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Předmluva

V roce 1991 skončil v naší republice 40. ročník matematické olympiády, první
předmětové olympiády na našich školách. Podobně jako při 30. výročí vzniku této
zajímavé soutěže se i nyní snažil ústřední výbor MO vydat brožurku věnovanou tomuto
kulatému jubileu. Rozhodli jsme se věnovat její obsah především úlohám a jejich
řešením, a to jednak úlohám samotné MO, jednak úlohám různých korespondenčních
seminářů, matematických soustředění apod. Přitom jsme se snažili, aby se uplatnily
úlohy pro různé věkové kategorie. Můžete posoudit sami, zda se nám to podařilo.

Jak jsem uvedl, brožurka je věnována úlohám a vzorovým řešením. Nemohu se
však v této předmluvě nezmínit o RNDr. Františku Zítkovi, CSc., který převzal v roce
1983 funkci předsedy UV MO a vykonával ji až do své náhlé smrti v roce 1988. V ma-
tematické olympiádě však pracoval již od roku 1961 a vedl československé družstvo
na 18 mezinárodních matematických olympiádách, naposledy v letech 1987 a 1988 na
Kubě a v Austrálii. Byl autorem celé řady úloh pro MO, většinou geometrických. Pro
edici Škola mladých matematiků napsal brožurku Vytvořující funkce, rukopis další už
bohužel nedopsal. Dr. Zítek dosáhl významných vědeckých výsledků ve svém oboru
— v teorii pravděpodobnosti a v matematické statistice — pro nás zůstane však jeho
jméno spojeno především s matematickou olympiádou.

S novým školním rokem jsme vstoupili do další desítky let MO. Chceme zachovat
dosavadní úroveň této soutěže, zaměřit se hlavně na její kvalitu, ne již tak na masovou
účast. Přes ekonomické potíže, neujasněnost další organizační struktury MO po zrušení
krajů a menší podporu ze strany ministerstva školství věříme, že se podaří matema-
tickou olympiádu udržet. Dáme tím mnoha žákům a studentům možnost naučit se
z matematiky něco navíc, prokázat své výborné matematické znalosti a schopnosti
a dosáhnout prvních úspěchů v matematice. Jsme si vědomi, že těžiště práce pro
matematickou olympiádu spočívá na učitelích základních a středních škol, že jedinou
odměnou je jim úspěch jejich žáků. Již předem proto děkujeme všem učitelům, kteří
svým žákům umožní se MO zúčastnit, povzbudí je a podpoří.

Leo Boček
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Vladimír Burjan

(Bratislava)

Ak vám slovo PIKOMAT neznie příliš slovenský, nemýlíte sa. Je to totiž skrat-
ka súťaže, ktorej neskrátený názov znie Ploniersky KOrešpondenčný MATematický
seminář. К tomuto názvu si dovolíme dve malé poznámky. Prívlastok „pioniersky“
bol povinnou danou režimu, v ktorom seminář na jeseň roku 1983 vznikol, ale aj
jednému z hlavných sponzorov súťaže bývalému Socialistickému zvázu mládeže a jeho
Pionierskej organizácii. Dnes už je sice neaktuálny, ale organizátorom súťaže sa do
změny skratky akosi nechce — příliš sa vžila. Druhá poznámka má charakter skoro
gramatický: povodně bolo slovo PIKOMAT vlastnýrn menom — označovalo jediný
seminář pre žiakov 7. a 8. ročníkov základných škol v Bratislavě a Západoslovenskom
kraji. Myšlienka takejto súťaže sa však prekvapujúco rýchlo šířila a obdobné semi-
náre začali pracovat’ v dalších krajoch a okresoch, najma v Cechách a na Moravě.
V niekoťkých prípadoch ich organizátoři převzali nielen organizáciu súťaže a úlohy,
ale aj jej názov
bolo v Československu niekolko a z póvodného vlastného měna sa tak stalo všeobecné
podstatné měno, označujúce jednu z foriem starostlivosti o žiakov prejavujúcich záujem
o matematiku.

Začiatky PIKOMATu v septembri 1983 boli spojené so špeciálnymi triedami
so zameraním na matematiku na Gymnáziu A. Markuša v Bratislavě. V nich sa
sústreďovali nadaní žiaci z Bratislavy a Západoslovenského kraja, aby tu rozvíjali svoj
matematický talent. Každoročně boli do matematických tried vyberaní na základe
osobitnej talentovej skúšky. A právě snaha přilákat’ na tieto skúšky čo najviac šikovných
mladých matematikov a potenciálnych výborných žiakov školy, bola tým prvotným
impulzorn, ktorý priviedol organizátorov na myšlienku korešpondenčného seminára
pre žiakov základných škol. (Pre historikov však upresnime, že táto myšlienka bola už
v tom čase poměrně stará. Podlá našich informácií к nám přišla zo Sovietského zvázu
a ako prvý sa zrodil korešpondenčný seminář pre stredoškolákov vo východoslovenskom
kraji. Neskór pribudli ďalšie a v r. 1980 začal pracovat’ korešpondenčný seminář pre
žiakov základných škol v stredoslovenskorn kraji.) Tento konkrétny ciď— přilákat’ do
matematických tried kvalitných žiakov ovplyvnil aj vekovú kategóriu, ktorej bol a je
PIKOMAT určený, ako aj úzeinie, ktoré pokrývá. Toto sa dodnes takmer nezměnilo:
súťažia siedmaci a ósmaci, občas sa přidá zopár mimoriadne šikovných šiestakov
(pre ktorých je však súťaž velmi ťažká). Zapájajú sa aj žiaci z iných krajov, no iba
výnirnočne, ako hostia — dnes už má totiž na Slovensku každý žiak ZS i SS možnost’
riešiť vlastný krajský korešp. seminář.

PIKOMAT. A tak sa v niektorých rokoch stalo, že PIKOMATov
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Samotná súťaž prebieha obdobné ako všetky ostatně semináře — odchylky sú snáď
iba v niektorých podrobnostiach. Preto iba stručné: záujemci (ktorých počet z roka na
rok kolíše okolo 200 - 400) dostávajú poštou domov (zhruba v šesťtýždenných interva-
loch) sady 4-5 úloh. Tieto majú do stanoveného termínu vyriešiť, podrobné napísať
riešenia (a to nielen výsledky, ale aj celý postup riešenia s odóvodnením jednotlivých
krokov) a tieto zaslat’ organizátorom. Tí riešenia opravujú, pričom jednotlivým žiakom
vyznačia v ich postupoch případné chyby a připíšu к nim poznámky, komentáre, ale
aj pochvalu, ak ide o pěkné, originálně riešenie. Opravené riešenia sa poštou vracajú
naspat’ ůčastníkom, pričom každý zároveň dostane vzorové riešenia úloh a podrobnú
výsledkovú listinu, z ktorej móže zistiť, ako si s jednotlivými úlohami poradili ostatní
účastníci seminára a aké je jeho priebežné umiestnenie.

Takéto série prebehnú zváčša tri v období od septembra do januára a ďalšie tri
od februára do juna. Po každých troch sériách úloh (teda vo februári a v júni) sa
koná 5-Gdenné sústredenie, na ktoré je za odměnu (a teda bezplatné) pozvaných 30
až 40 najúspěšnějších riešitelov uplynulého obdobia. Tu majú možnost’ osobné spoznať
svojich najvážnejších konkurentov v rebríčku, ale najma samotných organizátorov
súťaže a opravovatelov ich riešení. Preto sa tu často vedú diskusie a polemiky nad
opravenými riešeniami z predchádzajúcich sérií: žiaci možu osobné vysvětlit’ „ako to
v tom riešení mysleli“ a opravovatelia možu dókladnejšie objasnit’, kde tá úvaha alebo
riešenie „málo háčik“.

Program týclito sústredení je velmi pestrý. Matematika je tu podávaná zábavnou,
motivačnou formou prostredníctvom roznych rozprávok, matematických hier a súťaží
i večerných besied. Okrem toho sa vela Sportuje, hrajú sa rožne kolektivně hry v klu-
bovni, v lese, na lúke, vo dne i v noci. Nacvičuje sa divadlo, spieva sa při táboráku, vedú
sa vášnivé diskusie o nekonečnosti vesmíru, prenášaní myšlienok, dějinách matematiky,
pozitívach a negatívach jednotlivých povolaní a vóbec o všetkom, čo děti tohto veku
zaujíma. Program týchto sústredení je zváčša mimoriadne nabitý. Pre organizátorov
je to sice velmi náročné na přípravu i samotnú realizáciu, účinok je však značný:
sústredenia pósobia silno motivačně a vidina možnosti zúčastnit’ sa ešte raz (alebo
dokonca niekofkokrát) na obdobnom sústredení je silným stimulom pre žiakov pri
riešení dalších sérií úloh seminára.

Spomenuli sme jeden z cielov, ktorý viedol skupinu poslucháčov MFF UK к za-
loženiu PIKOMATu: skvalitniť příliv uchádzačov o štúdium v matematických trie-
dach v Bratislavě. Tento cief PIKOMAT od zaačiatku velmi dobré plnil a dodnes
plní: v niektorých rokoch viac než polovica žiakov přijatých do matematických tried
pochádzala spomedzi riešitelov PIKOMATu. Tí sami přiznávali jeho vplyv: buď sa
o existencii matematických tried dozvěděli na niektorom zo sústredení, alebo tu dozrelo
ich rozhodnutie skúsiť šťastie na talentových skúškach (často pod vplyvoin podobného
rozhodnutia niektorých iných riešitelov PIKOMATu).

Korešpondenčných matematických seminárov pre žiakov základných i středných
škol dnes pracuje na Slovensku mnoho. Zváčša sa ich priebeh podobá na to, čo sme napí-
sáli o PIKOM ATe. Jedným z vhodných „rozlišovacích znakov“ jednotlivých seminárov
sú zadávané úlohy. Organizátoři seminára musia pri ich výbere zvolit’ istú náročnost’,
musia sa rozhodnúť pre istý typ úloh (úlohy školského typu, úlohy typu matematickej
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olympiády, netradičné úlohy, hlavolamy či hádanky, a pod.), pre istů formu zadávania
úloh, zvolit’ ich počet, tématiku, připadnu nadvaznost’ a mnoho dalších parametrov.
Niekedy sú úlohy povodné, inokedy čerpané z róznych (často zahraničných zdrojov).
Toto všetko ovplyvňuje celkovú kvalitu seminára a dodává mu istú osobitost’, ktorou sa

odlišuje od všetkých ostatných. Preto bude asi najcennejšou informáciou, keď uvedieme
na ukážku niekolko úloh, ktoré boli zadané riešitelom PIKOMATu v uplynulých 7
rokoch.

Úlohy

1. Křivý stol.
Stolár mal vyrobit’ obdížnikový stol rozmerov 100 x 160cm s nohami dlliými

100 cm. Prvá noha sa mu podařila presne. Keď však řezal к nej protilahlú, pošmykla sa
mu ruka a odřezal ju len 96 cm dlliú. Tretiu spravil o čosi dlhšiu, ale iba 97 cm. Zistite,
akú dlhú má spravit’ štvrtú nohu, aby stol stál na všetkých štyroch nohách a aby sa

nekýval. (Předpokládáme, že všetky štyri nohy sú kolmé na došku štola. To, že stol
bude stát’ nakřivo, nevadí.)
2. Najváčší súčin.

Napište číslo 100 akosúčet niekofkých prirodzených čísel (počet sčítancov si zvofte
sami) tak, aby súčin týchto čísel bol čo najváčší. (Poznámka: sčítance nemusia byť
navzájom rožne.)
3. Krabica pbiá gul*.

Kofko rovriakých gúl’ s priemerom 10 cm možno uložit’ do krabice s rozmermi
100 x 100 x 10 cm, ak ukládáme iba dojednej vrstvy?
4. Ako najlepšie zbohatnut*?

Hrací automat PIKOTRON funguje následovně: po zapnutí sa na jeho obrazovke
objaví číslo 1. Od tejto chvíle možno do něho hádzať korunové mince: ak sa vhodia
dve mince, automat připočítá к číslu na obrazovke 3, ak sa vhodí páť mincí, automat
vynásobí číslo na obrazovke dvorní. Tieto úkony možno 1'ubovol’ne striedať a kombino-
vať. Keď nás hra omrzí, stačí stlačit’ tlačidlo s nápisom „KONIEC“ a z automatu sa

vysype tofko peňazí, aké číslo je právě na jeho obrazovke. Představte si, že ste přišli
к tomuto automatu so 40 korunami vo vrecku a nesmiernou túžbou zbohatnúť. Ako

je najvýhodnejšie postupovat’ aby bol váš čistý zisk čo najváčší?
5. Rezanie štvorca.

Najskór skúste rozrezať štvorec na 10 štvorcov. Nemusia byť rovnako velké, ale
všetky řezy rnusia byť priame a rovnoběžné so stranami řezaného štvorca. Potom
nájdite všetky prirodzené čísla n, pre ktoré možno rozrezať štvorec na n štvorcov.

6. Velká a malá guťa.
Vo velkej prázdnej miestnosti tvaru kvádra naháňa velká gula (s polomerom

1 meter) menšiu gulu, ktorú chce rozdrviť. Našťastie existujú v miestnosti miesta,
kam keď sa menšia gula postaví, je pre velkú nedosiahnutelhá — velká sa jej móže iba
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dotknut’, ale nemóže ju přitlačit’. Zistite, aká velká móže byť menšia gula, aby sa ešte
v rniestnosti zachránila.

7. Vlastnosti nnižov.

PodFa statistik má 70% mužov hnědé oči, 75% má tmavé vlasy, 85% mužov je
vyšších ako 178 cm a 90% mužov váži menej ako 100 kg. Aké percento mužov má
zaručené všetky tieto štyri vlastnosti?
8. Kto bol druliý v skoku do výšky?

Adam, Boris a Cyril si spravili súťaž v niekofkých športoch. Za víťazstvo sa
v každom športe udělovalo a bodov, za druhé miesto b bodov a za tretie miesto c

bodov, pričom a, b, c síi prirodzené čísla, pre ktoré platí a > b > c. Na koci súťaže
mal Adam 10 bodov, Boris 6 bodov a Cyril 5 bodov. Zistite, kto bol druhý v skoku
do výšky, ak viete, že Boris vyhrál vrh gulou.
9. Cliytia vlci zajaca?

V střede štvorcovej záhrady sedí zajac. V každom zo štyroch rohov záhrady sedí
jeden vlk. Vlci sa možu IubovoFne pohybovat’ po obvode záhrady, pričom vedia byť až
l,4krát rýchlejší ako zajac. Zajac by rád zo záhrady utiekol. Na prvý pohlad to s ním
vyzerá zle, ale ak ovládá trochu matematiky, móže vlkorn utiecť. Viete ako?
10. Problém pána riaditďa.

RiaditeF firmy vyrábajúcej osviežujúci nápoj P1KO-KOLA krátko před smrťou
rozoslal listy svojim 10 najbližším spolupracovníkom a každému v liste prezradil jednu
z 10 příměsí, z ktorých sa vyrába P1KO-KOLA. Po smrti riaditelá si týelito 10 Fudí
chcelo telefonicky vyměnit’ získané informácie.

a) KoFko najmenej hovorov je potřebných na to, aby sa každý z 10 zamestnancov
dozvěděl všetkých 10 příměsí?

b) Riešte ten istý problém pre případ, že by PIKO-KOLA pozostávala zo 100 příměsí,
ktoré riaditeF oznámil 100 najspoFahlivejším spolupracovníkom (každému jednu
primes).
Dokážte, že vtedy by stačilo 196 telefónnych hovorov.

A na závěr ukážka série úloh, ktorá rnala podobu rozprávky:

Ako rytier PIKOMATKO porazil (alebo neporazil?) draka D-200.
(dramatematický príbeli s otvoreným koncoin)

Len čo sa rytier PIKOMATKO dozvěděl súradnice jaskyne, v ktorej žije zlý
200hlavý drak D-200, ihned sa vydal na cestu. V středu podvečer prišiel na rázcestie
tvaru Y, kde mu istý pocestný povedal: „Ked sa chceš dostat’ ku drakovi, chod touto
lávou cestou, až po osmých kilometroch prídeš ku vysokánskému smreku. Od něho
napravo (pod pravým uhlom) vedie cesta priamo ku drakovej jaskyni. Ale móžeš ísť
aj touto pravou cestou. Ked prídeš ku jazierku, budeš mať presne polovicu cesty za
sebou. Tam sa otoč doFava o 90° a chod stále rovno. Prídeš priamo ku dračej jaskyni.“
PIKOMATKO podakoval, zamyslel sa, potom si zmeral uhol, ktorý spolu zvierali Tavá
a pravá cesta. Vyšiel mu ostrý. Potom chvíFu počítal a kreslil a nakoniec sa vydal
kratšou z oboch ciest.
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1. úloha: Zistite, ktorá z oboch ciest je kratšia — tá okolo smreka alebo okolo jazierka?

2. úloha: Dokážte, že uliol DSJ (drak — smrek —jazierko) má velkost’ 45°.
Keď PIKOMATKO dorazil ku jaskyni, drak D-200 ho už čakal a jednou zo svojich

200 ohnivých papiďprehovoril; „Moliol by som ťa zožrať hned', ale dám ti šancu. Budem
si myslieť tri prirodzené čísla a, b, c menšie ako 100. Aj ty si mysli nějaké tri prirodzené
čísla x, y, z a povedz mi ich. Ja ti potom prezradím číslo ax + by -f cz, nič viac. Ak
z tohoto čísla uhádneš čísla a, b, c, dovolím ti odísť. Inak sa zúčastníš mojlio dnešného
oběda ako predjedlo.“

3. úloha: Poraďte PIKOMATKOV1, aké čísla x, y, z má drakovi nahlásit’, aby z čísla
ax + by + cz mohol jednoznačné určit’ čísla a, b, c.

PIKOMATKO úlohu vyriešil a čísla uhádol. No к odchodu sa nemal. Naopak, začal
s likvidáciou draka. Spomenul si, ako mu kedysi dávno istá baba korenárka prezradila,
že každý drak skamenie, keď sa pozrie na magický útvar. To je taký rovinný útvar,
ktorý nemá žiadnu os súmernosti, ani žiadny střed súrnernosti, ale přitom pri otočení
o istý uhol (menší ako 360 stupňov) prechádza sám do seba (t.j. keby sme ho vystřihli,
zdvihli a pootočili, zapadol by znovu do vystrihnutej diery). A tak začal PIKOMATKO
horúčkovite vymýšlať nějaký magický útvar.

4. úloha: Nakreslíte nějaký magický útvar.
Tentokrát PIKOMATKO nič múdreho nevymyslel, a tak mu ostala jediná mož-

nosť: použit’ svoje tri zázračné meče Sek, Smyk a Fik. Keďsa rozoženie Sekom, odsekne
drakovi naraz 48 hláv, lenže mu hněď 33 nových hláv narastie. Keď sa rozoženie
Srnykom, odšmykne drakovi 21 hláv a žiadna nová mu nenarastie. A konečne keď
sa rozoženie Fikom, odfikne drakovi jednu hlavu a namiesto nej mu ihned’narastie 73
nových. Každý meč možno použit’ iba vtedy, ak má drak aspoň tolko hláv, kolko ten
meč zotína. Akonáhle raz drak pride o všetky hlavy, už mu žiadne nové nenarastú.

5. úloha: Zistite, ako dopadol súboj PIKOMATKA s 200hlavým drakom D-200. Ak si
myslíte, že PIKOMATKO draka „odhlavil“, popište, v akom poradí přitom
použil jednotlivé meče. Ak si naopak myslíte, že to s týrni mečmi nie je možné,
dokážte to.



Úlohy МО kategorií А, В а С
Leo Boček

(MFF UK Praha)

Na několika příkladech chceme ukázat tématiku úloh matematické olympiády
v kategoriích А, В, C v posledních deseti letech, obtížnost jedněch i snadnost jiných
úloh.

V kategorii В 39. ročníku MO jsme použili pěknou sérii úloh od dlouholetého
pracovníka v MO dr. Jiřího Sedláčka, CSc., z Matematického ústavu ČSAV v Praze.
V 1. kole to byla úloha:

Je dáno liché přirozené číslo n, najděte aspoň jednu dvojici přirozených čísel x, у

tak, aby D(x,y) = n a současně D(xy + x, xy + y) == 2n. Přitom D(u, v) značí největší
společný dělitel přirozených čísel u, v.

V klauzurní části 1. kola to byla úloha nalézt ke každému přirozenému číslu n

přirozená čísla x, у tak, aby D(x,y) = D(xy + x,xy + у) — n. V krajském, tedy
2. kole, bylo třeba к libovolnému přirozenému číslu n najít nesoudělná přirozená čísla
x, у s vlastností D(xy + x, xy + y) — n.

