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O prabéhu 60. rocniku matematické olympiady

Sedesaty roénik matematické olympiddy se uskutecnil v Ceské repub-
lice ve Skolnim roce 2010/11. Hlavnim poradatelem soutéze bylo (stejné
jako v predchozich letech) Ministerstvo skolstvi, mladeze a télovychovy
CR, dale Jednota Ceskych matematikil a fyziki a Matematicky ustav
Akademie véd CR. Pribéh soutéze zajistovala stejné jako v predeslych
roénicich soutéze Ustiedni komise MO (UK MO), které piedsedal doc.
RNDr. Jaromir Simsa, CSc., s mistopiedsedy RNDr. Jaroslavem Svrckem,
CSc. (pro kategorie A, B, C), RNDr. Vojtéchem Zddnikem, Ph.D. (pro
kategorie Z9-75) a doc. RNDr. Pavlem Tdpferem, CSc. (pro kategorii P).
Tajemnikem UK MO byl RNDr. Karel Hordk, CSc.

Pripravou a vybérem tuloh pro jednotlivé kategorie a soutézni kola
byly povéieny Ustfedni komisi MO dvé tlohové komise (jedna pro kate-
gorie A, B, C a druhd pro kategorie Z). Obé komise se sesly na svych
pracovnich seminéfich dvakrat roné (v prosinci 2010 a v kvétnu 2011).
Ve spolupraci se slovenskymi kolegy zabezpecuji obé komise s vice nez
roénim predstihem vybér tloh pro dalsi roénik MO v Ceské republice
i na Slovensku. Garanty vybéru uloh pro tento ro¢nik soutéze byli Ja-
roslav Svréek (kategorie A), Martin Panak (kategorie B) a Jan Mazdk
(kategorie C).

Krajska (I1.) kola v jednotlivych kategoriich se uskutecnila ve stano-
venych terminech: 18. 1. 2011 v kategorii A, 5. 4. 2011 v kategoriich B
a Ca 11. 1. 2011 v kategorii P. Celkové pocty ucastniki v jednotlivych
krajich kazdé z uvedenych kategorii jsou uvedeny v tabulkach, které tvori
prilohu této zpravy. V prubéhu 60. ro¢niku MO se na zdkladé tcinné
podpory projektu OPVK MATES CZ.1.07/2.3.00/09.0017 v moravskych
regionech uskutecnily pravidelné semindre urcené resitelim MO. Konaly
se na PTF UP v Olomouci, dédle v Jihlavé a ve Zliné. Lektorsky se na nich
podileli predevsim tesitelé projektu MATES.

Ustiedni kolo 60. roéniku Matematické olympiady v kategorii A se
uskutecnilo 27.-30. brezna 2011 v Brné, na né pak navazalo ustredni
kolo kategorie P (30. bfezna—2. dubna). Organizace zavérecného kola
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soutéze se v tomto roce ujala Krajskd komise MO Jihomoravského kraje
spolu s Gymnaziem v Brné na t¥. Kpt. Jarose.

Zastitu nad zaveérecnou césti soutéze v kategoriich A a P prevzal Mi-
chal Hasek, hejtman Jihomoravského kraje. Slavnostni zahajeni soutéze se
uskutecnilo v nedéli 27. bfezna 2011 vecer v aule brnénského gymnézia na
t¥. Kpt. Jarose. Kromé soutézicich, ¢lent UK MO a garantu se zahajeni
soutéze zucastnili rovnéz pozvani hosté, mezi nimiz nechybéli zdstupci
spolec¢enského zivota v Brné, Masarykovy univerzity v Brné a zastupci
sponzorii (skupina CEZ, Microsoft, Seznam, Kofola a dalsf). Soutézici
a ¢lenové Ustiedni komise MO byli ubytovéni v hotelu Amphone ptimo
naproti poradajici skole. Vlastni soutéz se pak konala v uc¢ebniach Gym-
néazia na tf. Kpt. Jarose v Brné.

Na zékladé jednotné koordinace tloh krajského (II.) kola v katego-
rii A pozvala UK MO k tcasti ve IIL kole 40 nejlepsich Fesiteli z celé
Ceské republiky. Svého zastupce v tstFednim kole tentokrat nemél pouze
Karlovarsky kraj. Soutéznimi dny byly 28. a 29. bfezen 2011. Na reSeni
obou trojic soutéznich tloh méli soutézici vyhrazeno po 4,5 hodindch
C¢istého casu a za kazdou tlohu mohli ziskat maximalné 7 bod.

Brnénsti organizatofi pfipravili pro soutézici a pro ¢leny UK MO
atraktivni doprovodny program. Odpoledne po prvnim soutéznim dnu byl
pro vsechny tcastniky III. kola usporadan spole¢ny zajezd do Moravského
krasu spojeny s navstévou Punkevnich jeskyni a propasti Macocha. Vecer
stravili soutézici i ¢lenové UK MO v piijemném prostiedi brnénského
divadla Radost, kde shlédli predstaveni Jak to délaji andélé aneb Stvoreni
svéeta. Druhé volné odpoledne po soutézi méli moznost zdjemci navstivit
vyznamné kulturni a historické pamatky v centru Brna.

Slavnostni vyhlaseni vysledki a predani cen nejlepsim soutézicim se
uskutecnilo ve stredu 30. brezna 2011 dopoledne opét v aule poradajici
Skoly za pritomnosti predstaviteli mésta Brna, zastupci MU v Brné
a zastupci skupiny CEZ. Predseda UK MO doc. Jaromir Simsa ve svém
zavéretném projevu podeékoval predsedovi Krajské komise MO v Jiho-
moravském kraji a rediteli Gymnazia Brno na t¥. Kpt. Jarose — RNDr.
Jirimu Hermanovi, Ph.D., a také vSem jeho spolupracovniktim z potada-
jici skoly, ktefi zajistovali zdarny pribéh tstredniho kola kategorii A a P
jubilejniho ro¢niku MO.

Na ustredni kolo kategorie A bezprostredné navazalo tstfedni kolo ka-
tegorie P. K uicasti v zavéreéném kole této soutéze bylo tentokrat pozvano
33 nejlepsich fesitelt krajského kola, findle soutéze se vsak zucastnilo
pouze 29 z nich.
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Soutéznimi dny tstredniho kola v kategorii P byly 31. brezen a 1. du-
ben 2011. Prvni soutézni den fesili soutézici tii tlohy teoretické, cely
druhy soutézni den byl vyhrazen feseni dvou praktickych uloh. Za kaz-
dou teoretickou ulohu mohli soutézici ziskat nejvyse 10 bodi, za reseni
kazdé praktické ulohy pak 15 bodi — celkové tedy nejvyse 60 bodi. Na
pripravé soutéznich tloh v kategorii P se podileli pracovnici Katedry ma-
tematické informatiky Matematicko-fyzikalni fakulty Univerzity Karlovy
v Praze.

Devét z jedendacti vitézu soutéze v kategorii A bylo pozvano k vybe-
rovému soustfedéni v Kostelci nad Cernymi lesy pied 52. mezinarodni
matematickou olympiddou. Ta se uskutecnila v ¢ervenci 2011 v Amster-
damu, hlavnim mésté Nizozemi. Kromé toho bylo vybrano také druzstvo
pro 5. ro¢nik Stfedoevropské matematické olympiady (MEMO), ktery se
konal 1.-7. zari 2011 v chorvatském Varazdinu. Druzstvo pro tuto mezi-
narodni soutéz tvorila Sestice uspésnych resitelti ustredniho kola katego-
rie A, kteri se nezicastnili 52. MMO. V polské Gdyni probéhl 18. ro¢nik
Stredoevropské olympiady v informatice (CEOI, 7.-12. 7. 2011). V cer-
venci se pak ceské reprezentacni druzstvo zicastnilo 23. roéniku Mezina-
rodni olympiddy v informatice v Thajsku ve mésté Pattaya City. Podrob-
néjsi zpravy o mezinarodnich soutézich jsou uvedeny na konci rocenky.

Ustiedni komise MO se béhem 60. roéniku soutéze sesla na dvou
pravidelnych jednénich, a to 10. prosince 2010 v Matematickém tstavu
AV CR v Praze a déle 28. bfezna 2011 v Brné u pfilezitosti tstfedniho
kola MO.

Pro 40 nejlepsich tesiteli krajského kola 60. ro¢niku MO v katego-
riich B a C uspoiddala UK MO v ¢ervnu 2011 tradiéni soustfedéni v Je-
vicku, organizované reditelem taméjsiho gymnazia, dr. Dagem Hrubym.
Lektorsky chod soustfedéni zabezpecovali doc. Calda, dr. Svréek, dr. Pa-
nak, dr. Calabek, dr. Leischner a dr. Hruby. Poc¢atkem zari téhoz roku se
konalo v Janskych Laznich na chaté Lovrana jesté vybeérové soustredéni
nejlepsich resitelt kategorie A. Na tomto soustiedéni jednotlivé seminare
vedli doc. Simsa, dr. Horak, dr. Svréek, dr. Panak, dr. Caldbek, dr. Zhouf
a Michal Rolinek.

Zaveérem dékujeme vsem nadsenym ucitelim matematiky, kteri nad
své pracovni povinnosti pripravovali své talentované zaky pro soutéz
v tomto roc¢niku. Bez nich si lze jen tézko predstavit Uspésny pribéh
nejstarsi predmétové soutéze v Ceské republice, kterou je pravé matema-
tickd olympidda.



Projev piedsedy Ustfedni komise MO
pri slavnostnim zahajeni ustfedniho kola 60. roéniku MO
v Brné

Déamy a panové, vazeni hosté, mili soutézici,

dovolte mi, dfive nez pronesu ocekdvanou vétu spojenou na sportov-
nich olympidadéch se zazehnutim olympijského ohné, malé zamysleni nad
jubileem nasi soutéze.

Dovedu si predstavit, jak bujare mohli slavit Sedesaté narozeniny stari
Babylénané, pokud se vysokého zakladu své ciselné soustavy vibec do-
zivali. Dnes u néas tento zivotni meznik spada jesté do etapy pracovni
aktivity clovéka. Budme optimisté a vérme, ze k tomu vice prispiva nas
zdravy zpusob zivota nezli zhorSena ekonomické situace.

Vénujme se vsak dale samotné matematické olympiadé. Ta letos po
43 letech vrcholi opét v Brné, kdyz predchozi (a zdroven prvni) takova
prestavka trvala jen 5 let. V posledni vété jsem tekl dvé prvocisla a vy
muzete dale pocitat, kolikrat jesté do konce projevu feknu néjaké slovo
libovolného druhu, v jehoz zakladé bude prvocislo. Jako matematik bych
navrhl fikat takovym sloviim prvocislova, ale i bez toho hrozi, ze se budu
pri ¢teni zadr-zadrhavat.

Prestavka 43 let je napadné dlouhd, kdyz cilova mista matematické
a dnesni Ceské republiky. Vysvétleni je nasnadé: Jihomoravsky kraj mél
drive vétsi rozlohu, a tak 27. a 39. roc¢nik vrcholily v tomto kraji, i kdyz
ne v Brné, nybrz v obou pripadech v Jihlavé. Uvedené dvé cislovky 27
a 39 sice nejsou prvocisla, ale maji dohromady pouze dva prvocinitele,
coZ neni zrovna moc.

Obratme vsak ted pozornost na prvni léta matematické olympiddy.
Teprve v 11. ro¢niku bylo vyvraceno tvrzeni, Ze nase soutéz vrcholi vzdy
v Praze. Po prazském obdobi se stalo uz jenom jednou, ze se ceny vitézim
matematické olympiddy udélovaly nékolik let, konkrétné tii roky po so-
bé, ve stejném meésté. Stalo se tak bezprostiedné poté, co skoncila 41leta
historie MO v duisledku rozpadu spole¢ného statu Cechii a Slovaki. Nasi
slovensti kolegové tak zrovna dnes zahajuji své 19. samostatné tstiredni
kolo MO. Mnozi z pritomnych védi, ze casova shoda terminii soutéze
v obou statech neni nahodna. Cesti i slovensti olympionici totiz i na-
dale Tesi stejné tlohy, které pro né pripravujeme spolecné se slovenskymi
kolegy.
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Zminénym, mohu-li tak fict, repeti¢nim méstem bylo Jevicko, poprvé
v roce 1993, rok poté tam nase soutéz opét vrcholila, to uz byl jeji 43. roc-
nik, a do tretice se tak stalo hned v pristim roce 1995. Nejde sice o prvo-
¢islo, ale je to zajimavy soucin vétsiny z prvni sedmice prvocisel. Jeji
zbyld tfi prvocisla maji soucin 2431 a kde se v tomto roce bude konat
olympiada, neni jesté zndmo.

Tiileté jeviéské obdobi mé kromé rozpadu Ceskoslovenska jesté jedno
padné vysvétleni. Nase Skolstvi se v devadeséatych letech nachazelo stejné
jako celd nase spolec¢nost v neklidném obdobi porevolu¢nich zmén. Mate-
matickd olympiada tehdy proto nebyla zrovna stfedem zajmu skolskych
rada nasla ttulny azyl v pohostinném mésté na malé Hané.

Dnes uz je nastésti reformni obdobi za nami, situace ve skolstvi se
zklidnila a stabilizovala, ni¢im nerusend ndrocna a soucasné pro zaky
pritazlivd vyuka se na vSude fidi na miru sitymi skolnimi vzdélavacimi
programy a letos uz snad probéhnou (dokonce naostro) statni maturity.

Zpatky vsak k nasi soutézi. Chteél bych se ve svém projevu také zminit
o pracovnicich, ktefi svym usilim vyrazné ovlivnili ispésny chod riznych
etap dlouhé historie nasi olympiady. Uvédomil jsem si vSak, jak je to
nesnadny tkol. Ma vibec smysl jmenovat néjaké predstavitele tstredi
MO, kdyz o uspéchu soutéze patrné vice rozhodovala obétavost desitek
a dnes jisteé jiz stovek byvalych i soucasnych ucitelt matematiky, kteri své
zaky pro ucast v nasi soutézi ziskali a pak jim v pripravé na ni vydatné
pomédhali? Tak jsem se rozhodl, Ze z osobnosti, které dnes uz nejsou mezi
nami, vzpomenu jedinou, a to jednoho ze zakladatelt MO, ktery v prvnich
ro¢nicich soutéze, kdy se teprve utvarela jeji struktura, vénoval priprave
olympiddy nejvice Casu a energie ze vSech zainteresovanych. Tim clové-
kem byl pan Rudolf Zelinka, védecky pracovnik Matematického tustavu
v Praze, ktery prvnich 13 roc¢niki zastaval funkci tstfedniho jednatele
nasi soutéze. V pomyslné sini slavy MO, do niz by kromeé vitézi jednot-
livych roénikt méli byt uvedeni i takovi lidé, jako byl Rudolf Zelinka, by
k jeho jménu stacilo pripojit jedinou vétu: Zaslouzil se o matematickou
olympiddu.t

Mam velkou radost, ze na dneSnim slavnostnim zahéjeni jsou pri-
tomny tfi vyznamné postavy historie nasi soutéze. Predevsim bych vam

1 Pfi projevu nezaznéla pozdéjsi informace L. Bocka, ze tuto vétu o R. Zelinkovi
jako prvni vyslovil doc. Jan Vysin, ktery v letech 1959-1983 pusobil ve 13 roc-
nicich matematické olympiady jako jeji ustfedni mistopfedseda a v 11 roc¢nicich
jako ustfedni predseda.



rad predstavil clovéka, ktery 11 + 7 let zastaval funkci tstfedniho misto-
predsedy MO. Je jim matematik svétového jména, pan profesor Miroslav
Fiedler. Dobu vykonu funkce pana Fiedlera v MO jsem vyjadfil sou¢tem
dvou prvocisel, protoze se skutecné jednalo o dvé obdobi, oddélena pre-
stavkou kratsi nez 7 a delsi nez 5 let. Druhou vynikajici osobnosti, po
které jsem pred 11 lety prevzal funkei tstfedniho predsedy MO, je pan
docent Leo Bocek. Pan docent byl predsedou 13 let, kdyz predtim 11 let
vykondval funkci dstfedniho tajemnika. Tretim matematikem, kterému
jsem to doufam také dobte spocital, je rekordman, ktery uz 29 let ptsobi
jako ustfedni tajemnik nasi soutéze. Je jim vynikajici redaktor vsech
texttt MO, pan doktor Karel Horak.

Zavér mého zamysleni nad jubileem nasi soutéze mi usnadni jedna
vzpominka na vyznamného brnénského matematika 20. stoleti, akade-
mika Otakara Bortivku. Nebudu mluvit o jeho védeckém dile, pojmu to
odlehcené, uz tim, ze kuriézné zminim jeho funkci istfedniho mistopred-
sedy MO, kterou zastaval sice jediny rok, letopocet 1953 se vSsak v mém
projevu po¢itd.? Akademik Boriivka jednou pii oslavé nééich narozenin
prohlasil, ze Sedesdatiny jsou vyznamnéjsSim zivotnim jubileem nez tolik
vyzdvihované padesatiny. Pro¢? Prosté proto, ze ¢islo 60 spoc¢iva v objeti
prvociselnych dvojcat 59 a 61.

Tim moje svérazné ohlédnuti za historii matematické olympiady kon-
¢i. Prohlasuji tstredni kolo 60. roéniku matematické olympiady za zahé-
jené.

2 Zkouska pozornosti posluchac¢i, nebot 1953, a¢ zapsano dvéma prvocisly, je ziejmé
nasobek cisla 9.
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Tabulka 1
Pocty zaku strednich skol soutézicich v I. kole 60. ro¢niku MO

) Kategorie
Kraj A B C P Celkem
S U|S U S U |S U S U
Praha 85 73| 82 69134 111 |23 15| 324 268
Stredocesky 75 37| 43 12| 50 21| 9 7 177 7
Jihocesky 68 37| 32 14| 69 32| 5 3 174 86
Plzensky 48 31| 41 20| 55 18| 9 5 153 74
Karlovarsky 8§ 5| 12 2| 21 9| 0 0 41 16
Ustecky 26 19| 44 17| 68 24| 8 5 146 65
Liberecky 21 10 11 6| 25 13| 5 5 62 34
Kralovéhradecky 24 15| 30 14| 28 13| 0 O 82 42
Pardubicky 32 21 24 15| 20 15| 6 3 82 54
Vysocina 72 50| 54 24| 63 42| 3 0| 192 116
Jihomoravsky 106 74| 52 36| 81 66| 7 7 246 183
Zlinsky 68 30| 56 19| 90 27| 2 2 216 78
Olomoucky 29 19| 14 7| 38 21| 2 2 83 49
Moravskoslezsky 58 42| 89 61| 95 64|15 7 257 174
CR 720 463 | 584 316 | 837 476 | 94 61 | 2235 1316
Tabulka 2
Pocty zaku stfednich skol soutézicich v II. kole 60. ro¢niku MO
) Kategorie
Kraj A B C P Celkem
S U S U S U|S U S U
Praha 52 29 26 13 55 24| 15 4 148 70
Stredocesky 36 12 12 3 20 1 7 2 75 18
Jihocesky 36 16| 10 3 31 4| 3 2 80 25
Plzensky 30 14 18 7 18 3| 5 5 71 29
Karlovarsky 4 3 2 1 9 1|1 0 0 15 5
Ustecky 19 9( 17 3 24 1| 5 4 65 17
Liberecky 9 5 5 1 11 3| 5 4 30 13
Kralovéhradecky 15 9| 14 3 13 21 0 0 42 14
Pardubicky 20 10| 12 4 13 1| 3 1 48 16
Vysocina 37 14| 14 1 27 41 0 O 78 19
Jihomoravsky 71 39| 32 9 62 8| 6 4 171 60
Zlinsky 28 10 18 8 27 4| 2 1 75 23
Olomoucky 19 15 7 2 21 8| 2 1 49 26
Moravskoslezsky 28 21| 23 8 27 3| 7 3 85 35
CR 404 206 | 210 66 | 358 67 [ 60 31| 1032 370
S ... pocet vSech soutézicich U ... pocet uspésnych resitela
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Nejuspésnéjsi Fesitelé II. kola MO
v kategoriich A, B, C a P

7 kazdého kraje a z kazdé kategorie jsou dle dostupnych vysledkii uvedeni
vsichni uspésni fesitelé, kteri skoncili do desatého mista. Oznaceni G
znamena gymnazium.

e0o000ecccccccoees KrajPraha eeececececccococee

10.-14.

12

Kategorie A

. Tomas Zeman, G J. Keplera, Praha 6
. Martin Tépfer, G Praha 7, Nad Stolou
. Hana Dlouha, G J. Keplera, Praha 6

Dan Safka, G J. Keplera, Praha 6

. Tadeds Dohnal, G Ch. Dopplera, Praha 5

Dominik Steinhauser, G J. Keplera, Praha 6
Dominik Teiml, Anglické G, Praha 8
Jakub Zika, G Praha 6, Nad Aleji

. Matous Hrubes, G J. Heyrovského, Praha 5

Jan Grebik, G J. Nerudy, Praha 1

Vojtéch Havlicek, G Ch. Dopplera, Praha 5
Vit Henych, G Praha 6, Nad Aleji

Anna Chejnovskd, G Ch. Dopplera, Praha 5
Lukds Zavrel, G Praha 9, Chodovicka

Kategorie B

. Hana Dlouhd, G J. Keplera, Praha 6
. Adam Ldf, G Ch. Dopplera, Praha 5

Martin Cech, G Praha 6, Nad Aleji

. Ondrej Basler, G J. Keplera, Praha 6
. Martin Sykora, G Praha 6, Nad Aleji



6. Klara Schovankova, G E. Krasnohorské, Praha 4
7. Martin Spanél, Akad. G Praha 2, Korunni
8.-12. Jan Jeliga, G Ch. Dopplera, Praha 5
Luisa Cernochovd, G Praha 6, Nad Aleji
Ondrej Cifka, G Praha 6, Nad Aleji
Vojtéch Nizriansky, G Praha 6, Spanielova
Dominik Teiml, Anglické G, Praha 8

Kategorie C

1. Jakub Rosler, G Praha 1, Truhlarska
2. Aranka Hruskova, G Ch. Dopplera, Praha 5
3.-5. David Cernyj, G Ch. Dopplera, Praha 5
Ondrej Hiibsch, G Praha 6, Arabska
Jan Pulec, G Praha 4, Pisnicka
6.-7. Jelizaveta Lopatina, G Praha 6, Arabska
Vladimir Gasanov, G J. Keplera, Praha 6
8. Barbora Hudcovd, PORG Praha 8
9. Dominik Smrz, G E. Krasnohorské, Praha 4
10. Milan Pultar, G J. Keplera, Praha 6

Kategorie P

1. Jakub Zika, G Praha 6, Nad Aleji
2. Ondrej Hiibsch, G Praha 6, Arabska
3.-4. Jirt Setnicka, G Praha 9-Cakovice
Ondrej Cifka, G Praha 6, Nad Aleji

eeoceceovoeocoeoee StiedoCeskykraj eeeceecoeceeccee
Kategorie A

1. Tomds Reichel, GaSPgS Céslav
2.-4. Jan Vitek, G Céslav
Dominik Pénkava, G Kladno
Jiri Taborsky, G Mlada Boleslav
5. Tomas Martinek, G Vlasim

13



eoceoevoeocooee JihoCeskykraj eeececceoceccooecce

14

. Martin Prochazka, G V.B. Trebizského, Slany

Jindrich Skripko, G Kladno

. Jan Musil, G Kolin
. Jan Mikes, G Kolin

Anna Zavadilovd, Klasické G Ricany

Kategorie B

. Anna Zavadilovd, Klasické G Ricany
. Adéla Nguyenovd, G Benesov
. Linda Tichd, G Benesov

Kategorie C

. Pavel Majtin, G V.B. Trebizského, Slany

Kategorie P

. Jan Masek, G Benesov

Petr Bélohlavek, G J. Barranda Beroun

Kategorie A

. David Krska, G J. V. Jirsika, Ceské Budéjovice
. Kristof Pucejdl, G J.V. Jirsika, Ceské Budéjovice

Michal Hruska, G J. V. Jirsika, Ceské Budéjovice

. Jaromir Vanecek, G Strakonice
. Vlastimil Labsky, SPS a VOS Pisek
. Martin Mach, G Ceské Budéjovice, Jirovcova

Josef Vilek, G Tiebon

. Frantisek Nesveda, G Strakonice

Frantisek Petrous, G Ceské Budgjovice, Jirovcova
Stépdan Srser, G Cesky Krumlov
Lenka Stard, G Ceské Budéjovice, Jirovcova



Kategorie B

. Moskovka Alezij, G Ceské Budéjovice, Jirovcova
. Micka Ondrej, G Ceské Budéjovice, Jirovcova
. Kroft Patrik, G Ceské Budéjovice, Ceska

Kategorie C

. SkitSovsky Emil, G Ceské Budéjovice, Ceska
. Steinhauserova Anna, G Dagcice
. Guth Jiri, G Ceské Budéjovice, Jirovcova

Puncochar Michal, G Ceské Budéjovice, Jirovcova

Kategorie P

. David Krska, G J.V. Jirsika, Ceské Budéjovice

2. Filip Matzner, G J. V. Jirsika, Ceské Budéjovice

eeeceecooee Plrefiskykraj eeeeeeecececococe

Kategorie A

. Filip Hldsek, G Plzen, Mikulasské nam.

. Michael Bily, G J. Vrchlického, Klatovy
. Dung Le Anh, G Tachov

. David Hruska, G Plzen, Mikulasské nam.

Michal Nozicka, G Plzen, Mikulasské nam.

. Martin Buchdcek, G L. Pika, Plzen

Jan Kotrbaty, G Plzen, Mikulasské nam.

Filip Stédronskyj, G Plzeni, Mikuldsské ndm.

Jiri Némecek, G Plzen, Mikulasské ndm.
Stanislav Skoupy, Masarykovo G, Plzen

Jakub Suchy, G Plzen, Mikulasské nam.

Michaela Kochmanovd, G Plzen, Mikulasské nam.
Martin Prudek, G Plzen, Mikuldsské nam.

Jakub Sevc¢ik, Masarykovo G, Plzen

15
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Kategorie B

2. David Hruska, G Plzen, Mikulasské nam.
Dung Le Anh, G Tachov
3. Juda Kaleta, G J. Vrchlického, Klatovy
4. Michal Nozicka, G Plzen, Mikulasské nam.
5. David Kubes, Gymnazium L. Pika, Plzen
6. Anna DoleZalova, Masarykovo G, Plzen
7. Thi Tuyet Trang Nguyen, G J. Vrchlického, Klatovy

Kategorie C

—_

. Martin Hora, G Plzen, Mikulasské nam.
. Jan Holecek, G Plzen, Mikulasské nam.
. Lukads Bystricky, G Plzen, Mikulasské nam.

w N

Kategorie P

. Filip Hlasek, G Plzen, Mikuldsské nam.

. Juda Kaleta, G J. Vrchlického, Klatovy

. Jan Skoda, G Plzen, Mikulasské nam.

. Michael Bily, G J. Vrchlického, Klatovy
Filip Stédronsky, G Plzen, Mikulasské nam.

UL W N =

esececoccecoee Karlovarskykraj ee e e e ececeoecee
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Kategorie A
1. Josef Hazi, G Cheb

2. Dung Le Quang, G Cheb
3. Viet Luu Tran, G Cheb

Kategorie B

1. Jan Kucera, Svobodné chebska skola, Cheb



Kategorie C

1. Milena Tézkd, G Cheb

eeo00000000000S0 ﬂsteckykraj e0cec0c000000000
Kategorie A

. Stépdn Simsa, G J. Jungmanna, Litoméfice

. Zuzana Borsiovd, G Teplice, Cs. Dobrovolcti

. Lukds Vacek, G Teplice, Cs. Dobrovolcti

. Michal Mojzik, SPS a VOS Chomutov

. Jan Bok, G J. Jungmanna, Litomérice

. Prantisek Kavdn, G Ceska Kamenice
Kristyna Pilneyovad, G J. Jungmanna, Litométice
Otakar Zich, SPS a VOS Chomutov
Martin Zukerstein, G Lovosice

© U W N

Kategorie B
1. Stépdn Simsa, G J. Jungmanna, Litoméfice

2. Daniel Koldr, G dr. V. Smejkala, Usti nad Labem
3. Martin Smid, G Teplice, Cs. Dobrovolcii

Kategorie C

1. Hana Turc¢inovd, G J. Jungmanna, Litomeérice

Kategorie P

1. Stépdn Simsa, G J. Jungmanna, Litoméfice

2. Michal Mojzik, SPS a VOS Chomutov

4. Daniel Stahr, G J. Jungmanna, Litomérice
Ondrej Fiedler, G J. Jungmanna, Litomeérice

17



eooceececoeeee Libereckykraj eeececececececcoocece
Kategorie A

. Jakub Hrnéir, G F.X. Saldy, Liberec
. Matéj Hudec, G Liberec, Jeronymova
. Jan Polasek, G Turnov

. Jir{ Erhart, G F.X. Saldy, Liberec

. Petr Kuc, G F.X. Saldy, Liberec

T W N =

Kategorie B

1. Jan Babordk, G Ceska Lipa

Kategorie C

1. Tomds Novotng, G Ceska Lipa
2.-3. Jiri Strincl, G Jablonec nad Nisou, Dr. Randy
Jaroslav Knap, G Turnov

Kategorie P

. Jan Polasek, G Turnov

. Martin Zikmund, G Turnov

. Karolina Buresovd, G Ceské Lipa
. Tomas Dlask, G Turnov

=W N =

eoeovoo0ooe0eee Krilovehradecky kraj ee o e o e o0oo0coe
Kategorie A

1. Pavel Potocek, G Dobruska
2.-5. Martina Bekrovd, G Trutnov
Petr Jurco, G Trutnov
Katerina Medkovd, Biskupské G B. Balbina, Hradec Krélové
Jan Simbera, Jirdskovo G, Nachod
6. Anetta Sternwaldovd, Biskupské G B. Balbina, Hradec Kralové
7. Jakub Konrdd, G a SOS Jaroméf

18



1.
2.-3.

. Josefina Mddrovd, G Dobruska
. Eliska Bucharovd, G a SOS Hostinné

Kategorie B
Vojtéch Erbrt, G J. K. Tyla, Hradec Kralové

Filip Hautpfleisch, G F. M. Pelcla, Rychnov nad Knéznou
Dominik Vach, Biskupské G B. Balbina, Hradec Kralové

Kategorie C'

. Stanislav Valtera, G Dobruska
. Vendula Zikovd, Lepatovo G, Ji¢in

seoecoe0eoceoeoeoe Pardubickykraj eeceeoeoeececececocese

Kategorie A

. Miroslav Koblizek, G Zamberk

Filip Luz, G Zamberk

. Tomds Kubelka, G Zamberk
. Ale$ Hrabalik, G Litomysl
. Tomds Feleman, G Zamberk

Jan Novotny, G Pardubice, Dasicka
Ondrej Tobek, G Litomysl

. Dominik DusSek, G Lanskroun

Petr Mareska, G Ceskd Trebova

. Petr Kouba, G Pardubice, Dasicka

Kategorie B

. Katerina Jarkovskd, G Jevicko

Kristyna Kohoutovd, G Zamberk

. Jan Balds, G Zamberk
. Filip Jenis, G Jevicko

19



Kategorie C

1. Radovan Svarc, G Ceska Trebova

Kategorie P

1. Dominik Dusek, G LanSkroun

eoceecoececoeseeoe KrajVysolina eeecececesevoeccose
Kategorie A

1. Ondrej Bartos, G Zdar nad Sazavou
2. Petr Lousa, G Havlickiv Brod
3. Jan Kucharik, G Jihlava
5. Jan Klusdcek, G Trebic
Jakub Krasensky, G Jihlava
6.-7. Jan Dvordk, G V. Makovského, Nové Mésto na Moraveé
Adam Kucera, G Chotébor
8. Eva Havelkovd, G Zdar nad Sazavou
9.-10. Lukds Ridky, G Tel¢
Vojtéch Vesely, G Tel¢

Kategorie B

1. Filip Murdr, G Ttebic

Kategorie C

. Viktor Néemecek, G Jihlava

. Jir{ Janek, G O. Bfeziny a SOS, Tel¢
. Anezka Kvasnickovd, G Jihlava

. Marie Charvdtovd, G Jihlava

=W N =
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eoceooeee Jihomoravskykraj eeeeeceoeeececee

Kategorie A

. Hynek Jemelik, G Brno, tf. Kpt. Jarose
. Jan Sopousek, G Brno-Reckovice

Jan Stopka, G Brno, ti. Kpt. Jarose
Helena Valouchovad, G Brno, t¥. Kpt. Jarose

. Dominik Télupil, G Brno, ti. Kpt. Jarose

Jakub Vancura, G Brno, tr. Kpt. Jarose

. David Bainar, G Brno, tf. Kpt. Jarose

Ales Dostal, G Blansko

Frantisek Fiala, G Brno, tr. Kpt. Jarose

Jiri Kozlik, G Hodonin

Gabriela Kubickovd, Cyrilometodéjské G Brno, Lerchova
Jana Novotnd, G Brno, tt. Kpt. Jarose

Jana Sotdkovd, G Brno, tf. Kpt. Jarose

Kategorie B

. Jana Novotnd, G Brno, tf. Kpt. Jarose
. Mark Karpilovsky, G Brno, tf. Kpt. Jarose

Jakub Vancura, G Brno, t¥. Kpt. Jarose

. Tomds Novotng, G Brno, tf. Kpt. Jarose
. Tadeas Kucera, G Brno, t. Kpt. Jarose

. David Bainar, G Brno, ti. Kpt. Jarose

. Kristian Kozdk, G Matyéase Lercha, Brno

Magdalena Sefferovd, G Brno-Reckovice

. Albert Stehlik, Biskupské G Brno

Kategorie C

. Ondrej Muller, G Breclav
. Veronika Ambrozovd, G Brno, tf. Kpt. Jarose

Eliska Spackovd, Biskupské G Brno

. Pavel Brousek, G Brno, tf. Kpt. Jarose

Nella Fedorowyczovd, G Brno, tf. Kpt. Jarose
Pavel Hranac¢, G Brno, ti. Kpt. Jarose

21
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2.-3

4
XXX
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. Kristyna Bukvisovd, G Brno, t. Kpt. Jarose

Daniel Marsdlek, G Brno, ti. Kpt. Jarose

Kategorie P

. Hynek Jemelik, G Brno, t¥. Kpt. Jarose
. Vojtéch Hldvka, G a ZUS Slapanice

Bedrich Said, G Brno, tf. Kpt. Jarose

. Vojtéch Prikryl, G Brno, t¥. Kpt. Jarose

eeeveooveeoe Zlinskykraj eceeoececcosceccce

Kategorie A

. Petr Pecha, SPSS Vsetin

. Michal Opler, Masarykovo G, Vsetin

. Adam Vyskovsky, Masarykovo G, Vsetin

. Jan Mikel, G Roznov pod RadhoStem

. Daniel Viktorin, G Zlin, nam. TGM

. Matéj Kocian, G Zlin, Lesni ctvrt

. Jakub Ndplava, G Uherské Hradisté

. Martin Manas, G J. A. Komenského, Uhersky Brod
. Tomds Trcka, G Zlin, Lesni ¢tvr

Kategorie B

. Michal Burdn, G J. A. Komenského, Uhersky Brod

Jan Mikel, G Roznov pod Radhostem

. Jitka Janikovd, G Uherské Hradisté

Barbora Kocianovd, G Zlin, Lesni ¢ctvrf

. Petr Hlousek, G J. A. Komenského, Uhersky Brod
. Jan Mrdzek, G Kromériz
. Michal Janousek, G Zlin, nam. TGM

Jakub Konecnyj, G Uherské Hradisté

Kategorie C

. Tomds Lysonék, G Uherské Hradiste



w

. Jiri Zeman, G Zlin, Lesni ¢tvrt
. Martin Balouch, G Uherské Hradiste
. Lukds Tomanik, G Zlin, Lesni ¢tvrt

Kategorie P

. Petr Pecha, SPSS Vsetin

eeeeecsceooe Olomouckykraj eeececceececococecee

Kategorie A

. Jan Turdik, Cyrilometodéjské G Prostéjov

. Daniel Frybort, Cyrilometodéjské G Prostéjov
. Lubomir Grund, G Zabreh

. Jiri Vesely, G J. Wolkera, Prostéjov

. Jan Kostecky, VOSaSOS Sumperk

Dominik Lachman, G Olomouc-Hej¢in

. Pavel Francirek, G Kojetin

. Karel Benes, G Kojetin

. Eva Gocnikovd, G J. Skody, Pferov
10.-13.

Alena Harlenderovd, Slovanské G Olomouc
David Kucharcik, G Sternberk

Jiri Polcr, G Olomouc-Hejé¢in

Marek Raclavsky, G Kojetin

Kategorie B

. Lubomir Grund, G Zabteh
. Jakub Kopriva, Slovanské G Olomouc

Kategorie C

. Jana Dobesovd, Slovanské G Olomouc

Petr Vincena, G J. Skody, Prerov

. Lukds Knob, G Kojetin
. Zuzana Gocnikovd, G J. Skody, Pierov
. Markéta Caldbkovd, G J. Skody, Pierov

23
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. Tomds Kremel, G J. Skody, Pierov
. Vojtech Hamala, G Zabteh
. Ondrej Skdcel, G Sternberk

Kategorie P

. Jiri Fichler, Slovanské G Olomouc

2. Petr Laitoch, G Olomouc-Hej¢in

24

eeoeoeee Moravskoslezsky kraj e e e oo o0 0o o oo

Kategorie A

. Lukas Folwarczny, G Havirov, Komenského

Jakub Solovsky, G M. Kopernika, Bilovec

. Michal Kopf, Slezské G Opava
. Jiri Biolek, G P. Bezruce, Frydek-Mistek

Ondrej Bouchala, G Havifov, Komenského
Helena Svobodova, G Frydlant nad Ostravici

. Jir{ Skacel, G Ptibor
. Adam Sikora, G Cesky Tésin

Ondrej Vejpustek, Wichterlovo G, Ostrava-Poruba

. Pavel Trutman, G M. Kopernika, Bilovec

Kategorie B

. Katerina Solovskd, G M. Kopernika, Bilovec

Josef Svoboda, G Frydlant nad Ostravici

. Matej Vanek, G P. Bezruce, Frydek-Mistek
. Viclav Kapsia, G M. Kopernika, Bilovec
. Albert Stérba, G P. Bezruce, Frydek-Mistek

Tereza Stefkovd, G Rymaiov

. Martin Poloch, Mati¢ni G, Ostrava

Magdaléna Zvdickovd, G Rymatov



- W N

Kategorie C

. Martin Raszyk, G Karvina
. Tadeds Kmenta, G Frydlant nad Ostravici

Daniel Stérba, Mendelovo G, Opava

Kategorie P

. Lukas Folwarczny, G Havifov, Komenského
. Martin Raszyk, G Karvina

. Ondrej Bouchala, G Havitov, Komenského
. Pavel Trutman, G M. Kopernika, Bilovec

25



10.-11.

12.-13.

26

el I

14.
15.-20.

Vysledky tstfedniho kola 60. ro¢niku MO
kategorie A

Vitezové

. Anh Dung Le, 3/6 G Tachov

. Tomds$ Zeman, 8/8 G J. Keplera, Praha 6

. Michael Bily, 8/8 G J. Vrchlického, Klatovy

. Miroslav Koblizek, 8/8 G Zamberk

. Jan Kuchatik, 3/4 G Jihlava

. Tadeds Dohnal, 8/8 G Ch. Dopplera, Praha 5

Filip Hlasek, 8/8 G Plzen, Mikuldsské nam.
Jakub Solovsky, 4/4 G M. Kopernika, Bilovec
Stépdn Simsa, 6/8 G J. Jungmanna, Litoméfice
Ondrej Bartos, 7/8 G Zdar nad Sazavou

Dan Safka, 8/8 G J. Keplera, Praha 6

Dalsi uspesni resitelé

Jiri Biolek, 6/6 G P. Bezruce, Frydek-Mistek
Lubomir Grund, 6/8 G Zabteh

Jan Sopousek, 8/8 G Brno-Reckovice

Hana Dlouhd, 6/8 G J. Keplera, Praha 6

Matéj Hudec, 4/4 G Liberec, Jeronymova
Dominik Steinhauser, 3/4 G J. Keplera, Praha 6
Jan Stopka, 3/4 G Brno, t¥. Kpt. Jarose

Helena Svobodovd, 6/6 G Frydlant nad Ostravici
Dominik Teiml, 4/6 Anglické G, Praha 8

41b.
37b.
34b.
28 b.
25b.
23b.
23b.
23b.
23b.
22b.
22b.

21b.
21b.
20 b.
19b.
19b.
19b.
19b.
19b.
19b.



N O W

13.
14.
15.

Vysledky ustredniho kola 60. ro¢niku MO
kategorie P

Vitezové

. Hynek Jemelik, 4/4 G Brno, tf. Kpt. Jarose

. Lukds Folwarczny, 7/8 G Havifov, Komenského

. Filip Hldasek, 8/8 G Plzen, Mikul4dsské nam.

. Jakub Zika, 8/8 G Praha 6, Nad Aleji

. Vojtéch Prikryl, 4/4 G Brno, ti. Kpt. Jarose

. David Krska, 4/4 G Ceské Budéjovice, J. V. Jirsika

Michal Mojzik, 4/4 SPS a VOS Chomutov

s v

Dalsi uspésni resitelé

. Jirt Setnicka, 6/6 G Praha 9-Cakovice
. Jan Poldsek, 8/8 G Turnov

10.
11.-12.

Stépdan Simsa, 6/8 G J. Jungmanna, Litoméfice
Daniel Stahr, 8/8 G J. Jungmanna, Litomé&Fice
Martin Zikmund, 7/8 G Turnov

Martin Raszyk, 1/4 G Karvina

Vojtéch Hldvka, 6/8 G a ZUS Slapanice

Ondrej Hiibsch, 1/4 G Praha 6, Arabska

45b.
37b.
36 b.
33b.
29b.
27b.
27b.

26 b.
25b.
24 b.
23b.
23b.
22b.
19b.
18b.
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Kategorie C

Texty tloh

cC-1-1

Lucie napsala na tabuli dvé nenulova c¢isla. Potom mezi né postupné
vkladala znaménka plus, minus, krat a déleno a vsechny ctyti priklady
spravné vypocitala. Mezi vysledky byly pouze dvé rtizné hodnoty. Jaka

dvé ¢isla mohla Lucie na tabuli napsat? (Peter Novotni))
C-1-2

Dokazte, ze vyrazy 23z + y, 192 + 3y jsou délitelné ¢islem 50 pro stejné

dvojice prirozenych &isel z, v. (Jaroslav Zhouf)
C-1-3

Maéme c¢tverec ABCD se stranou délky 1cm. Body K a L jsou stfedy
stran DA a DC. Bod P lezi na strané AB tak, ze |BP| = 2|AP|. Bod
Q lezi na strané BC tak, ze |CQ| = 2|BQ|. Usetky KQ a PL se proti-
naji v bodé X. Obsahy c¢tyruhelniki APXK, BQXP, QCLX a LDKX
ozna¢ime postupné Syu, Sg, Sc, Sp (obr. 1).

D L C
S
D Se
K
X
Sa @
Sp
A P B
Obr. 1
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a) Dokazte, ze Sp = Sp.
b) Vypoctéte rozdil Sc — S4.
c) Vysvétlete, pro¢ neplati Sy + Sc = S + Sp. (Peter Novotny)

C-1-4

Ve skupiné n zaka spolu nékteri kamaradi. Vime, ze kazdy m& mezi
ostatnimi aspon ¢tyri kamarady. Ucitelka chce zaky rozdélit do dvou nej-
vyse ¢tyrélennych skupin tak, ze kazdy bude mit ve své skupiné alespon
jednoho kamaréda.
a) Ukazte, ze v pripadé n = 7 lze zéky pozadovanym zptsobem rozdélit.
b) Zjistéte, zda lze zaky takto rozdélit i v pripadé n = 8.

(Tomas Jurik)

C-1-5
Dokazte, ze nejmensi spolecny nasobek [a,b] a nejvétsi spoleény délitel
(a,b) libovolnych dvou kladnych celych ¢isel a, b spliiuji nerovnost
a-(a,b)+0b-[a,b] = 2ab.

Zjistéte, kdy v této nerovnosti nastane rovnost. (Jaromir Simsa)

C-1-6

Je dan lichobéznik ABCD. Stied zékladny AB ozna¢me P. Uvazujme
rovnobézku se zdkladnou AB, ktera protind usecky AD, PD, PC, BC
postupné v bodech K, L, M, N.
a) Dokazte, ze |KL| = |MN|.
b) Urcete polohu piimky KL tak, aby platilo i |K'L| = |LM]|.

(Jaroslav Zhouf)

C-S-1

Po okruhu béhaji dva atleti, kazdy jinou konstantni rychlosti. Jestlize bézi
opa¢nymi smeéry, potkavaji se kazdych 10 minut, jestlize bézi stejnym
smérem, potkavaji se kazdych 40 minut. Za jakou dobu ubéhne okruh
rychlejsi atlet? ( Vojtech Bdlint)
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C-§-2

Je dan ctverec se stranou délky 6 cm. Najdéte mnozinu stredtt vsech pti-
cek ctverce, které ho déli na dva ctyrihelniky, z nichz jeden ma obsah
12 cm?. (Pfickou étverce rozumime tsecku, jejiz krajni body lezi na stra-
néch ¢tverce.) (Pavel Leischner)

c—-5-13

Necht z, y jsou kladna celd ¢isla takova, ze obé cisla 3z +5y a 5z + 2y jsou
délitelnd c¢islem 60. Zduvodnéte, proc¢ cislo 60 déli také soucet 2z + 3y.
(Jaromir Simsa)

c-n-1

Na tabuli jsou napsana pravé tfi (ne nutné riznd) redlnd c¢isla. Vime, ze
soucet libovolnych dvou z nich je tam napsén také. Urcete vSechny trojice
takovych Cisel. (Jan Mazak)

C-1n-2

Najdéte vSechna kladna cela ¢isla n, pro ktera je ¢islo n? 4+ 6n druhou
mocninou celého ¢isla. ( Vojtech Balint)

c-n-3

Lichobéznik ABC'D ma zakladny AB a C'D po fadé délek 18cm a 6 cm.
Pro bod E strany AB plati 2 |AE| = |EB|. Tézisté K, L, M trojihelnika
po fadé ADE, CDE, BCE tvori vrcholy rovnostranného trojuhelniku.
a) Dokazte, ze pifimky KM a C'M sviraji pravy thel.

b) Vypoctéte délky ramen lichobézniku ABCD. (Pavel Caldbek)

cC-n-14

Necht z, y, z jsou kladna realna cisla. Ukazte, ze Cisla x +y + 2z — xyz a
xy + yz + zx — 3 nemohou byt zdporna soucasneé.
(Stanislava Sojdkova)
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Reseni dloh

C-1-1

Oznac¢me hledana ¢isla a, b. Protoze b # 0, je nutné a + b # a — b. Kazdé
z ¢isel a-b, a : b je proto rovno bud a+ b, anebo a —b. Staci tedy rozebrat
¢tyti pripady a v kazdém z nich vyfTesit soustavu rovnic. Ukazeme si
trochu dimyslnéjsi postup.

