Které číslice má vyškrtnout? (M. Petrová)

Z5 - I - 2

V Trpasličím království měří vzdálenosti v pohádkových mílích (pm),
v pohádkových sázích (ps) a v pohádkových loktech (pl). Na vstupní
bráně do Trpasličího království je následující tabulka pro převody mezi
jejich jednotkami a našimi:

> 1 pm - 3,85 m,
> 1 ps = 105 cm,
> 1 pl = 250 mm.

Král Trpaslík I. nechal přeměřit vzdálenost od zámecké brány к po-
hádkovému jezírku. Tři pozvaní zeměměřiči dospěli к těmto výsledkům:
první uváděl 4 pm 4 ps 18 pl, druhý 3 pm 2 ps 43 pl a třetí 6 pm 1 ps 1 pl.
Jeden z nich se však zmýlil. Jaká je vzdálenost v metrech od zámecké
brány к pohádkovému jezírku? O kolik centimetrů se spletl nepřesný ze-
měměřič? (M. Petrová)

Z5 - I - 3

Čtyři kamarádi Adam, Mojmír a dvojčata Petr a Pavel získali v hodinách
matematiky celkem 52 smajlíků, každý alespoň 1. Přitom dvojčata dohro-
mady mají 33, ale nejúspěšnější byl Mojmír. Kolik jich získal Adam?

(M. Volfová)
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Z5 - I - 4

Pan Tik a pan Tak prodávali budíky v prodejnách Před Rohem a Za
Rohem. Pan Tik tvrdil, že Před Rohem prodali o 30 budíků více než
Za Rohem, zatímco pan Tak tvrdil, že Před Rohem prodali třikrát více
budíků než Za Rohem. Nakonec se ukázalo, že Tik i Tak měli pravdu.
Kolik budíků prodali v obou prodejnách celkem? (L. Hozová)

Z5 - I - 5

Do kroužků na obr. 32 doplňte čísla 1, 2, 3, 4, 5, 6 a 7 tak, aby součet
čísel na každé vyznačené linii byl stejný. Žádné číslo přitom nesmí být
použito víckrát. (M. Smitková)

Z5 - I - 6

Paní Široká čekala večer hosty. Nejprve pro ně připravila 25 chlebíčků.
Pak spočítala, že by si každý host mohl vzít dva, tři by se však na všechny
nedostaly. Řekla si, že kdyby vyrobila ještě 10 chlebíčků, mohl by si každý
host vzít tři, ale čtyři ne každý. To jí přišlo stále málo. Nakonec uchystala
dohromady 52 chlebíčků. Každý host by si tedy mohl vzít čtyři chlebíčky,
ale pět by se na všechny nedostalo. Kolik hostů paní Široká očekávala?
Ona sama drží dietu a večer nikdy nejí. (L. Šimůnek)

Z5 - II - 1

Mirek vypisoval za sebou do řady výsledky malé násobilky sedmi od 7
do 70. Vypisoval je postupně od nejmenšího po největší a nepsal mezi nimi
čárky ani mezery. V takhle vzniklé řadě číslic škrtl jedenáct z těchto číslic.
Které největší a které nejmenší číslo mohl dostat? (M. Petrová)
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Z5 - II - 2

Rytíř Milivoj se chystal do Veselína na turnaj. Ten se koná ve středu.
Protože mu ale cesta z Rytířova, kde bydlí, do Veselína bude trvat dva
dny, vyrazil už v pondělí. Cesta vede přes další dvě města, Kostin a Zubín.
První den jízdy urazil 25 mil a přenocoval v Zubíně. Druhý den, v úterý,
šťastně dojel do Veselína. Turnaj s přehledem vyhrál, takže když se ve
čtvrtek vracel zpátky, jel rychleji. Ujel o 6 mil více než v pondělí, přeno-
coval tak v Kostíně. V pátek ujel 11 mil, které mu zbývaly do Rytířova.
Urči vzdálenost mezi Zubínem a Veselínem. (M. Petrova)

Z5 - II - 3

Lázeňský správce pan Sluníčko koupil pro lázeňské hosty 58 slunečníků.
Některé byly červené a některé žluté. Červené byly baleny v krabicích
po devíti kusech, zatímco žluté byly v krabicích po čtyřech kusech. Oba
druhy slunečníků nakupoval po celých baleních. Kolik mohlo být žlutých
slunečníků? Najdi všechna řešení. (L. Hozová)
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Kategorie Z6

Texty úloh

Z6 - I - 1

Když Bořek natíral vrata garáže, přetřel omylem i stupnici nástěnného
venkovního teploměru. Trubička se rtutí však zůstala nepoškozená, a tak
Bořek původní stupnici přelepil páskem vlastní výroby. Na něj pečlivě
vyrýsoval dílky, všechny byly stejně velké a označené čísly. Jeho dílek
měl však jinou velikost než původní dílek, který představoval jeden stupeň
Celsia, a i nulu Bořek umístil jinam, než kde bylo 0 °C. Takto začal Bořek
měřit teplotu ve vlastních jednotkách: bořcích. Když by měl teploměr
ukazovat teplotu 11 °C, ukazoval 2 bořky. Když by měl ukazovat —4°C,
ukazoval —8 bořků. Jaká je teplota ve stupních Celsia, vidí-li Bořek na
svém teploměru teplotu —2 bořky? (L. Šimůnek)

Z6 - I - 2

Začínající písničkář prodával vždy po vystoupení CD se svou hudbou.
Ve čtvrtek prodal osm stejných CD. Den nato už nabízel i své nové CD
a lidé si tak mohli koupit to samé jako ve čtvrtek nebo nové. V sobotu
chtěli všichni posluchači nové CD a písničkář jich prodal ten den šest.
V jednotlivých dnech utržil 590 Kč, 720 Kč a 840 Kč, neprozradíme však,
která částka patří ke kterému dni.

> Kolik stálo starší CD?
> Kolik nových CD prodal v pátek? (L. Šimůnek)

Z6 - I - 3

Vojta napsal číslo 2 010 stokrát bez mezer za sebou. Kolik čtyřmístných
a kolik pětimístných souměrných čísel bylo ukryto v tomto zápise? (Sou-
měrné číslo je takové číslo, které je stejné, je-li čteno zepředu i zezadu,

(L. Hozová)např. 39 193.)
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Z6 - I - 4

Součin věků dědy Vendelína a jeho vnoučat je 2 010. Součet věků všech
vnoučat je 12 a žádná dvě vnoučata nemají stejný počet let. Kolik vnou-
čat má děda Vendelín? (L. Hozová)

Z6 - I - 5

Na táboře se dva vedoucí se dvěma táborníky a psem potřebovali dostat
přes řeku а к dispozici měli jen jednu loďku o nosnosti 65 kg. Naštěstí
všichni (kromě psa) dokázali loďku přes řeku převézt. Každý vedoucí vážil
přibližně 60 kg, každý táborník 30 kg a pes 12 kg. Jak si měli počínat?
Kolikrát nejméně musela loďka překonat řeku? (M. Volfová)

Z6 - I - 6

Karel obestavěl krabici s obdélníkovým dnem obrubou z krychliček. Pou-
žil právě 22 krychliček o hraně 1 dm, které stavěl těsně vedle sebe v jedné
vrstvě. Mezi obrubou a stěnami krabice nebyla mezera a celá tato stavba
měla obdélníkový půdorys. Jaké rozměry mohlo mít dno krabice?

(M. Krejčová)

Z6 - II - 1

Paní Hovorková měla 1. července 2010 na svém mobilu kredit 157,0 Kč.
Z kreditu se postupně odečítají částky za hovory, a to tak, že za každou
započatou minutu se odečte 4,5 Kč. Textové zprávy paní Hovorková ne-

píše a ani žádné další placené služby nepoužívá. Svůj kredit dobíjí podle
potřeby, a to vždy částkou 400 Kč. Dne 31. prosince 2010 byl její kredit
353,0 Kč. Kolikrát minimálně dobíjela paní Hovorková za zmíněný půlrok
svůj kredit? (L. Šimůnek)

Z6 — II — 2

V obdélníku КLAIN je vzdálenost průsečíku úhlopříček od přímky KL
o 2 cm menší než jeho vzdálenost od přímky Lili. Obvod obdélníku je

(L. Hozová)56 cm. Jaký je obsah obdélníku KLMN1
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Z6 - II - 3

V létě se u babičky sjelo šest vnoučat a víme o nich, že
t> Martinka se někdy musí starat o brášku Tomáška, který je o 8 let

mladší,
o Věrka, která je o 7 let starší než Ida, ráda vypráví strašidelné příběhy,
t> s Martinkou se často pere o rok mladší Jaromír,
> Tomášek je o 11 let mladší než Kačka,
> Ida často zlobí svého o 4 roky staršího bratra Jaromíra,
t> klukům je dohromady 13 let.

Jak staré jsou všechny zmiňované děti? (M. Volfová)
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Kategorie Z7

Texty úloh

Z7 - I - 1

Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo.
Pokud počítáme součin číslic daného vícemístného čísla, potom součin
číslic tohoto součinu, poté znova součin číslic nového součinu atd., nutně
po nějakém počtu kroků dospějeme к jednomístnému číslu. Tento počet
kroků nazýváme perzistence čísla. Např. číslo 723 má perzistenci 2, neboť
7 • 2 • 3 = 42 (1. krok) a 4 • 2 = 8 (2. krok).
1. Najděte největší liché číslo, které má navzájem různé číslice a perzis-

tenči 1.

2. Najděte největší sudé číslo, které má navzájem různé nenulové číslice
a perzistenci 1.

3. Najděte nejmenší přirozené číslo, které má perzistenci 3.

(S. Bednářová)

Z7 - I - 2

Ondra na výletě utratil | peněz a ze zbytku dal ještě | na školu pro
děti z Tibetu. Za | nového zbytku ještě koupil malý dárek pro maminku.
Z děravé kapsy ztratil | zbylých peněz, a když ze zbylých dal půlku malé
sestřičce, zůstala mu právě jedna koruna. S jakým obnosem šel Ondra na

výlet? (M. Volfová)

Z7 - I - 3

Šárka prohlásila:
„Jsme tři sestry, já jsem nejmladší, Líba je starší o tři roky a Eliška

o osm. Naše mamka ráda slyší, že nám všem (i s ní) je v průměru 21 let.
Přitom když jsem se narodila, bylo mamce už 29.“

Před kolika lety se Šárka narodila? (M. Volfová)
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Z7 - I - 4

Jindra měl napsáno čtyřmístné číslo. Toto číslo zaokrouhlil na desítky, na

stovky a na tisíce a všechny tři výsledky zapsal pod toto číslo. Všechna
čtyři čísla správně sečetl a dostal 5 443. Které číslo měl Jindra napsáno?

(M. Petrova)

Z7 - I - 5

Libor narýsoval kružnici se středem S a body A, В, C, D, jak ukazuje
obr. 33. Zjistil, že úsečky SC a BD jsou stejně dlouhé. V jakém poměru

(L. Hozová)jsou velikosti úhlů ASC a SCD1

Z7 - I - 6

Najděte všechna trojmístná přirozená čísla, která jsou beze zbytku děli-
telná číslem 6 a ve kterých můžeme vyškrtnout jakoukoli číslici a vždy
dostaneme dvojmístné přirozené číslo, jež je také beze zbytku dělitelné
číslem 6. (L. Šimůnek)

Z7 - II - 1

Na kartě je napsáno čtyřmístné přirozené číslo, ve kterém můžeme vy-
škrtnout jakékoli dvě číslice a vždy dostaneme dvojmístné přirozené číslo,
jež je beze zbytku dělitelné číslem 5. Kolik takových čtyřmístných přiro-
zených čísel existuje? (Pozor, např. číslo 06 není dvojmístné.)

(L. Šimůnek)

132



Z7 - II - 2

Karel a Vojta zjistili, že kuchyňské hodiny na chalupě se předbíhají
o 1,5 minuty za každou hodinu a hodiny v ložnici se o půl minuty každou
hodinu zpožďují. V pravé poledne seřídili hodiny na stejný a správný čas.
Hodiny v kuchyni i v ložnici mají obvyklý dvanáctihodinový ciferník.
Urči, kdy nejdříve budou (bez dalšího opravování)
1. kuchyňské hodiny ukazovat opět přesný čas,
2. hodiny v ložnici ukazovat opět přesný čas,
3. oboje hodiny ukazovat opět stejný (i když možná nesprávný) čas.

(M. Volfová)

Z7 - II - 3

V trojúhelníku ABC označíme středy stran CB a CA písmeny К a L.
Víme, že čtyřúhelník ABKL má obvod 10 cm a trojúhelník KLC má
obvod 6 cm. Vypočítej délku úsečky KL. (J. Mazák)
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Kategorie Z8

Texty úloh

Z8 - I - 1

Martin má na papíře napsáno pětimístné číslo s pěti různými číslicemi
a následujícími vlastnostmi:

t> škrtnutím druhé číslice zleva (tj. číslice na místě tisíců) dostane číslo,
které je dělitelné dvěma,

t> škrtnutím třetí číslice zleva dostane číslo, které je dělitelné třemi,
> škrtnutím čtvrté číslice zleva dostane číslo, které je dělitelné čtyřmi,
> škrtnutím páté číslice zleva dostane číslo, které je dělitelné pěti,
> neškrtne-li žádnou číslici, má číslo dělitelné šesti.

Které největší číslo může mít Martin napsáno na papíře?
(M. Petrova)

Z8 - I - 2

Karel se snažil do prázdných polí na obr. 34 ve-

psát přirozená čísla od 1 do 14 tak, aby žádné
číslo nebylo použito víckrát a součet všech čísel
v každé přímé linii byl stejný. Po chvíli si uvě-
domil, že to není možné. Jak byste Karlovo po-
zorování zdůvodnili vy? (Přímou linií rozumíme
skupinu všech sousedících políček, jejichž středy

(S. Bednářová)leží na jedné přímce.)

Z8 - I - 3

Cena knížky „Nové hádanky“ byla snížena o 62,5%. Matěj zjistil, že obě
ceny (před snížením i po něm) jsou dvojmístná čísla a dají se vyjádřit
stejnými číslicemi, jen v různém pořadí. O kolik Kč byla knížka zlevněna?

(M. Volfová)
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Z8 - I - 4

Rozdělte krychli o hraně 8 cm na menší shodné krychličky tak, aby součet
jejich povrchů byl pětkrát větší než povrch původní krychle. Jaký bude
objem malé krychle a kolik centimetrů bude měřit její hrana?

(M. Volfová)

Z8 - I - 5

Klára, Lenka a Matěj si procvičovali písemné dělení se zbytkem. Jako dě-
lence měl každý zadáno jiné přirozené číslo, jako dělitele však měli všichni
stejné přirozené číslo. Lenčin dělenec byl o 30 větší než Klářin. Matějův
dělenec byl o 50 větší než Lenčin. Kláře vyšel ve výsledku zbytek 8, Lence
zbytek 2 a Matějovi zbytek 4. Všichni počítali bez chyby. Jaký dělitel byl

(L. Šimůnek)žákům zadán?

Z8 - I - 6

V rovnoramenném lichoběžníku ABCD jsou úhlopříčky АС a DB na
sebe kolmé, jejich délka je 8 cm a délka delší základny AB je také 8 cm.

Vypočítejte obsah tohoto lichoběžníku. (M. Krejčová)

Z8 - II - 1

Na kartičku jsem napsala dvojmístné přirozené číslo. Součet číslic tohoto
čísla je dělitelný třemi. Odečtu-li od napsaného čísla číslo 27, dostanu jiné
dvojmístné přirozené číslo, psané týmiž číslicemi, ale v opačném pořadí.
Která čísla jsem mohla napsat na kartičku? (L. Hozová)

Z8 - II - 2

Martina si vymyslela postup na výrobu číselné posloupnosti. Začala čís-
lem 52. Z něj odvodila další člen posloupnosti takto: 22+ 2- 5 = 4+10 =
= 14. Potom pokračovala stejným způsobem dále a z čísla 14 dostala
42 + 2 • 1 = 16 + 2 = 18. Vždy tedy vezme číslo, odtrhne z něj číslici
na místě jednotek, tuto odtrženou číslici umocní na druhou а к výsledné
mocnině přičte dvojnásobek čísla, které zbylo z původního čísla po od-
trhnutí poslední číslice. Jaké je 2 011. číslo takto vzniklé posloupnosti?

