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Predmluva

V roce 1991 skondéil v nasi republice 40. ro¢nik matematické olympiady, prvni
predmétové olympiaddy na nasich skoldch. Podobné jako pfi 30. vyro¢i vzniku této
zajimavé soutéze se i nyni snazil Gstfedni vybor MO vydat brozurku vénovanou tomuto
kulatému jubileu. Rozhodli jsme se vénovat jeji obsah predevsim tlohdam a jejich
feSenim, a to jednak (lohdm samotné MO, jednak Glohdm riznych korespondenénich
seminafi, matematickych soustfedéni apod. PFitom jsme se snazili, aby se uplatnily
Glohy pro rizné vékové kategorie. Mizete posoudit sami, zda se ndm to podafrilo.

Jak jsem uvedl, brozurka je vénovdna ilohdm a vzorovym feSenim. Nemohu se
vSak v této predmluvé nezminit o RNDr. Frantisku Zitkovi, CSc., ktery pfevzal v roce
1983 funkeci predsedy UV MO a vykonaval ji az do své nahlé smrti v roce 1988. V ma-
tematické olympiadé vsak pracoval jiz od roku 1961 a vedl Ceskoslovenské druzstvo
na 18 mezinarodnich matematickych olympiddach, naposledy v letech 1987 a 1988 na
Kubé a v Australii. Byl autorem celé fady tloh pro MO, vétsinou geometrickych. Pro
edici Skola mladych matematikii napsal brozurku Vytvorujici funkee, rukopis dalsf uz
bohuzel nedopsal. Dr. Zitek dosahl vyznamnych védeckych vysledkii ve svém oboru
— v teorii pravdépodobnosti a v matematické statistice — pro nds zistane vsak jeho
jméno spojeno predevsim s matematickou olympiadou.

S novym skolnim rokem jsme vstoupili do dalsi desitky let MO. Chceme zachovat
dosavadni troven této soutéze, zaméfit se hlavné na jeji kvalitu, ne jiz tak na masovou
ucast. Pres ekonomické potize, neujasnénost dalsi organizaéni struktury MO po zruseni
kraji a mensi podporu ze strany ministerstva skolstvi véfime, Ze se podafi matema-
tickou olympiddu udrzet. Dadme tim mnoha z4kiim a studentiim moznost nauéit se
z matematiky néco navic, prokazat své vyborné matematické znalosti a schopnosti
matematickou olympiddu spociva na udéitelich zadkladnich a stfednich §kol, Ze jedinou
odmeénou je jim aspéch jejich zaki. Jiz pfedem proto dékujeme vsem uéitelim, kteff
svym zakim umozni se MO zGcastnit, povzbudi je a podpofi.

Leo Bocek






Pikomat

Vladimir Burjan

(Bratislava)

Ak vam slovo PIKOMAT neznie prili$ slovensky, nemylite sa. Je to totiz skrat-
ka s(taze, ktorej neskrateny ndzov znie Ploniersky KOrespondenény MATematicky
seminar. K tomuto nazvu si dovolime dve malé poznamky. Privlastok ,pioniersky*
bol povinnou datou rezimu, v ktoromn seminar na jesefi roku 1983 vznikol, ale aj
jednému z hlavnych sponzorov siitaze byvalému Socialistickému zviazu mladeze a jeho
Pionierskej organizacii. Dnes uz je sice neaktudlny, ale organizitorom sitaze sa do
zmeny skratky akosi nechce — prilis sa vzila. Druhd poznamka ma charakter skoro
gramaticky: povodne bolo slovo PIKOMAT vlastnym menom — oznacovalo jediny
seminar pre ziakov 7. a 8. ro¢nikov zakladnych $kol v Bratislave a Zapadoslovenskom
kraji. Myslienka takejto siitaze sa vsak prekvapujico rychlo sirila a obdobné semi-
nare zacali pracovat v daliich krajoch a okresoch, najma v Cechach a na Morave.
V niekolkych pripadoch ich organizatori prevzali nielen organizaciu sitaze a tlohy,
ale aj jej nazov — PIKOMAT. A tak sa v niektorych rokoch stalo, ze PIKOMATov
bolo v Ceskoslovensku niekolko a z pévodného vlastného mena sa tak stalo vieobecné
podstatné meno, oznacujice jednu z foriem starostlivosti o ziakov prejavujicich zaujem
o matematiku.

Zaciatky PIKOMATu v septembri 1983 boli spojené so Specidlnymi triedami
so zameranim na matematiku na Gymnaziu A. Markusa v Bratislave. V nich sa
sustredovali nadani Ziaci z Bratislavy a Zapadoslovenského kraja, aby tu rozvijali svoj
matematicky talent. Kazdoroéne boli do matematickych tried vyberani na zdklade
osobitnej talentovej skisky. A prave snaha prildkat na tieto skasky ¢o najviac sikovnych
mladych matematikov a potencidlnych vybornych ziakov skoly, bola tym prvotnym
impulzom, ktory priviedol organizitorov na myslienku korespondencného seminara
pre ziakov zakladnych $kél. (Pre historikov vsak upresnime, Ze tato myslienka bola uz
v tom ¢ase pomerne stard. Podla nasich informacii k ndm prisla zo Sovietského zviazu
a ako prvy sa zrodil korespondencny seminar pre stredoskolakov vo vychodoslovenskom
kraji. Neskor pribudli dalsie a v r. 1980 zacal pracovat korespondenény semindar pre
ziakov zakladnych $kol v stredoslovenskom kraji.) Tento konkrétny ciel — prildkat do
matematickych tried kvalitnych ziakov ovplyvnil aj vekovii kategériu, ktorej bol a je
PIKOMAT urceny, ako aj Gzemie, ktoré pokryva. Toto sa dodnes takmer nezmenilo:
sitazia siedmaci a Osmaci, obéas sa pridd zopar mimoriadne sikovnych Siestakov
(pre ktorych je vsak sifaz velmi tazkd). Zapajaju sa aj Ziaci z inych krajov, no iba
vynimoéne, ako hostia — dnes uz ma totiz na Slovensku kazdy ziak ZS i SS moznost
riesit vlastny krajsky koreSp. seminar.

(2]
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Samotnd sutaz prebieha obdobne ako vsetky ostatné semindre — odchylky st snad
iba v niektorych podrobnostiach. Preto iba strucne: zaujemeci (ktorych pocet z roka na
rok kolise okolo 200 — 400) dostavaji postou domov (zhruba v Sesttyzdennych interva-
loch) sady 4 — 5 Gloh. Tieto maji do stanoveného terminu vyriesit, podrobne napisat
riesenia (a to nielen vysledky, ale aj cely postup riesenia s odévodnenim jednotlivych
krokov) a tieto zaslat organizatorom. Ti riesenia opravuji, pricom jednotlivym ziakom
vyznaéia v ich postupoch pripadné chyby a pripisu k nim poznamky, komentare, ale
aj pochvalu, ak ide o pekné, originalne riesenie. Opravené riesenia sa postou vracaji
naspat Gcastnikom, pricom kazdy zaroven dostane vzorové riesenia Gloh a podrobni
vysledkovi listinu, z ktorej moze zistit, ako si s jednotlivymi (ilohami poradili ostatni
Gcastnici seminara a aké je jeho priebezné umiestnenie.

Takéto série prebehn( zvacsa tri v obdobi od septembra do januéra a dalsie tri
od februdra do jina. Po kazdych troch sériach tloh (teda vo februari a v jani) sa
kona 5-6denné sistredenie, na ktoré je za odmenu (a teda bezplatne) pozvanych 30
az 40 najaspesnejsich riesitelov uplynulého obdobia. Tu maji moznost osobne spoznat
svojich najvaznejsich konkurentov v rebricku, ale najma samotnych organizatorov
siitaZe a opravovatelov ich rieseni. Preto sa tu ¢asto vedl diskusie a polemiky nad
opravenymi rieSeniami z predchadzajicich sérii: Ziaci moézu osobne vysvetlit ,ako to
v tom rieSeni mysleli“ a opravovatelia mézu dokladnejsie objasnit, kde t4 ivaha alebo
rieSenie ,,malo hacik“.

Program tychto ststredeni je velmi pestry. Matematika je tu podavanda zabavnou,
motiva¢nou formou prostrednictvom réznych rozpravok, matematickych hier a sttazi
i veternych besied. Okrem toho sa vela Sportuje, hraji sa rozne kolektivne hry v klu-
bovni, v lese, na like, vo dne i v noci. Nacvi¢uje sa divadlo, spieva sa pri taboraku, vedi
sa vasnivé diskusie o nekonecnosti vesmiru, prenasani myslienok, dejindch matematiky,
pozitivach a negativach jednotlivych povolani a vobec o vsetkom, ¢o deti tohto veku
zaujima. Program tychto siistredeni je zva¢sa mimoriadne nabity. Pre organizatorov
je to sice velmi naroéné na pripravu i1 samotni realiziciu, G¢inok je vsak znalny:
ststredenia pdsobia silno motivaéne a vidina moznosti zicastnit sa este raz (alebo
dokonca niekolkokrit) na obdobnom sustredeni je silnym stimulom pre Zziakov pri
rieSeni dalsich sérii Gloh semindra.

Spomenuli sme jeden z cielov, ktory viedol skupinu posluchdcov MFF UK k za-
lozeniu PIKOMATu: skvalitnit priliv uchddzacov o $tddium v matematickych trie-
dach v Bratislave. Tento ciel PIKOMAT od zaaliatku velmi dobre plnil a dodnes
plni: v niektorych rokoch viac nez polovica Ziakov prijatych do matematickych tried
pochadzala spomedzi riesitelov PIKOMATu. Ti sami priznavali jeho vplyv: bud sa
o existencii matematickych tried dozvedeli na niektorom zo siistredenti, alebo tu dozrelo
ich rozhodnutie sksit stastie na talentovych skaskach (€asto pod vplyvom podobného
rozhodnutia niektorych inych riesitefov PIKOMATu).

Korespondenénych matematickych seminarov pre ziakov zakladnych i strednych
$kol dnes pracuje na Slovensku mnoho. Zvaésa sa ich priebeh podoba na to, ¢o sme napi-
sali o PIKOMATe. Jednym z vhodnych ,rozlisovacich znakov* jednotlivych seminarov
stt zaddvané Glohy. Organizatori seminara musia pri ich vybere zvolit isti naro¢nost,
musia sa rozhodnaf pre isty typ aloh (Glohy skolského typu, Glohy typu matematickej
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olympiady, netradi¢né tlohy, hlavolamy ¢i hadanky, a pod.), pre istd formu zadavania
uloh, zvolit ich pocet, tématiku, pripadnii nadvaznost a mnoho dalsich parametrov.
Niekedy st tlohy pdvodné, inokedy éerpané z rdéznych (Easto zahrani¢nych zdrojov).
Toto vietko ovplyviuje celkovii kvalitu seminara a dod4va mu isti osobitost, ktorou sa
odlisuje od vsetkych ostatnych. Preto bude asi najcennejsou informéciou, ked uvedieme
na ukazku niekolko dloh, ktoré boli zadané riesitefom PIKOMATu v uplynulych 7
rokoch.

I:Uohy

1. Krivy stol.

Stolar mal vyrobit obdiinikovy stol rozmerov 100 x 160cm s nohami dlhymi
100 cm. Prva noha sa mu podarila presne. Ked vsak rezal k nej protilahl, posmykla sa
mu ruka a odrezal ju len 96 cm dlhi. Tretiu spravil o ¢osi dlhsiu, ale iba 97 cm. Zistite,
akit dlht ma spravit stvrt nohu, aby stdl stal na vSetkych Styroch nohach a aby sa
nekyval. (Predpokladame, ze vsetky Styri nohy st kolmé na dosku stola. To, ze stél
bude stat nakrivo, nevadi.)
2. Najvaési suéin.

Napiste ¢islo 100 ako sticet niekolkych prirodzenych ¢isel (pocet séitancov si zvolte
sami) tak, aby sG¢in tychto &isel bol ¢éo najvacsi. (Poznamka: s¢itance nemusia byt
navzajom rozne.)

3. Krabica plna gal.
Kolko rovnakych gil s priemerom 10cm mozno ulozit do krabice s rozmermi
100 x 100 x 10 cm, ak ukladame iba do jednej vrstvy?

4. Ako najlepsie zbohatnit? _

Hraci automat PIKOTRON funguje nasledovne: po zapnuti sa na jeho obrazovke
objavi ¢islo 1. Od tejto chvile mozno do neho hadzat korunové mince: ak sa vhodia
dve mince, automat pripocita k ¢islu na obrazovke 3, ak sa vhodi pat minci, automat
vynasobi ¢islo na obrazovke dvomi. Tieto tkony mozno lubovolne striedat a kombino-
vat. Ked nés hra omrzi, staci stlagit tlacidlo s nadpisom ,KONIEC* a z automatu sa
vysype tolko penazi, aké ¢islo je prave na jeho obrazovke. Predstavte si, Ze ste prisli
k tomuto automatu so 40 korunami vo vrecku a nesmiernou tizbou zbohatniit. Ako
Jje najvyhodnejsie postupovat aby bol vas ¢isty zisk ¢o najvacsi?

5. Rezanie Stvorca.

Najskor skiiste rozrezat stvorec na 10 Stvorcov. Nemusia byt rovnako velké, ale
vSetky rezy musia byt priame a rovnobezné so stranami rezaného $tvorca. Potom
najdite vsetky prirodzené ¢isla n, pre ktoré mozno rozrezat Stvorec na n stvorcov.

6. Velkd a mala gula.
Vo velkej prazdnej miestnosti tvaru kvddra nahdna velkd gula (s polomerom

1 meter) mensiu gulu, ktord chce rozdrvit. Nastastie existuji v miestnosti miesta,
kam ked' sa mensia gula postavi, je pre velki nedosiahnutelna — velka sa jej méze iba
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dotknit, ale nemdze ju pritlaéit. Zistite, aka velkd moze byt mensia gula, aby sa este
v miestnosti zachréanila.
7. Vlastnosti muZov.

Podla statistik ma 70 % muzov hnedé oéi, 75% ma tmavé vlasy, 85 % muiov je

vyssich ako 178cm a 90% muzov vazi menej ako 100kg. Aké percento muzov ma
zarucene vSetky tieto Styri vlastnosti?

8. Kto bol druhy v skoku do vysky?

Adam, Boris a Cyril si spravili sifaz v niekolkych Sportoch. Za vitazstvo sa
v kazdom Sporte udelovalo a bodov, za druhé miesto b bodov a za tretie miesto ¢
bodov, priCom a, b, ¢ si prirodzené &isla, pre ktoré plati @ > b > ¢. Na koci sttaze
mal Adam 10 bodov, Boris 6 bodov a Cyril 5 bodov. Zistite, kto bol druhy v skoku
do vysky, ak viete, ze Boris vyhral vrh gulou.

9. Chytia vlci zajaca?

V strede Stvorcovej zahrady sedi zajac. V kazdom zo Styroch rohov zéhrady sedi
jeden vlk. Vici sa mdzu fubovolne pohybovat po obvode zéhrady, pricom vedia byt az
1,4krat rychlejsi ako zajac. Zajac by rad zo zdhrady utiekol. Na prvy pohfad to s nim
vyzera zle, ale ak ovlada trochu matematiky, méze vlkom utiect. Viete ako?

10. Problém pana riaditela.

Riaditel firmy vyrdbajicej osviezujici napoj PIKO-KOLA kratko pred smrtfou
rozoslal listy svojim 10 najblizsim spolupracovnikom a kazdému v liste prezradil jednu
z 10 primesi, z ktorych sa vyrdba PIKO-KOLA. Po smrti riaditela si tychto 10 Tudi
chcelo telefonicky vymenit ziskané informacie.

a) Kolko najmenej hovorov je potrebnych na to, aby sa kazdy z 10 zamestnancov
dozvedel vietkych 10 primesi?

b) Rieste ten isty problém pre pripad, ze by PIKO-KOLA pozostavala zo 100 primesi,
ktoré riaditel ozndmil 100 najspolahlivejsim spolupracovnikom (kazdému jednu
primes).

Dokazte, ze vtedy by stadilo 196 telefonnych hovorov.

A na zaver ukazka série Gloh, ktora mala podobu rozpravky:

Ako rytier PIKOMATKO porazil (alebo neporazil?) draka D-200.
(dramatematicky pribeh s otvorenym koncom)

Len ¢o sa rytier PIKOMATKO dozvedel stiradnice jaskyne, v ktorej zije zly
200hlavy drak D-200, ihned sa vydal na cestu. V stredu podvecer prisiel na razcestie
tvaru Y, kde mu isty pocestny povedal: ,Ked sa chces dostat ku drakovi, chod touto
Tavou cestou, aZ po 6smych kilometroch prides ku vysokdnskemu smreku. Od neho
napravo (pod pravym uhlom) vedie cesta priamo ku drakovej jaskyni. Ale mozes ist
aj touto pravou cestou. Ked prides ku jazierku, budes mat presne polovicu cesty za
sebou. Tam sa oto¢ dolava o 90° a chod stéle rovno. Prides priamo ku draéej jaskyni.
PIKOMATKO podakoval, zamyslel sa, potom si zmeral uhol, ktory spolu zvierali lava
a prava cesta. VySiel mu ostry. Potom chvilu poéital a kreslil a nakoniec sa vydal
kratsou z oboch ciest.
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1. iloha: Zistite, ktora z oboch ciest je kratsia — ta okolo smreka alebo okolo jazierka?

2. iloha: Dokazte, ze uhol DSJ (drak — smrek — jazierko) ma velkost 45°.

Ked PIKOMATKO dorazil ku jaskyni, drak D-200 ho uz ¢akal a jednou zo svojich
200 ohnivych papal prehovoril: ,Mohol by som ta zozrat hned, ale dam ti Sancu. Budem
si mysliet tri prirodzené cisla a, b, ¢ mensie ako 100. Aj ty si myslh nejaké tri prirodzené
¢isla x, y, 2z a povedz mi ich. Ja ti potom prezradim &islo az + by + cz, ni¢ viac. Ak
z tohoto ¢isla uhadnes ¢isla a, b, ¢, dovolim ti odist. Inak sa zi¢astnis mdjho dnesného
obeda ako predjedlo.“

3. Gloha: Poradte PIKOMATKOVI, aké ¢isla z, y, 2 ma drakovi nahlasit, aby z éisla
azx + by + ¢z mohol jednoznacne urcit ¢isla a, b, c.

PIKOMATKO dlohu vyriesil a ¢isla uhadol. No k odchodu sa nemal. Naopak, zacal
s likvidaciou draka. Spomenul si, ako mu kedysi davno ista baba korenarka prezradila,
ze kazdy drak skamenie, ked sa pozrie na magicky atvar. To je taky rovinny Gtvar,
ktory nema ziadnu os stmernosti, ani ziadny stred simernosti, ale pritom pri otoéeni
o isty uhol (mensi ako 360 stupiiov) prechadza sam do seba (t.j. keby sme ho vystrihli,
zdvihli a pootocili, zapadol by znovu do vystrihnutej diery). A tak zacal PIKOMATKO
hortckovite vymyslat nejaky magicky Gtvar.

4. uloha: Nakreslite nejaky magicky Gtvar.

Tentokrat PIKOMATKO ni¢ mdreho nevymyslel, a tak mu ostala jedind moz-
nost: pouzit svoje tri zazraéné meée Sek, Smyk a Fik. Ked sa rozozenie Sekom, odsekne
drakovi naraz 48 hlav, lenze mu hned 33 novych hldv narastie. Ked sa rozozenie
Smykom, odsmykne drakovi 21 hlav a ziadna novd mu nenarastie. A kone¢ne ked
sa rozozenie Fikom, odfikne drakovi jednu hlavu a namiesto nej mu ihned narastie 73

novych. Kazdy me¢ mozno pouzit iba vtedy, ak m4 drak aspon tolko hlav, kolko ten
mec zotina. Akondhle raz drak pride o vSetky hlavy, uz mu Ziadne nové nenarast.

5. Gloha: Zistite, ako dopadol stiboj PIKOMATKA s 200hlavym drakom D-200. Ak si
myslite, ze PIKOMATKO draka ,odhlavil“, popiste, v akom poradi pritom
pouzil jednotlivé mece. Ak si naopak myslite, Ze to s tymi me¢mi nie je mozné,
dokazte to.



Ulohy MO kategorii A, B a C

Leo Bocek
(MFF UK Praha)

Na nékolika prikladech chceme ukéazat tématiku tloh matematické olympiady
v kategoriich A, B, C v poslednich deseti letech, obtiZnost jednéch i snadnost jinych
uloh.

V kategorii B 39. roéniku MO jsme pouzili péknou sérii Gloh od dlouholetého
pracovnika v MO dr. Jiftho Sedlacka, CSc., z Matematického Gstavu CSAV v Praze.
V 1. kole to byla tloha:

Je dano liché prirozené Cislo n, najdéte aspor jednu dvojici pfirozenych éisel z, y
tak, aby D(z,y) = n a soucasné D(zy+z,zy+y) = 2n. PFitom D(u,v) znaci nejvétsi
spole¢ny délitel prirozenych cisel u, v.

V klauzurni ¢asti 1. kola to byla loha nalézt ke kazdému prirozenému cislu n
pFirozena Cisla z, y tak, aby D(z,y) = D(zy + z,zy + y) = n. V krajském, tedy
2. kole, bylo tfeba k libovolnému prirozenému ¢islu n najit nesoudéIna prirozena cisla
z, y s vlastnosti D(zy + z,zy + y) = n.

