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Předmluva

V brožuře Vybrané úlohy matematické olympiády - kate-
gorie A + MMO, kterou v roce 1976 sestavili M. Fiedler
a J. Zemánek, byly shrnuty nejzajímavější úlohy prvních
dvaceti ročníků naší matematické olympiády spolu s vybra-
nými úlohami mezinárodní matematické olympiády. Nava-
zujeme na své předchůdce a uvádíme typické úlohy nej vyšší
kategorie 21. —35. ročníku MO. Mezinárodní matematické
olympiádě je věnována jiná samostatná knížka.

Publikace je určena především vedoucím matematických
kroužků, učitelům matematiky a řešitelům MO, aby jim
pomohla v přípravě na soutěž. Doufáme, že čtenáře znovu

přesvědčí o kráse a rozmanitosti středoškolské matematiky.

Autoři
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1.Najděte všechna řešení soustavy rovnic

2.X\ — X2 = c,
— JCl + 2X2 — x3 = 0,
— *2 + 2хз — *4 = 0,

— Xn 2 + 2x„-i - Xn = 0,
Xn—i *4“ 2x-n —• d

s neznámými xj, хг, ..xn a parametry c, d.2.Najděte všechna řešení soustavy rovnic

1980xi + 1979x2 + • • • + 2xi979 + Xiggo = 0,
Xl — XJ9 80 = X‘2 — *1979 = • • - = *990 — *991 = 1981,

Xl — X2 = X2 — Хз = ... = A*989 — X990 == — 1.3.Najděte všechna řešení soustavy rovnic

xn — 2a,
xn — 4a,
x« — 8a,

X2 — x3 — .

— Xl + 3X2 — X3 — .

— Xl — X2 + 7x3 — .

Xl —

l)xn = 2naX2 — Хз — ... + (2n

s neznámými xi, X2, ..., xn a parametrem a.

-Xl4.Najděte všechna řešení soustavy rovnic

x + у + z = 3,
1115
-+—+—=

12 5У zx

x3 + У + я3 = 45.
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5. Najděte všechna řešení soustavy rovnic
1

Xj 4“ X2 4~ ... + X?1 —
4 5

n21 4
n\n + l)2+ ... ++

XnXi X2

v oboru kladných reálných čísel.

6. Má-li rovnice x3 + ax2 + bx + c

reálné, potom a2 ^ 3b. Dokažte.

7. Nechť p, q jsou reálná čísla, q < 0. Dokažte, že menší
z kořenů rovnice

0 všechny kořeny

qx2 + px 4-1=0
splňuje nerovnici

x2 4- px 4- q < 0,

právě když p ■ q 4- 1.

8. Najděte všechny hodnoty reálného parametru a, pro
které má nerovnice

x4 4- x:5 — 2(a 4- l)x'2

alespoň jedno řešení v oboru reálných čísel.

9. Je dáno reálné číslo p. Najděte všechna reálná řešení
rovnice

ax 4- a2 < 0

1/2p + 1 x2 4- }/3x 4- p 4- 4 = j/x2 4- 9x 4- 3p 4- 9.
10. Dokažte, že pro všechna přirozená čísla n > 1 platí

1 11 1
1 - > — •

27/ ' w38 2
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11. Jsou dána reálná čísla xi, x>, хз, хЛ) X5, xe. Označme
M maximum jejich absolutních hcdnot. Dokažte, že platí

1*1*4 — X1X5 + X2*5 — XoXc, + X3X6 — X3X4I 4M2.

12. Najděte všechny dvojice (x, у) přirozených čísel,
pro něž platí

1x

1'2 <
У5 'у

13. Jsou dána přirozená čísla n > k. Dokažte, že exis-
tují přirozená čísla ci, с-г, cn taková, že pro všechna
P e {1,2, ..., n — 1} platí

k(c\ + ... + C/-) + (n — k) (cic+1 + • • • + cn) ^
= PÍP1 + • • • + Cp) + (n — p) (cp+\ + ... + cn).

14. Dokažte, že pro kladná čísla *1, X2, ..., xw, jyi, JV2, ..

JVn platí

4ri11

2 ~ n

ХкУк
2 (** + j^)2a=i

k= 1

Kdy nastane rovnost ?15.Dokažte, že pro reálná čísla ai, a2, ..., aM, x platí
/ я \ 2 «

( 2 ЯП + n3 2 ^
\«=i / t=i

X2 + X

Kdy nastane rovnost ?16.Najděte všechny я-tice reálných čísel xi ^ X2 5Í ... ^
^ xn, pro které platí
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2

V Jfí) ^ n 2 XtXn-t+l.
i = 1 i 117.Je dáno přirozené číslo к a kladná čísla a\, at, ..., an,

pro která platí a\ + at + ... + an = 1. Dokažte nerovnost

axk + a2k + ... + ^ nk+l.
Kdy nastane rovnost ?18.Dokažte, že pro libovolná reálná čísla a\, at, ..., a„

platí

|sin a\ sin at ... sin an — cos a\ cos a-> ... cos aM| ^

^ V |sin ak - cos ak\.
k=i

Kdy nastane rovnost ?19.Najděte všechna reálná čísla x, pro něž funkce

12x — 6x2
/(*) x4 — 4x3 + x2 + 6x + 9

nabývá minima.20.Najděte všechny hodnoty parametru p, pro něž funkce

/(x) = x2 + 4px — |x2
nemá lokální extrém.

2px + P2 — 1|21.Jsou dána reálná čísla a\, at, ..., an. Najděte minimum
funkce

2 \x — 0,11 •/(*)
1=1
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22.Je dáno přirozené číslo n. Najděte největší hodnotu
součtu

Xl + X‘2 + ... + X)}

nezáporných celých čísel vyhovujících podmínce

x\ + x\ + ... + x% ^ In.23.Je dáno přirozené číslo n a reálné číslo k, 0 iš k ^ n.

Uvažujme všechny я-tice reálných čísel (jci, x>, . .., xn), pro
něž platí

^ sin2 Xt = k.
i i

Najděte největší hodnotu výrazu

N sin 2xi !.24.Dokažte, že existují reálná čísla А, В taková, že pro
každé přirozené číslo n platí

V tg k tg (k 1) = A tg n + В n.
k i25.Dokažte, že v trojúhelníku o stranách a, b, c a přísluš-

ných úhlech a, /i, у platí
a cos a + b cos /i + c cos у ■ 0.26.Trojúhelník o stranách a, b, c má obsah P a trojúhelník

o stranách u, v, w má obsah Q. Dokažte, že pak

a2( — u1 + v- + wl) + b2(u2 — v2 + w1) + c\u2 + v2 — w2)^.
^ 16 PQ.
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27. Označme a, b, c strany trojúhelníku ABC, a, /9, у jeho
vnitřní úhly, r poloměr opsané kružnice,
F — a2 4- b2 + c2 — 8r2, W — tg a tg /9 + tg /9 tg у + tgytga.

Trojúhelník 2ШС je ostroúhlý, právě když F > 0, a tupoúhlý,
právě když F < 0. Trojúhelník zlf?C je ostroúhlý, právě když
W > 0, a tupoúhlý, právě když W < 0. Dokažte.

28. Je dána posloupnost (an)n^i, pro jejíž členy platí
я«+з — 5ari+2 — 9arř.(i + 9аи,

Ы ^ 2n.
Dokažte, že pro všechna přirozená n je

Оц+2 = 2ťZ«-n —

V úlohách 29, 33 — 36 symbol [v] znamená celou část reál-
ného čísla v, tj. největší celé číslo nejvýše rovné x.

29. Jc dána reálná posloupnost (an)Mž0, pro jejíž členy platí
Опл 2 — 4an+i 3cín-

Definujme posloupnost (bn)n >i vztahem
11

&П- 1
.

1

bn —

přičemž klademe bn = 1 pro a„
členu počínaje platí pro členy posloupnosti (bn) stejný vztah

bn+2 — 4 — 3ú,ř.

0. Dokažte, že od jistého30.Obsahuje-li posloupnost přirozených čísel (an) všechna
přirozená čísla, existují indexy i < j k takové, že

Clк — Oj — Oj — Cli ■

Dokažte.
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31.Jsou dány dvě nerostoucí posloupnosti reálných čísel
(an)n>ъ (K)n>i a dvě prostá zobrazení P, R množiny přiroze-
ných čísel na sebe. Utvořme součty ap(\) + Ьщ\), ap(2> +
+ b,f(2>, . .a uspořádejme je podle velikosti do nerostoucí
posloupnosti (Ck)k
ni, n platí

Potom pro každá dvě přirozená číslai-

Cni \n 1 = dm + b-n •

Dokažte.32.Najděte všechny nekonečné aritmetické posloupnosti ce-

lých čísel (an)n o takové, že posloupnost (( — 1 )nan)n. o obsahu-
je právě 1972 dvojic stejných členů.33.Najděte všechna reálná čísla x, pro něž platí

3[x]2 + 6x - 4 = 0.34.Najděte všechny dvojice reálných čísel x, y, pro které

0, 3x + у = 2.M2 + Ы35.Vyšetřete průběh funkce

4‘l
oo

\/(*) k
k i

v intervalu (O, -f oo).36.Najděte všechna přirozená čísla n, pro která je součet
пг -1

2 П*]
к

dělitelný sedmi.
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37.Dokažte, že pro každé liché n je číslo
N — w(i + 3«4 + Irí1 — 11

dělitelné 256.38.Jsou-li k, m, n přirozená čísla, je součet
\m + 2m + ... + (я* - \)m + (nk)m

dělitelný číslem nk~l. Dokažte.

39. Najděte všechna přirozená čísla n < 107, pro která
platí: Je-li přirozené číslo m, 1 < m < n, nesoudělné s číslem
n, pak je m prvočíslo.

40. Je-li p > 2 prvočíslo a a, b přirozená čísla, pro něž
platí

1 1 1a

b ~ 1 + 2

potom p dělí a. Dokažte.

+ + ... +
P- 1 ’341.Jsou dána přirozená čísla m ^ n ^ 3 a mnohočlen p

stupně m s celočíselnými koeficienty takový, že p(a\) =
= р(аг) = ... = p(an) = 1 pro n různých celých čísel a\,

ci2, ..., an. Dokažte, žep nemá žádný celočíselný kořen.42.Předpokládejme, že funkce/zobrazuje množinu N všech
přirozených čísel do sebe,/(1) = 1 a pro každé n e N platí

f(n + 2) = 2f(n + 1) -/(я) + 2.

Dokažte, že pro každé n e N existuje weN takové, že

f(n)f(n + 1) =f(m).

15



43.Najděte počet všech trojic přirozených čísel x < у < z,

pro něž platí
x + у 4- z 100.44.Označme Mra množinu všech jednoprvkových a dvou-

prvkových podmnožin množiny { 1, 2, ...,«}. Pro n ^ 3 lze
ke každé (n — 2)-prvkové podmnožině P množiny M„ najít
množinu {z, j} e Mw, pro kterou je

{{«'}>{>}> {<>/}} nP = 0.
Dokažte.

1. Najděte nejmenší přiro-45.Je dáno přirozené číslo k
zené číslo n s touto vlastností: Ať zvolíme jakkoli n různých
přirozených čísel, vždy bude součet nebo rozdíl některých
z nich dělitelný číslem k.

46. Označme N() množinu všech nezáporných celých čísel,
A = {x; x — X} + x\, xi, ха g N0}, Ař = {řx; x g A] pro
t g No а В = { í; А/ c A}. Dokažte, že A = B.

47. Nechť Ai, A2, A3 jsou neprázdné množiny celých čísel
1, 2, 3} platí

(x G А,;, У e Aj) => ((x + у) E Afc, (x — у) E Afc).

Dokažte, že aspoň dvě z množin Ai, A2, A3 se rovnají. Mohou
být některé dvě z těchto množin disjunktní?

takové, že pro {i, j, k} —

\48.Nechť A je taková množina celých kladných čísel, že pro
každé dva její různé prvky x а у platí nerovnost

xy
|x - v ^

25 '
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Dokažte, že množina A obsahuje nejvýše 9 prvků. Rozhodněte,
zda taková devítiprvková množina A existuje.

49. je-li n > 1 přirozené číslo, existuje pořadí (aj, a\i,
.. ., an) čísel 1,2, ..., n takové, že pro každé k e {1, 2, ..

n — 1} číslo a/c+i dělí součet a\ + <22 + ... + a*. Dokažte.

50. Najděte všechna celá nezáporná čísla k, pro něž je

(V) liché.51.Na škole je pět zájmových kroužků a chodí do nich
celkem 64 žáci. Nejmenší kroužek má 19 členů, žádný žák
nechodí do více než tří kroužků a každé tři kroužky mají
aspoň jednoho společného účastníka. Dokažte, že dva z těch-
to kroužků mají aspoň pět společných účastníků.52.V prostoru je dáno pět bodů, z nichž žádné čtyři neleží
v rovině, a sedm rovin, pro které platí:

a) Každá z daných rovin obsahuje alespoň jeden daný bod.
b) Každý z daných bodů leží nejvýše ve čtyřech daných ro-

vinách.

Dokažte, že mezi danými body existují dva, jejichž spojnice
není průsečnicí žádných dvou daných rovin.53.V každém políčku trojúhelníkové tabulky s n řádky
a n sloupci (na obr. 1 pro n — 6) je napsáno některé z čísel 1,
2, ..., n. Přitom pro každé ke [\,2, ..., n) se v sjednocení
£-tého řádku a £-tého sloupce vyskytují všechna čísla 1, 2,
..., n. Dokažte, že v případě lichého n je každé z čísel 1, 2,
..., n napsáno v posledním políčku některého řádku.
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Obr. 1

54. Na obr. 2 je »žebřík« skládající se z и shodných čtverců.
Některé ze stran čtverců obarvíme. Počet všech takových

Obr. 2

obarvení žebříku, při nichž má každý ze čtverců alespoň
jednu stranu obarvenu, označme Pn.

a) Určete nejmenší n, pro které platí Pn > 106.
b) Dokažte, že pro každé n je Pn liché.

55. Na obr. 3 je útvar složený z 1984 shodných trojúhelní-
ků. Za přípustná považujme ta obarvení jeho vrcholů, při

/
Obr. 3

nichž má každý z uvažovaných trojúhelníků obarven aspoň
jeden vrchol. Rozhodněte, je-li počet všech přípustných obar-
vení sudý nebo lichý.
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58. Na přímce je dáno rr + I uzavřených úseček. Dokažte,
že platí alespoň jedno z následujících dvou tvrzení:

a) Existuje n + 1 z daných úseček, které mají společný bod.
b) Existuje n + 1 z daných úseček tak, že žádné dvě nemají

společný bod.

57. Je dáno přirozené číslo n > 1. Množina M uzavřených
intervalů má tyto vlastnosti:

a) Pro každý interval <w, v) e M platí, že w, v jsou přiro-
zená čísla, 1 ^ и < v ^ n.

b) Pro každé dva intervaly I e M, Г e M je Jal' nebo
/' c / nebo / n Г = 0.

Určete největší možný počet prvků množiny M.

58. Jsou dána přirozená čísla n > 1, k. Konečná posloup-
nost Ji, /2, ..., Im uzavřených intervalů má tyto vlastnosti:

a) Pro každý její člen Ij = (uj, v$y platí, že Uj, v] jsou při-
rozená čísla, I ý! щ < Vj ^ n.

b) Každé reálné číslo leží nejvýše v k jejích členech.
Jaké největší hodnoty může nabývat číslo m ?

59. Uvnitř koule o objemu 1 je dáno 11 bodů. Dokažte, že
existují dvě roviny procházející středem koule a určující ku-

1
lovou výseč o objemu —, uvnitř které neleží žádný z daných

O

bodů.

89. V kouli o poloměru 1 je dáno 73 bodů. Dokažte, že
z těchto bodů lze vybrat 13, které leží uvnitř nějaké koule

5
s poloměrem —.
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61.Ve čtverci se stranou délky 50 je dána lomená čára L
taková, že každý bed čtverce má cd některého jejího bodu
vzdálenost nejvýše I. Dokažte, že délka čáry L je větší než
1248.

62. V rovině je dáno 3n bodů, z nichž žádné tři neleží
v přímce. Dokažte, že jsou to vrcholy n navzájem disjunktních
trojúhelníků.

63. V rovině mějme síť rovnostranných trojúhelníků o stra-
ně a. Dokažte, že uvnitř každého čtverce, který leží v rovině
sítě a má stranu větší než a, leží alespoň jeden uzel sítě.64.Označme A kruh s poloměrem j 5 а В sjednocení čtyř
kruhů, jejichž průměry jsou strany jednotkového čtverce.
Dokažte, že při libovolném umístění útvarů А а В v rovinné
síti jednotkových čtverců existuje alespoň 10 uzlů sítě, které
leží v A a neleží uvnitř B.

65. V rovinné čtvercové síti je dán kruh K, na jehož hranici
neleží žádný uzel sítě a který obsahuje aspoň dva uzly.
Hranice kruhu К rozděluje rovinu na dvě části. Ty uzly sí-
tě, pro něž aspoň jeden ze čtyř sousedních uzlů leží v opáč-
né části roviny, nazveme hraniční. Dokažte, že počet hra-
ničních uzlů vně К je o čtyři větší než uvnitř K.

66. Na šachovnici 8x8 nakresleme obdélník 2x 1 a označ-

me k počet černých polí šachovnice, jejichž vnitřní bod leží
v tomto obdélníku. Jaké největší hodnoty může nabývat
číslo k ?

67. Uvažujme pyramidu z jednotkových krychli s n > 1
vrstvami (na obr. 4 je taková pyramida pro n = 4). Najděte

20



Obr. 4

У у У

А
>х

! \У
1^А1 i

nejkratši spojnici protějších vrcholů А, В podstavy, která
vede po povrchu pyramidy a neprochází vnitřkem podstavy.68.Najděte všechna přirozená čísla n, pro která existuje
konvexní mnohostěn s n hranami, v němž z jednoho vrcholu
vycházejí 4 hrany a ze všech ostatních vrcholů 3 hrany.69.V rovině je dána konečná množina bodů. Každý z nich
je obarven právě jednou ze tří barev a přitom je každá barva
použita. Dokažte, že existuje kruh, který obsahuje od dvou
barev právě jeden bed a aspoň jeden bod třetí barvy.70.Jediná konvexní množina v rovině, která má neprázdný
průnik s každým kruhem o poloměru 1, je celá rovina. Do-
kažte.71.Množina И vznikla z roviny vyjmutím tří různých bodů
А, В, C. Určete nejmenší počet konvexních množin, jejichž
sjednocení je M.
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72. Dokažte, že kruh nelze třemi tětivami rozdělit na sedm
částí stejného obsahu.

73. Na obr. 5 je znázorněn stavebnicový díl složený ze
sedmi krychlí. Dokažte, že těmito díly lze vyplnit beze zbyt-
ku celý prostor.

Obr. 574.Je-li M vnitřní bod pravidelného 1982-úhelníku, pak
existují dva jeho vrcholy А, В takové, že

2
rr ^ A AIВ < tu.1 -

1982

Dokažte.75.Do kružnice je vepsán šestiúhelník ABCDEF, ve kte-
rém \AB\ = \BC\, |CD| = \DE\, \EF\ = \FA\. Dokažte, že
obsah trojúhelníku АСЕ není větší než obsah trojúhelníku
BDF. Kdy nastane rovnost?
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76.Dokažte, že pro čtyři po sobě jdoucí vrcholy Ao, Ai,
A%, A;> pravidelného sedmiúhelníku platí

11 1
+

\AqA$\AqA\ t \A()Az\77.Mezi dvojicemi bcdú X, Y na hranici trojúhelníku
ABC, které tuto hranici dělí na dvě části stejné délky, najděte
všechny, pro něž je vzdálenost \XY\ největší.78.Je dán kvádr Q o rozměrech a < b < c. Najděte ve-
likost hrany krychle K, která má s daným kvádrem rovno-
běžné stěny a společný střed, tak, aby objem rozdílu množin
QuKaQnK byl nejmenší.79.Je dán ostroúhlý trojúhelník T s obsahem 1. Dokažte,
že existuje pravoúhlý trojúhelník, který obsahuje T a přitom
nemá obsah větší než j/3, a pravoúhlý trojúhelník, který je

Уз
obsažen v Г a přitom nemá obsah menší než ^ .80.Pro každý bod X trojúhelníku ABC označme m(X)
nejmenší a AÍ(X) největší ze vzdáleností \AX\, \BX|, \CX\.
Najděte všechny body X trojúhelníku ABC, pro které je

a) m(X) největší,
b) M(X) nejmenší.

81. Jestliže pro čtyřúhelník ABCD vepsaný do kružnice
s poloměrem 1 platí \AB\.\BC\.\CD\.\DA\ ^ 4, potom
ABCD je čtverec. Dokažte.

82. V rovině jsou dány dva různé body А, В a přímka
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p || AB. Na přímce/» sestrojte bod C tak, aby v trojúhelníku
ABC měly výška Vb a těžnice ta stejnou velikost.83.V rovině je dán kruh K. Najděte množinu vrcholů A
všech konvexních čtyřúhelníků ABCD, jejichž vrcholy В, D
leží v kruhu К a přitom \AC\ '£ \BD\.

84. Je dána kružnice k = (S, r), na ní dva body А, В a číslo
v, 0 < \AB\ < v fS 2r. Najděte množinu všech bodů A” leží-
cích vně kružnice k, pro něž druhé průsečíky А’, В' přímek
ХА, XI8 s kružnicí k mají vzdálenost \A'B'\

85. Najděte množinu těžišť všech rovnostranných troj-
úhelníků, jejichž vrcholy leží na stranách daného čtverce.

86. Je dána půlkružnice k s krajními body А, В a na ní bod
С, А Ф С ф B. Najděte množinu M středů všech úseček XY,
kde bod X leží na oblouku AC a bed Y na oblouku CB půl-
kružnice k. Vypočtěte obsah množiny M.

87. V rovině o je dán jednotkový čtverec C. Označme Cy
čtverec, který vznikne otočením čtverce C kolem bodu X e o
o 90° v kladném smyslu. Najděte množinu všech bodu X
roviny n, pro něž má sjednocení С U C.y obsah nejvýše 1,5.

v.88.Je dána krychle ABCDA'В’CD'. Na jejím povrchu
najděte množinu všech obrazů bodu C v otočeních kolem
osy, která zobrazují bod A na bod B.89.Je dán čtyřstěn ABCD, jehož stěna ABC je ostroúhlý
trojúhelník a jehož výška z vrcholu D má patu uvnitř stěny
ABC. Najděte množinu průsečíků tělesových úhlopříček
všech kvádrů, které leží v čtyřstěnu ABCD, přičemž jedna
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jejich stěna leží v rovině ABC, jedna hrana v rovině ABD
a zbývající dva vrcholy v rovinách BCD, CAD.90.Je dána krychle ABCDEFGH s hranou délky a. Označ-
me O střed stěny BCGF а т kouli se středem O a průměrem a.
Určete bod 5 na hraně AE a rovinu o procházející bodem E
tak, aby koule, která odpovídá v souměrnosti podle roviny a
kouli (S, |&4|), byla obsažena vra přitom byla co největší.91.Najděte všechny čtyřstěny, jejichž stěny jsou navzájem
podobné pravoúhlé trojúhelníky a jejichž nejdelší hrana má
délku 1.92.Je dán čtyřstěn ABCD a jeho vnitřní bod K. Označme
G], Gz, G%, G.\ těžiště čtyřstěnů KBCD, KACD, КABD,
KABC. Dokažte, že objem čtyřstěnu G\GzG^G.\ nezávisí na
volbě bodu K.93.Je dán čtyřstěn ABCD a bod M uvnitř jeho stěny ABC.
Bodem M vedme příčky MC\ || CD, MB] || BD, MA\ || AD.

a) Dokažte, že platí

\MA]\
AD

b) Vyjádřete poměr objemů čtyřstěnů A\B]C]M a ABCD
pomocí velikostí úseček AD, BD, CD, MA\, MB\, MC\.

c) Zjistěte, pro který bod M bude objem čtyřstěnu A]B\C]AÍ
největší.

\MCiMB]
+ +

|CZ>iBD i94.Je dán čtyřstěn ABCD a jeho vnitřní bod O. Bodem O
vedme rovnoběžně s hranami čtyřstěnu šest příček, jejichž
oba krajní body leží ve stěnách čtyřstěnu. Pak platí, že součet
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poměrů délek těchto příček a délek s nimi rovnoběžných hran
je 3. Dokažte.

95. V rovině je dána kružnice m = (S, r) a přímka p ve
vzdálenosti d od středu S. Patu kolmice vedené bodem 5 na

přímku/) označme C. Z bodu Мер vedme tečny ke kružnici
m a jejich dotykové body označme H, К tak, aby pil ^ |pK\.
Dokažte, že podíl

1
* СМИ itg-2

1
* CMK\tg 2

nezávisí na volbě bodu M, a vyjádřete ho pomocí r a d.

96. Je dán konvexní čtyřúhelník ABCD, jehož prodloužené
strany AB, CD se protínají v bodě E a BC, AD v bodě F.
Dokažte, že

a) kružnice opsané trojúhelníkům ABF, CDF, ADF, ВСЕ
procházejí společným bodem G;

b) středy těchto kružnic a bod G leží na kružnici;
c) paty kolmic z bodu G na prodloužené strany čtyřúhelníku

ABCD leží na přímce.
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í

Dejme tomu, že xi, X2, xn vyhovují dané soustavě.
Z druhé až předposlední rovnice vyplývá

X‘2 — Xi = Хз — X‘2 = .

Existuje tedy číslo ř tak, že

X‘2 = xi + t, хз = xi + 2ř, ..xn — xi + (n — l)ř.
První a poslední rovnice dané soustavy pak dává

t = c,

Xi 4- nt = d.

• — Xn Xn—!•

*1

Odtud dostaneme

d — ccn 4- d

n + Г
t =Xi

/г + 1

Je tedy
d — c c{n
n + 1

cn + d k + 1) + dk
n + i

+ (* - 1)X* =
n + 1

n!pro všechna ke {1, 2, . .