(M. Dillingerová)
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Z8 - II - 3

V kružnici к se středem S a poloměrem 52 mm jsou dány dvě na sebe
kolmé tětivy AB a CD. Jejich průsečík X je od středu S vzdálen 25 mm.
Jak dlouhá je tětiva CD, je-li délka tětivy AB 96 mm? (L. Hozová)

136



Kategorie Z9

Texty úloh

Z9 - I - 1

Pan Vlk čekal na zastávce před školou na autobus. Z okna slyšel slova
učitele:

„Jaký povrch může mít pravidelný čtyřboký hranol, víte-li, že délky
všech jeho hran jsou v centimetrech vyjádřeny celými čísly a že jeho
objem je... “

Toto důležité číslo pan Vlk neslyšel, protože zrovna projelo okolo auto.
Za chvíli slyšel žáka hlásícího výsledek 918cm2. Učitel na to řekl:

„Ano, ale úloha má celkem čtyři řešení. Hledejte dál.“
Více se pan Vlk už nedozvěděl, neboť nastoupil do svého autobusu.

Protože matematika byla vždy jeho hobby, vytáhl si v autobuse tužku
a papír a po čase určil i zbylá tři řešení učitelovy úlohy. Spočítejte je i vy.

(L. Šimůnek)

Z9 - I - 2

Na obr. 35 jsou tečkovanou čarou znázorněny hranice čtyř stejně velkých
obdélníkových parcel. Šedou barvou je vyznačena zastavěná plocha. Ta
má tvar obdélníku, jehož jedna strana tvoří zároveň hranice parcel. Za-

!
480 200

t

560
440

Obr. 35
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psaná čísla vyjadřují obsah nezastavěné plochy na jednotlivých parcelách,
a to v m2. Vypočítejte obsah celkové zastavěné plochy. (L. Šimůnek)

Z9 - I - 3

Vlčkovi lisovali jablečný mošt. Měli ho ve dvou stejně objemných soudcích,
v obou téměř stejné množství. Kdyby z prvního přelili do druhého 1
litr, měli by v obou stejně, ale to by ani jeden soudek nebyl plný. Tak
raději přelili 9 litrů z druhého do prvního. Pak byl první soudek úplně
plný a mošt v druhém zaplňoval právě třetinu objemu. Kolik litrů moštu
vylisovali, jaký byl objem soudků a kolik moštu v nich bylo původně?

(M. Volfová)

Z9 - I - 4

Pan Rychlý a pan Louda ve stejnou dobu vyšli na tutéž turistickou túru,
jen pan Rychlý ji šel shora z horské chaty a pan Louda naopak od auto-
busu dole v městečku na chatu nahoru. V 10 hodin se na trase míjeli. Pan
Rychlý spěchal a již ve 12 hodin byl v cíli. Naopak pan Louda postupoval
pomalu, a tak dorazil к chatě až v 18 hodin. V kolik hodin pánové vyrazili
na cestu, víme-li, že každý z nich šel celou dobu svou stálou rychlostí?

(M. Volfová)

Z9 - I - 5

Kružnici se středem S a poloměrem 12 cm jsme opsali pravidelný šesti-
úhelník ABCDEF a vepsali pravidelný šestiúhelník TUVXYZ tak, aby
bod T byl středem strany BC. Vypočítejte obsah a obvod čtyřúhelníku

(M. Krejčová)TCUS.

Z9 - I - 6

Petr a Pavel česali v sadě jablka a hrušky. V pondělí snědl Petr o 2 hrušky
více než Pavel a o 2 jablka méně než Pavel. V úterý Petr snědl o 4 hrušky
méně než v pondělí. Pavel snědl v úterý o 3 hrušky více než Petr a o 3 ja-
blka méně než Petr. Pavel snědl za oba dny 12 jablek a v úterý snědl
stejný počet jablek jako hrušek. V úterý večer oba chlapci zjistili, že
počet jablek, která společně za oba dny snědli, je stejně velký jako počet
společně snědených hrušek. Kolik jablek snědl Petr v pondělí a kolik
hrušek snědl Pavel v úterý? (L. Hozová)
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Z9 - II - 1

Čtyřmístným palindromem nazveme každé čtyřmístné přirozené číslo,
které má na místě jednotek stejnou číslici jako na místě tisíců a které
zároveň má na místě desítek stejnou číslici jako na místě stovek. Kolik
existuje dvojic čtyřmístných palindromů, jejichž rozdíl je 3 674?

(L. Simůnek)

Z9 - II - 2

Na následujícím obr. 36 jsou rovnostranné trojúhelníky ABC, DBE,
IEF a HIG. Obsahy trojúhelníků DBE, IEF a HIG jsou v poměru
9 : 16 : 4. V jakém poměru jsou
1. délky úseček HI a IE,
2. obsahy trojúhelníků ABC a HECI (К. Pazourek)

A D В

Obr. 36

Z9 - II - 3

Máme čtverce ABCD a KLMN. Délky stran obou čtverců jsou v centi-
metrech vyjádřeny celým číslem. Bod К je vnitřním bodem úsečky AB,
bod L leží v bodě В a bod M je vnitřním bodem úsečky BC. Obsah
šestiúhelníku AKNMCD je 225 cm2. Jaký může být obvod tohoto šesti-
úhelníku? Najděte všechny možnosti. (L. Simůnek)
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Z9 - II - 4

Martina si vymyslela postup na výrobu číselné posloupnosti. Začala čís-
lem 128. Z něj odvodila další člen posloupnosti takto: 82 + 5 = 64 + 5 =
= 69. Potom pokračovala stejným způsobem dále a z čísla 69 dostala
92 + 5 = 81 + 5 = 86. Vždy tedy z předchozího členu posloupnosti vezme
číslici na místě jednotek, umocní ji na druhou а к této mocnině přičte
konstantu 5.

1. Jaké je 2011. číslo takto vzniklé posloupnosti?
2. Martina opět začala číslem 128, ale místo čísla 5 zvolila jako konstantu

jiné přirozené číslo. Tentokrát jí na 2011. místě vyšlo číslo 16. Jakou
konstantu zvolila v tomto případě? (M. Dillingerová)

Z9 - III - 1

Pořadatelům výstavy „Na Měsíc a ještě dál“ se po prvním výstavním dni
zdálo, že mají malou návštěvnost, proto snížili vstupné o 12 Kč. Tím se
sice druhý den zvýšil počet návštěvníků o 10 %, ale celková denní tržba
se snížila o 5 %. Kolik korun stálo vstupné po slevě? (M. Petrová)

Z9 - III - 2

Lichoběžník ABCD, kde strana AB je rovnoběžná se stranou CD, je
rozdělen úhlopříčkami, které se protínají v bodě M, na čtyři části. Určete
jeho obsah, víte-li, že trojúhelník AMD má obsah 8 cm2 a trojúhelník
DCM má obsah 4cm2. (M. Volfová)

Z9 - III - 3

Ctibor a Míla počítali ze sbírky tutéž úlohu. Byly zadány tři délky hran
čtyřbokého hranolu v milimetrech a úkolem bylo vypočítat jeho objem
a povrch. Ctibor nejprve převedl zadané délky na centimetry. Počítalo
se mu tak snáze, protože i po převodu byly všechny délky vyjádřeny
celými čísly. Oběma vyšly správné výsledky, Míle v mm3 a mm2, Ctibo-
rovi v cm3 a cm2. Mílin výsledek v mm3 byl o 17982 větší než Ctiborův
výsledek v cm3. Mílin výsledek v mm2 byl o 5 742 větší než Ctiborův
výsledek v cm2. Určete délky hran hranolu. (L. Šimůnek)
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Z9 - III - 4

1111
’ 2’ 3’ 4’ 5

a Na tabuli můžemeNa tabuli jsou napsána pouze čísla 1
připsat součet nebo součin libovolných dvou čísel z tabule. Je možné
takovým připisováním dosáhnout toho, aby se na tabuli objevila čísla
aJ i- bl cla> 60 ’ 375 ’ w 7 • (V. Bachratá, J. Mazák)

141



Přípravná soustředění před 52. MMO

V průběhu 60. ročníku se konalo výběrové soustředění pro přípravu na
mezinárodní matematickou olympiádu bezprostředně po skončeném ce-
lostátním kole kategorie A, a to od 4. do 8. dubna 2011 v Kostelci nad
Černými lesy nedaleko Prahy. Na soustředění bylo pozváno 9 nejlepších
řešitelů III. kola kategorie A. Soustředění bylo zaměřeno na přípravu
reprezentantů a ke konečné nominaci šestičlenného družstva.

Úspěšnost jednotlivých studentů ukazuje následující tabulka:

8/8 G J. Keplera, Praha 6
3/6 G Tachov
8/8 G J. Vrchlického, Klatovy
8/8 G Žamberk
6/8 G J. Jungmanna, Litoměřice
8/8 G J. Keplera, Praha 6
4/4 G M. Koperníka, Bílovec
3/4 G Jihlava
7/8 G Ždár nad Sázavou

Tomáš Zeman

Anh Dung Le
Michael Bílý
Miroslav Koblížek

Štěpán Šimsa
Dan Šafka
Jakub Solovský
Jan Kuchařík

Ondřej Bartoš

83

78,5
76

68,5
65

60

59

57

56,5

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo prvních šest vybráno do reprezen-
tačního družstva a sedmý byl určen jako náhradník. Toto družstvo nás
reprezentovalo i na již tradičním střetnutí s družstvy Slovenska a Polska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Jaroslav Zhouf (4.4.)
dr. Pavel Calábek (5.4.)
dr. Martin Panák (6.4.)
dr. Jaroslav Švrček (7. 4.)
a doc. Jaromír Šimša (8.4.)
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Úlohy zadané na přípravném soustředění1.Dekadické zápisy přirozených čísel По, «i, a2, • • •, «ю neobsahují nuly,
jedno z druhého se získá pouze změnou pořadí cifer a je

dk = к (mod 11) pro к = 0,1,2,..., 10.

Určete nej menší možné takové číslo a3.

2. Vrcholy krychle máme očíslovat čísly od 1 do 8, každý vrchol jiným
číslem, a pro každou hranu vypočítat součin čísel na jejích koncích. Jak
mají být vrcholy očíslovány, aby součet 12 uvedených součinů byl co

nej menší?

3. Je dán trojúhelník ABC. Použitím pouze oboustranného přímého pra-
vítka sestrojte nejvýše pomocí sedmi přímek bod D na straně AB takový,
aby \AD\ : \BD\ = \BC\ : \AC\.
4. Na tabuli na konci vyučovací hodiny zůstal kousek grafu funkce у =
= tgr a kousek osy x z kartézské soustavy souřadnic. Pomocí pravítka
a kružítka sestrojte úsečku délky 1.

f(f(n- 1))5.Nechť /: № -+ bJ je funkce, pro niž /(1) = 1 a f(n)
pro libovolné přirozené n ^ 2. Dokažte, že pro všechna přirozená n platí

— n —

f(n + f(n)) —

n.6.Nechť n je přirozené číslo. Najděte nejmenší hodnotu výrazu

Xn)2 + (x„ - Xi)2{xi - X2)2 + {x2 - X3)2 + . . . + (x71—1

kde x\, x2,... ,xn jsou navzájem různá celá čísla.7.Mezi n+l hromádkami (n A 3) označenými Ai, A2,..., An a O mů-
žeme provádět následující přesuny karet:
(i) Jestliže na hromádce Ai jsou alespoň tři karty, potom z hromádky Ai

tři karty odebereme a na hromádky A^_i, Ai+1 a O (při označení
Aq — An, A\ — An+1) přidáme po jedné kartě.

(ii) Jestliže na hromádce O je alespoň n karet, potom z hromádky O
n karet odebereme a na každou z hromádek Ai po jedné kartě při-
dáme.

Dokažte, že jestliže na tyto hromádky libovolně rozmístíme alespoň n2 +
+ 3n + 1 karet, můžeme popsanými operacemi dosáhnout stavu, kdy na
každé z hromádek je alespoň 72 + 1 karet.
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8.Nechť IR+ je množina všech kladných reálných čísel. Najděte všechny
funkce /: 1R+ —> [R+ takové, že pro všechna kladná reálná čísla x а у platí

f(x)f(yf(x)) = f(x + y).9.Nechť ABC je ostroúhlý trojúhelník. Označme po řadě D1 E, F paty
jeho výšek va, u&, vc, dále označme P jeden z průsečíků kružnice jemu
opsané s přímkou EF a poté průsečík přímek BP a FD jako Q. Dokažte,
že \AP\ = \AQ\.
10. Na koncertě bude zpívat postupně 20 zpěváků. Je možné, aby bylo
právě 2 010 možností uspořádání jejich vystoupení tak, aby bylo vyhověno
všem jejich přáním? Přání každého sestává z množiny kolegů (i prázdné),
kteří by měli vystupovat před ním.

11. Nekonečná posloupnost £1,2:2,... je dána vztahy £1 = 1 a £2к =
= — £fc, £2fc-i = (—l)fe+1£fc pro všechna к F 1. Ukažte, že £1 +£2 + ... +
+ xn F 0 pro všechna n ^ 1.

12. Nechť ABCD je tětivový čtyřúhelník a P průsečík jeho úhlopříček.
Označme E, F, G, H po řadě paty kolmic z bodu P ke stranám AB, BC,
CD, DA. Dokažte, že přímky EH, BD a FG jsou bud rovnoběžné, nebo
se protínají v jednom společném bodě.

13. V rovině je dána kružnice a bod C v její vnější oblasti. Určete mno-
žinu průsečíků výšek (ortocenter) všech trojúhelníků ABC, kde AB je
průměr dané kružnice.

14. V rovině je dán rovnoramenný trojúhelník ABC, kde D je středem
jeho základny BC. Bod E je takovým vnějším bodem daného trojúhel-
niku, pro který platí CE J_ AB a současně \BE\ = \BD\. Nechť M
je středem úsečky BE a F je takový bod kratšího oblouku AD kruž-
nice opsané trojúhelníku ABD, pro nějž platí MFF BE. Dokažte, že
ED J_ FD.

15. Napište příklad kvadratické rovnice s kořenem cos která má celo-
číselné koeficienty, popřípadě uveďte „neexistuje“.

16. Vypište všechna řešení (£, у, z) G IR3 soustavy rovnic:

3(£2 + y2 + z2) = 1
x2y2 + y2z2 + A2 xyz{x + у + z)3.

144



17. Pro každé n eN udejte aspoň jedno řešení (ж, у) £ N2 rovnice

x3 + у3 + 1 = 7292n+1.

18. Určete nejmenší počet polí, které je nutné označit na čtvercové ša-
chovnici 10 x 10, aby žádná čtyři z neoznačených polí nebyla rohovými
poli některé podšachovnice p x q, kde 1 < p 10 a 1 < q ^ 10.
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Mezinárodní střetnutí česko-polsko-slovenské

V rámci závěrečné přípravy před MMO se uskutečnilo již jedenácté me-
zinárodní střetnutí mezi týmy České republiky, Polska a Slovenska. Kaž-
dou zemi reprezentovala šestice účastníků, kteří si vybojovali postup na
52. MMO v Nizozemí.