Ukazeme si struc¢né ¥eseni vSech tii Gloh. V prvni Gloze je nasnadé zkusit ¢ = n,
y = kn, kde k je pfFirozené &islo. Je pak D(z,y) = n, zy + =z = n(kn + 1), zy +
+y=n(kn+ k). Cislo k musime zvolit tak, aby nejvétsim spoleénym délitelem &isel
kn + 1, kn 4+ k bylo ¢islo 2. Pak musi byt délitelny dvéma také jejich rozdil k — 1.
Zkusime polozit k = 3, ¢isla ¢ = n, y = 3n skuteéné spliuji podminky tlohy, nebot
zy+z =nB3n+1), zy+y = n(3n+3). Jelikoz je ¢islo n liché, jsou ¢isla 3n+1,3n+3
suda, tedy délitelnd dvéma. A Cislo 2 je také jejich nejvétsim spolecnym délitelem,
protoze nejvétsi spolecny délitel téchto Cisel déli také jejich rozdil, tedy cislo 2. Je tedy
D(3n+1,3n+3) =2 a D(3n* 4 n,3n® + 3n) = 2n. ReSenim tlohy klauzurni ¢asti je
napftiklad dvojice z = 2n,y = 3n. Je pak totiz zy+z = 2n(3n+1), zy+y = 3n(2n+1).
Cisla 3n + 1, 2n + 1 jsou nesoudéln4, nebot jejich spoleény délitel musi délit i &islo
32n+1)—238n+1)=1.

Navazujici Gloha z 2. kola je obtiznéjsi. Jelikoz zy + z, zy + y maji byt délitelnd
¢islem n, musi to platit i pro jejich rozdil y — z. Zkusme polozit y = = + n. Pak je
zy+z=z(x+n+1),zy+y=z(x+n+1)+n Obé tato ¢isla maji byt délitelna
Cislem n, avsak ¢isla ¢, £ + n maji byt nesoudélné. Proto museji byt nesoudélni i ¢isla
z, n. Pak musi ¢islo n délit ¢islo z + n + 1. Polozme tedy na pfiklad £ = n — 1, je pak
y = 2n—1. Jsou to ¢&isla nesoudélnd, zy+z = n(2n—2), zy+y = n(2n —1). Nejvétsim
spole¢nym délitelem poslednich dvou ¢&isel je ¢islo n, protoze ¢isla 2n — 1, 2n — 2 jsou
nesoudélna. V pfipadé n = 1 neni vSak Cislo z pfirozené, stadi ale pro n = 1 polozit
z=1y=2

10
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V 37. a 38. roéniku MO byly dvé na sebe navazujici Glohy o lichobézniku.
V 37. roéniku to byla v kategorii C tloha: V lichobéZniku ABCD urcete bod X tak,
aby mély &tyrihelniky XKBL, XLCM, XM DN, XN AK stejny obsah, pficemz K,
L, M, N jsou po fFadé stredy stran AB, BC, CD, DA.

Reseni. Jsou-li AB, C'D zékladny lichob&zni-
ku, pak spojnice jejich stfedtt K, M déli lichobéz-
nik na dva lichobé&zniky stejného obsahu (obr.1).
Proto musi bod X nutné lezet na (setce KM.
Kdyby totiz lezel uvnitf lichobézniku K BC'M , byl
by soucet obsahu ctyfahelniki XKBL, XLCM
mensi nez polovina obsahu lichobézniku ABCD,
coz by bylo ve sporu s podminkou tlohy. Uva-
zujme tedy bod X uvnitf Gsecky K M. Obsahy Obr.1
trojahelnikiic DN X, ANX jsou stejné, protoze N je stied tsecky AD. Aby se sobé
rovnaly i obsahy ctyFahelniki XN AK, X M DN, museji se rovnat obsahy trojithelnika
MDX, AKX, tedy pomér vzdalenosti bodu X od pfimek AKX a DM musi byt pravé
obréceny, nez je pomér délek tseéek AK, DM, tj. pomér |AB| : |CD|. Priseéik Y
uhlopricek AC, BD lezi na KM a pomér jeho vzdilenosti od pfimek AB, CD je
pravé |AB| : |CD|. Sestrojime tedy bod Y a X je pak ten bod na tGseéce KM, pro
ktery plati [M X| = |KY|, je pak téz |[KX| = |[MY|. Tento bod X spliiuje podminku
Glohy.

V dalsim ro¢niku dokazovali titiz zici, jenze jiz o rok starsi, Zze neexistuje v licho-
bézniku ABCD bod X tak, aby se sobé rovnaly obsahy trojihelniki ABX, BCX,
CDX, DAX. Dikaz vedli sporem tfeba takto: Pfedpokladejme, Ze pro bod X lichobé&z-
niku ABCD se obsahy uvedenych trojihelnikl rovnaji. Oznaéme p vzdélenost bodu
X od pfimky AB a q jeho vzdélenost od pfimky CD, a = |AB|, ¢ = |CD|. Rovnost
obsahti trojihelnikit ABX, C DX, z nichz se kazdy rovna jedné tvrtiné obsahu celého
lichobézniku, ndm dava pro p, q, a, ¢ podminky 4ap = 4cq = (a+¢)(p+¢q). Vyloucenim
p, ¢ dostaneme (a — ¢)% = 0. To je vsak spor, nebot pro lichobéznik je a # c.

Do 36. ro¢niku byla zarazena tato geometrickd Gloha: Je ddn trojihelnik ABC.
Zvolte na stranach AB, AC' po Fadé body M, N tak, aby |BM| = |CN| a aby se
obsah trojithelniku AM N rovnal poloviné obsahu ABC'. K vyfeSeni tlohy staéi umét
fesit kvadratickou rovnici a znat vzorec S = 1§I)c sin a pro obsah trojihelniku (b, ¢ jsou
délky stran AC, AB, « je velikost jimi sevieného hlu). Oznaéme z = |BM| = |C'N|.
Podle podminek tilohy ma pro z platit 2(b—z)(c—z)sina = besin . JelikoZ sin v # 0,
dostavame pro z kvadratickou rovnici 22%—2(b+c)z+bc = 0. Kofen 1 (b+c+vb% + ¢?)
nevyhovuje, protoze je vétsi nez b i ¢, vyhovuje druhy kofen %(b+c— Vb2 + ¢2), ktery
je kladny a mensi nez b i c. Usecku délky 3(b+ ¢ — Vb% + ¢?) dovedeme té% snadno
pravitkem a kruzitkem sestrojit z délek b, c.

V 33. ro¢niku MO byla v krajském kole kategorie C lehk4 tloha, jejiz text zni:
Zik mél spoéitat délku tétivy kruzZnice o poloméru r, jestliZe se vzdalenost tétivy
od stredu rovnala d. Domnival se, Ze se délka tétivy poéita jako d + r, presto dostal
spravny vysledek. Jaky vztah musel platit mezi d a r? Odpovéd je jednoduch4, musi



12 Ulohy MO kategorii A, B a C

. i . o L . d 3
platit d +r = 2v/7%2 — d?, po Gipravé a vyreseni kvadratické rovnice dostaneme — = 5
p-

Je vSeobecné znamo, ze vétsi obtize Cini zakdm Glohy geometrické, at jiz jde
o Ulohy konstruktivni, nebo diikazové. Do krajského kola kategorie C 37. ro¢niku MO
byla zafazena tloha: Konvexni pétiithelnik ABC DE je vepsan kruznici k, pricemz AB
Jerovnobézna s ED a BC je rovnobézna s AE. Dokazte, Ze pfimka C D je rovnobéZna
s tecnou kruzZnice k v bodé A. K dikazu staci znat vétu o obvodovych Ghlech a o Ghlech
v tétivovém CtyFahelniku. Oznaéime-li « = |JABC| = |YAED|, je |9ADC| = n —
— a, nebot ABC'D je tétivovy Ctyfahelnik. Stejné tak je | YJACD| = n — «, takZe je
trojuhelnik AC'D rovnoramenny se zakladnou C'D. Proto prochéazi osa tsecky C'D
bodem A a samoziejmé téz stfedem S kruznice k (obr.2). Teéna kruznice k v bodé
A je na tuto osu kolma a tedy rovnobéznd s C'D. Je to Gloha velmi pékna, avsak
pro zaky 1. ro¢niku stfedni Skoly jsou dikazové Glohy prece jenom obtiznéjsi. Vice

Obr. 2 Obr.3

se jim libi Glohy, pfi kterych maji néco spocitat. Napfriklad v dloze 2. kola kategorie
C 36. roéniku MO to byl obsah lichobézniku, jehoZ tihlopricky jsou na sebe kolmé,
jedna z nich ma délku u a jsou jesté dany délky a, ¢ obou zdkladen (obr.3). ReSeni
spociva v prevedeni lichobézniku na trojihelnik stejného obsahu. Bodem D vedeme
rovnobézku s thlopfickou AC' (JAC| = u) a jeji priiseéik s AB oznaéime E (AB je
rovnobézno s C'D). Trojahelniky C DB a AE D maji stejny obsah, protoze |CD| = |AE]|
a vysky k témto strandm jsou rovnéz stejné, rovnaji se vzdalenosti pfimek AB, C'D.
Proto se obsah lichobézniku rovnd obsahu pravothlého trojihelniku EDB, ktery je
F(uy/(a+c)? —u?).

Pékné jsou tilohy na uréeni nejkratsi cesty po povrchu télesa z jednoho jeho bodu
do druhého. Uvedeme si dva priklady.

1. kolo kategorie B 33. rotniku MO — Je dana krychle ABCDEFGH o hrané
délky a. Vrchol A je spojen po povrchu krychle nejkratsi ¢arou se stredem stény BCGF
a rovnéz se stredem stény DC'GH . Prvni lomena ¢ara ma s hranou BF spoleény bod
L, druhd ma s hranou DH spoleény bod K. Urlete obsah trojihelniku AK L (obr.4).

1. kolo kategorie C 37. rotniku MO — Je dan pravidelny trojboky hranol
ABCA'B'C'" s podstavnou hranou délky a a vyskou v. Ozna¢me S stied stény BCC' B’
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a K, L ty body na hranach BB', CC’, pro néz jsou lomené éary AKS, ALS nejkratsi.
Vypodéitejte pomér objemii jehlanu AKLS a daného hranolu.

H .
I o

E : —(F .

Iij///
| / _Ys
//)—D-——— —-C Ry -=
/
A B A

Obr. 4 Obr.5

Reseni obou tloh je jednoduché, uvédomime-li si déle popsany princip. Uvazujme
roviny ¢ a o, jez se protinaji v piimce p, bod A lezi v roviné g, bod S v roviné o
a necht K je ten bod pfimky p, pro ktery je soucet |AK|+ |KS| nejmensi. Pak po
otoCeni roviny o do roviny ¢ kolem pfimky p tak, zZe jsou poloroviny pA a pSy opainé
(So je otocend poloha bodu S), lezi bod K na Gse¢ce ASy (obr.5). Pro vasi kontrolu
uvadime vysledky obou tloh: éaz\/ﬁ; 11—8, .

Dalsi skupinu Gloh tvofi lohy o sachovnicich. Pfikladem je Gloha 1. kola kategorie
B 37. ro¢niku MO: Jaky nejvétsi pocet figurek Ize rozmistit na Sachovnici n x n tak,
aby zZadné dvé nesousedily? (Za sousedni povaZujeme ta policka, ktera maji spoleény
aspoii jeden vrchol).

ReSeni. Je-li n liché, je uréité mozné rozmistit aspoii (%(n—}-l))2 figurek, pfi sudém
n je mozné umistit aspon (%n)2 figurek, jak ukazuje obr.6 pro n = 5 a n = 6. Pfesné
feceno, vynechame kazdy druhy fadek shora a kazdy druhy sloupec zleva a stavime
figurky pouze na zbyla policka. Urcité nebudou pak obsazena zadnd dvé sousedni
policka. Je to ale opravdu maximdlni pocet figurek? Odpovéd je ano. Napftiklad pii
sudém n se sachovnice sklada z %n:’ sachovnic 2 x 2. Kdyby se na ni dalo umistit vice
nez (%71)2 figurek, musely by aspoi na jedné sachovnici 2 x 2 stit aspon dvé figurky,
to by ale byly figurky sousedni. Pfi lichém n se uréité nedd predepsanym zptisobem
rozestavit vice figurek, nez se da rozestavit na vétsi Sachovnici (n +1) x (n +1). A to
je podle predchéazejiciho (%(n + 1))2.

Obr.6
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Na zavér si uvedeme jesté dvé ilohy na vyuziti zapisu ¢isel v desitkové soustavé
a na délitelnost. Do 1. kola kategorie B 38. ro¢niku MO jsme zaradili Glohu: DokazZte,
ze rovnice S(x+p) = S(z), kde S(n) znadi ciferny soucet ¢islan zapsaného v desitkové
soustavé, ma aspoil jedno reseni, pravé kdyz je p délitelné deviti. Ulohu vyresil velmi
pékné Tomas Titz z gymnazia v Brné, tt. kpt. Jarose. Je-li S(z +p) = S(z) pro néjaké
z, davaji ¢isla z +p, « stejny zbytek pri déleni deviti. Je-li obracené p = 9¢, ¢ prirozené,
staci polozit x = q. Je pak  +p = 10q a ¢isla ¢, 10¢ maji zfejmé stejny ciferny soucet.

V krajském kole 39. roéniku MO dokazovali zaci v kategorii C, ze ¢islo

111...1222...225,
—— — —
k k+1

v némz se Cislice 1 vyskytuje k-krdt a cislice 2 (k + 1)-krdt, je druhou mocninou
prirozeného ¢isla, a méli téz toto cislo urcit. Snadno se na nékolika pripadech odhadne,
ze jde o ¢islo 33...35, v nénz se ¢islice 3 vyskytuje k-krat. Pak se prosté ukdze, ze
—
k
jeho druha mocnina je dané éislo, a to pouzitim vzorce (10a+ 5)? = 100a(a + 1) + 25.
Staci polozit @ = 33 ...3. Zak Frantisek Mala z Dolného Kubina ukazal, ze dané ¢islo
—

k
k

10k — 1 . 10kt
je Eislo—o—g——~10k“+i——————

10441 45\ °
)
Pak mu jiz stacilo dokazat, ze éislo 105t 4 5 je délitelné tfemi. To viak plyne ihned
z toho, ze jeho ciferny soucet je 6.

-2 -10 + 5, coz upravil na tvar (

’

Dale si uvedeme jesté nékolik Gloh kategorie A, tedy Gloh urcenych pro soutézici
nejvyssich dvou rocniku strednich skol. Z 33. ro¢niku MO si ukazeme 2 (lohy celostat-
niho kola. V prvni Gloze bylo dano zobrazeni f mnoziny Z vsech celych ¢isel do téze
mnoziny, které splnuje pro kazdé m € Z podminku f(f(m)) = —m. Soutézici méli
dokdzat, ze a) f je prosté zobrazeni mnoziny Z na mnozinu Z, b) pro kazdé m € Z
plati f(—m) = —f(m), ¢) f(m) = 0, pravé kdyz je m = 0. Na zavér meéli ukizat
piiklad takového zobrazeni. Uloha patfila k lehéim tloham tohoto celostatniho kola.
Reseni Glohy miize napfiklad vypadat takto: Nejdiive dokazeme, ze zobrazeni f je
prosté. Pf‘edpoklédéjme, ze f(m) = f(n). Pak je m = —f(f(m)) = —f(f(n)) = n,
takze f(m) = f(n) pouze v pfipadé m = n, coz znamen4, Ze je f zobrazeni prosté.
Je to také zobrazeni na mnozinu Z, protoze kazdy prvek m € Z je obrazem prvku
f(=m). Protoze —m = f(f(m)), je f(=m) = f(f(f(m))) = —f(m), staéi totiz ve
vztahu f(f(m)) = —m dosadit za m ¢islo f(m). Tim je dokdzano, ze pro kazdé m € Z
je f(=m) = —f(m). Polozime-li m = 0, dostaneme f(0) = —f(0), takze f(0) = 0.
Protoze f je zobrazeni prosté, nemiize byt f2(m) = 0 pro zadné m # 0. Musime
jesté ukazat priklad zobrazeni f, které ma vsechny uvedené vlastnosti. Je to napriklad
zobrazeni f, které je definovano vztahy f(0) = 0, f(2k) = 2k — 1, f(2k — 1) = =2k,
f(=2k) = —(2k — 1), f(=2k + 1) = 2k pro kazdé pFirozené &islo k.

V druhé tloze se z predpokladu cos a+cos F+cosy+cos d = 0 pro vnitini dhly «,
3,7, 6 konvexniho ¢tyrahelniku ma dokazat, ze ctyrahelnik je rovnobéznik, lichobéznik
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nebo étyithelnik tétivovy. K feseni tilohy je vhodné pfevést soucet na levé strané pred-
pokladané rovnosti na souéin. Pouzitim vzorce cos a+cos f = 2 cos b cos “—;g a vzta-
hu a+B+7v+6 = n dostaneme cos v + cos f+ cos 7 + cos § = cos a;’ cos ﬂ;—l cos "—‘2"—‘5
Tento souéin se rovna nule pravé tehdy, kdyz je splnéna aspon jedna z podminek
a+pB=mna+6=n a+vy=n Jsou-li splnény prvni dvé podminky, je ctyFahelnik
rovnobéznik, kdyZ je splnéna jen jedna z nich, je to lichobéznik. Posledni podminka je
splnéna, pravé kdyz je ctyrahelnik tétivovy (kdyz mu lze opsat kruznici).

V 37. roéniku MO pokryvali soutézici kategorie A ¢tve- D L C
rec kruhy o stejném poloméru. Ve skolnim kole méli urcit '

nejmensi ¢islo 7, pro které je mozné ctverec o strané 10 po-

kryt dvéma shodnymi kruhy o poloméru r. Mohli postupovat
takto: Oznaéit K, L stfedy stran AB, CD &tverce ABCD M
o strané 10 (obr.7). Je pak zfejmé, Ze kruhy ohranicené
kruznicemi opsanymi obdélnikim AKLD, KBCL pokry-

vaji ¢tverec ABC D, jejich polomér je %5\/5 Ukézeme, ze r ,
nemize byt mensi nez %5\/5 Predpokladejme, Ze ctverec je A K B
pokryt dvéma kruhy o poloméru r < 1 5v/5. Aspoii v jednom Obr.7
z nich musi lezet tfi z bodd A, B, C, D, K, L. Patfi-li do jednoho body A, K, B a do
druhého body D, L, C, musi jeden z nich obsahovat téz stfed M strany AD. Je-li to
napftiklad kruh s body A, K, B, obsahuje body B, M a jeho priimér se proto rovna
aspoi vzdalenosti téchto dvou bodii, tj. 5v/5. Obsahuje-li kruh jen dva body z trojice
A, K, B a jeden z trojice D, L, C, dostaneme stejnym zplisobem spor, rovnéz tak pri
zaméné obou trojic. Je tedy r = %5\/5

V krajském kole byla navazujici Giloha: JestliZe ¢tyfi shodné kruhy o poloméru
r pokryvaji jednotkovy Ctverec, je r 2 %\/E Dokazte a zjistéte, zda lze jednotkovy
Ctverec pokryt péti shodnymi kruhy o mensim poloméru.

ReSeni: Predpokladejme, ze je &tverec pokryt &tyfmi
kruhy o poloméru r < ;1{\/5 < 1. Pak v kazdém kruhu
lezi pravé jeden vrchol ¢tverce. Aspon jeden z téchto kruht
obsahuje 1 stfed Ctverce, ktery ma od vrcholu étverce vada- z
lenost %\/2_, proto je jeho polomér aspon 41\/5, coZ je spor
s predpokladem r < ;}\/‘Z

K druhé ¢asti Gilohy rozdélime étverec na pét obdélniki 1—=z
podle obr.8 tak, aby mély stejné velké thlopricky délky
u. Kruhy, jejichz hraniéni kruznice jsou témto obdélnikiim
opsany, pokryvaji ¢tverec a jejich polomér je $u. Nenf t&zké Obr.8
ukédzat, ze u < %\/5, takze odpovéd na posledni otazku tilohy je ano.

Podle Cauchyovy nerovnosti plati pro kazdou trojici redlnych ¢isel z, y, z nerov-
nost

=
=
W=

224y 422 2 2y +yz + 22

V 39. rocniku MO byla v 1. kole kategorie A wloha najit vSechna redlna ¢isla o
s vlastnosti: Jsou-liz,y, z délky stran trojithelniku, pak je z2+y*+2% £ a(zy+yz+2z).
ReSeni: Jsou-li z, y, z délky stran trojahelniku, je |y — 2| < z, |z — z| < y,
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|z —y| < z. Umocnénim téchto nerovnosti a jejich se¢tenim dostaneme z2 + y* 4 22 <
< 2(xy + yz + zz), takze podminku dlohy spliiuji vechna redlna éisla a > 2. Je-li
1 £ a < 2, polozime z = y = 1 a 2z zvolime z intervalu (0, — /a2 — (2 — a)). Pak
jsou z, y, z délky stran trojahelniku a neplati 22+ y%+2% < a(zy+yz+2z). Podminku
ulohy spliuji tedy pravé jen vsechna éisla @ € R, a 2 2.