Snadno se přesvědčíme, že tato čísla dané soustavě skutečně
vyhovují.

Soustava má pro každá dvě c, d právě jedno řešení.

t •* ?

2

Dejme tomu, že čísla xi, хз, . . ., хюво vyhovují dané sou-
stavě. Z rovnic v posledním řádku máme

x/c - xic-1 + 1,
a tedy
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(1)Xk — X\ + k — 1

pro všechna k e {2, 3, . . ., 990}.
Z rovnic druhého řádku dostaneme pro k e (991, 992, . .

1980}
* 5

Xk = X\ 98 ] —k — 1981

a po dosazení z (1)
k e (991, ..., 1980}. (2)Xk = xi - k - 1,

Zbývá ještě určit xi. Dosadíme (1) a (2) do první rovnice

1980xi + 1979(xi + 1) + . .. + 991(*i + 989) +
+ 990(x, - 992) + 989(xi - 993) + ... + *i - 1981 = 0

a upravíme levou stranu

*i(1980 + 1979 +... + !) +
+ 1.1979 + 2.1978 + ... + 989.991 -

- 990.992 - 989.993 - ... - 1.1981 =

1
-.1980.1981 + 1(1979 - 1981) + 2(1978 - 1980) +

+ ... + 989(991 - 993) - 990.992 =
= *i.990.1981 - 2(1 + 2 + ... + 989) - 990.992 =
= *i.990.1981 - 990.989 - 990.992 =

= (xi - 1).990.1981.

Odtud je xi = 1 a z (1) a (2)

= xi.

x2 = 2, x3 = 3, ..., X990 = 990,
x99i = —991, X992 = —992, . .., xi98o — —1980.

Snadno se přesvědčíme, že tato čísla skutečně dané soustavě
vyhovují. Soustava má jediné řešení.
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3

Označím e-ii 5 =

stavu psát ve tvaru

Xi + X‘2 + ... + xn, můžeme danou sou-

5 — 2a,
4x2 — s — 4a,
8x3 — 5 — 8a,

2xi

2nxn — s = 2na.

]sou-li x\, X‘2, .. ., xn čísla vyhovující soustavě, platí pro ně
tedy

s

Xi = a +
2J

pro každé í e {1, 2, . . n). Sečtením dostaneme

/ 1 1 '1 I
= an + 5| 1 —s — an + s + + . . . +

2 4 2n 2n

a odtud

s = an.2n.

Pro čísla vyhovující soustavě musí tedy platit

xi = a(l + n. 2n~l).

Zbývá ještě ukázat, že tato čísla skutečně vyhovují dané sou-
stavě. Dosadíme do levé strany k-té rovnice

2kX/c — Xj = 2ka(l + n.2n~k) — V a(l 4- n.2n l)
n — 1

= 2ka + 2nan — ап — ап У 2l =

i == 11

í=0
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= 2ka + an(2n — 1— 2й 4-1) = 2ka,
což souhlasí s pravou stranou.

Soustava má pro každé a jediné řešení.

4

Dejme tomu, že x, y, z jsou tři čísla vyhovující dané sou-
stavě. Z druhé rovnice dostaneme

5
xy + уz 4- zx xyz.

12

Dosadíme-li do rovnosti

(x 4- v 4- я)3 = хг + у3 4- s'3 4- 3(x 4- .у 4- z)(xy 4- уz + zx) —
— 3xyz,

vyjde
xyz — —24.

je tedy
x 4- у + z = 3,

ХУ + yz 4- zx — —10,
= -24.

Ted už můžeme využít vztahů mezi kořeny a koeficienty
rovnice

и3 4- au1 4- Ъи + c — 0.

Má-li tato rovnice kořeny v, y, z, můžeme ji psát ve tvaru

(u — x) (и — у) (и — z) = 0,
odkud vidíme, že

a — — (x + у 4- z), b = xy 4- уz 4- zx, c — —xyz.
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V našem případě jsou čísla x, y, z kořeny rovnice
и3 _ 3W2 - 10« + 24 = 0.

Ta má celočíselné kořeny 2, — 3, 4 (viz poznámka za 2. řeše-
ním úlohy 37). Dosazením se přesvědčíme, že tato čísla sku-
tečně dané soustavě vyhovují.

Soustava má šest řešení (x, y, z):

(2, - 3, 4), (2, 4, - 3), (- 3, 2, 4), (- 3, 4, 2), (4, 2, - 3),
(4, -3, 2).

5

Předpokládejme, že kladná čísla xj, xo, xn vyhovují
oběma rovnicím. Podle Cauchyovy nerovnosti

n n / n \ 2

2 4 Hž b »
==l k~l \&=l /k l

vynásobením obou rovnic dostaneme

i \ \2

(!')v
* У *1

n2(n + l)24 (1)k-i

1
= — n\n + l)2.

Protože v nerovnosti nastává rovnost, existuje takové číslo /,
že pro všechna k e (1, 2, ..n] platí

k
\!xк = A - tj. x* = Xk.

! X,: 5
Z první rovnice pak plyne, že je

32



n(n + 1)
я—2—=

I 1
—, tedy Я —
4 2п(п + 1) ’

Soustava obou rovnic má proto jediné řešení

k
к e {1, 2,Xk =

2n(n + 1)’
(Z rovnosti v (1) plyne, že uvedená čísla x* vyhovují i druhé
rovnici.)

6

Označíme-li kořeny dané rovnice xi, x->, хз, je

X]) (x - x2) (x - x3),x3 + ax2 + bx 4- c — (x

tedy

x\ + x-z + X3■= —a, x\x2 + х2хз + *3X1 = b,

a proto

a2 = x\ + x\ + x\ + 2(x\xz + X2X3 + X3X1) ^
^ 3(xix2 + X2X3 + X3X1) = 3b.

Poslední nerovnost plyne z nerovnosti

Xj + x\ + X3 X]X2 + X2X3 + X3X1,

kterou dostaneme sečtením nerovností (xi — x2)2 ^ 0,
(x2 — X3)2 ^ 0, (хз — xj)2 ^ 0. (Je též přímým důsledkem
Cauchyovy nerovnosti.)

Druhé řešení. Není těžké zjistit, že má-li mnohočlen
všechny kořeny reálné, má jeho derivace také všechny kořeny
reálné. Derivace mnohočlenu x3 + ax2 + bx + c je mnoho-

33



člen Зле2 + 2ах + 6. Ten má všechny kořeny reálné, právě
když má nezáporný diskriminant, tj. když

4a2 - 126 ^ 0
neboli

a2 ^ 36.

7

Obě rovnice

(1)qx2 + px + 1 = 0,

x2 + px + <7 = 0 (2)

mají týž diskriminant D = p2 — 4q > 0. Proto má každá
z obou rovnic dva různé reálné kořeny. Jsou-li

-P ± 1P2 ~ 4q
X] < x->,XU2 =

2 q

kořeny rovnice (1), jsou qx i, qx> kořeny rovnice (2), přičemž
qx i > qX‘z (q < 0).

Protože q < 0, je p2 — 4q > p2, takže xi < 0 < x-z. Číslo
x\ bude tedy splňovat kvadratickou nerovnici

д:2 + px + q < 0,

právě když bude platit
qx2 < Xi < qxi;

přitom ale za daných předpokladů je druhá nerovnost vždy
splněna, neboť X] < 0 < qxь

Nerovnost qx2 < xi je ekvivalentní nerovnosti

щ > -p + удя(-р
neboli

p(i - 4) > O + q)\D. (3)
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Nyní probereme následující možnosti (případ p < 0 < 1 + q

zřejmě nastat nemůže):
a) P > 0,1 + q > 0; pak je nerovnost (3) ekvivalentní s ne-

rovnostmi

/>2( 1 - qf > (1 + qf(P2 - 4?),
— 4p2q > —4^(1 + q)2,

P2 > (1 + qf,
P > 1 + q;

b) p > 0 > 1 + q; pak je />(1 — q) > 0 > (1 + q)]/D;
c) p < 0, 1 + q < 0; pak je nerovnost (3) ekvivalentní

s nerovnostmi

p\i - qf (1 + qf(p2 - 4q),
P2 < (1 + qf,

1 + q\ = -1-P = \P\ < q,

P > i + ?.

Vidíme tedy, že pro libovolná reálná čísla p, q (q < 0)
splňuje kořen xj kvadratickou nerovnici x2 + px + q < 0,
právě když je p > 1 + q.

Druhé řešení. Označme f(x) = qx2 + px + 1 a předpo-
kládejme, že rovnice f(x) = 0 má dva reálné kořeny a, [i,
a < /i. Protože podle známých vztahů mezi kořeny a koefi-

1
cienty platí ad = —

q
0 < f. Navíc /(0) = 1 > 0,< 0, je a

1
takže x2/ x2 + />x 4- q bude pro x = a záporné, prá-

x

vě když (obr. 6)
1

< x, tj. a2 < 1,
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. :

Obr. 6

neboli — 1 < x < 0. Tato vlastnost kořenu a je však zřejmě
ekvivalentní nerovnosti /( — 1) < 0, neboli

q — p + 1 < 0,

což jsme měli dokázat.

8

Abychom rozložili výraz na levé straně nerovnosti, hledme
na něj jako na kvadratický mnohočlen a2 — (x + 2x2)a +
+ x4 + x3 — 2x-. Jeho diskriminant je

(x + 2x2)2 — 4(x4 + x3 — 2x2) = 9x2

■i

a kořeny jsou
a\ = x2 + 2x, a-y — x2 — x.

Daná nerovnice má tedy tvar

(x2 + 2x — á) (x2 — x — a) < 0.

Je-li a > 0, je řešením nerovnice např. x = jta. Pro — 1 <
< a ^ 0 je řešením např. x = —1. V případě a ^ —1 má
kvadratický trojčlen x2 + 2x — a diskriminant 4 + 4a 5Š 0
a trojčlen x2 — x — a diskriminant 1 -|- 4a < 0. Oba mnoho-
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členy tedy nabývají jen nezáporných hodnot, takže nerovnost
není nikdy splněna.
,, Daná nerovnost má řešení, právě když a > —1.

9

Dejme tomu, že číslo x je řešením dané rovnice. Umocní-
me-li obě strany na druhou, dostaneme po úpravě, že pro
Číslo x platí

V(2P + 1 x2) (3x + p + 4) — x2 + 3x + 2,

Po dalším umocnění dojdeme ke vztahu

*4 + 9x3 + (17 + p)x2 + (9 - 6p)x - (2p2 + 9p) = 0.
Číslo x je tedy kořenem této rovnice. Abychom její levou
stranu rozložili, podívejme se na ni jako na kvadratický mno-
hočlen v p

— 2p2 + (x2 — 6x — 9)p 4- (x4 + 9x3 + 17x'2 + 9x).

Jeho diskriminant je

(x2 — 6x — 9)2 — 4.( — 2) (x4 + 9x3 + 17x2 + 9x) =
= 9x4 + 60x3 + 154x2 + 180x + 81 = (3x2 + lOx -f 9)2,

kořeny jsou (je 3x2 + lOx + 9 > 0 pro každé reálné x)

x2 + 8x + 9
, pz — X2 + XPl =

-2

a příslušný rozklad

x2 + 8x + 9
(p — x2 — x) = 0,P +

2
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neboli

(x- + 8x + 2p + 9) (x2 + x — />) — 0.

Vidíme, že číslo x, které vyhovuje dané rovnici, je řešením
jedné z rovnic

x2 + 8x + 2p + 9 = 0,
x2 + x — p = 0.

První rovnice však nepřichází v úvahu, jak zjistíme srovnáním
s podmínkou pro existenci odmocniny na pravé straně dané
rovnice. Kdyby totiž x bylo řešením první rovnice, platilo by
zároveň

x2 + 8x + 2p + 9 = (x + 3)2 + 2(x + p) = 0,
x2 + 9x + Ър + 9 = (x + 3)2 + 3(x + p) ^ 0,

což je splněno jen pro x = — 3, p — 3. Pak však neexistují
odmocniny na levé straně dané rovnice.

Vyhovuje-li tedy číslo x dané rovnici, je řešením rovnice

x2 + x — p = 0.

Dosadíme-li odtud za p do dané rovnice, dostaneme

j'x2 + 2x + 1 + Ух2 + 4x + 4 = j/4x2 + 12x + 9

(1)

neboli

|лг —f— 11 —J— |x —(— 21 — |2x 3|.

Tato rovnost platí, právě když je bud x ^ — 1, nebo x ^ —2.
Došli jsme к závěru, že dané rovnici vyhovují právě ty

kořeny rovnice (1), pro které x ^ — 1 nebo x ^ —2. Rovnice
1

(1) má pro/> ^ — — reálné kořeny
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-1 + yi + 4p -1 - ]/l + 4/>
x\ , X‘> =2 2

1
Přitom *i ^ — 1 pro každé p ^ — 4’

1
X-2 = -1 pro - - ^ P й 0, *2 ^ -2 pro p ^ 2.

1
— a pro 0 < p < 2 má daná rovnice jediné ře-

1
šení xi. Pro — — < p ^ 0 a pro p ^ 2 má daná rovnice dvě

různá řešeni xu x*. Pro p < — nemá rovnice řešení.
4

Pro p

1

10

Protože pro všechna přirozená čísla n > 1 je

1 (n — 1) (n + 1)1
1 - — > 1 -

П' ril riz

je

1 1 1
1 - —

27/ ' n38

(n — 1) (n + 1) 1 n + 1 1
> —

1.3 2.4
> ~3? " • 2 'riL 2 n

11

Postupně dostáváme
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|*1Х4 — *1*5 + *2*5 — *2*6 + *3*6 — *3*4 [ —

= |*i(*4 — *5) + *2(*5 — *б) + *з(*6 — *4)| ^
^ |*l[ |*4 — *51 + |*2! |*5 — *61 + |*31 |*6 — *41 ^
^ M(|*4 — *5Í + |*5 — *б! + |*6 — *4|).

Vzhledem к symetrii posledního výrazu můžeme předpoklá-
dat, že *4 ^ *5 ^ *6- Pak

|*4 — *5! + 1*5 — *б| + |*6 — *4| = 2(*(i — *4) ^ 4AÍ.

Poznámka. Výraz na levé straně nerovnosti je dvojnásobek
obsahu trojúhelníku ABC, který má v kartézské soustavě sou-
řadnic vrcholy A [*1, *eJ, В [*2, *4], С [*3, *5]. Sestrojíme-li
obdélník KLMN se stranami rovnoběžnými s osami souřad-
nic opsaný trojúhelníku ABC (obr. 7), platí pro jeho obsah

1
S(ABC) S 2 S(KLMN).

M C N

A

К B-LObr. 7

Délka strany obdélníku KLMN je však nejvýše 2M, takže
S(KLMN) ^ 4 M2, což dává uvedenou nerovnost.
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Předpokládejme, že přirozená čísla x, у jsou řešením dané

nerovnice. Po vynásobení kladným číslem j>3

staneme

X

y\x2 — 2y2| < — + J/2.
.v

Pro libovolná přirozená čísla x, у je ovšem \x2 — 2y2\ ^ 1.
Předpokládáme-li navíc у ^ 3, dostaneme

v

+ j/2 <jy ^ jv|л:2 — 2jy2|
.У

2j/2 + 3 < 2.1,42 + 0,125 < 3.<
У

Stačí tedy uvažovat případy у — \ а у — 2.
Pro у — 1 dostáváme nerovnici

I* - l/žj < i,
která má v oboru přirozených čísel řešení л: = 1, x = 2.

Pro у — 2 máme nerovnici

|4* - 8]/2[ < 1,
která má jediné přirozené řešení д: = 3.

Daná nerovnice má celkem tři řešení (1, 1), (2, 1), (3, 2).

13

Cfc = A > 0, cjc+1 —Zkusme položit c\ =
= Ck+2 = ... = cn = В > 0. Pak bychom měh najít taková
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kladná celá čísla A, B, aby pro všechna p e (1,2, ..., k — 1 J
platilo

klA + (rt — k)2B 5Š p’A + (n — p)(k — p)A +
+ («—/>) (n — k)B

a pro všechna p e {k + l, k + 2, ..., n — 1}
k2A + (n - kfB ^ pkA + p(p - k)B + (n - pfB,

neboli

(k + 2p — n)A (n — k)B pro 1 5Š p < k,
kA ^ (2n — 2p — pro k < p -š: n — 1.

Stačí tedy, když najdeme taková kladná celá čísla A, B, aby
zároveň bylo

(3k - n)A й (n - k)B,
(2n — 3k)B ^ kA.

Z čísel 3k — n,2n — 3k může být nejvýše jedno nekladné, pak
je ovšem příslušná nerovnost splněna pro libovolná kladná
А, В г druhá nerovnost je splněna pro všechna kladná celá
čísla taková, že

2n — 3k A
~

В '

A n — k
°

В - 3k~—, resp, 0 <
n k

1 2
Je-li zároveň3k — и > 0 i 2« — 3^>0^tj. — n < k < —nj,
je také

2n — 3k n — k

3k - n’k

neboť tato nerovnost je ekvivalentní nerovnosti
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n2
k(n - k) й 4 ,

jež platí pro všechna k. Existují tedy celá kladná čísla А, В,
pro něž je

2n — 3k A n — k
= В ~ 3k - n ’k

což jsme chtěli dokázat.

Druhé řešení. Použijeme nerovnosti

1 nn / П \ 2
2 yfxi = ( 2 уп ,*i » = 1 \ Í - - 1 /

2
í=i

která platí pro nezáporná čísla Xi, yi, xi Ф 0, a plyne z Cau-
chyovy nerovnosti

2

HI *>7 S 2 j •
i=i '

Pro Xi = X% — . . . = Xp — p, Xp+1 = ... = xn — n — p

(1 íS /> < w) a projdi = j/й dostaneme nerovnosti

i= 1 i=l

p(c\ + • • • + Cp) + (n — p) (Cp+1 +....+ cn) ^
1

~

2 ^Cl ^C% + • • • + | cw)J.
Zkusme pro dané k, 0 < k < n, položit ci = ci = .

= ck = A, Ck+1 = Cyfc+2 = ... — cn = B, pak je
1 1

2 m + • • • + Vе»)2 = 2 (kVA + («- *)Vfl)3
a
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k(c\ + . . . + Cle) + (n — k) (cic+1 + ... + cn) —

= k2A + (n - kfB.
Rovnost

■

- {k]jA + (n -k)]/Bf = k-A + (n - kfB

neboli

(kjA - (n - k)]/Bf = 0
je splněna např. pro čísla A = (n — kf, В = k2. Požadova-
ným nerovnostem tedy vyhovují např. přirozená čísla

Cl = C2 = . . . =■ C/c = (n — kf, C]c+1 = ... = cn = k2.

14

Protože

W П 11

1 xl + 2 y2k - 2 2 хкУк ^ 0,2 (** - Jfc)2
£ 1 Л = 1 *=1 Л=1

je
n 11 n nn

y2k + 2 2 хкУк ^ 4 2 хкУк■2 о* + л)2 = 2 *2 +
6 = 1

Stačí tedy dokázat nerovnost

v
_

k -1A = 1 £=1 £ = 1

И7Í

1

2 ^ ^ W2.
*=i

Ta je důsledkem Cauchyovy nerovnosti

k=\

n n / n \2
2 <4 2 4 S 2 utvt),
= 1 k=l \k=l /

(1)
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1
v níž položíme uy- = ]jxkyk, Vk . (Je také důsledkem

\*кУк
nerovnosti mezi aritmetickým a harmonickým průměrem
kladných čísel

2 a*
k= 1 П

П -12 a*
k~ 1

v níž položíme ay- — ХкУк.)
Rovnost nastane, právě když

x\ = У1 = X2 = У2 = • • • = xn = уn.

Druhé řešení. Podle Cauchyovy nerovnosti (1), v níž
1

položíme uk — xk + Ук, Vk — ~ , platí
. \ХкУк

! 2
1 Xk + Ук

]/хкук
\ X7^ (xk + Ук)1 ХкУк
k=l A’ = l k 1

Stačí tedy dokázat nerovnost

•>

^ Хк + Ук
уХкУк

У 4п2,
к — I

která platí, neboť pro každé k e {1, 2, ..n} je

Хк + Ук
^ 2.

уХкУк
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V případě ai — a-z = ... = an. — O dokazovaná nerovnost
zřejmě platí a rovnost nastane, právě když x = 0. Dále
budeme předpokládat, že alespoň jedno z čísel a\, az, ..., an

jc nenulové, a ukážeme, že pak pro každé x platí ostrá ne-
rovnost.

Diskriminant kvadratického trojčlenu

(i.)1 + rP У á}p(x) = X2 + X
»'= 1

)e

(I,-)’ — 4пл 2 at-D =

i=i

Protože např. />(0) > 0, stačí dokázat, že D < 0. Položíme-li
v Cauchyově nerovnosti

/ n \ 2 n n

( 2 «да SHH\ í =- 1 ' í —• 1 i — 1
(1)

щ = Uř, — 1 pro každé * e {1, 2, ..., и}, dostaneme
/ « \ 2 и

( 2 «< S»2
\ * = 1 / Í=1

a po umocnění na druhou

f n \ 4 /П \ 2

Použijeme-li na pravou stranu opět nerovnost (1) (tj. použi-
jeme-li Cauchyovu nerovnost pro u-, — af, ví = 1), dosta-
neme
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(.?,«)•
} » \ 2 « я

V fl'U И3 2 а? < 4я3 У а?,
\ i=i / i==i «=1

g я2

Poslední nerovnost je ostrá, protože předpokládáme, že
aspoň jedno z čísel a\, ao, ..., an je nenulové. Je tedy D < 0
a nerovnost je dokázána.

16

Odvodme nejprve tzv. Čebyševovu nerovnost: Jsou-li
a\ 5Í a2 S • • • ^ an, b\ ^ b‘i ^ ... ^ bn reálná čísla, pak

2 at 2 bt g» 2 ciibi,
i—1 i 1

a rovnost nastane, právě když ai = a* = ... = an nebo
b i = bz = ... = 6».

Dostaneme ji sečtením nerovností

(а/ - а?) (bt - fy) ^ 0
pro všechny dvojice indexů i,j e {1, 2, ..., я}.

Použijeme-li Čebyševovu nerovnost na я-tice

X\ ^ X% ^ ^ ^ Xji—i • • • =

»=1

dostaneme

2 ^ t 2 Xn—i+1 = я у ,

i 1 1=1 í 1

čili

,fy) 2 я 2 iřl •

1=1

Nerovnici, kterou máme vyřešit, vyhovují tedy právě ty
я-tice, pro které nastane rovnost v předchozí nerovnosti,
tj. xi = x2 = ... = *».
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Podle nerovnosti mezi aritmetickým a geometrickým prii-
měrem je

1<2] + a-2 + ... + CLn

n]]a\a2 ... an ^
ft я

odkud

nM i i 1
n й

a\ a2 an

nk й n\la{k a2 к ... ank.
Pcdle nerovnosti mezi aritmetickým a geometrickým prú-
měrem je

a\ K + a2 k + ■ • ■ + an k
"Ver* “гк • ■ • aň" S

я

Z posledních dvou nerovností vyplývá
*

+ ^2 k ... + *
ft7'' ^

W

což dává dokazovanou nerovnost.

1
Rovnost nastane, právě když aj — a%= . • — an —

ft

Druhé řešení. Tvrzení dokážeme matematickou indukcí

1 nastane rovnost. Předpokládejme, že propodle ft. Pro и
n — p dokazované tvrzení platí, a dokažme je pro p + 1
kladných čísel ai, a2i ..., ap+1, jejichž součet je 1. Pro p
kladných čísel
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ai а-i CLp
У •

1 Gp+1 1 <2 j) 11

jejichž součet je 1, podle indukčního předpokladu pro každé
k přirozené platí

dp+1

-к

ž p*+1,
1=1

neboli
■

2 a, '* ž ř*+1 (1 - ap+1)-K
i=- 1

Je tedy
p +1

1 ai k = 2 a,- * + a. + i ^ Pk 1 (1 - ap+i)-* + a,Д .
Í = 1 i=i

Abychom dokázah, že pravá strana není pro žádné ap+1 e
e (0, 1) menší než (p + l)fcbl, najdeme minimum funkce

f(x) = pk+1( 1 — x)~k + x~k
v intervalu (0, 1). Její derivace

/'(*) = k pk+\ 1 x)-^'”1 — £ X“fc_1
1

Funkce / jev intervaluje rovna nule, právě když x =
p + Г

(0, 1) spojitá a pro x -> 0, x -> 1 je /(x) -> +oo. Nabývá
1

tedy v intervalu (0, 1) minima, a to v bodě x
p + Г

1 11
fc+i/ 1 - += />

p + 1
= (/> + l)fc+1.

p + 1p + 1

Tím je důkaz hotov.
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Označme

An = sin a\ sin ao .. . sin an,

Bn — cos a\ cos a-t ... cos an,
11

Cn = 2 lsin ak - cos akV,
k = 1

nerovnost

I An Bn\ Cn

dokážeme matematickou indukcí. Indukční krok je založen
na nerovnosti

jAfi-t-i Bn+\\ — |Ар, sin Дп+1 Bn cos (2)i+ij —

= I(An — B„) sin an+1 + Bn(sin an+1 — cos an+i)\ й
й |An — Bn| |sin an~ri| + \Bn\ |sin an+1 — cos an+1| ^
^ |An — + |sin an+1 - cos a,H-i|.

Pro w = 1 nastane v dokazované nerovnosti vždy rovnost.
Pro n = 2 nastane rovnost, právě když

|(sin ai — cos ai) sin a-г + cos a\ (sin аг — cos a-t)\ =
= |sin a\ — cos ai| |sin at1 + |cos ai| |sin at — cos аз| =
= |sin ai — cos a\\ + |sin at — cos at\.

