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Predmliuva

V brozufe Vybrané tlohy matematické olympiady - kate-
goric A + MMO, kterou v roce 1976 sestavili M. Fiedler
a J. Zemainek, byly shrnuty nejzajimavéj$i alohy prvnich
dvaceti ro¢niktt na$i matematické olympiddy spolu s vybra-
nymi ulohami mezindrodni matematické olympiddy. Nava-
zujeme na své predchidce a uvadime typické ulohy nejvyssi
kategorie 21.—35. ro¢niku MO. Mezinirodni matematické
olympiddé je vénovana jind samostatna knizka.

Publikace je ur¢ena piedev§im vedoucim matematickych
krouzka, uditelum matematiky a feSitelum MO, aby jim
pomohla v pfipravé na soutéz. Doufiame, Ze ¢tenafe znovu
presvéd¢i o krdse a rozmanitosti stiedoskolské matematiky.

Autort






ULOHY



1. Najdéte vSechna feSeni soustavy rovnic

2x1 — x2 = ¢,
—x1 + 2x3 — x3 = 0,
—Xo + 2x3 — x4 = 0,

—Xn-2 + 2xn-71 — Xpn = 0’
—Xp-1 + 2%, = d

$ neznamymi X1, X2, ..., X, a parametry c, d.

2. Najdéte viechna feSeni soustavy rovnic

1980x; + 1979x9 + ... + 2x1979 + X1980 = O,
X1 — X1980 = X2 — X1979 = ... = Xggo — X991 — 1981,
X1 — X2 = X2 — X3 = ... = X989 — X990 — —1.

3. Najdéte vsechna feSeni soustavy rovnic

X1 — X9 — X3 — ... — xu = 2a,
—x1+ 3x2 — x3 — ... — Xn = 4a,
—x1 — X2+ Txz — ... — x, = 8a,
—X] — Xp — X3 — ...-}-(2"—— l)x.,L:2"'a
s nezndmymi x1, X2, ..., X, a4 parametrem a.

4. Najdéte vechna fedeni soustavy rovnic

x+y+2=23,
1 1 5

1
PRI TR
x84+ 38 + 23 = 45.



5. Najdéte vSechna feseni soustavy rovnic
1
X1+ X2+ ...+ X ::747 5
1 4 n? )
— 4+ 4 L+ =n¥n + 1)°
X1 X9 Xn
v oboru kladnych redlnych &isel.
6. Ma-li rovnice x3 + ax® + bx + ¢ = 0 vSechny kofeny
redlné, potom a? = 3b. DokazZte.

7. Necht p, ¢ jsou redlna &isla, ¢ < 0. Dokazte, Ze mensi
z kofent rovnice
gx> +px+1 =20
spliiuje nerovaici
x% 4+ px + g < 0,
pravé kdyzp - g + 1.
8. Najdéte vSechny hodnoty redlného parametru a, pro
které m4 nerovnice
x4+ 2% — 2@+ Dx? —ax + a2 < 0
alespori jedno feSeni v oboru redlnych &isel.

9. Je dano reilné cCislo p. Najdéte viechna reidlna reseni
rovnice

V2p +1 — 22+ |Bx +p + 4= |22+ 9x + 3p + 9.

10. Dokazte, ze pro vSechna pfirozena Cisla n > 1 plati

(05 (-3



11. Jsou ddna realné Cisla xj, x2, x3, ¥4, X5, ¥6. OznaCme
M maximum jejich absolutnich hednot. Dokazte, Ze plati

[X1X4 — X1X5 + XaX5 — XaXe + X3X¢ — X3xa| < 4M2.

12. Najdéte vsechny dvojice (x, y) pfirozenych Cd&isel,
pro néz plati

13. Jsou dana piirozend ¢&isla n - k. DokaZte, Ze exis-
tuji pfirozend d&isla ¢i, ¢2, ..., ¢, takovd, Ze pro viechna
pef{l,2,...,n— 1} plat

ke + ... +c)+m—k)(cgir + ... +cp) S
<plar+ ... +cp)+m—p)lepnn + ... + ca)

14. DokaZte, Ze pro kladnad &isla x1, X2, .. ., Xu, Y1, V2, - .
n plati

*>

— 1 4n>
S g __.;._..___. ik
X, e
= > (% + i)
k=1

_

Kdy nastane rovnost ?
15. Dokazte, Ze pro redlna &isla ay, ao, . .., an, x plati
n 2 n
x2+x(2ai) +m > a2 0.
i=1 i—1

Kdy nastane rovnest?

16. Najdéte vSechny n-tice redlnych Cisel 1 < x2 < ...
=< xu, pro které plati

IIA

10



n 2 n
( 2 xz) =Y XiXpoin.
; ,

17. Je dano ptirozené Cislo % a kladna &isla ay, ao, .. ., an,
pro kterd plati a; + a2 + ... + a, = 1. DokaZte nerovnost
k k k kil
a“+a,"+ ... +ta,"2n"".

Kdy nastane rovnost?

18. Dokazte, ze pro libovolna redlna cisla ai, az, ..., an
plati

|sina; sinas ... sina, — cosaj cosaz ... Ccos a,| <
n
< > |[sinap — cos ail.
k-1

Kdy nastane rovnost ?
19. Najdéte vSechna redln4 Cisla x, pro néz funkce

12x — 6x2

I = a g v e et 9

nabyva minima.
20. Najdéte viechny hodnoty parametru p, pro néz funkce
flx) = x2 + 4px — |x2 — 2px + p> — 1]
nemd lokélni extrém.
21. Jsou déna redlna &isla ai, ao, . . ., a,. Najdéte minimum

funkce

n

flx) = /\_ lx — ail .

=1
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22. Je dano prirozené &islo n. Najdéte nejvitdi hodnotu
soultu

X1+ x2+ ...+ X,

nezdpornych celych &isel vyhovujicich podmince

40+ ...+ xS Tn.

23. Je dano prirozené cislo n a redlné Cislo £, 0 < & < n.
Uvazujme vsechny n-tice redlnych &isel (x1, x», ..., x,), pra
néz plati

n
> sin? x; =
il

Najdéte nejvétsi hodnotu vyrazu
| n |
> sin 2x; |
i1 |
24. Dokazte, Ze existuji redlna Cisla 4, B takova, Ze pro
kazdé piirozené Cislo » plati

>tgktg(k —1) = Atgn + Bn.

k=1

25. Dokazte, ze v trojuhelniku o stranich a, b, ¢ a prislus-
nych uhlech «, f3, y plati

acoso + bceosfl + ccosy = 0.
26. Trojuhelnik o stranach a, b, ¢ ma obsah P a trojuhelnik
o stranach «, v, w ma obsah Q. Dokazte, Ze pak

a¥(—u? + v + w?) + b2 — v? + w?) + AP + v — wh)=
> 16 PQ.
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27. Oznalme a, b, ¢ strany trojuhelniku ABC, «, f, v jeho
vnitini Ghly, » polomér opsané kruznice,
V=a+b+c-82W=tgatgp +tgftgy + tgytga.
Trojahelnik ABC je ostrothly, pravé kdyz V' = 0, a tupothly,
pravé kdyz V < 0. Trojuhelnik ABC je ostrothly, pravé kdyz
W = 0, a tupouhly, pravé kdyz W <= 0. Dokazte.

28. Je dana posloupnost (ay), -1, pro jejiz Cleny plati

an+3 = Sani2 — 9an1 + 9ay,
lap| < 27,

Dokazte, Ze pro vSechna pfirozend 7 je
Anie = 2ay+1 — 3ay.
V tlohich 29, 33 —36 symbol [x] znamend celou st redl-
ného Cisla x, tj. nejvétsi celé ¢islo nejvyse rovné x.
29. Je dana redlna posloupnost (ay)n -0, pro jejiz Cleny plati
Api2 — 4an.| — 3(11,.

Definujme posloupnost (5,), -1 vztahem

bn -

An+1 l
Anp-1
pricemz klademe &, = 1 pro a,-1 = 0. Dokazte, Z¢ od jistého
Clenu pocinaje plati pro ¢leny posloupnosti (b,) stejny vztah
bm‘z — 4bm1 — 3bn-
30. Obsahuje-1i posloupnost ptirozenych &isel (a,) viechna
pfirozena Cisla, existuji indexy 7 < j - k& takové, Ze
ap — aj — ay — 4.
Dokazte.



31. Jsou dany dvé nerostouci posloupnosti redlnych &isel
(an)n=1, (bp)n -1 a dveé prostd zobrazeni P, R mnoZiny pfiroze-
nych cisel na sebe. Utvofme souty apa) + bra), are) +
+ bre), ..., a uspofddejme je podle velikosti do nerostouci
posloupnosti (¢ )i 1. Potom pro kazdd dvé pfirozend &isla
m, n plati

Cuin 1= am + by

Dokazte.

32. Najdéte vsechny nekonecné aritmetické posloupnosti ce-
lych &isel (ay), o takové, Ze posloupnost ((—1)"a,), .o obsahu-
je pravé 1972 dvojic stejnych ¢lend.

33. Najdéte viechna realna Cisla x, pro néz plati

3[x]2 + 6x — 4 = 0.

34. Najdéte viechny dvojice redlnych &isel x, y, pro které

[x?+[y] =0, 3x +y = 2.

35. Vysetiete prubéh funkce
@ . k
N X [ x I
fa = D> l " ]
pa— )
k1
v intervalu (0, + o0).

36. Najdéte vSechna pfirozena &isla n, pro ktera je soucet
> 1))
délitelny sedmi.
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37. Dokazte, ze pro kazdé liché n je Cislo
N =nS + 3nt + Tn> — 11
- délitelné 256.

38. Jsou-li &, m, n pfirozena Cisla, je soucet
e g 2m 4 o+ (nF — 1" + (nF)m

délitelny ¢islem #* 1. Dokazte.

39. Najdéte vSechna piirozend ¢isla n < 107, pro kterd
plati: Je-li pfirozené ¢&islo m, 1 < m < n, nesoudélné s Cislem
n, pak je m prvocislo.

40. Je-li p > 2 prvotislo a a, b prirozena &isla, pro néz
plati

a 1 1 1
— =1+ - i R
b Tyttt T

potom p dé&li a. Dokazte.

41. Jsou dana pfirozend &isla m = n = 3 a mnohodlen p
stupné m s celo¢iselnymi koeficienty takovy, Ze p(a) =
=plaz) = ... = pla,) = 1 pro n ruznych celych cisel ai,
as, ...,a,. DokaZte, Ze p nemad zadny celoCiselny kofen.

42. Predpoklddejme, ze funkce f zobrazuje mnozinu N viech
ptirozenych ¢isel do sebe, f(1) = 1 a pro kazdé n € N plati
fn + 2) =2ftn + 1) — f(n) + 2.

Dokazte, ze pro kazdé n € N existuje m € N takové, Ze

f) f(n + 1) = f(m).
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43. Najdéte pocet viech trojic pfirozenych ¢isel x < y < z,
pro néz plati

x4+ y + z < 100.

44. Ozna¢me M, mnozinu vSech jednoprvkovych a dvou-
prvkovych podmnozin mnoziny {1, 2, ..., n}. Pron = 3 lze
ke kazdé (n — 2)-prvkevé podmnoziné P mnoziny M, najit
mnozinu {7, j } € M, pro kterou je

{{i}w {7} ‘liﬂ-}} NP =0
Dokazte.

45. Je déano pfirozené Cislo £ - 1. Najdéte nejmensi piiro-

zené Cislo n s touto vlastnosti: At zvolime jakkoli n rtznych

ptirozenych ¢&isel, vzdy bude soucet nebo rozdil nékterych
z nich délitelny Cislem k.

46. Oznatme Ny mnoZinu vsech nezdpornych celych ¢isel,
A={x;x=ux}+ x3 x1, 26No}, A, = {1x; x € A} pro
reNoaB = {7 A, = A}. Dokazte, ze A = B.

47. Necht A;, A., Az jsou neprazdné mnoziny celych &isel
takové, ze pro {i,/, k} ={1,2,3} plati

(xeA,yeA)= ((x + y)€ Ar, (x — y) € Ag).
Dokazte, Ze asponi dvé z mnozin A, Ag, Az se rovnaji. Mchou
byt nékteré dvé z té€chto mnoZin disjunktni?

48. Necht A je takova mnozina celych kladnych &isel, Ze pro
kazd¢ dva jeji razné prvky x a y plati nerovnost

xy

¥y =
x =yl 25

16



Dokazte, ze mnoZina A obsahuje nejvyse 9 prvka. Rozhodnéte,
zda takova devitiprvkovd mnoZina A existuje.

49. Je-li n > 1 pfirozené <&islo, existuje pofadi (ai, as,
..., an)cisel 1,2, ..., ntakové, Ze pro kazdé ke {1, 2, ...,
n — 1} &slo apy déli soudet a1 + a2 + ... + ar. DokaZte.

50. Najdéte vSechna celd nezdporna Cisla &, pro néz je

(/zk N 1) liché.

51. Na skole je pét zijmovych krouzka a chodi do nich
celkem 64 Zaci. Nejmensi krouzek ma 19 ¢lent, zaddny Zdk
nechodi do vice neZ tii krouzka a kazdé tfi krouzky maji
aspoil jednoho spole¢ného Gcastnika. Dokazte, Ze dva z téch-
to krouzkt maji asponl pét spole¢nych Gcastniki.

52. V prostoru je didno pét bodu, z nichZ zadné Ctyii nelezi
v roving, a sedm rovin, pro které plati:

a) Kazda z danych rovin obsahuje alespoii jeden dany bod.

b) Kazdy z danych bedu leZi nejvyse ve &tyfech danych ro-
vinéch.
Dokazte, Ze mezi danymi body existuji dva, jejichZ spojnice
neni prusecnici Zadnych dvou danych rovin.

53. V kazdém policku trojuhelnikové tabulky s n fadky
a n sloupci (na obr. 1 pro #n = 6) je napsano nékteré z &isel 1,
2, ..., n. Ptitom pro kazdé ke {1, 2, ..., n} se v sjednoceni
k-tého tadku a k-tého sloupce vyskytuji viechna &isla 1, 2,

.., n. Dokazte, Ze v pfipadé lichého 7 je kazdé z Cisel 1, 2,
..., n napsano v poslednim poli¢ku n&kterého Fadku.
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Obr. 1 ]

54. Na obr. 2 je »zebrik« sklddajici se z n shodnych &tverct.
Nékteré ze stran Ctvercu obarvime. Poclet viech takovych

obr.2 0 =_}>=:—". ...

obarveni zebfiku, pri nichZz mé kazdy ze Ctverch alespon
jednu stranu obarvenu, oznatme P,.

a) Urcete nejmensi n, pro které plati P, ~ 106.

b) Dokazte, Ze pro kazdé » je P, liché.

55. Na obr. 3 je Gtvar slozeny z 1984 shodnych trojuhelni-
ka. Za pfipustnd povazujme ta obarveni jeho vrchola, pri

2 4 1984
- - b

nichz ma kazdy z uvaZovanych trojuhelnikd obarven aspoi
jeden vrchol. Rozhodnéte, je-li pocet vSech pripustnych obar-
veni sudy nebo lichy.

Obr. 3
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56. Na primce je ddno #* + 1 uzavienych useek. DokaZte,
Ze plati alespoii jedno z nasledujicich dvou tvrzeni:

a) Existuje n + 1 z danych aselek, které maji spole¢ny bod.

b) Existuje n 4+ 1 z danych usecek tak, Ze Zddné dvé nemaji
spolecny bod.

57. Je ddno pfirozené Cislo n - 1. MnoZina M uzavienych
intervalt ma tyto vlastnosti:

a) Pro kazdy interval {u, v) € M plati, Ze u, v jscu pfiro-
zena Cisla, 1 S v < v < n.

b) Pro kazdé dva intervaly 7eM, I"e M je I < I’ nebo
I" @ Inebo IN I = @. v

Urcete nejvétdi mozny pocet prvka mnoziny M.

58. Jsou déna piirozena Cisla n > 1, k. Konetnd posloup-
nost Iy, I», ..., I, uzavienych intervali mad tyto vlastnosti:

a) Pro kazdy jeji ¢len I; = {uj;, v;) plati, Ze u;, v; jsou pfi-
rozend Cisla, 1 < u; < o5 < n.

b) Kazdé redlné cCislo lezi nejvyse v % jejich ¢lenech.
Jaké nejvétsi hodnoty muize nabyvat Cislo m?

59. Uvnitf koule o objemu 1 je ddno 11 bodu. Dokazte, Ze
existuji dvé roviny prochizejici stiedem koule a uréujici ku-
1
lovou vyse¢ o objemu FY uvnitt které nelezi Zidny z danych
bodua.

60. V kouli o poloméru 1 je ddno 73 bodu. Dokazte, Ze
z téchto bodu lze vybrat 13, které lezi uvnité né&jaké koule

5
s polomérem rE
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61. Ve Ctverci se stranou délky 50 je ddna lomend Cara L
takova, Ze kazdy bod Ctverce mé od nékterého jejiho bodu
vzdalenost nejvyse 1. Dokazte, ze délka Cary L je vEetdi nez
1248.

62. V roviné je ddano 3n bedl, z nichZz Zidné tri nelezi
v piimce. Dokazte, Ze jsou to vrcholy # navzijem disjunktnich
trojuhelniki.

63. V roviné méjme sit rovnostrannych trojuhelniki o stra-
né a. Dokazte, Ze uvnitt kazdého Ctverce, ktery lezi v roving
sité a ma stranu vetsi neZ a, lezi alesponi jeden uzel site.

64. Oznalme A kruh s polomérem |5 a B sjednoceni Ctyk
kruht, jejichz praméry jsou strany jednotkového <tverce.
Dokazte, ze pti libovolném umisténi utvart A a B v rovinné
siti jednotkovych ¢tverch existuje alespont 10 uzla sité, které
leZi v A a neleZi uvnitf B.

65. V rovinné Ctvercové siti je dan kruh K, na jehoZ hranici
nelezi zadny uzel sit¢ a ktery obsahuje aspoil dva uzly.
Hranice kruhu K rozdé€luje rovinu na dvé &asti. Ty uzly si-
té, pro néz aspon jeden ze Ctyi sousednich uzld lezi v opac-
né &asti roviny, nazveme hrani¢ni. DokaZte, Ze pocet hra-
ni¢nich uzllt vné K je o Ctyfi vétsi nez uvaiti K.

66. Na Sachovnici 8 < 8 nakresleme obdélnik 2( 1 a oznat-
me k& pocet Cernych poli Sachovnice, jejichz vnitini bod lezi
v tomto obdélniku. Jaké nejvétdi hodnoty miZe nabyvat
islo &7

67. Uvazujme pyramidu z jednotkovych krychl s n > 1
vrstvami (na obr. 4 je takova pyramida pro n» = 4). Najdéte
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nejkratdi spojnici prot&jsich vrchold 4, B podstavy, kterd
vede po povrchu pyramidy a neprochdzi vnitikem podstavy.

68. Najdéte vSechna piirozend Cisla n, pro ktera existuje
konvexni mnohostén s n hranami, v némz z jednoho vrcholu
vychéazeji 4 hrany a ze viech ostatnich vrchola 3 hrany.

69. V roviné je dana konetnd mnoZina bodu. Kazdy z nich
je obarven pravé jednou ze tfi barev a pritom je kazd4 barva
pouzita. DokaZte, Ze existuje kruh, ktery obsahuje od dvou
barev pravé jeden bod a aspon jeden bod tfeti barvy.

70. Jedina konvexni mnozina v roviné, kterd ma neprazdny
prunik s kazdym kruhem o poloméru 1, je celd rovina. Do-
kazte.

71. Mnozina M vznikla z roviny vyjmutim tfi ruznych bodua
A, B, C. Urcete nejmensi pocet konvexnich mnoZin, jejichz
sjednoceni je M.
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72. Dokazte, ze kruh nelze tfemi tétivami rozdélit na sedm
Casti stejného obsahu.

73. Na obr. 5 je zndzornén stavebnicovy dil slozeny ze
sedmi krychli. Dokazte, Ze témito dily lze vyplnit beze zbyt-
ku cely prostor.

A

Obr. 5

74. Je-li M vnitini bod pravidelného 1982-thelniku, pak
existuji dva jeho vrcholy A4, B takové, ze

2
— < | B| < .

<1 l982> = | AMB]
Dokazte.

75. Do kruzZnice je vepsan Sestithelnik ABCDEYF, ve kte-
rém |4AB| = |BC|, |CD| = |DE|, |EF| = |FA|. Dokazte, ze
obsah trojuhelniku ACE neni vétsi neZz obsah trojuhelniku
BDF. Kdy nastane rovnost ?
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76. Dokazte, Ze pro (tyfi po sobé jdouci vrcholy Ay, Ai,
As, As pravidelného sedmitahelniku plati

1 1 1
|AoAr|  [AoAs) * | Aods|

77. Mezi dvojicemi bedu X, YV na hranici trojhhelniku
ABC, které tuto hranici déli na dv& &asti stejné délky, najdéte
viechny, pro néZ je vzdalenost | XY nejvetsi.

78. Je dan kvadr Q o rozmérech a < b < ¢. Najdéte ve-
likost hrany krychle K, kterd méd s danym kvadrem rovno-
bézné stény a spole¢ny stied, tak, aby objem rozdilu mnoZin
Q u K a Q n K byl nejmensi.

79. Je dan ostrothly trojahelnik T s obsahem 1. Dckazte,
Ze existuje pravouhly trojahelnik, ktery obsahuje T a pritom
nemé cbsah vétsi neZ |/3, a pravouhly trojihelnik, ktery je

1//3“
obsazen v T a pfitom nema obsah mensi nez !/3~

80. Pro kazdy bod X trojahelniku ABC oznaéme m(X)
nejmensi a M(X) nejvétdi ze vzdilenosti |AX]|, |BX]|, |CX].
Najdéte viechny body X trojihelniku ABC, pro které je

a) m(X) nejvetsi,

b) M(X) nejmensi.

81. Jestlize pro ¢tyfuhelnik ABCD vepsany do kruZnice
s polomérem 1 plati |AB|.|BC|.|CD|.|DA| = 4, potom
ABCD je ¢tverec. Dokazte.

82. V roviné jsou dany dva razné body A, B a piimka

23



p || AB. Na pfimce p sestrojte bod C tak, aby v trojuhelniku
ABC mely vyska vy a téZnice 7, stejnou velikost.

83. V roviné je dan kruh K. Najdéte mnoZinu vrchola A4
vSech konvexnich Ctyiahelnika ABCD, jejichz vrcholy B, D
lezi v kruhu K a pfitom |AC| < |BD|.

84. Je déna kruznice £ = (S, ), na ni dva body 4, B a &islo
2,0 < |AB| <~ v £ 2r. Najdéte mnozinu viech boda X lezi-
cich vné kruznice %, pro néz druhé prasetiky A', B’ pfimek
XA, XB s kruznici k maji vzdalenost |4'B’| = v.

85. Najdéte mnozinu t&zi§t vech rovnostrannych troj-
thelnika, jejichz vrcholy leZi na stranach daného Ctverce.

86. Je dana pulkruZznice £ s krajnimi body 4, B a na ni bod
C, A # C # B. Najdéte mnoZinu M stieda vSech usetek XY,
kde bod X lezi na oblouku AC a bod Y na oblouku CB pul-
kruznice k. Vypoltéte obsah mnoziny M.

87. V roviné o je dén jednotkovy ¢tverec C. Oznatme Cy
¢tverec, ktery vznikne otolenim &tverce C kolem bodu X € o
0 90° v kladném smyslu. Najdéte mnozZinu vsech bodu X
roviny o, pro néz mé sjednoceni C U Cy cbsah nejvyse 1,5.

88. Je ddna krychle ABCDA'B'C'D'. Na jejim povrchu
najdéte mnozinu vsech obrazii bodu C v otolenich kolem
osy, kterd zobrazuji bod 4 na bod B.

89. Je dan Ctyistén ABCD, jehoz sténa ABC je ostrothly
trojuhelnik a jehoZ vyska z vrcholu D md patu uvniti stény
ABC. Najdéte mnozinu prasetika télesovych uhlopiicek
vSech kvadru, které lezi v Ctyfsténu ABCD, piicemZ jedna
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jejich sténa lezi v roviné ABC, jedna hrana v roviné ABD
a zbyvajici dva vrcholy v rovinach BCD, CAD.

90. Je dana krychle ABCDEFGH s hranou délky a. Oznac-
me O stied stény BCGF a v kouli se stfedem O a primérem a.
Urcete bod S na hrané AE a rovinu ¢ prochézejici bodem E
tak, aby koule, kterd odpovidd v soumérnosti podle roviny o
kouli (8, |S4|), byla obsaZena v 7 a pfitom byla co nejvétsi.

91. Najdéte viechny Ctyfstény, jejichz stény jsou navzdjem
podobné pravouhlé trojuhelniky a jejichz nejdelsi hrana ma
délku 1.

92. Je dan ¢tyfstén ABCD a jeho vnitini bod K. Oznaéme
Gy, Go, G3, Gy t€ziste Crytsténd KBCD, KACD, KABD,
KABC. Dokazte, ze objem Ctyisténu G1G2G3G4 nezavisi na
volbé bodu K.

93. Je dan Ctyfstén ABCD a bod M uvnitf jeho stény ABC.
Bodem M vedme piitky MC; || CD, MB, || BD, MA, || AD.
a) Dokazte, Ze plati
EMAH EIWB}“ ‘MC1[
b " [BD T Dl
b) Vyjadiete pomér objemu &tyfstént 41 B;CiM a ABCD
pomoci velikosti usetek AD, BD, CD, M4, MB;, MC,.
¢) Zjistéte, pro ktery bod M bude objem Ctyisténu 4, B1C1 M
nejvetsi.
94. Je dan ¢tyi'stén ABCD a jeho vnitini bod O. Bodem O
vedme rovnobézné s hranami Ctyfsténu Sest pricek, jejichz
oba krajni body lezi ve sténdch &tyfsténu. Pak plati, Ze soulet
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poméru délek téchto pricek a délek s nimi rovnobéznych hran
je 3. Dokazte.

95. V roviné je ddna kruznice m = (8, ») a primka p ve
vzdélenosti d od stfedu S. Patu kolmice vedené bodem S na
piimku p ozna¢me C. Z bodu M € p vedme teény ke kruznici
m a jejich dotykové body oznatme H, K tak, aby [pH| < [pK]|.
Dokazte, ze podil

1
tg ) | CMH|

1
tg ) | CMK]|
nezavisi na volbé bedu M, a vyjadiete ho pomeci r a d.