Kdyby platilo

a+b=a-b a a—-b=a:b

anebo
a+b=a:b a a—b=a-b,

vynasobenim rovnosti bychom v obou piipadech dostali a? —b* = a?, coz

odporuje podmince b # 0. Proto jsou ¢isla a - b a a : b bud obé rovna
a + b, anebo obé rovna a — b. Tak ¢i tak musi platit a - b = a : b, odkud
po tpravé a(b? — 1) = 0. Protoze a # 0, nutné b € {1, —1}.

Pokud je tedy b = 1, jsou ctyri vysledky postupné a + 1, a — 1, a, a,
coz jsou pro libovolné a tfi rtizné hodnoty.

Pro b = —1 dostavame vysledky a — 1, a + 1, —a, —a. To budou dvé
ruzna cisla, praveé kdyz a —1 = —a anebo a+ 1 = —a. V prvnim pripadeé

dostavame a = %, ve druhém a = —1.

2
Lucie mohla na zac¢atku na tabuli napsat bud cisla % a —1, anebo

¢isla —1 a —1.

C-1-2

Pfedpoklddejme, Ze pro dvojici pfirozenych ¢isel z, y plati 50 | 23z + y.
Potom pro néjaké prirozené cislo k plati 23z + y = 50k. Z této rovnosti
dostaneme y = 50k — 23z, tedy 19z + 3y = 19z + 3(50k — 23z) = 150k —
— 50x = 50(3k — z), takze ¢islo 19z + 3y je rovnéz nasobkem ¢isla 50.

Podobné to funguje i z druhé strany. Jestlize pro néjakou dvojici priro-
zenych ¢isel z, y plati 50 | 192+ 3y, je 192+ 3y = 501 pro néjaké prirozené
¢islo . Z této rovnosti vyjadiime ¢islo y; dostaneme y = (500 — 19z)/3
(dalsi postup by byl podobny, i kdybychom vyjadfili  misto y). Po do-
sazeni vyjde

500 — 19z 69z + 500 — 19z 50 (x4 1)
3 - 3 B 3 '

23z +y =23z +
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O vysledném zlomku vime, Ze je to pfirozené éislo. Citatel toho zlomku je
délitelny ¢islem 50. Ve jmenovateli je jen ¢islo 3, které je s 50 nesoudélné,
proto se ¢islo 50 nema s ¢im ze jmenovatele zkratit, tudiz ¢islo 23z + y
je délitelné 50.

Jiné FeSeni. Zfejmé 3 - (23z + y) — (192 + 3y) = 50z, proto jestlize
50 déli jedno z cisel 23x + y a 19z + 3y, déli i druhé z nich.

C-1-3

a) Ctyithelniky ABQK a DAPL jsou shodné (jeden z nich je obra-
zem druhého v otoceni 0 90° se stfedem ve stiedu ¢tverce ABCD). Proto
maji i stejny obsah, tedy Sa + Sp = Sa + Sp. Z toho hned dostavame
Sp = Sp.

b) Snadno se ndm podaii vypocitat obsah pravouhlého lichobézniku
ABQK, nebot zname délky zakladen i vysku. Dostaneme S4 + Sp =
= (1 +1) 1 =2 cm? Podobné vypoétem obsahu lichob&zniku PBCL
dostaneme Sc + Sp = (3 + 2) - 3 = 5 cm?. Odectenim prvni ziskané

rovnosti od druhé dostévéme Sc — Sy = 5 — & = & cm?.

¢) Nerovnost mezi obsahy S4 +Sc a Sg+ Sp (jejichz pfimé vypocty
jsou nad sily zéku 1. ro¢éniku) mizeme zduvodnit ndsledujicim zptisobem.
Soucet téchto dvou obsahti je 1cm?, takze se nerovnaji, pravé kdyz je

jeden z nich mensi nez %cm2. Bude to obsah Sp + Sp (rovny 2Sp, jak

uz vime), kdyz ukdzeme, ze obsah Sp je mensi nez %cmz. Udéldme to
tak, ze do celého ¢tverce ABC'D umistime bez prekryti Ctyfi exemplare
dotyéného ¢tyitihelniku PBQX . Jak, to je patrné z obr. 2, kde M, N znaci

sttedy stran BC, AB a R, S body, jez déli strany CD, DA v poméru 1 : 2.

Obr. 2

33



Jiné feSeni Césti ¢). Tentokrat misto nerovnosti Sg + Sp < %ch

dokazeme ekvivalentni nerovnost S4 + Sc > %ch. Proto se pokusime
,premistit* ¢tyiuhelnik APX K tak, aby lezel pfi ¢tyftihelniku XQCL
a aby se jejich obsahy daly i geometricky secist. Uhly AKQ a DLP jsou
shodné a |AK| = |DL|, proto muzeme ¢tyithelnik APXK piemistit
ve ¢tverci ABCD do jeho ,rohu“ D tak, ze se ke ¢tyfihelniku XQCL
,primkne® podél strany LX svou stranou LY, kde Y je prusecik tsecek
SM a PL z pivodniho feSeni (obr.3). Obsah S4 + S¢ je pak obsahem
Sestitthelniku DSYXQC'. Proc je vétsi nez % cm?, 1ze zdiivodnit napiiklad
takto:

Usecka spojujici bod L se stfedem U usecky K@ protne tsecku SM
v jejim stiedu V. Ctyfthelnik UQMYV ma obsah rovny poloviné obsahu
rovnobézniku K QM S, tedy rovny obsahu trojihelniku KM S. Proto mé
Sestithelnik DSVUQC obsah rovny obsahu ¢étyfuhelniku KMC D, tj.
poloviné obsahu ¢tverce ABCD. Obsah S4+S¢ je jesté vétsi, a to o obsah
¢tyFahelniku XUVY. Je tedy vskutku Sy + S¢ > 3 cm?.

C-1-4

a) Jediny zpusob, jak rozdélit 7 zaki na dvé nejvyse ¢tyicélenné skupi-
ny, je mit jednu trojclennou a jednu ¢tytrélennou skupinu. Kazdy zék ze
¢tytclenné skupiny pritom bude mit ve své skupiné kamarada pri jakém-
koli rozdéleni, protoze se nemiize stat, ze by vsichni jeho kamaradi byli
v trojclenné skupiné (jsou aspon Ctyfi).

Takze staci rozdélit zaky tak, aby kazdy v trojc¢lenné skupiné v ni mél
kamardda. Proto do ni dame kteréhokoli ze zdkt a k nému nékteré dva
jeho kamarady.

b) Vezméme si jakékoli rozdéleni 8 zaki na dvé ¢tyiclenné skupiny
(skupiny s jingym poctem zdkt nepripadaji v Gvahu). Jestlize toto rozdé-
leni nevyhovuje ucitel¢iné zdméru, mame néjakého zaka X, jenz je zle
zarazen — ma vSechny své ¢tyti kamarady A, B, C, D ve druhé skupiné.
Ukéazeme, ze umime vymeénit X a nékterého ze zaku A, B, C, D tak, ze
celkovy pocet zle zafazenych zakt v nové vzniklych skupinach se oproti
puvodnimu stavu zmensi.

Po libovolné ze ¢ty vymeén prichazejicich do ivahy prestane byt X
zle zafazen a vsichni tfi zaci, ktefi se s nim octnou ve skupiné, budou
dobie zafazeni, nebot jsou to jeho kamaradi. Zaci K, L, M, ktefi byli pred
vymeénou ve skupiné s X, mohou byt po vyméné zle zarazeni jen tehdy,
pokud byli zle zafazeni i predtim (nebot X neni kamarddem ani jednoho
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z nich). Protoze zdk K ma ¢tyfi kamarddy a nekamaradi se s X, musi
mit aspon jednoho kamarada Y i ve skupiné obsahujici zéky A, B, C, D.
Pravé tento zak Y se hodi pro zamyslenou vyménu s zdkem X, nebot po
ni i on bude mit ve své nové skupiné kamarada — totiz zaka K.

Ukézali jsme tedy, ze vyménou zaki X a Y pocet zle zarazenych
zaku klesne. Dostaneme néjaké nové rozdéleni; jestlize v ném je aspon
jeden zdk zle zatazen, mizeme zopakovat predchozi postup a opét snizit
pocet zle zarazenych zakl. Po nejvyse osmi krocich dostaneme rozdéleni,
v némz uz nejsou zadni zle zarazeni zaci.

Jiné FeSeni ¢dsti b). Uvazujme vSechna moznd rozdéleni osmi zaku
do dvou ¢tyfélennych skupin. Rozdéleni, kde nékdo nema ve své skupiné
zadného kamardda, budeme nazyvat zld, zbyla budou dobrd.

Kolik je zlych rozdéleni? Jestlize ma zdk X aspon pét kamaradi,
aspon jeden z nich musi byt v jeho skupiné. Jestlize ma zak X jen Ctyti
kamarddy a jsou-li vSichni ve druhé skupiné, mame jen jedno jediné rozdé-
leni s touto vlastnosti. Celkové tedy k danému zakovi X existuje nejvyse
jedno rozdéleni, jez je zlé. Za X muizeme vzit jednoho z 8 riznych zaki,
proto zlych rozdéleni je nejvyse 8 (nékterd moznd pocitdme vickrat). Pri-
tom vsech rozdélenf je (5) = 35, tedy aspofi 27 z nich je dobrych.

C-1-5

Nerovnost by bylo lehké dokédzat, kdyby néktery ze dvou séitanct na levé
strané byl sim aspon roven pravé strané. Cislo [a, b] je zjevné nasobkem
¢isla a.

Jestlize [a, b] = 2a, pak b[a, b] = 2ab a v dané nerovnosti plati dokonce
ostrd nerovnost, nebot ¢islo a(a,b) je kladné.

Jestlize [a,b] < 2a, tak nezistdva jind moznost nez [a, b] = a. To vSak
nastane, jen kdyz b | a. V tomto piipadé (a,b) = b a v dané nerovnosti
nastane rovnost.

Jiné FeSeni. Oznacme d = (a,b), takze a = ud a b = vd pro nesoudélnd
prirozend ¢isla u, v. Odtud hned plyne, ze [a, b] = uvd. Protoze
a-(a,b)+b-[a,b] = ud® + ww?d® = u(1 + v*)d?,
2ab = 2uvd?,
je vzhledem k nerovnosti ud? > 0 nerovnost ze zadani ekvivalentni s ne-

rovnosti 1 +v? > 2v, tedy (v — 1)? = 0, coz plati pro kazdé v. Rovnost
nastane, pravé kdyz v = 1, tedy b | a.

35



Jiné feSeni. Oznacme d = (a,b). Je znamo, ze [a, b] - (a, b) = ab. Po vy-
jadreni [a, b] z tohoto vztahu, dosazeni do dané nerovnosti a ekvivalentni
tpravé dostaneme ekvivalentni nerovnost d?+b2 2> 2bd, ktera plati, nebot
(d — b)? = 0. Rovnost nastavé jen pro d = b, tedy pokud b | a.

C-1-6

a) Primky AB, CD a KL jsou rovnob&zné, proto v dané situaci do-
vedeme najit vicero dvojic trojihelniki podobnych vzdy podle véty wu.
Tyto podobnosti 1ze vyhodné zapsat pomoci poméra vzdalenosti, coz
vyuzijeme v diikazu toho, ze tsecky KL a M N maji stejnou délku.

Ozna¢me z vzdéalenost piimek AB a KL a y vzdalenost piimek KL
a C'D. Pomoci téchto vzdalenosti nyni vyjadiime koeficienty podobnosti
odpovidajicich trojuhelniki.

Trojuhelniky APD a K LD jsou podobné, proto

KLy
|AP| x4y’

Trojuhelniky BPC a NMC jsou podobné, proto

|[MN| __y
|PB| x4y’

Spojenim obou rovnosti dostavame

KL| __y _ |MN]
|AP| " z+y |PB|’

a protoze |AP| = |PB|, plyne odtud |KL| = |MN]|.

b) Chceme sestrojit bod L tsecky PD takovy, ze |KL| = |LM]|. Ro-
zebereme dva pripady podle toho, zda je ¢i neni pifimka PC' rovnobézna
s primkou AD.

Jestlize je primka PC rovnobéznd s AD, je APCD rovnobéznik a je-
diny vyhovujici bod L je stfed tsecky PD neboli prisecik uhlopticek
rovnobézniku APCD (podminka |KL| = |LM| tu vyjadiuje shodnost
trojihelniki KLD a MLP, kterd nastane, pravé kdyz |LD| = |LP|,
obr. 4).

Jestlize se pfimky PC a AD protinaji v néjakém bodé R (obr. 5), bude
bod L prusecikem tisecky DP s primkou, na niz lezi téznice trojihelniku
APR z vrcholu R. Plyne to z poznatku, ze s tiseckou AP jsou podle
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stfedu R stejnolehlé vsechny v tvahu pripadajici usecky KM, a proto
stfedy vSech téchto usecek lezi na primce jdouci bodem R a stfedem
usecky AP.

Z uvedenych konstrukci plyne, ze vyhovujici bod L je vzdy jediny,
existuje tudiz pravé jedna rovnobézka s pfimkou AB s pozadovanymi
vlastnostmi.

Pozndmka. Jak jsme uvedli v feSeni, pokud jsou piimky PC a AD
rovnobézné, je hledanym bodem L, pro ktery plati | K L| = |LM|, prisec¢ik
uhlopricek rovnobézniku APCD. Pokud primky PC a AD rovnobézné
nejsou, tj. APCD je lichobéznik, je i v tomto pripadé priisecik jeho tihlo-
pricek vybornym kandidatem pro takovy bod L. Vypoctem s vyuzitim
podobnosti se da ukéazat, ze tomu tak vskutku je, takze hledanym bo-
dem L je v kazdém pripadé prusecik uhlopticek ¢tyithelniku APCD.

C-S-1

Oznacme rychlosti bézctt v; a vy tak, ze v; > vg (rychlosti uddvdme
v okruzich za minutu). Pfedstavme si, ze atleti vystartuji ze stejného
mista, ale opacnym smérem. V okamziku jejich dalsiho setkani po 10 mi-
nutach bude soucet délek obou probéhnutych tsek odpovidat presné
délce jednoho okruhu, tedy 10v; + 10ve = 1.

Jestlize bézi atleti ze stejného mista stejnym smérem, dojde k dalsimu
setkani, jakmile rychlejsi atlet zabéhne o jeden okruh vic nez ten poma-
lejsi. Proto 40v; — 40v, = 1.
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Dostali jsme soustavu dvou linearnich rovnic s neznamymi vy, vs:

100, + 100y = 1,
40’(}1 - 401}2 = 1,

kterou vytesime naptiklad tak, ze ke ¢tyfnasobku prvni rovnice pricteme
druhou, ¢imz dostaneme 80v; = 5 neboli v; = %. Zajima nas, jak dlouho
trva rychlejsimu bézci probéhnout jeden okruh, tedy hodnota podilu 1/v;.
Po dosazeni vypoctené hodnoty v; dostaneme odpovéd: 16 minut.

Pozndmka. Ulohu lze rovnéz fesit tivahou: za 40 minut ub&hnou at-
leti dohromady 4 okruhy (to plyne z prvni podminky), pfitom rychlejsi
o 1 okruh vice nez pomalejsi (to plyne z druhé podminky). To tedy zna-
men4, ze prvni za uvedenou dobu ubéhne 2,5 okruhu a druhy 1,5 okruhu,
takze rychlejsi ubéhne jeden okruh za 40/2,5 neboli 16 minut.

C~S5=2

Jestlize pricka déli ¢tverec na dva ¢tyruhelniky, museji jeji koncové body
lezet na protilehlych stranach ¢tverce. V takovém pripadé jsou oba Ctyt-
thelniky lichobézniky nebo pravothelniky (pro potteby tohoto Feseni bu-
deme pravouhelnik povazovat za specidlni lichobéznik). Oznac¢me dany
¢tverec ABCD, koncové body pricky oznacme K a L. Predpokladejme,
ze bod K lezi na strané AD, potom bod L lezi na strané BC'. Jeden ze
¢tyfihelnikit KABL a KDCL mé podle zadéni obsah 12 cm?; necht je
to napr. lichobéznik K ABL.

Obsah lichobézniku vypocteme jako soucin jeho vysky s délkou
stfedni pricky. Vyska je v nasem pripadé rovna délce strany ctverce, tedy
6 cm. Jeho stfedni pficka mé tudiz délku 2cm. Z toho plyne, Ze stied
useCky KL musi lezet na ose strany AB ve vzdalenosti 2cm od stfedu
strany AB. Plati to i naopak: jestlize stfed tsecky KL lezi v popsané
poloze, bude ¢tyithelnik K ABL lichobéznik s obsahem 12 cm?.

Budeme-li misto lichobézniku K ABL uvazovat lichobéznik K DCL,
vyjde stied pricky KL na osu uUsecky C'D ve vzdalenosti 2cm od stiedu
strany CD.

Pokud pricka KL spojuje body na strandch AB a C'D, dostaneme
dalsi dva mozné body lezici na spojnici stfedt tisecek AD a BC'. Hledanou
mnozinu tedy tvori ¢tyfi body, které lezi na prickach spojujicich stredy
protilehlych stran ¢tverce ve vzdalenosti 1cm od jeho stredu.
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C-S§-3

Na zakladé predpokladu ze zadani vime, ze existuji kladna cela cisla m
a n, pro kterd plati

3z + 5y = 60m,

5z + 2y = 60n.

Na tyto vztahy se mtzeme divat jako na soustavu linearnich rovnic s ne-
znamymi z a y a parametry m a n. Vyresit ji umime libovolnou stan-
dardni metodou, napriklad od dvojnasobku prvni rovnice odecteme péti-
nasobek druhé a vyjadrime z, potom dopocitame y. Dostaneme

. 60(5n — 2m) _ 60(5m — 3n)
“T 19 YT T
Protoze ¢isla 19 a 60 jsou nesoudélnd, jsou obé ¢isla x a y délitelna 60.
Proto i soucet 2z + 3y je délitelny 60.

Jiné FeSeni. Vime, ze 60 = 3 -4 - 5. Pritom d¢isla 3, 4, 5 jsou po dvou
nesoudélnd, proto na dikaz délitelnosti 60 staci dokazat délitelnost jed-
notlivymi ¢isly.

Protoze ¢islo 3x + 5y je délitelné 5, je i x délitelné 5. Podobné z relace
5| 5z 4 2y plyne 5 | y. Proto 5 déli i 2z + 3y.

Protoze ¢islo 3z+5y je délitelné 3, je y délitelné 3. A protoze 3 | 5x+2y,
je také 3 | 5z, a tedy 3 | z. Proto 3 déli i 2z + 3y.

Protoze 4 | 3x+5y a4 | bz 42y, je 4 | (3z+5y) + (5bz +2y) = 8z + Ty,
takze 4 | y. A protoze napiiklad 4 | 3z + 5y, je také 4 | 3z neboli 4 | z.
Proto 4 déli i 2z + 3y.

Jiné fesSeni. Vyjadiime vyraz 2x+3y pomoci 3z+5y a 5x+2y. Budeme
hledat ¢isla p a ¢ takové, ze 2z + 3y = p(3z +5y) + ¢(5z + 2y) pro kazdou
dvojici celych ¢isel z, y. Jednoduchou tpravou dostaneme rovnici

(2-3p—5q)z+ (3-5p—2q)y =0. (%)
Budou-li hledana ¢isla p a ¢ splnovat soustavu
3p+5q =2,
op +2q = 3,

bude zfejmé rovnost (*) splnéna pro kazdou dvojici z, y. VyFeSenim sou-
stavy dostaneme p = 11/19, ¢ = 1/19. Dosazenim do (x) dostavame
vyjadreni

19(2z + 3y) = 11(3z + 5y) + (5z + 2y),
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z néhoz plyne, ze spolu s ¢isly 3z + 5y i 5z + 2y je soucasné délitelné 60
i ¢islo 2z + 3y, protoze c¢isla 19 a 60 jsou nesoudélna.

c-n-1

Oznac¢me cisla napsand na tabuli a, b, c. Soucet a + b se téz naléza na
tabuli, je tedy roven jednomu z ¢isel a, b, c. Kdyby a + b bylo rovno a
nebo b, byla by na tabuli aspon jedna nula. Rozebereme proto t¥i pripady
podle poctu nul napsanych na tabuli.

Jsou-li na tabuli aspon dvé nuly, snadno se presvédéime, ze soucet
kazdych dvou ¢isel z tabule je tam rovnéz. Dostavame, Ze trojice ¢, 0,0 je
pro libovolné realné ¢islo ¢ fesenim tlohy.

Je-1li na tabuli pravé jedna nula, je tam trojice a,b,0, kde a i b jsou
nenulova ¢isla. Soucet a + b tudiz neni roven ani a, ani b, musi tedy byt
roven 0. Dostavame tak dalsi trojici t, —t, 0, kterd je feSenim tlohy pro
libovolné realné cislo t.

Jestlize na tabuli neni ani jedna nula, soucet a + b neni roven ani a,
ani b, proto a + b = c¢. Ze stejnych divodi je b+ c=aac+a = b.
Dostali jsme soustavu tii linedrnich rovnic s neznamymi a, b, ¢, kterou
muzeme vyresit. OvSsem hned z prvnich dvou rovnic po dosazeni vyjde
b+ (a+b) = a neboli b = 0. To je ve sporu s tim, Ze na tabuli zadn4 nula
neni.

Zdver. Uloze vyhovuji trojice t, 0,0 a t, —t, 0 pro libovolné realné &slo ¢
a zadné jiné.

C-1-2

Z¥ejmé n? 4+ 6n > n? a zaroven n? 4+ 6n < n? +6n +9 = (n + 3)2
V uvedeném rozmezi lezi jen dvé druhé mocniny celych é&isel: (n + 1)2
a (n+2)>2

V prvnim piipadé mame n? + 6n = n? + 2n + 1, tedy 4n = 1, tomu
vSak zadné celé ¢islo n nevyhovuje.

V druhém pifpadé mame n? + 6n = n? + 4n + 4, tedy 2n = 4. Dosta-
vame tak jediné reseni n = 2.

Jiné FeSeni. Budeme zkoumat rozklad n? + 6n = n(n + 6). Spole¢ny
deélitel obou ¢isel n a n + 6 musi délit i jejich rozdil, proto jejich nejveét-
$im spoleénym délitelem mohou byt jen ¢isla 1, 2, 3 nebo 6. Tyto étyti
moznosti rozebereme.
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Kdyby byla ¢isla n a n + 6 nesoudélna, muselo by byt kazdé z nich
druhou mocninou. Rozdil dvou druhych mocnin prirozenych cisel vsak
nikdy neni 6. Pro mald &sla se o tom snadno presvédéime, a pro k = 4
uz je rozdil byt i jen sousednich étvercii k? a (k— 1) aspori 7. Vlastnost,
ze 1, 3,5 a 7 jsou CtyTi nejmensi rozdily dvou druhych mocnin, vyuzijeme
i déle.

Je-li nejvétsim spolecnym délitelem cisel n a n + 6 ¢islo 2, je n =
= 2m pro vhodné m, které navic neni délitelné tremi. Jestlize n(n+6) =
= 4m(m + 3) je étverec, musi byt i m(m + 3) étverec. Cisla m a m + 3
jsou vSak nesoudélnd, musi proto byt kazdé z nich druhou mocninou
prirozeného ¢isla. To nastane jen pro m = 1 neboli n = 2. Snadno ovérime,
ze n(n + 6) je pak vskutku druhou mocninou celého ¢isla.

Je-li nejvetsim spolecnym délitelem cisel n a n + 6 ¢islo 3, je n = 3m
pro vhodné liché m. Jestlize n(n + 6) = 9m(m + 2) je Ctverec, museji
byt nesoudélna cisla m a m + 2 rovnéz ¢tverce. Takové dva ctverce vsak
neexistuji.

Je-li nejvétsim spoleénym délitelem c¢isel n a n + 6 ¢islo 6, je n = 6m
pro vhodné m. Jestlize n(n + 6) = 36m(m + 1) je ¢tverec, museji byt
Ctverce i obé nesoudélna cisla m a m + 1, coz nastane jen pro m = 0, my
vsak hledame jen kladna cisla n.

Uloze vyhovuje jediné n = 2.

cC-1n-3

Ctyithelnik AECD je rovnobéznik, proto-
ze jeho strany AE a CD jsou rovnobeézné L
a stejné dlouhé (obé méfi 6 cm). Na jeho tihlo-
pricce AC tak lezi téznice trojihelniku ADE
z vrcholu A i téznice trojuhelniku CDE z vr-
cholu C', a proto na této primce lezi i body K

vvev

K M

niku déli jeho téznice v poméru 2 : 1, proto
jsou usecky AK, KL a LC stejné dlouhé. A E P B

Bod L je stredem tusecky KC, proto
na ose soumeérnosti usecky KM lezi nejen
vyska rovnostranného trojuhelniku K LM, ale i stfedni pricka trojihel-
niku KM C'. Proto je primka C'M kolméa na K M.

Zbyva vypocitat délky ramen lichobézniku ABC D. Oznac¢me P stied
usecky EB. Protoze CM je kolma na KM, je téznice C'P kolma na

Obr. 6
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EB, takze trojuhelnik EBC je rovnoramenny, a tudiz i dany lichobéznik
ABCD je rovnoramenny. Délku ramene BC' nyni vypocéteme z pravo-
uhlého trojihelniku PBC', v némz zname délku odvésny PB. Pro druhou
odvésnu CP ziejmé plati

V3

3
|CP| = 5|CM| =3 = |KM]|,

jak snadno plyne z vlastnosti trojihelniku KMC. A protoze |[KM| =
= 2|AP| z podobnosti trojthelnikit KMC a APC, je (poéitano v centi-
metrech)

3 3 2 2
ICPI:3-§IKM|=3-§'§|AP|=x/§-§|AB|=12x/§.

Potom

|BC| = /|PB[2 + |PC|? = v/36 + 122 - 3 = 63/1 + 12 = 6+/13.

Ramena daného lichobé&zniku maji délku 6v/13 cm.

Alternativni dikaz kolmosti primek KM a CM: Protoze bod L je
stfedem tusecky KC' a zéroven |LK| = |LM|, nebot trojihelnik K LM
je rovnostranny, lezi bod M na Thaletové kruznici nad pramérem KC,
takze trojuhelnik KM C je pravouhly.

cC-1n-14

Ukéazeme, ze je-li ¢islo xy + yz + zax — 3 zdporné, je ¢islo ¢ +y + 2z — xyz
kladné.

Jestlize xy+yz+ zx < 3, je aspon jedno z cisel xy, yz, zx mensi nez 1,
napf. zy. Pak 2 +y + 2z — zyz =  + y + 2(1 — xy) je zjevné soucet tii
kladnych cisel.

Jiné feSeni. Ukazeme, Ze je-li ¢islo x + y + z — xyz zaporné, pak ¢islo
zy + yz + zz — 3 je kladné.

Predpokladejme, ze = + y + z < zyz. Tim spis x < xyz. Po zkraceni
kladného c¢isla = dostaneme yz > 1. Podobné odvodime odhady zy > 1
a zx > 1. Nyni je staci seCist a mame xy + yz + zax > 3.

Jiné FeSeni. Tvrzeni tlohy dokazeme sporem. Predpokldadejme, ze x +
+y+ 2 < zyz a zaroven xy + yz + zx < 3. Obé tyto nerovnosti jsou
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symetrické, proto miizeme predpoklddat, ze ¢isla x, y, z jsou oznacena
tak, ze z je nejmensi. Z druhé nerovnosti dostaneme, ze ry < 3. Potom
vsak  +y + 2 < zyz < 3z, tedy = +y < 2z. To je vsak spor s tim, ze
¢islo z je nejmensi.

Jiné FeSeni. Jsou-li oba vyrazy zaporné, je x + y + z mensi nez 3
a xy + yz + zx mensi nez zyz. To jsou nerovnosti mezi kladnymi cisly,
jejich vynésobenim dostaneme, ze 3xyz spolu se Sesti dalsimi kladnymi
¢leny je mensi nez 3xyz, coz je spor.

Pozndmka. Da se dokazat dokonce vic: jestlize x + y + 2 < xyz, pak
ry + yz + zx > 9. Pri dikazu vyuzijeme nerovnost

1
it=-=29
+22

ktera plati pro vSsechna kladna realna cisla t, nebot pro takova t je ekvi-
valentni s nerovnost{ (t — 1)2 = 0.
Kdyz si povsimneme, ze plati

1 1 1
x+y+z—xyz:a:yz(—+—+——1>,
Ty Yz 2T

sezname, ze uvedené tvrzeni plyne z obecné platné nerovnosti

1 1 1
(— + ——{——)(xy—}—yz—i—zx) 209.
Ty yz 2w

Posledni nerovnost dokazeme roznasobenim levé strany:

1 1 1 T+ z z+zx
(—+—+—-)(my+yz+zx)=3+ y+y+ + Ll
Ty Yz 2w z & Y

G
=3+ 2+ D+ (L4 + (2492
y z oy r oz

>3+3.2=9.
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Kategorie B

Texty tloh

B-1-1
V oboru reédlnych cisel vyreste soustavu

Varz+y?2 =241,
ViR 4+ 22 =2+1,
VZ2+ar2=y+1.

(Tomds Jurik)

B-1-2

Uvazujme vnitini bod P daného obdélniku ABC D a ozna¢me po radé @,
R obrazy bodu P v soumérnostech podle stredii A, C. Predpokladejme,
ze primka QR protne strany AB a BC ve vnitinich bodech M a N.
Sestrojte mnozinu vsech boda P, pro néz plati [M N| = |AB|.

(Jaroslav Svrcek)

B-1-3
Necht a, b, ¢ jsou redlna ¢isla, jejichz soucet je 6. Dokazte, ze aspon jedno
z Cisel
ab+be, bc+ca, ca+ab

neni vétsi nez 8. (Jan Mazak)
B-1-4

Najdéte vsechna cela ¢isla n, pro néz je zlomek
n® +2010
n? 42010

roven celému ¢islu. (Pavel Novotny)

44



B-1-5

Zabyvejme se otazkou, které trojihelniky ABC' s ostrymi thly pfi vr-
cholech A a B maji nasledujici vlastnost: Vedeme-li sttedem vysky z vr-
cholu C' t1i pfimky rovnobézné se stranami trojihelniku ABC', protnou
je tyto primky v Sesti bodech lezicich na jedné kruznici.
a) Ukazte, ze vyhovuje kazdy trojihelnik ABC' s pravym thlem pii vi-
cholu C.

b) Vysvétlete, pro¢ zadny jiny trojihelnik ABC nevyhovuje.

(Jaromir Simsa)

B-1-6
Urcete pocet desetimistnych cisel, v nichz lze skrtnout dvé sousedni ¢is-
lice, a dostat tak ¢islo 99krat mensi. (Jdn Mazak)
B-S-1

V oboru realnych ¢isel feste rovnici
Ve+3+vVz=p

s neznamou x a redlnym parametrem p. ( Vojtech Balint)

B~S~—2

Podél kruznice je rozmisténo 16 realnych cisel se souctem 7.

a) Dokazte, ze existuje tisek péti sousednich ¢isel se souctem aspor 2.

b) Urcete nejmensi k takové, ze v popsané situaci lze vzdy nalézt tsek
k sousednich ¢isel se souc¢tem aspon 3. (Jan Mazak)

B-§5§-3

Vné daného trojuhelniku ABC jsou sestrojeny ctverce ACDE, BCGF.
Dokazte, ze |AG| = |BD|. Déle ukazte, ze stfedy obou ¢tverct spolu se
stredy tseéek AB a DG jsou vrcholy ¢tverce. (Pavel Leischner)
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B-1l-1

Soucin kladnych realnych ¢isel a, b, ¢ je 60 a jejich soucet je 15. Dokazte
nerovnost
(a+b)(a+c) =60

a zjistéte, pro ktera takova cisla a, b, ¢ nastane rovnost.
(Jaromir Simsa)

B-1l1-2

Najdéte vsechny dvojice kladnych celych ¢isel a, b, pro néz ¢islo b je
délitelné c¢islem a a soucasné ¢islo 3a + 4 je délitelné ¢islem b + 1.
(Pavel Novotnij)

B-11-3
Necht M, N jsou po fadé vnitini body stran AB, BC' rovnostranného
trojuhelniku ABC, pro néz plati |[AM|: [MB| = |[BN|: |[NC| =2 : 1.
Ozna¢me P pruse¢ik primek AN a C'M. Dokazte, ze pfimky BP a AN
jsou navzdjem kolmé. (Jaroslav Svrcek)

B-I1l-4

Zapiseme vsechna pétimistna c¢isla, v nichz se kazda z cislic 4, 5, 6, 7, 8
vyskytuje pravé jednou. Pak jedno (libovolné z nich) skrtneme a vSechna
zbyvajici secteme. Jaké jsou mozné hodnoty ciferného souc¢tu takového
vysledku? (Sdrka Gergelitsovd)
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Reseni tloh
B-1-1
2 2 _

Umocnénim a odectenim prvnich dvou rovnosti dostaneme z° — 2
= (24 1)%2 — (x + 1), coz upravime na 2(z% — 2?) + 2(xz — z) = 0 neboli

(z—2)(x+2+1)=0. (1)

Analogicky bychom dostali dalsi dvé rovnice, jez vzniknou z (1) cyklic-
kou zdménou neznamych x — y — z. Vzhledem k této symetrii (dand
soustava se nezméni dokonce pii libovolné permutaci neznamych) staci
rozebrat jen néasledujici dvé moznosti:

Pokud = = y = z, prejde pivodni soustava v jedinou rovnici v2z2 =
= 2 + 1, jez ma dvé feSeni ;5 = 1+ V2. Kazda z trojic (1 £ V2,
1+v2,1+ \/5) je zirejmeé feSenim i ptivodni soustavy.

Pokud jsou naopak nékterd dveé z ¢isel z, y, z ruznd, napriklad x # z,
plyne z (1) rovnost « + z = —1. Dosazenim = + 1 = —z do druhé rovnice
soustavy dostavame y = 0 a poté ze tieti rovnice vyjde 22 + (z + 1)? =
= 1 neboli z(z + 1) = 0. Posledni rovnice tak mé dvé feseni z = 0
a r = —1, jimz odpovidaji z = —1 a z = 0. Snadno ovérime, ze obé
nalezené trojice (0,0,—1) a (—1,0,0) jsou fesenim dané soustavy stejné
jako trojice (0, —1,0), kterou dostaneme jejich permutaci.

Dana soustava ma celkem pét Teseni:

(0’07_1)7 (07—170)7 (_17030)a
(1+V2,1+v2,14+Vv2) a (1-Vv2,1-v2,1-V2).

B-1-2

Uhlopficka AC daného obdélniku ABCD je ze zadani stiedni piic-
kou v trojuhelniku PQR, a tedy AC || QR, jinak fe¢eno AC || MN.
Usecka M N je tak jednoznaéné uréena tim, ze je rovnobézné s AC, lezi
v opacné poloroviné urcené primkou AC nez bod P a pro jeji délku plati
|[MN| = |AB|. Konstrukci bodi M a N lze provést nékolika zpisoby.
Lze k tomu napiiklad vyuzit rovnobéznik AMNE (obr.7), v némz plati
|AE| = |MN| = |AB|.

Protoze tsecka M N zaroven urcuje primku, na niz lezi strana QR
trojuhelniku PQR, je ziejmé, ze vrchol P musi lezet na primce p, jez je
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Obr. 7

obrazem primky MN v osové soumérnosti podle primky AC' (obsahu-
jici stfedni pricku trojihelniku PQR). Piimka p m4a s vnitikem daného
obdélniku spole¢ny vnitiek tsecky M’'N’ (jez je navic obrazem nalezené
usecky M N ve sttedové soumérnosti podle stfedu daného obdélniku).

Snadno vidime, ze i naopak ke kazdému vnitfnimu bodu P usecky
M'N’ lezi odpovidajici body @, R na pfimce M N a body M, N jsou tak
pruseciky primky QR se stranami AB, BC, takze vyhovuji podminkam
ulohy.

Zaver. Hledanou mnozinou vsech bodi P dané vlastnosti je tedy
vnitfek vyse popsané tisecky M'N’.

B-1-3
Jiste staci ukazat, ze soucet zkoumanych tii ¢isel neprevysuje 24:

2
(ab + be) + (be + ca) + (ca + ab) = 2(ab+bc+ca) £ =(a+b+c)* =24,

3¢
kde nerovnost je diisledkem nerovnosti

3(ab+ bc+ ca) < (a+b+c)? = 36,

48



kterd je ekvivalentni nerovnosti 0 < (a — b)? + (b — ¢)? + (¢ — a)?, jez je
splnéna pro kazda tri realnd a, b, c.

Jiné feseni. S ohledem na symetrii predpoklddejme, ze plati a =
= min{a, b, c}. Z rovnosti a+b+c = 6 pak plyne a < 2 a b+c = 4. Proto
treti zkoumané ¢islo, rovné a(b + ¢), mé stejné znaménko jako ¢islo a,
takZe je zaru¢ené mensi nez 8, plati-li @ < 0. Je-li naopak 0 < a < 2,
vSimneme si, Ze ze zfejmé nerovnosti 0 < (u — v)?2, platné pro libovolnd
realnd u, v, plyne tipravou odhad 4uv < (u+v)?; dosadime-li sem u = 2a
a v = b+ ¢, dostaneme

8a(b+c) < (2a+b+c)® = (a+6)* < 8 =64,

odkud po déleni osmi vychdzi kyzend nerovnost a(b+ ¢) < 8.

B-1-4
Zlomek
n® 42010 2010(n — 1)
n2+2010 ' n2+2010
je celé ¢islo, pravé kdyz n? + 2010 je délitel ¢isla 2010(n —1) =2-3-5-
-67(n —1).

Neni-li n ndsobek prvoéisla 67, jsou ¢isla n? + 2010 a 67 nesoudélnd,
proto n? 42010 musi byt délitelem ¢isla 30(n — 1). Protoze [30(n —1)| <
< n? + 2010, vyhovuje jenom n = 1.

Nechf n = 67m, kde m je celé. Potom

2010(n — 1) _ 30(67m — 1)
n? +2010  67m%+30

Neni-li m nésobkem péti, musi byt ¢islo 67m? + 30 délitelem ¢isla
6(67m — 1). Pro |m| < 4 tomu tak ale neni, zatimco pro |m| = 6 je uz
|6(67m — 1)| < 67m? + 30. Je tedy m = 5k, kde k je celé. Potom

30(67m —1)  6(335k —1)

67m2+30  335k2+6 °

Pro |k| = 7 je absolutni hodnota tohoto zlomku nenulovd a mensi nez 1.
Ze zbylych ¢isel vyhovuji £ =0 a k = —6.
Cislo
n® +2010
n?+2010

je tedy celé, praveé kdyz je celé n nékteré z cisel 0,1 nebo —2010.
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B-1-5

I kdyz doporucujeme fesit obé ¢ésti tilohy oddélené (tj. nejprve analyzo-
vat situaci v pravoihlém trojihelniku), popiSeme rovnou jejich spolecné
reseni. Celou tulohu lze totiz formulovat jako dikaz tvrzeni, ze sestroje-
nych Sest bodu lezi na kruznici, pravé kdyz je ithel AC'B pravy.

Uvazujme tedy libovolny trojihelnik ABC s ostrymi uhly «, 8 a
ozna¢me M stred vysky CP a D, E, F, G, H, I uvazované pruseciky
tak, aby s vrcholy A, B, C' a patou vysky P lezely na hranici trojihel-
niku v poradi

A, D, P, E, B, F, G, C, H I

7 konstrukce plyne, ze body M, D, I jsou stfedy stran pravothlého troj-
uhelniku ACP a body M, E, F jsou stfedy stran pravouhlého trojtihel-
niku BC'P. Oba c¢tytuhelniky PM 1D a PM FE jsou tedy pravouhelniky,
takze i DEFI je pravothelnik (obr.8). Jeho vrcholy D, E, F, I proto
vZdy lezi na jedné kruznici a tsecky DF a FEI jsou jeji pruméry. Nasi
ulohou je proto zjistit, kdy na této kruznici lezi i body G a H. To lze
podle Thaletovy véty vyjadfit podminkou, ze ihly DGF a FHI jsou
pravé. Protoze DG || AC a EH | BC, jsou oba thly DGF a EHI
shodné s tthlem ACB a ekvivalence s podminkou pravého tthlu ACB je
tak dokazana.

N
N

>
TN N
A D E B
Obr. 8

B-1-6

Necht n je c¢islo splinujici podminky zadani. Skrtnutim dvou poslednich
¢islic zmensime n alespon stokrat, proto se mizeme omezit na skrtani
¢islic, které nejsou posledni. Po skrtnuti dvou sousednich ¢islic ziistanou
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z Cisla n dvé ¢asti, pritom prvni ¢ast muze byt prazdna, pokud jsme skrtli
jeho prvni dvé cislice.

Necht a je ¢islo uréené prvni ¢asti ¢isla n (nula v pfipadé, ze prvni
Cést je prazdnd), b je ¢islo urcené vyskrtnutymi dvéma cislicemi a c je
ur¢eno posledni ¢ésti ¢isla n (pocet €islic této ¢ésti oznac¢me k). Podle
zadani plati

99(a - 10F + ¢) = a-10**2 + b- 10* 4 ¢,

po tpravé 98¢ = 10¥(a + b). Protoze ¢ < 10¥, musf byt 98 > a + b. Navic
&islo 49 déli a + b, nebot je samo nesoudélné s 10*. Kladny celociselny
podil (a+b)/49 je mensi nez 2, musi tedy byt roven 1, takze a + b = 49.
Odtud vyplyva rovnost

10*
=—=5.101
C ) y

kde ¢islo k je zaroven urceno poctem ¢islic ¢isla a (oznac¢ime-li [ pocet
cislic ¢isla a, je k = 10—1— 2, pricemz v pripadé a = 0 klademe ptirozené
1=0).

Z uvedeného postupu plyne, ze pro kazdé a € {0,1,2,...,49} a b =
= 49 — a existuje pravé jedno c¢islo ¢, pro néz popsané cislo n spliuje
podminky zadani, a ze jind vyhovujici n neexistuji. Ukazeme, ze vsech
50 takovych n (koncicich sedmi, Sesti, nebo péti nulami) je navzajem
riznych.

Sestrojené n koncici sedmi nulami je jediné (a = 0). Sesti nulami
konéi 9 sestrojenych ¢isel (a € {1,2,...,9}) a jsou navzdjem ruznd, ne-
bot zacinaji riznymi ¢islicemi. Péti nulami konéi 40 sestrojenych cisel
(a € {10,11,...,49}) a jsou navzajem ruzné, nebot zacinaji ruznymi
dvojcislimi.

Pro nazornost vypisme jesté nékolik ¢isel vyhovujicich zadani tak, jak
je dostaneme pomoci nasich ivah: pro a = 0 mame b = 49, ¢ = 50 000 000
an = 4950000000, proa =1jeb=48,¢c = 5000000 an = 1485000000,
pro a = 2 je n = 2475000000, ..., pro a =9 je n = 9405000000, pro
a=10jeb=39,c= 500000 an = 1039500000, ..., proa=49jeb=0,
¢ = 500000 a n = 4900 500 000.

Zaver. Existuje 50 ¢isel, jez vyhovuji zadani.

B-S-1

Aby byla leva strana rovnice definovana, museji byt oba vyrazy pod
odmocninami nezaporné, coz je splnéno pravé pro vSechna z = 0. Pro
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nezapornd x je pak p = vz + 3++vx > /3, rovnice miize tedy mit FeSeni
pouze pro p = /3.
Upravme nyni danou rovnici:

VT +Vr+3=p,
27 + 3+ 2¢/z(z + 3) = p?,
2v/a(z +3) =p* — 22 -3,
4z(z + 3) = (p* — 2z — 3)?,
4x2+12x:p4+4x2+9—4p21‘—6p2+12:v,

(»* —3)*
4p?

Protoze jsme danou rovnici umocnovali na druhou, je nutno se presvédéit
zkouskou, 7e vypoctené x je pro hodnotu parametru p = /3 feSenim
puvodni rovnice:

(p* —3)? (p* —3)?
AL S AL A
\/ 4p? tot 4p?
_ P49+ 122 (2 - 3)7
4p? 4p?

_ PP E3)2 (p2—3)2:p2+3+p2—3:p
4p? 4p? 2p 2p '

Pii predposledni tipravé jsme vyuzili podminku p > v/3 (a tedy i p* —
—3=0ap>0),takze \/(p2 — 3)2 = p%® — 3 a \/4p2 = 2p.

Poznamka. Misto zkousky staci ovérit, ze pro nalezené x jsou vSechny
umocnované vyrazy nezaporné, tedy vlastné jen ze

(p* = 3)(p* +3)

2
— 2 —3=
p? -2z 22

v

0.

Pro p 2 v/3 tomu tak opravdu je.

B-S-2

a) Mezi 16 ¢isly napsanymi podél kruznice se nachazi pravé 16 usekii
péti sousednich ¢isel (vybereme-li libovolné jedno z napsanych ¢isel a od
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néj oznacime ¢isla podél kruznice postupné jako prvni, druhé, ..., Sest-
néacté, bude prvni tsek tvoren prvnim az patym ¢islem, druhy tsek pak
druhym az Sestym cislem, ... a posledni Sestnacty tisek bude tvoren Sest-
nactym, prvnim, druhym, tfetim a ¢tvrtym ¢islem).

Tvrzeni dokazeme sporem. Predpokladejme, ze uvazované tvrzeni ne-
plati, tedy ze cisla v kazdém z 16 tsekii maji soucet mensi nez 2. Celkovy
soucet Ss vsech 16 souctt cisel v jednotlivych péticich je tak mensi nez
16-2 = 32. Ovsem kazdé ¢islo na kruznici je soucasti pravé péti usek péti
sousednich ¢isel, tudiz kazdé z 16 cisel je v uvedeném souctu zapocteno
prave pétkrat. Proto je soucet S5 zaroven roven pétinasobku souctu vsech
¢isel na kruznici, coz je 35. To je ve sporu s odvozenou nerovnosti S5 < 32.
Na kruznici tedy musi existovat pét po sobé jdoucich ¢isel, jejichz soucet
je alespon 2 (dokonce vice nez 2).

b) Nejprve ukazme, ze nemuze byt k£ < 6. K tomu staci podél kruznice
rozmistit 16 shodnych ¢isel se souc¢tem 7. Soucet ¢isel v libovolném tseku

k cisel tak bude
7 42

Necht nyni k = 7. Zopakovanim uvahy z ¢asti a) dokazeme, ze vhodny
usek uz existuje: Predpokladejme naopak, ze soucet libovolnych sedmi
po sobé jdoucich ¢isel (z danych Sestnécti) je mensi nez tfi. Takovych
useki je podél kruznice Sestndct (jejich pocet na cisle k nezévisi!), takze
soucet S;7 vSech 16 souctu ¢isel v jednotlivych sedmicich je mensi nez
16 - 3 = 48. Kazdé z danych 16 cisel je v souctu S7 zapocteno sedmkrét,
tedy S7 =7 -7 = 49, coz odporuje predchozimu odhadu S7; < 48.