Snadno zjistíme, že je to právě pro sin a\ = cos ar, sin a-t —

1U
— cos at, tj. pro ai, at e . Matematic-— + mu; m celé j
kou indukcí pak dostaneme, že pro n > 1 nastane rovnost,
právě když pro všechna k e {1, 2, .. ., n J je

7Г

| "4 + mrA m ce^ j •aic e
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Druhé řešení. Postupně dostáváme

|sin a\ sin ao ... sin an — cos a\ cos ... cos an\ —

П

= | У sinal . . . sin dic-l (sin a/c — CO&dk)cOSd]c+l ... cos an | ^
k 1

^ 2 i sin dl ... sin dle-1 (sin dle — COS die) COS d/e+1 ... COS a„| 5$

^ v |sin dle — cos a*|.
/г=1

Pro n = 1 nastane rovnost vždy. Pro n ^ 2 může rovnost
nastat, jen když sin ajt = cos djc pro všechna ke {1,2, .. ., n).
Kdyby totiž bylo sin die — cos а* Ф 0 pro nějaké k, plynulo
by z poslední nerovnosti, že pro všechna i < k je | sin a? | =
= 1 a pro všechna j > k je leos dj\ = 1. Odtud by vyplývalo,
že pro všechna k e {1, 2, ..., n) je sin а* ф cos a*-, a tedy
|sin die| — |cos a* = 1, což není možné.

19

Pro x Ф 0, x Ф 2 můžeme psát funkci / ve tvaru
— 6 (x2 — 2x)

/(*) =
(x2 — 2x) (x2 — 2x — 3) + 9 (1)

-6

9
x2 -- 2x — 3 +

x2 — 2x

Pokud x2 — 2x > 0, tj. x < 0 nebo x > 2, je
-6

/(*) = 23

Ух2 — 2x — + 3
|/x2 -- 2x
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a/nabývá nejmenší hodnoty — 2, právě když

3
Vx2 — 2x — —

]x2 — 2x
totiž pro x

V případě x2 — 2x < 0 je z vyjádření (1) funkce / vidět,
že /(x) > 0. Pro x — 0 a pro x = 2 je /(x) = 0.

Funkce / nabývá minima —2 pro x — — 1 a pro x = 3.

Poznámka. Derivováním funkce / bychom úlohu převedli
na algebraickou rovnici 5. stupně.

1 a pro x = 3.

20

Snadno zjistíme, že

/ PY P2
/O) -2\x+ --j + 2

— 1 pro xe</> — \,p + 1>,

/(x) = 6px — p2 + 1 pro x e (— oo, p — 1) и </> + 1, + oo).
2 2\

3 ’ 3 ’pak
p

,Jestliže — 1, p + 1) neboli p g

funkce / v intervalu /> — !,— klesá a v intervalu
2

P P
— má lokál-
2

roste, takže v bodě x = —

ní extrém. (Další lokální extrém má v bodě x = p — 1
nebo x = p + 1.)

\- rp + l

2
. p

—, je — — ^ p + 1 a funkce /v interva-Jestliže p fí —

lu (—oo, +oo) klesá a nemá tedy lokální extrém.
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2 P
- ^ р — 1 a funkce / v intervalu

( — 00, + оо) roste a nemá tedy lokální extrém.
2

Funkce/ nemá lokální extrém, právě když \p\ ^ - .

Jestliže p ^ je

21

Funkce /i(x) = |x — a\ nabývá minima v bodě x — a.
Dále vyšetříme funkci f>(x) = \x — a\ + \x — b\, kde a ^ b,
a zjistíme, že pro x e (a, b) je /г(^) = x — a + b — x =
— b — a, pro x < a je /г(л:) = a — x + b — x — a + b —
— 2x>a + b — 2a = b — a a pro x > b je Уа(лг) =
— x — a + x — b = 2x — a — b 2b — a — b = b — a,

takže funkce />(*) nabývá minima pro všechna x e ýa, by.
Daná čísla můžeme označit tak, že a\ ^ a2 ^ ... ^ aft,

a danou funkci

/«(*) = 2 к — flíl
i i

napsat ve tvaru

/n(x) = (|x — fli| + |x — a»|) + (|x - a2| + |x - ť*n-i|) +
+ • • • + (! X — Uk\ + | X Ufc+ll)

pro n = 2k,

fn(x) = (| x — ai\ 4- |x — an I) + (| x — a2\ + |x — an-i\) +
+ . .. + (|x a/c-1| + |x — a*+i|) + |x — a/c\

pro n = 2k — 1.
Každá z funkcí |x — at\ + |x — an+i-i\ nabývá minima

pro všechna x e ýaj, odkud vyplývá, že funk-
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ce /и(х) nabývá minima v případě и = 2k pro všechna
л; g <ал:, aic+i) a v případě n — 2k — 1 pro x = V pří-
pádě n — 2k je její minimum

k к

2 аш - 1 at,
i= i i -— 1

v případě n — 2k — 1 je její minimum
A — 1

2 — 2 a*-

*-l

i — 1 t = l

22

Pro n = 1 je hledané maximum rovno 1. Předpokládejme,
že и > 1, a označme P množinu všech и-tic (xi, x>, ..., xn)
nezáporných celých čísel splňujících podmínku

+ *2 + • • • + xl й 7n;
dále označme M množinu všech и-tic z P, které dávají nej-
větší součet

Xl + X-2 + ... + Xn.

Uvažujme и-tici (xi, x%, ■.xn) e M. Z podmínky (1) je
zřejmé, že pro alespoň jedno z čísel x\, x-i, ..., xn platí
Xi < 2. Kdyby to platilo pro všechna čísla xi, X2, ..., xn,
měli bychom

(xi + l)3 + x\ + ... + xl ^ 23 + 1 + ... + 1 =
= 7 + и < In,

takže (xi + 1, хг, ..., xn) g P, a přitom
Xi + 1 + X-z + ... + Хд > Xl + X2 + ... + Xn,

což odporuje předpokladu (xi, X2, ..., xn) g M. Pro alespoň
jedno z čísel xi, X2, ..., xn tedy platí xj ^ 2.
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Je-li některé z čísel xi, xa, ..., xn větší než 2, např. > 2,
uvažujme я-tici, která vznikne z я-tice (хд, X2, ..., xn) tak,
že Xk nahradíme číslem xk — 1 a xř- nahradíme číslem
хг- + 1. Součet se nezmění a součet třetích mocnin se ne-

zvětší, protože pro x* ^ 1 je

(Xi + l)3 + (xk - l)3 = X3 + x* + 3 (x? - x3) +
+ 3 (xj + Xk) — x] + x^ + 3 (xř + X*) (xí — x/c + 1) <

< xf + x\.
Dostali jsme tak и-tici, která rovněž patří do M.

Podobně, je-li některé z čísel xi, xa, ..., xn rovno nule,
uvažujme и-tici, která vznikne z и-tice (xi, xa, ..., xn) tím,
že xm — 0 nahradíme číslem xrn + 1 a x; (x;- ^ 2) nahradíme
číslem xj — 1. Součet se tak nezmění a součet třetích mocnin
se nezvětší, protože

(.Xj — l)3 + l3 = X3 — 3xy + 3xj < x3 + O3.
Dostali jsme tedy я-tici, která také patří do M.

Odtud vidíme, že v množině M existují takové n-tice
(xi, xa, ..., xn), že každé z čísel xi, xa, ..., xn je rovno 1
nebo 2. Je-li r z těchto čísel rovno 2 a n — r jich je rovno 1,
bude hledané maximum rovno

2r + n — r = n + r,

přičemž r je největší celé číslo vyhovující podmínce
г-23 + (n - r).l3 ^ In,

neboli

6n

r< — .
- 7

j- a hledané maximum je n + 1Г!6n

Je tedy r —
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Podle Cauchyovy nerovnosti
2

( 2 им )
\i= 1 /

я n

й 2^ 2 v~
«•-i Й1

platí
Яn

2 sin 2xj =21 2 sin xi cos =

í= 1i=l

11

^ 2 2 sin2 2 c°s2 — 2 |/&(n *),
1=1 í L

neboť
ПП

2 COS2 X/ =
v (1 sin2 Xi) = n — k.—

i=l i=l

Rovnost v uvedené nerovnosti nastane právě tehdy, bude-li
pro nějaké Я a pro každé i e {1, 2, platit

Sin Xj = XCOS Xi,

tj. pro všechna i bude tg xř- = Я.
Protože

n

2 sin2 xi — k,
»=1

nastane rovnost např. pro čísla xi = x^ = ... = xn e
TC

e \ 0, —
\ 2

, pro něž
/

i k
—3 i e {1? 2, ..

jn — n \sin Xj = / —, COS Xi = • Э

и /г

Pro takovou и-tici pak je s — 2 \ k(n k).
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Ze vzorce

tg k - tg 1
tg (*-!) = (1)1 + tg 1 tg k

(funkce tangens je zde zřejmě definována pro každé přirozené
číslo k) plyne rovnost

tg (k - 1) + tg 1 tg k tg (k

a je tedy (tg 1^0)

1) = tg* - tg 1,

1
(tg k - tg (ktg k tg (k - 1) = 1) - tg 1).

tg 1

Odtud snadno vypočteme uvažovaný součet

1
1 tg k tg (k - 1) (tg n - tg 0 - n tg 1) =

tg 1k=i

1
tg n — n.

tg 1

1
Stačí tedy položit A -—", В = — 1. Tím je důkaz hotov.

Druhé řešeni. Předpokládejme, že taková reálná čísla А, В
existují. Pak musí pro libovolné přirozené n platit, že

tg n tg (n - 1) =

= 2 tg ktg(k — i) - у tg k tg (k - i) =
k= 1

A (tg n - tg (n - 1)) + B.
к 1

(2)
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Použijeme-li opět vzorce (1), dostaneme rovnost

tg n (tg n - tg 1) =
= A tg n (1 + tg 1 tg n) — A (tg n

+ В (1 + tg 1 tg я),
tg O +

neboli

tg2 n (1 - A tg 1) — tg n (tg 1 + В tg 1) -
— A tg 1 - В = 0.

Dostali jsme kvadratický trojčlen proměnné v — tg n, který
je identicky nulový. Poslední rovnost bude tedy splněna
pro každé přirozené n, bude-li

1 - A tg 1 = 0, tg 1 + В tg 1 = 0,
A tg 1 + В = 0.

1
Protože pro A = , В — —1 jsou všechny tři rovnosti

tg 1

splněny, platí rovnost (2) pro libovolné přirozené n. Zbývá
jen ověřit, že pro nalezená čísla А, В je také

tg 1 tg 0 = A tg 1 + B,
což zřejmě platí. Zbytek dokážeme matematickou indukcí,
když pro indukční krok použijeme vztah (2).

25

Označme r poloměr kružnice opsané uvažovanému troj-
úhelníku. Pak je

a = 2r sin a, b = 2r sin /?, c = 2r sin y,
a tedy

a cos x + b cos )3 + c cos у =
2r sin a cos a + 2r sin f) cos fi + 2r sin у cos у —
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= 2r (sin (а + (3) cos (а — (3) + sin у cos у) --

= 2r (sin у cos (а — /i) — sin у cos (а -f- /?)) —

— 2r sin у (cos (а — (3) — cos (а + />’)) =
= 4r sin а sin /5 sin у.

Protože v intervalu (0, ~) jsou hodnoty funkce sinus kladné,
je uvažovaný výraz kladný.

Druhé řešení. Podle kosinové věty je
2ab cos у = а2 + b2 — c2,
2ac cos /i = a2 + c2 — b2,
2be cos a = é2 + c2 — a2.

Vynásobíme-li první rovnost číslem c1, druhou Ir a třetí a2
a sečteme, dostaneme

2abc(a cos а + b cos (j + c cos y) =
= 2(a1b2 + a2c2 4- b2c2) — a4 — — c4 =
= 4a2c2 — (a2 — b2 + c2)2 — 4a2c2 — (2ac cos /3)2 =
— 4a2c2(l — cos2 /?) > 0.

Třetí řešení. Pokud trojúhelník není tupoúhlý, je platnost
dokazované nerovnosti zřejmá. Nechť tedy у je tupý úhel.

TZ

Využijeme-li toho, že funkce kosinus na intervalu ^0, —
klesá a je kladná, a trojúhelníkové nerovnosti, dostaneme

a cos а + b cos (3 > a cos (a + (3) + b cos (a + [3) >
> c cos (a + /1) = — c cos y.

26

Označme у úhel ležící proti straně c prvního trojúhelníku
a (o úhel ležící proti straně w druhého trojúhelníku. Dosadí-
me-li do dokazované nerovnosti podle kosinové věty
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с2 = а2 + b2 — 2ab cos у,
я/2 = и1 + v2 — 2uv cos со

a podle známého vzorce

2P = ab sin y,
20 = uv sin oj

a upravíme, převedeme ji na nerovnost
aV2 + é‘2M2 ^ 2abuv (cos у cos co + sin у sin co).

Použijeme-li ještě vzorec pro kosinus rozdílu, dostaneme ne-
rovnost

(av — bu)2 ^ 2abuv (cos (y — co)
ekvivalentní s dokazovanou nerovností. Poslední nerovnost

však vždy platí, protože levá strana je nezáporná a pravá ne-
kladná.

Rovnost nastane, právě když je současně
av = bu, у = co,

tj. když jde o podobné trojúhelníky, u nichž stranám a, b, c

odpovídají strany и, v, w.

1)

27

Snadno zjistíme, že
a = 2r sin a, b = 2r sin /?, c 2r sin y,

takže

V = 4r2(sin2 а + sin2 /3 + sin2 у — 2) =
= 4r2(l —■ cos2 а — cos2 [i — cos2 y).

Protože

cos2 у = cos2 (a + /?) = (cos a cos [i — sin a sin /?)2 =
= cos2 a cos2 /3 + sin2 a sin2 — 2cos a cos /5 sin a sin (i —
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— cos2 a cos2/5 + (1 — cos2a)(l — cos2/?j —
— 2cos a cos /? sin a sin /? =

= 1+2 cos2 a cos2 /? — cos2 a
— 2cos a cos /? sin a sin /? -

= 1 — cos2 a — cos2/? +
+ 2cos a cos /?(cos a cos /? — sin a sin /?) =

= 1 — cos2 a — cos2 /? + 2cos a cos /? cos (a + /?) =
= 1 — cos2 a — cos2 /? — 2cos a cos /? cos y,

cos2/? —

je

I7 = 8r2 cos a cos /? cos y,

odkud plyne první tvrzení.
Důkaz druhého tvrzení spočívá v úpravě

sin a sin /? cos у + sin /? sin у cos a + sin у sin a cos /?
IT =

cos a cos /? cos у

odkud plyne
2cos a cos /? cos у И7 = sin a(sin [i cos у + sin у cos /?) +

+ sin /?(sin a cos у + sin у cos a) +
+ sin y(sin a cos/? + sin/? cos a) = sin2 a + sin2 /? + sin2 у > 0,
takže W má stejné znaménko jako cos a cos /? cos y.

Poznámka. Trojúhelník je pravoúhlý, právě když V = 0.
V tomto případě není W definováno.

28

Označme bn = a«+2 — 2aM+i + 3an. Máme dokázat, že
bn — 0 pro všechna přirozená n. Podle daného rekurentního
vztahu

bn+1 — 5aM+2 9a„-ii + 9аи — 2an+2 + 3aw+i —

= 3(<Зи+2 2aw+i + 3a«) = 3^,
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takže

Ь» = ЪпЛЬу,

jak snadno plyne matematickou indukcí.
Protože pcdle předpokladu je

\bn\ ^ \an+2\ + 2\an+i\ + Ъ\ап\ ^
^ 2n+2 + 2.2й 11 + 3.2» = 11.2»,

platí pro každé přirozené číslo n

2 \n
3«-i|6i| ^ 11.2», tj. |6i| ^ 33 t-j .

Proto je bi = 0, tedy bn = Ъп ЛЪ\ — 0 pro každé n, což jsme
měli dokázat.

Poznámka. Obecné řešení daného rekurentního vztahu na-

jdeme řešením příslušné charakteristické rovnice
A3 - 5A2 + 9A - 9 = (A - 3) (A2 - 2A + 3) = 0,

která má kořeny Ai = 3, Аг,з = 1 ± ij/2. Každá posloupnost
vyhovující dané rekurenci pak má tvar

an = A.3» + В Re A” + C Im A”,
kde Л, А?, C jsou libovolné konstanty a Re, Im označuje
reálnou a imaginární část komplexního čísla (podrobněji např.
v knize N. J. Vilenkina Kombinatorika, SNTL-Mir, Praha-
-Moskva 1977). Z podmínky

(1)

Ы ^ 2»

ovšem plyne, že ve vyjádření (1) uvažované posloupnosti musí
být A — 0. Jinými slovy, takové posloupnosti {an} splňují
rekurentní vztah an+2 — 2an+i + 3an = 0 s charakteristickou
rovnicí A2 — 2A + 3 = 0.
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29

Posloupnost (an) splňující daný rekurentní vztah je mono-

tónní, jak dokážeme matematickou indukcí. Nechť např.
ao ^ a\ a předpokládejme, že ao ^ ^ a»j-i ^ Pak je

&n+1 — 43aw-i ^ #я.

Přitom je tato posloupnost bud konstantní, nebo ryze mono-
tónní. Je-li konstantní, je posloupnost (bn) rovněž konstantní
a vyhovuje tudíž danému rekurentnímu vztahu.

Předpokládejme dále, že je posloupnost (an) nekonstantní,
pak od jistého členu počínaje (tj. pro všechna n ^ no pro
vhodné no) jsou její členy všechny kladné nebo všechny zápor-

an
né. Položíme-li cn = , je cn 0 pro n > no a z dané re-

(*n—\

kurence máme

3
Cn — 4

cn—i

takže je bud a) 0 < cn < 1 pro všechna n > щ + 1,
nebo b) 1 < cn ^ 3 pro všechna n > no + 1,
nebo c) 3 < cn < 4 pro všechna n > no + 1.

Přitom je v případě a) a c)
3

Cn+i — 4 сП)
Cn

v případě b) cn+i ^ cn. Posloupnost (cn) stejně jako posloup-
nost (cncn+1) je tedy od určitého členu počínaje monotónní
a omezená. Proto je posloupnost (bn),

CLn+l

. Cín—1
bn —

— [fn+lCnli
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od určitého členu počínaje již konstantní. Konstantní posloup-
nosti však splňují daný rekurentní vztah.

Druhé řešení. Danému rekurentnímu vztahu přísluší cha-
rákteristická rovnice

A2 — 4Д + 3 = 0,

která má kořeny X\ — 3, Я2 = 1. Členy posloupnosti (an) mají
tedy tvar

an = A. 3n + B,

kde А, В jsou reálné konstanty. Posloupnost (aw) je zřejmě
monotónní, takže pokud není konstantní, je od jistého členu
počínaje nenulová. Pak je ale

■1 ]-A.3n+1 + В 9А.3й”1 + 9В - 9В + В
bn

А. Зп~х + В

-8В

А.3й-1 + В

= 9 +
А. Зп~х + В 5

-8В
přičemž posloupnost konverguje monotónněА .3W_1 + В

к nule. V každém případě je tedy posloupnost (bn) od jistého
členu počínaje již konstantní a každá konstantní posloupnost
splňuje daný rekurentní vztah.

30

Zvolme libovolně index i. Protože posloupnost (an) není
omezená, existují její členy am, pro které platí

am > max (ац, аг, ..щ).
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Jako у vezměme index prvního takového am, tj.

У = min{m; am > max (,a\, a2, ..a*)}.-
Zřejmě je у > i. Aby bylo a* — aj = щ — a/, musí platit

dk — 2oy — ctj. (1)
Protože a; > a,-, je

(2)2czy ctj .

Protože posloupnost (an) obsahuje všechna přirozená čísla,
existuje index & takový, že platí (1). Z toho, jak jsme definovali
index у, a z nerovnosti (2) vyplývá, že k > y. Tím je důkaz
hotov.

Ukázali jsme dokonce, že existuje nekonečně mnoho trojic
indexů i < j < k takových, že a* — щ — aj — at a přitom
dj < (Zy <c. а/с.

31

Z definice posloupnosti (cn) vyplývá, že existuje posloupnost
k\, kz, ... taková, že

ci = aP(b) + bji(ki), oi = ap(ks) + Ьщкг), ... -

Navíc pro i ф j je Ф kj.
Protože posloupnosti (a«), (6n) jsou nerostoucí, je <ay ^ am

pro у ^ m a bi ^ bn pro i ^ и. To znamená, že nerovnost

dj + bi 1> am +

může platit jedině pro j < m nebo i < n.
Označme A = {5; P(ks) < m}, В = (í; R(ks) < n}. Je-li

tedy cs > am + bn, pak podle předchozího jeíeAu B. Pro-
tože množina A má právě m — 1 prvků a množina В právě
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n — 1 prvků, má množina Au В nejvýše m + n — 2 prvků.
Nerovnost cs > am + bn může tudíž nastat nejvýše pro
n + m — 2 hodnot indexu s. Proto pro (n + m — l)-ní člen
nerostoucí posloupnosti (cn) platí

Cn+m—l = <2m “b bn,

což jsme měli dokázat.

32

Vyhovuje-li posloupnost (an) podmínkám úlohy, je an =
—

<2o + nd pro všechna n ^ 0. Přitom je zřejmé, že musí být
d Ф 0, protože jinak by posloupnost (( — l)"a„) obsahovala ne-
konečně mnoho dvojic stejných členů.

Obsahuje-li posloupnost (( — V)nan) nějakou dvojici stejných
členů, musí existovat celá čísla 0 ^ p < q taková, že

Clp —

přičemž p + q je liché (jinými slovy, členy posloupnosti (an)
nemohou být všechny vesměs nezáporné nebo vesměs ne-

kladné, a protože p + q je liché, nemůže posloupnost obsa-
hovat ani nulu). Pak je ale také

&p 1 = dp d — <Xq d — flgfl,
do = dp+q,

takže (obr. 8)

O Op+q
+

Qq °1 ^D+(7-1°1971 °1972

Obr. 8
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ДО ~ ap+q>
Й1 — Лр+q—l,

а1970 = — Ujo+fl-197(b
— «1971 = %+í~1971

je právě 1972 dvojic stejných členů posloupnosti ((—l)wa„),
právě když

Я1972 — Qp+q-1971,

tj-
P + q = 3943.

, Odtud plyne, že je
ao — — <23943 = — cio — 3943<7,

2ao — — 3943d.
Protože ak jsou celá čísla, musí být d
a všechny posloupnosti (an) s požadovanými vlastnostmi mají
tedy tvar

2r, kde r je celé,

an = — 3943r + 2rn,

kde r je libovolné celé číslo.

33

Označíme-li z — x — [x], je 0 ^ z < 1. Řešíme rovnici
3[x]2 + 6([x] + z) - 4 = 0.

Vyhovuje-li číslo x této rovnici, platí
3[x]2 + 6[x] — 4 — 6z, (1)

2 4

J < \xf + 2{x] ^ j .
takže
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Protože [x]2 + 2[x] je celé číslo, máme dvě možnosti, totiž
[x]2 + 2[x] e {0, 1}. V prvním případě vyhovuje [x] = 0
a [x] = —2, ve druhém případě příslušná kvadratická rovnice
nemá celočíselné kořeny. Z rovnice (1) tak dostáváme dvě

-, která dané rovnici skutečně vy-
42

řešení x = — a x =

hovují.
Druhé řešení. Z dané rovnice je zřejmé, že pokud jí číslo x

vyhovuje, je 6x celé číslo, takže x = q + —, kde q je celé
o

číslo a r e {0, 1, 2, 3, 4, 5}, q = [x]. Rovnice má pak tvar

3 q2 + bq + r — 4 = 0,
odkud vidíme, že r — 4 je dělitelno třemi, takže r — 1 nebo
r = 4. V prvním případě je

3 q2 + 6q — 3 = 0,
čih

g2 + 2q - 1 = 0,
ale takové celé číslo q neexistuje. Ve druhém případě máme

3 q2 + 6q — 0,

2 42
odkud q — 0, x = — nebo q — — 2, x = —2 + ^ = 3 '

34

Vyhovují-li čísla x,y oběma podmínkám, platí pro ně

[x]2 + [2 - 3x] - 0,
у — 2 — 3x.

(1)
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Označíme-li z = x — [*], bude 0 ^ z < 1. Přitom je
[2 - 3x] = [2 - 3([x] + я)] = [2 - 3[x] - Зя] =

= 2 - 3[*] + [-3*].
Protože — 3z e ( — 3, 0), je [ —3z] e { — 3, —2, — 1, 0). Číslo
[x] tedy vyhovuje některé z rovnic

ú1 — 3u — 1 = 0,
úl — 3и

iil — Зи + 1 = 0,
ú1 — 3u + 2 = 0.

-o,

>

2 3 4
x

\

\-3 \

\

-4

\
-5 \

\

\3x+y=2-6
\
\

—7 \
\
\

-8

Obr. 9 -9
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První a třetí rovnice nepřipadá v úvahu — nemá totiž ccločísel-
ná řešení. Z druhé rovnice vychází [v] = 0 nebo [x] = 3, ze
čtvrté rovnice [x] — 2 nebo [xj = 1. Po dosazení do rovnic (1)
zjistíme, že všechna řešení úlohy jsou dvojice (x, у = 2 — 3x),

10 11\

3,-3>и{1}и{2}и(з
I

kde x e ’ 3/

Druhé řešení. Z definice celé části vyplývá (obr. 9), že
v rovině s kartézskou soustavou souřadnic vyhovují první
podmínce právě ty body (x,y), které leží uvnitř jednotkových
čtverců, jejichž strany jsou rovnoběžné s osami souřadnic
a jejichž levé dolní vrcholy leží v bodech (k, —kr), kde k je
celé číslo, včetně těchto vrcholů a vnitřků stran, které je
obsahují. Úloha je tak převedena na hledání průniku přímky
Зх + у — 2 s právě popsanou množinou.

35

[i ^ 1, [ap/a] = 0.Pro a e (0, 1) je [a] = 0,

1
Pro a e (1, + oo) je [a] ^ 1, —

Pro a — 1 je [ap/al = 1.
Je-li k přirozené číslo, bude tedy

= 0, [úp/a] = 1.