96. Je ddn konvexni ¢tyfthelnik ABCD, jehoZ prodlouzené
strany AB, CD se protinaji v bodé¢ E a BC, 4D v bod¢ F.
Dokazte, ze

a) kruZnice opsané trojuhelnikim ABF, CDF, ADE, BCE
prochézeji spole¢nym bedem G

b) stiedy téchto kruznic a bod G lezi na kruznici;

¢) paty kolmic z bodu G na prodlouZené strany ctyfahelniku
ABCD iezi na ptimce.
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Dejme tomu, Ze xi, x2, ..., x, vyhovuji dané soustavé.
Z druhé az ptedposledni rovnice vyplyva

Xy — X1 = X3 — X2 = ... = Xp — Xp-1.
Existuje tedy d&islo 7 tak, Ze
Xo=x1+ 1, x3=x1+ 28, ..., % =x1 + (n — Dr.
Prvni a rosledni rovnice dané soustavy pak davé

X1 —t=c,

x1 + nt = d.
Odtud dostaneme
cn + d d — ¢
X] = —— = . — =
n+ 1 n + 1
Je tedy
cn+d . ld—c cn —k+ 1)+ dk
=y tE-D o= n+ 1

pro viechna ke {1,2, ..., n}.

Snadno se presvédéime, Ze tato Cisla dané soustavé skutecné
vyhovuji.

Soustava ma pro kazda dvé ¢, d pravé jedno r'eseni.

2

Dejme tomu, ze Cisla x1, x2, ..., x1980 vyhovuji dané sou-
stavé. Z rovnic v poslednim fadku mame

xp = xp—1 + 1,

atedy
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xp =x1 + k—1 1

pro viechna ke (2,3, ...,990}.
Z rovnic druhého fadku dostaneme pro ke {991, 992, ...,
1980}

xi = x1981-1 — 1981

a po desazeni z (1)
xp=2x —k—1, ke {991, ...,1980}. (2)
Zbyva jedté urtit x;. Dosadime (1) a (2) do prvni rovnice

1980x, + 1979(x; + 1) + ... + 991(x; +989) +
+ 990(x; — 992) + 989(x; — 993) + ... + x1 — 1981 =0

a upravime levou stranu

xi(1980 + 1979 + ... + 1) +
+1.1979 + 2.1978 + ... + 989.991 —
—990.992 — 989.993 — ... — 1.1981 =

1
= 21.7.1980.1981 + 1(1979 — 1981) + 2(1978 — 1980) +

+ ...+ 989(991 — 993) — 990.992 =
= %1.990.1981 — 2(1 + 2 + ... + 989) — 990.992 —
= %,.990.1981 — 990.989 — 990.992 —
= (x1 — 1).990.1981.

Odtud je x; = 1laz(1)a(2)

Xo = 2,x3 =3, ..., x990 = 990,
X991 = —991, x992 = —992, ..., x1980 = — 1980.

Snadno se presvéd¢ime, Ze tato Cisla skuteéné dané soustavé
vyhovuji. Soustava ma jediné feSeni.

29



3

Oznalime-lis = x; + x2 + ... + x,, miZeme danou sou-
stavu psdt ve tvaru
2x; — s = 2a,
4xy — s = 4a,

S8x3 — s = 8a,

2nx, — s = 2"q.

Jsou-1i x1, x2, ..., x, Cisla vyhovujici soustavé, plati pro né
tedy

s

xi:a+'27£

pro kazdéi e {1,2, ..., n}. SeCtenim dostaneme

/1 1 1 1)
s:an+s\\2+“l‘£+...+ﬁ =an + § 1—2};>

a odtud
s = an.2".

Pro &isla vyhovujici soustavé musi tedy platit
x; = a(l + n.2770),

Zbyva jesté ukazat, Ze tato Cisla skute¢né vyhovuji dané sou-
stavé. Dosadime do levé strany k-té rovnice
n n
2kxp — S xy = 2%a(l + n.277F) — 5 a(l + n.2070) =
=1 i=1
n—1
= 2kq + 2%an — an — an > 2l =
i=0
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= 2ka + an(2" — 1 — 2" + 1) = 2¥aq,
coz souhlasi s pravou stranou.

Soustava ma pro kazdé a jediné feSeni.

4
Dejme tomu, Ze x, y, 2 jsou tii Cisla vyhovujici dané sou-
stavé. Z druhé rovnice dostaneme
5
Xy + y2 + 3x = fz Xyz.
Dosadime-1i do rovnosti

(x+y+2P=04 3 +254+ 3(x +y + 2)(xy +yz + 2x) —

— 3xyz,
vyjde
xyz = —24.
Je tedy
x+y+z=3,
xy + yz + z2x = —10,
xyz = —24.

Ted uz muzeme vyuZit vztaht mezi kofeny a koeficienty
rovnice
w3+ au’ + bu + ¢ = 0.

Maé-li tato rovnice kofeny x, v, 2, miZeme ji psat ve tvaru
(u—x)(u—y)(u —2)=0,
odkud vidime, Ze

a=—(x+y+2),b=xy+ 33+ 2%, c = —xYy3.
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V nasem piipadé jsou &isla x, y, 2 kofeny rovnice
w — 3u? — 10u + 24 = 0.

Ta m4 celodiselné kofeny 2, —3, 4 (viz poznamku za 2. feSe-
nim ulohy 37). Desazenim se presvédéime, Ze tato ¢isla sku-
te¢né dané soustavé vyhovuji.

Soustava mé Sest feSeni (x, y, 2):
(23 —33 4)3 (29 4: —3)3 <A39 2> 4)! (H39 49 2)) <4> 2; _3)3
<4> _3> 2)'

5

Predpokladejme, Ze kladna &isla x1, x2, ..., x, vyhovuji
obéma rovnicim. Podle Cauchyovy nerovnosti
n n n 2
Sup Y vz ( 2 uku)
k=1 k=1 k=1

vynasobenim obou rovnic dostaneme

n ”n n P
1 , 2 <
raer= w > 2| >kl =

k=1 k=1 e=1 <1>

1
= o wn + 12

Protoze v nerovnosti nastdva rovnost, existuje takové islo 7,
Ze pro viechna k € {1, 2, ..., n} plati

],'/xk = Z?: s Yoxg = Ak.
Ve

Z prvni rovnice pak plyne, Ze je
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A= .
2n(n + 1)
Soustava obou rovnic mé proto jediné feseni
k
- 2n(n + 1)
(Z rovnosti v (1) plyne, Ze uvedena &isla x; vyhovuji 1 druhé
rovnici.)

Xk ke{l,2,...,n}.

6
Oznac¢ime-li kofeny dané rovnice xi, x2, ¥3, j&
X+ ax? 4+ bx + ¢ = (x — x1)(x — x2) (x — x3),
tedy
X1+ x2 + x3= —a, XXz + xX2x3 + x3x1 = b,
a proto ‘
at = x% 4+ x2 + x3 + 2(x1%2 + x2x3 + x3x1) =
= 3(x1x2 + x2X3 + x3%1) = 3b.
Posledni nerovnost plyne z nerovnosti

2 2
X1+ x5+ x5 2 xixe + xXexs + o,

kterou dostaneme seltenim nerovnosti (x; — x2)2 = 0,
(%2 — x3)? 2 0, (x3 — x1)2 = 0. (Je téz piimym dusledkem
Cauchyovy nerovnosti.)

Druhé fesSeni. Neni tézké zjistit, ze ma-li mnohoclen
vSechny kofeny realné, ma jeho derivace také vSechny kofeny
realné. Derivace mnohoclenu x3 + ax? + bx + ¢ je mnoho-
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¢len 3x? + 2ax + b. Ten ma vSechny kofeny redlné, pravé
kdyz ma neziporny diskriminant, tj. kdyz

4a> — 1262 0
neboli
a > 3b.
7
Obé rovnice
gx> + px +1=0, (1)
2+px+g=0 (2)

maji tyz diskriminant D = p? — 4¢q - 0. Proto md kazda
z obou rovnic dva ruzné realné koreny. Jsou-li
—p + |p* — 44
2q - @

kofeny rovnice (1), jsou gxi, gx» kofeny rovnice (2), pficemz
gx1 — gx2 (¢ < 0).

Protoze ¢ - 0, je p> — 4q - p?, takZe x1 < 0 < x». Cislo
x1 bude tedy splilovat kvadratickou nerovnici

x2 4+ px + q <0,

pravé kdyz bude platit

X152 = X1 <. X2,

gxe < X1 <. gX15
pritom ale za danych pfedpokladu je druha nerovnost vzdy
splnéna, nebot x; < 0 <= gxi.
Nerovnost gxs << xi je ekvivalentni nerovnosti
g(—=p — |D) > —p + |/D,
neboli

p(1 — ¢~ (1 + g)|D. 3)
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Nyni probereme nésledujici moznosti (pfipad p <0 <1 + ¢
- zfejmé nastat nemuze):
a)p=>0,1 + g > 0; pak je nerovnost (3) ekvivalentni s ne-
rovnostmi
P(1 — g = (1 + gf(p* — 49),

—4p*q > —4q(1 + g),
P2 (L + gp
p =1+ gq;

b)p -0 -1+ g;pakjep(l — ¢) > 0>+ q)|D;
c)p <0, 1+ g~ 0; pak je nerovnost (3) ekvivalentni
s nerovnostmi

P — g < (1 + ¢(p* — 49),

p* < (1 + g,
—p=lpl < 1+4g =—-1-4
p > 1+q.

Vidime tedy, Ze pro libovolna redlna &isla p, ¢ (¢ <= 0)
spliiuje kofen x; kvadratickou nerovnici x? + px + ¢ < 0,
pravé kdyzjep > 1 + gq.

Druhé feSeni. Oznatme f(x) = ¢gx* + px + 1 a pfedpo-
kladejme, Ze rovnice f(x) = 0 méd dva redlné kofeny o, f,
o -~ f3. Protoze podle znimych vztaht mezi kofeny a koefi-

1
cienty plati «ff = P < 0,je « = 0 f. Navic f(0)=1 > 0,

1
takze x2f (;) = x? + px + ¢ bude pro x = o« zdporné, pra-
vé kdyz (obr. 6)

1 .
— < a, G a? < 1,
o
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Obr. 6
neboli —1 <= o < 0. Tato vlastnost kofenu « je viak ziejmé
ekvivalentni nerovnosti f(—1) < 0, neboli

g—p+1<0

coz jsme méli dokézat.

8

Abychom rozlozili vyraz na levé strané nerovnosti, hledme
na né& jako na kvadraticky mnohoclen a2 — (r + 2x2 )a +
+ x* + x3 — 2x2. Jeho diskriminant je

(x + 2x2)2 — 4(x* + 2% — 2x2) = oxz

a koreny jsou o ,
ar = x% + 2x, a» = x? — x.

Dand nerovnice mé tedy tvar
(x> +2x —a)(x> — x — a) -

Je-lia - 0, je feSenim nerovnice napf. x = 15 Pro —1 <
< a = 0 je feSenim napf. x = —1. V pfipadé a £ —1 mi
kvadraticky troj¢len x? + 2x — a diskriminant 4 + 4a < 0
a troj¢len x? — x — a diskriminant 1 + 4a <~ 0. Oba mnoho-

36



¢leny tedy nabyvaji jen nezdpornych hodnot, takZe nerovnost
neni nikdy splnéna.
... Dand nerovnost m4 feseni, pravé kdyz a > —1.

9

Dejme tomu, Ze &islo x je feSenim dané rovnice. Umocni-
me-li ob¢ strany na druhou, dostaneme po upravé, Ze pro
Cislo x plati

V2p +1 — x®)(Bx + P+ 4) — % 4 3x 4 2.
Po dal$im umocnéni dojdeme ke vztahu

xt + 9% + (17 + p)a2 + (9 — 6p)x — (2p2 + 9p) = 0.

Cislo x je tedy kofenem této rovnice. Abychom jeji levou
stranu rozlozili, podivejme se na ni jako na kvadraticky mno-
hoc¢len v p

=292 + (x2 — 6x — 9p + (x* + 923 + 17x> + 9x).
Jeho diskriminant je

(22 — 6x — 92 — 4.(—2)(x* + 923 4+ 17x% + 9x) =
= 9x% + 60x3 + 154x2 + 180x + 81 = (3x2 + 10x + 9)2,

kofeny jsou (je 3x2 + 10x + 9 > 0 pro kazdé realné x)

x2+8x+ 9
PII___‘Z—_“a P2 = x4+ x

a prislusny rozklad

x2+8x + 9
Pt - ¥ -0 =0,
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neboli
(x> 4+ 8x+2p +9)(x2+ x —p) =0.
Vidime, Ze Cislo x, které vyhovuje dané rovnici, je feSenimn
jedné z rovnic
x24+8x+2p+9=0,
x2+x—p=0.

Prvni rovnice viak nepfichdzi v Gvahu, jak zjistime srovnanim
s podminkou pro existenci odmocniny na pravé strané dané
rovnice. Kdyby totiz x bylo feSenim prvni rovnice, platilo by
zéroven

2+ 8x+20+9=(x+32+2x+p)=0,
X+ 9x+3p+9=(x+32+3x+p) =0,

coz je splnéno jen pro x = —3, p = 3. Pak v8ak neexistuji
odmocniny na levé strané dané rovnice.
Vyhovuje-1i tedy &islo x dané rovnici, je fe§enim rovnice

x4+ x —p =0. 1)

Dosadime-1i odtud za p do dané rovnice, dostaneme

Vx2 +2x + 1 + |22 + 4x + 4 = J4x2 + 12x + 9

neboli
’ lx + 1] + |x + 2| = |2x + 3|.

Tato rovnost plati, pravé kdyz je bud x = —1,nebox < —2,
Dosli jsme k zavéru, Ze dané rovnici vyhovuji pravé ty
kofeny rovnice (1), pro které x = —1 nebo x < —2. Rovnice

1
(I)maprop = — 7 realné kofeny
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Pritom x; = —1 pro kazdé p = — e

1
X2 = —~1pro—"i- Sp=s0, 2= —2prop 2 2.
1 ..
Prop = — " a pro 0 < p < 2 ma dandrovnice jediné fe-

1
Seni x;. Pro — 4 < p < 0aprop = 2 ma dani rovnice dvé

1
ruznd feSeni xi, x2. Prop < — - 4 nema rovnice feseni.

10

Protoze pro vSechna pfirozend ¢islan > 1 je

L (n—1)(n+ 1)
_n3/> —nz— nz LY

je

())-6-3)-

.4 m—1Dm+1) 1nun+1 1

S n? 2 n 2°

11

Postupné dostavame
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[X1X4 — X1X5 + XoX5 — XoX¢ + X3X¢ — X3X4| =
[x1(xs — x5) + x2(x5 — x6) + x3(x6 — X2)| <
|x1] |xa — x5 + [x2] [x5 — x6] + [x3] [x6 — x| =
M([x4 — x5] + x5 — x6| + [x6 — xa4]).

IATIA 1)

Vzhledem k symetrii posledniho vyrazu muzeme piedpokl-
dat, ze x4 < x5 < x¢. Pak

|xa — x5 + |x5 — x6| + |x6 — xa] = 2(x6 — x1) < 4M.

Pozndmka. Vyraz na levé strané nerovnosti je dvojnisobek
obsahu trojuhelniku ABC, ktery ma v kartézské soustavé sou-
fadnic vrcholy 4 [x1, x6], B [x2, x4], C [x3, x5]. Sestrojime-li
obdélnik KLMN se stranami rovnobé€Znymi s osami soufad-
nic opsany trojuhelniku ABC (obr. 7), plati pro jeho obsah

1
S(ABC) = - S(KLMN).

M C N
A
Obr. 7 K B=L

Délka strany obdélniku KLMN je vak nejvyse 2M, takze
S(KLMN) < 4 M?, coz dava uvedenou nerovnost.
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12
Piedpoklddejme, Ze pfirozend Cisla x, y jsou feSenim dané
X
nerovnice. Po vyndsobeni kladnym &islem 33 (y' + 1/2) do-

staneme

y|aZ — 292 < — 4 |/2.

R
Pro libovolnd pfirozend &isla x, ¥ je ovem |x? — 29?2 = 1.
Piedpoklddame-li navic y = 3, dostaneme

X —
yEIE =2 <+ )2 <

: 1
<2)2 + 5 < 2.1,42 + 0,125 < 3.
¥
Stati tedy uvazovat piipadyy = lay = 2.
Pro y = 1 dostdvame nerovnici
lx — )2 <1,

kterd ma v oboru pfirozenych Cisel feSeni x = 1, x = 2.
Pro y = 2 mame nerovnici

l4x — 8)2 < 1,
ktera ma jediné prirozené feSeni x = 3.
Dan4 nerovnice ma celkem tfi feSeni (1, 1), (2, 1), (3, 2).
13
Zkusme poloZit ¢; = ¢ = ... = ¢ = A > 0, g1 =

= Cpi2 = ... = ¢y = B > 0. Pak bychom méli najit takova
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kladna celd ¢isla 4, B, aby pro viechnap e {1,2, ...,k — 1}
platilo
BA+ (n— kB pPA+ (n—p)(k —p)A +
+ @ —p)(n— kB
aproviechnape (b + 1,k +2,...,n— 1}
A+ (n — kPB < pkAd + p(p — k)B + (n — p)?B,
neboli
(k+2p—nm)A=(n—FkB prol <p <k,
kA= 2n —2p —k)B prok <p=<n—1.
Stadi tedy, kdyZz najdeme takova kladné celd Cisla 4, B, aby
zaroven bylo
3k — n)d < (n — k)B,
(2n —3k)B < kA.
Z tisel 3k — n,2n — 3k muzZe byt nejvyse jedno nekladné, pak
je ovSem piislusnd nerovnost splnéna pro libovolnd kladni

A, B a druhd nerovnost je splnéna pro vSechna kladna celd
Cisla takova, ze

A n—Fk 2n—-3k A
0<—Si:—1—1, resp. 0 <

<.
R =B

1 2
Je-1li zéroveni3k —n > 01i2n — 3k >0 <tj. 3" <k <§n>,

je také
2n — 3k n—=~k

S_‘
3 =3k —n’

nebot tato nerovnost je ekvivalentni nerovnosti
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n

Kn—Bs

jez plati pro viechna k. Existuji tedy celd kladnd &isla 4, B,
pro néz je

2n — 3k A n—=k
reeiii e . < [
kR T BT 3k —n’
coz jsme chtéli dokdzat.

Druhé feSeni. PouzZijeme nerovnosti

1 =

n 9
SR !

2. Y% g ( l ;Vz) )
Xt i1 i1

kterd plati pro nezipornad Cisla x;, y;, x; # 0, a plyne z Cau-
chyovy nerovnosti

n
2
i=1

2

n n 2
; Zv?;( 2 um).
i=1 Q=1 i=1
Pro x; = x2 =

=Xp =P, Xptl = ... = Xy =N — P
(1 £p < n)aproy; = |/c; dostaneme nerovnosti
1 —_ —
> r (Jer + Yea + ... + Jeu)2

Zkusme pro dané k, 0 < k& < n, poloZit ¢; = ¢» =

pla+ ... +ep)+m—p)(cpn+ ... +cn) =

=cx = A, cx11 = cpr2 = = ¢y = B, pak je

1 - _ _
5 (et oo+ Jeup = —;(kVA + (n — k)|BY
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ke + ... +ca)+m—R)(crir + ... + ) =
= k24 + (n — k)’B.

Rovnost

1 -

Z (kA + (n — R)|B)? = B4 + (n — k2B
_ neboli
(k)4 — (n — BB = 0

je splnéna napt. pro &isla 4 = (n — k)2, B = k2. Pozadova-
nym nerovnostem tedy vyhovuji napf. pfirozeni Cisla

€l = C = ... =C :(n——k)z, Cktl = ... = Cp = k2,
14
Protoze
n n n n
- < . - 2 “ 2 -
S ==+ 2y —22 =0,
k-1 k-1 k1 k=1
je

n

‘ (xx + ) = E x; + Zyk 2‘9 xkyk>4\ Xk Y-
kl k=1 1 k=1 1

Stadi tedy dokazat nerovnost

n n

Xk Yk > —>n~
Z ot Lt XEVE

k=1 k=1
Ta je dasledkem Cauchyovy nerovnosti
n n n 2
S 3otz (3 um), 1)
k=1 k= k=1
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- 1
v niZ poloZime uw; = | xxyk, vi = ———. (Je také dusledkem
V Xk Yk

rerovnosti mezi ‘aritmetickym a harmonickym pramérem
kladnych ¢isel

2 @
L M
ST I b )
n
n
% -1
> a
k=1
v niZz poloZime ar = xpyi.)
Rovnost nastane, pravé kdyz
X1 =M1 = X2 =2Y2 = ... = Xp = Vn.

Druhé feseni. Podle Cauchyovy nerovnosti (1), v niz

1 v
polozime u; = xi + yi, vr = -, plati
|/
,L\ "‘,\ 1 n. b o Vi 2
k=1 k=1 Vi k=1 l/xkyk j
Stali tedy dokazat nerovnost
N ) p
ﬁ V Xkl

kterd plati, nebot pro kazdé ke {1,2, ..., n} je

X + Vi

Y2

[E75Y
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V ptipadé a1 = az = ... = a, = 0 dokazovani nerovnost
ziejmé plati a rovnost nastane, pravé kdyz x = 0. Dale
budeme predpoklddat, Ze alesponl jedno z &isel a1, ao, ..., an
je nenulové, a ukdZeme, Ze pak pro kazdé x plati ostrd ne-
rovnost.

. Diskriminant kvadratického trojélenu

@)=+ x(Sa) 4m S al

\i =1

je

n 4 n
D:(}:ai) —4m3 > al.

i1 i1
Protoze napt. p(0) > 0, staci dokazat, ze D < 0. Polozime-li
v Cauchyové nerovnosti
n 2 n n
(E um) =2 U ey
i1

i=1 i=1
u; = a;, vi = 1 pro kazdé i e {1, 2, ..., n}, dostaneme
n 2 n
(l az‘) <n3 af
ic1 =1

a po umocnéni na druhou

n 4 n 2
(:}‘ai) éng(ZaiZ).
ic1 i1

PouZijeme-li na pravou stranu opét nerovnost (1) (tj. pouZi-
jeme-li Cauchyovu nerovnost pro u; = a;, v; = 1), dosta-
neme
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L

1 i=1

i-

n 4 ) on 2 n n
(Zai) §n2(}:af)§n32a?«a4n3',\a?.
i=1 i=1 : =
Posledni nerovnost je ostrd, protoZe piedpoklidime, Ze
aspoii jedno z &isel ai, ao, . . ., a, je nenulové. Je tedy D < 0

a nerovnost je dokizina.

16

Odvodme nejprve tzv. CebySevovu nerovnost: Jsou-li
aas ... Sanb b= ... £ b, redlnd Cisla, pak

n n n
: ai > bi<n ‘\_ ab;,
i1 i1 i=1
a rovnost nastane, pravé kdyZ a; = a2 = ... = a, nebo
b] :b2: S v ® :bn.
Dostaneme ji se¢tenim nerovnosti
(ai — aj)(bi — bj) 2 0
pro viechny dvojice indexu i,/ € {1,2, ..., n}.
Pouzijeme-li Ceby3evovu nerovnost na n-tice

xS xS .S X, —X S —xpa1 =S ... S —x,

dostaneme
n n n
D Xi D —Xp—itl SR D —XiXn-i+l,
i=1 =1 i1

n 2 n
(2 xi) >n > XiXp-iil-
i1 i=1
Nerovnici, kterou mame vyfesit, vyhovuji tedy pravé ty
n-tice, pro které nastane rovnost v piedchozi nerovnosti,
Y. x1 = X2 = ... = Xy.
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Podie nerovnosti mezi aritmetickym a geometrickym pri-
mérem je

"araz ... an < =

odkud

Pcdle nerovnosti mezi aritmetickym a geometrickym prii-
mérem je

k
n

+ ... +a

Z poslednich dvou nerovnosti vyplyva

a*+at+ ... +a
nl.'< —

= J

n

coz dava dokazovanou nerovnost.

1
Rovnost nastane, pravé kdyza; = az = ... = a, = —.
n

Druhé FeSeni. Tvrzeni dokdZeme matematickou indukci
podle n. Pro n = 1 nastane rovnost. Predpokladejme, Ze pro
n = p dokazované tvrzeni plati, a dokazme je pro p + 1
kladnych ¢&isel ai, a2, ..., api1, jejichz soucet je 1. Pro p
kladnych &isel
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ay as ap

5 > eeesy o >
1 — api1 1 — apil 1 - Ap+1

jejichz soucet je 1, podle indukeniho piedpokladu pro kazdé
k ptirozené plati

p
a; -k
] 2,
- I —apn
i=1
neboli
LA
2 a; "z (1l = apu)t
i=1
Je tedy
p+1

»
—k _ N ok —k " - —
2 a4 "= 2 a "+a,7 Z2pFA —apn)t+a,) .
i1 i=1

Abychom dokézali, Ze pravd strana neni pro zadné a,1 €
€ (0, 1) mensi nez (p + 1)¥*1, najdeme minimum funkce
fx) = pFI(L — ) E 4wk
v intervalu (0, 1). Jeji derivace
fi(x) = kphti(l — x) k-1 — f xH-1
je rovna nule, pravé kdyz x = 1—)—:_71 Funkce f je v intervalu
(0, 1) spojitd a pro x —» 0, x > 1 je f(x) » +oco. Nabyva
1

tedy v intervalu (0, 1) minima, a to v bodé x = ;{_—1 :

1 1 \* 1 \*%
/ (ﬁ?) = (1 7‘?1) ’ (5?1) -
= (p + DL,
Tim je diakaz hotov.
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Oznatme
Ay, = sin a7 sin a» ... sin ay,
By, = cos a; cos as ... cos ay,
n
Cy = > |sin ap — cos axl;
k1
nerovnost

!An - Bni g C'n,

dokdZzeme matematickou indukci. Indukéni krok je zaloZen
na nerovnosti

|Ani1 — Bpi1] = |Ay sin ayy1 — By cos agy1| =

= [(An — By) sin a1 + By(sin azi1 — cos ay11)| <
< |An — Byl Isin aya| + | Byl [sin ayi1 — cos ayi1] <
= |An - Bni + |Sin an+1 — COS auill'

Pro n = 1 nastane v dokazované nerovnosti vzdy rovnost.
Pro n = 2 nastane rovnost, pravé kdyz

|(sin @1 — cos a1) sin az + cos a; (sin a2 — cos az)| =
+ [cos a1 [sin as — cos az| =
= |sin a1 — cos ai1| + |sin az — cos a|.