Hledanym ¢islem k je ¢islo 7.

B—=5—~3

Protoze oba uhly BCG a DC A jsou pravé, uvazujme otocCeni kolem vr-
cholu C' daného trojihelniku, v némz bod B prejde do bodu G. V ném je
ziejmeé obrazem bodu D bod A a obrazem tusecky BD tsecka GA (obr.9).
Odtud plyne, ze |AG| = |BD|, a také, ze tiseCky AG a BD jsou navzajem
kolmé.

Ozna¢me po tadé K, L, M, N stfedy stran ¢tyrihelniku ABGD.
(Body N a L jsou tedy stiedy uvazovanych ¢tverct.) Vzhledem k tomu,
ze Usecka K L je stredni prickou trojihelniku AGB a usecka M N stredni
pfickou trojuhelniku AGD, je |KL| = 3|AG| = |KL| a zéroverit M N ||
| AG | KL. Podobné |[KN| = 1|BD| = |LM| a zaroveii KN || BD ||
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|| LM. To znamend, ze KLMN je rovnobéznik. Protoze vSak vime, ze
|AG| = |BD| a navic AG L BD, je KLMN ¢tverec. Tim jsou vSechna
tvrzeni tlohy dokazana.

Jiné FeSeni. Ulohu vyfesime bez tvahy o otoceni. Pro ditkaz rovnosti
|AG| = |BD| ukézeme, ze trojihelniky ACG a DCB jsou shodné podle
véty sus. Skutecné, |AC| = |DC|, |CG| = |CB| a |xACG| = |« ACB| +
+ |xBCG| = |<ACB| +90° = |xACB| + |<ACD| = |« DCB|.

Usecky AG a BD jako strany shodnych trojihelniki tedy maji stejnou
délku. Abychom ovérili, ze jsou navic navzajem kolmé, oznacime P jejich
prisecik a porovname vnitini uhly v trojihelnicich APQ a DCQ, kde
Q je prusecik usecek AC a BD. Pri vrcholech A a D jsou tihly shodné
diky oveérené shodnosti trojihelniki ACG a DCB, thly pii vrcholu @
se rovnéz shoduji (jakozto thly vrcholové), takze se shoduji i jejich thly
pri vrcholech P a C| jsou tedy oba pravé.

7 dokazané shodnosti i kolmosti tsecek AG a BD odvodime, ze
KLMN je ¢tverec stejné jako v ptivodnim TFeSeni.

Poznamka. Poznamenejme jesté, ze jsme vlastné ukazali, ze stredy
stran libovolného konvexniho ¢tytthelniku tvori vrcholy rovnobézniku,
jehoz strany jsou rovnobézné s thloprickami daného ¢étytuhelniku. To-
muto rovnobézniku se fikd Varignontuv rovnobéznik. Je tedy ¢tytihelnik
KLMN Varignonuv rovnobéznik ¢tyiihelniku ABGD.
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B-1l-1

Pomoci rovnosti abe = 60, a+b+c = 15 dany vyraz (a+b)(a+c) upravime
a pak odhadneme na zdkladé AG-nerovnosti pro dvojici hodnot a a 4/a:

(a+b)(a+c)=a2+(b+c)a+bc=a2+(15—a)-a+%0:

60 4 1
:15a+—:15(a+—> >15-2-1/a- - = 60.
a a a

Nerovnost je dokdzéna. Rovnost nastane, pravé kdyz a = 4/a neboli
a = 2. Ze vztahtt b+ ¢ = 15 — a = 13 a be = 60/a = 30 mame {b,c} =
= {3,10}. Rovnost proto spliuji pravé dvé vyhovujici trojice (a, b, ¢), a to
(2,3,10) a (2,10,3).

Jiné reSeni. Kromé rovnosti abc = 60, a + b + ¢ = 15 vyuzijeme
AG-nerovnost pro dvojici hodnot be a a(a + b+ ¢):

(a+b)(at+c)=bct+ala+b+c) =
>2-y/be-ala+b+c)=2V60- 15 = 60.

Rovnost nastane, pravé kdyz bec = a(a+ b+ ¢) neboli 60/a = 15a, odkud
a = 2, takze zaver je stejny jako v prvnim feseni.

B-1l1-2

Protoze cislo a déli ¢islo b, 1ze psat b = ka, kde k je kladné celé ¢islo.

Staci tedy najit kladna cela ¢isla a, pro kterd existuje kladné celé ¢islo k

takové, ze ¢islo 3a + 4 je (kladnym) ndsobkem ¢isla ka + 1 (= b+ 1).

7 této podminky dostdvame nerovnost ka + 1 < 3a + 4, z niz plyne

k—3 < (k—3)a < 3,atedy k < 6. Navic pro k = 3 jeuz 2(ka+1) > 3a+4

pro libovolné a = 1, takze muze byt jediné ka + 1 = 3a + 4. Probereme

vsech Sest moznosti pro cislo k:

k=1: a+1]|3a+4, aprotoze a+ 1 | 3a + 3, muselo by platit a+ 1| 1,
coz neni mozné, nebot a + 1 > 1.

k=2 2a+1|3a+4=(2a+1)+ (a+3), tedy 2a + 1| a + 3. Protoze
vSak pro libovolné pfirozené a plati 2- (2a + 1) > a + 3, musi byt
2a+1=a+ 3 neboli a =2 a odtud b = ka = 4.

k=3: 3a+ 1= 3a+ 4, coz neni mozné.

k=4: 4a+1=3a+4, tedy a =3, b=12.

95



k=5 ba+ 1= 3a+ 4, coz nesplnuje zadné celé a.
k=6:6a+1=3a+4,tedya=1,b=6.
Resenim jsou dvojice (1,6), (2,4) a (3,12).

B-1l-3

Ze zadéni plyne, ze |[BM| = |CN|, |AC| = |BC| a |xACN| = |xCBM| =
= 60°, takze trojuhelniky ACN a CBM jsou shodné podle véty sus.
Proto plati i [ xANC| = |«CM Bj, takze ¢tyithelnik BNPM je tétivovy
(ihel ANC je dopliikovym thlem k thlu AN B, ktery je protéjsim tihlem
k thlu CM B ve zminéném ¢tytihelniku, obr. 10).

BY .
A S M B
Obr. 10

Oznacme S stied strany AB daného rovnostranného trojuhelniku
ABC. Protoze |SB| = 3|AB|, je |[SB| : |[MB| = 3 : 2, a protoze je
i |CB|: |[NB|] = 3 : 2, jsou trojuhelniky SBC a M BN podobné po-
dle véty sus. Protoze tihel C'SB je pravy, musi byt pravy i thel NM B.
Kruznice opsana ctyrtuhelniku BNPM je tak Thaletovou kruznici nad
prumérem BN, a tudiz je pravy i ithel BPN, coz jsme chtéli dokézat.

B-11-4

Vysledny ciferny soucet je urcen jednoznacné a je jim ¢islo 33.

Pro vyteseni tlohy bude vyhodné nejprve zjistit soucet S vSech pé-
timistnych cisel obsahujicich kazdou z ¢islic 4, 5, 6, 7, 8. Téchto cisel je
ziejmé prave tolik, kolik je rtiznych poradi uvedenych péti ¢islic, tedy
5! = 120. Navic kazda z danych ¢islic se mezi témito 120 ¢isly objevuje
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rovnomeérné v kazdém radu, tedy 24krat. Soucet S tak muzeme rozepsat
po jednotlivych radech jako

S=10"(24-4+24-5+24-6+24-7+24-8) +
+10%-(24-4424-54+24-64+24-74+24-8) +...=
=24-(44+54+6+7+8)-(10*+10> +1024+10+1) =
=24-30-11111.

Obratme nyni pozornost k moznym hodnotéam ciferného souctu ¢isla
S — a, kde a je pétimistné cislo zminéného tvaru, tedy a = 33333 + b,
pricemz b je pétimistné ¢islo obsahujici kazdou z ¢islic 1, 2, 3, 4, 5. Je
tedy

S—a=11111-24-30 — a = 7999920 — 33333 — b = 7966 587 — b.
Pri odecitani ¢isla b vSsak nedochdzi v jednotlivych fadech k pfechodu
ptes desitku, proto je ciferny soucet ¢isla S —a roven (74+9+6+6+5+

+84+7) —(142+3+4+5) =48 — 15 = 33 pro libovolné pétimistné
¢islo a obsahujici kazdou z ¢islic 4, 5, 6, 7, 8.
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Kategorie A

Texty tloh

A-1-1

Kofeny rovnice az* + bx? + a = 1 v oboru realnych &isel jsou étyii po
sobé jdouci ¢leny rostouci aritmetické posloupnosti. Pritom jeden z téchto
¢lent je zaroven fesenim rovnice bz? + azx +a = 1. Uréete vSechny mozné
hodnoty redlnych parametri a, b. (Peter Novotny)

A-1-2

Necht k, n jsou pfirozena ¢isla. Z platnosti tvrzeni ,¢islo (n—1)(n+1) je
délitelné ¢islem k“ Adam usoudil, ze bud ¢islo n — 1, nebo ¢islo n + 1 je
delitelné k. Urcete vSechna prirozena Cisla k, pro néz je Adamova tivaha
spravnd pro kazdé prirozené n. (Jan Mazdik)

A-1-3

Jsou dany kruznice k, [, které se protinaji v bodech A, B. Ozna¢me K,
L po tadé dotykové body jejich spolecné tecny zvolené tak, ze bod B je
vnitfnim bodem trojihelniku AK L. Na kruznicich k a [ zvolme po radé
body N a M tak, aby bod A byl vnitinim bodem usecky M N. Dokazte,
ze Ctyrtuhelnik KLMN je tétivovy, pravé kdyz prfimka M N je tecnou
kruznice opsané trojihelniku AK L. (Jaroslav Svréek)

A-1-4

Meéjme 6n zetonu az na barvu shodnych, po trech od kazdé z 2n barev.
Pro kazdé prirozené ¢islo n > 1 uréete pocet p,, vSech rozdéleni takovych
6n zetonu na dvé hromadky po 3n zetonech, kdy zadné tii Zetony téze
barvy nejsou ve stejné hromadce. Dokazte, ze p,, je liché ¢islo, prave kdyz
n = 2* pro vhodné piirozené k. (Jaromir Simsa)
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A-1-5

Na kazdé sténé krychle je napsano praveé jedno celé ¢islo. V jednom kroku
zvolime libovolné dvé sousedni stény krychle a ¢isla na nich napsana
zvétsime o 1. UrCete nutnou a postacujici podminku pro ocislovani stén
krychle na pocéatku, aby po konetném poctu vhodnych krokt byla na
vsech sténach krychle stejna cisla. (Peter Novotny)

A-1-6

Dokazte, ze v kazdém trojuhelniku ABC' s ostrym thlem pii vrcholu C
(pri obvyklém oznaceni délek stran a velikosti vnitinich @hli) plati ne-
rovnost

(a® 4 b?) cos(a — B) < 2ab.

Zjistéte, kdy nastane rovnost. (Jaromir Simsa)

A-S-1

Urcete vSechna redlnd ¢isla ¢, pro kterd ma rovnice
5
z? + 5 z4+c=0

dva realné koreny, jez lze s Cislem ¢ usporadat do trojélenné aritmetické
posloupnosti. (Pavel Caldbek, Jaroslav Svrcek)

A-S-2
Necht P, @, R jsou body prepony AB pravoihlého trojuhelniku ABC,
pro néz plati [AP| = |PQ| = |QR| = |RB| = ;|AB|. Dokaite, ze priise-
¢ik M kruznic opsanych trojuhelnikim APC a BRC, ktery je ruzny od
bodu C, splyva se stfedem S usecky CQ. (Peter Novotnyg)

A-S-3

Dokazte, ze pro libovolnd dvé rizna prvocisla p, ¢ vétsi nez 2 plati nerov-
nost
p q

4
o> —.
q pl pq

(Jaromir Simsa)
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A-1Il-1

Rozhodnéte, zda mezi vSemi osmimistnymi nasobky ¢isla 4 je vice téch,
které ve svém desitkovém zapisu obsahuji Cislici 1, nebo téch, které Cis-
lici 1 neobsahuji. (Jan Mazak)

A-11-2

Je dan trojuhelnik ABC' s obsahem S. Uvnitf trojihelniku, jehoz vrcho-
ly jsou ve stiedech stran trojihelniku ABC, je libovolné zvolen bod U.
Oznatme A’, B', C' po fadé obrazy bodi A, B, C v soumérnosti se
stfedem U. Dokazte, ze Sestitthelnik AC’BA’C'B’ m4 obsah 2S.

(Pavel Leischner)

A-11-3
Urcete vSechny dvojice (m,n) kladnych celych ¢isel, pro néz je ¢islo
4(mn + 1) délitelné &islem (m + n)2. (Tomds Jurik)
A-1l1-4

Necht M je mnozina Sesti navzajem ruznych kladnych celych c¢isel, jejichz
soucet je 60. VSechna je napiSeme na stény krychle, na kazdou pravé
jedno z nich. V jednom kroku zvolime libovolné tfi stény krychle, které
maji spolec¢ny vrchol, a kazdé z ¢isel na téchto trech sténach zvétsime o 1.
Urcete pocet vsech takovych mnozin M, jejichz ¢isla 1ze napsat na stény
krychle uvedenym zptisobem tak, ze po kone¢ném poctu vhodnych krokt
budou na vsech sténach stejna ¢isla. (Peter Novotny)

A-1I-1
Urcete velikosti vnitfnich thla vSech trojihelniki ABC' s vlastnosti:
Uvnitt stran AB, AC' existuji po fadé body K, M, které s prisecikem L
primek M B a KC tvori tétivové ¢tyruhelniky AK LM a K BC'M se shod-
nymi opsanymi kruznicemi. (Jaroslav Svrcek)

A-1l1-2
Urcete vsechny trojice (p, q,r) prvocisel, pro néz plati

(p+1)(g+2)(r +3) = 4pgr.

(Jaromir Simsa)
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A-111-3

Reélna cisla x, y, z vyhovuji soustavé rovnic
t+y+2z=12, z?+y*+22 =54

Dokazte, ze plati nasledujici tvrzeni:

a) Kazdé z cisel xzy, yz, zz je alespon 9, avsak nejvyse 25.

b) Nékteré z ¢isel z, y, z je nejvyse 3 a jiné z nich je alespon 5.
(Jaromir Simsa)

A-I1lIl-4

Uvazujme kvadraticky trojélen P(z) = az?+bz+c s redlnymi koeficienty
a2 2,b22, ¢2 2 Adam a Boris hraji nasledujici hru: Je-li na tahu
Adam, vybere jeden z koeficientii troj¢lenu a nahradi ho souctem zbylych
dvou. Pokud je na tahu Boris, vybere jeden z koeficientl a nahradi ho
soucinem zbylych dvou. Adam zac¢ind a hraci se pravidelné stiidaji. Hru
vyhrava ten, po jehoz tahu ma rovnice P(z) = 0 dva rizné realné koreny.
Urcete, ktery z hra¢u ma vitéznou strategii v zavislosti na pocatecnim
trojclenu P(z). (Michal Rolinek)

A-I1lIl-5

V ostroihlém trojihelniku ABC oznacme P patu vysky z vrcholu C
na stranu AB, V prusecik vysek, O stfed kruznice opsané, D prisecik
poloptimky CO se stranou AB a F stfed usecky C'D. Dokazte, ze prim-
ka EP prochazi stfedem tsecky OV. (Karel Horak)

A-1ll-6

Ozna¢me R* mnozinu vSech kladnych realnych ¢isel. Urcete vSechny
funkce f:RT — RT takové, Ze pro libovolnd z,y € RT plati

1

f@) f(y) = fly) f(z fy)) + o

(Pavel Caldbek)
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Reseni dloh

A-1-1

Vzhledem k tomu, zZe rostouci aritmetickou posloupnost tvori ¢tyfi navza-
jem razna realna cisla, musi mit prvni z danych rovnic ¢tyti rizné redlné
kofeny. Je proto a # 0.

Oznac¢me o spolecny kofen obou rovnic. Pak je zy také kofenem
rovnice, kterd vznikne odectenim druhé z danych rovnic od prvni, tj.
rovnice az? — az = 0. Tu ddle upravime na tvar ax(z® — 1) = 0. Pro
spole¢ny redlny koten zy obou danych rovnic odtud plyne zy = 0 nebo
To = 1.

Dosazenim xy = 0 do prvni z danych rovnic dostaneme a = 1, takze
tato rovnice je tvaru z* 4+ bx? = 0. Tato rovnice viak pro zadné realné
¢islo b nemd ¢tyfi rizné realné koreny (¢islo 0 je jejim alespon dvojna-
sobnym kofenem), proto zo # 0.

Jedinym spole¢nym kofenem obou rovnic je tudiz g = 1. Dosazenim
této hodnoty do kterékoli z obou danych rovnic dostaneme b = 1 — 2a.
Prvni rovnici pak lze zapsat ve tvaru az* + (1 —2a)z?+a—1 = 0, z néhoz
je patrné, ze ma i kofen —1, a po vytknuti soucinu korenovych ciniteli
(z —1)(z + 1) dostaneme rovnici

(x —1)(z +1)(az® —a+1) = 0. (1)

Kvadraticky dvojélen az? — (a — 1) ma mit dva riizné kofeny, kterymi
musi byt dvé navzajem opa¢nd (nenulovd) ¢isla £ a —&. To je splnéno,
pravé kdyz (a — 1)/a > 0, tj. pravé kdyz a > 1 nebo a < 0. Volime-li
znaceni tak, ze & > 0, dostavame pro aritmetickou posloupnost vsech ¢tyr
korenti dvé moznosti podle toho, zda je 0 < £ < 1 nebo £ > 1.

V prvnim pfipadé tvori ¢tyti kofeny rovnice (1) aritmetickou posloup-
nost —1, —¢, &, 1, kterd mé ziejmé diferenci 2, proto { = 1—2 = 1. Toto
¢islo € je kofenem rovnice (1), pravé kdyz a = 1/(1 — £2) =
b=1-2a= —g.

V druhém piipadé tvori ¢tyti koreny rovnice (1) aritmetickou posloup-
nost —&, —1, 1, ¢ s diferenci 2, proto € = 1+ 2 = 3. Cislo 3 je kofenem
rovnice (1), pravé kdyz a = 1/(1 —3?) = —%. Potom b =1 —2a = 5.

9
<

Zdveér. Uloze vyhovuji pravé dvé dvojice redlnych &isel (a,b), a to

< (496D}

62



A-1-2

Ukazeme, ze pro nesoudélnd prirozena cisla r a s, kde r > 2 a s > 2,
existuje prirozené ¢islo n s vlastnosti

rin—1 a s|n+1.

Pro takové cislo n a ¢islo k = rs neni Adamova uvaha spravna, protoze
z predpokladu, ze ¢islo k déli ¢islo (n —1)(n+1), neplyne, ze k déli n — 1
ani ze k déli n+ 1. Kdyby totiz k = rs délilo napt. n — 1, délilo by ¢islo s
obé éisla n+11in—1, coz vzhledem k rovnosti (n+1) — (n — 1) = 2 neni
mozné, nebof s > 2.

Existenci ¢isla n z prvni véty reseni dokdzeme tak, ze uvazime s ¢isel

2, r4+2,2r+2, ..., (s—=1)r+2.

Ta dévaji pti déleni ¢islem s vesmés ruzné zbytky. Kdyby totiz néktera
dvé z nich, feknéme ir +2 a jr+2 (0 < i < j < s— 1), davala pri déleni
¢islem s stejny zbytek, potom by éislo s délilo i jejich rozdil (i — j)r,
a vzhledem k nesoudélnosti ¢isel r a s tudiz i rozdil < — j, coz neni mozné,
protoze |i — j| < s. Uvedenych s ¢isel tedy davé tiplnou soustavu zbytku
modulo s, proto mezi nimi existuje ¢islo, které pri déleni cislem s dava
zbytek 0, necht je to ¢islo Ir + 2. Potom ovSem pro ¢islo n = [r + 1 plati,
zerdélin—1asdélin+ 1.

Uvédomme si, ze kazdé ¢islo k délitelné dvéma lichymi prvocisly se da
zapsat jako souc¢in dvou nesoudélnych ¢isel vétsich nez 2. Adamova tivaha
muze byt tedy spravna pouze pro ta Cisla k, ktera jsou délitelnd nejvyse
jednim lichym prvocislem. To znamena, ze ¢islo £ méa jeden z nasledujicich
tTi tvari:

k=2% k=p' k=2,
kde p je liché prvocislo, s celé nezaporné a t prirozené cislo.

Necht k£ = 2%, kde s je celé nezaporné c¢islo. Pro s = 0 neni Adamova
tivaha spravnd, protoze ¢islo k = 20 = 1 déli kazdé pfirozené éislo, tedy
déli obé ¢islan—1in+ 1. Pro s = 1 také neni Adamova tvaha spravna,
protoze pokud k = 2! = 2 déli ¢islo (n — 1)(n + 1), je jeden z ¢initeli
sudy, ale pak je sudy i druhy ¢initel. Pro éislo s = 2, tedy pro k = 22 = 4
Adamova tvaha spravnd je. Pokud totiz 4 déli ¢islo (n — 1)(n + 1), je
aspon jeden z obou c¢initelti sudy, takze jde o dvé po sobé jdouci suda
¢isla, z nichz pravé jedno je délitelné ¢tyfmi. Konecéné pro libovolné s = 3
Adamova tivaha spravna neni, staci vzit éislo n = 2571 — 1.
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Necht k = p’, kde p je liché prvoéislo a t piirozené ¢islo. Potom je
Adamova tuvaha spravnd, jelikoz obé ¢isla n — 1 a n + 1 nemohou byt
soucasné délitelnad stejnym lichym prvocislem p, a proto je pravé jedno
z nich délitelné &islem p' = k.

Necht k = 2pt, kde p je liché prvoéislo a t piirozené ¢islo. Potom je
Adamova tivaha také spravna: obé ¢isla n — 1 a n + 1 jsou nutné suda
a pritom nemohou byt soucasné délitelnd stejnym lichym prvocislem p,
proto je pravé jedno z nich délitelné ¢islem 2pt = k.

Zdveér. Adamova tivaha je spravna pro kazdé prirozené ¢islo n pouze
pro prirozena ¢isla k jednoho z tvaru

k=4, k=p', k=2,

kde p je liché prvocislo a t ptirozené cislo.

A-1-3

Z rovnosti obvodového a tisekového uihlu prislusného tétive AK kruznice k
plyne (obr.11) |« KNA| = |<LKA| a podobné z rovnosti obvodového
a usekového thlu prislusného tétive AL kruznice ! plyne |<VLM| =
= |<LAM]|, kde jsme jako V oznadili néjaky bod polopiimky opacné
k poloprimce LK.

Obr. 11

Ctyithelnik KLMN je tétivovy, pravé kdyz |[xKNA| = |xVLM|
neboli |xLKA| = |<LAM]|. Posledni rovnost ovSem plati, pravé kdyz
je LAM tsekovym uhlem prislusnym obvodovému thlu LK A tétivy LA
kruznice opsané trojihelniku AK L, tedy pravé kdyz je ptimka M N tec-
nou této kruznice.

Tim je tvrzeni tlohy dokézano.
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Jiné FeSeni. Vytresme tlohu nejprve za predpokladu, ze primky KL
a M N jsou rovnobézné. V takovém pripadé jsou zfejmé oba trojuhelniky
ANK a M AL rovnoramenné, protoze osy stran AN, resp. M A prochazeji
odpovidajicim vrcholem K, resp. L (jinak bodem dotyku te¢ny rovno-
bézné s tétivou AN, resp. M A kruznice k, resp. 1). Je tedy |LA| = |[LM|
a |[KN| = |KA|. Pritom ¢tyfthelnik KLMN je tétivovy, prave kdyz
je to rovnoramenny lichobéznik, tj. |[LM| = |KN|. To podle pfedchozi
dvojice rovnosti nastane, pravé kdyz je trojuhelnik K LA rovnoramenny
neboli pravé kdyz M N je tecnou jeho kruznice opsané ve vrcholu proti
zékladné K L. (Vzhledem k tomu, ze pak jsou trojuhelniky ANK a M AL
shodné, uvedend situace nastane, pravé kdyz jsou kruznice k, [ shodné.)

Predpokladejme déle, ze primky M N a K L jsou riznobézné, a oznac-
me V jejich prusecik (obr.12). Uzitim mocnosti bodu V' ke kruznicim k
a | dostaneme

[VK|?=|VA|-|VN| a |VL]?=|VM|-|VA|

N

Vynésobenim obou vztahii obdrzime
VKP - VL] = [VN|- VAP - [V M]. (1)
Ctyithelnik KLMN je ovSem tétivovy, pravée kdyz plati
VK] -|VL[ = |VN|- VM|
neboli — s prihlédnutim k (1) — prévé kdyz plati
VK|-|VL| = |VA].

65



Posledni rovnost ovSem plati, pravé kdyz piimka M N (prochdzejici bo-
dem A) je te¢nou kruznice opsané trojihelniku AKL. Tim je tvrzeni
tlohy dokazano.

A-1-4

Zidné tii zetony téze barvy nelezi na jedné hromédce, tedy na kazdé
z hromddek lezi alespon jeden Zeton zvolené barvy. Kazdé vyhovujici roz-
déleni zetont do hroméadek je pak charakterizovano tim, na které z nich
lezi pravé jeden ze tii zetonu té které barvy.

Predpokladejme, ze v jedné z hromdadek je pravé [ barev zastoupeno
jednim zetonem a zbylych 2n — [ barev dvéma. Jednoduchym vypoctem
I+ 2(2n — 1) = 3n ovSem zjistime, ze toho lze dosdhnout jen pfi [ = n.
Proto je zkoumany pocet p,, roven poctu rozdéleni 2n zetoni navzajem
ruznych barev na dvé (neusporddané) skupiny po n zetonech, tedy

pn:_1_<2n> _ @) _ 2 @n-1) <2n—1>' )

2\ n 202 2n-(n—1)!n! n
Zbyva dokazat, ze posledni kombinacni ¢islo je liché, pravé kdyz je
¢islo n mocninou dvou. Tento poznatek (a vlastné i metodu jeho du-
kazu) lze vypozorovat z dobfe zndmého schématu vSech kombinaé¢nich
¢isel v podobé Pascalova trojihelniku:

-
o
>
>
-

11001 1
1010101
[T 1 1 1M1 1 1]
100000002
110000011
10100000101
111100@01 111
1000100010001
1100110O®110011
101010101010101
[T 111 1111M11111711]

V nasem schématu ovSem nejsou samotna kombinac¢ni ¢isla, nybrz jejich
zbytky 0 ¢i 1 pfi déleni dvéma. K jejich urceni neni nutné kombinaéni
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¢isla viibec pocitat, protoze z rekurentnich vzorci

(g):@:l ‘ (?):(?:11>+<n;1> 1<ign-1) ()

muzeme postupné po jednotlivych fadcich namisto kombinacnich éisel
rovnou psat jejich zbytky pfi déleni jakymkoli pevnym ¢islem, v nasem
pripadé cislem 2.

Vsimnéme si, co nase schéma napovida. Nékteré radky (vyznacené
obdélnicky) jsou sestaveny ze samych jednotek. Diky rekurentnim vzor-
cum (2) pod kazdym takovym Fadkem zfejmé vznikne trojihelnik sesta-
veny ze samych nul (t¥i takové trojihelniky jsou vyznaceny Sedym pod-
tiskem) a olemovany zleva i zprava samymi jednotkami; bezprostfedné
pod nim opét lezi fadek ze samych jednic¢ek. Protoze zbytky vsech zkou-
manych cisel (2";1) (v nasem schématu vyznacenych krouzky) lezi v po-
psanych obdélniécich nebo trojihelnicich, bude takové kombinaéni ¢islo
liché, pravé kdyz bude mit pozici v nékterém obdélnicku.

Nase pozorovani nyni popiseme presnéji a rovnou je ovérime matema-
tickou indukci.

Rddky ze samijch jednicek jsou pravé rddky s kombinacnimi cisly (")
(0 <i<n—1), kde n je tvaru n = 2%. Tvrzeni trivialné plati pro k = 1.
Predpoklddejme tedy, Ze plati pro néjaké k = 1, a ozna¢me P,, prvnich
n = 2F fadkd schématu. Dalsich n Fadki si miizeme predstavit jako tii
rovnostranné trojuhelniky cisel: prvni a treti s n fadky jsou téze veli-
kosti jako P,, mezi nimi je pak (n — 1)-fddkovy trojihelnik (vrcholem
dol1), ktery je diky jednotkdm v zdkladné trojihelniku P, a rekurentnim
vzorcum (2) sestaven ze samych nul. Proto maji prvni a tfeti trojtihel-
nik jednotky nejen v hornich vrcholech a na stranach lezicich na hranici
celého schématu, ale i na stranach, kterymi se primykaji k druhému troj-
uhelniku, tedy na zacatku i konci kazdého ze svych n radkt. Plyne to
opét ze vzorcl (2), které pak ovsem vedou k dalsimu, pro nas hlavnimu
zavéru: Prvni a tteti trojihelnik jsou totozné s trojtihelnikem P,,. Mizeme
tedy shrnout, ze kazdy z n — 1 pridanych radkt obsahuje aspon jednu
nulu, zatimco n-ty fadek (slozeny ze dvou n-tych fadku trojihelniku P,)
obsahuje samé jednicky. Tvrzeni tudiz plati i pro 2n = 2. 2F = 2k+1
radkt Pascalova trojihelniku modulo 2, tj. i pro ¢islo k& + 1.

Vzhledem k tomu, Ze zkoumané éislo p,, = (2nn_1) = (2:__11) lezi vzdy
uprostied sudych radkt Pascalova trojuhelniku, je zfejmé, ze lezi bud
v nékterém obdélnicku, anebo v nékterém Sedém trojihelniku, jez se po-
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stupné stiidaji. Cislo p, je tedy skutecné liché, pravé kdyz n je mocnina
dvou.

Jiné fesSeni. Pocet p, pozadovanych rozdéleni Zetoni uréime stejné
jako v plivodnim feseni vzorcem

B (2n)!
pn_2(n!)2’
ktery dale upravime na tvar
2-4-...-(2n—-2)(2n)
n=1-3-...-2n—1)- =
P (2n—1) 3(nl)?
2"n!
=1-3-...-2n—-1)- =
@n—1)- 3o
2n—1
=1-3-...-(2n—1)- " (3)

Pro nejvyssi mocninu 24, ktera déli n!, plati

=[5l [F)

kde 2™ < n < 2mF! a |x| znaéi dolni celou ¢dst cisla x, tedy nejvétsi
celé ¢islo, které neni vétsi nez x. Odtud pro exponent a plyne odhad

A

1
a £+...+£:n(1——>:n——n—§n—l.

4
2 22 2m

7 vyjadreni (3) tedy vidime, Ze ¢islo p,, je liché, pravé kdyz a =n —1
neboli n je tvaru 2.

A-1-5

V kazdém kroku se soucet vSech ¢isel na sténdch krychle zvétsi o 2, jeho
parita se tedy nezméni. Jsou-li na vSech sténach krychle stejné ¢isla, je
jejich soucet nasobkem Sesti, a je tudiz délitelny dvéma. Nutnou podmin-
kou k tomu, abychom tohoto stavu dosahli, tedy je, aby i na pocatku byl
soucet vSech c¢isel na sténach krychle délitelny dvéma.

Tato podminka je zdroven postacujici. Predpokladejme, ze soucet
vsech Sesti celych ¢isel na sténéach krychle je na pocatku délitelny dvéma.
Ukéazeme, jak po urcitém poctu kroku dosdhnout toho, ze na vsech steé-
nach krychle budou stejnd ¢isla.
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Oznacme stény krychle Sy, Ss, ..., Sg, pricemz sténa Sy je proti sté-
né Sg, sténa Sy proti S5 a S proti Sy.! Krok, v némz zvétsime éisla
na sténach S;, S;, budeme znacit k;;. A protoze nds zajimd jen relativni
hodnota ocislovani stén, tj. zda a o kolik se 1isi od nejmensi hodnoty vsech
Sesti ¢isel, budeme déle pracovat jen s témito relativnimi hodnotami (coz
budou nezaporné celd ¢isla s nejmensi hodnotou 0).

Posloupnosti krokii k1o, ko3, k35, k54, ka1 zajistime, ze se ¢islo na kazdé
sténé kromeé stény Sg zvétsi o 2, coz vzhledem k nasi timluvé vlastné
znamend, ze jsme (relativni) hodnotu ¢isla na sténé Sg o 2 zmensili. Po-
dobnym zptusobem muzeme o 2 ,,zmensit“ ¢islo na libovolné sténé krychle.
Je tedy zfejmé, ze popsanym zpusobem dosidhneme toho, ze (relativni)
hodnoty ¢isel na sténdch budou jen 0 nebo 1, nula mezi nimi ovsem
musi byt aspon jedna (podle vyznamu relativnich hodnot). Nyni jiz staci
prosetfit nasledujici moznosti (pfipomenme, ze soucet vsech Sesti ¢isel je
sudy):

a) Na sténdch krychle jsou vesmés 0; tvrzeni pak plati trividlné.

b) Na sténdch krychle jsou pravé dvé 1 (na ostatnich 0). Bez ohledu
na to, zda jsou obé jednicky na sousednich ¢i protilehlych sténéch,
vzdy muzeme rozdélit zbyvajici ¢tyfi stény s nulami na dvé dvojice
sousednich stén a ve dvou krocich zvétsit jejich ¢isla o 1.

¢) Na sténdch krychle jsou pravé ¢tyti 1 (na zbyvajicich dvou sténédch
jsou 0). Tento pripad vyfesime tak, Ze nejprve snizime (zpusobem
popsanym vyse) hodnotu kazdé stény s jednickou o dva, ¢imz ovSem
(v relativnich hodnotach) dostaneme presné situaci popsanou v b).
Zaveér. Dosdhnout toho, ze po kone¢ném poctu kroki budou na vsech

sténach krychle napsana stejna ¢isla, lze, pravé kdyz je soucet (celych)

¢isel na vsech Sesti sténach krychle délitelny dvéma.

Pozndmka. Cast c) predchoziho feeni lze vyfesit i takto: Jsou-li obé
0 na sousednich sténach, mtzeme je jedinym krokem zvétsit na 1. Jsou-li
obé 0 na protilehlych sténédch (bez Gjmy na obecnosti necht jsou to napt.
Sy a Sg), pomoci krokii ki, ksg, k15, kag, dosdhneme toho, Ze na vsech
sténach krychle budou napséana cisla 2.

A-1-6

Je-li a = b, je a = f, takze cos(a — 3) = 1 a dokazovand nerovnost
plati jako rovnost a? + a? = 2a? (dodejme, Ze bez ohledu na to, zda je

1 Podobné jsou ocislovany i stény bézné hraci kostky: soucet bod® na protilehlych
sténach dava 7.
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tihel v ostry ¢ nikoli). Protoze dokazovand nerovnost je symetrickd v a,
b (kosinus je suda funkce), mizeme bez tijmy na obecnosti predpokladat,
ze a > b neboli a > f.

Je-li tedy a > f3, lze ithel BAC velikosti « rozdélit pomoci bodu D €
€ BC na dva thly CAD a DAB velikosti § a a— 3 (obr. 13). Trojthelnik
DAC je pak zmensenim trojihelniku ABC' s koeficientem podobnosti
k = b : a, takze |AD| = bc/a a |DC| = b*/a, odkud |BD| = |BC| —
—|DC| = (a® — b?)/a.

C

Obr. 13

Vyjédieni |AD|, |BD| dosadime do rovnosti z kosinové véty pro troj-
thelnik ABD a upravime:

|BD|? = |AB|?> + |AD|? — 2|AB| - |AD| cos(a — B),
(a®> =622 5, b2 2bc%cos(a — B)
T Cte T T .
(a®> =b*)%=6-c%, kde § =a®+b* —2abcos(a—B) >0. (1)

(Posledn{ nerovnost plyne z toho, ze pro a # S je cos(a — ) < 1.)
Vztah (1) spolu s rovnosti ¢ = a?+b? —2ab cos y nyn{ vyuzijeme k ipravé
rozdilu '4 pravé a levé strany dokazované nerovnosti, ktery navic jesté
vynasobime vyrazem 2ab:

2ab% = 2ab(2ab — (a® + b%) cos(a — B)) =
= 4a?b* — (a® + b%) - 2abcos(a — B) =
= 4a%b? — (a® + b%)(a® + b — 6) = 6(a® + b*) — (a* - V*)* =
=6(a® +b%) —6-c* =6(a® +b* — c?) = § - 2abcos .

Po vydéleni vyrazem 2ab dostdvame vztah %4 =  cos~y, takze s ohledem
na 6 > 0 ma vyraz ' stejné znaménko jako cosy (zopakujme, ze za
predpokladu a # b). Odtud plyne, ze v piipadé, kdy v < 90° a a # b, plati

70



nerovnost ze zadani tlohy jako ostrd. Tim je tloha vyfesena a odpovéd
na jeji zavérecnou otdzku zni: v dokdzané nerovnosti (v zadané situaci,
tj. pri ostrém thlu ) nastane rovnost, pravé kdyz a = b.

Poznamka 1. Odvozeny vztah %4 = 0 cosy se bez pomocnych oznaceni
prepise jako identita

2ab — (a? + b%) cos(a — B) = (a® + b* — 2abcos(a — B)) cosy,  (2)

kterd plati pro libovolny trojuhelnik ABC (k nasemu odvozeni staci pfi-
dat trivialni ovéfeni rovnosti (2) v piipadé a = b). Vysledek (2) umoznuje
snadnou diskusi o jednotlivych pripadech relace

(a® + b*) cos(a — B) § 2ab,
nebot prvni ¢éinitel v pravé strané (2) je vzdy nezaporny:
a® + b? — 2abcos(a — B) = a4+ b% — 2ab = (a— b)2 >0.

Relace dopadd takto: rovnost nastane, pravé kdyz a = b nebo v = 90°;
v pripadé a # b pak plati ostra nerovnost < ¢i > podle toho, zda je
v < 90° nebo vy > 90°.

Jiné feSeni. Piivodni feSeni je celé zalozeno na vztahu (1), proto jeho
odlisné odvozeni nyni uvedeme jako ,,jiné reseni“. Tvar kladného vyrazu ¢
v (1) je motivaci k tivaze o pomocném trojihelniku, jehoz dvé strany maji
délky a, b a sviraji tihel velikosti & — 8 (opét predpokladdme, ze a > b).
Nas zajimé délka jeho tfeti strany, kterou oznacime d, takze pro vyraz §
ve vztahu (1), ktery se chystdme dokdzat, budeme mit § = d?. Ukazme, 7e
takovy trojuhelnik o stranéich a, b, d je — vedle ptivodniho trojihelniku
o stranach a, b, ¢ — druhym fesenim tlohy sestrojit trojihelnik ABC,
jsou-li dany strany a, b a uhel 5. Konstrukei obou feseni A1 BC a A; BC
vidime na obr. 14. Soucet thli pfi vrcholech A; a Ay (vyznacenych ob-

Obr. 14
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loucky) je zfejmé 180°. V jednom z trojuhelniki je to tihel a, ve druhém
tedy thel 180° — «, takze thel pii vrcholu C' druhého trojihelniku je
pravé a — 3, jak jsme si prali.2 Usecky A; B, Ay B tedy maji (v nékterém
poradi) délky ¢ a d. Z mocnosti bodu B k sestrojené kruznici o stfedu C
a poloméru b vyplyva rovnost

cd =a® —v?, (3)

z niz po umocnéni na druhou dostavame c?d? = (a?—b%)2. A to je kyzeny
klicovy vztah (1) z puvodniho FeSeni, nebot jak uz jsme naznadili, podle
kosinové véty plati

d*> = a® + b* — 2abcos(a — ). (4)

Pozndmka 2. V ptivodnim Teseni jsme ze vztahu (1) odvodili identitu

zapsanou v Poznamce 1 jako (2). Pravé uvedeny alternativni dikaz (1)

s vyuzitim konstrukéni dlohy (a,b, 8) ma zajimavy dusledek: diky ,rov-
nopravnosti“ obou feseni z obr. 14 musi platit i identita

2ab — (a® 4+ b?) cosy = ¢ cos(a — f3), (5)

ziskand z (2) vyménou roli trojihelniki s trojicemi stran (a,b,c)
a (a,b,d), kterou lze odvodit i trigonometricky.

Dalsi feSeni. Pomocny trojihelnik se stranami a, b (a > b) svirajicimi
thel a — 3 a tfeti stranou d danou vztahem (4) 1ze vyuzit k feseni ilohy
i bez objevu ,mocnostni“ rovnosti (3) nasledujicim postupem.

Zminény trojihelnik 1ze k trojihelniku ABC vhodné prikreslit dvéma
zpusoby patrnymi z obr. 15. Vlevo je to trojihelnik BC'D (ten zndme uz
z predchoziho feseni), vpravo to je trojihelnik BC'E; snadno pak ovérime,
ze oba vyznacené thly BC'D a CBE maji pozadovanou velikost a — 3.

QzC d FzrR

Obr. 15

2V pripadé a = 90° sice plati A7 = Ag, avSak na celé nasi ivaze neni tfeba nic
ménit: tehdy totiza —f=vyac=d.
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(Oba obrazky odpovidaji pripadu o < 90°, v dplném feSeni by nemél
chybét obrazek pro pripad a = 90°, ktery zde posuzovat nebudeme, pro-
toze dalsi postup vyzaduje jen nepatrnou obménu.) Pomoci délky d ze
vztahu (4) nyni upravime dokazovanou (ostrou) nerovnost:

(a® + b%) cos(a — B) < 2ab,
(a® +b%) - 2abcos(a — B) < 4a’b?,
(a® 4+ b?)(a® + b* — d?) < 4a°b?,
(0?2 —b%)? < (a? 4+ b2)d2 (6)
Nakonec vyuzijeme Pythagorovu vétu pro dvojice pravouhlych trojihel-

nikt z obr. 15; v obou variantach jak s trojuhelnikem BCD, tak s troj-
thelnikem BCE pak plati

a®=(d+z)2+v2 a BP=2x2+7

takze a® — b?> = d? + 2dz = d(d + 2z). Po dosazeni do levé strany nerov-
nosti (6) a zkraceni vyrazem d? dostaneme ekvivalentni nerovnost

(d+2z)? <a®+b* neboli ¢* < a?+ b

ktera (diky kosinové vété) presné vyjadruje podminku v < 90° ze zadani
tlohy. Tim je celé jeji Teseni hotovo, protoze v pripadé a = b zfejmé
v dokazované nerovnosti nastane rovnost.

Dalsi fesSeni. Jesté jednim zpusobem za predpokladi v < 90° a a > b
(neboli a > ) dokdzeme ostrou nerovnost

(a® + b*) cos(a — B) < 2ab.

Nejprve ji ekvivalentné upravime, kdyz polozime ¢ = %(a —p) >0
a vyuzijeme vzorec cos2p = 1 — 2sin® ¢:

(a® + b%)(1 — 25sin? ) < 2ab,
(a —b)? < 2(a® + b?)sin” ¢,

— b2
2(a, b) <a®+ b
2singp

To je (podle sinové véty) nerovnost 2r? < a? +b? pro polomér 7 kruznice
opsané libovolnému trojuhelniku se stranou a — b a protilehlym vnitinim
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thlem ¢. Takovy trojihelnik dostaneme, kdyz jako na obr. 16 stranu C' A
trojihelniku ABC prodlouzime za bod A do bodu F tak, aby platilo

Obr. 16

|CF| = a (a > b). Potom mé trojuhelnik ABF stranu AF délky a — b
s protilehlym thlem ABF, jehoz velikost uréime takto: rovnoramenny
trojihelnik BCF ma pfi zdkladné BF shodné thly 90° — 3 = (a+ ),

takze
a+p

2
Proto je polomér kruznice opsané trojihelniku ABF' skutec¢né roven zkou-
mané hodnoté r. Pro ni tak ziskame z predpokladu v < 90° odhad

|AB| c c c

= — < —
"= 2sin |<AFB|  2sin(90° — 3v) = 2sin45° (/2

|XABF| = |xCBF| — |xCBA| =

-B=e.

neboli 2r? < ¢%; ze stejného predpokladu v < 90° ovSem vyplyva (diky
kosinové vété pro trojihelnik ABC) dalsf nerovnost ¢? < a? + b?. Dohro-
mady dostavame 2r2 < ¢ < a? + b? a kyzend nerovnost 212 < a2 + b? je
tak dokazana.

Dodejme jesté, ze v piipadé v > 90° ze stejnych divodh plati 2r? >
> ¢? > a? + b2, coz (za piedpokladu a # b) dokazuje opacnou nerovnost

(a® 4 b?) cos(a — B) > 2ab.
Posledni reSeni. Uvedeme jesté jedno trigonometrické reseni. Pro li-
bovolny trojuhelnik ABC plati totiz tzv. Mollweidiv vzorec

a—b sinj(a—p)

1
c COS 57
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ze kterého plyne nésledujici vyjadieni hodnoty cos(a — 3):

-8

2(a — b)? cos® v

=1- 2

e
cos(a — ) = 1 — 2sin?
Dosazenim do levé strany dokazované nerovnosti dostaneme

(a® + b%) cos(a — B) < 2ab,

2(a —b)2cos? &
(a2 +b2) <1 o ( )02 27>

< 2ab,

2(a® 4 b%)(a — b)? cos? 3
2 )

(a—0b)*

A

Vidime, ze v pripadé a = b nastane rovnost. V pripadé a # b po déleni
kladnym vyrazem (a — b)? a dal$i ziejmé ekvivalentni tipravé dostaneme

¢® < 2(a® + b%) cos® %
Dosadime-li sem z rovnosti

2 =a?>+b* —2abcosy a 2COSZ% =1+ cos~,

dostaneme po odecteni souc¢tu a® + b% od obou stran nerovnost
—2abcosy < (a® + b*)cosy mneboli 0= (a+ b)?cosy,

coz diky zadanému predpokladu v < 90° skutecné plati jako ostra nerov-
nost. Tim je nerovnost ze zadani tlohy dokézana; rovnost v ni nastane,
pravé kdyz a = b.3

A-S-1

Predpokladejme, ze ¢islo ¢ ma pozadovanou vlastnost. Diferenci prislusné
aritmetické posloupnosti ozna¢me d. Rozlisime dva pripady podle toho,
zda ¢islo ¢ lezi mezi kofeny x1 a x5 dané kvadratické rovnice, nebo ne:
a) Je-li ¢ prostfednim ¢lenem predpoklddané aritmetické posloupnosti,
plati x1 = ¢c—d a o = c¢+d. Pro soucet korenu tak podle Vietova vztahu

dostavame —% =z + 22 = 2¢, odkud ¢ = ——%. Navic pro zaporné c

3 I pfi tomto postupu lze odvodit obecnéjsi zavéry uvedené v Pozndmce 1 za prvnim
Fesenim.
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je diskriminant dané rovnice kladny, takze méd dva redlné koreny. (Pro
c= —g mé dana rovnice kofeny 7 2 = —g + %\/5)

b) Je-li koeficient ¢ krajnim c¢lenem predpoklddané aritmetické po-
sloupnosti, oznacme koreny dané rovnice tak, aby platilo ;1 = ¢ + d,
T9 = ¢+ 2d. Pro jejich soucet tentokrat vychazi —g =z +x9 = 2c+ 3d.