= 0 pro X e (0, k\

— 1 pro X£ <í, + oo).
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Zvolme kladné číslo x. To zřejmé leží v [x] intervalech
+ oo), kde k je přirozené číslo, totiž v intervalech <1, + oo),

<2, + oo), ..<[x], + oo). (Pro [x] = O žádný takový interval
neexistuje.) Prvních [x] sčítanců součtu, kterým je definována
vyšetřovaná funkce /, je tedy rovno 1 a ostatní jsou nulové.
Je tedy/(x) = [x].

36

[ ]jk ] je takové celé číslo m, pro které platí
m ^ |lk < m + 1,

neboli

m2 ^ k < (m + l)2 = m2 + 2m + 1.

Pro uvedených 2m + 1 hodnot k je tedy []]k] — m, takže
n — 1

2 [Щ — 2 (2w + l)m = 2 2 m2 + 2 m-
m = 1

w2 — 1 n-1 71 — 1

&=i

Využijeme-li známé vzorce

i m = 1

1 i
1 г = - r(r + 1), У i2 = — r(r + l)(2r + 1),

i=i z i=i 0

dostaneme

и2-1 1 i
2 [J/Л] = — (n — 1)и(2я — 1) + —■ (n — l)n =

&=i o

1
= — (и — 1)я(4п + 1).

о

Odtud vidíme, že všechna hledaná n jsou ta, která dávají při
dělení sedmi zbytek O, 1 nebo 5.
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37

Ve výrazu pro N se я vyskytuje jen v sudých mocninách.
Označme proto m — я2. Je-li я liché, tj. n — 2k + 1, je

m = (2k + l)2 = 4k2 + 4k + 1 - 4k(k + 1) + 1.

Ze dvou čísel k, k 4- 1 je právě jedno sudé, je tedy m tvaru

m — Sr + 1.
Potom

N = ni3 + 3m2 + Im — 11 =

= (8r + l)3 + 3(8r + l)2 + 7(8r + 1) - 11 =
= 2.256r3 + 192r2 + 24r + 1 + 192r2 + 48r + 3 +

+ 56r + 7 — 11 = 2.256r3 + 384r2 + 128r =

= 2.256r3 + 128r(3r + 1).
Z čísel r, 3r + 1 je právě jedno sudé a právě jedno liché, je
tedy součin r(3r + 1) sudý a číslo N je dělitelné 256.

Druhé řešení. Rozložme daný mnohočlen na součin jed-
nodušších mnohočlenů. Protože x = 1 je kořenem mnoho-
členu x3 + Зя2 + lx — 11, je

N = (n2 — 1) (n4 + 4w2 + 11).
Protože n je liché, je číslo n2 — 1 součinem dvou po sobě
jdoucích sudých čísel n — 1, n + 1 a je tedy dělitelné osmi.

Kvadratický trojčlen x2 + 4x + 11 má záporný diskrimi-
nant, takže ho nemůžeme dále rozložit na součin dvojčlenů
s reálnými koeficienty. Protože 256 = 8.32, můžeme ale psát
(mod 32)

я4 + 4я2 + 11 = и4 + 4я2 — 21 = (я2 — 3) (я2 + 7) =
= (я2 - 3) (я2 - 25).
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Číslo
(ri1 — 3) (и2 — 1) (и2 — 25) —

= (и2 — 3) (и — 5) (п — 1) (и + 1) (и + 5)
je dělitelné 256, neboť ri2 — 3 je sudé, rovněž každé z čísel
n — 5, n — 1, к + 1, и + 5 je sudé, právě jedno z čísel n — 5,
я + 5 a právě jedno z čísel и — 1, n -f 1 je dělitelné čtyřmi
a navíc právě jedno z uvedených čísel musí být dělitelno osmi
(každé čtvrté sudé číslo je dělitelné osmi). A protože

N = (ri2 - 1 )(n2 - 3) (и2 - 25) + 8.32A,

je číslo N dělitelné 256.

Poznámky. Máme-li mnohočlen s celočíselnými koeficienty,
dovedeme říci, jak mohou vypadat jeho racionální kořeny. Je-li

f(x) = anxn + an-1*"-1 + ... + a\x + a0,

P
(p, q nesoudělná)

Я
pak zřejmě pro jeho racionální kořen x

platí

a„pn + an-xpn~1q + ... + a\pq11-1 + aoqn = 0.

Odtud plyne, že musí být p | a0, q \ an. Je-li speciálně an — 1,
pak mohou být racionálními kořeny daného mnohočlenu jen
ta celá čísla, která jsou děliteli jeho absolutního členu. Toho
jsme např. využili při »uhádnutí« kořenu mnohočlenu я3 +
+ 3x2 + Ix — 11 — může totiž mít pouze tyto racionální
kořeny: 1, —1, 11, —11.

К výpočtu hodnot mnohočlenu /se používá tzv. Hornerova
algoritmu. Mnohočlen / můžeme psát ve tvaru

f(x) — (.. .((anx + an-i)x + an-2)x + .. .)x + oq.
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Výpočet hodnoty mnohočlenu je pak výhodné provádět »ze-
vnitř«. Položíme A\ = an a postupně počítáme A-2, A3, . .

An+i podle vzorce

• 5

A/c+1 — AjcX + йп—к•

Nakonec dostaneme An+1 = /(*).

Třetí řešení. Protože n je liché, položme n = 2k + 1, k
celé. Pak je
N = nG + Зя4 + 7я2 — 11 =

- (2k + l)6 + 3(2k + l)4 + l(2k + l)2 - 11 =
= (2kf + b(2kf + 15(2&)4 + 20(2kf + 15(2Č)2 +

+ 6.2£ + 1 + 3(2£)4 + 12(2£)3 + 18(2&)2 +
+ \2.2k + 3 + l(2kf + 14.2k + 7 - 11 =

= 2GkG + 3.26£5 + 9.25£4 + 28£3 + 5.25£2 + 2Gk =

= 256Л3 + 25k(2ks + 6Č4 + 9Л3 + 5k + 2).
Stačí tedy dokázat, že pro libovolné celé k je mnohočlen

p(k) = 2kG + 6k5 + № + 5k2 + 2k

dělitelný osmi. Vypočteme proto hodnoty />(()), />(1), .. - ,/>(7)
(využijeme Hornerova algoritmu, přičemž počítáme mo-
dulo 8), a protože každá z nich je dělitelná osmi, je i číslo N
dělitelné 256.

38

Matematickou indukcí podle k dokážeme, že součet

Ljc = \m + 2m + ... + (nk - 1)TO + (nk)
je dělitelný číslem я*-1.

Pro k — 1 to zřejmě platí. Předpokládejme, že dokazované
tvrzení platí pro k = p, a uvažujme součet
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Lp-n = lm + 2m + ... + (ríp)m +
+ (np + \)m _|_ (np + 2)m + ... + (2nP)m +
+ ... +

+ ((n - 1>P+1)W+ ((n - l)nP+ 2)m + ... +
+ (/fP+l)»».

Podle binomické věty zde bude v (J + l)-ním řádku
(je {1, 2, ..., n — 1})

(jnP + l)m + (jn? + 2)m + ... + (jriP + nP)m = Lp + n»Ah
kde Aj je celé číslo. Celkem je tedy

Lp+i — Lp + Lp + wPA\ + . . . + Lp + n^Afi—i —

= nLv + np(Ai + A‘2 + ... + Ап-])ъ

Podle indukčního předpokladu je Lv dělitelné číslem
a tak je Lv+\ dělitelné číslem nv. Tím je indukční krok a celý
důkaz hotov.

39

Nechť n je přirozené číslo, pro které platí tvrzení úlohy.
Jestliže pro prvočíslo/) platí/)2 < n, pak je n dělitelné číslemp.
Skutečně, kdyby p nedělilo и, p2 < n, potom by byla />2, n
nesoudělná čísla, ale/>2 není prvočíslo.

Snadno zjistíme, že čísla 1, 2, 3, 4, 6, 8, 12, 18, 24, 30 úloze
vyhovují. Žádné jiné číslo menší než 30 nemá vlastnost v úlo-
ze popsanou. Předpokládejme, že n má tuto vlastnost a že
n > 30. Protože 22 < 30, 32 < 30, 52 < 30, je n dělitelno
dvěma, třemi i pěti, a tedy n = 30£ ^ 60. Protože 72 < 60,
je n ^ 7.60 = 420. Potom ll2 < 420, 132 < 420, 172 < 420,
192 < 420, a tedy n ^ 420.11.13.17.19 > 107. Žádná další
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čísla n < 107 s požadovanou vlastností tedy neexistují. (Dá se
dokonce dokázat, že neexistují už ani žádná taková n 107.)

40

Protože p je liché, je počet sčítanců na pravé straně sudý.
Součet upravíme

11 1a

1 + + + 4- ... 4-
b p - 1 2 P ~ 2

1 1

p - 1 + p 4- 1 I 5
4-

2 2

- 1P
přičemž pro 1 ^ k ^ — 2 ÍC

1 1 P

k ^ P — k k(P — k) ’
takže

P P Pa

+ ... 4-+
b l(p - 1) 2(p - 2) p - 1 p 4- 1

2 2

c

kde c je přirozené číslo. Součin (p — 1)! nemůže být dělitelný
prvočíslem p, proto z rovnosti

1)! a — pbc(P

plyne, že p dělí a.
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Druhé řešení. Upravme pravou stranu na společného
jmenovatele, dostaneme rovnost

ÍP ~ 1)! (P- 1)!
a(p - 1)! =b\{p - 1)! + + ... +

2 P - 1

Kdyby pro nějaká dvě čísla j,k, 1 fS j < k ^ p — 1, bylo

(/> - 1)! (p - 1)!
k (mod p),J

bylo by také
j == ^ (mod p),

protože čísla p a (p — 1)! jsou nesoudělná (/> je prvočíslo).
(P - 1)!

2)!Tvcří tedy p — 1 čísel (/>

úplnou soustavu nenulových zbytku modulo p. Je tudíž

bp(p - 1)
a(p - 1)! = 6(1 + 2 + ... +/> - 1)

ss 0 (mod p).
Odtud plyne, že p dělí a.

2

Třetí řešení. Uvedením na společného jmenovatele dosta-
neme v čitateli součet

1) + 1.3.4 ... (p - 1) +
- 1) + ... + 1.2 ... (p - 2).

s — 2.3 ... (p —

+ 1.2.4 ... (p

Uvažujme mnohočlen

o - 2)(p — 3) ...O — (p - 1))+ ... +
+ O - 1)ÍP - 2)... O - (P - 3))(ř - O - 1)) +
+ O - !)(/> - 2) ... O - O - 3))(ř - O - 2))
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stupně p — 2. Tento mnohočlen je zřejmě roven s, přitom
jeho absolutní člen je

( 2) ( 3) ... ( —(/> — 1)) + ... +
+ (-l)(-2)...(—(p-3)) (-(/>-2)) =

= (-1)P~2S = -5.

Protože ostatní členy jsou dělitelné číslem p, je
s — Mp — s,

takže

M
S=P 2

je dělitelné/). Celkem tedy je
M

(P — 1)! a = bp— ,

odkud plyne, že p dělí a.

Poznámka. Úloha souvisí s tzv. Wilsonovou větou: Číslo p

je prvočíslo, právě když

1)!(P — 1 (mod p).

Důkaz plyne z Fermatovy věty, podle níž pro libovolné
prvočíslo p a x 0 (mod p) platí xp-1 == 1 (mod p). To
znamená, že mnohočlen *p-1 — 1 stupně p — 1 má (mod p)
p — 1 kořenů 1, 2, ...,/> — 1. Obdobně jako v oboru všech
celých čísel můžeme tvrdit, že platí

xp_1 =1 — (x — 1) (x — 2) ... (x — (p 1)) (mod p)

pro všechna celá x. Položíme-li x = 0, dostaneme jednu část
Wilsonovy věty. Obrácené tvrzení plyne z toho, že pro slo-
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žené číslo p je (p — 1)! vždy soudělné s p, takže nemůže
být (p — 1)! = — 1 (mod/>).

Zderivujeme-li předchozí kongruenci dostaneme
p-1

O 1)(* - 2) ... O - O - 1))
(p — ,1) xP~2 =

x — k
k=\

(mod p),
odkud pro x = 0 plyne dělitelnost součtu

(P ~ 1)! (P ~ 1)!
(P ~ 1)! + + ... +

2 P ~ 1

číslem p, což bylo potřeba v uvedené úloze.

41

Protože čísla aj, az, an jsou kořeny mnohočlenu
P - 1> je

P(x) - 1 = (x - ai) (x a2) ... (x - an) q(x),
kde q je mnohočlen stupně m — n s celočíselnými koefi-
cienty. Kdyby bylo p(a) = 0 pro a celé, pak by bylo

— 1 — (a — a\) (a az) ... (a - an) q(á),
tj. |a — СЦ| = 1 pro alespoň tři různá celá čísla a\> a2, a2.
To nejde.

42

Protože

f(n + 2) —f(n + 1) =f(n + 1) - /(я) + 2,
platí pro každé n ^ 1
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f{n + 1) -/(«) =/(2) -1+2(« - 1),
takže

/(я) =/(l) + (я - l)(/(2) - 1) +
+ 2(1 + 2+ ... + я — 2) =
= (и - l)/(2) + (в - 2f.

Součin

f(n)f(n + 1) = (n - l)n (/(2))2 + /(2)(я(я - 2)2 +
+ (я - l)3) + ((я - 2) (я - l))2

bychom chtěli pro libovolné kgN vyjádřit jako(w — l)/(2) +
+ (m — 2)2. Položme m — 1 = af(2) + ž>, pak dostaneme

a(a + 1) = (n — \)n, (b — l)2 = ((n — 2) (n — l))2,
2a(6 - 1) + b = 2и3 - In1 + In - 1.

Těmto podmínkám vyhovují čísla
cl — n — 1, b = (n — 2)(n — 1) + 1 — n2 — 3n + 3,

takže m = (n — l)/(2) + я2 — Зи + 4 = /(я) + я. Je tedy

/(я)/(я + 1) =/(/(я) + я).

43

Číslo x může nabývat hodnot 1, 2, ..., 32. Pro pevně
zvolené x, 0 < x íS 32, pak můžeme za у volit libovolné
z čísel x + 1, x + 2, ..., x + я, kde n je největší celé číslo,
pro něž platí

x + (x + я) + (x + я + 1) ^ 100,
tj-

99 - 3x
я
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Je tedy
99 - 3*

pro liché x,n —
2

(1)
98 - 3*

pro sudé x.n —
2

Číslo z pak volíme tak, aby platilo у < z ^ 100 — (лг + jv)-
Pro každou dvojici x, у — x + k (k e {1, 2, ..., w}) pak
máme celkem

100 - (2x + k) - (x + k) = 100 - 3x - 2k

možností, tedy pro každou volbu x e {1, 2, ..32} celkem
rn(x) — (100 — 3x — 2) + (100 — 3x — 4) + ... +

+ (100 - 3x - 2n) -
= lOOw — 3nx — n(n + 1) = w(99 — 3x — n)

možností.

Podle vztahů (1) je pro liché x

99 - 3x\299 - 3x99 — 3x
m(x) = —” 99 — 3x —

2 2

pro sudé x

98 - 3x 98 - 3x
™(x) = 2

99 - 3x -

2

100 - 3x 98 - 3x

2 2

Celkový počet všech řešení x < у < z dané nerovnice
dostaneme jako součet

r = m(1) + m{2) + ... + m(32) =
= 482 + 47.46 + 452 + 44.43 + ... + 32 + 2.1.
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Protože pro libovolné a je

(За)2 + (За - 1) (За - 2) - 18а2 - 9а + 2,
dostáváme

г = 18(12 + 22 + ... + 162) -
- 9(1 + 2 + ... + 16) + 32.

Podle známých vzorců
1

2 + 1)j1 + 2 + ... + k —

1
l2 + 22 + ... + k* = k(k + 1) (2/e + 1)6

spočteme, že je r — 25 736. Daná nerovnice tedy má 25 736
řešení x < у < z.

44

Nechť P obsahuje k (0 ^ k — 2) dvouprvkových
a n — 2 — k jednoprvkových podmnožin množiny
{1, 2,..v množině{l, 2,.. .,n] tedy zbývá k + 2 čísel

dvou-i takových, že {7} ф P. Z nich můžeme utvořit ^

prvkových podmnožin, stačí tedy ověřit, že vždy platí

Cť) > k,

neboli

(k + 2) (k + 1) > 2k.

Tato nerovnost zřejmě platí pro každé k ^ 0.
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Druhé řešení. Předpokládejme, že tvrzení úlohy neplatí,
tj. že existuje taková (и — 2)-prvková podmnožina Pc M„,
že

p n {{'■}> {/}, {*./>} Ф 0

pro každou {i, /} cr {1,2, ..

e {1, 2, ..., n} nebylo {ni] e P, pak by pro každé j ф m
muselo být {_/} e P nebo {/, m} e P, takže by P obsahovala
více než n — 2 prvků. Je tedy {m} e P pro libovolné
m e (1, 2, ..., w}, což dává opět spor s předpokládaným
počtem prvků množiny P.

n). Kdyby pro nějaké m e• 5

Třetí řešení. Zapišme všechny prvky množiny Mu do
trojúhelníkové tabulky

{1} (2/ {3} ...

0,2 }{1,3} ...

{2,3} ...

{n s
I [1, n}

I2, n)

{n — 1, n).

Protože P má n — 2 prvků, existují aspoň dva sloupce, které
neobsahují žádný prvek z P (i < j):

ÍO if)
{hi} íhJ]

{i-1,1} {i - 1,/}
{i,/}

takže P n {{z}, {/}, {i,j}} = 0.
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45

Součet ani rozdíl žádných dvou z čísel

k - 1
—-—,k pro liché к,1,2, .. * 5

k
pro sudé k1, 2, k

není dělitelný číslem k. Má-li tedy číslo n požadovanou
vlastnost, musí být větší než počet uvedených čísel, tj.

k + 3
n ^ —-— pro liché k, n ^

k + 4
—pro sudé k.

Předpokládejme, že n splňuje uvedené nerovnosti, zvolme и

různých přirozených čísel a uvažujme jejich zbytky při dě-
lení číslem k. Jsou-li dva ze zbytků stejné, je rozdíl přísluš-
ných čísel dělitelný číslem k. Jsou-li zbytky navzájem různé,
tj. jde-li o n navzájem různých čísel z množiny (0, 1, ..

k — 1}, pak alespoň dva leží v téže z podmnožin
• ?

k — 1 k + 1
{0}, {1, * — 1}, .. pro liché k,* 5 2 2

I k — 2 k + 2
5 { 2 f pr° Sudé k’{0}s {l,k - 1}, . '■’I 2 5 2

kterých je méně než n. Součet příslušných dvou čísel je pak
dělitelný číslem k. Číslo n má tedy požadovanou vlastnost.
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Nejmenší číslo n s uvedenou vlastností je

k + 3
n — ■——— pro liché k, n —

k + 4
—-—

pro sudé k.

46

Nejprve dokážeme, že A cr B. Nechť t e A, t — t\ +
h, to g No. Pak pro každé x e A, x = x\ + x2, xi, xo e N{),
platí

tx = (íj + rf) (x2 + x“) =
= (flXl + ?2^2)2 + \t\X2 — toX\ |2,

takže řx g A, tj. Ay c= A, neboli ře B.
Obráceně, nechť t e B, tj. А у c= A. Protože 1 = O2 +

+ l2 g A, plyne odtud, že také t — ?.1eA(c A, tedy
В c A. Tím je rovnost A = В dokázána.

47

Nechť {i, j, k} = {l, 2, 3}. Obsahuje-li některá z množin
Ai, Аз, A3, řekněme Aj, nulu, pak je A,; = Ад-. Podle před-
pokladu je totiž pro libovolné x g Ay také x = x -f- 0 g Ад-,
tj. A i cz Ад-. Obráceně, z implikace

(x g Ад, у 6 А у) => ((х + з?) е А,-, (х - у) G Ау)

dostaneme pro j; = О inkluzi Ад с A,-. Odtud plyne, že pro
dvě z množin Ay, Ao, A3 s neprázdným průnikem, А у n Ад Ф
Ф 0, pak už musí být Ay = Ад, neboť pro jy g Ay П Ад
z předpokladu úlohy plyne 0 = у — у e Ay.

Můžeme tedy dále předpokládat, že nula neleží v žádné
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z množin Ai, Ao, A3 a že všechny tři množiny jsou navzájem
disjunktní. Ještě si všimněme, že vždy platí x e Ař, právě
když — x € А< (je — л; — у — (x + jy)). Označme m,; =
= min {|jc|; x e Ař } > 0 a zvolme označení tak, aby platilo
mi > nij > 7tiic. Pak je пц > mj — m^, to však je spor s defi-
ničí čísla Wj, neboť podle předpokladu je пц — пц: e Ař-.

Je-li L množina všech lichých celých čísel a S množina
všech sudých celých čísel, mají množiny L, L, S požadované
vlastnosti a je L n S = 0.

Poznámka. Z uvedeného řešení rovněž zjistíme, jak vypa-

dají všechny trojice množin splňujících podmínky úlohy.
Аз = A3 =

{2km; k celé}, A; = A^ —

= {(2k + 1 )m; k celé}, kde m je nějaké přirozené číslo.

Je bud Ai = Аз = A3 = {0}, nebo Ai
= {km; k celé}, nebo A;

48

V množině A existuje nejvýše jeden prvek větší než 24,
xy

jinak by pro 25 ^ у < x bylo \x — y\ < x У- —, což je

ve sporu s předpokladem. A je tedy konečná.
Nechť A = {#1, х-i, ..., Xjv}, kde *i < *3 < ... < xjv

a xn-i < 25. Pro je (1, 2, ..., N — 1} označme
dj = Xj+1 — X), pak platí

X}Xi+i xj(xj + dj)
dj ~ 25 25

neboli

X2:
dj ^ 25 — X;
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25
Zřejmě X5 ^ 5, pak ale db ^ — > 1, neboli xq ^ 7, dále

49 100
d6 ^ > 2, neboli X7 ^ 10, J7 ^ > 6, neboli xg ^ 17,18 15

289
ds ^ —— > 36, tedy xg ^ 54. Musí tedy být N <, 9, Záro-8

ven ale vidíme, že množina {1, 2, 3, 4, 5, 7, 10, 17, 54}
vyhovuje naší úloze.

Poznámka. Není těžké popsat všechny množiny A vyho-
vující dané podmínce. Např. množiny

(1, 2, 3, 4, 5, 7, 10, 17, ai}, kdeai ^ 54,
{1,2,3,4,5,7,10, 18, a2}, kde a2 ^ 70,
(1, 2, 3, 4, 5, 7, 10, 19, аз}, kde аз ^ 80,
(1, 2, 3, 4, 5, 7, 10, 20, a4}, kde a4 ^ 100,
{1, 2, 3, 4, 5, 7, 10, 21, a5}, kde a5 ^ 132,
{1, 2, 3, 4, 5, 7, 10, 22, ae}, kde ao ^ 184,
(1, 2, 3, 4, 5, 7, 10, 23, a?}, kde a7 ^ 288,
(1, 2, 3, 4, 5, 7, 10, 24, ag}, kde ag ^ 600,
(1, 2, 3, 4, 5, 7, 11, 20, ag}, kde ag ^ 100,
(1, 2, 3, 4, 5, 7, 11, 21, aio}, kde a]0 ^ 132,
{1, 2, 3, 4, 5, 7, 11, 22, au}, kde an S: 184,
(1, 2, 3, 4, 5, 7, 11, 23, a12}, kde a12 ^ 288,
(1, 2, 3, 4, 5, 7, 11, 24, ai3}, kde ai3 ^ 600,
{1, 2, 3, 4, 5, 7, 12, 24, ai4}, kde ai4 ^ 600,
{1, 2, 3, 4, 5, 8, 12, 24, а4з}, kde ai5 Sí 600,
(1, 2, 3, 4, 6, 8, 12, 24, ai6}, kde aie ^ 600,

jsou všechny devítiprvkové množiny, které vyhovují dané
podmínce.
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49

Platí-li tvrzení úlohy pro n sudé, platí i pro n + 1, protože
n(n + 1)

, takže pakn + 1 dělí součet 1 + 2 + ... + n =

stačí vzít an+1 — n + 1.
Nechť tedy n — 2k, pak je 1+2 + ... + n = k(2k + 1).

Především musí platit «2*!k(2k + 1). Zkusme tedy položit
d‘>ic — k, pak by mělo být a2/t-i|£.2£, vezměme proto a2*-i =
= 2k, atd. Dostaneme tak pořadí

(k + 1, \,k + 2, 2, ...,2k, k)
čísel 1, 2, ..., 2k. Vyzkoušíme, vyhovuje-li podmínce úlohy.
Pro 1 ^ i ^ k je

(k + 1) + 1 + (k + 2) + ... + (i — 1) + (k + i) —

i(i + 1) i(i - 1)
— += ik + — = iik + 02

(k + 1) + 1 + (k + 2) + ... + (k + i) + i —

= i(k + i + 1),
takže uvedené pořadí požadavkům úlohy vyhovuje.

Poznámka. Není těžké sestavit všechna vhodná pořadí pro
malá n, řekněme n ^ 8. Jejich prozkoumáním můžeme
odhalit ještě další obecná řešení, jako např. (2k, 2, k + 1,
3, ..., 2k — 1, 1) pro sudé n = 2k nebo následující dvě
pořadí

(2k + 1, \,2,k + 2, 3, ..., k, 2k, k + 1),
(,k + 2, 1, k + 3, 2, ..., 2k + 1, &, k 1)
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pro lichá n — 2k + 1, která nedostaneme z již uvedených
pořadí pro n — 2k.

50

Podle definice kombinačního čísla je

(V) (2k - 1)!
(k - 1)! k\
1.3.5. ... (2k - 1).2.4. ... (2k - 2)

(k - 1)! kl
2кл

k\ ’

přičemž číslo (2k — 1)!! = 1.3.5 (2k — 1) je liché.
Pro nejvyšší mocninu 2z, která dělí číslo k\, platí

(2k - 1)!!