= |sin a1 — cos a1 |sin ag

Snadno zjistime, Ze je to pravé pro sin a; = cos ai, sin a» =
K
4
kou indukci pak dostaneme, Ze pro n > 1 nastane rovnost,
pravé kdyz pro viechna ke {1,2, ..., n}je

= COS ag, tj. pro ai, as € { + mm; m ceIéI . Matematic-

= |
ar € ) — + mm; mcelé | .
| 4 : j
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Druhé feSeni. Postupné dostdvime

[sin @1 sin @z ... sin a, — COS a1 COS Ay ... COS Ay| =
n
=| > sinai ... sinag 1(sin ag — cosax)Ccosay 1 ... Cos ay| <
k-1
n
< >sinay ... sinag 1 (sinap — cosag)cosagi ... cosa,| <
k=1

n
< > |sin ap — cos agl.
k-1

Pro #» = 1 nastane rovnost vZdy. Pro n = 2 muZec rovnost
nastat, jen kdyZ sin a; = cos a; pro viechnak € {1,2, ...,n}.
Kdyby totiz bylo sin ar — cos ar # 0 pro né&jaké %, plynulo
by z posledni nerovnosti, Ze pro vSechna i < % je [sina;| =
= 1 a pro vSechna j > kje |cos a;| = 1. Odtud by vyplyvalo,
ze proviechnak € {1,2, ...,n} je sin a; # cos ax, a tedy

[sin a| = |cos ai| = 1, coz neni mozné,.
19
Pro x # 0, x # 2 muZeme psat funkci f ve tvaru
—6 (x2 — 2x)
fO) = e oy —2x—3) 19 (1)
—6
= ~)A e
x2 —2x —3 + PR

Pokud x2 — 2x > 0, tj. x << 0 nebo x > 2, je
-6

fx) = 77— 3\
<]/x2 — 2x — ——sz = 24) + 3
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a f nabyva nejmensi hodnoty — 2, pravé kdyz

S 3
sz i Zx = B
Jx? — 2x

totiZ pro x = —1 a pro x = 3.

V pfipadé x? — 2x < 0 je z vyjadfeni (1) funkce f vidét,
ze f(x) > 0. Pro x = 0 a pro x = 2 je f(x) = 0.

Funkce f nabyvd minima —2 pro x = —1 a pro x = 3.

Pozndmka. Derivovanim funkce f bychom ulohu prevedli
na algebraickou rovnici 5. stupné.

20

Snadno zjistime, Ze

pz P2
f)y=2\x+ 7] +5 —1proxelp —1p+ 1D,

fx) = 6px — 2 + 1proxe(—o0,p — 1> U{p + 1, +o0).

P 2 2
Jestlize -—Ee(p — 1, p + 1) neboli p e(— 3,3‘): pak

funkce f v intervalu <p -1, — Z—> klesi a v intervalu

J_? s . s = _ P ok
" 2 P+ 1/ > roste, takZe v bod¢ x = — 2 ma lokal-

ni extrém. (Dal$i lokilni extrém md v bodé x = p — 1
nebo x =p + 1.)

2 ?
Jestlize p < — Y je — 3 = p + 1 afunkce f v interva-

Iu (—o0, +00) klesd a nem4 tedy lokalni extrém.
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2
Jestlize p > 3 je — - <p —1 a funkce f v intervalu

2
(=00, +00) roste a nema tedy lokélni extrém.
2

Funkce f nema lokalni extrém, pravé kdyz [p| = 3

21

Funkce fi(x) = |x — a| nabyvd minima v bodé¢ x = a.
Dile vysetfime funkci fo(x) = |x — a| + |x — b|, kde a < b,
a zjistime, Ze pro x € {a, b) je fo(x) =x —a + b — x =
=b—a,prox <ajefo(x)=a—x+b—x=a+b—
—2x>a+b—2a=b—a a pro x>b je fox)=
=x—a+x—b=2x—a —b>2b—a—b=b—a,
takZze funkce fo(x) nabyva minima pro vSechna x € (a, b).

Dana ¢isla maZeme oznadit tak, ze a1 L ax < ... < ay,
a danou funkci

fu(x) =2 |x — ai
i1
napsat ve tvaru
fa(x) = (Jx —a1| + |x — aul) + (Ix — a2| + |x — ap1]) +
+ oo+ (lx —ag| + |x — ak.H!)
pron = 2k,
fux) = (12 —ai] + |x — aul) + (Ix — a2| + |x — ana]) +
+ oo+ (x = aga] + |x — agn]) + |x — ag

pron =2k — 1.

Kazdd z funkci |x — ai| + |* — aui1-¢| nabyvd minima
pro viechna x € {ai, ani1-:p, odkud vyplyva, Ze funk-
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ce fu(x) nabyvd minima v piipadé » = 2k pro viechna
x e{ak, ag+1y a v piipadé n = 2k — 1 pro x = ap. V pii-
padé n = 2k je jeji minimum
k k
D Qp+i — O, ai,
i=1 i=1
v pripadé » = 2% — 1 je jeji minimum
k—1 k—1
Soa

-

ki — 2, Qi
i=1 i=1

22

Pro n = 1 je hledané maximum rovno 1. Predpokliddejme,
e n > 1, a oznaéme P mnozinu vSech n-tic (x1, x2, ..., X»)
nezapornych celych ¢isel spliujicich podminku

B+ o+ ..+ xS T
dile oznaéme M mnozZinu viech n-tic z P, které davaji nej-
vetsi soucet
X1+ x2 4+ ... + xp.

Uvazujme n-tici (x1, x2, ..., %,) € M. Z podminky (1) je
ziejmé, Ze pro alesponl jedno z &isel x1, x2, ..., x, plati
x; < 2. Kdyby to platilo pro viechna &isla x1, x2, ..., Xn,
méli bychom

G +1P+0+ ..+ 0SB +1+...+1=
=T+ n < Tn,
takze (x; + 1, x2, ..., x,) € P, a pfitom
x1+1+x4+ ... +x, >x14+ %24+ ... + xp,
coZ odporuje pfedpokladu (x1, x2, ..., x,) € M. Pro alespori
jedno z Cisel x1, x2, ..., x, tedy plati x; = 2.
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Je-li nékteré z Cisel x1, x2, . . ., x, V&t§i neZ 2, napf. x; > 2,
uvazujme n-tici, kterd vznikne z n-tice (x1, x2, ..., %) tak,
7e¢ x; nahradime dislem x; — 1 a x; nahradime ¢&islem
x; + 1. Soucet se nezméni a soucet tfetich mocnin se ne-
zvetsi, protoze pro x; < 1 je

(o + 1P + (e — 1P = o] + 2 +3(x] — %) +
+3xi+x)=x+x + 30 + x)(xi —xx + 1) <
< x} + x.

Dostali jsme tak n-tici, kterd rovnéZz patii do M.

Podobné, je-li nékteré z &isel xi, x2, ..., x, rovno nule,
uvazujme n-tici, kterd vznikne z n-tice (x1, x2, ..., %) tim,
ze x;; = 0 nahradime &islem x,, + 1 a x; (x; = 2) nahradime
¢islem x; — 1. Soucet se tak nezméni a soudet tietich mocnin
se nezveétsi, protoze

(% — 1B + 13 = 27 — 327 + 3x; < 7 + 0.
Dostali jsme tedy n-tici, kterd také patii do M.

Odtud vidime, Ze v mnozin€ M existuji takové n-tice
(%1, %2, ..., xXp), Ze kazdé z Cisel x1, x2, ..., X, je rovno 1
nebo 2. Je-li » z t&chto &isel rovno 2 a n — r jich je rovno 1,
bude hledané maximum rovno

2r+mn—r=mn+r,
pric¢emz r je nejvétsi celé &islo vyhovujici podmince
r.25 + (n —r).13 < 7Tn,
neboli

A 6n 6n
Je tedy r = Ak hledané maximum je n + = s
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Podle Cauchyovy nerovnosti

n 2 n n
N - 2 2
(Zuw,-,) 22U 2y

vi=1 =1 1=1
plati
1 n | n
s:}isin2xi =2| > sin x; cos x| <
i=1 i—1
/ n n S
<2 |/ >sin®x; Y cos?x; = 2|/k(n — k),
i—1 i1
nebot
n n
> ocostx; =2 (1 —sin?x;) =n — k.
i1 i-1

Rovnost v uvedené nerovnosti nastane pravé tehdy, bude-li
pro né&jaké A a pro kazdéie {1, 2, ..., n} platit
sin x; = Acos x;,

tj. pro viechna 7 bude tg x; = A.

Protoze
n
> sin® x; = &,
i-1
nastane rovnost napf. pro Cisla x; = x» = ... = x, €
Tc\
€ \/O, - \, pro néz
N2/
/™ / —
. / n — k.
sin x; = ,/f,cosx,::[/, ,1ef{l, 2, ..., n}.
n n .

Pro takovou n-tici pak je s = 2|/k(n — k).
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Ze vzorce

BESD T gtk 2

(funkce tangens je zde ziejmé definovana pro kazdé prirozené
Cislo &) plyne rovnost

tglk—1)+tgltgktg(k—1)=1tgk —tgl,
aje tedy (tg 1 # 0)

1
tg ktg (b — 1):— (tgk —tg(k —1)—tgl).

Odtud snadno vypolteme uvazovany soucet
n 1
\ L ghgk—1) = (gn—1g0—nigl)=
1

:tgltgn—n.

1
Stadi tedy polozit 4 = @gi’ B = —1. Tim je dukaz hotov.

Druhé reseni. Pfedpokladejme, Ze takovd redlna Cisla A, B
existuji. Pak musi pro libovolné pfirozené n platit, Zze
tgntg(n — 1) =
n-—1

= 3 tgktg(k—l) - ,\ tgktg(k —1) =

:A(tgn—tg(n—l))+B. , 2)



Pouzijeme-1i opét vzorce (1), dostaneme rovnost
tgn(tgn —tgl) =
=Atgn(l +tgltgn)— A(tgn —tg 1) +
+ B (1 + tg1tgn),
neboli
tg?2n(l — Atgl) —tgn(tgl + Btgl) —
—Atgl — B =0.
Dostali jsme kvadraticky troj¢len proménné x = tg n, ktery
je identicky nulovy. Posledni rovnost bude tedy splnéna
pro kazdé prirozené n, bude-li
1 —Atgl =0,tgl + Btgl =0,
Atgl+ B =0.

Protoze pro A = B = —1 jsou viechny tii rovnosti

e

splnény, plati rovnost (2) pro libovolné prirozené n. Zbyva

jen ovéfit, Ze pro nalezend Cisla 4, B je také
tgltg0=Atgl + B,

coz ziejmé plati. Zbytek dokiZeme matematickou indukci,

kdyZ pro indukéni krok pouzijeme vztah (2).

25

Oznatme » polomér kruznice opsané uvaZovanému troj-
thelniku. Pak je

a =2rsin o, b = 2rsin f§, ¢ = 2rsin y,
atedy

acos o + bcos § + ccosy =
= 2rsin « cos o + 2r sin  cos f + 2r sin y cosy =
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= 2r(sin (« + f) cos (x — f) + sin y cos y) =-
= 2r (sin y cos (& — f) — sin y cos (« + f)) =
= 2r sin y (cos (a« — f) — cos (o0 + p)) =

= 4r sin « sin f sin y.

|

ProtoZe v intervalu (0, =) jsou hodnoty funkce sinus kladné,
je uvazovany vyraz kladny.
Druhé FeSeni. Podle kosinové véty je
2ab cos y = a? + b*> — 2,
2ac cos ff = a® + ¢ — b7,
2bc cos o = b2 + ¢ — a*.
Vynasobime-li prvni rovnost &islem ¢?, druhou 4% a tfeti a*
a seCteme, dostaneme
2abc(a cos o + bcos f + ccosy) =
= 2(a%6> + a’c* + b%c*) — a' — bt — ¢t =
= 4a%c® — (a> — b% + ) = 4a’c? — (ac cos f)* =
= 4a%c*(1 — cos? 3) =~ 0.
Treti feSeni. Pokud trojahelnik neni tupouhly, je platnost
dokazované nerovnosti ziejma. Necht tedy » je tupy uthel.

\

'
Vyuzijeme-li toho, Ze funkce kosinus na intervalu (0, 5)

klesa a je kladnd, a trojuhelnikové nerovnosti, dostaneme

acosa + beos f - acos(a + f) + bceos(x + ff) >
> ccos (o + ff) = —ccosy.
26

Ozna¢me y uhel leZici proti strané ¢ prvniho trojahelniku
a o uhel lezici proti strané w druhého trojahelniku. Dosadi-
me-li do dokazované nerovnosti podle kosinové véty
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Il

¢ =a®>+ b*> — 2abcos vy,

o 9

w? = u? + v°> — 2uv cos ®

a podle znaimého vzorce

2P = absin vy,

20 = uv sin w
a upravime, pfevedeme ji na nerovnost

a’v®> + b*u? = 2abuv (cos y cos o + siny sin o).
Pouzijeme-1i jesté vzorec pro kosinus rozdilu, dostaneme ne-
roviost
(av — bu)?* = 2abuv (cos (y — w) — 1)

ekvivalentni s dokazovanou nerovnosti. Posledni nerovnost
viak vzdy plati, protoZe leva strana je nezdpornd a prava ne-

kladna.
Rovnost nastane, pravé kdyz je soucasné

av = bu,y = o,
tj. kdyz jde o podobné trojuhelniky, u nichZ strandm a, b, ¢
odpovidaji strany u, v, .

27

Snadno zjistime, Ze
a=2rsina, b =2rsinff,c = 2rsiny,
takze
V = 4r¥(sin? o + sin® f + sin? y — 2) =
= 4r(1 — cos®> 2 — cos? # — cos® y).
Protoze
cos?y = cos? (a + f1) = (cos x cos § — sin « sin ) =
= cos?a cos? f§ + sinu sin? f — 2cos o cos ff sin « sin [ =
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= cos®x cos’ff + (1 — cos®a) (1 — cos?f}) —
— 2cos a cos [ sin o sin ff =
1 + 2 cos?a cos®ff — cos?a. — cos?f§ —
— 2cos « cos 3 sin a sin § =
=1 — cos?a — cos?f} +
+ 2cos « cos ff(cos « cos f — sin « sin ff) =
=1 — cos?a — cos?fi + 2cos o cos f cos (o + f) =
=1 — cos?a — cos2f} — 2cos « cos f3 cos y,

je
V' = 8r2 cos a cos i cos y,
odkud plyne prvni tvrzeni.
Dukaz druhého tvrzeni spocivd v upravé

sin « sin ff cos y + sin fsin y cos o + sin y sin « cos f§

cos a cos 3 cos ¥ ’

odkud plyne
2cos « cos # ces y W = sin o(sin f cos y + siny cos f) +
+ sin f(sin « cos y + siny cos «) +
+ siny(sina cos § + sin ff cosa) = sin? o + sin? 5 + sin®y > 0,
takZe W ma stejné znaménko jako cos o cos ff cos y.

Pozndmka. Trojuhelnik je pravouhly, pravé kdyz V' = 0.
V tomto piipadé neni W definovino.

28

Oznaéme b, = ap+2 — 2an41 + 3a,. Mame dokazat, Ze
by = 0 pro vSechna pfirozena n. Podle daného rekurentniho
vztahu

b1 = 5an+2 — 9ani1 + 9an — 2ani2 + 3ap =
= 3(an+2 — 2an+1 + 3an) = 3by,
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takze
by = 3n-1py,
jak snadno plyne matematickou indukci.
Protoze podle predpokladu je
[bn] = lani2| + 2lapa] + 3lan] £
é 271i2 + 2.2‘”,51 + 3‘271, p— 11.2"3
plati pro kazdé prirozené Cislo n
2\
3n byl < 11.27, ). [by] < 33 <3> .
Proto je b, = 0, tedy b, = 3% 1by = 0 pro kazdé », coZ jsme
méli dokazat.
Pozndmka. Obecné feseni dané¢ho rekurentniho vztahu na-
jdeme felenim piislusné charakteristické rovnice
B —524+91—-9=(1-3)(12—-21+3)=0,
kterd ma kofeny A1 = 3, A2,3 = 1 + i]/2. Kazd4 posloupnost
vyhovujici dané rekurenci pak mé tvar
anp = A.3" + BRe 75 + CIm 2, (1)
kde A4, B, C jsou libovolné konstanty a Re, Im oznacluje
redlnou a imaginarni ¢4st komplexniho ¢isla (podrobnéji napt.
v knize N. J. Vilenkina Kombinatorika, SN'TL-Mir, Praha-
~-Moskva 1977). Z podminky
lan| = 2%
ovsem plyne, ze ve vyjadieni (1) uvaZzované posloupnosti musi
byt A = 0. Jinymi slovy, takové posloupnosti {a,} spliiuji
rekurentni vztah ay2 — 2a,:1 + 3a, = 0 s charakteristickou
rovnici A2 — 24 + 3 = 0.

62



29

Posloupnost (a;) splitujici dany rekurentni vztah je mono-
ténni, jak dokdZeme matematickou indukci. Necht napi.
ap £ a1 a predpokladdejme, Ze ap < ... < a1 = ay. Pak je

a1 = 4ap — 3an-1 = an.

Ptitom je tato posloupnost bud konstantni, nebo ryze mono-
tonni. Je-li konstantni, je posloupnost (b,) rovnéZz konstantni
a vyhovuje tudiZz danému rekurentnimu vztahu.
Predpokliddejme dale, Ze je posloupnost (a,) nekonstantni,
pak od jistého ¢lenu pocinaje (tj. pro vsechna n = ny pro

vhodné ny) jsou jeji ¢leny viechny kiadné nebo viechny zapor-

an
né. Polozime-li ¢, = ——, je ¢;, => 0 pro n > ny a z dané re-
Anp-1
kurence mame
3
Cn - 4 — T,
Cn—1

takZe je bud a) 0 < ¢, < 1 pro vSechnan > ng + 1,
nebo b) 1 < ¢, £ 3 pro viechna n > ny + 1,
nebo c¢) 3 << ¢, < 4 pro vechna n > ny + 1.

Pfitom je v pifipadé¢ a) a ¢)

3

1 =4 — — > cp,
Cn

v pfipadé b) ¢, 1 < c¢u. Posloupnost (¢c,) stejné jako posloup-
nost (cucu11) je tedy od uritého ¢lenu pocinaje monoténni
1 omezend. Proto je posloupnost (4,),

An+1
by = p = [cpi16n],

n—1
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od ur¢itého ¢lenu podinaje jiz kenstantni. Konstantni posloup-
nosti viak spliivji dany rekurentni vztah.

Druhé feSeni. Danému rekurentnimu vztahu piislusi cha-
rakteristickd rovnice

A2 — 42+ 3 =0,

ktera md koteny 41 = 3, s = 1. Cleny posloupnosti (a,) maji
tedy tvar
a, = A.3" + B,

kde 4, B jsou reilné konstanty. Posloupnost (ay) je ziejmé
monotdnni, takZe pokud neni konstantni, je od jistého ¢lenu
poc¢inaje nenulova. Pak je ale

A.3nH 4 B] [9/1.3"-1 + 9B — 9B + B]

bu lZ{&TUﬁ B A3n1 1+ B

| =s)
S*+laz B

—8B
A.3»1 + B

pfi¢emz posloupnost ( ) konverguje monoténné

k nule. V kazdém ptipad¢ je tedy posloupnost (b,) od jistého
¢lenu pocinaje jiz konstantni a kazda konstantni posloupnost
splituje dany rekurentni vztah.

30

Zvolme libovolné index i. ProtoZe posloupnost (a,) neni
omezena, existuji jeji ¢leny a;,, pro které plati

am > max (a1, az, ..., a).
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Jako j vezméme index prvniho takového ay, tj.
J = min{m; ayn > max (a1, a2, ..., a)}.

Ziejmé jej - 1. Aby bylo ax — a; = a; — a;, musi platit

ar = 2a; — a;. (1)
Protoze a; > a;, je

2a; — a; > aj. (2)
ProtoZe posloupnost (a;,) obsahuje vSechna pfirozena Cisla,
existuje index % takovy, Ze plati (1). Z toho, jak jsme definovali
index 7, a z nerovnosti (2) vyplyva, Ze £ > ;. Tim je dukaz
hotov.

Ukazali jsme dokonce, Ze existuje nekone¢né mnoho trojic

indext 7 < j < k takovych, Ze ar — a;j = a; — a; a pfitom
ap < aj << ag.

31
Z definice posloupnosti (¢,) vyplyvd, Ze existuje posloupnost
ki, ko, ... takovi, Ze
€1 = ap(ky) + br(), €2 = apgs) + bresy, - - -
Navic pro i # jje ki # k;.
Protoze posloupnosti (a,), (bs) jsou nerostouci, je a; < am
proj = mab; < b, proi = n. To znamend, Ze nerovnost

aj + bz > am + bn

muze platit jediné proj -~ m nebo i < n.
Oznatme A = {s; P(ks) < m}, B = {s; R(k;) < n}. Je-li
tedy ¢s > am + by, pak podle piedchoziho je s € A U B. Pro-
toZe mnozina A m4a pravé m — 1 prvkd a mnoZina B pravé
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n — 1 prvkd, md mnoZina A U B nejvyse m + n — 2 prvku.
Nerovnost ¢s > am + b, muZe tudiZ nastat nejvyse pro
n + m — 2 hodnot indexu s. Proto pro (n + m — 1)-ni ¢len
nerostouci posloupnosti (¢,) plati

Crim—1 S am + ba,

coz jsme méli dokazat.

32

Vyhovuje-li posloupnost (a,) podminkiam ulohy, je a, =
= ag + nd pro vSechna n = 0. Pfitom je ziejmé, Ze musi byt
d # 0, protoze jinak by posloupnost ((—1)"a,) obsahovala ne-
kone¢né mnoho dvojic stejnych ¢lent.

Obsahuje-li posloupnost ((—1)"a,) né&jakou dvojici stejnych
Clent, musi existovat celé Cisla 0 < p << ¢ takova, Ze

Ap = —Aag,

pricemz p + ¢ je liché (jinymi slovy, &leny posloupnosti (a,)
nemohou byt vsechny vesmés nezdporné nebo vesmés ne-
kladné, a protoZe p + ¢ je liché, nemuze posloupnost obsa-
hovat ani nulu). Pak je ale také

ap1=ap —d= —a; —d = —agn,
ao = —dpig,

takze (obr. 8)

O o . Yp+q
a, a,

Qign Gigpp Apeg-1

Obr. 8
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ap = —ap+gs
—ar = Aapiq-1,

ai970 = —Aap+g-1970,
—Q1971 = Ap+q-1971
je pravé 1972 dvojic stejnych ¢lent posloupnosti ((—1)"ay),
pravé kdyz
ai1972 = Ap+q-1971,
1.
p + g = 3943.
» Odtud plyne, zZe je
ap — —das943 — —ag — 3943d,
2a¢p = —3943d.
ProtoZe ajp jsou celd &isla, musi byt d = 2r, kde r je celé,
a vSechny posloupnosti (a,) s pozadovanymi vlastnostmi maji
tedy tvar

ap, = —3943r + 2rn,
kde r je libovelné celé &islo. -

33

Oznadime-li z = x — [x],je 0 < z < 1. Re§ime rovnici
3[x]*> + 6([x] + 2) — 4 = 0.
Vyhovuje-li ¢islo x této rovnici, plati

3[x]2 + 6[x] = 4 — 62, (1)
4
takZe -3 < [x]? + 2[x] = 3
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Protoze [x]? + 2[x] je celé C&islo, midme dvé mozZnosti, totiz
[x]? + 2[x] € {0, 1}. V prvnim ptipadé vyhovuje [x] = O

a[x] = —2,vedruhém piipadé piislusna kvadraticka rovnice
nemd celociselné kotfeny. Z rovnice (1) tak dostivame dvé
2 . .
feSeni x = ax = ktera dané rovnici skute¢né vy-

3 3
hovuji.
Druhé feSeni. Z dané rovnice je zfejmé, Ze pokud ji ¢islo x
r
vyhovuje, je 6x celé &islo, takZze x = ¢ + e kde g je celé
Gislo a re {0, 1, 2, 3, 4, 5}, ¢ = [x]. Rovnice md pak tvar

3¢+ 6g+r —4 =0, .
odkud vidime, Ze » — 4 je délitelno tfemi, takZe » = 1 nebo
r = 4.V prvnim pfipad¢ je

3¢2 + 6g — 3 =0,
¢ili
q2 + 2q —-1= OJ
ale takové celé &islo ¢ neexistuje. Ve druhém pripadé méme
3¢%2 + 69 = 0,

2 2 4
odkudq:O,x:fgneboq: —2,x:—2+f§ =-3-

34

Vyhovuji-1i ¢isla x, ¥ obéma podminkim, plati pro né

[(x]P + [2 = 3x] =0,

y =2 — 3x. O
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Oznatime-li 2 = x — [x], bude 0 < z < 1. Pfitom je
[2 —3x] = [2 —3([x] + 2)] =[2 — 3[x] — 32] =
= 2 — 3[x] + [—3z].
Protoze —3z e(—3,0), je [—32]€ {—3, —2, —1,0}. Cislo
|x] tedy vyhovuje nékteré z rovnic
23y —1=0,

u? — 3u =0,
> —3u+1=0,
u? —3u + 2 =0.

Obr. 9
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Prvni a tieti rovnice nepfipadd v ivahu — nemd totiZ celo¢isel-
né feSeni. Z druhé rovnice vychazi [x] = 0 nebo [x] = 3, ze
¢tvrté rovnice [x] = 2 nebo [x] = 1. Po dosazeni do rovnic (1)
zjistime, Ze viechna feSeni tlohy jsou dvojice (x,y = 2 — 3x),
AN 10 1IN
o Y R
kdexe<3, 3,/ Y {1}vu {2} u<3, 3"

Druhé ¥eSeni. Z definice celé &asti vyplyva (ohr. 9), Ze
v roviné s kartézskou soustavou soufadnic vyhovuji prvni
podmince pravé ty body (x, ¥), které lezi uvniti jednotkovych
¢tverch, jejichZ strany jsou rovnobéZné s osami soufadnic
a jejichZ levé dolni vrcholy leZi v bodech (k, —%2), kde % je
celé Cislo, veetné téchto vrcholii a vnitfka stran, které je
obsahuji. Uloha je tak pfevedena na hled4ni praniku ptimky
3x + y = 2 s pravé popsanou mnozinou.

35

IV

1
Proae(0,1)je[a] =0, [—‘; 1, [a]Val = 0.

>
Proae(l, + w)jela] =1, l—a-] =0, [a]V/el =1,

Proa = 1 je [a]l/a = 1.
Je-li & pfirozené &islo, bude tedy

k
x ["5]
" =0 pro x€(0, &),
k
x I7
Y =1 pro xe <k, + o).
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Zvolme kladné ¢&islo x. To ziejmé lezi v [x] intervalech
(k, + o0), kde % je pfirozené &islo, totiZ v intervalech {1, + c0),
{2, +0), ..., {{x], + ). (Pro [x] = 0 Zddny takovy interval
neexistuje.) Prvnich [x] séitanct soultu, kterym je definovina
vy$etiovand funkce f, je tedy rovno 1 a ostatni jsou nulové.