Vyjéddifme-li odtud d = -2 — 2¢ a dosadime do vztahii 2 = ¢ + d
a Ty = ¢+ 2d, dostaneme z; = §(2c — 5), 3 = —1(c + 5). Dosadime-li

oba vyrazy do Vietova vztahu x;z9 = ¢ pro soucin kofenii, obdrzime po
tipravé kvadratickou rovnici 2¢? +23¢ — 25 = 0, ktera m4 koreny 1 a —2—25.
(Podminku na diskriminant tentokrat ovéfovat nemusime, nebot uvede-
nym postupem mame zaruceno, ze realnd ¢isla 1 o odpovidajici obéma
nalezenym hodnotam ¢ splnuji oba Vietovy vztahy, takze jsou skuteéné

koTfeny prislusné rovnice. Pro ¢ = 1 méa dana kvadraticka rovnice koteny

T = —%, Ty = —2; pro c = —% ma rovnice koreny z; = —5, o = %)
Zdgver. Uloze vyhovuji redlnd ¢isla ¢ z mnoziny {—275; —g; 1}.

Ozna¢me M’ stied tusecky CQ (obr.17). Protoze PM’' a RM' jsou
stfedni pricky trojihelniki AQC a BQC, které jsou podle Thaletovy
véty rovnoramenné se zakladnami AC a BC, jsou ¢tyrthelniky CAPM’

C

Obr. 17

a C BRM' rovnoramenné lichobéZniky a jim opsané kruznice, jez se proti-
naji v bodech C' a M’, jsou zdrovern i opsanymi kruznicemi uvazovanych
trojuhelniki APC' a BRC. Je tedy M = M’ a tvrzeni tlohy je tim
dokazano.

Jiné feSeni. Oznacme ¢ délku prepony AB daného pravoihlého troj-
thelniku ABC. Kruznice opsané trojihelnikim APC a BRC ozna¢me
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po fadé k, [ (obr.18). Vzhledem k tomu, ze |QP|- |QA| = |QR| - |QB| =
= %c- %c, ma stied ) prepony AB stejnou mocnost m = %c- %c k obéma
kruznicim k i [, a lezi proto na jejich chordale C M. Navic podle Thale-
tovy véty plati |QC| = |QA| = }c. Z rovnosti |QM|-|QC| = m tak plyne

QM| = ¢ = £|QC], takze M je stfedem usecky CQ.

C

Obr. 18

A-S-3

Protoze p, q jsou ruznd lichd prvocisla, je |[p — q| = 2. Pro levou stranu
dané nerovnosti tudiz plati

L:‘B_g‘:
q P

P’ —¢
pq

_lp=d-0t+q) , 2(0+a)

pq pq

Abychom dokéazali pozadovanou nerovnost

4
L>—,
vPq
staci dokazat nerovnost p + ¢ > 2,/pq. To je ovSsem nerovnost, jez je
trividlnim dusledkem nerovnosti (\/ﬁ—\/ﬁ)2 > 0, ktera plati pro libovolna
dvé riznd kladna cisla p, ¢. Tim je dand nerovnost dokazana.

A-1l1-1

Nejprve urceme pocet u vSech osmimistnych cisel délitelnych ctyrmi.
Kazdé takové ¢islo mé ve svém zapisu na prvnim misté zleva nenulovou
¢islici. Mame tak 9 moznosti. Na nésledujicich péti mistech ma libovolnou
¢islici desitkové soustavy, tj. pro kazdou pozici mame 10 moznosti, a kon¢i
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dvojéislim, které je délitelné ¢tyimi, tj. 00, 04, 08, 12, 16, 20, 24, ..., 96,
celkové tedy 25 moznosti. Proto je

u=9-10°-25 = 22500 000.

Podobnou tivahu Ize provést i pti hledani poc¢tu v vsech osmimistnych
c¢isel délitelnych ¢tyfmi, ktera ve svém desitkovém zapisu neobsahuji ¢is-
lici 1. Pro prvni pozici zleva mame nyni 8 moznosti a pro kazdou dalsi
z péti nasledujicich pozic mame 9 moznosti. Na poslednich dvou mistech
zprava musi byt dvojcisli délitelné ctyrmi, které vsak neobsahuje ¢islici 1.
Jsou to vsechna dvojcisli z predchoziho odstavce kromeé 12 a 16, tedy
23 moznosti. Proto

v=28-9°.23=10865016.

Zaver. Protoze u > 2v, je mezi osmimistnymi nasobky ¢isla 4 vice
téch, které ve svém (desitkovém) zapisu ¢islici 1 obsahuji, nez téch, které
ji neobsahuji.

Poznamka. Pocet u vsech osmimistnych nasobku lze také urcit jed-
noduchou tuvahou: nejmensi nasobek je A = 10000000, nejvétsi je
B = 99999996, takze hledany pocet je 1(B — A) +1 = (B +4 —
— A) = 22500000.

K dikazu nerovnosti u > 2v neni nutné v vycislit, protoze podil

uw_9-10°-25 9 <1_0)5 25
T 8-95.23 8 \9 23

1ze dobre odhadnout pomoci binomické véty

<E)5:<1+1)5>1+5.%+10.i=136:H’

9 9 92 81 92
tudiz

u 9 (1o>5 25>9 8.17 @_17-25_4§>2

v 8 \9 2378 92 23 9.23 207 7

A-I1l1-2

Oznac¢me T trojihelnik s vrcholy ve stfedech stran BC, C A, AB daného
trojihelniku ABC'. Obsah trojiuhelniku XY Z budeme znacit symbolem

Sxyz.
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Protoze body A’, B’, C’ jsou zaroven obrazy bodu U ve stejnolehlos-
tech se stiedy v odpovidajicich vrcholech trojihelniku ABC' a koeficien-
tem 2, plyne z pfedpokladu tlohy, Ze body A’, B, C’ lez{ postupné uvnitf
trojuhelniktt AgC' B, CByA a BAC (to jsou obrazy trojihelniku T v uve-
denych stejnolehlostech, na obr. 19 je T vyznacen Sedou barvou). Hranice
trojihelniku A’ B’C’ tudiz protne strany AB, BC, C'A postupné v jejich
vnitinich bodech K, L, M, N, O, P.

Obr. 19

Protoze trojihelnik A’B’C" je obrazem trojihelniku ABC ve stfedové
soumérnosti podle stfedu U, jsou navzajem si odpovidajici strany rovno-
bézné a v téze soumérnosti si odpovidaji dvojice bodi K a N, La O i M
a P. Proto podle véty wu je kazdy z trojihelniki AKP, LBM, ONC
podobny trojihelniku ABC. Oznacme ki, ko, k3 koeficienty podobnos-
ti, jez zobrazi trojihelnik ABC postupné na trojuhelniky AK P, LBM,
ONC. Obrazy trojihelniki AK P, LBM, ONC ve stfedové soumérnosti
se stfedem U jsou po fadé trojuhelniky A’NM, OB'P, LKC'. Ty jsou
rovnéz podobné trojihelniku ABC, pricemz odpovidajici koeficienty po-
dobnosti, které na né prevedou trojiuhelnik ABC, jsou opét ki, ko, k3.
Oznacime-li ¢ délku strany AB, plati pro délky useki na strané AB

C1 = |AK| = klc, Cy = |LB| = kzc, C3 = |KL| = kgC,

takze
c=c1+co+ e =kic+ kac+ kse = (k1 + ka + k3)c
neboli
ki+ ko + ks =1.
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Z podobnosti trojuhelniki ABC a LKC' déle plyne, ze velikost vysky
z vrcholu C ke strané AB v trojuhelniku ABC” je rovna ksv,, kde v, je
velikost vysky z vrcholu C' v trojiuhelniku ABC'. Je tudiz

1 1
Sapcr = 3¢ k3ve = ks(é—cvc) = k3S.

Analogicky Spcar = k1S a Scap: = k2S. Pro obsah S’ Sestitthelniku
AC'BA’CB’ tak plati

S = Sapc + Spoar + Scap + Saper = (1+ k1 + ka2 + k3) S = 25.
Jiné FeSeni. (Podle Karla Benese z Gymndzia Kojetin.) Sestitihelnik
AC'BA'CB’ je stfedové soumérny podle zvoleného bodu U (obr. 20).

C
B’ A

C’
Obr. 20

Kazd4 z jeho thlopticek AA’, BB’, CC' tudiz déli tento Sestitthelnik na
dva shodné ¢tyruhelniky, a proto naptiklad plati

Sac'Barc =285acBa.

Stadi tedy dokdzat, ze ¢tyfthelnik AC’BA’ mé stejny obsah S jako troj-
thelnik ABC'. Protoze tUsecka AU je téznici v trojihelniku C' AC’, plati

Saver = Savce- (1)

Podobné tsecka BU je téznici v trojuhelnicich ABA” a CBC’, plati tudiz
Spucr = Spuc a Spuar = Spua- (2)
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Sectenim vSech tf{ rovnosti ze vztahi (1) a (2) dostaneme

SacrBar = Savcer + Spucr + Spuar = Save + Spuc + Spua = S,

coz dokazuje platnost daného tvrzeni.

Jiné FeSeni. (Podle Pavla Polcera z G v Brné, Krenovd, Kateriny Med-
kové z BG Bohuslava Balbina v Hradci Kralové a Zuzany Borsiové z G
v Teplicich.) Dopliime nejprve trojihelnik ABC' na rovnobéznik ADBC
(obr.21). Vzhledem k tomu, ze také AC'A’C je rovnobéznik, je v po-

C
BI \\ = > A/

Obr. 21

sunuti urc¢eném vektorem CA obrazem trojihelniku CBA’ trojihelnik
ADC'. Rovnéz BCB'C’ je rovnobéznik, a proto v posunuti uréeném vek-
torem CB je obrazem trojihelniku ACB’ trojihelnik DBC’. Plati tedy
rovnosti

Scpar = Sapcr a Sacp = Spacr,

které zfejmé znamenaji, Ze obsah zkoumaného Sestitithelniku AC' BA'C B’
je roven obsahu rovnobézniku ADBC, tudiz dvojnasobku obsahu S da-
ného trojuhelniku ABC.

Jiné feSeni. (Podle Dominika Lachmana z G v Olomouci-Hejéiné.)
Ve shodé s obr. 22 ozna¢me ¢ = |xBUC'|, ¢y = |«xCUA'| aw = |<AUB’|.

81



S ohledem na rovnost sini vedlejsich 1ihla lze obsah S trojihelniku ABC
(rovny souctu obsaht trojihelnikit ABU, BCU a CAU) vyjadfit ndsle-
dujicim zpﬁsobem

|AU| |BU|51nw+ |BU]| - |CU|sm<p+ |CU| - |AU|sin .

B’ A

C/
Obr. 22
Obsah @ Sestithelniku AC'BA’CB’ je roven (diky soumérnosti podle

stfedu U) dvojndsobku obsahu étyfihelniku AC’BA’, ktery vyjadiime
jako soucet obsahii trojﬁhelnikﬁ AC'U, C'BU a BA'U. Dostaneme tak

Q= ( AU - [C'U|siny + 5 Lo |BU|smgo+ |BU|- |A’U|smw)

A protoze |[UA| = |UA|, |UB| = |[UB'| a [UC| = |UC'|, dostavame

konecné

Q= ( |AU| - |BU|Slnw+ |BU|- |CU|smcp+ |CU|- |AU|sm1/)>
=25,

coz bylo tfeba dokéazat.

Jiné FeSeni. Oznacme K, L, M stredy stran AB, BC, C'A. Stejnoleh-
lost se stredem A a koeficientem 2 zobrazi trojuhelnik M KU na trojthel-
nik CBA’ (ObI‘. 23), pI‘OtO SC’BA’ = 4‘SMKU- Podobné SACB' = 4'SKLU
a Sgacr =4 - Sppu. Odtud

Scpar +Sace +Spacr =4 Skm =S,

takze Sestitthelnik AC’BA’C B’ m4 obsah 25.
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o’ /
Obr. 23 Obr. 24

Jiné FeSeni. Je-1i bod U totozny s tézistém T trojuhelniku ABC (U =
= T), je tvrzeni tlohy splnéno, nebot Sa pc = Srpc, Sprca = Stca
a SC’AB = STAB (ObI‘. 24).

Predpokladejme nyni, ze se bod U pohybuje uvnitf trojuhelniku T
po primce p rovnobézné se stranou BC', a ukazme, ze se obsah Sestitihel-
niku AC’'BA’CB’ neméni. Body A’, B’ a C’ lezi totiz na rovnobézkach
s pfimkou p, a proto se neméni obsah trojihelniku A’BC ani obsahy
rovnobézniku BCB'C’ a trojihelniku B'C’A (obr. 25). Obsah Sestitihel-
niku AC'BA'CB’ tedy na poloze bodu U na ptimce p nezavisi. Podobné
1ze ukdzat, Ze se obsah Sestitthelniku AC' BA’C' B’ neméni, pohybuje-li se
bod U po rovnobézce se stranou AC.

C
B A
U
A B
w
p
Obr. 25
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Libovolny vnitini bod U trojtihelniku T pritom ziskame jako obraz
z posunuti ve sméru rovnobézném se stranou BC' a z posunuti ve sméru
rovnobézném se stranou AC. Proto pro kazdy bod U uvnitt trojuhelniku
T m4 Sestitthelnik AC' BA’C B’ stejny obsah jako Sestitthelnik odpovida-
jici bodu U =T, tedy obsah 25, jak jsme chtéli dokazat.

Jiné FeSeni. Oznac¢me U’ libovolny vnitini bod trojihelniku ABC.
Protoze obsah zkoumaného Sestitihelniku je roven souctu obsahti tii ¢tyt-
thelniki AC'BU’, BA'CU’ a CB’'AU’, bude tvrzeni tlohy ziejmé platit,
dokdzeme-li bod U’ vybrat tak, aby vSechny t¥i zminéné ¢tyithelniky
byly rovnobézniky. Protoze

U_A+A’_B+B’_C+C’
o2 2 2

maji body A’, B’, C’ vyjadieni
A'=2U-A, B =2U-B, C =2U-C,
takze potfebné rovnosti

A+B C'+U" B+C A+U C+A B +U
2 2 2 2 7 2 2

budou splnény, pravé kdyz bod U’ bude mit vyjadieni U’ = A+B+C—-2U
neboli U' = 3T —2U, kde T = %(A+B—I—C) je tézisté trojuhelniku ABC.
Odvozend rovnost zapsand ve tvaru U’ — T = 2(T — U) znamen4, ze ky-
zeny bod U’ je urcen jako obraz bodu U ve stejnolehlosti se stfedem T
a koeficientem —2. V ni je ovSsem obrazem trojihelniku T vychozi troj-
uhelnik ABC| takze vnitini bod U trojihelniku T se skutecné zobrazi na
vnitini bod U’ trojihelniku ABC, jak jsme potiebovali dokazat.

A-11-3
Predné si uvédomme, ze s kazdou dvojici (m,n) kladnych celych ¢isel,
kterd tloze vyhovuje, ji vyhovuje i dvojice (n,m). Proto mizeme bez
jmy na obecnosti predpokladat, ze m = n.
Pokud kladné celé ¢islo A = (m + n)? déli kladné celé ¢islo B =
= 4(mn + 1), nutné plati
(m+n)? <4(mn+1) neboli (m —n)? < 4.
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Proto 0 £ m — n < 2. Nastane tedy pravé jedna ze tii néasledujicich
moznosti:
> m=mn, pak A =4n?, B =4n? + 4 a A déli B, pravé kdyz 4n? déli 4,
tedy n = 1. Dostdvame jedno feseni (m,n) = (1,1).
>m=n+1pak A=4n?>+4n+1, B=4n?>+4n+4=A+3.Cislo A
déli B, pravé kdyz 4n? +4n + 1 déli 3. Ovsem pro kladna celd ¢isla n
plati 4n? +4n+1 2> 44441 =9, proto v tomto piipadé nem4 tiloha
reseni.
>m =n+2, pak A = 4n? 4+ 8n + 4, B = 4n? + 8n + 4. Vidime, Ze
A = B, tedy kazda dvojice (m,n) = (n + 2,n) kladnych celych ¢isel
je TeSenim zadané tlohy.

Zdver. Uloze vyhovuje dvojice (1,1) a déle (s ohledem na symetrii
neznamych m, n) rovnéz kazdéd z dvojic (n +2,n) a (m,m + 2), kde m
a n jsou libovolnd kladna celd ¢isla.

A-1l1-4

Oznacme stény krychle Si,Ss,...,S¢ tak, ze sténa S; je protilehla
sténé Sg, sténa S, je proti Sy a Sz je proti Sy. Cislo na sténé S; oznac-
me ¢;. Ziejmé libovolny vrchol krychle patii vzdy pravé jedné z dvojic
protilehlych stén. To znamen4, zZe se v kazdém kroku zvétsi o 1 i hodnota
soucti ¢; + cg, c2 + €5 a c3 + ¢4 Cisel na protilehlych sténach. Ma-li tedy
na konci platit ¢; = ¢y = ¢3 = ¢4 = ¢5 = ¢g, a tedy také

c1+cg =c2+ c5 =c3+cy, (1)

museji byt soucty ¢isel na protilehlych sténach krychle stejné uz na po-
¢atku (a zustanou stejné i po kazdém kroku).

Ukéazeme, ze podminka (1) je zaroven postacujici. Necht tedy ¢isla na
sténédch krychle spliuji (1). PopiSseme posloupnost kroki, po nichz budou
na vSech sténdch krychle stejnéd ¢isla. Krok, v némz zvétsime ¢isla na
sténdch S;, Sj, Sy, oznac¢me k;j,,. Bez ijmy na obecnosti necht ¢; = p je
nejvetsi ze Sesti ¢isel na krychli. Nyni provedeme (p — ¢3)-krét krok koye
a (p — c3)-krat krok ksse. Doséhneme tak toho, Ze na sténach Sy, Sa, S3
budou stejna ¢isla p. Diky podmince (1) je ted i na sténach Sy, Sy, Se
totéz cislo, jehoz hodnotu oznac¢me g. Pokud jeSté neni p = ¢, staci nyni
jen (p — q)-krat provést krok k4ss, je-li p > g, resp. (¢ — p)-krat krok ka3,
je-li ¢ > p.
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Nasi tlohou je tedy uréit pocet takovych mnozin M = {cy, ¢z, ¢3, ¢4,
¢s, C6 } navzajem ruznych prirozenych éisel, pro néz plati

ci+co+c3+ca+ces+cg=60 a cp+cg=co+c5=c3+cy.
Odtud plyne 3(c; + ¢g) = 60, tedy
c1+ce =co+ c5 =c3+ ¢y = 20. (2)

Bez Gjmy na obecnosti mizeme zfejmé predpokldadat, ze ¢; < ¢o < 3 <
< ¢4 < ¢5 < cg neboli (vzhledem k rovnostem (2))

g <ca<e3<l0<ey <es<cg.

Pritom ke kazdé trojici (c1,ce,c3) spliujici ¢1 < ¢a < c3 < 10 zbyld
¢isla ¢4, cs5, cg dopoCteme z (2). Pocet vSech vyhovujicich mnozin M je
tedy roven poc¢tu ruznych trojic pfirozenych ¢isel (c1, ¢a, ¢3), jez vyhovuji
podmince ¢; < ca < c3 < 10, coz je

9\ 9-8-7
= = 84.
(3) 1230

A-1ll-1

Ctyitihelnik K BO'M je tétivovy, pravé kdyz |<CM B| = |<C K B| neboli
|«xAKL| = |<xAML| (obr.26). Pfitom étyfihelnik AKLM je tétivovy,
pravé kdyz |<AKL| + |[<xAML| = 180°. Ve zkoumaném pfipadé proto
musi byt vSechny ¢tyri zminéné thly pravé, K a M jsou tak paty vysek
v trojuhelniku ABC, ktery je tudiz ostrothly, a bod L je prusec¢ikem jeho
vysek. Kruznice opsana ¢tyithelniku K BC' M je Thaletovou kruznici nad
prumérem BC' a kruznice opsand ¢tyirihelniku AKLM je Thaletovou
kruznici nad prumérem AL.

C
M
L
/L)
A K B
Obr. 26
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Kruznice opsané uvedenym ctyiihelnikiim jsou shodné, prave kdyz
jsou shodné jejich prauméry BC a AL. Oznac¢me velikosti vnitinich thla
v trojuhelniku ABC obvyklym zptisobem «, 3, . Pravouihlé trojuhelniky
CKB a AKL jsou podobné, protoze pro jejich tihly pri odpovidajicich
vrcholech C' a A plati [xBAL| = |xBCK| = 90° — . Ziejmé proto
plati |BC| = |AL|, pravé kdyz |AK| = |CK]|, tedy AKC je pravothly
rovnoramenny trojuhelnik.

Vidime, ze trojihelnik ABC vyhovuje podminkam tlohy, pravé kdyz
je ostrouhly s ithlem « = 45°. Pro ostré uhly [ a v pak plati 5+~ = 135°.

Zdvér. Resenim jsou pravé viechny trojice tihli (o, 3,7) = (45°,45° +
+ ©,90° — @), kde p € (0°,45°).

Jiné FeSeni. Necht K, M jsou vnitini body stran AB, AC trojuhel-
niku ABC| jez vyhovuji podminkam tlohy. Vzhledem k tomu, ze kruznice
opsané c¢tyruhelnikim AK LM, KBCM jsou shodné, shoduji se i pri-
slugné obvodové 1ihly nad spole¢nou tétivou K M obou kruznic* (obr. 27).

C

Odtud [« MBC|=f—aa|xKCB|=~v—a, tudiz a je nejmensim vnitf-
nim tthlem uvazovaného trojuhelniku.

Protoze ctyiihelnik AK LM je tétivovy, je vnitini ihel pti vrcholu A
shodny s vnéjsim tthlem u protéjsiho vrcholu L, coz je zaroven vnéjsi tihel
trojihelniku BC'L, takze plati

a=(B—-—a)+ (y—a) neboli 3a=p+~y=180°— «.

Odtud vychazi a = 45°. Trojihelnik ABM je tedy stejné jako trojihelnik
AC K rovnoramenny pravouhly, takze CK a BM jsou vysky trojihelniku

4 Dvé shodné kruznice se spole¢nou tétivou mohou byt bud totozné, anebo soumérné
sdruzené podle spole¢né tétivy; prvni moznost zde nepfichézi v uvahu.
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ABC a bod L je jeho prusecikem vySek. A protoze bod L lezi uvnitt
trojuhelniku ABC, je trojihelnik ABC' ostrothly.

Vzhledem k tomu, ze a = 45° je nejmensim z vnitinich hli trojthel-
niku ABC, snadno nahlédneme, ze hledané trojice (a,[3,v) maji tvar
(45°,45° 4+ ¢,90° — ¢), kde pro parametr ¢ plati 0° < ¢ < 45°.

Naopak v kazdém ostrothlém trojihelniku ABC s thlem 45° pii
vrcholu A, pro jehoz dalsi thly plati 8+~ = 135°, maji zfejmé paty vysek
K, M z vrcholt C' a B pozadované vlastnosti, protoze oba ¢tyftihelniky
AKLM, KBCM jsou tétivové podle Thaletovy véty a z rovnosti hli
[xKCM| = |xKAM| = 45° nad spole¢nou tétivou KM plyne, ze jim
opsané kruznice jsou shodné.

A-1Il-2

Ukazeme, ze dané rovnici vyhovuji pravé tfi trojice prvocisel (p,q,r), a to
(2,3,5), (5,3,3) a (7,5,2).

Danou rovnici nejprve upravime do tvaru

(1+%)(1+§)(1+§)=4.

Protoze 3% < 4 - 23, musi byt aspon jeden ze ti{ ¢initeldl na levé strané
upravené rovnice veétsi nez % Pro prvocisla p, ¢, r tak nutné plati p < 2
nebo ¢ < 4 nebo r < 6. Vzhledem k tomu, Ze neexistuje zadné prvodcislo
mensi nez 2, zbyva vysetfit nasledujicich pét moznosti: ¢ € {2,3} ar €
€ {2,3,5}. Ty nyni rozebereme jednotlivé, piitom uvazovanou hodnotu
q ¢i r vzdy dosadime do dané rovnice, kterou pak (v oboru prvodcisel)
vyTtesime pro zbyvajici dvé neznamé.
> Pro ¢ = 2 dostaneme (p + 1)(r + 3) = 2pr, odkud plyne r = 3 +
+6/(p—1), coz je celé ¢islo pouze pro prvocisla p € {2,3,7}. Jim
vsak odpovidaji r € {9,6,4}, kterd nejsou prvocisly.
> Pro ¢ = 3 dostaneme 5(p + 1)(r + 3) = 12pr, odkud plyne, ze p = 5
nebo r = 5. Pro p = 5 dostaneme feSeni (5,3,3) a pro r = 5 FeSeni
(2,3,5).
> Pro r = 2 dostaneme 5(p + 1)(¢ + 2) = 8pq, odkud plyne, ze p = 5
nebo ¢ = 5. Pro p = 5 nedostaneme zadné feseni v oboru prvodisel,
zatimco pro ¢ = 5 dostdvame tfeti FeSeni dané rovnice, kterym je
trojice (7,5,2).
> Pro r = 3 dostaneme (p + 1)(q¢ + 2) = 2pq, odkud ¢ = 2 +4/(p — 1),
coz je celé c¢islo pouze pro prvoéisla p € {2,3,5}. Mezi odpovidajicimi
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hodnotami ¢ € {6,4, 3} je jediné prvocislo, pro néz dostdvame feseni
(p,q,7) = (5,3,3), které jiz zname.

> Pro r = 5 dostaneme 2(p + 1)(¢q + 2) = 5pq, odkud plyne, ze p = 2
nebo ¢ = 2. Pro p = 2 dostdvame uz znamé feseni (2, 3,5), zatimco
pro ¢ = 2 vychézi p = 4.

Jiné FeSeni. Pro kazdé prvodislo ¢ plati nerovnost ¢ + 2 < 2q. Pro
prvoéisla p a r tak dostaneme nerovnici 2(p + 1)(r + 3) = 4pr, kterou
upravime na tvar (p — 1)(r — 3) < 6. Protoze p—1 2 1, musi byt r—3 < 6
neboli 7 £ 9. Odtud plyne, ze nutné r € {2, 3,5, 7}. Postupnym rozborem
kazdé z téchto ¢tyt moznosti dospéjeme (analogicky jako v predchozim
feseni) ke tfem trojicim prvodcisel (p, ¢, 7): (2,3,5), (5,3,3) a (7,5, 2), které
jsou jedinymi fesenimi tlohy.

Jiné FesSeni. Rovnici upravime na tvar (1+1/p)(14+2/¢)(1+3/r) = 4.
Kdyby bylo p =2 5, ¢ =2 5, r 2 5, platilo by

(0D 5T e

Proto aspon jedno z ¢isel p, q, r je z mnoziny {2, 3}. Staci tedy prozkou-
mat Sest moznosti:
> p = 2: Rovnici 3(¢+2)(r+3) = 8¢gr upravime na (5¢—6)(5r—9) = 144,

v oboru prvocisel je fesenim ¢ = 3, r = 5.

p = 3: Rovnici 4(¢ + 2)(r + 3) = 12¢r upravime na tvar (¢ — 1)-

-(2r — 3) =9, v oboru prvocisel nema Feseni.

> ¢ = 2: Rovnici 4(p+1)(r+3) = 8pr upravime na tvar (p—1)(r—3) = 6,

v oboru prvocisel nemé reseni.

g = 3: Rovnici 5(p + 1)(r + 3) = 12pr upravime na tvar (7p — 5) -

-(7r —15) = 180, v oboru prvodisel jsou fesenimi p =5, r =3 ap =2,

r=>.

> r = 2: Rovnici 5(p + 1)(¢ + 2) = 8pq upravime na tvar (3p — 5)-
- (3¢ — 10) = 80, v oboru prvodcisel je feSenim p =7, ¢ = 5.

> r = 3: Rovnici 6(p + 1)(¢ + 2) = 12pq upravime na tvar (p — 1) -
(g —2) =4, v oboru prvocisel je feSenim p =5, ¢ = 3.

v

v

Zaver. V oboru prvocisel jsou feSenim dané rovnice nasledujici trojice
(p,q,7): (2,3,5), (5,3,3) a (7,5,2).

Poznamka. V oboru kladnych celych ¢isel ma rovnice az 28 feseni,
z toho 13 v oboru celych cisel vétsich nez 1: (2,2,9), (2,3,5), (2,6,3),
(2,30,2), (3,2,6), (3,4,3), (3,10,2), (4,2,5), (5,3,3), (5,6,2), (7,2,4),
(7,5,2), (15,4, 2).
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A-11-3
a) Dle zadani plati (z + y)? = (12 — 2)? a 22 + 32 = 54 — 22, tedy
20y = (z+y)> — (22 +9°) = (12— 2)> — (54— 2%) =2((2 - 6)*+9), (1)
a tudiz

0S(z—y)l=2’+y*—2zy=54—2>-2((z—6)>+9) =
= —3((2—4)2—4). (2)

Z (1) plyne zy = (2 — 6)2 4+ 9 = 9, z (2) nerovnost (z — 4)? < 4 neboli
2 < 2 £ 6. Proto (z — 6)2 £ (2 —6)% = 16, coz spolu s (1) dava zy =
= (2 —6)2 +9 < 25. S ohledem na symetrii plati odvozené nerovnosti
9 < zy £ 25 i pro souliny yz, zx na misté zy.

b) Z dané soustavy rovnic dostavame

(t+y+2)?—(x®+y>+2%) 12254

= 45.
2 2 g

Ty +yz+zr =
Daéle plati

(z=3)y—=3)+—-3)(z-3)+(z-3)(z—-3) =
=zy+yz+zx—6(x+y+2)+27=45—-6-12427=0.

Odtud plyne, ze ¢isla x — 3, y — 3, 2 — 3 nemohou byt soucasné vSechna
kladn4, alespon jedno z cisel x, y, z je tedy nejvyse 3. Podobné ze vztahu

(z—=5)(y—5)+(y—5)(—5)+ (2 —5)(z—5) =
=zy+yz+ze—10x+y+2)+7=45—-10-12+75=0

vidime, ze ¢isla x — 5, y — 5, z — 5 nemohou byt soucasné vsechna zaporna,
proto alespon jedno z cisel z, y, z je nejméné 5.

Jiné FeSeni. Obtiznéjsi obrat v ¢asti b) predchoziho Teseni muzeme
nahradit dikazem implikaci

(z>3)A(y>3)=2<3 a (x<bH)A(y<5)=2z>5.

Uvazujme kvadraticky trojclen F(t) = (t — z)(t —y). Jsou-li oba jeho
kofeny x a y vétsi nez 3, plati F'(3) > 0. OvSem podle zadani a (1) plati

0< F(3)=32-3(z+y)+xy =9-3(12—2)+(2—6)>+9 = (2—3)(2—6).
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Z této nerovnosti a z odhadu z < 6 dokdzaného v ¢ésti a) predchoziho
reseni tak dostavame pozadovany odhad z < 3. Podobné, jsou-li obé cisla
x a y mensi nez 5, potom plati F'(5) > 0. OvSem podle zadani a (1) plati

0 < F(5) = 52=5(z+y)+zy = 25-5(12—2)+(2—6)249 = (2—2)(2—5).

Z této nerovnosti a odhadu z = 2 dokdzaného v ¢asti a) predchoziho
reseni tak dostavame pozadovany odhad z > 5.

Jiné feSeni. a) Dosazenim z prvni rovnice do druhé dostaneme
2?4yl vay—122—12y+45=0

a odtud

Lo 12—yt Vv —3y? + 24y — 36
- 5 )
Proto —3y? 4 24y — 36 > 0, takze 2 < y < 6. Dale mame

2zy = 12y — y? + y\/—3y? + 24y — 36.

Pfipustme, ze 27y < 18. Potom 12y — y? — y\/—3y? + 24y — 36 < 18
neboli

0 < 12y — y? — 18 < yv/—3y2 + 24y — 36,

odkud po umocnéni a tpravé dostaneme (y — 3)* < 0, coz neni mozné.
Podobné z nerovnosti 2xy > 50 by vyplyvalo

12y — y? + yy/—3y2 + 24y — 36 > 50,
yv/ —3y2 + 24y — 36 > y? — 12y + 50 > 0,

a po umocnéni a tpravé (y? — 2y + 25)(y — 5)? < 0, coz rovnéz neplati.

Je proto 9 < zy £ 25 a vzhledem na symetrii i 9 < yz < 25a 9 <
< zx < 25.

b) Polozme * = 4+a,y =4+b, 2 =4+ c. Potoma+b+c =
=0, a® + b® + c* = 6. Bez Gjmy na obecnosti miizeme predpoklidat, ze
la|] = |b] = |c|. Cisla a a b maji pak opa¢nd znaménka a a® > 2, proto
la| = v/2 (dokonce lze dokazat |a| = /3), a tedy < 4 — v/2 < 3 nebo
r 2 4+ /2 > 5. Z nerovnosti |b| < 1 by vyplyvalo |c| < 1, ale potom
la] £ 1b] + |¢| < 2 a a? + b% + c® < 6; proto |b| = 1. Mohou tedy nastat
dva ptipady:
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> Pokud a > 0, je b <0, tedy b < —1; protox >5ay < 3.
> Pokud a < 0, je b >0, tedy b = 1; proto x < 3 ay = 5.

Jiné feseni. Vyfesime ¢ast b) geometricky. V kartézské soustavé sou-
fadnic s pocatkem O a osami x, y, z urcuje prvni rovnice rovinu o, ktera
prochdzi bodem S = [4,4,4] a je kolmd k tsecce OS, zatimco druhd
rovnice je rovnici kulové plochy K(O,r = v/54). Primikem obou ttvarii
je kruznice k(S,0). Uréime nejprve jeji polomér a pruseciky kruznice
s rovinou, podle niz jsou osy z a y soumérné sdruzeny.

Ozna¢me S, S, a S, kolmé priméty bodu S do souradnicovych os x,
y a z. Na obr. 28 je fez rovinou OSS.. Plati |0S;| = 4v/2, |0S| = 4V/3
(sténové a télesova tihlopiicka krychle o hrané délky 4) a |OA| = v/54.
Z pravouhlého trojihelniku OAS pomoci Pythagorovy véty uréime o =
= |SA| = V6 a z podobnosti trojihelnikit SAU ~ OSS; dostaneme
US| = 2 a |JAU| = v/2. Odtud A = [5,5,2] a (diky symetrii podle S)
D = [3,3,6].

“A A
D ____E[37673]
Al5,5,2]
Q b | b
Sz __________ - S 0[27 ’53 5] S
h D[3,3,6 F[6,3,3]
L |
v K YEs, 2,5
| |
o Sy la=y 9] >
Obr. 28 Obr. 29

Analogickym rozborem pro roviny OSS, a 0SS, (nebo jen cyklickou
zdménou, kterou lze vzhledem k symetrii uplatnit) nalezneme jejich pru-
seciky s kruznici :

B=[3,6,3, E=[525 a C=[255], F=][6,3,3

Nalezené body A, B, C, D, E, F rozdéluji kruznici k£ na Sest obloukl
(obr. 29 znazornuje pohled na kruznici k ve sméru osy z), pro jejichz
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body zrejmé plati:

[x,y,z]€@$2§z§ , 5Sy<6, 3525,
e,y,2]€ BC = 2<<3, 55y<6, 35255,
2,9,2]€CD = 252<3, 55256, 35y<5,
[m,y,Z]EFE = —y_ :Z:73§1"§57
[.’L’,y,Z]GE‘F = —y:7 :l': 73§Z§57
0,9, €FA = 25253 55256, 3Sy<5
Tim je ovSem tvrzeni b) dokézano.
A-lll-4

Pokud Adam nahradi koeficient u linedrniho ¢lenu, ziské trojélen az? +
+ (a+c)x + ¢, ktery mé dva ruzné reilné kofeny, pravé kdyz je jeho
diskriminant (a + ¢)? — 4ac = (a — ¢)? kladny. To nastane, pravé kdyz
a # c. V tomto pfipadé vyse popsanym tahem vitézi Adam. Pokud Adam
nahradi koeficient u absolutntho ¢lenu, ziska trojélen az? + bz + (a + b)
se dvéma ruznymi redlnymi kofeny, pravé kdyz je jeho diskriminant
v — da(a + b) = (b(1+ v2)+2a) (b(v2— 1) — 2a) kladny. Vzhledem
k podminkam tlohy to nastane, pravé kdyz b(v/2 — 1) > 2a. Jelikoz dis-
kriminant kvadratického trojclenu je symetricka funkce koeficientti u kva-
dratického a absolutniho ¢lenu, nastane stejna situace i v pripadé, kdy
Adam nahradi koeficient u kvadratického ¢lenu.

Shrime tvahy z pfedchoziho odstavce. Pokud a # ¢ nebo b >
> 2a/(v2 —1) = 2(v/2 4 1)a, mize Adam prvnim tahem vyhrét.

Piedpokladejme, Ze a = ¢ a sou¢asné b < 2(v/2 + 1)a. Po Adamovi je
na tahu Boris, ktery bude nahrazovat koeficienty u jednoho z trojclenti

a) az? + bz + (a + b) nebo (a + b)x? + bxr +a, b) az?®+ 2az + a.

a) Pokud v tomto pfipadé nahradi Boris koeficient u linedrniho ¢lenu,
dostane jeden z trojélentt az? + a(a + b)x + (a + b) nebo (a+ b)z? +
+ a(a +b)x + a, jez maji oba diskriminant a?(a + b)? — 4a(a + b) =
= a(a+b)(a(a+b) — 4), ktery je vzhledem k podminkdm a = 2, b = 2
kladny. Proto Boris timto tahem zvitézi.

b) Pokud Boris nahradi koeficient u linedrniho ¢lenu, dostane kvadra-
ticky trojélen az? + a%x + a, ktery ma dva realné koreny, pravé kdyz je
jeho diskriminant a* —4a? = a?(a+2)(a—2) kladny. Vzhledem k podmin-
kam tlohy to nastane, pravé kdyz a > 2. Kdyby Boris v pripadé a = 2
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nahradil koeficient u kvadratického nebo absolutniho ¢lenu, zanechal by
Adamovi jeden z trojélenti 82244242 nebo 222 +4x+8. Z tivah v prvnim
odstavci plyne, ze v takovém pripadé by zvitézil Adam. Proto v pripadé
a = 2 musi Boris, aby neprohral, nahradit koeficient u linearniho ¢lenu,
a zanechd tak Adamovi trojclen 2z2 + 4x + 2.

Z odstavci a) a b) plyne: Pokud Adam nemuze zvitézit prvnim tahem,
muze svym tahem zvitézit Boris, pravé kdyz a # 2. V pripadé a = 2
svym prvnim tahem Boris neprohraje, jen kdyz zanecha souperi trojclen
222 + 4z + 2.

Zatim tedy nezname vitéznou strategii nékterého z hraci, pokud po
prvnim Borisové tahu zlistane trojélen 2z2 + 4z + 2. Z tvah v prvnim
odstavci vyplyva, ze Adam neprohraje, pokud nahradi koeficient u linear-
niho ¢lenu, takze zanecha souperti stejny trojclen. Na tento trojclen musi
Boris, aby neprohral, reagovat nahradou koeficientu u linearniho clenu,
tudiz i on zanechd stejny trojclen a hra v tomto pripadé nemé pti spravné
hfe obou hracu vitéze.

Zdvér. Pro trojélen ax? + bx + ¢ plati:

> Pokud a # ¢ nebo b > 2(v/2+1)a, mé vitéznou strategii Adam a mtize
prvnim tahem vyhrat.

> Pokud a = ¢ > 2ab < 2(v/241)a, ma vitéznou strategii Boris a miize
prvnim tahem vyhrat.

> Pokud a = ¢ = 2 a b < 2(v/2 + 1)a, museji oba hradi, aby neprohrali,

v kazdém tahu zanechévat trojélen 2z2 + 4x + 2. V tomto piipadé

zadny z hract nemd vitéznou strategii.

A-1I1-5

Je-li trojuhelnik ABC' rovnoramenny se zakladnou AB, lezi celd usec-
ka OV na pfimce EP a tvrzeni plati trividlné. Mtzeme tedy predpokla-
dat, ze |AC| # |BC|, takze ptimky CV, CO jsou ruzné.

Jak zndmo, bod V' soumérné sdruzeny s prusecikem vysek V po-
dle strany AB uvazovaného trojihelniku ABC' lezi na kruznici tomuto
trojihelniku opsané, proto je bod P stiedem tsecky V'V’ (obr. 30). Troj-
tthelnik CV'O je rovnoramenny s hlavnim vrcholem O, a protoze stfed E
usecky C'D je soucasné stfedem kruznice opsané pravouhlému trojihel-
niku CPD s preponou CD, je i trojihelnik C'PE rovnoramenny. Oba
rovnoramenné trojihelniky CV’O a CPE jsou pritom stejnolehlé (se
stfedem stejnolehlosti v bodé C') — shoduji se totiz ve spole¢ném thlu
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pri zékladné a body C, P, V' lezi v pfimce stejné jako body C, E, O. Je
tudiz PE || V'O.

C
E
\%
O
a
A P D B
Obr. 30 v

Protoze P je stfedem strany V'V’ trojihelniku V'OV, lezi na piim-
ce PFE stredni pricka tohoto trojuhelniku, kterd je rovnobézna s jeho
stranou V'O. Piimka PE tedy protind tsecku OV v jejim stiedu, coz
jsme chtéli dokazat.

Jiné FeSeni. Oznac¢me S stied tsecky OV a A’, B’, C' postupné stredy
stran BC, CA, AB. Bod O je zfejmé prusecikem vySek ostrouhlého
trojuhelniku A’B'C’, ktery je podobny trojihelniku ABC. Proto O lezi
uvnitf trojihelniku A’B’C’ a bod E lezi uvnitf tsecky OC (na jejim
pruseciku s prickou A’B’). Protoze S lezi uvniti usecky OV a P lezi
mimo tsecku C'V (obr. 31), k dikazu toho, ze body P, S, E lezi v jedné

C
B/ P/ h A/
|4 E :.
T~ O
[‘ ﬁ I
A P C'" D B
Obr. 31
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primce, stac¢i podle Menelaovy véty pouzité na trojihelnik VOC ukézat,
ze soucin

. VS| ' |OE| . |CP| (1)

ISO| |EC| |PV|

je roven 1. Avsak |V S| = [SO|, a pokud ozna¢ime P’ patu kolmice spus-
téné z bodu O na pricku A’B’, plyne z podobnosti trojihelniki ABC
a A’B'C’ rovnost |CP|: |[VP| = |C'P’'|:|OP’| (nebot O je prisecikem
vysek trojuhelniku A’ B’C"). Navic |EC| = | DE|, takze po dosazeni do (1)
dostavame

|OE| |C'P'|
|DE| |OP'|
Posledni rovnost plati diky tomu, ze bod O déli kazdou tsecku s jednim

krajnim bodem na strané AB a druhym na pricce A’B’ (rovnobézné
s AB) ve stejném poméru, tj. |[OF|: |DE|= |OP'| : |C"P’|.

Jiné FeSeni. Pouzijme oznaceni bodu zavedené v predeslém reSeni.
Odlisnym zptisobem ukdzeme, ze souc¢in (1) je roven 1. Oznacéime-li
velikosti vnitinich thla trojihelniku ABC obvyklym zpusobem, bude
|xCOA'| = a, | XOA'E| =90° — 8, |xEA'C| = B, |[xOCA'| =90° — «,
takze ze sinovych vét v trojihelnicich FOA” a EC A’ mame

EA . R

or| _ S -sin(o0° = 5)

BC] = BAT = cotg a - cotg f3.
sin(90° — a) sin 5

Avsak |« AV P| = 3, odkud |V P| = |AP|/tgp; a zaroven |CP| = |AP]|-
-tga, tedy |CP|:|VP|=tga-tg . Dohromady dostdvdme

s=1-cotga-cotgf-tga-tgh = 1.

Jiné feSeni. Zvolme v roviné kartézskou soustavu soutadnic s pocat-
kem v bodé P, a s z-ovou osou na piimce AB. Je tedy P = [0,0] a pro
vhodnd a < 0, b > 0 a ¢ > 0 plati A = [a,0], B = [b,0], C = [0,c|. Po-
stupné vypocitame souradnice bodi V, O, D, F a sttedu S tsecky VO
(zFejmé zadny ze jmenovatelll neni nulovy):

2 2
V= [07_%)], O - [a+b’ab+c ]7 D= [M,O]’

2 2¢ 2 —ab
o 02(a+b),2’ g a+b’02—ab .
2(c? —ab)’ 2 4 4c
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Ovéreni, ze bod S lezi na primce PE, se tak redukuje na ovéreni trivialni
identity
la+b) ¢ a+b *—ab

c
2(c2 —ab) " 2 4 4c

Jiné reseni. Zvolme v roviné kartézskou soustavu souradnic tak, ze
A =10,0], B=11,0], C = [e1,c2], pfitemz co > 0, 0 < ¢; < 1. Potom
1 2 —c1+c3 ¢ —c? i 1 E4ec—-¢2
O:—;,VZC, 1 S — _+_,;7
{2’ 2¢; B 2 1 dcy
A+ k-3 — ik 0] E_[Qc%—Qc‘;’-Fc% cz]

2+ —c? 2(c1 —c2+c3) 2

P=[c,0, D= [

Stac¢i uz jen ovérit linedrni zavislost vektori S — P a E'— P, tedy rovnost

1 ¢ 2¢2 —2¢3 +c3 e
i"7 -3+ 3)
ct+c—c? ©
402 2

Jiné FeSeni. Je-li b = |AC| = |BC| = a, lezi vSechny ¢tyti body P, E,
O, V na jedné primce a na ni lezi i stred usecky OV'.

Necht tedy naptiiklad b > a. Plati [xACO| = |xPCB| = 90° — 3,
a tedy |<xDCP| = B — a. Bod E je stfed prepony C'D pravothlého
trojthelniku CDP, proto |« DPE| = |xPDE| =90° + o — 3.

Ozna¢me r polomér kruznice opsané trojihelniku ABC, S stred
usecky OV a F, G paty kolmic z bodia O, S na pfimku AB. Potom
|OF| = rcosy = iccotgy, |[PB| = acosf, |PV| = acosfBcotga,
|SG| = 3(|OF| + |PV|) = 3ccotgy + acos Beotga, |GP| = 3(|[FB| -

—|PB|) = 3¢ — 3acos B,

ISG|  jccotgy + jacos B cotga _

tg | xGPS| = -
gl | |GP]| ic—tacospB
1 b 1 ¢ 3
_ 1 gy + 2sinwCOS cosa _ cosy+2cosacosf
= 1 1 0 - . _ . -
_c__cs.,lnacosﬂ siny — 2sin acos
4 2 sinvy

—cos(a + B) +2cosacos B
- = cot — =t DPE)|:
sin(a + ) — 2sina cos 8 cotg(f —a) glx l;

odtud |<GPS| = |xDPE|, a tudiz body S, P a E lez{ na jedné p¥imce.