Ukážeme si stručně řešení všech tří úloh. V první úloze je nasnadě zkusit x = n,

у = kn, kde к je přirozené číslo. Je pak D(x,y) = n, xy + x = n(kn + 1), xy -f
+ у = n(kn -p k). Číslo к musíme zvolit tak, aby největším společným dělitelem čísel
kn + 1, kn -F к bylo číslo 2. Pak musí být dělitelný dvěma také jejich rozdíl к — 1.
Zkusíme položit к = 3, čísla x = n, у — 3n skutečně splňují podmínky úlohy, neboť
xyj- x = n(3n +1), xy + y = n(3?i H- 3). Jelikož je číslo n liché, jsou čísla 3n + 1, 3n + 3
sudá, tedy dělitelná dvěma. A číslo 2 je také jejich největším společným dělitelem,
protože největší společný dělitel těchto čísel dělí také jejich rozdíl, tedy číslo 2. Je tedy
D(3n -f 1,3n + 3) = 2 a D(3n2 -f n, 3n2 + 3n) = 2n. Řešením úlohy klauzurní části je
například dvojice x = 2n,y = 3n. Je pak totiž xy+x = 2n(3n+1), xy+y = 3n(2n+1).
Čísla 3n + 1, 2n + 1 jsou nesoudělná, neboť jejich společný dělitel musí dělit i číslo
3(2n + 1) - 2(3n+ 1) = 1.

Navazující úloha z 2. kola je obtížnější. Jelikož xy + x, xy + у mají být dělitelná
číslem n, musí to platit i pro jejich rozdíl у — x. Zkusme položit у — x + n. Pak je
xy -f i = x(x + n + 1), xy + у = x(x + n + 1) + n. Obě tato čísla mají být dělitelná
číslem n, avšak čísla x, x + n mají být nesoudělná. Proto musejí být nesoudělná i čísla
x, n. Pak musí číslo n dělit číslo x + n + 1. Položme tedy na příklad x = n — 1, je pak
у = 2n— 1. Jsou to čísla nesoudělná, xy + x = n(2n — 2), xy-\-y — n(2n — 1). Největším
společným dělitelem posledních dvou čísel je číslo n, protože čísla 2n — 1, 2n — 2 jsou
nesoudělná. V případě n — 1 není však číslo x přirozené, stačí ale pro n — 1 položit
x = 1, у - 2.

10
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V 37. а 38. ročníku МО byly dvě na sebe navazující úlohy o lichoběžníku.
V 37. ročníku to byla v kategorii C úloha: V lichoběžníku ABCD určete bod X tak,
aby měly čtyřúhelníky XKBL, XLCM, XMDN, XNAK stejný obsah, přičemž К,
L, M, N jsou po řadě středy stran AB, BC, CD,

Řešení. Jsou-li AB, CD základny lichoběžní-
ku, pak spojnice jejich středů К, M dělí lichoběž-
nik na dva lichoběžníky stejného obsahu (obr. 1).
Proto musí bod X nutně ležet na úsečce KM.

Kdyby totiž ležel uvnitř lichoběžníku KBCM, byl
by součet obsahů čtyřúhelníků XKBL, XLCM
menší než polovina obsahu lichoběžníku ABCD,
což by bylo ve sporu s podmínkou úlohy. Uva-
žujrrie tedy bod X uvnitř úsečky KM. Obsahy
trojúhelníků DNX, ANX jsou stejné, protože N je střed úsečky AD. Aby se sobě
rovnaly i obsahy čtyřúhelníků XNAK, XMDN, musejí se rovnat obsahy trojúhelníků
MDX, AKX, tedy poměr vzdáleností bodu X od přímek AK a DM musí být právě
obrácený, než je poměr délek úseček AK, DM, tj. poměr \AB\ : \CD\. Průsečík У
úhlopříček AC, BD leží na KM a poměr jeho vzdáleností od přímek AB, CD je
právě \AB\ : \CD\. Sestrojíme tedy bod Y а X je pak ten bod na úsečce KM, pro

který platí \MX\ = \KY\, je pak též \KX\ = \MY\. Tento bod X splňuje podmínku
úlohy.

DA.

A К В

Obr. 1

V dalším ročníku dokazovali titíž žáci, jenže již o rok starší, že neexistuje v licho-
běžníku ABCD bod X tak, aby se sobě rovnaly obsahy trojúhelníků ABX, BCX,
CDX, DAX. Důkaz vedli sporem třeba takto: Předpokládejme, že pro bod X lichoběž-
niku ABCD se obsahy uvedených trojúhelníků rovnají. Označme p vzdálenost bodu
X od přímky AB a q jeho vzdálenost od přímky CD, а = \AB\, c = \CD\. Rovnost
obsahů trojúhelníků ABX, CDX, z nichž se každý rovná jedné čtvrtině obsahu celého
lichoběžníku, nám dává pro p, q, а, c podmínky Aap = 4cq = (a-f c)(p-f g). Vyloučením
p, q dostaneme (a — c)2 = 0. To je však spor, neboť pro lichoběžník je а ф c.

Do 36. ročníku byla zařazena tato geometrická úloha: Je dán trojúhelník ABC.
Zvolte na stranách AB, AC po řadě body M, N tak, aby \BM\ = |CJVj a aby se
obsah trojúhelníku AM N rovnal polovině obsahu ABC. К vyřešení úlohy stačí umět
řešit kvadratickou rovnici a znát vzorec S = i&csina pro obsah trojúhelníku (6, c jsou
délky stran AC, AB, a je velikost jimi sevřeného úhlu). Označme x — \BM\ — \CN\.
Podle podmínek úlohy má pro x platit 2(6 — x)(c — ж) sin a = 6csin a. Jelikož sin a ф 0,
dostáváme pro x kvadratickou rovnici 2x2 — 2(6+с)я+6с = 0. Kořen |(6+c-f \/62 + c2)
nevyhovuje, protože je větší než 6 i c, vyhovuje druhý kořen |(6 + c— \/62 -f c2), který
je kladný a menší než 6 i c. Úsečku délky ^(6 + c — \/b2 -f c2) dovedeme též snadno
pravítkem a kružítkem sestrojit z délek 6, c.

V 33. ročníku MO byla v krajském kole kategorie C lehká úloha, jejíž text zní:
Žák měl spočítat délku tětivy kružnice o poloměru r, jestliže se vzdálenost tětivy
od středu rovnala d. Domníval se, že se délka tětivy počítá jako d -f r, přesto dostal
správný výsledek. Jaký vztah musel platit mezi dar ? Odpověď je jednoduchá, musí
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d 3
= 2\Л'2 — d2, po úpravě a vyřešení kvadratické rovnice dostaneme — = —

7* 5
platit d + г

Je všeobecně známo, že větší obtíže činí žákům úlohy geometrické, ať již jde
o úlohy konstruktivní, nebo důkazové. Do krajského kola kategorie C 37. ročníku MO
byla zařazena úloha: Konvexní pětiúhelník ABODE je vepsán kružnici k, přičemž AB
je rovnoběžná s ED a BC je rovnoběžná s AE. Dokažte, že přímka CD je rovnoběžná
s tečnou kružnice к v bodě А. К důkazu stačí znát větu o obvodových úhlech a o úhlech
v tětivovém čtyřúhelníku. Označíme-li а = \<$ABC\ = \<$AED\, je \^ADC\ = к —
— a, neboť ABCD je tětivový čtyřúhelník. Stejně tak je \<j.ACD\ — я — a, takže je
trojúhelník ACD rovnoramenný se základnou CD. Proto prochází osa úsečky CD
bodem A a samozřejmě též středem S kružnice к (obr. 2). Tečna kružnice к v bodě
A je na tuto osu kolmá a tedy rovnoběžná s CD. Je to úloha velmi pěkná, avšak
pro žáky 1. ročníku střední školy jsou důkazové úlohy přece jenom obtížnější. Více

Obr. 3

se jim líbí úlohy, při kterých mají něco spočítat. Například v úloze 2. kola kategorie
C 36. ročníku MO to byl obsah lichoběžníku, jehož úhlopříčky jsou na sebe kolmé,
jedna z nich má délku и a jsou ještě dány délky а, c obou základen (obr.3). Řešení
spočívá v převedení lichoběžníku na trojúhelník stejného obsahu. Bodem D vedeme
rovnoběžku s úhlopříčkou AC (|ЛС| = и) a její průsečík s AB označíme E (AB je
rovnoběžno s CD). Trojúhelníky CDB a AED mají stejný obsah, protože \CD\ = \AE\
a výšky k těmto stranám jsou rovněž stejné, rovnají se vzdálenosti přímek AB, CD.
Proto se obsah lichoběžníku rovná obsahu pravoúhlého trojúhelníku EDB, který je
k(u^/(a + c)2 - u2).

Pěkné jsou úlohy na určení nejkratší cesty po povrchu tělesa z jednoho jeho bodu
do druhého. Uvedeme si dva příklady.

1. kolo kategorie В 33. ročníku MO — Je dána krychle ABCDEFGH o hraně
délky a. Vrchol A je spojen po povrchu krychle nejkratší čarou se středem stěny BCGF
a rovněž se středem stěny DCGH. První lomená čára má s hranou BF společný bod
L, druhá má s hranou DII společný bod K. Určete obsah trojúhelníku AKL (obr. 4).

1. kolo kategorie C 37. ročníku MO
ABCA'B'C s podstavnou hranou délky a a výškou v. Označme S střed stěny BCCВ

Je dán pravidelný trojboký hranol
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а К, L ty body na hranách В В', СС, pro něž jsou lomené čáry AKS, ALS nejkratší.
Vypočítejte poměr objemů jehlanu AKLS a daného hranolu.

H

A

Obr. 4 Obr. 5

Řešení obou úloh je jednoduché, uvědomíme-li si dále popsaný princip. Uvažujme
roviny q a cr, jež se protínají v přímce p, bod A leží v rovině g, bod S v rovině а

a nechť К je ten bod přímky p, pro který je součet \AK\ + |/f<Sj nejmenší. Pak po
otočení roviny cr do roviny g kolem přímky p tak, že jsou poloroviny pA a pSo opačné
(5’o je otočená poloha bodu .S’), leží bod К na úsečce ASq (obr. 5). Pro vaši kontrolu
uvádíme výsledky obou úloh: |а2\ЛПГ; jg.

Další skupinu úloh tvoří úlohy o šachovnicích. Příkladem je úloha 1. kola kategorie
В 37. ročníku MO: Jaký největší počet figurek lze rozmístit na šachovnici n x n tak,
aby žádné dvě nesousedily? (Za sousední považujeme ta políčka, která mají společný
aspoň jeden vrchol).

Řešení. Je-li n liché, je určitě možné rozmístit aspoň (|(n-f l))2 figurek, při sudém
n je možné umístit aspoň (|n)2 figurek, jak ukazuje obr. 6 pro n = 5 a n = 6. Přesně
řečeno, vynecháme každý druhý řádek shora a každý druhý sloupec zleva a stavíme
figurky pouze na zbylá políčka. Určitě nebudou pak obsazena žádná dvě sousední
políčka. Je to ale opravdu maximální počet figurek? Odpověď je ano. Například při
sudém n se šachovnice skládá z ^n2 šachovnic 2x2. Kdyby se na ni dalo umístit více
než (|n)2 figurek, musely by aspoň na jedné šachovnici 2x2 stát aspoň dvě figurky,
to by ale byly figurky sousední. Při lichém n se určitě nedá předepsaným způsobem
rozestavit více figurek, než se dá rozestavit na větší šachovnici (n + 1) x (n -f 1). A to
je podle předcházejícího (^(гг -f 1))”.

m,m.k
я и я
lilii
■ ■ ■

li
Obr. 6
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Na závěr si uvedeme ještě dvě úlohy na využití zápisu čísel v desítkové soustavě
a na dělitelnost. Do 1. kola kategorie В 38. ročníku MO jsme zařadili úlohu: Dokažte,
že rovnice S(x + p) = S(x), kde S(n) značí ciferný součet čísla n zapsaného v desítkové
soustavě, má aspoň jedno řešení, právě když je p dělitelné devíti. Úlohu vyřešil velmi
pěkně Tomáš Tiitz z gymnázia v Brně, tř. kpt. Jaroše. Je-li S(x + p) = S(x) pro nějaké
x, dávají čísla x+p, x stejný zbytek při dělení devíti. Je-li obráceně p — 9q, q přirozené,
stačí položit x — q. Je pak x -f p — Kb/ a čísla q, 10</ mají zřejmě stejný ciferný součet.

V krajském kole 39. ročníku MO dokazovali žáci v kategorii C, že číslo

111 ... 1 222 ...22 5,4 ✓'Ч ✓ 5

t-+iк

v němž se číslice 1 vyskytuje k-krát a číslice 2 (к + 1)-Arát, je druhou mocninou
přirozeného čísla, a měli též toto číslo určit. Snadno se na několika případech odhadne,
že jde o číslo 33 .. .3 5, v němž se číslice 3 vyskytuje A-krát. Pak se prostě ukáže, že

к

jeho druhá mocnina je dané číslo, a to použitím vzorce (10a -f 5)2 = 100a(a -f 1) + 25.
Stačí položit а = 33 .. .3. Žák František Mala z Dolného Kubína ukázal, že dané číslo

к

1(Ú'+1 + 5 \ 210* - 1 10fc+1 - 1
• \0k+'2 +je číslo

Pak mu již stačilo dokázat, že číslo 10*+1 + 5 je dělitelné třemi. To však plyne ihned
z toho, že jeho ciferný součet je 6.

• 2 • 10 + 5, což upravil na tvar
9 9 3

Dále si uvedeme ještě několik úloh kategorie A, tedy úloh určených pro soutěžící
nejvyšších dvou ročníků středních škol. Z 33. ročníku MO si ukážeme 2 úlohy celostát-
ního kola. V první úloze bylo dáno zobrazení / množiny Z všech celých čísel do téže
množiny, které splňuje pro každé rn £ Z podmínku /(/(m)) = —rn. Soutěžící měli
dokázat, že a) / je prosté zobrazení množiny Z 11a množinu Z, b) pro každé m £ Z
platí /(—m) = —/(m), c) /(m) = 0, právě když je m = 0. Na závěr měli ukázat
příklad takového zobrazení. Úloha patřila к lehčím úlohám tohoto celostátního kola.
Řešení úlohy může například vypadat takto: Nejdříve dokážeme, že zobrazení / je
prosté. Předpokládejme, že /(m) = /(n). .Iе w = ~f(f(rn)) — ~/(/(n)) — 71,
takže /(m) = /(n) pouze v případě m =: n, což znamená, že je / zobrazení prosté.
Je to také zobrazení 11a množinu Z, protože každý prvek m £ Z je obrazem prvku
/(—m). Protože —m = /(/(?»)), je /(-m) = /(/(/(m))) = stačí totiž ve
vztahu /(/(771)) = — rn dosadit za m číslo /(m). Tím je dokázáno, že pro každé m £ Z
je /( — m) = —/(m). Položíme-li m — 0, dostaneme /(0) — —/(0), takže /(0) — 0.
Protože f je zobrazení prosté, nemůže být /2(?n) = 0 pro žádné m ф 0. Musíme
ještě ukázat příklad zobrazení /, které má všechny uvedené vlastnosti. Je to například
zobrazení /, které je definováno vztahy /(0) = 0, f(‘2k) — 2k — 1, f(2k — 1) = — 2k,
f(—2k) = —(2к — 1), f(—'2k + 1) = 2к pro každé přirozené číslo k.

V druhé úloze se z předpokladu cos cv + cos /3 + cos 7 + cos 6 = 0 pro vnitřní úhly cv,

/3, 7, 6 konvexního čtyřúhelníku má dokázat, že čtyřúhelník je rovnoběžník, lichoběžník
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nebo čtyřúhelník tětivový. К řešení úlohy je vhodné převést součet na levé straně před-
pokládané rovnosti na součin. Použitím vzorce cos o+cos /3 = 2 cos —cos
hu at + (3 + y + S = я dostaneme cos cv + cos j3 + cos 7 -f cos 8 = cos
Tento součin se rovná nule právě tehdy, když je splněna aspoň jedna z podmínek
cv + /? = я, a -f <5 = тс, c* + 7 = я. Jsou-li splněny první dvě podmínky, je čtyřúhelník
rovnoběžník, když je splněna jen jedna z nich, je to lichoběžník. Poslední podmínka je
splněna, právě když je čtyřúhelník tětivový (když mu lze opsat kružnici).

V 37. ročníku MO pokrývali soutěžící kategorie A čtve-
rec kruhy o stejném poloměru. Ve školním kole měli určit
nejmenší číslo r, pro které je možné čtverec o straně 10 po-

krýt dvěma shodnými kruhy o poloměru r. Mohli postupovat
takto: Označit K, L středy stran AB, CD čtverce ABCD
o straně 10 (obr. 7). Je pak zřejmé, že kruhy ohraničené
kružnicemi opsanými obdélníkům AKLD, KBCL pokrý-
vají čtverec ABCD, jejich poloměr je | 5\/5- Ukážeme, že r
nemůže být menší než | 5\/5. Předpokládejme, že čtverec je
pokryt dvěma kruhy o poloměru r < | 5л/5. Aspoň v jednom
z nich musí ležet tři z bodů А, В, C, D, K, L. Patří-li do jednoho body А, К, В a do
druhého body D, L, C, musí jeden z nich obsahovat též střed M strany AD. Je-li to
například kruh s body А, К, B, obsahuje body В, M a jeho průměr se proto rovná
aspoň vzdálenosti těchto dvou bodů, tj. 5>/5. Obsahuje-li kruh jen dva body z trojice
А, К, В a jeden z trojice D, L, C, dostaneme stejným způsobem spor, rovněž tak při
záměně obou trojic. Je tedy r = |5\/5-

V krajském kole byla navazující úloha: Jestliže čtyři shodné kruhy o poloměru
r pokrývají jednotkový čtverec, je r ^ |\/2. Dokažte a zjistěte, zda lze jednotkový
čtverec pokrýt pěti shodnými kruhy o menším poloměru.

Řešení: Předpokládejme, že je čtverec pokryt čtyřmi
kruhy o poloměru r < i\/2 < 1. Pak v každém kruhu
leží právě jeden vrchol čtverce. Aspoň jeden z těchto kruhů
obsahuje i střed čtverce, který má od vrcholu čtverce vzdá-
lenost ^\/2, proto je jeho poloměr aspoň i\/2, což je spor
s předpokladem r < ^л/2.

К druhé části úlohy rozdělíme čtverec na pět obdélníků
podle obr. 8 tak, aby měly stejně velké úhlopříčky délky
u. Kruhy, jejichž hraniční kružnice jsou těmto obdélníkům
opsány, pokrývají čtverec a jejich poloměr je |u. Není těžké
ukázat, že и < i\/2, takže odpověď na poslední otázku úlohy je ano.

Podle Cauchyovy nerovnosti platí pro každou trojici reálných čísel x, y, z nerov-

a vzta-

cos
a+

COS —2 2 ‘

CD L

M

A К В

Obr. 7

Obr. 8

IlOSt

Я2 + y1 + z2 ^ xy -f- yz + zx.

V 39. ročníku MO byla v I. kole kategorie A úloha najít všechna reálná čísla a
s vlastností: Jsou-li x, y, z délky stran trojúhelníku, pak je x2+y2+z2 ^ <y(xy+yz+zx).

Řešení: Jsou-li x, y, z délky stran trojúhelníku, je \y — z\ < x, \z — x\ < y,
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|я — у\ < г. Umocněním těchto nerovností a jejich sečtením dostaneme x2 + y2 + z2 <
< 2(xy + yz + zx), takže podmínku úlohy splňují všechna reálná čísla a ^ 2. Je-li
1 š a < 2, položíme x = у = 1 a z zvolíme z intervalu (0,o — y/a2 — (2 — a)). Pak
jsou x, y, z délky stran trojúhelníku a neplatí x2A y2 A z2 < ot(xyAyzAzx). Podmínku
úlohy splňují tedy právě jen všechna čísla a E IR, o ^ 2.

V celostátním kole téhož ročníku pak navazovala úloha do jisté míry obrácená —

najít všechna reálná čísla а, pro která má každá trojice kladných čísel x, y, z splňující
nerovnici

x2 A y2 + z2 š o(xy A yz A zx)
tu vlastnost, že to jsou délky stran nějakého trojúhelníku. Řešeni: Jestliže je pro nějaké
a uvedená nerovnice splněna pro některou trojici kladných čísel x, y, z, jež nemohou
být délkami stran trojúhelníku, například pro trojici x, y, z s vlastností z = x A y,

pak a nepatří mezi hledaná čísla. Položíme-li x — у — z — 2, vidíme, že úloze
nevyhovují čísla o ^ |. Ukážeme, že čísla menší než | vyhovují. Jinými slovy chceme
ukázat, že z platnosti x2 A y2 A z2 < f (xy A yz A zx) pro kladná čísla x, y, z plyne
x<yAz,y<xAz,z<xAy- Dokážeme to sporem. Nechť pro kladná čísla x, y, z

platí x2 A y2 A z2 < \{xy A yz A zx), ale jedna z předcházejících tří nerovnic splněna
není, že například platí z ^ xAy- Položme t = z — x — y^O. Dosadíme-li г = tAxAy
do předpokládané nerovnosti, dostaneme po úpravě t2 -f \t(x A y) A |(z — y)2 < 0,
což nemůže platit, neboť t je nezáporné číslo.