Je tedy f(x) =
36

[Vkﬁ] je takové cel€ &islo m, pro které plati
m= V;, —m+ 1,

neboli
m < k<(m+ 12 =m?+ 2m+ 1.

Pro uvedenych 2m + 1 hodnot £ je tedy [ VE] = m, takZe

Sy = s (2m+1)m—2"z 'S m

m=1

Vyuzuerne—h znamé vzorce

r 1 r 1
Ziz*z*r(r+l), Zizzzr(r+1)(2r+l),
i=1

i=1
dostaneme

n?—1

_ 1 1
2 [Jr] = S@—Dn@n—D+ 5 @-Dn=

e %(n — Dn(n + 1).

Odtud vidime, Ze vSechna hledand = jsou ta, kterd ddvaji pfi
déleni sedmi zbytek 0, 1 nebo 5.
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37

Ve vyrazu pro N se n vyskytuje jen v sudych mocnindch.
Oznatme proto m = n?. Je-li n liché, tj. n = 2k + 1, je

m= 2k + 12 =4k> + 4k + 1 = 4k(k + 1) + 1.
Ze dvou cisel &, k£ + 1 je pravé jedno sudé, je tedy m tvaru

m = 8r + 1.
Potom

N = md + 3m?> + Tm — 11 =
= Br+ 13+ 38+ 12+ 78r+1)—11 =
= 2.256r3 + 192¢2 + 24r + 1 + 1922 + 48r + 3 +
+ 56r + 7 — 11 = 2.256r3 + 384r2 + 128r =
= 2.256r% + 128+(3r + 1).
Z &isel r, 3r + 1 je pravé jedno sudé a pravé jedno liché, je
tedy soucin (37 + 1) sudy a ¢islo N je délitelné 256.

Druhé feSeni. Rozlozme dany mnoho¢len na soudin jed-
nodussich mnohoclena. ProtoZze x = 1 je kofenem mnoho-
Clenu x3 + 3x2 + 7x — 11, je

N =(n>—1)(@m* + 4n® + 11).

Protoze n je liché, je ¢&islo n> — 1 sou¢inem dvou po sobé
jdoucich sudych ¢&isel » — 1, n + 1 a je tedy délitelné osmi.

Kvadraticky troj¢len x2 + 4x + 11 mé zdporny diskrimi-
nant, takZe ho nemuZeme déle rozloZit na soucin dvojélent
s redlnymi koeficienty. ProtoZze 256 = 8.32, muZeme ale psit
(mod 32)

4 + 1l =nt +4n> - 21 = - 3) (2 + 7) =
= (n% — 3) (nz — 25).
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Cislo
2 —3)m® — 1) (n®> — 25) =

= —-3)(n—5m—-1)m+1)m+5)
je délitelné 256, nebot n2 — 3 je sudé, rovnéz kazdé z Cisel
n—5n—1,n+ 1,n+ 5jesudé, pravé jedno z ¢isel n — 5,
n + 5 a pravé jedno z &isel n — 1, n + 1 je délitelné Ctyfmi
a navic pravé jedno z uvedenych ¢&isel musi byt délitelno osmi
(kazdé Ctvrté sudé &islo je délitelné osmi). A protoZe

N=00*—1)m — 3)(m® — 25) + 8.324,
je &islo N délitelné 256.

Pozndmky. Méame-li mnohoc¢len s celo¢iselnymi koeficienty,
dovedeme fici, jak mohou vypadat jeho raciondlni kofeny. Je-1i

f(x) = apx" + aﬂ—*lxnwl + ... + arx + aop,

. . . P
pak ziejmé pro jeho racionélni kofen x = p (p, g nesoudélna)
plati
anp” + apap™lqg + ... + aipg®l + apg® = 0.

Odtud plyne, Ze musi byt p | ap, g | ax. Je-li specidlné ay = 1,
pak mohou byt raciondlnimi kofeny daného mnohoclenu jen
ta celd Cisla, kterd jsou déliteli jeho absolutniho ¢lenu. Toho
jsme napf. vyuzili pfi »uhddnuti« kofenu mnohoclenu x3 +
+ 3x2 + 7x — 11 — muZe totiZ mit pouze tyto raciondlni
koreny: 1, —1, 11, —11.

K vypoc¢tu hodnot mnohoclenu f se pouzivé tzv. Hornerova
algoritmu. Mnoho¢len f miZeme psat ve tvaru

f(x) = (...((anx + an-1)x + an-2)x + ...)x + ao.
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Vypocet hodnoty mnohoclenu je pak vyhodné provadét »ze-
vnitf«. PoloZime A = a, a postupné potitime A», 43, ..
An+1 podle vzorce

*d

Ap1 = Agx + an-r.
Nakonec dostaneme 4,11 = f(x).

Tteti FeSeni. ProtoZe n je liché, polozme n =2k + 1, &

celé. Pak je

N = nb +3n* + 7> — 11 =

@k + 1) + 32k + 1)* + T2k + 17 — 11 =

(2R)S + 6(2k)> + 15(2k)* + 20(2k)® + 15(2k) +

+ 6.2k + 1 + 3(2k)* + 12(2k)° + 18(2k)*> +

+ 12.2% + 3 + T2k + 14.2k + 7 — 11 =

26k6 + 3.26k5 + 9.25k% + 28k3 4+ 5.20k% 4 20k =
= 256k3 + 2°k(2k5 + 6k* + 9F® + 5k + 2).

Stati tedy dokazat, Ze pro libovolné celé % je mnohoclen

p(k) = 2kS 4 65 + 9k* + 5k + 2k
délitelny osmi. Vypocteme proto hodnoty p(0), p(1), ..., p(7)
(vyuzijeme Hornerova algoritmu, pfi¢emz politime mo-
dulo 8), a protoze kazd4 z nich je délitelnd osmi, je i ¢islo N
délitelné 256.

Il

Il

38
Matematickou indukci podle £ dokdZeme, Ze soucet
Lp=1m 4 2m 4 .. 4 (nkF — 1) + (nF)ym
je délitelny Cislem nF—1.

Pro £ = 1 to zfejmé plati. Pfedpokliddejme, Ze dokazované
tvrzeni plati pro 2 = p, a uvaZujme soucet
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Lpyy = 1m 4+ 2m + .. 4 (nP)" +
+@mP 4+ 1"+ (P + 2" + ...+ (2nr) +

+ ...+
+ ((n— Dpp+ 1)+ (n — Dpp+ 2" 4 ... +
+ (npﬂ)m_

Podle binomické véty zde bude v (j + 1)-nim Fadku
(Ge{l,2,...,m—1})

(n? + 1) + (jn? + 2y + ... + (jn? + nP)? = L, + nP4;,
kde A; je celé &islo. Celkem je tedy

Ly = Ly+ Ly +nPAr + ... + Ly + nPAy =
= nLly + n?(A1 + A2 + ... + Au).

Podle indukéniho ptedpokladu je L, délitelné Cislem n?~!,
a tak je Ly délitelné &islem »#?. Tim je indukeni krok a cely
dukaz hotov.

39

Necht 7 je pfirozené Cislo, pro které plati tvrzeni tlohy.
JestliZe pro prvodislo p plati p? < n, pak je n délitelné &islem p.
Skute¢né, kdyby p nedélilo 7, p2 < n, potom by byla p%, n
nesoudélna &isla, ale p? neni prvodislo.

Snadno zjistime, Ze &isla 1, 2, 3, 4, 6, 8, 12, 18, 24, 30 tloze
vyhovuji. Z4dné jiné &islo mensi ne? 30 nem4 vlastnost v tlo-
ze popsanou. Piedpoklddejme, Ze » m4 tuto vlastnost a Ze
n > 30. ProtoZze 22 < 30, 32 < 30, 52 < 30, je n délitelno
dvéma, tiemi i péti, a tedy n = 30k = 60. Protoze 72 < 60,
jem = 7.60 = 420. Potom 112 < 420, 132 < 420, 172 < 420,
192 < 420, a tedy 7 = 420.11.13.17.19 > 107. Z4dn4 dalsi
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¢isla n < 107 s pozadovanou vlastnosti tedy neexistuji. (D4 se
dokonce dokazat, Ze neexistuji uz ani Zidn4 takovd n > 107.)
40

Protoze p je liché, je pocet sCitanct na pravé strané sudy.

Soucet upravime

a 1 1 1
B 1+p—1 2+p_2 cee +

1 1
it
2 2
-1
piicemzpro 1 < &k < T, je
1 1 P
ET o=k Hp— B
takZe
P 4 p
b2 Th S p 1
2 2
c
P@—_“m,

kde ¢ je pfirozené Cislo. Soutin (p — 1)! nemuze byt délitelny
prvocislem p, proto z rovnosti

(p — Dla = pbc
plyne, ze p déli a.
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Druhé¢ feSeni. Upravme pravou stranu na spole¢ného
jmenovatele, dostaneme rovnost

— 1! — 1!
alp — 1! = b((p = D!+ @_3_) + ...+ ({’771)7)

Kdyby pro néjakd dvé ¢islaj, k&, 1 <7 < k< p — 1, bylo
> -1 @—w

. — (mod p),
; (mod p)
bylo by také
J =k (mod p),
protoze &isla p a (p — 1)! jsou nesoudélni (p je prvocislo).
p — |
Tvcii tedy p — 1 &isel (p — 1), (*—2-—)-, e (= 2)!
uplnou soustavu nenulovych zbytkt modulo p. Je tudiz
bp(p — 1)
ap —Dl=b1+2+ ... +p—-1)=—"F7"":

2
= 0 (mod p).

Odtud plyne, Ze p déli a.

Treti feSeni. Uvedenim na spoletného jmenovatele dosta-
neme v Citateli soucet

s=23...p—-1D+134...(p -1+
+124...p—D+ ... +1.2...(p —2).

Uvazujme mnohoclen

P-2@0—-3)...0-@—-1)+ ... +
+(P=1)p~2)... (=P =3)(p~(p—1) +
+@-D@P—-2)...6 = =3 —(p—2)
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stupné p — 2. Tento mnohotlen je ziejmé roven s, pfitom
jeho absolutni ¢len je

(=2)(=3) ... (=(p — 1) + ... +
+ (D=2 ... (= =3N (- —-2) =

= (—=1)p2% = —yg.

Protoze ostatni ¢leny jsou délitelné Cislem p, je

takze

je délitelné p. Celkem tedy je

M
odkud plyne, Ze p déli a.

Pozndmka. Uloha souvisi s tzv. Wilsonovou vétou: Cislo p
je prvocislo, praveé kdyz

(p — 1)! = —1 (mod p).

Dukaz plyne z Fermatovy véty, podle niZ pro libovolné
prvocislo p a x=£0 (mod p) plati x?~!-==1 (mod p). To
znamend, Ze mnohoclen x?-1 — 1 stupné p — 1 ma (mod p)
p — 1 kofenu 1,2, ..., p — 1. Obdobné jako v oboru vSech
celych &isel muzeme tvrdit, Ze plati

xp =1 — (x — D(x—2)...(x — (p — 1)) (mod p)

pro viechna celd x. Polozime-li x = 0, dostaneme jednu &dst
Wilsonovy véty. Obracené tvrzeni plyne z toho, Ze pro slo-
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zené Cislo p je (p — 1)! vidy soudélné s p, takZe nemuZe
byt (p — 1)! = —1 (mod p).
Zderivujeme-li predchozi kongruenci dostaneme

S E-DE-2) ... —1)
x—k

(P —dxrt =
k=1
(mod p),
odkud pro x = 0 plyne dé¢litelnost souctu

(» - D! (» — 1!
e T

(- D+ — s — 1
Cislem p, coZ bylo potieba v uvedené uloze.
41
Protoze ¢&isla ai, as, ..., a, jsou kofeny mnohotlenu

p—1,je
p(x) =1 =(x—a)(x — a2) ... (x — an) q(x),
kde g je mnohotlen stupné m — n s celodiselnymi koefi-
cienty. Kdyby bylo p(a) = 0 pro a celé, pak by bylo
—1=(a—a)(a—a2)...(a— an) qla),

4j. la — a;| = 1 pro alesponi tii rtizna celd C&isla ai, as, aa.
To nejde.
42
Protoze

fmn+2)—fn+1)=f(n+1)— f(n) + 2,

plati pro kazdé n > 1
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fn+ 1) = f(n) =f(2) =1 + 2(n — 1),

takze
fn) =fQ) + (n — D(f(2) — 1) +
+21+2+ ... +n—-2)=
=m—1fQ2)+ (n— 22
Soudin )

fofn + 1) = (n = D (SO + f2) (an — 2 +
£ = 1)+ (= 2 — DY

bychom chtéli pro libovolné » € N vyjadfit jako (m — 1)f(2) +
+ (m — 2)*. Polozme m — 1 = af(2) + b, pak dostaneme

ala+1)=@—Dn, (b -1 =(n —2)(n — 1),
2a(b — 1) + b = 2w — Tn®> + Tn — 1.

Témto podminkidm vyhovuji Cisla
a=n—1,b=m—-2n—-1)+1=n>—3n+ 3,
takze m = (n — 1)f(2) + n> — 3n + 4 = f(n) + n. Je tedy
f)f(n + 1) = f(f(n) + n).

43

Cislo x muZe nabyvat hodnot 1, 2, ..., 32. Pro pevné
zvolené x, 0 < x < 32, pak muZeme za y volit libovolné
z&isel x + 1, x + 2, ..., x + n, kde 7 je nejvétsi celé &islo,
pro néz plati

x+(x+n+(x+n+1)= 100,
tj.
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Je tedy

99 — 3x
n = ——— pro liché x,
2
¢))
98 — 3x
n=—7 pro sudé x.

Cislo z pak volime tak, aby platilo y < z £ 100 — (x + ).
Pro kazdou dvojici x, y = x + k (ke {1, 2, ..., n}) pak
méme celkem

100 — 2x + &) — (x + k) = 100 — 3x — 2%
moZnosti, tedy pro kazdou volbu x € {1, 2, ..., 32} celkem
m(x) = (100 — 3x — 2) + (100 — 3x — 4) + ... +

+ (100 — 3x — 2n) =
= 1007 — 3nx — n(n + 1) = n(99 — 3x — n)
mozZnosti.
Podle vztahu (1) je pro liché x

99 — 3x 99 — 3x 99 — 3x\2
m(x) = ———‘2—‘— 99 — 3x — 2 = 2 D)

pro sudé x

98 — 3x 98 — 3x
m(x) = s 99 — 3x — 5 =

100 — 3x 98 — 3x
N 2 ' 2

Celkovy polet vSech fefeni x <y < g dané nerovnice
dostaneme jako soucet

r=m(l)+ m2)+ ... + m(32) =
=48% + 47.46 + 452 + 44.43 + ... + 32 + 2.1.
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Protoze pro libovolné a je
(3a) + (3a — 1)(3a — 2) = 18a% — 9a + 2,
dostdvime

r=18(12 + 22 + ... + 162) —
e OE b 2 e B 16) +32.

Podle znamych vzorci

1
L+2+ ...+ k= kE+1),

1
2+ 224 .+ B = kR D)@k 1)

spocteme, Ze je r = 25 736. Dand nerovnice tedy ma 25 736
feSeni x < y < z.
44

Necht P obsahuje 2 (0 < k2 <n — 2) dvouprvkovych
a n — 2 — k jednoprvkovych podmnoZin mnoZiny

{1,2,...,n}; v mnozin&{l, 2, ...,n} tedy zbyva k& + 2 Cisel
2
i takovych, Ze {i} ¢ P. Z nich muZeme utvofit ( # ; ) dvou-

prvkovych podmnoZin, stadi tedy ovéfit, Ze vidy plati

R+ 2
(2 )\k

(R +2)(E+ 1) > 2k

neboli

Tato nerovnost ziejmé plati pro kazdé 2 = 0.
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Druhé feSeni. Predpokliddejme, Ze tvrzeni ulohy neplati,
tj. Ze existuje takovd (n — 2)-prvkovd podmnoZina P = M,,
ze

Pl ) 4,7} # 0

pro kazdou {7, j} = {1, 2, ..., n}. Kdyby pro né&jaké m e
e{l, 2, ..., n} nebylo {m}eP, pak by pro kazdé j # m
muselo byt {j} € P nebo {j, m} € P, takZe by P obsahovala
vice nez n — 2 prvka. Je tedy {m} € P pro libovolné
me{l, 2, ..., n},coz ddvd opét spor s piedpoklidanym
poétem prvka mnoziny P.

Treti feSeni. ZapiSme vSechny prvky mnozZiny M, do
trojihelnikové tabulky

mer o6l
(1,2 14,30 ... {L,n)
2,3} ... {2,n}

{n —1,n}.

Protoze P ma n — 2 prvkd, existuji asponl dva sloupce, které
neobsahuji zadny prvek z P (i < j):

{i} {/}
{13 i}' {l>j}

i, 7}

takze P N {{i}, {s}, {i,/}} = 0



45
Soucet ani rozdil Zadnych dvou z &isel

k—1
1,2, ... Ty k  pro liché &,

k
1,2,...,E,k pro sudé &

neni délitelny &islem k. Ma-li tedy cislo #» pozadovanou
viastnost, musi byt vét3i nez pocet uvedenych <&isel, tj.

k+ 3 k+ 4
5 pro liché 2, n = o, pro sudé &.

nz

Predpokladejme, Ze » splituje uvedené nerovnosti, zvolme n
riznych piirozenych &isel a uvazujme jejich zbytky pii dé-
leni ¢islem k. Jsou-li dva ze zbytki stejné, je rozdil prislus-
nych ¢isel délitelny &islem &. Jsou-li zbytky navzijem razné,
tj. jde-li o » navzdjem ruznych &isel z mnoziny {0, 1, ...,
k — 1}, pak alespori dva leZi v téZe z podmnozin

R—1Fk+1

{0}, {1, 2 — 1}, ...,{—T,———z——} pro liché &,

k—2 k+2}{k

{0}, {1, — 1}, ,{ - } pro sudé &,

2

kterych je méné nez n. Soucet piislusnych dvou &isel je pak
délitelny &islem k. Cislo » ma tedy pozadovanou vlastnost.
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Nejmensi islo # s uvedenou vlastnosti je

R+ 3 k+ 4
m =5~ pro liché &, n = —, pro sudé &.

46

Nejprve dokaZeme, 2¢ A — B. Necht t€ A, 1 = 12 + 13,
11, t2 € Ng. Pak pro kazdé x € A, x = x7 + x3, x1, x2 € Ny,
plati

o= (0 + B) (] + %) =
= (nix1 + r2x2)? + |n1x2 — tax1/?,

takze 1x € A, tj. A; = A, nebeli 7 € B.

Obracené, necht re B, tj. A; = A. Protoze 1 = 0% +
+ 12 € A, plyne odtud, ze také 7 =1r.1€ A, c A, tedy
B = A. Tim je rovnost A = B dokdzéana.

47

Necht {7, /, £} = {1, 2, 3}. Obsahuje-li nékterd z mnoZin
Ai, Ao, Az, feknéme Aj, nulu, pak je A; = Aj. Podle pred-
pokladu je totiz pro libovolné x € A; také x = x + 0 € Ay,
tj. A; = Aj. Obricené, z implikace

(xeAnyehA) =((x+r)eh,(x -y ehA)

dostaneme pro ¥ = 0 inkluzi Ay = A;. Odtud plyne, Ze pro
dvé z mnozin Aj, As, As s neprdzdnym pranikem, A; N A #
# @, pak uz musi byt A; = Ay, nebot pro y e A;N Ay
z pfedpokladu tlohy plyne 0 =y — y € A;.

Muzeme tedy déle pfedpoklddat, Ze nula nelezi v zadné
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z mnozin A1, Ag, Ag a Ze viechny tii mnozZiny jsou navzijem
disjunktni. Je$té si viimnéme, Ze vzdy plati x € A;, pravé
kdyz —xeA; (e —x =y — (x + »)). Oznalme m; =
= min {|x|; x € A;} > 0 a zvolme oznaleni tak, aby platilo
my > m; > my. Pak je my; > m; — my, to viak je spor s defi-
nici ¢&isla m;, nebot podle predpokladu je m; — my € A;.

Je-li L mnoZina v3ech lichych celych &isel a S mnoZina
viech sudych celych isel, maji mnoZiny L, L, S poZadované
vlastnostiaje LN S = 0.

Pozndmka. Z uvedeného feSeni rovnéz zjistime, jak vypa-
daji vSechny trojice mnoZin spliujicich podminky ulohy.
JC bud A1 = Ag == A3 = {0}, nebo A!_ = Ag = A3 ==
= {km; k celé}, nebo A; = {2km; k celé}, A; = Ay =
{(2k + 1)m; k celé}, kde m je n&jaké piirozené Cislo.

Il

48

V mnoziné A existuje nejvyse jeden prvek vétsi nez 24,
xy

jinak by pro 25 <y << x bylo |x —y < x =< 25 coz je
ve sporu s piedpokladem. A je tedy konecnd.

Necht A = {x1, %2, ..., xx}, kde x1 < 22 < ... < xy
a xy-1 < 25. Pro je{l, 2, ..., N — 1} oznalme

dj = %511 — Xy, pak plati

Ly B 6+ d)
= 925 25 ?

neboli
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25
Ziejmé x5 = 5, pak ale d5 > 20 > 1, neboli xg = 7, déle

49 ) 100
de¢ = l'g > 2, neboli x; = 10,d7; = -

Z 5 > 6,neboli xg > 17,

289
dg = —*8~ > 36, tedy x9 = 54. Musi tedy byt N < 9. Zéiro-
veri ale vidime, ¢ mnozina {1, 2, 3, 4, 5, 7, 10, 17, 54}

vyhovuje nasi tloze.

Pozndmka. Neni tézké popsat viechny mnoziny A vyho-
vujici dané podmince. Napf. mnoZiny

11,2,3,4,5,7,10,17, a1}, kdear = 54,
{1,2,3,4,5,7,10, 18, a2}, kdeaz = 70,
{1,2,3,4,5,7,10,19, a3}, kdeas = 80,
{1,2,3,4,5,7,10,20, as}, kde as = 100,
{1,2,3,4,5,17,10, 21, a5}, kde as = 132,
{1 2, 3,4,5,7,10,22, a¢}, kde ag = 184,
2,3,4,5,7,10,23, a7}, kde a; = 288,

{1 2,3,4,5,7,10, 24, ag}, kde ag = 600,
{1,2,3,4,5,7,11, 20, agJ, kde ag = 100,
{1,2,3,4,5,7,11, 21, am,, kde aip = 132,
{1,2,3,4,5,7,11, 22, (111), kde a11 = 184,
{1,2,3,4,5,7, 11, 23, ar» ;, kde a1 > 288,
{1,2,3,4,5,7,11, 24, a13}, kde a3 = 600,
{1, 2,3,4,5,7,12, 24, au}, kde a14 = 600,
{1 2, 3, 4, 5, 8, 12 24 a15j, kde ais = 600
{1,2,3,4,6, 8,12, 24, a1}, kde a16 = 600,

jsou v3echn
podmince.

devitiprvkové mnoziny, které vyhovuji dané

«
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49

Plati-li tvrzeni Glohy pro n sudé, plati i pron + 1, protoZe

n+ 1 déli soucet 1 +2+ ... +n = —, takZe pak

staCi vzit a1 = n + 1.

Necht tedy n = 2k, pakjel + 2 + ... + n = Rk + 1).
Predev$im musi platit ag|k(2k + 1). Zkusme tedy poloZit
asr = k, pak by mélo byt asx-1|k.2k, vezméme proto agr—1 =
= 2k, atd. Dostaneme tak pofadi

+1,1,k+2,2,...,2k k)
Cisel 1, 2, ..., 2k. Vyzkousime, vyhovuje-li podmince Glohy.
Prol i< kje
G+D+1+G(k+2)+ ... +0@—-1D+k+1)=
(G +1) iz —1)

=ik + =ik + i)

+D+1+(k+2)+ ... +k+1)+1=
=ik +1+1),

takZe uvedené poradi pozadavkum dlohy vyhovuje.

Pozndmka. Neni t&Zké sestavit viechna vhodn4 pofadi pro
mald n, feknéme n < 8. Jejich prozkoumanim muzZeme
odhalit jesté dalsi obecni feSeni, jako napi. (2%, 2, & + 1,
3, ..., 2k — 1, 1) pro sudé n = 2k nebo nésledujici dvé
poradi

2k + 1,1,2,k + 2,3, ...,k 2k, k + 1),
R+2,1,k+3,2,...,2k +1,k,k+1)
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pro lichd n = 2k + 1, kterd nedostaneme z jiZz uvedenych
porfadi pro n = 2k.

50

Podle definice kombina¢niho &isla je

(2k = 1) _ @ -

(B — DR
1.3.5. ... (2k — 1).2.4. ... (2k — 2)
= (k — DA -
2k-1
=2k — D! Rl
pfi¢emz ¢&islo 2k — D! =1.3.5. ... .(2k — 1) je liché.

Pro nejvy$8i mocninu 27, ktera déli ¢islo k!, plati

NONHIE

kde 25 < b < 25t1. Je tedy

Bk k 1 k
RISl L EL S B

g 4 2

IIA

s rovnosti, pravé kdyz £ = 25.
-1
Cislo (2k . ) je liché, pravé kdyz a = k — 1, tj. pravé

pro viechna pfirozend Cisla %2 tvaru k& = 25, kde s je celé
nezdporné.

Pozndmka. Je-li k piirozené Cislo, p prvolislo, pak pro
nejvetsi exponent a takovy, Ze p¢ déli k!, plati
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i=0
(souet vpravo obsahuje jen konecny pocet nenulovych

k
3

e
délitelnych p (kazdy p-ty), | — ' délitelnych p? (kazdy p2-ty),
P p_z ‘

s¢itanct). Z k Ciniteld soucinu 1.2, ... .% je jich totiz

atd.

Druhé feSeni. Nejprve ukdZeme, Ze pro kazdé celé nezi-
porné Cislo s se 25ty Fadek Pascalova trojthelniku skladd
jen z lichych ¢isel. V tomto fddku jsou kombinaéni Cisla

25 — 1 2s—-1D@s—2)...(25—))
( j ): 1.2. ... )
0,28 — 1.