Soutěž proběhla od 19. do 22. června 2011 v polském Krakově.
Všechna tři reprezentační družstva přicestovala na místo konání již v ne-
děli večer 19. 6. 2011. Organizace a průběh soutěže zůstal zachován z pře-
dešlých ročníků — je přizpůsoben stylu III. kola naší МО a podmínkám
na MMO. Soutěžícím byly ve dvou dnech předloženy dvě trojice soutěž-
nich úloh, přitom za každou z úloh mohli získat nejvýše 7 bodů, tj. celkově
(stejně jako na MMO) 42 body. Na každou trojici úloh měli soutěžící vy-
hrazeno 4,5 hodiny.

Země body SoučetPořadí Jméno

1.-2. Tomasz Ciešla
Martin Vodička

3.-5. Maciej Dul^ba
Anh Dung Le
Teodor Jerzak

6. Filip Borowiec
7. Damian Orlef
8. Štěpán Šimsa
9. Tomáš Zeman

10.-14. Michael Bílý
Marián Horňák
Ján Hozza
Matúš Stehlík
Michal Tóth

15.-16. Lubomír Grund

Ondřej Kováč
17. Wojciech Porowski POL 700 5 00
18. Miroslav Koblížek CZE 0 00210

POL 674770
SVK 777370
POL 777070

CZE 777070
POL 770707
POL 776610
POL 772710
CZE 770200
CZE 770010
CZE 770000
SVK 770000

SVK 770000
SVK 740210
SVK 770000

CZE 760000
SVK 760000

31

31
28

28
28
27
24

16

15
14
14

14
14
14

13

13
12

3
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Návrh všech šesti úloh (a jejich vzorová řešení) připravili kolegové
z hostitelské země, Pavel Novotný (1. úloha) a Tomáš Juřík (3. úloha).
Koordinaci hodnocení zajistila mezinárodní porota, kterou tvořili Pavel
Calábek, Karel Horák a Jaromír Šimša z České republiky, Jerzy Bednař-
czuk, Michal Pilipczuk a Andrzej Grzesik z Polska a Peter Csiba, Pavel
Novotný a Peter Novotný ze Slovenska.

Texty soutěžních úloh
1. Nechť a, b, c jsou kladná reálná čísla, pro něž platí a2 < bc. Dokažte,
že b3 + ac2 > ab(a + c).
2. Na tabuli je napsáno n nezáporných celých čísel, jejichž největší spo-

léčný dělitel je 1. V jednom kroku můžeme smazat dvě čísla x, у (označená
tak, že x ^ у) a nahradit je čísly x — y, 2y. Zjistěte, pro které n-tice ne-

záporných celých čísel se lze popsaným způsobem dostat do situace, kdy
na tabuli bude n — 1 nul.

3. Nechť body A, B, C, D leží na kružnici v uvedeném pořadí, přičemž
AB W CD a délka oblouku AB obsahujícího body C, D je dvakrát větší
než délka toho oblouku CD, který neobsahuje body A, B. Bod E je v polo-
rovině ABC zvolen tak, že \AC\ = \AE\ a \BD\ = \BE\. Za předpokladu,
že kolmice z bodu E na přímku AB prochází středem toho z oblouků CD,
který neobsahuje body A, B, dokažte, že \<ACB\ — 108°.
4. Nechť mnohočlen P s celočíselnými koeficienty splňuje následující pod-
minku: jestliže pro mnohočleny F, G, Q s celočíselnými koeficienty platí

P{Q(x)) = F(x) ■ G(x)
je F nebo G konstantní mnohočlen.

Dokažte, že mnohočlen P musí být konstantní.5.V konvexním čtyřúhelníku ABCD označme po řadě M a N středy
stran AD a BC. Na stranách AB a CD zvolme po řadě body К a L
tak, že \<MKA\ — \<NLC\. Dokažte, že pokud mají přímky BD, KM
a LN společný bod, platí

\<KMN\ = \<BDC\ a \<LNM\ = \<ABD\.6.Je dáno celé číslo a. Dokažte, že existuje nekonečně mnoho prvočísel p,

pro něž
p | n2 + 3 a p | m3 — a

pro nějaká celá čísla n, m.
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Řešení úloh

1. Sečtením tří AG nerovností (každou levou stranu chápeme jako sedm
sčítanců)

4a36 + 63c + 2c3a ^ 7a26c,
463c + c3a + 2a3b ^ 762ca,
4c3a + a3b -f 2b3c > 7c2ab

dostaneme

a3b + b3c + c3a ^ a2bc + b2ca + c2ab.
Z předpokladu bc > a2 vynásobením ab plyne b2ca > a3b, což spolu s (1)
dává

(1)

b3c + c3a > a2bc + c2ab neboli b3 + ac2 > ab(a + c).

Jiné řešení. Využijeme obě následující AG nerovnosti

|b3 + |ac2 ^ \/б6а3с6 = bcVačbc > abc,
|63 + fnc2 ^ \ZWa2cA — > a2b,

kam jsme v obou případech dosadili bc > a2. Jejich sečtením získáme
hledaný odhad.
2. Odpověď. Součet daných čísel musí být mocnina čísla 2.

Označme S celkový součet daných čísel a d jejich největší společný
dělitel. Na počátku je d = 1, zatímco na konci by mělo být d = S, protože
součet S všech čísel na tabuli se nemění.

Po každém popsaném kroku se aktuální hodnota největšího společ-
něho dělitele bud nezmění, anebo vzroste na dvojnásobek. To plyne
z rovnosti (x — y,y) — (x,y) a z toho, že je buď (a, 26) = (a, 6), nebo
(a, 26) = 2(a, 6) podle toho, jestli 2 dělí a/(a, 6) či nikoli. Vzhledem к to-
mu, že (a, 6, c) = ((a, 6),c), snadno uvedený postřeh rozšíříme na největ-
šího společného dělitele všech čísel na tabuli. Zůstane-li tedy nakonec na
tabuli jediné nenulové číslo, musí tím číslem být mocnina dvojky.

Je-li naopak S mocninou čísla 2, ukážeme jak postupovat, abychom
dostali n — 1 nul. Zapišme všechna čísla na tabuli v dvojkové soustavě.
Pokud jsou na tabuli ještě aspoň dvě nenulová čísla, vezměme ta dvě
z nich, která mají na konci nejméně nul (taková čísla jsou aspoň dvě,
protože celkový součet je mocnina dvojky). Po popsané operaci místo
nich zřejmě dostaneme dvě čísla, jež mají na konci aspoň o jednu nulu
víc. Je tedy jasné, že po konečném počtu kroků musíme skončit tím, že
na tabuli bude jediné nenulové číslo.
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3. Nejdříve zformulujeme a dokážeme pomocné tvrzení.
V rovině jsou dány dvě kružnice xi, x2 protínající se v bodech K, L,

přičemž střed S2 kružnice x2 leží na x\. Pokud M £ xi (M ^ x2)
a přímka KM protíná x2 v bodě N (různém od К), je \MN\ — \ML\.

Důkaz. Pokud M — S2, je tvrzení triviální. Zabývejme se tedy pří-
pádem M Ф S2. Označme ještě Mq bod kružnice xi, pro nějž je S2M0
průměrem x\. Zřejmě nemůže být M = Mq, protože v takovém případě
by byly MK & ML tečnami kružnice x2. Nejdříve dokážeme, že přímka
MS2 je osou úhlu NML.

Pokud M leží na oblouku KL kružnice x\ neobsahujícím S2 (obr. 37),
jsou úhly KMS2, S2ML obvodovými úhly nad shodnými tětivami S2K,
S2L, mají proto stejnou velikost.

Pokud M leží na oblouku KL kružnice x\ obsahujícím bod S2, mů-
žeme bez újmy na obecnosti předpokládat, že leží na oblouku S2L ne-

obsahujícím bod К (obr. 38). Čtyřúhelník KS2ML je tětivový, takže
\<S2MN\ = 180° - \<S2MK\ = 180° - \<S2LK\ = 180° - \<S2KL\ =
= \<S2ML\.

V osové souměrnosti podle přímky MS2, v níž se kružnice x2 zobrazí
sama na sebe (její střed leží na ose souměrnosti), je obrazem přímky ML
přímka MN. Ta protíná kružnici x2 (pokud M ф Mq) ve dvou bodech
К а N. Obrazem bodu L £ x2 nemůže ovšem být bod iú, protože KL
není pro M ф Mq kolmé na MS2. Je tedy \MN\ = \ML\, což jsme chtěli
dokázat.

Přistupme nyní к řešení úlohy. Označme S průsečík oblouku CD
s kolmicí z bodu E na AB. Je-li k\ kružnice se středem A procháze-
jící bodem C a k2 kružnice se středem В procházející bodem D, je
bod E průsečíkem obou kružnic k\, k2. Kružnici opsanou tětivovému čtyř-
úhelníku ABCD označme k. Přímka SC protíná kružnici k\ v bodě C
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a přímka SD kružnici &2 v bodě D'. Další průsečík kružnice k\ s kruž-
ničí к označme С" (С ^ C) a podobně D" další průsečík kružnice &2
s kružnicí к (D" ф D). Ukážeme, že C" = D".

Bod S leží na chordále kružnic k\, /?2, proto z jeho mocnosti к těmto
kružnicím plyne |5Cj • I^C'I
|5Cj = |5.0|, je i I^C'I = \SD'\. S využitím úvodního tvrzení tak máme
\SC"\ = \SC'\ = |5D'| = |SD"|.

Kdyby body C", D" byly různé, byl by trojúhelník SD"C" rovnora-

menný a jeho výška z vrcholu S by procházela středem kružnice к stejně
jako osa oblouku CD. Čtyřúhelník CDD"C" (resp. CDC"D") by tak
byl rovnoramenný lichoběžník (|5Cj = J-S'Z^>|). A protože body А, В leží
na osách úseček CC", DD", byl by i ABCD rovnoramenný lichoběžník,
což odporuje předpokladu AB CD. Všechny tři uvažované kružnice tak
mají společný bod C" = D", jehož označení dále zjednodušíme na E'.

lADI • |5D'|. Protože podle zadání

Označme a - \<DE'S\ = \<SE'C\ а /3 = \<AE'D\. Pak \<AE'B'\ =
= 2\kCE'D\ = 4a (neboť oblouk AB je dvakrát delší než oblouk CD),
a proto \<CE'B\ = \kAE'B\ — \<AE'C\ = 2a — /3 (obr. 39). Z rovností
\BD\ = \BE'\, \AC\ = \AE'\ vyjádříme velikosti zbylých dvou úhlů troj-
úhelníku ABE':

2a + /3 = \<AE'C\ = \<ACE'\ = \<ABE’\,
4a - /3 = \<BE'D\ = \<BDE'\ = \<BAE'\.

Odtud

180° = 4a + (2a + /3) + (4a - /3) = 10a,
tudíž a = 18° a \<ACB\ = 180° - \<AE'B\ = 180° - 4a = 108°.
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4. Dokážeme tvrzení úlohy sporem. Předpokládejme, že P není kon-
stantní, a uvažme nejprve případ, kdy je mnohočlen P lineární, tedy
P(x) = ax + b pro nějaká a, b G Z, a ^ 0. Vezměme Q(x) = ax2 + (b+ l)x,
pak je

P(Q(x)) = a(ax2 + (6+ 1)ж) + 6 = a2x2 + a(b+l)x + b = (ax + 6)(ax + 1)
rozklad mnohočlenu P(Q(x)) na součin dvou nekonstantních mnohočlenů
ax + b a ax + 1, což odporuje předpokladu úlohy.

Je-li stupeň mnohočlenu P aspoň 2, tedy P(x) = anxn + an_ia;n-1 +
+ .. .+aix+a0, kde n > 1 a an / 0, vezměme mnohočlen Q(x) = P(x)+x.
Pro mnohočlen P(Q(x)), který má stupeň n2 > n, platí

P(Q(x)) - P(x) = P(P(x) + x) - P(x) = ^2 ai {(p(x) + XY ~ x%) ■
i=0

+ a1 2b + ... + bl ovšem plyne,Z rovností a1 — Ъг = (a — b) (a
že každý z mnohočlenů (P(x) + x)1 — xl je dělitelný mnohočlenem P{x).

i-1

Proto i mnohočlen P{Q(xj) je mnohočlenem P(x) dělitelný. To vede opět
ke sporu, protože stupeň mnohočlenu P(Q(x)) je větší než stupeň mno-
hočlenu P, a ten je tudíž netriviálním dělitelem mnohočlenu P(Q(x)).
Tím je tvrzení dokázáno.
5. Označme P střed úhlopříčky BD a Q průsečík přímek BD, KM a LN
(obr. 40). Bez újmy na obecnosti předpokládejme, že bod В leží mezi body
Q a D. Protože PM a PN jsou střední příčky trojúhelníků ABD a DCВ,
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je PM || AB a PN || CD. Je tedy \<PNL\ = \<NLC\ = \<MKA\ =
= \<KMP\, což znamená, že body P, M, Q, ./V leží na kružnici. Z rovnosti
obvodových úhlů nad tětivou NQ tak plyne \KKMN\ = \%.QMN\ =
= \<QPN\ = \<BDC\. Podobně vychází \<LNM\ = 180° -\<QNM| =
= 180° - \<QPM\ = \<MPD\ = \<ABD\.
6. Tvrzení nejprve dokážeme pro a — 0. Tehdy má druhá podmínka tvar
p | m3, takže je splněna pro každé prvočíslo p volbou m = p. Stačí tedy
dokázat, že mezi děliteli čísel n2 + 3 (n G Z) je nekonečně mnoho prvo-
čísel. Připusťme, že všech takových prvočísel je naopak konečně mnoho,
a označme je p\,p2, • • • ,řV- číslo (3pip2 • • •pr)2 + 3 = 3(3pf]?2 • • -Pr + 1)
však má netriviálního dělitele 3pf... p2 +1, který není dělitelný žádným
z prvočísel pi,p2, • • • ,Pr, což je spor.

Nyní tvrzení dokážeme pro aý 0. Z rovností

(9a2/c3)2 + 3 = 3(27a4£;6 + 1)

l)(27a4fc6 + 1)

plyne, že pro každé к celé je číslo 27a4k6 + 1 společným dělitelem čísel
n2 + 3 a m3 — a, kde n = 9a2k3 a m = 9a3/с4. Stačí tedy dokázat, že pro
libovolné dané a mezi děliteli čísel 27a4k6 + 1 (k G Z) existuje nekonečně
mnoho různých prvočísel.

Předpokládejme naopak, že takových prvočísel je jen konečně mnoho,
a označme je pi,P2, • • • ,Pr- Pro к — p\P2 ■. - pr +1 je však zřejmé, že číslo
27a4к6 + 1 > 1 není dělitelné žádným z prvočísel pi,P2, • • ■ ,Pr- Má tedy
dalšího prvočinitele p £ {pt: 1 ^ i ^ r}. Dospěli jsme tak ke sporu, který
dokazuje tvrzení úlohy.

(9A4)3-a = a(3W2 1) = a(27a4/c6
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52. mezinárodní matematická olympiáda

Padesátý druhý ročník Mezinárodní mate-
matické olympiády se uskutečnil od 12. do
24. července 2011 v Nizozemí. Olympiády se
zúčastnilo 564 soutěžících ze 101 zemí.

České družstvo tvořili Michael Bílý z Gym-
názia Jaroslava Vrchlického v Klatovech, Mi-
roslav Koblížek z Gymnázia Žamberk, Dung
Anh Le z Gymnázia Tachov, Daniel Šafka
z Gymnázia Jana Keplera v Praze, Štěpán
Šimsa z Gymnázia Josefa Jungmana v Lito-
měřicích a Tomáš Zeman z Gymnázia Jana
Keplera v Praze. Vedoucím českého družstva
a zástupcem České republiky v mezinárodní
jury byl dr. Martin Panák z Přírodovědecké fakulty Masarykovy uni-
verzity v Brně, jeho zástupcem a pedagogickým vedoucím byl dr. Pavel
Calábek z Přírodovědecké fakulty Univerzity Palackého v Olomouci.