V celostatnim kole téhoz ro¢niku pak navazovala tloha do jisté miry obrdcend —
najit vSechna realna ¢isla «, pro ktera ma kazda trojice kladnych &isel z, y, z spliiujici
nerovnici

22 +y? + 22 < a(zy + yz + 22)

tu vlastnost, Ze to jsou délky stran n&jakého trojithelniku. Reseni: Jestlize je pro n&jaké
a uvedend nerovnice splnéna pro nékterou trojici kladnych &isel z, y, z, jez nemohou
byt délkami stran trojahelniku, naptiklad pro trojici z, y, z s vlastnosti 2 = = + y,
pak « nepatfi mezi hledand ¢isla. Polozime-li ¢ = y = 1, z = 2, vidime, Ze tloze
nevyhovuji ¢isla o 2 g. Ukéazeme, ze Cisla mensi nez g vyhovuji. Jinymi slovy chceme
ukézat, Ze z platnosti 2% + y® + 22 < £(zy + yz + zz) pro kladna &isla z, y, z plyne
r<y+z,y<z+z z<z+y. Dokizeme to sporem. Necht pro kladna &isla z, y, 2
plati 22 + y? + 2% < g(zy + yz + zz), ale jedna z pfedchézejicich t¥f nerovnic splnéna
neni, Ze napiiklad plati 2 2 z+y. Polozme t = z—2—y 2 0. Dosadime-li z = t +z +y
do predpokladané nerovnosti, dostaneme po tpravé t + %t(z +y)+ %(:L' -y)? <0,
coz nemiuze platit, nebot ¢ je nezaporné éislo.

Na zavér si uvedme jesté dvé ulohy ze D
stereometrie, které byly p'ro 39. ro¢nik prevza-
ty z madarské matematické olympiddy. Mezi
vsemi Ctyrstény ABCD s danymi délkami a,
¢ hran AB, CD a danou vzdalenosti d stredi L
hran A, CD je tfeba v prvni Gloze uréit ten,
ktery ma nejvétsi objem, v druhé uloze ten,
ktery ma nejvétsi povrch.

Prvni tloha, ktera je lehéi, byla zafazena C
do klauzurni ¢sti 1. kola. Ctyfstén ABC D roz-
délime na dva Ctyistény ABLC' a ABLD, kde
L je stied hrany C'D (obr.9). Oznacme jesté
K stfed hrany AB. Obsah trojthelniku ABL
se rovna nejvyse zad, vysky &tyfsténi ABLC
a ABLD na sténu ABL jsou stejné a rovnaji Obr.9
se nejvyse %c, takze objem ctyrsténu ABC D
je nejvyse %—acd. Rovna se této hodnoté pravé tehdy, kdyz je KL L ABaCD L ABL,
takze tehdy, kdyz je KL kolma na kolmé piimky AB, CD. Ackoliv vysledek druhé

vvvvvv

K

obsahy trojthelniki ABD, ABC.Je P4+Q < %a(p-fq). Z trojihelnikit CLK a DLK
plyne pomoci kosinové véty p2 + ¢% = %cz +2d?. Déle je (p+ q)? < 2(p? + ¢?), rovnost
plati pouze pfi p = q¢. Mame tedy

P+Q< —;—a\/Q(p2+q2 = %a\/c2+4d2,
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rovnost

P+Q= %a\/cz+4d2

plati pravé tehdy, kdyz je p = ¢, tj. CD L KL, a soumérné DK a CK kolmé na AB.

Podobny vysledek bychom mohli odvodit pro souéet R + S obsahti trojihelniki
CAD, CDB. Nejvétsi povrch mé tedy étyfstén, pro ktery je pfimka K L kolma na AB
i CD atyto dvé pfimky jsou rovnéz kolmé. Jeho povrch je 1 av/c? + 4d*+ 3 cv/a? + 4d2.




Kategorie P

Pavel Topfer
(MFF UK Praha)

Od 35. roéniku byla matematickd olympiada obohacena o novou soutézni kate-
gorii, kterd byla nazvina kategorie P (programovani). Kategorie P byla vytvofena
v dobé, kdy v celé nasi spoletnosti a zejména mezi mladezi vyrazné silil zdjem
o poditate a programovani a kdy vznikala i fada jinych programatorskych soutézi.
Nova kategorie MO si kladla za cil stat se vrcholnou soutézi pro talentované studenty
stfednich skol, ktefi se zajimaji pravé o matematiku a programovani. Programovani
pFitom chtéla ukazat ne ze stranky technického zvladnuti prace s pocitacem a pouzivani
programovacich jazyki, jak je to obvyklé u jinych soutézi, ale zamérit se na samotnou
podstatu véci. Jeji ndplni se proto staly Glohy na analyzu a tvorbu algoritmi, Glohy, pro
jejichz Gspésné vyreseni nestaci pouze bézné praktické programatorské dovednosti, ale
které navic vyzaduji od feSitele kus matematického a algoritmického mysleni. Ohlas,
ktery kategorie P rychle ziskala, a stédle rostouci zdjem o Gi¢ast v soutézi svédci o tom,
ze se tyto cile Gispésné podarilo splnit.

V soucasné dobé fesi Glohy MO kategorie P kazdoroc¢né témér 500 studenti vsech
roc¢niki stfednich kol z celé republiky. Zajem o soutéz zacinaji projevovat i nejlepsi
zaci zakladnich skol, ktefi nékdy dosahuji prekvapivé dobrych vysledki, a to i v celo-
statnim kole. Po odborné strance je kategorie P zajistovana vysokoskolskymi pedagogy
z kateder informatiky. Vedle tradi¢nich tf¥i odbornych center pisobicich od samého
vzniku soutéze na matematicko-fyzikalni fakulté Univerzity Karlovy v Praze, pfiro-
dovédecké fakulté Masarykovy Univerzity v Brné a na matematicko-fyzikalni fakulté
Univerzity Komenského v Bratislavé se v soucasné dobé Gspésné jednad i o zapojeni
dalsich vysokych skol.

Z celé fady zajimavych soutéznich Gloh, které se v historii kategorie P objevily,
jsme zde pro vas vybrali alespon tfi. Spoletnym rysem vsech tii Gloh je to, ze jsou
zdanlivé velmi snadné. Skute¢né, nalézt néjaky algoritmus fesici dany problém vam
asi nedd mnoho prace. Zde je vsak tkolem sestrojit algoritmus co mozna nejlepsi
a nejrychlejsi, a to jiz vyzaduje znacné delsi a hlubsi premysleni.

leohy

1. Nejvétsi éisla (MO-P 39-11-1)
Je déno pole A[l..n,1..n] obsahujici n* navzdjem riznych kladnych celych &isel.
Navrhnéte co nejrychlejsi algoritmus, ktery vytiskne n nejvétsich ¢isel ulozenych v poli

2
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A. Puvodni obsah pole A nemusi byt po ukonéeni vypoctu zachovan.

2. Jednickovy obdéluk (MO-P 38-11-2)

Je dano dvojrozmérné pole A (matice) velikosti n x m, jehoz prvky jsou pouze ¢isla
0 nebo 1. Navrhnéte algoritmus, ktery v daném poli A nalezne maximalni ,,obdélnik®
obsahujici samé jednicky (maximalni ve smyslu ,obsahujici co nejvic jedni¢ek®). Vy-
sledkem préce algoritmu bude ¢tvetice ¢isel 7, j, k, [ takovych, ze A; ; je prvek v levém
hornim rohu a Ay ; prvek v pravém dolnim rohu nalezeného maximalniho obdélnika.

3. Nejdelsi rostouci podposloupnost (MO-P 39-11-2)

Je déna konecna posloupnost celych éisel délky n, n 2 1. Prvky této posloupnosti
oznacime po fadé X (1), X(2), ..., X(n). Podposloupnosti délky k vybranou ze zadané
posloupnosti budeme rozumeét libovolnou koneénou posloupnost tvaru X (1), X(i2),

oy X (i), kde 1 £ 4y < iy < ... < i Sn(tzn., ze ze zadané posloupnosti je vybrano
libovoluych & isel, pticemz je zachovano jejich poradi).

Navrhnéte algoritmus, ktery uréi délku nejdelsi rostouci podposloupnosti vybrané
z dané posloupnosti. To znamend, ze uréi maximdlni k takové, ze X(i;) < X(i2) <
< ... < X(ig) pro néjaké indexy 1 £ i) < iy < ... < 4 £ n. Zdivodnéte spravnost
algoritmu.

Napf. pro posloupnost 4, 2, 7, 6,4, 5, 3,9, 8, 5,9 je k = 5, nebof maximalni
vybrana rostouci podposloupnost 2, 4, 5, 8, 9 ma délku 5.

ReSeni

1.  Algoritimus s optimalni kvadratickou casovou slozitosti je zalozen na casto uzi-
vaném postupu: nejprve se provede vhodny predvypocet, jeho vysledky se ulozi do
pomocného pole a poté teprve nasleduje vlastni vypocet vyslednych hodnot s vyuzitim
predem pripraveného pomocného pole.

Zavedeme pomocné pole SiMaz[l..n], které bude obsahovat informace o poloze
maximalnich hodnot v jednotlivych sloupcich pole A. Bude tedy platit SIMaz[j] = i
pravé tehdy, jestlize A7, j] je nejvétsi ze viech &isel ulozenych v j-tém sloupci pole A.

Nejprve provedeme pocatecni zaplnéni pole SiMaz odpovidajicimi hodnotami.
Vybér n nejvétsich ¢isel ulozenych v poli A potom probéhne v n krocich nésledujiciho
postupu:

— pomoci pole SiMaz nalezneme nejvétsi hodnotu ze sloupcovych maxim; tuto
hodnotu ziskdme jako maximum z ¢isel A[SIMaz[j], j] pro j od 1 do n; necht je to &islo
Ali, k]

- ¢islo Afi, k] je tedy nejvétsim z &isel ulozenych v poli A; vytiskneme ho a vy-
pustime ho z pole A dosazenim nuly do A[z, k]

~ obnoviine informaci o poloze sloupcového maxima ve sloupci, v némz doslo ke
zméné, tzn. spocteme novou hodnotu SIMaz[k].

Spravnost algoritmu pfimo plyne z Gvodniho rozboru. V kazdém kroku vypoétu
Je nalezena a vytisténa nejvétsi hodnota z maxim v jednotlivych sloupcich, coz je jisté
nejvétsi ¢islo momentalné se nachdzejici v poli A. Prepsanim tohoto é&isla nulou je
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vytisknuté ¢islo z pole A vynechano (vSechna éisla v poli A jsou podle zadani kladna!)
a v dalsim kroku se tedy bude vyhledavat nejvétsi ze viech zbyvajicich ¢isel. Celkem po
n krocich se vytiskne skutecné n nejvétsich ¢isel ulozenych ptivodné v poli A. Vypocet
je konecny, pocet krokt vypoctu je predem uréen hodnotou n.

Popsany algoritmus m4 kvadratickou ¢asovou slozitost. Piecteni n? éisel ze vstupu
i pocateéni zaplnéni pole SIMaz jisté vyzaduji fadové n? operaci. Vlastni vypocet je
pak tvofen n kroky, pficemz v kazdém z nich je nejprve pomoci pole SiMaz vybrano
maximum z n ¢isel a po jeho vypsani a smazani je opét vybérem maxima z n Cisel
obnoveno spravné zaplnéni pole SIMaz. Pocet provedenych operaci je tedy (imérny
hodnoté n?.

2.V prvni fazi feSeni provedeme pomocny vypocet, pii kterém uréime délky souvis-
lych sloupci jednicek v dané matici A. Vysledky tohoto vypoétu si ulozime primo do
pole A tak, Ze polozime A; ; = k, jestlize prvek A; ; sam a dalsich pfesné k — 1 prvki
pod nim mélo pivodné hodnotu 1, tzn. jestlize v ptivodni matici A platilo A, ; =1
prop=1t,i+1,...,i+k—1anavicbudi+k—1=nneboi+k—1<n aprFitom
Aiyk,j =0 (kde n je pocet Fadkti matice A). Udaje v zadaném poli A tim pozménime,
ale pouze tak, Ze v pripadé potfeby by bylo snadné zrekonstruovat pivodni podobu
pole A (nebot zadna nula v poli A neubyla ani nepfibyla, nenulova ¢isla jsou ulozena
na mistech ptivodnich jedniéek). Vysledek prvni pomocné faze vypoctu si ukdzeme na
prikladu:

ze zadané matice: dostaneme upravenou matici:
11010 34010
11101 23203
11111 12112
01001 01001

Ve druhé fazi vypoctu jiz budeme hledat v poli A maximalni obdélnik tvofeny
jednickami (nyni po Gpravé nenulovymi Cisly). Postupné budeme zkoumat vsechny
mozné pozice levého horniho rohu takového obdélnika. Pro zvoleny levy horni roh
A; ; > 0 musime vyzkouset vsechny pripustné polohy pravého horniho rohu A; ;. Prvek
A;i,; mize byt pravym hornim rohem obdélnika s levym hornim rohem A; ;, jestlize
vsechna ¢isla A; 4 pro ¢ =j, j+1, ..., [ jsou nenulova.

Velikost maximalniho obdélnika, ktery je v piivodni matici A tvofen samymi
jedni¢kami a jehoz levy a pravy horni roh maji soufadnice [i, 5], resp. [i,1], nyni jiz
snadno uréime pomoci hodnot, které jsme si predem pripravili v prvni fazi vypoctu.
Takovy obdélnik ma totiz sitku (! — j+1) a jeho vyska je rovna minimu z hodnot A; 4
prog=yg,7+1,...,01—=1,1L

Uvedeny vypocet je mozno opakovat pro vSechny mozné volby levého horniho
rohu obdélnika a pfitom si v pomocné proménné udrzovat velikost maximalniho jiz
nalezeného obdélnika tvofeného v zadané matici samymi jednickami. V dalsich étytech
pomocnych proménnych si musime zaznamenavat soufadnice levého horniho a pravého
dolniho rohu nalezeného maximalniho obdélnika. Tyto proménné budou po ukonéeni
vypoctu udavat pozadovany vysledek tlohy.
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Spravnost algoritmu plyne z uvedeného rozboru. Pokud zadand matice obsahuje
samé nuly, algoritmus nenalezne zZadny pfipustny levy horni roh obdélnika A;; > 0,
¢imz je tato situace detekovdna. Jestlize matice obsahuje alespon jednu jednicku, musi
obsahovat také néjaky maximalni obdélnik tvoreny jednic¢kami. Dvojice proménnych
i, j béhem vypoctu nabyde hodnot odpovidajicich souradnicim levého horniho rohu
tohoto maximalniho obdélnika, nebot pomoci indext ¢, j algoritmus postupné prochazi
vSechny prvky pole A. Proménna [ potom jisté nabyde také hodnoty sloupcového

indexu pravého horniho rohu maximalniho obdélnika z jednicek a tim bude tento
" maximalni obdélnik nalezen a ulozi se udaje o jeho velikosti a souradnicich. Jestlize
lze v zadané matici A nalézt vice riznych obdélnikii ze samych jednicek této maximalni
velikosti, vyhleda algoritmus soufadnice roht jednoho z nich (toho, ktery byl nalezen
jako prvni). ‘

Vypocet podle uvedeného algoritmu je jisté konecény, nebot pocet prichodu kaz-
dym z cykld je pfedem omezen nékterym z rozméru zadané matice. Naéteni hodnot
matice A ze vstupu a modifikace obsahu pole A v prvni fazi vypoctu vyzaduji provedeni
nm operaci. Ve druhé fazi vypoctu se nm zptisoby voli levy horni roh zkoumaného
obdélnika (indexy i, j) a pro kazdou takovou volbu se provaddi nejvyse m voleb
sloupcového indexu pravého horniho rohu (proménné !). Celkem se tedy provede Fadové
nm? vybéri hornich rohi obdélnika. Kdybychom pro kazdou takto vybranou trojici i,
J, { hledali v nasi upravené matici A maximalni jednickovy obdélnik s levym hornim
rohem A;; a s pravym hornim rohem A;; zvlast, potfebovali bychom vykonat vidy
aZz m operaci na nalezeni minima z ¢isel A; 4 prog=j,j+1, ..., l. Cely algoritmus
by pak mél ¢asovou slozitost O(nm3?). Tento vybér minima neboli uréovani velikosti
maximalniho jednickového obdélnika je ovsem mozné provadét zaroven s postupnym
vybérem indexu [, ¢&imz dosadhneme celkové &asové slozitosti algoritmu O(nm?).

3. Zadanou posloupnost éisel X budeme prochédzet po jednotlivych ¢&islech odpredu
dozadu. V i-tém kroku vypoctu budeme sledovat, jak mohou vypadat rostouci pod-
posloupnosti vybrané z pocateéniho Giseku posloupnosti X délky ¢, tzn. z posloupnosti
X(1), ..., X(i). Pro dosazeni co nejaspornéjsiho a nejrychlejsiho feseni tlohy si
zavedeme pomocné pole M(l..n], do néhoz si budeme prithézné ukladdat nasledujici
informaci: prvek M[j] je v kazdém okamziku roven minimélni dosud znamé hodnoté
posledniho prvku vybrané rostouci podposloupnosti délky j. Dalsi priibézné aktua-
lizovana proménnda k udava délku nejdeldi dosud nalezené rostouci podposloupnosti.
V poli M jsou tedy definovany hodnoty My, M, ..., Mj. Po provedeni i-tého kroku
vypoctu budou tudiz splnény nésledujici podminky:

1) 1£i<n, 15k <,

2) k je délka nejdelsi rostouci podposloupnosti vybrané z posloupnosti X(1), X(2),

ey X(2),

3) pro kazdé j =1, ..., k plati

M; = min{X(i;); existuji indexy 1 < i <ip <...<i; £1i takové,
Ze X(il) < X(iz) S PR X(ij)}

Z posledni uvedené podminky zfejmé plyne platnost nerovnosti M; < ... < M.
Pokud totiz rostouci vybrana podposloupnost délky j mitize konéit &islem M;, pak
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existuje také vybrana podposloupnost délky j—1, kterd vznikne z predchozi uvazované
podposloupnosti vynechanim posledniho ¢lenu. Jeji posledni ¢len bude ovsem jisté
mensi nez Mj, a tedy skutecné plati M;_, < M;.

Po provedeni vsech n krokili vypoctu bude proménna k obsahovat délku maximalni
rostouci podposloupnosti vybrané z celé zadané posloupnosti X(1), ..., X(n), a pravé
to je pozadovany vysledek tlohy.

Zbyva ukazat, jakym zpusobem provedeme aktualizaci hodnot proménné k a da-
Ju ulozenych v poli M pfi jednom kroku vypoctu. Uvazujme i-ty krok vypoétu a zpra-
covani &isla X (7) ze zadané posloupnosti. Je-1i X (7) vétsi nez My, je mozné prodlouzit
dosud nejdelsi nalezenou rostouci podposloupnost o éislo X (7). Zvétsime tedy hodnotu
proménné k o jednicku a pro nové k definujeme tdaj M jako hodnotu éisla X (7).
V opacném piipadé neni mozné dosud nejdelsi vybranou podposloupnost prodlouzit
a hodnota k se tedy nezméni. Muze se ovsem stét, ze ¢islo X (¢) ndm umozni snizit
nékterou z drive stanovenych hodnot M;. Jak jsme jiz uvedli, plati stdle nerovnost
My < ...< Mj. Je tedy mozné najit takovy index j, Ze

bud j=1 a X(i) £ My,
nebo 1<j<k a M1 <X(1) S£M;.

Nastane-li ostra nerovnost X (i) < M;, mizeme snizit hodnotu M;. Existuje totiz
rostouci vybrand podposloupnost délky j — 1 konéici ¢islem M;_;, a protoze X (i) >
> Mj_,, &islo X(7) tuto podposloupnost prodluzuje na rostouci podposloupnost délky
Jj. Jejim poslednim prvkem je pravé &islo X (7).

Uvedeny rozbor je zaroven zdivodnénim spravnosti navrzeného algoritmu. Vy-
pocet je jisté konecny, nebot je tvofen piesné n kroky predstavujicimi zpracovani
jednotlivych prvki posloupnosti X. Kone¢nost kazdého z téchto krokt hned ukazeme.
Pfi vhodné organizaci vypoctu lze dosdhnout ¢asové slozitosti algoritmu O(n logn).
V kazdém z n kroki se totiz kromé jednoduchych akci s konstantni ¢asovou slozitosti
musi vyhledavat v poli M index j vySe uvedené vlastnosti. Pokud bychom index j hle-
dali prostym sekvenénim prichodem polem M, potfebovali bychom provést v kazdém
kroku vypoétu az n operaci, coz by vedlo k celkové ¢asové slozitosti algoritmu O(n?).
Vzhledem k uspofadani prvkii pole M podle velikosti je zde ovsem mozné uréit index
j bindrnim prohledavanim (pilenim intervali) a tedy s ¢asovou slozitosti O(logn).
Odtud plyne ¢asova slozitost celého algoritmu O(nlogn).



Matematické korespondenéni seminare na severni Moravé

Josef Molnér, Jaroslav Svréek

(Prirodovédecka fakulta Univerzity Palackého v Olomouci)

Kazdy jsme jiny a ne kazdy umi predvést své znalosti a dovednosti v danou chvili.
Snad proto mnoha mladym matematikim vyhovuje pravé forma matematického kores-
pondenéniho seminafe (MKS). Jeho smysl — vyhledavani a vychova matematickych
talenti — je stejny jako v pripadé matematické olympiddy, vyuZziva pfitom jinych
forem a metod prace.