97



A-1ll-6

Ukazeme, ze jedina funkce f, ktera splnuje podminky tlohy, je
1
=14+ —.
fl@) =1+~

Ze zadani plyne, ze f(y) # 0 pro libovolné y > 0, tudiz

1
zy f(y)

Ozna¢me f(1) = a > 0. Volbou z = 1, resp. y = 1 v rovnici (1)
postupné dostaneme

f(z f(y) = f(@)

. (1)

1 1
f(f(y))Zf(l)—m:a—m (y € RT), (2)
flaz) = f@) - = (x € RY). ®

Volbou z = 1 v rovnici (3) obdrzime

Volbou z = a v rovnici (1) a uzitim (4) dostaneme

F@f@) = @) = s =0 =1 = s (W ERY),

zatimco pomoci vztaht (3) a (2) muzeme levou stranu predchozi rovnice
upravit na tvar

11
afy) — yfly) af(y)’

Porovnanim pravych stran predchozich dvou rovnic vypocitame

flaf@) =f(fw)

fl) =1+ % (v € RY). (4)

Pokud tedy existuje feSeni dané rovnice, musi mit tvar (4). Dosazenim
do rovnice v zadani a naslednou tpravou zjistime, ze pro vSechna kladna
redlnd x a y m4 platit (a —1)?> = 1. Vzhledem k ptedpokladu a > 0
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je tato rovnice splnéna, pravé kdyz a = 2. Timto krokem jsme zaroven
provedli zkousku spravnosti nalezeného feSeni.

Jiné FeSeni. Vztahy (1) a (2) z predchoziho FeSeni mizeme vyuzit
i nasledujicim zptisobem. Pro libovolné redlné ¢islo t je f(t) > 0. Volbou
x = f(t) v rovnici (1) obdrzime pomoci (2)

1 1 1
FEW W) =10~ 570 = 170 T v IG)

Zameénou proménnych t a y odtud ziskdme

t,y € RT.

1
yfly)  fy)tf)

Jelikoz vyrazy na levych strandch predchozich dvou rovnic jsou shodné,
musi byt shodné i vyrazy na pravych stranach, takze plati

f(fw) f(t) =a (t,y € RT).

a— 1 _ 1 . o 1 .
W T0ue v Twam Ve

Upravou dostaneme

t(ft)—-1) =y(fly)—1) (t,yeR").

Volbou t = 1 v predchozi rovnici ziskdme rovnost
a—1 4
f(y)=1+—y— (y € RT),

kterou vyuzijeme stejné jako v predeslém feseni.
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Kategorie P

Texty tloh

P-1-1
Indiana a poklad

Po dlouhé a nebezpecné cesté plné dobrodruzstvi se kone¢né pred India-
nou rozprostrel pohled na starodavné pohrebisté aztéckych krali. Byl to
hrob vedle hrobu podél dlouhé cesty, nékteré se lisily vyskou, ale jinak
byly stejné. Na prvnim kameni byl nasledujici napis:

Jsi-li moudry, pochopis,
kde miij poklad nasel skrys.
Se zlou vsak se potéaze,
kdo spatny hrob ukéze.

Vyklad téchto verst je prosty: pokud oteviete hrob s pokladem, tak
tento poklad ziskdte, v opacném pripadé neziskate nic a nejspis vds néco
rozmackne. Verse nastésti pokracovaly:

Kdo voli z prostiednich, neprohloupi,
pokud si nakonec nejvétsi koupi.

No a ted uz je jisté jasné i vam, kde se poklad nachazi. Staci jen najit
nejvétsi z prostrednich vysek hrobi a poklad bude objeven.

Soutézni tloha. Je zadana posloupnost N kladnych celych ¢isel vy,
va,...,vN a celé liché ¢islo K. Vasim tkolem je najit maximum ze vSech
medianta souvislych podposloupnosti délky K. Medidn ziskate pro danou
podposloupnost tak, ze vSechna jeji ¢isla seradite podle velikosti a zvolite
prostiedni prvek (tzn. %(K + 1)-ty prvek). Naptiklad pro posloupnost
vysek hrobu 4, 5, 1, 3, 2, 4 a K = 3 tak ziskate posloupnost medianu 4,
3, 2, 3, a hledanym vysledkem je tedy ¢islo 4.

Format vstupu: Program nacte vstupni data ze standardniho vstupu.
Prvni fadek vstupu obsahuje dvé celd ¢isla N a K, pocet hrobt a délku
uvazovanych podposloupnosti, 1 < N < 1000000 a 1 < K < 10000.
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Kazdy z nasledujicich N fadkt obsahuje vysku jednoho z hrobt (v poradi
V1,2, ...,UN). VySky jsou pfirozend ¢isla mensi nez 1 000 000 000. Mizete
predpokladat, ze pro 40 % vstupt plati K < 100.

Formadt vystupu: Na standardni vystup vypiste jedno cislo, které je
rovno maximu ze vSech mediani souvislych tsekt délky K v posloupnosti
¢isel zadanych na vstupu.

Priklad:

Vstup: Vistup:
63 &
4

O S N L

P-1-2
Poklad podruhé

Poté co Indiana nasel nejvétsi z prostrednich hrobi, zjistil, Ze napis nebyl
uplné presny. Misto pokladu vSak byl pod kamenem jen vchod do dalsi
chodby. Ta byla vydldzdéna c¢tvercovymi dlazdicemi a hned na prvni
dlazdici byl vyryty tento napis:

Slapnes-li na kazdou z nas pravé jednou,
Tvé ruce nad hlavu poklady zvednou.
Tou hlavou vsak zaplatit musis,

kdyz sestru s lebkou poskadlit zkusis.

Chodba méla na sirku presné 3 dlazdice a dlouhd byla, kam az oko
dohlédlo. Na nékterych z dlazdic byly namalované lebky, na jinych dlazdi-
cich pak lezely skutec¢né lebky (pravdépodobné predchozich archeologii).

Indiana velmi rychle napis pochopil — musi na kazdou dlazdici
(kromé téch zakdzanych) sldpnout pravé jednou, jen tak vede cesta k po-
kladu. V tu chvili ale zacal litovat toho, Ze ma tak velké nohy. At se snazil,
jak chtél, nikdy se mu nepodarilo stoupnout jenom na jednu dlazdici, ale
vzdycky stoupnul na dvé sousedni. To tikol samoziejmé zkomplikovalo.

Soutézni tloha. Na vstupu je ddana délka chodby NV, tzn. chodbu tvori
3 x N dlazdic. Z téchto dlazdic je K zakdzanych, na které Indiana nesmi
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vstoupit. Vasim tkolem je urcit, kolika zpusoby lze tuto chodbu pokryt
stopami velikosti 1 x 2 dlazdice tak, aby kazda nezakazand dlazdice byla
pokryta prave jednou stopou a zadné zakazana dlazdice nebyla pokryta.
Protoze vysledné c¢islo muze byt velmi velké, vypiste zbytek po déleni
tohoto ¢isla zadanym cislem L.

Formdt vstupu: Program nacte vstupni data ze standardniho vstu-
pu. Na prvnim fadku jsou zaddna pfirozend ¢isla N, K a L, 1 £ N <
< 10000000, 1 £ K < min(3N — 1,1000000) a 2 < L < 1000 000.
Nasleduje K tadku, pricemz na kazdém z nich je dvojice ¢isel X; a Y;,
1< X; £3a12Y; £ N, které udavaji souradnice i-té zakézané dlazdice.
Vzdy bude platit, ze Y1 S Yo < ... < Y.

Miuzete predpokladat, ze 20 % vstupt bude spliiovat 1 < N < 40.

Format vystupu: Na standardni vystup vypiste jediny radek, ktery
obsahuje pocet moznosti, kolika zptlisoby lze chodbu pokryt. Toto ¢islo je
uvedeno modulo L. VSimnéte si, ze pro nékteré vstupy nemusi existovat
zadné Teseni — v takovém pripadé vypiste nulu.

Priklad:

Vstup: Vijstup:

5313 3

31

12
24

P-1-3
Reka
Za devatero horami se nachézi rozsahly prales, kterym protéka dlouha
teka. I pfes svou obrovskou délku nema reka zadné pritoky a ani se nikde
nerozvétvuje.

V pralese roste mnoho vzacnych druht stromi, a proto neni divu, ze
u reky lezi dfevorubecké tabory. Vzdy, kdyz dievorubci pokaci dostatecné
mnozstvi stromi, sestavi z nich vor a poslou ho dolt po Tece.

Kromeé drevorubeckych taborti se u feky také nachézeji pily. Zamést-
nanci kazdé pily sleduji feku, a kdyz k nim dorazi vor, odchyti ho
a vSechno dfevo spotfebuji. Obcas je pila zaviend kvuli udrzbé, v té
dobé ignoruje vory a nechava je plout déle po fece.

Zaméstnancim pil vadi, ze nevédi dopfedu, kdy maji ocekavat do-
davku dreva a zbytecné travi cas pozorovanim reky. Pomozte jim a na-
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piste program, ktery jim bude posilat upozornéni na blizici se zasilku
dreva.

Soutézni tloha. Reka méa délku N kilometrii a pozice bodii na ni
budeme oznacovat vzdalenosti od pramene. V kazdém z bodu 1,..., N se
nachazi bud drevorubecky tabor, nebo pila. Umisténi pil na fece je dano
na zacatku vypoctu. Vite, ze pil je pomérné mnoho vzhledem k délce
teky; miizete predpokladat, ze pocet pil P je fadové stejny jako délka
reky.

Vas program bude dostavat udélosti nasledujiciho typu: ,,pila v bodé b
zahajuje udrzbu®, ,pila v bodé b je opét v provozu“ a ,z tabora v bodé t
byl odeslan vor®. Pro kazdy odeslany vor vas program odpovi, ve které
pile bude zpracovan. Predpokldadejte, ze feka tece natolik rychle, aby
mezi odeslanim voru a jeho zachycenim nebyla v zadné pile zahdjena
ani ukoncena udrzba.

Formdt vstupu: Program nacte vstupni data ze standardniho vstupu.
Prvni rddek obsahuje prirozend cisla N, P a M, udavajici délku reky,
pocet pil na fece a pocet udalosti (1 < N £100000,1 S P<S Nal&g
< M £ 1000000). Na nasledujicich P fadcich jsou popsany polohy pil:
na i-tém z téchto radku se nachazi ¢islo n; (1 < n; £ N), udavajici, ze i-ta
pila se nachazi ve vzdélenosti n; od pramene reky. Miuzete predpokladat,
7el<n; <...<np <N.

Déle nasleduje M tadkt popisujicich udélosti v chronologickém pota-
di. Na kazdém z téchto nasledujicich radkid se nachazi popis jedné uda-
losti:

> pismeno U ndsledované mezerou a prirozenym ¢islem d (1 < d <
< N) — pila ve vzdélenosti d od pramene zahajuje idrzbu. Muzet

> predpoklddat, ze ¢islo d je jedno z ¢isel ny,...,np.
pismeno K nasledované mezerou a prirozenym ¢islem d (1 £ d <
< N) — pila ve vzdédlenosti d od pramene kon¢i udrzbu. Muzete

> predpokladat, ze ¢islo d je jedno z ¢isel nq,...,np.

pismeno V nésledované mezerou a prirozenym ¢islem ¢ (1 < ¢ <
< N) — z tédbora ve vzdédlenosti ¢ od pramene feky je odesldn vor.
Mizete predpokladat, ze t je odlisné od vsech cisel nq,...,np.
Format vystupu: Program vypiSse na standardni vystup tolik radku,
kolik vorii bylo celkem odeslano. Kazdy radek bude obsahovat jedno celé
c¢islo, které udava vzdalenost pily, ktera zpracuje vor, od pramene feky.
Pokud vor nebude zpracovan zadnou pilou na tece, vypiste 0.
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P-1-4
Grafovy pocitac

V tomto ro¢niku olympiady budeme pracovat se specialnim grafovym
pocitacem. V nasledujicim studijnim textu je popsano, jak takovy pocitac
funguje a jak se programuje.

Bézné poditace pocitaji s ¢isly. Zelezni¢ni Priklad:
inzenyti v Tazmanii si jednoho dne vsimli, ze
. e . o1 e 2 Vstup: Vijstup:
vétsina problémi, které potiebuji resit, se tyka
grafli. Proto béhem jedné poledni prestavky vy- 28
nalezli grafovou jednotku, kterda umi provadét
vsechny bézné operace s grafy, a to dokonce
v konstantnim case. Sice zatim nevymysleli, jak
ji sestrojit, ale i tak si mizeme v tomto ro¢niku
olympiady vyzkouset, jak se na takovém grafo-

O N b O N

vém pocitaci programuje.

Nejdrive definujme, s ¢im grafovy pocitac
pracuje.

Graf si muzeme predstavovat tieba jako
body v roviné (tém budeme ftikat wvrcholy
grafu), jejichz nékteré dvojice jsou spojeny hra-
nou. Mize to tedy tfeba byt mapa zelezni¢ni
sité: vrcholy jsou zastavky, dvé zastavky jsou
spojeny hranou, pokud mezi nimi vede prima trat. Pokud se hrany kiizi,
predpokladame, ze se jedna o mimourovnova krizeni.

Redeno formélné, graf je dvojice (V, E) takové, ze V je libovolnd ko-
necna mnozina (jejim prvkum se fika vrcholy) a F je mnozina neuspora-
danych dvojic prvki z V (tedy hran).

Upresnéme jesté, ze mezi dvéma ruznymi vrcholy muze vést maxi-
malné jedna hrana a ze nejsou povoleny hrany, jejichz obéma konci je
tentyz vrchol.

Daéle ke grafu muzeme pridat ohodnoceni. Vrcholim a hrandm mize

< << XN <a<Ss<<OoOdPdPNO

OO0~ N~ N OWeR

byt prifazeno nezaporné celé ¢islo. V pripadé hran muize znamenat na-
priklad délku koleji, v pripadé vrcholi muze popisovat mytné, které se
plati za prujezd. Nékdy jim také muzeme znacit rtizné vlastnosti: napri-
klad u naseho zelezni¢niho prikladu muize byt vrchol odpovidajici stanici
ohodnocen jednickou, zatimco vrcholy v zastavkach dvojkou.
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Reprezentace grafu

Grafovy pocita¢ uklada grafy tak, ze vrcholy jsou urceny prirozenymi
¢isly od 1 do poctu vrcholi. Témto ¢isliim budeme fikat identifikdtory
(zkracené id) vrcholu.

Hrany budeme vzdy identifikovat pomoci ¢isel vrcholi, které hrana
spojuje.

Kazdy vrchol a kazda hrana maji své ohodnoceni. To ma bud hodnotu
nezaporného celého ¢isla nebo specidlni hodnotu undef (tzn. nedefino-
vano). Aby se to nepletlo, budeme ¢islim na hranach fikat vdhy hran,
zatimco tém ve vrcholech znacky vrcholi.

K programovani grafového pocitace pouzijeme bézny programovaci
jazyk, naptiklad Pascal nebo C, ktery rozsitime o nékolik datovych typi
a funkeci. Zde je budeme ukazovat v syntaxi Pascalu, v C budou obdobné.

Datové typy

> Typ Graph — do tohoto typu se da ulozit jeden (cely, libovolné velky)
graf. Mezi proménnymi a hodnotami tohoto typu funguje obvyklé
prifazovani a porovnavani na rovnost.

> Typ Value popisuje ohodnoceni vrcholu nebo hrany. Lze do néj ukla-
dat nezdporna celd ¢isla a konstantu undef. Hodnoty tohoto typu
rizné od undef jsou kompatibilni s pascalskym typem Integer, v pri-
padé jazyka C s typem int.

Operace se strukturou grafu

> Konstanta EmptyG. V této konstanté je ulozen prazdny graf. To je
takovy, ktery nemd ziadné vrcholy (tedy ani hrany).

> Funkce AddV(G,z) pridda do grafu G novy vrchol ohodnoceny znac-
kou z. Do pridaného vrcholu zatim nevedou zadné hrany. Novy vrchol
bude zarazen jako posledni, tedy jeho id bude nejvyssi. Funkce vraci
toto id.

> Procedura DelV(G,id) smaze vrchol s danym id. Zbyvajici vrcholy
wsrazi doleva®, aby nevznikla dira (tedy z id + 1 se stane id, z id + 2
se stane id + 1 atd.). Zdroven odstrani vSechny hrany, které koncily
ve smazaném vrcholu.

> Procedura AddE(G,x,y,w) vytvori hranu mezi vrcholy s id =z a y,
ohodnocenou vahou w. Hrana nesmi pfed volanim této procedury
existovat.

> Procedura DelE(G,x,y) odstrani hranu mezi vrcholy z a y (nesmi
byt voldna, pokud hrana neexistuje).

> Funkce TestE(G,x,y) zjisti, jestli mezi vrcholy z a y vede hrana.
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Manipulace s ohodnocenim

g

>
g
>

Funkce GetV(G,id) vraci znacku zadaného vrcholu.

Procedura SetV(G,id,z) nastavi znacku zadaného vrcholu.
Procedura SetA11V(G,z) ji nastavi vSem vrcholim grafu.
Procedura ReplaceV(G,zold,znew) vSem vrcholim, které mély znac-
ku zold, ji zméni na znew.

Obdobné funguji GetE(G,x,y), SetE(G,x,y,w), SetAllE(G,w) a
ReplaceE(G,wold,wnew). Pracuji s vahami hran misto znacek vrcho-
li. Pro identifikaci hrany se pouzivaji id vrcholi z a y, mezi kterymi
vede. Procedura SetE hranu zalozi, pokud jesté neexistuje.

Statistické funkce

>
>

>

Funkce CountV(G) odpovi, kolik vrcholii se nachédzi v grafu.

Funkce SumV (G) vraci soucet znacek vSech vrcholi, pricemz undef se
pocita jako 0. Pokud graf nemd zadné vrcholy, vraci 0.

Funkce CountE(G) a SumE(G) funguji obdobné pro hrany a jejich vahy.

Globdlni operace

>

Funkce Iso(G,H,veq,eeq) zjisti, jestli jsou grafy G a H isomorfni.
Isomorfismem myslime, ze 1ze jednomu z grafti precislovat vrcholy tak,
aby se shodoval s druhym grafem. Dva grafy jsou shodné, pokud maji
stejné mnoziny vrcholl i hran; navic se jim musi shodovat znacky vr-
cholii a vdhy hran podle toho, jak urcuji parametry veq (pro vrcholy)
a eeq (pro hrany). Tyto parametry mohou nabyvat nasledujicich hod-
not:

* any — libovolné dva vrcholy/hrany se rovnaji (na ohodnoceni se
nehledi).

* value — odpovidajici si vrcholy/hrany museji mit stejné ohodno-
ceni. Hodnotu undef ale povazujeme za ,zolika“, ktery se rovna
libovolné hodnoté.

* value_strict — vrcholy/hrany museji mit stejné ohodnoceni,
undef se rovna jen undefu.

* value_defined — vrcholy/hrany museji mit stejné ohodnoceni,
ale undef se nerovna nicemu, ani undefu.

* id — vrcholy museji mit stejnd id (toto lze aplikovat jen na vrcho-
ly, nebot hrany nemayji id). Jinymi slovy, zakazujeme precislovavat
vrcholy, ale na jejich ohodnoceni nehledime.

* none — zadné dva vrcholy /hrany nejsou identické. A¢ to vypada
neuzitecné, tuto moznost pouzijeme v dalsich funkcich.
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Jak isomorfismus funguje, je vidét na nasledujicim obrazku. Cisla
pred zavorkami jsou id vrcholt, v zdvorkéch jejich znacky (otaznik znaci
undef). VSechny hrany maji vihu undef. Grafy jsou isomorfni (¢arko-
vané ¢ary ukazuji, ktery vrchol odpovida kterému), pokud veq nastavime
na value nebo any a eeq na any, value nebo value_strict. V ostatnich
pripadech isomorfni nejsou.

5() 7T T
44) A 33) 3(4) T 2(4) N\
J
\ / y4
\ / P
\ /
N/ 1(5)
10 AN ,
\ 2(2) 7 \_4(2) / 5(3)

Se—_———— S————

> Funkce Find(G,H,veq, eeq) najde podgraf grafu G (tedy takovy graf,
ktery lze ziskat z G odstranénim nékterych vrcholt a hran) isomorfni
s grafem H. Vysledkem funkce bude tento podgraf, pricemz vrcholy
budou ocislované podle grafu H a ohodnoceni vrcholi a hran bude
pochézet z grafu G. Pokud hledany podgraf neexistuje, funkce vrati
EmptyG. Parametry veq a eeq urcuji stejné jako u funkce Iso, jak se
chova isomorfismus.
Pokud existuje vice isomorfnich podgraft, funkce Find nalezne nej-
lehéi z nich (takovy, ktery ma nejmensi soucet vah hran, jak by ho
spocitala funkce SumE). Pokud i tak existuje vice feSeni, Find vrati
libovolné z nich.

> Funkce Common(G,H,veq,eeq) najde nejvetsi spolecny podgraf grafi
G a H. Presnéji, najde graf, ktery je isomorfni (podle veq a eeq) s né-
kterym podgrafem G i nékterym podgrafem H. Ze vSech moznych
feSeni si navic vybere takové, které ma nejvétsi mozny pocet vrcholi,
a z takovych pak to s nejvétsim poctem hran. Pokud i téch je vice,
vybere si libovolné.
Vysledny graf bude mit id vrchold ve stejném poradi, jako je meél
odpovidajici podgraf v G (jen ,srazend k sobé*). Ohodnoceni vrcholu
a hran bude také zdédéno z grafu G.
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Dvojice grafii na predchozim obréazku ma nejvétsi spolecny podgraf
pii veq = value obtazeny tuéné. Carkované je naznaceno jedno z moz-
nych prirazeni vrcholi. P¥i veq = any pribude do spolecné ¢ésti jesté
vrchol 5 a teckovand hrana {3,4} nalevo, kterd mize odpovidat kte-
rékoli z hran {1,5}, {1,6} a {1,7} napravo.

> Funkce Join(G,H,veq,eeq) slouci grafy G a H. Muzete si to pred-
stavit tak, ze je ,slepi za jejich nejvétsi spolecny podgraf Udéla to
tak, ze nejprve nalezne nejvétsi spolecny podgraf (tak jako ve funkci
Common), pak k nému doplni zbyvajici vrcholy grafu G a nakonec
vrcholy grafu H (id vrcholu vysledného grafu tedy budou v tomto
poradi). Hrany, véhy a znacky piitom zdédi z obou grafl, pfi¢emz
pokud se néjaky vrchol nebo hrana vyskytuji v obou grafech, idi se
ohodnocenim z grafu G.
Join graft z predchoziho obrazku vypada nasledovné:

5(4) 4(4)
4(5) 3(3) -~ 6(7) 5(5) 3(3) _~6(8)
: * 7(8) :’\/
/,,,/ e 8(9) / . 7(9)
/ g veq = value yd veq = any
1(1) I 2(2) 1(1) 2(2)

Tucné je vyznacena spolecna ¢ast (vSimnéte si rozdilt v id vrcholl),
tenké nepreruSované hrany pochazeji z grafu G, ¢arkované hrany
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z grafu H. (Zde jsme nakreslili jeden z moznych vysledki, ostatni se
budou lisit tim, ktery vrchol v grafu H je ve spolecné casti, pripadné
otoc¢enim nebo pieklopenim ¢tyfthelniku.)

Vsechny operace predpokladaji, ze dostanou korektni vstup — neni
tedy naptiklad povoleno volat je s id neexistujiciho vrcholu nebo upravo-
vat grafovou proménnou, do které jste jesté nepriradili, a podobné.

VsSechny grafové operace trvaji konstantni ¢as.

Abychom vam usnadnili ladéni programi, vytvorili jsme simulator
grafového pocitace. Najdete ho od zari na webovych strankach olympiady.
Priklad 1: Tvorba cesty

Ukézeme, jak vytvorit cestu délky n. To je graf o n + 1 vrcholech
a n hranach, ve kterém je kazdy vrchol spojen hranou s nésledujicim.
Zajisté bychom cestu mohli vytvaret postupné, napriklad takto:

function cesta(n: Integer): Graph;

var
i, posledni, novy: Integer;
g: Graph;
begin
g := EmptyG;
posledni := AddV(g, 0);
for i := 1 to n do begin 01 2 3 4
novy := AddV(g, 0); — oo oo

AddE(g, posledni, novy, undef);
posledni := novy;
end;
cesta := g;
end;

Zacindme s jedinym vrcholem (mé id 1) a pak n-krat pfiddme novy
vrchol a hranu do néj. (Vrcholiim ddvdme znacky 0, hrandm nedefinované
vahy, coz se bude hodit pozdéji.) Cely postup tedy trva linedrné dlouho
a vytvori cestu zacinajici ve vrcholu s id 1 a koncici vrcholem s id n + 1.
Neslo by to rychleji?

Predstavme si na chvilku, ze mame v g jiz ¢ast cesty, reknéme o k vr-
cholech. Pomoci Join(g,g,none,none) vytvorime novy graf, ktery obsa-
huje dvé kopie této cesty (jednus id 1,...,k, druhous id k +1,...,2k).
Stac¢i tedy pridat hranu z k£ do k + 1 a mame cestu délky 2k. Toho vyu-
zijeme v nasledujicim (rekurzivnim) feseni dlohy:

function cesta(n: Integer): Graph;

var
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vysledek: Graph;
pulka: Integer;
begin
if n = 0 then begin { Cesta délky O je snadna }
vysledek := EmptyG;
AddV (vysledek, 0);
end else begin
{ Rekurzivné vytvofime cestu poloviéni délky }
pulka := (n-1) div 2;
vysledek := cesta(pulka);
{ Vyrobime 2 kopie a spojime je }
vysledek := Join(vysledek, vysledek, none, none);
AddE (vysledek, pulka+l, pulka+2, undef);
{ Kdyz polovina nevySla celo&iselné&, pfidame jest& hranu }
if n mod 2 = 0 then begin
AddV(vysledek, 0);
AddE(vysledek, n, n+l, undef);

end
end; P S - S
cesta := vysledek;
end;

Pri kazdém rekurzivnim volani se n zmensi alespon dvakrat, ¢asova
slozitost tohoto Teseni je tedy O(logn).

Ukéazeme jesté jedno reseni, tentokrat zalozené na spojovani cest za vr-
chol. Budeme vytvaret cesty, jejichz pocatecni vrchol bude mit znacku 1,
koncovy vrchol znacku 2 a vsechny ostatni vrcholy undef. Kdyz chceme
dvé cesty spojit do jedné, preznac¢ime koncovy vrchol prvni a pocdte¢ni
vrchol druhé na 3 a zavoladme Join s veq = value_defined. Tim zpiisobi-
me, ze se vrcholy oznacené trojkou ztotozni a vznikne cesta dvojndsobné
délky (kdybychom misto value_defined pouzili value, ztotoznily by se
i vnitini vrcholy cest, coz nechceme). Pak jesté odstranime pomocnou
znacku 3 a prepiSeme ji na undef. Program tentokrat pro jednoduchost
napiSeme pouze pro n = 2*:

function cesta(n: Integer): Graph;

Va;, t1l, t2: Graph; (1) (3) (3) (2)

- o o @ - & o o o 8

begin
if n = 1 then begin 1
g := EmptyG;
Addv(g, 1); DR
AddV(g, 2); (1) (3) (2)
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AddE(g, 1, 2, undef);
end else begin
tl := cesta(n div 2);
t2 = t1;
ReplaceV(tl, 2, 3);
ReplaceV(t2, 1, 3);
g := Join(tl, t2, value_defined, any);
ReplaceV(g, 3, undef);
end;
cesta := g;
end;

Casové slozitost tohoto TeSeni je opét logaritmicka.

Priklad 2: Obchodni cestujict

Vsichni zname vykutalené obchodniky. Prodavaji kdovico a nejradéji
by, kdyby je po prodeji kupujici jiz nikdy nenasel.

Predstavme si takového obchodnika. Nyni se nachdzi ve mésté (vr-
cholu) ¢islo 1. Chee projet celou zemi (graf) po silnicich (hrandch) tak,
aby navstivil kazdé mésto pravé jednou a pak se vratil domt. Navic pri
tom chce najezdit co nejméné, takze by celkova vaha pouzitych hran méla
byt co mozna nejmensi.

Na obvyklém pocitaci tento problém neumime vytesit v polynomidl-
nim case, ale pokud mame k dispozici grafovy pocitac, ptijde to velice
efektivneé.

Stadi totiz vyrobit cyklus z n hran a funkei Find nalézt jeho nejlehci
vyskyt v grafu popisujicim mapu. Cyklus vytvorime tak, ze podle pred-
choziho prikladu vytvorime cestu o n — 1 hranéch ocislovanou 1,...,n
a poté spojime hranou jeji prvni vrchol s poslednim. To bude trvat logarit-
micky dlouho a funkce Find pak konstantné. I program bude jednoduchy:

function cestujici(mapa: Graph): Graph;

var trasa: Graph;

begin
trasa := cesta(CountV(mapa)-1);
AddE(trasa, 1, CountV(mapa), undef);
cestujici := Find(mapa, trasa, any, any);

end;

Soutézni tloha.
a) (5 bodi) Loukotové kolo je graf, ktery vznikne z cyklu o n vrcho-
lech pfiddnim jednoho vrcholu (osy) spojeného s kazdym vrcholem cyklu
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hranami (loukotémi). Loukotové kolo velikosti n mé tedy n + 1 vrcholi
a 2n hran.

Napiste funkci pro grafovy pocitac, ktera
pro zadané n takové kolo zkonstruuje. Na ob-
razku vpravo vidite priklad takového kola pro
n=29.

b) (5 bodi) Méjme graf popisujici silniéni
sit: vrcholy jsou meésta, hrany silnice ohod-
nocené nezapornymi vzdalenostmi v kilomet-
rech. Silnice jsou propojeny pouze ve méstech,
vsechna ostatni kiizeni jsou mimourovinova. Bude nés zajimat, jakou nej-
mensi vzdalenost musime ujet, abychom se dostali z mésta x do mésta y.
Jinymi slovy, mdme v grafu nalézt cestu mezi = a y, na které bude celkovy
soucet vah hran nejmensi.

Napiste funkci pro grafovy pocitac, kterda dostane na vstupu graf sil-
nicéni sité a identifikatory dvou ruznych vrcholu z, y, a odpovi vzdalenosti
mezi témito vrcholy.

P-1l-1

Vlak

Na ndkladnim nadrazi stal vlak. Sice bez lokomotivy, ale tu méli vzapéti
pripojit, kdyz tu pfisel prednosta stanice, prohlédl si sefazené vagdny
a oznamil zeleznicaiim neprijemnou zpravu. Novy predpis mu prikazuje
poslat do cilové stanice zpravu, v jakém poradi budou ve vlaku vagony
fazeny, ale nevi, kolikrat vlak na cesté zméni smér, takze potiebuje, aby
vypadal stejné v obou smérech.

Navic zelezni¢ari nesmi vagény vyménovat. Jediné, co mohou, je vagén
vyradit (to jim nafizuje jiny pfedpis). Dopravce chce zaroven na kazdém
vlaku vydélat co nejvice, coz znamend, ze je tfeba do jednoho vlaku
zafadit co nejvice vagéni.

Soutézni tuloha. Na vstupu dostanete posloupnost pismen. Kazdé
z téchto pismen predstavuje typ vagénu. Vystupem vaseho programu
bude vypis pozic vagént (pismen), které museji byt odstranény, aby vy-
sledny vlak (posloupnost pismen) po jejich odstranéni byl stejny pfi ¢teni
zepredu i zezadu (tedy aby vysledny fetézec pismen byl palindromem).

Pokud existuje vice moznosti, naleznéte a vypiste tu, kde je treba
odstranit nejmensi mozny pocet vagéni. Pokud je takovych moznosti
vice, miizete vypsat libovolnou z nich.
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Format vstupu: Vstup je tvofen dvéma radky. Prvni obsahuje celé ¢is-
lo N (1 £ N £50000), které udéva ptivodni pocet vagénii vlaku. Druhy
radek pak obsahuje posloupnost N znakti, které reprezentuji jednotlivé
typy vagénu.

Format vystupu: Vystup je tvoren dvéma radky. Prvni obsahuje jediné
¢islo K (0 £ K £ N — 1), které udava, kolik vagénu je potieba z vlaku
odstranit, aby vlak vypadal stejné z obou smérti. Druhy radek pak ob-
sahuje K ruznych c¢isel od 1 do N urcujicich poradi vagoéoni, které maji
byt z vlaku odstranény. Pokud posloupnost znakii na vstupu je stejnd pri
¢teni zepredu i zezadu, pak na prvni fadek vypiste ¢islo 0 a druhy radek
bude prazdny.

Priklady:

Vstup: Vijstup:
6 1
ABCDBA 3

Odstranénim tretiho pismene vznikne vlak s vagony ABDBA. Jiné opti-
malni feseni je odstranit ¢tvrté pismeno, kdy vznikne vlak s vagony
ABCBA.

Vstup: Vijstup:
7 2
ABECEDA 26

Odstranénim druhého a Sestého pismene vznikne vlak s vagony AECEA.

Vstup: Vijstup:
7 4
ABECADA 3467

Odstranénim tretiho, ¢tvrtého, Sestého a sedmého pismene vznikne vlak
s vagony ABA. V tomto pripadé je vsak optimalnich Feseni mnohem vice.

P-11-2
Jablonovy sad

V jednom malém kralovstvi vyrostl strom se zlatymi jablky. Kral byl prak-
ticky clovék, a tak prikazal zahradnikim, at z takovych jabloni vypéstuji
cely sad. Ale k jejich nemilému pirekvapeni vétsina stromu urodila jen
obycejna kyseld jablka. Alchymisté vsak objevili zvlastni formuli, ktera
fikala, kdy a kam zasadit seminko stromu, aby mél opét zlata jablka.
Prvnich N stromt, které takto zasadili, bylo skutecné zlatych, a tak si
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kral nechal vypracovat seznam, podle néhoz mé stromy v pristich letech
sazet.

Ac¢ stromy rostly prekvapivé rychle, ruce nenechavei a zlodéjicku byly
jesté rychlejsi. Dlouho netrvalo a krél zacal se stavbou oploceni. Odhad
uctu za pletivo byl vsak zdrcujici. Poddani se totiz rozhodli oplotit ¢tvrt
kralovstvi, aby vSechny stévajici i budouci stromy rostly uvnitf. Kréle
napadlo, ze ziejmé bude lepsi oplotit jen nynéjsi stromy a pak podle
potieby rozsifovat plot i na nové stromy. Aby se usetfilo, ¢ast stavaji-
ciho oploceni se rozebere a pouzije spolu s nové nakoupenym mnozstvim
pletiva. Kral si tedy sehnal Vas coby projektanta a netrpélivé ocekava
vyhotoveny rozpocet za pletivo na pristich deset let. Vam je jasné, co
musite spocitat nejdrive: kolik pletiva musite koupit na pocatku a potom
se zasazenim kazdého nového stromu. Alchymisté, vidouce Vase zdésSeni,
Vam vsak jesté dali jednu radu: Minimalni nutna délka plotu se s pridé-
nim nového stromu nikdy nezmensi.

Soutézni uloha. Na zacatku dostanete kartézské souradnice N bodu
(jabloni) v roviné ([Xi1,Yi], ..., [Xn,Yn]) a musite zjistit nejmensi
mozny obvod obrazce, ktery je vsechny bude obsahovat (tj. délka oplo-
ceni). Postupné obdrzite M dalsich bodu zadanych souradnicemi v roving.
Tyto body budete priddvat ke stavajicim v potradi od prvniho do M-tého
(sazeji se nové stromy). Po pridan{ kazdého z nich musite spocitat, o ko-
lik se zvétsil obvod nejmensiho obrazce, ktery obsahuje vsechny ptvodni
i dosud pridané body. Vysledkem mtze byt i 0, pokud nové pridany bod
jiz lezi uvnit¥ obrazce obklopujiciho dfive pridané body. Vami spocitany
udaj tedy odpovida tomu, kolik pletiva je tfeba prikoupit.

M ocekavejte jako velké cislo, takze abyste krali mohli dat rozpocet
vcas, musite umét potifebnou délku nového pletiva po pridani stromu
spocitat rychle. Bude tedy dobry napad pri pridani kazdého bodu vyuzit
drive spocitané hodnoty.

Formadt vstupu: Na prvnim radku vstupu bude ¢islo N, které udava
pocatecni pocet jabloni (bodu). Nésleduje N tadku, kde na i-tém fadku
(1 =i = N) jsou dvé ¢isla X; a Y; oddélend mezerou (soufadnice jiz
zasazenych stromur). Dalsi fddek obsahuje ¢islo M. Nésleduje M tadku,
kde na i-tém Fadku (1 < i < M) jsou dvé ¢isla X a Y/ oddélend mezerou,
ktera uddvaji souradnice nové vysazovanych stromu.

Format vystupu: Na vystupu vypisete celkem M +1 fadkt. Na prvnim
radku bude pocéatecni délka oploceni, tj. obvod nejmensiho obrazce, ktery
obsahuje vSechny body [X1,Y1], ..., [Xn,Yn]. Nésleduje M radki, na
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j-tém z nichz (1 £ j £ M) bude uvedeno, o kolik se musi obvod obrazce
zvétsit po piiddni bodu [X7, Y]] k piedchozim (tj. kolik nového pletiva je
zapotrebi). Vysledky vypisujte s pfesnosti na 5 desetinnych mist.

Program musi vystup vypisovat prubézné. Pokazdé, kdyz ze vstupu
precte polohu dalsiho vysazovaného stromu, musi vydat prislusny radek
vystupu, aniz by c¢ekal, az budou zadany vSechny stromy.

Priklad:

Vstup: Vistup:

4 52.36068
00 7.63932
010 4.14213
200

34

2

20 10

-55

Pocatecni situace:

[0, 10]

Délka plotu = 10 + 20 + v/10% 4 202 ~ 52,360 68

[0’ 0] ¥

20, 0]

Po pridani bodu (20, 10]:

20, 10]
Délka plotu = 10 + 20 + 20 + 10 = 60

Rozdil ~ 7,639 32

Po pridéani bodu [-5, 5]:

Délka plotu =

(5.5 =10+ 20 + 20 + 2V/52 + 52 ~
2l ~ 64,142 14

Rozdil ~ 4,142 14
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P-11-3

Mazoretky

vvvvv

nost. Prichod kazdého dne slavi v hlavnim mésté pruvodem N mazoretek.
V privodu krac¢i mazoretky v jedné radé za sebou.

Aby se poddani nenudili, tak v kazdém dni v roce pochoduji ma-
zoretky v jiném poradi. A protoze rok m& v kralovstvi presné N! =1 -
-2 -...- N dni, tak béhem roku pochoduji v kazdém svém mozném poradi
pravé jednou.

Poradi, v jakém mazoretky pochoduji, se urcuji béhem roku nasledov-
né. Kazda mazoretka ma své ¢islo od 1 do N. Jejich poradi v konkrétnim
dnu si tedy mtzeme predstavit jako posloupnost N navzdjem ruznych
¢isel od 1 do N. Pokud (aj,...,an) a (by,...,byx) jsou dvé takové po-
sloupnosti, pak mazoretky pochoduji v potadi (ay,...,ay) v jednom roce
dfive nez v poradi (by,...,by), jestlize pro nejmensi index i s a; # b;
plati a; < b;. Pokud napiiklad N = 4, pak v pofadi (3,1,2,4) budou
mazoretky pochodovat dfive, nez v poradi (3,4,1,2).

Pro N = 3, budou mazoretky v jednom roce pochodovat postupné
v poradi (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) a (3,2,1).

Soutézni dloha. Vstup obsahuje dva radky. Na prvnim fadku je jedno
celé ¢islo N = 2, které udava pocet mazoretek. Druhy fddek obsahuje
N navzajem ruznych celych ¢isel od 1 do N. Tato ¢isla urcuji poradi
mazoretek. Na vystup vypiste dva fadky, které obsahuji:

a) (8 body) poradi mazoretek v ndsledujici den,

b) (7 bodi) poradi mazoretek pfesné za pil roku.

Priklad:

Vstup: Vijstup:
5 14325
14253 41253

P-1l-4
Grafovy pocitac¢ na kliku

K dloze se vztahuje studijni text z ulohy P-I1-4.

Soutézni uloha. a) Napiste funkci pro grafovy podcitac, kterd pro za-
dané ¢islo n zkonstruuje upiny graf K, . To je graf s n vrcholy, jehoz kazdy
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vrchol je spojeny hranou s kazdym. Pokud to neumite pro obecné n, vy-
reste ulohu alespon pro ta n, ktera jsou mocninami dvojky.

b) Napiste funkci pro grafovy pocitac¢, kterd spocita klikovost zada-
ného grafu. To je nejvétsi mozny pocet vrcholi zadaného grafu, které
jsou spojeny kazdy s kazdym. Jinak receno, je to nejvétsi n, pro které je
K, podgrafem daného grafu.

P-1Il-1
Basnik Honzik

Honzik Nerudt si spokojené hovél v lavici a v duchu se prochazel po
Malé Strané. ,Jene, chytej!, vytrhl ho ze zadumani vykrik spoluzacky
Bozky Némcové a naraz boty do jeho hlavy. Byt to kdokoli jiny, jisté by
neusel spravedlivému trestu, jenze Bozenka byla jeho tajnou laskou uz
od treti tridy. Jak rad by ji pozval na prochazku podél Vltavy. Lec¢ kdyz
se opovazil pozadat ji, se smichem ho odbyla slovy:

Jelikoz jsem romanticka,
obmékéi mé jen basnicka.
Zversuj tedy zadost svou,
a projdem se nad Vltavou.

Jenze Honzik meél ze slohu vzdycky ¢tyrku a pani ucitelce stoupaly
vlasy hriizou, jen se chopil pera. Nastésti mél dobrého kamarada Jaru
Cimrmana. Ten mu povédél, ze psat basné je strasné jednoduché a staci
jen dosdhnout toho, aby se verse co nejvice rymovaly (pozdéji bude tato
teorie publikovdna pod nazvem absolutni rym). To byla sice dobra rada,
ale hledani co nejvice se rymujicich slov je casto velmi obtizné, a tak
pozadal o pomoc vés.

Soutézni tloha. Mate dan seznam obsahujici IV slov sklddajicich se
z malych pismen anglické abecedy. Vasim tkolem je zodpovidat Honzi-
kovy dotazy, coz znamena, ze pro jim zadané slovo s mate najit slovo r
ze seznamu, které ma nejvétsi spolecny koncovy tsek se slovem s. Napft.
slova Zbynek a pelynek maji spolecny koncovy tusek ynek délky 4.

Pokud je v seznamu vice takovych slov, vyberte z nich lexikograficky
nejmensi (lexikografické usporaddni je to, které se pouziva ve slovnicich:
nejdiive podle prvniho pismena, pak podle druhého atd.; ch uvazujeme
jako dvé pismenka). Pokud naopak v seznamu neni zddné slovo se spo-
leénym koncovym tsekem délky alespon 1, vypiste NELZE.
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Protoze dotazti mize byt hodné, snazte se optimalizovat rychlost od-
povédi na dotaz i za cenu delstho predzpracovani seznamu slov.

Poznamka: Pokud tlohu nedokazete vytesit efektivné, zkuste popsat
alespon teseni, které z vyhovujicich slov vypiSe libovolné namisto lexiko-
graficky nejmensiho.

Format vstupu: Na prvnim fadku budou dvé cisla N a K, po kterych
nasleduje N slov seznamu, kazdé na samostatném radku. Nasleduje K
slov, K < 10% opét kazdé na samostatném Fadku, ktera reprezentuji
Honzikovy dotazy. Soucet délek vSech slov seznamu nepiesahne 108 zna-
ki1, tedy specialné N < 10°. Zadné slovo v seznamu ani zadné z K slov
k vyhledani nebude mit vic jak 10* znakii.

Format vystupu: Pro kazdy z K Honzikovych dotazu vypiSte na samo-
statny radek slovo s maximélnim spole¢nym koncovym tsekem (pfipadné
lexikograficky nejmensi, pokud jich je vic) mezi slovy v seznamu. Pokud
zadné takové slovo neexistuje, vypiste NELZE.

Priklad:

Vstup: Vistup:

53 NELZE

pluji lituji

listuji listuji

lituji

nepreji

basnik

bagr

kvituji

dekuji

Pro slovo dekuji mame na vybér mezi slovy pluji, listuji a
lituji, kterd maji stejnou délku spolecného koncového tuseku (urcity
spolecny koncovy tisek ma i se slovem nepreji, ale ten ma délku pouze
dva); listuji je z nich lexikograficky nejmensi.

P-1ll-2
Uiad
Utad pro minimalizaci byrokracie zaméstnavéa nékolik tisic tfedniki. Ti
jsou pro zvyseni efektivity své prace hierarchicky usporadani, tj. kazdy

z nich ma pravé jednoho primého nadrizeného; jedinou vyjimkou je mi-
nistr pro minimalizaci byrokracie, ktery je nejvyse postavenym uredni-
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kem a zaddného nadfizeného nemé. Kazdy z urednikt smi vykondvat pravé
jeden tkon (néktefl smi ddvat pouze kulatd razitka, néktefi pouze hra-
naté, néktefi maji na starosti styk s vefejnosti, atd.). Vyjimkou je opét
ministr, o kterém legendy tvrdi, Ze je schopen vykonavat vsechny funkce
poskytované tradem.

Potiebuje-li tedy nékdo néco zafidit na tradé, nejprve si vybere né-
jakého ufednika, ktery smi komunikovat s vefejnosti. Ten uz ale nesmi
vykonévat zadny jiny ikon, a neni mu tedy schopen pfimo pomoci. Proto
ho posle za svym nadfizenym. Muze-li nadfizeny pozadovany ukon pro-
vést, udini tak, jinak zdjemce preposle za svym nadfizenym. A toto se
opakuje, dokud zdjemce nedorazi k nékomu schopnému ho obslouzit.

Ted jsou volby na dohled a volici si stézuji, ze nékteri urednici nic
nedélaji. Naptiklad ddva-li ifednik a vSichni jeho pfimi podrizeni ku-
laté razitka, pak se k nému nikdy zadny pozadavek nedostane. Obdobné
urednik, jehoz zadny (ani nepfimy) podfizeny neméd na starosti styk s ve-
Fejnosti, nikdy nemusi nic délat. Potfebovali bychom tedy nalézt vSechny
takové nezaméstnané uredniky, abychom je mohli povysit.

Poznamenejme jesté, ze ministra nikdy za zbyte¢ného nepovazujeme.

SoutéZni tloha. Uiednici jsou oéislovani pfirozenymi &sly 1,..., N,
kde ufednik ¢islo 1 je ministr. Pro kazdého z nich az na ministra mame
zadéno ¢islo jeho nadfizeného, které je vzdy mensi nez ¢islo urednika. Pro
kazdého urednika az na ministra také mame zadano ¢islo tkonu, ktery
smi vykonavat. Ukony jsou oéislovany pfirozenymi &sly 1,..., M, kde
tkon ¢islo 1 je styk z vefejnosti. Vypiste ¢isla vsech tredniki, kteri nikdy
nic nedélaji. Utednik é&slo &, ktery smi vykonavat tikon ¢islo u, néco déld,
jestlize u = 1 nebo existuje posloupnost cisel £k = a1 < a2 < ... < a4
takova, ze:

> ufednik éislo a; je piimy nadfizeny trfednika a;4q pro1<i St —1,
> urednik a; ma na starosti styk s verejnosti,
> zadny z uredniku as, as, ..., a;—1 nevykonava ukon u.