Organizace celého průběhu olympiády byla na velmi vysoké úrovni.
Ostatně Nizozemí je známo tím, že se zde vše důkladně plánuje. To je
dáno i tím, že zhruba třetina území této země leží pod úrovní moře.

Olympiáda začala tradičně zasedáním mezinárodní jury, složené z ve-
doucích národních delegací. Jedním z úkolů jury je vybrat šest soutěžních
úloh z problémů, které navrhly jednotlivé země. Jury má rovněž na sta-
rošt případné změny regulí olympiády, jednání o budoucích pořadatelích
a v neposlední řadě pak vedoucí jednotlivých delegací překládají zadání
vybraných úloh do národních jazyků. Poznamenejme, že jako dějiště ná-
sledujících mezinárodních olympiád byly schváleny tyto země: 2013 -

Kolumbie; 2014 - Jihoafrická republika; 2015 - Thajsko (vždy se jednalo
o jediné kandidáty). Jednání se odehrávala v areálu bývalého kláštera ne-
daleko Eindhovenu. Místní univerzita, Technická univerzita Eindhoven,
byla jedním z organizátorů a sponzorů celé akce.

Soutěžící a pedagogičtí vedoucí přijeli do Amsterdamu v sobotu
16. července a byli ubytováni v hotelu Novotel, jižně od centra města.

<®>
International
Mathematical

Olympiad Am
sterdam 2011
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V neděli 17. července bylo na programu slavnostní zahájení v kongreso-
vém centru RAI, což je jedno z největších konferenčních zařízení v celém
Nizozemí. Tohoto zahájení se zúčastnili i vedoucí delegací, kteří sem byli
převezeni pouze na ně. Během zahájení se na pódiu krátce představily
všechny výpravy, doprovázené taneční skupinou ISH. Součástí byl i video-
pozdrav nizozemské ministryně vzdělávání, kultury a vědy Janneke Mar-
lene van Bijsterveldtové-Vilegenthartové.

Ve dnech 18. a 19. července proběhla vlastní soutěž, která jako vždy
probíhala ve dvou dnech, přičemž každý den soutěžící měli na tři pří-
klady čtyři a půl hodiny. Během první půlhodiny po zadání úloh mo-
hou soutěžící klást otázky к textům úloh. Ty jsou poté elektronicky ode-
slány do místa, kde jury zasedá. Vedoucí družstva, jehož žák položí dotaz
(v rodném jazyce), přeloží dotaz pro celou jury, navrhne odpověď a ta je
pak schválena či upravena a odeslána zpět. Druhý soutěžní den se sešlo '
189 otázek, zejména ke čtvrté úloze, jejíž znění nebylo v některých jazy-
cích zcela srozumitelné. Zodpovídání těchto dotazů zabralo přes dvě hodi-
ny. Následně byly vedoucí delegací definitivně přesunuti do Amsterdamu,
do stejného hotelu, kde už přebývali pedagogičtí vedoucí a soutěžící.

V dalších dnech pobytu byly pro soutěžící připraveny nej různější ex-
kurze (výlet na kolech - typicky pro Nizozemí, plavba na jachtě, návštěva
pláže). Vedoucí se pak věnovali opravám řešení. Ta jsou po soutěži zko-
pírována a nezávisle opravena též koordinátory, což jsou zkušení mate-
matici z celého světa, které zajišťuje pořádající země (v tomto roce bylo
přítomno téměř 80 koordinátorů). Po opravách se vedoucí a koordinátoři
sejdou, porovnají bodová hodnocení a snaží se dospět ke shodě. Celý
proces koordinace trvá tři dny.

Slavnostní zakončení olympiády se konalo opět v centru RAI (v „ráji“,
jak říkali čeští a slovenští účastníci). Předávání medailí se z významných
osobností zúčastnil i předseda organizačního výboru Robbert Dijkgraaf,,
přední světový a holandský matematik. I při zakončení všechno pěkně
klapalo, projevy byly krátké a výstižné, nikdo se nenudil. Na závěr byla
předána vlajka IMO pořadatelům příští olympiády. Ta se uskuteční v Mar
del Plata v Argentině.

Co se týče výsledků českého družstva, splnil náš tým nelehký úkol
získat přesně tolik bodů, kolik bylo zúčastněných zemí. Tento „jedinečný“
výkon nás zařadil na 39. místo v hodnocení zemí, pět míst za Slovenskem
(v porovnání s loňským rokem jsme si polepšili o 17 bodů a 9 míst). Žádný
z českých účastníků neodjížděl s prázdnou: Anh Dung Le získal stříbrnou
medaili, Štěpán Šimsa, Michael Bílý a Tomáš Zeman medaili bronzovou
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a konečně Miroslav Koblížek a Daniel Šafka čestné uznání za bezchybné
vyřešení alespoň jedné úlohy. Nutno podotknout, že Miroslavu Koblížkovi
unikla o jediný bod bronzová medaile a Štěpánu Šimsovi o bod medaile
stříbrná.

Absolutní vítězkou olympiády se stala s největším možným bodovým
ziskem Lisa Sauermannová z Německa, která se tak stala nejúspěšnější
účastnicí olympiád všech dob (celkem získala čtyři zlaté a jednu stři-
brnou medaili). Dívky tvořily 11% účastníků, což je na matematickou
olympiádu vysoké číslo. Nejúspěšnější zemí se pak již tradičně stala Čína,
i když druhé Spojené státy americké jí šlapaly na paty. Velkým překva-
pěním je pak třetí místo Singapuru se slušným náskokem před čtvrtým
Ruskem.

V následujícím přehledu můžete najít výsledky celková pořadí členů
českého a slovenského družstva. Na zlatou medaili tentokrát stačilo 28 bo-

dů, na stříbrnou 22 bodů a na bronzovou 16.

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

202.-221. Michael Bílý
83.-112. Anh Dungh Le

282.-302. Miroslav Koblížek

403.-420. Daniel Šafka
145.-170. Štěpán Šimsa
253.-281. Tomáš Zeman

7 1 0 6 4 0 18 В

507740 23 S
7 0 0 7 1 0 15 HM

7 0 0 1 0 0 8 HM

700770 21 В

700720 16 В

Celkem 42 1 7 35 18 0 101

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

316.-320. Marián Horňák
222.-252. Natálie Karásková

74.-82. Ondřej Kováč
186.-201. Matúš Stehlík
253.-281. Michal Tóth

113. 144. Martin Vodička

3 1 0 7 2 0 13 HM

700721 17 В

740670 24 S

700750 19 В

7 1 0 7 1 0 16 В

7 1 0 7 7 0 22 S

Celkem 38 7 0 41 24 1 111

Pro úplnost uvádíme i tradičně sestavované neoficiální pořadí zemí
podle počtu dosažených bodů společně s počty medailí, které získaly
(čísla v závorce za názvem země značí počet reprezentantů, pokud byl
nižší než šest):

155



I II III body I II III body
CLR
USA

Singapur
Rusko

Thajsko
Turecko
KLDR
Rumunsko

Tchaj-wan
Írán
Německo

Japonsko
Korea

Hongkong
Ukrajina
Polsko
Kanada
Velká Británie
Itálie
Brazílie
Bulharsko
Mexiko
Indie
Izrael
Austrálie
Maďarsko
Srbsko
Nizozemí
Indonésie

Nový Zéland
Belgie
Peru
Vietnam
Francie
Slovensko
Chorvatsko
Rakousko
Kazachstán
Česká republika
Řecko
JAR

Malajsie
Bolívie

Švýcarsko
Litva
Moldavsko

Portugalsko
Španělsko
Argentina
Dánsko
Estonsko

Kolumbie
Макао

Filipíny (5)
Mongolsko
Švédsko
Finsko
Gruzie

Lotyšsko
Tádžikistán
Norsko
Bělorusko
Maroko
Slovinsko
Turkmenistán
Uzbekistán (5)
Arménie (5)
Ázerbájdžán
Kostarika (4)
Saudská Arábie

Kypr
Bangladéš
Srí Lanka
Chile
Island
Lucembursko
Tunisko

Nigérie
Makedonie

Paraguay (5)
Pákistán (4)
Pobřeží slonoviny
Ekvádor
Portoriko (4)
Trinidad a Tobago
Uruguay (4)
Irsko
Albánie
Kosovo
Honduras (3)
Venezuela (2)
Bosna a Hercegovina (4) 0
Kyrgyzstán (5)
Sýrie
Černá hora (4)
Salvádor (2)
Guatemala (4)
Panama (1)
Lichtenštejnsko (1)
Kuvajt (5)
Spoj. arab. emiráty (5)

0 0 1 73
0 0 2 71
0 0 3 69
0 0 2 69
0 10 69
0 10 68
0 0 2 68
0 11 68
0 10 68
0 10 67
0 0 1 64
0 11 64
0 0 1 64
0 0 3 64
0 0 1 62
0 10 61
0 11 61
0 10 57
0 0 2 53
0 0 1 51
0 0 1 50
0 0 1 49
0 0 1 48
0 0 0 48
0 0 1 48
0 0 1 46
0 0 1 40
0 0 1 38
0 0 0 38
0 0 1 35
0 0 0 34
0 0 1 32
0 0 0 32
0 0 0 29
0 0 0 29
0 0 0 26
0 0 0 24
0 0 0 22
0 0 0 21
0 0 0 21

0 0 17
0 0 0 14
0 0 0 14
0 0 0 13
0 0 0 11
0 0 0 8
0 0 0 6
0 0 0 4

6 0 0
6 0 0

189
184

4 1 1 179
2 4 0 161
321 160
3 2 1 159
330 157
150 154
240 154
240 151
132 150
2 2 2 147
2 3 0 144
2 1 3 138

2 3 1361

221 136
123 132
212 132
131 129
033 121
023 121
024 120
112 119
104 119
033 116
023 116
121 116
023 115
024 114
022 114
023 113
102 113
006 113
014 111
023 111
015 110
022 110
013 105
013 101
1 0 3 99
0 1 2 93

1 931 1
0 0 4 88

880 2 1

870 0 4
0 0 861
1 0 2
0 0 3
1 0 0

86
83
77 0 0 0 1
76 0 0 0 10 1 1
760 0 2
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Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)1.Pro libovolnou množinu A = {ai, a,2, аз, сц} čtyř (navzájem různých)

kladných celých čísel označme «д součet ui + аг + аз + <24. Dále nechť пд
značí počet dvojic kde l^ž<ý^4a di+cij dělí «д. Určete všechny
čtyřprvkové množiny A kladných celých čísel, pro které je hodnota пд

největší možná. {Mexiko)2.Je dána množina S alespoň dvou bodů v rovině, z nichž žádné tři neleží
v přímce. Větrným mlýnem rozumíme následující proces. Zpočátku zvo-
líme nějakou přímku l procházející právě jedním bodem P G S. Tou přím-
kou začneme otáčet ve směru pohybu hodinových ručiček okolo středu P,
dokud „nenarazí44 na další bod množiny S
nadále otáčíme ve stejném směru, nyní ovšem okolo středu Q, dokud
nenarazí na další bod množiny S, a tak dále. Tento proces neustále pokra-

označme jej Q. Přímkou

čuje (nekonečně dlouho). Dokažte, že bod P € S a přímku l procházející
bodem P lze zvolit tak, že jimi začínající větrný mlýn bude mít za střed
otáčení každý z bodů množiny S nekonečněkrát. (Velká Británie)3.Nechť [R značí množinu reálných čísel a nechť /: R —> IR je funkce, jež
pro všechna reálná ха у splňuje nerovnost

f(x + y) й yf(x) + f(f(x)).

Dokažte, že f{x) = 0 pro všechna x ^ 0.4.Nechť n je celé kladné číslo. Mějme rovnoramenné váhy a n závaží
o hmotnostech 2°, 21,..., 2n_1. V n krocích máme na váhy postupně po

jednom umístit všechna závaží. Každý z kroků spočívá ve výběru jednoho
ze závaží, které ještě není na miskách vah, a jeho umístění bud na levou,
nebo na pravou misku vah tak, aby obsah pravé misky nebyl nikdy těžší
než obsah levé. Kolik různých posloupností takovýchto n kroků existuje?

{Irán)

{Bělorusko)5.Nechť / je funkce z množiny celých čísel do množiny celých kladných
čísel taková, že pro libovolná celá man je rozdíl f{m) — f{n) dělitelný
číslem f{m — n). Dokažte, že pro libovolná celá man taková, že f{m) S
= /(n)> je číslo f{n) dělitelné číslem f{m). {Irán)6.Nechť ABC je ostroúhlý trojúhelník a к kružnice mu opsaná. Dále
nechť t je tečna kružnice к a ía, tb, tc jsou po řadě obrazy přímky t
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v osové souměrnosti podle přímek BC, CA, AB. Dokažte, že kružnice
opsaná trojúhelníku určenému přímkami ta, tb, tc se dotýká kružnice k.

(Japonsko)

Řešení soutěžních úloh

1. Dvojic (i,j) splňujících 1 ^ i < j ^ 4 je jen šest. Bez újmy na
obecnosti předpokládejme, že a\ < 02 < аз < бц. Potom platí 0 <
< ai + й2 < аз + 04 a také 0 < ai + <23 < 02 + <24, takže

аз + а4 < sa < 2(аз + а4) neboli |sa < а3 + а4 < sa

a

а2 + а4 < sa < 2(аг + а4) neboli |sa < 02 + а4 < sa-
То znamená, že ani аз + 04, ani 02 + 04 nemůže dělit sa- Přinejmenším
dva ze součtů a^ + aj tedy nedělí sa, proto пд ^ 4.

Předpokládejme, že pro nějakou množinu A platí пд = 4. V takovém
případě všechny zbylé čtyři součty a\ + аг, ai + аз, a\ +04, 02 + аз už
musejí být děliteli sa- Jelikož ani jeden z nich není roven sa, musí být
každý z nich nejvýše roven |sa- Pro součty a\ + 04, 02 + аз to znamená,
že ai + а4 = а2 + a3 = JsA, neboť (ai + а4) + (а2 + a3) = sA.

Pro zbylé dva součty pak platí a\ + 02 < a\ + аз < 02 + а4 = ^sa,
a protože oba dělí číslo sa, musí být

sa sa
(1)ar + a2 — — a 04+03 — —

./• I)

pro vhodná přirozená čísla x, y, přičemž x > ylA 3. Je tedy

2ai — (a\ + 02) + (ai + аз) — (02 + аз) — 1 ~ > О
X у 2

(2)

neboli
1 1 1

x У

Vidíme, že nemůže být 1/x < 1/y < 1/4, tudíž у ^ 3, což s předchozí
opačnou nerovností dává у = 3, a 1/x > 1/2 — 1/y = 1/6 neboli x š 5.
Je tedy 3 = у < x ^ 5. Těmto nerovnostem vyhovují jen dvě dvojice
přirozených čísel: (x,y) = (4,3) a (x,y) — (5,3).

Pro x = 4 dostáváme z (2) ai = ^sa a z (1) pak a2
= ^sa a konečně z rovnosti 01+04
A = {k, 5k, 7k, 11 k} pro nějaké přirozené číslo k.

Podobně pro x = 5 vyjde A = {k, 11 k, 19k, 29k} pro nějaké přirozené
číslo k. Snadno ověříme, že pro každou takovou množinu opravdu na = 4.

_ _5_
24

JsA plyne a4 = ^sA, je tedy
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Odpověď. Největší možná hodnota пд je 4 a nabývá se pro množiny A
tvaru {k,5k,7k,llk} a {&, 11/c, 19/c, 29k}, kde к je libovolné přirozené
číslo.

2. Zvolíme-li na dané přímce orientaci, můžeme mluvit o levé a pravé po-
lorovině (v obr. 41 je levá polorovina označena šedou barvou). Všimněme
si, že když se během větrného mlýna mění střed otáčení z bodu T na
bod U, po změně se bod T nachází v téže polorovině určené přímkou /,
v níž se před změnou nacházel bod U (obr. 41). Vidíme, že když pomi-
neme okamžiky, v nichž se mění střed otáčení (l obsahuje právě dva body
z S), zůstává počet bodů z S nacházejících se v šedé části stále stejný.