Nejinak je tomu také v pripadé olomouckého MKS, ktery navazal na tradici
korespondenéniho semindre organizovaného uéiteli a studenty gymnézia M. Kopernika
v Bilovci. Po vzniku tFid gymnazii se zaméfenim na matematiku ve skolnim roce
1974/75 se hledaly rizné formy mimoskolni ¢innosti. V Bilovci tak vznikl napfiklad
sbornik ¢lanki, jejichz autory byli z4dci matematickych tfid, s ndzvemm Matematika
a po vzoru slovenskych kolegii inicioval profesor gymnazia M. Kopernika Dr. Jifi Vana
v roce 1980 korespondenéni seminar, ktery fungoval pét let. Jeho Glohy fesilo vidy
pFiblizné 60 studentd stfednich Skol z celé republiky. Pro 30 nejlepsich fesitelu se
konalo v obdobi jarnich prazdnin soustfedéni finanéné kryté z prostiedki MS CSR
a JCSMF. Pii soustfedénich s pfednaskami pomahali uéitelé moravskych vysokych
skol, chod seminare pfitom zajistovali studenti biloveckého gymnézia sami pod vedenim
prof. Vani. '

Seminar organizovany na prirodovédecké fakulté UP v Olomouci vznikl z iniciativy
posluchadi oboru matematickd analyza a uditeli kateder matematiky na PFF UP.
Zacal pracovat ve skolnim roce 1986/87. Za pét let své existence proplul mnoha
uskalimi ekonomickych, administrativnich i personalnich problémi. Svou ¢innosti vsak
prispél k vyhledavani a rozvoji matematickych talentii, a to nejen na Moravé. Vzdyt
v jednotlivych rocnicich se ho zicastnilo vzdy 150-200 fesiteli z celé nasi republiky.

U jeho zrodu stali Jarmila Ranosova a Petr Adamek, v té dobé studenti PfF UP,
a uéitelé PFF UP Dr. Jaroslav Svréek a Dr. Josef Molnar, ktery byl vedoucim vsech
péti ro¢niki MKS. Spoluporadateli byli mj. Sm KV MO, olomoucka pobocka JCSMF,
ODDM Olomouc, UP Olomouc a jeji mladeznické organizace.

Korespondenc¢ni ¢ast obsahovala v jednotlivych roénicich 4 -5 zpravidla monote-
matickych sérii po Sesti lohach rizné obtiznosti. Kazdy resitel si mohl vybrat tlohy
podle svych shopnosti, navic prémiové body ¢asteéné vyrovnavaly handicap mladsich
resitelt a studentii ,nenatematickych® trid.

Jiz pravidlem se stalo konani zavére¢ného soustiedéni pro 30 nejlepsich fesiteld
v turistické zdkladné ODDM Olomouc, kterd se nach4zi v malé obci Ochoz u Konice
na Hané. Podle anket Gc¢astniki jsou ochozska soustfedéni velkou motivaci pro fesitele
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zejména svou neopakovatelnou atmosférou, kterd je dana kontinualnim propojenim
matematického 1 nematematického programu, kolektivem vedoucich a charakteristic-
kym razem jednotlivych soustfedéni, ktera se nesla napriklad v duchu antiky, vyletu
do budoucnosti, ,Cernych baroni® a podobné. Od tietiho roéniku se daif zajistovat
jesté dalsi soustfedéni pozvanych fesiteli — zpravidla v Jesenikach, a to v pribéhu
korespondencni casti.

Organizatorim soustfedéni se osvédcil standardni program: dopoledne je véno-
vano prednaskam, cast odpoledne travi Gcastnici v prirodé nebo sportovanim a pak
do vecefe pracuji v seminafich. Je potésitelné, ze 1 vecer davaji castnici prednost
cinnostem spojenym s rozvojem logického mysleni a prostorové predstavivosti. Jeden
cely den v rdmci soustfedéni je vidy vyhrazen pro GRAND PRIX — matematickou
hru, kterou si oblibili Gicastnici i organizatofi soustfedéni obou nasich republik.

Prednasky na soustfedéni probihaji zpravidla dvé soubézné, takze icastnici maji
moznost volby podle zajmu a individualni Grovné. Osvédéenymi lektory a organiza-
tory zavérecnych soustfedéni jsou: RNDr. J. Molnar, CSc., RNDr. J. Srovnal, CSc.,
RNDr. J. Svréek, CSc., z fad studentt vysokych kol pak byvali Gspésni olympionici
a piznivei olomouckého MKS J. Ranosova, P. Adamek, A. Zach, P. Sleich, P. Calabek,
V. Skopal, J. Jezkova, J. Sedlackova, M. Zmeskalova a dalsi, z nichz mnozi se podileji
také na pripravé textti a oprav Gloh korespondenéni ¢asti seminére.

Zavérem predkladame ctendfum ukazku ¢ty Gloh rdzné obtiznosti, které byly
zadany fesitelim olomouckého MKS ve skolnim roce 1989/90.

Zaroven nam dovolte vyslovit nase upfimné podékovani vSem jmenovanym i ne-
jmenovanym nadsenctim, ktefi se dosud podileli na (spésném chodu MKS na severni
Moravé a prispéli tak k rozvoji mladych matematickych talentt v CSFR.

ﬁlolly

1. Rozhodnéte, zda existuje trojihelnik, jehoz vSechny vysky jsou mensi nez 1cm
a jehoz plocha je vétsi nez 1 m?.

2. Jedenacticlenna komise ma ulozeny materidly v trezoru. Jakym nejmensim po-
¢tem zamki je nutno opatfit trezor a kolika klici je tfeba vybavit kazdého ¢lena komise,
aby libovolnych 6 ¢lent komise trezor otevielo a pfitom aby pro 5 ¢lentt komise byl
trezor nedostupny?

3. Necht a, b, ¢, d jsou realna ¢&isla takova, ze ad — be = 1. Dokaite, ze plati a? +
+ b2+ c2+d>+ac+bd> V3.

4. Najdéte vSechny spojité funkce f takové, Ze pro vSechna redlna z plati f(2z +

+1) = f(z).

Reseni

1. Takovy trojahhelnik existuje, coz dokazeme napriklad takto: Uvazujme obdélnik
ABCD, jehoz strana AB ma délku 1cm a strana BC' délku dcm, kde d > 40000.



Matematické korespondencéni semindre na severni Moravé 25

Necht S je priseéik obou tGhlopficek AC' a BD. Snadno nahlédneme, ze trojihelnik
BC'S ma plochu vétsi nez 10000 cm? = 1 m?, pfitom vsechny jeho vysky maji délku
mensi nez 1cm.

2.  Cleny komise je nutno vybavit kliéi nasledujicim zptisobem: Kazdym Sesti ¢lentim
komise pridélime stejny kli¢ od téhoZ zamku. Zbyvajicich pét ¢lenii tento kli¢ nevlastni,
tudiz trezor oteviit nemize. Musi tedy existovat ”) riznych typu klici a stejny
poet zamki u trezoru. Je-li tedy trezor opatfen (?61) = 462 zamky, musi byt od
kazdého k dispozici 6 kli¢i, to jest celkem 6 - (161) kli¢i. Ma-li nyni kazdy clen komise
z tohoto celkového poctu stejny poéep % . (161) ruznych kli¢i, mame zajisténo, Ze
kazdych Sest clenti komise trezor otevie, pfitom pét ¢lent komise k tomu nestaéi.
Kdyby totiz existovala Sestice ¢lent komise, z nichz kazdy ma 1—61- . (161) C (150) = 252
riznych kli¢d od (161) = 462 zamki, ktera by neoteviela trezor, znamenalo by to, Ze
pouze zbyvajicich pét ¢lent vlastni kli¢ od nékterého zamku, ktery nema k dispozici
uvazovana Sestice ¢lenii. To je vsak v rozporu s pridélenim kli¢i od jednotlivych zadmkd.
Trezor musi byt opatfen minimalné 462 zamky, pfitom kazdy ¢len komise musi byt
vybaven 252 riiznymi klici.

3. Podle predpokladu ziejmé plati
bev3 — adV3 = —V/3.

Pfi¢tenim tohoto vztahu k nerovnosti a? 4 b* + ¢ + d? + ac + bd 2 /3 dostaviame
nerovnost s ni ekvivalentni

a? + b+ + d® + ac+ bd + bev/3 — adV3 2 0. (1)
Uvazujeme-li levou stranu nerovnosti (1) jako kvadratickou funkci f proménné a, mame
f(a) = a® + (c —dV3)a + b* + c® + d* + bd + beV/3.

Funkce f nabyva jen nezdpornych hodnot, pravé kdyz jeji diskriminant Dy je nekladny.
Tudiz nerovnost (1) je ekvivalentni s nerovnosti

Dy = (c — dV3)? — 4(b* + ¢ + d® + bd + bev/3) < 0. (2)

Uvazujeme-li nyni levou stranu nerovnosti (2) jako kvadratickou funkci ¢ proménné b,
t).
g(b) = —4b% — 4(d + ¢V3)b — 3¢ — 2cdV/3 — d?,

nabyva ¢ jen nekladnych hodnot, pravé kdyz je diskriminant D, rovnéz nekladny.
Snadnym vypoétem vsak zjistime, ze D; = 0. S ohledem na ekvivalenci uvazovanych
vztahii je tim ovéfena platnost dokazované nerovnosti.

2. Feseni. Uvedme nejprve dvé pomocn4 tvrzeni.

LEMMA 1. Pro libovolna redlna éisla a, b, ¢, d plati identita

(ad — be)? + (ac + bd)? = (a? 4 b%)(c? + d?).
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LEMMA 2. Pro libovolné realné z plati

Wat+1+z2 V3.

Diikaz prvniho lemmatu je trivialni, diikaz druhého lemmatu vyuziva postupné Gpravy:

(2\/x2+l+:v)2:41:2+4+4x 24 1422=

=(2z+ V22 +1)2+3 2 3.

Uzijeme-li dile nerovnost mezi aritmetickym a .geometrickym primérem na dvojici
a®? + b2, ¢? + d? nezapornych &isel, dostavame postupné s vyuzitim lemmat 1 a 2

S =a’4+ b2+ c*+d? +ac+bd 2 2v/(a? + b2)(c? + d?) + (ac + bd) =
= 2/(ac + bd)? + (ad — bc)? + (ac + bd) =
=2/(ac + bd)? + 1 + (ac+ bd) 2 V/3,

coz bylo dokazat.

4. Ukazeme nejprve, ze pro vSechna redlna z plati f(z) = f(—1). Dikaz provedeme
sporem. Predpokladejme, Ze existuje redlné z, pro néz f(z) # f(—1). Pro vsechna

1
celd nezdporna éisla n polozme a,, = :c2—|,-1 — 1. Odtud bezprostifedné plyne, ze a, =
= 2an41 + 1. Pro kazdé celé nezdporné n dle zadani plati f(a,) = f(ao) = f(z),

tudiz lim f(an) = f(z) £ f(~1), zatimeo lim (”1

n—o00 n—o00 n
se spojitosti funkce v bodé z = —1. Proto musi byt f(z) = f(—1) pro kazdé relné
z. Funkce f je tedy konstantni. Naopak kazd4 konstantni funkce zfejmé zadani Glohy
vyhovuje.

— 1) = —1. To je vsak spor



Korespondenény seminar vo vychodoslovenskom kraji

Martin Gavalec, Bozena Mihalikova, Peter Mihok

Historia KMS

V skolskom roku 1985/86 zavfsil Korespondenény matematicky seminar (KMS)
vo Vychodoslovenskom kraji desiaty ro¢nik svojej existencie. KMS je organizovany od
roku 1976 pre $tudentov strednych $kol skupinou uéitelov a Studentov matematiky
Prirodovedeckej fakulty UPJS v Kosiciach.

Ako vznikla myslienka organizoval KMS? V septembri 1976 sa pri Ruzinskej
priehrade konalo ststredenie vybranych riesitelov MO, ktoré mozno povazovat za prvé
sastredenie vychodoslovenského KMS. Boli na tiom uplatnené principy z organizacie
taborov mladych matematikov, ktorych zdkladom je vytvorenie citovej klimy, priazni-
vej pre rozvoj tvorivého myslenia. Vhodna citova klima bola vytvarana uplatinovanim
zdsady dobrovolnosti a podnecovanim prirodzenej potreby telesného, dusevného a so-
cietného rastu Gcastnikov. Matematicky program zaloZeny na samostatnom experimen-
tovani a objavovani, hry s matematickym obsahom, kolektivna sttazivost a pestrost
denného programu — to vsetko spolu s kamaratskym pristupom vedicich vyvolalo
vyrazni zmenu klimy ststredenia. Vzrastla aktivita Gcastnikov na matematickom
i nematematickom programe; prejavilo sa to napriklad aj na priprave a priebehu
spolo¢nych vecerov, po ktorych nasledovali diskusie ¢asto do neskorych vecernych
hodin. Zaver poslednej diskusie pri tdbordku prekvapujiicim spésobom demonstroval,
akym intenzivnym zazitkom bolo stistredenie: Gcastnici vyhlasili, ze st do takej miery
presvedceni o potrebe pravidelnych vzidjomnych kontaktov, Ze s ochotni sami si
organizovat podobné shstredenia a z(castiiovat sa ich hoci aj na vlastné néaklady.
Od vedicich ziadali pomoc pri zabezpeéovani matematického programu a prevzatia
oficidlneho patronitu nad ststredeniami.

Napriek pociato¢nym tazkostiamn sa s(stredenia napokon uskutoénili a teraz tvo-
ria jednu z dvoch zakladnych zloziek KMS. Organizacnej pripravy a vedenia sastredeni
sa ujala skupina matematikov z Prirodovedeckej fakulty UPJS v Kosiciach. Délezitym
momentom bola podpora Odboru skolstva Vsl. KNV, najma zo strany inspektora
RNDr. Martina Lucivianského, L. Schwartza z Vsl. KV SZM a tiez porozumeniu
riaditelstva gymnazia na Smeralovej ulici 9 v Kosiciach, ktori pomohli pri rieSeni
problémov hospodarskeho charakteru. Spomedzi samotnych stredoskolakov, ii¢astnikov
ststredeni, vykonal v poc¢iato¢nom obdobi pri ich priprave velky kus prace J. Niznan-
sky. V skolskom roku 1976/77 prebehlo dalsich pat ststredeni vaésinou 2-3 diovych,
v casovych odstupoch 6-8 tyzdnov. Na siistredenia bol pozyvany stale ten isty kolektiv
vybranych riesitefov MO, ktor{ sa zacastnili sGstredenia na Ruzine. Ststredenia sa
konali podla zdsad osvedéenych na prvom ststredenti.

27
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Priebeh ststredeni ukazal popri ocakavanych kladnych vysledkoch aj niektoré
nedostatky. Doslo k diferencovaniu Gcastnikov, pricom cast z nich prejavovala o ma-
tematiku mensi zdujem, celkova aktivita Gcastnikov poklesla. Kratky cas ststredeni
negativne vplyval na vytvaranie citovej klimy v kolektive, pri problémovom zamerani
programu sa riesenia len naznacovali a nedovadzali do konca. Vysledky v krajskom
kole 26. ro¢nika MO ukéazali, ze olympionici maji tazkosti s pisomnou formuldciou
najdenych rieseni.

Snaha odstranit uvedené nedostatky viedla ku vzniku korespondenéného mate-
matického seminara v takej forme, v akej v podstate pracuje dodnes. Pocet ststredeni
sa znizil na tri rocne, ich dizka sa zvysila na 5-6 dni. Sastredenia boli doplnené
korespondencnou siitazou, na zaklade ktorej sa robi vyber Gicastnikov ststredenti.

Od roku 1977 sa v koreSpondencnej sitazi zadava rocne 8-9 sérii Gloh (po 4-6
prikladoch) a uskutoénuj sa roéne tri ststredenia. Pocet riesitelov korespondenénej
stitaze sa pohybuje v rozpati 50-100 z Vychodoslovenského kraja a 5-20 mimokraj-
skych. Na stistredenia bolo pozyvanych 30-35 Gcastnikov z Vychodoslovenského kraja
a 4-8 mimokrajskych Géastnikov. Pre ilustraciu: za 10 rokov posobenia KMS bolo opra-
venych priblizne 20 000 stitaznych rieseni, uskutocnilo sa 33 ststredeni, k 180 Gloham
boli napisané a rozmnozené komentare. Do KMS bolo zapojenych okolo 600 studentov
z Ceskoslovenska, ale aj z Polska a Madarska.

Opravovanie tloh korespondencnej stitaze a ¢ast organizacnej prace vykonavaji
Studenti Prirodovedeckej fakulty UPJS, prevazne byvali Gcastnici KMS. Studenti PF
UPJS sa tiez zacastiuji na sistredeniach KMS a tym prispievaji ku kontinuite klimy.
Starostlivost o odborn(i a organizaéni napli KMS prebrali katedry matematiky PF
UPJS, od roku 1983 v spolupréci s Krajskym domom pionierov a mladeze v Kosiciach.
V KMS sa podarilo udrzat a rozvint atmosféru nadsenia pre matematiku. Ststredenia
svojou pritazlivou klimou motivuji k systematickej praci v korespondencnej sttazi.
Tym sa nasledovne rozvijaji matematické schopnosti ziakov. Vysledky vychodoslo-
venskych ucastnikov v celostatnom kole MO za obdobie ¢innosti KMS presvedéivo
dokumentuj Géinnost tejto formy prace s matematickymi talentami. Napriklad, kym
za prvych 25 roénikov MO ziskal titul vitaza celostatneho kola MO jediny ucastnik
z Vychodoslovenského kraja, od 26. do 35. roénika MO mal Vychodoslovensky kraj
17 vitazov kola MO.

Vychodoslovensky KMS kratko po svojom vzniku nasiel nasledovnikov. Od roku
zacali pracovat podobné KMS v Bratislave, v Severomoravskom kraji (pri gymnéaziu
v Bilovci). Neskor bol zalozeny KMS v Stredoslovenskom kraji (1979) a v niektorych
krajoch CSR. Ich vplyv na vychovu matematickych talentov je jednoznaéne pozitivny.

Posledné sustredenie...

V maturitnom roéniku pre éloveka vela konéi. Pre maturantov-sistredencov zaéina
¢osi konéit uz v zime. Caka na nich posledné ststredenie. Alebo oni ¢akaji nan. Na
stistredenie, ktoré sa zaradi k radu predchadzajiicich. Uz len horko-tazko ich dokazu
spocitat na prstoch svojich rik. Zvykli si na ne, a vlastne si ten koniec nevedia
dost dobre predstavit. Neopakovatelnd a predsa sa opakujlca atmosféra, aka len tak
Tahko hocikde nepostretnil, stari znami kamarati a priatelia, s ktorymi prerozpravali,
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presaradili ¢éi prezuzolili nejednu noc, neobycajne bezprostredné vztahy medzi nimi,
medzi vedicimi i medzi nimi a vediicimi — toto vietko mé byt o chvilu minulostou?

A potom, ani nevedia ako, ocitaji sa uprostred diania na tomto sistredeni a na
podobné Givahy uz nieto ¢asu. Je zima, vonku je viade plno snehu, alebo aj nie, zatial
¢o vnutri sa podla pravidla najrovnomernejSieho rozdelenia sistredenci rozdeluja do
druzin, ktoré budia tvorit tradi¢nt a nevyhnutn( Struktru pre organiziciu zivota
ststredenia. Obcas ma pravidlo vynimku: jedna druzina nie je celkom rovnomerna vo
vztahu k ostatnym. V Zivote na sistredeni sa jej, ak uz nie vzdy, tak urcite vacsinou
dari. Na ¢o nestaia jej maturanti, po cely ¢as tak trochu prenasledovani tiefiom
bliziaceho sa konca, to s prehladom zvlddnu mladsi, pripadne najmladsi. Nevyhne
sa sice patricnej davke namyslenosti a uzavretosti do seba, ale ona si to v tom case
eSte neuvedomuje.

Postupne zozina tspech za Gspechom na poli najrozli¢nejsich stitazi poriadanych
organiza¢nym vyborom sistredenia. Bezpecne vedie v celostistredennom stipereni dru-
zin, hoci je este pred nou GRAND PRIX — refaz navzijom viac-menej poprepajanych
Gloh, ktord je uz takmer neodmyslitelnou sii¢asfou kazdého siistredenia. Preto si po
kratkej porade svojich ¢lenov, méze dovolit za¢at GP so slovami: ,Je nepodstatné
vyhrat, podstatné je zabavit sa.“

A tak sa spolo¢nymi a zaroven rozdelenymi silami ptista do plnenia aloh. 500bo-
dova Gloha — nastartovat a doviezt pred ubytoviiu byvaly traktor, ktory parkuje
v nedalekom lese a trikrat na nom zatribit — sa zdala byt v prvom momente nespl-
nitelnd. Aké vsak je prekvapenie organizaéného vyboru, ktory ¢iastoéne oddychuje po
umornej praci spojenej s pripravou GP a ¢iasto¢ne dokonluje tto pripravu, ked ho
z tejto ¢innosti vyrusil prichddzajici a trabiaci traktor, v ktorom sedia jej ¢lenovia.
S ujom traktoristom sa zozndmili v miestnom pohostinstve, popri previddzani sociolo-
gického prieskumu medzi miestnym obyvatelstvom. Prieskum pozostdva zo ziskania
maximalneho poctu odpovedi miestnych obZanov na otdzky organizaéného vyboru
typu: ,Ako podla vés vyzera zivy matematik, ,,Co ste urobili preto, aby ste zbavili svet
mnozin®, ,Co si myslite o nas“, a tak dalej. Spociatku nie je pre druzinu jednoduché
len tak z nicoho ni¢ zastavit miestneho obcana, zistit jeho vek, povolanie a ziskat
od neho odpovede; najma poniektori jej ¢lenovia dovtedy s cudzimi Tudmi nezvykli
takmer vobec komunikovat. Splnenie Glohy si vSak od nich vyZiada ziskanie aj tejto
schopnosti, €o, hoci to este teraz nevedia, v budiicnosti parkrat ocenia.

Cestou spat na ubytoviu druzina plni dalsiu lohu — komponuje svoju hymnu.
A zatial ¢o sa organizaény vybor dohaduje, ¢ lovit alebo nelovit medveda na konci
GP, druzina sa zaii nevedomky rozhodne v poslednej slohe svojej hymny: ,,Co je nas po
medvedovi / a po jeho velkej hre, / nie je hlavné, ¢i vyhrdme, / hlavne, Ze sa bavime“.