-li kk
+ ... ++

2S 54

kde 2S ^ k < 2S+1. Je tedy

kk k k 1
^ jfe - 1= k -= £11 —a < —

-

2

s rovností, právě když k = 2S.

+ ... ++
4 2S2S 2S

(V)Číslo 1, tj. právěje liché, právě když a = k

pro všechna přirozená čísla k tvaru k = 2S, kde s je celé
nezáporné.

Poznámka. Je-li k přirozené číslo, p prvočíslo, pak pro

největší exponent a takový, že pa dělí £!, platí
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00

v I ka = у \ —Z_, I p>i

i 0

(součet vpravo obsahuje jen konečný počet nenulových
*

sčítanců). Z k činitelů součinu 1.2 k je jich totiž
P \

k
dělitelných p (každý p-tý), dělitelných/»2 (každý/>2-tý),ť i
atd.

Druhé řešení. Nejprve ukážeme, že pro každé celé nezá-
porné číslo s se 2s-tý řádek Pascalova trojúhelníku skládá
jen z lichých čísel. V tomto řádku jsou kombinační čísla

rn- (2* — 1) (2* — 2) ... (2- — /)
(1)1.2 j

Ой/й 2s - I-

Vzhledem к tomu, že pro každá dvě přirczená čísla' n, r,
n ^ s, je 2S — r dělitelno číslem 2n, právě když je r dělitelné
číslem 2W, je v rozkladech čitatele i jmenovatele (1) na prvo-
činitele prvočíslo 2 ve stejné mocnině, a proto kombinační
číslo (1) je liché.

Ještě ukážeme, že prostřední číslo v každém z ostatních
řádků Pascalova trojúhelníku je sudé. To plyne z toho, že
pokud v-tý řádek obsahuje samá lichá čísla, je uprostřed
(v + l)~ního řádku v — 1 sudých čísel, která vznikla jako
součty sousedních čísel z>-tého řádku, uprostřed {v + 2)-hého
řádku je v — 2 sudých čísel pocházejících ze sudých čísel
(v — l)-ního řádku, atd. Tento klín sudých čísel zasahuje
až do (2v — l)-ního řádku, kde je uprostřed sudé číslo.
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Vidíme, že jsou-li ve w-tém řádku jen lichá čísla, pak první
další řádek, kde to může zase nastat, je až 2v-\ý řádek.

51

Označme M, množinu žáků, kteří chodí do z-tého kroužku.
Podle principu inkluze a exkluze je

!Mi и M2 и M3 и M4 и М5| = 2 |Mťl — 2 Iм; п Му| +
»</

+ v |Mť П Му п М*|.
i<j<k

(Další členy obsahují průniky čtyř a pěti kroužků a ty jsou
prázdné.) Podle podmínek úlohy je

!Ml и M2 и M3 и M4 и M5| = 64, [Mť| ^ 19,
|Mi n M; n Mfcl ^ 1.

i — 1

Je tedy

02 |Mť n My| ^ 5.19 + .1 - 64 = 41.
i<i

Na levé straně je j 10 sčítanců, a tak není možné, aby

žádný z nich nebyl větší než 4.

Poznámka. Tzv. princip inkluze a exkluze vyjadřuje počet
prvků sjednocení konečných množin pomocí počtů prvků
jejich průniků. Tak pro dvě množiny M4, M2 zřejmě je

|Mi и M2| = SMil + !M2| - |Mi n M2|,
pro tři množiny

!M4 и M2 и M3| = |Mi| + |M2| + |M3| -
- |Mi n M2| - |M2 n M3| - |M] n M3| +
+ |Mi n M2 n M3|.
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Obecně pak platí

|Mj и M2 u ... и M*| = |Mj| + |M2| + ... + |M*| -
- IMj n M2| - |Mi n M3| - ... - |M*_! n M*| +
+ |Mj пМ2лМ3|+ ... + |M*_2 n M*_i n M*| - ... +
+ ( —1)*+1 i Mi п И2 n ... n M*| =
= 2(-Or+1 |Мд nM.2n ... n Myj,

kde se sčítá přes všechny neprázdné podmnožiny {/i,/2, ... ,jr }
množiny {1,2, . .., £}.

52

Dané body označme A\, ...,4a jako Rř; označme mno-
žinu daných rovin obsahujících bod vij (všechny indexy
budou navzájem různé prvky množiny {1, 2, 3, 4, 5}). Pro-
tože žádné čtyři dané body neleží v rovině, je

Rj n R; n R& n R, = 0

a podle principu inkluze a exkluze (viz poznámku к před-
chozí úloze) je

|Ri u ... u R6| = 2 |Rií - 2 |Rť n R/| +
«</

+ 2 IR/nR^nR/,1.
i<j<k

Dokážeme, že existují indexy i, /, pro které |R(: П R;| fg 1,
což znamená, že dvojice bodů Ai, A) leží nejvýše v jedné
z daných rovin a jejich spojnice tedy nemůže být průsečnicí
dvou daných rovin. Podle a) je |Ri и ... и Ró| = 7 a podle
b) | Rí | íg 4. Protože v žádné rovině neleží čtyři dané body,
je 2 l^í n Ry n R*| počet všech daných rovin, které obsa-

i<j<k

(1)

92



hují po třech daných bodech. Počítáme-li každý bod tolikrát,
v kolika daných rovinách je obsažen, dostaneme

3 2 |R( n R, П Rt| S 2 |Ri| £ 5.4,
i<j<k

neboť každý z pěti daných bodů leží nejvýše ve čtyřech
daných rovinách. Je tedy

i

2 | R* n Rj n R*| ^ 6
i <j< k

a podle (1)
2 |R?; П R;| ^ 5.4 + 6 — 7 = 19.

i<i

Q -
10 sčítanců, musí být některý menšíProtože vlevo je

než 2.
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Pro pevné z e {1,2, označme M množinu všech polí
tabulky, v kterých je napsáno číslo i, doplňme trojúhelníko-
vou tabulku na čtvercovou nXn (obr. 10) a označme M'
množinu souměrně sdruženou s M podle úhlopříčky pro-

cházející levým horním rohem. Z předpokladu úlohy plyne,

O
o

©

©

Obr. 10
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že v každém řádku leží právě jedno políčko z množiny
MuM'. Označíme-li D množinu polí uvedené úhlopříčky,
platí

MuM'[ = IM| + |M'| - |M n M'| =
= 2|Mj - |M n D|,

takže |M n D| je pro liché n rovněž liché číslo a číslo i se

proto na úhlopříčce vyskytuje aspoň jednou. Tím je tvrzení
úlohy dokázáno.

Poznámka. Pro sudá n tvrzení úlohy neplatí, jak ukazuje
tabulka

n

1

2 3

3 4 5

4 5 6 7

n — l n 1 2 ... n — 3

n 1 2 3 ... n — 2 n — 1,
v níž jsou na úhlopříčce jen lichá čísla (každé dvakrát).

54

Strany čtverců označme jako v obr. 11. Určíme nejprve Py
a P-у. P\ je počet všech neprázdných podmnožin čtyřprvkové

°n-1°2a,

C3Cl C2 сл-1 Cn

b2 Ьn~] bnby

Obr. 11
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množiny, tedy Pi = 24 — 1 = 15. Prow = 2 rozdělíme všech-
na přípustná obarvení na dvě části. Těch obarvení, u nichž je
co obarvena, je 26 = 64. Těch, u nichž c-z není obarvena, je
(23 — l)2 = 49. Celkem je tedy P% = 64 + 49 = 113.

Pro n > 2 odvodíme rekurentní vzorec. Všechna pří-
pústná obarvení opět rozdělíme na dvě části. Takových
obarvení, že je obarvena alespoň jedna ze stran an, bn, cn+1,

je (23 — l)P,ř-i = 7Pn í ■ Pokud strany an, bn, cn+1 nejsou
obarveny, musí být obarvena strana cn a ke každému ze čtyř
možných obarvení stran an~i, 6íř-i doplníme Prt-2 obarvení
zbylých stran. Celkem je tedy pro n > 2

P« = 7Pn-i + 4PH-2-

Z tohoto rekurentního vzorce plyne matematickou indukcí, že
pro každé přirozené и je Pn liché číslo, neboť Pi a Po jsou
lichá. Tím je vyřešena část b).

Z rekurentního vzorce plyne, že

P7 > 7Pa > 72P5 > ... > 73P2 = 75.113 > 106.

Na druhé straně je Pn + Pn-\ < 8(PK_i + Pn-2), takže

Ptí + P.5 < 8(P5 + P4) < 82(Pi + P3) < ... < 84(P2 + Pi) =
= 84.128 < 10«,

a tak Ре < 10(i. Protože Pq < 106 < P7, je hledané číslo
72 = 7. Tím je vyřešena i část a).

55

Označme Bn počet všech přípustných obarvení pro útvar
složený z 72 trojúhelníků. Je-li n > 3, můžeme obarvení roz-
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dělit do tří navzájem disjunktních skupin podle toho, jak jsou
obarveny vrcholy w-tého trojúhelníku POR (obr. 12).

Do 1. skupiny dáme obarvení, při nichž je vrchol R obar-
ven — takových obarvení je Bn~i.

O Q

n-1

n-2 n

P RObr. 12

Do 2. skupiny dáme obarvení, při nichž vrchol R není
obarven a vrchol O je obarven — takových obarvení je Bn-2.

Do 3. skupiny dáme obarvení, při nichž vrcholy R a Q ne-

jsou obarveny, takže musí být obarven vrchol P — takových
obarvení je Bn-3. Platí tedy rekurentní vzorec

Bn = В,ii + Вn-2 + Bn~3.

Přímo zjistíme, že B\ — 7, B> = 13, B3 =

Vzhledem к rekurentnímu vztahu (1) se v posloupnosti
(Bn) střídají vždy dvě lichá a dvě sudá čísla. Proto je číslo
£1984 sudé.

O)
24.

Druhé řešení. Při každém z Bn přípustných obarvení
(n > 1) útvaru Uw složeného z n trojúhelníků je útvar UJř_i
složený z prvních n — 1 trojúhelníků útvaru UM přípustně
obarven. Všech obarvení útvaru U„, při nichž je U^-i pří-
pustně obarven, je 2Bn-i (pro vrchol R (obr. 12) jsou dvě
možnosti). Z těch jsou přípustná všechna kromě těch, co ne-
mají obarven žádný z vrcholů P, Q, R. Ta však mají obarven
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vrchol O a je jich zřejmě Bn-4 pro n > 4, 4 pro n
n = 3 a 1 pro n = 2. Platí tedy pro и > 4

i?/* = 2Bn 1 B)i-4)
takže 984 má stejnou paritu jako £4 = 2Дз — 4 a je sudé.

4, 2 pro

56

tak, aby číslováníDané úsečky označme 11, I>, ..., In2
úseček souhlasilo s uspořádáním jejich levých krajních bodů
na přímce zleva doprava. Předpokládejme, že tvrzení a) ne-

platí, tj. že žádných n + 1 z daných úseček nemá společný
bod, a dokažme, že pak platí tvrzení b).

+ 1

Pro žádné k e (1, 2, podle našeho předpokladu ne-
má n + 1 úseček

/(fc-l)w+b /(*-l)n+2, • • hn, hnn
společný bod. Mezi úsečkami

I(Tc~l)n+1, I(к—l)n+2) • • -j hn

tedy existuje úsečka, označme ji U/c, která nemá s úsečkou
hn+i společný bod (jinak by levý krajní bod úsečky hn+i pa-
třil do každé z uvedených úseček). Pak ovšem Uje nemá spo-

léčný bod ani s žádnou z úseček /;, kdej > kn + 1. Dostává-
me tak n + 1 úseček

UUU,,..., UnyIn.
z nichž žádné dvě nemají společný bod.

* 1

57

1 označme/(rc) největší možný
počet prvků množiny M. Zvolíme-li M = {<1, 2), <1, 3>, ..

Pro dané přirozené číslo n
• 3
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<1, и)}, bude М vyhovovat podmínkám a) i b). je tedy
f(n) ^ n — I. Ukážeme, že platí rovnost f(n) = n — 1.

Pro n — 2 je M = {<(1, 2)} a/(2) = 1. Budeme pokračovat
matematickou indukcí. Nechť n > 2 a předpokládejme, že
pro každé přirozené číslo &, 2 ^ k < n, platí f(k) = k —

Nechť M je množina s vlastnostmi a) a b), která má největší
možný počet prvků. Množina M musí obsahovat interval
<1, ň). Kdyby ho totiž neobsahovala, neměla by maximální
počet prvků, neboť M U {<1, n>) rovněž splňuje podmínky a)
a b). Označme M' = M — {<1, w)}. Rozlišíme tři případy:

1. Žádný z intervalů I e M' neobsahuje číslo n. Potom M'
splňuje obě podmínky pro n — 1 a podle indukčního před-
pokladu je |M'| 5Š n — 2, takže |M| rg n — 1.

2. Žádný z intervalů I e M' neobsahuje číslo 1. Nechť
M" — «г/ — \,v — 1>;<и, v} e M'}. Potom podle indukční-
ho předpokladu je |M"| íš n — 2, takže |Mj ^ n — 1.

3. Některý interval z M' obsahuje číslo n a některý interval
z M' obsahuje číslo 1. Nechť p je největší přirozené číslo ta-
kové, že <1, py e M', a nechť q je nejmenší přirozené číslo,
pro něž (q, w) eM'. Označme

Mj; - {/ e M'; I cz <1 ,p>
= {/eM'; / с <?, и)}.

Í5

Zřejmě q —p + 1. Počet prvků M' je roven součtu počtů
prvků a takže

;M| = IM'j + 1 = |MP| + |Mg| + 1.

Podle indukčního předpokladu je

|Mpl úKp) =p - 1
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a podobně jako v 2. případě také

|M?| йКп - q + 1) = n - q.

Je tedy
j M | <í p — 1+72 — q + 1 = n — 1.

58

Označme sf počet těch intervalů, které mají levý koncový
bod i. Je tedy

m — 5i + 52 + • • • + Sn—!•

Má-li interval I levý koncový bod i, patří i H- 1 do I. Číslo
i + 1 tedy patří jak do intervalů s levým koncovým bodem i,
tak do intervalů s levým koncovým bodem i + 1. Podle b)
odtud plyne

Si + Si+1 ^ k.

Je-li n liché, n — 2p + 1, je
1П — (íi + 52) + (53 + 54) + . . . + (52р-1 + s2p) = Pk.

Podobně pro n sudé, n — 2q, je
m = (Sl + 5з) + . . . + (52^-2 + S2$-l) + $2q ^

^ (q — l)k + k = qk.
je tedy

n

m < — k.
“ L 2

Ukážeme, že je to nejlepší horní odhad čísla m, tj. že existuje
posloupnost intervalů /1, /2, ..., Im s vlastnostmi a) i b) ta-

n

ková, že m = — k. Stačí totiž položit
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/i =...=/* = <1, 2>,
4+i = • • • = /2* = <3, 4),

2 ” w
I '|И 2 - ^2 2 /Ш(*-l) +1

Druhé řešení. Každý z intervalů /1, I>, .... Im obsahuje
sudé číslo ne větší než n. Sudých čísel nejvýše rovných n je

—

. Protože každé může být nejvýše v k intervalech, je
n

n

m < k — .
- L 2 !

Dál postupujeme jako v 1. řešení.

59

Rovina o procházející středem koule a dvěma z daných bo-
dů rozdělí kouli na dvě polokoule, uvnitř jedné z nich leží
nejvýše čtyři dané body. Rovina cr J_ Q procházející středem
koule a jedním z těchto bodů rozdělí uvedenou polokouli na
dvě čtvrtiny, přičemž uvnitř jedné z nich leží nanejvýš jeden
z daných bodů. Rozdělme tuto čtvrtinu na dvě osminy ro-
vinou t procházející průsečnicí rovin £> a a. Vnitřek aspoň
jedné z nich neobsahuje žádný z daných bodů.

Druhé řešení. Rovina q procházející středem koule
a dvěma z daných bodů rozdělí kouli na dvě polokoule, při-
čemž uvnitř jedné z nich leží nejvýše čtyři dané body. Dvěma
z nich a středem koule vechne rovinu a. Dále sestrojme roviny
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т, oj určené vždy jedním ze zbývajících dvou bodů (pokud
existují) a průsečnicí rovin o, a. Roviny a, r, oj rozdělí uva-
žovanou polokouli na nejvýše čtyři výseče, v jejichž vnitřku
neleží žádný z daných bodů. Alespoň jedna z těchto výsečí

1
má objem nejméně — .

o

60

Abychom uvedené tvrzení dokázali, stačí najít šest koulí
5

s poloměrem nejvýše — takových, že sjednocení jejich vnitřků6

obsahuje danou jednotkovou kouli. Pak bude úloha vyřešena,
neboť alespoň jedna z nalezených koulí musí ve svém vnitřku
obsahovat alespoň 13 daných bodů.

Do dané koule К vepišme krychli Q — ABCDEFGH a uva-

žujme koule K*, i e {1, 2, .. ., 6), jejichž průměry jsou stě-
nové úhlopříčky krychle Q. Každá z koulí К,- má poloměr -

5
— Ukážeme, že sjednocení všech šesti koulí obsa¬

/2
3 6

huje kouli K.
Čtyři tělesové úhlopříčky krychle Q, které se protínají ve

středu S koule K, rozkládají krychli na šest čtyřbokých jehla-
nů, jejichž podstavy tvoří stěny krychle Q a jejichž společným
vrcholem je střed S. Protože A leží v průniku všech šesti
koulí К i, každý z těchto jehlanů leží v jedné z uvedených koulí,
takže krychle Q leží celá ve sjednocení koulí K*, i e {1, ..., 6}.
Roviny proložené stěnami krychle Q oddělují z koule К ještě
šest kulových úsečí. Také každá z těchto úsečí leží v některé
kouli К*. Podstava každé z těchto úsečí má totiž střed a polo-
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měr shodný se středem a poloměrem některé z uvedených kou-
lí. Leží tedy celá koule К ve sjednocení koulí K* a aspoň
jedna z nich obsahuje nejméně 13 daných bodů,

61

Nechť AB je libovolná úsečka čáry L. Uvažujme množinu
všech bodů roviny daného čtverce, které mají od úsečky AB
vzdálenost nejvýše 1. Touto množinou je sjednocení všech
kruhů (X; 1) pro X e AB (obr. 13), a je-li d = \AB\, je její
obsah 2d + тс.

1
d

A В

Obr. 13

Pro dvě sousední úsečky KL, LM lomené čáry L je takovou
množinou sjednocení obou odpovídajících oválů, přičemž je-
jich průnik obsahuje celý kruh (L; 1). Pro obsah P sjednocení
n oválů odpovídajících jednotlivým úsečkám lomené čáry
tedy platí

(2di + тс) — (n — 1)тс = тс + 2 2 dlV tí + 2d,Рй
i=l»•= 1

kde d\, di, ..., dn jsou délky úseček tvořících čáru L, d je
délka lomené čáry L.

Vyhovuje-li čára L podmínce úlohy, pokrývají uvedené
ovály celý daný čtverec. Platí tedy

502 = 2 500 ^ P й тс + 2d,
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takže

2 500 - 7т

d ^
2 > 1248,

což jsme chtěli dokázat.

62

Pro n — 1 dokazované tvrzení zřejmě platí. Předpokládej-
me, že tvrzení platí pro n — k, a dokažme je pro n = k + 1.
Uvažujme 3/e + 3 body v rovině, z nichž žádné tři neleží
v přímce. Nejmenší konvexní množina, která je všechny obsa-
huje (tzv. konvexní obal), je mnohoúhelník AyAi...As
(s A 3), jehož všechny vrcholy patří к daným bodům.

Nejprve předpokládejme, že uvnitř trojúhelníku A1A2A3
neleží žádný z daných bodů. Uvnitř poloroviny opačné
к A1A3A2 pak leží 3k daných bodů, a ty jsou podle indukčního
předpokladu vrcholy k navzájem disjunktních trojúhelníků.
Přidáme-li к nim trojúhelník A1A2A3, dostaneme k + 1 troj-
úhelníků vyhovujících požadavkům úlohy.

Zbývá případ, kdy uvnitř trojúhelníku A1A2A3 leží nějaké
z daných bodů. Vyberme z nich bod В tak, aby úhel BA1A2
byl co nejmenší (tím je bod В jednoznačně určen). Pak uvnitř
poloroviny opačné к AiBAo leží 3k z daných bodů, a ty jsou
podle indukčního předpokladu vrcholy к navzájem disjunkt-
nich trojúhelníků. Přidáme-li к nim trojúhelník A1A2B, do-
staneme к + 1 trojúhelníků vyhovujících požadavkům úlohy.

Poznámka. Z důkazu vidíme postup, který vede к rozdělení
3n bodů na n trojic určujících n navzájem disjunktních troj-
úhelníků.
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Uvažujme libovolný čtverec, v jehož vnitřku neleží žádný
uzel sítě. Ukážeme, že délka jeho strany je nejvýše a.

Čtverec přemístíme a případně zvětšíme tak, aby jeho dvě
protilehlé strany procházely uzly sítě. Přitom budeme dbát,
aby se do vnitřku čtverce nedostal žádný uzel sítě. Uvažovaný
čtverec nejprve posuneme tak, aby se na jeho obvod dostal
uzel A dané sítě (pokud tam již neleží). Dále ho přemístíme
tak, aby uzel A zůstal na obvodu a dostal se tam další uzel
sítě B. (Pokud to není možné, znamená to, že úhlopříčka
uvažovaného čtverce je menší než a as důkazem jsme hotovi.)
Uzly А, В nemohou ležet na téže straně čtverce, to by pak
zřejmě uvnitř něho ležel uzel sítě. Neprocházejí-li dvě proti-
lehlé strany čtverce uzly sítě, leží body А, В na dvou soused-
nich stranách se společným vrcholem V. V tom případě zvět-
šujeme čtverec stejnolehlostí se středem V (uzly А, В pak
zůstávají na stranách), dokud se na třetí straně neobjeví další
uzel sítě C. Body A, C nebo В, C leží na protilehlých stra-
nách.

Zbývá dokázat, že pokud na protilehlých stranách čtverce
o straně velikosti b leží uzly sítě U, V a uvnitř něho uzly sítě
neleží, je b ^ a. Jde-li o dva sousední uzly sítě, je | UV\ = a,
a protože | UV\ ^ b, je b ^ a.

Kdyby uzly sítě U, V nebyly sousední, zřejmě by bylo
\UV\ ^ aj/3, a protože zároveň \UV\ ^ 6|/2, platilo by

1 3
b ^ a j — To by znamenalo, že čtverec o straně b obsahuje

/ 3
kruh o poloměru a / — a vnitřek čtverce obsahuje kruh o po-

8
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— в To však není možné, protože každý kruh o polo-loměru a

Уз obsahuje uzel sítě, neboť soustava kruhů o tomtoměru a

3

poloměru se středy v uzlech sítě pokrývá rovinu. Střed O libo-
Уз Узvolného kruhu o poloměru a tedy leží v kruhu ( S; a i— 1,
3 4 3 /

kde S je nějaký uzel sítě, a pak také S’ e ( O; a — \

04

Uvažujme množinu všech kruhů v rovině se středy v uzlech
sítě a poloměrem ]/5. Každý bod roviny leží aspoň ve 14 ta-
kových kruzích: Leží-li totiž bod ve čtverci s vrcholy v uzlech
А, В, C, D (obr. 14), pokrývají ho kruhy se středy v uzlech
K, L, M, N, O, P, g, i? a čtyři kruhy se středy ve vrcholech
čtverce ABCD, dále aspoň jeden z kruhů se středy U, V

щ a o Vj

Q\ D
—O <

c N

—6———<
R A В M

1c ů иObr. 14
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a aspoň jeden z kruhů se středy X, Y. Kruh A tedy obsahuje
aspoň 14 uzlů sítě.

Útvar В je sjednocením čtyř kruhů o průměru 1. Kdyby
uvnitř В ležely více než 4 uzly sítě, ležely by alespoň v jed-
nom z těchto kruhů dva uzly sítě. Ty by musely být krajními
body průměru uvažovaného kruhu, neboť jejich vzdálenost
je aspoň 1. Pak však nemohou být oba vnitřními body útvaru
B. Do kruhu A tedy patří alespoň 14 — 4 = 10 uzlů sítě,
které neleží uvnitř B.

Druhé řešení. Uvažujme vnitřek jednotkového čtverce
spolu s vnitřkem dvou sousedních stran a jejich společným
vrcholem (obr. 15). Každý takový »čtverec«, jehož strany jsou

Obr. 15

Obr. 16
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rovnoběžné s přímkami čtvercové sítě, zřejmě obsahuje právě
jeden uzel sítě. Kruh o poloměru j/5 obsahuje 12 takových
»čtverců« (obr. 16); kromě toho jeden z »troiúhelníků« ABU,
EFX (a podobně i jeden z »trojúhelníkú« CDV, GHY) obsa-
huje uzd sítě, právě když ho obsahuje »čtverec« AX'BU
(resp. CY'DV). Libovolný kruh o poloměru ]/5 tedy obsahuje
aspoň 14 uzlů sítě.

Útvar В je sjednocením čtyř otevřených kruhů o průměru 1
doplněných bodem S (obr. 17). Protože každý takový »kruh«

>4 \
/ / \\/ 1\

.

/l
_ \■ /—

\ / "XX
i

I\ \ I
/\ \ /

/>'
/

Obr. 17

může obsahovat nejvýše jeden uzel sítě (vzdálenost dvou
uzlů je alespoň 1), leží uvnitř útvaru В nejvýše 4 uzly sítě.
Tím je důkaz hotov.