Vzhledem k tomu, Ze pro kazda dvé pfirczend &isla n, r,
n = s, je 25 — r délitelno &islem 27, pravé kdyz je » délitelné
¢islem 27, je v rozkladech C¢itatele 1 jmenovatele (1) na prvo-
Cinitele prvocislo 2 ve stejné mocning, a proto kombinacni
¢islo (1) je liché.

Jesté¢ ukadZzeme, Ze prostiedni &islo v kazdém z costatnich
radka Pascalova trojuhelniku je sudé. To plyne z toho, Ze
pokud v-ty fddek obsahuje samd lichd Cisla, je uprostied
(v + 1)-niho faddku » — 1 sudych ¢&isel, kterd vznikla jako
soulty sousednich &isel o-tého fadku, uprostied (v + 2)-hého
radku je v — 2 sudych c&isel pochazejicich ze sudych disel
(v — 1)-niho fadku, atd. Tento klin sudych cisel zasahuje
az do (2v — 1)-niho fadku, kde je uprostfed sudé (islo.
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Vidime, Ze jsou-li ve v-tém fddku jen licha Cisla, pak prvni
daldi fadek, kde to muZe zase nastat, je az 2v-ty fadek.

51

Oznatme M; mnozinu zakua, kteti chodi do i-tého krouzku.
Podle principu inkluze a exkluze je

5
1 i)
+ > My M;n M.
i<j<k
alsi Cleny obsahuji pruniky Ctyf a péti krouzkd a ty jsou
(Dalsi ¢leny obsahuji pruniky ¢tyf a pdti krouzk Vj
prazdné.) Podle podminek tdlohy je
IM] UM UMsU MU M5| = 64, |M;| = 19,

i

Je tedy

7

MM 2519 + (;)1 — 64 = 41.

1<j
: 3« 3 — " poitely
Na levé strané je 5 = 10 s¢itancd, a tak neni mozné, aby
z4dny z nich nebyl vétsi nez 4.

Pozndmka. Tzv. princip inkluze a exkluze vyjadiuje pocet
prvka sjedncceni konednych mnoZin pomoci poltu prvki
jejich pranika. Tak pro dvé mnoziny Mj, My ziejmé je

M1 U Ma| = [Mi] + [Mz| — [M1 Mg,
pro tfi mnoZiny
M1 UMz U Ma| = [My]| + [Me| + [My] —
—— }Ml N M_3| _— ‘Mg N Mgl — |M] N M,},[ +
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Obecné pak plati

IM1UM2U...UMk| ZIM]I + lMgl‘i" +]Mk]——
—-|M1ﬁMg| —[MlﬂM3|—— —!M;;-1f\Mk|+
+MNMan Mg + ...+ Mo M M| — L+
+ (=1 IMIN M L. N M| =

=>(=D"M M N nM,

kde se stitd pres viechny neprézdné podmnoziny {j1, /2, . . .,/r }
mnoziny {1,2, ..., k}.

52

Dané body oznalme A4, ..., 45 a jako R; oznaéme mno-
zinu danych rovin obsahujicich bod 4; (vSechny indexy
budou navzijem razné prvky mnoziny {1, 2, 3, 4, 5}). Pro-
toze zadné Ctyfi dané body neleZi v roviné, je

RiNnRyNRNR; =0

a podle principu inkluze a exkluze (viz poznamku k pred-
chozi uloze) je

]Rlu...uR5 :E;Rl[ —\;lRiﬁRﬂ +
B W
+ Z IRi N Rj N Rgl.
i<j<k
Dokéazeme, Ze existuji indexy 7, 7, pro které |[R; N R;| = 1,
coz znamend, Ze dvojice boda 4;, A; lezi nejvyse v jedné
z danych rovin a jejich spojnice tedy nemiize byt prasecnici
dvou danych rovin. Podle a) je |R; U ... U Rs| = 7 a podle
b) |Ri| < 4. Protoze v zi4dné roviné nelezi ¢tyfi dané body,

je > |Ri Ry N Ry pocet viech danych rovin, které obsa-
i<j<k
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huji po tfech danych bodech. Potitdme-li kazdy bod tolikrat,
v kolika danych rovinich je obsaZen, dostaneme
3 > IReNRNRe S [R|£5.4,

i<j<k i
nebot kazdy z péti danych boda lezi nejvyse ve Ctyfech
danych rovinich. Je tedy

Z lRif\RjﬁRk]§6
i<j<k

a podle (1)

DIRiNR|£5.4+6—-7=19.

1<y
Protoze vlevo je ) = 10 s¢itanci, musi byt néktery mensi

nez 2.

53

Pro pevnéie {1, 2, ..., n} oznatme M mnoZinu viech poli
tabulky, v kterych je napséno &islo 7z, dopliime trojihelniko-
vou tabulku na ¢tvercovou nXn (obr. 10) a oznalme M’
mnoZinu soumérné sdruZenou s M podle uhloptitky pro-
chézejici levym hornim rohem. Z ptfedpokladu ulohy plyne,

O

Obr. 10
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ze v kazdém fadku lezi pravé jedno policko z mnoZiny
MU M’. Oznatime-li D mnoZinu poli uvedené Ghlopricky,
plati
n=MUM]=[M + M| - MAM]=
= 2|M| — M nD|,

takZze |M N D] je pro liché n rovnéz liché Cislo a Cislo 7 se
proto na uhlopfi¢ce vyskytuje aspori jednou. Tim je tvrzeni
ulohy dokézino.

Pozndimka. Pro sudd n tvrzeni ulohy neplati, jak ukazuje
tabulka

1

2 3

3 45
4 5 6 7

n—1n 1 2 ...n2-—-3
n 1 2 3 ...n—2 n—1,

v niZ jsou na Ghlopticce jen lichd Cisla (kazdé dvakrat).

54

Strany ¢tverct ozna¢me jako v obr. 11. Uréime nejprve Py
a Ps. Py je pocet viech neprdzdnych podmnozin Etyiprvkové

cx 2 ARSI L E
G4 C2 C3 Cn-1 Cn Cna
D1 bz bn -1 bn

Obr. 11
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mnoziny, tedy Py = 2% — 1 = 15. Pron = 2rozdélime vSech-
na pfipustnd obarveni na dvé ¢asti. Téch obarveni, u nichZ je
¢ obarvena, je 26 = 64. Té&ch, u nichZ ¢; neni obarvena, je
(23 — 1) = 49. Celkem je tedy P, = 64 + 49 = 113.

Pro n > 2 odvodime rekurentni vzorec. Vsechna pii-
pustnd obarveni opét rozdélime na dvé céasti. Takovych
obarveni, Ze je obarvena alespoil jedna ze stran an, bu, Cni1,
je (28 — 1)Py1 = 7TP,—q. Pokud strany an, by, ¢yy1 nejsou
obarveny, musi byt obarvena strana ¢, a ke kazdému ze Ctyf
moznych obarveni stran a;, -1, b,-1 doplnime P, o obarveni
zbylych stran. Celkem je tedy pron > 2

Py = TPy1 + 4Py-».

Z tohoto rekurentniho vzorce plyne matematickou indukci, Ze
pro kazdé prfirozené n je P, liché &islo, nebot Py a P» jsou
lichd. Tim je vyfeSena st b).

Z rekurentniho vzorce plyne, Ze

P; > TP¢ > T72P5 — ... > 75Py = 75.113 > 108,
Na druhé strané je Py + Py1 < 8(Py-1 + Pp-2), takZe

P+ P5 < 8<P5 + P4) < 82(P4 + Ps) < o< 84(P2 + P) =
= 84.128 < 106, :

a tak Pg < 109, Protoze Pg << 105 < P7, je hledané &islo

n = 7. Tim je vyfeSena i Cast a).

55

Oznatme B, pocet viech pfipustnych obarveni pro utvar
sloZeny z n trojuhelnika. Je-li » > 3, maZeme obarveni roz-
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deélit do tif navzdjem disjunktnich skupin podle toho, jak jsou
obarveny vrcholy n-tého trojahelniku POR (obr. 12).

Do 1. skupiny dime obarveni, pii nichz je vrchol R obar-
ven — takovych obarveni je B, 1.

Obr. 12

Do 2. skupiny ddme obarveni, pfi nichZz vrchol R neni
obarven a vrchol Q je obarven — takovych obarveni je By 2.

Do 3. skupiny ddme obarveni, pfi nichz vrcholy R a Q ne-
jsou obarveny, takZe musi byt obarven vrchol P — takovych
obarveni je B,,3. Plati tedy rekurentni vzorec

B, =By,1+ B, 2+ B3 (1)

Piimo zjistime, Ze By = 7, By = 13, By = 24.

Vzhledem k rekurentnimu vztahu (1) se v posloupnosti
(By) stiidaji vzdy dvé lichd a dvé sudd &isla. Proto je Cisio
Bl 984 sudé.

Druhé feSeni. Pii kazdém z B, pripustnych obarveni
(n > 1) Gtvaru U, sloZeného z 7 trojihelnika je atvar U,
slozeny z prvnich n — 1 trojthelnika Gtvaru U, piipustné
obarven. V3ech obarveni utvaru U, pfi nichZ je U, 1 pfi-
pustné obarven, je 2B, 1 (pro vrchol R (obr. 12) jsou dvé
moznosti). Z t&ch jsou piipustnd vSechna kromé téch, co ne-
maji obarven Zddny z vrcholu P, Q, R. Ta viak maji obarven
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vrchol O a je jich ziejmé B, 4 pron > 4, 4 pro n = 4, 2 pro
n =3al pron = 2. Plati tedy pron > 4

B, = 2By 1 — B;kél,

takZe Bjggs ma stejnou paritu jako By = 2Bz — 4 a je sudé.

56

Dané tGsecky oznatme I, Iy, ..., I, tak, aby cislovani
usetek souhlasilo s uspofadddnim jejich levych krajnich bodi
na pfimce zleva doprava. Predpoklddejme, Ze tvrzeni a) ne-
plati, tj. Zze zadnych n + 1 z danych Uselek nemé spole¢ny
bod, a dokazme, Ze pak plati tvrzeni b).

Pro zadné k € {1, 2, ..., n} podle nadeho piedpokladu ne-
méd n + 1 Gselek

Tge—vynivs Lge-1yni2s - o o5 Teny dknin
spole¢ny bod. Mezi Gse¢kami
I(k—fl)n +1s I(I.’T"'l)]lff'Z) ) Ikn
tedy existuje tseCka, oznatme ji Uy, kterd nemd s tseCkou
Tin+1 spoleny bod (jinak by levy krajni bod usecky Iy 1 pa-
tfil do kazdé z uvedenych usecek). Pak oviem U; nema spo-
le¢ny bod ani s Zddnou z usecek [;, kdej = kn + 1. Dostdvi-
me tak n + 1 tsecek
U, Usy ...y Uny I

z nichz zadné dvé nemaji spoletny bod.

57

Pro dané prirozené ¢islo =~ 1 ozname f(n) nejvétsi mozny
pocet prvkil mnoziny M. Zvolime-li M = {{1,2), {(1,3), ...,
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{1, n)}, bude M vyhovovat podminkim a) i b). Je tedy
f(n) = n — 1. UkdZeme, Ze plati rovaost f(n) = n — 1.

Pron = 2jeM = {1, 2)} af(2) = 1. Budeme pokratovat
matematickou indukci. Necht » = 2 a predpokladejme, Ze
pro kazdé piirozené Cislo %2, 2 < & < n, plati f(k) =k — 1.
Necht M je mnozZina s vlastnostmi a) a b), kterd méa nejvétsi
mozny pocet prvka. Mnozina M musi obsahovat interval
{1, ny. Kdyby ho totiZ neobsahcvala, neméla by maximaélni
pocet prvki, nebot M U {(1, n)} rovnéZ spliluje podminky a)
a b). Oznatme M’ =M — {(1, n)}. Rozlidime tfi piipady:

1. Z4dny z intervalt I € M’ neobsahuje &islo n. Potom M’
splituje obg podminky pro # — 1 a podle indukéniho pfed-
pokladu je |[M'| £ n — 2, takze M| £ n — 1.

2. Zadny z intervali I e M’ neobsahuje &islo 1. Necht
M" = Ku — 1,0 — 1);{u,v> € M"}. Potom podle indukéni-
ho pfedpokladu je [M”| < n — 2, takze M| < n — 1.

3. Néktery interval z M” obsahuje ¢islon a néktery interv al
z M’ obsahuje Cislo 1. Necht p je nejvétdi pfirozené Cislo ta-
kové, ze (1, p> € M, a necht ¢ je nejmensi pfirozené Cislo,
pro néz (g, ny € M. Ozna¢me

My = {IeM;Ic (1,p)),
My = {IeM;Ic (g n]

Ziejmé g = p + 1. Potet prvkd M’ je roven sou¢tu poctl
prvka M, a Mg, takze

M| = M| + 1 = M| + [M| + 1.
Podle induk¢niho predpokladu je
Mpl = f(P) =p — 1
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a podobné jako v 2. piipadé také
Ml=sfln—gqg +1)=n—gq.
Je tedy
M<p—1+n—g+1=n—1

58
Oznalme s; polet téch intervalu, které maji levy koncovy
bod :. Je tedy
m =35+ S2 4+ ... + Sp-1.
Ma-li interval I levy koncovy bod 7, patii ¢ + 1 do I. Cislo
7 + 1 tedy patfi jak do intervala s levym koncovym bodem 7,
tak do intervali s levym koncovym bodem 7 + 1. Podle b)
odtud plyne
si + Siv1 S k.
Je-li m liché, m = 2p + 1, je
m = (.5‘1 + Sz) + (33 -+ 54) + ... + (Szp~1 + 521)) < pk.
Podobné pro n sudé, n = 2¢q, je
mo=(s; + $2) + ... + (S2¢-2 + S2¢-1) + S2¢ =
= (g — Dk + k= gk.

<| 2
m=| 3

Ukéazeme, Ze je to nejlepsi horni odhad &isla m, tj. Ze existuje
posloupnost intervala I, I, ..., I s vlastnostmi a) i b) ta-

Je tedy
k.

n
kova, ze m = [5 } k. Stali totiZ polozit

99



h=..=5L =<,2,
Lei = ... = Iy = (3, 4),

Il

h . B ) N
I(k—»vl) [;] S Ik [:] - \\2 lZ] - b 2! _’21] /"

Druhé feSeni. Kazdy z intervala Ij, L, ..., I, obsahuje
sudé ¢islo ne vet3i nez n. Sudych &isel nejvyse rovnych n je

n
l *—I . Protoze kazdé muze byt nejvyse v % intervalech, je

2
<+|5]
m < 2

Dél postupujeme jako v 1. fedeni.

59

Rovina ¢ prochazejici stiedem koule a dvéma z danych bo-
da rozdéli kouli na dv& polokoule, uvnitié jedné z nich lezi
nejvyse ¢tyfi dané body. Rovina ¢ | p prochizejici stfedem
koule a jednim z téchto bodl rozdéli uvedenou polokouli na
dvé Ctvrtiny, pri¢emZ uvniti jedné z nich lezi nanejvys jeden
z danych boda. Rozdélme tuto &tvrtinu na dvé osminy ro-
vinou 7 prochdzejici prasecnici rovin o a ¢. Vnitfek aspori
jedné z nich neobsahuje Z4dny z danych bodi.

Druhé feSemi. Rovina p prochézejici stfedem koule
a dvéma z danych bodt rozdéli kouli na dvé polokoule, pfi-
¢emz uvniti jedné z nich lezi nejvyse ¢tyfi dané body. Dvéma
z nich a stfedem koule vedme rovinu ¢. Déle sestrojme roviny
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7, » ur¢ené vzdy jednim ze zbyvajicich dvou bodd (pokud
existuji) a prusecnici rovin ¢, ¢. Roviny o, 7, @ rozdéli uva-
Zovanou polckouli na nejvyse ¢tyfi vysele, v jejichZ vnitiku
nelezi 74dny z danych bodu. Alespoii jedna z téchto vysedi

1
ma objem nejméné e

60
Abychom uvedené tvrzeni dokdzali, stali najit Sest kouli
s polomeérem nejvyse - 6 takovych, Ze sjednoceni jejich vnitika

obsahuje danou jednotkovou kouli. Pak bude uloha vyfesena,
nebot alespoil jedna z nalezenych kouli musi ve svém vnittku
obsahovat alespoti 13 danych bodu.

Do dané koule K vepi§me krychli Q = ABCDEFGH a uva-
Zujme koule Ky, 7€ {1, 2, ..., 6}, jejichZ praméry jsou sté-
nové Ghlopficky krychle Q. Kazdd z kouli K; md polomér -

/ — < i. Ukazeme, Ze sjednoceni vSech Sesti kouli obsa-
3 6
huje kouli K.

Ctyti télesové thloptitky krychle Q, které se protinaji ve
sttedu § koule K, rozkladaji krychli na Sest ¢tyibokych jehla-
ni, jejichZ podstavy tvoii stény krychle Q a jejichZ spoleénym
vrcholem je stfed S. ProtoZe § lezi v praniku viech Sesti
kouli Ky, kazdy z téchto jehlant leZi v jedné z uvedenych kouli,
takZe krychle Q leZi cel4 ve sjednoceni kouli K;,7 € {1, ...,6}.
Roviny prolozené sténami krychle Q odd@luji z koule K jeste
Sest kulovych tseli. Také kazda z téchto Gsedi lezi v nékteré
kouli K;. Podstava kazdé z téchto Gseli ma totiZ stied a polo-
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mér shodny se stiedem a polomérem nékteré z uvedenych kou-
li. Lezi tedy cecld koule K ve sjednoceni kouli K; a aspoil
jedna z nich cbsahuje nejméné 13 danych bodi.

61

Necht 4B je libovolnd tsecka ¢ary L. UvaZujme mnozZinu
v§ech bodu roviny daného &tverce, které maji od tGsetky AB
vzdalenost nejvyse 1. Touto mnoZinou je sjednoceni viech
kruhtt (X; 1) pro X € AB (obr. 13), a je-li d = |AB, je jeji
obsah 2d + .

Obr. 13

Pro dve sousedni Gsetky KL, LM lomené &iry L je takovou
mnoZinou sjednoceni cbou odpovidajicich ovala, pfi¢emz je-
jich prinik obsahuje cely kruh (L; 1). Pro obsah P sjednoceni
n ovall odpovidajicich jednotlivym useCkdm lomené &ary
tedy plati

P<>Q@i+n)—(n—De=n+2>d =7+ 2d,

i=1 i=1
kde di, do, ..., d, jsou délky tsetek tvoficich ¢iru L, d je
délka lomené Cary L.

Vyhovuje-li ¢ira L podmince tlohy, pokryvaji uvedené

ovaly cely dany ¢tverec. Plati tedy
502 =250 P< =+ 2d,
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takZe

2500 —
dz " 1248,

coz jsme chtéli dokdzat.

62

Pro n = 1 dokazované tvrzeni ziejmé plati. Predpokladej-
me, Ze tvrzeni plati pro n = k&, a dokaZme je pron = £ + 1.
Uvazujme 3% + 3 body v roving, z nichz Zddné tfi neleZi
v piimce. Nejmen$i konvexni mnoZina, kterd je viechny obsa-
huje (tzv. konvexni obal), je mnohothelnik A1As...A;s
(s = 3), jehoz vSechny vrcholy patfi k danym bodim.

Nejprve pfedpoklddejme, Ze uvnitf trojahelniku A; 4243
nelezi ziadny z danych boda. Uvnitt poloroviny opacné
k A1 A4z A> pak lezi 3k danych bodu, a ty jsou podle indukéniho
predpokladu vrcholy %2 navzdjem disjunktnich trojuhelniki.
Pfiddme-li k nim trojuhelnik A; A2 As, dostaneme %2 + 1 troj-
uhelnika vyhovujicich poZadavktim tGlohy.

Zbyva ptipad, kdy uvnitf trojthelniku 4;A>A4s lezi n&jaké
z danych beda. Vyberme z nich bod B tak, aby uhel B4;4s
byl co nejmensi (tim je bed B jednoznaéné uréen). Pak uvnitf
poloroviny opatné k 41BAs lezi 3k z danych bodu, a ty jsou
podle indukéniho piedpokladu vrcholy %2 navzijem disjunkt-
nich trojGhelnika. Piiddme-li k nim trojahelnik 4;4>B, do-
staneme & + 1 trojuhelnika vyhovujicich pozadavkim ulohy.

Pozndmka. Z dukazu vidime postup, ktery vede k rozdéleni
3n bodt na n trojic urlujicich # navzdjem disjunktnich troj-
thelnika.
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63

Uvazujme libovolny &tverec, v jehoZ vnitiku nelezi Zadny
uzel sité. UkdZzeme, Ze délka jeho strany je nejvyse a.

Ctverec premistime a ptipadn& zvétiime tak, aby jeho dvé
protilehlé strany prochdzely uzly sité. Pfitom budeme dbét,
aby se do vnitfku &tverce nedostal 24dny uzel sité. UvaZovany
¢tverec nejprve posuneme tak, aby se na jeho obvod dostal
uzel 4 dané sité (pokud tam jiz nelezi). Dale ho pifemistime
tak, aby uzel 4 zuastal na obvodu a dostal se tam dal§i uzel
sit¢ B. (Pokud to neni mozné, znamend to, Ze uhloptitka
uvazovaného &tverce je mensi neZ a a s ditkazem jsme hotovi.)
Uzly A, B nemohou leZet na téZe strané Ctverce, to by pak
zfejmé uvnitf ného leZel uzel sité. Neprochdazeji-li dvé proti-
lehlé strany ¢tverce uzly sité, leZi body A, B na dvou soused-
nich strandch se spole¢nym vrcholem V. V tom piipadé zvét-
Sujeme Ctverec stejnolehlosti se stfedem V' (uzly 4, B pak
zUstdvaji na strandch), dokud se na tieti strané neobjevi daldi
uzel sit¢ C. Body A4, C nebo B, C leZi na protilehlych stra-
néch.

Zbyva dokazat, Ze pokud na protilehlych strandch &tverce
o strané velikosti b lezi uzly sit¢ U, V a uvnitf ného uzly sité
nelezi, je b < a. Jde-li o dva sousedni uzly sité, je |UV| = a,
a protoze |[UV| = b,je b < a.

Kdyby uzly sit¢ U, V nebyly sousedni, ziejmé by bylo
|UV| = a]/3, a protoZe zirovenr |UV|< b2, platilo by

-

3 : .
b=a L/ ry To by znamenalo, Ze &tverec o strané b obsahuje

1/3
kruh o poloméru a l/ = a vnitfek ¢tverce obsahuje kruh o po-
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3

loméru a *— s To viak neni mozné, protoZe kazdy kruh o polo-
3

I3

méru @ '~ obsahuje uzel sité, nebot soustava kruhii o tomto
3

poloméru se stiedy v uzlech sité pokryva rovinu. Stfed O libo-

/3 /
volného kruhu o poloméru a 1:{ tedy leZi v kruhu ( S;a ]3%> 3

/3
kde S je né&jaky uzel sité, a pak také S e <O; a%).

64

Uvazujme mnozinu vSech kruhtt v roving se stfedy v uzlech
sit€ a polomérem |/5. Kady bod roviny leZi aspoil ve 14 ta-
kovych kruzich: LeZi-1i totiz bod ve &tverci s vrcholy v uzlech
A, B, C, D (obr. 14), pokryvaji ho kruhy se stfedy v uzlech
K,L,M,N, O, P, Q, R a ¢tyfi kruhy se stfedy ve vrcholech
¢tverce ABCD, déle aspori jeden z kruhi se stiedy U, V

U POl Y

Obr. 14
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a aspoii jeden z kruhu se stfedy X, Y. Kruh A tedy obsahuje
aspoil 14 uzlu sité.

Utvar B je sjednocenim &tyf kruht o praméru 1. Kdyby
uvniti B leZely vice nez 4 uzly sité, lezely by alesponi v jed-
nom z téchto kruht dva uzly sité. Ty by musely byt krajnimi
body praméru uvazované¢ho kruhu, nebot jejich vzdélenost
je aspoii 1. Pak viak nemohou byt oba vnitinimi body utvaru
B. Do kruhu A tedy patii alespori 14 — 4 = 10 uzla sité,
které neleZi uvniti B.

Druhé reSeni. UvaZujme vnitfek jednotkového &tverce
spolu s vnittkem dvou sousednich stran a jejich spole¢nym
vrcholem (obr. 15). Kazdy takovy »Ctverece, jehoZ strany jsou

Qbr. 15
| |
F | iC.
‘x vV |
& ¥ U
et ann S E— o —
G \ B
| 1
Obr. 16 HI——] e
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rovnob&Zné s piimkami ¢tvercové sité, ziejmé obsahuje prave
jeden uzel sité. Kruh o poloméru lg obsahuje 12 takovych
»étvercii (obr. 16); kromé toho jeden z »trojthelniki ABU,
EFX (a podobné i jeden z »trojihelniki« CDV, GHY') obsa-
huje uzel sité, priavé kdyz ho obsahuje »étverec« AX'BU

(resp. CY’'DV). Libovolny kruh o poloméru |/5 tedy obsahuje
aspoil 14 uzla sité.

Utvar B je sjednocenim &tyf otevienych kruhii o praméru 1
doplnénych bodem § (obr. 17). Protoze kazdy takovy »kruh«

/// ‘\K/ \\
/ / \ \
l { \ \
\ v /
\ //—\ //’“\\)(/
A /x\_// \
/T /9\ \
| 1 |
\ \ !
\ \ 7
\\ /X\ _7

Obr. 17 = T

muiiZe obsahovat nejvySe jeden uzel sit¢ (vzdalenost dvou
uzla je alespoil 1), lezi uvnité Gtvaru B nejvyse 4 uzly sité.
Tim je dukaz hotov.