Vecer eSte prednesie spracované vysledky sociologického prieskumu, a potom sa
uz tesi z velikanskej sladkej odmeny. Maturantom sa zda, Ze je koniec, svoj smitok
i vdaku vyjadruji zapisom na néstenku priani a staznosti. V tom ¢ase eSte nevedia,
ze budiicnost pre nich pripravi eSte nejedno podobné stretnutie.
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Témy KMS v skolskom roku 1986/87

1. Stereometrické Glohy

. Funkcie a zobrazenia

. Pravdepodobnost

. Komplexné ¢isla

. Postupnosti a matematicka indukcia
. Planimetria

. Tedria Cisiel

. Aplikacie matematiky

00 =1 O O b W

I‘Ilolny

1. Nech a, b st prirodzené &isla také, ze a® + b2 je delitelné ¢islom 21. Potom a? + b2
je delitelné aj ¢islom 441. Dokazte.

2. Najdite vietky prirodzené &isla k, pre ktoré je éislo 2F + 1472 druhou mocninou
nejakého prirodzeného cisla.

3. Dokazte: ak n je zlozené &islo, tak stéin vSetkych jeho prirodzenych delitelov nie
Je mensi ako ni. ;

4. Dokaite, ze ¢islo 334! — 3 nie je delitelné éislom 341.

5. Dokazte, ze kazdé prirodzené ¢islo @ mozno jedinym sposobom zapisat vo tvare
a=ay-1'4+ay-2'+...4+a, n,kde 0 S ar Skprek=1,2,..., n. Zapiste v tomto
tvare ¢islo 1984.

6. Suacet piatich nezapornych ¢isiel je 1. Dokazte, Ze ich mozno rozostavit po obvode
kruhu tak, aby stéet vSetkych piatich s(i¢inov dvoch susednych ¢isel nebol vacsi ako -é-
7. Prirodzené &islo nazveme absolitnym prvoéislom, ak je prvoéislom a ak pri [ubo-
volnej permutdcii jeho cifier opat dostaneme prvoéislo. Dokéazte, ze v zdpise absolit-
neho prvocisla nemdzu byt viac nez tri rozne cifry.

8. Rieste v obore celych ¢&isel rovnicu
2z + 3zy + y* = 35.

9. Dopravny podnik sa rozhodol zrusit pat zastavok na autobusove) trati. P6vodne
mala traf 18 zastavok vratane vychodzej a koneénej. Kolkymi spdsobmi mozno zrusenie
uskutoénit, ak nesmi byt zrusené ziadne dve susedné zastavky, ani vychodzia a kone¢na
zastavka?

10. Postupnost ag, ai, as, ... je tvorend nasledovne: ag = 3, a; = 13, pre dalsie jej
leny plati ap4o = 8ar41—15ax, k =0, 1,2, .... Dokdzte, ze tito postupnost je rastiica
a udajte jej prvy ¢len prevysujici 5'°°,

11. Dokazte identitu

- b — = ") = n(n = 1)(n - 2)27"3 n .
> ke 1) 9(}) =nn- =22 weN
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12. Je danych 12 ervenych, 9 modrych a 5 bielych gil. Gule rovnakej farby s
nerozlisitelné. Kolkymi sposobmi mézeme tieto gule rozdelit dvom osobam, ak kazda
ma dostat prave 13 gal?

13. Sachovnica 6 x 6 je pokrytd kockami domina. Dokézte, ze jedna z horizontalnych
alebo vertikalnych ¢iar pretinajicich Sachovnicu nepretina ziadne domino.

14. a) Kolkymi spésobmi mdze otec rozdelit svojim Styrom synom 100 Kés?
b) O kolko sa pocet moznosti zmensi, ak kazdy zo synov dostane aspon 10 Kés?

15. 15 chlapcov a 15 dievéat tancuje v kruhu tak, Ze sa striedaji. Kolkymi sposobmi
sa takto mozu zoskupit?
16. Kolkymi spésobmi je mozné na biele polia sachovnice 8 x 8 postavit 8 (rovnakych)
vezi, aby sa ziadne dve neohrozovali?
17. Dokazte, ze ak sa turnaj 23 hracov odohra za dva dni, potom existujt styria hraci,
ktori vsetky svoje vzajomné zapasy odohraji v ten isty den.
18. Kolkymi spésobmi mozno vybrat tri z vrcholov pravidelného n-uholnika (n 2 3)
tak, aby tvorili vrcholy

a) rovnoramenného

b) pravouhlého

¢) tupouhlého trojuholnika?
19. Dané si redlne éisla a, b. Kolko existuje réznych 100-élennych aritmetickych
postupnosti, ktorych clenmi st a, b7
20. Réano boli vsetky izby v hoteli obsadené. V priebehu dna prislo jednotlivo 15
novych hosti a 20 host{ izby uvolnilo. Kolkymi spésobmi mohli prichddzat na recep-
ciu hostia tak, aby nikto nemusel ¢akat, kym sa niektora izba uvolni? (Uvazujeme

jednopostelové izby.)
\a—+vVa+zx=rc.

22. Urcte, pre aké hodnoty parametra ¢ ma rovnica

21. Rieste v R rovnicu

22— ar+2a+32=0

tri realne korene.

23. Rieste nerovnicu

<

7]

8| -
N | —

1

24. Rieste nerovnicu

\/logg x + logy 22 — 3 > V/5(logy 2 — 3).

25. Rieste nerovinicu
|l —5] 1

6 3

log,s
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26. Najdite vsetky redlne cisla z spiflajﬁce roviicu
jol = | = 8] = Ja+ 4] + |4 —
kde a je dané redlne ¢cislo.
27. Pre ktoré hodnoty parametra a platia pre korene z,, x9 kvadratickej rovnice

2z — 22— 3a—2=0

podmienky z; < 1, z9 > 17

28. Najdite vsetky realne riesenia z, y ststavy rovnic
24+ y* -2 -3y=0,
ar—y—3=0,

kde a je dané realne cislo.

29. Rieste rovnicu i
asinz+b acosz+b

bcosz +a  bsinz+a’

kde a #0, b6 # 0.
30. Uréte hodnoty sin z, cos z v zavislosti od parametra a, ked viete, 7e tg 2 +cotg x =
= a.
31. V rovine R? je dany konvexny $tvoruholnik ABC D taky, ze vzdialenost kazdého
vrcholu od kazdej strany, na ktorej nelezi, je aspon %\/5 Dokazte, ze obsahuje aspon
tri mrezové body.
32. N4ajdite vsetky hodnoty realneho parametra A, pre ktoré lezia vsetky body kon-
vexného obalu mnoziny {(0,0)} UM, na jednej priamke, kde M, je mnoZzina rieseni
sustavy

—224y20, 224+ (@y-N2<1, z=)

33. Saéet mnozin je definovany vztahom A+ B = {a +b:a € Ajb € B}. Ak A je
neprazdna mnozina redlnych cisel s vlastnostou A + A = A tak v A existuje nulova
postupnost (tj. postupnost, ktorej limita je 0). Dokazte a zistite, ¢i mnozina A musi
obsahovat 0, ak obsahuje kladné aj zaporné ¢isla.

34. Ak A je neprazdna konvexna mnozina bodov v rovine s vlastnostou A + A = A,
tak v A existuje postupnost {(z,,y,)}5%, taka, ze postupnost {z2 +y2}52, je nulova.
Dokazte a zistite, ¢1 je pravdivé tvrdenie, ze ak A+ A = A a v A existuje nulova
postupnost, tak A je konvexna mnozina.

35. Nech a, b, csh diiky stran trojuholnika, potom existuje trojuholnik, ktorého strany

a b c .
por Rl er Heene & Dokazte.
36. Urcte aky moze byt obsah trojuholnika so stranami @ 2 b 2 ¢ v nasledujicich
pripadoch: 1) @ £ 1;2) b £ 1; 3) ¢ £ 1. Pre ktoré trojuholniky dosiahne obsah ndjdent
hodnotu?

maja dizku
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37. Dokazte, ze ak Stvorec S je vpisany do trojuholnika T" tak, ze jedna strana Stvorca
S lezi na obvode T, potom obsah S je najviac polovica obsahu T'. Urcte vsetky pripady,
kedy nastane rovnost.

38. Medzi vsetkymi trojuholnikmis danym obsahom najdite trojuholnik s najmensim
obvodom a trojuholnik s najvac¢sim obvodom.

39. Pre dfiky stran a, b, ¢ a pre obsah P Tubovolného trojuholnika plati a® + b2 +¢? >
2> 4P+/3. Dokéite a urite, kedy nastava rovnost.

40. Nech bod E je vnitornym bodom strany AC' trojuholnika ABC. Rovnobezka
s priamkou AB cez bod E pretne stranu BC' v bode F, rovnobezka s priamkou AC
cez bod F' pretne stranu AB v bode (. Najdite vsetky body E také, ze priamka EG
je rovnobeznd s priamkou BC'.

41. Zostrojte pravouhly trojuholnik ABC' s preponou AB, ak st dané stcty b+c = p,
¢+ a = q jeho stran a, b, c¢. Urobte diskusiu vzhladom na p, q.

42. Zostrojte trojuholnik ABC', v ktorom prieseénik V' jeho vysok deli vysku pre-
chadzajicu vrcholom A na polovicu, ak je dand velkost strany |[AB| = ¢ a uhol
« = |[4CAB|. Urobte diskusiu riesitelnosti vzhladom k velkosti uhla «.

43. Nech kruznice ky, ko, k3 maji stredy vo vrcholoch ostrotihleho trojuholnika ABC
a prechadzaj priesecnikom V' jeho vysok. Dokéazte, ze po dvojiciach sa ky, ko, k3
pretinaji na kruznici opisanej trojuholniku ABC'.

RieSenia

1.  Vyuzime pomocné tvrdenia: ak 3 | a®+b% (7|a?4b%), potom 9 | a®+b? (49 | a®+4b?).
Do6kaz sa najcastejsie robi tivahou o zvyskoch pri deleni a, b ¢islami 3 a 7; tak dospejeme
k tomu, ze 3|a, 3|b, 7|a, 7|b. Zaujimavy je dékaz pomocou malej Fermatovej vety
(ak p je prvoéislo a p nedelf ¢, potom p|cP~! —1). Pre p = 7 plati: ak 7 nedeli a ani b,
potom 7 |a® — 6% — 2 = (a® + b?)(a* — a®b® + b*) — 2, ¢o je spor s T|a® 4+ b%. Ak 7]a,
7|0, tvrdenie plati trivialne.

Analogicky pre p = 3.

2. Mnohi riesitelia dosadzovanim k = 1,2,..., prisli na to, ze spomedzi tychto cisel
vyhovuje iba k = 7 (27 4+ 1472 = 40%). Bolo vsak potrebné dokazat, Ze je to riesenie
jediné (tj., ze pre k 2> 8 &islo 2F + 1472 = 2% 4 26.23 = 25(2F=6 4 23) uz nemédze byt
Stvorcom ziadneho prirodzeného &fsla). Keby 26(2%¥=6 4 23) bolo tvorcom, muselo by
byt Stvorcom aj ¢islo 2" 4+ 23, n 2 2, ¢o znamend, ze by existovalo také prirodzené
¢islo m, pre ktoré 2™ 423 = (5 + m)?.

Upravou dostavame: 2" + 23 = 25 + 10m + m?, odkial vyplyva, ze m je parne
&islo, m = 2p, a teda 2" — 4p? — 20p = 2. Ale pretoze n 2 2, je ¢islo na lavej strane
delitelné Styrmi, ¢o je hladany spor (prava strana styrmi delitelnd nie je). Vyhovuje
teda jediné prirodzené &islo k = 7.
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3. Nech dy, ..., di st vsetky navzdajom rozne delitele ¢isla n. Ku kazdému z tychto

delitelov d; priradme zdruzeny delitel g— D4 sa lahko dokazat, ze {d;,...,dx} =

n 7l b4 ’ v

= —CE, ceey a , CO znamena, ze
n n
d]'dg'...‘dk: — et
(11 dk

odkial
o
(l?wlg-..,-d%:nk.

Pre sGcin vSetkych prirodzenych delitelov ¢isla n teda plati

k
dy-dy-...-dp =n2,

a ak je n zlozené, tak k 2 3, a teda

Dl

k
dy-dy-...-dpy=nz 2n2.

&

4. Je potrebné si uvedomit, ze &islo 33*! — 3 ma prilis vela cifier na to, aby bolo
vhodné riesit Glohu tak, ze Lo budeme ¢islomn 341 delit! Najvtipnejsi je asi nasledovny
postup: upravime 341 = 11-31 a 331 — 3 = (3341 — 3331) 4 (3331 — 3). KedZe

3.’53] —-3=3. (3330 o ]) — (311 . 3)(3320 + 3310 + .+ l)7
3331 —3=3-. (3330 o 1) — (331 o 3)(3300 + 3270 4.+ 1))

podla zndinej malej Fermatovej vety (ak p je prvoéislo, tak a? —a je delitelné éislom p)
je 3331 — 3 delitelné 11-timi aj ¢islom 31, teda i éislom 341. Keby bolo éslo 3341 — 3
delitelné ¢islom 341, muselo by aj ¢islo 3341 — 3331 byt delitelné 11-timi a 31-kou. Ale
slo 3341 — 3331 — 3330(311 _ 3) je delitelné iba 11-timi, ale nie ¢islom 31, ¢o bolo
potrebné dokazat.
5. Najskor ukazeme jednoznacnost takéhoto zapisu. Nech

ay-'+ay 2!+ ... 4a, nt=a=b;-1'+b,-2'4+...+ b, -n!,

kde 0 € a;, b; £ 1, a nech existuje taky index j, ze aj # b;. Oznaéme k = min{i: a; #
# b;}, ). pre vietky i < k je a; = b;. Potom

ap k' appr - (K+ D)+ apgo - (B+2)!'+ . 4 a, - nl =

1
:bk=k!+{)k+1-(k’+l)!+[)k+2~(k+2)!+...+bn~n! ( )

Mézeme predpokladat ay > by. Kedze 0 < ay Sk, plati ag -k![m! pre k+1 < m < n.
Potom z (1) mame, ze
ap - k!'-A=0bp k!4 ay A'B,
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kde A, B su celé. Z toho vyplyva, ze ay. - k!| by - k!, ale ai - k! > by - k!, €o je spor. Tym
je jednoznaénost ukazana. Dalej ukdZeme existenciu takéhoto zapisu. Nech a 2 1 je
Tubovolné prirodzené é&islo. Najdime také n, pre ktoré je n! £ a < (n + 1)!. Potom a
vieme napisat vo tvare a = a,n! + p,, kde 0 £ a, < n,0 < p, £ n!, an, pp st celé
Cisla.

Dalej

Pn=an1(n—=1)!+po_y, kde 0Sapn_1Sn—-1, 08 pu_1 <(n-—1)}

Pn—1 = apn_—2(n—2)+p,_o, kde 0L apn_2Sn—-2, 0 pp_a<(n—2),

ps=az-2!, kde 0Za2 <2, 05 po,
p2:(11~1!, kde 0§01§2,

a teda
a=apn!+ap1(n—1)+...4az-2'+a; -1}

pricom 0 £ ax Sk, pre k =1, 2, ..., n. Pomocou uvedeného postupu méame
1984=2-6!'+4-5!'+2-4'+2-314+2-2140- 1L

6. Nech a, b, ¢, d, e st nezaporné ¢isla, také ze a+ b+ c+ d + e = 1. Vychadzame
z nerovnosti medzi kvadratickym a aritmetickym priemerom nezapornych ¢isel

\/a2+b2+c2+d2+62 S atbtetdte 1
5 = 5 5

: : P , 2 1

Po umocneni (obidve strany s nezdporné) a tprave mame a? +b? +c? +d* +€? > 5

teda

(a+b+c+d+e)* —2(ab+ ac+ ad + ae + be + bd + be + cd + ce + de) 2 %

Odtial vyuzitim rovnosti @ + b+ c+ d + e = 1 dostaneme

(ab+ be + cd + de + ea) + (ac + ce + eb + bd + da) <

[S2 1l ]

v . 4 , ’ .  eevvs ~ 1 J , s . ’
Teda aspon jeden z vyrazov v zatvorkach nie je vacsi nez —. Hladanym Gsporiadanim

[}

Je jedno z tychto usporiadani.
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7. Zrejme absoliitne prvoéislo neméze obsahovat &islice 0, 2, 4, 6, 8 kvoli delitelnosti
dvoma a &islicu 5 kvéli delitelnosti piatimi. Ukdzeme, Ze ak ¢&islo obsahuje kazd z éislic
1, 3,7, 9, tak nie je absolitnym prvocislom. V§imnime si, ze ¢isla 1379, 1793, 9137,
1739, 1397, 1973 davajia pri deleni siedmimi zvysky postupne 0, 1, 2, 3, 4, 5, 6. Nech
Cislo A obsahuje kazdi z ¢islic 1, 3, 7, 9 a &islicu b 2 0. Pomocou permutécie jeho
cifier mozeme utvorit éislo B = 10000 - b + 1379. Ak teraz 10000 - b dava pri deleni
siedmimi zvySok z, vyberme taka permutaciu p ¢isla 1379, ktora pri deleni siedmimi
dava zvysok 7 — z, potom ¢&islo C' = 10000 - b+ p vzniklo z A permutéciou jeho cifier
a je delitelné siedmimi. Teda A nie je absollitne prvoéislo, z ¢oho vyplyva, ze kazdé
absolitne prvocislo obsahuje najviac tri rozne cifry.

8. Rovnicu upravime na tvar (2z + y)(z + y) = 35. KedZe rovnicu riesime v obore
celych &isel, st aj 2z + y, = + y celé. Pre rozklad ¢isla 35 na sGéin dvoch celych
¢isel mame 8 moznosti: 35 = 1-35 = 35-1 = (=1)(=35) = (=35)(-1) = 7-5 =
=5-7=(=5)(=T7) = (=7)(—5), ktorym zodpoveda 8 rieseni rovnice. Tieto ziskame
rieSenim s(stavy dvoch linedrnych rovnic o dvoch neznamych. St to riesenia (—34, 69),
(34, —69), (34, -33), (—34,33), (2,3), (-2,-3), (-2,9), (2,-9).

9. Po zruseni 5 zastavok ostalo na trati 13 zastdvok, medzi nimi 12 medzier. Kedze
nebola zrusena ani prva ani posledna zastavka, tak zrusené zastavky pochadzaja
z tychto 12 medzier, pricom z kazdej najviac jedna (lebo neboli zrusené ziadne dve
susedné). Staéi teda urcit, kolkymi spésobmi mozno vybrat 5 medzier z 12 (v nich st
zrusené zastavky), a to je (152) = 792.

10. Cast riesitelov nenasla explicitny vzorec, preto pracovali s rekurentnym zadanim
postupnosti. Indukciou, vaésinou v8ak velmi tazkopadne, dokazovali, Ze postupnost je
rastica. Jedine M. Foltin si vSimol, Ze 3a; < ak4; pre vietky £ € N, a dokazal to
trividlnou indukciou: je 3ag < a; a z predpokladu 3ar < ag41 vyplyva, ze

A 42 — 3(lk+1 = 8ak+1 — 15a; — 3ak+1 = 5((lk+1 — 3ak) > 0,

teda ag42 > Jag4i.

Druh ¢ast tlohy nevyriesil v tejto skupine riesitelov nikto, najsilnejsi vysledok
dosiahol opat M. Foltin: dokdzal, ze pre vsetky £ € N je ax4+1 < Hag, potom zrejme
ar < 3-5% teda prvy ¢len ktory by mohol prevysit 51°0 je a;g, lebo age < 3-5%° < 5100,

Viésina riesitelov dokazala explicitny vzorec ax = 3% + 2. 5% 2 ktorého lahko
vyplyva monoténnost aj to, Ze hladany ¢len je ajgp. Niektori vzorec odpozorovali
z prvych niekolkych ¢lenov, inf uviedli aj spésob urcenia takéhoto explicitného predpisu
z rekurentného zadania postupnosti.')

11. Riesitelia vyuzili rovnost

e E () ()

k=0 k=0

1) Explicitny vzorec najdeme tak, ze hfadame geometrické postupnosti, ktoré spif\ajﬁ dany rekurentny
vztah. Dosadenim takej postupnosti cA\¥ do rekurencie dostaneme kvadratickii rovnicu \? — 8\ +
+ 15 = (A= 3)(A = 5) = 0, ktord ma korene \; = 3, A, = 5. Potom plati, Ze vSeobecné rieSenie
danej rekurentnej rovnice ma tvar ax = A - 3 + B - 55, Z po&iato¢nej podmienky ag = 3, a; = 13
dostaneme A = 1, B = 2.
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a fakt, ze pre n = 0, 1, 2 s obe strany uvazovanej identity nulové. Potom tipravami
dostaneme

;k(k—l)(k—Q)(D Zk,(n ~1)(k-2) =

(n=3)n(n—-1)(n-2)
Z (k= 3)(n—k)! -

=n(n—1)(n—-2) 2 (: : 2) =n(n—1)(n—2)2"3.
k=3
Iné rieenie poslal M. Englis. Ten vyuzil rovnost
(Zz4+2)"=(z+14+1)".

Koeficienty pri z”™ na oboch strandch rovnosti sa musia rovnat; z binomickej a trino-

!
n\ guem _ M
m iljlm!’

kde i + j + m = n. Polozme n — i = k, potom po Gpravach pre k =0, 1, ..., n vyjde

4 N n k
(m) 2 B Z (k) (m) '
m§lc§n

odkial pre m = 3 dostaneme
n "L /n\ [k
271-3 =
B)r=200)

a po vynasobeni oboch stran ¢islom 6 mame dokazovani identitu.
I. Teresc¢ak pouzil 3. derivaciu polyndému

(1+2)" = (3) 4 (7;).r+ (;):c2+...+ (Z)z"

n(n—1)(n—2)(1+z)"~ 3Zk(k—l) k-—Z)(L) k-3

k=0

mickej vety dostdvame

a dostal

. . . 2 s
¢o pre z = 1 dava pozadovanii rovnost.