65

Označme А, В, C, D průsečíky hranice daného kruhu
s přímkami, které procházejí jeho středem a svírají s přímka-
mi čtvercové sítě úhel 45° (obr. 18). Tyto body rozdělí kruž-
ničí na čtyři oblouky. Čtvercům sítě, v nichž leží některý
z bodů A, В, C, D, budeme říkat kritické. Vyznačme všechny
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Obr. 18

vodorovné strany čtverců sítě, které protínají oblouk AD nebo
ВС, a všechny svislé strany, které protínají oblouk AB nebo
CD (budeme mluvit o vyznačených stranách), ale přitom ne-
jsou stranami kritických čtverců. Ukážeme, že všechny hra-
niční uzly, které nejsou vrcholy kritických čtverců, jsou kon-
covými body vyznačených úseček: Vezměme nějaký takový
hraniční uzel, ten je podle definice koncovým bodem některé
strany čtverce protínající uvažovanou kružnici — nechť je to
např. svislá strana (pro vodorovnou stranu bychom uvažovali
analogicky). Pokud tato svislá strana protíná oblouk AB nebo
CD, je vyznačena; protíná-li oblouk AD (u oblouku BC
bychom uvažovali analogicky), je uvažovaný hraniční uzel
koncovým bodem vodorovné vyznačené strany protínající
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oblouk AD (obr. 19). To je způsobeno tím, že pro průsečík P
vodorovné a svislé přímky, jež protínají oblouk AD v bodech
U, resp. V, platí \PU\ < \PV\. Všechny hraniční uzly, které
nejsou vrcholy kritických čtverců, tedy leží na vyznačených
úsečkách. Mezi všemi koncovými body vyznačených úseček
je počet hraničních uzlů ležících vně К stejný jako počet hra-
ničních uzlů ležících uvnitř K, neboť každá vyznačená úsečka

Obr. 19 /

1//
/

45°V

\
/1

AA

\
A\

A

Obr. 20
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spojuje jeden vnitřní a jeden vnější hraniční uzel a žádné dvě
nemají společný bod. Zbývá vyšetřit kritické čtverce. Pro bod
A dostaneme osm možností znázorněných na obr. 20. Vidíme,
že v každém případě je mezi vrcholy kritických čtverců, které
neleží na vyznačených stranách, právě o jeden hraniční uzel
ležící vně К více než hraničních uzlů ležících uvnitř. Stejně je
tomu i pro body В, C, Z), jak je vidět ze symetrie. Mají-li dva
z kritických čtverců příslušných různým bodům společnou
stranu, pak mají společný právě jeden hraniční uzel uvnitř
a právě jeden hraniční uzel vnč, anebo nemají společný žádný
hraniční uzel, který by neležel na vyznačené straně (obr. 21).

.4 В

A

Obr. 21

Zároveň se nemůže stát, aby uzel sítě byl vrcholem kritického
čtverce pro každý z bodů А, В, C, D a byl přitom pokaždé
počítán jako vnitřní hraniční uzel (to by kruh К obsahoval
jediný uzel sítě), je tedy celkový počet hraničních uzlů vně К
o čtyři větší než počet hraničních uzlů uvnitř.

Druhé řešení. Vyznačme všechny strany čtverců sítě, kte-
ré protínají hranici daného kruhu (oba jejich koncové body
jsou hraniční uzly). Hraniční uzly budeme počítat takto:
Zvolíme některou vyznačenou stranu jako výchozí a budeme
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postupovat po kružnici od průsečíků s výchozí stranou třeba
ve směru otáčení hodinových ručiček. Jakmile dojdeme к prů-
sečíku s vyznačenou stranou, připočítáme jeden vnitřní a jeden
vnější hraniční uzel, pokud jsme některý z nich nepočítali
již dříve. Obejdeme-li celou kružnici, spočteme tak všechny
hraniční uzly. Setkáme se při tom se stranami vodorovnými
a svislými. Dojdeme-li ke straně, která je rovnoběžná se
stranou bezprostředně předcházející, zvětší se počet hranič-
nich uzlů uvnitř i vně К o jeden. Dojdeme-li ke straně kolmé
na stranu bezprostředně předcházející, mají obě strany jeden
hraniční uzel společný a započteme jen druhý.

Můžeme předpokládat, že např. vlevo existují aspoň dvě
vodorovné vyznačené strany (jinak by uvnitř К ležel jediný
uzel sítě). Ze dvou vyznačených stran, které leží nejvíc vlevo,
zvolme tu, která je výš. Popsaným způsobem postupujme tak
dlouho, až dojdeme ke svislé straně ležící nejvýš (k libovolné
z nich, je-li jich víc). Procházímc-li tímto »kvadrantem«, dvo-
jice sousedních na sebe kolmých stran se pravidelně střídají.
Následuje-li po vodorovné straně svislá, přibude jeden hra-
niční uzel vně, následuje-li po svislé straně vodorovná, při-
bude jeden hraniční uzel uvnitř. Prcjdeme-li celý »kvadrant«,
napočítáme o jeden hraniční uzel vně víc než uvnitř, neboť
jsme vyšli od vodorovné strany a skončili u svislé. Podobně je
tomu i u ostatních tří »kvadrantů« a skončíme pod zvolenou
vodorovnou stranou. Je tedy vidět, že vně К leží o čtyři hra-
niční uzly více než uvnitř.

Poznámka. Je zřejmé, že pokud uvnitř К leží jediný uzel
sítě, je rozdíl hraničních uzlů roven třem, a pokud uvnitř ne-
leží žádný uzel, neexistují ani žádné hraniční uzly.
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Nejdelší úsečka, kterou obdélník 2x1 obsahuje, je jeho
úhlopříčka a její velikost je ]/5 < 3. Odtud plyne, že obdélník
může mít neprázdný průnik nejvýše se čtyřmi řádky, resp.

sloupci. Bude tedy vždy ležet v nějaké části dané šachovnice se
4x4 poli. V této části je právě osm černých polí, označme je
střídavě symboly I a II (obr. 22). Žádný obdélník 2x1 ne-

Obr. 22

může současně obsahovat vnitřní body všech čtyř polí ozna-

čených stejným symbolem. Pak by totiž musel obsahovat
čtverec o straně větší než 1, což není možné. Obsahuje tedy
vnitřní body nejvýše tří černých polí označených I a nejvýše
tří černých polí označených II, tedy nejvýše šesti černých
polí.

Sestrojíme obdélník 2x1, který obsahuje vnitřní body šesti
černých polí. Jeho střed 5 bude ležet ve společném vrcholu
dvou černých polí a jeho kratší strana bude mít směr jejich
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společné úhlopříčky (obr. 23). Kružnice opsaná tomuto obdél-
niku protne hranici bílého čtverce ЪЪ ve středech А, В jeho

1/2dvou sousedních stran (obr. 24). Přitom je \AB\ = —
2

- < 1

5
> 1. Vrcholy sestrojeného obdélníku leží tedya | CD \
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na uvedené kružnici uvnitř černých čtverců аЗ, b4, cl, d2.
Obdélník samozřejmě obsahuje i vnitřní body černých polí
b2 a c3 se společným vrcholem é>.

67

Vzhledem к souměrnosti pyramidy můžeme předpokládat,
že spojnice bodů А, В prochází některým bodem C na spojnici
bodů L a K, která leží v rovině souměrnosti bodů A a В
(obr. 25 pro n = 3). Abychom našli bod C, pro který je spoj-

L

ув

A
Obr. 25

nice AC nej kratší, rozvineme příslušnou část povrchu pyra-

midy do roviny (obr. 26).
Je zřejmé, že z bodů úsečky DkEk (1 ^ k ^ n) má nej menší

vzdálenost od bodu A bod Dk. Z bodů úsečky EkDk+i má nej-
menší vzdálenost od bodu A vždy některý z jejích krajních
bodů s výjimkou případu, kdy je \AEk\ = \ADk+1| (to nastane
pro liché n — 2k — i). V tomto případě má z bodů úsečky
EkD/c+i od bodu A nej menší vzdálenost její střed F, pak je
ale |^F| > \AD]c\ (je totiž | £ ADkF\ >|* ADkDk+x\ ^ 90°).
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£3

D3

F

El
/ A>

5

\Ž1
К-ОлObr. 26 A

Zjistili jsme tedy, že hledaným bodem C je vždy některý
z bodů Dk (1 fS k 5S n).

Podle Pythagorovy věty je

\ADk\2 = (2n - kf + (2k - 2)2 =
= 5&2 - k(\n + 8) + 4w2 + 4 =

5 (» + 2)
kde я nezávisí na k. Vzdálenost \ADic\ je tedy ne k*atší, právě

2
když k je nejbližší celé číslo к číslu — (n + 2). Teta čísla udá-5

vá v závislosti na zbytku čísla n při dělení pěti tabulka

22
= 5 \k - + z,
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kn

2n + 5
2c + 1 =5c

5

2n + 3
2C + 1 g5c + 1

2n + 6
2c + 2 = —55c + 2

2n ) 4
2c + 2 = —■_

Э
5c + 3

2n + 2
2c “f- 2 —5c -)- 4

Hledaná nejkratší spojnice bodů А, В se tedy skládá z nej-
kratší spojnice bodů A, D/c a ze souměrně sdružené spojnice
bodů D/c, B. Přitom /)/- je libovolný ze dvou bodů ležících
v průniku roviny souměrnosti bodů A, B, povrchu pyramidy
a podstavy £-té vrstvy (počítáno zdola, k udává tabulka).
Nejkratší spojnici bodů A, D/c na povrchu dané pyramidy
snadno sestrojíme.

2
Poznámky. Nejbližší celé číslo к číslu — (n + 2) můžeme

také vyjádřit jako

=

2(n + 2) 1
+ —

4n + 13

5 2 J 10 J

Nalezený výsledek platí i pro n = 1.
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68

Nechť n je přirozené číslo vyhovující podmínce úlohy,
označme k počet vrcholů příslušného konvexního mnoho-
stěnu. Sečteme-li hrany v každém vrcholu, dostaneme dvoj-
násobný počet hran, tj.

2n = 4 + 3(£ - 1) = 3k + 1.

Protože 1 = 2.8 — 3.5, můžeme předchozí neurčitou rov-
ničí upravit na tvar

2(n - 8) = 3(k - 5), (1)

přičemž k ^ 5, neboť čtyřstěn zřejmě nevyhovuje podmínce
úlohy. Řešením rovnice (1) jsou všechny dvojice čísel n, k
tvaru

n — 8 + 3z, k —- 5 + 2t, t e {0, 1,2, ... }.
Ukážeme, že pro každé takové n existuje konvexní mnoho-
stěn, který má požadované vlastnosti.

Pro n — 8 (í = 0) vyhovuje např. čtyřboký jehlan. Před-
pokládejme, že jsme již sestrojili pro t ^ 0 mnohostěn
s n = 8 + 3? hranami, který splňuje podmínky úlohy. Vez-
měme jeho libovolný vrchol, z kterého vycházejí právě tři
hrany, a na každé z nich zvolme jeden vnitřní bod. Uvedené
tři body určují rovinu, která rozdělí původní mnohostěn na

trojboký jehlan a konvexní mnohostěn s 8 + 3(r + 1) hra-
námi, který zřejmě má požadované vlastnosti. Z principu ma-
tematické indukce plyne existence konvexního mnohostěnu
s danou vlastností pro každé « = 8 + 3 г, celé.

jiný příklad mnohostěnu s n = 8 + 3t hranami, který
splňuje podmínku úlohy, je na obr. 27, kde mezi hranami BC
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Obr. 27

Obr. 28

a AD je t ^ 0 hran, a na obr. 28, kde t + 3 hran spojuje
vrcholy (t + 2)-úhelníku s vrcholy (ř + 3)-úhelníku.

69

Bodem budeme vždy mínit body dané množiny. Ukážeme,
že požadovanou vlastnost má kruh, který ze všech kruhů obsa-
hujících body všech tří barev obsahuje nejmenší počet bodů.
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Takový kruh existuje (pro každou trojici bodů tří barev se-

strojme nej menší kruh, který je obsahuje, a z nich pak vyberme
ten, který obsahuje nejméně bodů). Označme ho K(). Uvažuj-
me kruh K, který obsahuje body všech tří barev a přitom od
dvou barev aspoň po dvou bodech. Sestrojíme kruh, který
obsahuje body všech tří barev a obsahuje méně bodů než K;
tím bude důkaz hotov.

Snadno sestrojíme kruh Ki, který obsahuje tytéž body jako
kruh K, přičemž alespoň dva leží na jeho hranici. (Neleží-li
na hranici kruhu К žádný bod, zmenšujme ho, dokud se na
hranici nějaký bod neobjeví. Je-li na hranici tohoto kruhu
jediný bod, zmenšujme ho dále stejnolehlostí se středem
v tomto bodě, dokud se na hranici neobjeví další bod.)

Barva alespoň jednoho z těchto dvou bodů — označme ho
A — je zastoupena v kruhu Ki ještě jednou. Snadno tedy sestro-
jíme kruh Ко, který obsahuje tytéž body jako kruh Kj kromě bo-
du A: Označme d vzdálenost středu kruhu Ki = (S;r) od nej-
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bližšího z bodů vně kruhu Ki (obr. 29). Na polopřímce opačné
r + d

к SA sestrojme bod S' tak,aby |Л5',| = —Dále označme

v největší ze vzdáleností bodu S' od bodů v kruhu Ki různých
r + d r + d

od A. Zřejmě v < —

zaručeno, že kruh K2
kruh Ki kromě bodu A.

Kruh K2 tedy obsahuje body všech tří barev a přitom o jeden
bod méně než kruh K.

X-. Zvolíme-li r £
2

— (S'; r') obsahuje tytéž body jako

, mámev, - 2

70

Nechť M je taková množina. Uvažujme libovolný bod X
roviny a nějaký rovnostranný trojúhelník ABC, uvnitř kterého
leží bod X (obr. 30). Sestrojme uvnitř každého z úhlů vrcho-
lových к úhlům trojúhelníku ABC jednotkový kruh. Pak
v každém ze tří sestrojených kruhů leží nějaký bod množiny
M. Takové body zřejmě nemohou ležet v přímce a trojúhelník



* imi určený obsahuje trojúhelník ABC, tedy i bod X. Z kon-
vexity plyne X e M. Každý bod roviny tedy leží v množině M.

Druhé řešení. Nechť M je taková množina. Protože každý
nenulový úhel v rovině obsahuje nějaký kruh o poloměru 1,
obsahuje každý nenulový úhel v rovině aspoň jeden bod
množiny M. Nechť X je libovolný bod roviny a A libovolný
bod množiny M. Můžeme předpokládat, že X Ф A. Přímka
AX rozdělí rovinu na dvě poloroviny, v jedné z nich vezměme
bod Be M a dále vezměme bod С e M uvnitř úhlu vrcholo-

Obr. 31

vého к úhlu AXB (obr. 31). Je-li Y průsečík úsečky BC
s přímkou AX, je Y e M a přitom A" leží uvnitř úsečky YA,
takže také X e M.

71

Neleží-li body А, В, C v přímce, je hledaný počet 3.
Množina M je sjednocením tří konvexních množin P, Q, R
(obr. 32), kde P je množina všech vnitřních bodů úhlu ABC
a všech vnitřních bodů úseček AB, BC; Q je množina
všech vnitřních bodů poloroviny opačné к ABC a všech
vnitřních bodů polopřímky opačné к AB; R je množina

121



Obr. 32

všech vnitřních bodů poloroviny opačné к BCA a všech
vnitřních bodů polopřímky opačné к CB.

Zbývá ukázat, že množina M nemůže být sjednocením
dvou konvexních množin S, T. Zvolme na přímce AB tři
body U, V, W (obr. 33). Pro M c S и T by jedna z množin
S, T obsahovala dva z bodů U, V, W a díky konvexitě i ně-
který z bodů А, В, C, takže M Ф S и T.

Leží-li body А, В, C v přímce, je hledaný počet 4. Mno

Obr. 33



žina M je sjednocením čtyř konvexních množin I, J, K, L
znázorněných na obr. 34. Analogicky jako v prvním případě
dokážeme, že množina M nemůže být sjednocením tří kon-
vexních množin.
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Předpokládejme, že tři tětivy dělí kruh К na sedm částí
stejného obsahu (obr. 35). Jejich průsečíky označme А, В, C

Obr. 35

tak, aby při vrcholech А, В trojúhelníku ABC byly ostré
3 4

úhly. Přímka AB dělí kruh К na dvě části s obsahy — a —.

Sestrojme kruh К/ souměrně sdružený s kruhem К podle
přímky AB. V této souměrnosti přejde bod C do bodu C.
Kdyby bod C ležel v kruhu K, byl by trojúhelník ABC'
vlastní částí jedné sedminy kruhu (zde využíváme ostrosti
úhlů při vrcholech A, B), což není možné. Bod C leží tedy
vně kruhu К, a tak bod C leží vně kruhu K'. Množina К — К'
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1
má tedy obsah větší než —, a to odporuje skutečnosti, že

6
množina К n K' má obsah —.

П1Г1
1 —0

0 2

2 1
a

2 1 0
. г

j)
0 2 1

>

ďU0 2 1

202 1

01-1

0 -1 11
a

0 -1-1 1i:
in

01 -1 1>

о 010 -1

0 -1

о-2 -1-1

-20 -1
a

0 -1-2-1г
к> -1о-2>

0о -2-1I

0 -1 -2
Obr. 36
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73

Uvažujme krychlovou síť v prostoru tvořenou navzájem
rovnoběžnými vrstvami krychlí stejné velikosti jako u da-
ných dílů. Zvolme jednu vrstvu, označme ji nulou a všechny
ostatní vrstvy očíslujme postupně celými čísly tak, aby nad
и-tou vrstvou byla (и + l)-ní vrstva. Rozmístíme-li nyní
středové krychle jednotlivých dílů v nulté vrstvě podle
obr. 36 na místa označená nulou, zůstanou nevyplněné
právě všechny dvojice sousedních krychlí na místech ozna-

čených —1 a 1. Přitom rozmístěné díly zaplní ještě místa
označená 0 v —1. a 1. vrstvě. Rozmístíme-li další díly v 1.
vrstvě tak, aby středové krychle jednotlivých dílů byly na
místech označených 1, a podobně v —1. vrstvě do míst
označených —1, bude nultá vrstva vyplněna beze zbytku.
Pokračujeme-li analogicky i v dalších vrstvách (tj. díly se

středy v и-té vrstvě posuneme např. o dvě krychle doleva
a pak je zvedneme do následující vrstvy), vidíme, že takto
vyplníme beze zbytku každou vrstvu, a tedy i celý prostor.

Poznámka. Není těžké zjistit, že po sedmi vrstvách se roz-
místění dílů v jednotlivých vrstvách začne periodicky opa-
kovat.

Druhé řešení. Uvažujme nejprve obdobnou úlohu v ro-
vině pro útvary složené z pěti čtverců (obr. 37). Již z názoru
je patrno, že těmito útvary lze vyplnit rovinu. Pokusme se

přesto o přesný důkaz tohoto tvrzení.
Uvažme kartézskou soustavu souřadnic takovou, že čtver-

ce tvořící jednotlivé díly budou jednotkové a jejich středy
budou mřížové body. Stačí si pak uvědomit (obr. 38), že
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Obr. 37



středy jednotlivých dílů budou např. všechny mřížové body
ležící na přímce s rovnicí x + 2y = 0. Podobně středy
ostatních čtverců budou ležet na přímkách x + 2у = ±1,
resp. x + 2у — ±2. Umístíme-li tedy středy jednotlivých
dílů tak, aby jejich souřadnice [x, y) byly celočíselné a le-
žely na přímkách x + 2у — 5k, kde k je celé číslo, bu-
dou středy ostatních čtverců ležet na přímkách x + 2у =
= 5k + 1, resp. x 4- 2y = 5k + 2. Přitom se žádné dva
díly nemohou překrývat a každý mřížový bod leží na ně-
které z přímek x + 2у = m pro nějaké m celé.

Právě naznačené řešení teď snadno přeneseme do prostoru:
Uvažujme kartézskou soustavu souřadnic v prostoru tako-
vou, že krychle tvořící daný díl budou jednotkové a jejich
středy budou mřížové body. Jsou-li [*$, ys, #,$] souřadnice
středu 5 daného dílu a [x, y, z] souřadnice středu libovolné
z jeho krychlí, platí

(1)\x - XsI + Iу — ys\ + \z - ^sl й 1.

Umístěme nyní středy dílů tak, aby jejich souřadnice [x,y, я]
byly celočíselné a číslo x + 2y + 3z bylo dělitelné sedmi.
Jsou-li [xi, y\, ^i] Ф [x2, У2, Z2] souřadnice středů dvou
různých dílů, je číslo (*i — x2) + 2(yi — у2) + 3(zi — Z2)
dělitelné sedmi, takže musí být, jak snadno zjistíme,
|*i — *г| + IjVi — Уъ\ + |*i — #2! ^ 3; podle (1) se tedy
žádné dva díly nepřekrývají. A naopak každý mřížový bod
se souřadnicemi [t, u, v] je pokryt některým dílem, jehož
střed bude mít souřadnice

[t, u, v],
[t ± 1, u, v],

když t + 2u + 3v
když t + 2u + 3v

0 (mod 7),
+1 (mod 7),—
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[t, и ± 1, v], když t + 2u + 3v = +2 (mod 7),
[t, u,v± 1], když t + 2u + 3v = +3 (med 7).
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Mezi úhlopříčkami daného pravidelného 1982-úhelníku
neprocházejícími bodem M najdeme takovou, od níž má
bod M nejmenší vzdálenost. Její vrcholy označme А, В
a dále označme A', B' průsečíky přímek AM, BM s kružnicí
k opsanou danému 1982-úhelníku (obr. 39). Uvnitř kratší-

Obr. 39

ho oblouku BA’ neleží žádný vrchol daného mnohoúhel-
niku, protože jinak by nebyla úhlopříčka AB bodu M nejblíže.
Ze stejných důvodů neleží žádný vrchol ani uvnitř kratšího
z oblouků AB'.

Je-li 51 střed kružnice k, platí pro dva sousední vrcholy
X, Y daného mnohoúhelníku

2т:
* XSF| - 1982 5
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takže

2tí2tí
I* ASB'\ ^|* A'SB\ ^ 1982 ‘1982’

Pro úhel AMB je tedy

i * AMB\ = тс - | * A'AB\ - | £ ABB'\ =
2tí1

--(\Z A'SB| + I* ASB'DS*-—.= TU

Druhá nerovnost | £ /1AÍF| < tz je patrna z toho, že
bod M neleží na úhlopříčce AB.
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Označme (obr. 40) a = |< *SZ?| = |< BSC\, /? —
= |* CSD\ = |* DSE\, у = |* ESF\ = | * F^|. Pro-
tože

2 a + 2/? + 2y — 2ru,
je

a + /5 + у — tu.

Obr. 40
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Pro každou polohu bodu S vzhledem к trojúhelníkům
ACE, BDF je (považujme poloměr opsané kružnice za

jednotkový)
1

S(ACE) = — (sin 2a + sin 2/i + sin 2y) —

1
— (sin (a + /5) cos (a — /5) +

+ sin (/? + y) cos (/? — y) +
+ sin (y + a) cos (y — a)),
1

S(BDF) = — (sin (a + /i) + sin (/i + y) + sin (y + a)).

Dokazovaná nerovnost S(ACE) ^ S(BDF) je tedy ekviva-
lentní nerovnosti

sin (a + /?) (1 — cos (a — /?)) +
+ sin (/i + у) (1 — cos (/i — y)) +

+ sin (y + a) (1 — cos (y — a)) ^ 0,

jejíž platnost je zřejmá, neboť
0 < a + /i < тс, 0 < /? + у < тг, 0 < у + a < те.

Rovnost nastane, právě když
cos (a — /?) = cos (/? — y) = cos (y — a) = 1,

tj. právě když a = (i — y. Rovnost tudíž nastane právě jen
pro pravidelný šestiúhelník.
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Dokazovaná rovnost je ekvivalentní rovnosti
\AoAi\ \AqAi\
\AoAo\ \AqAs\

(1)= 1.
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V pravidelném sedmiúhelníku zřejmě je (obr. 41)

\AnAi\ \AqA\\ \A()Ai\ \AqAi\
l^o^nl \АзАь\ \A0A3\ \A‘zAq\

Umístíme-li pravidelný sedmiúhelník v komplexní rovině
tak, aby jeho střed byl v počátku, vrcholu Ao příslušelo

(2)

A2I

\
\
\
\\

\ 1
Ag\ 1LT\ O \\

\\
\

AV \ \
\\
\

\
\

^6
a5Obr. 41

číslo 1 a vrcholu A\ komplexní jednotka z, budou vrcholům
A/с příslušet čísla zk, k e {0, 1, ..., 6}, přičemž z1 — 1. Pro-
tože A()Ai II А»Ав || A3A3, plyne z rovností (2)

я - 1

z2 — ze

z2 — z6 + z3 — z5

(я3 — z5) (z2 — z6)
z3 — z2 — z7 + z6 + z4 — z3 — zG + zb

Zb — £9 — Z7 + Z11

1. Platí tedy (1) a rovnost je dokázána.

Mo^ll Mo-^l|
\АоАз\ | A0A31

я - 1

*3 - zb

=0 1)

= 1

díky rovnosti z7
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Druhé řešení. Opišme pravidelnému sedmiúhelníku kruž-
nici o poloměru 1 (obr. 41), pak platí

2tc 3tc
\AqAi\ — 2 SUly, |Д)^2| —

2 sin
У , | Д)Д?| — 2 sin —.

Máme tedy dokázat, že platí rovnost

1 11
(3)+

3тс 52тсTC

sin — sin _ sin
7

neboli

2т: Зт:
sin — sin — — sin -- ( sin — + sin

7 1 .

2т: 3tcTC

4тгЗтг
Protože sin — = sin

7

chozí rovnosti podle známého vzorce

y, dostaneme na pravé straně před-

4~ Зти 7Г
= 2 sin — sin — cos —

7 7 7

2т: Зтг
= sin — sin .

7 7

2tu TCTC

sin ~ sin
7 + sin 7

Tím je rovnost (3) dokázána.