Na závěr si uveďme ještě dvě úlohy ze

stereornetrie, které byly pro 39. ročník převza-
ty z maďarské matematické olympiády. Mezi
všemi čtyřstěny ABCD s danými délkami a,
c hran AB, CD a danou vzdáleností d středů
hran A, CD je třeba v první úloze určit ten,
který má největší objem, v druhé úloze ten,
který má největší povrch.

První úloha, která je lehčí, byla zařazena
do klauzurní části I. kola. Cďyřstěn ABCD roz-

dělíme na dva čtyřstěny ABLC a ABLD, kde
L je střed hrany CD (obr. 9). Označme ještě
К střed hrany AB. Obsah trojúhelníku ABL
se rovná nejvýše ^ad, výšky čtyřstěnů ABLC
a ABLD na stěnu ABL jsou stejné a rovnají
se nejvýše |c, takže objem čtyřstěnu ABCD
je nejvýše -acd. Rovná se této hodnotě právě tehdy, když je KL _L AB a CD ± ABL,
takže tehdy, když je KL kolmá na kolmé přímky AB, CD. Ačkoliv výsledek druhé
úlohy je stejný, je důkaz mnohem obtížnější. Označme \KD\ = p, \KC\ = q a P, Q
obsahy trojúhelníků ABD, ABC. Je PaQ ^ fa(p + <7)- Z trojúhelníků CLK a DLK
plyne pomocí kosinové věty p2 A q2 = \c2 A 2d2. Dále je (pAq)2 ^ 2(p2 -f- qr2), rovnost
platí pouze při p = q. Máme tedy

Obr. 9

P -f Q й ^ ay/‘2(p2 -b q2) = ^ a\/c2 A 4d2
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rovnost

Р -f Q = ^ a\Jс1 + Ad?
platí právě tehdy, když je p = q, tj. CD _L KL, a souměrně DK a CK kolmé na AB.

Podobný výsledek bychom mohli odvodit pro součet R + S obsahů trojúhelníků
CAD, CDB. Největší povrch má tedy čtyřstěn, pro který je přímka KL kolmá na AB
i CD a tyto dvě přímky jsou rovněž kolmé. Jeho povrch je | ay/c2 + 4d2+| cy/al+Ad2.



Kategorie P
Pavel Tópfer

(MFF UK Praha)

Od 35. ročníku byla matematická olympiáda obohacena o novou soutěžní kate-
gorii, která byla nazvána kategorie P (programování). Kategorie P byla vytvořena
v době, kdy v celé naší společnosti a zejména mezi mládeží výrazně sílil zájem
o počítače a programování a kdy vznikala i řada jiných programátorských soutěží.
Nová kategorie MO si kladla za cíl stát se vrcholnou soutěží pro talentované studenty
středních škol, kteří se zajímají právě o matematiku a programování. Programování
přitom chtěla ukázat ne ze stránky technického zvládnutí práce s počítačem a používání
programovacích jazyků, jak je to obvyklé u jiných soutěží, ale zaměřit se na samotnou
podstatu věci. Její náplní se proto staly úlohy na analýzu a tvorbu algoritmů, úlohy, pro

jejichž úspěšné vyřešení nestačí pouze běžné praktické programátorské dovednosti, ale
které navíc vyžadují od řešitele kus matematického a algoritmického myšlení. Ohlas,
který kategorie P rychle získala, a stále rostoucí zájem o účast v soutěži svědčí o tom,
že se tyto cíle úspěšně podařilo splnit.

V současné době řeší úlohy MO kategorie P každoročně téměř 500 studentů všech
ročníků středních škol z celé republiky. Zájem o soutěž začínají projevovat i nejlepší
žáci základních škol, kteří někdy dosahují překvapivě dobrých výsledků, a to i v celo-
státním kole. Po odborné stránce je kategorie P zajišťována vysokoškolskými pedagogy
z kateder informatiky. Vedle tradičních tří odborných center působících od samého
vzniku soutěže na matematicko-fyzikální fakultě Univerzity Karlovy v Praze, příro-
dovědecké fakultě Masarykovy Univerzity v Brně a na matematicko-fyzikální fakultě
Univerzity Komenského v Bratislavě se v současné době úspěšně jedná i o zapojení
dalších vysokých škol.

Z celé řady zajímavých soutěžních úloh, které se v historii kategorie P objevily,
jsme zde pro vás vybrali alespoň tři. Společným rysem všech tří úloh je to, že jsou
zdánlivě velmi snadné. Skutečně, nalézt nějaký algoritmus řešící daný problém vám
asi nedá mnoho práce. Zde je však úkolem sestrojit algoritmus co možná nejlepší
a nejrychlejší, a to již vyžaduje značně delší a hlubší přemýšlení.

Úlohy

1. Největší čísla (MO-P 39-11-1)
Je dáno pole Л[1..п, l..n] obsahující n2 navzájem různých kladných celých čísel.

Navrhněte co nejrychlejší algoritmus, který vytiskne n největších čísel uložených v poli

18
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A. Původní obsah pole A nemusí být po ukončení výpočtu zachován.
2. Jedničkový obdélník (MO P 38-11-2)

Je dáno dvojrozměrné pole .4 (matice) velikosti nxm, jehož prvky jsou pouze čísla
0 nebo 1. Navrhněte algoritmus, který v daném poli A nalezne maximální „obdélník11
obsahující samé jedničky (maximální ve smyslu „obsahující co nejvíc jedniček“). Vý-
sledkem práce algoritmu bude čtveřice čísel i, j, к, l takových, že Aíj je prvek v levém
horním rohu a Ak,i prvek v pravém dolním rohu nalezeného maximálního obdélníka.
3. Nejdelší rostoucí podposloupnost (MO-P 39-11-2)

Je dána konečná posloupnost celých čísel délky n, n ^ 1. Prvky této posloupnosti
označíme po řadě Л'(1), Л'(2), ..., X(n). Pod posloupností délky к vybranou ze zadané
posloupnosti budeme rozumět libovolnou konečnou posloupnost tvaru A(í'i), X(Í2),
.. ., X(ik), kde 1 ^ i\ < Í2 < ■ • • < iк ^ n (tzn., že ze zadané posloupnosti je vybráno
libovolných к čísel, přičemž je zachováno jejich pořadí).

Navrhněte algoritmus, který určí délku nejdelší rostoucí podposloupnosti vybrané
z dané posloupnosti. To znamená, že určí maximální к takové, že A(i'i) < X(Í2) <
< ... < X(ik) pro nějaké indexy \ ^ i\ < io < ... < ik ^ n- Zdůvodněte správnost
algoritmu.

Naj)ř. pro posloupnost 4, 2, 7, 6, 4, 5, 3, 9, 8, 5, 9 je к = 5, neboť maximální
vybraná rostoucí podposloupnost 2, 4, 5, 8, 9 má délku 5.

Řešení

Algoritmus s optimální kvadratickou časovou složitostí je založen na často uží-
váném postupu: nejprve se provede vhodný předvýpočet, jeho výsledky se uloží do
pomocného pole a poté teprve následuje vlastní výpočet výsledných hodnot s využitím
předem připraveného pomocného pole.

Zavedeme pomocné pole SlMax[\ ..n], které bude obsahovat informace o poloze
maximálních hodnot v jednotlivých sloupcích pole A. Bude tedy platit SlMax[j] = i
právě tehdy, jestliže A[i,j] je největší ze všech čísel uložených v ý-téin sloupci pole A.

Nejprve provedeme počáteční zaplnění pole SIMax odpovídajícími hodnotami.
Výběr n největších čísel uložených v poli A potom proběhne v n krocích následujícího
postupu:

1.

- pomocí pole SIMax nalezneme největší hodnotu ze sloupcových maxim; tuto
hodnotu získáme jako maximum z čísel A[SlMax[j], j] pro j od 1 do n; nechť je to číslo
A[i,k]

- číslo A[i,k] je tedy největším z Čísel uložených v poli A; vytiskneme ho a vy-

pustíme ho z pole A dosazením nuly do A[i, fc]
- obnovíme informaci o poloze sloupcového maxima ve sloupci, v němž došlo ke

změně, tzn. spočteme novou hodnotu SlMax[k].
Správnost algoritmu přímo plyne z úvodního rozboru. V každém kroku výpočtu

je nalezena a vytištěna největší hodnota z maxim v jednotlivých sloupcích, což je jistě
největší číslo momentálně se nacházející v poli A. Přepsáním tohoto čísla nulou je
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vytisknuté číslo z pole A vynecháno (všechna čísla v poli A jsou podle zadání kladná!)
a v dalším kroku se tedy bude vyhledávat největší ze všech zbývajících čísel. Celkem po
n krocích se vytiskne skutečně n největších čísel uložených původně v poli A. Výpočet
je konečný, počet kroků výpočtu je předem určen hodnotou n.

Popsaný algoritmus má kvadratickou časovou složitost. Přečtení n2 čísel ze vstupu
i počáteční zaplnění pole SIMax jistě vyžadují řádově n2 operací. Vlastní výpočet je
pak tvořen n kroky, přičemž v každém z nich je nejprve pomocí pole SIMax vybráno
maximum z n čísel a po jeho vypsání a smazání je opět výběrem maxima z n čísel
obnoveno správné zaplnění pole SIMax. Počet provedených operací je tedy úměrný
hodnotě n2.

2. V první fázi řešení provedeme pomocný výpočet, při kterém určíme délky souvis-
lýcli sloupců jedniček v dané matici A. Výsledky tohoto výpočtu si uložíme přímo do
pole A tak, že položíme Aíj = k, jestliže prvek Aíj sám a dalších přesně к — 1 prvků
pod ním mělo původně hodnotu 1, tzn. jestliže v původní matici A platilo Apj = 1
pro p = i, i + 1, ..., i + к — 1 a navíc buď i + к — 1 = n nebo i -f к — 1 < n a přitom
Ai+k,j
ale pouze tak, že v případě potřeby by bylo snadné zrekonstruovat původní podobu
pole A (neboť žádná nula v poli A neubyla ani nepřibyla, nenulová čísla jsou uložena
na místech původních jedniček). Výsledek první pomocné fáze výpočtu si ukážeme na

příkladu:

= 0 (kde n je počet řádků matice A). Údaje v zadaném poli A tím pozměníme,

ze zadané matice: dostaneme upravenou matici:

110 10

1110 1

11111

0 10 0 1

3 4 0 1 0

2 3 2 0 3

12 112

0 10 0 1

Ve druhé fázi výpočtu již budeme hledat v poli A maximální obdélník tvořený
jedničkami (nyní po úpravě nenulovými čísly). Postupně budeme zkoumat všechny
možné pozice levého horního rohu takového obdélníka. Pro zvolený levý horní roh
Aíj > 0 musíme vyzkoušet všechny přípustné polohy pravého horního rohu Aíj. Prvek
Aíj může být pravým horním rohem obdélníka s levým horním rohem Aíj, jestliže
všechna čísla Ai>q pro q = j, j + 1, ..., / jsou nenulová.

Velikost maximálního obdélníka, který je v původní matici A tvořen samými
jedničkami a jehož levý a pravý horní roh mají souřadnice [i,j], resp. [*,/], nyní již
snadno určíme pomocí hodnot, které jsme si předem připravili v první fázi výpočtu.
Takový obdélník má totiž šířku (/ — j -f 1) a jeho výška je rovna minimu z hodnot Ai>q
pro q = j,j+ 1, ..

Uvedený výpočet je možno opakovat pro všechny možné volby levého horního
rohu obdélníka a přitom si v pomocné proměnné udržovat velikost maximálního již
nalezeného obdélníka tvořeného v zadané matici samými jedničkami. V dalších čtyřech
pomocných proměnných si musíme zaznamenávat souřadnice levého horního a pravého
dolního rohu nalezeného maximálního obdélníka. Tyto proměnné budou po ukončení
výpočtu udávat požadovaný výsledek úlohy.

/ — !,/.* )
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Správnost algoritmu plyne z uvedeného rozboru. Pokud zadaná matice obsahuje
samé nuly, algoritmus nenalezne žádný přípustný levý horní roh obdélníka Aíj > 0,
čímž je tato situace detekována. Jestliže matice obsahuje alespoň jednu jedničku, musí
obsahovat také nějaký maximální obdélník tvořený jedničkami. Dvojice proměnných
i, j během výpočtu nabyde hodnot odpovídajících souřadnicím levého horního rohu
tohoto maximálního obdélníka, neboť pomocí indexů i, j algoritmus postupně prochází
všechny prvky pole A. Proměnná l potom jistě nabyde také hodnoty sloupcového
indexu pravého horního rohu maximálního obdélníka z jedniček a tím bude tento
maximální obdélník nalezen a uloží se údaje o jeho velikosti a souřadnicích. Jestliže
lze v zadané matici A nalézt více různých obdélníků ze samých jedniček této maximální
velikosti, vyhledá algoritmus souřadnice rohů jednoho z nich (toho, který byl nalezen
jako první).

Výpočet podle uvedeného algoritmu je jistě konečný, neboť počet průchodů kaž-
dým z cyklů je předem omezen některým z rozměrů zadané matice. Načtení hodnot
matice A ze vstupu a modifikace obsahu pole A v první fázi výpočtu vyžadují provedení
nm operací. Ve druhé fázi výpočtu se nm způsoby volí levý horní roh zkoumaného
obdélníka (indexy i, j) a pro každou takovou volbu se provádí nejvýše m voleb
sloupcového indexu pravého horního rohu (proměnná /). Celkem se tedy provede řádově
nm2 výběrů horních rohů obdélníka. Kdybychom pro každou takto vybranou trojici i,
j, l hledali v naší upravené matici A maximální jedničkový obdélník s levým horním
rohem Aíj a s pravým horním rohem Aíj zvlášť, potřebovali bychom vykonat vždy
až m operací na nalezení minima z Čísel AíiQ pro q = j, j -f- 1, ..., /. Celý algoritmus
by pak měl časovou složitost 0(mn3). Tento výběr minima neboli určování velikosti
maximálního jedničkového obdélníka je ovšem možné provádět zároveň s postupným
výběrem indexu /, čímž dosáhneme celkové časové složitosti algoritmu 0(nm2).
3. Zadanou posloupnost čísel X budeme procházet po jednotlivých číslech odpředu
dozadu. V i-tém kroku výpočtu budeme sledovat, jak mohou vypadat rostoucí pod-
posloupnosti vybrané z počátečního úseku posloupnosti X délky i, tzn. z posloupnosti
A(l), ..., X(i). Pro dosažení co nej úspornějšího a nej rychlejšího řešení úlohy si
zavedeme pomocné pole M[l..n], do něhož si budeme průběžně ukládat následující
informaci: prvek M[j] je v každém okamžiku roven minimální dosud známé hodnotě
posledního prvku vybrané rostoucí podposloupnosti délky j. Další průběžně aktua-
lizovaná proměnná к udává délku nejdelší dosud nalezené rostoucí podposloupnosti.
V poli M jsou tedy definovány hodnoty Mi, M2, • • •, Mk- Po provedení г-tého kroku
výpočtu budou tudíž splněny následující podmínky:

1) 1 ^ ^ n, 1 ^ к ^ i,
2) Ar je délka nejdelší rostoucí podposloupnosti vybrané z posloupnosti X(l), A'(2),

.... X(i),
3) pro každé j = 1, ..., к platí

Mj = rnin{A'(zj); existují indexy 1 ^ i\ < z2 < • • • < ij ^ i takové,
že X(ii)< X(i2)<...< X(ij)}

Z poslední uvedené podmínky zřejmě plyne platnost nerovnosti Mi < ... < Mk-
Pokud totiž rostoucí vybraná podposloupnost délky j může končit číslem Mj, pak
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existuje také vybraná podposloupnost délky jí — 1, která vznikne z předchozí uvažované
podposloupnosti vynecháním posledního členu. Její poslední člen bude ovšem jistě
menší než Mj, a tedy skutečně platí Mj-\ < Mj.

Po provedení všech n kroků výpočtu bude proměnná к obsahovat délku maximální
rostoucí podposloupnosti vybrané z celé zadané posloupnosti X(l), ..., A(/i), a právě
to je požadovaný výsledek úlohy.

Zbývá ukázat, jakým způsobem provedeme aktualizaci hodnot proměnné к a úda-
jů uložených v poli M při jednom kroku výpočtu. Uvažujme г-tý krok výpočtu a zpra-
cování čísla X(i) ze zadané posloupnosti. Je-li X(i) větší než A/*.., je možné prodloužit
dosud nejdelší nalezenou rostoucí podposloupnost o číslo Х(г). Zvětšíme tedy hodnotu
proměnné к o jedničku a pro nové к definujeme údaj M* jako hodnotu čísla А(г).
V opačném případě není možné dosud nejdelší vybranou podposloupnost prodloužit
a hodnota к se tedy nezmění. Může se ovšem stát, že číslo X(i) nám umožní snížit
některou z dříve stanovených hodnot Mj. Jak jsme již uvedli, platí stále nerovnost
M\ < ... < Mk - Je tedy možné najít takový index j, že

buď

Mj-1 < X(i) ^ Mj.
j = 1

1 < j 5Í к
a

nebo a

Nastane-li ostrá nerovnost X(i) < Mj, můžeme snížit hodnotu Mj. Existuje totiž
rostoucí vybraná podposloupnost délky j — 1 končící číslem Mj-1, a protože X(i) >
> Mj-1, číslo X(i) tuto podposloupnost prodlužuje na rostoucí podposloupnost délky
j. Jejím posledním prvkem je právě číslo X(i).

Uvedený rozbor je zároveň zdůvodněním správnosti navrženého algoritmu. Vý-
počet je jistě konečný, neboť je tvořen přesně n kroky představujícími zpracování
jednotlivých prvků posloupnosti X. Konečnost každého z těchto kroků hned ukážeme.
Při vhodné organizaci výpočtu lze dosáhnout časové složitosti algoritmu 0(n log л).
V každém z n kroků se totiž kromě jednoduchých akcí s konstantní časovou složitostí
musí vyhledávat v poli M index j výše uvedené vlastnosti. Pokud bychom index j hle-
dali prostým sekvenčním průchodem polem M, potřebovali bychom provést v každém
kroku výpočtu až n operací, což by vedlo к celkové časové složitosti algoritmu 0(n2).
Vzhledem к uspořádání prvků pole M podle velikosti je zde ovšem možné určit index
j binárním prohledáváním (půlením intervalů) a tedy s časovou složitostí O(logn).
Odtud plyne časová složitost celého algoritmu O(nlogn).



Matematické korespondenční semináře na severní Moravě
Josef Molnár, Jaroslav Švrček

(Přírodovědecká fakulta Univerzity Palackého v Olomouci)

Každý jsme jiný a ne každý umí předvést své znalosti a dovednosti v danou chvíli.
Snad proto mnoha mladým matematikům vyhovuje právě forma matematického kores-
pondenčního semináře (MKS). Jeho smysl — vyhledávání a výchova matematických
talentů — je stejný jako v případě matematické olympiády, využívá přitom jiných
forem a metod práce.

Nejinak je tomu také v případě olomouckého MKS, který navázal na tradici
korespondenčního semináře organizovaného učiteli a studenty gymnázia M. Koperníka
v Bílovci. Po vzniku tříd gymnázií se zaměřením na matematiku ve školním roce

1974/75 se hledaly různé formy mimoškolní činnosti. V Bílovci tak vznikl například
sborník článků, jejichž autory byli žáci matematických tříd, s názvem Matematika
a po vzoru slovenských kolegů inicioval profesor gymnázia M. Koperníka Dr. Jiří Váňa
v roce 1980 korespondenční seminář, který fungoval pět let. Jeho úlohy řešilo vždy
přibližně 60 studentů středních škol z celé republiky. Pro 30 nejlepších řešitelů se
konalo v období jarních prázdnin soustředění finančně kryté z prostředků MS CSR
a JCSMF. Při soustředěních s přednáškami pomáhali učitelé moravských vysokých
škol, chod semináře přitom zajišťovali studenti bíloveckého gymnázia sami pod vedením
prof. Váni.

Seminář organizovaný na přírodovědecké fakultě UP v Olomouci vznikl z iniciativy
posluchačů oboru matematická analýza a učitelů kateder matematiky na PřF UP.
Začal pracovat ve školním roce 1986/87. Za pět let své existence proplul mnoha
úskalími ekonomických, administrativních i personálních problémů. Svou činností však
přispěl к vyhledávání a rozvoji matematických talentů, a to nejen na Moravě. Vždyť
v jednotlivých ročnících se ho zúčastnilo vždy 150-200 řešitelů z celé naší republiky.