65

Oznatme A4, B, C, D prusetiky hranice daného kruhu
s piimkami, které prochdzeji jeho stfedem a sviraji s piimka-
mi ¢tvercové sité thel 45° (obr. 18). Tyto body rozdéli kruz-
nici na &tyki oblouky. Ctvercim sité, v nichZ leZi néktery
z boda 4, B, C, D, budeme Fikat kritické. Vyznatme viechny
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T

Obr. 18

vodorovné strany ¢tvercu sité, které protinaji oblouk AD nebo
BC, a viechny svislé strany, které protinaji oblouk AB nebo
CD (budeme mluvit o vyznacenych stranich), ale pfitom ne-
jsou stranami kritickych ¢tvercu. UkéZeme, Ze viechny hra-
ni¢ni uzly, které nejsou vrcholy kritickych ¢tverci, jsou kon-
covymi body vyznalenych uselek: Vezméme néjaky takovy
hrani¢ni uzel, ten je podle definice koncovym bodem né&které
strany &tverce protinajici uvaZovanou kruZnici — necht je to
napf. svisld strana (pro vodorovnou stranu bychom uvaZovali
analogicky). Pokud tato svisid strana protind oblouk 4B nebo
CD, je vyznatena; protind-li oblouk 4D (u oblouku BC
bychom uvaZovali analogicky), je uvazovany hrani¢ni uzel
koncovym bodem vodorovné vyznalené strany protinajici
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oblouk AD (obr. 19). To je zpusobeno tim, Ze pro prusecik P
vodorovné a svislé primky, jeZ protinaji oblouk AD v bodech
U, resp. V, plati |[PU| < |PV/|. Viechny hrani¢ni uzly, které
nejsou vrcholy kritickych ¢tverci, tedy leZi na vyznatenych
useckdch. Mezi vSemi koncovymi body vyznacenych aselek
je pocet hrani¢nich uzla leZicich vn€ K stejny jako pocet hra-
ni¢nich uzla lezicich uvnitt K, nebot kazdd vyznacend tisetka

Obr. 19

Obr. 20
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spojuje jeden vnitini a jeden vn&j§i hrani¢ni vzel a zadné dvé
nemaji spoleény bod. Zbyva vysetfit kritické ¢tverce. Pro bod
A dostaneme osm mozZnosti znazornénych na obr. 20. Vidime,
ze v kazdém pripadé je mezi vrcholy kritickych ¢tvercu, které
neleZi na vyznalenych strandch, pravé o jeden hrani¢ni uzel
lezici vané K vice neZ hraniénich uzla leZicich uvnitf. Stejné je
tomu i pro body B, C, D, jak je vidét ze symetrie. Maji-li dva
z kritickych &tverct prislusnych raznym bodim spoleinou
stranu, pak maji spole¢ny prdvé jeden hrani¢ni uzel uvnitf
a pravé jeden hrani¢ni uzel vné¢, anebo nemaji spoletny Zadny
hrani¢ni uzel, ktery by neleZel na vyznalené strané (obr. 21).

—

F

QObr. 21

Zaroven se nemuze stat, aby uzel sit¢ byl vrcholem kritického
&tverce pro kazdy z bodu 4, B, C, D a byl ptitom pokazdé
poditdn jako vnitfni hrani¢ni uzel (to by kruh K obsahoval
jediny uzel sité). Je tedy celkovy poget hraniénich uzlt vnZ K
o Ctyfi vetsi nez pocet hrani¢nich uzlt uvnitf.

Druhé FeSeni. Vyznaéme viechny strany ¢tverct sité, kte-
ré protinaji hranici daného kruhu (oba jejich koncové body
jsou hrani¢ni uzly). Hrani¢ni uzly budeme pocitat takto:
Zvolime nékterou vyznacenou stranu jako vychozi a budeme
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postupovat po kruznici od prusecikii s vychozi stranou tieba
ve sméru otaceni hodinovych ruti¢ek. Jakmile dojdeme k pra-
setiku s vyznacenou stranou, pripotitdme jeden vnitini a jeden
vnéjsi hrani¢ni uzel, pokud jsme néktery z nich nepotitali
jiz dfive. Obejdeme-li celou kruZnici, spoéteme tak vSechny
hrani¢ni uzly. Setkdme se pii tom se stranami vodorovnymi
a svislymi. Dojdeme-li ke strané, kterd je rovnobéZna se
stranou bezprostiedné predchazejici, zvétsi se pocet hrani¢-
nich uzlt uvnitf i vaé K o jeden. Dojdeme-1i ke strané kolmé
na stranu bezprostiedné predchazejici, maji obé strany jeden
hrani¢ni uzel spoledny a zapolteme jen druhy.

Muazeme predpoklddat, Ze napf. vlevo cxistuji aspon dvé
vodorovné vyznacené strany (jinak by uvniti K leZel jediny
uzel sité). Ze dvou vyznalenych stran, které lezi nejvic vievo,
zvolme tu, kterd je vys. Popsanym zpisobem postupujme tak
dlouho, az dojdeme ke svislé strané lezici nejvys (k libovolné
z nich, je-1i jich vic). Prochdzime-li timto vkvadranteme, dvo-
jice sousednich na sebe kolmych stran se pravideiné stiidaji.
Nasleduje-li po vodorovné stran¢ svisld, piibude jeden hra-
ni¢ni uzel vné, nasleduje-li po svislé strané vodorovnd, pfi-
bude jeden hrani¢ni uzel uvnité. Projdeme-1i cely vkvadrant,
napocitime o jeden hrani¢ni uzel vné vic nez uvnitf, nebot
jsme vysli od vodorovné strany a skondili u svislé. Podobné je
tomu i u ostatnich tii »kvadranti« a skontime pod zvolenou
vodorovnou stranou. Je tedy vidét, ze vné K lezi o ¢tyfi hra-
ni¢ni uzly vice nez uvnitf.

Pozndmka. Je ziejmé, Zze pokud uvnitf K lezi jediny uzel
sité, je rozdil hrani¢nich uzli roven tfem, a pokud uvniti ne-

Mro~

lezi Zadny uzel, neexistuji ani zddné hrani¢ni uzly.
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66

Nejdelsi tsetka, kterou obdélnik 21 obsahuje, je jeho
thlopiitka a jeji velikost je |/5 < 3. Odtud plyne, Ze obdélnik
muzZe mit neprdzdny prinik nejvySe se Ctyfmi fadky, resp.
sloupci. Bude tedy vdy lezet v n&jaké ¢4sti dané $achovnice se
4 % 4 poli. V této &4sti je pravé osm Cernych poli, oznaéme je
stidavé symboly I a II (obr. 22). Zadny obdélnik 2 1 ne-

0 \

N
Obr. 22 I\ &\

muZe soutasné obsahovat vnitini body viech ¢tyf poli ozna-
Cenych stejnym symbolem. Pak by totiz musel obsahovat
ttverec o strané vEtsi nez 1, coz neni mozné. Obsahuje tedy
vnitfni body nejvyse tii Cernych poli oznalenych I a nejvyse
tii Cernych poli oznalenych II, tedy nejvySe Sesti Cernych
poli.

Sestrojime obdélnik 2 x 1, ktery obsahuje vnitini body Sesti
¢ernych poli. Jeho stied S bude leZet ve spole¢ném vrcholu
dvou Cernych poli a jeho krat3i strana bude mit smér jejich
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spole¢né thlopficky (obr. 23). KruZnice opsand tomuto obdél-
niku protne hranici bilého ¢tverce b3 ve stiedech 4, B jeho

/
dvou sousednich stran (obr. 24). Pfitom je |AB| = 1'22. <1

1/
a |CD| = l,r’/ Z > 1. Vrcholy sestrojeného obdélniku lezi tedy

Obr. 23

Obr. 24

113



na uvedené kruznici uvnité ¢ernych &tvercu a3, b4, cl, d2.
Obdélnik samoziejmé obsahuje i vnitini body Cernych poli
b2 a ¢3 se spole¢nym vrcholem S.

67

Vzhledem k soumérnosti pyramidy mizeme piedpokladat,
ze spojnice bodi 4, B prochdzi nékterym bodem C na spojnici
boda L a K, kterd leZi v roviné soumérnosti bodu 4 a B
(obr. 25 pro n = 3). Abychom nasli bod C, pro ktery je spoj-

4

A K
Obr. 25

nice AC nejkratsi, rozvineme piislusnou ¢ast povrchu pyra-
midy do roviny (obr. 26).

Je zfejmé, Ze z bodu Gsetky DpEy (1 < k& < n) ma nejmensi
vzdélenost od bodu 4 bod Dy. Z bodi tGsetky ExDy.1 ma nej-
mensi vzdalenost od bodu A vZdy néktery z jejich krajnich
bodt s vyjimkou ptfipadu, kdy je |AEy| = |ADy 1| (to nastane
pro liché n = 2k — 1). V tomto pfipadé md z bodu usecky
EpDy.1 od bodu A nejmensi vzdélenost jeji stied F, pak je
ale |AF| > |ADy]| (je totiz | & ADpF| >| % ADgDyy1| = 90°).
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L
E;
D5
F
E.
v :
7 D,
/ N
/ ///
, = E
e
L™
Obr.26 A~ K=D,

Zjistili jsme tedy, Ze hledanym bodem C je vidy néktery
z bodd Dy (1 £ k < n).
Podle Pythagorovy véty je

|ADy[2 = (2n — k) + (2k — 2)2 =
=582 — k(4n + 8) + 4n® + 4 =

2 2
=5<k —g'(n + 2)> + 2,
kde z nezévisi na k. Vzdalenost |ADy| je tedy ne'k-atsi, pravé
2
kdyz % je nejblizsi celé &islo k Cislu 5 (n + 2). Teto Cisla udé-

vd v zavislosti na zbytku ¢&isla n pfi déleni péti tabulka
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n k

, 2n +5

5¢ 2et1=—"75
2n +3

5¢ 41 2¢ + 1= 5
2n 4+ 6
5¢ + 2 2c 2= N
2n + 4

5¢+ 3 2c+2:'*5
2n +2
5¢ + 4 2¢+ 2 = 5

Hledand nejkratsi spojnice bodu 4, B se tedy sklidé z nej-
krat$i spojnice bodt A4, Dy a ze soumérné sdruZzené spojnice
bodt Dy, B. Pfitom Dy je libovolny ze dvou bodu leZicich
v pruniku roviny soumérnosti bodit 4, B, povrchu pyramidy
a podstavy k-té vrstvy (politino zdola, 2 udavéd tabulka).
Nejkrat3i spojnici boda 4, Dy na povrchu dané pyramidy
snadno sestrojime.

2
Pozndmky. Nejblizsi celé &islo k &islu 5 (n + 2) muzeme
také vyjadrit jako

l2<n+2) 1] [4n+13]
5 207

Nalezeny vysledek plati i pron = 1.
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68

Necht n je pfirozené &islo vyhovujici podmince tlohy,
oznatme k pocet vrcholi prislu$ného konvexniho mnoho-
sténu. Selteme-li hrany v kazdém vrcholu, dostaneme dvoj-
nasobny pocet hran, tj.

2n =4+ 3(k —1) =3k + 1.

Protoze 1 = 2.8 — 3.5, miZeme predchozi neurcitou rov-
nici upravit na tvar

2n — 8) = 3(k — 5), )

pii¢emz k = 5, nebot Ctyfstén ziejmé nevyhovuje podmince
ulohy. Refenim rovnice (1) jsou viechny dvojice ¢&isel n, &
tvaru

n=8+3: k=5+21, 1€10,1,2, ...}

Ukazeme, Ze pro kazdé takové n existuje konvexni mnoho-
stén, ktery mé pozadované vlastnosti.

Pro n = 8 (¢ = 0) vyhovuje napi. Ctyiboky jehlan. Pied-
pokladdejme, Ze jsme jiz sestrojili pro 7 = 0 mnohostén
s n = 8 + 37 hranami, ktery spliluje podminky ulohy. Vez-
méme jeho libovolny vrchol, z kterého vychizeji pravé tii
hrany, a na kazdé z nich zvolme jeden vnitini bod. Uvedené
tfi body urcuji rovinu, kterd rozdéli puvodni mnohostén na
trojboky jehlan a konvexni mnohostén s 8 + 3(z + 1) hra-
nami, ktery zfejmé ma pozadované vlastnosti. Z principu ma-
tematické indukce plyne existence konvexniho mnohosténu
s danou vlastnosti pro kazdé n = 8 + 3¢, ¢t = 0 celé.

Jiny priklad mnohosténu s n = 8 + 3¢ hranami, ktery
spliiuje podminku dlohy, je na obr. 27, kde mezi hranami BC
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Obr. 27 A

Obr. 28

a AD je r = 0 hran, a na obr. 28, kde 7 + 3 hran spojuje
vrcholy (¢ + 2)-uhelniku s vrcholy (¢ + 3)-uhelniku.

69

Bodem budeme vzdy minit body dané mnoziny. UkaZeme,
Ze pozadovanou vlastnost mé kruh, ktery ze vech kruha obsa-
hujicich body vSech tfi barev obsahuje nejmensi pocet bodu.
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Takovy kruh existuje (pro kazdou trojici bodu tfi barev se-
strojme nejmensi kruh, ktery je obsahuje, a z nich pak vyberme
ten, ktery obsahuje nejméné bodu). Oznaéme ho Ky. Uvazuj-
me kruh K, ktery obsahuje body viech tii barev a pfitom od
dvou barev asponi po dvou bodech. Sestrojime kruh, ktery
obsahuje body viech tfi barev a obsahuje méné boda nez K;
tim bude dukaz hotov.

Snadno sestrojime kruh K;, ktery obsahuje tytéZz body jako
kruh K, pri¢emz alespori dva lezi na jeho hranici. (Nelezi-li
na hranici kruhu K zddny bod, zmenSujme ho, dokud se na
hranici néjaky bod neobjevi. Je-li na hranici tohoto kruhu
jediny bod, zmen3ujme ho dale stejnolehlosti se stfedem
v tomto bodé, dokud se na hranici neobjevi dalsi bod.)

Barva alespoil jednoho z téchto dvou bodii — ozna¢me ho
A — je zastoupena v kruhu K; jesté jednou. Snadno tedy sestro-
jime kruh Ko, ktery obsahuje tytéz body jako kruh K; kromé bo-
du A4: Ozna¢me d vzdalenost stiedu kruhu K; = (8;7) od nej-
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blizsiho z bod vné kruhu K; (obr. 29). Na polopfimce opatné
r+d
k SA sestrojme bod S’ tak,aby |4S"| = — Dile oznalme

v nejvetsi ze vzdalenosti bodu 8’ od boda v kruhu Ky raznych
r+d r+d
od A. Zfejmé v < s Zvolime-li»' € <7}, R >, mame
zaruCeno, ze kruh Ko = (8'; ') obsahuje tytéz body jako
kruh K; kromé bodu A4.
Kruh K, tedy obsahuje body viech tii barev a piitom o jeden
bod méné nez kruh K.

70

Necht M je takovd mnozina. Uvazujme libovolny bod X
roviny a néjaky rovnostranny trojthelnik ABC, uvnitt kterého
lezi bod X (obr. 30). Sestrojme uvnitf kazdého z uhli vrche-
lovych k uhlim trojuhelniku ABC jednotkovy kruh. Pak
v kazdém ze tii sestrojenych kruhu lezi n&jaky bod mnoziny
M. Takové body zfejm2 nemohou leZet v pfimce a trojihelnik

Obr. 30
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iimi urleny obsahuje trojahelnik ABC, tedy i bod X. Z kon-
Vexity plyne X e M. Kazdy bod roviny tedy lezi v mnozing M.

Druhé feseni. Necht M je takovd mnozZina. Protoze kazdy
nenulovy thel v roviné obsahuje néjaky kruh o poloméru 1,
obsahuje kazdy nenulovy thel v roviné aspon jeden bod
mnoziny M. Necht X je libovolny bod roviny a 4 libovolny
bod mnoziny M. MuaZeme predpokladat, ze X # A. Pfimka
AX rozdéli rovinu na dvé poloroviny, v jedné z nich vezméme
bod B € M a déle vezméme bod C € M uvniti thlu vrcholo-

A

Obr. 31 c Y B

vého k uhlu AXB (obr. 31). Je-li Y prusecik usetky BC
s pfimkou AX, je Y e M a pfitom X leZi uvnitf usetky YA,
takze také X e M.

71

Nelezi-li body A4, B, C v pfimce, je hledany pocet 3.
Mnozina M je sjednocenim tfi konvexnich mnoZin P, Q, R
(obr. 32), kde P je mnozina v8ech vnitfnich boda uhlu 4BC
a vSech vnitfnich boda usetek AB, BC; Q je mnoZina
vSech vnitinich bodu poloroviny opatné k ABC a vsech
vnitinich bodu polopfimky opatné k AB; R je mnoZina
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1l
e~

Obr. 32

vSech vnitfnich bodui poloroviny opatné k BCA a viech
vnitinich bodu polopfimky opa¢né k CB.

Zbyva ukédzat, e mnoZina M nemiZe byt sjednocenim
dvou konvexnich mnozin S, T. Zvolme na pfimce AB tii
body U, V, W (obr. 33). Pro M = SU T by jedna z mnozin
S, T obsahovala dva z bodu U, V, W a diky konvexité i né-
ktery z bodu 4, B, C, takze M # SUT.

Lezi-li body 4, B, C v pfimce, je hledany pocet 4. Mno




zina M je sjednocenim &tyf konvexnich mnozin I, |, K, L
zndzornénych na obr. 34. Analogicky jako v prvnim pripadé
dokdZeme, Ze mnozina M nemuZe byt sjednocenim tii kon-
vexnich mnozin.

72

Predpokladejme, ze tii tétivy déli kruh K na sedm dcasti
stejného obsahu (obr. 35). Jejich praseciky oznaéme A4, B, C

Obr. 35

tak, aby pii vrcholech 4, B trojuhelniku ABC byly ostré

3 4
uhly. Piimka AB dé&li kruh K na dvé ¢asti s obsahy Ta
Sestrojme kruh K’ soumérné sdruZeny s kruhem K podle
pfimky AB. V této soumérnosti piejde bod C do bodu C'.
Kdyby bod C’ lezel v kruhu K, byl by trojuhelnik 4BC’
viastni ¢asti jedné sedminy kruhu (zde vyuZivime ostrosti
uhla pii vrcholech A4, B), coz neni mozné. Bod C’ lezi tedy
vné kruhu K, a tak bod C leZi vné kruhu K’. Mnozina K — K’
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1
ma tedy obsah vétsi nez > a to odporuje skutecnosti, Ze

mnozina K N K’ m4 obsah R

1. vrstva

0. vrstva

-1. vrstva

Obr. 36
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73

Uvazujme krychlovou sit v prostoru tvofenou navzdjem
rovinobéznymi vrstvami krychli stejné velikosti jako u da-
nych dila. Zvolme jednu vrstvu, ozna¢me ji nulou a viechny
ostatni vrstvy oislujme postupné celymi &isly tak, aby nad
n-tou vrstvou byla (n + 1)-ni vrstva. Rozmistime-li nyni
sttedové krychle jednotlivych dilad v nulté vrstvé podle
obr. 36 na mista oznalend nulou, zustanou nevyplnéné
pravé viechny dvojice sousednich krychli na mistech ozna-
¢enych —1 a 1. Pfitom rozmisténé dily zaplni jeSté mista
oznatena 0 v —1, a 1. vrstvé. Rozmistime-li daldi dily v 1.
vrstvé tak, aby stfedové krychle jednotlivych dild byly na
mistech oznaCenych 1, a podobné v —1. vrstvé do mist
oznatenych —1, bude nultd vrstva vyplnéna beze zbytku.
Pokralujeme-li analogicky i v dalsich vrstvach (tj. dily se
stiedy v n-té vrstvé posuneme napi. o dvé krychle doleva
a pak je zvedneme do nésledujici vrstvy), vidime, Ze takto
vyplnime beze zbytku kazdou vrstvu, a tedy i cely prostor.

Pozndmka. Neni té€zké zjistit; Ze po sedmi vrstvich se roz-
misténi dila v jednotlivych vrstviach zaCne periodicky opa-
kovat.

Druhé ¥eSeni. UvaZzujme nejprve obdobnou tlohu v ro-
viné pro Gtvary sloZené z péti ¢tverct (obr. 37). JiZ z nézoru
je patrno, Ze témito Gtvary lze vyplnit rovinu. Pokusme se
piesto o piesny diutkaz tohoto tvrzeni.

UvaZzme kartézskou soustavu soufadnic takovou, Ze {tver-
ce tvorici jednotlivé dily budou jednotkové a jejich stiedy
budou mfiZové body. Stadi si pak uvédomit (obr. 38), Ze
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OQbr. 37

—

X +2y = =
x+2y = -2
L2213 0132
x+2 :2
- X+ y=1
! \x+2y='0
| -
|
f
Obr. 38
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stitedy jednotlivych dili budou napi. vSechny miiZové body
lezici na primce s rovnici x + 2y = 0. Podobné stfedy
ostatnich ¢tvercu budou lezet na pfimkich x + 2y = +1,
resp. x + 2y = +2. Umistime-li tedy stfedy jednotlivych
dila tak, aby jejich soufadnice [x, y] byly celoiselné a le-
zely na pfimkiach x + 2y = 5k, kde £ je celé (&islo, bu-
dou stiedy ostatnich ¢tverct leZet na piimkich x + 2y =
= 5k + 1, resp. x + 2y = 5k + 2. Pfitom se Ziadné dva
dily nemohou piekryvat a kazdy mfizovy bod lezi na né-
které z pfimek x + 2y = m pro né&jaké m celé.

Pravé naznacené feseni ted snadno pieneseme do prostoru:
Uvazujme kartézskou soustavu soufadnic v prostoru tako-
vou, Ze krychle tvorici dany dil budou jednotkové a jejich
sttedy budou miiZzové body. Jsou-li [xg, ¥s, 2s] soufadnice
sttedu § daného dilu a [x, v, 2] soufadnice stiedu libovolné
z jeho krychli, plati

lx — xs] + |y — sl + |2 — 25l £ 1. 1)

Umistéme nyni stiedy dila tak, aby jejich soufadnice [x, v, 2]
byly celociselné a ¢islo x + 2y + 3z bylo délitelné sedmi.
Jsou-li [x1, y1, 21] # [x2, 2, 22] soufadnice stiedd dvou
raznych dila, je &islo (x1 — x2) + 2(y1 — ¥2) + 3(21 — 22)
délitelné sedmi, takze musi byt, jak snadno zjistime,
[x1 — x2| + |[y1 — y2| + |21 — 22| = 3; podle (1) se tedy
z4dné dva dily nepiekryvaji. A naopak kazdy miiZovy bod
se soufadnicemi [z, u, v] je pokryt nékterym dilem, jehoZ
stied bude mit soufadnice

[z, u, v], kdyz ¢t + 2u + 3v = 0 (mod 7),
[t £1,u,v], kdyzit+ 2u + 3v = F1 (mod 7),
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[t,u £1,9], kdyZt+ 2u + 3v = F2 (mod 7),
[t,u,v £ 1], kdyZ ¢+ 2u + 3v = F3 (mod 7).

74

Mezi thlopii¢kami daného pravidelného 1982-uhelniku
neprochdzejicimi bodem M najdeme takovou, od niZz mi
bod M nejmensi vzdélenost. Jeji vrcholy oznalme A, B
a déle oznatme A4’, B’ priseliky ptimek AM, BM s kruZnici
k opsanou danému 1982-uhelniku (obr. 39). Uvniti kratsi-

Obr. 39

ho oblouku BA’ nelezi Zadny vrchol dané¢ho mnohouhel-
niku, protoZe jinak by nebyla thloptitka 4B bodu M nejbliZe.
Ze stejnych dtivodt neleZi Zddny vrchol ani uvniti krat$iho
z oblouku AB'.

Je-li § stied kruZnice &, plati pro dva sousedni vrcholy
X, Y daného mnohouhelniku

T

% XSY] = 1983
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takze

'k A'SBl< 25 1y ASB| < —~
’ < ’ R

Pro thel AMB je tedy
|x AMB| = — | X A AB| — |x ABB'| =
21

1
=TT — ! 3 2 _— e
5 (% A'SB| + | % ASB) 2= — {90

Druh4 nerovnost |¥ AMB| < w je patrna z toho, Ze
bod M neleZi na Ghlopfi¢ce AB.

75

Oznatme (obr. 40) « = |¥x ASB| = |x BSC|, =
= |x CSD| = | & DSE|, y = |¥x ESF| = |x FS4|. Pro-
toze

20 + 2f + 2y = 2m,
je
o+ f+y=m

VS

Obr. 40
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Pro kazdou polohu bodu § vzhledem k trojuhelnikim
ACE, BDF je (povazujme polomér opsané kruZnice za

jednotkovy)
1
S(ACE) = 2 (sin 2o + sin 2f + sin 2y) =

= *; (sin (o + ) cos (o2 — B) +

+ sin (f + ) cos (f — y) +
+ sin (y + «) cos (y — ),

1 .
S(BDF) = 2 (sin (« + ) + sin (f + p) + sin (y + ).
Dokazovani nerovnost S(ACE) < S(BDF) je tedy ekviva-

lentni nerovnosti
sin (« + () (1 — cos (« — B)) +
+sin(p +y)A —cos(f — ) +
+sin(y + 2)(1 —cos(y — a)) = 0,

jejiz platnost je zfejmd, nebot
e+ pf<m, O0<f+y<m 0<y+ «

0 < < 7.
Rovnost nastane, pravé kdyz
cos (a0 — f) =cos (B — y) =cos(y — «) =1,
tj. pravé kdyz o = f# = y. Rovnost tudiZ nastane pravé jen

pro pravidelny Sestitihelnik.
76
Dokazovana rovnost je ekvivalentni rovnosti

|[Aodr| | Ao a

i + —_
|AoAz| | AoAs]
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V pravidelném sedmithelniku ziejmé je (obr. 41)

|[dodr|  [Aod [Aoch|  [Aodi]

Aods] ~ [ Asds] ® [Aods| | Azdal @

Unmistime-li pravidelny sedmithelnik v komplexni roviné
tak, aby jeho stied byl v poldtku, vrcholu 4y prisluselo

Obr. 41

¢islo 1 a vrcholu A4; komplexni jednotka z, budou vrcholim
Ay prisluset &isla 2%, k € {0, 1, ..., 6}, pfi¢emZ 27 = 1. Pro-
toze AoA: || Aadse || Asds, plyne z rovnosti (2)
|A()A1| |A()A1| z—1 z2—1
Aodel " [Asdsl T B — 2 T2
22— 26 + 23 — 25
SR o
23— 2% — 27 4 20 4 2% — 28 — 20 4+ 2P

25— g9 — 27 4 gl

diky rovnosti 27 = 1. Plati tedy (1) a rovnost je dokédzana.
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Druhé feSeni. Opidme pravidelnému sedmithelniku kruz-
nici o poloméru 1 (obr. 41), pak plati

. ow . 2r 3
|AOA1} = 2 sin "7, ]A()Ag[ = 2 sin ”;7", |A()A,3| = 2 sin 'i .

Méme tedy dokazat, Ze plati rovnost

1 1 1
7r_-_27:+_37“:’ &)
sin - sin sin
neboli
o 2n 3w oon/ . 2m . 3n
sin —- sin - = sin | sin +sin ).
. 3w 47
Protoze sin 7= sin T dostaneme na pravé strané pred-

chozi rovnosti podle zndmého vzorce

.oom/ . 2=m o Arw .omT 3w b
s1n7 s1n7+s1n7 _2sm7sm7cos7—

. 2m 3w
= sin 7sm7.