Třetí řešení. Označme x = \AqAi\, у = \AqA2\, z =
= \AoA3\, ze shodnosti jednotlivých stran a odpovídajících
si úhlopříček pravidelného sedmiúhelníku plyne, že stačí
dokázat rovnost
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1 11
+ —

Ух

neboli

xz -Ь xy — yz.

Ta plyne z Ptolemaiova vzorce pro tětivový čtyřúhelník
A1A3A4A0 (obr. 42).

A2
\
\

A
у

/ Ы

у\ 'г
дг

V

^5 \Obr. 42

Poznámka. Jsou-li a, b, c, d velikosti stran tětivového
čtyřúhelníku ABCD a e, f velikosti jeho úhlopříček, platí

ac + bd = ef

(Ptolemaiův vzorec). К jeho odvozem můžeme použít kosi-
nové věty. Z trojúhelníků ABC, ACD máme

el — a2 + b2 — 2ab cos ABC\,
e2 — c2 _j_ flz _ 2cd cos | У. CDA\ =

= c2 + d2 + 2cd cos | < ABC\.

Vyjádříme-li z obou těchto vztahů cos | £ zlBCj a porovná-
me, dostaneme

e2{ab + cd) = {ad '+ bc) {ac + bd).
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Analogicky z trojúhelníků ABD, BCD plyne

f%ad + bc) = (ab + cd) (ac + bd).

Vynásobením posledních dvou rovností dostaneme Ptole-
maiův vzorec.

Obr. 43

Jiný důkaz Ptolemaiov a vzorce dostaneme využitím podob-
nosti. Sestrojme bod P na úhlopříčce AC tak, aby | < ADP\ =
= | BDC\ (obr. 43). Pak jsou trojúhelníky DAP, DBC
a trojúhelníky CDP, BDA podobné, takže

J _/ c _f
\AP\ ~ b} \CP\~ a

Odtud plyne
ac + bd = (]AP\ + \CP\)f = ef.
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Předpokládejme, že se bod X pohybuje rovnoměrně po
hranici trojúhelníku ABC. Potom se bod Y, který spolu
s X půlí obvod trojúhelníku, pohybuje také rovnoměrně,
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a to stejnou rychlostí jako bod X. Pokud žádný z bodů X, Y
není ve vrcholu trojúhelníku, jsou oba tyto body na růz-
ných stranách trojúhelníku (podle trojúhelníkové nerovnosti),
tedy na ramenech úhlu. Uvažujme nyní (obr. 44) konvexní

Obr. 44

úhel velikosti cp s vrcholem V, na jednom jeho ramenu bo-
dy R\, Ro a na druhém 5i, So tak, že |P7?i| = |P\Si| =
= u, \VRo\ = и + v, | US2I = и — v (и ^ v ^ 0). Podle
kosinové věty je

IRžSzl2 — 2u2(l — cos (p) + 2v2(l + cos cp),
a tedy |i?2*5*21 je největší pro největší možné v ^ u, tj. pro
S2 = V. To však pro naši úlohu znamená, že největší vzdá-

b=y2 C=Y3Obr. 45
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lenost mohou mít body X, У jen v případě, že jeden z bodů
X nebo У bude ve vrcholu trojúhelníku. Porovnejme proto
tyto tři vzdálenosti (obr. 45). Je-li bod У2 ve vrcholu B, je bod
X2 na straně АС, a to ve vzdálenosti s — a od bodu C, kde

i
— (a + b + c) je poloviční obvod trojúhelníku ABC

(je totiž I У2С1 + |САг| = s). Ze stejného důvodu je pro
Y3 = C bod X3 ve vzdálenosti i - a od bodu В na straně
AB.

s —

Podle kosinové věty je

1 X‘2 У2 ]2 = a2 + (s — a)2 — 2a(s — a) cos у
a

\Хз Уз|2 = а2 + (s — а)2 — 2a(s — a) cos /5.
Zvolíme-li označení tak, aby a ^ b ^ c, je také а ^ ^ y,

tj. cos ^ ^ cos y, a proto

|X2 У2|2^ |2é3y3|2.
Porovnáme-li stejným způsobem pro У1 — A vzdálenosti

IX2 У21 a jXi Уг|, dostaneme

(1)

|^гУ1|2 ^ \X2 У2|2. (2)

Přitom v (1) nastane rovnost, právě když (í = y, a v (2)
nastane rovnost, právě když а = /5. Proto vzdálenost je vždy
největší pro dvojici X3, У3, tj. právě když je jeden z bodů
X, У ve vrcholu proti nejkratší straně.
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Označme x neznámou velikost hrany krychle a V(x)
objem rozdílu těles QuK aQnK, Tento rozdíl je složen
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z bodů, které jsou v Q, ale nejsou v К, a z bodů, které jsou
v K, ale nejsou v Q.

Je-li x > c, lze V(x) zmenšit zmenšením x, je-li x < a,
lze F(x) zmenšit zvětšením x. Stačí se tedy omezit na čísla
x e <a, c>. Budeme rozlišovat dva případy:

1. a fS x ^ b. Pak je (obr. 46) objem V(x) roven součtu
objemu a(bc — x2) vnějšího prstence a objemu x2(x — á) dvou
kvádrů, takže

V(x) = x3 — 2ax2 + abc.

X
T

X
c,a

b
JL_Obr. 46

К
x

C,
/

b °Obr. 47

2. b ^ x ^ c. Pak je (obr. 47) objem V(x) roven součtu
objemu (x2 — ab)x prstence a objemu ab(c — x) dvou kvádrů,
takže

V(x) — x3 — 2abx + abc.
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Protože derivace funkce V v intervalu (b, c) je V'(x) =
= 3x2 — 2ab > 0, může v intervalu (b, c> nastat minimum
jen pro x — b. V intervalu (a, b) je V\x) = 3x2 — 4av.

I '4
— a < b, je V'(x) < 0 pro a < x < — a, V'(x) > 0

4 4 4
pro — a < x < b a = 0 pro x — — a. Pokud — a ^ b,

je V'(x) < 0 pro a < x < b. Odtud tedy plyne, že hledaná
4 4

velikost hrany krychle je — a, je-li b > — a, nebo b, je-li

4
b < — a.

~

3

4
Pokud
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Daný trojúhelník T označme ABC tak, aby pro jeho úhly
platilo a j> /9 ^ y. Předpokládejme nejprve, že у ^ 45°
(obr. 48). Patu výšky na stranu БС označme 2- Potom pra-

Obr. 48

voúhlý rovnoramenný trojúhelník ABqCq se základnou BqCq
na přímce BC obsahuje trojúhelník ABC a má obsah |^4Q|2.
Pravoúhlý rovnoramenný trojúhelník A0BC s hlavním
vrcholem A0 v polorovině BCA je obsažen v trojúhelníku
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1
ABC a má obsah — \BC\2. Protože strana BC je nejdelší

ze stran trojúhelníku ABC, leží bod A v průniku kruhu
(.В, jPC|), (C, |PC|), takže výška АО není větší než výška
rovnostranného trojúhelníku se stranou BC, tj. \AQ\ ^

V3^ I— IBCj. Z jednotkového obsahu trojúhelníku ABC máme
2

\BC\.\AO\ 2, takže
4

\AQ\* й V3, \BC\2 ^
p

Zbývá případ у < 45° (obr. 49). Potom pravoúhlý troj-
úhelník АВоС s pravým úhlem při vrcholu das vrcholem Во

Obr. 49

na přímce BC obsahuje trojúhelník ABC a pro jeho obsah S
platí

|£oC||£0C|
5 ~

|BC| -

1

1/2 < V3.<
\AC\ cos у

Pravoúhlý trojúhelník BCR, kde R je pata výšky trojúhelníku
ABC na stranu AC, je obsažen v trojúhelníku ABC a pro

jeho obsah P platí
У 2 уз\RC\ |PC|

=

\bc\ =cos y > T
P =

3 '\AC\
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Druhé řešení. Daný trojúhelník T označme ABC tak,
aby pro velikosti jeho stran platilo a ^ b ^ c (obr. 50).
Dále označme S střed strany ВС, |Л5| — t, | <£ = co.

Protože trojúhelník ABC je ostroúhlý, je 2t > a. Pravoúhlý
trojúhelník ABoCo s vrcholy Во, Co na přímce BC, pro něž
| SBq\ = |5Co| = t, tedy obsahuje trojúhelník ABC. Troj-
úhelník ABC má obsah

atat
1 = — (sin co + sin (ti — co)) — — sin co

a trojúhelník ABoCo má obsah
ť-
— (sin co + sin (тс — co)) = ř2sin co.p =

Odtud dostaneme

21
(OP =

a

Z kosinové věty vypočteme velikost těžnice
1

t = - \2(b* + c2) _ a2 s
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takže podle (1) je

b2 c2

a2
-1 š уз,P = 4?

b c

neboť ^ 1, ^ 1.
a a

Pravoúhlý trojúhelník AqBC, kde A0B || AB0, A()C || ACo,
je obsažen v trojúhelníku ABC a přitom jsou trojúhelníky

2t
A()BC, ABqCq podobné s koeficientem —

a

A()BC má tedy obsah

P. Trojúhelník

P1 1
. P =

P ~ 3 'p2
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Nejprve se budeme zabývat netupoúhlým trojúhelníkem
a ukážeme, že m(X) je největší a M(X) nej menší, právě když
X je střed 5 kružnice opsané.

Dejme tomu, že pro bod X Ф S trojúhelníku ABC je
M{X) й лад
a bod X tedy leží v každém z kruhů (A, r), (P, r), (C, r).
Na hranici každého z nich leží bod S, a proto je j < XSA\ <

Pak je \AX\ ^ r, \BX\ ^ r, \CX\ ^ rr.

7Z

< —, | £ XSB\ < —, | «£ XSC\ < —. Tyto tři úhly mají

společné rameno XS, takže jejich sjednocení je úhel s vrcho-
lem «S menší než тг, který obsahuje body А, В, C. To však
odporuje tomu, že netupoúhlý trojúhelník obsahuje střed
kružnice opsané.
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Dejme tomu, že pro bod X trojúhelníku ABC je m(X) A
^ m(S) = r. Pak je \AX\ ^ r, \BX\ ^ r, \CX\ ^ r a bod X
neleží uvnitř žádného z kruhů (A, г), (В, r), (C, r). Tuto
vlastnost má jediný bod trojúhelníku ABC, a to bod A.
Kolmice spuštěné z bodu 5 na strany spolu s úsečkami SA,
SB, SC rozdělí totiž trojúhelník ABC na pravoúhlé troj-
úhelníky s přeponami SA, SB, SC, přičemž každý z nich
leží až na bod S uvnitř některého z uvedených kruhů. Je
tedy X = S.

Dále uvažujme tupcúhlý trojúhelník ABC s nejdelší stra-
nou AB a označme P její střed a p její osu. Zřejmě M{P) =
= \AP\ = |БР|. Zvolme bod X trojúhelníku ABC ležící
v polorovině pA, X Ф P (obr. 51), a označme Xq společný

Obr. 5l

bod úsečky ВХ s osou p. Pak \BX\ ^ \BXq\ > \BP\ pro
ф P, \BX\ > \BXo\ = |5P| pro X0 = P, takže M(X) >

> M(P). Stejně postupujeme pro body poloroviny pB.
Vidíme, že M(X) nabývá minima, právě když A" je střed
nejdelší strany.

Zbývá vyšetřit maximum funkce m v tupoúhlém trojúhel-
niku ABC. Zvolme označení tak, aby \AB\ ^ \BC\ ^ \AC\
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a označme O společný bod strany AB s osou strany BC.
Z tupoúhlosti trojúhelníku ABC vyplývá (obr. 52), že
\OA\ > |OB\, takže m(O) — \OB\ — \OC\. Pro všechny bo-
dy X Ф O trojúhelníku OBC je bud \BX\ < \BO\, nebo
\CX\ < \CO\, a tedy m(X) < m(0). Na přímce AB sestrojme
dále bod О' Ф O tak, aby jCOj = |CO'| (obr. 53). Pro

Obr. 52

všechny body X Ф O, O' trojúhelníku COO' je zřejmě
\CX\ < |CO|, a tedy m(X) < m(0). Leží-li bod O' uvnitř
strany AB, je \AO'\ rg |0'C|, neboť předpokládáme \AC\ ^
^ \BC\. Pro všechny body X Ф O' trojúhelníku AO'C je
bud \AX\ < \AO'\, nebo \CX\ < \CO'\, tedy m(X) < m(0').
Přitom ш(О') ^ m(0) s rovností, právě když \AO'\ — \BO\,
tj. právě když \AC\ = \BC\. V tupoúhlém trojúhelníku je
tedy m(X) největší, právě když X je průsečík nejdelší strany
s osou druhé nejdelší strany. (V rovnoramenném tupoúhlém
trojúhelníku existují takové body dva.)

Poznámka. Všimněte si, že jsme vlastně našli minimum
funkce M v rovině, nejen v trojúhelníku. Maximum funkce m
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v rovině neexistuje: ke každému číslu c můžeme najít bod X,
pro který je m(X) > c.

81

Součin \AB\.\BC\.\CD\.\DA\ odhadneme pomocí nerov-
nosti

(a + bf
(1)ab

4

přičemž použijeme Ptolemaiův vzorec

\AB\.\CD\ + \BC\.\AD\ = \AC\.\BD\,

který platí pro libovolný tětivový čtyřúhelník ABCD (viz
poznámka к řešení úlohy 76). Dostaneme tak
4 ^ \AB\.\BC\.\CD\.\DA\ й

(|AB\.\CD\ + |i?C|.\AD\)2 \AC\2.\BD\*
й 4,

4 4

neboť AC, BD jsou tětivy kružnice o poloměru 1. Nastává
zde tedy rovnost, a proto \AC\ =2, \BD\ = 2. Rovnost
bude i v (1), takže \AB\. \CD\ = \BC\.\AD\ = 2. Tětivy
AC, BD jsou tedy průměry kružnice, a proto \AB\ — |CD\ =

= | 2, \BC\ = \AD\ = ] 2, tj. ABCD je čtverec.

Druhé řešení. Využijeme následujícího principu: Mějme
dánu kružnici a na ní tři navzájem různé body X, Y, Z.
Pohybuje-li se bod Z' po oblouku XZY, je součin \XZ'\. ] YZ'\
největší, právě když \XZ'\ — | YZ'\. Právě tehdy má totiž

1
trojúhehiík XYZ' největší obsah, který je roven — \XZ'\.

144



.! YZ'\ sin | £ XZ' YI, a obvodový úhel XZ' Y má při pohybu
bodu Z' konstantní velikost.

Uvažujme nyní čtyřúhelník ABCD vepsaný do kružnice k
o poloměru 1. Sestrojme nejprve čtyřúhelník AB'CD’
vepsaný do kružnice k tak, aby \AB'\ = \CB'\i\AD'\ = \CD'\.
Podle zmíněného principu je

{\AB\.\BC\){\CD\.\DA\) ^ (! AB'\. \B'C\\\CD'\.\D'A\),
a pokud В' Ф В nebo D' Ф D, platí ostrá nerovnost. Dále
sestrojme čtyřúhelník A'B'C'D' vepsaný do kružnice k tak,
aby \B'A'\ = \D'A'\, \B'C'\ = \D'C'\. Ted je

(\D'A\.\AB'\)(\B'C\. |CD'\) ^ (\D'A'\. \A'B'\X\B'C'\ .\CD'\),
a pokud А' Ф A nebo С ф C, platí ostrá nerovnost. Záro-
veň je zřejmé, že A'B'C'D'je čtverec o straně j/2. Platí tedy
pro daný čtyřúhelník ABCD

\AB\.\BC\.\CD\.\DA\ ^ \A'B'\.\B'C'\.\C'D'\.\D'A'\ -4
s rovností, právě když ABCD je čtverec. Odtud plyne tvrzení
úlohy.
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Rozbor. Předpokládejme, že trojúhelník ABC je řešením
úlohy, a doplňme jej na rovnoběžník ABEC. Z bodu A vedme
kolmici na přímku BE a její patu označme P. Zřejmě je
\AE\ = 2ta, \AP\ — vb, takže \AE\ : \AP\ =2:1, je tedy
I#: AEP\ — 30°. Úhel AEB není pravý, to by bylo \AP\ =
= \AE\. Je-li AEB ostrý (obr. 54), leží bod P na polo-
přímce ЕВ a | * AEB\ = | ^ AEP\ = 30°. Je-И ^ AEB
tupý (obr. 55), leží bod P na polopřímce opačné к polo-
přímce ЕВ a |* AEB\ = 180° - |* AEP\ = 150°.
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Obr. 55

Konstrukce. Známou konstrukcí sestrojíme množinu M
všech bodů, z nichž je úsečka AB vidět pod úhlem 30° nebo
150°. (Jsou to dvě kružnice se společnou tětivou AB s vý-
jímkou bodů A, B.) Je-li E společný bod množiny M a přím-
ky p a 5 střed úsečky AE, protnou se přímky ВS, p v hledá-
něm bodě C.

Zkouška. Označme P patu kolmice vedené z bodu A na

přímku BE. Je-И [ £ AEB\ = 30° (obr. 54), je | £ AEP\ =
= I* AEB\ = 30°. Je-li I* AEB\ = 150° (obr. 55), je
I* AEP\ = 180° - I* AEB\ = 30°. V trojúhelníku AEP
je tedy \AE\ : \AP\ = 2 : 1 a v trojúhelníku ABC je ta = Vb-

Diskuse. Body С, E si vzájemně jednoznačně odpovídají,
a proto se počet řešení úlohy shoduje s počtem společných
bodů množiny M a přímky/). Označme K, L průsečíky osy úseč-
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ky AB s množinou M ležící v té polorovině ohraničené přím-
kou AB, která obsahuje přímku/) (obr. 56), a nechť vzdálenost
přímek p, AB je d > 0 a \AB\ = c 0. Vzdálenost bodu К

Obr. 56

c —

— (2 + ]/3), vzdálenost bodu L

— (2 — y3). Pro počet řešení

c

od přímky АВ je —tg 75° =

od přímky AB je tg 15°

tedy dostáváme, že

c

— (2 + }'3) úloha nemá řešení,

pro d — — (2 + y3) má úloha 1 řešení,

pro — (2 — y3) < d < — (2 + уз) má 2 řešení,

pro cť >

-
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— (2 — уз ) má 3 řešení,

с —

pro 0 < d < — (2 — 1/3 ) má 4 řešení.

pro <i =

83

Uvažujme čtyřúhelník ABCD, který vyhovuje podmiň-
kám úlohy a jehož úhlopříčka BD je průměrem daného
kruhu K. Střed kruhu К označme S’ a jeho poloměr r. Podle

Obr. 57

trojúhelníkové nerovnosti je (obr. 57)

|^S| < |AC\ + \BS\ ^ 2r + r = 3r.
Vrchol A každého takového čtyřúhelníku ABCD tedy leží
uvnitř kruhu (S, 3r). Ukážeme, jak ke každému bodu A,
pro nějž |^4S| < 3r, najdeme konvexní čtyřúhelník ABCD
splňující požadavky úlohy.

2. Je-liPro A = S stačí vzít čtverec ABCD o straně
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А Ф S, má kruh (A, 2r) s kruhem К společný takový bod P,
který je vnitřním bodem obou kruhů a neleží na přímce AS.
Označíme-li B, D průsečíky přímky PS s hranicí kruhu К
a C bod na polopřímce AP takový, že \AC\ = 2r, bude
čtyřúhelník ABCD splňovat podmínky úlohy.

84

Nechť body A', B' leží na kružnici k, \A'B’\ = v. Označme
2a velikost dutého úhlu ASB а 2/9 velikost dutého úhlu

TU

A'SB' (/9 je určeno velikostí v). Je tedy 0 < a < /9 ^ —,

v — 2r sin (3.
Budeme rozlišovat dvě možnosti pro vzájemnou polohu

bodů А, В, А', В
a) tětivy AB, A'B' se neprotínají,
b) tětivy AB, A'B' se protínají ve vnitřním bodě.
V případě a) je čtyřúhelník ABB'A' konvexní, jinak by

průsečík přímek AA', BB\tj. bod X) neležel vně kružnice k.
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Protože v > \AB\, leží body A', B' v polorovině ABS, je tedy
I* AA'B\
(obr. 58), je \-%.A'BB'\ = /3, takže | £ AXB\ = (3 — cl;
neleží-li střed S v čtyřúhelníku ABB’A' (obr. 59), je
\*A’BB’\ = тс - 0, takže | £ AXB\ = тс - a - /5.

Leží-li střed 5 ve čtyřúhelníku ABB'A'= CL.

B'к

ВSo /"-PL
/

/

/
/

it-а-Вa
X



V případě b) označme CD tětivu délky v, která protíná
AB ve vnitřním bodě. Určíme množinu všech průsečíků Xi
přímek AD, ВС a průsečíků X2 přímek AC, BD (obr. 60),
protože každý z nich můžeme dostat jako průsečík přímek
AA', BB' podle toho, zda C = A', D = B' nebo C = B',
D = A'. Protože vzájemná výměna bodů А, В nemá vliv
na průsečíky X\, X2, můžeme předpokládat, že střed 61
leží např. v polorovině CDA. Pak bude | * ADB\ = a,

I * CAD\ =0,|* CBD\ =7т - 0, takže | * AXxB\ = 0 - a,

I * AX2B\ = 7Г - a - 0.
Vidíme tedy, že hledané body X leží v obou případech

v polorovině opačné к ABS na obloucích h a h (obr. 61),
ze kterých je úsečku AB vidět pod úhlem 0 — a, resp. pod

Obr. 61
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—

úhlem tv — a. — ft. (Je-li ft = —, рак ovšem ft — a =

a - ft.)= TV

Označme Гг, T2, T%, Т\ průsečíky tečen t\, 12 kružnice k
v bodech А, В s oblouky ft, ft (obr. 61). Ukážeme, že hledá-
nou množinou bodů X je množina

M = h и h — {Ti, T‘>, T3, Ti}.
Leží-li bod X na některém z oblouků l\, ft a přitom neleží
na žádné z tečen t\, 12, protnou přímky ХА, XB kružnici k
ještě v dalším bodě A', resp. B'. Je-li T průsečík tečen t\, tz,
je IATBI — tv — 2a, a protože тг — 2а>тг — a — ft
^ ft — a, leží bod T uvnitř kružnic oblouků /1, /2. Oblouky
/1, /2 jsou tedy body Г1, Г2, Г3, T4 rozděleny na šest částí.
Pro každou z nich dostaneme jednu ze situací znázorně-
ných na obr. 58 — 60. Protože v každém případě | £ AXB\ —

= ft — cl nebo tv — а — ft, bude | A'BB'\ = ft nebo
tv — ft, a tedy = 2r sin ft — v.

(0
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Uvažujme libovolný rovnostranný trojúhelník PQR s vrcho-
ly na stranách daného čtverce ABCD. Protože dva vrcholy
trojúhelníku PQR nemohou zřejmě ležet na téže straně
daného čtverce, můžeme předpokládat, že je např. P e AD,
Q e BC, R e CD. (Pro ostatní možnosti využijeme souměr-
nosti.) Označme střed daného čtverce 5" a předpokládejme,
že \AB\ = 1. Hledaná množina M bude souměrná podle
osy R0S strany CD (obr. 62), budeme proto předpokládat,
že je R e RqC. Označme O' patu kolmice spuštěné z bodu Q
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*0, RD С

na stranu AD. Střed V strany PQ zřejmě leží na přímce
R()S a pravoúhlé trojúhelníky PQ'Q a jsou podobné.
Je tedy

\PQ\ \RV\ ]/3 \PQ\
Q'Q = \R0V I = T|Roť\3

takže

1/3
\RoV\ 2 '

Odtud plyne, že vzdálenost těžiště T trojúhelníku PQR od
132

strany CD je — jК| = .
o j

Za uvedených předpokladů vyplní tedy těžiště uvažova-
ných rovnostranných trojúhelníků úsečku TqTi, jejíž vzdá-

Уз
lenost od strany CD je (obr. 63), přičemž bod Ti ležící

na úhlopříčce BD je těžištěm rovnostranného trojúhelníku
PiQiRi, kde Qi = В a P\R\ JL BD. Vzhledem к souměr-
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D Я С

Ri

/4 B-Q,Obr. 63 I

nosti množiny M a její invarianci vůči pravoúhlému otočení
kolem středu čtverce je M obvod čtverce, který dostaneme
ze čtverce ABCD stejnolehlostí se středem S a koeficientem

1

7(21/3 - 3).k =

86

Označme č> střed půlkružnice k, P střed úsečky AC,
Q střed úsečky BC (obr. 64). Body P, S, O, C jsou vrcholy
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obdélníku. Je-li X — A a bod Y probíhá oblouk CB, střed Z
úsečky XY probíhá oblouk PS kružnice nad průměrem AS.
Je-li Y — В a bod X probíhá oblouk AC, střed Z probíhá
oblouk SQ kružnice nad průměrem SB. Je-li X = C a bod Y
probíhá oblouk CB, střed Z probíhá oblouk CQ kružnice
nad průměrem PQ. Je-li Y = C a bod X probíhá oblouk AC,
střed Z probíhá oblouk PC kružnice nad průměrem PQ.
Tyto čtyři oblouky mají stejný poloměr r a vymezují v ro-
vině oblast, která je hledanou množinou M. Zvolíme-li totiž
bod Y na oblouku CB a necháme bod X probíhat oblouk AC,
střed Z proběhne oblouk P'Q' stejnolehlý s obloukem AC

1
ve stejnolehlosti se středem Y a koeficientem , přičemž P'

leží na oblouku PS a O' na oblouku CQ. Je tedy poloměr
oblouku P'Q' roven r, a probíhá-li bod Y oblouk CB, pří-
slušné oblouky P'Q' probíhají právě uvedenou oblast.

Obsah množiny M je zřejmě roven obsahu obdélníku
PSQC, tj. polovině obsahu trojúhelníku ABC.
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Podmínka je zřejmě ekvivalentní s podmínkou, aby průnik
C n Cx měl obsah alespoň 0,5.