U jeho zrodu stáli Jarmila Ranošová a Petr Adámek, v té době studenti PřF UP,
a učitelé PřF UP Dr. Jaroslav Švrček a Dr. Josef Molnár, který byl vedoucím všech
pěti ročníků MKS. Spolupořadateli byli mj. Sm KV MO, olomoucká pobočka JČSMF,
ODDM Olomouc, UP Olomouc a její mládežnické organizace.

Korespondenční část obsahovala v jednotlivých ročnících 4-5 zpravidla monote-
matických sérií po šesti úlohách různé obtížnosti. Každý řešitel si mohl vybrat úlohy
podle svých shopností, navíc prémiové body částečně vyrovnávaly handicap mladších
řešitelů a studentů „nefnatematických“ tříd.

Již pravidlem se stalo konání závěrečného soustředění pro 30 nejlepších řešitelů
v turistické základně ODDM Olomouc, která se nachází v malé obci Ochoz u Konice
na Hané. Podle anket účastníků jsou ochozská soustředění velkou motivací pro řešitele
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zejména svou neopakovatelnou atmosférou, která je dána kontinuálním propojením
matematického i nematematického programu, kolektivem vedoucích a charakteristic-
kým rázem jednotlivých soustředění, která se nesla například v duchu antiky, výletu
do budoucnosti, „Černých baronů“ a podobně. Od třetího ročníku se daří zajišťovat
ještě další soustředění pozvaných řešitelů
korespondenční části.

Organizátorům soustředění se osvědčil standardní program: dopoledne je věno-
váno přednáškám, část odpoledne tráví účastníci v přírodě nebo sportováním a pak
do večeře pracují v seminářích. Je potěšitelné, že i večer dávají účastníci přednost
činnostem spojeným s rozvojem logického myšlení a prostorové představivosti. Jeden
celý den v rámci soustředění je vždy vyhrazen pro GRAND PRIX — matematickou
hru, kterou si oblíbili účastníci i organizátoři soustředění obou našich republik.

Přednášky na soustředění probíhají zpravidla dvě souběžně, takže účastníci mají
možnost volby podle zájmu a individuální úrovně. Osvědčenými lektory a organizá-
tory závěrečných soustředění jsou: RNDr. J. Molnár, CSc., RNDr. J. Srovnal, CSc.,
RNDr. J. Svrček, CSc., z řad studentů vysokých škol pak bývalí úspěšní olympionici
a příznivci olomouckého MKS J. Ranošová, P. Adámek, A. Zach, P. Sleich, P. Calábek,
V. Skopal, J. Ježková, J. Sedláčková, M. Zmeškalová a další, z nichž mnozí se podílejí
také na přípravě textů a oprav úloh korespondenční části semináře.

Závěrem předkládáme čtenářům ukázku Čtyř úloh různé obtížnosti, které byly
zadány řešitelům olomouckého MKS ve školním roce 1989/90.

Zároveň nám dovolte vyslovit naše upřímné poděkování všem jmenovaným i ne-

jmenovaným nadšencům, kteří se dosud podíleli na úspěšném chodu MKS na severní
Moravě a přispěli tak к rozvoji mladých matematických talentů v ČSFR.

zpravidla v Jeseníkách, a to v průběhu

Úlohy

1. Rozhodněte, zda existuje trojúhelník, jehož všechny výšky jsou menší než 1 cm
a jehož plocha je větší než 1 m2.
2. Jedenáctičlenná komise má uloženy materiály v trezoru. Jakým nejmenším po-
čteni zámků je nutno opatřit trezor a kolika klíči je třeba vybavit každého člena komise,
aby libovolných 6 členů komise trezor otevřelo a přitom aby pro 5 členů komise byl
trezor nedostupný?

Nechť a, 6, c, d jsou reálná čísla taková, ге ad — be — 1. Dokažte, že platí a2 -f3.

+ b2 -f c2 + d2 + ac 4- bd ^ \/3-
Najděte všechny spojité funkce / takové, že pro všechna reálná x platí /(2x +4.

+ 1) = /(*)•

Řešení

1. Takový trojúhelník existuje, což dokážeme například takto: Uvažujme obdélník
ABCD, jehož strana AB má délku lem a strana BC délku dcm, kde d > 40000.
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Nechť S je průsečík obou úhlopříček ЛС a BD. Snadno nahlédneme, že trojúhelník
BCS má plochu větší než 10000cm2 = 1 rn2, přitom všechny jeho výšky mají délku
menší než 1 cm.

2. Cleny komise je nutno vybavit klíči následujícím způsobem: Každým šesti členům
komise přidělíme stejný klíč od téhož zámku. Zbývajících pět členů tento klíč nevlastní,
tudíž trezor otevřít nemůže. Musí tedy existovat (У) různých typů klíčů a stejný
počet zámků u trezoru. Je-li tedy trezor opatřen (6*) = 462 zámky, musí být od
každého к dispozici 6 klíčů, to jest celkem 6 • (У) klíčů. Má-li nyní každý člen komise
z tohoto celkového počtu stejný počet ýy • (У) různých klíčů, máme zajištěno, že
každých šest členů komise trezor otevře, přitom pět členů komise к tomu nestačí.
Kdyby totiž existovala šestice členů komise, z nichž každý má yy • (У) = ( 5°) = 252
různých klíčů od (У) = 462 zámků, která by neotevřela trezor, znamenalo by to, že
pouze zbývajících pět členů vlastní klíč od některého zámku, který nemá к dispozici
uvažovaná šestice členů. To je však v rozporu s přidělením klíčů od jednotlivých zámků.
Trezor musí být opatřen minimálně 462 zámky, přitom každý člen komise musí být
vybaven 252 různými klíči.
3. Podle předpokladu zřejmě platí

bcy/Š — ad\/3 = — \/3.

Přičtením tohoto vztahu к nerovnosti a2 + 62 + c2 + d2 + ac -f bd ^ \/3 dostáváme
nerovnost s ní ekvivalentní

a2 + b2 -f- c2 + d2 + ac + bd + Ьс\/3 — ad\/3 > 0. (1)

Uvažujeme-li levou stranu nerovnosti (1) jako kvadratickou funkci / proměnné a, máme

/(«) = a2 -f (c — d\/Š)a + 62 + c2 + d2 -|- bd + bc\J3.

Funkce / nabývá jen nezáporných hodnot, právě když její diskriminant Dj je nekladný.
Tudíž nerovnost (1) je ekvivalentní s nerovností

Dj = (c — dV3)2 — 4(62 + c2 -+- d2 -F bd + 6сл/3) ^ 0. (2)

Uvažujeme-li nyní levou stranu nerovnosti (2) jako kvadratickou funkci g proměnné 6,
tj-

g(b) = —462 — 4(d 4- c\/3)6 — 3c2 — 2cd\/3 — d2
nabývá g jen nekladných hodnot, právě když je diskriminant Dg rovněž nekladný.
Snadným výpočtem však zjistíme, že Dg = 0. S ohledem na ekvivalenci uvažovaných
vztahů je tím ověřena platnost dokazované nerovnosti.

2. řešení. Uveďme nejprve dvě pomocná tvrzení.
Lemma 1. Pro libovolná reálná čísla a, b, c, d platí identita

(ad — 6c)2 -(- (ac + bd)2 = (a2 + 62)(c2 -f d2).
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LEMMA 2. Pro libovolné reálné x platí

2 \Jx2 + 1 + £ ^ л/3.

Důkaz prvního lemmatu je triviální, důkaz druhého lemmatu využívá postupné úpravy:

(2\Jx2 + 1 + x)2 = Ax2 -f 4 + 4x \Jx2 + 1 + x2 =

= (2* + \Д2 + l)2 + 3^3.

Užijeme-li dále nerovnost mezi aritmetickým a geometrickým průměrem na dvojici
a2 + b2, c2 -f d2 nezáporných čísel, dostáváme postupně s využitím lemmat 1 a 2

S = a2 -f- b2 + c2 + d2 + ac + bd ^ 2\/(a2 + 62)(c2 + d2) + (ac + 6d) =

= 2\/(ac + 6c/)2 + (ad — 6c)2 + (ac -f 6d) =

= 2\/(ос^ГМ)^-ГТ + (ac + bd) ^ л/3,

což bylo dokázat.
4. Ukážeme nejprve, že pro všechna reálná x platí f(x) = /( — 1). Důkaz provedeme
sporem. Předpokládejme, že existuje reálné x, pro něž f(x) ф /(—1)- Pro všechna

x + 1
celá nezáporná čísla n položme an =

= 2an+i -f 1. Pro každé celé nezáporné n dle zadání platí /(an) = /(«o) = f(x)
tudíž lim /(an) = f(x) ф /( — 1), zatímco lim

n —► oo n —► oo

se spojitostí funkce v bodě x = — 1. Proto musí být /(z) = /(—1) pro každé reálné
x. Funkce / je tedy konstantní. Naopak každá konstantní funkce zřejmě zadání úlohy
vyhovuje.

— 1. Odtud bezprostředně plyne, že an —

x + 1
— 1 ) = —1. To je však spor2n



Korešpondenčný seminář vo východoslovenskom kraji
Martin Gavalec, Božena Mihalíková, Peter Mihók

História KMS

V školskom roku 1985/8G završil Korešpondenčný matematický seminář (KMS)
vo Východoslovenskom kraji desiaty ročník svojej existencie. KMS je organizovaný od
roku 1976 pre študentov středných škol skupinou učitefov a študent.ov matematiky
Prírodovedeckej fakulty UPJS v Košiciach.

А ко vznikla myšlienka organizovat’ KMS? V septernbri 1976 sa pri Ružínskej
priehrade konalo sústredenie vybraných riešitelov MO, ktoré možno považovat’ za prvé
sústredenie východoslovenského KMS. Boli na ňom uplatněné principy z organizácie
táborov mladých matematikov, ktorých základom je vytvorenie citovej klímy, priazni-
vej pre rozvoj tvořivého myslenia. Vhodná citová klíma bola vytváraná uplatňováním
zásady dobrovolnosti a podněcováním prirodzenej potřeby tělesného, duševného a so-
cietného rastu účastníkov. Matematický program založený na samostatnom experimen-
tovaní a objavovaní, hry s matematickým obsahom, kolektívna súťaživosť a pestrost’
denného programu — to všetko spolu s kamarátskym prístupom vedúcich vyvolalo
výrazná změnu klímy sústredenia. Vzrástla aktivita účastníkov na matematickom
i nematematickom programe; prejavilo sa to například aj na príprave a priebehu
spoločných večerov, po ktorých následovali diskusie často do neskorých večerných
hodin. Závěr poslednej diskusie pri táboráku prekvapujúcim sposobom demonstroval,
akým intenzívnym zážitkom bolo sústredenie: účastníci vyhlásili, že sú do takej miery
přesvědčení o potrebe pravidelných vzájomných kontaktov, že sú ochotní sami si
organizovat’ podobné sústredenia a zúčastňovat’ sa ich hoci aj na vlastné náklady.
Od vedúcich žiadali pomoc pri zabezpečovaní matematického programu a prevzatia
oficiálneho patronátu nad sústredeniami.

Napriek počiatočným ťažkostiam sa sústredenia napokon uskutočnili a teraz tvo-
ria jednu z dvoch základných zložiek KMS. Organizačnej přípravy a vedenia sústredení
sa ujala skupina matematikov z Prírodovedeckej fakulty UPJS v Košiciach. Dóležitým
rnomentom bola podpora Odboru školstva Vsi. KNV, najma zo strany inšpektora
RNDr. Martina Lučivianského, L. Schwartza z Vsi. К V SZM a tiež porozumeniu
riaditelstva gymnázia na Smeralovej ulici 9 v Košiciach, ktorí pomohli pri riešení
problémov hospodářského charakteru. Spomedzi samotných stredoškolákov, účastníkov
sústredení, vykonal v počiatočnom období pri ich príprave vefký kus práce J. Nižňan-
ský. V školskom roku 1976/77 prebehlo dalších páť sústredení váčšinou 2-3 dňových,
v časových odstupoch 6-8 týždňov. Na sústredenia bol pozývaný stále ten istý kolektiv
vybraných riešitelov MO, ktorí sa zúčastnili sústredenia na Ružíne. Sústredenia sa

konali podlá zásad osvědčených na prvorn sústredení.
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Priebeh sústredení ukázal popři očakávaných kladných výsledkoch aj niektoré
nedostatky. Došlo к diferencovaniu účastníkov, pričom cast' z nich prejavovala o ma-
tematiku menší záujern, celková aktivita účastníkov poklesla. Krátký čas sústredení
negativné vplýval na vytváranie citovej klímy v kolektive, pri problémovom zameraní
programu sa riešenia len naznačovali a nedovádzali do konca. Výsledky v krajskom
kole 26. ročníka MO ukázali, že olympionici majú ťažkosti s písomnou formuláciou
nájdených riešení.

Snaha odstrániť uvedené nedostatky viedla ku vzniku korešpoudenčného mate-
matického seminára v takej forme, v akej v podstatě pracuje dodnes. Počet sústredení
sa znížil na tri ročně, ich dížka sa zvýšila na 5-6 dní. Sústredenia bol i doplněné
korešpondenčnou súťažou, na základe ktorej sa robí výběr účastníkov sústredení.

Od roku 1977 sa v korešpondenčnej súťaži zadáva ročně 8-9 sérií úloh (po 4-6
príkladoch) a uskutočňujú sa ročně tri sústredenia. Počet riešitelov korešpondenčnej
súťaže sa pohybuje v rozpátí 50-100 z Východoslovenského kraja a 5-20 mimokraj-
ských. Na sústredenia bolo pozývaných 30-35 účastníkov z Východoslovenského kraja
a 4-8 mimokrajských účastníkov. Pre ilustráciu: za 10 rokov posobenia KMS bolo opra-

vených přibližné 20 000 súťažných riešení, uskutočnilo sa 33 sústredení, к 180 úlohám
boli napísané a rozmnožené komentáre. Do KMS bolo zapojených okolo 600 študentov
z Československa, ale aj z Polska a Maďarska.

Opravovanie úloh korešpondenčnej súťaže a časť organizačnej práce vykonávajú
študenti Prírodovedeckej fakulty UPJS, prevažne bývalí účastníci KMS. Studenti PF
UPJS sa tiež zúčastňujú na sústredeniach KMS a tým prispievajú ku kontinuitě klímy.
Starostlivost’ o odbornú a organizačnú náplň KMS přebrali katedry matematiky PF
UPJS, od roku 1983 v spolupráci s Krajským domom piouierov a mládeže v Košiciach.
V KMS sa podařilo udržať a rozvinúť atmosféru nadšenia pre matematiku. Sústredenia
svojou přitažlivou klírnou motivujú к systematickej práci v korešpondenčnej súťaži.
Tým sa následovně rozvíjajú matematické schopnosti žiakov. Výsledky východoslo-
venských účastníkov v celoštátnom kole MO za obdobie činnosti KMS presvedčivo
dokumentujú účinnost’ tejto formy práce s matematickými talentami. Například, kým
za prvých 25 ročníkov MO získal titul víťaza celoštátneho kola MO jediný účastník
z Východoslovenského kraja, od 26. do 35. ročníka MO mal Východoslovenský kraj
17 víťazov kola MO.

Východoslovenský KMS krátko po svojorn vzniku našiel nasledovníkov. Od roku
začali pracovat’ podobné KMS v Bratislavě, v Severomoravskom kraji (pri gymnáziu
v Bílovci). Neskór bol založený KMS v Stredoslovenskom kraji (1979) a v niektorých
krajoch ČSR. Ich vplyv na výchovu matematických talentov je jednoznačné pozitivny.

Posledné sústredeiiie ...

V maturitnom ročníku pre člověka vela končí. Pre maturantov-sústredencov začína
čosi končit’ už v zimě. Čaká na nich posledné sústredenie. Alebo oni čakajú naň. Na
sústredenie, ktoré sa zařadí к radu predchádzajúcich. Už len horko-ťažko ich dokážu
spočítat! na prstoch svojich rúk. Zvykli si na ne, a vlastně si ten koniec nevedia
dost’ dobré představit’. Neopakovatelná a predsa sa opakujúca atmosféra, akú len tak
Fahko hocikde nepostretnú, staří známi kamaráti a priatelia, s ktorými prerozprávali,
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prešarádili či prežužolili nejednu noc, neobyčajne bezprostředné vztahy medzi nimi,
medzi vedúcimi i medzi nimi a vedíicimi — toto všetko má byť o chvílu minulosťou?

A potom, ani nevedia ako, ocitajú sa uprostřed diania na tomto sústredení a na

podobné úvahy už nieto času. Je zima, vonku je všade plno sněhu, alebo aj nie, zatiať
čo vnútri sa podlá pravidla najrovnomernejšieho rozdelenia sústredenci rozdelujú do
družin, ktoré budu tvoriť tradičnú a nevyhnutná strukturu pre organizáciu života
sústredenia. Občas má pravidlo výnimku: jedna družina nie je celkom rovnoměrná vo
vzťahu к ostatným. V živote na sústredení sa jej, ak už nie vždy, tak určité váčšinou
daří. Na čo nestačia jej maturanti, po celý čas tak trochu prenasledovaní tieňom
blížiaceho sa konca, to s prehfadom zvládnu mladší, připadne najmladší. Nevyhne
sa sice patričnej dávke namyslenosti a uzavretosti do seba, ale ona si to v tom čase
ešte neuvědomuje.

Postupné zožína úspěch za úspechom na poli najrozličnějších súťaží poriadaných
organizačným výborom sústredenia. Bezpečne vedie v celosústredennom súperení dru-
žín, hoci je ešte před ňou GRAND PR1X — reťaz navzájom viac-rnenej poprepájaných
úloh, ktorá je už takmer neodmyslitelnou súčasťou každého sústredenia. Preto si po

krátkej poradě svojich členov, može dovolit’ začat’ GP so slovami: „Je nepodstatné
vyhrát’, podstatné je zabavit’ sa.“

A tak sa spoločnými a zároveň rozdělenými silami púšťa do plnenia úloh. 500bo-
dová úloha — naštartovať a doviezť před ubytovňu bývalý traktor, ktorý parkuje
v neďalekom lese a trikrát na ňom zatrúbiť — sa zdala byť v prvom momente nespi-
nitelná. Aké však je prekvapenie organizačného výboru, ktorý čiastočne oddychuje po

úmornej práci spojenej s přípravou GP a čiastočne dokončuje túto přípravu, keď ho
z tejto činnosti vyrušil prichádzajúci a trúbiaci traktor, v ktorom sedia jej členovia.
S ujom traktoristom sa zoznámili v miestnom pohostinstve, popři prevádzaní sociolo-
gického prieskumu medzi miestnym obyvatelštvom. Prieskum pozostáva zo získania
maximálneho počtu odpovědí miestnych občanov na otázky organizačného výboru
typu: „Ako podlá vás vyzerá živý matematik", „Co ste urobili preto, aby ste zbavili svět
množin", „Co si myslíte o nás", a tak ďalej. Spočiatku nie je pre družinu jednoduché
len tak z ničolio nič zastavit’ miestneho občana, zistiť jeho vek, povolanie a získat’
od něho odpovede; najma poniektorí jej členovia dovtedy s cudzími ludmi nezvykli
takmer vobec komunikovat’. Splnenie úlohy si však od nich vyžiada získanie aj tejto
schopnosti, čo, hoci to ešte teraz nevedia, v budúcnosti párkrát ocenia.

Cestou spát’ na ubytovňu družina plní ďalšiu úlohu — komponuje svoju hymnu.
A zatiať čo sa organizačný výbor dohaduje, či lovit’ alebo neloviť medveďa na konci
GP, družina sa zaň nevědomky rozhodne v poslednej slohe svojej hymny: „Co je nás po
medvědovi / a po jeho veťkej líre, / nie je hlavné, či vyhráme, / hlavně, že sa bavíme".

Večer ešte prednesie spracované výsledky sociologického prieskumu, a potom sa
už teší z velikánskej sladkej odměny. Maturantom sa zdá, že je koniec, svoj srnútok
i vcfaku vyjadřujú zápisom na nástěnku prianí a sťažností. V tom čase ešte nevedia,
že budúcnosť pre nich připraví ešte nejedno podobné stretnutie.
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Témy KMS v školskom roku 1986/87
1. Stereometrické úlohy
2. Funkcie a zobrazenia

3. Pravděpodobnost’
4. Komplexně čísla
5. Postupnosti a matematická indukcia
6. Planimetria

7. Teória čísiel

8. Aplikácie matematiky

Úlohy

1. Nech a, 6 sú prirodzené čísla také, že a2 + b2 je deliteFné číslom 21. Potom a2 + b2
je dělitelné aj číslom 441. Dokážte.
2. Nájdite všetky prirodzené čísla k, pre ktoré je číslo 2k + 1 472 druhou mocninou
nějakého prirodzeného čísla.
3. Dokážte: ak n je zložené číslo, tak súčin všetkých jeho prirodzených delitelov nie
je menší ako nš.
4. Dokážte, že číslo 3341 — 3 nie je dělitelné číslom 341.
5. Dokážte, že každé prirodzené číslo a možno jediným sposobom zapísať vo tvare
a — a\ • 1! + Д2 • 2! + ... + an • n!, kde 0 ak ^ к pre к = 1, 2, ..., n. Zapište v tomto
tvare číslo 1 984.