Tim je rovnost (3) dokdzina.
T¥eti feSeni. Oznalme x = |4ody|, y = |Aod:|, 2z =
= |ApAs|, ze shodnosti jednotlivych stran a od povidajicich

si uhlopfi¢ek pravidelného sedmithelniku plyne, Ze staci
dokazat rovnost
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neboli
X2 + xy = 3.

Ta plyne z Ptolemaiova vzorce pro tétivovy Ctyfuhelnik
A] A3A4A5 (obr. 42)

Obr. 42

Pozndmka. Jsou-li a, b, ¢, d velikosti stran tétivového

Ctyfahelniku ABCD a e, f velikosti jeho uhlopfi¢ek, plati
ac + bd = ef

(Ptolemaitv vzorec). K jeho odvozeni muZeme pouZit kosi-
nové véty. Z trojuhelnikd ABC, ACD méme

e? = a? + b2 — 2ab cos | < ABC],

e? = ¢ + d2 — 2cd cos | CDA| =

= ¢ + d? + 2cd cos | ABC|.

Vyjadiime-li z obou téchto vztaht cos | ABC| a porovnd-
me, dostaneme

e2(ab + cd) = (ad + bc) (ac + bd).
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Analogicky z trojuhelnika ABD, BCD plyne
f¥ad + bc) = (ab + cd) (ac + bd).

Vyndsobenim poslednich dvou rovnosti dostaneme Ptole-
mailv vzorec.

Obr. 43

Jiny diakaz Ptolemaiov a vzorce dostaneme vyuzitim podob-
nosti. Sestrojme bod P na Ghlopfi¢ce AC tak, aby | < ADP| =
= |¥ BDC]| (obr. 43). Pak jsou trojahelniky DAP, DBC
a trojthelniky CDP, BDA podobné, takze

d f c f

Odtud plyne
ac + bd = (JAP| + |CP|)f = ¢f.

71

Predpoklddejme, Ze se bod X pohybuje rovnomérné po
hranici trojahelniku ABC. Potom se bod Y, ktery spolu
s X puli obvod trojthelniku, pohybuje také rovnomérné,
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a to stejnou rychlosti jako bod X. Pokud Zddny z bedd X, Y
neni ve vrcholu trojuhelniku, jsou oba tyto body na raz-
nych strandch trojahelniku (podle trojahelnikové nerovnosti),
tedy na ramenech uhlu. Uvazujme nyni (obr. 44) konvexni

R,
R, ©
u
(p .
v

Obr. 44

ahel velikosti ¢ s vrcholem V, na jednom jeho ramenu bo-
dy R;, R> a na druhém 81, Sq tak, Ze |VRy| = |[VS1| =
=u, |VRy| =u+ v, |[VS| =u — v (u = v = 0). Podle
kosinové véty je

[R2S2[? = 2u*(1 — cos @) + 20%(1 + cos ¢),

a tedy |R2S8s| je nejvétsi pro nejvétdi moiné v = u, tj. pro
Ss = V. To v3ak pro na$i Glohu znamen4, Ze nejvétsi vzda-

A
X3 /c
3 b XZ
==t s-a
a
Obr. 45 B=Y cals
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lenost mohou mit body X, Y jen v pfipadé, Ze jeden z bod
X nebo Y bude ve vrcholu trojihelniku. Porovnejme proto
tyto tfi vzdalenosti (obr. 45). Je-li bod Y» ve vrcholu B, je bod
Xo na strané AC, a to ve vzdalenosti s — a od bodu C, kde

1
s=7 (a+ b+ ¢) je polovitni obvod trojuhelniku ABC

(je totiz | YoC| + |CXs| = 5). Ze stejn¢ho duvodu je pro
Y3 = C bod X3 ve vzdalenosti s — a od bodu B na strané
AB.

Podle kosinové véty je

| XoYo|? = a? + (s — a)* — 2a(s — a) cos y

| X3Y32 = a% + (s — a)> — 2a(s — a) cos f5.
Zvolime-li oznaCeni tak, aby a = b = ¢, je také « = f = y,
tj. cos # < cos y, a proto
| X, Yal? < | X3 V2. )

Porovnime-li stejnym zpusobem pro Y = A4 vzdélenosti
| X2Ys| a | X1 Y], dostaneme

X1 Y12 £ | Xo Yol2 @)

Pritom v (1) nastane rovnost, pravé kdyz f = v, a v (2)
nastane rovnost, pravé kdyz « = f. Proto vzdalenost je vidy
nejvetsi pro dvojici X3, Y3, tj. pravé kdyz je jeden z bodu
X, Y ve vrcholu proti nejkrat$i strané.

78

Oznatme x neznidmou velikost hrany krychle a V(x)
objem rozdilu téles Q U K a Q N K. Tento rozdil je sloZen
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z bodu, které jsou v Q, ale nejsou v K, a z bodu, které jsou
v K, ale nejsou v Q.

Je-li x > ¢, lze V(x) zmenS$it zmenSenim x, je-li x < a,
Ize V(x) zmenSit zvétSenim x. Sta¢i se tedy omezit na Cisla
x € {a, ¢y. Budeme rozliovat dva pfipady:

1. a £ x £ b. Pak je (obr. 46) objem V(x) roven soultu
objemu a(be — x2) vngjsiho prstence a objemu x*(x — @) dvou
kvadru, takze

V(x) = x3 — 2ax% + abc.

X
"’f /
% al ¢
b
Obr. 46 =
X
X R
./7—
/
C
a g
Obr. 47 b i

2. b < x < c. Pak je (obr. 47) objem V(x) roven soultu
objemu (x2 — ab)x prstence a objemu ab(c — x) dvou kvadri,
takze

V(x) = x3 — 2abx + abc.
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Protoze derivace funkce V' v intervalu (b, ¢) je V'(x) =
= 3x% — 2ab > 0, mize v intervalu (b, ¢) nastat minimum
jen pro x = b. V intervalu (a, b) je V'(x) = 3x2 — 4ax.

4 4
Pokud 34 b, je V'(x) < 0 pro a < x < 39 V'(x) >0

4 4 4
proza < x <ba V’(x):Opronga.Pokud -gagb,

je V'(x) < 0 pro a << x < b. Odtud tedy plyne, Ze hledand

4 4
velikost hrany krychle je 3P je-li b 3 a, nebo b, je-li

79

Dany trojahelnik T ozname ABC tak, aby pro jeho uhly
platilo « = f = y. Piedpoklddejme nejprve, ze y = 45°
(obr. 48). Patu vysky na stranu BC ozna¢me Q. Potom pra-

A

i

|

|

|

|
Obr. 48 BO B a ¢ CO

vouhly rovnoramenny trojuhelnik 4AByCy se zdkladnou ByCy
na piimce BC obsahuje trojuhelnik 4BC a mé obsah [AQ[?.
Pravotihly rovnoramenny trojuhelnik A4oBC s hlavnim
vrcholem Ay v poloroviné BCA je obsaZen v trojuhelniku
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1
ABC a méa obsah 1 |BC|2. Protoze strana BC je nejdelsi

ze stran trojuhelniku ABC, lezi bod A v pruniku kruhu
(B, |BC)), (C, |BC)), takze vyska AQ neni vétsi nez vyska
rovnostranného trojihelniku se stranou BC, tj. |AQ| <

V3 |BC|. Z jednotkového obsahu trojihelniku ABC mame
|BC|.1AQ1 = 2, takze
— 4
|40 < |3, |BC2 2 — .
2= 13, | B

Zbyva ptipad y < 45° (obr. 49). Potom pravouthly troj-
uhelnik ABC s pravym thlem pii vrcholu A4 a s vrcholem By

AR

Obr. 49 5 B c
na pfimce BC obsahuje trojuhelnik ABC a pro jeho obsah S
plati
B |BoC| - |BoC| 1

|[BC| = |AC| cos y
Pravouhly trojihelnik BCR, kde R je pata vysky trojahelniku
ABC na stranu AC, je obsaZen v trojahelniku ABC a pro
jeho obsah P plati

|RC] |RC| V2 1/3

= =COs Yy > —~

= 14C| = |BC| 2 73

< ]/5 <3
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Druhé feSeni. Dany trojuhelnik T oznatme ABC tak,
aby pro velikosti jeho stran platilo a = 6 = ¢ (obr. 50).
Dile oznatme S stfed strany BC, |AS| =1, | ¥ ASB| = o.

A

Obr. 50

Protoze trojahelnik ABC je ostrouhly, je 2¢ > a. Pravouhly
trojuhelnik 4ByCy s vrcholy By, Cp na piimce BC, pro néZ
|SBy| = |SCy| = t, tedy obsahuje trojuhelnik ABC. Troj-
thelnik ABC ma obsah

at
1= " (sin w + sin (7 — ®)) = = sin ©

a trojuhelnik AByCy ma obsah

9

P = (sin o + sin (= — ©)) = sin o.

Odtud dostaneme
2t 1
a . < )

Z kosinové véty vypolteme velikost téZnice

1.
t:zl/2(b‘3+cz)—-a2,
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takze podle (1) je

o

b
nebot — <1, — < 1.
a a
Pravothly trojahelnik 4yBC, kde AyB || ABy, AoC || AC),
je obsazen v trojuhelniku ABC a piitom jsou trojuhelniky

2t
AyBC, AByCy podobné s koeficientem = P. Trojahelnik

ApBC ma tedy obsah
Lopols I3
p-l T p= o3
80

Nejprve se budeme zabyvat netupouhlym trojuhelnikem
a ukdzeme, ze m(X) je nejvétsi a M(X) nejmensi, pravé kdyz
X je stfed § kruZnice opsané.

Dejme tomu, Ze pro bod X # S trojuhelniku ABC je
M(X)< M(S)=r. Pak je |[AX|<r, |IBX|<r, |CX|Zr
a bod X tedy lezi v kazdém z kruht (4, r), (B, r), (C, r).
Na hranici kazdého z nich leZi bod S, a proto je | £ XS4| <

T ' ™
<3 | XSB| < PY | XSC| < re Tyto t¥i thly maji

spole¢né rameno XS, takZe jejich sjednoceni je thel s vrcho-
lem § mensi nez =, ktery obsahuje body 4, B, C. To viak
odporuje tomu, ze netupothly trojuhelnik obsahuje stied
kruznice opsané.
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Dejme tomu, Ze pro bod X trojuhelniku ABC je m(X) =
= m(S)=r. Pakje |AX| = r,|BX| = r, |CX| Z rabod X
nelezi uvnité Zaddného z kruha (4, r), (B, r), (C, r). Tuto
vlastnost md jediny bod trojahelniku 4ABC, a to bod S.
Kolmice spusténé z bodu S na strany spolu s Gsetkami S4,
SB, SC rozdéli totiz trojuhelnik ABC na pravouhlé troj-
uhelniky s preponami S4, SB, SC, ptitemz kazdy z nich
lezi az na bod § uvnitf nékterého z uvedenych kruhu. Je
tedy X = S.

Dale uvazujme tupouhly trojuhelnik ABC s nejdelsi stra-
nou AB a oznalme P jeji stied a p jeji osu. Ziejmé M(P) =
= |AP| = |BP|. Zvolme bod X trojuhelniku ABC lezici
v poloroviné pA, X # P (obr. 51), a oznatme X, spoleiny

Obr. 51

bod tuse¢ky BX s osou p. Pak |BX| = |BXy| > |BP| pro
Xy # P, |BX| > |BXy| = |BP| pro Xy = P, takze M(X) >
= M(P). Stejné postupujeme pro body poloroviny pB.
Vidime, Zze M(X) nabyvd minima, pravé kdyz X je stied
nejdelsi strany.

Zbyva vysetfit maximum funkce m v tupouhlém trojahel-
niku ABC. Zvolme oznaleni tak, aby |4AB| = |BC| = |AC]|
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a oznatme O spoletny bod strany AB s osou strany BC.
Z tupothlosti trojuhelniku ABC vyplyva (obr. 52), Zze
|OA| > |OB|, takze m(O) = |OB| = |OC|. Pro vSechny bo-
dy X # O trojuhelniku OBC je bud |BX| < |BO|, nebo
|CX| < |CO|, a tedy m(X) < m(O). Na pifimce AB sestrojme
didle bod O’ # O tak, aby |CO| = |CO’| (obr. 53). Pro

A

Obr. 52 Obr. 53

viechny body X # O, O trojuihelniku COO’ je ziejmé
|CX| < |CO|, a tedy m(X) <~ m(O). Lezi-li bod O" uvnitf
strany 4B, je |AO'| £ |0'C|, nebot predpokldddme |AC| <
< |BC|. Pro viechny body X # O’ trojuhelniku AO'C je
bud |4X| < |AO’|, nebo |CX| < |CO’|, tedy m(X) <~ m(O").
Pritom m(O") £ m(O) s rovnosti, pravé kdyz |AO'| = |BO|,
tj. pravé kdyz |AC| = |BC|. V tupouhlém trojuhelniku je
tedy m(X) nejvétsi, pravé kdyz X je prusecik nejdelsi strany
s osou druhé nejdelsi strany. (V rovnoramenném tupouhlém
trojuhelniku existuji takové body dva.)

Pozndmka. VSimnéte si, ze jsme vlastné nasli minimum
funkce M v roving, nejen v trojuhelniku. Maximum funkce m
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v roviné neexistuje: ke kazdému &islu ¢ miZeme najit bod X,
pro ktery je m(X) > c.

81

Sou¢in |AB|.|BC|.|CD|.|DA| odhadneme pomoci nerov-
nosti
a+ by
s @ o

pii¢emZ pouzijeme Ptolemailiv vzorec
|AB|.|CD| + |BC|.|AD| = |AC|.|BDj|,
ktery plati pro libovolny tétivovy ¢tyfthelnik ABCD (viz
roznamka k FeSeni tlohy 76). Dostaneme tak
4 < |AB|.|BC|.|CD|.|DA| <
_ (4B|.(CD| + |BC.|AD)y _|AGP.|BDP

4,

4 4

lIA

nebot AC, BD jsou tétivy kruZnice o poloméru 1. Nastava
zde tedy rovnost, a proto |AC| =2, |BD| = 2. Rovnost
bude i v (1), takze |4B|.|CD| = |BC|.|AD| = 2. Tétivy
AC, BD jsou tedy praméry kruZnice, a proto |AB| = |CD| =
=12, |BC| = |AD| = |2, tj. ABCD je &tverec.

Druhé FeSeni. VyuZijeme nésledujiciho principu: Méjme
ddnu kruZnici a na ni tfi navzdjem razné body X, Y, Z.
Pohybuje-li se bod Z’ po oblouku XZY, je soutin | XZ'|.|YZ'|
nejvétsi, pravé kdyz |XZ'| =|YZ'|. Pravé tehdy md totiz

1
trojuhelnik X'Y7Z’' nejvétsi obsah, ktery je roven Py | XZ'|.
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| YZ'| sin | XZ'Y|, a obvodovy thel XZ'Y ma pii pohybu
bodu Z’ konstantni velikost.

Uvazujme nyni ¢tyfahelnik ABCD vepsany do kruZnice %
o poloméru 1. Sestrojme nejprve Ctyfuhelnik AB'CD’
vepsany do kruZnice k tak, aby |AB’| = |CB’|,|4AD'| = |CD’|.
Podle zminéného principu je

(|4B!.|BC|X|CD|.|DA|) = (|4B'|.|B'C|)(|CD’|.| D' 4]),

a pokud B’ # B nebo D’ # D, plati ostrd nerovnost. Dile
sestrojme Ctyfuhelnik A’B’C’'D’ vepsany do kruZnice £ tak,
aby |B'A'| = |[D'4'|, |B'C’| = |D'C’|. Ted je
(ID'4|.|AB'|\|B'C|.|CD'|) £ (D'4'|.|4'B|X|BC.|C'D')),
a pokud 4" # A nebo C" # C, plati ostrd nerovnost. Ziro-
venl je zfejmé, ze A'B’'C’'D'je {tverec o strané Vi Plati tedy
pro dany ¢tyfahelnik ABCD

|AB|.|BC|.|CD|.|DA| < |A'B'|.|B'C'|.|C'D|.|DA'| =4

s rovnosti, pravé kdyz ABCD je ¢tverec. Odtud plyne tvrzeni
ulohy.

82

Rozbor. Predpokladejme, Ze trojuhelnik ABC je fesenim
ulohy, a dopliime jej na rovnobéZnik ABEC. Z bodu 4 vedme
kolmici na pfimku BE a jeji patu oznalme P. Ziejmé je
|AE| = 2t,, |AP| = vy, takie |AE|:|AP| =2:1, je tedy
| % AEP| = 30°. Uhel AEB neni pravy, to by bylo |AP| =
= |AE|. Je-li < AEB ostry (obr. 54), lezi bod P na polo-
piimce EB a |¥x AEB| = |x AEP| = 30°. Je-li x AEB
tupy (cbr. 55), lezi bod P na polopiimce opainé k polo-
pfimce EB a | AEB| = 180° — |x AEP| = 150°.
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Obr. 54 \7/3

Obr. 55

Konstrukce. Znamou konstrukci sestrojime mnozinu M
vSech bodu, z nichz je fisetka AB vidét pod tihlem 30° nebo
150°. (Jsou to dv& kruZnice se spole¢nou tétivou 4B s vy-
jimkou bodu A4, B.) Je-li E spole¢ny bod mnoZiny M a pfim-
ky p a S stfed tsetky AE, protnou se ptimky BS, p v hleda-
ném bodé C.

Zkouska. Oznatme P patu kolmice vedené z bodu A na
piimku BE. Je-li | AEB| = 30° (obr. 54), je |x AEP| =
= |X AEB| = 30°. Je-li |x AEB| = 150° (obr. 55), je
|x< AEP| = 180° — |x AEB| = 30°. V trojuhelniku AEP
je tedy |AE| : |AP| = 2 : 1 a v trojahelniku ABC je tq = vp.

Diskuse. Body C, E si vzdjemné jednoznalné odpovidaji,
a proto se pocet feSeni ulohy shoduje s poctem spole¢nych
bodi mnoziny M a piimky p. Ozna¢me K, L prusetiky osy tise¢-
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ky AB s mnozinou M lezici v té poloroviné ohrani¢ené piim-
kou AB, ktera obsahuje pfimku p (obr. 56), a necht vzdalenost
primek p, AB je d > 0 a |AB| = ¢ > 0. Vzdélenost bodu K

Obr. 56

c ¢ .
od piimky 4B je 518 he= (2 + |/3), vzdalenost bodu L

c ¢ _
- tg 15° = — (2 — |/3). Pro pocet feleni

d oHmk .
o prunyAB}r::2 >

tedy dostdvame, Ze
¢ P
prod > 3 (2 + |/3) Gloha nema feeni,
c -
prod = s (2 + }/3) m4 uloha 1 Fe¥eni,
¢ = ¢ _
pro 2-3)<d< r (2 + |/3) ma 2 feeni,
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C ot
prod = r1 (2 — }/3) mé 3 fedeni,
" —
pro0 < d < D) (2 — |/3) ma 4 tedeni.

83
Uvazujme ¢tyfahelnik ABCD, ktery vyhovuje podmin-
kidm tlohy a jehoZz ahlopfitka BD je pramérem daného
kruhu K. Stfed kruhu K oznalme S a jeho polomér r. Podle

Obr. 57 A

trojuhelnikové nerovnosti je (obr. 57)

|AS| < |AC| + |BS| £ 2r + r = 3r.
Vrchol A kazdého takového Ctyithelniku ABCD tedy leZi
uvnitf kruhu (S, 3r). UkdZeme, jak ke kaZdému bodu A4,
pro n&jz |AS| < 37, najdeme konvexni Ctyithelnik ABCD
spliiujici pozadavky Glohy.

-
Pro A = S stadi vzit &tverec ABCD o strand > Je-li
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A # S, mé kruh (4, 2r) s kruhem K spole¢ny takovy bod P,
ktery je vnitfnim bodem obou kruht a neleZi na piimce A4S.
Ozna¢ime-li B, D pruseciky pfimky PS s hranici kruhu K
a C bod na polopfimce AP takovy, ze |AC| = 2r, bude
Ctyiahelnik ABCD splitovat podminky tlohy.

84

Necht body A4', B lezi na kruZnici &, |A'B’| = v. Oznalme
20 velikost dutého uhlu ASB a 2f velikost dutého uhlu
A'SB’ (f je urteno velikosti 2). Je tedy 0 < o < f# < 72_,
v = 2r sin f.

Budeme rozliSovat dvé moZnosti pro vzidjemnou polohu
bedu 4, B, 4, B":

a) tétivy AB, A’'B’ se neprotinaji,

b) tétivy AB, A’'B’ se protinaji ve vnitfnim bodé.

V piipadé a) je Ctyfuhelnik ABB’A4’ konvexni, jinak by
prusecik pfimek AA4’, BB'(tj. bod X) nelezel vné kruZnice k.

Obr. 58
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ProtoZze v > |AB|, lezibody A’, B’ v poloroviné ABS, je tedy
| AA'B| = «. Lezi-li stted S ve ¢tyfuhelniku ABB' A’
(obr. 58), je |xA'BB'| = f, takze |x AXB| = f — «;
nelezi-li stfed § v (Ctyfahelniku ABB'A" (obr. 59), je
|xA'BB'| =7 — f, takie |¥x AXB| =7 — « — f.

Obr. 59 A A

Obr. 60
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V piipadé b) oznatme CD tétivu délky v, kterd protind
AB ve vnitinim bodé. Uréime mnoZinu viech pruseéika X
pfimek AD, BC a prusetika Xo ptimek AC, BD (obr. 60),
protoze kazdy z nich muZeme dostat jako prusecik pfimek
AA', BB’ podle toho, zda C = 4A’, D = B’ nebo C = B/,
D = A’'. Protoze vzijemnd vyména bodu A, B nemd vliv
na prusetiky X, Xo, mlZeme predpokladat, Ze stied §
lezi napt. v poloroviné CDA. Pak bude |« ADB| = «,
|« CAD| = p,|« CBD| =7 — f,takZe | x AXiB| = f — «,
| AXeB| = — o — f.

Vidime tedy, Ze hledané body X lezi v obou piipadech
v poloroviné opa¢né k ABS na obloucich /; a /; (obr. 61),
ze kterych je use¢ku AB vidét pod thlem f — «, resp. pod

Obr. 61
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thlem © — a — f. (Je-i fi = — pak oviem f — o =

2 ]
=1 —a—f)
Ozna¢me T,, To, T3, T, prusetiky telen ?1, r2 kruznice k
v bodech 4, B s oblouky /1, /> (obr. 61). UkdZeme, Ze hleda-
nou mnozinou boda X je mnoZina

M= 11 Uly — {T]_, Tz, T3, Tz} (1)

Lezi-li bod X na nékterém z oblouku /1, /» a pfitom nelezi
na zadné z teZen 11, fa, protnou piimky XA, XB kruZnici &
jesté v dalsim bodé A', resp. B'. Je-li T pruseéik tefen 1y, 22,
je | ATB| =7 — 2x, a protoZe ® — 200 >7 — o — f# =
= f — a, lezi bod T uvnitf kruZnic oblouku /i, /». Oblouky
h, Iy jsou tedy body T, T2, T3, T4 rozdéleny na Sest Cdsti.
Pro kazdou z nich dostaneme jednu ze situaci znidzorné-
nych na obr. 58 —60. ProtoZe v kazdém piipadé | AXB| =
=f —« nebo = —a« — f, bude |x A'BB’'| = f nebo
n — f,atedy |A'B'| = 2r sin f = v.

85

Uvazujme libovolny rovnostranny trojuhelnik POR s vrcho-
ly na stranich daného ¢tverce ABCD. Protoze dva vrcholy
trojuhelniku  POR nemohou ziejmé leZet na téze strané
daného &tverce, muZeme piedpokladat, Ze je napt. Pe AD,
Q e BC, R € CD. (Pro ostatni moznosti vyuzZijeme soumér-
nosti.) Oznatme stfed daného ¢tverce S a predpokladejme,
ze |AB| = 1. Hledand mnoZina M bude soumérna podle
osy RyS strany CD (obr. 62), budeme proto piedpokladat,
ze je R € RyC. Ozna¢me Q' patu kolmice spusténé z bodu Q
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st
1
HT
P Vi
0'7—_—*|—— - Q
Obr. 62 A : B

na stranu AD. Stied V strany PQ ziejmé lezi na piimce
RyS a pravouhlé trojuhelniky PO'Q a RRyV jsou podobné.
Je tedy

Q0 |RV|

POl RV |3 |PQ]
T2 RV’

takZe

3

S

—

|[RoV| =

RS

Odtud plyne, Ze vzdilenost tézist¢ T trojuhelniku PQR od
|3
3

Za uvedenych predpokladi vyplni tedy téZisté uvaZova-
nych rovnostrannych trojahelnika use¢ku Ty71, jejiz vzda-

2
strany CD je 3 |RoV| =

/

lenost od strany CD je 3

na uhlopfi¢ce BD je tézistém rovnostranného trojuhelniku
PiO1Ry, kde Q1 = B a PiR, | BD. Vzhledem k soumér-

(obr. 63), pficemz bod T leZici
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Obr. 63

nosti mnoziny M a jeji invarianci vadi pravouhlému otoCeni
kolem stfedu &tverce je M obvod &tverce, ktery dostaneme
ze tverce ABCD stejnolehlosti se stfedem S a koeficientem

1 -
k= @)3-3).

86

Oznatme S stied pulkruznice k, P stied Gsetky AC,
O stied usetky BC (obr. 64). Body P, S, Q, C jsou vrcholy
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obdélniku. Je-li X = A a bod Y probihd oblouk CB, stied Z
useCky XY probihd oblouk PS kruznice nad prumérem 4S.
Je-li Y = B a bod X probiha oblouk AC, stted Z probihd
oblouk SO kruZnice nad primérem SB. Je-li X = Cabod YV
probihd oblouk CB, stfed Z probihd oblouk CQ kruznice
nad pramérem PQ. Je-li ¥ = C a bod X probihd oblouk AC,
stted Z probihd oblouk PC kruznice nad primérem PQ.
Tyto ¢tyfi oblouky maji stejny polomér » a vymezuji v ro-
viné oblast, kterd je hledanou mnozinou M. Zvolime-li totiz
bod Y na oblouku CB a nechdme bod X probihat oblouk 4AC,
stted Z prob&hne oblouk P'Q’ stejnolehly s obloukem AC

1
ve stejnolehlosti se stiedem Y a koeficientem - > pficemz P’

lezi na oblouku PS a Q" na oblouku CQ. Je tedy polomér
oblouku P'Q’ roven r, a probihi-li bod Y oblouk CB, pfi-
slusné oblouky P'Q’" probihaji pravé uvedenou oblast.

Obsah mnoziny M je zfejmé roven obsahu obdélniku
PSQC, tj. poloviné obsahu trojuhelniku ABC.