V rovině q zavedme kartézskou soustavu souřadnic tak,
aby čtverec C měl střed v počátku a strany rovnoběžné
s osami souřadnic. Uvažujme čtverec C', který má strany
rovnoběžné s osami souřadnic a střed v bodě [x, у] — pro

jednoduchost se omezíme na body [x, y] v I. kvadrantu. Pak
je С n С' Ф 0, právě když x ^ 1, 5^ 1, a CnC je pak
obdélník s obsahem (1 — x)(l — у). V I. kvadrantu je tedy
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množinou všech středů [x, у] čtverců C, pro něž má CnC
obsah alespoň 0,5, průnik I. kvadrantu s vnitřní oblastí
rovnoosé hyperboly

(1 - *)(1 - y) = 0,5

^má střed [1, 1], asymptoty л: 1 a vrcholУ

1/2
_ 12

2 5 2

body množiny M všech středů takovýchto čtverců na zá-
kládě souměrnosti podle souřadnicových os (obr. 65).

Naším úkolem tedy je najít množinu všech středů X
otočení o 90° zobrazujících počátek O do bodů právě popsa-
né množiny M. К tomu si stačí uvědomit (obr. 66), že zobra-

. V ostatních kvadrantech dostaneme1 -

У

2

\v* \
\

L \
\
\
iObr. 65

Obr. 66
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zí-li otočení o 90° kolem středu X bod O na bod B, pak
zobrazení Z sležené ze stejnolehlosti se středem O a koefi-

P
— a z otočení kolem bodu O o 45° zobrazí bad Z?
2

do bodu X. Hledaná množina ie tedy obrazem množiny M
v zobrazení Z (obr. 67).

cientem

Obr. 67
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Mějme v prostoru čtyři navzájem různé body P, Q, P', Q'
tak, že \PQ\ — \FQ'\. Nejsou-li úsečky PQ, P'Q' souhlasně
rovnoběžné, existuje jediné otočení kolem osy, které zobrazí
P na P' a Q na O' (osou tohoto otočení je průsečnice rovin
souměrnosti úseček PP', QQ'). Jsou-li úsečky PQ, P'Q'
souhlasně rovnoběžné, pak v případě P'P J_ PQ existuje
nekonečně mnoho takových otočení (podle libovolné osy
rovnoběžné s PQ a ležící v rovině souměrnosti PF), jinak
žádné takové otočení neexistuje.

Zobrazí-li otočení bod A na bod В a bod C na bod X,
bude \AC\ — \BX\, takže bod X bude ležet na kulové ploše
(B, \ AC\). Obráceně, je-li X bod této kulové plochy, X Ф M,
kde ABMC je rovnoběžník, existuje otočení kolem osy, které
zobrazí А na В а С na X. Pro X = M žádné takové otočení

neexistuje. Množinou všech obrazů bodu C v otočeních kolem
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osy, která zobrazují A na B, je tedy (В, \AC\) — {M}. Hle-
danou množinou je pak její průnik s povrchem dané krychle,
což je sjednocení tří čtvrtkružnic s poloměrem \AB\ a se

středy А, В', C (obr. 68).

CD'

/
/Á B'\ i /

\ /

М/
v

Md\ c

/
/

/

вA

Obr. 68

Druhé řešení. Využijeme toho, že každé otočení kolem
osy v prostoru dostaneme jako složení dvou souměrností
podle rovin protínajících se v uvedené ose. Osa každého oto-
cení, které zobrazí bod A na bod B, leží v rovině souměrnosti
q úsečky AB (obr. 69). Každé takové otočení tedy dostaneme
složením souměrnosti К podle roviny q a souměrnosti S
podle určité roviny o různoběžné s o a obsahující bod B.

Souměrnost R zobrazí bod C na bod D. Pro každou rovinu

а Ф BOB' obsahující bod В pata kolmice spuštěné z bodu D
na rovinu a leží na kulové ploše x sestrojené nad průměrem
BD (podle Thaletovy věty). Dostaneme tak všechny body
kulové plochy x kromě bodu C, který odpovídá rovině BCB'.
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Obr. 69

Obraz boctu D v souměrnosti S podle uvažované roviny a

pak bude ležet na kulové ploše která je obrazem kulové
plochy x ve stejnolehlosti se středem D a koeficientem 2.
Obrazy bodu C ve všech uvažovaných otočeních tedy vyplní
kulovou plochu x! — (Bs \BDj) vyjma bodu M souměrně
sdruženého s bodem D podle středu C. Kulová plocha x

protne povrch dané krychle ve třech čtvrtkružnicích k\, kz, k-z
(obr. 69) se středy B\ A, C a poloměrem \AB\. Hledanou
množinou je tedy k\ u ^2 u kz.
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Nechť XYZTX'Y'Z’T’ je kvádr požadovaných vlastností.
Rovina X'Y'Z' horní podstavy kvádru rovnoběžná s rovinou
ABC protne čtyřstěn ABCD v trojúhelníku A'B'C (obr. 70).
Přitom je X'Y' a A'B\ Z' e B'C, T e CA'. Naopak každý
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Obr. 70

takový kvádr XYZTX'Y'Z'T' dostaneme tak, že libovolným
vnitřním bodem A' hrany AD vedeme rovinu a || ABC,
která protne čtyřstěn ABCD v trojúhelníku A'B'C, a v rovi-
ně a vedeme libovolnou přímku v || A'B' tak, aby protla
strany В'С a C'A' ve vnitřních bodech Z', resp. T'. Na straně
A'B' pak určíme body X', T tak, aby X'Y'ZT byl obdélník.
Zřejmě každému takovému obdélníku odpovídá právě jeden
kvádr XYZTX'Y'Z'T' splňující podmínky úlohy.



Označme U' střed strany Z'T' (obr. 71). Střed S' obdélníku
X'Y'Z'T' půli kolmici z bodu U' na stranu A'B’, dostaneme
ho tedy z bodu U' afinním zobrazením s osou AB' a koefi-

1
cientem

^ . Množinou všech bodů U' je zřejmě vnitřek těžnice
C'C0 v trojúhelníku AB'C, takže množinou středů všech
obdélníků X'Y'Z'T' v rovině AB'C' je její obraz v uvedeném
afinním zobrazení, tj. vnitřek úsečky D'C0, kde D' je střed
výšky trojúhelníku AB’C z vrcholu C.

Množinou středů S' horních podstav všech kvádrů
XYZTX'Y'Z'T' požadovaných vlastností pak bude vnitřek
trojúhelníku CoA)D (obr. 72), kde Co je střed strany AB a Do
střed výšky trojúhelníku ABC z vrcholu C. Průsečík S těle-

Obr. 72

sových úhlopříček příslušného kvádru a střed S' jeho horní
podstavy si vzájemně jednoznačně odpovídají (S půlí kolmici
z bodu S' na podstavu ABC). Hledanou množinou průsečíků
tělesových úhlopříček všech uvažovaných kvádrů je tedy obraz
trojúhelníku CqDoD v afinním zobrazení s rovinou afinity
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1
ABC a koeficientem — , tj. vnitřek trojúhelníku C^DoDi (obr.

73), kde D\ je střed výšky čtyřstěnu ABCD z vrcholu D.

Obr. 73

Poznámka. Afinním zobrazením obecně rozumíme každé
zobrazení roviny (prostoru), ve kterém je obrazem přímky
(roviny) přímka (rovina). Kromě shodných a podobných
zobrazení má tuto vlastnost i následující zobrazení.

V rovině uvažujme dvě různoběžné přímky p, q a reálné
číslo k. Bodem X roviny vedme přímku q || q a její průsečík



s osou p označme Xq. Bodu X přiřadíme bod X' e q ležící
v téže polorovině, pokud k > 0, nebo v polorovině opačné,
pokud k < 0, a takový, že \XqX'\ = k\XQX\. Jsou-li X', Y'
obrazy bodů X, Y v uvedeném afinním zobrazení, protínají
se přímky XY, X'Y' na oscp (obr. 74), anebo je XY || X'Y' ||
|| p. Analogicky definujeme v prostoru afinní zobrazení určené
rovinou q, směrem přímky q různoběžné s p a koeficientem k.

S0

Každá koule к souměrně sdružená podle roviny procházející
bodem E s koulí, která má střed S na hraně AE a poloměr
|&4|, se zřejmě zevnitř dotýká koule (E, \EA\) (obr. 75). Je-li

a

к obsažena také v kouli r, je průměr koule к nejvýše a + у —
— |2Ю| (obr. 76) a v tomto případě střed S' koule к leží na

přímce EO. Úloze vyhovuje jediný bod 5 e AE, |zí5| =

Obr. 75
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За I ЕО\
о— = (7 (3 — ] 6)э a jediná rovina о-, která je rovi-

nou souměrnosti polopřímek EA, EO.
4

a_
2

Obr. 76

91

Nejprve předpokládejme, že některé tři stěny mají pravé
úhly při společném vrcholu (obr. 77). Pro délky hran takové-
ho čtyřstěnu pak platí
г2 + f2 = b2 + c2 + a2 + c2 = ď- + Ь2 + 2c2 - d2 + 2c2 > d2,
takže hrany e, f svírají ostrý úhel. Analogicky zjistíme, že

Obr. 77
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i hrany d, e a d,f svírají ostré úhly. V čtyřstěnech tohoto typu
je tedy čtvrtá stěna ostroúhlý trojúhelník.

Dále předpokládejme, že některé tři stěny mají pravé úhly
při třech různých vrcholech (obr. 78). Pro délky jeho hran
pak platí

e2 + eP = b2 - c- + a- - b2 = a2 - c2 < a2 + c2 =/2.
Čtvrtá stěna je tedy tupoúhlý trojúhelník.

G

ve
f

0/

dObr. 78

Zjistili jsme, že podmínkám úlohy mohou vyhovovat jen ty
čtyřstěny, v jejichž dvou vrcholech svírají hrany po dvou
pravých úhlech. Předpokládejme, že takový čtyřstěn ABCD

cA x
Obr. 79
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vyhovuje daným podmínkám, nechť pravé úhly jsou při
vrcholech C, D (obr. 79), pak je \AB\ = 1. Označme \AC\ =
— x, |BC\ — y. Trojúhelníky ABC, ABD (nebo BAD) jsou
podobné a mají společnou přeponu, jsou tedy shodné. Protože
\BD\ > |BC|, je Д ABC ~ Д BAD, \ AD\ = y, \BD\ = x.
Označíme-li velikost zbývající hrany z — | CD[, bude 1 > x >
> у > z. Trojúhelníky ABD a ADC mají totiž přepony
\AB\ = \ > \ AC\ = x a. odvěsny x, y, resp. y, z. Z toho
plyne, že je bud

(1)1 : x :y — x :y : z,
nebo

1 : x :y = x : z :y.

Druhý případ však zřejmě nemůže nastat. Z poměru (1)
máme j; = x2, z = x2. Podle Pythagorovy věty je

x2 + y2 — x2 + x4 = 1
a odtud

1/5-1
2 5 ^

Úloze vyhovuje jediný čtyřstěn ABCD s hranami \AB\ = 1,
\AC\ = |BD\ = v, \AD\ = \BC\ =y, |C7Z>| - 0.

3 - 1/5

2~’ г2 = l'5X2 = - 2.

92

Těžnice čtyřstěnu je spojnice vrcholu s těžištěm protilehlé
stěny; víme, že těžiště čtyřstěnu dělí těžnici v poměru 3:1.

Nechť Ti, T-z, T-s, Г4 jsou těžiště stěn BCD, ACD, ABD,
ABC. Každý bod G,, i e {1, 2, 3, 4}, dělí příslušnou úsečku
KTi v poměru 3 : 1, je tedy čtyřstěn G1G2G3G4 stejnolehlý
s čtyřstěnem T1T2T3T4 podle středu К s koeficientem stej-
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о

nolehlosti —. Protože koeficient stejnolehlosti na volbě bodu К

nezávisí a protože stejnolehlost s koeficientem k mění objem
tělesa j£|3-krát, je tvrzení dokázáno. Navíc je zřejmě čtyřstěn

1
TiT2T1T1 stejnolehlý s čtyřstěnem ABCD s koeficientem — —

a středem v těžišti čtyřstěnu ABCD. Objem čtyřstěnu
/1 \y 3 \3 1

G1G2G3G4 je tedy í — J í —
= ~ objemu čtyřstěnu ABCD.64

Druhé řešení. Umístěme čtyřstěn ABCD do kartézské
soustavy souřadnic. Označme gř vektor OG;, i e {1,2, 3, 4),
a položme a = OA, b = OB, c — OC, d = OD, к =
= OK. Pak platí

к + b + c + d к + a + c + d
gi = '5 g^ —4 4

к -f 3 -f b -f- d к + a + b + c

g3 = 3 g4 =4 4

1
Čtyřstěn G1G2G3G4 má hrany gi — g> = — (b4 a) =

1 1 1
=

у AB> gi - ga = J (c - a) = - AC, gl
■ I d

gi

1 1 1

4 AD’g- - 8» = 7 (c - b) =J BC,
1 1

- (d - b) = - ED, g3 - g4 = — (d - c) =

i

g2 — g4 =

1
= - CD

4
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Velikosti hran čtyřstěnu G1G2G3G4 tedy nezávisí na volbě bo¬
1

du К a jeho objem bude — objemu daného čtyřstěnu.

93

a) Průsečík přímky AM s hranou BC označme X (obr. 80),
čtyřstěny MBCD a ABCD mají stejnou podstavu BCD, pro

jejich objemy proto platí

V(MBCD) \MX\
V(ABCD) \AX\

Obr. 80

protože trojúhelníky MA\X a ADX jsou podobné. Podobně je

V(MABD) \MCi\ V(MACD) \MBi\
V(ABCD) = 1CĎT’ V(ABCD) = \BD\ ’
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takže

\MAx\ \MBi\ \MCi\
. ~\AD\ + \BD\ + \CD\ =

V(MBCD) + V(MACD) + V(MABD)
(1)= 1.

V(ABCD)

b) Využijeme rovností

| * AiMCi\ = | * ADCI, | * AxMBíl = | * ADB|,
| * JBiAíCil = | * BDC\

a sestrojíme čtyřstěn DAxB'xC[ shodný s čtyřstěnem
AiBiCiM (obr. 81). Jeho objem je

1
F(ZL4Í£ÍCÍ) = — |ZMÍ |.|Z)BÍ| sin | * ^ZXBÍ |. v =6

1
= — |AL4i|.|AíJ3i| sin \^ADB\.\MCi\

6 |DC|3

Obr. 81
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zatímco

1
V(ABCD) = — \DA\.\DB\ sin |* ADB\.v.6

Je tedy
V{A\B\C\M) \MAx\.\MBx\.\MCi\
V(ABCD)

c) Objem čtyřstěnu A\B\C\M bude největší, bude-li nej-
větší podíl (2). Z rovnosti (1) a z nerovnosti mezi aritmetickým
a geometrickým průměrem plyne

\MAX\ \MBx\ |MCi|
^ 1

\DA\ \DB\ \DC\ = 27 5

(2)\DA\.\DB\.\DC\

přičemž rovnost nastane, právě když

\MAi\ \MBi\ \MCi\ 1

~\DA\ = \DB\ = DC = 3

Protože trojúhelníky ADX a MAxX, BDY a MBrY, CDZ
a MC\Z jsou podobné (obr. 80), jsou rovnosti (3) ekvivalentní
rovnostem

(3)

\MX | \MY\ \MZ\ 1

~\ÁX\ = \BY\ = \ČZ\ = i 5
a ty jsou splněny, právě když bod M je těžiště trojúhelníku
ABC.

94

Vedme bodem O příčky A\B\ || AB a C\D\ || CD (obr. 82)
a nechť DO je výška čtyřstěnu ABCD a OQ\ výška čtyřstěnu
OBCD. Pro objemy čtyřstěnů zřejmě platí
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V(OABC) \OQi\ \OCi\
\DQ\ = CD. ’ (1)

V(ABCD)
neboť trojúhelníky OC1Q1 a DCQ jsou podobné. Podobně je

V(OABD) iODi|
(2)

V(ABCD)

Obr. 82

С, В <r^> D ve vztazích (1) a (2) do-Výměnou vrcholů A
staneme

V(OACD) \OAi\ V(OBCD)
V(ABCD) = \AB 5 V(ABCD) = ~AB 5

takže dohromady máme

!CiDi|
+

|CD|\AB\

V(OABC) + ViOABD) + V(OACD) + V(OBCD)
= 1.

7(ЛВС£>)
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Stejný výsledek dostaneme i pro další dvě dvojice BC, AD
a AC, BD mimoběžných hran čtyřstěnu ABCD. Je tedy sku-
tečně uvedený součet roven 3.

Druhé řešení. Vedme bodem O příčky A\Bi || AB
a Ci Di || CD (obr. 83). Označme U průsečík přímek AAi

Obr. 83

a BB\ (U e CD) a V nechť je průsečík přímek CCi a DDi
(Ve AB). Body U, О, V leží v přímce, která je průsečnicí
rovin ABO a CDO. Přitom body A\, B\, Ci, Di a O leží
v rovině, která je rovnoběžná s oběma mimoběžkami AB, CD.
Z podobnosti trojúhelníků ABU, A\B\U a z podobnosti
trojúhelníků CDV, CiDiV plyne

l^iDil \OU\ | Ci £>i| \OV\
\AB\ ~ \UV\3 \CD\ ~ |UV\ ‘
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Je tedy

\AiBi | !CiDi| \OU\+\OV\
= 1.+

|CD| I UV\\AB |

Stejný výsledek dostaneme i pro další dvě dvojice mimoběž-
ných hran BC, AD a AC, BD. Odtud plyne dokazované
tvrzení.

Poznámka. Projdeme-li obě předchozí řešení, zjistíme, že
tvrzení úlohy platí i pro bod O na povrchu čtyřstěnu. Vy-
užijeme-li výsledku a) úlohy 93, dostaneme analogické tvrzení
v rovině:

Je-li M bod trojúhelníku ABC a vedeme-li jím tři příčky
rovnoběžné se stranami trojúhelníku, pak součet poměrů délek
těchto příček a délek s nimi rovnoběžných stran je 2.

Dokažme ještě uvedené tvrzení přímo. Označme příčky ve-
děné bodem M podle obr. 84. Pak

(\A\B\ |
2 ( \AB

i D2C2I
BC ' \CA\

\СзАз\
+ - +
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\B2A\ \С2А\ \С3В\ |4,5|
\АВ + \АС\ + ВС + ~\АВ\

\ ВуС3\ \А-т
+ =

MiCj |5iC|
АС + ВС

+

\AiC*\
= 3 + +

|ЛС| |5С| \АВ\
\AiC2\ |МСз| \МА3\

АС + ~\АС\ + "\АС\
— 3 + -

= 4.

Pro bod М na hranici trojúhelníku ABC je důkaz ještě jedno-
dušší.

95

Označme a velikost úhlu CMH а /5 velikost úhlu CMK.
Sestrojíme-li kružnici n se středem M a poloměrem \MH\ =
— \MK\ (obr. 85) a označíme-li N průsečík kružnice n s polo-

přímkou opačnou к MC, bude zřejmě podle věty o obvode-
vých úhlech

| * MNH \ = — | £ MNK 2 '2’
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Označme А а В druhé průsečíky přímek NH a NK s kružnicí
m. Trojúhelníky HNM, AHS a podobně i trojúhelníky KNM,
ВKS jsou rovnoramenné, platí tedy

7U a

I* ASH\ = tz — 2 ( — = a>
2

P7Г

* BSKI ”_2U
Protože čtyřúhelník SKMH je tětivový a zřejmě | •£ //5Х| =
= 7Г — (a + p), plyne odtud | £ = tu. AB je tedy
průměrem kružnice m.

Je-И nyní d — 0, je 5 = C, a protože a = /?, je

tg2
= 1

P
tg 2

bez ohledu na polohu bodu M. Navíc je p _[_ AB. Je-li
0 < d < r, pak z tětivového čtyřúhelníku SCHM vidíme, že
| < CSH\ = a = j < ASH\, takže je rovněž p AB. Odtud
plyne, že je

tg V й2 r — d

P r + d '
tg 2

Pro d = r je H = C, a = 0,
a

tgT
= 0.

P
*2
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Pro d > r je situace obdobná (obr. 86). Opět je | < ASH| = a,

|£ HSK\ = n — ((3 — oc), takže ASB\ = тс, a podobně
dostaneme i vztah p AB. Pro uvažovaný podíl pak platí

tg 2 d-r

(3 d + r

tg!
I d - rj
d + r

Pro libovolné d ^ 0 je uvažovaný podíl roven

Obr. 86
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Označení vrcholů čtyřúhelníku ABCD můžeme bez újmy
na obecnosti zvolit tak, aby bod E ležel na polopřímce AB
a bod F na polopřímce AD.

a) Označme G druhý průsečík kružnic opsaných trojúhel-
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níkům ADE, ВСЕ (obr. 87). (Za uvedených předpokladů bu-
de bod G vždy ležet uvnitř úhlu ECF.) Abychom dokázali,
že bod G leží na kružnici ABF, stačí ukázat, že | £ AGB\ =
= |£ AFB\. Označme |< AFB\ = a, | < DCF\ = /?. Pro

Obr. 87

obvodové úhly v kružnici BCGE je | BGE\ — | < BCE\ =
= P a pro obvodové úhly v kružnici ADGE je | < AGE| =
= |-£ ADE\ = a + /?. Je tedy

\< AGB\ = I* AGE\ - [* BGE\ = a.

Podobně dokážeme, že i kružnice CDF prochází bodem G,
tj. že |< CGD\ = | ■£ CFD\ (obr. 88). Označme | •£ CFD\ =
= a, | ABF\ = y. Pro obvodové úhly v kružnici BCGE je

| * CGE\ = те - | * СБ£| тс — (тс — }') = у a pro obvo-
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Obr. 88

Obr. 89
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dové úhly v kružnici ADGE je | £ DGE\ — тс — \ < DAE[ =
= n — (tu — a — y) = a + y. Je tedy

| * CGD| - | £ - | * CG£| = a + у - у

b) Abychom dokázali, že střed 0\ kružnice ADE, střed O2
kružnice ВСЕ, střed O3 kružnice ABF a bod G leží na kruž-
nici, stačí ukázat, že | O1O2GI + OjOsGj — тс. Využi-
jeme-li vztahů středových a obvodových úhlů a kolmosti
středných ke společným tětivám О1О2 J_ EG, О1О3 J_ ^4G,
dostaneme (obr. 89)

= a.

1
~

— | -£ O1O2GI = ~ I ■#; GOjA] — | G.£>Zi| —

1
— 1 < zlBG| = — I £ zlOgGI =

= |* OxO,G\.

Analogicky dokážeme, že na této kružnici leží i střed O4 kruž-
nice CDF.

= 7C

Obr. 90
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c) Označme X, Y, Z paty kolmic z bodu G na přímky AD,
BC, CD (obr. 90). Dokážeme, že | * FYX\ = |* CYZ\.
Body X, Y leží na Thaletově kružnici s průměrem FG. Pro
její obvodové úhly je | FYX| = | FGX|. Body Y, Z leží
na Thaletově kružnici s průměrem CG a pro její obvodové
úhly je CFZ| = |< CGZ|. Protože DCGF je tětivový
čtyřúhelník, je |< DFG\ — |-£ ZCG\, takže pravoúhlé troj-
úhelníky XFG a ZCG jsou podobné a | £ FGX| = ] < CGZ\,
tj. I* FYX |
z bodu kružnice opsané trojúhelníku na jeho prodloužené
strany leží v přímce.*) Protože bod G je podle a) společným
bodem kružnic opsaných trojúhelníkům ABF, CDF, ADE,
ВСЕ, leží všechny čtyři paty v přímce.

Poznámky. V části c) jsme odvodili Simpsonovu větu.
Uvedme ještě její důkaz vyplývající přímo z tvrzení a).

£ CYZ|. Dokázali jsme tedy, že paty kolmic

Obr. 91

*) tzv. Simpsonova věta
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Označme X, Y, Z paty kolmic z libovolného bodu G kruž-
nice opsané trojúhelníku DCF na přímky DF, CF, DC (obr.
91) a uvažujme čtyřúhelník DCYX. Jeho prodloužené strany
DX, CY se protínají v bodč F. Ukážeme, že jeho prodloužené
strany XY a DC se protínají v bodě Z, tj. že body X, Y, Z
leží v přímce.

Body X, Y leží na Thaletově kružnici nad průměrem FG,
proto se kružnice opsané trojúhelníkům DCF, XYF protínají
ještě v bodě G. Podle výsledku a) prochází kružnice GYC
průsečíkem prodloužených stran XY, DC čtyřúhelníku
DCYX. Tímto průsečíkem je ale bod Z přímky DC, neboť
podle Thaletovy věty leží zároveň na kružnici GYC s prů-
měrem CG.
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Na závěr uveďme ještě další zajímavé vlastnosti uvedené
konfigurace bodů a přímek. Při jejich důkazu rovněž vystačí-
me s vlastnostmi obvodových a středových úhlů.

Uvažujme pět navzájem různoběžných přímek, z nichž

žádné tři neprocházejí jedním bodem. Ke každému z

čtyřúhelníků tvořených uvažovanými pěti přímkami můžeme
sestrojit příslušný bod G. Všech těchto pět bodů leží na jedné
kružnici (obr. 92). Přidáme-li к uvedené konfiguraci ještě
šestou přímku s ostatními různoběžnou a neprocházející žád-
ným z dosavadních průsečíků a sestrojíme-li ke každé pětici

(Ij-

přímek příslušnou »kružnici pěti bodů«, bude všech ^j - 6

uvedených kružnic procházet jedním bodem!
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Technická redaktorka Hana Polívková
Z nové sazby písmem Plantin vytiskly Moravské tiskařské závody,
n. p., Olomouc, provoz 11
Formát papíru 70 cm x 100 cm
Počet stran 184
AA 5,85, VA 6,26
Náklad 1.200 výtisků
Tematická skupina a podskupina 03/2
1. vydání
Cena brožovaného výtisku Kčs 8,00
505/21,825

14-559-88 Kčs 8,00
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