U u

°TT

ll

Obr. 41

Dále využijeme toho, že každým bodem množiny S lze vést (orien-
tovanou) přímku, která obsahuje jediný bod množiny S a dělí její body
„napůl“, a to takovým způsobem, že vlevo od ní je stejný počet bodů
z S jako vpravo (je-li n = |S| liché), anebo o jeden bod méně než vpravo

(v případě sudého n). Stačí si totiž uvědomit, že pokud nějakou orientova-
nou přímku v daném bodě otočíme o 180°, vymění se počty bodů nalevo
a napravo od dané přímky. Protože při postupném otáčení přímky se po-
čet bodů řekněme vlevo mění vždy o jeden, v jisté poloze tak musí nastat
popsaná rovnováha. Nazvěme každou takovou přímku půlící. Vezměme
nyní libovolnou půlící přímku l a bod P na ní. Vzhledem к tomu, že se
během větrného mlýna nemění počty bodů nalevo a napravo od /, bude
příslušná přímka (s výjimkou okamžiku, kdy se mění střed otáčení) stále
půlící přímkou. Přitom během otočení o prvních 180° zřejmě nemůže mi-
nout žádný z bodů množiny S, a tak se postupně všechny vystřídají v roli
středu otáčení. Zároveň je zřejmé i to, že při otáčení o další násobky 180°
bude přímka l procházet znovu všemi body z S ve stejném pořadí jako
při prvním otočení. Tím je tvrzení úlohy dokázáno.

159



3. V dané funkcionální nerovnici se jako argumenty funkce objevují vý-
rázy x + у a x. Abychom se zbavili součtu v argumentu, použijeme sub-
stituci у = t — x. Pro všechna reálná čísla x, t pak platí

f(t) й tf(x) - xf{x) + f(f{x)). (1)

V dalším kroku eliminujeme člen /(/(x)) tak, že do (1) dosadíme nejdříve
t = /(a), x = 6 a potom t = /(6), x = a. Dostaneme

/(/(a)) - /(/(&)) й /(a)/(6) - 6/(6),
/(/(6)) - /(/(a)) ^ /(a)/(6) - af(a).

Sečtením dostáváme, že pro všechna a, 6 platí

2/(a)/(6) ^ a/(a) + 6/(6).

Volbou 6 = 2/(a) dosáhneme, že levá strana poslední nerovnosti bude
stejná jako druhý sčítanec na pravé straně. Po jejich odečtení tak zůstane
nerovnost af(a) S 0, která musí být splněna pro všechna a E U. Proto

/(a) ^ 0 pro všechna a < 0. (2)

Pokud by pro nějaké x platilo f(x) > 0, byla by pro takovou hodnotu
pravá strana nerovnosti (1) v proměnné t rostoucí lineární funkcí, tedy by
nabývala na oboru záporných čísel určitě i záporné hodnoty. Pak by však
záporné hodnoty na oboru záporných čísel musela nabýt i levá strana,
čili funkce /, což je ve sporu s (2). Proto

f(x) ^ 0 pro všechna ж 6 IR. (3)

Spojením (2) a (3) ihned máme f(x) — 0 pro všechna x < 0. Zbývá určit
hodnotu /(0). Pokud v (1) položíme t — x < 0, dostaneme 0 ^ 0—0+/(0)
neboli /(0) ^ 0. Vzhledem к (3) už pak nutně /(0) = 0.

Poznámka. Daná funkcionální nerovnice má i netriviální řešení

x A 0,
x A 0,

0,
/(^)

1 -еж

které je dokonce spojité.

4. Označme pn hledaný počet posloupností. Všimněme si, že na vahách
nikdy nenastane rovnováha. Každé závaží je totiž (o jedna) těžší než
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všechna lehčí závaží dohromady. Závaží o hmotnosti 1 tudíž můžeme
položit na libovolnou misku vah v libovolném kroku, pouze v prvním
kroku je musíme položit vlevo. Navíc vynecháme-li v nějaké přípustné
posloupnosti kroků závaží o hmotnosti 1, obdržíme přípustnou posloup-
nost umístěných závaží o hmotnostech 2, 22,..., 2n~1. Takových posloup-
ností je zřejmě pn-i, protože vynásobení hmotností dvěma nemá na

(ne)rovnováhu vliv. A naopak do libovolné z takových posloupností mů-
žeme zařadit závaží 1 právě 2n — 1 různými způsoby, neboť jen v prv-
ním kroku nemáme na vybranou mezi oběma miskami, načež získáme
přípustnou posloupnost závaží 1,2,..., 2n_1. Dostáváme tak rekurentní
vztah pn = (2n — l)pn_i, což spolu se zřejmou hodnotou p\ = 1 dává

pn = (2n - 1)(2n - 3) •... • 3 • 1 = (2n- 1)!!.

Jiné řešení. Označme pn hledaný počet posloupností. Všimněme si,
že přípustných způsobů umístění závaží 1,2,..., 2n_1 je stejně jako pří-
pustných způsobů umístění libovolné sady n závaží, z nichž každé má
tu vlastnost, že je těžší než všechna lehčí závaží dohromady. Říkejme
takovéto sadě nevyvážená. Navíc výběrem libovolného počtu libovolných
závaží z nevyvážené sady dostáváme opět nevyváženou sadu.

rozdělme podle toho, kdy jsme
na váhy umístili nejtěžší závaží (musí přijít vždy na levou misku). Dejme
tomu, že se tak stalo v k-tém kroku. Před tím bylo umístěno nějakých
к — 1 (zn-1 zbývajících) závaží tvořících nevyváženou sadu. Ta mohla
být umístěna Pk-i způsoby. Po položení nej těžšího závaží již můžeme
každé ze zbývajících n — к závaží položit na libovolnou z obou misek.
Dostáváme tak rekurentní vztah

71—1Způsoby umístění závaží 1,2,..., 2

^(n-l)!pt_12"-fe£(;::)fc=i v 7
(n — k)\ =

n—kPk-12Pn
(*- 1)!k=1

(klademe po = 1). Úpravami pak dostáváme
n—1

Г' (n - l)!pfc-i2n — k n—k(n - l)!pfei2
= E = E + Pn-1 =Pn

(k-l)\ (k-l)\k=1 fc=1

71—1

= 2(n- 1) Y + Pn-1
(*- 1)!i

= 2(n - l)pn_i (2n - l)pn-i,-i —

a dostáváme stejný rekurentní vztah jako v předchozím řešení.
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Jiné řešení. Jak už jsme poznamenali v předchozím řešení, nezávisí
počet zmíněných posloupností na konkrétních hmotnostech závaží, ale
jen na jejich „nevyváženosti“.

Označme pn hledaný počet posloupností a předpokládejme, že 2k je
hmotnost posledního umístěného závaží (0 ^ к n — 1). Protože množina
{1,2,..., 2гг—1} \ {2fc} je zřejmě nevyvážená, existuje v tomto případě
celkem pn-\ různých posloupností, jak realizovat n — 1 kroků bez použití
závaží o hmotnosti 2k. Pro jeho umístění v posledním kroku pak máme
ke každé z těchto posloupností dvě možnosti, pokud к < n — 1 (nejtěžší
závaží je už na levé misce), anebo možnost jedinou, pokud к = n — 1,
neboť nejtěžší závaží můžeme umístit jedině na levou misku, máme-li
dodržet podmínku úlohy. Celkově tak dostáváme

Pn = {n- 1) • 2pn_i + pn_1 - (2n - 1 )pn—i •

Odpověď. Hledaný počet způsobů je roven součinu prvních n lichých
čísel (zkráceně tento výraz označujeme jako v prvním řešení (2n — 1)!!
a nazýváme dvojný faktoriál).
5. Pokud f(m) = /(n), není co dokazovat. Předpokládejme tedy, že pro
celá čísla m, n platí /(m) < /(n). Z dané podmínky díky tomu plyne
f(m — n) ^ |/(m) — f(n)| = f(n) — f(m) < /(n). Dostáváme tak

f(n) < -f(m n) < f(m) — f(m — n) < f(m) < f{n).

Pro d = — — tudíž platí \d\ < f(n), zatímco z dané podmínky
plyne

/(n) = f(m - (m - n)) | d,
což ovšem znamená, že d = 0 neboli f(m) = f(m — n). Z dané podmínky
tak konečně plyne, že f{m) dělí f(m) — /(n), a tedy i /(n), což jsme měli
dokázat.

6. Označme T bod dotyku přímky t s kružnicí к a vrcholy trojúhelníku ur-
čeného přímkami ta, tb, tc označme následovně: A' := tbCHc, B' = tantc
a C := taC]tb. Pro zjednodušení zápisu budeme pracovat s orientovanými
úhly: pro přímky p, q bude (p, q) značit úhel, o který je nutno přímku p
otočit v kladném smyslu, abychom dostali přímku rovnoběžnou s přím-
kou q. Orientované úhly počítáme modulo 180°.

Označme po řadě X,Y, Z body souměrně sdružené s bodem T podle
přímek BC, CA, AB. Protože kolmé průměty bodu T na tyto tři přímky
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leží na Simsonově přímce daného trojúhelníku ABC, leží v přímce i body
X, Y, Z coby jejich obrazy ve stejnolehlosti se středem T. Označme
f = (t,TC) = (BT,BC), pak vzhledem к osové souměrnosti dle přímek
АС a BC platí

{ВС, BX) = {ВТ, BC) = <p,

{.XC,XC') = {t,TC) = (YC,YC') = if.

Z poslední rovnosti ovšem plyne, že body X, Y, С, C leží na kružnici,
kterou označíme kc. Podobně zavedeme i kružnice ka а кь. Kružnici opsa-

nou trojúhelníku A'B'C označíme k' (obr. 42). Podle známé Miquelovy
věty,1 kterou použijeme na přímky А'В', А'С, В'С а ХУ, nyní platí, že

všechny čtyři kružnice к',ка,къ, kc mají společný bod, který označíme К.
Jakmile se nám podaří dokázat, že bod К leží i na kružnici к a že obě
kružnice к a k' v něm mají společnou tečnu, bude tvrzení úlohy dokázáno.

Ze souměrnosti plyne |X£?| = |TZ?| = \ZB\, takže bod В je středem
jednoho z oblouků XZ kružnice кь, je tedy {KB,KX) = {XZ,XB).

1 Viz např. Vrba, Horák: Vybrané úlohy matematické olympiády kategorie A, SPN,
Praha 1988, řešení úlohy 96.

163



Podobně platí (KX,KC) = (XC,XY). Sečtením obou těchto rovností
a ze souměrnosti podle přímky BC dostáváme

(KB, КС) = (KB, KX) + (KX,KC) = (XZ,XB) + (XC,XY) =

= (XC,XB) = (TB,TC).

To znamená, že bod К leží na kružnici k.
Označme nyní я tečnu kružnice к v bodě К. Pak platí

(я, КС') = (я, КС) + (КС, КС') = (КВ, ВС) + (ХС, ХС') =

= ((КВ, ВХ) - (ВС, ВХ)) + (р= (КВ', В'Х) -v + <p
= (КВ', В'С).

То znamená, že я je tečnou i kružnice к'.

Jiné řešení. Označme body T, A!, В', C jako v předchozím řešení.
Zároveň využijeme i tam zavedené značení orientovaných úhlů. Nechť A!'
je takový bod na kružnici k, že A je středem oblouku TA" (tj. |TT| =
= |АЛ"|, bod A" je různý od T, pokud TA není průměrem). Podobně
definujme i body В", C" (obr. 43).



Protože body В, resp. С jsou středy oblouků ТВ", resp. TC", platí:

{t,B"C") = (t,TC") + <:TC",B"C") =

= 2(t,TC) + 2(TC",BC") =

= 2 ({t,TC) + (TC,BC)) = 2 (t,BC) = <í,ť„>.

Přímky ta а В"C" jsou tudíž rovnoběžné. Podobně jsou rovnoběžné i tb
a A!'C" a také tc a A"B".

Trojúhelníky A!B'C' a A"B"C" tak budou stejnolehlé, ukážeme-li,
že přímky В'В" a C'C" nejsou rovnoběžné. Zjistíme dokonce, že jejich
průsečík — střed zmíněné stejnolehlosti — leží na kružnici k, jež je opsána
nejen trojúhelníku ABC, ale i trojúhelníku A"B"C". Tímto středem
proto bude procházet i stejnolehlá kružnice opsaná trojúhelníku A'B'C,
takže obě kružnice se v něm budou dotýkat, jak jsme měli dokázat.

Existenci a polohu průsečíku přímek В'В" a C'C" vyvodíme ze dvou
pomocných tvrzení.
и> 1. Průsečík X přímek B"C, BC" leží na přímce ta.

Bod В je středem oblouku TB", tedy \<BCT\ = \<BCB"\ a přímka
B"C je obrazem přímky TC v osové souměrnosti podle BC. Podobně
je přímka BC" obrazem přímky ВТ. Bod X je tudíž obrazem bodu T
v této souměrnosti, takže leží na ta-
k> 2. Průsečík I přímek BB', CC leží na kružnici k.

Uvažme pouze případy, kdy t je různoběžná se všemi stranami troj-
úhelníku ABC. Zbylé možnosti lze vyřešit limitním přechodem. Označme
D = t П ВС, E = tC\ CA, F = t П AB (obr. 43).

Vzhledem к souměrnosti je přímka BD osou jednoho z úhlů určeného
přímkami B'D a FD. Obdobně je přímka BF osou jednoho z úhlů urče-
ného přímkami B'F a DF. Bod В je tak středem kružnice trojúhelníku
B'FD vepsané nebo středem některé z kružnic mu připsaných. V každém
případě je (BD, DF) + (DF, FB) + (B'B, B'D) = 90°, takže platí

(B'B, B'C) = (B'B, B'D) = 90° - (BC, DF) - (DF, BA) =

= 90° - (ВС, AB).

Obdobně je (C'C, B'C) = 90° - (ВС, AC). Platí tedy

(BI,CI) = (B'B,B'C) + (B'C',C'C) = (ВС, AC) - (BC, AB) -

= (AB,AC),
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což v řeči orientovaných úhlů znamená, že body А, В, 7, C leží na kruž-
nici.

Označme 77 druhý průsečík přímky B'B" s kružnicí k. Důkaz do-
končíme použitím Pascalovy věty pro šestici bodů 77, В", C, 7, В, C"
na kružnici k. Podle ní leží body В' — KB" П 77?, X = B"C П BC"
a S — Cl П C"K na jedné přímce. Proto S = C", tudíž body 77, С" a C
leží v přímce. Bod 77 kružnice к je tak průsečíkem přímek B'B" a OC",
jak jsme pro dokončení celého řešení slíbili ukázat.
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5. středoevropská matematická olympiáda

мемоPátá středoevropská matematická olym-
piáda (Midle European Mathematical
Olympiad, zkráceně MEMO) se uskuteč-
nila 1. 9.-7. 9. 2011 v chorvatském Varaž-

dinu za účasti šedesáti studentů z deseti zemí středoevropského regionu,
jmenovitě z Česka, Chorvatska, Litvy, Maďarska, Německa, Polska, Ra-
kouska, Slovenska, Slovinska a Švýcarska. Soutěž je určena studentům
středních škol, kteří se v daném kalendářním roce neúčastnili mezinárodní
matematické olympiády (MMO). Výjimku tvoří slovinští účastníci, kteří
vzhledem к relativně malému počtu obyvatel země nejsou kvůli případné
účasti na MMO vylučováni.