12. Najcastejsim typom riesenia bolo hladanie vsetkych moznosti pomocou réznych
systémov. Najekonomickejsie bolo rozdelit si pripady podla toho, kolko bielych gal
dostane prva osoba. V Siestich moznostiach (0, 1, 2, 3, 4, 5 bielych gil) vyslo postupne
94104 10+ 10+ 10 + 9 = 58 moznosti.

Iné riesenia vyuziva vytvarajicu polynomick( funkciu: poéet rozdeleni je rovny
koeficientu pri z'® v polynéme (14+z+.. .+2°%)(1+z+2%+.. 42°)(1+z+z’+.. +2z'3).
Je mozné odvolaf sa tiez na vysledky zo SMM &. 29 a 45.

P. Krtous riesil tlohu takto: Je 6-10 = 60 moznosti, ako moze jedna z osdb dostat
biele a modré gule. Vo vietkych pripadoch okrem 040 a 549 mozno kombinaciu doplnit
cervenymi gulami do 13. Vysledok je teda 60 — 2 = 58.
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13. Nech je sachovnica lubovolne pokrytd 18 kockami domina. Kazd4 z desiatich
priamok (5 horizontalnych, 5 vertikdlnych), ktora pretina Sachovnicu, ale nepretina
ziadne pole tejto sachovnice, rozdeli sachovnicu na dve Casti tak, ze v kazdej z tychto
Casti je pdrny pocet poli. Preto, ak ¢iara pretina domino, musi pretat vidy parny pocet
domin (aspon dve). KedZe ¢iar je desat a domin iba 18, podla Dirichletovho principu
musi existovat Ciara, ktord nepretina ziadne domino.

14. a) Ulozme 100 jednokorunovych minci do radu. Troma pali¢kami ich rozdeline na 4
podmnoziny, ktoré predstavuji peniaze pripadajice jednotlivym synom. (Uvazte, akd
pozicia pali¢iek urcuje sumu 0 Ké&s pre niektorého syna.) Teda ide o to vybrat zo 101
medzier (99 medzier medzi mincami a pozicia pred a za mincami) tri miesta pre palicky,
pricom vybrané miesta sa mozu opakovat. To je mozné urobit (3“21_1) = 176851
spOsobmi.

b) Ulohu prevedieme na predchadzajtci pripad: Otec da vopred kazdému synovi
po 10 Kés a rovnakym sposobom ako v a) rozdeluje zvy3nych 60 Kés. Tym sa pocet
moznosti zmensi o 137 140.

15. 15 chlapcov mdzeme do radu postavit 15! spésobmi. Pri postaveni do kruhu, ak
rozostavenia vzniknuté pootocenim kruhu povazujeme za rovnaké, je zrejme 15-krat
menej moznosti, teda 14!. Ak sa chlapci maji v rozostaveni s dieviatami striedat,
mézeme teraz do medzier medzi chlapcami (je ich 15) rozostavit dievéata 15! sposobmi.
Celkovy pocet sposobov je teda 14!- 15!

16. Predpokladali sme, ze dve veze sa podla Sachovych pravidiel ohrozuji, ak stoja
v tom istom riadku alebo stipci sachovnice. (Samozrejime inak je pocet spdsobov
rozostavenia 8 vezi (;2)) Uloha je velmi fahké. Sta&i si totiz uvedomit, ze ak oznacime
riadky a stil)ce sachovnice zauzivanym sposobom, navzajom sa ohrozuji iba veze
z riadkov 1, 3, 5, 7 (respektive 2, 4, 6, 8) a stipcov a, c, e, g (respektive b, d, f, h).
Kedze mame 8 vezi, v kazdom riadku i stipci bude stat prave jedna veza. Ak postavime
vezu Tubovolne do 1. riadku na biele pole, mame 4 moznosti, ale potom do 3. riadku ju
moézeme postavit iba 3 sposobmi, do piateho riadku dvoma spésobmi a v 7. riadku je uz
postavenie veze vynitené (1 spésob). Vyuzijic pravidlo sicinu dostavame 4! moznosti.
Analogicky to plati pre veze umiestnené v riadkoch 2, 4, 6, 8. Celkovo teda mézeme
rozmiestnif veze (4!)? = 576 spdsobmi.

17. Pri rieSeni tejto tlohy je vyhodné pouzit Dirichletov princip (pozri SMM ¢&. 25).
Priradme hracéom vrcholy a zdpasom hrany Gplného grafu s 23 vrcholmi, pricom hranu
zafarbime bielou (resp. ¢iernou) farbou, ak prislusni hrac¢i odohrali vzajomny zapas
prvy (resp. druhy) defi. Zvolme [ubovolny vrchol A; podla Dirichletovho principu
existuje aspon jedenast vrcholov , ktoré st s nim spojené hranou tej istej farby. Lahko
sa dokaze, ze nemoze nastat taka situdcia, aby sa v kazdom vrchole schadzalo prave
11 bielych a prave 11 ¢iernych hran (zdovodnite!), a preto musi existovat taky vrchol
Ao, ktory je spojeny s aspoi 12 vrcholmi tej istej farby. Dalej sa ui pokracuje tak,
ako v priklade 34 (SMM 25, str. 48). Niektori dokazali, Ze uz pri turnaji 20 hracov
musi uvedend situdcia nastat. D4 sa dokazat, ze Stvorica hracov danej vlastnosti musi
existovat aj pri turnaji 18 hracov, pricom je mozné turnaj 17 hraéov vyzrebovat tak,
ze ziadna Stvorica hracov neodohrd vzajomné zapasy v ten isty den. N4jdenie takého
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rozlosovania je vsak velmi naroéné.
18. Pri diskusii je treba uvazit vzdy niekolko moznosti. Kedze postup riesenia je
v podstate jednoduchy, uvedieme iba vysledky:

a) Z vrcholov pravidelného n-uholnika mozno vybraf tri vrcholy tak, aby tvorili
rovnoramenny trojuholnik 7, sposobmi, kde

(1) rn = % 1(n —2), ak n je parne a nie je delitelné tromi,
(i) r, = % 1(n—2)— %n, ak n je parne a je delitelné tromi,
(iii) = gn(n—2), ak n je neparne a nie je delitelné tromi,
(iv) rn=3in(n—2)— 2n, ak n je neparne a je delitelné tromi.

b) Ak je n parne, je mozné utvorit %n(n — 2) pravouhlych trojuholnikov; ak n je
neparne, ziaden z trojuholnikov ktoré tvoria vrcholy, nie je pravouhly.
¢) Ak je n parne, mozno vybrat 1 Zn ( n— l) ( n— 2) roznych tupouhlych trojuhol-

nikov; ak je n neparne, je hlc\dany potet In-1(n—-1)(3(n-1)-2).

19. n-clennou aritmetickou poétupnost’ou rozumieme taka usporiadani n-ticu reél-
nych &isel (ay,as,...,a,), pre ktora plati a;41 — a; = d (diferencia), pre kazdé i = 1,
2, ..., n — 1. Z definicie lahko vyplyva, ze ak st dané dva ¢leny a; = a, a; = b, i # j,
tejto postupnosti, vietky ostatné ¢leny st uz jednoznaéne uréené. Stali teda dokazat,
ze ak a # b, tak existuje prave tolko réznych postupnosti, kolkymi spésobmi mdzeme
vybrat spomedzi ¢isel 1, 2, ..., n indexy ¢, j tak, ze a; = a a a;j = b. (Odévodnite
pomocou diferencie d.) Potomn je uz zrejmé, ze v pripade a # b existuje prave 100 - 99
roznych 100 ¢lennych postupnosti, ktorych ¢lenmi st a, b.

Ak a = b, tak jedine konstantna postupnost d = 0 vyhovuje zadaniu Glohy, pretoze
vtedy musi postupnost obsahovat to isté ¢islo na dvoch réznych miestach.

20. Za jeden spdosob prichodu pokladdme usporiadanti 35-ticu, v ktorej udalost, ze
host prisiel, oznacime 1, a ze odisiel 0 (¢ize ndm nezalezi na konkrétnom hostovi).
Celkovy pocet prichodov je (20) od ktorého vsak musime odéitat pocet tych 35 tic,
v ktorych pred nejakym miestom je vacési pocet 1 ako 0.

Vezmime jednu nevyhovujicu 35-ticu. Nech 7 je prvé z miest, kde host musi ¢akat,
teda pred nim je rovnaky pocet 0 a 1. Vytvorme 36-ticu, ktord na prvom mieste
bude mat 0 a dalej bude mat nasu 35-ticu. Vymenme navzdjom 0 a 1 v 36-tici aZ
po povodné i-te miesto (véitane). Pocet nil a jednotiek sa nezmenil (preco?). Z tejto
36-tice dokazeme ziskat kazda 36-ticu, ktors mé4 na 1. mieste jednotku takto: v 36-
-tici je 15 jednotiek a 21 ntl — tj. musi na j-tom mieste nastat pripad, Ze pred nim
bude rovnaky pocet 1 a 0 a na j-tom mieste bude 0. Opat vymenime navzajom 0
a 1 aZ po j-te miesto véitane. Vynechajme prvii nulu — dostaneme nevyhovujicu
35-ticu. Takze pocet nevyhovujicich 35-tic sa rovna poctu vsetkych usporiadanych
36-tic (15 jedniciek, 21 nul) ktoré majii na prvom mieste 1 a tych je (21) Pocet
prichodov hosti je teda ( ( ) = 927983 760.

21. Z poéiatoénych podmienok

220, a+220, a=+Va+z
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plynie a = 0 alebo a@ 2 1. Ak oznadime \/a + z = y, dostaneme rovnice

atz=y,

a—y=z2.

Ak ich od seba odéitame a upravime, vyjde

(y—z-1)(y+z)=0.
Do rovnice y — z — 1 = 0 dosadime za y a vypoéitame

—1++v4a -3

T2 = )

Kedze z4 = %—1 — VA4a — 3 nespliha podmienku z 2 0, je rieSenim danej rovnice iba

_ = 1++V4a-3
Se———

Casto riesitelia robia ti chybu, ze do rovnice £ = —y dosadia za y. To je vsak
nekorektné, lebo z 2 0, —y < 0. Rovnost plati len v pripade, ze z = —y = 0,\/a + z =
=0, takze a = 0.

Elegantnejsie rieSenie dostaneme, ak rovnicu umocnime (tym dostaneme pod-
mienku a 2 z?) a opat umocnime, takze a? — a(2z? + 1) + z* — z = 0. RieSime ju ako
kvadraticki rovnicu v a, ktorej korene si

. 222+ 1+ /(222 +1)2 - 4(z* - 1) {m?+z+1,
12: A =
’ 2

o
r- —x.

Vzhladom na podmienku a > z? dostaneme pre a = a; rovnicu 22 +z+1—a = 0,
ktora sme riesili v predchadzajicom odstavci, pre a = as potom vychidza a = z = 0.

22. 7 tvaru krivky kubickej paraboly vyplyva, ze rovnica ma tri korene, ak o funkcii
f(z) = 23 — az + 2a + 32 = 0 plati: existuji z, < z2 také, ze

fl(x1) = f'(z2) =0, f(x1) >0, f(z2)<0.

Ak polozime prvii derivaciu rovni nule, dostaneme kvadratickii rovnicu 3z? — a = 0,

cize
z ¢ ¢ a>0
=/ T2 = —\/5 .
! 3 : 3

Je f(z1) > 0 pre vietky a (o tom sa presvedéime dosadenim do funkcie). Aby
bolo f(z2) < 0, musi byt (opat po dosadeni za x do f)

Ja+48 < a\/g.
3
a) Ak a > 48, potom \/g > 4, teda a\/g > 4a > 3a + 48.

b) Ak a £ 48, potom \/g < 4, teda a\/g < 4a < 3a +48.

Odtial vyplyva. Ze rovnica ma tri rozne korene pre a > 48.
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23. Ak z je riesenim danej nerovnice, tak

1 1
> e
20, s 2>0.

«

= e

1
1‘#0; F—

Z tychto podmienok vyplyva, ze
2
ze (o, 73> (1)

S . . o 2
Po umocneni a Gprave (ktora je pri podmienke (1) ekvivalentnd) mame z € <0, %> N
. . * 0’ v 2
N (1, 00). Takze nerovnici vyhovuja vsetky = € (1, -ﬁ>
24. Ak z je rieSenim tejto nerovnice, potom vzhladom na to, ze v nej vystupuje log, z,

musf byt > 0. Pri tejto podmienke je?)

log, x

log, %

log% z? = QIOg% r = = —2log,

a podobne log, % = log, z. Potom pdvodnii nerovnicu mozeme pisat vo tvare
Vilogsz — 2log, & — 3 > V5(logy = — 3).

Vzhladom na odmocninu musi byt

. 1
logiz —2log,2—320, tj. z¢€ (O,§>U(8,oo).

. . 1
Ak je Jg(logzz —3)<0,t).ak z € (0, -2->, nerovnost plati. Inak mézeme obe

strany nerovnice umocnit; potom
(logyz — 4)(log, x —3) <0, tj. z€(8,16).

Nerovnici teda vyhovuja vsetky z € (0, %> U (8,16).

25. Ak « je rieSsenim nerovnice, tak

z >0, z# 1, z #5. (1)
Nerovnicu upravime na tvar
|z — 5| 1
lOg_,L.:s 6z ; lngs ; (2)

Dalej sa Gloha rozpada na dve ¢asti: pre ¢ > 1 sa odlogaritmovanim znamienko nerov-
nosti v (2) nemeni a dostdvame z 2 11, v druhom pripade pre 0 < £ < 1 sa nerovnost
obrati a dostavame = € (0, 1). Nerovnici teda vyhovuja vietky z € (0,1) U (11, 00).

%) logariun(;vam'm rovnosti ¢ = a'°8a * dostavame log, « = log, xlog, a (uvedeny vztah dostaneme
prea =3, b=2)
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26. KedZze pre kazdé realne éisla a, b platia nerovnosti
la—b] 2 |a|—[b] &  [a+b]<a|+[b],
dostavame odhad
8=lz—(z-8)[2e|-[z—8[=at+4[+|4—a| 2 |(a+4)+ (4-a)| =8,

a teda rovnici mézu vyhovovat len tie hodnoty parametra a a neznamej x, pre ktoré
nastdva rovnost, teda musi platit

la+4]+4—a|=8  atiez |z| = |z — 8| =8.

Odtial hned vyplyva riesenie. RieSenim rovnice pre kazdé a € (—4,4) je kazdé z €
€ (8,00). Pre iné hodnoty parametra ¢ nema rovnica ziadne riesenie.

vvvvv

ako 1.
Nech a # 0. Parabola f(z) = 2az? — 2z — 3a — 2 rozdelf rovinu na tri mnoziny

M = {(z,y) €R*: y < f(2)},
M: = {(z,y) €R*: y = f(2)},
M3 = {(z,y) eR*: y > (2)}.
Podmienky tlohy hovoria, ze ak 1 < x5 s korene danej rovnice, tak 1 € (2, z3).

Teda pre a > 0 musi byt (1,0) C M3 a pre a < 0 zas (1,0) C M;. VySetrenim tychto
podmienok ziskame nutnit a postacujiicu podmienku pozadovani v zadani.

Ak a > 0, potom plati 0 > 2a—2—3a—2 = —4—a, ¢o je ekvivalentné s nerovnostou
a > —4, &ize vyhovuje interval (0, c0).
Ak a < 0, potom 0 < 2a — 2 —3a — 2 = —4 — a, ¢o je ekvivalentné s nerovnostou

a < —4, &ize vyhovuje interval (—oo, —4).
Podmienky zo zadania platia prave vtedy, ak a € (—oo, —4) U (0, 00).

28. Dosadenim vyrazu y = 3 — az do prvej rovnice dostavame
22+ (3 —az)? -2z - 3(3 —az) = 0.
Ekvivalentnymi Gpravami dostaneme rovnicu
(@ +1)z? = (3a+2)z=0

s korenmi

21 =0 a x_3a+2
' et

. 2 , . L.
priom z, # z3 pre a # -3 Po dosadeni z; do 2. rovnice dostaneme riesenie (0, 3),

3a+2 3—2a)

po dosadeni z, dostaneme riesenie | ———, ————
a?+1"a2+1
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Riesenim stistavy rovnic pre a # -3 s usporiadané dvojice

Ja+2 3—-2a
03 (@)

Riesenim shstavy rovnic pre a = -3 je usporiadana dvojica (0, 3). Kedze Gpravy boli
ekvivalentné, skiiska nie je potrebna.

29. Ide o rovnicu s parametrami a, b. Upravme ju na tvar
(sinz — cosz)(a* + b* + ab(sinz + cos z)) =0,

odkial dostavame

sinz = cosz (1)

alebo
a® 4+ b* + ab(sinz + cos z) = 0. (2)
Musi vsak platit (b cos z+a)(bsinz+a) # 0 (inak dand rovnica nema zmysel). Rovnica
(1) ma rieSenie z = %+2kn, k € Z,kym rovnica (2) rieSenie nema, pretoze 2|ab|b2 22,

zatial ¢o |sinz + cosz| = |V2sin(z + %n)l < V2. Dostavame teda, ze ak (bcosz +
+ a)(bsinz + a) # 0, potom ma rovnica rieSenie & = 2 + 2km, k€ Z.

30. Je tgx + cotgz = a prave vtedy, ked

1
cosz -sinz
Kedze cos? z = 1—sin’ z, po umocneni (1) jednoduchou Gpravou dostaneme pre a # 0

rovnicu

. . 1
sin*z —sin’z 4+ = = 0.
a2

2

Po substitiicii sin® z = y rieSime kvadratick rovnicu

1
y2—y+;5=0. (2)

1 a? —4
y1,2=§(1iT>,

pre |a| < 2 rovnica (2) nema4 realne riesenie. KedZe pre |a| 22je0<y; S1a0<y <
< 1, dostdvame sinz = +,/yy, sinz = %,/y2. Podobne mézeme vyjadrit hodnoty cos z.

Jej riesenia pre |a] 2 2 s
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KedZze tipravy neboli ekvivalentné, je potrebné urobit skii§ku spravnosti. Dostaneme
rieSenia:

pre a 2 2 sinz = \/y1; cosx = /ya;
sinz = —,/yr; cosx = —\/ys;
sinz = /yz; cosz = \/yr;
sinz = —,/ys; CoST = —\/Y1;
prea < -2 sinz = \/y1; cosz = —\/y2;
sinz = —/y1; cos T = \/Ya;
sinz = /ya; cosT = —\/y1;
sinz = —,/ys; cosT = /y1.

31. Zo zadania Stvoruholnika vyplyva, ze pre jeho sirku s plati s 2 %\/5 Podla
Blaschkeovej vety doii mézeme vpisat kruh o polomere r = 1s, &ize r 2 %\/5
Dokéazeme, ze kruh o polomere %\/f—) obsahuje vzdy aspon tri celociselné body.

Stred kruhu lezi medzi rovnobeznymi priamkamiz = k, ¢ = k+1, k € Z. Hranicna
kruznica vytne na nich dve Gisecky a my dokdzeme, Ze na kratsej lezi aspon jeden a na
dlhsej aspon dva celoéiselné body. Hrani¢n4a kruznica vytne na hraniénej priamke z = k
najmensiu kratSiu Gse¢ku vtedy, ked stred lezi na priamke ¢ = k — 1. Z Pythagorovej
vety (obr.10) plynie, ze kratsia Gsecka ma dizku 1, a teda obsahuje vidy aspoii jeden
celodiselny bod. :

o=
&

=
Q
LI

I\
=1\

wio |

Obr. 10 Obr. 11

Hraniénéd kruZnica vytne na hraniénej priamke najmensiu dlhsiu Gsecku, ak jej
stred lezi na osi uvedeného pasu (obr.11). Z Pythagorovej vety potom vychadza, ze
v tomto pripade maji obe Gsecky dizku 2, dlhsia Gsecka tedy obsahuje vzdy aspon dva
celociselné body.

Polomer kruhu vpisaného do ABCD je r 2 %\/5 a o hom sme dokdzali, Zze obsahuje
aspon tri celociselné body.

’
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32. Mnozina bodov, ktoré vyhovuji nerovnosti y > z2, je parabola so svojim vniitrom;
mnozina z2 + (y — A)? £ 1 je kruh so stredom (0, A) a polomerom 1, £ = A je priamka
rovnobezna s osou y vo vzdialenosti A; M, je podmnozinou priamky z = A. Konvexny
obal mnoziny {(0,0)} UM, lezi na priamke, iba ak A = 0 alebo M, je prazdna alebo
jednobodova mnozina. (Ak je My viacbodova, tak jej body lezia na priamke z = A,
ktora neprechiadza bodom (0,0)).

Ak X & (=1, 1), prienik priamky a kruhu je prazdny, takze My = 0. Ak X € (—1, 1),
je y-ova stiradnica prieniku paraboly s priamkou rovna A? a y-ové stiradnice prieniku
kruhu s priamkou st rovné A & /1 — A2, Mnozina M) je prazdna alebo jednoprvkova
mno#ina, iba ak A? 2 A & /1 — A2 (preco?). To mdze nastat iba pre A = 1 alebo pre
A < 0. Po umocneni dostaneme nerovnicu (A — 1)(A* = A2+ X + 1) 2 0 a prislusnd
kubick4 rovnica ma jediny realny korei Ag < 0. Ulohe potom vyhovuji vietky A €
€ (—00,Ap) U (1,00). Ak vyuzijeme napriklad Cardanov vzorec, dostaneme, Ze A €

€ (—oo,%(€/17+\/2ﬁ+ V1T =397 - 1)) u (1, 00).