6. Súčet piatich nezáporných čísiel je 1. Dokážte, že ich možno rozostaviť po obvode
kruhu tak, aby súčet všetkých piatich súčinov clvoch susedných čísel nebol váčší ako
7. Prirodzené číslo nazveme absolutným prvočíslom, ak je prvočíslom a ak pri Tubo-
vofnej permutácii jeho cifier opat’ dostaneme prvočíslo. Dokážte, že v zápise absolút-
něho prvočísla nemožu byť viac než tri rožne cifry.
8. Riešte v obore celých čísel rovnicu

2x2 + 3xy + y2 = 35.

9. Dopravný podnik sa rozhodol zrušit’ páť zastávok na autobusovej trati. Povodně
mala trať 18 zastávok vrátane východzej a konečnej. KoFkými spósobmi možno zrušenie
uskutočniť, ak nesmú byť zrušené žiadne dve susedné zastávky, ani východzia a konečná
zastávka?

10. Postupnost’ ao, «i, «2, ... je tvořená následovně: ao = 3, (i\ = 13, pre ďalšie jej
členy platí ajfc+2 = 8сц.+1 — 15ajfc, к = 0, 1, 2,.... Dokážte, že táto postupnost’ je rastúca
a udajte jej prvý člen prevyšujúci 5100.
11. Dokážte identitu

= n(n — 1)(íi — 2)2n 3, n G N.
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12. Je daných 12 červených, 9 modrých a 5 bielych gúl. Gule rovnakej farby sú
nerozlišitelné. Kolkými sposobmi možeme tieto gule rozdělit’ dvom osobám, ak každá
má dostat’ právě 13 gul?
13. Sachovnica 6 x 6 je pokrytá kočkami domina. Dokážte, že jedna z horizontálnych
alebo vertikálny cli čiar pretínajúcich šachovnicu nepretína žiadne domino.
14. a) Kolkými sposobmi rnóže otec rozdělit’ svojim štyrom synom 100 Kčs?

b) O kofko sa počet možností zmenší, ak každý zo synov dostane aspoň 10 Kčs?
15. 15 chlapcov a 15 dievčat tancuje v kruhu tak, že sa striedajú. Kolkými sposobmi
sa takto rrióžu zoskupiť?
16. Kolkými sposobmi je možné na biele polia šachovnice 8x8 postavit’ 8 (rovnakých)
věží, aby sa žiadne dve neohrožovali?
17. Dokážte, že ak sa turnaj 23 hráčov odohrá za dva dni, potom existujú štyria hráči,
ktorí všetky svoje vzájomné zápasy odohrajú v ten istý deň.
18. Kolkými sposobmi možno vybrat’ tri z vrcholov pravidelného n-uholníka (n ^ 3)
tak, aby tvořili vrcholy

a) rovnoramenného
b) pravoúhlého
c.) tupoulilého trojuholníka?

19. Dané sú reálne čísla a, 6. Kofko existuje roznych 100-členných aritmetických
postupností, ktorých členmi sú a, 6?
20. Ráno boli všetky izby v hoteli obsadené. V priebehu dna přišlo jednotlivo 15
nových hostí a 20 hostí izby uvolnilo. Kolkými sposobmi mohli prichádzať na recep-
ciu hostia tak, aby nikto nemusel čakať, kým sa niektorá izba uvolní? (Uvažujeme
jednopostelové izby.)
21. Riešte v IR rovnicu

у a — у/a -f x — x.22.Určte, pre aké hodnoty parametra a má rovnica

хл — ax + 2 a + 32 = 0

tri reálne kořene.23.Riešte nerovnicu

J_ _ 3 1_ _ i
X2 4 < x 224.Riešte nerovnicu

og^ X + log i x2 - 3 > v/5(log4 x1 - 3)

25. Riešte nerovnicu
\x ~ 5|

6 a:
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|*| - I* — 8| = |a + 4| + |4 - a\

kde a je dané reálne číslo.27.Pre ktoré hodnoty parametra a platia pre kořene X\, x2 kvadratickej rovnice

2 ax2 — 2x — 3a — 2 = 0

podmienky Z] < 1, xn > 1?28.Nájdite všetky reálne riešenia z, у sústavy rovnic

x1 + y2 - 2z - ‘My - 0,
ах — у — 3 = 0,

kde a je dané reálne číslo.29.Riešte rovnicu
a sin x + b a cos x -f 6
b cos x + a 6 sin x + a

kde а ф 0, b ф 0.
30. Určte hodnoty sin z, cos z v závislosti od parametra a, keďviete, že tg z + cotg z =
= a.

31. V rovině IR2 je daný konvexný štvoruholník ABCD taký, že vzdialenosť každého
vrcholu od každej strany, na ktorej neleží, je aspoň |л/5. Dokážte, že obsahuje aspoň
tri mrežové body.32.Nájdite všetky hodnoty reálného parametra A, pre ktoré ležia všetky body kon-
vexného obalu množiny {(0,0)} U Мд najednej priamke, kde Мд je množina riešení
sústavy

2
4- у ^ 0, x1 -f (y - A)2 1, X = A.—x33.Súčet množin je definovaný vzťahom A + В = {a -f b : a £ A, 6 £ B}. Ak A je

neprázdná množina reálných čísel s vlastnosťou A + A = A, tak v A existuje nulová
postupnost’ (tj. postupnost', ktorej limita je 0). Dokážte a zistite, či množina A musí
obsahovat’ 0, ak obsahuje kladné aj záporné čísla.
34. Ak A je neprázdná konvexná množina bodov v rovině s vlastnosťou A -f A = A,
tak v A existuje postupnost’ {(xn, yn)}™=1 taká, že postupnost’ {x„ + yjt }£°=1 je nulová.
Dokážte a zistite, či je pravdivé tvrdenie, že ak A + A = A a v A existuje nulová
postupnost’, tak A je konvexná množina.
35. Nech n, b, c sil dížky stráň trojuholníka, potom existuje trojuholník, ktorého strany

—-. Dokážte.
6

majú dížku — , ,
a+1 6+1 c+136.Určte aký može byť obsah trojuholníka so stranami a ^ b ^ c v následujúcich

prípadoch: 1) a 5Í 1; 2) 6 ^ 1; 3) c ^ 1. í+e ktoré trojuholníky dosiahne obsah nájdenú
hodnotu?
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37. Dokažte, že ak štvorec S je vpísaný do trojuholníka T tak, že jedna strana štvorca
S leží na obvode T, potom obsah S je najviac polovica obsahu T. Určte všetky případy,
kedy nastane rovnost’.

38. Medzi všetkými trojnholníkmi s daným obsahom nájdite trojnholník s najmenším
obvodom a trojuholník s najváčším obvodom.

39. Pre dížky stran a, b, c a pre obsah P lubovolného trojuholníka platí a2 + 62 + c2 ^
^ 4P\/3- Dokážte a určte, kedy nastáva rovnost’.
40. Necli bod E je vnútorným bodom strany AC trojuholníka ABC. Rovnoběžka
s priamkou А В cez bod E přetne st ranu BC v bode F, rovnoběžka s priamkou AC
cez bod F přetne stranu AB v bode G. Nájdite všetky body E také, že priamka EG
je rovnoběžná s priamkou BC.

41. Zostrojte pravoúhlý trojuholník ABC s přeponou AB, ak sú dané súčty 6 + c = p,
c + a = q jeho stráň a, b, c. Urobte diskusiu vzhladom na p, q.

42. Zostrojte trojuholník ABC, v ktorom priesečník V jeho výšok dělí výšku pre-

chádzajúcu vrcholom A na polovicu, ak je daná velkost’ strany \AB\ — c a uhol
a = \$CAB\. Urobte diskusiu riešitelnosti vzliíadom к vďkosti ulila a.

43. Necli kružnice k\, к?, кл majú středy vo vrcholoch ostroúhleho trojuholníka ABC
a prechádzajú priesečníkom V jeho výšok. Dokážte, že po dvojiciach sa к i, к2,
pretínajú na kružnici opísanej trojuholníku ABC.

Riešenia

1. Využime pomocné tvrdenia: ak 3 | a2-\-b2 (7 | a2 + 62), potom 9 | a2-\-b2 (49 | a2-\-b2).
Dokaž sa najčastejšie robí úvahou o zvyškoch pri delení a, b číslami 3 a 7; tak dospejeme
к tomu, že 3 | a, 3 | b, 7 | a, 7 | b. Zaujímavý je dokaž pomocou malej Fermatovej vety
(ak p je prvočíslo a p nedelí c, potom p | cp_1 — 1). Pre p = 7 platí: ak 7 nedelí a ani b,
potom 7 | a6 — b6 — 2 = (a2 -f b2)(a4 — a2b2 -f b4) — 2, čo je spor s 7 | a2 + b2. Ak 7 j a,
7 | b, tvrdenie platí triviálně.

Analogicky pre p = 3.

Mnohí riešitelia dosadzovaním к = 1,2,..., přišli na to, že spornedzi týchto čísel
vyhovuje iba к = 7 (27 + 1 472 — 4O2). Bolo však potřebné dokázat’, že je to riešenie
jediné (tj., že pre к ^ 8 číslo 2к + 1 472 = 2k + 26 • 23 = 26(2*~6 + 23) už nemože byť
štvorcom žiadneho prirodzeného čísla). Keby 26(2fc“6 + 23) bolo štvorcoin, muselo by
byť štvorcom aj číslo 2n + 23, n A 2, čo znamená, že by existovalo také prirodzené
číslo m, pre ktoré 2n + 23 = (5 + m)2.

Úpravou dostáváme: 2U 4- 23 = 25 + 10m + m2, odkial’ vyplývá, že m je párne
číslo, m = ‘2p, a teda 2n — 4p2 — 20p = 2. Ale pretože n ^ 2, je číslo na 1’avej straně
dělitelné štyrini, čo je híadaný spor (pravá strana štyrrni dělitelná nie je). Vyhovuje
teda jediné prirodzené číslo к — 7.

2.
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3. Necli di, ..dk sú všetky navzájom rožne delitele čísla n. Ku každému z týchto
11

delitelov di přiraďme združený delitef —. Dá sa lahko dokázat’, že {di,...,dk} =di
n li

čo znamená, žedy ’ " ' ’ dk

d\ • d2 ■ .. ■ • dk = —

n

d\ dk ’

odkial’

d\ • d\ ■ ... ■ d2k = nk.
Pre súčin všetkých prirodzených delitelov čísla n teda platí

di • d‘2 ■ . . . ■ dk = n 2

a ak je n zložené, tak к ^ 3, a teda

d\ ■ d'> ■ . .. ■ dk = n 2 ^ n 2.

4. Je potřebné si uvědomit’, že číslo 3341 — 3 má příliš vela cifier na to, aby bolo
vhodné riešiť úlohu tak, že ho budeme číslom 341 dělit! Najvtipnejší je asi nasledovný
postup: upravme 341 = 11 • 31 а 3341 — 3 = (З341 — З331) + (З331 — 3). Kedze

З331 330
- 1) = (311 — 3)(3320 + 3
- 1) = (331 - 3)(3300 + 3

- 3 = 3 • (3
- 3 = 3 • (3

+ • • • +

+ •••+!)>з331 330 270

podlá známej malej Fermatovej vety (ak pje prvočíslo, tak ap — oje dělitelné číslom p)
je З331 — 3 dělitelné 11-timi aj číslom 31, teda i číslom 341. Keby bolo číslo 3341 — 3
dělitelné číslom 341, muselo by aj číslo З341 — З331 byť dělitelné 11-timi a 31-kou. Ale
číslo 3

potřebné dokázat’.
5. Najskor ukážeme jednoznačnost’ takéhoto zápisu. Nech

341 331
= 3330(311 — 3) je dělitelné iba 11-timi, ale nie číslom 31, čo bolo- 3

(i\ ■ 1! -f- o2 • 2! -j~ ...-)- cin ■ 7i! — o — b\ ■ 1! + 62 • 2! + ... + bn • ?í!,

kde 0 ^ di, ^ i, a nech existuje taký index j, že aj ф bj. Označme к = min{i: щ ф
Ф bi}, tj. pre všetky i < к je o, = 6,;. Potom

а к k\ + o-k+1 ■ (к 1)! + (ik+2 ■ {k + 2)! -f ... + on • n! —

— bk ■ k\ + bk+1 ■ {к + 1)! + bk+2 • {k + 2)! -f ... + bn ■ n\
(1)

Možeme předpokládat’ ak > bk. Kedze 0 < ak ф к, platí ak ■ k\ | m\ pre к + 1 ^ ni ^ n.
Potom z (1) máme, že

а к ■ k\ • A = bk ■ k\ + а к • k\ ■ В
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kde А, В sú celé. Z toho vyplývá, že a* • A;! | 6* • Ar!, ale а* • Ar! > bk ■ k\, čo je spor. Tým
je jednoznačnost’ ukázaná. Dalej ukážeme existenciu takéhoto zápisu. Nech a ^ 1 je
fubovolhé prirodzené číslo. Nájdime také n, pre ktoré je n\ 5Í a < (n + 1)!. Potom a
vieme napísať vo tvare a = ann\ -f pn, kde 0 ^ an ^ n, 0 й pn 5Í n!, an, pn sú celé
čísla.

Ďalej

kde 0 ^ an-i ^ n — 1, 0 ^ p„_1 < (» — 1)!
kde 0 < a

pn = an-\{n - 1)! + Pn-i,

Pn-1 = an-2{n - 2)! + pn-2, ^n-2, 0 ^ pn_2 < (n — 2)!,n —2

kde 0 ^ no ^ 2, 0 ^ />2,

P2 = a i * 1!, kde 0 ^ «i 5Í 2,

Рз = a2 • 2!

a teda
a = a„n! -f an_i(?i — 1)! + ... + a2 • 2! + a\ • 1!,

pričom 0 ^ ajk ^ Ar, pre Ar = 1, 2, ..., n. Pomocou uvedeného postupu máme

1 984 = 2 • 6! + 4 • 5! + 2 • 4! + 2 • 3! + 2 • 2! + 0 • 1!.

Nech a, b, c, d, e sú nezáporné čísla, také žea + 6 + c + d + e = 1. Vychádzame
z nerovnosti medzi kvadratickým a aritmetickým priemerom nezáporných čísel
6.

a2 + b2 + c2 + d- -f e2 ^ a + i + c + d + e 1>
5 5 5

1
Po umocnění (obidve strany sú nezáporné) a úpravě máme a2 + 62 + c2 + d2 -f e2 > -5
teda

1
(a + b + c + d + e)2 — 2(a6 + ac + ad + ae + be + bd + be + cd + ce + de) > -.5

OdtiaF využitím rovnosti a-f6 + c-(-d+e = 1 dostaneme

2
(«6 + bc + cd -f de + ea) -f (ac + ce + eb 4- 6d -f da) ^ -.5

Teda aspoň jeden z výrazov v zátvorkách nie je váčší než Hfadaným úsporiadaním
5

je jedno z týclito usporiadaní.
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Zrejme absolutné prvočíslo nemóže obsahovat’ číslice 0, 2, 4, 6, 8 kvoli dělitelnosti
dvorná a číslicu 5 kvoli dělitelnosti piatimi. Ukážeme, že ak číslo obsahuje každú z číslic
1, 3, 7, 9, tak nie je absolutným prvočíslom. Všimnime si, že čísla 1379, 1 793, 9 137,
1 739, 1 397, 1 973 dávajú pri delení siedrnimi zvyšky postupné 0, 1,2, 3, 4, 5, 6. Nech
číslo A obsahuje každú z číslic 1, 3, 7, 9 a číslicu 6^0. Pomocou permutácie jeho
cifier móžeme utvořit’ číslo В = 10 000 -6 + 1 379. Ak teraz 10000 • b dává pri delení
siedrnimi zvyšok г, vyberme takú permutáciu p čísla 1379, ktorá pri delení siedrnimi
dává zvyšok 7 — z, potom číslo C = 10 000 • b + p vzniklo z A permutáciou jeho cifier
a je dělitelné siedrnimi. Teda A nie je absolutné prvočíslo, z čoho vyplývá, že každé
absolutné prvočíslo obsahuje najviac tri rožne cifry.

Rovnicu upravíme na tvar (2a; + y)(x + y) = 35. Kedze rovnicu riešime v obore
celých čísel, sú aj 2x + у, x + у celé. Pre rozklad čísla 35 na súčin dvoch celých
čísel máme 8 možností: 35 — 1 • 35 = 35 • 1 = (—1)(—35) = (—35)(— 1) = 7 • 5 =
= 5*7 = (—5)(—7) = (—7)(—5), ktorým zodpovedá 8 riešení rovnice. Tieto získáme
riešením sústavy dvoch lineárnych rovnic o dvoch neznámých. Sú to riešenia (—34, 69),
(34, -69), (34,-33), (-34,33), (2,3), (-2, -3), (-2,9), (2, -9).

Po zrušení 5 zastávok ostalo na trati 13 zastávok, medzi nimi 12 medzier. Kedze
nebola zrušená ani prvá ani posledná zastávka, tak zrušené zastávky pochádzajú
z týchto 12 medzier, pričom z každej najviac jedna (lebo neboli zrušené žiadne dve
susedné). Stačí teda určit’, kofkými spósobmi možno vybrat’ 5 medzier z 12 (v nich sú
zrušené zastávky), a to je (*52) = 792.
10. Cast’ riešitelov nenašla explicitný vzorec, preto pracovali s rekurentným zadaním
postupnosti. Indukciou, váčšinou však velmi ťažkopádne, dokazovali, že postupnost’ je
rastúca. Jedine M. Foltin si všimol, že За*, < а^+i pre všetky к E N, a dokázal to
triviálnou indukciou: je 3u0 < a i a z předpokladu За* < 1 vyplývá, že

flk+2 3(Xjk4-i — 8<Zfc_j_i 15а^. 3(ijfc+i — 5(a*:+i 3ujt) > 0,

7.

8.

9.

teda afc+2 > 3a*+i.
Druhů časť úlohy nevyriešil v tejto skupině riešitelov nikto, najsilnejší výsledok

dosiahol opat’ M. Foltin: dokázal, že pre všetky к E N je cik+i < 5czfc, potom zrejme
a* < 3-5*, teda prvý člen ktorý by mohol převýšit’ 5100 je «юо, lebo a99 < 3-5" < 5100.

Váčšina riešitelov dokázala explicitný vzorec a* = 3fc + 2 • 5fc, z ktorého lahko
vyplývá monotónnost’ aj to, že hladaný člen je аюо- Niektorí vzorec odpozorovali
z prvých niekofkých členov, iní uviedli aj sposob určenia takéhoto explicitného předpisu
z rekurentného zadania postupnosti.1)
11. Riešitelia využili rovnost’

£ (Vb Ž (I :J)k =0 4 / k=0 4 '

n — 32n“3 = (1 + 1)

1) Explicitný vzorec najdeme tak, že hfadáme geometrické postupnosti, ktoré spíňajú daný rekurentný
vzťali. Dosadením takej postupimsti cAfc do rekurencie dostaneme kvadratická roviucu Л2 — 8Л +
+ 15 = (A — 3)(A — 5) = O, ktorá má kořene Ai = 3, A2 = 5. Potom platí, že všeobecné riešenie
danej rekurentnej rovnice má tvar = A • 3k + В • 5k. Z počiatočnej podmienky ao = 3, a\ = 13
dostaneme A = 1, В = 2.
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a fakt, že pre n = O, 1, 2 sú obe strany uvažovanej identity nulové. Potom úpravami
dostaneme

í>(*- 1)(*-2)(*)=Ё
k=0 ' 7 k=3

7i!
*(*- 1)(A: — 2) =Ad(n — fc)!

^ (n — 3)!n(n — l)(n — 2)
(k — 3)!(n — k)\E

=3

lne riešenie poslal M. Engliš. Ten využil rovnost’

= n(n - l)(n - 2)2n~3.= n(n —

(* + 2)n = (z + l + l)n.
Koeficienty pri zm na oboch stranách rovnosti sa musia rovnat’; z binomickej a trino-
rnickej vety dostáváme

n!

i\j\m\'
kde г + j + m = n. Položme n — i = k, potom po úpravách pre к — 0, 1, ..n vyjde

m

m

тйк^п

odkiaf pre m = 3 dostaneme

' 7 m=3 ' 7 \ 7

a po vynásobení oboch stráň číslom 6 máme dokazovanú identitu.
I. Tereščák použil 3. deriváciu polynomu

(* + *>"= Co
n "b"+ X + ..+
1 n

a dostal

n(n — 1 )(n — 2)(1 + x)n 3 k(k — 1 )(á,* — 2) í " J.A,-3
A' = o

čo pre x — 1 dává požadovanú rovnost’.
12. Najčastejším typom riešenia bolo hladanie všetkých možností pomocou roznych
systémov. Najekonomickejšie bolo rozdělit’ si případy podlá toho, kofko bielych gúf
dostane prvá osoba. V siestách možnostiach (0, 1, 2, 3, 4, 5 bielych gúf) vyšlo postupné
9 + 10 + 10 + 10 + 10 + 9 = 58 možností.