Format vstupu: Program nacte vstupni data ze standardntho vstupu.
Prvni fadek obsahuje prirozend ¢isla N a M, udavajici pocet aredniki
a pocet typu ukonu. Na nasledujicich N — 1 fadcich jsou popsani urednici
kromé ministra. Na i-tém z téchto Ffaddku se nachazi dvé ¢isla n; a u;
(1£n; 4,1 £ u; £ M), kde n; je ¢islo pfimého nadfizeného ufednika
¢islo 7 + 1 a u; je ¢islo ukonu, ktery smi vykondvat.

Muzete predpokladat, ze pocet ikoni M je radové mensi nez pocet
urednikia N.
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Format vystupu: Program vypise na standardni vystup ¢isla trednik,
kteri nic nedélaji, v libovolném poradi, oddélend mezerami.

Priklad:

Vstup: Vistup:
10 3 237
12

23

22

22

12

6 2

61

41

51

P-1ll-3
Grafovy pocita¢ v potrubi

K tloze se vztahuje studijni text z tlohy P-I-4.

A pravé takovy pocita¢ umoznil novy zpusob komunikace: potrubni
postu. Takova potrubni posta sestdva z mnoha stanic. Nékteré dvojice
stanic jsou propojeny potrubim, které lze pouzit k prepravé zprav v obou
smérech. Stanice jsou samoziejmé schopné zpravy predavat dal, takze
zasilky obvykle putuji do cilové stanice nékolika na sebe navazujicimi
rourami.

Potrubi bylo postaveno a jesté nez doslo k vyrizeni vSech povoleni,
nahromadilo se mnoho zprav, které je tfeba dorucit. A protoze je to
systém novy, rozhodli se postmistri, ze zacnou posilat od téch nejkratsich
zprav, aby zjistili, jestli se v potrubi nezasekavaji.

Navic se po dobu vytizovani formalit v potrubi usadily mysi. Mysi sa-
mozrejmé kazdé prochazejici psani hned zhltnou, proto je potieba poslat
potrubim napied kocku. Protoze vSak kocka je mnohem tézsi nez psani,
je také nakladnéjsi ji potrubim profouknout. Proto bylo rozhodnuto, ze
budou vycistény jen nékteré roury, a to tak, aby jejich celkova délka byla
co nejmensi a pritom bylo mozno poslat psani z libovolné stanice do
libovolné jiné.

SoutéZzni tloha. a) (3 body) Napiste funkei pro grafovy pocitac, kterd
sefadi zpravy podle délky. Vstupem funkce bude pole celych ¢isel — délek
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ZPrav. Ukolem je toto pole setfidit od nejmensiho po nejvétsi. Muzete
pri tom vyuzit toho, ze délky zprav se vejdou do typu Value grafového
pocitace.

Reseni s ¢asovou slozitosti O(nlogn) miiZe ziskat nejvyse 1 bod, po-
malejsi TeSeni nedostanou zadné body.

b) (7 bodi) Dostanete na vstupu popis potrubi jako souvisly ohodno-
ceny graf (stanice jsou vrcholy, trubky jsou hrany a jejich vahy odpovidaji
délkam trubek). Vratte podgraf obsahujici pravé ty hrany, které maji byt
vycistény. Jinymi slovy podgraf, ve kterém vede mezi kazdou dvojici vr-
cholu cesta a ktery ma ze vsech takovych grafii nejmensi mozny soucet
vah hran.

Pokud vam to pomiize, mizete predpokladat, ze neexistuje zadna dvo-
jice stejné dlouhych rour.

I u této podilohy bude pfi hodnoceni kladen diraz na to, zda je
vase feseni rychlejsi nez reseni, ktera se daji naprogramovat na klasickém
pocitaci.

P-1l-4
Asfaltistan

Program:  asfalt.pas / asfalt.c / asfalt.cpp
Vstup: asfalt.in
Viystup: asfalt.out

V Asfaltistanu zjistili, ze maji jedno velké tizemi dosud nedotcené
asfaltem. Rozhodli se to napravit tak, ze napri¢ izemim postavi silnici.
Nicméné ministr financi si klade podminky. Silnice musi byt sjizdna pro
auta a musi byt postavena co nejlevnéji. Je totiz krize a musi se Settit.

Projektanti si rozdélili tzemi na R x S ¢tverci o strané 1km a pro
zjednoduseni si pro kazdy c¢tverec spocitali jeho priumérnou nadmoiskou
vysku. Zjistili, ze silnice mezi dvéma sousednimi ¢tverci je sjizdnd, pokud
je rozdil jejich nadmotskych vysek maximalné 1 obii sdh.

Navic muzou stavét mosty a tunely — mostem je mozno propojit dva
¢tverce ve stejném sloupci nebo fadku, pokud je jejich nadmorské vyska
shodnd a nadmorska vyska vSech ¢tverci mezi nimi je nizsi. Tunelem je
také mozno propojit dva ctverce o stejné nadmotiské vysce ve stejném
sloupci nebo radku, jen nadmotska vyska vSech ¢tvercii mezi nimi musi
byt vyssi.
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Vasim tkolem je najit nejlevnéjsi silnici mezi polickem (0,0) a polic-
kem (R — 1,5 — 1). Silnice musi byt na polickach (0,0) a (R —1,S — 1)
na povrchu, tedy ne na mosté ani v tunelu.

Poznamenejme, Ze na jednom policku muze jeden most/tunel koncit
a soucasné dalsi zacinat. Také si vSimnéte, ze je teoreticky mozné, ze se
na optimélni cesté budou dva mosty nebo tunely ktizovat. To je povolené,
Sikovni asfaltistansti inzenyti to dokazi vyresit tak, aby se auta nesrazela.

Formadt vstupu: Na vstupu dostanete na prvnim radku celd ¢isla R, S,
cg, e acp. Cisla cg, ey a ep udévaji ceny za postaveni jednoho policka
silnice, mostu a tunelu (v asfaltovych dolarech).

Cena za policko mostu nebo tunelu se pocitd jen za policka uwvnitr,
cili zacatek a konec tunelu/mostu se nepocita.

Na kazdém z dalSich R fddk dostanete S ¢isel h; ; oddélenych meze-
rou — nadmortské vysky jednotlivych policek v obfich sdzich. Na i-tém
fddku v j-tém sloupci je uvedeno ¢islo h; ;.

Format vystupu: Na prvni radek vystupu vypiste celkovou cenu silnice
v asfaltovych dolarech. Na nésledujici radky vypiste trasu silnice; na
kazdy radek dvojici (i, jx) udévajici policko, pfes které silnice prochézi.
Policka, ktera se nachdzi pod mostem nebo nad tunelem, vynechte. Prvni
soufadnice vzdy udava radek a druhd sloupec. Pokud feSeni neexistuje,
vypiste na jediném tadku vystupu slovo NEEXISTUJE.

Vsimnéte si, ze celkova cena muze byt znacné velké cislo, které se do
32bitové proménné nemusi vejit.

Velikost vstupu: Ve vSech vstupech pouzitych pfi testovani plati 1 <
S R,S<1000, 1= cg,epr,er 1000000 a0 = h;; < 1000000.

Ve vstupech za alespori 5 bodi mimo to plati 1 £ R, S < 50.

Ve vstupech za alespon 5 bodi také plati, ze alespon jedna z nejlev-
néjsich silnic neobsahuje zadny tunel ani most. Tyto vstupy nemuseji byt
razné od téch uvedenych v predchozim odstavci.

Priklady:

Vstup: Viystup: Vstup: Vistup:

271120 8 271201 8

5115555 00 51155565 00

55655995 03 5565656995 10
04 11
05 12
06 13
16 16
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Vstup: Vistup: Vstup: Vijstup:

2712020 10 33111 NEEXISTUJE
51155565 00 42 32 32
555656995 10 322212

11 22122

12

13

03

04

05

06

16

P-1I-5

Basnik Honzik I1

Program:  basnik.pas / basnik.c / basnik.cpp
Vstup: basnik.in
Vijstup: basnik.out

Honzik poté, co jste mu vcera pomohli pozvat Bozenku na prochaz-
ku, zjistil, ze v sobé ukryva velky basnicky talent, a chtél by po vas
poradit jesté jednou. Rozhodl se totiz, ze slozi nejkrasnéjsi basen vsech
dob. Sousedovic Kdja Machti mu poradil, ze v nejkrasnéjsich basnich ma
kazda sloka dva verse. Pak od svého kamarada Jardy Seifertika zjistil,
ze kazda spravna basnicka ma mit presné N slok. Nakonec se od Elisky
Hezkohorské dozveédél, ze tyto basné maji takzvany cyklicky sdruzeny
rym. To znamend, ze maji schéma ab bc cd de ef ... yz za, tedy ze druhy
vers kazdé sloky se rymuje s prvnim verSem té nasledujici; vyjimku tvori
druhy vers posledni sloky, ktery se rymuje s prvnim versem prvni sloky.

Honzik mé skute¢né bohatou fantazii a navic i vas vcerejsi program,
takze pro néj nebyl problém vymyslet jednotlivé sloky i jejich pozici v bas-
ni. Co ale ¢ert nechtél, od nékterych slok vymyslel nékolik riiznych variant,
které sice vyjadiuji stejnou myslenku, ale obsahuji jiné dvojice rymii.

A préavé s vybérem jednotlivych slok do vysledné basné by chtél pomo-
ci. Pro kazdou z N vyslednych slok dostanete S; variant, které Honzik
vymyslel, a vasim tkolem je sestavit basnicku tak, aby méla cyklicky
sdruzeny rym.
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Abyste si nemuseli ldmat hlavu s tim, které verSe se rymuji a které
ne, o¢isloval Honzik vSechny mozné rymy prirozenymi ¢isly. Kazdou sloku
pak popsal dvojici (z,y) obsahujici ¢isla rymt v obou versich. Za slokou
(z,y) se tedy muze vyskytovat sloka (a,b) pravé tehdy, kdyz y = a.

SoutéZzni tiloha. Napiste program, ktery pro kazdou sloku ¢islo i (1 <
< 7 £ N) dostane S; moznych variant a z nich sestavi basnicku, ktera
splnuje pozadované schéma rymi.

Formadt vstupu: Prvni fddek vstupniho souboru obsahuje pfirozené
¢islo N, které udava pocet slok basnicky. Nasleduje N skupin radku, pti-
¢emz skupina i zacind fadkem obsahujicim ¢islo S; nasledované S; radky,
kazdy s dvéma ¢isly A a B. Cislo A udava rym, na ktery konéi prvni vers
varianty, a ¢islo B udava rym, na ktery konc¢i druhy vers.

Format vystupu: Program vypise do vystupniho souboru bud radek
s TFetézcem NEEXISTUJE, pokud bésnicku sestavit nelze, nebo N radek,
pricemz i-ty fadek bude obsahovat ¢islo k (1 £ k £ S;), které urcuje
vybranou variantu pro sloku ¢islo ¢. Pokud existuje vice feseni, vypiste
libovolné z nich.

Velikost vstupu: VSechny vstupy pouzité pri testovani maji N < 1000,
1 £8; £1000 pro viechnai a1l < A, B < 10°.

Ve vstupech celkem ohodnocenych 5 body mimo to plati N < 10

Priklady:

Vstup: Vijstup:

5 1

1 2

11 2

2 1

156 2

16 Jednotlivé sloky basnicky budou

2 mit rymy 11 16 63 38 81.

52

63

1 Vstup: Viystup:
38 2 NEEXISTUJE
3 1

10 2 21

81 1

42 13
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Kategorie Z5

Texty tuloh

Z5-1-1

Vitek ma napsana dveé ¢isla, 541 a 293. Z Sesti pouzitych ¢islic mé nejprve
vyskrtnout dvé tak, aby soucet dvou takto ziskanych ¢isel byl nejvétsi
mozny. Poté ma z ptivodnich Sesti ¢islic vyskrtnout dvé tak, aby rozdil
dvou takto ziskanych ¢isel byl nejmensi mozny (odecitd mensi ¢islo od
vétstho). Které ¢islice mé vyskrtnout? (M. Petrova)

Z5—-1-2

V Trpasli¢im kralovstvi méi{ vzdéalenosti v pohddkovych milich (pm),
v pohédkovych sézich (ps) a v pohadkovych loktech (pl). Na vstupni
brané do Trpasliciho kralovstvi je nasledujici tabulka pro prevody mezi
jejich jednotkami a nasimi:

> 1pm = 3,85m,

> 1ps = 105 cm,

> 1pl = 250 mm.

Kral Trpaslik I. nechal premérit vzdalenost od zamecké brany k po-
prvni uvadél 4 pm 4 ps 18 pl, druhy 3 pm 2 ps 43 pl a tfeti 6 pm 1ps 1pl.
Jeden z nich se vSak zmylil. Jaka je vzdalenost v metrech od zamecké
brany k pohddkovému jezirku? O kolik centimetri se spletl nepfesny ze-
meéméric? (M. Petrova)

Z5-1-3

Cty¥i kamaradi Adam, Mojmir a dvojéata Petr a Pavel ziskali v hodinach

matematiky celkem 52 smajliki, kazdy alespon 1. Pritom dvojcata dohro-

mady maji 33, ale nejuspésnéjsi byl Mojmir. Kolik jich ziskal Adam?
(M. Volfova)

125



Z5-1-4

Pan Tik a pan Tak prodavali budiky v prodejniach Pred Rohem a Za
Rohem. Pan Tik tvrdil, ze Pfed Rohem prodali o 30 budikt vice nez
Za Rohem, zatimco pan Tak tvrdil, ze Pfed Rohem prodali trikrat vice
budikt nez Za Rohem. Nakonec se ukézalo, ze Tik i Tak méli pravdu.
Kolik budikt prodali v obou prodejnach celkem? (L. Hozovad)

Z5-1-5

Do krouzki na obr.32 doplite ¢isla 1, 2, 3, 4, 5, 6 a 7 tak, aby soucet
¢isel na kazdé vyznacené linii byl stejny. Zadné &islo pritom nesmi byt
pouzito vickrat. (M. Smitkovd)

Obr. 32

Z5-1-6

Pani Siroké ekala vecer hosty. Nejprve pro né piipravila 25 chlebickii.
Pak spocitala, ze by si kazdy host mohl vzit dva, tii by se vSak na vSechny
nedostaly. Rekla si, Ze kdyby vyrobila jesté 10 chlebickii, mohl by si kazdy
host vzit tii, ale ¢tyTi ne kazdy. To ji prislo stale malo. Nakonec uchystala
dohromady 52 chlebicki. Kazdy host by si tedy mohl vzit ¢tyti chlebicky,
ale pét by se na vsechny nedostalo. Kolik hostti pani Siroka ocekavala?
Ona sama drzi dietu a vecer nikdy neji. (L. Simiinek)

Z5-1I1 -1

Mirek vypisoval za sebou do tady vysledky malé nasobilky sedmi od 7
do 70. Vypisoval je postupné od nejmensiho po nejveétsi a nepsal mezi nimi
carky ani mezery. V takhle vzniklé radé cislic skrtl jedenéct z téchto ¢islic.
Které nejvétsi a které nejmensi ¢islo mohl dostat? (M. Petrovad)
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Z5 =~ l1=2

Rytit Milivoj se chystal do Veselina na turnaj. Ten se kona ve stiedu.
Protoze mu ale cesta z Rytitova, kde bydli, do Veselina bude trvat dva
dny, vyrazil uz v pondéli. Cesta vede pres dalsi dvé mésta, Kostin a Zubin.
Prvni den jizdy urazil 25 mil a prenocoval v Zubiné. Druhy den, v ttery,
stastné dojel do Veselina. Turnaj s prehledem vyhral, takze kdyz se ve
¢tvrtek vracel zpatky, jel rychleji. Ujel o 6 mil vice nez v pondéli, preno-
coval tak v Kostiné. V patek ujel 11 mil, které mu zbyvaly do Rytifova.
Urci vzdalenost mezi Zubinem a Veselinem. (M. Petrova)

Z5-11-3

Léazensky spréavce pan Slunicko koupil pro lazenské hosty 58 slunecniki.
Nékteré byly cervené a nékteré zluté. Cervené byly baleny v krabicich
po deviti kusech, zatimco zluté byly v krabicich po ¢tyrech kusech. Oba
druhy slunecnikti nakupoval po celych balenich. Kolik mohlo byt zlutych
slunecniki? Najdi vSechna feSeni. (L. Hozovd)
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Kategorie Z6

Texty uloh

Z6 -1-1

Kdyz Botek natiral vrata garaze, pretrel omylem i stupnici nasténného
venkovniho teploméru. Trubicka se rtuti vSak zustala neposkozena, a tak
Borek plivodni stupnici prelepil paskem vlastni vyroby. Na néj peclive
vyrysoval dilky, vSechny byly stejné velké a oznacené cisly. Jeho dilek
meél vSak jinou velikost nez ptivodni dilek, ktery predstavoval jeden stupen
Celsia, a i nulu Borek umistil jinam, nez kde bylo 0 °C. Takto zacal Borek
mérit teplotu ve vlastnich jednotkdach: borcich. Kdyz by mél teplomér
ukazovat teplotu 11 °C, ukazoval 2 borky. Kdyz by mél ukazovat —4°C,
ukazoval —8 borki. Jaka je teplota ve stupnich Celsia, vidi-li Borek na
svém teploméru teplotu —2 botky? (L. Simiinek)

26 —-1-2

Zacinajici pisnickar prodaval vzdy po vystoupeni CD se svou hudbou.
Ve ¢tvrtek prodal osm stejnych CD. Den nato uz nabizel i své nové CD
a lidé si tak mohli koupit to samé jako ve ¢tvrtek nebo nové. V sobotu
chtéli vsichni posluchac¢i nové CD a pisnickar jich prodal ten den Sest.
V jednotlivych dnech utrzil 590 K¢, 720 K¢ a 840 K¢, neprozradime vsak,
ktera castka patii ke kterému dni.

> Kolik stdlo starsi CD?
> Kolik novych CD prodal v patek? (L. Simiinek)

Z6 -1-3

Vojta napsal ¢islo 2010 stokrat bez mezer za sebou. Kolik ¢tyrmistnych
a kolik pétimistnych soumérnych ¢isel bylo ukryto v tomto zépise? (Sou-
meérné cislo je takové Cislo, které je stejné, je-li ¢teno zepredu i zezadu,
napf. 39193.) (L. Hozova)
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Z6 -1-4

Soucin véki dédy Vendelina a jeho vnoucat je 2010. Soucet vékl vSech
vnoucat je 12 a zadnd dvé vnoucata nemaji stejny pocet let. Kolik vnou-
¢at ma déda Vendelin? (L. Hozova)

Z6 - 1-5

Na tdbote se dva vedouci se dvéma taborniky a psem potrebovali dostat
pres feku a k dispozici méli jen jednu lodku o nosnosti 65kg. Nastésti
vSichni (kromé psa) dokazali lodku ptes feku prevézt. Kazdy vedouci vazil
priblizné 60 kg, kazdy tdbornik 30kg a pes 12kg. Jak si méli poc¢inat?
Kolikrat nejméné musela lodka prekonat feku? (M. Volfovd)

Z6-1-6

Karel obestavél krabici s obdélnikovym dnem obrubou z krychlicek. Pou-
zil pravé 22 krychli¢ek o hrané 1 dm, které stavél tésné vedle sebe v jedné
vrstvé. Mezi obrubou a sténami krabice nebyla mezera a cela tato stavba
méla obdélnikovy ptudorys. Jaké rozméry mohlo mit dno krabice?

(M. Krejéovad)

Z6 - 11 -1

Pani Hovorkovda méla 1. ¢ervence 2010 na svém mobilu kredit 157,0 K¢.
7 kreditu se postupné odecitaji ¢astky za hovory, a to tak, ze za kazdou
zapocatou minutu se odecte 4,5 K¢. Textové zpravy pani Hovorkova ne-
piSe a ani zadné dalsi placené sluzby nepouziva. Sviij kredit dobiji podle
potreby, a to vzdy ¢astkou 400 K¢. Dne 31. prosince 2010 byl jeji kredit
353,0 K¢. Kolikrat minimalné dobijela pani Hovorkova za zminény ptilrok
sviij kredit? (L. Simiinek)

Z6 - 11 -2

V obdélniku KLM N je vzdalenost priseciku thlopricek od primky KL
0 2cm mensi nez jeho vzdéalenost od piimky LM. Obvod obdélniku je
56 cm. Jaky je obsah obdélniku K LM N? (L. Hozova)
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26 - 11 -3
V 1été se u babicky sjelo Sest vnoucat a vime o nich, zZe

> Martinka se nékdy musi starat o brasku Tomaska, ktery je o 8 let
mladsi,

> Vérka, ktera je o 7 let starsi nez Ida, rada vypravi strasidelné piibéhy,

> s Martinkou se ¢asto pere o rok mladsi Jaromir,

> Tomasek je o 11 let mladsi nez Kacka,

> Ida casto zlobi svého o 4 roky starsiho bratra Jaromira,

> klukim je dohromady 13 let.

Jak staré jsou vSechny zminované déti? (M. Volfova)
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Kategorie Z7

Texty uloh

Z7 -1-1

Soucin ¢islic libovolného vicemistného ¢isla je vzdy mensi nez toto ¢islo.
Pokud pocitame soucin ¢islic daného vicemistného ¢isla, potom soucin
¢islic tohoto souc¢inu, poté znova soucin ¢islic nového soucinu atd., nutné
po néjakém poctu kroku dospéjeme k jednomistnému ¢islu. Tento pocet
kroku nazyvame perzistence ¢isla. Napf. ¢islo 723 ma perzistenci 2, nebot
7-2-3=42 (1. krok) a 4-2 =8 (2. krok).
1. Najdéte nejvétsi liché cislo, které ma navzajem rtzné cislice a perzis-
tenci 1.
2. Najdéte nejvétsi sudé cislo, které ma navzajem rizné nenulové ¢islice
a perzistenci 1.
3. Najdéte nejmensi prirozené ¢islo, které ma perzistenci 3.
(S. Bedndrova)

LT =1 -2
2

Ondra na vyleté utratil % penéz a ze zbytku dal jesté £ na skolu pro
déti z Tibetu. Za % nového zbytku jesté koupil maly darek pro maminku.
7 déravé kapsy ztratil % zbylych penéz, a kdyz ze zbylych dal ptilku malé
sestticce, zustala mu prave jedna koruna. S jakym obnosem sel Ondra na
vylet? (M. Volfova)

Z7 -1-3

Sarka prohlésila:

nJsme tTi sestry, ja jsem nejmladsi, Liba je starsi o tfi roky a Eliska
o osm. Nase mamka rédda slysi, ze ndm vSem (i s ni) je v pruméru 21 let.
Pritom kdyz jsem se narodila, bylo mamce uz 29.“

Pied kolika lety se Sarka narodila? (M. Volfova)
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Z7 -1-4

Jindra mél napsano ¢tyimistné cislo. Toto ¢islo zaokrouhlil na desitky, na
stovky a na tisice a vSechny tri vysledky zapsal pod toto ¢islo. VSechna
CtyTi ¢isla spravné secetl a dostal 5443. Které ¢islo mél Jindra napsano?

(M. Petrovd)

Z7T -1-5

Libor narysoval kruznici se sttedem S a body A, B, C, D, jak ukazuje
obr. 33. Zjistil, ze tsecky SC' a BD jsou stejné dlouhé. V jakém poméru
jsou velikosti uhla ASC a SCD? (L. Hozovd)

C

Obr. 33

Z7-1-6

Najdéte vsechna trojmistna prirozena cisla, kterd jsou beze zbytku déli-
telnd cislem 6 a ve kterych muzeme vyskrtnout jakoukoli ¢islici a vzdy
dostaneme dvojmistné prirozené cislo, jez je také beze zbytku délitelné
¢islem 6. (L. Simiinek)

Z7 - 11 -1

Na karté je napsano Ctyrmistné prirozené cislo, ve kterém muizeme vy-
skrtnout jakékoli dvé ¢islice a vzdy dostaneme dvojmistné ptirozené ¢islo,
jez je beze zbytku délitelné ¢islem 5. Kolik takovych ¢tyfmistnych priro-
zenych ¢isel existuje? (Pozor, napt. ¢islo 06 neni dvojmistné.)

(L. Simiinek)
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Z7 - 11 -2

Karel a Vojta zjistili, ze kuchynské hodiny na chalupé se predbihaji

o 1,5 minuty za kazdou hodinu a hodiny v loznici se o ptl minuty kazdou

hodinu zpozduji. V pravé poledne seridili hodiny na stejny a spravny cas.

Hodiny v kuchyni i v loznici maji obvykly dvanactihodinovy cifernik.

Ur¢i, kdy nejdiive budou (bez dalsiho opravovani)

1. kuchynské hodiny ukazovat opét presny cas,

2. hodiny v loznici ukazovat opét presny cas,

3. oboje hodiny ukazovat opét stejny (i kdyz moznd nespravny) cas.
(M. Volfova)

Z7 -11-3

V trojihelniku ABC' oznacime stiedy stran CB a C'A pismeny K a L.
Vime, ze c¢tytthelnik ABKL méa obvod 10cm a trojiuhelnik K LC ma
obvod 6 cm. Vypoditej délku tsecky K L. (J. Mazdk)
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Kategorie Z8

Texty tloh

Z8 -1-1

Martin mé na papife napsano pétimistné ¢islo s péti riiznymi c¢islicemi
a nasledujicimi vlastnostmi:

>

v v v Vv

skrtnutim druhé ¢islice zleva (tj. ¢islice na misté tisicti) dostane ¢islo,
které je délitelné dvéma,
skrtnutim treti Cislice zleva dostane ¢islo, které je délitelné tfemi,
skrtnutim ctvrté cislice zleva dostane cislo, které je délitelné ¢tyrmi,
skrtnutim paté cislice zleva dostane ¢islo, které je délitelné péti,
neskrtne-li zddnou ¢islici, mé ¢islo délitelné Sesti.
Které nejvétsi ¢islo mize mit Martin napsano na papite?

(M. Petrovd)

Z8-1-2

Karel se snazil do prazdnych poli na obr.34 ve-
psat prirozend cisla od 1 do 14 tak, aby zadné
¢islo nebylo pouzito vickrat a soucet vSech cisel
v kazdé primé linii byl stejny. Po chvili si uve-
domil, ze to neni mozné. Jak byste Karlovo po-
zorovani zduvodnili vy? (Pf{imou linii rozumime
skupinu vsech sousedicich policek, jejichz stredy

lezi na jedné ptimce.) (S. Bedndrovq)

Obr. 34

Z8 -1-3

Cena knizky ,,Nové hddanky* byla sniZena o 62,5 %. Matéj zjistil, Ze obé
ceny (pred sniZzenim i po ném) jsou dvojmistna cisla a daji se vyjadrit
stejnymi Cislicemi, jen v rizném potadi. O kolik K¢ byla knizka zlevnéna?

(M. Volfova)
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Z8-1-4

Rozdélte krychli o hrané 8 cm na mensi shodné krychlicky tak, aby soucet
jejich povrchit byl pétkrat vétsi nez povrch ptivodni krychle. Jaky bude
objem malé krychle a kolik centimetri bude mérit jeji hrana?

(M. Volfova)

Z8-1-5

Klara, Lenka a Matéj si procvicovali pisemné déleni se zbytkem. Jako dé-
lence mél kazdy zadéno jiné prirozené cislo, jako délitele vsak méli vSichni
stejné prirozené cislo. Lencin délenec byl o 30 vétsi nez Klarin. Matéjiav
délenec byl o 50 vétsi nez Lencin. Klare vysel ve vysledku zbytek 8, Lence
zbytek 2 a Matéjovi zbytek 4. Vsichni pocitali bez chyby. Jaky délitel byl
7akim zadan? (L. Simiinek)

Z8 - 1-6

V rovnoramenném lichobézniku ABCD jsou uhlopricky AC a DB na
sebe kolmé, jejich délka je 8 cm a délka delsi zakladny AB je také 8 cm.
Vypocditejte obsah tohoto lichobézniku. (M. Krejcovd)

Z8 - 11 -1

Na karticku jsem napsala dvojmistné prirozené ¢islo. Soucet ¢islic tohoto
c¢isla je délitelny tremi. Odectu-li od napsaného ¢isla ¢islo 27, dostanu jiné
dvojmistné prirozené ¢islo, psané tymiz ¢islicemi, ale v opacném poradi.
Ktera ¢isla jsem mohla napsat na karticku? (L. Hozovad)

Z8 - 11 -2

Martina si vymyslela postup na vyrobu ¢iselné posloupnosti. Zacala ¢is-
lem 52. Z néj odvodila dalsi ¢len posloupnosti takto: 22 +2-5 = 4410 =
= 14. Potom pokracovala stejnym zpusobem déle a z ¢isla 14 dostala
424+ 2.1 = 16 + 2 = 18. Vzdy tedy vezme ¢islo, odtrhne z néj éislici
na misté jednotek, tuto odtrzenou ¢islici umocni na druhou a k vysledné
mocniné pricte dvojnasobek cisla, které zbylo z ptivodniho ¢isla po od-
trhnuti posledni ¢islice. Jaké je 2011. ¢islo takto vzniklé posloupnosti?

(M. Dillingerova)
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Z8-11-3

V kruznici k se stfedem S a polomérem 52mm jsou déany dvé na sebe
kolmé tétivy AB a CD. Jejich prusecik X je od stfedu S vzdélen 25 mm.
Jak dlouha je tétiva C'D, je-li délka tétivy AB 96 mm? (L. Hozova)
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Kategorie Z9

Texty uloh

Z29-1-1

Pan VIk c¢ekal na zastavce pred Skolou na autobus. Z okna slysSel slova
ucitele:

»Jaky povrch mtize mit pravidelny ¢tyrboky hranol, vite-li, ze délky
vSech jeho hran jsou v centimetrech vyjadreny celymi ¢isly a ze jeho
objem je...“

Toto diilezité ¢islo pan V1k neslysel, protoze zrovna projelo okolo auto.
Za chvili slysel zéka hlasictho vysledek 918 cm?. U¢itel na to fekl:

»Ano, ale tloha mé celkem c¢tyti feSeni. Hledejte dal.“

Vice se pan Vlk uz nedozvédél, nebot nastoupil do svého autobusu.
Protoze matematika byla vzdy jeho hobby, vytahl si v autobuse tuzku
a papir a po case urcil i zbyld tii feSeni ucitelovy tlohy. Spocitejte je i vy.

(L. Simiinek)

Z9-1-2

Na obr. 35 jsou teckovanou ¢arou znazornény hranice ¢tyt stejné velkych
obdélnikovych parcel. Sedou barvou je vyznacena zastavénd plocha. Ta
ma tvar obdélniku, jehoz jedna strana tvori zaroven hranice parcel. Za-

480 i | 200

560
440

Obr. 35
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psand ¢isla vyjadiuji obsah nezastavéné plochy na jednotlivych parcelach,
a to v m?. Vypocitejte obsah celkové zastavéné plochy. (L. Simiinek)

Z9-1-3

Vlckovi lisovali jablecny most. Méli ho ve dvou stejné objemnych soudcich,
v obou témér stejné mnozstvi. Kdyby z prvniho prelili do druhého 1
litr, méli by v obou stejné, ale to by ani jeden soudek nebyl plny. Tak
radéji prelili 9 litrd z druhého do prvniho. Pak byl prvni soudek tplné
plny a most v druhém zaplnoval prave tfetinu objemu. Kolik litra mostu
vylisovali, jaky byl objem soudku a kolik mostu v nich bylo pivodné?

(M. Volfova)

Z9-1-4

Pan Rychly a pan Louda ve stejnou dobu vysli na tutéz turistickou tiru,
jen pan Rychly ji Sel shora z horské chaty a pan Louda naopak od auto-
busu dole v méstecku na chatu nahoru. V 10 hodin se na trase mijeli. Pan
Rychly spéchal a jiz ve 12 hodin byl v cili. Naopak pan Louda postupoval
pomalu, a tak dorazil k chaté az v 18 hodin. V kolik hodin panové vyrazili
na cestu, vime-li, ze kazdy z nich Sel celou dobu svou stalou rychlosti?

(M. Volfova)

Z9-1-5

Kruznici se sttedem S a polomérem 12 cm jsme opsali pravidelny Sesti-
thelnik ABCDEF a vepsali pravidelny Sestitthelnik TUV XY Z tak, aby
bod T byl stiedem strany BC'. Vypocitejte obsah a obvod c¢tyruhelniku
TCUS. (M. Krejéovd)

Z9-1-6

Petr a Pavel ¢esali v sadé jablka a hrusky. V pondéli snédl Petr o 2 hrusky
vice nez Pavel a o 2 jablka méné nez Pavel. V ttery Petr snédl o 4 hrusky
méné nez v pondeéli. Pavel snédl v utery o 3 hrusky vice nez Petr a o 3 ja-
blka méné nez Petr. Pavel snédl za oba dny 12 jablek a v utery snédl
stejny pocet jablek jako hrusek. V ttery vecer oba chlapci zjistili, ze
pocet jablek, kterd spolecné za oba dny snédli, je stejné velky jako pocet
spole¢né snédenych hrusek. Kolik jablek snédl Petr v pondéli a kolik
hrusek snédl Pavel v ttery? (L. Hozovd)
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Z9 - 11 -1

Ctyfmistnym palindromem nazveme kazdé ¢tyfmistné prirozené ¢islo,
které ma na misté jednotek stejnou cislici jako na misté tisicti a které
zarovenn ma na misté desitek stejnou ¢islici jako na misté stovek. Kolik
existuje dvojic ¢tyrmistnych palindromu, jejichz rozdil je 36747

(L. Simiinek)

Z9-11-2

Na nésledujicim obr.36 jsou rovnostranné trojihelniky ABC, DBE,
IEF a HIG. Obsahy trojihelniki DBE, IFF a HIG jsou v poméru
9:16: 4. V jakém pomeéru jsou

1. délky usecek HI a IFE,

2. obsahy trojuhelniki ABC' a HEC? (K. Pazourek)
C
F
G
H E
A D B
Obr. 36

Z9-11-3

Mame ¢tverce ABC'D a KLM N. Délky stran obou ¢tverci jsou v centi-
metrech vyjadreny celym ¢islem. Bod K je vnitinim bodem tsecky AB,
bod L lezi v bodé B a bod M je vnitinim bodem tsecky BC. Obsah
Sestitthelniku AKNMCD je 225 cm?. Jaky miize byt obvod tohoto Sesti-
tihelniku? Najdéte vSechny moznosti. (L. Simiinek)
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Z9-11-4

Martina si vymyslela postup na vyrobu ¢iselné posloupnosti. Zacala ¢is-
lem 128. Z néj odvodila dalsi ¢len posloupnosti takto: 82 45 = 64 4+ 5 =
= 69. Potom pokracovala stejnym zptisobem déle a z cisla 69 dostala
92 +5 =81+5 = 86. Vzdy tedy z piedchoziho ¢lenu posloupnosti vezme
¢islici na misté jednotek, umocni ji na druhou a k této mocniné pricte
konstantu 5.

1. Jaké je 2011. ¢islo takto vzniklé posloupnosti?

2. Martina opét zacala ¢islem 128, ale misto ¢isla 5 zvolila jako konstantu
jiné prirozené cislo. Tentokrat ji na 2011. misté vyslo ¢islo 16. Jakou
konstantu zvolila v tomto pripadé? (M. Dillingerova)

Z9 - 111 -1

Poradateliim vystavy ,Na Meésic a jesté dal“ se po prvnim vystavnim dni
zdélo, ze maji malou navstévnost, proto snizili vstupné o 12 K¢é. Tim se
sice druhy den zvysil podet navstévnikti o 10 %, ale celkova denni trzba
se snizila o 5 %. Kolik korun stélo vstupné po slevé? (M. Petrovad)

Z9 - 111 -2

Lichobéznik ABC D, kde strana AB je rovnobézna se stranou CD, je
rozdélen thloprickami, které se protinaji v bodé M, na ¢tyri ¢asti. Urcete
jeho obsah, vite-li, Ze trojihelnik AM D ma obsah 8cm? a trojihelnik
DCM mé obsah 4 cm?. (M. Volfova)

Z9 - 111 -3

Ctibor a Mila pocitali ze sbirky tutéz tlohu. Byly zadany tti délky hran
Ctyrbokého hranolu v milimetrech a tikolem bylo vypocitat jeho objem
a povrch. Ctibor nejprve prevedl zadané délky na centimetry. Pocitalo
se mu tak snédze, protoze i po prevodu byly vSechny délky vyjadieny
celymi &isly. Obéma vysly spravné vysledky, Mile v mm® a mm?, Ctibo-
rovi v em?® a em?. Milin vysledek v mm? byl o 17982 vétsi nez Ctiboriiv
vysledek v cm®. Milin vysledek v mm? byl o 5742 vétsi nez Ctiboriv
vysledek v cm?. Uréete délky hran hranolu. (L. Simiinek)
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Z9 -1l -4
111 1,1

Na tabuli jsou napséana pouze ¢isla 1, 3, 3, 7, 5 a 5. Na tabuli mizeme
pripsat soucet nebo soucin libovolnych dvou c¢isel z tabule. Je mozné
takovym pripisovanim dosahnout toho, aby se na tabuli objevila ¢isla

a) &, b) &, ¢) 17 (V. Bachratd, J. Mazdk)
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Pripravna soustredéni pred 52. MMO

V pribéhu 60. roéniku se konalo vybérové soustredéni pro pripravu na
mezinarodni matematickou olympiadu bezprostifedné po skonceném ce-
lostatnim kole kategorie A, a to od 4. do 8. dubna 2011 v Kostelci nad
Cernymi lesy nedaleko Prahy. Na soustfedéni bylo pozvano 9 nejlepsich
resiteltl III. kola kategorie A. Soustredéni bylo zaméfeno na pripravu
reprezentantli a ke kone¢né nominaci Sesticlenného druzstva.

Uspésnost jednotlivych studenttl ukazuje nasledujici tabulka:

Toméas Zeman 8/8 G J. Keplera, Praha 6 83
Anh Dung Le 3/6 G Tachov 78,5
Michael Bily 8/8 G J. Vrchlického, Klatovy 76
Miroslav Koblizek 8/8 G Zamberk 68,5
Stépan Simsa 6/8 G J. Jungmanna, Litomérfice 65
Dan Safka 8/8 G J. Keplera, Praha 6 60
Jakub Solovsky 4/4 G M. Kopernika, Bilovec 59
Jan Kuchaiik 3/4 G Jihlava 57
Ondrej Bartos 7/8 G Zdar nad Sézavou 56,5

Na zakladé uvedenych vysledki, v nichz jsou zapocitany i vysledky
oblastniho a celostatniho kola, bylo prvnich Sest vybrano do reprezen-
tacniho druzstva a sedmy byl urcen jako nahradnik. Toto druzstvo nés
reprezentovalo i na jiz tradi¢nim stretnuti s druzstvy Slovenska a Polska.

Jednotlivé seminére vedli a tlohy pripravili:
dr. Jaroslav Zhouf (4.4.)

dr. Pavel Calabek (5.4.)

dr. Martin Pandk (6.4.)

dr. Jaroslav Svréek (7.4.)

a doc. Jaromir Simsa (8.4.)
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Ulohy zadané na pripravném soustredéni

1. Dekadické zapisy prirozenych cisel ag,aq,as,...,a1p neobsahuji nuly,
jedno z druhého se ziska pouze zménou poradi cifer a je

ar =k (mod 11) pro k=0,1,2,...,10.

Urcete nejmensi mozné takové cislo ag.

2. Vrcholy krychle méame ocislovat ¢isly od 1 do 8, kazdy vrchol jinym
¢islem, a pro kazdou hranu vypocitat soucin ¢isel na jejich koncich. Jak
maji byt vrcholy ocislovany, aby soucet 12 uvedenych soucinti byl co
nejmensi?

3. Je dan trojuhelnik ABC. Pouzitim pouze oboustranného primého pra-
vitka sestrojte nejvyse pomoci sedmi primek bod D na strané AB takovy,
aby |AD| : |BD| = |BC| : |AC|.

4. Na tabuli na konci vyucovaci hodiny zustal kousek grafu funkce y =
= tgx a kousek osy z z kartézské soustavy souradnic. Pomoci pravitka
a kruzitka sestrojte tsecku délky 1.

5. Necht f: N — N je funkce, pro niz f(1) =1a f(n) =n— f(f(n—1))
pro libovolné prirozené n = 2. Dokazte, Ze pro vSechna pfirozena n plati

f(n+ f(n)) =n.

6. Necht n je prirozené ¢islo. Najdéte nejmensi hodnotu vyrazu
(1 —22)2 + (o —23)2 + ... + (Tn_1 — )2 + (20 — 1)3,

kde z1,xo,...,T, jsou navzajem ruzna celd cisla.

7. Mezi n + 1 hromddkami (n = 3) oznacdenymi A;, As,..., A, a O mu-

zeme provadét nasledujici presuny karet:

(i) Jestlize na hroméadce A; jsou alespor tii karty, potom z hroméadky A;
tii karty odebereme a na hromadky A;_1, A;11 a O (pfi oznaceni
Ag = A, Ay = A, 41) priddme po jedné karté.

(ii) Jestlize na hroméddce O je alespon n karet, potom z hromadky O
n karet odebereme a na kazdou z hromdadek A; po jedné karté pfi-
dame.

Dokazte, Ze jestlize na tyto hromadky libovolné rozmistime alespon n? +

+ 3n + 1 karet, mtizeme popsanymi operacemi dosahnout stavu, kdy na

kazdé z hromadek je alespon n + 1 karet.
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8. Necht R je mnozina vech kladnych redlnych éisel. Najdéte viechny
funkce f: Rt — R* takové, Ze pro vSechna kladna redlna ¢isla x a y plati

F@)f(y f(@) = f(z +).

9. Necht ABC je ostrotihly trojihelnik. Ozna¢me po tfadé D, E, F paty
jeho vysek v,, vy, ve, dile ozna¢me P jeden z pruseciki kruznice jemu
opsané s primkou E'F' a poté prisecik piimek BP a F'D jako Q. Dokazte,
ze |AP| = |AQ)|.

10. Na koncerté bude zpivat postupné 20 zpévaku. Je mozné, aby bylo
pravé 2 010 moznosti usporadani jejich vystoupeni tak, aby bylo vyhovéno
vSem jejich pfanim? Prani kazdého sestava z mnoziny kolegu (i prazdné),
kteri by meéli vystupovat pred nim.

11. Nekonecna posloupnost zi,zs,... je ddna vztahy 7 = 1 a x9 =
= —Zp, Top_1 = (—1)¥T1xy, pro viechna k > 1. Ukazte, 7e 1 +xo+ ...+
+ z, = 0 pro vSechna n = 1.

12. Necht ABCD je tétivovy c¢tyiihelnik a P pruse¢ik jeho uhlopricek.
Ozna¢me E, F, G, H po tadé paty kolmic z bodu P ke stranam AB, BC,
CD, DA. Dokazte, ze ptimky EH, BD a FG jsou bud rovnobézné, nebo
se protinaji v jednom spole¢ném bodé.

13. V roviné je dana kruznice a bod C' v jeji vnéjsi oblasti. Urcete mno-

zinu pruseciki vysek (ortocenter) vsech trojuhelniki ABC, kde AB je
pramér dané kruznice.

14. V roviné je dan rovnoramenny trojuhelnik ABC, kde D je stiedem
jeho zakladny BC. Bod F je takovym vnéjsim bodem daného trojuhel-
niku, pro ktery plati CE L AB a souasné |BE| = |BD|. Necht M
je stiedem usecky BE a F' je takovy bod kratsiho oblouku AD kruz-
nice opsané trojihelniku ABD, pro néjz plati M F | BE. Dokazte, ze
ED 1 FD.

15. Napiste priklad kvadratické rovnice s korenem cos %n, ktera ma celo-
¢iselné koeficienty, popripadé uvedte ,neexistuje®.

16. Vypiste vsechna feseni (z,v, 2) € R?® soustavy rovnic:

3(x2 +y2 + 2% =1,
z2y? + 222 + 222 = zyz(z +y + 2)3.
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17. Pro kazdé n € N udejte aspon jedno feseni (z,y) € N? rovnice
23+ % 4+ 1 = 7292 F1,
18. Urcete nejmensi pocet poli, které je nutné oznacit na ¢tvercové Sa-

chovnici 10 x 10, aby zadnd c¢tyfi z neoznacenych poli nebyla rohovymi
poli nékteré podsachovnice p x ¢, kde 1 <p<10al < ¢ < 10.
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Mezinarodni stfetnuti cesko-polsko-slovenské

V ramci zavérecné pripravy pred MMO se uskutecnilo jiz jedenacté me-
zindrodni stietnuti mezi tymy Ceské republiky, Polska a Slovenska. Kaz-
dou zemi reprezentovala Sestice ucastniki, ktefi si vybojovali postup na
52. MMO v Nizozemi.

Soutéz probéhla od 19. do 22. cervna 2011 v polském Krakove.
VsSechna tii reprezentacni druzstva pricestovala na misto konani jiz v ne-
déli vecer 19.6. 2011. Organizace a prubéh soutéze zustal zachovan z pre-
deslych ro¢nikit — je prizptsoben stylu III. kola nasi MO a podminkam
na MMO. Soutézicim byly ve dvou dnech predlozeny dvé trojice soutéz-
nich tloh, pritom za kazdou z iloh mohli ziskat nejvyse 7 bodi, tj. celkové
(stejné jako na MMO) 42 body. Na kazdou trojici tiloh méli soutézici vy-
hrazeno 4,5 hodiny.

Poradi Jméno Zemé  body Soucet
1.-2. Tomasz Ciesla POL 674770 31
Martin Vodicka SVK 777370 31
3.-5. Maciej Duleba POL 777070 28
Anh Dung Le CZE 777070 28
Teodor Jerzak POL 770707 28
6. Filip Borowiec POL 776610 27
7. Damian Orlef POL 772710 24
8. Stépdn Simsa CZE 770200 16
9. Tomds Zeman CZE 770010 15
10.-14. Michael Bilj CZE 770000 14
Marian Hornak SVK 770000 14
Jan Hozza SVK 770000 14
Matuis Stehlik SVK 740210 14
Michal Téth SVK 770000 14
15.-16. Lubomir Grund CZE 760000 13
Ondrej Kovac SVK 760000 13

17. Wojciech Porowski POL 700500 12
18. Miroslav Koblizek CZE 000210 3
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Névrh vSech Sesti tloh (a jejich vzorova feSeni) pripravili kolegové
z hostitelské zeme, Pavel Novotny (1. tloha) a Tom4as Jurik (3. tiloha).
Koordinaci hodnoceni zajistila mezinarodni porota, kterou tvorili Pavel
Calébek, Karel Horak a Jaromir Simsa z Ceské republiky, Jerzy Bednar-
czuk, Michal Pilipczuk a Andrzej Grzesik z Polska a Peter Csiba, Pavel
Novotny a Peter Novotny ze Slovenska.