33. Zaoberajme sa len takymi mnozinami A, ktoré neobsahuja 0 (inak v nich nulova
postupnost existuje evidentne).

a) Nech vsetky ¢isla v A maji rovnaké znamienko (nech je to +, v pripade — je
dokaz rovnaky). Definujme postupnost {z,}5%, takto: ak mame prvok z; € A, existuji
prvky (kedze A+A = A) y, 2 € A také, ze y+ 2 = xp. VSetky tri &isla s kladné, takze

v o s . e , Tk - . ,
aspon jedno z ¢isel y, z je mensie alebo rovné CR Polozme z41 = min{y, z}. Pre taki

: . . i T s ™ . ) .
postupnost, v ktorej pre vietky k € N je zp41 < Tk’ lahko dokazeme indukciou, zZe

. . z T
pre vietky n € N je z,, < 2—2, Jim 2—2 =0.

b) Nech existuji v A ¢isla kladné i zaporné (tj. existuji a, b € A také, ze a < 0 < b).
Definujme postupnosti {2, }32, a {yn } 32, pre ktoré o ich lubovolnych élenoch (n 2 0)
plati 2, < 0 < yn, &n + yn € A, &, + yn # 0 (preco?).

Ak z, + yn > 0, poloZzme &p41 = Zn, Ynt1 = Tn + Yn. Ak 2, + yn < 0, polozme
Yn+1l = &n, Tnt1 = Tp + Yn. Zrejme pre vSetky prirodzené n je , < zp41 < 0 <
< Yn+1 S yn. Dokdzeme, zZe aspon jedna z postupnosti {z,}3%q, {yn}3, je nulova.
Nech to neplati, teda nech existuje L > 0 tak, Ze pre vSetky prirodzené n je z,,
Yn € (—L, L). Zoberme teraz najvacsie k prirodzené také, Ze pre vsetky prirodzené n
je &n, yn & (—kL,kL). Existuje n € N, pre ktoré z, € (-2kL,0) alebo y,, € (0,2kL).
Nech existuje napriklad také n = ng, ze y,, € (0,2kL), a nech p je najvaclsie prirodzené
¢islo s vlastnostou &, + pyn, < 0 (mdze sa stat, ze p = 0). Vidno, ze

Tng +PYng = Tng+py  Yno = Yno+p @ Tngtp € (= ¥Yno, 0).

Potom ale plati
0< Tnotp + Ynot+p = Yno+p+1 < ICL,

lebo & o4p+Yne < Yno—kL < 2kL—kL = kL. To je spor. Takze aspoi jedna postupnost
Je nulova (mozno dokazat, ze i druhd). Ak by platilo, ze A obsahujiica kladné i zadporné
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¢isla musi obsahovat nulu, tak predchadzajice Gvahy by boli zbytoéné. Ale odpoved
znie nie: staéi vziat A = {av/2 —b: a,b € Q4 }. Plati, 2e A+ A=A, ale 0 ¢ A # 0.
34. Najprv dokdzeme, ze A s kazdym svojim bodom B = (z,y) obsahuje aj bod

(x y) Kedze A+ A = A, existuji body C, D € A, ze C+ D = B = (z,y). Ak

2
B

B =0, ( -/) (0,0) € A. Ak (x,y) # (0,0), oznacme S = 9_+T__ BudC=S=D

% g) € A, alebo ' # D a vtedy S je stred asecky C'D (v pripade,

0+ B C+D
2

2
a_ (T Y
S = 503 € A.Kedze A # ), vezmime fubovolny prvok (a,b) € A. Polozme (z1,y1) =

a potom S = (

ze B, C, D lezia na priamke), lebo S = . Ale A je konvexna, takze

= (a,b) a pre vSetky prirodzené n nech (2,41, Yn41) = (—2—, %) Lahko sa overi, ze plati

a b , , i o
(n,yn) = (271—_1, F) a celd postupnost pozostava z prvkov mnoziny A, pricom

1
.y 2 2, 32y
"122)([,1 T )= nlﬂlct) ‘22”_2((1 ra ) =

Druhé tvrdenie neplati. Jednym z protiprikladov je A = Q x Q.

35. Strany trojuholnika musia spifxaﬁ trojiholnikové nerovnosti a plati pre ne a, b,

b > s , . , . 5
¢ > 0. Ak cisla a-(: R c:- i maju byt dlzky stran trojuholnika, musia byt

kladné a splnat trojitholnikové nerovnosti

a P b N c (1
a+1 " b+1 c+1’

b a c .
b+l<a+l+c+l’ (2)

c a b

< Ly : 3
c+1 a+l b+1 ®)
Staéi dokazat lubovolnii z nerovnosti (ostatné dostavame cyklickou zdmenou oznacenia

stran).
b

{4
’b+1"c+1

, 2 .oa P . . L.
Ak a, b, ¢ st kladné ¢isla, potom aj T st kladné. Ekvivalentnymi
a

Gpravami vztahu (1) dostavame
a < abe+ 2be + b+ c. (4)

Kedze a < b + ¢ (podla predpokladu), abe > 0 a be > 0, potom je nerovnost (4)
b

a c
a+1"b+1" c+1

pravdiva. Kedze je ekvivalentna s nerovnostou (1), ¢isla st dlzky

stran trojuholnika.
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36. Vyriesime pripad 3) ¢ £ 1. Velkost druhych dvoch stran nie je obmedzena. Lahko
zistite, Ze vieme ndjst trojuholnik s fTubovolne velkym obsahom; neexistuje teda horna
hranica pre velkost trojuholnika v ktorom je ¢ < 1.

Pri rieseni prvych dvoch pripadov pouzijeme poznatok, ze obsah trojuholnika
zavisi priamo Gmerne od dvoch nezavislych veli¢in: od velkosti strany a velkosti vysky
na tuto stranu.

1) a £ 1. Nech mé strana a = BC najvacsiu mozni dizku, tj. 1. Bod A mus lezat
vo vnitri prieniku kruhov s obvodovymi kruznicami ky(B, 1) a ko(C, 1) (lebo velkosti
stran b, ¢ s najviac 1). (Nakreslite si obrazok!) Z obrazku je vidiet, Ze maximalnu
vysku a teda aj maximdlny obsah bude mat trojuholnik s tretim vrcholom totoznym

s priese¢nikom kruznic kq, k2. Bude rovnostranny so stranou 1 a obsahom =

2) b £ 1. Nech md strana b = AC najvaésiu mozni diiku, tj. 1. Bod B musi
lezat zaroven vnitri kruhu s obvodovou kruznicou k; = (4, 1) (lebo b 2 ¢). Najvadsia
vy$ka na stranu b bude mat dizku 1, teda maximalny mozny obsah % ma pravouhly
trojuholnik s odvesnami b, ¢ velkosti 1.

C

Obr.12

37. Zo zadania ulohy plynie (obr.12), Ze trojuholnik ABC je podobny s trojuhol-

nikom NMC'. Z podobnosti dalej vyplyva, zZe i E, takie z = ——. Obsah
v a a

+v

2
trojuholnika ABC je P, = %av. Obsah stvorca KLMN je P, = ( (f: ) . Uloha
a+v

vyzaduje dokdzat platnost nerovnosti

w57 (3m):

(

I . : atv)® , A
T4 je ekvivalentna s nerovnostou av < —4)- (kedZe a, v > 0), tj. s nerovnostou

medzi aritmetickym a geometrickym priemerom. Rovnost nastava v pripade a = v.
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38. Obsah P trojuholnika so stranami a, b, ¢ je podla Herénovho vzorca

P = i\/(a+b+c)(a+b—c)(a—b+c)(—a+b+c):

- %\/(a+b+c)({/(a+b—c)(a—b+c)(—a+b+c))§.

Z nerovnosti medzi geometrickym a aritmetickym priemerom vyplyva

a+b—c+a—b+c—a+b+c_ a+b+ec

V(a+b—c)a=b+c)(-a+b+c) < 3 3

Po dosadeni do predchddzajiceho vztahu dostavame

p< (a+b+c)%\/a+b+c_ (a+b+c)?
= 3 4 123

Rovnost nastava prave vtedy, keda+b—c =a—b+c = —a+b+c, ¢o je ekvivalentné
s tym, Ze a = b = ¢. Najmensi obvod pri danom obsahu P ma rovnostranny trojuholnik.

Trojuholnik s maximalnym obvodom pri danom obsahu neexistuje. To dokdzeme
sporom: Nech trojuholnik s danym obsahom P a najvaésim obvodom ma strany a, b,

> > & . Y d ’ ~ v 2P 7’
c. Potom ale [ubovolny trojuholnik so zdkladiiou a+b+c a vyskou Py g ma obsah

+b+c

2 : N :
———— = P aobvod 0 > a+b+c, a ten je vacsi nez obvod trojuholnika
a+b+ec
so stranami a, b, ¢. To je spor.

1
§(a+b+c)

39. Z Herbénovho vzorca pre obsah trojuholnika dostavame

4PV3=\/3a+b+c)(-a+b+c)a—b+c)a+b—c) (1)

Z trojaholnikovej nerovnosti pre strany a, b, ¢ vyplyva —a+b+c¢>0,a—b+ ¢ > 0,
a+b—c>0,ateda mdézeme pouzit nerovnost medzi aritmetickym a geometrickym
priemerom tychto troch &isel, z ktorej dostaneme

b 3
(—a+b+c)(a—b+c)(a+b—c)§(51—3—“15) )
s rovnostou pre a = b = c. Lahko sa presvedéime, ze plati
(a4+b+¢)? £3(a®+b%+c?) (3)

s rovnostou pre a = b = ¢. Z (1) pouzitim (2) a (3) dostdvame

a+b+c\® 1
4PV3 < 3(a+b+c)(——3——) =§(a+b+c)2§a2+b2+c2,

tym je dand nerovnost dokdzani. Rovnost v poélednom vztahu nastane, ak nastane
rovnost v (2) a (3), teda prave vtedy, ak je trojuholnik rovnostranny.
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40. Ak bod F je taky, ako pozaduje Gloha, tak E'F je rovnobezné s AG, EAs FG, EG
s CF a EC s F(, z ¢oho plynie, ze stvoruholniky AGFE a EGFC st rovnobezniky,
teda ich protilahlé strany sa musia rovnat. Potom plati |AE| = |FG| = |CE|, takze
bod E musi lezat v strede strany AC.

41. Kedze a, b, ¢ maja byt strany pravouhlého trojuholnika, musi pre ne platit a? +
+ b% = ¢?, ¢o spolu s rovnostami b+ ¢ = p a ¢+ a = ¢q dava kvadratick rovnicu pre ¢
s parametrami p a q. Z jej dvoch rieseni vyhovuje tilohe len ¢ = p+q —+/2pq, strany a,
b vyjadrime podobne, je a = \/2pq — p, b = /2pq— q. Teraz uz nie je problém zostrojit
ziadany trojuholnik, Gsecku diiky /2pq zostrojime podla niektorej z Euklidovych viet
a z podmienok a > 0, b > 0 vyéitame nutné a postacujiice podmienky riesitelnosti
p<2qaq<2p.

C ' C

A S B

Obr. 13 Obr. 14

. . - . T -
42. Nutnou podmienkou existencie riesenia je 0 < a < ) (preco?).

Predpokladajme, Ze trojuholnik ABC je uz zostrojeny (obr. 13). Potom V' lezi na
Thalesovej kruznici k nad AS, kde S je stred strany AB (preco?), navyse lezi na vg.
Z toho je uz konstrukcia zrejma. Pocet rieSeni zavisi od poétu prieseénikov vp a k.
Lahko sa zisti, Ze vzdialenost vysky vg od bodu S’, stredu kruznice k, je |S'B| cosa =
= %ccos «, a pretoze polomer kruznice k je %c, dostavame, ze pre 0 < cosa < % ma
tloha prave dve rdzne riesenia, pre cos a = %jediné a pre cos a > % ziadne riesenie.
43. Nech R je prieseénik kruznic k; a ks, rézny od bodu V, kruznica k; (resp. k3)
ma stred A a polomer |AV| (resp. C' a |C'V]) a ozna¢me B; prieseénik priamok BV a
AC, Ay prieseénik priamok AV a BC (obr. 14). Potom trojuholnik ARB; je zhodny
s trojuholnikom AV By, dalej trojuholnik AV B; je podobny trojuholniku AC A; (st to
pravouhlé trojuholniky a majia spolo¢ny uhol pri vrchole A), teda trojuholnik ARB;
Jje podobny trojuholniku AC Ay, odtial | ARB| = |XACB|, takze body C, R lezia na
tom istom obliku nad AB, pre ostatné body vyuzijeme cyklickii zdmenu.



Prazsky korespondencni seminar z programovani

N

Ivan Libicher, Pavel Topfer

Mezi studenty stfednich skol ziskaly v posledni dobé velkou oblibu rizné kores-
pondencni seminare. Po fadé matematickych seminari se objevily seminare fyzikalni
a v poslednich letech také programatorské. Z nich pravdépodobné nejmladsi, ale roz-
sahem své plisobnosti a poctem Gcéastnikli nejvétsi je prazsky korespondenéni seminér
z programovani. Seminaf vznikl na zaéatku $kolniho roku 1987/88 z iniciativy studenti
matematicko-fyzikalni fakulty Univerzity Karlovy. Pokusny ,nulty“ ro¢nik seminére
probéhl nad ocekdvani Gspésné, a proto se organizatori rozhodli pokracovat v pofadani
seminare 1 v dalsich letech. Dnes ma prazsky korespondenéni semindf z programovani
kazdoroéné vice nez 200 Gcastniki.

Podobné, jako je tomu u jinych korespondenénich semindf, je 1 tento organizovan
v nékolika kolech. Kazdé kolo je tvofeno ¢tyimi soutéznimi tlohami rizné obtiznosti,
z nichz si studenti mohou vybrat k feSeni podle vlastniho uvazeni jen ty, které zvladnou.
Vsechny tlohy jsou zaméfené na navrh algoritmi a tvorbu programii. Samotny zapis
programu by ale jako feseni (ilohy samozfejmé nestacil. Je nutné pripojit také slovni po-
pis feSeni, vysvétleni zptisobu prace algoritmu a zdivodnéni jeho spravnosti. Hodnoti
se 1 kvalita navrzeného algoritmu, zejména jeho efektivita. Zaslana reseni tloh opravuji
organizatofi seminare — studenti informatiky z riznych roéniki MFF UK v Praze.
Opravené ulohy zasilaji zpét soutézicim spolu s komentari a se vzorovymi fesenimi tiloh
a s vysledkovymi listinami. Na zavér kazdého ro¢niku seminafe pfipravuji pro nejlepsi
ucastniky tydenni soustfedéni s bohatym programem odbornym i oddechovym.

Soutézni Glohy maji podobny charakter jako tlohy kategorie P matematické
olympiddy. Z minulych ro¢nikii seminafe jsme pro vas vybrali na ukazku tfi Glohy.
Pro nedostatek mista uvadime jejich vzorova feseni bez vyslednych program.

I:Tlohy

1. Nejvétsi dira (KSP 1-4-2)

Napiste program, ktery k zadanému celému ¢islu n, n 2 2, a zadané posloupnosti
realnych ¢isel délky n (kterd se vejde do paméti!) vytiskne dvé ¢isla z posloupnosti
takova, ze zadné ¢islo z posloupnosti nelezi ,mezi nimi“ (tj. neni mensi nez jedno a vétsi
nez druhé z nich) a ze absolutni hodnota jejich rozdilu je maximélni. Napf. pro n = 4
a posloupnost 2, 5.3, 2.7, —20.1 program vytiskne dvojici ¢isel 2, —20.1.

2. Zplodiny (KSP 2-3-3)

50
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Necht pi, ..., pn (n 2 0) je posloupnost celych cisel. Zplodinovymi operace-
mi nazveme nasledujici zmény posloupnosti: a) vypusténi prvniho élenu (neprazdné
posloupnosti): p1, ..., pn P2, ..., Pn, b) pridani libovolného ¢isla r na konec
posloupnosti: p1, ..., pn = P1, -+ Pn, 7, ¢) zménu nékterého ¢lenu p;, 1 £i < n,yna
libovolné celé ¢islo r:

Ply---sPn Y Ply. s Pi—1, " Pitl,---sPn-
Navrhnéte algoritmus, ktery pro dané posloupnosti celych é&isel, py, ..., pn (n 2 0)
aqi, ..., ¢m (m 2 0) urél minimalni pocet zplodinovych operaci potiebny ke zméné
Pi, .-y Pn DA q1, ..., ¢m. NapF. ke ziméné posloupnosti 5, 2, 4, 1, 12 na 4, 3, 12 jsou

tieba nejméné tii zplodinové operace:
5,2,4,1,12 — 2,4,1,12 — 4,1,12 — 4,3,12.

3. Daébelské mocniny (KSP 2-2-1)

D-&{slem nazvéme kazdé kladné celé &slo takové, ze se da vyjadrit ve tvaru 3747 5%
kde 7, j, k 2 0 jsou celd ¢isla. Navrhnéte algoritmus, ktery pro dané kladné celé cislo
n vytiskne prvnich n D-¢isel.

Napi. pro n = 10 algoritmus vytiskne cisla 1, 3, 4, 5, 9, 12, 15, 16, 20, 25.

ReSeni

1. Postup reseni se bude skladat z nasledujicich péti kroku:

1. Nalezneme minimalni a maximalnf prvek ze zadanych n ¢isel a oznacime je Min
a Maz. Plati tedy Min £ a; £ Maz pro vsechna i od 1 do n. To je mozné provést
velmi snadno jednim sekvencénim prichodem danymi n cisly, tedy s linearni ¢asovou
slozitosti.

2. Spocitame hodnotu D = (Maz — Min)/(n—1). Rozdil Maz — Min udava velikost
celkového intervalu na iselné ose, ktery sledujeme. Udaj n— 1 uréuje, na kolik nejvyse
useki je tento interval rozdélen zadanymi n ¢isly, tzn. kolik existuje ,,dér* mezi ¢isly.
Hodnota D ma proto vyznam dolniho odhadu velikosti maximalni diry. Kdyby byla
vSechna ostatni ¢isla rozlozena mezi Min a Maz zcela rovnomérné, mély by vsechny
diry mezi nimi velikost pfesné D. Pii jakémkoliv jiném rozlozeni ¢isel mezi Min a Max
bude néktera dira mensi, a proto musi byt jina vétsi nez D.

Poznamka. Zvlastnim pripadem je situace, kdy se vsech n danych ¢isel sobé rovna.
Potom Maz = Min a vyjde nam tedy D = 0. Nejvétsi dira mezi ¢isly ma nulovou
velikost a najdeme ji mezi libovolnou dvojici zadanych ¢isel.

3. Rozdélime nyni cely interval (Min, Maz) na n—1 Gseki velikosti D a tyto Gseky
ocislujeme ve vzestupném poradi od 1 do n — 1. Vsimnéte si, Ze pro libovolné &islo
X z intervalu (Min, Maz) dokdzeme snadno (v konstantnim ¢ase) uréit, do kterého
tseku patii. Pofadové ¢islo piislusného aseku je dano vyrazem (X — Min)/D| + 1,
kde zavorky [, | oznacuji dolni celou ¢ast z hodnoty vyrazu v nich uzavieného, tzn.
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V] je rovno nejvétsimu celému ¢&islu, které je mensi nebo rovno hodnoté vyrazu V.
Poznamenejme jesté, ze tiseky chapeme jako intervaly zdola uzaviené a shora oteviené.
Cislo X lezici pfesné na hranici dvou Gseki bude tedy zafazeno do vyssiho z nich. Pro
X = Maz déava nas vyraz poradové cislo tseku n. Cislo X = Maz bude tvofit samo
dalsi, v poradi n-ty tsek, ktery je degenerovan do jediného bodu.

4. Vytvorime si dvé pomocna pole velikosti n oznacend R a S. Tato pole zaplnime
tak, aby pro kazdé i od 1 do n mélo R; hodnotu minimélniho a S; hodnotu maximalntho
ze zadanych &isel, které nalezi do i-tého Giseku (viz bod 3). Pokud do nékterého z Gseki
nepadne ani jedno ze zadanych cisel, dosadime do R; a S; zvlastni pfedem zvolenou
hodnotu, kterd neni z intervalu (Min, Maz), napt. Maz +1, Min — 1. Spravné hodnoty
poli R a S ziskdme snadno s linearni ¢asovou slozitosti. Pro kazdé z n zadanych &isel
staci urdit, do kterého seku patii (podle vzorce z bodu 3), a poté toto éfslo porovnat
s do té doby platnymi hodnotami poli R a S odpovidajicimi tomuto Gseku:

pro kaidé i = 1, ..., n proved
R; := Maz + 1;
Si .= Min — 1;
pro kaidé i = 1, ..., n proved
U := |(ai — Min)/D| + 1; (x &islo Gseku )
JestliZe a; < Ry potom Ry := a;;
jestlize a; > Sy potom Sy := q;

5. Vzhledem k tomu, Ze podle bodu 3 neméa zadny z Gseki délku vétsi nez D
a pritom podle bodu 2 je hodnota D dolnim odhadem velikosti maximalni diry mezi
zadanymi ¢isly, ma bud maximaln{ dira velikost pravé D, nebo je vétsi, ale pak nemiize
lezet celd uvnitf jediného tiseku, musi do ni padnout pfedél mezi dvéma sousednimi
Gseky. Vyslednou velikost maximalni diry proto staci hledat vzdy mezi minimé&lni
a maximalni hodnotou ¢isel nalezejicich do sousednich (seki. Pritom je jesté tieba
davat pozor na ty useky, které neobsahuji zadné ze zadanych n ¢isel. Predéli mezi
Gseky je priblizné n, takze i tato ¢ast vypoétu ma linedrni ¢asovou slozitost:

MazDira := D — 1; (% dolni odhad velikosti max. diry x)
1= 1;
dokud ¢ < n — 1 provadéj
(* Si je zacatek pravé zkoumané diry x)
ji=ti+1;
dokud R; = Maz + 1 provadégj j := j + 1;
(* hledame dalsi neprazdny tGsek *)
(* nehrozi preteceni, nebol R, =S, = Maz *)
(* R; je konec pravé zkoumané diry *)
Dira := R; — S;;
jestlize Dira > MazDira potom
MazDira := Dira,
Cl:=5;; C2:= Rj;
i:=3
(* MazDira je velikost maximalni diry, C'l, C2 jsou hledana ¢isla )
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Spravnost algoritmu byla zdivodnéna ve vyse uvedeném rozboru. Konecnost
vypoctu vyplyva ze skutecnosti, ze pocet prichodd vsemi cykly je omezen poctem
zpracovavanych ¢isel n. Algoritmus ma linedrni ¢asovou slozitost, nebot kazdy z jeho
krokt ma bud linedrni nebo konstantni ¢asovou slozitost a jednotlivé kroky vypoctu
nasleduji jeden po druhém.