Iné riešenia využívá vytvárajúcu polynomickú funkciu: počet rozdělení je rovný
koeficientu pri xVÓ v polynome (l+x- + .. .+x,5)( 1+x,+xJ + .. .+x9)(l+a;+x2 + .. .+x13).
Je možné odvolat’ sa tiež na výsledky zo SMM č. 29 a 45.

P. Krtouš riešil úlohu takto: Je 6 10 = 60 možností, ako može jedna z osob dostat’
biele a modré gule. Vo všetkých prípadoch okrem 0+0 a 5+9 možno kombináciu doplnit’
červenými gulami do 13. Výsledok je teda 60 — 2 = 58.
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13. Nech je šachovnica fubovolne pokrytá 18 kočkami domina. Každá z desiatich
priamok (5 horizontálnych, 5 vertikálnych), ktorá přetíná šachovnicu, ale nepretína
žiadne pole tejto šachovnice, rozdělí šachovnicu na dve časti tak, že v každej z týelito
častí je párny počet polí. Preto, ak čiara přetíná domino, musí přeťat’ vždy parny počet
domin (aspoň dve). Kedze čiar je desať a domin iba 18, podlá Dirichletovho principu
musí existovat' čiara, ktorá nepretína žiadne domino.
14. a) Uložme 100 jednokorlínových mincí do radu. Trorna paličkami ich rozdefme na 4
podmnožiny, ktoré představují! peuiaze pripadajúce jednotlivým synom. (Uvážte, aká
pozícia paličiek určuje sumu 0 Kčs pre niektorého syna.) Teda ide o to vybrat’ zo 101
medzier (99 medzier medzi mincami a pozícia před a za mincami) tri miesta pre paličky,
pričorn vybrané miesta sa móžu opakovat’. To je možné urobit’ (
sposobmi.

b) Úlohu prevedieme na predchádzajúci případ: Otec dá vopred každému synovi
po 10 Kčs a rovnakýrn sposoborn ako v a) rozděluje zvyšných 60 Kčs. Tým sa počet
možností zmenší o 137 140.

15. 15 chlapcov móžeme do radu postavit’ 15! sposobmi. Pri postavení do kruhu, ak
rozostavenia vzniknuté pootočením kruhu považujeme za rovnaké, je zrejme 15-krát
menej možností, teda 14!. Ak sa chlapci majú v rozostavení s dievčatami striedať,
móžeme teraz do medzier medzi chlapcami (je ich 15) rozostaviť dievčatá 15! sposobmi.
Celkový počet spósobov je teda 14! • 15!.
16. Předpokládali sme, že dve veže sa podlá šachových pravidiel ohrozujú, ak stoja
v tom istom riadku alebo štipci šachovnice. (Samozřejmé inak je počet spósobov
rozostavenia 8 věží (g2)). Úloha je velmi 1’ahká. Stačí si totiž uvědomit’, že ak označíme
riadky a štipce šachovnice zaužívaným sposoborn, navzájorn sa ohrozujú iba veže
z riadkov 1, 3, 5, 7 (respektive 2, 4, 6, 8) a stípcov a, c, e, g (respektive 6, ď, /, h).
Kedze máme 8 věží, v každom riadku i štipci bude stát’ právě jedna veža. Ak postavíme
vežu rubovofne do 1. riadku na biele pole, máme 4 možnosti, ale potom do 3. riadku ju
móžeme postavit’ iba 3 sposobmi, do piateho riadku dvorná sposobmi a v 7. riadku je už
postavenie veže vynútené (1 spósob). Využijúc pravidlo súčinu dostáváme 4! možností.
Analogicky to platí pre veže umiestnené v riadkoch 2, 4, G, 8. Celkovo teda móžeme
rozmiestniť veže (4!)" = 576 sposobmi.
17. Pri riešení tejto úlohy je výhodné použit’ Dirichletov princip (pozři SMM č. 25).
Přiraďme hráČom vrcholy a zápasom hrany úplného grafu s 23 vrcholmi, pričorn hranu
zafarbíme bielou (resp. čiernou) farbou, ak příslušní hráči odohrali vzájomný zápas
prvý (resp. druhý) deň. Zvolme Fubovofný vrchol A; podlá Dirichletovho principu
existuje aspoň jedenásť vrcholov , ktoré sú s ním spojené hranou tej istej farby. Lahko
sa dokáže, že nemóže nastat’ taká situácia, aby sa v každom vrchole schádzalo právě
11 bielych a právě 11 čiernych hrán (zdóvodnite!), a preto musí existovat’ taký vrchol
Ao, ktorý je spojený s aspoň 12 vrcholmi tej istej farby. Dalej sa už pokračuje tak,
ako v příklade 34 (SMM 25, str. 48). Niektorí dokázali, že už pri turnaji 20 liráčov
musí uvedená situácia nastat’. Dá sa dokázat’, že štvorica hráčov danej vlastnosti musí
existovat’ aj pri turnaji 18 hráčov, pričorn je možné turnaj 17 hráčov vyžrebovať tak,
že žiadna štvorica hráčov neodohrá vzájomné zápasy v ten istý deň. Nájdenie takého

s+ioi-i) _ 17G851
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rozlosovania je však velmi náročné.

18. Pri diskusii je třeba uvážit’ vždy niekofko možností. Kedze postup riešenia je
v podstatě jednoduchý, uvedieme iba výsledky:

a) Z vrcholov pravidelného n-uholníka možno vybrat’ tri vrcholy tak, aby tvořili
rovnoramenný trojuholník rn sposobmi, kde

rn = \n(n - 2),
(ii) rn = kn(n - 2) - |n
(iii) rn = Jn(n - 2),
(iv) rn = ~n(n — 2) — |n, ak n je nepárne a je dělitelné tromi.

b) Ak je n párne, je možné utvořit’ kn(n — 2) pravoúhlých trojuholníkov; ak n je
nepárne, žiaden z trojuholníkov, ktoré tvoria vrcholy, nie je pravoúhlý.

c) Ak je n párne, možno vybrat’ \n (|n — l) (|n — 2) roznych tupouhlých trojuhol-
níkov; ak je n nepárne, je hladaný počet • |(n — 1) (|(n — 1) — 2).

19. 7i-člennou aritmetickou postupnosťou rozumieme takú usporiadanú n-ticu reál-
nych čísel («i, 02,..., an), pre ktorú platí a,+i — at- = d (diferencia), pre každé i — 1,
2, ..., n — 1. Z definície 1’ahko vyplývá, že ak sú dané dva členy a, = a, eij = 6, i ф j,
tejto postupnosti, všetky ostatné členy sú už jednoznačné určené. Stačí teda dokázat’,
že ak а ф b, tak existuje právě tofko roznych postupností, kofkými sposobmi možeme
vybrat’ spomedzi čísel 1, 2, ..., n indexy i, j tak, že ai = a a aj = b. (Odóvodnite
pornocou diferencie d.) Potom je už zřejmé, že v případe а ф b existuje právě 100 • 99
roznych 100 členných postupností, ktorých členmi sú a, b.

Ak a — b, tak jedine konštantná postupnost’ d = 0 vyhovuje zadaniu úlohy, pretože
vtedy musí postupnost’ obsahovat’ to isté číslo na dvoch roznych miestach.

20. Za jeden sposob příchodu pokládáme usporiadanú 35-ticu, v ktorej událost’, že
host’ prišiel, označíme 1, a že odišiel 0 (čiže nám nezáleží na konkrétnom hostovi).
Celkový počet príchodov je (^q), od ktorého však musíme odčítat’ počet tých 35-tíc,
v ktorých před nějakým rniestom je váČší počet 1 ako 0.

Vezmime jednu nevyhovujúcu 35-ticu. Nech г je prvé z miest, kde host’ musí čakať,
teda před ním je rovnaký počet 0 a 1. Vytvořme 36-ticu, ktorá na prvom mieste
bude mať 0 a ďalej bude mať našu 35-ticu. Vymemne navzájom 0 a 1 v Зб-tici až
po póvodné г-te miesto (včítane). Počet núl a jednotiek sa nezměnil (prečo?). Z tejto
36-tice dokážeme získat’ každú 36-ticu, ktorá má na 1. mieste jednotku takto: v 36-
-tici je 15 jednotiek a 21 núl
bude rovnaký počet 1 a 0 a na ý-tom mieste bude 0. Opat’ vyměníme navzájom 0
a 1 až po ý-te miesto včítane. Vynechajme prvú nulu — dostaneme nevyhovujúcu35-ticu. Takže počet nevyhovujúcich 35-tíc sa rovná počtu všetkých usporiadaných36-tíc (15 jedničiek, 21 núl), ktoré majú na prvom mieste 1 a tých je (^j). Počet
príchodov hostí je teda ('^q) — (^j) = 927 983760.
21. Z počiatočných podmienok

ak n je párne a nie je dělitelné tromi
ak n je párne a je dělitelné tromi,

(i)

ak n je nepárne a nie je dělitelné tromi,

tj. musí na ý-tom mieste nastat’ případ, že před ním

x ^ 0, a + z^0, a = y/a + x
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plynie a — 0 alebo a ^ 1. Ak označíme y/a + x = y, dostaneme rovnice

a + x = y2,
x2.a-y-

Ak ich od seba odčítáme a upravíme, vyjde

(y - x - l)(y + x) = 0.

Do rovnice у — x — 1 =0 dosadíme za у a vypočítáme
— li y/Aa — 3

*1,2 = 2

Kedze x2 = 5 —1 — \/4a — 3 nespíná podmienku x ^ 0, je riešením danej rovnice iba
- 1 + у/A a - 3

x- —

2

Často riešitelia robia tú chybu, že do rovnice x = — у dosadia za y. To je však
nekorektně, lebo x ^ 0, — у ^ 0. Rovnost’ platí len v případe, že x = — у = 0, у/a i x =
= 0, takže a = 0.

Elegantnejšie riešenie dostaneme, ak rovnicu umocníme (tým dostaneme pod-
mienku a ^ x2) a opat’ umocníme, takže a2 — a(2x2 + 1) + x4 — x = 0. Riešime ju ako
kvadratická rovnicu v a, ktorej kořene sú

x2 + x + 1,
x2 — X.

Vzhfadom na podmienku a ^ x2 dostaneme pre a = a 1 rovnicu r2 + x + 1 - a = 0,
ktorú sme riešili v predchádzajúcorn odstavci, pre a = a2 potom vychádza a = x = 0.
22. Z tvaru křivky kubickej paraboly vyplývá, že rovnica má tri kořene, ak o funkcii
/(x) = x3 — ax i 2a + 32 = 0 platí: existujú xi < x^ také, že

/;(*i) = /4*2) = 0, /(x!)>0, /(x2) < 0.

Ak položíme prvú deriváciu rovnu nule, dostaneme kvadratická rovnicu 3x2 — a = 0,
čiže

2x2 j 1 i у/(2х- j l)2 - 4(x4 - 1)
«1,2 = 2

л a > 0.xi = - *2 = ~

Je /(xi) > 0 pre všetky a (o tom sa přesvědčíme dosadením do funkcie). Aby
bolo /(x2) < 0, musí byť (opáť po dosadení za x do /)

3a + 48 < a

л 4a) Ak a > 48, potom > 4, teda a > 4a > 3a + 48.

4 Л < 4a < 3a + 48.b) Ak a ^ 48, potom ^ 4, teda a

Odtiať vyplývá, že rovnica má tri rožne kořene pre a > 48.
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23. Ak a; je nesením danej nerovnice, tak

ho, i4 x

11
x ф 0 2>0'X 2

Z týchto podmienok vyplývá, že

-(»■*> (1)

úpravě (ktorá je pri podmienke (1) ekvivalentná) máme x E ^0, -^=^ПPo umocnění a

yhovujú všetky x E ^1, —.П (l,oo). Takže nerovnici v

24. Ak x je riešením tejto nerovnice, potom vzhladom na to, že v nej vystupuje log2 x
musí byť x > 0. Pri tejto podmienke je2)

л logo X
2 • r = -2 log2 x1о§2 1

a podobné log4 x2 = log2 x. Potom povodnú nerovnicu možeme písať vo tvare

\/51og2 x — 2 log2 x — 3 > \/5(log2 x — 3).

logi x2 = 2 logi x

Vzhladom na odmocninu musí byť

(o, i) U(8,oo).

Ak je \/5(log2 x — 3) < 0, tj. ak x E ^0, nerovnost’ platí. Inak
strany nerovnice umocnit’; potom

(log2 x ~ 4)(log2 x - 3) < 0

Nerovnici teda vyhovujú všetky x E ^0, ^ U (8, 16)
25. Ak x je riešením nerovnice, tak

X > 0,

log2 x — 2 log2 x — 3^0, tj. X E

možeme obe

tj. x E (8,16).

x í 1, x ф 5. (1)

Nerovnicu upravíme na tvar

I* ~ 5I 1
i; bgX3 -.

X

Dalej sa úloha rozpadá na dve časti: pre x > 1 sa odlogaritmovaním znamienko nerov-
nosti v (2) nernení a dostáváme x ^ 11, v druhom případe pre 0 < x < 1 sa nerovnost’
obrátí a dostáváme x E (0, 1). Nerovnici teda vyhovujú všetky x E (0, 1) U (11, oo).

bgx3 6x (2)

2) logaritmováním rovnosti x — alog“ x dostáváme logb x = loga:rlogba (uvedený vzťah dostaneme
pre a = j, 6 = 2)
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|a-6|£M-|6| |a + 6| ^ |a| + |6|a

dostáváme odhad

8 = \x - (ж - 8)| ^ |x| - I* - 8| = |a + 4| + |4 - a\ ^ |(a + 4) + (4 — a)| = 8

a teda rovnici možu vyhovovat’ len tie hodnoty parametra a a neznámej x, pre ktoré
nastáva rovnost’, teda musí platit’

|a + 4\ + |4 — a\ = 8 |x| — |x — 8| = 8.a tiež

Odtial’ hned’ vyplývá riešenie. Riešením rovnice pre každé a £ (—4,4) je každé x £
£ (8,oo). Pre iné hodnoty parametra a nemá rovnica žiadne riešenie.27.Pre a = 0 má rovnica len jeden kořeň, ktorý nemóže byť súčasne váčší aj menší
ako 1.

Nech а ф 0. Parabola f(x) = 2ax2 — 2x — 3a — 2 rozdělí rovinu na tri množiny

Mi = {(x,y) £ R2: у < f(x)}
M2 = {{x,y) £ IR2: у = /(®)}
Мз = {(^, y) £ R2: У > (^)j-

Podmienky úlohy hovoria, že ak x\ < x2 sú kořene danej rovnice, tak 1 £ (x\,X2).
Teda pre a > 0 musí byť (1,0) C М3 a pre a < 0 zas (1,0) C Mi. Vyšetřením týchto
podmienok získáme nutná a postačujúcu podmienku požadovánu v zadaní.

Ak a > 0, potom platí 0 > 2a — 2 — 3a — 2 = —4 —a, čo je ekvivalentně s nerovnosťou
a > —4, čiže vyhovuje interval (0,oo).

Ak a < 0, potom 0 < 2a — 2 — 3a — 2 = —4 — a, čo je ekvivalentně s nerovnosťou
a < —4, čiže vyhovuje interval (—00,—4).

Podmienky zo zadania platia právě vtedy, ak a £ (—00, —4) U (0, 00).28.Dosadením výrazu у = 3 — ax do prvej rovnice dostáváme

x2 + (3 — ax)2 — 2® — 3(3 — ax) = 0.

Ekvivalentnými úpravami dostaneme rovnicu

(a2 + l)®2 — (3a + 2)x = 0

s koreňmi
3a -f- 2

x\ = 0 а *2 = a2 + 1

2
pričom x\ ф X2 pre a ф —-. Po dosadení x\ do 2. rovnice dostaneme riešenie (0, 3)3

За T 2 3 — 2a \
a2 -f 1 ’ a2 + 1 /

po dosadení X2 dostaneme riešenie
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Riešením sústavy rovnic, pre а ф — - sú usporiadané dvojice
O

3a 2 3 — 2n \
a2 -f 1 ’ a2 4- 1 /

(0,3),

2
Riešením sústavy rovnic pre a = — — je usporiadaná dvojica (0,3). Kedze úpravy boli

и

ekvivalentně, skúška nie je potřebná.
29. Ide o rovnicu s pararnetrami a, b. Upravme ju na tvar

(sin x — cos x) (a2 -f b2 -f ab(sin x + cos x)) = 0

odkiaí dostáváme

(1)sin X = COS X

alebo
a2 + b2 -f (x6(sin x* + cos x) = 0.

Musí však platit' (& cos x + a)(bsin x + a) ^ 0 (inak daná rovnica nemázmysel). Rovnica

(1) má riešenie x = ^ + 2&л, к G Z, kým rovnica (2) riešenie nemá, pretože
zatial' čo |sinx + cosx| = |\/2sin(x -f ^tc)| ^ \/2. Dostáváme teda, že ak (bcosx -f
+ a)(b sin ж + a) / 0, potom má rovnica riešenie x = — -f 2Лгк, к G Z.

30. Je tg ar + cotg x — a právě vtedy, keď

(2)

a2 + b2
> 2

\ab\

1
(1)= a.

COS X ■ sin X

Kedze cos2 x = 1 — sin2 x, po umocnění (1) jednoduchou úpravou dostaneme pre а ф 0
rovnicu

1
sin4 X — sin2 x H—- = 0.

a2

Po substitúcii sin2 x — у riešime kvadratickú rovnicu

1
У2 - У + -к = 0- (2)a2

Jej riešenia pre \a\ ^ 2 sú

y/a2 — 41
Ш.2 = 5 1 ± M

pre |a| < 2 rovnica (2) nemá reálne riešenie. Keďže pre |a| ^ 2 je 0 ^ т/i ^ 1 a 0 ^ t/2 ^
1, dostáváme sin x = i^/yT, sin x = čty/yj. Podobné možeme vyjádřit’ hodnoty cos x.
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Kedze úpravy neboli ekvivalentně, je potřebné urobit’ skúšku správnosti. Dostaneme
riešenia:

pre a ^ 2 sin X = ^/yT;
sin* = -yfý\\
siná; = д/у^;
sin X = -у/У2]
siná; = yýT;

-y/ýi\
sinx = д/tfc;
sinx = -y/ýi\

cosx =

cosx = -y/ýi\
cosx = y/y[\
cosx = -v/yT;
cosx = -y/ýj]
cosx =

cosx = -д/уГ;
cos x = д/уГ.

pre a ^ —2
sinx =

31. Zo zadania štvoruholníka vyplývá, že pre jeho sirku s platí s ^ |\/5. Podlá
Blaschkeovej vety doň možeme vpísať kruh o poloměre r = |s, čiže r ^ |\/5-
Dokážeme, že kruh o poloměre \\/b obsahuje vždy aspoň tri celočíselné body.

Střed kruhu leží medzi rovnoběžnými priamkami x = k, x = fc+1, к 6 Z. Hraničná
kružnica vytne na nich dve úsečky a my dokážeme, že na kratšej leží aspoň jeden a na

dlhšej aspoň dva celočíselné body. Hraničná kružnica vytne na hraničnej priamke x — к
najmenšiu kratšiu úsečku vtedy, kecť střed leží na priamke x = к — 1. Z Pythagorovej
vety (obr. 10) plynie, že kratšia úsečka má dížku 1, a teda obsahuje vždy aspoň jeden
celočíselný bod.

S

Obr. 1110

Hraničná kružnica vytne na hraničnej priamke najmenšiu dlhšiu úsečku, ak jej
střed leží na osi uvedeného pásu (obr. 11). Z Pythagorovej vety potom vychádza, že
v tomto případe majú obe úsečky dížku 2, dlhšia úsečka tedy obsahuje vždy aspoň dva
celočíselné body.

Poloměr kruhu vpísaného do ABCD je r ^ a 0 ňom sme dokázali, že obsahuje
aspoň tri celočíselné body.
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32. Množina boclov, ktoré vyhovujú nerovnosti у ^ x2, je parabola so svojím vníitrom;
množina x2 ■+■ (у — А)2 ^ 1 je kruh so stredom (0, A) a polomerom 1, x = A je priamka
rovnoběžná s osou у vo vzdialenosti А; Мд je podmnožinou priamky x — A. Konvexný
obal množiny {(0,0)} U Мд leží na priamke, iba ak A = 0 alebo Мд je prázdna alebo
jednobodová množina. (Ak je Мд viacbodová, tak jej body ležia na priamke x = A,
ktorá neprechádza bodom (0,0)).