87

Podminka je ziejmé ekvivalentni s pedminkou, aby prunik
C N Cx mél obsah alespoil 0,5.

V roviné p zavedme kartézskou soustavu soufadnic tak,
aby C¢tverec C mél stied v poéitku a strany rovnob&Zné
s osami soufadnic. UvaZujme ¢tverec C', ktery mé strany
rovnobézné s osami soufadnic a stied v bodé [x, ¥] — pro
jednoduchcst se omezime na bedy [x, ¥] v 1. kvadrantu. Pak
je CNC # @, pravé kdyz x = 1, y< 1, a CnC’ je pak
obdélnik s obsahem (1 — x)(1 — y). V 1. kvadrantu je tedy
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mnozZinou vech stiedu [x, y] ¢tverca C', pro néz ma C N C’
obsah alespoil 0,5, prunik I. kvadrantu s vnitini oblasti
rovnoosé hyperboly

(I —=x{1 - =05

(ma’l stted [1, 1], asymptoty x = 1, y = 1 a vrchol

[ 2 2
1= 17
body mnoziny M viech stfedd takovychto ¢tverct na zd-
kladé soumérnosti podle soufadnicovych os (obr. 65).

Nasim tkolem tedy je najit mnozinu viech stfedd X
ototeni o 90° zobrazujicich pocitek O do bodu prévé popsa-
né mnoziny M. K tomu si sta¢i uvédomit (obr. 66), Ze zobra-

>. V ostatnich kvadrantech dostaneme

7 [1.1]
\‘\\ 11_
~ 22
V2 4712
="
Mi—7 | X
— \ ‘
\
\
\
Obr. 65 LI,
//B _‘\\\\
y
BT 0
1
Obr. 66 $'e
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zi-li otozeni o 90° kolem stiedu X bod O na bod B, pak

zobrazeni Z sloZené ze stejnolehlosti se stiedem O a koefi-
/2

cientem Py a z otoleni kolem bodu O o 45° zobrazi bod B

do bodu X. Hledand mnoZina je tedy obrazem mnoziny M
v zobrazeni Z (obr. 67).

Obr. 67

88

Mgjme v prostoru &tyfi navzdjem razné body P, Q, P, Q'
tak, ze |PQ| = |P'Q’|. Nejsou-li usecky PQ, P'Q’ souhlasné
rovnobézné, existuje jediné otofeni kolem osy, které zobrazi
P na P’ a Q na Q (osou tohoto otoceni je priuseCnice rovin
soumérnosti useCek PP, QQ’). Jsou-li tsetky PQ, P'Q’
souhlasné rovnob&zné, pak v pkipadé P'P | PQ existuje
nekone¢né mnoho takovych otofeni (podle libovolné osy
rovnobézné s PQ a lezici v roviné soumérnosti PP’), jinak
Z4dné takové otoleni neexistuje.

Zobrazi-li ototeni bod 4 na bod B a bod C na bod X,
bude |AC| = |BX]|, takze bod X bude lezet na kulové plose
(B, |AC]). Obraceng, je-li X bod této kulové plochy, X # M,
kde ABMC je rovnobéznik, existuje otofeni kolem osy, které
zobrazi A na B a C na X. Pro X = M 74dné takové otoceni
neexistuje. MnozZinou v3ech obrazi bodu C v ototenich kolem
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osy, kterd zobrazuji 4 na B, je tedy (B, |AC|) — {M}. Hle-
danou mnoZinou je pak jeji pranik s povrchem dané krychle,

coz je sjednoceni t¥i CtvrtkruZnic s polomérem |AB| a se
stiedy A, B', C (obr. 68).

D = c’
’/
7
A’ \\ // B
\". J/
\', /
V
pl _____] __Jjc. M
//
//
A B

Obr. 68

Druhé feSeni. VyuZijeme toho, Ze kazdé otoleni kolem
osy v prostoru dostaneme jako sloZeni dvou soumérnosti
podle rovin protinajicich se v uvedené ose. Osa kazdého oto-
Ceni, které zobrazi bod 4 na bod B, leZi v roviné soumérnosti
o Gsetky AB (obr. 69). Kazdé takové otoceni tedy dostaneme
sloZzenim soumérncsti R podle roviny o a soumérnosti S
podle uréité roviny ¢ ruznobézné s o a obsahujici bod B.

Soumérnost R zobrazi bod C na bod D. Pro kazdou rovinu
o # BCB’ obsahujici bod B pata kolmice spudténé z bodu D
na rovinu ¢ lezi na kulové ploSe » sestrojené nad primérem
BD (podle Thaletovy véty). Dostaneme tak vSechny body
kulové plochy x» kromé bodu C, ktery odpovida roviné BCB'.
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o, i '

Obr. 69

Obraz bodu D v soumérnosti S podle uvazované roviny o
pak bude leZet na kulové plose »’, kterd je obrazem kulové
plochy x ve stejnolehlosti se stfedem D a koeficientem 2.
Obrazy bodu C ve vSech uvaZovanych otolenich tedy vyplni
kulovou plochu " = (B, |BD|) vyjma bodu M soumérné
sdruzeného s bodem D podle sttedu C. Kulovd plocha
protne povrch dané krychle ve tfech &tvrtkruZznicich %1, kg, A3
(obr. 69) se stiedy B’, 4, C a polomérem |A4B|. Hledanou
mnoZzinou je tedy &1 U k2 U ks.

89

Necht XYZTX'Y'Z'T’ je kvadr pczadovanych vlastnosti.
Rovina X'Y’Z’ horni podstavy kvadru rovnobéznd s rovinou
ABC protne ¢tyfstén ABCD v trojahelniku 4'B’C’ (obr. 70).
Pritom je X'Y' <« A'B’, Z' € B'C', T' € C'A’. Naopak kazdy
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QObr. 70

takovy kvadr XYZTX'Y'Z’'T’ dostaneme tak, Ze libovolnym
vnitfnim bodem A’ hrany 4D vedeme rovinu o || ABC,
ktera protne Ctyistén ABCD v trojihelniku A'B'C’, a v rovi-
né ¢ vedeme libovolnou pfimku o || A'B’ tak, aby protla
strany B'C’ a C' 4’ ve vnitinich bodech Z’, resp. T”. Na strané
A'B’ pak uréime body X', Y’ tak, aby X' Y'Z'T” byl obdélnik.
Ziejmé kazdému takovému obdélniku odpovida pravé jeden
kvadr XYZTX'Y'Z'T’ splijici podminky ulohy.

Cl
I\\
7/ L\UNZ X
D *
A
AN
S
#‘ X
A X CyY B

Obr. 71
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Oznatme U’ stied strany Z'T" (obr. 71). Stied S’ obdélniku
X'Y'Z'T' puli kolmici z bodu U’ na stranu A’B’, dostaneme
ho tedy z bodu U’ afinnim zobrazenim s osou A'B’ a koefi-
cientem ; . Mnozinou v3ech bod U’ je zfejmé vnitiek téznice
C'C, v trojihelniku A'B’C’, takZze mnoZinou stfeda viech
obdélnika X'Y'Z'T’ v roviné A'B’C’ je jeji obraz v uvedeném
afinnim zobrazeni, tj. vnitfek Gsetky D'C,, kde D’ je stied
vysky trojuhelniku A’B’C’ z vrcholu C'.

Mnozinou stfedd S’ hornich podstav vSech kvadra
XYZTX'Y'Z'T' pozadovanych vlastnosti pak bude vnitiek
trojuhelniku CoDyD (obr. 72),kde Cy je stied strany 4B a Dy
stited vysky trojihelniku ABC z vrcholu C. Prusecik S téle-

Obr. 72

sovych uhlopri¢ek prislusného kvadru a stfed S’ jeho horni
podstavy si vzajemné jednozna¢né odpovidaji (S puli kolmici
z bodu S’ na podstavu 4ABC). Hledanou mnozZinou pruseika
télesovych uhlopric¢ek vech uvazovanych kvadru je tedy obraz
trojuhelniku CoDoD v afinnim zobrazeni s rovinou afinity
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1
ABC a koeficientem X tj. vnitiek trojahelniku CyDyD, (obr.
73), kde D, je stfed vysky &tyfsténu ABCD z vrcholu D.

Obr. 73

Pozndmka. Afinnim zobrazenim obecné rozumime kazdé
zobrazeni roviny (prostoru), ve kterém je obrazem pfimky
(roviny) pfimka (rovina). Kromé shodnych a podobnych
zobrazeni ma tuto vlastnost i nésledujici zobrazeni.

V roviné uvazujme dvé riznobézné pfimky p, g a redlné
Cislo £. Bodem X roviny vedme piimku ¢’ || ¢ a jeji prusecik

Obr. 74
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s osou p oznalme Xy. Bodu X pfifadime bod X' € ¢ lezici
v téze poloroviné, pokud £ > 0, nebo v poloroviné opacné,
pokud & < 0, a takovy, Ze | XoX'| = k| XpX]. Jsou-i X', Y’
obrazy bodd X, Y v uvedeném afinnim zobrazeni, protinaji
se piimky XY, X'Y’ na ose p (obr. 74), anebo je XY || X'Y" ||
|| p. Analogicky definujeme v prostoru afinni zobrazeni uréené
rovinou g, smérem piimky ¢ riznobéZné s o a koeficientem k.

90

Kazdd koule x soumérné sdruzené podle roviny prochdzejici
bodem E s kouli, kterd ma stfed S na hrané AE a polomér
|SA|, se ziejmé zevniti dotyka koule (E, |[EA|) (obr. 75). Je-li

a
ic obsazena také v kouli 7, je pramér koule x nejvyse a + i
— |EO| (obr. 76) a v tomto pfipadé stied S’ koule x leZi na

pfimce EO. Uloze vyhovuje jediny bod S e AE, |AS| =

Obr. 75
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Obr. 76

91

Nejprve pfedpokladejme, Ze nékteré tii stény maji pravé
ahly pii spole¢ném vrcholu (obr. 77). Pro délky hran takové-
ho ¢tyfsténu pak plati
e2+fi=0+c2+a’+c2=a%+ b+ 2 =d*+ 2c* > 47,

takZe hrany e, f sviraji ostry thel. Analogicky zjistime, Ze

al (B

Obr. 77 %
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i hrany d, e a d, f sviraji ostré uhly. V étyfsténech tohoto typu
je tedy Ctvrtd sténa ostrothly trojuhelnik.

Dale pfedpoklddejme, Ze nékteré tfi stény maji pravé thly
pii tiech raznych vrcholech (obr. 78). Pro délky jeho hran
pak plati

9

Ee+dP=b—-c+a*-b=a>—c<a
Ctvrta sténa je tedy tupouhly trojahelnik.

c
\/

g

Obr. 78 d

Zjistili jsme, Ze podminkdm tlohy mohou vyhovovat jen ty
Ctyfstény, v jejichz dvou vrcholech sviraji hrany po dvou
pravych uhlech. Ptedpokladejme, Ze takovy Ctyistén ABCD

Obr. 79
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vyhovuje danym podminkdm, necht pravé uhly jsou pii
vrcholech C, D (obr. 79), pak je |AB| = 1. Oznatme |AC| =
= x, |BC| = y. Trojuhelniky ABC, ABD (nebo BAD) jsou
podobné a maji spoleénou preponu, jsou tedy shodné. Protoze
|BD| > |BC|, je N\ ABC =~ A\ BAD, |AD| =y, |BD| = «x.
Oznatime-1i velikost zbyvajici hrany 2 = |CD|, bude 1 > x >
=y > z. Trojuhelniky A4BD a ADC maji totiz pfepony
|AB| =1 > |AC| = x a odvésny x, y, resp. y, 2. Z toho
plyne, Ze je bud

l:x:y=x:y:3, (1)
nebo

lix:iy—=x:2:y.

Druhy pripad vSak zfejmé nemuze nastat. Z poméru (1)
mame y = x2, z = x3. Podle Pythagorovy véty je

¥4+ =x24 xt =1
a odtud

-1, -1 -
= > > 2 = > 22 = l — 2.

Uloze vyhovuje jediny &tyistén ABCD s hranami |AB| = 1,
|AC| = |BD| = x, |AD| = |BC| = y, |CD| = .

92

stény; vime, Ze t€zisté Ctyfsténu déli téznici v poméru 3 : 1.

Necht T1, Ts, T3, Ty jsou t&zisté stén BCD, ACD, ABD,
ABC. Kazdy bod Gi, i€ {1, 2, 3, 4}, déli pfislusnou usetku
KT; v poméru 3 : 1, je tedy ¢tyistén G1G2G3Gy stejnolehly
s Ctyfsténem 71175737 podle stiedu K s koeficientem stej-
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~

J
nolehlosti e Protoze koeficient stejnolehlosti na volbé bedu K

nezavisi a protoZe stejnolehlost s koeficientem % méni objem
télesa |k[?-krat, je tvrzeni dokdzdno. Navic je zfejmé Ctyfstén

1
T, T>T5T; stejnolehly s Etyfsténem ABCD s koeficientem — 3

a stfedem v t&zidti Ctyfsténu ABCD. Objem (Ctyfsténu

1\3/3)\3 1
G1G2G3Gy jetedy <3-> <~4—> = 61 objemu ¢tyfsténu ABCD.

Druhé reseni. Umistéme Ctyistén ABCD do kartézské
soustavy soufadnic. Ozna¢me g; vektor OGy, 7 € {1,2, 3, 4},
apolozmea = OA,b=0B,c = OC,d = OD, k =
= OK. Pak plati

k+b+c+d k+a+c+d
g1 = 4 , 82 = 4 5
k+a+b+d k+a+b+c
BT s

1
Ctyistén G1G2G3Gs mé hrany g — g = % (b — a) =
! AB ! ! AC
=73 8 —g= y(e-a)y= ~AC g — g =
1

4 BC,

Il

1 1 1
Z(dAa):*ZAD,gz—gsf—z(C—b) =

1 1 1
82_84:Z(d—b)IZBD,gs—gzl:Z(d—c):

1CD
2 :
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Velikosti hran &tyfsténu G1G2G3G; tedy nezavisi na volbé bo-

1
du K a jeho objem bude o4 objemu daného Ctyfsténu.

93

a) Prusecik ptimky AM s hranou BC oznalme X (obr. 80),
ctyistény MBCD a ABCD maji stejnou podstavu BCD, pro
jejich objemy proto plati

V(MBCD) |[MX| |MA]|

V(ABCD) ~— |AX| ~ |AD|’

Obr. 80

protoze trojuhelniky M4, X a ADX jsou podobné. Podobné je

V(MABD) |MCi| V(MACD) |MB|
V(ABCD) ~ |CD|’> V(ABCD) ~ |BD|’
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takze

%1_4_}1 |MB:| | MG
. 14p| TBD tcp T
_ V(MBCD) + V(MACD) + V(MABD)

V(ABCD) =L M

b) Vyuzijeme rovnosti

|x AAMCy| = | ADC|, | AiMB:| = |x ADB],
|¥ BiMCy| = | ¥ BDC|

a sestrojime Ctyfstén DAB;C; shodny s (&tyfsténem
A1B,C1 M (obr. 81). Jeho objem je

1
V(DA\B\C)) = . |DA}|.|DB)|sin | % A\DBy|.?'=

1
|MA1l |MBy| sin | ¥ ADB|.|MC:| —— [DCI

Obr. 81
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zatimco
1
V(ABCD) = 3 |DA|.|DB| sin | < ADB|.v.

Je tedy
Y(A;BlClM) " [MA:L|.|MBy|.|MC,| 5
V(ABCD)  |DA|.|DB|.|DC| 2
¢) Objem ¢tyfsténu 41 B1C1M bude nejvétsi, bude-li nej-
vétsi podil (2). Z rovnosti (1) a z nerovnosti mezi aritmetickym
a geometrickym pramérem plyne
|MA| [MB,| | MCi| 1

|DA| |\DB| |[DC| = 21°

pfi¢emz rovnost nastane, pravé kdyz
|MA| h |MBs| B |MCy| B i 3
\DA| ~ |DB| ~ |DC|] 3 (3)
Protoze trojuhelniky ADX a MA, X, BDY a MB,Y, CDZ

a MC1Z jsou podobné (obr. 80), jsou rovnosti (3) ekvivalentni
rovnostem

MX|  |IMY| |MZ| 1
|AX| ~ |BY| _|Cz| ~ 3°

AR

ABC.

94

Vedme bodem O pticky 41Bi || AB a Ci1D, || CD (obr. 82)
a necht DQ je vyska ¢tyisténu ABCD a OQq vyska Ctyisténu
OBCD. Pro objemy ¢tyfsténu ziejmé plati
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V(04B0) (00| _ 10y "
V(ABCD) |DQ| |CD|’
nebot trojuhelniky OC10Q; a DCQ jsou podobné. Podobné je
V(OABD) |OD;|
V(ABCD) ~ [CD|

2

QObr. 82

Vyménou vrchold 4 «<» C, B «»> D ve vztazich (1) a (2) do-
staneme
V(OACD) |04| V(OBCD) |OBi]

V(ABCD) ~ |AB|’ V(ABCD) _ |A4B| "’

takze dohromady méme
[A1B:1|  |CiDn|
4B " epl T
V(OABC) + V(OABD) + V(OACD) + V(OBCD)
- V(ABCD) =4
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Stejny vysledek dostaneme i pro dalsi dvé dvojice BC, 4D
a AC, BD mimobé&znych hran &tyisténu ABCD. Je tedy sku-
te¢né uvedeny soucet roven 3.

Druhé feSeni. Vedme bodem O pricky 4B, || AB
a C1D; || CD (obr. 83). Oznatme U prusetik piimek AA;

Obr. 83

a BB; (Ue CD) a V necht je prusetik pfimek CC; a DDy
(V e AB). Body U, O, V lezi v pfimce, kterd je prase¢nici
rovin ABO a CDO. Ptitom body 4i, Bi, Ci, D1 a O lez
v roviné, kter4 je rovnobéZn4 s obéma mimobézkami AB, CD.
Z podobnosti trojthelnika ABU, A;BiU a z podobnosti
trojthelnika CDV, C1 D1V plyne

|A1Ba] . |OU| |CiDs] B |0V
|AB| ~— |UV) |CD| —|UV|"®
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Je tedy

|4By|  ICiDy| _ |OU] + |OV]

48| T jcpl T juvl T
Stejny vysledek dostaneme i pro daldi dvé dvojice mimobéz-
nych hran BC, AD a AC, BD. Odtud plyne dokazované

tvrzeni.

Pozndmka. Projdeme-li obé predchozi feSeni, zjistime, Ze
tvrzeni ulohy plati i pro bod O na povrchu ¢tyfsténu. Vy-
uzijeme-li vysledku a) ulohy 93, dostaneme analogické tvrzeni
v roviné:

Je-li M bod trojuhelniku ABC a vedeme-li jim tii piicky
rovnobézné se stranami trojuhelniku, pak sou¢et poméra délek
téchto pricek a délek s nimi rovnobéZnych stran je 2.

Obr. 84

Dokazme jesté uvedené tvrzeni piimo. Oznaéme pricky ve-
dené bodem M podle obr. 84. Pak

|[A41B1|  |B:Co|  |C3ds|
48| " iBc] T4
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14C  [BiC] |B<’A| iCzAI lcsBl |43B|

=%4c) T Bc T 1aB T jac) t Be) t 4B
|Alczi \31C3! IA3BZ|

tTac) "Bl Yt aB T
[ A1Cs| iME;! [MA3|

T ac) T ac T ac

Pro bod M na hranici trojahelniku ABC je ditkaz jesté jedno-
dussi.

95

Ozna¢me o velikost uhlu CMH a f velikost hlu CMK.
Sestrojime-li kruznici n se sttedem M a polomérem |[MH| =
= |MK]| (obr. 85) a ozna¢ime-li N pruse¢ik kruznice n s polo-

Obr. 85

piimkou opa¢nou k MC, bude ziejmé podle véty o obvode-
vych thlech

o 1Y
|¥ MNH| =, |% MNK| = .
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Ozna¢me A4 a B druhé prusetiky piimek NH a NK s kruZnici
m. Trojahelniky HNM, AHS a podobné i trojihelniky KNM,
BKS jsou rovnoramenné, plati tedy

' o
|¥ ASH| :ﬁ—2<*"—~~>:a,

2 2
= B
[«BSK;:T:—2<E——2->:/3.

ProtoZe ¢tyfGhelnik SKMH je tétivovy a ziejmé | HSK| =
=7 — (¢ + f), plyne odtud |x ASB| = =. AB je tedy
prumérem kruZnice m.
Je-linynid = 0, je S = C, a protoZze « = f3, je
o
tg 5‘
—— =1

g

bez ohledu na polohu bodu M. Navic je p | AB. Je-l
0 < d < r, pak z tétivového ¢tyithelniku SCHM vidime, Ze
| CSH| = o = |x ASH|, takZe je rovnéz p | AB. Odtud
plyne, ze je
[+ 4
'8 2 r—d
WY
g,
Prod =rje H=C,a =0,
o
tg ?
— = 0.

tg 2
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Prod > rje situace obdobni (obr. 86). Opétje | < ASH| = «,
| HSK| =7 — (f — o), takie |x ASB| = =, a podobné
dostaneme i vztah p | AB. Pro uvaZovany podil pak plati

o
tg2 d—r

5] Td+r
tg*2
|d — 7|

Pro libovolné d = 0 je uvazovany podil roven e
r

Obr. 86

96

Oznaceni vrchola &tyfahelniku ABCD muzeme bez Gjmy
na obecnosti zvolit tak, aby bod E lezel na polopfimce AB

a bod F na poloptimce AD.
a) Ozna¢me G druhy prusetik kruZnic opsanych trojihel-
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nikim ADE, BCE (obr. 87). (Za uvedenych predpoklada bu-
de bod G vzdy lezet uvniti thlu ECF.) Abychom dok4zali,
ze bod G lezi na kruznici ABF, stali ukézat, Ze | x AGB| =
= |x AFB|. Oznatme |x AFB| = a, | DCF| = f;. Pro

Obr. 87

obvodové uhly v kruznici BCGE je |« BGE| = |« BCE| =
= f# a pro obvodové uhly v kruznici ADGE je |« AGE| =
= |X ADE| = o + f. Je tedy

|x AGB| = |¥ AGE| — | ¥ BGE| = «.

Podobné dokézeme, ze i kruznice CDF prochdzi bodem G,
tj. Zze | < CGD| = |« CFD| (obr. 88). Oznatme |x CFD| =
= a, | %< ABF| = y. Pro obvodové uhly v kruznici BCGE je
|x CGE| =7 — | CBE| =7 — (7= — y) = y a pro obvo-

177



Obr. 88




dové thly v kruznici ADGE je | < DGE| = = — | £ DAE| =
=n—(nt—a—yp)=a+ y. Jetedy
|¥ CGD| = |« DGE| — |« CGE| =a +y —y = o

b) Abychom dokazali, Ze stfed O; kruznice ADE, stfed O
kruznice BCE, stied O3 kruznice ABF a bed G lezi na kruz-
nici, stadi ukédzat, Ze | ¥ 0:0:G| + | ¥ 0103G| = =. VyuZi-
jeme-li vztahi stfedovych a obvodovych thlid a kolmosti
stiednych ke spole¢nym tétivim 0,0, | EG, 0,03 | AG,
dostaneme (obr. 89)

1
7 = |¥ 010:G| = - | ¥ GO:E| = | x GBE| =

1
=7 — | ABG| = - |x A0sG| =

= | X 0:0:G|.

Analogicky dokézeme, Ze na této kruznici lezZi i stfed Oy kruz-
nice CDF.

Obr. 90
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¢) Ozna¢me X, Y, Z paty kolmic z bodu G na pfimky 4D,
BC, CD (obr. 90). DokdZeme, ?¢ |¥ FYX| = |x CYZ|.
Body X, Y lezi na Thaletové kruZnici s primérem FG. Pro
jejf obvodové tihly je |« FYX| = | FGX|. Body Y, Z lezi
na Thaletové kruZnici s pramérem CG a pro jeji obvodové
uhly je | CYZ| = |x CGZ|. Protoze DCGF je tétivovy
Ctyfthelnik, je | < DFG| = |x ZCG]|, takZe pravouhlé troj-
thelniky XFG a ZCG jsou podobné a | X FGX| = |x CGZ|,
4. | ¥ FYX| = |x CYZ|. Dckizali jsme tedy, Ze paty kelmic
z bodu kruZnice opsané trojuhelniku na jeho prodlouZené
strany leZi v pfimce.*) ProtoZe bod G je podle a) spole¢nym
bodem kruZnic opsanych trojuhelnikaim ABF, CDF, ADE,
BCE, lezi vSechny &tyfi paty v pfimce.

Poznamky. V Casti ¢) jsme odvodili Simpsonovu vétu.
Uvedme jesté jeji dukaz vyplyvajici pfimo z tvrzeni a).

A

Obr. 91

*) tzv. Simpsonova véta
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Ozna¢me X, Y, Z paty kolmic z libovolného bodu G kruz-
nice opsané trojtthelniku DCF na pfimky DF, CF, DC (obr.
91) a uvazujme &tyfuhelnik DCY X. Jeho predlouZené strany
DX, CY se protinaji v bodé F. UkéZeme, Ze jeho prodlouzené
strany XY a DC se protinaji v bod& Z, tj. Ze bedy X, Y, Z
leZi v piimce. ‘

Body X, Y lezi na Thaletové kruZnici nad pramérem FG,
proto se kruznice opsané trojuhelnikim DCF, XYF protinaji
jedté v bodé G. Podle vysledku a) prochizi kruznice GYC
prisetikem prodlouZenych stran XY, DC (tyithelniku
DCYX. Timto prusetikem je ale bod Z pfimky DC, nebot
podle Thaletovy véty lezi zdroven na kruznici GYC s pri-
mérem CG.

Obr. 92
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Na zivér uvedme jesté¢ dalsi zajimavé vlastnosti uvedené
konfigurace bodu a primek. Pfi jejich dukazu rovnéz vystaci-
me s vlastnostmi obvodovych a stfedov;’rch uhli.

Uvazujme pét navzijem ruznobéznych primek, z nichZ

zadné ti1 neprochazeji jednim bodem. Ke kazdému z (Z) =5
¢tyfahelnika tvorenych uvazovanymi péti pfimkami maZeme
sestrojit prislu$ny bod G. Vsech téchto pét bodu lezi na jedné
kruznici (obr. 92). Pfiddme-li k uvedené konfiguraci jesté
Sestou primku s ostatnimi ruznobéZznou a neprochdzejici zad-
nym z dosavadnich pruseciku a sestrojime-li ke kazdé pétici

6
pfimek prislusnou »kruznici péti bodug, bude viech ( ;) e

uvedenych kruZznic prochézet jednim bodem!
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