2.  Posloupnosti zplodinovych operaci prevadéjici py, ..., pn na qi, ..., ¢m budeme
struéné nazyvat p-q-posloupnostmi. Pro libovolné posloupnosti py, ..., pn a q1, ...,
¢m existuje p-g-posloupnost délky max(m,n):

1) pro n < m tvofend n operacemi c) a m — n operacemi b),

2) pro n 2 m tvofenid n — m operacemi a) a m operacemi c).

Déle je jasné, ze kazd4 p-g-posloupnost musi obsahovat nejméné |n—m| operaci a)
a b), aby se délka zménila z n na m. Z toho plyne, ze ma-li byt néjaka p-g-posloupnost
kratsi nez max(m, n), musi v ni byt méné nez min(m, n) operaci c), tj. nékteré prvky
posloupnosti p musi prejit do ¢ beze zmény.

Uké4zeme, ze zplodinové operace v nejkratsi p-q-posloupnosti lze preusporadat
tak, ze nejprve se provedou vsechny operace a), pak c) a nakonec b): Z4dn4 operace c)
Jisté neméni ¢len, ktery by pozdéjsi operace a) vypustila (pak by totiz p-g-posloupnost
nebyla nejkratsi); mizeme tedy vSechny operace a) pfesunout pred operace c). Podobné
zadnd operace c) jisté neméni ¢len dfive pfidany néjakou operaci b) (tyto dvé operace
by totiz bylo mozné nahradit jedinou operaci b)); mizeme tedy operace b) pfesunout
za operace c). Konelné zadna operace a) jisté nevypousti prvek pridany dfive operaci
b) (obé operace by bylo mozné vypustit). Hledejme tedy nejkratsi p-¢g-posloupnost ve
tvaru

Ply--+,Pn — ...k operacia)... —  Dk4ly---rPn
Pk+41y---,Pn — ...c(k) operaci c)... = 1, Gk
Qiye-sqn-k + ...m—n+koperacib)... — q1,...,qm,

kde max(n —m,0) £ k < n a ¢(k) je minimalni poéet operaci ¢) potfebny ke zméné
Pk+1, - -y Pn DA {q1, - .., qn—k'

ck) ={i; 1S i Sn—k peyi # ai}|-
Oznadime-li d délku nejkratsi p-g-posloupnosti, plati
d = min(k + c(k) + (m — n + k)),
kde k prochazi hodnoty od max(n — m,0) do n. Tento vzorecek spolu s definici c(k)
dava kompletni algoritmus pro vypocet d. Jeho spravnost vyplyva z odvozeni.
Pamétova slozitost (uréend délkou posloupnosti p a ¢) je linearni, ¢asova slozitost

je O(n?), nebot vypocet c(k) (jehoz slozitost je O(n — k)) se provede nejvyse (n + 1)-
krat.



54 Prazsky korespondencéni semindf z programovdni

3. Vsechna D-cisla vzestupné oéislujeme takto: 1 = dy, 3 = ds, 4 = d3, 5 = djy,
9= d5, 12 = de, 15 = d7, atd.
TVRZENi. Necht &k > 1, 1 £ p, ¢, » < k jsou celd ¢isla s témito vlastnostmi:

dp = min{di; 1 § 1< kaild; > dk-—l},
=min{d;; 1 Li<kadd; > dp_1},
min{d;; 1 i<k abd; >di_1}.

SO
S a
1

Potom plati d; = min{3d,,4d,,5d,}.

DUOKAzZ. VyuzZijeme toho, ze D-¢isla vétsi nez jedna jsou pravé &isla tvaru 3D,
4D nebo 5D, kde D je néjaké mensi D-Cislo (plyne to pfimo z definice D-¢isla). Cislo
d = min{3d,, 4d,, 5d, } je tedy D-&islo. Navic d je nejmensi z D-Cisel vétsich nez dy_.
Kdyby totiz mezi dy_, a d lezela néjaka D-¢isla, pak nejmensi z nich by bylo tvaru 3d;,
4d; nebo 5d;, 1 £ i < k, takze d by nebylo minimdlni. Tim je dikaz tvrzeni proveden.

Zname-li tedy D-Cisla dy, ..., dx—y (k > 1) a &isla p, ¢, r z uvedeného tvrzeni,
potom d = min{3d,,4d,, 5d,}. ,Nové“ hodnoty ¢isel p, ¢, r splijici

dp, = min{d;; 1 £i <k a3d; > di},
dg =min{d;; 1 £ i<k add; > di},
d, = min{d;; 1 £i <k abd; > di}

ziskdme tGpravou ,starych® hodnot takto: pokud 3d, = di, pak ¢islo p zvétsime o jednu,
déle pokud 4d, = di, pak cislo ¢ zvétsime o jednu, dale pokud 5d, = dj, pak &islo r
zvétsime o jednu.

Tim mame jednak indukéni krok pro generovani dalsiho D-¢isla, jednak invariant,
ktery nam zaruéi spravnost nasledujiciho algoritmu:

(* n je pocet hledanych D-&isel *)
(* (Dy, ..., Dy) je pole celych &isel x)
Dy:=1;p:=1; ¢q:=1; r:=1,
pro k =2, ..., n proved
(* Dy, ..., Dg—y je prvnich k — 1 D-Zisel, )
(* p, ¢, » maji vlastnost z vyse uvedené Gvahy *)
di = min{3dp,4d,, 5d, };
jestlize 3d, = d}, potom p:=p+ 1;
Jestlize 4d, = di potom ¢ := g+ 1;
Jestlize 5d, = dj, potom r := r + 1;
pro k =1, ..., n proved tiskni(dy)
Konecnost algoritmu je zfejma. Invariant uvedeny v komentafi v téle prvniho
cyklu zarucuje spravnost algoritmu.
Casové i pamétova slozitost tohoto algoritmu je O(n).
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Karel Horak

Korespondenéni seminafe maji uz pomérné slusnou tradici. J& se do jejich pripravy
zapojil v okamziku, kdy jsem nastoupil aspiranturu v Matematickém astavu CSAV
a tam se seSel s Tondou Vrbou, ktery az do svého faux pas s odznakem polské Soli-
darnosci na klopé pfi setkani Gispésnych olympionikii se zastupci ministerstva skolstvi
nékdy v roce 1981 obstaraval napli téchto seminafi i opravovatele tloh a daval do
kupy jimi sepsané komentafe. Diky shora uvedenému poklesku svého pfitele jsem pak
dostal moznost vySvihnout se na jeho misto s honosnym titulem tajemnika Gstfedniho
vyboru.

V dobé, kdy jsem se ujal korespondenéniho seminéfe, nebyly tfidy se specidlnim
zaméfenim na matematiku jesté prilis obvyklé, proto byl tento seminaf zaméfen
predevsim na $pickové fesitele mimo Prahu, Brno, Bilovec a Bratislavu. Postupné vsak
zacal zcela pfirozené zahrnovat i ostatni nadané studenty a stal se tak jednou z béznych
soucdsti pripravy potencidlnich reprezentanti nasich zemi na mezinarodni matematic-
ké olympiddé. Do opravovani tiloh se z velké vétsiny zapojovali zejména byvali ispésni
olympionici, ktefi postupné pfechézeli z fad Gcastnikl do fad organizatori, a néktefi
v tom vytrvali i po ukonéeni studia matematicko-fyzikalni fakulty (Jan Kratochvil,
Miroslav Englis).

Korespondené¢ni seminaf nikdy neobsahoval nové originalni Glohy, nicméné bylo
dobrou snahou jeho organizatorti pfinést co nejpestiejsi vybér tloh nepfilis znamych.
Velmi bohatym zdrojem takovychto tiloh pro mne od poéatku byl Zadacnik sovétského
casopisu Kvant, ktery v kazdém cisle publikoval pét ¢asto ptivodnich tloh, coz po deseti
rocnicich v roce 1981 znamenalo uz slusnou zasobu 600 kvalitnich Gloh. A bylo vzdy
povzbuzujici, kdyz nasi GCastnici nasli ¢asto originalnéjsi postupy i slabiny ptivodné
publikovanych Gloh aJechh feseni. Z tohoto vyberu si ted mizete pokusit vyTesit pétici
Gloh pouzitych koncem 80. let.

I'Jlohy

1. Je ddno 2n+1 kladnych ¢isel takovych, ze rozdil mezi souctem libovolnych n + 1
danych ¢isel a souctem zbylych r éisel je kladny. Dokazte, Ze pro soucin B vsech 27:‘_:'11)
takovych rozdili a souet A vSech 2n + 1 danych &isel plati

"<
rsa(™)
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2. Na vecirek prislo n manzelskych parta. Pfi konverzaci vzniklo nékolik skupinek
1, Cg, ..., ¢k takovych, ze zadni dva manzelé nebyli pohromadé v zadné ze skupin,
zatimco kazda jina dvojice byla pravé v jedné ze skupin. Dokazte, ze pro n 2 4 je
k 2 2n. Plati uvedené tvrzeni i pro n = 37

3.  Jestlize

tak
a b c

G—oF " c—af  G=D

5 =0.

Dokazte.

4. Uvazujme n stejnych minci, které lezi na stole

a vytvafeji uzavieny fetéz (kazdé dvé sousedni se
dotykaji). Kolik otacek vykona mince stejného roz-
meéru, jestlize s ni objedeme (bez klouzani) cely retéz
(obr. 15), tj. predpokladame-li, ze pohybujici se mince

se dotkne kazdé z danych minci? Jak se odpovéd 7
zméni, bude-li mit tato mince k-krat vétsi polomér

nez mince v fetézu?

5. Dokazte, Ze na povrchu devatenéctisténu, ktery

je opsan kouli o poloméru 10, existuji dva body, jejichz
vzdélenost je vétsi nez 21.

Obr. 15

Reseni

1. Oznaéme zy, z2, ..., op41 dand Cisla. Pro kazdé pevné i € {1,2,...,2n + 1}
uvazujme vSechny rozdily tvaru

Z‘i—i—z:cj-—z.rj =z;+a-b,
JEA Jj€B
kde mnoziny A, B jsou dvé disjunktni n-prvkové podmnoziny mnoziny {1,2,...,
2n + 1}, 1 ¢ AU B. Takovych rozdili je (2,:') a muzeme je rozdélit do dvojic
z; +a—b, i —a+b,

2n

p
n ) nerovnosti

pro néz dostaneme%(
0<(zi+a—b)(z; —a+0b) <zl (1)

Celkem tak (pro kazdé i € {1,2,...,2n + 1}) dostaneme I ) (2n + 1) nerovnosti,
jejichz vynasobenim vyjde
Bn+1 § A(?)7
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nebot kazdy z rozdili (z;, + i, +...4+z;,,,) —(...) se na levé strané vyskytne prave
(n+ 1)-krat (proi =z, i = 2i,, ..., i = 2i,,,).

A protoze
n(2n) _ (2n)! _ 2n )
n+l\n/) (n=1Dn+1)!" \n-1)

B < AGD),

je také zaroven

coz jsme méli dokazat.

Podle poctu tehdy zaslanych feseni $lo o ilohu obtiznéjsi, i kdyz uvedené feseni
to zcela nepotvrzuje. U podobnych tloh se vzdy vyplati podivat se na trivialni pfipady
pro mald n, které mohou napovédét obecné feseni. Dosla feseni se vétSinou lisila jen
v jasnosti argumentace. Kromé nerovnosti (1) bylo mozno pouzit i obecnéjsi nerovnosti
pro soulin F(z;) vSech rozdilii tvaru z; + a — b, jejichz aritmeticky pramér je podle
stejné avahy x; (I. MartiSovits), takze

) € 2\,

i€ tedy 2n+1 2n41 (21.) 2
B! = HF(::,)§(H :c,-) "= A,
t=1 i=1

Rada fesitelti také opomenula zdiraznit, ze uvedené nerovnosti lze nasobit jen diky
tomu, Ze uvazované rozdily jsou (dle predpokladu) kladné!
2. 7 predpokladi alohy pfedevsim plyne, ze kazdé dvé skupinky maji nejvyse jeden
spolecny prvek a kazda ma nejvyse n ¢lenii (jinak by v ni byl aspon jeden manzelsky
par). Oznalme jednotlivé hosty &isly 1, 2, ..., 2n a déle oznaéme d; poéet skupinek,
ve kterych je host ¢islo 1.

Je-li d; = 2 pro néjaké ¢, pak musi obé skupiny A, B dohromady obsahovat viechny
hosty kromé partnera hosta i (i se v jinych skupinkich nevyskytuje). Je tedy

IAUB|=2n—-1, |[ANB|=1, |A|<n, |B|<n,

takze obé skupiny musi mit pravé n élenti. Vezmeme-li ted z kazdé z obou skupin
po jednom ¢lenu ¢ € A a b € B, a # i # b, tak pokud to nejsou manzelé, musi
spolu byt pohromadé v néjaké skupiné c;, ve které uz nikdo jiny z A U B byt nemiize.
Takovych dvojic, a tedy i riiznych skupin (kdyz odeéteme pfislusné manzelské dvojice)
je(n—1)(n—1)—(n—1)=(n—1)(n—2). Proto pro n 2 4 a pro poéet k skupinek
plati

E224(n—-1)(n-2)=n>=3n+422n.

Zbyva vyfiesit tézsi pripad, kdy je d; 2 3 pro kazdé i, 1 £ ¢ < 2n. Prifadme
kazdému z hostii néjaké redlné é&islo z; a oznaéme y; souéet téchto &isel pro viechny
¢leny skupinky c;, tj.

y=Se 1SjiSk (1)

i€c;
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Oznaéme jesté M = {{7,j}; i a j jsou manzelé} mnozinu manzelskych dvojic. Pak
dostaneme nasledujici odhad

k 2n
ny = Zd,-m?-{-? Z T,Ts =
j=1 i=1 {r,s}¢M
2n 2 2n
E= (Zz,) +Z(d,- - l)x;“’ -2 Z TeT, =
i=1 i=1 {r,s}eM

2n 2 2n
(Z 1',-) + Z(di -2z + Z (22 + 22 — 2z,2,) 2
i=1 i=1

{r,s}eM
2n 2n
Z(d,- - 2)z? 2 Z 2.
i=1

i=1

1A%

Nejprve jsme vyuzili toho, ze kazda dvojice {r,s}, | £ r < s < 2n, se vyskytuje pravé
v jedné skupiné c;, pokud r a s nejsou manzelé, a nakonec toho, Ze dvojice manzeli
Jjsou (zpravidla) navzdjem disjunktni.

Dostali jsme tak nerovnost

k 2n
} : 2 } : 2
y] z L)
j=1 i=1
ktera Fika, Ze pro y1 = y2 = ... = yr = 0 ma soustava rovnic (1) pouze trividlni feseni
Ty =29 =...= &9, = 0. To ovSem znamen4d, Ze rovnic musi byt rozhodné aspon tolik

co neznamych, tj. musi platit & 2 2n, coz jsme méli dokazat.

Z predchoziho feseni (z rozboru pfipadu d; = 2) snadno zjistime, ze tvrzeni alohy
pro n = 3 neplati. Oznac¢ime-li hosty 1, 2, 3, 4, 5, 6 tak, ze i a 7 — 7 jsou manzelé,
vystaéime se ¢tyfii skupinkami {1,2,3}, {1,4,5}, {6,5,3}, {6,2,4}.

3. Tato Gloha je velmi lehka a d4 se fesit mnoha zpusoby (predpokladame samoziej-
meé, ze je a # b # ¢ # a). Roznasobenim a jednoduchou tipravou se mizeme presvédgcit,
ze plati

a + b 4 c 1 N 1 N 1 _a n b + c
b—c c¢c—a a-1b b—c c—a a-=b) (b—0c)? (c—a)*  (a—b)?

Odtud plyne tvrzeni Glohy.

Jiné feSemi (prirozenéjsi varianta predchoziho feseni). Polozime-i 2 = b —¢, y =
=c¢—a, z=a— b, bude podle pfedpokladu zyz # 0 a

ayz + bez + cey = 0. (2)
Zaroven ziejmé plati

r4+y+z=0, ar +by+cz=0.
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Vynéasobime-li rovnost (2) postupné &isly yz, z& a zy, dostaneme rovnosti

ay’z® + bayz® + cay’z = 0,
axyz? + bz?2% + cx'zyz =0,

azy’z + bx’yz + ca’y? = 0.
Jejich sectenim vyjde
ay?2? + bx?2? 4 cx?y? +zyz(a(y + 2) + b(z + 2) + c(z +y)) = 0.

Podle uvedenych vztaht pritom ale plati

aly+z)+bz+z)+ec(e+y) =aly+2)+bz+2)+c(zr+y)+ar+by+cz=

(a+b+e)(z+y+2)=0,

Il

takze dostavame hledanou rovnost
ay?z? 4+ ba?2? + cxy? = 0.

4. Polomér minci v fetézu budeme povazovat za jednotkovy. Z obr. 16 je vidét, ze

mince o poloméru k se po objeti oblouku délky « otoéi kolem svého vlastniho stfedu

1 1 . .
o thel a + o' = a + 7= (1 + E) « (odpovidajici oblouky AB a A’B maji totiz

stejnou délku). Specidlné pro k = 1 se mince po ,,projeti“ oblouku délky o sama otoéi
o thel 2. ‘

Obr. 16 Obr.17

Najdeme tedy soucet délek obloukii, které uvazovand mince objede. Oznaéme
O1, Oq, ..., O, stiedy jednotlivych minci v fetézu. Pohybujici se mince se uréité
nebude pohybovat po obloucich lezicich uvnitf n-tihelniku 0105 . ..0,, jejichz celkova
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délka je (n — 2)n (soucet vnitinich Ghli n-thelniku). Z celkové délky 2nn vsech n
kruznic musime ovsem jesté odecist ty ¢asti oblouki mezi dvéma sousednimi mincemi,
kterych se otdcejici se mince nikdy nedotkne a jez lezi v rovnoramenném trojihelniku
0;S0;41 (obr.17). Jednoduchym vypoctem zjistime, ze délka téchto dvou oblouki je

mezi kazdymi dvéma mincemi rovna 2 arccos I Celkovy soucet délek obloukii, po

+k°
nichz se uvazovana mince pohybuje, tedy bude

1
2nm — (n — 2)n — 2n arccos 75
cemuz odpovida
1+ & 2 1
—2.:.— (1l+2~ ;t-narccos 1+k>

otacek pohybujici se mince. Specialné pro k = 1 vyjde pocet otacek jako %n + 2.
Predpoklad, Ze otacejici se mince se dotkne vsech
minci v fetézu, je dilezity, protoze jinak bychom ne-
mohli pocet otacek v zavislosti na poc¢tu danych minci
urcit. Zretézené mince by totiz mohly vytvorit ,zaliv¢
(obr. 18), do kterého by se objizdéjici mince vibec
nedostala.
5. Dokdazeme tvrzeni tlohy sporem. Predpokladej-
me, Ze kazdé dva body na povrchu devatenactisténu
maji vzdalenost nejvyse 21. Je-li V4 objem devatenac-
tisténu a V objem jemu vepsané koule, je

V < Vg

Devatenactistén je tvoren 19 jehlany se spolecnym vr- - Obr.18
cholem ve stfedu S vepsané koule a jejich podstavy tvori stény devatenactisténu. Je-li
S; obsah i-té stény a r polomér vepsané koule, je
4 4 1 .
V:§m' <§1‘(51+bz+...+519) (1)

(to je mimochodem vztah mezi povrchem koule a povrchem devatenictisténu).

Uvazujme bod X nékteré stény devatenédctisténu a bod S’ dotyku této stény
_ s vepsanou kouli, pak je | X'5'| £ v/21. Kdyby totiz bylo naopak |X 5’| > v/21, bylo by
také |.XS| > V102 + 21 = 11. Pro druhy bod Y # X priiniku pfimky XS s povrchem
devatenactisténu potom plati |[Y'S| 2 10 a | XY | = |X S|+ |Y'S| > 21, coZ je ve sporu
s nasim predpokladem.

Zjistili jsme, ze kazda sténa devatenactisténu je ¢asti kruhu se stfredem v bodé
dotyku a polomérem 21. Je tedy

S; £ 21, 1<ig19.
Rovnost (1) pak pro » = 10 znamen4, ze
400n < 19 - 21, t). 400 < 399,

a to je spor.
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