Ak A (—1,1), prienik priamky a kruhu je prázdny, takže Мд = 0. Ak A G (—1,1),
je y-ová súradnica prieniku paraboly s priamkou rovná A2 a y-ová súradnice prieniku
kruhu s priamkou sú rovné A ± \/l — A2. Množina Мд je prázdna alebo jednoprvková
množina, iba ak A2 ^ A ± \/l — A2 (prečo?). To može nastat’ iba pre A = 1 alebo pre
A < 0. Po umocnění dostaneme nerovnicu (A — 1)(A3 -A2 + A+l)^0a příslušná
kubická rovnica má jediný reálny kořeň A0 < 0. Ulohe potom vyhovujú všetky A E
E (—oo,Aq) U (l,oo). Ak využijeme například Cardanov vzorec, dostaneme, že A E

E (-00,1(^17 + ^297 + ^17-д/297 - l)) U(l,oo).
33. Zaoberajme sa len takými množinami A, ktoré neobsahujú 0 (inak v nich nulová
postupnost’ existuje evidentne).

a) Nech všetky čísla v A majú rovnaké znamienko (nech je to +, v případe — je
dokaž rovnaký). Definujme postupnost’ {жп}£°_0 takto: ak máme prvok x*, E A, existujú
prvky (kedze A + A = A) J/+E A také, že у + z = x*. Všetky tri čísla sú kladné, takže

aspoň jedno z čísel y, z je rnenšie alebo rovné Položme x^+i = minjy, z}. Pre takú

postupnost’, v ktorej pre všetky к E N je x^+i ^ —, 1’ahko dokážeme indukciou, že

pre všetky n EN je xn ý lim ^ = 0.Zn x—>oo Zn

b) Nech existujú v A čísla kladné i záporné (tj. existujú n, 6 E A také, že a < 0 < b).
Definujme postupnosti {xn}£°_0, a {yn}£°_0, pre ktoré o ich 1’ubovofných členoch (n ^ 0)
platí xn < 0 < yn, xn + yn E A, xn + yn ф 0 (prečo?).

Ak xn + yn > 0, položme xn+i = xn, y„+1 = xn + yn. Ak xn + yn < 0, položme
x„+i = xn + yn. Zrejme pre všetky prirodzené n je xn ^ a^n+i < 0 <Уn -I-1

< yn+1 ^ yn■ Dokážeme, že aspoň jedna z postupností {xn}£L0, {уп}£°=о je nulová.
Nech to neplatí, teda nech existuje L > 0 tak, že pre všetky prirodzené n je xn,

yn (— L, L). Zoberme teraz najváčšie к prirodzené také, že pre všetky prirodzené n

-Cn >

je xn, yn £ (—kL,kL). Existuje n E N, pre ktoré xn E (—2kL,0) alebo yn E (0,2kL).
Nech existuje například také n = no, že уПо E (0, 2kL), a nech p je najváčšie prirodzené
číslo s vlastnostem xno + pyno < 0 (može sa stať, že p = 0). Vidno, že

a xrio+P ^ ( 2/no>0)-xn0 + РУп0 — xn0+p Уп0 — Уп0+р

Potom ale platí
0 < xn0+p + Уп0+р — Упо+р+1 <

lebo хПо+р+уПо < yno—kL < 2kL—kL = kL. To je spor. Takže aspoň jedna postupnost’
je nulová (možno dokázat’, že i druhá). Ak by platilo, že A obsahujúca kladné i záporné
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čísla musí obsahovat’ nulu, tak predchádzajúce úvahy by boli zbytočné. Ale odpověď
znie nie: stačí vziať A = {a\/2 — b: a,b E Q+}. Platí, že A + A = A, ale 0 jL А ф 0.
34. Najprv dokážeme, že A s každým svojím bodom В — (дг,у) obsahuje aj bod

(2’ 2) ^ec^e A + A = A, existujú body C, D E A, že C + D — В = [x,y)- Ak
В = 0, I) = (0,0) E A. Ak (x, у) ф (0, 0), označme S
a potom S — ^ —, — J E A, alebo С ф D a vtedy S je střed úsečky CD (v případe,
že В, C, D ležia na priamke), lebo S = ^

— J E A. Kedze А ф 0, vezmime lubovohiý prvok (a, b) E A. Položme (x*i, y\) =

= (a, b) a pre všetky prirodzené n necli (xn+i, yn+\) = ^ —, — J . babko sa ověří, že platí
—г) a celá postupnost’ pozostáva z prvkov množiny A, pričom

(a2 + b2) = 0.

Цф. Bud C =2
5’ = D

Ale A je konvexná, takže

S =

(xn, Уп) — ^ 2» -1 2n

1
lim On + Уп) = Hm

00 22n 211—+ OO П—+

Druhé tvrdenie neplatí. Jeclným z protipríkladov je A = Q x Q.
35. Strany trojuholníka rnusia spínat’ trojúholníkové nerovnosti a platí pre ne a, b,

—- majú byť dížky stráň trojuholníka, rnusia byť
ba

c > 0. А к čísla

kladné a spíňať trojúholníkové nerovnosti
(i -j- 1 b \ c -f 1

ba c

(1)<
ří —(— 1 6-f*l C á 1

b a c

(2)<
b 1 (i-(-l c -(- 1

bc a

(3)<
c -1 д "t 1 6 ~b 1

Stačí dokázat’ lubovoťnú z nerovností (ostatné dostáváme cyklickou záměnou označenia
stráň).

b c
—- sú kladné. EkvivalentnýmiAk a, b, c sú kladné čísla, potom aj , , , ,

a + 1 6+1 с + 1
úpravami vztahu (1) dostáváme

(4)a < abc + 26c + 6 + c.

Kedze a < 6 + c (podlá předpokladu), abc > 0 a 6c > 0, potom je nerovnost’ (4)

pravdivá. Kedze je ekvivalentná s nerovnosťou (1), čísla , ,
a+1 6+1 c+1

stráň trojuholníka.

6 C—— sú dížky
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36. Vyrieširne případ 3) c ^ 1. Velkost’ druhých dvoch stráň nie je obmedzená. tahko
zistíte, že vieme nájsť trojuholník s lubovolne vefkým obsahom; neexistuje teda horná
hranica pre vefkosť trojuholníka v ktorom je c ^ 1.

Pri riešení prvých dvoch prípadov použijeme poznatok, že obsah trojuholníka
závisí priamo úměrně od dvoch nezávislých veličin: od vefkosti strany a vefkosti výšky
na tuto stranu.

1) a ^ 1. Nech má strana a = BC najváčšiu možnú dížku, tj. 1. Bod A musí ležať
vo vnútri prieniku kruhov s obvodovými kružnicami k\(B, 1) a ^(C, 1) (lebo velkosti
stráň 6, c sú najviac 1). (Nakreslíte si obrázok!) Z obrázku je vidieť, že maximálnu
výšku a teda aj maximálny obsah bude mať trojuholník s třetím vrcholom totožným

s priesečníkom kružnic к i, &2- Bude rovnostranný so stranou 1 a obsahom

2) 6 ^ 1. Nech má strana b = AC najváčšiu možnú dížku, tj. 1. Bod В musí
ležať zároveň vnútri kruhu s obvodovou kružnicou к i = (A, 1) (lebo b ^ c). Najváčšia
výška na stranu 6 bude mať dížku 1, teda maximálny možný obsah | má pravoúhlý
trojuholník s odvěsnami 6, c velkosti 1.

C

v

А К В

Obr. 12

37. Zo zadania úlohy plynie (obr. 12), že trojuholník ABC je podobný s trojuhol-
nikom NMC. Z podobnosti dalej vyplývá, že -—— = —, takže x =

av
. Obsah

a -f- v

trojuholníka ABC je P\ = ^au. Obsah štvorca KLMN je P2 = ()2 \a + vj
. Úloha

vyžaduje dokázat’ platnost’ nerovnosti

(<™)2 < I
(« + ť)2 = 2 v2

(« + v)2

1
- av

Tá je ekvivalentná s nerovnosťou av ^ (kedze a, v > 0), tj. s nerovnosťou
medzi aritmetickým a geometrickým priemerom. Rovnost’ nastáva v případe a = v.

4
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38. Obsah P trojuholníka so stranami a, b, c je podlá Herónovho vzorca

1
- y/(a + b + c)(a + 6 - c)(a - b + c)(-a + b + c) =

^\/(a + b 4- c) (^\/(a + b- c)(a - 6 + c)(-a + b + c)) 2

P =

Z nerovnosti medzi geometrickým a aritmetickým priemerom vyplývá

a + 6 — c + a — 6 + c — a + fe + c a + b + c
^/(a + b — c)(a — b + c)(—a + b + c) ^ 3 3

Po dosadení do predchádzajúceho vztahu dostáváme

a T b -f- 2 \/я T b -(- c (o T 6 -(-
12v/3

P <
3 4

Rovnost’ nastáva právě vtedy, keď a + b — c = a-b-\-c = —a + 6-fc, čoje ekvivalentně
s tým, že a = b = c. Najmenší obvod pri danom obsahu P má rovnostranný trojuholník.

Trojuholník s maximálnym obvodom pri danom obsahu neexistuje. To dokážeme
sporom: Nech trojuholník s daným obsahom P a najváčším obvodom má strany a, b,

c. Potom ale lubovolný trojuholník so základnou a + 6 + c a výškou
2 P

má obsah
a + b -f c

1 2 P
- (a + 6 + c) = P a obvod o > (i-j-6Tc, a ten je váčší než obvod trojuholníka

a + b + c

so stranami a, b, c. To je spor.

39. Z Herónovho vzorca pre obsah trojuholníka dostáváme

4P\/3 = \/3(а + 6 + c)(—а + b + с)(а — 6 + с)(а -f b — с). (1)

Z trojúholníkovej nerovnosti pre strany a, b, c vyplývá —a + 6 + c>0, a — 6 + c>0,
a + b — c > 0, a teda móžeme použit’ nerovnost’ medzi aritmetickým a geometrickým
priemerom týchto troch čísel, z ktorej dostaneme

a + b + c\ 3
(-a + 6 + c)(a - b + c)(a + 6 - c) ^ (2)3

s rovnosťou pre a = b = c. Lahko sa přesvědčíme, že platí

(a + 6 + с)2 ^ 3(a2 4- b2 + c2) (3)

s rovnosťou pre a = b = c. Z(l) použitím (2) a (3) dostáváme

W3^3(a + b+c)
1

= -(a + b + c)2 <í a2 + 62 + c2

tým je daná nerovnost’ dokázaná. Rovnost’ v poslednom vztahu nastane, ak nastane
rovnost’ v (2) a (3), teda právě vtedy, ak je trojuholník rovnostranný.
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40. Ak bod E je taký, ako požaduje úloha, tak EF je rovnoběžné s AG, EA s FG, EG
sC7a EC s FG, z čoho plynie, že štvoruholníky AGFE a EGFC sú rovnoběžníky,
teda ich protifahlé strany sa musia rovnat’. Potom platí \AE\ = \EG\ = \CE\, takže
bod E musí ležať v střede strany AC.
41. Kedze a, b, c majú byť strany pravoúhlého trojuholníka, musí pre ne platit’ a2 +
-f 62 = c2, čo spolu s rovnosťami i + c = pac-fa = g dává kvadratická rovnicu pře c
s parametrami p a q. Z jej dvoch riešení vyhovuje úlohe len c — p + q — y/2pq, strany a,
b vyjádříme podobné, je a = yflpq — p, b = \í‘2pq — q. Teraz už nie je problém zostrojiť
žiadaný trojuholník, úsečku dížky \/2pq zostrojíme podlá niektorej z Euklidových viet
a z podmienok a > 0, b > 0 vyčítáme nutné a postačujúce podmienky riešitelnosti
p < 2q a q < 2p.

A S В

Obr. 13 Obr. 14

42. Nutnou podmienkou existencie riešenia je 0 < cv < ^ (prečo?).
Predpokladajme, že trojuholník ABC je už zostrojený (obr. 13). Potom V leží na

Thalesovej kružnici к nad AS, kde S je střed strany AB (prečo?), navýše leží na vb■
Z toho je už konštrukcia zřejmá. Počet riešení závisí od počtu priesečníkov vb a k.
Eahko sa zistí, že vzdialenosť výšky vb od bodu S', středu kružnice k, je IS7#! cos a =
= | c cos a, a pretože poloměr kružnice к je | c, dostáváme, že pre 0 < cos a < | má
úloha právě dve rožne riešenia, pre cos a = i jediné a pre cos a > | žiadne riešenie.
43. Nech R je priesečník kružnic k\ a k$, rozny od bodu V, kružnica k\ (resp. ^з)
má střed A a poloměr \AV\ (resp. C a |CV|) a označme B\ priesečník priamok BV a

AC, A\ priesečník priamok AV a BC (obr. 14). Potom trojuholník ARB\ je zhodný
s trojuholníkorn AVB\, ďalej trojuholník AVB\ je podobný trojuholníku ACA\ (sú to
pravoúhlé trojuholníky a majú spoločný uhol pri vrchole A), teda trojuholník ARB\
je podobný trojuholníku ACA\, odtial’ \^ARB\ = \$ACB\, takže body C, R ležia na
tom istorri oblúku nad AB, pre ostatné body využijeme cyklickú záměnu.
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Ivan Libicher, Pavel Tópfer

Mezi studenty středních škol získaly v poslední době velkou oblibu různé kores-
pondenční semináře. Po řadě matematických seminářů se objevily semináře fyzikální
a v posledních letech také programátorské. Z nich pravděpodobně nejmladší, ale roz-
sáhem své působnosti a počtem účastníků největší je pražský korespondenční seminář
z programování. Seminář vznikl na začátku školního roku 1987/88 z iniciativy studentů
maternaticko-fyzikální fakulty Univerzity Karlovy. Pokusný „nultý“ ročník semináře
proběhl nad očekávání úspěšně, a proto se organizátoři rozhodli pokračovat v pořádání
semináře i v dalších letech. Dnes má pražský korespondenční seminář z programování
každoročně více než 200 účastníků.

Podobně, jako je tomu u jiných korespondenčních seminářů, je i tento organizován
v několika kolech. Každé kolo je tvořeno čtyřmi soutěžními úlohami různé obtížnosti,
z nichž si studenti mohou vybrat к řešení podle vlastního uvážení jen ty, které zvládnou.
Všechny úlohy jsou zaměřené na návrh algoritmů a tvorbu programů. Samotný zápis
programu by ale jako řešení úlohy samozřejmě nestačil. Je nutné připojit také slovní po-

pis řešení, vysvětlení způsobu práce algoritmu a zdůvodnění jeho správnosti. Hodnotí
se i kvalita navrženého algoritmu, zejména jeho efektivita. Zaslaná řešení úloh opravují
organizátoři semináře
Opravené úlohy zasílají zpět soutěžícím spolu s komentáři a se vzorovými řešeními úloh
a s výsledkovými listinami. Na závěr každého ročníku semináře připravují pro nejlepší
účastníky týdenní soustředění s bohatým programem odborným i oddechovým.

Soutěžní úlohy mají podobný charakter jako úlohy kategorie P matematické
olympiády. Z minulých ročníků semináře jsme pro vás vybrali na ukázku tři úlohy.
Pro nedostatek místa uvádíme jejich vzorová řešení bez výsledných programů.

studenti informatiky z různých ročníků MFF UK v Praze.

Úlohy

1. Největší díra (KSP 1-4-2)
Napište program, který к zadanému celému číslu n, n ^ 2, a zadané posloupnosti

reálných čísel délky n (která se vejde do paměti!) vytiskne dvě čísla z posloupnosti
taková, že žádné číslo z posloupnosti neleží „mezi nimi“ (tj. není menší než jedno a větší
než druhé z nich) a že absolutní hodnota jejich rozdílu je maximální. Např. pro ii = 4
a posloupnost 2, 5.3, 2.7, —20.1 program vytiskne dvojici čísel 2, —20.1.
2. Zplodiny (KSP 2-3-3)

50
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Nechť pi, ..., pn (n ^ 0) je posloupnost celých Čísel. Zplodinovými operace-
mi nazveme následující změny posloupnosti: a) vypuštění prvního členu (neprázdné
posloupnosti): pi, ..pn •—r p2, ..., pn, b) přidání libovolného čísla í* na konec
posloupnosti: pi, ..., pn t—> pi, ..Pn, v, c) změnu některého členu pi, 1 ^ i й n, na
libovolné celé číslo r:

Рi, • • - ,Pi-i,r,Pi’+\, ... ,Pn-P\, • • •, Pn

Navrhněte algoritmus, který pro dané posloupnosti celých čísel, p\, ..., pn (n ^ 0)
a q\, ..., qrn (m ^ 0) určí minimální počet zplodinových operací potřebný ke změně
pi, ..., pn na <7i, ..., qm- Např. ke změně posloupnosti 5, 2, 4, 1, 12 na 4, 3, 12 jsou
třeba nejméně tři zplodinové operace:

4,1,12 * 4,3,12.5,2,4,1,12 ~ 2,4,1,12

3. Ďábelské mocniny (KSP 2-2-1)
D-číslem nazvěme každé kladné celé číslo takové, že se dá vyjádřit ve tvaru У4М)к,

kde i, j, к 'ž 0 jsou celá čísla. Navrhněte algoritmus, který pro dané kladné celé číslo
n vytiskne prvních n D-čísel.

Např. pro 7i = 10 algoritmus vytiskne čísla 1, 3, 4, 5, 9, 12, 15, 16, 20, 25.

Řešení

Postup řešení se bude skládat z následujících pěti kroků:1.Nalezneme minimální a maximální prvek ze zadaných n čísel a označíme je Min
a Max. Platí tedy Min ^ a* 5Í Max pro všechna i od 1 do n. To je možné provést
velmi snadno jedním sekvenčním průchodem danými n čísly, tedy s lineární časovou
složitostí.

1.

2. Spočítáme hodnotu D — (Max — Min)/(n— 1). Rozdíl Max —Min udává velikost
celkového intervalu na číselné ose, který sledujeme. Údaj n— 1 určuje, na kolik nejvýše
úseků je tento interval rozdělen zadanými n čísly, tzn. kolik existuje „děr“ mezi čísly.
Hodnota D má proto význam dolního odhadu velikosti maximální díry. Kdyby byla
všechna ostatní čísla rozložena mezi Min a Max zcela rovnoměrně, měly by všechny
díry mezi nimi velikost přesně D. Při jakémkoliv jiném rozložení čísel mezi Min a Max
bude některá díra menší, a proto musí být jiná větší než D.

Poznámka. Zvláštním případem je situace, kdy se všech n daných čísel sobě rovná.
Potom Max = Min a vyjde nám tedy D = 0. Největší díra mezi čísly má nulovou
velikost a najdeme ji mezi libovolnou dvojicí zadaných čísel.

3. Rozdělíme nyní celý interval (Min, Max) na ii— 1 úseků velikosti D a tyto úseky
očíslujeme ve vzestupném pořadí od 1 do n — 1. Všimněte si, že pro libovolné číslo
X z intervalu (Min, Max) dokážeme snadno (v konstantním čase) určit, do kterého
úseku patří. Pořadové číslo příslušného úseku je dáno výrazem [(Ar — Min)/D\ + 1,
kde závorky [, J označují dolní celou část z hodnoty výrazu v nich uzavřeného, tzn.
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[VJ je rovno největšímu celému číslu, které je menší nebo rovno hodnotě výrazu V.
Poznamenejme ještě, že úseky chápeme jako intervaly zdola uzavřené a shora otevřené.
Číslo X ležící přesně na hranici dvou úseků bude tedy zařazeno do vyššího z nich. Pro
X — Max dává náš výraz pořadové číslo úseku n. Číslo X = Max bude tvořit samo

další, v pořadí /г-tý úsek, který je degenerován do jediného bodu.
4. Vytvoříme si dvě pomocná pole velikosti n označená R a S. Tato pole zaplníme

tak, aby pro každé i od 1 do n mělo Ri hodnotu minimálního a Si hodnotu maximálního
ze zadaných čísel, které náleží do г-tého úseku (viz bod 3). Pokud do některého z úseků
nepadne ani jedno ze zadaných čísel, dosadíme do Ri a Si zvláštní předem zvolenou
hodnotu, která není z intervalu (Min, Max), např. Max-\-1, Min — 1. Správné hodnoty
polí R a S získáme snadno s lineární časovou složitostí. Pro každé z n zadaných čísel
stačí určit, do kterého úseku patří (podle vzorce z bodu 3), a poté toto číslo porovnat
s do té doby platnými hodnotami polí R a S odpovídajícími tomuto úseku:

ii proveďpro každé i — 1, ..