Texty soutéznich tloh

1. Necht a, b, ¢ jsou kladna realna ¢isla, pro néz plati a? < be. Dokazte,
7e b% + ac® > ab(a + ¢).

2. Na tabuli je napsdno n nezapornych celych c¢isel, jejichz nejvétsi spo-
leény délitel je 1. V jednom kroku muzeme smazat dvé ¢isla z, y (oznacend
tak, ze © 2 y) a nahradit je ¢isly x — y, 2y. Zjistéte, pro které n-tice ne-
zapornych celych ¢isel se 1ze popsanym zptisobem dostat do situace, kdy
na tabuli bude n — 1 nul.

3. Necht body A, B, C, D lezi na kruznici v uvedeném poradi, pricemz
AB }f CD a délka oblouku AB obsahujictho body C, D je dvakrat vétsi
nez délka toho oblouku 6‘7), ktery neobsahuje body A, B. Bod F je v polo-
roviné ABC zvolen tak, ze |AC| = |AE| a |BD| = |BE|. Za predpokladu,
ze kolmice z bodu F na primku AB prochézi stredem toho z oblouku C/'.ﬁ,
ktery neobsahuje body A, B, dokazte, ze |<AC B| = 108°.

4. Necht mnohoclen P s celociselnymi koeficienty splnuje nasledujici pod-
minku: jestlize pro mnohocleny F'; G, @ s celociselnymi koeficienty plati

P(Q(z)) = F(z) - G(z),
je F nebo G konstantni mnohoclen.
Dokazte, ze mnohoc¢len P musi byt konstantni.

5. V konvexnim c¢tyiihelniku ABCD ozna¢me po fadé M a N stiedy
stran AD a BC'. Na strandch AB a C'D zvolme po fadé body K a L
tak, ze | M KA| = |<NLC|. Dokazte, ze pokud maji primky BD, KM
a LN spolecny bod, plati

|xKMN| = |xBDC| a |<xLNM|=|xABD|.

6. Je dano celé c¢islo a. Dokazte, Ze existuje nekoneéné mnoho prvocisel p,
pro néz
pln?+3 a p|md—a

pro néjaka celd ¢isla n, m.
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Regen iiloh

1. Sectenim ti{ AG nerovnosti (kazdou levou stranu chdpeme jako sedm
s¢itancii)

4a3b+ b3c + 2c%a = Tabe,

ab*c + c®a + 2a°b 2 Tbca,

4c3a 4 a3b+ 2b3¢ > 7cab
dostaneme

a®b+b3c+ Ea = a*be + b*ca + *ab. (1)
Z predpokladu be > a? vynasobenim ab plyne b%ca > a3b, coz spolu s (1)
déva
bc+ ca > a’be + 2ab mneboli b + ac® > ab(a + c).

Jiné FeSeni. Vyuzijeme obé néasledujici AG nerovnosti
5 5
%b3 + %ac2 2 VbSa3cb = bevVadbe > abe,

%bS + %ac2 > Vb9a2ct = bV a2btet > a?b,

kam jsme v obou piipadech dosadili be > a?. Jejich se¢tenim ziskame
hledany odhad.

2. Odpoved. Soucet danych ¢isel musi byt mocnina c¢isla 2.

Oznacme S celkovy soucet danych ¢isel a d jejich nejvétsi spolecny
délitel. Na pocatku je d = 1, zatimco na konci by mélo byt d = S, protoze
soucet S vsech ¢isel na tabuli se neméni.

Po kazdém popsaném kroku se aktudlni hodnota nejvétsiho spolec-
ného délitele bud nezméni, anebo vzroste na dvojnasobek. To plyne
z rovnosti (z — y,y) = (z,y) a z toho, Ze je bud (a,2b) = (a,b), nebo
(a,2b) = 2(a,b) podle toho, jestli 2 déli a/(a,b) ¢i nikoli. Vzhledem k to-
mu, ze (a,b,c) = ((a, b), c), snadno uvedeny postieh rozsitime na nejvét-
stho spolecného délitele vSech ¢isel na tabuli. Zustane-li tedy nakonec na
tabuli jediné nenulové ¢islo, musi tim ¢islem byt mocnina dvojky.

Je-li naopak S mocninou ¢isla 2, ukdzeme jak postupovat, abychom
dostali » — 1 nul. Zapisme vsechna c¢isla na tabuli v dvojkové soustavé.
Pokud jsou na tabuli jesté aspon dvé nenulova éisla, vezméme ta dvé
z nich, kterd maji na konci nejméné nul (takovéd ¢isla jsou aspon dve,
protoze celkovy soucet je mocnina dvojky). Po popsané operaci misto
nich ziejmé dostaneme dvé ¢isla, jez maji na konci aspon o jednu nulu
vic. Je tedy jasné, ze po konecném poctu kroki musime skoncit tim, ze
na tabuli bude jediné nenulové cislo.
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3. Nejdrive zformulujeme a dokazeme pomocné tvrzeni.

V rovine jsou dany dvé kruznice sy, 3o protinajici se v bodech K, L,
pricemz stred Sy kruzZnice s lezi na . Pokud M € 3 (M ¢ 3)
a primka KM protind 2 v bodé N (rizném od K ), je |[MN|= |ML|.

DUKAZ. Pokud M = S5, je tvrzeni trividlni. Zabyvejme se tedy pfi-
padem M # S,. Oznacme jesté My bod kruznice s, pro néjz je SaM
prumérem s¢;. Ziejmé nemuze byt M = My, protoze v takovém pripadé
by byly MK a ML teénami kruznice ss. Nejdrive dokdzeme, ze primka
M S5 je osou thlu NM L.

Pokud M lezi na oblouku K L kruznice s neobsahujicim Sy (obr. 37),
jsou uhly KM S5, SoM L obvodovymi tihly nad shodnymi tétivami Sy K,
S L, maji proto stejnou velikost.

Obr. 38

Pokud M lezi na oblouku KL kruznice s obsahujicim bod Sy, mii-
zeme bez (jmy na obecnosti predpokladat, ze lezi na oblouku SeL ne-
obsahujicim bod K (obr.38). Ctyfihelnik KSyML je tétivovy, takze
|<)152MN[ = 180° — |§:SQMK| = 180° — |§(SQLK| = 180° — |{SQKL‘ =
= I{SQML'

V osové soumérnosti podle primky M S, v niz se kruznice sz, zobrazi
sama na sebe (jeji stfed lezi na ose soumeérnosti), je obrazem piimky ML
primka M N. Ta protind kruznici s, (pokud M # Mj) ve dvou bodech
K a N. Obrazem bodu L € 5 nemuze ovsem byt bod K, protoze KL
neni pro M # My kolmé na M Ss. Je tedy |[M N| = |M L|, coz jsme chtéli
dokazat.

Pristupme nyni k feseni tlohy. Ozna¢me S prusec¢ik oblouku CD
s kolmici z bodu E na AB. Je-li k; kruznice se stifedem A prochaze-
jici bodem C a ko kruznice se stifedem B prochézejici bodem D, je
bod E prisecikem obou kruznic kq, k2. Kruznici opsanou tétivovému étyt-
thelniku ABC D ozna¢me k. Piimka SC protind kruznici k; v bodé C’
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a primka SD kruznici ko v bodé D’. Dalsi prisec¢ik kruznice kq s kruz-
nici k£ ozna¢me C” (C” # C) a podobné D" dalsi prisecik kruznice ko
s kruznici k (D" # D). Ukdzeme, ze C"" = D".

Bod S lezi na chordéle kruznic ky, ko, proto z jeho mocnosti k témto
kruznicim plyne |SC| - [SC’| = |SD| - |SD’|. Protoze podle zadéni
|SC| = |SD|, jei|SC’'| = |SD’|. S vyuzitim tivodniho tvrzeni tak mame
|SC”| = |SC’'| =|SD’'| = |SD"|.

Kdyby body C”, D" byly rtzné, byl by trojthelnik SD”C" rovnora-
menny a jeho vyska z vrcholu S by prochézela stfedem kruznice k stejné
jako osa oblouku CD. Ctyfiihelnik CDD"”C" (resp. CDC”D") by tak
byl rovnoramenny lichobéznik (|SC| = |SD|). A protoze body A, B lezi
na osach tse¢ek CC”, DD", byl by i ABCD rovnoramenny lichobéznik,
coz odporuje predpokladu AB }f C'D. Vsechny tii uvazované kruznice tak
maji spole¢ny bod C” = D" jehoz oznadeni dale zjednoduSime na E’.

Oznafme a = |XDE’'S| = |«xSE'C|a 8 = |xAE'D|. Pak | <X AE'B'| =

= 2|¥CE'D| = 4« (nebot oblouk AB je dvakrat delsi nez oblouk C'D),
a proto |[<xCE'B| = |<AE'B| — |<AE'C| = 2a — 8 (obr. 39). Z rovnosti
|BD| = |BF’|, |AC| = |AFE’| vyjadiime velikosti zbylych dvou uhli troj-
thelniku ABE":

2a+ = |XAE'C| = |XACE'| = |xABE'|,

da — B = |xBE'D| = |xBDE'| = |xBAE'|.
Odtud

180° = 4a + (2a + B) + (4a — B) = 10«

tudfz a = 18° a | ACB| = 180° — | < AE'B| = 180° — 4a = 108°.
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4. Dokazeme tvrzeni ulohy sporem. Predpokladejme, ze P neni kon-
stantni, a uvazme nejprve pripad, kdy je mnohoclen P linearni, tedy
P(z) = az+b pro néjaké a,b € Z, a # 0. Vezméme Q(z) = az?+ (b+1)z,
pak je

P(Q(z)) = a(az® 4+ (b+1)x) +b = a®*2® +a(b+ 1)z +b = (ax+b)(az +1)

rozklad mnohoclenu P(Q(z)) na soué¢in dvou nekonstantnich mnohoclent
ar + b a ax + 1, coz odporuje predpokladu tlohy.

Je-li stupeni mnohoélenu P aspon 2, tedy P(r) = a,z" +an_12" 1 +
+...+a1z+ag, kde n > 1aa, # 0, vezméme mnoho¢len Q(z) = P(z)+=x.
Pro mnohoélen P(Q(z)), ktery ma stupefi n? > n, plati

P(Q(z)) — P(z) = P(P(z) + ) — P(z) = »_ai((P(x) + z)" — 7).
=0

Z rovnosti a' —b* = (a — b)(a’"t + a'"2b + ... + b'"1) ovSem plyne,
7e kazdy z mnohoélent (P(x) + )" — z* je délitelny mnohoclenem P(z).
Proto i mnohoc¢len P(Q(x)) je mnohoclenem P(x) délitelny. To vede opét
ke sporu, protoze stupeni mnohoélenu P(Q(x)) je vétsi nez stupenn mno-
hoélenu P, a ten je tudiz netrividlnim délitelem mnohoclenu P(Q(x)).
Tim je tvrzeni dokézano.

5. Oznac¢me P stied thlopricky BD a @ prusecik piimek BD, KM a LN
(obr. 40). Bez ijmy na obecnosti predpokladejme, Ze bod B lezi mezi body
Q a D. Protoze PM a PN jsou stfedni pticky trojuhelniki ABD a DCB,
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je PM || AB a PN || CD. Je tedy |«xPNL| = |«NLC| = |[xMKA| =
= |« K M P|, coz znamena, ze body P, M, Q, N lezi na kruznici. Z rovnosti
obvodovych thlii nad tétivou NQ tak plyne |[xKMN| = [*xQMN| =
= |¥xQPN| = |xBDC|. Podobné vychazi |< LN M| = 180° — [xQNM| =
= 180° — [xQPM| = |xMPD| = |xABD)|.

6. Tvrzeni nejprve dokdzeme pro a = 0. Tehdy ma druha podminka tvar
p | m3, takze je splnéna pro kazdé prvocislo p volbou m = p. Stadi tedy
dokézat, ze mezi déliteli ¢isel n? + 3 (n € 7) je nekoneéné mnoho prvo-
¢isel. Pripustme, ze vsech takovych prvocisel je naopak kone¢né mnoho,
a oznaéme je py,Pa, .- ., pr. Cislo (3p1p2...p.)2 +3 =3(3p?p3...p2 +1)
vSak méa netrivialniho délitele 3p?p3 . .. p2+1, ktery neni délitelny zadnym
z prvocisel py,pa, ..., p,, COZ je sSpor.
Nyni tvrzeni dokdzeme pro a # 0. Z rovnosti

(9a%k*)% 4+ 3 = 3(27a*k° + 1)

(9a3k*)® — a = a(3%a%k*2 — 1) = a(27a*k% — 1)(27a*k® + 1)

plyne, Ze pro kazdé k celé je ¢islo 27a*kS + 1 spoleénym délitelem ¢isel
n? +3 am?—a, kde n = 9a%k3 a m = 9a®k*. Staci tedy dokazat, Ze pro
libovolné dané a mezi déliteli ¢isel 27a*k% + 1 (k € Z) existuje nekoneéné
mnoho rtznych prvocisel.

Predpokladejme naopak, ze takovych prvocisel je jen konecné mnoho,
a oznacme je p1,pa,...,pr. Pro k = pip2...p.+1 je vSak zfejmé, ze ¢islo
27a*k% + 1 > 1 neni délitelné zadnym z prvocisel p1,pa, ..., pr. M4 tedy
dalstho prvocinitele p ¢ {p;: 1 < i < r}. Dospéli jsme tak ke sporu, ktery
dokazuje tvrzeni tlohy.
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52. mezinarodni matematicka olympiada

Padesaty druhy roc¢nik Mezinarodni mate-
matické olympiady se uskutecnil od 12. do
24. cervence 2011 v Nizozemi. Olympiddy se
zucastnilo 564 soutézicich ze 101 zemi.

Ceské druzstvo tvofili Michael Bilij z Gym-
nazia Jaroslava Vrchlického v Klatovech, Mi-
roslav Koblizek z Gymnézia Zamberk, Dung
Anh Le z Gymnazia Tachov, Daniel Safka
z Gymnézia Jana Keplera v Praze, Stépdn
SZZTVL.SG, z Gymnazrlva Josefa JungmaITa.v Lito- \ \pia d Am
méticich a Tomds Zeman z Gymnéazia Jana ’ f
Keplera v Praze. Vedoucim ceského druzstva sterdam 2011
a zastupcem Ceské republiky v mezinarodni
jury byl dr. Martin Pandk z Prirodovédecké fakulty Masarykovy uni-
verzity v Brné, jeho zastupcem a pedagogickym vedoucim byl dr. Pavel
Calabek z Prirodovédecké fakulty Univerzity Palackého v Olomouci.

Organizace celého prubéhu olympiddy byla na velmi vysoké trovni.
Ostatné Nizozemi je znamo tim, ze se zde vse dikladné planuje. To je
déno i tim, ze zhruba tfetina tizemi této zemé lezi pod trovni more.

Olympiada zacala tradi¢né zasedanim mezinarodni jury, slozené z ve-
doucich narodnich delegaci. Jednim z tikolt jury je vybrat Sest soutéznich
tloh z problém, které navrhly jednotlivé zemé. Jury mé rovnéz na sta-
rost pripadné zmény reguli olympiady, jednani o budoucich poradatelich
a v neposledni fadé pak vedouci jednotlivych delegaci prekladaji zadani

sledujicich mezindrodnich olympidd byly schvileny tyto zemé: 2013 —
Kolumbie; 2014 — Jihoafrickd republika; 2015 — Thajsko (vzdy se jednalo
o0 jediné kandidaty). Jednédni se odehravala v arealu byvalého klastera ne-
daleko Eindhovenu. Mistni univerzita, Technickd univerzita Eindhoven,
byla jednim z organizatorti a sponzori celé akce.

Soutézici a pedagogicti vedouci prijeli do Amsterdamu v sobotu
16. cervence a byli ubytovani v hotelu Novotel, jizné od centra mésta.
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V nedéli 17. ¢ervence bylo na programu slavnostni zahajeni v kongreso-
vém centru RAI, coz je jedno z nejvétsich konferenénich zafizeni v celém
Nizozemi. Tohoto zahdjeni se zticastnili i vedouci delegaci, ktefi sem byli
prevezeni pouze na né. Béhem zahéjeni se na pddiu kratce predstavily
vsechny vypravy, doprovazené tane¢ni skupinou ISH. Soucasti byl i video-
pozdrav nizozemské ministryné vzdélavani, kultury a védy Janneke Mar-
lene van Bijsterveldtové- Vilegenthartové.

Ve dnech 18. a 19. ¢ervence probéhla vlastni soutéz, ktera jako vzdy
probihala ve dvou dnech, pricemz kazdy den soutézici méli na tii pii-
klady ¢tyri a pul hodiny. Béhem prvni pulhodiny po zaddni tloh mo-
hou soutézici klast otazky k textim uloh. Ty jsou poté elektronicky ode-
slany do mista, kde jury zaseda. Vedouci druzstva, jehoz zak polozi dotaz
(v rodném jazyce), prelozi dotaz pro celou jury, navrhne odpovéd a ta je
pak schvilena ¢i upravena a odeslana zpét. Druhy soutézni den se seSlo
189 otazek, zejména ke Ctvrté tloze, jejiz znéni nebylo v nékterych jazy-
cich zcela srozumitelné. Zodpovidani téchto dotazu zabralo pres dvé hodi-
ny. Nasledné byly vedouci delegaci definitivné presunuti do Amsterdamu,
do stejného hotelu, kde uz prebyvali pedagogicti vedouci a soutézici.

V dalsich dnech pobytu byly pro soutézici pfipraveny nejriznéjsi ex-
kurze (vylet na kolech — typicky pro Nizozemi, plavba na jachté, navstéva
plédze). Vedouci se pak vénovali opravam feSeni. Ta jsou po soutézi zko-
pirovana a nezavisle opravena téz koordinatory, coz jsou zkuSeni mate-
matici z celého svéta, které zajistuje poradajici zemé (v tomto roce bylo
pritomno téméf 80 koordindtort). Po opravich se vedouci a koordindtori
sejdou, porovnaji bodova hodnoceni a snazi se dospét ke shodé. Cely
proces koordinace trva tfi dny.

Slavnostni zakonéeni olympiddy se konalo opét v centru RAI (v ,,rdji“,
jak tikali ¢esti a slovenst{ Gcastnici). Pfeddvani medaili se z vyznamnych
osobnosti zucastnil i pfedseda organizac¢niho vyboru Robbert Dijkgraaf,
predni svétovy a holandsky matematik. I pfi zakonceni vSechno pékné
klapalo, projevy byly kratké a vystizné, nikdo se nenudil. Na zavér byla
predéana vlajka IMO poradateltim pristi olympiady. Ta se uskutecni v Mar
del Plata v Argentiné.

Co se tyce vysledku ceského druzstva, splnil nas tym nelehky kol
ziskat presné tolik bodu, kolik bylo ziicastnénych zemi. Tento ,,jedine¢ny*
vykon néas zafadil na 39. misto v hodnoceni zemi, pét mist za Slovenskem
(v porovnani s lotiskym rokem jsme si polepili o 17 bodii a 9 mist). Zadny
z ¢eskych tcastniki neodjizdél s prazdnou: Anh Dung Le ziskal stfibrnou
medaili, Stépan Simsa, Michael Bily a Tom4$ Zeman medaili bronzovou
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a kone¢né Miroslav Koblizek a Daniel Safka ¢estné uznani za bezchybné
vyreseni alespon jedné tlohy. Nutno podotknout, ze Miroslavu Koblizkovi
unikla o jediny bod bronzova medaile a Stépanu Simsovi o bod medaile
sttibrné.

Absolutni vitézkou olympiady se stala s nejvétsim moznym bodovym
ucastnici olympiad vSech dob (celkem ziskala ¢tyfi zlaté a jednu stii-
brnou medaili). Divky tvorily 11 % ucastniki, coz je na matematickou
i kdyz druhé Spojené staty americké ji slapaly na paty. Velkym prekva-
penim je pak treti misto Singapuru se slusnym naskokem pred ¢tvrtym
Ruskem.

V nésledujicim prehledu muzete najit vysledky celkova poradi ¢lenti
¢eského a slovenského druzstva. Na zlatou medaili tentokrat stacilo 28 bo-
di, na stfibrnou 22 bodu a na bronzovou 16.

Body za tlohu Body Cena

Umisténi 1 23 456

202.-221. Michael Bily 7106 40 18 B

83.-112. Anh Dungh Le 507740 23 S

282.-302. Miroslav Koblizek 700 710 15 HM
403.-420. Daniel Safka 700100 8 HM
145.-170. Stépan Simsa 700770 21 B

253.—281. Tomas Zeman 700 7 2 0 16 B

Celkem 42 1 73518 0 101

Body za ilohu Body Cena

Umisténi 1 23 456

316.-320. Marian Horndk 310720 13 HM

222.-252. Natalie Kardskova 7007 21 17 B
74.-82. Ondrej Kovac 7406 70 24 S

186.-201. Matus Stehlik 700750 19 B

253.-281. Michal Téth 7107 10 16 B

113.-144. Martin Vodicka 710770 22 S

Celkem 38 7 04124 1 111

Pro tplnost uvadime i tradi¢né sestavované neoficialni poradi zemi
podle poctu dosazenych bodi spolecné s pocty medaili, které ziskaly
(Gisla v zévorce za ndzvem zemé znaci pocet reprezentantl, pokud byl
nizsi nez Sest):
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IT IIT body

II III body

CLR

USA
Singapur
Rusko
Thajsko
Turecko
KLDR
Rumunsko
Tchaj-wan
fran
Némecko
Japonsko
Korea
Hongkong
Ukrajina
Polsko
Kanada
Velka Britanie
Italie
Brazilie
Bulharsko
Mexiko
Indie

Izrael
Australie
Madarsko
Srbsko
Nizozemi
Indonésie
Novy Zéland
Belgie
Peru
Vietnam
Francie
Slovensko
Chorvatsko
Rakousko
Kazachstan
Ceskd republika
Recko

JAR
Malajsie
Bolivie
Svycarsko
Litva
Moldavsko
Portugalsko
Spanélsko
Argentina
Dansko
Estonsko
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189
184
179
161
160
159
157
154
154
151
150
147
144
138
136
136
132
132
129
121
121
120
119
119
116
116
116
115
114
114
113
113
113
111
111
110
110
105
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Kolumbie

Makao

Filipiny (5)
Mongolsko
Svédsko

Finsko

Gruzie

Lotyssko
Tadzikistan
Norsko
Bélorusko
Maroko
Slovinsko
Turkmenistan
Uzbekistan (5)
Arménie (5)
Azerbajdzan
Kostarika (4)
Saudska Arabie
Kypr

Bangladés

Sri Lanka

Chile

Island
Lucembursko
Tunisko

Nigérie
Makedonie
Paraguay (5)
Pékistan (4)
Pobrezi slonoviny
Ekvador
Portoriko (4)
Trinidad a Tobago
Uruguay (4)
Irsko

Albénie

Kosovo
Honduras (3)
Venezuela (2)
Bosna a Hercegovina (4)
Kyrgyzstan (5)
Syrie

Cerna hora (4)
Salvador (2)
Guatemala (4)
Panama (1)
Lichtenstejnsko (1)
Kuvajt (5)

Spoj. arab. emiraty (5)
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Texty soutéznich tloh
(v zavorce je uvedena zemé, kterd tlohu navrhla)

1. Pro libovolnou mnozinu A = {ay,as,as,as} ¢tyt (navzajem ruznych)
kladnych celych ¢isel oznac¢me sa soucet aj + as + as + aq. Déle necht na
znadi pocet dvojic (i,7),kde 1 £ i < j < 4aa;+a; déli sa. Urcete vsechny
¢tyfprvkové mnoziny A kladnych celych éisel, pro které je hodnota na
nejvetsi mozna. (Meziko)

2. Je ddna mnozina S alespon dvou bodu v roviné, z nichz zadné tti nelezi
v piimce. Vétrngm miynem rozumime nasledujici proces. Zpocatku zvo-
lime néjakou primku [ prochézejici pravé jednim bodem P € S. Tou pfim-
kou za¢neme otacet ve sméru pohybu hodinovych rucicek okolo stredu P,
dokud ,nenarazi“ na dalsi bod mnoziny S — oznac¢me jej Q. Primkou
nadale otac¢ime ve stejném sméru, nyni ovsem okolo stiedu @, dokud
nenarazi na dalsi bod mnoziny S, a tak dale. Tento proces neustéle pokra-
¢uje (nekonecné dlouho). Dokazte, ze bod P € S a ptimku [ prochazejici
bodem P lze zvolit tak, ze jimi zac¢inajici vétrny mlyn bude mit za stied
otaceni kazdy z bodi mnoziny S nekonec¢nékrat. (Velkd Britanie)

3. Necht R zna¢i mnozinu redlnych cisel a necht f: R — R je funkce, jez
pro vSechna redlnd z a y splnuje nerovnost

fle+y) S yf(x)+ F(f(2)).

Dokazte, ze f(z) = 0 pro vSechna z < 0. (Bélorusko)

4. Necht n je celé kladné cislo. Méjme rovnoramenné vahy a n zavazi
o hmotnostech 2°,2%,...,2"1. V n krocich mdme na vahy postupné po
jednom umistit vsechna zavazi. Kazdy z kroku spociva ve vybéru jednoho
ze zavazi, které jesté neni na miskach vah, a jeho umisténi bud na levou,
nebo na pravou misku vah tak, aby obsah pravé misky nebyl nikdy tézsi
nez obsah levé. Kolik riznych posloupnosti takovychto n krokt existuje?

(Irdn)
5. Necht f je funkce z mnoziny celych ¢isel do mnoziny celych kladnych
Cisel takovd, ze pro libovolna celd m a n je rozdil f(m) — f(n) délitelny
¢islem f(m —n). Dokazte, ze pro libovolna celd m a n takova, ze f(m) <
< f(n), je ¢islo f(n) délitelné ¢islem f(m). (Irdn)

6. Necht ABC je ostrouhly trojihelnik a k kruznice mu opsana. Déle
nechf ¢ je tecna kruznice k a t,, tp, t. jsou po radé obrazy piimky ¢
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v osové soumeérnosti podle primek BC, CA, AB. Dokazte, ze kruznice
opsana trojuhelniku ur¢enému primkami t,, t;, t. se dotyka kruznice k.
(Japonsko)

ReSeni soutéznich tloh
1. Dvojic (4,7) splnujicich 1 < i < j < 4 je jen Sest. Bez jmy na
obecnosti predpokladejme, ze a; < as < az < ay4. Potom plati 0 <
< ay+as <az+asgataké 0 < ap +az < as + aq, takze

az + aq < sa < 2(az +a4) neboli %sA < asz+ ag < Sa

as + ag < sp < 2(az +ay4) neboli %SA < as+ag < Sa.

To znamend, ze ani ag + a4, ani as + a4 nemuze délit sa. Prinejmensim
dva ze souctli a; + a; tedy nedéli sa, proto na < 4.

Predpokladejme, ze pro néjakou mnozinu A plati na = 4. V takovém
pripadé vSechny zbylé ctyti soucty ay + as, a1 + as, a1 + a4, as + az uz
museji byt déliteli sa. Jelikoz ani jeden z nich neni roven sa, musi byt
kazdy z nich nejvyse roven %SA. Pro souéty a; + a4, as + az to znamena,
Zea, +as=ay+az= %SA, nebot (aj + aq) + (a2 + az) = sa.

Pro zbylé dva soucty pak plati a1 +ay < a1 + a3 < as +aq4 = %SA,
a protoze oba déli ¢islo sa, musi byt

s s
arta="> a a+taz=—> (1)
z )

pro vhodné prirozena ¢isla x, y, pricemz x > y = 3. Je tedy

s s s
2a1:(a1+02)+(01+a3)—(az+a3)=?A+?A—7A>0 (2)
neboli
1 1 1
z oy 2

Vidime, ze nemuze byt 1/x < 1/y < 1/4, tudiz y < 3, coz s predchozi
opacnou nerovnosti davd y = 3, a 1/ > 1/2 — 1/y = 1/6 neboli z < 5.
Je tedy 3 = y < £ 5. Témto nerovnostem vyhovuji jen dvé dvojice
pfirozenych ¢éisel: (z,y) = (4,3) a (z,y) = (5,3).

Pro z = 4 dostavame z (2) a1 = 2—143A az (1) pak as = 2%3/’«’ az =
= 2—743A a konec¢né z rovnosti a; + a4 = %sA plyne a4 = 2—743/\, je tedy
A = {k,5k, Tk, 11k} pro néjaké ptirozené ¢islo k.

Podobné pro z = 5 vyjde A = {k, 11k, 19k, 29k} pro né&jaké pfirozené
¢islo k. Snadno ovérime, ze pro kazdou takovou mnozinu opravdu na = 4.
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Odpovéd. Nejvétsi mozna hodnota na je 4 a nabyva se pro mnoziny A
tvaru {k,5k,7k,11k} a {k,11k,19k,29k}, kde k je libovolné pfirozené
¢islo.

2. Zvolime-li na dané p¥imce orientaci, mizeme mluvit o levé a pravé po-
loroviné (v obr. 41 je levé polorovina oznacena Sedou barvou). VSimnéme
si, ze kdyz se béhem vétrného mlyna meéni stfed otaceni z bodu 7' na
bod U, po zméné se bod T nachézi v téze poloroviné urcené pirimkou [,
v niz se pred zménou nachdzel bod U (obr.41). Vidime, ze kdyz pomi-
neme okamziky, v nichz se méni stied otéceni (I obsahuje pravé dva body
z S), zustava pocet bodi z S nachazejicich se v Sedé ¢asti stale stejny.

— ~ —a

Obr. 41

Déle vyuzijeme toho, ze kazdym bodem mnoziny S lze vést (orien-
tovanou) pfimku, kterd obsahuje jediny bod mnoziny S a déli jeji body
,hapul“, a to takovym zptsobem, ze vlevo od ni je stejny pocet bodi
z S jako vpravo (je-li n = |S]| liché), anebo o jeden bod méné nez vpravo
(v pripadé sudého n). Stadi si totiz uvédomit, ze pokud né&jakou orientova-
nou primku v daném bodé otoc¢ime o 180°, vymeéni se poc¢ty bodt nalevo
a napravo od dané primky. Protoze pri postupném otaceni primky se po-
¢et bodli feknéme vlevo méni vzdy o jeden, v jisté poloze tak musi nastat
popsana rovnovaha. Nazvéme kazdou takovou primku pilici. Vezméme
nyni libovolnou ptlici pfimku [ a bod P na ni. Vzhledem k tomu, ze se
béhem vétrného mlyna neméni pocéty bodl nalevo a napravo od [, bude
prislusna piimka (s vyjimkou okamziku, kdy se méni stied otéceni) stile
pulici primkou. Pfitom béhem otoceni o prvnich 180° zfejmé nemuze mi-
nout zadny z bodlt mnoziny S, a tak se postupné vsechny vysttidaji v roli
stfedu otaceni. Zaroven je ziejmé i to, ze pii otdceni o dalsi ndsobky 180°
bude piimka [ prochazet znovu vSemi body z S ve stejném poradi jako
pfi prvnim otoceni. Tim je tvrzeni tlohy dokéazano.
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3. V dané funkciondlni nerovnici se jako argumenty funkce objevuji vy-
razy x +y a x. Abychom se zbavili souc¢tu v argumentu, pouzijeme sub-
stituci y =t — x. Pro vSechna realnd ¢isla z, t pak plati

f@) s tf(2) —af(z) + f(f(2)). (1)

V dalsim kroku eliminujeme ¢len f(f(x)) tak, Ze do (1) dosadime nejdfive
t = f(a), x = b a potom t = f(b), z = a. Dostaneme

f(a)f(b) = bf(b),
f(@)f(b) —af(a).

Sectenim dostavame, ze pro vSechna a, b plati

2f(a)f(b) 2 af(a) + bf(b).

Volbou b = 2f(a) dosdhneme, ze levéd strana posledni nerovnosti bude
stejnd jako druhy sc¢itanec na pravé strané. Po jejich odecteni tak zustane
nerovnost af(a) < 0, kterd musi byt splnéna pro vSechna a € R. Proto

f(a) 20 pro vSechna a < 0. (2)

Pokud by pro néjaké x platilo f(z) > 0, byla by pro takovou hodnotu
prava strana nerovnosti (1) v proménné t rostouci linearni funkci, tedy by
nabyvala na oboru zdpornych ¢isel urcité i ziporné hodnoty. Pak by vsak
zaporné hodnoty na oboru zapornych ¢isel musela nabyt i leva strana,
¢ili funkce f, coz je ve sporu s (2). Proto

f(x) £0 pro vsechna = € R. (3)

Spojenim (2) a (3) ihned mame f(x) = 0 pro vSechna x < 0. Zbyva urcit
hodnotu f(0). Pokud v (1) polozime t = z < 0, dostaneme 0 < 0—0+ f(0)
neboli f(0) = 0. Vzhledem k (3) uz pak nutné f(0) = 0.

Pozndmka. Dana funkciondlni nerovnice ma i netrivialni reseni

0, z <0,
1—e®, 20,

fz) =

které je dokonce spojité.

4. Oznac¢me p, hledany pocet posloupnosti. VSimnéme si, ze na vahach
nikdy nenastane rovnovéha. Kazdé zdvazi je totiz (o jedna) tézSi nez
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vsechna lehci zavazi dohromady. Zavazi o hmotnosti 1 tudiz mizeme
polozit na libovolnou misku vah v libovolném kroku, pouze v prvnim
kroku je musime polozit vlevo. Navic vynechame-li v néjaké pripustné
posloupnosti kroku zdvazi o hmotnosti 1, obdrzime p¥ipustnou posloup-
nost umisténych zévazi o hmotnostech 2, 22,...,2" 1. Takovych posloup-
nosti je zfejmé p,_1, protoze vynasobeni hmotnosti dvéma nemd na
(ne)rovnovahu vliv. A naopak do libovolné z takovych posloupnosti mi-
zeme zafadit zavazi 1 pravé 2n — 1 riznymi zpusoby, nebot jen v prv-
nim kroku neméme na vybranou mezi obéma miskami, nacez ziskame
piipustnou posloupnost zavazi 1,2,...,2" 1. Dostdvame tak rekurentni
vztah p, = (2n — 1)p,_1, coz spolu se zfejmou hodnotou p; = 1 dava

n=02n-1)2n-3)-...-3-1=(2n -1

Jiné FeSeni. Ozna¢me p,, hledany pocet posloupnosti. VSimnéme si,
7e pripustnych zpiisobti umisténi zavazi 1,2,...,2" "1 je stejné jako pii-
pustnych zpuasobt umisténi libovolné sady n zavazi, z nichz kazdé ma
tu vlastnost, ze je t&éz3f nez vSechna lehéi zavazi dohromady. Rikejme
takovéto sadé nevyvdzZend. Navic vybérem libovolného poctu libovolnych
zévazi z nevyvazené sady dostavame opét nevyvazenou sadu.

Zptsoby umisténi zavazi 1,2, ...,2" ! rozdélme podle toho, kdy jsme
na vahy umistili nejtézsi zavazi (musi prijit vzdy na levou misku). Dejme
tomu, ze se tak stalo v k-tém kroku. Pred tim bylo umisténo néjakych
k —1 (z n — 1 zbyvajicich) zavazi tvoficich nevyvéazenou sadu. Ta mohla
byt umisténa pg_1 zpusoby. Po polozeni nejtézsiho zdvazi jiz mizeme
kazdé ze zbyvajicich n — k zavazi polozit na libovolnou z obou misek.
Dostavame tak rekurentni vztah

- n— n e ek
=3 (L2 et = 3 e

k=1 k=1

(klademe po = 1). Upravami pak dostavame

Ve i .
k=1 k=1
B = (n-1)-1lp k B

= 2(” - 1)pn—l +pn—1 = (2TL - 1)pn—1)

a dostavame stejny rekurentni vztah jako v predchozim feseni.
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Jiné FeSeni. Jak uz jsme poznamenali v predchozim TfeSeni, nezdvisi
pocet zminénych posloupnosti na konkrétnich hmotnostech zavazi, ale
jen na jejich ,nevyvazenosti“.

Oznaéme p,, hledany pocet posloupnosti a predpokliadejme, ze 2* je
hmotnost posledniho umisténého zdvazi (0 < k < n—1). ProtoZe mnoZina
{1,2,...,277 1} \ {2*} je zfejmé nevyvézend, existuje v tomto pifpadé
celkem p,,_; rtiznych posloupnosti, jak realizovat n — 1 krokt bez pouziti
zavazi o hmotnosti 2¥. Pro jeho umisténi v poslednim kroku pak mame

Vv,

v vvs

dodrzet podminku tlohy. Celkové tak dostavame
Pn = ('fl - 1) “2Dn_1 + P11 = (2TL - 1)pn—1-

Odpoved. Hledany pocet zptisobli je roven soucinu prvnich n lichych
Cisel (zkracené tento vyraz oznaCujeme jako v prvnim feseni (2n — 1)!!
a nazyvame dvojny faktoridl).

5. Pokud f(m) = f(n), neni co dokazovat. Predpokladejme tedy, ze pro
celd ¢isla m, n plati f(m) < f(n). Z dané podminky diky tomu plyne
fm —n) < [f(m) = f(n)] = f(n) — f(m) < f(n). Dostavime tak

—f(n) < =f(m—n) < f(m) = f(m —n) < f(m) < f(n).

Prod = f(m)— f(m—mn) tudiz plati |d| < f(n), zatimco z dané podminky
plyne
f(n) = f(m—(m—-n))|d,

coz ovsem znamend, ze d = 0 neboli f(m) = f(m—n). Z dané podminky
tak konecéné plyne, ze f(m) déli f(m)— f(n), a tedy i f(n), coz jsme méli
dokazat.

6. Oznac¢me T bod dotyku pfimky ¢ s kruznici k a vrcholy trojihelniku ur-
¢eného pfimkami t,, tp, t. oznacme nasledovné: A’ := t,Nt., B’ = t, Nt
a C' := t,Nty. Pro zjednoduseni zapisu budeme pracovat s orientovanymi
thly: pro piimky p, ¢ bude (p, ¢) znacit thel, o ktery je nutno pfimku p
oto¢it v kladném smyslu, abychom dostali pfimku rovnobéznou s piim-
kou ¢. Orientované thly pocitdme modulo 180°.

Ozna¢me po fadé X, Y, Z body soumérné sdruzené s bodem 7" podle
primek BC, C A, AB. Protoze kolmé priméty bodu 7" na tyto tfi primky
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lezi na Simsonové primce daného trojuhelniku ABC), lezi v primce i body
X, Y, Z coby jejich obrazy ve stejnolehlosti se stfedem 7'. Oznacme
p = (t,TC) = (BT, BC), pak vzhledem k osové soumérnosti dle primek
AC a BC plati

(BC,BX) = (BT, BC) = ¢,
(XC,XC"Y = {t,TC) =(YC,YC') = ¢.
Z posledni rovnosti ovSem plyne, ze body X, Y, C, C’ lezi na kruznici,
kterou oznacime k.. Podobné zavedeme i kruznice k, a kj. Kruznici opsa-

nou trojuhelniku A’B’C’ oznacime k' (obr.42). Podle zndmé Miquelovy
véty,! kterou pouzijeme na piimky A’B’, A’C’, B'C’ a XY, nyn{ plati, Ze

Obr. 42

vSechny ¢tyti kruznice k', kg, ky, k. maji spoleény bod, ktery ozna¢ime K.
Jakmile se ndm podari dokazat, ze bod K lezi i na kruznici k a ze obé
kruznice k a k' v ném maji spole¢nou tecnu, bude tvrzeni tilohy dokézéano.

Ze soumérnosti plyne | X B| = |TB| = |ZB|, takze bod B je stfedem
jednoho z oblouku X Z kruznice ks, je tedy (KB,KX) = (XZ, XB).

1 Viz napf. Vrba, Horak: Vybrané tlohy matematické olympiady kategorie A, SPN,
Praha 1988, feseni tlohy 96.
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Podobné plati (KX, KC) = (XC, XY). Se¢tenim obou téchto rovnosti
a ze soumeérnosti podle primky BC' dostavame

(KB,KC) = (KB,KX) + (KX,KC) = (XZ,XB) + (XC,XY) =
=(XC,XB) = (TB,TC).

To znamena, ze bod K lezi na kruznici k.
Ozna¢me nyni s tecnu kruznice k v bodé K. Pak plati

(3¢, KC") = (3, KC) + (KC,KC') = (KB, BC) + (XC, XC") =
= ((KB,BX) - (BC,BX))+¢=(KB',B'X)-—p+¢=
= (KB',B'C').

To znamen4, Ze s je te¢nou i kruznice k’.

Jiné Feseni. Ozna¢me body T', A’, B’, C' jako v predchozim FeSeni.
Zéaroven vyuzijeme i tam zavedené znaceni orientovanych thli. Necht A”
je takovy bod na kruznici k, ze A je stfedem oblouku T'A” (tj. |TA| =
= |AA”], bod A" je rizny od T, pokud T'A neni primérem). Podobné
definujme i body B”, C” (obr. 43).

Obr. 43
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Protoze body B, resp. C jsou stiedy oblouku T'B”, resp. TC", plati:

<t,B/lc//> <t,TC”> + <TclI’BIlcll>
2(t,TC) + 2(TC" ,BC") =

2((t,TC) + (TC, BC)) = 2{t, BC) = (t, ,).

Piimky t, a B”C” jsou tudiz rovnobézné. Podobné jsou rovnobézné i t,,
a A”C" ataké t.a A”B".

Trojuhelniky A’B’C" a A”B”C” tak budou stejnolehlé, ukazeme-li,
7e piimky B’'B” a C'C"” nejsou rovnobézné. Zjistime dokonce, ze jejich
prusecik — stred zminéné stejnolehlosti — lezi na kruznici k, jez je opsana
nejen trojihelniku ABC, ale i trojihelniku A”B”C”. Timto stfedem
proto bude prochézet i stejnolehld kruznice opsand trojuhelniku A’B’C’,
takze obé kruznice se v ném budou dotykat, jak jsme méli dokazat.

Existenci a polohu pruseciku piimek B’B" a C'C" vyvodime ze dvou
pomocnych tvrzeni.
> 1. Prisecik X primek B”"C, BC" lezi na primce t,.

Bod B je stfedem oblouku 7'B”, tedy |<BCT| = |« BCB"| a pifimka
B"C je obrazem piimky T'C v osové soumérnosti podle BC. Podobné
je piimka BC" obrazem piimky BT. Bod X je tudiz obrazem bodu T'
v této soumérnosti, takze lezi na t,.
o> 2. Prasecik I primek BB', CC' leZi na kruznici k.

Uvazme pouze pripady, kdy t je rtiznobézné se vSemi stranami troj-
uhelniku ABC. Zbylé moznosti 1ze vytesit limitnim prechodem. Oznac¢me
D=tNBC,E=tNCA, F=tNAB (obr.43).

Vzhledem k soumérnosti je primka BD osou jednoho z 1hli uréeného
prfimkami B’D a FD. Obdobné je piimka BF osou jednoho z ihl urce-
ného piimkami B’F a DF. Bod B je tak stfedem kruZnice trojihelniku
B’F D vepsané nebo stfedem nékteré z kruznic mu pfipsanych. V kazdém
ptipadé je (BD,DF) + (DF, FB) + (B'B, B'D) = 90°, takze plati

(B'B,B'C') = (B'B, B'D) = 90° — (BC, DF) — (DF, BA) =
=90° — (BC, AB).

Obdobné je (C'C, B'C") = 90° — (BC, AC). Plati tedy

(BI,CI) = (B'B, B'C") + (B'C",C'C) = (BC, AC) — (BC, AB) =
= (AB, AC),
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coz v Teci orientovanych hli znamena, ze body A, B, I, C' lezi na kruz-
nici.

Oznaéme K druhy prisecik piimky B’B’ s kruznici k. Dikaz do-
kon¢ime pouzitim Pascalovy véty pro Sestici bodia K, B”, C, I, B, C”
na kruznici k. Podle ni lezi body B’ = KB" N IB, X = B"C n BC"
a S = CINC"”K na jedné primce. Proto S = C’, tudiz body K, C" a C’
lezi v pfimce. Bod K kruznice k je tak prusec¢ikem piimek B’B" a C'C”,
jak jsme pro dokonceni celého Teseni slibili ukazat.
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5. stfredoevropska matematicka olympiada

Pata stredoevropskd matematicka olym-

pidda (Midle European Mathematical

Olympiad, zkracené MEMO) se uskutec- PEAN ATHEMATCAL ;
nila 1.9.-7.9. 2011 v chorvatském Varaz- VARAZDIN 20717 CROATIA
dinu za tucasti Sedesati studenti z deseti zemi stredoevropského regionu,
jmenovité z Ceska, Chorvatska, Litvy, Madarska, Némecka, Polska, Ra-
kouska, Slovenska, Slovinska a Svycarska. Soutéz je uréena studentiim
stfednich skol, kteri se v daném kalendainim roce netcastnili mezinarodni
matematické olympiddy (MMO). Vyjimku tvoii slovinsti ic¢astnici, kteri
vzhledem k relativné malému poctu obyvatel zemé nejsou kviili pripadné
ucasti na MMO vylucovani.

Ceské druzstvo tvorili Ondrej Bartos z Gymnazia Zdar nad Sazavou,
Lubomir Grund z Gymnazia Christiana Dopplera v Praze, Jan Kucharik
z Gymnazia Jana Masaryka v Jihlavé, Dominik Steinhauser z Gymnazia
Jana Keplera v Praze, Jan Stopka z Gymnéazia Brno na tt. Kpt. Jarose
a Dominik Teiml z The English College v Praze. Vedoucim druzstva
byl dr. Martin Panak z Ptirodovédecké fakulty Masarykovy univerzity
v Brné, jeho zastupcem pak dr. Pavel Caldabek z Prirodovédecké fakulty
Palackého univerzity v Olomouci.

Meésto Varazdin je staré chorvatské mésto, které byvalo dokonce hlav-
nim meéstem Chorvatska. Jeho populace dnes ¢ita na 50 tisic obyvatel.
Prvni den olympiady méli soutézici na programu zabavnou seznamovaci
hru spojenou s poznavanim pamatek mésta, zatimco vedouci vyprav vy-
birali priklady pro soutéz z navrhi zaslanych jednotlivymi tcastnickymi
zemeémi. Vecer pak probéhlo v prostorach Fakulty informatiky, varazdin-
ské casti Univerzity Zahreb, slavnostni zahdjeni soutéze.

Druhy den byla na poradu soutéz jednotlivet v prostorach jedné z va-
razdinskych zakladnich skol. Kazdy z acastniku resil po dobu péti hodin
¢tyti priklady. Tretiho dne se uskutecnila tymova soutéz, ve které mélo
kazdé narodni druzstvo k dispozici jednu mistnost, kde pak spole¢né fe-
silo po dobu péti hodin osm tloh. Jiz v sobotu vecer zapocala koordinace
oprav tuloh (tlohy jsou opravovany vedoucimi narodnich tymi a nezavisle
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i tymem opravovatell zajisténym organizatory; pri koordinaci se vysledky
oprav porovnaji a piipadné neshody se vytesi) a pokracovala i béhem ne-
déle. V pondéli dopoledne se jury domluvila na rozdéleni medaili, které
se Iidi podobnymi pravidly jako na mezinarodni matematické olympidde.
V ttery byl program olympiady zakoncen exkurzi na znamy chorvatsky
hrad Trakoscan a navstévou méstecka Krapina, kde se nachézeji zbytky
osidleni neandertalskym c¢lovékem. Vecerniho slavnostniho zakoncéeni se
zucastnila fada vyznamnych hostli, z nichz jmenujme naméstkyni chor-
vatského ministra skolstvi Dijanu Vicanovou a rektora Univerzity Zahteb
Aleksu Bjelise.