České družstvo tvořili Ondřej Bartoš z Gymnázia Zdar nad Sázavou,
Lubomír Grund z Gymnázia Christiana Dopplera v Praze, Jan Kuchařík
z Gymnázia Jana Masaryka v Jihlavě, Dominik Steinhauser z Gymnázia
Jana Keplera v Praze, Jan Stopka z Gymnázia Brno na tř. Kpt. Jaroše
a Dominik Teiml z The English College v Praze. Vedoucím družstva
byl dr. Martin Panák z Přírodovědecké fakulty Masarykovy univerzity
v Brně, jeho zástupcem pak dr. Pavel Calábek z Přírodovědecké fakulty
Palackého univerzity v Olomouci.

Město Varaždin je staré chorvatské město, které bývalo dokonce hlav-
ním městem Chorvatska. Jeho populace dnes čítá na 50 tisíc obyvatel.
První den olympiády měli soutěžící na programu zábavnou seznamovací
hru spojenou s poznáváním památek města, zatímco vedoucí výprav vy-
bírali příklady pro soutěž z návrhů zaslaných jednotlivými účastnickými
zeměmi. Večer pak proběhlo v prostorách Fakulty informatiky, varaždin-
ské části Univerzity Záhřeb, slavnostní zahájení soutěže.

Druhý den byla na pořadu soutěž jednotlivců v prostorách jedné z va-

raždinských základních škol. Každý z účastníků řešil po dobu pěti hodin
čtyři příklady. Třetího dne se uskutečnila týmová soutěž, ve které mělo
každé národní družstvo к dispozici jednu místnost, kde pak společně ře-
šilo po dobu pěti hodin osm úloh. Již v sobotu večer započala koordinace
oprav úloh (úlohy jsou opravovány vedoucími národních týmů a nezávisle

MIDDLE EUROPEAN MATHEMATICAL. OLYMRАО

VARAŽDIN 2СИ 1 CROATIA
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i týmem opravovatelů zajištěným organizátory; při koordinaci se výsledky
oprav porovnají a případné neshody se vyřeší) a pokračovala i během ne-
děle. V pondělí dopoledne se jury domluvila na rozdělení medailí, které
se řídí podobnými pravidly jako na mezinárodní matematické olympiádě.
V úterý byl program olympiády zakončen exkurzí na známý chorvatský
hrad Trakoščan a návštěvou městečka Krapina, kde se nacházejí zbytky
osídlení neandertálským člověkem. Večerního slavnostního zakončení se
zúčastnila řada významných hostů, z nichž jmenujme náměstkyni choř-
vatského ministra školství Dijanu Vicanovou a rektora Univerzity Záhřeb
Aleksu Bjeliše.

Výsledky českého družstva byly následující: Ondřej Bartoš a Dominik
Steinhauser získali bronzové medaile, Lubomír Grund a Jan Stopka pak
získali čestné uznání za jeden bezchybně vyřešený příklad. V týmovém
součtu bodů, které získali jednotliví účastníci daného týmu v individuální
soutěži, jsme byli pátí nejlepší. Vlastní týmová soutěž se však českému
družstvu příliš nevyvedla, když skončilo osmé. Z vítězství se radoval pol-
ský tým, který jako jediný získal maximální možný počet bodů. Plného
bodového zisku dosáhl i vítěz soutěže jednotlivců, Wojciech Nadara, rov-
něž z Polska.

Body za úlohu Body Cena
12 3 4Umístění v soutěži jednotlivců

1. Wojciech Nadara (POL)
2. Attila Szabó (HUN)

zlato

zlato

8 8 8 8

8 8 7 8

32

31

27.-30. Ondřej Bartoš
Dominik Steinhauser

32.-33. Jan Kuchařík

38.-40. Jan Stopka
41.-43. Dominik Grund
44.-46. Dominik Teiml

bronz

bronz

3 3 0 8

6 6 2 0

5 0 7 0

10 8 0

8 0 0 0

3 0 2 2

14

14

12

9 H.M.

8 H.M.

7

Celkem ČR 26 9 19 10 64

Detailní výsledky českých studentů včetně bodových zisků za jednot-
livé úlohy lze vyčíst z předchozí tabulky, přehled výsledků všech zemí
v soutěži jednotlivců je v druhé tabulce. Země jsou v ní seřazeny podle
součtu bodů celého družstva podobně jako při neoficiálním pořadí zemí
na MMO. Výsledky národních družstev v týmové soutěži pak najdete
v tabulce následující.
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I II III HM body I II IIIHM body
Polsko
Maďarsko
Německo
Chorvatsko
Česká republika

150 Slovensko
147 Rakousko
125 Litva
95 Slovinsko
64 Švýcarsko

3 2 1
2 3 1
13 11

2 2 61
2 55
1 50

2 2 1 1 41
2 2 1 31

Body za úlohu
1 2 3 4 5 6 7 8

Body
Umístění v týmové soutěži

1. Polsko

2. Maďarsko

3. Německo

4. Chorvatsko

5. Slovensko

6. Litva

7. Slovinsko

8. Česká republika
9. Rakousko

10. Švýcarsko

88888888

80838888

80808888

28803880

1 0 8 0 8 6 8 0

60808080

20804380

2 1 4 0 0 5 8 3

1 0 6 0 5 2 8 0

20600080

64

51

48

37

31

30

25

23

22

16

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

Soutěž jednotlivců

1. Na tabuli je napsáno číslo 44. Celé číslo a napsané na tabuli můžeme
nahradit čtyřmi různými celými čísly ai, a2, аз, a4, jejichž aritmetický
průměr |(ai + аг + аз + 04) je roven číslu а. V jednom kroku současně
nahradíme všechna čísla na tabuli výše popsaným způsobem. Po 30 kro-
cích dostaneme na tabuli n = 430 celých čísel bi, 62,..., bn. Dokažte, že

&i + ^2 + • • • + > 2011.
n

(Chorvatsko)
2. Je dáno přirozené číslo n ^ 3. Jeníček a Mařenka hrají následující hru:
Nejdříve Jeníček očísluje strany pravidelného n-úhelníku čísly od 1 do n

(v libovolném pořadí; každé číslo použije právě jednou). Potom Mařenka
zvolí n — 3 neprotínajících se úhlopříček rozdělujících daný n-úhelník na

trojúhelníky. Všechny zvolené úhlopříčky pak označí číslem 1 a dovnitř
každého z trojúhelníků napíše součin čísel na jeho stranách. Součet těchto
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n — 2 součinů označme S. Jaká bude hodnota součtu 5, jestliže snahou
Jeníčka je, aby byl součet co největší, a Mařenka se snaží, aby součet byl
co nejmenší, přičemž oba dělají nej lepší možné volby? (Chorvatsko)
3. V rovině jsou dány kružnice k\ а k2 o středech Д a /2, jež se protínají
ve dvou bodech A a B. Předpokládejme, že úhel I\AI2 je tupý. Tečna
ke h v bodě A protíná k2 ještě v bodě C a tečna ke k2 v bodě A
protíná k\ ještě v bodě D. Označme к3 kružnici opsanou trojúhelníku
BCD. Označme E střed toho oblouku CD kružnice к3, který obsahuje
bod B. Přímky АС a AD protínají кз po řadě ještě v bodech К a L.
Dokažte, že přímky AE а КL jsou na sebe kolmé. (Slovinsko)
4. Nechť к am (к > m) jsou kladná celá čísla taková, že číslo km(k2—m2)
je dělitelné číslem к3 3. Dokažte, že (k — m)3 > 3km. (Polsko)— m

Soutěž družstev5.Najděte všechny funkce /: R -» R takové, že rovnost

V2f(x) + x2f(y) + xy = xyf{x T y) + x2 + y2

platí pro všechna x, у G IR, kde R značí množinu všech reálných čísel.
(Chorvatsko)6.Nechť kladná reálná čísla a, b, c vyhovují vztahu

ba c
= 2.

1 + a 1 T Ь 1 T c

Dokažte, že pak

y/a + Vb + \fc ^ 1 1 1
=

y/á у/Ъ + y/c'2

(Chorvatsko)7.Pro přirozené číslo n ^ 3 označme M množinu

{(ж, у): x, у G Z, 1 5Š x ^ n, 1 S У = n}

bodů roviny (Z značí množinu všech celých čísel). Určete největší možný
počet prvků podmnožiny S С M, ve které žádné tři body netvoří vrcholy
pravoúhlého trojúhelníku. (Maďarsko)

170



8. Nechť n ^ 3 je přirozené číslo. Na soutěž podobnou MEMO přijelo
3n účastníků, kteří hovoří n různými jazyky, každý účastník mluví právě
třemi různými jazyky. Dokažte, že z nich lze vybrat aspoň |"|n] jazyků
tak, že žádný účastník nehovoří více než dvěma z nich. (Zápis \x\ ozna-

čuje nejmenší celé číslo, které je větší nebo rovno x.) (Chorvatsko)

9. Konvexní pětiúhelník ABCDE má shodné strany. Úhlopříčky AD
а ЕС se protínají v bodě S, přičemž \<ASE\ = 60°. Dokažte, že pěti-
úhelník ABCDE má dvě rovnoběžné strany. (Slovensko)10.Je dán ostroúhlý trojúhelník ABC. Označme po řadě B0 a Co paty
výšek z vrcholů В a C. Nechť pro vnitřní bod X trojúhelníku ABC je
přímka BX tečnou kružnice opsané trojúhelníku AXCq a přímka CX teč-
nou kružnice opsané trojúhelníku АХ Во. Dokažte, že přímky АХ a BC
jsou na sebe kolmé. (Česká republika)

11. Nechť pro neprázdné navzájem disjunktní množiny А а В platí
AU В = {1, 2,3,..., 10}. Ukažte, že existují čísla a e A a b e В tak,

(Polsko)

12. Kladné celé číslo n nazveme úžasným, jestliže existují kladná celá
čísla a, b, c, pro která

že číslo a3 + ab2 + b3 je dělitelné 11.

n = (b, c)(a, bc) + (c, a)(6, ca) + (a, 6)(c, ab).

Dokažte, že existuje 2 011 po sobě jdoucích úžasných čísel. (Zápis (m,n)
značí největší společný dělitel přirozených čísel m a n.) {Litva)

Řešení úloh

1. Nahrazením jednoho z čísel na tabuli čtveřicí popsanou v zadání se
zvětší aritmetický průměr druhých mocnin čísel na tabuli. Dokážeme, že
toto zvětšení je dostatečně velké. Začneme pomocným tvrzením.

Lemma. Pokud ai, <22, аз, a4 jsou čtyři navzájem různá celá čísla
taková, že jejich aritmetický průměr a = \ (a\ + а2 + аз + 04) je také celé
číslo, tak platí

a\ + a2 + a2 + a\ ^ > 5
1

~

2
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Důkaz. Levá strana dokazované nerovnosti se dá přepsat takto:

Й2 ~k a2 d~ a3 d“ Й4
— a2 =

fl2 + Я2 4~ ~b fl2 — 2a(ai + o2 + ®з + Й4) -)- 4a2
4

4

(ai - a)2 + (a2 - a)2 + («3 - a)2 + (a4 a)2
4

Čísla ai — a, й2 — a, 03 — a, Й4 — a jsou navzájem různá celá čísla se
součtem 0. Pokud žádné z nich není nulové, bude součet jejich čtverců
alespoň l2 + (—l)2 + 22 + (—2)2 = 10. Pokud jedno z nich je nula, musí jiné
z nich mít absolutní hodnotu nejméně 3; v tomto případě bude součet
čtverců alespoň 32 + l2 + (—l)2
lemmatu evidentní.

Vraťme se к dokazovanému tvrzení. Označme Sk aritmetický průměr
druhých mocnin čísel na tabuli po provedení к kroků. Použijeme-li do-
kázané lemma na čtveřice čísel vzniklé nahrazením každého ze 4fc čísel,
která jsou na tabuli po к krocích, dostaneme, že Sk+i — Sk ^ 5/2 pro
každé к > 0. Proto

11. V obou případech je platnost

S3o = 5*0 + 30 • - 442 + 75 = 2 011.

2. Ukážeme, že S — \{n2 + 3n — 6) pro všechna n ^ 3. Pro n = 3 je to
zjevně pravda, dále budeme uvažovat n > 3.

Podívejme se na situaci nejprve z pohledu Mařenky. V každé prove-
děné triangluaci bude přesně n — 2 trojúhelníků. Každý z nich bude mít
nejvýše dvě strany na obvodu původního mnohoúhelníku a trojúhelníky
obsahující dvě strany původního mnohoúhelníku musejí být alespoň dva.
Ukážeme, že pro Mařenku je nejlepší zvolit triangulaci, ve které jsou
zmiňované trojúhelníky právě dva.

Nazvěme trojúhelník špatný, jestliže všechny jeho strany jsou diago-
nálami původního trojúhelníku. Ukážeme, že Mařenka musí zvolit tri-
angulaci bez špatných trojúhelníků. Předpokládejme, že tomu tak není,
tj. že pro Mařenku existuje optimální triangulace, která obsahuje špatný
trojúhelník (takové triangulace budeme nazývat špatné). Pro každou špat-
nou triangulaci T označme d(T) délku nejkratší možné strany špatného
trojúhelníku v T. Ze všech špatných vícestranných operací s nejmenším
možným počtem špatných trojúhelníků vezměme triangulaci T0, pro kte-
rou je hodnota d(T) minimální.
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Nechť ABC je špatný trojúhelník v To takový, že \AB\
V To máme také trojúhelník ABD pro D ф C. Strana AB je v troj-
úhelníku ABC nejkratší, tj. úhel ACB je jeho nejmenší, a tedy ostrý.
Body А, С, В, D leží na kružnici v tomto pořadí, proto úhel ADB je
tupý, a tedy AD i BD jsou kratší než AB. Změňme triangulaci T0 na Ti
tak, že trojúhelníky ABC a ABD nahradíme trojúhelníky ACD a BCD
(obr. 44). Ohodnocení úseček AD a BD nechť jsou a a b. Změnu hod-
noty S umíme vyjádřit jako

5(Ti) - S(To) =а + Ь-аЪ-1 = -(а- 1 )(b - 1) g 0.
Triangulace To však byla optimální, proto i Ti musí být optimální. Přitom
počet špatných trojúhelníků v To byl nejmenší možný, a tedy alespoň
jedna z úseček AD a BD je diagonálou. Jelikož jsou obě tyto úsečky
kratší než AB, dostáváme spor s volbou Tq.

d(T0).

В
' C1 /

\

Obr. 44

V triangulaci bez špatných trojúhelníků jsou právě dva trojúhel-
niky obsahující dvě sousední strany původního mnohoúhelníku; všechny
ostatní trojúhelníky obsahují přesně jednu stranu původního mnohoúhel-
niku. Vzhledem к nerovnosti ab > a -f b, platnou pro každou dvojici při-
rozených čísel a, b větších než 1, se Mařenka už snadno rozhodne, které
dva trojúhelníky budou obsahovat dvě strany původního mnohoúhelní-
ku: jeden z nich bude obsahovat stranu ohodnocenou 1 a sousední stranu
různou od 2, druhý zase naopak stranu ohodnocenou 2 a sousední stranu
různou od 1. Tímto způsobem Mařenka dovede zaručit, že hodnota S ni-
kdy nebude větší než 3 + 4 +... + (n — 2) +1 • (n — 1) + 2n = \ (n2 + 3n — 6).

Na druhé straně může Jeníček donutit Mařenku к volbě alespoň ta-
kové hodnoty S tím, že ve svém tahu označí strany mnohoúhelníku po-

stupně čísly

1, n — 1, 4, n — 3, 5, n — 4, .. n — 2, 3, n, 2.• 5
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3. Přímka AD je tečnou kružnice &2, proto úsekový úhel DAB má stej-
non velikost jako úhel BCA. Podobně \<CAB\ = \<BDA\. Proto

\<DBC\ = 360° - \<DBA\ - \<CBA\ =

= 2\<DAB\ + 2\<CAB\ = 2\<DAC\.
(1)

Body D, L, E, В, С, К leží na kružnici /С3. Abychom se vyhnuli diskusi
více případů možného pořadí těchto bodů na kružnici, budeme používat
orientované úhly. Symbolem XY označíme velikost úhlu XZY takového,
že bod Z leží na kružnici кз a body X, Z, Y jsou podél kružnice кз
uspořádány proti směru otáčení hodinových ručiček. Jelikož bod E je
středem oblouku CD, platí

\<AKE\ — EC — iDC - i(180° - CD) = ^(180° - \<DBC\) =

= 90° - \<DAC\.