Ri := Max + 1;
Si := Min — 1;

pro každé i = 1, ..., n proved'
U := [(«,• — Min)/D\ + 1; (* číslo úseku *)
jestliže cti < Ru potom Ru a,-;

jestliže аг > Su potom S\j := a,

* 1

5. Vzhledem к tomu, že podle bodu 3 nemá žádný z úseků délku větší než D
a přitom podle bodu 2 je hodnota D dolním odhadem velikosti maximální díry mezi
zadanými čísly, má buď maximální díra velikost právě D, nebo je větší, ale pak nemůže
ležet celá uvnitř jediného úseku, musí do ní padnout předěl mezi dvěma sousedními
úseky. Výslednou velikost maximální díry proto stačí hledat vždy mezi minimální
a maximální hodnotou čísel náležejících do sousedních úseků. Přitom je ještě třeba
dávat pozor na ty úseky, které neobsahují žádné ze zadaných n čísel. Předělů mezi
úseky je přibližně n, takže i tato část výpočtu má lineární časovou složitost:

MaxDira := D — 1; (* dolní odhad velikosti max. díry *)
г :— i;
dokud г < n — 1 prováděj

(* Si je začátek právě zkoumané díry *)
j := i + 1;
dokud Rj = Max -f- 1 prováděj j := j + 1;

(* hledáme další neprázdný úsek *)
(* nehrozí přetečení, neboť Rn = Sn = Max *)

(* Rj je konec právě zkoumané díry *)
Dira := Rj — Si;
jestliže Dira > MaxDira potom

MaxDira := Dira-,
С1 := S\; C2 := Rj]

i := j
(* MaxDira je velikost maximální díry, Cl, C2 jsou hledaná čísla *)
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Správnost algoritmu byla zdůvodněna ve výše uvedeném rozboru. Konečnost
výpočtu vyplývá ze skutečnosti, že počet průchodů všemi cykly je omezen počtem
zpracovávaných čísel n. Algoritmus má lineární časovou složitost, neboť každý z jeho
kroků má buď lineární nebo konstantní časovou složitost a jednotlivé kroky výpočtu
následují jeden po druhém.

2. Posloupnosti zplodinových operací převádějící p\, ..., pn na q\, ..., qm budeme
stručně nazývat p-g-posloupnostmi. Pro libovolné posloupnosti p\, ..., pn a q\, ..

qm existuje p-^-posloupnost délky inax(m,n):
1) pro n < m tvořená n operacemi c) a m — n operacemi b),
2) pro n ^ m tvořená n — rn operacemi a) a m operacemi c).

Dále je jasné, že každá p-r/-posloupnost musí obsahovat nejméně \n — m\ operací a)
a b), aby se délka změnila z л na m. Z toho plyne, že má-li být nějaká p-g-posloupnost
kratší než max(m,n), musí v ní být méně než min(m,7i) operací c), tj. některé prvky
posloupnosti p musí přejít do q beze změny.

Ukážeme, že zplodinové operace v nejkratší p-</-posloupnosti lze přeuspořádat
tak, že nejprve se provedou všechny operace a), pak c) a nakonec b): Žádná operace c)
jistě nemění člen, který by pozdější operace a) vypustila (pak by totiž p-qr-posloupnost
nebyla nejkratší); můžeme tedy všechny operace a) přesunout před operace c). Podobně
žádná operace c) jistě nemění člen dříve přidaný nějakou operací b) (tyto dvě operace
by totiž bylo možné nahradit jedinou operací b)); můžeme tedy operace b) přesunout
za operace c). Konečně žádná operace a) jistě nevypouští prvek přidaný dříve operací
b) (obě operace by bylo možné vypustit). Hledejme tedy nejkratší p-g-posloupnost ve
tvaru

* )

и-► ... к operací a)...
... c(k) operací c)...
.. ,m — и + к operací b)...

Pi, • • •, Pn

Pk + l, ■ ■ • ,Pn

Pk + \,---,Pn
l—* 9l, • • •, Qn — к

Ql > • • •) Чп-к

kde max(n — m, 0) ^ к ^ n a c(fc) je minimální počet operací c) potřebný ke změně
Pk+i, ■ • Pn nil <7i, • . 4n-k■• ) • )

c(k) = |{г; 1 ^ i ^ n - k,pk+i ф д,-}|.

Označíme-li d délku nejkratší p-<jf-posloupnosti, platí

d = min(A: + c(k) + (m — n + k)),

kde к prochází hodnoty od max(n — m, 0) do n. Tento vzoreček spolu s definicí c(k)
dává kompletní algoritmus pro výpočet d. Jeho správnost vyplývá z odvození.

Paměťová složitost (určená délkou posloupností p a q) je lineární, časová složitost
je 0(n2), neboť výpočet c(k) (jehož složitost je 0(n — k)) se provede nejvýše (n + 1)-
krát.
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Všechna D-čísla vzestupně očíslujeme takto: 1 = di, 3 = с?2> 4 = с?з, 5 = d4
9 = c/5, 12 = d,Q, 15 = (/7, atd.

Tvrzení. Nechť к > 1, 1 5Í p, q, r < к jsou celá čísla s těmito vlastnostmi:

3.

dp = min{d,; 1 ^ * < к a 3d,- > djb_i),
dq = min{d,; 1 ^ i < к a 4d,- > djk_i},
dr = min{dj; 1 ^ * < fc a 5d, > d*_i}.

Potom platí d*; = min{3dp, 4dy, 5dr}.
Důkaz. Využijeme toho, že D-čísla větší než jedna jsou právě čísla tvaru 3D,

4D nebo 5D, kde D je nějaké menší D-číslo (plyne to přímo z definice D-čísla). Číslo
d = min{3dp,4d9,5dr} je tedy D-číslo. Navíc d je nejmenší z D-čísel větších než dk- 1.

Kdyby totiž mezi c4_i a d ležela nějaká D-čísla, pak nejmenší z nich by bylo tvaru 3d,-,
4d, nebo 5d,-, 1 ^ i < к, takže d by nebylo minimální. Tím je důkaz tvrzení proveden.

Známe-li tedy D-čísla d1, ..., dk- 1 (к > 1) a čísla p, q, r z uvedeného tvrzení,
potom difc = min{3dp, 4d?, 5dr|. „Nové“ hodnoty čísel p, q, r splňující

dp = minjd,-; 1 5Í i fc a 3d,- > d^},
dq = min{d, ; 1 ^ г 5Í fc a 4dj > d*,},
dr = min{d,; 1 5Í i ^ к a 5d, > d*,}

získáme úpravou „starých“ hodnot takto: pokud 3dp = dk, pak číslo p zvětšíme o jednu,
dále pokud 4dq = d*,, pak číslo q zvětšíme o jednu, dále pokud 5dr = dk, pak číslo r
zvětšíme o jednu.

Tím máme jednak indukční krok pro generování dalšího D-čísla, jednak invariant,
který nám zaručí správnost následujícího algoritmu:

(* n je počet hledaných D-čísel *)
(* (Di, ..., Dn) je pole celých čísel *)
Di := 1; p := 1; q := 1; r := 1;
pro к = 2, ..., n proveď

(* Di, ..., Djt_i je prvních к — 1 D-čísel, *)
(* p, q, r mají vlastnost z výše uvedené úvahy *)
dk := min{3dp, 4dq, 5dr };
jestliže 3dp = djt potom p := p + 1;
jestliže 4d? = dk potom q q + 1;
jestliže 5dr = d* potom r := r + 1;

pro fc = 1, ..., n proveď tiskni(djfc)
Konečnost algoritmu je zřejmá. Invariant uvedený v komentáři v těle prvního

cyklu zaručuje správnost algoritmu.
Časová i paměťová složitost tohoto algoritmu je O(n).
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Korespondenční semináře mají už poměrně slušnou tradici. Já se do jejich přípravy
zapojil v okamžiku, kdy jsem nastoupil aspiranturu v Matematickém ústavu ČSAV
a tam se sešel s Tondou Vrbou, který až do svého faux pas s odznakem polské Soli-
darnosci na klopě při setkání úspěšných olympioniků se zástupci ministerstva školství
někdy v roce 1981 obstarával náplň těchto seminářů i opravovatele úloh a dával do
kupy jimi sepsané komentáře. Díky shora uvedenému poklesku svého přítele jsem pak
dostal možnost vyšvihnout se na jeho místo s honosným titulem tajemníka ústředního
výboru.

V době, kdy jsem se ujal korespondenčního semináře, nebyly třídy se speciálním
zaměřením na matematiku ještě příliš obvyklé, proto byl tento seminář zaměřen
především na špičkové řešitele mimo Prahu, Brno, Bílovec a Bratislavu. Postupně však
začal zcela přirozeně zahrnovat i ostatní nadané studenty a stal se tak jednou z běžných
součástí přípravy potenciálních reprezentantů našich zemí na mezinárodní matematic-
ké olympiádě. Do opravování úloh se z velké většiny zapojovali zejména bývalí úspěšní
olympionici, kteří postupně přecházeli z řad účastníků do řad organizátorů, a někteří
v tom vytrvali i po ukončení studia matematicko-fyzikální fakulty (Jan Kratochvíl,
Miroslav Engliš).

Korespondenční seminář nikdy neobsahoval nové originální úlohy, nicméně bylo
dobrou snahou jeho organizátorů přinést co nejpestřejší výběr úloh nepříliš známých.
Velmi bohatým zdrojem takovýchto úloh pro mne od počátku byl Zadačnik sovětského
časopisu Kvant, který v každém čísle publikoval pět často původních úloh, což po deseti
ročnících v roce 1981 znamenalo už slušnou zásobu 600 kvalitních úloh. A bylo vždy
povzbuzující, když naši účastníci našli často originálnější postupy i slabiny původně
publikovaných úloh a jejich řešení. Z tohoto výběru si teď můžete pokusit vyřešit pětici
úloh použitých koncem 80. let.

Úlohy

1. Je dáno 2n + 1 kladných čísel takových, že rozdíl mezi součtem libovolných n 4- 1
daných čísel a součtem zbylých n čísel je kladný. Dokažte, že pro součin В všech (
takových rozdílů a součet A všech 2n + 1 daných čísel platí

2n
Bn < A

55
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2. Na večírek přišlo n manželských párů. Při konverzaci vzniklo několik skupinek
Ck takových, že žádní dva manželé nebyli pohromadě v žádné ze skupin,Cl, c2, .

zatímco každá jiná dvojice byla právě v jedné ze skupin. Dokažte, že pro n ^ 4 je
к ^ 2n. Platí uvedené tvrzení i pro n = 3?

*

Jestliže3.
ba c

= 0
b — c a — bc — a

tak
ba c

= 0.
2 + {c — a)2 (a — 6)2(b-c)

Dokažte.

4. Uvažujme n stejných mincí, které leží na stole
a vytvářejí uzavřený řetěz (každé dvě sousední se

dotýkají). Kolik otáček vykoná mince stejného roz-

měru, jestliže s ní objedeme (bez klouzání) celý řetěz
(obr. 15), tj. předpokládáme-li, že pohybující se mince
se dotkne každé z daných mincí? Jak se odpověď
změní, bude-li mít tato mince Ar-krát větší poloměr
než mince v řetězu?

5. Dokažte, že na povrchu devatenáctistěnu, který
je opsán kouli o poloměru 10, existují dva body, jejichž
vzdálenost je větší než 21.

Řešení

Označme x\, x2, ..., x->n+i daná čísla. Pro každé pevné i £ {1,2,..., 2 n+ 1}
uvažujme všechny rozdíly tvaru

1.

xí + Xj - = Xi + a - b,
je в

kde množiny А, В jsou dvě disjunktní ;i-prvkové podmnožiny množiny {1,2,..
2n + 1), i A U B. Takových rozdílů je (2r”) a můžeme je rozdělit do dvojic

Xi + a — b

pro něž dostaneme|(2^1) nerovností

je a

* >

Xi — a + 6,

0 < (i-,- -fa — b)(xi — a -f b) ^ x?. (1)

Celkem tak (pro každé i £ {1,2, ...,2n+ 1}) dostaneme |(2/ll)(2u-f 1) nerovností,
jejichž vynásobením vyjde

Bn+Í < л(2«)
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neboť každý z rozdílů (x,-, +x,2 + .. +^in+1) -(...) se na levé straně vyskytne právě
(n + 1 )-krát (pro i = xtl, i = Xj2, i = xin+1).

A protože
(2n)! 2nn

n — 1 у(íí — l)!(n + 1)!n + 1

je také zároveň
Bn < A(n-i)

což jsrne měli dokázat.
Podle počtu tehdy zaslaných řešení šlo o úlohu obtížnější, i když uvedené řešení

to zcela nepotvrzuje. U podobných úloh se vždy vyplatí podívat se na triviální případy
pro malá n, které mohou napovědět obecné řešení. Došlá řešení se většinou lišila jen
v jasnosti argumentace. Kromě nerovnosti (1) bylo možno použít i obecnější nerovnosti
pro součin F(x,) všech rozdílů tvaru x, -f a — 6, jejichž aritmetický průměr je podle
stejné úvahy х,- (I. Martišovitš), takže

/2ПЧ

F(xt) <: X> "K
Je tedy

2n + l 2n + l Cn")
П F(<xi) = (П *»■) =л(а.“).Bn+l =

» = 1 1 = 1

Rada řešitelů také opomenula zdůraznit, že uvedené nerovnosti lze násobit jen díky
tomu, že uvažované rozdíly jsou (dle předpokladu) kladné!
2. Z předpokladů úlohy především plyne, že každé dvě skupinky mají nejvýše jeden
společný prvek a každá má nejvýše n členů (jinak by v ní byl aspoň jeden manželský
pár). Označme jednotlivé hosty čísly 1, 2, ..., 2n a dále označme d, počet skupinek,
ve kterých je host číslo i.

Je-li d{ = 2 pro nějaké i, pak musí obě skupiny А, В dohromady obsahovat všechny
hosty kromě partnera hosta i (i se v jiných skupinkách nevyskytuje). Je tedy

|AUB| = 2/i—l, |A П B| = 1, |A|gn, |B|^n,

takže obě skupiny musí mít právě n členů. Vezrneme-li teď z každé z obou skupin
po jednom členu a € A a b £ В, а ф i ф b, tak pokud to nejsou manželé, musí
spolu být pohromadě v nějaké skupině cj, ve které už nikdo jiný z A U В být nemůže.
Takových dvojic, a tedy i různých skupin (když odečteme příslušné manželské dvojice)
je (n — 1)(гг — 1) — (n — 1) = (n — l)(n — 2). Proto pro n^4a pro počet к skupinek
platí

к ^ 2 4- (n — l)(n — 2) = /i2 — 37í -f 4 ^ 27i.

Zbývá vyřešit těžší případ, kdy je d, ^ 3 pro každé i, 1 ^ i ^ 2n. Přiřaďme
každému z hostů nějaké reálné číslo х,- a označme yj součet těchto čísel pro všechny
členy skupinky cj, tj.

уi = £ *«•>
»'€ Cj

l^j^k. (1)
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Označme ještě M = {{г,i); i a j jsou manželé) množinu manželských dvojic. Pak
dostaneme následující odhad

к 2 n

Z^2 = Zf/tx? + 2 Z
{r,s}^M

xrxs =

j=1 i=l

2 2 n2 n

= Zx* + Z(f/*-])xi-2 z xr =

.1=1 i — \ {r,s}6M
22n. 2n

= (ZX‘ ) + Z(d*"" 2)X*? + Z (Xr + xm - 2*r*,) ^
{г,л}емi — \i=i

2 n2n

= Z<* ” 2)xf = Zx?-
1=1t=l

Nejprve jsme využili toho, že každá dvojice {r, s}, 1 ^ r < s ^ 2n, se vyskytuje právě
v jedné skupině Cj, pokud v a s nejsou manželé, a nakonec toho, že dvojice manželů
jsou (zpravidla) navzájem disjunktní.

Dostali jsme tak nerovnost

к 2 n

j = i г = 1

která říká, že pro y\ = г/2 = • • • = Ук — 0 má soustava rovnic (1) pouze triviální řešení
x\ = i? — ... — X‘2n = 0. To ovšem znamená, že rovnic musí být rozhodně aspoň tolik
co neznámých, tj. musí platit k ^ 2n, což jsme měli dokázat.

Z předchozího řešení (z rozboru případu с/г = 2) snadno zjistíme, že tvrzení úlohy
pro n = 3 neplatí. Označíme-li hosty 1, 2, 3, 4, 5, 6 tak, že i a 7 — i jsou manželé,
vystačíme se čtyřmi skupinkami {1,2,3}, {1,4,5}, {6,5,3}, {6,2,4}.
3. Tato úloha je velmi lehká a dá se řešit mnoha způsoby (předpokládáme samozřej-
mě, že jо. а ф b ф с ф a). Roznásobením a jednoduchou úpravou se můžeme přesvědčit,
že platí

bb 1 11 caa c

22 + (a — 6)2(c - a){b - c)b — c b — c a — ba — b c — ac — a

Odtud plyne tvrzení úlohy.
Jiné řešení (přirozenější varianta předchozího řešení). Položíme-li x = b — с, у =

= c — a, z = a — b, bude podle předpokladu xyz / 0 a

(2)а уz -f bxz -f cxy = 0.

Zároveň zřejmě platí

ox -f by + cz = 0.x + у + г = 0
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Vynásobíme-li rovnost (2) postupně čísly yz, zx a xy, dostaneme rovnosti

ay2z2 -f bxyz2 + cxy2z = 0,

axyz2 + 6x2z2 -f cx2yz = 0,

axy2z + bx2yz + cx2y2 = 0.

Jejich sečtením vyjde

ay2z2 + bx2z2 -f cx2y2 + xyz(a(y -f z) + 6(z + x) -f c(x + y)) = 0.

Podle uvedených vztahů přitom ale platí

a(y + z) + 6(z + x) + c(x + у) = «(у + г) + 6(г + x) + c(® + y) + ox + by + cz =

= (a + b + c)(x + у + г) = 0,

takže dostáváme hledanou rovnost

ay2z2 + 6x2z2 -f cx2y2 = 0.

Poloměr mincí v řetězu budeme považovat za jednotkový. Z obr. 16 je vidět, že
mince o poloměru к se po objetí oblouku délky cv otočí kolem svého vlastního středu

cv (odpovídající oblouky А В а А'В mají totiž

4.

I 1
o úhel cv + cv' = 1 +

*
a + ia =

stejnou délku). Speciálně pro к = 1 se mince po „projetí" oblouku délky cv sama otočí
o úhel 2cv.

Obr. 16 Obr. 17

Najdeme tedy součet délek oblouků, které uvažovaná mince objede. Označme
Oi, O2, ..., On středy jednotlivých mincí v řetězu. Pohybující se mince se určitě
nebude pohybovat po obloucích ležících uvnitř n-úhelníku 0\Oi .. -On, jejichž celková
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délka je (n — 2)rc (součet vnitřních úhlů n-úhelníku). Z celkové délky 2тт všech n
kružnic musíme ovšem ještě odečíst ty části oblouků mezi dvěma sousedními mincemi,
kterých se otáčející se mince nikdy nedotkne a jež leží v rovnoramenném trojúhelníku
OíSOí+i (obr. 17). Jednoduchým výpočtem zjistíme, že délka těchto dvou oblouků je
mezi každými dvěma mincemi rovna 2arccos

nichž se uvažovaná mince pohybuje, tedy bude

2nn — (n — 2)л — 2n arccos

1
Celkový součet délek oblouků, po

1 -h Ar'

1

1 + k’
čemuž odpovídá

1 + к 2
n + 2 n arccos

1

1 + к

otáček pohybující se mince. Speciálně pro к = 1 vyjde počet otáček jako ^v -f 2.
Předpoklad, že otáčející se mince se dotkne všech

mincí v řetězu, je důležitý, protože jinak bychom ne-
mohli počet otáček v závislosti na počtu daných mincí
určit. Zřetězené mince by totiž mohly vytvořit „záliv“
(obr. 18), do kterého by se objíždějící mince vůbec
nedostala.

5. Dokážeme tvrzení úlohy sporem. Předpokládej-
me, že každé dva body na povrchu devatenáctistěnu
mají vzdálenost nejvýše 21. Je-li Vd objem devatenác,-
tištěnu a V objem jemu vepsané koule, je

2к n

V < Vd.

Devatenáctistěn je tvořen 19 jehlany se společným vr-
cholem ve středu S vepsané koule a jejich podstavy tvoří stěny devatenáctistěnu. Je-li
S{ obsah г-té stěny a v poloměr vepsané koule, je

Obr. 18

— nr3 < — r(S\ + č>2 + •. • 4- б^э) (1)1/ =

(to je mimochodem vztah mezi povrchem koule a povrchem devatenáctistěnu).
Uvažujme bod X některé stěny devatenáctistěnu a bod S' dotyku této stěny

s vepsanou koulí, pak je |A'5,| ^ \/2T. Kdyby totiž bylo naopak |A'S'71 > \/2T, bylo by
také |A'Sj > л/102 -f- 21 =11. Pro druhý bod Y ф X průniku přímky XS s povrchem
devatenáctistěnu potom platí |V\5j ^ 10 a |A'Y'r| = |A'5j -f |У5| > 21, což je ve sporu
s naším předpokladem.

Zjistili jsme, že každá stěna devatenáctistěnu je částí kruhu se středem v bodě
dotyku a poloměrem 21. Je tedy

Si й 21 я, 1^г^19.
Rovnost (1) pak pro r = 10 znamená, že

400л < 19 • 2In, tj. 400 <399

a to je spor.
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