Vysledky c¢eského druzstva byly nédsledujici: Ondrej Bartos a Dominik
Steinhauser ziskali bronzové medaile, Lubomir Grund a Jan Stopka pak
ziskali Cestné uznani za jeden bezchybné vyteseny piiklad. V tymovém
souc¢tu bodi, které ziskali jednotlivi ucastnici daného tymu v individualni
soutézi, jsme byli pati nejlepsi. Vlastni tymova soutéz se vsak ceskému
druzstvu prilis nevyvedla, kdyz skoncilo osmé. Z vitézstvi se radoval pol-
sky tym, ktery jako jediny ziskal maximalni mozny pocet bodi. Plného
bodového zisku dosahl i vitéz soutéze jednotlivei, Wojciech Nadara, rov-
néz z Polska.

Body za ilohu Body Cena

Umisténi v soutézi jednotlivci 1 2 3 4

1. Wojciech Nadara (POL) 8§ 8 8 8 32 zlato
2. Attila Szab6 (HUN) 8 8 7 8 31 zlato
27.-30. Ondrej Bartos 3 3 0 8 14 bronz
Dominik Steinhauser 6 6 2 0 14 bronz

32.-33. Jan Kucharik 5 0 7 0 12
38.-40. Jan Stopka 1 0 8 0 9 H.M.
41.-43. Dominik Grund &8 0 0 O 8 H.M.

44.-46. Dominik Teiml 3 0 2 2 7

Celkem CR 26 9 19 10 64

Detailni vysledky c¢eskych studentt véetné bodovych ziskl za jednot-
livé tlohy lze vycist z predchozi tabulky, prehled vysledki vSech zemi
v soutézi jednotliveu je v druhé tabulce. Zemé jsou v ni sefazeny podle
sou¢tu bodu celého druzstva podobné jako pri neoficidlnim poradi zemi
na MMO. Vysledky narodnich druzstev v tymové soutézi pak najdete
v tabulce nésledujici.
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I II IITHM body I II IIIHM body
Polsko 3 2 1 - 150  Slovensko - - 2 2 61
Madarsko 2 3 1 - 147 Rakousko - - 2 - 55
Neémecko 1 3 1 1 125  Litva = = 1 = 50
Chorvatsko - 2 2 - 95  Slovinsko - - 11 41
Ceskd republika - - 2 2 64  Svycarsko - - 1 - 31

Body za ulohu Body

Umisténi v tymové soutézi 1 2 3 4 5 7 8

1. Polsko 8§ 8 8 8 8 8 8 8 64

2. Madarsko 8 0 8 3 8 8 88 51

3. Némecko 8 0 8 0 8 8 8 8 48

4. Chorvatsko 2 8803880 37

5. Slovensko 1 08 086 80 31

6. Litva 6 08 080820 30

7. Slovinsko 208043380 25

8. Ceskd republika 21400583 23

9. Rakousko 106 05 280 22

10. Svycarsko 206 00080 16

Texty soutéznich tiloh
(v zévorce je uvedena zemé, kterd tilohu navrhla)
Soutéz jednotlivcu

1. Na tabuli je napsano cislo 44. Celé ¢islo a napsané na tabuli miuzeme
nahradit ¢tyfmi rtiznymi celymi ¢isly ay, as, as, ay, jejichz aritmeticky
prameér %(al + as + a3 + aq) je roven ¢islu a. V jednom kroku soucasné
nahradime vsechna ¢isla na tabuli vyse popsanym zptusobem. Po 30 kro-

cich dostaneme na tabuli n = 430 celych éisel by, bo, ..., b,. Dokazte, ze

2 2 b2
b2 +b2+...+ b2 > 92011,
n

(Chorvatsko)

2. Je dano prirozené ¢islo n 2 3. Jeni¢ek a Mafenka hraji nasledujici hru:
Nejdrive Jenicek ocisluje strany pravidelného n-tihelniku ¢isly od 1 do n
(v libovolném poradi; kazdé ¢islo pouzije pravé jednou). Potom Marenka
zvoli n — 3 neprotinajicich se ihlopricek rozdélujicich dany n-tihelnik na
trojuhelniky. VSechny zvolené thlopficky pak oznaci ¢islem 1 a dovnitf
kazdého z trojuhelnikl napise soucin ¢isel na jeho stranach. Soucet téchto
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n — 2 soucini oznac¢me S. Jaka bude hodnota souctu S, jestlize snahou
Jenicka je, aby byl soucet co nejvétsi, a Marenka se snazi, aby soucet byl
co nejmensi, pricemz oba délaji nejlepsi mozné volby? (Chorvatsko)

3. V roviné jsou dany kruznice k; a ko o stfedech I a Io, jez se protinaji
ve dvou bodech A a B. Predpokladejme, ze tihel I; Al je tupy. Te¢na
ke k1 v bodé A protind ke jesté v bodé C a tecéna ke ko v bodé A
protind k; jesté v bodé D. Ozna¢me ks kruznici opsanou trojihelniku
BCD. Ozna¢me FE stied toho oblouku C'D kruznice k3, ktery obsahuje
bod B. Primky AC a AD protinaji k3 po fadé jesté v bodech K a L.
Dokazte, ze piimky AE a KL jsou na sebe kolmé. (Slovinsko)

4. Necht k am (k > m) jsou kladn4 cel4 ¢isla takova, ze ¢islo km(k? —m?)
je délitelné ¢islem k3 — m3. Dokaite, ze (k —m)3 > 3km. (Polsko)

Soutéz druzstev

5. Najdéte vsechny funkce f: R — R takové, ze rovnost

Vf(@)+2°f(y) +ay = ayf(z +y) +2° +y°

plati pro vsechna z,y € R, kde R znac¢i mnozinu vsech realnych cisel.

(Chorvatsko)
6. Nechf kladna realna cisla a, b, ¢ vyhovuji vztahu
a N b n c 9
l4a 1+b 14c
Dokazte, ze pak
b c 1 1 1
\/6+—\/—+\/— z —_—t — 4+ —.
2 va Vb
(Chorvatsko)

7. Pro prirozené ¢islo n 2 3 oznaéme M mnozinu
{(z,9):z,y€Z, 1Sz =n, 1Sy=<n}

bodt roviny (7 zna¢i mnozinu vSech celych ¢isel). Urcete nejvétsi mozny

pocet prvku podmnoziny S C M, ve které zadné ti body netvori vrcholy

pravothlého trojihelniku. (Madarsko)
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8. Necht n = 3 je pfirozené ¢islo. Na soutéz podobnou MEMO prijelo
3n ucastnikn, kteri hovori n riaznymi jazyky, kazdy ucastnik mluvi prave
tfemi riuznymi jazyky. Dokazte, Ze z nich lze vybrat aspon (%n] jazyku
tak, ze zadny ucastnik nehovori vice nez dvéma z nich. (Zapis [z] ozna-
¢uje nejmensi celé ¢islo, které je vétsi nebo rovno z.) (Chorvatsko)

9. Konvexni pétithelnik ABCDE mé shodné strany. Uhlopiicky AD
a EC se protinaji v bodé S, pricemz |« ASE| = 60°. Dokazte, Ze péti-
thelnik ABCDE ma dvé rovnobézné strany. (Slovensko)

10. Je déan ostrouhly trojuhelnik ABC'. Oznacme po tadé By a Cy paty
vysek z vrcholi B a C. Necht pro vnitini bod X trojuhelniku ABC' je
primka BX te¢nou kruznice opsané trojuhelniku AX Cy a primka C X tec-
nou kruznice opsané trojiuhelniku AX By. Dokazte, ze piimky AX a BC
jsou na sebe kolmé. (Ceskd republika)

11. Necht pro neprazdné navzdjem disjunktni mnoziny A a B plati
AUB = {1,2,3,...,10}. Ukazte, ze existuji ¢isla a € A a b € B tak,
ze ¢islo a® + ab® + b je délitelné 11. (Polsko)

12. Kladné celé cislo n nazveme uzasnym, jestlize existuji kladna cela
¢isla a, b, ¢, pro ktera

n = (b, c)(a,bc) + (¢,a)(b, ca) + (a,b)(c, ab).

Dokazte, ze existuje 2011 po sobé jdoucich tzasnych ¢isel. (Zépis (m,n)
znadi nejvétsi spolecény délitel prirozenych ¢isel m a n.) (Litva)

Reseni tiloh

1. Nahrazenim jednoho z c¢isel na tabuli ¢tverici popsanou v zadani se
zveétsi aritmeticky primeér druhych mocnin ¢isel na tabuli. Dokédzeme, ze
toto zvétseni je dostatecné velké. Zacneme pomocnym tvrzenim.

LEMMA. Pokud ai, as, as, a4 jsou Ctyfi navzajem ruzna celd cisla
takova, ze jejich aritmeticky prumér a = %(al +as + as + aq) je také celé
¢islo, tak plati

a% + a% + a% + a?l

2>
—a® 2
1 =

N | Ot
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DUKAz. Leva strana dokazované nerovnosti se d4 piepsat takto:

2
af +aj+aj+ai

4
a2 +a3+ a3+ al—2a(a + az + az + as) + 4a®
= 1 -
(a1 — a)? + (a2 — @) + (a3 — a)? + (ag — a)?
- 0 .

Cisla a; — a, as — a, a3 — a, as — a jsou navzajem ruzna celd cisla se
souctem 0. Pokud zadné z nich neni nulové, bude soucet jejich ¢tverci
alespont 12 +(—1)2+22+4(—2)2 = 10. Pokud jedno z nich je nula, musf jiné
z nich mit absolutni hodnotu nejméné 3; v tomto pripadé bude soucet
¢tverctt alespont 32 + 12 + (—1)2 = 11. V obou piipadech je platnost
lemmatu evidentni.

Vratme se k dokazovanému tvrzeni. Ozna¢me Sy aritmeticky prumeér
druhych mocnin ¢isel na tabuli po provedeni k kroki. Pouzijeme-li do-
kdzané lemma na Gtvefice ¢isel vzniklé nahrazenim kazdého ze 4F éisel,
kterd jsou na tabuli po k£ krocich, dostaneme, ze Ski1 — Sk = 5/2 pro
kazdé k = 0. Proto

5
S30§SO+30-§=442+75:2011.

2. Ukézeme, ze S = 1(n® + 3n — 6) pro vSechna n = 3. Pron = 3 je to
zjevné pravda, dale budeme uvazovat n > 3.

Podivejme se na situaci nejprve z pohledu Marenky. V kazdé prove-
dené triangluaci bude presné n — 2 trojuhelniki. Kazdy z nich bude mit
nejvyse dveé strany na obvodu ptivodniho mnohotihelniku a trojihelniky
obsahujici dvé strany ptivodnitho mnohotihelniku museji byt alespon dva.
Ukazeme, ze pro Marenku je nejlepsi zvolit triangulaci, ve které jsou
zminované trojuhelniky pravé dva.

Nazvéme trojuhelnik spatng, jestlize vsechny jeho strany jsou diago-
nalami ptuvodniho trojihelniku. Ukédzeme, ze Matenka musi zvolit tri-
angulaci bez $patnych trojihelnikti. Predpokladejme, ze tomu tak neni,
tj. ze pro Marenku existuje optimélni triangulace, kterda obsahuje Spatny
trojihelnik (takové triangulace budeme nazyvat spatné). Pro kazdou $pat-
nou triangulaci T ozna¢me d(7T") délku nejkratsi mozné strany Spatného
trojuhelniku v 7T'. Ze vSech Spatnych vicestrannych operaci s nejmensim
moznym poctem Spatnych trojuhelniki vezméme triangulaci Tp, pro kte-
rou je hodnota d(7") minimalni.
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Necht ABC' je Spatny trojihelnik v Ty takovy, ze |AB| = d(Tp).
V Ty mame také trojuhelnik ABD pro D # C. Strana AB je v troj-
thelniku ABC' nejkratsi, tj. ithel ACB je jeho nejmensi, a tedy ostry.
Body A, C, B, D lezi na kruznici v tomto poradi, proto tthel ADB je
tupy, a tedy AD i BD jsou kratsi nez AB. Zménme triangulaci Ty na T3
tak, ze trojuhelniky ABC a ABD nahradime trojtihelniky ACD a BCD
(obr.44). Ohodnoceni usecek AD a BD necht jsou a a b. Zménu hod-
noty S umime vyjadrit jako

S(Ty)—S(Ty) =a+b—ab—1=—(a—1)(b—1) £ 0.

Triangulace Ty vSak byla optimalni, proto i 77 musi byt optimalni. Pritom
pocet Spatnych trojuhelnikii v T byl nejmensi mozny, a tedy alespon
jedna z usecek AD a BD je diagonalou. Jelikoz jsou obé tyto usecky
kratsi nez AB, dostavame spor s volbou Tj.

Obr. 44

V triangulaci bez Spatnych trojihelniki jsou pravé dva trojihel-
niky obsahujici dvé sousedni strany ptivodniho mnohothelniku; vSechny
ostatni trojuhelniky obsahuji presné jednu stranu puvodniho mnohothel-
niku. Vzhledem k nerovnosti ab > a + b, platnou pro kazdou dvojici pri-
rozenych cisel a, b vétsich nez 1, se Marenka uz snadno rozhodne, které
dva trojihelniky budou obsahovat dvé strany ptivodniho mnohotihelni-
ku: jeden z nich bude obsahovat stranu ohodnocenou 1 a sousedni stranu
ruznou od 2, druhy zase naopak stranu ohodnocenou 2 a sousedni stranu
raznou od 1. Timto zptisobem Marenka dovede zarucit, ze hodnota S ni-
kdy nebude vétsinez 3+4+...+(n—2)+1-(n—1)+2n = 1(n®+3n—6).

Na druhé strané miuze Jenicek donutit Marenku k volbé alespon ta-
kové hodnoty S tim, ze ve svém tahu oznaci strany mnohouhelniku po-
stupné ¢isly

I,n—-1,4,n-3,5,n—4, ..., n—2, 3, n, 2.
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3. Piimka AD je tecnou kruznice ko, proto usekovy tthel DAB ma stej-
nou velikost jako thel BC'A. Podobné |<CAB| = |<BDA]|. Proto

|«xDBC| = 360° — |[xDBA| — |<xCBA| = 1)
=2|xDAB| +2|xCAB| = 2|xDAC|.

Body D, L, E, B, C, K lezi na kruznici k3. Abychom se vyhnuli diskusi
vice pripadiu mozného poradi [ téchto bodu na kruznici, budeme pouzivat
orientované thly. Symbolem XY oznacime velikost thlu X ZY takového,
ze bod Z lezi na kruznici k3 a body X, Z, Y jsou podél kruznice k3
usporadany proti sméru otaceni hodinovych rucicek. Jelikoz bod E je
stredem oblouku C'D, plati

— 1= 1 — 1
|*AKE|=EC = §DC = 5(180O —CD) = 5(180O — |«DBC)) =
=90° — |[xDAC|.
Proto primka KFE je kolmd na AD (obr.45). Podobné piimka LE je

kolma na AC, bod E je tudiz prusecikem vysSek trojuhelniku K LA,
a primka AFE je tedy kolma na primku KL, coz bylo tfeba dokazat.

Obr. 45
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Jiné FeSeni. Uhel BC A je shodny nejen s tihlem BAD, ale také s tihlem
KDB (diky tétivovému ¢étyfiahelniku DKCB). Z rovnosti |XKDB| =
= |xBAD]| ovsem plyne, ze KD je tecnou kruznice k; stejné jako KA.
Trojtihelnik ADK je tedy rovnoramenny, pricemz K F je jeho osou, nebof
puli jeho vnitini ihel AK D, kdyz bod F piili oblouk C'D, coz dohromady
znamend, ze bod E lezi na osich obou tsecek AD a CD. Jinymi slovy
bod E je stfedem kruznice opsané trojihelniku ADC, takze bod E lezi
i na ose strany AC'. Podobné zjistime, ze primka LC' je tecnou kruznice ko
neboli ze bod L lezi na ose strany AC. To dohromady znamen4, ze ptimky
LE a KF jsou vyskami v trojihelniku ALK, a tudiz jei AE L KL, coz
jsme chtéli dokazat.

4. Oznacme d nejvétsiho spolecného délitele ¢isel k a m. Pro vhodna cela
¢isla a a b plati k£ = da, m = db, pricemz a a b jsou nesoudélnd a a > b.
Cislo
km(k* —m?)  d'ab(a® —b*)  dab(a+b)
k3—m3  d3ad—b3)  a2+ab+b?

je podle piedpokladu ze zadani celé, proto a? + ab + b? | dab(a + b).
Z nesoudélnosti éisel a, b vyplyva, ze a? + ab + b? je nesoudélné s a, b
i a + b; prvni dvé nesoudélnosti jsou evidentni, tfeti dostaneme pomoci
Eukleidova algoritmu:

(a+b,a%+ab+b%) = (a+ b,ala+b) + b?) = (a + b,b?) = 1.

Plat{ tedy a® + ab+b? | d, tudiz d = a® + ab+ b*> = (a — b)? + 3ab > 3ab.
Odtud
(k—m)3 =d*(a—b)>2>d® > d?- 3ab = 3km.
5. Po dosazeni y = 0 dostaneme z2f(0) = 22 pro kazdé realné ¢islo z,
proto f(0) = 1.
Zavedme novou funkci g: R — R takovou, ze g(x) = f(x) — 1, a pre-
piSme danou rovnici s g namisto f:

y2g(z) + 2°gly) = zy g(z +v), (1)

pfi¢emz uz vime, ze g(0) = 0.

Kazdé funkce tvaru g(z) = czx je pro libovolnou redlnou konstantu c
feSenim rovnice (1). Ozna¢me h(z) = g(z) — g(1)x. Ukédzeme, ze h(z) = 0
pro kazdé realné cislo x.

Funkce h splnuje pro kazdou dvojici realnych cisel x, y rovnost

y*h(z) + 2*h(y) = sy h(z + y); (2)
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navic vime, ze h(0) = h(1) = 0. Po dosazeni z = y = 1 do (2) dostaneme
h(2) =0, po dosazeni x = —1, y = 1 vyjde h(—1) = 0.

Pripustme, ze existuje realné ¢islo a takové, ze h(a) # 0 (zjevné a # 0).
Dosazenim x = 1, y = a+1 do (2) dostaneme h(a+1) = (a + 1)h(a + 2)
a dosazenim x = 2, y = a do (2) dostaneme 2h(a) = ah(a + 2). Z téchto
dvou riznych vyjadieni hodnoty h(a + 2) vychazi

h(a+1)  2h(a)

a+1 a (3)

Pritom z dosazeni z = 1, y = a do (2) vyplyva, ze h(a) = ah(a + 1), coz
spolu se vztahem (3) dévé a = —3. Dosazeni = y = —3 do (2) ndm
viak diky h(—1) = 0 prozradi, Zze h(—3) = 0, a to odporuje volbé ¢&isla a.

Jedinymi feSenimi jsou tedy funkce f(z) = cx+1 pro libovolné realné
¢islo ¢, coz snadno ovérime zkouskou.

Jiné FeSeni. Stejné jako v prvnim feseni zavedeme funkci g a do-

kézeme, ze g(0) = 0. Navic dosazenim y = —z do (1) zjistime, Ze
g(—z) = —g(x). Po dosazeni y =1 a y = —1 do rovnice (1) dostaneme

g(x) + 2%g(1) = 2z g(x + 1), (4)

g(a) +a’g(~1) = ~zg(z - 1). (5)

PrepiSeme-li vztah (5) s £+ 1 namisto x, dostaneme spolu se vztahem (4)
soustavu dvou rovnic s nezndmymi g(z + 1), g(z). Ze soustavy vyjad-
fime g(x):

g@) (@ +x+1)=g(Dz(2®>+z+1).

Protoze ¢islo 22 +x + 1 je vzdy kladné, jedinou moznosti je g(z) = g(1)x,
a tedy f(x) = cx+ 1. Zkouskou ovéfime, ze takova funkce f dané rovnici
vyhovuje pro kazdé redlné ¢islo c.

6. Zavedme substituci a = 2z, b = 2y, ¢ = 2z. Chceme dokazat nerovnost

1 1 1
G o &~ = o ey

pricemz plati rovnost

. 1 N 1
1422 142 1422

L, (1)
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ktera vyplyva z dané podminky po trojnasobném vyuziti rovnosti

2t 1

1+2t 142t
Dokazovand nerovnost je symetrickd, proto muzeme predpokladat, ze
x 2y 2 z. Snadno nahlédneme, ze pak

z—1 > y—1 > z—1

2 2 2
2041~ 2y+1 7~ 22+1 2)

a také
2+ 1 2y—|—1>22+1

VIOV T VR
Nerovnosti (2) jsou ekvivalentni nerovnostem = = y 2 z, prvni z nerov-

nosti (3) pak snadno pfevedeme na nerovnost (/z —/y)(2\/zy —1) 2 0.
A kdyby bylo 2,/zy < 1 neboli 4xy < 1, dostali bychom

\Y

(3)

1, 1 242+
1+2r 142 1+4zy+2z+2y

coz odporuje predpokladu (1). Stejné dokdzeme i druhou nerovnost z (3).
Diky vztahiim (2) a (3) mzeme pouzit CebySevovu nerovnost:*

1 2x+1 2r+1
Z \F szﬂ N3 —322 +1Z N

cykl.
2$ +’1 1 ZE: 2$ +‘1 —'3
S
3 cykl. cykl. 2z +1
Jiné FeSeni (trigonometrické). Po substituci ¢ = 1/(a + 1), y =

=1/(b+1),z2=1/(c+1) je

a b c
1+a A Y 1xe B

takze plati ¢ +y + 2 = 1 a puvodni proménné mizeme vyjadrit jako
a=(y+z2)/z,b=(x+2)/y, c=(x+y)/z. Chceme dokdzat nerovnost

\/:c—i—y \/y+z \/ \/ 2y +\/ 2z

22 V y+z 2+ y+a

1 Zkracenym zapisem Y, V(z) rozumime ,cyklicky“ soucet V(z) + V(y) + V().
cykl.
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Tato nerovnost plati pro vSechny trojice kladnych redlnych ¢isel z, y, 2
Dokazeme to tak, ze nejprve obé strany nerovnosti vynasobime soucinem
tii (kladnych) séitanci z jeji levé strany; dostaneme tak ekvivalentni
cyklickou nerovnost

Zw+y /y+z z+x Z +z z+a: (1)

cykl. cykl.

Provedme substituci p = x +y, ¢ = y+ 2,7 = 2+ z. Cisla p, q, 7
jsou pak délkami stran trojihelniku a muzeme psat p = 2Rsina, ¢ =
= 2Rsin 5,7 = 2Rsin~y, kde R je polomér opsané kruznice a a+ 3+~ = n.
Tti analogické zlomky z posledni nerovnosti pak maji vyjadreni, ktera
odvodime pouze pro prvni z nich:

T4y D sin o
2z qg+r—p sinf+siny—sina
s 1 1
2sm2acosza B
QCosQacos (B—7)—2sin 5 acoséa
1
sin 5 sm§a

~ cosi(B—7) —cosi (ﬁ+’y):2sin%6sin%fy’

kde jsme prfi posledni upravé vyuzili vzorec pro rozdil dvou kosinti. Diky
témto tfem vyjadirenim plati pro odmocniny ze soucinu vzdy dvou z dané
trojice zlomku vzorce, které odvodime pouze pro jednu z nich:

/y+z z—{-x \/ sin%ﬂ sin%’y 1
1 1. 1 N 1"
2sinzasingy 2sinjasingf  2sinza

Po dosazeni do (1) vidime, Ze je nasim tkolem dokézat nerovnost

am, 4singfsingy = £ 2sin o

2

kterd po vynasobeni vyrazem 4sin Lo sin  3sin 1~ ziskdva tvar
2 2 2

31n%+31n§+sm% >2(Sin%sin§+sin§sing+sin%sin%)

neboli
sin & -+ sing +sin% >

2 2
2
> (sin% +sin§ +sing> — (sm2 5 + sin? g + sin? g)
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Jelikoz diky Cauchyové nerovnosti plati

o
2

1 2
sin? +sin2§+sin2% > §<sing—+—siné +sin1> ,

2 2 2

sta¢i misto nerovnosti, kterou mame dokazat, ovérit silnéjsi nerovnost
Lo By 2 oa B 7\
sin — +sin — +sin = = = - (Sln— + sin — —l—sm—) .
2 2 2~ 3 2 2 2

Tu po vydéleni levou stranou jesté zjednodusime na

| W

sin%+sin§+sin%§

Posledni uz plyne z Jensenovy nerovnosti pro funkci sinus, jez je na in-
tervalu (0, ) konkdvni:

6%
sin—+sin—5—+sinzé3sin =3sin- =

a+ B+ n_3
2 2 2 = 6 6 2

7. Mnozina

S=({1}x{2,....n ) U({2,...,n} x {1})

ma 2n — 2 prvki a zadné tii jeji body netvori vrcholy pravouhlého troj-
uhelniku. Ukézeme, ze kazdd vyhovujici mnozina S mé nejvyse 2n — 2
prvki.

Vezméme vyhovujici mnozinu S. Oznac¢me S; mnozinu téch bodt
(z,y) z S, které maji unikatni prvni soutadnici, tj. v S neni zddny bod
(z,y) pro ¥’ # y. Podobné ozna¢me S; mnozinu bodl z S s unikétni
druhou soutradnici.

Nejprve sporem dokazeme, ze S = S; USy. Kdyby totiz néjaky bod P
patril do S, ale nepatfil by ani do jedné z mnozin S; nebo Sy, nasli bychom
k nému bod P, se stejnou prvni souradnici i bod P, se stejnou druhou
souradnici. Takové tii body P, P, P, vSak tvoii pravouihly trojahelnik
s pravym uhlem pfi vrcholu P.

Pokud |S;] = n, je S = Sy, potom vSak mnozina S mé n prvku, a to je
pro kazdé n = 3 méné nez 2n—2. Podobné se vyporadame s mnozinami S,
pro néz |Sq| = n. V kazdém jiném piipadé vsak |S1| S n—1a|Ss| S n—1,
mnozina S m4 tedy nejvyse 2n — 2 prvki.
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8. Jazyky budeme volit nahodné a ukdzeme, ze pravdépodobnost priznivé
volby je kladna. Z toho ovsem plyne, Ze existuje pozadovana volba jazykd.

Necht p € [0, 1]. Kazdy jazyk bude zvolen s pravdépodobnosti p; volby
pro jednotlivé jazyky jsou nezéavislé. (Formélné: elementérni udalosti je
n-tice w = (a1, as,...,a,), kde a; = 1, pokud i-ty jazyk byl zvolen,
jinak a; = 0; je-li k£ pocet jednotek v elementarni udalosti w, je jeji
pravdépodobnost rovna p*(1 — p)"~F.)

Budeme zkoumat dvé ndhodné veliciny A a B, kde A oznacuje pocet
zvolenych jazykl a B pocet ucastniku, jejichz vSechny tti jazyky byly
zvoleny. Vypocitame stfedni hodnoty téchto dvou veli¢in:

E(A)= Y 1-P(zvolili jsme jazyk {) = np,
jazyk 1
E(B) = Z P(vSechny jazyky studenta s jsou zvoleny) = 3n - p3.

student s

Dale vyuzijeme nerovnost
P(X 2 E(X)) >0,

kterd evidentné plati pro kazdou ndhodnou veli¢inu X. V nasem pripadé
pro X = A — B dostavame, ze

P(A — B = np—3np®) > 0.

Odtud plyne, ze existuje volba jazykt (tj. elementdarni udalost w) takova,
7e A(w) — B(w) = np—3np®. Pro tuto volbu miizeme ze zvolenych jazyki
odstranit jeden jazyk za kazdého z ucastniki, pro kterého byly zvoleny
vsechny t¥i jazyky, jimiz hovofi, a stédle zustane alespon A — B jazyku.
Prop= % jevsak A— B = %n. Tim je tvrzeni ulohy dokazano.

9. OznaCme « velikost Ghlu EAD. Stejnou velikost ma i thel EDA,
a z dané velikosti | < ASE| = 60° snadno dopocitame |<AEC| = 120° —a
a |[XDEC| = 60° — a. Ozna¢me F obraz bodu A v osové soumérnosti
podle piimky CE. Uhel FED mé velikost (120° — a) — (60° — o) = 60°,
a protoze |EF| = |EA| = |ED|, je trojuhelnik DEF rovnostranny. Rov-
noramenné trojuhelniky ABC a FDC jsou tedy shodné podle véty sss.

Pokud se bod D nachézi mimo trojihelnik ACF' (obr. 46), jsou body
B a D soumérné sdruzeny podle pfimky CE, a proto |EB| = |ED|, takze
¢tyfihelnik BCDE je kosoctverec a BC || DE.
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A <_4
v D

C
Obr. 46 Obr. 47

Pokud bod D lezi v trojihelniku ACF (obr.47), jsou body C a F
soumeérné sdruzeny podle osy AD, protoze uhly ADC i ADF maji veli-
kost 60° + « (vyuzili jsme, ze [« ECD| = |[xCED| = 60° — «). Potom
vSak |AF| = |AC|, takze trojuhelniky ABC a AEF jsou shodné. Bod E
musi lezet mimo trojuhelnik AC'F', jinak by pétithelnik ABC DE nebyl
konvexni. Ze shodnosti trojihelniki ABC' a AEF pak plyne, ze body
B a FE jsou soumérné sdruzeny podle piimky AD. Proto |DB| = |DE|,
tudiz ¢tyituhelnik ABDE je kosoctverec a plati AB || DE.

10. Dotyk primky s kruznici mizeme popsat pomoci mocnosti bodu ke
kruznici. V nasem pripadé z mocnosti bodu B ke kruznici opsané trojihel-
niku AXCy plyne |BX|? = |BA|-|BCy|. Podobné |CX|? = |[CA|-|CBy|.
Oznaéme Ay patu vysky z vrcholu A (obr.48). Ctyithelnik ACA,Cy je
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tétivovy, proto pro mocnost bodu B k opsané mu kruznici plati |[BA| -
-|BCy| = |BAy| - |BC|; podobné dostaneme |CA| - |CBy| = |C' Aol - |CB].
Dohromady tak mame

|IBX|?> 4+ |CX|?> = |BA| - |BCy| + |CA| - |CBy| =
= |BAy| - |BC| + |CAy| - |BC| = |BC|?,

tj. thel BXC je pravy (obr.48). Navic z rovnosti |BX|?> = |BAg| - |BC|
podle Eukleidovy véty o odvésné v pravothlém trojihelniku BXC' vy-
plyva, ze bod Ag je patou vysky z vrcholu X na preponu BC. Jinak
receno, primky AAg a X Ag jsou totozné, proto je piimka AX kolma na
primku BC.

Jiné feSeni. Z mocnosti bodu B a C' k uvazovanym kruznicim dosta-
vame
IBX[? = |BA|- |BGy|, |CX|? = |CA|- |CBl.

V daném trojuhelniku ABC' tyto rovnosti jednoznacné urcuji vzdalenosti
bodu X od vrcholi B a C, a protoze o bodu X predpoklddame, zZe je
vnitinim bodem ostrothlého trojihelniku, je tim takovy bod X jedno-
znacné urcen. Ukazeme, ze pozadované vlastnosti ma prisecik Y vysky
trojihelniku ABC z vrcholu A s Thaletovou kruznici nad primérem BC
(obr.49). Tim bude tvrzeni tlohy dokdzano.

C

Obr. 49

Ctytihelnik BCByY je tétivovy, proto |£CBBy| = |¥CY By|. Potom
|xCAY| = 90° — [xACB| = |xCBBy| = |xCY By|, a podle véty o tse-
kovém thlu se pfimka C'Y dotyka kruznice opsané trojihelniku AY By.
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Analogicky muzeme ukdazat, ze se primka BY dotykd kruznice opsané
trojiuhelniku AY Cy, takze bod Y ma obé vlastnosti urcujici bod X.

11. Staci ukdzat, ze existuji a € A a b € B, pro néz a = 2b (mod 11),
protoze pro takova a, b plati

a® 4 ab® + b* = 8b® + 26 + b* = 0 (mod 11).

Podle zadani je mnozina AUB tvotfena pravé vSemi nenulovymi zbytky
modulo 11. Zvolme néjaké ¢ € B. Cisla c, 2¢, 2%¢c, ..., 2°¢ davaji vesmés
rizné nenulové zbytky modulo 11, z nichz aspon jeden musi patrit do
mnoziny A (ta je neprazdnd). Je-li k nejmensi takové, 7e zbytek ¢isla 2% c je
v B a zbytek 2¥*1c je v A, bude pro b = 2¥¢ ziejmé platit a = 2F1c = 2b.

12. Zvolme nejprve Cisla z1, x2, ..., Tao11 tak, aby cisla
y1 =73 (71 +2), y2=a35(z2+2), ..., Y2011 = T3011(T2011 + 2)
byla navzajem nesoudélna. Muzeme napriklad vzit z; = 1 a pak po-

stupné volit z; = y1y2...v;—1 — 1 pro kazdé i € {2,3,...,2011}. Takto
zvolené c¢islo x; zabezpedi, ze y; bude nesoudélné se vsemi predchozimi
cisly y1, 2, .-, ¥i-1.

Diivod volby cisel z; spociva v tom, ze kazdé ¢islo délitelné cislem
tvaru 2%(z + 2) je tzasné. Opravdu, pokud n = z%(z + 2)m, pak pro
a =mz?, b=mz a c = z plati pozadovana rovnost.

Jelikoz ¢isla y1,y2, ..., Y2011 jsou navzajem nesoudélnd, podle ¢inské
zbytkové véty existuje prirozené Cislo k takové, ze

= —i (mod y;) pro kazdéi e {1,2,...,2011}.
Cislo k +1 je pak délitelné éislem y; pro kazdé i € {1,2,...,2011}. Cisla

k+1,k+2,...,k+2011 jsou podle predchoziho odstavce vSechna tizasna,
a tvori tak hledanych 2011 po sobé jdoucich tizasnych cisel.
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18. stfedoevropska olympiada v informatice

Stredoevropska olympidda v informa- CEOI E

tice (CEOI 2011) se konala ve dnech  2pn/z0 2077 6 dyrecz
7.-12. 7. 2011 v polském meésté Gdyné.

Vedle sedmi tradi¢nich téastnickych stiedoevropskych statt (Ceska re-
publika, Chorvatsko, Madarsko, Némecko, Polsko, Rumunsko, Slovensko)
se jako hosté zicastnila také druzstva ze Slovinska a Svycarska. Jako ob-
vykle soutézilo i druhé druzstvo poradatelské zemeé. Celkem se soutéze
zucastnilo 39 studentt z 9 zemi.

Reprezentacéni druzstvo Ceské republiky bylo sestaveno na zikladé
vysledkli dosazenych soutézicimi v tstfednim kole kategorie P 60. roc-
niku Matematické olympiady. Na celosvétovou soutéz IO 2011 v Thajsku
byli vyslani ¢tyti nejlepsi studenti z tstfedniho kola, na stredoevropskou
olympiadu byli vybrani dalsi ¢tyti studenti, ktefi jesté nebyli v maturit-
nim roéniku. Nasi mladsi soutézici tak dostali prilezitost ziskat na CEOI
cenné zkusenosti, které mohou nasledné vyuzit pri pripadné reprezentaci
Ceské republiky na IOI v dalsim roce. 18. stfedoevropské olympiady v in-
formatice se zucastnili tito studenti:

Vojtéch Hldvka, student gymnazia a ZUS ve Slapanicich,
Martin Raszyk, student gymnézia v Karviné,

Stépdn Simsa, student gymnazia v Litoméficich,

Martin Zikmund, student gymnazia v Turnoveé.

Vedoucimi ceské delegace byli jmenovani doc. RNDr. Pavel Tépfer,
CSc., a Be. Josef Pihera, oba z Matematicko-fyzikalni fakulty Univerzity
Karlovy v Praze.

Nasi ucastnici obou mezinarodnich informatickych olympiad se jiz
tradi¢né pripravovali na svoji soutéz spolecné s reprezentanty Polska
a Slovenska na tydennim soustfedénim CPSPC (Czech-Polish-Slovak Pre-
paration Camp). Akei tentokrat pfipravili slovensti organizatofi.

Soutéz CEOI 2011 se tradi¢né uskutecnila v prubéhu dvou soutéznich
dnti. V kazdém dni soutézici fesili tfi tlohy, na které meéli vzdy pét ho-
din casu. Kazdy soutézici pracuje na pridéleném osobnim pocitaci s na-
instalovanym soutéznim prostfedim, které umoznuje vyvijet a testovat

184



programy a odesilat je k vyhodnoceni. Vysledné programy jsou testo-
vany pomoci ptripravené sady testovacich dat a se stanovenymi casovymi
limity. Tim je zajiSténa nejen kontrola spravnosti vysledki, ale pomoci
casovych limitu se také odlisi kvalita pouzitého algoritmu. PTi testovani
kazdé tlohy se pouzivaji sady testovacich dat rtizné velikosti, takze teore-
ticky spravné reseni zalozené na neefektivnim algoritmu zvladne dokoncit
vypocet pouze pro nékteré, mensi testy. Takové feseni je potom ohodno-
ceno ¢asteénym poctem bodu. Vecer pred soutézi vedouci vsech delegaci
spolecné vyberou soutézni tilohy z navrhi predlozenych poradatelskou ze-
mi, upravi podle potfeby jejich formulace a ptelozi je pak do matefského
jazyka studentil. Cesti studenti tedy dostali jak anglickou, tak i ¢eskou
verzi zadani tloh. Kromé vlastni soutéze je pro tucastniky CEOI vzdy
pripravovan i doprovodny program. Letos méli castnici moznost pro-
hlédnout si nejen Gdyni, ale prosli si také blizké lazenské meésto Sopoty
a pristav Gdansk. Po skonceni soutéze jeli vsichni Gicastnici na celodenni
spoleény vylet spojeny s prohlidkou rozsahlého gotického hradu Malbork
a s jizdou historickou parni zeleznici.

Posledni den probéhlo slavnostni zakonceni soutéze s vyhlasenim vy-
sledkii. Kazda ze soutéznich tloh byla hodnocena maximélné 100 body,
takze celkové bylo teoreticky mozné ziskat az 600 bodi. Vitézem se stal
polsky reprezentant Krzysztof Pszeniczny, ktery dosahl vysledku 550 bo-
du. Letos bylo udéleno 5 zlatych, 7 stiibrnych a 13 bronzovych medaili.
T¥i zlaté medaile ziskali soutézici z Polska, kteri vsak méli urcitou vyhodu
v tom, ze jako poradatelskd zemé mélo Polsko v soutézi dvé soutézni
druzstva. Stfedoevropska olympiada v informatice je soutézi jednotlivei,
zadné poradi zucastnénych zemi v ni neni vyhlasovano.

Nasi studenti dosahli nasledujicich vysledkii:

22. Martin Zikmund 180 bodui  bronzova medaile
27. Stépan Simsa 158 bodt  —
30. Martin Raszyk 128 bodi
36. Vojtéch Hlavka 72 boda -

Veskeré informace o soutézi, texty soutéznich tloh i podrobné vy-
sledky vSech medailistii lze nalézt na internetové adrese

http://ceo0i2011.mimuw.edu.pl/.

Zéastupci Slovinska projevili zajem stat se fadnymi cleny CEOI a slibili
usporadat soutéz v roce 2014.
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23. mezinarodni olympiada v informatice

Dvacaty treti ro¢nik Mezinarodni olym-
piady v informatice IOI 2011 se konal
ve dnech 22.-29. 7. 2011 ve mésté Pat-
taya v Thajsku.

ol 2 . 1o 81 del , The 23 International Olympiad in Informatics
ympiady se zucastnilo elegacl  ogny -
z celého svéta. Z kazdé zemé se 101 mo- "&TH A' LA N D .4
hou ziéastnit ¢tyii soutézici a dva ve- 2 O 1 1

douci, celkové letos soutézilo 302 stu-

dentti. Ceské druzstvo bylo sestaveno na zakladé vysledki tstfedniho

kola 60. ro¢niku Matematické olympiady — kategorie P a bylo tvoreno
témito studenty:

Lukds Folwarczng, student gymnéazia v Havitove,

Filip Hlasek, absolvent gymnazia v Plzni, Mikulasském nam.,
Hynek Jemelik, absolvent gymnazia v Brné na tf. Kpt. Jarose,
Jakub Zika, absolvent gymnéazia v Praze 6, Nad Aleji.

Vedoucimi ¢eské delegace na IOI 2011 byli jmenovani Mgr. Zbynek
Falt z MFF UK a Mgr. Jan Bulanek z MFF UK a Matematického ustavu
AV CR.

Jiz tradi¢né se nasi tcastnici I0I pripravovali na olympiddu spolec¢né
s reprezentanty vybranymi pro Stredoevropskou olympiadu v informa-
tice na tydennim soustfedénim CPSPC (Czech-Polish-Slovak Preparation
Camp). Pripravné soustfedéni bylo letos poraddno v Modre-Harmonii na
Slovensku a zucastnili se ho vybrani studenti ze vSech tii zemi.

Béhem prvniho dne pobytu v Thajsku probéhlo slavnostni zahdjeni
soutéze a studenti méli také prilezitost seznamit se podrobné s pocitaci
a se softwarovym prostiedim, v némz budou pri soutézi pracovat. Vlastni
soutéz se konala jako obvykle ve dvou dnech, oddélenych jednim odpo-
¢inkovym dnem, ktery byl vénovan vyletu do botanické zahrady Nong
Nooch. Po druhém soutéznim dnu néasledoval druhy odpocinkovy den,
béhem kterého byl pro soutézici usporadan vylet do muzea Ancient City
a pro ostatni ¢leny delegaci vylet do Bangkoku. Pri cesté zpét z Thajska
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byl bohuzel zrusen nas navazujici let z Parize, takze se cesta neprijemné
protahla o jeden den.

Soutéz 101 probiha podobnym zptsobem, jako prakticka c¢ast tstred-
niho kola nasi kategorie P. Kazdy soutézici ma pridélen osobni pocitac, na
kterém resi zadané tilohy. V kazdém dni ma na praci vymezen ¢as 5 hodin.
Ulohy je tieba dovést az do tvaru odladéného programu, hotové programy
se odevzddvaji k vyhodnoceni prostrednictvim soutézniho prostiedi. Ode-
vzdané programy se testuji pomoci predem pripravené sady testovacich
dat. Provadéné testy jsou navic omezeny Casovymi a pamétovymi limity,
aby se kromé otestovani spravnosti odlisila ¢asova i pamétova efektivita
algoritmu pouzitého jednotlivymi tucastniky soutéze. Pri testovani kazdé
ulohy se pouzivaji sady testovacich dat ruzné velikosti, takze teoreticky
spravné feSeni zalozené na neefektivnim algoritmu zvladne dokoncit vy-
pocet pouze pro nékteré, mensi testy. Takové feSeni je potom ohodnoceno
dil¢im poc¢tem bodu. Stejné jako v lonském roce méli soutézici moznost
nechat si pribézné vyhodnocovat svoje reseni, takze jiz béhem soutéze
si mohli soutézici oveérit, kolik bodl za néj ziskaji. Divikum (ale nikoli
soutézicim) pak byla k dispozici i pribézna vysledkova listina. Jedna
se o podobny systém, jaky pouzivame v poslednich letech v kategorii P
Matematické olympiady pro praktické tilohy doméciho kola u nas. Kratce
po odevzdani vypracovaného programu do vyhodnocovaciho systému se
souteézici dozvi hodnoceni svého feseni a mé pak jesté moznost jej opravit
a odevzdat znovu.

Rovnéz bylo zachovdano rozdéleni tloh do nékolika podiloh, lisicich
se velikostmi vstupnich dat ¢i omezenimi na jejich strukturu. Za kazdou
takovou podilohu bylo mozné ziskat body pouze tehdy, kdyz program
odpovédeél na vSechny jeji testovaci vstupy korektné a v daném casovém
limitu. Jedna z podiloh kazdé tlohy byla zamérné velmi jednoducha.
Soutézici z programatorsky méné vyspélych zemi tak dostali velmi real-
nou Sanci vyresit kazdy den aspon cast z kazdé tlohy. Zménou oproti
loniskému roéniku bylo snizeni poctu tloh zadanych béhem jednoho sou-
tézniho dne ze Ctyf na tfi. Tradicné byla jedna z tloh jednodussi nez
ostatni, aby ji i méné zdatni tcastnici mohli vyfesit. Skutecnost, ze sou-
¢asti kazdé ulohy je nékolik velmi jednoduchych podiloh, zptsobila, ze
ztratilo smysl zadavat zminénou snazsi tlohu.

Kazda z Sesti soutéznich tloh byla hodnocena maximalné 100 body,
takze nejvyssi pocet bodi, ktery bylo mozné ziskat, je 600. Na zakladé
presné stanovenych pravidel se na I0I podle dosazenych bodi rozdéluji
medaile. N&kterou z medaili obdrzi nejvyse polovina tcastnikl soutéze,
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pricemz zlaté, stiibrné a bronzové medaile se rozdéluji ptiblizné v poméru
1 :2: 3 (s ohledem na to, aby soutézici se stejnym bodovym ziskem
ziskali stejnou medaili). Na letosni IOI bylo rozdéleno celkem 27 zlatych,
49 stiibrnych a 75 bronzovych medaili.

Vysledky nasich soutézicich:

30. Filip Hlasek 467 bodii  stiibrnd medaile
50. Hynek Jemelik 419 bodu  stiibrnd medaile
66. Jakub Zika 391 bodti  stiibrna medaile

177. Lukas Folwarczny 242 bodu —

Zisk t¥i stiibrnych medaili pro Ceskou republiku je mimofadny
uspéch. Mezinarodni olympidda v informatice je soutézi jednotlivci
a zadné poradi zicastnénych zemi v ni scie neni vyhlasovano, ale v neofi-
cidlnim poradi zemi by se letos Ceské republika podle celkového poctu
bodt umistila na 16. misté.

Vsechny podrobnosti o soutézi, texty soutéznich tloh i jejich feseni
a celkové vysledky lze nalézt na Internetu na adrese

http://www.i0i2011.0r.th/.

Pristi ro¢niky IOI se budou konat v Itélii (2012), Austrélii (2013), na
Tchaj-wanu (2014) a v Kazachstdnu (2015). Poradatelska zemé pro rok
2016 dosud nebyla vybrana. Poradatelé 101 2012 z Italie na misté pozvali
vsechny delegace ziicastnéné na IOI 2011, aby se ztcastnily také nasledu-
jictho ro¢niku soutéze. Ten probéhne ve dnech 22.-29. 9. 2012 ve mésteé
Sirmione.
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