Proto přímka KE je kolmá na AD (obr. 45). Podobně přímka LE je
kolmá na AC, bod E je tudíž průsečíkem výšek trojúhelníku KLA,
a přímka AE je tedy kolmá na přímku KL, což bylo třeba dokázat.
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Jiné řešení. Úhel BCA je shodný nejen s úhlem BAD, ale také s úhlem
КDB (díky tětivovému čtyřúhelníku DKCB). Z rovnosti \<KDB\ —
= \<BAD\ ovšem plyne, že KD je tečnou kružnice k\ stejně jako КA.
Trojúhelník ADК je tedy rovnoramenný, přičemž KE je jeho osou, neboť
půlí jeho vnitřní úhel AKD, když bod E půlí oblouk CD, což dohromady
znamená, že bod E leží na osách obou úseček AD a CD. Jinými slovy
bod E je středem kružnice opsané trojúhelníku ADC, takže bod E leží
i na ose strany AC. Podobně zjistíme, že přímka LC je tečnou kružnice k2
neboli že bod L leží na ose strany AC. To dohromady znamená, že přímky
LE a KE jsou výškami v trojúhelníku ALK, a tudíž je i AE J_ KL, což
jsme chtěli dokázat.
4. Označme d největšího společného dělitele čísel kam. Pro vhodná celá
čísla а a b platí к = da, m = db, přičemž a a b jsou nesoudělná а а > b.
Číslo

km{k2 — m2) d4ab(a2 — b2) dab{a + b)
d3(a3 — b3) a2 + ab + b2

je podle předpokladu ze zadání celé, proto a2 + ab + b2 \ dab(a + b).
Z nesoudělnosti čísel a, b vyplývá, že a2 + ab + b2 je nesoudělné s a, b
i a + 6; první dvě nesoudělnosti jsou evidentní, třetí dostaneme pomocí
Eukleidova algoritmu:

k3 — m3

(a + b, a2 + ab + b2) = (a + b, a(a + b) + b2) = (a + b, b2) = 1.

Platí tedy a2 + ab + b2 \ d, tudíž d ^ a2 + ab + b2 = (a — b)2 + 3ab > Sab.
Odtud

(к — га)3 = d3(a — b)3 ^ d3 > d2 ■ 2>ab = 2>km.
5. Po dosazení у = 0 dostaneme x2f(0) = x2 pro každé reálné číslo x,

proto /(0) = 1.
Zaveďme novou funkci g: IR —> IR takovou, že g(x) = f(x) — 1, a pře-

pišme danou rovnici s g namísto /:

У2д(х) + x2g(y) xyg{x + y), (1)

přičemž už víme, že g(0) = 0.
Každá funkce tvaru g{x) = cx je pro libovolnou reálnou konstantu c

řešením rovnice (1). Označme h(x) = g(x) —g(l)x. Ukážeme, že h(x) = 0
pro každé reálné číslo x.

Funkce h splňuje pro každou dvojici reálných čísel x, у rovnost

y2h(x) + x2h(y) xyh(x + y)- (2)
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navíc víme, že h(0) = h( 1) = 0. Po dosazení x = у = 1 do (2) dostaneme
h(2) = 0, po dosazení x

Připusťme, že existuje reálné číslo a takové, že h(a) Ф 0 (zjevně а ф 0).
Dosazením x = 1, у = a + 1 do (2) dostaneme h{a+ 1) = (a + 1 )h(a + 2)
a dosazením x = 2, у = a do (2) dostaneme 2/i(a) = ah(a + 2). Z těchto
dvou různých vyjádření hodnoty h(a + 2) vychází

l,y=l vyjde h(-1) = 0.

h(a + 1) 2h(a)
a + 1 a

(3)

a do (2) vyplývá, že h(a) ah(a + 1), což
Dosazení x = у = — | do (2) nám

Přitom z dosazení x = 1, у =

spolu se vztahem (3) dává a
však díky ů(—1) = 0 prozradí, že h( — |) = 0, a to odporuje volbě čísla a.

Jedinými řešeními jsou tedy funkce f(x) = сж +1 pro libovolné reálné
číslo c, což snadno ověříme zkouškou.

Jiné řešení. Stejně jako v prvním řešení zavedeme funkci g a do-
kážeme, že g(0) —x do (1) zjistíme, že

1 do rovnice (1) dostaneme
0. Navíc dosazením у

■g(x). Po dosazení у = 1 а у9(-x)

g(x) + x2g( 1)
g{x) + x2g(-1)

xg(x + 1),
-xg(x - 1).

(4)
(5)

Přepíšeme-li vztah (5) s x + 1 namísto x, dostaneme spolu se vztahem (4)
soustavu dvou rovnic s neznámými g(x + 1), g(x). Ze soustavy vyjád-
říme g(x):

g{x)(x2 -f x + 1) = g(l)x(x2 + x + 1).

Protože číslo x2 + x+ 1 je vždy kladné, jedinou možností je g(x) = g{l)x,
a tedy f(x) = сж+ 1. Zkouškou ověříme, že taková funkce / dané rovnici
vyhovuje pro každé reálné číslo c.

6. Zaveďme substituci a = 2x, b = 2y, c = 2z. Chceme dokázat nerovnost

^ + ^ + ^4= + 4= + 4=,

přičemž platí rovnost

1 1 1
(1)= 1,

1 4“ 2x 1 J- 2у 1 4~ 2z
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která vyplývá z dané podmínky po trojnásobném využití rovnosti

21 1
= 1 -

1 + 2*1 + 2*

Dokazovaná nerovnost je symetrická, proto můžeme předpokládat, že
х^-у^. z. Snadno nahlédneme, že pak

L > i
2x + 1 2у + 1 2z + 1

x — 1 - 1>1 (2)

a také
2x + 1

^ 2у + 1 ^ 2z + 1
y/x = y/y = y/ž

Nerovnosti (2) jsou ekvivalentní nerovnostem x ^ у ^ z, první z nerov-
ností (3) pak snadno převedeme na nerovnost (yéř — y/y){2s/xy — 1) ^ 0.
A kdyby bylo 2^Jxy < 1 neboli 4xy < 1, dostali bychom

(3)

1 1 2 + 2x + 2у
> 1,

1 + 2x 1 + 2у 1 + 4xy + 2x + 2y

což odporuje předpokladu (1). Stejně dokážeme i druhou nerovnost z (3).
Díky vztahům (2) a (3) můžeme použít Čebyševovu nerovnost:1

2x + 1- 1 - 1 2x + 1 ^ 1 v -v X — 1 ^—r
=

3 E 2x + 1 E
v \ X

/ ^

ч л X

E 2x + 1 v/i y/xyfxcykl. cykl. cykl.

2х + 1 — 3
cykl.

= -E3 ^
2x + 1 1 \ ^

'

2 E = 0.
yfx 2x + 1

cykl. cykl.

Jiné řešení (trigonometrické). Po substituci x = l/(a + 1), у =
= 1/(6 + 1), z = l/(c+ 1) je

6a c
= 1-1/,

1 + 61 + (2 1 + C

takže platí x + |/ + 2 = 1 a původní proměnné můžeme vyjádřit jako
a — {y + z)/x, b — (x + z)/у, c = (x + y)/z. Chceme dokázat nerovnost

2x 2У 2 z
>

У + z Z + X y + x

1 Zkráceným zápisem V (x) rozumíme „cyklický" součet V(x) + V(y) + V {z).
cykl.

177



Tato nerovnost platí pro všechny trojice kladných reálných čísel ж, p, г.
Dokážeme to tak, že nejprve obě strany nerovnosti vynásobíme součinem
tří (kladných) sčítanců z její levé strany; dostaneme tak ekvivalentní
cyklickou nerovnost

x + у [y + z z + x^ 2z V 2x 2у
cykl. V У iE/

cykl. v

у + г z + x
(1)2x 2У

Proveďme substituci p = x + y, q — y + z, r = z + x. Čísla p, q, r

jsou pak délkami stran trojúhelníku a můžeme psát p = 27? sin a, q =
= 27? sin/3, r = 2# sin 7, kde i? je poloměr opsané kružnice a a+/3+7 = ti.
Tři analogické zlomky z poslední nerovnosti pak mají vyjádření, která
odvodíme pouze pro první z nich:

x + y sin aV

sin /3 + sin 7 — sin a2z q + r - p

2 sin i cc cos

^(/5 — 7) — 2 sin cos \ol2 cos ^acos
sin |cc sin

cos |(/3 — 7) — cos |(/3 + 7) 2sini/3sinÍ7
kde jsme při poslední úpravě využili vzorec pro rozdíl dvou kosinů. Díky
těmto třem vyjádřením platí pro odmocniny ze součinu vždy dvou z dané
trojice zlomků vzorce, které odvodíme pouze pro jednu z nich:

sin |/3 sin i7 1y + z z + x

2 sin sin ^7 2 sin |asin |/3 2sinia2x 2У

Po dosazení do (1) vidíme, že je naším úkolem dokázat nerovnost

1 1
E žE 2 sin Íq:’

která po vynásobení výrazem 4 sin |asin |/3sin ^7 získává tvar

4 sin |/3sin ^7cykl. cykl.

а. в 7 ^ / а в /3 7 7 a\
sin — + sin — + sin T E 2^sin — sin ^ + sin ^ sin ^ + sin ^ sin — J

neboli

аo 1 >sin - + sin - + sin -

Z (sin I + sin ^ + sin I)2 - (sin2 I + Sin2 I + sin2
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Jelikož díky Cauchyově nerovnosti platí

ftsin2 — -+■ sin2 — -+- sin2 ^ t i2 2 2 - 3 V
2

sin — + sin — + sin — ,

2 2 2/

stačí místo nerovnosti, kterou máme dokázat, ověřit silnější nerovnost

a
. . ft . . 7\2

_+sm_ + sm_j.— + sin — + sin ^ \ • (sin —2 2 2 - 3 V
sin

Tu po vydělení levou stranou ještě zjednodušíme na

ft 7 < 3_sin — + sin — + sin -
-

2

Poslední už plyne z Jensenovy nerovnosti pro funkci sinus, jež je na in-
tervalu (0, л) konkávní:

a + /3 + 7ft
= 3sh7 = t6 2

7 < 3sinsin —h sin —(- sin —
2 2 2 6

7. Množina

S = ({l}x{2,...,n})U({2,...,n}x{l})

má 2n — 2 prvků a žádné tři její body netvoří vrcholy pravoúhlého troj-
úhelníku. Ukážeme, že každá vyhovující množina S má nejvýše 2n — 2
prvků.

Vezměme vyhovující množinu S. Označme Si množinu těch bodů
(x,y) z S, které mají unikátní první souřadnici, tj. v S není žádný bod
(x, y') pro y' ^ y. Podobně označme S2 množinu bodů z S s unikátní
druhou souřadnicí.

Nejprve sporem dokážeme, že S = Si US2. Kdyby totiž nějaký bod P
patřil do S, ale nepatřil by ani do jedné z množin Si nebo S2, našli bychom
к němu bod Px se stejnou první souřadnicí i bod Py se stejnou druhou
souřadnicí. Takové tři body P, Px, Py však tvoří pravoúhlý trojúhelník
s pravým úhlem při vrcholu P.

Pokud I Si I = n, je S = Si, potom však množina S má n prvků, a to je
pro každé n ^ 3 méně než 2n —2. Podobně se vypořádáme s množinami S,
pro něž IS21 = n. V každém jiném případě však |Si | ^ n— 1 a |S21 = n— 1,
množina S má tedy nejvýše 2n — 2 prvků.

179



8. Jazyky budeme volit náhodně a ukážeme, že pravděpodobnost příznivé
volby je kladná. Z toho ovšem plyne, že existuje požadovaná volba jazyků.

Nechť p € [0,1]. Každý jazyk bude zvolen s pravděpodobností p; volby
pro jednotlivé jazyky jsou nezávislé. (Formálně: elementární událostí je
n-tice oj = (ai, cl2, . . ., an), kde a* = 1, pokud г-tý jazyk byl zvolen,
jinak clí — 0; je-li к počet jednotek v elementární události uj, je její
pravděpodobnost rovna pk( 1 — p)n~k.)

Budeme zkoumat dvě náhodné veličiny А а В, kde A označuje počet
zvolených jazyků а В počet účastníků, jejichž všechny tři jazyky byly
zvoleny. Vypočítáme střední hodnoty těchto dvou veličin:

E(A) = 1 • P(zvolili jsme jazyk l)

P(všechny jazyky studenta s jsou zvoleny) = 3n ■ p3.

= np,

jazyk l

E(B)
student s

Dále využijeme nerovnost

P{X Z E{X)) > 0,

která evidentně platí pro každou náhodnou veličinu X. V našem případě
pro X = A — В dostáváme, že

P{A — В ^ np — Зпр3) > 0.

Odtud plyne, že existuje volba jazyků (tj. elementární událost oj) taková,
že A(uj) — В (oj) ^ np—3np3. Pro tuto volbu můžeme ze zvolených jazyků
odstranit jeden jazyk za každého z účastníků, pro kterého byly zvoleny
všechny tři jazyky, jimiž hovoří, a stále zůstane alespoň A — В jazyků.
Pro p = | je však A — В ^ |n. Tím je tvrzení úlohy dokázáno.
9. Označme a velikost úhlu EAD. Stejnou velikost má i úhel EDA,
a z dané velikosti \<ASE\ — 60° snadno dopočítáme \<AEC\ = 120° — a
a \<DEC\ = 60° — a. Označme F obraz bodu A v osové souměrnosti
podle přímky CE. Úhel FED má velikost (120° — a) — (60° — a) = 60°,
a protože \EF\ = \EA\ = \ED\, je trojúhelník DEF rovnostranný. Rov-
noramenné trojúhelníky ABC a FDC jsou tedy shodné podle věty sss.

Pokud se bod D nachází mimo trojúhelník ACF (obr. 46), jsou body
В a D souměrně sdruženy podle přímky CE, a proto \EB\ = \ED\, takže
čtyřúhelník BCDE je kosočtverec a BC (| DE.
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Pokud bod D leží v trojúhelníku ACF (obr. 47), jsou body C a F
souměrně sdruženy podle osy AD, protože úhly ADC i ADF mají velí-
kost 60° + a (využili jsme, že \<ECD\ = \<CED\ — 60° — a). Potom
však \AF\ = \AC\, takže trojúhelníky ABC a AEF jsou shodné. Bod E
musí ležet mimo trojúhelník ACF, jinak by pětiúhelník ABCDE nebyl
konvexní. Ze shodnosti trojúhelníků ABC a AEF pak plyne, že body
В a E jsou souměrně sdruženy podle přímky AD. Proto \DB\ = \DE\,
tudíž čtyřúhelník ABDE je kosočtverec a platí AB || DE.

10. Dotyk přímky s kružnicí můžeme popsat pomocí mocnosti bodu ke
kružnici. V našem případě z mocnosti bodu В ke kružnici opsané trojúhel-
niku AXC0 plyne \BX\2 = \BA\ ■ \BC0\. Podobně \CX\2 = \CA\ ■ \CB0\.
Označme Aq patu výšky z vrcholu A (obr. 48). Čtyřúhelník ACAqCq je
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tětivový, proto pro mocnost bodu В к opsané mu kružnici platí \BA\ •
■ \BCq\ = I-BvIqI • |BC\\ podobně dostaneme \CA\ ■ \CBq\ = |Ck4o| • \CB\.
Dohromady tak máme

\BX\2 + |CX|2 = \BA\ ■ \BCo\ + \CA\ ■ \CB0\ =

= |BA0| ■ \BC\ + |СЛ0| • \BC\ = \BC\2,

tj. úhel BXC je pravý (obr. 48). Navíc z rovnosti \BX\2 = \BA0\ ■ \BC\
podle Eukleidovy věty o odvěsně v pravoúhlém trojúhelníku BXC vy-

plývá, že bod Aq je patou výšky z vrcholu X na přeponu BC. Jinak
řečeno, přímky AAq aldo jsou totožné, proto je přímka AX kolmá na

přímku BC.

Jiné řešení. Z mocností bodů В а С к uvažovaným kružnicím dostá¬
váme

\BX\2 = \BA\ ■ \BCol |CX\2 = \CA\ ■ \CB0\.
V daném trojúhelníku ABC tyto rovnosti jednoznačně určují vzdálenosti
bodu X od vrcholů В a C, a protože o bodu X předpokládáme, že je
vnitřním bodem ostroúhlého trojúhelníku, je tím takový bod X jedno-
značně určen. Ukážeme, že požadované vlastnosti má průsečík Y výšky
trojúhelníku ABC z vrcholu A s Thaletovou kružnicí nad průměrem BC
(obr. 49). Tím bude tvrzení úlohy dokázáno.

Čtyřúhelník BCBqY je tětivový, proto \kCBBq\ = \<CYBq\. Potom
\<CAY\ = 90° — \<ACB\ = \<CBBq\ = \kCYBq\, a podle věty o úse-
kovém úhlu se přímka CY dotýká kružnice opsané trojúhelníku AYBq.

182



Analogicky můžeme ukázat, že se přímka BY dotýká kružnice opsané
trojúhelníku AYCq, takže bod Y má obě vlastnosti určující bod X.

11. Stačí ukázat, že existují a G A a b G B, pro něž a = 2b (mod 11),
protože pro taková a, b platí

a3 + ab2 + 63 = 8b3 + 2b3 + b3 0 (mod 11).

Podle zadání je množina AuB tvořena právě všemi nenulovými zbytky
modulo 11. Zvolme nějaké c G B. Čísla c, 2c, 22c, ..., 29c dávají vesměs
různé nenulové zbytky modulo 11, z nichž aspoň jeden musí patřit do
množiny A (taje neprázdná). Je-li к nejmenší takové, že zbytek čísla 2fccje
v В a zbytek 2fc+1c je v A, bude pro b = 2kc zřejmě platit a = 2k+1c = 2b.

12. Zvolme nejprve čísla x\, x2, ■ ■ ■, Ж2011 tak, aby čísla

yi=Xi(xi+2), y2 = xl(x2 + 2), .. I/2011 — ^2011(^2011 + 2)* 9

byla navzájem nesoudělná. Můžeme například vzít x\

stupně volit Xi = У1У2 ■ ■ ■ yi-i — 1 pro každé i G (2, 3,..., 2011}. Takto
zvolené číslo Xi zabezpečí, že yi bude nesoudělné se všemi předchozími
čísly 2/1,2/2, — ,2/*—i-

Důvod volby čísel Xi spočívá v tom, že každé číslo dělitelné číslem
tvaru x2(x + 2) je úžasné. Opravdu, pokud n — x2(x + 2)m, pak pro
a — mx2, b — mx a c — x platí požadovaná rovnost.

Jelikož čísla 2/1,2/2, • • • ,1/2011 jsou navzájem nesoudělná, podle čínské
zbytkové věty existuje přirozené číslo к takové, že

1 a pak po-

к = —г (mod уi) pro každé i G {1, 2,..., 2 011}.

Číslo к T i je pak dělitelné číslem yi pro každé г G {1, 2,..., 2 011}. Čísla
k +1, k+2, ..., k-\-2 011 jsou podle předchozího odstavce všechna úžasná,
a tvoří tak hledaných 2 011 po sobě jdoucích úžasných čísel.
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18. středoevropská olympiáda v informatice

CEOI^tice (CEOI 2011) se konala ve dnech f20fí
7.-12. 7. 2011 v polském městě Gdyně.
Vedle sedmi tradičních účastnických středoevropských států (Česká re-
publika, Chorvatsko, Maďarsko, Německo, Polsko, Rumunsko, Slovensko)
se jako hosté zúčastnila také družstva ze Slovinska a Švýcarska. Jako ob-
vykle soutěžilo i druhé družstvo pořadatelské země. Celkem se soutěže
zúčastnilo 39 studentů z 9 zemí.

Reprezentační družstvo České republiky bylo sestaveno na základě
výsledků dosažených soutěžícími v ústředním kole kategorie P 60. roč-
niku Matematické olympiády. Na celosvětovou soutěž IOI 2011 v Thajsku
byli vysláni čtyři nej lepší studenti z ústředního kola, na středoevropskou
olympiádu byli vybráni další čtyři studenti, kteří ještě nebyli v maturit-
ním ročníku. Naši mladší soutěžící tak dostali příležitost získat na CEOI
cenné zkušenosti, které mohou následně využít při případné reprezentaci
České republiky na IOI v dalším roce. 18. středoevropské olympiády v in-
formatice se zúčastnili tito studenti:

Vojtěch Hlávka, student gymnázia a ZUŠ ve Šlapanicích,
Martin Raszyk, student gymnázia v Karviné,
Štěpán Šimsa, student gymnázia v Litoměřicích,
Martin Zikmund, student gymnázia v Turnově.

Vedoucími české delegace byli jmenováni doc. RNDr. Pavel Tópfer,
CSc., a Bc. Josef Pihera, oba z Matematicko-fyzikální fakulty Univerzity
Karlovy v Praze.

Naši účastníci obou mezinárodních informatických olympiád se již
tradičně připravovali na svoji soutěž společně s reprezentanty Polska
a Slovenska na týdenním soustředěním CPSPC (Czech-Polish-Slovak Pre-
paration Camp). Akci tentokrát připravili slovenští organizátoři.

Soutěž CEOI 2011 se tradičně uskutečnila v průběhu dvou soutěžních
dnů. V každém dni soutěžící řešili tři úlohy, na které měli vždy pět ho-
din času. Každý soutěžící pracuje na přiděleném osobním počítači s na-

instalovaným soutěžním prostředím, které umožňuje vyvíjet a testovat
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programy a odesílat je к vyhodnocení. Výsledné programy jsou těsto-
vány pomocí připravené sady testovacích dat a se stanovenými časovými
limity. Tím je zajištěna nejen kontrola správnosti výsledků, ale pomocí
časových limitů se také odliší kvalita použitého algoritmu. Při testování
každé úlohy se používají sady testovacích dat různé velikosti, takže teore-
ticky správné řešení založené na neefektivním algoritmu zvládne dokončit
výpočet pouze pro některé, menší testy. Takové řešení je potom ohodno-
ceno částečným počtem bodů. Večer před soutěží vedoucí všech delegací
společně vyberou soutěžní úlohy z návrhů předložených pořadatelskou ze-

mí, upraví podle potřeby jejich formulace a přeloží je pak do mateřského
jazyka studentů. Čeští studenti tedy dostali jak anglickou, tak i českou
verzi zadání úloh. Kromě vlastní soutěže je pro účastníky CEOI vždy
připravován i doprovodný program. Letos měli účastníci možnost pro-
hlédnout si nejen Gdyni, ale prošli si také blízké lázeňské město Sopoty
a přístav Gdaňsk. Po skončení soutěže jeli všichni účastníci na celodenní
společný výlet spojený s prohlídkou rozsáhlého gotického hradu Malbork
a s jízdou historickou parní železnicí.

Poslední den proběhlo slavnostní zakončení soutěže s vyhlášením vý-
sledků. Každá ze soutěžních úloh byla hodnocena maximálně 100 body,
takže celkově bylo teoreticky možné získat až 600 bodů. Vítězem se stal
polský reprezentant Krzysztof Pszeniczny, který dosáhl výsledku 550 bo-
dů. Letos bylo uděleno 5 zlatých, 7 stříbrných a 13 bronzových medailí.
Tři zlaté medaile získali soutěžící z Polska, kteří však měli určitou výhodu
v tom, že jako pořadatelská země mělo Polsko v soutěži dvě soutěžní
družstva. Středoevropská olympiáda v informatice je soutěží jednotlivců,
žádné pořadí zúčastněných zemí v ní není vyhlašováno.

Naši studenti dosáhli následujících výsledků:

180 bodů

158 bodů

128 bodů

72 bodů

bronzová medaile22. Martin Zikmund

27. Štěpán Šimsa
30. Martin Raszyk
36. Vojtěch Hlávka

Veškeré informace o soutěži, texty soutěžních úloh i podrobné vý-
sledky všech medailistů lze nalézt na internetové adrese

http://ceoi2011.mimuw.edu.pl/.

Zástupci Slovinska projevili zájem stát se řádnými členy CEOI a slíbili
uspořádat soutěž v roce 2014.

185



23. mezinárodní olympiáda v informatice

Dvacátý třetí ročník Mezinárodní olym-
piády v informatice IOI 2011 se konal
ve dnech 22.-29. 7. 2011 ve městě Pat-

taya v Thajsku.
Olympiády se zúčastnilo 81 delegací

z celého světa. Z každé země se IOI mo-

The 23rd International Olympiad in Informatics

^THAILAND jy
2 0 11hou zúčastnit čtyři soutěžící a dva ve-

doučí, celkově letos soutěžilo 302 stu-
dentů. České družstvo bylo sestaveno na základě výsledků ústředního
kola 60. ročníku Matematické olympiády - kategorie P a bylo tvořeno
těmito studenty:

Lukáš Folwarczný, student gymnázia v Havířově,
Filip Hlásek, absolvent gymnázia v Plzni, Mikulášském nám.,
Hynek Jemelik, absolvent gymnázia v Brně na tř. Kpt. Jaroše,
Jakub Zika, absolvent gymnázia v Praze 6, Nad Alejí.

Vedoucími české delegace na IOI 2011 byli jmenováni Mgr. Zbyněk
Falt z MFF UK a Mgr. Jan Bulánek z MFF UK a Matematického ústavu
AV ČR.

Již tradičně se naši účastníci IOI připravovali na olympiádu společně
s reprezentanty vybranými pro Středoevropskou olympiádu v informa-
tice na týdenním soustředěním CPSPC (Czech-Polish-Slovak Preparation
Camp). Přípravné soustředění bylo letos pořádáno v Modre-Harmonii na
Slovensku a zúčastnili se ho vybraní studenti ze všech tří zemí.

Během prvního dne pobytu v Thajsku proběhlo slavnostní zahájení
soutěže a studenti měli také příležitost seznámit se podrobně s počítači
a se softwarovým prostředím, v němž budou při soutěži pracovat. Vlastní
soutěž se konala jako obvykle ve dvou dnech, oddělených jedním odpo-
činkovým dnem, který byl věnován výletu do botanické zahrady Nong
Nooch. Po druhém soutěžním dnu následoval druhý odpočinkový den,
během kterého byl pro soutěžící uspořádán výlet do muzea Ancient City
a pro ostatní členy delegací výlet do Bangkoku. Při cestě zpět z Thajska
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byl bohužel zrušen náš navazující let z Paříže, takže se cesta nepříjemně
protáhla o jeden den.

Soutěž IOI probíhá podobným způsobem, jako praktická část ústřed-
ního kola naší kategorie P. Každý soutěžící má přidělen osobní počítač, na
kterém řeší zadané úlohy. V každém dni má na práci vymezen čas 5 hodin.
Úlohy je třeba dovést až do tvaru odladěného programu, hotové programy
se odevzdávají к vyhodnocení prostřednictvím soutěžního prostředí. Ode-
vzdané programy se testují pomocí předem připravené sady testovacích
dat. Prováděné testy jsou navíc omezeny časovými a paměťovými limity,
aby se kromě otestování správnosti odlišila časová i paměťová efektivita
algoritmu použitého jednotlivými účastníky soutěže. Při testování každé
úlohy se používají sady testovacích dat různé velikosti, takže teoreticky
správné řešení založené na neefektivním algoritmu zvládne dokončit vý-
počet pouze pro některé, menší testy. Takové řešení je potom ohodnoceno
dílčím počtem bodů. Stejně jako v loňském roce měli soutěžící možnost
nechat si průběžně vyhodnocovat svoje řešení, takže již během soutěže
si mohli soutěžící ověřit, kolik bodů za něj získají. Divákům (ale nikoli
soutěžícím) pak byla к dispozici i průběžná výsledková listina. Jedná
se o podobný systém, jaký používáme v posledních letech v kategorii P
Matematické olympiády pro praktické úlohy domácího kola u nás. Krátce
po odevzdání vypracovaného programu do vyhodnocovacího systému se
soutěžící dozví hodnocení svého řešení a má pak ještě možnost jej opravit
a odevzdat znovu.

Rovněž bylo zachováno rozdělení úloh do několika podúloh, lišících
se velikostmi vstupních dat či omezeními na jejich strukturu. Za každou
takovou podúlohu bylo možné získat body pouze tehdy, když program

odpověděl na všechny její testovací vstupy korektně a v daném časovém
limitu. Jedna z podúloh každé úlohy byla záměrně velmi jednoduchá.
Soutěžící z programátorsky méně vyspělých zemí tak dostali velmi reál-
nou šanci vyřešit každý den aspoň část z každé úlohy. Změnou oproti
loňskému ročníku bylo snížení počtu úloh zadaných během jednoho sou-
těžního dne ze čtyř na tři. Tradičně byla jedna z úloh jednodušší než
ostatní, aby ji i méně zdatní účastníci mohli vyřešit. Skutečnost, že sou-
částí každé úlohy je několik velmi jednoduchých podúloh, způsobila, že
ztratilo smysl zadávat zmíněnou snazší úlohu.

Každá z šesti soutěžních úloh byla hodnocena maximálně 100 body,
takže nejvyšší počet bodů, který bylo možné získat, je 600. Na základě
přesně stanovených pravidel se na IOI podle dosažených bodů rozdělují
medaile. Některou z medailí obdrží nejvýše polovina účastníků soutěže,
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přičemž zlaté, stříbrné a bronzové medaile se rozdělují přibližně v poměru
1 : 2 : 3 (s ohledem na to, aby soutěžící se stejným bodovým ziskem
získali stejnou medaili). Na letošní IOI bylo rozděleno celkem 27 zlatých,
49 stříbrných a 75 bronzových medailí.

Výsledky našich soutěžících:

30. Filip Hlásek
50. Hynek Jemelík
66. Jakub Zika

177. Lukáš Folwarczný 242 bodů

467 bodů

419 bodů

391 bodů

stříbrná medaile

stříbrná medaile

stříbrná medaile

Zisk tří stříbrných medailí pro Českou republiku je mimořádný
úspěch. Mezinárodní olympiáda v informatice je soutěží jednotlivců
a žádné pořadí zúčastněných zemí v ní scie není vyhlašováno, ale v neofi-
ciálním pořadí zemí by se letos Česká republika podle celkového počtu
bodů umístila na 16. místě.

Všechny podrobnosti o soutěži, texty soutěžních úloh i jejich řešení
a celkové výsledky lze nalézt na Internetu na adrese

http://www.ioi2011.or.th/.

Příští ročníky IOI se budou konat v Itálii (2012), Austrálii (2013)
Tchaj-wanu (2014) a v Kazachstánu (2015). Pořadatelská země pro rok
2016 dosud nebyla vybrána. Pořadatelé IOI 2012 z Itálie na místě pozvali
všechny delegace zúčastněné na IOI 2011, aby se zúčastnily také následu-
jícího ročníku soutěže. Ten proběhne ve dnech 22.-29. 9. 2012 ve městě
Sirmione.

na
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